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Abstract
The “Modular Assembly Kit for Security Properties” (MAKS) is a framework for both the

definition and verification of possibilistic information-flow security properties at the specification-
level. MAKS supports the uniform representation of a wide range of possibilistic information-
flow properties and provides support for the verification of such properties via unwinding results
and compositionality results. We provide a formalization of this framework in Isabelle/HOL.
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1 Introduction
This is a formalization of the Modular Assembly Kit for Security Properties (MAKS) [2, 3] in
its version from [3]. We provide a more detailed explanation on how key concepts of MAKS are
formalized in Isabelle/HOL in [1].

2 Basic Definitions
In the following, we define the notion of prefixes and the notion of projection. These definitions are
preliminaries for the remaining parts of the Isabelle/HOL formalization of MAKS.

theory Prefix
imports Main
begin

definition prefix :: ′e list ⇒ ′e list ⇒ bool (infixl ‹�› 100 )
where
(l1 � l2 ) ≡ (∃ l3 . l1 @ l3 = l2 )

definition prefixclosed :: ( ′e list) set ⇒ bool
where
prefixclosed tr ≡ (∀ l1 ∈ tr . ∀ l2 . l2 � l1 −→ l2 ∈ tr)

lemma empty-prefix-of-all: [] � l
using prefix-def [of [] l] by simp

lemma empty-trace-contained: [[ prefixclosed tr ; tr 6= {} ]] =⇒ [] ∈ tr
proof −

assume 1 : prefixclosed tr and
2 : tr 6= {}

then obtain l1 where l1 ∈ tr
by auto

with 1 have ∀ l2 . l2 � l1 −→ l2 ∈ tr
by (simp add: prefixclosed-def )

thus [] ∈ tr
by (simp add: empty-prefix-of-all)

qed

lemma transitive-prefix: [[ l1 � l2 ; l2 � l3 ]] =⇒ l1 � l3
by (auto simp add: prefix-def )

end
theory Projection
imports Main
begin
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definition projection:: ′e list ⇒ ′e set ⇒ ′e list (infixl ‹�› 100 )
where
l � E ≡ filter (λx . x ∈ E) l

lemma projection-on-union:
l � Y = [] =⇒ l � (X ∪ Y ) = l � X

proof (induct l)
case Nil show ?case by (simp add: projection-def )

next
case (Cons a b) show ?case
proof (cases a ∈ Y )

case True from Cons show a ∈ Y =⇒ (a # b) � (X ∪ Y ) = (a # b) � X
by (simp add: projection-def )

next
case False from Cons show a /∈ Y =⇒ (a # b) � (X ∪ Y ) = (a # b) � X

by (simp add: projection-def )
qed

qed

lemma projection-on-empty-trace: [] � X =[] by (simp add: projection-def )

lemma projection-to-emptyset-is-empty-trace: l �{} = [] by (simp add: projection-def )

lemma projection-idempotent: l � X= (l �X) �X by (simp add: projection-def )

lemma projection-empty-implies-absence-of-events: l � X = [] =⇒ X ∩ (set l) = {}
by (metis empty-set inter-set-filter projection-def )

lemma disjoint-projection: X ∩ Y = {} =⇒ (l � X) � Y = []
proof −

assume X-Y-disjoint: X ∩ Y = {}
show (l � X) � Y = [] unfolding projection-def
proof (induct l)

case Nil show ?case by simp
next

case (Cons x xs) show ?case
proof (cases x ∈ X)

case True
with X-Y-disjoint have x /∈ Y by auto
thus [x←[x←x # xs . x ∈ X ] . x ∈ Y ] = [] using Cons.hyps by auto

next
case False show [x←[x←x # xs . x ∈ X ] . x ∈ Y ] = [] using Cons.hyps False by auto

qed
qed

qed
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lemma projection-concatenation-commute:
(l1 @ l2 ) � X = (l1 � X) @ (l2 � X)
by (unfold projection-def , auto)

lemma projection-subset-eq-from-superset-eq:
((xs � (X ∪ Y )) = (ys � (X ∪ Y ))) =⇒ ((xs � X) = (ys � X))
(is (?L1 = ?L2 ) =⇒ (?L3 = ?L4 ))
proof −

assume prem: ?L1 = ?L2
have ?L1 � X = ?L3 ∧ ?L2 � X = ?L4
proof −

have
∧

a. ((a ∈ X ∨ a ∈ Y ) ∧ a ∈ X) = (a ∈ X)
by auto

thus ?thesis
by (simp add: projection-def )

qed
with prem show ?thesis

by auto
qed

lemma list-subset-iff-projection-neutral: (set l ⊆ X) = ((l � X) = l)
(is ?A = ?B)
proof −

have ?A =⇒ ?B
proof −

assume ?A
hence

∧
x. x ∈ (set l) =⇒ x ∈ X

by auto
thus ?thesis

by (simp add: projection-def )
qed

moreover
have ?B =⇒ ?A

proof −
assume ?B
hence (set (l � X)) = set l

by (simp add: projection-def )
thus ?thesis

by (simp add: projection-def , auto)
qed

ultimately show ?thesis ..
qed

lemma projection-split-last: Suc n = length (τ � X) =⇒
∃ β x α. (x ∈ X ∧ τ = β @ [x] @ α ∧ α � X = [] ∧ n = length ((β @ α) � X))
proof −

assume Suc-n-is-len-τX : Suc n = length (τ � X)
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let ?L = τ � X
let ?RL = filter (λx . x ∈ X) (rev τ)

have Suc n = length ?RL
proof −

have rev ?L = ?RL
by (simp add: projection-def , rule rev-filter)

hence rev (rev ?L) = rev ?RL ..
hence ?L = rev ?RL

by auto
with Suc-n-is-len-τX show ?thesis

by auto
qed
with Suc-length-conv[of n ?RL] obtain x xs

where ?RL = x # xs
by auto

hence x # xs = ?RL
by auto

from Cons-eq-filterD[OF this] obtain revα revβ
where (rev τ) = revα @ x # revβ
and revα-no-x: ∀ a ∈ set revα. a /∈ X
and x-in-X : x ∈ X
by auto

hence rev (rev τ) = rev (revα @ x # revβ)
by auto

hence τ = (rev revβ) @ [x] @ (rev revα)
by auto

then obtain β α
where τ -is-βxα: τ = β @ [x] @ α
and α-is-revrevα: α = (rev revα)
and β-is-revrevβ: β = (rev revβ)
by auto

hence α-no-x: α � X = []
proof −

from α-is-revrevα revα-no-x have ∀ a ∈ set α. a /∈ X
by auto

thus ?thesis
by (simp add: projection-def )

qed

have n = length ((β @ α) � X)
proof −

from α-no-x have αX-zero-len: length (α � X) = 0
by auto

from x-in-X have xX-one-len: length ([x] � X) = 1
by (simp add: projection-def )

from τ -is-βxα have length ?L = length (β � X) + length ([x] � X) + length (α � X)
by (simp add: projection-def )
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with αX-zero-len have length ?L = length (β � X) + length ([x] � X)
by auto

with xX-one-len Suc-n-is-len-τX have n = length (β � X)
by auto

with αX-zero-len show ?thesis
by (simp add: projection-def )

qed
with x-in-X τ -is-βxα α-no-x show ?thesis

by auto
qed

lemma projection-rev-commute:
rev (l � X) = (rev l) � X
by (induct l, simp add: projection-def , simp add: projection-def )

lemma projection-split-first: [[ (τ � X) = x # xs ]] =⇒ ∃ α β. (τ = α @ [x] @ β ∧ α � X = [])
proof −

assume τX-is-x-xs: (τ � X) = x # xs
hence 0 6= length (τ � X)

by auto
hence 0 6= length (rev (τ � X))

by auto
hence 0 6= length ((rev τ) � X)

by (simp add: projection-rev-commute)
then obtain n where Suc n = length ((rev τ) � X)

by (auto, metis Suc-pred length-greater-0-conv that)
from projection-split-last[OF this] obtain β ′ x ′ α ′

where x ′-in-X : x ′ ∈ X
and revτ -is-β ′x ′α ′: rev τ = β ′ @ [x ′] @ α ′

and α ′X-empty: α ′ � X = []
by auto

from revτ -is-β ′x ′α ′ have rev (rev τ) = rev (β ′ @ [x ′] @ α ′) ..
hence τ -is-revα ′-x ′-revβ ′:τ = rev α ′ @ [x ′] @ rev β ′

by auto
moreover
from α ′X-empty have revα ′X-empty: rev α ′ � X = []

by (metis projection-rev-commute rev-is-Nil-conv)
moreover
note x ′-in-X
ultimately have (τ � X) = x ′ # ((rev β ′) � X)

by (simp only: projection-concatenation-commute projection-def , auto)
with τX-is-x-xs have x = x ′

by auto
with τ -is-revα ′-x ′-revβ ′ have τ -is-revα ′-x-revβ ′: τ = rev α ′ @ [x] @ rev β ′

by auto
with revα ′X-empty show ?thesis

by auto
qed
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lemma projection-split-first-with-suffix:
[[ (τ � X) = x # xs ]] =⇒ ∃ α β. (τ = α @ [x] @ β ∧ α � X = [] ∧ β � X = xs)

proof −
assume tau-proj-X : (τ � X) = x # xs
show ?thesis
proof −

from tau-proj-X have x-in-X : x ∈ X
by (metis IntE inter-set-filter list.set-intros(1 ) projection-def )

from tau-proj-X have ∃ α β. τ = α @ [x] @ β ∧ α � X = []
using projection-split-first by auto

then obtain α β where tau-split: τ = α @ [x] @ β
and X-empty-prefix:α � X = []

by auto
from tau-split tau-proj-X have (α @ [x] @ β) � X =x # xs

by auto
with X-empty-prefix have ([x] @ β) � X =x # xs

by (simp add: projection-concatenation-commute)
hence (x # β) � X =x # xs

by auto
with x-in-X have β � X = xs

unfolding projection-def by simp
with tau-split X-empty-prefix show ?thesis

by auto
qed

qed

lemma projection-split-arbitrary-element:
[[τ � X = (α @ [x] @ β) � X ; x ∈ X ]]

=⇒ ∃ α ′ β ′. (τ = α ′ @ [x] @ β ′ ∧ α ′ � X = α � X ∧ β ′ � X = β � X)
proof −

assume τ � X = (α @ [x] @ β) � X
and x ∈ X
{

fix n
have [[τ � X = (α @ [x] @ β) � X ; x ∈ X ; n = length(α�X) ]]

=⇒ ∃ α ′ β ′. (τ = α ′ @ [x] @ β ′ ∧ α ′ � X = α � X ∧ β ′ � X = β � X)
proof (induct n arbitrary: τ α )

case 0
hence α�X = []

unfolding projection-def by simp
with 0 .prems(1 ) 0 .prems(2 ) have τ�X = x # β�X

unfolding projection-def by simp
with ‹α�X = []› show ?case

using projection-split-first-with-suffix by fastforce
next

case (Suc n)
from Suc.prems(1 ) have τ�X=α�X @ ([x] @ β) �X

using projection-concatenation-commute by auto
from Suc.prems(3 ) obtain x ′ xs ′ where α �X= x ′ #xs ′
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and x ′ ∈ X
by (metis filter-eq-ConsD length-Suc-conv projection-def )

then obtain a1 a2 where α = a1 @ [x ′] @ a2

and a1�X = []
and a2�X = xs ′

using projection-split-first-with-suffix by metis
with ‹x ′ ∈ X› Suc.prems(1 ) have τ�X= x ′ # (a2 @ [x] @ β) �X

unfolding projection-def by simp
then obtain t1 t2 where τ= t1 @ [x ′] @ t2

and t1�X = []
and t2�X = (a2 @ [x] @ β) �X

using projection-split-first-with-suffix by metis
from Suc.prems(3 ) ‹α �X= x ′ # xs ′› ‹α = a1 @ [x ′] @ a2› ‹a1�X = []› ‹a2�X = xs ′›
have n=length(a2�X)

by auto
with Suc.hyps(1 ) Suc.prems(2 ) ‹t2�X = (a2 @ [x] @ β) �X›

obtain t2 ′ t3 ′ where t2=t2 ′ @ [x] @ t3 ′

and t2 ′�X = a2�X
and t3 ′�X = β�X

using projection-concatenation-commute by blast

let ?α ′=t1 @ [x ′] @ t2 ′ and ?β ′=t3 ′

from ‹τ= t1 @ [x ′] @ t2› ‹t2=t2 ′ @ [x] @ t3 ′› have τ=?α ′@[x]@?β ′

by auto
moreover
from ‹α �X= x ′ # xs ′› ‹t1�X = []› ‹x ′ ∈ X› ‹t2 ′�X = a2�X› ‹a2�X = xs ′›
have ?α ′�X = α�X

using projection-concatenation-commute unfolding projection-def by simp
ultimately
show ?case using ‹t3 ′�X = β�X›

by blast
qed

}
with ‹τ � X = (α @ [x] @ β) � X› ‹ x ∈ X› show ?thesis

by simp
qed

lemma projection-on-intersection: l � X = [] =⇒ l � (X ∩ Y ) = []
(is ?L1 = [] =⇒ ?L2 = [])
proof −

assume ?L1 = []
hence set ?L1 = {}

by simp
moreover
have set ?L2 ⊆ set ?L1

by (simp add: projection-def , auto)
ultimately have set ?L2 = {}

by auto
thus ?thesis

by auto
qed
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lemma projection-on-subset: [[ Y ⊆ X ; l � X = [] ]] =⇒ l � Y = []
proof −

assume subset: Y ⊆ X
assume proj-empty: l � X = []
hence l � (X ∩ Y ) = []

by (rule projection-on-intersection)
moreover
from subset have X ∩ Y = Y

by auto
ultimately show ?thesis

by auto
qed

lemma projection-on-subset2 : [[ set l ⊆ L; l � X ′ = []; X ∩ L ⊆ X ′ ]] =⇒ l � X = []
proof −

assume setl-subset-L: set l ⊆ L
assume l-no-X ′: l � X ′ = []
assume X-inter-L-subset-X ′: X ∩ L ⊆ X ′

from X-inter-L-subset-X ′ l-no-X ′ have l � (X ∩ L) = []
by (rule projection-on-subset)

moreover
have l � (X ∩ L) = (l � L) � X

by (simp add: Int-commute projection-def )
moreover
note setl-subset-L
ultimately show ?thesis

by (simp add: list-subset-iff-projection-neutral)
qed

lemma non-empty-projection-on-subset: X ⊆ Y ∧ l1 � Y = l2 � Y =⇒ l1 � X = l2 � X
by (metis projection-subset-eq-from-superset-eq subset-Un-eq)

lemma projection-intersection-neutral: (set l ⊆ X) =⇒ (l � (X ∩ Y ) = l � Y )
proof −

assume set l ⊆ X
hence (l � X) = l

by (simp add: list-subset-iff-projection-neutral)
hence (l � X) � Y = l � Y

by simp
moreover
have (l � X) � Y = l � (X ∩ Y )

by (simp add: projection-def )
ultimately show ?thesis

by simp
qed
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lemma projection-commute:
(l � X) � Y = (l � Y ) � X
by (simp add: projection-def conj-commute)

lemma projection-subset-elim: Y ⊆ X =⇒ (l � X) � Y = l � Y
by (simp only: projection-def , metis Diff-subset list-subset-iff-projection-neutral

minus-coset-filter order-trans projection-commute projection-def )

lemma projection-sequence: (xs � X) � Y = (xs � (X ∩ Y ))
by (metis Int-absorb inf-sup-ord(1 ) list-subset-iff-projection-neutral

projection-intersection-neutral projection-subset-elim)

fun merge :: ′e set ⇒ ′e set ⇒ ′e list ⇒ ′e list ⇒ ′e list
where
merge A B [] t2 = t2 |
merge A B t1 [] = t1 |
merge A B (e1 # t1 ′) (e2 # t2 ′) = (if e1 = e2 then

e1 # (merge A B t1 ′ t2 ′)
else (if e1 ∈ (A ∩ B) then

e2 # (merge A B (e1 # t1 ′) t2 ′)
else e1 # (merge A B t1 ′ (e2 # t2 ′))))

lemma merge-property: [[set t1 ⊆ A; set t2 ⊆ B; t1 � B = t2 � A ]]
=⇒ let t = (merge A B t1 t2 ) in (t � A = t1 ∧ t � B = t2 ∧ set t ⊆ ((set t1 ) ∪ (set t2 )))

unfolding Let-def
proof (induct A B t1 t2 rule: merge.induct)

case (1 A B t2 ) thus ?case
by (metis Un-empty-left empty-subsetI list-subset-iff-projection-neutral

merge.simps(1 ) set-empty subset-iff-psubset-eq)
next

case (2 A B t1 ) thus ?case
by (metis Un-empty-right empty-subsetI list-subset-iff-projection-neutral

merge.simps(2 ) set-empty subset-refl)
next

case (3 A B e1 t1 ′ e2 t2 ′) thus ?case
proof (cases)

assume e1-is-e2 : e1 = e2

note e1-is-e2
moreover
from 3 (4 ) have set t1 ′ ⊆ A

by auto
moreover
from 3 (5 ) have set t2 ′ ⊆ B

by auto
moreover
from e1-is-e2 3 (4−6 ) have t1 ′ � B = t2 ′ � A
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by (simp add: projection-def )
moreover
note 3 (1 )
ultimately have ind1 : merge A B t1 ′ t2 ′ � A = t1 ′

and ind2 : merge A B t1 ′ t2 ′ � B = t2 ′

and ind3 : set (merge A B t1 ′ t2 ′) ⊆ (set t1 ′) ∪ (set t2 ′)
by auto

from e1-is-e2 have merge-eq:
merge A B (e1 # t1 ′) (e2 # t2 ′) = e1 # (merge A B t1 ′ t2 ′)
by auto

from 3 (4 ) ind1 have goal1 :
merge A B (e1 # t1 ′) (e2 # t2 ′) � A = e1 # t1 ′

by (simp only: merge-eq projection-def , auto)
moreover
from e1-is-e2 3 (5 ) ind2 have goal2 :

merge A B (e1 # t1 ′) (e2 # t2 ′) � B = e2 # t2 ′

by (simp only: merge-eq projection-def , auto)
moreover
from ind3 have goal3 :

set (merge A B (e1 # t1 ′) (e2 # t2 ′)) ⊆ set (e1 # t1 ′) ∪ set (e2 # t2 ′)
by (simp only: merge-eq, auto)

ultimately show ?thesis
by auto

next
assume e1-isnot-e2 : e1 6= e2
show ?thesis
proof (cases)

assume e1-in-A-inter-B: e1 ∈ A ∩ B

from 3 (6 ) e1-isnot-e2 e1-in-A-inter-B have e2-notin-A: e2 /∈ A
by (simp add: projection-def , auto)

note e1-isnot-e2 e1-in-A-inter-B 3 (4 )
moreover
from 3 (5 ) have set t2 ′ ⊆ B

by auto
moreover
from 3 (6 ) e1-isnot-e2 e1-in-A-inter-B have (e1 # t1 ′) � B = t2 ′ � A

by (simp add: projection-def , auto)
moreover
note 3 (2 )
ultimately have ind1 : merge A B (e1 # t1 ′) t2 ′ � A = (e1 # t1 ′)

and ind2 : merge A B (e1 # t1 ′) t2 ′ � B = t2 ′

and ind3 : set (merge A B (e1 # t1 ′) t2 ′) ⊆ set (e1 # t1 ′) ∪ set t2 ′

by auto

from e1-isnot-e2 e1-in-A-inter-B
have merge-eq:

merge A B (e1 # t1 ′) (e2 # t2 ′) = e2 # (merge A B (e1 # t1 ′) t2 ′)
by auto
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from e1-isnot-e2 ind1 e2-notin-A have goal1 :
merge A B (e1 # t1 ′) (e2 # t2 ′) � A = e1 # t1 ′

by (simp only: merge-eq projection-def , auto)
moreover
from 3 (5 ) ind2 have goal2 : merge A B (e1 # t1 ′) (e2 # t2 ′) � B = e2 # t2 ′

by (simp only: merge-eq projection-def , auto)
moreover
from 3 (5 ) ind3 have goal3 :

set (merge A B (e1 # t1 ′) (e2 # t2 ′)) ⊆ set (e1 # t1 ′) ∪ set (e2 # t2 ′)
by (simp only: merge-eq, auto)

ultimately show ?thesis
by auto

next
assume e1-notin-A-inter-B: e1 /∈ A ∩ B

from 3 (4 ) e1-notin-A-inter-B have e1-notin-B: e1 /∈ B
by auto

note e1-isnot-e2 e1-notin-A-inter-B
moreover
from 3 (4 ) have set t1 ′ ⊆ A

by auto
moreover
note 3 (5 )
moreover
from 3 (6 ) e1-notin-B have t1 ′ � B = (e2 # t2 ′) � A

by (simp add: projection-def )
moreover
note 3 (3 )
ultimately have ind1 : merge A B t1 ′ (e2 # t2 ′) � A = t1 ′

and ind2 : merge A B t1 ′ (e2 # t2 ′) � B = (e2 # t2 ′)
and ind3 : set (merge A B t1 ′ (e2 # t2 ′)) ⊆ set t1 ′ ∪ set (e2 # t2 ′)
by auto

from e1-isnot-e2 e1-notin-A-inter-B
have merge-eq: merge A B (e1 # t1 ′) (e2 # t2 ′) = e1 # (merge A B t1 ′ (e2 # t2 ′))

by auto

from 3 (4 ) ind1 have goal1 : merge A B (e1 # t1 ′) (e2 # t2 ′) � A = e1 # t1 ′

by (simp only: merge-eq projection-def , auto)
moreover
from ind2 e1-notin-B have goal2 :

merge A B (e1 # t1 ′) (e2 # t2 ′) � B = e2 # t2 ′

by (simp only: merge-eq projection-def , auto)
moreover
from 3 (4 ) ind3 have goal3 :

set (merge A B (e1 # t1 ′) (e2 # t2 ′)) ⊆ set (e1 # t1 ′) ∪ set (e2 # t2 ′)
by (simp only: merge-eq, auto)

ultimately show ?thesis
by auto

qed
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qed
qed

end

3 System Specification

3.1 Event Systems

We define the system model of event systems as well as the parallel composition operator for event
systems provided as part of MAKS in [3].

theory EventSystems
imports ../Basics/Prefix ../Basics/Projection
begin

record ′e ES-rec =
E-ES :: ′e set
I-ES :: ′e set
O-ES :: ′e set
Tr-ES :: ( ′e list) set

abbreviation ESrecEES :: ′e ES-rec ⇒ ′e set
(‹E-› [1000 ] 1000 )
where
EES ≡ (E-ES ES)

abbreviation ESrecIES :: ′e ES-rec ⇒ ′e set
(‹I -› [1000 ] 1000 )
where
I ES ≡ (I-ES ES)

abbreviation ESrecOES :: ′e ES-rec ⇒ ′e set
(‹O-› [1000 ] 1000 )
where
OES ≡ (O-ES ES)

abbreviation ESrecTrES :: ′e ES-rec ⇒ ( ′e list) set
(‹Tr-› [1000 ] 1000 )
where
TrES ≡ (Tr-ES ES)

definition es-inputs-are-events :: ′e ES-rec ⇒ bool
where
es-inputs-are-events ES ≡ I ES ⊆ EES

definition es-outputs-are-events :: ′e ES-rec ⇒ bool
where
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es-outputs-are-events ES ≡ OES ⊆ EES

definition es-inputs-outputs-disjoint :: ′e ES-rec ⇒ bool
where
es-inputs-outputs-disjoint ES ≡ I ES ∩ OES = {}

definition traces-contain-events :: ′e ES-rec ⇒ bool
where
traces-contain-events ES ≡ ∀ l ∈ TrES. ∀ e ∈ (set l). e ∈ EES

definition traces-prefixclosed :: ′e ES-rec ⇒ bool
where
traces-prefixclosed ES ≡ prefixclosed TrES

definition ES-valid :: ′e ES-rec ⇒ bool
where
ES-valid ES ≡

es-inputs-are-events ES ∧ es-outputs-are-events ES
∧ es-inputs-outputs-disjoint ES ∧ traces-contain-events ES
∧ traces-prefixclosed ES

definition total :: ′e ES-rec ⇒ ′e set ⇒ bool
where
total ES E ≡ E ⊆ EES ∧ (∀ τ ∈ TrES. ∀ e ∈ E . τ @ [e] ∈ TrES)

lemma totality: [[ total ES E ; t ∈ TrES; set t ′ ⊆ E ]] =⇒ t @ t ′ ∈ TrES
by (induct t ′ rule: rev-induct, force, simp only: total-def , auto)

definition composeES :: ′e ES-rec ⇒ ′e ES-rec ⇒ ′e ES-rec
where
composeES ES1 ES2 ≡
(|

E-ES = EES1 ∪ EES2,
I-ES = (I ES1 − OES2) ∪ (I ES2 − OES1),
O-ES = (OES1 − I ES2) ∪ (OES2 − I ES1),
Tr-ES = {τ . (τ � EES1) ∈ TrES1 ∧ (τ � EES2) ∈ TrES2

∧ (set τ ⊆ EES1 ∪ EES2)}
|)

abbreviation composeESAbbrv :: ′e ES-rec ⇒ ′e ES-rec ⇒ ′e ES-rec
(‹- ‖ -›[1000 ] 1000 )
where
ES1 ‖ ES2 ≡ (composeES ES1 ES2 )

definition composable :: ′e ES-rec ⇒ ′e ES-rec ⇒ bool
where
composable ES1 ES2 ≡ (EES1 ∩ EES2) ⊆ ((OES1 ∩ I ES2) ∪ (OES2 ∩ I ES1))

14



lemma composeES-yields-ES :
[[ ES-valid ES1 ; ES-valid ES2 ]] =⇒ ES-valid (ES1 ‖ ES2 )
unfolding ES-valid-def

proof (auto)
assume ES1-inputs-are-events: es-inputs-are-events ES1
assume ES2-inputs-are-events: es-inputs-are-events ES2
show es-inputs-are-events (ES1 ‖ ES2 ) unfolding composeES-def es-inputs-are-events-def

proof (simp)
have subgoal11 : I ES1 − OES2 ⊆ EES1 ∪ EES2
proof (auto)

fix x
assume x ∈ I ES1
with ES1-inputs-are-events show x ∈ EES1

by (auto simp add: es-inputs-are-events-def )
qed
have subgoal12 : I ES2 − OES1 ⊆ EES1 ∪ EES2
proof (rule subsetI , rule UnI2 , auto)

fix x
assume x ∈ I ES2
with ES2-inputs-are-events show x ∈ EES2

by (auto simp add: es-inputs-are-events-def )
qed
from subgoal11 subgoal12
show I ES1 − OES2 ⊆ EES1 ∪ EES2 ∧ I ES2 − OES1 ⊆ EES1 ∪ EES2 ..

qed
next

assume ES1-outputs-are-events: es-outputs-are-events ES1
assume ES2-outputs-are-events: es-outputs-are-events ES2
show es-outputs-are-events (ES1 ‖ ES2 )

unfolding composeES-def es-outputs-are-events-def
proof (simp)

have subgoal21 : OES1 − I ES2 ⊆ EES1 ∪ EES2
proof (auto)

fix x
assume x ∈ OES1
with ES1-outputs-are-events show x ∈ EES1

by (auto simp add: es-outputs-are-events-def )
qed
have subgoal22 : OES2 − I ES1 ⊆ EES1 ∪ EES2
proof (rule subsetI , rule UnI2 , auto)

fix x
assume x ∈ OES2
with ES2-outputs-are-events show x ∈ EES2

by (auto simp add: es-outputs-are-events-def )
qed
from subgoal21 subgoal22
show OES1 − I ES2 ⊆ EES1 ∪ EES2 ∧ OES2 − I ES1 ⊆ EES1 ∪ EES2 ..

qed
next
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assume ES1-inputs-outputs-disjoint: es-inputs-outputs-disjoint ES1
assume ES2-inputs-outputs-disjoint: es-inputs-outputs-disjoint ES2
show es-inputs-outputs-disjoint (ES1 ‖ ES2 )

unfolding composeES-def es-inputs-outputs-disjoint-def
proof (simp)

have subgoal31 :
{} ⊆ (I ES1 − OES2 ∪ (I ES2 − OES1)) ∩ (OES1 − I ES2 ∪ (OES2 − I ES1))
by auto

have subgoal32 :
(I ES1 − OES2 ∪ (I ES2 − OES1)) ∩ (OES1 − I ES2 ∪ (OES2 − I ES1)) ⊆ {}

proof (rule subsetI , erule IntE)
fix x
assume ass1 : x ∈ I ES1 − OES2 ∪ (I ES2 − OES1)
then have ass1 ′: x ∈ I ES1 − OES2 ∨ x ∈ (I ES2 − OES1)

by auto
assume ass2 : x ∈ OES1 − I ES2 ∪ (OES2 − I ES1)
then have ass2 ′:x ∈ OES1 − I ES2 ∨ x ∈ (OES2 − I ES1)

by auto
note ass1 ′

moreover {
assume left1 : x ∈ I ES1 − OES2
note ass2 ′

moreover {
assume left2 : x ∈ OES1 − I ES2
with left1 have x∈ (I ES1) ∩ (OES1)

by (auto)
with ES1-inputs-outputs-disjoint have x∈{}

by (auto simp add: es-inputs-outputs-disjoint-def )
}
moreover {

assume right2 : x ∈ (OES2 − I ES1)
with left1 have x∈ (I ES1 − I ES1)

by auto
hence x∈{}

by auto
}
ultimately have x∈{} ..

}
moreover {

assume right1 : x ∈ I ES2 − OES1
note ass2 ′

moreover {
assume left2 : x ∈ OES1 − I ES2
with right1 have x∈ (I ES2 − I ES2)

by auto
hence x∈{}

by auto
}
moreover {

assume right2 : x ∈ (OES2 − I ES1)
with right1 have x ∈ (I ES2 ∩ OES2)

by auto
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with ES2-inputs-outputs-disjoint have x∈{}
by (auto simp add: es-inputs-outputs-disjoint-def )

}
ultimately have x∈{} ..

}
ultimately show x∈{} ..

qed

from subgoal31 subgoal32
show (I ES1 − OES2 ∪ (I ES2 − OES1)) ∩ (OES1 − I ES2 ∪ (OES2 − I ES1)) = {}

by auto
qed

next
show traces-contain-events (ES1 ‖ ES2 ) unfolding composeES-def traces-contain-events-def

proof (clarsimp)
fix l e
assume e ∈ set l

and set l ⊆ EES1 ∪ EES2
then have e-in-union: e ∈ EES1 ∪ EES2

by auto
assume e /∈ EES2
with e-in-union show e ∈ EES1

by auto
qed

next
assume ES1-traces-prefixclosed: traces-prefixclosed ES1
assume ES2-traces-prefixclosed: traces-prefixclosed ES2
show traces-prefixclosed (ES1 ‖ ES2 )

unfolding composeES-def traces-prefixclosed-def prefixclosed-def prefix-def
proof (clarsimp)

fix l2 l3
have l2l3split: (l2 @ l3 ) � EES1 = (l2 � EES1) @ (l3 � EES1)

by (rule projection-concatenation-commute)
assume (l2 @ l3 ) � EES1 ∈ TrES1
with l2l3split have l2l3cattrace: (l2 � EES1) @ (l3 � EES1) ∈ TrES1

by auto
have theprefix: (l2 � EES1) � ((l2 � EES1) @ (l3 � EES1))

by (simp add: prefix-def )
have prefixclosure: ∀ es1 ∈ (TrES1). ∀ es2 . es2 � es1 −→ es2 ∈ (TrES1)

by (clarsimp, insert ES1-traces-prefixclosed, unfold traces-prefixclosed-def prefixclosed-def ,
erule-tac x=es1 in ballE , erule-tac x=es2 in allE , erule impE , auto)

hence
((l2 � EES1) @ (l3 � EES1)) ∈ TrES1 =⇒ ∀ es2 . es2 � ((l2 � EES1) @ (l3 � EES1))
−→ es2 ∈ TrES1 ..

with l2l3cattrace have ∀ es2 . es2 � ((l2 � EES1) @ (l3 � EES1)) −→ es2 ∈ TrES1
by auto

hence (l2 � EES1) � ((l2 � EES1) @ (l3 � EES1)) −→ (l2 � EES1) ∈ TrES1 ..
with theprefix have goal51 : (l2 � EES1) ∈ TrES1

by simp
have l2l3split: (l2 @ l3 ) � EES2 = (l2 � EES2) @ (l3 � EES2)

by (rule projection-concatenation-commute)
assume (l2 @ l3 ) � EES2 ∈ TrES2
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with l2l3split have l2l3cattrace: (l2 � EES2) @ (l3 � EES2) ∈ TrES2
by auto

have theprefix: (l2 � EES2) � ((l2 � EES2) @ (l3 � EES2))
by (simp add: prefix-def )

have prefixclosure: ∀ es1 ∈ TrES2. ∀ es2 . es2 � es1 −→ es2 ∈ TrES2
by (clarsimp, insert ES2-traces-prefixclosed,

unfold traces-prefixclosed-def prefixclosed-def ,
erule-tac x=es1 in ballE , erule-tac x=es2 in allE , erule impE , auto)

hence ((l2 � EES2) @ (l3 � EES2)) ∈ TrES2
=⇒ ∀ es2 . es2 � ((l2 � EES2) @ (l3 � EES2)) −→ es2 ∈ TrES2 ..

with l2l3cattrace have ∀ es2 . es2 � ((l2 � EES2) @ (l3 � EES2)) −→ es2 ∈ TrES2
by auto

hence (l2 � EES2) � ((l2 � EES2) @ (l3 � EES2)) −→ (l2 � EES2) ∈ TrES2 ..
with theprefix have goal52 : (l2 � EES2) ∈ TrES2

by simp
from goal51 goal52 show goal5 : l2 � EES1 ∈ TrES1 ∧ l2 � EES2 ∈ TrES2 ..

qed
qed

end

3.2 State-Event Systems

We define the system model of state-event systems as well as the translation from state-event sys-
tems to event systems provided as part of MAKS in [3]. State-event systems are the basis for the
unwinding theorems that we prove later in this entry.

theory StateEventSystems
imports EventSystems
begin

record ( ′s, ′e) SES-rec =
S-SES :: ′s set
s0-SES :: ′s
E-SES :: ′e set
I-SES :: ′e set
O-SES :: ′e set
T-SES :: ′s ⇒ ′e ⇀ ′s

abbreviation SESrecSSES :: ( ′s, ′e) SES-rec ⇒ ′s set
(‹S-› [1000 ] 1000 )
where
SSES ≡ (S-SES SES)

abbreviation SESrecs0SES :: ( ′s, ′e) SES-rec ⇒ ′s
(‹s0 -› [1000 ] 1000 )
where
s0 SES ≡ (s0-SES SES)
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abbreviation SESrecESES :: ( ′s, ′e) SES-rec ⇒ ′e set
(‹E-› [1000 ] 1000 )
where
ESES ≡ (E-SES SES)

abbreviation SESrecISES :: ( ′s, ′e) SES-rec ⇒ ′e set
(‹I -› [1000 ] 1000 )
where
I SES ≡ (I-SES SES)

abbreviation SESrecOSES :: ( ′s, ′e) SES-rec ⇒ ′e set
(‹O-› [1000 ] 1000 )
where
OSES ≡ (O-SES SES)

abbreviation SESrecTSES :: ( ′s, ′e) SES-rec ⇒ ( ′s ⇒ ′e ⇀ ′s)
(‹T -› [1000 ] 1000 )
where
TSES ≡ (T-SES SES)

abbreviation TSESpred :: ′s ⇒ ′e ⇒ ( ′s, ′e) SES-rec ⇒ ′s ⇒ bool
(‹- -−→- -› [100 ,100 ,100 ,100 ] 100 )
where
s e−→SES s ′ ≡ (TSES s e = Some s ′)

definition s0-is-state :: ( ′s, ′e) SES-rec ⇒ bool
where
s0-is-state SES ≡ s0 SES ∈ SSES

definition ses-inputs-are-events :: ( ′s, ′e) SES-rec ⇒ bool
where
ses-inputs-are-events SES ≡ I SES ⊆ ESES

definition ses-outputs-are-events :: ( ′s, ′e) SES-rec ⇒ bool
where
ses-outputs-are-events SES ≡ OSES ⊆ ESES

definition ses-inputs-outputs-disjoint :: ( ′s, ′e) SES-rec ⇒ bool
where
ses-inputs-outputs-disjoint SES ≡ I SES ∩ OSES = {}

definition correct-transition-relation :: ( ′s, ′e) SES-rec ⇒ bool
where
correct-transition-relation SES ≡
∀ x y z. x y−→SES z −→ ((x ∈ SSES) ∧ (y ∈ ESES) ∧ (z ∈ SSES))

definition SES-valid :: ( ′s, ′e) SES-rec ⇒ bool
where
SES-valid SES ≡

s0-is-state SES ∧ ses-inputs-are-events SES
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∧ ses-outputs-are-events SES ∧ ses-inputs-outputs-disjoint SES ∧
correct-transition-relation SES

primrec path :: ( ′s, ′e) SES-rec ⇒ ′s ⇒ ′e list ⇀ ′s
where
path-empt: path SES s1 [] = (Some s1 ) |
path-nonempt: path SES s1 (e # t) =
(if (∃ s2 . s1 e−→SES s2 )
then (path SES (the (TSES s1 e)) t)
else None)

abbreviation pathpred :: ′s ⇒ ′e list ⇒ ( ′s, ′e) SES-rec ⇒ ′s ⇒ bool
(‹- -=⇒- -› [100 , 100 , 100 , 100 ] 100 )
where
s t=⇒SES s ′ ≡ path SES s t = Some s ′

definition reachable :: ( ′s, ′e) SES-rec ⇒ ′s ⇒ bool
where
reachable SES s ≡ (∃ t. s0 SES t=⇒SES s)

definition enabled :: ( ′s, ′e) SES-rec ⇒ ′s ⇒ ′e list ⇒ bool
where
enabled SES s t ≡ (∃ s ′. s t=⇒SES s ′)

definition possible-traces :: ( ′s, ′e) SES-rec ⇒ ( ′e list) set
where
possible-traces SES ≡ {t. (enabled SES s0 SES t)}

definition induceES :: ( ′s, ′e) SES-rec ⇒ ′e ES-rec
where
induceES SES ≡
(|
E-ES = ESES,
I-ES = I SES,
O-ES = OSES,
Tr-ES = possible-traces SES
|)

lemma none-remains-none :
∧

s e. (path SES s t) = None
=⇒ (path SES s (t @ [e])) = None
by (induct t, auto)
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lemma path-trans-single-neg:
∧

s1 . [[s1 t=⇒SES s2 ; ¬ (s2 e−→SES sn)]]
=⇒ ¬ (s1 (t @ [e])=⇒SES sn)

by (induct t, auto)

lemma path-split-single: s1 (t@[e])=⇒SES sn
=⇒ ∃ s ′. s1 t=⇒SES s ′ ∧ s ′ e−→SES sn
by (cases path SES s1 t, simp add: none-remains-none,

simp, rule ccontr , auto simp add: path-trans-single-neg)

lemma path-trans-single:
∧

s. [[ s t=⇒SES s ′; s ′ e−→SES sn ]]
=⇒ s (t @ [e])=⇒SES sn

proof (induct t)
case Nil thus ?case by auto

next
case (Cons a t) thus ?case
proof −

from Cons obtain s1 ′ where trans-s-a-s1 ′: s a−→SES s1 ′

by (simp, split if-split-asm, auto)
with Cons have s1 ′ (t @ [e])=⇒SES sn

by auto
with trans-s-a-s1 ′ show ?thesis

by auto
qed

qed

lemma path-split:
∧

sn. [[ s1 (t1 @ t2 )=⇒SES sn ]]
=⇒ (∃ s2 . (s1 t1=⇒SES s2 ∧ s2 t2=⇒SES sn))

proof (induct t2 rule: rev-induct)
case Nil thus ?case by auto

next
case (snoc a t) thus ?case
proof −

from snoc have s1 (t1 @ t @ [a])=⇒SES sn
by auto

hence ∃ sn ′. s1 (t1 @ t)=⇒SES sn ′ ∧ sn ′ a−→SES sn
by (simp add: path-split-single)

then obtain sn ′ where path-t1-t-trans-a:
s1 (t1 @ t)=⇒SES sn ′ ∧ sn ′ a−→SES sn
by auto

with snoc obtain s2 where path-t1-t:
s1 t1=⇒SES s2 ∧ s2 t=⇒SES sn ′

by auto
with path-t1-t-trans-a have s2 (t @ [a])=⇒SES sn

by (simp add: path-trans-single)
with path-t1-t show ?thesis by auto

qed
qed
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lemma path-trans:∧
sn. [[ s1 l1=⇒SES s2 ; s2 l2=⇒SES sn ]] =⇒ s1 (l1 @ l2 )=⇒SES sn

proof (induct l2 rule: rev-induct)
case Nil thus ?case by auto

next
case (snoc a l) thus ?case
proof −

assume path-l1 : s1 l1=⇒SES s2
assume s2 (l@[a])=⇒SES sn
hence ∃ sn ′. s2 l=⇒SES sn ′ ∧ sn ′ [a]=⇒SES sn

by (simp add: path-split del: path-nonempt)
then obtain sn ′ where path-l-a: s2 l=⇒SES sn ′ ∧ sn ′ [a]=⇒SES sn

by auto
with snoc path-l1 have path-l1-l: s1 (l1@l)=⇒SES sn ′

by auto
with path-l-a have sn ′ a−→SES sn

by (simp, split if-split-asm, auto)
with path-l1-l show s1 (l1 @ l @ [a])=⇒SES sn

by (subst append-assoc[symmetric], rule-tac s ′=sn ′ in path-trans-single, auto)
qed

qed

lemma enabledPrefixSingle : [[ enabled SES s (t@[e]) ]] =⇒ enabled SES s t
unfolding enabled-def
proof −

assume ass: ∃ s ′. s (t @ [e])=⇒SES s ′

from ass obtain s ′ where s (t @ [e])=⇒SES s ′ ..
hence ∃ t ′. (s t=⇒SES t ′) ∧ (t ′ e−→SES s ′)

by (rule path-split-single)
then obtain t ′ where s t=⇒SES t ′

by (auto)
thus ∃ s ′. s t=⇒SES s ′ ..

qed

lemma enabledPrefix : [[ enabled SES s (t1 @ t2 ) ]] =⇒ enabled SES s t1
unfolding enabled-def

proof −
assume ass: ∃ s ′. s (t1 @ t2 )=⇒SES s ′

from ass obtain s ′ where s (t1 @ t2 )=⇒SES s ′ ..
hence ∃ t. (s t1=⇒SES t ∧ t t2=⇒SES s ′)

by (rule path-split)
then obtain t where s t1=⇒SES t

by (auto)
then show ∃ s ′. s t1=⇒SES s ′ ..

qed
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lemma enabledPrefixSingleFinalStep : [[ enabled SES s (t@[e]) ]] =⇒ ∃ t ′ t ′′. t ′ e−→SES t ′′

unfolding enabled-def
proof −

assume ass: ∃ s ′. s (t @ [e])=⇒SES s ′

from ass obtain s ′ where s (t @ [e])=⇒SES s ′ ..
hence ∃ t ′. (s t=⇒SES t ′) ∧ (t ′ e−→SES s ′)

by (rule path-split-single)
then obtain t ′ where t ′ e−→SES s ′

by (auto)
thus ∃ t ′ t ′′. t ′ e−→SES t ′′

by (auto)
qed

lemma induceES-yields-ES :
SES-valid SES =⇒ ES-valid (induceES SES)

proof (simp add: SES-valid-def ES-valid-def , auto)
assume SES-inputs-are-events: ses-inputs-are-events SES
thus es-inputs-are-events (induceES SES)

by (simp add: induceES-def ses-inputs-are-events-def es-inputs-are-events-def )
next

assume SES-outputs-are-events: ses-outputs-are-events SES
thus es-outputs-are-events (induceES SES)

by (simp add: induceES-def ses-outputs-are-events-def es-outputs-are-events-def )
next

assume SES-inputs-outputs-disjoint: ses-inputs-outputs-disjoint SES
thus es-inputs-outputs-disjoint (induceES SES)

by (simp add: induceES-def ses-inputs-outputs-disjoint-def es-inputs-outputs-disjoint-def )
next

assume SES-correct-transition-relation: correct-transition-relation SES
thus traces-contain-events (induceES SES)

unfolding induceES-def traces-contain-events-def possible-traces-def
proof (auto)
fix l e
assume enabled-l: enabled SES s0 SES l
assume e-in-l: e ∈ set l
from enabled-l e-in-l show e ∈ ESES
proof (induct l rule: rev-induct)

case Nil
assume e-in-empty-list: e ∈ set []
hence f : False

by (auto)
thus ?case

by auto
next
case (snoc a l)
from snoc.prems have l-enabled: enabled SES s0 SES l

by (simp add: enabledPrefixSingle)
show ?case

proof (cases e ∈ (set l))

23



from snoc.hyps l-enabled show e ∈ set l =⇒ e ∈ ESES
by auto

show e /∈ set l =⇒ e ∈ ESES
proof −

assume e /∈ set l
with snoc.prems have e-eq-a : e=a

by auto
from snoc.prems have ∃ t t ′. t a−→SES t ′

by (auto simp add: enabledPrefixSingleFinalStep)
then obtain t t ′ where t a−→SES t ′

by auto
with e-eq-a SES-correct-transition-relation show e ∈ ESES

by (simp add: correct-transition-relation-def )
qed

qed
qed

qed
next

show traces-prefixclosed (induceES SES)
unfolding traces-prefixclosed-def prefixclosed-def induceES-def possible-traces-def prefix-def
by (clarsimp simp add: enabledPrefix)

qed

end

4 Security Specification

4.1 Views & Flow Policies

We define views, flow policies and how views can be derived from a given flow policy.

theory Views
imports Main
begin

record ′e V-rec =
V :: ′e set
N :: ′e set
C :: ′e set

abbreviation VrecV :: ′e V-rec ⇒ ′e set
(‹V -› [100 ] 1000 )
where
V v ≡ (V v)

abbreviation VrecN :: ′e V-rec ⇒ ′e set
(‹N -› [100 ] 1000 )
where
Nv ≡ (N v)

24



abbreviation VrecC :: ′e V-rec ⇒ ′e set
(‹C -› [100 ] 1000 )
where
Cv ≡ (C v)

definition VN-disjoint :: ′e V-rec ⇒ bool
where
VN-disjoint v ≡ V v ∩ Nv = {}

definition VC-disjoint :: ′e V-rec ⇒ bool
where
VC-disjoint v ≡ V v ∩ Cv = {}

definition NC-disjoint :: ′e V-rec ⇒ bool
where
NC-disjoint v ≡ Nv ∩ Cv = {}

definition V-valid :: ′e V-rec ⇒ bool
where
V-valid v ≡ VN-disjoint v ∧ VC-disjoint v ∧ NC-disjoint v

definition isViewOn :: ′e V-rec ⇒ ′e set ⇒ bool
where
isViewOn V E ≡ V-valid V ∧ VV ∪ NV ∪ CV = E

end
theory FlowPolicies
imports Views
begin

record ′domain FlowPolicy-rec =
D :: ′domain set
v-rel :: ( ′domain × ′domain) set
n-rel :: ( ′domain × ′domain) set
c-rel :: ( ′domain × ′domain) set

definition FlowPolicy :: ′domain FlowPolicy-rec ⇒ bool
where
FlowPolicy fp ≡

((v-rel fp) ∪ (n-rel fp) ∪ (c-rel fp) = ((D fp) × (D fp)))
∧ (v-rel fp) ∩ (n-rel fp) = {}
∧ (v-rel fp) ∩ (c-rel fp) = {}
∧ (n-rel fp) ∩ (c-rel fp) = {}
∧ (∀ d ∈ (D fp). (d, d) ∈ (v-rel fp))

type-synonym ( ′e, ′domain) dom-type = ′e ⇀ ′domain
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definition dom :: ( ′e, ′domain) dom-type ⇒ ′domain set ⇒ ′e set ⇒ bool
where
dom domas dset es ≡
(∀ e. ∀ d. ((domas e = Some d) −→ (e ∈ es ∧ d ∈ dset)))

definition view-dom :: ′domain FlowPolicy-rec ⇒ ′domain ⇒ ( ′e, ′domain) dom-type ⇒ ′e V-rec
where

view-dom fp d domas ≡
(| V = {e. ∃ d ′. (domas e = Some d ′ ∧ (d ′, d) ∈ (v-rel fp))},

N = {e. ∃ d ′. (domas e = Some d ′ ∧ (d ′, d) ∈ (n-rel fp))},
C = {e. ∃ d ′. (domas e = Some d ′ ∧ (d ′, d) ∈ (c-rel fp))} |)

end

4.2 Basic Security Predicates

We define all 14 basic security predicates provided as part of MAKS in [3].

theory BasicSecurityPredicates
imports Views ../Basics/Projection
begin

definition areTracesOver :: ( ′e list) set ⇒ ′e set ⇒ bool
where
areTracesOver Tr E ≡
∀ τ ∈ Tr . (set τ) ⊆ E

type-synonym ′e BSP = ′e V-rec ⇒ (( ′e list) set) ⇒ bool

definition BSP-valid :: ′e BSP ⇒ bool
where
BSP-valid bsp ≡
∀V Tr E . ( isViewOn V E ∧ areTracesOver Tr E )

−→ (∃ Tr ′. Tr ′ ⊇ Tr ∧ bsp V Tr ′)

definition R :: ′e BSP
where
R V Tr ≡
∀ τ∈Tr . ∃ τ ′∈Tr . τ ′ � CV = [] ∧ τ ′ � VV = τ � VV

lemma BSP-valid-R: BSP-valid R
proof −

{
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fix V::( ′e V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr

by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
moreover
have R V ?Tr ′

proof −
{

fix τ
assume τ ∈ {t. (set t) ⊆ E}
let ?τ ′=τ�(VV )
have ?τ ′ � CV = [] ∧ ?τ ′ � VV = τ � VV

using ‹isViewOn V E› disjoint-projection projection-idempotent
unfolding isViewOn-def V-valid-def VC-disjoint-def by metis

moreover
from ‹τ ∈ {t. (set t) ⊆ E}› have ?τ ′ ∈ ?Tr ′ using ‹isViewOn V E›

unfolding isViewOn-def
by (simp add: list-subset-iff-projection-neutral projection-commute)

ultimately
have ∃ τ ′∈{t. set t ⊆ E}. τ ′ � CV = [] ∧ τ ′ � VV = τ � VV

by auto
}
thus ?thesis unfolding R-def

by auto
qed

ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ R V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

definition D :: ′e BSP
where
D V Tr ≡
∀α β. ∀ c∈CV . ((β @ [c] @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α ′ β ′. ((β ′ @ α ′) ∈ Tr ∧ α ′�VV = α�VV ∧ α ′�CV = []

∧ β ′�(VV ∪ CV ) = β�(VV ∪ CV )))

lemma BSP-valid-D: BSP-valid D
proof −

{
fix V::( ′e V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
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have ?Tr ′⊇ Tr
by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )

moreover
have D V ?Tr ′

unfolding D-def by auto
ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ D V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

definition I :: ′e BSP
where
I V Tr ≡
∀α β. ∀ c∈CV . ((β @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α ′ β ′. ((β ′ @ [c] @ α ′) ∈ Tr ∧ α ′�VV = α�VV ∧ α ′�CV = []

∧ β ′�(VV ∪ CV ) = β�(VV ∪ CV )))

lemma BSP-valid-I : BSP-valid I
proof −

{
fix V::( ′e V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr

by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
moreover
have I V ?Tr ′ using ‹isViewOn V E›

unfolding isViewOn-def I-def by auto
ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ I V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

type-synonym ′e Rho = ′e V-rec ⇒ ′e set

definition
Adm :: ′e V-rec ⇒ ′e Rho ⇒ ( ′e list) set ⇒ ′e list ⇒ ′e ⇒ bool
where
Adm V % Tr β e ≡
∃ γ. ((γ @ [e]) ∈ Tr ∧ γ�(% V) = β�(% V))
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definition IA :: ′e Rho ⇒ ′e BSP
where
IA % V Tr ≡
∀α β. ∀ c∈CV . ((β @ α) ∈ Tr ∧ α�CV = [] ∧ (Adm V % Tr β c))
−→ (∃ α ′ β ′. ((β ′ @ [c] @ α ′) ∈ Tr) ∧ α ′�VV = α�VV

∧ α ′�CV = [] ∧ β ′�(VV ∪ CV ) = β�(VV ∪ CV ))

lemma BSP-valid-IA: BSP-valid (IA %)
proof −

{
fix V :: ( ′a V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr

by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
moreover
have IA % V ?Tr ′ using ‹isViewOn V E›

unfolding isViewOn-def IA-def by auto
ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ IA % V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

definition BSD :: ′e BSP
where
BSD V Tr ≡
∀α β. ∀ c∈CV . ((β @ [c] @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α ′. ((β @ α ′) ∈ Tr ∧ α ′�VV = α�VV ∧ α ′�CV = []))

lemma BSP-valid-BSD: BSP-valid BSD
proof −

{
fix V::( ′e V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr

by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
moreover
have BSD V ?Tr ′

unfolding BSD-def by auto
ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ BSD V Tr ′
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by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

definition BSI :: ′e BSP
where
BSI V Tr ≡
∀α β. ∀ c∈CV . ((β @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α ′. ((β @ [c] @ α ′) ∈ Tr ∧ α ′�VV = α�VV ∧ α ′�CV = []))

lemma BSP-valid-BSI : BSP-valid BSI
proof −

{
fix V::( ′e V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr

by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
moreover
have BSI V ?Tr ′ using ‹isViewOn V E›

unfolding isViewOn-def BSI-def by auto
ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ BSI V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

definition BSIA :: ′e Rho ⇒ ′e BSP
where
BSIA % V Tr ≡
∀α β. ∀ c∈CV . ((β @ α) ∈ Tr ∧ α�CV = [] ∧ (Adm V % Tr β c))
−→ (∃α ′. ((β @ [c] @ α ′) ∈ Tr ∧ α ′�VV = α�VV ∧ α ′�CV = []))

lemma BSP-valid-BSIA: BSP-valid (BSIA %)
proof −

{
fix V :: ( ′a V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr

by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
moreover
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have BSIA % V ?Tr ′ using ‹isViewOn V E›
unfolding isViewOn-def BSIA-def by auto

ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ BSIA % V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

record ′e Gamma =
Nabla :: ′e set
Delta :: ′e set
Upsilon :: ′e set

abbreviation GammaNabla :: ′e Gamma ⇒ ′e set
(‹∇-› [100 ] 1000 )
where
∇Γ ≡ (Nabla Γ)

abbreviation GammaDelta :: ′e Gamma ⇒ ′e set
(‹∆-› [100 ] 1000 )
where
∆Γ ≡ (Delta Γ)

abbreviation GammaUpsilon :: ′e Gamma ⇒ ′e set
(‹Υ-› [100 ] 1000 )
where
ΥΓ ≡ (Upsilon Γ)

definition FCD :: ′e Gamma ⇒ ′e BSP
where
FCD Γ V Tr ≡
∀α β. ∀ c∈(CV ∩ ΥΓ). ∀ v∈(VV ∩ ∇Γ).
((β @ [c,v] @ α) ∈ Tr ∧ α � CV = [])
−→ (∃α ′. ∃ δ ′. (set δ ′) ⊆ (NV ∩ ∆Γ)

∧ ((β @ δ ′ @ [v] @ α ′) ∈ Tr
∧ α ′�VV = α�VV ∧ α ′�CV = []))

lemma BSP-valid-FCD: BSP-valid (FCD Γ)
proof −

{
fix V::( ′a V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr
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by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
moreover
have FCD Γ V ?Tr ′

proof −
{

fix α β c v
assume c ∈ CV ∩ ΥΓ

and v ∈VV ∩ ∇Γ
and β @ [c ,v] @ α ∈ ?Tr ′

and α � CV = []
let ?α ′=α and ?δ ′=[]
from ‹β @ [c ,v] @ α ∈ ?Tr ′› have β @ ?δ ′ @ [v] @ ?α ′ ∈ ?Tr ′

by auto
hence (set ?δ ′) ⊆ (NV ∩ ∆Γ) ∧ ((β @ ?δ ′ @ [v] @ ?α ′) ∈ ?Tr ′

∧ ?α ′ � VV = α � VV ∧ ?α ′ � CV = [])
using ‹isViewOn V E› ‹α � CV = []›
unfolding isViewOn-def ‹α � CV = []› by auto

hence ∃α ′. ∃ δ ′. (set δ ′) ⊆ (NV ∩ ∆Γ) ∧ ((β @ δ ′ @ [v] @ α ′) ∈ ?Tr ′

∧ α ′ � VV = α � VV ∧ α ′ � CV = [])
by blast

}
thus ?thesis

unfolding FCD-def by auto
qed

ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ FCD Γ V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

definition FCI :: ′e Gamma ⇒ ′e BSP
where
FCI Γ V Tr ≡
∀α β. ∀ c∈(CV ∩ ΥΓ). ∀ v∈(VV ∩ ∇Γ).
((β @ [v] @ α) ∈ Tr ∧ α�CV = [])
−→ (∃α ′. ∃ δ ′. (set δ ′) ⊆ (NV ∩ ∆Γ)

∧ ((β @ [c] @ δ ′ @ [v] @ α ′) ∈ Tr
∧ α ′�VV = α�VV ∧ α ′�CV = []))

lemma BSP-valid-FCI : BSP-valid (FCI Γ)
proof −

{
fix V::( ′a V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr

by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
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moreover
have FCI Γ V ?Tr ′

proof −
{

fix α β c v
assume c ∈ CV ∩ ΥΓ

and v ∈VV ∩ ∇Γ
and β @ [v] @ α ∈ ?Tr ′

and α � CV = []
let ?α ′=α and ?δ ′=[]
from ‹c ∈ CV ∩ ΥΓ› have c ∈ E

using ‹isViewOn V E›
unfolding isViewOn-def by auto

with ‹β @ [v] @ α ∈ ?Tr ′› have β @ [c] @ ?δ ′ @ [v] @ ?α ′ ∈ ?Tr ′

by auto
hence (set ?δ ′) ⊆ (NV ∩ ∆Γ) ∧ ((β @ [c] @ ?δ ′ @ [v] @ ?α ′) ∈ ?Tr ′

∧ ?α ′ � VV = α � VV ∧ ?α ′ � CV = [])
using ‹isViewOn V E› ‹α � CV = []› unfolding isViewOn-def ‹α � CV = []› by auto

hence
∃α ′. ∃ δ ′. (set δ ′) ⊆ (NV ∩ ∆Γ) ∧ ((β @ [c] @ δ ′ @ [v] @ α ′) ∈ ?Tr ′

∧ α ′ � VV = α � VV ∧ α ′ � CV = [])
by blast

}
thus ?thesis

unfolding FCI-def by auto
qed

ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ FCI Γ V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

definition FCIA :: ′e Rho ⇒ ′e Gamma ⇒ ′e BSP
where
FCIA % Γ V Tr ≡
∀α β. ∀ c∈(CV ∩ ΥΓ). ∀ v∈(VV ∩ ∇Γ).
((β @ [v] @ α) ∈ Tr ∧ α�CV = [] ∧ (Adm V % Tr β c))
−→ (∃α ′. ∃ δ ′. (set δ ′) ⊆ (NV ∩ ∆Γ)

∧ ((β @ [c] @ δ ′ @ [v] @ α ′) ∈ Tr
∧ α ′�VV = α�VV ∧ α ′�CV = []))

lemma BSP-valid-FCIA: BSP-valid (FCIA % Γ)
proof −

{
fix V :: ( ′a V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
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have ?Tr ′⊇ Tr
by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )

moreover
have FCIA % Γ V ?Tr ′

proof −
{

fix α β c v
assume c ∈ CV ∩ ΥΓ

and v ∈VV ∩ ∇Γ
and β @ [v] @ α ∈ ?Tr ′

and α � CV = []
let ?α ′=α and ?δ ′=[]
from ‹c ∈ CV ∩ ΥΓ› have c ∈ E

using ‹isViewOn V E› unfolding isViewOn-def by auto
with ‹β @ [v] @ α ∈ ?Tr ′› have β @ [c] @ ?δ ′ @ [v] @ ?α ′ ∈ ?Tr ′

by auto
hence (set ?δ ′) ⊆ (NV ∩ ∆Γ) ∧ ((β @ [c] @ ?δ ′ @ [v] @ ?α ′) ∈ ?Tr ′

∧ ?α ′ � VV = α � VV ∧ ?α ′ � CV = [])
using ‹isViewOn V E› ‹α � CV = []›
unfolding isViewOn-def ‹α � CV = []› by auto

hence
∃α ′. ∃ δ ′. (set δ ′) ⊆ (NV ∩ ∆Γ) ∧ ((β @ [c] @ δ ′ @ [v] @ α ′) ∈ ?Tr ′

∧ α ′ � VV = α � VV ∧ α ′ � CV = [])
by blast

}
thus ?thesis

unfolding FCIA-def by auto
qed

ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ FCIA % Γ V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

definition SR :: ′e BSP
where
SR V Tr ≡ ∀ τ∈Tr . τ � (VV ∪ NV ) ∈ Tr

lemma BSP-valid SR
proof −

{
fix V::( ′e V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. ∃ τ ∈ Tr . t=τ�(VV ∪ NV )} ∪ Tr
have ?Tr ′⊇ Tr

by blast
moreover
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have SR V ?Tr ′ unfolding SR-def
proof

fix τ
assume τ ∈ ?Tr ′

{
from ‹τ ∈ ?Tr ′› have (∃ t∈Tr . τ = t � (VV ∪ NV )) ∨ τ ∈ Tr

by auto
hence τ � (VV ∪ NV ) ∈ ?Tr ′

proof
assume ∃ t∈Tr . τ = t �(VV ∪ NV )
hence ∃ t∈Tr . τ � (VV ∪ NV )= t �(VV ∪ NV )

using projection-idempotent by metis
thus ?thesis

by auto
next

assume τ ∈ Tr
thus ?thesis

by auto
qed

}
thus τ � (VV ∪ NV ) ∈ ?Tr ′

by auto
qed

ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ SR V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

definition SD :: ′e BSP
where
SD V Tr ≡
∀α β. ∀ c∈CV . ((β @ [c] @ α) ∈ Tr ∧ α�CV = []) −→ β @ α ∈ Tr

lemma BSP-valid SD
proof −

{
fix V::( ′e V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
moreover
have SD V ?Tr ′ unfolding SD-def by auto
ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ SD V Tr ′ by auto

}
thus ?thesis unfolding BSP-valid-def by auto
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qed

definition SI :: ′e BSP
where
SI V Tr ≡
∀α β. ∀ c∈CV . ((β @ α) ∈ Tr ∧ α � CV = []) −→ β @ [c] @ α ∈ Tr

lemma BSP-valid SI
proof −

{
fix V::( ′a V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr

by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
moreover
have SI V ?Tr ′

using ‹isViewOn V E›
unfolding isViewOn-def SI-def by auto

ultimately
have ∃ Tr ′. Tr ′ ⊇ Tr ∧ SI V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

definition SIA :: ′e Rho ⇒ ′e BSP
where
SIA % V Tr ≡
∀α β. ∀ c∈CV . ((β @ α) ∈ Tr ∧ α � CV = [] ∧ (Adm V % Tr β c))
−→ (β @ [c] @ α) ∈ Tr

lemma BSP-valid (SIA %)
proof −

{
fix V :: ( ′a V-rec)
fix Tr E
assume isViewOn V E
and areTracesOver Tr E
let ?Tr ′={t. (set t) ⊆ E}
have ?Tr ′⊇ Tr

by (meson Ball-Collect ‹areTracesOver Tr E› areTracesOver-def )
moreover
have SIA % V ?Tr ′

using ‹isViewOn V E›
unfolding isViewOn-def SIA-def by auto

ultimately
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have ∃ Tr ′. Tr ′ ⊇ Tr ∧ SIA % V Tr ′

by auto
}
thus ?thesis

unfolding BSP-valid-def by auto
qed

end

4.3 Information-Flow Properties

We define the notion of information-flow properties from [3].

theory InformationFlowProperties
imports BasicSecurityPredicates
begin

type-synonym ′e SP = ( ′e BSP) set

type-synonym ′e IFP-type = ( ′e V-rec set) × ′e SP

definition IFP-valid :: ′e set ⇒ ′e IFP-type ⇒ bool
where
IFP-valid E ifp ≡
∀V ∈ (fst ifp). isViewOn V E

∧ (∀BSP ∈ (snd ifp). BSP-valid BSP)

definition IFPIsSatisfied :: ′e IFP-type ⇒ ( ′e list) set ⇒ bool
where
IFPIsSatisfied ifp Tr ≡
∀ V∈(fst ifp). ∀ BSP∈(snd ifp). BSP V Tr

end

4.4 Property Library

We define the representations of several possibilistic information-flow properties from the literature
that are provided as part of MAKS in [3].

theory PropertyLibrary
imports InformationFlowProperties ../SystemSpecification/EventSystems ../Verification/Basics/BSPTaxonomy
begin

definition
HighInputsConfidential :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ′e V-rec
where
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HighInputsConfidential L H IE ≡ (| V=L, N=H−IE , C=H ∩ IE |)

definition HighConfidential :: ′e set ⇒ ′e set ⇒ ′e V-rec
where
HighConfidential L H ≡ (| V=L, N={}, C=H |)

fun interleaving :: ′e list ⇒ ′e list ⇒ ( ′e list) set
where
interleaving t1 [] = {t1} |
interleaving [] t2 = {t2} |
interleaving (e1 # t1 ) (e2 # t2 ) =
{t. (∃ t ′. t=(e1 # t ′) ∧ t ′ ∈ interleaving t1 (e2 #t2 ))}
∪ {t. (∃ t ′. t=(e2 # t ′) ∧ t ′ ∈ interleaving (e1 # t1 ) t2 )}

definition GNI :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ′e IFP-type
where
GNI L H IE ≡ ( {HighInputsConfidential L H IE}, {BSD, BSI})

lemma GNI-valid: L ∩ H = {} =⇒ IFP-valid (L ∪ H ) (GNI L H IE)
unfolding IFP-valid-def GNI-def HighInputsConfidential-def isViewOn-def

V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates.BSP-valid-BSD BasicSecurityPredicates.BSP-valid-BSI
by auto

definition litGNI :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ( ′e list) set ⇒ bool
where
litGNI L H IE Tr ≡
∀ t1 t2 t3 .

t1 @ t2 ∈ Tr ∧ t3 � (L ∪ (H − IE)) = t2 � (L ∪ (H − IE))
−→ (∃ t4 . t1 @ t4 ∈ Tr ∧ t4 �(L ∪ (H ∩ IE)) = t3 �(L ∪ (H ∩ IE)))

definition IBGNI :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ′e IFP-type
where IBGNI L H IE ≡ ( {HighInputsConfidential L H IE}, {D, I})

lemma IBGNI-valid: L ∩ H = {} =⇒ IFP-valid (L ∪ H ) (IBGNI L H IE)
unfolding IFP-valid-def IBGNI-def HighInputsConfidential-def isViewOn-def

V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates.BSP-valid-D BasicSecurityPredicates.BSP-valid-I
by auto

definition
litIBGNI :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ( ′e list) set ⇒ bool
where
litIBGNI L H IE Tr ≡
∀ τ -l ∈ Tr . ∀ t-hi t.
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(set t-hi) ⊆ (H ∩ IE) ∧ t ∈ interleaving t-hi (τ -l � L)
−→ (∃ τ ′ ∈ Tr . τ ′ � (L ∪ (H ∩ IE)) = t)

definition FC :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ′e IFP-type
where
FC L H IE ≡
( {HighInputsConfidential L H IE},
{BSD, BSI , (FCD (| Nabla=IE , Delta={}, Upsilon=IE |)),

(FCI (| Nabla=IE , Delta={}, Upsilon=IE |) )})

lemma FC-valid: L ∩ H = {} =⇒ IFP-valid (L ∪ H ) (FC L H IE)
unfolding IFP-valid-def FC-def HighInputsConfidential-def isViewOn-def

V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates.BSP-valid-BSD BasicSecurityPredicates.BSP-valid-BSI

BasicSecurityPredicates.BSP-valid-FCD BasicSecurityPredicates.BSP-valid-FCI
by auto

definition litFC :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ( ′e list) set ⇒ bool
where
litFC L H IE Tr ≡
∀ t-1 t-2 . ∀ hi ∈ (H ∩ IE).
(
(∀ li ∈ (L ∩ IE).

t-1 @ [li] @ t-2 ∈ Tr ∧ t-2 � (H ∩ IE) = []
−→ (∃ t-3 . t-1 @ [hi] @ [li] @ t-3 ∈ Tr

∧ t-3 � L = t-2 � L ∧ t-3 � (H ∩ IE) = [] ))
∧ (t-1 @ t-2 ∈ Tr ∧ t-2 � (H ∩ IE) = []
−→ (∃ t-3 . t-1 @ [hi] @ t-3 ∈ Tr

∧ t-3 � L = t-2 � L ∧ t-3 � (H ∩ IE) = [] ))
∧ (∀ li ∈ (L ∩ IE).

t-1 @ [hi] @ [li] @ t-2 ∈ Tr ∧ t-2 � (H ∩ IE) = []
−→ (∃ t-3 . t-1 @ [li] @ t-3 ∈ Tr

∧ t-3 � L = t-2 � L ∧ t-3 � (H ∩ IE) = [] ))
∧ (t-1 @ [hi] @ t-2 ∈ Tr ∧ t-2 � (H ∩ IE) = []
−→ (∃ t-3 . t-1 @ t-3 ∈ Tr

∧ t-3 � L = t-2 � L ∧ t-3 � (H ∩ IE) = [] ))
)

definition NDO :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ′e IFP-type
where
NDO UI L H ≡
( {HighConfidential L H}, {BSD, (BSIA (λ V. CV ∪ (VV ∩ UI )))})

lemma NDO-valid: L ∩ H = {} =⇒ IFP-valid (L ∪ H ) (NDO UI L H )
unfolding IFP-valid-def NDO-def HighConfidential-def isViewOn-def

V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates.BSP-valid-BSD
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BasicSecurityPredicates.BSP-valid-BSIA[of (λ V. CV ∪ (VV ∩ UI ))]
by auto

definition litNDO :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ( ′e list) set ⇒ bool
where
litNDO UI L H Tr ≡
∀ τ -l ∈ Tr . ∀ τ -hlui ∈ Tr . ∀ t.

t�L = τ -l�L ∧ t�(H ∪ (L ∩ UI )) = τ -hlui�(H ∪ (L ∩ UI )) −→ t ∈ Tr

definition NF :: ′e set ⇒ ′e set ⇒ ′e IFP-type
where
NF L H ≡ ( {HighConfidential L H}, {R})

lemma NF-valid: L ∩ H = {} =⇒ IFP-valid (L ∪ H ) (NF L H )
unfolding IFP-valid-def NF-def HighConfidential-def isViewOn-def

V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates.BSP-valid-R
by auto

definition litNF :: ′e set ⇒ ′e set ⇒ ( ′e list) set ⇒ bool
where
litNF L H Tr ≡ ∀ τ ∈ Tr . τ � L ∈ Tr

definition GNF :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ′e IFP-type
where
GNF L H IE ≡ ( {HighInputsConfidential L H IE}, {R})

lemma GNF-valid: L ∩ H = {} =⇒ IFP-valid (L ∪ H ) (GNF L H IE)
unfolding IFP-valid-def GNF-def HighInputsConfidential-def isViewOn-def

V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates.BSP-valid-R
by auto

definition litGNF :: ′e set ⇒ ′e set ⇒ ′e set ⇒ ( ′e list) set ⇒ bool
where
litGNF L H IE Tr ≡
∀ τ ∈ Tr . ∃ τ ′ ∈ Tr . τ ′� (H ∩ IE) = [] ∧ τ ′� L = τ � L

definition SEP :: ′e set ⇒ ′e set ⇒ ′e IFP-type
where
SEP L H ≡ ( {HighConfidential L H}, {BSD, (BSIA (λ V. CV ))})
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lemma SEP-valid: L ∩ H = {} =⇒ IFP-valid (L ∪ H ) (SEP L H )
unfolding IFP-valid-def SEP-def HighConfidential-def isViewOn-def

V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates.BSP-valid-BSD

BasicSecurityPredicates.BSP-valid-BSIA[of λ V. CV ]
by auto

definition litSEP :: ′e set ⇒ ′e set ⇒ ( ′e list) set ⇒ bool
where
litSEP L H Tr ≡
∀ τ -l ∈ Tr . ∀ τ -h ∈ Tr .

interleaving (τ -l � L) (τ -h � H ) ⊆ {τ ∈ Tr . τ � L = τ -l � L}

definition PSP :: ′e set ⇒ ′e set ⇒ ′e IFP-type
where
PSP L H ≡
( {HighConfidential L H}, {BSD, (BSIA (λ V. CV ∪ NV ∪ VV ))})

lemma PSP-valid: L ∩ H = {} =⇒ IFP-valid (L ∪ H ) (PSP L H )
unfolding IFP-valid-def PSP-def HighConfidential-def isViewOn-def

V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
using BasicSecurityPredicates.BSP-valid-BSD

BasicSecurityPredicates.BSP-valid-BSIA[of λ V. CV ∪ NV ∪ VV ]
by auto

definition litPSP :: ′e set ⇒ ′e set ⇒ ( ′e list) set ⇒ bool
where
litPSP L H Tr ≡
(∀ τ ∈ Tr . τ � L ∈ Tr)
∧ (∀ α β. (β @ α) ∈ Tr ∧ (α � H ) = []

−→ (∀ h ∈ H . β @ [h] ∈ Tr −→ β @ [h] @ α ∈ Tr))

end

5 Verification

5.1 Basic Definitions

We define when an event system and a state-event system are secure given an information-flow
property.

