No Faster-Than-Light Observers

Mike Stannett

September 23, 2021

Abstract

We provide a formal proof within First Order Relativity Theory
that no observer can travel faster than the speed of light. Originally
reported by Stannett and Németi [1].

Contents

theory SpaceTime
imports Main
begin

record ‘a Vector =

tdir :: 'a
zdir 2 'a
ydir :: 'a
2dir 2 'a

record ‘a Point =

tval :: 'a
zval :: 'a
yval =2 'a
al :: 'a

record 'a Line =
basepoint :: 'a Point
direction :: 'a Vector

record ’‘a Plane =
pbasepoint :: 'a Point
directionl :: 'a Vector
direction? :: 'a Vector

record ‘a Cone =
vertex :: 'a Point

slope ::'a

class Quantities = linordered-field

class Vectors = Quantities
begin

abbreviation vecZero :: 'a Vector (0) where
vecZero = (| tdir = (0::'a), xdir = 0, ydir = 0, zdir = 0)

fun vecPlus :: 'a Vector = 'a Vector = 'a Vector (infixr & 100) where
vecPlus uw v = (| tdir = tdir u + tdir v, zdir = zdir v + zdir v,
ydir = ydir v + ydir v, zdir = zdir v + zdir v |)

fun vecMinus :: 'a Vector = 'a Vector = 'a Vector (infixr © 100) where
vecMinus w v = (| tdir = tdir v — tdir v, zdir = zdir u — xdir v,
ydir = ydir v — ydir v, zdir = zdir v — zdir v |

fun vecNegate :: 'a Vector = 'a Vector (~ -) where
vecNegate w = (| tdir = uminus (tdir v), zdir = uminus (xzdir u),
ydir = uminus (ydir u), zdir = uminus (zdir u) |
fun innerProd :: 'a Vector = 'a Vector = 'a (infix dot 50) where
innerProd w v = (tdir u x tdir v) + (zdir u * zdir v) +
(ydir w * ydir v) + (zdir v * zdir v)
fun sqrien :: 'a Vector = 'a where sqrien u = (u dot u)
fun minkowskiProd :: 'a Vector = 'a Vector = 'a (infix mdot 50) where
minkowskiProd u v = (tdir u * tdir v)
— ((zdir u * xdir v) + (ydir v * ydir v) + (zdir u * zdir v))

fun mSqrLen :: ‘a Vector = ’'a where mSqrLen u = (u mdot u)

fun vecScale :: 'a = 'a Vector = 'a Vector (infix **x 200) where

vecScale k uw = (| tdir = k x tdir u, zdir = k * zdir u, ydir = k * ydir u, zdir
=k * zdir u |

fun orthogonal :: 'a Vector = ’'a Vector = bool (infix L 150) where
orthogonal v v = (u dot v = 0)

lemma lem VecZeroMinus:
shows 0 © u=""u
by simp

lemma lem VecSelfMinus:
shows u & u = 0
by simp

lemma lem VecPlusCommute:
shows u @ v=v & u
by (simp add: add.commute)

lemma lem VecPlusAssoc:
shows u ® (v® w) = (u B v) ® w
by (simp add: add.assoc)

lemma lem VecPlusMinus:
shows v @& (Y v) =uSwv
by (simp add: local.add-uminus-conv-diff)

lemma lemDotCommute:
shows (u dot v) = (v dot u)
by (simp add: mult.commute)

lemma lemMDotCommute:
shows (u mdot v) = (v mdot u)
by (simp add:mult.commute)

lemma lemScaleScale:
shows ax*(bxxu) = (axb)**u
by (simp add: mult.assoc)

lemma lemScalel:
shows 1 *x u = u
by simp

lemma lemScale0:
shows 0 *x v = 0
by simp

lemma lemScaleNeg:
shows (—k)xxu = ~ (kxxu)
by simp

lemma lemScaleOrigin:
shows kxx0 = 0
by auto

lemma lemScale OverAdd:
shows kxx(u @ v) = kxxu @ kxxv
by (simp add: semiring-normalization-rules(34))

lemma lemAddQOverScale:
shows axxu @ bxxu = (a+b)**u
by (simp add: semiring-normalization-rules(1))

lemma lemScalelnverse:
assumes k # (0::'a)
and v = kxxu
shows u = (inverse k)xxv
proof —
have (inverse k)xxv = (inverse k x k)*xu
by (simp add: lemScaleScale assms(2) mult.assoc)
thus ?thesis by (metis (lifting) field-inverse assms(1) lemScalel)
qed

lemma lemOrthoSym:
assumes u L v
shows v 1 u
by (metis assms(1) lemDotCommute orthogonal.simps)

end

class Points = Quantities + Vectors
begin

abbreviation origin :: ‘a Point where
origin = (| tval = 0, zval = 0, yval = 0, zval = 0)

fun vectorJoining :: 'a Point = 'a Point = 'a Vector (from - to -) where
vectorJoining p q
= (| tdir = tval ¢ — tval p, xdir = xval ¢ — zval p,
ydir = yval ¢ — yval p, zdir = zval ¢ — zval p |

fun moveBy :: 'a Point = 'a Vector = 'a Point (infix]l ~ 100) where
moveBy p u
= (| tval = tval p + tdir u, zval = zval p + zdir u,
yval = yval p + ydir u, zval = zval p + 2dir u |

fun positionVector :: 'a Point = 'a Vector where
position Vector p = (| tdir = tval p, zdir = zval p, ydir = yval p, zdir = zval p |

fun before :: 'a Point = 'a Point = bool (infixr < 100) where
before p g = (tval p < tval q)

fun after :: 'a Point = 'a Point = bool (infixr > 100) where
after p ¢ = (tval p > tval q)

fun sametime :: 'a Point = 'a Point = bool (infixr ~ 100) where
sametime p q = (tval p = tval q)

lemma lemFromToTo:
shows (from p to q) @ (from q to r) = (from p to r)

proof —
have shared: ¥ valp valg valr.(valg — valp + (valr — valg) = valr — valp)

by (metis add-uminus-conv-diff add-diff-cancel
semiring-normalization-rules(24) semiring-normalization-rules(25))

thus ?thesis by auto

qged

lemma lemMoveByMove:
shows p ~ u ~ v =p ~ (u ® v)
by (simp add: add.assoc)

lemma lemScaleLinear:
shows p ~ axxu ~ bkxv = p ~ (akku @ bxxv)
by (simp add: add.assoc)

