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Abstract

Multi-level syllogistic with monotone functions (MLSSmf) is a sub-
language of set theory introduced by Cantone et al. [1], involving set-
to-set functions and their monotonicity, additivity, and multiplicativ-
ity. It is an extension of multi-level syllogistic with singleton (MLSS),
which involves the predicates membership, set equality, set inclusion,
and the operators union, intersection, set difference, and singleton.

In this work we formalize the reduction algorithm from MLSSmf
to MLSS, and verify the correctness proof originally presented by
Cantone et al. [1]. Combined with the verified decision procedure for
MLSS formalized by Stevens [2], this yields an executable and verified
decision procedure for MLSSmf.



theory MLSSmf-to-MLSS-Complexity
imports MLSSmf-to-MLSS
begin

definition size,, :: ("v, 'f) MLSSmf-clause = nat where
sizey, C = card (set C)

lemma (in normalized-MLSSmf-clause) card-V-upper-bound:
card V < 8 x size,, C
unfolding V-def
using norm-C
proof (induction C)
case I
then show ?case by simp
next
case (21s )
from <norm-literal I» have card (vars,, 1) < 3
by (cases | rule: norm-literal.cases) (auto simp: card-insert-if)
with 2 show Zcase
proof (cases | € set Is)

case True

then have vars,, | C vars,, ls by blast
moreover

have vars,, (I # ls) = vars,, | U vars,, Is by auto
ultimately

have vars,, (I # ls) = vars,, ls by blast

then have card (vars,, (I # 1ls)) = card (vars,, ls) by argo

moreover

from True have size,, (I # ls) = size,, Is
unfolding size,,-def
by (simp add: insert-absorb)

ultimately

show ?thesis using 2.IH by argo

next

case Fulse

have vars,, (I # Is) = vars, | U vars,, ls by auto

then have card (vars,, (I # Is)) < card (varsy, 1) + card (vars,, ls)
by (simp add: card-Un-le)

with <card (vars,, 1) < 3» 2.IH

have card (varsy,, (I # 1s)) < & % (Suc (sizey, 1s))
by simp

moreover

from Fualse have size,, (I # ls) = Suc (size,, ls)
unfolding size,,-def by simp

ultimately

show ?thesis by argo

qed
qed



lemma (in normalized-MLSSmf-clause) card-F-upper-bound:
card F < 2 % size,, C
unfolding F-def
using norm-C
proof (induction C)
case I
then show Zcase by simp
next
case (2 1s 1)
from <norm-literal Iy have card (funs,, 1) < 2
by (cases | rule: norm-literal.cases) (auto simp: card-insert-if )
with 2 show ?Zcase
proof (cases | € set ls)

case True

then have funs,, [ C funs,, Is by blast
moreover

have funs,, (I # ls) = funs,, | U funs,, ls by auto
ultimately

have funs,, (I # ls) = funs,, Is by blast

then have card (funs,, (I # ls)) = card (funs,, ls) by argo

moreover

from True have size,, (I # ls) = size,, Is
unfolding size,,-def
by (simp add: insert-absorb)

ultimately

show ?thesis using 2.IH by argo

next

case Fulse

have funs,, (I # ls) = funs,, [ U funs,, ls by auto

then have card (funs,, (I # ls)) < card (funs,, 1) + card (funsy, Is)
by (simp add: card-Un-le)

with <card (funs,, 1) < 2y 2.IH

have card (funs,, (I # Ils)) < 2 % (Suc (sizey, 1s))
by simp

moreover

from Fualse have size,, (I # ls) = Suc (size,, s)
unfolding size,,-def by simp

ultimately

show ?thesis by argo

qed
qed

lemma (in normalized-MLSSmf-clause) size-restriction-on-InterOfVars:
card (restriction-on-InterOfVars vs) < 2 x length vs
proof (induction vs rule: restriction-on-InterOfVars.induct)
case (3 z v vs)
have length zs > length ys = InterOfVarsAuz zs ¢ |J (vars ‘ restriction-on-InterOfVars
ys)
for y ys zs



by (induction ys rule: restriction-on-InterOfVars.induct) auto
then have InterOfVarsAuz (z # v # vs) ¢ |J (vars * restriction-on-InterOfVars
(v # v5))
by force
then have Var (InterOfVarsAuz (z # v # wvs)) =5 Var (Solo z) —s Var
(InterOfVars (v # vs)) ¢ restriction-on-InterOfVars (v # vs)
Var (InterOfVars (x # v # vs)) =5 Var (Solo x) —4 Var (InterOfVarsAuz
(x # v # vs)) ¢ restriction-on-InterOfVars (v # vs)
by auto
then have card (restriction-on-InterOfVars (z # v # vs)) = Suc (Suc (card
(restriction-on-InterOfVars (v # vs))))
using restriction-on-InterOfVar-finite by force
with 3.7H show ?case by simp
qed simp+

lemma (in normalized-MLSSmf-clause) size-restriction-on-UnionOfVars:
card (restriction-on-UnionOfVars vs) < Suc (length vs)
apply (induction vs rule: restriction-on-UnionOfVars.induct)
apply simp
by (simp add: card-insert-if restriction-on-UnionOf Var-finite)

theorem (in normalized-MLSSmf-clause) size-introduce-v:
card introduce-v < (3 x card V 4+ 2) * (2 ~ card V)
proof —
have card (restriction-on-v * P V) < card (PT V)
using P-plus-finite card-image-le by blast
then have I: card (restriction-on-v * PT™ V) < card (Pow V)
by simp

have card ((restriction-on-InterOfVars o var-set-to-list) o) < 2 * card V for «
proof —
have length (var-set-to-list «) < length V-list by simp
then have length (var-set-to-list o) < card V
unfolding V-list-def
by (metis V-list-def distinct-V-list distinct-card set-V-list)
with size-restriction-on-InterOfVars|of var-set-to-list ]
have card (restriction-on-InterOfVars (var-set-to-list o)) < 2 % card V
by linarith
then show ?thesis by fastforce
qed
then have (>" aeP* V. card ((restriction-on-InterOfVars o var-set-to-list) «))
< 2% card V x card (PT V)
by (smt (verit) card-eq-sum nat-mult-1-right sum-distrib-left sum-mono)
moreover
from card-UN-lelwhere ?I = PT V and ?4 = restriction-on-InterOfVars o
var-set-to-list)
have card (|J ((restriction-on-InterOfVars o var-set-to-list) * P* V)) <
(>-aePt V. card ((restriction-on-InterOfVars o var-set-to-list) o))
using P-plus-finite finite-V by blast



ultimately
have card (|J ((restriction-on-InterOfVars o var-set-to-list) * Pt V)) < 2 x card
V x card (Pt V)
by linarith
also have ... < 2 x card V * card (Pow V) by simp
finally have 2: card (|J ((restriction-on-InterOfVars o var-set-to-list) < PT V))
< 2% card V * card (Pow V)
by blast

have card ((restriction-on-UnionOfVars o var-set-to-list) o) < Suc (card V) for
a
proof —
have length (var-set-to-list «) < length V-list by simp
then have length (var-set-to-list o) < card V
unfolding V-list-def
by (metis V-list-def distinct-V-list distinct-card set-V-list)
with size-restriction-on-UnionOfVars|of var-set-to-list o]
have card (restriction-on-UnionOfVars (var-set-to-list )) < Suc (card V')
by linarith
then show ?thesis by fastforce
qged
then have (Y. a€Pow V. card ((restriction-on-UnionOfVars o var-set-to-list)
a)) < Suc (card V) * card (Pow V)
by (smt (verit) card-eq-sum nat-mult-1-right sum-distrib-left sum-mono)
moreover
from card-UN-le[where ?I = Pow V and ?A = restriction-on-UnionOfVars o
var-set-to-list)
have card (|J ((restriction-on-UnionOfVars o var-set-to-list) * Pow V)) <
(> acPow V. card ((restriction-on-UnionOfVars o var-set-to-list) o))
using finite-V by blast
ultimately
have 3: card (U ((restriction-on-UnionOfVars o var-set-to-list) * Pow V)) < Suc
(card V) % card (Pow V)
by linarith

let ?atoms = restriction-on-v * PT™ V U
U ((restriction-on-InterOfVars o var-set-to-list) * Pt V) U
U ((restriction-on-UnionOfVars o var-set-to-list) ¢ Pow V)
from restriction-on-InterOf Var-finite restriction-on-UnionOfVar-finite
have finite ?atoms using finite-V by auto
then have card introduce-v < card ?atoms
unfolding introduce-v-def
using card-image-le by meson
also have ... < card (restriction-on-v * Pt V) +
card (J ((restriction-on-InterOfVars o var-set-to-list) * PT V)) +
card (\J ((restriction-on-UnionOfVars o var-set-to-list) * Pow V))
using finite-V by (auto introl: order.trans|OF card-Un-le])
also have ... < card (Pow V) +
card ({J ((restriction-on-InterOfVars o var-set-to-list) * PT V)) +



card (U ((restriction-on-UnionOfVars o var-set-to-list) ¢ Pow V))
using 1 by linarith
also have ... < card (Pow V) + 2 % card V * card (Pow V) +
card (I ((restriction-on-UnionOfVars o var-set-to-list) ¢ Pow V))
using 2 by linarith
also have ... < card (Pow V) + 2 % card V * card (Pow V) + Suc (card V)
card (Pow V)
using 3 by linarith

also have ... = (1 + 2 x card V + Suc (card V)) * card (Pow V)
by algebra

also have ... = (3 x card V + 2) * card (Pow V)
by simp

also have ... = (3 x card V + 2) * (2 ~card V)
using card-Pow finite-V by fastforce
finally show ?thesis .
qed

lemma (in normalized-MLSSmf-clause) size-restriction-on-UnionOfVennRegions:
card (restriction-on-UnionOfVennRegions as) < Suc (length as)
apply (induction as rule: restriction-on-UnionOfVennRegions.induct)
apply simp+
by (metis add-mono-thms-linordered-semiring(2) card.infinite card-insert-if fi-
nite-insert le-Sucl plus-1-eq-Suc)

lemma (in normalized-MLSSmf-clause) length-all-V-set-lists:
length all-V-set-lists = 2 ~ card (P* V)
unfolding all- V-set-lists-def
using length-subseqs set-V-set-list distinct-V-set-list distinct-card
by force

lemma (in normalized-MLSSmf-clause) length-F-list:
length F-list = card F
unfolding F-list-def F-def
by (auto simp add: length-remdups-card-conv)

lemma (in normalized-MLSSmf-clause) size-introduce-UnionOfVennRegions:
card introduce-UnionOfVennRegions < Suc (2 “card V) « 2 =2 " card V
proof —
have I: card (restriction-on-UnionOfVennRegions as) < Suc (2 ~ card V)
if as € set all-V-set-lists for as
proof —
from that have length as < length V-set-list
unfolding all-V-set-lists-def
using length-subseq-le by blast
then have length as < card (P V)
by (metis distinct-V-set-list distinct-card set-V-set-list)
then have length as < 2 ~card V
using card-Pow finite-V by fastforce
with size-restriction-on- UnionOfVennRegions|of «s]



have card (restriction-on-UnionOfVennRegions as) < Suc (2 ~ card V)
by linarith
then show ?thesis by fastforce
qed

from length-all-V-set-lists have card (set all-V-set-lists) = 2 ~ card (P* V)
using distinct-card distinct-all-V-set-lists by metis

also have ... < 2 7 card (Pow V) by auto

alsohave ... =2 72 Tcard V
using finite-V by (simp add: card-Pow)

finally have 2: card (set all-V-set-lists) < 2 =2 " card V.