theory SecureSystems
imports ../../SystemSpecification/StateEventSystems
../../SecuritySpecification/InformationFlowProperties

begin

locale SecureESIFP =
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fixes ES :: ′e ES-rec
and IFP :: ′e IFP-type

assumes validES : ES-valid ES
and validIFPES : IFP-valid EES IFP

context SecureESIFP
begin

definition ES-sat-IFP :: bool
where
ES-sat-IFP ≡ IFPIsSatisfied IFP TrES

end

locale SecureSESIFP =
fixes SES :: ( ′s, ′e) SES-rec
and IFP :: ′e IFP-type

assumes validSES : SES-valid SES
and validIFPSES : IFP-valid ESES IFP

sublocale SecureSESIFP ⊆ SecureESIFP induceES SES IFP
by (unfold-locales, rule induceES-yields-ES , rule validSES ,

simp add: induceES-def , rule validIFPSES)

context SecureSESIFP
begin

abbreviation SES-sat-IFP
where
SES-sat-IFP ≡ ES-sat-IFP

end

end

5.2 Taxonomy Results

We prove the taxonomy results from [3].

theory BSPTaxonomy
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imports ../../SystemSpecification/EventSystems
../../SecuritySpecification/BasicSecurityPredicates

begin

locale BSPTaxonomyDifferentCorrections =
fixes ES :: ′e ES-rec
and V :: ′e V-rec

assumes validES : ES-valid ES
and VIsViewOnE : isViewOn V EES

locale BSPTaxonomyDifferentViews =
fixes ES :: ′e ES-rec
and V1 :: ′e V-rec
and V2 :: ′e V-rec

assumes validES : ES-valid ES
and V1IsViewOnE : isViewOn V1 EES
and V2IsViewOnE : isViewOn V2 EES

locale BSPTaxonomyDifferentViewsFirstDim= BSPTaxonomyDifferentViews +
assumes V2-subset-V1 : VV2

⊆ VV1

and N2-supset-N1 : NV2
⊇ NV1

and C2-subset-C1 : CV2
⊆ CV1

sublocale BSPTaxonomyDifferentViewsFirstDim ⊆ BSPTaxonomyDifferentViews
by (unfold-locales)

locale BSPTaxonomyDifferentViewsSecondDim= BSPTaxonomyDifferentViews +
assumes V2-subset-V1 : VV2

⊆ VV1

and N2-supset-N1 : NV2
⊇ NV1

and C2-equals-C1 : CV2
= CV1

sublocale BSPTaxonomyDifferentViewsSecondDim ⊆ BSPTaxonomyDifferentViews
by (unfold-locales)

context BSPTaxonomyDifferentCorrections
begin

lemma SR-implies-R:
SR V TrES =⇒ R V TrES
proof −

assume SR: SR V TrES
{

fix τ
assume τ ∈ TrES
with SR have τ � (VV ∪ NV ) ∈ TrES

unfolding SR-def by auto
hence ∃ τ ′. τ ′ ∈ TrES ∧ τ ′ � VV = τ � VV ∧ τ ′ � CV = []
proof −
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assume tau-V-N-is-trace: τ � (VV ∪ NV ) ∈ TrES
show ∃ τ ′. τ ′ ∈ TrES ∧ τ ′ � VV = τ � VV ∧ τ ′ � CV = []
proof

let ?τ ′= τ � (VV ∪ NV )
have τ � (VV ∪ NV ) � VV = τ � VV

by (simp add: projection-subset-elim)
moreover
from VIsViewOnE have VC-disjoint V ∧ NC-disjoint V

unfolding isViewOn-def V-valid-def
by auto

then have (VV ∪ NV ) ∩ CV = {}
by (simp add: NC-disjoint-def VC-disjoint-def inf-sup-distrib2 )

then have ?τ ′ � CV = []
by (simp add: disjoint-projection)

ultimately
show ?τ ′ ∈ TrES ∧ ?τ ′ � VV = τ � VV ∧ ?τ ′ � CV = []

using tau-V-N-is-trace by auto
qed

qed
}
thus ?thesis

unfolding SR-def R-def by auto
qed

lemma SD-implies-BSD :
(SD V TrES) =⇒ BSD V TrES
proof −

assume SD: SD V TrES
{

fix α β c
assume c ∈ CV

and β @ c # α ∈ TrES
and alpha-C-empty: α � CV = []

with SD have β @ α ∈ TrES
unfolding SD-def by auto

hence ∃α ′. β @ α ′ ∈ TrES ∧ α ′ � VV = α � VV ∧ α ′ � CV = []
using alpha-C-empty
by auto

}
thus ?thesis

unfolding SD-def BSD-def by auto
qed

lemma BSD-implies-D:
BSD V TrES =⇒ D V TrES
proof −

assume BSD: BSD V TrES

{
fix α β c
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assume α � CV = []
and c ∈ CV
and β @ [c] @ α ∈ TrES

with BSD obtain α ′

where β @ α ′ ∈ TrES
and α ′ � VV = α � V V
and α ′ � CV = []
by (simp add: BSD-def , auto)

hence (∃α ′ β ′.
(β ′ @ α ′ ∈ TrES ∧ α ′ � VV = α � VV ∧ α ′ � CV = []) ∧
β ′ � (VV ∪ CV ) = β � (VV ∪ CV ))
by auto

}
thus ?thesis

unfolding BSD-def D-def
by auto

qed

lemma SD-implies-SR:
SD V TrES =⇒ SR V TrES
unfolding SR-def
proof

fix τ

assume SD: SD V TrES
assume τ -trace: τ ∈ TrES

{
fix n

have SR-via-length: [[ τ ∈ TrES; n = length (τ � CV ) ]]
=⇒ ∃ τ ′ ∈ TrES. τ

′ � CV = [] ∧ τ ′ � (VV ∪ NV ) = τ � (VV ∪ NV )
proof (induct n arbitrary: τ)

case 0
note τ -in-Tr = ‹τ ∈ TrES›

and ‹0 = length (τ � CV )›
hence τ � CV = []

by simp
with τ -in-Tr show ?case

by auto
next

case (Suc n)
from projection-split-last[OF Suc(3 )] obtain β c α

where c-in-C : c ∈ CV
and τ -is-βcα: τ = β @ [c] @ α
and α-no-c: α � CV = []
and βα-contains-n-cs: n = length ((β @ α) � CV )

by auto
with Suc(2 ) have βcα-in-Tr : β @ [c] @ α ∈ TrES

by auto
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with SD c-in-C βcα-in-Tr α-no-c obtain β ′ α ′

where β ′α ′-in-Tr : (β ′ @ α ′) ∈ TrES
and α ′-V-is-α-V : α ′ � (VV ∪ NV ) = α � (VV ∪ NV )
and α ′-no-c: α ′ � CV = []
and β ′-VC-is-β-VC : β ′ � (VV ∪ NV ∪ CV ) = β � (VV ∪ NV ∪ CV )
unfolding SD-def
by blast

have (β ′ @ α ′) � (VV ∪ NV ) = τ � (VV ∪ NV )
proof −

from β ′-VC-is-β-VC have β ′ � (VV ∪ NV ) = β � (VV ∪ NV )
by (rule projection-subset-eq-from-superset-eq)

with α ′-V-is-α-V have (β ′ @ α ′) � (VV ∪ NV ) = (β @ α) � (VV ∪ NV )
by (simp add: projection-def )

moreover
with VIsViewOnE c-in-C have c /∈ (VV ∪ NV )

by (simp add: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def , auto)
hence (β @ α) � (VV ∪ NV ) = (β @ [c] @ α) � (VV ∪ NV )

by (simp add: projection-def )
moreover note τ -is-βcα
ultimately show ?thesis

by auto
qed
moreover
have n = length ((β ′ @ α ′) � CV )
proof −

have β ′ � CV = β � CV
proof −

have VV ∪ NV ∪ CV = CV ∪ (VV ∪ NV )
by auto

with β ′-VC-is-β-VC have β ′ � (CV ∪ (VV ∪ NV )) = β � (CV ∪ (VV ∪ NV ))
by auto

thus ?thesis
by (rule projection-subset-eq-from-superset-eq)

qed
with α ′-no-c α-no-c have (β ′ @ α ′) � CV = (β @ α) � CV

by (simp add: projection-def )
with βα-contains-n-cs show ?thesis

by auto
qed
with Suc.hyps β ′α ′-in-Tr obtain τ ′

where τ ′ ∈ TrES
and τ ′ � CV = []
and τ ′ � (VV ∪ NV ) = (β ′ @ α ′) � (VV ∪ NV )
by auto

ultimately show ?case
by auto

qed
}

hence τ ∈ TrES =⇒ ∃ τ ′. τ ′∈TrES ∧ τ ′ � CV = [] ∧ τ ′ � (VV ∪ NV ) = τ � (VV ∪ NV )
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by auto

from this τ -trace obtain τ ′ where
τ ′-trace : τ ′∈TrES

and τ ′-no-C : τ ′ � CV = []
and τ ′-τ -rel : τ ′ � (VV ∪ NV ) = τ � (VV ∪ NV )

by auto

from τ ′-no-C have τ ′ � (VV ∪ NV ∪ CV ) = τ ′ � (VV ∪ NV )
by (auto simp add: projection-on-union)

with VIsViewOnE have τ ′-E-eq-VN : τ ′ � EES = τ ′ � (VV ∪ NV )
by (auto simp add: isViewOn-def )

from validES τ ′-trace have (set τ ′) ⊆ EES
by (auto simp add: ES-valid-def traces-contain-events-def )

hence τ ′ � EES = τ ′ by (simp add: list-subset-iff-projection-neutral)
with τ ′-E-eq-VN have τ ′ = τ ′ � (VV ∪ NV ) by auto
with τ ′-τ -rel have τ ′ = τ � (VV ∪ NV ) by auto
with τ ′-trace show τ � (VV ∪ NV ) ∈ TrES by auto

qed

lemma D-implies-R:
D V TrES =⇒ R V TrES
proof −

assume D: D V TrES
{

fix τ n

have R-via-length: [[ τ ∈ TrES; n = length (τ � CV ) ]]
=⇒ ∃ τ ′ ∈ TrES. τ

′ � CV = [] ∧ τ ′ � VV = τ � VV
proof (induct n arbitrary: τ)

case 0
note τ -in-Tr = ‹τ ∈ TrES›

and ‹0 = length (τ � CV )›
hence τ � CV = []

by simp
with τ -in-Tr show ?case

by auto
next

case (Suc n)
from projection-split-last[OF Suc(3 )] obtain β c α

where c-in-C : c ∈ CV
and τ -is-βcα: τ = β @ [c] @ α
and α-no-c: α � CV = []
and βα-contains-n-cs: n = length ((β @ α) � CV )

by auto
with Suc(2 ) have βcα-in-Tr : β @ [c] @ α ∈ TrES

by auto
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with D c-in-C βcα-in-Tr α-no-c obtain β ′ α ′

where β ′α ′-in-Tr : (β ′ @ α ′) ∈ TrES
and α ′-V-is-α-V : α ′ � VV = α � VV
and α ′-no-c: α ′ � CV = []
and β ′-VC-is-β-VC : β ′ � (VV ∪ CV ) = β � (VV ∪ CV )
unfolding D-def
by blast

have (β ′ @ α ′) � VV = τ � VV
proof −

from β ′-VC-is-β-VC have β ′ � VV = β � VV
by (rule projection-subset-eq-from-superset-eq)

with α ′-V-is-α-V have (β ′ @ α ′) � VV = (β @ α) � VV
by (simp add: projection-def )

moreover
with VIsViewOnE c-in-C have c /∈ VV

by (simp add: isViewOn-def V-valid-def VC-disjoint-def , auto)
hence (β @ α) � VV = (β @ [c] @ α) � VV

by (simp add: projection-def )
moreover note τ -is-βcα
ultimately show ?thesis

by auto
qed
moreover
have n = length ((β ′ @ α ′) � CV )
proof −

have β ′ � CV = β � CV
proof −

have VV ∪ CV = CV ∪ VV
by auto

with β ′-VC-is-β-VC have β ′ � (CV ∪ VV ) = β � (CV ∪ VV )
by auto

thus ?thesis
by (rule projection-subset-eq-from-superset-eq)

qed
with α ′-no-c α-no-c have (β ′ @ α ′) � CV = (β @ α) � CV

by (simp add: projection-def )
with βα-contains-n-cs show ?thesis

by auto
qed
with Suc.hyps β ′α ′-in-Tr obtain τ ′

where τ ′ ∈ TrES
and τ ′ � CV = []
and τ ′ � VV = (β ′ @ α ′) � VV
by auto

ultimately show ?case
by auto

qed
}
thus ?thesis

by (simp add: R-def )
qed
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lemma SR-implies-R-for-modified-view :
[[SR V TrES; V

′ = (| V = VV ∪ NV , N ={} , C = CV |)]] =⇒ R V ′ TrES
proof −

assume SR V TrES
and V ′ = (| V = VV ∪ NV , N ={} , C = CV |)

{
from ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)› VIsViewOnE
have V ′IsViewOnE : isViewOn V ′ EES

unfolding isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def by auto
fix τ
assume τ ∈ TrES
with ‹SR V TrES› have τ � (VV ∪ NV ) ∈ TrES

unfolding SR-def by auto

let ?τ ′=τ �VV ′

from ‹τ � (VV ∪ NV ) ∈ TrES› have ?τ ′ ∈ TrES
using ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)› by simp

moreover
from V ′IsViewOnE have ?τ ′�CV ′=[]

using disjoint-projection
unfolding isViewOn-def V-valid-def VC-disjoint-def by auto

moreover
have ?τ ′�VV ′ = τ�VV ′

by (simp add: projection-subset-elim)
ultimately
have ∃ τ ′∈TrES. τ

′ � CV ′ = [] ∧ τ ′ � VV ′ = τ � VV ′

by auto
}

with ‹SR V TrES› show ?thesis
unfolding R-def using ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)› by auto

qed

lemma R-implies-SR-for-modified-view :
[[R V ′ TrES; V

′ = (| V = VV ∪ NV , N ={} , C = CV |)]] =⇒ SR V TrES
proof −

assume R V ′ TrES
and V ′ = (| V = VV ∪ NV , N ={} , C = CV |)

{
fix τ
assume τ ∈ TrES
from ‹R V ′ TrES› ‹τ ∈ TrES› obtain τ ′ where τ ′ ∈ TrES

and τ ′ � CV ′ = []
and τ ′ � VV ′ = τ � VV ′

unfolding R-def by auto
from VIsViewOnE ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)› have isViewOn V ′ EES
unfolding isViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def

by auto

from ‹τ ′ � VV ′ = τ � VV ′› ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
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have τ ′ � (VV ′ ∪ NV ′) = τ � (VV ′ ∪ NV ′)
by simp

from ‹τ ′ � CV ′ = []› have τ ′ =τ ′ � (VV ′ ∪ NV ′)
using validES ‹τ ′ ∈ TrES› ‹isViewOn V ′ EES›
unfolding projection-def ES-valid-def isViewOn-def traces-contain-events-def
by (metis UnE filter-True filter-empty-conv)

hence τ ′ =τ � (VV ′ ∪ NV ′)
using ‹τ ′ � (VV ′ ∪ NV ′) = τ � (VV ′ ∪ NV ′)›
by simp

with ‹τ ′ ∈ TrES› have τ � (VV ′ ∪ NV ′) ∈ TrES
by auto

}
thus ?thesis

unfolding SR-def using ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
by simp

qed

lemma SD-implies-BSD-for-modified-view :
[[SD V TrES; V

′ = (| V = VV ∪ NV , N ={} , C = CV |)]] =⇒ BSD V ′ TrES
proof −

assume SD V TrES
and V ′ = (| V = VV ∪ NV , N ={} , C = CV |)

{
fix α β c
assume c ∈ CV ′

and β @ [c] @ α ∈ TrES
and α�CV ′ = []

from ‹c ∈ CV ′› ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
have c ∈ CV

by auto
from ‹α�CV ′ = []› ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
have α�CV = []

by auto

from ‹c ∈ CV › ‹β @ [c] @ α ∈ TrES› ‹α�CV = []›
have β @ α ∈ TrES using ‹SD V TrES›

unfolding SD-def by auto
hence ∃α ′. β @ α ′ ∈ TrES ∧ α ′ � VV ′ = α � VV ′ ∧ α ′ � CV ′ = []

using ‹α � CV ′ = []› by blast
}

with ‹SD V TrES› show ?thesis
unfolding BSD-def using ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)› by auto

qed

lemma BSD-implies-SD-for-modified-view :
[[BSD V ′ TrES; V

′ = (| V = VV ∪ NV , N ={} , C = CV |)]] =⇒ SD V TrES
unfolding SD-def
proof(clarsimp)
fix α β c
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assume BSD-view ′ : BSD (|V = VV ∪ NV , N = {} , C = CV |) TrES
assume alpha-no-C-view : α � CV = []
assume c-C-view : c ∈ CV
assume beta-c-alpha-is-trace : β @ c # α ∈ TrES

from BSD-view ′ alpha-no-C-view c-C-view beta-c-alpha-is-trace
obtain α ′

where beta-alpha ′-is-trace: β @ α ′∈(TrES)
and alpha-alpha ′: α ′ � (VV ∪ NV ) = α � (VV ∪ NV )
and alpha ′-no-C-view : α ′ � CV = []

by (auto simp add: BSD-def )

from beta-c-alpha-is-trace validES
have alpha-consists-of-events: set α ⊆ EES

by (auto simp add: ES-valid-def traces-contain-events-def )

from alpha-no-C-view have α � (VV ∪ NV ∪ CV ) = α � (VV ∪ NV )
by (rule projection-on-union)

with VIsViewOnE have alpha-on-ES : α � EES = α � (VV ∪ NV )
unfolding isViewOn-def by simp

from alpha-consists-of-events VIsViewOnE have α � EES = α
by (simp add: list-subset-iff-projection-neutral)

with alpha-on-ES have α-eq: α � (VV ∪ NV ) = α by auto

from beta-alpha ′-is-trace validES
have alpha ′-consists-of-events: set α ′ ⊆ EES

by (auto simp add: ES-valid-def traces-contain-events-def )

from alpha ′-no-C-view have α ′ � (VV ∪ NV ∪ CV ) = α ′ � (VV ∪ NV )
by (rule projection-on-union)

with VIsViewOnE have alpha ′-on-ES : α ′ � EES = α ′ � (VV ∪ NV )
unfolding isViewOn-def by (simp)

from alpha ′-consists-of-events VIsViewOnE have α ′ � EES = α ′

by (simp add: list-subset-iff-projection-neutral)

with alpha ′-on-ES have α ′-eq: α ′ � (VV ∪ NV ) = α ′ by auto

from alpha-alpha ′ α-eq α ′-eq have α = α ′ by auto

with beta-alpha ′-is-trace show β @ α ∈ TrES by auto
qed

lemma SD-implies-FCD:
(SD V TrES) =⇒ FCD Γ V TrES
proof −

assume SD: SD V TrES
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{
fix α β c v
assume c ∈ CV ∩ ΥΓ

and v ∈ VV ∩ ∇Γ
and alpha-C-empty: α � CV = []
and β @ [c, v] @ α ∈ TrES

moreover
with VIsViewOnE have (v # α) � CV = []

unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
ultimately
have β @ (v # α) ∈ TrES

using SD unfolding SD-def by auto
with alpha-C-empty
have ∃α ′. ∃ δ ′. (set δ ′) ⊆ (NV ∩ ∆Γ) ∧ ((β @ δ ′ @ [v] @ α ′) ∈ TrES

∧ α ′ � VV = α � VV ∧ α ′ � CV = [])
by (metis append.simps(1 ) append.simps(2 ) bot-least list.set(1 ))

}
thus ?thesis

unfolding SD-def FCD-def by auto
qed

lemma SI-implies-BSI :
(SI V TrES) =⇒ BSI V TrES
proof −

assume SI : SI V TrES
{

fix α β c
assume c ∈ CV

and β @ α ∈ TrES
and alpha-C-empty: α � CV = []

with SI have β @ c # α ∈ TrES
unfolding SI-def by auto

hence ∃α ′. β @ c # α ′ ∈ TrES ∧ α ′ � VV = α � VV ∧ α ′ � CV = []
using alpha-C-empty by auto

}
thus ?thesis

unfolding SI-def BSI-def by auto
qed

lemma BSI-implies-I :
(BSI V TrES) =⇒ (I V TrES)
proof −

assume BSI : BSI V TrES

{
fix α β c
assume c ∈ CV

and β @ α ∈ TrES
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and α � CV = []
with BSI obtain α ′

where β @ [c] @ α ′ ∈ TrES
and α ′ � VV = α � VV
and α ′ � CV = []
unfolding BSI-def
by blast

hence
(∃α ′ β ′. (β ′ @ [c] @ α ′ ∈ TrES ∧ α ′ � VV = α � VV ∧ α ′ � CV = []) ∧

β ′ � (VV ∪ CV ) = β � (VV ∪ CV ))
by auto

}
thus ?thesis unfolding BSI-def I-def

by auto
qed

lemma SIA-implies-BSIA:
(SIA % V TrES) =⇒ (BSIA % V TrES)
proof −

assume SIA: SIA % V TrES
{

fix α β c
assume c ∈ CV

and β @ α ∈ TrES
and alpha-C-empty: α � CV = []
and (Adm V % TrES β c)

with SIA obtain β @ c # α ∈ TrES
unfolding SIA-def by auto

hence ∃ α ′. β @ c # α ′ ∈ TrES ∧ α ′� VV = α � VV ∧ α ′ � CV = []
using alpha-C-empty by auto

}
thus ?thesis

unfolding SIA-def BSIA-def by auto
qed

lemma BSIA-implies-IA:
(BSIA % V TrES) =⇒ (IA % V TrES)
proof −

assume BSIA: BSIA % V TrES

{
fix α β c
assume c ∈ CV

and β @ α ∈ TrES
and α � CV = []
and (Adm V % TrES β c)

with BSIA obtain α ′

where β @ [c] @ α ′ ∈ TrES
and α ′ � VV = α � VV
and α ′ � CV = []
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unfolding BSIA-def
by blast

hence (∃α ′ β ′.
(β ′ @ [c] @ α ′ ∈ TrES ∧ α ′ � VV = α � VV ∧ α ′ � CV = []) ∧
β ′ � (VV ∪ CV ) = β � (VV ∪ CV ))
by auto

}
thus ?thesis

unfolding BSIA-def IA-def by auto
qed

lemma SI-implies-SIA:
SI V TrES =⇒ SIA % V TrES
proof −

assume SI : SI V TrES
{

fix α β c
assume c ∈ CV

and β @ α ∈ TrES
and α � CV = []
and Adm V % TrES β c

with SI have β @ (c # α) ∈ TrES
unfolding SI-def by auto

}
thus ?thesis unfolding SI-def SIA-def by auto

qed

lemma BSI-implies-BSIA:
BSI V TrES =⇒ BSIA % V TrES
proof −

assume BSI : BSI V TrES
{

fix α β c
assume c ∈ CV

and β @ α ∈ TrES
and α � CV = []
and Adm V % TrES β c

with BSI have ∃ α ′. β @ (c # α ′) ∈ TrES ∧ α ′ � VV = α � VV ∧ α ′ � CV = []
unfolding BSI-def by auto

}
thus ?thesis

unfolding BSI-def BSIA-def by auto
qed

lemma I-implies-IA:
I V TrES =⇒ IA % V TrES
proof −

assume I : I V TrES
{

54



fix α β c
assume c ∈ CV

and β @ α ∈ TrES
and α � CV = []
and Adm V % TrES β c

with I have ∃ α ′ β ′. β ′ @ (c # α ′) ∈ TrES ∧ α ′ � VV = α � VV
∧ α ′ � CV = [] ∧ β ′ �(VV ∪ CV ) = β �(VV ∪ CV )

unfolding I-def by auto
}
thus ?thesis

unfolding I-def IA-def by auto
qed

lemma SI-implies-BSI-for-modified-view :
[[SI V TrES; V

′ = (| V = VV ∪ NV , N ={} , C = CV |)]] =⇒ BSI V ′ TrES
proof −

assume SI V TrES
and V ′ = (| V = VV ∪ NV , N ={} , C = CV |)

{
fix α β c
assume c ∈ CV ′

and β @ α ∈ TrES
and α�CV ′ = []

from ‹c ∈ CV ′› ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
have c ∈ CV

by auto
from ‹α�CV ′ = []› ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
have α�CV = []

by auto

from ‹c ∈ CV › ‹β @ α ∈ TrES› ‹α�CV = []›
have β @ [c] @ α ∈ TrES

using ‹SI V TrES› unfolding SI-def by auto
hence ∃α ′. β @ [c] @ α ′ ∈ TrES ∧ α ′ � VV ′ = α � VV ′ ∧ α ′ � CV ′ = []

using ‹α � CV ′ = []›
by blast

}
with ‹SI V TrES› show ?thesis

unfolding BSI-def using ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)› by auto
qed

lemma BSI-implies-SI-for-modified-view :
[[BSI V ′ TrES; V

′ = (| V = VV ∪ NV , N = {} , C = CV |)]] =⇒ SI V TrES
unfolding SI-def
proof (clarsimp)
fix α β c
assume BSI-view ′ : BSI (|V = VV ∪ NV , N = {}, C = CV |) TrES
assume alpha-no-C-view : α � CV = []
assume c-C-view : c ∈ CV
assume beta-alpha-is-trace : β @ α ∈ TrES
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from BSI-view ′ have ∀ c∈CV . β @ α ∈ TrES ∧ α � CV = []
−→ (∃α ′. β @ [c] @ α ′ ∈ TrES ∧ α ′ � (VV ∪ NV ) = α � (VV ∪ NV ) ∧ α ′ � CV = [])
by (auto simp add: BSI-def )

with beta-alpha-is-trace alpha-no-C-view have ∀ c∈CV .
(∃α ′. β @ [c] @ α ′ ∈ TrES ∧ α ′ � (VV ∪ NV ) = α � (VV ∪ NV ) ∧ α ′ � CV = [])

by auto

with this BSI-view ′ c-C-view obtain α ′

where beta-c-alpha ′-is-trace: β @ [c] @ α ′ ∈ TrES
and alpha-alpha ′: α ′ � (VV ∪ NV ) = α � (VV ∪ NV )
and alpha ′-no-C-view : α ′ � CV = []

by auto

from beta-alpha-is-trace validES
have alpha-consists-of-events: set α ⊆ EES

by (auto simp add: ES-valid-def traces-contain-events-def )

from alpha-no-C-view have α � (VV ∪ NV ∪ CV ) = α � (VV ∪ NV )
by (rule projection-on-union)

with VIsViewOnE have alpha-on-ES : α � EES = α � (VV ∪ NV )
unfolding isViewOn-def by (simp)

from alpha-consists-of-events VIsViewOnE have α � EES = α
by (simp add: list-subset-iff-projection-neutral)

with alpha-on-ES have α-eq: α � (VV ∪ NV ) = α by auto

from beta-c-alpha ′-is-trace validES
have alpha ′-consists-of-events: set α ′ ⊆ EES

by (auto simp add: ES-valid-def traces-contain-events-def )

from alpha ′-no-C-view have α ′ � (VV ∪ NV ∪ CV ) = α ′ � (VV ∪ NV )
by (rule projection-on-union)

with VIsViewOnE have alpha ′-on-ES : α ′ � EES = α ′ � (VV ∪ NV )
unfolding isViewOn-def by (simp)

from alpha ′-consists-of-events VIsViewOnE have α ′ � EES = α ′

by (simp add: list-subset-iff-projection-neutral)

with alpha ′-on-ES have α ′-eq: α ′ � (VV ∪ NV ) = α ′ by auto

from alpha-alpha ′ α-eq α ′-eq have α = α ′ by auto

with beta-c-alpha ′-is-trace show β @ c # α ∈ TrES by auto
qed

lemma SIA-implies-BSIA-for-modified-view :
[[SIA % V TrES; V

′ = (| V = VV ∪ NV , N ={} , C = CV |) ; % V = % ′ V ′]] =⇒ BSIA % ′ V ′ TrES
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proof −
assume SIA % V TrES

and V ′ = (| V = VV ∪ NV , N ={} , C = CV |)
and % V = % ′ V ′

{
fix α β c
assume c ∈ CV ′

and β @ α ∈ TrES
and α�CV ′ = []
and Adm V ′ % ′ TrES β c

from ‹c ∈ CV ′› ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
have c ∈ CV

by auto
from ‹α�CV ′ = []› ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
have α�CV = []

by auto
from ‹Adm V ′ % ′ TrES β c› ‹% V = % ′ V ′›
have Adm V % TrES β c

by (simp add: Adm-def )

from ‹c ∈ CV › ‹β @ α ∈ TrES› ‹α�CV = []› ‹Adm V % TrES β c›
have β @ [c] @ α ∈ TrES

using ‹SIA % V TrES› unfolding SIA-def by auto
hence ∃α ′. β @ [c] @ α ′ ∈ TrES ∧ α ′ � VV ′ = α � VV ′ ∧ α ′ � CV ′ = []

using ‹α � CV ′ = []› by blast
}

with ‹SIA % V TrES› show ?thesis
unfolding BSIA-def using ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
by auto

qed

lemma BSIA-implies-SIA-for-modified-view :
[[BSIA % ′ V ′ TrES; V

′ = (| V = VV ∪ NV , N = {} , C = CV |); % V = % ′ V ′]] =⇒ SIA % V TrES
proof −

assume BSIA % ′ V ′ TrES
and V ′ = (| V = VV ∪ NV , N = {} , C = CV |)
and % V = % ′ V ′

{
fix α β c
assume c ∈ CV

and β @ α ∈ TrES
and α�CV = []
and Adm V % TrES β c

from ‹c ∈ CV › ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
have c ∈ CV ′

by auto
from ‹α�CV = []› ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)›
have α�CV ′ = []

by auto
from ‹Adm V % TrES β c› ‹% V = % ′ V ′›
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have Adm V ′ % ′ TrES β c
by (simp add: Adm-def )

from ‹c ∈ CV ′› ‹β @ α ∈ TrES› ‹α�CV ′ = []› ‹Adm V ′ % ′ TrES β c›
obtain α ′ where β @ [c] @ α ′ ∈ TrES

and α ′ � VV ′ = α � VV ′

and α ′ � CV ′ = []
using ‹BSIA % ′ V ′ TrES› unfolding BSIA-def by blast

from ‹β @ α ∈ TrES› validES
have alpha-consists-of-events: set α ⊆ EES

by (auto simp add: ES-valid-def traces-contain-events-def )

from ‹β @ [c] @ α ′ ∈ TrES› validES
have alpha ′-consists-of-events: set α ′ ⊆ EES

by (auto simp add: ES-valid-def traces-contain-events-def )

from ‹α ′ � VV ′ = α � VV ′› ‹V ′ = (| V = VV ∪ NV , N = {} , C = CV |)›
have α ′�(VV ∪ NV )=α�(VV ∪ NV ) by auto
with ‹α ′ � CV ′ = []› ‹α�CV = []› ‹V ′ = (| V = VV ∪ NV , N = {} , C = CV |)›
have α ′�(VV ∪ NV ∪ CV )=α�(VV ∪ NV ∪ CV )

by (simp add: projection-on-union)
with VIsViewOnE alpha-consists-of-events alpha ′-consists-of-events
have α ′=α unfolding isViewOn-def

by (simp add: list-subset-iff-projection-neutral)

hence β @ [c] @ α ∈ TrES
using ‹β @ [c] @ α ′ ∈ TrES› by blast

}
with ‹BSIA % ′ V ′ TrES› show ?thesis

unfolding SIA-def using ‹V ′ = (| V = VV ∪ NV , N ={} , C = CV |)› by auto
qed
end

lemma Adm-implies-Adm-for-modified-rho:
[[ Adm V2 %2 Tr α e;%2(V2) ⊇ %1(V1)]] =⇒ Adm V1 %1 Tr α e
proof −

assume Adm V2 %2 Tr α e
and %2(V2) ⊇ %1(V1)

then obtain γ
where γ @ [e] ∈ Tr

and γ � %2 V2 = α � %2 V2

unfolding Adm-def by auto
thus Adm V1 %1 Tr α e

unfolding Adm-def
using ‹%1 V1 ⊆ %2 V2› non-empty-projection-on-subset
by blast

qed

context BSPTaxonomyDifferentCorrections
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begin

lemma SI-implies-FCI :
(SI V TrES) =⇒ FCI Γ V TrES
proof −

assume SI : SI V TrES
{
fix α β c v
assume c ∈ CV ∩ ΥΓ

and v ∈ VV ∩ ∇Γ
and β @ [v] @ α ∈ TrES
and alpha-C-empty: α � CV = []

moreover
with VIsViewOnE have (v # α) � CV = []

unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
ultimately
have β @ [c , v] @ α ∈ TrES using SI unfolding SI-def by auto
with alpha-C-empty
have ∃α ′. ∃ δ ′.

(set δ ′) ⊆ (NV ∩ ∆Γ) ∧ ((β @ [c] @ δ ′ @ [v] @ α ′) ∈ TrES
∧ α ′ � VV = α � VV ∧ α ′ � CV = [])

by (metis append.simps(1 ) append.simps(2 ) bot-least list.set(1 ))
}
thus ?thesis

unfolding SI-def FCI-def by auto
qed

lemma SIA-implies-FCIA:
(SIA % V TrES) =⇒ FCIA % Γ V TrES
proof −

assume SIA: SIA % V TrES
{
fix α β c v
assume c ∈ CV ∩ ΥΓ

and v ∈ VV ∩ ∇Γ
and β @ [v] @ α ∈ TrES
and alpha-C-empty: α � CV = []
and Adm V % TrES β c

moreover
with VIsViewOnE have (v # α) � CV = []

unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto
ultimately
have β @ [c , v] @ α ∈ TrES using SIA unfolding SIA-def by auto
with alpha-C-empty
have ∃α ′. ∃ δ ′.

(set δ ′) ⊆ (NV ∩ ∆Γ) ∧ ((β @ [c] @ δ ′ @ [v] @ α ′) ∈ TrES
∧ α ′ � VV = α � VV ∧ α ′ � CV = [])

by (metis append.simps(1 ) append.simps(2 ) bot-least list.set(1 ))
}
thus ?thesis
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unfolding SIA-def FCIA-def by auto
qed

lemma FCI-implies-FCIA:
(FCI Γ V TrES) =⇒ FCIA % Γ V TrES
proof−

assume FCI : FCI Γ V TrES
{

fix α β c v
assume c ∈ CV ∩ ΥΓ

and v ∈ VV ∩ ∇Γ
and β @ [v] @ α ∈ TrES
and α � CV = []

with FCI have ∃α ′ δ ′. set δ ′ ⊆ NV ∩ ∆Γ ∧
β @ [c] @ δ ′ @ [v] @ α ′ ∈ TrES ∧ α ′ � VV = α � VV ∧ α ′ � CV = []

unfolding FCI-def by auto
}
thus ?thesis

unfolding FCI-def FCIA-def by auto
qed

lemma Trivially-fulfilled-SR-C-empty:
CV = {} =⇒ SR V TrES
proof −

assume CV={}
{

fix τ
assume τ ∈ TrES
hence τ=τ�EES using validES

unfolding ES-valid-def traces-contain-events-def projection-def by auto
with ‹CV={}› have τ=τ�(VV∪NV )

using VIsViewOnE unfolding isViewOn-def by auto
with ‹τ ∈ TrES› have τ�(VV∪NV ) ∈ TrES

by auto
}
thus ?thesis

unfolding SR-def by auto
qed

lemma Trivially-fulfilled-R-C-empty:
CV = {} =⇒ R V TrES
proof −

assume CV={}
{

fix τ
assume τ ∈ TrES
hence τ=τ�EES using validES

unfolding ES-valid-def traces-contain-events-def projection-def by auto
with ‹CV={}› have τ=τ�(VV∪NV )
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using VIsViewOnE unfolding isViewOn-def by auto
with ‹τ ∈ TrES› ‹CV={}› have ∃ τ ′ ∈ TrES. τ�CV=[] ∧ τ ′ �VV=τ�VV

unfolding projection-def by auto
}
thus ?thesis

unfolding R-def by auto
qed

lemma Trivially-fulfilled-SD-C-empty:
CV = {} =⇒ SD V TrES

by (simp add: SD-def )

lemma Trivially-fulfilled-BSD-C-empty:
CV = {} =⇒ BSD V TrES

by (simp add: BSD-def )

lemma Trivially-fulfilled-D-C-empty:
CV = {} =⇒ D V TrES

by (simp add: D-def )

lemma Trivially-fulfilled-FCD-C-empty:
CV = {} =⇒ FCD Γ V TrES

by (simp add: FCD-def )

lemma Trivially-fullfilled-R-V-empty:
VV={} =⇒ R V TrES
proof −

assume VV={}
{

fix τ
assume τ ∈ TrES
let ?τ ′=[]
from ‹τ ∈ TrES›have ?τ ′ ∈ TrES

using validES
unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto

with ‹VV={}›
have ∃ τ ′ ∈ TrES. τ

′�CV=[] ∧ τ ′�VV=τ�VV
by (metis projection-on-empty-trace projection-to-emptyset-is-empty-trace)

}
thus ?thesis

unfolding R-def by auto
qed

lemma Trivially-fulfilled-BSD-V-empty:
VV = {} =⇒ BSD V TrES
proof −

assume VV={}
{

fix α β c
assume β @ [c] @ α ∈ TrES

and α�CV= []
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from ‹β @ [c] @ α ∈ TrES› have β ∈ TrES
using validES
unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto

let ?α ′=[]
from ‹β ∈ TrES› ‹VV={}›
have β@ ?α ′∈TrES ∧ ?α ′�VV = α�VV ∧ ?α ′�CV = []

by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence
∃α ′.
β @ α ′∈TrES ∧ α ′�VV = α�VV ∧ α ′�CV = [] by blast

}
thus ?thesis

unfolding BSD-def by auto
qed

lemma Trivially-fulfilled-D-V-empty:
VV = {} =⇒ D V TrES
proof −

assume VV={}
{

fix α β c
assume β @ [c] @ α ∈ TrES

and α�CV= []

from ‹β @ [c] @ α ∈ TrES› have β ∈ TrES
using validES
unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto

let ?β ′=β and ?α ′=[]
from ‹β ∈ TrES› ‹VV={}›
have ?β ′@ ?α ′∈TrES ∧ ?α ′�VV = α�VV ∧ ?α ′�CV = [] ∧ ?β ′�(VV ∪ CV ) = β�(VV ∪ CV )

by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence
∃α ′ β ′.
β ′@ α ′∈TrES ∧ α ′�VV = α�VV ∧ α ′�CV = [] ∧ β ′�(VV ∪ CV ) = β�(VV ∪ CV )
by blast

}
thus ?thesis

unfolding D-def by auto
qed

lemma Trivially-fulfilled-FCD-V-empty:
VV = {} =⇒ FCD Γ V TrES

by (simp add: FCD-def )

lemma Trivially-fulfilled-FCD-Nabla-Υ-empty:
[[∇Γ={} ∨ ΥΓ={}]]=⇒ FCD Γ V TrES
proof −

assume ∇Γ={} ∨ ΥΓ={}
thus ?thesis
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proof(rule disjE)
assume ∇Γ={} thus ?thesis

by (simp add: FCD-def )
next

assume ΥΓ={} thus ?thesis
by (simp add: FCD-def )

qed
qed

lemma Trivially-fulfilled-FCD-N-subseteq-∆-and-BSD:
[[NV ⊆ ∆Γ; BSD V TrES]] =⇒ FCD Γ V TrES
proof −

assume NV ⊆ ∆Γ
and BSD V TrES

{
fix α β c v
assume c ∈ CV ∩ ΥΓ

and v ∈ VV ∩ ∇Γ
and β @ [c,v] @ α ∈ TrES
and α�CV = []

from ‹c ∈ CV ∩ ΥΓ› have c ∈ CV
by auto

from ‹v ∈ VV ∩ ∇Γ› have v ∈ VV
by auto

let ?α=[v] @ α
from ‹v ∈ VV › ‹α�CV = []› have ?α�CV=[]

using VIsViewOnE
unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto

from ‹β @ [c,v] @ α ∈ TrES› have β @ [c] @ ?α ∈ TrES
by auto

from ‹BSD V TrES›
obtain α ′

where β @ α ′ ∈ TrES
and α ′�VV = ([v] @ α)�VV
and α ′�CV = []

using ‹c ∈ CV › ‹β @ [c] @ ?α ∈ TrES› ‹?α�CV = []›
unfolding BSD-def by auto

from‹v ∈ VV › ‹α ′�VV = ([v] @ α)�VV › have α ′�VV = [v] @ α�VV
by (simp add: projection-def )

then obtain δ α ′′

where α ′=δ @ [v] @ α ′′

and δ�VV = []
and α ′′�VV = α�VV

using projection-split-first-with-suffix by fastforce

from ‹α ′�CV = []› ‹α ′=δ @ [v] @ α ′′› have δ�CV=[]
by (metis append-is-Nil-conv projection-concatenation-commute)

from ‹α ′�CV = []› ‹α ′=δ @ [v] @ α ′′› have α ′′�CV=[]
by (metis append-is-Nil-conv projection-concatenation-commute)
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from ‹β @ α ′ ∈ TrES› have set α ′ ⊆ EES using validES
unfolding ES-valid-def traces-contain-events-def by auto

with ‹α ′=δ @ [v] @ α ′′› have set δ ⊆ EES
by auto

with ‹δ�CV=[]› ‹δ�VV = []› ‹NV ⊆ ∆Γ›
have (set δ) ⊆ (NV ∩ ∆Γ)

using VIsViewOnE projection-empty-implies-absence-of-events
unfolding isViewOn-def projection-def by blast

let ?β=β and ?δ ′=δ and ?α ′=α ′′

from ‹(set δ) ⊆ (NV ∩ ∆Γ)› ‹β @ α ′ ∈ TrES› ‹α ′=δ @ [v] @ α ′′›
‹α ′′�VV = α�VV › ‹α ′′�CV=[]›

have (set ?δ ′)⊆(NV ∩ ∆Γ) ∧ ?β @ ?δ ′ @ [v] @ ?α ′ ∈ TrES ∧ ?α ′�VV=α�VV ∧ ?α ′�CV=[]
by auto

hence ∃α ′′′ δ ′′. (set δ ′′) ⊆ (NV ∩ ∆Γ) ∧ (β @ δ ′′ @ [v] @ α ′′′) ∈ TrES
∧ α ′′′ � VV = α � VV ∧ α ′′′ � CV = []

by auto
}
thus ?thesis

unfolding FCD-def by auto
qed

lemma Trivially-fulfilled-SI-C-empty:
CV = {} =⇒ SI V TrES

by (simp add: SI-def )

lemma Trivially-fulfilled-BSI-C-empty:
CV = {} =⇒ BSI V TrES

by (simp add: BSI-def )

lemma Trivially-fulfilled-I-C-empty:
CV = {} =⇒ I V TrES

by (simp add: I-def )

lemma Trivially-fulfilled-FCI-C-empty:
CV = {} =⇒ FCI Γ V TrES

by (simp add: FCI-def )

lemma Trivially-fulfilled-SIA-C-empty:
CV = {} =⇒ SIA % V TrES

by (simp add: SIA-def )

lemma Trivially-fulfilled-BSIA-C-empty:
CV = {} =⇒ BSIA % V TrES

by (simp add: BSIA-def )

lemma Trivially-fulfilled-IA-C-empty:
CV = {} =⇒ IA % V TrES

by (simp add: IA-def )
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lemma Trivially-fulfilled-FCIA-C-empty:
CV = {} =⇒ FCIA Γ % V TrES

by (simp add: FCIA-def )

lemma Trivially-fulfilled-FCI-V-empty:
VV = {} =⇒ FCI Γ V TrES

by (simp add: FCI-def )

lemma Trivially-fulfilled-FCIA-V-empty:
VV = {} =⇒ FCIA % Γ V TrES

by (simp add: FCIA-def )

lemma Trivially-fulfilled-BSIA-V-empty-rho-subseteq-C-N :
[[VV = {}; % V ⊇ (CV ∪ NV ) ]] =⇒ BSIA % V TrES
proof −

assume VV={}
and % V ⊇ (CV ∪ NV )

{
fix α β c
assume c ∈ CV

and β @ α ∈ TrES
and α�CV=[]
and Adm V % TrES β c

from ‹Adm V % TrES β c›
obtain γ

where γ @ [c] ∈ TrES
and γ�(% V) = β�(% V)

unfolding Adm-def by auto
from this(1 ) have γ ∈ TrES

using validES
unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto

moreover
from ‹β @ α ∈ TrES› have β ∈ TrES

using validES
unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto

ultimately
have β�EES=γ�EES

using validES VIsViewOnE ‹VV={}› ‹γ�(% V) = β�(% V)› ‹% V ⊇ (CV ∪ NV )›
non-empty-projection-on-subset

unfolding ES-valid-def isViewOn-def traces-contain-events-def
by (metis empty-subsetI sup-absorb2 sup-commute)

hence β @ [c] ∈ TrES using validES ‹γ @ [c] ∈ TrES› ‹β ∈ TrES› ‹γ ∈ TrES›
unfolding ES-valid-def traces-contain-events-def
by (metis list-subset-iff-projection-neutral subsetI )

let ?α ′=[]
from ‹β @ [c] ∈ TrES› ‹VV = {}›
have β @ [c] @ ?α ′ ∈TrES ∧ ?α ′�VV = α�VV ∧ ?α ′�CV = []

by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)
hence ∃ α ′. β @ [c] @ α ′ ∈TrES ∧ α ′�VV = α�VV ∧ α ′�CV = []

by auto
}
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thus ?thesis
unfolding BSIA-def by auto

qed

lemma Trivially-fulfilled-IA-V-empty-rho-subseteq-C-N :
[[VV = {}; % V ⊇ (CV ∪ NV ) ]] =⇒ IA % V TrES
proof −

assume VV={}
and % V ⊇ (CV ∪ NV )

{
fix α β c
assume c ∈ CV

and β @ α ∈ TrES
and α�CV=[]
and Adm V % TrES β c

from ‹Adm V % TrES β c›
obtain γ

where γ @ [c] ∈ TrES
and γ�(% V) = β�(% V)
unfolding Adm-def by auto

from this(1 ) have γ ∈ TrES
using validES
unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto

moreover
from ‹β @ α ∈ TrES› have β ∈ TrES using validES

unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto
ultimately
have β�EES=γ�EES

using validES VIsViewOnE ‹VV={}› ‹γ�(% V) = β�(% V)› ‹% V ⊇ (CV ∪ NV )›
non-empty-projection-on-subset

unfolding ES-valid-def isViewOn-def traces-contain-events-def
by (metis empty-subsetI sup-absorb2 sup-commute)

hence β @ [c] ∈ TrES using validES ‹γ @ [c] ∈ TrES› ‹β ∈ TrES› ‹γ ∈ TrES›
unfolding ES-valid-def traces-contain-events-def
by (metis list-subset-iff-projection-neutral subsetI )

let ?β ′=β and ?α ′=[]
from ‹β @ [c] ∈ TrES› ‹VV = {}›
have ?β ′ @ [c] @ ?α ′ ∈TrES ∧ ?α ′�VV = α�VV ∧ ?α ′�CV = []

∧ ?β ′�(VV ∪ CV ) = β�(VV ∪ CV )
by (simp add: projection-on-empty-trace projection-to-emptyset-is-empty-trace)

hence ∃ α ′ β ′.
β ′ @ [c] @ α ′ ∈TrES ∧ α ′�VV = α�VV ∧ α ′�CV = []
∧ β ′�(VV ∪ CV ) = β�(VV ∪ CV )

by auto
}
thus ?thesis

unfolding IA-def by auto
qed

lemma Trivially-fulfilled-BSI-V-empty-total-ES-C :
[[VV = {}; total ES CV ]] =⇒ BSI V TrES
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proof −
assume VV = {}

and total ES CV
{
fix α β c
assume β @ α ∈ TrES

and α�CV=[]
and c ∈ CV

from ‹β @ α ∈ TrES› have β ∈ TrES
using validES
unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto

with ‹total ES CV › have β @ [c] ∈ TrES
using ‹c ∈ CV › unfolding total-def by auto

moreover
from ‹VV = {}› have α�VV=[]

unfolding projection-def by auto
ultimately
have ∃α ′. β @ [c] @ α ′ ∈ TrES ∧ α ′�VV=α�VV ∧ α ′�CV=[]
using ‹α � CV = []› by (metis append-Nil2 projection-idempotent)

}
thus ?thesis

unfolding BSI-def by auto
qed

lemma Trivially-fulfilled-I-V-empty-total-ES-C :
[[VV = {}; total ES CV ]] =⇒ I V TrES
proof −

assume VV = {}
and total ES CV

{
fix α β c
assume c ∈ CV

and β @ α ∈ TrES
and α�CV=[]

from ‹β @ α ∈ TrES› have β ∈ TrES
using validES
unfolding ES-valid-def traces-prefixclosed-def prefixclosed-def prefix-def by auto

with ‹total ES CV › have β @ [c] ∈ TrES
using ‹c ∈ CV › unfolding total-def by auto

moreover
from ‹VV = {}› have α�VV=[]

unfolding projection-def by auto
ultimately
have ∃β ′ α ′.

β ′ @ [c] @ α ′ ∈ TrES ∧ α ′�VV=α�VV ∧ α ′�CV=[] ∧ β ′�(VV ∪ CV ) = β�(VV ∪ CV )
using ‹α � CV = []› by (metis append-Nil2 projection-idempotent)

}
thus ?thesis

unfolding I-def by blast
qed
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lemma Trivially-fulfilled-FCI-Nabla-Υ-empty:
[[∇Γ={} ∨ ΥΓ={}]]=⇒ FCI Γ V TrES
proof −

assume ∇Γ={} ∨ ΥΓ={}
thus ?thesis
proof(rule disjE)

assume ∇Γ={} thus ?thesis
by (simp add: FCI-def )

next
assume ΥΓ={} thus ?thesis

by (simp add: FCI-def )
qed

qed

lemma Trivially-fulfilled-FCIA-Nabla-Υ-empty:
[[∇Γ={} ∨ ΥΓ={}]]=⇒ FCIA % Γ V TrES
proof −

assume ∇Γ={} ∨ ΥΓ={}
thus ?thesis
proof(rule disjE)

assume ∇Γ={} thus ?thesis
by (simp add: FCIA-def )

next
assume ΥΓ={} thus ?thesis

by (simp add: FCIA-def )
qed

qed

lemma Trivially-fulfilled-FCI-N-subseteq-∆-and-BSI :
[[NV ⊆ ∆Γ; BSI V TrES]] =⇒ FCI Γ V TrES
proof −

assume NV ⊆ ∆Γ
and BSI V TrES

{
fix α β c v
assume c ∈ CV ∩ ΥΓ

and v ∈ VV ∩ ∇Γ
and β @ [v] @ α ∈ TrES
and α�CV = []

from ‹c ∈ CV ∩ ΥΓ› have c ∈ CV
by auto

from ‹v ∈ VV ∩ ∇Γ› have v ∈ VV
by auto

let ?α=[v] @ α
from ‹v ∈ VV › ‹α�CV = []› have ?α�CV=[]

using VIsViewOnE
unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto

from ‹β @ [v] @ α ∈ TrES› have β @ ?α ∈ TrES
by auto

from ‹BSI V TrES›
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obtain α ′

where β @ [c] @ α ′ ∈ TrES
and α ′�VV = ([v] @ α)�VV
and α ′�CV = []

using ‹c ∈ CV › ‹β @ ?α ∈ TrES› ‹?α�CV = []›
unfolding BSI-def by blast

from‹v ∈ VV › ‹α ′�VV = ([v] @ α)�VV › have α ′�VV = [v] @ α�VV
by (simp add: projection-def )

then
obtain δ α ′′

where α ′=δ @ [v] @ α ′′

and δ�VV = []
and α ′′�VV = α�VV

using projection-split-first-with-suffix by fastforce

from ‹α ′�CV = []› ‹α ′=δ @ [v] @ α ′′› have δ�CV=[]
by (metis append-is-Nil-conv projection-concatenation-commute)

from ‹α ′�CV = []› ‹α ′=δ @ [v] @ α ′′› have α ′′�CV=[]
by (metis append-is-Nil-conv projection-concatenation-commute)

from ‹β @ [c] @ α ′ ∈ TrES› have set α ′ ⊆ EES
using validES
unfolding ES-valid-def traces-contain-events-def by auto

with ‹α ′=δ @ [v] @ α ′′› have set δ ⊆ EES
by auto

with ‹δ�CV=[]› ‹δ�VV = []› ‹NV ⊆ ∆Γ›
have (set δ) ⊆ (NV ∩ ∆Γ)

using VIsViewOnE projection-empty-implies-absence-of-events
unfolding isViewOn-def projection-def by blast

let ?β=β and ?δ ′=δ and ?α ′=α ′′

from ‹(set δ) ⊆ (NV ∩ ∆Γ)› ‹β @ [c] @ α ′ ∈ TrES› ‹α ′=δ @ [v] @ α ′′›
‹α ′′�VV = α�VV › ‹α ′′�CV=[]›

have (set ?δ ′)⊆(NV ∩ ∆Γ) ∧ ?β @ [c] @ ?δ ′ @ [v] @ ?α ′ ∈ TrES ∧ ?α ′�VV=α�VV ∧ ?α ′�CV=[]
by auto

hence ∃α ′′′ δ ′′. (set δ ′′) ⊆ (NV ∩ ∆Γ) ∧ (β @ [c] @ δ ′′ @ [v] @ α ′′′) ∈ TrES
∧ α ′′′ � VV = α � VV ∧ α ′′′ � CV = []

by auto
}
thus ?thesis

unfolding FCI-def by auto
qed

lemma Trivially-fulfilled-FCIA-N-subseteq-∆-and-BSIA:
[[NV ⊆ ∆Γ; BSIA % V TrES]] =⇒ FCIA % Γ V TrES
proof −

assume NV ⊆ ∆Γ
and BSIA % V TrES

{
fix α β c v
assume c ∈ CV ∩ ΥΓ
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and v ∈ VV ∩ ∇Γ
and β @ [v] @ α ∈ TrES
and α�CV = []
and Adm V % TrES β c

from ‹c ∈ CV ∩ ΥΓ› have c ∈ CV
by auto

from ‹v ∈ VV ∩ ∇Γ› have v ∈ VV
by auto

let ?α=[v] @ α
from ‹v ∈ VV › ‹α�CV = []› have ?α�CV=[]

using VIsViewOnE
unfolding isViewOn-def V-valid-def VC-disjoint-def projection-def by auto

from ‹β @ [v] @ α ∈ TrES› have β @ ?α ∈ TrES
by auto

from ‹BSIA % V TrES›
obtain α ′

where β @ [c] @ α ′ ∈ TrES
and α ′�VV = ([v] @ α)�VV
and α ′�CV = []

using ‹c ∈ CV › ‹β @ ?α ∈ TrES› ‹?α�CV = []› ‹Adm V % TrES β c›
unfolding BSIA-def by blast

from‹v ∈ VV › ‹α ′�VV = ([v] @ α)�VV › have α ′�VV = [v] @ α�VV
by (simp add: projection-def )

then
obtain δ α ′′

where α ′=δ @ [v] @ α ′′

and δ�VV = []
and α ′′�VV = α�VV

using projection-split-first-with-suffix by fastforce

from ‹α ′�CV = []› ‹α ′=δ @ [v] @ α ′′› have δ�CV=[]
by (metis append-is-Nil-conv projection-concatenation-commute)

from ‹α ′�CV = []› ‹α ′=δ @ [v] @ α ′′› have α ′′�CV=[]
by (metis append-is-Nil-conv projection-concatenation-commute)

from ‹β @ [c] @ α ′ ∈ TrES› have set α ′ ⊆ EES
using validES
unfolding ES-valid-def traces-contain-events-def by auto

with ‹α ′=δ @ [v] @ α ′′› have set δ ⊆ EES
by auto

with ‹δ�CV=[]› ‹δ�VV = []› ‹NV ⊆ ∆Γ›
have (set δ) ⊆ (NV ∩ ∆Γ) using VIsViewOnE projection-empty-implies-absence-of-events

unfolding isViewOn-def projection-def by blast

let ?β=β and ?δ ′=δ and ?α ′=α ′′

from ‹(set δ) ⊆ (NV ∩ ∆Γ)› ‹β @ [c] @ α ′ ∈ TrES› ‹α ′=δ @ [v] @ α ′′›
‹α ′′�VV = α�VV › ‹α ′′�CV=[]›

have (set ?δ ′)⊆(NV ∩ ∆Γ) ∧ ?β @ [c] @ ?δ ′ @ [v] @ ?α ′ ∈ TrES ∧ ?α ′�VV=α�VV ∧ ?α ′�CV=[]
by auto
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hence ∃α ′′′ δ ′′. (set δ ′′) ⊆ (NV ∩ ∆Γ) ∧ (β @ [c] @ δ ′′ @ [v] @ α ′′′) ∈ TrES
∧ α ′′′ � VV = α � VV ∧ α ′′′ � CV = []

by auto
}
thus ?thesis

unfolding FCIA-def by auto
qed

end

context BSPTaxonomyDifferentViewsFirstDim
begin

lemma R-implies-R-for-modified-view:
R V1 TrES =⇒ R V2 TrES
proof −

assume R-V1: R V1 TrES
{

fix τ
assume τ ∈ TrES
with R-V1 have ∃ τ ′ ∈ TrES. τ ′ � CV1

= [] ∧ τ ′ � VV1
= τ � VV1

unfolding R-def by auto
hence ∃ τ ′ ∈ TrES. τ ′ � CV2

= [] ∧ τ ′ � VV2
= τ � VV2

using V2-subset-V1 C2-subset-C1 non-empty-projection-on-subset projection-on-subset by blast
}
thus ?thesis

unfolding R-def by auto
qed

lemma BSD-implies-BSD-for-modified-view:
BSD V1 TrES=⇒ BSD V2 TrES
proof−

assume BSD-V1: BSD V1 TrES
{

fix α β c n
assume c-in-C2: c ∈ CV2

from C2-subset-C1 c-in-C 2 have c-in-C1: c ∈ CV1

by auto
have [[β @ [c] @ α ∈ TrES; α � CV2

=[]; n= length(α � CV1
)]]

=⇒ ∃ α ′. β @ α ′ ∈ TrES ∧ α ′� VV2
= α �VV2

∧ α ′ �CV2
= []

proof(induct n arbitrary: α )
case 0

from 0 .prems(3 ) have α � CV1
= [] by auto

with c-in-C1 0 .prems(1 )
have ∃ α ′. β @ α ′ ∈ TrES ∧ α ′ � VV1

= α � VV1
∧ α ′ �CV1

=[]
using BSD-V1 unfolding BSD-def by auto

then
obtain α ′ where β @ α ′ ∈ TrES

and α ′ � VV1
= α � VV1

and α ′ �CV1
=[]

by auto
from V2-subset-V1 ‹α ′ � VV1

= α � VV1
› have α ′� VV2

= α �VV2
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using non-empty-projection-on-subset by blast
moreover
from ‹α ′ �CV1

=[]› C2-subset-C1 have α ′ � CV2
= []

using projection-on-subset by auto
ultimately
show ?case

using ‹β @ α ′ ∈ TrES› by auto
next
case (Suc n)

from Suc.prems(3 ) projection-split-last[OF Suc.prems(3 )]
obtain γ1 γ2 c1 where c1-in-C1: c1 ∈ CV1

and α = γ1 @ [c1] @ γ2

and γ2 �CV1
= []

and n = length((γ1 @ γ2)� CV1
)

by auto
from Suc.prems(2 ) ‹α = γ1 @ [c1] @ γ2› have γ1 � CV2

= []
by (simp add: projection-concatenation-commute)

from Suc.prems(1 ) ‹α = γ1 @ [c1] @ γ2›
obtain β ′ where β ′=β @ [c] @ γ1

and β ′ @ [c1] @ γ2 ∈ TrES
by auto

from ‹β ′ @ [c1] @ γ2 ∈ TrES› ‹γ2 �CV1
= []› ‹c1 ∈ CV1

›
obtain γ2

′ where β ′ @ γ2
′ ∈ TrES

and γ2
′ � VV1

= γ2 � VV1

and γ2
′ �CV1

=[]
using BSD-V1 unfolding BSD-def by auto

from ‹β ′=β @ [c] @ γ1› ‹β ′ @ γ2
′ ∈ TrES› have β @ [c] @ γ1 @ γ2

′ ∈ TrES
by auto

moreover
from ‹γ1 � CV2

=[]› ‹γ2
′ �CV1

=[]› C2-subset-C1 have (γ1 @ γ2
′) � CV2

=[]
by (metis append-Nil projection-concatenation-commute projection-on-subset)

moreover
from ‹n = length((γ1 @ γ2)� CV1

)› ‹γ2 �CV1
= []› ‹γ2

′ �CV1
=[]›

have n = length((γ1 @ γ2
′)� CV1

)
by (simp add: projection-concatenation-commute)

ultimately
have witness: ∃ α ′. β @ α ′ ∈ TrES ∧ α ′� VV2

= (γ1 @ γ2
′) �VV2

∧ α ′ �CV2
= []

using Suc.hyps by auto

from V1IsViewOnE V2IsViewOnE V2-subset-V1 C2-subset-C1 c1-in-C1 have c1 /∈ VV2

unfolding isViewOn-def V-valid-def VC-disjoint-def by auto
with ‹α = γ1 @ [c1] @ γ2› have α � VV2

= (γ1 @ γ2) � VV2

unfolding projection-def by auto
hence α � VV2

= γ1 � VV2
@ γ2 � VV2

using projection-concatenation-commute by auto
with V2-subset-V1 ‹γ2

′ � VV1
= γ2 � VV1

›
have γ1 � VV2

@ γ2 � VV2
= γ1� VV2

@ γ2
′ � VV2

using non-empty-projection-on-subset by metis
with ‹α � VV2

= γ1 � VV2
@ γ2 � VV2

› have α � VV2
= (γ1 @ γ2

′) � VV2

by (simp add: projection-concatenation-commute)

from witness ‹α � VV2
= (γ1 @ γ2

′) � VV2
›
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show ?case
by auto

qed
}
thus ?thesis

unfolding BSD-def by auto
qed

lemma D-implies-D-for-modified-view:
D V1 TrES =⇒ D V2 TrES
proof−

assume D-V1: D V1 TrES
from V2-subset-V1 C2-subset-C1
have V 2-union-C2-subset-V 1-union-C1: VV2

∪ CV2
⊆ VV1

∪ CV1
by auto

{
fix α β c n
assume c-in-C2: c ∈ CV2

from C2-subset-C1 c-in-C 2 have c-in-C1: c ∈ CV1

by auto
have [[β @ [c] @ α ∈ TrES; α � CV2

=[]; n= length(α � CV1
)]]

=⇒ ∃ α ′ β ′.
β ′ @ α ′ ∈ TrES ∧ α ′� VV2

= α �VV2
∧ α ′ �CV2

= []
∧ β ′ �(VV2

∪ CV2
) = β �(VV2

∪ CV2
)

proof(induct n arbitrary: α β )
case 0

from 0 .prems(3 ) have α � CV1
= [] by auto

with c-in-C1 0 .prems(1 )
have ∃ α ′ β ′.

β ′ @ α ′ ∈ TrES ∧ α ′ � VV1
= α � VV1

∧ α ′ �CV1
=[]

∧ β ′ �(VV1
∪ CV1

) = β �(VV1
∪ CV1

)
using D-V1 unfolding D-def by fastforce

then
obtain β ′ α ′ where β ′ @ α ′ ∈ TrES

and α ′ � VV1
= α � VV1

and α ′ �CV1
=[]

and β ′ �(VV1
∪ CV1

) = β �(VV1
∪ CV1

)
by auto

from V2-subset-V1 ‹α ′ � VV1
= α � VV1

› have α ′� VV2
= α �VV2

using non-empty-projection-on-subset by blast
moreover
from ‹α ′ �CV1

=[]› C2-subset-C1 have α ′ � CV2
= []

using projection-on-subset by auto
moreover
from ‹β ′ �(VV1

∪ CV1
) = β �(VV1

∪ CV1
)› V 2-union-C 2-subset-V 1-union-C1

have β ′ �(VV2
∪ CV2

) = β �(VV2
∪ CV2

)
using non-empty-projection-on-subset by blast

ultimately
show ?case

using ‹β ′ @ α ′ ∈ TrES› by auto
next
case (Suc n)

from Suc.prems(3 ) projection-split-last[OF Suc.prems(3 )]
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obtain γ1 γ2 c1 where c1-in-C1: c1 ∈ CV1

and α = γ1 @ [c1] @ γ2

and γ2 �CV1
= []

and n = length((γ1 @ γ2)� CV1
)

by auto
from Suc.prems(2 ) ‹α = γ1 @ [c1] @ γ2› have γ1 � CV2

= []
by (simp add: projection-concatenation-commute)

from Suc.prems(1 ) ‹α = γ1 @ [c1] @ γ2›
obtain β ′ where β ′=β @ [c] @ γ1

and β ′ @ [c1] @ γ2 ∈ TrES
by auto

from ‹β ′ @ [c1] @ γ2 ∈ TrES› ‹γ2 �CV1
= []› ‹c1 ∈ CV1

›
obtain γ2

′ β ′′ where β ′′ @ γ2
′ ∈ TrES

and γ2
′ � VV1

= γ2 � VV1

and γ2
′ �CV1

=[]
and β ′′ �(VV1

∪ CV1
) = β ′ �(VV1

∪ CV1
)

using D-V1 unfolding D-def by force

from c-in-C1 have c ∈ VV1
∪ CV1

by auto
moreover
from ‹β ′′ �(VV1

∪ CV1
) = β ′ �(VV1

∪ CV1
)› ‹β ′=β @ [c] @ γ1›

have β ′′ �(VV1
∪ CV1

) = (β @ [c] @ γ1) �(VV1
∪ CV1

)
by auto

ultimately
have ∃ β ′′′ γ1

′. β ′′=β ′′′@ [c] @ γ1
′

∧ β ′′′ �(VV1
∪ CV1

) = β �(VV1
∪ CV1

)
∧ γ1

′�(VV1
∪ CV1

) = γ1 �(VV1
∪ CV1

)
using projection-split-arbitrary-element by fast

then
obtain β ′′′ γ1

′ where β ′′= β ′′′ @ [c] @ γ1
′

and β ′′′ �(VV1
∪ CV1

) = β �(VV1
∪ CV1

)
and γ1

′�(VV1
∪ CV1

) = γ1 �(VV1
∪ CV1

)
using projection-split-arbitrary-element by auto

from ‹β ′′ @ γ2
′ ∈ TrES› this(1 )

have β ′′′ @ [c] @ γ1
′ @ γ2

′ ∈ TrES
by simp

from ‹γ2
′ �CV1

=[]› have γ2
′ � CV2

=[]
using C2-subset-C1 projection-on-subset by auto

moreover
from ‹γ1 � CV2

= []› ‹γ1
′�(VV1

∪ CV1
) = γ1 �(VV1

∪ CV1
)›

have γ1
′� CV2

= [] using C2-subset-C1 V2-subset-V1
by (metis non-empty-projection-on-subset projection-subset-eq-from-superset-eq sup-commute)

ultimately
have (γ1

′ @ γ2
′)�CV2

= []
by (simp add: projection-concatenation-commute)

from ‹γ1
′�(VV1

∪ CV1
) = γ1 �(VV1

∪ CV1
)› have γ1

′�CV1
= γ1�CV1

using projection-subset-eq-from-superset-eq sup-commute by metis
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hence length(γ1
′�CV1

) = length(γ1�CV1
) by simp

moreover
from ‹γ2 �CV1

= []› ‹γ2
′�CV1

=[]› have length(γ2
′�CV1

) = length(γ2�CV1
)

by simp
ultimately
have n=length((γ1

′ @ γ2
′)�CV1

)
by (simp add: ‹n = length ((γ1 @ γ2) � CV1

)› projection-concatenation-commute)

from ‹β ′′′ @ [c] @ γ1
′ @ γ2

′ ∈ TrES› ‹(γ1
′ @ γ2

′)�CV2
= []› ‹n=length((γ1

′ @ γ2
′)�CV1

)›
have witness:
∃α ′ β ′. β ′ @ α ′ ∈ TrES ∧ α ′ � VV2

= ( γ1
′ @ γ2

′) � VV2

∧ α ′ � CV2
= [] ∧ β ′ � (VV2

∪ CV2
) = β ′′′ � (VV2

∪ CV2
)

using Suc.hyps[OF ‹β ′′′ @ [c] @ γ1
′ @ γ2

′ ∈ TrES›] by simp

from V 2-union-C2-subset-V 1-union-C1 ‹β ′′′ �(VV1
∪ CV1

) = β �(VV1
∪ CV1

)›
have β ′′′ �(VV2

∪ CV2
) = β �(VV2

∪ CV2
)

using non-empty-projection-on-subset by blast

from V1IsViewOnE V2IsViewOnE V2-subset-V1 C2-subset-C1 c1-in-C1 have c1 /∈ VV2

unfolding isViewOn-def V-valid-def VC-disjoint-def by auto
with ‹α = γ1 @ [c1] @ γ2› have α � VV2

= (γ1 @ γ2) � VV2

unfolding projection-def by auto
moreover
from V2-subset-V1 ‹γ2

′ � VV1
= γ2 � VV1

› have γ2
′ � VV2

= γ2 � VV2

using V2-subset-V1 by (metis projection-subset-eq-from-superset-eq subset-Un-eq)
moreover
from ‹γ1

′�(VV1
∪ CV1

) = γ1 �(VV1
∪ CV1

)› have γ1
′ � VV2

= γ1 � VV2

using V2-subset-V1 by (metis projection-subset-eq-from-superset-eq subset-Un-eq)
ultimately
have α � VV2

= (γ1
′ @ γ2

′) � VV2
using ‹α � VV2

= (γ1 @ γ2) � VV2
›

by (simp add: projection-concatenation-commute)

from ‹β ′′′ �(VV2
∪ CV2

) = β �(VV2
∪ CV2

)› ‹α � VV2
= (γ1

′ @ γ2
′) � VV2

›
show ?case

using witness by simp
qed

}
thus ?thesis

unfolding D-def by auto
qed
end

context BSPTaxonomyDifferentViewsSecondDim
begin

lemma FCD-implies-FCD-for-modified-view-gamma:
[[FCD Γ1 V1 TrES;

VV2
∩∇Γ2

⊆ VV1
∩∇Γ1

; NV2
∩∆Γ2

⊇ NV1
∩∆Γ1

; CV2
∩ΥΓ2

⊆ CV1
∩ΥΓ1

]]
=⇒ FCD Γ2 V2 TrES

proof −
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assume FCD Γ1 V1 TrES
and VV2

∩∇Γ2
⊆ VV1

∩∇Γ1

and NV2
∩∆Γ2

⊇ NV1
∩∆Γ1

and CV2
∩ΥΓ2

⊆ CV1
∩ΥΓ1

{
fix α β v c
assume c ∈ CV2

∩ΥΓ2

and v ∈ VV2
∩∇Γ2

and β @ [c,v] @ α ∈ TrES
and α�CV2

= []

from ‹c ∈ CV2
∩ΥΓ2

› ‹CV2
∩ΥΓ2

⊆ CV1
∩ΥΓ1

› have c ∈ CV1
∩ΥΓ1

by auto
moreover
from ‹v ∈ VV2

∩∇Γ2
› ‹VV2

∩∇Γ2
⊆ VV1

∩∇Γ1
› have v ∈ VV1

∩∇Γ1

by auto
moreover
from C2-equals-C1 ‹α�CV2

= []› have α�CV1
= []

by auto
ultimately
obtain α ′ δ ′ where (set δ ′) ⊆ (NV1

∩ ∆Γ1
)

and β @ δ ′ @ [v] @ α ′ ∈ TrES
and α ′�VV1

= α�VV1

and α ′�CV1
= []

using ‹β @ [c,v] @ α ∈ TrES› ‹FCD Γ1 V1 TrES› unfolding FCD-def by blast

from ‹(set δ ′) ⊆ (NV1
∩ ∆Γ1

)› ‹NV2
∩∆Γ2

⊇ NV1
∩∆Γ1

›
have (set δ ′) ⊆ (NV2

∩ ∆Γ2
)

by auto
moreover
from ‹α ′�VV1

= α�VV1
› V2-subset-V1 have α ′�VV2

= α�VV2

using non-empty-projection-on-subset by blast
moreover
from C2-equals-C1 ‹α ′�CV1

= []› have α ′�CV2
= []

by auto
ultimately
have ∃ δ ′ α ′. (set δ ′) ⊆ (NV2

∩ ∆Γ2
)

∧ β @ δ ′@ [v] @ α ′ ∈ TrES ∧ α ′�VV2
= α�VV2

∧ α ′�CV2
= []

using ‹β @ δ ′ @ [v] @ α ′ ∈ TrES› by auto
}
thus ?thesis

unfolding FCD-def by blast
qed

lemma SI-implies-SI-for-modified-view :
SI V1 TrES =⇒ SI V2 TrES
proof −

assume SI : SI V1 TrES
{

fix α β c
assume c ∈ CV2
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and β @ α ∈ TrES
and alpha-C 2-empty: α � CV2

= []
moreover
with C2-equals-C1 have c ∈ CV1

by auto
moreover
from alpha-C2-empty C2-equals-C1 have α � CV1

= []
by auto

ultimately
have β @ (c # α) ∈ TrES

using SI unfolding SI-def by auto
}
thus ?thesis

unfolding SI-def by auto
qed

lemma BSI-implies-BSI-for-modified-view :
BSI V1 TrES =⇒ BSI V2 TrES
proof −

assume BSI : BSI V1 TrES
{

fix α β c
assume c ∈ CV2

and β @ α ∈ TrES
and alpha-C 2-empty: α � CV2

= []
moreover
with C2-equals-C1 have c ∈ CV1

by auto
moreover
from alpha-C2-empty C2-equals-C1 have α � CV1

= []
by auto

ultimately
have ∃ α ′. β @ [c] @ α ′ ∈ TrES ∧ α ′ � VV1

= α � VV1
∧ α ′ � CV1

= []
using BSI unfolding BSI-def by auto

with V2-subset-V1 C2-equals-C1
have ∃ α ′. β @ [c] @ α ′ ∈ TrES ∧ α ′ � VV2

= α � VV2
∧ α ′ � CV2

= []
using non-empty-projection-on-subset by metis

}
thus ?thesis

unfolding BSI-def by auto
qed

lemma I-implies-I-for-modified-view :
I V1 TrES =⇒ I V2 TrES
proof −

assume I : I V1 TrES
from V2-subset-V1 C2-equals-C1 have V 2-union-C2-subset-V 1-union-C1: VV2

∪ CV2
⊆ VV1

∪ CV1

by auto
{
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fix α β c
assume c ∈ CV2

and β @ α ∈ TrES
and alpha-C 2-empty: α � CV2

= []
moreover
with C2-equals-C1 have c ∈ CV1

by auto
moreover
from alpha-C2-empty C2-equals-C1 have α � CV1

= []
by auto

ultimately
have ∃ α ′ β ′.

