A Verified Reduction Algorithm from MLSSmf to
MLSS

Yiran Duan, Lukas Stevens

September 1, 2025

Abstract

Multi-level syllogistic with monotone functions (MLSSmf) is a sub-
language of set theory introduced by Cantone et al. [1], involving set-
to-set functions and their monotonicity, additivity, and multiplicativ-
ity. It is an extension of multi-level syllogistic with singleton (MLSS),
which involves the predicates membership, set equality, set inclusion,
and the operators union, intersection, set difference, and singleton.

In this work we formalize the reduction algorithm from MLSSmf
to MLSS, and verify the correctness proof originally presented by
Cantone et al. [1]. Combined with the verified decision procedure for
MLSS formalized by Stevens [2], this yields an executable and verified
decision procedure for MLSSmf.



theory MLSSmf-to-MLSS-Complexity
imports MLSSmf-to-MLSS
begin

definition size,, :: (v, 'f) MLSSmf-clause = nat where
sizey, C = card (set C)

lemma (in normalized-MLSSmf-clause) card-V-upper-bound:
card V < 8 x size,, C
(proof )

lemma (in normalized-MLSSmf-clause) card-F-upper-bound:
card F' < 2 x size,, C
(proof)

lemma (in normalized-MLSSmf-clause) size-restriction-on-InterOfVars:
card (restriction-on-InterOfVars vs) < 2 x length vs

(proof)

lemma (in normalized-MLSSmf-clause) size-restriction-on-UnionOf Vars:
card (restriction-on-UnionOfVars vs) < Suc (length vs)

{proof)

theorem (in normalized-MLSSmf-clause) size-introduce-v:
card introduce-v < (3 x card V + 2) x (2 " card V)

(proof)

lemma (in normalized-MLSSmf-clause) size-restriction-on-UnionOfVennRegions:
card (restriction-on-UnionOfVennRegions as) < Suc (length as)

{proof)

lemma (in normalized-MLSSmf-clause) length-all-V-set-lists:
length all-V-set-lists = 2 ~ card (PT V)
{proof )

lemma (in normalized-MLSSmf-clause) length-F-list:
length F-list = card F

{proof)

lemma (in normalized-MLSSmf-clause) size-introduce-UnionOfVennRegions:
card introduce-UnionOfVennRegions < Suc (2 “card V) x« 2 72 “card V

(proof)

lemma (in normalized-MLSSmf-clause) length-choices-from-lists:
Y choice € set (choices-from-lists zss). length choice = length xss

{proof)

lemma (in normalized-MLSSmf-clause) size-introduce-w:
Y clause € introduce-w. card clause < 2 ~ (2 % 2 ~card V) % card F



(proof)

lemma (in normalized-MLSSmf-clause) card-P-P-V-ge-1:
card (Pow (Pt V) x Pow (Pt V)) > 1
(proof)

lemma (in normalized-MLSSmf-clause) size-reduce-norm-literal:
assumes norm-literal It
shows card (reduce-literal It) < 2 x card (Pow (PT V) x Pow (Pt V))

(proof)

lemma (in normalized-MLSSmf-clause) size-reduce-clause:
card reduce-clause < 2~ (Suc (2 * 2 ~ card V)) * sizey, C

(proof)

theorem (in normalized-MLSSmf-clause) size-reduced-dnf:
Y clause € reduced-dnf. card clause <
2 7(2% 27 (3 * sizey, C)) x (2 % sizep, C) +
(8 % (3 % sizey, C) + 2) x (2 (8 * sizey, C)) +
Suc (2 (8  sizem, C)) * 2 7 2 7 (8 x sizey, C) +
2 7 (Suc (2 % 2 7 (8 * sizey, C))) * sizey, C
(proof )

end
theory MLSSmf-to-MLSS-Soundness

imports MLSSmf-to-MLSS MLSSmf-Semantics Proper- Venn-Regions MLSSmf-HF-FExtras
begin

locale satisfiable-normalized-MLSSmf-clause =
normalized-MLSSmf-clause C for C :: ('v, 'f) MLSSmf-clause +
fixes M, :: 'v = hf
and My :: 'f = hf = hf
assumes model-for-C: Iy M, My C
begin

interpretation proper-Venn-regions V M,

{proof)
function M :: (v, ’f) Composite = hf where
M (Soloz) =M, z
| M (vo) = proper-Venn-region «
| M (UnionOfVennRegions zss) = | | HF (M o VennRegion) © set xss)
| M (wp) = (My f) (M (UnionOfVennRegions (var-set-set-to-var-set-list 1)))
| M (UnionOfVars xs) = | | HF (M, ¢ set zs)
| M (InterOfVars xzs) = [ |HF (M, ° set xs)
| M (MemAuz z) = HF {M, z}
| M (InterOfWAuz f 1 m) = M wgy — M wm
| M (InterOfVarsAuz zs) = M, (hd zs) — M (InterOfVars (tl xs))
(proof )



termination
(proof )

lemma soundness-restriction-on-InterOfVars:
assumes set zs € PT V
shows V a € restriction-on-InterOfVars xs. Is4 M a