let Zatoms = |J (restriction-on-UnionOfVennRegions * set all-V-set-lists)
from AT-inj have inj-on AT %atoms
using inj-on-def by force
from 1 have () as€set all-V-set-lists. card (restriction-on-UnionOfVennRegions
as)) <
Suc (2 ~ card V) x (card (set all-V-set-lists))
using Sum-le-times[where %s = set all-V-set-lists
and ?f = Aas. card (restriction-on-UnionOfVennRegions «s)]
by blast
with 2 have (> as€set all-V-set-lists. card (restriction-on-UnionOf VennRegions
as)) <
Suc (2 "card V)« 272 Tcard V
by (meson Suc-mult-le-cancell le-trans)
moreover
from card-UN-le[where ?I = set all-V-set-lists and ?A = restriction-on-UnionOf VennRegions]
have card ?atoms < (> as€set all-V-set-lists. card (restriction-on-UnionOf VennRegions
as))
by blast
ultimately
have card %atoms < Suc (2 “card V) *x 2 "2 " card V
by linarith
moreover
from introduce-UnionOf VennRegions-normalized
have finite introduce- UnionOfVennRegions
unfolding normalized-MLSS-clause-def by blast
then have finite ?atoms
using finite-image-iff <inj-on AT ?atoms»
unfolding introduce- UnionOfVennRegions-def by blast
ultimately
show %thesis
unfolding introduce-UnionOfVennRegions-def
using card-image[where ?f = AT and ?A = ?atoms]
using <inj-on AT ?atoms»
by presburger
qed

lemma (in normalized-MLSSmf-clause) length-choices-from-lists:



Y choice € set (choices-from-lists zss). length choice = length xss
by (induction zss) auto

lemma (in normalized-MLSSmf-clause) size-introduce-w:
Y clause € introduce-w. card clause < 2 (2 % 2 " card V) % card F
proof
let %zss = map (A(l, m, f). restriction-on-FunOfUnionOfVennRegions | m f)
(List.product all-V-set-lists (List.product all-V-set-lists F-list))
fix clause assume clause € introduce-w
then obtain choice where choice: choice € set (choices-from-lists ?xss) clause
= set choice
unfolding introduce-w-def by auto
then have card clause < length choice
using card-length by blast
also have length choice = length ?xss
using choice length-choices-from-lists by blast

also have ... = length (List.product all-V-set-lists (List.product all-V-set-lists
F-list))
by simp
also have ... = length all-V-set-lists x length all-V-set-lists x length F-list
using length-product by auto
also have ... = 2 “card (PT V) % 2 " card (P V) % card F

using length-all-V-set-lists length-F-list by presburger
also have ... = 2 7 (2 x (card (P V))) % card F
by (simp add: mult-2 power-add)
also have ... < 2 7 (2 x (card (Pow V))) * card F
by simp
also have ... = 2 7 (2% 2 “card V) x card F
using card-Pow by auto
finally show card clause < 2 (2% 2 ~card V) % card F .
qed

lemma (in normalized-MLSSmf-clause) card-P-P-V-ge-1:
card (Pow (PT V) x Pow (Pt V)) > 1

proof —
have Pow (P V) # {} by blast
then have Pow (Pt V) x Pow (Pt V) # {} by blast
moreover
from finite-V P-plus-finite have finite (Pow (P% V)) by blast
then have finite (Pow (Pt V) x Pow (Pt V)) by blast
ultimately
have card (Pow (PT V) x Pow (Pt V)) > 0 by auto
then show ?thesis by linarith

qed

lemma (in normalized-MLSSmf-clause) size-reduce-norm-literal:
assumes norm-literal It
shows card (reduce-literal It) < 2 x card (Pow (PT V) x Pow (P V))
using assms



proof (cases It rule: norm-literal.cases)
case (inc f)
let 71 = A(l, m). AT (Var wpm =5 Var wpm Us Var wy)
from inc have reduce-literal It C 71 * (Pow (PT V) x Pow (Pt V))
by force
then have card (reduce-literal It) < card (Pow (PT V) x Pow (PT V))
by (meson finite-Sigmal finite-V pow-of-p-Plus-finite surj-card-le)
also have ... < 2 x card (Pow (PT V) x Pow (PT V)) by linarith
finally show ?thesis .
next
case (dec f)
let 20 = A(l, m). AT (Var wg =, Var wg Us Var wpm)
from dec have reduce-literal It C 2 * (Pow (Pt V) x Pow (Pt V))
by force
then have card (reduce-literal It) < card (Pow (Pt V) x Pow (Pt V))
by (meson finite-Sigmal finite-V pow-of-p-Plus-finite surj-card-le)
also have ... < 2 x card (Pow (PT V) x Pow (PT V)) by linarith
finally show ?thesis .
next
case (add f)
let 21 = (I, m). AT (Var Wiy m =s Var wpy Us Var wfm)
from add have reduce-literal It C 2 * (Pow (Pt V) x Pow (Pt V))
by force
then have card (reduce-literal It) < card (Pow (PT V) x Pow (PT V))
by (meson finite-Sigmal finite-V pow-of-p-Plus-finite surj-card-le)
also have ... < 2 x card (Pow (PT V) x Pow (P™ V)) by linarith
finally show ?thesis .
next
case (mul f)
let 211 = A(I, m). AT (Var (InterOfWAuz f I m) =; Var wgy —s Var wpm)
let 212 = A(l, m). AT (Var wpny, =s Var wy —s Var (InterOfWAuz f 1 m))
from mul have reduce-literal It C 211 * (Pow (Pt V) x Pow (Pt V)) U 22 ¢
(Pow (Pt V) x Pow (PT V))
by force
moreover
have 711 * (Pow (PT V) x Pow (P V)) N 212 ‘ (Pow (PT V) x Pow (P V))
={}
by fastforce
moreover
from finite-V P-plus-finite have finite (Pow (Pt V) x Pow (Pt V))
by auto
then have finite (211 * (Pow (PT V) x Pow (Pt V))) finite (212 ¢ (Pow (PT
V) x Pow (Pt V)))
by blast+
ultimately
have card (reduce-literal It) < card (211  (Pow (P* V) x Pow (PT V))) + card
(212 ¢ (Pow (Pt V) x Pow (PT V)))
using card-Un-disjoint[where ?A = 211 * (Pow (PT V) x Pow (P* V)) and
?B = 212 ‘ (Pow (PT V) x Pow (PT V))]



using card-mono|where ?A = reduce-literal It and ?B = ?l1 ‘ (Pow (PT V)
x Pow (Pt V)) U 22 ¢ (Pow (Pt V) x Pow (Pt V))]
by fastforce
also have ... < card (Pow (Pt V) x Pow (PT V)) + card (Pow (PT V) x
Pow (P V))
using card-image-leflwhere ?A = Pow (PT V) x Pow (PT V)]
using «finite (Pow (P* V) x Pow (P* V))) add-mono by blast
also have ... = 2 x card (Pow (PT V) x Pow (P™ V)) by linarith
finally show ?thesis .
next
case (le f g)
let 2l = Al AT (Var wg; =5 Var wg; Us Var wy)
from le have reduce-literal It C 71 * Pow (P* V)
by force
then have card (reduce-literal It) < card (Pow (PT V))
by (simp add: finite-V surj-card-le)
also have ... < card (Pow (PT V) x Pow (PT V))
by (simp add: finite-V surj-card-le)
also have ... < 2 x card (Pow (PT V) x Pow (PT V))
by linarith
finally show ?thesis .
next
case (eq z y)
then have card (reduce-literal It) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith
next
case (eg-empty x n)
then have card (reduce-literal It) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith
next
case (neq = y)
then have card (reduce-literal It) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith
next
case (union ¢ y z)
then have card (reduce-literal It) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith
next
case (diff z y z)
then have card (reduce-literal It) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith
next
case (single x y)
then have card (reduce-literal It) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith
next
case (app = f y)
then have card (reduce-literal It) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith
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qed

lemma (in normalized-MLSSmf-clause) size-reduce-clause:
card reduce-clause < 2 7 (Suc (2 x 2 " card V) x size,, C
proof —
have card (PT V) < 2 "card V
using card-Pow|of V] finite-V by simp
from card-UN-le
have card reduce-clause < (> lt€set C. card (reduce-literal It))
using reduce-clause-finite
unfolding reduce-clause-def
by blast
also have ... < 2 x card (Pow (PT V) x Pow (Pt V)) x card (set C)
using size-reduce-norm-literal norm-C literal-in-norm-clause-is-norm
using Sum-le-times|where ?s = set C and ?f = At. card (reduce-literal lt)
and ?n = 2 x card (Pow (PT V) x Pow (PT V))]
by blast
also have ... = 2 x card (Pow (PT V)) x card (Pow (P V)) x card (set C)
using card-cartesian-product by auto
also have ... = 2 x 2 " (card (PT V)) * 2 ~ (card (P* V)) * card (set C)
using card-Pow[of Pt V] finite-V P-plus-finite by fastforce
also have ... < 2% 2 7 (2 “card V) * 2 " (2 " card V) x card (set C)
using <card (Pt V) < 2 "~ card V>
using power-increasing-iff[where ?b = 2 and ?z = card (PT V) and %y = 2
“card V]
by (simp add: mult-le-mono)
also have ... = 2 7 (Suc (2 * 2 " card V)) * card (set C)
by (simp add: power2-eg-square power-even-eq)
also have ... = 2 7 (Suc (2 x 2 " card V)) * size, C
unfolding size,,-def by blast
finally show ?thesis .
qed

theorem (in normalized-MLSSmf-clause) size-reduced-dnf:
V clause € reduced-dnf. card clause <
27(2% 27 (3 * sizey, C)) * (2 % sizey, C) +
(8 % (3 % sizey, C) + 2) x (2 (8 * sizey, C)) +
Suc (2 7 (8  sizen, C)) * 2 72 7 (8 x sizey, C) +
2 7 (Suc (2 % 2 7 (3 * sizey, C))) * sizen, C
proof —
let Zupper-bound = 2 ~ (2 * 2 7 (3 x sizey, C)) x (2 * sizey, C) +
(8 % (8 % size, C) + 2) x (2 (8 * sizey, C)) +
Suc (2 7 (3 * size,, C)) * 272 7 (8 x size,, C) +
2 7 (Suc (2 % 2 7 (8 * sizey, C))) * sizen, C
{fix clause assume clause € reduced-dnf
then obtain fms where fms € introduce-w
and clause: clause = fms U introduce-v U introduce- UnionOf VennRegions
U reduce-clause
unfolding reduced-dnf-def by blast
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then have card clause < card fms + card introduce-v + card introduce- UnionOf VennRegions
+ card reduce-clause
by (auto introl: order.trans|OF card-Un-le])
also have ... < 2 7 (2% 2 " card V) % card F + card introduce-v + card
introduce- UnionOf VennRegions + card reduce-clause
using size-introduce-w <fms € introduce-wy by fastforce
alsohave ... < 2 7 (2% 2 “card V) x card F + (3 x card V + 2) * (2 ~ card
V) + card introduce- UnionOfVennRegions + card reduce-clause
using size-introduce-v by simp
alsohave ... < 2 7 (2% 2 "card V) x card F + (3 % card V + 2) x (2 " card
V) + Suc (2 Tcard V) x 2 7 2 " card V + card reduce-clause
using size-introduce- UnionOfVennRegions by simp
also have ... < 2 7 (2% 2 “card V) x card F + (3 % card V + 2) %
V) 4+ Suc (2 Tcard V) * 2 72 Tcard V 4+ 2 7 (Suc (2% 2 " card V))
using size-reduce-clause by simp
also have ... < Zupper-bound
using card-V-upper-bound card-F-upper-bound
by (metis Suc-le-mono add-le-mono add-le-monol mult-le-mono mult-le-monol
mult-le-mono2 one-le-numeral power-increasing)
finally have card clause < ?upper-bound .
}
then show ?thesis by blast
qed

