# No Faster-Than-Light Observers

### Mike Stannett

September 23, 2021

#### Abstract

We provide a formal proof within First Order Relativity Theory that no observer can travel faster than the speed of light. Originally reported by Stannett and Németi [1].

## Contents

theory SpaceTime imports Main begin

```
 \begin{array}{cccc} \mathbf{record} & 'a \ Vector = \\ tdir :: 'a \\ xdir :: 'a \\ ydir :: 'a \\ zdir :: 'a \end{array}
```

```
 \begin{array}{l} \mathbf{record} \ 'a \ Point = \\ tval :: \ 'a \\ xval :: \ 'a \\ yval :: \ 'a \\ zval :: \ 'a \end{array}
```

```
\begin{array}{ll} \mathbf{record} \ 'a \ Line \ = \\ basepoint :: 'a \ Point \\ direction :: 'a \ Vector \end{array}
```

```
pbasepoint :: 'a Point
  direction1 :: 'a \ Vector
  direction2 :: 'a \ Vector
record 'a Cone =
  vertex :: 'a Point
  slope :: 'a
class \ Quantities = linordered-field
{f class}\ {\it Vectors} = {\it Quantities}
begin
 abbreviation vecZero :: 'a \ Vector \ (0) \ \mathbf{where}
   vecZero \equiv (tdir = (0::'a), xdir = 0, ydir = 0, zdir = 0)
  fun vecPlus :: 'a \ Vector \Rightarrow 'a \ Vector \Rightarrow 'a \ Vector \ (\mathbf{infixr} \oplus 100) \ \mathbf{where}
    vecPlus\ u\ v = (tdir = tdir\ u + tdir\ v,\ xdir = xdir\ u + xdir\ v,
                    ydir = ydir u + ydir v, zdir = zdir u + zdir v
  fun vecMinus: 'a Vector \Rightarrow 'a Vector \Rightarrow 'a Vector (infixr \ominus 100) where
   vecMinus\ u\ v = (tdir = tdir\ u - tdir\ v,\ xdir = xdir\ u - xdir\ v,
                     ydir = ydir u - ydir v, zdir = zdir u - zdir v
  fun vecNegate :: 'a \ Vector \Rightarrow 'a \ Vector (~ -) \ \mathbf{where}
   vecNegate\ u = (tdir = uminus\ (tdir\ u),\ xdir = uminus\ (xdir\ u),
                     ydir = uminus (ydir u), zdir = uminus (zdir u)
 fun innerProd :: 'a \ Vector \Rightarrow 'a \ Vector \Rightarrow 'a \ (infix \ dot \ 50) where
    innerProd\ u\ v = (tdir\ u\ *\ tdir\ v)\ +\ (xdir\ u\ *\ xdir\ v)\ +
                    (ydir\ u * ydir\ v) + (zdir\ u * zdir\ v)
  fun sqrlen :: 'a \ Vector \Rightarrow 'a \ \mathbf{where} \ sqrlen \ u = (u \ dot \ u)
  fun minkowskiProd :: 'a \ Vector \Rightarrow 'a \ Vector \Rightarrow 'a \ (infix \ mdot \ 50) where
   minkowskiProd\ u\ v = (tdir\ u * tdir\ v)
                      - ((xdir \ u * xdir \ v) + (ydir \ u * ydir \ v) + (zdir \ u * zdir \ v))
  fun mSqrLen :: 'a \ Vector \Rightarrow 'a \ \mathbf{where} \ mSqrLen \ u = (u \ mdot \ u)
  fun vecScale :: 'a \Rightarrow 'a \ Vector \Rightarrow 'a \ Vector \ (infix ** 200) \ where
```

 $\mathbf{record}$  'a Plane =

```
vecScale \ k \ u = (tdir = k * tdir \ u, xdir = k * xdir \ u, ydir = k * ydir \ u, zdir)
= k * zdir u
  fun orthogonal :: 'a Vector \Rightarrow 'a Vector \Rightarrow bool (infix \perp 150) where
    orthogonal\ u\ v = (u\ dot\ v = 0)
lemma lemVecZeroMinus:
  shows \theta \ominus u = ^{\sim} u
  \mathbf{by} \ simp
\mathbf{lemma}\ \mathit{lemVecSelfMinus} :
  shows u \ominus u = \theta
  by simp
\mathbf{lemma}\ lem VecPlusCommute:
  shows u \oplus v = v \oplus u
  by (simp add: add.commute)
\mathbf{lemma}\ \mathit{lemVecPlusAssoc} \colon
  shows u \oplus (v \oplus w) = (u \oplus v) \oplus w
  by (simp add: add.assoc)
\mathbf{lemma}\ \mathit{lemVecPlusMinus} :
  shows u \oplus (^{\sim} v) = u \ominus v
  by (simp add: local.add-uminus-conv-diff)
\mathbf{lemma}\ \mathit{lemDotCommute} :
  shows (u \ dot \ v) = (v \ dot \ u)
  by (simp add: mult.commute)
\mathbf{lemma}\ lem MD ot Commute:
  shows (u \ mdot \ v) = (v \ mdot \ u)
  by (simp add:mult.commute)
\mathbf{lemma}\ \mathit{lemScaleScale} :
```

