A Verified Reduction Algorithm from MLSSmf to MLSS

Yiran Duan, Lukas Stevens September 1, 2025

Abstract

Multi-level syllogistic with monotone functions (MLSSmf) is a sublanguage of set theory introduced by Cantone et al. [1], involving setto-set functions and their monotonicity, additivity, and multiplicativity. It is an extension of multi-level syllogistic with singleton (MLSS), which involves the predicates membership, set equality, set inclusion, and the operators union, intersection, set difference, and singleton.

In this work we formalize the reduction algorithm from **MLSSmf** to **MLSS**, and verify the correctness proof originally presented by Cantone et al. [1]. Combined with the verified decision procedure for **MLSS** formalized by Stevens [2], this yields an executable and verified decision procedure for **MLSSmf**.

```
theory MLSSmf-to-MLSS-Complexity
 imports \ \mathit{MLSSmf-to-MLSS}
begin
definition size_m :: ('v, 'f) MLSSmf-clause \Rightarrow nat where
 size_m C \equiv card (set C)
lemma (in normalized-MLSSmf-clause) card-V-upper-bound:
  card\ V \leq 3 * size_m\ C
 unfolding V-def
 using norm-C
proof (induction C)
 case 1
 then show ?case by simp
next
 case (2 ls l)
 from \langle norm\text{-}literal \ l \rangle have card \ (vars_m \ l) \leq 3
   by (cases l rule: norm-literal.cases) (auto simp: card-insert-if)
  with 2 show ?case
  proof (cases l \in set ls)
   {\bf case}\ {\it True}
   then have vars_m \ l \subseteq vars_m \ ls by blast
   moreover
   have vars_m (l \# ls) = vars_m l \cup vars_m ls by auto
   ultimately
   have vars_m (l \# ls) = vars_m ls by blast
   then have card\ (vars_m\ (l\ \#\ ls)) = card\ (vars_m\ ls) by argo
   moreover
   from True have size_m (l \# ls) = size_m ls
     unfolding size_m-def
     by (simp add: insert-absorb)
   ultimately
   show ?thesis using 2.IH by argo
  next
   case False
   have vars_m (l \# ls) = vars_m l \cup vars_m ls by auto
   then have card\ (vars_m\ (l\ \#\ ls)) \leq card\ (vars_m\ l) + card\ (vars_m\ ls)
     by (simp add: card-Un-le)
   with \langle card (vars_m \ l) \leq 3 \rangle \ 2.IH
   have card\ (vars_m\ (l\ \#\ ls)) \le 3*(Suc\ (size_m\ ls))
     by simp
   moreover
   from False have size_m (l \# ls) = Suc (size_m ls)
     unfolding size_m-def by simp
   ultimately
   show ?thesis by argo
 qed
qed
```

```
lemma (in normalized-MLSSmf-clause) card-F-upper-bound:
  card F \leq 2 * size_m C
 unfolding F-def
  using norm-C
proof (induction C)
  case 1
  then show ?case by simp
\mathbf{next}
 case (2 ls l)
 from \langle norm\text{-}literal \ l \rangle have card \ (funs_m \ l) \leq 2
   by (cases l rule: norm-literal.cases) (auto simp: card-insert-if)
  with 2 show ?case
 proof (cases l \in set ls)
   {\bf case}\ {\it True}
   then have funs_m \ l \subseteq funs_m \ ls by blast
   moreover
   have funs_m (l \# ls) = funs_m l \cup funs_m ls by auto
   ultimately
   have funs_m (l \# ls) = funs_m ls by blast
   then have card (funs_m (l \# ls)) = card (funs_m ls) by argo
   from True have size_m (l \# ls) = size_m ls
     unfolding size_m-def
     by (simp add: insert-absorb)
   ultimately
   show ?thesis using 2.IH by argo
  next
   case False
   have funs_m (l \# ls) = funs_m l \cup funs_m ls by auto
   then have card (funs_m (l \# ls)) \leq card (funs_m l) + card (funs_m ls)
     by (simp add: card-Un-le)
   with \langle card (funs_m \ l) \leq 2 \rangle \ 2.IH
   have card (funs_m (l \# ls)) \leq 2 * (Suc (size_m ls))
     by simp
   moreover
   from False have size_m (l \# ls) = Suc (size_m ls)
     unfolding size_m-def by simp
   ultimately
   show ?thesis by argo
 qed
qed
lemma (in normalized-MLSSmf-clause) size-restriction-on-InterOfVars:
  card\ (restriction\text{-}on\text{-}InterOfVars\ vs) \leq 2 * length\ vs
proof (induction vs rule: restriction-on-InterOfVars.induct)
 case (3 x v vs)
 have length zs > length ys \Longrightarrow InterOfVarsAux zs \notin \bigcup (vars 'restriction-on-InterOfVars
ys)
   for y ys zs
```

```
by (induction ys rule: restriction-on-InterOfVars.induct) auto
 then have InterOfVarsAux (x \# v \# vs) \notin \bigcup (vars `restriction-on-InterOfVars
(v \# vs))
   by force
  then have Var (InterOfVarsAux (x \# v \# vs)) =_s Var (Solo x) -_s Var
(InterOfVars\ (v\ \#\ vs))\notin restriction-on-InterOfVars\ (v\ \#\ vs)
         Var (InterOfVars (x \# v \# vs)) =_s Var (Solo x) -_s Var (InterOfVarsAux)
(x \# v \# vs) \notin restriction-on-InterOfVars (v \# vs)
   by auto
  then have card (restriction-on-InterOfVars (x \# v \# vs)) = Suc (Suc (card
(restriction-on-InterOfVars\ (v\ \#\ vs))))
   using restriction-on-InterOfVar-finite by force
  with 3.IH show ?case by simp
qed simp+
lemma (in normalized-MLSSmf-clause) size-restriction-on-UnionOfVars:
  card\ (restriction-on-UnionOfVars\ vs) \leq Suc\ (length\ vs)
 apply (induction vs rule: restriction-on-UnionOfVars.induct)
  apply simp
 by (simp add: card-insert-if restriction-on-UnionOfVar-finite)
theorem (in normalized-MLSSmf-clause) size-introduce-v:
  card\ introduce - v \le (3 * card\ V + 2) * (2 ^ card\ V)
proof -
 have card (restriction-on-v 'P+ V) \leq card (P+ V)
   using P-plus-finite card-image-le by blast
  then have 1: card (restriction-on-v 'P+ V) \leq card (Pow V)
   by simp
 have card ((restriction-on-InterOfVars \circ var-set-to-list) \ \alpha) \le 2 * card \ V \ for \ \alpha
  proof -
   have length (var-set-to-list \alpha) \leq length V-list by simp
   then have length (var-set-to-list \alpha) \leq card V
     unfolding V-list-def
     by (metis V-list-def distinct-V-list distinct-card set-V-list)
   with size-restriction-on-InterOfVars[of var-set-to-list \alpha]
   have card (restriction-on-InterOfVars (var-set-to-list \alpha)) \leq 2 * card V
     by linarith
   then show ?thesis by fastforce
 qed
 then have (\sum \alpha \in P^+ \ V. \ card \ ((restriction-on-InterOfVars \circ var-set-to-list) \ \alpha))
\leq 2 * card V * card (P^+ V)
   by (smt (verit) card-eq-sum nat-mult-1-right sum-distrib-left sum-mono)
  moreover
  from card-UN-le[where ?I = P^+ V and ?A = restriction-on-InterOfVars <math>\circ
var-set-to-list]
 have card (\bigcup ((restriction-on-InterOfVars \circ var-set-to-list) ' P^+ V)) \leq
       (\sum \alpha \in P^+ \ V. \ card \ ((restriction-on-InterOfVars \circ var-set-to-list) \ \alpha))
   using P-plus-finite finite-V by blast
```

```
ultimately
 \mathbf{have} \ \mathit{card} \ (\bigcup \ ((\mathit{restriction-on-InterOfVars} \circ \mathit{var-set-to-list}) \ `P^+ \ V)) \leq 2 * \mathit{card}
V * card (P^+ V)
   by linarith
  also have ... \leq 2 * card V * card (Pow V) by simp
 finally have 2: card ( ) ((restriction-on-InterOfVars \circ var-set-to-list) 'P+ V))
\leq 2 * card V * card (Pow V)
   by blast
 have card ((restriction-on-UnionOfVars \circ var-set-to-list) \alpha) \leq Suc (card V) for
\alpha
   have length (var-set-to-list \alpha) \leq length V-list by simp
   then have length (var-set-to-list \alpha) \leq card V
     unfolding V-list-def
     by (metis V-list-def distinct-V-list distinct-card set-V-list)
    with size-restriction-on-UnionOfVars[of var-set-to-list \alpha]
   have card (restriction-on-UnionOfVars (var-set-to-list \alpha)) \leq Suc (card V)
     by linarith
   then show ?thesis by fastforce
  qed
  then have (\sum \alpha \in Pow\ V.\ card\ ((restriction-on-UnionOfVars\ \circ\ var-set-to-list))
\alpha)) \leq Suc \ (card \ V) * card \ (Pow \ V)
   by (smt (verit) card-eq-sum nat-mult-1-right sum-distrib-left sum-mono)
  moreover
  from card-UN-le[where ?I = Pow\ V and ?A = restriction-on-UnionOfVars <math>\circ
var-set-to-list]
  have card (\bigcup ((restriction-on-UnionOfVars \circ var-set-to-list) 'Pow V)) <
        (\sum \alpha \in Pow\ V.\ card\ ((restriction-on-UnionOfVars \circ var-set-to-list)\ \alpha))
   using finite-V by blast
  ultimately
 have 3: card (\bigcup ((restriction-on-UnionOfVars \circ var-set-to-list) 'Pow V)) \leq Suc
(card\ V)*card\ (Pow\ V)
   by linarith
 let ?atoms = restriction-on-v 'P^+ V \cup
       [\ ] ((restriction-on-InterOfVars \circ var-set-to-list) ' P^+ V) \cup
       ((restriction-on-UnionOfVars \circ var-set-to-list) `Pow V)
  {f from}\ restriction-on-InterOfVar-finite restriction-on-UnionOfVar-finite
  have finite?atoms using finite-V by auto
  then have card\ introduce - v \leq card\ ?atoms
   {\bf unfolding} \ introduce\hbox{-} v\hbox{-} def
   using card-image-le by meson
  also have ... \leq card \ (restriction\text{-}on\text{-}v \ 'P^+ \ V) +
             card \ (\bigcup \ ((restriction-on-InterOfVars \circ \ var-set-to-list) \ `P^+ \ V)) \ +
             card \ (\bigcup \ ((restriction-on-UnionOfVars \circ var-set-to-list) \ `Pow \ V))
   using finite-V by (auto intro!: order.trans[OF card-Un-le])
  also have ... \leq card (Pow V) +
             card \ (\bigcup \ ((restriction\hbox{-}on\hbox{-}InterOfVars \circ var\hbox{-}set\hbox{-}to\hbox{-}list) \ `P^+ \ V)) \ +
```

```
card ([] ((restriction-on-UnionOfVars \circ var-set-to-list) `Pow V))
   using 1 by linarith
 also have ... \leq card (Pow \ V) + 2 * card \ V * card (Pow \ V) +
             card \ (\bigcup \ ((restriction\hbox{-}on\hbox{-}UnionOfVars \circ var\hbox{-}set\hbox{-}to\hbox{-}list) \ `Pow\ V))
   using 2 by linarith
 also have ... \leq card (Pow \ V) + 2 * card \ V * card (Pow \ V) + Suc (card \ V) *
card (Pow V)
   using 3 by linarith
 also have ... = (1 + 2 * card V + Suc (card V)) * card (Pow V)
   by algebra
 also have ... = (3 * card V + 2) * card (Pow V)
 also have ... = (3 * card V + 2) * (2 ^ card V)
   using card-Pow finite-V by fastforce
 finally show ?thesis.
qed
\mathbf{lemma} \ (\mathbf{in} \ normalized\text{-}MLSSmf\text{-}clause) \ size\text{-}restriction\text{-}on\text{-}UnionOfVennRegions} :
  card\ (restriction-on-UnionOfVennRegions\ \alpha s) \leq Suc\ (length\ \alpha s)
 apply (induction \alpha s rule: restriction-on-UnionOfVennRegions.induct)
  apply simp+
  by (metis add-mono-thms-linordered-semiring(2) card.infinite card-insert-if fi-
nite-insert le-SucI plus-1-eq-Suc)
lemma (in normalized-MLSSmf-clause) length-all-V-set-lists:
  length \ all - V - set - lists = 2 \ \ card \ (P^+ \ V)
  unfolding all-V-set-lists-def
  using length-subseqs set-V-set-list distinct-V-set-list distinct-card
 by force
lemma (in normalized-MLSSmf-clause) length-F-list:
  length F-list = card F
 unfolding F-list-def F-def
 by (auto simp add: length-remdups-card-conv)
lemma (in normalized-MLSSmf-clause) size-introduce-UnionOfVennRegions:
  card\ introduce-UnionOfVennRegions \leq Suc\ (2\ \widehat{\ }card\ V)*2\ \widehat{\ }2\ \widehat{\ }card\ V
  have 1: card (restriction-on-UnionOfVennRegions \alpha s) \leq Suc \ (2 \ \widehat{\ } card \ V)
   if \alpha s \in set \ all \text{-} V\text{-}set\text{-}lists \ \mathbf{for} \ \alpha s
 proof -
   from that have length \alpha s \leq length \ V-set-list
     unfolding all-V-set-lists-def
     using length-subseq-le by blast
   then have length \alpha s \leq card \ (P^+ \ V)
     by (metis distinct-V-set-list distinct-card set-V-set-list)
   then have length \alpha s \leq 2 ^ card V
     using card-Pow finite-V by fastforce
   with size-restriction-on-UnionOfVennRegions[of \alpha s]
```

```
have card (restriction-on-UnionOfVennRegions \alpha s) \leq Suc \ (2 \ \widehat{\ } card \ V)
     by linarith
   then show ?thesis by fastforce
  from length-all-V-set-lists have card (set all-V-set-lists) = 2 ^{\sim} card (P^+ V)
   using distinct-card distinct-all-V-set-lists by metis
 also have ... \leq 2 ^ card (Pow V) by auto also have ... = 2 ^ 2 ^ card V
   using finite-V by (simp add: card-Pow)
 finally have 2: card (set all-V-set-lists) \leq 2 \hat{\ } 2 \hat{\ } card V.