end

class Lines = Quantities + Vectors + Points
begin

fun onAzisT :: 'a Point = bool where
onAzisT u = ((zval u = 0) A (yval uw = 0) A (zval u = 0))

fun space? :: ('a Point) = ('a Point) = 'a where
space2 u v
= (2val v — zval v)x(zval u — zval v)
+ (yval u — yval v)x(yval v — yval v)
+ (zval u — zval v)*(zval u — zval v)

fun time2 :: (‘a Point) = ('a Point) = 'a where
time2 u v = (tval u — tval v)x(tval v — tval v)

fun speed :: ('a Point) = ('a Point) = 'a where
speed u v = (space2 w v |/ time2 u v)

fun mkLine :: 'a Point => 'a Vector = ’'a Line where
mkLine b d = (| basepoint = b, direction = d |

fun lineJoining :: 'a Point = 'a Point = 'a Line (line joining - to -) where
lineJoining p q¢ = (basepoint = p, direction = from p to q |

fun parallel :: 'a Line = 'a Line = bool (- ||) where
parallel lineA lineB = ((direction lineA = vecZero) V (direction lineB = vecZero)

V (Fk.(k # (0::'a) A direction lineB = kxxdirection
lineA)))

fun collinear :: 'a Point = 'a Point = 'a Point = bool where
collinear pgqr = Fa . ((a+8=1) A
position Vector p = axx(positionVector q) @ Bx*(positionVector r)))

fun inLine :: 'a Point = 'a Line = bool where
inLine p | = collinear p (basepoint 1) (basepoint | ~ direction I)

fun meets :: 'a Line = ’a Line = bool where
meets linel line2 = (I p.(inLine p linel A inLine p line2))

lemma lemParallelReflexive:
shows lineA || lineA
proof —
define dir where dir = direction lineA
have (1 # 0) A (dir = 1xxdir) by simp
thus ?thesis by (metis dir-def parallel.simps)
qed

lemma lemParallelSym:
assumes lineA || lineB
shows lineB || lineA
proof —
have casel: direction lineA = vecZero — ?thesis by auto
have case2: direction lineB = vecZero — ?thesis by auto
{
assume cased: direction lineA # vecZero N direction lineB # vecZero
have exists-kab: 3 kab.(kab # (0::'a) A direction lineB = kabsxdirection lineA)

by (metis parallel.simps assms(1) case3)
define kab where kab = (SOME kab.(kab # (0::'a) A direction lineB =
kabxxdirection lineA))
have kab-props: kab # 0 N\ direction lineB = kabxxdirection lineA
using ezxists-kab kab-def
by (rule Hilbert-Choice.exE-some)

define kba where kba = inverse kab
have kba-nonzero: kba # 0 by (metis inverse-zero-imp-zero kab-props kba-def)
have direction lineA = kbaxxdirection lineB by (metis kba-def lemScaleInverse
kab-props)
hence ?thesis by (metis kba-nonzero parallel.simps)
}
from this have (direction lineA # vecZero N direction lineB # vecZero) —
?thesis by blast

thus ?thesis by (metis casel case2)
qed

lemma lemParallelTrans:
assumes lineA || lineB
and lineB || lineC
and direction lineB # vecZero
shows lineA || lineC
proof —

have casel: direction lineA = vecZero — ?thesis by auto
have case2: direction lineC = vecZero — ?thesis by auto

{

assume cased: direction lineA # vecZero N direction lineC # vecZero
have exists-kab: 3 kab.(kab # (0::'a) A direction lineB = kabsxdirection lineA)

by (metis parallel.simps assms(1) case8 assms(3))
then obtain kab where kab-props: kab # 0 A direction lineB = kabxxdirection
lineA by auto

have ezists-kbe: 3 kbe.(kbe # (0::'a) A direction lineC = kbexx direction lineB)

by (metis parallel.simps assms(2) case8 assms(3))
then obtain kbc where kbc-props: kbc # 0 A direction lineC = kbcxxdirection
lineB by auto

define kac where kac = kbc * kab
have kac-nonzero: kac # 0 by (metis kab-props kac-def kbe-props no-zero-divisors)
have direction lineC = kacxxdirection lineA
by (metis kab-props kbc-props kac-def lemScaleScale)
hence ?thesis by (metis kac-nonzero parallel.simps)
}
from this have (direction lineA # vecZero N direction lineC # vecZero) —
?thesis by blast

thus ?thesis by (metis casel case2)
qed

lemma (in —) lemLineldentity:
assumes lineA = (| basepoint = basepoint lineB, direction = direction lineB)
shows lineA = lineB

proof —

have basepoint lineA = basepoint lineB A direction lineA = direction lineB
by (simp add: assms(1))

thus ?thesis by simp

qed

lemma lemDirectionJoining:
shows vectorJoining p (p ~ v) = v
proof —
have Va b.(a + b —a=1b)
by (metis add-uminus-conv-diff diff-add-cancel semiring-normalization-rules(24))
thus ?thesis by auto
qged

lemma lemDirectionFromTo:
shows direction (line joining p to (p ~ dir)) = dir

proof —
have direction (line joining p to (p ~ dir)) = from p to (p ~ dir) by simp
thus ?thesis by (metis lemDirectionJoining)

qed

lemma lemLineEndpoint:
shows ¢ = p ~ (from p to q)
proof —
have Va b. (b=a + (b — a))
by (metis diff-add-cancel semiring-normalization-rules(24))
thus ?thesis by auto
qged

lemma lemNullLine:
assumes direction lineA = vecZero
and inLine z lineA
shows 1 = basepoint lineA
proof —
define bp where bp = basepoint lineA
have collinear x (basepoint lineA) (basepoint lineA ~ direction lineA)
by (metis inLine.simps assms(2))
hence collinear x bp (bp ~» vecZero) by (metis bp-def assms(1))
hence collinear x bp bp by simp
hence Ja b.((a+b=1) A
(positionVector & = axx(positionVector bp) @ bx*(position Vector
bp)))

by (metis collinear.simps)
hence positionVector x = positionVector bp by (metis lemScalel lemAddOver-
Scale)
thus %thesis by (simp add: bp-def)
qed