**shows** a\*\*(b\*\*u) = (a\*b)\*\*u**by** (simp add: mult.assoc)

```
lemma lemScale1:
  \mathbf{shows}\ 1\ **\ u = u
  \mathbf{by} \ simp
lemma lemScale\theta:
  \mathbf{shows}\ \theta\ **\ u=\theta
  \mathbf{by} \ simp
lemma lemScaleNeg:
  shows (-k)**u = (k**u)
  \mathbf{by} \ simp
{\bf lemma}\ lem Scale Origin:
  \mathbf{shows}\ k{**}\theta=\theta
  by auto
\mathbf{lemma}\ lemScaleOverAdd:
  shows k**(u \oplus v) = k**u \oplus k**v
  by (simp add: semiring-normalization-rules(34))
\mathbf{lemma}\ \mathit{lemAddOverScale} :
  shows a**u \oplus b**u = (a+b)**u
  by (simp\ add:\ semiring-normalization-rules(1))
\mathbf{lemma}\ \mathit{lemScaleInverse} :
  assumes k \neq (\theta :: 'a)
   and v = k**u
  shows u = (inverse \ k) **v
proof -
  have (inverse\ k)**v = (inverse\ k*k)**u
   \mathbf{by}\ (simp\ add:\ lemScaleScale\ assms(2)\ mult.assoc)
  thus ?thesis by (metis (lifting) field-inverse assms(1) lemScale1)
qed
```

```
\mathbf{lemma}\ lem Ortho Sym:
 assumes u \perp v
 shows v \perp u
 by (metis assms(1) lemDotCommute orthogonal.simps)
end
{f class}\ Points = Quantities + Vectors
begin
  abbreviation origin :: 'a Point where
   origin \equiv \{ tval = 0, xval = 0, yval = 0, zval = 0 \}
  fun vector Joining :: 'a Point \Rightarrow 'a Point \Rightarrow 'a Vector (from - to -) where
   vector Joining p q
     = (|tdir = tval \ q - tval \ p, xdir = xval \ q - xval \ p,
         ydir = yval \ q - yval \ p, \ zdir = zval \ q - zval \ p
  fun moveBy :: 'a\ Point \Rightarrow 'a\ Vector \Rightarrow 'a\ Point\ (infixl \leadsto 100)\ where
    moveBy p u
     = (|tval| = tval| p + tdir| u, xval = xval| p + xdir| u,
         yval = yval p + ydir u, zval = zval p + zdir u
  fun position\ Vector\ ::\ 'a\ Point\ \Rightarrow\ 'a\ Vector\ \mathbf{where}
   position\ Vector\ p = (|tdir = tval\ p,\ xdir = xval\ p,\ ydir = yval\ p,\ zdir = zval\ p)
  fun before :: 'a Point \Rightarrow 'a Point \Rightarrow bool (infixr \lesssim 100) where
   before p \ q = (tval \ p < tval \ q)
 fun after :: 'a Point \Rightarrow 'a Point \Rightarrow bool (infixr \gtrsim 100) where
   after p \ q = (tval \ p > tval \ q)
  fun sametime :: 'a \ Point \Rightarrow 'a \ Point \Rightarrow bool \ (infixr \approx 100) \ where
   sametime p q = (tval p = tval q)
  lemma lemFromToTo:
   shows (from \ p \ to \ q) \oplus (from \ q \ to \ r) = (from \ p \ to \ r)
   have shared: \forall valp \ valq \ valr.(\ valq - valp + (valr - valq) = valr - valp)
     by (metis add-uminus-conv-diff add-diff-cancel
               semiring-normalization-rules(24) semiring-normalization-rules(25))
   thus ?thesis by auto
  qed
```

```
lemma lemMoveByMove:
    shows p \rightsquigarrow u \rightsquigarrow v = p \rightsquigarrow (u \oplus v)
    by (simp add: add.assoc)
  lemma lemScaleLinear:
    shows p \rightsquigarrow a**u \rightsquigarrow b**v = p \rightsquigarrow (a**u \oplus b**v)
  by (simp add: add.assoc)
end
{f class}\ {\it Lines} = {\it Quantities} + {\it Vectors} + {\it Points}
begin
  fun onAxisT :: 'a Point \Rightarrow bool where
     onAxisT\ u = ((xval\ u = 0) \land (yval\ u = 0) \land (zval\ u = 0))
  fun space2 :: ('a Point) \Rightarrow ('a Point) \Rightarrow 'a where
    space2 u v
      = (xval\ u - xval\ v)*(xval\ u - xval\ v)
      + (yval \ u - yval \ v)*(yval \ u - yval \ v)
      + (zval\ u - zval\ v)*(zval\ u - zval\ v)
  fun time2 :: ('a Point) \Rightarrow ('a Point) \Rightarrow 'a where
    time2 \ u \ v = (tval \ u - tval \ v) * (tval \ u - tval \ v)
  fun speed :: ('a Point) \Rightarrow ('a Point) \Rightarrow 'a where
    speed\ u\ v = (space 2\ u\ v\ /\ time 2\ u\ v)
  fun mkLine :: 'a \ Point => 'a \ Vector \Rightarrow 'a \ Line \ \mathbf{where}
    mkLine\ b\ d = \{ basepoint = b, direction = d \} 
  fun line Joining :: 'a Point \Rightarrow 'a Point \Rightarrow 'a Line (line joining - to -) where
    line Joining p q = (|basepoint = p, direction = from p to q)
  fun parallel :: 'a Line \Rightarrow 'a Line \Rightarrow bool (- || ) where
   parallel\ lineA\ lineB = ((direction\ lineA = vecZero) \lor (direction\ lineB = vecZero)
                                      \vee (\exists k.(k \neq (0::'a) \land direction \ lineB = k**direction)
lineA)))
  fun collinear :: 'a \ Point \Rightarrow 'a \ Point \Rightarrow 'a \ Point \Rightarrow bool \ where
    collinear p \ q \ r = (\exists \alpha \beta. ((\alpha + \beta = 1) \land
            position\ Vector\ p = \alpha **(position\ Vector\ q) \oplus \beta **(position\ Vector\ r)\ ))
  fun inLine :: 'a \ Point \Rightarrow 'a \ Line \Rightarrow bool \ where
    inLine \ p \ l = collinear \ p \ (basepoint \ l) \ (basepoint \ l \leadsto direction \ l)
```

```
fun meets :: 'a Line \Rightarrow 'a Line \Rightarrow bool where
   meets line1 line2 = (\exists p.(inLine \ p \ line1 \land inLine \ p \ line2))
 lemma lemParallelReflexive:
   shows lineA \parallel lineA
 proof -
   define dir where dir = direction lineA
   have (1 \neq 0) \land (dir = 1**dir) by simp
   thus ?thesis by (metis dir-def parallel.simps)
  qed
 lemma lemParallelSym:
   assumes lineA \parallel lineB
   shows lineB \parallel lineA
 proof -
   have case1: direction lineA = vecZero \longrightarrow ?thesis by auto
   have case2: direction lineB = vecZero \longrightarrow ?thesis by auto
     assume case3: direction lineA \neq vecZero \land direction\ lineB \neq vecZero
    have exists-kab: \exists kab.(kab \neq (0::'a) \land direction\ lineB = kab**direction\ lineA)
       by (metis parallel.simps assms(1) case3)
       define kab where kab \equiv (SOME \ kab.(kab \neq (0::'a) \land direction \ lineB =
kab**direction lineA))
     have kab-props: kab \neq 0 \land direction \ lineB = kab**direction \ lineA
       using exists-kab kab-def
       by (rule Hilbert-Choice.exE-some)
     define kba where kba = inverse kab
    have kba-nonzero: kba \neq 0 by (metis inverse-zero-imp-zero kab-props kba-def)
    have direction\ line A = kba**direction\ line B by (metis\ kba-def\ lem Scale Inverse
kab-props)
     hence ?thesis by (metis kba-nonzero parallel.simps)
    from this have (direction line A \neq vecZero \land direction line <math>B \neq vecZero) \longrightarrow
?thesis by blast
   thus ?thesis by (metis case1 case2)
 qed
 \mathbf{lemma}\ lem Parallel Trans:
   assumes lineA \parallel lineB
     and lineB \parallel lineC
     and
            direction\ lineB \neq vecZero
   shows lineA \parallel lineC
 proof -
```

```
have case1: direction lineA = vecZero \longrightarrow ?thesis by auto
   have case2: direction lineC = vecZero \longrightarrow ?thesis by auto
     assume case3: direction lineA \neq vecZero \land direction lineC \neq vecZero
    have exists-kab: \exists kab.(kab \neq (0::'a) \land direction \ lineB = kab**direction \ lineA)