 let ?atoms = \bigcup (restriction-on-UnionOfVennRegions `set all-V-set-lists)
 from AT-inj have inj-on AT ?atoms
   using inj-on-def by force
 from 1 have (\sum \alpha s \in set \ all - V - set - lists. \ card \ (restriction-on-Union Of Venn Regions))
(\alpha s)
   Suc\ (2 \cap card\ V) * (card\ (set\ all-V-set-lists))
   using Sum-le-times[where ?s = set all-V-set-lists
                      and ?f = \lambda \alpha s. card (restriction-on-UnionOfVennRegions \alpha s)
 with 2 have (\sum \alpha s \in set \ all - V - set - lists. \ card \ (restriction-on-Union Of Venn Regions))
   Suc (2 \cap card\ V) * 2 \cap 2 \cap card\ V
   by (meson Suc-mult-le-cancel le-trans)
 moreover
 from card-UN-le[where ?I = set \ all-V-set-lists \ and \ ?A = restriction-on-Union Of Venn Regions]
 have card\ ?atoms \le (\sum \alpha s \in set\ all\ -V\ -set\ -lists.\ card\ (restriction\ -on\ -Union\ Of\ Venn\ Regions
\alpha s))
   by blast
 ultimately
 have card ? atoms \leq Suc (2 ^ card V) * 2 ^ 2 ^ card V
   by linarith
 moreover
 {f from}\ introduce\mbox{-}Union\mbox{Of} VennRegions\mbox{-}normalized
 have finite introduce-UnionOfVennRegions
   unfolding normalized-MLSS-clause-def by blast
  then have finite ?atoms
   using finite-image-iff \(\cdot inj\)-on AT ?atoms\(\cdot\)
   unfolding introduce-UnionOfVennRegions-def by blast
  ultimately
  show ?thesis
   unfolding introduce-UnionOfVennRegions-def
   using card-image[where ?f = AT and ?A = ?atoms]
   using <inj-on AT ?atoms>
   by presburger
qed
```

lemma (in normalized-MLSSmf-clause) length-choices-from-lists:

```
\forall choice \in set (choices-from-lists xss). length choice = length xss
 by (induction xss) auto
lemma (in normalized-MLSSmf-clause) size-introduce-w:
  \forall \ clause \in introduce\text{-}w. \ card \ clause \leq 2 \ \widehat{\ } (2 * 2 \ \widehat{\ } card \ V) * card \ F
proof
 let ?xss = map(\lambda(l, m, f)). restriction-on-FunOfUnionOfVennRegions l m f)
                (List.product all-V-set-lists (List.product all-V-set-lists F-list))
 fix clause assume clause \in introduce-w
 then obtain choice where choice: choice \in set (choices-from-lists ?xss) clause
= set choice
   unfolding introduce-w-def by auto
  then have card clause < length choice
   using card-length by blast
 also have length choice = length ?xss
   using choice length-choices-from-lists by blast
  also have \dots = length (List.product all-V-set-lists (List.product all-V-set-lists
F-list))
   by simp
 also have ... = length \ all - V-set-lists * length \ all - V-set-lists * length \ F-list
   using length-product by auto
 also have ... = 2 \widehat{} card (P^+ V) * 2 \widehat{} card (P^+ V) * card F
   \mathbf{using}\ \mathit{length-all-V-set-lists}\ \mathit{length-F-list}\ \mathbf{by}\ \mathit{presburger}
 also have ... = 2 \ (2 * (card (P^+ V))) * card F
   by (simp add: mult-2 power-add)
 also have ... \leq 2 \ \widehat{} \ (2 * (card (Pow V))) * card F
 also have ... = 2 \hat{(2 * 2 \hat{card} V)} * card F
   using card-Pow by auto
 finally show card clause \leq 2 (2 * 2 \text{ card } V) * \text{card } F.
qed
lemma (in normalized-MLSSmf-clause) card-P-P-V-ge-1:
  card\ (Pow\ (P^+\ V)\times Pow\ (P^+\ V))\geq 1
proof -
 have Pow(P^+ V) \neq \{\} by blast
 then have Pow(P^+ V) \times Pow(P^+ V) \neq \{\} by blast
 from finite-V P-plus-finite have finite (Pow (P^+ V)) by blast
  then have finite (Pow\ (P^+\ V) \times Pow\ (P^+\ V)) by blast
  ultimately
 have card (Pow\ (P^+\ V) \times Pow\ (P^+\ V)) > 0 by auto
  then show ?thesis by linarith
qed
\mathbf{lemma} \ (\mathbf{in} \ normalized\text{-}MLSSmf\text{-}clause) \ size\text{-}reduce\text{-}norm\text{-}literal\text{:}}
 assumes norm-literal lt
   shows card (reduce-literal lt) \leq 2 * card (Pow (P^+ V) \times Pow (P^+ V))
 using assms
```

```
proof (cases lt rule: norm-literal.cases)
  case (inc f)
  let ?l = \lambda(l, m). AT (Var \ w_{fm} =_s Var \ w_{fm} \sqcup_s Var \ w_{fl})
  from inc have reduce-literal lt \subseteq ?l '(Pow(P^+ V) \times Pow(P^+ V))
   by force
  then have card (reduce-literal lt) \leq card (Pow (P<sup>+</sup> V) \times Pow (P<sup>+</sup> V))
   \mathbf{by}\ (\mathit{meson\ finite-SigmaI\ finite-V\ pow-of-p-Plus-finite\ surj-card-le})
  also have ... \leq 2 * card (Pow (P^+ V) \times Pow (P^+ V)) by linarith
  finally show ?thesis.
\mathbf{next}
  case (dec\ f)
  let ?l = \lambda(l, m). AT (Var \ w_{fl} =_s Var \ w_{fl} \sqcup_s Var \ w_{fm})
  from dec have reduce-literal lt \subseteq ?l ' (Pow(P^+ V) \times Pow(P^+ V))
   by force
  then have card (reduce-literal lt) \leq card (Pow (P<sup>+</sup> V) \times Pow (P<sup>+</sup> V))
   by (meson finite-SigmaI finite-V pow-of-p-Plus-finite surj-card-le)
  also have ... \leq 2 * card (Pow (P^+ V) \times Pow (P^+ V)) by linarith
  finally show ?thesis.
\mathbf{next}
  case (add f)
  let ?l = \lambda(l, m). AT (Var \ w_{fl} \cup m) =_s Var \ w_{fl} \cup_s Var \ w_{fm})
  from add have reduce-literal lt \subseteq ?l ' (Pow(P^+ V) \times Pow(P^+ V))
   by force
  then have card (reduce-literal lt) \leq card (Pow (P<sup>+</sup> V) \times Pow (P<sup>+</sup> V))
   \mathbf{by}\ (\mathit{meson\ finite}\text{-}\mathit{SigmaI\ finite}\text{-}\mathit{V\ pow-of-p-Plus-finite\ surj-card-le})
  also have ... \leq 2 * card (Pow (P^+ V) \times Pow (P^+ V)) by linarith
  finally show ?thesis.
next
  case (mul\ f)
  let ?11 = \lambda(l, m). AT (Var (InterOfWAux f l m) =_s Var w_{fl} -_s Var w_{fm})
 let ?l2 = \lambda(l, m). AT (Var \ w_{fl \cap m} =_s Var \ w_{fl -_s} Var \ (InterOfWAux \ f \ l \ m))
  from mul have reduce-literal lt \subseteq ?l1 ' (Pow(P^+ V) \times Pow(P^+ V)) \cup ?l2 '
(Pow (P^+ V) \times Pow (P^+ V))
   by force
  moreover
 have ?l1 \cdot (Pow(P^+ V) \times Pow(P^+ V)) \cap ?l2 \cdot (Pow(P^+ V) \times Pow(P^+ V))
   by fastforce
  moreover
  from finite-V P-plus-finite have finite (Pow (P^+ V) \times Pow (P^+ V))
  then have finite (?11 '(Pow (P^+ V) \times Pow (P^+ V))) finite (?12 '(Pow (P^+ V)))
V) \times Pow (P^+ V))
   by blast+
 ultimately
 have card (reduce-literal lt) \leq card (?l1 '(Pow (P+ V) × Pow (P+ V))) + card
(?l2 \cdot (Pow (P^+ V) \times Pow (P^+ V)))
   using card-Un-disjoint[where ?A = ?l1 ' (Pow (P^+ V) \times Pow (P^+ V)) and
?B = ?l2 \cdot (Pow (P^+ V) \times Pow (P^+ V))]
```

```
using card-mono[where ?A = reduce-literal lt and ?B = ?l1 ' (Pow (P^+ V))
\times Pow (P^+ V)) \cup ?l2 \cdot (Pow (P^+ V) \times Pow (P^+ V))]
   by fastforce
  also have ... \leq card (Pow (P^+ V) \times Pow (P^+ V)) + card (Pow (P^+ V) \times Pow (P^+ V))
Pow(P^+V)
   using card-image-le[where ?A = Pow(P^+ V) \times Pow(P^+ V)]
   using \langle finite\ (Pow\ (P^+\ V) \times Pow\ (P^+\ V)) \rangle add-mono by blast
 also have ... = 2 * card (Pow (P^+ V) \times Pow (P^+ V)) by linarith
  finally show ?thesis.
\mathbf{next}
  case (le f g)
 let ?l = \lambda l. AT (Var w_{gl} =_s Var w_{gl} \sqcup_s Var w_{fl})
  from le have reduce-literal lt \subseteq ?l \cdot Pow(P^+ \stackrel{\circ}{V})
   by force
  then have card (reduce-literal lt) \leq card (Pow (P<sup>+</sup> V))
   by (simp add: finite-V surj-card-le)
  also have ... \leq card \ (Pow \ (P^+ \ V) \times Pow \ (P^+ \ V))
   by (simp add: finite-V surj-card-le)
 also have ... \le 2 * card (Pow (P^+ V) \times Pow (P^+ V))
   by linarith
 finally show ?thesis.
next
  case (eq \ x \ y)
 then have card (reduce-literal lt) = 1 by simp
  with card-P-P-V-ge-1 show ?thesis by linarith
next
  case (eq\text{-}empty \ x \ n)
 then have card (reduce-literal lt) = 1 by simp
  with card-P-P-V-ge-1 show ?thesis by linarith
next
  case (neq \ x \ y)
 then have card (reduce-literal\ lt) = 1 by simp
  with card-P-P-V-ge-1 show ?thesis by linarith
  case (union \ x \ y \ z)
 then have card (reduce-literal lt) = 1 by simp
  with card-P-P-V-qe-1 show ?thesis by linarith
next
 case (diff x y z)
 then have card (reduce-literal lt) = 1 by simp
  with card-P-P-V-ge-1 show ?thesis by linarith
next
  case (single \ x \ y)
 then have card (reduce-literal\ lt) = 1 by simp
  with card-P-P-V-ge-1 show ?thesis by linarith
next
  case (app \ x f y)
  then have card (reduce-literal lt) = 1 by simp
  with card-P-P-V-ge-1 show ?thesis by linarith
```

```
qed
```

```
lemma (in normalized-MLSSmf-clause) size-reduce-clause:
  card\ reduce\text{-}clause \leq 2 \ \widehat{}\ (Suc\ (2*2\ \widehat{}\ card\ V))*size_m\ \mathcal{C}
proof -
  have card (P^+ V) < 2 \ \hat{} \ card \ V
   using card-Pow[of V] finite-V by simp
  from card-UN-le
  have card reduce-clause \leq (\sum lt \in set \ C. \ card \ (reduce-literal \ lt))
   using reduce-clause-finite
   unfolding reduce-clause-def
   by blast
  also have ... \leq 2 * card (Pow (P^+ V) \times Pow (P^+ V)) * card (set C)
   using size-reduce-norm-literal norm-\mathcal C literal-in-norm-clause-is-norm
   using Sum-le-times [where ?s = set \ C and ?f = \lambda lt. \ card \ (reduce-literal \ lt)
                      and ?n = 2 * card (Pow (P^+ V) \times Pow (P^+ V))]
   bv blast
  also have ... = 2 * card (Pow (P^+ V)) * card (Pow (P^+ V)) * card (set C)
   using card-cartesian-product by auto
  also have ... = 2 * 2 ^(card (P^+ V)) * 2 ^(card (P^+ V)) * card (set C)
   using card-Pow[of P^+ V] finite-V P-plus-finite by fastforce
 also have ... \leq 2 * 2 ^(2 ^c \text{ card } V) * 2 ^(2 ^c \text{ card } V) * \text{ card } (\text{set } C)
   using \langle card (P^+ V) \leq 2 \cap card V \rangle
   using power-increasing-iff[where ?b = 2 and ?x = card(P^+ V) and ?y = 2
^{\sim} card V
   by (simp add: mult-le-mono)
  also have ... = 2 \cap (Suc (2 * 2 \cap card V)) * card (set C)
   by (simp add: power2-eq-square power-even-eq)
 also have ... = 2 \cap (Suc (2 * 2 \cap card V)) * size_m C
   unfolding size_m-def by blast
 finally show ?thesis.
qed
theorem (in normalized-MLSSmf-clause) size-reduced-dnf:
 \forall clause \in reduced-dnf. card clause \leq
   2 (2 * 2 (3 * size_m C)) * (2 * size_m C) +
   (3 * (3 * size_m C) + 2) * (2 ^ (3 * size_m C)) +
   Suc \left(2 \cap (3 * size_m C)\right) * 2 \cap 2 \cap (3 * size_m C) +
    2 \cap (Suc (2 * 2 \cap (3 * size_m C))) * size_m C
 let ?upper-bound = 2 (2 * 2 (3 * size_m C)) * (2 * size_m C) +
                   (3 * (3 * size_m C) + 2) * (2 ^ (3 * size_m C)) +
                    Suc \left(2 \cap (3 * size_m C)\right) * 2 \cap 2 \cap (3 * size_m C) +
                    2 \cap (Suc (2 * 2 \cap (3 * size_m C))) * size_m C
  \{ \text{fix } clause \ \text{assume} \ clause \in reduced-dnf \} 
   then obtain fms where fms \in introduce-w
             and clause: clause = fms \cup introduce - v \cup introduce - Union Of Venn Regions
\cup reduce-clause
     unfolding reduced-dnf-def by blast
```

```
then have card\ clause \le card\ fms + card\ introduce - v + card\ introduce - Union Of Venn Regions
+\ card\ reduce\text{-}clause
     by (auto intro!: order.trans[OF card-Un-le])
    also have ... \leq 2 \ \widehat{} \ (2 * 2 \ \widehat{} \ card \ V) * card \ F + card \ introduce-v + card
introduce-UnionOfVennRegions + card reduce-clause
     using size-introduce-w \land fms \in introduce-w \gt by fastforce
   also have ... \leq 2 \hat{\ } (2 * 2 \hat{\ } card V) * card F + (3 * card V + 2) * (2 \hat{\ } card
V) + card\ introduce-UnionOfVennRegions + card\ reduce-clause
     using size-introduce-v by simp
   also have ... \leq 2 \hat{\ } (2 * 2 \hat{\ } card \ V) * card \ F + (3 * card \ V + 2) * (2 \hat{\ } card
V) + Suc (2 \cap card V) * 2 \cap 2 \cap card V + card reduce-clause
     using size-introduce-UnionOfVennRegions by simp
   also have ... \leq 2 \hat{\ }(2 * 2 \hat{\ } card V) * card F + (3 * card V + 2) * (2 \hat{\ } card
V) + Suc (2 \cap card V) * 2 \cap 2 \cap card V + 2 \cap (Suc (2 * 2 \cap card V)) * size_m C
     using size-reduce-clause by simp
   also have ... < ?upper-bound
     using card-V-upper-bound card-F-upper-bound
    by (metis Suc-le-mono add-le-mono add-le-mono1 mult-le-mono mult-le-mono1
mult-le-mono2 one-le-numeral power-increasing)
   finally have card\ clause \leq ?upper-bound.