(2~ card
* Sizem C

end
theory MLSSmf-to-MLSS-Soundness

imports MLSSmf-to-MLSS MLSSmf-Semantics Proper-Venn-Regions MLSSmf-HF-FEztras
begin

locale satisfiable-normalized-MLSSmf-clause =
normalized—MLSSmf-clause C for C :: (v, 'f) MLSSmf-clause +
fixes M, :: 'v = hf
and My :: 'f = hf = hf
assumes model-for-C: Iy M, My C
begin

interpretation proper-Venn-regions V M,
using finite-V by unfold-locales

function M :: (v, 'f) Composite = hf where

(Soloz) =M, z

(va) = proper-Venn-region o

(UnionOfVennRegions xss) = | | HF ((M o VennRegion) ‘ set xss)
(wp) = (My f) (M (UnionOfVennRegions (var-set-set-to-var-set-list 1)))
(UnionOfVars zs) = | | HF (M, * set xs)

(InterOfVars xs) = [ |HF (M, * set xs)

(MemAuz z) = HF {M, z}

(InterOfWAuz f I m) = M wg — M wpm

(

M
M
M
M
M
M
M
M
M (InterOfVarsAux xs) = M, (hd zs) — M (InterOfVars (tl zs))
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by pat-completeness auto
termination
apply (relation measure (Acomp. case comp of
InterOfVarsAux - = Suc 0
| UnionOfVennRegions - = Suc 0
| w-. = Suc (Suc 0)
| InterOfWAux - - - = Suc (Suc (Suc 0))
| -=0))
apply auto
done

lemma soundness-restriction-on-InterOfVars:
assumes set zs € PT V
shows V a € restriction-on-InterOfVars xs. Is4 M a
proof (induction xs rule: restriction-on-InterOfVars.induct)
case (2 z)
{fix a assume a € restriction-on-InterOfVars [z]
then have a = Var (InterOfVars [z]) =5 Var (Solo x) by simp
then have I, M a by (simp add: HInter-singleton)
}
then show ?case by blast
next
case (3 y x xs)
{fix a assume a € restriction-on-InterOfVars (y # = # xs) — restriction-on-InterOfVars
(z # xs)
then consider a = Var (InterOfVarsAuz (y # x # xs)) =5 Var (Solo y) —s
Var (InterOfVars (z # xs))
| a = Var (InterOfVars (y # = # wxs)) =5 Var (Solo y) —s Var
(InterOfVarsAuzx (y # = # xs))
by fastforce
then have I,, M a
proof (cases)
case I
then show ?thesis by simp
next
case 2
have [ | HF (insert (M, y) (insert (M, x) (M, *set xs))) =
[l (HF ((insert (M, z) (M, ‘set xs))) < M, y)
using HF-insert-hinsert by auto
also have ... = M, y N[ | HF (insert (M, z) (M, * set xs))
by (simp add: HF-nonempty)

also have ... = M, y — (M, y — [ | HF (insert (M, x) (M, ‘ set xs)))
by blast
finally show ?thesis using 2 by simp
qed

with 3.IH show ?case by blast
qed simp
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lemma soundness-restriction-on-UnionOfVars:
assumes set s € Pow V
shows V a € restriction-on-UnionOfVars xs. I;, M a
proof (induction zs rule: restriction-on-UnionOfVars.induct)
case 1
then show ?case by auto
next
case (2 z s)
{fix a assume a € restriction-on-UnionOfVars (x # xs) — restriction-on- UnionOfVars
xs
then have a: a = Var (UnionOfVars (z # xs)) =, Var (Solo z) Us Var
(UnionOfVars xs)
by fastforce
have | | HF (insert (M, z) (M, * set xs)) = || (HF (M, * set xs) < M, z)
by (simp add: HF-insert-hinsert)
also have ... = M, z U | |HF (M, ‘set zs) by auto
finally have I,, M a
using a by simp
}
with 2./H show ?case by blast
qed

lemma soundness-introduce-v:
Y fml € introduce-v. interp Iy, M fml
proof —
{fix a assume o € PT V
have M vy =[|HF (M, ‘a) — | |HF (M, ‘(V — «a))
by simp
also have ... = [ |HF ((M o Solo) ‘«a) — | |HF ((M o Solo) ‘ (V — «))
by simp
finally have I, M (restriction-on-v «)
apply (simp add: set-V-list)
using «« € PT V)
by (metis Int-def inf.absorb2 mem-P-plus-subset set-diff-eq)
}
then have Va € Pt V. interp ;4 M (AT (restriction-on-v )
by simp
moreover
from soundness-restriction-on-InterOfVars
have Va € (restriction-on-InterOfVars o var-set-to-list) a. Isq M a if a € PT
V for «
by (metis comp-apply mem-P-plus-subset set-var-set-to-list that)
then have Vit € AT ‘| ((restriction-on-InterOfVars o var-set-to-list) * P* V).
interp Isq M It
by fastforce
moreover
from soundness-restriction-on-UnionOfVars
have V a € (restriction-on-UnionOfVars o var-set-to-list) a. I3 M a if « € Pow
V for a
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by (metis Pow-iff comp-apply set-var-set-to-list that)
then have Vit € AT ‘|J ((restriction-on-UnionOfVars o var-set-to-list) ¢ Pow
V). interp Isqo M 1t
by fastforce
ultimately
show ?thesis
unfolding introduce-v-def by blast
qed

lemma soundness-restriction-on-UnionOf VennRegions:
assumes set as € Pow (Pow V)
shows V a € restriction-on-UnionOfVennRegions as. s, M a
proof (induction as rule: restriction-on-UnionOfVennRegions.induct)
case I
then show ?Zcase by auto
next
case (2 o as)
{fix ¢ assume a € restriction-on-UnionOfVennRegions (o # «s) — restric-
tion-on-UnionOfVennRegions as
then have a: a = Var (UnionOfVennRegions (o # as)) = Var vg Us Var
(UnionOfVennRegions «s)
by fastforce
have | | HF ((M o VennRegion)  set (o # as)) = | | HF (insert (M vy) (M
o VennRegion) * set as))
by simp
also have ... = | | (HF ((M o VennRegion) ‘ set as) < M vq)
by (simp add: HF-insert-hinsert)
also have ... = M vq U | |HF ((M o VennRegion) ‘ set as)
by blast
finally have I;, M a using a by simp

with 2.IH show ?case by blast
qed

lemma soundness-introduce- UnionOf VennRegions:
VIt € introduce-UnionOfVennRegions. interp Isq M It
proof
fix It assume [t € introduce-UnionOfVennRegions
then obtain as where as € set all-V-set-lists It € AT ‘ restriction-on-UnionOf VennRegions
as
unfolding introduce- UnionOfVennRegions-def by blast
with soundness-restriction-on-UnionOfVennRegions
show interp I, M It
using set-all-V-set-lists by fastforce
qed

lemma soundness-restriction-on-FunOfUnionOfVennRegions:

assumes [’-l: |" = var-set-set-to-var-set-list |
and m’-m: m’ = var-set-set-to-var-set-list m
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shows 31t € set (restriction-on-FunOfUnionOfVennRegions I’ m' f). interp I,
Mt
proof (cases M (UnionOfVennRegions ') = M (UnionOfVennRegions m'))
case True
then have M wp = M wpm
using I’-l m’-m by auto
then have interp Isa M (AT (Var wygpy =5 Var wygey 1))
using !’-l m’-m by auto
then show ?thesis by simp
next
case Fulse
then have interp [;, M (AF (Var (UnionOfVennRegions l') =5 Var (UnionOfVennRegions
m’)))
by fastforce
then show ?thesis by simp
qed

lemma soundness-introduce-w:
dclause € introduce-w. ¥ It € clause. interp I, M It
proof —
let 2f = Mts. if interp I, M (lts ! 0) then lts ! 0 else lts ! 1
let 29 = A(I, m, f). restriction-on-FunOfUnionOfVennRegions | m f
let ?xs = List.product all-V-set-lists (List.product all-V-set-lists F-list)
have V (I', m’, f) € set %zs. 2f (29 (I', m/, f)) € set (?g (I', m’, f))
by fastforce
with valid-choice[where ?f = ?f and ?g9 = ?g and %zs = %xs]
have map ?f (map ?g %xs) € set (choices-from-lists (map ?g %zs))
by fast
then have set (map ?f (map ?g ?xs)) € introduce-w
unfolding introduce-w-def
using mem-set-map[where ?c = map ?f (map ?g %xs) and ?f = set|
by blast
moreover
have {z € set V-set-list. x € set l'} = set I"if I’ € set all-V-set-lists for I’
using that set-V-set-list set-all-V-set-lists by auto
then have interp I,, M (?f (restriction-on-FunOfUnionOfVennRegions I’ m’
)
if I’ € set all-V-set-lists m' € set all-V-set-lists for ' m’ f
using that by auto
then have Vit € set (map ?f (map ?g ?xs)). interp Isq M It
by force
ultimately
show ?thesis by blast
qed

lemma soundness-reduce-literal:
assumes It € set C
shows V fml € reduce-literal It. interp Is, M fml
proof —

16



from norm-C It € set C> have norm-literal It by auto
then show ?thesis
proof (cases rule: norm-literal.cases)
case (inc f)
show ?thesis
proof
fix fml assume fml € reduce-literal It
then have fml € reduce-literal (AT, (inc(f)))
using inc by blast
then obtain [ m where Im: | C Pt Vm C PT VICm
and fml: fml = AT (Var Wem =s Var wem Us Var wﬂ)
by auto
from model-for-C it € set C» inc have I, M, My (inc(f)) by fastforce
then have Vst. s <t — (My f) s < (My f) t by simp
moreover
from Im have | | HF (M o VennRegion) ‘1) < | | HF ((M o VennRegion)
m
)
by (metis HUnion-proper-Venn-region-inter M.simps(2) comp-apply im-
age-cong inf.absorb-iff2)
ultimately
have M f (|| HF ((M o VennRegion) ‘1)) < My f (L HF ((M o VennRegion)
‘m))
by blast
then have My f (|| HF ((M o VennRegion) ‘m)) =
My f (UHF (M o VennRegion) ‘m)) U My f (JHF (M o
VennRegion) ‘1))
by blast
with fml Im show interp I, M fml
by (auto simp only: interp.simps I ,.simps I s¢.simps M.simps set-var-set-set-to-var-set-list)
qed
next
case (dec f)
show ?thesis
proof
fix fml assume fml € reduce-literal It
then have fml € reduce-literal (AT, (dec(f)))
using dec by blast
then obtain [ m where Im: | C Pt Vm C PT VICm
and fml: fml = AT (Var wy = Var wy Us Var wm)
by auto
from model-for-C <t € set C» dec have I, M, My (dec(f)) by fastforce
then have Vst. s <t — (M; f) t < (My f) s by simp
moreover
from Im have | | HF (M o VennRegion) ‘1) < | |HF ((M o VennRegion)
m)
by (metis HUnion-proper-Venn-region-inter M.simps(2) comp-apply im-
age-cong inf.absorb-iff2)
ultimately
have M, f (|HF ((M o VennRegion) ‘ m)) < My f (L JHF (M o
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VennRegion) ‘1))
by blast
then have My f (|| HF ((M o VennRegion) ‘1)) =
My f (UHF (M o VennRegion) ‘1)) U My f (LJHF (M o
VennRegion) ‘m))
by blast
with fml Im show interp Is, M fml
by (auto simp only: interp.simps I ,.simps I s;.simps M.simps set-var-set-set-to-var-set-list)
qed
next
case (add f)
show ?thesis
proof
fix fml assume fml € reduce-literal It
then have fml € reduce-literal (AT, (add(f)))
using add by blast
then obtain [ m where im: | C PT Vm C Pt V
and fml: fml = AT (Var WIUm =s Var wyy Us Var wfm)
by auto
from model-for-C <t € set C> add have I, M, My (add(f)) by fastforce
then have Vs t. (M; f) (sut) = (Ms f) sU (M f) t by simp
moreover
have | | HF ((M o VennRegion) ‘(I U m)) = | |HF ((M o VennRegion) 1)
U | |HF ((M o VennRegion) ‘ m)
using HUnion-proper- Venn-region-union M.simps(2) Im(1) Im(2) by auto
ultimately
have M; f (| |HF (M o VennRegion) ‘ (I U m))) =
My f (UHF ((M o VennRegion) ‘1)) U My f (| HF ((M o VennRegion)
‘)

