An Isabelle/HOL Formalization of the Modular Assembly Kit for Security Properties

Oliver Bračevac, Richard Gay, Sylvia Grewe, Heiko Mantel, Henning Sudbrock, Markus Tasch

Abstract

The "Modular Assembly Kit for Security Properties" (MAKS) is a framework for both the definition and verification of possibilistic information-flow security properties at the specification-level. MAKS supports the uniform representation of a wide range of possibilistic information-flow properties and provides support for the verification of such properties via unwinding results and compositionality results. We provide a formalization of this framework in Isabelle/HOL.

Contents

1	Intr	roduction	2
2	Bas	ic Definitions	2
3	Sys	tem Specification	13
	3.1	Event Systems	13
	3.2	State-Event Systems	18
4	Sec	urity Specification	24
	4.1	Views & Flow Policies	24
	4.2	Basic Security Predicates	26
	4.3	Information-Flow Properties	37
	4.4	Property Library	37
5	Ver	ification	41
	5.1	Basic Definitions	41
	5.2	Taxonomy Results	42
	5.3	Unwinding	82
		5.3.1 Unwinding Conditions	82
		5.3.2 Auxiliary Results	84
		5.3.3 Unwinding Theorems	89
	5.4		101
			101
		5.4.2 Generalized Zipping Lemma	113
		5.4.3 Compositionality Results	

1 Introduction

This is a formalization of the Modular Assembly Kit for Security Properties (MAKS) [2, 3] in its version from [3]. We provide a more detailed explanation on how key concepts of MAKS are formalized in Isabelle/HOL in [1].

2 Basic Definitions

In the following, we define the notion of prefixes and the notion of projection. These definitions are preliminaries for the remaining parts of the Isabelle/HOL formalization of MAKS.

```
theory Prefix
imports Main
begin
definition prefix :: 'e \ list \Rightarrow 'e \ list \Rightarrow bool \ (infixl <\leq > 100)
where
(l1 \leq l2) \equiv (\exists l3. \ l1 @ l3 = l2)
definition prefixclosed :: ('e list) set <math>\Rightarrow bool
prefixclosed tr \equiv (\forall l1 \in tr. \forall l2. l2 \leq l1 \longrightarrow l2 \in tr)
lemma empty-prefix-of-all: [] \leq l
 using prefix-def [of [] l] by simp
\textbf{lemma} \ \textit{empty-trace-contained:} \ \llbracket \ \textit{prefixclosed} \ tr \ ; \ tr \neq \{\} \ \rrbracket \Longrightarrow \llbracket] \in tr
 assume 1: prefixclosed tr and
         2: tr \neq \{\}
 then obtain l1 where l1 \in tr
 with 1 have \forall l2. l2 \leq l1 \longrightarrow l2 \in tr
   by (simp add: prefixclosed-def)
  thus [] \in tr
   by (simp add: empty-prefix-of-all)
qed
lemma transitive-prefix: [[ l1 \leq l2 ; l2 \leq l3 ]] \Longrightarrow l1 \leq l3
 by (auto simp add: prefix-def)
theory Projection
imports Main
begin
```

```
definition projection:: 'e list \Rightarrow 'e set \Rightarrow 'e list (infixl \langle 1 \rangle 100)
where
l \mid E \equiv filter (\lambda x \cdot x \in E) l
lemma projection-on-union:
 l \upharpoonright Y = [] \Longrightarrow l \upharpoonright (X \cup Y) = l \upharpoonright X
proof (induct l)
 case Nil show ?case by (simp add: projection-def)
\mathbf{next}
 case (Cons a b) show ?case
 proof (cases \ a \in Y)
    case True from Cons show a \in Y \Longrightarrow (a \# b) \upharpoonright (X \cup Y) = (a \# b) \upharpoonright X
      by (simp add: projection-def)
 next
    case False from Cons show a \notin Y \Longrightarrow (a \# b) \upharpoonright (X \cup Y) = (a \# b) \upharpoonright X
      by (simp add: projection-def)
 qed
qed
lemma projection-on-empty-trace: [] \uparrow X = [] by (simp \ add: \ projection-def)
lemma projection-to-emptyset-is-empty-trace: l \mid \{\} = [] by (simp add: projection-def)
lemma projection-idempotent: l \uparrow X = (l \uparrow X) \uparrow X by (simp add: projection-def)
\textbf{lemma} \ \textit{projection-empty-implies-absence-of-events:} \ l \upharpoonright X = [] \implies X \cap (\textit{set } l) = \{\}
by (metis empty-set inter-set-filter projection-def)
lemma disjoint-projection: X \cap Y = \{\} \Longrightarrow (l \upharpoonright X) \upharpoonright Y = []
 assume X-Y-disjoint: X \cap Y = \{\}
 show (l \uparrow X) \uparrow Y = [] unfolding projection-def
 proof (induct l)
    case Nil show ?case by simp
 \mathbf{next}
   case (Cons \ x \ xs) show ?case
   proof (cases x \in X)
      {f case}\ {\it True}
      with X-Y-disjoint have x \notin Y by auto
      thus [x \leftarrow [x \leftarrow x \# xs : x \in X] : x \in Y] = [] using Cons.hyps by auto
      case False show [x \leftarrow [x \leftarrow x \# xs \ . \ x \in X] \ . \ x \in Y] = [] using Cons.hyps False by auto
    qed
 qed
\mathbf{qed}
```

```
{\bf lemma}\ projection\hbox{-}concatenation\hbox{-}commute:
  (l1 @ l2) \uparrow X = (l1 \uparrow X) @ (l2 \uparrow X)
  by (unfold projection-def, auto)
{\bf lemma}\ projection\hbox{-}subset\hbox{-}eq\hbox{-}from\hbox{-}superset\hbox{-}eq\hbox{:}
((xs \upharpoonright (X \cup Y)) = (ys \upharpoonright (X \cup Y))) \Longrightarrow ((xs \upharpoonright X) = (ys \upharpoonright X))
(\mathbf{is}\ (?L1=?L2)\Longrightarrow (?L3=?L4))
proof -
  assume prem: ?L1 = ?L2
  have ?L1 \upharpoonright X = ?L3 \land ?L2 \upharpoonright X = ?L4
    have \bigwedge a. ((a \in X \lor a \in Y) \land a \in X) = (a \in X)
      by auto
    thus ?thesis
      by (simp add: projection-def)
  \mathbf{with}\ \mathit{prem}\ \mathbf{show}\ \mathit{?thesis}
    \mathbf{by}\ \mathit{auto}
\mathbf{qed}
lemma list-subset-iff-projection-neutral: (set l \subseteq X) = ((l \uparrow X) = l)
(is ?A = ?B)
proof -
  have ?A \Longrightarrow ?B
    proof -
       assume ?A
       hence \bigwedge x. x \in (set \ l) \Longrightarrow x \in X
         by auto
       \mathbf{thus}~? the sis
         \mathbf{by}\ (simp\ add\colon projection\text{-}def)
    qed
  moreover
  have ?B \Longrightarrow ?A
    proof -
      \mathbf{assume}~?B
       hence (set (l \mid X)) = set l
         by (simp add: projection-def)
       \mathbf{thus}~? the sis
         by (simp add: projection-def, auto)
    \mathbf{qed}
  ultimately show ?thesis ..
\mathbf{qed}
lemma projection-split-last: Suc n = length \ (\tau \uparrow X) \Longrightarrow
\exists \ \beta \ x \ \alpha. \ (x \in X \ \land \ \tau = \beta \ @ \ [x] \ @ \ \alpha \ \land \ \alpha \ | \ X = [] \ \land \ n = length \ ((\beta \ @ \ \alpha) \ | \ X))
proof -
  assume Suc-n-is-len-\tau X: Suc n = length \ (\tau \uparrow X)
```

```
let ?L = \tau \uparrow X
let ?RL = filter (\lambda x . x \in X) (rev \tau)
have Suc\ n = length\ ?RL
proof -
 have rev ?L = ?RL
   by (simp add: projection-def, rule rev-filter)
  hence rev (rev ?L) = rev ?RL ...
 hence ?L = rev ?RL
   by auto
  with Suc\text{-}n\text{-}is\text{-}len\text{-}\tau X show ?thesis
   \mathbf{by} auto
qed
with Suc\text{-length-conv}[of\ n\ ?RL] obtain x\ xs
 where ?RL = x \# xs
 by auto
hence x \# xs = ?RL
 by auto
from Cons-eq-filterD[OF\ this] obtain rev \alpha\ rev \beta
  where (rev \ \tau) = rev\alpha @ x \# rev\beta
 and rev\alpha-no-x: \forall a \in set \ rev\alpha. a \notin X
  and x-in-X: x \in X
  by auto
hence rev (rev \tau) = rev (rev\alpha @ x \# rev\beta)
  by auto
hence \tau = (rev \ rev \beta) @ [x] @ (rev \ rev \alpha)
 by auto
then obtain \beta \alpha
  where \tau-is-\beta x \alpha: \tau = \beta @ [x] @ \alpha
 and \alpha-is-revrev\alpha: \alpha = (rev rev \alpha)
 and \beta-is-revrev\beta: \beta = (rev rev \beta)
 by auto
hence \alpha-no-x: \alpha \uparrow X = []
proof -
  from \alpha-is-revrev\alpha rev\alpha-no-x have \forall a \in set \alpha. a \notin X
   by auto
  thus ?thesis
   by (simp add: projection-def)
qed
have n = length ((\beta @ \alpha) | X)
proof -
  from \alpha-no-x have \alpha X-zero-len: length (\alpha \mid X) = 0
   by auto
  from x-in-X have xX-one-len: length ([x] | X) = 1
    by (simp add: projection-def)
  from \tau-is-\beta x \alpha have length ?L = length (\beta \mid X) + length ([x] \mid X) + length (<math>\alpha \mid X)
   by (simp add: projection-def)
```

```
with \alpha X-zero-len have length ?L = length (\beta \mid X) + length ([x] \mid X)
     by auto
    with xX-one-len Suc-n-is-len-\tau X have n = length (\beta \uparrow X)
     by auto
    with \alpha X-zero-len show ?thesis
     by (simp add: projection-def)
  with x-in-X \tau-is-\betax\alpha \alpha-no-x show ?thesis
   by auto
qed
{\bf lemma}\ projection\text{-}rev\text{-}commute:
 rev(l \mid X) = (rev l) \mid X
 by (induct l, simp add: projection-def, simp add: projection-def)
lemma projection-split-first: [(\tau \mid X) = x \# xs] \implies \exists \alpha \beta. (\tau = \alpha @ [x] @ \beta \land \alpha \mid X = [])
proof -
 assume \tau X-is-x-xs: (\tau \uparrow X) = x \# xs
 hence 0 \neq length (\tau \mid X)
   \mathbf{by} auto
 hence 0 \neq length (rev (\tau \mid X))
   by auto
 hence 0 \neq length ((rev \tau) \mid X)
   by (simp add: projection-rev-commute)
 then obtain n where Suc\ n = length\ ((rev\ \tau)\ 1\ X)
    by (auto, metis Suc-pred length-greater-0-conv that)
 from projection-split-last[OF this] obtain \beta' x' \alpha'
    where x'-in-X: x' \in X
   and rev\tau-is-\beta' x' \alpha': rev \tau = \beta' @ [x'] @ \alpha'
   and \alpha' X-empty: \alpha' \upharpoonright X = []
   by auto
 from rev\tau-is-\beta'x'\alpha' have rev\ (rev\ \tau) = rev\ (\beta'\ @\ [x']\ @\ \alpha')..
 hence \tau-is-rev\alpha'-x'-rev\beta':\tau = rev \alpha' \otimes [x'] \otimes rev \beta'
   by auto
 moreover
 from \alpha' X-empty have rev\alpha' X-empty: rev \alpha' \upharpoonright X = []
   by (metis projection-rev-commute rev-is-Nil-conv)
 moreover
 note x'-in-X
 ultimately have (\tau \mid X) = x' \# ((rev \beta') \mid X)
   by (simp only: projection-concatenation-commute projection-def, auto)
  with \tau X-is-x-xs have x = x'
   by auto
  with \tau-is-rev\alpha'-x'-rev\beta' have \tau-is-rev\alpha'-x-rev\beta': \tau = rev \alpha' @ [x] @ rev \beta'
   by auto
  with reva'X-empty show ?thesis
   by auto
qed
```

```
\mathbf{lemma} \ \textit{projection-split-first-with-suffix} :
   \llbracket (\tau \upharpoonright X) = x \# xs \rrbracket \Longrightarrow \exists \alpha \beta. (\tau = \alpha @ [x] @ \beta \land \alpha \upharpoonright X = \llbracket \land \beta \upharpoonright X = xs) 
proof -
  assume tau-proj-X: (\tau \mid X) = x \# xs
  show ?thesis
  proof -
    from tau-proj-X have x-in-X: x \in X
      by (metis IntE inter-set-filter list.set-intros(1) projection-def)
    from tau-proj-X have \exists \alpha \beta. \tau = \alpha @ [x] @ \beta \land \alpha \upharpoonright X = []
      using projection-split-first by auto
    then obtain \alpha \beta where tau-split: \tau = \alpha @ [x] @ \beta
                         and X-empty-prefix:\alpha \mid X = []
      by auto
    from tau-split tau-proj-X have (\alpha @ [x] @ \beta) \upharpoonright X = x \# xs
      by auto
    with X-empty-prefix have ([x] @ \beta) \uparrow X = x \# xs
      by (simp add: projection-concatenation-commute)
    hence (x \# \beta) \upharpoonright X = x \# xs
      by auto
    with x-in-X have \beta \upharpoonright X = xs
      unfolding projection-def by simp
    with tau-split X-empty-prefix show ?thesis
      by auto
  qed
qed
{f lemma} projection-split-arbitrary-element:
  \llbracket \tau \upharpoonright X = (\alpha @ [x] @ \beta) \upharpoonright X; x \in X \rrbracket
       \implies \exists \alpha' \beta'. (\tau = \alpha' @ [x] @ \beta' \land \alpha' \uparrow X = \alpha \uparrow X \land \beta' \uparrow X = \beta \uparrow X)
proof -
  assume \tau \upharpoonright X = (\alpha @ [x] @ \beta) \upharpoonright X
  and x \in X
  {
    \mathbf{fix} \ n
    have \llbracket \tau \mid X = (\alpha @ [x] @ \beta) \mid X; x \in X; n = length(\alpha \mid X) \rrbracket
           \implies \exists \alpha' \beta'. (\tau = \alpha' @ [x] @ \beta' \land \alpha' \uparrow X = \alpha \uparrow X \land \beta' \uparrow X = \beta \uparrow X)
    proof (induct n arbitrary: \tau \alpha)
      \mathbf{case}\ \theta
      hence \alpha | X = []
         unfolding projection-def by simp
      with 0.prems(1) 0.prems(2) have \tau | X = x \# \beta | X
         unfolding projection-def by simp
       with \langle \alpha | X = [] \rangle show ?case
         \mathbf{using} \ \mathit{projection-split-first-with-suffix} \ \mathbf{by} \ \mathit{fastforce}
    next
       case (Suc \ n)
      from Suc.prems(1) have \tau | X = \alpha | X @ ([x] @ \beta) | X
         using projection-concatenation-commute by auto
       from Suc.prems(3) obtain x' xs' where \alpha \uparrow X = x' \# xs'
```

```
and x' \in X
        by (metis filter-eq-ConsD length-Suc-conv projection-def)
      then obtain a_1 a_2 where \alpha = a_1 @ [x'] @ a_2
                          and a_1 | X = []
                          and a_2 \mid X = xs'
        using projection-split-first-with-suffix by metis
      with \langle x' \in X \rangle Suc. prems(1) have \tau \upharpoonright X = x' \# (a_2 @ [x] @ \beta) \upharpoonright X
        unfolding projection-def by simp
      then obtain t_1 t_2 where \tau = t_1 @ [x'] @ t_2
                          and t_1 | X = []
                          and t_2 \upharpoonright X = (a_2 @ [x] @ \beta) \upharpoonright X
        \mathbf{using} \ \mathit{projection-split-first-with-suffix} \ \mathbf{by} \ \mathit{metis}
      \mathbf{from} \ \mathit{Suc.prems}(3) \ \langle \alpha \ | X = x' \ \# \ xs' \rangle \ \langle \alpha = a_1 \ @ \ [x'] \ @ \ a_2 \rangle \ \langle a_1 | X = [] \rangle \ \langle a_2 | X = xs' \rangle
      have n = length(a_2 | X)
        by auto
      with Suc.hyps(1) Suc.prems(2) \langle t_2 | X = (a_2 @ [x] @ \beta) | X \rangle
        obtain t_2' t_3' where t_2=t_2' @ [x] @ t_3'
                          and t_2'|X = a_2|X
                          and t_3'|X = \beta|X
          using projection-concatenation-commute by blast
      let ?\alpha'=t_1 @ [x'] @ t_2' and ?\beta'=t_3'
      \mathbf{from} \ \langle \tau = \ t_1 \ @ \ [x'] \ @ \ t_2 \rangle \ \langle t_2 = t_2 \ ' \ @ \ [x] \ @ \ t_3 \ ' \rangle \ \mathbf{have} \ \tau = ?\alpha' @ [x] @ ?\beta'
        by auto
      moreover
      have ?\alpha'|X = \alpha|X
        using projection-concatenation-commute unfolding projection-def by simp
      ultimately
      \mathbf{show} \ ?case \ \mathbf{using} \ \langle {t_3}'|X = \beta |X\rangle
        \mathbf{by} blast
    \mathbf{qed}
 with \langle \tau \mid X = (\alpha @ [x] @ \beta) \mid X \rangle \langle x \in X \rangle show ?thesis
    \mathbf{by} \ simp
qed
lemma projection-on-intersection: l \upharpoonright X = [] \Longrightarrow l \upharpoonright (X \cap Y) = []
(is ?L1 = [] \Longrightarrow ?L2 = [])
proof -
 assume ?L1 = []
 hence set ?L1 = \{\}
   by simp
 moreover
 have set ?L2 \subseteq set ?L1
   by (simp add: projection-def, auto)
  ultimately have set ?L2 = \{\}
   by auto
  thus ?thesis
   by auto
qed
```

```
lemma projection-on-subset: [[ Y\subseteq X;\ l\uparrow X=[] ]] \Longrightarrow l\uparrow Y=[]
proof -
  assume subset: Y \subseteq X
  assume proj-empty: l \uparrow X = []
  hence l \upharpoonright (X \cap Y) = []
    by (rule projection-on-intersection)
  moreover
  from subset have X \cap Y = Y
    by auto
  ultimately show ?thesis
    \mathbf{by} auto
\mathbf{qed}
lemma projection-on-subset2: [\![ set \ l \subseteq L; \ l \upharpoonright X' = [\!]; \ X \cap L \subseteq X' ]\!] \Longrightarrow l \upharpoonright X = [\![ ]
proof -
  assume setl-subset-L: set l \subseteq L
  assume l-no-X': l \uparrow X' = []
  assume X-inter-L-subset-\bar{X'}: X \cap L \subseteq X'
  from X-inter-L-subset-X' l-no-X' have l \uparrow (X \cap L) = []
    \mathbf{by}\ (\mathit{rule}\ \mathit{projection-on-subset})
  moreover
  have l \upharpoonright (X \cap L) = (l \upharpoonright L) \upharpoonright X
    by (simp add: Int-commute projection-def)
  moreover
  {\bf note}\ setl\text{-}subset\text{-}L
  ultimately show ?thesis
    \mathbf{by}\ (simp\ add:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
\mathbf{qed}
lemma non-empty-projection-on-subset: X\subseteq Y \land l_1 \upharpoonright Y = l_2 \upharpoonright Y \Longrightarrow l_1 \upharpoonright X = l_2 \upharpoonright X
  \mathbf{by}\ (\mathit{metis\ projection\text{-}}\mathit{subset\text{-}eq\text{-}}\mathit{from\text{-}}\mathit{superset\text{-}eq}\ \mathit{subset\text{-}}\mathit{Un\text{-}eq})
lemma projection-intersection-neutral: (set l \subseteq X) \Longrightarrow (l \uparrow (X \cap Y) = l \uparrow Y)
proof -
  \mathbf{assume}\ set\ l\subseteq X
  hence (l \uparrow X) = l
    \mathbf{by}\ (simp\ add:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
  \mathbf{hence}\ (l \upharpoonright X) \upharpoonright Y = l \upharpoonright Y
    by simp
  moreover
  have (l \uparrow X) \uparrow Y = l \uparrow (X \cap Y)
    by (simp add: projection-def)
  ultimately show ?thesis
    by simp
qed
```

```
lemma projection-commute:
 (l \uparrow X) \uparrow Y = (l \uparrow Y) \uparrow X
 by (simp add: projection-def conj-commute)
lemma projection-subset-elim: Y \subseteq X \Longrightarrow (l \uparrow X) \uparrow Y = l \uparrow Y
by (simp only: projection-def, metis Diff-subset list-subset-iff-projection-neutral
    minus-coset-filter order-trans projection-commute projection-def)
lemma projection-sequence: (xs \uparrow X) \uparrow Y = (xs \uparrow (X \cap Y))
\mathbf{by}\ (\mathit{metis}\ \mathit{Int-absorb}\ \mathit{inf-sup-ord}(1)\ \mathit{list-subset-iff-projection-neutral}
   projection-intersection-neutral projection-subset-elim)
fun merge :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ list \Rightarrow 'e \ list \Rightarrow 'e \ list
where
merge\ A\ B\ []\ t2=t2\ []
merge \ A \ B \ t1 \ [] = t1
merge A B (e1 \# t1') (e2 \# t2') = (if e1 = e2 then
                                          e1 # (merge A B t1' t2')
                                        else (if e1 \in (A \cap B) then
                                               e2 # (merge A B (e1 # t1') t2')
                                             else e1 # (merge A B t1' (e2 # t2'))))
lemma merge-property: [set\ t1\subseteq A;\ set\ t2\subseteq B;\ t1\upharpoonright B=t2\upharpoonright A]
  \implies let t = (merge\ A\ B\ t1\ t2)\ in\ (t\ |\ A = t1\ \land\ t\ |\ B = t2\ \land\ set\ t\subseteq ((set\ t1)\ \cup\ (set\ t2)))
\mathbf{unfolding}\ \mathit{Let-def}
proof (induct A B t1 t2 rule: merge.induct)
 case (1 A B t2) thus ?case
   \mathbf{by}\ (\textit{metis Un-empty-left empty-subsetI list-subset-iff-projection-neutral}
      merge.simps(1)\ set\text{-}empty\ subset\text{-}iff\text{-}psubset\text{-}eq)
 case (2 A B t1) thus ?case
    by (metis Un-empty-right empty-subsetI list-subset-iff-projection-neutral
      merge.simps(2) set-empty subset-refl)
 case (3 A B e1 t1' e2 t2') thus ?case
 proof (cases)
   assume e1-is-e2: e1 = e2
   note e1-is-e2
    moreover
    from 3(4) have set t1' \subseteq A
     by auto
    moreover
    from 3(5) have set t2' \subseteq B
     by auto
    moreover
   from e1-is-e2 3(4-6) have t1' \upharpoonright B = t2' \upharpoonright A
```

```
by (simp add: projection-def)
 moreover
 note 3(1)
 ultimately have ind1: merge A B t1' t2' | A = t1'
   and ind2: merge A B t1' t2' \upharpoonright B = t2'
   and ind3: set (merge A B t1't2') \subseteq (set t1') \cup (set t2')
   by auto
 from e1-is-e2 have merge-eq:
   merge\ A\ B\ (e1\ \#\ t1\ ')\ (e2\ \#\ t2\ ')=e1\ \#\ (merge\ A\ B\ t1\ '\ t2\ ')
   by auto
 from 3(4) ind1 have goal1:
   merge A \ B \ (e1 \ \# \ t1') \ (e2 \ \# \ t2') \ | \ A = e1 \ \# \ t1'
   by (simp only: merge-eq projection-def, auto)
 moreover
 from e1-is-e2 3(5) ind2 have goal2:
   merge A B (e1 \# t1') (e2 \# t2') \uparrow B = e2 \# t2'
   by (simp only: merge-eq projection-def, auto)
 moreover
 from ind3 have goal3:
   set (merge A B (e1 \# t1') (e2 \# t2')) \subseteq set (e1 \# t1') \cup set (e2 \# t2')
   by (simp only: merge-eq, auto)
 ultimately show ?thesis
   \mathbf{by} auto
\mathbf{next}
 assume e1-isnot-e2: e1 \neq e2
 show ?thesis
 proof (cases)
   assume e1-in-A-inter-B: e1 \in A \cap B
   from 3(6) e1-isnot-e2 e1-in-A-inter-B have e2-notin-A: e2 \notin A
     by (simp add: projection-def, auto)
   note e1-isnot-e2 e1-in-A-inter-B 3(4)
   moreover
   from 3(5) have set t2' \subseteq B
    by auto
   moreover
   from 3(6) e1-isnot-e2 e1-in-A-inter-B have (e1 # t1') | B = t2' | A
     by (simp add: projection-def, auto)
   moreover
   note 3(2)
   ultimately have ind1: merge A B (e1 # t1') t2' \uparrow A = (e1 \# t1')
     and ind2: merge A B (e1 \# t1') t2' \upharpoonright B = t2'
     and ind3: set (merge A B (e1 # t1') t2') \subseteq set (e1 # t1') \cup set t2'
     by auto
   from e1-isnot-e2 e1-in-A-inter-B
   have merge-eq:
     merge\ A\ B\ (e1\ \#\ t1')\ (e2\ \#\ t2') = e2\ \#\ (merge\ A\ B\ (e1\ \#\ t1')\ t2')
     \mathbf{by} auto
```

```
from e1-isnot-e2 ind1 e2-notin-A have goal1:
   merge A \ B \ (e1 \ \# \ t1') \ (e2 \ \# \ t2') \ | \ A = e1 \ \# \ t1'
   by (simp only: merge-eq projection-def, auto)
 moreover
 from 3(5) ind2 have goal2: merge A B (e1 \# t1') (e2 \# t2') | B = e2 \# t2'
   by (simp only: merge-eq projection-def, auto)
 moreover
 from 3(5) ind3 have goal3:
   set (merge A B (e1 \# t1') (e2 \# t2')) \subseteq set (e1 \# t1') \cup set (e2 \# t2')
   by (simp only: merge-eq, auto)
 ultimately show ?thesis
   by auto
next
 assume e1-notin-A-inter-B: e1 \notin A \cap B
 from 3(4) e1-notin-A-inter-B have e1-notin-B: e1 \notin B
   by auto
 note e1-isnot-e2 e1-notin-A-inter-B
 moreover
 from 3(4) have set t1' \subseteq A
   by auto
 moreover
 note 3(5)
 moreover
 from 3(6) e1-notin-B have t1' \mid B = (e2 \# t2') \mid A
   by (simp add: projection-def)
 moreover
 note 3(3)
 ultimately have ind1: merge A B t1' (e2 # t2') \uparrow A = t1'
   and ind2: merge A B t1' (e2 \# t2') | B = (e2 \# t2')
   and ind3: set (merge A B t1' (e2 \# t2')) \subseteq set t1' \cup set (e2 \# t2')
   \mathbf{by} auto
 from e1-isnot-e2 e1-notin-A-inter-B
 have merge-eq: merge A B (e1 \# t1') (e2 \# t2') = e1 \# (merge A B t1' (e2 \# t2'))
   by auto
 from 3(4) ind1 have goal1: merge A B (e1 \# t1') (e2 \# t2') \uparrow A = e1 \# t1'
   by (simp only: merge-eq projection-def, auto)
 moreover
 from ind2 e1-notin-B have goal2:
   merge A B (e1 \# t1') (e2 \# t2') \uparrow B = e2 \# t2'
   \mathbf{by}\ (simp\ only:\ merge-eq\ projection-def,\ auto)
 moreover
 from 3(4) ind3 have goal3:
   set (merge \ A \ B \ (e1 \ \# \ t1') \ (e2 \ \# \ t2')) \subseteq set \ (e1 \ \# \ t1') \cup set \ (e2 \ \# \ t2')
   by (simp only: merge-eq, auto)
 ultimately show ?thesis
   by auto
qed
```

```
qed
qed
end
```

3 System Specification

3.1 Event Systems

We define the system model of event systems as well as the parallel composition operator for event systems provided as part of MAKS in [3].

```
theory EventSystems
\mathbf{imports}\ ../Basics/Prefix\ ../Basics/Projection
begin
\mathbf{record} 'e ES-rec =
  E	ext{-}ES:: 'e set
  \textit{I-ES} :: \ 'e \ set
  O	ext{-}ES:: 'e set
  Tr-ES :: ('e list) set
abbreviation ESrecEES :: 'e ES-rec \Rightarrow 'e set
(\langle E_- \rangle [1000] 1000)
where
E_{ES} \equiv (\textit{E-ES ES})
abbreviation ESrecIES :: 'e ES-rec \Rightarrow 'e set
(\langle I_{-}\rangle \ [1000] \ 1000)
where
I_{ES} \equiv (I - ES \ ES)
abbreviation ESrecOES :: 'e ES-rec \Rightarrow 'e set
(\langle O_{-}\rangle [1000] 1000)
where
O_{ES} \equiv (O\text{-}ES\ ES)
abbreviation ESrecTrES :: 'e ES-rec \Rightarrow ('e list) set
(\langle Tr_{-}\rangle [1000] 1000)
where
Tr_{ES} \equiv (Tr - ES ES)
\textbf{definition} \ \textit{es-inputs-are-events} :: 'e \ \textit{ES-rec} \Rightarrow \textit{bool}
where
es-inputs-are-events ES \equiv I_{ES} \subseteq E_{ES}
definition es-outputs-are-events :: 'e ES-rec \Rightarrow bool
```

```
es-outputs-are-events ES \equiv O_{ES} \subseteq E_{ES}
definition es-inputs-outputs-disjoint :: 'e ES-rec \Rightarrow bool
where
es-inputs-outputs-disjoint ES \equiv I_{ES} \cap O_{ES} = \{\}
definition traces-contain-events :: 'e ES-rec \Rightarrow bool
traces-contain-events ES \equiv \forall l \in Tr_{ES}. \ \forall e \in (set \ l). \ e \in E_{ES}
definition traces-prefixclosed :: 'e ES-rec \Rightarrow bool
where
traces-prefixclosed ES \equiv prefixclosed \ Tr_{ES}
definition ES-valid :: 'e ES-rec \Rightarrow bool
where
\textit{ES-valid ES} \equiv
  es-inputs-are-events ES \land es-outputs-are-events ES
  \land \ es\text{-}inputs\text{-}outputs\text{-}disjoint} \ ES \ \land \ traces\text{-}contain\text{-}events} \ ES
  \land traces-prefixclosed ES
definition total :: 'e ES-rec \Rightarrow 'e set \Rightarrow bool
total ES E \equiv E \subseteq E_{ES} \land (\forall \tau \in Tr_{ES}. \forall e \in E. \tau @ [e] \in Tr_{ES})
lemma totality: \llbracket total ES E; t \in Tr_{ES}; set t' \subseteq E \rrbracket \implies t @ t' \in Tr_{ES}
  by (induct t' rule: rev-induct, force, simp only: total-def, auto)
definition composeES :: 'e ES-rec \Rightarrow 'e ES-rec \Rightarrow 'e ES-rec
where
composeES\ ES1\ ES2\ \equiv
    E	ext{-}ES = E_{ES1} \cup E_{ES2},
     \begin{array}{l} I\text{-}ES = (I_{ES1} - O_{ES2}) \cup (I_{ES2} - O_{ES1}), \\ O\text{-}ES = (O_{ES1} - I_{ES2}) \cup (O_{ES2} - I_{ES1}), \end{array} 
    \mathit{Tr}\text{-}\mathit{ES} = \{\tau : (\tau \mid E_{ES1}) \in \mathit{Tr}_{ES1} \land (\tau \mid E_{ES2}) \in \mathit{Tr}_{ES2}\}
                     \land (set \ \tau \subseteq E_{ES1} \cup E_{ES2})\}
  )
abbreviation composeESAbbrv :: 'e ES-rec \Rightarrow 'e ES-rec \Rightarrow 'e ES-rec
(⟨- || -⟩[1000] 1000)
where
ES1 \parallel ES2 \equiv (composeES \ ES1 \ ES2)
definition composable :: 'e ES-rec \Rightarrow 'e ES-rec \Rightarrow bool
composable ES1 ES2 \equiv (E_{ES1} \cap E_{ES2}) \subseteq ((O_{ES1} \cap I_{ES2}) \cup (O_{ES2} \cap I_{ES1}))
```

```
{f lemma}\ compose ES-yields-ES:
  \llbracket ES\text{-}valid\ ES1;\ ES\text{-}valid\ ES2\ \rrbracket \Longrightarrow ES\text{-}valid\ (ES1\ \parallel\ ES2)
  unfolding ES-valid-def
proof (auto)
 assume ES1-inputs-are-events: es-inputs-are-events ES1
 assume ES2-inputs-are-events: es-inputs-are-events ES2
 \mathbf{show}\ \textit{es-inputs-are-events}\ (\textit{ES1}\ \parallel \textit{ES2})\ \mathbf{unfolding}\ \textit{composeES-def}\ \textit{es-inputs-are-events-def}
    proof (simp)
      have subgoal11: I_{ES1} - O_{ES2} \subseteq E_{ES1} \cup E_{ES2}
      {f proof} \ (auto)
        \mathbf{fix} \ x
        assume x \in I_{ES1}
        with ES1-inputs-are-events show x \in E_{ES1}
          by (auto simp add: es-inputs-are-events-def)
      have subgoal12: I_{ES2} - O_{ES1} \subseteq E_{ES1} \cup E_{ES2}
      proof (rule subsetI, rule UnI2, auto)
        assume x \in I_{ES2}
        with ES2-inputs-are-events show x \in E_{ES2}
          by (auto simp add: es-inputs-are-events-def)
      from subgoal11 subgoal12
      show I_{ES1} - O_{ES2} \subseteq E_{ES1} \cup E_{ES2} \wedge I_{ES2} - O_{ES1} \subseteq E_{ES1} \cup E_{ES2} ..
 qed
 {\bf assume}\ ES1-outputs-are-events:\ es-outputs-are-events\ ES1
 assume ES2-outputs-are-events: es-outputs-are-events ES2
 show es-outputs-are-events (ES1 \parallel ES2)
    {\bf unfolding}\ compose ES-def\ es-output s-are-event s-def
      have subgoal21: O_{ES1} - I_{ES2} \subseteq E_{ES1} \cup E_{ES2}
      proof (auto)
        assume x \in O_{ES1}
        with ES1-outputs-are-events show x \in E_{ES1}
         by (auto simp add: es-outputs-are-events-def)
      have subgoal22: O_{ES2} - I_{ES1} \subseteq E_{ES1} \cup E_{ES2}
      proof (rule subsetI, rule UnI2, auto)
        \mathbf{fix} \ x
        assume x \in O_{ES2}
        with ES2-outputs-are-events show x \in E_{ES2}
         \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\ \mathit{add}\colon \mathit{es-outputs-are-events-def})
      qed
      {f from}\ subgoal 21\ subgoal 22
      show O_{ES1} - I_{ES2} \subseteq E_{ES1} \cup E_{ES2} \wedge O_{ES2} - I_{ES1} \subseteq E_{ES1} \cup E_{ES2}..
\mathbf{next}
```

```
{\bf assume}\ ES1\mbox{-}inputs\mbox{-}outputs\mbox{-}disjoint:\ es\mbox{-}inputs\mbox{-}outputs\mbox{-}disjoint\ ES1
{\bf assume}\ ES2\hbox{-}inputs\hbox{-}outputs\hbox{-}disjoint:\ es\hbox{-}inputs\hbox{-}outputs\hbox{-}disjoint\ ES2
show es-inputs-outputs-disjoint (ES1 \parallel ES2)
  {\bf unfolding}\ compose ES-def\ es-inputs-outputs-disjoint-def
  proof (simp)
    have subgoal31:
      \{\} \subseteq (I_{ES1} - O_{ES2} \cup (I_{ES2} - O_{ES1})) \cap (O_{ES1} - I_{ES2} \cup (O_{ES2} - I_{ES1}))
      by auto
    have subgoal 32:
      (I_{ES1} - O_{ES2} \cup (I_{ES2} - O_{ES1})) \cap (O_{ES1} - I_{ES2} \cup (O_{ES2} - I_{ES1})) \subseteq \{\}
    proof (rule subsetI, erule IntE)
    \mathbf{fix} \ x
    assume ass1: x \in I_{ES1} - O_{ES2} \cup (I_{ES2} - O_{ES1})
    then have ass1': x \in I_{ES1} - O_{ES2} \lor x \in (I_{ES2} - O_{ES1})
    assume ass2: x \in O_{ES1} - I_{ES2} \cup (O_{ES2} - I_{ES1})
    then have ass2': x \in O_{ES1} - I_{ES2} \lor x \in (O_{ES2} - I_{ES1})
    note ass1'
    moreover {
      assume left1: x \in I_{ES1} - O_{ES2}
      note ass2
      moreover {
        assume left2: x \in O_{ES1} - I_{ES2}
        with left1 have x \in (I_{ES1}) \cap (O_{ES1})
          by (auto)
        with ES1-inputs-outputs-disjoint have x \in \{\}
          by (auto simp add: es-inputs-outputs-disjoint-def)
      moreover {
         \begin{array}{l} \textbf{assume} \ \ \overrightarrow{right2} \colon x \in (O_{ES2} - I_{ES1}) \\ \textbf{with} \ \ left1 \ \ \textbf{have} \ \ x \in (I_{ES1} - I_{ES1}) \end{array} 
          by auto
        hence x \in \{\}
          \mathbf{by} auto
      ultimately have x{\in}\{\} ..
    moreover {
      assume right1: x \in I_{ES2} - O_{ES1}
      note ass2'
      moreover {
        assume left2: x \in O_{ES1} - I_{ES2}
        with right1 have x \in (I_{ES2} - I_{ES2})
          by auto
        hence x \in \{\}
          by auto
      }
      moreover {
        assume right2: x \in (O_{ES2} - I_{ES1})
        with right1 have x \in (I_{ES2} \cap O_{ES2})
          \mathbf{by} auto
```

```
with ES2-inputs-outputs-disjoint have x \in \{\}
            by (auto simp add: es-inputs-outputs-disjoint-def)
        ultimately have x \in \{\} ..
      ultimately show x \in \{\} ..
    qed
    from subgoal31 subgoal32
    \mathbf{show}\ (I_{ES1} - O_{ES2} \cup (I_{ES2} - O_{ES1})) \cap (O_{ES1} - I_{ES2} \cup (O_{ES2} - I_{ES1})) = \{\}
      by auto
 qed
next
 show traces-contain-events (ES1 \parallel ES2) unfolding composeES-def traces-contain-events-def
    proof (clarsimp)
      \mathbf{fix}\ l\ e
      assume e \in set l
        and set l \subseteq E_{ES1} \cup E_{ES2}
      then have e-in-union: e \in E_{ES1} \cup E_{ES2}
        by auto
      assume e \notin E_{ES2}
      with e-in-union show e \in E_{ES1}
        \mathbf{by} auto
    qed
next
 assume ES1-traces-prefixclosed: traces-prefixclosed ES1
 assume ES2-traces-prefixclosed: traces-prefixclosed ES2
 show traces-prefixclosed (ES1 || ES2)
    unfolding composeES-def traces-prefixclosed-def prefixclosed-def prefix-def
  proof (clarsimp)
    fix l2 l3
    have l2l3split: (l2 @ l3) | E_{ES1} = (l2 \mid E_{ES1}) @ (l3 | E_{ES1})
      by (rule projection-concatenation-commute)
    assume (l2 @ l3) \uparrow E_{ES1} \in Tr_{ES1}
    with l2l3split have l2l3cattrace: (l2 | E_{ES1}) @ (l3 | E_{ES1}) \in Tr_{ES1}
    have the prefix: (l2 \uparrow E_{ES1}) \leq ((l2 \uparrow E_{ES1}) @ (l3 \uparrow E_{ES1}))
      by (simp add: prefix-def)
    have prefixclosure: \forall es1 \in (Tr_{ES1}). \forall es2. es2 \leq es1 \longrightarrow es2 \in (Tr_{ES1})
      by (clarsimp, insert ES1-traces-prefixclosed, unfold traces-prefixclosed-def prefixclosed-def,
        erule-tac \ x=es1 in ballE, erule-tac \ x=es2 in allE, erule \ impE, auto)
    hence
       ((l2 \upharpoonright E_{ES1}) \circledcirc (l3 \upharpoonright E_{ES1})) \in \mathit{Tr}_{ES1} \Longrightarrow \forall \ \mathit{es2}. \ \mathit{es2} \preceq ((l2 \upharpoonright E_{ES1}) \circledcirc (l3 \upharpoonright E_{ES1}))
         \longrightarrow es2 \in Tr_{ES1} ..
    with l2l3cattrace have \forall es2. es2 \leq ((l2 | E_{ES1}) @ (l3 | E_{ES1})) \longrightarrow es2 \in Tr_{ES1}
    \mathbf{hence}\ (\mathit{l2} \ \mathsf{|}\ E_{ES1}) \ \preceq \ ((\mathit{l2} \ \mathsf{|}\ E_{ES1}) \ @ \ (\mathit{l3} \ \mathsf{|}\ E_{ES1})) \ \longrightarrow \ (\mathit{l2} \ \mathsf{|}\ E_{ES1}) \ \in \ \mathit{Tr}_{ES1}\ ..
    with the prefix have goal 51: (l2 \mid E_{ES1}) \in Tr_{ES1}
    have l2l3split: (l2 @ l3) \uparrow E_{ES2} = (l2 \uparrow E_{ES2}) @ (l3 \uparrow E_{ES2})
      by (rule projection-concatenation-commute)
    assume (l2 @ l3) | E_{ES2} \in Tr_{ES2}
```

```
with l2l3split have l2l3cattrace: (l2 | E_{ES2}) @ (l3 | E_{ES2}) \in Tr_{ES2}
      by auto
    have the prefix: (l2 \uparrow E_{ES2}) \leq ((l2 \uparrow E_{ES2}) @ (l3 \uparrow E_{ES2}))
      by (simp add: prefix-def)
    \mathbf{have} \ \mathit{prefixclosure} \colon \forall \ \mathit{es1} \in \mathit{Tr}_{\mathit{ES2}}. \ \forall \mathit{es2}. \ \mathit{es2} \ \preceq \mathit{es1} \ \longrightarrow \mathit{es2} \in \mathit{Tr}_{\mathit{ES2}}
      by (clarsimp, insert ES2-traces-prefixclosed,
        unfold traces-prefixclosed-def prefixclosed-def,
        erule-tac \ x=es1 \ \mathbf{in} \ ballE, \ erule-tac \ x=es2 \ \mathbf{in} \ allE, \ erule \ impE, \ auto)
   by auto
    \mathbf{hence}\ (\mathit{l2} \ 1\ E_{ES2}) \preceq ((\mathit{l2} \ 1\ E_{ES2}) \ @\ (\mathit{l3} \ 1\ E_{ES2})) \ \longrightarrow (\mathit{l2} \ 1\ E_{ES2}) \in \mathit{Tr}_{ES2} \ ..
    with the prefix have goal 52: (l2 | E_{ES2}) \in Tr_{ES2}
    from goal51 goal52 show goal5: l2 | E_{ES1} \in Tr_{ES1} \land l2 \mid E_{ES2} \in Tr_{ES2} ..
  qed
qed
end
```

3.2 State-Event Systems

 ${f theory}\ StateEventSystems$

We define the system model of state-event systems as well as the translation from state-event systems to event systems provided as part of MAKS in [3]. State-event systems are the basis for the unwinding theorems that we prove later in this entry.

```
imports EventSystems
begin
 \begin{array}{l} \mathbf{record} \ ('s, \ 'e) \ \mathit{SES-rec} = \\ \mathit{S-SES} :: \ 's \ \mathit{set} \end{array} 
  s0\text{-}SES::'s
  E	ext{-}SES :: 'e set
  \textit{I-SES} \ :: \ \ 'e \ set
   O\text{-}SES \ :: \ \ 'e \ set
   T\text{-}SES :: 's \Rightarrow 'e \rightharpoonup 's
abbreviation SESrecSSES :: ('s, 'e) SES-rec \Rightarrow 's set
(\langle S_{-}\rangle [1000] 1000)
where
S_{SES} \equiv (S\text{-}SES \ SES)
abbreviation SESrecsOSES :: ('s, 'e) SES-rec \Rightarrow 's
(\langle s\theta \rangle) [1000] 1000)
where
s\theta_{SES} \equiv (s\theta\text{-}SES\ SES)
```

```
abbreviation SESrecESES :: ('s, 'e) SES-rec \Rightarrow 'e set
(\langle E_{-}\rangle [1000] 1000)
where
E_{SES} \equiv (E\text{-}SES \ SES)
abbreviation SESrecISES :: ('s, 'e) SES-rec \Rightarrow 'e set
(\langle I_{-}\rangle \ [1000] \ 1000)
where
I_{SES} \equiv (\textit{I-SES SES})
abbreviation SESrecOSES :: ('s, 'e) SES-rec \Rightarrow 'e set
(\langle O_{-}\rangle [1000] 1000)
where
O_{SES} \equiv (O\text{-}SES\ SES)
abbreviation SESrecTSES :: ('s, 'e) SES-rec \Rightarrow ('s \Rightarrow 'e \rightarrow 's)
(\langle T_{-}\rangle [1000] 1000)
where
T_{SES} \equiv (T\text{-}SES \ SES)
abbreviation \mathit{TSESpred} :: 's \Rightarrow 'e \Rightarrow ('s, 'e) \ \mathit{SES-rec} \Rightarrow 's \Rightarrow \mathit{bool}
( \leftarrow - \longrightarrow - \rightarrow [100, 100, 100, 100] \ 100 )
where
s \ e {\longrightarrow}_{SES} \ s' \equiv (\mathit{T}_{SES} \ s \ e = \mathit{Some} \ s')
definition s0-is-state :: ('s, 'e) SES-rec \Rightarrow bool
where
s0-is-state SES \equiv s0_{SES} \in S_{SES}
\textbf{definition} \ \textit{ses-inputs-are-events} :: (\textit{'s}, \textit{'e}) \ \textit{SES-rec} \Rightarrow \textit{bool}
where
\textit{ses-inputs-are-events SES} \equiv I_{\textit{SES}} \subseteq E_{\textit{SES}}
definition ses-outputs-are-events :: ('s, 'e) SES-rec \Rightarrow bool
where
ses-outputs-are-events\ SES \equiv\ O_{SES} \subseteq E_{SES}
definition ses-inputs-outputs-disjoint :: ('s, 'e) SES-rec \Rightarrow bool
where
ses-inputs-outputs-disjoint SES \equiv I_{SES} \cap O_{SES} = \{\}
\textbf{definition} \ \textit{correct-transition-relation} \ :: \ ('s, \ 'e) \ \textit{SES-rec} \ \Rightarrow \ \textit{bool}
where
correct\text{-}transition\text{-}relation\ SES\ \equiv
\forall x \ y \ z. \ x \ y \longrightarrow_{SES} z \longrightarrow ((x \in S_{SES}) \land (y \in E_{SES}) \land (z \in S_{SES}))
definition SES-valid :: ('s, 'e) SES-rec \Rightarrow bool
where
\textit{SES-valid SES} \equiv
  s0-is-state SES \land ses-inputs-are-events SES
```

 $\land \ ses-outputs-are-events \ SES \ \land \ ses-inputs-outputs-disjoint \ SES \ \land \ correct-transition-relation \ SES$

```
primrec path :: ('s, 'e) SES-rec \Rightarrow 's \Rightarrow 'e list \rightharpoonup 's
where
path-empt: path SES s1 [] = (Some s1) |
path-nonempt: path SES s1 (e \# t) =
  (if (\exists s2. s1 \ e \longrightarrow_{SES} s2)
  then (path SES (the (T<sub>SES</sub> s1 e)) t)
  else None)
abbreviation pathpred :: 's \Rightarrow 'e \ list \Rightarrow ('s, 'e) \ SES-rec \Rightarrow 's \Rightarrow bool
(⟨- -⇒- -> [100, 100, 100, 100] 100)
s \ t \Longrightarrow_{SES} s' \equiv path \ SES \ s \ t = Some \ s'
definition reachable :: ('s, 'e) SES-rec \Rightarrow 's \Rightarrow bool
where
\mathit{reachable SES s} \equiv (\exists \mathit{t. s0}_\mathit{SES} \ \mathit{t} {\Longrightarrow}_\mathit{SES} \mathit{s})
definition enabled :: ('s, 'e) SES-rec \Rightarrow 's \Rightarrow 'e list \Rightarrow bool
enabled SES s \ t \equiv (\exists s'. \ s \ t \Longrightarrow_{SES} s')
\textbf{definition} \ \textit{possible-traces} :: (\textit{'s}, \textit{'e}) \ \textit{SES-rec} \Rightarrow (\textit{'e list}) \ \textit{set}
where
possible-traces\ SES \equiv \{t.\ (enabled\ SES\ s0\ _{SES}\ t)\}
definition induceES :: ('s, 'e) SES-rec \Rightarrow 'e ES-rec
where
induceES\ SES \equiv
 E	ext{-}ES = E_{SES},
  \textit{I-ES} = I_{\textit{SES}},
  O	ext{-}ES = O_{SES},
  Tr-ES = possible-traces SES
 )
lemma none-remains-none : \bigwedge s e. (path SES s t) = None
  \implies (path SES s (t @ [e])) = None
  by (induct\ t,\ auto)
```

```
lemma path-trans-single-neg: \land s1. [s1 t\Longrightarrow_{SES} s2; \lnot (s2 e\longrightarrow_{SES} sn)]
    \Longrightarrow \neg (s1 \ (t \ @ \ [e]) \Longrightarrow_{SES} sn)
    by (induct\ t,\ auto)
lemma path-split-single: s1 (t@[e])\Longrightarrow_{SES} sn
  \Longrightarrow \exists s'. \ s1 \ t \Longrightarrow_{SES} s' \land s' \ e \Longrightarrow_{SES} sn
  by (cases path SES s1 t, simp add: none-remains-none,
    simp, \ rule \ ccontr, \ auto \ simp \ add: \ path-trans-single-neg)
lemma path-trans-single: \bigwedge s. [ s t \Longrightarrow_{SES} s'; s' e \leadsto_{SES} sn ]
  \Longrightarrow s\ (t\ @\ [e]) {\Longrightarrow_{SES}}\ sn
\mathbf{proof} (induct t)
  case Nil thus ?case by auto
\mathbf{next}
  case (Cons a t) thus ?case
    from Cons obtain s1' where trans-s-a-s1': s a \longrightarrow_{SES} s1'
      by (simp, split if-split-asm, auto)
    with Cons have s1' (t @ [e])\Longrightarrow_{SES} sn
      by auto
    with trans-s-a-s1' show ?thesis
      \mathbf{by} auto
  qed
qed
lemma path-split: \bigwedge sn. [\![ s1\ (t1\ @\ t2) \Longrightarrow_{SES} sn\ ]\!]
  \Longrightarrow (\exists \, s2. \ (s1 \ t1 \Longrightarrow_{SES} s2 \, \wedge \, s2 \ t2 \Longrightarrow_{SES} sn))
\mathbf{proof}\ (induct\ t2\ rule:\ rev\text{-}induct)
  case Nil thus ?case by auto
next
  case (snoc a t) thus ?case
  proof -
    from snoc have s1 (t1 @ t @ [a]) \Longrightarrow_{SES} sn
    hence \exists sn'. s1 \ (t1 @ t) \Longrightarrow_{SES} sn' \land sn' a \longrightarrow_{SES} sn
      by (simp add: path-split-single)
    then obtain sn' where path-t1-t-trans-a:
      s1 \ (t1 \ @ \ t) \Longrightarrow_{SES} sn' \land sn' \ a \longrightarrow_{SES} sn
      by auto
    with snoc obtain s2 where path-t1-t:
      s1\ t1 \Longrightarrow_{SES} s2 \land s2\ t \Longrightarrow_{SES} sn'
      by auto
    with path-t1-t-trans-a have s2 (t @ [a])\Longrightarrow_{SES} sn
      by (simp add: path-trans-single)
    with path-t1-t show ?thesis by auto
  qed
qed
```

```
{\bf lemma}\ path\text{-}trans:
 \bigwedge sn. \ \llbracket \ s1 \ l1 \Longrightarrow_{SES} s2; \ s2 \ l2 \Longrightarrow_{SES} sn \ \rrbracket \implies s1 \ (l1 \ @ \ l2) \Longrightarrow_{SES} sn 
proof (induct l2 rule: rev-induct)
  case Nil thus ?case by auto
next
  case (snoc a l) thus ?case
  proof -
    assume path-l1: s1 l1 \Longrightarrow_{SES} s2
    assume s2 (l@[a]) \Longrightarrow_{SES} sn
    hence \exists sn'. s2 \stackrel{\longrightarrow}{l} \Longrightarrow_{SES} sn' \land sn' [a] \Longrightarrow_{SES} sn
      by (simp add: path-split del: path-nonempt)
    then obtain sn' where path-l-a: s2 \Longrightarrow_{SES} sn' \wedge sn' [a] \Longrightarrow_{SES} sn
      by auto
    with snoc path-l1 have path-l1-l: s1 (l1@l)\Longrightarrow_{SES} sn'
      by auto
    with path-l-a have sn'a \longrightarrow_{SES} sn
      by (simp, split if-split-asm, auto)
    with path-l1-l show s1 (l1 @ l @ [a])\Longrightarrow_{SES} sn
      by (subst append-assoc[symmetric], rule-tac s'=sn' in path-trans-single, auto)
  qed
\mathbf{qed}
lemma enabledPrefixSingle : \llbracket enabled SES s (t@[e]) \rrbracket \Longrightarrow enabled SES s t
unfolding enabled-def
proof -
 assume ass: \exists s'. \ s \ (t @ [e]) \Longrightarrow_{SES} s' from ass obtain s' where s \ (t @ [e]) \Longrightarrow_{SES} s'..
  hence \exists t'. (s t \Longrightarrow_{SES} t') \land (t' e \Longrightarrow_{SES} s')
    by (rule path-split-single)
  then obtain t' where s t \Longrightarrow_{SES} t'
    by (auto)
  thus \exists s'. s t \Longrightarrow_{SES} s'...
qed
lemma enabledPrefix : \llbracket enabled SES s (t1 @ t2) \rrbracket \Longrightarrow enabled SES s t1
  unfolding enabled-def
proof -
  assume ass: \exists s'. s (t1 @ t2) \Longrightarrow_{SES} s'
  from ass obtain s' where s (t1 @ t2) \Longrightarrow_{SES} s'..
  hence \exists t. (s \ t1 \Longrightarrow_{SES} t \land t \ t2 \Longrightarrow_{SES} s')
    by (rule path-split)
  then obtain t where s t1 \Longrightarrow_{SES} t
    by (auto)
  then show \exists s'. s t1 \Longrightarrow_{SES} s'...
qed
```

```
\mathbf{lemma}\ enabled \textit{PrefixSingleFinalStep}: \llbracket\ enabled\ \textit{SES}\ s\ (t@[e])\ \rrbracket \Longrightarrow \exists\ t'\ t''.\ t'\ e \longrightarrow_{\textit{SES}}\ t''
 unfolding enabled-def
proof -
 assume ass: \exists s'. s (t @ [e]) \Longrightarrow_{SES} s'
 from ass obtain s' where s (t \ @ [e]) \Longrightarrow_{SES} s' ..
 hence \exists t'. (s t \Longrightarrow_{SES} t') \land (t' e \longrightarrow_{SES} s')
   by (rule path-split-single)
  then obtain t' where t' \in \longrightarrow_{SES} s'
    by (auto)
 thus \exists t' t''. t' e \longrightarrow_{SES} t''
    by (auto)
qed
\mathbf{lemma}\ induce ES\text{-}yields\text{-}ES\text{:}
  SES-valid SES \Longrightarrow ES-valid (induceES SES)
proof (simp add: SES-valid-def ES-valid-def, auto)
 {\bf assume}\ SES-inputs-are-events:\ ses-inputs-are-events\ SES
 thus es-inputs-are-events (induceES SES)
    \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{induceES-def}\ \mathit{ses-inputs-are-events-def}\ \mathit{es-inputs-are-events-def})
next
 {\bf assume}\ SES-outputs-are-events:\ ses-outputs-are-events\ SES
 thus es-outputs-are-events (induceES SES)
    by (simp add: induceES-def ses-outputs-are-events-def es-outputs-are-events-def)
 {\bf assume}\ SES\text{-}inputs\text{-}outputs\text{-}disjoint:\ ses\text{-}inputs\text{-}outputs\text{-}disjoint\ SES
 thus es-inputs-outputs-disjoint (induceES SES)
    \mathbf{by}\ (\mathit{simp}\ \mathit{add}:\ \mathit{induceES-def}\ \mathit{ses-inputs-outputs-disjoint-def}\ \mathit{es-inputs-outputs-disjoint-def})
 {\bf assume}\ SES\text{-}correct\text{-}transition\text{-}relation:\ correct\text{-}transition\text{-}relation\ SES
 thus traces-contain-events (induceES SES)
      {\bf unfolding} \ induce ES-def \ traces-contain-events-def \ possible-traces-def
    proof (auto)
   \mathbf{fix} \ l \ e
    assume enabled-l: enabled SES s0_{SES} l
    assume e-in-l: e \in set\ l
    from enabled-l e-in-l show e \in E_{SES}
    proof (induct l rule: rev-induct)
      case Nil
        assume e-in-empty-list: e \in set []
        \mathbf{hence}\ f{:}\ \mathit{False}
          by (auto)
        thus ?case
          by auto
      next
      case (snoc \ a \ l)
      from snoc.prems have l-enabled: enabled SES sO SES l
        by (simp add: enabledPrefixSingle)
        \mathbf{show} ?case
          proof (cases \ e \in (set \ l))
```

```
from snoc.hyps\ l\text{-}enabled\ \mathbf{show}\ e\in set\ l\Longrightarrow e\in E_{SES}
            show e \notin set \ l \Longrightarrow e \in E_{SES}
              proof -
                assume e \notin set l
                with snoc.prems have e-eq-a: e=a
                from snoc.prems have \exists t t'. t a \longrightarrow_{SES} t'
                  \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\ \mathit{add}\colon \mathit{enabledPrefixSingleFinalStep})
                then obtain t\ t' where t\ a \longrightarrow_{SES} t'
                with e-eq-a SES-correct-transition-relation show e \in E_{SES}
                  \mathbf{by}\ (simp\ add:\ correct-transition-relation-def)
         qed
      qed
  qed
\mathbf{next}
 show traces-prefixclosed (induceES SES)
    {\bf unfolding}\ traces-prefix closed-def\ prefix closed-def\ induce ES-def\ possible-traces-def\ prefix-def
    by (clarsimp simp add: enabledPrefix)
\mathbf{qed}
end
```

4 Security Specification

4.1 Views & Flow Policies

We define views, flow policies and how views can be derived from a given flow policy.

```
theory Views imports Main begin

record 'e V-rec =
V :: 'e \ set
N :: 'e \ set
C :: 'e \ set

abbreviation VrecV :: 'e \ V-rec \Rightarrow 'e set
( \lor V \rightarrow [100] \ 1000)

where
Vv \equiv (V \ v)

abbreviation VrecN :: 'e \ V-rec \Rightarrow 'e set
( \lor N \rightarrow [100] \ 1000)

where
Nv \equiv (Nv)
```

```
abbreviation VrecC :: 'e V-rec \Rightarrow 'e set
(\langle C_- \rangle [100] 1000)
where
Cv \equiv (Cv)
definition VN-disjoint :: 'e V-rec \Rightarrow bool
where
\mathit{VN-disjoint}\ v \equiv \mathit{V}_{\mathit{v}} \cap \mathit{N}_{\mathit{v}} = \{\}
definition VC-disjoint :: 'e V-rec \Rightarrow bool
where
VC-disjoint v \equiv V_v \cap C_v = \{\}
definition NC-disjoint :: 'e V-rec \Rightarrow bool
NC-disjoint v \equiv N_v \cap C_v = \{\}
definition V-valid :: 'e V-rec \Rightarrow bool
where
\textit{V-valid} \ \ v \equiv \ \textit{VN-disjoint} \ v \ \land \ \textit{VC-disjoint} \ v \ \land \ \textit{NC-disjoint} \ v
definition isViewOn :: 'e V-rec \Rightarrow 'e set \Rightarrow bool
is View On \ \mathcal{V} \ E \equiv V-valid \ \mathcal{V} \land \ V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}} = E
\mathbf{end}
theory FlowPolicies
imports Views
begin
{f record}\ 'domain\ FlowPolicy\text{-}rec=
  D:: \ 'domain \ set
  v\text{-}rel :: ('domain \times 'domain) set
  n-rel :: ('domain \times 'domain) set
  c\text{-rel}::('domain \times 'domain) set
\textbf{definition} \ \textit{FlowPolicy} :: \ 'domain \ \textit{FlowPolicy-rec} \Rightarrow \textit{bool}
where
FlowPolicy\ fp \equiv
   ((\textit{v-rel fp}) \, \cup \, (\textit{n-rel fp}) \, \cup \, (\textit{c-rel fp}) = ((\textit{D fp}) \, \times \, (\textit{D fp})))
 \wedge (v\text{-rel } fp) \cap (n\text{-rel } fp) = \{\}
\land (v\text{-rel }fp) \cap (c\text{-rel }fp) = \{\}
\land (n\text{-rel } fp) \cap (c\text{-rel } fp) = \{\}
\land (\forall d \in (D fp). (d, d) \in (v\text{-rel } fp))
```

type-synonym (${}'e$, ${}'domain$) $dom-type = {}'e \rightharpoonup {}'domain$

```
definition dom :: ('e, 'domain) \ dom-type \Rightarrow 'domain \ set \Rightarrow 'e \ set \Rightarrow bool
dom\ domas\ dset\ es \equiv
(\forall e. \forall d. ((domas \ e = Some \ d) \longrightarrow (e \in es \land d \in dset)))
\textbf{definition} \ \textit{view-dom} :: 'domain \ \textit{FlowPolicy-rec} \Rightarrow 'domain \ \Rightarrow ('e, 'domain) \ \textit{dom-type} \Rightarrow 'e \ \textit{V-rec}
where
  \textit{view-dom fp d domas} \equiv
   (V = \{e. \exists d'. (domas \ e = Some \ d' \land (d', \ d) \in (v\text{-rel } fp))\},\
      N = \{e. \exists d'. (domas \ e = Some \ d' \land (d', \ d) \in (n\text{-rel } fp))\},
      C = \{e. \exists d'. (domas \ e = Some \ d' \land (d', d) \in (c\text{-rel } fp))\} \}
end
           Basic Security Predicates
4.2
We define all 14 basic security predicates provided as part of MAKS in [3].
theory BasicSecurityPredicates
imports Views ../Basics/Projection
begin
definition areTracesOver :: ('e list) set \Rightarrow 'e set \Rightarrow bool
where
areTracesOver\ Tr\ E \equiv
 \forall \ \tau \in \mathit{Tr.} \ (\mathit{set} \ \tau) \subseteq \mathit{E}
type-synonym 'e BSP = 'e \ V\text{-rec} \Rightarrow (('e \ list) \ set) \Rightarrow bool
definition BSP-valid :: 'e BSP \Rightarrow bool
where
BSP-valid bsp \equiv
  \forall\,\mathcal{V}\ \mathit{Tr}\ E.\ (\ \mathit{isViewOn}\ \mathcal{V}\ E\ \land\ \mathit{areTracesOver}\ \mathit{Tr}\ E\ )
                 \longrightarrow (\exists Tr'. Tr' \supseteq Tr \land bsp \ \mathcal{V} Tr')
definition R :: 'e BSP
where
R \ \mathcal{V} \ Tr \equiv
  \forall \tau \in \mathit{Tr}. \ \exists \, \tau' \in \mathit{Tr}. \ \tau' \, | \ \mathit{C}_{\mathcal{V}} = [] \, \wedge \, \tau' \, | \ \mathit{V}_{\mathcal{V}} = \tau \, | \ \mathit{V}_{\mathcal{V}}
lemma BSP-valid-R: BSP-valid R
proof -
  {
```

```
fix V::('e V-rec)
    \mathbf{fix} \ \mathit{Tr} \ \mathit{E}
    assume isViewOn V E
    and are Traces Over Tr E
    let ?Tr' = \{t. (set t) \subseteq E\}
    have ?Tr' \supseteq Tr
      by (meson Ball-Collect \are TracesOver Tr E \rightarrow are TracesOver-def)
     moreover
    have R \mathcal{V} ?Tr'
       proof -
            fix \tau
            assume \tau \in \{t. (set t) \subseteq E\}
            let ?\tau' = \tau \upharpoonright (V_{\mathcal{V}})
            have ?\tau' \upharpoonright C_{\mathcal{V}} = [] \land ?\tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}}
               unfolding is ViewOn-def V-valid-def VC-disjoint-def by metis
            moreover
            from \langle \tau \in \{t. (set \ t) \subseteq E\} \rangle have ?\tau' \in ?Tr' using \langle isViewOn \ V \ E \rangle
               \mathbf{unfolding}\ is ViewOn\text{-}def
              \mathbf{by}\ (simp\ add:\ list-subset-iff-projection-neutral\ projection-commute)
            ultimately
            \mathbf{have} \ \exists \, \tau' \in \{t. \ set \ t \subseteq E\}. \ \tau' \mid \, C_{\mathcal{V}} = [] \, \land \, \tau' \mid \, V_{\mathcal{V}} = \tau \mid \, V_{\mathcal{V}}
         thus ?thesis unfolding R-def
            by auto
       qed
     ultimately
    have \exists Tr'. Tr' \supseteq Tr \land R \mathcal{V} Tr'
       by auto
  thus ?thesis
     unfolding BSP-valid-def by auto
qed
definition D :: 'e BSP
where
D V Tr \equiv
  \forall \alpha \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta @ [c] @ \alpha) \in Tr \land \alpha | C_{\mathcal{V}} = [])
     \longrightarrow (\exists \alpha' \beta'. ((\beta' @ \alpha') \in Tr \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = []
                     \wedge \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}})) \rangle
lemma BSP-valid-D: BSP-valid D
proof -
    fix V::('e V-rec)
    \mathbf{fix} \ \mathit{Tr} \ \mathit{E}
    assume isViewOn \ \mathcal{V} \ E
    and are Traces Over Tr E
    let ?Tr' = \{t. (set t) \subseteq E\}
```

```
have ?Tr' \supseteq Tr
       by (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def)
     moreover
     have D \mathcal{V} ?Tr'
       unfolding D-def by auto
     ultimately
    have \exists Tr'. Tr' \supseteq Tr \land D \mathcal{V} Tr'
       by auto
  \mathbf{thus}~? the sis
     \mathbf{unfolding}\ \mathit{BSP-valid-def}\ \mathbf{by}\ \mathit{auto}
definition I :: 'e BSP
where
I \ \mathcal{V} \ \mathit{Tr} \equiv
  \forall \alpha \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta @ \alpha) \in Tr \land \alpha \upharpoonright C_{\mathcal{V}} = [])
     \longrightarrow (\exists \alpha' \beta'. ((\beta' @ [c] @ \alpha') \in Tr \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = []
                          \wedge \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}})))
lemma BSP-valid-I: BSP-valid I
proof -
  {
    fix V::('e V-rec)
    \mathbf{fix} \ \mathit{Tr} \ \mathit{E}
     assume isViewOn \ \mathcal{V} \ E
     and are Traces Over\ Tr\ E
    let ?Tr' = \{t. (set t) \subseteq E\}
    have ?Tr' \supseteq Tr
       \mathbf{by} \ (\mathit{meson} \ \mathit{Ball-Collect} \ \langle \mathit{areTracesOver} \ \mathit{Tr} \ \mathit{E} \rangle \ \mathit{areTracesOver-def})
     moreover
    have I \mathcal{V} ?Tr' using \langle isViewOn \mathcal{V} E \rangle
       unfolding is ViewOn-def I-def by auto
     ultimately
    have \exists Tr'. Tr' \supseteq Tr \land I \mathcal{V} Tr'
       by auto
  thus ?thesis
     unfolding BSP-valid-def by auto
\mathbf{qed}
type-synonym 'e Rho = 'e V-rec \Rightarrow 'e set
definition
Adm :: 'e V-rec \Rightarrow 'e Rho \Rightarrow ('e list) set \Rightarrow 'e list \Rightarrow 'e \Rightarrow bool
where
Adm \ \mathcal{V} \ \varrho \ Tr \ \beta \ e \equiv
   \exists \gamma. ((\gamma @ [e]) \in Tr \land \gamma | (\varrho V) = \beta | (\varrho V))
```

```
definition IA :: 'e Rho \Rightarrow 'e BSP
where
IA \ \varrho \ \mathcal{V} \ Tr \equiv
  \forall \alpha \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta @ \alpha) \in Tr \land \alpha \upharpoonright C_{\mathcal{V}} = [] \land (Adm \ \mathcal{V} \ \varrho \ Tr \ \beta \ c))
\longrightarrow (\exists \alpha' \beta'. \ ((\beta' @ [c] @ \alpha') \in Tr) \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
                          \wedge \alpha' | C_{\mathcal{V}} = [] \wedge \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}}))
lemma BSP-valid-IA: BSP-valid (IA \varrho)
proof -
    \mathbf{fix} \ \mathcal{V} :: ('a \ V\text{-}rec)
    \mathbf{fix} \ \mathit{Tr} \ \mathit{E}
    assume isViewOn V E
    and are Traces Over Tr E
    let ?Tr' = \{t. (set t) \subseteq E\}
    have ?Tr' \supseteq Tr
       by (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def)
     moreover
     have IA \varrho \ \mathcal{V} \ ?Tr' \ \mathbf{using} \ \langle isViewOn \ \mathcal{V} \ E \rangle
       unfolding is ViewOn-def IA-def by auto
     ultimately
    have \exists Tr'. Tr' \supseteq Tr \land IA \varrho V Tr'
       by auto
  thus ?thesis
     unfolding BSP-valid-def by auto
definition BSD :: 'e BSP
where
BSD \ \mathcal{V} \ Tr \equiv
  \forall \alpha \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta @ [c] @ \alpha) \in Tr \land \alpha | C_{\mathcal{V}} = [])
     \longrightarrow (\exists \alpha'. (\beta @ \alpha') \in Tr \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = []))
lemma BSP-valid-BSD: BSP-valid BSD
proof -
    fix V::('e V-rec)
    fix Tr E
    assume isViewOn V E
    and are Traces Over Tr E
    let ?Tr' = \{t. (set t) \subseteq E\}
     have ?Tr' \supseteq Tr
       by (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def)
     moreover
     have BSD \ \mathcal{V} \ ?Tr'
       unfolding BSD-def by auto
     ultimately
     have \exists Tr'. Tr' \supseteq Tr \land BSD \mathcal{V} Tr'
```

```
\mathbf{by} auto
  thus ?thesis
      unfolding BSP-valid-def by auto
qed
\mathbf{definition}\ BSI\ ::\ 'e\ BSP
where
BSI \ \mathcal{V} \ Tr \equiv
  \begin{array}{l} \forall \alpha \ \beta. \ \forall \ c \in C_{\mathcal{V}}. \ ((\beta \ @ \ \alpha) \in \mathit{Tr} \ \land \ \alpha \upharpoonright C_{\mathcal{V}} = []) \\ \longrightarrow (\exists \ \alpha'. \ ((\beta \ @ \ [c] \ @ \ \alpha') \in \mathit{Tr} \ \land \ \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \ \land \ \alpha' \upharpoonright C_{\mathcal{V}} = [])) \end{array}
lemma BSP-valid-BSI: BSP-valid BSI
proof -
   \begin{cases} \mathbf{fix} \ \mathcal{V} :: ('e \ V \text{-} rec) \end{cases} 
     \mathbf{fix} \ \mathit{Tr} \ \mathit{E}
     assume isViewOn \ \mathcal{V} \ E
     and are Traces Over Tr E
     let ?Tr'=\{t. (set t) \subseteq E\}
      have ?Tr' \supseteq Tr
        \mathbf{by} \ (\mathit{meson} \ \mathit{Ball-Collect} \ \langle \mathit{areTracesOver} \ \mathit{Tr} \ \mathit{E} \rangle \ \mathit{areTracesOver-def})
      moreover
      have BSI \ \mathcal{V} \ ?Tr' \ \mathbf{using} \ \langle isViewOn \ \mathcal{V} \ E \rangle
        unfolding is ViewOn-def BSI-def by auto
      ultimately
      have \exists Tr'. Tr' \supseteq Tr \land BSI \ \mathcal{V} Tr'
        by auto
  \mathbf{thus}~? the sis
      unfolding BSP-valid-def by auto
\mathbf{qed}
definition BSIA :: 'e Rho \Rightarrow 'e BSP
BSIA \varrho \ \mathcal{V} \ Tr \equiv
  \forall \alpha \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta @ \alpha) \in \mathit{Tr} \land \alpha | C_{\mathcal{V}} = [] \land (\mathit{Adm} \ \mathcal{V} \ \varrho \ \mathit{Tr} \ \beta \ c))
      \longrightarrow (\exists \alpha'. ((\beta @ [c] @ \alpha') \in Tr \wedge \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \wedge \alpha' | C_{\mathcal{V}} = []))
lemma BSP-valid-BSIA: BSP-valid (BSIA \varrho)
proof -
      \mathbf{fix}\ \mathcal{V}::('a\ \mathit{V-rec})
     fix Tr E
     assume isViewOn \ \mathcal{V} \ E
     and are Traces Over Tr E
     let ?Tr' = \{t. (set t) \subseteq E\}
     have ?Tr' \supseteq Tr
        by (meson Ball-Collect \areTracesOver Tr E \areTracesOver-def)
      moreover
```

```
have BSIA \varrho \ \mathcal{V} \ ?Tr' \ \mathbf{using} \ \langle isViewOn \ \mathcal{V} \ E \rangle
       unfolding is ViewOn-def BSIA-def by auto
     ultimately
    have \exists Tr'. Tr' \supseteq Tr \land BSIA \varrho \mathcal{V} Tr'
       by auto
  thus ?thesis
     unfolding BSP-valid-def by auto
qed
\mathbf{record} 'e Gamma =
  Nabla :: 'e set
  Delta :: 'e set
   Upsilon :: 'e set
abbreviation GammaNabla :: 'e Gamma \Rightarrow 'e set
(\langle \nabla \rangle [100] 1000)
\mathbf{where}
\nabla_{\Gamma} \equiv (\mathit{Nabla}\ \Gamma)
abbreviation GammaDelta:: 'e Gamma \Rightarrow 'e set
(\langle \Delta_{-} \rangle \ [100] \ 1000)
where
\Delta_{\Gamma} \equiv (Delta \ \Gamma)
abbreviation GammaUpsilon :: 'e Gamma \Rightarrow 'e set
(\langle \Upsilon_{-} \rangle [100] 1000)
where
\Upsilon_{\Gamma} \equiv (\mathit{Upsilon} \ \Gamma)
definition FCD :: 'e \ Gamma \Rightarrow 'e \ BSP
where
FCD \Gamma V Tr \equiv
  \forall \alpha \beta. \ \forall c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}).
    ((\beta @ [c,v] @ \alpha) \in Tr \wedge \alpha \uparrow C_{\mathcal{V}} = [])
        \longrightarrow (\exists \alpha'. \exists \delta'. (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \\ \wedge ((\beta @ \delta' @ [v] @ \alpha') \in Tr
                             \wedge \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \wedge \alpha' | C_{\mathcal{V}} = []))
lemma BSP-valid-FCD: BSP-valid (FCD \Gamma)
proof -
   {
    fix V::('a V-rec)
    \mathbf{fix} \ \mathit{Tr} \ \mathit{E}
    assume isViewOn \ \mathcal{V} \ E
    and areTracesOver\ Tr\ E
    let ?Tr' = \{t. (set t) \subseteq E\}
    have ?Tr' \supseteq Tr
```

```
by (meson Ball-Collect \( \are Traces Over \) Tr \( E \) \( \are Traces Over-def \)
      moreover
      have FCD \Gamma \mathcal{V} ?Tr'
         proof -
                fix \alpha \beta c v
                assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
                     and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
                     and \beta @ [c,v] @ \alpha \in ?Tr'
                     and \alpha \mid C_{\mathcal{V}} = []
                let ?\alpha' = \alpha and ?\delta' = []
                from \langle \beta @ [c,v] @ \alpha \in ?Tr' \rangle have \beta @ ?\delta' @ [v] @ ?\alpha' \in ?Tr'
                   by auto
                hence (set~?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \wedge ((\beta @ ?\delta' @ [v] @ ?\alpha') \in ?Tr'
                                    \wedge ?\alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge ?\alpha' \upharpoonright C_{\mathcal{V}} = [])
                   \mathbf{using} \ \langle isViewOn \ \mathcal{V} \ E \rangle \ \langle \alpha \ | \ C_{\mathcal{V}} = [] \rangle
                   unfolding is View On-def \langle \alpha \mid C_{\mathcal{V}} = [] \rangle by auto
                \mathbf{hence} \,\, \exists \, \alpha'. \,\, \exists \, \delta'. \,\, (\mathit{set} \,\, \delta') \subseteq (N_{\mathcal{V}} \,\, \cap \,\, \Delta_{\Gamma}) \,\, \wedge \,\, ((\beta \,\, @ \,\, \delta' \,\, @ \,\, [v] \,\, @ \,\, \alpha') \in \,\, ?\mathit{Tr'}
                   \wedge \alpha' \uparrow V_{\mathcal{V}} = \alpha \uparrow V_{\mathcal{V}} \wedge \alpha' \uparrow C_{\mathcal{V}} = [])
                   \mathbf{by}\ blast
             \mathbf{thus}~? the sis
                \mathbf{unfolding}\ \mathit{FCD-def}\ \mathbf{by}\ \mathit{auto}
         qed
      ultimately
      have \exists \ \tilde{\mathit{Tr}}'. \ \mathit{Tr}' \supseteq \mathit{Tr} \ \land \mathit{FCD} \ \Gamma \ \mathcal{V} \ \mathit{Tr}'
         \mathbf{by} auto
   thus ?thesis
      unfolding BSP-valid-def by auto
qed
definition FCI :: 'e \ Gamma \Rightarrow 'e \ BSP
where
FCI \Gamma \mathcal{V} Tr \equiv
   \forall \alpha \beta. \ \forall c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}).
      ((\beta @ [v] @ \alpha) \in Tr \wedge \alpha | C_{\mathcal{V}} = [])
          \longrightarrow (\exists \alpha'. \exists \delta'. (set \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})
                                    \wedge ((\beta @ [c] @ \delta' @ [v] @ \alpha') \in Tr
                                    \wedge \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \wedge \alpha' | C_{\mathcal{V}} = []))
lemma BSP-valid-FCI: BSP-valid (FCI \Gamma)
proof -
      fix \mathcal{V}::('a V-rec)
      \mathbf{fix} \ \mathit{Tr} \ \mathit{E}
      assume isViewOn \ \mathcal{V} \ E
      and are Traces Over\ Tr\ E
      let ?Tr' = \{t. (set t) \subseteq E\}
      have ?Tr' \supseteq Tr
         \mathbf{by}\ (\mathit{meson}\ \mathit{Ball-Collect}\ \langle \mathit{areTracesOver}\ \mathit{Tr}\ \mathit{E}\rangle\ \mathit{areTracesOver-def})
```

```
moreover
     have FCI \Gamma \mathcal{V} ?Tr'
        proof -
              fix \alpha \beta c v
              assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
                  and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
                  and \beta @ [v] @ \alpha \in ?Tr'
                  and \alpha \upharpoonright C_{\mathcal{V}} = []
              let ?\alpha' = \alpha and ?\delta' = []
              from \langle c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \rangle have c \in E
                 \mathbf{using} \ \langle isViewOn \ \mathcal{V} \ E \rangle
                 unfolding is ViewOn-def by auto
              with \langle \beta @ [v] @ \alpha \in ?Tr' \rangle have \beta @ [c] @ ?\delta' @ [v] @ ?\alpha' \in ?Tr'
                 by auto
              hence (set ?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \wedge ((\beta @ [c] @ ?\delta' @ [v] @ ?\alpha') \in ?Tr'
                               \wedge ?\alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge ?\alpha' \upharpoonright C_{\mathcal{V}} = [])
               \exists \alpha'. \ \exists \delta'. \ (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ [c] @ \delta' @ [v] @ \alpha') \in ?Tr'
                 \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])
                 \mathbf{by} blast
           thus ?thesis
              unfolding FCI-def by auto
        qed
     ultimately
     have \exists Tr'. Tr' \supseteq Tr \land FCI \Gamma \mathcal{V} Tr'
        \mathbf{by} auto
  \mathbf{thus}~? the sis
     \mathbf{unfolding}\ \mathit{BSP-valid-def}\ \mathbf{by}\ \mathit{auto}
qed
definition FCIA :: 'e Rho \Rightarrow 'e Gamma \Rightarrow 'e BSP
FCIA \varrho \Gamma V Tr \equiv
  \forall \alpha \beta. \ \forall c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}).
     ((\beta @ [v] @ \alpha) \in Tr \wedge \alpha | C_{\mathcal{V}} = [] \wedge (Adm \ \mathcal{V} \ \varrho \ Tr \ \beta \ c))
        \longrightarrow (\exists \alpha'. \ \exists \delta'. \ (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})
                               \wedge ((\beta @ [c] @ \delta' @ [v] @ \alpha') \in Tr
                               \wedge \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \wedge \alpha' | C_{\mathcal{V}} = []))
lemma BSP-valid-FCIA: BSP-valid (FCIA \varrho \Gamma)
proof -
     fix V :: ('a \ V - rec)
     \mathbf{fix} \ Tr \ E
     assume isViewOn \ \mathcal{V} \ E
     and are Traces Over\ Tr\ E
     let ?Tr' = \{t. (set t) \subseteq E\}
```

```
have ?Tr' \supseteq Tr
        by (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def)
     moreover
     have FCIA \varrho \Gamma \mathcal{V} ?Tr'
     proof -
           {
              fix \alpha \beta c v
              assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
                  and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
                  and \beta @ [v] @ \alpha \in ?Tr'
                 and \alpha \upharpoonright C_{\mathcal{V}} = []
              let ?\alpha' = \alpha and ?\delta' = []
              from \langle c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \rangle have c \in E
                using \langle isViewOn \ V \ E \rangle unfolding isViewOn\text{-}def by auto
              with \langle \beta @ [v] @ \alpha \in ?Tr' \rangle have \beta @ [c] @ ?\delta' @ [v] @ ?\alpha' \in ?Tr'
                by auto
              hence (set ?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \wedge ((\beta @ [c] @ ?\delta' @ [v] @ ?\alpha') \in ?Tr'
                               \wedge ?\alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge ?\alpha' \upharpoonright C_{\mathcal{V}} = [])
                 \mathbf{using} \ \langle isViewOn \ \mathcal{V} \ E \rangle \ \langle \alpha \mid C_{\mathcal{V}} = [] \rangle
                 unfolding is View On-def \langle \alpha \mid C_{\mathcal{V}} = [] \rangle by auto
                 \exists\,\alpha'.\,\,\exists\,\delta'.\,\,(set\,\,\delta')\subseteq(N_{\mathcal{V}}\,\cap\,\Delta_{\Gamma})\,\wedge\,((\beta\,\,@\,\,[c]\,\,@\,\,\delta'\,\,@\,\,[v]\,\,@\,\,\alpha')\in\,?Tr'
                 \wedge \alpha' \uparrow V_{\mathcal{V}} = \alpha \uparrow V_{\mathcal{V}} \wedge \alpha' \uparrow \bar{C}_{\mathcal{V}} = [])
                 \mathbf{by} blast
           thus ?thesis
              unfolding FCIA-def by auto
        qed
     ultimately
     have \exists Tr'. Tr' \supseteq Tr \land FCIA \varrho \Gamma V Tr'
        by auto
  thus ?thesis
     \mathbf{unfolding}\ \mathit{BSP-valid-def}\ \mathbf{by}\ \mathit{auto}
qed
definition SR :: 'e BSP
SR \ \mathcal{V} \ Tr \equiv \forall \tau \in Tr. \ \tau \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in Tr
lemma BSP-valid SR
proof -
     fix V::('e V-rec)
     \mathbf{fix} \ \mathit{Tr} \ \mathit{E}
     assume isViewOn V E
     and areTracesOver\ Tr\ E
     let ?Tr' = \{t. \exists \tau \in Tr. t = \tau | (V_{\mathcal{V}} \cup N_{\mathcal{V}})\} \cup Tr
     have ?Tr' \supseteq Tr
       by blast
     moreover
```

```
have SR \ \mathcal{V} \ ?Tr' unfolding SR\text{-}def
       proof
         fix \tau
         assume \tau \in ?Tr'
            from \langle \tau \in ?Tr' \rangle have (\exists t \in Tr. \ \tau = t \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}})) \lor \tau \in Tr
            hence \tau \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in ?Tr'
              proof
                 assume \exists t \in Tr. \ \tau = t \ (V_{\mathcal{V}} \cup N_{\mathcal{V}})
                 hence \exists t \in Tr. \ \tau \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = t \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}})
                   using projection-idempotent by metis
                 \mathbf{thus}~? the sis
                   by auto
              \mathbf{next}
                 assume \tau \in \mathit{Tr}
                 \mathbf{thus}~? the sis
                   by auto
              qed
         thus \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in ?Tr'
            \mathbf{by} auto
       \mathbf{qed}
     ultimately
    have \exists Tr'. Tr' \supseteq Tr \land SR \ \mathcal{V} \ Tr'
       by auto
  thus ?thesis
    unfolding BSP-valid-def by auto
qed
definition SD :: 'e BSP
where
SD \ \mathcal{V} \ Tr \equiv
  \forall \alpha \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta @ [c] @ \alpha) \in Tr \land \alpha | C_{\mathcal{V}} = []) \longrightarrow \beta @ \alpha \in Tr
lemma BSP-valid SD
proof -
    fix V::('e V-rec)
    fix Tr E
    assume isViewOn \ \mathcal{V} \ E
    and areTracesOver\ Tr\ E
    let ?Tr' = \{t. (set t) \subseteq E\}
    have ?Tr' \supseteq Tr by (meson\ Ball-Collect\ \langle areTracesOver\ Tr\ E \rangle\ areTracesOver-def)
    moreover
    have SD \ \mathcal{V} \ ?Tr' unfolding SD-def by auto
    ultimately
    have \exists Tr'. Tr' \supseteq Tr \land SD \mathcal{V} Tr' by auto
  thus ?thesis unfolding BSP-valid-def by auto
```

```
definition SI :: 'e BSP
where
SI \ \mathcal{V} \ Tr \equiv
  \forall \alpha \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta @ \alpha) \in Tr \land \alpha \mid C_{\mathcal{V}} = []) \longrightarrow \beta @ [c] @ \alpha \in Tr
lemma BSP-valid SI
proof -
    fix V::('a V-rec)
    \mathbf{fix} \ \mathit{Tr} \ \mathit{E}
    assume isViewOn V E
    and are Traces Over Tr E
    let ?Tr' = \{t. (set t) \subseteq E\}
    have ?Tr' \supseteq Tr
       by (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def)
    moreover
    have SI \ \mathcal{V} \ ?Tr'
       \mathbf{using} \ \langle isViewOn \ \mathcal{V} \ E \rangle
       {\bf unfolding} \ is {\it ViewOn-def SI-def } \ {\bf by} \ {\it auto}
     ultimately
    have \exists Tr'. Tr' \supseteq Tr \land SI \ \mathcal{V} \ Tr'
       by auto
  thus ?thesis
     unfolding BSP-valid-def by auto
qed
definition SIA :: 'e Rho \Rightarrow 'e BSP
where
SIA \ \varrho \ \mathcal{V} \ Tr \equiv
  \forall \alpha \beta. \ \forall c \in C_{\mathcal{V}}. \ ((\beta @ \alpha) \in \mathit{Tr} \ \land \ \alpha \ | \ C_{\mathcal{V}} = [] \ \land \ (\mathit{Adm} \ \mathcal{V} \ \varrho \ \mathit{Tr} \ \beta \ c))
     \longrightarrow (\beta @ [c] @ \alpha) \in Tr
lemma BSP-valid (SIA \varrho)
proof -
    fix \mathcal{V} :: ('a V-rec)
    fix Tr E
    \mathbf{assume}\ \mathit{isViewOn}\ \mathcal{V}\ \mathit{E}
    and areTracesOver\ Tr\ E
    let ?Tr' = \{t. (set t) \subseteq E\}
    have ?Tr' \supseteq Tr
      by (meson Ball-Collect <areTracesOver Tr E> areTracesOver-def)
     moreover
    have SIA \varrho \ \mathcal{V} \ ?Tr'
       \mathbf{using} \ \langle isViewOn \ \mathcal{V} \ E \rangle
       unfolding is ViewOn-def SIA-def by auto
     ultimately
```

```
have \exists Tr'. Tr' \supseteq Tr \land SIA \varrho V Tr'
by auto
}
thus ?thesis
unfolding BSP-valid-def by auto
qed
end
```

4.3 Information-Flow Properties

We define the notion of information-flow properties from [3].

```
{\bf theory} \ Information Flow Properties \\ {\bf imports} \ Basic Security Predicates \\ {\bf begin} \\
```

type-synonym 'e SP = ('e BSP) set

```
type-synonym 'e IFP-type = ('e V-rec set) × 'e SP
```

```
definition IFP-valid :: 'e set \Rightarrow 'e IFP-type \Rightarrow bool where
IFP-valid E ifp \equiv
\forall V \in (fst\ ifp). is ViewOn\ V\ E
\land (\forall\ BSP \in (snd\ ifp). BSP-valid BSP)
```

```
definition IFPIsSatisfied :: 'e IFP-type \Rightarrow ('e list) set \Rightarrow bool where IFPIsSatisfied ifp Tr \equiv \forall \ \mathcal{V} \in (fst \ ifp). \ \forall \ BSP \in (snd \ ifp). \ BSP \ \mathcal{V} \ Tr
```

 \mathbf{end}

4.4 Property Library

We define the representations of several possibilistic information-flow properties from the literature that are provided as part of MAKS in [3].

```
{\bf theory}\ {\it PropertyLibrary}
```

 $\mathbf{imports}\ Information Flow Properties\ ../System Specification/Event Systems\ ../Verification/Basics/BSP Taxonomy\ \mathbf{begin}$

definition

```
HighInputsConfidential :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ V\text{-rec} where
```

```
HighInputsConfidential\ L\ H\ IE \equiv (V=L,\ N=H-IE,\ C=H\ \cap\ IE\ )
definition HighConfidential :: 'e set \Rightarrow 'e set \Rightarrow 'e V-rec
where
High Confidential \ L \ H \equiv \{ V=L, \ N=\{ \}, \ C=H \} \}
fun interleaving :: 'e \ list \Rightarrow 'e \ list \Rightarrow ('e \ list) \ set
where
interleaving \ t1 \ [] = \{t1\} \ []
interleaving [] t2 = \{t2\} |
interleaving~(e1~\#~t1)~(e2~\#~t2) =
   \{t. (\exists t'. t=(e1 \# t') \land t' \in interleaving t1 (e2 \#t2))\}
   \cup \{t. (\exists t'. t=(e2 \# t') \land t' \in interleaving (e1 \# t1) t2)\}
definition GNI :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ IFP-type
GNI\ L\ H\ IE \equiv (\{HighInputsConfidential\ L\ H\ IE\}, \{BSD,\ BSI\})
lemma GNI-valid: L \cap H = \{\} \Longrightarrow IFP-valid (L \cup H) (GNI L H IE)
   {\bf unfolding}\ \textit{IFP-valid-def}\ \textit{GNI-def}\ \textit{HighInputsConfidential-def}\ is \textit{ViewOn-def}
         V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
   {\bf using} \ Basic Security Predicates. BSP-valid-BSD \ Basic Security Predicates. BSP-valid-BSI
   by auto
definition litGNI :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow ('e \ list) \ set \Rightarrow bool
where
litGNI\ L\ H\ IE\ Tr \equiv
   \forall t1 t2 t3.
        t1 @ t2 \in Tr \wedge t3 \uparrow (L \cup (H - IE)) = t2 \uparrow (L \cup (H - IE))
          \longrightarrow (\exists t4. t1 @ t4 \in Tr \land t4 \cap (L \cup (H \cap IE)) = t3 \cap (L \cup (H \cap IE)))
definition IBGNI :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ IFP-type
where IBGNI\ L\ H\ IE \equiv (\{HighInputsConfidential\ L\ H\ IE\}, \{D,\ I\})
lemma IBGNI-valid: L \cap H = \{\} \Longrightarrow IFP-valid: (L \cup H) (IBGNI: L H IE)
   unfolding IFP-valid-def IBGNI-def HighInputsConfidential-def isViewOn-def
        V-valid-def\ VN-disjoint-def\ VC-disjoint-def\ NC-disjoint-def
    {\bf using} \ Basic Security Predicates. BSP-valid-D \ Basic Security Predicates. BSP-valid-I \ Basic Security Predicates and the property of 
   by auto
definition
litIBGNI :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow ('e \ list) \ set \Rightarrow bool
where
litIBGNI\ L\ H\ IE\ Tr \equiv
   \forall \ \tau\text{-}l \in \mathit{Tr}. \ \forall \ \mathit{t}\text{-}\mathit{hi} \ \mathit{t}.
```

```
(set \ t-hi) \subseteq (H \cap IE) \land t \in interleaving \ t-hi \ (\tau-l \mid L)
            \longrightarrow (\exists \ \tau' \in \mathit{Tr}. \ \tau' \ (L \cup (H \cap \mathit{IE})) = t)
definition FC :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ IFP-type
where
FC\ L\ H\ IE \equiv
    ( {HighInputsConfidential L H IE},
    \{BSD, BSI, (FCD \ (Nabla=IE, Delta=\{\}, Upsilon=IE \ )),
                         (FCI \ (\ Nabla=IE,\ Delta=\{\},\ Upsilon=IE\ (\ )\})
lemma FC-valid: L \cap H = \{\} \Longrightarrow IFP-valid (L \cup H) (FC \ L \ H \ IE)
    {\bf unfolding}\ IFP-valid-def\ FC-def\ High Inputs Confidential-def\ is View On-def
         V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
    {\bf using} \ Basic Security Predicates. BSP-valid-BSD \ Basic Security Predicates. BSP-valid-BSI
        Basic Security Predicates. BSP-valid-FCD\ Basic Security Predicates. BSP-valid-FCI\ Basic Security Predicates and Security P
   by auto
definition litFC :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow ('e \ list) \ set \Rightarrow bool
where
litFC\ L\ H\ IE\ Tr \equiv
   \forall t-1 t-2. \forall hi \in (H \cap IE).
        (\forall li \in (L \cap IE).
            t-1 @ [li] @ t-2 \in Tr \land t-2 \upharpoonright (H \cap IE) = []
            \longrightarrow (\exists t-3. t-1 @ [hi] @ [li] @ t-3 \in Tr
                                     \wedge t-3 \ \ L = t-2 \ \ L \ \ \ t-3 \ \ (H \cap IE) = \big[] \)
           \land (t-1 @ t-2 \in Tr \land t-2 \upharpoonright (H \cap IE) = []
                  \longrightarrow (\exists t-3. t-1 @ [hi] @ t-3 \in Tr
                                           \wedge t-3 \ L = t-2 \ L \ \ t-3 \ (H \cap IE) = [] ))
         \land (\forall li \in (L \cap IE).
                    t-1 @ [hi] @ [li] @ t-2 \in Tr \land t-2 \upharpoonright (H \cap IE) = []
                     \longrightarrow (\exists t-3. t-1 @ [li] @ t-3 \in Tr
                                               \wedge t-3 \uparrow L = t-2 \uparrow L \land t-3 \uparrow (H \cap IE) = [])
                   \land (t-1 @ [hi] @ t-2 \in Tr \land t-2 \uparrow (H \cap IE) = []
                         \longrightarrow (\exists t-3.t-1 @ t-3 \in Tr
                                                   \wedge t-3 \uparrow L = t-2 \uparrow L \land t-3 \uparrow (H \cap IE) = [])
   )
definition NDO :: 'e set \Rightarrow 'e set \Rightarrow 'e set \Rightarrow 'e IFP-type
where
NDO\ UI\ L\ H \equiv
   (\{HighConfidential\ L\ H\}, \{BSD, (BSIA\ (\lambda\ V.\ C_V \cup (V_V \cap\ UI)))\})
lemma NDO-valid: L \cap H = \{\} \Longrightarrow IFP-valid (L \cup H) (NDO UI L H)
    {\bf unfolding}\ IFP-valid-def\ NDO-def\ High Confidential-def\ is View On-def
        V-valid-def\ VN-disjoint-def\ VC-disjoint-def\ NC-disjoint-def
    {\bf using} \ Basic Security Predicates. BSP-valid-BSD
```

```
by auto
definition litNDO :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow ('e \ list) \ set \Rightarrow bool
litNDO\ UI\ L\ H\ Tr \equiv
  \forall \, \tau\text{-}l \in \mathit{Tr}. \,\, \forall \,\, \tau\text{-}\mathit{hlui} \in \mathit{Tr}. \,\, \forall \,\, t.
    t \mid L = \tau - l \mid L \wedge t \mid (H \cup (L \cap UI)) = \tau - hlui \mid (H \cup (L \cap UI)) \longrightarrow t \in Tr
definition NF :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ IFP-type
where
NF L H \equiv (\{HighConfidential L H\}, \{R\})
lemma NF-valid: L \cap H = \{\} \Longrightarrow IFP\text{-valid} (L \cup H) (NF L H)
  {\bf unfolding} \ \textit{IFP-valid-def NF-def High Confidential-def is View On-def}
     V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
  {\bf using} \ {\it Basic Security Predicates}. {\it BSP-valid-R}
  by auto
definition litNF :: 'e \ set \Rightarrow 'e \ set \Rightarrow ('e \ list) \ set \Rightarrow bool
\mathit{litNF}\ L\ H\ \mathit{Tr} \equiv \forall\,\tau\in\mathit{Tr}.\ \tau \restriction L\in\mathit{Tr}
definition GNF :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ IFP-type
where
\mathit{GNF}\ L\ \mathit{H}\ \mathit{IE} \equiv (\ \{\mathit{HighInputsConfidential}\ L\ \mathit{H}\ \mathit{IE}\},\ \{\mathit{R}\})
lemma GNF-valid: L \cap H = \{\} \implies IFP-valid (L \cup H) (GNF \ L \ H \ IE)
  {\bf unfolding}\ {\it IFP-valid-def}\ {\it GNF-def}\ {\it HighInputsConfidential-def}\ is ViewOn-def
     V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
  {\bf using} \ Basic Security Predicates. BSP-valid-R
  by auto
definition litGNF :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ set \Rightarrow ('e \ list) \ set \Rightarrow bool
where
litGNF\ L\ H\ IE\ Tr \equiv
  \forall \, \tau \in \mathit{Tr}. \,\, \exists \, \tau' \in \mathit{Tr}. \,\, \tau' | \,\, (H \, \cap \mathit{IE}) = [] \, \wedge \, \tau' | \,\, L = \tau \, \mid L
definition SEP :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ IFP-type
SEP L H \equiv ( {HighConfidential L H}, {BSD, (BSIA (\lambda V. C_V))})
```

 $BasicSecurityPredicates.BSP-valid-BSIA[of (\lambda V. C_{V} \cup (V_{V} \cap UI))]$

```
lemma SEP-valid: L \cap H = \{\} \Longrightarrow IFP-valid (L \cup H) (SEP L H)
  unfolding IFP-valid-def SEP-def HighConfidential-def isViewOn-def
     V\text{-}valid\text{-}def\ VN\text{-}disjoint\text{-}def\ VC\text{-}disjoint\text{-}def\ NC\text{-}disjoint\text{-}def
  {\bf using} \ Basic Security Predicates. BSP-valid-BSD
           BasicSecurityPredicates.BSP-valid-BSIA[of \ \lambda \ V. \ C_{V}]
\textbf{definition} \ \textit{litSEP} :: \ 'e \ \textit{set} \Rightarrow \ 'e \ \textit{set} \Rightarrow \ ('e \ \textit{list}) \ \textit{set} \Rightarrow \textit{bool}
where
litSEP\ L\ H\ Tr \equiv
  \forall \, \tau\text{-}l \in \mathit{Tr}. \,\, \forall \,\, \tau\text{-}h \in \mathit{Tr}.
     interleaving \ (\tau\text{-}l \upharpoonright L) \ (\tau\text{-}h \upharpoonright H) \subseteq \{\tau \in \mathit{Tr} \ . \ \tau \upharpoonright L = \tau\text{-}l \upharpoonright L\}
definition PSP :: 'e \ set \Rightarrow 'e \ set \Rightarrow 'e \ IFP-type
where
PSP\ L\ H \equiv
  ( \{HighConfidential\ L\ H\},\ \{BSD,\ (BSIA\ (\lambda\ V.\ C_V \cup N_V \cup V_V))\}\}
lemma PSP-valid: L \cap H = \{\} \Longrightarrow IFP-valid (L \cup H) \ (PSP \ L \ H)
  {\bf unfolding}\ {\it IFP-valid-def}\ {\it PSP-def}\ {\it HighConfidential-def}\ is ViewOn\text{-}def
      V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
  {f using}\ Basic Security Predicates. BSP-valid-BSD
           BasicSecurityPredicates.BSP-valid-BSIA[of \ \lambda \ V. \ C_{V} \cup N_{V} \cup V_{V}]
definition litPSP :: 'e \ set \Rightarrow 'e \ set \Rightarrow ('e \ list) \ set \Rightarrow bool
where
litPSP\ L\ H\ Tr \equiv
  (\forall \, \tau \in \mathit{Tr}. \, \tau \, \mid \, L \in \mathit{Tr})
     \wedge \ (\forall \ \alpha \ \beta. \ (\beta \ @ \ \alpha) \in \mathit{Tr} \ \wedge \ (\alpha \ | \ \mathit{H}) = []
                     \longrightarrow (\forall \ h \in H. \ \beta @ [h] \in Tr \longrightarrow \beta @ [h] @ \alpha \in Tr))
end
```

5 Verification

5.1 Basic Definitions

We define when an event system and a state-event system are secure given an information-flow property.

```
\begin{tabular}{ll} \textbf{theory} & Secure Systems \\ \textbf{imports} & ../../System Specification/State Event Systems \\ & ../../Security Specification/Information Flow Properties \\ \textbf{begin} \\ \end{tabular}
```

 ${\bf locale}\ {\it Secure ESIFP} =$

 $\begin{array}{l} \textbf{fixes} \ \textit{ES} :: 'e \ \textit{ES-rec} \\ \textbf{and} \ \textit{IFP} :: 'e \ \textit{IFP-type} \end{array}$

 $\begin{array}{ll} \textbf{assumes} \ validES \colon ES\text{-}valid \ ES \\ \textbf{and} \ validIFPES \colon IFP\text{-}valid \ E_{ES} \ IFP \end{array}$

 $\begin{array}{c} \mathbf{context} \ \mathit{SecureESIFP} \\ \mathbf{begin} \end{array}$

definition ES-sat-IFP :: bool

 $\textit{ES-sat-IFP} \equiv \textit{IFPIsSatisfied IFP Tr}_{\textit{ES}}$

 \mathbf{end}

 $\begin{array}{l} \textbf{locale} \ \textit{SecureSESIFP} = \\ \textbf{fixes} \ \textit{SES} :: (\textit{'s}, \textit{'e}) \ \textit{SES-rec} \\ \textbf{and} \ \textit{IFP} :: \textit{'e} \ \textit{IFP-type} \end{array}$

 $\begin{array}{ll} \textbf{assumes} \ validSES \colon SES\text{-}valid \ SES \\ \textbf{and} \ validIFPSES \colon IFP\text{-}valid \ E_{SES} \ IFP \end{array}$

sublocale SecureSESIFP \subseteq SecureESIFP induceES SES IFP **by** (unfold-locales, rule induceES-yields-ES, rule validSES, simp add: induceES-def, rule validIFPSES)

 $\begin{array}{l} \textbf{context} \ \textit{SecureSESIFP} \\ \textbf{begin} \end{array}$

abbreviation SES-sat-IFP where SES-sat- $IFP \equiv ES$ -sat-IFP

end

end

5.2 Taxonomy Results

We prove the taxonomy results from [3].