  then show ?thesis by blast
qed
end
theory MLSSmf-to-MLSS-Soundness
 imports MLSSmf-to-MLSS MLSSmf-Semantics Proper-Venn-Regions MLSSmf-HF-Extras
begin
{\bf locale}\ satisfiable\text{-}normalized\text{-}MLSSmf\text{-}clause =
  normalized-MLSSmf-clause C for C :: ('v, 'f) MLSSmf-clause +
   fixes M_v :: 'v \Rightarrow hf
     and M_f :: 'f \Rightarrow hf \Rightarrow hf
 assumes model-for-C: I_{cl} M_v M_f C
begin
interpretation proper-Venn-regions V M<sub>v</sub>
  using finite-V by unfold-locales
function \mathcal{M} :: ('v, 'f) \ \textit{Composite} \Rightarrow \textit{hf} \ \textbf{where}
  \mathcal{M}(Solo x) = M_v x
 \mathcal{M}(v_{\alpha})
             = proper-Venn-region \alpha
 \mathcal{M}(UnionOfVennRegions\ xss) = \bigsqcup HF((\mathcal{M} \circ VennRegion)\ `set\ xss)
 \mathcal{M}(w_{fl}) = (M_f f) (\mathcal{M}(UnionOfVennRegions(var-set-to-var-set-list l)))
 \mathcal{M} (UnionOfVars xs) = | | HF (M<sub>v</sub> 'set xs)
 \mathcal{M} (InterOfVars xs) = \prod HF (M_v 'set xs)
 \mathcal{M}\ (\mathit{MemAux}\ x) = \mathit{HF}\ \{\mathit{M}_{\mathit{v}}\ \mathit{x}\}
 \mathcal{M} (InterOfWAux f l m) = \mathcal{M} w_{fl} - \mathcal{M} w_{fm}
|\mathcal{M}(InterOfVarsAux\ xs)| = M_v\ (\mathring{h}d\ xs) - \mathring{\mathcal{M}}(InterOfVars\ (tl\ xs))
```

```
by pat-completeness auto
termination
 apply (relation measure (\lambda comp. case comp of
                  InterOfVarsAux \rightarrow Suc \ \theta
                 UnionOfVennRegions \rightarrow Suc \ \theta
                 w_{--} \Rightarrow Suc (Suc \ \theta)
                 InterOfWAux - - - \Rightarrow Suc (Suc (Suc 0))
                 | - \Rightarrow \theta))
      apply auto
 done
{f lemma}\ soundness-restriction-on-InterOfVars:
  assumes set \ xs \in P^+ \ V
   shows \forall a \in restriction\text{-}on\text{-}InterOfVars xs. I_{sa} \mathcal{M} a
proof (induction xs rule: restriction-on-InterOfVars.induct)
 case (2 x)
  {fix a assume a \in restriction-on-InterOfVars [x]
   then have a = Var (InterOfVars [x]) =_s Var (Solo x) by simp
   then have I_{sa} \mathcal{M} a by (simp add: HInter-singleton)
  then show ?case by blast
\mathbf{next}
 case (3 \ y \ x \ xs)
 \{fix a assume a \in restriction-on-InterOfVars <math>(y \# x \# xs) - restriction-on-InterOfVars \}
(x \# xs)
    then consider a = Var (InterOfVarsAux (y \# x \# xs)) =_s Var (Solo y) -_s
Var (InterOfVars (x \# xs))
                 | a = Var (InterOfVars (y \# x \# xs)) =_s Var (Solo y) -_s Var
(InterOfVarsAux\ (y \# x \# xs))
     by fastforce
   then have I_{sa} \mathcal{M} a
   proof (cases)
     case 1
     then show ?thesis by simp
   next
     case 2
     have \prod HF (insert (M_v \ y) (insert (M_v \ x) (M_v \ `set \ xs))) =
           \bigcap (HF ((insert (M_v \ x) \ (M_v \ 'set \ xs))) <math>\triangleleft M_v \ y)
       using HF-insert-hinsert by auto
     also have ... = M_v y \sqcap \prod HF (insert (M_v x) (M_v `set xs))
       by (simp add: HF-nonempty)
     also have ... = M_v y - (M_v y - \prod HF (insert (M_v x) (M_v `set xs)))
     finally show ?thesis using 2 by simp
   qed
  with 3.IH show ?case by blast
qed simp
```

```
{f lemma}\ soundness-restriction-on-Union Of Vars:
  assumes set xs \in Pow V
    shows \forall a \in restriction-on-UnionOfVars xs. I_{sa} \mathcal{M} a
proof (induction xs rule: restriction-on-UnionOfVars.induct)
  then show ?case by auto
\mathbf{next}
  case (2 x xs)
 \{fix a assume a \in restriction-on-UnionOfVars <math>(x \# xs) - restriction-on-UnionOfVars \}
      then have a: a = Var (UnionOfVars (x \# xs)) =_s Var (Solo x) \sqcup_s Var
(Union Of Vars xs)
      by fastforce
    have |HF(insert(M_v x)(M_v 'set xs))| = |HF(M_v 'set xs) \triangleleft M_v x)|
      by (simp add: HF-insert-hinsert)
    also have ... = M_v \times \sqcup \coprod HF (M_v \cdot set \times s) by auto
    finally have I_{sa} \mathcal{M} a
      using a by simp
  with 2.IH show ?case by blast
\mathbf{qed}
\mathbf{lemma}\ soundness\text{-}introduce\text{-}v\text{:}
  \forall fml \in introduce-v. interp\ I_{sa}\ \mathcal{M}\ fml
proof -
  \{ \mathbf{fix} \ \alpha \ \mathbf{assume} \ \alpha \in P^+ \ V \}
    have \mathcal{M} v_{\alpha} = \prod HF(M_v, \alpha) - ||HF(M_v, (V - \alpha))|
    also have ... = \prod HF((\mathcal{M} \circ Solo) \cdot \alpha) - \coprod HF((\mathcal{M} \circ Solo) \cdot (V - \alpha))
      by simp
    finally have I_{sa} \mathcal{M} (restriction-on-v \alpha)
      apply (simp add: set-V-list)
      using \langle \alpha \in P^+ | V \rangle
      by (metis Int-def inf.absorb2 mem-P-plus-subset set-diff-eq)
  then have \forall \alpha \in P^+ \ V. \ interp \ I_{sa} \ \mathcal{M} \ (AT \ (restriction-on-v \ \alpha))
    by simp
  moreover
  {f from}\ soundness\mbox{-}restriction\mbox{-}on\mbox{-}InterOfVars
  have \forall a \in (restriction\text{-}on\text{-}InterOfVars \circ var\text{-}set\text{-}to\text{-}list) \ \alpha. \ I_{sa} \ \mathcal{M} \ a \ \mathbf{if} \ \alpha \in P^+
V for \alpha
    by (metis comp-apply mem-P-plus-subset set-var-set-to-list that)
  then have \forall lt \in AT '\bigcup ((restriction-on-InterOfVars \circ var-set-to-list) 'P^+ V).
interp I_{sa} \mathcal{M} lt
    by fastforce
  moreover
  {f from}\ soundness-restriction-on-Union Of Vars
 have \forall a \in (restriction\text{-}on\text{-}UnionOfVars \circ var\text{-}set\text{-}to\text{-}list) \ \alpha. \ I_{sa} \ \mathcal{M} \ a \ \text{if} \ \alpha \in Pow
V for \alpha
```

```
by (metis Pow-iff comp-apply set-var-set-to-list that)
  then have \forall lt \in AT ' \bigcup ((restriction-on-UnionOfVars \circ var-set-to-list) ' Pow
V). interp I_{sa} \mathcal{M} lt
   by fastforce
  ultimately
  show ?thesis
    unfolding introduce-v-def by blast
\mathbf{qed}
\mathbf{lemma}\ soundness\text{-}restriction\text{-}on\text{-}UnionOfVennRegions}:
  assumes set \alpha s \in Pow (Pow V)
    shows \forall a \in restriction-on-Union Of VennRegions <math>\alpha s. \ I_{sa} \ \mathcal{M} \ a
proof (induction \alpha s rule: restriction-on-UnionOfVennRegions.induct)
  case 1
  then show ?case by auto
next
  case (2 \alpha \alpha s)
  \{fix a assume a \in restriction-on-UnionOfVennRegions <math>(\alpha \# \alpha s) - restric-
tion-on-UnionOfVennRegions \alpha s
    then have a: a = Var (UnionOfVennRegions (\alpha \# \alpha s)) =_s Var v_{\alpha} \sqcup_s Var
(UnionOfVennRegions \ \alpha s)
      by fastforce
    have \bigsqcup HF ((\mathcal{M} \circ VennRegion) \cdot set (\alpha \# \alpha s)) = \bigsqcup HF (insert (\mathcal{M} v_{\alpha}))
\circ VennRegion) `set \alpha s))
      by simp
    also have ... = \bigsqcup (HF ((\mathcal{M} \circ VennRegion) 'set \alpha s) \triangleleft \mathcal{M} v_{\alpha})
      by (simp add: HF-insert-hinsert)
    also have ... = \mathcal{M} v_{\alpha} \sqcup \coprod HF ((\mathcal{M} \circ VennRegion) \cdot set \alpha s)
      by blast
    finally have I_{sa} \mathcal{M} a using a by simp
  with 2.IH show ?case by blast
qed
\mathbf{lemma}\ soundness\text{-}introduce\text{-}UnionOfVennRegions:
 \forall lt \in introduce\text{-}UnionOfVennRegions. interp\ I_{sa}\ \mathcal{M}\ lt
proof
  fix lt assume lt \in introduce-UnionOfVennRegions
 then obtain \alpha s where \alpha s \in set \ all-V-set-lists lt \in AT 'restriction-on-UnionOfVennRegions
\alpha s
    unfolding introduce-UnionOfVennRegions-def by blast
  {\bf with}\ soundness-restriction-on-Union Of Venn Regions
  show interp I_{sa} \mathcal{M} lt
    using set-all-V-set-lists by fastforce
qed
{f lemma}\ soundness\ restriction\ on\ FunOfUnionOfVennRegions:
 assumes l'-l: l' = var-set-to-var-set-list l
     and m'-m: m' = var-set-set-to-var-set-list m
```

```
shows \exists lt \in set \ (restriction\text{-}on\text{-}FunOfUnionOfVennRegions}\ l'\ m'\ f).\ interp\ I_{sa}
M lt
proof (cases \mathcal{M} (UnionOfVennRegions l') = \mathcal{M} (UnionOfVennRegions m'))
  case True
  then have \mathcal{M} w_{fl} = \mathcal{M} w_{fm}
    using l'-l m'-m by auto
  then have interp I_{sa} \mathcal{M} (AT (Var w_{fset l'} =_s Var w_{fset m'}))
    using l'-l m'-m by auto
  then show ?thesis by simp
next
  {\bf case}\ \mathit{False}
 then have interp I_{sa} \mathcal{M} (AF (Var (UnionOfVennRegions l') = Var (UnionOfVennRegions
    by fastforce
  then show ?thesis by simp
qed
\mathbf{lemma}\ soundness\text{-}introduce\text{-}w:
  \exists clause \in introduce\text{-}w. \ \forall lt \in clause. interp \ I_{sa} \ \mathcal{M} \ lt
proof -
  let ?f = \lambda lts. if interp I_{sa} \mathcal{M} (lts! 0) then lts! 0 else lts! 1
 let ?g = \lambda(l, m, f). restriction-on-FunOfUnionOfVennRegions l m f
 let ?xs = List.product all-V-set-lists (List.product all-V-set-lists F-list)
 have \forall (l', m', f) \in set ?xs. ?f (?g (l', m', f)) \in set (?g (l', m', f))
    by fastforce
  with valid-choice[where ?f = ?f and ?g = ?g and ?xs = ?xs]
  have map ?f(map ?g ?xs) \in set(choices-from-lists(map ?g ?xs))
    by fast
  then have set (map ?f (map ?g ?xs)) \in introduce-w
    unfolding introduce-w-def
    using mem-set-map[where ?x = map ?f (map ?g ?xs) and ?f = set]
    by blast
  moreover
  have \{x \in set \ V\text{-set-list}.\ x \in set\ l'\} = set\ l'\ \text{if}\ l' \in set\ all\ V\text{-set-lists}\ \text{for}\ l'
    using that set-V-set-list set-all-V-set-lists by auto
  then have interp I_{sa} \mathcal{M} (?f (restriction-on-FunOfUnionOfVennRegions l' m'
f))
    if l' \in set \ all \text{-} V\text{-}set \text{-} lists \ m' \in set \ all \text{-} V\text{-}set \text{-} lists \ for \ l' \ m' \ f
    using that by auto
  then have \forall lt \in set \ (map \ ?f \ (map \ ?g \ ?xs)). \ interp \ I_{sa} \ \mathcal{M} \ lt
    by force
  ultimately
  show ?thesis by blast
qed
\mathbf{lemma}\ soundness\text{-}reduce\text{-}literal\text{:}
 assumes lt \in set C
    shows \forall fml \in reduce\text{-}literal\ lt.\ interp\ I_{sa}\ \mathcal{M}\ fml
proof -
```

```
from norm-C \langle lt \in set C \rangle have norm-literal lt by auto
  then show ?thesis
  proof (cases rule: norm-literal.cases)
    case (inc f)
    show ?thesis
    proof
      fix fml assume fml \in reduce-literal lt
      then have fml \in reduce\text{-}literal\ (AT_m\ (inc(f)))
         using inc by blast
      then obtain l m where lm: l \subseteq P^+ V m \subseteq P^+ V l \subseteq m
                          and fml: fml = AT (Var w_{fm} =_s Var w_{fm} \sqcup_s Var w_{fl})
      from model-for-C \ \langle lt \in set \ C \rangle \ inc \ have \ I_a \ M_v \ M_f \ (inc(f)) \ by \ fastforce
      then have \forall s \ t. \ s \leq t \longrightarrow (M_f \ f) \ s \leq (M_f \ f) \ t \ \text{by } simp
      moreover
      from lm have | HF ((\mathcal{M} \circ VennRegion) ' l) < | HF ((\mathcal{M} \circ VennRegion) '
m)
          by (metis HUnion-proper-Venn-region-inter \mathcal{M}.simps(2) comp-apply im-
age-cong inf.absorb-iff2)
      ultimately
    have M_f f ( \sqcup HF ((\mathcal{M} \circ VennRegion) `l)) \leq M_f f ( \sqcup HF ((\mathcal{M} \circ VennRegion)) )
'm))
      then have M_f f (\bigsqcup HF ((\mathcal{M} \circ VennRegion) \cdot m)) =
                      M_f f ( \bigsqcup HF ((\mathcal{M} \circ VennRegion) ' m)) \sqcup M_f f ( \bigsqcup HF ((\mathcal{M} \circ VennRegion) ' m)) \sqcup M_f f ( )
VennRegion) (l)
        by blast
      with fml lm show interp I_{sa} \mathcal{M} fml
     by (auto simp only: interp.simps I_{sa}.simps I_{st}.simps \mathcal{M}.simps set-var-set-set-to-var-set-list)
    qed
  next
    case (dec \ f)
    show ?thesis
    proof
      fix fml assume fml \in reduce-literal lt
      then have fml \in reduce\text{-}literal\ (AT_m\ (dec(f)))
        using dec by blast
      then obtain l m where lm: l \subseteq P^+ \ V \ m \subseteq P^+ \ V \ l \subseteq m and fml: fml = AT \ (Var \ w_{fl} =_s \ Var \ w_{fl} \sqcup_s \ Var \ w_{fm})
      from model-for-C \langle lt \in set \ C \rangle dec have I_a \ M_v \ M_f \ (dec(f)) by fastforce
      then have \forall s \ t. \ s \leq t \longrightarrow (M_f \ f) \ t \leq (M_f \ f) \ s \ \text{by } simp
      from lm have \bigsqcup HF ((\mathcal{M} \circ VennRegion) ` l) \leq \bigsqcup HF ((\mathcal{M} \circ VennRegion) `
m)
          by (metis HUnion-proper-Venn-region-inter \mathcal{M}.simps(2) comp-apply im-