by auto
with fml Im show interp Iy, M fml
using set-var-set-set-to-var-set-list
apply (simp only: interp.simps Isq.simps Is¢.simps M.simps)
by (metis le-sup-iff)
qed
next
case (mul f)
with model-for-C it € set C» have I, M, My (mul(f)) by fastforce
then have f-mul: Vst. (My f) (s0t) = (My f) sl (My f) t by simp
have InterOfWAuz: I3, M (Var (InterOfWAuzx f 1 m) =5 Var wp —s Var wfm)
for I m
by auto
{fix I m assume [ C P* Vm C P* V
then have | | HF ((M o VennRegion) ‘ (1N m)) = | | HF ((M o VennRegion)
“I) N || HF (M o VennRegion) ‘m)
using HUnion-proper-Venn-region-inter by force
then have M (UnionOfVennRegions (var-set-set-to-var-set-list (I N m))) =
M (UnionOfVennRegions (var-set-set-to-var-set-list 1)) M
M (UnionOfVennRegions (var-set-set-to-var-set-list m))
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using set-var-set-set-to-var-set-list <1 C P Vy «<m C Pt V)
by (metis M.simps(3) inf.absorb-iff2 inf-left-commute)

with f~mul have M WA, = M wp I M Wem
by auto

moreover

from InterOfWAuz have M (InterOfWAuz f1m) = M wp — M wpm
by simp

ultimately

have M wpn,, = M wy — M (InterOfWAuz f I m)
by auto

then have I,, M (Var wyn,, =s Var wy —s Var (InterOfWAuz f I m))
by auto

with InterOfWAuz show ?thesis
using mul by auto
next
case (le f g)
show ?thesis
proof
fix fml assume fml € reduce-literal It
then have fml € reduce-literal (AT, (f =m 9))
using le by blast
then obtain [ where I: | C Pt V
and fml: fml = AT (Var wg; =5 Var wg; Us Var wg)
by auto
from model-for-C It € set C» le have I, M, M; (f <., g) by fastforce
then have Vs. (My f) s < (My g) s by simp
then have M, f (L|HF ((M o VennRegion) ‘1)) < My g (JHF (M o
VennRegion) ‘1))
by auto
with fml [ show interp I, M fml
using set-var-set-set-to-var-set-list
by (auto simp only: interp.simps Iq.simps Is;.simps M.simps)
qed
next
case (eg-empty x n)
with <t € set C» model-for-C have M, x = 0 by auto
show ?thesis
proof
fix fml assume fml € reduce-literal It
with eg-empty have fml = AT (Var (Solo z) =5 0 n)

by simp
with <M, z = 0> show interp I;, M fml by auto
qed
next

case (eq z y)

with it € set C> model-for-C have M, x = M, y by auto
show ?thesis

proof
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fix fml assume fml € reduce-literal It
with eq have fml = AT (Var (Solo z) =, Var (Solo y))

by simp
with <M, z = M, y show interp I, M fml by auto
qed
next

case (neq = y)
with <t € set C» model-for-C have M, = # M, y by auto
show ?thesis
proof
fix fml assume fml € reduce-literal It
with neq have fml = AF (Var (Solo z) =, Var (Solo y))

by simp
with <M, = # M, y> show interp I, M fml by auto
qed

next
case (union z y 2)
with <t € set C> model-for-C have M, © = M, y U M, z by fastforce
then have interp I, M (AT (Var (Solo ) =5 Var (Solo y) Us Var (Solo z)))
by simp
with union show ?thesis by auto
next
case (diff z y z)
with <t € set C» model-for-C have M, x = M, y — M, z by fastforce
then have interp I,, M (AT (Var (Solo z) =5 Var (Solo y) —s Var (Solo z)))
by simp
with diff show ?thesis by auto
next
case (single x y)
with (It € set C» model-for-C have M, x = HF {M, y} by fastforce
then have interp I, M (AT (Var (Solo x) =, Single (Var (Solo y)))) by
stmp
with single show ?thesis by auto
next
case (app = f y)
with it € set C> model-for-C
have M, z = (M f) (M, y) by fastforce
moreover
from app <t € set C» have y € V
unfolding V-def by force
with variable-as-composition-of-proper- Venn-regions
have M, y = | | HF (proper-Venn-region ‘L V y)
by presburger
then have M, y = | | HF ((M o VennRegion) ‘L V y)
by simp
ultimately
have M (Solo z) = M wy v,
using M.simps set-var-set-set-to-var-set-list L-subset-P-plus
by metis
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with app show ?thesis by simp
qed
qed

lemma soundness-reduce-cl:
Y fml € reduce-clause. interp Iy, M fml
unfolding reduce-clause-def
using soundness-reduce-literal
by fastforce

lemma M-is-model-for-reduced-dnf: is-model-for-reduced-dnf M

unfolding is-model-for-reduced-dnf-def

unfolding reduced-dnf-def

using soundness-introduce-v soundness-introduce-w soundness-introduce- UnionOf VennRegions
soundness-reduce-cl

by (metis (no-types, lifting) Un-iff imagel)

end

lemma MLSSmf-to-MLSS-soundness:
assumes C-norm: norm-clause C
and C-has-model: 3M, M. I.; M, My C
shows 3 M. normalized-MLSSmf-clause.is-model-for-reduced-dnf C M
proof —
from C-has-model obtain M, M; where I.; M, M; C by blast
with C-norm
interpret satisfiable-normalized-MLSSmf-clause C M, M ¢
by unfold-locales
from M-is-model-for-reduced-dnf show ?thesis by auto
qed

end
theory Reduced-MLSS-Formula-Singleton-Model-Property

imports Syntactic-Description Place-Realisation MLSSmf-to-MLSS
begin

locale satisfiable-normalized-MLSS-clause-with-vars-for-proper- Venn-regions =
satisfiable-normalized-MLSS-clause C A for C A +
fixes U :: 'a set
— The collection of variables representing the proper Venn regions of the
“original” variable set of the MLSSmf clause
assumes U-subset-V: U C V
and no-overlap-within-U: [u; € U; ug € U; ug # uz] = Aug MAug =10
and U-collect-places-neq: AF (Var x =5 Var y) € C =
ILM.LCUANMCUANAz=||HF (A‘L)YNAy=||HF (A ‘M)
and U-collect-places-single: AT (Var ¢ =, Single (Var y)) € C =
ALM.LCUANMCUANAz=||HF (A‘L)NAy=||HF (A ‘M)
begin
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interpretation B: adequate-place-framework C PI at,
using syntactic-description-is-adequate by blast

lemma fact-1:
assumes u; € U
and uy € U
and u; # uso
and 7w € PI
shows — (7 w3 A 7 u2)
proof (rule ccontr)
assume — — (7 u; A T ug)
then have 7 u; 7™ us by blast+
from «r € PI) obtain ¢ where ¢ € ¥ 7 = 75 by auto
then have o # 0 by fastforce
from «r = wgy «w up < uyy have 0 < A uy 0 < A uy by simp+
with <o # 0> have A u; M A uy # 0 by blast
with no-overlap-within-U show Fulse
using <u; € U» <ug € Uy <uy # ug» by blast
qed

fun place-eq :: ("a = bool) = (‘a = bool) = bool where
place-eq 1 w9 +— (Vz € V. m = 7y 1)

fun place-sim :: ('a = bool) = ('a = bool) = bool (infixl ~ 50) where
place-sim m wy +— place-eq m 73 V (3u € U. w1 u A 72 u)

abbreviation rel-place-sim = {(m1, m3) € PI x PI. my ~ 7wy}

lemma place-sim-rel-equiv-on-PI: equiv PI rel-place-sim
proof (rule equivl)

have rel-place-sim C PI x PI by blast

moreover

have (w, 7) € rel-place-sim if m € PI for 7

using that by fastforce
ultimately
show refi-on PI rel-place-sim using refl-onl by blast

show sym rel-place-sim

proof (rule symlI)
fix m1 7o assume (71, m2) € rel-place-sim
then have m € PI my € Pl w1 ~ w3 by blast+
then show (my, m1) € rel-place-sim by auto

qed

show trans rel-place-sim
proof (rule transI)
fix T T T3
assume (mq, m3) € rel-place-sim (7o, m3) € rel-place-sim
then have 7y € PI o € Pl w3 € PI w1 ~ my wo ~ w3 by blast+
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then consider place-eq w1 ™o A place-eq w9 73 | place-eq w1 w9 A (Ju € U.
o U N\ T3 U)
| Bue U.m uAme u) A place-eq mg mg | (Ju € U.m u A me u) A (Ju €
U. 7o u A w3 u)
by auto
then have 7, ~ 73
proof (cases)
case [
then have place-eq w1 w3 by auto
then show ?thesis by auto
next
case 2
then obtain u where v € U 72 u 73 u by blast
with U-subset-V have v € V by blast
with 2 have 71 u +— 7o u by force
with «m5 u» have w1 u by blast
with <u € Uy <3 w
show ?thesis by auto
next
case 3
then obtain u where v € U w1 u 72 u by blast
with U-subset-V have u € V by blast
with 8 have 79 u <+— w3 u by force
with «mo w» have 73 u by blast
with v € U) «r; w
show ?thesis by auto
next
case 4
then obtain u; us, where u; € U 71 uy o up; and us € U wy ug 73 Us
by blast
with fact-1 have u; = us
using (my € PI» by blast
with <73 ug> have 73 u; by blast
with <my up <u; € U> show ?thesis
by auto
qed
with «my € PI) <m9 € PIy w3 € PI»
show (71, 73) € rel-place-sim by blast
qed
qed auto

lemma refi-sim:
assumes a € Pl
and b € PI
and a ~ b
shows b ~ a
using assms by auto

lemma trans-sim:
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assumes a € Pl
and b € PI
and c € PI
and a ~ b
and b ~ ¢
shows a ~ ¢
proof —
from assms have (a, b) € rel-place-sim (b, c¢) € rel-place-sim
by blast+
with place-sim-rel-equiv-on-PI have (a, ¢) € rel-place-sim
using equivE transk
by (smt (verit, ccfv-SIG))
then show a ~ ¢ by blast
qed

lemma fact-2:
assumes z € V
and exL: 3L C U. Az =||HF (A ‘L)
and ™ € PI
and m, € PI
and m ~ o
shows 11 z +— 7 2
proof (cases place-eq w1 m2)
case True
with <z € V) show ?thesis by force
next
case Fulse
with «r; ~ 75 obtain u where v € U my u 3 u by auto
from ezl obtain L where L C U Az = | |HF (A ‘ L) by blast
from <L C U» U-subset-V finite-V have finite L
by (simp add: finite-subset)

haverz +—ue Lifrume Pl forr
proof —
from «m € PI) obtain ¢ where 7 = 745 0 € ¥ by auto
with <7 w» have 0 < A u
using (u € U» U-subset-V by auto
havec < Az <+—uecl
proof (standard)
assume o0 < A z
{assume u ¢ L
then have Vv € L. v # u by blast
with no-overlap-within-U have Vv e L. Av M Au =0
using <L C Uy <u € U» by auto
with «¢ < 4 w have Vv € L. A v o = 0 by blast
then have | |HF (A ‘L)No =20
using finite-V U-subset-V «L C U) by auto
with <Az = | |HF (A ‘L)» have A z M o = 0 by argo
with (¢ < A 2> have Fulse
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using <o € X mem-X-not-empty by blast
}
then show u € L by blast
next
assume u € L
with 0 < A w have o < | |HF (A ‘L)
using «<finite Ly by force
with (A z = | |HF (A ¢ L)» show ¢ < A z by simp
qed
with «<m = 5y show 7 2 «— v € L
using <z € V> associated-place.simps by blast
qed
with <my € PIy < w <mg € Py <y w
have 71y x +— u € L w9 © +— u € L by blast+
then show ?thesis by blast
qed

