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Abstract

The median method is an amplification result for randomized ap-
proximation algorithms described in [1]. Given an algorithm whose
result is in a desired interval with a probability larger than 1

2 , it is
possible to improve the success probability, by running the algorithm
multiple times independently and using the median. In contrast to
using the mean, the amplification of the success probability grows ex-
ponentially with the number of independent runs.

This entry contains a formalization of the underlying theorem:
Given a sequence of n independent random variables, which are in
a desired interval with a probability 1

2 + α. Then their median will
be in the desired interval with a probability of 1 − exp(−2α2n). In
particular, the success probability approaches 1 exponentially with the
number of variables.

In addition to that, this entry also contains a proof that order-
statistics of Borel-measurable random variables are themselves mea-
surable and that generalized intervals in linearly ordered Borel-spaces
are measurable.
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1 Intervals are Borel measurable
theory Median

imports
HOL−Probability.Probability
HOL−Library.Multiset
Universal-Hash-Families.Universal-Hash-Families-More-Independent-Families
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begin

This section contains a proof that intervals are Borel measurable, where
an interval is defined as a convex subset of linearly ordered space, more
precisely, a set is an interval, if for each triple of points x < y < z: If x and z
are in the set so is y. This includes ordinary intervals like {a..b}, {a<..<b}
but also for example {x::rat. x ∗ x < (2 ::rat)} which cannot be expressed
in the standard notation.
In the HOL−Analysis.Borel-Space there are proofs for the measurability of
each specific type of interval, but those unfortunately do not help if we want
to express the result about the median bound for arbitrary types of intervals.
definition interval :: ( ′a :: linorder) set ⇒ bool where

interval I = (∀ x y z. x ∈ I −→ z ∈ I −→ x ≤ y −→ y ≤ z −→ y ∈ I )

definition up-ray :: ( ′a :: linorder) set ⇒ bool where
up-ray I = (∀ x y. x ∈ I −→ x ≤ y −→ y ∈ I )

lemma up-ray-borel:
assumes up-ray (I :: (( ′a :: linorder-topology) set))
shows I ∈ borel

〈proof 〉

definition down-ray :: ( ′a :: linorder) set ⇒ bool where
down-ray I = (∀ x y. y ∈ I −→ x ≤ y −→ x ∈ I )

lemma down-ray-borel:
assumes down-ray (I :: (( ′a :: linorder-topology) set))
shows I ∈ borel

〈proof 〉

Main result of this section:
lemma interval-borel:

assumes interval (I :: (( ′a :: linorder-topology) set))
shows I ∈ borel

〈proof 〉

2 Order statistics are Borel measurable

This section contains a proof that order statistics of Borel measurable ran-
dom variables are themselves Borel measurable.
The proof relies on the existence of branch-free comparison-sort algorithms.
Given a sequence length these algorithms perform compare-swap operations
on predefined pairs of positions. In particular the result of a comparison
does not affect future operations. An example for a branch-free comparison
sort algorithm is shell-sort and also bubble-sort without the early exit.
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The advantage of using such a comparison-sort algorithm is that it can be
lifted to work on random variables, where the result of a comparison-swap
operation on two random variables X and Y can be represented as the
expressions λω. min (X ω) (Y ω) and λω. max (X ω) (Y ω).
Because taking the point-wise minimum (resp. maximum) of two random
variables is still Borel measurable, and because the entire sorting operation
can be represented using such compare-swap operations, we can show that
all order statistics are Borel measuable.
fun sort-primitive where

sort-primitive i j f k = (if k = i then min (f i) (f j) else (if k = j then max (f i)
(f j) else f k))

fun sort-map where
sort-map f n = fold id [sort-primitive j i. i <− [0 ..<n], j <− [0 ..<i]] f

lemma sort-map-ind:
sort-map f (Suc n) = fold id [sort-primitive j n. j <− [0 ..<n]] (sort-map f n)
〈proof 〉

lemma sort-map-strict-mono:
fixes f :: nat ⇒ ′b :: linorder
shows j < n =⇒ i < j =⇒ sort-map f n i ≤ sort-map f n j

〈proof 〉

lemma sort-map-mono:
fixes f :: nat ⇒ ′b :: linorder
shows j < n =⇒ i ≤ j =⇒ sort-map f n i ≤ sort-map f n j
〈proof 〉

lemma sort-map-perm:
fixes f :: nat ⇒ ′b :: linorder
shows image-mset (sort-map f n) (mset [0 ..<n]) = image-mset f (mset [0 ..<n])