lemma lemLineContainsBasepoint:
shows inLine p (line joining p to q)
proof —
define lineP(@) where linePQ = line joining p to q
have bp: basepoint linePQ = p by (simp add: linePQ-def)
have dir: direction linePQ = from p to q by (simp add: linePQ-def)
have endq: basepoint linePQ ~ direction linePQ = ¢ by (metis bp dir lemLi-
neEndpoint)

have (1 + 0 = 1) A (positionVector p = 1xx(positionVector p) & 0xx(position Vector

q))

by auto
hence collinear p p q by (metis collinear.simps)
hence collinear p (basepoint linePQ) (basepoint linePQ) ~ direction linePQ)
by (metis bp endq)
thus ?thesis by (simp add: linePQ-def)
qed

lemma lemLineContainsEndpoint:
shows inLine q (line joining p to q)
proof —
define linePQ where lineP(Q) = line joining p to q
have bp: basepoint linePQ = p by (simp add: linePQ-def)
have dir: direction linePQ = from p to q by (simp add: linePQ-def)
have endq: basepoint linePQ ~ direction linePQ = q by (metis bp dir lemLi-
neEndpoint)

have (0 + 1 = 1) A (positionVector ¢ = 0xx(positionVector p) @ 1xx(positionVector
q))
by auto
hence collinear q p q by (metis collinear.simps)
hence collinear q (basepoint linePQ) (basepoint linePQ ~ direction linePQ)
by (metis bp endq)
thus %thesis by (simp add: linePQ-def)
qed

lemma lemDirectionReverse:
shows from ¢ to p = vecNegate (from p to q)
by simp

lemma lemParallelJoin:
assumes line joining p to q || line joining q to r
shows line joining p to q || line joining p to r
proof —
define lineP(@) where linePQ = line joining p to q
define line@QR where lineQR = line joining q to r
define linePR where linePR = line joining p to r

have casel: (direction linePQ = vecZero) — ?thesis by (simp add: linePQ-def)
have case2: (direction linePR = vecZero) — ?thesis by (simp add: linePR-def)

{

assume case3: direction linePQ # vecZero N direction linePR # vecZero

{

assume casela: direction lineQQR = vecZero
have inLine r lineQR by (metis lemLineContainsEndpoint lineQR-def)

10

hence r = basepoint line@QR by (metis lemNullLine case3a)

hence r = ¢ by (simp add: lineQR-def)

hence linePQ = linePR by (simp add: linePQ-def linePR-def)
hence ?thesis by (metis lemParallelReflexive linePQ-def linePR-def)

}

from this have rtp3a: direction lineQR = vecZero — ?thesis by blast

{

assume case3b: direction lineQR # vecZero

define dirPQ where dirPQ = from p to q
have dir-pq: direction linePQ = dirPQ by (simp add: linePQ-def dirPQ-def)

define dirQR where dirQR = from q to r
have dir-qr: direction lineQR = dirQR by (simp add: lineQR-def dirQR-def)

have ezists-k: 3k.(k # 0 A direction lineQR = kxxdirection linePQ)
by (metis linePQ-def lineQR-def assms(1) parallel.simps case3b case)
then obtain k& where k-props: k # 0 A dirQR= kxxdirPQ by (metis dir-pq
dir-qr)

define scalar where scalar = 1+k

have ¢ = p ~ dirPQ AN r = ¢ ~ dirQR by (metis lemLineEndpoint
dirPQ-def dirQR-def)
hence r = p ~~ dirPQ ~ (kxxdirPQ) by (metis k-props)
hence scalarPR: v = p ~ scalarsxdirPQ
by (metis lemScaleLinear lemScalel lemAddOverScale scalar-def)

{

assume scalar0: scalar = 0

have r = p by (simp add: lemScale0 scalarPR scalar0)
hence direction linePR = vecZero by (simp add: linePR-def)
hence False by (metis case3)

}

from this have scalar-nonzero: scalar # 0 by blast

have linePR = line joining p to (p ~ scalarxxdirPQ)
by (simp add: linePR-def scalarPR)
hence direction linePR = scalarxxdirPQ by (metis lemDirectionEFromTo)

hence scalar-props: scalar # 0 A direction linePR = scalarxxdirection
linePQ
by (metis scalar-nonzero dir-pq)
hence ?thesis by (metis parallel.simps linePR-def linePQ-def)
}

from this have direction lineQR # vecZero — ?thesis by blast

hence ?thesis by (metis rtp3a)

11

}

from this have (direction linePQ # vecZero A direction linePR # vecZero) —
?thesis by blast

thus ?thesis by (metis casel case2)
qed

lemma lemDirectionCollinear:
shows collinear u v (v ~ d) «— (3 B.(from u to v = (=P)*xd))
proof —
have basicl: ¥ u v.(positionVector (u ~ v)) = (positionVector u) @& v by simp
have basic2: Yu v w.(u =v & w — v © u = vecNegate w)
apply auto
by (metis add-uminus-conv-diff diff-add-cancel minus-add
semiring-normalization-rules(24)) +
have basic3: V u v.(from u to v = positionVector v © positionVector u) by simp
have basic4: Yu v w.(v © u = vecNegate w — u = v & w)
apply auto
by (metis add-uminus-conv-diff diff-add-cancel lemScalel mult.left-neutral
semiring-normalization-rules(24) vecScale.simps)

{

assume assm: collinear v v (v ~> d)
have Ja 8. ((a+8=1) A
positionVector u = cukx(position Vector v) & Bxx(positionVector (v ~ d)))
by (metis assm collinear.simps)
then obtain « 8 where props: (a« + 8 =1) A
position Vector u = axx*(position Vector v) @ Bxx(positionVector (v ~»
d)) by auto
hence positionVector u = 1xx(positionVector v) & [xxd
by (metis basicl lemScaleOverAdd lem VecPlusAssoc lemAddQOuverScale props)
hence positionVector u = positionVector v & Bxxd by (metis lemScalel)
hence positionVector v © positionVector u = (—p)xxd by (metis basic2
lemScaleNeg)
hence 3 8.(from u to v = (—B)*xd) by (metis basic3)
}
from this have fwd: collinear u v (v ~» d) — (3 B.(from u to v = (—F)*xd))
by blast

{

assume 3 S.(from u to v = (—p)*xd)

then obtain § where assm: from u to v = (—8)*xd by auto

define @ where aa =1 — 3

have af-sum: a + § = 1 by (simp add: a-def)

have from u to v = vecNegate (Sxxd) by (metis assm lemScaleNeg)
hence positionVector v © positionVector u = vecNegate (B*xd) by auto
hence positionVector u = positionVector v & Bxxd by (metis basic)
hence positionVector u = 1xx(positionVector v) & LBxxd