lemma U-collect-places-single”: y € W = AL. LC UAN Ay =||HF (A ‘L)
using U-collect-places-single
by (meson memW-E)

definition PI’:: (‘a = bool) set where
PI' = (Ars. SOME w. 7 € ws) ‘ (PI /] rel-place-sim)

definition rep :: (‘a = bool) = ('a = bool) where
rep 1 = (SOME =’ «' € rel-place-sim ““ {m})

lemma range-rep:
assumes 7w € PJ
shows rep m € PI’
using assms
unfolding PI’-def rep-def
using quotientl[where ?z = m and ?A = PI and ?r = rel-place-sim
by blast

lemma PI’-eq-image-of-rep-on-PI: PI' = rep ‘ PI
proof (standard; standard)
fix m assume 7 € PI’
then obtain 7s where ws € PI // rel-place-sim m = (SOME ©. ™ € 7s)
unfolding PI’-def by blast
then obtain 7 where s = rel-place-sim ““ {mo} mo € PI
using quotientE[where ?A = PI and ?r = rel-place-sim and ?X = 7s]
by blast
with «m = (SOME 7. © € 7s)» have m = rep 7
unfolding rep-def by blast
with «mg € PI> show 7 € rep ¢ PI by blast
next
fix 7 assume 7 € rep ¢ PI
then obtain 7y where 79 € PI m = rep wg by blast
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then show 7 € PI’ using range-rep by blast
qed

lemma rep-sim:
assumes m € PJ
shows m ~ rep 7
and rep ™ ~ 7
proof —
from «r € PI) have w € rel-place-sim ““ {n} by fastforce
then obtain 7’ where 7’ = rep m by blast
with somel[of Az. x € rel-place-sim ‘‘ {n}] have n’ € rel-place-sim “‘ {n}
using «m € rel-place-sim ““ {m}>
unfolding rep-def by fast
with «7’ = rep m» show m ~ rep m by fast
with place-sim-rel-equiv-on-PI show rep m ~ 7
by (metis (full-types) place-eq.simps place-sim.elims(1))
qed

lemma PI’-subset-PI: PI' C PI
unfolding PI’-def
using equiv-Eps-preserves place-sim-rel-equiv-on-PI by blast

lemma sim-self:
assumes 7 € PI’
and 7’ € PI’
and 7 ~ 7’
shows 7' =7
proof —
from <w ~ 7’ have (m, 7') € rel-place-sim
using «w € PI"» «x' € PI'y PI'-subset-PI by blast
from «m € PI"» obtain 7s where 7s € PI // rel-place-sim 7 = (SOME 7. 7 €
$)
unfolding PI’-def by blast
then have 7 € 7s
using equiv-Eps-in place-sim-rel-equiv-on-PI by blast
from (7’ € PI'y obtain 7s’ where 7s’ € PI // rel-place-sim ©' = (SOME 7. 7
€ mws’)
unfolding PI’-def by blast
then have 7’ € s’
using equiv-Eps-in place-sim-rel-equiv-on-PI by blast
from place-sim-rel-equiv-on-PI «ws € PI /] rel-place-simy <ws’ € PI /] rel-place-sim»
«r € sy ! € wsh «(m, w') € rel-place-sim»
have 7s = s’
using quotient-eqI[where ?A = PI and %r = rel-place-sim and %z = m and
?X =nmsand %y = 7’ and ?Y = ws’]
by fast
with «m = (SOME 7. w € ws)» «<n’ = (SOME 7. 7w € ©s')y show /' =«
by auto
qed
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fun at,-f':: 'a = (‘a = bool) where
atp-f" w = rep (aty-f w)

definition at,’ = {(y, atp-f' y)|ly. y € W}
declare at,’-def [simp]

lemma range-at,-f"
assumes w € W
shows at,-f' w € PI’
proof —
from «<w € W)» range-at,-f have at,-f w € PI by blast
then have rel-place-sim ““ {at,-f w} € PI // rel-place-sim
using quotient] by fast
then show ?thesis unfolding PI’-def
apply (simp only: at,-f’.simps rep-def)
by (smt (verit, best) Eps-cong at,-f'.elims image-insert insert-iff mk-disjoint-insert)
qed

lemma rep-at:
assumes m € PJ
and (y, ) € atp
shows (y, rep 7) € at,’
proof —
from «(y, ) € at,» have at,-f y = 7 by auto
from «(y, ) € at,» have y € W by auto
with W-subset-V have y € V by fast
from «(y, ™) € at,> obtain z where AT (Var z =, Single (Vary)) e Cz € V
using memW-FE by fastforce
with U-collect-places-single have 3L. L C U AN Az = | |HF (A ¢ L) by meson
with fact-2 have w1 © «— 7o z if 1y ~ w3 w1 € PI oy € PI for my 7o
using «x € V) that by blast
with rep-sim have (rep 7) © +— 7 z
using PI’-subset-PI «w € PI» range-rep by blast

from B.C5-1[where ?z = z and ?y = y| have r a Vr'ePl. ' #7 — - 7'z
using (AT (Var z =, Single (Var y)) € C> «(y, m) € aty> by fastforce+

from <7 2> «(rep w) © +— 7 x> have (rep w) z by blast
with «Vr’ePl. 7' # 7 — -7’2 have repmr =«
using range-rep PI’-subset-PI «w € PI) by blast
then have at,-f'y = rep
using <at,-f y = m by (simp only: at,-f’.simps)
then show (y, rep 7) € at,’
using <y € W
by (metis (mono-tags, lifting) at,’-def mem-Collect-eq)
qed

interpretation B’ adequate-place-framework C PI' at,’
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proof —
from PI’-subset-PI B.PI-subset-places-V
have PI’-subset-places-V: PI' C places V by blast

have dom-at,” Domain at,’ = W by auto
have range-at,” Range at,’ C PI’
proof —

{fix y It assume It € C y € singleton-vars [t
then have rep (at,-fy) € PI'
using range-at,-f[of y| range-replof at,-f y]
by blast
}
then show ?thesis by auto
qed

from ‘B.single-valued-at,

have single-valued-at,": single-valued at,’
unfolding single-valued-def at,’-def
apply (simp only: at,-f’.simps)
by blast

from PI’-subset-PI have place-membership C PI’ C place-membership C PI by
auto
with B.membership-irreflexive have membership-irreflerive:
(m, w) ¢ place-membership C PI' for =
by blast

from PI’-subset-PI have subgraph: subgraph (place-mem-graph C PI’) (place-mem-graph
C PI)
proof —
have verts (place-mem-graph C PI') = PI’ by simp
moreover
have verts (place-mem-graph C PI) = PI by simp
ultimately
have verts: verts (place-mem-graph C PI') C verts (place-mem-graph C PI)
using PI’-subset-PI by presburger

have arcs (place-mem-graph C PI') = place-membership C PI’' by simp

moreover

have arcs (place-mem-graph C PI) = place-membership C PI by simp

moreover

have place-membership C PI’' C place-membership C PI

using PI’-subset-PI by auto

ultimately

have arcs: arcs (place-mem-graph C PI') C arcs (place-mem-graph C PI) by
blast

have compatible (place-mem-graph C PI) (place-mem-graph C PI”)
unfolding compatible-def by simp
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with verts arcs show subgraph (place-mem-graph C PI') (place-mem-graph C
PI)
unfolding subgraph-def
using place-mem-graph-wf-digraph
by blast
qed

from B.C6 have 7 c. pre-digraph.cycle (place-mem-graph C PI) ¢
using dag.acyclic by blast
then have 7 c. pre-digraph.cycle (place-mem-graph C PI') ¢
using subgraph wf-digraph.subgraph-cycle by blast
then have C6: dag (place-mem-graph C PI’)
using «dag (place-mem-graph C PI)) dag-axioms-def dag-def digraph.digraph-subgraph
subgraph
by blast

from B.C1-1 PI'-subset-PI
have C1-1: In. AT (Varz =0 n) € C = Vr € PI'. =7z for
by fast

from B.C1-2 PI’-subset-PI
have C1-2: AT (Varxz =5 Vary) eC = Vr e Pl .tz +— myforzy
by fast

from 9B.C2 PI’-subset-PI
have C2: AT (Varz =5 VaryU; Varz) eC =Vr e Pl . nx+—myVmz
for z y 2
by fast

from 9B.C3 PI’-subset-PI
have C3: AT (Varz =5 Vary —s Varz) e C = Vn e Pl . nz+— 1y A~
mzfor xyz
by fast

have Cf: AF (Varz =; Vary) e C = 3dn € Pl . 7z +— -mwyforzy
proof —
assume neq: AF (Var z =5 Vary) € C
with B.C/ obtain m where 7 € PI 7 x +— — 7w y by blast
from neq have v € Vy € V by fastforce+
from neq U-collect-places-neqwhere ?z = xz and %y = y| fact-2|of z]
have sim-n-x: w1 £ = w9 x if 1 € PI w9 € PI 1 ~ 7y for 71 mo
using that «x € V> by blast
from neq U-collect-places-neqwhere ?z = xz and %y = y| fact-2[of y]
have sim-w-y: w1 y = wo y if w1y € PI wy € PI w1 ~ 7y for 7y o
using that <y € V) by blast
from «m € PI) have rep 7 € PI' using range-rep by blast
then have rep m € PI using PI’-subset-PI by blast

from rep-sim sim-m-z have (rep 7) x +— 7«
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using <rep m € PI) «<w € PI) by blast
moreover
from rep-sim sim-w-y have m y «— (rep m) y
using <rep m € PI) «<m € PI) by blast
ultimately
have (rep w) z <— = (rep ) y
using «r z <— — 7 y» by blast
with <rep m € PI» show ?thesis by blast
qed

have C5-1: dn. (y,m) € at,’ A\ma A (¥Vn' e PI'. n'# 71— -1’ 1)
if AT (Var x =5 Single (Var y)) € C for z y
proof —
from that have y € Wz € Vy € V by fastforce+
from that B.C5-1lwhere %y = y and %z = 2]
obtain 7 where m: (y, 7) € at, mrzVr' e PL.n'#¢ 17 — - 7w’z
by blast
with ‘B.range-at, have m € PI by fast
then have rep m € PI’ using range-rep by blast
from rep-sim have rep m ~ 7 using «m € PI» by fast
with U-collect-places-single <t x» fact-2 have (rep 7) z
using <z € V) «w € PD) <rep 7 € PI"y PI'-subset-PI that
by blast
with m have rep m =«
using (rep m € PI’y PI’-subset-PI by blast
with © show ?thesis
using <rep m € PI"y PI'-subset-PI
by (metis rep-at subset-iff)
qed