 ${\bf theory}\ BSPT axonomy$

```
\mathbf{imports}\ ../../System Specification/Event Systems
  ../../Security Specification/Basic Security Predicates\\
begin
locale BSPTaxonomyDifferentCorrections =
fixes ES :: 'e ES\text{-}rec
and V :: 'e \ V\text{-}rec
assumes validES: ES-valid ES
and VIsViewOnE: isViewOn~\mathcal{V}~E_{ES}
{\bf locale}\ BSPT axonomy Different Views =
\mathbf{fixes}\ \mathit{ES} :: \ 'e\ \mathit{ES-rec}
and V_1 :: 'e \ V\text{-rec}
and V_2 :: 'e V-rec
assumes validES: ES-valid ES
and V_1 Is ViewOnE: is ViewOn V_1 E_{ES}
and V_2 Is View On E: is View On V_2 E_{ES}
{\bf locale}\ BSPT axonomy Different Views First Dim=\ BSPT axonomy Different Views\ +
assumes V2-subset-V1: V_{\mathcal{V}_2} \subseteq V_{\mathcal{V}_1}
            \begin{array}{ccc} \textit{N2-supset-N1:} & \textit{N}_{\mathcal{V}_2} \supseteq \textit{N}_{\mathcal{V}_1} \\ \textit{C2-subset-C1:} & \textit{C}_{\mathcal{V}_2} \subseteq \textit{C}_{\mathcal{V}_1} \end{array}
and
and
\mathbf{sublocale} \quad \mathit{BSPTaxonomyDifferentViewsFirstDim} \subseteq \mathit{BSPTaxonomyDifferentViews}
by (unfold-locales)
{\bf locale}\ BSPT axonomy Different Views Second Dim=\ BSPT axonomy Different Views\ +
assumes V2-subset-V1: V_{\mathcal{V}_2} \subseteq V_{\mathcal{V}_1}
and
            N2-supset-N1: N_{\mathcal{V}_2} \supseteq N_{\mathcal{V}_1}
            C2-equals-C1: C_{\mathcal{V}_2} = C_{\mathcal{V}_1}
and
\textbf{sublocale} \quad \textit{BSPTaxonomyDifferentViewsSecondDim} \subseteq \textit{BSPTaxonomyDifferentViews}
by (unfold-locales)
{\bf context}\ BSPT axonomy Different Corrections
begin
lemma SR-implies-R:
SR \ \mathcal{V} \ Tr_{ES} \Longrightarrow R \ \mathcal{V} \ Tr_{ES}
proof -
  assume SR: SR \ \mathcal{V} \ Tr_{ES}
  {
     fix \tau
    assume \tau \in \mathit{Tr}_{ES}
     with SR have \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in Tr_{ES}
       unfolding SR-def by auto
     hence \exists \ \tau' . \ \tau' \in \mathit{Tr}_{ES} \land \tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}} \land \tau' \upharpoonright C_{\mathcal{V}} = []
     proof -
```

```
assume tau\text{-}V\text{-}N\text{-}is\text{-}trace: \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in \mathit{Tr}_{ES}
         show \exists \tau'. \tau' \in Tr_{ES} \land \tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}} \land \overline{\tau'} \upharpoonright C_{\mathcal{V}} = []
         proof
            let ?\tau' = \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
            have \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}}
               by (simp add: projection-subset-elim)
            \textbf{from} \quad \textit{VIsViewOnE} \ \ \textbf{have} \ \ \textit{VC-disjoint} \ \ \mathcal{V} \ \land \ \textit{NC-disjoint} \ \ \mathcal{V}
               \mathbf{unfolding}\ is View On\text{-}def\ V\text{-}valid\text{-}def
               by auto
            then have (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \cap C_{\mathcal{V}} = \{\}
               by (simp add: NC-disjoint-def VC-disjoint-def inf-sup-distrib2)
            then have ?\tau' \upharpoonright C_{\mathcal{V}} = []
               by (simp add: disjoint-projection)
            ultimately
            \mathbf{show} \ ?\tau' \in \mathit{Tr}_{ES} \land \ ?\tau' \upharpoonright V_{\mathcal{V}} = \tau \upharpoonright V_{\mathcal{V}} \land \ ?\tau' \upharpoonright C_{\mathcal{V}} = []
               using tau-V-N-is-trace by auto
      \mathbf{qed}
   }
   \mathbf{thus}~? the sis
      unfolding SR-def R-def by auto
qed
\mathbf{lemma}\ SD\text{-}implies\text{-}BSD:
(\mathit{SD}\ \mathcal{V}\ \mathit{Tr}_{\mathit{ES}}) \Longrightarrow \mathit{BSD}\ \mathcal{V}\ \mathit{Tr}_{\mathit{ES}}
   assume SD: SD V Tr_{ES}
   {
      \mathbf{fix}\ \alpha\ \beta\ c
      assume c \in C_{\mathcal{V}}
         and \beta @ c # \alpha \in \mathit{Tr}_{ES}
         and alpha-C-empty: \alpha \mid C_{\mathcal{V}} = []
      with SD have \beta @ \alpha \in Tr_{ES}
         unfolding SD-def by auto
      hence \exists \alpha'. \beta @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
         using alpha-C-empty
         \mathbf{by} auto
    \mathbf{thus}~? the sis
        unfolding SD-def BSD-def by auto
\mathbf{qed}
lemma BSD-implies-D:
BSD \ \mathcal{V} \ Tr_{ES} \Longrightarrow D \ \mathcal{V} \ Tr_{ES}
proof -
   assume BSD: BSD V Tr_{ES}
      \mathbf{fix} \ \alpha \ \beta \ c
```

```
assume \alpha \upharpoonright C_{\mathcal{V}} = []
         and c \in C_{\mathcal{V}}
         and \beta @ [c] @ \alpha \in Tr_{ES}
      with BSD obtain \alpha'
          where \beta @ \alpha' \in \mathit{Tr}_{ES}
         and \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V^{ES}
         and \alpha' \upharpoonright C_{\mathcal{V}} = []
         by (simp add: BSD-def, auto)
      hence (\exists \alpha' \beta'.
         (\beta' @ \alpha' \in \mathit{Tr}_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []) \land
          \beta' \uparrow (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \uparrow (V_{\mathcal{V}} \cup C_{\mathcal{V}}))
         \mathbf{by} auto
   }
   thus ?thesis
      \mathbf{unfolding}\ \mathit{BSD-def}\ \mathit{D-def}
      \mathbf{by} auto
qed
\mathbf{lemma} \ \mathit{SD-implies-SR} :
SD \ \mathcal{V} \ \mathit{Tr}_{ES} \Longrightarrow SR \ \mathcal{V} \ \mathit{Tr}_{ES}
\mathbf{unfolding}\ \mathit{SR-def}
proof
   fix \tau
   assume SD: SD \mathcal V \mathit{Tr}_{ES}
   assume \tau-trace: \tau \in \mathit{Tr}_{ES}
 {
fix n
      \mathbf{have} \ \mathit{SR-via-length} \colon \ \llbracket \ \tau \in \mathit{Tr}_{\mathit{ES}}; \ n = \mathit{length} \ (\tau \restriction \mathit{C}_{\mathcal{V}}) \ \rrbracket
          \Rightarrow \exists \tau' \in \mathit{Tr}_{ES}. \ \tau' \upharpoonright \mathit{C}_{\mathcal{V}} = [] \land \tau' \upharpoonright (\mathit{V}_{\mathcal{V}} \cup \mathit{N}_{\mathcal{V}}) = \tau \upharpoonright (\mathit{V}_{\mathcal{V}} \cup \mathit{N}_{\mathcal{V}})
      proof (induct n arbitrary: \tau)
          case \theta
          \mathbf{note}\ \tau\text{-}\mathit{in}\text{-}\mathit{Tr} = \langle \tau \in \mathit{Tr}_{ES} \rangle
            and \langle \theta = length \ (\tau \mid C_{\mathcal{V}}) \rangle
          hence \tau \upharpoonright C_{\mathcal{V}} = []
             \mathbf{by} \ simp
          with \tau-in-Tr show ?case
             \mathbf{by} auto
      next
          case (Suc \ n)
          from projection\text{-}split\text{-}last[OF\ Suc(3)] obtain \beta\ c\ \alpha
             where c-in-C: c \in C_{\mathcal{V}}
             and \tau-is-\beta c\alpha: \tau = \beta @ [c] @ \alpha
             and \alpha-no-c: \alpha \uparrow C_{\mathcal{V}} = []
             and \beta\alpha-contains-n-cs: n = length ((\beta @ \alpha) \uparrow C_{\mathcal{V}})
          with Suc(2) have \beta c\alpha-in-Tr: \beta @ [c] @ \alpha \in Tr_{ES}
             by auto
```

```
with SD c-in-C \beta c\alpha-in-Tr \alpha-no-c obtain \beta' \alpha'
         where \beta'\alpha'-in-Tr: (\beta' \otimes \alpha') \in Tr_{ES}
         and \alpha'-V-is-\alpha-V: \alpha' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})
         and \alpha'-no-c: \alpha' \upharpoonright C_{\mathcal{V}} = []
         and \beta'-VC-is-\beta-VC: \beta' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}})
         unfolding SD-def
         \mathbf{by} blast
      have (\beta' @ \alpha') \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \tau \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})
      proof -
         from \beta'-VC-is-\beta-VC have \beta' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \beta \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})
            \mathbf{by} \ (\mathit{rule} \ \mathit{projection\text{-}subset\text{-}eq\text{-}from\text{-}superset\text{-}eq})
         with \alpha'-V-is-\alpha-V have (\beta' @ \alpha') \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = (\beta @ \alpha) \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})
            by (simp add: projection-def)
         moreover
         with VIsViewOnE\ c\text{-}in\text{-}C\ \text{have}\ c\notin (V_{\mathcal{V}}\cup N_{\mathcal{V}})
            by (simp add: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def, auto)
         hence (\beta @ \alpha) \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = (\beta @ [c] @ \alpha) \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})
            by (simp add: projection-def)
         moreover note \tau-is-\beta c \alpha
         ultimately show ?thesis
            \mathbf{by} auto
      \mathbf{qed}
      moreover
      have n = length ((\beta' @ \alpha') | C_{\mathcal{V}})
      proof -
         have \beta' \upharpoonright C_{\mathcal{V}} = \beta \upharpoonright C_{\mathcal{V}}
            have V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}} = C_{\mathcal{V}} \cup (V_{\mathcal{V}} \cup N_{\mathcal{V}})
            with \beta'-VC-is-\beta-VC have \beta' \upharpoonright (C_{\mathcal{V}} \cup (V_{\mathcal{V}} \cup N_{\mathcal{V}})) = \beta \upharpoonright (C_{\mathcal{V}} \cup (V_{\mathcal{V}} \cup N_{\mathcal{V}}))
               by auto
            thus ?thesis
                by (rule projection-subset-eq-from-superset-eq)
         with \alpha'-no-c \alpha-no-c have (\beta' \otimes \alpha') \uparrow C_{\mathcal{V}} = (\beta \otimes \alpha) \uparrow C_{\mathcal{V}}
            by (simp add: projection-def)
         with \beta\alpha-contains-n-cs show ?thesis
            by auto
      qed
      with Suc.hyps\ \beta'\alpha'-in-Tr\ obtain \tau'
         where \tau' \in \mathit{Tr}_{ES}
         and \tau' \upharpoonright C_{\mathcal{V}} = \overline{[]}
         and \tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = (\beta' @ \alpha') \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
         by auto
      ultimately show ?case
         by auto
  qed
\mathbf{hence}\ \tau\in\mathit{Tr}_{ES}\Longrightarrow\exists\,\tau'.\ \tau'\in\mathit{Tr}_{ES}\land\tau'\uparrow\mathit{C}_{\mathcal{V}}=[]\land\tau'\uparrow(\mathit{V}_{\mathcal{V}}\cup\mathit{N}_{\mathcal{V}})=\tau\uparrow(\mathit{V}_{\mathcal{V}}\cup\mathit{N}_{\mathcal{V}})
```

```
by auto
  from this \tau-trace obtain \tau' where
            \tau'\text{-}trace:\tau'\!\!\in\!\mathit{Tr}_{ES}
     and \tau'-no-C: \tau' \upharpoonright C_{\mathcal{V}} = []
and \tau'-\tau-rel: \tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
  from \tau'-no-C have \tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
     by (auto simp add: projection-on-union)
  with VIsViewOnE have \tau'-E-eq-VN: \tau' \upharpoonright E_{ES} = \tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
     \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\ \mathit{add}\colon \mathit{isViewOn\text{-}def})
  from validES \ \tau'-trace have (set \ \tau') \subseteq E_{ES}
      by (auto simp add: ES-valid-def traces-contain-events-def)
  hence \tau' \upharpoonright E_{ES} = \tau' by (simp\ add:\ list-subset-iff-projection-neutral)
  with \tau'-E-eq-VN have \tau' = \tau' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) by auto
  with \tau'-\tau-rel have \tau' = \tau \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) by auto
  with \tau'-trace show \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in Tr_{ES} by auto
\mathbf{qed}
lemma D-implies-R:
D \ \mathcal{V} \ \mathit{Tr}_{ES} \Longrightarrow R \ \mathcal{V} \ \mathit{Tr}_{ES}
proof -
  assume D: D \mathcal{V} Tr_{ES}
   {
     \mathbf{fix}\ \tau\ n
     have R-via-length: \llbracket \tau \in Tr_{ES}; n = length \ (\tau \upharpoonright C_{\mathcal{V}}) \ \rrbracket
                                        \Rightarrow \exists \tau' \in \overline{Tr}_{ES}. \ \tau' \mid C_{\mathcal{V}} = [] \land \tau' \mid V_{\mathcal{V}} = \tau \mid V_{\mathcal{V}}
      \mathbf{proof}\ (\mathit{induct}\ n\ \mathit{arbitrary} \colon \tau)
         case \theta
         \mathbf{note} \ \tau\text{-}\mathit{in}\text{-}\mathit{Tr} = \langle \tau \in \mathit{Tr}_{ES} \rangle
            and \langle \theta = length \ (\tau \uparrow C_{\mathcal{V}}) \rangle
         hence \tau \upharpoonright C_{\mathcal{V}} = []
            \mathbf{by} \ simp
         with \tau-in-Tr show ?case
            by auto
      \mathbf{next}
         case (Suc \ n)
         from projection-split-last[OF Suc(3)] obtain \beta c \alpha
            where c-in-C: c \in C_{\mathcal{V}}
            and \tau\text{-}\textit{is-}\beta\,c\alpha\text{: }\tau=\beta @ [c] @ \alpha
            and \alpha-no-c: \alpha \upharpoonright C_{\mathcal{V}} = []
            and \beta\alpha-contains-n-cs: n = length ((\beta @ \alpha) \uparrow C_{\mathcal{V}})
         with Suc(2) have \beta c\alpha-in-Tr: \beta @ [c] @ \alpha \in Tr_{ES}
            \mathbf{by} auto
```

```
with D c-in-C \beta c\alpha-in-Tr \alpha-no-c obtain \beta' \alpha'
         where \beta'\alpha'-in-Tr: (\beta' \otimes \alpha') \in Tr_{ES}
         and \alpha'-V-is-\alpha-V: \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
         and \alpha'-no-c: \alpha' \upharpoonright C_{\mathcal{V}} = []
         and \beta'-VC-is-\beta-VC: \beta' \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}})
         unfolding D-def
         \mathbf{by} blast
      have (\beta' @ \alpha') \uparrow V_{\mathcal{V}} = \tau \uparrow V_{\mathcal{V}}
      proof -
         from \beta'-VC-is-\beta-VC have \beta' \upharpoonright V_{\mathcal{V}} = \beta \upharpoonright V_{\mathcal{V}}
            \mathbf{by}\ (\mathit{rule}\ \mathit{projection}\text{-}\mathit{subset}\text{-}\mathit{eq}\text{-}\mathit{from}\text{-}\mathit{superset}\text{-}\mathit{eq})
         with \alpha'-V-is-\alpha-V have (\beta' @ \alpha') \upharpoonright V_{\mathcal{V}} = (\beta @ \alpha) \upharpoonright V_{\mathcal{V}}
            by (simp add: projection-def)
         moreover
         with VIsViewOnE\ c-in-C have c \notin V_{\mathcal{V}}
            by (simp add: isViewOn-def V-valid-def VC-disjoint-def, auto)
         hence (\beta @ \alpha) \upharpoonright V_{\mathcal{V}} = (\beta @ [c] @ \alpha) \upharpoonright V_{\mathcal{V}}
            by (simp add: projection-def)
         moreover note \tau-is-\beta c \alpha
         {\bf ultimately \ show} \ ? the sis
            by auto
      \mathbf{qed}
      moreover
      have n = length ((\beta' @ \alpha') \uparrow C_{\mathcal{V}})
      proof -
         have \beta' \upharpoonright C_{\mathcal{V}} = \beta \upharpoonright C_{\mathcal{V}}
         proof -
            have V_{\mathcal{V}} \cup C_{\mathcal{V}} = C_{\mathcal{V}} \cup V_{\mathcal{V}}
            with \beta'-VC-is-\beta-VC have \beta' \upharpoonright (C_{\mathcal{V}} \cup V_{\mathcal{V}}) = \beta \upharpoonright (C_{\mathcal{V}} \cup V_{\mathcal{V}})
               \mathbf{by} auto
            thus ?thesis
               \mathbf{by}\ (\mathit{rule}\ \mathit{projection}\text{-}\mathit{subset}\text{-}\mathit{eq}\text{-}\mathit{from}\text{-}\mathit{superset}\text{-}\mathit{eq})
         with \alpha'-no-c \alpha-no-c have (\beta' @ \alpha') \upharpoonright C_{\mathcal{V}} = (\beta @ \alpha) \upharpoonright C_{\mathcal{V}}
            by (simp add: projection-def)
         with \beta\alpha-contains-n-cs show ?thesis
            by auto
      with Suc.hyps \beta'\alpha'-in-Tr obtain \tau'
         where \tau' \in Tr_{ES}
         and \tau' \upharpoonright C_{\mathcal{V}} = \overline{[]}
         and \tau' \mid V_{\mathcal{V}} = (\beta' \otimes \alpha') \mid V_{\mathcal{V}}
         \mathbf{by} auto
      ultimately show ?case
         \mathbf{by} auto
  \mathbf{qed}
thus ?thesis
  by (simp add: R-def)
```

qed

```
{\bf lemma}\ SR\mbox{-}implies\mbox{-}R\mbox{-}for\mbox{-}modified\mbox{-}view:
\llbracket SR \ \mathcal{V} \ Tr_{ES}; \ \mathcal{V}' = ( \mid V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \ ) \rrbracket \Longrightarrow R \ \mathcal{V}' \ Tr_{ES}
proof -
  assume SR~\mathcal{V}~Tr_{ES}
       and V' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})
       from \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) \rangle VIsViewOnE
       have V'IsViewOnE: isViewOn~\mathcal{V}'~E_{ES}
         unfolding is View On-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def by auto
     fix \tau
     \mathbf{assume}\ \tau\in\mathit{Tr}_{ES}
     with \langle SR \ \mathcal{V} \ Tr_{ES} \rangle have \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in Tr_{ES}
        unfolding SR-def by auto
     let ?\tau'=\tau \mid V_{\mathcal{V}'}
     from \langle \tau \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in \mathit{Tr}_{ES} \rangle have ?\tau' \in \mathit{Tr}_{ES}
        using \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) \rangle by simp
     moreover
     from V'IsViewOnE have ?\tau'|C_{\mathcal{V}'}=[]
        {\bf using} \ disjoint\text{-}projection
        unfolding is View On-def V-valid-def VC-disjoint-def by auto
     moreover
     have ?\tau' | V_{\mathcal{V}'} = \tau | V_{\mathcal{V}'}
        by (simp add: projection-subset-elim)
     have \exists \tau' \in Tr_{ES}. \tau' \upharpoonright C_{\mathcal{V}'} = [] \land \tau' \upharpoonright V_{\mathcal{V}'} = \tau \upharpoonright V_{\mathcal{V}'}
        by auto
  with \langle SR \ V \ Tr_{ES} \rangle show ?thesis
     unfolding R-def using \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) \rangle by auto
qed
\mathbf{lemma}\ \textit{R-implies-SR-for-modified-view}\ :
\llbracket R \ \mathcal{V}' \ \mathit{Tr}_{ES}; \ \mathcal{V}' = ( \mid V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \ ) \rrbracket \Longrightarrow \mathit{SR} \ \mathcal{V} \ \mathit{Tr}_{ES}
proof -
  assume R~\mathcal{V}'~\mathit{Tr}_{ES}
       and V' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})
     \mathbf{fix}\ \tau
     assume \tau \in \mathit{Tr}_{ES}
     from \langle R \ \mathcal{V}' \ Tr_{ES} \rangle \ \langle \tau \in Tr_{ES} \rangle obtain \tau' where \tau' \in Tr_{ES}
                                                          and \tau' \upharpoonright C_{\mathcal{V}'} = []
                                                          and \tau' \upharpoonright V_{\mathcal{V}'} = \overline{\tau} \upharpoonright V_{\mathcal{V}'}
                                                          unfolding R-def by auto
     by auto
     \mathbf{from} \ \ \! \! \ \ \! \langle \tau' \ \! \mid \ V_{\mathcal{V}'} = \tau \ \! \mid \ V_{\mathcal{V}'} \! \rangle \ \ \ \! \langle \mathcal{V}' = (\! \mid \ V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \! \! \{ \} \ , \ C = C_{\mathcal{V}} \ \! \! \} \rangle
```

```
have \tau' \upharpoonright (V_{\mathcal{V}'} \cup N_{\mathcal{V}'}) = \tau \upharpoonright (V_{\mathcal{V}'} \cup N_{\mathcal{V}'})
          by simp
       \mathbf{from} \ \langle \tau' \upharpoonright C_{\mathcal{V}'} = [] \rangle \ \mathbf{have} \ \tau' = \tau' \upharpoonright (V_{\mathcal{V}'} \cup N_{\mathcal{V}'})
          \mathbf{using} \ valid ES \ \langle \tau' \in \mathit{Tr}_{ES} \rangle \ \langle \mathit{isViewOn} \ \mathcal{V}' \ E_{ES} \rangle
          {\bf unfolding}\ projection-def\ ES-valid-def\ is\ ViewOn-def\ traces-contain-events-def
          by (metis UnE filter-True filter-empty-conv)
       hence \tau' = \tau \upharpoonright (V_{\mathcal{V}'} \cup N_{\mathcal{V}'})
          using \langle \tau' \uparrow (V_{\mathcal{V}'} \cup N_{\mathcal{V}'}) = \tau \uparrow (V_{\mathcal{V}'} \cup N_{\mathcal{V}'}) \rangle
          by simp
      with \langle \tau' \in \mathit{Tr}_{ES} \rangle have \tau \upharpoonright (V_{\mathcal{V}'} \cup N_{\mathcal{V}'}) \in \mathit{Tr}_{ES}
          \mathbf{by} auto
   thus ?thesis
       unfolding SR-def using \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) \rangle
qed
{\bf lemma}\ SD\text{-}implies\text{-}BSD\text{-}for\text{-}modified\text{-}view\ :
\llbracket SD \ \mathcal{V} \ Tr_{ES}; \ \mathcal{V}' = ( \mid V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \ ) \rrbracket \Longrightarrow BSD \ \mathcal{V}' \ Tr_{ES}
proof -
   assume SD \ \mathcal{V} \ Tr_{ES}
        and V' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})
      fix \alpha \beta c
      assume c \in C_{\mathcal{V}'}
           and \beta @ [c] @ \alpha \in Tr_{ES}
            and \alpha \upharpoonright C_{\mathcal{V}'} = []
       \mathbf{from} \ \langle c \in C_{\mathcal{V}'} \rangle \ \ \langle \mathcal{V}' = ( V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \ ) \rangle
      have c \in C_{\mathcal{V}}
          by auto
       \mathbf{from} \ \langle \alpha | C_{\mathcal{V}'} = [] \rangle \ \langle \mathcal{V}' = [] \ V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{\} \ , \ C = C_{\mathcal{V}} \ \} \rangle
       have \alpha \mid C_{\mathcal{V}} = []
          by auto
      \mathbf{from} \ \langle c \in C_{\mathcal{V}} \rangle \ \langle \beta @ [c] @ \alpha \in \mathit{Tr}_{ES} \rangle \ \langle \alpha | C_{\mathcal{V}} = [] \rangle
      have \beta @ \alpha \in \mathit{Tr}_{ES} \text{ using } \langle \mathit{SD} \ \mathcal{V} \ \mathit{Tr}_{ES} \rangle
          unfolding SD-def by auto
      \mathbf{hence} \ \exists \, \alpha'. \, \beta \, @ \, \alpha' \in \mathit{Tr}_{ES} \, \wedge \, \alpha' \, | \, \mathit{V}_{\mathcal{V}'} = \alpha \, | \, \mathit{V}_{\mathcal{V}'} \, \wedge \alpha' \, | \, \mathit{C}_{\mathcal{V}'} = []
          using \langle \alpha \mid C_{\mathcal{V}'} = [] \rangle by blast
   with \langle SD \ \mathcal{V} \ Tr_{ES} \rangle show ?thesis
       unfolding BSD-def using \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) \rangle by auto
\mathbf{qed}
\mathbf{lemma}\ BSD\text{-}implies\text{-}SD\text{-}for\text{-}modified\text{-}view\ :
\llbracket BSD \ \mathcal{V}' \ Tr_{ES}; \ \mathcal{V}' = \{ V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, \ N = \{ \}, \ C = C_{\mathcal{V}} \} \rrbracket \Longrightarrow SD \ \mathcal{V} \ Tr_{ES}
   unfolding SD-def
   proof(clarsimp)
   fix \alpha \beta c
```

```
assume BSD\text{-}view':BSD (V=V_{\mathcal{V}}\cup N_{\mathcal{V}} , N=\{\} , C=C_{\mathcal{V}}) Tr_{ES}
  assume alpha-no-C-view : \alpha \mid C_{\mathcal{V}} = []
  assume c-C-view: c \in C_{\mathcal{V}}
  assume beta-c-alpha-is-trace : \beta @ c \# \alpha \in Tr_{ES}
  from BSD-view' alpha-no-C-view c-C-view beta-c-alpha-is-trace
  obtain \alpha'
     where beta-alpha'-is-trace: \beta @ \alpha' \in (Tr_{ES})
       and alpha-alpha': \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
and alpha'-no-C-view: \alpha' \upharpoonright C_{\mathcal{V}} = []
    by (auto simp add: BSD-def)
  {\bf from}\ beta\text{-}c\text{-}alpha\text{-}is\text{-}trace\ validES
  have alpha-consists-of-events: set \alpha \subseteq E_{ES}
       by (auto simp add: ES-valid-def traces-contain-events-def)
  from alpha-no-C-view have \alpha \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \alpha \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})
    by (rule projection-on-union)
  with VIsViewOnE have alpha-on-ES: \alpha \upharpoonright E_{ES} = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
     unfolding is ViewOn-def by simp
  from alpha-consists-of-events VIsViewOnE have \alpha \upharpoonright E_{ES} = \alpha
    \mathbf{by}\ (simp\ add:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
  with alpha-on-ES have \alpha-eq: \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha by auto
  from beta-alpha'-is-trace validES
  have alpha'-consists-of-events: set \alpha' \subseteq E_{ES}
    by (auto simp add: ES-valid-def traces-contain-events-def)
  from alpha'-no-C-view have \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
    by (rule projection-on-union)
  with VIsViewOnE have alpha'-on-ES: \alpha' \mid E_{ES} = \alpha' \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}})
     \mathbf{unfolding}\ \mathit{isViewOn\text{-}def}\ \mathbf{by}\ (\mathit{simp})
  from alpha'-consists-of-events VIsViewOnE have \alpha' \upharpoonright E_{ES} = \alpha'
    by (simp add: list-subset-iff-projection-neutral)
  with alpha'-on-ES have \alpha'-eq: \alpha' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha' by auto
  from alpha-alpha' \alpha-eq \alpha'-eq have \alpha = \alpha' by auto
  with beta-alpha'-is-trace show \beta @ \alpha \in Tr_{ES} by auto
qed
\mathbf{lemma}\ SD\text{-}implies\text{-}FCD:
(SD \ \mathcal{V} \ Tr_{ES}) \Longrightarrow FCD \ \Gamma \ \mathcal{V} \ Tr_{ES}
proof -
   assume SD: SD \mathcal{V} Tr_{ES}
```

```
\mathbf{fix}\ \alpha\ \beta\ c\ v
     assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
       \text{ and } \ v \in \mathit{V}_{\mathcal{V}} \ \cap \nabla_{\Gamma}
       and alpha-C-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
       and \beta @ [c, v] @ \alpha \in Tr_{ES}
     moreover
     with VIsViewOnE have (v \# \alpha) \upharpoonright C_{\mathcal{V}} = []
       unfolding is View On-def V-valid-def VC-disjoint-def projection-def by auto
     ultimately
     have \beta @ (v \# \alpha) \in Tr_{ES}
       using SD unfolding SD-def by auto
     with alpha-C-empty
    have \exists \alpha'. \exists \delta'. (set \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \wedge ((\beta @ \delta' @ [v] @ \alpha') \in Tr_{ES}
                \wedge \alpha' \uparrow V_{\mathcal{V}} = \alpha \uparrow V_{\mathcal{V}} \wedge \alpha' \uparrow C_{\mathcal{V}} = [])
       \mathbf{by}\ (\mathit{metis}\ \mathit{append.simps}(1)\ \mathit{append.simps}(2)\ \mathit{bot-least}\ \mathit{list.set}(1))
  }
  thus ?thesis
     unfolding SD-def FCD-def by auto
{f lemma} SI-implies-BSI:
(SI \ \mathcal{V} \ Tr_{ES}) \Longrightarrow BSI \ \mathcal{V} \ Tr_{ES}
proof -
  assume SI: SI V Tr_{ES}
    fix \alpha \beta c
    assume c \in C_{\mathcal{V}}
       and \beta @ \alpha \in Tr_{ES}
       and alpha-C-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
     with SI have \beta @ c # \alpha \in Tr_{ES}
       \mathbf{unfolding} \, \mathit{SI-def} \, \, \mathbf{by} \, \, \mathit{auto} \, \,
     hence \exists \alpha'. \beta @ c \# \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
       using alpha-C-empty by auto
  thus ?thesis
     unfolding SI-def BSI-def by auto
qed
lemma BSI-implies-I:
(BSI \ \mathcal{V} \ Tr_{ES}) \Longrightarrow (I \ \mathcal{V} \ Tr_{ES})
proof -
  assume BSI: BSI \mathcal V Tr_{ES}
     fix \alpha \beta c
    assume c \in C_{\mathcal{V}}
       and \beta @ \alpha \in Tr_{ES}
```

```
and \alpha \upharpoonright C_{\mathcal{V}} = []
      with BSI obtain \alpha'
         where \beta @ [c] @ \alpha' \in Tr_{ES}
         and \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
         and \alpha' \upharpoonright C_{\mathcal{V}} = []
         \mathbf{unfolding}\ \mathit{BSI-def}
        by blast
      hence
         (\exists \alpha' \beta'. (\beta' @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []) \land 
                           \beta' \uparrow (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \widetilde{\beta} \uparrow (V_{\mathcal{V}} \cup C_{\mathcal{V}}))
        by auto
  }
  thus ?thesis unfolding BSI\text{-}def I\text{-}def
     \mathbf{by} \ auto
qed
\mathbf{lemma}\ \mathit{SIA-implies-BSIA}:
(SIA \ \varrho \ V \ Tr_{ES}) \Longrightarrow (BSIA \ \varrho \ V \ Tr_{ES})
proof -
  assume SIA: SIA \varrho \mathcal V Tr_{ES}
  {
      fix \alpha \beta c
      assume c \in C_{\mathcal{V}}
        and \beta @ \alpha \in \mathit{Tr}_{ES}
        and alpha-C-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
        and (Adm \ V \ \varrho \ Tr_{ES} \ \beta \ c)
      with SIA obtain \beta © c \# \alpha \in Tr_{ES}
         unfolding SIA-def by auto
      hence \exists \alpha'. \beta @ c \# \alpha' \in Tr_{ES} \land \alpha' \mid V_{\mathcal{V}} = \alpha \mid V_{\mathcal{V}} \land \alpha' \mid C_{\mathcal{V}} = []
         using alpha-C-empty by auto
  thus ?thesis
      \mathbf{unfolding}\ \mathit{SIA-def}\ \mathit{BSIA-def}\ \mathbf{by}\ \mathit{auto}
qed
\mathbf{lemma} \ \mathit{BSIA-implies-IA}:
(BSIA \ \varrho \ \mathcal{V} \ Tr_{ES}) \Longrightarrow (IA \ \varrho \ \mathcal{V} \ Tr_{ES})
proof -
  assume BSIA: BSIA \varrho \mathcal V Tr_{ES}
      fix \alpha \beta c
      assume c \in C_{\mathcal{V}}
        and \beta @ \alpha \in Tr_{ES}
        and \alpha \uparrow C_{\mathcal{V}} = []
and (Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c)
      with BSIA obtain \alpha
         where \beta @ [c] @ \alpha' \in Tr_{ES}
        and \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
        and \alpha' \uparrow C_{\mathcal{V}} = []
```

```
\mathbf{unfolding}\ \mathit{BSIA-def}
         \mathbf{by} blast
      hence (\exists \alpha' \beta').
         (\beta' @ [c] @ \alpha' \in \mathit{Tr}_{ES} \land \alpha' \upharpoonright \mathit{V}_{\mathcal{V}} = \alpha \upharpoonright \mathit{V}_{\mathcal{V}} \land \alpha' \upharpoonright \mathit{C}_{\mathcal{V}} = []) \land
         \beta' \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}}))
   }
   \mathbf{thus}~? the sis
      unfolding BSIA-def IA-def by auto
lemma SI-implies-SIA:
SI \ \mathcal{V} \ Tr_{ES} \Longrightarrow SIA \ \varrho \ \mathcal{V} \ Tr_{ES}
proof -
   assume SI: SI \mathcal{V} Tr_{ES}
   {
      fix \alpha \beta c
      assume c \in C_{\mathcal{V}}
         and \beta @ \alpha \in Tr_{ES}
         and \alpha \upharpoonright C_{\mathcal{V}} = []
         and \mathit{Adm}\ \mathcal{V}\ \varrho\ \mathit{Tr}_{ES}\ \beta\ c
      with SI have \beta @ (c \# \alpha) \in Tr_{ES}
         \mathbf{unfolding}\ \mathit{SI-def}\ \mathbf{by}\ \mathit{auto}
   thus ?thesis unfolding SI-def SIA-def by auto
\mathbf{qed}
{\bf lemma}\ BSI-implies\text{-}BSIA:
BSI \ \mathcal{V} \ Tr_{ES} \Longrightarrow BSIA \ \varrho \ \mathcal{V} \ Tr_{ES}
proof -
   assume BSI: BSI \mathcal{V} Tr_{ES}
      fix \alpha \beta c
      assume c \in C_{\mathcal{V}}
         and \beta @ \alpha \in Tr_{ES}
         and \alpha \upharpoonright C_{\mathcal{V}} = []
         and Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c
      with BSI have \exists \alpha'. \beta @ (c \# \alpha') \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
         unfolding BSI-def by auto
   thus ?thesis
      \mathbf{unfolding} \ \mathit{BSI-def} \ \mathit{BSIA-def} \ \mathbf{by} \ \mathit{auto}
\mathbf{qed}
lemma I-implies-IA:
I \ \mathcal{V} \ \mathit{Tr}_{ES} \Longrightarrow IA \ \varrho \ \mathcal{V} \ \mathit{Tr}_{ES}
proof -
   assume I: I \mathcal{V} Tr_{ES}
   {
```

```
\mathbf{fix} \ \alpha \ \beta \ c
      assume c \in C_{\mathcal{V}}
         and \beta @ \alpha \in Tr_{ES}
         and \alpha \upharpoonright C_{\mathcal{V}} = []
         and \mathit{Adm}\ \mathcal{V}\ \varrho\ \mathit{Tr}_{ES}\ \beta\ c
      with I have \exists \alpha' \beta'. \beta' @ (c \# \alpha') \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
                                               \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [] \wedge \beta' \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \upharpoonright (V_{\mathcal{V}} \cup C_{\mathcal{V}})
          unfolding I-def by auto
   }
   \mathbf{thus}~? the sis
      unfolding I-def IA-def by auto
qed
\mathbf{lemma} \ \textit{SI-implies-BSI-for-modified-view}:
\llbracket SI \ \mathcal{V} \ Tr_{ES}; \ \mathcal{V}' = ( \mid V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \ ) \rrbracket \Longrightarrow BSI \ \mathcal{V}' \ Tr_{ES}
   assume SI \ \mathcal{V} \ Tr_{ES}
        and V' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})
      fix \alpha \beta c
      assume c \in C_{\mathcal{V}'}
           and \beta @ \alpha \in Tr_{ES}
           and \alpha \mid C_{\mathcal{V}'} = []
      \mathbf{from} \ \langle c \in C_{\mathcal{V}'} \rangle \ \ \langle \mathcal{V}' = ( V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \ ) \rangle
      have c \in C_{\mathcal{V}}
         by auto
      \mathbf{from} \ \langle \alpha | C_{\mathcal{V}'} = [] \rangle \ \langle \mathcal{V}' = [] \ V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{\} \ , \ C = C_{\mathcal{V}} \ \} \rangle
      have \alpha \mid C_{\mathcal{V}} = []
         by auto
      \mathbf{from} \,\, \langle \, c \in \, C_{\mathcal{V}} \rangle \,\, \langle \beta \  \, @ \,\, \alpha \in \, \mathit{Tr}_{ES} \rangle \,\, \langle \alpha | \, C_{\mathcal{V}} = [] \rangle
      have \beta @ [c] @ \alpha \in Tr_{ES}
         using \langle SI \ \mathcal{V} \ Tr_{ES} \rangle unfolding SI-def by auto
      hence \exists \alpha' . \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}'} = \alpha \upharpoonright V_{\mathcal{V}'} \land \alpha' \upharpoonright C_{\mathcal{V}'} = []
          using \langle \alpha \mid C_{\mathcal{V}'} = [] \rangle
          \mathbf{by} blast
   with \langle SI \ \mathcal{V} \ Tr_{ES} \rangle show ?thesis
      unfolding BSI-def using \langle V' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) \rangle by auto
qed
{\bf lemma}\ BSI-implies-SI-for-modified\text{-}view:
\llbracket \mathit{BSI} \ \mathcal{V}' \ \mathit{Tr}_{\mathit{ES}}; \ \mathcal{V}' = \{ \} \ V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \ \} \rrbracket \Longrightarrow \mathit{SI} \ \mathcal{V} \ \mathit{Tr}_{\mathit{ES}}
   \mathbf{unfolding}\ \mathit{SI-def}
   proof (clarsimp)
   fix \alpha \beta c
   assume BSI-view': BSI (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) Tr_{ES}
   assume alpha-no-C-view : \alpha \upharpoonright C_{\mathcal{V}} = []
   assume c-C-view: c \in C_{\mathcal{V}}
   assume beta-alpha-is-trace : \beta @ \alpha \in Tr_{ES}
```

```
from BSI-view' have \forall c \in C_{\mathcal{V}}. \beta @ \alpha \in Tr_{ES} \land \alpha \upharpoonright C_{\mathcal{V}} = []
           \longrightarrow (\exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \land \alpha' \uparrow C_{\mathcal{V}} = [])
          by (auto simp add: BSI-def)
     with beta-alpha-is-trace alpha-no-C-view have \forall c \in C_{\mathcal{V}}.
                     (\exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \land \alpha' \upharpoonright C_{\mathcal{V}} = [])
          by auto
    with this BSI-view' c-C-view obtain \alpha'
          where beta-c-alpha'-is-trace: \beta @ [c] @ <math>\alpha' \in Tr_{ES}
               and alpha-alpha': \alpha' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}})
               and alpha'-no-C-view : \alpha' \upharpoonright C_{\mathcal{V}} = []
          by auto
    {f from}\ beta-alpha-is-trace\ validES
    have alpha-consists-of-events: set \alpha \subseteq E_{ES}
         by (auto simp add: ES-valid-def traces-contain-events-def)
    from alpha-no-C-view have \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
          by (rule projection-on-union)
     with VIsViewOnE have alpha-on-ES: \alpha \upharpoonright E_{ES} = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
          unfolding is ViewOn-def by (simp)
    from alpha-consists-of-events VIsViewOnE have \alpha \upharpoonright E_{ES} = \alpha
          by (simp add: list-subset-iff-projection-neutral)
    with alpha-on-ES have \alpha-eq: \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha by auto
    from beta-c-alpha'-is-trace validES
    have alpha'-consists-of-events: set \alpha' \subseteq E_{ES}
         by (auto simp add: ES-valid-def traces-contain-events-def)
    from alpha'-no-C-view have \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}})
          by (rule projection-on-union)
     with VIsViewOnE have alpha'-on-ES: \alpha' \mid E_{ES} = \alpha' \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}})
          unfolding isViewOn-def by (simp)
    from alpha'-consists-of-events VIsViewOnE have \alpha' \upharpoonright E_{ES} = \alpha'
          by (simp add: list-subset-iff-projection-neutral)
    with alpha'-on-ES have \alpha'-eq: \alpha' \uparrow (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha' by auto
    from alpha-alpha' \alpha-eq \alpha'-eq have \alpha = \alpha' by auto
    with beta-c-alpha'-is-trace show \beta @ c # \alpha \in Tr_{ES} by auto
qed
{\bf lemma}\ SIA\mbox{-}implies\mbox{-}BSIA\mbox{-}for\mbox{-}modified\mbox{-}view:
\llbracket \mathit{SIA} \ \varrho \ \mathcal{V} \ \mathit{Tr}_{ES}; \ \mathcal{V}' = ( \mid V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \ ) \ ; \ \varrho \ \mathcal{V} = \varrho' \ \mathcal{V}' \rrbracket \Longrightarrow \mathit{BSIA} \ \varrho' \ \mathcal{V}' \ \mathit{Tr}_{ES} = \{ \} \ , \ C = C_{\mathcal{V}} \ ) \ ; \ \varrho \ \mathcal{V} = [ \} \ \mathcal{V}' \rrbracket \Longrightarrow \mathit{BSIA} \ \varrho' \ \mathcal{V}' \ \mathsf{Tr}_{ES} = \{ \} \ , \ C = C_{\mathcal{V}} \ \} \ ; \ \varrho \ \mathcal{V} = [ \} \ \mathcal{V}' \rrbracket \Longrightarrow \mathit{BSIA} \ \varrho' \ \mathcal{V}' \ \mathsf{Tr}_{ES} = \{ \} \ , \ C = C_{\mathcal{V}} \ \} \ ; \ \varrho \ \mathcal{V} = [ \} \ \mathcal{V}' \rrbracket \Longrightarrow \mathit{BSIA} \ \varrho' \ \mathcal{V}' \ \mathsf{Tr}_{ES} = \{ \} \ , \ C = C_{\mathcal{V}} \ \} \ ; \ \varrho \ \mathcal{V} = [ \} \ \mathcal{V}' \rrbracket \Longrightarrow \mathit{BSIA} \ \varrho' \ \mathcal{V}' \ \mathsf{Tr}_{ES} = \{ \} \ , \ C = C_{\mathcal{V}} \ \} \ ; \ \varrho \ \mathcal{V} = [ \} \ \mathcal{V}' \ \mathsf{Tr}_{ES} = \{ \} \ \mathsf{V}' \ \mathsf{Tr}_{ES} = \{ \} \ \mathsf{Tr}_{ES}
```

```
proof -
   assume SIA \varrho \mathcal{V} Tr_{ES}
        and V' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})
        and \varrho \mathcal{V} = \varrho' \mathcal{V}'
       fix \alpha \beta c
       assume c \in C_{\mathcal{V}'}
            and \beta @ \alpha \in Tr_{ES}
            and \alpha \upharpoonright C_{\mathcal{V}'} = []
            and Adm' \mathcal{V}' \varrho' Tr_{ES} \beta c
       from \langle c \in C_{\mathcal{V}'} \rangle \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) \rangle
       have c \in C_{\mathcal{V}}
          by auto
       \mathbf{from} \ \langle \alpha | C_{\mathcal{V}'} = [] \rangle \ \langle \mathcal{V}' = (] \ V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{\} \ , \ C = C_{\mathcal{V}} \ ) \rangle
       have \alpha \mid C_{\mathcal{V}} = []
          by auto
       \mathbf{from} \ \ \langle Adm \ \mathcal{V}' \ \varrho' \ Tr_{ES} \ \beta \ c \rangle \ \langle \varrho \ \mathcal{V} = \varrho' \ \mathcal{V}' \rangle
       have Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c
          by (simp add: Adm-def)
       \mathbf{from} \ \langle c \in \mathit{C}_{\mathcal{V}} \rangle \ \langle \beta \ @ \ \alpha \in \mathit{Tr}_{\mathit{ES}} \rangle \ \langle \alpha | \ \mathit{C}_{\mathcal{V}} = [] \rangle \ \langle \mathit{Adm} \ \mathcal{V} \ \varrho \ \mathit{Tr}_{\mathit{ES}} \ \beta \ c \rangle
       have \beta @ [c] @ \alpha \in Tr_{ES}
           using \langle SIA \ \varrho \ V \ Tr_{ES} \rangle unfolding SIA-def by auto
       \mathbf{hence} \ \exists \alpha'. \ \beta \ @ \ [c] \ @ \ \alpha' \in \mathit{Tr}_{ES} \land \ \alpha' \upharpoonright \ V_{\mathcal{V}'} = \alpha \upharpoonright \ V_{\mathcal{V}'} \ \land \alpha' \upharpoonright \ C_{\mathcal{V}'} = []
          using \langle \alpha \mid C_{\mathcal{V}'} = [] \rangle by blast
   with \langle SIA \ \varrho \ \mathcal{V} \ Tr_{ES} \rangle show ?thesis
       unfolding BSIA-def using \langle \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) \rangle
       by auto
qed
{\bf lemma}\ BSIA\text{-}implies\text{-}SIA\text{-}for\text{-}modified\text{-}view:
    [\![BSIA\ \varrho'\ \mathcal{V}'\ Tr_{ES};\ \mathcal{V}'=(\![\ V=V_{\mathcal{V}}\cup N_{\mathcal{V}}\ ,\ N=\{\}\ ,\ C=C_{\mathcal{V}}\ [\![\ ]\!];\ \varrho\ \mathcal{V}=\varrho'\ \mathcal{V}']\!] \Longrightarrow SIA\ \varrho\ \mathcal{V}\ Tr_{ES}
   assume BSIA \varrho' \mathcal{V}' Tr_{ES}
        and V' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})
        and \varrho \ \mathcal{V} = \varrho' \ \mathcal{V}'
       fix \alpha \beta c
       assume c \in C_{\mathcal{V}}
            and \beta @ \alpha \in Tr_{ES}
            and \alpha \mid C_{\mathcal{V}} = []
            and Adm \mathcal{V} \varrho \operatorname{Tr}_{ES} \beta c
       \mathbf{from} \ \langle c \in C_{\mathcal{V}} \rangle \ \ \langle \mathcal{V}' = ( \mid V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \ , \ N = \{ \} \ , \ C = C_{\mathcal{V}} \ ) \rangle
       have c \in C_{\mathcal{V}'}
          by auto
       \mathbf{from} \ \langle \alpha | C_{\mathcal{V}} = [] \rangle \ \langle \mathcal{V}' = ( V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} ) \rangle
       have \alpha \upharpoonright C_{\mathcal{V}'} = []
          by auto
       \mathbf{from} \  \  \, \langle Adm \  \, \mathcal{V} \  \, \varrho \  \, \mathit{Tr}_{ES} \  \, \beta \  \, c \rangle \  \, \langle \varrho \  \, \mathcal{V} = \varrho' \  \, \mathcal{V}' \rangle
```

```
have Adm~\mathcal{V}'~\varrho'~Tr_{ES}~\beta~c
          by (simp add: Adm-def)
       \mathbf{from} \ \langle c \in C_{\mathcal{V}'} \rangle \ \langle \beta \ @ \ \alpha \in \mathit{Tr}_{ES} \rangle \ \langle \alpha | \ C_{\mathcal{V}'} = [] \rangle \ \langle \mathit{Adm} \ \mathcal{V}' \ \varrho' \ \mathit{Tr}_{ES} \ \beta \ c \rangle
       obtain \alpha' where \beta @ [c] @ \alpha' \in Tr_{ES}
          \begin{array}{c} \mathbf{and} \quad \alpha' \upharpoonright V_{\mathcal{V}'} = \alpha \upharpoonright V_{\mathcal{V}'} \\ \mathbf{and} \quad \alpha' \upharpoonright C_{\mathcal{V}'} = [] \\ \mathbf{using} \ \langle \mathit{BSIA} \ \varrho' \ \mathcal{V}' \ \mathit{Tr}_{\mathit{ES}} \rangle \quad \mathbf{unfolding} \ \mathit{BSIA-def} \ \mathbf{by} \ \mathit{blast} \end{array}
       \mathbf{from} \ \langle \beta \ @ \ \alpha \in \mathit{Tr}_{ES} \rangle \ \mathit{validES}
      have alpha-consists-of-events: set \alpha \subseteq E_{ES}
          by (auto simp add: ES-valid-def traces-contain-events-def)
      from \langle \beta @ [c] @ \alpha' \in Tr_{ES} \rangle validES
       have alpha'-consists-of-events: set \alpha' \subseteq E_{ES}
          by (auto simp add: ES-valid-def traces-contain-events-def)
       \mathbf{from} \ \langle \alpha' \mid V_{\mathcal{V}'} = \alpha \mid V_{\mathcal{V}'} \rangle \ \langle \mathcal{V}' = ( \mid V = V_{\mathcal{V}} \cup N_{\mathcal{V}} \mid, N = \{ \} \mid, C = C_{\mathcal{V}} \mid) \rangle
      have \alpha' \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) = \alpha \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) by auto with (\alpha' \upharpoonright C_{\mathcal{V}'} = []) \land (\alpha \upharpoonright C_{\mathcal{V}} = []) \land (\mathcal{V}' = (] \lor V \lor V_{\mathcal{V}}) \land (\mathcal{V} \lor V_{\mathcal{V}}) \land (\mathcal{V} \lor V_{\mathcal{V}}) \land (\mathcal{V} \lor V_{\mathcal{V}})
      have \alpha' \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}}) = \alpha \mid (V_{\mathcal{V}} \cup N_{\mathcal{V}} \cup C_{\mathcal{V}})
          by (simp add: projection-on-union)
       \mathbf{with}\ \mathit{VIsViewOnE}\ alpha-consists-of-events\ alpha'-consists-of-events
      have \alpha' = \alpha unfolding isViewOn\text{-}def
          by (simp add: list-subset-iff-projection-neutral)
      hence \beta @ [c] @ \alpha \in Tr_{ES}
          using \langle \beta @ [c] @ \alpha' \in Tr_{ES} \rangle by blast
   with \langle BSIA \ \varrho' \ \mathcal{V}' \ Tr_{ES} \rangle show ?thesis
       unfolding SIA-def using \langle V' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}), C = C_{\mathcal{V}} \rangle by auto
qed
end
lemma Adm-implies-Adm-for-modified-rho:
\llbracket Adm \ \mathcal{V}_2 \ \varrho_2 \ Tr \ \alpha \ e; \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1) \rrbracket \Longrightarrow Adm \ \mathcal{V}_1 \ \varrho_1 \ Tr \ \alpha \ e
   assume Adm \ \mathcal{V}_2 \ \varrho_2 \ Tr \ \alpha \ e
      and \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)
   then obtain \gamma
      where \gamma @ [e] \in Tr
          and \gamma \upharpoonright \varrho_2 \mathcal{V}_2 = \alpha \upharpoonright \varrho_2 \mathcal{V}_2
       unfolding Adm-def by auto
   thus Adm \ \mathcal{V}_1 \ \varrho_1 \ Tr \ \alpha \ e
       unfolding Adm-def
       using \langle \varrho_1 | \mathcal{V}_1 \subseteq \varrho_2 | \mathcal{V}_2 \rangle non-empty-projection-on-subset
      \mathbf{by} blast
qed
```

58

 ${\bf context}\ BSPT axonomy Different Corrections$

begin

```
\mathbf{lemma} \ \mathit{SI-implies-FCI} \colon
(SI \ V \ Tr_{ES}) \Longrightarrow FCI \ \Gamma \ V \ Tr_{ES}
proof -
    assume SI: SI V Tr_{ES}
      \mathbf{fix}\ \alpha\ \beta\ c\ v
      assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
        \begin{array}{ll} \mathbf{and} & v \in V_{\mathcal{V}} \cap \nabla_{\Gamma} \\ \mathbf{and} & \beta \ @ \ [v] \ @ \ \alpha \in \mathit{Tr}_{ES} \end{array}
        and alpha-C-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
      moreover
      with VIsViewOnE have (v \# \alpha) \upharpoonright C_{\mathcal{V}} = []
        unfolding is View On-def V-valid-def VC-disjoint-def projection-def by auto
      have \beta \ @ \ [c \ , \ v] \ @ \ \alpha \in \mathit{Tr}_{ES} \ \text{using} \ \mathit{SI} \ \text{unfolding} \ \mathit{SI-def} \ \text{by} \ \mathit{auto}
      with alpha-C-empty
     have \exists \alpha' . \exists \delta'.
                     (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ [c] @ \delta' @ [v] @ \alpha') \in Tr_{ES}
                         \wedge \alpha' \uparrow V_{\mathcal{V}} = \alpha \uparrow V_{\mathcal{V}} \wedge \alpha' \uparrow C_{\mathcal{V}} = [])
         \mathbf{by}\ (\mathit{metis}\ \mathit{append}.\mathit{simps}(1)\ \mathit{append}.\mathit{simps}(2)\ \mathit{bot\text{-}least}\ \mathit{list}.\mathit{set}(1))
  thus ?thesis
      unfolding SI-def FCI-def by auto
qed
\mathbf{lemma}\ \mathit{SIA-implies-FCIA}:
(\mathit{SIA}\ \varrho\ \mathcal{V}\ \mathit{Tr}_{ES}) \Longrightarrow \mathit{FCIA}\ \varrho\ \Gamma\ \mathcal{V}\ \mathit{Tr}_{ES}
proof -
    assume SIA: SIA \varrho \mathcal V Tr_{ES}
      \mathbf{fix}\ \alpha\ \beta\ c\ v
      assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
         and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
        and \beta @ [v] @ \alpha \in Tr_{ES}
        and alpha-C-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
         and Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c
      moreover
      with VIsViewOnE have (v \# \alpha) \upharpoonright C_{\mathcal{V}} = []
        unfolding is View On-def V-valid-def VC-disjoint-def projection-def by auto
      ultimately
      have \beta \ @ \ [c \ , \ v] \ @ \ \alpha \in \mathit{Tr}_{ES} \ using \ \mathit{SIA} \ unfolding \ \mathit{SIA-def} \ by \ \mathit{auto}
      with alpha-C-empty
      have \exists \alpha' . \exists \delta'.
                     (set \ \delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ((\beta @ [c] @ \delta' @ [v] @ \alpha') \in Tr_{ES}
                        \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])
         \mathbf{by}\ (\mathit{metis}\ \mathit{append}.\mathit{simps}(1)\ \mathit{append}.\mathit{simps}(2)\ \mathit{bot-least}\ \mathit{list}.\mathit{set}(1))
  thus ?thesis
```

```
unfolding SIA-def FCIA-def by auto
\mathbf{qed}
lemma FCI-implies-FCIA:
(\mathit{FCI}\ \Gamma\ \mathcal{V}\ \mathit{Tr}_{ES}) \Longrightarrow \mathit{FCIA}\ \varrho\ \Gamma\ \mathcal{V}\ \mathit{Tr}_{ES}
  assume FCI: FCI \Gamma V Tr_{ES}
     \mathbf{fix}\ \alpha\ \beta\ c\ v
     assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
       and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
        and \beta @ [v] @ \alpha \in Tr_{ES}
        and \alpha \upharpoonright C_{\mathcal{V}} = []
     with FCI have \exists \alpha' \delta'. set \delta' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \wedge
                                  \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
                                      unfolding FCI-def by auto
  }
  \mathbf{thus}~? the sis
     unfolding FCI-def FCIA-def by auto
qed
\mathbf{lemma} \ \mathit{Trivially-fulfilled-SR-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow SR \ \mathcal{V} \ Tr_{ES}
proof -
  assume C_{\mathcal{V}} = \{\}
   {
     fix \tau
     assume \tau \in \mathit{Tr}_{ES}
     hence \tau = \tau \upharpoonright E_{ES} using validES
        unfolding ES-valid-def traces-contain-events-def projection-def by auto
     with \langle C_{\mathcal{V}} = \{ \} \rangle have \tau = \tau | (V_{\mathcal{V}} \cup N_{\mathcal{V}})
        using VIsViewOnE unfolding isViewOn-def by auto
     with \langle \tau \in \mathit{Tr}_{ES} \rangle have \tau \upharpoonright (V_{\mathcal{V}} \cup N_{\mathcal{V}}) \in \mathit{Tr}_{ES}
        by auto
  thus ?thesis
     unfolding SR-def by auto
{\bf lemma} \ \textit{Trivially-fulfilled-R-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow R \ \mathcal{V} \ Tr_{ES}
proof -
  assume C_{\mathcal{V}} = \{\}
     fix \tau
     assume \tau \in \mathit{Tr}_{ES}
     hence \tau = \tau \upharpoonright E_{ES} using validES
       unfolding ES-valid-def traces-contain-events-def projection-def by auto
     with \langle C_{\mathcal{V}} = \{ \} \rangle have \tau = \tau | (V_{\mathcal{V}} \cup N_{\mathcal{V}})
```

```
{\bf using} \ \textit{VIsViewOnE} \ {\bf unfolding} \ \textit{isViewOn-def} \ {\bf by} \ \textit{auto}
     \mathbf{with} \ \ \overleftarrow{\tau} \in \mathit{Tr}_{ES} \land C_{\mathcal{V}} = \{\} \land \ \mathbf{have} \ \exists \ \tau' \in \mathit{Tr}_{ES}. \ \tau \restriction C_{\mathcal{V}} = [] \ \land \ \tau' \restriction V_{\mathcal{V}} = \tau \restriction V_{\mathcal{V}}
        unfolding projection-def by auto
  thus ?thesis
     unfolding R-def by auto
qed
{\bf lemma} \ \textit{Trivially-fulfilled-SD-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow SD \ \mathcal{V} \ Tr_{ES}
  by (simp add: SD-def)
{\bf lemma} \  \, \textit{Trivially-fulfilled-BSD-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow BSD \ \mathcal{V} \ Tr_{ES}
  by (simp add: BSD-def)
{\bf lemma} \ \textit{Trivially-fulfilled-D-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow D \ \mathcal{V} \ Tr_{ES}
  by (simp add: D-def)
{\bf lemma} \ \textit{Trivially-fulfilled-FCD-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow \mathit{FCD} \; \Gamma \; \mathcal{V} \; \mathit{Tr}_{ES}
  by (simp add: FCD-def)
{\bf lemma} \ \textit{Trivially-fullfilled-R-V-empty}:
V_{\mathcal{V}} = \{\} \Longrightarrow R \ \mathcal{V} \ Tr_{ES}
proof -
  assume V_{\mathcal{V}} = \{\}
  {
     fix \tau
     assume \tau \in \mathit{Tr}_{ES}
     let ?τ'=[]
     from \langle \tau \in \mathit{Tr}_{ES} \rangle have ?\tau' \in \mathit{Tr}_{ES}
       using validES
       unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto
     with \langle V_{\mathcal{V}} = \{\} \rangle
     have \exists \tau' \in Tr_{ES}. \tau' \mid C_{\mathcal{V}} = [] \land \tau' \mid V_{\mathcal{V}} = \tau \mid V_{\mathcal{V}}
       \mathbf{by}\ (\textit{metis projection-on-empty-trace projection-to-empty-trace})
  thus ?thesis
     unfolding R-def by auto
qed
{\bf lemma} \ \textit{Trivially-fulfilled-BSD-V-empty}:
V_{\mathcal{V}} = \{\} \Longrightarrow BSD \ \mathcal{V} \ Tr_{ES}
proof -
  assume V_{\mathcal{V}} = \{\}
     fix \alpha \beta c
     assume \beta @ [c] @ \alpha \in Tr_{ES}
       and \alpha \upharpoonright C_{\mathcal{V}} = []
```

```
\mathbf{from} \ {\scriptstyle \langle \beta \ @ \ [c] \ @ \ \alpha \in \ Tr_{ES} \rangle} \ \mathbf{have} \ \beta \in \ Tr_{ES}
        using validES
        unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto
     let ?\alpha' = []
     from \langle \beta \in Tr_{ES} \rangle \langle V_{\mathcal{V}} = \{ \} \rangle
     have \beta@?\alpha' \in Tr_{ES} \land ?\alpha' \mid V_{\mathcal{V}} = \alpha \mid V_{\mathcal{V}} \land ?\alpha' \mid C_{\mathcal{V}} = []
        by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
     hence
     \exists \alpha'.
        \beta @ \alpha' \in Tr_{ES} \wedge \alpha' \mid V_{\mathcal{V}} = \alpha \mid V_{\mathcal{V}} \wedge \alpha' \mid C_{\mathcal{V}} = []  by blast
  thus ?thesis
     unfolding BSD-def by auto
qed
\mathbf{lemma} \ \mathit{Trivially-fulfilled-D-V-empty}:
V_{\mathcal{V}} = \{\} \Longrightarrow D \,\mathcal{V} \, Tr_{ES}
proof -
  assume V_{\mathcal{V}} = \{\}
  {
     fix \alpha \beta c
     assume \beta @ [c] @ \alpha \in Tr_{ES}
        and \alpha \upharpoonright C_{\mathcal{V}} = []
     from \langle \beta @ [c] @ \alpha \in Tr_{ES} \rangle have \beta \in Tr_{ES}
        unfolding ES-valid-def traces-prefixclosed-def prefix-def by auto
     let ?\beta'=\beta and ?\alpha'=[]
     \mathbf{from} \ \langle \beta \in \mathit{Tr}_{ES} \rangle \ \langle V_{\mathcal{V}} = \{\} \rangle
     have ?\beta'@?\alpha' \in Tr_{ES} \land ?\alpha' \mid V_{\mathcal{V}} = \alpha \mid V_{\mathcal{V}} \land ?\alpha' \mid C_{\mathcal{V}} = [] \land ?\beta' \mid (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta \mid (V_{\mathcal{V}} \cup C_{\mathcal{V}})
        by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
     hence
     \exists \alpha' \beta'.
        \beta' @ \alpha' \in Tr_{ES} \wedge \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \wedge \alpha' | C_{\mathcal{V}} = [ | \wedge \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}})
        by blast
  }
  thus ?thesis
     unfolding D-def by auto
qed
{\bf lemma} \ \textit{Trivially-fulfilled-FCD-V-empty}:
V_{\mathcal{V}} = \{\} \Longrightarrow FCD \ \Gamma \ \mathcal{V} \ Tr_{ES}
  by (simp add: FCD-def)
lemma Trivially-fulfilled-FCD-Nabla-\Upsilon-empty:
\llbracket \nabla_{\Gamma} = \{\} \lor \Upsilon_{\Gamma} = \{\} \rrbracket \Longrightarrow \mathit{FCD} \ \Gamma \ \mathcal{V} \ \mathit{Tr}_{ES}
proof -
  assume \nabla_{\Gamma} = \{\} \vee \Upsilon_{\Gamma} = \{\}
  thus ?thesis
```

```
proof(rule disjE)
      assume \nabla_{\Gamma} = \{\} thus ?thesis
         by (simp add: FCD-def)
  next
     assume \Upsilon_{\Gamma} = \{\} thus ?thesis
        by (simp add: FCD-def)
  qed
qed
\textbf{lemma} \ \textit{Trivially-fulfilled-FCD-N-subseteq-} \Delta \text{-} \textit{and-BSD} \text{:}
[N_{\mathcal{V}} \subseteq \Delta_{\Gamma}; BSD \ \mathcal{V} \ Tr_{ES}] \Longrightarrow FCD \ \Gamma \ \mathcal{V} \ Tr_{ES}
proof -
  assume N_{\mathcal{V}} \subseteq \Delta_{\Gamma}
       and \mathit{BSD}\ \mathcal{V}\ \mathit{Tr}_{\mathit{ES}}
     fix \alpha \beta c v
     assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
          and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
          and \beta @ [c,v] @ \alpha \in Tr_{ES}
          and \alpha \mid C_{\mathcal{V}} = []
      from \langle c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \rangle have c \in C_{\mathcal{V}}
         by auto
      from \langle v \in V_{\mathcal{V}} \cap \nabla_{\Gamma} \rangle have v \in V_{\mathcal{V}}
        by auto
     let ?\alpha = [v] @ \alpha
      \mathbf{from} \,\, \langle v \in \, V_{\mathcal{V}} \rangle \,\, \langle \alpha | \, C_{\mathcal{V}} = [] \rangle \,\, \mathbf{have} \,\, ?\!\! \alpha | \, C_{\mathcal{V}} \!\! = \!\! []
         \mathbf{using}\ \mathit{VIsViewOnE}
         unfolding is ViewOn-def V-valid-def VC-disjoint-def projection-def by auto
      from \langle \beta @ [c,v] @ \alpha \in Tr_{ES} \rangle have \beta @ [c] @ ?\alpha \in Tr_{ES}
         \mathbf{by} auto
      from \langle BSD \ \mathcal{V} \ Tr_{ES} \rangle
      obtain \alpha'
         where \beta @ \alpha' \in Tr_{ES}
            and \alpha' \mid V_{\mathcal{V}} = ([v] \stackrel{\frown}{@} \alpha) \mid V_{\mathcal{V}}
            and \alpha' \mid C_{\mathcal{V}} = []
         using \langle c \in C_{\mathcal{V}} \rangle \langle \beta @ [c] @ ?\alpha \in Tr_{ES} \rangle \langle ?\alpha | C_{\mathcal{V}} = [] \rangle
         unfolding BSD-def by auto
      \mathbf{from} \langle v \in V_{\mathcal{V}} \rangle \langle \alpha' | V_{\mathcal{V}} = ([v] @ \alpha) | V_{\mathcal{V}} \rangle \mathbf{have} \ \alpha' | V_{\mathcal{V}} = [v] @ \alpha | V_{\mathcal{V}}
         \mathbf{by}\ (simp\ add\colon projection\text{-}def)
      then obtain \delta \alpha''
         where \alpha' = \delta @ [v] @ \alpha''
            and \delta | V_{\mathcal{V}} = []
            and \alpha'' | \dot{V}_{\mathcal{V}} = \alpha | V_{\mathcal{V}}
          using projection-split-first-with-suffix by fastforce
      from \langle \alpha' | C_{\mathcal{V}} = [] \rangle \langle \alpha' = \delta @ [v] @ \alpha'' \rangle have \delta | C_{\mathcal{V}} = []
        by (metis append-is-Nil-conv projection-concatenation-commute)
      from \langle \alpha' | C_{\mathcal{V}} = [] \rangle \langle \alpha' = \delta @ [v] @ \alpha'' \rangle have \alpha'' | C_{\mathcal{V}} = []
        by (metis append-is-Nil-conv projection-concatenation-commute)
```

```
from \langle \beta @ \alpha' \in Tr_{ES} \rangle have set \alpha' \subseteq E_{ES} using validES
         unfolding ES-valid-def traces-contain-events-def by auto
      with \langle \alpha' = \delta @ [v] @ \alpha'' \rangle have set \delta \subseteq E_{ES}
        by auto
      with \langle \delta | C_{\mathcal{V}} = [] \rangle \langle \delta | V_{\mathcal{V}} = [] \rangle \langle N_{\mathcal{V}} \subseteq \Delta_{\Gamma} \rangle
      have (set \ \delta) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})
         {\bf using} \ \ VIs View On E \ projection-empty-implies-absence-of-events
         {\bf unfolding} \ is ViewOn\text{-}def \ projection\text{-}def \ {\bf by} \ blast
      let ?\beta = \beta and ?\delta' = \delta and ?\alpha' = \alpha''
      \mathbf{from} \,\, \langle (set \,\, \delta) \subseteq (N_{\mathcal{V}} \,\cap\, \Delta_{\Gamma}) \rangle \,\, \langle \beta \,\, @ \,\, \alpha' \in \mathit{Tr}_{ES} \rangle \,\, \langle \alpha' = \delta \,\, @ \,\, [v] \,\, @ \,\, \alpha'' \rangle
                   \langle \alpha'' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \rangle \langle \alpha'' | C_{\mathcal{V}} = [] \rangle
      \mathbf{have} \ (\mathit{set} \ ?\delta') \subseteq (N_{\mathcal{V}} \ \cap \ \Delta_{\Gamma}) \ \wedge \ ?\beta \ @ \ ?\delta' \ @ \ [v] \ @ \ ?\alpha' \in \mathit{Tr}_{ES} \ \wedge \ ?\alpha' | \ V_{\mathcal{V}} = \alpha | \ V_{\mathcal{V}} \ \wedge \ ?\alpha' | \ C_{\mathcal{V}} = []
      hence \exists \alpha''' \delta''. (set \delta'') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \wedge (\beta @ \delta'' @ [v] @ \alpha''') \in Tr_{ES}
                     \wedge \alpha''' \uparrow \dot{V}_{\mathcal{V}} = \alpha \uparrow \dot{V}_{\mathcal{V}} \land \alpha''' \uparrow C_{\mathcal{V}} = []
         by auto
   }
  thus ?thesis
      unfolding FCD-def by auto
qed
{\bf lemma} \ \textit{Trivially-fulfilled-SI-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow SI \ \mathcal{V} \ Tr_{ES}
  by (simp add: SI-def)
{\bf lemma} \ \textit{Trivially-fulfilled-BSI-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow BSI \ \mathcal{V} \ Tr_{ES}
  by (simp add: BSI-def)
{\bf lemma} \ \textit{Trivially-fulfilled-I-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow I \ \mathcal{V} \ \mathit{Tr}_{ES}
  by (simp add: I-def)
lemma Trivially-fulfilled-FCI-C-empty:
C_{\mathcal{V}} = \{\} \Longrightarrow FCI \ \Gamma \ \mathcal{V} \ Tr_{ES}
  by (simp add: FCI-def)
{\bf lemma} \ \textit{Trivially-fulfilled-SIA-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow SIA \ \varrho \ \mathcal{V} \ Tr_{ES}
  by (simp add: SIA-def)
{\bf lemma} \  \, \textit{Trivially-fulfilled-BSIA-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow BSIA \ \varrho \ \mathcal{V} \ Tr_{ES}
  by (simp add: BSIA-def)
\mathbf{lemma} \ \mathit{Trivially-fulfilled-IA-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow IA \ \varrho \ \mathcal{V} \ Tr_{ES}
  by (simp add: IA-def)
```

```
{\bf lemma} \ \textit{Trivially-fulfilled-FCIA-C-empty}:
C_{\mathcal{V}} = \{\} \Longrightarrow FCIA \ \Gamma \ \varrho \ \mathcal{V} \ Tr_{ES}
  by (simp add: FCIA-def)
\mathbf{lemma} \ \mathit{Trivially-fulfilled-FCI-V-empty}:
V_{\mathcal{V}} = \{\} \Longrightarrow FCI \ \Gamma \ \mathcal{V} \ Tr_{ES}
  by (simp add: FCI-def)
{\bf lemma} \ \textit{Trivially-fulfilled-FCIA-V-empty}:
V_{\mathcal{V}} = \{\} \Longrightarrow FCIA \ \varrho \ \Gamma \ \mathcal{V} \ Tr_{ES}
  by (simp add: FCIA-def)
{\bf lemma}\ \textit{Trivially-fulfilled-BSIA-V-empty-rho-subseteq-C-N}:
\llbracket V_{\mathcal{V}} = \{\}; \ \varrho \ \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}}) \ \rrbracket \Longrightarrow \mathit{BSIA} \ \varrho \ \ \mathcal{V} \ \mathit{Tr}_{ES}
proof -
  assume V_{\mathcal{V}} = \{\}
      and \varrho \ \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}})
     \mathbf{fix} \ \alpha \ \beta \ c
     assume c \in C_{\mathcal{V}}
        and \beta @ \alpha \in Tr_{ES}
        and \alpha \mid C_{\mathcal{V}} = []
         and \mathit{Adm}\ \mathcal{V}\ \varrho\ \mathit{Tr}_{ES}\ \beta\ c
     from \langle Adm \ V \ \varrho \ Tr_{ES} \ \beta \ c \rangle
     obtain \gamma
        where \gamma @ [c] \in Tr_{ES}
          and \gamma | (\varrho \ \mathcal{V}) = \beta | (\varrho \ \mathcal{V})
        unfolding Adm-def by auto
     from this(1) have \gamma \in Tr_{ES}
        using validES
        unfolding ES-valid-def traces-prefixclosed-def prefix-def by auto
     moreover
     from \langle \beta @ \alpha \in Tr_{ES} \rangle have \beta \in Tr_{ES}
        using validES
        unfolding ES-valid-def traces-prefixclosed-def prefix-def by auto
     ultimately
     have \beta | E_{ES} = \gamma | E_{ES}
        using validES\ VIsViewOnE\ \langle V_{\mathcal{V}} = \{\} \rangle\ \langle \gamma | (\varrho\ \mathcal{V}) = \beta | (\varrho\ \mathcal{V}) \rangle\ \langle \varrho\ \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}}) \rangle
          non-empty-projection-on-subset
        {\bf unfolding}\ ES-valid-def\ is\ ViewOn-def\ traces-contain-events-def
        by (metis empty-subsetI sup-absorb2 sup-commute)
     hence \beta @ [c] \in Tr_{ES} using validES \lor \gamma @ [c] \in Tr_{ES} \lor \beta \in Tr_{ES} \lor \gamma \in Tr_{ES} \lor \gamma
        {\bf unfolding}\ \textit{ES-valid-def traces-contain-events-def}
        \mathbf{by}\ (metis\ list-subset-iff-projection-neutral\ subset I)
     let ?\alpha' = []
     from \langle \beta @ [c] \in Tr_{ES} \rangle \langle V_{\mathcal{V}} = \{\} \rangle
     have \beta @ [c] @ ?\alpha' \in Tr_{ES} \land ?\alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land ?\alpha' | C_{\mathcal{V}} = []
       \mathbf{by}\ (simp\ add:\ projection-on-empty-trace\ projection-to-emptyset-is-empty-trace)
     hence \exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \mid V_{\mathcal{V}} = \alpha \mid V_{\mathcal{V}} \land \alpha' \mid C_{\mathcal{V}} = []
        \mathbf{by} auto
  }
```

```
thus ?thesis
     unfolding BSIA-def by auto
\mathbf{qed}
lemma Trivially-fulfilled-IA-V-empty-rho-subseteq-C-N:
\llbracket V_{\mathcal{V}} = \{\}; \varrho \; \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}}) \; \rrbracket \Longrightarrow IA \; \varrho \; \mathcal{V} \; Tr_{ES}
proof -
  assume V_{\mathcal{V}} = \{\}
       and \varrho \ \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}})
     \mathbf{fix} \ \alpha \ \beta \ c
     assume c \in C_{\mathcal{V}}
         and \beta @ \alpha \in \mathit{Tr}_{ES}
         and \alpha \mid C_{\mathcal{V}} = []
         and \mathit{Adm}\ \mathcal{V}\ \varrho\ \mathit{Tr}_{ES}\ \beta\ c
     from \langle Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c \rangle
     obtain \gamma
        where \gamma @ [c] \in \mathit{Tr}_{ES}
           and \gamma | (\varrho \ \mathcal{V}) = \beta | (\varrho \ \mathcal{V})
           unfolding Adm-def by auto
     from this(1) have \gamma \in Tr_{ES}
        using validES
        unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto
     moreover
     from \langle \beta @ \alpha \in \mathit{Tr}_{ES} \rangle have \beta \in \mathit{Tr}_{ES} using \mathit{validES}
        unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto
     ultimately
     have \beta | E_{ES} = \gamma | E_{ES}
        using validES VIsViewOnE \langle V_{\mathcal{V}} = \{ \} \rangle \langle \gamma | (\varrho \ \mathcal{V}) = \beta | (\varrho \ \mathcal{V}) \rangle \langle \varrho \ \mathcal{V} \supseteq (C_{\mathcal{V}} \cup N_{\mathcal{V}}) \rangle
           non-empty-projection-on-subset
        {\bf unfolding}\ ES-valid-def\ is View On-def\ traces-contain-events-def
        by (metis empty-subsetI sup-absorb2 sup-commute)
     hence \beta @ [c] \in \mathit{Tr}_{ES} using \mathit{validES} \ \langle \gamma @ [c] \in \mathit{Tr}_{ES} \rangle \ \langle \beta \in \mathit{Tr}_{ES} \rangle \ \langle \gamma \in \mathit{Tr}_{ES} \rangle
        unfolding ES-valid-def traces-contain-events-def
        by (metis list-subset-iff-projection-neutral subsetI)
     let ?\beta'=\beta and ?\alpha'=[]
     \mathbf{from} \ \langle \beta \ @ \ [c] \in \mathit{Tr}_{ES} \rangle \ \langle V_{\mathcal{V}} = \{\} \rangle
     have ?\beta' @ [c] @ ?\alpha' \in Tr_{ES} \land ?\alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land ?\alpha' | C_{\mathcal{V}} = []
                    \wedge ?\beta'|(V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta|(V_{\mathcal{V}} \cup C_{\mathcal{V}})
        \mathbf{by}\ (simp\ add:\ projection-on-empty-trace\ projection-to-emptyset-is-empty-trace)
     hence \exists \alpha' \beta'.
                    \beta' \otimes [c] \otimes \alpha' \in Tr_{ES} \wedge \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \wedge \alpha' | C_{\mathcal{V}} = []
                       \wedge \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}})
        by auto
  }
  thus ?thesis
     unfolding IA-def by auto
{\bf lemma} \ \textit{Trivially-fulfilled-BSI-V-empty-total-ES-C}:
[\![V_{\mathcal{V}} = \{\}; total \ ES \ C_{\mathcal{V}}]\!] \Longrightarrow BSI \ \mathcal{V} \ Tr_{ES}
```

```
proof -
  assume V_{\mathcal{V}} = \{\}
      and total ES C_{\mathcal{V}}
   \mathbf{fix} \ \alpha \ \beta \ c
   assume \beta @ \alpha \in \mathit{Tr}_{ES}
       and \alpha \mid C_{\mathcal{V}} = []
       and c \in C_{\mathcal{V}}
    \mathbf{from} \ \langle \beta \ @ \ \alpha \in \mathit{Tr}_{ES} \rangle \ \mathbf{have} \ \beta \in \mathit{Tr}_{ES}
     using validES
     {\bf unfolding}\ \textit{ES-valid-def traces-prefixclosed-def prefix-def }\ {\bf by}\ \textit{auto}
    with \langle total \ ES \ C_{\mathcal{V}} \rangle have \beta \ @ \ [c] \in Tr_{ES}
     using \langle c \in C_{\mathcal{V}} \rangle unfolding total-def by auto
    moreover
    from \langle V_{\mathcal{V}} = \{\}\rangle have \alpha | V_{\mathcal{V}} = []
      unfolding projection-def by auto
    have \exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = []
     using \langle \alpha \mid C_{\mathcal{V}} = [] \rangle by (metis append-Nil2 projection-idempotent)
  thus ?thesis
     unfolding BSI-def by auto
\mathbf{qed}
\textbf{lemma} \ \textit{Trivially-fulfilled-I-V-empty-total-ES-C}:
\llbracket V_{\mathcal{V}} = \{\}; \ total \ ES \ C_{\mathcal{V}} \ \rrbracket \Longrightarrow I \ \mathcal{V} \ Tr_{ES}
  assume V_{\mathcal{V}} = \{\}
      and total ES C_{\mathcal{V}}
   fix \alpha \beta c
    assume c \in C_{\mathcal{V}}
       and \beta @ \alpha \in \mathit{Tr}_{ES}
        and \alpha \upharpoonright C_{\mathcal{V}} = []
    from \langle \beta @ \alpha \in Tr_{ES} \rangle have \beta \in Tr_{ES}
      using validES
      unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto
    with \langle total \ ES \ C_{\mathcal{V}} \rangle have \beta @ [c] \in Tr_{ES}
      using \langle c \in C_{\mathcal{V}} \rangle unfolding total-def by auto
    moreover
    from \langle V_{\mathcal{V}} = \{\}\rangle have \alpha | V_{\mathcal{V}} = []
      unfolding projection-def by auto
    ultimately
    have \exists \beta' \alpha'.
             \beta' @ [c] @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land \alpha' | C_{\mathcal{V}} = [] \land \beta' | (V_{\mathcal{V}} \cup C_{\mathcal{V}}) = \beta | (V_{\mathcal{V}} \cup C_{\mathcal{V}})
     using \langle \alpha \mid C_{\mathcal{V}} = [] \rangle by (metis append-Nil2 projection-idempotent)
  thus ?thesis
     unfolding I-def by blast
qed
```

```
\textbf{lemma} \ \textit{Trivially-fulfilled-FCI-Nabla-} \Upsilon \textit{-empty} :
\llbracket \nabla_{\Gamma} = \{\} \ \lor \ \Upsilon_{\Gamma} = \{\} \rrbracket \Longrightarrow \mathit{FCI} \ \Gamma \ \mathcal{V} \ \mathit{Tr}_{ES}
proof -
  \mathbf{assume}\ \nabla_{\Gamma} {=} \{\}\ \lor\ \Upsilon_{\Gamma} {=} \{\}
  thus ?thesis
  proof(rule disjE)
      assume \nabla_{\Gamma} = \{\} thus ?thesis
         by (simp add: FCI-def)
      assume \Upsilon_{\Gamma} = \{\} thus ?thesis
         \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon\mathit{FCI\text{-}def})
  \mathbf{qed}
qed
lemma Trivially-fulfilled-FCIA-Nabla-\Upsilon-empty:
\llbracket \nabla_{\Gamma} = \{\} \ \lor \ \Upsilon_{\Gamma} = \{\} \rrbracket \Longrightarrow \mathit{FCIA} \ \varrho \ \Gamma \ \mathcal{V} \ \mathit{Tr}_{ES}
  assume \nabla_{\Gamma} {=} \{\} \ \lor \ \Upsilon_{\Gamma} {=} \{\}
  thus ?thesis
  proof(rule disjE)
     assume \nabla_{\Gamma} {=} \{\} thus ?thesis
         by (simp add: FCIA-def)
  \mathbf{next}
      assume \Upsilon_{\Gamma} = \{\} thus ?thesis
         \mathbf{by}\ (simp\ add\colon FCIA\text{-}def)
  qed
\mathbf{qed}
lemma Trivially-fulfilled-FCI-N-subseteq-\Delta-and-BSI:
[\![N_{\mathcal{V}}\subseteq\Delta_{\Gamma};\,\mathit{BSI}\,\,\mathcal{V}\,\,\mathit{Tr}_{\mathit{ES}}]\!]\Longrightarrow\mathit{FCI}\,\,\Gamma\,\,\mathcal{V}\,\,\mathit{Tr}_{\mathit{ES}}
proof -
  assume N_{\mathcal{V}} \subseteq \Delta_{\Gamma}
       and BSI V Tr_{ES}
      \mathbf{fix}\ \alpha\ \beta\ c\ v
      assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
          and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
          and \beta @ [v] @ \alpha \in Tr_{ES}
          and \alpha \upharpoonright C_{\mathcal{V}} = []
      from \langle c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \rangle have c \in C_{\mathcal{V}}
         \mathbf{by} auto
      from \langle v \in V_{\mathcal{V}} \cap \nabla_{\Gamma} \rangle have v \in V_{\mathcal{V}}
         by auto
      let ?\alpha = [v] @ \alpha
      from \langle v \in V_{\mathcal{V}} \rangle \langle \alpha | C_{\mathcal{V}} = [] \rangle have ?\alpha | C_{\mathcal{V}} = []
         \mathbf{using}\ \mathit{VIsViewOnE}
         {\bf unfolding} \ is {\it ViewOn-def} \ {\it V-valid-def} \ {\it VC-disjoint-def} \ projection-def \ {\bf by} \ auto
      from \langle \beta @ [v] @ \alpha \in Tr_{ES} \rangle have \beta @ ?\alpha \in Tr_{ES}
         by auto
      \mathbf{from} \ \langle BSI \ \mathcal{V} \ Tr_{ES} \rangle
```

```
obtain \alpha'
          where \beta @ [c] @ \alpha' \in Tr_{ES}
             and \alpha' \mid V_{\mathcal{V}} = ([v] @ \alpha) \mid V_{\mathcal{V}}
             and \alpha' | C_{\mathcal{V}} = []
          using \langle c \in C_{\mathcal{V}} \rangle \ \langle \beta @ ?\alpha \in Tr_{ES} \rangle \langle ?\alpha | C_{\mathcal{V}} = [] \rangle
          unfolding BSI-def by blast
      \mathbf{from} \langle v \in V_{\mathcal{V}} \rangle \langle \alpha' | V_{\mathcal{V}} = ([v] @ \alpha) | V_{\mathcal{V}} \rangle \mathbf{have} \ \alpha' | V_{\mathcal{V}} = [v] @ \alpha | V_{\mathcal{V}}
         by (simp add: projection-def)
      then
      obtain \delta \alpha''
         where \alpha' = \delta @ [v] @ \alpha''
             and \delta | V_{\mathcal{V}} = []
            and \alpha'' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}}
           using projection-split-first-with-suffix by fastforce
      from \langle \alpha' | C_{\mathcal{V}} = [] \rangle \langle \alpha' = \delta @ [v] @ \alpha'' \rangle have \delta | C_{\mathcal{V}} = []
         by (metis append-is-Nil-conv projection-concatenation-commute)
      from \langle \alpha' | C_{\mathcal{V}} = [] \rangle \langle \alpha' = \delta @ [v] @ \alpha'' \rangle have \alpha'' | C_{\mathcal{V}} = []
         by (metis append-is-Nil-conv projection-concatenation-commute)
      from \langle \beta @ [c] @ \alpha' \in Tr_{ES} \rangle have set \alpha' \subseteq E_{ES}
          using validES
          unfolding ES-valid-def traces-contain-events-def by auto
      with \langle \alpha' = \delta @ [v] @ \alpha'' \rangle have set \delta \subseteq E_{ES}
         by auto
      with \langle \delta | C_{\mathcal{V}} = [] \rangle \langle \delta | V_{\mathcal{V}} = [] \rangle \langle N_{\mathcal{V}} \subseteq \Delta_{\Gamma} \rangle
      have (set \ \delta) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})
         {\bf using} \ \ VIs View On E \ projection-empty-implies-absence-of-events
         unfolding is ViewOn-def projection-def by blast
      let ?\beta = \beta and ?\delta' = \delta and ?\alpha' = \alpha''
      \mathbf{from} \,\, \langle (set \,\, \delta) \subseteq (N_{\mathcal{V}} \,\cap\, \Delta_{\Gamma}) \rangle \,\, \langle \beta \,\, @ \,\, [c] \,\, @ \,\, \alpha' \in \mathit{Tr}_{ES} \rangle \,\, \langle \alpha' = \delta \,\, @ \,\, [v] \,\, @ \,\, \alpha'' \rangle
                   \langle \alpha'' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \rangle \langle \alpha'' | C_{\mathcal{V}} = [] \rangle
      \mathbf{have} \ (\mathit{set} \ ?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land ?\beta \ @ \ [c] \ @ \ ?\delta' \ @ \ [v] \ @ \ ?\alpha' \in \mathit{Tr}_{ES} \land ?\alpha' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \land ?\alpha' | C_{\mathcal{V}} = []
      hence \exists \alpha''' \delta''. (set \delta'') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \wedge (\beta @ [c] @ \delta'' @ [v] @ \alpha''') \in Tr_{ES}
                      \wedge \alpha^{\prime\prime\prime} \uparrow V_{\mathcal{V}} = \alpha \uparrow V_{\mathcal{V}} \wedge \alpha^{\prime\prime\prime} \uparrow C_{\mathcal{V}} = [
   }
  thus ?thesis
      unfolding FCI-def by auto
lemma Trivially-fulfilled-FCIA-N-subseteq-\Delta-and-BSIA:
\llbracket N_{\mathcal{V}} \subseteq \Delta_{\Gamma}; BSIA \ \varrho \ \mathcal{V} \ Tr_{ES} \rrbracket \Longrightarrow FCIA \ \varrho \ \Gamma \ \mathcal{V} \ Tr_{ES}
proof -
  assume N_{\mathcal{V}} \subseteq \Delta_{\Gamma}
        and BSIA Q V TrES
      fix \alpha \beta c v
      assume c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}
```

```
and v \in V_{\mathcal{V}} \cap \nabla_{\Gamma}
    and \beta @ [v] @ \alpha \in Tr_{ES}
    and \alpha \mid C_{\mathcal{V}} = []
    and Adm \ \mathcal{V} \ \varrho \ Tr_{ES} \ \beta \ c
from \langle c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \rangle have c \in C_{\mathcal{V}}
  by auto
from \langle v \in V_{\mathcal{V}} \cap \nabla_{\Gamma} \rangle have v \in V_{\mathcal{V}}
  by auto
let ?\alpha = [v] @ \alpha
\mathbf{from} \ \langle v \in V_{\mathcal{V}} \rangle \ \langle \alpha | C_{\mathcal{V}} = [] \rangle \ \mathbf{have} \ ?\alpha | C_{\mathcal{V}} = []
   \mathbf{using}\ \mathit{VIsViewOnE}
  unfolding is ViewOn-def V-valid-def VC-disjoint-def projection-def by auto
\mathbf{from} \ \langle \beta \ @ \ [v] \ @ \ \alpha \in \mathit{Tr}_{ES} \rangle \ \mathbf{have} \ \beta \ @ \ ?\alpha \in \mathit{Tr}_{ES}
  by auto
from \langle BSIA \ \varrho \ \mathcal{V} \ Tr_{ES} \rangle
obtain \alpha'
   where \beta @ [c] @ \alpha' \in Tr_{ES}
      and \alpha' \mid V_{\mathcal{V}} = ([v] @ \alpha) \mid V_{\mathcal{V}}
      and \alpha' \mid C_{\mathcal{V}} = []
   \mathbf{using} \ \langle c \in C_{\mathcal{V}} \rangle \ \ \langle \beta \ @ \ ?\alpha \in \mathit{Tr}_{ES} \rangle \ \langle ?\alpha | \ C_{\mathcal{V}} = [] \rangle \ \langle \mathit{Adm} \ \mathcal{V} \ \varrho \ \mathit{Tr}_{ES} \ \beta \ c \rangle
   unfolding BSIA-def by blast
\mathbf{from} \langle v \in V_{\mathcal{V}} \rangle \langle \alpha' | V_{\mathcal{V}} = ([v] @ \alpha) | V_{\mathcal{V}} \rangle \mathbf{have} \ \alpha' | V_{\mathcal{V}} = [v] @ \alpha | V_{\mathcal{V}}
   by (simp add: projection-def)
then
obtain \delta \alpha''
   where \alpha' = \delta @ [v] @ \alpha''
      and \delta | V_{\mathcal{V}} = []
      and \alpha'' \mid V_{\mathcal{V}} = \alpha \mid V_{\mathcal{V}}
     using projection-split-first-with-suffix by fastforce
from \langle \alpha' | C_{\mathcal{V}} = [] \rangle \langle \alpha' = \delta @ [v] @ \alpha'' \rangle have \delta | C_{\mathcal{V}} = []
   by (metis append-is-Nil-conv projection-concatenation-commute)
by (metis append-is-Nil-conv projection-concatenation-commute)
from \langle \beta @ [c] @ \alpha' \in Tr_{ES} \rangle have set \alpha' \subseteq E_{ES}
   using validES
   {\bf unfolding} \ \textit{ES-valid-def traces-contain-events-def} \ {\bf by} \ \textit{auto}
with \langle \alpha' = \delta @ [v] @ \alpha'' \rangle have set \delta \subseteq E_{ES}
with \langle \delta | C_{\mathcal{V}} = [] \rangle \langle \delta | V_{\mathcal{V}} = [] \rangle \langle N_{\mathcal{V}} \subseteq \Delta_{\Gamma} \rangle
have (set \ \delta) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) using VIsViewOnE projection-empty-implies-absence-of-events
  unfolding is View On-def projection-def by blast
let ?\beta = \beta and ?\delta' = \delta and ?\alpha' = \alpha''
\mathbf{from} \, \langle (set \, \delta) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \rangle \, \langle \beta @ [c] @ \alpha' \in \mathit{Tr}_{ES} \rangle \, \langle \alpha' = \delta @ [v] @ \alpha'' \rangle
             \langle \alpha'' | V_{\mathcal{V}} = \alpha | V_{\mathcal{V}} \rangle \langle \alpha'' | C_{\mathcal{V}} = [] \rangle
\mathbf{have} \ (\mathit{set} \ ?\delta') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \ \land \ ?\beta \ @ \ [c] \ @ \ ?\delta' \ @ \ [v] \ @ \ ?\alpha' \in \mathit{Tr}_{ES} \ \land \ ?\alpha' | \ V_{\mathcal{V}} = \alpha | \ V_{\mathcal{V}} \ \land \ ?\alpha' | \ C_{\mathcal{V}} = []
  by auto
```

```
hence \exists \alpha''' \delta''. (set \delta'') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \wedge (\beta @ [c] @ \delta'' @ [v] @ \alpha''') \in Tr_{ES}
                         \wedge \alpha^{\prime\prime\prime} \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha^{\prime\prime\prime} \upharpoonright C_{\mathcal{V}} = []
          by auto
   }
   thus ?thesis
       unfolding FCIA-def by auto
qed
end
{\bf context}\ BSPT axonomy Different Views First Dim
begin
\mathbf{lemma} \ \textit{R-implies-R-for-modified-view}:
R \ \mathcal{V}_1 \ Tr_{ES} \Longrightarrow R \ \mathcal{V}_2 \ Tr_{ES}
proof -
   assume R-\mathcal{V}_1: R \mathcal{V}_1 Tr_{ES}
   {
       fix \tau
       \mathbf{assume}\ \tau\in\mathit{Tr}_{ES}
       with R-\mathcal{V}_1 have \exists \ \tau' \in \mathit{Tr}_{ES}. \tau' \upharpoonright \mathit{C}_{\mathcal{V}_1} = [] \land \tau' \upharpoonright \mathit{V}_{\mathcal{V}_1} = \tau \upharpoonright \mathit{V}_{\mathcal{V}_1}
          \mathbf{unfolding}\ R\text{-}def\ \mathbf{by}\ \mathit{auto}
      hence \exists \ \tau' \in \mathit{Tr}_{ES}. \ \tau' \upharpoonright \mathit{C}_{\mathcal{V}_2} = [] \land \tau' \upharpoonright \mathit{V}_{\mathcal{V}_2} = \tau \upharpoonright \mathit{V}_{\mathcal{V}_2}
          using V2-subset-V1 C2-subset-C1 non-empty-projection-on-subset projection-on-subset by blast
   thus ?thesis
       unfolding R-def by auto
qed
{\bf lemma}\ BSD\text{-}implies\text{-}BSD\text{-}for\text{-}modified\text{-}view:
BSD \ \mathcal{V}_1 \ Tr_{ES} \Longrightarrow BSD \ \mathcal{V}_2 \ Tr_{ES}
proof-
   assume BSD-V_1: BSD\ V_1\ Tr_{ES}
      fix \alpha \beta c n
      assume c\text{-}in\text{-}C_2: c \in C_{\mathcal{V}_2} from C2\text{-}subset\text{-}C1 c\text{-}in\text{-}C_2 have c\text{-}in\text{-}C_1: c \in C_{\mathcal{V}_1}
       \begin{array}{l} \mathbf{have} \ \llbracket \beta \ @ \ [c] \ @ \ \alpha \in \mathit{Tr}_{ES}; \ \alpha \upharpoonright \ C_{\mathcal{V}_2} = \llbracket ]; \ n = \mathit{length}(\alpha \upharpoonright C_{\mathcal{V}_1}) \rrbracket \\ \Longrightarrow \exists \ \alpha'. \ \beta \ @ \ \alpha' \in \mathit{Tr}_{ES} \land \alpha' \upharpoonright \ V_{\mathcal{V}_2} = \alpha \upharpoonright V_{\mathcal{V}_2} \land \alpha' \upharpoonright C_{\mathcal{V}_2} = \llbracket ] \end{array}
       proof(induct n arbitrary: \alpha)
          \mathbf{case}\ \theta
              from 0.prems(3) have \alpha \mid C_{V_1} = [] by auto
              with c-in-C_1 0.prems(1)
                 have \exists \alpha'. \beta @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1} \land \alpha' \upharpoonright C_{\mathcal{V}_1} = []
                 using BSD-V_1 unfolding BSD-def by auto
              obtain \alpha' where \beta @ \alpha' \in Tr_{ES}
                                   and \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1}
and \alpha' \upharpoonright C_{\mathcal{V}_1} = []
                 by auto
              from V2-subset-V1 \langle \alpha' \mid V_{\mathcal{V}_1} = \alpha \mid V_{\mathcal{V}_1} \rangle have \alpha' \mid V_{\mathcal{V}_2} = \alpha \mid V_{\mathcal{V}_2}
```

```
using non-empty-projection-on-subset by blast
  moreover
  from \langle \alpha' \mid C_{\mathcal{V}_1} = [] \rangle C2-subset-C1 have \alpha' \mid C_{\mathcal{V}_2} = []
     using projection-on-subset by auto
  ultimately
  show ?case
     using \langle \beta @ \alpha' \in Tr_{ES} \rangle by auto
case (Suc \ n)
  \mathbf{from}\ \mathit{Suc.prems}(3)\ \mathit{projection-split-last}[\mathit{OF}\ \mathit{Suc.prems}(3)]
  obtain \gamma_1 \ \gamma_2 \ c_1 where c_1-in-C_1: c_1 \in C_{\mathcal{V}_1}
                           and \alpha = \gamma_1 @ [c_1] @ \gamma_2
                           and \gamma_2 \upharpoonright C_{\mathcal{V}_1} = []
                           and n = length((\gamma_1 @ \gamma_2) | C_{\mathcal{V}_1})
     by auto
  \mathbf{from} \ \ \mathit{Suc.prems}(2) \ \ (\alpha = \gamma_1 \ @ \ [c_1] \ @ \ \gamma_2 ) \ \ \mathbf{have} \ \ \gamma_1 \ \ \uparrow \ \ C_{\mathcal{V}_2} = []
     by (simp add: projection-concatenation-commute)
  from Suc.prems(1) \langle \alpha = \gamma_1 @ [c_1] @ \gamma_2 \rangle
  obtain \beta' where \beta' = \beta @ [c] @ \gamma_1
                    and \beta' \otimes [c_1] \otimes \gamma_2 \in Tr_{ES}
     \mathbf{by}\ \mathit{auto}
  from \langle \beta' @ [c_1] @ \gamma_2 \in Tr_{ES} \rangle \langle \gamma_2 \uparrow C_{\mathcal{V}_1} = [] \rangle \langle c_1 \in C_{\mathcal{V}_1} \rangle
  obtain \gamma_2 where \beta' @ \gamma_2 \in Tr_{ES}
                    and \gamma_2' \mid V_{\mathcal{V}_1} = \gamma_2 \mid V_{\mathcal{V}_1}
                    and \gamma_2' \upharpoonright C_{\mathcal{V}_1} = []
      using BSD-V_1 unfolding BSD-def by auto
  from \langle \beta' = \beta @ [c] @ \gamma_1 \rangle \langle \beta' @ \gamma_2' \in Tr_{ES} \rangle have \beta @ [c] @ \gamma_1 @ \gamma_2' \in Tr_{ES}
     by auto
  from \langle \gamma_1 \uparrow C_{\mathcal{V}_2} = [] \rangle \langle \gamma_2' \uparrow C_{\mathcal{V}_1} = [] \rangle C2-subset-C1 have (\gamma_1 @ \gamma_2') \uparrow C_{\mathcal{V}_2} = []
     by (metis append-Nil projection-concatenation-commute projection-on-subset)
  moreover
  \mathbf{from} \  \, \langle n = \mathit{length}((\gamma_1 \ @ \ \gamma_2) | \ C_{\mathcal{V}_1}) \rangle \  \, \langle \gamma_2 \ | \ C_{\mathcal{V}_1} = [] \rangle \  \, \langle \gamma_2 \ ' \ | \ C_{\mathcal{V}_1} = [] \rangle 
  have n = length((\gamma_1 @ \gamma_2') | C_{\mathcal{V}_1})
     by (simp add: projection-concatenation-commute)
  ultimately
  have witness: \exists \alpha'. \beta @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}_2} = (\gamma_1 @ \gamma_2') | V_{\mathcal{V}_2} \land \alpha' | C_{\mathcal{V}_2} = []
     using Suc.hyps by auto
  from V_1IsViewOnE V_2IsViewOnE V2-subset-V1 C2-subset-C1 c_1-in-C_1 have c_1 \notin V_{V_2}
      unfolding is ViewOn-def V-valid-def VC-disjoint-def by auto
  with \langle \alpha = \gamma_1 @ [c_1] @ \gamma_2 \rangle have \alpha \upharpoonright V_{\mathcal{V}_2} = (\gamma_1 @ \gamma_2) \upharpoonright V_{\mathcal{V}_2}
      unfolding projection-def by auto
  hence \alpha \upharpoonright V_{\mathcal{V}_2} = \gamma_1 \upharpoonright V_{\mathcal{V}_2} @ \gamma_2 \upharpoonright V_{\mathcal{V}_2}
     using projection-concatenation-commute by auto
  with V2-subset-V1 \langle \gamma_2' \mid V_{\mathcal{V}_1} = \gamma_2 \mid V_{\mathcal{V}_1} \rangle
  have \gamma_1 \upharpoonright V_{\mathcal{V}_2} @ \gamma_2 \upharpoonright V_{\mathcal{V}_2} = \gamma_1 \upharpoonright V_{\mathcal{V}_2} @ \gamma_2' \upharpoonright V_{\mathcal{V}_2}
     using non-empty-projection-on-subset by metis
  with \langle \alpha \mid V_{\mathcal{V}_2} = \gamma_1 \mid V_{\mathcal{V}_2} @ \gamma_2 \mid V_{\mathcal{V}_2} \rangle have \alpha \mid V_{\mathcal{V}_2} = (\gamma_1 @ \gamma_2) \mid V_{\mathcal{V}_2}
     by (simp add: projection-concatenation-commute)
 \mathbf{from} \ \textit{witness} \ \ \langle \alpha \mid \ V_{\mathcal{V}_2} = (\gamma_1 \ @ \ \gamma_2{}') \mid \ V_{\mathcal{V}_2} \rangle
```

```
\mathbf{show}~? case
                by auto
        \mathbf{qed}
 }
   thus ?thesis
       unfolding BSD-def by auto
qed
\mathbf{lemma}\ \textit{D-implies-D-for-modified-view}:
D \mathcal{V}_1 Tr_{ES} \Longrightarrow D \mathcal{V}_2 Tr_{ES}
proof-
   assume D-\mathcal{V}_1: D \mathcal{V}_1 Tr_{ES}
     from V2-subset-V1 C2-subset-C1
      have V_2-union-C_2-subset-V_1-union-C_1: V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2} \subseteq V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1} by auto
   {
       fix \alpha \beta c n
       assume c-in-C_2: c \in C_{\mathcal{V}_2}
       from C2-subset-C1 c-in-\tilde{C}_2 have c-in-C_1: c \in C_{V_1}
       have [\![\beta @ [c] @ \alpha \in Tr_{ES}; \alpha \mid C_{\mathcal{V}_2} = [\!]; n = length(\alpha \mid C_{\mathcal{V}_1})]\!]
      \beta' @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2} \land \alpha' | C_{\mathcal{V}_2} = [] \land \beta' | (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta | (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2})
\mathbf{proof}(induct\ n\ arbitrary:\ \alpha\ \beta\ )
              from \theta.prems(3) have \alpha \uparrow C_{V_1} = [] by auto
              with c-in-C_1 \theta.prems(1)
              have \exists \alpha' \beta'
                 \beta' @ \alpha' \in Tr_{ES} \land \alpha' \mid V_{\mathcal{V}_1} = \alpha \mid V_{\mathcal{V}_1} \land \alpha' \mid C_{\mathcal{V}_1} = [] \land \beta' \mid (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \mid (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})  using D\text{-}\mathcal{V}_1 unfolding D\text{-}def by fastforce
              then
              obtain \beta' \alpha' where \beta' @ \alpha' \in \mathit{Tr}_{ES}
                                       and \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1}
and \alpha' \upharpoonright C_{\mathcal{V}_1} = []
and \beta' \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})
              from V2-subset-V1 \langle \alpha' \mid V_{\mathcal{V}_1} = \alpha \mid V_{\mathcal{V}_1} \rangle have \alpha' \mid V_{\mathcal{V}_2} = \alpha \mid V_{\mathcal{V}_2}
                  using non-empty-projection-on-subset by blast
              from \langle \alpha' \mid C_{\mathcal{V}_1} = [] \rangle C2-subset-C1 have \alpha' \mid C_{\mathcal{V}_2} = []
                  using projection-on-subset by auto
               \begin{array}{ll} \mathbf{from} \ \langle \beta' \ | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \ | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \rangle & V_2\text{-}union\text{-}C_2\text{-}subset\text{-}V_1\text{-}union\text{-}C_1 \\ \mathbf{have} \ \beta' \ | (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta \ | (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \\ \end{array} 
                 using non-empty-projection-on-subset by blast
              ultimately
              \mathbf{show}~? case
                 using \langle \beta' @ \alpha' \in Tr_{ES} \rangle by auto
           \mathbf{next}
           case (Suc \ n)
              \mathbf{from} \ \mathit{Suc.prems}(3) \ \mathit{projection-split-last}[\mathit{OF} \ \mathit{Suc.prems}(3)]
```

```
obtain \gamma_1 \ \gamma_2 \ c_1 where c_1-in-C_1: c_1 \in C_{\mathcal{V}_1}
                          and \alpha = \gamma_1 @ [c_1] @ \gamma_2
                           and \gamma_2 \upharpoonright C_{\mathcal{V}_1} = []
                           and n = length((\gamma_1 @ \gamma_2) | C_{\mathcal{V}_1})
   by auto
\mathbf{from} \ \mathit{Suc.prems}(2) \ \ \langle \alpha = \gamma_1 \ @ \ [c_1] \ @ \ \gamma_2 \rangle \ \mathbf{have} \ \gamma_1 \ \ \uparrow \ C_{\mathcal{V}_2} = []
   by (simp add: projection-concatenation-commute)
from Suc.prems(1) \langle \alpha = \gamma_1 @ [c_1] @ \gamma_2 \rangle
obtain \beta' where \beta'=\beta @ [c] @ \gamma_1
                   and \beta' \otimes [c_1] \otimes \gamma_2 \in Tr_{ES}
   by auto
and \gamma_2' \mid V_{\mathcal{V}_1} = \gamma_2 \mid V_{\mathcal{V}_1}
                          and \gamma_2' \upharpoonright C_{\mathcal{V}_1} = []
and \beta'' \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta' \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})
   using D-V_1 unfolding \overline{D}-def by force
from c-in-C_1 have c \in V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}
   by auto
moreover
by auto
ultimately
have \exists \beta''' \gamma_1'. \beta''=\beta'''@ [c] @ \gamma_1'
                             \wedge \beta''' \cap (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \cap (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})
                              \wedge \gamma_1 / (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \gamma_1 / (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})
   using projection-split-arbitrary-element by fast
then
obtain \beta^{\prime\prime\prime} \gamma_1{}^\prime where \beta^{\prime\prime}=\beta^{\prime\prime\prime} @ [c] @ \gamma_1{}^\prime
                           and \beta''' \exists (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \exists (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})
and \gamma_1'\exists (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \gamma_1 \exists (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1})
   using projection-split-arbitrary-element by auto
from \langle \beta'' @ \gamma_2' \in \mathit{Tr}_{ES} \rangle \mathit{this}(1)
have \beta^{\prime\prime\prime} @ [c] @ \gamma_1{}^\prime @ \gamma_2{}^\prime \in \mathit{Tr}_{ES}
   by simp
from \langle \gamma_2' | C_{\mathcal{V}_1} = [] \rangle have \gamma_2' | C_{\mathcal{V}_2} = []
   using C2-subset-C1 projection-on-subset by auto
moreover
 \begin{array}{l} \mathbf{from} \ \langle \gamma_1 \upharpoonright C_{\mathcal{V}_2} = [] \rangle \ \langle \gamma_1 ' | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \gamma_1 \upharpoonright (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \rangle \\ \mathbf{have} \ \gamma_1 ' | \ C_{\mathcal{V}_2} = [] \ \mathbf{using} \ C2\text{-}subset\text{-}C1 \ V2\text{-}subset\text{-}V1 \end{array} 
          \mathbf{by} \ (\textit{metis} \ \textit{non-empty-projection-on-subset} \ \textit{projection-subset-eq-from-superset-eq} \ \textit{sup-commute})
ultimately
have (\gamma_1' @ \gamma_2') | C_{V_2} = []
   by (simp add: projection-concatenation-commute)
from \langle \gamma_1' | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \gamma_1 | (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \rangle have \gamma_1' | C_{\mathcal{V}_1} = \gamma_1 | C_{\mathcal{V}_1}
   using projection-subset-eq-from-superset-eq sup-commute by metis
```

```
hence length(\gamma_1 '| C_{\mathcal{V}_1}) = length(\gamma_1 | C_{\mathcal{V}_1}) by simp
              moreover
              \mathbf{from} \ \langle \gamma_2 \ | \ C_{\mathcal{V}_1} = [] \rangle \ \langle \gamma_2 \ | \ C_{\mathcal{V}_1} = [] \rangle \ \mathbf{have} \ \operatorname{length}(\gamma_2 \ | \ C_{\mathcal{V}_1}) = \operatorname{length}(\gamma_2 \ | \ C_{\mathcal{V}_1})
                 by simp
              ultimately
              have n=length((\gamma_1' @ \gamma_2') | C_{V_1})
                  \textbf{by} \ (\textit{simp add}: \ (n = \textit{length} \ ((\hat{\gamma}_1 \ @ \ \gamma_2) \ | \ \textit{C}_{\mathcal{V}_1}) ) \cdot \ \textit{projection-concatenation-commute})
              have witness:
               \exists \alpha' \beta'. \beta' @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_{2}} = (\gamma_{1}' @ \gamma_{2}') \upharpoonright V_{\mathcal{V}_{2}} \\ \land \alpha' \upharpoonright C_{\mathcal{V}_{2}} = [] \land \beta' \upharpoonright (V_{\mathcal{V}_{2}} \cup C_{\mathcal{V}_{2}}) = \beta''' \upharpoonright (V_{\mathcal{V}_{2}} \cup C_{\mathcal{V}_{2}}) \\ \mathbf{using} \ Suc. hyps[OF \ \langle \beta''' @ [c] @ \gamma_{1}' @ \gamma_{2}' \in Tr_{ES'}] \ \mathbf{by} \ simp
              \begin{array}{ll} \mathbf{from} \ \ V_2\text{-}union\text{-}C_2\text{-}subset\text{-}V_1\text{-}union\text{-}C_1 \ \ } \langle \beta^{\prime\prime\prime} \ \ | \ (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) = \beta \ | \ (V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}) \rangle \\ \mathbf{have} \ \ \beta^{\prime\prime\prime\prime} \ \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \rangle \end{array}
                  using non-empty-projection-on-subset by blast
              from V_1IsViewOnE V_2IsViewOnE V2-subset-V1 C2-subset-C1 c_1-in-C_1 have c_1 \notin V_{V_2}
                  unfolding is ViewOn-def V-valid-def VC-disjoint-def by auto
              with \langle \alpha = \gamma_1 @ [c_1] @ \gamma_2 \rangle have \alpha \upharpoonright V_{\mathcal{V}_2} = (\gamma_1 @ \gamma_2) \upharpoonright V_{\mathcal{V}_2}
                  unfolding projection-def by auto
              from V2-subset-V1 < {\gamma_2}' \mid V_{\mathcal{V}_1} = \gamma_2 \mid V_{\mathcal{V}_1} > \text{have } {\gamma_2}' \mid V_{\mathcal{V}_2} = \gamma_2 \mid V_{\mathcal{V}_2}
                    using V2-subset-V1 by (metis projection-subset-eq-from-superset-eq subset-Un-eq)
              \mathbf{from}\,\,\langle {\gamma_1}'|(V_{\mathcal{V}_1}\,\cup\,C_{\mathcal{V}_1}) = \gamma_1\,\, |(V_{\mathcal{V}_1}\,\cup\,C_{\mathcal{V}_1})\rangle\,\,\mathbf{have}\,\,{\gamma_1}'\,|\,\,V_{\mathcal{V}_2} = \gamma_1\,\,|\,\,V_{\mathcal{V}_2}
                  using V2-subset-V1 by (metis projection-subset-eq-from-superset-eq subset-Un-eq)
              \mathbf{have} \ \alpha \upharpoonright \ V_{\mathcal{V}_2} = ({\gamma_1}' \ @ \ {\gamma_2}') \upharpoonright \ V_{\mathcal{V}_2} \ \mathbf{using} \ \langle \alpha \upharpoonright \ V_{\mathcal{V}_2} = ({\gamma_1} \ @ \ {\gamma_2}) \upharpoonright \ V_{\mathcal{V}_2} \rangle
                  by (simp add: projection-concatenation-commute)
              \mathbf{from} \ \langle \beta^{\prime\prime\prime} \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \rangle \ \langle \alpha \ | \ V_{\mathcal{V}_2} = (\gamma_1{}' \ @ \ \gamma_2{}') \ | \ V_{\mathcal{V}_2} \rangle
              show ?case
                  using witness by simp
        \mathbf{qed}
   thus ?thesis
       unfolding D-def by auto
qed
end
{\bf context}\ BSPT axonomy Different Views Second Dim
begin
\mathbf{lemma}\ \mathit{FCD-implies-FCD-for-modified-view-gamma}:
[FCD \Gamma_1 \ \mathcal{V}_1 \ Tr_{ES};
        \begin{array}{c} V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}; \ N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq \ N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}; \ C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq \ C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \ \rrbracket \\ \Longrightarrow FCD \ \Gamma_2 \ \mathcal{V}_2 \ Tr_{ES} \end{array}
proof -
```