12

by (metis lemScalel)
hence (a« + 8 =1) A
position Vector u = axx(positionVector v) @ Bx*(positionVector (v ~ d))
by (metis af-sum basicl lemScaleOverAdd lemVecPlusAssoc lemAddOver-
Scale)
hence collinear u v (v ~ d) by auto
}
from this have (3 3.(from u to v = (—f)*xd)) — collinear u v (v ~ d) by
blast

thus %thesis by (metis fwd)
qed

lemma lemParallelNotMeet:
assumes lineA || lineB
and direction lineA # vecZero
and direction lineB # vecZero
and inLine z lineA
and —(inLine z lineB)
shows —(meets lineA lineB)
proof —

have basic: Vp q v a.(from p to ¢ = axxv — from q to p = (—a)**v)
apply (simp add: lemScaleNeg) by (metis minus-diff-eq)

define bpA where bpA = basepoint lineA
define dirA where dirA = direction lineA
define bpB where bpB = basepoint lineB
define dirB where dirB = direction lineB

have lineB || lineA by (metis lemParallelSym assms(1))
hence ezists-kab: 3 kab.(kab # (0::'a) A direction lineA = kabsxdirection lineB)

by (metis parallel.simps assms(2) assms(3))
then obtain kab where kab-props: kab # 0 N dirA = kabxxdirB by (metis
dirA-def dirB-def)

have collinear x bpA (bpA ~~ dirA) by (metis assms(4) inLine.simps bpA-def
dirA-def)

then obtain 8 where from z to bpA = (—f)*xdirA by (metis lemDirection-
Collinear)

hence z-to-bpA: from z to bpA = ((—p)xkab)xxdirB by (metis lemScaleScale
kab-props)

13

assume converse: meets lineA lineB
have 3 p.(inLine p lineA A inLine p lineB) by (metis converse meets.simps)
then obtain p where p-in-AB: inLine p lineA N inLine p lineB by auto

have collinear p bpA (bpA ~ dirA) by (metis p-in-AB inLine.simps bpA-def
dirA-def)

then obtain A where from p to bpA = (—BA)*xdirA by (metis lemDirec-
tionCollinear)

hence from bpA to p = (BA)xxdirA by (metis basic minus-minus)

hence bpA-to-p: from bpA to p = (BAxkab)xxdirB by (metis lemScaleScale
kab-props)

have collinear p bpB (bpB ~ dirB) by (metis p-in-AB inLine.simps bpB-def
dirB-def)

then obtain 3B where p-to-bpB: from p to bpB = (—fB)*xdirB by (metis
lemDirectionCollinear)

define v where v = —((—f)xkab + (BAxkab) + (—BB))
have z-to-bpB: (from z to bpA) @ (from bpA to p) @ (from p to bpB) = (from
x to bpB)
by (metis lemFromToTo)
hence from z to bpB = ((—f)*kab)xxdirB @ (8Axkab)xxdirB @ (—SB)*xdirB
by (metis z-to-bpA bpA-to-p p-to-bpB)
hence from z to bpB = (—v)**dirB
by (metis lemAddQOverScale add.assoc vy-def minus-minus)
hence collinear © bpB (bpB ~ dirB) by (metis lemDirectionCollinear)
hence inLine z lineB by (metis inLine.simps bpB-def dirB-def)
}
from this have meets lineA lineB — inLine x lineB by blast
thus ?thesis by (metis assms(5))
qed

lemma lemAxislsLine:
assumes onAxisT z
and onAzisT y
and onAxisT z

and =z # y
and y # 2
and z # =z
shows collinear z y z
proof —
define ratio where ratio = —(tval y — tval) / (tval z — tval y)

have z-onAxis: zval z = 0 A yval x = 0 A zval © = 0 by (metis assms(1)
onAxisT.simps)
have y-onAzis: zval y = 0 N yval y = 0 A zval y = 0 by (metis assms(2)

14

onAxisT.simps)
have z-onAwis: zval z = 0 A yval z = 0 A zval z = 0 by (metis assms(3)

onAzisT.simps)

have tval z — tval y = 0 — 2z = y by (simp add: z-onAzxis y-onAxis)
hence tval z # tval y by (metis assms(5) eq-iff-diff-eq-0)
hence tvalyz-nonzero: tval z — tval y # 0 by (metis eq-iff-diff-eq-0)

have z-to-y: from x to y = (| tdir = tval y — tval x, adir = 0, ydir = 0, zdir
by (simp add: z-onAxis y-onAwis)

have y-to-z: from y to z = (| tdir = tval z — tval y, zdir = 0, ydir = 0, zdir
by (simp add:y-onAxis z-onAwis)

have from x to y = (—ratio)*x(from y to z)
apply (simp add: z-to-y y-to-z ratio-def)
by (metis diff-self eq-divide-imp minus-diff-eq mult-eq-0-iff
tvalyz-nonzero z-onAxis y-onAwis z-onAwis)
hence collinear z y (y ~ (from y to z)) by (metis lemDirectionCollinear)
thus ?thesis by (metis lemLineEndpoint)
qed

lemma lemSpace2Sym:
shows space2 x y = space2 y x

proof —
define zsep where zsep = zval © — zval y
define ysep where ysep = yval x — yval y
define zsep where zsep = zval x — zval y

have spacezry: space2 x y = (zsepxxsep) + (ysepxysep) + (zsepxzsep)
by (simp add: zsep-def ysep-def zsep-def)
have spaceyz: space2y x = (—xsep)x(—xsep) + (—ysep)*(—ysep) + (—zsep)*(—zsep)
by (simp add: zsep-def ysep-def zsep-def)
thus %thesis by (metis spacexy diff-0-right minus-diff-eq minus-mult-left mi-
nus-mult-right)
qged

lemma lemTime2Sym:
shows time2 x y = time2 y «
proof —
define tsep where tsep = tval x — tval y

have timezy: time2 © y = tsepxtsep
by (simp add: tsep-def)
have timeyx: time2 y x = (—tsep)*(—tsep)
by (simp add: tsep-def)
thus ?thesis by (metis timexy diff-0-right minus-diff-eq minus-mult-left mi-
nus-mult-right)