β ′ @ [c] @ α ′ ∈ TrES ∧ α ′ � VV1
= α � VV1

∧ α ′ � CV1
= []

∧ β ′ � (VV1
∪ CV1

) = β � (VV1
∪ CV1

)
using I unfolding I-def by auto

with V 2-union-C2-subset-V 1-union-C 1 V2-subset-V1 C2-equals-C1
have ∃ α ′ β ′.

β ′ @ [c] @ α ′ ∈ TrES ∧ α ′ � VV2
= α � VV2

∧ α ′ � CV2
= []

∧ β ′ � (VV2
∪ CV2

) = β � (VV2
∪ CV2

)
using non-empty-projection-on-subset by metis

}
thus ?thesis

unfolding I-def by auto
qed

lemma SIA-implies-SIA-for-modified-view :
[[SIA %1 V1 TrES; %2(V2) ⊇ %1(V1) ]] =⇒ SIA %2 V2 TrES
proof −

assume SIA: SIA %1 V1 TrES
and %2-supseteq-%1: %2(V2) ⊇ %1(V1)

{
fix α β c
assume c ∈ CV2

and β @ α ∈ TrES
and alpha-C 2-empty: α � CV2

= []
and admissible-c-%2-V2:Adm V2 %2 TrES β c

moreover
with C2-equals-C1 have c ∈ CV1

by auto
moreover
from alpha-C2-empty C2-equals-C1 have α � CV1

= []
by auto

moreover
from %2-supseteq-%1 admissible-c-%2-V2 have Adm V1 %1 TrES β c

by (simp add: Adm-implies-Adm-for-modified-rho)
ultimately
have β @ (c # α) ∈ TrES

using SIA unfolding SIA-def by auto
}
thus ?thesis

unfolding SIA-def by auto

78



qed

lemma BSIA-implies-BSIA-for-modified-view :
[[BSIA %1 V1 TrES; %2(V2) ⊇ %1(V1) ]] =⇒ BSIA %2 V2 TrES
proof −

assume BSIA: BSIA %1 V1 TrES
and %2-supseteq-%1: %2(V2) ⊇ %1(V1)

from V2-subset-V1 C2-equals-C1
have V 2-union-C2-subset-V 1-union-C 1: VV2

∪ CV2
⊆ VV1

∪ CV1

by auto
{

fix α β c
assume c ∈ CV2

and β @ α ∈ TrES
and alpha-C 2-empty: α � CV2

= []
and admissible-c-%2-V2:Adm V2 %2 TrES β c

moreover
with C2-equals-C1 have c ∈ CV1

by auto
moreover
from alpha-C2-empty C2-equals-C1 have α � CV1

= []
by auto

moreover
from %2-supseteq-%1 admissible-c-%2-V2 have Adm V1 %1 TrES β c

by (simp add: Adm-implies-Adm-for-modified-rho)
ultimately
have ∃ α ′. β @ [c] @ α ′ ∈ TrES ∧ α ′ � VV1

= α � VV1
∧ α ′ � CV1

= []
using BSIA unfolding BSIA-def by auto

with V2-subset-V1 C2-equals-C1
have ∃ α ′. β @ [c] @ α ′ ∈ TrES ∧ α ′ � VV2

= α � VV2
∧ α ′ � CV2

= []
using non-empty-projection-on-subset by metis

}
thus ?thesis

unfolding BSIA-def by auto
qed

lemma IA-implies-IA-for-modified-view :
[[IA %1 V1 TrES; %2(V2) ⊇ %1(V1) ]] =⇒ IA %2 V2 TrES
proof −

assume IA: IA %1 V1 TrES
and %2-supseteq-%1: %2(V2) ⊇ %1(V1)

{
fix α β c
assume c ∈ CV2

and β @ α ∈ TrES
and alpha-C 2-empty: α � CV2

= []
and admissible-c-%2-V2:Adm V2 %2 TrES β c

moreover
with C2-equals-C1 have c ∈ CV1
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by auto
moreover
from alpha-C2-empty C2-equals-C1 have α � CV1

= []
by auto

moreover
from %2-supseteq-%1 admissible-c-%2-V2 have Adm V1 %1 TrES β c

by (simp add: Adm-implies-Adm-for-modified-rho)
ultimately
have ∃ α ′ β ′. β ′ @ [c] @ α ′ ∈ TrES ∧ α ′ � VV1

= α � VV1
∧ α ′ � CV1

= [] ∧ β ′ � (VV1
∪ CV1

) = β
� (VV1

∪ CV1
)

using IA unfolding IA-def by auto
moreover
from V2-subset-V1 C2-equals-C1 have (VV2

∪ CV2
) ⊆ (VV1

∪ CV1
)

by auto
ultimately
have ∃ α ′ β ′. β ′ @ [c] @ α ′ ∈ TrES ∧ α ′ � VV2

= α � VV2
∧ α ′ � CV2

= [] ∧ β ′ � (VV2
∪ CV2

) =
β � (VV2

∪ CV2
)

using V2-subset-V1 C2-equals-C1 non-empty-projection-on-subset by metis
}
thus ?thesis

unfolding IA-def by auto
qed

lemma FCI-implies-FCI-for-modified-view-gamma:
[[FCI Γ1 V1 TrES;

VV2
∩∇Γ2

⊆ VV1
∩∇Γ1

; NV2
∩∆Γ2

⊇ NV1
∩∆Γ1

; CV2
∩ΥΓ2

⊆ CV1
∩ΥΓ1

]]
=⇒ FCI Γ2 V2 TrES

proof −
assume FCI Γ1 V1 TrES

and VV2
∩∇Γ2

⊆ VV1
∩∇Γ1

and NV2
∩∆Γ2

⊇ NV1
∩∆Γ1

and CV2
∩ΥΓ2

⊆ CV1
∩ΥΓ1

{
fix α β v c
assume c ∈ CV2

∩ΥΓ2

and v ∈ VV2
∩∇Γ2

and β @ [v] @ α ∈ TrES
and α�CV2

= []

from ‹c ∈ CV2
∩ΥΓ2

› ‹CV2
∩ΥΓ2

⊆ CV1
∩ΥΓ1

› have c ∈ CV1
∩ΥΓ1

by auto
moreover
from ‹v ∈ VV2

∩∇Γ2
› ‹VV2

∩∇Γ2
⊆ VV1

∩∇Γ1
› have v ∈ VV1

∩∇Γ1

by auto
moreover
from C2-equals-C1 ‹α�CV2

= []› have α�CV1
= []

by auto
ultimately
obtain α ′ δ ′ where (set δ ′) ⊆ (NV1

∩ ∆Γ1
)

and β @ [c] @ δ ′ @ [v] @ α ′ ∈ TrES
and α ′�VV1

= α�VV1
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and α ′�CV1
= []

using ‹β @ [v] @ α ∈ TrES› ‹FCI Γ1 V1 TrES› unfolding FCI-def by blast

from ‹(set δ ′) ⊆ (NV1
∩ ∆Γ1

)› ‹NV2
∩∆Γ2

⊇ NV1
∩∆Γ1

›
have (set δ ′) ⊆ (NV2

∩ ∆Γ2
)

by auto
moreover
from ‹α ′�VV1

= α�VV1
› V2-subset-V1 have α ′�VV2

= α�VV2

using non-empty-projection-on-subset by blast
moreover
from ‹CV2

= CV1
› ‹α ′�CV1

= []› have α ′�CV2
= []

by auto
ultimately have ∃ δ ′ α ′. (set δ ′) ⊆ (NV2

∩ ∆Γ2
)

∧ β @ [c] @ δ ′@ [v] @ α ′ ∈ TrES ∧ α ′�VV2
= α�VV2

∧ α ′�CV2
= []

using ‹β @ [c] @ δ ′ @ [v] @ α ′ ∈ TrES› by auto
}
thus ?thesis

unfolding FCI-def by blast
qed

lemma FCIA-implies-FCIA-for-modified-view-rho-gamma:
[[FCIA %1 Γ1 V1 TrES; %2(V2) ⊇ %1(V1);

VV2
∩∇Γ2

⊆ VV1
∩∇Γ1

; NV2
∩∆Γ2

⊇ NV1
∩∆Γ1

; CV2
∩ΥΓ2

⊆ CV1
∩ΥΓ1

]]
=⇒ FCIA %2 Γ2 V2 TrES

proof −
assume FCIA %1 Γ1 V1 TrES

and %2(V2) ⊇ %1(V1)
and VV2

∩∇Γ2
⊆ VV1

∩∇Γ1

and NV2
∩∆Γ2

⊇ NV1
∩∆Γ1

and CV2
∩ΥΓ2

⊆ CV1
∩ΥΓ1

{
fix α β v c
assume c ∈ CV2

∩ΥΓ2

and v ∈ VV2
∩∇Γ2

and β @ [v] @ α ∈ TrES
and α�CV2

= []
and Adm V2 %2 TrES β c

from ‹c ∈ CV2
∩ΥΓ2

› ‹CV2
∩ΥΓ2

⊆ CV1
∩ΥΓ1

› have c ∈ CV1
∩ΥΓ1

by auto
moreover
from ‹v ∈ VV2

∩∇Γ2
› ‹VV2

∩∇Γ2
⊆ VV1

∩∇Γ1
› have v ∈ VV1

∩∇Γ1

by auto
moreover
from C2-equals-C1 ‹α�CV2

= []› have α�CV1
= []

by auto
moreover
from ‹Adm V2 %2 TrES β c› ‹%2(V2) ⊇ %1(V1)› have Adm V1 %1 TrES β c

by (simp add: Adm-implies-Adm-for-modified-rho)
ultimately
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obtain α ′ δ ′ where (set δ ′) ⊆ (NV1
∩ ∆Γ1

)
and β @ [c] @ δ ′ @ [v] @ α ′ ∈ TrES
and α ′�VV1

= α�VV1

and α ′�CV1
= []

using ‹β @ [v] @ α ∈ TrES› ‹FCIA %1 Γ1 V1 TrES› unfolding FCIA-def by blast

from ‹(set δ ′) ⊆ (NV1
∩ ∆Γ1

)› ‹NV2
∩∆Γ2

⊇ NV1
∩∆Γ1

›
have (set δ ′) ⊆ (NV2

∩ ∆Γ2
)

by auto
moreover
from ‹α ′�VV1

= α�VV1
› V2-subset-V1 have α ′�VV2

= α�VV2

using non-empty-projection-on-subset by blast
moreover
from ‹CV2

= CV1
› ‹α ′�CV1

= []› have α ′�CV2
= []

by auto
ultimately
have ∃ δ ′ α ′. (set δ ′) ⊆ (NV2

∩ ∆Γ2
)

∧ β @ [c] @ δ ′@ [v] @ α ′ ∈ TrES ∧ α ′�VV2
= α�VV2

∧ α ′�CV2
= []

using ‹β @ [c] @ δ ′ @ [v] @ α ′ ∈ TrES› by auto
}
thus ?thesis

unfolding FCIA-def by blast
qed
end

end

5.3 Unwinding

We define the unwinding conditions provided in [3] and prove the unwinding theorems from [3] that
use these unwinding conditions.

5.3.1 Unwinding Conditions
theory UnwindingConditions
imports ../Basics/BSPTaxonomy
../../SystemSpecification/StateEventSystems

begin

locale Unwinding =
fixes SES :: ( ′s, ′e) SES-rec
and V :: ′e V-rec

assumes validSES : SES-valid SES
and validVU : isViewOn V ESES

sublocale Unwinding ⊆ BSPTaxonomyDifferentCorrections induceES SES V
by (unfold-locales, simp add: induceES-yields-ES validSES ,

simp add: induceES-def validVU )
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context Unwinding
begin

definition osc :: ′s rel ⇒ bool
where
osc ur ≡
∀ s1 ∈ SSES. ∀ s1 ′ ∈ SSES. ∀ s2 ′ ∈ SSES. ∀ e ∈ (ESES − CV ).
(reachable SES s1 ∧ reachable SES s1 ′

∧ s1 ′ e−→SES s2 ′ ∧ (s1 ′, s1 ) ∈ ur)
−→ (∃ s2 ∈ SSES. ∃ δ. δ � CV = [] ∧ δ � VV = [e] � VV

∧ s1 δ=⇒SES s2 ∧ (s2 ′, s2 ) ∈ ur)

definition lrf :: ′s rel ⇒ bool
where
lrf ur ≡
∀ s ∈ SSES. ∀ s ′ ∈ SSES. ∀ c ∈ CV .
((reachable SES s ∧ s c−→SES s ′) −→ (s ′, s) ∈ ur)

definition lrb :: ′s rel ⇒ bool
where
lrb ur ≡ ∀ s ∈ SSES. ∀ c ∈ CV .
(reachable SES s −→ (∃ s ′ ∈ SSES. (s c−→SES s ′ ∧ ((s, s ′) ∈ ur))))

definition fcrf :: ′e Gamma ⇒ ′s rel ⇒ bool
where
fcrf Γ ur ≡
∀ c ∈ (CV ∩ ΥΓ). ∀ v ∈ (VV ∩ ∇Γ). ∀ s ∈ SSES. ∀ s ′ ∈ SSES.
((reachable SES s ∧ s ([c] @ [v])=⇒SES s ′)
−→ (∃ s ′′ ∈ SSES. ∃ δ. (∀ d ∈ (set δ). d ∈ (NV ∩ ∆Γ)) ∧

s (δ @ [v])=⇒SES s ′′ ∧ (s ′, s ′′) ∈ ur))

definition fcrb :: ′e Gamma ⇒ ′s rel ⇒ bool
where
fcrb Γ ur ≡
∀ c ∈ (CV ∩ ΥΓ). ∀ v ∈ (VV ∩ ∇Γ). ∀ s ∈ SSES. ∀ s ′′ ∈ SSES.
((reachable SES s ∧ s v−→SES s ′′)
−→ (∃ s ′ ∈ SSES. ∃ δ. (∀ d ∈ (set δ). d ∈ (NV ∩ ∆Γ)) ∧

s ([c] @ δ @ [v])=⇒SES s ′ ∧ (s ′′, s ′) ∈ ur))

definition En :: ′e Rho ⇒ ′s ⇒ ′e ⇒ bool
where
En % s e ≡
∃β γ. ∃ s ′ ∈ SSES. ∃ s ′′ ∈ SSES.

s0 SES β=⇒SES s ∧ (γ � (% V) = β � (% V))
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∧ s0 SES γ=⇒SES s ′ ∧ s ′ e−→SES s ′′

definition lrbe :: ′e Rho ⇒ ′s rel ⇒ bool
where
lrbe % ur ≡
∀ s ∈ SSES. ∀ c ∈ CV .
((reachable SES s ∧ (En % s c))
−→ (∃ s ′ ∈ SSES. (s c−→SES s ′ ∧ (s, s ′) ∈ ur)))

definition fcrbe :: ′e Gamma ⇒ ′e Rho ⇒ ′s rel ⇒ bool
where
fcrbe Γ % ur ≡
∀ c ∈ (CV ∩ ΥΓ). ∀ v ∈ (VV ∩ ∇Γ). ∀ s ∈ SSES. ∀ s ′′ ∈ SSES.
((reachable SES s ∧ s v−→SES s ′′ ∧ (En % s c))
−→ (∃ s ′ ∈ SSES. ∃ δ. (∀ d ∈ (set δ). d ∈ (NV ∩ ∆Γ)) ∧

s ([c] @ δ @ [v])=⇒SES s ′ ∧ (s ′′, s ′) ∈ ur))

end

end

5.3.2 Auxiliary Results
theory AuxiliaryLemmas
imports UnwindingConditions
begin

context Unwinding
begin

lemma osc-property:∧
s1 s1 ′. [[ osc ur ; s1 ∈ SSES; s1 ′ ∈ SSES; α � CV = [];
reachable SES s1 ; reachable SES s1 ′; enabled SES s1 ′ α; (s1 ′, s1 ) ∈ ur ]]
=⇒ (∃α ′. α ′ � CV = [] ∧ α ′ � VV = α � VV ∧ enabled SES s1 α ′)

proof (induct α)
case Nil
have [] � CV = [] ∧
[] � VV = [] � VV ∧ enabled SES s1 []
by (simp add: enabled-def projection-def )

thus ?case by (rule exI )
next

case (Cons e1 α1 )
assume osc-true: osc ur
assume s1-in-S : s1 ∈ SSES
assume s1 ′-in-S : s1 ′ ∈ SSES
assume e1α1-C-empty: (e1 # α1 ) � CV = []
assume reachable-s1 : reachable SES s1
assume reachable-s1 ′: reachable SES s1 ′
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assume enabled-s1 ′-e1α1 : enabled SES s1 ′ (e1 # α1 )
assume unwindingrel-s1 ′-s1 : (s1 ′, s1 ) ∈ ur

have e1α1-no-c: ∀ a ∈ (set (e1 # α1 )). a ∈ (ESES − CV )
proof −

from reachable-s1 ′ obtain β
where s0 SES β=⇒SES s1 ′

by(simp add: reachable-def , auto)
moreover
from enabled-s1 ′-e1α1 obtain s1337

where s1 ′ (e1 # α1 )=⇒SES s1337
by(simp add: enabled-def , auto)

ultimately have s0 SES (β @ (e1 # α1 ))=⇒SES s1337
by(rule path-trans)

hence β @ (e1 # α1 ) ∈ Tr(induceES SES)
by (simp add: induceES-def possible-traces-def enabled-def )

with validSES induceES-yields-ES [of SES ] have ∀ a ∈ (set (β @ (e1 # α1 ))). a ∈ ESES
by (simp add: induceES-def ES-valid-def traces-contain-events-def )

hence ∀ a ∈ (set (e1 # α1 )). a ∈ ESES
by auto

with e1α1-C-empty show ?thesis
by (simp only: projection-def filter-empty-conv, auto)

qed

from enabled-s1 ′-e1α1 obtain s2 ′ where
s1 ′-e1-s2 ′: s1 ′ e1−→SES s2 ′

by (simp add: enabled-def , split if-split-asm, auto)
with validSES have s2 ′-in-S : s2 ′ ∈ SSES

by (simp add: SES-valid-def correct-transition-relation-def )
have reachable-s2 ′: reachable SES s2 ′

proof −
from reachable-s1 ′ obtain t where

path-to-s1 ′: s0 SES t=⇒SES s1 ′

by (simp add: reachable-def , auto)
from s1 ′-e1-s2 ′ have s1 ′ [e1 ]=⇒SES s2 ′

by simp
with path-to-s1 ′ have s0 SES (t @ [e1 ])=⇒SES s2 ′

by (simp add: path-trans)
thus ?thesis by (simp add: reachable-def , rule exI )

qed
from s1 ′-e1-s2 ′ enabled-s1 ′-e1α1 obtain sn ′ where

s2 ′ α1=⇒SES sn ′

by (simp add: enabled-def , auto)
hence enabled-s2 ′-α1 : enabled SES s2 ′ α1

by (simp add: enabled-def )
from e1α1-no-c have e1-no-c: e1 ∈ (ESES − CV )

by simp
from e1α1-no-c have α1-no-c: ∀ a∈(set α1 ). (a ∈ (ESES − CV ))

by simp
hence α1-proj-C-empty: α1 � CV = []

by (simp add: projection-def )
from osc-true have
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[[ s1 ∈ SSES; s1 ′ ∈ SSES; s2 ′ ∈ SSES;
e1 ∈ (ESES − CV ); reachable SES s1 ; reachable SES s1 ′;
s1 ′ e1−→SES s2 ′; (s1 ′, s1 ) ∈ ur ]]
=⇒ (∃ s2 ∈ SSES. ∃ δ. δ � CV = []
∧ (δ � VV ) = ([e1 ] � VV ) ∧ (s1 δ=⇒SES s2 ∧
((s2 ′, s2 ) ∈ ur)))

by (simp add: osc-def )
with s1-in-S s1 ′-in-S e1-no-c reachable-s1 reachable-s1 ′

s2 ′-in-S s1 ′-e1-s2 ′ unwindingrel-s1 ′-s1
obtain s2 δ where

osc-conclusion:
s2 ∈ SSES ∧ δ � CV = [] ∧
(δ � VV ) = ([e1 ] � VV ) ∧ s1 δ=⇒SES s2 ∧
((s2 ′, s2 ) ∈ ur)

by auto
hence δ-proj-C-empty: δ � CV = []

by (simp add: projection-def )
from osc-conclusion have s2-in-S : s2 ∈ SSES

by auto
from osc-conclusion have unwindingrel-s2 ′-s2 : (s2 ′, s2 ) ∈ ur

by auto
have reachable-s2 : reachable SES s2
proof −

from reachable-s1 obtain t where
path-to-s1 : s0 SES t=⇒SES s1
by (simp add: reachable-def , auto)

from osc-conclusion have s1 δ=⇒SES s2
by auto

with path-to-s1 have s0 SES (t @ δ)=⇒SES s2
by (simp add: path-trans)

thus ?thesis by (simp add: reachable-def , rule exI )
qed

from Cons osc-true s2-in-S s2 ′-in-S α1-proj-C-empty
reachable-s2 reachable-s2 ′ enabled-s2 ′-α1 unwindingrel-s2 ′-s2

obtain α ′′ where α ′′-props:
α ′′ � CV = [] ∧ α ′′ � VV = α1 � VV ∧ enabled SES s2 α ′′

by auto
with osc-conclusion have δα ′′-props:
(δ @ α ′′) � CV = [] ∧
(δ @ α ′′) � VV = (e1#α1 ) � VV ∧ enabled SES s1 (δ @ α ′′)
by (simp add: projection-def enabled-def , auto, simp add: path-trans)

hence (δ @ α ′′) � CV = []
by (simp add: projection-def )

thus ?case using δα ′′-props by auto
qed

lemma path-state-closure: [[ s τ=⇒SES s ′; s ∈ SSES ]] =⇒ s ′ ∈ SSES
(is [[ ?P s τ s ′; ?S s SES ]] =⇒ ?S s ′ SES )

proof (induct τ arbitrary: s s ′)
case Nil with validSES show ?case
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by (auto simp add: SES-valid-def correct-transition-relation-def )
next

case (Cons e τ) thus ?case
proof −

assume path-eτ : ?P s (e # τ) s ′

assume induct-hypo:
∧

s s ′. [[ ?P s τ s ′; ?S s SES ]] =⇒ ?S s ′ SES

from path-eτ obtain s ′′ where s-e-s ′′: s e−→SES s ′′

by(simp add: path-def , split if-split-asm, auto)
with validSES have s ′′-in-S : ?S s ′′ SES

by (simp add: SES-valid-def correct-transition-relation-def )

from s-e-s ′′ path-eτ have path-τ : ?P s ′′ τ s ′ by auto

from path-τ s ′′-in-S show ?case by (rule induct-hypo)
qed

qed

theorem En-to-Adm:
[[ reachable SES s; En % s e]]
=⇒ ∃β. ( s0 SES β=⇒SES s ∧ Adm V % Tr(induceES SES) β e )

proof −
assume En % s e
then obtain β γ s ′ s ′′

where s0 SES β=⇒SES s
and γ � (% V) = β � (% V)
and s0-γ-s ′: s0 SES γ=⇒SES s ′

and s ′-e-s ′′: s ′ e−→SES s ′′

by (simp add: En-def , auto)
moreover

from s0-γ-s ′ s ′-e-s ′′ have s0 SES (γ @ [e])=⇒SES s ′′

by (rule path-trans-single)
hence (γ @ [e]) ∈ Tr(induceES SES)

by(simp add: induceES-def possible-traces-def enabled-def )
ultimately show ?thesis

by (simp add: Adm-def , auto)
qed

theorem Adm-to-En:
[[ β ∈ Tr(induceES SES); Adm V % Tr(induceES SES) β e ]]

=⇒ ∃ s ∈ SSES. (s0 SES β=⇒SES s ∧ En % s e)
proof −

from validSES have s0-in-S : s0 SES ∈ SSES
by (simp add: SES-valid-def s0-is-state-def )

assume β ∈ Tr(induceES SES)
then obtain s
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where s0-β-s: s0 SES β=⇒SES s
by (simp add: induceES-def possible-traces-def enabled-def , auto)

from this have s-in-S : s ∈ SSES using s0-in-S
by (rule path-state-closure)

assume Adm V % Tr(induceES SES) β e
then obtain γ

where %γ-is-%β: γ � (% V) = β � (% V)
and ∃ s ′′. s0 SES (γ @ [e])=⇒SES s ′′

by(simp add: Adm-def induceES-def possible-traces-def enabled-def , auto)
then obtain s ′′

where s0-γe-s ′′: s0 SES (γ @ [e])=⇒SES s ′′

by auto
from this have s ′′-in-S : s ′′ ∈ SSES using s0-in-S

by (rule path-state-closure)

from path-split-single[OF s0-γe-s ′′] obtain s ′

where s0-γ-s ′: s0 SES γ=⇒SES s ′

and s ′-e-s ′′: s ′ e−→SES s ′′

by auto

from path-state-closure[OF s0-γ-s ′ s0-in-S ] have s ′-in-S : s ′ ∈ SSES.

from s ′-in-S s ′′-in-S s0-β-s %γ-is-%β s0-γ-s ′ s ′-e-s ′′ s-in-S show ?thesis
by (simp add: En-def , auto)

qed

lemma state-from-induceES-trace:
[[ (β @ α) ∈ Tr(induceES SES) ]]

=⇒ ∃ s ∈ SSES. s0 SES β=⇒SES s ∧ enabled SES s α ∧ reachable SES s
proof −

assume βα-in-Tr : (β @ α) ∈ Tr(induceES SES)
then obtain s ′ where s0-βα-s ′:s0 SES (β @ α)=⇒SES s ′

by (simp add: induceES-def possible-traces-def enabled-def , auto)

from path-split[OF s0-βα-s ′] obtain s
where s0-β-s: s0 SES β=⇒SES s
and s α=⇒SES s ′

by auto
hence enabled-s-α: enabled SES s α

by (simp add: enabled-def )

from s0-β-s have reachable-s: reachable SES s
by(simp add: reachable-def , auto)

from validSES have s0 SES ∈ SSES
by (simp add: SES-valid-def s0-is-state-def )

with s0-β-s have s-in-S : s ∈ SSES
by (rule path-state-closure)
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with s0-β-s enabled-s-α reachable-s show ?thesis
by auto

qed

lemma path-split2 :s0 SES (β @ α)=⇒SES s
=⇒ ∃ s ′ ∈ SSES. ( s0 SES β=⇒SES s ′ ∧ s ′ α=⇒SES s ∧ reachable SES s ′ )

proof −
assume s0-βα-s: s0 SES (β @ α)=⇒SES s

from path-split[OF s0-βα-s] obtain s ′

where s0-β-s ′: s0 SES β=⇒SES s ′

and s ′-α-s: s ′ α=⇒SES s
by auto

hence reachable SES s ′

by(simp add: reachable-def , auto)
moreover
have s ′ ∈ SSES

proof −
from s0-β-s ′ validSES path-state-closure show ?thesis

by (auto simp add: SES-valid-def s0-is-state-def )
qed

ultimately show ?thesis using s ′-α-s s0-β-s ′

by(auto)
qed

lemma path-split-single2 :
s0 SES (β @ [x])=⇒SES s
=⇒ ∃ s ′ ∈ SSES. ( s0 SES β=⇒SES s ′ ∧ s ′ x−→SES s ∧ reachable SES s ′ )

proof −
assume s0-βx-s: s0 SES (β @ [x])=⇒SES s

from path-split2 [OF s0-βx-s] show ?thesis
by (auto, split if-split-asm, auto)

qed

lemma modified-view-valid: isViewOn (|V = (VV ∪ NV ), N = {}, C = CV |) ESES
using validVU

unfolding isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def by auto

end

end

5.3.3 Unwinding Theorems
theory UnwindingResults
imports AuxiliaryLemmas
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begin

context Unwinding
begin
theorem unwinding-theorem-BSD:
[[ lrf ur ; osc ur ]] =⇒ BSD V Tr(induceES SES)
proof −

assume lrf-true: lrf ur
assume osc-true: osc ur

{
fix α β c
assume c-in-C : c ∈ CV
assume βcα-in-Tr : ((β @ [c]) @ α) ∈ Tr(induceES SES)
assume α-contains-no-c: α � CV = []

from state-from-induceES-trace[OF βcα-in-Tr ] obtain s1 ′

where s1 ′-in-S : s1 ′ ∈ SSES
and enabled-s1 ′-α: enabled SES s1 ′ α
and s0-βc-s1 ′: s0 SES (β @ [c])=⇒SES s1 ′

and reachable-s1 ′: reachable SES s1 ′

by auto

from path-split-single2 [OF s0-βc-s1 ′] obtain s1
where s1-in-S : s1 ∈ SSES
and s0-β-s1 : s0 SES β=⇒SES s1
and s1-c-s1 ′: s1 c−→SES s1 ′

and reachable-s1 : reachable SES s1
by auto

from s1-in-S s1 ′-in-S c-in-C reachable-s1 s1-c-s1 ′ lrf-true
have s1 ′-ur-s1 : ((s1 ′, s1 ) ∈ ur)

by (simp add: lrf-def , auto)

from osc-property[OF osc-true s1-in-S s1 ′-in-S α-contains-no-c reachable-s1
reachable-s1 ′ enabled-s1 ′-α s1 ′-ur-s1 ]

obtain α ′

where α ′-contains-no-c: α ′ � CV = []
and α ′-V-is-α-V : α ′ � VV = α � VV
and enabled-s1-α ′: enabled SES s1 α ′

by auto

have βα ′-in-Tr : β @ α ′ ∈ Tr(induceES SES)
proof −

note s0-β-s1
moreover
from enabled-s1-α ′ obtain s2

where s1 α ′=⇒SES s2
by (simp add: enabled-def , auto)

ultimately have s0 SES (β @ α ′) =⇒SES s2
by (rule path-trans)

thus ?thesis
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by (simp add: induceES-def possible-traces-def enabled-def )
qed

from βα ′-in-Tr α ′-V-is-α-V α ′-contains-no-c have
∃α ′. ((β @ α ′) ∈ (Tr(induceES SES)) ∧ (α ′ � (VV )) = (α � VV ) ∧ α ′ � CV = [])

by auto
}
thus ?thesis

by (simp add: BSD-def )
qed

theorem unwinding-theorem-BSI :
[[ lrb ur ; osc ur ]] =⇒ BSI V Tr(induceES SES)
proof −

assume lrb-true: lrb ur
assume osc-true: osc ur

{
fix α β c
assume c-in-C : c ∈ CV
assume βα-in-ind-Tr : (β @ α) ∈ Tr(induceES SES)
assume α-contains-no-c: α � CV = []

from state-from-induceES-trace[OF βα-in-ind-Tr ] obtain s1
where s1-in-S : s1 ∈ SSES
and path-β-yields-s1 : s0 SES β=⇒SES s1
and enabled-s1-α: enabled SES s1 α
and reachable-s1 : reachable SES s1
by auto

from reachable-s1 s1-in-S c-in-C lrb-true
have ∃ s1 ′∈ SSES. s1 c−→SES s1 ′ ∧ (s1 , s1 ′) ∈ ur

by(simp add: lrb-def )
then obtain s1 ′

where s1 ′-in-S : s1 ′ ∈ SSES
and s1-trans-c-s1 ′: s1 c−→SES s1 ′

and s1-s1 ′-in-ur : (s1 , s1 ′) ∈ ur
by auto

have reachable-s1 ′: reachable SES s1 ′

proof −
from path-β-yields-s1 s1-trans-c-s1 ′ have s0 SES (β @ [c])=⇒SES s1 ′

by (rule path-trans-single)
thus ?thesis by (simp add: reachable-def , auto)

qed

from osc-property[OF osc-true s1 ′-in-S s1-in-S α-contains-no-c
reachable-s1 ′ reachable-s1 enabled-s1-α s1-s1 ′-in-ur ]

obtain α ′

where α ′-contains-no-c: α ′ � CV = []
and α ′-V-is-α-V : α ′ � VV = α � VV
and enabled-s1 ′-α ′: enabled SES s1 ′ α ′
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by auto

have βcα ′-in-ind-Tr : β @ [c] @ α ′ ∈ Tr(induceES SES)
proof −

from path-β-yields-s1 s1-trans-c-s1 ′ have s0 SES (β @ [c])=⇒SES s1 ′

by (rule path-trans-single)
moreover
from enabled-s1 ′-α ′ obtain s2

where s1 ′ α ′=⇒SES s2
by (simp add: enabled-def , auto)

ultimately have s0 SES ((β @ [c]) @ α ′)=⇒SES s2
by (rule path-trans)

thus ?thesis
by (simp add: induceES-def possible-traces-def enabled-def )

qed

from βcα ′-in-ind-Tr α ′-V-is-α-V α ′-contains-no-c
have ∃α ′. β @ c # α ′ ∈ Tr(induceES SES) ∧ α ′ � VV = α � VV ∧ α ′ � CV = []

by auto
}
thus ?thesis

by(simp add: BSI-def )
qed

theorem unwinding-theorem-BSIA:
[[ lrbe % ur ; osc ur ]] =⇒ BSIA % V Tr(induceES SES)
proof −

assume lrbe-true: lrbe % ur
assume osc-true: osc ur

{
fix α β c
assume c-in-C : c ∈ CV
assume βα-in-ind-Tr : (β @ α) ∈ Tr(induceES SES)
assume α-contains-no-c: α � CV = []

assume adm: Adm V % Tr(induceES SES) β c

from state-from-induceES-trace[OF βα-in-ind-Tr ]
obtain s1

where s1-in-S : s1 ∈ SSES
and s0-β-s1 : s0 SES β=⇒SES s1
and enabled-s1-α: enabled SES s1 α
and reachable-s1 : reachable SES s1
by auto

have ∃α ′. β @ [c] @ α ′ ∈ Tr(induceES SES) ∧ α ′ � VV = α � VV ∧ α ′ � CV = []

proof cases
assume en: En % s1 c
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from reachable-s1 s1-in-S c-in-C en lrbe-true
have ∃ s1 ′∈ SSES. s1 c−→SES s1 ′ ∧ (s1 , s1 ′) ∈ ur

by(simp add: lrbe-def )
then obtain s1 ′

where s1 ′-in-S : s1 ′ ∈ SSES
and s1-trans-c-s1 ′: s1 c−→SES s1 ′

and s1-s1 ′-in-ur : (s1 , s1 ′) ∈ ur
by auto

have reachable-s1 ′: reachable SES s1 ′

proof −
from s0-β-s1 s1-trans-c-s1 ′ have s0 SES (β @ [c])=⇒SES s1 ′

by (rule path-trans-single)
thus ?thesis by (simp add: reachable-def , auto)

qed

from osc-property[OF osc-true s1 ′-in-S s1-in-S α-contains-no-c
reachable-s1 ′ reachable-s1 enabled-s1-α s1-s1 ′-in-ur ]

obtain α ′

where α ′-contains-no-c: α ′ � CV = []
and α ′-V-is-α-V : α ′ � VV = α � VV
and enabled-s1 ′-α ′: enabled SES s1 ′ α ′

by auto

have βcα ′-in-ind-Tr : β @ [c] @ α ′ ∈ Tr(induceES SES)
proof −

from s0-β-s1 s1-trans-c-s1 ′ have s0 SES (β @ [c])=⇒SES s1 ′

by (rule path-trans-single)
moreover
from enabled-s1 ′-α ′ obtain s2

where s1 ′ α ′=⇒SES s2
by (simp add: enabled-def , auto)

ultimately have s0 SES ((β @ [c]) @ α ′)=⇒SES s2
by (rule path-trans)

thus ?thesis
by (simp add: induceES-def possible-traces-def enabled-def )

qed

from βcα ′-in-ind-Tr α ′-V-is-α-V α ′-contains-no-c show ?thesis
by auto

next
assume not-en: ¬ En % s1 c

let ?A = (Adm V % (Tr(induceES SES)) β c)
let ?E = ∃ s ∈ SSES. (s0 SES β=⇒SES s ∧ En % s c)

{
assume adm: ?A

from s0-β-s1 have β-in-Tr : β ∈ Tr(induceES SES)
by (simp add: induceES-def possible-traces-def enabled-def )
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from β-in-Tr adm have ?E
by (rule Adm-to-En)

}
hence Adm-to-En-contr : ¬ ?E =⇒ ¬ ?A

by blast
with s1-in-S s0-β-s1 not-en have not-adm: ¬ ?A

by auto
with adm show ?thesis

by auto
qed

}
thus ?thesis

by (simp add: BSIA-def )
qed

theorem unwinding-theorem-FCD:
[[ fcrf Γ ur ; osc ur ]] =⇒ FCD Γ V Tr(induceES SES)
proof −

assume fcrf : fcrf Γ ur
assume osc: osc ur

{
fix α β c v

assume c-in-C-inter-Y : c ∈ (CV ∩ ΥΓ)
assume v-in-V-inter-Nabla: v ∈ (VV ∩ ∇Γ)
assume βcvα-in-Tr : ((β @ [c] @ [v]) @ α) ∈ Tr(induceES SES)
assume α-contains-no-c: α � CV = []

from state-from-induceES-trace[OF βcvα-in-Tr ] obtain s1 ′

where s1 ′-in-S : s1 ′ ∈ SSES
and s0-βcv-s1 ′: s0 SES (β @ ([c] @ [v]))=⇒SES s1 ′

and enabled-s1 ′-α: enabled SES s1 ′ α
and reachable-s1 ′: reachable SES s1 ′

by auto

from path-split2 [OF s0-βcv-s1 ′] obtain s1
where s1-in-S : s1 ∈ SSES
and s0-β-s1 : s0 SES β=⇒SES s1
and s1-cv-s1 ′: s1 ([c] @ [v])=⇒SES s1 ′

and reachable-s1 : reachable SES s1
by (auto)

from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S s1 ′-in-S reachable-s1 s1-cv-s1 ′ fcrf
have ∃ s1 ′′ ∈ SSES. ∃ δ. (∀ d ∈ (set δ). d ∈ (NV ∩ ∆Γ)) ∧

s1 (δ @ [v])=⇒SES s1 ′′ ∧ (s1 ′, s1 ′′) ∈ ur
by (simp add: fcrf-def )

then obtain s1 ′′ δ
where s1 ′′-in-S : s1 ′′ ∈ SSES
and δ-in-N-inter-Delta-star : (∀ d ∈ (set δ). d ∈ (NV ∩ ∆Γ))
and s1-δv-s1 ′′: s1 (δ @ [v])=⇒SES s1 ′′

and s1 ′-ur-s1 ′′: (s1 ′, s1 ′′) ∈ ur

94



by auto

have reachable-s1 ′′: reachable SES s1 ′′

proof −
from s0-β-s1 s1-δv-s1 ′′ have s0 SES (β @ (δ @ [v]))=⇒SES s1 ′′

by (rule path-trans)
thus ?thesis

by (simp add: reachable-def , auto)
qed

from osc-property[OF osc s1 ′′-in-S s1 ′-in-S α-contains-no-c
reachable-s1 ′′ reachable-s1 ′ enabled-s1 ′-α s1 ′-ur-s1 ′′]

obtain α ′

where α ′-contains-no-c: α ′ � CV = []
and α ′-V-is-α-V : α ′ � VV = α � VV
and enabled-s1 ′′-α ′: enabled SES s1 ′′ α ′

by auto

have βδvα ′-in-Tr : β @ δ @ [v] @ α ′ ∈ Tr(induceES SES)
proof −

from s0-β-s1 s1-δv-s1 ′′ have s0 SES (β @ δ @ [v])=⇒SES s1 ′′

by (rule path-trans)
moreover
from enabled-s1 ′′-α ′ obtain s2

where s1 ′′ α ′=⇒SES s2
by (simp add: enabled-def , auto)

ultimately have s0 SES ((β @ δ @ [v]) @ α ′)=⇒SES s2
by (rule path-trans)

thus ?thesis
by (simp add: induceES-def possible-traces-def enabled-def )

qed

from δ-in-N-inter-Delta-star βδvα ′-in-Tr α ′-V-is-α-V α ′-contains-no-c
have ∃α ′. ∃ δ ′. set δ ′ ⊆ (NV ∩ ∆Γ) ∧ β @ δ ′ @ [v] @ α ′ ∈ Tr(induceES SES)
∧ α ′ � VV = α � VV ∧ α ′ � CV = []
by auto

}
thus ?thesis

by (simp add: FCD-def )
qed

theorem unwinding-theorem-FCI :
[[ fcrb Γ ur ; osc ur ]] =⇒ FCI Γ V Tr(induceES SES)
proof −

assume fcrb: fcrb Γ ur
assume osc: osc ur

{
fix α β c v

assume c-in-C-inter-Y : c ∈ (CV ∩ ΥΓ)
assume v-in-V-inter-Nabla: v ∈ (VV ∩ ∇Γ)
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assume βvα-in-Tr : ((β @ [v]) @ α) ∈ Tr(induceES SES)
assume α-contains-no-c: α � CV = []

from state-from-induceES-trace[OF βvα-in-Tr ] obtain s1 ′′

where s1 ′′-in-S : s1 ′′ ∈ SSES
and s0-βv-s1 ′′: s0 SES (β @ [v]) =⇒SES s1 ′′

and enabled-s1 ′′-α: enabled SES s1 ′′ α
and reachable-s1 ′′: reachable SES s1 ′′

by auto

from path-split-single2 [OF s0-βv-s1 ′′] obtain s1
where s1-in-S : s1 ∈ SSES
and s0-β-s1 : s0 SES β=⇒SES s1
and s1-v-s1 ′′: s1 v−→SES s1 ′′

and reachable-s1 : reachable SES s1
by (auto)

from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S
s1 ′′-in-S reachable-s1 s1-v-s1 ′′ fcrb

have ∃ s1 ′ ∈ SSES. ∃ δ. (∀ d ∈ (set δ). d ∈ (NV ∩ ∆Γ))
∧ s1 ([c] @ δ @ [v])=⇒SES s1 ′

∧ (s1 ′′, s1 ′) ∈ ur
by (simp add: fcrb-def )

then obtain s1 ′ δ
where s1 ′-in-S : s1 ′ ∈ SSES
and δ-in-N-inter-Delta-star : (∀ d ∈ (set δ). d ∈ (NV ∩ ∆Γ))
and s1-cδv-s1 ′: s1 ([c] @ δ @ [v])=⇒SES s1 ′

and s1 ′′-ur-s1 ′: (s1 ′′, s1 ′) ∈ ur
by auto

have reachable-s1 ′: reachable SES s1 ′

proof −
from s0-β-s1 s1-cδv-s1 ′ have s0 SES (β @ ([c] @ δ @ [v]))=⇒SES s1 ′

by (rule path-trans)
thus ?thesis

by (simp add: reachable-def , auto)
qed

from osc-property[OF osc s1 ′-in-S s1 ′′-in-S α-contains-no-c
reachable-s1 ′ reachable-s1 ′′ enabled-s1 ′′-α s1 ′′-ur-s1 ′]

obtain α ′

where α ′-contains-no-c: α ′ � CV = []
and α ′-V-is-α-V : α ′ � VV = α � VV
and enabled-s1 ′-α ′: enabled SES s1 ′ α ′

by auto

have βcδvα ′-in-Tr : β @ [c] @ δ @ [v] @ α ′ ∈ Tr(induceES SES)
proof −

let ?l1 = β @ [c] @ δ @ [v]
let ?l2 = α ′

from s0-β-s1 s1-cδv-s1 ′ have s0 SES (?l1 )=⇒SES s1 ′

by (rule path-trans)
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moreover
from enabled-s1 ′-α ′ obtain s1337 where s1 ′ ?l2 =⇒SES s1337

by (simp add: enabled-def , auto)
ultimately have s0 SES (?l1 @ ?l2 )=⇒SES s1337

by (rule path-trans)
thus ?thesis

by (simp add: induceES-def possible-traces-def enabled-def )
qed

from δ-in-N-inter-Delta-star βcδvα ′-in-Tr α ′-V-is-α-V α ′-contains-no-c
have ∃α ′ δ ′.

set δ ′ ⊆ (NV ∩ ∆Γ) ∧ β @ [c] @ δ ′ @ [v] @ α ′ ∈ Tr(induceES SES)
∧ α ′ � VV = α � VV ∧ α ′ � CV = []
by auto

}
thus ?thesis

by(simp add: FCI-def )
qed

theorem unwinding-theorem-FCIA:
[[ fcrbe Γ % ur ; osc ur ]] =⇒ FCIA % Γ V Tr(induceES SES)
proof −

assume fcrbe: fcrbe Γ % ur
assume osc: osc ur

{
fix α β c v

assume c-in-C-inter-Y : c ∈ (CV ∩ ΥΓ)
assume v-in-V-inter-Nabla: v ∈ (VV ∩ ∇Γ)
assume βvα-in-Tr : ((β @ [v]) @ α) ∈ Tr(induceES SES)
assume α-contains-no-c: α � CV = []
assume adm: Adm V % Tr(induceES SES) β c

from state-from-induceES-trace[OF βvα-in-Tr ] obtain s1 ′′

where s1 ′′-in-S : s1 ′′ ∈ SSES
and s0-βv-s1 ′′: s0 SES (β @ [v])=⇒SES s1 ′′

and enabled-s1 ′′-α: enabled SES s1 ′′ α
and reachable-s1 ′′: reachable SES s1 ′′

by auto

from path-split-single2 [OF s0-βv-s1 ′′] obtain s1
where s1-in-S : s1 ∈ SSES
and s0-β-s1 : s0 SES β=⇒SES s1
and s1-v-s1 ′′: s1 v−→SES s1 ′′

and reachable-s1 : reachable SES s1
by (auto)

have ∃α ′ δ ′.(set δ ′ ⊆ (NV ∩ ∆Γ) ∧ β @ [c] @ δ ′ @ [v] @ α ′ ∈ Tr(induceES SES)
∧ α ′ � VV = α � VV ∧ α ′ � CV = [])

proof (cases)
assume en: En % s1 c
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from c-in-C-inter-Y v-in-V-inter-Nabla s1-in-S s1 ′′-in-S reachable-s1 s1-v-s1 ′′ en fcrbe
have ∃ s1 ′ ∈ SSES. ∃ δ. (∀ d ∈ (set δ). d ∈ (NV ∩ ∆Γ))
∧ s1 ([c] @ δ @ [v]) =⇒SES s1 ′

∧ (s1 ′′, s1 ′) ∈ ur
by (simp add: fcrbe-def )

then obtain s1 ′ δ
where s1 ′-in-S : s1 ′ ∈ SSES
and δ-in-N-inter-Delta-star : (∀ d ∈ (set δ). d ∈ (NV ∩ ∆Γ))
and s1-cδv-s1 ′: s1 ([c] @ δ @ [v]) =⇒SES s1 ′

and s1 ′′-ur-s1 ′: (s1 ′′, s1 ′) ∈ ur
by (auto)

have reachable-s1 ′: reachable SES s1 ′

proof −
from s0-β-s1 s1-cδv-s1 ′ have s0 SES (β @ ([c] @ δ @ [v]))=⇒SES s1 ′

by (rule path-trans)
thus ?thesis

by (simp add: reachable-def , auto)
qed

from osc-property[OF osc s1 ′-in-S s1 ′′-in-S α-contains-no-c reachable-s1 ′

reachable-s1 ′′ enabled-s1 ′′-α s1 ′′-ur-s1 ′]
obtain α ′

where α ′-contains-no-c: α ′ � CV = []
and α ′-V-is-α-V : α ′ � VV = α � VV
and enabled-s1 ′-α ′: enabled SES s1 ′ α ′

by auto

have βcδvα ′-in-Tr : β @ [c] @ δ @ [v] @ α ′ ∈ Tr(induceES SES)
proof −

let ?l1 = β @ [c] @ δ @ [v]
let ?l2 = α ′

from s0-β-s1 s1-cδv-s1 ′ have s0 SES (?l1 )=⇒SES s1 ′

by (rule path-trans)
moreover
from enabled-s1 ′-α ′ obtain s1337 where s1 ′ ?l2=⇒SES s1337

by (simp add: enabled-def , auto)
ultimately have s0 SES (?l1 @ ?l2 )=⇒SES s1337

by (rule path-trans)
thus ?thesis

by (simp add: induceES-def possible-traces-def enabled-def )
qed

from δ-in-N-inter-Delta-star βcδvα ′-in-Tr α ′-V-is-α-V α ′-contains-no-c
show ?thesis

by auto
next

assume not-en: ¬ En % s1 c

let ?A = (Adm V % Tr(induceES SES) β c)
let ?E = ∃ s ∈ SSES. (s0 SES β=⇒SES s ∧ En % s c)

98



{
assume adm: ?A

from s0-β-s1 have β-in-Tr : β ∈ Tr(induceES SES)
by (simp add: induceES-def possible-traces-def enabled-def )

from β-in-Tr adm have ?E
by (rule Adm-to-En)

}
hence Adm-to-En-contr : ¬ ?E =⇒ ¬ ?A

by blast
with s1-in-S s0-β-s1 not-en have not-adm: ¬ ?A

by auto
with adm show ?thesis

by auto
qed

}
thus ?thesis

by (simp add: FCIA-def )
qed

theorem unwinding-theorem-SD:
[[ V ′ = (| V = (VV ∪ NV ), N = {}, C = CV |);

Unwinding.lrf SES V ′ ur ; Unwinding.osc SES V ′ ur ]]
=⇒ SD V Tr(induceES SES)

proof −
assume view ′-def : V ′ = (|V = (VV ∪ NV ), N = {}, C = CV |)
assume lrf-view ′ : Unwinding.lrf SES V ′ ur
assume osc-view ′ : Unwinding.osc SES V ′ ur

interpret modified-view: Unwinding SES V ′

by (unfold-locales, rule validSES , simp add: view ′-def modified-view-valid)

from lrf-view ′ osc-view ′ have BSD-view ′ : BSD V ′ Tr(induceES SES)
by (rule-tac ur=ur in modified-view.unwinding-theorem-BSD)

with view ′-def BSD-implies-SD-for-modified-view show ?thesis
by auto

qed

theorem unwinding-theorem-SI :
[[ V ′ = (| V = (VV ∪ NV ), N = {}, C = CV |);

Unwinding.lrb SES V ′ ur ; Unwinding.osc SES V ′ ur ]]
=⇒ SI V Tr(induceES SES)

proof −
assume view ′-def : V ′ = (|V = VV ∪ NV , N = {}, C = CV |)
assume lrb-view ′ : Unwinding.lrb SES V ′ ur
assume osc-view ′ : Unwinding.osc SES V ′ ur

interpret modified-view: Unwinding SES V ′

by (unfold-locales, rule validSES , simp add: view ′-def modified-view-valid)
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from lrb-view ′ osc-view ′ have BSI-view ′ : BSI V ′ Tr(induceES SES)
by (rule-tac ur=ur in modified-view.unwinding-theorem-BSI )

with view ′-def BSI-implies-SI-for-modified-view show ?thesis
by auto

qed

theorem unwinding-theorem-SIA:
[[ V ′ = (| V = (VV ∪ NV ), N = {}, C = CV |); % V = % V ′;

Unwinding.lrbe SES V ′ % ur ; Unwinding.osc SES V ′ ur ]]
=⇒ SIA % V Tr(induceES SES)

proof −
assume view ′-def : V ′ = (|V = VV ∪ NV , N = {}, C = CV |)
assume %-eq : % V = % V ′

assume lrbe-view ′ : Unwinding.lrbe SES V ′ % ur
assume osc-view ′ : Unwinding.osc SES V ′ ur

interpret modified-view: Unwinding SES V ′

by (unfold-locales, rule validSES , simp add: view ′-def modified-view-valid)

from lrbe-view ′ osc-view ′ have BSIA-view ′ : BSIA % V ′ Tr(induceES SES)
by (rule-tac ur=ur in modified-view.unwinding-theorem-BSIA)

with view ′-def BSIA-implies-SIA-for-modified-view %-eq show ?thesis
by auto

qed

theorem unwinding-theorem-SR:
[[ V ′ = (| V = (VV ∪ NV ), N = {}, C = CV |);

Unwinding.lrf SES V ′ ur ; Unwinding.osc SES V ′ ur ]]
=⇒ SR V Tr(induceES SES)

proof −
assume view ′-def : V ′ = (|V = VV ∪ NV , N = {}, C = CV |)
assume lrf-view ′ : Unwinding.lrf SES V ′ ur
assume osc-view ′ : Unwinding.osc SES V ′ ur

from lrf-view ′ osc-view ′ view ′-def have S-view : SD V Tr(induceES SES)
by (rule-tac ur=ur in unwinding-theorem-SD, auto)

with SD-implies-SR show ?thesis
by auto

qed

theorem unwinding-theorem-D:
[[ lrf ur ; osc ur ]] =⇒ D V Tr(induceES SES)
proof −

assume lrf ur
and osc ur
hence BSD V Tr(induceES SES)

by (rule unwinding-theorem-BSD)
thus ?thesis

by (rule BSD-implies-D)
qed
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theorem unwinding-theorem-I :
[[ lrb ur ; osc ur ]] =⇒ I V Tr(induceES SES)
proof −

assume lrb ur
and osc ur
hence BSI V Tr(induceES SES)

by (rule unwinding-theorem-BSI )
thus ?thesis

by (rule BSI-implies-I )
qed

theorem unwinding-theorem-IA:
[[ lrbe % ur ; osc ur ]] =⇒ IA % V Tr(induceES SES)
proof −

assume lrbe % ur
and osc ur
hence BSIA % V Tr(induceES SES)

by (rule unwinding-theorem-BSIA)
thus ?thesis

by (rule BSIA-implies-IA)
qed

theorem unwinding-theorem-R:
[[ lrf ur ; osc ur ]] =⇒ R V (Tr(induceES SES))
proof −

assume lrf ur
and osc ur
hence BSD V Tr(induceES SES)

by (rule unwinding-theorem-BSD)
hence D V Tr(induceES SES)

by (rule BSD-implies-D)
thus ?thesis

by (rule D-implies-R)
qed

end

end

5.4 Compositionality

We prove the compositionality results from [3].

5.4.1 Auxiliary Definitions & Results
theory CompositionBase
imports ../Basics/BSPTaxonomy
begin

definition
properSeparationOfViews ::
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′e ES-rec ⇒ ′e ES-rec ⇒ ′e V-rec ⇒ ′e V-rec ⇒ ′e V-rec ⇒ bool
where
properSeparationOfViews ES1 ES2 V V1 V2 ≡

VV ∩ EES1 = VV1
∧ VV ∩ EES2 = VV2
∧ CV ∩ EES1 ⊆ CV1
∧ CV ∩ EES2 ⊆ CV2
∧ NV1 ∩ NV2 = {}

definition
wellBehavedComposition ::
′e ES-rec ⇒ ′e ES-rec ⇒ ′e V-rec ⇒ ′e V-rec ⇒ ′e V-rec ⇒ bool
where
wellBehavedComposition ES1 ES2 V V1 V2 ≡
( NV1 ∩ EES2 = {} ∧ NV2 ∩ EES1 = {} )
∨ (∃ %1 . ( NV1 ∩ EES2 = {} ∧ total ES1 (CV1 ∩ NV2)

∧ BSIA %1 V1 TrES1 ))
∨ (∃ %2 . ( NV2 ∩ EES1 = {} ∧ total ES2 (CV2 ∩ NV1)

∧ BSIA %2 V2 TrES2 ))
∨ (∃ %1 %2 Γ1 Γ2 . (
∇Γ1 ⊆ EES1 ∧ ∆Γ1 ⊆ EES1 ∧ ΥΓ1 ⊆ EES1
∧ ∇Γ2 ⊆ EES2 ∧ ∆Γ2 ⊆ EES2 ∧ ΥΓ2 ⊆ EES2
∧ BSIA %1 V1 TrES1 ∧ BSIA %2 V2 TrES2
∧ total ES1 (CV1 ∩ NV2) ∧ total ES2 (CV2 ∩ NV1)
∧ FCIA %1 Γ1 V1 TrES1 ∧ FCIA %2 Γ2 V2 TrES2
∧ VV1 ∩ VV2 ⊆ ∇Γ1 ∪ ∇Γ2
∧ CV1 ∩ NV2 ⊆ ΥΓ1 ∧ CV2 ∩ NV1 ⊆ ΥΓ2
∧ NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 = {} ))

locale Compositionality =
fixes ES1 :: ′e ES-rec
and ES2 :: ′e ES-rec
and V :: ′e V-rec
and V1 :: ′e V-rec
and V2 :: ′e V-rec

assumes validES1 : ES-valid ES1
and validES2 : ES-valid ES2
and composableES1ES2 : composable ES1 ES2

and validVC : isViewOn V (E(ES1 ‖ ES2 ))
and validV1 : isViewOn V1 EES1
and validV2 : isViewOn V2 EES2

and propSepViews: properSeparationOfViews ES1 ES2 V V1 V2

and well-behaved-composition: wellBehavedComposition ES1 ES2 V V1 V2
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sublocale Compositionality ⊆ BSPTaxonomyDifferentCorrections ES1 ‖ ES2 V
by (unfold-locales, rule composeES-yields-ES , rule validES1 ,

rule validES2 , rule validVC )

context Compositionality
begin

lemma Vv-is-Vv1-union-Vv2 : VV = VV1 ∪ VV2
proof −

from propSepViews have VV ∩ EES1 ∪ VV ∩ EES2 = VV1 ∪ VV2
unfolding properSeparationOfViews-def by auto

hence VV ∩ (EES1 ∪ EES2) = VV1 ∪ VV2
by auto

hence VV ∩ E(ES1 ‖ ES2 ) = VV1 ∪ VV2
by (simp add: composeES-def )

with validVC show ?thesis
by (simp add: isViewOn-def , auto)

qed

lemma disjoint-Nv1-Vv2 : NV1 ∩ VV2 = {}
proof −

from validV1 have NV1 ⊆ EES1
by (simp add: isViewOn-def , auto)

with propSepViews have NV1 ∩ VV2 = (NV1 ∩ EES1 ∩ VV ) ∩ EES2
unfolding properSeparationOfViews-def by auto

hence NV1 ∩ VV2 = (NV1 ∩ VV ∩ EES1) ∩ EES2
by auto

moreover
from validV1 have NV1 ∩ VV ∩ EES1 = {}

using propSepViews unfolding properSeparationOfViews-def
by (metis VN-disjoint-def V-valid-def inf-assoc inf-commute isViewOn-def )

ultimately show ?thesis
by auto

qed

lemma disjoint-Nv2-Vv1 : NV2 ∩ VV1 = {}
proof −

from validV2 have NV2 ⊆ EES2
by (simp add:isViewOn-def , auto)

with propSepViews have NV2 ∩ VV1 = (NV2 ∩ EES2 ∩ VV ) ∩ EES1
unfolding properSeparationOfViews-def by auto

hence NV2 ∩ VV1 = (NV2 ∩ VV ∩ EES2) ∩ EES1
by auto

moreover
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from validV2 have NV2 ∩ VV ∩ EES2 = {}
using propSepViews unfolding properSeparationOfViews-def
by (metis VN-disjoint-def V-valid-def inf-assoc inf-commute isViewOn-def )

ultimately show ?thesis
by auto

qed

lemma merge-property ′: [[ set t1 ⊆ EES1; set t2 ⊆ EES2;
t1 � EES2 = t2 � EES1; t1 � VV = []; t2 � VV = [];
t1 � CV = []; t2 � CV = [] ]]

=⇒ ∃ t. (t � EES1 = t1 ∧ t � EES2 = t2 ∧ t � VV = [] ∧ t � CV = [] ∧ set t ⊆ (EES1 ∪ EES2))
proof −

assume t1-in-E1star : set t1 ⊆ EES1
and t2-in-E2star : set t2 ⊆ EES2
and t1-t2-synchronized: t1 � EES2 = t2 � EES1
and t1Vv-empty: t1 � VV = []
and t2Vv-empty: t2 � VV = []
and t1Cv-empty: t1 � CV = []
and t2Cv-empty: t2 � CV = []

from merge-property[OF t1-in-E1star t2-in-E2star t1-t2-synchronized] obtain t
where t-is-interleaving: t � EES1 = t1 ∧ t � EES2 = t2
and t-contains-only-events-from-t1-t2 : set t ⊆ set t1 ∪ set t2
unfolding Let-def
by auto

moreover
from t1Vv-empty t2Vv-empty t-contains-only-events-from-t1-t2
have t � VV = []

using propSepViews unfolding properSeparationOfViews-def
by (metis Int-commute Vv-is-Vv1-union-Vv2 projection-on-union projection-sequence t-is-interleaving)

moreover
have t � CV = []

proof −
from t1Cv-empty have ∀ c ∈ CV . c /∈ set t1

by (simp add: projection-def filter-empty-conv, fast)
moreover
from t2Cv-empty have ∀ c ∈ CV . c /∈ set t2

by (simp add: projection-def filter-empty-conv, fast)
ultimately have
∀ c ∈ CV . c /∈ (set t1 ∪ set t2 )

by auto
with t-contains-only-events-from-t1-t2 have ∀ c ∈ CV . c /∈ set t

by auto
thus ?thesis

by (simp add: projection-def , metis filter-empty-conv)
qed

moreover
from t1-in-E1star t2-in-E2star t-contains-only-events-from-t1-t2
have set t ⊆ (EES1 ∪ EES2)

by auto
ultimately show ?thesis
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by blast
qed

lemma Nv1-union-Nv2-subsetof-Nv: NV1 ∪ NV2 ⊆ NV
proof −

{
fix e
assume e-in-N1 : e ∈ NV1
with validV1 have

e-in-E1 : e ∈ EES1
and e-notin-V1 : e /∈ VV1
and e-notin-C1 : e /∈ CV1
by (simp only: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def

VN-disjoint-def , auto)+

from e-in-E1 e-notin-V1 propSepViews have e /∈ VV
unfolding properSeparationOfViews-def by auto

moreover
from e-in-E1 e-notin-C1 propSepViews have e /∈ CV
unfolding properSeparationOfViews-def by auto

moreover
note e-in-E1 validVC
ultimately have e ∈ NV

by (simp add: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def
composeES-def , auto)

}
moreover {

fix e
assume e-in-N2 : e ∈ NV2
with validV2 have

e-in-E2 : e ∈ E-ES ES2
and e-notin-V2 : e /∈ VV2
and e-notin-C2 : e /∈ CV2
by (simp only: isViewOn-def V-valid-def VC-disjoint-def NC-disjoint-def VN-disjoint-def
, auto)+

from e-in-E2 e-notin-V2 propSepViews have e /∈ VV
unfolding properSeparationOfViews-def by auto

moreover
from e-in-E2 e-notin-C2 propSepViews have e /∈ CV
unfolding properSeparationOfViews-def by auto

moreover
note e-in-E2 validVC
ultimately have e ∈ NV

by (simp add: isViewOn-def V-valid-def VC-disjoint-def VN-disjoint-def NC-disjoint-def
composeES-def , auto)