age-cong inf.absorb-iff2)
      ultimately
         have M_f f (|HF| ((\mathcal{M} \circ VennRegion) ' m)) \leq M_f f (|HF| ((\mathcal{M} \circ VennRegion))
```

```
VennRegion() (l)
        by blast
      then have M_f f (\bigcup HF ((\mathcal{M} \circ VennRegion) ' l)) =
                        M_f f ( \bigsqcup HF ((\mathcal{M} \circ VennRegion) ' l)) \sqcup M_f f ( \bigsqcup HF ((\mathcal{M} \circ VennRegion) ' l)) ) \sqcup M_f f ( \bigsqcup HF ((\mathcal{M} \circ VennRegion) ' l)) )
VennRegion) 'm))
         by blast
      with fml lm show interp I_{sa} \mathcal{M} fml
      by (auto simp only: interp.simps I_{sa}.simps I_{st}.simps \mathcal{M}.simps set-var-set-to-var-set-list)
    qed
  \mathbf{next}
    case (add f)
    show ?thesis
    proof
      fix fml assume fml \in reduce-literal lt
      then have fml \in reduce\text{-}literal\ (AT_m\ (add(f)))
         using add by blast
      then obtain l m where lm: l \subseteq P^+ \ V \ m \subseteq P^+ \ V
                           and \mathit{fml} : \mathit{fml} = \mathit{AT} \ (\mathit{Var} \ w_{\mathit{fl} \cup \mathit{m}} =_s \mathit{Var} \ w_{\mathit{fl}} \sqcup_s \mathit{Var} \ w_{\mathit{fm}})
         by auto
      from model-for-C \land lt \in set \ C \land add \ have \ I_a \ M_v \ M_f \ (add(f)) \ by \ fastforce
      then have \forall s \ t. \ (M_f \ f) \ (s \sqcup t) = (M_f \ f) \ s \sqcup (M_f \ f) \ t \ \mathbf{by} \ simp
      moreover
      have \bigsqcup HF ((\mathcal{M} \circ VennRegion) \cdot (l \cup m)) = \bigsqcup HF ((\mathcal{M} \circ VennRegion) \cdot l)
\sqcup \sqcup HF ((\mathcal{M} \circ VennRegion) 'm)
         using HUnion-proper-Venn-region-union \mathcal{M}.simps(2)\ lm(1)\ lm(2) by auto
      ultimately
      have M_f f (\mid HF ((\mathcal{M} \circ VennRegion) '(l \cup m))) =
            M_f f ( \bigsqcup HF ((\mathcal{M} \circ VennRegion) \cdot l)) \sqcup M_f f ( \bigsqcup HF ((\mathcal{M} \circ VennRegion))) 
'm))
         by auto
      with fml lm show interp I_{sa} \mathcal{M} fml
         using set-var-set-set-to-var-set-list
         apply (simp only: interp.simps I_{sa}.simps I_{st}.simps \mathcal{M}.simps)
         by (metis le-sup-iff)
    qed
  next
    case (mul f)
    with model-for-C \langle lt \in set \ C \rangle have I_a \ M_v \ M_f \ (mul(f)) by fastforce
    then have f-mul: \forall s \ t. \ (M_f \ f) \ (s \sqcap t) = (M_f \ f) \ s \sqcap (M_f \ f) \ t \ \text{by } simp
    have InterOfWAux: I_{sa} \mathcal{M} (Var (InterOfWAux f l m) = _s Var w_{fl} - _s Var w_{fm})
for l m
      by auto
    \{ \mathbf{fix} \ l \ m \ \mathbf{assume} \ l \subseteq P^+ \ V \ m \subseteq P^+ \ V
     then have \bigsqcup HF ((\mathcal{M} \circ VennRegion) \cdot (l \cap m)) = \bigsqcup HF ((\mathcal{M} \circ VennRegion))
'l) \sqcap \mid HF ((\mathcal{M} \circ VennRegion) `m)
         using HUnion-proper-Venn-region-inter by force
      then have \mathcal{M} (UnionOfVennRegions (var-set-set-to-var-set-list (l \cap m))) =
                   \mathcal{M} (UnionOfVennRegions (var-set-set-to-var-set-list l)) \sqcap
                   \mathcal{M} (UnionOfVennRegions (var-set-set-to-var-set-list m))
```

```
\textbf{using} \ \textit{set-var-set-set-to-var-set-list} \ \langle l \subseteq P^+ \ V \rangle \ \langle m \subseteq P^+ \ V \rangle
        by (metis \ \mathcal{M}.simps(3) \ inf.absorb-iff2 \ inf-left-commute)
      with f-mul have \mathcal{M} w_{fl\cap m} = \mathcal{M} w_{fl} \cap \mathcal{M} w_{fm}
        by auto
      moreover
      from InterOfWAux have \mathcal{M} (InterOfWAux f l m) = \mathcal{M} w_{fl} - \mathcal{M} w_{fm}
        by simp
      ultimately
      have \mathcal{M} w_{fl \cap m} = \mathcal{M} w_{fl} - \mathcal{M} (InterOfWAux f l m)
      then have I_{sa} \mathcal{M} (Var w_{fl \cap m} =_s Var w_{fl} -_s Var (InterOfWAux f l m))
    }
   with InterOfWAux show ?thesis
      using mul by auto
 next
   case (le f g)
   show ?thesis
   proof
      fix fml assume fml \in reduce-literal lt
      then have fml \in reduce\text{-}literal\ (AT_m\ (f \leq_m g))
        using le by blast
      then obtain l where l: l \subseteq P^+ V
                        and fml: fml = AT (Var w_{gl} =_s Var w_{gl} \sqcup_s Var w_{fl})
      \textbf{from} \ \textit{model-for-C} \ \textit{`(lt \in set C)'} \ \textit{le have} \ \textit{I}_{\textit{a}} \ \textit{M}_{\textit{v}} \ \textit{M}_{\textit{f}} \ (\textit{f} \ \underline{\leq}_{\textit{m}} \ \textit{g}) \ \textbf{by} \ \textit{fastforce}
      then have \forall s. (M_f f) \ s \leq (M_f g) \ s \ \text{by} \ simp
       then have M_f f (\bigsqcup HF ((\mathcal{M} \circ VennRegion) \cdot l)) \leq M_f g (\bigsqcup HF ((\mathcal{M} \circ VennRegion) \cdot l))
VennRegion) (l)
        by auto
      with fml l show interp I_{sa} \mathcal{M} fml
        using set-var-set-set-to-var-set-list
        by (auto simp only: interp.simps I_{sa}.simps I_{st}.simps \mathcal{M}.simps)
   qed
 next
   case (eq\text{-}empty\ x\ n)
   with \langle lt \in set \ C \rangle model-for-C have M_v \ x = 0 by auto
   show ?thesis
   proof
      fix fml assume fml \in reduce-literal lt
      with eq-empty have fml = AT \ (Var \ (Solo \ x) =_s \emptyset \ n)
      with \langle M_v | x = 0 \rangle show interp I_{sa} \mathcal{M} fml by auto
   qed
 next
   case (eq \ x \ y)
   with \langle lt \in set \ C \rangle model-for-C have M_v \ x = M_v \ y by auto
   show ?thesis
   proof
```

```
fix fml assume fml \in reduce-literal lt
      with eq have fml = AT \ (Var \ (Solo \ x) =_s Var \ (Solo \ y))
        by simp
      with \langle M_v | x = M_v | y \rangle show interp I_{sa} | \mathcal{M} fml by auto
    qed
  next
    case (neq x y)
    with \langle lt \in set \ C \rangle model-for-C have M_v \ x \neq M_v \ y by auto
    show ?thesis
    proof
      fix fml assume fml \in reduce-literal lt
      with neg have fml = AF (Var (Solo x) =_s Var (Solo y))
        by simp
      with \langle M_v | x \neq M_v | y \rangle show interp I_{sa} \mathcal{M} fml by auto
    qed
  next
    case (union \ x \ y \ z)
    with \langle lt \in set \ C \rangle model-for-C have M_v \ x = M_v \ y \sqcup M_v \ z by fastforce
   then have interp I_{sa} \mathcal{M} (AT (Var (Solo x) =_s Var (Solo y) \sqcup_s Var (Solo z)))
by simp
    with union show ?thesis by auto
  next
    case (diff x y z)
    with \langle lt \in set \ \mathcal{C} \rangle model-for-\mathcal{C} have M_v \ x = M_v \ y - M_v \ z by fastforce
   then have interp I_{sa} \mathcal{M} (AT (Var (Solo x) =_s Var (Solo y) -_s Var (Solo z)))
by simp
    with diff show ?thesis by auto
  next
    case (single \ x \ y)
    with \langle lt \in set \ \mathcal{C} \rangle model-for-\mathcal{C} have M_v \ x = \mathit{HF} \ \{M_v \ y\} by fastforce
     then have interp I_{sa} \mathcal{M} (AT (Var (Solo x) =_s Single (Var (Solo y)))) by
simp
    with single show ?thesis by auto
  next
    case (app \ x f y)
    with \langle lt \in set \ \mathcal{C} \rangle \ model\text{-}for\text{-}\mathcal{C}
    have M_v x = (M_f f) (M_v y) by fastforce
    moreover
    from app \langle lt \in set C \rangle have y \in V
      unfolding V-def by force
    \mathbf{with}\ variable\text{-}as\text{-}composition\text{-}of\text{-}proper\text{-}Venn\text{-}regions
    have M_v \ y = \coprod HF \ (proper-Venn-region \ `\mathcal{L} \ V \ y)
      by presburger
    then have M_v \ y = \bigsqcup HF \ ((\mathcal{M} \circ VennRegion) \ `\mathcal{L} \ V \ y)
      by simp
    ultimately
    have \mathcal{M}(Solo \ x) = \mathcal{M} \ w_{f\mathcal{L} \ V \ y}
      using \mathcal{M}.simps set-var-set-set-to-var-set-list \mathcal{L}-subset-P-plus
      by metis
```

```
with app show ?thesis by simp
  qed
qed
lemma soundness-reduce-cl:
  \forall fml \in reduce\text{-}clause. interp\ I_{sa}\ \mathcal{M}\ fml
  unfolding reduce-clause-def
  using soundness-reduce-literal
  by fastforce
lemma \mathcal{M}-is-model-for-reduced-dnf: is-model-for-reduced-dnf \mathcal{M}
  unfolding is-model-for-reduced-dnf-def
  unfolding \ reduced-dnf-def
 {\bf using} \ soundness-introduce-w \ soundness-introduce-w \ soundness-introduce-Union Of Venn Regions
soundness\mbox{-}reduce\mbox{-}cl
  by (metis (no-types, lifting) Un-iff imageI)
end
{f lemma} MLSSmf-to-MLSS-soundness:
  assumes C-norm: norm-clause C
      and C-has-model: \exists M_v \ M_f. I_{cl} \ M_v \ M_f \ C
    shows \exists M. normalized-MLSSmf-clause.is-model-for-reduced-dnf \mathcal{C} M
proof -
  from C-has-model obtain M_v M_f where I_{cl} M_v M_f C by blast
  with C-norm
  interpret satisfiable-normalized-MLSSmf-clause C M_v, M_f
    by unfold-locales
  from M-is-model-for-reduced-dnf show ?thesis by auto
qed
end
theory Reduced-MLSS-Formula-Singleton-Model-Property
 imports Syntactic-Description Place-Realisation MLSSmf-to-MLSS
begin
{\bf locale}\ satisfiable\text{-}normalized\text{-}MLSS\text{-}clause\text{-}with\text{-}vars\text{-}for\text{-}proper\text{-}Venn\text{-}regions=
  satisfiable-normalized-MLSS-clause \mathcal{C} \mathcal{A} for \mathcal{C} \mathcal{A} +
    fixes U :: 'a \ set
       - The collection of variables representing the proper Venn regions of the
"original" variable set of the MLSSmf clause
  assumes U-subset-V: U \subseteq V
     and no-overlap-within-U: [u_1 \in U; u_2 \in U; u_1 \neq u_2] \Longrightarrow A u_1 \sqcap A u_2 = 0
      and U-collect-places-neq: AF (Var \ x =_s Var \ y) \in \mathcal{C} \Longrightarrow
         \exists L \ M. \ L \subseteq U \land M \subseteq U \land \mathcal{A} \ x = \bigsqcup HF \ (\mathcal{A} \ `L) \land \mathcal{A} \ y = \bigsqcup HF \ (\mathcal{A} \ `M)
      and U-collect-places-single: AT (Var x =_s Single (Var y)) \in \mathcal{C} \Longrightarrow
         \exists L\ M.\ L\subseteq U \land M\subseteq U \land \mathcal{A}\ x=\bigsqcup HF\ (\mathcal{A}\ `L) \land \mathcal{A}\ y=\bigsqcup HF\ (\mathcal{A}\ `M)
begin
```

```
using syntactic-description-is-adequate by blast
lemma fact-1:
  assumes u_1 \in U
      and u_2 \in U
      and u_1 \neq u_2
      and \pi \in PI
    shows \neg (\pi \ u_1 \wedge \pi \ u_2)
proof (rule ccontr)
  assume \neg \neg (\pi \ u_1 \land \pi \ u_2)
  then have \pi u_1 \pi u_2 by blast+
  from \langle \pi \in PI \rangle obtain \sigma where \sigma \in \Sigma \pi = \pi_{\sigma} by auto
  then have \sigma \neq \theta by fastforce
  from \langle \pi = \pi_{\sigma} \rangle \langle \pi | u_1 \rangle \langle \pi | u_2 \rangle have \sigma \leq A | u_1 | \sigma \leq A | u_2 by simp+
  with \langle \sigma \neq \theta \rangle have A u_1 \sqcap A u_2 \neq \theta by blast
  with no-overlap-within-U show False
    using \langle u_1 \in U \rangle \langle u_2 \in U \rangle \langle u_1 \neq u_2 \rangle by blast
qed
fun place-eq :: ('a \Rightarrow bool) \Rightarrow ('a \Rightarrow bool) \Rightarrow bool where
  place-eq \pi_1 \ \pi_2 \longleftrightarrow (\forall x \in V. \ \pi_1 \ x = \pi_2 \ x)
fun place-sim :: ('a \Rightarrow bool) \Rightarrow ('a \Rightarrow bool) \Rightarrow bool (infixl \sim 50) where
  place-sim \pi_1 \ \pi_2 \longleftrightarrow place-eq \pi_1 \ \pi_2 \lor (\exists u \in U. \ \pi_1 \ u \land \pi_2 \ u)
abbreviation rel-place-sim \equiv \{(\pi_1, \pi_2) \in PI \times PI. \pi_1 \sim \pi_2\}
lemma place-sim-rel-equiv-on-PI: equiv PI rel-place-sim
proof (rule equivI)
  have rel-place-sim \subseteq PI \times PI by blast
  moreover
  have (\pi, \pi) \in rel\text{-}place\text{-}sim \text{ if } \pi \in PI \text{ for } \pi
    using that by fastforce
  ultimately
  show refl-on PI rel-place-sim using refl-onI by blast
  show sym rel-place-sim
  proof (rule symI)
    fix \pi_1 \pi_2 assume (\pi_1, \pi_2) \in rel-place-sim
    then have \pi_1 \in PI \ \pi_2 \in PI \ \pi_1 \sim \pi_2 by \mathit{blast}+
    then show (\pi_2, \pi_1) \in rel\text{-}place\text{-}sim by auto
  qed
  show trans rel-place-sim
  proof (rule transI)
    fix \pi_1 \pi_2 \pi_3
    assume (\pi_1, \pi_2) \in rel-place-sim (\pi_2, \pi_3) \in rel-place-sim
    then have \pi_1 \in PI \pi_2 \in PI \pi_3 \in PI \pi_1 \sim \pi_2 \pi_2 \sim \pi_3 by blast+
```

interpretation \mathfrak{B} : adequate-place-framework \mathcal{C} PI at_p

```
then consider place-eq \pi_1 \pi_2 \wedge place-eq \pi_2 \pi_3 \mid place-eq \pi_1 \pi_2 \wedge (\exists u \in U.