       by (metis parallel.simps assms(1) case3 assms(3))
    then obtain kab where kab-props: kab \neq 0 \land direction \ line B = kab ** direction
lineA by auto
    have exists-kbc: \exists kbc.(kbc \neq (0::'a) \land direction line C = kbc**direction line B)
       by (metis\ parallel.simps\ assms(2)\ case3\ assms(3))
    then obtain kbc where kbc-props: kbc \neq 0 \land direction \ line C = kbc ** direction
lineB by auto
     define kac where kac = kbc * kab
   have kac-nonzero: kac \neq 0 by (metis kab-props kac-def kbc-props no-zero-divisors)
     have direction\ line C = kac**direction\ line A
       by (metis kab-props kbc-props kac-def lemScaleScale)
     hence ?thesis by (metis kac-nonzero parallel.simps)
   from this have (direction line A \neq vec Zero \land direction line <math>C \neq vec Zero) \longrightarrow
?thesis by blast
   thus ?thesis by (metis case1 case2)
 qed
 lemma (in -) lemLineIdentity:
   assumes lineA = (|basepoint = basepoint \ lineB, \ direction = \ direction \ lineB)
   shows lineA = lineB
 proof -
 have basepoint lineA = basepoint\ line B \land direction\ line A = direction\ line B
   by (simp\ add:\ assms(1))
  thus ?thesis by simp
 qed
 lemma lemDirectionJoining:
   shows vector Joining p (p \leadsto v) = v
 proof -
   have \forall a \ b.(a + b - a = b)
   by (metis add-uminus-conv-diff diff-add-cancel semiring-normalization-rules (24))
   thus ?thesis by auto
  qed
```

```
lemma lemDirectionFromTo:
   shows direction (line joining p to (p \rightsquigarrow dir)) = dir
 proof -
   have direction (line joining p to (p \leadsto dir)) = from p to (p \leadsto dir) by simp
   thus ?thesis by (metis lemDirectionJoining)
 qed
 lemma lemLineEndpoint:
   shows q = p \rightsquigarrow (from \ p \ to \ q)
 proof -
   have \forall a \ b. \ (b = a + (b - a))
     by (metis diff-add-cancel semiring-normalization-rules(24))
   thus ?thesis by auto
 qed
 lemma lemNullLine:
   assumes direction lineA = vecZero
     and inLine \ x \ line A
   \mathbf{shows} \quad x = \textit{basepoint lineA}
  proof -
   define bp where bp = basepoint lineA
   have collinear x (basepoint lineA) (basepoint lineA \rightsquigarrow direction lineA)
     by (metis\ inLine.simps\ assms(2))
   hence collinear x bp (bp \leadsto vecZero) by (metis\ bp\text{-}def\ assms(1))
   hence collinear x bp bp by simp
   hence \exists a \ b.((a + b = 1) \land
                  (position\ Vector\ x = a**(position\ Vector\ bp) \oplus b**(position\ Vector\ bp))
bp)))
     by (metis collinear.simps)
   hence positionVector x = positionVector bp by (metis lemScale1 lemAddOver-
   thus ?thesis by (simp add: bp-def)
 qed
 lemma lemLineContainsBasepoint:
   shows inLine\ p\ (line\ joining\ p\ to\ q)
  proof -
   define linePQ where linePQ = line joining p to q
   have bp: basepoint linePQ = p by (simp add: linePQ-def)
   have dir: direction line PQ = from p to q by (simp add: line PQ-def)
   have endq: basepoint linePQ \leadsto direction \ line PQ = q \ by \ (metis \ bp \ dir \ lem Li-
neEndpoint)
  have (1 + \theta = 1) \land (position Vector p = 1**(position Vector p) \oplus \theta**(position Vector p))
q))
```

```
by auto
   hence collinear p p q by (metis collinear.simps)
   hence collinear p (basepoint linePQ) (basepoint linePQ \rightsquigarrow direction\ line<math>PQ)
     by (metis bp endq)
   thus ?thesis by (simp add: linePQ-def)
  qed
 \mathbf{lemma}\ \mathit{lemLineContainsEndpoint} :
   shows inLine\ q\ (line\ joining\ p\ to\ q)
 proof -
   define linePQ where linePQ = line joining p to q
   have bp: basepoint linePQ = p by (simp \ add: linePQ-def)
   have dir: direction linePQ = from p to q by (simp add: linePQ-def)
   have endq: basepoint linePQ \rightarrow direction\ line PQ = q\ by\ (metis\ bp\ dir\ lem Li-
neEndpoint)
  have (0 + 1 = 1) \land (position Vector q = 0**(position Vector p) \oplus 1**(position Vector p))
q))
     by auto
   hence collinear\ q\ p\ q by (metis\ collinear.simps)
   hence collinear q (basepoint linePQ) (basepoint linePQ \leadsto direction linePQ)
     by (metis bp endq)
   thus ?thesis by (simp add: linePQ-def)
  qed
 \mathbf{lemma}\ lem Direction Reverse:
   shows from q to p = vecNegate (from p to q)
   by simp
 lemma lemParallelJoin:
   assumes line joining p to q \parallel line joining q to r
   shows line joining p to q \parallel line joining p to r
  proof -
   define linePQ where linePQ = line joining p to q
   define lineQR where lineQR = line joining q to r
   define linePR where linePR = line joining p to r
  have case1: (direction\ linePQ = vecZero) \longrightarrow ?thesis\ by\ (simp\ add:\ linePQ-def)
  have case2: (direction\ linePR = vecZero) \longrightarrow ?thesis\ by\ (simp\ add:\ linePR-def)
   {
     assume case3: direction linePQ \neq vecZero \land direction \ linePR \neq vecZero
      assume case3a: direction\ lineQR = vecZero
      have inLine r lineQR by (metis lemLineContainsEndpoint lineQR-def)
```

```
hence r = basepoint lineQR by (metis lemNullLine case3a)
      hence r = q by (simp \ add: lineQR-def)
      hence linePQ = linePR by (simp \ add: linePQ-def \ linePR-def)
      hence ?thesis by (metis lemParallelReflexive linePQ-def linePR-def)
     from this have rtp3a: direction\ lineQR = vecZero \longrightarrow ?thesis\ by\ blast
      assume case3b: direction lineQR \neq vecZero
      define dirPQ where dirPQ = from p to q
     have dir-pq: direction\ linePQ = dirPQ\ by\ (simp\ add:\ linePQ-def\ dirPQ-def)
      define dirQR where dirQR = from q to r
     have dir-qr: direction\ lineQR = dirQR\ by (simp\ add:\ lineQR-def\ dirQR-def)
      have exists-k: \exists k.(k \neq 0 \land direction \ lineQR = k**direction \ linePQ)
        by (metis\ line PQ-def\ line QR-def\ assms(1)\ parallel.simps\ case3b\ case3)
      then obtain k where k-props: k \neq 0 \land dirQR = k**dirPQ by (metis dir-pq
dir-qr
      define scalar where scalar = 1+k
         have q = p \rightsquigarrow dirPQ \land r = q \rightsquigarrow dirQR by (metis lemLineEndpoint
dirPQ-def dirQR-def)
      hence r = p \rightsquigarrow dirPQ \rightsquigarrow (k**dirPQ) by (metis\ k\text{-}props)
      hence scalarPR: r = p \rightsquigarrow scalar**dirPQ
        by (metis lemScaleLinear lemScale1 lemAddOverScale scalar-def)
       {
        assume scalar\theta: scalar = \theta
        have r = p by (simp add: lemScale0 scalarPR scalar0)
        hence direction \ linePR = vecZero \ by \ (simp \ add: \ linePR-def)
        hence False by (metis case3)
      from this have scalar-nonzero: scalar \neq 0 by blast
      have linePR = line\ joining\ p\ to\ (p \leadsto scalar**dirPQ)
        by (simp add: linePR-def scalarPR)
      hence direction\ linePR = scalar**dirPQ by (metis\ lemDirectionFromTo)