}
ultimately show ?thesis

by auto
qed

end
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end
theory CompositionSupport
imports CompositionBase
begin

locale CompositionSupport =
fixes ESi :: ′e ES-rec
and V :: ′e V-rec
and Vi :: ′e V-rec

assumes validESi: ES-valid ESi

and validVi: isViewOn Vi EESi
and Vv-inter-Ei-is-Vvi: VV ∩ EESi = VVi
and Cv-inter-Ei-subsetof-Cvi: CV ∩ EESi ⊆ CVi

context CompositionSupport
begin

lemma BSD-in-subsystem:
[[ c ∈ CV ; ((β @ [c] @ α) � EESi) ∈ TrESi ; BSD Vi TrESi ]]
=⇒ ∃α-i ′. ( ((β � EESi) @ α-i ′) ∈ TrESi
∧ (α-i ′ � VVi) = (α � VVi) ∧ α-i ′ � CVi = [] )

proof (induct length (([c] @ α) � CVi) arbitrary: β c α)
case 0

let ?L = ([c] @ α) � EESi

from 0 (3 ) have β-E1-cα-E1-in-Tr1 : ((β � EESi) @ (([c] @ α) � EESi)) ∈ TrESi
by (simp only: projection-concatenation-commute)

moreover
have (?L � VVi) = (α � VVi)
proof −

have (?L � VVi) = ([c] @ α) � VVi
proof −

from validVi have EESi ∩ VVi = VVi
by (simp add: isViewOn-def V-valid-def VN-disjoint-def VC-disjoint-def NC-disjoint-def
, auto)

moreover
have (?L � VVi) = ([c] @ α) � (EESi ∩ VVi)

by (simp add: projection-def )
ultimately show ?thesis

by auto
qed
moreover
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have ([c] @ α) � VVi = α � VVi
proof −

have ([c] @ α) � VVi = ([c] � VVi) @ (α � VVi)
by (rule projection-concatenation-commute)

moreover
have ([c] � VVi) = []
proof −

from 0 (2 ) have [c] � CV = [c]
by (simp add: projection-def )

moreover
have [c] � CV � VVi = []
proof −

from validVi Cv-inter-Ei-subsetof-Cvi have CV ∩ VVi ⊆ CVi
by (simp add: isViewOn-def V-valid-def VC-disjoint-def , auto)

moreover
from 0 (1 ) have [c] � CVi = []

by (simp only: projection-concatenation-commute, auto)
ultimately have [c] � (CV ∩ VVi) = []

by (rule projection-on-subset)
thus ?thesis

by (simp only: projection-def , auto)
qed
ultimately show ?thesis

by auto
qed
ultimately show ?thesis

by auto
qed
ultimately show ?thesis

by auto
qed
moreover
have ?L � CVi = []
proof −

from 0 (1 ) have ([c] @ α) � CVi = []
by auto

hence ([c] @ α) � (CVi ∩ EESi) = []
by (rule projection-on-intersection)

hence ([c] @ α) � (EESi ∩ CVi) = []
by (simp only: Int-commute)

thus ?thesis
by (simp only: projection-def , auto)

qed
ultimately show ?case

by auto

next
case (Suc n)

from projection-split-last[OF Suc(2 )] obtain γ c-i δ
where c-i-in-CVi: c-i ∈ CVi
and cα-is-γc-iδ: [c] @ α = γ @ [c-i] @ δ
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and δ-no-CVi: δ � CVi = []
and n-is-len-γδ-CVi: n = length ((γ @ δ) � CVi)
by auto

let ?L1 = ((β @ γ) � EESi)
let ?L2 = (δ � EESi)

note c-i-in-CVi
moreover
have list-with-c-i-in-Tr1 : (?L1 @ [c-i] @ ?L2 ) ∈ TrESi
proof −

from c-i-in-CVi validVi have [c-i] � EESi = [c-i]
by (simp only: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def projection-def , auto)
moreover
from Suc(4 ) cα-is-γc-iδ have ((β @ γ @ [c-i] @ δ) � EESi) ∈ TrESi

by auto
hence (?L1 @ ([c-i] � EESi) @ ?L2 ) ∈ TrESi

by (simp only: projection-def , auto)
ultimately show ?thesis

by auto
qed
moreover
have ?L2 � CVi = []
proof −

from validVi have
∧

x. (x ∈ EESi ∧ x ∈ CVi) = (x ∈ CVi)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)
with δ-no-CVi show ?thesis

by (simp add: projection-def )
qed
moreover note Suc(5 )
ultimately obtain δ ′

where δ ′-1 : (?L1 @ δ ′) ∈ TrESi
and δ ′-2 : δ ′ � VVi = ?L2 � VVi
and δ ′-3 : δ ′ � CVi = []
unfolding BSD-def
by blast

hence δ ′-2 ′: δ ′ � VVi = δ � VVi
proof −

have ?L2 � VVi = δ � VVi
proof −

from validVi have
∧

x. (x ∈ EESi ∧ x ∈ VVi) = (x ∈ VVi)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

thus ?thesis
by (simp add: projection-def )

qed
with δ ′-2 show ?thesis

by auto
qed
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show ?case
proof (cases γ)

case Nil
with cα-is-γc-iδ have [c] @ α = [c-i] @ δ

by auto
hence δ-is-α: δ = α

by auto

from δ ′-1 have δ ′-1 ′: ((β � EESi) @ δ ′) ∈ TrESi
by (simp only: Nil, auto)

moreover
note δ ′-2 ′

moreover note δ ′-3
ultimately show ?thesis

by (simp only: δ-is-α, auto)
next

case (Cons x γ ′)
with cα-is-γc-iδ have γ-is-cγ ′: γ = [c] @ γ ′

by simp
with n-is-len-γδ-CVi have n = length (([c] @ γ ′ @ δ) � CVi)

by auto
with δ-no-CVi δ ′-3 have n = length (([c] @ γ ′ @ δ ′) � CVi)

by (simp only: projection-concatenation-commute)
moreover
note Suc(3 )
moreover
have ((β @ [c] @ (γ ′ @ δ ′)) � EESi) ∈ TrESi
proof −

from δ ′-1 validESi have δ ′ = δ ′ � EESi
proof −

let ?L = (β @ γ) � EESi @ δ ′

from δ ′-1 validESi have ∀ e ∈ set ?L. e ∈ EESi
by (simp add: ES-valid-def traces-contain-events-def )

hence set δ ′ ⊆ EESi
by auto

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
with δ ′-1 have ?L1 @ δ ′ = (β @ γ @ δ ′) � EESi

by (simp only: projection-concatenation-commute, auto)
with γ-is-cγ ′ δ ′-1 show ?thesis

by auto
qed
moreover
note Suc(5 )
moreover note Suc(1 )[of c γ ′ @ δ ′ β]
ultimately obtain α-i ′

where α-i ′-1 : β � EESi @ α-i ′ ∈ TrESi
and α-i ′-2 : α-i ′ � VVi = (γ ′ @ δ ′) � VVi
and α-i ′-3 : α-i ′ � CVi = []
by auto
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moreover
have α-i ′ � VVi = α � VVi
proof −

have α � VVi = (γ ′ @ δ) � VVi
proof −

from cα-is-γc-iδ γ-is-cγ ′ have α � VVi = (γ ′ @ [c-i] @ δ) � VVi
by simp

with validVi c-i-in-CVi show ?thesis
by (simp only: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def projection-concatenation-commute
projection-def , auto)

qed
moreover
from α-i ′-2 δ ′-2 ′ have α-i ′ � VVi = (γ ′ @ δ) � VVi

by (simp only: projection-concatenation-commute)
ultimately show ?thesis

by auto
qed
ultimately show ?thesis

by auto
qed

qed

lemma BSD-in-subsystem2 :
[[ ((β @ α) � EESi) ∈ TrESi ; BSD Vi TrESi ]]
=⇒ ∃ α-i ′. ( ((β � EESi) @ α-i ′) ∈ TrESi ∧ (α-i ′ � VVi) = (α � VVi) ∧ α-i ′ � CVi = [] )

proof (induct length (α � CVi) arbitrary: β α)
case 0

let ?L = α � EESi

from 0 (2 ) have β-E1-α-E1-in-Tr1 : ((β � EESi) @ ?L) ∈ TrESi
by (simp only: projection-concatenation-commute)

moreover
have (?L � VVi) = (α � VVi)

proof −
from validVi have EESi ∩ VVi = VVi

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

moreover
have (?L � VVi) = α � (EESi ∩ VVi)

by (simp add: projection-def )
ultimately show ?thesis

by auto
qed

moreover
have ?L � CVi = []
proof −

from 0 (1 ) have α � CVi = []
by auto

hence α � (CVi ∩ EESi) = []
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by (rule projection-on-intersection)
hence α � (EESi ∩ CVi) = []

by (simp only: Int-commute)
thus ?thesis

by (simp only: projection-def , auto)
qed
ultimately show ?case

by auto

next
case (Suc n)

from projection-split-last[OF Suc(2 )] obtain γ c-i δ
where c-i-in-CVi: c-i ∈ CVi
and α-is-γc-iδ: α = γ @ [c-i] @ δ
and δ-no-CVi: δ � CVi = []
and n-is-len-γδ-CVi: n = length ((γ @ δ) � CVi)
by auto

let ?L1 = ((β @ γ) � EESi)
let ?L2 = (δ � EESi)

note c-i-in-CVi
moreover
have list-with-c-i-in-Tr1 : (?L1 @ [c-i] @ ?L2 ) ∈ TrESi
proof −

from c-i-in-CVi validVi have [c-i] � EESi = [c-i]
by (simp only: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def projection-def , auto)
moreover
from Suc(3 ) α-is-γc-iδ have ((β @ γ @ [c-i] @ δ) � EESi) ∈ TrESi

by auto
hence (?L1 @ ([c-i] � EESi) @ ?L2 ) ∈ TrESi

by (simp only: projection-def , auto)
ultimately show ?thesis

by auto
qed
moreover
have ?L2 � CVi = []
proof −

from validVi have
∧

x. (x ∈ EESi ∧ x ∈ CVi) = (x ∈ CVi)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)
with δ-no-CVi show ?thesis

by (simp add: projection-def )
qed
moreover note Suc(4 )
ultimately obtain δ ′

where δ ′-1 : (?L1 @ δ ′) ∈ TrESi
and δ ′-2 : δ ′ � VVi = ?L2 � VVi
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and δ ′-3 : δ ′ � CVi = []
unfolding BSD-def
by blast

hence δ ′-2 ′: δ ′ � VVi = δ � VVi
proof −

have ?L2 � VVi = δ � VVi
proof −

from validVi have
∧

x. (x ∈ EESi ∧ x ∈ VVi) = (x ∈ VVi)
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

thus ?thesis
by (simp add: projection-def )

qed
with δ ′-2 show ?thesis

by auto
qed

from n-is-len-γδ-CVi δ-no-CVi δ ′-3 have n = length ((γ @ δ ′) � CVi)
by (simp add: projection-concatenation-commute)

moreover
have (β @ (γ @ δ ′)) � EESi ∈ TrESi

proof −
have δ ′ = δ ′ � EESi

proof −
let ?L = (β @ γ) � EESi @ δ ′

from δ ′-1 validESi have ∀ e ∈ set ?L. e ∈ EESi
by (simp add: ES-valid-def traces-contain-events-def )

hence set δ ′ ⊆ EESi
by auto

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
with δ ′-1 have ?L1 @ δ ′ = (β @ γ @ δ ′) � EESi

by (simp only: projection-concatenation-commute, auto)
with δ ′-1 show ?thesis

by auto
qed

moreover
note Suc(4 ) Suc(1 )[of γ @ δ ′ β]
ultimately obtain α-i ′

where res1 : β � EESi @ α-i ′ ∈ TrESi
and res2 : α-i ′ � VVi = (γ @ δ ′) � VVi
and res3 : α-i ′ � CVi = []
by auto

have α-i ′ � VVi = α � VVi
proof −

from c-i-in-CVi validVi have [c-i] � VVi = []
by (simp add: isViewOn-def V-valid-def VC-disjoint-def
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VN-disjoint-def NC-disjoint-def projection-def , auto)
with α-is-γc-iδ δ ′-2 ′ have α � VVi = (γ @ δ ′) � VVi

by (simp only: projection-concatenation-commute, auto)
with res2 show ?thesis

by auto
qed

with res1 res3 show ?case
by auto

qed

end

end

5.4.2 Generalized Zipping Lemma
theory GeneralizedZippingLemma
imports CompositionBase
begin

context Compositionality
begin

lemma generalized-zipping-lemma1 : [[ NV1 ∩ EES2 = {}; NV2 ∩ EES1 = {} ]] =⇒
∀ τ lambda t1 t2 . ( ( set τ ⊆ E(ES1 ‖ ES2 ) ∧ set lambda ⊆ VV ∧ set t1 ⊆ EES1 ∧ set t2 ⊆ EES2
∧ ((τ � EES1) @ t1 ) ∈ TrES1 ∧ ((τ � EES2) @ t2 ) ∈ TrES2 ∧ (lambda � EES1) = (t1 � VV )
∧ (lambda � EES2) = (t2 � VV ) ∧ (t1 � CV1) = [] ∧ (t2 � CV2) = [])
−→ (∃ t. ((τ @ t) ∈ Tr(ES1 ‖ ES2 ) ∧ (t � VV ) = lambda ∧ (t � CV ) = [])) )

proof −
assume Nv1-inter-E2-empty: NV1 ∩ EES2 = {}

and Nv2-inter-E1-empty: NV2 ∩ EES1 = {}

{
fix τ lambda t1 t2
assume τ -in-Estar : set τ ⊆ E(ES1 ‖ ES2 )

and lambda-in-Vvstar : set lambda ⊆ VV
and t1-in-E1star : set t1 ⊆ EES1
and t2-in-E2star : set t2 ⊆ EES2
and τ -E1-t1-in-Tr1 : ((τ � EES1) @ t1 ) ∈ TrES1
and τ -E2-t2-in-Tr2 : ((τ � EES2) @ t2 ) ∈ TrES2
and lambda-E1-is-t1-Vv: (lambda � EES1) = (t1 � VV )
and lambda-E2-is-t2-Vv: (lambda � EES2) = (t2 � VV )
and t1-no-Cv1 : (t1 � CV1) = []
and t2-no-Cv2 : (t2 � CV2) = []

have [[ set τ ⊆ E(ES1 ‖ ES2 );
set lambda ⊆ VV ;
set t1 ⊆ EES1;
set t2 ⊆ EES2;
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((τ � EES1) @ t1 ) ∈ TrES1;
((τ � EES2) @ t2 ) ∈ TrES2;
(lambda � EES1) = (t1 � VV );
(lambda � EES2) = (t2 � VV );
(t1 � CV1) = [];
(t2 � CV2) = [] ]]
=⇒ (∃ t. ((τ @ t) ∈ Tr(ES1 ‖ ES2 ) ∧ (t � VV ) = lambda ∧ (t � CV ) = []))

proof (induct lambda arbitrary: τ t1 t2 )
case (Nil τ t1 t2 )

have (τ @ []) ∈ Tr(ES1 ‖ ES2 )
proof −

have τ ∈ Tr(ES1 ‖ ES2 )
proof −

from Nil(5 ) validES1 have τ � EES1 ∈ TrES1
by (simp add: ES-valid-def traces-prefixclosed-def

prefixclosed-def prefix-def )
moreover
from Nil(6 ) validES2 have τ � EES2 ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

moreover
note Nil(1 )
ultimately show ?thesis

by (simp add: composeES-def )
qed

thus ?thesis
by auto

qed
moreover
have ([] � VV ) = []

by (simp add: projection-def )
moreover
have ([] � CV ) = []

by (simp add: projection-def )
ultimately show ?case

by blast
next

case (Cons V ′ lambda ′ τ t1 t2 )
thus ?case

proof −
from Cons(3 ) have v ′-in-Vv: V ′ ∈ VV

by auto

have V ′ ∈ VV1 ∩ VV2
∨ V ′ ∈ VV1 − EES2
∨ V ′ ∈ VV2 − EES1
using Vv-is-Vv1-union-Vv2 v ′-in-Vv propSepViews
unfolding properSeparationOfViews-def
by fastforce

moreover {
assume v ′-in-Vv1-inter-Vv2 : V ′ ∈ VV1 ∩ VV2
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hence v ′-in-Vv1 : V ′ ∈ VV1 and v ′-in-Vv2 : V ′ ∈ VV2
by auto

with v ′-in-Vv propSepViews
have v ′-in-E1 : V ′ ∈ EES1 and v ′-in-E2 : V ′ ∈ EES2

unfolding properSeparationOfViews-def by auto

from Cons(2 ,4 ,8 ) v ′-in-E1 have t1 � VV = V ′ # (lambda ′ � EES1)
by (simp add: projection-def )

from projection-split-first[OF this] obtain r1 s1
where t1-is-r1-v ′-s1 : t1 = r1 @ [V ′] @ s1
and r1-Vv-empty: r1 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV1 VV r1 ]
have r1-Vv1-empty: r1 � VV1 = []

by auto

from Cons(3 ,5 ,9 ) v ′-in-E2 have t2 � VV = V ′ # (lambda ′ � EES2)
by (simp add: projection-def )

from projection-split-first[OF this] obtain r2 s2
where t2-is-r2-v ′-s2 : t2 = r2 @ [V ′] @ s2
and r2-Vv-empty: r2 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV2 VV r2 ]
have r2-Vv2-empty: r2 � VV2 = []

by auto

from t1-is-r1-v ′-s1 Cons(10 ) have r1-Cv1-empty: r1 � CV1 = []
by (simp add: projection-concatenation-commute)

from t1-is-r1-v ′-s1 Cons(10 ) have s1-Cv1-empty: s1 � CV1 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(4 ) t1-is-r1-v ′-s1 have r1-in-E1star : set r1 ⊆ EES1
and s1-in-E1star : set s1 ⊆ EES1
by auto

from Cons(6 ) t1-is-r1-v ′-s1
have τE1-r1-v ′-s1-in-Tr1 : τ � EES1 @ r1 @ [V ′] @ s1 ∈ TrES1

by simp

have r1-in-Nv1star : set r1 ⊆ NV1
proof −

note r1-in-E1star
moreover
from r1-Vv1-empty have set r1 ∩ VV1 = {}

by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

moreover
from r1-Cv1-empty have set r1 ∩ CV1 = {}
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by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

moreover
note validV1
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def , auto)
qed

with Nv1-inter-E2-empty have r1E2-empty: r1 � EES2 = []
by (metis Int-commute empty-subsetI projection-on-subset2 r1-Vv-empty)

from t2-is-r2-v ′-s2 Cons(11 ) have r2-Cv2-empty: r2 � CV2 = []
by (simp add: projection-concatenation-commute)

from t2-is-r2-v ′-s2 Cons(11 ) have s2-Cv2-empty: s2 � CV2 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(5 ) t2-is-r2-v ′-s2 have r2-in-E2star : set r2 ⊆ EES2
and s2-in-E2star : set s2 ⊆ EES2
by auto

from Cons(7 ) t2-is-r2-v ′-s2
have τE2-r2-v ′-s2-in-Tr2 : τ � EES2 @ r2 @ [V ′] @ s2 ∈ TrES2

by simp

have r2-in-Nv2star : set r2 ⊆ NV2
proof −

note r2-in-E2star
moreover
from r2-Vv2-empty have set r2 ∩ VV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r2-Cv2-empty have set r2 ∩ CV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV2
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def , auto)
qed

with Nv2-inter-E1-empty have r2E1-empty: r2 � EES1 = []
by (metis Int-commute empty-subsetI projection-on-subset2 r2-Vv-empty)

let ?tau = τ @ r1 @ r2 @ [V ′]

from Cons(2 ) r1-in-E1star r2-in-E2star v ′-in-E2
have set ?tau ⊆ (E(ES1 ‖ ES2 ))
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by (simp add: composeES-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
note s1-in-E1star s2-in-E2star
moreover
from Cons(6 ) r1-in-E1star r2E1-empty v ′-in-E1 t1-is-r1-v ′-s1
have ((?tau � EES1) @ s1 ) ∈ TrES1

by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def , auto)

moreover
from Cons(7 ) r2-in-E2star r1E2-empty v ′-in-E2 t2-is-r2-v ′-s2
have ((?tau � EES2) @ s2 ) ∈ TrES2

by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def , auto)

moreover
have lambda ′ � EES1 = s1 � VV

proof −
from Cons(2 ,4 ,8 ) v ′-in-E1 have t1 � VV = [V ′] @ (lambda ′ � EES1)

by (simp add: projection-def )
moreover
from t1-is-r1-v ′-s1 r1-Vv-empty v ′-in-Vv1 Vv-is-Vv1-union-Vv2
have t1 � VV = [V ′] @ (s1 � VV )

by (simp only: t1-is-r1-v ′-s1 projection-concatenation-commute
projection-def , auto)

ultimately show ?thesis
by auto

qed
moreover
have lambda ′ � EES2 = s2 � VV

proof −
from Cons(3 ,5 ,9 ) v ′-in-E2 have t2 � VV = [V ′] @ (lambda ′ � EES2)

by (simp add: projection-def )
moreover
from t2-is-r2-v ′-s2 r2-Vv-empty v ′-in-Vv2 Vv-is-Vv1-union-Vv2
have t2 � VV = [V ′] @ (s2 � VV )

by (simp only: t2-is-r2-v ′-s2 projection-concatenation-commute
projection-def , auto)

ultimately show ?thesis
by auto

qed
moreover
note s1-Cv1-empty s2-Cv2-empty Cons.hyps(1 )[of ?tau s1 s2 ]
ultimately obtain t ′

where tau-t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′Cv-empty: t ′ � CV = []
by auto

let ?t = r1 @ r2 @ [V ′] @ t ′
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note tau-t ′-in-Tr
moreover
from r1-Vv-empty r2-Vv-empty t ′Vv-is-lambda ′ v ′-in-Vv
have ?t � VV = V ′ # lambda ′

by (simp add: projection-def )
moreover
have ?t � CV = []
proof −

from propSepViews have CV ∩ EES1 ⊆ CV1
unfolding properSeparationOfViews-def by auto

hence r1 � CV = []
by (metis projection-on-subset2 r1-Cv1-empty r1-in-E1star)

moreover
from propSepViews have CV ∩ EES2 ⊆ CV2

unfolding properSeparationOfViews-def by auto
hence r2 � CV = []

by (metis projection-on-subset2 r2-Cv2-empty r2-in-E2star)
moreover
note v ′-in-Vv VIsViewOnE t ′Cv-empty
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def , auto)
qed

ultimately have ?thesis
by auto

}
moreover {

assume v ′-in-Vv1-minus-E2 : V ′ ∈ VV1 − EES2
hence v ′-in-Vv1 : V ′ ∈ VV1

by auto
with v ′-in-Vv propSepViews have v ′-in-E1 : V ′ ∈ EES1

unfolding properSeparationOfViews-def
by auto

from v ′-in-Vv1-minus-E2 have v ′-notin-E2 : V ′ /∈ EES2
by (auto)

with validV2 have v ′-notin-Vv2 : V ′ /∈ VV2
by (simp add: isViewOn-def V-valid-def , auto)

from Cons(3 ) Cons(4 ) Cons(8 ) v ′-in-E1 have t1 � VV = V ′ # (lambda ′ � EES1)
by (simp add: projection-def )

from projection-split-first[OF this] obtain r1 s1
where t1-is-r1-v ′-s1 : t1 = r1 @ [V ′] @ s1
and r1-Vv-empty: r1 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV1 VV r1 ]
have r1-Vv1-empty: r1 � VV1 = []

by auto

from t1-is-r1-v ′-s1 Cons(10 ) have r1-Cv1-empty: r1 � CV1 = []
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by (simp add: projection-concatenation-commute)

from t1-is-r1-v ′-s1 Cons(10 ) have s1-Cv1-empty: s1 � CV1 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(4 ) t1-is-r1-v ′-s1 have r1-in-E1star : set r1 ⊆ EES1
by auto

have r1-in-Nv1star : set r1 ⊆ NV1
proof −

note r1-in-E1star
moreover
from r1-Vv1-empty have set r1 ∩ VV1 = {}

by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

moreover
from r1-Cv1-empty have set r1 ∩ CV1 = {}

by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute
Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

moreover
note validV1
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def , auto)
qed
with Nv1-inter-E2-empty have r1E2-empty: r1 � EES2 = []

by (metis Int-commute empty-subsetI
projection-on-subset2 r1-Vv1-empty)

let ?tau = τ @ r1 @ [V ′]

from v ′-in-E1 Cons(2 ) r1-in-Nv1star validV1
have set ?tau ⊆ E(ES1 ‖ ES2 )

by (simp only: isViewOn-def composeES-def V-valid-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
from Cons(4 ) t1-is-r1-v ′-s1 have set s1 ⊆ EES1

by auto
moreover
note Cons(5 )
moreover
have ?tau � EES1 @ s1 ∈ TrES1

by (metis Cons-eq-appendI append-eq-appendI calculation(3 ) eq-Nil-appendI
list-subset-iff-projection-neutral Cons.prems(3 ) Cons.prems(5 )
projection-concatenation-commute t1-is-r1-v ′-s1 )

moreover
have ?tau � EES2 @ t2 ∈ TrES2

proof −
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from v ′-notin-E2 have [V ′] � EES2 = []
by (simp add: projection-def )

with Cons(7 ) Cons(4 ) t1-is-r1-v ′-s1 v ′-notin-E2
r1-in-Nv1star Nv1-inter-E2-empty r1E2-empty
show ?thesis

by (simp only: t1-is-r1-v ′-s1 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)

qed
moreover
from Cons(8 ) t1-is-r1-v ′-s1 r1-Vv-empty v ′-in-E1 v ′-in-Vv have lambda ′ � EES1 = s1 � VV

by (simp add: projection-def )
moreover
from Cons(9 ) v ′-notin-E2 have lambda ′ � EES2 = t2 � VV

by (simp add: projection-def )
moreover
note s1-Cv1-empty Cons(11 )
moreover
note Cons.hyps(1 )[of ?tau s1 t2 ]
ultimately obtain t ′

where tau-t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′-Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′-Cv-empty: t ′ � CV = []
by auto

let ?t = r1 @ [V ′] @ t ′

note tau-t ′-in-Tr
moreover
from r1-Vv-empty t ′-Vv-is-lambda ′ v ′-in-Vv
have ?t � VV = V ′ # lambda ′

by (simp add: projection-def )
moreover
have ?t � CV = []
proof −

from propSepViews have CV ∩ EES1 ⊆ CV1
unfolding properSeparationOfViews-def by auto

hencer1 � CV = []
by (metis projection-on-subset2 r1-Cv1-empty r1-in-E1star)

with v ′-in-Vv VIsViewOnE t ′-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def , auto)

qed
ultimately have ?thesis

by auto
}
moreover {

assume v ′-in-Vv2-minus-E1 : V ′ ∈ VV2 − EES1
hence v ′-in-Vv2 : V ′ ∈ VV2

by auto
with v ′-in-Vv propSepViews
have v ′-in-E2 : V ′ ∈ EES2

unfolding properSeparationOfViews-def by auto
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from v ′-in-Vv2-minus-E1
have v ′-notin-E1 : V ′ /∈ EES1

by (auto)
with validV1
have v ′-notin-Vv1 : V ′ /∈ VV1

by (simp add:isViewOn-def V-valid-def , auto)

from Cons(4 ) Cons(5 ) Cons(9 ) v ′-in-E2
have t2 � VV = V ′ # (lambda ′ � EES2)

by (simp add: projection-def )
from projection-split-first[OF this] obtain r2 s2

where t2-is-r2-v ′-s2 : t2 = r2 @ [V ′] @ s2
and r2-Vv-empty: r2 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV2 VV r2 ]
have r2-Vv2-empty: r2 � VV2 = []

by auto

from t2-is-r2-v ′-s2 Cons(11 ) have r2-Cv2-empty: r2 � CV2 = []
by (simp add: projection-concatenation-commute)

from t2-is-r2-v ′-s2 Cons(11 ) have s2-Cv2-empty: s2 � CV2 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(5 ) t2-is-r2-v ′-s2 have r2-in-E2star : set r2 ⊆ EES2
by auto

have r2-in-Nv2star : set r2 ⊆ NV2
proof −

note r2-in-E2star
moreover
from r2-Vv2-empty have set r2 ∩ VV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

moreover
from r2-Cv2-empty have set r2 ∩ CV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

moreover
note validV2
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def , auto)
qed
with Nv2-inter-E1-empty have r2E1-empty: r2 � EES1 = []

by (metis Int-commute empty-subsetI
projection-on-subset2 r2-Vv2-empty)
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let ?tau = τ @ r2 @ [V ′]

from v ′-in-E2 Cons(2 ) r2-in-Nv2star validV2
have set ?tau ⊆ E(ES1 ‖ ES2 )

by (simp only: composeES-def isViewOn-def V-valid-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
note Cons(4 )
moreover
from Cons(5 ) t2-is-r2-v ′-s2 have set s2 ⊆ EES2

by auto
moreover
have ?tau � EES1 @ t1 ∈ TrES1

proof −
from v ′-notin-E1 have [V ′] � EES1 = []

by (simp add: projection-def )
with Cons(6 ) Cons(3 ) t2-is-r2-v ′-s2 v ′-notin-E1 r2-in-Nv2star

Nv2-inter-E1-empty r2E1-empty
show ?thesis

by (simp only: t2-is-r2-v ′-s2 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)

qed
moreover
have ?tau � EES2 @ s2 ∈ TrES2

by (metis Cons-eq-appendI append-eq-appendI calculation(4 ) eq-Nil-appendI
list-subset-iff-projection-neutral Cons.prems(4 ) Cons.prems(6 )
projection-concatenation-commute t2-is-r2-v ′-s2 )

moreover
from Cons(8 ) v ′-notin-E1 have lambda ′ � EES1 = t1 � VV

by (simp add: projection-def )
moreover
from Cons(9 ) t2-is-r2-v ′-s2 r2-Vv-empty v ′-in-E2 v ′-in-Vv
have lambda ′ � EES2 = s2 � VV

by (simp add: projection-def )
moreover
note Cons(10 ) s2-Cv2-empty
moreover
note Cons.hyps(1 )[of ?tau t1 s2 ]
ultimately obtain t ′

where tau-t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′-Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′-Cv-empty: t ′ � CV = []
by auto

let ?t = r2 @ [V ′] @ t ′

note tau-t ′-in-Tr
moreover
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from r2-Vv-empty t ′-Vv-is-lambda ′ v ′-in-Vv
have ?t � VV = V ′ # lambda ′

by (simp add: projection-def )
moreover
have ?t � CV = []
proof −

from propSepViews have CV ∩ EES2 ⊆ CV2
unfolding properSeparationOfViews-def by auto

hence r2 � CV = []
by (metis projection-on-subset2 r2-Cv2-empty r2-in-E2star)

with v ′-in-Vv VIsViewOnE t ′-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def , auto)

qed
ultimately have ?thesis

by auto
}
ultimately show ?thesis

by blast
qed

qed
}
thus ?thesis

by auto
qed

lemma generalized-zipping-lemma2 : [[ NV1 ∩ EES2 = {}; total ES1 (CV1 ∩ NV2); BSIA %1 V1 TrES1 ]]
=⇒
∀ τ lambda t1 t2 . ( ( set τ ⊆ (E(ES1 ‖ ES2 )) ∧ set lambda ⊆ VV ∧ set t1 ⊆ EES1 ∧ set t2 ⊆ EES2
∧ ((τ � EES1) @ t1 ) ∈ TrES1 ∧ ((τ � EES2) @ t2 ) ∈ TrES2
∧ (lambda � EES1) = (t1 � VV ) ∧ (lambda � EES2) = (t2 � VV )
∧ (t1 � CV1) = [] ∧ (t2 � CV2) = [])
−→ (∃ t. ((τ @ t) ∈ (Tr(ES1 ‖ ES2 )) ∧ (t � VV ) = lambda ∧ (t � CV ) = [])) )

proof −
assume Nv1-inter-E2-empty: NV1 ∩ EES2 = {}
assume total-ES1-Cv1-inter-Nv2 : total ES1 (CV1 ∩ NV2)
assume BSIA: BSIA %1 V1 TrES1

{
fix τ lambda t1 t2
assume τ -in-Estar : set τ ⊆ E(ES1 ‖ ES2 )

and lambda-in-Vvstar : set lambda ⊆ VV
and t1-in-E1star : set t1 ⊆ EES1
and t2-in-E2star : set t2 ⊆ EES2
and τ -E1-t1-in-Tr1 : ((τ � EES1) @ t1 ) ∈ TrES1
and τ -E2-t2-in-Tr2 : ((τ � EES2) @ t2 ) ∈ TrES2
and lambda-E1-is-t1-Vv: (lambda � EES1) = (t1 � VV )
and lambda-E2-is-t2-Vv: (lambda � EES2) = (t2 � VV )
and t1-no-Cv1 : (t1 � CV1) = []
and t2-no-Cv2 : (t2 � CV2) = []

have [[ set τ ⊆ E(ES1 ‖ ES2 ); set lambda ⊆ VV ;
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set t1 ⊆ EES1; set t2 ⊆ EES2;
((τ � EES1) @ t1 ) ∈ TrES1; ((τ � EES2) @ t2 ) ∈ TrES2;
(lambda � EES1) = (t1 � VV ); (lambda � EES2) = (t2 � VV );
(t1 � CV1) = []; (t2 � CV2) = [] ]]
=⇒ (∃ t. ((τ @ t) ∈ Tr(ES1 ‖ ES2 ) ∧ (t � VV ) = lambda ∧ (t � CV ) = []))

proof (induct lambda arbitrary: τ t1 t2 )
case (Nil τ t1 t2 )

have (τ @ []) ∈ Tr(ES1 ‖ ES2 )
proof −

have τ ∈ Tr(ES1 ‖ ES2 )
proof −

from Nil(5 ) validES1 have τ � EES1 ∈ TrES1
by (simp add: ES-valid-def traces-prefixclosed-def

prefixclosed-def prefix-def )
moreover
from Nil(6 ) validES2 have τ � EES2 ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

moreover
note Nil(1 )
ultimately show ?thesis

by (simp add: composeES-def )
qed

thus ?thesis
by auto

qed
moreover
have ([] � VV ) = []

by (simp add: projection-def )
moreover
have ([] � CV ) = []

by (simp add: projection-def )
ultimately show ?case

by blast
next

case (Cons V ′ lambda ′ τ t1 t2 )
thus ?case

proof −
from Cons(3 ) have v ′-in-Vv: V ′ ∈ VV

by auto

have V ′ ∈ VV1 ∩ VV2 ∨ V
′ ∈ VV1 − EES2 ∨ V

′ ∈ VV2 − EES1
using propSepViews unfolding properSeparationOfViews-def
using Vv-is-Vv1-union-Vv2 v ′-in-Vv by fastforce

moreover {
assume v ′-in-Vv1-inter-Vv2 : V ′ ∈ VV1 ∩ VV2
hence v ′-in-Vv1 : V ′ ∈ VV1 and v ′-in-Vv2 : V ′ ∈ VV2

by auto
with v ′-in-Vv propSepViews
have v ′-in-E1 : V ′ ∈ EES1 and v ′-in-E2 : V ′ ∈ EES2

unfolding properSeparationOfViews-def by auto
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from Cons(3 ,5 ,9 ) v ′-in-E2
have t2 � VV = V ′ # (lambda ′ � EES2)

by (simp add: projection-def )
from projection-split-first[OF this] obtain r2 s2

where t2-is-r2-v ′-s2 : t2 = r2 @ [V ′] @ s2
and r2-Vv-empty: r2 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV2 VV r2 ]
have r2-Vv2-empty: r2 � VV2 = []

by auto

from t2-is-r2-v ′-s2 Cons(11 ) have r2-Cv2-empty: r2 � CV2 = []
by (simp add: projection-concatenation-commute)

from t2-is-r2-v ′-s2 Cons(11 ) have s2-Cv2-empty: s2 � CV2 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(5 ) t2-is-r2-v ′-s2 have r2-in-E2star : set r2 ⊆ EES2
and s2-in-E2star : set s2 ⊆ EES2
by auto

from Cons(7 ) t2-is-r2-v ′-s2
have τE2-r2-v ′-s2-in-Tr2 : τ � EES2 @ r2 @ [V ′] @ s2 ∈ TrES2

by simp

have r2-in-Nv2star : set r2 ⊆ NV2
proof −

note r2-in-E2star
moreover
from r2-Vv2-empty have set r2 ∩ VV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r2-Cv2-empty have set r2 ∩ CV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV2
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def , auto)
qed

have r2E1-in-Nv2-inter-C1-star : set (r2 � EES1) ⊆ (NV2 ∩ CV1)
proof −

have set (r2 � EES1) = set r2 ∩ EES1
by (simp add: projection-def , auto)

with r2-in-Nv2star have set (r2 � EES1) ⊆ (EES1 ∩ NV2)
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by auto
moreover
from validV1 propSepViews
have EES1 ∩ NV2 = NV2 ∩ CV1

unfolding properSeparationOfViews-def isViewOn-def V-valid-def
using disjoint-Nv2-Vv1 by blast

ultimately show ?thesis
by auto

qed

note outerCons-prems = Cons.prems

have set (r2 � EES1) ⊆ (NV2 ∩ CV1) =⇒
∃ t1 ′. ( set t1 ′ ⊆ EES1
∧ ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1
∧ t1 ′ � VV1 = t1 � VV1
∧ t1 ′ � CV1 = [] )

proof (induct r2 � EES1 arbitrary: r2 rule: rev-induct)
case Nil thus ?case

by (metis append-self-conv outerCons-prems(9 )
outerCons-prems(3 ) outerCons-prems(5 ) projection-concatenation-commute)

next
case (snoc x xs)

have xs-is-xsE1 : xs = xs � EES1
proof −

from snoc(2 ) have set (xs @ [x]) ⊆ EES1
by (simp add: projection-def , auto)

hence set xs ⊆ EES1
by auto

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
moreover
have set (xs � EES1) ⊆ (NV2 ∩ CV1)

proof −
have set (r2 � EES1) ⊆ (NV2 ∩ CV1)

by (metis Int-commute snoc.prems)
with snoc(2 ) have set (xs @ [x]) ⊆ (NV2 ∩ CV1)

by simp
hence set xs ⊆ (NV2 ∩ CV1)

by auto
with xs-is-xsE1 show ?thesis

by auto
qed

moreover
note snoc.hyps(1 )[of xs]
ultimately obtain t1 ′′

where t1 ′′-in-E1star : set t1 ′′ ⊆ EES1
and τ -xs-E1-t1 ′′-in-Tr1 : ((τ @ xs) � EES1) @ t1 ′′ ∈ TrES1
and t1 ′′Vv1-is-t1Vv1 : t1 ′′ � VV1 = t1 � VV1
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and t1 ′′Cv1-empty: t1 ′′ � CV1 = []
by auto

have x-in-Cv1-inter-Nv2 : x ∈ CV1 ∩ NV2
proof −

from snoc(2−3 ) have set (xs @ [x]) ⊆ (NV2 ∩ CV1)
by simp

thus ?thesis
by auto

qed
hence x-in-Cv1 : x ∈ CV1

by auto
moreover
note τ -xs-E1-t1 ′′-in-Tr1 t1 ′′Cv1-empty
moreover
have Adm: (Adm V1 %1 TrES1 ((τ @ xs) � EES1) x)

proof −
from τ -xs-E1-t1 ′′-in-Tr1 validES1
have τ -xsE1-in-Tr1 : ((τ @ xs) � EES1) ∈ TrES1

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

with x-in-Cv1-inter-Nv2 total-ES1-Cv1-inter-Nv2
have τ -xsE1-x-in-Tr1 : ((τ @ xs) � EES1) @ [x] ∈ TrES1

by (simp only: total-def )
moreover
have ((τ @ xs) � EES1) � (%1 V1 ) = ((τ @ xs) � EES1) � (%1 V1 ) ..
ultimately show ?thesis

by (simp add: Adm-def , auto)
qed

moreover note BSIA
ultimately obtain t1 ′

where res1 : ((τ @ xs) � EES1) @ [x] @ t1 ′ ∈ TrES1
and res2 : t1 ′ � VV1 = t1 ′′ � VV1
and res3 : t1 ′ � CV1 = []
by (simp only: BSIA-def , blast)

have set t1 ′ ⊆ EES1
proof −

from res1 validES1
have set (((τ @ xs) � EES1) @ [x] @ t1 ′) ⊆ EES1

by (simp add: ES-valid-def traces-contain-events-def , auto)
thus ?thesis

by auto
qed

moreover
have ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1

proof −
from res1 xs-is-xsE1 have ((τ � EES1) @ (xs @ [x])) @ t1 ′ ∈ TrES1

by (simp only: projection-concatenation-commute, auto)
thus ?thesis

by (simp only: snoc(2 ) projection-concatenation-commute)
qed
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moreover
from t1 ′′Vv1-is-t1Vv1 res2 have t1 ′ � VV1 = t1 � VV1

by auto
moreover
note res3
ultimately show ?case

by auto
qed
from this[OF r2E1-in-Nv2-inter-C1-star ] obtain t1 ′

where t1 ′-in-E1star : set t1 ′ ⊆ EES1
and τr2E1-t1 ′-in-Tr1 : ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1
and t1 ′-Vv1-is-t1-Vv1 : t1 ′ � VV1 = t1 � VV1
and t1 ′-Cv1-empty: t1 ′ � CV1 = []
by auto

have t1 ′ � VV1 = V ′ # (lambda ′ � EES1)
proof −

from projection-intersection-neutral[OF Cons(4 ), of VV ]
propSepViews
have t1 � VV = t1 � VV1

unfolding properSeparationOfViews-def
by (simp only: Int-commute)

with Cons(8 ) t1 ′-Vv1-is-t1-Vv1 v ′-in-E1 show ?thesis
by (simp add: projection-def )

qed
from projection-split-first[OF this] obtain r1 ′ s1 ′

where t1 ′-is-r1 ′-v ′-s1 ′: t1 ′ = r1 ′ @ [V ′] @ s1 ′

and r1 ′-Vv1-empty: r1 ′ � VV1 = []
by auto

from t1 ′-is-r1 ′-v ′-s1 ′ t1 ′-Cv1-empty
have r1 ′-Cv1-empty: r1 ′ � CV1 = []

by (simp add: projection-concatenation-commute)

from t1 ′-is-r1 ′-v ′-s1 ′ t1 ′-Cv1-empty
have s1 ′-Cv1-empty: s1 ′ � CV1 = []

by (simp only: projection-concatenation-commute, auto)

from t1 ′-in-E1star t1 ′-is-r1 ′-v ′-s1 ′

have r1 ′-in-E1star : set r1 ′ ⊆ EES1
by auto

with propSepViews r1 ′-Vv1-empty
have r1 ′-Vv-empty: r1 ′ � VV = []

unfolding properSeparationOfViews-def
by (metis projection-on-subset2 subset-iff-psubset-eq)

have r1 ′-in-Nv1star : set r1 ′ ⊆ NV1
proof −

note r1 ′-in-E1star
moreover
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from r1 ′-Vv1-empty have set r1 ′ ∩ VV1 = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2

disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r1 ′-Cv1-empty have set r1 ′ ∩ CV1 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV1
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def , auto)
qed

with Nv1-inter-E2-empty have r1 ′E2-empty: r1 ′ � EES2 = []
by (metis Int-commute empty-subsetI

projection-on-subset2 r1 ′-Vv1-empty)

let ?tau = τ @ r2 @ r1 ′ @ [V ′]

from Cons(2 ) r2-in-E2star r1 ′-in-E1star v ′-in-E2
have set ?tau ⊆ (E(ES1 ‖ ES2 ))

by (simp add: composeES-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
from t1 ′-in-E1star t1 ′-is-r1 ′-v ′-s1 ′

have set s1 ′ ⊆ EES1
by simp

moreover
note s2-in-E2star
moreover
from τr2E1-t1 ′-in-Tr1 t1 ′-is-r1 ′-v ′-s1 ′ v ′-in-E1
have ?tau � EES1 @ s1 ′ ∈ TrES1

proof −
from v ′-in-E1 r1 ′-in-E1star
have (τ @ r2 @ r1 ′ @ [V ′]) � EES1 = (τ @ r2 ) � EES1 @ r1 ′ @ [V ′]

by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def , auto)

with τr2E1-t1 ′-in-Tr1 t1 ′-is-r1 ′-v ′-s1 ′ v ′-in-E1 show ?thesis
by simp

qed
moreover
from r2-in-E2star v ′-in-E2 r1 ′E2-empty τE2-r2-v ′-s2-in-Tr2
have ?tau � EES2 @ s2 ∈ TrES2

by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def , auto)

moreover
have lambda ′ � EES1 = s1 ′ � VV
proof −

129



from Cons(2 ,4 ,8 ) v ′-in-E1 have t1 � VV = [V ′] @ (lambda ′ � EES1)
by (simp add: projection-def )

moreover
from t1 ′-is-r1 ′-v ′-s1 ′ r1 ′-Vv1-empty r1 ′-in-E1star v ′-in-Vv1 propSepViews
have t1 ′ � VV = [V ′] @ (s1 ′ � VV )
proof −

have r1 ′ � VV =[]
using propSepViews unfolding properSeparationOfViews-def
by (metis projection-on-subset2

r1 ′-Vv1-empty r1 ′-in-E1star subset-iff-psubset-eq)
with t1 ′-is-r1 ′-v ′-s1 ′ v ′-in-Vv1 Vv-is-Vv1-union-Vv2 show ?thesis

by (simp only: t1 ′-is-r1 ′-v ′-s1 ′ projection-concatenation-commute
projection-def , auto)

qed
moreover
have t1 � VV = t1 ′ � VV

using propSepViews unfolding properSeparationOfViews-def
by (metis Int-commute outerCons-prems(3 )

projection-intersection-neutral
t1 ′-Vv1-is-t1-Vv1 t1 ′-in-E1star)

ultimately show ?thesis
by auto

qed
moreover
have lambda ′ � EES2 = s2 � VV
proof −

from Cons(3 ,5 ,9 ) v ′-in-E2 have t2 � VV = [V ′] @ (lambda ′ � EES2)
by (simp add: projection-def )

moreover
from t2-is-r2-v ′-s2 r2-Vv-empty v ′-in-Vv2 Vv-is-Vv1-union-Vv2
have t2 � VV = [V ′] @ (s2 � VV )

by (simp only: t2-is-r2-v ′-s2 projection-concatenation-commute projection-def , auto)
ultimately show ?thesis

by auto
qed
moreover
note s1 ′-Cv1-empty s2-Cv2-empty Cons.hyps[of ?tau s1 ′ s2 ]
ultimately obtain t ′

where tau-t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′Cv-empty: t ′ � CV = []
by auto

let ?t = r2 @ r1 ′ @ [V ′] @ t ′

note tau-t ′-in-Tr
moreover
from r2-Vv-empty r1 ′-Vv-empty t ′Vv-is-lambda ′ v ′-in-Vv have ?t � VV = V ′ # lambda ′

by(simp only: projection-concatenation-commute projection-def , auto)
moreover
from VIsViewOnE r2-Cv2-empty t ′Cv-empty r1 ′-Cv1-empty v ′-in-Vv
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have ?t � CV = []
proof −

from VIsViewOnE v ′-in-Vv have [V ′] � CV = []
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def , auto)

moreover
from r2-in-E2star r2-Cv2-empty propSepViews
have r2 � CV = []

unfolding properSeparationOfViews-def
using projection-on-subset2 by auto

moreover
from r1 ′-in-E1star r1 ′-Cv1-empty propSepViews
have r1 ′ � CV = []

unfolding properSeparationOfViews-def
using projection-on-subset2 by auto

moreover
note t ′Cv-empty
ultimately show ?thesis

by (simp only: projection-concatenation-commute, auto)
qed
ultimately have ?thesis

by auto
}
moreover {

assume v ′-in-Vv1-minus-E2 : V ′ ∈ VV1 − EES2
hence v ′-in-Vv1 : V ′ ∈ VV1

by auto
with v ′-in-Vv propSepViews have v ′-in-E1 : V ′ ∈ EES1

unfolding properSeparationOfViews-def by auto

from v ′-in-Vv1-minus-E2 have v ′-notin-E2 : V ′ /∈ EES2
by (auto)

with validV2 have v ′-notin-Vv2 : V ′ /∈ VV2
by (simp add: isViewOn-def V-valid-def , auto)

from Cons(3 ) Cons(4 ) Cons(8 ) v ′-in-E1
have t1 � VV = V ′ # (lambda ′ � EES1)

by (simp add: projection-def )
from projection-split-first[OF this] obtain r1 s1

where t1-is-r1-v ′-s1 : t1 = r1 @ [V ′] @ s1
and r1-Vv-empty: r1 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV1 VV r1 ]
have r1-Vv1-empty: r1 � VV1 = []

by auto

from t1-is-r1-v ′-s1 Cons(10 )
have r1-Cv1-empty: r1 � CV1 = []

by (simp add: projection-concatenation-commute)

from t1-is-r1-v ′-s1 Cons(10 )

131



have s1-Cv1-empty: s1 � CV1 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(4 ) t1-is-r1-v ′-s1
have r1-in-E1star : set r1 ⊆ EES1

by auto

have r1-in-Nv1star : set r1 ⊆ NV1
proof −

note r1-in-E1star
moreover
from r1-Vv1-empty have set r1 ∩ VV1 = {}

by (metis Compl-Diff-eq Diff-cancel Diff-eq
Int-commute Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

moreover
from r1-Cv1-empty have set r1 ∩ CV1 = {}

by (metis Compl-Diff-eq Diff-cancel Diff-eq
Int-commute Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)

moreover
note validV1
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def , auto)
qed
with Nv1-inter-E2-empty have r1E2-empty: r1 � EES2 = []

by (metis Int-commute empty-subsetI projection-on-subset2 r1-Vv1-empty)

let ?tau = τ @ r1 @ [V ′]

from v ′-in-E1 Cons(2 ) r1-in-Nv1star validV1
have set ?tau ⊆ E(ES1 ‖ ES2 )

by (simp only: composeES-def isViewOn-def V-valid-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
from Cons(4 ) t1-is-r1-v ′-s1 have set s1 ⊆ EES1

by auto
moreover
note Cons(5 )
moreover
have ?tau � EES1 @ s1 ∈ TrES1

by (metis Cons-eq-appendI append-eq-appendI calculation(3 ) eq-Nil-appendI
list-subset-iff-projection-neutral Cons.prems(3 ) Cons.prems(5 )
projection-concatenation-commute t1-is-r1-v ′-s1 )

moreover
have ?tau � EES2 @ t2 ∈ TrES2

proof −
from v ′-notin-E2 have [V ′] � EES2 = []
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by (simp add: projection-def )
with Cons(7 ) Cons(4 ) t1-is-r1-v ′-s1 v ′-notin-E2 r1-in-Nv1star

Nv1-inter-E2-empty r1E2-empty
show ?thesis

by (simp only: t1-is-r1-v ′-s1 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)

qed
moreover
from Cons(8 ) t1-is-r1-v ′-s1 r1-Vv-empty v ′-in-E1 v ′-in-Vv
have lambda ′ � EES1 = s1 � VV

by (simp add: projection-def )
moreover
from Cons(9 ) v ′-notin-E2 have lambda ′ � EES2 = t2 � VV

by (simp add: projection-def )
moreover
note s1-Cv1-empty Cons(11 )
moreover
note Cons.hyps(1 )[of ?tau s1 t2 ]
ultimately obtain t ′

where τr1v ′t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′-Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′-Cv-empty: t ′ � CV = []
by auto

let ?t = r1 @ [V ′] @ t ′

note τr1v ′t ′-in-Tr
moreover
from r1-Vv-empty t ′-Vv-is-lambda ′ v ′-in-Vv have ?t � VV = V ′ # lambda ′

by (simp add: projection-def )
moreover
have ?t � CV = []
proof −

have r1 � CV = []
using propSepViews unfolding properSeparationOfViews-def
by (metis projection-on-subset2 r1-Cv1-empty r1-in-E1star)

with v ′-in-Vv VIsViewOnE t ′-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def projection-def , auto)

qed
ultimately have ?thesis

by auto
}
moreover {

assume v ′-in-Vv2-minus-E1 : V ′ ∈ VV2 − EES1
hence v ′-in-Vv2 : V ′ ∈ VV2

by auto
with v ′-in-Vv propSepViews
have v ′-in-E2 : V ′ ∈ EES2

unfolding properSeparationOfViews-def by auto

from v ′-in-Vv2-minus-E1

133



have v ′-notin-E1 : V ′ /∈ EES1
by (auto)

with validV1
have v ′-notin-Vv1 : V ′ /∈ VV1

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

from Cons(3 ) Cons(5 ) Cons(9 ) v ′-in-E2 have t2 � VV = V ′ # (lambda ′ � EES2)
by (simp add: projection-def )

from projection-split-first[OF this] obtain r2 s2
where t2-is-r2-v ′-s2 : t2 = r2 @ [V ′] @ s2
and r2-Vv-empty: r2 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV2 VV r2 ]
have r2-Vv2-empty: r2 � VV2 = []

by auto

from t2-is-r2-v ′-s2 Cons(11 ) have r2-Cv2-empty: r2 � CV2 = []
by (simp add: projection-concatenation-commute)

from t2-is-r2-v ′-s2 Cons(11 ) have s2-Cv2-empty: s2 � CV2 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(5 ) t2-is-r2-v ′-s2 have r2-in-E2star : set r2 ⊆ EES2
by auto

have r2-in-Nv2star : set r2 ⊆ NV2
proof −

note r2-in-E2star
moreover
from r2-Vv2-empty have set r2 ∩ VV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union)

moreover
from r2-Cv2-empty have set r2 ∩ CV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral projection-on-union)

moreover
note validV2
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

qed

have r2E1-in-Nv2-inter-C1-star : set (r2 � EES1) ⊆ (NV2 ∩ CV1)
proof −

have set (r2 � EES1) = set r2 ∩ EES1
by (simp add: projection-def , auto)

with r2-in-Nv2star have set (r2 � EES1) ⊆ (EES1 ∩ NV2)
by auto
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moreover
from validV1 propSepViews disjoint-Nv2-Vv1 have EES1 ∩ NV2 = NV2 ∩ CV1

unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)
ultimately show ?thesis

by auto
qed

note outerCons-prems = Cons.prems

have set (r2 � EES1) ⊆ (NV2 ∩ CV1) =⇒
∃ t1 ′. ( set t1 ′ ⊆ EES1
∧ ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1
∧ t1 ′ � VV1 = t1 � VV1
∧ t1 ′ � CV1 = [] )

proof (induct r2 � EES1 arbitrary: r2 rule: rev-induct)
case Nil thus ?case

by (metis append-self-conv outerCons-prems(9 ) outerCons-prems(3 )
outerCons-prems(5 ) projection-concatenation-commute)

next
case (snoc x xs)

have xs-is-xsE1 : xs = xs � EES1
proof −

from snoc(2 ) have set (xs @ [x]) ⊆ EES1
by (simp add: projection-def , auto)

hence set xs ⊆ EES1
by auto

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
moreover
have set (xs � EES1) ⊆ (NV2 ∩ CV1)
proof −

have set (r2 � EES1) ⊆ (NV2 ∩ CV1)
by (metis Int-commute snoc.prems)

with snoc(2 ) have set (xs @ [x]) ⊆ (NV2 ∩ CV1)
by simp

hence set xs ⊆ (NV2 ∩ CV1)
by auto

with xs-is-xsE1 show ?thesis
by auto

qed
moreover
note snoc.hyps(1 )[of xs]
ultimately obtain t1 ′′

where t1 ′′-in-E1star : set t1 ′′ ⊆ EES1
and τ -xs-E1-t1 ′′-in-Tr1 : ((τ @ xs) � EES1) @ t1 ′′ ∈ TrES1
and t1 ′′Vv1-is-t1Vv1 : t1 ′′ � VV1 = t1 � VV1
and t1 ′′Cv1-empty: t1 ′′ � CV1 = []
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by auto

have x-in-Cv1-inter-Nv2 : x ∈ CV1 ∩ NV2
proof −

from snoc(2−3 ) have set (xs @ [x]) ⊆ (NV2 ∩ CV1)
by simp

thus ?thesis
by auto

qed
hence x-in-Cv1 : x ∈ CV1

by auto
moreover
note τ -xs-E1-t1 ′′-in-Tr1 t1 ′′Cv1-empty
moreover
have Adm: (Adm V1 %1 TrES1 ((τ @ xs) � EES1) x)
proof −

from τ -xs-E1-t1 ′′-in-Tr1 validES1
have τ -xsE1-in-Tr1 : ((τ @ xs) � EES1) ∈ TrES1

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

with x-in-Cv1-inter-Nv2 total-ES1-Cv1-inter-Nv2
have τ -xsE1-x-in-Tr1 : ((τ @ xs) � EES1) @ [x] ∈ TrES1

by (simp only: total-def )
moreover
have ((τ @ xs) � EES1) � (%1 V1 ) = ((τ @ xs) � EES1) � (%1 V1 ) ..
ultimately show ?thesis

by (simp add: Adm-def , auto)
qed
moreover note BSIA
ultimately obtain t1 ′

where res1 : ((τ @ xs) � EES1) @ [x] @ t1 ′ ∈ TrES1
and res2 : t1 ′ � VV1 = t1 ′′ � VV1
and res3 : t1 ′ � CV1 = []
by (simp only: BSIA-def , blast)

have set t1 ′ ⊆ EES1
proof −

from res1 validES1 have set (((τ @ xs) � EES1) @ [x] @ t1 ′) ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

thus ?thesis
by auto

qed
moreover
have ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1
proof −

from res1 xs-is-xsE1 have ((τ � EES1) @ (xs @ [x])) @ t1 ′ ∈ TrES1
by (simp only: projection-concatenation-commute, auto)

thus ?thesis
by (simp only: snoc(2 ) projection-concatenation-commute)

qed
moreover
from t1 ′′Vv1-is-t1Vv1 res2 have t1 ′ � VV1 = t1 � VV1

136



by auto
moreover
note res3
ultimately show ?case

by auto
qed
from this[OF r2E1-in-Nv2-inter-C1-star ] obtain t1 ′

where t1 ′-in-E1star : set t1 ′ ⊆ EES1
and τr2E1-t1 ′-in-Tr1 : ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1
and t1 ′-Vv1-is-t1-Vv1 : t1 ′ � VV1 = t1 � VV1
and t1 ′-Cv1-empty: t1 ′ � CV1 = []
by auto

let ?tau = τ @ r2 @ [V ′]

from v ′-in-E2 Cons(2 ) r2-in-Nv2star validV2 have set ?tau ⊆ E(ES1 ‖ ES2 )
by (simp only: composeES-def isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
from Cons(5 ) t2-is-r2-v ′-s2 have set s2 ⊆ EES2

by auto
moreover
note t1 ′-in-E1star
moreover
have ?tau � EES2 @ s2 ∈ TrES2

by (metis Cons-eq-appendI append-eq-appendI calculation(3 ) eq-Nil-appendI
list-subset-iff-projection-neutral Cons.prems(4 ) Cons.prems(6 )
projection-concatenation-commute t2-is-r2-v ′-s2 )

moreover
from τr2E1-t1 ′-in-Tr1 v ′-notin-E1 have ?tau � EES1 @ t1 ′ ∈ TrES1

by (simp add: projection-def )
moreover
from Cons(9 ) t2-is-r2-v ′-s2 r2-Vv-empty v ′-in-E2 v ′-in-Vv
have lambda ′ � EES2 = s2 � VV

by (simp add: projection-def )
moreover
from Cons(10 ) v ′-notin-E1 t1 ′-Vv1-is-t1-Vv1 have lambda ′ � EES1 = t1 ′ � VV
proof −

have t1 ′ � VV = t1 ′ � VV1
using propSepViews unfolding properSeparationOfViews-def
by (simp add: projection-def , metis Int-commute

projection-def projection-intersection-neutral
t1 ′-in-E1star)

moreover
have t1 � VV = t1 � VV1

using propSepViews unfolding properSeparationOfViews-def
by (simp add: projection-def , metis Int-commute

projection-def
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projection-intersection-neutral Cons(4 ))
moreover
note Cons(8 ) v ′-notin-E1 t1 ′-Vv1-is-t1-Vv1
ultimately show ?thesis

by (simp add: projection-def )
qed
moreover
note s2-Cv2-empty t1 ′-Cv1-empty
moreover
note Cons.hyps(1 )[of ?tau t1 ′ s2 ]
ultimately obtain t ′

where τr2v ′t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′-Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′-Cv-empty: t ′ � CV = []
by auto

let ?t = r2 @ [V ′] @ t ′

note τr2v ′t ′-in-Tr
moreover
from r2-Vv-empty t ′-Vv-is-lambda ′ v ′-in-Vv
have ?t � VV = V ′ # lambda ′

by (simp add: projection-def )
moreover
have ?t � CV = []
proof −

have r2 � CV = []
proof −

from propSepViews have CV ∩ EES2 ⊆ CV2
unfolding properSeparationOfViews-def by auto

from projection-on-subset[OF ‹CV ∩ EES2 ⊆ CV2› r2-Cv2-empty]
have r2 � (EES2 ∩ CV ) = []

by (simp only: Int-commute)
with projection-intersection-neutral[OF r2-in-E2star , of CV ] show ?thesis

by simp
qed
with v ′-in-Vv VIsViewOnE t ′-Cv-empty show ?thesis

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def , auto)

qed
ultimately have ?thesis

by auto
}
ultimately show ?thesis

by blast
qed

qed
}
thus ?thesis

by auto
qed
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lemma generalized-zipping-lemma3 : [[ NV2 ∩ EES1 = {}; total ES2 (CV2 ∩ NV1); BSIA %2 V2 TrES2 ]]
=⇒
∀ τ lambda t1 t2 . ( ( set τ ⊆ E(ES1 ‖ ES2 ) ∧ set lambda ⊆ VV ∧ set t1 ⊆ EES1 ∧ set t2 ⊆ EES2
∧ ((τ � EES1) @ t1 ) ∈ TrES1 ∧ ((τ � EES2) @ t2 ) ∈ TrES2
∧ (lambda � EES1) = (t1 � VV ) ∧ (lambda � EES2) = (t2 � VV )
∧ (t1 � CV1) = [] ∧ (t2 � CV2) = [])
−→ (∃ t. ((τ @ t) ∈ Tr(ES1 ‖ ES2 ) ∧ (t � VV ) = lambda ∧ (t � CV ) = [])) )

proof −
assume Nv2-inter-E1-empty: NV2 ∩ EES1 = {}
assume total-ES2-Cv2-inter-Nv1 : total ES2 (CV2 ∩ NV1)
assume BSIA: BSIA %2 V2 TrES2

{
fix τ lambda t1 t2
assume τ -in-Estar : set τ ⊆ E(ES1 ‖ ES2 )

and lambda-in-Vvstar : set lambda ⊆ VV
and t1-in-E1star : set t1 ⊆ EES1
and t2-in-E2star : set t2 ⊆ EES2
and τ -E1-t1-in-Tr1 : ((τ � EES1) @ t1 ) ∈ TrES1
and τ -E2-t2-in-Tr2 : ((τ � EES2) @ t2 ) ∈ TrES2
and lambda-E1-is-t1-Vv: (lambda � EES1) = (t1 � VV )
and lambda-E2-is-t2-Vv: (lambda � EES2) = (t2 � VV )
and t1-no-Cv1 : (t1 � CV1) = []
and t2-no-Cv2 : (t2 � CV2) = []

have [[ set τ ⊆ E(ES1 ‖ ES2 );
set lambda ⊆ VV ;
set t1 ⊆ EES1;
set t2 ⊆ EES2;
((τ � EES1) @ t1 ) ∈ TrES1;
((τ � EES2) @ t2 ) ∈ TrES2;
(lambda � EES1) = (t1 � VV );
(lambda � EES2) = (t2 � VV );
(t1 � CV1) = [];
(t2 � CV2) = [] ]]
=⇒ (∃ t. ((τ @ t) ∈ Tr(ES1 ‖ ES2 ) ∧ (t � VV ) = lambda ∧ (t � CV ) = []))

proof (induct lambda arbitrary: τ t1 t2 )
case (Nil τ t1 t2 )

have (τ @ []) ∈ Tr(ES1 ‖ ES2 )
proof −

have τ ∈ Tr(ES1 ‖ ES2 )
proof −

from Nil(5 ) validES1 have τ � EES1 ∈ TrES1
by (simp add: ES-valid-def traces-prefixclosed-def

prefixclosed-def prefix-def )
moreover
from Nil(6 ) validES2 have τ � EES2 ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
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prefixclosed-def prefix-def )
moreover
note Nil(1 )
ultimately show ?thesis

by (simp add: composeES-def )
qed

thus ?thesis
by auto

qed
moreover
have ([] � VV ) = []

by (simp add: projection-def )
moreover
have ([] � CV ) = []

by (simp add: projection-def )
ultimately show ?case

by blast
next

case (Cons V ′ lambda ′ τ t1 t2 )
thus ?case

proof −
from Cons(3 ) have v ′-in-Vv: V ′ ∈ VV

by auto

have V ′ ∈ VV1 ∩ VV2
∨ V ′ ∈ VV1 − EES2
∨ V ′ ∈ VV2 − EES1
using propSepViews unfolding properSeparationOfViews-def
by (metis Diff-iff Int-commute Int-iff Un-iff

Vv-is-Vv1-union-Vv2 v ′-in-Vv)
moreover {

assume v ′-in-Vv1-inter-Vv2 : V ′ ∈ VV1 ∩ VV2
hence v ′-in-Vv2 : V ′ ∈ VV2 and v ′-in-Vv1 : V ′ ∈ VV1

by auto
with v ′-in-Vv
have v ′-in-E2 : V ′ ∈ EES2 and v ′-in-E1 : V ′ ∈ EES1
using propSepViews unfolding properSeparationOfViews-def by auto

from Cons(2 ,4 ,8 ) v ′-in-E1 have t1 � VV = V ′ # (lambda ′ � EES1)
by (simp add: projection-def )

from projection-split-first[OF this] obtain r1 s1
where t1-is-r1-v ′-s1 : t1 = r1 @ [V ′] @ s1
and r1-Vv-empty: r1 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV1 VV r1 ]
have r1-Vv1-empty: r1 � VV1 = []

by auto

from t1-is-r1-v ′-s1 Cons(10 ) have r1-Cv1-empty: r1 � CV1 = []
by (simp add: projection-concatenation-commute)
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from t1-is-r1-v ′-s1 Cons(10 ) have s1-Cv1-empty: s1 � CV1 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(4 ) t1-is-r1-v ′-s1
have r1-in-E1star : set r1 ⊆ EES1 and s1-in-E1star : set s1 ⊆ EES1

by auto

from Cons(6 ) t1-is-r1-v ′-s1
have τE1-r1-v ′-s1-in-Tr1 : τ � EES1 @ r1 @ [V ′] @ s1 ∈ TrES1

by simp

have r1-in-Nv1star : set r1 ⊆ NV1
proof −

note r1-in-E1star
moreover
from r1-Vv1-empty have set r1 ∩ VV1 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r1-Cv1-empty have set r1 ∩ CV1 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV1
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

qed

have r1E2-in-Nv1-inter-C2-star : set (r1 � EES2) ⊆ (NV1 ∩ CV2)
proof −

have set (r1 � EES2) = set r1 ∩ EES2
by (simp add: projection-def , auto)

with r1-in-Nv1star have set (r1 � EES2) ⊆ (EES2 ∩ NV1)
by auto

moreover
from validV2 disjoint-Nv1-Vv2
have EES2 ∩ NV1 = NV1 ∩ CV2

using propSepViews unfolding properSeparationOfViews-def
by (simp add:isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
ultimately show ?thesis

by auto
qed

note outerCons-prems = Cons.prems

have set (r1 � EES2) ⊆ (NV1 ∩ CV2) =⇒
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∃ t2 ′. ( set t2 ′ ⊆ EES2
∧ ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2
∧ t2 ′ � VV2 = t2 � VV2
∧ t2 ′ � CV2 = [] )

proof (induct r1 � EES2 arbitrary: r1 rule: rev-induct)
case Nil thus ?case

by (metis append-self-conv outerCons-prems(10 ) outerCons-prems(4 )
outerCons-prems(6 ) projection-concatenation-commute)

next
case (snoc x xs)

have xs-is-xsE2 : xs = xs � EES2
proof −

from snoc(2 ) have set (xs @ [x]) ⊆ EES2
by (simp add: projection-def , auto)

hence set xs ⊆ EES2
by auto

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
moreover
have set (xs � EES2) ⊆ (NV1 ∩ CV2)

proof −
have set (r1 � EES2) ⊆ (NV1 ∩ CV2)

by (metis Int-commute snoc.prems)
with snoc(2 ) have set (xs @ [x]) ⊆ (NV1 ∩ CV2)

by simp
hence set xs ⊆ (NV1 ∩ CV2)

by auto
with xs-is-xsE2 show ?thesis

by auto
qed

moreover
note snoc.hyps(1 )[of xs]
ultimately obtain t2 ′′

where t2 ′′-in-E2star : set t2 ′′ ⊆ EES2
and τ -xs-E2-t2 ′′-in-Tr2 : ((τ @ xs) � EES2) @ t2 ′′ ∈ TrES2
and t2 ′′Vv2-is-t2Vv2 : t2 ′′ � VV2 = t2 � VV2
and t2 ′′Cv2-empty: t2 ′′ � CV2 = []
by auto

have x-in-Cv2-inter-Nv1 : x ∈ CV2 ∩ NV1
proof −

from snoc(2−3 ) have set (xs @ [x]) ⊆ (NV1 ∩ CV2)
by simp

thus ?thesis
by auto

qed
hence x-in-Cv2 : x ∈ CV2

by auto
moreover
note τ -xs-E2-t2 ′′-in-Tr2 t2 ′′Cv2-empty
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moreover
have Adm: (Adm V2 %2 TrES2 ((τ @ xs) � EES2) x)

proof −
from τ -xs-E2-t2 ′′-in-Tr2 validES2
have τ -xsE2-in-Tr2 : ((τ @ xs) � EES2) ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

with x-in-Cv2-inter-Nv1 total-ES2-Cv2-inter-Nv1
have τ -xsE2-x-in-Tr2 : ((τ @ xs) � EES2) @ [x] ∈ TrES2

by (simp only: total-def )
moreover
have ((τ @ xs) � EES2) � (%2 V2 ) = ((τ @ xs) � EES2) � (%2 V2 ) ..
ultimately show ?thesis

by (simp add: Adm-def , auto)
qed

moreover note BSIA
ultimately obtain t2 ′

where res1 : ((τ @ xs) � EES2) @ [x] @ t2 ′ ∈ TrES2
and res2 : t2 ′ � VV2 = t2 ′′ � VV2
and res3 : t2 ′ � CV2 = []
by (simp only: BSIA-def , blast)

have set t2 ′ ⊆ EES2
proof −

from res1 validES2
have set (((τ @ xs) � EES2) @ [x] @ t2 ′) ⊆ EES2

by (simp add: ES-valid-def traces-contain-events-def , auto)
thus ?thesis

by auto
qed

moreover
have ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2

proof −
from res1 xs-is-xsE2 have ((τ � EES2) @ (xs @ [x])) @ t2 ′ ∈ TrES2

by (simp only: projection-concatenation-commute, auto)
thus ?thesis

by (simp only: snoc(2 ) projection-concatenation-commute)
qed

moreover
from t2 ′′Vv2-is-t2Vv2 res2 have t2 ′ � VV2 = t2 � VV2

by auto
moreover
note res3
ultimately show ?case

by auto
qed
from this[OF r1E2-in-Nv1-inter-C2-star ] obtain t2 ′

where t2 ′-in-E2star : set t2 ′ ⊆ EES2
and τr1E2-t2 ′-in-Tr2 : ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2
and t2 ′-Vv2-is-t2-Vv2 : t2 ′ � VV2 = t2 � VV2
and t2 ′-Cv2-empty: t2 ′ � CV2 = []
by auto
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have t2 ′ � VV2 = V ′ # (lambda ′ � EES2)
proof −

from projection-intersection-neutral[OF Cons(5 ), of VV ]
have t2 � VV = t2 � VV2

using propSepViews unfolding properSeparationOfViews-def
by (simp only: Int-commute)

with Cons(9 ) t2 ′-Vv2-is-t2-Vv2 v ′-in-E2 show ?thesis
by (simp add: projection-def )

qed
from projection-split-first[OF this] obtain r2 ′ s2 ′

where t2 ′-is-r2 ′-v ′-s2 ′: t2 ′ = r2 ′ @ [V ′] @ s2 ′

and r2 ′-Vv2-empty: r2 ′ � VV2 = []
by auto

from t2 ′-is-r2 ′-v ′-s2 ′ t2 ′-Cv2-empty
have r2 ′-Cv2-empty: r2 ′ � CV2 = []

by (simp add: projection-concatenation-commute)

from t2 ′-is-r2 ′-v ′-s2 ′ t2 ′-Cv2-empty
have s2 ′-Cv2-empty: s2 ′ � CV2 = []

by (simp only: projection-concatenation-commute, auto)

from t2 ′-in-E2star t2 ′-is-r2 ′-v ′-s2 ′

have r2 ′-in-E2star : set r2 ′ ⊆ EES2
by auto

with r2 ′-Vv2-empty
have r2 ′-Vv-empty: r2 ′ � VV = []

using propSepViews unfolding properSeparationOfViews-def
by (metis projection-on-subset2 subset-iff-psubset-eq)

have r2 ′-in-Nv2star : set r2 ′ ⊆ NV2
proof −

note r2 ′-in-E2star
moreover
from r2 ′-Vv2-empty have set r2 ′ ∩ VV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r2 ′-Cv2-empty have set r2 ′ ∩ CV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV2
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

qed
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with Nv2-inter-E1-empty have r2 ′E1-empty: r2 ′ � EES1 = []
by (metis Int-commute empty-subsetI projection-on-subset2 r2 ′-Vv2-empty)

let ?tau = τ @ r1 @ r2 ′ @ [V ′]

from Cons(2 ) r1-in-E1star r2 ′-in-E2star v ′-in-E1
have set ?tau ⊆ (E(ES1 ‖ ES2 ))

by (simp add: composeES-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
note s1-in-E1star
moreover
from t2 ′-in-E2star t2 ′-is-r2 ′-v ′-s2 ′ have set s2 ′ ⊆ EES2

by simp
moreover
from r1-in-E1star v ′-in-E1 r2 ′E1-empty τE1-r1-v ′-s1-in-Tr1
have ?tau � EES1 @ s1 ∈ TrES1

by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def , auto)

moreover
from τr1E2-t2 ′-in-Tr2 t2 ′-is-r2 ′-v ′-s2 ′ v ′-in-E2
have ?tau � EES2 @ s2 ′ ∈ TrES2

proof −
from v ′-in-E2 r2 ′-in-E2star
have (τ @ r1 @ r2 ′ @ [V ′]) � EES2 = (τ @ r1 ) � EES2 @ r2 ′ @ [V ′]

by (simp only: projection-concatenation-commute
list-subset-iff-projection-neutral projection-def , auto)

with τr1E2-t2 ′-in-Tr2 t2 ′-is-r2 ′-v ′-s2 ′ v ′-in-E2 show ?thesis
by simp

qed
moreover
have lambda ′ � EES1 = s1 � VV
proof −

from Cons(3 ,4 ,8 ) v ′-in-E1 have t1 � VV = [V ′] @ (lambda ′ � EES1)
by (simp add: projection-def )

moreover
from t1-is-r1-v ′-s1 r1-Vv-empty v ′-in-Vv1 Vv-is-Vv1-union-Vv2
have t1 � VV = [V ′] @ (s1 � VV )

by (simp only: t1-is-r1-v ′-s1 projection-concatenation-commute projection-def , auto)
ultimately show ?thesis

by auto
qed
moreover
have lambda ′ � EES2 = s2 ′ � VV
proof −

from Cons(4 ,5 ,9 ) v ′-in-E2 have t2 � VV = [V ′] @ (lambda ′ � EES2)
by (simp add: projection-def )

moreover
from t2 ′-is-r2 ′-v ′-s2 ′ r2 ′-Vv2-empty r2 ′-in-E2star v ′-in-Vv2 propSepViews
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have t2 ′ � VV = [V ′] @ (s2 ′ � VV )
proof −

have r2 ′ � VV =[]
using propSepViews unfolding properSeparationOfViews-def
by (metis projection-on-subset2

r2 ′-Vv2-empty r2 ′-in-E2star subset-iff-psubset-eq)
with t2 ′-is-r2 ′-v ′-s2 ′ v ′-in-Vv2 Vv-is-Vv1-union-Vv2 show ?thesis

by (simp only: t2 ′-is-r2 ′-v ′-s2 ′ projection-concatenation-commute
projection-def , auto)

qed
moreover
have t2 � VV = t2 ′ � VV

using propSepViews unfolding properSeparationOfViews-def
by (metis Int-commute outerCons-prems(4 )

projection-intersection-neutral
t2 ′-Vv2-is-t2-Vv2 t2 ′-in-E2star)

ultimately show ?thesis
by auto

qed
moreover
note s1-Cv1-empty s2 ′-Cv2-empty Cons.hyps[of ?tau s1 s2 ′]
ultimately obtain t ′

where tau-t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′Cv-empty: t ′ � CV = []
by auto

let ?t = r1 @ r2 ′ @ [V ′] @ t ′

note tau-t ′-in-Tr
moreover
from r1-Vv-empty r2 ′-Vv-empty t ′Vv-is-lambda ′ v ′-in-Vv
have ?t � VV = V ′ # lambda ′

by(simp only: projection-concatenation-commute projection-def , auto)
moreover
from VIsViewOnE r1-Cv1-empty t ′Cv-empty r2 ′-Cv2-empty v ′-in-Vv
have ?t � CV = []
proof −

from VIsViewOnE v ′-in-Vv have [V ′] � CV = []
by (simp add:isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def projection-def , auto)
moreover
from r1-in-E1star r1-Cv1-empty
have r1 � CV = []

using propSepViews projection-on-subset2 unfolding properSeparationOfViews-def
by auto

moreover
from r2 ′-in-E2star r2 ′-Cv2-empty
have r2 ′ � CV = []

using propSepViews projection-on-subset2 unfolding properSeparationOfViews-def
by auto
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moreover
note t ′Cv-empty
ultimately show ?thesis

by (simp only: projection-concatenation-commute, auto)
qed
ultimately have ?thesis

by auto
}
moreover {

assume v ′-in-Vv1-minus-E2 : V ′ ∈ VV1 − EES2
hence v ′-in-Vv1 : V ′ ∈ VV1

by auto
with v ′-in-Vv have v ′-in-E1 : V ′ ∈ EES1

using propSepViews unfolding properSeparationOfViews-def
by auto

from v ′-in-Vv1-minus-E2 have v ′-notin-E2 : V ′ /∈ EES2
by (auto)

with validV2 have v ′-notin-Vv2 : V ′ /∈ VV2
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)

from Cons(3 ) Cons(4 ) Cons(8 ) v ′-in-E1
have t1 � VV = V ′ # (lambda ′ � EES1)

by (simp add: projection-def )
from projection-split-first[OF this] obtain r1 s1

where t1-is-r1-v ′-s1 : t1 = r1 @ [V ′] @ s1
and r1-Vv-empty: r1 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV1 VV r1 ]
have r1-Vv1-empty: r1 � VV1 = []

by auto

from t1-is-r1-v ′-s1 Cons(10 ) have r1-Cv1-empty: r1 � CV1 = []
by (simp add: projection-concatenation-commute)

from t1-is-r1-v ′-s1 Cons(10 ) have s1-Cv1-empty: s1 � CV1 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(4 ) t1-is-r1-v ′-s1 have r1-in-E1star : set r1 ⊆ EES1
by auto

have r1-in-Nv1star : set r1 ⊆ NV1
proof −

note r1-in-E1star
moreover
from r1-Vv1-empty have set r1 ∩ VV1 = {}

by (metis Compl-Diff-eq Diff-cancel Diff-eq
Int-commute Int-empty-right disjoint-eq-subset-Compl
list-subset-iff-projection-neutral projection-on-union)
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moreover
from r1-Cv1-empty have set r1 ∩ CV1 = {}

by (metis Compl-Diff-eq Diff-cancel Diff-eq Int-commute Int-empty-right
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV1
ultimately show ?thesis

by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

qed

have r1E2-in-Nv1-inter-C2-star : set (r1 � EES2) ⊆ (NV1 ∩ CV2)
proof −

have set (r1 � EES2) = set r1 ∩ EES2
by (simp add: projection-def , auto)

with r1-in-Nv1star have set (r1 � EES2) ⊆ (EES2 ∩ NV1)
by auto

moreover
from validV2 disjoint-Nv1-Vv2
have EES2 ∩ NV1 = NV1 ∩ CV2

using propSepViews unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)
ultimately show ?thesis

by auto
qed

note outerCons-prems = Cons.prems

have set (r1 � EES2) ⊆ (NV1 ∩ CV2) =⇒
∃ t2 ′. ( set t2 ′ ⊆ EES2
∧ ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2
∧ t2 ′ � VV2 = t2 � VV2
∧ t2 ′ � CV2 = [] )

proof (induct r1 � EES2 arbitrary: r1 rule: rev-induct)
case Nil thus ?case

by (metis append-self-conv outerCons-prems(10 ) outerCons-prems(4 )
outerCons-prems(6 ) projection-concatenation-commute)

next
case (snoc x xs)

have xs-is-xsE2 : xs = xs � EES2
proof −

from snoc(2 ) have set (xs @ [x]) ⊆ EES2
by (simp add: projection-def , auto)

hence set xs ⊆ EES2
by auto

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
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moreover
have set (xs � EES2) ⊆ (NV1 ∩ CV2)
proof −

have set (r1 � EES2) ⊆ (NV1 ∩ CV2)
by (metis Int-commute snoc.prems)

with snoc(2 ) have set (xs @ [x]) ⊆ (NV1 ∩ CV2)
by simp

hence set xs ⊆ (NV1 ∩ CV2)
by auto

with xs-is-xsE2 show ?thesis
by auto

qed
moreover
note snoc.hyps(1 )[of xs]
ultimately obtain t2 ′′

where t2 ′′-in-E2star : set t2 ′′ ⊆ EES2
and τ -xs-E2-t2 ′′-in-Tr2 : ((τ @ xs) � EES2) @ t2 ′′ ∈ TrES2
and t2 ′′Vv2-is-t2Vv2 : t2 ′′ � VV2 = t2 � VV2
and t2 ′′Cv2-empty: t2 ′′ � CV2 = []
by auto

have x-in-Cv2-inter-Nv1 : x ∈ CV2 ∩ NV1
proof −

from snoc(2−3 ) have set (xs @ [x]) ⊆ (NV1 ∩ CV2)
by simp

thus ?thesis
by auto

qed
hence x-in-Cv2 : x ∈ CV2

by auto
moreover
note τ -xs-E2-t2 ′′-in-Tr2 t2 ′′Cv2-empty
moreover
have Adm: (Adm V2 %2 TrES2 ((τ @ xs) � EES2) x)
proof −

from τ -xs-E2-t2 ′′-in-Tr2 validES2
have τ -xsE2-in-Tr2 : ((τ @ xs) � EES2) ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

with x-in-Cv2-inter-Nv1 total-ES2-Cv2-inter-Nv1
have τ -xsE2-x-in-Tr2 : ((τ @ xs) � EES2) @ [x] ∈ TrES2

by (simp only: total-def )
moreover
have ((τ @ xs) � EES2) � (%2 V2 ) = ((τ @ xs) � EES2) � (%2 V2 ) ..
ultimately show ?thesis

by (simp add: Adm-def , auto)
qed
moreover note BSIA
ultimately obtain t2 ′

where res1 : ((τ @ xs) � EES2) @ [x] @ t2 ′ ∈ TrES2
and res2 : t2 ′ � VV2 = t2 ′′ � VV2
and res3 : t2 ′ � CV2 = []
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by (simp only: BSIA-def , blast)

have set t2 ′ ⊆ EES2
proof −

from res1 validES2 have set (((τ @ xs) � EES2) @ [x] @ t2 ′) ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

thus ?thesis
by auto

qed
moreover
have ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2
proof −

from res1 xs-is-xsE2 have ((τ � EES2) @ (xs @ [x])) @ t2 ′ ∈ TrES2
by (simp only: projection-concatenation-commute, auto)

thus ?thesis
by (simp only: snoc(2 ) projection-concatenation-commute)

qed
moreover
from t2 ′′Vv2-is-t2Vv2 res2 have t2 ′ � VV2 = t2 � VV2

by auto
moreover
note res3
ultimately show ?case

by auto
qed
from this[OF r1E2-in-Nv1-inter-C2-star ] obtain t2 ′

where t2 ′-in-E2star : set t2 ′ ⊆ EES2
and τr1E2-t2 ′-in-Tr2 : ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2
and t2 ′-Vv2-is-t2-Vv2 : t2 ′ � VV2 = t2 � VV2
and t2 ′-Cv2-empty: t2 ′ � CV2 = []
by auto

let ?tau = τ @ r1 @ [V ′]

from v ′-in-E1 Cons(2 ) r1-in-Nv1star validV1 have set ?tau ⊆ E(ES1 ‖ ES2 )
by (simp only: composeES-def isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
from Cons(4 ) t1-is-r1-v ′-s1 have set s1 ⊆ EES1

by auto
moreover
note t2 ′-in-E2star
moreover
have ?tau � EES1 @ s1 ∈ TrES1

by (metis Cons-eq-appendI append-eq-appendI calculation(3 ) eq-Nil-appendI
list-subset-iff-projection-neutral Cons.prems(3 ) Cons.prems(5 )
projection-concatenation-commute t1-is-r1-v ′-s1 )

moreover
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from τr1E2-t2 ′-in-Tr2 v ′-notin-E2
have ?tau � EES2 @ t2 ′ ∈ TrES2

by (simp add: projection-def )
moreover
from Cons(8 ) t1-is-r1-v ′-s1 r1-Vv-empty v ′-in-E1 v ′-in-Vv
have lambda ′ � EES1 = s1 � VV

by (simp add: projection-def )
moreover
from Cons(11 ) v ′-notin-E2 t2 ′-Vv2-is-t2-Vv2
have lambda ′ � EES2 = t2 ′ � VV
proof −

have t2 ′ � VV = t2 ′ � VV2
using propSepViews unfolding properSeparationOfViews-def
by (simp add: projection-def , metis Int-commute

projection-def projection-intersection-neutral
t2 ′-in-E2star)

moreover
have t2 � VV = t2 � VV2

using propSepViews unfolding properSeparationOfViews-def
by (simp add: projection-def , metis Int-commute

projection-def
projection-intersection-neutral Cons(5 ))

moreover
note Cons(9 ) v ′-notin-E2 t2 ′-Vv2-is-t2-Vv2
ultimately show ?thesis

by (simp add: projection-def )
qed
moreover
note s1-Cv1-empty t2 ′-Cv2-empty
moreover
note Cons.hyps(1 )[of ?tau s1 t2 ′]
ultimately obtain t ′

where tau-t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′-Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′-Cv-empty: t ′ � CV = []
by auto

let ?t = r1 @ [V ′] @ t ′

note tau-t ′-in-Tr
moreover
from r1-Vv-empty t ′-Vv-is-lambda ′ v ′-in-Vv
have ?t � VV = V ′ # lambda ′

by (simp add: projection-def )
moreover
have ?t � CV = []
proof −

have r1 � CV = []
proof −

from propSepViews have EES1 ∩ CV ⊆ CV1
unfolding properSeparationOfViews-def by auto
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from projection-on-subset[OF ‹EES1 ∩ CV ⊆ CV1› r1-Cv1-empty]
have r1 � (EES1 ∩ CV ) = []

by (simp only: Int-commute)
with projection-intersection-neutral[OF r1-in-E1star , of CV ] show ?thesis

by simp
qed
with v ′-in-Vv VIsViewOnE t ′-Cv-empty show ?thesis

by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def , auto)

qed
ultimately have ?thesis

by auto
}
moreover {

assume v ′-in-Vv2-minus-E1 : V ′ ∈ VV2 − EES1
hence v ′-in-Vv2 : V ′ ∈ VV2

by auto
with v ′-in-Vv have v ′-in-E2 : V ′ ∈ EES2

using propSepViews unfolding properSeparationOfViews-def
by auto

from v ′-in-Vv2-minus-E1 have v ′-notin-E1 : V ′ /∈ EES1
by (auto)

with validV1 have v ′-notin-Vv1 : V ′ /∈ VV1
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

from Cons(4 ) Cons(5 ) Cons(9 ) v ′-in-E2 have t2 � VV = V ′ # (lambda ′ � EES2)
by (simp add: projection-def )

from projection-split-first[OF this] obtain r2 s2
where t2-is-r2-v ′-s2 : t2 = r2 @ [V ′] @ s2
and r2-Vv-empty: r2 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV2 VV r2 ]
have r2-Vv2-empty: r2 � VV2 = []

by auto

from t2-is-r2-v ′-s2 Cons(11 ) have r2-Cv2-empty: r2 � CV2 = []
by (simp add: projection-concatenation-commute)

from t2-is-r2-v ′-s2 Cons(11 ) have s2-Cv2-empty: s2 � CV2 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(5 ) t2-is-r2-v ′-s2 have r2-in-E2star : set r2 ⊆ EES2
by auto

have r2-in-Nv2star : set r2 ⊆ NV2
proof −

note r2-in-E2star
moreover

152



from r2-Vv2-empty have set r2 ∩ VV2 = {}
by (metis Compl-Diff-eq Diff-cancel Un-upper2

disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r2-Cv2-empty have set r2 ∩ CV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV2
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

qed
with Nv2-inter-E1-empty have r2E1-empty: r2 � EES1 = []

by (metis Int-commute empty-subsetI projection-on-subset2 r2-Vv2-empty)

let ?tau = τ @ r2 @ [V ′]

from v ′-in-E2 Cons(2 ) r2-in-Nv2star validV2 have set ?tau ⊆ E(ES1 ‖ ES2 )
by (simp only: composeES-def isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
note Cons(4 )
moreover
from Cons(5 ) t2-is-r2-v ′-s2 have set s2 ⊆ EES2

by auto
moreover
have ?tau � EES1 @ t1 ∈ TrES1

proof −
from v ′-notin-E1 have [V ′] � EES1 = []

by (simp add: projection-def )
with Cons(6 ) Cons(3 ) t2-is-r2-v ′-s2 v ′-notin-E1

r2-in-Nv2star Nv2-inter-E1-empty r2E1-empty
show ?thesis

by (simp only: t2-is-r2-v ′-s2 list-subset-iff-projection-neutral
projection-concatenation-commute, auto)

qed
moreover
have ?tau � EES2 @ s2 ∈ TrES2

by (metis Cons-eq-appendI append-eq-appendI calculation(4 ) eq-Nil-appendI
list-subset-iff-projection-neutral Cons.prems(4 ) Cons.prems(6 )
projection-concatenation-commute t2-is-r2-v ′-s2 )

moreover
from Cons(8 ) v ′-notin-E1 have lambda ′ � EES1 = t1 � VV

by (simp add: projection-def )
moreover
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from Cons(9 ) t2-is-r2-v ′-s2 r2-Vv-empty v ′-in-E2 v ′-in-Vv
have lambda ′ � EES2 = s2 � VV

by (simp add: projection-def )
moreover
note Cons(10 ) s2-Cv2-empty
moreover
note Cons.hyps(1 )[of ?tau t1 s2 ]
ultimately obtain t ′

where tau-t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′-Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′-Cv-empty: t ′ � CV = []
by auto

let ?t = r2 @ [V ′] @ t ′

note tau-t ′-in-Tr
moreover
from r2-Vv-empty t ′-Vv-is-lambda ′ v ′-in-Vv

have ?t � VV = V ′ # lambda ′

by (simp add: projection-def )
moreover
have ?t � CV = []
proof −

have r2 � CV = []
using propSepViews unfolding properSeparationOfViews-def
by (metis projection-on-subset2

r2-Cv2-empty r2-in-E2star)
with v ′-in-Vv VIsViewOnE t ′-Cv-empty show ?thesis

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def , auto)

qed
ultimately have ?thesis

by auto
}
ultimately show ?thesis

by blast
qed

qed
}
thus ?thesis

by auto
qed

lemma generalized-zipping-lemma4 :
[[ ∇Γ1 ⊆ EES1; ∆Γ1 ⊆ EES1; ΥΓ1 ⊆ EES1; ∇Γ2 ⊆ EES2; ∆Γ2 ⊆ EES2; ΥΓ2 ⊆ EES2;