}

```
assume FCD \Gamma_1 \ \mathcal{V}_1 \ \mathit{Tr}_{ES}
         \begin{array}{ll} \text{and} \ V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq \ V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1} \\ \text{and} \ N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq \ N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \\ \text{and} \ C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq \ C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \end{array}
       fix \alpha \beta v c
        assume c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2}
             and v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2}
and \beta @ [c,v] @ \alpha \in Tr_{ES}
             and \alpha \mid C_{\mathcal{V}_2} = []
        \mathbf{from} \ \langle c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \rangle \ \langle C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \rangle \ \mathbf{have} \ c \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}
           by auto
        moreover
        \mathbf{from} \ \langle v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \rangle \ \langle V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1} \rangle \ \mathbf{have} \ v \in V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}
           by auto
        from C2-equals-C1 \langle \alpha | C_{\mathcal{V}_2} = [] \rangle have \alpha | C_{\mathcal{V}_1} = []
            by auto
        ultimately
        obtain \alpha' \delta' where (set \ \delta') \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1})
and \beta \ @ \ \delta' \ @ \ [v] \ @ \ \alpha' \in \mathit{Tr}_{ES}
                                    and \alpha' \mid V_{\mathcal{V}_1} = \alpha \mid V_{\mathcal{V}_1}
           \mathbf{and} \ \alpha' | \ C_{\mathcal{V}_1}^{\Gamma_1} = [] using \langle \beta \ @ \ [c,v] \ @ \ \alpha \in \ Tr_{ES} \rangle \ \langle FCD \ \Gamma_1 \ \mathcal{V}_1 \ Tr_{ES} \rangle unfolding FCD\text{-}def by blast
        \mathbf{from} \mathrel{<\!} (set \; \delta') \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}) \mathrel{>\!} \mathrel{<\!} N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \mathrel{>\!}
        have (set \ \delta') \subseteq (N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2})
        moreover
        using non-empty-projection-on-subset by blast
        from C2-equals-C1 \langle \alpha' | C_{\mathcal{V}_1} = [] \rangle have \alpha' | C_{\mathcal{V}_2} = []
           by auto
        ultimately
       have \exists \ \delta' \ \alpha'. \ (set \ \delta') \subseteq (N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}) \\ \land \beta \ @ \ \delta'@ \ [v] \ @ \ \alpha' \in \mathit{Tr}_{ES} \land \alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2} \land \alpha' | C_{\mathcal{V}_2} = []
            using \langle \beta @ \delta' @ [v] @ \alpha' \in Tr_{ES} \rangle by auto
    }
   thus ?thesis
       unfolding FCD-def by blast
qed
\mathbf{lemma} \ \mathit{SI-implies-SI-for-modified-view} :
SI \ \mathcal{V}_1 \ Tr_{ES} \Longrightarrow SI \ \mathcal{V}_2 \ Tr_{ES}
proof -
   assume SI: SI \mathcal{V}_1 Tr_{ES}
       \mathbf{fix}\ \alpha\ \beta\ c
       assume c \in C_{\mathcal{V}_2}
```

```
and \beta @ \alpha \in Tr_{ES}
        and alpha-C_2-empty: \alpha \upharpoonright C_{\mathcal{V}_2} = []
     moreover
     with C2-equals-C1 have c \in C_{\mathcal{V}_1}
       by auto
     moreover
     from alpha-C_2-empty C_2-equals-C_1 have \alpha \upharpoonright C_{\mathcal{V}_1} = []
       by auto
     ultimately
     have \beta @ (c \# \alpha) \in Tr_{ES}
        using SI unfolding SI-def by auto
  }
  \mathbf{thus}~? the sis
     unfolding SI-def by auto
qed
{\bf lemma}\ BSI-implies\text{-}BSI\text{-}for\text{-}modified\text{-}view:
BSI \ \mathcal{V}_1 \ Tr_{ES} \Longrightarrow BSI \ \mathcal{V}_2 \ Tr_{ES}
proof -
  assume BSI: BSI \ \mathcal{V}_1 \ Tr_{ES}
  {
     fix \alpha \beta c
     \begin{array}{ll} \textbf{assume} \ c \in C_{\mathcal{V}_2} \\ \textbf{and} \ \beta \ @ \ \alpha \in \mathit{Tr}_{ES} \end{array}
        and alpha-C_2-empty: \alpha \mid C_{\mathcal{V}_2} = []
     with C2-equals-C1 have c \in C_{\mathcal{V}_1}
        by auto
     moreover
     from alpha-C_2-empty C_2-equals-C_1 have \alpha \upharpoonright C_{\mathcal{V}_1} = []
        by auto
     ultimately
     \mathbf{have} \ \exists \ \alpha'. \ \beta \ @ \ [c] \ @ \ \alpha' \in \mathit{Tr}_{ES} \land \alpha' \upharpoonright \ V_{\mathcal{V}_1} = \alpha \upharpoonright \ V_{\mathcal{V}_1} \land \alpha' \upharpoonright \ C_{\mathcal{V}_1} = []
        using BSI unfolding BSI-def by auto
     \mathbf{with}\ \mathit{V2-subset-V1}\ \mathit{C2-equals-C1}
     \mathbf{have} \,\, \exists \,\, \alpha'. \,\, \beta \,\, @ \,\, [c] \,\, @ \,\, \alpha' \in \,\, \mathit{Tr}_{ES} \,\, \wedge \,\, \alpha' \,\, | \,\, V_{\mathcal{V}_2} = \alpha \,\, | \,\, V_{\mathcal{V}_2} \,\, \wedge \,\, \alpha' \,\, | \,\, C_{\mathcal{V}_2} = []
        using non-empty-projection-on-subset by metis
  thus ?thesis
     unfolding BSI-def by auto
qed
\mathbf{lemma} \ \textit{I-implies-I-for-modified-view} :
I \ \mathcal{V}_1 \ \mathit{Tr}_{ES} \Longrightarrow I \ \mathcal{V}_2 \ \mathit{Tr}_{ES}
proof -
  assume I: I \ \mathcal{V}_1 \ \mathit{Tr}_{ES}
  from V2-subset-V1 C2-equals-C1 have V2-union-C2-subset-V1-union-C1: V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2} \subseteq V_{\mathcal{V}_1} \cup C_{\mathcal{V}_1}
     by auto
  {
```

```
\mathbf{fix} \ \alpha \ \beta \ c
       \begin{array}{ll} \textbf{assume} \ c \in C_{\mathcal{V}_2} \\ \textbf{and} \ \beta \ @ \ \alpha \in \mathit{Tr}_{ES} \end{array}
          and alpha-C_2-empty: \alpha \upharpoonright C_{\mathcal{V}_2} = []
       moreover
       with C2-equals-C1 have c \in C_{\mathcal{V}_1}
         by auto
       moreover
       from alpha-C_2-empty C_2-equals-C_1 have \alpha \upharpoonright C_{\mathcal{V}_1} = []
         by auto
       ultimately
      have \exists \alpha' \beta'.
                    \begin{array}{l} \beta' \circledcirc [c] \circledcirc \alpha' \in \mathit{Tr}_{ES} \land \alpha' \upharpoonright \mathit{V}_{\mathcal{V}_1} = \alpha \upharpoonright \mathit{V}_{\mathcal{V}_1} \land \alpha' \upharpoonright \mathit{C}_{\mathcal{V}_1} = [] \\ \land \beta' \upharpoonright (\mathit{V}_{\mathcal{V}_1} \cup \mathit{C}_{\mathcal{V}_1}) = \beta \upharpoonright (\mathit{V}_{\mathcal{V}_1} \cup \mathit{C}_{\mathcal{V}_1}) \end{array}
          using I unfolding I-def by auto
       with V_2-union-C_2-subset-V_1-union-C_1 V2-subset-V1 C2-equals-C1
      have \exists \alpha' \beta'.
                        \begin{array}{l} \beta' \circledcirc [c] \circledcirc \alpha' \in \mathit{Tr}_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_2} = \alpha \upharpoonright V_{\mathcal{V}_2} \land \alpha' \upharpoonright C_{\mathcal{V}_2} = [] \\ \land \beta' \upharpoonright (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = \beta \upharpoonright (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) \end{array}
          using non-empty-projection-on-subset by metis
   thus ?thesis
       unfolding I-def by auto
\mathbf{qed}
\mathbf{lemma}\ \mathit{SIA-implies-SIA-for-modified-view}\ :
\llbracket SIA \ \varrho_1 \ \mathcal{V}_1 \ Tr_{ES}; \ \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1) \ \rrbracket \Longrightarrow SIA \ \varrho_2 \ \mathcal{V}_2 \ Tr_{ES}
   assume SIA: SIA \varrho_1 \ \mathcal{V}_1 \ \mathit{Tr}_{ES}
      and \varrho_2-supseteq-\varrho_1: \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)
      fix \alpha \beta c
      \begin{array}{ll} \textbf{assume} \ c \in C_{\mathcal{V}_2} \\ \textbf{and} \ \beta \ @ \ \alpha \in \mathit{Tr}_{ES} \end{array}
          and alpha-C_2-empty: \alpha \mid C_{\mathcal{V}_2} = []
          and admissible-c-\varrho_2-\mathcal{V}_2:Adm \tilde{\mathcal{V}_2} \varrho_2 Tr_{ES} \beta c
       with C2-equals-C1 have c \in C_{\mathcal{V}_1}
          by auto
       moreover
       from alpha-C_2-empty C_2-equals-C_1 have \alpha \upharpoonright C_{\mathcal{V}_1} = []
         by auto
       moreover
       from \varrho_2-supseteq-\varrho_1 admissible-c-\varrho_2-\mathcal{V}_2 have \mathit{Adm}\ \mathcal{V}_1\ \varrho_1\ \mathit{Tr}_{ES}\ \beta\ c
         by (simp add: Adm-implies-Adm-for-modified-rho)
       ultimately
      have \beta @ (c \# \alpha) \in Tr_{ES}
          using SIA unfolding SIA-def by auto
   \mathbf{thus}~? the sis
       \mathbf{unfolding}\ \mathit{SIA-def}\ \mathbf{by}\ \mathit{auto}
```

```
\mathbf{lemma}\ BSIA\text{-}implies\text{-}BSIA\text{-}for\text{-}modified\text{-}view:
\llbracket BSIA \ \varrho_1 \ \mathcal{V}_1 \ Tr_{ES}; \ \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1) \ \rrbracket \Longrightarrow BSIA \ \varrho_2 \ \mathcal{V}_2 \ Tr_{ES}
proof -
  assume BSIA: BSIA \varrho_1 \ \mathcal{V}_1 \ Tr_{ES}
     and \varrho_2-supseteq-\varrho_1: \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)
  \mathbf{from}\ \mathit{V2-subset-V1}\ \mathit{C2-equals-C1}
  \mathbf{have}\ \ V_2\text{-}union\text{-}C_2\text{-}subset\text{-}V_1\text{-}union\text{-}C_1\text{:}\ \ }V_{\mathcal{V}_2}\cup\ C_{\mathcal{V}_2}\subseteq\ V_{\mathcal{V}_1}\cup\ C_{\mathcal{V}_1}
     by auto
     fix \alpha \beta c
      \begin{array}{c} \textbf{assume} \ c \in \mathit{C}_{\mathcal{V}_2} \\ \textbf{and} \ \beta \ @ \ \alpha \in \mathit{Tr}_{ES} \end{array}
         and alpha-C_2-empty: \alpha \upharpoonright C_{\mathcal{V}_2} = []
         and admissible-c-\varrho_2-\mathcal{V}_2:Adm \tilde{\mathcal{V}_2} \varrho_2 Tr_{ES} \beta c
      moreover
      with C2-equals-C1 have c \in C_{\mathcal{V}_1}
         by auto
      moreover
      from alpha-C_2-empty C_2-equals-C_1 have \alpha \upharpoonright C_{\mathcal{V}_1} = []
        by auto
      moreover
      from \varrho_2-supseteq-\varrho_1 admissible-c-\varrho_2-\mathcal{V}_2 have \mathit{Adm}~\mathcal{V}_1~\varrho_1~\mathit{Tr}_{ES}~\beta~c
         by (simp add: Adm-implies-Adm-for-modified-rho)
      ultimately
      have \exists \alpha'. \beta @ [c] @ \alpha' \in Tr_{ES} \land \alpha' \upharpoonright V_{\mathcal{V}_1} = \alpha \upharpoonright V_{\mathcal{V}_1} \land \alpha' \upharpoonright C_{\mathcal{V}_1} = []
         using BSIA unfolding BSIA-def by auto
      with V2-subset-V1 C2-equals-C1
      \mathbf{have} \ \exists \ \alpha'. \ \beta \ @ \ [c] \ @ \ \alpha' \in \mathit{Tr}_{ES} \land \alpha' \ \upharpoonright \ V_{\mathcal{V}_2} = \alpha \ \urcorner \ V_{\mathcal{V}_2} \land \alpha' \ \urcorner \ C_{\mathcal{V}_2} = []
         using non-empty-projection-on-subset by metis
  thus ?thesis
      unfolding BSIA-def by auto
qed
\mathbf{lemma}\ \mathit{IA-implies-IA-for-modified-view}:
\llbracket IA \ \varrho_1 \ \mathcal{V}_1 \ Tr_{ES}; \ \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1) \ \rrbracket \Longrightarrow IA \ \varrho_2 \ \mathcal{V}_2 \ Tr_{ES}
proof -
  assume IA: IA \varrho_1 \ \mathcal{V}_1 \ Tr_{ES}
      and \varrho_2-supseteq-\varrho_1: \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)
      fix \alpha \beta c
      assume c \in C_{\mathcal{V}_2}
        and \beta @ \alpha \in Tr_{ES}
        and alpha-C_2-empty: \alpha \upharpoonright C_{\mathcal{V}_2} = []
        and admissible-c-\varrho_2-\mathcal{V}_2:Adm \tilde{\mathcal{V}_2} \varrho_2 Tr_{ES} \beta c
      moreover
      with C2-equals-C1 have c \in C_{\mathcal{V}_1}
```

```
by auto
               moreover
               from alpha-C_2-empty C_2-equals-C_1 have \alpha \upharpoonright C_{\mathcal{V}_1} = []
                    by auto
               moreover
               from \varrho_2-supseteq-\varrho_1 admissible-c-\varrho_2-\mathcal{V}_2 have Adm~\mathcal{V}_1~\varrho_1~Tr_{ES}~\beta~c
                     by (simp add: Adm-implies-Adm-for-modified-rho)
             \mathbf{have} \; \exists \; \alpha^{'}\beta^{'}. \; \beta^{'} \; @ \; [c] \; @ \; \alpha^{'} \in \mathit{Tr}_{ES} \wedge \alpha^{'} \upharpoonright V_{\mathcal{V}_{1}} = \alpha \upharpoonright V_{\mathcal{V}_{1}} \wedge \alpha^{'} \upharpoonright C_{\mathcal{V}_{1}} = [] \wedge \beta^{'} \upharpoonright (V_{\mathcal{V}_{1}} \cup C_{\mathcal{V}_{1}}) = \beta
\restriction (V_{\mathcal{V}_1} \, \cup \, C_{\mathcal{V}_1})
                     using IA unfolding IA-def by auto
               moreover
               \textbf{from} \quad \textit{V2-subset-V1 C2-equals-C1 have} \; (\textit{V}_{\mathcal{V}_2} \, \cup \, \textit{C}_{\mathcal{V}_2}) \subseteq \; (\textit{V}_{\mathcal{V}_1} \, \cup \, \textit{C}_{\mathcal{V}_1})
                     by auto
               ultimately
               \mathbf{have} \ \exists \ \alpha' \ \beta'. \ \beta' \ @ \ [c] \ @ \ \alpha' \in \mathit{Tr}_{ES} \land \alpha' \ | \ V_{\mathcal{V}_2} = \alpha \ | \ V_{\mathcal{V}_2} \land \alpha' \ | \ C_{\mathcal{V}_2} = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2}) = [] \ \land \beta' \ | \ (V_{\mathcal{V}_
\beta \uparrow (V_{\mathcal{V}_2} \cup C_{\mathcal{V}_2})
                      using V2-subset-V1 C2-equals-C1 non-empty-projection-on-subset by metis
       thus ?thesis
               unfolding IA-def by auto
qed
{\bf lemma}\ FCI-implies-FCI-for-modified-view-gamma:
assume FCI \Gamma_1 V_1 Tr_{ES}
                 \begin{array}{ll} \text{and} \ V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq \ V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1} \\ \text{and} \ N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq \ N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \\ \text{and} \ C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq \ C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \end{array}
              \mathbf{fix}\ \alpha\ \beta\ v\ c
               assume c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2}
                        and v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2}
and \beta @ [v] @ \alpha \in Tr_{ES}
                         and \alpha \mid C_{\mathcal{V}_2} = []
               from \langle c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \rangle \langle C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \rangle have c \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}
                      by auto
               moreover
               from \langle v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \rangle \langle V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1} \rangle have v \in V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}
                     by auto
               moreover
               from C2-equals-C1 \langle \alpha | C_{\mathcal{V}_2} = [] \rangle have \alpha | C_{\mathcal{V}_1} = []
                    by auto
               ultimately
               obtain \alpha' \delta' where (set \ \delta') \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}) and \beta @ [c] @ \delta' @ [v] @ \alpha' \in \mathit{Tr}_{ES}
                                                                 and \alpha' | V_{\mathcal{V}_1} = \alpha | V_{\mathcal{V}_1}
```

```
and \alpha' | C_{\mathcal{V}_1} = []
             using \langle \beta @ [v] @ \alpha \in Tr_{ES} \rangle \langle FCI \Gamma_1 \mathcal{V}_1 Tr_{ES} \rangle unfolding FCI-def by blast
         \mathbf{from} \mathrel{<\!} (set \; \delta') \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}) \mathrel{>\!} \mathrel{<\!} N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \mathrel{>\!}
         have (set \ \delta') \subseteq (N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2})
            by auto
         moreover
         from \langle \alpha' | V_{\mathcal{V}_1} = \alpha | V_{\mathcal{V}_1} \rangle V2-subset-V1 have \alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2}
            using non-empty-projection-on-subset by blast
         \mathbf{from} \, \langle C_{\mathcal{V}_2} = \, C_{\mathcal{V}_1} \rangle \, \langle \alpha' | \, C_{\mathcal{V}_1} = [] \rangle \, \mathbf{have} \, \, \alpha' | \, C_{\mathcal{V}_2} = []
            by auto
        ultimately have \exists \ \delta' \ \alpha'. \ (set \ \delta') \subseteq (N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}) \land \beta @ [c] @ \ \delta'@ [v] @ \ \alpha' \in \mathit{Tr}_{ES} \land \alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2} \land \alpha' | C_{\mathcal{V}_2} = []
                                 using \langle \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{ES} \rangle by auto
    }
    \mathbf{thus}~? the sis
        unfolding FCI-def by blast
qed
{\bf lemma}\ FCIA\mbox{-}implies\mbox{-}FCIA\mbox{-}for\mbox{-}modified\mbox{-}view\mbox{-}rho\mbox{-}gamma:
[FCIA \varrho_1 \ \Gamma_1 \ \mathcal{V}_1 \ Tr_{ES}; \ \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1);
           \begin{array}{l} V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}; \ N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}; \ C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \ \rrbracket \\ \Longrightarrow \mathit{FCIA} \ \varrho_2 \ \Gamma_2 \ \mathcal{V}_2 \ \mathit{Tr}_{ES} \end{array}
    assume FCIA \varrho_1 \ \Gamma_1 \ \mathcal{V}_1 \ \mathit{Tr}_{ES}
           and \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1)
          \begin{array}{ll} \text{and} \ \ V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq \ V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1} \\ \text{and} \ \ V_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \supseteq \ N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \\ \text{and} \ \ C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq \ C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \end{array}
        \mathbf{fix}\ \alpha\ \beta\ v\ c
        assume c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2}
              and v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2}
and \beta @ [v] @ \alpha \in Tr_{ES}
              and \alpha | C_{\mathcal{V}_2} = []
and Adm \ \mathcal{V}_2 \ \varrho_2 \ Tr_{ES} \ \beta \ c
         \mathbf{from} \ \langle c \in C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \rangle \ \langle C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2} \subseteq C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \rangle \ \mathbf{have} \ c \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}
            by auto
         moreover
         from \langle v \in V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \rangle \langle V_{\mathcal{V}_2} \cap \nabla_{\Gamma_2} \subseteq V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1} \rangle have v \in V_{\mathcal{V}_1} \cap \nabla_{\Gamma_1}
            by auto
         moreover
         from C2-equals-C1 \langle \alpha | C_{\mathcal{V}_2} = [] \rangle have \alpha | C_{\mathcal{V}_1} = []
            by auto
         moreover
         from \langle Adm \ \mathcal{V}_2 \ \varrho_2 \ Tr_{ES} \ \beta \ c \rangle \ \langle \varrho_2(\mathcal{V}_2) \supseteq \varrho_1(\mathcal{V}_1) \rangle have Adm \ \mathcal{V}_1 \ \varrho_1 \ Tr_{ES} \ \beta \ c
              by (simp add: Adm-implies-Adm-for-modified-rho)
         ultimately
```

```
 \begin{array}{c} \mathbf{obtain} \ \alpha' \ \delta' \ \mathbf{where} \ (\mathit{set} \ \delta') \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}) \\ \mathbf{and} \ \beta \ @ \ [c] \ @ \ \delta' \ @ \ [v] \ @ \ \alpha' \in \mathit{Tr}_{ES} \end{array} 
                                and \alpha' | V_{\mathcal{V}_1} = \alpha | V_{\mathcal{V}_1}
and \alpha' | C_{\mathcal{V}_1} = []
           using \langle \beta @ [v] @ \alpha \in Tr_{ES} \rangle \langle FCIA \varrho_1 \Gamma_1 \mathcal{V}_1 Tr_{ES} \rangle unfolding FCIA-def by blast
       by auto
       moreover
       \mathbf{from} \,\, \langle \alpha' | \, V_{\mathcal{V}_1} \, = \, \alpha | \, V_{\mathcal{V}_1} \rangle \,\, \textit{V2-subset-V1 have} \,\, \alpha' | \, V_{\mathcal{V}_2} \, = \, \alpha | \, V_{\mathcal{V}_2}
          using non-empty-projection-on-subset by blast
       \mathbf{from} \mathrel{{}^{\checkmark}} C_{\mathcal{V}_2} = C_{\mathcal{V}_1} \mathrel{{}^{\checkmark}} \mathrel{{}^{\prime}} C_{\mathcal{V}_1} = [] \mathrel{{}^{\backprime}} \mathbf{have} \; \alpha' | \, C_{\mathcal{V}_2} = []
          by auto
       ultimately
      have \exists \delta' \alpha'. (set \delta') \subseteq (N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2})
 \land \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{ES} \land \alpha' | V_{\mathcal{V}_2} = \alpha | V_{\mathcal{V}_2} \land \alpha' | C_{\mathcal{V}_2} = []
           using \langle \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{ES} \rangle by auto
   }
   \mathbf{thus}~? the sis
       unfolding FCIA-def by blast
qed
\mathbf{end}
end
```

5.3 Unwinding

We define the unwinding conditions provided in [3] and prove the unwinding theorems from [3] that use these unwinding conditions.

5.3.1 Unwinding Conditions

```
theory UnwindingConditions
imports .../Basics/BSPTaxonomy
.../.../SystemSpecification/StateEventSystems
begin

locale Unwinding =
fixes SES :: ('s, 'e) SES-rec
and \mathcal{V} :: 'e \ V-rec

assumes validSES: SES-valid \ SES
and validVU: isViewOn \ \mathcal{V} \ E_{SES}

sublocale Unwinding \subseteq BSPTaxonomyDifferentCorrections induceES \ SES \ \mathcal{V}
by (unfold-locales, simp \ add: induceES-yields-ES \ validSES, simp \ add: induceES-def \ validVU)
```

```
definition osc :: 's rel \Rightarrow bool
where
osc\ ur \equiv
      \forall s1 \in S_{SES}. \ \forall s1' \in S_{SES}. \ \forall s2' \in S_{SES}. \ \forall \ e \in (E_{SES} - C_{\mathcal{V}}).
            (reachable\ SES\ s1\ \land\ reachable\ SES\ s1)
                    \land s1' e \longrightarrow_{SES} s2' \land (s1', s1) \in ur)
             \longrightarrow (\exists \, s\mathcal{2} \in S_{SES}. \, \exists \, \delta. \, \delta \uparrow \, C_{\mathcal{V}} = [] \, \land \, \delta \uparrow \, V_{\mathcal{V}} = [e] \uparrow \, V_{\mathcal{V}}
                                \land s1 \ \delta \Longrightarrow_{SES} s2 \ \land (s2', s2) \in ur)
definition lrf :: 's rel \Rightarrow bool
where
lrf ur \equiv
      \forall s \in S_{SES}. \ \forall s' \in S_{SES}. \ \forall c \in C_{\mathcal{V}}.
      ((\textit{reachable SES } s \land s \overset{\frown}{c} \longrightarrow_{SES} s') \longrightarrow (s', s) \in ur)
definition lrb :: 's rel \Rightarrow bool
lrb\ ur \equiv \forall\, s \in S_{SES}. \ \forall\, c \in C_{\mathcal{V}}.
      (reachable \ SES \ s \longrightarrow (\exists \ s' \in S_{SES}. \ (s \ c \longrightarrow_{SES} s' \land ((s, \ s') \in ur))))
\mathbf{definition} \ \mathit{fcrf} \ :: \ 'e \ \mathit{Gamma} \ \Rightarrow \ 's \ \mathit{rel} \ \Rightarrow \ \mathit{bool}
where
fcrf \Gamma ur \equiv
      \forall c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}). \ \forall s \in S_{SES}. \ \forall s' \in S_{SES}.
            ((reachable SES s \land s ([c] @ [v])\Longrightarrow_{SES} s')

\longrightarrow (\exists s'' \in S_{SES}. \exists \delta. (\forall d \in (set \delta). d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma})) \land
                                          s (\delta @ [v]) \Longrightarrow_{SES} s'' \land (s', s'') \in ur))
definition fcrb :: 'e \ Gamma \Rightarrow 's \ rel \Rightarrow bool
where
fcrb \Gamma ur \equiv
      \forall c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}). \ \forall s \in S_{SES}. \ \forall s'' \in S_{SES}.
      ((\textit{reachable SES } s \land s \ v \longrightarrow_{\textit{SES}} s'')
             \longrightarrow (\exists s' \in S_{SES}. \ \exists \delta. \ (\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma})) \land (\forall d \in (S_{SES}). \ \exists \delta. \ (\forall d \in (S_{SES}). \ d 
                                s([c] @ \delta @ [v]) \Longrightarrow_{SES} s' \wedge (s'', s') \in ur))
definition En :: 'e Rho \Rightarrow 's \Rightarrow 'e \Rightarrow bool
where
En\ \varrho\ s\ e \equiv
```

 $\begin{array}{l} \exists \, \bar{\beta} \, \, \gamma. \, \exists \, s' \in S_{SES}. \, \exists \, s'' \in S_{SES}. \\ s\theta_{SES} \, \beta \Longrightarrow_{SES} s \wedge (\gamma \mid (\varrho \, \mathcal{V}) = \beta \mid (\varrho \, \mathcal{V})) \end{array}$

context Unwinding

begin

```
\wedge \ s\theta_{SES} \ \gamma {\Longrightarrow}_{SES} \ s' \wedge s' \ e {\longrightarrow}_{SES} \ s''
definition lrbe :: 'e Rho \Rightarrow 's rel \Rightarrow bool
where
lrbe\ \varrho\ ur \equiv
  \forall s \in S_{SES}. \ \forall c \in C_{\mathcal{V}}.
  ((reachable SES s \land (En \varrho s c))
       \longrightarrow (\exists s' \in S_{SES}. (s c \xrightarrow{SES} s' \land (s, s') \in ur)))
definition fcrbe :: 'e \ Gamma \Rightarrow 'e \ Rho \Rightarrow 's \ rel \Rightarrow bool
where
fcrbe \Gamma \varrho ur \equiv
  \forall c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma}). \ \forall v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma}). \ \forall s \in S_{SES}. \ \forall s'' \in S_{SES}.
  ((reachable SES \ s \land s \ v \longrightarrow_{SES} s'' \land (En \ \varrho \ s \ c))
        \rightarrow (\exists s' \in S_{SES}. \ \exists \delta. \ (\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma})) \land s \ ([c] \ @ \ \delta \ @ \ [v]) \Longrightarrow_{SES} s' \land (s'', s') \in ur)) 
end
end
5.3.2
              Auxiliary Results
{\bf theory} \ {\it Auxiliary Lemmas}
imports UnwindingConditions
begin
context Unwinding
begin
lemma osc-property:
\land s1 \ s1'. \llbracket \ osc \ ur; \ s1 \in S_{SES}; \ s1' \in S_{SES}; \ \alpha \mid C_{\mathcal{V}} = \llbracket ]; reachable SES s1; reachable SES s1'; enabled SES s1' \alpha; \ (s1', \ s1) \in ur \ \rrbracket
  \implies (\exists \alpha'. \alpha' \mid C_{\mathcal{V}} = [] \land \alpha' \mid V_{\mathcal{V}} = \alpha \mid V_{\mathcal{V}} \land enabled \ SES \ s1 \ \alpha')
proof (induct \alpha)
  \mathbf{case}\ \mathit{Nil}
  have [] \land C_{\mathcal{V}} = [] \land
     [] | V_{\mathcal{V}} = [] | V_{\mathcal{V}} \wedge enabled SES s1 []
     by (simp add: enabled-def projection-def)
  thus ?case by (rule exI)
  case (Cons e1 \alpha1)
  \mathbf{assume}\ osc\text{-}true:\ osc\ ur
  assume s1-in-S: s1 \in S_{SES}
  assume s1'-in-S: s1' \in S_{SES}
  assume e1\alpha 1-C-empty: (e1 \# \alpha 1) \uparrow C_{\mathcal{V}} = []
  assume reachable-s1: reachable SES s1
  assume reachable-s1': reachable SES s1'
```

```
assume enabled-s1'-e1\alpha1: enabled SES s1' (e1 # \alpha1)
assume unwindingrel-s1'-s1: (s1', s1) \in ur
have e1 \alpha 1-no-c: \forall a \in (set (e1 \# \alpha 1)). \ a \in (E_{SES} - C_{\mathcal{V}})
proof -
  from reachable-s1' obtain \beta
    where s\theta_{SES} \beta \Longrightarrow_{SES} s1'
    by(simp add: reachable-def, auto)
  moreover
  from enabled-s1'-e1\alpha1 obtain s1337
    where s1' (e1 \# \alpha 1)\Longrightarrow_{SES} s1337
    \mathbf{by}(simp\ add:\ enabled\text{-}def,\ auto)
  ultimately have s\theta_{SES} (\beta @ (e1 \# \alpha 1))\Longrightarrow_{SES} s1337
   \mathbf{by}(rule\ path-trans)
  hence \beta @ (e1 \# \alpha 1) \in Tr_{(induceES \ SES)}
   by (simp add: induceES-def possible-traces-def enabled-def)
  with validSES induceES-yields-ES[of SES] have \forall a \in (set \ (\beta @ (e1 \# \alpha 1))). \ a \in E_{SES}
   by (simp add: induceES-def ES-valid-def traces-contain-events-def)
  hence \forall a \in (set (e1 \# \alpha 1)). a \in E_{SES}
   by auto
  with e1\alpha 1-C-empty show ?thesis
    by (simp only: projection-def filter-empty-conv, auto)
qed
from enabled-s1'-e1\alpha1 obtain s2' where
  s1'-e1-s2': s1' e1 \longrightarrow_{SES} s2'
  by (simp add: enabled-def, split if-split-asm, auto)
with validSES have s2'-in-S: s2' \in S_{SES}
  by (simp add: SES-valid-def correct-transition-relation-def)
have reachable-s2': reachable SES s2'
proof -
  from reachable-s1' obtain t where
    path-to-s1': s0_{SES} t \Longrightarrow_{SES} s1'
    by (simp add: reachable-def, auto)
  from s1'-e1-s2' have s1' [e1] \Longrightarrow_{SES} s2'
    by simp
  with path-to-s1' have s\theta_{SES} (t @ [e1])\Longrightarrow_{SES} s2'
    by (simp add: path-trans)
  thus ?thesis by (simp add: reachable-def, rule exI)
ged
from s1'-e1-s2' enabled-s1'-e1\alpha 1 obtain sn' where
  s2' \alpha 1 \Longrightarrow_{SES} sn'
  by (simp add: enabled-def, auto)
hence enabled-s2'-\alpha1: enabled SES s2' \alpha1
  by (simp add: enabled-def)
from e1\alpha 1-no-c have e1-no-c: e1 \in (E_{SES} - C_{\mathcal{V}})
from e1 \alpha 1-no-c have \alpha 1-no-c: \forall a \in (set \alpha 1). (a \in (E_{SES} - C_{\mathcal{V}}))
 by simp
hence \alpha 1-proj-C-empty: \alpha 1 \uparrow C_{\mathcal{V}} = []
 by (simp add: projection-def)
from osc-true have
```

```
\llbracket \ s1 \in S_{SES}; \ s1' \in S_{SES}; \ s2' \in S_{SES};
       e1 \in (E_{SES} - C_{\mathcal{V}}); reachable SES s1; reachable SES s1';
       s1' e1 \longrightarrow_{SES} s2'; (s1', s1) \in ur ]
      \implies (\exists s2 \in S_{SES}. \ \exists \delta. \ \delta \mid C_{\mathcal{V}} = []
         \wedge \ (\delta \upharpoonright V_{\mathcal{V}}) = ([e1] \upharpoonright V_{\mathcal{V}}) \wedge (s1 \ \delta \Longrightarrow_{SES} s2 \ \wedge \\
        ((s2', s2) \in ur))
    by (simp add: osc-def)
  with s1-in-S s1'-in-S e1-no-c reachable-s1 reachable-s1'
     s2'-in-S s1'-e1-s2' unwindingrel-s1'-s1
  obtain s2 \delta where
     osc\text{-}conclusion:
       s2 \in S_{SES} \wedge \delta \upharpoonright C_{\mathcal{V}} = [] \wedge
       (\delta \uparrow V_{\mathcal{V}}) = ([e1] \uparrow V_{\mathcal{V}}) \land s1 \delta \Longrightarrow_{SES} s2 \land
       ((s2', s2) \in ur)
    \mathbf{by} \ auto
  hence \delta-proj-C-empty: \delta \upharpoonright C_{\mathcal{V}} = []
    by (simp add: projection-def)
  from osc-conclusion have s2-in-S: s2 \in S_{SES}
  from osc-conclusion have unwindingrel-s2'-s2: (s2', s2) \in ur
    by auto
  have reachable-s2: reachable SES s2
  proof -
     from reachable-s1 obtain t where
       path-to-s1: s0_{SES} t \Longrightarrow_{SES} s1
       by (simp add: reachable-def, auto)
     from osc-conclusion have s1 \delta \Longrightarrow_{SES} s2
       by auto
     with path-to-s1 have s\theta_{SES} (t @ \delta)\Longrightarrow_{SES} s2
       by (simp add: path-trans)
    thus ?thesis by (simp add: reachable-def, rule exI)
  qed
  from Cons osc-true s2-in-S s2'-in-S \alpha1-proj-C-empty
     reachable\text{-}s2 \ reachable\text{-}s2 \ 'enabled\text{-}s2 \ '-\alpha 1 \ unwinding rel\text{-}s2 \ '-s2
  obtain \alpha'' where \alpha''-props:
     \alpha'' \upharpoonright C_{\mathcal{V}} = [] \land \alpha'' \upharpoonright V_{\mathcal{V}} = \alpha 1 \upharpoonright V_{\mathcal{V}} \land enabled SES s2 \alpha''
    by auto
  with osc-conclusion have \delta \alpha''-props:
     (\delta @ \alpha'') \uparrow C_{\mathcal{V}} = [] \land
     (\delta @ \alpha'') | V_{\mathcal{V}} = (e1\#\alpha 1) | V_{\mathcal{V}} \wedge enabled SES s1 (<math>\delta @ \alpha'')
    \mathbf{by}\ (simp\ add:\ projection\text{-}def\ enabled\text{-}def,\ auto,\ simp\ add:\ path\text{-}trans)
  hence (\delta @ \alpha'') \uparrow C_{\mathcal{V}} = []
    \mathbf{by}\ (simp\ add:\ projection\text{-}def)
  thus ?case using \delta \alpha''-props by auto
qed
lemma path-state-closure: [s \ \tau \Longrightarrow_{SES} s'; s \in S_{SES}] \Longrightarrow s' \in S_{SES}
  (is [P \ s \ \tau \ s'; ?S \ s \ SES] \implies ?S \ s' \ SES)
proof (induct \tau arbitrary: s s')
  {\bf case} \ {\it Nil} \ {\bf with} \ {\it validSES} \ {\bf show} \ {\it ?case}
```

```
by (auto simp add: SES-valid-def correct-transition-relation-def)
next
  case (Cons\ e\ 	au) thus ?case
  proof -
     assume path-e\tau: ?P s (e # \tau) s'
     assume induct-hypo: \bigwedge s \ s'. [?P \ s \ \tau \ s'; ?S \ s \ SES] \implies ?S \ s' \ SES
     from path\text{-}e\tau obtain s^{\prime\prime} where s\text{-}e\text{-}s^{\prime\prime}: s e{\longrightarrow}_{SES} s^{\prime\prime}
      by(simp add: path-def, split if-split-asm, auto)
     with validSES have s"-in-S: ?S s" SES
       by (simp add: SES-valid-def correct-transition-relation-def)
    from s-e-s" path-e\tau have path-\tau: ?P s" \tau s' by auto
    from path-\tau s''-in-S show ?case by (rule induct-hypo)
  qed
qed
theorem En-to-Adm:
[\![\![\ reachable\ SES\ s;\ En\ \varrho\ s\ e]\!]
\Longrightarrow \exists \beta. \ (\ s0_{SES} \ \beta \Longrightarrow_{SES} s \land Adm \ \mathcal{V} \ \varrho \ Tr_{(induceES \ SES)} \ \beta \ e \ )
proof -
  assume En\ \varrho\ s\ e
  then obtain \beta~\gamma~s^\prime~s^{\prime\prime}
    where s\theta_{SES} \beta \Longrightarrow_{SES} s
and \gamma \uparrow (\varrho V) = \beta \uparrow (\varrho V)
and s\theta \lnot \gamma \lnot s' : s\theta_{SES} \gamma \Longrightarrow_{SES} s'
and s' \lnot e \lnot s'' : s' e \Longrightarrow_{SES} s''
    by (simp add: En-def, auto)
  moreover
     from s\theta-\gamma-s' s'-e-s'' have s\theta_{SES} (\gamma @ [e])\Longrightarrow_{SES} s''
       by (rule path-trans-single)
    hence (\gamma @ [e]) \in Tr_{(induceES SES)}
       by(simp add: induceES-def possible-traces-def enabled-def)
  ultimately show ?thesis
     by (simp add: Adm-def, auto)
qed
theorem Adm-to-En:
[\![ \beta \in \mathit{Tr}_{(induceES\ SES)}; \mathit{Adm}\ \mathcal{V}\ \varrho\ \mathit{Tr}_{(induceES\ SES)}\ \beta\ e\ ]\!]
\implies \exists s \in S_{SES}. (s0_{SES} \beta \Longrightarrow_{SES} s \land En \varrho s e)
  from validSES have s0-in-S: s0 _{SES} \in S _{SES}
        by (simp add: SES-valid-def s0-is-state-def)
  \mathbf{assume}\ \beta\in\ \mathit{Tr}_{(\mathit{induceES}\ \mathit{SES})}
  then obtain s
```

```
where s\theta-\beta-s: s\theta_{SES} \beta \Longrightarrow_{SES} s
    \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{induceES-def}\ \mathit{possible-traces-def}\ \mathit{enabled-def},\ \mathit{auto})
  from this have s-in-S: s \in S_{SES} using s0-in-S
    \mathbf{by}\ (\mathit{rule}\ \mathit{path-state-closure})
  assume Adm \ V \ \varrho \ Tr_{(induceES\ SES)} \ \beta \ e
  then obtain \gamma
     where \varrho \gamma-is-\varrho \beta: \gamma \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright (\varrho \ \mathcal{V})
    and \exists s''. s\theta_{SES} (\gamma @ [e]) \Longrightarrow_{SES} s''
    by(simp add: Adm-def induceES-def possible-traces-def enabled-def, auto)
  then obtain s^{\prime\prime}
     where s\theta-\gamma e-s'': s\theta_{SES} (\gamma @ [e])\Longrightarrow_{SES} s''
    by auto
  from this have s''-in-S: s'' \in S_{SES} using s\theta-in-S
    by (rule path-state-closure)
  from path-split-single[OF \ s0-\gamma e-s''] obtain s'
    where s\theta-\gamma-s': s\theta _{SES} \gamma \Longrightarrow_{SES} s' and s'-e-s'': s' e \longrightarrow_{SES} s''
    by auto
  from path-state-closure[OF s0-\gamma-s' s0-in-S] have s'-in-S: s' \in S_{SES}.
  from s'-in-S s''-in-S s0-\beta-s \varrho\gamma-is-\varrho\beta s0-\gamma-s' s'-e-s'' s-in-S show ?thesis
    by (simp add: En-def, auto)
\mathbf{qed}
\mathbf{lemma}\ state\text{-} from\text{-}induce ES\text{-}trace:
  [ \hspace{.15cm} (\beta @ \alpha) \in \mathit{Tr}_{(induceES\ SES)} \hspace{.15cm} ]
  \Longrightarrow \exists s \in S_{SES}. s0_{SES} \beta \Longrightarrow_{SES} s \land enabled SES s \alpha \land reachable SES s
  proof -
     assume \beta \alpha-in-Tr: (\beta @ \alpha) \in Tr_{(induceES\ SES)}
    then obtain s' where s\theta-\beta\alpha-s':s\theta_{SES} (\beta @ \alpha)\Longrightarrow_{SES} s'
       by (simp add: induceES-def possible-traces-def enabled-def, auto)
     from path\text{-}split[\mathit{OF}\ s0\text{-}\beta\alpha\text{-}s'] obtain s
       where s\theta-\beta-s: s\theta_{SES} \beta \Longrightarrow_{SES} s and s \alpha \Longrightarrow_{SES} s'
       by auto
     hence enabled-s-\alpha: enabled SES s \alpha
       by (simp add: enabled-def)
     from s0-\beta-s have reachable-s: reachable SES s
       \mathbf{by}(simp\ add:\ reachable\text{-}def,\ auto)
     from validSES have soleta_{SES} \in S_{SES}
       by (simp add: SES-valid-def s0-is-state-def)
     with s\theta-\beta-s have s-in-S: s \in S_{SES}
       by (rule path-state-closure)
```

```
with s0-\beta-s enabled-s-\alpha reachable-s show ?thesis
      by auto
  \mathbf{qed}
lemma path-split2:s0 _{SES} (\beta @ \alpha){\Longrightarrow}_{SES} s
  \Longrightarrow \exists s' \in S_{SES}. (s0_{SES} \beta \Longrightarrow_{SES} s' \land s' \alpha \Longrightarrow_{SES} s \land reachable SES s')
proof -
  assume s0-\beta\alpha-s: s0_{SES} (\beta @ \alpha)\Longrightarrow_{SES} s
  from path-split[OF s0-\beta\alpha-s] obtain s'
    where s\theta-\beta-s': s\theta_{SES} \beta \Longrightarrow_{SES} s'
    and s'-\alpha-s: s' \alpha \Longrightarrow_{SES} s
    by auto
  hence reachable SES s'
    by(simp add: reachable-def, auto)
  moreover
  have s' \in S_{SES}
    proof -
       \mathbf{from}\ s0\text{-}\beta\text{-}s'\ validSES\ path\text{-}state\text{-}closure\ \mathbf{show}\ ?thesis
         by (auto simp add: SES-valid-def s0-is-state-def)
    \mathbf{qed}
  ultimately show ?thesis using s'-\alpha-s s\theta-\beta-s'
    \mathbf{by}(\mathit{auto})
\mathbf{qed}
lemma path-split-single2:
  s\theta_{SES} (\beta @ [x])\Longrightarrow_{SES} s
  \Longrightarrow \exists s' \in S_{SES} \ (s\theta_{SES} \ \beta \Longrightarrow_{SES} s' \land s' \ x \longrightarrow_{SES} s \land reachable \ SES \ s')
  assume s0-\beta x-s: s0 _{SES} (\beta @ [x])\Longrightarrow_{SES} s
  from path-split2[OF s0-\beta x-s] show ?thesis
     by (auto, split if-split-asm, auto)
qed
lemma modified-view-valid: is View On (V = (V_{\mathcal{V}} \cup N_{\mathcal{V}}), N = \{\}, C = C_{\mathcal{V}} \mid E_{SES}
  using validVU
    \mathbf{unfolding}\ is \textit{ViewOn-def}\ \textit{V-valid-def}\ \textit{VC-disjoint-def}\ \textit{VN-disjoint-def}\ \textit{NC-disjoint-def}\ \mathbf{by}\ \textit{auto}
end
end
5.3.3
```

Unwinding Theorems

theory UnwindingResults imports AuxiliaryLemmas

begin

```
context Unwinding
begin
theorem unwinding-theorem-BSD:
\llbracket \ \mathit{lrf} \ \mathit{ur}; \ \mathit{osc} \ \mathit{ur} \ \rrbracket \Longrightarrow \mathit{BSD} \ \mathcal{V} \ \mathit{Tr}_{(\mathit{induceES} \ \mathit{SES})}
proof -
  assume lrf-true: lrf ur
  assume osc-true: osc ur
    \mathbf{fix}\ \alpha\ \beta\ c
    assume c-in-C: c \in C_{\mathcal{V}}
    assume \beta c \alpha-in-Tr: ((\beta @ [c]) @ \alpha) \in Tr_{(induceES\ SES)}
    assume \alpha-contains-no-c: \alpha \upharpoonright C_{\mathcal{V}} = []
    from state-from-induceES-trace[OF \beta c\alpha-in-Tr] obtain s1'
       where s1'-in-S: s1' \in S_{SES}
       and enabled-s1'-\alpha: enabled SES s1' \alpha
      and s0-\beta c-s1': s0_{SES} (\beta @ [c])\Longrightarrow_{SES} s1'
       and reachable-s1': reachable SES s1
       by auto
    from path-split-single2[OF s0-\beta c-s1] obtain s1
       where s1-in-S: s1 \in S_{SES}
       and s0-\beta-s1: s0_{SES} \beta \Longrightarrow_{SES} s1
       and s1-c-s1': s1 c \longrightarrow_{SES} s1
       and reachable-s1: reachable SES s1
       by auto
    \mathbf{from}\ s1\text{-}in\text{-}S\ s1'\text{-}in\text{-}S\ c\text{-}in\text{-}C\ reachable\text{-}s1\ s1\text{-}c\text{-}s1'\ lrf\text{-}true
    have s1'-ur-s1: ((s1', s1) \in ur)
       by (simp add: lrf-def, auto)
    from osc-property[OF osc-true s1-in-S s1'-in-S \alpha-contains-no-c reachable-s1
       reachable-s1' enabled-s1'-α s1'-ur-s1]
       where \alpha'-contains-no-c: \alpha' \upharpoonright C_{\mathcal{V}} = []
       and \alpha'-V-is-\alpha-V: \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
      and enabled-s1-\alpha': enabled SES s1 \alpha'
    have \beta\alpha'\text{-}\mathit{in-Tr}\text{: }\beta\ @\ \alpha'\in\ \mathit{Tr}_{(\mathit{induceES\ SES)}}
    proof -
       note s\theta-\beta-s1
       moreover
       from enabled-s1-\alpha' obtain s2
         where s1 \ \alpha' \Longrightarrow_{SES} s2
         by (simp add: enabled-def, auto)
       ultimately have s\theta_{SES} (\beta @ \alpha') \Longrightarrow_{SES} s2
         by (rule path-trans)
       thus ?thesis
```

```
\mathbf{by}\ (simp\ add:\ induce ES\text{-}def\ possible\text{-}traces\text{-}def\ enabled\text{-}def)
    \mathbf{qed}
    from \beta\alpha'-in-Tr \alpha'-V-is-\alpha-V \alpha'-contains-no-c have
       \exists \alpha'. \; ((\beta @ \alpha') \in (\mathit{Tr}_{(induceES \; SES)}) \; \land \; (\alpha' \restriction (V_{\mathcal{V}})) = (\alpha \restriction V_{\mathcal{V}}) \; \land \; \alpha' \restriction C_{\mathcal{V}} = [])
  thus ?thesis
    by (simp add: BSD-def)
{\bf theorem}\ unwinding\hbox{-}theorem\hbox{-}BSI\hbox{:}
\llbracket \ lrb \ ur; \ osc \ ur \ \rrbracket \Longrightarrow BSI \ \mathcal{V} \ Tr_{(induceES \ SES)}
proof -
  assume lrb-true: lrb ur
  assume osc-true: osc ur
  {
    fix \alpha \beta c
    assume c-in-C: c \in C_{\mathcal{V}}
    assume \beta\alpha-in-ind-Tr: (\beta @ \alpha) \in Tr_{(induceES\ SES)}
    assume \alpha-contains-no-c: \alpha \upharpoonright C_{\mathcal{V}} = []
    from state-from-induceES-trace[OF \beta\alpha-in-ind-Tr] obtain s1
       where s1-in-S: s1 \in S_{SES}
       and path-\beta-yields-s1: s0_{SES} \beta \Longrightarrow_{SES} s1
      and enabled-s1-\alpha: enabled SES s1 \alpha
       and reachable-s1: reachable SES s1
      by auto
    from reachable-s1 s1-in-S c-in-C lrb-true
    have \exists s1' \in S_{SES}. s1 \ c \longrightarrow_{SES} s1' \land (s1, s1') \in ur
       \mathbf{by}(simp\ add:\ lrb-def)
    then obtain s1'
       where s1'-in-S: s1' \in S_{SES}
       and s1-trans-c-s1': s1 c \xrightarrow{\sim}_{SES} s1'
      and s1-s1'-in-ur: (s1, s1') \in ur
      by auto
    have reachable-s1': reachable SES s1'
    proof -
       from path-\beta-yields-s1 s1-trans-c-s1' have s0 _{SES} (\beta @ [c])\Longrightarrow_{SES} s1'
         by (rule path-trans-single)
       thus ?thesis by (simp add: reachable-def, auto)
     qed
    from osc\text{-}property[OF\ osc\text{-}true\ s1'\text{-}in\text{-}S\ s1\text{-}in\text{-}S\ \alpha\text{-}contains\text{-}no\text{-}c}]
       reachable-s1' reachable-s1 enabled-s1-\alpha s1-s1'-in-ur
       where \alpha'-contains-no-c: \alpha' \upharpoonright C_{\mathcal{V}} = []
       and \alpha'-V-is-\alpha-V: \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
       and enabled-s1'-\alpha': enabled SES s1'\alpha'
```

```
by auto
     have \beta c\alpha'-in-ind-Tr: \beta @ [c] @ \alpha' \in Tr_{(induceES\ SES)}
       from path-\beta-yields-s1 s1-trans-c-s1' have s0 _{SES} (\beta @ [c])\Longrightarrow_{SES} s1'
         \mathbf{by}\ (\mathit{rule}\ \mathit{path-trans-single})
       moreover
       from enabled-s1'-\alpha' obtain s2
         where s1' \alpha' \Longrightarrow_{SES} s2
         by (simp add: enabled-def, auto)
       ultimately have s\theta_{SES} ((\beta @ [c]) @ \alpha')\Longrightarrow_{SES} s2
         by (rule path-trans)
       thus ?thesis
         \mathbf{by}\ (simp\ add:\ induce ES-def\ possible-traces-def\ enabled-def)
     qed
    from \beta c \alpha'-in-ind-Tr \alpha'-V-is-\alpha-V \alpha'-contains-no-c
    have \exists \alpha' . \beta @ c \# \alpha' \in Tr_{(induceES\ SES)} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
       by auto
  }
  thus ?thesis
    by(simp add: BSI-def)
qed
theorem unwinding-theorem-BSIA:
\llbracket \text{ lrbe } \varrho \text{ ur; osc ur } \rrbracket \Longrightarrow \text{BSIA } \varrho \text{ } \mathcal{V} \text{ } \text{Tr}_{(induceES \text{ } SES)}
proof -
  assume lrbe-true: lrbe \rho ur
  assume osc-true: osc ur
  {
    fix \alpha \beta c
    assume c-in-C: c \in C_{\mathcal{V}}
    assume \beta \alpha-in-ind-Tr: (\beta @ \alpha) \in Tr_{(induceES\ SES)}
    assume \alpha-contains-no-c: \alpha \upharpoonright C_{\mathcal{V}} = []
    assume adm: Adm~\mathcal{V}~\varrho~Tr_{(induceES~SES)}~\beta~c
     from state-from-induceES-trace[OF <math>\beta\alpha-in-ind-Tr]
     obtain s1
       where s1-in-S: s1 \in S_{SES}
       and s0-\beta-s1: s0_{SES} \beta \Longrightarrow_{SES} s1
       and enabled-s1-\alpha: enabled SES s1 \alpha
       and reachable-s1: reachable SES s1
       by auto
     have \exists \alpha' . \beta @ [c] @ \alpha' \in Tr_{(induceES\ SES)} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
     proof cases
       assume en: En \varrho s1 c
```

```
from reachable-s1 s1-in-S c-in-C en lrbe-true
 have \exists s1' \in S_{SES}. s1 \ c \longrightarrow_{SES} s1' \land (s1, s1') \in ur
   \mathbf{by}(simp\ add:\ lrbe-def)
 then obtain s1'
   where s1'-in-S: s1' \in S_{SES}
   and s1-trans-c-s1': s1 c \longrightarrow_{SES} s1'
   and s1-s1'-in-ur: (s1, s1') \in ur
   by auto
 have reachable-s1': reachable SES s1'
 proof -
   from s0-\beta-s1 s1-trans-c-s1 ' have s0 _{SES} (\beta @ [c]) \Longrightarrow_{SES} s1 '
     by (rule path-trans-single)
   thus ?thesis by (simp add: reachable-def, auto)
 qed
 from osc-property[OF osc-true s1'-in-S s1-in-S α-contains-no-c
   reachable-s1' reachable-s1 enabled-s1-α s1-s1'-in-ur]
   where \alpha'-contains-no-c: \alpha' \upharpoonright C_{\mathcal{V}} = []
   and \alpha'-V-is-\alpha-V: \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
   and enabled-s1'-\alpha': enabled SES s1' \alpha'
   by auto
 have \beta c\alpha'-in-ind-Tr: \beta @ [c] @ \alpha' \in Tr_{(induceES\ SES)}
 proof -
   from s0-\beta-s1 s1-trans-c-s1 have s0 _{SES} (\beta @ [c])\Longrightarrow_{SES} s1 '
     \mathbf{by} (rule path-trans-single)
   moreover
   from enabled-s1'-\alpha' obtain s2
      where s1' \alpha' \Longrightarrow_{SES} s2
      by (simp add: enabled-def, auto)
   ultimately have s\theta_{SES} ((\beta @ [c]) @ \alpha')\Longrightarrow_{SES} s2
      by (rule path-trans)
   thus ?thesis
     by (simp add: induceES-def possible-traces-def enabled-def)
 from \beta c\alpha'-in-ind-Tr \alpha'-V-is-\alpha-V \alpha'-contains-no-c show ?thesis
   by auto
next
 assume not-en: \neg En \varrho s1 c
 let ?A = (Adm \ \mathcal{V} \ \varrho \ (\mathit{Tr}_{(induceES \ SES)}) \ \beta \ c)
 let ?E = \exists s \in S_{SES}. (so_{SES} \beta \Longrightarrow_{SES} s \land En \varrho s c)
   assume adm: ?A
   from s0-\beta-s1 have \beta-in-Tr: \beta \in Tr_{(induceES\ SES)}
     by (simp add: induceES-def possible-traces-def enabled-def)
```

```
from \beta-in-Tr adm have ?E
           by (rule\ Adm-to-En)
       hence Adm-to-En-contr: \neg ?E \Longrightarrow \neg ?A
         by blast
       with s1-in-S s0-\beta-s1 not-en have not-adm: \neg ?A
         by auto
       with adm show ?thesis
         by auto
    qed
  thus ?thesis
    \mathbf{by}\ (simp\ add\colon BSIA\text{-}def)
qed
theorem unwinding-theorem-FCD:
\llbracket \ \mathit{fcrf} \ \Gamma \ \mathit{ur}; \ \mathit{osc} \ \mathit{ur} \ \rrbracket \Longrightarrow \mathit{FCD} \ \Gamma \ \mathcal{V} \ \mathit{Tr}_{(\mathit{induceES} \ \mathit{SES})}
proof -
  assume fcrf: fcrf \Gamma ur
  assume osc: osc ur
    \mathbf{fix} \ \alpha \ \beta \ c \ v
    assume c-in-C-inter-Y: c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})
    assume v-in-V-inter-Nabla: v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})
    assume \beta cv\alpha-in-Tr: ((\beta @ [c] @ [v]) @ \alpha) \in Tr_{(induceES\ SES)}
    assume \alpha-contains-no-c: \alpha \upharpoonright C_{\mathcal{V}} = []
    from state-from-induceES-trace[OF \beta cv\alpha-in-Tr] obtain s1'
       where s1'-in-S: s1' \in S_{SES}
      and s\theta-\beta cv-s1': s\theta_{SES} (\widetilde{\beta} @ ([c] @ [v]))\Longrightarrow_{SES} s1'
      and enabled-s1'-\alpha: enabled SES s1' \alpha
      and reachable-s1': reachable SES s1'
      by auto
    from path-split2[OF s0-\beta cv-s1'] obtain s1
       where s1-in-S: s1 \in S_{SES}
       and s0-\beta-s1: s0_{SES} \beta \Longrightarrow_{SES} s1
      and s1-cv-s1': s1 ([c] @ [v])\Longrightarrow_{SES} s1'
      and reachable-s1: reachable SES s1
      by (auto)
    from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S s1'-in-S reachable-s1 s1-cv-s1' fcrf
    have \exists s1^{\prime\prime} \in S_{SES}. \exists \delta. (\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma})) \land
      s1 \ (\delta \ @ \ [v]) \Longrightarrow_{SES} s1'' \land (s1', s1'') \in ur
      by (simp add: fcrf-def)
    then obtain s1^{\prime\prime} \delta
       where s1''-in-S: s1'' \in S_{SES}
      and \delta-in-N-inter-Delta-star: (\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma}))
      and s1-\delta v-s1'': s1 (\delta @ [v])\Longrightarrow_{SES} s1''
      and s1'-ur-s1'': (s1', s1'') \in ur
```

```
by auto
     have reachable-s1": reachable SES s1"
     proof -
       from s0-\beta-s1 s1-\delta v-s1'' have s0_{SES} (\beta @ (\delta @ [v]))\Longrightarrow_{SES} s1''
          by (rule path-trans)
       thus ?thesis
          by (simp add: reachable-def, auto)
     qed
     from osc-property[OF osc s1"-in-S s1'-in-S α-contains-no-c
       reachable-s1" reachable-s1' enabled-s1'-α s1'-ur-s1"]
     obtain \alpha'
       where \alpha'-contains-no-c: \alpha' \upharpoonright C_{\mathcal{V}} = []
       and \alpha'-V-is-\alpha-V: \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
and enabled-s1"-\alpha': enabled SES s1" \alpha'
     have \beta \delta v \alpha'-in-Tr: \beta @ \delta @ [v] @ \alpha' \in Tr_{(induceES\ SES)}
          from s0-\beta-s1 s1-\delta v-s1 " have s0_{SES} (\beta @ \delta @ [v])\Longrightarrow_{SES} s1 "
            by (rule path-trans)
          moreover
          from enabled-s1"-\alpha' obtain s2
             where s1'' \alpha' \Longrightarrow_{SES} s2
            by (simp add: enabled-def, auto)
          ultimately have s\theta_{SES} ((\beta @ \delta @ [v]) @ \alpha')\Longrightarrow_{SES} s2
            by (rule path-trans)
          thus ?thesis
            by (simp add: induceES-def possible-traces-def enabled-def)
       from \delta-in-N-inter-Delta-star \beta\delta v\alpha'-in-Tr \alpha'-V-is-\alpha-V \alpha'-contains-no-c
       have \exists \alpha'. \exists \delta'. set \delta' \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land \beta @ \delta' @ [v] @ \alpha' \in Tr_{(induceES\ SES)}
          \wedge \alpha' \uparrow V_{\mathcal{V}} = \alpha \uparrow V_{\mathcal{V}} \wedge \alpha' \uparrow C_{\mathcal{V}} = []
          by auto
  thus ?thesis
    by (simp add: FCD-def)
{\bf theorem}\ unwinding\hbox{-}theorem\hbox{-}FCI\hbox{:}
\llbracket \ \mathit{fcrb} \ \Gamma \ \mathit{ur}; \ \mathit{osc} \ \mathit{ur} \ \rrbracket \Longrightarrow \mathit{FCI} \ \Gamma \ \mathcal{V} \ \mathit{Tr}_{(\mathit{induceES} \ \mathit{SES})}
proof -
  assume fcrb: fcrb \Gamma ur
  assume osc: osc ur
    fix \alpha \beta c v
    assume c-in-C-inter-Y: c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})
    assume v-in-V-inter-Nabla: v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})
```

```
assume \beta v \alpha-in-Tr: ((\beta @ [v]) @ \alpha) \in Tr_{(induceES SES)}
assume \alpha-contains-no-c: \alpha \upharpoonright C_{\mathcal{V}} = []
from state-from-induceES-trace[OF \beta v\alpha-in-Tr] obtain s1 ^{\prime\prime}
  where s1''-in-S: s1'' \in S_{SES}
  and s0-\beta v-s1'': s0_{SES} (\beta \bigcirc \bigcirc [v]) \Longrightarrow_{SES} s1''
  and enabled-s1"-\alpha: enabled SES s1" \alpha
  and reachable-s1": reachable SES s1"
  \mathbf{by} auto
from path-split-single2[OF s0-βv-s1"] obtain s1
  where s1-in-S: s1 \in S_{SES}
  and s0-\beta-s1: s0_{SES} \beta \Longrightarrow_{SES} s1
  and s1-v-s1": s1 v \longrightarrow_{SES} s1'
  and reachable-s1: reachable SES s1
  by (auto)
\mathbf{from} \ c\text{-}in\text{-}C\text{-}inter\text{-}Y \ v\text{-}in\text{-}V\text{-}inter\text{-}Nabla \ s1\text{-}in\text{-}S
  s1\,^{\prime\prime}\text{-}in\text{-}S\ reachable\text{-}s1\ s1\text{-}v\text{-}s1\,^{\prime\prime}\ fcrb
have \exists s1' \in S_{SES}. \exists \delta. (\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma}))
  \wedge \ s1 \ ([c] \ @ \ \delta \ @ \ [v]) \Longrightarrow_{SES} s1'
  \land (s1'', s1') \in ur
  by (simp add: fcrb-def)
then obtain s1'\delta
  where s1'-in-S: s1' \in S_{SES}
  and \delta-in-N-inter-Delta-star: (\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma}))
  and s1-c\delta v-s1': s1 ([c] @ \delta @ [v])\Longrightarrow_{SES} s1'
  and s1''-ur-s1': (s1'', s1') \in ur
  by auto
have reachable-s1': reachable SES s1'
  from s0-\beta-s1 s1-c\delta v-s1 ' have s0 _{SES} (\beta @ ([c] @ \delta @ [v])) \Longrightarrow_{SES} s1 '
    by (rule path-trans)
  thus ?thesis
    by (simp add: reachable-def, auto)
qed
from osc-property[OF osc s1'-in-S s1"-in-S α-contains-no-c
  reachable-s1' reachable-s1'' enabled-s1''-\alpha s1''-ur-s1']
  where \alpha'-contains-no-c: \alpha' \uparrow C_{\mathcal{V}} = []
  and \alpha'-V-is-\alpha-V: \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
  and enabled-s1'-\alpha': enabled SES s1'\alpha'
have \beta c \delta v \alpha'-in-Tr: \beta @ [c] @ \delta @ [v] @ \alpha' \in Tr_{(induce ES\ SES)}
proof -
  let ?l1 = \beta @ [c] @ \delta @ [v]
  let ?l2 = \alpha'
  from s0-\beta-s1 s1-c\delta v-s1' have s0_{SES} (?l1)\Longrightarrow_{SES} s1'
    by (rule path-trans)
```

```
moreover
       from enabled-s1'-\alpha' obtain s1337 where s1' ?l2 \Longrightarrow_{SES} s1337
          by (simp add: enabled-def, auto)
       ultimately have s\theta_{SES} (?11 @ ?12)\Longrightarrow_{SES} s1337
          by (rule path-trans)
       thus ?thesis
          by (simp add: induceES-def possible-traces-def enabled-def)
from \delta-in-N-inter-Delta-star \beta c \delta v \alpha'-in-Tr \alpha'-V-is-\alpha-V \alpha'-contains-no-c
     have \exists \alpha' \delta'.
       set \delta' \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \wedge \beta @ [c] @ \delta' @ [v] @ \alpha' \in \mathit{Tr}_{(induceES\ SES)}
       \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = []
  thus ?thesis
    by(simp add: FCI-def)
qed
{\bf theorem}\ unwinding\hbox{-}theorem\hbox{-}FCIA\hbox{:}
\llbracket fcrbe \ \Gamma \ \varrho \ ur; \ osc \ ur \ \rrbracket \Longrightarrow FCIA \ \varrho \ \Gamma \ V \ Tr_{(induceES \ SES)}
proof -
  assume fcrbe: fcrbe \Gamma \varrho ur
  assume osc: osc ur
     fix \alpha \beta c v
     assume c-in-C-inter-Y: c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})
     assume v-in-V-inter-Nabla: v \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})
     assume \beta v \alpha-in-Tr: ((\beta @ [v]) @ \alpha) \in Tr_{(induceES \ SES)}
     assume \alpha-contains-no-c: \alpha \upharpoonright C_{\mathcal{V}} = []
     assume adm: Adm \ \mathcal{V} \ \varrho \ Tr_{(induceES \ SES)} \ \beta \ c
     from state-from-induceES-trace[OF \beta v\alpha-in-Tr] obtain s1''
       where s1^{"}-in-S: s1^{"} \in S_{SES}
       and s0-\beta v-s1'': s0_{SES} (\beta @ [v])\Longrightarrow_{SES} s1'' and enabled-s1''-\alpha: enabled SES s1'' \alpha
       and reachable-s1": reachable SES s1"
       by auto
     from path-split-single2[OF s0-\beta v-s1''] obtain s1
       where s1-in-S: s1 \in S_{SES}
       and s0-\beta-s1: s0_{SES} \beta \Longrightarrow_{SES} s1 and s1-v-s1 ": s1 v \longrightarrow_{SES} s1"
       and reachable-s1: reachable SES s1
       by (auto)
     have \exists \alpha' \delta' . (set \ \delta' \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma}) \land \beta @ [c] @ \delta' @ [v] @ \alpha' \in Tr_{(induceES\ SES)}
       \wedge \alpha' \uparrow V_{\mathcal{V}} = \alpha \uparrow V_{\mathcal{V}} \wedge \alpha' \uparrow C_{\mathcal{V}} = [])
     proof (cases)
       assume en: En \varrho s1 c
```

```
\mathbf{from}\ c\text{-}in\text{-}C\text{-}inter\text{-}Y\ v\text{-}in\text{-}V\text{-}inter\text{-}Nabla\ s1\text{-}in\text{-}S\ s1\ ''\text{-}in\text{-}S\ reachable\text{-}s1\ s1\text{-}v\text{-}s1\ ''}\ en\ fcrbe
  have \exists s1' \in S_{SES}. \exists \delta. (\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma}))
    by (simp add: fcrbe-def)
  then obtain s1'\delta
    where s1'-in-S: s1' \in S_{SES}
    and \delta-in-N-inter-Delta-star: (\forall d \in (set \ \delta). \ d \in (N_{\mathcal{V}} \cap \Delta_{\Gamma}))
    and s1-c\delta v-s1': s1 ([c] @ \delta @ [v]) \Longrightarrow_{SES} s1'
    and s1''-ur-s1': (s1'', s1') \in ur
    by (auto)
  have reachable-s1': reachable SES s1'
  proof -
    from s0-\beta-s1 s1-c\delta v-s1 have s0 _{SES} (\beta @ ([c] @ \delta @ [v])) \Longrightarrow_{SES} s1
      by (rule path-trans)
    \mathbf{thus}~? the sis
      by (simp add: reachable-def, auto)
  qed
  \mathbf{from}\ osc\text{-}property[\mathit{OF}\ osc\ s1'\text{-}in\text{-}S\ s1''\text{-}in\text{-}S\ \alpha\text{-}contains\text{-}no\text{-}c\ reachable\text{-}s1'}
    reachable-s1" enabled-s1"-\alpha s1"-ur-s1'
  obtain \alpha'
    where \alpha'-contains-no-c: \alpha' \upharpoonright C_{\mathcal{V}} = []
    and \alpha'-V-is-\alpha-V: \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
    and enabled-s1'-α': enabled SES s1' α'
    by auto
  have \beta c \delta v \alpha'-in-Tr: \beta @ [c] @ \delta @ [v] @ \alpha' \in Tr_{(induceES\ SES)}
  proof -
    \mathbf{let}~?l1 = \beta @ [c] @ \delta @ [v]
    let ?l2 = \alpha'
    from s0-\beta-s1 s1-c\delta v-s1 have s0 _{SES} (?l1)\Longrightarrow_{SES} s1 '
      by (rule path-trans)
    moreover
    from enabled-s1'-\alpha' obtain s1337 where s1' ?l2 \Longrightarrow_{SES} s1337
       by (simp add: enabled-def, auto)
    ultimately have s\theta_{SES} (?11 @ ?12)\Longrightarrow_{SES} s1337
       by (rule path-trans)
    thus ?thesis
       by (simp add: induceES-def possible-traces-def enabled-def)
  from \delta-in-N-inter-Delta-star \beta c \delta v \alpha'-in-Tr \alpha'-V-is-\alpha-V \alpha'-contains-no-c
  show ?thesis
    by auto
next
  assume not-en: \neg En \varrho s1 c
  let ?A = (Adm \ \mathcal{V} \ \varrho \ \mathit{Tr}_{(induceES \ SES)} \ \beta \ c)
  let ?E = \exists s \in S_{SES}. (so_{SES} \beta \Longrightarrow_{SES} s \land En \varrho s c)
```

```
{
       assume adm: ?A
       from s0-\beta-s1 have \beta-in-Tr: \beta \in Tr_{(induceES\ SES)}
         by (simp add: induceES-def possible-traces-def enabled-def)
       from \beta-in-Tr adm have ?E
         by (rule Adm-to-En)
      hence Adm-to-En-contr: \neg ?E \Longrightarrow \neg ?A
       \mathbf{by} blast
      with s1-in-S s0-\beta-s1 not-en have not-adm: \neg ?A
       by auto
      with adm show ?thesis
       by auto
   qed
 thus ?thesis
   by (simp add: FCIA-def)
qed
\textbf{theorem} \ \textit{unwinding-theorem-SD}:
[V' = (V_{\mathcal{V}} \cup N_{\mathcal{V}}), N = \{\}, C = C_{\mathcal{V}}\};
  Unwinding.lrf SES V' ur; Unwinding.osc SES V' ur \llbracket
  \implies SD V Tr_{(induceES\ SES)}
 assume view'-def: \mathcal{V}' = (V_{\mathcal{V}} \cup V_{\mathcal{V}}), N = \{\}, C = C_{\mathcal{V}}\}
 assume lrf-view': Unwinding.lrf SES V' ur
 assume osc\text{-}view': Unwinding.osc\ SES\ \mathcal{V}'\ ur
 interpret modified-view: Unwinding SES V'
   by (unfold-locales, rule validSES, simp add: view'-def modified-view-valid)
 from lrf-view' osc-view' have BSD-view': BSD V' Tr<sub>(induceES SES)</sub>
    by (rule-tac ur=ur in modified-view.unwinding-theorem-BSD)
 with view'-def BSD-implies-SD-for-modified-view show ?thesis
   by auto
\mathbf{qed}
theorem unwinding-theorem-SI:
\implies SI \mathcal V Tr<sub>(induceES SES)</sub>
proof -
 assume view'-def: \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}) assume lrb-view': Unwinding.lrb SES \mathcal{V}' ur
 assume osc\text{-}view': Unwinding.osc\ SES\ \mathcal{V}' ur
 interpret modified-view: Unwinding SES V'
   \mathbf{by}\ (\mathit{unfold-locales},\ \mathit{rule}\ \mathit{validSES},\ \mathit{simp}\ \mathit{add}\colon \mathit{view'-def}\ \mathit{modified-view-valid})
```

```
from lrb-view' osc-view' have BSI-view': BSI V' Tr<sub>(induceES SES)</sub>
    by (rule-tac ur=ur in modified-view.unwinding-theorem-BSI)
 with view'-def BSI-implies-SI-for-modified-view show ?thesis
   by auto
qed
{\bf theorem}\ unwinding\hbox{-}theorem\hbox{-}SIA\hbox{:}
\implies SIA \varrho \ \mathcal{V} \ Tr_{(induceES\ SES)}
proof -
 assume view'-def: \mathcal{V}' = \{V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}}\}
 assume \varrho-eq: \varrho \mathcal{V} = \varrho \mathcal{V}'
 assume lrbe-view': Unwinding.lrbe SES \mathcal{V}' \varrho ur
 assume osc\text{-}view': Unwinding.osc\ SES\ \mathcal{V}'\ ur
 interpret modified-view: Unwinding SES V'
   by (unfold-locales, rule validSES, simp add: view'-def modified-view-valid)
 from lrbe-view' osc-view' have BSIA-view': BSIA \varrho V' Tr_{(induceES\ SES)}
    by (rule-tac ur=ur in modified-view.unwinding-theorem-BSIA)
 with view'-def BSIA-implies-SIA-for-modified-view ρ-eq show ?thesis
   by auto
qed
theorem unwinding-theorem-SR:
[V' = (V_{\mathcal{V}} \cup N_{\mathcal{V}}), N = \{\}, C = C_{\mathcal{V}}];
  Unwinding.lrf SES V' ur; Unwinding.osc SES V' ur [\![
 \implies SR V Tr<sub>(induceES SES)</sub>
proof -
 assume view'-def: \mathcal{V}' = \{ \{ V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{ \}, C = C_{\mathcal{V}} \} \}
 assume lrf-view': Unwinding.lrf SES V' ur
 assume osc\text{-}view': Unwinding.osc\ SES\ \mathcal{V}'\ ur
 from lrf-view' osc-view' view'-def have S-view : SD V Tr(induceES SES)
    by (rule-tac\ ur=ur\ in\ unwinding-theorem-SD,\ auto)
 with SD-implies-SR show ?thesis
   by auto
qed
theorem unwinding-theorem-D:
\llbracket lrf ur; osc ur \rrbracket \Longrightarrow D \mathcal{V} Tr_{(induceES SES)}
proof -
 assume lrf ur
 and osc\ ur
 hence BSD \ V \ Tr_{(induceES \ SES)}
   by (rule unwinding-theorem-BSD)
 thus ?thesis
   by (rule BSD-implies-D)
qed
```

```
{\bf theorem}\ {\it unwinding-theorem-I}:
\llbracket \ \mathit{lrb} \ \mathit{ur}; \ \mathit{osc} \ \mathit{ur} \ \rrbracket \Longrightarrow \mathit{I} \ \mathcal{V} \ \mathit{Tr}_{(\mathit{induceES} \ \mathit{SES})}
proof -
  \mathbf{assume}\ \mathit{lrb}\ \mathit{ur}
  and osc\ ur
  hence BSI \ \mathcal{V} \ Tr_{(induceES \ SES)}
    by (rule unwinding-theorem-BSI)
  thus ?thesis
    by (rule BSI-implies-I)
qed
{\bf theorem}\ unwinding\hbox{-}theorem\hbox{-}IA\hbox{:}
\llbracket \text{ lrbe } \varrho \text{ ur; osc ur } \rrbracket \Longrightarrow \textit{IA } \varrho \text{ $\mathcal{V}$ } \textit{Tr}_{(induceES \text{ } SES)}
  assume lrbe\ \varrho\ ur
  and osc\ ur
  hence BSIA \varrho V Tr_{(induceES\ SES)}
    by (rule unwinding-theorem-BSIA)
  thus ?thesis
    by (rule BSIA-implies-IA)
qed
theorem unwinding-theorem-R:
\llbracket \ \mathit{lrf ur; osc ur} \ \rrbracket \stackrel{-}{\Longrightarrow} \mathit{R} \ \mathcal{V} \ (\mathit{Tr}_{(\mathit{induceES} \ \mathit{SES})})
proof -
  assume lrf ur
  \mathbf{and}\ \mathit{osc}\ \mathit{ur}
  hence BSD \ V \ Tr_{(induceES \ SES)}
    by (rule unwinding-theorem-BSD)
  hence D \mathcal{V} Tr_{(induceES SES)}
    by (rule BSD-implies-D)
  thus ?thesis
     by (rule \ D\text{-}implies\text{-}R)
qed
\mathbf{end}
\mathbf{end}
```

5.4 Compositionality

We prove the compositionality results from [3].