         hence scalar-props: scalar \neq 0 \land direction \ linePR = scalar ** direction
linePQ
       by (metis scalar-nonzero dir-pq)
      hence ?thesis by (metis parallel.simps linePR-def linePQ-def)
     from this have direction line QR \neq vecZero \longrightarrow ?thesis by blast
     hence ?thesis by (metis \ rtp3a)
```

```
from this have (direction linePQ \neq vecZero \land direction line<math>PR \neq vecZero) \longrightarrow
?thesis by blast
    thus ?thesis by (metis case1 case2)
  qed
  lemma lemDirectionCollinear:
    shows collinear u \ v \ (v \leadsto d) \longleftrightarrow (\exists \beta. (from \ u \ to \ v = (-\beta) * * d))
  proof -
    have basic1: \forall u \ v.(position\ Vector\ (u \leadsto v)) = (position\ Vector\ u) \oplus v \ \mathbf{by} \ simp
    have basic2: \forall u \ v \ w.(u = v \oplus w \longrightarrow v \ominus u = vecNegate \ w)
      apply auto
             (metis add-uminus-conv-diff diff-add-cancel minus-add
      \mathbf{b}\mathbf{y}
              semiring-normalization-rules(24)) +
   have basic3: \forall u \ v.(from \ u \ to \ v = positionVector \ v \ominus positionVector \ u) by simp
    have basic4: \forall u \ v \ w.(v \ominus u = vecNegate \ w \longrightarrow u = v \oplus w)
      apply auto
      by (metis add-uminus-conv-diff diff-add-cancel lemScale1 mult.left-neutral
          semiring-normalization-rules(24) \ vecScale.simps)
      assume assm: collinear u \ v \ (v \leadsto d)
      have \exists \alpha \beta. ( (\alpha + \beta = 1) \land
        position\ Vector\ u = \alpha **(position\ Vector\ v) \oplus \beta **(position\ Vector\ (v \leadsto d))
        by (metis assm collinear.simps)
      then obtain \alpha \beta where props: (\alpha + \beta = 1) \wedge
               position\ Vector\ u = \alpha **(position\ Vector\ v) \oplus \beta **(position\ Vector\ (v \leadsto
d)) by auto
      hence position Vector u = 1**(position Vector v) \oplus \beta**d
      by (metis basic1 lemScaleOverAdd lemVecPlusAssoc lemAddOverScale props)
      hence positionVector\ u = positionVector\ v \oplus \beta**d\ \mathbf{by}\ (metis\ lemScale1)
        hence position Vector v \in position Vector u = (-\beta)**d by (metis basic2)
lemScaleNeg)
      hence \exists \beta. (from \ u \ to \ v = (-\beta) **d) by (metis \ basic \beta)
    from this have fwd: collinear u \ v \ (v \leadsto d) \longrightarrow (\exists \beta. (from \ u \ to \ v = (-\beta) * * d))
by blast
    {
      assume \exists \beta. (from \ u \ to \ v = (-\beta) **d)
      then obtain \beta where assm: from u to v = (-\beta) **d by auto
      define \alpha where \alpha = 1 - \beta
      have \alpha\beta-sum: \alpha + \beta = 1 by (simp add: \alpha-def)
      have from u to v = vecNegate (\beta**d) by (metis \ assm \ lemScaleNeg)
      hence position Vector v \ominus position Vector u = vecNegate (\beta**d) by auto
      hence position Vector u = position Vector v \oplus \beta **d by (metis basic4)
      hence position Vector u = 1**(position Vector v) \oplus \beta**d
```

```
by (metis lemScale1)
     hence (\alpha + \beta = 1) \wedge
          position\ Vector\ u = \alpha**(position\ Vector\ v) \oplus \beta**(position\ Vector\ (v \leadsto d))
       by (metis \alpha\beta-sum basic1 lemScaleOverAdd lemVecPlusAssoc lemAddOver-
Scale)
     hence collinear u \ v \ (v \leadsto d) by auto
    from this have (\exists \beta. (from \ u \ to \ v = (-\beta) **d)) \longrightarrow collinear \ u \ v \ (v \leadsto d) by
blast
   thus ?thesis by (metis fwd)
 qed
 \mathbf{lemma}\ \mathit{lemParallelNotMeet} :
   assumes lineA \parallel lineB
     \mathbf{and} \quad \mathit{direction} \ \mathit{line} A \neq \mathit{vecZero}
     and direction\ lineB \neq vecZero
     and inLine \ x \ line A
     and \neg(inLine\ x\ lineB)
   shows \neg (meets\ line A\ line B)
 proof -
   have basic: \forall p \ q \ v \ a.(from \ p \ to \ q = a**v \longrightarrow from \ q \ to \ p = (-a)**v)
     apply (simp add: lemScaleNeg) by (metis minus-diff-eq)
   define bpA where bpA = basepoint lineA
   define dirA where dirA = direction lineA
   define bpB where bpB = basepoint lineB
   define dirB where dirB = direction \ lineB
   have lineB \parallel lineA by (metis\ lemParallelSym\ assms(1))
   hence exists-kab: \exists kab.(kab \neq (0::'a) \land direction lineA = kab**direction lineB)
     by (metis\ parallel.simps\ assms(2)\ assms(3))
    then obtain kab where kab-props: kab \neq 0 \land dirA = kab**dirB by (metis
dirA-def dirB-def)
   have collinear x \ bpA \ (bpA \leadsto dirA) by (metis \ assms(4) \ inLine.simps \ bpA-def
dirA-def)
    then obtain \beta where from x to bpA = (-\beta)**dirA by (metis lemDirection-
Collinear)
    hence x-to-bpA: from x to bpA = ((-\beta)*kab)**dirB by (metis lemScaleScale
kab-props)
   {
```

```
have \exists p.(inLine \ p \ lineA \land inLine \ p \ lineB) by (metis converse meets.simps)
     then obtain p where p-in-AB: inLine\ p\ lineA \land inLine\ p\ lineB by auto
    have collinear p bpA (bpA \rightsquigarrow dirA) by (metis p-in-AB inLine.simps bpA-def
dirA-def)
     then obtain \beta A where from p to bpA = (-\beta A)**dirA by (metis lemDirec-
tionCollinear)
     hence from bpA to p = (\beta A) **dirA by (metis basic minus-minus)
     hence bpA-to-p: from bpA to p = (\beta A*kab)**dirB by (metis\ lemScaleScale
kab-props)
     have collinear p bpB (bpB \leadsto dirB) by (metis p-in-AB inLine.simps bpB-def
dir B-def)
     then obtain \beta B where p-to-bpB: from p to bpB = (-\beta B)**dirB by (metis
lemDirectionCollinear)
     define \gamma where \gamma = -((-\beta)*kab + (\beta A*kab) + (-\beta B))
    have x-to-bpB: (from \ x \ to \ bpA) \oplus (from \ bpA \ to \ p) \oplus (from \ p \ to \ bpB) = (from \ p \ to \ bpB)
x \ to \ bpB)
      by (metis lemFromToTo)
    hence from x to bpB = ((-\beta)*kab)**dirB \oplus (\beta A*kab)**dirB \oplus (-\beta B)**dirB
      by (metis x-to-bpA bpA-to-p p-to-bpB)
     hence from x to bpB = (-\gamma)**dirB
      by (metis lemAddOverScale add.assoc \gamma-def minus-minus)
     hence collinear x \ bpB \ (bpB \leadsto dirB) by (metis lemDirectionCollinear)
     hence inLine x lineB by (metis inLine.simps bpB-def dirB-def)
   from this have meets line A line B \longrightarrow inLine x line B by blast
   thus ?thesis by (metis assms(5))
  qed
 lemma lemAxisIsLine:
   assumes onAxisTx
     and onAxisTy
     and
           onAxisTz
     and x \neq y
     and y \neq z
     and z \neq x
   shows collinear x y z
 proof -
   define ratio where ratio = -(tval\ y - tval\ x) / (tval\ z - tval\ y)
    have x-onAxis: xval x = 0 \land yval \ x = 0 \land zval \ x = 0 by (metis assms(1))
onAxisT.simps)
    have y-onAxis: xval y = 0 \land yval \ y = 0 \land zval \ y = 0 by (metis assms(2))
```