\pi_2 \ u \wedge \pi_3 \ u)
                  \mid (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge place-eq \ \pi_2 \ \pi_3 \mid (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in U. \ \pi_1 \ u \wedge \pi_2 \ u) \wedge (\exists u \in
 U. \pi_2 u \wedge \pi_3 u
                   by auto
             then have \pi_1 \sim \pi_3
             proof (cases)
                    case 1
                    then have place-eq \pi_1 \pi_3 by auto
                    then show ?thesis by auto
             next
                    case 2
                    then obtain u where u \in U \pi_2 u \pi_3 u by blast
                    with U-subset-V have u \in V by blast
                    with 2 have \pi_1 u \longleftrightarrow \pi_2 u by force
                    with \langle \pi_2 u \rangle have \pi_1 u by blast
                    with \langle u \in U \rangle \langle \pi_3 u \rangle
                   show ?thesis by auto
             next
                    case 3
                    then obtain u where u \in U \pi_1 u \pi_2 u by blast
                    with U-subset-V have u \in V by blast
                    with 3 have \pi_2 u \longleftrightarrow \pi_3 u by force
                    with \langle \pi_2 u \rangle have \pi_3 u by blast
                    with \langle u \in U \rangle \langle \pi_1 u \rangle
                   show ?thesis by auto
             next
                   case 4
                    then obtain u_1 u_2 where u_1 \in U \pi_1 u_1 \pi_2 u_1 and u_2 \in U \pi_2 u_2 \pi_3 u_2
                         by blast
                    with fact-1 have u_1 = u_2
                          using \langle \pi_2 \in PI \rangle by blast
                    with \langle \pi_3 \ u_2 \rangle have \pi_3 \ u_1 by blast
                   with \langle \pi_1 \ u_1 \rangle \langle u_1 \in U \rangle show ?thesis
                          by auto
             qed
             with \langle \pi_1 \in PI \rangle \langle \pi_2 \in PI \rangle \langle \pi_3 \in PI \rangle
             show (\pi_1, \pi_3) \in rel\text{-place-sim} by blast
       qed
qed auto
lemma refl-sim:
       assumes a \in PI
                   and b \in PI
                   and a \sim b
             shows b \sim a
       using assms by auto
```

lemma trans-sim:

```
assumes a \in PI
      and b \in PI
      and c \in PI
      and a \sim b
      and b \sim c
    shows a \sim c
proof -
  from assms have (a, b) \in rel\text{-place-sim} (b, c) \in rel\text{-place-sim}
    by blast+
  with place-sim-rel-equiv-on-PI have (a, c) \in rel-place-sim
    using equivE \ transE
    by (smt\ (verit,\ ccfv\text{-}SIG))
  then show a \sim c by blast
qed
lemma fact-2:
  assumes x \in V
      and exL: \exists L \subseteq U. \ \mathcal{A} \ x = | \ | \ HF \ (\mathcal{A} \ `L)
      and \pi_1 \in PI
      and \pi_2 \in PI
      and \pi_1 \sim \pi_2
    shows \pi_1 \ x \longleftrightarrow \pi_2 \ x
proof (cases place-eq \pi_1 \pi_2)
  {f case}\ True
  with \langle x \in V \rangle show ?thesis by force
\mathbf{next}
  with \langle \pi_1 \sim \pi_2 \rangle obtain u where u \in U \pi_1 u \pi_2 u by auto
  from exL obtain L where L \subseteq U \ \mathcal{A} \ x = \coprod HF \ (\mathcal{A} \ `L) by blast
  \mathbf{from} \ \ \langle L \subseteq \ U \rangle \ \ \textit{U-subset-V finite-V} \ \ \mathbf{have} \ \textit{finite} \ L
    by (simp add: finite-subset)
  have \pi \ x \longleftrightarrow u \in L \text{ if } \pi \ u \ \pi \in PI \text{ for } \pi
  proof -
    from \langle \pi \in PI \rangle obtain \sigma where \pi = \pi_{\sigma} \ \sigma \in \Sigma by auto
    with \langle \pi u \rangle have \sigma \leq A u
       using \langle u \in U \rangle U-subset-V by auto
    have \sigma \leq A \ x \longleftrightarrow u \in L
    proof (standard)
      assume \sigma \leq A x
       {assume u \notin L
         then have \forall v \in L. \ v \neq u \text{ by } blast
         with no-overlap-within-U have \forall v \in L. A v \sqcap A u = 0
           using \langle L \subseteq U \rangle \langle u \in U \rangle by auto
         with \langle \sigma \leq A u \rangle have \forall v \in L. A v \sqcap \sigma = 0 by blast
         then have \coprod HF(A \cdot L) \sqcap \sigma = 0
           using finite-V U-subset-V \langle L \subseteq U \rangle by auto
         with \langle A | x = \bigsqcup HF (A \land L) \rangle have A | x \sqcap \sigma = \theta by argo
         with \langle \sigma \leq A \rangle have False
```

```
using \langle \sigma \in \Sigma \rangle mem-\Sigma-not-empty by blast
      then show u \in L by blast
    next
      assume u \in L
      with \langle \sigma \leq A u \rangle have \sigma \leq \coprod HF (A \cdot L)
        using \langle finite L \rangle by force
      with \langle A | x = \bigsqcup HF (A \cdot L) \rangle show \sigma \leq A \times x by simp
    qed
    with \langle \pi = \pi_{\sigma} \rangle show \pi \ x \longleftrightarrow u \in L
      using \langle x \in V \rangle associated-place.simps by blast
  with \langle \pi_1 \in PI \rangle \langle \pi_1 \ u \rangle \langle \pi_2 \in PI \rangle \langle \pi_2 \ u \rangle
  have \pi_1 \ x \longleftrightarrow u \in L \ \pi_2 \ x \longleftrightarrow u \in L \ \text{by } blast +
  then show ?thesis by blast
qed
lemma U-collect-places-single': y \in W \Longrightarrow \exists L. \ L \subseteq U \land A \ y = | \ | \ HF \ (A \ `L)
  {\bf using} \ \textit{U-collect-places-single}
  by (meson mem W-E)
definition PI' :: ('a \Rightarrow bool) set where
  PI' \equiv (\lambda \pi s. \ SOME \ \pi. \ \pi \in \pi s) \ (PI \ // \ rel-place-sim)
definition rep :: ('a \Rightarrow bool) \Rightarrow ('a \Rightarrow bool) where
  rep \ \pi = (SOME \ \pi'. \ \pi' \in rel-place-sim \ `` \{\pi\})
lemma range-rep:
  assumes \pi \in PI
    shows rep \ \pi \in PI'
  using assms
  unfolding PI'-def rep-def
  using quotientI[where ?x = \pi and ?A = PI and ?r = rel\text{-place-sim}]
  by blast
lemma PI'-eq-image-of-rep-on-PI: PI' = rep ' PI
proof (standard; standard)
  fix \pi assume \pi \in PI'
  then obtain \pi s where \pi s \in PI // rel-place-sim \pi = (SOME \ \pi. \ \pi \in \pi s)
    unfolding PI'-def by blast
  then obtain \pi_0 where \pi s = rel-place-sim " \{\pi_0\} \pi_0 \in PI
    using quotientE[where ?A = PI and ?r = rel-place-sim and ?X = \pi s]
    by blast
  with \langle \pi = (SOME \ \pi. \ \pi \in \pi s) \rangle have \pi = rep \ \pi_0
    unfolding rep-def by blast
 with \langle \pi_0 \in PI \rangle show \pi \in rep ' PI by blast
  fix \pi assume \pi \in rep ' PI
  then obtain \pi_0 where \pi_0 \in PI \pi = rep \pi_0 by blast
```

```
then show \pi \in PI' using range-rep by blast
qed
lemma rep-sim:
    assumes \pi \in PI
        shows \pi \sim rep \pi
             and rep \pi \sim \pi
proof -
     from \langle \pi \in PI \rangle have \pi \in rel-place-sim "\{\pi\} by fastforce
     then obtain \pi' where \pi' = rep \pi by blast
     with someI[of \ \lambda x. \ x \in rel\text{-}place\text{-}sim \ ``\{\pi\}] \ \mathbf{have} \ \pi' \in rel\text{-}place\text{-}sim \ ``\{\pi\}
        using \langle \pi \in rel\text{-}place\text{-}sim \text{ "} \{\pi\} \rangle
        unfolding rep-def by fast
    with \langle \pi' = rep \ \pi \rangle show \pi \sim rep \ \pi by fast
    with place-sim-rel-equiv-on-PI show rep \pi \sim \pi
        by (metis (full-types) place-eq.simps place-sim.elims(1))
qed
lemma PI'-subset-PI: PI' \subseteq PI
    unfolding PI'-def
    using equiv-Eps-preserves place-sim-rel-equiv-on-PI by blast
lemma sim-self:
    assumes \pi \in PI'
            and \pi' \in PI'
            and \pi \sim \pi'
        shows \pi' = \pi
proof -
    from \langle \pi \sim \pi' \rangle have (\pi, \pi') \in rel\text{-}place\text{-}sim
        using \langle \pi \in PI' \rangle \langle \pi' \in PI' \rangle PI'-subset-PI by blast
    from \langle \pi \in PI' \rangle obtain \pi s where \pi s \in PI' / rel-place-sim \pi = (SOME \pi. \pi \in T)
        unfolding PI'-def by blast
     then have \pi \in \pi s
        using equiv-Eps-in place-sim-rel-equiv-on-PI by blast
    from \langle \pi' \in PI' \rangle obtain \pi s' where \pi s' \in PI // rel-place-sim \pi' = (SOME \ \pi. \ \pi)
\in \pi s'
        unfolding PI'-def by blast
     then have \pi' \in \pi s'
         using equiv-Eps-in place-sim-rel-equiv-on-PI by blast
   from place-sim-rel-equiv-on-PI \land \pi s \in PI // rel-place-sim \land \pi s' \in PI // rel-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-place-
               \langle \pi \in \pi s \rangle \ \langle \pi' \in \pi s' \rangle \ \langle (\pi, \pi') \in rel\text{-}place\text{-}sim \rangle
    have \pi s = \pi s'
        using quotient-eqI[where ?A = PI and ?r = rel-place-sim and ?x = \pi and
 ?X = \pi s \text{ and } ?y = \pi' \text{ and } ?Y = \pi s'
        by fast
     with \langle \pi = (SOME \ \pi. \ \pi \in \pi s) \rangle \ \langle \pi' = (SOME \ \pi. \ \pi \in \pi s') \rangle \text{ show } \pi' = \pi
        by auto
\mathbf{qed}
```

```
fun at_p-f':: 'a \Rightarrow ('a \Rightarrow bool) where
  at_p - f'w = rep(at_p - fw)
definition at_p' = \{(y, at_p - f'y) | y. y \in W\}
declare at_p'-def [simp]
lemma range-at_p-f':
  assumes w \in W
  shows at_p - f' w \in PI'
proof -
  \mathbf{from} \ \langle w \in \ W \rangle \ \mathit{range-at_p-f} \ \mathbf{have} \ \mathit{at_p-f} \ w \in \mathit{PI} \ \mathbf{by} \ \mathit{blast}
  then have rel-place-sim " \{at_p\text{-}f\ w\}\in PI\ //\ rel\text{-}place\text{-}sim
    using quotientI by fast
  then show ?thesis unfolding PI'-def
    apply (simp only: at_p-f'.simps rep-def)
   by (smt\ (verit,\ best)\ Eps\text{-}cong\ at_p\text{-}f'.elims\ image-insert\ insert\text{-}iff\ mk\text{-}disjoint-insert})
qed
lemma rep-at:
  assumes \pi \in PI
       and (y, \pi) \in at_p
    shows (y, rep \pi) \in at_p'
proof -
  from \langle (y, \pi) \in at_p \rangle have at_p - f y = \pi by auto
  from \langle (y, \pi) \in at_p \rangle have y \in W by auto
  with W-subset-V have y \in V by fast
  from \langle (y, \pi) \in at_p \rangle obtain x where AT (Var \ x =_s Single \ (Var \ y)) \in \mathcal{C} \ x \in V
    using memW-E by fastforce
  with U-collect-places-single have \exists L. L \subseteq U \land A \ x = \coprod HF \ (A \ `L) \ \mathbf{by} \ meson
  with fact-2 have \pi_1 \ x \longleftrightarrow \pi_2 \ x \ \text{if} \ \pi_1 \sim \pi_2 \ \pi_1 \in PI \ \pi_2 \in PI \ \text{for} \ \pi_1 \ \pi_2
    using \langle x \in V \rangle that by blast
  with rep-sim have (rep \ \pi) \ x \longleftrightarrow \pi \ x
    using PI'-subset-PI \ \langle \pi \in PI \rangle range-rep by blast
  from \mathfrak{B}.C5-1[where ?x = x and ?y = y] have \pi \ x \ \forall \pi' \in PI. \pi' \neq \pi \longrightarrow \neg \pi' \ x
    using \langle AT \ (Var \ x =_s Single \ (Var \ y)) \in \mathcal{C} \rangle \langle (y, \pi) \in at_p \rangle by fastforce+
  from \langle \pi \ x \rangle \ \langle (rep \ \pi) \ x \longleftrightarrow \pi \ x \rangle have (rep \ \pi) \ x by blast
  with \forall \pi' \in PI. \pi' \neq \pi \longrightarrow \neg \pi' x have rep \pi = \pi
    using range-rep PI'-subset-PI \langle \pi \in PI \rangle by blast
  then have at_p - f' y = rep \pi
    using \langle at_p - f y = \pi \rangle by (simp \ only: at_p - f'.simps)
  then show (y, rep \pi) \in at_p'
    \mathbf{using} \ \langle y \in \ W \rangle
    by (metis (mono-tags, lifting) at "-def mem-Collect-eq)
interpretation \mathfrak{B}': adequate-place-framework \mathcal{C} PI' at
```

```
proof -
  from PI'-subset-PI B.PI-subset-places-V
 have PI'-subset-places-V: PI' \subseteq places\ V by blast
 have dom-at_p': Domain \ at_p' = W by auto
 have range-at<sub>p</sub>': Range at<sub>p</sub>' \subseteq PI'
 proof -
   \{ \text{fix } y \ lt \ \text{assume} \ lt \in \mathcal{C} \ y \in singleton\text{-}vars \ lt \} 
     then have rep(at_p-fy) \in PI'
      using range-at_p-f[of y] range-rep[of at_p-f y]
      by blast
   then show ?thesis by auto
  qed
 from \mathfrak{B}.single-valued-at<sub>p</sub>
 have single-valued-at_p': single-valued at_p'
   unfolding single-valued-def atp'-def
   apply (simp only: at_p-f'.simps)
   by blast
 from PI'-subset-PI have place-membership C PI' \subseteq place-membership C PI by
  with B. membership-irreflexive have membership-irreflexive:
   (\pi, \pi) \notin place\text{-}membership \ C \ PI' \ for \ \pi
   by blast
 from PI'-subset-PI have subgraph: subgraph (place-mem-graph CPI') (place-mem-graph
\mathcal{C} PI)
 proof
   have verts (place-mem-graph CPI') = PI' by simp
   moreover
   have verts (place-mem-graph C PI) = PI by simp
   ultimately
   have verts: verts (place-mem-graph C PI') \subseteq verts (place-mem-graph C PI)
     using PI'-subset-PI by presburger
   have arcs (place-mem-graph CPI') = place-membership CPI' by simp
   moreover
   have arcs (place-mem-graph C PI) = place-membership C PI by simp
   moreover
   have place-membership C PI' \subseteq place-membership C PI
     using PI'-subset-PI by auto
   ultimately
   have arcs: arcs (place-mem-graph C PI') \subseteq arcs (place-mem-graph C PI) by
blast
   have compatible (place-mem-graph C PI) (place-mem-graph C PI')
     unfolding compatible-def by simp
```

```
with verts arcs show subgraph (place-mem-graph C PI') (place-mem-graph C
PI)
      unfolding subgraph-def
      using place-mem-graph-wf-digraph
      \mathbf{bv} blast
  \mathbf{qed}
  from \mathfrak{B}.C6 have \nexists c. pre-digraph.cycle (place-mem-graph \mathcal{C} PI) c
    using daq.acyclic by blast
  then have \nexists c. pre-digraph.cycle (place-mem-graph C PI') c
    using subgraph wf-digraph.subgraph-cycle by blast
  then have C6: dag (place-mem-graph C PI')
  using \langle dag (place-mem-graph CPI) \rangle dag-axioms-def dag-def digraph.digraph-subgraph
subgraph
    by blast
  from B.C1-1 PI'-subset-PI
  have C1-1: \exists n. AT \ (Var \ x =_s \emptyset \ n) \in \mathcal{C} \Longrightarrow \forall \pi \in PI'. \neg \pi \ x \ \text{for} \ x
    by fast
  from B.C1-2 PI'-subset-PI