(proof)

lemma soundness-restriction-on-UnionOfVars:
assumes set rs € Pow V
shows V a € restriction-on-UnionOfVars xs. Is, M a

(proof)

lemma soundness-introduce-v:
Y fml € introduce-v. interp Is, M fml
(proof)

lemma soundness-restriction-on-UnionOfVennRegions:
assumes set as € Pow (Pow V)
shows V a € restriction-on-UnionOfVennRegions as. Is4 M a

(proof)

lemma soundness-introduce- UnionOf VennRegions:
Vit € introduce- UnionOfVennRegions. interp 154 M It

(proof)

lemma soundness-restriction-on-FunOfUnionOfVennRegions:
assumes ['-I: I' = var-set-set-to-var-set-list |
and m’-m: m' = var-set-set-to-var-set-list m
shows 31t € set (restriction-on-FunOfUnionOf VennRegions I’ m' f). interp I,
Mt

(proof)

lemma soundness-introduce-w:
dclause € introduce-w. VIt € clause. interp I, M It

(proof)

lemma soundness-reduce-literal:
assumes [t € set C
shows V fml € reduce-literal It. interp Is, M fml

(proof)

lemma soundness-reduce-cl:
YV fml € reduce-clause. interp Is, M fml

{proof)

lemma M -is-model-for-reduced-dnf: is-model-for-reduced-dnf M
(proof )



end

lemma MLSSmf-to-MLSS-soundness:
assumes C-norm: norm-clause C
and C-has-model: 3M, My¢. I.g M, M¢ C
shows 3 M. normalized-MLSSmf-clause.is-model-for-reduced-dnf C M
(proof)

end
theory Reduced-MLSS-Formula-Singleton-Model-Property

imports Syntactic-Description Place-Realisation MLSSmf-to-MLSS
begin

locale satisfiable-normalized-MLSS-clause-with-vars-for-proper- Venn-regions =
satisfiable-normalized-MLSS-clause C A for C A +
fixes U :: 'a set
— The collection of variables representing the proper Venn regions of the
“original” variable set of the MLSSmf clause
assumes U-subset-V: U C V
and no-overlap-within-U: Ju; € U; ug € U; ug # w] = A uy M Auy =0
and U-collect-places-neq: AF (Var x =5 Var y) € C =
AILM.LCUANMCUANAz=|]|]HF (A‘L)NAy=||HF (A ‘M)
and U-collect-places-single: AT (Var ¢ =, Single (Var y)) € C =
AILM.LCUANMCUNAz=||HF (A‘L)YNAy=||HF (A ‘M)
begin

interpretation B: adequate-place-framework C PI at,

{proof)

lemma fact-1:
assumes u; € U
and uy € U
and U1 # (5
and ™ € Pl
shows — (7 w1 A 7 u2)

(proof)

fun place-eq :: ('a = bool) = (‘a = bool) = bool where
place-eq 1 w9 +— (Vz € V. m = 7y x)

fun place-sim :: ('a = bool) = ('a = bool) = bool (infixl ~ 50) where
place-sim w1 o +— place-eq mp w2 V (3u € U. w1 u A 7o u)

abbreviation rel-place-sim = {(my, m3) € PI x PI. w1 ~ ma}

lemma place-sim-rel-equiv-on-PI: equiv PI rel-place-sim
{proof )

lemma refl-sim:



assumes a € Pl
and b € PI
and a ~ b
shows b ~ a

(proof )

lemma trans-sim:
assumes a € PJ
and b € Pl
and ¢c € Pl
and a ~ b
and b ~ ¢
shows a ~ ¢

(proof)

lemma fact-2:
assumes z € V
and exL: 3L C U. Az =||HF (A ‘L)
and ™ € PI
and m, € PI
and m ~ o
shows 11 z +— 7 2
(proof)

lemma U-collect-places-single”: y € W —= IL. LC UAN Ay =||HF (A ‘L)
(proof )

definition PI’:: (a = bool) set where
PI'= (Aws. SOME w. w € ws) “(PI // rel-place-sim)

definition rep :: (‘a = bool) = ('a = bool) where
rep 1 = (SOME =’ w' € rel-place-sim ““ {m})

lemma range-rep:
assumes 7w € PJ
shows rep m € PI’