assume converse: meets lineA lineB

```
onAxisT.simps)
    have z-onAxis: xval z = 0 \land yval \ z = 0 \land zval \ z = 0 by (metis assms(3))
onAxisT.simps)
   have tval\ z - tval\ y = 0 \longrightarrow z = y by (simp\ add:\ z\text{-}onAxis\ y\text{-}onAxis)
   hence tval z \neq tval y by (metis assms(5) eq-iff-diff-eq-0)
   hence tvalyz-nonzero: tval\ z - tval\ y \neq 0 by (metis\ eq-iff-diff-eq-0)
   have x-to-y: from x to y = (tdir = tval \ y - tval \ x, xdir = 0, ydir = 0, zdir)
= 0
    by (simp add: x-onAxis y-onAxis)
   have y-to-z: from y to z = (tdir = tval \ z - tval \ y, xdir = 0, ydir = 0, zdir)
= 0
     by (simp add:y-onAxis z-onAxis)
   have from x to y = (-ratio)**(from y to z)
    apply (simp add: x-to-y y-to-z ratio-def)
     by (metis diff-self eq-divide-imp minus-diff-eq mult-eq-0-iff
             tvalyz-nonzero x-onAxis y-onAxis z-onAxis)
    hence collinear x \ y \ (y \leadsto (from \ y \ to \ z)) by (metis\ lem Direction Collinear)
   thus ?thesis by (metis lemLineEndpoint)
 \mathbf{qed}
 lemma lemSpace2Sym:
   shows space2 \ x \ y = space2 \ y \ x
 proof -
   define xsep where xsep = xval x - xval y
   define ysep where ysep = yval x - yval y
   define zsep where zsep = zval x - zval y
   have spacexy: space2 \ x \ y = (xsep*xsep) + (ysep*ysep) + (zsep*zsep)
     by (simp add: xsep-def ysep-def zsep-def)
  have spaceyx: space2 y x = (-xsep)*(-xsep) + (-ysep)*(-ysep) + (-zsep)*(-zsep)
    by (simp add: xsep-def ysep-def zsep-def)
    thus ?thesis by (metis spacexy diff-0-right minus-diff-eq minus-mult-left mi-
nus-mult-right)
 qed
 lemma lemTime2Sym:
   shows time2 \ x \ y = time2 \ y \ x
 proof -
   define tsep where tsep = tval x - tval y
   have timexy: time2 \ x \ y = tsep*tsep
    by (simp add: tsep-def)
   have timeyx: time2 y x = (-tsep)*(-tsep)
    by (simp add: tsep-def)
    thus ?thesis by (metis timexy diff-0-right minus-diff-eq minus-mult-left mi-
nus-mult-right)
```

```
qed
end
class Planes = Quantities + Lines
begin
  fun mkPlane :: 'a \ Point \Rightarrow 'a \ Vector \Rightarrow 'a \ Vector \Rightarrow 'a \ Plane \ \mathbf{where}
    mkPlane\ b\ d1\ d2 = \{ pbasepoint = b,\ direction1 = d1,\ direction2 = d2 \} 
  fun coplanar :: 'a\ Point \Rightarrow 'a\ Point \Rightarrow 'a\ Point \Rightarrow 'a\ Point \Rightarrow bool\ where
    coplanar \ e \ x \ y \ z
      = (\exists \alpha \beta \gamma. ((\alpha + \beta + \gamma = 1)) \land
             position Vector e
             = (\alpha ** (position Vector x) \oplus \beta ** (position Vector y) \oplus \gamma ** (position Vector y))
z))))
  fun inPlane :: 'a \ Point \Rightarrow 'a \ Plane \Rightarrow bool \ \mathbf{where}
    inPlane\ e\ pl = coplanar\ e\ (pbasepoint\ pl)\ (pbasepoint\ pl\ \leadsto\ direction1\ pl)
                                                  (pbasepoint \ pl \leadsto direction2 \ pl)
  fun samePlane :: 'a Plane \Rightarrow 'a Plane \Rightarrow bool where
    samePlane \ pl \ pl' = (inPlane \ (pbasepoint \ pl) \ pl' \land
                           inPlane (pbasepoint pl \rightsquigarrow direction1 pl) pl' \land
                          inPlane (pbasepoint pl \rightsquigarrow direction2 pl) pl')
\mathbf{lemma}\ \mathit{lemPlaneContainsBasePoint} :
  shows inPlane (pbasepoint pl) pl
  proof -
    define \alpha where \alpha = (1::'a)
    define \beta where \beta = (\theta :: 'a)
    define \gamma where \gamma = (\theta :: 'a)
    have rtp1: \alpha + \beta + \gamma = 1 by (simp\ add: \alpha\text{-}def\ \beta\text{-}def\ \gamma\text{-}def)
    define e where e = pbasepoint pl
    define x where x = pbasepoint pl
    define y where y = pbasepoint pl <math>\leadsto direction1 pl
    define z where z = pbasepoint pl \rightsquigarrow direction2 pl
    have rtp2: position Vector\ e = \alpha **(position\ Vector\ x)
                                   \oplus \beta **(position Vector y) \oplus \gamma **(position Vector z)
      by (simp add: e-def x-def \alpha-def \beta-def \gamma-def)
    have same plane: coplanar e \ x \ y \ z by (metis coplanar.simps rtp1 rtp2)
    hence coplanar e (pbasepoint pl) (pbasepoint pl \rightsquigarrow direction1 \ pl)
                                        (pbasepoint \ pl \leadsto direction2 \ pl)
      by (simp add: x-def y-def z-def)
```