have C5-2:Vnr € PI' my+— 7w zify € Wz e W and at’-eq: I7. (y, 7) €
aty’ A (2, ) € at,’ for y z
proof
fix 7 assume 7 € PI’
from at’-eq obtain 7’ where 7" at,-f' y = n’ at,-f' z = 7’
by (simp only: at,’-def) fast
with range-at,-f’ <y € W» have n’ € PI' by blast
from 7’ have at,-f' y ~ at,-f' z
apply (simp only: at,-f’.simps place-sim.simps place-eq.simps)
by blast
moreover
from rep-sim have at,-f" y ~ atp-fy
using at,-f’.simps range-at,-f that(1) by presburger
moreover
from rep-sim have at,-f' z ~ at,-f z
using at,-f’.simps range-at,-f that(2) by presburger
ultimately
have at,-f y ~ at,-f z
using trans-sim[of aty-f y atp-f' y aty-f’ 2]
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using trans-sim[of aty-f y at,-f' z aty-f 2]
using refl-sim[of at,-f' y aty-f y]
using range-at,-f[of y] range-aty,-f[of 2] range-at,-f" PI'-subset-PI that(1—2)
by (meson subset-iff)
then consider at,-fy = at,-fz | Ju € U. atp-fyu A atp-f 2z u
by force
then show 7 y «— 7 2
proof (cases)
case I
then have 3 7. (y, 7) € at, A (2, ) € aty
using aty,-def <y € W» <z € W» by blast
with B.05-2 have Vr € PI. m y ¢— 7 2
using <y € W) <z € W) by presburger
with «r € PIy PI’-subset-PI show 7 y +— 7 2
by fast
next
case 2
then obtain u where u € U at,-f y u at,-f z v by blast
then have Aye AuAdze€ Au
by (simp add: less-eq-hf-def )+
from (y € W) obtain z; where z;-single-y: AT (Var x1 =4 Single (Var y))
eC
using memW-E by blast
with A-sat-C have A z; = HF {A y} by fastforce
then have A y € A z; by simp
from z;-single-y U-collect-places-single obtain L where L C U A z; = | | HF
(A1)
by meson
with <A y € A z1> obtain v’ where v’ € L A y € A v’ by auto
from <A z; = | |HF (A ‘L)) <u’ € L) have A v’ < A 17
using <A y € A z1> by auto
with <A z; = HF {A y}» <Ay € Au' have A v’ = HF {A y} by auto
with <Ay € A w «ue Uy« € Ly <L C Uy no-overlap-within-U
have u’ = u by fastforce
with <A v'= HF {A y}» <A 2z € A w have A y = A z by simp
with realise-same-implies-eq-under-all-w[of y z 7] show ?thesis
using «y € Wy <z € W) W-subset-V <z € PI’s PI’-subset-PI by blast
qed
qed

have C5-3: 3n. (y, ) € at,’ A (y/, w) € aty’
ifye Wy e W¥r'e PI'' 7'y +— ' yfory'y
proof —
from V7' € PI'. 7’ y'+— w'yp haveVmr € Pl. repmm y' +— repm y
by (metis range-rep)
{fix 7 assume 7 € PI
with V7’ € PI'. 7w’ y' +— 7w’ y» have rep 7 y' +— rep 7w gy
using range-rep by fast
from «w € PIy PI’-subset-PI range-rep have rep m € PI by blast
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from U-collect-places-single’[of y'] fact-2[of y' rep 7 7| rep-sim[of 7]
have rep m y’' +— w y’

using <y’ € W» W-subset-V «x € PI) <rep m € PI»

by blast
from U-collect-places-single’[of y] fact-2]of y rep 7 7] rep-sim[of ]
have repm y «+— 7w y

using <y € W» W-subset-V «w € PI) <rep m € PI»

by blast
from <rep w y' «— repm o <rep w Yy —— wYH <rep W Y +— T P
have m y +— 7 y’ by blast

with B.C5-3 obtain = where (y, 7) € at, (y', 7) € atp
using <y € W» «y’ € W) by blast
then have (y, rep m) € at,’ (y/, rep 7) € at,’
by (meson Range-iff B.range-at, rep-at subset-iff )+
then show ?thesis by fast
qed

have m = myp (0} if 7 € Range at,’ — Range (place-membership C PI’) for =
proof —
from that obtain y where (y, 7) € at,’ by blast
then have y €¢ W m € PI’
using dom-at,’ range-at,’ by blast+
from «(y, ) € at,”» have m = rep (at,-f y) by simp
from «y € W» obtain z where [t-in-C: AT (Var x =4 Single (Var y)) € C
using memW-E by blast
with A-sat-C have A z = HF {A y} by fastforce
then have oy < A z by simp
with [t-in-C have at,-f y = by force
with «m = rep (atp-f y)» fact-2[of ] rep-sim[of at,-f y| U-collect-places-single[of
z Y
have 7 z
using lt-in-C <w € PI»y PI’-subset-PI <y € W»
by (smt (verit, best) B.PI-subset-places-V places-domain range-at,-f rev-contra-hsubsetD)

haveVm € PI. -1y
proof (rule ccontr)
assume — (V7ePl. = 7 y)
then obtain 7’ where 7’ € PI 7’ y by blast
with U-collect-places-single’[of y] fact-2[of y rep n’ '] rep-sim[of 7]
have rep 7’ y
using <y € W» PI’-subset-PI W-subset-V range-rep by blast
with <AT (Var z =5 Single (Var y)) € C> «m o
have (rep 7/, w) € place-membership C PI’
using «r € PI"y «x’ € PI) range-rep
by (simp only: place-membership.simps) blast
then have 7 € Range (place-membership C PI’) by blast
with that show Fualse by blast
qed
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have Va € L V y. proper-Venn-region o = 0
proof (rule ccontr)
assume - (VYa € L V y. proper-Venn-region o = 0)
then obtain o where a: o € L V y proper-Venn-region o # 0 by blast
then have y € a o € PT V by auto
with «proper-Venn-region o # 0> have proper-Venn-region a« < A y
using proper- Venn-region-subset-variable-iff
by (meson mem-P-plus-subset subset-iff)
then have T proper- Venn-region o Y
using W-subset-V <y € W» by auto
with «Vm € PI. = 7 y» show Fulse
using «a by auto
qed
then have | | HF (proper-Venn-region ‘L V y) = 0
by fastforce
with variable-as-composition-of-proper- Venn-regions|of y]
have A y = 0
using <y € W) W-subset-V by auto
with <A z = HF {A y}» have A x = HF {0} by argo

from «r € PI’y PI’-subset-PI obtain ¢ where 0 € ¥ m = 74
by (metis PI-def image-iff in-mono)
with «r 2> have 0 # 0 0 < A z by simp+
with <A ¢ = HF {0} have 0 = HF {0} by fastforce
with «m = 75> show © = 7yp {0} by blast
qed
then have C7:
[r1 € Range at,’ — Range (place-membership C PI');
mo € Range at,’ — Range (place-membership C PI')] = m = w3 for m1 o
by blast

from PI’-subset-places-V dom-at,’ range-at,’ single-valued-at,’
membership-irreflexive C6
C1-1 C1-2 C2 C8 C4 C5-1 C5-2 C5-8 C7
show adequate-place-framework C PI' at,’
apply intro-locales
unfolding adequate-place-framework-axioms-def
by blast
qged

lemma singleton-model-for-normalized-reduced-literals:
IM. Vit e C.interp Iso MUt AN Nu€e U. heard (M u) < 1)
proof —
from B’ finite-PI have finite (PI' — Range at,’) by blast
with u-ezistsjof PI' — Range at,’ card PI'] obtain u where
[m1 € PI' — Range at,’; mo € PI' — Range at,'; ™ # T = u m1 # u mo
7w € PI' — Range at,’ = hcard (u w) > card PI’
for m mo ™
by blast
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then have place-realization C PI' at,’ u
by unfold-locales blast+

{fix z assume z € U
then have 7y = 7y if 71y x Mo z ™ € PI' wy € PI' for my mo
using sim-self that by auto
then consider {r € PI'. 7z} ={} | @n. {r € PI'. 7w 2} = {x})
by blast
then have hcard (place-realization.M C PI' at,’ u z) < 1
proof (cases)
case [
then have place-realization. M C PI' at,’ uz = 0
using <place-realization C PI" at,’ w place-realization.M.simps
by fastforce
then show Zthesis by simp
next
case 2
then obtain = where {w € PI'. 7w 2} = {w} ® € PI’ by auto
then have place-realization.M C PI" at,’ uwx = | | HF (place-realization.place-realise
C PI' aty’ u ‘ {r})
using «place-realization C PI' at,’ w» place-realization.M.simps
by fastforce
also have ... = | | HF {place-realization.place-realise C PI' at,’ u 7}
by simp
finally have place-realization.M C PI' at,’ vz = | | HF {place-realization.place-realise
C PI' aty’ uwm} .
moreover
from place-realization.place-realise-singleton[of C PI' at),’ u]
have hcard (place-realization.place-realise C PI" at,’ u m) = 1
using «place-realization C PI' at,’ uy <m € PI's by blast
then obtain ¢ where place-realization.place-realise C PI' at,’ v m = HF {c}
using hcard-1E[of place-realization.place-realise C PI' at,’ u 7]
by fastforce
ultimately
have place-realization.M C PI' at,’ vz = | |HF {HF {c}}
by presburger
also have ... = HF {c} by fastforce
also have hcard ... = 1
by (simp add: hcard-def)
finally show ?thesis by linarith
qed
}
moreover
from place-realization.M-sat-C
have Vit € C. interp I, (place-realization.M C PI' at,” u) It
using «place-realization C PI" at,” w by fastforce
ultimately
show ?thesis by blast
qed
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end

theorem singleton-model-for-reduced-MLSS-clause:
assumes norm-C: normalized-MLSSmf-clause C
and V: V = vars,, C
and A-model: normalized-MLSSmf-clause.is-model-for-reduced-dnf C A
shows 3 M. normalized-MLSSmf-clause.is-model-for-reduced-dnf C M A
Vo € PY V. heard (M vy) < 1)
proof —
from norm-C interpret normalized-MLSSmf-clause C by blast
interpret proper-Venn-regions VA o Solo
using V by unfold-locales blast

from A-model have V fme&introduce-v. interp Is, A fm
unfolding is-model-for-reduced-dnf-def reduced-dnf-def
by blast

with eval-v have A-v: Va € PT V. A vy = proper-Venn-region o
using V V-def proper-Venn-region.simps by auto

from A-model have V[t € introduce-UnionOfVennRegions. interp 154 A It
unfolding is-model-for-reduced-dnf-def reduced-dnf-def by blast
then have Va € restriction-on-UnionOfVennRegions as. Is4 A a
if as € set all-V-set-lists for as
unfolding introduce-UnionOfVennRegions-def
using that by simp
with eval-UnionOfVennRegions have A-UnionOfVennRegions:
A (UnionOfVennRegions as) = | | HF (A ¢ VennRegion * set as)
if as € set all-V-set-lists for as
using that by (simp add: Sup.SUP-image)

have Solo-variable-as-composition-of-v:
L C{vg la.a€e Pt VY. Az=||HF (A ‘L)if 32" € V. z = Solo 2’ for z
proof —
from that obtain 2z’ where 2z’ € V z = Solo 2’ by blast
then have VennRegion ‘L V 2’ C {vg |a. a € PT V} by fastforce
moreover
from A-v have Va € L V z'. A vy = proper-Venn-region o
using L-subset-P-plus finite-V by fast
then have | | HF (A ¢ (VennRegion * L V z)) = || HF (proper-Venn-region *
L V2zZ)
using HUnion-eqlwhere 75 = L V 2z’ and ?f = A o VennRegion and ?g =
proper- Venn-region]
by (simp add: image-comp)
moreover
from wvariable-as-composition-of-proper- Venn-regions
have (A o Solo) z' = | | HF (proper-Venn-region ‘L V 2')
using <z’ € V» by presburger
with <z = Solo 2> have A 2z = | | HF (proper-Venn-region ‘ L V 2') by simp