BSIA %1 V1 TrES1; BSIA %2 V2 TrES2; total ES1 (CV1 ∩ NV2); total ES2 (CV2 ∩ NV1);
FCIA %1 Γ1 V1 TrES1; FCIA %2 Γ2 V2 TrES2; VV1 ∩ VV2 ⊆ ∇Γ1 ∪ ∇Γ2;
CV1 ∩ NV2 ⊆ ΥΓ1; CV2 ∩ NV1 ⊆ ΥΓ2;
NV1 ∩ ∆Γ1 ∩ EES2 = {}; NV2 ∩ ∆Γ2 ∩ EES1 = {} ]] =⇒
∀ τ lambda t1 t2 . ( ( set τ ⊆ (E(ES1 ‖ ES2 )) ∧ set lambda ⊆ VV ∧ set t1 ⊆ EES1
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∧ set t2 ⊆ EES2 ∧ ((τ � EES1) @ t1 ) ∈ TrES1 ∧ ((τ � EES2) @ t2 ) ∈ TrES2
∧ (lambda � EES1) = (t1 � VV ) ∧ (lambda � EES2) = (t2 � VV )
∧ (t1 � CV1) = [] ∧ (t2 � CV2) = [])
−→ (∃ t. ((τ @ t) ∈ (Tr(ES1 ‖ ES2 )) ∧ (t � VV ) = lambda ∧ (t � CV ) = [])) )

proof −
assume Nabla1-subsetof-E1 : ∇Γ1 ⊆ EES1
and Delta1-subsetof-E1 : ∆Γ1 ⊆ EES1
and Upsilon1-subsetof-E1 : ΥΓ1 ⊆ EES1
and Nabla2-subsetof-E2 : ∇Γ2 ⊆ EES2
and Delta2-subsetof-E2 : ∆Γ2 ⊆ EES2
and Upsilon2-subsetof-E2 : ΥΓ2 ⊆ EES2
and BSIA1 : BSIA %1 V1 TrES1
and BSIA2 : BSIA %2 V2 TrES2
and ES1-total-Cv1-inter-Nv2 : total ES1 (CV1 ∩ NV2)
and ES2-total-Cv2-inter-Nv1 : total ES2 (CV2 ∩ NV1)
and FCIA1 : FCIA %1 Γ1 V1 TrES1
and FCIA2 : FCIA %2 Γ2 V2 TrES2
and Vv1-inter-Vv2-subsetof-Nabla1-union-Nabla2 : VV1 ∩ VV2 ⊆ ∇Γ1 ∪ ∇Γ2
and Cv1-inter-Nv2-subsetof-Upsilon1 : CV1 ∩ NV2 ⊆ ΥΓ1
and Cv2-inter-Nv1-subsetof-Upsilon2 : CV2 ∩ NV1 ⊆ ΥΓ2
and disjoint-Nv1-inter-Delta1-inter-E2 : NV1 ∩ ∆Γ1 ∩ EES2 = {}
and disjoint-Nv2-inter-Delta2-inter-E1 : NV2 ∩ ∆Γ2 ∩ EES1 = {}

{
fix τ lambda t1 t2

have [[ set τ ⊆ (E(ES1 ‖ ES2 ));
set lambda ⊆ VV ;
set t1 ⊆ EES1;
set t2 ⊆ EES2;
((τ � EES1) @ t1 ) ∈ TrES1;
((τ � EES2) @ t2 ) ∈ TrES2;
(lambda � EES1) = (t1 � VV );
(lambda � EES2) = (t2 � VV );
(t1 � CV1) = [];
(t2 � CV2) = [] ]]
=⇒ (∃ t. ((τ @ t) ∈ Tr(ES1 ‖ ES2 ) ∧ (t � VV ) = lambda ∧ (t � CV ) = []))

proof (induct lambda arbitrary: τ t1 t2 )
case (Nil τ t1 t2 )

have (τ @ []) ∈ Tr(ES1 ‖ ES2 )
proof −

have τ ∈ Tr(ES1 ‖ ES2 )
proof −

from Nil(5 ) validES1 have τ � EES1 ∈ TrES1
by (simp add: ES-valid-def traces-prefixclosed-def

prefixclosed-def prefix-def )
moreover
from Nil(6 ) validES2 have τ � EES2 ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

moreover
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note Nil(1 )
ultimately show ?thesis

by (simp add: composeES-def )
qed

thus ?thesis
by auto

qed
moreover
have ([] � VV ) = []

by (simp add: projection-def )
moreover
have ([] � CV ) = []

by (simp add: projection-def )
ultimately show ?case

by blast
next

case (Cons V ′ lambda ′ τ t1 t2 )
thus ?case

proof −

from Cons(3 ) have v ′-in-Vv: V ′ ∈ VV
by auto

have V ′ ∈ VV1 ∩ VV2 ∩ ∇Γ1
∨ V ′ ∈ VV1 ∩ VV2 ∩ ∇Γ2
∨ V ′ ∈ VV1 − EES2
∨ V ′ ∈ VV2 − EES1
proof −

let ?S = VV1 ∩ VV2 ∪ ( VV1 − VV2 ) ∪ ( VV2 − VV1 )
have VV1 ∪ VV2 = ?S

by auto
moreover
have VV1 − VV2 = VV1 − EES2

and VV2 − VV1 = VV2 − EES1
using propSepViews unfolding properSeparationOfViews-def by auto

moreover
note Vv1-inter-Vv2-subsetof-Nabla1-union-Nabla2

Vv-is-Vv1-union-Vv2 v ′-in-Vv
ultimately show ?thesis

by auto
qed

moreover
{

assume v ′-in-Vv1-inter-Vv2-inter-Nabla1 : V ′ ∈ VV1 ∩ VV2 ∩ ∇Γ1
hence v ′-in-Vv1 : V ′ ∈ VV1 and v ′-in-Vv2 : V ′ ∈ VV2

and v ′-in-Nabla2 : V ′ ∈ ∇Γ1
by auto

with v ′-in-Vv
have v ′-in-E1 : V ′ ∈ EES1 and v ′-in-E2 : V ′ ∈ EES2

using propSepViews unfolding properSeparationOfViews-def by auto

from Cons(3−4 ) Cons(8 ) v ′-in-E1 have t1 � VV = V ′ # (lambda ′ � EES1)
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by (simp add: projection-def )
from projection-split-first[OF this] obtain r1 s1

where t1-is-r1-v ′-s1 : t1 = r1 @ [V ′] @ s1
and r1-Vv-empty: r1 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV1 VV r1 ]
have r1-Vv1-empty: r1 � VV1 = []

by auto

from t1-is-r1-v ′-s1 Cons(10 ) have r1-Cv1-empty: r1 � CV1 = []
by (simp add: projection-concatenation-commute)

from t1-is-r1-v ′-s1 Cons(10 ) have s1-Cv1-empty: s1 � CV1 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(4 ) t1-is-r1-v ′-s1
have r1-in-E1star : set r1 ⊆ EES1 and s1-in-E1star : set s1 ⊆ EES1

by auto

have r1-in-Nv1star : set r1 ⊆ NV1
proof −

note r1-in-E1star
moreover
from r1-Vv1-empty have set r1 ∩ VV1 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r1-Cv1-empty have set r1 ∩ CV1 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV1
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

qed

have r1E2-in-Nv1-inter-C2-star : set (r1 � EES2) ⊆ (NV1 ∩ CV2)
proof −

have set (r1 � EES2) = set r1 ∩ EES2
by (simp add: projection-def , auto)

with r1-in-Nv1star have set (r1 � EES2) ⊆ (EES2 ∩ NV1)
by auto

moreover
from validV2 disjoint-Nv1-Vv2
have EES2 ∩ NV1 = NV1 ∩ CV2

using propSepViews unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
ultimately show ?thesis
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by auto
qed

with Cv2-inter-Nv1-subsetof-Upsilon2
have r1E2-in-Nv1-inter-C2-Upsilon2-star : set (r1 � EES2) ⊆ (NV1 ∩ CV2 ∩ ΥΓ2)

by auto

note outerCons-prems = Cons.prems

have set (r1 � EES2) ⊆ (NV1 ∩ CV2) =⇒
∃ t2 ′. ( set t2 ′ ⊆ EES2
∧ ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2
∧ t2 ′ � VV2 = t2 � VV2
∧ t2 ′ � CV2 = [] )

proof (induct r1 � EES2 arbitrary: r1 rule: rev-induct)
case Nil thus ?case

by (metis append-self-conv outerCons-prems(10 )
outerCons-prems(4 ) outerCons-prems(6 ) projection-concatenation-commute)

next
case (snoc x xs)

have xs-is-xsE2 : xs = xs � EES2
proof −

from snoc(2 ) have set (xs @ [x]) ⊆ EES2
by (simp add: projection-def , auto)

hence set xs ⊆ EES2
by auto

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
moreover
have set (xs � EES2) ⊆ (NV1 ∩ CV2)

proof −
have set (r1 � EES2) ⊆ (NV1 ∩ CV2)

by (metis Int-commute snoc.prems)
with snoc(2 ) have set (xs @ [x]) ⊆ (NV1 ∩ CV2)

by simp
hence set xs ⊆ (NV1 ∩ CV2)

by auto
with xs-is-xsE2 show ?thesis

by auto
qed

moreover
note snoc.hyps(1 )[of xs]
ultimately obtain t2 ′′

where t2 ′′-in-E2star : set t2 ′′ ⊆ EES2
and τ -xs-E2-t2 ′′-in-Tr2 : ((τ @ xs) � EES2) @ t2 ′′ ∈ TrES2
and t2 ′′Vv2-is-t2Vv2 : t2 ′′ � VV2 = t2 � VV2
and t2 ′′Cv2-empty: t2 ′′ � CV2 = []
by auto

have x-in-Cv2-inter-Nv1 : x ∈ CV2 ∩ NV1
proof −
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from snoc(2−3 ) have set (xs @ [x]) ⊆ (NV1 ∩ CV2)
by simp

thus ?thesis
by auto

qed
hence x-in-Cv2 : x ∈ CV2

by auto
moreover
note τ -xs-E2-t2 ′′-in-Tr2 t2 ′′Cv2-empty
moreover
have Adm: (Adm V2 %2 TrES2 ((τ @ xs) � EES2) x)

proof −
from τ -xs-E2-t2 ′′-in-Tr2 validES2
have τ -xsE2-in-Tr2 : ((τ @ xs) � EES2) ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

with x-in-Cv2-inter-Nv1 ES2-total-Cv2-inter-Nv1
have τ -xsE2-x-in-Tr2 : ((τ @ xs) � EES2) @ [x] ∈ TrES2

by (simp only: total-def )
moreover
have ((τ @ xs) � EES2) � (%2 V2 ) = ((τ @ xs) � EES2) � (%2 V2 ) ..
ultimately show ?thesis

by (simp add: Adm-def , auto)
qed

moreover note BSIA2
ultimately obtain t2 ′

where res1 : ((τ @ xs) � EES2) @ [x] @ t2 ′ ∈ TrES2
and res2 : t2 ′ � VV2 = t2 ′′ � VV2
and res3 : t2 ′ � CV2 = []
by (simp only: BSIA-def , blast)

have set t2 ′ ⊆ EES2
proof −

from res1 validES2 have set (((τ @ xs) � EES2) @ [x] @ t2 ′) ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

thus ?thesis
by auto

qed
moreover
have ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2

proof −
from res1 xs-is-xsE2 have ((τ � EES2) @ (xs @ [x])) @ t2 ′ ∈ TrES2

by (simp only: projection-concatenation-commute, auto)
thus ?thesis

by (simp only: snoc(2 ) projection-concatenation-commute)
qed

moreover
from t2 ′′Vv2-is-t2Vv2 res2 have t2 ′ � VV2 = t2 � VV2

by auto
moreover
note res3
ultimately show ?case
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by auto
qed
from this[OF r1E2-in-Nv1-inter-C2-star ] obtain t2 ′

where t2 ′-in-E2star : set t2 ′ ⊆ EES2
and τr1E2-t2 ′-in-Tr2 : ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2
and t2 ′-Vv2-is-t2-Vv2 : t2 ′ � VV2 = t2 � VV2
and t2 ′-Cv2-empty: t2 ′ � CV2 = []
by auto

have t2 ′ � VV2 = V ′ # (lambda ′ � EES2)
proof −

from projection-intersection-neutral[OF Cons(5 ), of VV ]
have t2 � VV = t2 � VV2

using propSepViews unfolding properSeparationOfViews-def
by (simp only: Int-commute)

with Cons(9 ) t2 ′-Vv2-is-t2-Vv2 v ′-in-E2 show ?thesis
by (simp add: projection-def )

qed
from projection-split-first[OF this] obtain r2 ′ s2 ′

where t2 ′-is-r2 ′-v ′-s2 ′: t2 ′ = r2 ′ @ [V ′] @ s2 ′

and r2 ′-Vv2-empty: r2 ′ � VV2 = []
by auto

from t2 ′-is-r2 ′-v ′-s2 ′ t2 ′-Cv2-empty have r2 ′-Cv2-empty: r2 ′ � CV2 = []
by (simp add: projection-concatenation-commute)

from t2 ′-is-r2 ′-v ′-s2 ′ t2 ′-Cv2-empty have s2 ′-Cv2-empty: s2 ′ � CV2 = []
by (simp only: projection-concatenation-commute, auto)

from t2 ′-in-E2star t2 ′-is-r2 ′-v ′-s2 ′ have r2 ′-in-E2star : set r2 ′ ⊆ EES2
by auto

have r2 ′-in-Nv2star : set r2 ′ ⊆ NV2
proof −

note r2 ′-in-E2star
moreover
from r2 ′-Vv2-empty have set r2 ′ ∩ VV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r2 ′-Cv2-empty have set r2 ′ ∩ CV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV2
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

qed
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have r2 ′E1-in-Nv2-inter-C1-star : set (r2 ′ � EES1) ⊆ (NV2 ∩ CV1)
proof −

have set (r2 ′ � EES1) = set r2 ′ ∩ EES1
by (simp add: projection-def , auto)

with r2 ′-in-Nv2star have set (r2 ′ � EES1) ⊆ (EES1 ∩ NV2)
by auto

moreover
from validV1 disjoint-Nv2-Vv1
have EES1 ∩ NV2 = NV2 ∩ CV1

using propSepViews unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
ultimately show ?thesis

by auto
qed

with Cv1-inter-Nv2-subsetof-Upsilon1
have r2 ′E1-in-Nv2-inter-Cv1-Upsilon1-star :

set (r2 ′ � EES1) ⊆ (NV2 ∩ CV1 ∩ ΥΓ1)
by auto

have set (r2 ′ � EES1) ⊆ (NV2 ∩ CV1 ∩ ΥΓ1) =⇒
∃ s1 ′ q1 ′. (
set s1 ′ ⊆ EES1 ∧ set q1 ′ ⊆ CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1
∧ (τ � EES1) @ r1 @ q1 ′ @ [V ′] @ s1 ′ ∈ TrES1
∧ q1 ′ � (CV1 ∩ ΥΓ1) = r2 ′ � EES1
∧ s1 ′ � VV1 = s1 � VV1
∧ s1 ′ � CV1 = [])

proof (induct r2 ′ � EES1 arbitrary: r2 ′ rule: rev-induct)
case Nil

note s1-in-E1star
moreover
have set [] ⊆ CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1

by auto
moreover
from outerCons-prems(5 ) t1-is-r1-v ′-s1
have τ � EES1 @ r1 @ [] @ [V ′] @ s1 ∈ TrES1

by auto
moreover
from Nil have [] � (CV1 ∩ ΥΓ1) = r2 ′ � EES1

by (simp add: projection-def )
moreover
have s1 � VV1 = s1 � VV1..
moreover
note s1-Cv1-empty
ultimately show ?case

by blast

next
case (snoc x xs)
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have xs-is-xsE1 : xs = xs � EES1
proof −

from snoc(2 ) have set (xs @ [x]) ⊆ EES1
by (simp add: projection-def , auto)

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
moreover
have set (xs � EES1) ⊆ NV2 ∩ CV1 ∩ ΥΓ1

proof −
from snoc(2−3 ) have set (xs @ [x]) ⊆ NV2 ∩ CV1 ∩ ΥΓ1

by simp
with xs-is-xsE1 show ?thesis

by auto
qed

moreover
note snoc.hyps(1 )[of xs]
ultimately obtain s1 ′′ q1 ′′

where s1 ′′-in-E1star : set s1 ′′ ⊆ EES1
and q1 ′′-in-C1-inter-Upsilon1-inter-Delta1 : set q1 ′′ ⊆ CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1
and τE1-r1-q1 ′′-v ′-s1 ′′-in-Tr1 : (τ � EES1 @ r1 @ q1 ′′) @ [V ′] @ s1 ′′ ∈ TrES1
and q1 ′′C1-Upsilon1-is-xsE1 : q1 ′′ � (CV1 ∩ ΥΓ1) = xs � EES1
and s1 ′′V1-is-s1V1 : s1 ′′ � VV1 = s1 � VV1
and s1 ′′C1-empty: s1 ′′ � CV1 = []
by auto

have x-in-Cv1-inter-Upsilon1 : x ∈ CV1 ∩ ΥΓ1
and x-in-Cv1-inter-Nv2 : x ∈ CV1 ∩ NV2
proof −

from snoc(2−3 ) have set (xs @ [x]) ⊆ (NV2 ∩ CV1 ∩ ΥΓ1)
by simp

thus x ∈ CV1 ∩ ΥΓ1
and x ∈ CV1 ∩ NV2
by auto

qed
with validV1 have x-in-E1 : x ∈ EES1

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

note x-in-Cv1-inter-Upsilon1
moreover
from v ′-in-Vv1-inter-Vv2-inter-Nabla1 have V ′ ∈ VV1 ∩ ∇Γ1

by auto
moreover
note τE1-r1-q1 ′′-v ′-s1 ′′-in-Tr1 s1 ′′C1-empty
moreover
have Adm: (Adm V1 %1 TrES1 (τ � EES1 @ r1 @ q1 ′′) x)

proof −
from τE1-r1-q1 ′′-v ′-s1 ′′-in-Tr1 validES1
have (τ � EES1 @ r1 @ q1 ′′) ∈ TrES1

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )
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with x-in-Cv1-inter-Nv2 ES1-total-Cv1-inter-Nv2
have (τ � EES1 @ r1 @ q1 ′′) @ [x] ∈ TrES1

by (simp only: total-def )
moreover
have (τ � EES1 @ r1 @ q1 ′′) � (%1 V1 ) = (τ � EES1 @ r1 @ q1 ′′) � (%1 V1 ) ..
ultimately show ?thesis

by (simp only: Adm-def , blast)
qed

moreover
note FCIA1
ultimately
obtain s1 ′ γ ′

where res1 : (set γ ′) ⊆ (NV1 ∩ ∆Γ1)
and res2 : ((τ � EES1 @ r1 @ q1 ′′) @ [x] @ γ ′ @ [V ′] @ s1 ′) ∈ TrES1
and res3 : (s1 ′ � VV1) = (s1 ′′ � VV1)
and res4 : s1 ′ � CV1 = []
unfolding FCIA-def
by blast

let ?q1 ′ = q1 ′′ @ [x] @ γ ′

from res2 validES1 have set s1 ′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from res1 x-in-Cv1-inter-Upsilon1 q1 ′′-in-C1-inter-Upsilon1-inter-Delta1
have set ?q1 ′ ⊆ CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1

by auto
moreover
from res2 have τ � EES1 @ r1 @ ?q1 ′ @ [V ′] @ s1 ′ ∈ TrES1

by auto
moreover
have ?q1 ′ � (CV1 ∩ ΥΓ1) = r2 ′ � EES1

proof −
from validV1 res1 have γ ′ � (CV1 ∩ ΥΓ1) = []

proof −
from res1 have γ ′ = γ ′ � (NV1 ∩ ∆Γ1)

by (simp only: list-subset-iff-projection-neutral)
hence γ ′ � (CV1 ∩ ΥΓ1) = γ ′ � (NV1 ∩ ∆Γ1) � (CV1 ∩ ΥΓ1)

by simp
hence γ ′ � (CV1 ∩ ΥΓ1) = γ ′ � (NV1 ∩ ∆Γ1 ∩ CV1 ∩ ΥΓ1)

by (simp only: projection-def , auto)
moreover
from validV1 have NV1 ∩ ∆Γ1 ∩ CV1 ∩ ΥΓ1 = {}

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

ultimately show ?thesis
by (simp add: projection-def )

qed
hence ?q1 ′ � (CV1 ∩ ΥΓ1) = (q1 ′′ @ [x]) � (CV1 ∩ ΥΓ1)

by (simp only: projection-concatenation-commute, auto)
with q1 ′′C1-Upsilon1-is-xsE1 x-in-Cv1-inter-Upsilon1
have ?q1 ′ � (CV1 ∩ ΥΓ1) = (xs � EES1) @ [x]
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by (simp only: projection-concatenation-commute projection-def , auto)
with xs-is-xsE1 snoc(2 ) show ?thesis

by simp
qed

moreover
from res3 s1 ′′V1-is-s1V1 have s1 ′ � VV1 = s1 � VV1

by simp
moreover
note res4
ultimately show ?case

by blast
qed

from this[OF r2 ′E1-in-Nv2-inter-Cv1-Upsilon1-star ] obtain s1 ′ q1 ′

where s1 ′-in-E1star : set s1 ′ ⊆ EES1
and q1 ′-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1 :
set q1 ′ ⊆ CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1
and τE1-r1-q1 ′-v ′-s1 ′-in-Tr1 : (τ � EES1) @ r1 @ q1 ′ @ [V ′] @ s1 ′ ∈ TrES1
and q1 ′Cv1-inter-Upsilon1-is-r2 ′E1 : q1 ′ � (CV1 ∩ ΥΓ1) = r2 ′ � EES1
and s1 ′Vv1-is-s1-Vv1 : s1 ′ � VV1 = s1 � VV1
and s1 ′Cv1-empty: s1 ′ � CV1 = []
by auto

from q1 ′-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1 validV1
have q1 ′-in-E1star : set q1 ′ ⊆ EES1

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

have r2 ′Cv-empty: r2 ′ � CV = []
using propSepViews unfolding properSeparationOfViews-def
by (metis projection-on-subset2

r2 ′-Cv2-empty r2 ′-in-E2star)

from validES1 τE1-r1-q1 ′-v ′-s1 ′-in-Tr1
have q1 ′-in-E1star : set q1 ′ ⊆ EES1

by (simp add: ES-valid-def traces-contain-events-def , auto)
moreover
note r2 ′-in-E2star
moreover
have q1 ′E2-is-r2 ′E1 : q1 ′ � EES2 = r2 ′ � EES1

proof −
from q1 ′-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1
have q1 ′ � (CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1) = q1 ′

by (simp add: list-subset-iff-projection-neutral)
hence (q1 ′ � (CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1)) � EES2 = q1 ′ � EES2

by simp
hence q1 ′ � ((CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1) ∩ EES2) = q1 ′ � EES2

by (simp add: projection-def )
hence q1 ′ � (CV1 ∩ ΥΓ1 ∩ EES2) = q1 ′ � EES2

by (simp only: Int-Un-distrib2 disjoint-Nv1-inter-Delta1-inter-E2 , auto)
moreover
from q1 ′Cv1-inter-Upsilon1-is-r2 ′E1
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have (q1 ′ � (CV1 ∩ ΥΓ1)) � EES2 = (r2 ′ � EES1) � EES2
by simp

hence q1 ′ � (CV1 ∩ ΥΓ1 ∩ EES2) = (r2 ′ � EES2) � EES1
by (simp add: projection-def conj-commute)

with r2 ′-in-E2star have q1 ′ � (CV1 ∩ ΥΓ1 ∩ EES2) = r2 ′ � EES1
by (simp only: list-subset-iff-projection-neutral)

ultimately show ?thesis
by auto

qed
moreover
have q1 ′ � VV = []

proof −
from q1 ′-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1
have q1 ′ = q1 ′ � (CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1)

by (simp add: list-subset-iff-projection-neutral)
moreover
from q1 ′-in-E1star have q1 ′ = q1 ′ � EES1

by (simp add: list-subset-iff-projection-neutral)
ultimately have q1 ′ = q1 ′ � (CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1) � EES1

by simp
hence q1 ′ � VV = q1 ′ � (CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1) � EES1 � VV

by simp
hence q1 ′ � VV = q1 ′ � (CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1) � (VV ∩ EES1)

by (simp add: Int-commute projection-def )
hence q1 ′ � VV = q1 ′ � ((CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1) ∩ VV1)

using propSepViews unfolding properSeparationOfViews-def
by (simp add: projection-def )

hence q1 ′ � VV = q1 ′ � (VV1 ∩ CV1 ∩ ΥΓ1 ∪ VV1 ∩ NV1 ∩ ∆Γ1)
by (simp add: Int-Un-distrib2 , metis Int-assoc Int-commute Int-left-commute Un-commute)

with validV1 show ?thesis
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto, simp add: projection-def )
qed

moreover
have r2 ′ � VV = []

using propSepViews unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral

r2 ′-Vv2-empty r2 ′-in-E2star)
moreover
have q1 ′Cv-empty: q1 ′ � CV = []

proof −
from q1 ′-in-E1star have foo: q1 ′ = q1 ′ � EES1

by (simp add: list-subset-iff-projection-neutral)
hence q1 ′ � CV = q1 ′ � (CV ∩ EES1)

by (metis Int-commute list-subset-iff-projection-neutral projection-intersection-neutral)
moreover
from propSepViews have CV ∩ EES1⊆CV1

unfolding properSeparationOfViews-def by auto
from projection-subset-elim[OF ‹CV ∩ EES1⊆CV1›, of q1 ′]
have q1 ′ � CV1 � CV � EES1 = q1 ′ � (CV ∩ EES1)

using propSepViews unfolding properSeparationOfViews-def
by (simp add: projection-def )
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hence q1 ′ � EES1 � CV1 � CV = q1 ′ � (CV ∩ EES1)
by (simp add: projection-commute)

with foo have q1 ′ � (CV1 ∩ CV ) = q1 ′ � (CV ∩ EES1)
by (simp add: projection-def )

moreover
from q1 ′-in-Cv1-inter-Upsilon1-union-Nv1-inter-Delta1
have q1 ′ � (CV1 ∩ CV ) = q1 ′ � (CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1) � (CV1 ∩ CV )

by (simp add: list-subset-iff-projection-neutral)
moreover
have (CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1) ∩ (CV1 ∩ CV )

= (CV1 ∩ ΥΓ1 ∪ CV1 ∩ NV1 ∩ ∆Γ1) ∩ CV
by fast

hence q1 ′ � (CV1 ∩ ΥΓ1 ∪ NV1 ∩ ∆Γ1) � (CV1 ∩ CV )
= q1 ′ � (CV1 ∩ ΥΓ1 ∪ CV1 ∩ NV1 ∩ ∆Γ1) � CV

by (simp add: projection-sequence)
moreover
from validV1
have q1 ′ � (CV1 ∩ ΥΓ1 ∪ CV1 ∩ NV1 ∩ ∆Γ1) � CV
= q1 ′ � (CV1 ∩ ΥΓ1) � CV
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def Int-commute)
moreover
from q1 ′Cv1-inter-Upsilon1-is-r2 ′E1
have q1 ′ � (CV1 ∩ ΥΓ1) � CV = r2 ′ � EES1 � CV

by simp
with projection-on-intersection[OF r2 ′Cv-empty]
have q1 ′ � (CV1 ∩ ΥΓ1) � CV = []

by (simp add: Int-commute projection-def )
ultimately show ?thesis

by auto
qed

moreover
note r2 ′Cv-empty merge-property ′[of q1 ′ r2 ′]
ultimately obtain q ′

where q ′E1-is-q1 ′: q ′ � EES1 = q1 ′

and q ′E2-is-r2 ′: q ′ � EES2 = r2 ′

and q ′V-empty: q ′ � VV = []
and q ′C-empty: q ′ � CV = []
and q ′-in-E1-union-E2-star : set q ′ ⊆ (EES1 ∪ EES2)
unfolding Let-def
by auto

let ?tau = τ @ r1 @ q ′ @ [V ′]

from Cons(2 ) r1-in-E1star q ′-in-E1-union-E2-star v ′-in-E1
have set ?tau ⊆ (E(ES1 ‖ ES2 ))

by (simp add: composeES-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
note s1 ′-in-E1star
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moreover
from t2 ′-in-E2star t2 ′-is-r2 ′-v ′-s2 ′ have set s2 ′ ⊆ EES2

by simp
moreover
from q ′E1-is-q1 ′ r1-in-E1star v ′-in-E1 q1 ′-in-E1star τE1-r1-q1 ′-v ′-s1 ′-in-Tr1
have ?tau � EES1 @ s1 ′ ∈ TrES1

by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def , auto)

moreover
from τr1E2-t2 ′-in-Tr2 t2 ′-is-r2 ′-v ′-s2 ′ v ′-in-E2 q ′E2-is-r2 ′

have ?tau � EES2 @ s2 ′ ∈ TrES2
by (simp only: projection-concatenation-commute projection-def , auto)

moreover
have lambda ′ � EES1 = s1 ′ � VV

proof −
from Cons(3−4 ) Cons(8 ) v ′-in-E1 have t1 � VV = [V ′] @ (lambda ′ � EES1)

by (simp add: projection-def )
moreover
from t1-is-r1-v ′-s1 r1-Vv-empty v ′-in-Vv1 Vv-is-Vv1-union-Vv2
have t1 � VV = [V ′] @ (s1 � VV )

by (simp only: t1-is-r1-v ′-s1 projection-concatenation-commute
projection-def , auto)

moreover
have s1 � VV = s1 ′ � VV

using propSepViews unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral

s1 ′Vv1-is-s1-Vv1 s1 ′-in-E1star s1-in-E1star)
ultimately show ?thesis

by auto
qed

moreover
have lambda ′ � EES2 = s2 ′ � VV

proof −
from Cons(3 ,5 ,9 ) v ′-in-E2 have t2 � VV = [V ′] @ (lambda ′ � EES2)

by (simp add: projection-def )
moreover
from t2 ′-is-r2 ′-v ′-s2 ′ r2 ′-Vv2-empty r2 ′-in-E2star v ′-in-Vv2 propSepViews
have t2 ′ � VV = [V ′] @ (s2 ′ � VV )

proof −
have r2 ′ � VV =[]

using propSepViews unfolding properSeparationOfViews-def
by (metis projection-on-subset2 r2 ′-Vv2-empty

r2 ′-in-E2star subset-iff-psubset-eq)
with t2 ′-is-r2 ′-v ′-s2 ′ v ′-in-Vv2 Vv-is-Vv1-union-Vv2 show ?thesis

by (simp only: t2 ′-is-r2 ′-v ′-s2 ′

projection-concatenation-commute projection-def , auto)
qed

moreover
have t2 � VV = t2 ′ � VV

using propSepViews unfolding properSeparationOfViews-def
by (metis Int-commute outerCons-prems(4 )

projection-intersection-neutral t2 ′-Vv2-is-t2-Vv2 t2 ′-in-E2star)
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ultimately show ?thesis
by auto

qed
moreover
note s1 ′Cv1-empty s2 ′-Cv2-empty Cons.hyps[of ?tau s1 ′ s2 ′]
ultimately obtain t ′

where τ -r1-q ′-v ′-t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′Cv-empty: t ′ � CV = []
by auto

let ?t = r1 @ q ′ @ [V ′] @ t ′

note τ -r1-q ′-v ′-t ′-in-Tr
moreover
from r1-Vv-empty q ′V-empty t ′Vv-is-lambda ′ v ′-in-Vv
have ?t � VV = V ′ # lambda ′

by(simp only: projection-concatenation-commute projection-def , auto)
moreover
from VIsViewOnE r1-Cv1-empty t ′Cv-empty q ′C-empty v ′-in-Vv
have ?t � CV = []

proof −
from VIsViewOnE v ′-in-Vv have [V ′] � CV = []

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def projection-def , auto)

moreover
from r1-in-E1star r1-Cv1-empty
have r1 � CV = []

using propSepViews projection-on-subset2
unfolding properSeparationOfViews-def by auto

moreover
note t ′Cv-empty q ′C-empty
ultimately show ?thesis

by (simp only: projection-concatenation-commute, auto)
qed

ultimately have ?thesis
by auto

}
moreover
{

assume v ′-in-Vv1-inter-Vv2-inter-Nabla2 : V ′ ∈ VV1 ∩ VV2 ∩ ∇Γ2
hence v ′-in-Vv1 : V ′ ∈ VV1 and v ′-in-Vv2 : V ′ ∈ VV2

and v ′-in-Nabla2 : V ′ ∈ ∇Γ2
by auto

with v ′-in-Vv propSepViews
have v ′-in-E1 : V ′ ∈ EES1 and v ′-in-E2 : V ′ ∈ EES2

unfolding properSeparationOfViews-def by auto

from Cons(3 ,5 ,9 ) v ′-in-E2 have t2 � VV = V ′ # (lambda ′ � EES2)
by (simp add: projection-def )

from projection-split-first[OF this] obtain r2 s2
where t2-is-r2-v ′-s2 : t2 = r2 @ [V ′] @ s2
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and r2-Vv-empty: r2 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV2 VV r2 ]
have r2-Vv2-empty: r2 � VV2 = []

by auto

from t2-is-r2-v ′-s2 Cons(11 ) have r2-Cv2-empty: r2 � CV2 = []
by (simp add: projection-concatenation-commute)

from t2-is-r2-v ′-s2 Cons(11 ) have s2-Cv2-empty: s2 � CV2 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(5 ) t2-is-r2-v ′-s2 have r2-in-E2star : set r2 ⊆ EES2
and s2-in-E2star : set s2 ⊆ EES2
by auto

have r2-in-Nv2star : set r2 ⊆ NV2
proof −

note r2-in-E2star
moreover
from r2-Vv2-empty have set r2 ∩ VV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r2-Cv2-empty have set r2 ∩ CV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV2
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

qed

have r2E1-in-Nv2-inter-C1-star : set (r2 � EES1) ⊆ (NV2 ∩ CV1)
proof −

have set (r2 � EES1) = set r2 ∩ EES1
by (simp add: projection-def , auto)

with r2-in-Nv2star have set (r2 � EES1) ⊆ (EES1 ∩ NV2)
by auto

moreover
from validV1 disjoint-Nv2-Vv1 propSepViews
have EES1 ∩ NV2 = NV2 ∩ CV1

unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
ultimately show ?thesis

by auto
qed

with Cv1-inter-Nv2-subsetof-Upsilon1
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have r2E1-in-Nv2-inter-C1-Upsilon1-star : set (r2 � EES1) ⊆ (NV2 ∩ CV1 ∩ ΥΓ1)
by auto

note outerCons-prems = Cons.prems

have set (r2 � EES1) ⊆ (NV2 ∩ CV1) =⇒
∃ t1 ′. ( set t1 ′ ⊆ EES1
∧ ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1
∧ t1 ′ � VV1 = t1 � VV1
∧ t1 ′ � CV1 = [] )

proof (induct r2 � EES1 arbitrary: r2 rule: rev-induct)
case Nil thus ?case

by (metis append-self-conv outerCons-prems(9 ) outerCons-prems(3 )
outerCons-prems(5 ) projection-concatenation-commute)

next
case (snoc x xs)

have xs-is-xsE1 : xs = xs � EES1
proof −

from snoc(2 ) have set (xs @ [x]) ⊆ EES1
by (simp add: projection-def , auto)

hence set xs ⊆ EES1
by auto

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
moreover
have set (xs � EES1) ⊆ (NV2 ∩ CV1)

proof −
have set (r2 � EES1) ⊆ (NV2 ∩ CV1)

by (metis Int-commute snoc.prems)
with snoc(2 ) have set (xs @ [x]) ⊆ (NV2 ∩ CV1)

by simp
hence set xs ⊆ (NV2 ∩ CV1)

by auto
with xs-is-xsE1 show ?thesis

by auto
qed

moreover
note snoc.hyps(1 )[of xs]
ultimately obtain t1 ′′

where t1 ′′-in-E1star : set t1 ′′ ⊆ EES1
and τ -xs-E1-t1 ′′-in-Tr1 : ((τ @ xs) � EES1) @ t1 ′′ ∈ TrES1
and t1 ′′Vv1-is-t1Vv1 : t1 ′′ � VV1 = t1 � VV1
and t1 ′′Cv1-empty: t1 ′′ � CV1 = []
by auto

have x-in-Cv1-inter-Nv2 : x ∈ CV1 ∩ NV2
proof −

from snoc(2−3 ) have set (xs @ [x]) ⊆ (NV2 ∩ CV1)
by simp

thus ?thesis
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by auto
qed

hence x-in-Cv1 : x ∈ CV1
by auto

moreover
note τ -xs-E1-t1 ′′-in-Tr1 t1 ′′Cv1-empty
moreover
have Adm: (Adm V1 %1 TrES1 ((τ @ xs) � EES1) x)

proof −
from τ -xs-E1-t1 ′′-in-Tr1 validES1
have τ -xsE1-in-Tr1 : ((τ @ xs) � EES1) ∈ TrES1

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

with x-in-Cv1-inter-Nv2 ES1-total-Cv1-inter-Nv2
have τ -xsE1-x-in-Tr1 : ((τ @ xs) � EES1) @ [x] ∈ TrES1

by (simp only: total-def )
moreover
have ((τ @ xs) � EES1) � (%1 V1 ) = ((τ @ xs) � EES1) � (%1 V1 ) ..
ultimately show ?thesis

by (simp add: Adm-def , auto)
qed

moreover note BSIA1
ultimately obtain t1 ′

where res1 : ((τ @ xs) � EES1) @ [x] @ t1 ′ ∈ TrES1
and res2 : t1 ′ � VV1 = t1 ′′ � VV1
and res3 : t1 ′ � CV1 = []
by (simp only: BSIA-def , blast)

have set t1 ′ ⊆ EES1
proof −

from res1 validES1 have set (((τ @ xs) � EES1) @ [x] @ t1 ′) ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

thus ?thesis
by auto

qed
moreover
have ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1

proof −
from res1 xs-is-xsE1 have ((τ � EES1) @ (xs @ [x])) @ t1 ′ ∈ TrES1

by (simp only: projection-concatenation-commute, auto)
thus ?thesis

by (simp only: snoc(2 ) projection-concatenation-commute)
qed

moreover
from t1 ′′Vv1-is-t1Vv1 res2 have t1 ′ � VV1 = t1 � VV1

by auto
moreover
note res3
ultimately show ?case

by auto
qed
from this[OF r2E1-in-Nv2-inter-C1-star ] obtain t1 ′
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where t1 ′-in-E1star : set t1 ′ ⊆ EES1
and τr2E1-t1 ′-in-Tr1 : ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1
and t1 ′-Vv1-is-t1-Vv1 : t1 ′ � VV1 = t1 � VV1
and t1 ′-Cv1-empty: t1 ′ � CV1 = []
by auto

have t1 ′ � VV1 = V ′ # (lambda ′ � EES1)
proof −

from projection-intersection-neutral[OF Cons(4 ), of VV ] propSepViews
have t1 � VV = t1 � VV1

unfolding properSeparationOfViews-def
by (simp only: Int-commute)

with Cons(8 ) t1 ′-Vv1-is-t1-Vv1 v ′-in-E1 show ?thesis
by (simp add: projection-def )

qed
from projection-split-first[OF this] obtain r1 ′ s1 ′

where t1 ′-is-r1 ′-v ′-s1 ′: t1 ′ = r1 ′ @ [V ′] @ s1 ′

and r1 ′-Vv1-empty: r1 ′ � VV1 = []
by auto

from t1 ′-is-r1 ′-v ′-s1 ′ t1 ′-Cv1-empty have r1 ′-Cv1-empty: r1 ′ � CV1 = []
by (simp add: projection-concatenation-commute)

from t1 ′-is-r1 ′-v ′-s1 ′ t1 ′-Cv1-empty have s1 ′-Cv1-empty: s1 ′ � CV1 = []
by (simp only: projection-concatenation-commute, auto)

from t1 ′-in-E1star t1 ′-is-r1 ′-v ′-s1 ′ have r1 ′-in-E1star : set r1 ′ ⊆ EES1
by auto

have r1 ′-in-Nv1star : set r1 ′ ⊆ NV1
proof −

note r1 ′-in-E1star
moreover
from r1 ′-Vv1-empty have set r1 ′ ∩ VV1 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r1 ′-Cv1-empty have set r1 ′ ∩ CV1 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV1
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

qed

have r1 ′E2-in-Nv1-inter-C2-star : set (r1 ′ � EES2) ⊆ (NV1 ∩ CV2)
proof −

have set (r1 ′ � EES2) = set r1 ′ ∩ EES2
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by (simp add: projection-def , auto)
with r1 ′-in-Nv1star have set (r1 ′ � EES2) ⊆ (EES2 ∩ NV1)

by auto
moreover
from validV2 propSepViews disjoint-Nv1-Vv2
have EES2 ∩ NV1 = NV1 ∩ CV2

unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
ultimately show ?thesis

by auto
qed

with Cv2-inter-Nv1-subsetof-Upsilon2
have r1 ′E2-in-Nv1-inter-Cv2-Upsilon2-star :

set (r1 ′ � EES2) ⊆ (NV1 ∩ CV2 ∩ ΥΓ2)
by auto

have set (r1 ′ � EES2) ⊆ (NV1 ∩ CV2 ∩ ΥΓ2) =⇒
∃ s2 ′ q2 ′. (
set s2 ′ ⊆ EES2 ∧ set q2 ′ ⊆ CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2
∧ (τ � EES2) @ r2 @ q2 ′ @ [V ′] @ s2 ′ ∈ TrES2
∧ q2 ′ � (CV2 ∩ ΥΓ2) = r1 ′ � EES2
∧ s2 ′ � VV2 = s2 � VV2
∧ s2 ′ � CV2 = [])

proof (induct r1 ′ � EES2 arbitrary: r1 ′ rule: rev-induct)
case Nil

note s2-in-E2star
moreover
have set [] ⊆ CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2

by auto
moreover
from outerCons-prems(6 ) t2-is-r2-v ′-s2
have τ � EES2 @ r2 @ [] @ [V ′] @ s2 ∈ TrES2

by auto
moreover
from Nil have [] � (CV2 ∩ ΥΓ2) = r1 ′ � EES2

by (simp add: projection-def )
moreover
have s2 � VV2 = s2 � VV2..
moreover
note s2-Cv2-empty
ultimately show ?case

by blast

next
case (snoc x xs)

have xs-is-xsE2 : xs = xs � EES2
proof −

from snoc(2 ) have set (xs @ [x]) ⊆ EES2
by (simp add: projection-def , auto)
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thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
moreover
have set (xs � EES2) ⊆ NV1 ∩ CV2 ∩ ΥΓ2

proof −
from snoc(2−3 ) have set (xs @ [x]) ⊆ NV1 ∩ CV2 ∩ ΥΓ2

by simp
with xs-is-xsE2 show ?thesis

by auto
qed

moreover
note snoc.hyps(1 )[of xs]
ultimately obtain s2 ′′ q2 ′′

where s2 ′′-in-E2star : set s2 ′′ ⊆ EES2
and q2 ′′-in-C2-inter-Upsilon2-inter-Delta2 : set q2 ′′ ⊆ CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2
and τE2-r2-q2 ′′-v ′-s2 ′′-in-Tr2 : (τ � EES2 @ r2 @ q2 ′′) @ [V ′] @ s2 ′′ ∈ TrES2
and q2 ′′C2-Upsilon2-is-xsE2 : q2 ′′ � (CV2 ∩ ΥΓ2) = xs � EES2
and s2 ′′V2-is-s2V2 : s2 ′′ � VV2 = s2 � VV2
and s2 ′′C2-empty: s2 ′′ � CV2 = []
by auto

have x-in-Cv2-inter-Upsilon2 : x ∈ CV2 ∩ ΥΓ2
and x-in-Cv2-inter-Nv1 : x ∈ CV2 ∩ NV1
proof −

from snoc(2−3 ) have set (xs @ [x]) ⊆ (NV1 ∩ CV2 ∩ ΥΓ2)
by simp

thus x ∈ CV2 ∩ ΥΓ2
and x ∈ CV2 ∩ NV1
by auto

qed
with validV2 have x-in-E2 : x ∈ EES2

by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

note x-in-Cv2-inter-Upsilon2
moreover
from v ′-in-Vv1-inter-Vv2-inter-Nabla2 have V ′ ∈ VV2 ∩ ∇Γ2

by auto
moreover
note τE2-r2-q2 ′′-v ′-s2 ′′-in-Tr2 s2 ′′C2-empty
moreover
have Adm: (Adm V2 %2 TrES2 (τ � EES2 @ r2 @ q2 ′′) x)

proof −
from τE2-r2-q2 ′′-v ′-s2 ′′-in-Tr2 validES2
have (τ � EES2 @ r2 @ q2 ′′) ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

with x-in-Cv2-inter-Nv1 ES2-total-Cv2-inter-Nv1
have (τ � EES2 @ r2 @ q2 ′′) @ [x] ∈ TrES2

by (simp only: total-def )
moreover
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have (τ � EES2 @ r2 @ q2 ′′) � (%2 V2 ) = (τ � EES2 @ r2 @ q2 ′′) � (%2 V2 ) ..
ultimately show ?thesis

by (simp only: Adm-def , blast)
qed

moreover
note FCIA2
ultimately
obtain s2 ′ γ ′

where res1 : (set γ ′) ⊆ (NV2 ∩ ∆Γ2)
and res2 : ((τ � EES2 @ r2 @ q2 ′′) @ [x] @ γ ′ @ [V ′] @ s2 ′) ∈ TrES2
and res3 : (s2 ′ � VV2) = (s2 ′′ � VV2)
and res4 : s2 ′ � CV2 = []
unfolding FCIA-def
by blast

let ?q2 ′ = q2 ′′ @ [x] @ γ ′

from res2 validES2 have set s2 ′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from res1 x-in-Cv2-inter-Upsilon2 q2 ′′-in-C2-inter-Upsilon2-inter-Delta2
have set ?q2 ′ ⊆ CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2

by auto
moreover
from res2 have τ � EES2 @ r2 @ ?q2 ′ @ [V ′] @ s2 ′ ∈ TrES2

by auto
moreover
have ?q2 ′ � (CV2 ∩ ΥΓ2) = r1 ′ � EES2

proof −
from validV2 res1 have γ ′ � (CV2 ∩ ΥΓ2) = []

proof −
from res1 have γ ′ = γ ′ � (NV2 ∩ ∆Γ2)

by (simp only: list-subset-iff-projection-neutral)
hence γ ′ � (CV2 ∩ ΥΓ2) = γ ′ � (NV2 ∩ ∆Γ2) � (CV2 ∩ ΥΓ2)

by simp
hence γ ′ � (CV2 ∩ ΥΓ2) = γ ′ � (NV2 ∩ ∆Γ2 ∩ CV2 ∩ ΥΓ2)

by (simp only: projection-def , auto)
moreover
from validV2 have NV2 ∩ ∆Γ2 ∩ CV2 ∩ ΥΓ2 = {}

by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

ultimately show ?thesis
by (simp add: projection-def )

qed
hence ?q2 ′ � (CV2 ∩ ΥΓ2) = (q2 ′′ @ [x]) � (CV2 ∩ ΥΓ2)

by (simp only: projection-concatenation-commute, auto)
with q2 ′′C2-Upsilon2-is-xsE2 x-in-Cv2-inter-Upsilon2
have ?q2 ′ � (CV2 ∩ ΥΓ2) = (xs � EES2) @ [x]

by (simp only: projection-concatenation-commute projection-def , auto)
with xs-is-xsE2 snoc(2 ) show ?thesis

by simp
qed
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moreover
from res3 s2 ′′V2-is-s2V2 have s2 ′ � VV2 = s2 � VV2

by simp
moreover
note res4
ultimately show ?case

by blast
qed

from this[OF r1 ′E2-in-Nv1-inter-Cv2-Upsilon2-star ] obtain s2 ′ q2 ′

where s2 ′-in-E2star : set s2 ′ ⊆ EES2
and q2 ′-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2 :
set q2 ′ ⊆ CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2
and τE2-r2-q2 ′-v ′-s2 ′-in-Tr2 : (τ � EES2) @ r2 @ q2 ′ @ [V ′] @ s2 ′ ∈ TrES2
and q2 ′Cv2-inter-Upsilon2-is-r1 ′E2 : q2 ′ � (CV2 ∩ ΥΓ2) = r1 ′ � EES2
and s2 ′Vv2-is-s2-Vv2 : s2 ′ � VV2 = s2 � VV2
and s2 ′Cv2-empty: s2 ′ � CV2 = []
by auto

from q2 ′-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2 validV2
have q2 ′-in-E2star : set q2 ′ ⊆ EES2

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

have r1 ′Cv-empty: r1 ′ � CV = []
using propSepViews unfolding properSeparationOfViews-def
by (metis projection-on-subset2

r1 ′-Cv1-empty r1 ′-in-E1star)

from validES2 τE2-r2-q2 ′-v ′-s2 ′-in-Tr2
have q2 ′-in-E2star : set q2 ′ ⊆ EES2

by (simp add: ES-valid-def traces-contain-events-def , auto)
moreover
note r1 ′-in-E1star
moreover
have q2 ′E1-is-r1 ′E2 : q2 ′ � EES1 = r1 ′ � EES2

proof −
from q2 ′-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2
have q2 ′ � (CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2) = q2 ′

by (simp add: list-subset-iff-projection-neutral)
hence (q2 ′ � (CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2)) � EES1 = q2 ′ � EES1

by simp
hence q2 ′ � ((CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2) ∩ EES1) = q2 ′ � EES1

by (simp add: projection-def )
hence q2 ′ � (CV2 ∩ ΥΓ2 ∩ EES1) = q2 ′ � EES1

by (simp only: Int-Un-distrib2 disjoint-Nv2-inter-Delta2-inter-E1 , auto)
moreover
from q2 ′Cv2-inter-Upsilon2-is-r1 ′E2
have (q2 ′ � (CV2 ∩ ΥΓ2)) � EES1 = (r1 ′ � EES2) � EES1

by simp
hence q2 ′ � (CV2 ∩ ΥΓ2 ∩ EES1) = (r1 ′ � EES1) � EES2

by (simp add: projection-def conj-commute)
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with r1 ′-in-E1star have q2 ′ � (CV2 ∩ ΥΓ2 ∩ EES1) = r1 ′ � EES2
by (simp only: list-subset-iff-projection-neutral)

ultimately show ?thesis
by auto

qed
moreover
have q2 ′ � VV = []

proof −
from q2 ′-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2
have q2 ′ = q2 ′ � (CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2)

by (simp add: list-subset-iff-projection-neutral)
moreover
from q2 ′-in-E2star have q2 ′ = q2 ′ � EES2

by (simp add: list-subset-iff-projection-neutral)
ultimately have q2 ′ = q2 ′ � (CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2) � EES2

by simp
hence q2 ′ � VV = q2 ′ � (CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2) � EES2 � VV

by simp
hence q2 ′ � VV = q2 ′ � (CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2) � (VV ∩ EES2)

by (simp add: Int-commute projection-def )
with propSepViews
have q2 ′ � VV = q2 ′ � ((CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2) ∩ VV2)

unfolding properSeparationOfViews-def
by (simp add: projection-def )

hence q2 ′ � VV = q2 ′ � (VV2 ∩ CV2 ∩ ΥΓ2 ∪ VV2 ∩ NV2 ∩ ∆Γ2)
by (simp add: Int-Un-distrib2 , metis Int-assoc

Int-commute Int-left-commute Un-commute)
with validV2 show ?thesis

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto, simp add: projection-def )

qed
moreover
have r1 ′ � VV = []

using propSepViews unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral

r1 ′-Vv1-empty r1 ′-in-E1star)
moreover
have q2 ′Cv-empty: q2 ′ � CV = []

proof −
from q2 ′-in-E2star have foo: q2 ′ = q2 ′ � EES2

by (simp add: list-subset-iff-projection-neutral)
hence q2 ′ � CV = q2 ′ � (CV ∩ EES2)

by (metis Int-commute list-subset-iff-projection-neutral
projection-intersection-neutral)

moreover
from propSepViews have CV ∩ EES2 ⊆ CV2

unfolding properSeparationOfViews-def by auto
from projection-subset-elim[OF ‹CV ∩ EES2 ⊆ CV2›, of q2 ′]
have q2 ′ � CV2 � CV � EES2 = q2 ′ � (CV ∩ EES2)

by (simp add: projection-def )
hence q2 ′ � EES2 � CV2 � CV = q2 ′ � (CV ∩ EES2)

by (simp add: projection-commute)
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with foo have q2 ′ � (CV2 ∩ CV ) = q2 ′ � (CV ∩ EES2)
by (simp add: projection-def )

moreover
from q2 ′-in-Cv2-inter-Upsilon2-union-Nv2-inter-Delta2
have q2 ′ � (CV2 ∩ CV ) = q2 ′ � (CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2) � (CV2 ∩ CV )

by (simp add: list-subset-iff-projection-neutral)
moreover
have (CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2) ∩ (CV2 ∩ CV )

= (CV2 ∩ ΥΓ2 ∪ CV2 ∩ NV2 ∩ ∆Γ2) ∩ CV
by fast

hence q2 ′ � (CV2 ∩ ΥΓ2 ∪ NV2 ∩ ∆Γ2) � (CV2 ∩ CV )
= q2 ′ � (CV2 ∩ ΥΓ2 ∪ CV2 ∩ NV2 ∩ ∆Γ2) � CV
by (simp add: projection-sequence)

moreover
from validV2
have q2 ′ � (CV2 ∩ ΥΓ2 ∪ CV2 ∩ NV2 ∩ ∆Γ2) � CV
= q2 ′ � (CV2 ∩ ΥΓ2) � CV
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def Int-commute)
moreover
from q2 ′Cv2-inter-Upsilon2-is-r1 ′E2
have q2 ′ � (CV2 ∩ ΥΓ2) � CV = r1 ′ � EES2 � CV

by simp
with projection-on-intersection[OF r1 ′Cv-empty] have q2 ′ � (CV2 ∩ ΥΓ2) � CV = []

by (simp add: Int-commute projection-def )
ultimately show ?thesis

by auto
qed

moreover
note r1 ′Cv-empty merge-property ′[of r1 ′ q2 ′]
ultimately obtain q ′

where q ′E2-is-q2 ′: q ′ � EES2 = q2 ′

and q ′E1-is-r1 ′: q ′ � EES1 = r1 ′

and q ′V-empty: q ′ � VV = []
and q ′C-empty: q ′ � CV = []
and q ′-in-E1-union-E2-star : set q ′ ⊆ (EES1 ∪ EES2)
unfolding Let-def
by auto

let ?tau = τ @ r2 @ q ′ @ [V ′]

from Cons(2 ) r2-in-E2star q ′-in-E1-union-E2-star v ′-in-E2
have set ?tau ⊆ (E(ES1 ‖ ES2 ))

by (simp add: composeES-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
from t1 ′-in-E1star t1 ′-is-r1 ′-v ′-s1 ′ have set s1 ′ ⊆ EES1

by simp
moreover
note s2 ′-in-E2star
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moreover
from τr2E1-t1 ′-in-Tr1 t1 ′-is-r1 ′-v ′-s1 ′ v ′-in-E1 q ′E1-is-r1 ′

have ?tau � EES1 @ s1 ′ ∈ TrES1
by (simp only: projection-concatenation-commute projection-def , auto)

moreover
from q ′E2-is-q2 ′ r2-in-E2star v ′-in-E2 q2 ′-in-E2star τE2-r2-q2 ′-v ′-s2 ′-in-Tr2
have ?tau � EES2 @ s2 ′ ∈ TrES2

by (simp only: list-subset-iff-projection-neutral
projection-concatenation-commute projection-def , auto)

moreover
have lambda ′ � EES1 = s1 ′ � VV

proof −
from Cons(2 ,4 ,8 ) v ′-in-E1 have t1 � VV = [V ′] @ (lambda ′ � EES1)

by (simp add: projection-def )
moreover
from t1 ′-is-r1 ′-v ′-s1 ′ r1 ′-Vv1-empty r1 ′-in-E1star

v ′-in-Vv1 propSepViews
have t1 ′ � VV = [V ′] @ (s1 ′ � VV )

proof −
have r1 ′ � VV =[]

using propSepViews unfolding properSeparationOfViews-def
by (metis projection-on-subset2 r1 ′-Vv1-empty

r1 ′-in-E1star subset-iff-psubset-eq)
with t1 ′-is-r1 ′-v ′-s1 ′ v ′-in-Vv1 Vv-is-Vv1-union-Vv2 show ?thesis

by (simp only: t1 ′-is-r1 ′-v ′-s1 ′ projection-concatenation-commute
projection-def , auto)

qed
moreover
have t1 � VV = t1 ′ � VV

using propSepViews unfolding properSeparationOfViews-def
by (metis Int-commute outerCons-prems(3 )

projection-intersection-neutral t1 ′-Vv1-is-t1-Vv1 t1 ′-in-E1star)
ultimately show ?thesis

by auto
qed

moreover
have lambda ′ � EES2 = s2 ′ � VV

proof −
from Cons(3 ,5 ,9 ) v ′-in-E2 have t2 � VV = [V ′] @ (lambda ′ � EES2)

by (simp add: projection-def )
moreover
from t2-is-r2-v ′-s2 r2-Vv-empty v ′-in-Vv2 Vv-is-Vv1-union-Vv2
have t2 � VV = [V ′] @ (s2 � VV )

by (simp only: t2-is-r2-v ′-s2 projection-concatenation-commute
projection-def , auto)

moreover
have s2 � VV = s2 ′ � VV

using propSepViews unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral

s2 ′Vv2-is-s2-Vv2 s2 ′-in-E2star s2-in-E2star)
ultimately show ?thesis

by auto
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qed
moreover
note s1 ′-Cv1-empty s2 ′Cv2-empty Cons.hyps[of ?tau s1 ′ s2 ′]
ultimately obtain t ′

where τ -r2-q ′-v ′-t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′Cv-empty: t ′ � CV = []
by auto

let ?t = r2 @ q ′ @ [V ′] @ t ′

note τ -r2-q ′-v ′-t ′-in-Tr
moreover
from r2-Vv-empty q ′V-empty t ′Vv-is-lambda ′ v ′-in-Vv
have ?t � VV = V ′ # lambda ′

by(simp only: projection-concatenation-commute projection-def , auto)
moreover
from VIsViewOnE r2-Cv2-empty t ′Cv-empty q ′C-empty v ′-in-Vv
have ?t � CV = []

proof −
from VIsViewOnE v ′-in-Vv have [V ′] � CV = []