hence inPlane e pl by simp thus ?thesis by (simp add: e-def)

qed

#### end

```
{f class}\ {\it Cones} = {\it Quantities} + {\it Lines} + {\it Planes} +
fixes
  tangentPlane :: 'a Point \Rightarrow 'a Cone \Rightarrow 'a Plane
assumes
  AxTangentBase: pbasepoint (tangentPlane e cone) = e
and
  AxTangentVertex: inPlane (vertex cone) (tangentPlane e cone)
  AxConeTangent: (onCone\ e\ cone) \longrightarrow
                 ((inPlane\ pt\ (tangentPlane\ e\ cone)\ \land\ onCone\ pt\ cone)
                                                         \longleftrightarrow collinear (vertex cone) e pt)
and
  AxParallelCones: (onCone\ e\ econe\ \land\ e \neq vertex\ econe\ \land\ onCone\ f\ fcone\ \land\ f \neq f)
vertex fcone
                     \land inPlane f (tangentPlane e econe))
                   \longrightarrow (samePlane (tangentPlane e econe) (tangentPlane f fcone)
                        \land ((lineJoining (vertex econe) e) || (lineJoining (vertex fcone)
f)))
and
  AxParallelConesE: outsideCone f cone
   \longrightarrow (\exists e. (onCone \ e \ cone \land \ e \neq vertex \ cone \land \ inPlane \ f \ (tangentPlane \ e \ cone)))
and
  AxSlopedLineInVerticalPlane: [onAxisTe; onAxisTf; e \neq f; \neg (onAxisTg)]
    \implies (\forall s. (\exists p. (collinear e g p \land (space2 p f = (s*s)*time2 p f))))
begin
 fun onCone :: 'a \ Point \Rightarrow 'a \ Cone \Rightarrow bool \ \mathbf{where}
    onCone p cone
     = (space2 (vertex cone) p = (slope cone * slope cone) * time2 (vertex cone)
p
  fun insideCone :: 'a \ Point \Rightarrow 'a \ Cone \Rightarrow bool \ \mathbf{where}
    insideCone p cone
      = (space2 (vertex cone) p < (slope cone * slope cone) * time2 (vertex cone)
p)
```

```
fun outsideCone :: 'a Point <math>\Rightarrow 'a Cone \Rightarrow bool where
   outsideCone\ p\ cone
     = (space2 (vertex cone) p > (slope cone * slope cone) * time2 (vertex cone)
p)
 fun mkCone :: 'a\ Point \Rightarrow 'a \Rightarrow 'a\ Cone\ {\bf where}
   mkCone \ v \ s = (|vertex = v, slope = s|)
 lemma lemVertexOnCone:
   shows on Cone (vertex cone) cone
  by simp
 \mathbf{lemma}\ lem Outside Not On Cone:
   assumes outsideCone f cone
   shows \neg (onCone f cone)
 by (metis assms less-irreft on Cone.simps outside Cone.simps)
end
{\bf class}\ {\it SpaceTime} = {\it Quantities} + {\it Vectors} + {\it Points} + {\it Lines} + {\it Planes} + {\it Cones}
end
theory SomeFunc
 imports Main
begin
fun someFunc :: ('a \Rightarrow 'b \Rightarrow bool) \Rightarrow 'a \Rightarrow 'b where
   someFunc\ P\ x = (SOME\ y.\ (P\ x\ y))
lemma lemSomeFunc:
 assumes \exists y . P x y
    and f = someFunc P
 shows P x (f x)
proof -
  have f x = (SOME \ y. \ (P \ x \ y))
   using assms(2) by simp
  thus ?thesis using assms(1)
   by (simp add: someI-ex)
qed
end
theory Axioms
```

```
imports SpaceTime SomeFunc
begin
record Body =
  Ph :: bool
  IOb :: bool
{f class}\ {\it WorldView} = {\it SpaceTime}\ +
fixes
  W :: Body \Rightarrow Body \Rightarrow 'a \ Point \Rightarrow bool (- sees - at -)
  wvt :: Body \Rightarrow Body \Rightarrow 'a \ Point \Rightarrow 'a \ Point
  AxWVT: [ IOb \ m; IOb \ k ] \implies (W \ k \ b \ x \longleftrightarrow W \ m \ b \ (wvt \ m \ k \ x))
  AxWVTSym: [ IOb m; IOb k ] \implies (y = wvt k m x \longleftrightarrow x = wvt m k y)
begin
end
{f class} \ AxiomPreds = WorldView
begin
  fun sqrtTest :: 'a \Rightarrow 'a \Rightarrow bool where
     sqrtTest\ x\ r = ((r \ge 0) \land (r*r = x))
  fun cTest :: Body \Rightarrow 'a \Rightarrow bool where
    cTest \ m \ v = ((v > 0) \land (\forall x \ y))
               (\exists \, p. \; (\textit{Ph} \; p \; \land \; W \; m \; p \; x \; \land \; W \; m \; p \; y)) \longleftrightarrow (\textit{space2} \; x \; y = (v * v) * (\textit{time2}))
(x y)
              )))
end
{\bf class} \ {\it AxEuclidean} = {\it AxiomPreds} + {\it Quantities} + \\
assumes
  AxEuclidean: (x \ge Groups.zero-class.zero) \Longrightarrow (\exists r. sqrtTest \ x \ r)
begin
  abbreviation sqrt :: 'a \Rightarrow 'a where
     sqrt \equiv someFunc \ sqrtTest
  lemma lemSqrt:
```

```
assumes x \ge \theta
      \quad \mathbf{and} \quad r = \mathit{sqrt} \; x
    \mathbf{shows} \quad r \geq 0 \ \land \ r*r = x
  proof -
    have rootExists: (\exists r. \ sqrtTest \ x \ r) by (metis \ AxEuclidean \ assms(1))
    hence sqrtTest\ x\ (sqrt\ x) by (metis\ lemSomeFunc)
    thus ?thesis using assms(2) by simp
 qed
end
{f class} \ AxLight = \ World \ View \ +
assumes
  AxLight: \exists m \ v. (IOb \ m \land (v > (0::'a)) \land (\forall x \ y. (
             (\exists p.(Ph\ p \land W\ m\ p\ x \land W\ m\ p\ y)) \longleftrightarrow (space 2\ x\ y = (v*v)*time 2\ x
y)
            )))
begin
end
class AxPh = WorldView + AxiomPreds +
assumes
  AxPh: IOb \ m \Longrightarrow (\exists \ v. \ cTest \ m \ v)
begin
 abbreviation c :: Body \Rightarrow 'a \text{ where}
    c \equiv someFunc\ cTest
 fun lightcone :: Body \Rightarrow 'a \ Point \Rightarrow 'a \ Cone \ \mathbf{where}
    lightcone \ m \ v = mkCone \ v \ (c \ m)
lemma lemCProps:
  assumes IOb m
     and v = c m
 \mathbf{shows}\ (v>0)\ \land\ (\forall\,x\ y.((\exists\,p.\ (Ph\ p\ \land\ W\ m\ p\ x\ \land\ W\ m\ p\ y))
                      \longleftrightarrow (space2 \ x \ y = (c \ m * c \ m) * time2 \ x \ y)))
proof -
 have vExists: (\exists v. \ cTest \ m \ v) by (metis \ AxPh \ assms(1))
 hence cTest m (c m) by (metis lemSomeFunc)
  thus ?thesis using assms(2) by simp
qed
```

```
lemma lemCCone:
  assumes IOb m
   and on Cone y (lightcone m x)
 shows \exists p. (Ph \ p \land W \ m \ p \ x \land W \ m \ p \ y)
proof -
  have (\exists p.(Ph \ p \land W \ m \ p \ x \land W \ m \ p \ y))
                    \longleftrightarrow ( space2 x y = (c m * c m)*time2 x y )
   by (smt \ assms(1) \ lem CProps)
 hence ph-exists: (space 2 \ x \ y = (c \ m * c \ m)*time 2 \ x \ y) \longrightarrow (\exists \ p.(Ph \ p \land W \ m \ p)
x \wedge W m p y)
   by metis
 define lcmx where lcmx = lightcone m x
 have lcmx-vertex: vertex lcmx = x by (simp \ add: \ lcmx-def)
 have lcmx-slope: slope lcmx = c m by (simp add: lcmx-def)
 have onCone y \ lcmx \longrightarrow (space 2 \ x \ y = (c \ m * c \ m) * time 2 \ x \ y)
   by (metis lcmx-vertex lcmx-slope on Cone.simps)
 hence space2 \ x \ y = (c \ m * c \ m)*time2 \ x \ y \ by (metis lcmx-def assms(2))
  thus ?thesis by (metis ph-exists)
qed
lemma lemCPos:
  assumes IOb m
 shows c m > 0
 by (metis assms(1) lemCProps)
lemma lemCPhoton:
  assumes IOb m
 shows \forall x \ y. \ (\exists \ p. \ (Ph \ p \ \land \ W \ m \ p \ x \land \ W \ m \ p \ y)) \longleftrightarrow (space 2 \ x \ y = (c \ m * c
m)*(time2 x y))
 by (metis \ assms(1) \ lem CProps)
end
{f class} \ AxEv = \ WorldView +
  AxEv: [ IOb \ m; IOb \ k ] \implies (\exists y. (\forall b. (W \ m \ b \ x \longleftrightarrow W \ k \ b \ y)))
begin
end
class AxThExp = WorldView + AxPh +
assumes
```

```
AxThExp: IOb \ m \Longrightarrow (\forall x \ y \ .(
         (\exists \, k. (\mathit{IOb} \,\, k \, \wedge \, \mathit{W} \, \mathit{m} \,\, k \,\, x \, \wedge \,\, \mathit{W} \,\, \mathit{m} \,\, k \,\, y)) \longleftrightarrow (\mathit{space2} \,\, \mathit{x} \,\, \mathit{y} < (\mathit{c} \,\, \mathit{m} \, \ast \, \mathit{c} \,\, \mathit{m}) \, \ast \, \mathit{time2}
x y
         ))
begin
end
{\bf class}\ {\it AxSelf} = {\it WorldView}\ +
assumes
  AxSelf: IOb \ m \implies (W \ m \ m \ x) \longrightarrow (onAxisT \ x)
begin
end
class AxC = WorldView + AxPh +
assumes
   AxC: IOb \ m \Longrightarrow c \ m = 1
begin
\quad \text{end} \quad
{\bf class}\ {\it AxSym} = {\it WorldView}\ +
assumes
  AxSym: [IOb\ m; IOb\ k]] \Longrightarrow
                (\textit{W m e x} \land \textit{W m f y} \land \textit{W k e x'} \land \textit{W k f y'} \land