35



ultimately
have VennRegion ‘L Vz' C{vq |a.a € PT V} N A z=|]|HF (A ‘ VennRegion
‘L VZ
by simp
then show ?thesis by blast
qed

from A-model obtain clause where clause:
clause € reduced-dnf VIt € clause. interp Is, A lt
unfolding is-model-for-reduced-dnf-def by blast
with reduced-dnf-normalized have normalized-MLSS-clause clause by blast
with clause
have satisfiable-normalized-MLSS-clause-with-vars-for-proper- Venn-regions clause
A {vg la. a € PT V}
proof (unfold-locales, goal-cases)
case I
then show ?case
using normalized-MLSS-clause.norm-C by blast
next
case 2
then show ?Zcase
by (simp add: normalized-MLSS-clause.finite-C)
next
case 3
then show ?case
by (simp add: finite-vars-fm normalized-MLSS-clause.finite-C)
next
case 4
then show Zcase by simp
next
case $
from <clause € reduced-dnf> normalized-clause-contains-all-v-a
have VaePt V. vy € U (vars * clause)
using V V-def by simp
then show ?case by blast
next
case (6 z y)
then obtain o 8 where a3: a € PT V€ PT V=g y = vg
by blast
with <z # 1 have a # (§ by blast

from af have o C V g C V by auto

from A-model have V fmecintroduce-v. interp Is, A fm
unfolding is-model-for-reduced-dnf-def reduced-dnf-def by blast

with af eval-v have A x = proper-Venn-region o A y = proper-Venn-region 3
using V V-def proper- Venn-region.simps by auto

with proper-Venn-region-disjoint <o # [3»

show ?Zcase
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using <a C V» <g C V» by presburger
next
case (7 z y)
from (AF (Var x =5 Var y) € clauses <clause € reduced-dnf»
consider AF (Var x =4 Var y) € reduce-clause | 3 clause € introduce-w. AF
(Var x =5 Var y) € clause
unfolding reduced-dnf-def introduce-v-def introduce- Union Of VennRegions-def
by blast
then show ?case
proof (cases)
case [
then obtain [t where Ii: [t € set C AF (Var x =, Var y) € reduce-literal It
unfolding reduce-clause-def by blast
then obtain a where It = AF,, a
by (cases It rule: reduce-literal.cases) auto
from <t € set C> norm-C have norm-literal It by blast
with <t = AF,, a> norm-literal-neq
obtain z’ y’ where It: It = AF,, (Vary, 2’ =, Var,, y) by blast
then have reduce-literal It = {AF (Var (Solo ) =5 Var (Solo y’))}
by simp
with <AF (Var z =, Var y) € reduce-literal It> have z = Solo z’ y = Solo y’
by simp+
from [t <It € set C> have z' € Vy' € V
using V by fastforce+

from Solo-variable-as-composition-of-v show ?thesis
using «x = Solo z'» <y = Solo y"» <z’ € V> <y’ € V>
by (smt (verit, best))
next
case 2
with lt-in-clause-in-introduce-w-E obtain I’ m' f
where I I’ € set all-V-set-lists
and m” m’ € set all-V-set-lists
and f: f € set F-list
and AF (Var z =, Vary) € set (restriction-on-FunOfUnionOfVennRegions
'm'f)
by blast
then have AF (Var z =, Var y) = AF (Var (UnionOfVennRegions l’) =,
Var (UnionOfVennRegions m’))
by auto
then have z = UnionOfVennRegions I’ y = UnionOfVennRegions m’ by
blast+
with A-UnionOfVennRegions I' m’
have A z = | | HF (A ¢ VennRegion ‘ setl') Ay = || HF (A ¢ VennRegion
set m”)
by blast+
moreover
from !’ set-all-V-set-lists have set I’ C Pt V
using V V-def by auto
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then have VennRegion ‘ set I’ C {vg |a. « € P V}
by blast
moreover
from m’ set-all-V-set-lists have set m’ C PT V
using V V-def by auto
then have VennRegion ‘ set m’ C {vq |a. « € P* V}
by blast
ultimately
show ?thesis by blast
qed
next
case (8 z y)
then consider AT (Var xz =5 Single (Var y)) € introduce-v
| 3 clause € introduce-w. AT (Var x =5 Single (Var y)) € clause
| AT (Var © =5 Single (Var y)) € introduce-UnionOfVennRegions
| AT (Var ¢ =, Single (Var y)) € reduce-clause
unfolding reduced-dnf-def by blast
then show ?case
proof (cases)
case ]
have Var z =4 Single (Var y) # restriction-on-v a for «
by simp
moreover
have Var z =, Single (Var y) ¢ restriction-on-InterOfVars zs for zs
by (induction xs rule: restriction-on-InterOfVars.induct) auto
then have Var z = Single (Vary) ¢ (restriction-on-InterOfVars o var-set-to-list)
a for o
by simp
moreover
have Var z =, Single (Var y) ¢ restriction-on-UnionOfVars zs for xs
by (induction xs rule: restriction-on-UnionOfVars.induct) auto
then have Var z =; Single (Var y) ¢ (restriction-on-UnionOfVars o
var-set-to-list) o for «
by simp
ultimately
have AT (Var x =5 Single (Var y)) ¢ introduce-v
unfolding introduce-v-def by blast
with 1 show ?thesis by blast
next
case 2
with lt-in-clause-in-introduce-w-E obtain I’ m' f
where AT (Var z =; Single (Vary)) € set (restriction-on-FunOfUnionOf VennRegions
I"'m’f)
by blast
moreover
have AT (Varz =5 Single (Vary)) ¢ set (restriction-on-FunOfUnionOf VennRegions
I"'m'f)
by simp
ultimately
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show ?thesis by blast
next
case 3
have Var x =, Single (Var y) ¢ restriction-on-UnionOfVennRegions as for
as
by (induction as rule: restriction-on-UnionOfVennRegions.induct) auto
then have AT (Var z =, Single (Var y)) ¢ introduce-UnionOfVennRegions
unfolding introduce- UnionOfVennRegions-def by blast
with 8 show ?thesis by blast
next
case 4
then obtain It where It € set C and reduce-lt: AT (Var z =4 Single (Var
y)) € reduce-literal It
unfolding reduce-clause-def by blast
with norm-C have norm-literal It by blast
then have 3z’ y'. It = AT, (Var,, ' =, Single,, (Var,, y’))
apply (cases It rule: norm-literal.cases)
using reduce-lt by auto
then obtain 2’ y’ where It: It = AT, (Var,, ¢’ =, Single,, (Var,, y’)) by
blast
with reduce-lt have r = Solo x' y = Solo y’ by simp+
from <t € set C» it havez' € Vy' e V
using V by fastforce+
from Solo-variable-as-composition-of-v show Zthesis
using «x = Solo x5 <y = Solo y"» <z’ € V> <y’ € V>
by (smt (verit, best))
qed
qed
then show ?thesis
using satisfiable-normalized-MLSS-clause-with-vars-for-proper- Venn-regions. singleton-model-for-normalized
unfolding is-model-for-reduced-dnf-def
by (smt (verit) V V-def clause(1) introduce-v-subset-reduced-fms mem-Collect-eq
subset-iff v-a-in-vars-introduce-v)
qed

end
theory MLSSmf-to-MLSS-Completeness
imports MLSSmf-Semantics MLSSmf-to-MLSS MLSSmf-HF-Extras
Proper-Venn-Regions Reduced-MLSS-Formula-Singleton-Model-Property

begin

locale MLSSmf-to-MLSS-complete =
normalized-MLSSmf-clause C for C :: (v, 'f) MLSSmf-clause +
fixes B :: (v, 'f) Composite = hf
assumes B: is-model-for-reduced-dnf B

fixes A :: hf = 'v set set

assumes A-subset-V: Az C PT V
and A-preserves-zero: A 0 = {}
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and A-inc:a <b=—=AaCAb
and A-add: A (aUb)=AaUAD
and A-mul: A(alMb)=AanAb
and A-diser: | C PT V —=
a = || HF ((B o VennRegion) ‘1) = a = | | HF ((B o VennRegion)
‘(A 0))
begin

fun discretize, :: (('v, 'f) Composite = hf) = (‘v = hf) where
discretize, M = M o Solo

fun discretizey :: (('v, 'f) Composite = hf) = ('f = hf = hf) where
discretizey M = (Af a. M wyp )

interpretation proper-Venn-regions V discretize, B
using finite-V by unfold-locales

lemma all-literal-sat: Vit € set C. I; (discretize, B) (discretizey B) It
proof
fix It assume [t € set C

from B obtain clause where clause: clause € reduced-dnf
and B-sat-clause: VIt € clause. interp Is, B It
unfolding is-model-for-reduced-dnf-def by blast

from It € set C» have norm-literal It
using norm-C by blast
then show I; (discretize, B) (discretizey B) It
proof (cases It rule: norm-literal.cases)
case (inc f)
have s < t = discretizey B fs < discretizey B ft for s t
proof —
let 2atom = Var WEA  =s Var wep ¢ Us Var WEA s
assume s < ¢
then have A s C A t using A-inc by simp
then have Zatom € reduce-atom (inc(f))
using A-subset-V
by (simp add: V-def)
then have AT Zatom € clause
using <t = AT, (inc(f))> <t € set C» clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have I, B ?atom by fastforce
then have B wyp ¢ = B wyp ¢ U B wyp ¢ by simp
then have B wgy ¢ < B wypy 4
by (simp add: sup.order-iff)
then show discretizey B fs < discretizey B ft by simp
qed
then show %thesis using inc by auto
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next
case (dec f)
have s < t = discretizey B f1 < discretizey B f s for st
proof —
let Zatom = Var wep s =5 Var wyy g Us Var wpy 4
assume s < ¢
then have A s C A t using A-inc by simp
then have Zatom € reduce-atom (dec(f))
using A-subset-V
by (simp add: V-def)
then have AT ?atom € clause
using It = AT, (dec(f))» «It € set C» clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have I;, B Zatom by fastforce
then have B wpy = B wpp s U B wgp ¢ by simp
then have B wgp ¢ < B wyy
by (simp add: sup.order-iff)
then show discretizey B ft < discretizey B f s by simp
qed
then show ?thesis using dec by auto

next
case (add f)
have discretizey B f (s U t) = discretizey B f s U discretizey B ft for st
proof —
let Zatom = Var wyy (sUt) =s Var wepy ¢ Us Var wyp 4
have %atom € reduce-atom (add(f))
using A-subset-V A-add
by (simp add: V-def)
then have AT ?atom € clause
using <t = AT,, (add(f))> It € set C» clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have I;, B ?atom by fastforce
then have B wgy (sUt) = B wgy s U B wpp ¢ by simp
then show discretizey B f (s U t) = discretizey B f s U discretizey B ft by
stmp
qed
then show ?thesis using add by auto

next
case (mul f)
have discretizey B f (s M t) = discretizey B f s 1 discretizey B f ¢ for s ¢
proof —
let ?atom-1 = Var (InterOfWAuz f (A s) (A 1)) =5 Var wgy 5 —s Var wpp 4
have ?atom-1 € reduce-atom (mul(f))
using A-subset-V
by (simp add: V-def)
then have AT Zatom-1 € clause
using It = AT, (mul(f))> It € set C» clause
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unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have I;, B ?atom-1 by fastforce
then have B (InterOfWAuz f (A s) (A t)) = B wyy s — B wpp ¢ by simp
moreover
let Zatom-2 = Var wey (s ) =s Var wgy 5 —s Var (InterOfWAuz f (A s)
(A1)
have Zatom-2 € reduce-atom (mul(f))
using A-subset-V A-mul
by (simp add: V-def)
then have AT Zatom-2 € clause
using <t = AT, (mul(f))» <t € set C> clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have I, B ?atom-2 by fastforce
then have B wgy (s ) = B wgp s — B (InterOfWAuz f (A s) (A t)) by
sitmp
ultimately
have B wg) (smt) = B wgy s M B wpp ¢ by auto
then show discretizey B f (s M t) = discretizey B fs N discretizey B ft by
stmp
qed
then show ¢thesis using mul by auto