  have C1-2: AT (Var \ x =_s Var \ y) \in \mathcal{C} \Longrightarrow \forall \pi \in PI'. \ \pi \ x \longleftrightarrow \pi \ y \ \mathbf{for} \ x \ y
    by fast
  from B. C2 PI'-subset-PI
  have C2: AT (Var \ x =_s Var \ y \sqcup_s Var \ z) \in \mathcal{C} \Longrightarrow \forall \pi \in PI'. \ \pi \ x \longleftrightarrow \pi \ y \lor \pi \ z
for x y z
    by fast
  from B.C3 PI'-subset-PI
  have C3: AT (Var \ x =_s Var \ y -_s Var \ z) \in \mathcal{C} \Longrightarrow \forall \pi \in PI'. \pi \ x \longleftrightarrow \pi \ y \land \neg
\pi z for x y z
    by fast
  have C4: AF (Var \ x =_s Var \ y) \in \mathcal{C} \Longrightarrow \exists \pi \in PI'. \ \pi \ x \longleftrightarrow \neg \pi \ y \text{ for } x \ y
  proof -
    assume neq: AF (Var \ x =_s Var \ y) \in \mathcal{C}
    with \mathfrak{B}.C4 obtain \pi where \pi \in PI \pi x \longleftrightarrow \neg \pi y by blast
    from neq have x \in V y \in V by fastforce+
    from neq U-collect-places-neq[where ?x = x and ?y = y] fact-2[of x]
    have sim-x-x: \pi_1 x=\pi_2 x if \pi_1\in PI \pi_2\in PI \pi_1\sim\pi_2 for \pi_1 \pi_2
      using that \langle x \in V \rangle by blast
    from neg U-collect-places-neg[where ?x = x and ?y = y] fact-2[of y]
    have sim-\pi-y: \pi_1 y = \pi_2 y if \pi_1 \in PI \pi_2 \in PI \pi_1 \sim \pi_2 for \pi_1 \pi_2
      using that \langle y \in V \rangle by blast
    from \langle \pi \in PI \rangle have rep \ \pi \in PI' using range-rep by blast
    then have rep \ \pi \in PI using PI'-subset-PI by blast
    from rep-sim sim-\pi-x have (rep \pi) x \longleftrightarrow \pi x
```

```
using \langle rep \ \pi \in PI \rangle \ \langle \pi \in PI \rangle \ by \ blast
    moreover
    from rep-sim sim-\pi-y have \pi y \longleftrightarrow (rep \pi) y
      using \langle rep \ \pi \in PI \rangle \ \langle \pi \in PI \rangle \ by \ blast
    ultimately
    have (rep \ \pi) \ x \longleftrightarrow \neg (rep \ \pi) \ y
      using \langle \pi \ x \longleftrightarrow \neg \pi \ y \rangle by blast
    with \langle rep \ \pi \in PI' \rangle show ?thesis by blast
  qed
  have C5-1: \exists \pi. (y, \pi) \in at_p' \land \pi \ x \land (\forall \pi' \in PI'. \pi' \neq \pi \longrightarrow \neg \pi' \ x)
    if AT (Var \ x =_s Single (Var \ y)) \in \mathcal{C} for x \ y
  proof -
    from that have y \in W x \in V y \in V by fastforce+
    from that \mathfrak{B}.C5-1[where ?y = y and ?x = x]
    obtain \pi where \pi: (y, \pi) \in at_p \pi x \forall \pi' \in PI. \pi' \neq \pi \longrightarrow \neg \pi' x
      by blast
    with \mathfrak{B}.range-at_p have \pi \in PI by fast
    then have rep \ \pi \in PI' using range-rep by blast
    from rep-sim have rep \pi \sim \pi using \langle \pi \in PI \rangle by fast
    with U-collect-places-single \langle \pi \ x \rangle fact-2 have (rep \ \pi) \ x
      using \langle x \in V \rangle \langle \pi \in PI \rangle \langle rep \ \pi \in PI' \rangle PI'-subset-PI that
      by blast
    with \pi have rep \pi = \pi
      using \langle rep \ \pi \in PI' \rangle \ PI'-subset-PI by blast
    with \pi show ?thesis
      using \langle rep \ \pi \in PI' \rangle \ PI'-subset-PI
      by (metis rep-at subset-iff)
  qed
  have C5-2: \forall \pi \in PI'. \pi y \longleftrightarrow \pi z if y \in W z \in W and at'-eq: \exists \pi. (y, \pi) \in
at_p' \wedge (z, \pi) \in at_p' for y z
 proof
    fix \pi assume \pi \in PI'
    from at'-eq obtain \pi' where \pi': at_p-f' y = \pi' at_p-f' z = \pi'
      by (simp \ only: at_p'-def) \ fast
    with range-at<sub>p</sub>-f' \langle y \in W \rangle have \pi' \in PI' by blast
    from \pi' have at_p - f'y \sim at_p - f'z
      apply (simp only: at_p-f'.simps place-sim.simps place-eq.simps)
      by blast
    moreover
    from rep-sim have at_p-f' y \sim at_p-f y
      using at_p-f'.simps range-at_p-f that(1) by presburger
    moreover
    from rep-sim have at_p-f' z \sim at_p-f z
      using at_p-f'.simps range-at_p-f that(2) by presburger
    ultimately
    have at_p-f y \sim at_p-f z
      using trans-sim of at_p-f y at_p-f' y at_p-f' z
```

```
using trans-sim[of at_p-f y at_p-f' z at_p-f z]
      using refl-sim[of at_p-f' y at_p-f y]
      \mathbf{using}\ range-at_p-f[of\ y]\ range-at_p-f[of\ z]\ range-at_p-f'\ PI'-subset-PI\ that (1-2)
      by (meson subset-iff)
    then consider at_p-f y = at_p-f z \mid \exists u \in U. at_p-f y u \land at_p-f z u
      by force
    then show \pi \ y \longleftrightarrow \pi \ z
    proof (cases)
      case 1
      then have \exists \pi. (y, \pi) \in at_p \land (z, \pi) \in at_p
         using at_p-def \langle y \in W \rangle \langle z \in W \rangle by blast
      with \mathfrak{B}.C5-2 have \forall \pi \in PI. \pi y \longleftrightarrow \pi z
         using \langle y \in W \rangle \langle z \in W \rangle by presburger
      with \langle \pi \in PI' \rangle PI'-subset-PI show \pi y \longleftrightarrow \pi z
        by fast
    next
      case 2
      then obtain u where u \in U at_p-f y u at_p-f z u by blast
      then have A y \in A u A z \in A u
         by (simp\ add:\ less-eq-hf-def)+
      from \langle y \in W \rangle obtain x_1 where x_1-single-y: AT (Var x_1 =_s Single (Var y))
\in \mathcal{C}
         using memW-E by blast
      with A-sat-C have A x_1 = HF \{A y\} by fastforce
      then have A y \in A x_1 by simp
     from x_1-single-y U-collect-places-single obtain L where L \subseteq U \ \mathcal{A} \ x_1 = \bigsqcup HF
(\mathcal{A} ' L)
         by meson
      with \langle A | y \in A | x_1 \rangle obtain u' where u' \in L | A | y \in A | u' by auto
      from \langle A | x_1 = \bigsqcup HF (A \cdot L) \rangle \langle u' \in L \rangle have A | u' \leq A | x_1
         using \langle A y \in A x_1 \rangle by auto
      with \langle A | x_1 = HF \{ A | y \} \rangle \langle A | y \in A | u' \rangle have A | u' = HF \{ A | y \} by auto
      with \langle A | y \in A \rangle \langle u \in U \rangle \langle u' \in L \rangle \langle L \subseteq U \rangle no-overlap-within-U
      have u' = u by fastforce
      with \langle A u' = HF \{ A y \} \rangle \langle A z \in A u \rangle have A y = A z by simp
      with realise-same-implies-eq-under-all-\pi[of \ y \ z \ \pi] show ?thesis
         using \langle y \in W \rangle \langle z \in W \rangle W-subset-V \langle \pi \in PI' \rangle PI'-subset-PI by blast
    qed
  qed
  have C5-3: \exists \pi. (y, \pi) \in at_p' \land (y', \pi) \in at_p'
    if y \in W \ y' \in W \ \forall \pi' \in PI'. \pi' \ y' \longleftrightarrow \pi' \ y \ \mathbf{for} \ y' \ y
  proof -
    from \forall \pi' \in PI'. \pi' y' \longleftrightarrow \pi' y have \forall \pi \in PI. rep \pi y' \longleftrightarrow rep \pi y
      by (metis range-rep)
     \{ \text{fix } \pi \text{ assume } \pi \in PI \}
      with \forall \pi' \in PI'. \pi' y' \longleftrightarrow \pi' y have rep \pi y' \longleftrightarrow rep \pi y
         using range-rep by fast
      from \langle \pi \in PI \rangle PI'-subset-PI range-rep have rep \pi \in PI by blast
```

```
from U-collect-places-single'[of y'] fact-2[of y' rep \pi \pi] rep-sim[of \pi]
       have rep \pi y' \longleftrightarrow \pi y'
         \mathbf{using} \ \langle y' \in W \rangle \ \textit{W-subset-V} \ \langle \pi \in \textit{PI} \rangle \ \langle \textit{rep} \ \pi \in \textit{PI} \rangle
         by blast
       from U-collect-places-single'[of y] fact-2[of y rep \pi \pi] rep-sim[of \pi]
       have rep \ \pi \ y \longleftrightarrow \pi \ y
         using \langle y \in W \rangle W-subset-V \langle \pi \in PI \rangle \langle rep \ \pi \in PI \rangle
         by blast
       from \langle rep \ \pi \ y' \longleftrightarrow rep \ \pi \ y \rangle \langle rep \ \pi \ y' \longleftrightarrow \pi \ y' \rangle \langle rep \ \pi \ y \longleftrightarrow \pi \ y \rangle
       have \pi \ y \longleftrightarrow \pi \ y' by blast
    }
    with \mathfrak{B}.C5-3 obtain \pi where (y,\pi) \in at_p (y',\pi) \in at_p
      \mathbf{using} \ \langle y \in W \rangle \ \langle y' \in W \rangle \ \mathbf{by} \ \mathit{blast}
    then have (y, rep \pi) \in at_p'(y', rep \pi) \in at_p'
      by (meson Range-iff \mathfrak{B}.range-at<sub>p</sub> rep-at subset-iff)+
    then show ?thesis by fast
  qed
  have \pi = \pi_{HF} \{ g \} if \pi \in Range \ at_p' - Range \ (place-membership \ C \ PI') for \pi
  proof -
    from that obtain y where (y, \pi) \in at_p' by blast
    then have y \in W \pi \in PI'
       using dom-at_p' range-at_p' by blast+
    from \langle (y, \pi) \in at_p' \rangle have \pi = rep (at_p - f y) by simp
    from \langle y \in W \rangle obtain x where lt-in-C: AT (Var \ x =_s Single \ (Var \ y)) \in C
       using memW-E by blast
    with A-sat-C have A x = HF \{A y\} by fastforce
    then have \sigma_y \leq A x by simp
    with lt-in-C have at_p-f y x by force
    with \langle \pi = rep (at_p - f y) \rangle fact-2[of x] rep-sim[of at_p-f y] U-collect-places-single[of
x y
    have \pi x
       using lt-in-C \langle \pi \in PI' \rangle PI'-subset-PI \langle y \in W \rangle
    by (smt\ (verit,\ best)\ \mathfrak{B}.PI\text{-}subset\text{-}places\text{-}V\ places\text{-}domain\ range-}at_p\text{-}f\ rev\text{-}contra\text{-}hsubsetD)
    have \forall \pi \in PI. \neg \pi y
    proof (rule ccontr)
      assume \neg (\forall \pi \in PI. \neg \pi y)
       then obtain \pi' where \pi' \in PI \pi' y by blast
       with U-collect-places-single'[of y] fact-2[of y rep \pi' \pi'] rep-sim[of \pi']
       have rep \pi' y
         using \langle y \in W \rangle PI'-subset-PI W-subset-V range-rep by blast
       with \langle AT \ (Var \ x =_s Single \ (Var \ y)) \in \mathcal{C} \rangle \langle \pi \ x \rangle
       have (rep \ \pi', \ \pi) \in place\text{-}membership \ \mathcal{C} \ PI'
         using \langle \pi \in PI' \rangle \langle \pi' \in PI \rangle range-rep
         by (simp only: place-membership.simps) blast
       then have \pi \in Range (place-membership CPI') by blast
       with that show False by blast
    qed
```

```
have \forall \alpha \in \mathcal{L} \ V \ y. proper-Venn-region \alpha = 0
    proof (rule ccontr)
      assume \neg (\forall \alpha \in \mathcal{L} \ V \ y. \ proper-Venn-region \ \alpha = 0)
      then obtain \alpha where \alpha: \alpha \in \mathcal{L} V y proper-Venn-region \alpha \neq 0 by blast
      then have y \in \alpha \ \alpha \in P^+ \ V by auto
      with \langle proper\text{-}Venn\text{-}region \ \alpha \neq 0 \rangle have proper-Venn\text{-}region \ \alpha \leq \mathcal{A} \ y
         using proper-Venn-region-subset-variable-iff
        by (meson mem-P-plus-subset subset-iff)
      then have \pi_{proper-Venn-region} \alpha y
         using W-subset-V \langle y \in W \rangle by auto
      with \forall \pi \in PI. \neg \pi \ y \rightarrow  show False
        using \alpha by auto
    qed
    then have |HF(proper-Venn-region ' \mathcal{L} V y) = 0
      by fastforce
    with variable-as-composition-of-proper-Venn-regions of y
    have A y = 0
      using \langle y \in W \rangle W-subset-V by auto
    with \langle A | x = HF \{ A | y \} \rangle have A | x = HF \{ 0 \} by argo
    from \langle \pi \in PI' \rangle PI'-subset-PI obtain \sigma where \sigma \in \Sigma \pi = \pi_{\sigma}
      by (metis PI-def image-iff in-mono)
    with \langle \pi \ x \rangle have \sigma \neq 0 \sigma \leq A \ x by simp+
    with \langle A | x = HF \{ \theta \} \rangle have \sigma = HF \{ \theta \} by fastforce
    with \langle \pi = \pi_{\sigma} \rangle show \pi = \pi_{HF} \{0\} by blast
  qed
  then have C7:
    \llbracket \pi_1 \in Range \ at_p' - Range \ (place-membership \ C \ PI');
      \pi_2 \in Range \ at_p' - Range \ (place-membership \ \mathcal{C} \ PI')] \Longrightarrow \pi_1 = \pi_2 \ \mathbf{for} \ \pi_1 \ \pi_2
  from PI'-subset-places-V dom-at<sub>p</sub>' range-at<sub>p</sub>' single-valued-at<sub>p</sub>'
        membership-irreflexive C6
        C1-1 C1-2 C2 C3 C4 C5-1 C5-2 C5-3 C7
  show adequate-place-framework C PI' at_p'
    apply intro-locales
    unfolding adequate-place-framework-axioms-def
    by blast
qed
lemma singleton-model-for-normalized-reduced-literals:
  \exists \mathcal{M}. \ \forall \ lt \in \mathcal{C}. \ interp \ I_{sa} \ \mathcal{M} \ lt \land (\forall \ u \in U. \ hcard \ (\mathcal{M} \ u) \leq 1)
proof -
  from \mathfrak{B}'.finite-PI have finite (PI' - Range \ at_p') by blast
  with u-exists [of PI' - Range at_p' card PI'] obtain u where
    \llbracket \pi_1 \in PI' - Range \ at_p'; \ \pi_2 \in PI' - Range \ at_p'; \ \pi_1 \neq \pi_2 \rrbracket \Longrightarrow u \ \pi_1 \neq u \ \pi_2
    \pi \in PI' - Range \ at_p' \Longrightarrow hcard \ (u \ \pi) \ge card \ PI'
  for \pi_1 \ \pi_2 \ \pi
    by blast
```

```
then have place-realization C PI' at_p' u
    \mathbf{by} \ \mathit{unfold-locales} \ \mathit{blast} +
  \{ \mathbf{fix} \ x \ \mathbf{assume} \ x \in U \}
    then have \pi_1 = \pi_2 if \pi_1 \ x \ \pi_2 \ x \ \pi_1 \in PI' \ \pi_2 \in PI' for \pi_1 \ \pi_2
       using sim-self that by auto
    then consider \{\pi \in PI'. \ \pi \ x\} = \{\} \mid (\exists \pi. \{\pi \in PI'. \ \pi \ x\} = \{\pi\})
    then have heard (place-realization.\mathcal{M} \ \mathcal{C} \ PI' \ at_p' \ u \ x) \leq 1
    proof (cases)
       case 1
       then have place-realization. \mathcal{M} \ \mathcal{C} \ PI' \ at_p' \ u \ x = 0
         using \langle place\text{-}realization \ C \ PI' \ at_p' \ u \rangle \ place\text{-}realization. \mathcal{M}. simps
         \mathbf{by}\ \mathit{fastforce}
       then show ?thesis by simp
    next
       case 2
       then obtain \pi where \{\pi \in PI'. \pi x\} = \{\pi\} \pi \in PI' by auto
    then have place-realization. \mathcal{MCPI'} at _{p} ' ux = \coprod HF (place-realization. place-realize
\mathcal{C} PI' at_p' u ` \{\pi\})
         using \langle place\text{-realization } C PI' at_p' u \rangle place\text{-realization.} \mathcal{M}.simps
         by fastforce
       also have ... = \coprod HF \{ place\text{-realization.place-realise } C PI' at_p' u \pi \}
    finally have place-realization.\mathcal{MCPI'} at p'ux = \bigsqcup HF {place-realization.place-realize
C PI' at_p' u \pi \}.