5.4.1 Auxiliary Definitions & Results

```
theory CompositionBase
imports ../Basics/BSPTaxonomy
begin

definition
properSeparationOfViews ::
```

```
'e~ES\text{-}rec \Rightarrow 'e~ES\text{-}rec \Rightarrow 'e~V\text{-}rec \Rightarrow 'e~V\text{-}rec \Rightarrow 'e~V\text{-}rec \Rightarrow bool
where
properSeparationOfViews\ ES1\ ES2\ V\ V1\ V2\ \equiv
    V_{\mathcal{V}} \cap E_{ES1} = V_{\mathcal{V}1}
    \wedge V_{\mathcal{V}} \cap E_{ES2} = V_{\mathcal{V}2}
    \wedge \ C_{\mathcal{V}} \cap E_{ES1} \subseteq C_{\mathcal{V}1}
    \land C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2} \\ \land N_{\mathcal{V}1} \cap N_{\mathcal{V}2} = \{ \} 
definition
well Behaved Composition :: \\
'e~ES\text{-}rec \Rightarrow 'e~ES\text{-}rec \Rightarrow 'e~V\text{-}rec \Rightarrow 'e~V\text{-}rec \Rightarrow bool
where
wellBehavedComposition\ ES1\ ES2\ V\ V1\ V2 \equiv
(N_{V1} \cap E_{ES2} = \{\} \land N_{V2} \cap E_{ES1} = \{\})
  \vee (\exists \varrho 1. (N_{\mathcal{V}1} \cap E_{ES2} = \{\} \land total ES1 (C_{\mathcal{V}1} \cap N_{\mathcal{V}2}))
  \wedge BSIA Q2 \overline{V2} Tr_{ES2} ))
  \vee (\exists \,\varrho 1 \ \varrho 2 \ \Gamma 1 \ \Gamma 2. (
       \begin{array}{l} \nabla_{\Gamma 1} \subseteq E_{ES1} \wedge \Delta_{\Gamma 1} \subseteq E_{ES1} \wedge \Upsilon_{\Gamma 1} \subseteq E_{ES1} \\ \wedge \nabla_{\Gamma 2} \subseteq E_{ES2} \wedge \Delta_{\Gamma 2} \subseteq E_{ES2} \wedge \Upsilon_{\Gamma 2} \subseteq E_{ES2} \\ \wedge \ BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1} \wedge BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2} \end{array}
       {\bf locale}\ {\it Compositionality} =
\mathbf{fixes}\ \mathit{ES1}\ ::\ 'e\ \mathit{ES-rec}
and ES2 :: 'e ES-rec
and V::'e\ V\text{-rec}
and V1 :: 'e V-rec
and V2 :: 'e V-rec
assumes validES1: ES-valid ES1
and validES2: ES-valid ES2
and composableES1ES2: composable ES1 ES2
and validVC: isViewOn \ \mathcal{V} \ (E_{(ES1 \parallel ES2)})
and validV1: isViewOn V1 E_{ES1}
and validV2: isViewOn V2 E_{ES2}
and propSepViews: properSeparationOfViews ES1 ES2 V V1 V2
```

and well-behaved-composition: wellBehavedComposition ES1 ES2 V V1 V2

```
sublocale Compositionality \subseteq BSPTaxonomyDifferentCorrections ES1 \parallel ES2 \vee
 by (unfold-locales, rule composeES-yields-ES, rule validES1,
    rule validES2, rule validVC)
context Compositionality
begin
lemma Vv-is-Vv1-union-Vv2: V_{\mathcal{V}} = V_{\mathcal{V}_1} \cup V_{\mathcal{V}_2}
  from propSepViews have V_{\mathcal{V}} \cap E_{ES1} \cup V_{\mathcal{V}} \cap E_{ES2} = V_{\mathcal{V}1} \cup V_{\mathcal{V}2}
    unfolding properSeparationOfViews-def by auto
 hence V_{\mathcal{V}} \cap (E_{ES1} \cup E_{ES2}) = V_{\mathcal{V}1} \cup V_{\mathcal{V}2}
 hence V_{\mathcal{V}} \cap E_{(ES1 \parallel ES2)} = V_{\mathcal{V}1} \cup V_{\mathcal{V}2}
   by (simp add: composeES-def)
 with validVC show ?thesis
   by (simp add: isViewOn-def, auto)
lemma disjoint-Nv1-Vv2: N_{V1} \cap V_{V2} = \{\}
proof -
 from validV1 have N_{V1} \subseteq E_{ES1}
    by (simp add: isViewOn-def, auto)
  with propSepViews have N_{V1} \cap V_{V2} = (N_{V1} \cap E_{ES1} \cap V_{V}) \cap E_{ES2}
    {\bf unfolding} \ properSeparationOf Views-def \ {\bf by} \ auto
  hence N_{\mathcal{V}_1} \cap V_{\mathcal{V}_2} = (N_{\mathcal{V}_1} \cap V_{\mathcal{V}} \cap E_{ES_1}) \cap E_{ES_2}
   by auto
 moreover
 from validV1 have N_{V1} \cap V_V \cap E_{ES1} = \{\}
    using propSepViews unfolding properSeparationOfViews-def
    by (metis VN-disjoint-def V-valid-def inf-assoc inf-commute isViewOn-def)
 ultimately show ?thesis
    by auto
qed
lemma disjoint-Nv2-Vv1: N_{V2} \cap V_{V1} = \{\}
 from validV2 have N_{V2} \subseteq E_{ES2}
    by (simp add:isViewOn-def, auto)
  with propSepViews have N_{\mathcal{V}2} \cap V_{\mathcal{V}1} = (N_{\mathcal{V}2} \cap E_{ES2} \cap V_{\mathcal{V}}) \cap E_{ES1}
    {\bf unfolding} \ properSeparationOf Views-def \ {\bf by} \ auto
  hence N_{\mathcal{V}\mathcal{Z}} \cap V_{\mathcal{V}\mathcal{I}} = (N_{\mathcal{V}\mathcal{Z}} \cap V_{\mathcal{V}} \cap E_{ES\mathcal{Z}}) \cap E_{ES\mathcal{I}}
   by auto
 moreover
```

```
from validV2 have N_{V2} \cap V_{V} \cap E_{ES2} = \{\}
    {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
    by (metis VN-disjoint-def V-valid-def inf-assoc inf-commute is ViewOn-def)
  ultimately show ?thesis
    by auto
qed
lemma merge-property': [ set t1 \subseteq E_{ES1}; set t2 \subseteq E_{ES2};
  \begin{array}{l} t1 \uparrow E_{ES2} = t2 \uparrow E_{ES1}; \ t1 \uparrow V_{\mathcal{V}} = []; \ t2 \uparrow V_{\mathcal{V}} = []; \\ t1 \uparrow C_{\mathcal{V}} = []; \ t2 \uparrow C_{\mathcal{V}} = [] \ ] \end{array}
\implies \exists \ t. \ (t \upharpoonright E_{ES1} = t1 \land t \upharpoonright E_{ES2} = t2 \land t \upharpoonright V_{\mathcal{V}} = [] \land t \upharpoonright C_{\mathcal{V}} = [] \land set \ t \subseteq (E_{ES1} \cup E_{ES2}))
proof -
  assume t1-in-E1star: set t1 \subseteq E_{ES1}
  and t2-in-E2star: set t2 \subseteq E_{ES2}
  and t1Vv\text{-}empty: t1 \upharpoonright V_{\mathcal{V}} = [] and t2Vv\text{-}empty: t2 \upharpoonright V_{\mathcal{V}} = []
  and t1Cv-empty: t1 \uparrow C_{\mathcal{V}} = []
  and t2Cv-empty: t2 \mid C_{\mathcal{V}} = []
  \mathbf{from}\ \mathit{merge-property}[\mathit{OF}\ t1\text{-}\mathit{in-E1}\mathit{star}\ t2\text{-}\mathit{in-E2}\mathit{star}\ t1\text{-}t2\text{-}\mathit{synchronized}]\ \mathbf{obtain}\ t
    where t-is-interleaving: t \upharpoonright E_{ES1} = t1 \land t \upharpoonright E_{ES2} = t2
    and t-contains-only-events-from-t1-t2: set t \subseteq set \ t1 \cup set \ t2
    unfolding Let-def
    by auto
  moreover
  from t1Vv-empty t2Vv-empty t-contains-only-events-from-t1-t2
    {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
    by (metis Int-commute Vv-is-Vv1-union-Vv2 projection-on-union projection-sequence t-is-interleaving)
  moreover
  have t \upharpoonright C_{\mathcal{V}} = []
    proof -
       from t1Cv-empty have \forall c \in C_{\mathcal{V}}. c \notin set t1
         by (simp add: projection-def filter-empty-conv, fast)
       from t2Cv-empty have \forall c \in C_{\mathcal{V}}. c \notin set t2
         by (simp add: projection-def filter-empty-conv, fast)
       ultimately have
       \forall c \in C_{\mathcal{V}}. \ c \notin (set \ t1 \cup set \ t2)
         by auto
       with t-contains-only-events-from-t1-t2 have \forall c \in C_{\mathcal{V}}. c \notin set t
         by auto
       thus ?thesis
         by (simp add: projection-def, metis filter-empty-conv)
    qed
  \mathbf{from}\ t1\text{-}in\text{-}E1star\ t2\text{-}in\text{-}E2star\ t\text{-}contains\text{-}only\text{-}events\text{-}from\text{-}t1\text{-}t2
  have set t \subseteq (E_{ES1} \cup E_{ES2})
    by auto
  ultimately show ?thesis
```

```
\mathbf{by} blast
\mathbf{qed}
lemma Nv1-union-Nv2-subset
of-Nv: N _{\mathcal{V}1} \cup N _{\mathcal{V}2} \subseteq N _{\mathcal{V}}
proof -
    {
       \mathbf{fix}\ e
        assume e-in-N1: e \in N_{\mathcal{V}1}
        with validV1 have
            e-in-E1: e \in E_{ES1}
            and e-notin-V1: e \notin V_{\mathcal{V}1}
            and e-notin-C1: e \notin C_{V1}
            \mathbf{by}\ (simp\ only:\ is\ ViewOn-def\ V-valid-def\ VC-disjoint-def\ NC-disjoint-def
                 VN-disjoint-def, auto)+
        from e-in-E1 e-notin-V1 propSepViews have e \notin V_{\mathcal{V}}
          unfolding properSeparationOfViews-def by auto
        moreover
        from e-in-E1 e-notin-C1 propSepViews have e \notin C_V
          unfolding properSeparationOfViews-def by auto
        moreover
        {f note}\ e	ext{-}in	ext{-}E1\ validVC
        ultimately have e \in N_{\mathcal{V}}
            by (simp add: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def
                   composeES-def, auto)
   moreover {
        \mathbf{fix} \ e
        assume e-in-N2: e \in N_{\mathcal{V}2}
        with validV2 have
             e\text{-}in\text{-}E2\colon\thinspace e\in\thinspace E\text{-}ES\ ES2
            and e-notin-V2: e \notin V_{\mathcal{V}2}
            and e-notin-C2: e \notin C_{\mathcal{V}2}
            \mathbf{by}\ (simp\ only:\ is\ View\ On-def\ V-valid-def\ V\ C-disjoint-def\ N\ C-disjoint-def\ V\ N-disjoint-def\ V\ N-disjoint-de
                 , auto)+
        from e-in-E2 e-notin-V2 propSepViews have e \notin V_{\mathcal{V}}
          unfolding properSeparationOfViews-def by auto
        from e-in-E2 e-notin-C2 propSepViews have e \notin C_V
          unfolding properSeparationOfViews-def by auto
        moreover
        note e-in-E2 validVC
        ultimately have e \in N_{\mathcal{V}}
            by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def
                   composeES-def, auto)
    ultimately show ?thesis
       by auto
qed
\mathbf{end}
```

```
end
{\bf theory}\ {\it Composition Support}
{\bf imports}\ {\it CompositionBase}
begin
{\bf locale}\ {\it CompositionSupport} =
\mathbf{fixes}\ \mathit{ESi}\ ::\ 'e\ \mathit{ES-rec}
and V::'e\ V\text{-rec}
and Vi :: 'e V-rec
assumes validESi: ES-valid ESi
and validVi: isViewOn Vi E_{ESi}
and Vv-inter-Ei-is-Vvi: V_{\mathcal{V}} \cap E_{ESi} = V_{\mathcal{V}i}
and Cv-inter-Ei-subsetof-Cvi: C_{\mathcal{V}} \cap E_{ESi} \subseteq C_{\mathcal{V}i}
{\bf context}\ {\it Composition Support}
begin
\mathbf{lemma}\ BSD\text{-}in\text{-}subsystem:
\llbracket \ c \in C_{\mathcal{V}}; \ ((\beta @ [c] @ \alpha) \upharpoonright E_{ESi}) \in \mathit{Tr}_{ESi} \ ; \ \mathit{BSD} \ \mathit{Vi} \ \mathit{Tr}_{ESi} \ \rrbracket
\Rightarrow \exists \alpha - i'. ((\beta \upharpoonright E_{ESi}) @ \alpha - i') \in Tr_{ESi} \\ \land (\alpha - i' \upharpoonright V_{\mathcal{V}i}) = (\alpha \upharpoonright V_{\mathcal{V}i}) \land \alpha - i' \upharpoonright C_{\mathcal{V}i} = [])
\mathbf{proof} \ (induct \ length \ (([c] @ \alpha) \upharpoonright C_{\mathcal{V}i}) \ arbitrary: \beta \ c \ \alpha)
   case \theta
   let ?L = ([c] @ \alpha) \upharpoonright E_{ESi}
   from \theta(3) have \beta-E1-c\alpha-E1-in-Tr1: ((\beta \upharpoonright E_{ESi}) \circledcirc (([c] \circledcirc \alpha) \upharpoonright E_{ESi})) \in Tr_{ESi}
      \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute})
   moreover
   have (?L \upharpoonright V_{\mathcal{V}i}) = (\alpha \upharpoonright V_{\mathcal{V}i})
   proof -
     have (?L \uparrow V_{\mathcal{V}i}) = ([c] @ \alpha) \uparrow V_{\mathcal{V}i}
      proof -
         from validVi have E_{ESi} \cap V_{Vi} = V_{Vi}
            by (simp add: is ViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
              , auto)
         moreover
         have (?L \uparrow V_{\mathcal{V}i}) = ([c] @ \alpha) \uparrow (E_{ESi} \cap V_{\mathcal{V}i})
           by (simp add: projection-def)
         ultimately show ?thesis
            by auto
      qed
```

moreover

```
have ([c] @ \alpha) \upharpoonright V_{\mathcal{V}i} = \alpha \upharpoonright V_{\mathcal{V}i}
    proof -
       have ([c] @ \alpha) \upharpoonright V_{\mathcal{V}i} = ([c] \upharpoonright V_{\mathcal{V}i}) @ (\alpha \upharpoonright V_{\mathcal{V}i})
         \mathbf{by}\ (rule\ projection\text{-}concatenation\text{-}commute)
       moreover
       have ([c] \uparrow V_{\mathcal{V}i}) = []
       proof -
         from \theta(2) have [c] \upharpoonright C_{\mathcal{V}} = [c]
           by (simp add: projection-def)
         moreover
         have [c] \upharpoonright C_{\mathcal{V}} \upharpoonright V_{\mathcal{V}i} = []
         proof -
           from validVi\ Cv\text{-}inter\text{-}Ei\text{-}subsetof\text{-}Cvi\ have}\ C_{\mathcal{V}}\cap\ V_{\mathcal{V}i}\subseteq\ C_{\mathcal{V}i}
              by (simp add: isViewOn-def V-valid-def VC-disjoint-def, auto)
           moreover
           from \theta(1) have [c] \upharpoonright C_{\mathcal{V}i} = []
              by (simp only: projection-concatenation-commute, auto)
            ultimately have [c] \uparrow (C_{\mathcal{V}} \cap V_{\mathcal{V}i}) = []
              by (rule projection-on-subset)
           thus ?thesis
              \mathbf{by}\ (\mathit{simp\ only:\ projection-def},\ \mathit{auto})
         \mathbf{qed}
         {\bf ultimately \ show} \ ? the sis
           by auto
       qed
       ultimately show ?thesis
         by auto
     qed
     ultimately show ?thesis
       by auto
  qed
  moreover
  have ?L \upharpoonright C_{\mathcal{V}i} = []
  proof -
     from \theta(1) have ([c] @ \alpha) \upharpoonright C_{\mathcal{V}i} = []
     hence ([c] @ \alpha) | (C_{\mathcal{V}i} \cap E_{ESi}) = []
      by (rule projection-on-intersection)
     hence ([c] @ \alpha) | (E_{ESi} \cap C_{Vi}) = []
      by (simp only: Int-commute)
    \mathbf{thus}~? the sis
      by (simp only: projection-def, auto)
  qed
  {\bf ultimately \ show} \ \it ?case
    by auto
next
  case (Suc \ n)
  from projection\text{-}split\text{-}last[OF\ Suc(2)] obtain \gamma\ c\text{-}i\ \delta
    where c-i-in-CVi: c-i \in C_{Vi}
    and c\alpha-is-\gamma c-i\delta: [c] @ \alpha = \gamma @ [c-i] @ \delta
```

```
and \delta-no-CVi: \delta \upharpoonright C_{Vi} = []
  and n-is-len-\gamma \delta-CVi: n = length ((\gamma @ \delta) | C_{Vi})
  by auto
let ?L1 = ((\beta @ \gamma) \uparrow E_{ESi})
let ?L2 = (\delta \mid E_{ESi})
\mathbf{note}\ \mathit{c\text{-}i\text{-}in\text{-}}C\mathcal{V}i
moreover
have list-with-c-i-in-Tr1: (?L1 @ [c-i] @ ?L2) \in Tr_{ESi}
proof -
  \mathbf{from}\ c\text{-}i\text{-}i\text{-}i\text{-}C\mathcal{V}i\ validVi\ \mathbf{have}\ [c\text{-}i] \uparrow E_{ESi} = [c\text{-}i]
    by (simp only: isViewOn-def V-valid-def VC-disjoint-def
       VN-disjoint-def NC-disjoint-def projection-def, auto)
  moreover
  from Suc(4) c\alpha-is-\gamma c-i\delta have ((\beta @ \gamma @ [c-i] @ \delta) | E_{ESi}) \in Tr_{ESi}
    by auto
  hence (?L1 @ ([c-i] \uparrow E_{ESi}) @ ?L2) \in Tr_{ESi}
    by (simp only: projection-def, auto)
  {\bf ultimately \ show} \ \textit{?thesis}
    by auto
\mathbf{qed}
moreover
have ?L2 \upharpoonright C_{\mathcal{V}i} = []
proof -
  from validVi have \bigwedge x. (x \in E_{ESi} \land x \in C_{Vi}) = (x \in C_{Vi})
    by (simp add: isViewOn-def V-valid-def VC-disjoint-def
       VN-disjoint-def NC-disjoint-def, auto)
  with \delta-no-CVi show ?thesis
    by (simp add: projection-def)
qed
moreover note Suc(5)
ultimately obtain \delta'
  where \delta'-1: (?L1 @ \delta') \in Tr_{ESi}
  and \delta'-2: \delta' \mid V_{\mathcal{V}i} = ?L2 \mid V_{\mathcal{V}i}
  and \delta'-3: \delta' \uparrow C_{Vi} = []
  unfolding BSD-def
  by blast
hence \delta'-2': \delta' \upharpoonright V_{\mathcal{V}i} = \delta \upharpoonright V_{\mathcal{V}i}
proof -
  have ?L2 \upharpoonright V_{\mathcal{V}i} = \delta \upharpoonright V_{\mathcal{V}i}
  proof -
    from validVi have \bigwedge x. (x \in E_{ESi} \land x \in V_{Vi}) = (x \in V_{Vi})
      by (simp add: isViewOn-def V-valid-def VC-disjoint-def
       VN-disjoint-def NC-disjoint-def, auto)
    thus ?thesis
      by (simp add: projection-def)
  qed
  with \delta'-2 show ?thesis
    by auto
qed
```

```
\mathbf{show}~? case
proof (cases \gamma)
  \mathbf{case}\ \mathit{Nil}
  with c\alpha-is-\gamma c-i\delta have [c] @ \alpha = [c-i] @ \delta
    by auto
  hence \delta-is-\alpha: \delta = \alpha
    by auto
  from \delta'-1 have \delta'-1': ((\beta \upharpoonright E_{ESi}) \circledcirc \delta') \in \mathit{Tr}_{ESi}
    by (simp only: Nil, auto)
  moreover
  note \delta'-2'
  moreover note \delta'-3
  ultimately show ?thesis
    by (simp only: \delta-is-\alpha, auto)
next
  case (Cons x \gamma')
  with c\alpha-is-\gamma c-i\delta have \gamma-is-c\gamma': \gamma = [c] @ \gamma'
    \mathbf{by} \ simp
  with n-is-len-\gamma\delta-CVi have n = length (([c] @ \gamma' @ \delta) | C_{Vi})
  with \delta-no-CVi \delta'-3 have n = length (([c] @ \gamma' @ \delta') \uparrow C_{Vi})
    \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute})
  moreover
  note Suc(3)
  moreover
  have ((\beta @ [c] @ (\gamma' @ \delta')) | E_{ESi}) \in Tr_{ESi}
     from \delta'-1 validESi have \delta' = \delta' \upharpoonright E_{ESi}
     proof -
       let ?L = (\beta @ \gamma) | E_{ESi} @ \delta'
       from \delta'-1 validESi have \forall e \in set ?L. e \in E_{ESi}
         by (simp add: ES-valid-def traces-contain-events-def)
       hence set \delta' \subseteq E_{ESi}
         by auto
       thus ?thesis
         by (simp add: list-subset-iff-projection-neutral)
     with \delta'-1 have ?L1 @ \delta' = (\beta @ \gamma @ \delta') \uparrow E_{ESi}
       by (simp only: projection-concatenation-commute, auto)
     with \gamma-is-c\gamma' \delta'-1 show ?thesis
       by auto
  qed
  moreover
  note Suc(5)
  moreover note Suc(1)[of \ c \ \gamma' \ @ \ \delta' \ \beta]
   ultimately obtain \alpha-i'
    where \alpha-i'-1: \beta \upharpoonright E_{ESi} @ \alpha-i' \in Tr_{ESi} and \alpha-i'-2: \alpha-i' \upharpoonright V_{\mathcal{V}i} = (\gamma' @ \delta') \upharpoonright V_{\mathcal{V}i} and \alpha-i'-3: \alpha-i' \upharpoonright C_{\mathcal{V}i} = []
    by auto
```

```
moreover
     have \alpha - i' \upharpoonright V_{\mathcal{V}i} = \alpha \upharpoonright V_{\mathcal{V}i}
     proof -
        have \alpha \upharpoonright V_{\mathcal{V}i} = (\gamma' @ \delta) \upharpoonright V_{\mathcal{V}i}
        proof -
           \mathbf{from}\ c\alpha\text{-}\mathit{is}\text{-}\gamma c\text{-}\mathit{i}\delta\ \gamma\text{-}\mathit{is}\text{-}c\gamma'\ \mathbf{have}\ \alpha\upharpoonright\ V_{\mathcal{V}i}=(\gamma'\ @\ [c\text{-}\mathit{i}]\ @\ \delta)\upharpoonright\ V_{\mathcal{V}i}
             by simp
           with validVi\ c-i-in-CVi\ show\ ?thesis
             \mathbf{by}\ (simp\ only:\ isViewOn\text{-}def\ V\text{-}valid\text{-}def\ VC\text{-}disjoint\text{-}def
                 VN\hbox{-}disjoint\hbox{-}def\ NC\hbox{-}disjoint\hbox{-}def\ projection\hbox{-}concatenation\hbox{-}commute
                 projection-def, auto)
        \mathbf{qed}
        moreover
        from \alpha-i'-2 \delta'-2' have \alpha-i' \( \begin{aligned} V_{Vi} = (\gamma' @ \delta) \emptyset V_{Vi} \)
           \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute})
        ultimately show ?thesis
           by auto
     qed
     ultimately show ?thesis
        by auto
  qed
\mathbf{qed}
lemma BSD-in-subsystem2:
 [\![ \ ((\beta @ \alpha) \upharpoonright E_{ESi}) \in \mathit{Tr}_{ESi} \ ; \ \mathit{BSD} \ \mathcal{V}i \ \mathit{Tr}_{ESi} \ ]\!] 
   \implies \exists \ \alpha \text{-}i'. \ (\ ((\beta \mid E_{ESi}) \ @ \ \alpha \text{-}i') \in Tr_{ESi} \land (\alpha \text{-}i' \mid V_{\mathcal{V}i}) = (\alpha \mid V_{\mathcal{V}i}) \land \alpha \text{-}i' \mid C_{\mathcal{V}i} = [] \ )
proof (induct length (\alpha \upharpoonright C_{\mathcal{V}i}) arbitrary: \beta \alpha)
  \mathbf{case}\ \theta
  let ?L = \alpha \mid E_{ESi}
  from \theta(2) have \beta-E1-\alpha-E1-in-Tr1: ((\beta \mid E_{ESi}) @ ?L) \in Tr_{ESi}
     by (simp only: projection-concatenation-commute)
  moreover
  have (?L \upharpoonright V_{\mathcal{V}i}) = (\alpha \upharpoonright V_{\mathcal{V}i})
     proof -
        from validVi have E_{ESi} \cap V_{Vi} = V_{Vi}
           by (simp add: isViewOn-def V-valid-def VC-disjoint-def
            VN-disjoint-def NC-disjoint-def, auto)
        moreover
        have (?L \uparrow V_{\mathcal{V}i}) = \alpha \uparrow (E_{ESi} \cap V_{\mathcal{V}i})
           \mathbf{by}\ (simp\ add\colon projection\text{-}def)
        ultimately show ?thesis
           by auto
     qed
  moreover
  have ?L \upharpoonright C_{\mathcal{V}i} = []
  proof -
     from \theta(1) have \alpha \uparrow C_{\mathcal{V}i} = []
        by auto
     hence \alpha \upharpoonright (C_{\mathcal{V}i} \cap E_{ESi}) = []
```

```
\mathbf{by}\ (\mathit{rule}\ \mathit{projection-on-intersection})
    hence \alpha \upharpoonright (E_{ESi} \cap C_{Vi}) = []
     by (simp only: Int-commute)
    thus ?thesis
     by (simp only: projection-def, auto)
 qed
  ultimately show ?case
    by auto
\mathbf{next}
 case (Suc \ n)
 from projection-split-last
[OF Suc(2)] obtain \gamma c\text{--}i\ \delta
    where c-i-in-CVi: c-i \in C_{Vi}
    and \alpha-is-\gamma c-i\delta: \alpha = \gamma @ [c-i] @ \delta
    and \delta-no-CVi: \delta \upharpoonright C_{Vi} = []
    and n-is-len-\gamma \delta-CVi: n = length ((\gamma @ \delta) | C_{Vi})
   by auto
 let ?L1 = ((\beta @ \gamma) | E_{ESi})
 let ?L2 = (\delta \uparrow E_{ESi})
 note c-i-in-CVi
 moreover
 have list-with-c-i-in-Tr1: (?L1 @ [c-i] @ ?L2) \in Tr_{ESi}
    \mathbf{from} \ c\text{-}i\text{-}i\text{-}c\mathcal{V}i \ validVi \ \mathbf{have} \ [c\text{-}i] \uparrow E_{ESi} = [c\text{-}i]
      by (simp only: is ViewOn-def V-valid-def VC-disjoint-def
        VN-disjoint-def NC-disjoint-def projection-def, auto)
    moreover
    from Suc(3) \alpha-is-\gamma c-i\delta have ((\beta @ \gamma @ [c-i] @ \delta) \upharpoonright E_{ESi}) \in Tr_{ESi}
    hence (?L1 @ ([c-i] | E_{ESi}) @ ?L2) \in Tr_{ESi}
     by (simp only: projection-def, auto)
    ultimately show ?thesis
     by auto
 qed
 moreover
 have ?L2 | C_{Vi} = []
 proof -
    from validVi have \bigwedge x. (x \in E_{ESi} \land x \in C_{Vi}) = (x \in C_{Vi})
      by (simp add: isViewOn-def V-valid-def VC-disjoint-def
        VN-disjoint-def NC-disjoint-def, auto)
    with \delta-no-CVi show ?thesis
     by (simp add: projection-def)
 qed
 moreover note Suc(4)
 ultimately obtain \delta'
    where \delta'-1: (?L1 @ \delta') \in Tr_{ESi}
    and \delta'-2: \delta' \mid V_{\mathcal{V}i} = ?L2 \mid V_{\mathcal{V}i}
```

```
and \delta'-3: \delta' \upharpoonright C_{\mathcal{V}i} = []
  \mathbf{unfolding}\ \mathit{BSD-def}
  by blast
hence \delta'-2': \delta' \upharpoonright V_{\mathcal{V}i} = \delta \upharpoonright V_{\mathcal{V}i}
proof -
  have ?L2 | V_{\mathcal{V}i} = \delta \mid V_{\mathcal{V}i}
  proof -
     from validVi have \bigwedge x. (x \in E_{ESi} \land x \in V_{Vi}) = (x \in V_{Vi})
       \mathbf{by}\ (simp\ add:\ is ViewOn\text{-}def\ V\text{-}valid\text{-}def\ VC\text{-}disjoint\text{-}def
        VN-disjoint-def NC-disjoint-def, auto)
     thus ?thesis
       by (simp add: projection-def)
  qed
  with \delta'-2 show ?thesis
     by auto
qed
from n-is-len-\gamma\delta-CVi \delta-no-CVi \delta'-3 have n = length ((\gamma @ \delta') | C_{Vi})
  by (simp add: projection-concatenation-commute)
moreover
have (\beta @ (\gamma @ \delta')) \upharpoonright E_{ESi} \in Tr_{ESi}
  proof -
     have \delta' = \delta' \upharpoonright E_{ESi}
       proof -
          let ?L = (\beta @ \gamma) \uparrow E_{ESi} @ \delta'
          from \delta'-1 validESi have \forall e \in set ?L. e \in E_{ESi}
             by (simp add: ES-valid-def traces-contain-events-def)
          hence set \delta' \subseteq E_{ESi}
            \mathbf{by} auto
          thus ?thesis
             \mathbf{by}\ (simp\ add:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
       \mathbf{qed}
     with \delta'-1 have ?L1 @ \delta' = (\beta @ \gamma @ \delta') \upharpoonright E_{ESi}
       by (simp only: projection-concatenation-commute, auto)
     with \delta'-1 show ?thesis
       \mathbf{by} auto
  qed
moreover
note Suc(4) Suc(1)[of \gamma @ \delta' \beta]
ultimately obtain \alpha-i'
  where res1: \beta \mid E_{ESi} @ \alpha - i' \in Tr_{ESi} and res2: \alpha - i' \mid V_{\mathcal{V}i} = (\gamma @ \delta') \mid V_{\mathcal{V}i} and res3: \alpha - i' \mid C_{\mathcal{V}i} = []
  by auto
have \alpha-i' \mid V_{\mathcal{V}i} = \alpha \mid V_{\mathcal{V}i}
  proof -
     from c-i-in-CVi\ validVi\ \mathbf{have}\ [c-i] \quad V_{Vi} = []
       \mathbf{by}\ (simp\ add:\ is\ ViewOn\text{-}def\ V\text{-}valid\text{-}def\ V\bar{C}\text{-}disjoint\text{-}def
```

```
VN-disjoint-def NC-disjoint-def projection-def, auto)
         with \alpha-is-\gamma c-i\delta \delta'-2' have \alpha \upharpoonright V_{\mathcal{V}_i} = (\gamma @ \delta') \upharpoonright V_{\mathcal{V}_i}
            by (simp only: projection-concatenation-commute, auto)
         with res2 show ?thesis
            by auto
     qed
   with res1 res3 show ?case
     by auto
qed
end
end
5.4.2
                Generalized Zipping Lemma
{\bf theory} \ {\it Generalized Zipping Lemma}
{\bf imports}\ {\it CompositionBase}
begin
context Compositionality
begin
 \begin{array}{l} \textbf{lemma} \ \ \textit{generalized-zipping-lemma1} \colon \llbracket \ N_{\mathcal{V}1} \cap E_{ES2} = \{\}; \ N_{\mathcal{V}2} \cap E_{ES1} = \{\} \ \rrbracket \Longrightarrow \\ \forall \ \tau \ \ \textit{lambda} \ \ t1 \ t2. \ ( \ \ \textit{set} \ \tau \subseteq E_{(ES1 \ \parallel \ ES2)} \ \land \ \textit{set} \ \textit{lambda} \subseteq V_{\mathcal{V}} \land \ \textit{set} \ t1 \subseteq E_{ES1} \land \ \textit{set} \ t2 \subseteq E_{ES2} \\ \end{array} 
   \land ((\tau \mid E_{ES1}) @ t1) \in Tr_{ES1} \land ((\tau \mid E_{ES2}) @ t2) \in Tr_{ES2} \land (lambda \mid E_{ES1}) = (t1 \mid V_{\mathcal{V}}) \land (lambda \mid E_{ES2}) = (t2 \mid V_{\mathcal{V}}) \land (t1 \mid C_{\mathcal{V}1}) = [] \land (t2 \mid C_{\mathcal{V}2}) = []) 
   \longrightarrow (\exists \ t. \ ((\tau \ @ \ t) \in \mathit{Tr}_{(ES1 \ \| \ ES2)} \land (t \ | \ V_{\mathcal{V}}) = \mathit{lambda} \land (t \ | \ C_{\mathcal{V}}) = [])) \ )
proof -
  assume Nv1-inter-E2-empty: N_{V1} \cap E_{ES2} = \{\}
     and Nv2-inter-E1-empty: N_{V2} \cap E_{ES1} = \{\}
   {
      \mathbf{fix} \ \tau \ lambda \ t1 \ t2
     assume \tau-in-Estar: set \tau \subseteq E_{(ES1 \parallel ES2)}
         and lambda-in-Vvstar: set lambda \subseteq V_{\mathcal{V}}
         and t1-in-E1star: set t1 \subseteq E_{ES1}
         and t2-in-E2star: set\ t2 \subseteq E_{ES2}
         and \tau-E1-t1-in-Tr1: ((\tau \mid E_{ES1}) \otimes t1) \in Tr_{ES1}
         and \tau-E2-t2-in-Tr2: ((\tau \mid E_{ES2}) \otimes t2) \in Tr_{ES2} and lambda-E1-is-t1-Vv: (lambda \mid E_{ES1}) = (t1 \mid V_{\mathcal{V}})
         and lambda-E2-is-t2-Vv: (lambda \uparrow E_{ES2}) = (t2 \uparrow V_{V})
         and t1-no-Cv1: (t1 \mid C_{\mathcal{V}1}) = []
and t2-no-Cv2: (t2 \mid C_{\mathcal{V}2}) = []
        have \llbracket set \ \tau \subseteq E_{(ES1 \ \parallel ES2)};
         set\ lambda \subseteq V_{\mathcal{V}};
         set t1 \subseteq E_{ES1};
         set \ t2 \subseteq E_{ES2};
```

```
((\tau \upharpoonright E_{ES1}) @ t1) \in \mathit{Tr}_{ES1};
((\tau \upharpoonright E_{ES2}) \ @ \ t2) \in \mathit{Tr}_{ES2};
(lambda \mid E_{ES1}) = (t1 \mid V_{\mathcal{V}});
(lambda \uparrow E_{ES2}) = (t2 \uparrow V_{\mathcal{V}});
 \begin{array}{c} (t1 \uparrow C_{\mathcal{V}1}) = []; \\ (t2 \uparrow C_{\mathcal{V}2}) = [] \end{array} 
\implies (\exists \ t. \ ((\tau @ \ t) \in \mathit{Tr}_{(ES1 \parallel ES2)} \land (t \upharpoonright V_{\mathcal{V}}) = lambda \land (t \upharpoonright C_{\mathcal{V}}) = []))
proof (induct lambda arbitrary: τ t1 t2)
  case (Nil \tau t1 t2)
  have (\tau @ []) \in Tr_{(ES1 \parallel ES2)}
    proof -
      have \tau \in Tr_{(ES1 \parallel ES2)}
         proof -
            from Nil(5) validES1 have \tau \upharpoonright E_{ES1} \in Tr_{ES1}
              \mathbf{by}\ (simp\ add\colon ES\text{-}valid\text{-}def\ traces\text{-}prefixclosed\text{-}def
                 prefixclosed-def prefix-def)
            moreover
            from Nil(6) validES2 have \tau \mid E_{ES2} \in Tr_{ES2}
              by (simp add: ES-valid-def traces-prefixclosed-def
                prefixclosed-def prefix-def)
            moreover
            note Nil(1)
            ultimately show ?thesis
              \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{composeES-def})
         \mathbf{qed}
       thus ?thesis
         by auto
    qed
  moreover
  have ([] \mid V_{\mathcal{V}}) = []
    by (simp add: projection-def)
  moreover
  have ([] 1 C_{V}) = []
    by (simp add: projection-def)
  ultimately show ?case
    \mathbf{by}\ blast
next
  case (Cons V' lambda' \tau t1 t2)
  thus ?case
    proof -
       from Cons(3) have v'-in-Vv: V' \in V_V
         by auto
       have V' \in V_{\mathcal{V}_1} \cap V_{\mathcal{V}_2}
         \forall \mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2}

\forall \mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1}
         using Vv-is-Vv1-union-Vv2 v'-in-Vv propSepViews
         {\bf unfolding} \ proper Separation Of Views-def
         by fastforce
       moreover {
         assume v'-in-Vv1-inter-Vv2: V' \in V_{V1} \cap V_{V2}
```

```
hence v'-in-Vv1: V' \in V_{\mathcal{V}1} and v'-in-Vv2: V' \in V_{\mathcal{V}2}
  by auto
with v'-in-Vv propSepViews
have v'-in-E1: V' \in E_{ES1} and v'-in-E2: V' \in E_{ES2}
  unfolding properSeparationOfViews-def by auto
from Cons(2,4,8) v'-in-E1 have t1 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})
 by (simp add: projection-def)
from projection-split-first[OF this] obtain r1 s1
  where t1-is-r1-v'-s1: t1 = r1 @ [\mathcal{V}'] @ s1
 and r1-Vv-empty: r1 | V_{\mathcal{V}} = []
with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V1} V_{V} r1]
have r1-Vv1-empty: r1 \uparrow V_{V1} = []
  by auto
from Cons(3,5,9) v'-in-E2 have t2 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})
  by (simp add: projection-def)
from projection-split-first[OF\ this] obtain r2\ s2
  where t2-is-r2-v'-s2: t2 = r2 @ [V'] @ s2
 and r2-Vv-empty: r2 | V_{\mathcal{V}} = []
with \textit{Vv-is-Vv1-union-Vv2} \textit{projection-on-subset}[\textit{of}\ \textit{V}_{\mathcal{V}\mathcal{Z}}\ \textit{V}_{\mathcal{V}}\ \textit{r2}]
have r2-Vv2-empty: r2 | V_{\mathcal{V}\mathcal{Z}} = []
  by auto
from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: r1 \uparrow C_{V1} = []
 by (simp add: projection-concatenation-commute)
from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 | C_{V1} = []
  \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
from Cons(4) t1-is-r1-v'-s1 have r1-in-E1star: set r1 \subseteq E_{ES1}
  and s1-in-E1star: set s1 \subseteq E_{ES1}
  by auto
from Cons(6) t1-is-r1-v'-s1
have \tau E1-r1-v'-s1-in-Tr1: \tau \upharpoonright E_{ES1} @ r1 @ [\mathcal{V}'] @ s1 \in Tr_{ES1}
 by simp
have r1-in-Nv1star: set r1 \subseteq N_{V1}
 proof -
   {f note}\ r1-in-E1star
    moreover
    from r1-Vv1-empty have set r1 \cap V_{V1} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
        Int-empty-right disjoint-eq-subset-Compl
        list-subset-iff-projection-neutral projection-on-union)
    moreover
    from r1-Cv1-empty have set r1 \cap C_{V1} = \{\}
```

```
\mathbf{by}\ (\mathit{metis}\ \mathit{Compl-Diff-eq}\ \mathit{Diff-cancel}\ \mathit{Diff-eq}\ \mathit{Int-commute}
        Int-empty-right\ disjoint-eq\text{-}subset\text{-}Compl
        list-subset-iff-projection-neutral projection-on-union)
    moreover
    note validV1
    ultimately show ?thesis
      by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
  qed
with Nv1-inter-E2-empty have r1E2-empty: r1 \uparrow E_{ES2} = []
  \mathbf{by}\ (\textit{metis Int-commute empty-subsetI projection-on-subset2\ r1-Vv-empty})
from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 \upharpoonright C_{\mathcal{V}2} = []
  \mathbf{by}\ (simp\ add:\ projection\text{-}concatenation\text{-}commute)
from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 \upharpoonright C_{\mathcal{V}2} = []
  \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
  and s2-in-E2star: set s2 \subseteq E_{ES2}
 by auto
\mathbf{from} \ \mathit{Cons}(\mathit{?}) \ \mathit{t2-is-r2-v'-s2}
have \tau E2-r2-v'-s2-in-Tr2: \tau \upharpoonright E_{ES2} @ r2 @ [\mathcal{V}'] @ s2 \in Tr_{ES2}
  by simp
have r2-in-Nv2star: set r2 \subseteq N_{\mathcal{V}2}
  proof -
    note r2-in-E2star
    moreover
    from r2-Vv2-empty have set r2 \cap V_{V2} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
        projection-on-union)
    moreover
    from r2-Cv2-empty have set r2 \cap C_{V2} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint\-eq\-subset\-Compl list\-subset\-iff\-projection\-neutral
        projection-on-union)
    moreover
    \mathbf{note}\ \mathit{validV2}
    ultimately show ?thesis
      \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{isViewOn\text{-}def}\ \mathit{V\text{-}valid\text{-}def}\ \mathit{VN\text{-}disjoint\text{-}def}\ \mathit{NC\text{-}disjoint\text{-}def},\ \mathit{auto})
  qed
with Nv2-inter-E1-empty have r2E1-empty: r2 | E_{ES1} = []
 by (metis Int-commute empty-subsetI projection-on-subset2 r2-Vv-empty)
let ?tau = \tau @ r1 @ r2 @ [\mathcal{V}']
from Cons(2) r1-in-E1star r2-in-E2star v'-in-E2
have set ?tau \subseteq (E_{(ES1 \parallel ES2)})
```

```
by (simp add: composeES-def, auto)
moreover
from Cons(3) have set\ lambda' \subseteq V_{\mathcal{V}}
 by auto
moreover
{f note}\ s1-in-E1star s2-in-E2star
moreover
from Cons(6) r1-in-E1star r2E1-empty v'-in-E1 t1-is-r1-v'-s1
have ((?tau \mid E_{ES1}) \otimes s1) \in Tr_{ES1}
 by (simp only: projection-concatenation-commute
    list-subset-iff-projection-neutral projection-def, auto)
moreover
from Cons(7) r2-in-E2star r1E2-empty v'-in-E2 t2-is-r2-v'-s2
have ((?tau \mid E_{ES2}) @ s2) \in Tr_{ES2}
  by (simp only: projection-concatenation-commute
    list-subset-iff-projection-neutral projection-def, auto)
moreover
have lambda' \upharpoonright E_{ES1} = s1 \upharpoonright V_{\mathcal{V}}
  proof -
    from Cons(2,4,8) v'-in-E1 have t1 | V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \mid E_{ES1})
      \mathbf{by}\ (simp\ add:\ projection\text{-}def)
    moreover
    \mathbf{from}\ t1\text{-}is\text{-}r1\text{-}v'\text{-}s1\ r1\text{-}Vv\text{-}empty\ v'\text{-}in\text{-}Vv1\ Vv\text{-}is\text{-}Vv1\text{-}union\text{-}Vv2}
    have t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s1 \upharpoonright V_{\mathcal{V}})
      by (simp only: t1-is-r1-v'-s1 projection-concatenation-commute
        projection-def, auto)
    ultimately show ?thesis
      by auto
  qed
moreover
have lambda' \upharpoonright E_{ES2} = s2 \upharpoonright V_{\mathcal{V}}
    from Cons(3,5,9) v'-in-E2 have t2 | V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \mid E_{ES2})
      \mathbf{by}\ (simp\ add:\ projection\text{-}def)
    moreover
    from t2-is-r2-v'-s2 r2-Vv-empty v'-in-Vv2 Vv-is-Vv1-union-Vv2
    have t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s2 \upharpoonright V_{\mathcal{V}})
      by (simp only: t2-is-r2-v'-s2 projection-concatenation-commute
        projection-def, auto)
    ultimately show ?thesis
      \mathbf{by} auto
  qed
moreover
note s1-Cv1-empty s2-Cv2-empty Cons.hyps(1)[of ?tau s1 s2]
ultimately obtain t'
  where tau-t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
 and t'Vv-is-lambda': t' 
vert V_{\mathcal{V}} = lambda'
 and t'Cv-empty: t' \mid C_{\mathcal{V}} = []
 by auto
let ?t = r1 @ r2 @ [\mathcal{V}'] @ t'
```

```
note tau-t'-in-Tr
 moreover
 \mathbf{from}\ \mathit{r1-Vv-empty}\ \mathit{r2-Vv-empty}\ \mathit{t'Vv-is-lambda'}\ \mathit{v'-in-Vv}
 have ?t \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# lambda
   by (simp add: projection-def)
 moreover
 have ?t \mid C_{\mathcal{V}} = []
 proof -
   from propSepViews have C_{\mathcal{V}} \cap E_{ES1} \subseteq C_{\mathcal{V}1}
     unfolding properSeparationOfViews-def by auto
   hence r1 \upharpoonright C_{\mathcal{V}} = []
       by (metis projection-on-subset2 r1-Cv1-empty r1-in-E1star)
     moreover
   from propSepViews have C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2}
     unfolding properSeparationOfViews-def by auto
   hence r2 \mid C_{\mathcal{V}} = []
       by (metis projection-on-subset2 r2-Cv2-empty r2-in-E2star)
     moreover
     note v'-in-Vv VIsViewOnE t'Cv-empty
     ultimately show ?thesis
       \mathbf{by}\ (simp\ add:\ is\ View\ On\ -def\ V\ -valid\ -def\ V\ C\ -disjoint\ -def\ projection\ -def,\ auto)
   qed
 ultimately have ?thesis
   \mathbf{by} auto
moreover {
 assume v'-in-Vv1-minus-E2: V' \in V_{V1} - E_{ES2}
 hence v'-in-Vv1: V' \in V_{V1}
   by auto
 with v'-in-Vv propSepViews have v'-in-E1: V' \in E_{ES1}
   {\bf unfolding} \ proper Separation Of Views-def
   by auto
 from v'-in-Vv1-minus-E2 have v'-notin-E2: V' \notin E_{ES2}
 with validV2 have v'-notin-Vv2: V' \notin V_{V2}
   by (simp add: isViewOn-def V-valid-def, auto)
 from Cons(3) Cons(4) Cons(8) v'-in-E1 have t1 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})
   by (simp add: projection-def)
 from projection-split-first[OF this] obtain r1 s1
   where t1-is-r1-v'-s1: t1 = r1 @ [\mathcal{V}'] @ s1
   and r1-Vv-empty: r1 | V_{\mathcal{V}} = []
 with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V1} V_{V} r1]
 have r1-Vv1-empty: r1 | V_{V1} = []
 from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: r1 | C_{V1} = []
```

```
by (simp add: projection-concatenation-commute)
from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 \uparrow C_{V1} = []
 \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
from Cons(4) t1-is-r1-v'-s1 have r1-in-E1star: set r1 \subseteq E_{ES1}
have r1-in-Nv1star: set r1 \subseteq N_{V1}
proof -
 {\bf note}\ r1\hbox{-}in\hbox{-}E1star
 moreover
 from r1-Vv1-empty have set r1 \cap V_{V1} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
     Int\text{-}empty\text{-}right\ disjoint\text{-}eq\text{-}subset\text{-}Compl
     list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral\ projection\text{-}on\text{-}union)
 from r1-Cv1-empty have set r1 \cap C_{V1} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
     Int\text{-}empty\text{-}right\ disjoint\text{-}eq\text{-}subset\text{-}Compl
     list-subset-iff-projection-neutral projection-on-union)
 moreover
 note validV1
 ultimately show ?thesis
   by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nv1-inter-E2-empty have r1E2-empty: r1 | E_{ES2} = [
 by (metis Int-commute empty-subsetI
   projection-on-subset2 r1-Vv1-empty)
let ?tau = \tau @ r1 @ [\mathcal{V}']
from v'-in-E1 Cons(2) r1-in-Nv1star validV1
have set ?tau \subseteq E_{(ES1 \parallel ES2)}
 by (simp only: is View Ön-def composeES-def V-valid-def, auto)
moreover
from Cons(3) have set \ lambda' \subseteq V_{\mathcal{V}}
 by auto
moreover
from Cons(4) t1-is-r1-v'-s1 have set s1 \subseteq E_{ES1}
 by auto
moreover
note Cons(5)
moreover
have ?tau \mid E_{ES1} @ s1 \in Tr_{ES1}
 by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI
   list-subset-iff-projection-neutral Cons.prems(3) Cons.prems(5)
   projection-concatenation-commute t1-is-r1-v'-s1)
moreover
have ?tau | E_{ES2} @ t2 \in Tr_{ES2}
 proof -
```

```
\mathbf{from}\ v'\text{-}notin\text{-}E2\ \mathbf{have}\ [\mathcal{V}']\ 1\ E_{ES2}=[]
       by (simp add: projection-def)
      with Cons(7) Cons(4) t1-is-r1-v'-s1 v'-notin-E2
       r1-in-Nv1star Nv1-inter-E2-empty r1E2-empty
       show ?thesis
         by (simp only: t1-is-r1-v'-s1 list-subset-iff-projection-neutral
           projection-concatenation-commute, auto)
   qed
 moreover
 from Cons(8) t1-is-r1-v'-s1 r1-Vv-empty v'-in-E1 v'-in-Vv have lambda' \mid E_{ES1} = s1 \mid V_{\mathcal{V}}
   by (simp add: projection-def)
 moreover
 from \mathit{Cons}(9) v'-notin-E2 have \mathit{lambda'} \upharpoonright E_{\mathit{ES2}} = \mathit{t2} \upharpoonright V_{\mathcal{V}}
   by (simp add: projection-def)
 moreover
 note s1-Cv1-empty Cons(11)
 moreover
 note Cons.hyps(1)[of ?tau s1 t2]
 ultimately obtain t'
   where tau-t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
   and t'-\mathit{Vv}-\mathit{is}-\mathit{lambda}': t' \upharpoonright \mathit{V}_{\mathcal{V}} = \mathit{lambda}
   and t'-Cv-empty: t' \mid C_{\mathcal{V}} = []
   by auto
 let ?t = r1 @ [\mathcal{V}'] @ t'
 note tau-t'-in-Tr
 moreover
 from r1-Vv-empty t'-Vv-is-lambda' v'-in-Vv
 have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
   by (simp add: projection-def)
 moreover
 have ?t \mid C_{\mathcal{V}} = []
 proof -
   from propSepViews have C_{\mathcal{V}} \cap E_{ES1} \subseteq C_{\mathcal{V}1}
     {\bf unfolding} \ properSeparationOf Views-def \ {\bf by} \ auto
   hence r1 \mid C_{\mathcal{V}} = []
     by (metis projection-on-subset2 r1-Cv1-empty r1-in-E1star)
   with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
     by (simp add: is ViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
 \mathbf{qed}
 ultimately have ?thesis
   by auto
moreover {
 assume v'-in-Vv2-minus-E1: V' \in V_{V2} - E_{ES1}
 hence v'-in-Vv2: V' \in V_{V2}
   by auto
 with v'-in-Vv propSepViews
 have v'-in-E2: \mathcal{V}' \in E_{ES2}
   unfolding properSeparationOfViews-def by auto
```

```
from v'-in-Vv2-minus-E1
have v'-notin-E1: V' \notin E_{ES1}
 by (auto)
with validV1
have v'-notin-Vv1: V' \notin V_{V1}
  by (simp add:isViewOn-def V-valid-def, auto)
from Cons(4) Cons(5) Cons(9) v'-in-E2
have t2 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})
 by (simp add: projection-def)
\mathbf{from} \ \mathit{projection\text{-}split\text{-}first}[\mathit{OF} \ \mathit{this}] \ \mathbf{obtain} \ \mathit{r2} \ \mathit{s2}
  where t2-is-r2-v'-s2: t2 = r2 @ [\mathcal{V}'] @ s2
  and r2-Vv-empty: r2 | V_{\mathcal{V}} = []
 by auto
with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_{V} r2]
have r2-Vv2-empty: r2 \upharpoonright V_{V2} = []
  by auto
from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 \upharpoonright C_{\mathcal{V2}} = []
  \mathbf{by}\ (simp\ add\colon projection\text{-}concatenation\text{-}commute)
from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 \upharpoonright C_{\mathcal{V}2} = []
  by (simp only: projection-concatenation-commute, auto)
from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
have r2-in-Nv2star: set r2 \subseteq N_{V2}
proof -
  \mathbf{note}\ \mathit{r2-in-E2star}
  moreover
  from r2-Vv2-empty have set r2 \cap V_{\mathcal{V}2} = \{\}
    by (metis Compl-Diff-eq Diff-cancel Un-upper2
      disjoint-eq-subset-Compl
      list-subset-iff-projection-neutral projection-on-union)
  from r2-Cv2-empty have set r2 \cap C_{V2} = \{\}
    by (metis Compl-Diff-eq Diff-cancel Un-upper2
      disjoint\hbox{-} eq\hbox{-} subset\hbox{-} Compl
      list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral\ projection\text{-}on\text{-}union)
  moreover
  note validV2
  ultimately show ?thesis
   by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
qed
with Nv2-inter-E1-empty have r2E1-empty: r2 | E_{ES1} = []
  by (metis Int-commute empty-subsetI
    projection-on-subset2 r2-Vv2-empty)
```

```
let ?tau = \tau @ r2 @ [\mathcal{V}']
from v'-in-E2 Cons(2) r2-in-Nv2star validV2
\begin{array}{l} \mathbf{have} \ set \ ?tau \subseteq E_{(ES1 \ \parallel \ ES2)} \\ \mathbf{by} \ (simp \ only: \ composeES\text{-}def \ isViewOn\text{-}def \ V\text{-}valid\text{-}def, \ auto) \end{array}
moreover
from Cons(3) have set \ lambda' \subseteq V_{\mathcal{V}}
 by auto
moreover
note Cons(4)
moreover
from Cons(5) t2-is-r2-v'-s2 have set s2 \subseteq E_{ES2}
 by auto
moreover
have ?tau \mid E_{ES1} @ t1 \in Tr_{ES1}
 proof -
   from v'-notin-E1 have [\mathcal{V}'] \upharpoonright E_{ES1} = []
     \mathbf{by}\ (simp\ add:\ projection\text{-}def)
   with Cons(6) Cons(3) t2-is-r2-v'-s2 v'-notin-E1 r2-in-Nv2star
     Nv2-inter-E1-empty r2E1-empty
     show ?thesis
       by (simp only: t2-is-r2-v'-s2 list-subset-iff-projection-neutral
         projection-concatenation-commute, auto)
 qed
moreover
have ?tau \mid E_{ES2} @ s2 \in Tr_{ES2}
 by (metis Cons-eq-appendI append-eq-appendI calculation(4) eq-Nil-appendI
   list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
   projection-concatenation-commute t2-is-r2-v'-s2)
moreover
from Cons(8) v'-notin-E1 have lambda' \upharpoonright E_{ES1} = t1 \upharpoonright V_{V}
 by (simp add: projection-def)
moreover
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in-Vv
have lambda' \mid E_{ES2} = s2 \mid V_{V}
 by (simp add: projection-def)
moreover
note Cons(10) s2-Cv2-empty
moreover
note Cons.hyps(1)[of ?tau t1 s2]
ultimately obtain t'
 where tau-t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
 and t'-Vv-is-lambda': t' 
eg V_{\mathcal{V}} = lambda'
 and t'-Cv-empty: t' \mid C_{\mathcal{V}} = []
 by auto
let ?t = r2 @ [\mathcal{V}'] @ t'
note tau-t'-in-Tr
moreover
```

```
from r2-Vv-empty t'-Vv-is-lambda' v'-in-Vv
                have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
                  by (simp add: projection-def)
                moreover
                have ?t \upharpoonright C_{\mathcal{V}} = []
                proof -
                  from propSepViews have C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2}
                    unfolding properSeparationOfViews-def by auto
                  hence r2 \mid C_{\mathcal{V}} = []
                    by (metis projection-on-subset2 r2-Cv2-empty r2-in-E2star)
                  with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
                    \mathbf{by}\ (simp\ add:\ is\ View\ On-def\ V-valid-def\ V\ C-disjoint-def\ projection-def,\ auto)
                \mathbf{qed}
                ultimately have ?thesis
                  by auto
             ultimately show ?thesis
                by blast
           qed
         qed
  thus ?thesis
    by auto
\mathbf{qed}
lemma generalized-zipping-lemma2: [N_{\mathcal{V}1} \cap E_{ES2} = \{\}; total\ ES1\ (C_{\mathcal{V}1} \cap N_{\mathcal{V}2});\ BSIA\ \varrho 1\ \mathcal{V}1\ Tr_{ES1}\ ]
  \forall \ \tau \ lambda \ t1 \ t2. \ (\ (\ set \ \tau \subseteq (E_{(ES1 \ \| \ ES2)}) \ \land \ set \ lambda \subseteq V_{\mathcal{V}} \ \land \ set \ t1 \subseteq E_{ES1} \ \land \ set \ t2 \subseteq E_{ES2}
   \land ((\tau \mid E_{ES1}) @ t1) \in Tr_{ES1} \land ((\tau \mid E_{ES2}) @ t2) \in Tr_{ES2}   \land (lambda \mid E_{ES1}) = (t1 \mid V_{\mathcal{V}}) \land (lambda \mid E_{ES2}) = (t2 \mid V_{\mathcal{V}}) 
  \wedge (t1 \uparrow C_{\mathcal{V}1}) = [] \wedge (t2 \uparrow C_{\mathcal{V}2}) = [])
  \longrightarrow (\exists \ t. \ ((\tau \ @ \ t) \in (\mathit{Tr}_{(ES1 \ \| \ ES2)}) \land (t \mid V_{\mathcal{V}}) = lambda \land (t \mid C_{\mathcal{V}}) = [])) \ )
proof -
  assume Nv1-inter-E2-empty: N_{V1} \cap E_{ES2} = \{\}
  assume total-ES1-Cv1-inter-Nv2: total ES1 (C_{V1} \cap N_{V2})
  assume BSIA: BSIA \varrho1 V1 Tr_{ES1}
    \mathbf{fix} \ \tau \ lambda \ t1 \ t2
    assume \tau-in-Estar: set \tau \subseteq E_{(ES1 \parallel ES2)}
       and lambda-in-Vvstar: set lambda \subseteq V_{\mathcal{V}}
      and lambda-E2-is-t2-Vv: (lambda | E_{ES2}) = (t2 | V_V)
      and t1-no-Cv1: (t1 | C_{V1}) = []
      and t2-no-Cv2: (t2 | C_{V2}) = []
      have [\![ set \ \tau \subseteq E_{(ES1 \ || \ ES2)}; set \ lambda \subseteq V_{\mathcal{V}}; ]
```

```
set\ t1 \subseteq E_{ES1};\ set\ t2 \subseteq E_{ES2};
((\tau \upharpoonright E_{ES1}) @ t1) \in \mathit{Tr}_{ES1}; ((\tau \upharpoonright E_{ES2}) @ t2) \in \mathit{Tr}_{ES2};
(lambda \uparrow E_{ES1}) = (t1 \uparrow V_{\mathcal{V}}); (lambda \uparrow E_{ES2}) = (t2 \uparrow V_{\mathcal{V}});
(t1 \uparrow C_{\mathcal{V}1}) = []; (t2 \uparrow C_{\mathcal{V}2}) = [] ]
\implies (\exists t. ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \uparrow V_{\mathcal{V}}) = lambda \land (t \uparrow C_{\mathcal{V}}) = []))
proof (induct lambda arbitrary: τ t1 t2)
  case (Nil \tau t1 t2)
  have (\tau @ []) \in Tr_{(ES1 \parallel ES2)}
    proof -
      have \tau \in Tr_{(ES1 \parallel ES2)}
           from Nil(5) validES1 have \tau \upharpoonright E_{ES1} \in Tr_{ES1}
             by (simp add: ES-valid-def traces-prefixclosed-def
                prefixclosed-def prefix-def)
           moreover
           from \mathit{Nil}(6) \mathit{validES2} have \tau \mid \mathit{E}_{\mathit{ES2}} \in \mathit{Tr}_{\mathit{ES2}}
             \mathbf{by}\ (simp\ add\colon ES\text{-}valid\text{-}def\ traces\text{-}prefixclosed\text{-}def
                prefixclosed-def prefix-def)
           moreover
           note Nil(1)
           ultimately show ?thesis
             by (simp add: composeES-def)
         qed
      thus ?thesis
         by auto
    qed
  moreover
  have ([] \mid V_{\mathcal{V}}) = []
    by (simp add: projection-def)
  moreover
  have ([] 1 C_{V}) = []
    by (simp add: projection-def)
  ultimately show ?case
    by blast
next
  case (Cons V' lambda' \tau t1 t2)
  thus ?case
    proof -
      from Cons(3) have v'-in-Vv: V' \in V_{V}
         by auto
      have \mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \vee \mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2} \vee \mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1}
         using propSepViews unfolding properSeparationOfViews-def
         using Vv-is-Vv1-union-Vv2 v'-in-Vv by fastforce
      moreover {
         assume v'-in-Vv1-inter-Vv2: \mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2}
hence v'-in-Vv1: \mathcal{V}' \in V_{\mathcal{V}1} and v'-in-Vv2: \mathcal{V}' \in V_{\mathcal{V}2}
           by auto
         with v'-in-Vv propSepViews
         have v'-in-E1: V' \in E_{ES1} and v'-in-E2: V' \in E_{ES2}
           unfolding properSeparationOfViews-def by auto
```

```
from Cons(3,5,9) v'-in-E2
have t2 \mid V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \mid E_{ES2})
 by (simp add: projection-def)
from projection-split-first[OF\ this] obtain r2\ s2
 where t2-is-r2-v'-s2: t2 = r2 @ [V'] @ s2
 and r2-Vv-empty: r2 \uparrow V_{\mathcal{V}} = []
 by auto
with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_{V} r2]
have r2-Vv2-empty: r2 \upharpoonright V_{V2} = []
 by auto
from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 \upharpoonright C_{\mathcal{V}2} = []
 \mathbf{by}\ (simp\ add:\ projection\text{-}concatenation\text{-}commute)
from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 \uparrow C_{V2} = []
 by (simp only: projection-concatenation-commute, auto)
from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
 and s2-in-E2star: set s2 \subseteq E_{ES2}
 by auto
from Cons(7) t2-is-r2-v'-s2
have \tau E2-r2-v'-s2-in-Tr2: \tau ↑ E _{ES2} @ r2 @ [V'] @ s2 ∈ Tr _{ES2}
have r2-in-Nv2star: set r2 \subseteq N_{\mathcal{V}2}
 proof -
   {\bf note}\ r\mbox{$\it 2$-in-$E2star}
   moreover
   from r2-Vv2-empty have set r2 \cap V_{\mathcal{V}2} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq-subset-Compl list-subset-iff-projection-neutral
       projection-on-union)
   from r2-Cv2-empty have set r2 \cap C_{V2} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
       projection-on-union)
   moreover
   note validV2
   ultimately show ?thesis
     by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
have r2E1-in-Nv2-inter-C1-star: set (r2 \uparrow E_{ES1}) \subseteq (N_{V2} \cap C_{V1})
   have set (r2 \upharpoonright E_{ES1}) = set \ r2 \cap E_{ES1}
     by (simp add: projection-def, auto)
    with r2-in-Nv2star have set (r2 \mid E_{ES1}) \subseteq (E_{ES1} \cap N_{V2})
```

```
by auto
    moreover
    {\bf from}\ validV1\ propSepViews
     have E_{ES1} \cap N_{\mathcal{V}2} = N_{\mathcal{V}2} \cap C_{\mathcal{V}1}
       {\bf unfolding} \ proper Separation Of Views-def \ is View On-def \ V-valid-def
       using disjoint-Nv2-Vv1 by blast
     ultimately show ?thesis
       \mathbf{by} auto
  qed
\mathbf{note}\ \mathit{outerCons-prems} = \mathit{Cons.prems}
have set (r2 \uparrow E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1}) \Longrightarrow
  \exists t1'. (set t1' \subseteq E_{ES1})
 proof (induct r2 \mid E_{ES1} arbitrary: r2 rule: rev-induct)
  {\bf case}\ {\it Nil}\ {\bf thus}\ {\it ?case}
    by (metis append-self-conv outerCons-prems(9)
       outerCons\text{-}prems(3) outerCons\text{-}prems(5) projection\text{-}concatenation\text{-}commute)
next
  \mathbf{case}\ (\mathit{snoc}\ \mathit{x}\ \mathit{xs})
  have xs-is-xsE1: xs = xs \upharpoonright E_{ES1}
       from snoc(2) have set~(xs @ [x]) \subseteq E_{ES1}
         by (simp add: projection-def, auto)
       hence set xs \subseteq E_{ES1}
         by auto
       thus ?thesis
         \mathbf{by}\ (simp\ add:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
    \mathbf{qed}
  moreover
  have set (xs \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
       have set (r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
         by (metis Int-commute snoc.prems)
       with snoc(2) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
         by simp
       hence set xs \subseteq (N_{\mathcal{V}\mathcal{Z}} \cap C_{\mathcal{V}\mathcal{I}})
         by auto
       with xs-is-xsE1 show ?thesis
         \mathbf{by} auto
    \mathbf{qed}
  moreover
  note snoc.hyps(1)[of xs]
  ultimately obtain t1"
    where t1''-in-E1star: set t1'' \subseteq E_{ES1}
    and \tau-xs-E1-t1"-in-Tr1: ((\tau @ xs) \uparrow E_{ES1}) @ t1" \in Tr_{ES1} and t1"Vv1-is-t1Vv1: t1" \uparrow V_{\mathcal{V}1} = t1 \uparrow V_{\mathcal{V}1}
```

```
and t1''Cv1-empty: t1'' \upharpoonright C_{V1} = []
  by auto
have x-in-Cv1-inter-Nv2: x \in C_{\mathcal{V}1} \cap N_{\mathcal{V}2}
  proof -
    from snoc(2-3) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
      \mathbf{by} \ simp
    thus ?thesis
      by auto
  qed
hence x-in-Cv1: x \in C_{V1}
 by auto
moreover
note \tau-xs-E1-t1 "-in-Tr1 t1" Cv1-empty
moreover
have Adm: (Adm V1 \varrho1 Tr_{ES1} ((\tau @ xs) | E_{ES1}) x)
    from \tau-xs-E1-t1 ^{\prime\prime}-in-Tr1 validES1
    have \tau-xsE1-in-Tr1: ((\tau \otimes xs) \upharpoonright E_{ES1}) \in Tr_{ES1}
      by (simp add: ES-valid-def traces-prefixclosed-def
         prefixclosed-def prefix-def)
    \mathbf{with}\ x\hbox{-}in\hbox{-}Cv1\hbox{-}inter\hbox{-}Nv2\ total\hbox{-}ES1\hbox{-}Cv1\hbox{-}inter\hbox{-}Nv2
    have \tau-xsE1-x-in-Tr1: ((\tau @ xs) \upharpoonright E_{ES1}) @ [x] \in Tr_{ES1}
      by (simp only: total-def)
    moreover
    \mathbf{have}\ ((\tau\ @\ xs) \uparrow E_{ES1}) \uparrow (\varrho 1\ \mathcal{V}1) = ((\tau\ @\ xs) \uparrow E_{ES1}) \uparrow (\varrho 1\ \mathcal{V}1)\ ..
    ultimately show ?thesis
      by (simp add: Adm-def, auto)
moreover note BSIA
ultimately obtain t1'
  where res1: ((\tau @ xs) | E_{ES1}) @ [x] @ t1' \in Tr_{ES1} and res2: t1' | V_{\mathcal{V}1} = t1'' | V_{\mathcal{V}1} and res3: t1' | C_{\mathcal{V}1} = []
  by (simp only: BSIA-def, blast)
have set t1' \subseteq E_{ES1}
  proof -
    from res1 validES1
    have set (((\tau @ xs) \uparrow E_{ES1}) @ [x] @ t1') \subseteq E_{ES1}
      \mathbf{by}\ (simp\ add:\ ES\text{-}valid\text{-}def\ traces\text{-}contain\text{-}events\text{-}def,\ auto})
    \mathbf{thus}~? the sis
      by auto
  \mathbf{qed}
moreover
have ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}
  proof -
    from res1 xs-is-xsE1 have ((\tau \upharpoonright E_{ES1}) @ (xs @ [x])) @ t1' \in Tr_{ES1}
      by (simp only: projection-concatenation-commute, auto)
    thus ?thesis
      by (simp\ only:\ snoc(2)\ projection-concatenation-commute)
  qed
```

```
moreover
 from t1''Vv1-is-t1Vv1 res2 have t1' \uparrow V_{V1} = t1 \uparrow V_{V1}
   by auto
 moreover
 note res3
  ultimately show ?case
   by auto
qed
from this[\mathit{OF}\ r2\mathit{E1-in-Nv2-inter-C1-star}] obtain t1'
 where t1'-in-E1star: set t1' \subseteq E_{ES1}
 and \tau r2E1-t1'-in-Tr1: ((\tau @ r2) \upharpoonright E_{ES1}) @ t1' \in Tr_{ES1}
 and t1'-Vv1-is-t1-Vv1: t1' 
vert V_{\mathcal{V}1} = \overline{t1} 
vert V_{\mathcal{V}1}
 and t1'-Cv1-empty: t1' \upharpoonright C_{V1} = []
 by auto
have t1' \upharpoonright V_{\mathcal{V}1} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})
 proof -
   from projection-intersection-neutral[OF Cons(4), of V_{\mathcal{V}}]
   propSepViews
   have t1 \mid V_{\mathcal{V}} = t1 \mid V_{\mathcal{V}1}
     {\bf unfolding}\ proper Separation Of Views-def
     \mathbf{by}\ (simp\ only:\ Int-commute)
   with Cons(8) t1'-Vv1-is-t1-Vv1 v'-in-E1 show ?thesis
     by (simp add: projection-def)
 qed
from projection-split-first[OF this] obtain r1's1'
  where t1'-is-r1'-v'-s1': t1' = r1' @ [V'] @ s1'
 and r1'-Vv1-empty: r1' \mid V_{V1} = []
 by auto
from t1'-is-r1'-v'-s1' t1'-Cv1-empty
have r1'-Cv1-empty: r1' \upharpoonright C_{V1} = []
 \mathbf{by}\ (simp\ add:\ projection\text{-}concatenation\text{-}commute)
from t1'-is-r1'-v'-s1' t1'-Cv1-empty
have s1'-Cv1-empty: s1' \mid C_{V1} = []
 by (simp only: projection-concatenation-commute, auto)
from t1'-in-E1star t1'-is-r1'-v'-s1'
have r1'-in-E1star: set r1' \subseteq E_{ES1}
 by auto
with propSepViews r1'-Vv1-empty
have r1'-Vv-empty: r1' \( \bar{V} \) = []
 {\bf unfolding} \ properSeparationOf Views-def
 by (metis projection-on-subset2 subset-iff-psubset-eq)
have r1'-in-Nv1star: set r1' \subseteq N_{V1}
 proof -
   note r1'-in-E1star
   moreover
```

```
from r1'-Vv1-empty have set r1' \cap V_{V1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
        projection-on-union)
    moreover
    from r1'-Cv1-empty have set r1' \cap C_{V1} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
       projection-on-union)
    moreover
    {f note}\ validV1
    ultimately show ?thesis
      by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
  qed
with Nv1-inter-E2-empty have r1 'E2-empty: r1' \cap E_{ES2} = [
  by (metis Int-commute empty-subsetI
    projection-on-subset2 r1'-Vv1-empty)
let ?tau = \tau @ r2 @ r1' @ [\mathcal{V}']
from Cons(2) r2-in-E2star r1'-in-E1star v'-in-E2
have set ?tau \subseteq (E_{(ES1 \parallel ES2)})
  by (simp add: composeES-def, auto)
moreover
from Cons(3) have set\ lambda' \subseteq V_{\mathcal{V}}
  by auto
moreover
from t1'-in-E1star t1'-is-r1'-v'-s1'
have set s1' \subseteq E_{ES1}
 \mathbf{by} \ simp
moreover
\mathbf{note}\ s2\text{-}in\text{-}E2star
moreover
from τr2E1-t1'-in-Tr1 t1'-is-r1'-v'-s1' v'-in-E1
have ?tau \mid E_{ES1} @ s1' \in Tr_{ES1}
 proof -
    from v'-in-E1 r1'-in-E1star
    \mathbf{have} \hspace{0.2cm} (\tau @ r2 @ r1' @ [\mathcal{V}']) \upharpoonright E_{ES1} = \hspace{0.2cm} (\tau @ r2) \upharpoonright E_{ES1} @ r1' @ [\mathcal{V}']
      \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute}
        list-subset-iff-projection-neutral projection-def, auto)
    with \tau r 2E1-t1'-in-Tr1 t1'-is-r1'-v'-s1' v'-in-E1 show ?thesis
      by simp
  qed
moreover
from r2-in-E2star v'-in-E2 r1'E2-empty \tau E2-r2-v'-s2-in-Tr2
have ?tau \mid E_{ES2} @ s2 \in Tr_{ES2}
  \mathbf{by}\ (simp\ only:\ list	ext{-}subset	ext{-}iff	ext{-}projection	ext{-}neutral
    projection\hbox{-}concatenation\hbox{-}commute\ projection\hbox{-}def,\ auto)
moreover
have lambda' \mid E_{ES1} = s1' \mid V_{\mathcal{V}}
proof -
```

```
from Cons(2,4,8) v'-in-E1 have t1 \uparrow V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \uparrow E_{ES1})
   by (simp add: projection-def)
  moreover
  from t1'-is-r1'-v'-s1' r1'-Vv1-empty r1'-in-E1star v'-in-Vv1 propSepViews
  have t1' \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s1' \upharpoonright V_{\mathcal{V}})
  proof -
   have r1' \mid V_{\mathcal{V}} = [
      {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
      by (metis projection-on-subset2
        r1'-Vv1-empty r1'-in-E1star subset-iff-psubset-eq)
    with t1'-is-r1'-v'-s1' v'-in-Vv1 Vv-is-Vv1-union-Vv2 show ?thesis
      by (simp only: t1'-is-r1'-v'-s1' projection-concatenation-commute
        projection-def, auto)
  qed
  moreover
  have t1 \mid V_{\mathcal{V}} = t1' \mid V_{\mathcal{V}}
   using propSepViews unfolding properSeparationOfViews-def
   by (metis Int-commute outerCons-prems(3)
      projection\hbox{-}intersection\hbox{-}neutral
      t1'-Vv1-is-t1-Vv1 t1'-in-E1star)
  ultimately show ?thesis
    \mathbf{by} auto
\mathbf{qed}
moreover
have lambda' \upharpoonright E_{ES2} = s2 \upharpoonright V_{\mathcal{V}}
proof -
  from Cons(3,5,9) v'-in-E2 have t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES2})
    by (simp add: projection-def)
  moreover
  from t2-is-r2-v'-s2 r2-Vv-empty v'-in-Vv2 Vv-is-Vv1-union-Vv2
  have t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s2 \upharpoonright V_{\mathcal{V}})
    by (simp only: t2-is-r2-v'-s2 projection-concatenation-commute projection-def, auto)
  ultimately show ?thesis
    by auto
qed
moreover
\textbf{note}\ s1'\text{-}Cv1\text{-}empty\ s2\text{-}Cv2\text{-}empty\ Cons.hyps}[of\ ?tau\ s1'\ s2]
ultimately obtain t'
  where tau-t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
 and t'Vv-is-lambda': t' \upharpoonright V_{\mathcal{V}} = lambda'
 and t'Cv-empty: t' \upharpoonright C_{\mathcal{V}} = []
 by auto
let ?t = r2 @ r1' @ [\mathcal{V}'] @ t'
note tau-t'-in-Tr
moreover
from r2-Vv-empty r1'-Vv-empty t'Vv-is-lambda' v'-in-Vv have ?t \( \text{V} \tau = \mathcal{V}' \# lambda' \)
 by (simp only: projection-concatenation-commute projection-def, auto)
from VIsViewOnE r2-Cv2-empty t'Cv-empty r1'-Cv1-empty v'-in-Vv
```

```
have ?t \upharpoonright C_{\mathcal{V}} = []
 proof -
   from VIsViewOnE\ v'-in-Vv\ {\bf have}\ [{\cal V}']\ |\ {\cal C}_{{\cal V}}=[]
     by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
   moreover
   {f from}\ r2-in-E2star r2-Cv2-empty propSepViews
   have r2 \mid C_{\mathcal{V}} = []
     {\bf unfolding} \ proper Separation Of Views-def
     using projection-on-subset2 by auto
   moreover
   from r1'-in-E1star r1'-Cv1-empty propSepViews
   have r1' \uparrow C_{\mathcal{V}} = []
     {\bf unfolding}\ proper Separation Of Views-def
     using projection-on-subset2 by auto
   moreover
   note t'Cv-empty
   ultimately show ?thesis
     by (simp only: projection-concatenation-commute, auto)
 ultimately have ?thesis
   \mathbf{by}\ \mathit{auto}
}
moreover {
 assume v'-in-Vv1-minus-E2: V' \in V_{V1} - E_{ES2}
 hence v'-in-Vv1: V' \in V_{V1}
   by auto
 with v'-in-Vv propSepViews have v'-in-E1: V' \in E_{ES1}
   unfolding properSeparationOfViews-def by auto
 from v'-in-Vv1-minus-E2 have v'-notin-E2: V' \notin E_{ES2}
   by (auto)
 with validV2 have v'-notin-Vv2: V' \notin V_{V2}
   by (simp add: isViewOn-def V-valid-def, auto)
 from Cons(3) Cons(4) Cons(8) v'-in-E1
 have t1 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})
   by (simp add: projection-def)
 from projection-split-first[OF this] obtain r1 s1
   where t1-is-r1-v'-s1: t1 = r1 @ [V'] @ s1
   and r1-Vv-empty: r1 \(\gamma\) V_{\mathcal{V}} = []
 with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V1} V_{V} r1]
 have r1-Vv1-empty: r1 | V_{V1} = []
   by auto
 from t1-is-r1-v'-s1 Cons(10)
 have r1-Cv1-empty: r1 \( \cap C_{V1} = \[ \]
   by (simp add: projection-concatenation-commute)
 from t1-is-r1-v'-s1 Cons(10)
```

```
have s1-Cv1-empty: s1 \(\begin{aligned} C_{V1} = \begin{bmatrix} \end{aligned} \]
  by (simp only: projection-concatenation-commute, auto)
from Cons(4) t1-is-r1-v'-s1
have r1-in-E1star: set r1 \subseteq E_{ES1}
  by auto
have r1-in-Nv1star: set r1 \subseteq N_{V1}
proof -
 {f note}\ r1-in-E1star
 moreover
 from r1-Vv1-empty have set r1 \cap V_{V1} = \{\}
    \mathbf{by}\ (\mathit{metis}\ \mathit{Compl-Diff-eq}\ \mathit{Diff-cancel}\ \mathit{Diff-eq}
      Int\text{-}commute\ Int\text{-}empty\text{-}right\ disjoint\text{-}eq\text{-}subset\text{-}Compl
      list-subset-iff-projection-neutral projection-on-union)
  moreover
  from r1-Cv1-empty have set r1 \cap C_{V1} = \{\}
    by (metis Compl-Diff-eq Diff-cancel Diff-eq
      Int\text{-}commute\ Int\text{-}empty\text{-}right\ disjoint\text{-}eq\text{-}subset\text{-}Compl
      list-subset-iff-projection-neutral projection-on-union)
  moreover
  {f note}\ validV1
  ultimately show ?thesis
    by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def, auto)
with Nv1-inter-E2-empty have r1E2-empty: r1 | E_{ES2} = []
  by (metis Int-commute empty-subsetI projection-on-subset2 r1-Vv1-empty)
let ?tau = \tau @ r1 @ [\mathcal{V}']
\mathbf{from}\ v'\text{-}in\text{-}E1\ Cons(2)\ r1\text{-}in\text{-}Nv1star\ validV1
have set ?tau \subseteq E_{(ES1 \parallel ES2)}
 by (simp only: compose ES-def is View On-def V-valid-def, auto)
moreover
from Cons(3) have set \ lambda' \subseteq V_{\mathcal{V}}
 by auto
moreover
from Cons(4) t1-is-r1-v'-s1 have set s1 \subseteq E_{ES1}
 by auto
moreover
note Cons(5)
moreover
have ?tau \mid E_{ES1} @ s1 \in Tr_{ES1}
 by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI
    list-subset-iff-projection-neutral Cons.prems(3) Cons.prems(5)
    projection-concatenation-commute t1-is-r1-v'-s1)
moreover
have ?tau | E_{ES2} @ t2 \in Tr_{ES2}
 proof -
    from v'-notin-E2 have [V'] \upharpoonright E_{ES2} = []
```

```
by (simp add: projection-def)
     with Cons(7) Cons(4) t1-is-r1-v'-s1 v'-notin-E2 r1-in-Nv1star
       Nv1-inter-E2-empty r1E2-empty
       show ?thesis
        by (simp only: t1-is-r1-v'-s1 list-subset-iff-projection-neutral
          projection-concatenation-commute, auto)
   qed
 moreover
 from Cons(8) t1-is-r1-v'-s1 r1-Vv-empty v'-in-E1 v'-in-Vv
 have lambda' \mid E_{ES1} = s1 \mid V_{\mathcal{V}}
   by (simp add: projection-def)
 moreover
 from Cons(9) v'-notin-E2 have lambda' \mid E_{ES2} = t2 \mid V_{\mathcal{V}}
   by (simp add: projection-def)
 moreover
 note s1-Cv1-empty Cons(11)
 moreover
 note Cons.hyps(1)[of ?tau s1 t2]
 ultimately obtain t'
   where \tau r1v't'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
   and t'-Vv-is-lambda': t' 
egtin{pmatrix} V_{\mathcal{V}} = lambda \end{aligned}
   and t'-Cv-empty: t' \mid C_{\mathcal{V}} = []
   by auto
 let ?t = r1 @ [\mathcal{V}'] @ t'
 note \tau r 1 v' t'-in-Tr
 moreover
 from r1-Vv-empty t'-Vv-is-lambda' v'-in-Vv have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
   by (simp add: projection-def)
 moreover
 have ?t \mid C_{\mathcal{V}} = []
 proof -
   have r1 \uparrow C_{\mathcal{V}} = []
     using propSepViews unfolding properSeparationOfViews-def
     by (metis projection-on-subset2 r1-Cv1-empty r1-in-E1star)
   with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
     by (simp add: is ViewOn-def V-valid-def VC-disjoint-def projection-def, auto)
 \mathbf{qed}
 ultimately have ?thesis
   by auto
moreover {
 assume v'-in-Vv2-minus-E1: V' \in V_{V2} - E_{ES1}
 hence v'-in-Vv2: V' \in V_{V2}
   by auto
 with v'-in-Vv propSepViews
 have v'-in-E2: V' \in E_{ES2}
   unfolding properSeparationOfViews-def by auto
 from v'-in-Vv2-minus-E1
```

```
have v'-notin-E1: V' \notin E_{ES1}
 by (auto)
with validV1
have v'-notin-Vv1: V' \notin V_{V1}
 by (simp add: is ViewOn-def V-valid-def VC-disjoint-def
    VN-disjoint-def NC-disjoint-def, auto)
from Cons(3) Cons(5) Cons(9) v'-in-E2 have t2 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})
 by (simp add: projection-def)
from projection-split-first[OF\ this] obtain r2\ s2
 where t2-is-r2-v'-s2: t2 = r2 @ [V'] @ s2
 and r2-Vv-empty: r2 | V_{\mathcal{V}} = []
 by auto
with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_{V} r2]
have r2-Vv2-empty: r2 | V_{\mathcal{V}2} = []
 by auto
from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 \uparrow C_{V2} = []
 by (simp add: projection-concatenation-commute)
from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 \uparrow C_{V2} = []
 \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
have r2-in-Nv2star: set r2 \subseteq N_{\mathcal{V}2}
proof -
 {\bf note}\ r\mbox{\it 2-in-}E\mbox{\it 2star}
 moreover
 from r2-Vv2-empty have set r2 \cap V_{V2} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Un-upper2
      disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union)
 moreover
 from r2-Cv2-empty have set r2 \cap C_{V2} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Un-upper2
      disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union)
 moreover
 \mathbf{note}\ \mathit{validV2}
 ultimately show ?thesis
   \mathbf{by}\ (simp\ add\colon is ViewOn\text{-}def\ V\text{-}valid\text{-}def
      VC	ext{-}disjoint	ext{-}def \ VN	ext{-}disjoint	ext{-}def, \ auto)
qed
have r2E1-in-Nv2-inter-C1-star: set (r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
proof -
 have set (r2 \mid E_{ES1}) = set \ r2 \cap E_{ES1}
   by (simp add: projection-def, auto)
  with r2-in-Nv2star have set (r2 \mid E_{ES1}) \subseteq (E_{ES1} \cap N_{V2})
   by auto
```

```
moreover
  from validV1 propSepViews disjoint-Nv2-Vv1 have E_{ES1} \cap N_{V2} = N_{V2} \cap C_{V1}
    {\bf unfolding} \ proper Separation Of Views-def
    by (simp add: isViewOn-def V-valid-def VC-disjoint-def
       VN-disjoint-def NC-disjoint-def, auto)
  ultimately show ?thesis
    by auto
qed
note \ outer Cons-prems = Cons.prems
\begin{array}{l} \mathbf{have} \ set \ (r2 \ \  \  \, E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap \ C_{\mathcal{V}1}) \Longrightarrow \\ \exists \ t1'. \ (set \ t1' \subseteq E_{ES1} \ \ . \end{array}
  \wedge ((\tau @ r2) \uparrow E_{ES1}) @ t1' \in Tr_{ES1}
  \mathbf{proof}\ (\mathit{induct}\ r2\ |\ E_{ES1}\ \mathit{arbitrary:}\ r2\ \mathit{rule:}\ \mathit{rev-induct})
  {\bf case} \ {\it Nil} \ {\bf thus} \ {\it ?case}
    \mathbf{by}\ (\textit{metis append-self-conv outerCons-prems}(9)\ \textit{outerCons-prems}(3)
       outerCons-prems(5) projection-concatenation-commute)
\mathbf{next}
  \mathbf{case}\ (\mathit{snoc}\ \mathit{x}\ \mathit{xs})
  have xs-is-xsE1: xs = xs \upharpoonright E_{ES1}
  proof -
     from snoc(2) have set~(xs @ [x]) \subseteq E_{ES1}
       by (simp add: projection-def, auto)
    hence set xs \subseteq E_{ES1}
       by auto
    thus ?thesis
       by (simp add: list-subset-iff-projection-neutral)
  \mathbf{qed}
  moreover
  have set (xs \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
  proof -
    have set (r2 \uparrow E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
       by (metis Int-commute snoc.prems)
    with snoc(2) have set (xs @ [x]) \subseteq (N_{\mathcal{V}_2} \cap C_{\mathcal{V}_1})
       by simp
    hence set xs \subseteq (N_{\mathcal{V}\mathcal{Z}} \cap C_{\mathcal{V}\mathcal{I}})
       by auto
     with xs-is-xsE1 show ?thesis
       by auto
  \mathbf{qed}
  moreover
  note snoc.hyps(1)[of xs]
  ultimately obtain t1'
    where t1''-in-E1star: set t1'' \subseteq E_{ES1}
    and \tau-xs-E1-t1 "-in-Tr1: ((\tau @ xs) | E_{ES1}) @ t1 " \in Tr_{ES1} and t1 "Vv1-is-t1 Vv1: t1 " | Vv_1 = t1 | Vv_1 and t1 "Cv1-empty: t1 " | Cv_1 = []
```

```
by auto
have x-in-Cv1-inter-Nv2: x \in C_{V1} \cap N_{V2}
proof -
  from snoc(2-3) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
    by simp
  \mathbf{thus}~? the sis
    by auto
qed
hence x-in-Cv1: x \in C_{V1}
 by auto
moreover
note \tau-xs-E1-t1 "-in-Tr1 t1" Cv1-empty
moreover
have Adm: (Adm V1 \varrho1 Tr_{ES1} ((\tau @ xs) | E_{ES1}) x)
proof -
  from \tau-xs-E1-t1"-in-Tr1 validES1
  have \tau-xsE1-in-Tr1: ((\tau @ xs) \upharpoonright E_{ES1}) \in Tr_{ES1}
    by (simp add: ES-valid-def traces-prefixclosed-def
      prefixclosed-def prefix-def)
  \mathbf{with}\ x\hbox{-}in\hbox{-}Cv1\hbox{-}inter\hbox{-}Nv2\ total\hbox{-}ES1\hbox{-}Cv1\hbox{-}inter\hbox{-}Nv2
  have \tau-xsE1-x-in-Tr1: ((\tau @ xs) \uparrow E_{ES1}) @ [x] \in Tr_{ES1}
    by (simp only: total-def)
  moreover
  \mathbf{have}\ ((\tau\ @\ \mathit{xs})\ |\ E_{ES1})\ |\ (\varrho 1\ \mathcal{V}1) = ((\tau\ @\ \mathit{xs})\ |\ E_{ES1})\ |\ (\varrho 1\ \mathcal{V}1)\ \dots
  ultimately show ?thesis
    by (simp add: Adm-def, auto)
qed
{\bf moreover\ note}\ {\it BSIA}
ultimately obtain t1'
 where res1: ((\tau @ xs) | E_{ES1}) @ [x] @ t1' \in Tr_{ES1} and res2: t1' | V_{\mathcal{V}1} = t1'' | V_{\mathcal{V}1} and res3: t1' | C_{\mathcal{V}1} = []
  by (simp only: BSIA-def, blast)
have set t1' \subseteq E_{ES1}
proof -
  from res1 validES1 have set (((\tau @ xs) \upharpoonright E_{ES1}) @ [x] @ t1') \subseteq E_{ES1}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  thus ?thesis
    \mathbf{by} auto
qed
moreover
have ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}
proof -
  from res1 xs-is-xsE1 have ((\tau \upharpoonright E_{ES1}) @ (xs @ [x])) @ t1' \in Tr_{ES1}
    by (simp only: projection-concatenation-commute, auto)
    by (simp\ only:\ snoc(2)\ projection-concatenation-commute)
qed
moreover
```

from t1''Vv1-is-t1Vv1 res2 have $t1' \upharpoonright V_{V1} = t1 \upharpoonright V_{V1}$

```
by auto
 moreover
 note res3
  ultimately show ?case
   by auto
qed
from this[OF r2E1-in-Nv2-inter-C1-star] obtain t1'
 where t1'-in-E1star: set t1' \subseteq E_{ES1}
 and \tau r2E1-t1'-in-Tr1: ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}
 and t1'-Vv1-is-t1-Vv1: t1' | V_{V1} = t1 | V_{V1}
 and t1'-Cv1-empty: t1' | C_{V1} = []
 by auto
let ?tau = \tau @ r2 @ [\mathcal{V}']
from v'-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau \subseteq E_{(ES1 \parallel ES2)}
 \mathbf{by} (simp only: compose ES-def is View On-def V-valid-def
    VC-disjoint-def VN-disjoint-def, auto)
moreover
from Cons(3) have set \ lambda' \subseteq V_{\mathcal{V}}
 by auto
moreover
from Cons(5) t2-is-r2-v'-s2 have set s2 \subseteq E_{ES2}
 by auto
moreover
note t1'-in-E1star
moreover
have ?tau \mid E_{ES2} @ s2 \in Tr_{ES2}
 by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI
   list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
   projection-concatenation-commute t2-is-r2-v'-s2)
from \tau r2E1-t1'-in-Tr1 v'-notin-E1 have ?tau | E_{ES1} @ t1' \in Tr_{ES1}
 by (simp add: projection-def)
moreover
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in-Vv
have lambda' \mid E_{ES2} = s2 \mid V_{\mathcal{V}}
 by (simp add: projection-def)
moreover
from Cons(10) v'-notin-E1 t1'-Vv1-is-t1-Vv1 have lambda' \mid E_{ES1} = t1' \mid V_{V}
proof -
 have t1' \upharpoonright V_{\mathcal{V}} = t1' \upharpoonright V_{\mathcal{V}1}
   using propSepViews unfolding properSeparationOfViews-def
   by (simp add: projection-def, metis Int-commute
      projection-def projection-intersection-neutral
     t1'-in-E1star)
  moreover
 have t1 \mid V_{\mathcal{V}} = t1 \mid V_{\mathcal{V}1}
   {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
   by (simp add: projection-def, metis Int-commute
      projection-def
```

```
projection-intersection-neutral Cons(4))
            moreover
            note Cons(8) v'-notin-E1 t1'-Vv1-is-t1-Vv1
            ultimately show ?thesis
             by (simp add: projection-def)
          qed
          moreover
          note s2-Cv2-empty t1'-Cv1-empty
          moreover
          note Cons.hyps(1)[of ?tau t1' s2]
          ultimately obtain t^\prime
            where \tau r2v't'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
            and t'-Vv-is-lambda': t' \mid V_{\mathcal{V}} = lam\dot{b}da'
           and t'-Cv-empty: t' \mid C_{\mathcal{V}} = []
           by auto
          let ?t = r2 @ [\mathcal{V}'] @ t'
          note \tau r 2v't'-in-Tr
          moreover
          from r2-Vv-empty t'-Vv-is-lambda' v'-in-Vv
          have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
           by (simp add: projection-def)
          moreover
          have ?t \mid C_{\mathcal{V}} = []
          proof -
           have r2 \mid C_{\mathcal{V}} = []
            proof -
              from propSepViews have C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2}
                {\bf unfolding} \ properSeparationOf Views-def \ {\bf by} \ auto
              \textbf{from} \ \textit{projection-on-subset}[\textit{OF} \ \textit{<} C_{\mathcal{V}} \cap E_{\textit{ES2}} \subseteq \textit{C}_{\mathcal{V2}} \textit{>} \textit{r2-Cv2-empty}]
              have r2 \upharpoonright (E_{ES2} \cap C_{\mathcal{V}}) = []
                by (simp only: Int-commute)
              with projection-intersection-neutral [OF r2-in-E2star, of C_{\mathcal{V}}] show ?thesis
                by simp
            qed
            with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
              by (simp add: isViewOn-def V-valid-def VC-disjoint-def
                VN-disjoint-def NC-disjoint-def projection-def, auto)
          ultimately have ?thesis
            by auto
        ultimately show ?thesis
          by blast
     qed
    qed
thus ?thesis
  \mathbf{by} auto
```