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def , auto)

moreover
from r2-in-E2star r2-Cv2-empty
have r2 � CV = []

using propSepViews projection-on-subset2 unfolding properSeparationOfViews-def
by auto

moreover
note t ′Cv-empty q ′C-empty
ultimately show ?thesis

by (simp only: projection-concatenation-commute, auto)
qed

ultimately have ?thesis
by auto

}
moreover
{

assume v ′-in-Vv1-minus-E2 : V ′ ∈ VV1 − EES2
hence v ′-in-Vv1 : V ′ ∈ VV1

by auto
with v ′-in-Vv have v ′-in-E1 : V ′ ∈ EES1

using propSepViews unfolding properSeparationOfViews-def
by auto

from v ′-in-Vv1-minus-E2 have v ′-notin-E2 : V ′ /∈ EES2
by auto

with validV2 have v ′-notin-Vv2 : V ′ /∈ VV2
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

from Cons(3−4 ) Cons(8 ) v ′-in-E1 have t1 � VV = V ′ # (lambda ′ � EES1)
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by (simp add: projection-def )
from projection-split-first[OF this] obtain r1 s1

where t1-is-r1-v ′-s1 : t1 = r1 @ [V ′] @ s1
and r1-Vv-empty: r1 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV1 VV r1 ]
have r1-Vv1-empty: r1 � VV1 = []

by auto

from t1-is-r1-v ′-s1 Cons(10 ) have r1-Cv1-empty: r1 � CV1 = []
by (simp add: projection-concatenation-commute)

from t1-is-r1-v ′-s1 Cons(10 ) have s1-Cv1-empty: s1 � CV1 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(4 ) t1-is-r1-v ′-s1 have r1-in-E1star : set r1 ⊆ EES1
by auto

have r1-in-Nv1star : set r1 ⊆ NV1
proof −

note r1-in-E1star
moreover
from r1-Vv1-empty have set r1 ∩ VV1 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r1-Cv1-empty have set r1 ∩ CV1 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV1
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

qed

have r1E2-in-Nv1-inter-C2-star : set (r1 � EES2) ⊆ (NV1 ∩ CV2)
proof −

have set (r1 � EES2) = set r1 ∩ EES2
by (simp add: projection-def , auto)

with r1-in-Nv1star have set (r1 � EES2) ⊆ (EES2 ∩ NV1)
by auto

moreover
from validV2 disjoint-Nv1-Vv2
have EES2 ∩ NV1 = NV1 ∩ CV2

using propSepViews unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
ultimately show ?thesis

by auto
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qed
with Cv2-inter-Nv1-subsetof-Upsilon2
have r1E2-in-Nv1-inter-C2-Upsilon2-star : set (r1 � EES2) ⊆ (NV1 ∩ CV2 ∩ ΥΓ2)

by auto

note outerCons-prems = Cons.prems

have set (r1 � EES2) ⊆ (NV1 ∩ CV2) =⇒
∃ t2 ′. ( set t2 ′ ⊆ EES2
∧ ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2
∧ t2 ′ � VV2 = t2 � VV2
∧ t2 ′ � CV2 = [] )

proof (induct r1 � EES2 arbitrary: r1 rule: rev-induct)
case Nil thus ?case

by (metis append-self-conv outerCons-prems(10 ) outerCons-prems(4 )
outerCons-prems(6 ) projection-concatenation-commute)

next
case (snoc x xs)

have xs-is-xsE2 : xs = xs � EES2
proof −

from snoc(2 ) have set (xs @ [x]) ⊆ EES2
by (simp add: projection-def , auto)

hence set xs ⊆ (EES2)
by auto

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
moreover
have set (xs � EES2) ⊆ (NV1 ∩ CV2)

proof −
have set (r1 � EES2) ⊆ (NV1 ∩ CV2)

by (metis Int-commute snoc.prems)
with snoc(2 ) have set (xs @ [x]) ⊆ (NV1 ∩ CV2)

by simp
hence set xs ⊆ (NV1 ∩ CV2)

by auto
with xs-is-xsE2 show ?thesis

by auto
qed

moreover
note snoc.hyps(1 )[of xs]
ultimately obtain t2 ′′

where t2 ′′-in-E2star : set t2 ′′ ⊆ EES2
and τ -xs-E2-t2 ′′-in-Tr2 : ((τ @ xs) � EES2) @ t2 ′′ ∈ TrES2
and t2 ′′Vv2-is-t2Vv2 : t2 ′′ � VV2 = t2 � VV2
and t2 ′′Cv2-empty: t2 ′′ � CV2 = []
by auto

have x-in-Cv2-inter-Nv1 : x ∈ CV2 ∩ NV1
proof −

from snoc(2−3 ) have set (xs @ [x]) ⊆ (NV1 ∩ CV2)
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by simp
thus ?thesis

by auto
qed

hence x-in-Cv2 : x ∈ CV2
by auto

moreover
note τ -xs-E2-t2 ′′-in-Tr2 t2 ′′Cv2-empty
moreover
have Adm: (Adm V2 %2 TrES2 ((τ @ xs) � EES2) x)

proof −
from τ -xs-E2-t2 ′′-in-Tr2 validES2
have τ -xsE2-in-Tr2 : ((τ @ xs) � EES2) ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

with x-in-Cv2-inter-Nv1 ES2-total-Cv2-inter-Nv1
have τ -xsE2-x-in-Tr2 : ((τ @ xs) � EES2) @ [x] ∈ TrES2

by (simp only: total-def )
moreover
have ((τ @ xs) � EES2) � (%2 V2 ) = ((τ @ xs) � EES2) � (%2 V2 ) ..
ultimately show ?thesis

by (simp add: Adm-def , auto)
qed

moreover note BSIA2
ultimately obtain t2 ′

where res1 : ((τ @ xs) � EES2) @ [x] @ t2 ′ ∈ TrES2
and res2 : t2 ′ � VV2 = t2 ′′ � VV2
and res3 : t2 ′ � CV2 = []
by (simp only: BSIA-def , blast)

have set t2 ′ ⊆ EES2
proof −

from res1 validES2 have set (((τ @ xs) � EES2) @ [x] @ t2 ′) ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

thus ?thesis
by auto

qed
moreover
have ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2

proof −
from res1 xs-is-xsE2 have ((τ � EES2) @ (xs @ [x])) @ t2 ′ ∈ TrES2

by (simp only: projection-concatenation-commute, auto)
thus ?thesis

by (simp only: snoc(2 ) projection-concatenation-commute)
qed

moreover
from t2 ′′Vv2-is-t2Vv2 res2 have t2 ′ � VV2 = t2 � VV2

by auto
moreover
note res3
ultimately show ?case

by auto
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qed
from this[OF r1E2-in-Nv1-inter-C2-star ] obtain t2 ′

where t2 ′-in-E2star : set t2 ′ ⊆ EES2
and τr1E2-t2 ′-in-Tr2 : ((τ @ r1 ) � EES2) @ t2 ′ ∈ TrES2
and t2 ′-Vv2-is-t2-Vv2 : t2 ′ � VV2 = t2 � VV2
and t2 ′-Cv2-empty: t2 ′ � CV2 = []

by auto

let ?tau = τ @ r1 @ [V ′]

from v ′-in-E1 Cons(2 ) r1-in-Nv1star validV1 have set ?tau ⊆ E(ES1 ‖ ES2 )
by (simp only: isViewOn-def composeES-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
from Cons(4 ) t1-is-r1-v ′-s1 have set s1 ⊆ EES1

by auto
moreover
note t2 ′-in-E2star
moreover
have ?tau � EES1 @ s1 ∈ TrES1

by (metis Cons-eq-appendI append-eq-appendI calculation(3 ) eq-Nil-appendI
list-subset-iff-projection-neutral Cons.prems(3 ) Cons.prems(5 )
projection-concatenation-commute t1-is-r1-v ′-s1 )

moreover
from τr1E2-t2 ′-in-Tr2 v ′-notin-E2 have ?tau � EES2 @ t2 ′ ∈ TrES2

by (simp add: projection-def )
moreover
from Cons(8 ) t1-is-r1-v ′-s1 r1-Vv-empty v ′-in-E1 v ′-in-Vv have lambda ′ � EES1 = s1 � VV

by (simp add: projection-def )
moreover
from Cons(9 ) v ′-notin-E2 t2 ′-Vv2-is-t2-Vv2 have lambda ′ � EES2 = t2 ′ � VV

proof −
have t2 ′ � VV = t2 ′ � VV2

using propSepViews unfolding properSeparationOfViews-def
by (simp add: projection-def , metis Int-commute

projection-def projection-intersection-neutral t2 ′-in-E2star)
moreover
have t2 � VV = t2 � VV2

using propSepViews unfolding properSeparationOfViews-def
by (simp add: projection-def , metis Int-commute

projection-def projection-intersection-neutral Cons(5 ))
moreover
note Cons(9 ) v ′-notin-E2 t2 ′-Vv2-is-t2-Vv2
ultimately show ?thesis

by (simp add: projection-def )
qed

moreover
note s1-Cv1-empty t2 ′-Cv2-empty
moreover
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note Cons.hyps(1 )[of ?tau s1 t2 ′]
ultimately obtain t ′

where τr1v ′t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′-Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′-Cv-empty: t ′ � CV = []
by auto

let ?t = r1 @ [V ′] @ t ′

note τr1v ′t ′-in-Tr
moreover
from r1-Vv-empty t ′-Vv-is-lambda ′ v ′-in-Vv have ?t � VV = V ′ # lambda ′

by (simp add: projection-def )
moreover
have ?t � CV = []

proof −
have r1 � CV = []
proof −

from propSepViews have EES1 ∩ CV ⊆ CV1
unfolding properSeparationOfViews-def by auto
from projection-on-subset[OF ‹EES1 ∩ CV ⊆ CV1› r1-Cv1-empty]
have r1 � (EES1 ∩ CV ) = []

by (simp only: Int-commute)
with projection-intersection-neutral[OF r1-in-E1star , of CV ] show ?thesis

by simp
qed

with v ′-in-Vv VIsViewOnE t ′-Cv-empty show ?thesis
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def , auto)
qed

ultimately have ?thesis
by auto

}
moreover
{

assume v ′-in-Vv2-minus-E1 : V ′ ∈ VV2 − EES1
hence v ′-in-Vv2 : V ′ ∈ VV2

by auto
with v ′-in-Vv propSepViews have v ′-in-E2 : V ′ ∈ EES2

unfolding properSeparationOfViews-def
by auto

from v ′-in-Vv2-minus-E1 have v ′-notin-E1 : V ′ /∈ EES1
by auto

with validV1 have v ′-notin-Vv1 : V ′ /∈ VV1
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

from Cons(3 ) Cons(5 ) Cons(9 ) v ′-in-E2 have t2 � VV = V ′ # (lambda ′ � EES2)
by (simp add: projection-def )

from projection-split-first[OF this] obtain r2 s2
where t2-is-r2-v ′-s2 : t2 = r2 @ [V ′] @ s2
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and r2-Vv-empty: r2 � VV = []
by auto

with Vv-is-Vv1-union-Vv2 projection-on-subset[of VV2 VV r2 ]
have r2-Vv2-empty: r2 � VV2 = []

by auto

from t2-is-r2-v ′-s2 Cons(11 ) have r2-Cv2-empty: r2 � CV2 = []
by (simp add: projection-concatenation-commute)

from t2-is-r2-v ′-s2 Cons(11 ) have s2-Cv2-empty: s2 � CV2 = []
by (simp only: projection-concatenation-commute, auto)

from Cons(5 ) t2-is-r2-v ′-s2 have r2-in-E2star : set r2 ⊆ EES2
by auto

have r2-in-Nv2star : set r2 ⊆ NV2
proof −

note r2-in-E2star
moreover
from r2-Vv2-empty have set r2 ∩ VV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
from r2-Cv2-empty have set r2 ∩ CV2 = {}

by (metis Compl-Diff-eq Diff-cancel Un-upper2
disjoint-eq-subset-Compl list-subset-iff-projection-neutral
projection-on-union)

moreover
note validV2
ultimately show ?thesis

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

qed

have r2E1-in-Nv2-inter-C1-star : set (r2 � EES1) ⊆ (NV2 ∩ CV1)
proof −

have set (r2 � EES1) = set r2 ∩ EES1
by (simp add: projection-def , auto)

with r2-in-Nv2star have set (r2 � EES1) ⊆ (EES1 ∩ NV2)
by auto

moreover
from validV1 propSepViews disjoint-Nv2-Vv1
have EES1 ∩ NV2 = NV2 ∩ CV1

unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
ultimately show ?thesis

by auto
qed
with Cv1-inter-Nv2-subsetof-Upsilon1
have r2E1-in-Nv2-inter-C1-Upsilon1-star : set (r2 � EES1) ⊆ (NV2 ∩ CV1 ∩ ΥΓ1)
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by auto

note outerCons-prems = Cons.prems

have set (r2 � EES1) ⊆ (NV2 ∩ CV1) =⇒
∃ t1 ′. ( set t1 ′ ⊆ EES1
∧ ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1
∧ t1 ′ � VV1 = t1 � VV1
∧ t1 ′ � CV1 = [] )

proof (induct r2 � EES1 arbitrary: r2 rule: rev-induct)
case Nil thus ?case

by (metis append-self-conv outerCons-prems(9 ) outerCons-prems(3 )
outerCons-prems(5 ) projection-concatenation-commute)

next
case (snoc x xs)

have xs-is-xsE1 : xs = xs � EES1
proof −

from snoc(2 ) have set (xs @ [x]) ⊆ EES1
by (simp add: projection-def , auto)

hence set xs ⊆ EES1
by auto

thus ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
moreover
have set (xs � EES1) ⊆ (NV2 ∩ CV1)
proof −

have set (r2 � EES1) ⊆ (NV2 ∩ CV1)
by (metis Int-commute snoc.prems)

with snoc(2 ) have set (xs @ [x]) ⊆ (NV2 ∩ CV1)
by simp

hence set xs ⊆ (NV2 ∩ CV1)
by auto

with xs-is-xsE1 show ?thesis
by auto

qed
moreover
note snoc.hyps(1 )[of xs]
ultimately obtain t1 ′′

where t1 ′′-in-E1star : set t1 ′′ ⊆ EES1
and τ -xs-E1-t1 ′′-in-Tr1 : ((τ @ xs) � EES1) @ t1 ′′ ∈ TrES1
and t1 ′′Vv1-is-t1Vv1 : t1 ′′ � VV1 = t1 � VV1
and t1 ′′Cv1-empty: t1 ′′ � CV1 = []
by auto

have x-in-Cv1-inter-Nv2 : x ∈ CV1 ∩ NV2
proof −

from snoc(2−3 ) have set (xs @ [x]) ⊆ (NV2 ∩ CV1)
by simp

thus ?thesis
by auto
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qed
hence x-in-Cv1 : x ∈ CV1

by auto
moreover
note τ -xs-E1-t1 ′′-in-Tr1 t1 ′′Cv1-empty
moreover
have Adm: (Adm V1 %1 TrES1 ((τ @ xs) � EES1) x)
proof −

from τ -xs-E1-t1 ′′-in-Tr1 validES1
have τ -xsE1-in-Tr1 : ((τ @ xs) � EES1) ∈ TrES1

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

with x-in-Cv1-inter-Nv2 ES1-total-Cv1-inter-Nv2
have τ -xsE1-x-in-Tr1 : ((τ @ xs) � EES1) @ [x] ∈ TrES1

by (simp only: total-def )
moreover
have ((τ @ xs) � EES1) � (%1 V1 ) = ((τ @ xs) � EES1) � (%1 V1 ) ..
ultimately show ?thesis

by (simp add: Adm-def , auto)
qed
moreover note BSIA1
ultimately obtain t1 ′

where res1 : ((τ @ xs) � EES1) @ [x] @ t1 ′ ∈ TrES1
and res2 : t1 ′ � VV1 = t1 ′′ � VV1
and res3 : t1 ′ � CV1 = []
by (simp only: BSIA-def , blast)

have set t1 ′ ⊆ EES1
proof −

from res1 validES1 have set (((τ @ xs) � EES1) @ [x] @ t1 ′) ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

thus ?thesis
by auto

qed
moreover
have ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1
proof −

from res1 xs-is-xsE1 have ((τ � EES1) @ (xs @ [x])) @ t1 ′ ∈ TrES1
by (simp only: projection-concatenation-commute, auto)

thus ?thesis
by (simp only: snoc(2 ) projection-concatenation-commute)

qed
moreover
from t1 ′′Vv1-is-t1Vv1 res2 have t1 ′ � VV1 = t1 � VV1

by auto
moreover
note res3
ultimately show ?case

by auto
qed
from this[OF r2E1-in-Nv2-inter-C1-star ] obtain t1 ′

where t1 ′-in-E1star : set t1 ′ ⊆ EES1
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and τr2E1-t1 ′-in-Tr1 : ((τ @ r2 ) � EES1) @ t1 ′ ∈ TrES1
and t1 ′-Vv1-is-t1-Vv1 : t1 ′ � VV1 = t1 � VV1
and t1 ′-Cv1-empty: t1 ′ � CV1 = []
by auto

let ?tau = τ @ r2 @ [V ′]

from v ′-in-E2 Cons(2 ) r2-in-Nv2star validV2 have set ?tau ⊆ E(ES1 ‖ ES2 )
by (simp only: composeES-def isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
moreover
from Cons(3 ) have set lambda ′ ⊆ VV

by auto
moreover
from Cons(5 ) t2-is-r2-v ′-s2 have set s2 ⊆ EES2

by auto
moreover
note t1 ′-in-E1star
moreover
have ?tau � EES2 @ s2 ∈ TrES2

by (metis Cons-eq-appendI append-eq-appendI calculation(3 ) eq-Nil-appendI
list-subset-iff-projection-neutral Cons.prems(4 ) Cons.prems(6 )
projection-concatenation-commute t2-is-r2-v ′-s2 )

moreover
from τr2E1-t1 ′-in-Tr1 v ′-notin-E1 have ?tau � EES1 @ t1 ′ ∈ TrES1

by (simp add: projection-def )
moreover
from Cons(9 ) t2-is-r2-v ′-s2 r2-Vv-empty v ′-in-E2 v ′-in-Vv
have lambda ′ � EES2 = s2 � VV

by (simp add: projection-def )
moreover
from Cons(10 ) v ′-notin-E1 t1 ′-Vv1-is-t1-Vv1
have lambda ′ � EES1 = t1 ′ � VV
proof −

have t1 ′ � VV = t1 ′ � VV1
using propSepViews unfolding properSeparationOfViews-def
by (simp add: projection-def , metis Int-commute

projection-def projection-intersection-neutral t1 ′-in-E1star)
moreover
have t1 � VV = t1 � VV1

using propSepViews unfolding properSeparationOfViews-def
by (simp add: projection-def , metis Int-commute

projection-def projection-intersection-neutral Cons(4 ))
moreover
note Cons(8 ) v ′-notin-E1 t1 ′-Vv1-is-t1-Vv1
ultimately show ?thesis

by (simp add: projection-def )
qed
moreover
note s2-Cv2-empty t1 ′-Cv1-empty
moreover
note Cons.hyps(1 )[of ?tau t1 ′ s2 ]
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ultimately obtain t ′

where τr2v ′t ′-in-Tr : ?tau @ t ′ ∈ Tr(ES1 ‖ ES2 )
and t ′-Vv-is-lambda ′: t ′ � VV = lambda ′

and t ′-Cv-empty: t ′ � CV = []
by auto

let ?t = r2 @ [V ′] @ t ′

note τr2v ′t ′-in-Tr
moreover
from r2-Vv-empty t ′-Vv-is-lambda ′ v ′-in-Vv have ?t � VV = V ′ # lambda ′

by (simp add: projection-def )
moreover
have ?t � CV = []
proof −

have r2 � CV = []
proof −

from propSepViews have EES2 ∩ CV ⊆ CV2
unfolding properSeparationOfViews-def by auto

from projection-on-subset[OF ‹EES2 ∩ CV ⊆ CV2› r2-Cv2-empty]
have r2 � (EES2 ∩ CV ) = []

by (simp only: Int-commute)
with projection-intersection-neutral[OF r2-in-E2star , of CV ] show ?thesis

by simp
qed
with v ′-in-Vv VIsViewOnE t ′-Cv-empty show ?thesis

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def projection-def , auto)

qed
ultimately have ?thesis

by auto
}
ultimately show ?thesis

by blast
qed

qed
}
thus ?thesis

by auto
qed

lemma generalized-zipping-lemma:
∀ τ lambda t1 t2 . ( ( set τ ⊆ E(ES1 ‖ ES2 )
∧ set lambda ⊆ VV ∧ set t1 ⊆ EES1 ∧ set t2 ⊆ EES2
∧ ((τ � EES1) @ t1 ) ∈ TrES1 ∧ ((τ � EES2) @ t2 ) ∈ TrES2
∧ (lambda � EES1) = (t1 � VV ) ∧ (lambda � EES2) = (t2 � VV )
∧ (t1 � CV1) = [] ∧ (t2 � CV2) = [])
−→ (∃ t. ((τ @ t) ∈ Tr(ES1 ‖ ES2 ) ∧ (t � VV ) = lambda ∧ (t � CV ) = [])) )

proof −
note well-behaved-composition
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moreover {
assume NV1 ∩ EES2 = {} ∧ NV2 ∩ EES1 = {}
with generalized-zipping-lemma1 have ?thesis

by auto
}
moreover {

assume ∃ %1 . NV1 ∩ EES2 = {} ∧ total ES1 (CV1 ∩ NV2) ∧ BSIA %1 V1 TrES1
then obtain %1 where NV1 ∩ EES2 = {} ∧ total ES1 (CV1 ∩ NV2) ∧ BSIA %1 V1 TrES1

by auto
with generalized-zipping-lemma2 [of %1 ] have ?thesis

by auto
}
moreover {

assume ∃ %2 . NV2 ∩ EES1 = {} ∧ total ES2 (CV2 ∩ NV1) ∧ BSIA %2 V2 TrES2
then obtain %2 where NV2 ∩ EES1 = {} ∧ total ES2 (CV2 ∩ NV1) ∧ BSIA %2 V2 TrES2

by auto
with generalized-zipping-lemma3 [of %2 ] have ?thesis

by auto
}
moreover {

assume ∃ %1 %2 Γ1 Γ2 . ( ∇Γ1 ⊆ EES1 ∧ ∆Γ1 ⊆ EES1 ∧ ΥΓ1 ⊆ EES1
∧ ∇Γ2 ⊆ EES2 ∧ ∆Γ2 ⊆ EES2 ∧ ΥΓ2 ⊆ EES2
∧ BSIA %1 V1 TrES1 ∧ BSIA %2 V2 TrES2
∧ total ES1 (CV1 ∩ NV2) ∧ total ES2 (CV2 ∩ NV1)
∧ FCIA %1 Γ1 V1 TrES1 ∧ FCIA %2 Γ2 V2 TrES2
∧ VV1 ∩ VV2 ⊆ ∇Γ1 ∪ ∇Γ2
∧ CV1 ∩ NV2 ⊆ ΥΓ1 ∧ CV2 ∩ NV1 ⊆ ΥΓ2
∧ NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 = {} )

then obtain %1 %2 Γ1 Γ2 where ∇Γ1 ⊆ EES1 ∧ ∆Γ1 ⊆ EES1 ∧ ΥΓ1 ⊆ EES1
∧ ∇Γ2 ⊆ EES2 ∧ ∆Γ2 ⊆ EES2 ∧ ΥΓ2 ⊆ EES2
∧ BSIA %1 V1 TrES1 ∧ BSIA %2 V2 TrES2
∧ total ES1 (CV1 ∩ NV2) ∧ total ES2 (CV2 ∩ NV1)
∧ FCIA %1 Γ1 V1 TrES1 ∧ FCIA %2 Γ2 V2 TrES2
∧ VV1 ∩ VV2 ⊆ ∇Γ1 ∪ ∇Γ2
∧ CV1 ∩ NV2 ⊆ ΥΓ1 ∧ CV2 ∩ NV1 ⊆ ΥΓ2
∧ NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 = {}
by auto

with generalized-zipping-lemma4 [of Γ1 Γ2 %1 %2 ] have ?thesis
by auto

}
ultimately show ?thesis unfolding wellBehavedComposition-def

by blast
qed

end

end

5.4.3 Compositionality Results
theory CompositionalityResults
imports GeneralizedZippingLemma CompositionSupport
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begin

context Compositionality
begin

theorem compositionality-BSD:
[[ BSD V1 TrES1; BSD V2 TrES2 ]] =⇒ BSD V Tr(ES1 ‖ ES2 )
proof −

assume BSD-Tr1-v1 : BSD V1 TrES1
assume BSD-Tr2-v2 : BSD V2 TrES2
{

fix α β c
assume c-in-Cv: c ∈ CV
assume βcα-in-Tr : (β @ [c] @ α) ∈ Tr(ES1 ‖ ES2 )
assume α-contains-no-c: α � CV = []

interpret CSES1 : CompositionSupport ES1 V V1
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES1 validV1 )

interpret CSES2 : CompositionSupport ES2 V V2
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES2 validV2 )

from βcα-in-Tr
have βcα-E1-in-Tr1 : ((β @ [c] @ α) � EES1) ∈ TrES1

and βcα-E2-in-Tr2 : ((β @ [c] @ α) � EES2) ∈ TrES2
by (auto, simp add: composeES-def )+

from composeES-yields-ES validES1 validES2 have ES-valid (ES1 ‖ ES2 )
by auto

with βcα-in-Tr have set β ⊆ E(ES1 ‖ ES2 )
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set (α � VV ) ⊆ VV

by (simp add: projection-def , auto)
moreover
have (α � VV ) � VV = (α � VV )

by (simp add: projection-def )
moreover
from CSES1 .BSD-in-subsystem[OF c-in-Cv βcα-E1-in-Tr1 BSD-Tr1-v1 ]
obtain α1 ′

where α1 ′-1 : ((β � EES1) @ α1 ′) ∈ TrES1
and α1 ′-2 : (α1 ′ � VV1) = (α � VV1)
and α1 ′ � CV1 = []
by auto

moreover
from α1 ′-1 validES1 have α1 ′-in-E1 : set α1 ′ ⊆ EES1

by (simp add: ES-valid-def traces-contain-events-def , auto)
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moreover
from α1 ′-2 propSepViews have ((α � VV ) � EES1) = (α1 ′ � VV )

proof −
have ((α � VV ) � EES1) = α � (VV ∩ EES1)

by (simp only: projection-def , auto)
with propSepViews have ((α � VV ) � EES1) = (α � VV1)

unfolding properSeparationOfViews-def by auto
moreover
from α1 ′-2 have (α1 ′ � VV1) = (α1 ′ � VV )

proof −
from α1 ′-in-E1 have α1 ′ � EES1 = α1 ′

by (simp add: list-subset-iff-projection-neutral)
hence (α1 ′ � EES1) � VV = α1 ′ � VV

by simp
with Vv-is-Vv1-union-Vv2 have (α1 ′ � EES1) � (VV1 ∪ VV2) = α1 ′ � VV

by simp
hence α1 ′ � (EES1 ∩ (VV1 ∪ VV2)) = α1 ′ � VV

by (simp only: projection-def , auto)
hence α1 ′ � (EES1 ∩ VV1 ∪ EES1 ∩ VV2) = α1 ′ � VV

by (simp add: Int-Un-distrib)
moreover
from validV1 have EES1 ∩ VV1 = VV1

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

ultimately have α1 ′ � (VV1 ∪ EES1 ∩ VV2) = α1 ′ � VV
by simp

moreover
have EES1 ∩ VV2 ⊆ VV1

proof −
from propSepViews Vv-is-Vv1-union-Vv2 have (VV1 ∪ VV2) ∩ EES1 = VV1

unfolding properSeparationOfViews-def by simp
hence (VV1 ∩ EES1 ∪ VV2 ∩ EES1) = VV1

by auto
with validV1 have (VV1 ∪ VV2 ∩ EES1) = VV1

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

thus ?thesis
by auto

qed
ultimately show ?thesis

by (simp add: Un-absorb2 )
qed
moreover note α1 ′-2
ultimately show ?thesis

by auto
qed

moreover
from CSES2 .BSD-in-subsystem[OF c-in-Cv βcα-E2-in-Tr2 BSD-Tr2-v2 ]
obtain α2 ′

where α2 ′-1 : ((β � EES2) @ α2 ′) ∈ TrES2
and α2 ′-2 : (α2 ′ � VV2) = (α � VV2)
and α2 ′ � CV2 = []
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by auto
moreover

from α2 ′-1 validES2 have α2 ′-in-E2 : set α2 ′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from α2 ′-2 propSepViews have ((α � VV ) � EES2) = (α2 ′ � VV )

proof −
have ((α � VV ) � EES2) = α � (VV ∩ EES2)

by (simp only: projection-def , auto)
with propSepViews have ((α � VV ) � EES2) = (α � VV2)

unfolding properSeparationOfViews-def by auto
moreover
from α2 ′-2 have (α2 ′ � VV2) = (α2 ′ � VV )

proof −
from α2 ′-in-E2 have α2 ′ � EES2 = α2 ′

by (simp add: list-subset-iff-projection-neutral)
hence (α2 ′ � EES2) � VV = α2 ′ � VV

by simp
with Vv-is-Vv1-union-Vv2 have (α2 ′ � EES2) � (VV2 ∪ VV1) = α2 ′ � VV

by (simp add: Un-commute)
hence α2 ′ � (EES2 ∩ (VV2 ∪ VV1)) = α2 ′ � VV

by (simp only: projection-def , auto)
hence α2 ′ � (EES2 ∩ VV2 ∪ EES2 ∩ VV1) = α2 ′ � VV

by (simp add: Int-Un-distrib)
moreover
from validV2 have EES2 ∩ VV2 = VV2

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

ultimately have α2 ′ � (VV2 ∪ EES2 ∩ VV1) = α2 ′ � VV
by simp

moreover
have EES2 ∩ VV1 ⊆ VV2

proof −
from propSepViews Vv-is-Vv1-union-Vv2 have (VV2 ∪ VV1) ∩ EES2 = VV2

unfolding properSeparationOfViews-def by (simp add: Un-commute)
hence (VV2 ∩ EES2 ∪ VV1 ∩ EES2) = VV2

by auto
with validV2 have (VV2 ∪ VV1 ∩ EES2) = VV2

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

thus ?thesis
by auto

qed
ultimately show ?thesis

by (simp add: Un-absorb2 )
qed
moreover note α2 ′-2
ultimately show ?thesis

by auto
qed

moreover note generalized-zipping-lemma
ultimately have ∃α ′. ((β @ α ′) ∈ (Tr(ES1 ‖ ES2 )) ∧ (α ′ � VV = (α � VV )) ∧ α ′ � CV = [])
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by blast
}
thus ?thesis

unfolding BSD-def
by auto

qed

theorem compositionality-BSI :
[[ BSD V1 TrES1; BSD V2 TrES2; BSI V1 TrES1; BSI V2 TrES2 ]]

=⇒ BSI V Tr(ES1 ‖ ES2 )
proof −

assume BSD1 : BSD V1 TrES1
and BSD2 : BSD V2 TrES2
and BSI1 : BSI V1 TrES1
and BSI2 : BSI V2 TrES2

{
fix α β c
assume c-in-Cv: c ∈ CV
assume βα-in-Tr : (β @ α) ∈ Tr(ES1 ‖ ES2 )
assume α-no-Cv: α � CV = []

from βα-in-Tr
have βα-E1-in-Tr1 : ((β @ α) � EES1) ∈ TrES1

and βα-E2-in-Tr2 : ((β @ α) � EES2) ∈ TrES2
by (simp add: composeES-def )+

interpret CSES1 : CompositionSupport ES1 V V1
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES1 validV1 )

interpret CSES2 : CompositionSupport ES2 V V2
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES2 validV2 )

from CSES1 .BSD-in-subsystem2 [OF βα-E1-in-Tr1 BSD1 ] obtain α1 ′

where βE1α1 ′-in-Tr1 : β � EES1 @ α1 ′ ∈ TrES1
and α1 ′Vv1-is-αVv1 : α1 ′ � VV1 = α � VV1
and α1 ′Cv1-empty: α1 ′ � CV1 = []
by auto

from CSES2 .BSD-in-subsystem2 [OF βα-E2-in-Tr2 BSD2 ] obtain α2 ′

where βE2α2 ′-in-Tr2 : β � EES2 @ α2 ′ ∈ TrES2
and α2 ′Vv2-is-αVv2 : α2 ′ � VV2 = α � VV2
and α2 ′Cv2-empty: α2 ′ � CV2 = []
by auto

have ∃ α1 ′′. (set α1 ′′ ⊆ EES1 ∧ ((β @ [c]) � EES1) @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α � VV1 ∧ α1 ′′ � CV1 = [])
proof cases

assume cE1-empty: [c] � EES1 = []
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from βE1α1 ′-in-Tr1 validES1 have set α1 ′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from cE1-empty βE1α1 ′-in-Tr1 have ((β @ [c]) � EES1) @ α1 ′ ∈ TrES1

by (simp only: projection-concatenation-commute, auto)
moreover
note α1 ′Vv1-is-αVv1 α1 ′Cv1-empty
ultimately show ?thesis

by auto
next

assume cE1-not-empty: [c] � EES1 6= []
hence c-in-E1 : c ∈ EES1

by (simp only: projection-def , auto, split if-split-asm, auto)

from c-in-Cv c-in-E1 propSepViews have c ∈ CV1
unfolding properSeparationOfViews-def by auto

moreover
note βE1α1 ′-in-Tr1 α1 ′Cv1-empty BSI1
ultimately obtain α1 ′′

where βE1cα1 ′′-in-Tr1 : (β � EES1) @ [c] @ α1 ′′ ∈ TrES1
and α1 ′′Vv1-is-α1 ′Vv1 : α1 ′′ � VV1 = α1 ′ � VV1
and α1 ′′Cv1-empty: α1 ′′ � CV1 = []
unfolding BSI-def
by blast

from validES1 βE1cα1 ′′-in-Tr1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from βE1cα1 ′′-in-Tr1 c-in-E1 have ((β @ [c]) � EES1) @ α1 ′′ ∈ TrES1

by (simp only: projection-concatenation-commute projection-def , auto)
moreover
from α1 ′′Vv1-is-α1 ′Vv1 α1 ′Vv1-is-αVv1 have α1 ′′ � VV1 = α � VV1

by auto
moreover
note α1 ′′Cv1-empty
ultimately show ?thesis

by auto
qed

then obtain α1 ′′

where α1 ′′-in-E1star : set α1 ′′ ⊆ EES1
and βcE1α1 ′′-in-Tr1 : ((β @ [c]) � EES1) @ α1 ′′ ∈ TrES1
and α1 ′′Vv1-is-αVv1 : α1 ′′ � VV1 = α � VV1
and α1 ′′Cv1-empty: α1 ′′ � CV1 = []
by auto

have ∃ α2 ′′. (set α2 ′′ ⊆ EES2
∧ ((β @ [c]) � EES2) @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α � VV2
∧ α2 ′′ � CV2 = [])
proof cases

assume cE2-empty: [c] � EES2 = []
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from βE2α2 ′-in-Tr2 validES2 have set α2 ′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from cE2-empty βE2α2 ′-in-Tr2 have ((β @ [c]) � EES2) @ α2 ′ ∈ TrES2

by (simp only: projection-concatenation-commute, auto)
moreover
note α2 ′Vv2-is-αVv2 α2 ′Cv2-empty
ultimately show ?thesis

by auto
next

assume cE2-not-empty: [c] � EES2 6= []
hence c-in-E2 : c ∈ EES2

by (simp only: projection-def , auto, split if-split-asm, auto)

from c-in-Cv c-in-E2 propSepViews have c ∈ CV2
unfolding properSeparationOfViews-def by auto

moreover
note βE2α2 ′-in-Tr2 α2 ′Cv2-empty BSI2
ultimately obtain α2 ′′

where βE2cα2 ′′-in-Tr2 : (β � EES2) @ [c] @ α2 ′′ ∈ TrES2
and α2 ′′Vv2-is-α2 ′Vv2 : α2 ′′ � VV2 = α2 ′ � VV2
and α2 ′′Cv2-empty: α2 ′′ � CV2 = []
unfolding BSI-def
by blast

from validES2 βE2cα2 ′′-in-Tr2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from βE2cα2 ′′-in-Tr2 c-in-E2 have ((β @ [c]) � EES2) @ α2 ′′ ∈ TrES2

by (simp only: projection-concatenation-commute projection-def , auto)
moreover
from α2 ′′Vv2-is-α2 ′Vv2 α2 ′Vv2-is-αVv2 have α2 ′′ � VV2 = α � VV2

by auto
moreover
note α2 ′′Cv2-empty
ultimately show ?thesis

by auto
qed

then obtain α2 ′′

where α2 ′′-in-E2star : set α2 ′′ ⊆ EES2
and βcE2α2 ′′-in-Tr2 : ((β @ [c]) � EES2) @ α2 ′′ ∈ TrES2
and α2 ′′Vv2-is-αVv2 : α2 ′′ � VV2 = α � VV2
and α2 ′′Cv2-empty: α2 ′′ � CV2 = []
by auto

from VIsViewOnE c-in-Cv βα-in-Tr have set (β @ [c]) ⊆ E(ES1 ‖ ES2 )
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def composeES-def , auto)
moreover
have set (α � VV ) ⊆ VV
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by (simp add: projection-def , auto)
moreover
note α1 ′′-in-E1star α2 ′′-in-E2star βcE1α1 ′′-in-Tr1 βcE2α2 ′′-in-Tr2
moreover
have (α � VV ) � EES1 = α1 ′′ � VV

proof −
from α1 ′′Vv1-is-αVv1 propSepViews have α � (VV ∩ EES1) = α1 ′′ � (EES1 ∩ VV )

unfolding properSeparationOfViews-def by (simp add: Int-commute)
hence α � VV � EES1 = α1 ′′ � EES1 � VV

by (simp add: projection-def )
with α1 ′′-in-E1star show ?thesis

by (simp add: list-subset-iff-projection-neutral)
qed

moreover
have (α � VV ) � EES2 = α2 ′′ � VV

proof −
from α2 ′′Vv2-is-αVv2 propSepViews have α � (VV ∩ EES2) = α2 ′′ � (EES2 ∩ VV )

unfolding properSeparationOfViews-def by (simp add: Int-commute)
hence α � VV � EES2 = α2 ′′ � EES2 � VV

by (simp add: projection-def )
with α2 ′′-in-E2star show ?thesis

by (simp add: list-subset-iff-projection-neutral)
qed

moreover
note α1 ′′Cv1-empty α2 ′′Cv2-empty generalized-zipping-lemma
ultimately have ∃α ′. (β @ [c]) @ α ′ ∈ Tr(ES1 ‖ ES2 ) ∧ α ′ � VV = α � VV ∧ α ′ � CV = []

by blast
}
thus ?thesis

unfolding BSI-def
by auto

qed

theorem compositionality-BSIA:
[[ BSD V1 TrES1; BSD V2 TrES2; BSIA %1 V1 TrES1; BSIA %2 V2 TrES2;
(%1 V1 ) ⊆ (% V) ∩ EES1; (%2 V2 ) ⊆ (% V) ∩ EES2 ]]
=⇒ BSIA % V (Tr(ES1 ‖ ES2 ))

proof −
assume BSD1 : BSD V1 TrES1
and BSD2 : BSD V2 TrES2
and BSIA1 : BSIA %1 V1 TrES1
and BSIA2 : BSIA %2 V2 TrES2
and %1v1-subset-%v-inter-E1 : (%1 V1 ) ⊆ (% V) ∩ EES1
and %2v2-subset-%v-inter-E2 :(%2 V2 ) ⊆ (% V) ∩ EES2

{
fix α β c
assume c-in-Cv: c ∈ CV
assume βα-in-Tr : (β @ α) ∈ Tr(ES1 ‖ ES2 )
assume α-no-Cv: α � CV = []
assume Adm: (Adm V % Tr(ES1 ‖ ES2 ) β c)
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then obtain γ
where γ%v-is-β%v: γ � (% V) = β � (% V)
and γc-in-Tr : (γ @ [c]) ∈ Tr(ES1 ‖ ES2 )
unfolding Adm-def
by auto

from βα-in-Tr
have βα-E1-in-Tr1 : ((β @ α) � EES1) ∈ TrES1

and βα-E2-in-Tr2 : ((β @ α) � EES2) ∈ TrES2
by (simp add: composeES-def )+

interpret CSES1 : CompositionSupport ES1 V V1
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES1 validV1 )

interpret CSES2 : CompositionSupport ES2 V V2
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES2 validV2 )

from CSES1 .BSD-in-subsystem2 [OF βα-E1-in-Tr1 BSD1 ] obtain α1 ′

where βE1α1 ′-in-Tr1 : β � EES1 @ α1 ′ ∈ TrES1
and α1 ′Vv1-is-αVv1 : α1 ′ � VV1 = α � VV1
and α1 ′Cv1-empty: α1 ′ � CV1 = []
by auto

from CSES2 .BSD-in-subsystem2 [OF βα-E2-in-Tr2 BSD2 ] obtain α2 ′

where βE2α2 ′-in-Tr2 : β � EES2 @ α2 ′ ∈ TrES2
and α2 ′Vv2-is-αVv2 : α2 ′ � VV2 = α � VV2
and α2 ′Cv2-empty: α2 ′ � CV2 = []
by auto

have ∃ α1 ′′. (set α1 ′′ ⊆ EES1
∧ ((β @ [c]) � EES1) @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α � VV1
∧ α1 ′′ � CV1 = [])
proof cases

assume cE1-empty: [c] � EES1 = []

from βE1α1 ′-in-Tr1 validES1 have set α1 ′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from cE1-empty βE1α1 ′-in-Tr1 have ((β @ [c]) � EES1) @ α1 ′ ∈ TrES1

by (simp only: projection-concatenation-commute, auto)
moreover
note α1 ′Vv1-is-αVv1 α1 ′Cv1-empty
ultimately show ?thesis

by auto
next

assume cE1-not-empty: [c] � EES1 6= []
hence c-in-E1 : c ∈ EES1

by (simp only: projection-def , auto, split if-split-asm, auto)
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from c-in-Cv c-in-E1 propSepViews have c ∈ CV1
unfolding properSeparationOfViews-def by auto

moreover
note βE1α1 ′-in-Tr1 α1 ′Cv1-empty
moreover
have (Adm V1 %1 TrES1 (β � EES1) c)

proof −
from c-in-E1 γc-in-Tr have (γ � EES1) @ [c] ∈ TrES1

by (simp add: projection-def composeES-def )
moreover
have γ � EES1 � (%1 V1 ) = β � EES1 � (%1 V1 )

proof −
from γ%v-is-β%v have γ � EES1 � (% V) = β � EES1 � (% V)

by (metis projection-commute)
with %1v1-subset-%v-inter-E1 have γ � (%1 V1 ) = β � (%1 V1 )

by (metis Int-subset-iff γ%v-is-β%v projection-subset-elim)
thus ?thesis

by (metis projection-commute)
qed

ultimately show ?thesis unfolding Adm-def
by auto

qed
moreover
note BSIA1
ultimately obtain α1 ′′

where βE1cα1 ′′-in-Tr1 : (β � EES1) @ [c] @ α1 ′′ ∈ TrES1
and α1 ′′Vv1-is-α1 ′Vv1 : α1 ′′ � VV1 = α1 ′ � VV1
and α1 ′′Cv1-empty: α1 ′′ � CV1 = []
unfolding BSIA-def
by blast

from validES1 βE1cα1 ′′-in-Tr1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from βE1cα1 ′′-in-Tr1 c-in-E1 have ((β @ [c]) � EES1) @ α1 ′′ ∈ TrES1

by (simp only: projection-concatenation-commute projection-def , auto)
moreover
from α1 ′′Vv1-is-α1 ′Vv1 α1 ′Vv1-is-αVv1 have α1 ′′ � VV1 = α � VV1

by auto
moreover
note α1 ′′Cv1-empty
ultimately show ?thesis

by auto
qed

then obtain α1 ′′

where α1 ′′-in-E1star : set α1 ′′ ⊆ EES1
and βcE1α1 ′′-in-Tr1 : ((β @ [c]) � EES1) @ α1 ′′ ∈ TrES1
and α1 ′′Vv1-is-αVv1 : α1 ′′ � VV1 = α � VV1
and α1 ′′Cv1-empty: α1 ′′ � CV1 = []
by auto
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have ∃ α2 ′′. (set α2 ′′ ⊆ EES2
∧ ((β @ [c]) � EES2) @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α � VV2
∧ α2 ′′ � CV2 = [])
proof cases

assume cE2-empty: [c] � EES2 = []

from βE2α2 ′-in-Tr2 validES2 have set α2 ′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from cE2-empty βE2α2 ′-in-Tr2 have ((β @ [c]) � EES2) @ α2 ′ ∈ TrES2

by (simp only: projection-concatenation-commute, auto)
moreover
note α2 ′Vv2-is-αVv2 α2 ′Cv2-empty
ultimately show ?thesis

by auto
next

assume cE2-not-empty: [c] � EES2 6= []
hence c-in-E2 : c ∈ EES2

by (simp only: projection-def , auto, split if-split-asm, auto)

from c-in-Cv c-in-E2 propSepViews have c ∈ CV2
unfolding properSeparationOfViews-def by auto

moreover
note βE2α2 ′-in-Tr2 α2 ′Cv2-empty
moreover
have (Adm V2 %2 TrES2 (β � EES2) c)

proof −
from c-in-E2 γc-in-Tr have (γ � EES2) @ [c] ∈ TrES2

by (simp add: projection-def composeES-def )
moreover
have γ � EES2 � (%2 V2 ) = β � EES2 � (%2 V2 )

proof −
from γ%v-is-β%v have γ � EES2 � (% V) = β � EES2 � (% V)

by (metis projection-commute)
with %2v2-subset-%v-inter-E2 have γ � (%2 V2 ) = β � (%2 V2 )

by (metis Int-subset-iff γ%v-is-β%v projection-subset-elim)
thus ?thesis

by (metis projection-commute)
qed

ultimately show ?thesis unfolding Adm-def
by auto

qed
moreover
note BSIA2
ultimately obtain α2 ′′

where βE2cα2 ′′-in-Tr2 : (β � EES2) @ [c] @ α2 ′′ ∈ TrES2
and α2 ′′Vv2-is-α2 ′Vv2 : α2 ′′ � VV2 = α2 ′ � VV2
and α2 ′′Cv2-empty: α2 ′′ � CV2 = []
unfolding BSIA-def
by blast
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from validES2 βE2cα2 ′′-in-Tr2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from βE2cα2 ′′-in-Tr2 c-in-E2 have ((β @ [c]) � EES2) @ α2 ′′ ∈ TrES2

by (simp only: projection-concatenation-commute projection-def , auto)
moreover
from α2 ′′Vv2-is-α2 ′Vv2 α2 ′Vv2-is-αVv2 have α2 ′′ � VV2 = α � VV2

by auto
moreover
note α2 ′′Cv2-empty
ultimately show ?thesis

by auto
qed

then obtain α2 ′′

where α2 ′′-in-E2star : set α2 ′′ ⊆ EES2
and βcE2α2 ′′-in-Tr2 : ((β @ [c]) � EES2) @ α2 ′′ ∈ TrES2
and α2 ′′Vv2-is-αVv2 : α2 ′′ � VV2 = α � VV2
and α2 ′′Cv2-empty: α2 ′′ � CV2 = []
by auto

from VIsViewOnE c-in-Cv βα-in-Tr have set (β @ [c]) ⊆ E(ES1 ‖ ES2 )
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def composeES-def , auto)
moreover
have set (α � VV ) ⊆ VV

by (simp add: projection-def , auto)
moreover
note α1 ′′-in-E1star α2 ′′-in-E2star βcE1α1 ′′-in-Tr1 βcE2α2 ′′-in-Tr2
moreover
have (α � VV ) � EES1 = α1 ′′ � VV

proof −
from α1 ′′Vv1-is-αVv1 propSepViews
have α � (VV ∩ EES1) = α1 ′′ � (EES1 ∩ VV )
unfolding properSeparationOfViews-def by (simp add: Int-commute)

hence α � VV � EES1 = α1 ′′ � EES1 � VV
by (simp add: projection-def )

with α1 ′′-in-E1star show ?thesis
by (simp add: list-subset-iff-projection-neutral)

qed
moreover
have (α � VV ) � EES2 = α2 ′′ � VV

proof −
from α2 ′′Vv2-is-αVv2 propSepViews
have α � (VV ∩ EES2) = α2 ′′ � (EES2 ∩ VV )

unfolding properSeparationOfViews-def by (simp add: Int-commute)
hence α � VV � EES2 = α2 ′′ � EES2 � VV

by (simp add: projection-def )
with α2 ′′-in-E2star show ?thesis

by (simp add: list-subset-iff-projection-neutral)
qed

moreover
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note α1 ′′Cv1-empty α2 ′′Cv2-empty generalized-zipping-lemma
ultimately have ∃α ′. (β @ [c]) @ α ′ ∈ Tr(ES1 ‖ ES2 ) ∧ α ′ � VV = α � VV ∧ α ′ � CV = []

by blast
}
thus ?thesis

unfolding BSIA-def
by auto

qed

theorem compositionality-FCD:
[[ BSD V1 TrES1; BSD V2 TrES2;
∇Γ ∩ EES1 ⊆ ∇Γ1; ∇Γ ∩ EES2 ⊆ ∇Γ2;
ΥΓ ∩ EES1 ⊆ ΥΓ1; ΥΓ ∩ EES2 ⊆ ΥΓ2;
( ∆Γ1 ∩ NV1 ∪ ∆Γ2 ∩ NV2 ) ⊆ ∆Γ;
NV1 ∩ ∆Γ1 ∩ EES2 = {}; NV2 ∩ ∆Γ2 ∩ EES1 = {};
FCD Γ1 V1 TrES1; FCD Γ2 V2 TrES2 ]]
=⇒ FCD Γ V (Tr(ES1 ‖ ES2 ))

proof −
assume BSD1 : BSD V1 TrES1

and BSD2 : BSD V2 TrES2
and Nabla-inter-E1-subset-Nabla1 : ∇Γ ∩ EES1 ⊆ ∇Γ1
and Nabla-inter-E2-subset-Nabla2 : ∇Γ ∩ EES2 ⊆ ∇Γ2
and Upsilon-inter-E1-subset-Upsilon1 : ΥΓ ∩ EES1 ⊆ ΥΓ1
and Upsilon-inter-E2-subset-Upsilon2 : ΥΓ ∩ EES2 ⊆ ΥΓ2
and Delta1-N1-Delta2-N2-subset-Delta: ( ∆Γ1 ∩ NV1 ∪ ∆Γ2 ∩ NV2 ) ⊆ ∆Γ
and N1-Delta1-E2-disjoint: NV1 ∩ ∆Γ1 ∩ EES2 = {}
and N2-Delta2-E1-disjoint: NV2 ∩ ∆Γ2 ∩ EES1 = {}
and FCD1 : FCD Γ1 V1 TrES1
and FCD2 : FCD Γ2 V2 TrES2

{
fix α β c v ′

assume c-in-Cv-inter-Upsilon: c ∈ (CV ∩ ΥΓ)
and v ′-in-Vv-inter-Nabla: v ′ ∈ (VV ∩ ∇Γ)
and βcv ′α-in-Tr : (β @ [c,v ′] @ α) ∈ Tr(ES1 ‖ ES2 )
and αCv-empty: α � CV = []

from βcv ′α-in-Tr
have βcv ′α-E1-in-Tr1 : (((β @ [c,v ′]) @ α) � EES1) ∈ TrES1

and βcv ′α-E2-in-Tr2 : (((β @ [c,v ′]) @ α) � EES2) ∈ TrES2
by (simp add: composeES-def )+

interpret CSES1 : CompositionSupport ES1 V V1
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES1 validV1 )

interpret CSES2 : CompositionSupport ES2 V V2
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES2 validV2 )

from CSES1 .BSD-in-subsystem2 [OF βcv ′α-E1-in-Tr1 BSD1 ] obtain α1 ′
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where βcv ′E1α1 ′-in-Tr1 : (β @ [c,v ′]) � EES1 @ α1 ′ ∈ TrES1
and α1 ′Vv1-is-αVv1 : α1 ′ � VV1 = α � VV1
and α1 ′Cv1-empty: α1 ′ � CV1 = []
by auto

from CSES2 .BSD-in-subsystem2 [OF βcv ′α-E2-in-Tr2 BSD2 ] obtain α2 ′

where βcv ′E2α2 ′-in-Tr2 : (β @ [c,v ′]) � EES2 @ α2 ′ ∈ TrES2
and α2 ′Vv2-is-αVv2 : α2 ′ � VV2 = α � VV2
and α2 ′Cv2-empty: α2 ′ � CV2 = []
by auto

from c-in-Cv-inter-Upsilon v ′-in-Vv-inter-Nabla validV1
have c /∈ EES1 ∨ (c ∈ EES1 ∧ v ′ /∈ EES1) ∨ (c ∈ EES1 ∧ v ′ ∈ EES1)

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def )

moreover {
assume c-notin-E1 : c /∈ EES1

have set [] ⊆ (NV1 ∩ ∆Γ1)
by auto

moreover
from βcv ′E1α1 ′-in-Tr1 c-notin-E1 have (β � EES1) @ [] @ ([v ′] � EES1) @ α1 ′ ∈ TrES1

by (simp only: projection-concatenation-commute projection-def , auto)
moreover
have α1 ′ � VV1 = α1 ′ � VV1 ..
moreover
note α1 ′Cv1-empty
ultimately have ∃ α1 ′′ δ1 ′′. set δ1 ′′ ⊆ (NV1 ∩ ∆Γ1)
∧ (β � EES1) @ δ1 ′′ @ ([v ′] � EES1) @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
by blast

}
moreover {

assume c-in-E1 : c ∈ EES1
and v ′-notin-E1 : v ′ /∈ EES1

from c-in-E1 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E1-subset-Upsilon1

have c-in-Cv1-Upsilon1 : c ∈ (CV1 ∩ ΥΓ1)
unfolding properSeparationOfViews-def by auto

hence c-in-Cv1 : c ∈ CV1
by auto

moreover
from βcv ′E1α1 ′-in-Tr1 c-in-E1 v ′-notin-E1 have (β � EES1) @ [c] @ α1 ′ ∈ TrES1

by (simp only: projection-concatenation-commute projection-def , auto)
moreover
note α1 ′Cv1-empty BSD1
ultimately obtain α1 ′′

where first: (β � EES1) @ α1 ′′ ∈ TrES1
and second: α1 ′′ � VV1 = α1 ′ � VV1
and third: α1 ′′ � CV1 = []
unfolding BSD-def
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by blast

have set [] ⊆ (NV1 ∩ ∆Γ1)
by auto

moreover
from first v ′-notin-E1 have (β � EES1) @ [] @ ([v ′] � EES1) @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
note second third
ultimately
have ∃ α1 ′′ δ1 ′′. set δ1 ′′ ⊆ (NV1 ∩ ∆Γ1)
∧ (β � EES1) @ δ1 ′′ @ ([v ′] � EES1) @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
by blast

}
moreover {

assume c-in-E1 : c ∈ EES1
and v ′-in-E1 : v ′ ∈ EES1

from c-in-E1 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E1-subset-Upsilon1

have c-in-Cv1-Upsilon1 : c ∈ (CV1 ∩ ΥΓ1)
unfolding properSeparationOfViews-def by auto

moreover
from v ′-in-E1 v ′-in-Vv-inter-Nabla propSepViews Nabla-inter-E1-subset-Nabla1
have v ′-in-Vv1-inter-Nabla1 : v ′ ∈ (VV1 ∩ ∇Γ1)

unfolding properSeparationOfViews-def by auto
moreover
from βcv ′E1α1 ′-in-Tr1 c-in-E1 v ′-in-E1 have (β � EES1) @ [c,v ′] @ α1 ′ ∈ TrES1

by (simp add: projection-def )
moreover
note α1 ′Cv1-empty FCD1
ultimately obtain α1 ′′ δ1 ′′

where first: set δ1 ′′ ⊆ (NV1 ∩ ∆Γ1)
and second: (β � EES1) @ δ1 ′′ @ [v ′] @ α1 ′′ ∈ TrES1
and third: α1 ′′ � VV1 = α1 ′ � VV1
and fourth: α1 ′′ � CV1 = []
unfolding FCD-def
by blast

from second v ′-in-E1 have (β � EES1) @ δ1 ′′ @ ([v ′] � EES1) @ α1 ′′ ∈ TrES1
by (simp add: projection-def )

with first third fourth
have ∃ α1 ′′ δ1 ′′. set δ1 ′′ ⊆ (NV1 ∩ ∆Γ1)
∧ (β � EES1) @ δ1 ′′ @ ([v ′] � EES1) @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
unfolding FCD-def
by blast

}
ultimately obtain α1 ′′ δ1 ′′

where δ1 ′′-in-Nv1-Delta1-star : set δ1 ′′ ⊆ (NV1 ∩ ∆Γ1)
and βE1δ1 ′′vE1α1 ′′-in-Tr1 : (β � EES1) @ δ1 ′′ @ ([v ′] � EES1) @ α1 ′′ ∈ TrES1
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and α1 ′′Vv1-is-α1 ′Vv1 : α1 ′′ � VV1 = α1 ′ � VV1
and α1 ′′Cv1-empty: α1 ′′ � CV1 = []
by blast

with validV1 have δ1 ′′-in-E1-star : set δ1 ′′ ⊆ EES1
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

from c-in-Cv-inter-Upsilon v ′-in-Vv-inter-Nabla validV2
have c /∈ EES2 ∨ (c ∈ EES2 ∧ v ′ /∈ EES2) ∨ (c ∈ EES2 ∧ v ′ ∈ EES2)

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def )

moreover {
assume c-notin-E2 : c /∈ EES2

have set [] ⊆ (NV2 ∩ ∆Γ2)
by auto

moreover
from βcv ′E2α2 ′-in-Tr2 c-notin-E2 have (β � EES2) @ [] @ ([v ′] � EES2) @ α2 ′ ∈ TrES2

by (simp only: projection-concatenation-commute projection-def , auto)
moreover
have α2 ′ � VV2 = α2 ′ � VV2 ..
moreover
note α2 ′Cv2-empty
ultimately have ∃ α2 ′′ δ2 ′′. set δ2 ′′ ⊆ (NV2 ∩ ∆Γ2)
∧ (β � EES2) @ δ2 ′′ @ ([v ′] � EES2) @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
by blast

}
moreover {

assume c-in-E2 : c ∈ EES2
and v ′-notin-E2 : v ′ /∈ EES2

from c-in-E2 c-in-Cv-inter-Upsilon propSepViews Upsilon-inter-E2-subset-Upsilon2
have c-in-Cv2-Upsilon2 : c ∈ (CV2 ∩ ΥΓ2)

unfolding properSeparationOfViews-def by auto
hence c-in-Cv2 : c ∈ CV2

by auto
moreover
from βcv ′E2α2 ′-in-Tr2 c-in-E2 v ′-notin-E2 have (β � EES2) @ [c] @ α2 ′ ∈ TrES2

by (simp only: projection-concatenation-commute projection-def , auto)
moreover
note α2 ′Cv2-empty BSD2
ultimately obtain α2 ′′

where first: (β � EES2) @ α2 ′′ ∈ TrES2
and second: α2 ′′ � VV2 = α2 ′ � VV2
and third: α2 ′′ � CV2 = []
unfolding BSD-def
by blast

have set [] ⊆ (NV2 ∩ ∆Γ2)
by auto

moreover
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from first v ′-notin-E2 have (β � EES2) @ [] @ ([v ′] � EES2) @ α2 ′′ ∈ TrES2
by (simp add: projection-def )

moreover
note second third
ultimately
have ∃ α2 ′′ δ2 ′′. set δ2 ′′ ⊆ (NV2 ∩ ∆Γ2)
∧ (β � EES2) @ δ2 ′′ @ ([v ′] � EES2) @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
by blast

}
moreover {

assume c-in-E2 : c ∈ EES2
and v ′-in-E2 : v ′ ∈ EES2

from c-in-E2 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E2-subset-Upsilon2

have c-in-Cv2-Upsilon2 : c ∈ (CV2 ∩ ΥΓ2)
unfolding properSeparationOfViews-def by auto

moreover
from v ′-in-E2 v ′-in-Vv-inter-Nabla propSepViews Nabla-inter-E2-subset-Nabla2
have v ′-in-Vv2-inter-Nabla2 : v ′ ∈ (VV2 ∩ ∇Γ2)

unfolding properSeparationOfViews-def by auto
moreover
from βcv ′E2α2 ′-in-Tr2 c-in-E2 v ′-in-E2 have (β � EES2) @ [c,v ′] @ α2 ′ ∈ TrES2

by (simp add: projection-def )
moreover
note α2 ′Cv2-empty FCD2
ultimately obtain α2 ′′ δ2 ′′

where first: set δ2 ′′ ⊆ (NV2 ∩ ∆Γ2)
and second: (β � EES2) @ δ2 ′′ @ [v ′] @ α2 ′′ ∈ TrES2
and third: α2 ′′ � VV2 = α2 ′ � VV2
and fourth: α2 ′′ � CV2 = []
unfolding FCD-def
by blast

from second v ′-in-E2 have (β � EES2) @ δ2 ′′ @ ([v ′] � EES2) @ α2 ′′ ∈ TrES2
by (simp add: projection-def )

with first third fourth
have ∃ α2 ′′ δ2 ′′. set δ2 ′′ ⊆ (NV2 ∩ ∆Γ2)
∧ (β � EES2) @ δ2 ′′ @ ([v ′] � EES2) @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
unfolding FCD-def
by blast

}
ultimately obtain α2 ′′ δ2 ′′

where δ2 ′′-in-Nv2-Delta2-star : set δ2 ′′ ⊆ (NV2 ∩ ∆Γ2)
and βE2δ2 ′′vE2α2 ′′-in-Tr2 : (β � EES2) @ δ2 ′′ @ ([v ′] � EES2) @ α2 ′′ ∈ TrES2
and α2 ′′Vv2-is-α2 ′Vv2 : α2 ′′ � VV2 = α2 ′ � VV2
and α2 ′′Cv2-empty: α2 ′′ � CV2 = []
by blast

with validV2 have δ2 ′′-in-E2-star : set δ2 ′′ ⊆ EES2
by (simp add: isViewOn-def V-valid-def
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VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

from δ1 ′′-in-Nv1-Delta1-star N1-Delta1-E2-disjoint
have δ1 ′′E2-empty: δ1 ′′ � EES2 = []

proof −
from δ1 ′′-in-Nv1-Delta1-star have δ1 ′′ = δ1 ′′ � (NV1 ∩ ∆Γ1)

by (simp only: list-subset-iff-projection-neutral)
hence δ1 ′′ � EES2 = δ1 ′′ � (NV1 ∩ ∆Γ1) � EES2

by simp
moreover
have δ1 ′′ � (NV1 ∩ ∆Γ1) � EES2 = δ1 ′′ � (NV1 ∩ ∆Γ1 ∩ EES2)

by (simp only: projection-def , auto)
with N1-Delta1-E2-disjoint have δ1 ′′ � (NV1 ∩ ∆Γ1) � EES2 = []

by (simp add: projection-def )
ultimately show ?thesis

by simp
qed

moreover
from δ2 ′′-in-Nv2-Delta2-star N2-Delta2-E1-disjoint have δ2 ′′E1-empty: δ2 ′′ � EES1 = []

proof −
from δ2 ′′-in-Nv2-Delta2-star have δ2 ′′ = δ2 ′′ � (NV2 ∩ ∆Γ2)

by (simp only: list-subset-iff-projection-neutral)
hence δ2 ′′ � EES1 = δ2 ′′ � (NV2 ∩ ∆Γ2) � EES1

by simp
moreover
have δ2 ′′ � (NV2 ∩ ∆Γ2) � EES1 = δ2 ′′ � (NV2 ∩ ∆Γ2 ∩ EES1)

by (simp only: projection-def , auto)
with N2-Delta2-E1-disjoint have δ2 ′′ � (NV2 ∩ ∆Γ2) � EES1 = []

by (simp add: projection-def )
ultimately show ?thesis

by simp
qed

moreover
note βE1δ1 ′′vE1α1 ′′-in-Tr1 βE2δ2 ′′vE2α2 ′′-in-Tr2 δ1 ′′-in-E1-star δ2 ′′-in-E2-star
ultimately have βδ1 ′′δ2 ′′v ′E1α1 ′′-in-Tr1 : (β @ δ1 ′′ @ δ2 ′′ @ [v ′]) � EES1 @ α1 ′′ ∈ TrES1

and βδ1 ′′δ2 ′′v ′E2α2 ′′-in-Tr2 : (β @ δ1 ′′ @ δ2 ′′ @ [v ′]) � EES2 @ α2 ′′ ∈ TrES2
by (simp only: projection-concatenation-commute list-subset-iff-projection-neutral, auto,

simp only: projection-concatenation-commute list-subset-iff-projection-neutral, auto)

have set (β @ δ1 ′′ @ δ2 ′′ @ [v ′]) ⊆ E(ES1 ‖ ES2 )
proof −

from βcv ′α-in-Tr have set β ⊆ E(ES1 ‖ ES2 )
by (simp add: composeES-def )

moreover
note δ1 ′′-in-E1-star δ2 ′′-in-E2-star
moreover
from v ′-in-Vv-inter-Nabla VIsViewOnE
have v ′ ∈ E(ES1 ‖ ES2 )

by (simp add:isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

ultimately show ?thesis
by (simp add: composeES-def , auto)
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qed
moreover
have set (α � VV ) ⊆ VV

by (simp add: projection-def , auto)
moreover
from βE1δ1 ′′vE1α1 ′′-in-Tr1 validES1 have α1 ′′-in-E1-star : set α1 ′′ ⊆ EES1

by (simp add: ES-valid-def traces-contain-events-def , auto)
moreover
from βE2δ2 ′′vE2α2 ′′-in-Tr2 validES2 have α2 ′′-in-E2-star : set α2 ′′ ⊆ EES2

by (simp add: ES-valid-def traces-contain-events-def , auto)
moreover
note βδ1 ′′δ2 ′′v ′E1α1 ′′-in-Tr1 βδ1 ′′δ2 ′′v ′E2α2 ′′-in-Tr2
moreover
have (α � VV ) � EES1 = α1 ′′ � VV

proof −
from α1 ′′Vv1-is-α1 ′Vv1 α1 ′Vv1-is-αVv1 propSepViews
have α � (VV ∩ EES1) = α1 ′′ � (EES1 ∩ VV )

unfolding properSeparationOfViews-def by (simp add: Int-commute)
hence α � VV � EES1 = α1 ′′ � EES1 � VV

by (simp add: projection-def )
with α1 ′′-in-E1-star show ?thesis

by (simp add: list-subset-iff-projection-neutral)
qed

moreover
have (α � VV ) � EES2 = α2 ′′ � VV

proof −
from α2 ′′Vv2-is-α2 ′Vv2 α2 ′Vv2-is-αVv2 propSepViews
have α � (VV ∩ EES2) = α2 ′′ � (EES2 ∩ VV )

unfolding properSeparationOfViews-def by (simp add: Int-commute)
hence α � VV � EES2 = α2 ′′ � EES2 � VV

by (simp add: projection-def )
with α2 ′′-in-E2-star show ?thesis

by (simp add: list-subset-iff-projection-neutral)
qed

moreover
note α1 ′′Cv1-empty α2 ′′Cv2-empty generalized-zipping-lemma
ultimately obtain t

where first: (β @ δ1 ′′ @ δ2 ′′ @ [v ′]) @ t ∈ Tr(ES1 ‖ ES2 )
and second: t � VV = α � VV
and third: t � CV = []
by blast

from δ1 ′′-in-Nv1-Delta1-star δ2 ′′-in-Nv2-Delta2-star
have set (δ1 ′′ @ δ2 ′′) ⊆ (NV ∩ ∆Γ)

proof −
have set (δ1 ′′ @ δ2 ′′) ⊆ ∆Γ

proof −
from δ1 ′′-in-Nv1-Delta1-star δ2 ′′-in-Nv2-Delta2-star
have set (δ1 ′′ @ δ2 ′′) ⊆ ∆Γ1 ∩ NV1 ∪ ∆Γ2 ∩ NV2

by auto
with Delta1-N1-Delta2-N2-subset-Delta show ?thesis

by auto
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qed
moreover
have set (δ1 ′′ @ δ2 ′′) ⊆ NV

proof −
from δ1 ′′-in-Nv1-Delta1-star δ2 ′′-in-Nv2-Delta2-star
have set (δ1 ′′ @ δ2 ′′) ⊆ (NV1 ∪ NV2)

by auto
with Nv1-union-Nv2-subsetof-Nv show ?thesis

by auto
qed

ultimately show ?thesis
by auto

qed
moreover
from first have β @ (δ1 ′′ @ δ2 ′′) @ [v ′] @ t ∈ Tr(ES1 ‖ ES2 )

by auto
moreover
note second third
ultimately have ∃α ′. ∃ γ ′. (set γ ′) ⊆ (NV ∩ ∆Γ)
∧ ((β @ γ ′ @ [v ′] @ α ′) ∈ Tr(ES1 ‖ ES2 )
∧ (α ′ � VV ) = (α � VV )
∧ α ′ � CV = [])
by blast

}
thus ?thesis

unfolding FCD-def
by auto

qed

theorem compositionality-FCI :
[[ BSD V1 TrES1; BSD V2 TrES2; BSIA %1 V1 TrES1; BSIA %2 V2 TrES2;

total ES1 (CV1 ∩ ΥΓ1); total ES2 (CV2 ∩ ΥΓ2);
∇Γ ∩ EES1 ⊆ ∇Γ1; ∇Γ ∩ EES2 ⊆ ∇Γ2;
ΥΓ ∩ EES1 ⊆ ΥΓ1; ΥΓ ∩ EES2 ⊆ ΥΓ2;
( ∆Γ1 ∩ NV1 ∪ ∆Γ2 ∩ NV2 ) ⊆ ∆Γ;
(NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 ⊆ ΥΓ1)
∨ ( NV2 ∩ ∆Γ2 ∩ EES1 = {} ∧ NV1 ∩ ∆Γ1 ∩ EES2 ⊆ ΥΓ2) ;
FCI Γ1 V1 TrES1; FCI Γ2 V2 TrES2 ]]
=⇒ FCI Γ V (Tr(ES1 ‖ ES2 ))

proof −
assume BSD1 : BSD V1 TrES1

and BSD2 : BSD V2 TrES2
and BSIA1 : BSIA %1 V1 TrES1
and BSIA2 : BSIA %2 V2 TrES2
and total-ES1-C1-inter-Upsilon1 : total ES1 (CV1 ∩ ΥΓ1)
and total-ES2-C2-inter-Upsilon2 : total ES2 (CV2 ∩ ΥΓ2)
and Nabla-inter-E1-subset-Nabla1 : ∇Γ ∩ EES1 ⊆ ∇Γ1
and Nabla-inter-E2-subset-Nabla2 : ∇Γ ∩ EES2 ⊆ ∇Γ2
and Upsilon-inter-E1-subset-Upsilon1 : ΥΓ ∩ EES1 ⊆ ΥΓ1
and Upsilon-inter-E2-subset-Upsilon2 : ΥΓ ∩ EES2 ⊆ ΥΓ2
and Delta1-N1-Delta2-N2-subset-Delta: ( ∆Γ1 ∩ NV1 ∪ ∆Γ2 ∩ NV2 ) ⊆ ∆Γ
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and very-long-asm: (NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 ⊆ ΥΓ1)
∨ ( NV2 ∩ ∆Γ2 ∩ EES1 = {} ∧ NV1 ∩ ∆Γ1 ∩ EES2 ⊆ ΥΓ2)
and FCI1 : FCI Γ1 V1 TrES1
and FCI2 : FCI Γ2 V2 TrES2

{
fix α β c v ′

assume c-in-Cv-inter-Upsilon: c ∈ (CV ∩ ΥΓ)
and v ′-in-Vv-inter-Nabla: v ′ ∈ (VV ∩ ∇Γ)
and βv ′α-in-Tr : (β @ [v ′] @ α) ∈ Tr(ES1 ‖ ES2 )
and αCv-empty: α � CV = []

from βv ′α-in-Tr
have βv ′α-E1-in-Tr1 : (((β @ [v ′]) @ α) � EES1) ∈ TrES1

and βv ′α-E2-in-Tr2 : (((β @ [v ′]) @ α) � EES2) ∈ TrES2
by (simp add: composeES-def )+

interpret CSES1 : CompositionSupport ES1 V V1
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES1 validV1 )

interpret CSES2 : CompositionSupport ES2 V V2
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES2 validV2 )

from CSES1 .BSD-in-subsystem2 [OF βv ′α-E1-in-Tr1 BSD1 ] obtain α1 ′

where βv ′E1α1 ′-in-Tr1 : (β @ [v ′]) � EES1 @ α1 ′ ∈ TrES1
and α1 ′Vv1-is-αVv1 : α1 ′ � VV1 = α � VV1
and α1 ′Cv1-empty: α1 ′ � CV1 = []
by auto

from CSES2 .BSD-in-subsystem2 [OF βv ′α-E2-in-Tr2 BSD2 ] obtain α2 ′

where βv ′E2α2 ′-in-Tr2 : (β @ [v ′]) � EES2 @ α2 ′ ∈ TrES2
and α2 ′Vv2-is-αVv2 : α2 ′ � VV2 = α � VV2
and α2 ′Cv2-empty: α2 ′ � CV2 = []
by auto

note very-long-asm
moreover {

assume Nv1-inter-Delta1-inter-E2-empty: NV1 ∩ ∆Γ1 ∩ EES2 = {}
and Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1 : NV2 ∩ ∆Γ2 ∩ EES1 ⊆ ΥΓ1

let ?ALPHA2 ′′-DELTA2 ′′ = ∃ α2 ′′ δ2 ′′. (
set α2 ′′ ⊆ EES2 ∧ set δ2 ′′ ⊆ NV2 ∩ ∆Γ2
∧ β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = [])

from c-in-Cv-inter-Upsilon v ′-in-Vv-inter-Nabla validV2
have c /∈ EES2 ∨ (c ∈ EES2 ∧ v ′ /∈ EES2) ∨ (c ∈ EES2 ∧ v ′ ∈ EES2)

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def )

moreover {
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assume c-notin-E2 : c /∈ EES2

from validES2 βv ′E2α2 ′-in-Tr2 have set α2 ′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV2 ∩ ∆Γ2

by auto
moreover
from βv ′E2α2 ′-in-Tr2 c-notin-E2
have β � EES2 @ [c] � EES2 @ [] @ [v ′] � EES2 @ α2 ′ ∈ TrES2

by (simp add: projection-def )
moreover
have α2 ′ � VV2 = α2 ′ � VV2 ..
moreover
note α2 ′Cv2-empty
ultimately have ?ALPHA2 ′′-DELTA2 ′′

by blast
}
moreover {

assume c-in-E2 : c ∈ EES2
and v ′-notin-E2 : v ′ /∈ EES2

from c-in-E2 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E2-subset-Upsilon2

have c-in-Cv2-inter-Upsilon2 : c ∈ CV2 ∩ ΥΓ2
unfolding properSeparationOfViews-def by auto

hence c ∈ CV2
by auto

moreover
from βv ′E2α2 ′-in-Tr2 v ′-notin-E2 have β � EES2 @ α2 ′ ∈ TrES2

by (simp add: projection-def )
moreover
note α2 ′Cv2-empty
moreover
have (Adm V2 %2 TrES2 (β � EES2) c)

proof −
from validES2 βv ′E2α2 ′-in-Tr2 v ′-notin-E2 have β � EES2 ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def projection-concatenation-commute)

with total-ES2-C2-inter-Upsilon2 c-in-Cv2-inter-Upsilon2
have β � EES2 @ [c] ∈ TrES2

by (simp add: total-def )
thus ?thesis

unfolding Adm-def
by blast

qed
moreover
note BSIA2
ultimately obtain α2 ′′

where one: β � EES2 @ [c] @ α2 ′′ ∈ TrES2
and two: α2 ′′ � VV2 = α2 ′ � VV2
and three: α2 ′′ � CV2 = []
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unfolding BSIA-def
by blast

from one validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV2 ∩ ∆Γ2

by auto
moreover
from one c-in-E2 v ′-notin-E2
have β � EES2 @ [c] � EES2 @ [] @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

by (simp add: projection-def )
moreover
note two three
ultimately have ?ALPHA2 ′′-DELTA2 ′′

by blast
}
moreover {

assume c-in-E2 : c ∈ EES2
and v ′-in-E2 : v ′ ∈ EES2

from c-in-E2 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E2-subset-Upsilon2

have c-in-Cv2-inter-Upsilon2 : c ∈ CV2 ∩ ΥΓ2
unfolding properSeparationOfViews-def by auto

moreover
from v ′-in-E2 propSepViews v ′-in-Vv-inter-Nabla Nabla-inter-E2-subset-Nabla2
have v ′ ∈ VV2 ∩ Nabla Γ2

unfolding properSeparationOfViews-def by auto
moreover
from v ′-in-E2 βv ′E2α2 ′-in-Tr2 have β � EES2 @ [v ′] @ α2 ′ ∈ TrES2

by (simp add: projection-def )
moreover
note α2 ′Cv2-empty FCI2
ultimately obtain α2 ′′ δ2 ′′

where one: set δ2 ′′ ⊆ NV2 ∩ ∆Γ2
and two: β � EES2 @ [c] @ δ2 ′′ @ [v ′] @ α2 ′′ ∈ TrES2
and three: α2 ′′ � VV2 = α2 ′ � VV2
and four : α2 ′′ � CV2 = []
unfolding FCI-def
by blast

from two validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
note one
moreover
from two c-in-E2 v ′-in-E2
have β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

by (simp add: projection-def )
moreover
note three four
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ultimately have ?ALPHA2 ′′-DELTA2 ′′

by blast
}
ultimately obtain α2 ′′ δ2 ′′

where α2 ′′-in-E2star : set α2 ′′ ⊆ EES2
and δ2 ′′-in-N2-inter-Delta2star :set δ2 ′′ ⊆ NV2 ∩ ∆Γ2
and βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 :

β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
and α2 ′′Vv2-is-α2 ′Vv2 : α2 ′′ � VV2 = α2 ′ � VV2
and α2 ′′Cv2-empty: α2 ′′ � CV2 = []
by blast

from c-in-Cv-inter-Upsilon Upsilon-inter-E1-subset-Upsilon1
propSepViews
have cE1-in-Cv1-inter-Upsilon1 : set ([c] � EES1) ⊆ CV1 ∩ ΥΓ1

unfolding properSeparationOfViews-def by (simp add: projection-def , auto)

from δ2 ′′-in-N2-inter-Delta2star Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1
propSepViews disjoint-Nv2-Vv1

have δ2 ′′E1-in-Cv1-inter-Upsilon1star : set (δ2 ′′ � EES1) ⊆ CV1 ∩ ΥΓ1
proof −

from δ2 ′′-in-N2-inter-Delta2star
have eq: δ2 ′′ � EES1 = δ2 ′′ � (NV2 ∩ ∆Γ2 ∩ EES1)

by (metis Int-commute Int-left-commute Int-lower1 Int-lower2
projection-intersection-neutral subset-trans)

from validV1 Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1 propSepViews
disjoint-Nv2-Vv1

have NV2 ∩ ∆Γ2 ∩ EES1 ⊆ CV1 ∩ ΥΓ1
unfolding properSeparationOfViews-def
by (simp add:isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)
thus ?thesis

by (subst eq, simp only: projection-def , auto)
qed

have cδ2 ′′E1-in-Cv1-inter-Upsilon1star : set ((c # δ2 ′′) � EES1) ⊆ CV1 ∩ ΥΓ1
proof −

from cE1-in-Cv1-inter-Upsilon1 δ2 ′′E1-in-Cv1-inter-Upsilon1star
have set (([c] @ δ2 ′′) � EES1) ⊆ CV1 ∩ ΥΓ1

by (simp only: projection-concatenation-commute, auto)
thus ?thesis

by auto
qed

have ∃ α1 ′′ δ1 ′′. set α1 ′′ ⊆ EES1
∧ set δ1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2 ∧ β � EES1 @ [c] � EES1 @ δ1 ′′ @