next
case (le f g)
have discretizey B f s < discretizey B g s for s
proof —
let Zatom = Var wgp 5 =s Var wgp 5 Us Var wep s
have Zatom € reduce-atom (f <, 9)
using A-subset-V
by (simp add: V-def)
then have AT ?atom € clause
using It = AT, (f <m g)» t € set C> clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have I;, B Zatom by fastforce
then have B wgp ¢ = B wgp s U B wpp ¢ by simp
then have B wgy ¢ < B wgy
by (simp add: sup.orderl)
then show discretizey B f s < discretizey B g s by simp
qed
then show ?thesis using le by auto

next
case (eg-empty x n)
let 2lt = AT (Var (Solo z) =5 0 n)
from eq-empty have 2t € reduce-literal It
using <t € set C> by simp
then have %It € clause
using (It € set C» clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
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with B-sat-clause have interp 15, B ?lt by fastforce
with eg-empty show ?thesis by simp

next
case (eq z y)
let 2it = AT (Var (Solo ) =5 Var (Solo y))
from eq have ?it € reduce-literal It
using <t € set C> by simp
then have %t € clause
using (It € set C» clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have interp 15, B ?lt by fastforce
with eq show ?thesis by simp

next
case (neq  y)
let ?lt = AF (Var (Solo z) =4 Var (Solo y))
from neq have ?it € reduce-literal It
using <t € set C> by simp
then have %t € clause
using (It € set C» clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have interp 15, B ?lt by fastforce
with neq show ?thesis by simp

next
case (union z y 2)
let ?lt = AT (Var (Solo z) =4 Var (Solo y) Us Var (Solo z))
from union have ?lt € reduce-literal It
using <t € set C> by simp
then have %t € clause
using neq <t € set C» clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have interp 15, B ?lt by fastforce
with union show ?thesis by simp

next
case (diff z y 2)
let ?lt = AT (Var (Solo z) =4 Var (Solo y) —s Var (Solo z))
from diff have ?it € reduce-literal It
using <t € set C> by simp
then have %t € clause
using neq <t € set C» clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have interp 15, B ?lt by fastforce
with diff show ?thesis by simp

next
case (single x y)
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let ?lt = AT (Var (Solo z) =4 Single (Var (Solo y)))
from single have ?lt € reduce-literal It

using <t € set C> by simp
then have %t € clause

using neq «lt € set C> clause

unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have interp 15, B ?lt by fastforce
with single show ?thesis by simp

next
case (app = fy)
with </t € set C> have f € F unfolding F-def by force
from B-sat-clause clause eval-v
have B-v: (B o VennRegion) o = proper-Venn-region o if « € PT V for «
unfolding reduced-dnf-def
using proper-Venn-region.simps that by force
from B-sat-clause clause eval-w
have B-w: | | HF ((B o VennRegion) ‘1) = | | HF ((B o VennRegion) ‘m) —
B we = B wem,
ifICPT VmCPrVfeFforlmf
by (meson in-mono introduce- UnionOf VennRegions-subset-reduced-fms intro-
duce-w-subset-reduced-fms that)

from app «It € set C> have y € V using V-def by fastforce
with variable-as-composition-of-proper- Venn-regions
have | | HF (proper-Venn-region ‘ L V y) = discretize, B y by blast
with A-discr L-subset-P-plus B-v
have | |HF ((B o VennRegion) ‘ L V y) = | |HF ((B o VennRegion) ‘A
(discretize, B y))
by (smt (verit, best) HUnion-eq subset-eq)
with B-w have B-w-eq: B wgr vy = B wyp (discretize, B y)
using L-subset-P-plus A-subset-V <«f € F» finite-V by meson

let ?it = AT (Var (Solo z) =, Var wyp v o)
from app have ?it € reduce-literal It
using It € set C> by simp
then have ?t € clause
using neq «lt € set C> clause
unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have interp I,, B ?lt by fastforce
then have B (Solo z) = B wyz v by simp
with B-w-eq have B (Solo ) = B wyy (discretizes B y) by argo
then have B (Solo z) = (discretizey B f) (discretize, B y) by simp
then have discretize, B « = (discretizey B f) (discretize, B y) by simp
with app show ?thesis by simp
qed
qed

lemma C-sat: I.; (discretize, B) (discretizey B) C
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using all-literal-sat by blast
end

lemma (in normalized-MLSSmf-clause) MLSSmf-to-MLSS-completeness:
assumes is-model-for-reduced-dnf M
shows IM, M. Iy My, My C
proof —
from assms singleton-model-for-reduced-MLSS-clause obtain M where
M-singleton: Vo € PT V. heard (M (vq)) < 1 and
M-model: is-model-for-reduced-dnf M
using normalized-MLSSmf-clause-axioms V-def by blast
then obtain clause where clause € reduced-dnf VIt € clause. interp 154 M It
unfolding is-model-for-reduced-dnf-def by blast
with normalized-clause-contains-all-v-a have v-a-in-vars:
VaePt V. vq € J (vars ¢ clause)
by blast

from M-singleton have assigned-set-card-0-or-1:
Va € Pt V. heard (M (va)) = 0V heard (M (vy)) = 1
using antisym-conv2 by blast

let A = Xa. {a € PT V. M vy M a # 0}

have A-subset-V: A x C PT V for z
by fast

have A-preserves-zero: ?A 0 = {} by blast

have A-inc: a < b= ?Aa C ?A bfor abd
by (smt (verit) Collect-mono hinter-hempty-right inf.absorb-iff1 inf-left-commute)

have A-add: ?A (a U b)=?AaU ?Abforabd
proof (standard; standard)
fix @ assume a: a € {a € PT V. M vo M (a U b) # 0}
then have o € PT V M vq M (a U b) # 0 by blast+
then have M vqg Ma# 0V M vy M b#0
by (metis hunion-hempty-right inf-sup-distrib1)
then show a € {a € PT V.M uvqaMNa# 0} U{a € PT V. Muvq Nb+# 0}
using o by blast
next
fix cassume a € {a € Pt V.MuvgMa# 0} U{a € P V.MuvgNb#
0}

then have « € PY* V MugMa# 0V MugMNb#0
by blast+
then have M vq M (a U b) # 0
by (metis hinter-hempty-right hunion-hempty-left inf-sup-absorb inf-sup-distrib1)
then show a € {a € PT V. M vy M (a U b) # 0}
using <« € PT V) by blast
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qed

have A-mul: A (e b) =?Aan ?Abforabd
proof (standard; standard)
fix o assume a: a € {a € PT V. M vy M (a M b) # 0}
then have o € Pt V M g M (a 11 b) # 0 by blast+
then have M v Ma # 0 A M vg M b # 0
by (metis hinter-hempty-left inf-assoc inf-left-commute)
then show a € {a € PT V.M uvgMNa# 0} N{a € Pt V. MuvyMNb# 0}
using «a by blast
next
fixcassume a € {a € PT V.MuvgMNa# 0}N{a€ PT V. MuvgNb#
0}
then have a € PT V MuogMa# 0 MuogMb#0
by blast+
then have M vy # 0 by force
then have hcard (M vq) # 0 using hcard-0E by blast
then have hcard (M vq) = 1
using assigned-set-card-0-or-1 v-a-in-vars <« € PT V)
by fastforce
then obtain ¢ where M v, = 0 < ¢
using hcard-1E by blast
moreover
from (M vg = 0< ¢ <M vg Maz#0
have M vq M a = 0 < ¢ by auto
moreover
from (M vg = 04 ¢ <M vg M b#£ O
have M vq M b = 0 < ¢ by auto
ultimately
have M vq M (aMb)=0<c¢
by (simp add: inf-commute inf-left-commute)
then have M vy M (a M b) # 0 by simp
then show a € {a € PT V. M vq N (a N b) # 0}
using «a € PT V) by blast
qed

have [ C Pt V =
a = ||HF (M o VennRegion) ‘1) = a < | |HF ((M o VennRegion) *
(?A a)) for l a
proof
fix ¢ assume l-a-c: | C PT Va=||HF (M o VennRegion) ‘1) ¢ € a
then obtain « where a € | ¢ € M vy by auto
then have a € ?A q using l-a-c by blast
then have M vy € (M o VennRegion) ‘ (?A a) by simp
then have M vy € HF ((M o VennRegion) ‘ (?A a)) by fastforce
with (¢ € M vg» show ¢ € | | HF ((M o VennRegion) ‘ (?A a)) by blast
qed
moreover
have [ C Pt V =

46



a = | |HF ((M o VennRegion) ‘1) = | | HF ((M o VennRegion) ‘ (?A a))
<aforla
proof —
assume | C P* V and a: a = | | HF ((M o VennRegion) ‘1)
then have finite |
by (simp add: finite-V finite-subset)
have ?A a C |
proof
fix o assume a € ?A a
then obtain ¢ where ¢ € M vy M a by blast
then have ¢ € M vy ¢ € a by blast+
then obtain § where § € [ ¢ € M vg using a by force

interpret proper-Venn-regions V.M o Solo
using finite-V by unfold-locales
from (o € ?A a» have a € P V by auto
moreover
from ([ C Pt Vs (8 € b have 8 € P™ V by auto
moreover
from <c € M vy have ¢ € proper-Venn-region «
using eval-v <o« € PT V) M-model
unfolding is-model-for-reduced-dnf-def reduced-dnf-def
by fastforce
moreover
from <c € M vg have ¢ € proper-Venn-region
using eval-v <8 € PT V) M-model
unfolding is-model-for-reduced-dnf-def reduced-dnf-def
by fastforce
ultimately
have o = 8
using finite-V proper- Venn-region-strongly-injective by auto
with <8 € ) show « € [ by simp
qed
then have (M o VennRegion) ¢ ?A a C (M o VennRegion) ‘1 by blast
moreover
from «finite [» have finite (M o VennRegion) ‘1) by blast
ultimately
have | | HF ((M o VennRegion) ‘ ?A a) < | | HF ((M o VennRegion) ‘1)
by (metis (no-types, lifting) HUnion-hunion finite-subset sup.orderE sup.orderl
union-hunion)
then show | | HF (M o VennRegion) ‘ (?A a)) < a
using a by blast
qged
ultimately
have A-discr: | C PT V =
a = || HF (M o VennRegion) ‘1) = a = | | HF ((M o VennRegion)
“(?A a)) for L a
by (simp add: inf.absorb-iff1 inf-commute)
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interpret A-plus: MLSSmf-to-MLSS-complete C M ?A
using assms M-singleton M-model
A-subset-V A-preserves-zero A-inc A-add A-mul A-discr
by unfold-locales

show ?thesis
using A-plus.C-sat by fast
qed

end
theory MLSSmf-to-MLSS-Correctness

imports MLSSmf-to-MLSS-Soundness MLSSmf-to-MLSS-Completeness
begin

fun reduce :: ("v, 'f) MLSSmf-clause = (v, 'f) Composite pset-fm set set where
reduce C = normalized-MLSSmf-clause.reduced-dnf C

fun interp-DNF :: (('v, 'f) Composite = hf) = ('v, 'f) Composite pset-fm set set
= bool where
interp-DNF M clauses «— (3 clause € clauses. VIt € clause. interp Is, M lt)

corollary MLSSmf-to-MLSS-correct:

assumes norm-clause C

shows (3M, My. Iy M, My C) «— (IM. interp-DNF M (reduce C))

proof

from assms interpret normalized-MLSSmf-clause C by unfold-locales

assume IM, My. Iy My My C

with MLSSmf-to-MLSS-soundness obtain M where is-model-for-reduced-dnf
M

using assms by blast

then have interp-DNF M (reduce C) unfolding is-model-for-reduced-dnf-def by
stmp

then show I M. interp-DNF M (reduce C) by blast
next

from assms interpret normalized-MLSSmf-clause C by unfold-locales

assume IM. interp-DNF M (reduce C)

then obtain M where interp-DNF M (reduce C) by blast

then have is-model-for-reduced-dnf M unfolding is-model-for-reduced-dnf-def
by simp

with MLSSmf-to-MLSS-completeness show I3 M, My. I,y M, My C by blast
qged

end
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