 \mathbf{qed}

```
lemma generalized-zipping-lemma3: [N_{V2} \cap E_{ES1} = \{\}; total\ ES2\ (C_{V2} \cap N_{V1});\ BSIA\ \varrho 2\ V2\ Tr_{ES2}\ ]
  \forall \ \tau \ lambda \ t1 \ t2. ( ( set \ \tau \subseteq E_{(ES1 \ || \ ES2)} \land set \ lambda \subseteq V_{\mathcal{V}} \land set \ t1 \subseteq E_{ES1} \land set \ t2 \subseteq E_{ES2}
  \wedge (t1 \uparrow C_{\mathcal{V}1}) = [] \wedge (t2 \uparrow C_{\mathcal{V}2}) = [])
  \longrightarrow (\exists \ t. \ ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \uparrow V_{\mathcal{V}}) = lambda \land (t \uparrow C_{\mathcal{V}}) = [])))
proof -
  assume Nv2-inter-E1-empty: N_{V2} \cap E_{ES1} = \{\}
  assume total-ES2-Cv2-inter-Nv1: total ES2 (C_{\mathcal{V}_2} \cap N_{\mathcal{V}_1})
  assume BSIA: BSIA \varrho2 V2 Tr_{ES2}
    fix \tau lambda t1 t2
    assume \tau-in-Estar: set \tau \subseteq E_{(ES1 \parallel ES2)}
       and lambda-in-Vvstar: set lambda \subseteq V_{\mathcal{V}}
       and t1-in-E1star: set t1 \subseteq E_{ES1}
       and t2-in-E2star: set t2 \subseteq E_{ES2}
       and \tau-E1-t1-in-Tr1: ((\tau \mid E_{ES1}) \otimes t1) \in Tr_{ES1}
       and \tau-E2-t2-in-Tr2: ((\tau \uparrow E_{ES2}) @ t2) \in Tr_{ES2}
       and lambda-E1-is-t1-Vv: (lambda \mid E_{ES1}) = (t1 \mid V_{V})
       and lambda-E2-is-t2-Vv: (lambda | E_{ES2}) = (t2 | V_V)
       and t1-no-Cv1: (t1 \uparrow C_{V1}) = []
       and t2-no-Cv2: (t2 \uparrow C_{V2}) = []
    have [\![ set \ \tau \subseteq E_{(ES1 \ || ES2)};
       set\ lambda \subseteq V_{\mathcal{V}};
       \begin{array}{c} set\ t1\ \subseteq\ E_{ES1};\\ set\ t2\ \subseteq\ E_{ES2}; \end{array}
       ((\tau \upharpoonright E_{ES1}) \stackrel{\frown}{@} t1) \in Tr_{ES1};
       ((\tau \uparrow E_{ES2}) @ t2) \in Tr_{ES2};
       (lambda \mid E_{ES1}) = (t1 \mid V_{\mathcal{V}});
       (lambda \mid E_{ES2}) = (t2 \mid V_{\mathcal{V}});
       (t1 \ 1 \ C_{V1}) = [];
       (t2 \uparrow C_{\mathcal{V}2}) = [] \ ]
       \implies (\exists \ t. \ ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \upharpoonright V_{\mathcal{V}}) = lambda \land (t \upharpoonright C_{\mathcal{V}}) = []))
       proof (induct lambda arbitrary: \tau t1 t2)
         case (Nil \tau t1 t2)
         have (\tau @ []) \in Tr_{(ES1 \parallel ES2)}
           proof -
              have \tau \in Tr_{(ES1 \parallel ES2)}
                proof -
                  from Nil(5) validES1 have \tau \upharpoonright E_{ES1} \in Tr_{ES1}
                     \mathbf{by}\ (simp\ add\colon ES\text{-}valid\text{-}def\ traces\text{-}prefixclosed\text{-}def
                       prefixclosed-def prefix-def)
                  moreover
                  from Nil(6) validES2 have \tau \mid E_{ES2} \in Tr_{ES2}
                     by (simp add: ES-valid-def traces-prefixclosed-def
```

```
prefixclosed-def prefix-def)
          moreover
          note Nil(1)
          ultimately show ?thesis
            by (simp add: composeES-def)
      thus ?thesis
        by auto
   qed
 moreover
 have ([] 1 V_{\mathcal{V}}) = []
   by (simp add: projection-def)
 moreover
 have ([] \uparrow C_{\mathcal{V}}) = []
   by (simp add: projection-def)
 ultimately show ?case
   \mathbf{by} blast
\mathbf{next}
 case (Cons V' lambda' \tau t1 t2)
 \mathbf{thus}~? case
   proof -
      from Cons(3) have v'-in-Vv: V' \in V_{\mathcal{V}}
        by auto
      have V' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2}
        \forall \mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2}

\forall \mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1}
        using propSepViews unfolding properSeparationOfViews-def
        by (metis Diff-iff Int-commute Int-iff Un-iff
           Vv-is-Vv1-union-Vv2 v'-in-Vv)
      moreover {
        assume v'-in-Vv1-inter-Vv2: \mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2}
hence v'-in-Vv2: \mathcal{V}' \in V_{\mathcal{V}2} and v'-in-Vv1: \mathcal{V}' \in V_{\mathcal{V}1}
          by auto
        with v'-in-Vv
        have v'-in-E2: V' \in E_{ES2} and v'-in-E1: V' \in E_{ES1}
         using propSepViews unfolding properSeparationOfViews-def by auto
        from Cons(2,4,8) v'-in-E1 have t1 \uparrow V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \uparrow E_{ES1})
          by (simp add: projection-def)
        {\bf from}\ projection\text{-}split\text{-}first[OF\ this]\ {\bf obtain}\ r1\ s1
          where t1-is-r1-v'-s1: t1 = r1 @ [\mathcal{V}'] @ s1
          and r1-Vv-empty: r1 | V_{\mathcal{V}} = []
        with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V1} V_{V} r1]
        have r1-Vv1-empty: r1 | V_{V1} = []
          by auto
        from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: r1 \uparrow C_{V1} = []
          by (simp add: projection-concatenation-commute)
```

```
from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 \uparrow C_{V1} = []
  \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
from Cons(4) t1-is-r1-v'-s1
have r1-in-E1star: set r1 \subseteq E_{ES1} and s1-in-E1star: set s1 \subseteq E_{ES1}
 by auto
from Cons(6) t1-is-r1-v'-s1
have \tau E1-r1-v'-s1-in-Tr1: \tau \upharpoonright E_{ES1} @ r1 @ [\mathcal{V}'] @ s1 \in Tr_{ES1}
 by simp
have r1-in-Nv1star: set r1 \subseteq N_{V1}
  proof -
    note r1-in-E1star
    moreover
    from r1-Vv1-empty have set r1 \cap V_{V1} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
        projection-on-union)
    moreover
    from r1-Cv1-empty have set r1 \cap C_{V1} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
        projection-on-union)
    moreover
    {f note}\ validV1
    ultimately show ?thesis
      \mathbf{by}\ (simp\ add:\ is\ View\ On\text{-}def\ V\text{-}valid\text{-}def\ VC\text{-}disjoint\text{-}def
         VN-disjoint-def NC-disjoint-def, auto)
  qed
have r1E2-in-Nv1-inter-C2-star: set (r1 \upharpoonright E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
  proof -
    have set (r1 \mid E_{ES2}) = set \ r1 \cap E_{ES2}
      by (simp add: projection-def, auto)
    with r1-in-Nv1star have set (r1 \uparrow E_{ES2}) \subseteq (E_{ES2} \cap N_{V1})
      by auto
    moreover
    from validV2 disjoint-Nv1-Vv2
    have E_{ES2} \cap N_{V1} = N_{V1} \cap C_{V2}
      {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
      \mathbf{by}\ (simp\ add: isViewOn\text{-}def\ V\text{-}valid\text{-}def
        VC	ext{-}disjoint	ext{-}def\ VN	ext{-}disjoint	ext{-}def\ NC	ext{-}disjoint	ext{-}def,\ auto)
    ultimately show ?thesis
      by auto
  qed
note \ outer Cons-prems = Cons.prems
have set (r1 \uparrow E_{ES2}) \subseteq (N_{V1} \cap C_{V2}) \Longrightarrow
```

```
\exists \ t2'. ( set t2' \subseteq E_{ES2}
  \wedge \ ((\tau @ r1) \upharpoonright E_{ES2}) @ t2' \in \mathit{Tr}_{ES2}
  \wedge t2' | V_{\mathcal{V}2} = t2 | V_{\mathcal{V}2}
  \wedge t2' \mid C_{\mathcal{V}2} = [] )
\textbf{proof} \ (\textit{induct r1} \ | \ E_{ES2} \ \textit{arbitrary: r1 rule: rev-induct})
  case Nil thus ?case
    by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
       outerCons-prems(6) projection-concatenation-commute)
\mathbf{next}
  case (snoc \ x \ xs)
  have xs-is-xsE2: xs = xs \upharpoonright E_{ES2}
    proof -
      from snoc(2) have set~(xs @ [x]) \subseteq E_{ES2}
        by (simp add: projection-def, auto)
      hence set xs \subseteq E_{ES2}
        by auto
      thus ?thesis
        by (simp add: list-subset-iff-projection-neutral)
    qed
  moreover
  have set (xs \upharpoonright E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
    proof -
      have set (r1 \uparrow E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
        by (metis Int-commute snoc.prems)
      with snoc(2) have set~(xs~@~[x])\subseteq (N_{\mathcal{V}1}\cap~C_{\mathcal{V}2})
      hence set xs \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
        by auto
      with xs-is-xsE2 show ?thesis
         by auto
    qed
  moreover
  \mathbf{note}\ snoc.hyps(1)[of\ xs]
  ultimately obtain t2^{\prime\prime}
    where t2''-in-E2star: set t2'' \subseteq E_{ES2}
    and \tau-xs-E2-t2"-in-Tr2: ((\tau @ xs) \uparrow E_{ES2}) @ t2" \in Tr_{ES2} and t2"Vv2-is-t2Vv2: t2" \uparrow V_{\mathcal{V}2} = t2 \uparrow V_{\mathcal{V}2}
    and t2''Cv2-empty: t2'' \mid C_{V2} = []
    by auto
  have x-in-Cv2-inter-Nv1: x \in C_{\mathcal{V}2} \cap N_{\mathcal{V}1}
    proof -
      from snoc(2-3) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
        by simp
      thus ?thesis
        by auto
    qed
  hence x-in-Cv2: x \in C_{\mathcal{V}2}
    by auto
  moreover
  note \tau-xs-E2-t2"-in-Tr2 t2"Cv2-empty
```

```
moreover
  have Adm: (Adm V2 \varrho 2 Tr_{ES2} ((\tau @ xs) | E_{ES2}) x)
    proof -
      from \tau-xs-E2-t2"-in-Tr2 validES2
      have \tau\text{-}\mathit{xsE2\text{-}in\text{-}Tr2\text{:}}\ ((\tau\ @\ \mathit{xs})\ |\ E_{ES2})\in\ \mathit{Tr}_{ES2}
        by (simp add: ES-valid-def traces-prefixclosed-def
          prefixclosed-def prefix-def)
      \mathbf{with}\ x\hbox{-}in\hbox{-}Cv2\hbox{-}inter\hbox{-}Nv1\ total\hbox{-}ES2\hbox{-}Cv2\hbox{-}inter\hbox{-}Nv1
      have \tau-xsE2-x-in-Tr2: ((\tau @ xs) \uparrow E_{ES2}) @ [x] \in Tr_{ES2}
        by (simp only: total-def)
      moreover
      have ((\tau @ xs) | E_{ES2}) | (\varrho \mathscr{L} \mathscr{V}\mathscr{L}) = ((\tau @ xs) | E_{ES2}) | (\varrho \mathscr{L} \mathscr{V}\mathscr{L}) \dots
      ultimately show ?thesis
        by (simp add: Adm-def, auto)
    \mathbf{qed}
  moreover note BSIA
  ultimately obtain t2'
    where res1: ((\tau @ xs) | E_{ES2}) @ [x] @ t2' \in Tr_{ES2}
    and res2: t2' \upharpoonright V_{\mathcal{V}2} = t2'' \upharpoonright V_{\mathcal{V}2}
    and res3: t2' \mid C_{V2} = []
    by (simp only: BSIA-def, blast)
  have set t2' \subseteq E_{ES2}
    proof -
      from res1 validES2
      have set (((\tau @ xs) | E_{ES2}) @ [x] @ t2') \subseteq E_{ES2}
        by (simp add: ES-valid-def traces-contain-events-def, auto)
      thus ?thesis
        by auto
    qed
  moreover
  have ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}
      from res1 xs-is-xsE2 have ((\tau \upharpoonright E_{ES2}) @ (xs @ [x])) @ t2' \in Tr_{ES2}
        by (simp only: projection-concatenation-commute, auto)
      thus ?thesis
        by (simp\ only:\ snoc(2)\ projection-concatenation-commute)
    qed
  moreover
  from t2''Vv2-is-t2Vv2 res2 have t2' \uparrow V_{V2} = t2 \uparrow V_{V2}
    by auto
  moreover
  note res3
  ultimately show ?case
    by auto
\mathbf{qed}
from this[OF\ r1E2-in-Nv1-inter-C2-star] obtain t2'
  where t2'-in-E2star: set t2' \subseteq E_{ES2}
  and \tau r1E2-t2'-in-Tr2: ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}
  and t2'-Vv2-is-t2-Vv2: t2' \upharpoonright V_{\mathcal{V}2} = t2 \upharpoonright V_{\mathcal{V}2}
  and t2'-Cv2-empty: t2' \upharpoonright C_{\mathcal{V}2} = []
 by auto
```

```
have t2' \upharpoonright V_{\mathcal{V}2} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})
  proof -
    from projection-intersection-neutral[OF Cons(5), of V_{\mathcal{V}}]
    have t2 \mid V_{\mathcal{V}} = t2 \mid V_{\mathcal{V}2}
      using propSepViews unfolding properSeparationOfViews-def
      by (simp only: Int-commute)
    with Cons(9) t2'-Vv2-is-t2-Vv2 v'-in-E2 show ?thesis
      by (simp add: projection-def)
  qed
\mathbf{from} \ \mathit{projection-split-first}[\mathit{OF} \ \mathit{this}] \ \mathbf{obtain} \ \mathit{r2'} \ \mathit{s2'}
  where t2'-is-r2'-v'-s2': t2' = r2' @ [V'] @ <math>s2'
  and r2'-Vv2-empty: r2' \upharpoonright V_{\mathcal{V}2} = []
  by auto
from t2'-is-r2'-v'-s2' t2'-Cv2-empty
have r2'-Cv2-empty: r2' \upharpoonright C_{\mathcal{V}2} = []
 by (simp add: projection-concatenation-commute)
from t2'-is-r2'-v'-s2' t2'-Cv2-empty
have s2'-Cv2-empty: s2' \upharpoonright C_{\mathcal{V}2} = []
 by (simp only: projection-concatenation-commute, auto)
from t2'-in-E2star t2'-is-r2'-v'-s2'
have r2'-in-E2star: set r2' \subseteq E_{ES2}
 by auto
with r2'-Vv2-empty
have r2'-Vv-empty: r2' \upharpoonright V_{\mathcal{V}} = []
  {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
 by (metis projection-on-subset2 subset-iff-psubset-eq)
have r2'-in-Nv2star: set r2' \subseteq N_{V2}
  proof -
    note r2'-in-E2star
    moreover
    from r2'-Vv2-empty have set r2' \cap V_{V2} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
        projection-on-union)
    moreover
    from r2'-Cv2-empty have set \ r2' \cap C_{V2} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
        projection-on-union)
    moreover
    note valid V2
    ultimately show ?thesis
      \mathbf{by}\ (simp\ add:\ is\ View\ On\text{-}def\ V\text{-}valid\text{-}def\ VC\text{-}disjoint\text{-}def
        VN-disjoint-def NC-disjoint-def, auto)
  qed
```

```
with Nv2-inter-E1-empty have r2'E1-empty: r2' \| E_{ES1} = []
  by (metis Int-commute empty-subsetI projection-on-subset2 r2'-Vv2-empty)
let ?tau = \tau @ r1 @ r2' @ [\mathcal{V}']
from Cons(2) r1-in-E1star r2'-in-E2star v'-in-E1
\mathbf{have} \ \mathit{set} \ ?\mathit{tau} \subseteq (E_{(\mathit{ES1} \ \| \ \mathit{ES2})})
  by (simp add: composeES-def, auto)
moreover
from Cons(3) have set \ lambda' \subseteq V_{\mathcal{V}}
  by auto
moreover
{f note}\ s1-in-E1star
moreover
from t2'-in-E2star t2'-is-r2'-v'-s2' have set s2' \subseteq E_{ES2}
  by simp
moreover
from r1-in-E1star v'-in-E1 r2'E1-empty \tau E1-r1-v'-s1-in-Tr1
have ?tau \mid E_{ES1} @ s1 \in Tr_{ES1}
  by (simp only: list-subset-iff-projection-neutral
    projection-concatenation-commute projection-def, auto)
from τr1E2-t2'-in-Tr2 t2'-is-r2'-v'-s2' v'-in-E2
have ?tau \mid E_{ES2} @ s2' \in Tr_{ES2}
  proof -
    from v'-in-E2 r2'-in-E2star
    \mathbf{have} \hspace{0.2cm} (\tau \hspace{0.1cm} @ \hspace{0.1cm} r1 \hspace{0.1cm} @ \hspace{0.1cm} r2 \hspace{0.1cm}' \hspace{0.1cm} @ \hspace{0.1cm} [\mathcal{V}']) \hspace{0.1cm} | \hspace{0.1cm} E_{ES2} = \hspace{0.1cm} (\tau \hspace{0.1cm} @ \hspace{0.1cm} r1) \hspace{0.1cm} | \hspace{0.1cm} E_{ES2} \hspace{0.1cm} @ \hspace{0.1cm} r2 \hspace{0.1cm}' \hspace{0.1cm} @ \hspace{0.1cm} [\mathcal{V}']
      \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute}
         list-subset-iff-projection-neutral projection-def, auto)
    with \tau r 1E2-t2'-in-Tr2 t2'-is-r2'-v'-s2' v'-in-E2 show ?thesis
      by simp
  qed
moreover
have lambda' \mid E_{ES1} = s1 \mid V_{\mathcal{V}}
  from Cons(3,4,8) v'-in-E1 have t1 \(\frac{1}{V_V} = [V'] \) \(\text{@} \((lambda' \) \(E_{ES1})\)
    by (simp add: projection-def)
  moreover
  from t1-is-r1-v'-s1 r1-Vv-empty v'-in-Vv1 Vv-is-Vv1-union-Vv2
  have t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s1 \upharpoonright V_{\mathcal{V}})
    by (simp only: t1-is-r1-v'-s1 projection-concatenation-commute projection-def, auto)
  ultimately show ?thesis
    by auto
qed
moreover
have lambda' \mid E_{ES2} = s2' \mid V_{\mathcal{V}}
  from Cons(4,5,9) v'-in-E2 have t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES2})
    by (simp add: projection-def)
  moreover
  from t2'-is-r2'-v'-s2' r2'-Vv2-empty r2'-in-E2star v'-in-Vv2 propSepViews
```

```
have t2' \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s2' \upharpoonright V_{\mathcal{V}})
  proof -
   have r2' \mid V_{\mathcal{V}} = []
      {\bf using} \ prop Sep \it{Views} \ {\bf unfolding} \ proper Separation Of \it{Views-def}
      by (metis projection-on-subset2
        r2'-Vv2-empty r2'-in-E2star subset-iff-psubset-eq)
    with t2'-is-r2'-v'-s2' v'-in-Vv2 Vv-is-Vv1-union-Vv2 show ?thesis
      by (simp only: t2'-is-r2'-v'-s2' projection-concatenation-commute
        projection-def, auto)
  qed
  moreover
  have t2 \mid V_{\mathcal{V}} = t2' \mid V_{\mathcal{V}}
   {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
    by (metis Int-commute outerCons-prems(4))
      projection\hbox{-}intersection\hbox{-}neutral
      t2'-Vv2-is-t2-Vv2 t2'-in-E2star)
  ultimately show ?thesis
    by auto
qed
moreover
note s1-Cv1-empty s2'-Cv2-empty Cons.hyps[of ?tau s1 s2']
ultimately obtain t'
  where tau-t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
  and t'Vv-is-lambda': t' \mid V_{\mathcal{V}} = lambda'
 and t'Cv-empty: t' \mid C_{\mathcal{V}} = []
 by auto
let ?t = r1 @ r2' @ [\mathcal{V}'] @ t'
note tau-t'-in-Tr
moreover
from r1-Vv-empty r2'-Vv-empty t'Vv-is-lambda' v'-in-Vv
have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
  by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from VIsViewOnE r1-Cv1-empty t'Cv-empty r2'-Cv2-empty v'-in-Vv
have ?t \mid C_{\mathcal{V}} = []
proof -
  \mathbf{from}\ \mathit{VIsViewOnE}\ \mathit{v'-in-Vv}\ \mathbf{have}\ [\mathcal{V'}]\ |\ \mathit{C}_{\mathcal{V}}=[]
    by (simp add:isViewOn-def V-valid-def VC-disjoint-def
      VN-disjoint-def NC-disjoint-def projection-def, auto)
  moreover
  from r1-in-E1star r1-Cv1-empty
  have r1 \mid C_{\mathcal{V}} = []
    using propSepViews projection-on-subset2 unfolding properSeparationOfViews-def
  moreover
  from r2'-in-E2star r2'-Cv2-empty
  have r2' \upharpoonright C_{\mathcal{V}} = []
   \textbf{using} \ propSep\ Views\ projection-on-subset2\ \textbf{unfolding}\ properSeparation\ Of\ Views-def
   by auto
```

```
moreover
   note t'Cv-empty
   {\bf ultimately \ show} \ \textit{?thesis}
     by (simp only: projection-concatenation-commute, auto)
 qed
 ultimately have ?thesis
   by auto
moreover {
 assume v'-in-Vv1-minus-E2: V' \in V_{V1} - E_{ES2}
 hence v'-in-Vv1: V' \in V_{V1}
   by auto
 with v'-in-Vv have v'-in-E1: V' \in E_{ES1}
   {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ prop er \bar{S}eparation Of Views-def
   by auto
 from v'-in-Vv1-minus-E2 have v'-notin-E2: V' \notin E_{ES2}
 with validV2 have v'-notin-Vv2: V' \notin V_{V2}
   by (simp add: isViewOn-def V-valid-def VC-disjoint-def
     VN-disjoint-def NC-disjoint-def, auto)
 from Cons(3) Cons(4) Cons(8) v'-in-E1
 have t1 \uparrow V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \uparrow E_{ES1})
   by (simp add: projection-def)
 from projection-split-first[OF this] obtain r1 s1
   where t1-is-r1-v'-s1: t1 = r1 @ [V'] @ s1
   and r1-Vv-empty: r1 \( \gamma \) V_{\mathcal{V}} = []
   by auto
 with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V1} V_{V} r1]
 have r1-Vv1-empty: r1 \( \text{V}_{V1} = [] \)
   \mathbf{by} auto
 from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: r1 \mid C_{V1} = []
   \mathbf{by}\ (simp\ add\colon projection\text{-}concatenation\text{-}commute)
 from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 | C_{V1} = []
   by (simp only: projection-concatenation-commute, auto)
 from Cons(4) t1-is-r1-v'-s1 have r1-in-E1star: set r1 \subseteq E_{ES1}
   \mathbf{by} auto
 have r1-in-Nv1star: set r1 \subseteq N<sub>V1</sub>
 proof -
   note r1-in-E1star
   moreover
   from r1-Vv1-empty have set r1 \cap V_{V1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Diff-eq
       Int\text{-}commute\ Int\text{-}empty\text{-}right\ disjoint\text{-}eq\text{-}subset\text{-}Compl
       list-subset-iff-projection-neutral projection-on-union)
```

```
moreover
   from r1-Cv1-empty have set r1 \cap C_{V1} = \{\}
     \mathbf{by}\ (\mathit{metis}\ \mathit{Compl-Diff-eq}\ \mathit{Diff-eq}\ \mathit{Int-commute}\ \mathit{Int-empty-right}
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
        projection-on-union)
   moreover
   \mathbf{note}\ \mathit{validV1}
   ultimately show ?thesis
     \mathbf{by}\ (simp\ add: is\ ViewOn\text{-}def\ V\text{-}valid\text{-}def\ VC\text{-}disjoint\text{-}def
        VN-disjoint-def NC-disjoint-def, auto)
qed
have r1E2-in-Nv1-inter-C2-star: set (r1 \upharpoonright E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
proof -
   have set (r1 \mid E_{ES2}) = set \ r1 \cap E_{ES2}
     by (simp add: projection-def, auto)
   with r1-in-Nv1star have set (r1 \upharpoonright E_{ES2}) \subseteq (E_{ES2} \cap N_{V1})
     by auto
   moreover
   \mathbf{from}\ validV2\ disjoint\text{-}Nv1\text{-}Vv2
   have E_{ES2} \cap N_{V1} = N_{V1} \cap C_{V2}
     {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation {\it Of Views-def}
     \mathbf{by}\ (simp\ add:\ is\ ViewOn\text{-}def\ V\text{-}valid\text{-}def\ VC\text{-}disjoint\text{-}def
        VN-disjoint-def NC-disjoint-def, auto)
   ultimately show ?thesis
     by auto
note \ outer Cons-prems = Cons.prems
have set (r1 \uparrow E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2}) \Longrightarrow \exists t2'. (set t2' \subseteq E_{ES2} \land ((\tau @ r1) \uparrow E_{ES2}) @ t2' \in Tr_{ES2} \land t2' \uparrow V_{\mathcal{V}2} = t2 \uparrow V_{\mathcal{V}2} \land t2' \uparrow C_{\mathcal{V}2} = [])
proof (induct r1 | E_{ES2} arbitrary: r1 rule: rev-induct)
   case Nil thus ?case
     by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
        outerCons-prems(6) projection-concatenation-commute)
next
   case (snoc \ x \ xs)
  \mathbf{have}\ \mathit{xs-is-xsE2}\colon \mathit{xs} = \mathit{xs} \upharpoonright E_{ES2}
   proof -
     from snoc(2) have set~(xs @ [x]) \subseteq E_{ES2}
        \mathbf{by}\ (simp\ add\colon projection\text{-}def,\ auto)
     hence set xs \subseteq E_{ES2}
       by auto
     thus ?thesis
        by (simp add: list-subset-iff-projection-neutral)
   qed
```

```
moreover
have set (xs \upharpoonright E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
proof -
  have set (r1 \uparrow E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
    by (metis Int-commute snoc.prems)
  with snoc(2) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
    by simp
  hence set xs \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
    by auto
  with xs-is-xsE2 show ?thesis
    by auto
\mathbf{qed}
moreover
note snoc.hyps(1)[of xs]
ultimately obtain t2''
  where t2''-in-E2star: set t2'' \subseteq E_{ES2}
  and \tau-xs-E2-t2"-in-Tr2: ((\tau @ xs) \uparrow E_{ES2}) @ t2" \in Tr_{ES2} and t2"Vv2-is-t2Vv2: t2" \mid V_{\mathcal{V}2} = t2 \uparrow V_{\mathcal{V}2}
  and t2''Cv2-empty: t2'' \upharpoonright C_{\mathcal{V}2} = []
  by auto
have x-in-Cv2-inter-Nv1: x \in C_{\mathcal{V}2} \cap N_{\mathcal{V}1}
proof -
  from snoc(2-3) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
    by simp
  thus ?thesis
    by auto
qed
hence x-in-Cv2: x \in C_{V2}
  by auto
moreover
note \tau-xs-E2-t2"-in-Tr2 t2"Cv2-empty
moreover
have Adm: (Adm V2 \varrho2 Tr_{ES2} ((\tau @ xs) | E_{ES2}) x)
proof -
  from \tau-xs-E2-t2"-in-Tr2 validES2
  have \tau-xsE2-in-Tr2: ((\tau @ xs) \upharpoonright E_{ES2}) \in Tr_{ES2}
    by (simp add: ES-valid-def traces-prefixclosed-def
      prefixclosed-def prefix-def)
  with x-in-Cv2-inter-Nv1 total-ES2-Cv2-inter-Nv1
  have \tau-xsE2-x-in-Tr2: ((\tau @ xs) \uparrow E_{ES2}) @ [x] \in Tr_{ES2}
    by (simp only: total-def)
  moreover
  \mathbf{have}\ ((\tau\ @\ \mathit{xs})\ |\ E_{ES2})\ |\ (\varrho\mathscr{2}\ \mathscr{V2}) = ((\tau\ @\ \mathit{xs})\ |\ E_{ES2})\ |\ (\varrho\mathscr{2}\ \mathscr{V2})\ \dots
  ultimately show ?thesis
    by (simp add: Adm-def, auto)
qed
moreover note BSIA
ultimately obtain t2'
 where res1: ((\tau @ xs) \uparrow E_{ES2}) @ [x] @ t2' \in Tr_{ES2} and res2: t2' \uparrow V_{\mathcal{V}2} = t2'' \uparrow V_{\mathcal{V}2} and res3: t2' \uparrow C_{\mathcal{V}2} = []
```

```
by (simp only: BSIA-def, blast)
 have set t2' \subseteq E_{ES2}
 proof -
   from res1 validES2 have set (((\tau @ xs) | E_{ES2}) @ [x] @ t2') \subseteq E_{ES2}
     by (simp add: ES-valid-def traces-contain-events-def, auto)
   thus ?thesis
     by auto
 \mathbf{qed}
 moreover
 have ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}
 proof -
   from res1 xs-is-xsE2 have ((\tau \upharpoonright E_{ES2}) @ (xs @ [x])) @ t2' \in Tr_{ES2}
     by (simp only: projection-concatenation-commute, auto)
   thus ?thesis
     by (simp\ only:\ snoc(2)\ projection-concatenation-commute)
 qed
 moreover
 from t2''Vv2-is-t2Vv2 res2 have t2' \mid V_{V2} = t2 \mid V_{V2}
   by auto
 moreover
 note res3
 ultimately show ?case
   by auto
qed
from this [OF r1E2-in-Nv1-inter-C2-star] obtain t2'
  where t2'-in-E2star: set t2' \subseteq E_{ES2}
 and \tau r1E2-t2'-in-Tr2: ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2} and t2'-Vv2-is-t2-Vv2: t2' | V_{V2} = t2 | V_{V2}
 and t2'-Cv2-empty: t2' \upharpoonright C_{\mathcal{V}2} = []
 by auto
let ?tau = \tau @ r1 @ [\mathcal{V}']
from v'-in-E1 Cons(2) r1-in-Nv1star validV1 have set ?tau \subseteq E_{(ES1 \parallel ES2)}
 by (simp only: composeES-def is ViewOn-def V-valid-def
    VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(3) have set \ lambda' \subseteq V_{\mathcal{V}}
 by auto
moreover
from Cons(4) t1-is-r1-v'-s1 have set s1 \subseteq E_{ES1}
 by auto
moreover
note t2'-in-E2star
moreover
have ?tau \mid E_{ES1} @ s1 \in Tr_{ES1}
 by (metis\ Cons-eq-appendI\ append-eq-appendI\ calculation(3)\ eq-Nil-appendI
   list-subset-iff-projection-neutral Cons.prems(3) Cons.prems(5)
   projection-concatenation-commute t1-is-r1-v'-s1)
moreover
```

```
from \tau r1E2-t2'-in-Tr2 v'-notin-E2
have ?tau \mid E_{ES2} @ t2' \in Tr_{ES2}
 by (simp add: projection-def)
moreover
from Cons(8) t1-is-r1-v'-s1 r1-Vv-empty v'-in-E1 v'-in-Vv
have lambda' \upharpoonright E_{ES1} = s1 \upharpoonright V_{\mathcal{V}}
 by (simp add: projection-def)
moreover
from Cons(11) v'-notin-E2 t2'-Vv2-is-t2-Vv2
have lambda' \mid E_{ES2} = t2' \mid V_{\mathcal{V}}
proof -
 have t2' \mid V_{\mathcal{V}} = t2' \mid V_{\mathcal{V}2}
    {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
    \mathbf{by}\ (simp\ add\colon projection\text{-}def,\ metis\ Int\text{-}commute
       projection\mbox{-}def\ projection\mbox{-}intersection\mbox{-}neutral
      t2'-in-E2star)
  moreover
 have t2 \upharpoonright V_{\mathcal{V}} = t2 \upharpoonright V_{\mathcal{V}2}
    {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
    by (simp add: projection-def, metis Int-commute
       projection-def
      projection-intersection-neutral Cons(5))
  moreover
  note Cons(9) v'-notin-E2 t2'-Vv2-is-t2-Vv2
  ultimately show ?thesis
    by (simp add: projection-def)
qed
moreover
note s1-Cv1-empty t2'-Cv2-empty
moreover
note Cons.hyps(1)[of ?tau s1 t2']
ultimately obtain t'
  where tau-t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
 and t'-Vv-is-lambda': t' \mid V_{\mathcal{V}} = lambda'
  and t'-Cv-empty: t' \mid C_{\mathcal{V}} = []
 by auto
let ?t = r1 @ [\mathcal{V}'] @ t'
note tau-t'-in-Tr
moreover
from r1-Vv-empty t'-Vv-is-lambda' v'-in-Vv
have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
 by (simp add: projection-def)
moreover
have ?t \mid C_{\mathcal{V}} = []
proof -
 have r1 \upharpoonright C_{\mathcal{V}} = []
 proof -
    from propSepViews have E_{ES1} \cap C_{\mathcal{V}} \subseteq C_{\mathcal{V}1}
      unfolding properSeparationOfViews-def by auto
```

```
\textbf{from} \ \textit{projection-on-subset}[\textit{OF} \ \langle \textit{E}_{\textit{ES1}} \cap \textit{C}_{\mathcal{V}} \subseteq \textit{C}_{\mathcal{V}1} \rangle \ \textit{r1-Cv1-empty}]
      \mathbf{have}\ r1 \uparrow (E_{ES1} \cap \mathit{C}_{\mathcal{V}}) = []
        by (simp only: Int-commute)
      with projection-intersection-neutral [OF r1-in-E1star, of C_{\mathcal{V}}] show ?thesis
        by simp
    qed
    with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
      \mathbf{by}\ (simp\ add: is\ View\ On\text{-}def\ V\text{-}valid\text{-}def\ V\ C\text{-}disjoint\text{-}def
        VN-disjoint-def NC-disjoint-def projection-def, auto)
 ultimately have ?thesis
    \mathbf{by} auto
moreover {
 assume v'-in-Vv2-minus-E1: V' \in V_{V2} - E_{ES1}
 hence v'-in-Vv2: V' \in V_{V2}
 with v'-in-Vv have v'-in-E2: V' \in E_{ES2}
    {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
   by auto
 from v'-in-Vv2-minus-E1 have v'-notin-E1: V' \notin E_{ES1}
    by (auto)
 with validV1 have v'-notin-Vv1: V' \notin V_{V1}
   by (simp add: isViewOn-def V-valid-def
      VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
 from Cons(4) Cons(5) Cons(9) v'-in-E2 have t2 \uparrow V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \uparrow E_{ES2})
    by (simp add: projection-def)
 from projection-split-first[OF\ this] obtain r2\ s2
    where t2-is-r2-v'-s2: t2 = r2 @ [\mathcal{V}'] @ s2
   and r2-Vv-empty: r2 | V_{\mathcal{V}} = []
   by auto
 with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{\mathcal{V}2} V_{\mathcal{V}} r2]
 have r2-Vv2-empty: r2 \upharpoonright V_{V2} = []
    by auto
 from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 \upharpoonright C_{\mathcal{V}2} = []
    by (simp add: projection-concatenation-commute)
 from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 \uparrow C_{V2} = []
    \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
 from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
 have r2-in-Nv2star: set r2 \subseteq N_{\mathcal{V}2}
 proof -
    \mathbf{note}\ \mathit{r2-in-E2star}
    moreover
```

```
from r2-Vv2-empty have set r2 \cap V_{V2} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Un-upper2
     disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
     projection-on-union)
 moreover
 from r2-Cv2-empty have set r2 \cap C_{V2} = \{\}
   by (metis Compl-Diff-eq Diff-cancel Un-upper2
     disjoint\hbox{-} eq\hbox{-} subset\hbox{-} Compl\ list\hbox{-} subset\hbox{-} iff\hbox{-} projection\hbox{-} neutral
     projection-on-union)
 moreover
 \mathbf{note}\ \mathit{validV2}
 ultimately show ?thesis
   \mathbf{by}\ (simp\ add:\ is\ ViewOn\text{-}def\ V\text{-}valid\text{-}def\ VC\text{-}disjoint\text{-}def
      VN-disjoint-def NC-disjoint-def, auto)
qed
with Nv2-inter-E1-empty have r2E1-empty: r2 | E_{ES1} = []
 by (metis Int-commute empty-subsetI projection-on-subset2 r2-Vv2-empty)
let ?tau = \tau @ r2 @ [\mathcal{V}']
from v'-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau \subseteq E_{(ES1 \parallel ES2)}
 by (simp only: composeES-def is ViewOn-def V-valid-def
    VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
from Cons(3) have set \ lambda' \subseteq V_{\mathcal{V}}
 by auto
moreover
note Cons(4)
moreover
from Cons(5) t2-is-r2-v'-s2 have set s2 \subseteq E_{ES2}
 by auto
moreover
have ?tau \mid E_{ES1} @ t1 \in Tr_{ES1}
 proof -
    from v'-notin-E1 have [V'] \uparrow E_{ES1} = []
     by (simp add: projection-def)
    with Cons(6) Cons(3) t2-is-r2-v'-s2 v'-notin-E1
     r2\text{-}in\text{-}Nv2star\ Nv2\text{-}inter\text{-}E1\text{-}empty\ r2E1\text{-}empty
     show ?thesis
       by (simp only: t2-is-r2-v'-s2 list-subset-iff-projection-neutral
         projection-concatenation-commute, auto)
 ged
moreover
have ?tau \mid E_{ES2} @ s2 \in Tr_{ES2}
 by (metis Cons-eq-appendI append-eq-appendI calculation(4) eq-Nil-appendI
    list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
   projection-concatenation-commute t2-is-r2-v'-s2)
moreover
from Cons(8) v'-notin-E1 have lambda' \mid E_{ES1} = t1 \mid V_{V}
 by (simp add: projection-def)
moreover
```

```
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in-Vv
               \mathbf{have}\ \mathit{lambda'} \upharpoonright E_{\mathit{ES2}} = \mathit{s2} \upharpoonright \mathit{V}_{\mathcal{V}}
                 by (simp add: projection-def)
               moreover
               note Cons(10) s2-Cv2-empty
               moreover
               note Cons.hyps(1)[of ?tau t1 s2]
               ultimately obtain t'
                 where tau-t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
                 and t'-Vv-is-lambda': t' 
vert V_{\mathcal{V}} = lambda'
                 and t'-Cv-empty: t' \mid C_{\mathcal{V}} = [
                 by auto
               let ?t = r2 @ [\mathcal{V}'] @ t'
               note tau-t'-in-Tr
               moreover
               from r2-Vv-empty t'-Vv-is-lambda' v'-in-Vv
                 have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
                 by (simp add: projection-def)
               moreover
               have ?t \mid C_{\mathcal{V}} = []
               proof -
                 have r2 \mid C_{\mathcal{V}} = []
                    using propSepViews unfolding properSeparationOfViews-def
                    by (metis projection-on-subset2
                      r2-Cv2-empty r2-in-E2star)
                 with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
                    by (simp add: isViewOn-def V-valid-def
                       VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
               ultimately have ?thesis
                 by auto
             ultimately show ?thesis
               by blast
           qed
        \mathbf{qed}
  thus ?thesis
    by auto
qed
lemma generalized-zipping-lemma4:
FCIA \varrho 1 \Gamma 1 V 1 Tr_{ES1}; FCIA \varrho 2 \Gamma 2 V 2 Tr_{ES2}; V_{V1} \cap V_{V2} \subseteq \nabla_{\Gamma 1} \cup \nabla_{\Gamma 2};
 C_{\mathcal{V}1} \cap N_{\mathcal{V}2} \subseteq \Upsilon_{\Gamma 1}; C_{\mathcal{V}2} \cap N_{\mathcal{V}1} \subseteq \Upsilon_{\Gamma 2}; \\ N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2} = \{\}; N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1} = \{\} \ \| \Longrightarrow \\ \forall \ \tau \ lambda \ t1 \ t2. \ (\ (set \ \tau \subseteq (E_{(ES1 \ \| ES2)}) \land set \ lambda \subseteq V_{\mathcal{V}} \land set \ t1 \subseteq E_{ES1} \}
```

```
\wedge \ set \ t\mathcal{2} \subseteq E_{ES2} \wedge ((\tau \upharpoonright E_{ES1}) \ @ \ t\mathcal{1}) \in \mathit{Tr}_{ES1} \wedge ((\tau \upharpoonright E_{ES2}) \ @ \ t\mathcal{2}) \in \mathit{Tr}_{ES2}
  \wedge \ (lambda \uparrow E_{ES1}) = (t1 \uparrow V_{\mathcal{V}}) \wedge (lambda \uparrow E_{ES2}) = (t2 \uparrow V_{\mathcal{V}})
  \wedge (t1 \uparrow C_{\mathcal{V}1}) = [] \wedge (t2 \uparrow C_{\mathcal{V}2}) = [])
  \longrightarrow (\exists t. ((\tau @ t) \in (\mathit{Tr}_{(ES1 \parallel ES2)}) \land (t \uparrow V_{\mathcal{V}}) = lambda \land (t \uparrow C_{\mathcal{V}}) = [])))
proof -
  assume Nabla1-subsetof-E1: \nabla_{\Gamma 1} \subseteq E_{ES1}
  and Delta1-subsetof-E1: \Delta_{\Gamma 1} \subseteq E_{ES1}
  and Upsilon1-subsetof-E1: \Upsilon_{\Gamma 1} \subseteq E_{ES1}
  and Nabla2-subset
of-E2: \nabla_{\Gamma\mathcal{Z}}\subseteq E_{ES2}
  and Delta2-subsetof-E2: \Delta_{\Gamma 2} \subseteq E_{ES2}
  and Upsilon2-subsetof-E2: \Upsilon_{\Gamma 2} \subseteq E_{ES2}
  and BSIA1: BSIA Q1 V1 Tr<sub>ES1</sub>
  and BSIA2: BSIA Q2 V2 Tr<sub>ES2</sub>
  and ES1-total-Cv1-inter-Nv2: total ES1 (C_{V1} \cap N_{V2})
  and ES2-total-Cv2-inter-Nv1: total ES2 (C_{\mathcal{V}2} \cap N_{\mathcal{V}1})
  and FCIA1: FCIA \varrho1 \Gamma1 \mathcal{V}1 Tr_{ES1}
  and FCIA2: FCIA \varrho2 \Gamma2 V2 Tr_{ES2}
  and Vv1-inter-Vv2-subsetof-Nabla1-union-Nabla2: V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \subseteq \nabla_{\Gamma1} \cup \nabla_{\Gamma2}
  and Cv1-inter-Nv2-subsetof-Upsilon1: C_{\mathcal{V}1} \cap N_{\mathcal{V}2} \subseteq \Upsilon_{\Gamma 1}
  and Cv2-inter-Nv1-subsetof-Upsilon2: C_{\mathcal{V}2} \cap N_{\mathcal{V}1} \subseteq \Upsilon_{\Gamma 2}
  and disjoint-Nv1-inter-Delta1-inter-E2: N_{V1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\}
  and disjoint-Nv2-inter-Delta2-inter-E1: N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} = \{\}
     \mathbf{fix} \ \tau \ lambda \ t1 \ t2
     have [\![ set \ \tau \subseteq (E_{(ES1 \ || \ ES2)});
        set\ lambda \subseteq V_{\mathcal{V}};
        set t1 \subseteq E_{ES1};
        set \ t2 \subseteq E_{ES2};
        ((\tau \mid E_{ES1}) \stackrel{\frown}{@} t1) \in Tr_{ES1};
        ((\tau \mid E_{ES2}) \otimes t2) \in Tr_{ES2};
        (lambda \mid E_{ES1}) = (t1 \mid V_{\mathcal{V}});
        (lambda \mid E_{ES2}) = (t2 \mid V_{\mathcal{V}});
        (t1 \mid C_{V1}) = [];
        (t2 \mid C_{\mathcal{V}2}) = [] \ ]
        \implies (\exists \ t. \ ((\tau \ @ \ t) \in \mathit{Tr}_{(ES1 \ || \ ES2)} \land (t \ | \ V_{\mathcal{V}}) = lambda \land (t \ | \ C_{\mathcal{V}}) = []))
        proof (induct lambda arbitrary: \tau t1 t2)
          case (Nil \tau t1 t2)
          have (\tau @ []) \in Tr_{(ES1 \parallel ES2)}
            proof -
               have \tau \in \mathit{Tr}_{(ES1 \parallel ES2)}
                  proof -
                    from Nil(5) validES1 have \tau \upharpoonright E_{ES1} \in Tr_{ES1}
                       by (simp add: ES-valid-def traces-prefixclosed-def
                          prefixclosed-def prefix-def)
                    moreover
                    from \mathit{Nil}(6) \mathit{validES2} have \tau \mid \mathit{E}_{\mathit{ES2}} \in \mathit{Tr}_{\mathit{ES2}}
                       by (simp add: ES-valid-def traces-prefixclosed-def
                          prefixclosed-def prefix-def)
                     moreover
```

```
note Nil(1)
           ultimately show ?thesis
              by (simp add: composeES-def)
         qed
       thus ?thesis
         by auto
    qed
  moreover
  have ([] 1 V_{\mathcal{V}}) = []
    by (simp add: projection-def)
  moreover
  have ([] \uparrow C_{\mathcal{V}}) = []
    by (simp add: projection-def)
  ultimately show ?case
    \mathbf{by} blast
next
  case (Cons V' lambda' \tau t1 t2)
  thus ?case
    proof -
       from Cons(3) have v'-in-Vv: V' \in V_{\mathcal{V}}
         by auto
       have V' \in V_{\mathcal{V}_1} \cap V_{\mathcal{V}_2} \cap \nabla_{\Gamma_1}
         \vee \mathcal{V}' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \cap \nabla_{\Gamma2}
         \forall \mathcal{V}' \in V_{\mathcal{V}1} - E_{ES2}

\forall \mathcal{V}' \in V_{\mathcal{V}2} - E_{ES1}
           let ?S = V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \cup (V_{\mathcal{V}1} - V_{\mathcal{V}2}) \cup (V_{\mathcal{V}2} - V_{\mathcal{V}1})
           have V_{\mathcal{V}1} \cup V_{\mathcal{V}2} = ?S
              by auto
           moreover
           \begin{array}{ll} \mathbf{have} \ V_{\mathcal{V}1} - V_{\mathcal{V}2} = V_{\mathcal{V}1} - E_{ES2} \\ \mathbf{and} \ V_{\mathcal{V}2} - V_{\mathcal{V}1} = V_{\mathcal{V}2} - E_{ES1} \end{array}
              using propSepViews unfolding properSeparationOfViews-def by auto
           moreover
           {\bf note}\ \ \textit{Vv1-inter-Vv2-subsetof-Nabla1-union-Nabla2}
              Vv-is-Vv1-union-Vv2 v'-in-Vv
           ultimately show ?thesis
              by auto
         \mathbf{qed}
       moreover
         assume v'-in-Vv1-inter-Vv2-inter-Nabla1: V' \in V_{V1} \cap V_{V2} \cap \nabla_{\Gamma 1}
         hence v'-in-Vv1: V' \in V_{\mathcal{V}1} and v'-in-Vv2: V' \in V_{\mathcal{V}2}
           and v'-in-Nabla2: \mathcal{V}' \in \nabla_{\Gamma 1}
           by auto
         with v'-in-Vv
         have v'-in-E1: V' \in E_{ES1} and v'-in-E2: V' \in E_{ES2}
           using propSepViews unfolding properSeparationOfViews-def by auto
         from Cons(3-4) Cons(8) v'-in-E1 have t1 \uparrow V_{V} = V' \# (lambda' \uparrow E_{ES1})
```

```
by (simp add: projection-def)
from projection-split-first[OF this] obtain r1 s1
 where t1-is-r1-v'-s1: t1 = r1 @ [V'] @ s1
 and r1-Vv-empty: r1 | V_{\mathcal{V}} = []
 by auto
with Vv-is-Vv1-union-Vv2 projection-on-subset[of V<sub>V1</sub> V<sub>V</sub> r1]
have r1-Vv1-empty: r1 \(\gamma\) V_{V1} = []
from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: r1 \uparrow C_{V1} = []
 \mathbf{by}\ (simp\ add\colon projection\text{-}concatenation\text{-}commute)
from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 \uparrow C_{V1} = []
 by (simp only: projection-concatenation-commute, auto)
from Cons(4) t1-is-r1-v'-s1
have r1-in-E1star: set r1 \subseteq E_{ES1} and s1-in-E1star: set s1 \subseteq E_{ES1}
have r1-in-Nv1star: set r1 \subseteq N<sub>V1</sub>
 proof -
   note r1-in-E1star
   moreover
   from r1-Vv1-empty have set r1 \cap V_{V1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
       projection-on-union)
   moreover
   from r1-Cv1-empty have set r1 \cap C_{V1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
       projection-on-union)
   moreover
   note validV1
   ultimately show ?thesis
     by (simp add: isViewOn-def V-valid-def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
 qed
have r1E2-in-Nv1-inter-C2-star: set (r1 \uparrow E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
   have set (r1 \upharpoonright E_{ES2}) = set \ r1 \cap E_{ES2}
     by (simp add: projection-def, auto)
    with r1-in-Nv1star have set (r1 \uparrow E_{ES2}) \subseteq (E_{ES2} \cap N_{V1})
     by auto
   moreover
    from validV2 disjoint-Nv1-Vv2
    have E_{ES2} \cap N_{V1} = N_{V1} \cap C_{V2}
     using propSepViews unfolding properSeparationOfViews-def
     by (simp add: isViewOn-def V-valid-def
        VC	ext{-}disjoint	ext{-}def \ VN	ext{-}disjoint	ext{-}def \ NC	ext{-}disjoint	ext{-}def, \ auto)
    ultimately show ?thesis
```

```
by auto
     qed
with Cv2-inter-Nv1-subset of-Upsilon2
\mathbf{have}\ \mathit{r1E2-in-Nv1-inter-C2-Upsilon2-star}\colon \mathit{set}\ (\mathit{r1}\ \ |\ E_{ES2})\subseteq (\mathit{N}_{\mathcal{V}1}\cap\ \mathit{C}_{\mathcal{V}2}\cap\Upsilon_{\Gamma2})
     by auto
{f note}\ outer Cons	ext{-}prems = Cons.prems
\begin{array}{l} \textbf{have} \ set \ (r1 \ | \ E_{ES2}) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2}) \Longrightarrow \\ \exists \ t2'. \ (set \ t2' \subseteq E_{ES2} \\ \land \ ((\tau \ @ \ r1) \ | \ E_{ES2}) \ @ \ t2' \in Tr_{ES2} \\ \land \ (t2' \ | \ t2' \ | \
     \mathbf{proof}\ (\mathit{induct}\ r\mathit{1}\ |\ E_{ES2}\ \mathit{arbitrary:}\ \mathit{r1}\ \mathit{rule:}\ \mathit{rev-induct})
     {\bf case} \ {\it Nil} \ {\bf thus} \ {\it ?case}
          by (metis append-self-conv outerCons-prems(10)
                outerCons-prems(4) outerCons-prems(6) projection-concatenation-commute)
next
     case (snoc \ x \ xs)
     have xs-is-xsE2: xs = xs \upharpoonright E_{ES2}
           proof -
                from snoc(2) have set~(xs @ [x]) \subseteq E_{ES2}
                     \mathbf{by}\ (simp\ add\colon projection\text{-}def,\ auto)
                hence set xs \subseteq E_{ES2}
                     by auto
                thus ?thesis
                      by (simp add: list-subset-iff-projection-neutral)
           qed
      moreover
     have set (xs \mid E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
           proof -
                have set (r1 \upharpoonright E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
                     by (metis Int-commute snoc.prems)
                with snoc(2) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}_1} \cap C_{\mathcal{V}_2})
                     by simp
                hence set xs \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
                     by auto
                with xs-is-xsE2 show ?thesis
                     by auto
          qed
      moreover
     \mathbf{note}\ snoc.hyps(1)[\mathit{of}\ xs]
      ultimately obtain t2^{\prime\prime}
           where t2''-in-E2star: set t2'' \subseteq E_{ES2}
          and \tau-xs-E2-t2"-in-Tr2: ((\tau @ xs) \uparrow E_{ES2}) @ t2" \in Tr_{ES2} and t2"Vv2-is-t2Vv2: t2" \mid V_{\mathcal{V}2} = t2 \mid V_{\mathcal{V}2}
          and t2^{\prime\prime}Cv2\text{-}empty: t2^{\prime\prime} \upharpoonright C_{\mathcal{V}2} = []
     have x-in-Cv2-inter-Nv1: x \in C_{\mathcal{V}2} \cap N_{\mathcal{V}1}
          proof -
```

```
from snoc(2-3) have set~(xs @ [x]) \subseteq (N_{V1} \cap C_{V2})
      \mathbf{by} \ simp
    thus ?thesis
      by auto
  qed
hence x-in-Cv2: x \in C_{\mathcal{V}2}
 by auto
moreover
note \tau-xs-E2-t2"-in-Tr2 t2"Cv2-empty
moreover
have Adm: (Adm V2 \varrho 2 Tr_{ES2} ((\tau @ xs) | E_{ES2}) x)
 proof -
    from \tau-xs-E2-t2"-in-Tr2 validES2
    have \tau-xsE2-in-Tr2: ((\tau @ xs) \uparrow E_{ES2}) \in Tr_{ES2}
      by (simp add: ES-valid-def traces-prefixclosed-def
        prefixclosed-def prefix-def)
    with x-in-Cv2-inter-Nv1 ES2-total-Cv2-inter-Nv1
    have \tau-xsE2-x-in-Tr2: ((\tau @ xs) \upharpoonright E_{ES2}) @ [x] \in Tr_{ES2}
      by (simp only: total-def)
    moreover
    \mathbf{have}\ ((\tau\ @\ \mathit{xs})\ |\ \mathit{E}_{ES2})\ |\ (\varrho \mathit{2}\ \mathcal{V}\mathit{2}) = ((\tau\ @\ \mathit{xs})\ |\ \mathit{E}_{ES2})\ |\ (\varrho \mathit{2}\ \mathcal{V}\mathit{2})\ \dots
    ultimately show ?thesis
      by (simp add: Adm-def, auto)
  \mathbf{qed}
moreover note BSIA2
ultimately obtain t2'
 where res1: ((\tau @ xs) \upharpoonright E_{ES2}) @ [x] @ t2' \in Tr_{ES2} and res2: t2' \upharpoonright V_{\mathcal{V}2} = t2'' \upharpoonright V_{\mathcal{V}2} and res3: t2' \upharpoonright C_{\mathcal{V}2} = []
 by (simp only: BSIA-def, blast)
have set t2' \subseteq E_{ES2}
  proof -
    from res1 validES2 have set (((\tau @ xs) | E_{ES2}) @ [x] @ t2') \subseteq E_{ES2}
      by (simp add: ES-valid-def traces-contain-events-def, auto)
    thus ?thesis
      by auto
 qed
moreover
have ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}
    from res1 xs-is-xsE2 have ((\tau \upharpoonright E_{ES2}) @ (xs @ [x])) @ t2' \in Tr_{ES2}
      by (simp only: projection-concatenation-commute, auto)
    thus ?thesis
      \mathbf{by}\ (simp\ only:\ snoc(2)\ projection\text{-}concatenation\text{-}commute)
 qed
moreover
from t2''Vv2-is-t2Vv2 res2 have t2' \mid V_{V2} = t2 \mid V_{V2}
 by auto
moreover
note res3
ultimately show ?case
```

```
by auto
\mathbf{qed}
from this[OF r1E2-in-Nv1-inter-C2-star] obtain t2'
  where t2'-in-E2star: set t2' \subseteq E_{ES2}
 and \tau r1E2-t2'-in-Tr2: ((\tau @ r1) \mid E_{ES2}) @ t2' \in Tr_{ES2} and t2'-Vv2-is-t2-Vv2: t2' \mid V_{\mathcal{V}2} = t2 \mid V_{\mathcal{V}2}
  and t2'-Cv2-empty: t2' \mid C_{V2} = []
  by auto
have t2' \upharpoonright V_{\mathcal{V}2} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})
  proof -
    from projection-intersection-neutral[OF Cons(5), of V_{\mathcal{V}}]
    have t2 \mid V_{\mathcal{V}} = t2 \mid V_{\mathcal{V}2}
      {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
      by (simp only: Int-commute)
    with Cons(9) t2'-Vv2-is-t2-Vv2 v'-in-E2 show ?thesis
      by (simp add: projection-def)
  qed
from projection-split-first[OF this] obtain r2' s2'
  where t2'-is-r2'-v'-s2': t2' = r2' @ [V'] @ <math>s2'
  and r2'-Vv2-empty: r2' \upharpoonright V_{\mathcal{V}2} = []
  by auto
from t2'-is-r2'-v'-s2' t2'-Cv2-empty have r2'-Cv2-empty: r2' | C_{\mathcal{V}2} = []
  \mathbf{by}\ (simp\ add:\ projection\text{-}concatenation\text{-}commute)
from t2'-is-r2'-v'-s2' t2'-Cv2-empty have s2'-Cv2-empty: s2' \uparrow C_{\mathcal{V}2} = []
  by (simp only: projection-concatenation-commute, auto)
from t2'-in-E2star t2'-is-r2'-v'-s2' have r2'-in-E2star: set r2' \subseteq E_{ES2}
  by auto
have r2'-in-Nv2star: set r2' \subseteq N_{V2}
  proof -
    note r2'-in-E2star
   moreover
    from r2'-Vv2-empty have set r2' \cap V_{V2} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
        projection-on-union)
    moreover
    from r2'-Cv2-empty have set \ r2' \cap \ C_{\mathcal{V2}} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
        projection-on-union)
    moreover
    note validV2
    ultimately show ?thesis
      by (simp add: isViewOn-def V-valid-def
         VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
  qed
```

```
have r2'E1-in-Nv2-inter-C1-star: set (r2' \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
  proof -
    have set (r2' \mid E_{ES1}) = set \ r2' \cap E_{ES1}
      by (simp add: projection-def, auto)
     with r2'-in-Nv2star have set (r2' | E_{ES1}) \subseteq (E_{ES1} \cap N_{V2})
      by auto
    moreover
    {f from}\ validV1\ disjoint-Nv2-Vv1
    have E_{ES1} \cap N_{\mathcal{V}2} = N_{\mathcal{V}2} \cap C_{\mathcal{V}1}
       {\bf using} \ prop Sep \it Views \ {\bf unfolding} \ proper Separation Of Views-def
       by (simp add: isViewOn-def V-valid-def
         VC	ext{-}disjoint	ext{-}def \ VN	ext{-}disjoint	ext{-}def \ NC	ext{-}disjoint	ext{-}def, \ auto)
    ultimately show ?thesis
      by auto
  qed
with Cv1-inter-Nv2-subsetof-Upsilon1
have r2'E1-in-Nv2-inter-Cv1-Upsilon1-star:
  set (r2' \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1})
  by auto
have set (r2' \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) \Longrightarrow
  \exists s1'q1'. (
  set s1' \subseteq E_{ES1} \land set \ q1' \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \land (\tau \uparrow E_{ES1}) @ r1 @ q1' @ [\mathcal{V}'] @ s1' \in Tr_{ES1}
  case Nil
  {\bf note}\ s1\hbox{-}in\hbox{-}E1star
  moreover
  have set [] \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
    by auto
  moreover
  from outerCons-prems(5) t1-is-r1-v'-s1
  have \tau \upharpoonright E_{ES1} @ r1 @ [] @ [\mathcal{V}'] @ s1 \in Tr_{ES1}
  moreover
  from Nil have [] \uparrow (C_{V1} \cap \Upsilon_{\Gamma 1}) = r2' \uparrow E_{ES1}
    by (simp add: projection-def)
  moreover
  have s1 \uparrow V_{\mathcal{V}1} = s1 \uparrow V_{\mathcal{V}1}..
  moreover
  note s1-Cv1-empty
  ultimately show ?case
    by blast
  case (snoc \ x \ xs)
```

```
have xs-is-xsE1: xs = xs \upharpoonright E_{ES1}
  proof -
    from snoc(2) have set~(xs @ [x]) \subseteq E_{ES1}
      by (simp add: projection-def, auto)
      by (simp add: list-subset-iff-projection-neutral)
  qed
moreover
have set (xs \mid E_{ES1}) \subseteq N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
  proof -
    from snoc(2-3) have set~(xs @ [x]) \subseteq N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
    with xs-is-xsE1 show ?thesis
      by auto
  qed
moreover
note snoc.hyps(1)[of xs]
ultimately obtain s1^{\prime\prime}~q1^{\prime\prime}
  where s1''-in-E1star: set s1'' \subseteq E_{ES1}
  and q1''-in-C1-inter-Upsilon1-inter-Delta1: set q1'' \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
  and \tau E1-r1-q1"-v'-s1"-in-Tr1: (\tau \uparrow E_{ES1} @ r1 @ q1") @ [\mathcal{V}'] @ s1" \in Tr_{ES1}
  and q1 "C1-\hat{U}psilon1-is-xsE1: q1" \uparrow (\bar{C}_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = xs \uparrow E_{ES1}
  and s1''V1-is-s1V1: s1'' \mid V_{V1} = s1 \mid V_{V1}
  and s1''C1-empty: s1'' \uparrow C_{V1} = []
  by auto
have x-in-Cv1-inter-Upsilon1: x \in C_{V1} \cap \Upsilon_{\Gamma 1}
  and x-in-Cv1-inter-Nv2: x \in C_{V1} \cap N_{V2}
    from snoc(2-3) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1})
      by simp
    thus x \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
      and x \in C_{\mathcal{V}1} \cap N_{\mathcal{V}2}
      by auto
  qed
with validV1 have x-in-E1: x \in E_{ES1}
  by (simp add: isViewOn-def V-valid-def
     VC-disjoint-def VN-disjoint-def, auto)
{f note}\ x	ext{-}in	ext{-}Cv1	ext{-}inter	ext{-}Upsilon1
moreover
from v'-in-Vv1-inter-Vv2-inter-Nabla1 have V' \in V_{V1} \cap \nabla_{\Gamma1}
 by auto
moreover
note \tau E1-r1-q1"-v'-s1"-in-Tr1 s1"C1-empty
moreover
have Adm: (Adm \ V1 \ \varrho1 \ Tr_{ES1} \ (\tau \mid E_{ES1} @ \ r1 \ @ \ q1 \ '') \ x)
  proof -
    from \tau E1-r1-q1"-v'-s1"-in-Tr1 validES1
    have (\tau \upharpoonright E_{ES1} @ r1 @ q1'') \in Tr_{ES1}
by (simp \ add: ES-valid-def \ traces-prefixclosed-def
        prefixclosed-def prefix-def)
```

```
with x-in-Cv1-inter-Nv2 ES1-total-Cv1-inter-Nv2
     have (\tau \mid E_{ES1} @ r1 @ q1'') @ [x] \in Tr_{ES1}
       by (simp only: total-def)
     moreover
     have (\tau \upharpoonright E_{ES1} @ r1 @ q1'') \upharpoonright (\varrho 1 \ \mathcal{V}1) = (\tau \upharpoonright E_{ES1} @ r1 @ q1'') \upharpoonright (\varrho 1 \ \mathcal{V}1) \dots
     ultimately show ?thesis
       by (simp only: Adm-def, blast)
  qed
moreover
note FCIA1
ultimately
obtain s1^{\prime} \gamma'
  where res1: (set \gamma') \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})
  and res2: ((\tau \mid E_{ES1} @ r1 @ q1'') @ [x] @ <math>\gamma' @ [\mathcal{V}'] @ s1') \in Tr_{ES1}
  and res3: (s1' | V_{V1}) = (s1'' | V_{V1})
  and res4: s1' \mid C_{V1} = []
  unfolding FCIA-def
  by blast
let ?q1' = q1'' @ [x] @ \gamma'
from res2 validES1 have set s1' \subseteq E_{ES1}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from res1 x-in-Cv1-inter-Upsilon1 q1"-in-C1-inter-Upsilon1-inter-Delta1
have set ?q1' \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
moreover
from res2 have \tau \upharpoonright E_{ES1} @ r1 @ ?q1' @ [\mathcal{V}'] @ s1' \in Tr_{ES1}
  by auto
moreover
have ?q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = r2' \upharpoonright E_{ES1}
  proof -
     from validV1 \ res1 \ \mathbf{have} \ \gamma' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = []
          from res1 have \gamma' = \gamma' \upharpoonright (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1})
             by (simp only: list-subset-iff-projection-neutral)
          hence \gamma' \upharpoonright (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}) = \gamma' \upharpoonright (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}) \upharpoonright (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1})
          hence \gamma' \upharpoonright (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}) = \gamma' \upharpoonright (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cap C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1})
             by (simp only: projection-def, auto)
          moreover
          from validV1 have N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cap C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} = \{\}
             \mathbf{by}\ (simp\ add:\ isViewOn\text{-}def\ V\text{-}valid\text{-}def
                VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
          ultimately show ?thesis
             by (simp add: projection-def)
        qed
     hence ?q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = (q1'' @ [x]) \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1})
       by (simp only: projection-concatenation-commute, auto)
     with q1"C1-Upsilon1-is-xsE1 x-in-Cv1-inter-Upsilon1
     have ?q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = (xs \upharpoonright E_{ES1}) @ [x]
```

```
by (simp only: projection-concatenation-commute projection-def, auto)
         with xs-is-xsE1 snoc(2) show ?thesis
           \mathbf{by} \ simp
      qed
    moreover
    from res3 s1"V1-is-s1V1 have s1' | V_{V1} = s1 \mid V_{V1}
      by simp
    moreover
    note res4
    ultimately show ?case
      by blast
  \mathbf{qed}
\mathbf{from}\ this[\mathit{OF}\ r2'\mathit{E1-in-Nv2-inter-Cv1-Upsilon1-star}]\ \mathbf{obtain}\ s1'\ q1'
  where s1'-in-E1star: set s1' \subseteq E_{ES1}
  and q1'-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1:
  set q1' \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
  and \tau E1-r1-q1'-v'-s1'-in-Tr1: (\tau \uparrow E_{ES1}) @ r1 @ q1' @ [\mathcal{V}'] @ s1' \in Tr_{ES1}
  and q1'Cv1-inter-Upsilon1-is-r2'E1: q1' \upharpoonright (C_{V1} \cap \Upsilon_{\Gamma1}) = r2' \upharpoonright E_{ES1}
  and s1'Vv1-is-s1-Vv1: s1' \mid V_{V1} = s1 \mid V_{V1}
  and s1'Cv1-empty: s1' \mid C_{V1} = []
  \mathbf{by} auto
\mathbf{from}\ \ q1'\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1\text{-}union\text{-}Nv1\text{-}inter\text{-}Delta1\ validV1
have q1'-in-E1star: set q1' \subseteq E_{ES1}
  \mathbf{by}\ (simp\ add:\ isViewOn\text{-}def\ V\text{-}valid\text{-}def\ VC\text{-}disjoint\text{-}def
    VN-disjoint-def NC-disjoint-def, auto)
have r2'Cv-empty: r2' \mid C_{\mathcal{V}} = []
  {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
  by (metis projection-on-subset2
    r2'-Cv2-empty r2'-in-E2star)
from validES1 \tau E1-r1-q1'-v'-s1'-in-Tr1
have q1'-in-E1star: set q1' \subseteq E_{ES1}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note r2'-in-E2star
moreover
have q1'E2-is-r2'E1: q1' \upharpoonright E_{ES2} = r2' \upharpoonright E_{ES1}
  proof -
    \mathbf{from}\ q1'\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1\text{-}union\text{-}Nv1\text{-}inter\text{-}Delta1
    have q1' \upharpoonright (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cup N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}) = q1'
      by (simp add: list-subset-iff-projection-neutral)
    hence (q1' \uparrow (C_{V1} \cap \Upsilon_{\Gamma1} \cup N_{V1} \cap \Delta_{\Gamma1})) \uparrow E_{ES2} = q1' \uparrow E_{ES2}
      by simp
    hence q1' \uparrow ((C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \cap E_{ES2}) = q1' \uparrow E_{ES2}
      by (simp add: projection-def)
    hence q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap E_{ES2}) = q1' \upharpoonright E_{ES2}
      by (simp only: Int-Un-distrib2 disjoint-Nv1-inter-Delta1-inter-E2, auto)
    moreover
    from q1 'Cv1-inter-Upsilon1-is-r2'E1
```

```
have (q1' \uparrow (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1})) \uparrow E_{ES2} = (r2' \uparrow E_{ES1}) \uparrow E_{ES2}
       by simp
     hence q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap E_{ES2}) = (r2' \upharpoonright E_{ES2}) \upharpoonright E_{ES1}
       by (simp add: projection-def conj-commute)
     with r2'-in-E2star have q1' \uparrow (C_{V1} \cap \Upsilon_{\Gamma1} \cap E_{ES2}) = r2' \uparrow E_{ES1}
       \mathbf{by}\ (simp\ only:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
     ultimately show ?thesis
       by auto
  qed
moreover
have q1' \mid V_{\mathcal{V}} = []
  proof -
     \mathbf{from}\ \ q1'\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1\text{-}union\text{-}Nv1\text{-}inter\text{-}Delta1
     have q1' = q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1})
       by (simp add: list-subset-iff-projection-neutral)
     moreover
     from q1'-in-E1star have q1' = q1' \uparrow E_{ES1}
       by (simp add: list-subset-iff-projection-neutral)
     ultimately have q1' = q1' \upharpoonright (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cup N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}) \upharpoonright E_{ES1}
     hence q1' \upharpoonright V_{\mathcal{V}} = q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright E_{ES1} \upharpoonright V_{\mathcal{V}}
       by simp
     hence q1' \upharpoonright V_{\mathcal{V}} = q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright (V_{\mathcal{V}} \cap E_{ES1})
       by (simp add: Int-commute projection-def)
     hence q1' \upharpoonright V_{\mathcal{V}} = q1' \upharpoonright ((C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \cap V_{\mathcal{V}1})
        {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
        by (simp add: projection-def)
     hence q1' \upharpoonright V_{\mathcal{V}} = q1' \upharpoonright (V_{\mathcal{V}1} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup V_{\mathcal{V}1} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1})
        by (simp add: Int-Un-distrib2, metis Int-assoc Int-commute Int-left-commute Un-commute)
     with validV1 show ?thesis
        by (simp add: isViewOn-def V-valid-def VC-disjoint-def
           VN-disjoint-def NC-disjoint-def, auto, simp add: projection-def)
  \mathbf{qed}
moreover
have r2' \mid V_{\mathcal{V}} = []
  using propSepViews unfolding properSeparationOfViews-def
  by (metis Int-commute projection-intersection-neutral
     r2'-Vv2-empty r2'-in-E2star)
moreover
have q1'Cv-empty: q1' \uparrow C_{\mathcal{V}} = []
  proof -
     from q1'-in-E1star have foo: q1' = q1' \upharpoonright E_{ES1}
       \mathbf{by}\ (simp\ add:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
     hence q1' \upharpoonright C_{\mathcal{V}} = q1' \upharpoonright (C_{\mathcal{V}} \cap E_{ES1})
       by (metis Int-commute list-subset-iff-projection-neutral projection-intersection-neutral)
     moreover
     from propSepViews have C_{\mathcal{V}} \cap E_{ES1} \subseteq C_{\mathcal{V}1}
       unfolding properSeparationOfViews-def by auto
     from projection-subset-elim[OF \langle C_{\mathcal{V}} \cap E_{ES1} \subseteq C_{\mathcal{V}1} \rangle, of q1']
     have q1' \upharpoonright C_{\mathcal{V}1} \upharpoonright C_{\mathcal{V}} \upharpoonright E_{ES1} = q1' \upharpoonright (C_{\mathcal{V}} \cap E_{ES1})
        {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
       by (simp add: projection-def)
```

```
hence q1' \upharpoonright E_{ES1} \upharpoonright C_{\mathcal{V}1} \upharpoonright C_{\mathcal{V}} = q1' \upharpoonright (C_{\mathcal{V}} \cap E_{ES1})
        by (simp add: projection-commute)
     with foo have q1' \upharpoonright (C_{\mathcal{V}1} \cap C_{\mathcal{V}}) = q1' \upharpoonright (C_{\mathcal{V}} \cap E_{ES1})
        by (simp add: projection-def)
     moreover
     from q1'-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1
     have q1' \upharpoonright (C_{\mathcal{V}1} \cap C_{\mathcal{V}}) = q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright (C_{\mathcal{V}1} \cap C_{\mathcal{V}})
        by (simp add: list-subset-iff-projection-neutral)
     have (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \cap (C_{\mathcal{V}1} \cap C_{\mathcal{V}})
           = (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup C_{\mathcal{V}1} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \cap C_{\mathcal{V}}
        by fast
     hence q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright (C_{\mathcal{V}1} \cap C_{\mathcal{V}})
            = q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup C_{\mathcal{V}1} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright C_{\mathcal{V}}
        by (simp add: projection-sequence)
     moreover
     \mathbf{from}\ \mathit{validV1}
     have q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cup C_{\mathcal{V}1} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \upharpoonright C_{\mathcal{V}}
        = q1' \uparrow (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) \uparrow C_{\mathcal{V}}
        by (simp add: isViewOn-def V-valid-def
            VC-disjoint-def VN-disjoint-def NC-disjoint-def Int-commute)
     moreover
     \mathbf{from}\ q1\,'Cv1\text{-}inter\text{-}Upsilon1\text{-}is\text{-}r2\,'E1
     have q1' \uparrow (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) \uparrow C_{\mathcal{V}} = r2' \uparrow E_{ES1} \uparrow C_{\mathcal{V}}
     with projection-on-intersection[OF r2'Cv-empty]
     have q1' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) \upharpoonright C_{\mathcal{V}} = []
        by (simp add: Int-commute projection-def)
     ultimately show ?thesis
        \mathbf{by} auto
  qed
moreover
note r2'Cv-empty merge-property'[of q1' r2']
ultimately obtain q'
  where q'\!E1\!\!-\!\!is\!\!-\!\!q1'\!\!:\;q'\upharpoonright E_{ES1}=q1'
  and q'E2-is-r2': q' \uparrow E_{ES2} = r2'
and q'V-empty: q' \uparrow V_{\mathcal{V}} = []
  and q'C-empty: q' \upharpoonright C_{\mathcal{V}} = []
  and q'-in-E1-union-E2-star: set q' \subseteq (E_{ES1} \cup E_{ES2})
  unfolding Let\text{-}def
  by auto
let ?tau = \tau @ r1 @ q' @ [\mathcal{V}']
from Cons(2) r1-in-E1star q'-in-E1-union-E2-star v'-in-E1
have set ?tau \subseteq (E_{(ES1 \parallel ES2)})
  by (simp add: composeES-def, auto)
moreover
from Cons(3) have set\ lambda' \subseteq V_{\mathcal{V}}
  by auto
moreover
note s1'-in-E1star
```

```
moreover
from t2'-in-E2star t2'-is-r2'-v'-s2' have set s2' \subseteq E_{ES2}
 by simp
moreover
from q'E1-is-q1' r1-in-E1star v'-in-E1 q1'-in-E1star \tau E1-r1-q1'-v'-s1'-in-Tr1
have ?tau \mid E_{ES1} @ s1' \in Tr_{ES1}
 \mathbf{by}\ (simp\ only:\ list-subset-iff-projection-neutral
   projection-concatenation-commute projection-def, auto)
moreover
from τr1E2-t2'-in-Tr2 t2'-is-r2'-v'-s2' v'-in-E2 q'E2-is-r2'
have ?tau \mid E_{ES2} @ s2' \in Tr_{ES2}
 by (simp only: projection-concatenation-commute projection-def, auto)
moreover
have lambda' \mid E_{ES1} = s1' \mid V_{\mathcal{V}}
 proof -
    from Cons(3-4) Cons(8) v'-in-E1 have t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES1})
     by (simp add: projection-def)
   moreover
   from t1-is-r1-v'-s1 r1-Vv-empty v'-in-Vv1 Vv-is-Vv1-union-Vv2
   have t1 \uparrow V_{\mathcal{V}} = [\mathcal{V}'] @ (s1 \uparrow V_{\mathcal{V}})
     by (simp only: t1-is-r1-v'-s1 projection-concatenation-commute
        projection-def, auto)
   moreover
   have s1 \upharpoonright V_{\mathcal{V}} = s1' \upharpoonright V_{\mathcal{V}}
      {f using}\ propSep\ Views\ {f unfolding}\ properSeparation\ Of\ Views-def
      \mathbf{by}\ (\mathit{metis}\ \mathit{Int-commute}\ \ \mathit{projection-intersection-neutral}
        s1'Vv1-is-s1-Vv1 s1'-in-E1star s1-in-E1star)
    ultimately show ?thesis
      by auto
 qed
moreover
have lambda' \upharpoonright E_{ES2} = s2' \upharpoonright V_{\mathcal{V}}
   from Cons(3,5,9) v'-in-E2 have t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES2})
      by (simp add: projection-def)
   moreover
   \mathbf{from}\ t2'-is-r2'-v'-s2'\ r2'-Vv2-empty\ r2'-in-E2star\ v'-in-Vv2\ propSep\ Views
   have t2' \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s2' \upharpoonright V_{\mathcal{V}})
        have r2' \mid V_{\mathcal{V}} = []
          {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
          by (metis projection-on-subset2 r2'-Vv2-empty
            r2'-in-E2star subset-iff-psubset-eq)
        with t2'-is-r2'-v'-s2' v'-in-Vv2 Vv-is-Vv1-union-Vv2 show ?thesis
          by (simp only: t2'-is-r2'-v'-s2'
            projection-concatenation-commute projection-def, auto)
     qed
   moreover
   have t2 \uparrow V_{\mathcal{V}} = t2' \uparrow V_{\mathcal{V}}
      {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
      by (metis Int-commute outerCons-prems(4))
        projection-intersection-neutral t2'-Vv2-is-t2-Vv2 t2'-in-E2star)
```

```
ultimately show ?thesis
     by auto
 qed
moreover
note s1'Cv1-empty s2'-Cv2-empty Cons.hyps[of ?tau s1' s2']
ultimately obtain t'
 where \tau-r1-q'-v'-t'-in-Tr: ?tau @ t' \in Tr<sub>(ES1 || ES2)</sub>
 and t'Vv-is-lambda': t' \upharpoonright V_{\mathcal{V}} = lambda'
 and t'Cv-empty: t' \upharpoonright C_{\mathcal{V}} = [
 by auto
let ?t = r1 @ q' @ [\mathcal{V}'] @ t'
note \tau-r1-q'-v'-t'-in-Tr
moreover
from r1-Vv-empty q'V-empty t'Vv-is-lambda' v'-in-Vv
have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
 \mathbf{by}(\mathit{simp\ only:\ projection\text{-}concatenation\text{-}commute\ projection\text{-}def},\ \mathit{auto})
moreover
from VIsViewOnE r1-Cv1-empty t'Cv-empty q'C-empty v'-in-Vv
have ?t \upharpoonright C_{\mathcal{V}} = []
 proof -
   from VIsViewOnE\ v'-in-Vv\ have [V']\ \ \ C_{V}=[]
     by (simp add: isViewOn-def V-valid-def VC-disjoint-def
        VN-disjoint-def NC-disjoint-def projection-def, auto)
   moreover
   from r1-in-E1star r1-Cv1-empty
   have r1 \upharpoonright C_{\mathcal{V}} = []
     using propSepViews projection-on-subset2
     unfolding properSeparationOfViews-def by auto
   moreover
   note t'Cv-empty q'C-empty
   ultimately show ?thesis
     by (simp only: projection-concatenation-commute, auto)
ultimately have ?thesis
 by auto
moreover
 assume v'-in-Vv1-inter-Vv2-inter-Nabla2: V' \in V_{\mathcal{V}1} \cap V_{\mathcal{V}2} \cap \nabla_{\Gamma 2}
 hence v'-in-Vv1: V' \in V_{\mathcal{V}1} and v'-in-Vv2: V' \in V_{\mathcal{V}2}
   and v'-in-Nabla2: \mathcal{V}' \in \nabla_{\Gamma 2}
   by auto
 with v'-in-Vv propSepViews
 have v'-in-E1: V' \in E_{ES1} and v'-in-E2: V' \in E_{ES2}
   unfolding properSeparationOfViews-def by auto
 from Cons(3,5,9) v'-in-E2 have t2 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})
   by (simp add: projection-def)
 from projection-split-first[OF this] obtain r2 s2
   where t2-is-r2-v'-s2: t2 = r2 @ [V'] @ s2
```

```
and r2-Vv-empty: r2 \uparrow V_{\mathcal{V}} = []
 by auto
with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_{V} r2]
have r2-Vv2-empty: r2 \upharpoonright V_{V2} = []
  by auto
from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 \uparrow C_{V2} = []
  by (simp add: projection-concatenation-commute)
from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 \uparrow C_{V2} = []
  \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
 and s2-in-E2star: set s2 \subseteq E_{ES2}
  \mathbf{by} auto
have r2-in-Nv2star: set r2 \subseteq N_{\mathcal{V}2}
  proof -
    note r2-in-E2star
    moreover
    from r2-Vv2-empty have set r2 \cap V_{V2} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
        projection-on-union)
    moreover
    from r2-Cv2-empty have set r2 \cap C_{V2} = \{\}
      by (metis Compl-Diff-eq Diff-cancel Un-upper2
        disjoint\-eq\-subset\-Compl list\-subset\-iff\-projection\-neutral
       projection-on-union)
    moreover
    {\bf note}\ valid V2
    ultimately show ?thesis
      \mathbf{by}\ (simp\ add:\ isViewOn\text{-}def\ V\text{-}valid\text{-}def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
  qed
have r2E1-in-Nv2-inter-C1-star: set (r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
  proof -
    have set (r2 \mid E_{ES1}) = set \ r2 \cap E_{ES1}
      by (simp add: projection-def, auto)
    with r2-in-Nv2star have set (r2 \mid E_{ES1}) \subseteq (E_{ES1} \cap N_{V2})
     by auto
    moreover
    {\bf from}\ validV1\ disjoint-Nv2-Vv1\ propSepViews
    have E_{ES1} \cap N_{\mathcal{V}2} = N_{\mathcal{V}2} \cap C_{\mathcal{V}1}
      {\bf unfolding}\ proper Separation Of Views-def
      \mathbf{by}\ (simp\ add:\ isViewOn\text{-}def\ V\text{-}valid\text{-}def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
    ultimately show ?thesis
      by auto
  qed
with Cv1-inter-Nv2-subsetof-Upsilon1
```

```
have r2E1-in-Nv2-inter-C1-Upsilon1-star: set (r2 \uparrow E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1})
 by auto
{f note}\ outer Cons	ext{-}prems = Cons.prems
have set (r2 \uparrow E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1}) \Longrightarrow
  \exists \ t1'. \ (\ set \ t1' \subseteq E_{ES1})
 proof (induct r2 \uparrow E_{ES1} arbitrary: r2 rule: rev-induct)
  case Nil thus ?case
    by (metis\ append-self-conv\ outerCons-prems(9)\ outerCons-prems(3)
      outerCons-prems(5) projection-concatenation-commute)
next
  case (snoc \ x \ xs)
 have xs-is-xsE1: xs = xs \mid E_{ES1}
      from snoc(2) have set~(xs @ [x]) \subseteq E_{ES1}
        by (simp add: projection-def, auto)
      hence set xs \subseteq E_{ES1}
        by auto
      thus ?thesis
        by (simp add: list-subset-iff-projection-neutral)
    qed
  moreover
  have set (xs \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
      have set (r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
        by (metis Int-commute snoc.prems)
      with snoc(2) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
      hence set xs \subseteq (N_{\mathcal{V}\mathcal{Z}} \cap C_{\mathcal{V}\mathcal{I}})
        by auto
      with xs-is-xsE1 show ?thesis
        by auto
    qed
  moreover
  note snoc.hyps(1)[of xs]
  ultimately obtain t1''
    where t1''-in-E1star: set t1'' \subseteq E_{ES1}
    and \tau-xs-E1-t1"-in-Tr1: ((\tau @ xs) \uparrow E_{ES1}) @ t1" \in Tr_{ES1}
    and t1''Vv1-is-t1Vv1: t1'' \mid V_{V1} = t1 \mid V_{V1}
    and t1''Cv1-empty: t1'' \upharpoonright C_{V1} = []
    by auto
  have x-in-Cv1-inter-Nv2: x \in C_{\mathcal{V}_1} \cap N_{\mathcal{V}_2}
      from snoc(2-3) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
        by simp
      \mathbf{thus}~? the sis
```

```
by auto
    \mathbf{qed}
  hence x-in-Cv1: x \in C_{V1}
   by auto
  moreover
  note \tau-xs-E1-t1 "-in-Tr1 t1" Cv1-empty
  have Adm: (Adm V1 \varrho1 Tr_{ES1} ((\tau @ xs) | E_{ES1}) x)
    proof -
      from \tau-xs-E1-t1 ^{\prime\prime}-in-Tr1 validES1
      have \tau-xsE1-in-Tr1: ((\tau @ xs) \uparrow E_{ES1}) \in Tr_{ES1}
        \mathbf{by}\ (simp\ add\colon ES\text{-}valid\text{-}def\ traces\text{-}prefixclosed\text{-}def
         prefixclosed\text{-}def\ prefix\text{-}def)
      with x-in-Cv1-inter-Nv2 ES1-total-Cv1-inter-Nv2
      have \tau-xsE1-x-in-Tr1: ((\tau @ xs) \upharpoonright E_{ES1}) @ [x] \in Tr_{ES1}
        by (simp only: total-def)
      moreover
      \mathbf{have}\ ((\tau\ @\ \mathit{xs})\ |\ E_{ES1})\ |\ (\varrho 1\ \mathcal{V}1) = ((\tau\ @\ \mathit{xs})\ |\ E_{ES1})\ |\ (\varrho 1\ \mathcal{V}1)\ \dots
      ultimately show ?thesis
        by (simp add: Adm-def, auto)
    qed
  moreover note BSIA1
  ultimately obtain t1'
    where res1: ((\tau @ xs) | E_{ES1}) @ [x] @ t1' \in Tr_{ES1}
   and res2: t1' \uparrow V_{V1} = t1'' \uparrow V_{V1}
and res3: t1' \uparrow C_{V1} = []
   by (simp only: BSIA-def, blast)
  have set t1' \subseteq E_{ES1}
    proof -
      from res1 validES1 have set (((\tau @ xs) | E_{ES1}) @ [x] @ t1 ') \subseteq E_{ES1}
        by (simp add: ES-valid-def traces-contain-events-def, auto)
      thus ?thesis
        by auto
   qed
  moreover
  have ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}
      from res1 xs-is-xsE1 have ((\tau \upharpoonright E_{ES1}) @ (xs @ [x])) @ t1' \in Tr_{ES1}
        by (simp only: projection-concatenation-commute, auto)
      thus ?thesis
        by (simp\ only:\ snoc(2)\ projection-concatenation-commute)
   qed
  moreover
  from t1''Vv1-is-t1Vv1 res2 have t1' \upharpoonright V_{V1} = t1 \upharpoonright V_{V1}
   by auto
  moreover
  note res3
  ultimately show ?case
    by auto
qed
from this[\mathit{OF}\ r2\mathit{E1-in-Nv2-inter-C1-star}] obtain t1'
```

```
where t1'-in-E1star: set t1' \subseteq E_{ES1}
 and t1'-Vv1-is-t1-Vv1: t1' | V_{V1} = t1 | V_{V1}
 and t1'-Cv1-empty: t1' \upharpoonright C_{V1} = []
 by auto
have t1' \upharpoonright V_{\mathcal{V}1} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES1})
 proof -
   from projection-intersection-neutral[OF Cons(4), of V_{\mathcal{V}}] propSepViews
   have t1 \uparrow V_{\mathcal{V}} = t1 \uparrow V_{\mathcal{V}1}
     {\bf unfolding}\ proper Separation Of Views-def
     \mathbf{by}\ (simp\ only:\ Int-commute)
   with Cons(8) t1'-Vv1-is-t1-Vv1 v'-in-E1 show ?thesis
     by (simp add: projection-def)
 qed
from projection-split-first[OF this] obtain r1's1'
 where t1'-is-r1'-v'-s1': t1' = r1' @ [V'] @ s1'
 and r1'-Vv1-empty: r1' \mid V_{V1} = []
 by auto
from t1'-is-r1'-v'-s1' t1'-Cv1-empty have r1'-Cv1-empty: r1' | C_{V1} = []
 \mathbf{by}\ (simp\ add:\ projection\text{-}concatenation\text{-}commute)
from t1'-is-r1'-v'-s1' t1'-Cv1-empty have s1'-Cv1-empty: s1' | C_{V1} = []
 \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
from t1'-in-E1star t1'-is-r1'-v'-s1' have r1'-in-E1star: set r1' \subseteq E_{ES1}
 by auto
have r1'-in-Nv1star: set r1' \subseteq N_{V1}
 proof -
   note r1'-in-E1star
   moreover
   from r1'-Vv1-empty have set r1' \cap V_{V1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint-eq-subset-Compl list-subset-iff-projection-neutral
       projection-on-union)
   moreover
   from r1'-Cv1-empty have set r1' \cap C_{V1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
       projection-on-union)
   moreover
   note validV1
   ultimately show ?thesis
     \mathbf{by}\ (simp\ add:\ isViewOn\text{-}def\ V\text{-}valid\text{-}def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
 qed
have r1'E2-in-Nv1-inter-C2-star: set (r1' \uparrow E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
   have set (r1' \uparrow E_{ES2}) = set \ r1' \cap E_{ES2}
```

```
by (simp add: projection-def, auto)
      with r1'-in-Nv1star have set (r1' \mid E_{ES2}) \subseteq (E_{ES2} \cap N_{V1})
        by auto
     moreover
      {\bf from}\ validV2\ propSepViews\ disjoint\text{-}Nv1\text{-}Vv2
      have E_{ES2} \cap N_{V1} = N_{V1} \cap C_{V2}
        {f unfolding}\ properSeparationOfViews-def
        by (simp add: isViewOn-def V-valid-def
           VC	ext{-}disjoint	ext{-}def \ VN	ext{-}disjoint	ext{-}def \ NC	ext{-}disjoint	ext{-}def, \ auto)
      ultimately show ?thesis
        \mathbf{by} auto
  \mathbf{qed}
\mathbf{with}\ \mathit{Cv2-inter-Nv1-subsetof-Upsilon2}
have r1'E2-in-Nv1-inter-Cv2-Upsilon2-star:
  set (r1' \upharpoonright E_{ES2}) \subseteq (N_{V1} \cap C_{V2} \cap \Upsilon_{\Gamma2})
  by auto
have set (r1' \upharpoonright E_{ES2}) \subseteq (N_{V1} \cap C_{V2} \cap \Upsilon_{\Gamma2}) \Longrightarrow
  \begin{array}{l} \mathit{set} \ \mathit{s2}' \subseteq E_{ES2} \wedge \mathit{set} \ \mathit{q2}' \subseteq C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V2}} \cap \Delta_{\Gamma2} \\ \wedge \ (\tau \upharpoonright E_{ES2}) \ @ \ \mathit{r2} \ @ \ \mathit{q2}' \ @ \ \mathit{[V']} \ @ \ \mathit{s2}' \in \mathit{Tr}_{ES2} \end{array}
  \wedge q2' \uparrow (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = r1' \uparrow E_{ES2}
  \wedge s2' | V_{\mathcal{V}2} = s2 | V_{\mathcal{V}2}
  \wedge s2' \mid C_{\mathcal{V}2} = [])
proof (induct r1' \mid E_{ES2} arbitrary: r1' rule: rev-induct)
  {f case} Nil
  \mathbf{note}\ s2\text{-}in\text{-}E2star
  moreover
  have set [] \subseteq C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cup N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}
     by auto
   moreover
  from outerCons-prems(6) t2-is-r2-v'-s2
  have \tau | E_{ES2} @ r2 @ [] @ [\mathcal{V}'] @ s2 \in Tr_{ES2}
     by auto
  moreover
  from Nil have [] \uparrow (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = r1' \uparrow E_{ES\mathcal{Z}}
     by (simp add: projection-def)
  have s2 \upharpoonright V_{\mathcal{V}\mathcal{Z}} = s2 \upharpoonright V_{\mathcal{V}\mathcal{Z}}.
  moreover
  note s2-Cv2-empty
  {\bf ultimately \ show} \ \textit{?case}
     \mathbf{by} blast
next
  case (snoc \ x \ xs)
  have xs-is-xsE2: xs = xs \upharpoonright E_{ES2}
        from snoc(2) have set~(xs @ [x]) \subseteq E_{ES2}
           by (simp add: projection-def, auto)
```

```
thus ?thesis
        \mathbf{by}\ (simp\ add:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
  qed
moreover
have set (xs \mid E_{ES2}) \subseteq N_{V1} \cap C_{V2} \cap \Upsilon_{\Gamma2}
     from snoc(2-3) have set~(xs @ [x]) \subseteq N_{V1} \cap C_{V2} \cap \Upsilon_{\Gamma2}
     with xs-is-xsE2 show ?thesis
        by auto
  qed
moreover
note snoc.hyps(1)[of xs]
ultimately obtain s2^{\,\prime\prime}~q2^{\,\prime\prime}
  where s2^{\prime\prime}-in-E2star: set s2^{\prime\prime}\subseteq E_{ES2}
  and q2''-in-C2-inter-Upsilon2-inter-Delta2: set q2'' \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
  and \tau E2\text{-}r2\text{-}q2\text{''}\text{-}v'\text{-}s2\text{''}\text{-}in\text{-}Tr2\text{:} (\tau \upharpoonright E_{ES2} @ r2 @ q2\text{''}) @ [\mathcal{V} \urcorner @ s2\text{''} \in Tr_{ES2} and q2\text{''}C2\text{-}Upsilon2\text{-}is\text{-}ssE2\text{:} q2\text{''} \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = xs \upharpoonright E_{ES2} and s2\text{''}V2\text{-}is\text{-}s2V2\text{:} s2\text{''} \upharpoonright V_{\mathcal{V}2} = s2 \upharpoonright V_{\mathcal{V}2}
  and s2''C2-empty: s2'' \uparrow C_{\mathcal{V}2} = []
  by auto
have x-in-Cv2-inter-Upsilon2: x \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}
  and x-in-Cv2-inter-Nv1: x \in C_{\mathcal{V}2} \cap N_{\mathcal{V}1}
  proof -
     from snoc(2-3) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2})
        by simp
     thus x \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}
        and x \in C_{\mathcal{V}2} \cap N_{\mathcal{V}1}
        by auto
  qed
with validV2 have x-in-E2: x \in E_{ES2}
  by (simp add:isViewOn-def V-valid-def
      VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
{\bf note}\ x\hbox{-}in\hbox{-}Cv2\hbox{-}inter\hbox{-}Upsilon2
from v'-in-Vv1-inter-Vv2-inter-Nabla2 have V' \in V_{\mathcal{V}2} \cap \nabla_{\Gamma 2}
moreover
note \tau E2-r2-q2''-v'-s2''-in-Tr2 s2''C2-empty
moreover
have Adm: (Adm V2 o2 Tr_{ES2} (\tau | E_{ES2} @ r2 @ q2'') x)
  proof -
     from \tau E2-r2-q2 ^{\prime\prime}-v^{\prime}-s2 ^{\prime\prime}-in-Tr2 validES2
     have (+ | E_{ES2} @ r2 @ q2'') \in \mathit{Tr}_{ES2}
        by (simp add: ES-valid-def traces-prefixclosed-def
           prefixclosed-def prefix-def)
     with x-in-Cv2-inter-Nv1 ES2-total-Cv2-inter-Nv1
     have (\tau \mid E_{ES2} @ r2 @ q2'') @ [x] \in Tr_{ES2}
       by (simp only: total-def)
     moreover
```

```
\mathbf{have} \ (\tau \restriction E_{ES2} @ \ r2 \ @ \ q2 \ '') \restriction (\varrho 2 \ \mathcal{V2}) = (\tau \restriction E_{ES2} @ \ r2 \ @ \ q2 \ '') \restriction (\varrho 2 \ \mathcal{V2}) \ ..
     ultimately show ?thesis
        by (simp only: Adm-def, blast)
  qed
moreover
note FCIA2
ultimately
obtain s2' \gamma'
   where res1: (set \gamma') \subseteq (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2})
   and res2: ((\tau \mid E_{ES2} @ r2 @ q2'') @ [x] @ \gamma' @ [\mathcal{V}'] @ s2') \in Tr_{ES2}
  and res3: (s2' | V_{V2}) = (s2'' | V_{V2})
and res4: s2' | C_{V2} = []
  unfolding FCIA-def
  by blast
let ?q2' = q2'' @ [x] @ \gamma'
from res2 validES2 have set s2' \subseteq E_{ES2}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
\mathbf{from}\ \mathit{res1}\ \mathit{x-in-Cv2-inter-Upsilon2}\ \mathit{q2''-in-C2-inter-Upsilon2-inter-Delta2}
have set ?q2' \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
  by auto
moreover
from res2 have \tau \mid E_{ES2} @ r2 @ ?q2' @ [\mathcal{V}'] @ s2' \in Tr_{ES2}
  by auto
moreover
have ?q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = r1' \upharpoonright E_{ES2}
   proof -
     from validV2 \ res1 \ \mathbf{have} \ \gamma' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = []
           from res1 have \gamma' = \gamma' \upharpoonright (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}})
              \mathbf{by}\ (\mathit{simp}\ \mathit{only:}\ \mathit{list-subset-iff-projection-neutral})
           hence \gamma' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = \gamma' \upharpoonright (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}) \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}})
           hence \gamma' \uparrow (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = \gamma' \uparrow (N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2})
              \mathbf{by}\ (simp\ only:\ projection\text{-}def,\ auto)
           moreover
           from validV2 have N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} = \{\}
              by (simp add:isViewOn-def V-valid-def
                 VC	ext{-}disjoint	ext{-}def \ VN	ext{-}disjoint	ext{-}def \ NC	ext{-}disjoint	ext{-}def, \ auto)
           ultimately show ?thesis
              by (simp add: projection-def)
        qed
     hence ?q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = (q2'' @ [x]) \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2})
        \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
     with q2"C2-Upsilon2-is-xsE2 x-in-Cv2-inter-Upsilon2
     have ?q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = (xs \upharpoonright E_{ES2}) @ [x]
        by (simp only: projection-concatenation-commute projection-def, auto)
     with xs-is-xsE2 snoc(2) show ?thesis
        \mathbf{by} \ simp
   \mathbf{qed}
```

```
moreover
    from res3 s2"V2-is-s2V2 have s2" | V_{V2} = s2 | V_{V2}
      by simp
    moreover
    note res4
    ultimately show ?case
      \mathbf{by} blast
  qed
\mathbf{from}\ this[\mathit{OF}\ r1'\mathit{E2-in-Nv1-inter-Cv2-Upsilon2-star}]\ \mathbf{obtain}\ s2'\ q2'
  where s2'-in-E2star: set s2' \subseteq E_{ES2}
  and q2'-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2:
  set q2' \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
  and \tau E2-r2-q2'-v'-s2'-in-Tr2: (\tau \uparrow E_{ES2}) @ r2 @ q2' @ [<math>\mathcal{V}'] @ s2' \in Tr_{ES2}
  and q2'Cv2-inter-Upsilon2-is-r1'E2: q2' \(\(\text{(}C_{V2}\)\)\(\text{\gamma}_{\gamma}\)\)\(= r1' \cdot\) E_{ES2}
  and s2'Vv2-is-s2-Vv2: s2' \mid V_{\mathcal{V}2} = s2 \mid V_{\mathcal{V}2}
  and s2'Cv2-empty: s2' \mid C_{V2} = []
  by auto
\mathbf{from}\ \ q2'\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon2\text{-}union\text{-}Nv2\text{-}inter\text{-}Delta2\ validV2}
have q2'-in-E2star: set q2' \subseteq E_{ES2}
  by (simp add: isViewOn-def V-valid-def VC-disjoint-def
    VN-disjoint-def NC-disjoint-def, auto)
have r1'Cv-empty: r1' \( \tau_{V} = \[ \]
  using propSepViews unfolding properSeparationOfViews-def
  by (metis projection-on-subset2
    r1'-Cv1-empty r1'-in-E1star)
from validES2 \tau E2-r2-q2'-v'-s2'-in-Tr2
have q2'-in-E2star: set q2' \subseteq E_{ES2}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note r1'-in-E1star
moreover
have q2'E1-is-r1'E2: q2' \upharpoonright E_{ES1} = r1' \upharpoonright E_{ES2}
    from q2'-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2
    have q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) = q2'
      by (simp add: list-subset-iff-projection-neutral)
    hence (q2' \uparrow (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2})) \uparrow E_{ES1} = q2' \uparrow E_{ES1}
      by simp
    hence q2' \uparrow ((C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \cap E_{ES1}) = q2' \uparrow E_{ES1}
      by (simp add: projection-def)
    hence q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap E_{ES1}) = q2' \upharpoonright E_{ES1}
      by (simp only: Int-Un-distrib2 disjoint-Nv2-inter-Delta2-inter-E1, auto)
    moreover
    from q2'Cv2-inter-Upsilon2-is-r1'E2
    have (q2' \mid (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2})) \mid E_{ES1} = (r1' \mid E_{ES2}) \mid E_{ES1}
      by simp
    hence q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap E_{ES1}) = (r1' \upharpoonright E_{ES1}) \upharpoonright E_{ES2}
      \mathbf{by}\ (simp\ add:\ projection\text{-}def\ conj\text{-}commute)
```

```
with r1'-in-E1star have q2' \uparrow (C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2} \cap E_{ES1}) = r1' \uparrow E_{ES2}
       \mathbf{by}\ (simp\ only:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
     ultimately show ?thesis
       by auto
  qed
moreover
have q2' \mid V_{\mathcal{V}} = []
  proof -
    \mathbf{from}\ \textit{q2'-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2}
    have q2' = q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2})
       by (simp add: list-subset-iff-projection-neutral)
    moreover
    from q2'-in-E2star have q2' = q2' \mid E_{ES2}
       by (simp add: list-subset-iff-projection-neutral)
     ultimately have q2' = q2' \uparrow (C_{v2} \cap \Upsilon_{\Gamma 2} \cup N_{v2} \cap \Delta_{\Gamma 2}) \uparrow E_{ES2}
    hence q2' \upharpoonright V_{\mathcal{V}} = q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}}
    hence q2' \upharpoonright V_{\mathcal{V}} = q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright (V_{\mathcal{V}} \cap E_{ES2})
       by (simp add: Int-commute projection-def)
    \mathbf{with}\ propSep\ Views
    have q2' \upharpoonright V_{\mathcal{V}} = q2' \upharpoonright ((C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \cap V_{\mathcal{V}2})
       {\bf unfolding}\ proper Separation Of Views-def
       by (simp add: projection-def)
    hence q2' \upharpoonright V_{\mathcal{V}} = q2' \upharpoonright (V_{\mathcal{V}2} \cap C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup V_{\mathcal{V}2} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2})
       by (simp add: Int-Un-distrib2, metis Int-assoc
          Int-commute Int-left-commute Un-commute)
     with validV2 show ?thesis
       by (simp add: isViewOn-def V-valid-def
           VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto, simp add: projection-def)
  qed
moreover
have r1' \mid V_{\mathcal{V}} = []
  {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
  by (metis Int-commute projection-intersection-neutral
     r1'-Vv1-empty r1'-in-E1star)
moreover
have q2'Cv-empty: q2' \uparrow C_{\mathcal{V}} = []
  proof -
     from q2'-in-E2star have foo: q2' = q2' \upharpoonright E_{ES2}
       by (simp add: list-subset-iff-projection-neutral)
    hence q2' \upharpoonright C_{\mathcal{V}} = q2' \upharpoonright (C_{\mathcal{V}} \cap E_{ES2})
       \mathbf{by}\ (\mathit{metis}\ \mathit{Int-commute}\ \mathit{list-subset-iff-projection-neutral}
          projection-intersection-neutral)
    moreover
     from propSepViews have C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2}
       {\bf unfolding} \ properSeparationOf Views-def \ {\bf by} \ auto
     from projection-subset-elim[OF \langle C_{\mathcal{V}} \cap E_{ES2} \subseteq C_{\mathcal{V}2} \rangle, of q2 ]
    have q2' \uparrow C_{\mathcal{V}2} \uparrow C_{\mathcal{V}} \uparrow E_{ES2} = q2' \uparrow (C_{\mathcal{V}} \cap E_{ES2})
       by (simp add: projection-def)
    hence q2' \upharpoonright E_{ES2} \upharpoonright C_{V2} \upharpoonright C_{V} = q2' \upharpoonright (C_{V} \cap E_{ES2})
       by (simp add: projection-commute)
```

```
with foo have q2' \upharpoonright (C_{\mathcal{V}2} \cap C_{\mathcal{V}}) = q2' \upharpoonright (C_{\mathcal{V}} \cap E_{ES2})
        by (simp add: projection-def)
      moreover
     \mathbf{from} \ \ q2'\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon2\text{-}union\text{-}Nv2\text{-}inter\text{-}Delta2
     \mathbf{have}\ q2' \upharpoonright (C_{\mathcal{V}2} \cap C_{\mathcal{V}}) = q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright (C_{\mathcal{V}2} \cap C_{\mathcal{V}})
        by (simp add: list-subset-iff-projection-neutral)
     have (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cup N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}) \cap (C_{\mathcal{V}\mathcal{Z}} \cap C_{\mathcal{V}})
           = (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cup C_{\mathcal{V}\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}) \cap C_{\mathcal{V}}
     hence q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright (C_{\mathcal{V}2} \cap C_{\mathcal{V}})
        = q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup C_{\mathcal{V}2} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright C_{\mathcal{V}}
        by (simp add: projection-sequence)
     moreover
     from validV2
     have q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cup C_{\mathcal{V}2} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright C_{\mathcal{V}}
        = q2' \mid (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) \mid C_{\mathcal{V}}
        by (simp add: isViewOn-def V-valid-def
            VC-disjoint-def VN-disjoint-def NC-disjoint-def Int-commute)
     moreover
     from q2'Cv2-inter-Upsilon2-is-r1'E2
     have q2' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) \upharpoonright C_{\mathcal{V}} = r1' \upharpoonright E_{ES2} \upharpoonright C_{\mathcal{V}}
     with projection-on-intersection[OF r1'Cv-empty] have q2' \uparrow (C_{V2} \cap \Upsilon_{\Gamma2}) \uparrow C_{V} = []
        by (simp add: Int-commute projection-def)
      ultimately show ?thesis
         by auto
  qed
moreover
note r1 'Cv-empty merge-property'[of r1' q2']
ultimately obtain q'
  where q'E2-is-q2': q' 
eta EES2 = q2'
and q'E1-is-r1': q' 
eta EES1 = r1'
and q'V-empty: q' 
eta V_{\mathcal{V}} = []
and q'C-empty: q' 
eta C_{\mathcal{V}} = []
  and q'-in-E1-union-E2-star: set q' \subseteq (E_{ES1} \cup E_{ES2})
  unfolding Let-def
  by auto
let ?tau = \tau @ r2 @ q' @ [\mathcal{V}']
from Cons(2) r2-in-E2star q'-in-E1-union-E2-star v'-in-E2
have set ?tau \subseteq (E_{(ES1 \parallel ES2)})
  by (simp add: composeES-def, auto)
moreover
from Cons(3) have set\ lambda' \subseteq V_{\mathcal{V}}
  by auto
moreover
from t1'-in-E1star t1'-is-r1'-v'-s1' have set s1' \subseteq E_{ES1}
  by simp
moreover
note s2'-in-E2star
```

```
moreover
from τr2E1-t1'-in-Tr1 t1'-is-r1'-v'-s1' v'-in-E1 q'E1-is-r1'
have ?tau \mid E_{ES1} @ s1' \in Tr_{ES1}
 by (simp only: projection-concatenation-commute projection-def, auto)
moreover
from q'E2-is-q2' r2-in-E2star v'-in-E2 q2'-in-E2star \tau E2-r2-q2'-v'-s2'-in-Tr2
have ?tau \mid E_{ES2} @ s2' \in Tr_{ES2}
 by (simp only: list-subset-iff-projection-neutral
   projection-concatenation-commute projection-def, auto)
moreover
have lambda' \mid E_{ES1} = s1' \mid V_{\mathcal{V}}
 proof -
   from Cons(2,4,8) v'-in-E1 have t1 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES1})
     by (simp add: projection-def)
   moreover
   from t1'-is-r1'-v'-s1' r1'-Vv1-empty r1'-in-E1star
      v'-in-Vv1 propSepViews
   have t1' \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s1' \upharpoonright V_{\mathcal{V}})
        have r1' \mid V_{\mathcal{V}} = []
         {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
         by (metis projection-on-subset2 r1'-Vv1-empty
            r1'-in-E1star subset-iff-psubset-eq)
        with t1'-is-r1'-v'-s1' v'-in-Vv1 Vv-is-Vv1-union-Vv2 show ?thesis
         by (simp only: t1'-is-r1'-v'-s1' projection-concatenation-commute
            projection-def, auto)
     qed
   moreover
   have t1 \mid V_{\mathcal{V}} = t1' \mid V_{\mathcal{V}}
     {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
     by (metis Int-commute outerCons-prems(3)
        projection-intersection-neutral t1'-Vv1-is-t1-Vv1 t1'-in-E1star)
    ultimately show ?thesis
      by auto
 qed
moreover
have lambda' \upharpoonright E_{ES2} = s2' \upharpoonright V_{\mathcal{V}}
   from Cons(3,5,9) v'-in-E2 have t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (lambda' \upharpoonright E_{ES2})
     by (simp add: projection-def)
   moreover
   from t2-is-r2-v'-s2 r2-Vv-empty v'-in-Vv2 Vv-is-Vv1-union-Vv2
   have t2 \upharpoonright V_{\mathcal{V}} = [\mathcal{V}'] @ (s2 \upharpoonright V_{\mathcal{V}})
     \mathbf{by}\ (simp\ only:\ t2\text{-}is\text{-}r2\text{-}v'\text{-}s2\ projection\text{-}concatenation\text{-}commute}
        projection-def, auto)
   moreover
   have s2 \mid V_{\mathcal{V}} = s2' \mid V_{\mathcal{V}}
     {f using}\ propSep\ Views\ {f unfolding}\ properSeparation\ Of\ Views-def
     by (metis Int-commute projection-intersection-neutral
        s2'Vv2-is-s2-Vv2 s2'-in-E2star s2-in-E2star)
   ultimately show ?thesis
     by auto
```

```
\mathbf{qed}
moreover
note s1'-Cv1-empty s2'Cv2-empty Cons.hyps[of ?tau s1' s2']
ultimately obtain t'
 where \tau-r2-q'-v'-t'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
 and t'Vv-is-lambda': t' \upharpoonright V_{\mathcal{V}} = lambda'
 and t'Cv-empty: t' \upharpoonright C_{\mathcal{V}} = []
 by auto
let ?t = r2 @ q' @ [\mathcal{V}'] @ t'
note \tau-r2-q'-v'-t'-in-Tr
moreover
from r2-Vv-empty q'V-empty t'Vv-is-lambda' v'-in-Vv
have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
 \mathbf{by}(simp\ only:\ projection\text{-}concatenation\text{-}commute\ projection\text{-}def,\ auto)
from VIsViewOnE r2-Cv2-empty t'Cv-empty q'C-empty v'-in-Vv
have ?t \upharpoonright C_{\mathcal{V}} = []
 proof -
   from VIsViewOnE\ v'-in-Vv\ {\bf have}\ [{\cal V}']\ |\ {\cal C}_{{\cal V}}=[]
     \mathbf{by}\ (simp\ add:\ isViewOn\text{-}def\ V\text{-}valid\text{-}def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
   moreover
   from r2-in-E2star r2-Cv2-empty
   have r2 \mid C_{\mathcal{V}} = []
     \textbf{using} \ propSep\ Views\ projection-on-subset2\ \textbf{unfolding}\ properSeparation\ Of\ Views-def
     by auto
   moreover
   note t'Cv-empty q'C-empty
   ultimately show ?thesis
     by (simp only: projection-concatenation-commute, auto)
 qed
ultimately have ?thesis
 by auto
moreover
{
 assume v'-in-Vv1-minus-E2: V' \in V_{V1} - E_{ES2}
 hence v'-in-Vv1: V' \in V_{V1}
 with v'-in-Vv have v'-in-E1: V' \in E_{ES1}
   \mathbf{using}\ propSep\ Views\ \mathbf{unfolding}\ properSeparationOf\ Views-def
   by auto
 from v'-in-Vv1-minus-E2 have v'-notin-E2: V' \notin E_{ES9}
 with validV2 have v'-notin-Vv2: V' \notin V_{V2}
   by (simp add: isViewOn-def V-valid-def
      VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
 from Cons(3-4) Cons(8) v'-in-E1 have t1 | V_{\mathcal{V}} = \mathcal{V}' \# (lambda' | E_{ES1})
```

```
by (simp add: projection-def)
{f from}\ projection\mbox{-}split\mbox{-}first[OF\ this]\ {f obtain}\ r1\ s1
 where t1-is-r1-v'-s1: t1 = r1 @ [V'] @ s1
 and r1-Vv-empty: r1 | V_{\mathcal{V}} = []
 by auto
with Vv-is-Vv1-union-Vv2 projection-on-subset[of V<sub>V1</sub> V<sub>V</sub> r1]
have r1-Vv1-empty: r1 \( \text{V}_{V1} = [] \)
 by auto
from t1-is-r1-v'-s1 Cons(10) have r1-Cv1-empty: r1 \uparrow C_{V1} = []
 by (simp add: projection-concatenation-commute)
from t1-is-r1-v'-s1 Cons(10) have s1-Cv1-empty: s1 \uparrow C_{V1} = []
 by (simp only: projection-concatenation-commute, auto)
from Cons(4) t1-is-r1-v'-s1 have r1-in-E1star: set r1 \subseteq E_{ES1}
 by auto
have r1-in-Nv1star: set r1 \subseteq N_{V1}
 proof -
   \mathbf{note}\ \mathit{r1-in-E1star}
   moreover
   from r1-Vv1-empty have set r1 \cap V_{V1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint\-eq\-subset\-Compl list\-subset\-iff\-projection\-neutral
       projection-on-union)
   moreover
   from r1-Cv1-empty have set r1 \cap C_{V1} = \{\}
     by (metis Compl-Diff-eq Diff-cancel Un-upper2
       disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
       projection-on-union)
   moreover
   {f note}\ validV1
   ultimately show ?thesis
     by (simp add: isViewOn-def V-valid-def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
 qed
have r1E2-in-Nv1-inter-C2-star: set (r1 \upharpoonright E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
 proof -
   have set (r1 \uparrow E_{ES2}) = set \ r1 \cap E_{ES2}
     by (simp add: projection-def, auto)
    with r1-in-Nv1star have set (r1 \mid E_{ES2}) \subseteq (E_{ES2} \cap N_{V1})
     by auto
   moreover
    from validV2 disjoint-Nv1-Vv2
    have E_{ES2} \cap N_{V1} = N_{V1} \cap C_{V2}
     {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
     by (simp add: isViewOn-def V-valid-def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
    ultimately show ?thesis
     \mathbf{by} auto
```

```
qed
\mathbf{with}\ \mathit{Cv2-inter-Nv1-subsetof-Upsilon2}
have r1E2-in-Nv1-inter-C2-Upsilon2-star: set (r1 \uparrow E_{ES2}) \subseteq (N_{V1} \cap C_{V2} \cap \Upsilon_{\Gamma2})
note \ outer Cons-prems = Cons.prems
have set (r1 \uparrow E_{ES2}) \subseteq (N_{V1} \cap C_{V2}) \Longrightarrow
   \begin{array}{l} \exists \ t2'. \ (set \ t2' \subseteq E_{ES2}) \subseteq (NVI \sqcap CV2) \\ \exists \ t2'. \ (set \ t2' \subseteq E_{ES2}) \\ \land \ ((\tau @ \ r1) \mid E_{ES2}) @ \ t2' \in Tr_{ES2} \\ \land \ t2' \mid V_{\mathcal{V}2} = t2 \mid V_{\mathcal{V}2} \\ \land \ t2' \mid C_{\mathcal{V}2} = [] \ ) \end{array} 
\textbf{proof} \ (\textit{induct} \ r1 \ | \ E_{ES2} \ \textit{arbitrary:} \ r1 \ \textit{rule:} \ \textit{rev-induct})
  case Nil thus ?case
     by (metis append-self-conv outerCons-prems(10) outerCons-prems(4)
       outerCons-prems(6) projection-concatenation-commute)
  case (snoc \ x \ xs)
  have xs-is-xsE2: xs = xs \upharpoonright E_{ES2}
     proof -
       from snoc(2) have set~(xs @ [x]) \subseteq E_{ES2}
          by (simp add: projection-def, auto)
       hence set xs \subseteq (E_{ES2})
          by auto
       thus ?thesis
          by (simp add: list-subset-iff-projection-neutral)
     qed
  moreover
  have set (xs \upharpoonright E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
     proof -
       have set (r1 \mid E_{ES2}) \subseteq (N_{V1} \cap C_{V2})
          by (metis Int-commute snoc.prems)
       with snoc(2) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
          \mathbf{by} \ simp
       hence set xs \subseteq (N_{\mathcal{V}1} \cap C_{\mathcal{V}2})
          by auto
       with xs-is-xsE2 show ?thesis
          by auto
     qed
  moreover
  note snoc.hyps(1)[of xs]
  ultimately obtain t2'
     where t\bar{z}^{\,\prime\prime}-in-E2star: set t\bar{z}^{\,\prime\prime}\subseteq E_{ES2}
     and \tau-xs-E2-t2"-in-Tr2: ((\tau @ xs) \uparrow E_{ES2}) @ t2" \in Tr_{ES2} and t2"Vv2-is-t2Vv2: t2" \uparrow V_{V2} = t2 \uparrow V_{V2}
     and t2''Cv2-empty: t2'' \mid C_{\mathcal{V}2} = []
     by auto
  have x-in-Cv2-inter-Nv1: x \in C_{\mathcal{V}2} \cap N_{\mathcal{V}1}
       from snoc(2-3) have set~(xs @ [x]) \subseteq (N_{V1} \cap C_{V2})
```

```
\mathbf{by} \ simp
    thus ?thesis
      by auto
  qed
hence x-in-Cv2: x \in C_{\mathcal{V}2}
 by auto
moreover
note \tau-xs-E2-t2"-in-Tr2 t2"Cv2-empty
moreover
have Adm: (Adm V2 \varrho 2 Tr_{ES2} ((\tau @ xs) | E_{ES2}) x)
 proof -
    from \tau-xs-E2-t2"-in-Tr2 validES2
    have \tau-xsE2-in-Tr2: ((\tau @ xs) \uparrow E_{ES2}) \in Tr_{ES2}
      by (simp add: ES-valid-def traces-prefixclosed-def
        prefixclosed-def prefix-def)
    with x-in-Cv2-inter-Nv1 ES2-total-Cv2-inter-Nv1
    have \tau-xsE2-x-in-Tr2: ((\tau @ xs) \upharpoonright E_{ES2}) @ [x] \in Tr_{ES2}
      by (simp only: total-def)
    moreover
    have ((\tau @ xs) | E_{ES2}) | (\varrho \mathscr{L} \mathscr{V}\mathscr{L}) = ((\tau @ xs) | E_{ES2}) | (\varrho \mathscr{L} \mathscr{V}\mathscr{L}) \dots
    ultimately show ?thesis
      by (simp add: Adm-def, auto)
  qed
moreover note BSIA2
ultimately obtain t2
 where res1: ((\tau @ xs) | E_{ES2}) @ [x] @ t2' \in Tr_{ES2} and res2: t2' | V_{\mathcal{V}2} = t2'' | V_{\mathcal{V}2} and res3: t2' | C_{\mathcal{V}2} = []
 by (simp only: BSIA-def, blast)
have set t2' \subseteq E_{ES2}
  proof -
    \mathbf{from}\ \mathit{res1}\ \mathit{validES2}\ \mathbf{have}\ \mathit{set}\ (((\tau\ @\ \mathit{xs})\ |\ E_{ES2})\ @\ [\mathit{x}]\ @\ \mathit{t2}\,')\subseteq E_{ES2}
      by (simp add: ES-valid-def traces-contain-events-def, auto)
    thus ?thesis
      by auto
 qed
moreover
have ((\tau @ r1) | E_{ES2}) @ t2' \in Tr_{ES2}
    from res1 xs-is-xsE2 have ((\tau \mid E_{ES2}) \otimes (xs \otimes [x])) \otimes t2' \in Tr_{ES2}
      \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
    thus ?thesis
      by (simp\ only:\ snoc(2)\ projection-concatenation-commute)
 \mathbf{qed}
moreover
from t2''Vv2-is-t2Vv2 res2 have t2' \mid V_{V2} = t2 \mid V_{V2}
 by auto
moreover
note res3
ultimately show ?case
 by auto
```

```
qed
from this[OF r1E2-in-Nv1-inter-C2-star] obtain t2'
 where t2'-in-E2star: set t2' \subseteq E_{ES2}
   and \tau r1E2-t2'-in-Tr2: ((\tau @ r1) \upharpoonright E_{ES2}) @ t2' \in Tr_{ES2}
   and t2'-Vv2-is-t2-Vv2: t2' \mid V_{\mathcal{V}2} = t2 \mid V_{\mathcal{V}2}
   and t2'-Cv2-empty: t2' | C_{\mathcal{V}2} = []
 by auto
let ?tau = \tau @ r1 @ [\mathcal{V}']
from v'-in-E1 Cons(2) r1-in-Nv1star validV1 have set\ ?tau \subseteq E_{(ES1 \parallel ES2)}
 by (simp only: is ViewOn-def composeES-def V-valid-def
   VC-disjoint-def VN-disjoint-def, auto)
moreover
from Cons(3) have set \ lambda' \subseteq V_{\mathcal{V}}
 \mathbf{by} auto
moreover
from Cons(4) t1-is-r1-v'-s1 have set s1 \subseteq E_{ES1}
 by auto
moreover
note t2'-in-E2star
moreover
have ?tau \mid E_{ES1} @ s1 \in Tr_{ES1}
 by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI
   list-subset-iff-projection-neutral Cons.prems(3) Cons.prems(5)
   projection-concatenation-commute t1-is-r1-v'-s1)
moreover
from \tau r1E2-t2'-in-Tr2 v'-notin-E2 have ?tau | E_{ES2} @ t2' \in Tr_{ES2}
 by (simp add: projection-def)
moreover
from Cons(8) t1-is-r1-v'-s1 r1-Vv-empty v'-in-E1 v'-in-Vv have lambda' \mid E_{ES1} = s1 \mid V_{\mathcal{V}}
 by (simp add: projection-def)
moreover
from Cons(9) v'-notin-E2 t2'-Vv2-is-t2-Vv2 have lambda' \upharpoonright E_{ES2} = t2' \upharpoonright V_{V}
 proof -
   have t2' \mid V_{\mathcal{V}} = t2' \mid V_{\mathcal{V}2}
     using propSepViews unfolding properSeparationOfViews-def
     by (simp add: projection-def, metis Int-commute
       projection-def projection-intersection-neutral t2 '-in-E2star)
   moreover
   have t2 \uparrow V_{\mathcal{V}} = t2 \uparrow V_{\mathcal{V}2}
     using propSepViews unfolding properSeparationOfViews-def
     by (simp add: projection-def, metis Int-commute
       projection-def\ projection-intersection-neutral\ Cons(5))
   note Cons(9) v'-notin-E2 t2'-Vv2-is-t2-Vv2
   ultimately show ?thesis
     by (simp add: projection-def)
 \mathbf{qed}
moreover
note s1-Cv1-empty t2'-Cv2-empty
moreover
```

```
note Cons.hyps(1)[of ?tau s1 t2']
ultimately obtain t'
 where \tau r1v't'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
 and t'-Vv-is-lambda': t' \mid V_{\mathcal{V}} = lambda'
 and t'-Cv-empty: t' \mid C_{\mathcal{V}} = []
let ?t = r1 @ [\mathcal{V}'] @ t'
note \tau r 1 v' t'-in-Tr
moreover
from r1-Vv-empty t'-Vv-is-lambda' v'-in-Vv have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
 by (simp add: projection-def)
moreover
have ?t \mid C_{\mathcal{V}} = []
 proof -
   have r1 \mid C_{\mathcal{V}} = []
   proof -
     from propSepViews have E_{ES1} \cap C_{\mathcal{V}} \subseteq C_{\mathcal{V}1}
       unfolding properSeparationOfViews-def by auto
       \textbf{from} \ \textit{projection-on-subset}[\textit{OF} \ \langle \textit{E}_{\textit{ES1}} \cap \textit{C}_{\mathcal{V}} \subseteq \textit{C}_{\mathcal{V}1} \rangle \ \textit{r1-Cv1-empty}]
       have r1 \uparrow (E_{ES1} \cap C_{\mathcal{V}}) = []
         by (simp only: Int-commute)
       with projection-intersection-neutral [OF r1-in-E1star, of C_{\mathcal{V}}] show ?thesis
         by simp
     qed
    with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
     by (simp add: isViewOn-def V-valid-def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
 qed
ultimately have ?thesis
 by auto
}
moreover
{
 assume v'-in-Vv2-minus-E1: V' \in V_{V2} - E_{ES1}
 hence v'-in-Vv2: V' \in V_{V2}
   by auto
 with v'-in-Vv propSepViews have v'-in-E2: V' \in E_{ES2}
   {f unfolding}\ properSeparationOfViews-def
 from v'-in-Vv2-minus-E1 have v'-notin-E1: V' \notin E_{ES1}
 with validV1 have v'-notin-Vv1: V' \notin V_{V,1}
   by (simp add: isViewOn-def V-valid-def
      VC-disjoint-def VN-disjoint-def, auto)
 from Cons(3) Cons(5) Cons(9) v'-in-E2 have t2 \upharpoonright V_{\mathcal{V}} = \mathcal{V}' \# (lambda' \upharpoonright E_{ES2})
   by (simp add: projection-def)
 from projection-split-first[OF this] obtain r2 s2
   where t2-is-r2-v'-s2: t2 = r2 @ [V'] @ s2
```

```
and r2-Vv-empty: r2 | V_{\mathcal{V}} = []
 by auto
with Vv-is-Vv1-union-Vv2 projection-on-subset[of V_{V2} V_{V} r2]
have r2-Vv2-empty: r2 | V_{\mathcal{V}\mathcal{Z}} = []
  by auto
from t2-is-r2-v'-s2 Cons(11) have r2-Cv2-empty: r2 \uparrow C_{V2} = []
  \mathbf{by}\ (simp\ add:\ projection\text{-}concatenation\text{-}commute)
from t2-is-r2-v'-s2 Cons(11) have s2-Cv2-empty: s2 \uparrow C_{V2} = []
  by (simp only: projection-concatenation-commute, auto)
from Cons(5) t2-is-r2-v'-s2 have r2-in-E2star: set r2 \subseteq E_{ES2}
  by auto
have r2-in-Nv2star: set r2 \subseteq N_{V2}
proof -
  note r2-in-E2star
  moreover
  from r2-Vv2-empty have set r2 \cap V_{V2} = \{\}
    by (metis Compl-Diff-eq Diff-cancel Un-upper2
      disjoint-eq\text{-}subset\text{-}Compl\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral
      projection-on-union)
  moreover
  from r2-Cv2-empty have set r2 \cap C_{V2} = \{\}
    by (metis Compl-Diff-eq Diff-cancel Un-upper2
      disjoint-eq-subset-Compl list-subset-iff-projection-neutral
      projection-on-union)
  moreover
  \mathbf{note}\ \mathit{validV2}
  ultimately show ?thesis
    by (simp add: isViewOn-def V-valid-def
      VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
qed
have r2E1-in-Nv2-inter-C1-star: set (r2 \upharpoonright E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
  have set (r2 \upharpoonright E_{ES1}) = set \ r2 \cap E_{ES1}
    by (simp add: projection-def, auto)
  with r2-in-Nv2star have set (r2 \upharpoonright E_{ES1}) \subseteq (E_{ES1} \cap N_{V2})
   by auto
  moreover
  \mathbf{from}\ validV1\ propSepViews\ disjoint\text{-}Nv2\text{-}Vv1
  have E_{ES1} \cap N_{\mathcal{V}2} = N_{\mathcal{V}2} \cap C_{\mathcal{V}1}
    {\bf unfolding} \ proper Separation Of Views-def
    by (simp add: isViewOn-def V-valid-def
      VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
  ultimately show ?thesis
    by auto
qed
with Cv1-inter-Nv2-subsetof-Upsilon1
have r2E1-in-Nv2-inter-C1-Upsilon1-star: set (r2 \uparrow E_{ES1}) \subseteq (N_{V2} \cap C_{V1} \cap \Upsilon_{\Gamma1})
```

```
by auto
\mathbf{note}\ \mathit{outerCons-prems} = \mathit{Cons.prems}
\land \ ((\tau @ r2) \upharpoonright E_{ES1}) @ t1' \in \mathit{Tr}_{ES1}
 \mathbf{proof}\ (\mathit{induct}\ \mathit{r2}\ \mathsf{|}\ E_{ES1}\ \mathit{arbitrary:}\ \mathit{r2}\ \mathit{rule:}\ \mathit{rev-induct})
  {\bf case} \ {\it Nil} \ {\bf thus} \ {\it ?case}
    \mathbf{by}\ (\mathit{metis}\ \mathit{append-self-conv}\ \mathit{outerCons-prems}(9)\ \mathit{outerCons-prems}(3)
      outerCons-prems(5) projection-concatenation-commute)
next
  case (snoc \ x \ xs)
  have xs-is-xsE1: xs = xs \upharpoonright E_{ES1}
  proof -
    from snoc(2) have set (xs @ [x]) \subseteq E_{ES1}
      by (simp add: projection-def, auto)
    hence set xs \subseteq E_{ES1}
      by auto
    thus ?thesis
      \mathbf{by}\ (simp\ add:\ list-subset-iff-projection-neutral)
  qed
  moreover
  have set (xs \mid E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
  proof -
    have set (r2 \uparrow E_{ES1}) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
      by (metis Int-commute snoc.prems)
    with snoc(2) have set~(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})
      \mathbf{by} \ simp
    hence set xs \subseteq (N_{\mathcal{V}\mathcal{Z}} \cap C_{\mathcal{V}\mathcal{I}})
      \mathbf{by} auto
    with xs-is-xsE1 show ?thesis
      by auto
  qed
  moreover
  note snoc.hyps(1)[of xs]
  ultimately obtain t1''
    where t1''-in-E1star: set t1'' \subseteq E_{ES1}
    and \tau-xs-E1-t1"-in-Tr1: ((\tau @ xs) \uparrow E_{ES1}) @ t1" \in Tr_{ES1}
    and t1''Vv1-is-t1Vv1: t1'' \mid V_{V1} = t1 \mid V_{V1}
    and t1''Cv1-empty: t1'' \upharpoonright C_{\mathcal{V}1} = []
    by auto
  have x-in-Cv1-inter-Nv2: x \in C_{V1} \cap N_{V2}
  proof -
```