[v ′] � EES1 @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
∧ δ1 ′′ � EES2 = δ2 ′′ � EES1
proof cases
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assume v ′-in-E1 : v ′ ∈ EES1
with Nabla-inter-E1-subset-Nabla1 propSepViews v ′-in-Vv-inter-Nabla
have v ′-in-Vv1-inter-Nabla1 : v ′ ∈ VV1 ∩ Nabla Γ1

unfolding properSeparationOfViews-def by auto

have [[ (β @ [v ′]) � EES1 @ α1 ′ ∈ TrES1 ;
α1 ′ � CV1 = []; set ((c # δ2 ′′) � EES1) ⊆ CV1 ∩ ΥΓ1 ;
c ∈ CV ∩ ΥΓ ; set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ]]
=⇒ ∃ α1 ′′ δ1 ′′. (set α1 ′′ ⊆ EES1 ∧ set δ1 ′′ ⊆ NV1 ∩ ∆Γ1
∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
∧ β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
∧ δ1 ′′ � (CV1 ∩ ΥΓ1) = δ2 ′′ � EES1)
proof (induct length ((c # δ2 ′′) � EES1) arbitrary: β α1 ′ c δ2 ′′)

case 0

from 0 (2 ) validES1 have set α1 ′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
moreover
have β � EES1 @ [c] � EES1 @ [] @ [v ′] � EES1 @ α1 ′ ∈ TrES1

proof −
note 0 (2 )
moreover
from 0 (1 ) have c /∈ EES1

by (simp add: projection-def , auto)
ultimately show ?thesis

by (simp add: projection-concatenation-commute projection-def )
qed

moreover
have α1 ′ � VV1 = α1 ′ � VV1 ..
moreover
note 0 (3 )
moreover
from 0 (1 ) have [] � (CV1 ∩ ΥΓ1) = δ2 ′′ � EES1

by (simp add: projection-def , split if-split-asm, auto)
ultimately show ?case

by blast
next

case (Suc n)

from projection-split-last[OF Suc(2 )] obtain µ c ′ ν
where c ′-in-E1 : c ′ ∈ EES1
and cδ2 ′′-is-µc ′ν: c # δ2 ′′ = µ @ [c ′] @ ν
and νE1-empty: ν � EES1 = []
and n-is-length-µνE1 : n = length ((µ @ ν) � EES1)
by blast

from Suc(5 ) c ′-in-E1 cδ2 ′′-is-µc ′ν
have set (µ � EES1 @ [c ′]) ⊆ CV1 ∩ ΥΓ1
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by (simp only: cδ2 ′′-is-µc ′ν projection-concatenation-commute
projection-def , auto)

hence c ′-in-Cv1-inter-Upsilon1 : c ′ ∈ CV1 ∩ ΥΓ1
by auto

hence c ′-in-Cv1 : c ′ ∈ CV1 and c ′-in-Upsilon1 : c ′ ∈ ΥΓ1
by auto

with validV1 have c ′-in-E1 : c ′ ∈ EES1
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)

show ?case
proof (cases µ)

case Nil
with cδ2 ′′-is-µc ′ν have c-is-c ′: c = c ′ and δ2 ′′-is-ν: δ2 ′′ = ν

by auto
with c ′-in-Cv1-inter-Upsilon1 have c ∈ CV1 ∩ ΥΓ1

by simp
moreover
note v ′-in-Vv1-inter-Nabla1
moreover
from v ′-in-E1 Suc(3 ) have (β � EES1) @ [v ′] @ α1 ′ ∈ TrES1

by (simp add: projection-concatenation-commute projection-def )
moreover
note Suc(4 ) FCI1
ultimately obtain α1 ′′ γ

where one: set γ ⊆ NV1 ∩ ∆Γ1
and two: β � EES1 @ [c] @ γ @ [v ′] @ α1 ′′ ∈ TrES1
and three: α1 ′′ � VV1 = α1 ′ � VV1
and four : α1 ′′ � CV1 = []
unfolding FCI-def
by blast

let ?DELTA1 ′′ = ν � EES1 @ γ

from two validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from one νE1-empty
have set ?DELTA1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
moreover
have β � EES1 @ [c] � EES1 @ ?DELTA1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

proof −
from c-is-c ′ c ′-in-E1 have [c] = [c] � EES1

by (simp add: projection-def )
moreover
from v ′-in-E1 have [v ′] = [v ′] � EES1

by (simp add: projection-def )
moreover
note νE1-empty two
ultimately show ?thesis
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by auto
qed

moreover
note three four
moreover
have ?DELTA1 ′′ � (CV1 ∩ ΥΓ1) = δ2 ′′ � EES1

proof −
have γ � (CV1 ∩ ΥΓ1) = []

proof −
from validV1 have NV1 ∩ ∆Γ1 ∩ (CV1 ∩ ΥΓ1) = {}

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

with projection-intersection-neutral[OF one, of CV1 ∩ ΥΓ1]
show ?thesis

by (simp add: projection-def )
qed

with δ2 ′′-is-ν νE1-empty show ?thesis
by (simp add: projection-concatenation-commute)

qed
ultimately show ?thesis

by blast
next

case (Cons x xs)
with cδ2 ′′-is-µc ′ν have µ-is-c-xs: µ = [c] @ xs

and δ2 ′′-is-xs-c ′-ν: δ2 ′′ = xs @ [c ′] @ ν
by auto

with n-is-length-µνE1 have n = length ((c # (xs @ ν)) � EES1)
by auto

moreover
note Suc(3 ,4 )
moreover
have set ((c # (xs @ ν)) � EES1) ⊆ CV1 ∩ ΥΓ1

proof −
have res: c # (xs @ ν) = [c] @ (xs @ ν)

by auto

from Suc(5 ) cδ2 ′′-is-µc ′ν µ-is-c-xs νE1-empty
show ?thesis

by (subst res, simp only: cδ2 ′′-is-µc ′ν projection-concatenation-commute
set-append, auto)

qed
moreover
note Suc(6 )
moreover
from Suc(7 ) δ2 ′′-is-xs-c ′-ν have set (xs @ ν) ⊆ NV2 ∩ ∆Γ2

by auto
moreover note Suc(1 )[of c xs @ ν β α1 ′]
ultimately obtain δ γ

where one: set δ ⊆ EES1
and two: set γ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
and three: β � EES1 @ [c] � EES1 @ γ @ [v ′] � EES1 @ δ ∈ TrES1
and four : δ � VV1 = α1 ′ � VV1
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and five: δ � CV1 = []
and six: γ � (CV1 ∩ ΥΓ1) = (xs @ ν) � EES1
by blast

let ?BETA = β � EES1 @ [c] � EES1 @ γ

note c ′-in-Cv1-inter-Upsilon1 v ′-in-Vv1-inter-Nabla1
moreover
from three v ′-in-E1 have ?BETA @ [v ′] @ δ ∈ TrES1

by (simp add: projection-def )
moreover
note five FCI1
ultimately obtain α1 ′′ δ ′

where fci-one: set δ ′ ⊆ NV1 ∩ ∆Γ1
and fci-two: ?BETA @ [c ′] @ δ ′ @ [v ′] @ α1 ′′ ∈ TrES1
and fci-three: α1 ′′ � VV1 = δ � VV1
and fci-four : α1 ′′ � CV1 = []
unfolding FCI-def
by blast

let ?DELTA1 ′′ = γ @ [c ′] @ δ ′

from fci-two validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set ?DELTA1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

proof −
from Suc(7 ) c ′-in-Cv1-inter-Upsilon1 δ2 ′′-is-xs-c ′-ν
have c ′ ∈ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
with two fci-one show ?thesis

by auto
qed

moreover
from fci-two v ′-in-E1
have β � EES1 @ [c] � EES1 @ ?DELTA1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
from fci-three four have α1 ′′ � VV1 = α1 ′ � VV1

by simp
moreover
note fci-four
moreover
have ?DELTA1 ′′ � (CV1 ∩ ΥΓ1) = δ2 ′′ � EES1

proof −
have δ ′ � (CV1 ∩ ΥΓ1) = []

proof −
from fci-one have ∀ e ∈ set δ ′. e ∈ NV1 ∩ ∆Γ1

by auto
with validV1 have ∀ e ∈ set δ ′. e /∈ CV1 ∩ ΥΓ1

by (simp add: isViewOn-def V-valid-def
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VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
thus ?thesis

by (simp add: projection-def )
qed

with c ′-in-E1 c ′-in-Cv1-inter-Upsilon1 δ2 ′′-is-xs-c ′-ν νE1-empty six
show ?thesis

by (simp only: projection-concatenation-commute projection-def , auto)
qed

ultimately show ?thesis
by blast

qed
qed
from this[OF βv ′E1α1 ′-in-Tr1 α1 ′Cv1-empty cδ2 ′′E1-in-Cv1-inter-Upsilon1star

c-in-Cv-inter-Upsilon δ2 ′′-in-N2-inter-Delta2star ]
obtain α1 ′′ δ1 ′′

where one: set α1 ′′ ⊆ EES1
and two: set δ1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
and three: β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
and four : δ1 ′′ � (CV1 ∩ ΥΓ1) = δ2 ′′ � EES1
by blast

note one two three
moreover
have δ1 ′′ � EES2 = δ2 ′′ � EES1

proof −
from projection-intersection-neutral[OF two, of EES2]

Nv1-inter-Delta1-inter-E2-empty validV2
have δ1 ′′ � EES2 = δ1 ′′ � (CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2 ∩ EES2)

by (simp only: Int-Un-distrib2 , auto)
moreover
from validV2
have CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2 ∩ EES2 = CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

ultimately have δ1 ′′ � EES2 = δ1 ′′ � (CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2)
by simp

hence δ1 ′′ � EES2 = δ1 ′′ � (CV1 ∩ ΥΓ1) � (NV2 ∩ ∆Γ2)
by (simp add: projection-def )

with four have δ1 ′′ � EES2 = δ2 ′′ � EES1 � (NV2 ∩ ∆Γ2)
by simp

hence δ1 ′′ � EES2 = δ2 ′′ � (NV2 ∩ ∆Γ2) � EES1
by (simp only: projection-commute)

with δ2 ′′-in-N2-inter-Delta2star show ?thesis
by (simp only: list-subset-iff-projection-neutral)

qed
ultimately show ?thesis

by blast
next

assume v ′-notin-E1 : v ′ /∈ EES1

have [[ (β @ [v ′]) � EES1 @ α1 ′ ∈ TrES1 ;
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α1 ′ � CV1 = []; set ((c # δ2 ′′) � EES1) ⊆ CV1 ∩ ΥΓ1 ;
c ∈ CV ∩ ΥΓ ; set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ]]
=⇒ ∃ α1 ′′ δ1 ′′. (set α1 ′′ ⊆ EES1 ∧ set δ1 ′′ ⊆ NV1
∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2 ∧ β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1

@ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
∧ δ1 ′′ � EES2 = δ2 ′′ � EES1)
proof (induct length ((c # δ2 ′′) � EES1) arbitrary: β α1 ′ c δ2 ′′)

case 0

from 0 (2 ) validES1 have set α1 ′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
moreover
have β � EES1 @ [c] � EES1 @ [] @ [v ′] � EES1 @ α1 ′ ∈ TrES1

proof −
note 0 (2 )
moreover
from 0 (1 ) have c /∈ EES1

by (simp add: projection-def , auto)
ultimately show ?thesis

by (simp add: projection-concatenation-commute projection-def )
qed

moreover
have α1 ′ � VV1 = α1 ′ � VV1 ..
moreover
note 0 (3 )
moreover
from 0 (1 ) have [] � EES2 = δ2 ′′ � EES1

by (simp add: projection-def , split if-split-asm, auto)
ultimately show ?case

by blast
next

case (Suc n)

from projection-split-last[OF Suc(2 )] obtain µ c ′ ν
where c ′-in-E1 : c ′ ∈ EES1
and cδ2 ′′-is-µc ′ν: c # δ2 ′′ = µ @ [c ′] @ ν
and νE1-empty: ν � EES1 = []
and n-is-length-µνE1 : n = length ((µ @ ν) � EES1)
by blast

from Suc(5 ) c ′-in-E1 cδ2 ′′-is-µc ′ν
have set (µ � EES1 @ [c ′]) ⊆ CV1 ∩ ΥΓ1

by (simp only: cδ2 ′′-is-µc ′ν projection-concatenation-commute
projection-def , auto)

hence c ′-in-Cv1-inter-Upsilon1 : c ′ ∈ CV1 ∩ ΥΓ1
by auto

hence c ′-in-Cv1 : c ′ ∈ CV1 and c ′-in-Upsilon1 : c ′ ∈ ΥΓ1
by auto
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with validV1 have c ′-in-E1 : c ′ ∈ EES1
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

show ?case
proof (cases µ)

case Nil
with cδ2 ′′-is-µc ′ν have c-is-c ′: c = c ′

and δ2 ′′-is-ν: δ2 ′′ = ν
by auto

with c ′-in-Cv1-inter-Upsilon1 have c ∈ CV1
by simp

moreover
from v ′-notin-E1 Suc(3 ) have (β � EES1) @ α1 ′ ∈ TrES1

by (simp add: projection-concatenation-commute projection-def )
moreover
note Suc(4 )
moreover
have Adm V1 %1 TrES1 (β � EES1) c

proof −
have β � EES1 @ [c] ∈ TrES1

proof −
from c-is-c ′ c ′-in-Cv1-inter-Upsilon1
have c ∈ CV1 ∩ ΥΓ1

by simp
moreover
from validES1 Suc(3 )
have (β � EES1) ∈ TrES1

by (simp only: ES-valid-def traces-prefixclosed-def
projection-concatenation-commute
prefixclosed-def prefix-def , auto)

moreover
note total-ES1-C1-inter-Upsilon1
ultimately show ?thesis

unfolding total-def
by blast

qed
thus ?thesis

unfolding Adm-def
by blast

qed
moreover
note BSIA1
ultimately obtain α1 ′′

where one: (β � EES1) @ [c] @ α1 ′′ ∈ TrES1
and two: α1 ′′ � VV1 = α1 ′ � VV1
and three: α1 ′′ � CV1 = []
unfolding BSIA-def
by blast

let ?DELTA1 ′′ = ν � EES1
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from one validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from νE1-empty
have set ?DELTA1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by simp
moreover
from c-is-c ′ c ′-in-E1 one v ′-notin-E1 νE1-empty
have (β � EES1) @ [c] � EES1 @ ?DELTA1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
note two three
moreover
from νE1-empty δ2 ′′-is-ν have ?DELTA1 ′′ � EES2 = δ2 ′′ � EES1

by (simp add: projection-def )
ultimately show ?thesis

by blast
next

case (Cons x xs)
with cδ2 ′′-is-µc ′ν
have µ-is-c-xs: µ = [c] @ xs and δ2 ′′-is-xs-c ′-ν: δ2 ′′ = xs @ [c ′] @ ν

by auto
with n-is-length-µνE1 have n = length ((c # (xs @ ν)) � EES1)

by auto
moreover
note Suc(3 ,4 )
moreover
have set ((c # (xs @ ν)) � EES1) ⊆ CV1 ∩ ΥΓ1

proof −
have res: c # (xs @ ν) = [c] @ (xs @ ν)

by auto

from Suc(5 ) cδ2 ′′-is-µc ′ν µ-is-c-xs νE1-empty
show ?thesis

by (subst res, simp only: cδ2 ′′-is-µc ′ν projection-concatenation-commute
set-append, auto)

qed
moreover
note Suc(6 )
moreover
from Suc(7 ) δ2 ′′-is-xs-c ′-ν have set (xs @ ν) ⊆ NV2 ∩ ∆Γ2

by auto
moreover note Suc(1 )[of c xs @ ν β α1 ′]
ultimately obtain δ γ

where one: set δ ⊆ EES1
and two: set γ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
and three: β � EES1 @ [c] � EES1 @ γ @ [v ′] � EES1 @ δ ∈ TrES1
and four : δ � VV1 = α1 ′ � VV1
and five: δ � CV1 = []
and six: γ � EES2 = (xs @ ν) � EES1
by blast
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let ?BETA = β � EES1 @ [c] � EES1 @ γ

from c ′-in-Cv1-inter-Upsilon1 have c ′ ∈ CV1
by auto

moreover
from three v ′-notin-E1 have ?BETA @ δ ∈ TrES1

by (simp add: projection-def )
moreover
note five
moreover
have Adm V1 %1 TrES1 ?BETA c ′

proof −
have ?BETA @ [c ′] ∈ TrES1

proof −
from validES1 three
have ?BETA ∈ TrES1

by (simp only: ES-valid-def traces-prefixclosed-def
projection-concatenation-commute
prefixclosed-def prefix-def , auto)

moreover
note c ′-in-Cv1-inter-Upsilon1 total-ES1-C1-inter-Upsilon1
ultimately show ?thesis

unfolding total-def
by blast

qed
thus ?thesis

unfolding Adm-def
by blast

qed
moreover
note BSIA1
ultimately obtain α1 ′′

where bsia-one: ?BETA @ [c ′] @ α1 ′′ ∈ TrES1
and bsia-two: α1 ′′ � VV1 = δ � VV1
and bsia-three: α1 ′′ � CV1 = []
unfolding BSIA-def
by blast

let ?DELTA1 ′′ = γ @ [c ′]

from bsia-one validES1 have set α1 ′′ ⊆ EES1
by (simp add:isViewOn-def ES-valid-def traces-contain-events-def , auto)

moreover
have set ?DELTA1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

proof −
from Suc(7 ) c ′-in-Cv1-inter-Upsilon1 δ2 ′′-is-xs-c ′-ν
have c ′ ∈ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
with two show ?thesis

by auto
qed
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moreover
from bsia-one v ′-notin-E1
have β � EES1 @ [c] � EES1 @ ?DELTA1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
from bsia-two four have α1 ′′ � VV1 = α1 ′ � VV1

by simp
moreover
note bsia-three
moreover
have ?DELTA1 ′′ � EES2 = δ2 ′′ � EES1

proof −
from validV2 Suc(7 ) δ2 ′′-is-xs-c ′-ν
have c ′ ∈ EES2

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

with c ′-in-E1 c ′-in-Cv1-inter-Upsilon1 δ2 ′′-is-xs-c ′-ν νE1-empty six
show ?thesis

by (simp only: projection-concatenation-commute projection-def , auto)
qed

ultimately show ?thesis
by blast

qed
qed

from this[OF βv ′E1α1 ′-in-Tr1 α1 ′Cv1-empty cδ2 ′′E1-in-Cv1-inter-Upsilon1star
c-in-Cv-inter-Upsilon δ2 ′′-in-N2-inter-Delta2star ]

show ?thesis
by blast

qed
then obtain α1 ′′ δ1 ′′

where α1 ′′-in-E1star : set α1 ′′ ⊆ EES1
and δ1 ′′-in-N1-inter-Delta1star :set δ1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
and βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 :
β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
and α1 ′′Vv1-is-α1 ′Vv1 : α1 ′′ � VV1 = α1 ′ � VV1
and α1 ′′Cv1-empty: α1 ′′ � CV1 = []
and δ1 ′′E2-is-δ2 ′′E1 : δ1 ′′ � EES2 = δ2 ′′ � EES1
by blast

from βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2
validES1 validES2

have δ1 ′′-in-E1star : set δ1 ′′ ⊆ EES1 and δ2 ′′-in-E2star : set δ2 ′′ ⊆ EES2
by (simp-all add: ES-valid-def traces-contain-events-def , auto)

with δ1 ′′E2-is-δ2 ′′E1 merge-property[of δ1 ′′ EES1 δ2 ′′ EES2] obtain δ ′

where δ ′E1-is-δ1 ′′: δ ′ � EES1 = δ1 ′′

and δ ′E2-is-δ2 ′′: δ ′ � EES2 = δ2 ′′

and δ ′-contains-only-δ1 ′′-δ2 ′′-events: set δ ′ ⊆ set δ1 ′′ ∪ set δ2 ′′

unfolding Let-def
by auto

let ?TAU = β @ [c] @ δ ′ @ [v ′]
let ?LAMBDA = α � VV
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let ?T1 = α1 ′′

let ?T2 = α2 ′′

have ?TAU ∈ Tr(ES1 ‖ ES2 )
proof −

from βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 δ ′E1-is-δ1 ′′ validES1
have β � EES1 @ [c] � EES1 @ δ ′ � EES1 @ [v ′] � EES1 ∈ TrES1

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

hence (β @ [c] @ δ ′ @ [v ′]) � EES1 ∈ TrES1
by (simp add: projection-def , auto)

moreover
from βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 δ ′E2-is-δ2 ′′ validES2
have β � EES2 @ [c] � EES2 @ δ ′ � EES2 @ [v ′] � EES2 ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

hence (β @ [c] @ δ ′ @ [v ′]) � EES2 ∈ TrES2
by (simp add: projection-def , auto)

moreover
from βv ′α-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE
δ ′-contains-only-δ1 ′′-δ2 ′′-events δ1 ′′-in-E1star δ2 ′′-in-E2star

have set (β @ [c] @ δ ′ @ [v ′]) ⊆ EES1 ∪ EES2
unfolding composeES-def isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def
by auto

ultimately show ?thesis
unfolding composeES-def
by auto

qed
hence set ?TAU ⊆ E(ES1 ‖ ES2 )

unfolding composeES-def
by auto

moreover
have set ?LAMBDA ⊆ VV

by (simp add: projection-def , auto)
moreover
note α1 ′′-in-E1star α2 ′′-in-E2star
moreover
from βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 δ ′E1-is-δ1 ′′

have ?TAU � EES1 @ ?T1 ∈ TrES1
by (simp only: projection-concatenation-commute, auto)

moreover
from βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 δ ′E2-is-δ2 ′′

have ?TAU � EES2 @ ?T2 ∈ TrES2
by (simp only: projection-concatenation-commute, auto)

moreover
have ?LAMBDA � EES1 = ?T1 � VV

proof −
from propSepViews have ?LAMBDA � EES1 = α � VV1

unfolding properSeparationOfViews-def by (simp add: projection-sequence)
moreover
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from α1 ′′-in-E1star propSepViews
have ?T1 � VV = ?T1 � VV1

unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)

moreover
note α1 ′Vv1-is-αVv1 α1 ′′Vv1-is-α1 ′Vv1
ultimately show ?thesis

by simp
qed

moreover
have ?LAMBDA � EES2 = ?T2 � VV

proof −
from propSepViews
have ?LAMBDA � EES2 = α � VV2

unfolding properSeparationOfViews-def by (simp add: projection-sequence)
moreover
from α2 ′′-in-E2star propSepViews
have ?T2 � VV = ?T2 � VV2

unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)

moreover
note α2 ′Vv2-is-αVv2 α2 ′′Vv2-is-α2 ′Vv2
ultimately show ?thesis

by simp
qed

moreover
note α1 ′′Cv1-empty α2 ′′Cv2-empty generalized-zipping-lemma
ultimately obtain t

where ?TAU @ t ∈ Tr(ES1 ‖ ES2 )
and t � VV = ?LAMBDA
and t � CV = []
by blast

moreover
have set δ ′ ⊆ NV ∩ ∆Γ

proof −
from δ ′-contains-only-δ1 ′′-δ2 ′′-events
δ1 ′′-in-N1-inter-Delta1star δ2 ′′-in-N2-inter-Delta2star

have set δ ′ ⊆ NV1 ∩ ∆Γ1 ∪ NV2 ∩ ∆Γ2
by auto

with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subsetof-Nv
show ?thesis

by auto
qed
ultimately
have ∃α ′ γ ′. (set γ ′ ⊆ NV ∩ ∆Γ ∧ β @ [c] @ γ ′ @ [v ′] @ α ′ ∈ Tr(ES1 ‖ ES2 )

∧ α ′ � VV = α � VV ∧ α ′ � CV = [])
by (simp only: append-assoc, blast)

}
moreover {

assume Nv2-inter-Delta2-inter-E1-empty: NV2 ∩ ∆Γ2 ∩ EES1 = {}
and Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2 : NV1 ∩ ∆Γ1 ∩ EES2 ⊆ ΥΓ2
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let ?ALPHA1 ′′-DELTA1 ′′ = ∃ α1 ′′ δ1 ′′. (
set α1 ′′ ⊆ EES1 ∧ set δ1 ′′ ⊆ NV1 ∩ ∆Γ1
∧ β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = [])

from c-in-Cv-inter-Upsilon v ′-in-Vv-inter-Nabla validV1
have c /∈ EES1 ∨ (c ∈ EES1 ∧ v ′ /∈ EES1) ∨ (c ∈ EES1 ∧ v ′ ∈ EES1)

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def )

moreover {
assume c-notin-E1 : c /∈ EES1

from validES1 βv ′E1α1 ′-in-Tr1 have set α1 ′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV1 ∩ ∆Γ1

by auto
moreover
from βv ′E1α1 ′-in-Tr1 c-notin-E1
have β � EES1 @ [c] � EES1 @ [] @ [v ′] � EES1 @ α1 ′ ∈ TrES1

by (simp add: projection-def )
moreover
have α1 ′ � VV1 = α1 ′ � VV1 ..
moreover
note α1 ′Cv1-empty
ultimately have ?ALPHA1 ′′-DELTA1 ′′

by blast
}
moreover {

assume c-in-E1 : c ∈ EES1
and v ′-notin-E1 : v ′ /∈ EES1

from c-in-E1 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E1-subset-Upsilon1

have c-in-Cv1-inter-Upsilon1 : c ∈ CV1 ∩ ΥΓ1
unfolding properSeparationOfViews-def by auto

hence c ∈ CV1
by auto

moreover
from βv ′E1α1 ′-in-Tr1 v ′-notin-E1 have β � EES1 @ α1 ′ ∈ TrES1

by (simp add: projection-def )
moreover
note α1 ′Cv1-empty
moreover
have (Adm V1 %1 TrES1 (β � EES1) c)

proof −
from validES1 βv ′E1α1 ′-in-Tr1 v ′-notin-E1 have β � EES1 ∈ TrES1

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def projection-concatenation-commute)

with total-ES1-C1-inter-Upsilon1 c-in-Cv1-inter-Upsilon1
have β � EES1 @ [c] ∈ TrES1

by (simp add: total-def )
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thus ?thesis
unfolding Adm-def
by blast

qed
moreover
note BSIA1
ultimately obtain α1 ′′

where one: β � EES1 @ [c] @ α1 ′′ ∈ TrES1
and two: α1 ′′ � VV1 = α1 ′ � VV1
and three: α1 ′′ � CV1 = []
unfolding BSIA-def
by blast

from one validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV1 ∩ ∆Γ1

by auto
moreover
from one c-in-E1 v ′-notin-E1
have β � EES1 @ [c] � EES1 @ [] @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
note two three
ultimately have ?ALPHA1 ′′-DELTA1 ′′

by blast
}
moreover {

assume c-in-E1 : c ∈ EES1
and v ′-in-E1 : v ′ ∈ EES1

from c-in-E1 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E1-subset-Upsilon1

have c-in-Cv1-inter-Upsilon1 : c ∈ CV1 ∩ ΥΓ1
unfolding properSeparationOfViews-def by auto

moreover
from v ′-in-E1 propSepViews v ′-in-Vv-inter-Nabla Nabla-inter-E1-subset-Nabla1
have v ′ ∈ VV1 ∩ Nabla Γ1
unfolding properSeparationOfViews-def by auto

moreover
from v ′-in-E1 βv ′E1α1 ′-in-Tr1 have β � EES1 @ [v ′] @ α1 ′ ∈ TrES1

by (simp add: projection-def )
moreover
note α1 ′Cv1-empty FCI1
ultimately obtain α1 ′′ δ1 ′′

where one: set δ1 ′′ ⊆ NV1 ∩ ∆Γ1
and two: β � EES1 @ [c] @ δ1 ′′ @ [v ′] @ α1 ′′ ∈ TrES1
and three: α1 ′′ � VV1 = α1 ′ � VV1
and four : α1 ′′ � CV1 = []
unfolding FCI-def
by blast
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from two validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
note one
moreover
from two c-in-E1 v ′-in-E1
have β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
note three four
ultimately have ?ALPHA1 ′′-DELTA1 ′′

by blast
}
ultimately obtain α1 ′′ δ1 ′′

where α1 ′′-in-E1star : set α1 ′′ ⊆ EES1
and δ1 ′′-in-N1-inter-Delta1star :set δ1 ′′ ⊆ NV1 ∩ ∆Γ1
and βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 :
β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
and α1 ′′Vv1-is-α1 ′Vv1 : α1 ′′ � VV1 = α1 ′ � VV1
and α1 ′′Cv1-empty: α1 ′′ � CV1 = []
by blast

from c-in-Cv-inter-Upsilon Upsilon-inter-E2-subset-Upsilon2 propSepViews
have cE2-in-Cv2-inter-Upsilon2 : set ([c] � EES2) ⊆ CV2 ∩ ΥΓ2

unfolding properSeparationOfViews-def by (simp add: projection-def , auto)

from δ1 ′′-in-N1-inter-Delta1star Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2
propSepViews disjoint-Nv1-Vv2

have δ1 ′′E2-in-Cv2-inter-Upsilon2star : set (δ1 ′′ � EES2) ⊆ CV2 ∩ ΥΓ2
proof −

from δ1 ′′-in-N1-inter-Delta1star have eq: δ1 ′′ � EES2 = δ1 ′′ � (NV1 ∩ ∆Γ1 ∩ EES2)
by (metis Int-commute Int-left-commute Int-lower2 Int-lower1

projection-intersection-neutral subset-trans)

from validV2 Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2
propSepViews disjoint-Nv1-Vv2

have NV1 ∩ ∆Γ1 ∩ EES2 ⊆ CV2 ∩ ΥΓ2
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)
thus ?thesis

by (subst eq, simp only: projection-def , auto)
qed

have cδ1 ′′E2-in-Cv2-inter-Upsilon2star : set ((c # δ1 ′′) � EES2) ⊆ CV2 ∩ ΥΓ2
proof −

from cE2-in-Cv2-inter-Upsilon2 δ1 ′′E2-in-Cv2-inter-Upsilon2star
have set (([c] @ δ1 ′′) � EES2) ⊆ CV2 ∩ ΥΓ2

by (simp only: projection-concatenation-commute, auto)
thus ?thesis

by auto
qed
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have ∃ α2 ′′ δ2 ′′. set α2 ′′ ⊆ EES2
∧ set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
∧ β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
∧ δ2 ′′ � EES1 = δ1 ′′ � EES2
proof cases

assume v ′-in-E2 : v ′ ∈ EES2
with Nabla-inter-E2-subset-Nabla2

propSepViews v ′-in-Vv-inter-Nabla
have v ′-in-Vv2-inter-Nabla2 : v ′ ∈ VV2 ∩ Nabla Γ2

unfolding properSeparationOfViews-def by auto

have [[ (β @ [v ′]) � EES2 @ α2 ′ ∈ TrES2 ;
α2 ′ � CV2 = []; set ((c # δ1 ′′) � EES2) ⊆ CV2 ∩ ΥΓ2 ;
c ∈ CV ∩ ΥΓ ; set δ1 ′′ ⊆ NV1 ∩ ∆Γ1 ]]
=⇒ ∃ α2 ′′ δ2 ′′. (set α2 ′′ ⊆ EES2 ∧ set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2
∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
∧ β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
∧ δ2 ′′ � (CV2 ∩ ΥΓ2) = δ1 ′′ � EES2)
proof (induct length ((c # δ1 ′′) � EES2) arbitrary: β α2 ′ c δ1 ′′)

case 0

from 0 (2 ) validES2 have set α2 ′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
moreover
have β � EES2 @ [c] � EES2 @ [] @ [v ′] � EES2 @ α2 ′ ∈ TrES2

proof −
note 0 (2 )
moreover
from 0 (1 ) have c /∈ EES2

by (simp add: projection-def , auto)
ultimately show ?thesis

by (simp add: projection-concatenation-commute projection-def )
qed

moreover
have α2 ′ � VV2 = α2 ′ � VV2 ..
moreover
note 0 (3 )
moreover
from 0 (1 ) have [] � (CV2 ∩ ΥΓ2) = δ1 ′′ � EES2

by (simp add: projection-def , split if-split-asm, auto)
ultimately show ?case

by blast
next

case (Suc n)
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from projection-split-last[OF Suc(2 )] obtain µ c ′ ν
where c ′-in-E2 : c ′ ∈ EES2
and cδ1 ′′-is-µc ′ν: c # δ1 ′′ = µ @ [c ′] @ ν
and νE2-empty: ν � EES2 = []
and n-is-length-µνE2 : n = length ((µ @ ν) � EES2)
by blast

from Suc(5 ) c ′-in-E2 cδ1 ′′-is-µc ′ν
have set (µ � EES2 @ [c ′]) ⊆ CV2 ∩ ΥΓ2

by (simp only: cδ1 ′′-is-µc ′ν projection-concatenation-commute
projection-def , auto)

hence c ′-in-Cv2-inter-Upsilon2 : c ′ ∈ CV2 ∩ ΥΓ2
by auto

hence c ′-in-Cv2 : c ′ ∈ CV2 and c ′-in-Upsilon2 : c ′ ∈ ΥΓ2
by auto

with validV2 have c ′-in-E2 : c ′ ∈ EES2
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)

show ?case
proof (cases µ)

case Nil
with cδ1 ′′-is-µc ′ν have c-is-c ′: c = c ′ and δ1 ′′-is-ν: δ1 ′′ = ν

by auto
with c ′-in-Cv2-inter-Upsilon2 have c ∈ CV2 ∩ ΥΓ2

by simp
moreover
note v ′-in-Vv2-inter-Nabla2
moreover
from v ′-in-E2 Suc(3 ) have (β � EES2) @ [v ′] @ α2 ′ ∈ TrES2

by (simp add: projection-concatenation-commute projection-def )
moreover
note Suc(4 ) FCI2
ultimately obtain α2 ′′ γ

where one: set γ ⊆ NV2 ∩ ∆Γ2
and two: β � EES2 @ [c] @ γ @ [v ′] @ α2 ′′ ∈ TrES2
and three: α2 ′′ � VV2 = α2 ′ � VV2
and four : α2 ′′ � CV2 = []
unfolding FCI-def
by blast

let ?DELTA2 ′′ = ν � EES2 @ γ

from two validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from one νE2-empty
have set ?DELTA2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
moreover
have β � EES2 @ [c] � EES2 @ ?DELTA2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
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proof −
from c-is-c ′ c ′-in-E2 have [c] = [c] � EES2

by (simp add: projection-def )
moreover
from v ′-in-E2 have [v ′] = [v ′] � EES2

by (simp add: projection-def )
moreover
note νE2-empty two
ultimately show ?thesis

by auto
qed

moreover
note three four
moreover
have ?DELTA2 ′′ � (CV2 ∩ ΥΓ2) = δ1 ′′ � EES2

proof −
have γ � (CV2 ∩ ΥΓ2) = []

proof −
from validV2 have NV2 ∩ ∆Γ2 ∩ (CV2 ∩ ΥΓ2) = {}

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

with projection-intersection-neutral[OF one, of CV2 ∩ ΥΓ2]
show ?thesis

by (simp add: projection-def )
qed

with δ1 ′′-is-ν νE2-empty show ?thesis
by (simp add: projection-concatenation-commute)

qed
ultimately show ?thesis

by blast
next

case (Cons x xs)
with cδ1 ′′-is-µc ′ν have µ-is-c-xs: µ = [c] @ xs

and δ1 ′′-is-xs-c ′-ν: δ1 ′′ = xs @ [c ′] @ ν
by auto

with n-is-length-µνE2 have n = length ((c # (xs @ ν)) � EES2)
by auto

moreover
note Suc(3 ,4 )
moreover
have set ((c # (xs @ ν)) � EES2) ⊆ CV2 ∩ ΥΓ2

proof −
have res: c # (xs @ ν) = [c] @ (xs @ ν)

by auto

from Suc(5 ) cδ1 ′′-is-µc ′ν µ-is-c-xs νE2-empty
show ?thesis

by (subst res, simp only: cδ1 ′′-is-µc ′ν
projection-concatenation-commute set-append, auto)

qed
moreover
note Suc(6 )
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moreover
from Suc(7 ) δ1 ′′-is-xs-c ′-ν have set (xs @ ν) ⊆ NV1 ∩ ∆Γ1

by auto
moreover note Suc(1 )[of c xs @ ν β α2 ′]
ultimately obtain δ γ

where one: set δ ⊆ EES2
and two: set γ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
and three: β � EES2 @ [c] � EES2 @ γ @ [v ′] � EES2 @ δ ∈ TrES2
and four : δ � VV2 = α2 ′ � VV2
and five: δ � CV2 = []
and six: γ � (CV2 ∩ ΥΓ2) = (xs @ ν) � EES2
by blast

let ?BETA = β � EES2 @ [c] � EES2 @ γ

note c ′-in-Cv2-inter-Upsilon2 v ′-in-Vv2-inter-Nabla2
moreover
from three v ′-in-E2 have ?BETA @ [v ′] @ δ ∈ TrES2

by (simp add: projection-def )
moreover
note five FCI2
ultimately obtain α2 ′′ δ ′

where fci-one: set δ ′ ⊆ NV2 ∩ ∆Γ2
and fci-two: ?BETA @ [c ′] @ δ ′ @ [v ′] @ α2 ′′ ∈ TrES2
and fci-three: α2 ′′ � VV2 = δ � VV2
and fci-four : α2 ′′ � CV2 = []
unfolding FCI-def
by blast

let ?DELTA2 ′′ = γ @ [c ′] @ δ ′

from fci-two validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set ?DELTA2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

proof −
from Suc(7 ) c ′-in-Cv2-inter-Upsilon2 δ1 ′′-is-xs-c ′-ν
have c ′ ∈ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
with two fci-one show ?thesis

by auto
qed

moreover
from fci-two v ′-in-E2
have β � EES2 @ [c] � EES2 @ ?DELTA2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

by (simp add: projection-def )
moreover
from fci-three four have α2 ′′ � VV2 = α2 ′ � VV2

by simp
moreover
note fci-four
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moreover
have ?DELTA2 ′′ � (CV2 ∩ ΥΓ2) = δ1 ′′ � EES2

proof −
have δ ′ � (CV2 ∩ ΥΓ2) = []

proof −
from fci-one have ∀ e ∈ set δ ′. e ∈ NV2 ∩ ∆Γ2

by auto
with validV2 have ∀ e ∈ set δ ′. e /∈ CV2 ∩ ΥΓ2

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

thus ?thesis
by (simp add: projection-def )

qed
with c ′-in-E2 c ′-in-Cv2-inter-Upsilon2 δ1 ′′-is-xs-c ′-ν νE2-empty six
show ?thesis

by (simp only: projection-concatenation-commute projection-def , auto)
qed

ultimately show ?thesis
by blast

qed
qed
from this[OF βv ′E2α2 ′-in-Tr2 α2 ′Cv2-empty cδ1 ′′E2-in-Cv2-inter-Upsilon2star

c-in-Cv-inter-Upsilon δ1 ′′-in-N1-inter-Delta1star ]
obtain α2 ′′ δ2 ′′

where one: set α2 ′′ ⊆ EES2
and two: set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
and three: β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
and four : δ2 ′′ � (CV2 ∩ ΥΓ2) = δ1 ′′ � EES2
by blast

note one two three
moreover
have δ2 ′′ � EES1 = δ1 ′′ � EES2

proof −
from projection-intersection-neutral[OF two, of EES1]

Nv2-inter-Delta2-inter-E1-empty validV1
have δ2 ′′ � EES1 = δ2 ′′ � (CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1 ∩ EES1)

by (simp only: Int-Un-distrib2 , auto)
moreover
from validV1
have CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1 ∩ EES1 = CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

ultimately have δ2 ′′ � EES1 = δ2 ′′ � (CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1)
by simp

hence δ2 ′′ � EES1 = δ2 ′′ � (CV2 ∩ ΥΓ2) � (NV1 ∩ ∆Γ1)
by (simp add: projection-def )

with four have δ2 ′′ � EES1 = δ1 ′′ � EES2 � (NV1 ∩ ∆Γ1)
by simp

hence δ2 ′′ � EES1 = δ1 ′′ � (NV1 ∩ ∆Γ1) � EES2
by (simp only: projection-commute)

234



with δ1 ′′-in-N1-inter-Delta1star show ?thesis
by (simp only: list-subset-iff-projection-neutral)

qed
ultimately show ?thesis

by blast
next

assume v ′-notin-E2 : v ′ /∈ EES2

have
[[ (β @ [v ′]) � EES2 @ α2 ′ ∈ TrES2 ; α2 ′ � CV2 = [];

set ((c # δ1 ′′) � EES2) ⊆ CV2 ∩ ΥΓ2 ; c ∈ CV ∩ ΥΓ ;
set δ1 ′′ ⊆ NV1 ∩ ∆Γ1 ]]

=⇒ ∃ α2 ′′ δ2 ′′.
(set α2 ′′ ⊆ EES2 ∧ set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
∧ β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
∧ δ2 ′′ � EES1 = δ1 ′′ � EES2)
proof (induct length ((c # δ1 ′′) � EES2) arbitrary: β α2 ′ c δ1 ′′)

case 0

from 0 (2 ) validES2 have set α2 ′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
moreover
have β � EES2 @ [c] � EES2 @ [] @ [v ′] � EES2 @ α2 ′ ∈ TrES2

proof −
note 0 (2 )
moreover
from 0 (1 ) have c /∈ EES2

by (simp add: projection-def , auto)
ultimately show ?thesis

by (simp add: projection-concatenation-commute projection-def )
qed

moreover
have α2 ′ � VV2 = α2 ′ � VV2 ..
moreover
note 0 (3 )
moreover
from 0 (1 ) have [] � EES1 = δ1 ′′ � EES2

by (simp add: projection-def , split if-split-asm, auto)
ultimately show ?case

by blast
next

case (Suc n)

from projection-split-last[OF Suc(2 )] obtain µ c ′ ν
where c ′-in-E2 : c ′ ∈ EES2
and cδ1 ′′-is-µc ′ν: c # δ1 ′′ = µ @ [c ′] @ ν
and νE2-empty: ν � EES2 = []
and n-is-length-µνE2 : n = length ((µ @ ν) � EES2)
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by blast

from Suc(5 ) c ′-in-E2 cδ1 ′′-is-µc ′ν have set (µ � EES2 @ [c ′]) ⊆ CV2 ∩ ΥΓ2
by (simp only: cδ1 ′′-is-µc ′ν projection-concatenation-commute projection-def , auto)

hence c ′-in-Cv2-inter-Upsilon2 : c ′ ∈ CV2 ∩ ΥΓ2
by auto

hence c ′-in-Cv2 : c ′ ∈ CV2 and c ′-in-Upsilon2 : c ′ ∈ ΥΓ2
by auto

with validV2 have c ′-in-E2 : c ′ ∈ EES2
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)

show ?case
proof (cases µ)

case Nil
with cδ1 ′′-is-µc ′ν have c-is-c ′: c = c ′ and δ1 ′′-is-ν: δ1 ′′ = ν

by auto
with c ′-in-Cv2-inter-Upsilon2 have c ∈ CV2

by simp
moreover
from v ′-notin-E2 Suc(3 ) have (β � EES2) @ α2 ′ ∈ TrES2

by (simp add: projection-concatenation-commute projection-def )
moreover
note Suc(4 )
moreover
have Adm V2 %2 TrES2 (β � EES2) c

proof −
have β � EES2 @ [c] ∈ TrES2

proof −
from c-is-c ′ c ′-in-Cv2-inter-Upsilon2 have c ∈ CV2 ∩ ΥΓ2

by simp
moreover
from validES2 Suc(3 ) have (β � EES2) ∈ TrES2

by (simp only: ES-valid-def traces-prefixclosed-def
projection-concatenation-commute
prefixclosed-def prefix-def , auto)

moreover
note total-ES2-C2-inter-Upsilon2
ultimately show ?thesis

unfolding total-def
by blast

qed
thus ?thesis

unfolding Adm-def
by blast

qed
moreover
note BSIA2
ultimately obtain α2 ′′

where one: (β � EES2) @ [c] @ α2 ′′ ∈ TrES2
and two: α2 ′′ � VV2 = α2 ′ � VV2
and three: α2 ′′ � CV2 = []
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unfolding BSIA-def
by blast

let ?DELTA2 ′′ = ν � EES2

from one validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from νE2-empty
have set ?DELTA2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by simp
moreover
from c-is-c ′ c ′-in-E2 one v ′-notin-E2 νE2-empty
have (β � EES2) @ [c] � EES2 @ ?DELTA2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

by (simp add: projection-def )
moreover
note two three
moreover
from νE2-empty δ1 ′′-is-ν have ?DELTA2 ′′ � EES1 = δ1 ′′ � EES2

by (simp add: projection-def )
ultimately show ?thesis

by blast
next

case (Cons x xs)
with cδ1 ′′-is-µc ′ν have µ-is-c-xs: µ = [c] @ xs

and δ1 ′′-is-xs-c ′-ν: δ1 ′′ = xs @ [c ′] @ ν
by auto

with n-is-length-µνE2 have n = length ((c # (xs @ ν)) � EES2)
by auto

moreover
note Suc(3 ,4 )
moreover
have set ((c # (xs @ ν)) � EES2) ⊆ CV2 ∩ ΥΓ2

proof −
have res: c # (xs @ ν) = [c] @ (xs @ ν)

by auto

from Suc(5 ) cδ1 ′′-is-µc ′ν µ-is-c-xs νE2-empty
show ?thesis

by (subst res, simp only: cδ1 ′′-is-µc ′ν projection-concatenation-commute
set-append, auto)

qed
moreover
note Suc(6 )
moreover
from Suc(7 ) δ1 ′′-is-xs-c ′-ν have set (xs @ ν) ⊆ NV1 ∩ ∆Γ1

by auto
moreover note Suc(1 )[of c xs @ ν β α2 ′]
ultimately obtain δ γ

where one: set δ ⊆ EES2
and two: set γ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
and three: β � EES2 @ [c] � EES2 @ γ @ [v ′] � EES2 @ δ ∈ TrES2
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and four : δ � VV2 = α2 ′ � VV2
and five: δ � CV2 = []
and six: γ � EES1 = (xs @ ν) � EES2
by blast

let ?BETA = β � EES2 @ [c] � EES2 @ γ

from c ′-in-Cv2-inter-Upsilon2 have c ′ ∈ CV2
by auto

moreover
from three v ′-notin-E2 have ?BETA @ δ ∈ TrES2

by (simp add: projection-def )
moreover
note five
moreover
have Adm V2 %2 TrES2 ?BETA c ′

proof −
have ?BETA @ [c ′] ∈ TrES2

proof −
from validES2 three have ?BETA ∈ TrES2

by (simp only: ES-valid-def traces-prefixclosed-def
projection-concatenation-commute prefixclosed-def prefix-def , auto)

moreover
note c ′-in-Cv2-inter-Upsilon2 total-ES2-C2-inter-Upsilon2
ultimately show ?thesis

unfolding total-def
by blast

qed
thus ?thesis

unfolding Adm-def
by blast

qed
moreover
note BSIA2
ultimately obtain α2 ′′

where bsia-one: ?BETA @ [c ′] @ α2 ′′ ∈ TrES2
and bsia-two: α2 ′′ � VV2 = δ � VV2
and bsia-three: α2 ′′ � CV2 = []
unfolding BSIA-def
by blast

let ?DELTA2 ′′ = γ @ [c ′]

from bsia-one validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set ?DELTA2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

proof −
from Suc(7 ) c ′-in-Cv2-inter-Upsilon2 δ1 ′′-is-xs-c ′-ν
have c ′ ∈ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
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with two show ?thesis
by auto

qed
moreover
from bsia-one v ′-notin-E2
have β � EES2 @ [c] � EES2 @ ?DELTA2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

by (simp add: projection-def )
moreover
from bsia-two four have α2 ′′ � VV2 = α2 ′ � VV2

by simp
moreover
note bsia-three
moreover
have ?DELTA2 ′′ � EES1 = δ1 ′′ � EES2

proof −
from validV1 Suc(7 ) δ1 ′′-is-xs-c ′-ν have c ′ ∈ EES1

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

with c ′-in-E2 c ′-in-Cv2-inter-Upsilon2 δ1 ′′-is-xs-c ′-ν νE2-empty six
show ?thesis

by (simp only: projection-concatenation-commute
projection-def , auto)

qed
ultimately show ?thesis

by blast
qed

qed
from this[OF βv ′E2α2 ′-in-Tr2 α2 ′Cv2-empty cδ1 ′′E2-in-Cv2-inter-Upsilon2star

c-in-Cv-inter-Upsilon δ1 ′′-in-N1-inter-Delta1star ]
show ?thesis

by blast
qed

then obtain α2 ′′ δ2 ′′

where α2 ′′-in-E2star : set α2 ′′ ⊆ EES2
and δ2 ′′-in-N2-inter-Delta2star :set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
and βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 :
β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
and α2 ′′Vv2-is-α2 ′Vv2 : α2 ′′ � VV2 = α2 ′ � VV2
and α2 ′′Cv2-empty: α2 ′′ � CV2 = []
and δ2 ′′E1-is-δ1 ′′E2 : δ2 ′′ � EES1 = δ1 ′′ � EES2
by blast

from βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1
validES2 validES1

have δ2 ′′-in-E2star : set δ2 ′′ ⊆ EES2 and δ1 ′′-in-E1star : set δ1 ′′ ⊆ EES1
by (simp-all add: ES-valid-def traces-contain-events-def , auto)

with δ2 ′′E1-is-δ1 ′′E2 merge-property[of δ2 ′′ EES2 δ1 ′′ EES1] obtain δ ′

where δ ′E2-is-δ2 ′′: δ ′ � EES2 = δ2 ′′

and δ ′E1-is-δ1 ′′: δ ′ � EES1 = δ1 ′′

and δ ′-contains-only-δ2 ′′-δ1 ′′-events: set δ ′ ⊆ set δ2 ′′ ∪ set δ1 ′′

unfolding Let-def
by auto
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let ?TAU = β @ [c] @ δ ′ @ [v ′]
let ?LAMBDA = α � VV
let ?T2 = α2 ′′

let ?T1 = α1 ′′

have ?TAU ∈ Tr(ES1 ‖ ES2 )
proof −

from βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 δ ′E2-is-δ2 ′′ validES2
have β � EES2 @ [c] � EES2 @ δ ′ � EES2 @ [v ′] � EES2 ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

hence (β @ [c] @ δ ′ @ [v ′]) � EES2 ∈ TrES2
by (simp add: projection-def , auto)

moreover
from βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 δ ′E1-is-δ1 ′′ validES1
have β � EES1 @ [c] � EES1 @ δ ′ � EES1 @ [v ′] � EES1 ∈ TrES1

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

hence (β @ [c] @ δ ′ @ [v ′]) � EES1 ∈ TrES1
by (simp add: projection-def , auto)

moreover
from βv ′α-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE δ ′-contains-only-δ2 ′′-δ1 ′′-events
δ2 ′′-in-E2star δ1 ′′-in-E1star

have set (β @ [c] @ δ ′ @ [v ′]) ⊆ EES2 ∪ EES1
unfolding composeES-def isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def
by auto

ultimately show ?thesis
unfolding composeES-def
by auto

qed
hence set ?TAU ⊆ E(ES1 ‖ ES2 )

unfolding composeES-def
by auto

moreover
have set ?LAMBDA ⊆ VV

by (simp add: projection-def , auto)
moreover
note α2 ′′-in-E2star α1 ′′-in-E1star
moreover
from βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 δ ′E2-is-δ2 ′′

have ?TAU � EES2 @ ?T2 ∈ TrES2
by (simp only: projection-concatenation-commute, auto)

moreover
from βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 δ ′E1-is-δ1 ′′

have ?TAU � EES1 @ ?T1 ∈ TrES1
by (simp only: projection-concatenation-commute, auto)

moreover
have ?LAMBDA � EES2 = ?T2 � VV

proof −

240



from propSepViews
have ?LAMBDA � EES2 = α � VV2

unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from α2 ′′-in-E2star propSepViews
have ?T2 � VV = ?T2 � VV2

unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)

moreover
note α2 ′Vv2-is-αVv2 α2 ′′Vv2-is-α2 ′Vv2
ultimately show ?thesis

by simp
qed

moreover
have ?LAMBDA � EES1 = ?T1 � VV

proof −
from propSepViews
have ?LAMBDA � EES1 = α � VV1

unfolding properSeparationOfViews-def by (simp add: projection-sequence)
moreover
from α1 ′′-in-E1star propSepViews
have ?T1 � VV = ?T1 � VV1

unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)

moreover
note α1 ′Vv1-is-αVv1 α1 ′′Vv1-is-α1 ′Vv1
ultimately show ?thesis

by simp
qed

moreover
note α2 ′′Cv2-empty α1 ′′Cv1-empty generalized-zipping-lemma
ultimately obtain t

where ?TAU @ t ∈ Tr(ES1 ‖ ES2 )
and t � VV = ?LAMBDA
and t � CV = []
by blast

moreover
have set δ ′ ⊆ NV ∩ ∆Γ

proof −
from δ ′-contains-only-δ2 ′′-δ1 ′′-events δ2 ′′-in-N2-inter-Delta2star

δ1 ′′-in-N1-inter-Delta1star
have set δ ′ ⊆ NV2 ∩ ∆Γ2 ∪ NV1 ∩ ∆Γ1

by auto
with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subsetof-Nv show ?thesis

by auto
qed

ultimately have ∃α ′ γ ′. (set γ ′ ⊆ NV ∩ ∆Γ ∧ β @ [c] @ γ ′ @ [v ′] @ α ′ ∈ Tr(ES1 ‖ ES2 )
∧ α ′ � VV = α � VV ∧ α ′ � CV = [])
by (simp only: append-assoc, blast)

}
ultimately have ∃α ′ γ ′. (set γ ′ ⊆ NV ∩ ∆Γ ∧ β @ [c] @ γ ′ @ [v ′] @ α ′ ∈ Tr(ES1 ‖ ES2 )
∧ α ′ � VV = α � VV ∧ α ′ � CV = [])
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by blast
}
thus ?thesis

unfolding FCI-def
by blast

qed

theorem compositionality-FCIA:
[[ BSD V1 TrES1; BSD V2 TrES2; BSIA %1 V1 TrES1; BSIA %2 V2 TrES2;
(%1 V1 ) ⊆ (% V) ∩ EES1; (%2 V2 ) ⊆ (% V) ∩ EES2;
total ES1 (CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2); total ES2 (CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1);
∇Γ ∩ EES1 ⊆ ∇Γ1; ∇Γ ∩ EES2 ⊆ ∇Γ2;
ΥΓ ∩ EES1 ⊆ ΥΓ1; ΥΓ ∩ EES2 ⊆ ΥΓ2;
( ∆Γ1 ∩ NV1 ∪ ∆Γ2 ∩ NV2 ) ⊆ ∆Γ;
(NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 ⊆ ΥΓ1)
∨ ( NV2 ∩ ∆Γ2 ∩ EES1 = {} ∧ NV1 ∩ ∆Γ1 ∩ EES2 ⊆ ΥΓ2) ;
FCIA %1 Γ1 V1 TrES1; FCIA %2 Γ2 V2 TrES2 ]]
=⇒ FCIA % Γ V (Tr(ES1 ‖ ES2 ))

proof −
assume BSD1 : BSD V1 TrES1

and BSD2 : BSD V2 TrES2
and BSIA1 : BSIA %1 V1 TrES1
and BSIA2 : BSIA %2 V2 TrES2
and %1v1-subset-%v-inter-E1 : (%1 V1 ) ⊆ (% V) ∩ EES1
and %2v2-subset-%v-inter-E2 : (%2 V2 ) ⊆ (% V) ∩ EES2
and total-ES1-C1-inter-Upsilon1-inter-N2-inter-Delta2 :
total ES1 (CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2)

and total-ES2-C2-inter-Upsilon2-inter-N1-inter-Delta1 :
total ES2 (CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1)

and Nabla-inter-E1-subset-Nabla1 : ∇Γ ∩ EES1 ⊆ ∇Γ1
and Nabla-inter-E2-subset-Nabla2 : ∇Γ ∩ EES2 ⊆ ∇Γ2
and Upsilon-inter-E1-subset-Upsilon1 : ΥΓ ∩ EES1 ⊆ ΥΓ1
and Upsilon-inter-E2-subset-Upsilon2 : ΥΓ ∩ EES2 ⊆ ΥΓ2
and Delta1-N1-Delta2-N2-subset-Delta: ( ∆Γ1 ∩ NV1 ∪ ∆Γ2 ∩ NV2 ) ⊆ ∆Γ
and very-long-asm: (NV1 ∩ ∆Γ1 ∩ EES2 = {} ∧ NV2 ∩ ∆Γ2 ∩ EES1 ⊆ ΥΓ1)
∨ ( NV2 ∩ ∆Γ2 ∩ EES1 = {} ∧ NV1 ∩ ∆Γ1 ∩ EES2 ⊆ ΥΓ2)
and FCIA1 : FCIA %1 Γ1 V1 TrES1
and FCIA2 : FCIA %2 Γ2 V2 TrES2

{
fix α β c v ′

assume c-in-Cv-inter-Upsilon: c ∈ (CV ∩ ΥΓ)
and v ′-in-Vv-inter-Nabla: v ′ ∈ (VV ∩ ∇Γ)
and βv ′α-in-Tr : (β @ [v ′] @ α) ∈ Tr(ES1 ‖ ES2 )
and αCv-empty: α � CV = []
and Adm: Adm V % (Tr(ES1 ‖ ES2 )) β c

interpret CSES1 : CompositionSupport ES1 V V1
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES1 validV1 )
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interpret CSES2 : CompositionSupport ES2 V V2
using propSepViews unfolding properSeparationOfViews-def
by (simp add: CompositionSupport-def validES2 validV2 )

from βv ′α-in-Tr
have βv ′α-E1-in-Tr1 : (((β @ [v ′]) @ α) � EES1) ∈ TrES1

and βv ′α-E2-in-Tr2 : (((β @ [v ′]) @ α) � EES2) ∈ TrES2
by (simp add: composeES-def )+

from CSES1 .BSD-in-subsystem2 [OF βv ′α-E1-in-Tr1 BSD1 ] obtain α1 ′

where βv ′E1α1 ′-in-Tr1 : (β @ [v ′]) � EES1 @ α1 ′ ∈ TrES1
and α1 ′Vv1-is-αVv1 : α1 ′ � VV1 = α � VV1
and α1 ′Cv1-empty: α1 ′ � CV1 = []
by auto

from CSES2 .BSD-in-subsystem2 [OF βv ′α-E2-in-Tr2 BSD2 ] obtain α2 ′

where βv ′E2α2 ′-in-Tr2 : (β @ [v ′]) � EES2 @ α2 ′ ∈ TrES2
and α2 ′Vv2-is-αVv2 : α2 ′ � VV2 = α � VV2
and α2 ′Cv2-empty: α2 ′ � CV2 = []
by auto

note very-long-asm
moreover {

assume Nv1-inter-Delta1-inter-E2-empty: NV1 ∩ ∆Γ1 ∩ EES2 = {}
and Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1 : NV2 ∩ ∆Γ2 ∩ EES1 ⊆ ΥΓ1

let ?ALPHA2 ′′-DELTA2 ′′ = ∃ α2 ′′ δ2 ′′. (
set α2 ′′ ⊆ EES2 ∧ set δ2 ′′ ⊆ NV2 ∩ ∆Γ2
∧ β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = [])

from c-in-Cv-inter-Upsilon v ′-in-Vv-inter-Nabla validV2
have c /∈ EES2 ∨ (c ∈ EES2 ∧ v ′ /∈ EES2) ∨ (c ∈ EES2 ∧ v ′ ∈ EES2)

by (simp add: V-valid-def isViewOn-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def )

moreover {
assume c-notin-E2 : c /∈ EES2

from validES2 βv ′E2α2 ′-in-Tr2 have set α2 ′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV2 ∩ ∆Γ2

by auto
moreover
from βv ′E2α2 ′-in-Tr2 c-notin-E2
have β � EES2 @ [c] � EES2 @ [] @ [v ′] � EES2 @ α2 ′ ∈ TrES2

by (simp add: projection-def )
moreover
have α2 ′ � VV2 = α2 ′ � VV2 ..
moreover
note α2 ′Cv2-empty
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ultimately have ?ALPHA2 ′′-DELTA2 ′′

by blast
}
moreover {

assume c-in-E2 : c ∈ EES2
and v ′-notin-E2 : v ′ /∈ EES2

from c-in-E2 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E2-subset-Upsilon2

have c-in-Cv2-inter-Upsilon2 : c ∈ CV2 ∩ ΥΓ2
unfolding properSeparationOfViews-def by auto

hence c ∈ CV2
by auto

moreover
from βv ′E2α2 ′-in-Tr2 v ′-notin-E2 have β � EES2 @ α2 ′ ∈ TrES2

by (simp add: projection-def )
moreover
note α2 ′Cv2-empty
moreover
have Adm V2 %2 TrES2 (β � EES2) c
proof −

from Adm obtain γ
where γ%v-is-β%v: γ � (% V) = β � (% V)
and γc-in-Tr : (γ @ [c]) ∈ Tr(ES1 ‖ ES2 )
unfolding Adm-def
by auto

from c-in-E2 γc-in-Tr have (γ � EES2) @ [c] ∈ TrES2
by (simp add: projection-def composeES-def )

moreover
have γ � EES2 � (%2 V2 ) = β � EES2 � (%2 V2 )
proof −

from γ%v-is-β%v have γ � EES2 � (% V) = β � EES2 � (% V)
by (metis projection-commute)

with %2v2-subset-%v-inter-E2 have γ � (%2 V2 ) = β � (%2 V2 )
by (metis Int-subset-iff γ%v-is-β%v projection-subset-elim)

thus ?thesis
by (metis projection-commute)

qed
ultimately show ?thesis unfolding Adm-def

by auto
qed
moreover
note BSIA2
ultimately obtain α2 ′′

where one: β � EES2 @ [c] @ α2 ′′ ∈ TrES2
and two: α2 ′′ � VV2 = α2 ′ � VV2
and three: α2 ′′ � CV2 = []
unfolding BSIA-def
by blast

from one validES2 have set α2 ′′ ⊆ EES2
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by (simp add: ES-valid-def traces-contain-events-def , auto)
moreover
have set [] ⊆ NV2 ∩ ∆Γ2

by auto
moreover
from one c-in-E2 v ′-notin-E2
have β � EES2 @ [c] � EES2 @ [] @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

by (simp add: projection-def )
moreover
note two three
ultimately have ?ALPHA2 ′′-DELTA2 ′′

by blast
}
moreover {

assume c-in-E2 : c ∈ EES2
and v ′-in-E2 : v ′ ∈ EES2

from c-in-E2 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E2-subset-Upsilon2

have c-in-Cv2-inter-Upsilon2 : c ∈ CV2 ∩ ΥΓ2
unfolding properSeparationOfViews-def by auto

moreover
from v ′-in-E2 propSepViews v ′-in-Vv-inter-Nabla Nabla-inter-E2-subset-Nabla2
have v ′ ∈ VV2 ∩ Nabla Γ2

unfolding properSeparationOfViews-def by auto
moreover
from v ′-in-E2 βv ′E2α2 ′-in-Tr2 have β � EES2 @ [v ′] @ α2 ′ ∈ TrES2

by (simp add: projection-def )
moreover
note α2 ′Cv2-empty
moreover
have Adm V2 %2 TrES2 (β � EES2) c
proof −

from Adm obtain γ
where γ%v-is-β%v: γ � (% V) = β � (% V)
and γc-in-Tr : (γ @ [c]) ∈ Tr(ES1 ‖ ES2 )
unfolding Adm-def
by auto

from c-in-E2 γc-in-Tr have (γ � EES2) @ [c] ∈ TrES2
by (simp add: projection-def composeES-def )

moreover
have γ � EES2 � (%2 V2 ) = β � EES2 � (%2 V2 )
proof −

from γ%v-is-β%v have γ � EES2 � (% V) = β � EES2 � (% V)
by (metis projection-commute)

with %2v2-subset-%v-inter-E2 have γ � (%2 V2 ) = β � (%2 V2 )
by (metis Int-subset-iff γ%v-is-β%v projection-subset-elim)

thus ?thesis
by (metis projection-commute)

qed
ultimately show ?thesis unfolding Adm-def
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by auto
qed
moreover
note FCIA2
ultimately obtain α2 ′′ δ2 ′′

where one: set δ2 ′′ ⊆ NV2 ∩ ∆Γ2
and two: β � EES2 @ [c] @ δ2 ′′ @ [v ′] @ α2 ′′ ∈ TrES2
and three: α2 ′′ � VV2 = α2 ′ � VV2
and four : α2 ′′ � CV2 = []
unfolding FCIA-def
by blast

from two validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
note one
moreover
from two c-in-E2 v ′-in-E2
have β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

by (simp add: projection-def )
moreover
note three four
ultimately have ?ALPHA2 ′′-DELTA2 ′′

by blast
}
ultimately obtain α2 ′′ δ2 ′′

where α2 ′′-in-E2star : set α2 ′′ ⊆ EES2
and δ2 ′′-in-N2-inter-Delta2star :set δ2 ′′ ⊆ NV2 ∩ ∆Γ2
and βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 :

β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
and α2 ′′Vv2-is-α2 ′Vv2 : α2 ′′ � VV2 = α2 ′ � VV2
and α2 ′′Cv2-empty: α2 ′′ � CV2 = []
by blast

from c-in-Cv-inter-Upsilon Upsilon-inter-E1-subset-Upsilon1 propSepViews
have cE1-in-Cv1-inter-Upsilon1 : set ([c] � EES1) ⊆ CV1 ∩ ΥΓ1

unfolding properSeparationOfViews-def by (simp add: projection-def , auto)

from δ2 ′′-in-N2-inter-Delta2star Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1
propSepViews disjoint-Nv2-Vv1

have δ2 ′′E1-in-Cv1-inter-Upsilon1star : set (δ2 ′′ � EES1) ⊆ CV1 ∩ ΥΓ1
proof −

from δ2 ′′-in-N2-inter-Delta2star
have eq: δ2 ′′ � EES1 = δ2 ′′ � (NV2 ∩ ∆Γ2 ∩ EES1)

by (metis Int-commute Int-left-commute Int-lower1 Int-lower2
projection-intersection-neutral subset-trans)

from validV1 Nv2-inter-Delta2-inter-E1-subsetof-Upsilon1
propSepViews disjoint-Nv2-Vv1

have NV2 ∩ ∆Γ2 ∩ EES1 ⊆ CV1 ∩ ΥΓ1
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def
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VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
thus ?thesis

by (subst eq, simp only: projection-def , auto)
qed

have cδ2 ′′E1-in-Cv1-inter-Upsilon1star : set ((c # δ2 ′′) � EES1) ⊆ CV1 ∩ ΥΓ1
proof −

from cE1-in-Cv1-inter-Upsilon1 δ2 ′′E1-in-Cv1-inter-Upsilon1star
have set (([c] @ δ2 ′′) � EES1) ⊆ CV1 ∩ ΥΓ1

by (simp only: projection-concatenation-commute, auto)
thus ?thesis

by auto
qed

have
∃ α1 ′′ δ1 ′′. set α1 ′′ ⊆ EES1 ∧ set δ1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
∧ β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
∧ δ1 ′′ � EES2 = δ2 ′′ � EES1
proof cases

assume v ′-in-E1 : v ′ ∈ EES1
with Nabla-inter-E1-subset-Nabla1 propSepViews v ′-in-Vv-inter-Nabla
have v ′-in-Vv1-inter-Nabla1 : v ′ ∈ VV1 ∩ Nabla Γ1

unfolding properSeparationOfViews-def by auto

have [[ (β @ [v ′]) � EES1 @ α1 ′ ∈ TrES1 ;
α1 ′ � CV1 = []; set ((c # δ2 ′′) � EES1) ⊆ CV1 ∩ ΥΓ1 ;
c ∈ CV ∩ ΥΓ ; set δ2 ′′ ⊆ NV2 ∩ ∆Γ2;
Adm V % (Tr(ES1 ‖ ES2 )) β c ]]

=⇒ ∃ α1 ′′ δ1 ′′.
(set α1 ′′ ⊆ EES1 ∧ set δ1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
∧ β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
∧ δ1 ′′ � (CV1 ∩ ΥΓ1) = δ2 ′′ � EES1)
proof (induct length ((c # δ2 ′′) � EES1) arbitrary: β α1 ′ c δ2 ′′)

case 0

from 0 (2 ) validES1 have set α1 ′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
moreover
have β � EES1 @ [c] � EES1 @ [] @ [v ′] � EES1 @ α1 ′ ∈ TrES1

proof −
note 0 (2 )
moreover
from 0 (1 ) have c /∈ EES1

by (simp add: projection-def , auto)
ultimately show ?thesis

by (simp add: projection-concatenation-commute projection-def )
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qed
moreover
have α1 ′ � VV1 = α1 ′ � VV1 ..
moreover
note 0 (3 )
moreover
from 0 (1 ) have [] � (CV1 ∩ ΥΓ1) = δ2 ′′ � EES1

by (simp add: projection-def , split if-split-asm, auto)
ultimately show ?case

by blast
next

case (Suc n)

from projection-split-last[OF Suc(2 )] obtain µ c ′ ν
where c ′-in-E1 : c ′ ∈ EES1
and cδ2 ′′-is-µc ′ν: c # δ2 ′′ = µ @ [c ′] @ ν
and νE1-empty: ν � EES1 = []
and n-is-length-µνE1 : n = length ((µ @ ν) � EES1)
by blast

from Suc(5 ) c ′-in-E1 cδ2 ′′-is-µc ′ν have set (µ � EES1 @ [c ′]) ⊆ CV1 ∩ ΥΓ1
by (simp only: cδ2 ′′-is-µc ′ν projection-concatenation-commute

projection-def , auto)
hence c ′-in-Cv1-inter-Upsilon1 : c ′ ∈ CV1 ∩ ΥΓ1

by auto
hence c ′-in-Cv1 : c ′ ∈ CV1 and c ′-in-Upsilon1 : c ′ ∈ ΥΓ1

by auto
with validV1 have c ′-in-E1 : c ′ ∈ EES1

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

show ?case
proof (cases µ)

case Nil
with cδ2 ′′-is-µc ′ν have c-is-c ′: c = c ′ and δ2 ′′-is-ν: δ2 ′′ = ν

by auto
with c ′-in-Cv1-inter-Upsilon1 have c ∈ CV1 ∩ ΥΓ1

by simp
moreover
note v ′-in-Vv1-inter-Nabla1
moreover
from v ′-in-E1 Suc(3 ) have (β � EES1) @ [v ′] @ α1 ′ ∈ TrES1

by (simp add: projection-concatenation-commute projection-def )
moreover
note Suc(4 )
moreover
have Adm V1 %1 TrES1 (β � EES1) c

proof −
from Suc(8 ) obtain γ

where γ%v-is-β%v: γ � (% V) = β � (% V)
and γc-in-Tr : (γ @ [c]) ∈ Tr(ES1 ‖ ES2 )
unfolding Adm-def
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by auto

from c-is-c ′ c ′-in-E1 γc-in-Tr have (γ � EES1) @ [c] ∈ TrES1
by (simp add: projection-def composeES-def )

moreover
have γ � EES1 � (%1 V1 ) = β � EES1 � (%1 V1 )
proof −

from γ%v-is-β%v have γ � EES1 � (% V) = β � EES1 � (% V)
by (metis projection-commute)

with %1v1-subset-%v-inter-E1 have γ � (%1 V1 ) = β � (%1 V1 )
by (metis Int-subset-iff γ%v-is-β%v projection-subset-elim)

thus ?thesis
by (metis projection-commute)

qed
ultimately show ?thesis unfolding Adm-def

by auto
qed

moreover
note FCIA1
ultimately obtain α1 ′′ γ

where one: set γ ⊆ NV1 ∩ ∆Γ1
and two: β � EES1 @ [c] @ γ @ [v ′] @ α1 ′′ ∈ TrES1
and three: α1 ′′ � VV1 = α1 ′ � VV1
and four : α1 ′′ � CV1 = []
unfolding FCIA-def
by blast

let ?DELTA1 ′′ = ν � EES1 @ γ

from two validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from one νE1-empty
have set ?DELTA1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
moreover
have β � EES1 @ [c] � EES1 @ ?DELTA1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

proof −
from c-is-c ′ c ′-in-E1 have [c] = [c] � EES1

by (simp add: projection-def )
moreover
from v ′-in-E1 have [v ′] = [v ′] � EES1

by (simp add: projection-def )
moreover
note νE1-empty two
ultimately show ?thesis

by auto
qed

moreover
note three four
moreover
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have ?DELTA1 ′′ � (CV1 ∩ ΥΓ1) = δ2 ′′ � EES1
proof −

have γ � (CV1 ∩ ΥΓ1) = []
proof −

from validV1 have NV1 ∩ ∆Γ1 ∩ (CV1 ∩ ΥΓ1) = {}
by (simp add: isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
with projection-intersection-neutral[OF one, of CV1 ∩ ΥΓ1]
show ?thesis

by (simp add: projection-def )
qed

with δ2 ′′-is-ν νE1-empty show ?thesis
by (simp add: projection-concatenation-commute)

qed
ultimately show ?thesis

by blast
next

case (Cons x xs)
with cδ2 ′′-is-µc ′ν
have µ-is-c-xs: µ = [c] @ xs and δ2 ′′-is-xs-c ′-ν: δ2 ′′ = xs @ [c ′] @ ν

by auto
with n-is-length-µνE1 have n = length ((c # (xs @ ν)) � EES1)

by auto
moreover
note Suc(3 ,4 )
moreover
have set ((c # (xs @ ν)) � EES1) ⊆ CV1 ∩ ΥΓ1

proof −
have res: c # (xs @ ν) = [c] @ (xs @ ν)

by auto

from Suc(5 ) cδ2 ′′-is-µc ′ν µ-is-c-xs νE1-empty
show ?thesis

by (subst res, simp only: cδ2 ′′-is-µc ′ν
projection-concatenation-commute set-append, auto)

qed
moreover
note Suc(6 )
moreover
from Suc(7 ) δ2 ′′-is-xs-c ′-ν have set (xs @ ν) ⊆ NV2 ∩ ∆Γ2

by auto
moreover note Suc(8 ) Suc(1 )[of c xs @ ν β α1 ′]
ultimately obtain δ γ

where one: set δ ⊆ EES1
and two: set γ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
and three: β � EES1 @ [c] � EES1 @ γ @ [v ′] � EES1 @ δ ∈ TrES1
and four : δ � VV1 = α1 ′ � VV1
and five: δ � CV1 = []
and six: γ � (CV1 ∩ ΥΓ1) = (xs @ ν) � EES1
by blast
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let ?BETA = β � EES1 @ [c] � EES1 @ γ

note c ′-in-Cv1-inter-Upsilon1 v ′-in-Vv1-inter-Nabla1
moreover
from three v ′-in-E1 have ?BETA @ [v ′] @ δ ∈ TrES1

by (simp add: projection-def )
moreover
note five
moreover
have Adm V1 %1 TrES1 ?BETA c ′

proof −
have ?BETA @ [c ′] ∈ TrES1

proof −
from Suc(7 ) c ′-in-Cv1-inter-Upsilon1 δ2 ′′-is-xs-c ′-ν
have c ′ ∈ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
moreover
from validES1 three have ?BETA ∈ TrES1

by (unfold ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def , auto)

moreover
note total-ES1-C1-inter-Upsilon1-inter-N2-inter-Delta2
ultimately show ?thesis

unfolding total-def
by blast

qed
thus ?thesis

unfolding Adm-def
by blast

qed
moreover
note FCIA1
ultimately obtain α1 ′′ δ ′

where fcia-one: set δ ′ ⊆ NV1 ∩ ∆Γ1
and fcia-two: ?BETA @ [c ′] @ δ ′ @ [v ′] @ α1 ′′ ∈ TrES1
and fcia-three: α1 ′′ � VV1 = δ � VV1
and fcia-four : α1 ′′ � CV1 = []
unfolding FCIA-def
by blast

let ?DELTA1 ′′ = γ @ [c ′] @ δ ′

from fcia-two validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set ?DELTA1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

proof −
from Suc(7 ) c ′-in-Cv1-inter-Upsilon1 δ2 ′′-is-xs-c ′-ν
have c ′ ∈ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
with two fcia-one show ?thesis

by auto
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qed
moreover
from fcia-two v ′-in-E1
have β � EES1 @ [c] � EES1 @ ?DELTA1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
from fcia-three four have α1 ′′ � VV1 = α1 ′ � VV1

by simp
moreover
note fcia-four
moreover
have ?DELTA1 ′′ � (CV1 ∩ ΥΓ1) = δ2 ′′ � EES1

proof −
have δ ′ � (CV1 ∩ ΥΓ1) = []

proof −
from fcia-one have ∀ e ∈ set δ ′. e ∈ NV1 ∩ ∆Γ1

by auto
with validV1 have ∀ e ∈ set δ ′. e /∈ CV1 ∩ ΥΓ1

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

thus ?thesis
by (simp add: projection-def )

qed
with c ′-in-E1 c ′-in-Cv1-inter-Upsilon1 δ2 ′′-is-xs-c ′-ν νE1-empty six
show ?thesis

by (simp only: projection-concatenation-commute projection-def , auto)
qed

ultimately show ?thesis
by blast

qed
qed
from this[OF βv ′E1α1 ′-in-Tr1 α1 ′Cv1-empty cδ2 ′′E1-in-Cv1-inter-Upsilon1star

c-in-Cv-inter-Upsilon δ2 ′′-in-N2-inter-Delta2star Adm]
obtain α1 ′′ δ1 ′′

where one: set α1 ′′ ⊆ EES1
and two: set δ1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
and three: β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
and four : δ1 ′′ � (CV1 ∩ ΥΓ1) = δ2 ′′ � EES1
by blast

note one two three
moreover
have δ1 ′′ � EES2 = δ2 ′′ � EES1

proof −
from projection-intersection-neutral[OF two, of EES2]