       moreover
       \mathbf{from} \ place\text{-}realization.place\text{-}realise\text{-}singleton[of \ \mathcal{C} \ PI' \ at_p' \ u]
       have heard (place-realization.place-realise C PI' at _p' u \pi) = 1
         using \langle place\text{-realization } C PI' at_p' u \rangle \langle \pi \in PI' \rangle by blast
      then obtain c where place\text{-}realization.place\text{-}realise} \mathcal C PI' at_p' u \pi = \mathit{HF} \{c\}
         using hcard-1E[of place-realization.place-realise C PI' at<sub>p</sub>' u \pi]
         by fastforce
       ultimately
       have place-realization. \mathcal{M} \ \mathcal{C} \ PI' \ at_p' \ u \ x = \bigsqcup HF \ \{HF \ \{c\}\}\
         by presburger
       also have \dots = HF \{c\} by fastforce
       also have hcard \dots = 1
         by (simp add: hcard-def)
       finally show ?thesis by linarith
    qed
  }
  moreover
  from place-realization.\mathcal{M}-sat-\mathcal{C}
  have \forall lt \in \mathcal{C}. interp I_{sa} (place-realization.\mathcal{M} \ \mathcal{C} \ PI' \ at_p' \ u) lt
    using \langle place\text{-realization } \mathcal{C} PI' at_p' u \rangle by fastforce
  ultimately
  show ?thesis by blast
qed
```

end

```
{\bf theorem}\ singleton-model-for-reduced-MLSS-clause:
  assumes norm-C: normalized-MLSSmf-clause C
      and V: V = vars_m C
      and A-model: normalized-MLSSmf-clause.is-model-for-reduced-dnf \mathcal C \mathcal A
    shows \exists \mathcal{M}. normalized-MLSSmf-clause.is-model-for-reduced-dnf \mathcal{C} \mathcal{M} \land
                 (\forall \alpha \in P^+ \ V. \ hcard \ (\mathcal{M} \ v_{\alpha}) \leq 1)
proof -
  from norm-C interpret normalized-MLSSmf-clause C by blast
  interpret proper-Venn-regions V A \circ Solo
    using V by unfold-locales blast
  from A-model have \forall fm \in introduce-v. interp\ I_{sa}\ A\ fm
    unfolding is-model-for-reduced-dnf-def reduced-dnf-def
    bv blast
  with eval-v have A-v: \forall \alpha \in P^+ V. A v_{\alpha} = proper-Venn-region \alpha
    using V V-def proper-Venn-region.simps by auto
  from A-model have \forall lt \in introduce-UnionOfVennRegions. interp I_{sa} \ A \ lt
    unfolding is-model-for-reduced-dnf-def reduced-dnf-def by blast
  then have \forall a \in restriction\text{-}on\text{-}UnionOfVennRegions } \alpha s. \ I_{sa} \ \mathcal{A} \ a
    if \alpha s \in set \ all \text{-} V\text{-}set\text{-}lists \ \textbf{for} \ \alpha s
    unfolding introduce-UnionOfVennRegions-def
    using that by simp
  with eval-UnionOfVennRegions have A-UnionOfVennRegions:
    \mathcal{A} (UnionOfVennRegions \alpha s) = \coprod HF (\mathcal{A} 'VennRegion 'set \alpha s)
    if \alpha s \in set \ all - V - set - lists \ for \ \alpha s
    using that by (simp add: Sup.SUP-image)
  have Solo-variable-as-composition-of-v:
    \exists L \subseteq \{v_{\alpha} \mid \alpha. \ \alpha \in P^+ \ V\}. \ \mathcal{A} \ z = \coprod HF \ (\mathcal{A} \ `L) \ \mathbf{if} \ \exists \ z' \in V. \ z = Solo \ z' \ \mathbf{for} \ z
    from that obtain z' where z' \in V z = Solo z' by blast
    then have VennRegion '\mathcal{L} V z' \subseteq \{v_{\alpha} \mid \alpha. \alpha \in P^+ \ V\} by fastforce
    moreover
    from A-v have \forall \alpha \in \mathcal{L} \ V \ z'. A \ v_{\alpha} = proper-Venn-region \ \alpha
      using \mathcal{L}-subset-P-plus finite-V by fast
    then have \coprod HF (A ' (VennRegion ' \mathcal{L} V z')) = \coprod HF (proper-Venn-region '
\mathcal{L} V z'
      using HUnion-eq[where ?S = \mathcal{L} \ V \ z' and ?f = \mathcal{A} \circ VennRegion and ?g =
proper-Venn-region]
      by (simp add: image-comp)
    moreover
    {\bf from}\ \ variable\hbox{-} as\hbox{-} composition\hbox{-} of\hbox{-} proper\hbox{-} Venn\hbox{-} regions
    have (A \circ Solo) z' = \coprod HF (proper-Venn-region ` \mathcal{L} V z')
      using \langle z' \in V \rangle by presburger
    with \langle z = Solo \ z' \rangle have \mathcal{A} \ z = | \ | \ HF \ (proper-Venn-region ` \mathcal{L} \ V \ z')  by simp
```

```
ultimately
  have VennRegion '\mathcal{L}\ V\ z'\subseteq \{v_{\alpha}\ | \alpha.\ \alpha\in P^{+}\ V\} \land \mathcal{A}\ z=\bigsqcup HF\ (\mathcal{A}\ 'VennRegion
' L V z')
     by simp
   then show ?thesis by blast
 qed
  from A-model obtain clause where clause:
    clause \in reduced-dnf \ \forall \ lt \in clause. \ interp \ I_{sa} \ A \ lt
   unfolding is-model-for-reduced-dnf-def by blast
  with reduced-dnf-normalized have normalized-MLSS-clause clause by blast
 with clause
 {\bf have}\ satisfiable-normalized-MLSS-clause-with-vars-for-proper-Venn-regions\ clause
\mathcal{A} \{ v_{\alpha} \mid \alpha. \ \alpha \in P^+ \ V \}
 proof (unfold-locales, goal-cases)
    case 1
   then show ?case
     using normalized-MLSS-clause.norm-C by blast
   case 2
   then show ?case
     by (simp add: normalized-MLSS-clause.finite-C)
  next
   case 3
   then show ?case
     by (simp add: finite-vars-fm normalized-MLSS-clause.finite-C)
 next
   case 4
   then show ?case by simp
  next
   case 5
   \mathbf{from} \ \langle \mathit{clause} \in \mathit{reduced-dnf} \rangle \ \mathit{normalized-clause-contains-all-v-} \alpha
   have \forall \alpha \in P^+ \ V. \ v_{\alpha} \in \bigcup \ (vars \ `clause)
     using V V-def by simp
   then show ?case by blast
   case (6 \ x \ y)
   then obtain \alpha \beta where \alpha\beta: \alpha \in P^+ \ V \ \beta \in P^+ \ V \ x = v_{\alpha} \ y = v_{\beta}
   with \langle x \neq y \rangle have \alpha \neq \beta by blast
   from \alpha\beta have \alpha\subseteq V \beta\subseteq V by auto
   from A-model have \forall fm \in introduce-v. interp\ I_{sa}\ A\ fm
     unfolding is-model-for-reduced-dnf-def reduced-dnf-def by blast
   with \alpha\beta eval-v have A x = proper-Venn-region \alpha A y = proper-Venn-region \beta
     using V V-def proper-Venn-region.simps by auto
    with proper-Venn-region-disjoint \langle \alpha \neq \beta \rangle
   show ?case
```

```
using \langle \alpha \subseteq V \rangle \langle \beta \subseteq V \rangle by presburger
  next
   case (7 x y)
   from \langle AF \ (Var \ x =_s \ Var \ y) \in clause \rangle \langle clause \in reduced-dnf \rangle
    consider AF (Var \ x =_s Var \ y) \in reduce\text{-}clause \mid \exists \ clause \in introduce\text{-}w. \ AF
(Var \ x =_s Var \ y) \in clause
     unfolding reduced-dnf-def introduce-v-def introduce-UnionOfVennRegions-def
by blast
   then show ?case
   proof (cases)
     case 1
     then obtain lt where lt: lt \in set C AF (Var x =_s Var y) \in reduce-literal lt
       unfolding reduce-clause-def by blast
     then obtain a where lt = AF_m a
       by (cases lt rule: reduce-literal.cases) auto
     from \langle lt \in set C \rangle norm-C have norm-literal lt by blast
     with \langle lt = AF_m \ a \rangle \ norm\text{-}literal\text{-}neq
     obtain x' y' where lt: lt = AF_m (Var_m x' =_m Var_m y') by blast
     then have reduce-literal lt = \{AF \ (Var \ (Solo \ x') =_s Var \ (Solo \ y'))\}
     with \langle AF (Var \ x =_s Var \ y) \in reduce\text{-literal lt} \rangle have x = Solo \ x' \ y = Solo \ y'
       by simp+
     from lt \langle lt \in set \ C \rangle have x' \in V \ y' \in V
       using V by fastforce+
     from Solo-variable-as-composition-of-v show ?thesis
       using \langle x = Solo \ x' \rangle \langle y = Solo \ y' \rangle \langle x' \in V \rangle \langle y' \in V \rangle
       by (smt (verit, best))
   next
     case 2
     with lt-in-clause-in-introduce-w-E obtain l' m' f
       where l': l' \in set \ all \text{-} V\text{-}set\text{-}lists
         and m': m' \in set all - V - set - lists
         and f: f \in set F-list
        and AF(Var x =_s Var y) \in set(restriction-on-FunOfUnionOfVennRegions)
l'm'f
       by blast
      then have AF(Var \ x =_s Var \ y) = AF(Var \ (Union Of Venn Regions \ l') =_s
Var (UnionOfVennRegions m'))
       then have x = UnionOfVennRegions l' y = UnionOfVennRegions m' by
     with A-UnionOfVennRegions l' m'
     have A = \coprod HF (A \text{ 'VennRegion 'set } l') A y = \coprod HF (A \text{ 'VennRegion '})
set m'
       by blast+
     moreover
     from l' set-all-V-set-lists have set l' \subseteq P^+ V
       using V V-def by auto
```

```
then have VennRegion 'set l' \subseteq \{v_{\alpha} \mid \alpha. \alpha \in P^+ V\}
       by blast
     moreover
     from m' set-all-V-set-lists have set m' \subseteq P^+ V
       using V V-def by auto
     then have VennRegion 'set m' \subseteq \{v_{\alpha} \mid \alpha. \alpha \in P^+ V\}
       by blast
     ultimately
     show ?thesis by blast
   qed
 next
   then consider AT (Var \ x =_s Single \ (Var \ y)) \in introduce-v
      \exists clause \in introduce-w. AT (Var x =_s Single (Var y)) \in clause
       AT (Var \ x =_s Single (Var \ y)) \in introduce-Union Of Venn Regions
      AT (Var x =_s Single (Var y)) \in reduce\text{-}clause
     unfolding reduced-dnf-def by blast
   then show ?case
   proof (cases)
     case 1
     have Var \ x =_s Single \ (Var \ y) \neq restriction-on-v \ \alpha \ for \ \alpha
       by simp
     moreover
     have Var \ x =_s Single \ (Var \ y) \notin restriction-on-InterOfVars \ xs \ {\bf for} \ xs
       by (induction xs rule: restriction-on-InterOfVars.induct) auto
   then have Var x =_s Single (Var y) \notin (restriction-on-InterOfVars \circ var-set-to-list)
\alpha for \alpha
       by simp
     moreover
     have Var \ x =_s Single \ (Var \ y) \notin restriction-on-Union Of Vars \ xs \ \mathbf{for} \ xs
       by (induction xs rule: restriction-on-UnionOfVars.induct) auto
        then have Var \ x =_s Single \ (Var \ y) \notin (restriction-on-Union Of Vars \circ
var-set-to-list) \alpha for \alpha
       by simp
     ultimately
     have AT (Var \ x =_s Single (Var \ y)) \notin introduce-v
       unfolding introduce-v-def by blast
     with 1 show ?thesis by blast
   next
     with lt-in-clause-in-introduce-w-E obtain l' m' f
    where AT(Var x =_s Single(Var y)) \in set(restriction-on-FunOfUnionOfVennRegions)
l'm'f
       by blast
     moreover
   have AT(Var x =_s Single(Var y)) \notin set(restriction-on-FunOfUnionOfVennRegions)
l'm'f
       by simp
     ultimately
```

```
show ?thesis by blast
          next
                case 3
                 have Var \ x =_s Single \ (Var \ y) \notin restriction-on-Union Of Venn Regions \ \alpha s \ for
\alpha s
                     by (induction \alpha s rule: restriction-on-UnionOfVennRegions.induct) auto
                then have AT (Var x =_s Single (Var y)) \notin introduce-Union Of Venn Regions
                      unfolding introduce-UnionOfVennRegions-def by blast
                with 3 show ?thesis by blast
          next
                case 4
                 then obtain lt where lt \in set \ C and reduce-lt: AT (Var \ x =_s \ Single \ (Var \ x =_s \ Singl
y)) \in reduce-literal lt
                     {\bf unfolding} \ \textit{reduce-clause-def} \ {\bf by} \ \textit{blast}
                with norm-C have norm-literal lt by blast
                then have \exists x' y'. lt = AT_m (Var_m x' =_m Single_m (Var_m y'))
                     {\bf apply}\ ({\it cases}\ lt\ rule:\ norm\text{-}literal. {\it cases})
                     using reduce-lt by auto
               then obtain x' y' where lt: lt = AT_m (Var_m x' =_m Single_m (Var_m y')) by
blast
                with reduce-lt have x = Solo x' y = Solo y' by simp+
                from \langle lt \in set \ C \rangle \ lt \ \mathbf{have} \ x' \in \ V \ y' \in \ V
                      using V by fastforce+
                from Solo-variable-as-composition-of-v show ?thesis
                     using \langle x = Solo \ x' \rangle \ \langle y = Solo \ y' \rangle \ \langle x' \in V \rangle \ \langle y' \in V \rangle