15

qed

end

class Planes = Quantities + Lines
begin
fun mkPlane :: 'a Point = 'a Vector = 'a Vector = 'a Plane where
mkPlane b d1 d2 = (| pbasepoint = b, directionl = dI, direction2 = d2 |

fun coplanar :: 'a Point = 'a Point = 'a Point = 'a Point = bool where
coplanar e x y z
—@afr (et B+ v=1) A
positionVector e
= (axx(positionVector) @ Bxx(positionVector y) @ ~yxx(position Vector

2))))

fun inPlane :: 'a Point = 'a Plane = bool where
inPlane e pl = coplanar e (pbasepoint pl) (pbasepoint pl ~~ directionl pl)
(pbasepoint pl ~ direction2 pl)

fun samePlane :: 'a Plane = 'a Plane = bool where
samePlane pl pl’ = (inPlane (pbasepoint pl) pl’ A
inPlane (pbasepoint pl ~ directionl pl) pl’ A
inPlane (pbasepoint pl ~~ direction2 pl) pl’)

lemma lemPlaneContainsBasePoint:
shows inPlane (pbasepoint pl) pl
proof —
define o where o = (1::'a)
define 3 where 3 = ‘a)
a)

(
(
define v where v = (
have ripl: « + 8 + v = 1 by (simp add: a-def [-def ~v-def)

1:
0:
0:

define ¢ where e = pbasepoint pl
define = where z = pbasepoint pl
define y where y = pbasepoint pl ~» directionl pl
define z where z = pbasepoint pl ~ direction2 pl
have rtp2: positionVector e = axx(position Vector)
@ Bxx(positionVector y) @ ~yxx(position Vector z)
by (simp add: e-def z-def a-def B-def ~-def)

have sameplane: coplanar e x y z by (metis coplanar.simps rtpl rip2)
hence coplanar e (pbasepoint pl) (pbasepoint pl ~ directionl pl)
(pbasepoint pl ~ direction2 pl)
by (simp add: z-def y-def z-def)
hence inPlane e pl by simp
thus ?thesis by (simp add: e-def)
qed

16

end

class Cones = Quantities + Lines + Planes +
fixes

tangentPlane :: 'a Point = 'a Cone = 'a Plane
assumes

AzTangentBase: pbasepoint (tangentPlane e cone) = e
and

AzTangentVertex: inPlane (vertex cone) (tangentPlane e cone)
and

AzConeTangent: (onCone e cone) —
((inPlane pt (tangentPlane e cone) A onCone pt cone)
< collinear (vertex cone) e pt)
and

AzParallelCones: (onCone e econe A e # vertex econe A onCone f fcone A f #
vertex fcone
A inPlane f (tangentPlane e econe))
— (samePlane (tangentPlane e econe) (tangentPlane f fcone)
A ((lineJoining (vertex econe) e) || (lineJoining (vertex fecone)

)

and

AxParallelConesE: outsideCone f cone
— (Fe.(onCone e cone A e # vertex cone A inPlane f (tangentPlane e cone)))
and

AuxSlopedLinelInVerticalPlane: JonAzisT e; onAxisT f; e # f; ~(onAzisT g)]
= (Vs.(3p . (collinear e g p A (space2 p f = (sxs)xtime2 p f))))

begin

fun onCone :: 'a Point = 'a Cone = bool where
onCone p cone
= (space2 (vertex cone) p = (slope cone * slope cone) x time2 (vertex cone)

p)

fun insideCone :: 'a Point = 'a Cone = bool where
insideCone p cone
= (space2 (vertex cone) p < (slope cone * slope cone) * time2 (vertexr cone)

p)

17

fun outsideCone :: 'a Point = 'a Cone = bool where
outsideCone p cone
= (space2 (vertex cone) p > (slope cone * slope cone) * time2 (vertex cone)

p)

fun mkCone :: 'a Point = 'a = 'a Cone where
mkCone v s = (verter = v, slope = s |

lemma lem VertexOnCone:
shows onCone (vertex cone) cone
by simp

lemma lemQutsideNotOnCone:
assumes outsideCone f cone
shows — (onCone f cone)
by (metis assms less-irrefl onCone.simps outside Cone.simps)

end
class SpaceTime = Quantities + Vectors + Points + Lines + Planes + Cones
end

theory SomeFunc
imports Main
begin

fun someFunc :: ("a = 'b = bool) = 'a = 'b where
someFunc P x = (SOME y. (P z y))

lemma lemSomeFunc:
assumes Jy . Pz y
and f = someFunc P
shows Pz (fz)
proof —
have fz = (SOME y. (P z y))
using assms(2) by simp
thus ?thesis using assms(1)
by (simp add: somel-ex)
qed

end

theory Azioms

18

imports SpaceTime SomeFunc
begin

record Body =
Ph :: bool
10b :: bool

class WorldView = SpaceTime +
fixes

W :: Body = Body = 'a Point = bool (- sees - at -)
and

wvt 2 Body = Body = 'a Point = 'a Point
assumes
AzWVT: [IOb m; IOb k]| = (Wkbz<— Wmb (wot mkz))
and
AzWVTSym: [I0b m; IOb k]| = (y=wotkmz +— z = wut mky)
begin
end

class AziomPreds = WorldView
begin
fun sqrtTest :: 'a = 'a = bool where
sgrtTest x r = ((r > 0) A (r*r = z))

fun cTest :: Body = 'a = bool where

cTestmv=((v>0)AN(Yzy.(
3p. (PhpAN Wmpaz AN Wmpy)) < (space2 z y = (v * v)*(time2
zy))

)
end

class AzFEuclidean = AxiomPreds + Quantities +
assumes

AzEuclidean: (x > Groups.zero-class.zero) = (Ir. sqrtTest x r)
begin

abbreviation sqrt :: ‘a = ‘a where
sqrt = someFunc sqrtTest

lemma lemSqrt:

19

assumes z > (
and r = sqrtx
shows r >0 A r«r =1
proof —
have rootEzists: (3r. sqritTest x) by (metis AxEuclidean assms(1))
hence sqrtTest z (sqrt) by (metis lemSomeFunc)
thus ?thesis using assms(2) by simp
qed

end

class AzLight = WorldView +
assumes
AzLight: 3m v.(I0Ob m A (v > (0:'a)) A (Ve y.(
Bp(PhpANWmpz A Wmpy)) < (space2 x y = (v * v)xtime2

class AzPh = WorldView + AziomPreds +
assumes

AzPh: I0b m = (Jv. cTest m v)
begin

abbreviation ¢ :: Body = ’a where
¢ = someFunc cTest

fun lightcone :: Body = 'a Point = 'a Cone where
lightcone m v = mkCone v (¢ m)

lemma lemCProps:
assumes [0b m
and v=-cm
shows (v > 0) A Vzy.(3p. Php AN Wmpaz A Wmpy))
+—— (space2x y = (¢ m x ¢c m)xtime2 x y)))
proof —
have vEzists: (Jv. cTest m v) by (metis AzPh assms(1))
hence cTest m (¢ m) by (metis lemSomeFunc)
thus ?thesis using assms(2) by simp
qed

20

lemma lemCCone:
assumes [10b m
and onCone y (lightcone m x)
shows Jp. (Php A Wmpa A Wmpy)
proof —
have (Ap.(Php A Wmpaxz A Wmpy))
> (space2 zy = (¢ m * ¢ m)xtime2 z y)
by (smt assms(1) lemCProps)
hence ph-exists: (space2 zy = (¢ m * ¢ m)xtime2 zy) — (3p.(Php A Wm p
x A Wmpy))
by metis
define lcmz where lcmz = lightcone m x
have lcmaz-vertex: vertex lemx = z by (simp add: lemz-def)
have lema-slope: slope lemx = ¢ m by (simp add: lema-def)
have onCone y lemz — (space2 z y = (¢ m * ¢ m)xtime2 © y)
by (metis lemz-vertex lema-slope onCone.simps)
hence space2 x y = (¢ m * ¢ m)xtime2 x y by (metis lemz-def assms(2))
thus ?thesis by (metis ph-exists)
qed

lemma lemCPos:
assumes 10b m
shows c¢m > 0
by (metis assms(1) lemCProps)

lemma lemCPhoton:

assumes [0b m

shows Vzy. (3p. (Php AN Wmpaz A Wmpy)) «— (space2zy = (¢ m * ¢
m)x(time2 x y))

by (metis assms(1) lemCProps)

end

class AzEv = WorldView +
assumes
AzEv: [I0b m; I0Ob k] = (3y. Vb. (Wmbz +— Wkby)))
begin
end

class AzThExp = WorldView + AxzPh +
assumes

21

AxThEzp: I0b m = (Vz y .(
(FE(IOb kN Wmka AN Wmky)) < (space2zy < (¢ m % ¢ m) x time2

)

begin
end

T y)

class AzSelf = WorldView +
assumes
AzSelf: IOb m = (W m m z) — (ondAxzisT z)
begin
end

class AxzC = WorldView + AxPh +
assumes
AzC: IObm = ¢cm = 1
begin
end

class AzSym = WorldView +
assumes
AxzSym: [I0b m; IOb k| =
(Wmez AWmfyAhWkex'N Wkfy' A
tval x = tval y A tval ' = tval y')
— (space2 x y = space2 z' y’)
begin
end

class AzLines = WorldView +
assumes
AzLines: [I0b m; 10b k; collinear x p ¢ | =
collinear (wvt k m z) (wut k m p) (wvt k m q)
begin
end

22

class AzPlanes = WorldView +
assumes
AzPlanes: | I0b m; I0b k| =
(coplanar e z y z — coplanar (wot k m €) (wot k m z) (wvt k m y) (wut km
z))
begin
end

class AzCones = WorldView + AxzPh +
assumes
AzCones: [I0b m; I0b k| =
(onCone z (lightCone m v) — onCone (wuvt k m z) (lightcone k (wvt k m v)))
begin
end

class AzTime = WorldView +
assumes

AzTime: [I0b m; I0b k]

= (zSy—witkmae Switkmy)

begin
end
end
theory SpecRel
imports Azioms

begin

class SpecRel = WorldView + AxzPh + AxzEv + AxSelf + AxSym

+ AzFuclidean

+ AzLines + AzPlanes + AxCones

begin

23

lemma lemZEG:
shows z —e=g— e+ (2 — g)
proof —
have g — e+ (z — g) = (¢ — e + 2) — g by (rule add-diff-eq)
also have (9 — e+ 2) —g=(—e+ 2)
by (metis local.diff-add-cancel
local.ring-normalization-rules(2)
local.semiring-normalization-rules(24)
local.semiring-normalization-rules(25))
thus ?thesis
by (simp add: calculation)
qed

lemma noFTLObserver:

assumes iobm: 10b m

and tobk: 10D k

and mke: m sees k at e

and mkf: m sees k at f

and enotf: e # f
shows space2 e f < (¢ m * ¢cm) x time2 e f
proof —

{

assume converse: space2 e f > (¢ m x ¢ m) * time2 e f

define eCone where eCone = mkCone e (¢ m)
have e-on-econe: onCone e eCone by (simp add: eCone-def)

have e-is-vertex: e = vertex eCone by (simp add: eCone-def)
have cm-is-slope: ¢ m = slope eCone by (simp add: eCone-def)
hence outside: outsideCone f eCone
by (metis (lifting) e-is-vertex cm-is-slope converse outsideCone.simps)

have outsideCone f eCone
— (Fz.(onCone x eCone N x # vertex eCone A inPlane f (tangentPlane z
eCone)))
by (rule AzParallelConesE)

hence tplane-exists: Jx.(onCone x eCone N x # wvertexr eCone A inPlane f
(tangentPlane z eCone))