Nv1-inter-Delta1-inter-E2-empty validV2
have δ1 ′′ � EES2 = δ1 ′′ � (CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2 ∩ EES2)

by (simp only: Int-Un-distrib2 , auto)
moreover
from validV2
have CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2 ∩ EES2 = CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
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by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

ultimately have δ1 ′′ � EES2 = δ1 ′′ � (CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2)
by simp

hence δ1 ′′ � EES2 = δ1 ′′ � (CV1 ∩ ΥΓ1) � (NV2 ∩ ∆Γ2)
by (simp add: projection-def )

with four have δ1 ′′ � EES2 = δ2 ′′ � EES1 � (NV2 ∩ ∆Γ2)
by simp

hence δ1 ′′ � EES2 = δ2 ′′ � (NV2 ∩ ∆Γ2) � EES1
by (simp only: projection-commute)

with δ2 ′′-in-N2-inter-Delta2star show ?thesis
by (simp only: list-subset-iff-projection-neutral)

qed
ultimately show ?thesis

by blast
next

assume v ′-notin-E1 : v ′ /∈ EES1

have [[ (β @ [v ′]) � EES1 @ α1 ′ ∈ TrES1 ;
α1 ′ � CV1 = []; set ((c # δ2 ′′) � EES1) ⊆ CV1 ∩ ΥΓ1 ;
c ∈ CV ∩ ΥΓ ; set δ2 ′′ ⊆ NV2 ∩ ∆Γ2;

Adm V % (Tr(ES1 ‖ ES2 )) β c ]]

=⇒ ∃ α1 ′′ δ1 ′′. (set α1 ′′ ⊆ EES1 ∧ set δ1 ′′ ⊆ NV1
∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
∧ β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = []
∧ δ1 ′′ � EES2 = δ2 ′′ � EES1)
proof (induct length ((c # δ2 ′′) � EES1) arbitrary: β α1 ′ c δ2 ′′)

case 0

from 0 (2 ) validES1 have set α1 ′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
moreover
have β � EES1 @ [c] � EES1 @ [] @ [v ′] � EES1 @ α1 ′ ∈ TrES1

proof −
note 0 (2 )
moreover
from 0 (1 ) have c /∈ EES1

by (simp add: projection-def , auto)
ultimately show ?thesis

by (simp add: projection-concatenation-commute projection-def )
qed

moreover
have α1 ′ � VV1 = α1 ′ � VV1 ..
moreover
note 0 (3 )
moreover
from 0 (1 ) have [] � EES2 = δ2 ′′ � EES1

by (simp add: projection-def , split if-split-asm, auto)
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ultimately show ?case
by blast

next
case (Suc n)

from projection-split-last[OF Suc(2 )] obtain µ c ′ ν
where c ′-in-E1 : c ′ ∈ EES1
and cδ2 ′′-is-µc ′ν: c # δ2 ′′ = µ @ [c ′] @ ν
and νE1-empty: ν � EES1 = []
and n-is-length-µνE1 : n = length ((µ @ ν) � EES1)
by blast

from Suc(5 ) c ′-in-E1 cδ2 ′′-is-µc ′ν have set (µ � EES1 @ [c ′]) ⊆ CV1 ∩ ΥΓ1
by (simp only: cδ2 ′′-is-µc ′ν projection-concatenation-commute projection-def , auto)

hence c ′-in-Cv1-inter-Upsilon1 : c ′ ∈ CV1 ∩ ΥΓ1
by auto

hence c ′-in-Cv1 : c ′ ∈ CV1 and c ′-in-Upsilon1 : c ′ ∈ ΥΓ1
by auto

with validV1 have c ′-in-E1 : c ′ ∈ EES1
by (simp add:isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)

show ?case
proof (cases µ)

case Nil
with cδ2 ′′-is-µc ′ν have c-is-c ′: c = c ′ and δ2 ′′-is-ν: δ2 ′′ = ν

by auto
with c ′-in-Cv1-inter-Upsilon1 have c ∈ CV1

by simp
moreover
from v ′-notin-E1 Suc(3 ) have (β � EES1) @ α1 ′ ∈ TrES1

by (simp add: projection-concatenation-commute projection-def )
moreover
note Suc(4 )
moreover
have Adm V1 %1 TrES1 (β � EES1) c

proof −
from Suc(8 ) obtain γ

where γ%v-is-β%v: γ � (% V) = β � (% V)
and γc-in-Tr : (γ @ [c]) ∈ Tr(ES1 ‖ ES2 )
unfolding Adm-def
by auto

from c-is-c ′ c ′-in-E1 γc-in-Tr have (γ � EES1) @ [c] ∈ TrES1
by (simp add: projection-def composeES-def )

moreover
have γ � EES1 � (%1 V1 ) = β � EES1 � (%1 V1 )
proof −

from γ%v-is-β%v have γ � EES1 � (% V) = β � EES1 � (% V)
by (metis projection-commute)

with %1v1-subset-%v-inter-E1 have γ � (%1 V1 ) = β � (%1 V1 )
by (metis Int-subset-iff γ%v-is-β%v projection-subset-elim)
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thus ?thesis
by (metis projection-commute)

qed
ultimately show ?thesis unfolding Adm-def

by auto
qed

moreover
note BSIA1
ultimately obtain α1 ′′

where one: (β � EES1) @ [c] @ α1 ′′ ∈ TrES1
and two: α1 ′′ � VV1 = α1 ′ � VV1
and three: α1 ′′ � CV1 = []
unfolding BSIA-def
by blast

let ?DELTA1 ′′ = ν � EES1

from one validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from νE1-empty
have set ?DELTA1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by simp
moreover
from c-is-c ′ c ′-in-E1 one v ′-notin-E1 νE1-empty
have (β � EES1) @ [c] � EES1 @ ?DELTA1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
note two three
moreover
from νE1-empty δ2 ′′-is-ν have ?DELTA1 ′′ � EES2 = δ2 ′′ � EES1

by (simp add: projection-def )
ultimately show ?thesis

by blast
next

case (Cons x xs)
with cδ2 ′′-is-µc ′ν
have µ-is-c-xs: µ = [c] @ xs and δ2 ′′-is-xs-c ′-ν: δ2 ′′ = xs @ [c ′] @ ν

by auto
with n-is-length-µνE1 have n = length ((c # (xs @ ν)) � EES1)

by auto
moreover
note Suc(3 ,4 )
moreover
have set ((c # (xs @ ν)) � EES1) ⊆ CV1 ∩ ΥΓ1

proof −
have res: c # (xs @ ν) = [c] @ (xs @ ν)

by auto

from Suc(5 ) cδ2 ′′-is-µc ′ν µ-is-c-xs νE1-empty
show ?thesis

by (subst res, simp only: cδ2 ′′-is-µc ′ν projection-concatenation-commute
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set-append, auto)
qed

moreover
note Suc(6 )
moreover
from Suc(7 ) δ2 ′′-is-xs-c ′-ν have set (xs @ ν) ⊆ NV2 ∩ ∆Γ2

by auto
moreover note Suc(8 ) Suc(1 )[of c xs @ ν β α1 ′]
ultimately obtain δ γ

where one: set δ ⊆ EES1
and two: set γ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
and three: β � EES1 @ [c] � EES1 @ γ @ [v ′] � EES1 @ δ ∈ TrES1
and four : δ � VV1 = α1 ′ � VV1
and five: δ � CV1 = []
and six: γ � EES2 = (xs @ ν) � EES1
by blast

let ?BETA = β � EES1 @ [c] � EES1 @ γ

from c ′-in-Cv1-inter-Upsilon1 have c ′ ∈ CV1
by auto

moreover
from three v ′-notin-E1 have ?BETA @ δ ∈ TrES1

by (simp add: projection-def )
moreover
note five
moreover
have Adm V1 %1 TrES1 ?BETA c ′

proof −
have ?BETA @ [c ′] ∈ TrES1

proof −
from Suc(7 ) c ′-in-Cv1-inter-Upsilon1 δ2 ′′-is-xs-c ′-ν
have c ′ ∈ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
moreover
from validES1 three have ?BETA ∈ TrES1

by (unfold ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def , auto)

moreover
note total-ES1-C1-inter-Upsilon1-inter-N2-inter-Delta2
ultimately show ?thesis

unfolding total-def
by blast

qed
thus ?thesis

unfolding Adm-def
by blast

qed
moreover
note BSIA1
ultimately obtain α1 ′′
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where bsia-one: ?BETA @ [c ′] @ α1 ′′ ∈ TrES1
and bsia-two: α1 ′′ � VV1 = δ � VV1
and bsia-three: α1 ′′ � CV1 = []
unfolding BSIA-def
by blast

let ?DELTA1 ′′ = γ @ [c ′]

from bsia-one validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set ?DELTA1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

proof −
from Suc(7 ) c ′-in-Cv1-inter-Upsilon1 δ2 ′′-is-xs-c ′-ν
have c ′ ∈ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2

by auto
with two show ?thesis

by auto
qed

moreover
from bsia-one v ′-notin-E1
have β � EES1 @ [c] � EES1 @ ?DELTA1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
from bsia-two four have α1 ′′ � VV1 = α1 ′ � VV1

by simp
moreover
note bsia-three
moreover
have ?DELTA1 ′′ � EES2 = δ2 ′′ � EES1

proof −
from validV2 Suc(7 ) δ2 ′′-is-xs-c ′-ν have c ′ ∈ EES2

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

with c ′-in-E1 c ′-in-Cv1-inter-Upsilon1 δ2 ′′-is-xs-c ′-ν νE1-empty six
show ?thesis

by (simp only: projection-concatenation-commute projection-def , auto)
qed

ultimately show ?thesis
by blast

qed
qed

from this[OF βv ′E1α1 ′-in-Tr1 α1 ′Cv1-empty cδ2 ′′E1-in-Cv1-inter-Upsilon1star
c-in-Cv-inter-Upsilon δ2 ′′-in-N2-inter-Delta2star Adm]

show ?thesis
by blast

qed
then obtain α1 ′′ δ1 ′′

where α1 ′′-in-E1star : set α1 ′′ ⊆ EES1
and δ1 ′′-in-N1-inter-Delta1star :set δ1 ′′ ⊆ NV1 ∩ ∆Γ1 ∪ CV1 ∩ ΥΓ1 ∩ NV2 ∩ ∆Γ2
and βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 :
β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
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and α1 ′′Vv1-is-α1 ′Vv1 : α1 ′′ � VV1 = α1 ′ � VV1
and α1 ′′Cv1-empty: α1 ′′ � CV1 = []
and δ1 ′′E2-is-δ2 ′′E1 : δ1 ′′ � EES2 = δ2 ′′ � EES1
by blast

from βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 validES1
validES2

have δ1 ′′-in-E1star : set δ1 ′′ ⊆ EES1 and δ2 ′′-in-E2star : set δ2 ′′ ⊆ EES2
by (simp-all add: ES-valid-def traces-contain-events-def , auto)

with δ1 ′′E2-is-δ2 ′′E1 merge-property[of δ1 ′′ EES1 δ2 ′′ EES2] obtain δ ′

where δ ′E1-is-δ1 ′′: δ ′ � EES1 = δ1 ′′

and δ ′E2-is-δ2 ′′: δ ′ � EES2 = δ2 ′′

and δ ′-contains-only-δ1 ′′-δ2 ′′-events: set δ ′ ⊆ set δ1 ′′ ∪ set δ2 ′′

unfolding Let-def
by auto

let ?TAU = β @ [c] @ δ ′ @ [v ′]
let ?LAMBDA = α � VV
let ?T1 = α1 ′′

let ?T2 = α2 ′′

have ?TAU ∈ Tr(ES1 ‖ ES2 )
proof −

from βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 δ ′E1-is-δ1 ′′ validES1
have β � EES1 @ [c] � EES1 @ δ ′ � EES1 @ [v ′] � EES1 ∈ TrES1

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

hence (β @ [c] @ δ ′ @ [v ′]) � EES1 ∈ TrES1
by (simp add: projection-def , auto)

moreover
from βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 δ ′E2-is-δ2 ′′ validES2
have β � EES2 @ [c] � EES2 @ δ ′ � EES2 @ [v ′] � EES2 ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

hence (β @ [c] @ δ ′ @ [v ′]) � EES2 ∈ TrES2
by (simp add: projection-def , auto)

moreover
from βv ′α-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE δ ′-contains-only-δ1 ′′-δ2 ′′-events
δ1 ′′-in-E1star δ2 ′′-in-E2star

have set (β @ [c] @ δ ′ @ [v ′]) ⊆ EES1 ∪ EES2
unfolding composeES-def isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def
by auto

ultimately show ?thesis
unfolding composeES-def
by auto

qed
hence set ?TAU ⊆ E(ES1 ‖ ES2 )

unfolding composeES-def
by auto

moreover
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have set ?LAMBDA ⊆ VV
by (simp add: projection-def , auto)

moreover
note α1 ′′-in-E1star α2 ′′-in-E2star
moreover
from βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 δ ′E1-is-δ1 ′′

have ?TAU � EES1 @ ?T1 ∈ TrES1
by (simp only: projection-concatenation-commute, auto)

moreover
from βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 δ ′E2-is-δ2 ′′

have ?TAU � EES2 @ ?T2 ∈ TrES2
by (simp only: projection-concatenation-commute, auto)

moreover
have ?LAMBDA � EES1 = ?T1 � VV

proof −
from propSepViews have ?LAMBDA � EES1 = α � VV1

unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from α1 ′′-in-E1star propSepViews
have ?T1 � VV = ?T1 � VV1

unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)

moreover
note α1 ′Vv1-is-αVv1 α1 ′′Vv1-is-α1 ′Vv1
ultimately show ?thesis

by simp
qed

moreover
have ?LAMBDA � EES2 = ?T2 � VV

proof −
from propSepViews have ?LAMBDA � EES2 = α � VV2

unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from α2 ′′-in-E2star propSepViews have ?T2 � VV = ?T2 � VV2

unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)

moreover
note α2 ′Vv2-is-αVv2 α2 ′′Vv2-is-α2 ′Vv2
ultimately show ?thesis

by simp
qed

moreover
note α1 ′′Cv1-empty α2 ′′Cv2-empty generalized-zipping-lemma
ultimately obtain t

where ?TAU @ t ∈ Tr(ES1 ‖ ES2 )
and t � VV = ?LAMBDA
and t � CV = []
by blast

moreover
have set δ ′ ⊆ NV ∩ ∆Γ

proof −
from δ ′-contains-only-δ1 ′′-δ2 ′′-events δ1 ′′-in-N1-inter-Delta1star
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δ2 ′′-in-N2-inter-Delta2star
have set δ ′ ⊆ NV1 ∩ ∆Γ1 ∪ NV2 ∩ ∆Γ2

by auto
with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subsetof-Nv
show ?thesis

by auto
qed

ultimately have ∃α ′ γ ′. (set γ ′ ⊆ NV ∩ ∆Γ ∧ β @ [c] @ γ ′ @ [v ′] @ α ′ ∈ Tr(ES1 ‖ ES2 )
∧ α ′ � VV = α � VV ∧ α ′ � CV = [])
by (simp only: append-assoc, blast)

}
moreover {

assume Nv2-inter-Delta2-inter-E1-empty: NV2 ∩ ∆Γ2 ∩ EES1 = {}
and Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2 : NV1 ∩ ∆Γ1 ∩ EES2 ⊆ ΥΓ2

let ?ALPHA1 ′′-DELTA1 ′′ = ∃ α1 ′′ δ1 ′′. (
set α1 ′′ ⊆ EES1 ∧ set δ1 ′′ ⊆ NV1 ∩ ∆Γ1
∧ β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1
∧ α1 ′′ � VV1 = α1 ′ � VV1 ∧ α1 ′′ � CV1 = [])

from c-in-Cv-inter-Upsilon v ′-in-Vv-inter-Nabla validV1
have c /∈ EES1 ∨ (c ∈ EES1 ∧ v ′ /∈ EES1) ∨ (c ∈ EES1 ∧ v ′ ∈ EES1)

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def )

moreover {
assume c-notin-E1 : c /∈ EES1

from validES1 βv ′E1α1 ′-in-Tr1 have set α1 ′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV1 ∩ ∆Γ1

by auto
moreover
from βv ′E1α1 ′-in-Tr1 c-notin-E1
have β � EES1 @ [c] � EES1 @ [] @ [v ′] � EES1 @ α1 ′ ∈ TrES1

by (simp add: projection-def )
moreover
have α1 ′ � VV1 = α1 ′ � VV1 ..
moreover
note α1 ′Cv1-empty
ultimately have ?ALPHA1 ′′-DELTA1 ′′

by blast
}
moreover {

assume c-in-E1 : c ∈ EES1
and v ′-notin-E1 : v ′ /∈ EES1

from c-in-E1 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E1-subset-Upsilon1

have c-in-Cv1-inter-Upsilon1 : c ∈ CV1 ∩ ΥΓ1
unfolding properSeparationOfViews-def by auto

hence c ∈ CV1
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by auto
moreover
from βv ′E1α1 ′-in-Tr1 v ′-notin-E1 have β � EES1 @ α1 ′ ∈ TrES1

by (simp add: projection-def )
moreover
note α1 ′Cv1-empty
moreover
have Adm V1 %1 TrES1 (β � EES1) c
proof −

from Adm obtain γ
where γ%v-is-β%v: γ � (% V) = β � (% V)
and γc-in-Tr : (γ @ [c]) ∈ Tr(ES1 ‖ ES2 )
unfolding Adm-def
by auto

from c-in-E1 γc-in-Tr have (γ � EES1) @ [c] ∈ TrES1
by (simp add: projection-def composeES-def )

moreover
have γ � EES1 � (%1 V1 ) = β � EES1 � (%1 V1 )
proof −

from γ%v-is-β%v have γ � EES1 � (% V) = β � EES1 � (% V)
by (metis projection-commute)

with %1v1-subset-%v-inter-E1 have γ � (%1 V1 ) = β � (%1 V1 )
by (metis Int-subset-iff γ%v-is-β%v projection-subset-elim)

thus ?thesis
by (metis projection-commute)

qed
ultimately show ?thesis unfolding Adm-def

by auto
qed
moreover
note BSIA1
ultimately obtain α1 ′′

where one: β � EES1 @ [c] @ α1 ′′ ∈ TrES1
and two: α1 ′′ � VV1 = α1 ′ � VV1
and three: α1 ′′ � CV1 = []
unfolding BSIA-def
by blast

from one validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV1 ∩ ∆Γ1

by auto
moreover
from one c-in-E1 v ′-notin-E1
have β � EES1 @ [c] � EES1 @ [] @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
note two three
ultimately have ?ALPHA1 ′′-DELTA1 ′′

by blast
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}
moreover {

assume c-in-E1 : c ∈ EES1
and v ′-in-E1 : v ′ ∈ EES1

from c-in-E1 c-in-Cv-inter-Upsilon propSepViews
Upsilon-inter-E1-subset-Upsilon1

have c-in-Cv1-inter-Upsilon1 : c ∈ CV1 ∩ ΥΓ1
unfolding properSeparationOfViews-def by auto

moreover
from v ′-in-E1 propSepViews v ′-in-Vv-inter-Nabla

Nabla-inter-E1-subset-Nabla1
have v ′ ∈ VV1 ∩ Nabla Γ1

unfolding properSeparationOfViews-def by auto
moreover
from v ′-in-E1 βv ′E1α1 ′-in-Tr1 have β � EES1 @ [v ′] @ α1 ′ ∈ TrES1

by (simp add: projection-def )
moreover
note α1 ′Cv1-empty
moreover
have Adm V1 %1 TrES1 (β � EES1) c
proof −

from Adm obtain γ
where γ%v-is-β%v: γ � (% V) = β � (% V)
and γc-in-Tr : (γ @ [c]) ∈ Tr(ES1 ‖ ES2 )
unfolding Adm-def
by auto

from c-in-E1 γc-in-Tr have (γ � EES1) @ [c] ∈ TrES1
by (simp add: projection-def composeES-def )

moreover
have γ � EES1 � (%1 V1 ) = β � EES1 � (%1 V1 )
proof −

from γ%v-is-β%v have γ � EES1 � (% V) = β � EES1 � (% V)
by (metis projection-commute)

with %1v1-subset-%v-inter-E1 have γ � (%1 V1 ) = β � (%1 V1 )
by (metis Int-subset-iff γ%v-is-β%v projection-subset-elim)

thus ?thesis
by (metis projection-commute)

qed
ultimately show ?thesis unfolding Adm-def

by auto
qed
moreover
note FCIA1
ultimately obtain α1 ′′ δ1 ′′

where one: set δ1 ′′ ⊆ NV1 ∩ ∆Γ1
and two: β � EES1 @ [c] @ δ1 ′′ @ [v ′] @ α1 ′′ ∈ TrES1
and three: α1 ′′ � VV1 = α1 ′ � VV1
and four : α1 ′′ � CV1 = []
unfolding FCIA-def
by blast
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from two validES1 have set α1 ′′ ⊆ EES1
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
note one
moreover
from two c-in-E1 v ′-in-E1
have β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

by (simp add: projection-def )
moreover
note three four
ultimately have ?ALPHA1 ′′-DELTA1 ′′

by blast
}
ultimately obtain α1 ′′ δ1 ′′

where α1 ′′-in-E1star : set α1 ′′ ⊆ EES1
and δ1 ′′-in-N1-inter-Delta1star :set δ1 ′′ ⊆ NV1 ∩ ∆Γ1
and βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 :
β � EES1 @ [c] � EES1 @ δ1 ′′ @ [v ′] � EES1 @ α1 ′′ ∈ TrES1

and α1 ′′Vv1-is-α1 ′Vv1 : α1 ′′ � VV1 = α1 ′ � VV1
and α1 ′′Cv1-empty: α1 ′′ � CV1 = []
by blast

from c-in-Cv-inter-Upsilon Upsilon-inter-E2-subset-Upsilon2 propSepViews
have cE2-in-Cv2-inter-Upsilon2 : set ([c] � EES2) ⊆ CV2 ∩ ΥΓ2

unfolding properSeparationOfViews-def by (simp add: projection-def , auto)

from δ1 ′′-in-N1-inter-Delta1star Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2
propSepViews disjoint-Nv1-Vv2

have δ1 ′′E2-in-Cv2-inter-Upsilon2star : set (δ1 ′′ � EES2) ⊆ CV2 ∩ ΥΓ2
proof −

from δ1 ′′-in-N1-inter-Delta1star
have eq: δ1 ′′ � EES2 = δ1 ′′ � (NV1 ∩ ∆Γ1 ∩ EES2)

by (metis Int-commute Int-left-commute Int-lower2 Int-lower1
projection-intersection-neutral subset-trans)

from validV2 Nv1-inter-Delta1-inter-E2-subsetof-Upsilon2
propSepViews disjoint-Nv1-Vv2

have NV1 ∩ ∆Γ1 ∩ EES2 ⊆ CV2 ∩ ΥΓ2
unfolding properSeparationOfViews-def
by (simp add: isViewOn-def V-valid-def VC-disjoint-def

VN-disjoint-def NC-disjoint-def , auto)
thus ?thesis

by (subst eq, simp only: projection-def , auto)
qed

have cδ1 ′′E2-in-Cv2-inter-Upsilon2star : set ((c # δ1 ′′) � EES2) ⊆ CV2 ∩ ΥΓ2
proof −

from cE2-in-Cv2-inter-Upsilon2 δ1 ′′E2-in-Cv2-inter-Upsilon2star
have set (([c] @ δ1 ′′) � EES2) ⊆ CV2 ∩ ΥΓ2

by (simp only: projection-concatenation-commute, auto)
thus ?thesis
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by auto
qed

have ∃ α2 ′′ δ2 ′′. set α2 ′′ ⊆ EES2
∧ set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
∧ β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
∧ δ2 ′′ � EES1 = δ1 ′′ � EES2
proof cases

assume v ′-in-E2 : v ′ ∈ EES2
with Nabla-inter-E2-subset-Nabla2 propSepViews v ′-in-Vv-inter-Nabla
have v ′-in-Vv2-inter-Nabla2 : v ′ ∈ VV2 ∩ Nabla Γ2

unfolding properSeparationOfViews-def by auto

have [[ (β @ [v ′]) � EES2 @ α2 ′ ∈ TrES2 ;
α2 ′ � CV2 = []; set ((c # δ1 ′′) � EES2) ⊆ CV2 ∩ ΥΓ2 ;
c ∈ CV ∩ ΥΓ ; set δ1 ′′ ⊆ NV1 ∩ ∆Γ1;
Adm V % (Tr(ES1 ‖ ES2 )) β c ]]

=⇒ ∃ α2 ′′ δ2 ′′.
(set α2 ′′ ⊆ EES2 ∧ set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
∧ β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
∧ δ2 ′′ � (CV2 ∩ ΥΓ2) = δ1 ′′ � EES2)
proof (induct length ((c # δ1 ′′) � EES2) arbitrary: β α2 ′ c δ1 ′′)

case 0

from 0 (2 ) validES2 have set α2 ′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
moreover
have β � EES2 @ [c] � EES2 @ [] @ [v ′] � EES2 @ α2 ′ ∈ TrES2

proof −
note 0 (2 )
moreover
from 0 (1 ) have c /∈ EES2

by (simp add: projection-def , auto)
ultimately show ?thesis

by (simp add: projection-concatenation-commute projection-def )
qed

moreover
have α2 ′ � VV2 = α2 ′ � VV2 ..
moreover
note 0 (3 )
moreover
from 0 (1 ) have [] � (CV2 ∩ ΥΓ2) = δ1 ′′ � EES2

by (simp add: projection-def , split if-split-asm, auto)
ultimately show ?case

by blast
next
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case (Suc n)

from projection-split-last[OF Suc(2 )] obtain µ c ′ ν
where c ′-in-E2 : c ′ ∈ EES2
and cδ1 ′′-is-µc ′ν: c # δ1 ′′ = µ @ [c ′] @ ν
and νE2-empty: ν � EES2 = []
and n-is-length-µνE2 : n = length ((µ @ ν) � EES2)
by blast

from Suc(5 ) c ′-in-E2 cδ1 ′′-is-µc ′ν have set (µ � EES2 @ [c ′]) ⊆ CV2 ∩ ΥΓ2
by (simp only: cδ1 ′′-is-µc ′ν projection-concatenation-commute

projection-def , auto)
hence c ′-in-Cv2-inter-Upsilon2 : c ′ ∈ CV2 ∩ ΥΓ2

by auto
hence c ′-in-Cv2 : c ′ ∈ CV2 and c ′-in-Upsilon2 : c ′ ∈ ΥΓ2

by auto
with validV2 have c ′-in-E2 : c ′ ∈ EES2

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

show ?case
proof (cases µ)

case Nil
with cδ1 ′′-is-µc ′ν have c-is-c ′: c = c ′ and δ1 ′′-is-ν: δ1 ′′ = ν

by auto
with c ′-in-Cv2-inter-Upsilon2 have c ∈ CV2 ∩ ΥΓ2

by simp
moreover
note v ′-in-Vv2-inter-Nabla2
moreover
from v ′-in-E2 Suc(3 ) have (β � EES2) @ [v ′] @ α2 ′ ∈ TrES2

by (simp add: projection-concatenation-commute projection-def )
moreover
note Suc(4 )
moreover
have Adm V2 %2 TrES2 (β � EES2) c

proof −
from Suc(8 ) obtain γ

where γ%v-is-β%v: γ � (% V) = β � (% V)
and γc-in-Tr : (γ @ [c]) ∈ Tr(ES1 ‖ ES2 )
unfolding Adm-def
by auto

from c-is-c ′ c ′-in-E2 γc-in-Tr have (γ � EES2) @ [c] ∈ TrES2
by (simp add: projection-def composeES-def )

moreover
have γ � EES2 � (%2 V2 ) = β � EES2 � (%2 V2 )
proof −

from γ%v-is-β%v have γ � EES2 � (% V) = β � EES2 � (% V)
by (metis projection-commute)

with %2v2-subset-%v-inter-E2 have γ � (%2 V2 ) = β � (%2 V2 )
by (metis Int-subset-iff γ%v-is-β%v projection-subset-elim)
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thus ?thesis
by (metis projection-commute)

qed
ultimately show ?thesis unfolding Adm-def

by auto
qed

moreover
note FCIA2
ultimately obtain α2 ′′ γ

where one: set γ ⊆ NV2 ∩ ∆Γ2
and two: β � EES2 @ [c] @ γ @ [v ′] @ α2 ′′ ∈ TrES2
and three: α2 ′′ � VV2 = α2 ′ � VV2
and four : α2 ′′ � CV2 = []
unfolding FCIA-def
by blast

let ?DELTA2 ′′ = ν � EES2 @ γ

from two validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from one νE2-empty
have set ?DELTA2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
moreover
have β � EES2 @ [c] � EES2 @ ?DELTA2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

proof −
from c-is-c ′ c ′-in-E2 have [c] = [c] � EES2

by (simp add: projection-def )
moreover
from v ′-in-E2 have [v ′] = [v ′] � EES2

by (simp add: projection-def )
moreover
note νE2-empty two
ultimately show ?thesis

by auto
qed

moreover
note three four
moreover
have ?DELTA2 ′′ � (CV2 ∩ ΥΓ2) = δ1 ′′ � EES2

proof −
have γ � (CV2 ∩ ΥΓ2) = []

proof −
from validV2 have NV2 ∩ ∆Γ2 ∩ (CV2 ∩ ΥΓ2) = {}

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

with projection-intersection-neutral[OF one, of CV2 ∩ ΥΓ2]
show ?thesis

by (simp add: projection-def )
qed
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with δ1 ′′-is-ν νE2-empty show ?thesis
by (simp add: projection-concatenation-commute)

qed
ultimately show ?thesis

by blast
next

case (Cons x xs)
with cδ1 ′′-is-µc ′ν
have µ-is-c-xs: µ = [c] @ xs and δ1 ′′-is-xs-c ′-ν: δ1 ′′ = xs @ [c ′] @ ν

by auto
with n-is-length-µνE2 have n = length ((c # (xs @ ν)) � EES2)

by auto
moreover
note Suc(3 ,4 )
moreover
have set ((c # (xs @ ν)) � EES2) ⊆ CV2 ∩ ΥΓ2

proof −
have res: c # (xs @ ν) = [c] @ (xs @ ν)

by auto

from Suc(5 ) cδ1 ′′-is-µc ′ν µ-is-c-xs νE2-empty
show ?thesis

by (subst res, simp only: cδ1 ′′-is-µc ′ν
projection-concatenation-commute set-append, auto)

qed
moreover
note Suc(6 )
moreover
from Suc(7 ) δ1 ′′-is-xs-c ′-ν have set (xs @ ν) ⊆ NV1 ∩ ∆Γ1

by auto
moreover note Suc(8 ) Suc(1 )[of c xs @ ν β α2 ′]
ultimately obtain δ γ

where one: set δ ⊆ EES2
and two: set γ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
and three: β � EES2 @ [c] � EES2 @ γ @ [v ′] � EES2 @ δ ∈ TrES2
and four : δ � VV2 = α2 ′ � VV2
and five: δ � CV2 = []
and six: γ � (CV2 ∩ ΥΓ2) = (xs @ ν) � EES2
by blast

let ?BETA = β � EES2 @ [c] � EES2 @ γ

note c ′-in-Cv2-inter-Upsilon2 v ′-in-Vv2-inter-Nabla2
moreover
from three v ′-in-E2 have ?BETA @ [v ′] @ δ ∈ TrES2

by (simp add: projection-def )
moreover
note five
moreover
have Adm V2 %2 TrES2 ?BETA c ′

proof −

267



have ?BETA @ [c ′] ∈ TrES2
proof −

from Suc(7 ) c ′-in-Cv2-inter-Upsilon2 δ1 ′′-is-xs-c ′-ν
have c ′ ∈ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
moreover
from validES2 three have ?BETA ∈ TrES2

by (unfold ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def , auto)

moreover
note total-ES2-C2-inter-Upsilon2-inter-N1-inter-Delta1
ultimately show ?thesis

unfolding total-def
by blast

qed
thus ?thesis

unfolding Adm-def
by blast

qed
moreover
note FCIA2
ultimately obtain α2 ′′ δ ′

where fcia-one: set δ ′ ⊆ NV2 ∩ ∆Γ2
and fcia-two: ?BETA @ [c ′] @ δ ′ @ [v ′] @ α2 ′′ ∈ TrES2
and fcia-three: α2 ′′ � VV2 = δ � VV2
and fcia-four : α2 ′′ � CV2 = []
unfolding FCIA-def
by blast

let ?DELTA2 ′′ = γ @ [c ′] @ δ ′

from fcia-two validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set ?DELTA2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

proof −
from Suc(7 ) c ′-in-Cv2-inter-Upsilon2 δ1 ′′-is-xs-c ′-ν
have c ′ ∈ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
with two fcia-one show ?thesis

by auto
qed

moreover
from fcia-two v ′-in-E2
have β � EES2 @ [c] � EES2 @ ?DELTA2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

by (simp add: projection-def )
moreover
from fcia-three four have α2 ′′ � VV2 = α2 ′ � VV2

by simp
moreover
note fcia-four
moreover
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have ?DELTA2 ′′ � (CV2 ∩ ΥΓ2) = δ1 ′′ � EES2
proof −

have δ ′ � (CV2 ∩ ΥΓ2) = []
proof −

from fcia-one have ∀ e ∈ set δ ′. e ∈ NV2 ∩ ∆Γ2
by auto

with validV2 have ∀ e ∈ set δ ′. e /∈ CV2 ∩ ΥΓ2
by (simp add:isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)
thus ?thesis

by (simp add: projection-def )
qed

with c ′-in-E2 c ′-in-Cv2-inter-Upsilon2 δ1 ′′-is-xs-c ′-ν νE2-empty six
show ?thesis

by (simp only: projection-concatenation-commute projection-def , auto)
qed

ultimately show ?thesis
by blast

qed
qed
from this[OF βv ′E2α2 ′-in-Tr2 α2 ′Cv2-empty

cδ1 ′′E2-in-Cv2-inter-Upsilon2star c-in-Cv-inter-Upsilon δ1 ′′-in-N1-inter-Delta1star Adm]
obtain α2 ′′ δ2 ′′

where one: set α2 ′′ ⊆ EES2
and two: set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
and three: β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
and four : δ2 ′′ � (CV2 ∩ ΥΓ2) = δ1 ′′ � EES2
by blast

note one two three
moreover
have δ2 ′′ � EES1 = δ1 ′′ � EES2

proof −
from projection-intersection-neutral[OF two, of EES1]

Nv2-inter-Delta2-inter-E1-empty validV1
have δ2 ′′ � EES1 = δ2 ′′ � (CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1 ∩ EES1)

by (simp only: Int-Un-distrib2 , auto)
moreover
from validV1
have CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1 ∩ EES1 = CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by (simp add: isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

ultimately have δ2 ′′ � EES1 = δ2 ′′ � (CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1)
by simp

hence δ2 ′′ � EES1 = δ2 ′′ � (CV2 ∩ ΥΓ2) � (NV1 ∩ ∆Γ1)
by (simp add: projection-def )

with four have δ2 ′′ � EES1 = δ1 ′′ � EES2 � (NV1 ∩ ∆Γ1)
by simp

hence δ2 ′′ � EES1 = δ1 ′′ � (NV1 ∩ ∆Γ1) � EES2
by (simp only: projection-commute)

with δ1 ′′-in-N1-inter-Delta1star show ?thesis
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by (simp only: list-subset-iff-projection-neutral)
qed

ultimately show ?thesis
by blast

next
assume v ′-notin-E2 : v ′ /∈ EES2

have [[ (β @ [v ′]) � EES2 @ α2 ′ ∈ TrES2 ;
α2 ′ � CV2 = []; set ((c # δ1 ′′) � EES2) ⊆ CV2 ∩ ΥΓ2 ;
c ∈ CV ∩ ΥΓ ; set δ1 ′′ ⊆ NV1 ∩ ∆Γ1;

Adm V % (Tr(ES1 ‖ ES2 )) β c ]]

=⇒ ∃ α2 ′′ δ2 ′′.
(set α2 ′′ ⊆ EES2 ∧ set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
∧ β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
∧ α2 ′′ � VV2 = α2 ′ � VV2 ∧ α2 ′′ � CV2 = []
∧ δ2 ′′ � EES1 = δ1 ′′ � EES2)
proof (induct length ((c # δ1 ′′) � EES2) arbitrary: β α2 ′ c δ1 ′′)

case 0

from 0 (2 ) validES2 have set α2 ′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
have set [] ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
moreover
have β � EES2 @ [c] � EES2 @ [] @ [v ′] � EES2 @ α2 ′ ∈ TrES2

proof −
note 0 (2 )
moreover
from 0 (1 ) have c /∈ EES2

by (simp add: projection-def , auto)
ultimately show ?thesis

by (simp add: projection-concatenation-commute projection-def )
qed

moreover
have α2 ′ � VV2 = α2 ′ � VV2 ..
moreover
note 0 (3 )
moreover
from 0 (1 ) have [] � EES1 = δ1 ′′ � EES2

by (simp add: projection-def , split if-split-asm, auto)
ultimately show ?case

by blast
next

case (Suc n)

from projection-split-last[OF Suc(2 )] obtain µ c ′ ν
where c ′-in-E2 : c ′ ∈ EES2
and cδ1 ′′-is-µc ′ν: c # δ1 ′′ = µ @ [c ′] @ ν
and νE2-empty: ν � EES2 = []
and n-is-length-µνE2 : n = length ((µ @ ν) � EES2)
by blast
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from Suc(5 ) c ′-in-E2 cδ1 ′′-is-µc ′ν have set (µ � EES2 @ [c ′]) ⊆ CV2 ∩ ΥΓ2
by (simp only: cδ1 ′′-is-µc ′ν projection-concatenation-commute projection-def , auto)

hence c ′-in-Cv2-inter-Upsilon2 : c ′ ∈ CV2 ∩ ΥΓ2
by auto

hence c ′-in-Cv2 : c ′ ∈ CV2 and c ′-in-Upsilon2 : c ′ ∈ ΥΓ2
by auto

with validV2 have c ′-in-E2 : c ′ ∈ EES2
by (simp add:isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

show ?case
proof (cases µ)

case Nil
with cδ1 ′′-is-µc ′ν have c-is-c ′: c = c ′ and δ1 ′′-is-ν: δ1 ′′ = ν

by auto
with c ′-in-Cv2-inter-Upsilon2 have c ∈ CV2

by simp
moreover
from v ′-notin-E2 Suc(3 ) have (β � EES2) @ α2 ′ ∈ TrES2

by (simp add: projection-concatenation-commute projection-def )
moreover
note Suc(4 )
moreover
have Adm V2 %2 TrES2 (β � EES2) c

proof −
from Suc(8 ) obtain γ

where γ%v-is-β%v: γ � (% V) = β � (% V)
and γc-in-Tr : (γ @ [c]) ∈ Tr(ES1 ‖ ES2 )
unfolding Adm-def
by auto

from c-is-c ′ c ′-in-E2 γc-in-Tr have (γ � EES2) @ [c] ∈ TrES2
by (simp add: projection-def composeES-def )

moreover
have γ � EES2 � (%2 V2 ) = β � EES2 � (%2 V2 )
proof −

from γ%v-is-β%v have γ � EES2 � (% V) = β � EES2 � (% V)
by (metis projection-commute)

with %2v2-subset-%v-inter-E2
have γ � (%2 V2 ) = β � (%2 V2 )

by (metis Int-subset-iff γ%v-is-β%v projection-subset-elim)
thus ?thesis

by (metis projection-commute)
qed
ultimately show ?thesis unfolding Adm-def

by auto
qed

moreover
note BSIA2
ultimately obtain α2 ′′

where one: (β � EES2) @ [c] @ α2 ′′ ∈ TrES2
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and two: α2 ′′ � VV2 = α2 ′ � VV2
and three: α2 ′′ � CV2 = []
unfolding BSIA-def
by blast

let ?DELTA2 ′′ = ν � EES2

from one validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)

moreover
from νE2-empty
have set ?DELTA2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by simp
moreover
from c-is-c ′ c ′-in-E2 one v ′-notin-E2 νE2-empty
have (β � EES2) @ [c] � EES2 @ ?DELTA2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

by (simp add: projection-def )
moreover
note two three
moreover
from νE2-empty δ1 ′′-is-ν have ?DELTA2 ′′ � EES1 = δ1 ′′ � EES2

by (simp add: projection-def )
ultimately show ?thesis

by blast
next

case (Cons x xs)
with cδ1 ′′-is-µc ′ν have µ-is-c-xs: µ = [c] @ xs

and δ1 ′′-is-xs-c ′-ν: δ1 ′′ = xs @ [c ′] @ ν
by auto

with n-is-length-µνE2 have n = length ((c # (xs @ ν)) � EES2)
by auto

moreover
note Suc(3 ,4 )
moreover
have set ((c # (xs @ ν)) � EES2) ⊆ CV2 ∩ ΥΓ2

proof −
have res: c # (xs @ ν) = [c] @ (xs @ ν)

by auto

from Suc(5 ) cδ1 ′′-is-µc ′ν µ-is-c-xs νE2-empty
show ?thesis

by (subst res, simp only: cδ1 ′′-is-µc ′ν
projection-concatenation-commute set-append, auto)

qed
moreover
note Suc(6 )
moreover
from Suc(7 ) δ1 ′′-is-xs-c ′-ν have set (xs @ ν) ⊆ NV1 ∩ ∆Γ1

by auto
moreover note Suc(8 ) Suc(1 )[of c xs @ ν β α2 ′]
ultimately obtain δ γ

where one: set δ ⊆ EES2
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and two: set γ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
and three: β � EES2 @ [c] � EES2 @ γ @ [v ′] � EES2 @ δ ∈ TrES2
and four : δ � VV2 = α2 ′ � VV2
and five: δ � CV2 = []
and six: γ � EES1 = (xs @ ν) � EES2
by blast

let ?BETA = β � EES2 @ [c] � EES2 @ γ

from c ′-in-Cv2-inter-Upsilon2 have c ′ ∈ CV2
by auto

moreover
from three v ′-notin-E2 have ?BETA @ δ ∈ TrES2

by (simp add: projection-def )
moreover
note five
moreover
have Adm V2 %2 TrES2 ?BETA c ′

proof −
have ?BETA @ [c ′] ∈ TrES2

proof −
from Suc(7 ) c ′-in-Cv2-inter-Upsilon2 δ1 ′′-is-xs-c ′-ν
have c ′ ∈ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
moreover
from validES2 three have ?BETA ∈ TrES2

by (unfold ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def , auto)

moreover
note total-ES2-C2-inter-Upsilon2-inter-N1-inter-Delta1
ultimately show ?thesis

unfolding total-def
by blast

qed
thus ?thesis

unfolding Adm-def
by blast

qed
moreover
note BSIA2
ultimately obtain α2 ′′

where bsia-one: ?BETA @ [c ′] @ α2 ′′ ∈ TrES2
and bsia-two: α2 ′′ � VV2 = δ � VV2
and bsia-three: α2 ′′ � CV2 = []
unfolding BSIA-def
by blast

let ?DELTA2 ′′ = γ @ [c ′]

from bsia-one validES2 have set α2 ′′ ⊆ EES2
by (simp add: ES-valid-def traces-contain-events-def , auto)
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moreover
have set ?DELTA2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

proof −
from Suc(7 ) c ′-in-Cv2-inter-Upsilon2 δ1 ′′-is-xs-c ′-ν
have c ′ ∈ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1

by auto
with two show ?thesis

by auto
qed

moreover
from bsia-one v ′-notin-E2
have β � EES2 @ [c] � EES2 @ ?DELTA2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2

by (simp add: projection-def )
moreover
from bsia-two four have α2 ′′ � VV2 = α2 ′ � VV2

by simp
moreover
note bsia-three
moreover
have ?DELTA2 ′′ � EES1 = δ1 ′′ � EES2

proof −
from validV1 Suc(7 ) δ1 ′′-is-xs-c ′-ν have c ′ ∈ EES1

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

with c ′-in-E2 c ′-in-Cv2-inter-Upsilon2 δ1 ′′-is-xs-c ′-ν νE2-empty six
show ?thesis

by (simp only: projection-concatenation-commute projection-def , auto)
qed

ultimately show ?thesis
by blast

qed
qed

from this[OF βv ′E2α2 ′-in-Tr2 α2 ′Cv2-empty cδ1 ′′E2-in-Cv2-inter-Upsilon2star
c-in-Cv-inter-Upsilon δ1 ′′-in-N1-inter-Delta1star Adm]

show ?thesis
by blast

qed
then obtain α2 ′′ δ2 ′′

where α2 ′′-in-E2star : set α2 ′′ ⊆ EES2
and δ2 ′′-in-N2-inter-Delta2star :set δ2 ′′ ⊆ NV2 ∩ ∆Γ2 ∪ CV2 ∩ ΥΓ2 ∩ NV1 ∩ ∆Γ1
and βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 :
β � EES2 @ [c] � EES2 @ δ2 ′′ @ [v ′] � EES2 @ α2 ′′ ∈ TrES2
and α2 ′′Vv2-is-α2 ′Vv2 : α2 ′′ � VV2 = α2 ′ � VV2
and α2 ′′Cv2-empty: α2 ′′ � CV2 = []
and δ2 ′′E1-is-δ1 ′′E2 : δ2 ′′ � EES1 = δ1 ′′ � EES2
by blast

from βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1
validES2 validES1

have δ2 ′′-in-E2star : set δ2 ′′ ⊆ EES2 and δ1 ′′-in-E1star : set δ1 ′′ ⊆ EES1
by (simp-all add: ES-valid-def traces-contain-events-def , auto)

with δ2 ′′E1-is-δ1 ′′E2 merge-property[of δ2 ′′ EES2 δ1 ′′ EES1] obtain δ ′
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where δ ′E2-is-δ2 ′′: δ ′ � EES2 = δ2 ′′

and δ ′E1-is-δ1 ′′: δ ′ � EES1 = δ1 ′′

and δ ′-contains-only-δ2 ′′-δ1 ′′-events: set δ ′ ⊆ set δ2 ′′ ∪ set δ1 ′′

unfolding Let-def
by auto

let ?TAU = β @ [c] @ δ ′ @ [v ′]
let ?LAMBDA = α � VV
let ?T2 = α2 ′′

let ?T1 = α1 ′′

have ?TAU ∈ Tr(ES1 ‖ ES2 )
proof −

from βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 δ ′E2-is-δ2 ′′ validES2
have β � EES2 @ [c] � EES2 @ δ ′ � EES2 @ [v ′] � EES2 ∈ TrES2

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

hence (β @ [c] @ δ ′ @ [v ′]) � EES2 ∈ TrES2
by (simp add: projection-def , auto)

moreover
from βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 δ ′E1-is-δ1 ′′ validES1
have β � EES1 @ [c] � EES1 @ δ ′ � EES1 @ [v ′] � EES1 ∈ TrES1

by (simp add: ES-valid-def traces-prefixclosed-def
prefixclosed-def prefix-def )

hence (β @ [c] @ δ ′ @ [v ′]) � EES1 ∈ TrES1
by (simp add: projection-def , auto)

moreover
from βv ′α-in-Tr c-in-Cv-inter-Upsilon VIsViewOnE
δ ′-contains-only-δ2 ′′-δ1 ′′-events δ2 ′′-in-E2star δ1 ′′-in-E1star

have set (β @ [c] @ δ ′ @ [v ′]) ⊆ EES2 ∪ EES1
unfolding composeES-def isViewOn-def V-valid-def

VC-disjoint-def VN-disjoint-def NC-disjoint-def
by auto

ultimately show ?thesis
unfolding composeES-def
by auto

qed
hence set ?TAU ⊆ E(ES1 ‖ ES2 )

unfolding composeES-def
by auto

moreover
have set ?LAMBDA ⊆ VV

by (simp add: projection-def , auto)
moreover
note α2 ′′-in-E2star α1 ′′-in-E1star
moreover
from βE2-cE2-δ2 ′′-v ′E2-α2 ′′-in-Tr2 δ ′E2-is-δ2 ′′

have ?TAU � EES2 @ ?T2 ∈ TrES2
by (simp only: projection-concatenation-commute, auto)

moreover
from βE1-cE1-δ1 ′′-v ′E1-α1 ′′-in-Tr1 δ ′E1-is-δ1 ′′
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have ?TAU � EES1 @ ?T1 ∈ TrES1
by (simp only: projection-concatenation-commute, auto)

moreover
have ?LAMBDA � EES2 = ?T2 � VV

proof −
from propSepViews have ?LAMBDA � EES2 = α � VV2

unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from α2 ′′-in-E2star propSepViews have ?T2 � VV = ?T2 � VV2

unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)

moreover
note α2 ′Vv2-is-αVv2 α2 ′′Vv2-is-α2 ′Vv2
ultimately show ?thesis

by simp
qed

moreover
have ?LAMBDA � EES1 = ?T1 � VV

proof −
from propSepViews have ?LAMBDA � EES1 = α � VV1

unfolding properSeparationOfViews-def by (simp only: projection-sequence)
moreover
from α1 ′′-in-E1star propSepViews have ?T1 � VV = ?T1 � VV1

unfolding properSeparationOfViews-def
by (metis Int-commute projection-intersection-neutral)

moreover
note α1 ′Vv1-is-αVv1 α1 ′′Vv1-is-α1 ′Vv1
ultimately show ?thesis

by simp
qed

moreover
note α2 ′′Cv2-empty α1 ′′Cv1-empty generalized-zipping-lemma
ultimately obtain t

where ?TAU @ t ∈ Tr(ES1 ‖ ES2 )
and t � VV = ?LAMBDA
and t � CV = []
by blast

moreover
have set δ ′ ⊆ NV ∩ ∆Γ

proof −
from δ ′-contains-only-δ2 ′′-δ1 ′′-events
δ2 ′′-in-N2-inter-Delta2star δ1 ′′-in-N1-inter-Delta1star

have set δ ′ ⊆ NV2 ∩ ∆Γ2 ∪ NV1 ∩ ∆Γ1
by auto

with Delta1-N1-Delta2-N2-subset-Delta Nv1-union-Nv2-subsetof-Nv show ?thesis
by auto

qed
ultimately have ∃α ′ γ ′. (set γ ′ ⊆ NV ∩ ∆Γ ∧ β @ [c] @ γ ′ @ [v ′] @ α ′ ∈ Tr(ES1 ‖ ES2 )
∧ α ′ � VV = α � VV ∧ α ′ � CV = [])
by (simp only: append-assoc, blast)

}
ultimately have ∃α ′ γ ′. (set γ ′ ⊆ NV ∩ ∆Γ ∧ β @ [c] @ γ ′ @ [v ′] @ α ′ ∈ Tr(ES1 ‖ ES2 )
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∧ α ′ � VV = α � VV ∧ α ′ � CV = [])
by blast

}
thus ?thesis

unfolding FCIA-def
by blast

qed

theorem compositionality-R:
[[ R V1 TrES1; R V2 TrES2 ]] =⇒ R V (Tr(ES1 ‖ ES2 ))

proof −
assume R1 : R V1 TrES1
and R2 : R V2 TrES2

{
fix τ ′

assume τ ′-in-Tr : τ ′ ∈ Tr(ES1 ‖ ES2 )
hence τ ′E1-in-Tr1 : τ ′ � EES1 ∈ TrES1

and τ ′E2-in-Tr2 : τ ′ � EES2 ∈ TrES2
unfolding composeES-def
by auto

with R1 R2 obtain τ1 ′ τ2 ′

where τ1 ′-in-Tr1 : τ1 ′ ∈ TrES1
and τ1 ′Cv1-empty: τ1 ′ � CV1 = []
and τ1 ′Vv1-is-τ ′-E1-Vv1 : τ1 ′ � VV1 = τ ′ � EES1 � VV1
and τ2 ′-in-Tr2 : τ2 ′ ∈ TrES2
and τ2 ′Cv2-empty: τ2 ′ � CV2 = []
and τ2 ′Vv2-is-τ ′-E2-Vv2 : τ2 ′ � VV2 = τ ′ � EES2 � VV2
unfolding R-def
by blast

have set [] ⊆ E(ES1 ‖ ES2 )
by auto

moreover
have set (τ ′ � VV ) ⊆ VV

by (simp add: projection-def , auto)
moreover
from validES1 τ1 ′-in-Tr1 have τ1 ′-in-E1 : set τ1 ′ ⊆ EES1

by (simp add: ES-valid-def traces-contain-events-def , auto)
moreover
from validES2 τ2 ′-in-Tr2 have τ2 ′-in-E2 : set τ2 ′ ⊆ EES2

by (simp add: ES-valid-def traces-contain-events-def , auto)
moreover
from τ1 ′-in-Tr1 have [] � EES1 @ τ1 ′ ∈ TrES1

by (simp add: projection-def )
moreover
from τ2 ′-in-Tr2 have [] � EES2 @ τ2 ′ ∈ TrES2

by (simp add: projection-def )
moreover
have τ ′ � VV � EES1 = τ1 ′ � VV

proof −
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from projection-intersection-neutral[OF τ1 ′-in-E1 , of VV ] propSepViews
have τ1 ′ � VV = τ1 ′ � VV1

unfolding properSeparationOfViews-def
by (simp add: Int-commute)

moreover
from propSepViews have τ ′ � VV � EES1 = τ ′ � VV1

unfolding properSeparationOfViews-def
by (simp add: projection-sequence)

moreover {
have τ ′ � EES1 � VV1 = τ ′ � (EES1 ∩ VV1)

by (simp add: projection-def )
moreover
from validV1 have EES1 ∩ VV1 = VV1

by (simp add: isViewOn-def V-valid-def
VC-disjoint-def VN-disjoint-def NC-disjoint-def , auto)

ultimately have τ ′ � EES1 � VV1 = τ ′ � VV1
by simp

}
moreover
note τ1 ′Vv1-is-τ ′-E1-Vv1
ultimately show ?thesis

by simp
qed

moreover
have τ ′ � VV � EES2 = τ2 ′ � VV

proof −
from projection-intersection-neutral[OF τ2 ′-in-E2 , of VV ] propSepViews
have τ2 ′ � VV = τ2 ′ � VV2

unfolding properSeparationOfViews-def
by (simp add: Int-commute)

moreover
from propSepViews have τ ′ � VV � EES2 = τ ′ � VV2

unfolding properSeparationOfViews-def
by (simp add: projection-sequence)

moreover {
have τ ′ � EES2 � VV2 = τ ′ � (EES2 ∩ VV2)

by (simp add: projection-def )
moreover
from validV2 have EES2 ∩ VV2 = VV2

by (simp add:isViewOn-def V-valid-def VC-disjoint-def
VN-disjoint-def NC-disjoint-def , auto)

ultimately have τ ′ � EES2 � VV2 = τ ′ � VV2
by simp

}
moreover
note τ2 ′Vv2-is-τ ′-E2-Vv2
ultimately show ?thesis

by simp
qed

moreover
note τ1 ′Cv1-empty τ2 ′Cv2-empty generalized-zipping-lemma
ultimately have ∃ t. [] @ t ∈ Tr(ES1 ‖ ES2 ) ∧ t � VV = τ ′ � VV ∧ t � CV = []
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by blast
}
thus ?thesis

unfolding R-def
by auto

qed

end

locale CompositionalityStrictBSPs = Compositionality +

assumes NV-inter-E1-is-NV1 : NV ∩ EES1 = NV1
and NV-inter-E2-is-NV2 : NV ∩ EES2 = NV2

sublocale CompositionalityStrictBSPs ⊆ Compositionality
by (unfold-locales)

context CompositionalityStrictBSPs
begin

theorem compositionality-SR:
[[ SR V1 TrES1; SR V2 TrES2 ]] =⇒ SR V (Tr(ES1 ‖ ES2 ))
proof −

assume SR V1 TrES1
and SR V2 TrES2

{
let ?V1

′=(|V = VV1 ∪ NV1, N = {}, C = CV1|)
let ?V2

′=(|V = VV2 ∪ NV2, N = {}, C = CV2 |)
let ?V ′ =(|V=VV ∪ NV , N={}, C=CV |)

from validV1 have V1
′IsViewOnE1: isViewOn ?V1

′ EES1
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from validV2 have V2
′IsViewOnE2: isViewOn ?V2

′ EES2
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from VIsViewOnE have V ′IsViewOnE : isViewOn ?V ′ E(ES1‖ES2 )
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from propSepViews NV-inter-E1-is-NV1
have V ?V ′ ∩ EES1 = V ?V1

′

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have V ?V ′ ∩ EES2 = V ?V2

′

unfolding properSeparationOfViews-def by auto
from propSepViews
have C?V ′ ∩ EES1 ⊆ C?V1

′

unfolding properSeparationOfViews-def by auto
from propSepViews
have C?V ′ ∩ EES2 ⊆ C?V2

′

unfolding properSeparationOfViews-def by auto
have N?V1

′ ∩ N?V2
′ ={}
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by auto

note properSeparation-V1V2=‹V ?V ′ ∩ EES1 = V ?V1
′› ‹V ?V ′ ∩ EES2 = V ?V2

′›
‹C?V ′ ∩ EES1 ⊆ C?V1

′› ‹C?V ′ ∩ EES2 ⊆ C?V2
′› ‹N?V1

′ ∩ N?V2
′ ={}›

have wbc1 : N?V1
′ ∩ EES1={} ∧ N?V2

′ ∩ EES2={}
by auto

from ‹SR V1 TrES1› have R ?V1
′ TrES1

using validES1 validV1 BSPTaxonomyDifferentCorrections.SR-implies-R-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from ‹SR V2 TrES2› have R ?V2
′ TrES2

using validES2 validV2 BSPTaxonomyDifferentCorrections.SR-implies-R-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from validES1 validES2 composableES1ES2 V ′IsViewOnE V1
′IsViewOnE1 V2

′IsViewOnE2

properSeparation-V1V2 wbc1
have Compositionality ES1 ES2 ?V ′ ?V1

′ ?V2
′ unfolding Compositionality-def

by (simp add: properSeparationOfViews-def wellBehavedComposition-def )
with ‹R ?V1

′ TrES1› ‹R ?V2
′ TrES2› have R ?V ′ Tr(ES1‖ES2 )

using Compositionality.compositionality-R by blast

from validES1 validES2 composeES-yields-ES validVC
have BSPTaxonomyDifferentCorrections (ES1‖ES2 ) V

unfolding BSPTaxonomyDifferentCorrections-def by auto
with ‹R ?V ′ Tr(ES1‖ES2 )› have SR V Tr(ES1‖ES2 )

using BSPTaxonomyDifferentCorrections.R-implies-SR-for-modified-view by auto
}
thus ?thesis by auto

qed

theorem compositionality-SD:
[[ SD V1 TrES1; SD V2 TrES2 ]] =⇒ SD V (Tr(ES1 ‖ ES2 ))
proof −

assume SD V1 TrES1
and SD V2 TrES2

{
let ?V1

′=(|V = VV1 ∪ NV1, N = {}, C = CV1|)
let ?V2

′=(|V = VV2 ∪ NV2, N = {}, C = CV2 |)
let ?V ′ =(|V=VV ∪ NV , N={}, C=CV |)

from validV1 have V1
′IsViewOnE1: isViewOn ?V1

′ EES1
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from validV2 have V2
′IsViewOnE2: isViewOn ?V2

′ EES2
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from VIsViewOnE have V ′IsViewOnE : isViewOn ?V ′ E(ES1‖ES2 )
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
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from propSepViews NV-inter-E1-is-NV1
have V ?V ′ ∩ EES1 = V ?V1

′

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have V ?V ′ ∩ EES2 = V ?V2

′

unfolding properSeparationOfViews-def by auto
from propSepViews
have C?V ′ ∩ EES1 ⊆ C?V1

′

unfolding properSeparationOfViews-def by auto
from propSepViews
have C?V ′ ∩ EES2 ⊆ C?V2

′

unfolding properSeparationOfViews-def by auto
have N?V1

′ ∩ N?V2
′ ={}

by auto

note properSeparation-V1V2=‹V ?V ′ ∩ EES1 = V ?V1
′› ‹V ?V ′ ∩ EES2 = V ?V2

′›
‹C?V ′ ∩ EES1 ⊆ C?V1

′› ‹C?V ′ ∩ EES2 ⊆ C?V2
′› ‹N?V1

′ ∩ N?V2
′ ={}›

have wbc1 : N?V1
′ ∩ EES1={} ∧ N?V2

′ ∩ EES2={}
by auto

from ‹SD V1 TrES1› have BSD ?V1
′ TrES1

using validES1 validV1 BSPTaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from ‹SD V2 TrES2› have BSD ?V2
′ TrES2

using validES2 validV2 BSPTaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from validES1 validES2 composableES1ES2 V ′IsViewOnE V1
′IsViewOnE1 V2

′IsViewOnE2

properSeparation-V1V2 wbc1
have Compositionality ES1 ES2 ?V ′ ?V1

′ ?V2
′

unfolding Compositionality-def
by (simp add: properSeparationOfViews-def wellBehavedComposition-def )

with ‹BSD ?V1
′ TrES1› ‹BSD ?V2

′ TrES2› have BSD ?V ′ Tr(ES1‖ES2 )
using Compositionality.compositionality-BSD by blast

from validES1 validES2 composeES-yields-ES validVC
have BSPTaxonomyDifferentCorrections (ES1‖ES2 ) V

unfolding BSPTaxonomyDifferentCorrections-def by auto
with ‹BSD ?V ′ Tr(ES1‖ES2 )› have SD V Tr(ES1‖ES2 )

using BSPTaxonomyDifferentCorrections.BSD-implies-SD-for-modified-view by auto
}
thus ?thesis by auto

qed

theorem compositionality-SI :
[[SD V1 TrES1; SD V2 TrES2; SI V1 TrES1; SI V2 TrES2 ]]

=⇒ SI V (Tr(ES1 ‖ ES2 ))
proof −

281



assume SD V1 TrES1
and SD V2 TrES2
and SI V1 TrES1
and SI V2 TrES2

{
let ?V1

′=(|V = VV1 ∪ NV1, N = {}, C = CV1|)
let ?V2

′=(|V = VV2 ∪ NV2, N = {}, C = CV2 |)
let ?V ′ =(|V=VV ∪ NV , N={}, C=CV |)

from validV1 have V1
′IsViewOnE1: isViewOn ?V1

′ EES1
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from validV2 have V2
′IsViewOnE2: isViewOn ?V2

′ EES2
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from VIsViewOnE have V ′IsViewOnE : isViewOn ?V ′ E(ES1‖ES2 )
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from propSepViews NV-inter-E1-is-NV1
have V ?V ′ ∩ EES1 = V ?V1

′

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have V ?V ′ ∩ EES2 = V ?V2

′

unfolding properSeparationOfViews-def by auto
from propSepViews
have C?V ′ ∩ EES1 ⊆ C?V1

′

unfolding properSeparationOfViews-def by auto
from propSepViews
have C?V ′ ∩ EES2 ⊆ C?V2

′

unfolding properSeparationOfViews-def by auto
have N?V1

′ ∩ N?V2
′ ={}

by auto

note properSeparation-V1V2=‹V ?V ′ ∩ EES1 = V ?V1
′› ‹V ?V ′ ∩ EES2 = V ?V2

′›
‹C?V ′ ∩ EES1 ⊆ C?V1

′› ‹C?V ′ ∩ EES2 ⊆ C?V2
′› ‹N?V1

′ ∩ N?V2
′ ={}›

have wbc1 : N?V1
′ ∩ EES1={} ∧ N?V2

′ ∩ EES2={}
by auto

from ‹SD V1 TrES1› have BSD ?V1
′ TrES1

using validES1 validV1 BSPTaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from ‹SD V2 TrES2› have BSD ?V2
′ TrES2

using validES2 validV2 BSPTaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from ‹SI V1 TrES1› have BSI ?V1
′ TrES1

using validES1 validV1 BSPTaxonomyDifferentCorrections.SI-implies-BSI-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from ‹SI V2 TrES2› have BSI ?V2
′ TrES2

using validES2 validV2 BSPTaxonomyDifferentCorrections.SI-implies-BSI-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto
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from validES1 validES2 composableES1ES2 V ′IsViewOnE V1
′IsViewOnE1 V2

′IsViewOnE2

properSeparation-V1V2 wbc1
have Compositionality ES1 ES2 ?V ′ ?V1

′ ?V2
′ unfolding Compositionality-def

by (simp add: properSeparationOfViews-def wellBehavedComposition-def )
with ‹BSD ?V1

′ TrES1› ‹BSD ?V2
′ TrES2› ‹BSI ?V1

′ TrES1› ‹BSI ?V2
′ TrES2›

have BSI ?V ′ Tr(ES1‖ES2 )
using Compositionality.compositionality-BSI by blast

from validES1 validES2 composeES-yields-ES validVC
have BSPTaxonomyDifferentCorrections (ES1‖ES2 ) V

unfolding BSPTaxonomyDifferentCorrections-def by auto
with ‹BSI ?V ′ Tr(ES1‖ES2 )› have SI V Tr(ES1‖ES2 )

using BSPTaxonomyDifferentCorrections.BSI-implies-SI-for-modified-view by auto
}
thus ?thesis by auto

qed

theorem compositionality-SIA:
[[SD V1 TrES1; SD V2 TrES2; SIA %1 V1 TrES1; SIA %2 V2 TrES2;
(%1 V1 ) ⊆ (% V) ∩ EES1; (%2 V2 ) ⊆ (% V) ∩ EES2 ]]
=⇒ SIA % V (Tr(ES1 ‖ ES2 ))

proof −
assume SD V1 TrES1

and SD V2 TrES2
and SIA %1 V1 TrES1
and SIA %2 V2 TrES2
and (%1 V1 ) ⊆ (% V) ∩ EES1
and (%2 V2 ) ⊆ (% V) ∩ EES2

{
let ?V1

′ =(|V = VV1 ∪ NV1, N = {}, C = CV1|)
let ?V2

′=(|V = VV2 ∪ NV2, N = {}, C = CV2 |)
let ?V ′ =(|V=VV ∪ NV , N={}, C=CV |)

let ?%1 ′:: ′a Rho =λV. if V=?V1
′ then %1 V1 else {}

let ?%2 ′:: ′a Rho =λV. if V=?V2
′ then %2 V2 else {}

let ?% ′:: ′a Rho =λV ′. if V ′=?V ′ then % V else {}

have (?%1 ′ ?V1
′) = (%1 V1 ) by simp

have (?%2 ′ ?V2
′) = (%2 V2 ) by simp

have (?% ′ ?V ′) = (% V) by simp

from validV1 have V1
′IsViewOnE1: isViewOn ?V1

′ EES1
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from validV2 have V2
′IsViewOnE2: isViewOn ?V2

′ EES2
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto

from VIsViewOnE have V ′IsViewOnE : isViewOn ?V ′ E(ES1‖ES2 )
unfolding isViewOn-def V-valid-def VN-disjoint-def NC-disjoint-def VC-disjoint-def by auto
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from propSepViews NV-inter-E1-is-NV1
have V ?V ′ ∩ EES1 = V ?V1

′

unfolding properSeparationOfViews-def by auto
from propSepViews NV-inter-E2-is-NV2
have V ?V ′ ∩ EES2 = V ?V2

′

unfolding properSeparationOfViews-def by auto
from propSepViews
have C?V ′ ∩ EES1 ⊆ C?V1

′

unfolding properSeparationOfViews-def by auto
from propSepViews
have C?V ′ ∩ EES2 ⊆ C?V2

′

unfolding properSeparationOfViews-def by auto
have N?V1

′ ∩ N?V2
′ ={}

by auto

note properSeparation-V1V2=‹V ?V ′ ∩ EES1 = V ?V1
′› ‹V ?V ′ ∩ EES2 = V ?V2

′›
‹C?V ′ ∩ EES1 ⊆ C?V1

′› ‹C?V ′ ∩ EES2 ⊆ C?V2
′› ‹N?V1

′ ∩ N?V2
′ ={}›

have wbc1 : N?V1
′ ∩ EES1={} ∧ N?V2

′ ∩ EES2={}
by auto

from ‹SD V1 TrES1› have BSD ?V1
′ TrES1

using validES1 validV1 BSPTaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from ‹SD V2 TrES2› have BSD ?V2
′ TrES2

using validES2 validV2 BSPTaxonomyDifferentCorrections.SD-implies-BSD-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by auto

from ‹SIA %1 V1 TrES1› ‹(?%1 ′ ?V1
′) = (%1 V1 )› have BSIA ?%1 ′ ?V1

′ TrES1
using validES1 validV1 BSPTaxonomyDifferentCorrections.SIA-implies-BSIA-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by fastforce

from ‹SIA %2 V2 TrES2› ‹(?%2 ′ ?V2
′) = (%2 V2 )› have BSIA ?%2 ′ ?V2

′ TrES2
using validES2 validV2 BSPTaxonomyDifferentCorrections.SIA-implies-BSIA-for-modified-view
unfolding BSPTaxonomyDifferentCorrections-def by fastforce

from validES1 validES2 composableES1ES2 V ′IsViewOnE V1
′IsViewOnE1 V2

′IsViewOnE2

properSeparation-V1V2 wbc1
have Compositionality ES1 ES2 ?V ′ ?V1

′ ?V2
′

unfolding Compositionality-def
by (simp add: properSeparationOfViews-def wellBehavedComposition-def )

from ‹(%1 V1 ) ⊆ (% V) ∩ EES1› ‹(?%1 ′ ?V1
′) = (%1 V1 )› ‹(?% ′ ?V ′) = (% V)›

have ?%1 ′ ?V1
′ ⊆ ?% ′ ?V ′ ∩ EES1

by auto
from ‹(%2 V2 ) ⊆ (% V) ∩ EES2› ‹(?%2 ′ ?V2

′) = (%2 V2 )› ‹(?% ′ ?V ′) = (% V)›
have ?%2 ′ ?V2

′ ⊆ ?% ′ ?V ′ ∩ EES2
by auto

from ‹Compositionality ES1 ES2 ?V ′ ?V1
′ ?V2

′› ‹BSD ?V1
′ TrES1› ‹BSD ?V2

′ TrES2›
‹BSIA ?%1 ′ ?V1

′ TrES1› ‹BSIA ?%2 ′ ?V2
′ TrES2›
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‹?%1 ′ ?V1
′ ⊆ ?% ′ ?V ′ ∩ EES1› ‹?%2 ′ ?V2

′ ⊆ ?% ′ ?V ′ ∩ EES2›
have BSIA ?% ′ ?V ′ Tr(ES1‖ES2 )

using Compositionality.compositionality-BSIA by fastforce

from validES1 validES2 composeES-yields-ES validVC
have BSPTaxonomyDifferentCorrections (ES1‖ES2 ) V

unfolding BSPTaxonomyDifferentCorrections-def by auto
with ‹BSIA ?% ′ ?V ′ Tr(ES1‖ES2 )› ‹(?% ′ ?V ′) = (% V)› have SIA % V Tr(ES1‖ES2 )

using BSPTaxonomyDifferentCorrections.BSIA-implies-SIA-for-modified-view by fastforce
}
thus ?thesis

by auto
qed
end

end
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