from snoc(2-3) have $set~(xs @ [x]) \subseteq (N_{\mathcal{V}2} \cap C_{\mathcal{V}1})$

by simp thus ?thesis by auto

```
qed
  hence x-in-Cv1: x \in C_{V1}
   by auto
  moreover
  note \tau-xs-E1-t1"-in-Tr1 t1"Cv1-empty
  have Adm: (Adm V1 \varrho1 Tr_{ES1} ((\tau @ xs) | E_{ES1}) x)
  proof -
    from \tau-xs-E1-t1"-in-Tr1 validES1
    have \tau-xsE1-in-Tr1: ((\tau @ xs) \upharpoonright E_{ES1}) \in Tr_{ES1}
      by (simp add: ES-valid-def traces-prefixclosed-def
        prefixclosed-def prefix-def)
    \mathbf{with}\ x\hbox{-}in\hbox{-}Cv1\hbox{-}inter\hbox{-}Nv2\ ES1\hbox{-}total\hbox{-}Cv1\hbox{-}inter\hbox{-}Nv2
    have \tau-xsE1-x-in-Tr1: ((\tau @ xs) \upharpoonright E_{ES1}) @ [x] \in Tr_{ES1}
      by (simp only: total-def)
    moreover
    \mathbf{have}\ ((\tau\ @\ \mathit{xs})\ |\ E_{ES1})\ |\ (\varrho 1\ \mathcal{V}1) = ((\tau\ @\ \mathit{xs})\ |\ E_{ES1})\ |\ (\varrho 1\ \mathcal{V}1)\ \dots
    ultimately show ?thesis
      by (simp add: Adm-def, auto)
  qed
  moreover note BSIA1
  ultimately obtain t1
    where res1: ((\tau @ xs) | E_{ES1}) @ [x] @ t1' \in Tr_{ES1}
   and res2: t1' \uparrow V_{V1} = t1'' \uparrow V_{V1}
and res3: t1' \uparrow C_{V1} = []
   by (simp only: BSIA-def, blast)
  have set t1' \subseteq E_{ES1}
  proof -
    from res1 validES1 have set (((\tau @ xs) | E_{ES1}) @ [x] @ t1') \subseteq E_{ES1}
      by (simp add: ES-valid-def traces-contain-events-def, auto)
    thus ?thesis
      by auto
  \mathbf{qed}
  moreover
 have ((\tau @ r2) | E_{ES1}) @ t1' \in Tr_{ES1}
    from res1 xs-is-xsE1 have ((\tau \upharpoonright E_{ES1}) @ (xs @ [x])) @ t1' \in Tr_{ES1}
      by (simp only: projection-concatenation-commute, auto)
    thus ?thesis
      \mathbf{by}\ (simp\ only:\ snoc(2)\ projection\text{-}concatenation\text{-}commute)
  qed
  moreover
  from t1''Vv1-is-t1Vv1 res2 have t1' \upharpoonright V_{V1} = t1 \upharpoonright V_{V1}
   by auto
  moreover
  note res3
  ultimately show ?case
   by auto
qed
from this[\mathit{OF}\ r2\mathit{E1-in-Nv2-inter-C1-star}] obtain t1'
  where t1'-in-E1star: set t1' \subseteq E_{ES1}
```

```
and \tau r2E1-t1 '-in-Tr1: ((\tau @ r2) | E_{ES1}) @ t1 ' \in Tr_{ES1}
 and t1'-Vv1-is-t1-Vv1: t1' 
color V_{\mathcal{V}1} = t1 
color V_{\mathcal{V}1}
 and t1'-Cv1-empty: t1' \upharpoonright C_{V1} = []
 by auto
let ?tau = \tau @ r2 @ [\mathcal{V}']
from v'-in-E2 Cons(2) r2-in-Nv2star validV2 have set ?tau \subseteq E_{(ES1 \parallel ES2)}
 \mathbf{by}\ (simp\ only:\ compose ES-def\ is View On-def\ V-valid-def
    VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
moreover
from Cons(3) have set\ lambda' \subseteq V_{\mathcal{V}}
 by auto
moreover
from Cons(5) t2-is-r2-v'-s2 have set s2 \subseteq E_{ES2}
 by auto
moreover
note t1'-in-E1star
moreover
have ?tau \mid E_{ES2} @ s2 \in Tr_{ES2}
 by (metis Cons-eq-appendI append-eq-appendI calculation(3) eq-Nil-appendI
   list-subset-iff-projection-neutral Cons.prems(4) Cons.prems(6)
   projection-concatenation-commute t2-is-r2-v'-s2)
moreover
from \tau r 2E1-t1'-in-Tr1 v'-notin-E1 have ?tau \mid E_{ES1} @ t1' \in Tr_{ES1}
 by (simp add: projection-def)
moreover
from Cons(9) t2-is-r2-v'-s2 r2-Vv-empty v'-in-E2 v'-in-Vv
have lambda' \upharpoonright E_{ES2} = s2 \upharpoonright V_{\mathcal{V}}
 \mathbf{by}\ (simp\ add\colon projection\text{-}def)
moreover
from Cons(10) v'-notin-E1 t1'-Vv1-is-t1-Vv1
have lambda' \mid E_{ES1} = t1' \mid V_{\mathcal{V}}
proof -
 have t1' \mid V_{\mathcal{V}} = t1' \mid V_{\mathcal{V}1}
   using propSepViews unfolding properSeparationOfViews-def
   by (simp add: projection-def, metis Int-commute
     projection-def projection-intersection-neutral t1'-in-E1star)
 moreover
 have t1 \mid V_{\mathcal{V}} = t1 \mid V_{\mathcal{V}1}
   using propSepViews unfolding properSeparationOfViews-def
   by (simp add: projection-def, metis Int-commute
     projection-def projection-intersection-neutral Cons(4))
 moreover
 note Cons(8) v'-notin-E1 t1'-Vv1-is-t1-Vv1
 ultimately show ?thesis
   by (simp add: projection-def)
qed
moreover
note s2-Cv2-empty t1'-Cv1-empty
moreover
note Cons.hyps(1)[of ?tau t1' s2]
```

```
ultimately obtain t'
                       where \tau r 2v't'-in-Tr: ?tau @ t' \in Tr_{(ES1 \parallel ES2)}
                       and t'-Vv-is-lambda': t' \mid V_{\mathcal{V}} = lambda'
                       and t'-Cv-empty: t' 
color C_{\mathcal{V}} = []
                       by auto
                    let ?t = r2 @ [\mathcal{V}'] @ t'
                    note \tau r 2v't'-in-Tr
                    moreover
                    from r2-Vv-empty t'-Vv-is-lambda' v'-in-Vv have ?t \mid V_{\mathcal{V}} = \mathcal{V}' \# lambda'
                       by (simp add: projection-def)
                    moreover
                    have ?t \mid C_{\mathcal{V}} = []
                    proof -
                       have r2 \mid C_{\mathcal{V}} = []
                       proof -
                          from propSepViews have E_{ES2} \cap C_{\mathcal{V}} \subseteq C_{\mathcal{V}2}
                             {\bf unfolding} \ properSeparationOf Views-def \ {\bf by} \ auto
                          \textbf{from} \ \textit{projection-on-subset}[\textit{OF} \ \langle \textit{E}_{\textit{ES2}} \cap \textit{C}_{\mathcal{V}} \subseteq \textit{C}_{\mathcal{V2}} \rangle \ \textit{r2-Cv2-empty}]
                          have r2 \upharpoonright (E_{ES2} \cap C_{\mathcal{V}}) = []
                             by (simp only: Int-commute)
                          with projection-intersection-neutral [OF r2-in-E2star, of C_{\mathcal{V}}] show ?thesis
                             by simp
                       qed
                       with v'-in-Vv VIsViewOnE t'-Cv-empty show ?thesis
                          by (simp add: isViewOn-def V-valid-def
                              VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def, auto)
                    qed
                    ultimately have ?thesis
                       \mathbf{by} auto
                 ultimately show ?thesis
                    by blast
           qed
         qed
  thus ?thesis
     by auto
\mathbf{qed}
\mathbf{lemma} \ \textit{generalized-zipping-lemma} :
\forall \ \tau \ lambda \ t1 \ t2. \ (\ (\ set \ \tau \subseteq E_{(ES1} \parallel ES2) \\ \land \ set \ lambda \subseteq V_{\mathcal{V}} \land \ set \ t1 \subseteq E_{ES1} \land \ set \ t2 \subseteq E_{ES2} \\ \land \ ((\tau \upharpoonright E_{ES1}) @ \ t1) \in Tr_{ES1} \land ((\tau \upharpoonright E_{ES2}) @ \ t2) \in Tr_{ES2} \\ \land \ (lambda \upharpoonright E_{ES1}) = (t1 \upharpoonright V_{\mathcal{V}}) \land (lambda \upharpoonright E_{ES2}) = (t2 \upharpoonright V_{\mathcal{V}}) \\ \land \ (t1 \upharpoonright C_{\mathcal{V}1}) = [] \land \ (t2 \upharpoonright C_{\mathcal{V}2}) = [])
   \longrightarrow (\exists t. \ ((\tau @ t) \in Tr_{(ES1 \parallel ES2)} \land (t \upharpoonright V_{\mathcal{V}}) = lambda \land (t \upharpoonright C_{\mathcal{V}}) = []))))
proof -
  {f note}\ well-behaved-composition
```

```
moreover {
            assume N_{\mathcal{V}1} \cap E_{ES2} = \{\} \land N_{\mathcal{V}2} \cap E_{ES1} = \{\}
            with generalized-zipping-lemma1 have ?thesis
     moreover {
            assume \exists \varrho 1. N_{V1} \cap E_{ES2} = \{\} \land total ES1 (C_{V1} \cap N_{V2}) \land BSIA \varrho 1 V1 Tr_{ES1}
            then obtain \varrho 1 where N_{\mathcal{V}1} \cap E_{ES2} = \{\} \wedge total\ ES1\ (C_{\mathcal{V}1} \cap N_{\mathcal{V}2}) \wedge BSIA\ \varrho 1\ \mathcal{V}1\ Tr_{ES1}
            with generalized-zipping-lemma2[of \varrho 1] have ?thesis
                 by auto
     }
     moreover {
            assume \exists \ \varrho 2. \ N_{\mathcal{V}2} \cap E_{ES1} = \{\} \land total \ ES2 \ (C_{\mathcal{V}2} \cap N_{\mathcal{V}1}) \land BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2}
            then obtain \varrho 2 where N_{\mathcal{V}2} \cap E_{ES1} = \{\} \land total \ ES2 \ (C_{\mathcal{V}2} \cap N_{\mathcal{V}1}) \land BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2} \}
            with generalized-zipping-lemma3[of ρ2] have ?thesis
                  by auto
      }
      moreover {
            assume \exists \varrho 1 \varrho 2 \Gamma 1 \Gamma 2. (\nabla_{\Gamma 1} \subseteq E_{ES1} \wedge \Delta_{\Gamma 1} \subseteq E_{ES1} \wedge \Upsilon_{\Gamma 1} \subseteq E_{ES1}
                 \begin{array}{l} \wedge \ \nabla_{\Gamma2} \subseteq E_{ES2} \wedge \Delta_{\Gamma2} \subseteq E_{ES2} \wedge \widehat{\Upsilon}_{\Gamma2} \subseteq E_{ES2} \\ \wedge \ BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1} \wedge BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2} \end{array}
                   \wedge total ES1 (C_{\mathcal{V}_1} \cap N_{\mathcal{V}_2}) \wedge total ES2 (C_{\mathcal{V}_2} \cap N_{\mathcal{V}_1})
                  \land \nabla_{\Gamma 2} \subseteq E_{ES2} \land \Delta_{\Gamma 2} \subseteq E_{ES2} \land \Upsilon_{\Gamma 2} \subseteq E_{ES2} 
 \land BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1} \land BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2} 
 \land total \ ES1 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES2 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES3 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ ES4 \ (C_{\Gamma 1} \cap C_{\Gamma 1}) \land total \ (C_{\Gamma 1} \cap C_{\Gamma 1
                  with generalized-zipping-lemma4 [of \Gamma 1 \Gamma 2 \varrho 1 \varrho 2] have ?thesis
      ultimately show ?thesis unfolding wellBehavedComposition-def
           \mathbf{by} blast
qed
end
end
```

5.4.3 Compositionality Results

theory CompositionalityResults
imports GeneralizedZippinqLemma CompositionSupport

begin context Compositionality begin ${\bf theorem}\ compositionality\text{-}BSD:$ $\llbracket \ BSD \ \mathcal{V}1 \ Tr_{ES1}; \ BSD \ \mathcal{V}2 \ Tr_{ES2} \ \rrbracket \Longrightarrow BSD \ \mathcal{V} \ Tr_{(ES1 \ \parallel \ ES2)}$ proof assume BSD-Tr1-v1: BSD V1 Tr_{ES1} assume BSD-Tr2-v2: BSD V2 Tr_{ES2} fix $\alpha \beta c$ assume c-in-Cv: $c \in C_{\mathcal{V}}$ assume $\beta c \alpha$ -in-Tr: $(\beta \stackrel{.}{@} [c] @ \alpha) \in Tr_{(ES1 \parallel ES2)}$ assume α -contains-no-c: $\alpha \upharpoonright C_{\mathcal{V}} = []$ interpret CSES1: CompositionSupport ES1 V V1 using propSepViews unfolding properSeparationOfViews-def **by** (simp add: CompositionSupport-def validES1 validV1) interpret CSES2: CompositionSupport ES2 V V2 ${\bf using} \ prop Sep \it{Views} \ {\bf unfolding} \ proper Separation Of \it{Views-def}$ by (simp add: CompositionSupport-def validES2 validV2) from $\beta c\alpha$ -in-Tr have $\beta c \alpha$ -E1-in-Tr1: $((\beta @ [c] @ \alpha) \uparrow E_{ES1}) \in Tr_{ES1}$ and $\beta \, c\alpha$ -E2-in-Tr2: (($\beta \, @ \, [c] \, @ \, \alpha) \uparrow E_{ES2}) \in \mathit{Tr}_{ES2}$ **by** (auto, simp add: composeES-def)+ from composeES-yields-ES validES1 validES2 have ES-valid (ES1 || ES2) by auto with $\beta c \alpha$ -in-Tr have set $\beta \subseteq E_{(ES1 \parallel ES2)}$ by (simp add: ES-valid-def traces-contain-events-def, auto) moreover have set $(\alpha \upharpoonright V_{\mathcal{V}}) \subseteq V_{\mathcal{V}}$ by (simp add: projection-def, auto) moreover have $(\alpha \upharpoonright V_{\mathcal{V}}) \upharpoonright V_{\mathcal{V}} = (\alpha \upharpoonright V_{\mathcal{V}})$ **by** (simp add: projection-def) moreover from $CSES1.BSD-in-subsystem[OF\ c-in-Cv\ \beta c\alpha-E1-in-Tr1\ BSD-Tr1-v1]$ where $\alpha 1'$ -1: $((\beta \uparrow E_{ES1}) @ \alpha 1') \in Tr_{ES1}$ and $\alpha 1'$ -2: $(\alpha 1' \mid V_{\mathcal{V}1}) = (\alpha \mid V_{\mathcal{V}1})$ and $\alpha 1' \mid C_{\mathcal{V}1} = []$

from $\alpha 1'$ -1 validES1 have $\alpha 1'$ -in-E1: set $\alpha 1' \subseteq E_{ES1}$ by (simp add: ES-valid-def traces-contain-events-def, auto)

by auto moreover

```
moreover
from \alpha 1'-2 propSepViews have ((\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES1}) = (\alpha 1' \uparrow V_{\mathcal{V}})
  proof -
    have ((\alpha \upharpoonright V_{\mathcal{V}}) \upharpoonright E_{ES1}) = \alpha \upharpoonright (V_{\mathcal{V}} \cap E_{ES1})
       \mathbf{by}\ (\mathit{simp}\ \mathit{only:}\ \mathit{projection-def},\ \mathit{auto})
    with propSepViews have ((\alpha \upharpoonright V_{\mathcal{V}}) \upharpoonright E_{ES1}) = (\alpha \upharpoonright V_{\mathcal{V}1})
       unfolding properSeparationOfViews-def by auto
    from \alpha 1'-2 have (\alpha 1' \upharpoonright V_{\mathcal{V}1}) = (\alpha 1' \upharpoonright V_{\mathcal{V}})
       proof -
          from \alpha1'-in-E1 have \alpha1' | E_{ES1} = \alpha1'
            \mathbf{by}\ (simp\ add\colon list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
          hence (\alpha 1' \uparrow E_{ES1}) \uparrow V_{\mathcal{V}} = \alpha 1' \uparrow V_{\mathcal{V}}
            by simp
          with Vv-is-Vv1-union-Vv2 have (\alpha 1' \uparrow E_{ES1}) \uparrow (V_{V1} \cup V_{V2}) = \alpha 1' \uparrow V_{V}
            by simp
          hence \alpha 1' \upharpoonright (E_{ES1} \cap (V_{V1} \cup V_{V2})) = \alpha 1' \upharpoonright V_{V}
            by (simp only: projection-def, auto)
          hence \alpha 1' \uparrow (E_{ES1} \cap V_{V1} \cup E_{ES1} \cap V_{V2}) = \alpha 1' \uparrow V_{V}
            by (simp add: Int-Un-distrib)
          moreover
          from validV1 have E_{ES1} \cap V_{V1} = V_{V1}
            by (simp add: isViewOn-def V-valid-def
               VC\hbox{-}disjoint\hbox{-}def\ VN\hbox{-}disjoint\hbox{-}def\ NC\hbox{-}disjoint\hbox{-}def,\ auto)
          ultimately have \alpha 1' \upharpoonright (V_{\mathcal{V}1} \cup E_{ES1} \cap V_{\mathcal{V}2}) = \alpha 1' \upharpoonright V_{\mathcal{V}}
            by simp
          moreover
          have E_{ES1} \cap V_{\mathcal{V2}} \subseteq V_{\mathcal{V1}}
            proof -
               from propSep\ Views\ Vv-is-Vv1-union-Vv2 have (V_{V1}\cup V_{V2})\cap E_{ES1}=V_{V1}
                  unfolding properSeparationOfViews-def by simp
               hence (V_{\mathcal{V}1} \cap E_{ES1} \cup V_{\mathcal{V}2} \cap E_{ES1}) = V_{\mathcal{V}1}
               with validV1 have (V_{V1} \cup V_{V2} \cap E_{ES1}) = V_{V1}
                 by (simp add: isViewOn-def V-valid-def
                    VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
               thus ?thesis
                 by auto
            \mathbf{qed}
          ultimately show ?thesis
             by (simp add: Un-absorb2)
       qed
       moreover note \alpha1'-2
       ultimately show ?thesis
          by auto
  qed
moreover
from CSES2.BSD-in-subsystem[OF\ c-in-Cv\ \beta c\alpha-E2-in-Tr2\ BSD-Tr2-v2]
  where \alpha 2'-1: ((\beta \upharpoonright E_{ES2}) @ \alpha 2') \in Tr_{ES2} and \alpha 2'-2: (\alpha 2' \upharpoonright V_{\mathcal{V}2}) = (\alpha \upharpoonright V_{\mathcal{V}2})
  and \alpha 2' \mid C_{\mathcal{V}2} = []
```

```
by auto
moreover
from \alpha 2'-1 validES2 have \alpha 2'-in-E2: set \alpha 2' \subseteq E_{ES2}
 by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from \alpha 2'-2 propSepViews have ((\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES2}) = (\alpha 2' \uparrow V_{\mathcal{V}})
  proof -
    have ((\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES2}) = \alpha \uparrow (V_{\mathcal{V}} \cap E_{ES2})
      by (simp only: projection-def, auto)
    with propSepViews have ((\alpha \upharpoonright V_{\mathcal{V}}) \upharpoonright E_{ES2}) = (\alpha \upharpoonright V_{\mathcal{V}2})
      unfolding properSeparationOfViews-def by auto
    moreover
    from \alpha 2'-2 have (\alpha 2' \mid V_{\mathcal{V}2}) = (\alpha 2' \mid V_{\mathcal{V}})
      proof -
         from \alpha 2'-in-E2 have \alpha 2' \uparrow E_{ES2} = \alpha 2'
           by (simp add: list-subset-iff-projection-neutral)
         hence (\alpha 2' \mid E_{ES2}) \mid V_{\mathcal{V}} = \alpha 2' \mid V_{\mathcal{V}}
           by simp
         with Vv-is-Vv1-union-Vv2 have (\alpha 2' \uparrow E_{ES2}) \uparrow (V_{V2} \cup V_{V1}) = \alpha 2' \uparrow V_{V}
           by (simp add: Un-commute)
         hence \alpha 2' \upharpoonright (E_{ES2} \cap (V_{\mathcal{V}2} \cup V_{\mathcal{V}1})) = \alpha 2' \upharpoonright V_{\mathcal{V}}
           \mathbf{by}\ (\mathit{simp\ only:\ projection-def},\ \mathit{auto})
         hence \alpha 2' \uparrow (E_{ES2} \cap V_{V2} \cup E_{ES2} \cap V_{V1}) = \alpha 2' \uparrow V_{V}
           by (simp add: Int-Un-distrib)
         moreover
         from validV2 have E_{ES2} \cap V_{V2} = V_{V2}
           by (simp add: isViewOn-def V-valid-def
              VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
         ultimately have \alpha 2' \upharpoonright (V_{\mathcal{V}2} \cup E_{ES2} \cap V_{\mathcal{V}1}) = \alpha 2' \upharpoonright V_{\mathcal{V}}
           by simp
         moreover
         have E_{ES2} \cap V_{V1} \subseteq V_{V2}
           proof -
             from propSepViews Vv-is-Vv1-union-Vv2 have (V_{V2} \cup V_{V1}) \cap E_{ES2} = V_{V2}
                unfolding properSeparationOfViews-def by (simp add: Un-commute)
             hence (V_{\mathcal{V}2} \cap E_{ES2} \cup V_{\mathcal{V}1} \cap E_{ES2}) = V_{\mathcal{V}2}
             with validV2 have (V_{V2} \cup V_{V1} \cap E_{ES2}) = V_{V2}
                by (simp add: isViewOn-def V-valid-def
                  VC-disjoint-def VN-disjoint-def, auto)
             thus ?thesis
               by auto
           \mathbf{qed}
         ultimately show ?thesis
            by (simp add: Un-absorb2)
      qed
       moreover note \alpha 2'-2
       ultimately show ?thesis
         by auto
  qed
{\bf moreover\ note}\ {\it generalized-zipping-lemma}
ultimately have \exists \alpha'. ((\beta @ \alpha') \in (Tr_{(ES1 \parallel ES2)}) \land (\alpha' \uparrow V_{\mathcal{V}} = (\alpha \uparrow V_{\mathcal{V}})) \land \alpha' \uparrow C_{\mathcal{V}} = [])
```

```
by blast
  thus ?thesis
     unfolding BSD-def
     by auto
qed
{\bf theorem}\ compositionality\text{-}BSI:
 \llbracket \ BSD \ \mathcal{V}1 \ Tr_{ES1}; \ BSD \ \mathcal{V}2 \ Tr_{ES2}; \ BSI \ \mathcal{V}1 \ Tr_{ES1}; \ BSI \ \mathcal{V}2 \ Tr_{ES2} \ \rrbracket 
     \implies BSI \ \mathcal{V} \ Tr_{(ES1 \parallel ES2)}
proof -
  assume BSD1: BSD V1 Tr<sub>ES1</sub>
      and BSD2: BSD V2 Tr<sub>ES2</sub>
      and BSI1: BSI V1\ Tr_{ES1}
       and BSI2: BSI V2 Tr<sub>ES2</sub>
  {
     fix \alpha \beta c
     assume c-in-Cv: c \in C_{\mathcal{V}}
     assume \beta \alpha-in-Tr: (\beta @ \alpha) \in Tr_{(ES1 \parallel ES2)}
     assume \alpha-no-Cv: \alpha \uparrow C_{\mathcal{V}} = []
     from \beta \alpha-in-Tr
     have \beta \alpha-E1-in-Tr1: ((\beta @ \alpha) \uparrow E_{ES1}) \in Tr_{ES1}
        and \beta\alpha\text{-}\textit{E2-in-Tr2}\text{: }((\beta\ @\ \alpha)\ |\ E_{ES2})\in\ \textit{Tr}_{ES2}
        by (simp add: composeES-def)+
     interpret CSES1: CompositionSupport ES1 V V1
        using propSepViews unfolding properSeparationOfViews-def
        \mathbf{by}\ (simp\ add:\ CompositionSupport\text{-}def\ validES1\ validV1)
     interpret CSES2: CompositionSupport ES2 V V2
        {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
        by (simp add: CompositionSupport-def validES2 validV2)
     from CSES1.BSD-in-subsystem2[OF <math>\beta\alpha-E1-in-Tr1 BSD1] obtain \alpha1'
        where \beta E1 \alpha 1'-in-Tr1: \beta \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1} and \alpha 1' Vv1-is-\alpha Vv1: \alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha \upharpoonright V_{\mathcal{V}1}
        and \alpha 1'Cv1-empty: \alpha 1' \mid C_{V1} = []
        by auto
     from CSES2.BSD-in-subsystem2[OF\ \beta\alpha-E2-in-Tr2\ BSD2] obtain \alpha2'
        where \beta E2\alpha 2'-in-Tr2: \beta \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2} and \alpha 2' Vv2-is-\alpha Vv2: \alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha \upharpoonright V_{\mathcal{V}2}
        and \alpha 2'Cv2-empty: \alpha 2' \uparrow C_{\mathcal{V}2} = []
     \begin{array}{l} \mathbf{have} \ \exists \ \alpha 1^{\,\prime\prime}. \ (set \ \alpha 1^{\,\prime\prime} \subseteq E_{ES1} \land ((\beta \ @ \ [c]) \ | \ E_{ES1}) \ @ \ \alpha 1^{\,\prime\prime} \in \mathit{Tr}_{ES1} \\ \land \ \alpha 1^{\,\prime\prime} \ | \ V_{\mathcal{V}1} = \alpha \ | \ V_{\mathcal{V}1} \land \alpha 1^{\,\prime\prime} \ | \ C_{\mathcal{V}1} = []) \end{array}
        proof cases
           assume cE1-empty: [c] \upharpoonright E_{ES1} = []
```

```
from \beta E1 \alpha 1'-in-Tr1 validES1 have set \alpha 1' \subseteq E_{ES1}
       by (simp add: ES-valid-def traces-contain-events-def, auto)
    moreover
    from cE1-empty \beta E1 \alpha 1'-in-Tr1 have ((\beta @ [c]) \upharpoonright E_{ES1}) @ \alpha 1' \in Tr_{ES1}
       by (simp only: projection-concatenation-commute, auto)
    note \alpha 1' Vv1-is-\alpha Vv1 \alpha 1' Cv1-empty
    ultimately show ?thesis
       by auto
  \mathbf{next}
    assume cE1-not-empty: [c] \uparrow E_{ES1} \neq []
    hence c-in-E1: c \in E_{ES1}
       by (simp only: projection-def, auto, split if-split-asm, auto)
    from c-in-Cv c-in-E1 propSepViews have c \in C_{V1}
       unfolding properSeparationOfViews-def by auto
    moreover
    note \beta E1 \alpha 1'-in-Tr1 \alpha 1'Cv1-empty BSI1
    ultimately obtain \alpha 1^{\prime\prime}
       where \beta E1c\alpha 1''-in-Tr1: (\beta \upharpoonright E_{ES1}) @ [c] @ \alpha 1'' \in Tr_{ES1} and \alpha 1''Vv1-is-\alpha 1'Vv1: \alpha 1'' \upharpoonright V_{V1} = \alpha 1' \upharpoonright V_{V1}
       and \alpha 1''Cv1-empty: \alpha 1'' \uparrow C_{V1} = []
       {f unfolding}\,\, BSI\text{-}def
       by blast
    from validES1\ \beta E1c\alpha 1 "-in-Tr1 have set\ \alpha 1 " \subseteq E_{ES1}
       by (simp add: ES-valid-def traces-contain-events-def, auto)
    from \beta E1c\alpha 1 "-in-Tr1 c-in-E1 have ((\beta @ [c]) | E_{ES1}) @ \alpha 1 " \in Tr_{ES1}
       by (simp only: projection-concatenation-commute projection-def, auto)
    from \alpha 1'' Vv1-is-\alpha 1' Vv1 \alpha 1' Vv1-is-\alpha Vv1 have \alpha 1'' \upharpoonright V_{V1} = \alpha \upharpoonright V_{V1}
       by auto
    moreover
    note \alpha 1^{\prime\prime} Cv1-empty
    ultimately show ?thesis
       by auto
  qed
then obtain \alpha 1^{\prime\prime}
  where \alpha 1''-in-E1star: set \alpha 1'' \subseteq E_{ES1}
  and \beta cE1 \alpha 1^{\prime\prime\prime}-in-Tr1: ((\beta @ [c]) \uparrow E_{ES1}) @ \alpha 1^{\prime\prime} \in Tr_{ES1} and \alpha 1^{\prime\prime\prime} Vv1-is-\alpha Vv1: \alpha 1^{\prime\prime\prime} \uparrow V_{V1} = \alpha \uparrow V_{V1}
  and \alpha 1''Cv1-empty: \alpha 1'' \uparrow C_{V1} = []
  \mathbf{by} auto
\begin{array}{l} \mathbf{have} \ \exists \ \alpha 2^{\,\prime\prime}. \ (set \ \alpha 2^{\,\prime\prime} \subseteq E_{ES2} \\ \wedge \ ((\beta \ @ \ [c]) \ | \ E_{ES2}) \ @ \ \alpha 2^{\,\prime\prime} \in \mathit{Tr}_{ES2} \end{array}
  proof cases
    assume cE2-empty: [c] \upharpoonright E_{ES2} = []
```

```
from \beta E2\alpha 2'-in-Tr2 validES2 have set \alpha 2' \subseteq E_{ES2}
       by (simp add: ES-valid-def traces-contain-events-def, auto)
    moreover
    from cE2-empty \betaE2\alpha2'-in-Tr2 have ((\beta @ [c]) \ Te_{ES2}) @ \alpha2' \in Tr_{ES2}
       by (simp only: projection-concatenation-commute, auto)
    note \alpha 2' Vv2-is-\alpha Vv2 \alpha 2' Cv2-empty
    ultimately show ?thesis
       by auto
  \mathbf{next}
    assume cE2-not-empty: [c] \( \cdot \) E_{ES2} \neq []
    hence c-in-E2: c \in E_{ES2}
       by (simp only: projection-def, auto, split if-split-asm, auto)
    from c-in-Cv c-in-E2 propSepViews have c \in C_{\mathcal{V}2}
       unfolding properSeparationOfViews-def by auto
    moreover
    note \beta E2\alpha 2'-in-Tr2 \alpha 2'Cv2-empty BSI2
    ultimately obtain \alpha 2^{\,\prime\prime}
       where \beta E2c\alpha 2^{\prime\prime}-in-Tr2: (\beta \upharpoonright E_{ES2}) @ [c] @ \alpha 2^{\prime\prime} \in Tr_{ES2} and \alpha 2^{\prime\prime} Vv2-is-\alpha 2^{\prime} Vv2: \alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha 2^{\prime} \upharpoonright V_{\mathcal{V}2}
       and \alpha 2''Cv2\text{-}empty: \alpha 2'' \mid C_{V2} = []
       {f unfolding}\,\, BSI\text{-}def
       by blast
    from validES2 \beta E2c\alpha 2 "-in-Tr2 have set \alpha 2 " \subseteq E_{ES2}
       by (simp add: ES-valid-def traces-contain-events-def, auto)
    from \beta E2c\alpha 2 "-in-Tr2 c-in-E2 have ((\beta @ [c]) \upharpoonright E_{ES2}) @ \alpha 2" \in Tr_{ES2}
       by (simp only: projection-concatenation-commute projection-def, auto)
    moreover
    from \alpha 2'' Vv2-is-\alpha 2' Vv2 \alpha 2' Vv2-is-\alpha Vv2 have \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha \upharpoonright V_{\mathcal{V}2}
       by auto
    moreover
    note α2 "Cv2-empty
    ultimately show ?thesis
       by auto
  qed
then obtain \alpha 2^{\,\prime\prime}
  where \alpha 2''-in-E2star: set \alpha 2'' \subseteq E_{ES2}
  and \beta cE2\alpha 2^{\prime\prime\prime}-in-Tr2: ((\beta @ [c]) \uparrow E_{ES2}) @ \alpha 2^{\prime\prime} \in Tr_{ES2} and \alpha 2^{\prime\prime\prime} Vv2-is-\alpha Vv2: \alpha 2^{\prime\prime\prime} \uparrow V_{V2} = \alpha \uparrow V_{V2}
  and \alpha 2''Cv2-empty: \alpha 2'' \mid C_{\mathcal{V}2} = []
  by auto
from VIsViewOnE\ c-in-Cv\ \beta\alpha-in-Tr\ have\ set\ (\beta\ @\ [c])\subseteq E_{(ES1\ ||\ ES2)}
  by (simp add: isViewOn-def V-valid-def VC-disjoint-def
     VN-disjoint-def NC-disjoint-def composeES-def, auto)
moreover
have set (\alpha \upharpoonright V_{\mathcal{V}}) \subseteq V_{\mathcal{V}}
```

```
\mathbf{by}\ (simp\ add\colon projection\text{-}def,\ auto)
      moreover
      note \alpha1''-in-E1star \alpha2''-in-E2star \betacE1\alpha1''-in-Tr1 \betacE2\alpha2''-in-Tr2
      moreover
      have (\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES1} = \alpha 1'' \uparrow V_{\mathcal{V}}
        proof -
           from \alpha 1'' Vv1-is-\alpha Vv1 propSepViews have \alpha \uparrow (V_{\mathcal{V}} \cap E_{ES1}) = \alpha 1'' \uparrow (E_{ES1} \cap V_{\mathcal{V}})
              unfolding properSeparationOfViews-def by (simp add: Int-commute)
           hence \alpha \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES1} = \alpha 1 " \upharpoonright E_{ES1} \upharpoonright V_{\mathcal{V}}
              by (simp add: projection-def)
           with \alpha 1''-in-E1star show ?thesis
              \mathbf{by}\ (simp\ add:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
        \mathbf{qed}
      moreover
      have (\alpha \upharpoonright V_{\mathcal{V}}) \upharpoonright E_{ES2} = \alpha 2^{"} \upharpoonright V_{\mathcal{V}}
        proof -
           \mathbf{from} \ \ \alpha \mathcal{Z}^{\prime\prime} \mathit{Vv2-is-} \alpha \mathit{Vv2} \ \mathit{propSepViews} \ \mathbf{have} \ \alpha \upharpoonright (\mathit{V}_{\mathcal{V}} \cap \mathit{E}_{\mathit{ES2}}) = \alpha \mathcal{Z}^{\prime\prime} \upharpoonright (\mathit{E}_{\mathit{ES2}} \cap \mathit{V}_{\mathcal{V}})
              {\bf unfolding} \ properSeparationOf Views-def \ \ {\bf by} \ (simp \ add: \ Int-commute)
           hence \alpha \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES2} = \alpha 2 " \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}}
              by (simp add: projection-def)
           with \alpha 2''-in-E2star show ?thesis
              \mathbf{by}\ (simp\ add:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
        qed
      moreover
      \textbf{note} \ \alpha \textit{1''Cv1-empty} \ \alpha \textit{2''Cv2-empty generalized-zipping-lemma}
      ultimately have \exists \alpha'. (\beta @ [c]) @ \alpha' \in Tr_{(ES1 \parallel ES2)} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
        \mathbf{by} blast
   thus ?thesis
      unfolding BSI-def
     by auto
qed
theorem compositionality-BSIA:
■ BSD V1 Tr<sub>ES1</sub>; BSD V2 Tr<sub>ES2</sub>; BSIA Q1 V1 Tr<sub>ES1</sub>; BSIA Q2 V2 Tr<sub>ES2</sub>;
   (\varrho 1 \ \mathcal{V}1) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES1}; (\varrho 2 \ \mathcal{V}2) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES2} \ ]
     \Longrightarrow BSIA \ \varrho \ \mathcal{V} \left( Tr_{(ES1 \parallel ES2)} \right)
proof -
  assume BSD1: BSD V1 Tr<sub>ES1</sub>
  and BSD2: BSD \ V2 \ Tr_{ES2}
and BSIA1: BSIA \ \varrho 1 \ V1 \ Tr_{ES1}
  and BSIA2: BSIA \varrho2 V2 Tr_{ES2}
  and \varrho 1v1-subset-\varrho v-inter-E1: (\varrho 1 \ V 1) \subseteq (\varrho \ V) \cap E_{ES1}
  and \varrho 2v2-subset-\varrho v-inter-E2: (\varrho 2 \ \mathcal{V}2) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES2}
     fix \alpha \beta c
     assume c-in-Cv: c \in C_{\mathcal{V}}
     assume \beta \alpha-in-Tr: (\beta @ \alpha) \in Tr_{(ES1 \parallel ES2)}
     assume \alpha-no-Cv: \alpha \mid C_{\mathcal{V}} = []
     assume Adm: (Adm \ \mathcal{V} \ \varrho \ Tr_{(ES1 \ \parallel \ ES2)} \ \beta \ c)
```

```
then obtain \gamma
  where \gamma \varrho v-is-\beta \varrho v: \gamma \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright (\varrho \ \mathcal{V})
  and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
  unfolding Adm-def
  \mathbf{by}\ \mathit{auto}
from \beta \alpha-in-Tr
have \beta \alpha-E1-in-Tr1: ((\beta @ \alpha) \uparrow E_{ES1}) \in Tr_{ES1}
  and \beta\alpha\text{-}\textit{E2-in-Tr2}\colon ((\beta\ @\ \alpha)\ |\ E_{ES2})\in \textit{Tr}_{ES2}
  by (simp add: composeES-def)+
interpret CSES1: CompositionSupport ES1 V V1
  {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation {\it Of Views-def}
  by (simp add: CompositionSupport-def validES1 validV1)
interpret CSES2: CompositionSupport ES2 V V2
  {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
  by (simp add: CompositionSupport-def validES2 validV2)
from CSES1.BSD-in-subsystem2[OF <math>\beta\alpha-E1-in-Tr1 BSD1] obtain \alpha1'
  where \beta E1 \alpha 1'-in-Tr1: \beta \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
  and \alpha 1' Vv1-is-\alpha Vv1: \alpha 1' \uparrow Vv_1 = \alpha \uparrow Vv_1
  and \alpha 1'Cv1-empty: \alpha 1' \uparrow C_{V1} = []
  by auto
from CSES2.BSD-in-subsystem2[OF\ \beta\alpha-E2-in-Tr2\ BSD2] obtain \alpha2'
  where \beta E2\alpha 2'-in-Tr2: \beta \uparrow E_{ES2} @ \alpha 2' \in Tr_{ES2}
  and \alpha 2' Vv2-is-\alpha Vv2: \alpha 2' \mid V_{\mathcal{V}2} = \alpha \mid V_{\mathcal{V}2}
  and \alpha 2' Cv2-empty: \alpha 2' \uparrow C_{\mathcal{V}2} = []
  by auto
 \begin{array}{l} \mathbf{have} \; \exists \; \alpha 1^{\prime\prime}. \; (set \; \alpha 1^{\prime\prime} \subseteq E_{ES1} \\ \wedge \; ((\beta \; @ \; [c]) \; | \; E_{ES1}) \; @ \; \alpha 1^{\prime\prime} \in \mathit{Tr}_{ES1} \\ \wedge \; \alpha 1^{\prime\prime} \; | \; V_{\mathcal{V}1} = \alpha \; | \; V_{\mathcal{V}1} \\ \wedge \; \alpha 1^{\prime\prime} \; | \; C_{\mathcal{V}1} = []) \end{array} 
  proof cases
     assume cE1-empty: [c] \uparrow E_{ES1} = []
     from \beta E1 \alpha 1 '-in-Tr1 validES1 have set \alpha 1 ' \subseteq E_{ES1}
       by (simp add: ES-valid-def traces-contain-events-def, auto)
     from cE1-empty \betaE1\alpha1'-in-Tr1 have ((\beta @ [c]) \uparrow E_{ES1}) @ \alpha1' \in Tr_{ES1}
       by (simp only: projection-concatenation-commute, auto)
     note \alpha 1'Vv1-is-\alpha Vv1 \alpha 1'Cv1-empty
     ultimately show ?thesis
       by auto
  next
     assume cE1-not-empty: [c] \uparrow E_{ES1} \neq []
     hence c-in-E1: c \in E_{ES1}
       by (simp only: projection-def, auto, split if-split-asm, auto)
```

```
from c-in-Cv c-in-E1 propSepViews have c \in C_{V1}
       unfolding properSeparationOfViews-def by auto
     moreover
     note \beta E1 \alpha 1'-in-Tr1 \alpha 1'Cv1-empty
     moreover
     have (Adm \ V1 \ \varrho 1 \ Tr_{ES1} \ (\beta \mid E_{ES1}) \ c)
       proof -
          from c-in-E1 \gammac-in-Tr have (\gamma \mid E_{ES1}) @ [c] \in Tr_{ES1}
             by (simp add: projection-def composeES-def)
          moreover
          have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1)
             proof -
                \mathbf{from} \ \gamma \varrho v\text{-}is\text{-}\beta \varrho v \ \mathbf{have} \ \gamma \uparrow E_{ES1} \uparrow (\varrho \ \mathcal{V}) = \beta \uparrow E_{ES1} \uparrow (\varrho \ \mathcal{V})
                  by (metis projection-commute)
                with \varrho 1v1-subset-\varrho v-inter-E1 have \gamma \upharpoonright (\varrho 1 \ V 1) = \beta \upharpoonright (\varrho 1 \ V 1)
                  by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
                thus ?thesis
                  by (metis projection-commute)
         ultimately show ?thesis unfolding Adm-def
       \mathbf{qed}
     moreover
     note BSIA1
     ultimately obtain \alpha 1''
       where \beta E1c\alpha 1^{\prime\prime\prime}-in-Tr1: (\beta \upharpoonright E_{ES1}) @ [c] @ \alpha 1^{\prime\prime} \in Tr_{ES1} and \alpha 1^{\prime\prime\prime} Vv1-is-\alpha 1^{\prime\prime} Vv1: \alpha 1^{\prime\prime\prime} \upharpoonright V_{\mathcal{V}1} = \alpha 1^{\prime} \upharpoonright V_{\mathcal{V}1}
       and \alpha 1''Cv1-empty: \alpha 1'' \mid C_{V1} = []
       \mathbf{unfolding}\ \mathit{BSIA-def}
       \mathbf{by} blast
     from validES1 \beta E1c\alpha 1''-in-Tr1 have set \alpha 1'' \subseteq E_{ES1}
       by (simp add: ES-valid-def traces-contain-events-def, auto)
     from \beta E1c\alpha 1 "-in-Tr1 c-in-E1 have ((\beta @ [c]) \upharpoonright E_{ES1}) @ \alpha 1" \in Tr_{ES1}
       by (simp only: projection-concatenation-commute projection-def, auto)
     from \alpha 1'' Vv1-is-\alpha 1' Vv1 \alpha 1' Vv1-is-\alpha Vv1 have \alpha 1'' \upharpoonright V_{V,1} = \alpha \upharpoonright V_{V,1}
       by auto
     moreover
     note \alpha 1^{\prime\prime} Cv1-empty
     ultimately show ?thesis
       by auto
  qed
then obtain \alpha 1^{\prime\prime}
  where \alpha 1''-in-E1star: set \alpha 1'' \subseteq E_{ES1}
 and \beta cE1 \alpha 1''-in-Tr1: ((\beta @ [c]) \uparrow E_{ES1}) @ \alpha 1'' \in Tr_{ES1} and \alpha 1'' Vv1-is-\alpha Vv1: \alpha 1'' \uparrow V_{V1} = \alpha \uparrow V_{V1} and \alpha 1'' Cv1-empty: \alpha 1'' \uparrow C_{V1} = []
  \mathbf{by} auto
```

```
have \exists \alpha 2''. (set \alpha 2'' \subseteq E_{ES2}
  \wedge \alpha 2^{\prime\prime} \mid C_{\mathcal{V}2} = [])
  proof cases
     assume cE2-empty: [c] \( 1 \) E_{ES2} = []
     from \beta E2\alpha 2'-in-Tr2 validES2 have set \alpha 2' \subseteq E_{ES2}
      by (simp add: ES-valid-def traces-contain-events-def, auto)
     moreover
     from cE2-empty \betaE2\alpha2'-in-Tr2 have ((\beta @ [c]) | E<sub>ES2</sub>) @ \alpha2' \in Tr<sub>ES2</sub>
       by (simp only: projection-concatenation-commute, auto)
     moreover
     note \alpha 2' Vv2-is-\alpha Vv2 \alpha 2' Cv2-empty
     ultimately show ?thesis
       by auto
     assume cE2-not-empty: [c] | E_{ES2} \neq [
     hence c-in-E2: c \in E_{ES2}
       by (simp only: projection-def, auto, split if-split-asm, auto)
     from c-in-Cv c-in-E2 propSepViews have c \in C_{\mathcal{V}2}
       unfolding properSeparationOfViews-def by auto
     moreover
     note \beta E2\alpha 2'-in-Tr2 \alpha 2'Cv2-empty
     moreover
     have (Adm~\mathcal{V2}~\varrho\mathcal{Z}~Tr_{ES2}~(\beta \uparrow E_{ES2})~c)
          from c-in-E2 \gamma c-in-Tr have (\gamma \mid E_{ES2}) \otimes [c] \in Tr_{ES2}
            by (simp add: projection-def composeES-def)
          moreover
          have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V} 2)
            proof -
              from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V})
                 by (metis projection-commute)
              with \varrho 2v2-subset-\varrho v-inter-E2 have \gamma \mid (\varrho 2 \ V2) = \beta \mid (\varrho 2 \ V2)
                 by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
              thus ?thesis
                 by (metis projection-commute)
        ultimately show ?thesis unfolding Adm-def
            \mathbf{by} auto
       \mathbf{qed}
     moreover
     note BSIA2
     ultimately obtain \alpha 2^{\prime\prime}
       where \beta E2c\alpha 2^{\prime\prime}-in-Tr2: (\beta \upharpoonright E_{ES2}) @ [c] @ \alpha 2^{\prime\prime} \in Tr_{ES2} and \alpha 2^{\prime\prime} Vv2-is-\alpha 2^{\prime} Vv2: \alpha 2^{\prime\prime} \upharpoonright V_{\mathcal{V}2} = \alpha 2^{\prime} \upharpoonright V_{\mathcal{V}2}
       and \alpha 2^{"}Cv2\text{-}empty: \alpha 2^{"} \mid C_{\mathcal{V}2} = []
       unfolding BSIA-def
       by blast
```

```
from validES2 \beta E2c\alpha 2 "-in-Tr2 have set \alpha 2 " \subseteq E_{ES2}
       by (simp add: ES-valid-def traces-contain-events-def, auto)
     moreover
     from \beta\textit{E2c}\alpha\textit{2}\,''\text{-}\textit{in-Tr2} c\text{-}\textit{in-E2} have ((\beta @ [c]) † \textit{E}_{ES2}) @ \alpha\textit{2}\,''\in\textit{Tr}_{ES2}
       by (simp only: projection-concatenation-commute projection-def, auto)
     from \alpha 2'' Vv2-is-\alpha 2' Vv2 \alpha 2' Vv2-is-\alpha Vv2 have \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha \upharpoonright V_{\mathcal{V}2}
       by auto
     moreover
     note \alpha 2^{\prime\prime} Cv2-empty
     ultimately show ?thesis
       by auto
  qed
then obtain \alpha 2^{\prime\prime}
  where \alpha 2''-in-E2star: set \alpha 2'' \subseteq E_{ES2}
  and \beta c E 2 \alpha 2 "-in-Tr2: ((\beta @ [c]) \uparrow E_{ES2}) @ \alpha 2 " \in Tr_{ES2}
  and \alpha 2^{"}Vv2-is-\alpha Vv2: \alpha 2^{"} \uparrow V_{\mathcal{V}2} = \alpha \uparrow V_{\mathcal{V}2}
  and \alpha 2''Cv2-empty: \alpha 2'' \mid C_{V2} = []
  by auto
from VIsViewOnE\ c-in-Cv\ \beta\alpha-in-Tr\ have\ set\ (\beta\ @\ [c])\subseteq E_{(ES1\ ||\ ES2)}
  by (simp add: isViewOn-def V-valid-def VC-disjoint-def
     VN-disjoint-def NC-disjoint-def composeES-def, auto)
moreover
have set (\alpha \mid V_{\mathcal{V}}) \subseteq V_{\mathcal{V}}
  by (simp add: projection-def, auto)
moreover
note \alpha1''-in-E1star \alpha2''-in-E2star \betacE1\alpha1''-in-Tr1 \betacE2\alpha2''-in-Tr2
have (\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES1} = \alpha 1^{"} \uparrow V_{\mathcal{V}}
  proof -
     \mathbf{from} \ \alpha \textit{1''Vv1-is-} \alpha \textit{Vv1} \ \textit{propSepViews}
     have \alpha \uparrow (V_{\mathcal{V}} \cap E_{ES1}) = \alpha 1^{"} \uparrow (E_{ES1} \cap V_{\mathcal{V}})
    unfolding properSeparationOfViews-def by (simp add: Int-commute) hence \alpha \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES1} = \alpha 1'' \upharpoonright E_{ES1} \upharpoonright V_{\mathcal{V}}
       by (simp add: projection-def)
     with \alpha 1 "-in-E1star show ?thesis
        by (simp add: list-subset-iff-projection-neutral)
  qed
moreover
\mathbf{have} \ (\alpha \upharpoonright V_{\mathcal{V}}) \upharpoonright E_{ES2} = \alpha 2 \, ^{\prime \prime} \upharpoonright \, V_{\mathcal{V}}
  proof -
     from \alpha 2^{\prime\prime} Vv2-is-\alpha Vv2 propSepViews
     have \alpha \uparrow (V_{\mathcal{V}} \cap E_{ES2}) = \alpha 2^{"} \uparrow (E_{ES2} \cap V_{\mathcal{V}})
        unfolding properSeparationOfViews-def by (simp add: Int-commute)
     hence \alpha \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES2} = \alpha 2'' \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}}
       by (simp add: projection-def)
     with \alpha 2^{\,\prime\prime}-in-E2star show ?thesis
       by (simp add: list-subset-iff-projection-neutral)
  qed
moreover
```

```
\textbf{note} \ \alpha 1 \, ^{\prime \prime} Cv1\text{-}empty \ \alpha 2 \, ^{\prime \prime} Cv2\text{-}empty \ generalized-zipping-lemma
     ultimately have \exists \alpha'. (\beta @ [c]) @ \alpha' \in Tr_{(ES1 \parallel ES2)} \land \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \land \alpha' \upharpoonright C_{\mathcal{V}} = []
       by blast
  thus ?thesis
     unfolding BSIA-def
     by auto
\mathbf{qed}
{\bf theorem}\ compositionality\text{-}FCD\text{:}
 ■ BSD V1 Tr<sub>ES1</sub>; BSD V2 Tr<sub>ES2</sub>;
  \begin{array}{l} \nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma 1}; \ \nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma 2}; \\ \Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1}; \ \Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma 2}; \end{array}
  (\Delta_{\Gamma 1} \cap N_{\mathcal{V} 1} \cup \Delta_{\Gamma 2} \cap N_{\mathcal{V} 2}) \subseteq \Delta_{\Gamma};
  N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cap E_{ES2} = \{\}; N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \cap E_{ES1} = \{\};
   FCD \Gamma 1 V 1 Tr_{ES1}; FCD \Gamma 2 V 2 Tr_{ES2} ]
  \implies FCD \Gamma V (Tr_{(ES1 \parallel ES2)})
proof -
  assume BSD1: BSD V1 Tr<sub>ES1</sub>
     and BSD2: BSD V2 Tr_{ES2}
     and Nabla-inter-E1-subset-Nabla1: \nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma 1}
     and Nabla-inter-E2-subset-Nabla2: \nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma2}
     and Upsilon-inter-E1-subset-Upsilon1: \Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1}
     and Upsilon-inter-E2-subset-Upsilon2: \Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}
     and Delta1-N1-Delta2-N2-subset-Delta: ( \Delta_{\Gamma 1} \cap N_{V1} \cup \Delta_{\Gamma 2} \cap N_{V2} ) \subseteq \Delta_{\Gamma}
     and N1-Delta1-E2-disjoint: N_{V1} \cap \Delta_{\Gamma 1} \cap E_{ES2} = \{\}
     and N2-Delta2-E1-disjoint: N_{V2} \cap \Delta_{\Gamma2} \cap E_{ES1} = \{\}
     and FCD1: FCD \Gamma1 V1 Tr_{ES1}
     and FCD2: FCD Γ2 V2 Tr<sub>ES2</sub>
     fix \alpha \beta c v'
     assume c-in-Cv-inter-Upsilon: c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})
        and v'-in-Vv-inter-Nabla: v' \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})
       and \beta cv'\alpha-in-Tr: (\beta @ [c,v'] @ \alpha) \in Tr_{(ES1 \parallel ES2)}
       and \alpha Cv-empty: \alpha \upharpoonright C_{\mathcal{V}} = [
     from \beta cv'\alpha-in-Tr
     have \beta cv'\alpha-E1-in-Tr1: (((\beta @ [c,v']) @ \alpha) \uparrow E_{ES1}) \in Tr_{ES1}
        and \beta cv'\alpha-E2-in-Tr2: (((\beta @ [c,v']) @ \alpha) | E_{ES2}) \in Tr_{ES2}
       by (simp add: composeES-def)+
     interpret CSES1: CompositionSupport ES1 V V1
        {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
       by (simp add: CompositionSupport-def validES1 validV1)
     interpret CSES2: CompositionSupport ES2 V V2
        {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
       by (simp add: CompositionSupport-def validES2 validV2)
```

from $CSES1.BSD-in-subsystem2[OF <math>\beta cv'\alpha$ -E1-in-Tr1 BSD1] obtain $\alpha 1'$

```
where \beta cv'E1\alpha 1'-in-Tr1: (\beta @ [c,v']) \uparrow E_{ES1} @ \alpha 1' \in Tr_{ES1}
  and \alpha 1' Vv1-is-\alpha Vv1: \alpha 1' \upharpoonright V_{V1} = \alpha \upharpoonright V_{V1}
  and \alpha 1'Cv1-empty: \alpha 1' \upharpoonright C_{V1} = []
  by auto
from CSES2.BSD-in-subsystem2[OF <math>\beta cv'\alpha-E2-in-Tr2 BSD2] obtain \alpha 2'
  where \beta cv' E2\alpha 2'-in-Tr2: (\beta @ [c,v']) \uparrow E_{ES2} @ \alpha 2' \in Tr_{ES2}
  and \alpha 2' Vv2-is-\alpha Vv2: \alpha 2' \uparrow V_{\mathcal{V}2} = \alpha \uparrow V_{\mathcal{V}2}
  and \alpha 2' Cv2-empty: \alpha 2' \uparrow C_{\mathcal{V}2} = []
  by auto
\mathbf{from}\ \mathit{c-in-Cv-inter-Upsilon}\ \mathit{v'-in-Vv-inter-Nabla}\ \mathit{validV1}
have c \notin E_{ES1} \lor (c \in E_{ES1} \land v' \notin E_{ES1}) \lor (c \in E_{ES1} \land v' \in E_{ES1})
  by (simp add: isViewOn-def V-valid-def
     VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
  assume c-notin-E1: c \notin E_{ES1}
  have set [] \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1})
    by auto
  moreover
  \mathbf{from} \ \beta \mathit{cv'E1} \ \alpha \mathit{1'-in-Tr1} \ \mathit{c-notin-E1} \ \mathbf{have} \ (\beta \upharpoonright E_{ES1}) \ @ \ [] \ @ \ ([\mathit{v'}] \upharpoonright E_{ES1}) \ @ \ \alpha \mathit{1'} \in \mathit{Tr}_{ES1}
     by (simp only: projection-concatenation-commute projection-def, auto)
  moreover
  have \alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} ...
  moreover
  note α1 ′Cv1-empty
  ultimately have \exists \alpha 1'' \delta 1''. set \delta 1'' \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma1}) \land (\beta \mid E_{ES1}) @ \delta 1'' @ ([v'] \mid E_{ES1}) @ \alpha 1'' \in Tr_{ES1} \land \alpha 1'' \mid V_{\mathcal{V}1} = \alpha 1' \mid V_{\mathcal{V}1} \land \alpha 1'' \mid C_{\mathcal{V}1} = []
     \mathbf{by} blast
}
moreover {
  assume c-in-E1: c \in E_{ES1}
  and v'-notin-E1: v' \notin E_{ES1}
  from c-in-E1 c-in-Cv-inter-Upsilon propSepViews
     Upsilon\text{-}inter\text{-}E1\text{-}subset\text{-}Upsilon1
  have c-in-Cv1-Upsilon1: c \in (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1})
     unfolding properSeparationOfViews-def by auto
  hence c-in-Cv1: c \in C_{V1}
    by auto
  moreover
  from \beta cv'E1\alpha 1'-in-Tr1 c-in-E1 v'-notin-E1 have (\beta \uparrow E_{ES1}) @ [c] @ \alpha 1' \in Tr_{ES1}
     \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute\ projection\text{-}def,\ auto)
  moreover
  note α1'Cv1-empty BSD1
  ultimately obtain \alpha 1''
     where first: (\beta \upharpoonright E_{ES1}) @ \alpha 1'' \in Tr_{ES1}
    and second: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} and third: \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []
     unfolding BSD-def
```

```
\mathbf{by} blast
  have set [] \subseteq (N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1})
    by auto
  moreover
  from first v'-notin-E1 have (\beta \upharpoonright E_{ES1}) @ [] @ ([v'] \upharpoonright E_{ES1}) @ \alpha 1'' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  note second third
  ultimately
  have \exists \alpha 1'' \delta 1''. set \delta 1'' \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1})
    \mathbf{by} blast
}
moreover {
  assume c-in-E1: c \in E_{ES1}
  and v'-in-E1: v' \in E_{ES1}
  {\bf from} \ \ c\text{-}in\text{-}E1 \ \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews
     Upsilon\text{-}inter\text{-}E1\text{-}subset\text{-}Upsilon1
  have c-in-Cv1-Upsilon1: c \in (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1})
     {\bf unfolding} \ properSeparationOf Views-def \ {\bf by} \ auto
  moreover
  \mathbf{from}\ v'\text{-}in\text{-}E1\ v'\text{-}in\text{-}Vv\text{-}inter\text{-}Nabla\ propSepViews\ Nabla\text{-}inter\text{-}E1\text{-}subset\text{-}Nabla1
  have v'-in-Vv1-inter-Nabla1: v' \in (V_{\mathcal{V}1} \cap \nabla_{\Gamma 1})
     unfolding properSeparationOfViews-def by auto
  from \beta cv'E1\alpha 1'-in-Tr1 c-in-E1 v'-in-E1 have (\beta \mid E_{ES1}) \otimes [c,v'] \otimes \alpha 1' \in Tr_{ES1}
     by (simp add: projection-def)
  moreover
  note α1 'Cv1-empty FCD1
  ultimately obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
    where first: set \delta 1'' \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1})
and second: (\beta \upharpoonright E_{ES1}) @ \delta 1'' @ [v'] @ \alpha 1'' \in Tr_{ES1}
and third: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
     and fourth: \alpha 1'' \uparrow \hat{C}_{V1} = []
     unfolding FCD-def
     \mathbf{by} blast
  from second v'-in-E1 have (\beta \mid E_{ES1}) \otimes \delta 1'' \otimes ([v'] \mid E_{ES1}) \otimes \alpha 1'' \in Tr_{ES1}
    by (simp add: projection-def)
  with first third fourth
  have \exists \alpha 1'' \delta 1''. set \delta 1'' \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1})
     \wedge (\beta \upharpoonright E_{ES1}) @ \delta1'' @ ([v'] \upharpoonright E_{ES1}) @ \alpha1'' \in Tr_{ES1}
     \wedge \alpha 1'' \mid V_{\mathcal{V}1} = \alpha 1' \mid V_{\mathcal{V}1} \wedge \alpha 1'' \mid C_{\mathcal{V}1} = []
     \mathbf{unfolding}\ \mathit{FCD-def}
     \mathbf{by} blast
}
ultimately obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
  where \delta 1''-in-Nv1-Delta1-star: set \delta 1'' \subseteq (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1})
  and \beta E1\delta 1 "vE1\alpha 1"-in-Tr1: (\beta \mid E_{ES1}) @ \delta 1" @ ([v'] \mid E_{ES1}) @ \alpha 1" \in Tr_{ES1}
```

```
and \alpha 1'' Vv1-is-\alpha 1' Vv1: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
  and \alpha 1^{\prime\prime} Cv1-empty: \alpha 1^{\prime\prime} \uparrow C_{V1} = []
  by blast
with validV1 have \delta 1''-in-E1-star: set \delta 1'' \subseteq E_{ES1}
  by (simp add: isViewOn-def V-valid-def
     VC-disjoint-def VN-disjoint-def, auto)
\mathbf{from} \ \mathit{c-in-Cv-inter-Upsilon} \ \mathit{v'-in-Vv-inter-Nabla} \ \mathit{validV2}
have c \notin E_{ES2} \lor (c \in E_{ES2} \land v' \notin E_{ES2}) \lor (c \in E_{ES2} \land v' \in E_{ES2})
  by (simp add: isViewOn-def V-valid-def
     VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
  assume c-notin-E2: c \notin E_{ES2}
  have set [] \subseteq (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}})
    by auto
  moreover
  from \beta cv'E2\alpha2'-in-Tr2 c-notin-E2 have (\beta \mid E_{ES2}) @ [] @ ([v'] \mid E_{ES2}) @ \alpha2' \in Tr_{ES2}
     by (simp only: projection-concatenation-commute projection-def, auto)
  moreover
  have \alpha 2' \upharpoonright V_{\mathcal{V} 2} = \alpha 2' \upharpoonright V_{\mathcal{V} 2}..
  moreover
  note \alpha 2'Cv2-empty
  ultimately have \exists \alpha 2'' \delta 2''. set \delta 2'' \subseteq (N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \land (\beta \mid E_{ES2}) @ \delta 2'' @ ([v'] \mid E_{ES2}) @ \alpha 2'' \in Tr_{ES2} \land \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2} \land \alpha 2'' \mid C_{\mathcal{V}2} = []
     \mathbf{by} blast
}
moreover {
  assume c-in-E2: c \in E_{ES2}
  and v'-notin-E2: v' \notin E_{ES2}
  \mathbf{from} \ \ c\text{-}in\text{-}E2 \ \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews \ } Upsilon\text{-}inter\text{-}E2\text{-}subset\text{-}Upsilon2
  have c-in-Cv2-Upsilon2: c \in (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}})
     unfolding properSeparationOfViews-def by auto
  hence c-in-Cv2: c \in C_{\mathcal{V}2}
     by auto
  moreover
  from \beta cv'E2\alpha2'-in-Tr2 c-in-E2 v'-notin-E2 have (\beta \uparrow E_{ES2}) @ [c] @ \alpha2' \in Tr_{ES2}
     by (simp only: projection-concatenation-commute projection-def, auto)
  moreover
  note \alpha 2'Cv2\text{-}empty\ BSD2
  ultimately obtain \alpha 2^{\prime\prime}
     where first: (\beta \mid E_{ES2}) @ \alpha 2'' \in Tr_{ES2}
     and second: \alpha 2'' \uparrow V_{\mathcal{V}2} = \alpha 2' \uparrow V_{\mathcal{V}2}
     and third: \alpha 2'' \mid C_{\mathcal{V}2} = []
     unfolding BSD-def
     \mathbf{by} blast
  have set [] \subseteq (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}})
    by auto
  moreover
```

```
from first v'-notin-E2 have (\beta \mid E_{ES2}) @ [] @ ([v'] \mid E_{ES2}) @ \alpha2'' \in Tr_{ES2}
     by (simp add: projection-def)
  moreover
  note second third
  ultimately
  have \exists \alpha 2^{"} \delta 2^{"}. set \delta 2^{"} \subseteq (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2})
     by blast
}
moreover {
  assume c-in-E2: c \in E_{ES2}
  and v'-in-E2: v' \in E_{ES2}
  \mathbf{from} \ c\text{-}in\text{-}E2 \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews
      Upsilon-inter-E2-subset-Upsilon2
  have c-in-Cv2-Upsilon2: c \in (C_{V2} \cap \Upsilon_{\Gamma2})
     unfolding properSeparationOfViews-def by auto
  \mathbf{from}\ v'\text{-}in\text{-}E2\ v'\text{-}in\text{-}Vv\text{-}inter\text{-}Nabla\ propSep\ Views\ Nabla\text{-}inter\text{-}E2\text{-}subset\text{-}Nabla2}
  have v'-in-Vv2-inter-Nabla2: v' \in (V_{\mathcal{V}2} \cap \nabla_{\Gamma 2})
     {\bf unfolding} \ properSeparationOf Views-def \ {\bf by} \ auto
  from \beta cv' E2\alpha 2'-in-Tr2 c-in-E2 v'-in-E2 have (\beta \upharpoonright E_{ES2}) @ [c,v'] @ \alpha 2' \in Tr_{ES2}
     by (simp add: projection-def)
  moreover
  note \alpha 2'Cv2-empty FCD2
  ultimately obtain \alpha 2^{\,\prime\prime} \, \delta 2^{\,\prime\prime}
     where first: set \delta 2^{\prime\prime} \subseteq (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}})
    and second: (\beta \mid E_{ES2}) @ \delta 2'' @ [v'] @ \alpha 2'' \in Tr_{ES2} and third: \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2} and fourth: \alpha 2'' \mid C_{\mathcal{V}2} = []
     \mathbf{unfolding}\ \mathit{FCD-def}
     \mathbf{by} blast
  from second v'-in-E2 have (\beta \mid E_{ES2}) \otimes \delta 2'' \otimes ([v'] \mid E_{ES2}) \otimes \alpha 2'' \in Tr_{ES2}
     by (simp add: projection-def)
  with first third fourth
  have \exists \alpha 2^{\prime\prime} \delta 2^{\prime\prime}. set \delta 2^{\prime\prime} \subseteq (N_{\mathcal{V}2} \cap \Delta_{\Gamma2})
     \wedge (\beta \upharpoonright E_{ES2}) @ \delta2'' @ ([v'] \upharpoonright E_{ES2}) @ \alpha2'' \in Tr_{ES2}
     \wedge \alpha 2'' \uparrow V_{\mathcal{V}2} = \alpha 2' \uparrow V_{\mathcal{V}2} \wedge \alpha 2'' \uparrow C_{\mathcal{V}2} = []
     \mathbf{unfolding}\ \mathit{FCD-def}
     \mathbf{by} blast
}
ultimately obtain \alpha 2^{\prime\prime} \delta 2^{\prime\prime}
  where \delta 2''-in-Nv2-Delta2-star: set \delta 2'' \subseteq (N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) and \beta E2\delta 2''vE2\alpha 2''-in-Tr2: (\beta \mid E_{ES2}) @ \delta 2'' @ ([v'] \mid E_{ES2}) @ \alpha 2'' \in Tr_{ES2} and \alpha 2''Vv2-is-\alpha 2'Vv2: \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}
  and \alpha 2^{\prime\prime} Cv2\text{-}empty: \alpha 2^{\prime\prime} \mid C_{\mathcal{V}2} = []
  \mathbf{by} blast
with validV2 have \delta 2''-in-E2-star: set \delta 2'' \subseteq E_{ES2}
  by (simp add: isViewOn-def V-valid-def
```

```
from δ1''-in-Nv1-Delta1-star N1-Delta1-E2-disjoint
have \delta 1^{\prime\prime} E2-empty: \delta 1^{\prime\prime} \uparrow E_{ES2} = []
  proof -
    from \delta 1''-in-Nv1-Delta1-star have \delta 1'' = \delta 1'' \mid (N_{V1} \cap \Delta_{\Gamma1})
      by (simp only: list-subset-iff-projection-neutral)
    hence \delta1 " | E_{ES2} = \delta1 " | (N_{V1} \cap \Delta_{\Gamma1}) | E_{ES2}
      by simp
    moreover
    have \delta 1'' \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}) \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES2})
      by (simp only: projection-def, auto)
    with N1-Delta1-E2-disjoint have \delta 1'' \upharpoonright (N_{V1} \cap \Delta_{\Gamma 1}) \upharpoonright E_{ES2} = []
      by (simp add: projection-def)
    ultimately show ?thesis
      by simp
  qed
moreover
from \delta 2''-in-Nv2-Delta2-star N2-Delta2-E1-disjoint have \delta 2''E1-empty: \delta 2'' \uparrow E_{ES1} = []
  proof -
    from \delta 2''-in-Nv2-Delta2-star have \delta 2'' = \delta 2'' \mid (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2})
       by (simp only: list-subset-iff-projection-neutral)
    hence \delta 2^{\prime\prime} \uparrow E_{ES1} = \delta 2^{\prime\prime} \uparrow (N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \uparrow E_{ES1}
      by simp
    moreover
    have \delta 2^{\,\prime\prime} \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright E_{ES1} = \delta 2^{\,\prime\prime} \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1})
       by (simp only: projection-def, auto)
    with N2-Delta2-E1-disjoint have \delta \mathcal{Z}'' \upharpoonright (N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma \mathcal{Z}}) \upharpoonright E_{ES1} = []
       by (simp add: projection-def)
    ultimately show ?thesis
       by simp
  qed
moreover
\mathbf{note} \ \beta E1\delta 1''vE1\alpha 1''-in-Tr1 \ \beta E2\delta 2''vE2\alpha 2''-in-Tr2 \ \delta 1''-in-E1-star \ \delta 2''-in-E2-star
ultimately have \beta\delta1''\delta2''v'E1\alpha1''-in-Tr1: (\beta @ \delta1'' @ \delta2'' @ [v']) \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
  and \beta \delta 1'' \delta 2'' v' E 2 \alpha 2'' - in - Tr 2: (\beta @ \delta 1'' @ \delta 2'' @ [v']) \uparrow E_{ES2} @ \alpha 2'' \in Tr_{ES2}
  by (simp only: projection-concatenation-commute list-subset-iff-projection-neutral, auto,
       simp only: projection-concatenation-commute list-subset-iff-projection-neutral, auto)
have set (\beta \otimes \delta 1'' \otimes \delta 2'' \otimes [v']) \subseteq E_{(ES1 \parallel ES2)}
    from \beta cv'\alpha-in-Tr have set \beta \subseteq E_{(ES1 \parallel ES2)}
       by (simp add: composeES-def)
    moreover
    note δ1''-in-E1-star δ2''-in-E2-star
    moreover
    from v'-in-Vv-inter-Nabla VIsViewOnE
    have v' \in E_{(ES1 \parallel ES2)}
      by (simp add:isViewOn-def V-valid-def
          VC-disjoint-def VN-disjoint-def, auto)
    ultimately show ?thesis
      by (simp add: composeES-def, auto)
```

```
qed
moreover
have set (\alpha \upharpoonright V_{\mathcal{V}}) \subseteq V_{\mathcal{V}}
  by (simp add: projection-def, auto)
from \beta E1\delta1''vE1\alpha1''-in-Tr1 validES1 have \alpha1''-in-E1-star: set \alpha1'' \subseteq E_{ES1}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
from \beta E2\delta 2''vE2\alpha 2''-in-Tr2 validES2 have \alpha 2''-in-E2-star: set \alpha 2'' \subseteq E_{ES2}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
note \beta \delta 1^{\prime\prime} \delta 2^{\prime\prime} v^{\prime} E 1 \alpha 1^{\prime\prime}-in-Tr1 \beta \delta 1^{\prime\prime} \delta 2^{\prime\prime} v^{\prime} E 2 \alpha 2^{\prime\prime}-in-Tr2
moreover
have (\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES1} = \alpha 1 " \uparrow V_{\mathcal{V}}
  proof -
     from \alpha 1''Vv1-is-\alpha 1'Vv1 \alpha 1'Vv1-is-\alpha Vv1 propSepViews
     \mathbf{have} \ \alpha \restriction (V_{\mathcal{V}} \cap E_{ES1}) = \alpha 1 \, {''} \restriction (E_{ES1} \cap \ V_{\mathcal{V}})
        unfolding properSeparationOfViews-def by (simp add: Int-commute)
     hence \alpha \uparrow V_{\mathcal{V}} \uparrow E_{ES1} = \alpha 1'' \uparrow E_{ES1} \uparrow V_{\mathcal{V}}
       by (simp add: projection-def)
     with \alpha 1''-in-E1-star show ?thesis
        \mathbf{by}\ (simp\ add:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
  qed
moreover
have (\alpha \uparrow V_{\mathcal{V}}) \uparrow E_{ES2} = \alpha 2^{"} \uparrow V_{\mathcal{V}}
  proof -
     from \alpha 2'' Vv2-is-\alpha 2' Vv2 \alpha 2' Vv2-is-\alpha Vv2 propSepViews
     have \alpha \upharpoonright (V_{\mathcal{V}} \cap E_{ES2}) = \alpha 2^{"} \upharpoonright (E_{ES2} \cap V_{\mathcal{V}})
        unfolding properSeparationOfViews-def by (simp add: Int-commute)
     hence \alpha \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES2} = \alpha 2 " \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}}
       by (simp add: projection-def)
     with \alpha 2^{\prime\prime}-in-E2-star show ?thesis
        by (simp add: list-subset-iff-projection-neutral)
  \mathbf{qed}
moreover
note α1"Cv1-empty α2"Cv2-empty generalized-zipping-lemma
ultimately obtain t
  where first: (\beta \otimes \delta 1'' \otimes \delta 2'' \otimes [v']) \otimes t \in Tr_{(ES1 \parallel ES2)}
  and second: t \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}}
  and third: t \mid C_{\mathcal{V}} = [
  by blast
from \delta1"-in-Nv1-Delta1-star \delta2"-in-Nv2-Delta2-star
have set (\delta 1^{\prime\prime} \otimes \delta 2^{\prime\prime}) \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})
  proof -
     have set (\delta 1^{"} @ \delta 2^{"}) \subseteq \Delta_{\Gamma}
       proof -
          from \delta 1''-in-Nv1-Delta1-star \delta 2''-in-Nv2-Delta2-star
          have set (\delta 1'' \otimes \delta 2'') \subseteq \Delta_{\Gamma 1} \cap N_{V 1} \cup \Delta_{\Gamma 2} \cap N_{V 2}
            by auto
          with Delta1-N1-Delta2-N2-subset-Delta show ?thesis
             by auto
```

```
qed
             moreover
             have set (\delta 1^{"} @ \delta 2^{"}) \subseteq N_{\mathcal{V}}
                proof -
                    from \delta 1''-in-Nv1-Delta1-star \delta 2''-in-Nv2-Delta2-star
                    have set (\delta 1^{"} @ \delta 2^{"}) \subseteq (N_{\mathcal{V}1} \cup N_{\mathcal{V}2})
                    with Nv1-union-Nv2-subset of-Nv show ?thesis
                       by auto
                 qed
             ultimately show ?thesis
                by auto
          qed
       moreover
       from first have \beta @ (\delta 1'' @ \delta 2'') @ [v'] @ t \in Tr_{(ES1 \parallel ES2)}
       moreover
      {\bf note}\ second\ third
       ultimately have \exists \alpha'. \exists \gamma'. (set \gamma') \subseteq (N_{\mathcal{V}} \cap \Delta_{\Gamma})
          \wedge ((\beta @ \gamma' @ [v'] @ \alpha') \in Tr_{(ES1 \parallel ES2)}
          \wedge \ (\alpha' \mid V_{\mathcal{V}}) = (\alpha \mid V_{\mathcal{V}})
          \wedge \alpha' \uparrow C_{\mathcal{V}} = [])
         by blast
   }
   thus ?thesis
       unfolding FCD-def
      by auto
qed
{\bf theorem}\ compositionality\text{-}FCI\text{:}
\llbracket BSD\ V1\ Tr_{ES1};\ BSD\ V2\ Tr_{ES2};\ BSIA\ \varrho1\ V1\ Tr_{ES1};\ BSIA\ \varrho2\ V2\ Tr_{ES2};
   total ES1 (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}); total ES2 (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2});
  \begin{array}{c} \nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma 1}; \nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma 2}; \\ \Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1}; \Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma 2}; \\ (\Delta_{\Gamma 1} \cap N_{\mathcal{V}1} \cup \Delta_{\Gamma 2} \cap N_{\mathcal{V}2}) \subseteq \Delta_{\Gamma}; \end{array}
   (N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\} \land N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1})
    \begin{array}{c} \vee \; (\; N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} = \{\} \wedge N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}) \;\; ; \\ FCI \; \Gamma1 \; \mathcal{V}1 \; Tr_{ES1}; \; FCI \; \Gamma2 \; \mathcal{V}2 \; Tr_{ES2} \; \mathbb{I} \end{array} 
   \Longrightarrow FCI \ \Gamma \ \mathcal{V} \ (\widetilde{Tr}_{(ES1 \ \parallel \ ES2)})
proof -
   assume BSD1: BSD V1 Tr<sub>ES1</sub>
      and BSD2: BSD V2 Tr_{ES2}
       and BSIA1: BSIA Q1 V1 Tr<sub>ES1</sub>
      and BSIA2: BSIA \varrho2 V2 Tr_{ES2}
      and total-ES1-C1-inter-Upsilon1: total ES1 (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1})
      and total-ES2-C2-inter-Upsilon2: total ES2 (C_{V2} \cap \Upsilon_{\Gamma2})
      and Nabla-inter-E1-subset-Nabla1: \nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma 1} and Nabla-inter-E2-subset-Nabla2: \nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma 2}
      and Upsilon-inter-E1-subset-Upsilon1: \Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1} and Upsilon-inter-E2-subset-Upsilon2: \Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma 2}
       and Delta1-N1-Delta2-N2-subset-Delta: ( \Delta_{\Gamma 1} \cap N_{\mathcal{V}1} \cup \Delta_{\Gamma 2} \cap N_{\mathcal{V}2} ) \subseteq \Delta_{\Gamma}
```

```
and very-long-asm: (N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\} \wedge N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1})
\vee (N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} = \{\} \wedge N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2})
and FCI1: FCI \Gamma1 V1 Tr_{ES1}
and FCI2: FCI \Gamma2 V2 Tr_{ES2}
fix \alpha \beta c v'
assume c-in-Cv-inter-Upsilon: c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})
  and v'-in-Vv-inter-Nabla: v' \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})
  and \beta v'\alpha-in-Tr: (\beta @ [v'] @ \alpha) \in Tr_{(ES1 \parallel ES2)}
  and \alpha Cv-empty: \alpha \mid C_{\mathcal{V}} = [
from \beta v' \alpha-in-Tr
have \beta v'\alpha-E1-in-Tr1: (((\beta @ [v']) @ \alpha) \uparrow E_{ES1}) \in Tr_{ES1}
  and \beta v'\alpha-E2-in-Tr2: (((\beta @ [v']) @ \alpha) \uparrow E_{ES2}) \in Tr_{ES2}
  by (simp add: composeES-def)+
interpret CSES1: CompositionSupport ES1 V V1
  using propSepViews unfolding properSeparationOfViews-def
  by (simp add: CompositionSupport-def validES1 validV1)
interpret CSES2: CompositionSupport ES2 V V2
   using propSepViews unfolding properSeparationOfViews-def
  by (simp add: CompositionSupport-def validES2 validV2)
from CSES1.BSD-in-subsystem2[OF \beta v'\alpha-E1-in-Tr1 BSD1] obtain \alpha 1'
   where \beta v'E1\alpha 1'-in-Tr1: (\beta @ [v']) \uparrow E_{ES1} @ \alpha 1' \in Tr_{ES1}
   and \alpha 1' Vv1-is-\alpha Vv1: \alpha 1' \mid V_{V1} = \alpha \mid V_{V1}
  and \alpha 1'Cv1-empty: \alpha 1' \uparrow C_{V1} = []
  by auto
from CSES2.BSD-in-subsystem2[OF <math>\beta v'\alpha-E2-in-Tr2 BSD2] obtain \alpha 2'
  where \beta v'E2\alpha 2'-in-Tr2: (\beta @ [v']) \uparrow E_{ES2} @ \alpha 2' \in Tr_{ES2} and \alpha 2'Vv2-is-\alpha Vv2: \alpha 2' \uparrow V_{\mathcal{V}2} = \alpha \uparrow V_{\mathcal{V}2}
  and \alpha 2'Cv2-empty: \alpha 2' \mid C_{V2} = []
  by auto
note very-long-asm
moreover {
   assume Nv1-inter-Delta1-inter-E2-empty: N_{V1} \cap \Delta_{\Gamma 1} \cap E_{ES2} = \{\}
     and Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1: N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1}
   let ?ALPHA2''-DELTA2'' = \exists \alpha 2'' \delta 2''. (
    \begin{array}{l} \operatorname{set} \ \alpha 2^{\prime\prime} \subseteq E_{ES2} \wedge \operatorname{set} \ \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \\ \wedge \ \beta \ | \ E_{ES2} \ @ \ [c] \ | \ E_{ES2} \ @ \ \delta 2^{\prime\prime} \ @ \ [v'] \ | \ E_{ES2} \ @ \ \alpha 2^{\prime\prime} \in \operatorname{Tr}_{ES2} \\ \wedge \ \alpha 2^{\prime\prime} \ | \ V_{\mathcal{V}2} = \alpha 2^{\prime} \ | \ V_{\mathcal{V}2} \wedge \alpha 2^{\prime\prime} \ | \ C_{\mathcal{V}2} = []) \end{array}
   from c-in-Cv-inter-Upsilon\ v'-in-Vv-inter-Nabla\ valid\ V2
   have c \notin E_{ES2} \lor (c \in E_{ES2} \land v' \notin E_{ES2}) \lor (c \in E_{ES2} \land v' \in E_{ES2})
     by (simp add: isViewOn-def V-valid-def
        VC-disjoint-def VN-disjoint-def NC-disjoint-def)
   moreover {
```