(proof)

lemma PI’-eq-image-of-rep-on-PI: PI' = rep ‘ PI
(proof)

lemma rep-sim:
assumes 7™ € PI
shows m ~ rep 7
and rep ™ ~ 7
(proof)

lemma PI’-subset-PI: PI' C PI
(proof)



lemma sim-self:
assumes 7 € PI’
and 7’ € PI’
and ™ ~ 7’
shows 7’ =7
(proof)

fun at,-f’' 2 '‘a = (‘a = bool) where
atp-f' w = rep (aty-f w)

definition at,” = {(y, at,-f' y)ly. y € W}
declare at,’-def [simp]

lemma range-at,-f"
assumes w € W
shows at,-f' w € PI'

(proof)

lemma rep-at:
assumes m € PJ
and (y, ) € atp
shows (y, rep 7) € at,’
(proof)

interpretation B": adequate-place-framework C PI' at,’

(proof)

lemma singleton-model-for-normalized-reduced-literals:
AM. VIt e C.interp Isqg M It AN Vu € U. heard (M u) < 1)
{proof )

end

theorem singleton-model-for-reduced-MLSS-clause:
assumes norm-C: normalized-MLSSmf-clause C
and V: V = vars,, C
and A-model: normalized-MLSSmf-clause.is-model-for-reduced-dnf C A
shows 3 M. normalized-MLSSmf-clause.is-model-for-reduced-dnf C M A
Vo € PY V. heard (M vy) < 1)
(proof)

end
theory MLSSmf-to-MLSS-Completeness
imports MLSSmf-Semantics MLSSmf-to-MLSS MLSSmf-HF-FExtras
Proper-Venn-Regions Reduced-MLSS-Formula-Singleton-Model-Property
begin

locale MLSSmf-to-MLSS-complete =



normalized-MLSSmf-clause C for C :: ('v, 'f) MLSSmf-clause +
fixes B :: (v, 'f) Composite = hf
assumes B: is-model-for-reduced-dnf B

fixes A :: hf = 'v set set
assumes A-subset-V: Az C Pt V

and A-preserves-zero: A 0 = {}

and A-inc: a < b=—=AaCAD

and A-add: A (aUb)=AaUAD

and A-mul: A(amb)=AanAb

and A-discr: | C PT V =

a = || HF ((B o VennRegion) ‘1) = a = || HF ((B o VennRegion)

‘(A a))
begin

fun discretize, :: (("v, 'f) Composite = hf) = (‘v = hf) where
discretize, M = M o Solo

fun discretizes = (('v, 'f) Composite = hf) = ('f = hf = hf) where
discretizey M = (Af a. M wyp o)

interpretation proper-Venn-regions V discretize, B
(proof)

lemma all-literal-sat: Vit € set C. I; (discretize, B) (discretizey B) It
(proof)

lemma C-sat: I.; (discretize, B) (discretizey B) C
(proof)

end

lemma (in normalized-MLSSmf-clause) MLSSmf-to-MLSS-completeness:
assumes is-model-for-reduced-dnf M
shows IM, M. I,y M, My C
(proof)

end
theory MLSSmf-to-MLSS-Correctness

imports MLSSmf-to-MLSS-Soundness MLSSmf-to-MLSS-Completeness
begin

fun reduce :: ("v, 'f) MLSSmf-clause = (v, 'f) Composite pset-fm set set where
reduce C = normalized-MLSSmf-clause.reduced-dnf C

fun interp-DNF :: (('v, 'f) Composite = hf) = ('v, 'f) Composite pset-fm set set
= bool where
interp-DNF M clauses «— (3 clause € clauses. ¥Vt € clause. interp Is, M lt)



corollary MLSSmf-to-MLSS-correct:
assumes norm-clause C
shows (IM, My. I,y M, My C) «+— (IM. interp-DNF M (reduce C))
(proof)

end

References

[1] Domenico Cantone, Jacob T. Schwartz, and Calogero G. Zarba. A de-
cision procedure for a sublanguage of set theory involving monotone
additive and multiplicative functions, ii. the multi-level case. Le Matem-
atiche; Vol 60, No 1 (2005); 133-162, 60, 01 2006.

[2] Lukas Stevens. Mlss decision procedure. Archive of Formal Proofs, May
2023. ISSN 2150-914x. https://isa-afp.org/entries/MLSS Decision
Proc.html, Formal proof development.


https://isa-afp.org/entries/MLSS_Decision_Proc.html
https://isa-afp.org/entries/MLSS_Decision_Proc.html