                tval x = tval y \wedge tval x' = tval y')
              \longrightarrow (space 2 \ x \ y = space 2 \ x' \ y')
begin
end
{\bf class}\ {\it AxLines} = {\it WorldView}\ +
{\bf assumes}
   AxLines: [ IOb m; IOb k; collinear x p q ] \Longrightarrow
       collinear (wvt \ k \ m \ x) (wvt \ k \ m \ p) (wvt \ k \ m \ q)
begin
\quad \text{end} \quad
```

```
class AxPlanes = WorldView +
assumes
  AxPlanes: [ IOb m; IOb k ] \Longrightarrow
    (coplanar\ e\ x\ y\ z\ \longrightarrow\ coplanar\ (wvt\ k\ m\ e)\ (wvt\ k\ m\ x)\ (wvt\ k\ m\ y)\ (wvt\ k\ m\ y)
z))
begin
\quad \text{end} \quad
class AxCones = WorldView + AxPh +
assumes
  AxCones: [ IOb m; IOb k ] \Longrightarrow
    (onCone\ x\ (lightCone\ m\ v) \longrightarrow onCone\ (wvt\ k\ m\ x)\ (lightcone\ k\ (wvt\ k\ m\ v)))
begin
end
{\bf class} \ AxTime = \ WorldView \ +
assumes
  AxTime: [IOb\ m;\ IOb\ k]
             \implies (x \lesssim y \longrightarrow wvt \ k \ m \ x \lesssim wvt \ k \ m \ y)
begin
\quad \text{end} \quad
end
{\bf theory}\ SpecRel
imports Axioms
begin
{\bf class}\ SpecRel = \ WorldView + AxPh + AxEv + AxSelf + AxSym
  + AxEuclidean
  + AxLines + AxPlanes + AxCones
begin
```

```
lemma lemZEG:
         shows z - e = g - e + (z - g)
    proof -
         have g - e + (z - g) = (g - e + z) - g by (rule add-diff-eq)
         also have (g - e + z) - g = (-e + z)
             by (metis local.diff-add-cancel
                                     local.ring-normalization-rules(2)
                                     local.semiring-normalization-rules(24)
                                     local.semiring-normalization-rules(25))
        thus ?thesis
             by (simp add: calculation)
    qed
lemma noFTLObserver:
    assumes iobm: IOb m
                            iobk: IOb k
    and
                            mke: m sees k at e
    and
    and
                            mkf: m sees k at f
                            enotf: e \neq f
    and
                              space 2 \ e \ f \le (c \ m * c \ m) * time 2 \ e \ f
shows
proof -
    assume converse: space2 \ e \ f > (c \ m * c \ m) * time2 \ e \ f
    define eCone where eCone = mkCone e (c m)
    have e-on-econe: onCone e eCone by (simp add: eCone-def)
    have e-is-vertex: e = vertex \ eCone \ by (simp \ add: eCone-def)
    have cm-is-slope: c m = slope \ eCone \ by \ (simp \ add: \ eCone-def)
    hence outside: outsideCone\ f\ eCone
         by (metis (lifting) e-is-vertex cm-is-slope converse outsideCone.simps)
    have outsideCone f eCone
          \longrightarrow (\exists x. (onCone \ x \ eCone \land x \neq vertex \ eCone \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ f \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ eCone \ \land inPlane \ eCone \ (tangentPlane \ x \neq vertex \ eCone \ \land inPlane \ eCone \ \land inPlane \ eCone \ (tangentPlane \ eCone \ \land inPlane \ eCone \ \land inPlane \ eCone \ \land inPlane \ eCone \ (tangentPlane \ eCone \ \land inPlane \ eCone \ \land inPlane \ eCone \ eCone \ \land inPlane \ eCone \ eCone \ \land inPlane \ eCone \ eCon
eCone)))
         by (rule AxParallelConesE)
      hence tplane-exists: \exists x. (onCone \ x \ eCone \ \land \ x \neq vertex \ eCone \ \land \ inPlane \ f
(tangentPlane \ x \ eCone))
```

```
by (metis outside)
 then obtain g where g-props: (onCone g eCone \land g \neq vertex eCone \land inPlane
f (tangentPlane \ g \ eCone))
   by auto
  have g-on-eCone: onCone g eCone by (metis g-props)
 have g-not-vertex: g \neq vertex \ eCone by (metis \ g-props)
 define tplane where tplane = tangentPlane g eCone
 have e-in-tplane: inPlane e tplane by (metis AxTangentVertex e-is-vertex tplane-def)
 have f-in-tplane: inPlane f tplane by (metis g-props tplane-def)
 have g-in-tplane: inPlane g tplane by (metis lemPlaneContainsBasePoint tplane-def
AxTangentBase)
 have (onCone \ q \ eCone) \longrightarrow
               ((inPlane\ f\ (tangentPlane\ g\ eCone)\ \land\ onCone\ f\ eCone)
                                                   \longleftrightarrow collinear (vertex eCone) g f)
   by (metis\ AxConeTangent)
 hence axconetangent: collinear e \ g \ f \longrightarrow onCone \ f \ eCone
   by (metis g-on-eCone e-is-vertex)
  have \neg (onCone \ f \ eCone) by (metis \ outside \ lemOutsideNotOnCone)
 hence g-not-collinear: \neg (collinear e g f)
   by (metis axconetangent)
  define wvte where wvte = wvt \ k \ m \ e
 define wvtf where wvtf = wvt \ k \ m \ f
  define wvtg where wvtg = wvt \ k \ m \ g
 have W k k wvte by (metis wvte-def AxWVT mke iobm iobk)
 hence wvte-onAxis: onAxisT wvte by (metis\ AxSelf\ iobk)
 have W k k wvtf by (metis wvtf-def AxWVT mkf iobm iobk)
 hence wvtf-onAxis: onAxisT wvtf by (metis AxSelf iobk)
 have wvte-inv: e = wvt \ m \ k \ wvte \ \mathbf{by} \ (metis \ AxWVTSym \ iobk \ iobm \ wvte-def)
  have wvtf-inv: f = wvt \ m \ k \ wvtf \ \mathbf{by} \ (metis \ AxWVTSym \ iobk \ iobm \ wvtf-def)
 have wvtg-inv: g = wvt \ m \ k \ wvtg by (metis \ AxWVTSym \ iobk \ iobm \ wvtg-def)
 have e-not-g: e \neq g by (metis e-is-vertex g-not-vertex)
 have f-not-g: f \neq g by (metis\ outside\ lemOutsideNotOnCone\ g-on-eCone)
 have wvt-e-not-f: wvte \neq wvtf by (metis\ wvte-inv\ wvtf-inv\ enotf)
  have wvt-f-not-g: wvtf \neq wvtg by (metis\ wvtf-inv\ wvtg-inv\ f-not-g)
 have wvt-g-not-e: wvtg \neq wvte by (metis\ wvtg-inv\ wvte-inv\ e-not-g)
```

```
have if-g-onAxis: onAxisT wvtg \longrightarrow collinear wvte wvtg wvtf
  by (metis lemAxisIsLine wvte-onAxis wvtf-onAxis wvt-e-not-f wvt-f-not-g wvt-g-not-e)
 have collinear wvte wvtg wvtf \longrightarrow collinear e g f
   by (metis AxLines iobm iobk wvte-inv wvtf-inv wvtg-inv)
 hence onAxisT wvtg \longrightarrow collinear \ e \ g \ f \ \mathbf{by} \ (metis \ if-g-onAxis)
 hence wvtg-offAxis: \neg (onAxisT wvtg) by (metis g-not-collinear)
 have \forall s.(\exists p.(collinear\ wvte\ wvtg\ p \land (space2\ p\ wvtf = (s*s)*time2\ p\ wvtf)))
   by (metis AxSlopedLineInVerticalPlane wvte-onAxis wvtf-onAxis wvtq-offAxis
wvt-e-not-f)
 hence exists-wvtz: \exists p.(collinear wvte wvtg p \land (space2 p wvtf = (c k * c k)*time2)
p \ wvtf))
   by metis
 then obtain wvtz where
   wvtz-props: collinear wvte wvtg wvtz \land (space2 wvtz wvtf = (c k * c k)*time2
wvtz wvtf) by auto
 hence wvtf-speed: space2 wvtz wvtf = (c \ k * c \ k)*time2 wvtz wvtf by metis
 define z where z = wvt m k wvtz
 define wvtzCone where wvtzCone = lightcone k wvtz
 have wvtz-is-vertex: wvtz = vertex wvtzCone by (simp \ add: wvtzCone-def)
 have ck-is-slope: c k = slope wvtzCone by (simp add: wvtzCone-def)
 hence space2 (vertex\ wvtzCone) wvtf = ((slope\ wvtzCone) * (slope\ wvtzCone)) * time2
(vertex wvtzCone) wvtf
   by (metis wvtf-speed wvtz-is-vertex ck-is-slope)
 hence onCone wvtf wvtzCone by (metis onCone.simps)
 hence wvtf-on-wvtzCone: onCone (wvt m k wvtf) (lightcone m z)
   by (metis iobm iobk AxCones wvtzCone-def z-def)
 define zCone where zCone = lightcone m z
 have z-is-vertex: z = vertex \ zCone \ by \ (simp \ add: \ zCone-def)
 have cm-is-zSlope: c m = slope zCone by (simp add: zCone-def)
 have f-on-zCone: onCone f zCone by (metis wvtf-inv wvtf-on-wvtzCone zCone-def)
```

```
hence space2 (vertex\ zCone) f = (slope\ zCone * slope\ zCone)*time2 (vertex
zCone) f
   by (simp add: zCone-def)
 hence space 2 \ z \ f = (c \ m * c \ m) * time 2 \ z \ f  by (metis \ z\text{-}is\text{-}vertex \ cm\text{-}is\text{-}zSlope})
 hence fz-speed: space2 f z = (c \ m * c \ m)*time2 f z by (metis lemSpace2Sym
lem Time2Sym)
 define fCone where fCone = lightcone m f
 have f-is-fVertex: f = vertex fCone by (simp add: fCone-def)
 have cm-is-fSlope: cm = slope fCone by (simp add: fCone-def)
 hence space2 (vertex\ fCone) z = ((slope\ fCone)\ *(slope\ fCone))*time2 (vertex