〈proof 〉

lemma list-eq-iff :
assumes mset xs = mset ys
assumes sorted xs
assumes sorted ys
shows xs = ys
〈proof 〉

lemma sort-map-eq-sort:
fixes f :: nat ⇒ ( ′b :: linorder)
shows map (sort-map f n) [0 ..<n] = sort (map f [0 ..<n]) (is ?A = ?B)

〈proof 〉

lemma order-statistics-measurable-aux:
fixes X :: nat ⇒ ′a ⇒ ( ′b :: {linorder-topology, second-countable-topology})
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assumes n ≥ 1
assumes j < n
assumes

∧
i. i < n =⇒ X i ∈ measurable M borel

shows (λx. (sort-map (λi. X i x) n) j) ∈ measurable M borel
〈proof 〉

Main results of this section:
lemma order-statistics-measurable:

fixes X :: nat ⇒ ′a ⇒ ( ′b :: {linorder-topology, second-countable-topology})
assumes n ≥ 1
assumes j < n
assumes

∧
i. i < n =⇒ X i ∈ measurable M borel

shows (λx. (sort (map (λi. X i x) [0 ..<n])) ! j) ∈ measurable M borel
〈proof 〉

definition median :: nat ⇒ (nat ⇒ ( ′a :: linorder)) ⇒ ′a where
median n f = sort (map f [0 ..<n]) ! (n div 2 )

lemma median-measurable:
fixes X :: nat ⇒ ′a ⇒ ( ′b :: {linorder-topology, second-countable-topology})
assumes n ≥ 1
assumes

∧
i. i < n =⇒ X i ∈ measurable M borel

shows (λx. median n (λi. X i x)) ∈ measurable M borel
〈proof 〉

3 The Median Method

This section contains the proof for the probability that the median of inde-
pendent random variables will be in an interval with high probability if the
individual variables are in the same interval with probability larger than 1

2 .
The proof starts with the elementary observation that the median of a se-
qeuence with n elements is in an interval I if at least half of them are in I.
This works because after sorting the sequence the elements that will be in
the interval must necessarily form a consecutive subsequence, if its length is
larger than n

2 the median must be in it.
The remainder follows the proof in [1, §2.1] using the Hoeffding inequality
to estimate the probability that at least half of the sequence elements will
be in the interval I.
lemma interval-rule:

assumes interval I
assumes a ≤ x x ≤ b
assumes a ∈ I
assumes b ∈ I
shows x ∈ I
〈proof 〉
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lemma sorted-int:
assumes interval I
assumes sorted xs
assumes k < length xs i ≤ j j ≤ k
assumes xs ! i ∈ I xs ! k ∈ I
shows xs ! j ∈ I
〈proof 〉

lemma mid-in-interval:
assumes 2∗length (filter (λx. x ∈ I ) xs) > length xs
assumes interval I
assumes sorted xs
shows xs ! (length xs div 2 ) ∈ I

〈proof 〉

lemma median-est:
assumes interval I
assumes 2∗card {k. k < n ∧ f k ∈ I} > n
shows median n f ∈ I

〈proof 〉

lemma prod-pmf-bernoulli-mono:
assumes finite I
assumes

∧
i. i ∈ I =⇒ 0 ≤ f i ∧ f i ≤ g i ∧ g i ≤ 1

assumes
∧

x y. x ∈ A =⇒ (∀ i ∈ I . x i ≤ y i) =⇒ y ∈ A
shows measure (Pi-pmf I d (bernoulli-pmf ◦ f )) A ≤ measure (Pi-pmf I d

(bernoulli-pmf ◦ g)) A
(is ?L ≤ ?R)

〈proof 〉

lemma discrete-measure-eqI :
assumes sets M = count-space UNIV
assumes sets N = count-space UNIV
assumes countable Ω
assumes

∧
x. x ∈ Ω =⇒ emeasure M {x} = emeasure N {x} ∧ emeasure M {x}

6= ∞
assumes AE x in M . x ∈ Ω
assumes AE x in N . x ∈ Ω
shows M = N

〈proof 〉

Main results of this section:

The next theorem establishes a bound for the probability of the median of in-
dependent random variables using the binomial distribution. In a follow-up
step, we will establish tail bounds for the binomial distribution and corre-
sponding median bounds.
This two-step strategy was suggested by Yong Kiam Tan. In a previ-
ous version, I only had verified the exponential tail bound (see theorem
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median_bound below).
theorem (in prob-space) median-bound-raw:

fixes I :: ( ′b :: {linorder-topology, second-countable-topology}) set
assumes n > 0 p ≥ 0
assumes interval I
assumes indep-vars (λ-. borel) X {0 ..<n}
assumes

∧
i. i < n =⇒ P(ω in M . X i ω ∈ I ) ≥ p

shows P(ω in M . median n (λi. X i ω) ∈ I ) ≥ 1 − measure (binomial-pmf n p)
{..n div 2}

(is ?L ≥ ?R)
〈proof 〉

Cumulative distribution of the binomial distribution (contributed by Yong
Kiam Tan):
lemma prob-binomial-pmf-upto:

assumes 0 ≤ p p ≤ 1
shows measure-pmf .prob (binomial-pmf n p) {..m} =

sum (λi. real (n choose i) ∗ p^i ∗ (1 − p) ^(n−i)) {0 ..m}
〈proof 〉

A tail bound for the binomial distribution using Hoeffding’s inequality:
lemma binomial-pmf-tail:

assumes p ∈ {0 ..1} real k ≤ real n ∗ p
shows measure (binomial-pmf n p) {..k} ≤ exp (− 2 ∗ real n ∗ (p − real k /

n)^2 )
(is ?L ≤ ?R)

〈proof 〉

theorem (in prob-space) median-bound:
fixes n :: nat
fixes I :: ( ′b :: {linorder-topology, second-countable-topology}) set
assumes interval I
assumes α > 0
assumes ε ∈ {0<..<1}
assumes indep-vars (λ-. borel) X {0 ..<n}
assumes n ≥ − ln ε / (2 ∗ α2)
assumes

∧
i. i < n =⇒ P(ω in M . X i ω ∈ I ) ≥ 1/2+α

shows P(ω in M . median n (λi. X i ω) ∈ I ) ≥ 1−ε
〈proof 〉

This is a specialization of the above to closed real intervals.
corollary (in prob-space) median-bound-1 :

assumes α > 0
assumes ε ∈ {0<..<1}
assumes indep-vars (λ-. borel) X {0 ..<n}
assumes n ≥ − ln ε / (2 ∗ α2)
assumes ∀ i ∈ {0 ..<n}. P(ω in M . X i ω ∈ ({a..b} :: real set)) ≥ 1/2+α
shows P(ω in M . median n (λi. X i ω) ∈ {a..b}) ≥ 1−ε
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〈proof 〉

This is a specialization of the above, where α = 1
6 and the interval is de-

scribed using a mid point µ and radius δ. The choice of α = 1
6 implies

a success probability per random variable of 2
3 . It is a commonly chosen

success probability for Monte-Carlo algorithms (cf. [2, §4] or [3, §1]).
corollary (in prob-space) median-bound-2 :

fixes µ δ :: real
assumes ε ∈ {0<..<1}
assumes indep-vars (λ-. borel) X {0 ..<n}
assumes n ≥ −18 ∗ ln ε
assumes

∧
i. i < n =⇒ P(ω in M . abs (X i ω − µ) > δ) ≤ 1/3

shows P(ω in M . abs (median n (λi. X i ω) − µ) ≤ δ) ≥ 1−ε
〈proof 〉

4 Some additional results about the median
lemma sorted-mono-map:

assumes sorted xs
assumes mono f
shows sorted (map f xs)
〈proof 〉

This could be added to HOL.List:
lemma map-sort:

assumes mono f
shows sort (map f xs) = map f (sort xs)
〈proof 〉

lemma median-cong:
assumes

∧
i. i < n =⇒ f i = g i

shows median n f = median n g
〈proof 〉

lemma median-restrict:
median n (λi ∈ {0 ..<n}.f i) = median n f
〈proof 〉

lemma median-commute-mono:
assumes n > 0
assumes mono g
shows g (median n f ) = median n (g ◦ f )
〈proof 〉

lemma median-rat:
assumes n > 0
shows real-of-rat (median n f ) = median n (λi. real-of-rat (f i))
〈proof 〉
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lemma median-const:
assumes k > 0
shows median k (λi ∈ {0 ..<k}. a) = a

〈proof 〉

end
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