{

```
assume c-notin-E2: c \notin E_{ES2}
  from validES2 \beta v'E2\alpha 2'-in-Tr2 have set \alpha 2' \subseteq E_{ES2}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  have set [] \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}
    by auto
  moreover
  from \beta v'E2\alpha 2'-in-Tr2 c-notin-E2
  have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  have \alpha 2' \upharpoonright V_{\mathcal{V} 2} = \alpha 2' \upharpoonright V_{\mathcal{V} 2} ..
  moreover
  note \alpha 2'Cv2-empty
  ultimately have ?ALPHA2"-DELTA2"
    \mathbf{by} blast
}
moreover {
  assume c-in-E2: c \in E_{ES2}
    and v'-notin-E2: v' \notin E_{ES2}
  {\bf from} \ c\hbox{-}in\hbox{-}E2 \ c\hbox{-}in\hbox{-}Cv\hbox{-}inter\hbox{-}Upsilon \ propSepViews
     Upsilon\hbox{-}inter\hbox{-}E2\hbox{-}subset\hbox{-}Upsilon2
  have c-in-Cv2-inter-Upsilon2: c \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}
     unfolding properSeparationOfViews-def by auto
  hence c \in C_{\mathcal{V}2}
    by auto
  moreover
  from \beta v'E2\alpha 2'-in-Tr2 v'-notin-E2 have \beta \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  note \alpha 2'Cv2\text{-}empty
  moreover
  have (Adm~\mathcal{V2}~\varrho\mathcal{Z}~Tr_{ES2}~(\beta \uparrow E_{ES2})~c)
    proof -
       from validES2\ \beta v'E2\alpha 2'-in-Tr2 v'-notin-E2 have \beta \upharpoonright E_{ES2} \in Tr_{ES2}
         by (simp add: ES-valid-def traces-prefixclosed-def
            prefixclosed-def prefix-def projection-concatenation-commute)
       \mathbf{with}\ total\text{-}ES2\text{-}C2\text{-}inter\text{-}Upsilon2\ c\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon2
       have \beta \upharpoonright E_{ES2} @ [c] \in Tr_{ES2}
         \mathbf{by}\ (simp\ add\colon total\text{-}def)
       thus ?thesis
         unfolding Adm-def
         by blast
    qed
  moreover
  \mathbf{note}\ \mathit{BSIA2}
  ultimately obtain \alpha 2^{\prime\prime}
    where one: \beta \upharpoonright E_{ES2} @ [c] @ \alpha 2'' \in Tr_{ES2} and two: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2} and three: \alpha 2'' \upharpoonright C_{\mathcal{V}2} = []
```

```
unfolding BSIA-def
    \mathbf{by} blast
  from one validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  have set [] \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}
    by auto
  moreover
  from one c-in-E2 v'-notin-E2
  have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2^{\prime\prime} \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  note two three
  ultimately have ?ALPHA2"-DELTA2"
moreover {
  assume c-in-E2: c \in E_{ES2}
    and v'-in-E2: v' \in E_{ES2}
  \mathbf{from} \ c\text{-}in\text{-}E2 \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews
     Upsilon\hbox{-}inter\hbox{-}E2\hbox{-}subset\hbox{-}Upsilon2
  have c-in-Cv2-inter-Upsilon2: c \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}
    {\bf unfolding} \ properSeparationOf Views-def \ {\bf by} \ auto
  moreover
  \mathbf{from}\ v'\text{-}in\text{-}E2\ propSepViews}\ v'\text{-}in\text{-}Vv\text{-}inter\text{-}Nabla\ Nabla\text{-}inter\text{-}E2\text{-}subset\text{-}Nabla2
  have v' \in V_{\mathcal{V}2} \cap Nabla \Gamma 2
    unfolding properSeparationOfViews-def by auto
  moreover
  from v'\text{-}in\text{-}E2\ \beta v'E2\alpha2'\text{-}in\text{-}Tr2 have \beta \upharpoonright E_{ES2} @ [v'] @ \alpha2' \in \mathit{Tr}_{ES2}
    by (simp add: projection-def)
  moreover
  note \alpha 2'Cv2-empty FCI2
  ultimately obtain \alpha 2^{\,\prime\prime} \, \delta 2^{\,\prime\prime}
    where one: set \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
and two: \beta \mid E_{ES2} @ [c] @ \delta 2^{\prime\prime} @ [v'] @ \alpha 2^{\prime\prime} \in \mathit{Tr}_{ES2}
    and three: \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}
    and four: \alpha 2'' \uparrow C_{\mathcal{V}2} = []
    unfolding FCI-def
    by blast
  from two validES2 have set \alpha 2^{"} \subseteq E_{ES2}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  note one
  moreover
  from two c-in-E2 v'-in-E2
  have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta2^{\prime\prime} @ [v'] \upharpoonright E_{ES2} @ \alpha2^{\prime\prime} \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  note three four
```

```
ultimately have ?ALPHA2"-DELTA2"
                                   \mathbf{by} blast
                      ultimately obtain \alpha 2^{\prime\prime} \delta 2^{\prime\prime}
                           where \alpha 2''-in-E2star: set \alpha 2'' \subseteq E_{ES2} and \delta 2''-in-N2-inter-Delta2star: set \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
                            and \beta E2-cE2-\delta2''-v'E2-\alpha2''-in-Tr2:
                           \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2^{\prime\prime} @ [v'] \upharpoonright E_{ES2} @ \alpha 2^{\prime\prime} \in \mathit{Tr}_{ES2} \\ \text{and} \ \alpha 2^{\prime\prime\prime} \mathit{Vv2-is-} \alpha 2^{\prime\prime} \mathit{Vv2} : \alpha 2^{\prime\prime} \upharpoonright \mathit{V}_{\mathcal{V2}} = \alpha 2^{\prime} \upharpoonright \mathit{V}_{\mathcal{V2}} \\
                            and \alpha 2''Cv2-empty: \alpha 2'' \upharpoonright C_{\mathcal{V}2} = []
                            \mathbf{by} blast
                      from c-in-Cv-inter-Upsilon Upsilon-inter-E1-subset-Upsilon1
                      propSepViews
                      have cE1-in-Cv1-inter-Upsilon1: set ([c] \uparrow E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}
                            unfolding properSeparationOfViews-def by (simp add: projection-def, auto)
                      from \delta 2^{\prime\prime}-in-N2-inter-Delta2star Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1
                            propSep\ Views\ disjoint-Nv2-Vv1
                      have \delta 2''E1-in-Cv1-inter-Upsilon1star: set (\delta 2'' \upharpoonright E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}
                            proof -
                                   from \delta 2 ''-in-N2-inter-Delta2star
                                  have eq: \delta 2^{\,\prime\prime} \uparrow E_{ES1} = \delta 2^{\,\prime\prime} \uparrow (N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1})
                                          \mathbf{by}\ (\mathit{metis}\ \mathit{Int-commute}\ \mathit{Int-left-commute}\ \mathit{Int-lower1}\ \mathit{Int-lower2}
                                                 projection-intersection-neutral subset-trans)
                                    from validV1 Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1 propSepViews
                                          disjoint-Nv2-Vv1
                                    have N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
                                          unfolding properSeparationOfViews-def
                                          \mathbf{by}\ (simp\ add: is\ View\ On\text{-}def\ V\text{-}valid\text{-}def\ V\ C\text{-}disjoint\text{-}def
                                                  VN-disjoint-def NC-disjoint-def, auto)
                                   thus ?thesis
                                          by (subst eq, simp only: projection-def, auto)
                            qed
                      have c\delta 2''E1-in-Cv1-inter-Upsilon1star: set ((c \# \delta 2'') \upharpoonright E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}
                                   \mathbf{from}\ cE1\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1\ \delta2^{\prime\prime}E1\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1star
                                  have set (([c] @ \delta 2'') | E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}
                                          by (simp only: projection-concatenation-commute, auto)
                                    thus ?thesis
                                          by auto
                           \mathbf{qed}
                     \begin{array}{l} \mathbf{have} \ \exists \ \alpha 1^{\prime\prime\prime} \ \delta 1^{\prime\prime\prime}. \ set \ \alpha 1^{\prime\prime\prime} \subseteq E_{ES1} \\ \wedge \ set \ \delta 1^{\prime\prime\prime} \subseteq \ N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup \ C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \end{array} \qquad \wedge \ \beta \upharpoonright E_{ES1} \ @ \ [c] \upharpoonright E_{ES1} \ @ \ \delta 1^{\prime\prime\prime} \ @ \ \delta 1^{\prime\prime\prime\prime} \ @ \ \delta 1^{\prime\prime\prime} \ @ \ \delta 1^{\prime\prime\prime} \ @ \ \delta 1^{\prime\prime\prime} \ @ \ \delta 1^{\prime\prime\prime\prime} \ @
proof cases
```

```
assume v'-in-E1: v' \in E_{ES1}
 \textbf{with} \ \textit{Nabla-inter-E1-subset-Nabla1} \ \textit{propSepViews} \ \textit{v'-in-Vv-inter-Nabla} \\ 
have v'-in-Vv1-inter-Nabla1: v' \in V_{\mathcal{V}1} \cap Nabla \Gamma 1
   unfolding properSeparationOfViews-def by auto
\mathbf{have} \ \llbracket \ (\beta \ @ \ [v']) \ | \ E_{ES1} \ @ \ \alpha 1' \in \ Tr_{ES1} \ ;
   \alpha 1' \uparrow C_{\mathcal{V}1} = []; set ((c \# \delta 2'') \uparrow E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1};
   c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} ; set \ \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} ]
\implies \exists \ \alpha 1'' \ \delta 1''. \ (set \ \alpha 1'' \subseteq E_{ES1} \land set \ \delta 1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
   \begin{array}{c} \longrightarrow \bigcap \alpha \Gamma \quad \text{of } \quad \text{(see al.} \quad \equiv \neg E_{ES1} \\ \cup \quad C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \\ \wedge \quad \beta \mid E_{ES1} @ [c] \mid E_{ES1} @ \delta1'' @ [v'] \mid E_{ES1} @ \alpha1'' \in Tr_{ES1} \\ \wedge \quad \alpha1'' \mid V_{\mathcal{V}1} = \alpha1' \mid V_{\mathcal{V}1} \wedge \alpha1'' \mid C_{\mathcal{V}1} = [] \\ \wedge \quad \delta1'' \mid (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = \delta2'' \mid E_{ES1} ) \\ \end{array} 
   proof (induct length ((c \# \delta 2'') | E_{ES1}) arbitrary: \beta \alpha 1' c \delta 2'')
      case \theta
      from \theta(2) validES1 have set \alpha 1' \subseteq E_{ES1}
         by (simp add: ES-valid-def traces-contain-events-def, auto)
      have set [] \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
         by auto
      moreover
      have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in \mathit{Tr}_{ES1}
         proof -
             note \theta(2)
             moreover
             from \theta(1) have c \notin E_{ES1}
                by (simp add: projection-def, auto)
             ultimately show ?thesis
                by (simp add: projection-concatenation-commute projection-def)
         qed
      moreover
      have \alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}..
      moreover
      note \theta(3)
      moreover
      from \theta(1) have [] \uparrow (C_{V1} \cap \Upsilon_{\Gamma 1}) = \delta 2'' \uparrow E_{ES1}
         by (simp add: projection-def, split if-split-asm, auto)
      ultimately show ?case
         by blast
   next
      case (Suc \ n)
      from projection\text{-}split\text{-}last[\mathit{OF}\ \mathit{Suc}(2)] obtain \mu\ c'\ \nu
         where c'-in-E1: c' \in E_{ES1} and c\delta 2''-is-\mu c'\nu: c \# \delta 2'' = \mu @ [c'] @ \nu
         and \nu E1-empty: \nu \mid E_{ES1} = []
         and n-is-length-\mu\nu E1: n = length ((\mu @ \nu) \uparrow E_{ES1})
      from Suc(5) c'-in-E1 c\delta 2''-is-\mu c'\nu
      have set (\mu \upharpoonright E_{ES1} @ [c']) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
```

```
by (simp only: c\delta 2^{\prime\prime}-is-\mu c^\prime \nu projection-concatenation-commute
    projection-def, auto)
hence c'-in-Cv1-inter-Upsilon1: c' \in C_{V1} \cap \Upsilon_{\Gamma 1}
  by auto
hence c'-in-Cv1: c' \in C_{\mathcal{V}1} and c'-in-Upsilon1: c' \in \Upsilon_{\Gamma 1}
  by auto
with validV1 have c'-in-E1: c' \in E_{ES1}
  by (simp add: isViewOn-def V-valid-def VC-disjoint-def
     VN-disjoint-def NC-disjoint-def, auto)
\mathbf{show}~? case
  proof (cases \mu)
    \mathbf{case}\ \mathit{Nil}
    with c\delta 2''-is-\mu c'\nu have c-is-c': c=c' and \delta 2''-is-\nu: \delta 2''=\nu
      by auto
    with c'-in-Cv1-inter-Upsilon1 have c \in C_{V1} \cap \Upsilon_{\Gamma 1}
      by simp
    moreover
    note v'-in-Vv1-inter-Nabla1
    moreover
    from v'-in-E1 Suc(3) have (\beta \upharpoonright E_{ES1}) @ [v'] @ \alpha 1' \in Tr_{ES1}
       by (simp add: projection-concatenation-commute projection-def)
    moreover
    note Suc(4) FCI1
     ultimately obtain \alpha 1^{\prime\prime} \gamma
      where one: set \gamma \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} and two: \beta \upharpoonright E_{ES1} @ [c] @ \gamma @ [v'] @ \alpha1'' \in Tr_{ES1} and three: \alpha1'' \upharpoonright V_{\mathcal{V}1} = \alpha1' \upharpoonright V_{\mathcal{V}1} and four: \alpha1'' \upharpoonright C_{\mathcal{V}1} = []
       unfolding FCI-def
       \mathbf{by} blast
    let ?DELTA1'' = \nu | E_{ES1} @ \gamma
    from two validES1 have set \alpha 1'' \subseteq E_{ES1}
       by (simp add: ES-valid-def traces-contain-events-def, auto)
    moreover
     from one \nu E1-empty
     have set ?DELTA1" \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
       by auto
     moreover
     have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
         from c-is-c' c'-in-E1 have [c] = [c] \upharpoonright E_{ES1}
           by (simp add: projection-def)
         moreover
         from v'-in-E1 have [v'] = [v'] \upharpoonright E_{ES1}
           by (simp add: projection-def)
         moreover
         note \nu E1-empty two
         ultimately show ?thesis
```

```
\mathbf{by} auto
    qed
  moreover
  note three four
  moreover
  have ?DELTA1'' \uparrow (C_{V1} \cap \Upsilon_{\Gamma 1}) = \delta 2'' \uparrow E_{ES1}
     proof -
       have \gamma \upharpoonright (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}) = []
          proof -
            from validV1 have N_{V1} \cap \Delta_{\Gamma1} \cap (C_{V1} \cap \Upsilon_{\Gamma1}) = \{\}
               by (simp add: isViewOn-def V-valid-def
                  VC	ext{-}disjoint	ext{-}def \ VN	ext{-}disjoint	ext{-}def \ NC	ext{-}disjoint	ext{-}def, \ auto)
            with projection-intersection-neutral[OF one, of C_{V1} \cap \Upsilon_{\Gamma 1}]
            show ?thesis
               by (simp add: projection-def)
          qed
       with \delta 2''-is-\nu \nu E1-empty show ?thesis
         by (simp add: projection-concatenation-commute)
  {\bf ultimately \ show} \ {\it ?thesis}
     \mathbf{by} blast
next
  case (Cons \ x \ xs)
  with c\delta 2^{\,\prime\prime}-is-\mu c^{\,\prime}\nu have \mu-is-c-xs: \mu=[c] @ xs
     and \delta 2''-is-xs-c'-\nu: \delta 2'' = xs @ [c'] @ \nu
     by auto
  with n-is-length-\mu\nu E1 have n = length ((c \# (xs @ \nu)) \uparrow E_{ES1})
     by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) \upharpoonright E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma 1}
     proof -
       have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
         by auto
       from Suc(5) c\delta 2''-is-\mu c'\nu \mu-is-c-xs \nu E1-empty
       \mathbf{show}~? the sis
         by (subst res, simp only: c\delta 2''-is-\mu c'\nu projection-concatenation-commute
             set-append, auto)
     qed
  moreover
  note Suc(6)
  moreover
  from Suc(7) \delta 2''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
    by auto
  moreover note Suc(1)[of \ c \ xs @ \nu \beta \ \alpha 1']
  ultimately obtain \delta \gamma
     where one: set \delta \subseteq E_{ES1}
    and two: set \gamma\subseteq N_{\mathcal{V}1}\cap\Delta_{\Gamma1}\cup C_{\mathcal{V}1}\cap\Upsilon_{\Gamma1}\cap N_{\mathcal{V}2}\cap\Delta_{\Gamma2} and three: \beta\upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \gamma @ [v'] \upharpoonright E_{ES1} @ \delta\in Tr_{ES1} and four: \delta\upharpoonright V_{\mathcal{V}1}=\alpha 1'\upharpoonright V_{\mathcal{V}1}
```

```
and five: \delta \upharpoonright C_{\mathcal{V}1} = []
  and six: \gamma \uparrow (C_{V1} \cap \Upsilon_{\Gamma 1}) = (xs @ \nu) \uparrow E_{ES1}
  by blast
let ?BETA = \beta | E_{ES1} @ [c] | E_{ES1} @ \gamma
\mathbf{note}\ c'\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1\ v'\text{-}in\text{-}Vv1\text{-}inter\text{-}Nabla1
from three v'-in-E1 have ?BETA @ [v'] @ \delta \in Tr_{ES1}
  by (simp add: projection-def)
moreover
note five FCI1
ultimately obtain \alpha 1^{\prime\prime} \delta^{\prime}
  where fci-one: set \delta' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
  and fci-two: ?BETA @ [c'] @ \delta' @ [v'] @ \alpha 1'' \in Tr_{ES1}
  and fci-three: \alpha 1^{"} \mid V_{\mathcal{V}1} = \delta \mid V_{\mathcal{V}1}
  and fci-four: \alpha 1'' \mid C_{V1} = []
  unfolding FCI-def
  \mathbf{by} blast
let ?DELTA1'' = \gamma @ [c'] @ \delta'
from fci-two validES1 have set \alpha 1^{"} \subseteq E_{ES1}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA1" \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
     from Suc(7) c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu
    have c' \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
       by auto
     with two fci-one show ?thesis
       by auto
  \mathbf{qed}
moreover
from fci-two v'-in-E1
have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
  by (simp add: projection-def)
from fci-three four have \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
  by simp
moreover
note fci-four
moreover
have ?DELTA1'' | (C_{V1} \cap \Upsilon_{\Gamma 1}) = \delta 2'' | E_{ES1}
  proof -
    have \delta' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = []
       proof -
          from fci-one have \forall e \in set \ \delta'. \ e \in N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}
          with validV1 have \forall e \in set \delta'. e \notin C_{V1} \cap \Upsilon_{\Gamma 1}
            by (simp add: isViewOn-def V-valid-def
```

```
VC-disjoint-def VN-disjoint-def, auto)
                        thus ?thesis
                           by (simp add: projection-def)
                     qed
                  with c'-in-E1 c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu \nu E1-empty six
                     by (simp only: projection-concatenation-commute projection-def, auto)
            ultimately show ?thesis
               \mathbf{by} blast
         qed
qed
from this [OF \beta v'E1\alpha 1'-in-Tr1 \alpha 1'Cv1-empty c\delta 2''E1-in-Cv1-inter-Upsilon1star
   c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon\ \delta 2\text{ }^{\prime\prime}\text{-}in\text{-}N2\text{-}inter\text{-}Delta2star]
obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
   where one: set \alpha 1^{"} \subseteq E_{ES1}
  and two: set \delta 1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
and three: \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta 1'' @ [v'] \upharpoonright E_{ES1} @ \alpha 1'' \in Tr_{ES1} \wedge \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} \wedge \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []
   and four: \delta 1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = \delta 2'' \upharpoonright E_{ES1}
   \mathbf{by} blast
note one two three
moreover
have \delta 1'' \upharpoonright E_{ES2} = \delta 2'' \upharpoonright E_{ES1}
   proof -
      \mathbf{from}\ projection\text{-}intersection\text{-}neutral[OF\ two,\ of\ E_{ES2}]
         Nv1-inter-Delta1-inter-E2-empty validV2
      have \delta 1'' \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES2})
        by (simp only: Int-Un-distrib2, auto)
      moreover
      \mathbf{from}\ \mathit{validV2}
      have C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES2} = C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
         by (simp add: isViewOn-def V-valid-def
             VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
      ultimately have \delta 1'' \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (C_{V1} \cap \Upsilon_{\Gamma1} \cap N_{V2} \cap \Delta_{\Gamma2})
      hence \delta 1^{\prime\prime} \upharpoonright E_{ES2} = \delta 1^{\prime\prime} \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2})
         by (simp add: projection-def)
      with four have \delta 1'' \upharpoonright E_{ES2} = \delta 2'' \upharpoonright E_{ES1} \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2})
      hence \delta 1'' \upharpoonright E_{ES2} = \delta 2'' \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2}) \upharpoonright E_{ES1}
        by (simp only: projection-commute)
      with \delta 2^{\prime\prime}-in-N2-inter-Delta2star show ?thesis
        by (simp only: list-subset-iff-projection-neutral)
   qed
ultimately show ?thesis
      by blast
assume v'-notin-E1: v' \notin E_{ES1}
 have [\![ (\beta @ [v']) \uparrow E_{ES1} @ \alpha 1' \in Tr_{ES1} ; ]\!]
```

```
\begin{array}{l} \alpha 1' \upharpoonright C_{\mathcal{V}1} = [ ]; \; set \; ((c \;\#\; \delta 2'') \upharpoonright E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1} \; ; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \; ; \; set \; \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \; ] \end{array}.
                    \Longrightarrow \exists \alpha 1'' \delta 1''. (set \alpha 1'' \subseteq E_{ES1} \land set \delta 1'' \subseteq N_{V1}
                         \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
                                                                                                                 \land \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta1'' @ [v'] \upharpoonright E_{ES1}
@ \alpha 1^{\prime\prime} \in \mathit{Tr}_{ES1}
 \land \alpha 1^{\prime\prime} \mid \mathit{V}_{\mathcal{V}1} = \alpha 1^{\prime} \mid \mathit{V}_{\mathcal{V}1} \land \alpha 1^{\prime\prime} \mid \mathit{C}_{\mathcal{V}1} = []
 \land \delta 1^{\prime\prime} \mid \mathit{E}_{ES2} = \delta 2^{\prime\prime} \mid \mathit{E}_{ES1})

\land \delta 1^{\prime\prime} \mid \mathit{E}_{ES2} = \delta 2^{\prime\prime} \mid \mathit{E}_{ES1}) arbitr
                    proof (induct length ((c \# \delta 2'') \cdot E_{ES1}) arbitrary: \beta \alpha 1' c \delta 2'')
                        \mathbf{case}\ \theta
                       from \theta(2) validES1 have set \alpha 1' \subseteq E_{ES1}
                          by (simp add: ES-valid-def traces-contain-events-def, auto)
                       have set [] \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
                          by auto
                       moreover
                       have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
                             note \theta(2)
                              moreover
                              from \theta(1) have c \notin E_{ES1}
                                by (simp add: projection-def, auto)
                              ultimately show ?thesis
                                by (simp add: projection-concatenation-commute projection-def)
                          qed
                       moreover
                       have \alpha 1' \upharpoonright V_{\mathcal{V}_1} = \alpha 1' \upharpoonright V_{\mathcal{V}_1}..
                       moreover
                       note \theta(3)
                       moreover
                       from \theta(1) have [] | E_{ES2} = \delta 2'' \mid E_{ES1}
                          by (simp add: projection-def, split if-split-asm, auto)
                       ultimately show ?case
                          \mathbf{by} blast
                    \mathbf{next}
                       case (Suc \ n)
                       from projection\text{-}split\text{-}last[OF\ Suc(2)] obtain \mu\ c'\ \nu
                          where c'-in-E1: c' \in E_{ES1} and c\delta 2''-is-\mu c'\nu: c \# \delta 2'' = \mu @ [c'] @ \nu
                          and \nu E1-empty: \nu \uparrow E_{ES1} = []
                          and n-is-length-\mu\nu E1: n = length ((\mu @ \nu) \uparrow E_{ES1})
                          \mathbf{by} blast
                       from Suc(5) c'-in-E1 c\delta 2''-is-\mu c'\nu
                       have set (\mu \upharpoonright E_{ES1} @ [c']) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
                          by (simp only: c\delta 2^{\,\prime\prime}-is-\mu c^{\,\prime} \nu projection-concatenation-commute
                              projection-def, auto)
                       hence c'-in-Cv1-inter-Upsilon1: c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
                       hence c'-in-Cv1: c' \in C_{\mathcal{V}1} and c'-in-Upsilon1: c' \in \Upsilon_{\Gamma 1}
                          by auto
```

```
with validV1 have c'-in-E1: c' \in E_{ES1}
  by (simp add: isViewOn-def V-valid-def
     VC-disjoint-def VN-disjoint-def, auto)
\mathbf{show} \ ?case
  proof (cases \mu)
    \mathbf{case}\ \mathit{Nil}
    with c\delta 2''-is-\mu c'\nu have c-is-c': c=c'
       and \delta 2^{\prime\prime}-is-\nu: \delta 2^{\prime\prime} = \nu
       by auto
    with c'-in-Cv1-inter-Upsilon1 have c \in C_{V1}
       by simp
    moreover
    from v'-notin-E1 Suc(3) have (\beta \upharpoonright E_{ES1}) @ \alpha 1' \in Tr_{ES1}
       \mathbf{by}\ (simp\ add:\ projection\text{-}concatenation\text{-}commute\ projection\text{-}def)
    moreover
    note Suc(4)
    moreover
    have Adm~\mathcal{V}1~\varrho1~Tr_{ES1}~(\beta \uparrow E_{ES1})~c
       proof -
         have \beta \upharpoonright E_{ES1} @ [c] \in \mathit{Tr}_{ES1}
           proof -
              \mathbf{from} \ c\text{-}is\text{-}c' \ c'\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1
              have c \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
                by simp
              moreover
              from validES1 Suc(3)
              have (\beta \upharpoonright E_{ES1}) \in Tr_{ES1}
                by (simp only: ES-valid-def traces-prefixclosed-def
                   projection\hbox{-}concatenation\hbox{-}commute
                   prefixclosed\text{-}def\ prefix\text{-}def,\ auto)
              moreover
              {f note}\ total\mbox{-}ES1\mbox{-}C1\mbox{-}inter\mbox{-}Upsilon1
              ultimately show ?thesis
                unfolding total-def
                by blast
           qed
         thus ?thesis
           unfolding Adm-def
            \mathbf{by} blast
       \mathbf{qed}
    moreover
    {f note}\,\,BSIA1
     ultimately obtain \alpha 1^{\prime\prime}
      where one: (\beta \mid E_{ES1}) @ [c] @ \alpha 1'' \in Tr_{ES1} and two: \alpha 1'' \mid V_{\mathcal{V}1} = \alpha 1' \mid V_{\mathcal{V}1} and three: \alpha 1'' \mid C_{\mathcal{V}1} = []
       \mathbf{unfolding}\ \mathit{BSIA-def}
       \mathbf{by} blast
    let ?DELTA1" = \nu \mid E_{ES1}
```

```
from one validES1 have set \alpha 1^{\prime\prime} \subseteq E_{ES1}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  from \nu E1-empty
  have set ?DELTA1" \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
  moreover
  from c-is-c' c'-in-E1 one v'-notin-E1 vE1-empty
  have (\beta \upharpoonright E_{ES1}) @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  note two three
  moreover
  from \nu E1-empty \delta 2''-is-\nu have ?DELTA1'' \uparrow E_{ES2} = \delta 2'' \uparrow E_{ES1}
    by (simp add: projection-def)
  ultimately show ?thesis
    \mathbf{by} blast
\mathbf{next}
  case (Cons \ x \ xs)
  with c\delta 2^{\prime\prime}-is-\mu c^{\prime}\nu
  have \mu-is-c-xs: \mu = [c] @ xs and \delta 2''-is-xs-c'-\nu: \delta 2'' = xs @ [c'] @ \nu
  with n-is-length-\mu\nu E1 have n = length ((c \# (xs @ \nu)) \uparrow E_{ES1})
    by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) \upharpoonright E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma 1}
       have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
         by auto
       from Suc(5) c\delta2''-is-\mu c'\nu \mu-is-c-xs \nu E1-empty
       show ?thesis
         by (subst res, simp only: c\delta 2''-is-\mu c'\nu projection-concatenation-commute
            set-append, auto)
     qed
  moreover
  note Suc(6)
  moreover
  from Suc(7) \delta 2 ''-is-xs-c'-\nu have set~(xs~@~\nu)\subseteq N_{\mathcal{V}\mathcal{Z}}\cap \Delta_{\Gamma\mathcal{Z}}
    by auto
  moreover note Suc(1)[of \ c \ xs \ @ \ \nu \ \beta \ \alpha 1']
  ultimately obtain \delta \gamma
     where one: set \delta \subseteq E_{ES1}
     and two: set \gamma \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
     and three: \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \gamma @ [v'] \upharpoonright E_{ES1} @ \delta \in Tr_{ES1}
     and four: \delta \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
     and five: \delta \upharpoonright C_{\mathcal{V}1} = []
     and six: \gamma \uparrow E_{ES2} = (xs @ \nu) \uparrow E_{ES1}
     \mathbf{by} blast
```

```
let ?BETA = \beta \ E_{ES1} \ @ [c] \ E_{ES1} \ @ \gamma
from c'-in-Cv1-inter-Upsilon1 have c' \in C_{V1}
  by auto
moreover
from three v'-notin-E1 have ?BETA @ \delta \in Tr_{ES1}
  by (simp add: projection-def)
moreover
\mathbf{note}\ \mathit{five}
moreover
have Adm \ V1 \ \varrho1 \ Tr_{ES1} \ ?BETA \ c'
  proof -
    have ?BETA @[c'] \in Tr_{ES1}
      proof -
         from validES1 three
         have ?BETA \in Tr_{ES1}
           by (simp only: E\overline{S}-valid-def traces-prefixclosed-def
             projection\hbox{-}concatenation\hbox{-}commute
             prefixclosed-def prefix-def, auto)
         moreover
         \mathbf{note}\ c'\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1\ total\text{-}ES1\text{-}C1\text{-}inter\text{-}Upsilon1
         ultimately show ?thesis
           unfolding total-def
           by blast
      qed
    thus ?thesis
       unfolding Adm-def
       \mathbf{by} blast
  \mathbf{qed}
moreover
note BSIA1
ultimately obtain \alpha 1^{\prime\prime}
  where bsia-one: ?BETA @ [c'] @ \alpha 1'' \in Tr_{ES1}
  and bsia-two: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \delta \upharpoonright V_{\mathcal{V}1} and bsia-three: \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []
  \mathbf{unfolding}\ \mathit{BSIA-def}
  by blast
let ?DELTA1'' = \gamma @ [c']
from bsia-one validES1 have set \alpha 1^{"} \subseteq E_{ES1}
  by (simp add:isViewOn-def ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA1" \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
  proof -
    from Suc(7) c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu
    have c' \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
     with two show ?thesis
      by auto
  qed
```

```
moreover
             from bsia-one v'-notin-E1
              have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
                by (simp add: projection-def)
              moreover
              from bsia-two four have \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
                by simp
              moreover
             {f note}\ bsia-three
              moreover
             have ?DELTA1'' | E_{ES2} = \delta2'' | E_{ES1}
                proof -
                  from validV2 Suc(7) \delta 2 "-is-xs-c'-\nu
                  have c' \in E_{ES2}
                     by (simp add: isViewOn-def V-valid-def
                       VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
                  with c'-in-E1 c'-in-Cv1-inter-Upsilon1 \delta2''-is-xs-c'-\nu \nuE1-empty six
                  show ?thesis
                    by (simp only: projection-concatenation-commute projection-def, auto)
              ultimately show ?thesis
                \mathbf{by} blast
           qed
      qed
    from this OF \beta v'E1\alpha 1'-in-Tr1 \alpha 1'Cv1-empty c\delta 2''E1-in-Cv1-inter-Upsilon1star
      c-in-Cv-inter-Upsilon\ \delta 2 ''-in-N2-inter-Delta 2star]
    show ?thesis
      \mathbf{by} blast
  qed
then obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
 where \alpha 1^{\prime\prime}-in-E1star: set \alpha 1^{\prime\prime}\subseteq E_{ES1} and \delta 1^{\prime\prime}-in-N1-inter-Delta1star:set \delta 1^{\prime\prime}\subseteq N_{\mathcal{V}1}\cap \Delta_{\Gamma1}\cup C_{\mathcal{V}1}\cap \Upsilon_{\Gamma1}\cap N_{\mathcal{V}2}\cap \Delta_{\Gamma2}
  and \beta E1-cE1-\delta1 ''-v'E1-\alpha1 ''-in-Tr1:
 and \alpha 1''Cv1-empty: \alpha 1'' \uparrow C_{V1} = []
  and \delta 1''E2-is-\delta 2''E1: \delta 1'' \mid E_{ES2} = \delta 2'' \mid E_{ES1}
  \mathbf{by} blast
from \beta E1-cE1-\delta1 "-v'E1-\alpha1"-in-Tr1 \beta E2-cE2-\delta2"-v'E2-\alpha2"-in-Tr2
  validES1\ validES2
have \delta 1''-in-E1star: set \delta 1'' \subseteq E_{ES1} and \delta 2''-in-E2star: set \delta 2'' \subseteq E_{ES2}
  \mathbf{by}\ (simp-all\ add:\ ES-valid-def\ traces-contain-events-def,\ auto)
with \delta 1^{\prime\prime} E2-is-\delta 2^{\prime\prime} E1 merge-property[of \delta 1^{\prime\prime} E_{ES1} \delta 2^{\prime\prime} E_{ES2}] obtain \delta ^{\prime}
  where \delta'E1-is-\delta1'': \delta' \upharpoonright E_{ES1} = \delta1
  and \delta'E2-is-\delta2": \delta'1 E_{ES2} = \delta2"
  and \delta'-contains-only-\delta 1''-\delta 2''-events: set \delta' \subseteq set \delta 1'' \cup set \delta 2''
  unfolding Let-def
  by auto
let ?TAU = \beta @ [c] @ \delta' @ [v']
let ?LAMBDA = \alpha \mid V_{\mathcal{V}}
```

```
let ?T1 = \alpha 1''
 let ?T2 = \alpha 2''
have ?TAU \in Tr_{(ES1 \parallel ES2)}
   proof -
     from \beta E1-cE1-\delta 1 "-v'E1-\alpha 1 "-in-Tr1 \delta 'E1-is-\delta 1 " validES1
     \mathbf{have}\ \beta \restriction E_{ES1} \circledcirc [c] \restriction E_{ES1} \circledcirc \delta' \restriction E_{ES1} \circledcirc [v'] \restriction E_{ES1} \in \mathit{Tr}_{ES1}
       by (simp add: ES-valid-def traces-prefixclosed-def
         prefixclosed-def prefix-def)
     hence (\beta @ [c] @ \delta' @ [v']) \upharpoonright E_{ES1} \in Tr_{ES1}
       by (simp add: projection-def, auto)
     moreover
     from \beta E2-cE2-\delta 2 "-v'E2-\alpha 2 "-in-Tr2 \delta 'E2-is-\delta 2 " validES2
     have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta' \upharpoonright E_{ES2} @ [v'] \upharpoonright E_{ES2} \in Tr_{ES2}
       by (simp add: ES-valid-def traces-prefixclosed-def
         prefixclosed-def prefix-def)
     hence (\beta @ [c] @ \delta' @ [v']) \upharpoonright E_{ES2} \in Tr_{ES2}
       by (simp add: projection-def, auto)
     moreover
     from \beta v'\alpha-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE
       \delta'\text{-}contains\text{-}only\text{-}\delta1\,''\text{-}\delta2\,''\text{-}events}\,\,\delta1\,''\text{-}in\text{-}E1star\,\,\delta2\,''\text{-}in\text{-}E2star
     have set (\beta @ [c] @ \delta' @ [v']) \subseteq E_{ES1} \cup E_{ES2}
       unfolding composeES-def isViewOn-def V-valid-def
          VC-disjoint-def VN-disjoint-def NC-disjoint-def
       by auto
     ultimately show ?thesis
       {\bf unfolding} \ compose ES\text{-}def
       \mathbf{by} auto
   \mathbf{qed}
 hence set ?TAU \subseteq E_{(ES1 \parallel ES2)}
   unfolding composeES-def
   by auto
 moreover
 have set ?LAMBDA \subseteq V_{\mathcal{V}}
   by (simp add: projection-def, auto)
 moreover
 note α1''-in-E1star α2''-in-E2star
 moreover
 from \beta E1-cE1-\delta 1 "-v'E1-\alpha 1 "-in-Tr1 \delta 'E1-is-\delta 1 "
 have ?TAU \mid E_{ES1} @ ?T1 \in Tr_{ES1}
   by (simp only: projection-concatenation-commute, auto)
 from \beta E2-cE2-\delta2 "-v'E2-\alpha2 "-in-Tr2 \delta 'E2-is-\delta2 "
 have ?TAU \mid E_{ES2} @ ?T2 \in Tr_{ES2}
   by (simp only: projection-concatenation-commute, auto)
 moreover
 have ?LAMBDA \upharpoonright E_{ES1} = ?T1 \upharpoonright V_{\mathcal{V}}
     from propSepViews have ?LAMBDA | E_{ES1} = \alpha \mid V_{V1}
       unfolding properSeparationOfViews-def by (simp add: projection-sequence)
     moreover
```

```
from \alpha 1''-in-E1star propSepViews
      have ?T1 \mid V_{\mathcal{V}} = ?T1 \mid V_{\mathcal{V}1}
         {\bf unfolding} \ properSeparationOf Views-def
         by (metis Int-commute projection-intersection-neutral)
       moreover
       note \alpha 1'Vv1-is-\alpha Vv1 \ \alpha 1''Vv1-is-\alpha 1'Vv1
       ultimately show ?thesis
         \mathbf{by} \ simp
    qed
  moreover
  have ?LAMBDA \uparrow E_{ES2} = ?T2 \uparrow V_{V}
    proof -
      {\bf from}\ propSep\ Views
      have ?LAMBDA | E_{ES2} = \alpha \mid V_{V2}
          \textbf{unfolding} \ \textit{properSeparationOfViews-def} \ \textbf{by} \ (\textit{simp add: projection-sequence}) 
      moreover
      from \alpha 2 "-in-E2star propSepViews
      have ?T2 \ V_{\mathcal{V}} = ?T2 \ | \ V_{\mathcal{V}2}
         {\bf unfolding} \ proper Separation Of Views-def
         by (metis Int-commute projection-intersection-neutral)
       moreover
       note \alpha 2'Vv2-is-\alpha Vv2 \alpha 2''Vv2-is-\alpha 2'Vv2
       ultimately show ?thesis
         by simp
    qed
  moreover
  note \alpha 1''Cv1-empty \alpha 2''Cv2-empty generalized-zipping-lemma
  ultimately obtain t
    where ?TAU @ t \in Tr_{(ES1 \parallel ES2)}
    and t \upharpoonright V_{\mathcal{V}} = ?LAMBDA
    and t \upharpoonright C_{\mathcal{V}} = []
    \mathbf{by} blast
  moreover
  have set \delta' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma}
    proof -
       from \delta'-contains-only-\delta 1''-\delta 2''-events
         \delta1''-in-N1-inter-Delta1star \delta2''-in-N2-inter-Delta2star
      have set \delta' \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
      \mathbf{with}\ \mathit{Delta1-N1-Delta2-N2-subset-Delta}\ \mathit{Nv1-union-Nv2-subsetof-Nv}
      show ?thesis
        by auto
    qed
    ultimately
    have \exists \alpha' \gamma'. (set \gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \wedge \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}
                 \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])
    \mathbf{by}\ (simp\ only:\ append-assoc,\ blast)
}
moreover {
  assume Nv2-inter-Delta2-inter-E1-empty: N_{V2} \cap \Delta_{\Gamma2} \cap E_{ES1} = \{\}
    and Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2: N_{V1} \cap \Delta_{\Gamma1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}
```

```
let ?ALPHA1''-DELTA1'' = \exists \alpha 1'' \delta 1''. (
  set \alpha 1^{\prime\prime} \subseteq E_{ES1} \wedge set \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
 from c-in-Cv-inter-Upsilon\ v'-in-Vv-inter-Nabla\ valid\ V1
have c \notin E_{ES1} \lor (c \in E_{ES1} \land v' \notin E_{ES1}) \lor (c \in E_{ES1} \land v' \in E_{ES1})
  by (simp add: isViewOn-def V-valid-def
    VC-disjoint-def VN-disjoint-def NC-disjoint-def)
moreover {
  assume c-notin-E1: c \notin E_{ES1}
  from validES1 \beta v'E1\alpha 1'-in-Tr1 have set \alpha 1' \subseteq E_{ES1}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  have set [] \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
    by auto
  moreover
  from \beta v'E1\alpha 1'-in-Tr1 c-notin-E1
  have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  have \alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} ..
  moreover
  note \alpha 1'Cv1-empty
  ultimately have ?ALPHA1"-DELTA1"
    by blast
moreover {
  assume c-in-E1: c \in E_{ES1}
    and v'-notin-E1: v' \notin E_{ES1}
  {\bf from}\ c\hbox{-}in\hbox{-}E1\ c\hbox{-}in\hbox{-}Cv\hbox{-}inter\hbox{-}Upsilon\ propSepViews
    Upsilon\text{-}inter\text{-}E1\text{-}subset\text{-}Upsilon1
  have c-in-Cv1-inter-Upsilon1: c \in C_{V1} \cap \Upsilon_{\Gamma 1}
    unfolding properSeparationOfViews-def by auto
  hence c \in C_{\mathcal{V}_1}
    by auto
  moreover
  from \beta v'E1\alpha 1'-in-Tr1 v'-notin-E1 have \beta \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  note \alpha 1'Cv1-empty
  moreover
  have (Adm \ V1 \ \varrho1 \ Tr_{ES1} \ (\beta \ | \ E_{ES1}) \ c)
    proof -
      from validES1\ \beta v'E1\alpha 1'-in-Tr1\ v'-notin-E1\ have \beta \mid E_{ES1} \in Tr_{ES1}
        by (simp add: ES-valid-def traces-prefixclosed-def
          prefixclosed-def prefix-def projection-concatenation-commute)
      \mathbf{with}\ total\text{-}ES1\text{-}C1\text{-}inter\text{-}Upsilon1\ c\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1
      have \beta \upharpoonright E_{ES1} @ [c] \in \mathit{Tr}_{ES1}
        by (simp add: total-def)
```

```
thus ?thesis
          unfolding Adm-def
          by blast
     qed
  moreover
  \mathbf{note}\ \mathit{BSIA1}
  ultimately obtain \alpha 1^{\prime\prime}
    where one: \beta \upharpoonright E_{ES1} @ [c] @ \alpha 1'' \in Tr_{ES1} and two: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} and three: \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []
     unfolding BSIA-def
     \mathbf{by} blast
  from one validES1 have set \alpha 1'' \subseteq E_{ES1}
     by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  have set [] \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
     by auto
  moreover
  from one c-in-E1 v'-notin-E1
  have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1'' \in Tr_{ES1}
     by (simp add: projection-def)
  moreover
  note two three
  ultimately have ?ALPHA1"-DELTA1"
     by blast
moreover {
  assume c-in-E1: c \in E_{ES1}
     and v'-in-E1: v' \in E_{ES1}
  {\bf from}\ c\hbox{-}in\hbox{-}E1\ c\hbox{-}in\hbox{-}Cv\hbox{-}inter\hbox{-}Upsilon\ propSepViews
     Upsilon\hbox{-}inter\hbox{-}E1\hbox{-}subset\hbox{-}Upsilon1
  have c-in-Cv1-inter-Upsilon1: c \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
     unfolding properSeparationOfViews-def by auto
  moreover
  \mathbf{from}\ v'\text{-}in\text{-}E1\ propSepViews\ v'\text{-}in\text{-}Vv\text{-}inter\text{-}Nabla\ Nabla\text{-}inter\text{-}E1\text{-}subset\text{-}Nabla1
  have v' \in V_{\mathcal{V}_1} \cap Nabla \Gamma_1
   unfolding properSeparationOfViews-def by auto
  from v'-in-E1 \beta v'E1\alpha1'-in-Tr1 have \beta1 E_{ES1}@ [v']@ \alpha1' \in Tr_{ES1}
     by (simp add: projection-def)
  moreover
  note \alpha 1 'Cv1-empty FCI1
 ultimately obtain \alpha 1'' \delta 1''

where one: set \delta 1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
and two: \beta \upharpoonright E_{ES1} @ [c] @ \delta 1'' @ [v'] @ \alpha 1'' \in Tr_{ES1}
and three: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
and four: \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []

unfolding ECI of
     unfolding FCI-def
     by blast
```

```
from two validES1 have set \alpha 1'' \subseteq E_{ES1}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  note one
  moreover
  from two c-in-E1 v'-in-E1
  have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  note three four
  ultimately have ?ALPHA1"-DELTA1"
    bv blast
ultimately obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
  where \alpha 1''-in-E1star: set \alpha 1'' \subseteq E_{ES1}
  and \delta 1 "-in-N1-inter-Delta1star:set \delta 1" \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
  and \beta E1-cE1-\delta1 ''-v'E1-\alpha1 ''-in-Tr1:
 and \alpha 1''Cv1-empty: \alpha 1'' \uparrow C_{V1} = []
  \mathbf{by} blast
{\bf from}\ \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon\ \ Upsilon\text{-}inter\text{-}E2\text{-}subset\text{-}Upsilon2\ propSepViews}
have cE2-in-Cv2-inter-Upsilon2: set ([c] \uparrow E_{ES2}) \subseteq C_{V2} \cap \Upsilon_{\Gamma2}
  unfolding properSeparationOfViews-def by (simp add: projection-def, auto)
from \delta 1''-in-N1-inter-Delta1star Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2
  propSepViews disjoint-Nv1-Vv2
have \delta 1''E2-in-Cv2-inter-Upsilon2star: set (\delta 1'' \upharpoonright E_{ES2}) \subseteq C_{V2} \cap \Upsilon_{\Gamma 2}
  proof -
    from \delta 1''-in-N1-inter-Delta1star have eq: \delta 1'' \uparrow E_{ES2} = \delta 1'' \uparrow (N_{V1} \cap \Delta_{\Gamma1} \cap E_{ES2})
      by (metis Int-commute Int-left-commute Int-lower2 Int-lower1
        projection-intersection-neutral subset-trans)
    {\bf from}\ validV2\ Nv1\text{-}inter\text{-}Delta1\text{-}inter\text{-}E2\text{-}subsetof\text{-}Upsilon2
     propSepViews disjoint-Nv1-Vv2
    have N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cap E_{ES2} \subseteq C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2}
      {f unfolding}\ properSeparationOfViews-def
      \mathbf{by}\ (simp\ add:\ is\ View\ On\text{-}def\ V\text{-}valid\text{-}def\ VC\text{-}disjoint\text{-}def
         VN-disjoint-def NC-disjoint-def, auto)
    thus ?thesis
      by (subst eq, simp only: projection-def, auto)
  qed
have c\delta 1''E2-in-Cv2-inter-Upsilon2star: set ((c \# \delta 1'') \restriction E_{ES2}) \subseteq C_{V2} \cap \Upsilon_{\Gamma 2}
  proof -
    \mathbf{from}\ cE2\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon2\ \delta1\,^{\prime\prime}E2\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon2star
    have set (([c] @ \delta 1'') \uparrow E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}
      by (simp only: projection-concatenation-commute, auto)
    thus ?thesis
      by auto
  qed
```

```
have \exists \alpha 2'' \delta 2''. set \alpha 2'' \subseteq E_{ES2}
   \begin{array}{l} \wedge \ set \ \delta 2^{\prime\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \\ \wedge \ \beta \ \mid \ E_{ES2} \ @ \ [c] \ \mid \ E_{ES2} \ @ \ \delta 2^{\prime\prime\prime} \ @ \ [v'] \ \mid \ E_{ES2} \ @ \ \alpha 2^{\prime\prime\prime} \in Tr_{ES2} \\ \wedge \ \alpha 2^{\prime\prime\prime} \ \mid \ V_{\mathcal{V}2} = \alpha 2^{\prime\prime} \ \mid \ V_{\mathcal{V}2} \wedge \alpha 2^{\prime\prime\prime} \ \mid \ C_{\mathcal{V}2} = \ [] \\ \wedge \ \delta 2^{\prime\prime\prime} \ \mid \ E_{ES1} = \delta 1^{\prime\prime\prime} \ \mid \ E_{ES2} \\ \end{array} 
   proof cases
      assume v'-in-E2: v' \in E_{ES2}
      \mathbf{with}\ \mathit{Nabla-inter-E2-subset-Nabla2}
          propSep\ Views\ v'-in-Vv-inter-Nabla
      have v'-in-Vv2-inter-Nabla2: v' \in V_{\mathcal{V}2} \cap Nabla \Gamma 2
          unfolding properSeparationOfViews-def by auto
      have [(\beta @ [v']) \uparrow E_{ES2} @ \alpha 2' \in Tr_{ES2};
         \begin{array}{l} \alpha 2' \mid C_{\mathcal{V}2} = []; \ set \ ((c \ \# \ \delta 1'') \mid E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \ ; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \ ; \ set \ \delta 1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \ ] \\ \Longrightarrow \exists \ \alpha 2'' \ \delta 2''. \ (set \ \alpha 2'' \subseteq E_{ES2} \wedge set \ \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \end{array}
             \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
         proof (induct length ((c \# \delta 1'') | E_{ES2}) arbitrary: \beta \alpha 2' c \delta 1'')
             case \theta
             from \theta(2) validES2 have set \alpha 2' \subseteq E_{ES2}
                 by (simp add: ES-valid-def traces-contain-events-def, auto)
             have set [] \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}} \cup C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
                 by auto
             moreover
             have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
                 proof -
                     note \theta(2)
                     moreover
                     from \theta(1) have c \notin E_{ES2}
                        by (simp add: projection-def, auto)
                     ultimately show ?thesis
                        by (simp add: projection-concatenation-commute projection-def)
                 qed
             moreover
             have \alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}..
             moreover
             note \theta(3)
             moreover
             from \theta(1) have [] \uparrow (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = \delta 1'' \uparrow E_{ES\mathcal{Z}}
                 by (simp add: projection-def, split if-split-asm, auto)
              ultimately show ?case
                 by blast
          next
             case (Suc \ n)
```

```
from \mathit{projection\text{-}split\text{-}last}[\mathit{OF}\;\mathit{Suc}(2)] obtain \mu c' \nu
  where c'-in-E2: c' \in E_{ES2} and c\delta 1''-is-\mu c'\nu: c \# \delta 1'' = \mu @ [c'] @ \nu
  and \nuE2-empty: \nu | E_{ES2} = []
  and n-is-length-\mu\nuE2: n = length ((\mu @ \nu) \uparrow E_{ES2})
  \mathbf{by} blast
from Suc(5) c'-in-E2 c\delta 1''-is-\mu c'\nu
have set (\mu \upharpoonright E_{ES2} @ [c']) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}
  by (simp only: c\delta 1''-is-\mu c'\nu projection-concatenation-commute
    projection-def, auto)
hence c'-in-Cv2-inter-Upsilon2: c' \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}
  by auto
hence c'-in-Cv2: c' \in C_{\mathcal{V}2} and c'-in-Upsilon2: c' \in \Upsilon_{\Gamma 2}
  by auto
with validV2 have c'-in-E2: c' \in E_{ES2}
  by (simp add: isViewOn-def V-valid-def VC-disjoint-def
     VN-disjoint-def NC-disjoint-def, auto)
\mathbf{show}~? case
  proof (cases \mu)
    \mathbf{case}\ \mathit{Nil}
     with c\delta 1''-is-\mu c'\nu have c-is-c': c=c' and \delta 1''-is-\nu: \delta 1''=\nu
     with c'-in-Cv2-inter-Upsilon2 have c \in C_{V2} \cap \Upsilon_{\Gamma2}
       by simp
    moreover
     note v'-in-Vv2-inter-Nabla2
    from v'-in-E2 Suc(3) have (\beta \upharpoonright E_{ES2}) @ [v'] @ \alpha 2' \in Tr_{ES2}
       by (simp add: projection-concatenation-commute projection-def)
     moreover
    note Suc(4) FCI2
     ultimately obtain \alpha 2^{\,\prime\prime} \gamma
       where one: set \gamma \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}
       and two: \beta \upharpoonright E_{ES2} @ [c] @ \gamma @ [v'] @ \alpha2'' \in Tr_{ES2}
       and three: \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}
       and four: \alpha 2'' \uparrow C_{\mathcal{V}2} = []
       unfolding FCI-def
       by blast
    let ?DELTA2'' = \nu | E_{ES2} @ \gamma
     from two validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
      by (simp add: ES-valid-def traces-contain-events-def, auto)
     moreover
     from one \nu E2-empty
    have set ?DELTA2" \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
      by auto
     moreover
    \mathbf{have}\ \beta \uparrow E_{ES2} \ @\ [c] \uparrow E_{ES2} \ @\ ?DELTA2'' \ @\ [v'] \uparrow E_{ES2} \ @\ \alpha2'' \in \ Tr_{ES2}
```

```
proof -
      from c-is-c' c'-in-E2 have [c] = [c] \uparrow E_{ES2}
        by (simp add: projection-def)
      moreover
      from v'-in-E2 have [v'] = [v'] \upharpoonright E_{ES2}
        by (simp add: projection-def)
      moreover
      note \nuE2-empty two
      ultimately show ?thesis
        by auto
    qed
 moreover
 note three four
 moreover
 have ?DELTA2'' \mid (C_{V2} \cap \Upsilon_{\Gamma2}) = \delta1'' \mid E_{ES2}
      have \gamma \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = []
        proof -
          from validV2 have N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = \{\}
            \mathbf{by}\ (simp\ add\colon isViewOn\text{-}def\ V\text{-}valid\text{-}def
               VC\mbox{-}disjoint\mbox{-}def\ VN\mbox{-}disjoint\mbox{-}def,\ auto)
          with projection-intersection-neutral[OF one, of C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}]
          \mathbf{show} \ ?thesis
            \mathbf{by}\ (simp\ add\colon projection\text{-}def)
      with \delta 1''-is-\nu \nu E2-empty show ?thesis
        by (simp add: projection-concatenation-commute)
  ultimately show ?thesis
   \mathbf{by} blast
\mathbf{next}
  case (Cons \ x \ xs)
 with c\delta 1''-is-\mu c'\nu have \mu-is-c-xs: \mu = [c] @ xs
    and \delta 1''-is-xs-c'-\nu: \delta 1'' = xs @ [c'] @ \nu
 with n-is-length-\mu\nuE2 have n = length ((c \# (xs @ \nu)) \uparrow E_{ES2})
    by auto
 moreover
 note Suc(3,4)
 moreover
 have set ((c \# (xs @ \nu)) \uparrow E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}
   proof -
      have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
        by auto
      from Suc(5) c\delta 1''-is-\mu c'\nu \mu-is-c-xs \nuE2-empty
      show ?thesis
        by (subst res, simp only: c\delta 1''-is-\mu c'\nu
          projection-concatenation-commute set-append, auto)
    qed
 moreover
 note Suc(6)
```

```
moreover
from Suc(7) \, \delta 1''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
  by auto
moreover note Suc(1)[of \ c \ xs @ \nu \beta \ \alpha 2']
ultimately obtain \delta \gamma
   where one: set \delta \subseteq E_{ES2}
  and two: set \gamma \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} and three: \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \gamma @ [v'] \upharpoonright E_{ES2} @ \delta \in Tr_{ES2} and four: \delta \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}
   and five: \delta \upharpoonright C_{\mathcal{V}\mathcal{Q}} = []
   and six: \gamma \uparrow (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = (xs @ \nu) \uparrow E_{ES\mathcal{Z}}
   \mathbf{by} blast
let ?BETA = \beta | E_{ES2} @ [c] | E_{ES2} @ \gamma
\mathbf{note}\ c'\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon2\ v'\text{-}in\text{-}Vv2\text{-}inter\text{-}Nabla2
moreover
from three v'-in-E2 have ?BETA @ [v'] @ \delta \in Tr_{ES2}
   by (simp add: projection-def)
moreover
note five FCI2
ultimately obtain \alpha 2^{\prime\prime} \delta^{\prime}
   where fci-one: set \delta' \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}
   and fci-two: ?BETA @ [c'] @ \delta' @ [v'] @ \alpha 2'' \in Tr_{ES2}
  and fci-three: \alpha 2^{"} \upharpoonright V_{\mathcal{V}2} = \delta \upharpoonright V_{\mathcal{V}2}
and fci-four: \alpha 2^{"} \upharpoonright C_{\mathcal{V}2} = []
   unfolding FCI-def
   \mathbf{by} blast
let ?DELTA2'' = \gamma @ [c'] @ \delta'
from \mathit{fci-two}\ \mathit{validES2}\ \mathbf{have}\ \mathit{set}\ \alpha \mathit{2}^{\,\prime\prime} \subseteq \mathit{E}_{\mathit{ES2}}
   by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2" \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
      from Suc(7) c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu
      have c' \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
        by auto
      with two fci-one show ?thesis
        by auto
  qed
moreover
from fci-two v'-in-E2
have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha2'' \in Tr_{ES2}
  by (simp add: projection-def)
from fci-three four have \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}
  by simp
moreover
{\bf note}\; \textit{fci-four}
```

```
moreover
             have ?DELTA2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = \delta1'' \upharpoonright E_{ES2}
                proof -
                   have \delta' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = []
                       proof -
                          from fci-one have \forall e \in set \ \delta'. \ e \in N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
                          with validV2 have \forall e \in set \delta'. e \notin C_{V2} \cap \Upsilon_{\Gamma 2}
                             by (simp add: isViewOn-def V-valid-def
                                 VC-disjoint-def VN-disjoint-def, auto)
                          thus ?thesis
                             by (simp add: projection-def)
                    with c'-in-E2 c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu \nu E2-empty six
                   show ?thesis
                       by (simp only: projection-concatenation-commute projection-def, auto)
             ultimately show ?thesis
                \mathbf{by} blast
          qed
\mathbf{qed}
from this [OF \beta v'E2\alpha 2'-in-Tr2 \alpha 2'Cv2-empty c\delta 1''E2-in-Cv2-inter-Upsilon2star
   c-in-Cv-inter-Upsilon\ \delta 1 "-in-N1-inter-Delta1star]
obtain \alpha 2^{\prime\prime} \delta 2^{\prime\prime}
   where one: set \alpha 2^{"} \subseteq E_{ES2}
  and two: set \delta \mathcal{Z}'' \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}} \cup C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
and three: \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta \mathcal{Z}'' @ [v'] \upharpoonright E_{ES2} @ \alpha \mathcal{Z}'' \in Tr_{ES2}
\wedge \alpha \mathcal{Z}'' \upharpoonright V_{\mathcal{V}\mathcal{Z}} = \alpha \mathcal{Z}' \upharpoonright V_{\mathcal{V}\mathcal{Z}} \wedge \alpha \mathcal{Z}'' \upharpoonright C_{\mathcal{V}\mathcal{Z}} = []
and four: \delta \mathcal{Z}'' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = \delta \mathcal{I}'' \upharpoonright E_{ES2}
   \mathbf{by} blast
note one two three
moreover
have \delta 2^{\prime\prime} \mid E_{ES1} = \delta 1^{\prime\prime} \mid E_{ES2}
      \mathbf{from}\ projection\text{-}intersection\text{-}neutral[\mathit{OF}\ two,\ of}\ E_{ES1}]
          Nv2-inter-Delta2-inter-E1-empty validV1
      have \delta 2'' \upharpoonright E_{ES1} = \delta 2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES1})
         by (simp only: Int-Un-distrib2, auto)
      moreover
      \mathbf{from}\ \mathit{validV1}
      have C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES1} = C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
         by (simp add: isViewOn-def V-valid-def VC-disjoint-def
              VN-disjoint-def NC-disjoint-def, auto)
      ultimately have \delta 2'' \upharpoonright E_{ES1} = \delta 2'' \upharpoonright (C_{V2} \cap \Upsilon_{\Gamma2} \cap N_{V1} \cap \Delta_{\Gamma1})
         by simp
      hence \delta 2^{\prime\prime} \upharpoonright E_{ES1} = \delta 2^{\prime\prime} \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma1})
         by (simp add: projection-def)
      with four have \delta 2'' \upharpoonright E_{ES1} = \delta 1'' \upharpoonright E_{ES2} \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1})
      hence \delta 2'' \upharpoonright E_{ES1} = \delta 1'' \upharpoonright (N_{V1} \cap \Delta_{\Gamma 1}) \upharpoonright E_{ES2}
         by (simp only: projection-commute)
```

```
with \delta 1''-in-N1-inter-Delta1star show ?thesis
           by (simp only: list-subset-iff-projection-neutral)
     qed
   ultimately show ?thesis
        by blast
\mathbf{next}
  assume v'-notin-E2: v' \notin E_{ES2}
     set \delta 1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
     \Longrightarrow \exists \alpha 2^{\prime\prime} \overline{\delta} 2^{\prime\prime}.
      (set \ \alpha 2'' \subseteq E_{ES2} \land set \ \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \\ \land \ \beta \ \mid E_{ES2} @ \ [c] \ \mid E_{ES2} @ \ \delta 2'' @ \ [v'] \ \mid E_{ES2} @ \ \alpha 2'' \in Tr_{ES2} \\ \land \ \alpha 2'' \ \mid V_{\mathcal{V}2} = \alpha 2' \ \mid V_{\mathcal{V}2} \land \alpha 2'' \ \mid C_{\mathcal{V}2} = \ [] \\ \land \ \delta 2'' \ \mid E_{ES1} = \delta 1'' \ \mid E_{ES2} ) 
     proof (induct length ((c \# \delta 1'') | E_{ES2}) arbitrary: \beta \alpha 2' c \delta 1'')
         \mathbf{case}\ \theta
        from \theta(2) validES2 have set \alpha 2' \subseteq E_{ES2}
           by (simp add: ES-valid-def traces-contain-events-def, auto)
        moreover
        have set [] \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}} \cup C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
           by auto
        moreover
        have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
           proof -
              note \theta(2)
              moreover
              from \theta(1) have c \notin E_{ES2}
                 by (simp add: projection-def, auto)
              ultimately show ?thesis
                 by (simp add: projection-concatenation-commute projection-def)
           qed
        moreover
        have \alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}..
        moreover
        note \theta(3)
        moreover
        from \theta(1) have [] \uparrow E_{ES1} = \delta 1'' \uparrow E_{ES2}
           by (simp add: projection-def, split if-split-asm, auto)
        {\bf ultimately \ show} \ \textit{?case}
           by blast
     next
        case (Suc \ n)
        from projection\text{-}split\text{-}last[OF\ Suc(2)] obtain \mu\ c'\ \nu
           where c'-in-E2: c' \in E_{ES2} and c\delta 1''-is-\mu c'\nu: c \# \delta 1'' = \mu @ [c'] @ \nu
           and \nu E2-empty: \nu \uparrow E_{ES2} = []
           and n-is-length-\mu\nuE2: n= length ((\mu @ \nu) \uparrow E_{ES2})
```

```
\mathbf{by} blast
```

```
from Suc(5) c'-in-E2 c\delta 1''-is-\mu c'\nu have set (\mu \upharpoonright E_{ES2} @ [c']) \subseteq C_{\mathcal{V2}} \cap \Upsilon_{\Gamma 2}
  by (simp only: c\delta 1''-is-\mu c'\nu projection-concatenation-commute projection-def, auto)
hence c'-in-Cv2-inter-Upsilon2: c' \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}
  by auto
hence c'-in-Cv2: c' \in C_{\mathcal{V}2} and c'-in-Upsilon2: c' \in \Upsilon_{\Gamma 2}
  by auto
with validV2 have c'-in-E2: c' \in E_{ES2}
  by (simp add: isViewOn-def V-valid-def VC-disjoint-def
    VN-disjoint-def NC-disjoint-def, auto)
\mathbf{show}~? case
  proof (cases \mu)
    case Nil
    with c\delta 1''-is-\mu c'\nu have c-is-c': c=c' and \delta 1''-is-\nu: \delta 1''=\nu
      by auto
    with c'-in-Cv2-inter-Upsilon2 have c \in C_{V2}
      by simp
    moreover
    from v'-notin-E2 Suc(3) have (\beta \upharpoonright E_{ES2}) @ \alpha 2' \in Tr_{ES2}
      by (simp add: projection-concatenation-commute projection-def)
    moreover
    note Suc(4)
    moreover
    have Adm~\mathcal{V2}~\varrho\mathcal{Z}~Tr_{ES2}~(\beta \uparrow E_{ES2})~c
      proof -
         have \beta \upharpoonright E_{ES2} @ [c] \in Tr_{ES2}
             from c-is-c' c'-in-Cv2-inter-Upsilon2 have c \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}
               by simp
             moreover
             from validES2\ Suc(3) have (\beta \uparrow E_{ES2}) \in Tr_{ES2}
               by (simp only: ES-valid-def traces-prefixclosed-def
                  projection\hbox{-}concatenation\hbox{-}commute
                  prefixclosed-def prefix-def, auto)
             moreover
             {\bf note}\ total \hbox{-} ES2\hbox{-} C2\hbox{-} inter\hbox{-} Upsilon2
             ultimately show ?thesis
               unfolding total-def
               by blast
           qed
        \mathbf{thus}~? the sis
           unfolding Adm-def
           \mathbf{by} blast
      qed
    moreover
    note BSIA2
    ultimately obtain \alpha 2^{\,\prime\prime}
      where one: (\beta \mid E_{ES2}) @ [c] @ \alpha 2'' \in Tr_{ES2} and two: \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2} and three: \alpha 2'' \mid C_{\mathcal{V}2} = []
```

```
unfolding BSIA-def
     by blast
  let ?DELTA2" = \nu \uparrow E_{ES2}
  from one validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
     by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  from \nu E2-empty
  have set ?DELTA2" \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
    by simp
  moreover
  \mathbf{from}\ c\text{-}is\text{-}c'\ c'\text{-}in\text{-}E2\ one\ v'\text{-}notin\text{-}E2\ \nu E2\text{-}empty
  \mathbf{have}\ (\beta \upharpoonright E_{ES2}) \ @\ [c] \upharpoonright E_{ES2} \ @\ ?DELTA2'' \ @\ [v'] \upharpoonright E_{ES2} \ @\ \alpha2'' \in \mathit{Tr}_{ES2}
     by (simp add: projection-def)
  moreover
  note two three
  moreover
  from \nuE2-empty \delta1''-is-\nu have ?DELTA2'' | E_{ES1} = \delta1'' | E_{ES2}
     by (simp add: projection-def)
  ultimately show ?thesis
     by blast
\mathbf{next}
  case (Cons \ x \ xs)
   with c\delta 1^{\prime\prime}-is-\mu c^\prime \nu have \mu-is-c-xs: \mu = [c] @ xs and \delta 1^{\prime\prime}-is-xs-c^\prime-\nu: \delta 1^{\prime\prime} = xs @ [c^\prime] @ \nu
  with n-is-length-\mu\nu E2 have n = length ((c \# (xs @ \nu)) \uparrow E_{ES2})
     by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) \uparrow E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}
       have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
          by auto
       from Suc(5) c\delta 1''-is-\mu c'\nu \mu-is-c-xs \nuE2-empty
          by (subst res, simp only: c\delta 1''-is-\mu c'\nu projection-concatenation-commute
             set-append, auto)
     qed
  moreover
  note Suc(6)
  moreover
  from Suc(7) \delta 1''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{V1} \cap \Delta_{\Gamma1}
     by auto
  moreover note Suc(1)[of \ c \ xs \ @ \ \nu \ \beta \ \alpha 2']
  ultimately obtain \delta \gamma
     where one: set \delta \subseteq E_{ES2}
     and two: set \gamma\subseteq N_{\mathcal{V}2}\cap\Delta_{\Gamma2}\cup C_{\mathcal{V}2}\cap\Upsilon_{\Gamma2}\cap N_{\mathcal{V}1}\cap\Delta_{\Gamma1} and three: \beta\upharpoonright E_{ES2} @ [c]\upharpoonright E_{ES2} @ \gamma @ [v']\upharpoonright E_{ES2} @ \delta\in Tr_{ES2}
```

```
and four: \delta \upharpoonright V_{\mathcal{V}\mathcal{Z}} = \alpha \mathcal{Z}' \upharpoonright V_{\mathcal{V}\mathcal{Z}}
  and five: \delta \upharpoonright C_{\mathcal{V}\mathcal{Z}} = []
  and six: \gamma \upharpoonright E_{ES1} = (xs @ \nu) \upharpoonright E_{ES2}
let ?BETA = \beta | E_{ES2} @ [c] | E_{ES2} @ \gamma
from c'-in-Cv2-inter-Upsilon2 have c' \in C_{V2}
 by auto
moreover
from three v'-notin-E2 have ?BETA @ \delta \in Tr_{ES2}
  \mathbf{by}\ (simp\ add:\ projection\text{-}def)
moreover
note five
moreover
have Adm \ V2 \ \varrho 2 \ Tr_{ES2} \ ?BETA \ c'
  proof -
    have ?BETA @ [c'] \in Tr_{ES2}
       proof -
         from validES2 three have ?BETA \in Tr_{ES2}
            by (simp only: ES-valid-def traces-prefixclosed-def
              projection\hbox{-}concatenation\hbox{-}commute\ prefixclosed\hbox{-}def\ prefix-def,\ auto)
         moreover
         \mathbf{note}\ c'\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon2\ total\text{-}ES2\text{-}C2\text{-}inter\text{-}Upsilon2
         ultimately show ?thesis
            unfolding total-def
            \mathbf{by} blast
       qed
    thus ?thesis
       unfolding Adm-def
       \mathbf{by} blast
  qed
moreover
note BSIA2
ultimately obtain \alpha 2^{\prime\prime}
  where bsia-one: ?BETA @ [c'] @ \alpha 2'' \in Tr_{ES2}
  and bsia-two: \alpha 2'' \uparrow V_{\mathcal{V}2} = \delta \uparrow V_{\mathcal{V}2}
and bsia-three: \alpha 2'' \uparrow C_{\mathcal{V}2} = []
  unfolding BSIA-def
  \mathbf{by} blast
let ?DELTA2'' = \gamma @ [c']
from bsia-one validES2 have set \alpha 2^{"} \subseteq E_{ES2}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2" \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
  proof -
     from Suc(7) c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu
    have c' \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
       by auto
```

```
with two show ?thesis
                     by auto
                 qed
               moreover
               from bsia-one v'-notin-E2
               have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha2'' \in Tr_{ES2}
                 by (simp add: projection-def)
               moreover
              from bsia-two four have \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}
                 by simp
               moreover
              note bsia-three
              moreover
              have ?DELTA2" | E_{ES1} = \delta 1" | E_{ES2}
                 proof -
                   from validV1\ Suc(7)\ \delta 1''-is-xs-c'-\nu have c' \in E_{ES1}
                      by (simp add: isViewOn-def V-valid-def
                         VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
                   with c'-in-E2 c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu \nu E2-empty six
                   show ?thesis
                      \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute}
                        projection-def, auto)
                 \mathbf{qed}
               ultimately show ?thesis
                 \mathbf{by} blast
            qed
     from this OF \beta v'E2\alpha 2'-in-Tr2 \alpha 2'Cv2-empty c\delta 1''E2-in-Cv2-inter-Upsilon2star
       c-in-Cv-inter-Upsilon\ \delta 1 ''-in-N1-inter-Delta1star]
    show ?thesis
       \mathbf{by} blast
 \mathbf{qed}
then obtain \alpha 2^{\,\prime\prime} \, \delta 2^{\,\prime\prime}
 where \alpha 2''-in-E2star: set \alpha 2'' \subseteq E_{ES2} and \delta 2''-in-N2-inter-Delta2star: set \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
  and \beta E2-cE2-\delta 2 "-v'E2-\alpha 2 "-in-Tr2:
  \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2^{\prime\prime} @ [v'] \upharpoonright E_{ES2} @ \alpha 2^{\prime\prime} \in \mathit{Tr}_{ES2}
 and \alpha 2''Vv2-is-\alpha 2'Vv2: \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}
  and \alpha 2^{\prime\prime} Cv2\text{-}empty: \alpha 2^{\prime\prime} \mid C_{\mathcal{V}2} = []
  and \delta 2''E1-is-\delta 1''E2: \delta 2'' \upharpoonright E_{ES1} = \delta 1'' \upharpoonright E_{ES2}
  by blast
from \beta E2-cE2-\delta 2 "-v'E2-\alpha 2 "-in-Tr2 \beta E1-cE1-\delta 1 "-v'E1-\alpha 1 "-in-Tr1
  validES2\ validES1
have \delta 2''-in-E2star: set \delta 2'' \subseteq E_{ES2} and \delta 1''-in-E1star: set \delta 1'' \subseteq E_{ES1}
  by (simp-all add: ES-valid-def traces-contain-events-def, auto)
with \delta 2 "E1-is-\delta 1" E2 merge-property [of \delta 2" E_{ES2} \delta 1" E_{ES1}] obtain \delta '
  where \delta'E2-is-\delta2'': \delta' \uparrow E_{ES2} = \delta2
  and \delta'E1-is-\delta1'': \delta' \uparrow E_{ES1} = \delta1''
  and \delta'-contains-only-\delta 2''-\delta 1''-events: set \delta' \subseteq set \ \delta 2'' \cup set \ \delta 1''
  unfolding Let-def
  \mathbf{by} auto
```

```
let ?TAU = \beta @ [c] @ \delta' @ [v']
let ?LAMBDA = \alpha \upharpoonright V_{\mathcal{V}}
let ?T2 = \alpha 2''
let ?T1 = \alpha 1''
have ?TAU \in Tr_{(ES1 \parallel ES2)}
   proof -
     from \beta E2-cE2-\delta 2 "-v'E2-\alpha 2 "-in-Tr2 \delta 'E2-is-\delta 2 " validES2
     have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta' \upharpoonright E_{ES2} @ [v'] \upharpoonright E_{ES2} \in Tr_{ES2}
       by (simp add: ES-valid-def traces-prefixclosed-def
         prefixclosed-def prefix-def)
     hence (\beta @ [c] @ \delta' @ [v']) \uparrow E_{ES2} \in Tr_{ES2}
       by (simp add: projection-def, auto)
     moreover
     from \beta E1-cE1-\delta1 ''-v'E1-\alpha1 ''-in-Tr1 \delta'E1-is-\delta1 '' validES1
     have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta' \upharpoonright E_{ES1} @ [v'] \upharpoonright E_{ES1} \in Tr_{ES1}
       by (simp add: ES-valid-def traces-prefixclosed-def
         prefixclosed-def prefix-def)
     hence (\beta @ [c] @ \delta' @ [v']) | E_{ES1} \in \mathit{Tr}_{ES1}
       by (simp add: projection-def, auto)
     moreover
     \mathbf{from}\ \beta v'\alpha\text{-}\mathit{in-Tr}\ c\text{-}\mathit{in-Cv-inter-Upsilon}\ VIsViewOnE\ \delta'\text{-}\mathit{contains-only-}\delta 2''\text{-}\delta 1''\text{-}\mathit{events}
       \delta 2^{\,\prime\prime}-in-E2star \delta 1^{\,\prime\prime}-in-E1star
     have set (\beta @ [c] @ \delta' @ [v']) \subseteq E_{ES2} \cup E_{ES1}
       {\bf unfolding} \ compose ES-def \ is View On-def \ V-valid-def \ VC-disjoint-def
          VN-disjoint-def NC-disjoint-def
       by auto
     ultimately show ?thesis
       unfolding composeES-def
       by auto
 hence set ?TAU \subseteq E_{(ES1 \parallel ES2)}
   unfolding composeES-def
   by auto
 moreover
 have set ?LAMBDA \subseteq V_{\mathcal{V}}
   by (simp add: projection-def, auto)
 moreover
 note α2''-in-E2star α1''-in-E1star
 moreover
 from \beta E2-cE2-\delta2''-v'E2-\alpha2''-in-Tr2 \delta'E2-is-\delta2''
have ?TAU \mid E_{ES2} @ ?T2 \in Tr_{ES2}
   by (simp only: projection-concatenation-commute, auto)
 moreover
 from \beta E1-cE1-\delta1''-v'E1-\alpha1''-in-Tr1 \delta'E1-is-\delta1''
 have ?TAU \mid E_{ES1} @ ?T1 \in Tr_{ES1}
   by (simp only: projection-concatenation-commute, auto)
 moreover
 have ?LAMBDA \upharpoonright E_{ES2} = ?T2 \upharpoonright V_{V}
   proof -
```

```
from propSepViews
      have ?LAMBDA \upharpoonright E_{ES2} = \alpha \upharpoonright V_{V2}
         unfolding properSeparationOfViews-def by (simp only: projection-sequence)
       moreover
      from \alpha 2''-in-E2star propSepViews
      have ?T2 \mid V_{\mathcal{V}} = ?T2 \mid V_{\mathcal{V}2}
         {f unfolding}\ properSeparationOfViews-def
         by (metis Int-commute projection-intersection-neutral)
       moreover
      note \alpha 2'Vv2-is-\alpha Vv2 \alpha 2''Vv2-is-\alpha 2'Vv2
      ultimately show ?thesis
         \mathbf{by} \ simp
    qed
  moreover
  have ?LAMBDA \uparrow E_{ES1} = ?T1 \uparrow V_{V}
    proof -
      from propSepViews
      have ?LAMBDA | E_{ES1} = \alpha \mid V_{V1}
         unfolding properSeparationOfViews-def by (simp add: projection-sequence)
       moreover
      from \alpha 1''-in-E1star propSepViews
      have ?T1 \mid V_{\mathcal{V}} = ?T1 \mid V_{\mathcal{V}1}
         {\bf unfolding}\ proper Separation Of Views-def
         by (metis Int-commute projection-intersection-neutral)
      moreover
       note \alpha 1'Vv1-is-\alpha Vv1 \ \alpha 1''Vv1-is-\alpha 1'Vv1
       ultimately show ?thesis
         by simp
    qed
  moreover
  note \alpha 2^{\prime\prime\prime} Cv2-empty \alpha 1^{\prime\prime\prime} Cv1-empty generalized-zipping-lemma
  ultimately obtain t
    where ?TAU @ t \in Tr_{(ES1 \parallel ES2)}
    and t \uparrow V_{\mathcal{V}} = ?LAMBDA
    and t \mid C_{\mathcal{V}} = []
    by blast
  moreover
  have set \delta' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma}
    proof -
      from \delta'-contains-only-\delta 2''-\delta 1''-events \delta 2''-in-N2-inter-Delta2star
            \delta1''-in-N1-inter-Delta1star
      have set \delta' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
      with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subsetof-Nv show ?thesis
         by auto
    qed
  ultimately have \exists \alpha' \gamma'. (set \gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \wedge \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}
    \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])
    by (simp only: append-assoc, blast)
ultimately have \exists \alpha' \gamma'. (set \gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \wedge \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}
  \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])
```

```
by blast
   thus ?thesis
      unfolding FCI-def
      by blast
qed
{\bf theorem}\ compositionality\text{-}FCIA:
    \llbracket \ BSD \ \mathcal{V}1 \ Tr_{ES1}; \ BSD \ \mathcal{V}2 \ Tr_{ES2}; \ BSIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1}; \ BSIA \ \varrho 2 \ \mathcal{V}2 \ Tr_{ES2}; 
   (\varrho 1 \ \mathcal{V}1) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES1}; (\varrho 2 \ \mathcal{V}2) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES2};
   total ES1 (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}); total ES2 (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1});
   \begin{array}{l} \nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma 1}; \, \nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma 2}; \\ \Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1}; \, \Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma 2}; \end{array}
   (\Delta_{\Gamma_1} \cap N_{\mathcal{V}_1} \cup \Delta_{\Gamma_2} \cap N_{\mathcal{V}_2}) \subseteq \Delta_{\Gamma};
   (N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\} \land N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1})
   \vee (N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} = \{\} \wedge N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}) ;
   FCIA \varrho1 \Gamma1 V1 Tr_{ES1}; FCIA \varrho2 \Gamma2 V2 Tr_{ES2}
   \Longrightarrow FCIA \ \varrho \ \Gamma \ \mathcal{V} \ (Tr_{(ES1 \parallel ES2)})
proof -
 assume BSD1: BSD V1 Tr<sub>ES1</sub>
      and BSD2: BSD V2 Tr_{ES2}
      and BSIA1: BSIA Q1 V1 Tr<sub>ES1</sub>
      and BSIA2: BSIA \varrho2 V2 Tr_{ES2}
      and \varrho 1v1-subset-\varrho v-inter-E1: (\varrho 1 \ V1) \subseteq (\varrho \ V) \cap E_{ES1}
      and \varrho 2v2-subset-\varrho v-inter-E2: (\varrho 2 \ V 2) \subseteq (\varrho \ V) \cap E_{ES2}
      {\bf and}\ total\hbox{-} ES1\hbox{-} C1\hbox{-} inter\hbox{-} Upsilon 1\hbox{-} inter\hbox{-} N2\hbox{-} inter\hbox{-} Delta 2:
        total ES1 (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2})
      {\bf and}\ total - ES2 - C2 - inter-Upsilon2 - inter-N1 - inter-Delta1:
        total ES2 (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1})
      and Nabla-inter-E1-subset-Nabla1: \nabla_{\Gamma} \cap E_{ES1} \subseteq \nabla_{\Gamma 1}
      and Nabla-inter-E2-subset-Nabla2: \nabla_{\Gamma} \cap E_{ES2} \subseteq \nabla_{\Gamma2}
      and Upsilon-inter-E1-subset-Upsilon1: \Upsilon_{\Gamma} \cap E_{ES1} \subseteq \Upsilon_{\Gamma 1} and Upsilon-inter-E2-subset-Upsilon2: \Upsilon_{\Gamma} \cap E_{ES2} \subseteq \Upsilon_{\Gamma 2} and Delta1-N1-Delta2-N2-subset-Delta: (\Delta_{\Gamma 1} \cap N_{\mathcal{V} 1} \cup \Delta_{\Gamma 2} \cap N_{\mathcal{V} 2}) \subseteq \Delta_{\Gamma 2}
      and very-long-asm: (N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} = \{\} \land N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1}) \lor (N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} = \{\} \land N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2})
      and F\tilde{C}IA1: F\tilde{C}IA Q\tilde{1} \Gamma 1 V\tilde{1} Tr_{ES1}
      and FCIA2: FCIA Q2 Γ2 V2 Tr<sub>ES2</sub>
      fix \alpha \beta c v'
      assume c-in-Cv-inter-Upsilon: c \in (C_{\mathcal{V}} \cap \Upsilon_{\Gamma})
          and v'-in-Vv-inter-Nabla: v' \in (V_{\mathcal{V}} \cap \nabla_{\Gamma})
          and \beta v'\alpha-in-Tr: (\beta @ [v'] @ \alpha) \in Tr_{(ES1 \parallel ES2)}
          and \alpha Cv-empty: \alpha \upharpoonright C_{\mathcal{V}} = []
          and Adm: Adm \ \mathcal{V} \ \varrho \ (\mathit{Tr}_{(ES1 \ || \ ES2)}) \ \beta \ c
      interpret CSES1: CompositionSupport ES1 V V1
          using propSepViews unfolding properSeparationOfViews-def
          by (simp add: CompositionSupport-def validES1 validV1)
```

```
interpret CSES2: CompositionSupport ES2 V V2
  {\bf using} \ prop Sep {\it Views} \ {\bf unfolding} \ proper Separation Of Views-def
  by (simp add: CompositionSupport-def validES2 validV2)
from \beta v' \alpha-in-Tr
have \beta v'\alpha-E1-in-Tr1: (((\beta @ [v']) @ \alpha) \upharpoonright E_{ES1}) \in Tr_{ES1}
  and \beta v'\alpha-E2-in-Tr2: (((\beta @ [v']) @ \alpha) \uparrow E_{ES2}) \in Tr_{ES2}
  by (simp add: composeES-def)+
from CSES1.BSD-in-subsystem2[OF \beta v'\alpha-E1-in-Tr1 BSD1] obtain \alpha 1'
   where \beta v'E1\alpha 1'-in-Tr1: (\beta @ [v']) \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
  and \alpha 1' Vv1-is-\alpha Vv1: \alpha 1' \upharpoonright V_{V1} = \alpha \upharpoonright V_{V1}
  and \alpha 1'Cv1-empty: \alpha 1' \uparrow C_{V1} = []
  by auto
from CSES2.BSD-in-subsystem2[OF <math>\beta v'\alpha-E2-in-Tr2 BSD2] obtain \alpha 2'
   where \beta v' E 2 \alpha 2'-in-Tr2: (\beta @ [v']) \uparrow E_{ES2} @ \alpha 2' \in Tr_{ES2}
   and \alpha 2' V v 2-is-\alpha V v 2: \alpha 2' \upharpoonright V_{\mathcal{V} 2} = \alpha \upharpoonright V_{\mathcal{V} 2}
  and \alpha 2'Cv2-empty: \alpha 2' \upharpoonright C_{\mathcal{V}2} = []
  by auto
{\bf note}\ very\text{-}long\text{-}asm
moreover {
   assume Nv1-inter-Delta1-inter-E2-empty: N_{V1} \cap \Delta_{\Gamma 1} \cap E_{ES2} = \{\}
     and Nv2-inter-Delta2-inter-E1-subset
of-Upsilon1: N_{V2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq \Upsilon_{\Gamma1}
   let ?ALPHA2''-DELTA2'' = \exists \alpha 2'' \delta 2''. (
     \begin{array}{l} \operatorname{set} \ \alpha 2^{\prime\prime\prime} \subseteq E_{ES2} \ \wedge \ \operatorname{set} \ \delta 2^{\prime\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \\ \wedge \ \beta \ | \ E_{ES2} \ @ \ [c] \ | \ E_{ES2} \ @ \ \delta 2^{\prime\prime\prime} \ @ \ [v'] \ | \ E_{ES2} \ @ \ \alpha 2^{\prime\prime\prime} \in \operatorname{Tr}_{ES2} \\ \wedge \ \alpha 2^{\prime\prime\prime} \ | \ V_{\mathcal{V}2} = \alpha 2^{\prime\prime} \ | \ V_{\mathcal{V}2} \wedge \alpha 2^{\prime\prime\prime} \ | \ C_{\mathcal{V}2} = []) \end{array}
   \mathbf{from} \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ v'\text{-}in\text{-}Vv\text{-}inter\text{-}Nabla \ validV2}
   have c \notin E_{ES2} \lor (c \in E_{ES2} \land v' \notin E_{ES2}) \lor (c \in E_{ES2} \land v' \in E_{ES2})
     by (simp add: V-valid-def is ViewOn-def
         VC-disjoint-def VN-disjoint-def NC-disjoint-def)
   moreover {
     assume c-notin-E2: c \notin E_{ES2}
     from validES2 \beta v'E2\alpha2'-in-Tr2 have set \alpha2' \subseteq E_{ES2}
        by (simp add: ES-valid-def traces-contain-events-def, auto)
     moreover
     have set [] \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
       by auto
     moreover
     from \beta v'E2\alpha 2'-in-Tr2 c-notin-E2
     have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
        by (simp add: projection-def)
     moreover
     have \alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}..
     moreover
     note \alpha 2'Cv2-empty
```

```
ultimately have ?ALPHA2"-DELTA2"
     \mathbf{by} blast
moreover {
  assume c-in-E2: c \in E_{ES2}
    and v'-notin-E2: v' \notin E_{ES2}
  {\bf from} \ \ c\text{-}in\text{-}E2 \ \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews
     Upsilon-inter-E2-subset-Upsilon2
  have c-in-Cv2-inter-Upsilon2: c \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}
    unfolding properSeparationOfViews-def by auto
  hence c \in C_{\mathcal{V}2}
    by auto
  moreover
  from \beta v'E2\alpha 2'-in-Tr2 v'-notin-E2 have \beta \uparrow E_{ES2} @ \alpha 2' \in Tr_{ES2}
     by (simp add: projection-def)
  moreover
  note \alpha 2'Cv2-empty
  moreover
  have Adm \ V2 \ \varrho 2 \ Tr_{ES2} \ (\beta \ | \ E_{ES2}) \ c
  proof -
     from Adm obtain \gamma
       where \gamma \varrho v-is-\beta \varrho v: \gamma \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright (\varrho \ \mathcal{V})
       and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
       unfolding Adm-def
       by auto
     from c-in-E2 \gammac-in-Tr have (\gamma \mid E_{ES2}) @ [c] \in Tr_{ES2}
       \mathbf{by}\ (simp\ add:\ projection\text{-}def\ composeES\text{-}def)
     moreover
     have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \textit{2 V2}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \textit{2 V2})
       from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V})
          by (metis projection-commute)
       with \varrho 2v2-subset-\varrho v-inter-E2 have \gamma \upharpoonright (\varrho 2 \ \mathcal{V}2) = \beta \upharpoonright (\varrho 2 \ \mathcal{V}2)
          by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
       thus ?thesis
          by (metis projection-commute)
     qed
     ultimately show ?thesis unfolding Adm-def
       by auto
  qed
  moreover
  note BSIA2
  ultimately obtain \alpha 2^{\,\prime\prime}
    where one: \beta \upharpoonright E_{ES2} @ [c] @ \alpha 2'' \in Tr_{ES2} and two: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}
    and three: \alpha 2'' \mid C_{\mathcal{V}2} = []
    unfolding BSIA-def
    \mathbf{by} blast
```

from one validES2 have set $\alpha 2^{"} \subseteq E_{ES2}$

```
by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  have set [] \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}
    by auto
  moreover
  from one c-in-E2 v'-notin-E2
  have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  {\bf note}\ two\ three
  ultimately have ?ALPHA2"-DELTA2"
    \mathbf{by} blast
moreover {
  assume c-in-E2: c \in E_{ES2}
    and v'-in-E2: v' \in E_{ES2}
  {\bf from} \ \ c\text{-}in\text{-}E2 \ \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews
     Upsilon\hbox{-}inter\hbox{-}E2\hbox{-}subset\hbox{-}Upsilon2
  have c-in-Cv2-inter-Upsilon2: c \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}
    unfolding properSeparationOfViews-def by auto
  moreover
  \mathbf{from}\ v'\text{-}in\text{-}E2\ propSepViews\ v'\text{-}in\text{-}Vv\text{-}inter\text{-}Nabla\ Nabla\text{-}inter\text{-}E2\text{-}subset\text{-}Nabla2}
  have v' \in V_{\mathcal{V}\mathcal{Z}} \cap Nabla \ \Gamma\mathcal{Z}
    unfolding properSeparationOfViews-def by auto
  moreover
  from v'-in-E2 \beta v'E2\alpha2'-in-Tr2 have \beta \upharpoonright E_{ES2} @ [v'] @ \alpha2' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  note α2 ′Cv2-empty
  moreover
  have Adm~\mathcal{V2}~\varrho\mathcal{Z}~Tr_{ES2}~(\beta \uparrow E_{ES2})~c
  proof -
     from Adm obtain \gamma
       where \gamma \varrho v-is-\beta \varrho v: \gamma \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright (\varrho \ \mathcal{V})
       and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
       unfolding Adm-def
       \mathbf{by} auto
    from c-in-E2 \gamma c-in-Tr have (\gamma \mid E_{ES2}) @ [c] \in Tr_{ES2}
       by (simp add: projection-def composeES-def)
     moreover
    have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V}2) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V}2)
       from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V})
         by (metis projection-commute)
       with \varrho 2v2-subset-\varrho v-inter-E2 have \gamma \mid (\varrho 2 \ V2) = \beta \mid (\varrho 2 \ V2)
         by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
       thus ?thesis
         by (metis projection-commute)
     ultimately show ?thesis unfolding Adm-def
```

```
by auto
  \mathbf{qed}
  moreover
  note FCIA2
  ultimately obtain \alpha 2^{\prime\prime} \delta 2^{\prime\prime}
     where one: set \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} and two: \beta \mid E_{ES2} @ [c] @ \delta 2^{\prime\prime} @ [v'] @ \alpha 2^{\prime\prime} \in \mathit{Tr}_{ES2}
     and three: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}
     and four: \alpha 2'' \uparrow C_{\mathcal{V}2} = []
     \mathbf{unfolding}\ \mathit{FCIA-def}
     \mathbf{by} blast
  from two validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
     by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  note one
  moreover
  from two c-in-E2 v'-in-E2
  have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
     by (simp add: projection-def)
  moreover
  note three four
  ultimately have ?ALPHA2"-DELTA2"
     by blast
ultimately obtain \alpha 2^{\prime\prime} \delta 2^{\prime\prime}
  where \alpha 2''-in-E2star: set \alpha 2'' \subseteq E_{ES2} and \delta 2''-in-N2-inter-Delta2star: set \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
  and \beta E2-cE2-\delta 2 "-v'E2-\alpha 2 "-in-Tr2:
  \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2} and \alpha 2'' Vv2\text{-}is\text{-}\alpha 2' Vv2: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}
  and \alpha 2^{\prime\prime} Cv2\text{-}empty: \alpha 2^{\prime\prime} \upharpoonright C_{\mathcal{V}\mathcal{Z}} = []
  by blast
\mathbf{from} \ \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ \ Upsilon\text{-}inter\text{-}E1\text{-}subset\text{-}Upsilon1 \ \ propSepViews}
have cE1-in-Cv1-inter-Upsilon1: set ([c] \uparrow E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}
  unfolding properSeparationOfViews-def by (simp add: projection-def, auto)
from \delta 2^{\prime\prime}-in-N2-inter-Delta2star Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1
propSepViews disjoint-Nv2-Vv1
have \delta 2''E1-in-Cv1-inter-Upsilon1star: set (\delta 2'' \upharpoonright E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}
  proof -
     from \delta 2^{\prime\prime}-in-N2-inter-Delta2star
     have eq: \delta 2^{"} \uparrow E_{ES1} = \delta 2^{"} \uparrow (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap E_{ES1})
       by (metis Int-commute Int-left-commute Int-lower1 Int-lower2
          projection-intersection-neutral subset-trans)
     from validV1 Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1
        propSepViews disjoint-Nv2-Vv1
     have N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
        {\bf unfolding} \ properSeparationOf Views-def
        by (simp add: isViewOn-def V-valid-def
```

```
VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
      thus ?thesis
          by (subst eq, simp only: projection-def, auto)
   qed
have c\delta 2''E1-in-Cv1-inter-Upsilon1star: set ((c \# \delta 2'') \upharpoonright E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}
      \mathbf{from}\ cE1\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1\ \delta2^{\prime\prime}E1\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1star
      have set (([c] @ \delta 2'') \upharpoonright E_{ES1}) \subseteq C_{V1} \cap \Upsilon_{\Gamma 1}
         by (simp only: projection-concatenation-commute, auto)
      thus ?thesis
         by auto
  \mathbf{qed}
   \exists \ \alpha 1^{\prime\prime\prime} \ \delta 1^{\prime\prime\prime}. \ set \ \alpha 1^{\prime\prime\prime} \subseteq E_{ES1} \ \land \ set \ \delta 1^{\prime\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
  \wedge \ \delta \textit{1} \, " \mid E_{ES2} = \delta \textit{2} \, " \mid E_{ES1}
   \mathbf{proof}\ \mathit{cases}
      assume v'-in-E1: v' \in E_{ES1}
       \textbf{with} \ \textit{Nabla-inter-E1-subset-Nabla1} \ \textit{propSepViews} \ \textit{v'-in-Vv-inter-Nabla} \\ 
      have v'-in-Vv1-inter-Nabla1: v' \in V_{\mathcal{V}1} \cap Nabla \Gamma 1
          unfolding properSeparationOfViews-def by auto
      have [\![ (\beta @ [v']) \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1} ; ]\!]
         \begin{array}{l} \alpha 1' \uparrow C_{\mathcal{V}1} = []; \; set \; ((c \;\#\; \delta 2'') \uparrow E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1} \; ; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \; ; \; set \; \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}; \end{array}
         Adm \ \mathcal{V} \ \varrho \ (Tr_{(ES1 \parallel ES2)}) \ \beta \ c \ ]
\implies \exists \ \alpha 1'' \ \delta 1''.
         (\operatorname{set} \alpha 1''' \subseteq E_{ES1} \wedge \operatorname{set} \delta 1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \\ \wedge \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta 1'' @ [v'] \upharpoonright E_{ES1} @ \alpha 1'' \in \operatorname{Tr}_{ES1} \\ \wedge \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} \wedge \alpha 1'' \upharpoonright C_{\mathcal{V}1} = [] \\ \wedge \delta 1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = \delta 2'' \upharpoonright E_{ES1})
          proof (induct length ((c \# \delta 2'') | E_{ES1}) arbitrary: \beta \alpha 1' c \delta 2'')
             case \theta
             from \theta(2) validES1 have set \alpha 1' \subseteq E_{ES1}
                by (simp add: ES-valid-def traces-contain-events-def, auto)
             moreover
             have set [] \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
                by auto
             moreover
             have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
                proof -
                    note \theta(2)
                    moreover
                    from \theta(1) have c \notin E_{ES1}
                       by (simp add: projection-def, auto)
                    {\bf ultimately \ show} \ \textit{?thesis}
                       by (simp add: projection-concatenation-commute projection-def)
```

```
qed
  moreover
  have \alpha 1' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}..
  moreover
  note \theta(3)
  moreover
  from \theta(1) have [] \uparrow (C_{V1} \cap \Upsilon_{\Gamma 1}) = \delta 2'' \uparrow E_{ES1}
    by (simp add: projection-def, split if-split-asm, auto)
  ultimately show ?case
    by blast
\mathbf{next}
  \mathbf{case}\ (Suc\ n)
  from projection-split-last[OF Suc(2)] obtain \mu \ c' \ \nu
    where c'-in-E1: c' \in E_{ES1} and c\delta 2''-is-\mu c'\nu: c \# \delta 2'' = \mu @ [c'] @ \nu
    and \nu E1-empty: \nu \upharpoonright E_{ES1} = []
    and n-is-length-\mu\nu E1: n = length ((\mu @ \nu) \uparrow E_{ES1})
    by blast
  from Suc(5) c'-in-E1 c\delta 2''-is-\mu c'\nu have set (\mu \uparrow E_{ES1} @ [c']) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}
    by (simp only: c\delta 2''-is-\mu c'\nu projection-concatenation-commute
      projection-def, auto)
  hence c'-in-Cv1-inter-Upsilon1: c' \in C_{V1} \cap \Upsilon_{\Gamma 1}
    by auto
  hence c'-in-Cv1: c' \in C_{\mathcal{V}1} and c'-in-Upsilon1: c' \in \Upsilon_{\Gamma 1}
  with validV1 have c'-in-E1: c' \in E_{ES1}
    by (simp add: isViewOn-def V-valid-def VC-disjoint-def
       VN\hbox{-}disjoint\hbox{-}def\ NC\hbox{-}disjoint\hbox{-}def,\ auto)
  \mathbf{show}~? case
    proof (cases \mu)
      case Nil
      with c\delta 2''-is-\mu c'\nu have c-is-c': c=c' and \delta 2''-is-\nu: \delta 2''=\nu
      with c'-in-Cv1-inter-Upsilon1 have c \in C_{V1} \cap \Upsilon_{\Gamma 1}
        by simp
      moreover
      note v'-in-Vv1-inter-Nabla1
      moreover
      from v'-in-E1 Suc(3) have (\beta \upharpoonright E_{ES1}) @ [v'] @ \alpha 1' \in Tr_{ES1}
        by (simp add: projection-concatenation-commute projection-def)
      moreover
      note Suc(4)
      moreover
      have Adm~\mathcal{V}1~\varrho1~Tr_{ES1}~(\beta \uparrow E_{ES1})~c
        proof -
           from Suc(8) obtain \gamma
             where \gamma \varrho v-is-\beta \varrho v: \gamma \uparrow (\varrho V) = \beta \uparrow (\varrho V)
             and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
             unfolding Adm-def
```

```
by auto
     from c-is-c' c'-in-E1 \gamma c-in-Tr have (\gamma \mid E_{ES1}) @ [c] \in Tr_{ES1}
       by (simp add: projection-def composeES-def)
     moreover
     have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V}1) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V}1)
     proof -
        from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V})
          by (metis projection-commute)
        with \varrho 1v1-subset-\varrho v-inter-E1 have \gamma \upharpoonright (\varrho 1 \ \mathcal{V}1) = \beta \upharpoonright (\varrho 1 \ \mathcal{V}1)
          by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
       \mathbf{thus}~? the sis
          \mathbf{by}\ (\mathit{metis\ projection\text{-}commute})
     qed
     ultimately show ?thesis unfolding Adm-def
  qed
moreover
note FCIA1
ultimately obtain \alpha 1^{\prime\prime} \gamma
  where one: set \gamma \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
  and two: \beta \upharpoonright E_{ES1} @ [c] @ \gamma @ [v'] @ \alpha 1'' \in Tr_{ES1} and three: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
  and four: \alpha 1'' \mid C_{\mathcal{V}1} = []
  unfolding FCIA-def
  by blast
let ?DELTA1'' = \nu | E_{ES1} @ \gamma
from two validES1 have set \alpha 1'' \subseteq E_{ES1}
  \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{ES-valid-def}\ \mathit{traces-contain-events-def},\ \mathit{auto})
moreover
from one \nu E1-empty
have set ?DELTA1" \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
  by auto
moreover
have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
     from c-is-c' c'-in-E1 have [c] = [c] \upharpoonright E_{ES1}
       by (simp add: projection-def)
     moreover
     from v'-in-E1 have [v'] = [v'] \upharpoonright E_{ES1}
       \mathbf{by}\ (simp\ add:\ projection\text{-}def)
     moreover
     note \nu E1-empty two
     ultimately show ?thesis
       by auto
  qed
moreover
note three four
moreover
```

```
have ?DELTA1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = \delta 2'' \upharpoonright E_{ES1}
     proof -
       have \gamma \upharpoonright (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}) = []
         proof -
            from validV1 have N_{V1} \cap \Delta_{\Gamma1} \cap (C_{V1} \cap \Upsilon_{\Gamma1}) = \{\}
               by (simp add: isViewOn-def V-valid-def
                  VC-disjoint-def VN-disjoint-def, auto)
            with projection-intersection-neutral [OF one, of C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}]
            show ?thesis
              by (simp add: projection-def)
         qed
       with \delta 2^{\prime\prime}-is-\nu \nu E1-empty show ?thesis
         \mathbf{by}\ (simp\ add:\ projection\text{-}concatenation\text{-}commute)
    qed
  ultimately show ?thesis
    by blast
next
  case (Cons \ x \ xs)
  with c\delta 2^{\prime\prime}-is-\mu c^{\prime}\nu
  have \mu-is-c-xs: \mu = [c] @ xs and \delta 2 "-is-xs-c'-\nu: \delta 2 " = xs @ [c'] @ \nu
  with n-is-length-\mu\nuE1 have n= length ((c \# (xs @ \nu)) \uparrow E_{ES1})
    by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) \uparrow E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
       have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
         by auto
       from Suc(5) c\delta 2''-is-\mu c'\nu \mu-is-c-xs \nu E1-empty
       \mathbf{show} \ ?thesis
         by (subst res, simp only: c\delta 2^{\prime\prime}-is-\mu c^\prime \nu
            projection-concatenation-commute set-append, auto)
     qed
  moreover
  note Suc(6)
  moreover
  from Suc(7) \delta 2''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2}
    by auto
  moreover note Suc(8) Suc(1)[of c xs @ \nu \beta \alpha 1']
  ultimately obtain \delta \gamma
     where one: set \delta \subseteq E_{ES1}
     and two: set \gamma \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
     and three: \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \gamma @ [v'] \upharpoonright E_{ES1} @ \delta \in Tr_{ES1}
     and four: \delta \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
     and five: \delta \upharpoonright C_{\mathcal{V}1} = []
     and six: \gamma \upharpoonright (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}) = (xs @ \nu) \upharpoonright E_{ES_1}
     by blast
```

```
let ?BETA = \beta \ E_{ES1} \ @ [c] \ E_{ES1} \ @ \gamma
\mathbf{note}\ c'\text{-}in\text{-}Cv1\text{-}inter\text{-}Upsilon1\ v'\text{-}in\text{-}Vv1\text{-}inter\text{-}Nabla1
moreover
from three v'-in-E1 have ?BETA @ [v'] @ \delta \in Tr_{ES1}
  by (simp add: projection-def)
moreover
note five
moreover
have Adm \ V1 \ \varrho1 \ Tr_{ES1} \ ?BETA \ c'
  proof -
    have ?BETA @ [c'] \in Tr_{ES1}
       proof -
         from Suc(7) c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu
         have c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
           by auto
         moreover
         from validES1 three have ?BETA \in Tr_{ES1}
           by (unfold ES-valid-def traces-prefixclosed-def
              prefixclosed-def prefix-def, auto)
         moreover
         {\bf note}\ total\text{-}ES1\text{-}C1\text{-}inter\text{-}Upsilon1\text{-}inter\text{-}N2\text{-}inter\text{-}Delta2
         ultimately show ?thesis
            unfolding total-def
            \mathbf{by} blast
       qed
     thus ?thesis
       unfolding Adm-def
       \mathbf{by} blast
  \mathbf{qed}
moreover
note FCIA1
ultimately obtain \alpha 1^{\prime\prime} \delta^{\prime}
  where fcia-one: set \delta' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} and fcia-two: ?BETA @ [c'] @ \delta' @ [v'] @ \alpha1'' \in Tr_{ES1}
  and fcia-three: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \delta \upharpoonright V_{\mathcal{V}1}
  and fcia-four: \alpha 1'' \mid C_{V1} = []
  unfolding FCIA-def
  \mathbf{by} blast
let ?DELTA1'' = \gamma @ [c'] @ \delta'
from fcia-two validES1 have set \alpha 1'' \subseteq E_{ES1}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA1" \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
  proof -
    from Suc(7) c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu
    have c' \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
       by auto
     with two fcia-one show ?thesis
       by auto
```

```
qed
            moreover
            from fcia-two v'-in-E1
            have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
               by (simp add: projection-def)
            moreover
            from fcia-three four have \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
            moreover
            note fcia-four
            moreover
            have ?DELTA1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}) = \delta 2'' \upharpoonright E_{ES1}
               proof -
                 have \delta' \upharpoonright (C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}) = []
                     proof -
                        from fcia-one have \forall e \in set \ \delta'. \ e \in N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}
                        with validV1 have \forall e \in set \delta'. e \notin C_{V1} \cap \Upsilon_{\Gamma1}
                          by (simp add: isViewOn-def V-valid-def
                               VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
                        \mathbf{thus}~? the sis
                           by (simp add: projection-def)
                     qed
                  with c'-in-E1 c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu \nuE1-empty six
                     by (simp only: projection-concatenation-commute projection-def, auto)
            ultimately show ?thesis
               \mathbf{by} blast
         qed
\mathbf{qed}
from this [OF \beta v'E1\alpha 1'-in-Tr1 \alpha 1'Cv1-empty c\delta 2''E1-in-Cv1-inter-Upsilon1star
   c-in-Cv-inter-Upsilon \ \delta 2 "-in-N2-inter-Delta2star \ Adm]
obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
   where one: set \alpha 1^{"} \subseteq E_{ES1}
  and two: set \delta 1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
and three: \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta 1'' @ [v'] \upharpoonright E_{ES1} @ \alpha 1'' \in Tr_{ES1} \wedge \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1} \wedge \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []
and four: \delta 1'' \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) = \delta 2'' \upharpoonright E_{ES1}
   by blast
note one two three
moreover
have \delta 1^{\,\prime\prime} \mid E_{ES2} = \delta 2^{\,\prime\prime} \mid E_{ES1}
  proof -
     from projection-intersection-neutral [OF two, of E_{ES2}]
         Nv1\text{-}inter\text{-}Delta1\text{-}inter\text{-}E2\text{-}empty\ validV2
     have \delta 1'' \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (C_{V1} \cap \Upsilon_{\Gamma 1} \cap N_{V2} \cap \Delta_{\Gamma 2} \cap E_{ES2})
        by (simp only: Int-Un-distrib2, auto)
     moreover
     \mathbf{from}\ \mathit{validV2}
     have C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \cap E_{ES2} = C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
```

```
by (simp add:isViewOn-def V-valid-def VC-disjoint-def
                 VN-disjoint-def NC-disjoint-def, auto)
         ultimately have \delta 1'' \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (C_{V1} \cap \Upsilon_{\Gamma1} \cap N_{V2} \cap \Delta_{\Gamma2})
            by simp
         hence \delta 1^{\,\prime\prime} \upharpoonright E_{ES2} = \delta 1^{\,\prime\prime} \upharpoonright (C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1}) \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma2})
            by (simp add: projection-def)
         with four have \delta 1'' \upharpoonright E_{ES2} = \delta 2'' \upharpoonright E_{ES1} \upharpoonright (N_{\mathcal{V}2} \cap \Delta_{\Gamma 2})
            by simp
         hence \delta1 ^{\prime\prime}1 E_{ES2}=\delta2 ^{\prime\prime}1 (N_{\mathcal{V}2}\cap\Delta_{\Gamma2})1 E_{ES1}
            by (simp only: projection-commute)
         with \delta 2^{\prime\prime}-in-N2-inter-Delta2star show ?thesis
            \mathbf{by}\ (simp\ only:\ list\text{-}subset\text{-}iff\text{-}projection\text{-}neutral)
      qed
   ultimately show ?thesis
         by blast
next
  assume v'-notin-E1: v' \notin E_{ES1}
    have [(\beta @ [v']) \uparrow E_{ES1} @ \alpha 1' \in Tr_{ES1};
     \alpha 1' \upharpoonright C_{\mathcal{V}1} = []; \ set \ ((c \# \delta 2'') \upharpoonright E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}; \ set \ \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2};
      \begin{array}{l} \textit{Adm V } \varrho \; (\textit{Tr}_{(ES1 \; \parallel \; ES2)}) \; \beta \; c \; \rrbracket \\ \Longrightarrow \exists \; \alpha 1^{\prime\prime} \; \delta 1^{\prime\prime}. \; (\textit{set } \alpha 1^{\prime\prime} \subseteq E_{ES1} \; \land \; \textit{set } \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \end{array}
        \begin{array}{c} \cap \Delta_{\Gamma 1} \cup C_{\mathcal{V} 1} \cap \Upsilon_{\Gamma 1} \cap N_{\mathcal{V} 2} \cap \Delta_{\Gamma 2} \\ \wedge \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta 1'' @ [v'] \upharpoonright E_{ES1} @ \alpha 1'' \in \mathit{Tr}_{ES1} \end{array} 
       \wedge \alpha 1'' \mid V_{\mathcal{V}1} = \alpha 1' \mid V_{\mathcal{V}1} \wedge \alpha 1'' \mid C_{\mathcal{V}1} = []
      \wedge \delta 1'' \uparrow E_{ES2} = \delta 2'' \uparrow E_{ES1}
      proof (induct length ((c \# \delta 2'') | E_{ES1}) arbitrary: \beta \alpha 1' c \delta 2'')
           case \theta
         from \theta(2) validES1 have set \alpha 1' \subseteq E_{ES1}
            by (simp add: ES-valid-def traces-contain-events-def, auto)
         moreover
         have set [] \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
            by auto
         moreover
         have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
            proof -
                note \theta(2)
                moreover
                from \theta(1) have c \notin E_{ES1}
                  by (simp add: projection-def, auto)
                ultimately show ?thesis
                   by (simp add: projection-concatenation-commute projection-def)
            qed
         moreover
         have \alpha 1' \mid V_{\mathcal{V}_1} = \alpha 1' \mid V_{\mathcal{V}_1}..
         moreover
         note \theta(3)
         moreover
         from \theta(1) have [] | E_{ES2} = \delta 2^{"} | E_{ES1}
            by (simp add: projection-def, split if-split-asm, auto)
```

```
ultimately show ?case
    by blast
\mathbf{next}
  case (Suc \ n)
  from projection-split-last[OF Suc(2)] obtain \mu \ c' \ \nu
    where c'-in-E1: c' \in E_{ES1} and c\delta 2''-is-\mu c'\nu: c \# \delta 2'' = \mu @ [c'] @ \nu and \nu E1-empty: \nu \upharpoonright E_{ES1} = []
    and n-is-length-\mu\nu E1: n = length ((\mu @ \nu) \uparrow E_{ES1})
    by blast
  from Suc(5) c'-in-E1 c\delta 2''-is-\mu c'\nu have set (\mu \upharpoonright E_{ES1} @ [c']) \subseteq C_{V1} \cap \Upsilon_{\Gamma1}
    by (simp only: c\delta 2''-is-\mu c'\nu projection-concatenation-commute projection-def, auto)
  hence c'-in-Cv1-inter-Upsilon1: c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
    by auto
  hence c'-in-Cv1: c' \in C_{\mathcal{V}1} and c'-in-Upsilon1: c' \in \Upsilon_{\Gamma 1}
    by auto
  with validV1 have c'-in-E1: c' \in E_{ES1}
    by (simp add:isViewOn-def V-valid-def VC-disjoint-def
       VN-disjoint-def NC-disjoint-def, auto)
  show ?case
    proof (cases \mu)
       case Nil
       with c\delta 2''-is-\mu c'\nu have c-is-c': c=c' and \delta 2''-is-\nu: \delta 2''=\nu
       with c'-in-Cv1-inter-Upsilon1 have c \in C_{V1}
         \mathbf{by} simp
       moreover
       from v'-notin-E1 Suc(3) have (\beta \mid E_{ES1}) @ \alpha 1' \in Tr_{ES1}
         by (simp add: projection-concatenation-commute projection-def)
       moreover
       note Suc(4)
       moreover
       have Adm \ V1 \ \varrho 1 \ Tr_{ES1} \ (\beta \uparrow E_{ES1}) \ c
          proof -
           from Suc(8) obtain \gamma
              where \gamma \varrho v-is-\beta \varrho v: \gamma \uparrow (\varrho V) = \beta \uparrow (\varrho V)
              and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
              unfolding Adm-def
             by auto
           from c-is-c' c'-in-E1 \gamma c-in-Tr have (\gamma \upharpoonright E_{ES1}) \circledcirc [c] \in Tr_{ES1}
             by (simp add: projection-def composeES-def)
           moreover
           have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1)
           proof -
              from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V})
                by (metis projection-commute)
              with \rho 1v1-subset-\rho v-inter-E1 have \gamma \uparrow (\rho 1 \ V 1) = \beta \uparrow (\rho 1 \ V 1)
                by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
```

```
thus ?thesis
           \mathbf{by}\ (metis\ projection\text{-}commute)
       ultimately show ?thesis unfolding Adm-def
         by auto
    qed
  moreover
  note BSIA1
  ultimately obtain \alpha 1^{\prime\prime}
    where one: (\beta \upharpoonright E_{ES1}) @ [c] @ \alpha 1'' \in Tr_{ES1}
    and two: \alpha 1'' \mid V_{\mathcal{V}1} = \alpha 1' \mid V_{\mathcal{V}1} and three: \alpha 1'' \mid C_{\mathcal{V}1} = []
    unfolding BSIA-def
    by blast
  let ?DELTA1" = \nu \mid E_{ES1}
  from one validES1 have set \alpha 1^{"} \subseteq E_{ES1}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  from \nu E1-empty
  have set ?DELTA1" \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
    by simp
  moreover
  from c-is-c' c'-in-E1 one v'-notin-E1 \nu E1-empty
  \mathbf{have}\ (\beta \upharpoonright E_{ES1}) \ @\ [c] \upharpoonright E_{ES1} \ @\ ?DELTA1'' \ @\ [v'] \upharpoonright E_{ES1} \ @\ \alpha1'' \in \mathit{Tr}_{ES1}
    by (simp add: projection-def)
  moreover
  {\bf note}\ two\ three
  moreover
  from \nuE1-empty \delta2''-is-\nu have ?DELTA1'' | E_{ES2} = \delta2'' | E_{ES1}
    by (simp add: projection-def)
  {\bf ultimately \ show} \ ? the sis
    \mathbf{by} blast
\mathbf{next}
  case (Cons \ x \ xs)
  with c\delta 2^{\prime\prime}-is-\mu c^{\prime}\nu
  have \mu-is-c-xs: \mu = [c] @ xs and \delta 2''-is-xs-c'-\nu: \delta 2'' = xs @ [c'] @ \nu
  with n-is-length-\mu\nu E1 have n = length ((c \# (xs @ \nu)) \upharpoonright E_{ES1})
    by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) \uparrow E_{ES1}) \subseteq C_{\mathcal{V}1} \cap \Upsilon_{\Gamma 1}
    proof -
      have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
        by auto
      from Suc(5) c\delta 2''-is-\mu c'\nu \mu-is-c-xs \nu E1-empty
      show ?thesis
        by (subst res, simp only: c\delta 2''-is-\mu c'\nu projection-concatenation-commute
```

```
set-append, auto)
  qed
moreover
note Suc(6)
moreover
from Suc(7) \delta 2 ''-is-xs-c'-\nu have set~(xs~@~\nu)\subseteq N_{\mathcal{V}\mathcal{Z}}\cap \Delta_{\Gamma\mathcal{Z}}
  by auto
moreover note Suc(8) Suc(1)[of c xs @ \nu \beta \alpha 1']
ultimately obtain \delta \gamma
  where one: set \delta \subseteq E_{ES1}
  and two: set \gamma \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cup C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
and three: \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \gamma @ [v'] \upharpoonright E_{ES1} @ \delta \in Tr_{ES1}
and four: \delta \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
  and five: \delta \upharpoonright C_{\mathcal{V}1} = []
  and six: \gamma \upharpoonright E_{ES2} = (xs @ \nu) \upharpoonright E_{ES1}
  by blast
let ?BETA = \beta | E_{ES1} @ [c] | E_{ES1} @ \gamma
from c'-in-Cv1-inter-Upsilon1 have c' \in C_{V1}
  by auto
moreover
from three v'-notin-E1 have ?BETA @ \delta \in Tr_{ES1}
  by (simp add: projection-def)
moreover
note five
moreover
have Adm \ V1 \ \varrho 1 \ Tr_{ES1} \ ?BETA \ c'
  proof -
    have ?BETA @ [c'] \in Tr_{ES1}
       proof -
          from Suc(7) c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu
          have c' \in C_{\mathcal{V}1} \cap \Upsilon_{\Gamma1} \cap N_{\mathcal{V}2} \cap \Delta_{\Gamma2}
            by auto
          moreover
          from validES1 three have ?BETA \in Tr_{ES1}
            by (unfold ES-valid-def traces-prefixclosed-def
               prefixclosed-def prefix-def, auto)
          moreover
          {\bf note}\ total\text{-}ES1\text{-}C1\text{-}inter\text{-}Upsilon1\text{-}inter\text{-}N2\text{-}inter\text{-}Delta2
          ultimately show ?thesis
            unfolding total-def
            \mathbf{by} blast
       qed
    \mathbf{thus}~? the sis
       unfolding Adm-def
       by blast
  qed
moreover
note BSIA1
ultimately obtain \alpha 1^{\prime\prime}
```

```
where bsia-one: ?BETA @ [c'] @ \alpha 1'' \in Tr_{ES1}
                 and bsia-two: \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \delta \upharpoonright V_{\mathcal{V}1}
                 and bsia-three: \alpha 1'' \mid C_{V1} = []
                 unfolding BSIA-def
                 by blast
              let ?DELTA1'' = \gamma @ [c']
              from bsia-one validES1 have set \alpha 1^{"} \subseteq E_{ES1}
                by (simp add: ES-valid-def traces-contain-events-def, auto)
              moreover
              have set ?DELTA1" \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
                proof -
                   from Suc(7) c'-in-Cv1-inter-Upsilon1 \delta 2"-is-xs-c'-\nu
                   have c' \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1} \cap N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
                     by auto
                   with two show ?thesis
                     by auto
                 qed
              moreover
              from bsia-one v'-notin-E1
              have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ ?DELTA1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
                 by (simp add: projection-def)
              moreover
              from bsia-two four have \alpha 1'' \upharpoonright V_{\mathcal{V}1} = \alpha 1' \upharpoonright V_{\mathcal{V}1}
                 by simp
              moreover
              note bsia-three
              moreover
              have ?DELTA1'' | E_{ES2} = \delta2'' | E_{ES1}
                   from validV2\ Suc(7)\ \delta2''-is-xs-c'-\nu have c' \in E_{ES2}
                      by (simp add: isViewOn-def V-valid-def
                         VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
                   with c'-in-E1 c'-in-Cv1-inter-Upsilon1 \delta 2''-is-xs-c'-\nu \nuE1-empty six
                   show ?thesis
                      by (simp only: projection-concatenation-commute projection-def, auto)
              ultimately show ?thesis
                by blast
            \mathbf{qed}
      qed
     from this [OF \beta v'E1\alpha 1'-in-Tr1 \alpha 1'Cv1-empty c\delta 2''E1-in-Cv1-inter-Upsilon1star
       c-in-Cv-inter-Upsilon \delta 2 "-in-N2-inter-Delta2star Adm]
    show ?thesis
      \mathbf{by} blast
  qed
then obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
 where \alpha 1^{\prime\prime}-in-E1star: set \alpha 1^{\prime\prime}\subseteq E_{ES1} and \delta 1^{\prime\prime}-in-N1-inter-Delta1star:set \delta 1^{\prime\prime}\subseteq N_{\mathcal{V}1}\cap\Delta_{\Gamma1}\cup C_{\mathcal{V}1}\cap\Upsilon_{\Gamma1}\cap N_{\mathcal{V}2}\cap\Delta_{\Gamma2}
  and \beta E1-cE1-\delta1 "-v'E1-\alpha1 "-in-Tr1:
    \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta1^{\prime\prime} @ [v^{\prime}] \upharpoonright E_{ES1} @ \alpha1^{\prime\prime} \in \mathit{Tr}_{ES1}
```

```
and \alpha 1'' Vv1-is-\alpha 1' Vv1: \alpha 1'' \upharpoonright V_{V1} = \alpha 1' \upharpoonright V_{V1}
    and \alpha 1 "Cv1-empty: \alpha 1" \uparrow C_{V1} = []
    and \delta 1''E2-is-\delta 2''E1: \delta 1'' \upharpoonright E_{ES2} = \delta 2'' \upharpoonright E_{ES1}
 from \beta E1-cE1-\delta 1 "-v'E1-\alpha 1"-in-Tr1 \beta E2-cE2-\delta 2"-v'E2-\alpha 2"-in-Tr2 validES1
    validES2
 have \delta 1''-in-E1star: set \delta 1'' \subseteq E_{ES1} and \delta 2''-in-E2star: set \delta 2'' \subseteq E_{ES2}
    \mathbf{by}\ (simp-all\ add:\ ES-valid-def\ traces-contain-events-def,\ auto)
 with \delta 1^{\prime\prime} E2-is-\delta 2^{\prime\prime} E1 merge-property[of \delta 1^{\prime\prime} E_{ES1} \delta 2^{\prime\prime} E_{ES2}] obtain \delta ^{\prime}
   where \delta'E1-is-\delta1'': \delta' \uparrow E_{ES1} = \delta1'' and \delta'E2-is-\delta2'': \delta' \uparrow E_{ES2} = \delta2''
    and \delta'-contains-only-\delta 1^{\prime\prime\prime}-\delta 2^{\prime\prime}-events: set \delta'\subseteq set \delta 1^{\prime\prime}\cup set \delta 2^{\prime\prime}
    unfolding Let-def
    by auto
 let ?TAU = \beta @ [c] @ \delta' @ [v']
 let ?LAMBDA = \alpha \mid V_{\mathcal{V}}
 let ?T1 = \alpha 1''
 let ?T2 = \alpha 2''
have ?TAU \in Tr_{(ES1 \parallel ES2)}
    proof -
      from \beta E1-cE1-\delta 1 ''-v'E1-\alpha 1 ''-in-Tr1 \delta 'E1-is-\delta 1 '' validES1
      have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta' \upharpoonright E_{ES1} @ [v'] \upharpoonright E_{ES1} \in \mathit{Tr}_{ES1}
         by (simp add: ES-valid-def traces-prefixclosed-def
           pre \mathit{fix} \mathit{closed} \mathit{-def} \ pre \mathit{fix} \mathit{-def})
      hence (\beta @ [c] @ \delta' @ [v']) \upharpoonright E_{ES1} \in Tr_{ES1}
         by (simp add: projection-def, auto)
      from \beta E2-cE2-\delta2''-v'E2-\alpha2''-in-Tr2 \delta'E2-is-\delta2'' validES2
      have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta' \upharpoonright E_{ES2} @ [v'] \upharpoonright E_{ES2} \in Tr_{ES2}
        by (simp add: ES-valid-def traces-prefixclosed-def
           prefixclosed-def prefix-def)
      hence (\beta @ [c] @ \delta' @ [v']) \uparrow E_{ES2} \in Tr_{ES2}
         by (simp add: projection-def, auto)
      moreover
      from \beta v'\alpha-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE \delta'-contains-only-\delta 1''-\delta 2''-events
         \delta 1^{\prime\prime}-in-E1star \delta 2^{\prime\prime}-in-E2star
      have set (\beta @ [c] @ \delta' @ [v']) \subseteq E_{ES1} \cup E_{ES2}
         unfolding composeES-def isViewOn-def V-valid-def
            VC-disjoint-def VN-disjoint-def NC-disjoint-def
         by auto
      ultimately show ?thesis
         unfolding composeES-def
         by auto
    qed
 hence set ?TAU \subseteq E_{(ES1 \parallel ES2)}
    unfolding composeES-def
    by auto
 moreover
```

```
have set ?LAMBDA \subseteq V_{\mathcal{V}}
  by (simp add: projection-def, auto)
moreover
note α1''-in-E1star α2''-in-E2star
moreover
from \beta E1-cE1-\delta1"-v'E1-\alpha1"-in-Tr1 \delta'E1-is-\delta1"
have ?TAU \mid E_{ES1} @ ?T1 \in Tr_{ES1}
  by (simp only: projection-concatenation-commute, auto)
moreover
from \beta E2-cE2-\delta2 ^{\prime\prime}-v^{\prime}E2-\alpha2 ^{\prime\prime}-in-Tr2 \delta^{\prime}E2-is-\delta2 ^{\prime\prime}
have ?TAU \mid E_{ES2} @ ?T2 \in Tr_{ES2}
  \mathbf{by}\ (simp\ only:\ projection\text{-}concatenation\text{-}commute},\ auto)
moreover
have ?LAMBDA \uparrow E_{ES1} = ?T1 \uparrow V_{V}
  proof -
    from propSepViews have ?LAMBDA | E_{ES1} = \alpha \mid V_{V1}
      unfolding properSeparationOfViews-def by (simp only: projection-sequence)
    moreover
    from \alpha 1''-in-E1star propSepViews
    have ?T1 \mid V_{\mathcal{V}} = ?T1 \mid V_{\mathcal{V}1}
      {\bf unfolding} \ proper Separation Of Views-def
      \mathbf{by}\ (\mathit{metis}\ \mathit{Int-commute}\ \mathit{projection-intersection-neutral})
    moreover
    note \alpha 1' Vv1-is-\alpha Vv1 \alpha 1'' Vv1-is-\alpha 1' Vv1
    ultimately show ?thesis
      \mathbf{by} \ simp
  qed
moreover
have ?LAMBDA \upharpoonright E_{ES2} = ?T2 \upharpoonright V_{V}
    from propSepViews have ?LAMBDA \upharpoonright E_{ES2} = \alpha \upharpoonright V_{V2}
      unfolding properSeparationOfViews-def by (simp only: projection-sequence)
    from \alpha 2''-in-E2star propSepViews have ?T2 | V_{\mathcal{V}} = ?T2 \mid V_{\mathcal{V}2}
      {f unfolding}\ properSeparationOfViews-def
      by (metis Int-commute projection-intersection-neutral)
    moreover
    note \alpha 2'Vv2-is-\alpha Vv2 \alpha 2''Vv2-is-\alpha 2'Vv2
    ultimately show ?thesis
      \mathbf{by} \ simp
  qed
moreover
note \alpha 1 "Cv1-empty \alpha 2"Cv2-empty generalized-zipping-lemma
ultimately obtain t
  where ?TAU @ t \in Tr_{(ES1 \parallel ES2)}
  and t \uparrow V_{\mathcal{V}} = ?LAMBDA
  and t \upharpoonright C_{\mathcal{V}} = []
  by blast
moreover
have set \delta' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma}
  proof -
    from \delta'-contains-only-\delta 1''-\delta 2''-events \delta 1''-in-N1-inter-Delta1star
```

```
\delta 2 ''-in-N2-inter-Delta2star
       have set \delta' \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cup N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2}
        with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subsetof-Nv
       show ?thesis
          by auto
     qed
  ultimately have \exists \alpha' \gamma'. (set \gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \wedge \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}
     \wedge \alpha' \mid V_{\mathcal{V}} = \alpha \mid V_{\mathcal{V}} \wedge \alpha' \mid C_{\mathcal{V}} = [])
     by (simp only: append-assoc, blast)
moreover {
  assume Nv2-inter-Delta2-inter-E1-empty: N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cap E_{ES1} = \{\}
     and Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2: N_{V1} \cap \Delta_{\Gamma1} \cap E_{ES2} \subseteq \Upsilon_{\Gamma2}
  let ?ALPHA1''-DELTA1'' = \exists \alpha 1'' \delta 1''. (
    \begin{array}{l} \operatorname{set} \ \alpha 1^{\prime\prime} \subseteq E_{ES1} \ \wedge \ \operatorname{set} \ \delta 1^{\prime\prime} \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \\ \wedge \ \beta \ | \ E_{ES1} \ @ \ [c] \ | \ E_{ES1} \ @ \ \delta 1^{\prime\prime} \ @ \ [v'] \ | \ E_{ES1} \ @ \ \alpha 1^{\prime\prime} \in \operatorname{Tr}_{ES1} \\ \wedge \ \alpha 1^{\prime\prime} \ | \ V_{\mathcal{V}1} = \alpha 1^{\prime} \ | \ V_{\mathcal{V}1} \wedge \alpha 1^{\prime\prime} \ | \ C_{\mathcal{V}1} = []) \end{array}
  \mathbf{from} \ \mathit{c-in-Cv-inter-Upsilon} \ \mathit{v'-in-Vv-inter-Nabla} \ \mathit{validV1}
  have c \notin E_{ES1} \lor (c \in E_{ES1} \land v' \notin E_{ES1}) \lor (c \in E_{ES1} \land v' \in E_{ES1})
     by (simp add: isViewOn-def V-valid-def VC-disjoint-def
        VN-disjoint-def NC-disjoint-def)
  moreover {
     assume c-notin-E1: c \notin E_{ES1}
     from validES1 \ \beta v'E1\alpha 1'-in-Tr1 have set \ \alpha 1' \subseteq E_{ES1}
        by (simp add: ES-valid-def traces-contain-events-def, auto)
     moreover
     have set [] \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
       by auto
     moreover
     from \beta v'E1\alpha 1'-in-Tr1 c-notin-E1
     have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
       by (simp add: projection-def)
     moreover
     have \alpha 1' \mid V_{\mathcal{V}_1} = \alpha 1' \mid V_{\mathcal{V}_1}..
     moreover
     note \alpha 1'Cv1-empty
     ultimately have ?ALPHA1"-DELTA1"
       \mathbf{by} blast
  moreover {
     assume c-in-E1: c \in E_{ES1}
       and v'-notin-E1: v' \notin E_{ES1}
     \mathbf{from} \ c\text{-}in\text{-}E1 \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews
        Upsilon-inter-E1-subset-Upsilon1
     have c-in-Cv1-inter-Upsilon1: c \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}
        unfolding properSeparationOfViews-def by auto
     hence c \in C_{\mathcal{V}_1}
```