24

by (metis outside)
then obtain g where g-props: (onCone g eCone A g # vertex eCone A inPlane
f (tangentPlane g eCone))
by auto
have g-on-eCone: onCone g eCone by (metis g-props)
have g-not-vertex: g # vertex eCone by (metis g-props)

define tplane where tplane = tangentPlane g eCone

have e-in-tplane: inPlane e tplane by (metis AzTangentVertex e-is-vertex tplane-def)

have f-in-tplane: inPlane f tplane by (metis g-props tplane-def)

have g-in-tplane: inPlane g tplane by (metis lemPlaneContainsBasePoint tplane-def
AzTangentBase)

have (onCone g eCone) —
((inPlane f (tangentPlane g eCone) A onCone f eCone)
< collinear (vertex eCone) g f)

by (metis AzConeTangent)
hence azconetangent: collinear e g f — onCone f eCone

by (metis g-on-eCone e-is-vertex)
have —(onCone f eCone) by (metis outside lemQOutsideNotOnCone)
hence g-not-collinear: — (collinear e g f)

by (metis azconetangent)

define wute where wute = wvt k m e
define wutf where wutf = wut k m f
define wutg where wvtg = wut k m g

have W k k wute by (metis wute-def AcWVT mke iobm iobk)
hence wvte-onAxis: onAzisT wote by (metis AzSelf iobk)

have W k k wutf by (metis wotf-def AcWVT mkf iobm iobk)
hence wvtf-onAzis: onAxisT wutf by (metis AzSelf iobk)

have wute-inv: e = wvt m k wote by (metis AzWVTSym iobk iobm wute-def)
have wvtf-inv: f = wut m k wotf by (metis AcWVTSym iobk iobm wutf-def)
have wuvig-inv: g = wut m k wotg by (metis AxWVTSym iobk iobm wuvtg-def)

have e-not-g: e # g by (metis e-is-vertex g-not-vertex)
have f-not-g: f # g by (metis outside lemOutsideNotOnCone g-on-eCone)

have wuvt-e-not-f: wute # wvtf by (metis wvte-inv wvtf-inv enotf)

have wuvt-f-not-g: wutf # wutg by (metis wotf-inv wutg-inv f~not-g)
have wvt-g-not-e: wutg # wute by (metis wutg-inv wute-inv e-not-g)

25

have if-g-onAzis: onAxisT wutg — collinear wvte wutg woutf
by (metis lemAzislsLine wute-onAzis wulf-onAxis wout-e-not-f wul-f-not-g wot-g-not-e)

have collinear wvte wutg wotf — collinear e g f
by (metis AzLines iobm iobk wvte-inv wutf-inv wutg-inv)
hence onAxzisT wutg — collinear e g f by (metis if-g-onAxis)

hence wutg-offAxis: - (onAzisT wutg) by (metis g-not-collinear)

have V s.(3p.(collinear wvte wotg p A (space2 p wutf = (s*s)*xtime2 p wvtf)))
by (metis AxSlopedLinelnVerticalPlane wute-onAxis wutf-onAxis wutg-offAxis
wot-e-not-f)
hence ezists-wvtz: 3 p.(collinear wute wutg p A (space2 p wutf = (¢ k x ¢ k)xtime2
p wf))
by metis
then obtain wvtz where
wutz-props: collinear wute wutg wutz A (spacel wutz wutf = (¢ k * ¢ k)xtime2
wotz wutf) by auto
hence wutf-speed: space2 wutz wutf = (¢ k * ¢ k)xtime2 wvtz wotf by metis

define z where z = wut m k wutz
define wuvtzCone where wuvtzCone = lightcone k wutz

have wviz-is-vertex: wutz = vertex wutzCone by (simp add: wutzCone-def)
have ck-is-slope: ¢ k = slope wvtzCone by (simp add: wvtzCone-def)
hence space2 (vertex wutzCone) wutf = ((slope wutzCone) *(slope wotzCone))*time2
(vertex wutzCone) wutf
by (metis wutf-speed wvtz-is-vertex ck-is-slope)
hence onCone wutf wvtzCone by (metis onCone.simps)

hence wvtf-on-wvtzCone: onCone (wvt m k wotf) (lightcone m z)
by (metis iobm iobk AxCones wvtzCone-def z-def)

define zCone where zCone = lightcone m z
have z-is-vertex: z = vertex zCone by (simp add: zCone-def)
have c¢m-is-zSlope: ¢ m = slope zCone by (simp add: zCone-def)

have f-on-zCone: onCone f zCone by (metis wotf-inv wotf-on-wvtzCone zCone-def)

26

hence space2 (vertex zCone) f = (slope zCone x slope zCone)xtime2 (vertex
zCone) f
by (simp add: zCone-def)
hence space2 z f = (¢ m * ¢ m)xtime2 z f by (metis z-is-vertex cm-is-zSlope)
hence fz-speed: space2 f z = (¢ m * ¢ m)xtime2 f z by (metis lemSpace2Sym
lemTime2Sym)

define fCone where fCone = lightcone m f

have f-is-fVertex: f = vertex fCone by (simp add: fCone-def)
have c¢m-is-fSlope: ¢ m = slope fCone by (simp add: fCone-def)
hence space2 (vertex fCone) z = ((slope fCone) (slope fCone))*time2 (vertex
fCone) z
by (metis fz-speed f-is-fVertex cm-is-fSlope)
hence z-on-fCone: onCone z fCone by (metis onCone.simps)

have collinear wute wutg wotz by (metis wutz-props)
hence egz-collinear: collinear e g z by (metis wute-inv wvtg-inv z-def AzLines
iobm iobk)
hence z-geometry: (inPlane z (tangentPlane g eCone) A onCone z eCone)
by (metis AzConeTangent e-is-vertex g-on-eCone)

have z-on-eCone: onCone z eCone by (metis z-geometry)
have z-in-tplane: inPlane z tplane by (metis z-geometry tplane-def)

hence z-not-f: z # f by (metis z-on-eCone outside lemOutsideNotOnCone)
hence z-not-fVertex: z # vertex fCone by (simp add: fCone-def z-not-f)

{

assume assm: z = €

have space2 fe = (¢ m x ¢ m)xtime2 f e A space2 f e = space2 e f N time2 f
e = timeZef

by (metis lemSpace2Sym lem Time2Sym fz-speed assm)

hence space2 e f = (¢ m x ¢ m)*time2 e f by metis

hence Fulse by (metis less-irrefl converse)

}

from this have z-not-e: z # e by blast

define lineA where lineA = lineJoining e z
define lineB where lineB = lineJoining f z

{

27

assume assm: direction lineA = vecZero

have lemnullline: (direction lineA = vecZero N inLine z lineA) — z = basepoint
lineA

by (metis lemNullLine)

have inLine z lineA by (metis lineA-def lemLineContainsEndpoint)

hence z-is-bp: z = basepoint lineA by (metis lemnullline assm)

have basepoint lineA = e by (simp add: lineA-def)

hence Fulse by (metis z-is-bp z-not-e)

}

from this have ez-not-null: direction lineA # vecZero by blast

{

assume assm: direction lineB = vecZero

have lemnullline: (direction lineB = vecZero N inLine z lineB) — z = basepoint
lineB

by (metis lemNullLine)

have inLine z lineB by (metis lineB-def lemLineContainsEndpoint)

hence z-is-bp: z = basepoint lineB by (metis lemnullline assm)

have basepoint lineB = f by (simp add: lineB-def)

hence Fualse by (metis z-is-bp z-not-f)