fCone) z
   by (metis fz-speed f-is-fVertex cm-is-fSlope)
 hence z-on-fCone: onCone z fCone by (metis onCone.simps)
 have collinear wvte wvtg wvtz by (metis wvtz-props)
 hence egz-collinear: collinear e g z by (metis wvte-inv wvtg-inv z-def AxLines
iobm\ iobk)
 hence z-geometry: (inPlane\ z\ (tangentPlane\ g\ eCone) \land onCone\ z\ eCone)
   by (metis AxConeTangent e-is-vertex g-on-eCone)
 have z-on-eCone: onCone z eCone by (metis z-geometry)
 have z-in-tplane: inPlane z tplane by (metis z-geometry tplane-def)
 hence z-not-f: z \neq f by (metis z-on-eCone outside lemOutsideNotOnCone)
 hence z-not-fVertex: z \neq vertex fCone by (simp add: fCone-def z-not-f)
   assume assm: z = e
   have space2 \ f \ e = (c \ m * c \ m)*time2 \ f \ e \land space2 \ f \ e = space2 \ e \ f \land time2 \ f
    by (metis lemSpace2Sym lemTime2Sym fz-speed assm)
   hence space2\ e\ f=(c\ m*c\ m)*time2\ e\ f\  by metis
   hence False by (metis less-irrefl converse)
 from this have z-not-e: z \neq e by blast
 define lineA where lineA = lineJoining e z
 define lineB where lineB = lineJoining f z
 {
```

```
assume assm: direction lineA = vecZero
  have lemnullline: (direction line A = vec Zero \land inLine \ z \ line A) \longrightarrow z = basepoint
lineA
     by (metis lemNullLine)
   have inLine z lineA by (metis lineA-def lemLineContainsEndpoint)
   hence z-is-bp: z = basepoint lineA by (metis lemnullline assm)
   have basepoint lineA = e by (simp add: lineA-def)
   hence False by (metis z-is-bp z-not-e)
 from this have ez-not-null: direction line A \neq vec Zero by blast
   assume assm: direction lineB = vecZero
  have lemnull line: (direction line B = vec Zero \land in Line z line B) \longrightarrow z = basepoint
lineB
     by (metis lemNullLine)
   have inLine z lineB by (metis lineB-def lemLineContainsEndpoint)
   hence z-is-bp: z = basepoint lineB by (metis lemnullline assm)
   have basepoint\ lineB = f by (simp\ add:\ lineB-def)
   hence False by (metis z-is-bp z-not-f)
 from this have fz-not-null: direction line B \neq vecZero by blast
   have samePlane tplane (tangentPlane z fCone)
         \land ((lineJoining \ e \ g) \parallel (lineJoining \ f \ z))
   by (metis AxParallelCones tplane-def
            g-on-eCone g-not-vertex z-on-fCone z-not-fVertex z-in-tplane
            e-is-vertex f-is-fVertex)
   hence eg-par-fz: (lineJoining e g) \parallel (lineJoining f z) by metis
     assume case1: direction (lineJoining e g) = vecZero
     have direction (line Joining e g) = from e to g by simp
     hence from e to g = vecZero by (metis case1)
     hence e = q by (simp)
     hence False by (metis e-not-g)
   from this have eq-not-null: \neg(direction\ (line Joining\ e\ g) = vec Zero) by blast
  then obtain a where a-props: a \neq 0 \land direction (line Joining f z) = a**direction
(line Joining \ e \ g)
     by (metis fz-not-null eg-not-null eg-par-fz parallel.simps lineB-def)
   hence f-to-z: from f to z = a**(from \ e \ to \ g) by simp
   have a-nonzero: a \neq 0 by (metis a-props)
   have eg-dir: from e to g = direction (lineJoining e g) by simp
   have qz-dir: from q to z = direction (lineJoining q z) by simp
   have egz: z = g \leadsto (from \ g \ to \ z) by (metis \ lemLineEndpoint)
   hence collinear e \ g \ (g \leadsto (from \ g \ to \ z)) by (metis \ egz\text{-}collinear)
```

```
then obtain b where e-to-g: from e to g = (-b)**(from g to z)
     by (metis lemDirectionCollinear)
   {
    assume assm: -b = 0
     have from e to g = (-b)**(from <math>g to z) by (metis e-to-g)
     hence from e to g = vecZero by (simp add: assm)
     hence direction (lineJoining e g) = vecZero by (simp)
     hence False by (metis eq-not-null lineA-def)
   from this have b-nonzero: -b \neq 0 by blast
   define binv where binv = inverse (-b)
   define factor where factor = 1 + binv
   have binv-nonzero: binv \neq 0 by (metis b-nonzero add.comm-neutral binv-def
nonzero-imp-inverse-nonzero right-minus)
   have from e to g = (-b)**(from <math>g to z) by (metis e-to-g)
   hence g-to-z: (from g to z) = binv**(from e to g)
    by (metis b-nonzero lemScaleInverse binv-def)
   have from e to z = from e to g \oplus from g to z
    by (simp \ add: lemZEG)
   hence from e to z = (from \ e \ to \ g) \oplus binv**(from \ e \ to \ g) by (metis \ g\text{-to-}z)
   hence e-to-z: from e to z = factor**(from e to g) by (metis lemAddOverScale
lemScale1 factor-def)
   have ez-dir: direction (lineJoining e z) = from e to z by simp
   have eg-dir: direction (lineJoining e g) = from e to g by simp
    assume assm: factor = 0
    have from e to z = factor**(from <math>e to q) by (metis e-to-z)
     hence from e to z = vecZero by (simp add: assm)
     hence direction (lineJoining e z) = vecZero by (simp)
     hence False by (metis ez-not-null lineA-def)
   from this have factor-nonzero: factor \neq 0 by blast
   have direction (lineJoining e z) = factor**(direction (lineJoining e g))
     by (metis e-to-z ez-dir eg-dir)
    hence (lineJoining e g) \parallel (lineJoining e z) by (metis parallel.simps fac-
tor-nonzero)
   hence (lineJoining\ e\ z) \parallel (lineJoining\ e\ g) by (metis\ lemParallelSym)
  hence (lineJoining e z) \parallel (lineJoining f z) by (metis lemParallelTrans eg-par-f z
```

```
eg-not-null)
 from this have A-par-B: lineA || lineB by (metis lineA-def lineB-def)
 have e-in-lineA: inLine e lineA by (metis lineA-def lemLineContainsBasepoint)
   have basic: \forall a \ b.(((-a)*b)*((-a)*b) = (a*a)*(b*b))
     by (metis equation-minus-iff minus-mult-commute minus-mult-right
             semiring-normalization-rules(17) semiring-normalization-rules(19))
   assume assm: inLine e lineB
   hence coll: collinear e f (f \leadsto direction \ line B) by (simp add: line B-def)
   then obtain \beta where props: from e to f = (-\beta)**(direction\ line B)
     by (metis lemDirectionCollinear)
   hence tval f - tval e = (-\beta)*(tval z - tval f) \land xval f - xval e = (-\beta)*(xval f - tval f)
z - xval f
      \land yval f - yval e = (-\beta)*(yval z - yval f) \land zval f - zval e = (-\beta)*(zval f)
z - zval f
     by (simp add: lineB-def)
   hence speeds: time2\ f\ e=(\beta*\beta)*time2\ z\ f\ \land\ space2\ f\ e=(\beta*\beta)*space2\ z\ f
     apply (simp add: basic) apply auto
   apply (metis semiring-normalization-rules (18) semiring-normalization-rules (19))
    by (metis semiring-normalization-rules(18) semiring-normalization-rules(19)
             semiring-normalization-rules(34))
   have space2 \ f \ z = (c \ m * c \ m)*time2 \ f \ z \ by \ (metis \ fz-speed)
    hence space2 \ z \ f = (c \ m * c \ m)*time2 \ z \ f by (metis \ lemSpace2Sym \ lem-
Time2Sym)
  hence space2 f e = ((\beta * \beta) * (c m * c m)) * time2 z f by (metis speeds mult.assoc)
    hence space2 f e = (c m * c m)*(\beta*\beta)*time2 z f by (metis mult.assoc)
mult.commute)
   hence space2 \ f \ e = (c \ m * c \ m)*time2 \ f \ e \ by (metis mult.assoc speeds)
    hence space2\ e\ f\ =\ (c\ m\ *\ c\ m)*time2\ e\ f\  by (metis\ lemSpace2Sym\ lem-
Time2Sym)
   hence False by (metis less-irrefl converse)
 from this have e-not-in-lineB: \neg(inLine\ e\ lineB) by blast
have inLine\ z\ lineA \land inLine\ z\ lineB by (metis lemLineContainsEndpoint\ lineA-def
lineB-def)
 hence A-meets-B: meets lineA lineB by auto
```

hence False by (metis A-par-B ez-not-null fz-not-null e-in-lineA e-not-in-lineB

```
\label{lem:parallelNotMeet} $$ from this have $\lnot$ (space 2 e f > (c m * c m) * time 2 e f)$ by blast $$ thus ?thesis by simp $$ qed $$ end $$
```

## References

[1] M. Stannett and I. Németi. Using Isabelle/HOL to verify first-order relativity theory. *Journal of Automated Reasoning*, 52(4):361–378, 2014.