}

```
by auto
moreover
from \beta v'E1\alpha 1'-in-Tr1 v'-notin-E1 have \beta \upharpoonright E_{ES1} @ \alpha 1' \in Tr_{ES1}
  by (simp add: projection-def)
moreover
note \alpha 1'Cv1-empty
moreover
have Adm \ V1 \ \varrho1 \ Tr_{ES1} \ (\beta \ | \ E_{ES1}) \ c
proof -
  from Adm obtain \gamma
     where \gamma \varrho v-is-\beta \varrho v: \gamma \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright (\varrho \ \mathcal{V})
     and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
     \mathbf{unfolding}\ \mathit{Adm\text{-}def}
     by auto
  from c-in-E1 \gamma c-in-Tr have (\gamma \mid E_{ES1}) \otimes [c] \in Tr_{ES1}
     by (simp add: projection-def composeES-def)
  moreover
  have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho 1 \ \mathcal{V} 1)
  proof -
     from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES1} \upharpoonright (\varrho \ \mathcal{V})
       by (metis projection-commute)
     with \varrho 1v1-subset-\varrho v-inter-E1 have \gamma \upharpoonright (\varrho 1 \ V 1) = \beta \upharpoonright (\varrho 1 \ V 1)
       by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
     thus ?thesis
       \mathbf{by}\ (metis\ projection\text{-}commute)
  ultimately show ?thesis unfolding Adm-def
     \mathbf{by} auto
qed
moreover
\mathbf{note}\ \mathit{BSIA1}
ultimately obtain \alpha 1^{\prime\prime}
  where one: \beta \upharpoonright E_{ES1} @ [c] @ \alpha 1'' \in Tr_{ES1}
  and two: \alpha 1'' \uparrow V_{\mathcal{V}1} = \alpha 1' \uparrow V_{\mathcal{V}1}
and three: \alpha 1'' \uparrow C_{\mathcal{V}1} = []
  unfolding BSIA-def
  \mathbf{by} blast
from one validES1 have set \alpha 1'' \subseteq E_{ES1}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set [] \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}
  by auto
moreover
from one c-in-E1 v'-notin-E1
have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ [] @ [v'] \upharpoonright E_{ES1} @ \alpha 1'' \in Tr_{ES1}
  by (simp add: projection-def)
moreover
note two three
ultimately have ?ALPHA1"-DELTA1"
  \mathbf{by} blast
```

```
moreover {
  assume c-in-E1: c \in E_{ES1}
    and v'-in-E1: v' \in E_{ES1}
  \mathbf{from} \ c\text{-}in\text{-}E1 \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ propSepViews
     Upsilon\text{-}inter\text{-}E1\text{-}subset\text{-}Upsilon1
  have c-in-Cv1-inter-Upsilon1: c \in C_{\mathcal{V}_1} \cap \Upsilon_{\Gamma_1}
    unfolding properSeparationOfViews-def by auto
  moreover
  from v'-in-E1 propSepViews v'-in-Vv-inter-Nabla
    Nabla\mbox{-}inter\mbox{-}E1\mbox{-}subset\mbox{-}Nabla1
  have v' \in V_{\mathcal{V}_1} \cap Nabla \Gamma_1
    {\bf unfolding} \ properSeparationOf Views-def \ {\bf by} \ auto
  moreover
  from v'-in-E1 \beta v'E1\alpha1'-in-Tr1 have \beta \upharpoonright E_{ES1} @ [v'] @ \alpha1' \in Tr_{ES1}
     by (simp add: projection-def)
  moreover
  note \alpha 1'Cv1-empty
  moreover
  have Adm \ V1 \ \varrho1 \ Tr_{ES1} \ (\beta \ | \ E_{ES1}) \ c
  proof -
     from Adm obtain \gamma
       where \gamma \varrho v-is-\beta \varrho v: \gamma \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright (\varrho \ \mathcal{V})
       and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
       \mathbf{unfolding}\ \mathit{Adm\text{-}def}
       \mathbf{by} auto
     from c-in-E1 \gamma c-in-Tr have (\gamma \mid E_{ES1}) \otimes [c] \in Tr_{ES1}
       by (simp add: projection-def composeES-def)
     moreover
     \mathbf{have} \ \gamma \restriction E_{ES1} \restriction (\varrho 1 \ \mathcal{V} 1) = \beta \restriction E_{ES1} \restriction (\varrho 1 \ \mathcal{V} 1)
     proof -
       \mathbf{from} \ \gamma \varrho v\text{-}\mathit{is}\text{-}\beta \varrho v \ \mathbf{have} \ \gamma \restriction E_{ES1} \restriction (\varrho \ \mathcal{V}) = \beta \restriction E_{ES1} \restriction (\varrho \ \mathcal{V})
          by (metis projection-commute)
       with \varrho 1v1-subset-\varrho v-inter-E1 have \gamma \upharpoonright (\varrho 1 \ V 1) = \beta \upharpoonright (\varrho 1 \ V 1)
          by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
       thus ?thesis
          by (metis projection-commute)
     qed
     ultimately show ?thesis unfolding Adm-def
       by auto
  qed
  moreover
  note FCIA1
  ultimately obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
    where one: set \delta 1^{"} \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}
    and two: \beta \upharpoonright E_{ES1} @ [c] @ \delta1'' @ [v'] @ \alpha1'' \in Tr_{ES1}
    and three: \alpha 1'' \uparrow V_{\mathcal{V}1} = \alpha 1' \uparrow V_{\mathcal{V}1}
    and four: \alpha 1'' \upharpoonright C_{\mathcal{V}1} = []
    unfolding FCIA-def
    by blast
```

}

```
from two validES1 have set \alpha 1'' \subseteq E_{ES1}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  note one
  moreover
  from two c-in-E1 v'-in-E1
  have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta1'' @ [v'] \upharpoonright E_{ES1} @ \alpha1'' \in Tr_{ES1}
    by (simp add: projection-def)
  moreover
  {\bf note}\ three\ four
  ultimately have ?ALPHA1"-DELTA1"
    \mathbf{by} blast
}
ultimately obtain \alpha 1^{\prime\prime} \delta 1^{\prime\prime}
  where \alpha 1''-in-E1star: set \alpha 1'' \subseteq E_{ES1}
  and \delta 1''-in-N1-inter-Delta1star:set \delta 1'' \subseteq N_{V1} \cap \Delta_{\Gamma 1}
  and \beta \it{E1-cE1-\delta1}^{\prime\prime} - v^\prime \it{E1-\alpha1}^{\prime\prime} - in\mbox{-} \it{Tr1} :
    \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta 1 \\ {}^{\prime\prime} @ [v'] \upharpoonright E_{ES1} @ \alpha 1 \\ {}^{\prime\prime} \in \mathit{Tr}_{ES1}
  and \alpha 1''Vv1-is-\alpha 1'Vv1: \alpha 1'' \mid V_{V1} = \alpha 1'' \mid V_{V1}
  and \alpha 1^{\prime\prime} Cv1\text{-}empty: \alpha 1^{\prime\prime} \mid C_{\mathcal{V}1} = []
  \mathbf{by} blast
\mathbf{from} \ \ c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon \ \ Upsilon\text{-}inter\text{-}E2\text{-}subset\text{-}Upsilon2 \ propSepViews}
have cE2-in-Cv2-inter-Upsilon2: set ([c] \uparrow E_{ES2}) \subseteq C_{V2} \cap \Upsilon_{\Gamma2}
  unfolding properSeparationOfViews-def by (simp add: projection-def, auto)
from \delta 1''-in-N1-inter-Delta1star Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2
 propSep Views\ disjoint-Nv1-Vv2
have \delta 1''E2-in-Cv2-inter-Upsilon2star: set (\delta 1'' \upharpoonright E_{ES2}) \subseteq C_{V2} \cap \Upsilon_{\Gamma 2}
  proof -
    from \delta 1 "-in-N1-inter-Delta1star
    have eq: \delta 1'' \upharpoonright E_{ES2} = \delta 1'' \upharpoonright (N_{V1} \cap \Delta_{\Gamma1} \cap E_{ES2})
       by (metis Int-commute Int-left-commute Int-lower2 Int-lower1
         projection-intersection-neutral subset-trans)
    from validV2 Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2
       propSepViews disjoint-Nv1-Vv2
    have N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1} \cap E_{ES2} \subseteq C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2}
       {\bf unfolding} \ properSeparationOf Views-def
       by (simp add: isViewOn-def V-valid-def VC-disjoint-def
         VN-disjoint-def NC-disjoint-def, auto)
    thus ?thesis
       \mathbf{by}\ (subst\ eq,\ simp\ only:\ projection\text{-}def,\ auto)
  qed
have c\delta 1''E2-in-Cv2-inter-Upsilon2star: set ((c \# \delta 1'') \restriction E_{ES2}) \subseteq C_{V2} \cap \Upsilon_{\Gamma 2}
  proof -
    from cE2-in-Cv2-inter-Upsilon2 \delta 1 "E2-in-Cv2-inter-Upsilon2star
    have set (([c] @ \delta1'') \upharpoonright E_{ES2}) \subseteq C_{V2} \cap \Upsilon_{\Gamma2}
      by (simp only: projection-concatenation-commute, auto)
    thus ?thesis
```

```
\mathbf{qed}
have \exists \alpha 2^{\prime\prime} \delta 2^{\prime\prime}. set \alpha 2^{\prime\prime} \subseteq E_{ES2}
   \begin{array}{l} \wedge \ set \ \delta 2^{\prime\prime} \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \\ \wedge \ \beta \ \mid \ E_{ES2} @ [c] \ \mid \ E_{ES2} @ \delta 2^{\prime\prime} @ [v'] \ \mid \ E_{ES2} @ \alpha 2^{\prime\prime} \in Tr_{ES2} \\ \wedge \ \alpha 2^{\prime\prime} \ \mid \ V_{\mathcal{V}2} = \alpha 2^{\prime} \ \mid \ V_{\mathcal{V}2} \wedge \alpha 2^{\prime\prime} \ \mid \ C_{\mathcal{V}2} = [] \\ \wedge \ \delta 2^{\prime\prime\prime} \ \mid \ E_{ES1} = \delta 1^{\prime\prime\prime} \ \mid \ E_{ES2} \\ \end{array} 
   \mathbf{proof}\ \mathit{cases}
       assume v'-in-E2: v' \in E_{ES2}
       \mathbf{with}\ \mathit{Nabla-inter-E2-subset-Nabla2}\ \mathit{propSepViews}\ \mathit{v'-in-Vv-inter-Nabla2}
       have v'-in-Vv2-inter-Nabla2: v' \in V_{\mathcal{V}2} \cap Nabla \Gamma 2
            unfolding properSeparationOfViews-def by auto
       have [\![ (\beta @ [v']) \uparrow E_{ES2} @ \alpha2' \in Tr_{ES2} ; ]\!]
           \begin{array}{l} \alpha 2' \uparrow C_{\mathcal{V}2} = []; \; set \; ((c \;\#\; \delta 1\;'') \uparrow E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \; ; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma} \; ; \; set \; \delta 1\,'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}; \end{array}
            Adm \ \mathcal{V} \ \varrho \ (Tr_{(ES1 \parallel ES2)}) \ \beta \ c \ ]
            \Longrightarrow \exists \alpha 2'' \delta \hat{2}''.
         (\text{set }\alpha 2'' \subseteq E_{ES2} \wedge \text{ set }\delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \\ \wedge \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2} \\ \wedge \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2} \wedge \alpha 2'' \upharpoonright C_{\mathcal{V}2} = [] \\ \wedge \delta 2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) = \delta 1'' \upharpoonright E_{ES2})
            proof (induct length ((c \# \delta 1'') | E_{ES2}) arbitrary: \beta \alpha 2' c \delta 1'')
               \mathbf{case}\ \theta
               from \theta(2) validES2 have set \alpha 2' \subseteq E_{ES2}
                    by (simp add: ES-valid-def traces-contain-events-def, auto)
               moreover
               have set [] \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
                   by auto
               moreover
               have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
                    proof -
                        note \theta(2)
                        moreover
                        from \theta(1) have c \notin E_{ES2}
                            by (simp add: projection-def, auto)
                        ultimately show ?thesis
                            by (simp add: projection-concatenation-commute projection-def)
                    qed
               moreover
               have \alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}..
               moreover
               note \theta(3)
               from \theta(1) have [1] (C_{\mathcal{V}_2} \cap \Upsilon_{\Gamma_2}) = \delta 1'' | E_{ES_2}
                   by (simp add: projection-def, split if-split-asm, auto)
                ultimately show ?case
                   \mathbf{by} blast
           \mathbf{next}
```

by auto

```
case (Suc \ n)
from projection\text{-}split\text{-}last[\mathit{OF}\ \mathit{Suc}(2)] obtain \mu\ c'\ \nu
  where c'-in-E2: c' \in E_{ES2}
and c\delta 1''-is-\mu c'\nu: c \# \delta 1'' = \mu @ [c'] @ \nu
  and \nuE2-empty: \nu | E_{ES2} = []
  and n-is-length-\mu\nuE2: n = length ((\mu @ \nu) \uparrow E_{ES2})
  by blast
from Suc(5) c'-in-E2 c\delta 1''-is-\mu c'\nu have set (\mu \upharpoonright E_{ES2} @ [c']) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}
  by (simp only: c\delta 1''-is-\mu c'\nu projection-concatenation-commute
    projection-def, auto)
hence c'-in-Cv2-inter-Upsilon2: c' \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}
  by auto
hence c'-in-Cv2: c' \in C_{\mathcal{V}2} and c'-in-Upsilon2: c' \in \Upsilon_{\Gamma 2}
  by auto
with validV2 have c'-in-E2: c' \in E_{ES2}
  by (simp add: isViewOn-def V-valid-def
     VC-disjoint-def VN-disjoint-def, auto)
\mathbf{show} ?case
  proof (cases \mu)
    {f case} Nil
     with c\delta 1''-is-\mu c'\nu have c-is-c': c=c' and \delta 1''-is-\nu: \delta 1''=\nu
     with c'-in-Cv2-inter-Upsilon2 have c \in C_{V2} \cap \Upsilon_{\Gamma2}
       by simp
    moreover
    note v'-in-Vv2-inter-Nabla2
    from v'-in-E2 Suc(3) have (\beta \upharpoonright E_{ES2}) @ [v'] @ \alpha 2' \in Tr_{ES2}
       by (simp add: projection-concatenation-commute projection-def)
    moreover
    note Suc(4)
    moreover
    have Adm \ V2 \ \varrho 2 \ Tr_{ES2} \ (\beta \ | \ E_{ES2}) \ c
       proof -
         from Suc(8) obtain \gamma
            where \gamma \varrho v-is-\beta \varrho v: \gamma \uparrow (\varrho V) = \beta \uparrow (\varrho V)
           and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
           unfolding Adm-def
           by auto
         from c-is-c' c'-in-E2 \gamma c-in-Tr have (\gamma \mid E_{ES2}) \otimes [c] \in Tr_{ES2}
           by (simp add: projection-def composeES-def)
         moreover
         have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V}2) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V}2)
         proof -
            from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V})
             by (metis projection-commute)
            with \rho 2v2-subset-\rho v-inter-E2 have \gamma \uparrow (\rho 2 \ V2) = \beta \uparrow (\rho 2 \ V2)
              by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
```

```
thus ?thesis
          \mathbf{by}\ (\mathit{metis}\ \mathit{projection\text{-}commute})
     ultimately show ?thesis unfolding Adm-def
       by auto
  qed
moreover
note FCIA2
ultimately obtain \alpha 2^{\prime\prime} \gamma
  where one: set \gamma \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}
  and two: \beta \upharpoonright E_{ES2} @ [c] @ \gamma @ [v'] @ \alpha 2'' \in Tr_{ES2} and three: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2} and four: \alpha 2'' \upharpoonright C_{\mathcal{V}2} = []
  unfolding FCIA-def
  \mathbf{by} blast
let ?DELTA2" = \nu \uparrow E_{ES2} @ \gamma
from two validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
  \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{ES-valid-def}\ \mathit{traces-contain-events-def},\ \mathit{auto})
moreover
from one \nu E2-empty
have set ?DELTA2" \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
  by auto
moreover
have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha2'' \in \mathit{Tr}_{ES2}
     from c-is-c' c'-in-E2 have [c] = [c] \upharpoonright E_{ES2}
       by (simp add: projection-def)
     moreover
     from v'-in-E2 have [v'] = [v'] \upharpoonright E_{ES2}
       by (simp add: projection-def)
     moreover
     note \nu E2-empty two
     ultimately show ?thesis
       by auto
  qed
moreover
note three four
moreover
have ?DELTA2'' | (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) = \delta 1'' | E_{ES2}
  proof -
     have \gamma \uparrow (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = []
       proof -
          from validV2 have N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cap (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) = \{\}
            by (simp add: isViewOn-def V-valid-def
                VC-disjoint-def VN-disjoint-def, auto)
          with projection-intersection-neutral[OF one, of C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}]
          show ?thesis
            by (simp add: projection-def)
       qed
```

```
with \delta 1''-is-\nu \nu E2-empty show ?thesis
          \mathbf{by}\ (simp\ add:\ projection\text{-}concatenation\text{-}commute)
     qed
   ultimately show ?thesis
     by blast
next
  case (Cons \ x \ xs)
   with c\delta 1^{\prime\prime}-is-\mu c^{\prime}\nu
  have \mu-is-c-xs: \mu = [c] @ xs and \delta 1 "-is-xs-c'-\nu: \delta 1" = xs @ [c'] @ \nu
  with n-is-length-\mu\nuE2 have n= length ((c \# (xs @ \nu)) \uparrow E_{ES2})
    by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) \upharpoonright E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}
        have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
          by auto
        from Suc(5) c\delta 1''-is-\mu c'\nu \mu-is-c-xs \nuE2-empty
        \mathbf{show} \ ?thesis
          by (subst res, simp only: c\delta 1''-is-\mu c'\nu
             projection-concatenation-commute set-append, auto)
     qed
  moreover
  note Suc(6)
  moreover
  from Suc(7) \, \delta 1''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}
   moreover note Suc(8) Suc(1)[of c xs @ \nu \beta \alpha 2]
   ultimately obtain \delta \gamma
     where one: set \delta \subseteq E_{ES2}
     and two: set \gamma \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} and three: \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \gamma @ [v'] \upharpoonright E_{ES2} @ \delta \in Tr_{ES2}
     and four: \delta \upharpoonright V_{\mathcal{V}\mathcal{Z}} = \alpha \mathcal{Z}' \upharpoonright V_{\mathcal{V}\mathcal{Z}}
     and five: \delta \upharpoonright C_{\mathcal{V}\mathcal{Z}} = []
     and six: \gamma \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = (xs @ \nu) \upharpoonright E_{ES\mathcal{Z}}
     \mathbf{by} blast
  let ?BETA = \beta \ \( E_{ES2} \ \emptyreal \( [c] \) \( E_{ES2} \ \emptyreal \) \( \gamma \)
  {\bf note}\ c'\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon2\ v'\text{-}in\text{-}Vv2\text{-}inter\text{-}Nabla2
  moreover
  from three v'-in-E2 have ?BETA @ [v'] @ \delta \in Tr_{ES2}
     by (simp add: projection-def)
  moreover
  {f note}\ five
   moreover
  have Adm \ V2 \ \varrho 2 \ Tr_{ES2} \ ?BETA \ c'
     proof -
```

```
have ?BETA @ [c'] \in Tr_{ES2}
       proof -
          from Suc(7) c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu
          have c' \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
            by auto
          moreover
          from validES2 three have ?BETA \in Tr_{ES2}
            by (unfold ES-valid-def traces-prefixclosed-def
               prefixclosed-def prefix-def, auto)
          moreover
          {\bf note}\ total\text{-}ES2\text{-}C2\text{-}inter\text{-}Upsilon2\text{-}inter\text{-}N1\text{-}inter\text{-}Delta1
          ultimately show ?thesis
            \mathbf{unfolding} \ \mathit{total-def}
            by blast
       qed
    thus ?thesis
       unfolding Adm-def
       \mathbf{by} blast
  qed
moreover
note FCIA2
ultimately obtain \alpha 2^{\prime\prime} \delta^{\prime}
  where fcia-one: set \delta' \subseteq N_{\mathcal{V}\mathcal{Z}} \cap \Delta_{\Gamma\mathcal{Z}}
  and fcia-two: ?BETA @ [c'] @ \delta' @ [v'] @ \alpha 2'' \in Tr_{ES2}
  and fcia-three: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \delta \upharpoonright V_{\mathcal{V}2}
and fcia-four: \alpha 2'' \upharpoonright C_{\mathcal{V}2} = []
  unfolding FCIA-def
  \mathbf{by} blast
let ?DELTA2'' = \gamma @ [c'] @ \delta'
from fcia-two validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
moreover
have set ?DELTA2" \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
  proof -
     from Suc(7) c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu
    have c' \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
     with two fcia-one show ?thesis
       by auto
  qed
moreover
from fcia-two v'-in-E2
\mathbf{have}\ \beta \uparrow E_{ES2} \ @\ [c] \uparrow E_{ES2} \ @\ ?DELTA2'' \ @\ [v'] \uparrow E_{ES2} \ @\ \alpha2'' \in \mathit{Tr}_{ES2}
  by (simp add: projection-def)
moreover
from fcia-three four have \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}
  by simp
moreover
{\bf note}\; fcia\text{-}four
moreover
```

```
have ?DELTA2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}) = \delta1'' \upharpoonright E_{ES2}
                proof -
                   have \delta' \upharpoonright (C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}) = []
                      proof -
                         from fcia-one have \forall e \in set \delta'. e \in N_{\mathcal{V}_{\mathcal{Q}}} \cap \Delta_{\Gamma_{\mathcal{Q}}}
                         with validV2 have \forall e \in set \delta'. e \notin C_{V2} \cap \Upsilon_{\Gamma2}
                            by (simp add:isViewOn-def V-valid-def
                                VC-disjoint-def VN-disjoint-def, auto)
                         thus ?thesis
                            by (simp add: projection-def)
                      \mathbf{qed}
                   with c'-in-E2 c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu \nu E2-empty six
                   show ?thesis
                      by (simp only: projection-concatenation-commute projection-def, auto)
                qed
             ultimately show ?thesis
                \mathbf{by} blast
          qed
\mathbf{qed}
from this [OF \beta v'E2\alpha2'-in-Tr2 \alpha2'Cv2-empty
   c\delta 1\,{}^{\prime\prime}E2\text{-}in\text{-}Cv2\text{-}inter\text{-}Upsilon\,2star\,\,c\text{-}in\text{-}Cv\text{-}inter\text{-}Upsilon\,\,\delta 1\,{}^{\prime\prime}\text{-}in\text{-}N1\text{-}inter\text{-}Delta1star\,\,Adm}]
obtain \alpha 2^{\prime\prime} \delta 2^{\prime\prime}
   where one: set \alpha 2^{"} \subseteq E_{ES2}
  and two: set \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} and three: \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2} \wedge \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2} \wedge \alpha 2'' \upharpoonright C_{\mathcal{V}2} = [] and four: \delta 2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) = \delta 1'' \upharpoonright E_{ES2}
   by blast
note one two three
moreover
have \delta 2^{\,\prime\prime} \mid E_{ES1} = \delta 1^{\,\prime\prime} \mid E_{ES2}
      from projection-intersection-neutral [OF two, of E_{ES1}]
          Nv2-inter-Delta2-inter-E1-empty validV1
      have \delta 2'' \upharpoonright E_{ES1} = \delta 2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1} \cap E_{ES1})
         by (simp only: Int-Un-distrib2, auto)
      moreover
      from \ valid V1
      have C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \cap E_{ES1} = C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
         by (simp add: isViewOn-def V-valid-def VC-disjoint-def
              VN-disjoint-def NC-disjoint-def, auto)
      ultimately have \delta 2'' \uparrow E_{ES1} = \delta 2'' \uparrow (C_{V2} \cap \Upsilon_{\Gamma2} \cap N_{V1} \cap \Delta_{\Gamma1})
         \mathbf{by} \ simp
      hence \delta 2'' \upharpoonright E_{ES1} = \delta 2'' \upharpoonright (C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}) \upharpoonright (N_{\mathcal{V}1} \cap \Delta_{\Gamma 1})
         by (simp add: projection-def)
      with four have \delta 2'' \upharpoonright E_{ES1} = \delta 1'' \upharpoonright E_{ES2} \upharpoonright (N_{V1} \cap \Delta_{\Gamma 1})
      hence \delta 2^{\prime\prime} \upharpoonright E_{ES1} = \delta 1^{\prime\prime} \upharpoonright (N_{V1} \cap \Delta_{\Gamma1}) \upharpoonright E_{ES2}
         by (simp only: projection-commute)
      with \delta 1 "-in-N1-inter-Delta1star show ?thesis
```

```
by (simp only: list-subset-iff-projection-neutral)
      \mathbf{qed}
   ultimately show ?thesis
         by blast
next
  assume v'-notin-E2: v' \notin E_{ES2}
    have [\![ (\beta @ [v']) \uparrow E_{ES2} @ \alpha2' \in Tr_{ES2} ; ]\!]
     \begin{array}{l} \alpha2' \mid C_{\mathcal{V}2} = []; \ set \ ((c \# \delta1'') \mid E_{ES2}) \subseteq C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2}; \\ c \in C_{\mathcal{V}} \cap \Upsilon_{\Gamma}; \ set \ \delta1'' \subseteq N_{\mathcal{V}1} \cap \Delta_{\Gamma1}; \end{array}
      Adm \ \mathcal{V} \ \varrho \ (\mathit{Tr}_{(ES1 \ || \ ES2)}) \ \beta \ c \ ]
      \implies \exists \alpha 2'' \delta 2''.
      (set \ \alpha 2'' \subseteq E_{ES2} \land set \ \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1} \\ \land \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2'' @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2} \\ \land \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2} \land \alpha 2'' \upharpoonright C_{\mathcal{V}2} = [] \\ \land \delta 2'' \upharpoonright E_{ES1} = \delta 1'' \upharpoonright E_{ES2})
      proof (induct length ((c \# \delta 1'') \(\begin{aligned}
\text{} \ E_{ES2} \end{aligned}
\) arbitrary: \beta \ \alpha 2' \ c \ \delta 1'')
          \mathbf{case}\ \theta
         from \theta(2) validES2 have set \alpha 2' \subseteq E_{ES2}
            by (simp add: ES-valid-def traces-contain-events-def, auto)
         moreover
         have set [] \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
            by auto
         moreover
         have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ [] @ [v'] \upharpoonright E_{ES2} @ \alpha 2' \in Tr_{ES2}
            proof -
               note \theta(2)
               moreover
               from \theta(1) have c \notin E_{ES2}
                   by (simp add: projection-def, auto)
               ultimately show ?thesis
                   by (simp add: projection-concatenation-commute projection-def)
            qed
         moreover
         have \alpha 2' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}..
         moreover
         note \theta(3)
         moreover
         from \theta(1) have [] \uparrow E_{ES1} = \delta 1'' \uparrow E_{ES2}
            by (simp add: projection-def, split if-split-asm, auto)
         ultimately show ?case
            by blast
      next
         case (Suc \ n)
         from projection-split-last[OF Suc(2)] obtain \mu c' \nu
            where c'-in-E2: c' \in E_{ES2}
and c\delta 1''-is-\mu c'\nu: c \# \delta 1'' = \mu @ [c'] @ \nu
            and \nuE2-empty: \nu | E_{ES2} = []
            and n-is-length-\mu\nuE2: n= length ((\mu @ \nu) \empty E_{ES2})
            by blast
```

```
from Suc(5) c'-in-E2 c\delta 1''-is-\mu c'\nu have set (\mu \upharpoonright E_{ES2} @ [c']) \subseteq C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}}
  by (simp only: c\delta 1''-is-\mu c'\nu projection-concatenation-commute projection-def, auto)
hence c'-in-Cv2-inter-Upsilon2: c' \in C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2}
  by auto
hence c'-in-Cv2: c' \in C_{\mathcal{V}2} and c'-in-Upsilon2: c' \in \Upsilon_{\Gamma 2}
  by auto
with validV2 have c'-in-E2: c' \in E_{ES2}
  by (simp add:isViewOn-def V-valid-def
     VC-disjoint-def VN-disjoint-def, auto)
show ?case
  proof (cases \mu)
    case Nil
    with c\delta 1''-is-\mu c'\nu have c-is-c': c=c' and \delta 1''-is-\nu: \delta 1''=\nu
     with c'-in-Cv2-inter-Upsilon2 have c \in C_{V2}
      by simp
    moreover
    from v'-notin-E2 Suc(3) have (\beta \mid E_{ES2}) @ \alpha 2' \in Tr_{ES2}
       \mathbf{by}\ (simp\ add:\ projection\text{-}concatenation\text{-}commute\ projection\text{-}def)
    moreover
    note Suc(4)
    moreover
    have Adm V2 \varrho2 Tr_{ES2} (\beta \ E_{ES2}) c
        proof -
         from Suc(8) obtain \gamma
           where \gamma \varrho v-is-\beta \varrho v: \gamma \uparrow (\varrho V) = \beta \uparrow (\varrho V)
           and \gamma c-in-Tr: (\gamma @ [c]) \in Tr_{(ES1 \parallel ES2)}
           unfolding Adm-def
           by auto
         from c-is-c' c'-in-E2 \gammac-in-Tr have (\gamma \mid E_{ES2}) \otimes [c] \in Tr_{ES2}
           by (simp add: projection-def composeES-def)
         moreover
         have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V}2) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho 2 \ \mathcal{V}2)
         proof -
           from \gamma \varrho v-is-\beta \varrho v have \gamma \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V}) = \beta \upharpoonright E_{ES2} \upharpoonright (\varrho \ \mathcal{V})
              by (metis projection-commute)
           with \varrho 2v2-subset-\varrho v-inter-E2
           have \gamma \uparrow (\varrho 2 \ \mathcal{V} 2) = \beta \uparrow (\varrho 2 \ \mathcal{V} 2)
              by (metis Int-subset-iff \gamma \varrho v-is-\beta \varrho v projection-subset-elim)
           thus ?thesis
              by (metis projection-commute)
         ultimately show ?thesis unfolding Adm-def
           by auto
      \mathbf{qed}
    moreover
    note BSIA2
     ultimately obtain \alpha 2^{\prime\prime}
       where one: (\beta \mid E_{ES2}) @ [c] @ \alpha 2'' \in Tr_{ES2}
```

```
and two: \alpha 2'' \upharpoonright V_{\mathcal{V}2} = \alpha 2' \upharpoonright V_{\mathcal{V}2}
    and three: \alpha 2'' \mid C_{\mathcal{V}2} = []
    unfolding BSIA-def
    by blast
  let ?DELTA2'' = \nu \upharpoonright E_{ES2}
  from one validES2 have set \alpha 2^{\prime\prime} \subseteq E_{ES2}
    by (simp add: ES-valid-def traces-contain-events-def, auto)
  moreover
  from \nuE2-empty
  have set ?DELTA2" \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
    by simp
  moreover
  from c-is-c' c'-in-E2 one v'-notin-E2 \nu E2-empty
  have (\beta \upharpoonright E_{ES2}) @ [c] \upharpoonright E_{ES2} @ ?DELTA2" @ [v'] \upharpoonright E_{ES2} @ \alpha 2'' \in Tr_{ES2}
    by (simp add: projection-def)
  moreover
  {\bf note}\ two\ three
  moreover
  from \nuE2-empty \delta1 ''-is-\nu have ?DELTA2'' | E_{ES1} = \delta1'' | E_{ES2}
    by (simp add: projection-def)
  {\bf ultimately \ show} \ {\it ?thesis}
    by blast
next
  case (Cons \ x \ xs)
   with c\delta 1''-is-\mu c'\nu have \mu-is-c-xs: \mu = [c] @ xs
     and \delta 1''-is-xs-c'-\nu: \delta 1'' = xs @ [c'] @ \nu
  with n-is-length-\mu\nuE2 have n = length ((c \# (xs @ \nu)) \uparrow E_{ES2})
    by auto
  moreover
  note Suc(3,4)
  moreover
  have set ((c \# (xs @ \nu)) \uparrow E_{ES2}) \subseteq C_{\mathcal{V2}} \cap \Upsilon_{\Gamma2}
      have res: c \# (xs @ \nu) = [c] @ (xs @ \nu)
        by auto
      from Suc(5) c\delta 1''-is-\mu c'\nu \mu-is-c-xs \nu E2-empty
      show ?thesis
        by (subst res, simp only: c\delta 1''-is-\mu c'\nu
           projection-concatenation-commute set-append, auto)
    \mathbf{qed}
  moreover
  note Suc(6)
  moreover
  from Suc(7) \delta 1''-is-xs-c'-\nu have set (xs @ \nu) \subseteq N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}
  moreover note Suc(8) Suc(1)[of c xs @ \nu \beta \alpha 2]
  ultimately obtain \delta \gamma
    where one: set \delta \subseteq E_{ES2}
```

```
and two: set \gamma \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
  and three: \beta \uparrow E_{ES2} @ [c] \uparrow E_{ES2} @ \gamma @ [v'] \uparrow E_{ES2} @ \delta \in Tr_{ES2}
  and four: \delta \upharpoonright V_{\mathcal{V}\mathcal{Z}} = \alpha \mathcal{Z}' \upharpoonright V_{\mathcal{V}\mathcal{Z}}
  and five: \delta \upharpoonright C_{\mathcal{V}2} = []
  and six: \gamma \upharpoonright E_{ES1} = (xs @ \nu) \upharpoonright E_{ES2}
  \mathbf{by} blast
let ?BETA = \beta | E_{ES2} @ [c] | E_{ES2} @ \gamma
from c'-in-Cv2-inter-Upsilon2 have c' \in C_{\mathcal{V}2}
  by auto
moreover
from three v'-notin-E2 have ?BETA @ \delta \in Tr_{ES2}
  by (simp add: projection-def)
moreover
{f note}\ five
moreover
have Adm \ V2 \ \varrho 2 \ Tr_{ES2} \ ?BETA \ c'
  proof -
    have ?BETA @ [c'] \in Tr_{ES2}
       proof -
         from Suc(7) c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu
          have c' \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
            by auto
          moreover
          \mathbf{from} \ \mathit{validES2} \ \mathit{three} \ \mathbf{have} \ \mathit{?BETA} \in \mathit{Tr}_{\mathit{ES2}}
            by (unfold ES-valid-def traces-prefixclosed-def
               prefixclosed-def prefix-def, auto)
          moreover
          {\bf note}\ total\text{-}ES2\text{-}C2\text{-}inter\text{-}Upsilon2\text{-}inter\text{-}N1\text{-}inter\text{-}Delta1
          ultimately show ?thesis
            \mathbf{unfolding}\ \mathit{total-def}
            \mathbf{by} blast
       qed
    thus ?thesis
       unfolding Adm-def
       by blast
  qed
moreover
\mathbf{note}\ \mathit{BSIA2}
ultimately obtain \alpha 2^{\prime\prime}
  where bsia-one: ?BETA @ [c'] @ \alpha 2'' \in Tr_{ES2}
  and bsia-two: \alpha 2'' \mid V_{\mathcal{V}2} = \delta \mid V_{\mathcal{V}2}
  and bsia-three: \alpha 2'' \mid C_{\mathcal{V}2} = []
  \mathbf{unfolding}\ \mathit{BSIA-def}
  by blast
let ?DELTA2'' = \gamma @ [c']
from bsia-one validES2 have set \alpha 2^{"} \subseteq E_{ES2}
  by (simp add: ES-valid-def traces-contain-events-def, auto)
```

```
moreover
               have set ?DELTA2" \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma1}
                 proof -
                    from Suc(γ) c'-in-Cv2-inter-Upsilon2 δ1"-is-xs-c'-ν
                    have c' \in C_{\mathcal{V}\mathcal{Z}} \cap \Upsilon_{\Gamma\mathcal{Z}} \cap N_{\mathcal{V}\mathcal{I}} \cap \Delta_{\Gamma\mathcal{I}}
                      by auto
                    with two show ?thesis
                      by auto
                 qed
               moreover
               from bsia-one v'-notin-E2
               have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ ?DELTA2'' @ [v'] \upharpoonright E_{ES2} @ \alpha2'' \in Tr_{ES2}
                 by (simp add: projection-def)
               moreover
               from bsia-two four have \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}
                 by simp
               moreover
               note bsia-three
               moreover
               have ?DELTA2'' | E_{ES1} = \delta1'' | E_{ES2}
                 proof -
                    from validV1\ Suc(7)\ \delta 1''-is-xs-c'-\nu have c' \in E_{ES1}
                       \mathbf{by}\ (simp\ add:\ isViewOn\text{-}def\ V\text{-}valid\text{-}def
                          VC-disjoint-def VN-disjoint-def NC-disjoint-def, auto)
                    with c'-in-E2 c'-in-Cv2-inter-Upsilon2 \delta 1''-is-xs-c'-\nu \nuE2-empty six
                       by (simp only: projection-concatenation-commute projection-def, auto)
               ultimately show ?thesis
                 by blast
            qed
       qed
     from this OF \beta v'E2\alpha 2'-in-Tr2 \alpha 2'Cv2-empty c\delta 1''E2-in-Cv2-inter-Upsilon2star
       c-in-Cv-inter-Upsilon\ \delta 1 "-in-N1-inter-Delta1star\ Adm]
    show ?thesis
       by blast
  qed
then obtain \alpha 2^{\,\prime\prime} \, \delta 2^{\,\prime\prime}
  where \alpha 2''-in-E2star: set \alpha 2'' \subseteq E_{ES2} and \delta 2''-in-N2-inter-Delta2star: set \delta 2'' \subseteq N_{\mathcal{V}2} \cap \Delta_{\Gamma 2} \cup C_{\mathcal{V}2} \cap \Upsilon_{\Gamma 2} \cap N_{\mathcal{V}1} \cap \Delta_{\Gamma 1}
  and \beta E2-cE2-\delta2 ''-v'E2-\alpha2 ''-in-Tr2:
  \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta 2^{\prime\prime} @ [v'] \upharpoonright E_{ES2} @ \alpha 2^{\prime\prime} \in \mathit{Tr}_{ES2}
  and \alpha 2''Vv2-is-\alpha 2'Vv2: \alpha 2'' \mid V_{\mathcal{V}2} = \alpha 2' \mid V_{\mathcal{V}2}
  and \alpha 2''Cv2\text{-}empty: \alpha 2'' \mid C_{\mathcal{V}2} = []
  and \delta 2''E1-is-\delta 1''E2: \delta 2'' \upharpoonright E_{ES1} = \delta 1'' \upharpoonright E_{ES2}
  \mathbf{by} blast
from \beta E2-cE2-\delta 2 "-v'E2-\alpha 2 "-in-Tr2 \beta E1-cE1-\delta 1 "-v'E1-\alpha 1 "-in-Tr1
  validES2\ validES1
have \delta 2''-in-E2star: set \delta 2'' \subseteq E_{ES2} and \delta 1''-in-E1star: set \delta 1'' \subseteq E_{ES1}
  by (simp-all add: ES-valid-def traces-contain-events-def, auto)
with \delta 2^{\prime\prime} E1-is-\delta 1^{\prime\prime} E2 merge-property[of \delta 2^{\prime\prime} E_{ES2} \delta 1^{\prime\prime} E_{ES1}] obtain \delta ^{\prime}
```

```
where \delta'E2-is-\delta2 '': \delta'1 E_{ES2} = \delta2 ''
   and \delta'E1-is-\delta1'': \delta' \uparrow E_{ES1} = \delta1''
   and \delta'-contains-only-\delta 2''-\delta 1''-events: set \delta' \subseteq set \ \delta 2'' \cup set \ \delta 1''
   unfolding Let-def
   by auto
 let ?TAU = \beta @ [c] @ \delta' @ [v']
 let ?LAMBDA = \alpha \mid V_{\mathcal{V}}
 let ?T2 = \alpha 2''
 let ?T1 = \alpha 1''
have ?TAU \in Tr_{(ES1 \parallel ES2)}
   proof -
     from \beta E2-cE2-\delta 2 "-v'E2-\alpha 2 "-in-Tr2 \delta 'E2-is-\delta 2 " validES2
     have \beta \upharpoonright E_{ES2} @ [c] \upharpoonright E_{ES2} @ \delta' \upharpoonright E_{ES2} @ [v'] \upharpoonright E_{ES2} \in Tr_{ES2}
        by (simp add: ES-valid-def traces-prefixclosed-def
          prefixclosed-def prefix-def)
     hence (\beta @ [c] @ \delta' @ [v']) \uparrow E_{ES2} \in Tr_{ES2}
        by (simp add: projection-def, auto)
     from \beta E1-cE1-\delta 1 ''-v'E1-\alpha 1 ''-in-Tr1 \delta 'E1-is-\delta 1 '' validES1
     have \beta \upharpoonright E_{ES1} @ [c] \upharpoonright E_{ES1} @ \delta' \upharpoonright E_{ES1} @ [v'] \upharpoonright E_{ES1} \in Tr_{ES1}
        by (simp add: ES-valid-def traces-prefixclosed-def
          prefixclosed-def prefix-def)
     hence (\beta @ [c] @ \delta' @ [v']) \uparrow E_{ES1} \in \mathit{Tr}_{ES1}
        by (simp add: projection-def, auto)
      moreover
     from \beta v'\alpha-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE
        \delta'\text{-}contains\text{-}only\text{-}\delta2\text{''}\text{-}\delta1\text{''}\text{-}events\ \delta2\text{''}\text{-}in\text{-}E2star\ \delta1\text{''}\text{-}in\text{-}E1star
     have set (\beta @ [c] @ \delta' @ [v']) \subseteq E_{ES2} \cup E_{ES1}
        {\bf unfolding}\ compose ES-def is View On-def V-valid-def
           VC-disjoint-def VN-disjoint-def NC-disjoint-def
        by auto
      ultimately show ?thesis
        unfolding composeES-def
        by auto
   qed
 hence set ?TAU \subseteq E_{(ES1 \parallel ES2)}
   unfolding composeES-def
   by auto
 moreover
 have set ?LAMBDA \subseteq V_{\mathcal{V}}
   by (simp add: projection-def, auto)
 moreover
 note \alpha 2''-in-E2star \alpha 1''-in-E1star
 from \beta E2-cE2-\delta2''-v'E2-\alpha2''-in-Tr2 \delta'E2-is-\delta2''
 have ?TAU \upharpoonright E_{ES2} @ ?T2 \in Tr_{ES2}
   by (simp only: projection-concatenation-commute, auto)
 moreover
 from \beta E1-cE1-\delta1"-v'E1-\alpha1"-in-Tr1 \delta'E1-is-\delta1"
```

```
have ?TAU \mid E_{ES1} @ ?T1 \in Tr_{ES1}
    by (simp only: projection-concatenation-commute, auto)
  moreover
  have ?LAMBDA \upharpoonright E_{ES2} = ?T2 \upharpoonright V_{V}
    proof -
      from propSepViews have ?LAMBDA \upharpoonright E_{ES2} = \alpha \upharpoonright V_{V2}
         unfolding properSeparationOfViews-def by (simp only: projection-sequence)
      moreover
      from \alpha 2''-in-E2star propSepViews have ?T2 | V_{\mathcal{V}} = ?T2 \mid V_{\mathcal{V}2}
         {\bf unfolding} \ properSeparationOf Views-def
         by (metis Int-commute projection-intersection-neutral)
      moreover
      note \alpha 2' Vv2-is-\alpha Vv2 \alpha 2'' Vv2-is-\alpha 2' Vv2
      ultimately show ?thesis
         by simp
    qed
  moreover
  have ?LAMBDA | E_{ES1} = ?T1 \mid V_{\mathcal{V}}
      from propSepViews have ?LAMBDA | E_{ES1} = \alpha \mid V_{V1}
         {\bf unfolding}\ proper Separation Of Views-def\ {\bf by}\ (simp\ only:\ projection-sequence)
      moreover
      from \alpha 1''-in-E1star propSepViews have ?T1 | V_{\mathcal{V}} = ?T1 \mid V_{\mathcal{V}1}
         {\bf unfolding} \ proper Separation Of Views-def
         by (metis Int-commute projection-intersection-neutral)
      moreover
      note \alpha 1'Vv1-is-\alpha Vv1 \alpha 1''Vv1-is-\alpha 1'Vv1
      ultimately show ?thesis
         \mathbf{by} \ simp
    qed
  moreover
  note \alpha 2^{\prime\prime} Cv2-empty \alpha 1^{\prime\prime} Cv1-empty generalized-zipping-lemma
  ultimately obtain t
    where ?TAU @ t \in Tr_{(ES1 \parallel ES2)}
    and t \uparrow V_{\mathcal{V}} = ?LAMBDA
    and t \upharpoonright C_{\mathcal{V}} = []
    \mathbf{by} blast
  moreover
  have set \delta' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma}
    proof -
      from δ'-contains-only-δ2"-δ1"-events
         \delta 2^{\,\prime\prime}-in-N2-inter-Delta2star \delta 1^{\,\prime\prime}-in-N1-inter-Delta1star
      have set \delta' \subseteq N_{\mathcal{V}_2} \cap \Delta_{\Gamma_2} \cup N_{\mathcal{V}_1} \cap \Delta_{\Gamma_1}
      with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subsetof-Nv show ?thesis
        by auto
  ultimately have \exists \alpha' \gamma'. (set \gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \wedge \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}
    \wedge \alpha' \upharpoonright V_{\mathcal{V}} = \alpha \upharpoonright V_{\mathcal{V}} \wedge \alpha' \upharpoonright C_{\mathcal{V}} = [])
    by (simp only: append-assoc, blast)
ultimately have \exists \alpha' \gamma'. (set \gamma' \subseteq N_{\mathcal{V}} \cap \Delta_{\Gamma} \wedge \beta @ [c] @ \gamma' @ [v'] @ \alpha' \in Tr_{(ES1 \parallel ES2)}
```

```
\wedge \alpha' \uparrow V_{\mathcal{V}} = \alpha \uparrow V_{\mathcal{V}} \wedge \alpha' \uparrow C_{\mathcal{V}} = [])
        by blast
  thus ?thesis
     unfolding FCIA-def
     \mathbf{by} blast
qed
{\bf theorem}\ compositionality\text{-}R\text{:}
\llbracket \ R \ \mathcal{V}1 \ Tr_{ES1}; \ R \ \mathcal{V}2 \ Tr_{ES2} \ \rrbracket \Longrightarrow R \ \mathcal{V} \ (Tr_{(ES1 \ \parallel \ ES2)})
  proof -
     assume R1: R V1 Tr_{ES1}
     and R2: R V2 Tr_{ES2}
     {
        fix \tau'
        assume \tau'-in-Tr: \tau' \in Tr_{(ES1 \parallel ES2)}
        \begin{array}{l} \mathbf{hence} \ \tau'E1\text{-}in\text{-}Tr1\colon \tau' \mid E_{ES1} \in \mathit{Tr}_{ES1} \\ \mathbf{and} \ \tau'E2\text{-}in\text{-}Tr2\colon \tau' \mid E_{ES2} \in \mathit{Tr}_{ES2} \end{array}
           unfolding \ compose ES-def
           by auto
        with R1 R2 obtain \tau1' \tau2'
          where \tau 1'-in-Tr1: \tau 1' \in Tr_{ES1}
and \tau 1'Cv1-empty: \tau 1' \mid C_{\mathcal{V}1} = []
and \tau 1'Vv1-is-\tau'-E1-Vv1: \tau 1' \mid V_{\mathcal{V}1} = \tau' \mid E_{ES1} \mid V_{\mathcal{V}1}
          and \tau 2'-in-Tr2: \tau 2' \in Tr_{ES2}
and \tau 2'Cv2-empty: \tau 2' \uparrow C_{\mathcal{V}2} = []
and \tau 2'Vv2-is-\tau'-E2-Vv2: \tau 2' \uparrow V_{\mathcal{V}2} = \tau' \uparrow E_{ES2} \uparrow V_{\mathcal{V}2}
           unfolding R-def
           by blast
        have set [] \subseteq E_{(ES1 \parallel ES2)}
           by auto
        moreover
        have set (\tau' \upharpoonright V_{\mathcal{V}}) \subseteq V_{\mathcal{V}}
           by (simp add: projection-def, auto)
        moreover
        from validES1\ \tau1'-in-Tr1 have \tau1'-in-E1: set \tau1'\subseteq E_{ES1}
           by (simp add: ES-valid-def traces-contain-events-def, auto)
        from validES2 \tau2'-in-Tr2 have \tau2'-in-E2: set \tau2' \subseteq E_{ES2}
           by (simp add: ES-valid-def traces-contain-events-def, auto)
        from \tau1'-in-Tr1 have [] | E_{ES1} @ \tau1' \in Tr_{ES1}
           by (simp add: projection-def)
        from \tau 2'-in-Tr2 have [] | E_{ES2} @ \tau 2' \in Tr_{ES2}
           by (simp\ add:\ projection-de\overline{f})
        moreover
        have \tau' \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES1} = \tau 1' \upharpoonright V_{\mathcal{V}}
           proof -
```

```
from projection-intersection-neutral[OF \tau1'-in-E1, of V_{\mathcal{V}}] propSepViews
    have \tau 1' \upharpoonright V_{\mathcal{V}} = \tau 1' \upharpoonright V_{\mathcal{V}1}
       {\bf unfolding} \ properSeparationOf Views-def
       by (simp add: Int-commute)
    moreover
    from propSepViews have \tau' \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES1} = \tau' \upharpoonright V_{\mathcal{V}1}
       unfolding properSeparationOfViews-def
       by (simp add: projection-sequence)
    moreover {
       have \tau' \upharpoonright E_{ES1} \upharpoonright V_{\mathcal{V}1} = \tau' \upharpoonright (E_{ES1} \cap V_{\mathcal{V}1})
         by (simp add: projection-def)
       moreover
       from validV1 have E_{ES1} \cap V_{V1} = V_{V1}
         by (simp add: isViewOn-def V-valid-def
            VC-disjoint-def VN-disjoint-def, auto)
       ultimately have \tau' \upharpoonright E_{ES1} \upharpoonright V_{\mathcal{V}1} = \tau' \upharpoonright V_{\mathcal{V}1}
         \mathbf{by} \ simp
       }
    moreover
    note \tau 1' Vv1-is-\tau'-E1-Vv1
    ultimately show ?thesis
       \mathbf{by} \ simp
 qed
moreover
have \tau' \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES2} = \tau 2' \upharpoonright V_{\mathcal{V}}
  proof
    from projection-intersection-neutral[OF \tau 2'-in-E2, of V_{\mathcal{V}}] propSepViews
    have \tau 2' \mid V_{\mathcal{V}} = \tau 2' \mid V_{\mathcal{V}2}
       {\bf unfolding} \ proper Separation Of Views-def
       \mathbf{by}\ (simp\ add:\ Int-commute)
    moreover
    from propSepViews have \tau' \upharpoonright V_{\mathcal{V}} \upharpoonright E_{ES2} = \tau' \upharpoonright V_{\mathcal{V}2}
       unfolding properSeparationOfViews-def
       by (simp add: projection-sequence)
    moreover {
       have \tau' \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}2} = \tau' \upharpoonright (E_{ES2} \cap V_{\mathcal{V}2})
         by (simp add: projection-def)
       moreover
       from validV2 have E_{ES2} \cap V_{V2} = V_{V2}
         by (simp add:isViewOn-def V-valid-def VC-disjoint-def
            VN-disjoint-def NC-disjoint-def, auto)
       ultimately have \tau' \upharpoonright E_{ES2} \upharpoonright V_{\mathcal{V}2} = \tau' \upharpoonright V_{\mathcal{V}2}
         \mathbf{by} \ simp
       }
    moreover
    note \tau 2' Vv2-is-\tau'-E2-Vv2
    ultimately show ?thesis
       by simp
  qed
note \tau1 'Cv1-empty \tau2 'Cv2-empty generalized-zipping-lemma
ultimately have \exists t. [] @ t \in Tr_{(ES1 \parallel ES2)} \land t \uparrow V_{\mathcal{V}} = \tau' \uparrow V_{\mathcal{V}} \land t \uparrow C_{\mathcal{V}} = []
```

```
by blast
    }
    thus ?thesis
       \mathbf{unfolding}\ R\text{-}def
       by auto
  qed
\mathbf{end}
{\bf locale}\ {\it CompositionalityStrictBSPs} = {\it Compositionality}\ +
assumes NV-inter-E1-is-NV1: N_V \cap E_{ES1} = N_{V1}
    and NV-inter-E2-is-NV2: N_V \cap E_{ES2} = N_{V2}
sublocale CompositionalityStrictBSPs \subseteq Compositionality
by (unfold-locales)
{\bf context}\ {\it CompositionalityStrictBSPs}
begin
theorem compositionality-SR:
\llbracket SR \ \mathcal{V}1 \ Tr_{ES1}; \ SR \ \mathcal{V}2 \ Tr_{ES2} \ \rrbracket \Longrightarrow SR \ \mathcal{V} \ (Tr_{(ES1 \ \parallel \ ES2)})
proof -
  assume SR \ V1 \ Tr_{ES1}
     and SR \ V2 \ Tr_{ES2}
    let ?V_1' = (V = V_{V_1} \cup N_{V_1}, N = \{\}, C = C_{V_1})
    let ?\mathcal{V}_{2}' = (V = V_{\mathcal{V}_{2}} \cup N_{\mathcal{V}_{2}}, N = \{\}, C = C_{\mathcal{V}_{2}})
let ?\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})
    from validV1 have \mathcal{V}_1{'IsViewOnE_1}: isViewOn~?\mathcal{V}_1{'}~E_{ES1} unfolding isViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def VC-disjoint-def by V
    from validV2 have \mathcal{V}_2'IsViewOnE_2: isViewOn~?\mathcal{V}_2' E_{ES2} unfolding isViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def VC-disjoint-def by auto
     from VIsViewOnE have V'IsViewOnE: isViewOn ?V' E_{(ES1||ES2)}
       unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
      \mathbf{from} \ \mathit{propSepViews} \ \ \mathit{NV-inter-E1-is-NV1}
     have V_{?V'} \cap E_{ES1} = V_{?V_1'}
        unfolding properSeparationOfViews-def by auto
      from propSepViews NV-inter-E2-is-NV2
      have V_{?\mathcal{V}'} \cap E_{ES2} = V_{?\mathcal{V}_2'}
        unfolding properSeparationOfViews-def by auto
      from propSepViews
     \begin{array}{ll} \mathbf{have} & C_{\mathscr{V}'} \cap E_{ES1} \subseteq C_{\mathscr{V}_1}{}' \\ \mathbf{unfolding} \ properSeparationOfViews-def} \ \mathbf{by} \ auto \end{array}
      from propSepViews
     have C_{\mathcal{V}'} \cap E_{ES2} \subseteq C_{\mathcal{V}_2'}
        unfolding properSeparationOfViews-def by auto
      have N_{?V_1}' \cap N_{?V_2}' = \{\}
```

```
by auto
```

```
\begin{array}{c} \mathbf{note} \ \mathit{properSeparation-V_1V_2} = \langle V_{?\mathcal{V}'} \cap E_{ES1} = V_{?\mathcal{V}_1} \rangle \\ \langle C_{?\mathcal{V}'} \cap E_{ES2} \subseteq C_{?\mathcal{V}_1} \rangle \\ \langle C_{?\mathcal{V}'} \cap E_{ES2} \subseteq C_{?\mathcal{V}_2} \rangle \\ \langle C_{?\mathcal{V}'} \cap E_{ES2} \subseteq C_{?\mathcal{V}_2} \rangle \\ \end{array} \\ \begin{array}{c} \langle C_{?\mathcal{V}_1} \rangle \\ \langle C_{?\mathcal{V}_2} \rangle \\ \langle C_{?\mathcal{V}_1} \rangle \\ \langle C_{?\mathcal{V}_2} \rangle \\ \langle C_{?\mathcal{V
                   have wbc1: N_{\mathcal{V}_1}' \cap E_{ES1} = \{\} \wedge N_{\mathcal{V}_2}' \cap E_{ES2} = \{\}
                          by auto
               from \langle SR \ V1 \ Tr_{ES1} \rangle have R \ ?V_1' \ Tr_{ES1}
                       {\bf using}\ validES1\ validV1\ BSPT axonomy Different Corrections. SR-implies-R-for-modified-view and the contractions of the contraction of the 
                      {\bf unfolding} \ \ BSPT axonomy Different Corrections-def \ {\bf by} \ \ auto
               from \langle SR \ V2 \ Tr_{ES2} \rangle have R \ ?V_2' \ Tr_{ES2}
                       {\bf using} \ validES2 \ validV2 \ BSPT axonomy Different Corrections. SR-implies-R-for-modified-view
                       {\bf unfolding} \ BSPT axonomy Different Corrections-def \ {\bf by} \ auto
               \mathbf{from} \ \ validES1 \ \ validES2 \ \ composableES1ES2 \ \ \ \mathcal{V}'IsViewOnE \ \ \mathcal{V}_1'IsViewOnE_1 \ \ \mathcal{V}_2'IsViewOnE_2
                                 properSeparation-V_1V_2 wbc1
               have Compositionality ES1 ES2 ?V' ?V1' ?V2' unfolding Compositionality-def
                      \mathbf{by}\ (simp\ add:\ properSeparationOfViews-def\ wellBehavedComposition-def)
               with \langle R ? \mathcal{V}_1 ' Tr_{ES1} \rangle \langle R ? \mathcal{V}_2 ' Tr_{ES2} \rangle have R ? \mathcal{V}' Tr_{(ES1 \parallel ES2)}
                   {f using} Compositionality.compositionality-R by blast
            {\bf from} \quad validES1 \ validES2 \ composeES-yields-ES \ validVC
            have BSPTaxonomyDifferentCorrections (ES1\parallelES2) V
                       unfolding BSPTaxonomyDifferentCorrections-def by auto
             with \langle R ? \mathcal{V}' Tr_{(ES1 \parallel ES2)} \rangle have SR \mathcal{V} Tr_{(ES1 \parallel ES2)}
                       using BSPTaxonomyDifferentCorrections.R-implies-SR-for-modified-view by auto
      thus ?thesis by auto
qed
theorem compositionality-SD:
\llbracket SD \ \mathcal{V}1 \ Tr_{ES1}; SD \ \mathcal{V}2 \ Tr_{ES2} \ \rrbracket \Longrightarrow SD \ \mathcal{V} \ (Tr_{(ES1 \ \parallel \ ES2)})
proof -
      assume SD V1 Tr_{ES1}
                   and SD V2 TrES2
              \mathbf{let}~ \mathscr{V}_{1}{'}\!\!=\!\!(\!(V=V_{\mathcal{V}1}\cup N_{\mathcal{V}1},\,N=\{\}\!),\,C=C_{\mathcal{V}1}\!)
             let ?\mathcal{V}_2' = (V = V_{\mathcal{V}_2} \cup N_{\mathcal{V}_2}, N = \{\}, C = C_{\mathcal{V}_2})
let ?\mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})
                \begin{array}{l} \textbf{from} \ \ validV1 \ \ \textbf{have} \ \ \mathcal{V}_1{'IsViewOnE}_1: \ \ isViewOn \ \ ?\mathcal{V}_1{'} \ E_{ES1} \\ \textbf{unfolding} \ \ isViewOn\text{-}def \ \ V-valid\text{-}def \ \ VN\text{-}disjoint\text{-}def \ \ NC\text{-}disjoint\text{-}def \ \ VC\text{-}disjoint\text{-}def \ \ \textbf{by} \ \ auto \end{array} 
                from validV2 have V_2'IsViewOnE_2: isViewOn ?V_2' E_{ES2}
                        \textbf{unfolding} \ \textit{is ViewOn-def} \ \textit{V-valid-def} \ \ \textit{VN-disjoint-def} \ \ \widetilde{\textit{NC-disjoint-def}} \ \ \textit{VC-disjoint-def} \ \ \textbf{by} \ \ \textit{auto} 
                from VIsViewOnE have V'IsViewOnE: isViewOn ?V' E_{(ES1||ES2)}
                       unfolding is View On-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
```

```
from propSepViews NV-inter-E1-is-NV1
      have V_{\mathcal{PV}'} \cap E_{ES1} = V_{\mathcal{PV}_1'}
         unfolding properSeparationOfViews-def by auto
      \mathbf{from} \ \mathit{propSepViews} \quad \mathit{NV-inter-E2-is-NV2}
      have V_{?V'} \cap E_{ES2} = V_{?V_2'}
         unfolding properSeparationOfViews-def by auto
      {\bf from}\ propSepViews
      have C_{\mathcal{P}'} \cap E_{ES1} \subseteq C_{\mathcal{P}_1'}
         unfolding properSeparationOfViews-def by auto
      from propSepViews
      have C_{\mathcal{PV}'} \cap E_{ES2} \subseteq C_{\mathcal{PV}_2'}
         unfolding properSeparationOfViews-def by auto
      have N_{\mathcal{P}_1} \cap N_{\mathcal{P}_2} = \{\}
         by auto
      \begin{array}{c} \mathbf{note} \ \mathit{properSeparation-V_1V_2} = \langle \mathit{V}_{?\mathcal{V}'} \cap \mathit{E}_{ES1} = \mathit{V}_{?\mathcal{V}_1} \wedge \langle \mathit{V}_{?\mathcal{V}'} \cap \mathit{E}_{ES2} = \mathit{V}_{?\mathcal{V}_2} \wedge \langle \mathit{C}_{?\mathcal{V}_2} \wedge \langle \mathit{E}_{ES2} \subseteq \mathit{V}_{?\mathcal{V}_2} \rangle \rangle \\ \langle \mathit{C}_{?\mathcal{V}'} \cap \mathit{E}_{ES1} \subseteq \mathit{C}_{?\mathcal{V}_1} \wedge \langle \mathit{C}_{?\mathcal{V}'} \cap \mathit{E}_{ES2} \subseteq \mathit{C}_{?\mathcal{V}_2} \rangle \wedge \langle \mathit{N}_{?\mathcal{V}_1'} \cap \mathit{N}_{?\mathcal{V}_2'} = \{\} \rangle \end{array}
      have wbc1: N_{\mathcal{V}_1}' \cap E_{ES1} = \{\} \wedge N_{\mathcal{V}_2}' \cap E_{ES2} = \{\}
        by auto
     from \langle SD \ V1 \ Tr_{ES1} \rangle have BSD \ ?V_1' \ Tr_{ES1}
        \textbf{using} \ \ validES1 \ \ validV1 \ \ BSPT axonomy Different Corrections. SD-implies-BSD-for-modified-view
        unfolding BSPTaxonomyDifferentCorrections-def by auto
     from \langle SD \ V2 \ Tr_{ES2} \rangle have BSD \ ?V_2' \ Tr_{ES2}
        \textbf{using} \ validES2 \ validV2 \ BSPT axonomy Different Corrections. SD-implies-BSD-for-modified-view
        unfolding BSPTaxonomyDifferentCorrections-def by auto
     \textbf{from} \ \ validES1 \ \ validES2 \ \ composableES1ES2 \quad \  \  \mathcal{V}'IsViewOnE \ \ \mathcal{V}_1'IsViewOnE_1 \ \ \mathcal{V}_2'IsViewOnE_2
           properSeparation-V_1V_2 wbc1
     have Compositionality ES1 ES2 ?V' ?V_1' ?V_2'
        unfolding Compositionality-def
       \mathbf{by}\ (simp\ add:\ properSeparationOfViews-def\ wellBehavedComposition-def)
     with \langle BSD ? \mathcal{V}_1 ' Tr_{ES1} \rangle \langle BSD ? \mathcal{V}_2 ' Tr_{ES2} \rangle have BSD ? \mathcal{V}' Tr_{(ES1 \parallel ES2)}
      using Compositionality.compositionality-BSD by blast
    {f from}\ \ validES1\ validES2\ composeES-yields-ES\ validVC
    have BSPTaxonomyDifferentCorrections (ES1 || ES2) V
       unfolding BSPTaxonomyDifferentCorrections-def by auto
     with \langle BSD ? \mathcal{V}' Tr_{(ES1 \parallel ES2)} \rangle have SD \mathcal{V} Tr_{(ES1 \parallel ES2)}
        \textbf{using} \ \textit{BSPTaxonomyDifferentCorrections.} \\ \textit{BSD-implies-SD-for-modified-view} \ \textbf{by} \ \textit{auto}
  thus ?thesis by auto
qed
theorem compositionality-SI:
\llbracket SD~\mathcal{V}1~Tr_{ES1};~SD~\mathcal{V}2~Tr_{ES2};~SI~\mathcal{V}1~Tr_{ES1};~SI~\mathcal{V}2~Tr_{ES2}~\rrbracket
   \implies SI \mathcal{V} (Tr_{(ES1 \parallel ES2)})
proof -
```

```
assume SD V1\ Tr_{ES1}
         and SD \ V2 \ Tr_{ES2}
         and SI \ V1 \ Tr_{ES1}
        and SI V2 Tr_{ES2}
      let ?V_1' = (V = V_{V_1} \cup N_{V_1}, N = \{\}, C = C_{V_1})
      let \mathcal{V}_2' = (V = V_{\mathcal{V}_2} \cup N_{\mathcal{V}_2}, N = \{\}, C = C_{\mathcal{V}_2})
      let \mathcal{V}' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})
      from validV1 have V_1'IsViewOnE_1: isViewOn~?V_1' E_{ES1}
            unfolding \it is View On-def \it V-valid-def \it VN-disjoint-def \it NC-disjoint-def \it VC-disjoint-def \it by \it autobase \it valid-def \it VN-disjoint-def \it VC-disjoint-def \it by \it autobase \it valid-def \it VN-disjoint-def \it valid-def \it 
       from validV2 have V_2'IsViewOnE_2: isViewOn~?V_2' E_{ES2}
            unfolding \it is View On-def \it V-valid-def \it VN-disjoint-def \it NC-disjoint-def \it VC-disjoint-def \it by \it auto \it valid-def \it VN-disjoint-def \it VC-disjoint-def \it VC-disjoint-de
       from VIsViewOnE have V'IsViewOnE: isViewOn ?V' E_{(ES1\parallel ES2)}
            unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
         from propSepViews NV-inter-E1-is-NV1
         have V_{?\mathcal{V}'} \cap E_{ES1} = V_{?\mathcal{V}_1'}
               unfolding properSeparationOfViews-def by auto
         \mathbf{from} \ \mathit{propSepViews} \quad \mathit{NV-inter-E2-is-NV2}
         have V_{?V'} \cap E_{ES2} = V_{?V_2'}
               unfolding properSeparationOfViews-def by auto
         from propSepViews
         have C_{?\mathcal{V}'} \cap E_{ES1} \subseteq C_{?\mathcal{V}_1}'
               unfolding properSeparationOfViews-def by auto
         from propSepViews
         have C_{\mathcal{P}'} \cap E_{ES2} \subseteq C_{\mathcal{P}_2'}
unfolding properSeparationOfViews-def by auto
         have N_{\mathcal{P}_1} \cap N_{\mathcal{P}_2} = \{\}
         \begin{array}{c} \mathbf{note} \ \mathit{properSeparation-V_1V_2} = \langle \mathit{V}_{?\mathcal{V}'} \cap \mathit{E}_{ES1} = \mathit{V}_{?\mathcal{V}_1} \wedge \langle \mathit{V}_{?\mathcal{V}'} \cap \mathit{E}_{ES2} = \mathit{V}_{?\mathcal{V}_2} \wedge \langle \mathit{C}_{?\mathcal{V}_2} \wedge \langle \mathit{E}_{ES2} \subseteq \mathit{C}_{?\mathcal{V}_2} \rangle \wedge \langle \mathit{C}_{?\mathcal{V}_1} \wedge \langle \mathit{E}_{ES2} \subseteq \mathit{C}_{?\mathcal{V}_2} \rangle \wedge \langle \mathit{N}_{?\mathcal{V}_1'} \cap \mathit{N}_{?\mathcal{V}_2'} = \{\} \rangle \end{array}
         have wbc1: N_{\mathcal{V}_1}' \cap E_{ES1} = \{\} \wedge N_{\mathcal{V}_2}' \cap E_{ES2} = \{\}
              by auto
      from \langle SD \ \mathcal{V}1 \ Tr_{ES1} \rangle have BSD \ \mathcal{PV}_1' \ Tr_{ES1}
            using validES1 validV1 BSPTaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
            unfolding BSPTaxonomyDifferentCorrections-def by auto
       from \langle SD \ \mathcal{V2} \ Tr_{ESQ} \rangle have BSD \ \mathcal{V2}' \ Tr_{ESQ}
            using validES2 validV2 BSPTaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
            {\bf unfolding} \ BSPT axonomy Different Corrections-def \ {\bf by} \ auto
       from \langle SI \ V1 \ Tr_{ES1} \rangle have BSI \ ?V_1' \ Tr_{ES1}
            {\bf using} \ validES1 \ validV1 \ BSPT axonomy Different Corrections. SI-implies-BSI-for-modified-view
            unfolding BSPTaxonomyDifferentCorrections-def by auto
       from \langle SI \ \mathcal{V2} \ Tr_{ES2} \rangle have BSI \ \mathcal{V2}' \ Tr_{ES2}
            {\bf using}\ validES2\ validV2\ BSPT axonomy Different Corrections. SI-implies-BSI-for-modified-view
            unfolding BSPTaxonomyDifferentCorrections-def by auto
```

```
\mathbf{from}\ validES1\ validES2\ composableES1ES2\ \ \mathcal{V}'IsViewOnE\ \ \mathcal{V}_1'IsViewOnE_1\ \ \mathcal{V}_2'IsViewOnE_2
           properSeparation-V_1V_2 wbc1
     have Compositionality ES1 ES2 ?V' ?V1' ?V2' unfolding Compositionality-def
       \mathbf{by}\ (simp\ add:\ properSeparationOf Views-def\ well Behaved Composition-def)
     \mathbf{with} \ \langle BSD \ ?\mathcal{V}_1 \ ' \ Tr_{ES1} \rangle \ \langle BSD \ ?\mathcal{V}_2 \ ' \ Tr_{ES2} \rangle \ \langle BSI \ ?\mathcal{V}_1 \ ' \ Tr_{ES1} \rangle \ \langle BSI \ ?\mathcal{V}_2 \ ' \ Tr_{ES2} \rangle
     have BSI ?V' Tr_{(ES1 \parallel ES2)}
      using Compositionality.compositionality-BSI by blast
    from validES1 validES2 composeES-yields-ES validVC
    have BSPTaxonomyDifferentCorrections (ES1 || ES2) V
        {\bf unfolding} \ BSPT axonomy Different Corrections-def \ {\bf by} \ auto
     with \langle BSI ? \mathcal{V}' Tr_{(ES1 \parallel ES2)} \rangle have SI \mathcal{V} Tr_{(ES1 \parallel ES2)}
       using BSPTaxonomyDifferentCorrections.BSI-implies-SI-for-modified-view by auto
  thus ?thesis by auto
qed
{\bf theorem}\ compositionality\text{-}SIA:
\llbracket SD\ \mathcal{V}1\ Tr_{ES1};\ SD\ \mathcal{V}2\ Tr_{ES2};\ SIA\ \varrho 1\ \mathcal{V}1\ Tr_{ES1};\ SIA\ \varrho 2\ \mathcal{V}2\ Tr_{ES2};
  (\varrho 1 \ \mathcal{V} 1) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES1}; (\varrho 2 \ \mathcal{V} 2) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES2} \ ]
   \stackrel{\circ}{\Longrightarrow} SIA \stackrel{\circ}{\varrho} \stackrel{\circ}{\mathcal{V}} (Tr_{(ES1 \parallel ES2)})
proof -
  assume SD V1 Tr_{ES1}
      and SD V2 Tr_{ES2}
      and SIA \varrho1 \mathcal{V}1 Tr_{ES1}
      and SIA \varrho2 V2 Tr_{ES2}
      and (\varrho 1 \ \mathcal{V} 1) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES1}
      and (\varrho 2 \ \mathcal{V} 2) \subseteq (\varrho \ \mathcal{V}) \cap E_{ES2}^{-1}
     let \mathcal{V}_{1}' = \{V = V_{\mathcal{V}_{1}} \cup N_{\mathcal{V}_{1}}, N = \{\}, C = C_{\mathcal{V}_{1}}\}
     let ?V_2' = (V = V_{V2} \cup N_{V2}, N = \{\}, C = C_{V2})
    let ?V' = (V = V_{\mathcal{V}} \cup N_{\mathcal{V}}, N = \{\}, C = C_{\mathcal{V}})
     \mathbf{let}~?\varrho1'\!\!::'a~\mathit{Rho}=\!\!\lambda\mathcal{V}.~\mathit{if}~\mathcal{V}\!\!=\!\!?\mathcal{V}_1'~\mathit{then}~\varrho1~\mathcal{V}1~\mathit{else}~\{\}
     let ?\varrho 2'::'a \ Rho = \lambda V. if V = ?V_2' then \varrho 2 \ V 2 else \{\}
     let ?\varrho'::'a \ Rho = \lambda \mathcal{V}'. if \mathcal{V}' = ?\mathcal{V}' then \varrho \ \mathcal{V} else \{\}
     have (?\varrho1'?\mathcal{V}_1') = (\varrho1 \ \mathcal{V}1) by simp
     have (?\varrho 2' ? \mathcal{V}_2') = (\varrho 2 \ \mathcal{V}_2) by simp
     have (?\varrho'?\mathcal{V}') = (\varrho \mathcal{V}) by simp
      \begin{array}{l} \textbf{from} \ \ validV1 \ \ \textbf{have} \ \ \mathcal{V}_1{'IsViewOnE}_1: \ isViewOn \ ?\mathcal{V}_1{'E}_{ES1} \\ \textbf{unfolding} \ \ isViewOn\text{-}def \ \ V-valid\text{-}def \ \ VN-disjoint\text{-}def \ \ NC\text{-}disjoint\text{-}def \ \ VC\text{-}disjoint\text{-}def \ \ \textbf{by} \ \ auto \end{array} 
     from validV2 have V_2'IsViewOnE_2: isViewOn ?V_2' E_{ES2}
        unfolding is View On-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
     from VIsViewOnE have V'IsViewOnE: isViewOn ?V' E_{(ES1||ES2)}
        unfolding is ViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
```

```
\mathbf{from} \ \mathit{propSepViews} \ \ \mathit{NV-inter-E1-is-NV1}
   have V_{\mathcal{P}\mathcal{V}'} \cap E_{ES1} = V_{\mathcal{P}\mathcal{V}_1}
         {\bf unfolding} \ properSeparation Of Views-def \ {\bf by} \ auto
   from propSepViews NV-inter-E2-is-NV2
   have V_{\mathcal{P}'} \cap E_{ES2} = V_{\mathcal{P}_2'}
         unfolding properSeparationOfViews-def by auto
   from propSepViews
   have C_{?\mathcal{V}'} \cap E_{ES1} \subseteq C_{?\mathcal{V}_1'}
         {\bf unfolding} \ proper Separation Of Views-def \ {\bf by} \ auto
   from propSepViews
   have C_{?\mathcal{V}'} \cap E_{ES2} \subseteq C_{?\mathcal{V}_2'}
         {\bf unfolding} \ proper Separatio \~n Of Views-def \ {\bf by} \ auto
   have N_{\mathcal{P}_1}' \cap N_{\mathcal{P}_2}' = \{\}
        by auto
   \textbf{note} \ \textit{properSeparation-V}_1 \mathcal{V}_2 = \langle \textit{V}_{?\mathcal{V}'} \cap \textit{E}_{ES1} = \textit{V}_{?\mathcal{V}_1'} \rangle \ \langle \textit{V}_{?\mathcal{V}'} \cap \textit{E}_{ES2} = \textit{V}_{?\mathcal{V}_2'} \rangle
                            \langle C_{\mathcal{P}'} \cap E_{ES1} \subseteq C_{\mathcal{P}_1'} \rangle \langle C_{\mathcal{P}'} \cap E_{ES2} \subseteq C_{\mathcal{P}_2'} \rangle \langle N_{\mathcal{P}_1'} \cap N_{\mathcal{P}_2'} = \{\} \rangle
   have wbc1: N_{\mathcal{V}_1}' \cap E_{ES1} = \{\} \land N_{\mathcal{V}_2}' \cap E_{ES2} = \{\}
        by auto
from \langle SD \ \mathcal{V}1 \ Tr_{ES1} \rangle have BSD \ ?\mathcal{V}_1' \ Tr_{ES1}
      {\bf using}\ validES1\ validV1\ BSPT axonomy Different Corrections. SD-implies-BSD-for-modified-view
      unfolding BSPTaxonomyDifferentCorrections-def by auto
 from \langle SD \ \mathcal{V2} \ Tr_{ES2} \rangle have BSD \ \mathcal{PV}_2' \ Tr_{ES2}
      {\bf using}\ validES2\ validV2\ BSPT axonomy Different Corrections. SD-implies-BSD-for-modified-view
      unfolding BSPTaxonomyDifferentCorrections-def by auto
from \langle SIA \ \varrho 1 \ \mathcal{V}1 \ Tr_{ES1} \rangle \ \langle (?\varrho 1' \ ?\mathcal{V}_1') = (\varrho 1 \ \mathcal{V}1) \rangle have BSIA \ ?\varrho 1' \ ?\mathcal{V}_1' \ Tr_{ES1}
      \textbf{using} \ validES1 \ validV1 \ BSPT axonomy Different Corrections. SIA-implies-BSIA-for-modified-view
      {\bf unfolding} \ \ BSPT axonomy Different Corrections-def \ {\bf by} \ fast force
 \mathbf{from} \ \langle \mathit{SIA} \ \varrho 2 \ \mathcal{V2} \ \mathit{Tr}_{ES2} \rangle \ \langle (?\varrho 2' \ ?\mathcal{V}_2') = (\varrho 2 \ \mathcal{V2}) \rangle \ \mathbf{have} \ \mathit{BSIA} \ ?\varrho 2' \ ?\mathcal{V}_2' \ \mathit{Tr}_{ES2}
      \textbf{using} \ validES2 \ validV2 \ BSPT axonomy Different Corrections. SIA-implies-BSIA-for-modified-view
      unfolding BSPTaxonomyDifferentCorrections-def by fastforce
 \mathbf{from} \ \ validES1 \ \ validES2 \ \ composableES1ES2 \ \ \ \mathcal{V}'IsViewOnE \ \ \mathcal{V}_1'IsViewOnE_1 \ \ \mathcal{V}_2'IsViewOnE_2
              properSeparation-V_1V_2 wbc1
have Compositionality ES1 ES2 ?V' ?V_1' ?V_2'
     unfolding Compositionality-def
     \mathbf{by}\ (simp\ add:\ properSeparationOfViews-def\ wellBehavedComposition-def)
\mathbf{from} \ \land (\varrho 1 \ \mathcal{V} 1) \subseteq (\varrho \ \mathcal{V}) \ \cap \ E_{ES1} \land (?\varrho 1' \ ?\mathcal{V}_1') = (\varrho 1 \ \mathcal{V} 1) \land (?\varrho ' \ ?\mathcal{V}') = (\varrho \ \mathcal{V}) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ ?\mathcal{V}') = (\varrho 1' \ \mathcal{V} 1) \land (?\varrho 1' \ \mathcal{V}
have ?\varrho 1' ?\mathcal{V}_1' \subseteq ?\varrho' ?\mathcal{V}' \cap E_{ES1}
 \begin{array}{l} \mathbf{from} \,\, \langle (\varrho \mathcal{Z} \,\, \mathcal{V} \mathcal{Z}) \subseteq (\varrho \,\, \mathcal{V}) \,\cap \, E_{ES2} \rangle \,\, \langle (?\varrho \mathcal{Z}' \,\, ?\mathcal{V}_2') = (\varrho \mathcal{Z} \,\, \mathcal{V} \mathcal{Z}) \rangle \,\, \langle (?\varrho' \,\, ?\mathcal{V}') = (\varrho \,\, \mathcal{V}) \rangle \\ \mathbf{have} \,\, \langle \varrho \mathcal{Z}' \,\, ?\mathcal{V}_2' \,\, \subseteq \,\, ?\varrho' \,\,\, ?\mathcal{V}' \,\cap \, E_{ES2} \\ \end{array} 
\mathbf{from} \ \langle \textit{Compositionality ES1 ES2 ?V' ?V_1' ?V_2'} \rangle \ \langle \textit{BSD ?V_1' Tr}_{\textit{ES1}} \rangle \ \langle \textit{BSD ?V_2' Tr}_{\textit{ES2}} \rangle
                 \langle BSIA? \varrho 1'? \mathcal{V}_1' Tr_{ES1} \rangle \langle BSIA? \varrho 2'? \mathcal{V}_2' Tr_{ES2} \rangle
```

Acknowledgments

This work was partially funded by the DFG (German Research Foundation) under the projects FM-SecEng (MA 3326/1-2, MA 3326/1-3) and RSCP (MA 3326/4-3).

References

- S. Grewe, H. Mantel, M. Tasch, R. Gay, and H. Sudbrock. I-MAKS A Framework for Information-Flow Security in Isabelle/HOL. Technical Report TUD-CS-2018-0056, TU Darmstadt, 2018.
- [2] H. Mantel. Possibilistic Definitions of Security An Assembly Kit. In *Proceedings of the 13th IEEE Computer Security Foundations Workshop (CSFW)*, pages 185–199, 2000.
- [3] H. Mantel. A Uniform Framework for the Formal Specification and Verification of Information Flow Security. PhD thesis, Saarland University, Saarbrücken, Germany, 2003.