}

from this have fz-not-null: direction lineB # vecZero by blast

{

have samePlane tplane (tangentPlane z fCone)
A ((lineJoining e g) || (lineJoining f z))
by (metis AzParallelCones tplane-def
g-on-eCone g-not-vertex z-on-fCone z-not-fVertex z-in-tplane
e-is-vertex f-is-fVertex)

hence eg-par-fz: (lineJoining e g) || (lineJoining f z) by metis

assume casel: direction (lineJoining e g) = vecZero
have direction (lineJoining e g) = from e to g by simp
hence from e to g = vecZero by (metis casel)
hence e = g by (simp)
hence Fulse by (metis e-not-g)

}

from this have eg-not-null: =(direction (lineJoining e g) = vecZero) by blast

then obtain ¢ where a-props: a # 0 A direction (lineJoining f z) = axxdirection

(lineJoining e g)

by (metis fz-not-null eg-not-null eg-par-fz parallel.simps lineB-def)

hence f-to-z: from f to z = axx(from e to g) by simp

have a-nonzero: a # 0 by (metis a-props)

have eg-dir: from e to g = direction (lineJoining e g) by simp
have gz-dir: from g to z = direction (lineJoining g z) by simp
have egz: 2 = g ~ (from g to z) by (metis lemLineEndpoint)
hence collinear e g (g ~ (from g to z)) by (metis egz-collinear)

28

then obtain b where e-to-g: from e to g = (—b)*x(from g to z2)
by (metis lemDirectionCollinear)

{

assume assm: —b = 0

have from e to g = (=b)*x(from g to z) by (metis e-to-g)
hence from e to g = vecZero by (simp add: assm)
hence direction (lineJoining e g) = vecZero by (simp)
hence Fulse by (metis eg-not-null lineA-def)

}

from this have b-nonzero: —b # 0 by blast

define binv where binv = inverse (—b)

define factor where factor = 1+binv

have binv-nonzero: binv # 0 by (metis b-nonzero add.comm-neutral binv-def
nonzero-imp-inverse-nonzero right-minus)

have from e to g = (=b)*x(from g to z) by (metis e-to-g)
hence g-to-z: (from g to z) = binvxx(from e to g)
by (metis b-nonzero lemScaleInverse binv-def)

have from e to z = from e to g ® from g to z
by (simp add: lemZEQG)

hence from e to z = (from e to g) ® binvxx(from e to g) by (metis g-to-z)

hence e-to-z: from e to z = factorsx(from e to g) by (metis lemAddOverScale
lemScalel factor-def)

have ez-dir: direction (lineJoining e z) = from e to z by simp

have eg-dir: direction (lineJoining e g) = from e to g by simp

{

assume assm: factor = 0

have from e to z = factor=x(from e to g) by (metis e-to-z)
hence from e to z = vecZero by (simp add: assm)

hence direction (lineJoining e z) = vecZero by (simp)
hence Fulse by (metis ez-not-null lineA-def)

}

from this have factor-nonzero: factor # 0 by blast

have direction (lineJoining e z) = factors*(direction (lineJoining e g))
by (metis e-to-z ez-dir eg-dir)
hence (lineJoining e g) || (lineJoining e z) by (metis parallel.simps fac-
tor-nonzero)
hence (lineJoining e z) || (lineJoining e g) by (metis lemParallelSym)

hence (lineJoining e z) || (lineJoining f z) by (metis lemParallelTrans eg-par-fz

29

eg-not-null)

}
from this have A-par-B: lineA || lineB by (metis lineA-def lineB-def)

have e-in-lineA: inLine e lineA by (metis lineA-def lemLineContainsBasepoint)

{
have basic: Va b.(((—a)*b)*((—a)xb) = (a*xa)*(bxb))
by (metis equation-minus-iff minus-mult-commute minus-mult-right
semiring-normalization-rules(17) semiring-normalization-rules(19))

assume assm: inLine e lineB
hence coll: collinear e f (f ~ direction lineB) by (simp add: lineB-def)
then obtain 5 where props: from e to f = (—8)**(direction lineB)

by (metis lemDirectionCollinear)

hence tval f — tval e = (—B)*(tval z — tval f) A zval f — aval e = (—F)*(zval
z — aval f)
A yval f — yval e = (=B)*(yval z — yval f) N zval f — zval e = (—F)*(zval
z — zval f)
by (simp add: lineB-def)
hence speeds: time2 f e = (BxS)xtime2 z f N space2 f e = (B+0)xspace z f
apply (simp add: basic) apply auto
apply (metis semiring-normalization-rules(18) semiring-normalization-rules(19))
by (metis semiring-normalization-rules(18) semiring-normalization-rules(19)

semiring-normalization-rules(34))

have space2 f z = (¢ m * ¢ m)xtime2 f z by (metis fz-speed)
hence space2 z f = (¢ m * ¢ m)xtime2 z f by (metis lemSpace2Sym lem-
Time2Sym,)
hence space2 f e = ((B*5)*(c m * ¢ m))xtime2 z f by (metis speeds mult.assoc)
hence space2 f e = (¢ m x ¢ m)x(B*f8)xtime2 z f by (metis mult.assoc
mult.commute)
hence space2 f e = (¢ m x ¢ m)xtime2 f e by (metis mult.assoc speeds)
hence space2 e f = (¢ m * ¢ m)xtime2 e [by (metis lemSpace2Sym lem-
Time2Sym,)
hence False by (metis less-irrefl converse)

}

from this have e-not-in-lineB: —(inLine e lineB) by blast
have inLine z lineA A inLine z lineB by (metis lemLineContainsEndpoint lineA-def
lineB-def)

hence A-meets-B: meets lineA lineB by auto

hence Fulse by (metis A-par-B ez-not-null fz-not-null e-in-lineA e-not-in-lineB

30

lemParallelNotMeet)
}

from this have — (space2 e f > (¢ m x ¢ m) * time2 e f) by blast

thus ?thesis by simp
qed

end

end

References

[1] M. Stannett and I. Németi. Using Isabelle/HOL to verify first-order
relativity theory. Journal of Automated Reasoning, 52(4):361-378, 2014.

31