                     by (smt (verit, best))
          qed
     ged
      then show ?thesis
       \textbf{using} \ satisfiable-normalized-MLSS-clause-with-vars-for-proper-Venn-regions. singleton-model-for-normalized and the proper-varieties of the prop
          unfolding is-model-for-reduced-dnf-def
        by (smt (verit) V V-def clause(1) introduce-v-subset-reduced-fms mem-Collect-eq
subset-iff v-\alpha-in-vars-introduce-v)
qed
end
{\bf theory}\ {\it MLSSmf-to-MLSS-Completeness}
     imports MLSSmf-Semantics MLSSmf-to-MLSS MLSSmf-HF-Extras
                            Proper-Venn-Regions Reduced-MLSS-Formula-Singleton-Model-Property
begin
locale MLSSmf-to-MLSS-complete =
      normalized-MLSSmf-clause C for C :: ('v, 'f) MLSSmf-clause +
          fixes \mathcal{B} :: ('v, 'f) \ Composite \Rightarrow hf
      assumes \mathcal{B}: is-model-for-reduced-dnf \mathcal{B}
          fixes \Lambda :: hf \Rightarrow 'v \ set \ set
     assumes \Lambda-subset-V: \Lambda x \subseteq P^+ V
                and \Lambda-preserves-zero: \Lambda \theta = \{\}
```

```
and \Lambda-inc: a \leq b \Longrightarrow \Lambda \ a \subseteq \Lambda \ b
       and \Lambda-add: \Lambda (a \sqcup b) = \Lambda a \cup \Lambda b
       and \Lambda-mul: \Lambda (a \sqcap b) = \Lambda a \cap \Lambda b
       and \Lambda-discr: l \subseteq P^+ \ V \Longrightarrow
                     a = |HF((\mathcal{B} \circ VennRegion) ' l) \Longrightarrow a = |HF((\mathcal{B} \circ VennRegion))|
((\Lambda \ a))
begin
fun discretize_v :: (('v, 'f) \ Composite \Rightarrow hf) \Rightarrow ('v \Rightarrow hf) where
  discretize_v \mathcal{M} = \mathcal{M} \circ Solo
fun discretize_f :: (('v, 'f) \ Composite \Rightarrow hf) \Rightarrow ('f \Rightarrow hf \Rightarrow hf) where
  discretize_f \mathcal{M} = (\lambda f \ a. \ \mathcal{M} \ w_{f\Lambda} \ a)
interpretation proper-Venn-regions V discretize<sub>v</sub> \mathcal{B}
  using finite-V by unfold-locales
lemma all-literal-sat: \forall lt \in set \ C. \ I_l \ (discretize_v \ \mathcal{B}) \ (discretize_f \ \mathcal{B}) \ lt
proof
  fix lt assume lt \in set C
  from \mathcal{B} obtain clause where clause: clause \in reduced-dnf
                              and \mathcal{B}-sat-clause: \forall lt \in clause. interp I_{sa} \mathcal{B} lt
    unfolding is-model-for-reduced-dnf-def by blast
  from \langle lt \in set \ C \rangle have norm-literal lt
    using norm-C by blast
  then show I_l (discretize, \mathcal{B}) (discretize, \mathcal{B}) lt
  proof (cases lt rule: norm-literal.cases)
    case (inc f)
    \mathbf{have}\ s \leq t \Longrightarrow \mathit{discretize}_f\ \mathcal{B}\ f\ s \leq \mathit{discretize}_f\ \mathcal{B}\ f\ t\ \mathbf{for}\ s\ t
    proof -
       let ?atom = Var w_{f\Lambda} t =_s Var w_{f\Lambda} t \sqcup_s Var w_{f\Lambda} s
       assume s \leq t
       then have \Lambda \ s \subseteq \Lambda \ t \text{ using } \Lambda \text{-inc by } simp
       then have ?atom \in reduce\text{-}atom (inc(f))
         using \Lambda-subset-V
         by (simp \ add: \ V-def)
       then have AT ? atom \in clause
          using \langle lt = AT_m (inc(f)) \rangle \langle lt \in set C \rangle clause
          unfolding reduced-dnf-def reduce-clause-def by fastforce
       with \mathcal{B}-sat-clause have I_{sa} \mathcal{B} ?atom by fastforce
       then have \mathcal{B} w_{f\Lambda} _t = \mathcal{B} w_{f\Lambda} _t \sqcup \mathcal{B} w_{f\Lambda} _s by simp
       then have \mathcal{B} \vec{w_{f\Lambda}} s \leq \mathcal{B} \vec{w_{f\Lambda}} t
         by (simp add: sup.order-iff)
       then show discretize f \mathcal{B} f s \leq discretize f \mathcal{B} f t by simp
    then show ?thesis using inc by auto
```

```
next
    case (dec f)
    have s \leq t \Longrightarrow discretize_f \mathcal{B} f t \leq discretize_f \mathcal{B} f s for s t
    proof -
      let ?atom = Var w_{f\Lambda} s =_s Var w_{f\Lambda} s \sqcup_s Var w_{f\Lambda} t
      assume s \leq t
      then have \Lambda \ s \subseteq \Lambda \ t \ using \ \Lambda-inc by simp
      then have ?atom \in reduce\text{-}atom (dec(f))
         using \Lambda-subset-V
         by (simp \ add: \ V\text{-}def)
      then have AT?atom \in clause
         using \langle lt = AT_m (dec(f)) \rangle \langle lt \in set C \rangle clause
         unfolding reduced-dnf-def reduce-clause-def by fastforce
      with \mathcal{B}-sat-clause have I_{sa} \mathcal{B} ?atom by fastforce
      then have \mathcal{B} w_{f\Lambda} _s = \mathcal{B} w_{f\Lambda} _s \sqcup \mathcal{B} w_{f\Lambda} _t by simp
      then have \mathcal{B} w_{f\Lambda} t \leq \mathcal{B} w_{f\Lambda} s
         by (simp add: sup.order-iff)
      then show discretize f \mathcal{B} f t \leq discretize f \mathcal{B} f s by simp
    qed
    then show ?thesis using dec by auto
  next
    case (add f)
    have discretize_f \mathcal{B} f (s \sqcup t) = discretize_f \mathcal{B} f s \sqcup discretize_f \mathcal{B} f t for s t
      let ? atom = Var w_{f\Lambda} (s \sqcup t) =_s Var w_{f\Lambda} s \sqcup_s Var w_{f\Lambda} t
      have ?atom \in reduce\text{-}atom (add(f))
         using \Lambda-subset-V \Lambda-add
         by (simp \ add: \ V\text{-}def)
      then have AT ?atom \in clause
         using \langle lt = AT_m \ (add(f)) \rangle \ \langle lt \in set \ C \rangle \ clause
         unfolding reduced-dnf-def reduce-clause-def by fastforce
      with \mathcal{B}-sat-clause have I_{sa} \mathcal{B} ?atom by fastforce
      then have \mathcal{B} w_{f\Lambda} (s \sqcup t) = \mathcal{B} w_{f\Lambda} s \sqcup \mathcal{B} w_{f\Lambda} t by simp
      then show discretize f \mathcal{B} f (s \sqcup t) = discretize f \mathcal{B} f s \sqcup discretize f \mathcal{B} f t by
simp
    qed
    then show ?thesis using add by auto
  next
    case (mul f)
    have discretize_f \mathcal{B} f (s \sqcap t) = discretize_f \mathcal{B} f s \sqcap discretize_f \mathcal{B} f t for s t
      let ?atom-1 = Var (InterOfWAux f (\Lambda s) (\Lambda t)) = Var w_{f\Lambda} s - Var w_{f\Lambda} t
      have ?atom-1 \in reduce-atom (mul(f))
         using \Lambda-subset-V
         by (simp \ add: \ V-def)
      then have AT ?atom-1 \in clause
         using \langle lt = AT_m \ (mul(f)) \rangle \ \langle lt \in set \ C \rangle \ clause
```

```
unfolding reduced-dnf-def reduce-clause-def by fastforce
       with \mathcal{B}-sat-clause have I_{sa} \mathcal{B} ?atom-1 by fastforce
       then have \mathcal{B} (InterOfWAux f (\Lambda s) (\Lambda t)) = \mathcal{B} w_{f\Lambda} s – \mathcal{B} w_{f\Lambda} t by simp
       let %atom-2 = Var \ w_{f\Lambda} \ (s \sqcap t) =_s Var \ w_{f\Lambda} \ s -_s Var \ (InterOfWAux \ f \ (\Lambda \ s)
(\Lambda t)
       have ?atom-2 \in reduce-atom (mul(f))
         using \Lambda-subset-V \Lambda-mul
         by (simp \ add: \ V-def)
       then have AT ?atom-2 \in clause
         using \langle lt = AT_m (mul(f)) \rangle \langle lt \in set C \rangle clause
         unfolding reduced-dnf-def reduce-clause-def by fastforce
       with \mathcal{B}-sat-clause have I_{sa} \mathcal{B} ?atom-2 by fastforce
       then have \mathcal{B} w_{f\Lambda}(s \sqcap t) = \mathcal{B} w_{f\Lambda}(s \cap t) = \mathcal{B} (InterOfWAux f(\Lambda s)(\Lambda t)) by
simp
       ultimately
       have \mathcal{B} \ w_{f\Lambda} \ (s \sqcap t) = \mathcal{B} \ w_{f\Lambda} \ s \sqcap \mathcal{B} \ w_{f\Lambda} \ t by auto
       then show discretize f \mathcal{B} f (s \sqcap t) = discretize_f \mathcal{B} f s \sqcap discretize_f \mathcal{B} f t by
simp
    qed
    then show ?thesis using mul by auto
  \mathbf{next}
    case (le f g)
    have discretize_f \mathcal{B} f s \leq discretize_f \mathcal{B} g s for s
    proof -
       let ?atom = Var w_{g\Lambda} s =_s Var w_{g\Lambda} s \sqcup_s Var w_{f\Lambda} s
       have ?atom \in reduce\text{-}atom \ (f \leq_m g)
         using \Lambda-subset-V
         by (simp add: V-def)
       then have AT ? atom \in clause
         using \langle lt = AT_m \ (f \leq_m g) \rangle \ \langle lt \in set \ C \rangle \ clause
         unfolding reduced-dnf-def reduce-clause-def by fastforce
       with \mathcal{B}-sat-clause have I_{sa} \mathcal{B} ?atom by fastforce
       then have \mathcal{B} w_{g\Lambda} _s = \mathcal{B} w_{g\Lambda} _s \sqcup \mathcal{B} w_{f\Lambda} _s by simp
       then have \mathcal{B} w_{f\Lambda} s \leq \mathcal{B} w_{g\Lambda} s
         by (simp add: sup.orderI)
       then show discretize_f \mathcal{B} f s \leq discretize_f \mathcal{B} g s by simp
    then show ?thesis using le by auto
  next
    case (eq\text{-}empty\ x\ n)
    let ?lt = AT (Var (Solo x) =_s \emptyset n)
    \textbf{from} \ \textit{eq-empty} \ \textbf{have} \ \textit{?lt} \in \textit{reduce-literal lt}
       using \langle lt \in set \ \mathcal{C} \rangle by simp
    then have ?lt \in clause
       using \langle lt \in set C \rangle \ clause
       unfolding reduced-dnf-def reduce-clause-def by fastforce
```

```
with \mathcal{B}-sat-clause have interp I_{sa} \mathcal{B} ?lt by fastforce
 with eq-empty show ?thesis by simp
next
 case (eq \ x \ y)
 let ?lt = AT (Var (Solo x) =_s Var (Solo y))
 from eq have ?lt \in reduce-literal lt
    using \langle lt \in set \ \mathcal{C} \rangle by simp
 then have ?lt \in clause
    \mathbf{using} \ \langle \mathit{lt} \in \mathit{set} \ \mathcal{C} \rangle \ \mathit{clause}
    unfolding reduced-dnf-def reduce-clause-def by fastforce
 with \mathcal{B}-sat-clause have interp I_{sa} \mathcal{B}? It by fastforce
 with eq show ?thesis by simp
next
 case (neq x y)
 let ?lt = AF (Var (Solo x) =_s Var (Solo y))
 from neg have ?lt \in reduce-literal lt
    using \langle lt \in set \ \mathcal{C} \rangle by simp
 then have ?lt \in clause
    using \langle lt \in set \ \mathcal{C} \rangle \ clause
    unfolding reduced-dnf-def reduce-clause-def by fastforce
 with \mathcal{B}-sat-clause have interp I_{sa} \mathcal{B}? It by fastforce
 with neq show ?thesis by simp
next
 case (union \ x \ y \ z)
 let ?lt = AT (Var (Solo x) =_s Var (Solo y) \sqcup_s Var (Solo z))
 from union have ?lt \in reduce\text{-}literal\ lt
   using \langle lt \in set \ \mathcal{C} \rangle by simp
 then have ?lt \in clause
    using neq \langle lt \in set C \rangle \ clause
    unfolding reduced-dnf-def reduce-clause-def by fastforce
 with \mathcal{B}-sat-clause have interp I_{sa} \mathcal{B} ?lt by fastforce
 with union show ?thesis by simp
next
 case (diff x y z)
 let ?lt = AT (Var (Solo x) =_s Var (Solo y) -_s Var (Solo z))
 from diff have ?lt \in reduce\text{-literal } lt
    using \langle lt \in set \ \mathcal{C} \rangle by simp
 then have ?lt \in clause
    using neq \langle lt \in set C \rangle clause
    unfolding reduced-dnf-def reduce-clause-def by fastforce
 with \mathcal{B}-sat-clause have interp I_{sa} \mathcal{B} ?lt by fastforce
 with diff show ?thesis by simp
next
 case (single \ x \ y)
```

```
let ?lt = AT (Var (Solo x) =_s Single (Var (Solo y)))
    from single have ?lt \in reduce-literal lt
      using \langle lt \in set \ \mathcal{C} \rangle by simp
    then have ?lt \in clause
      using neg \langle lt \in set C \rangle clause
      unfolding reduced-dnf-def reduce-clause-def by fastforce
    with \mathcal{B}-sat-clause have interp I_{sa} \mathcal{B} ?lt by fastforce
    with single show ?thesis by simp
  next
    case (app \ x f y)
    with \langle lt \in set \ C \rangle have f \in F unfolding F-def by force
    from \mathcal{B}-sat-clause clause eval-v
    have \mathcal{B}-v: (\mathcal{B} \circ VennRegion) \alpha = proper-Venn-region \alpha \text{ if } \alpha \in P^+ V \text{ for } \alpha
      unfolding reduced-dnf-def
      using proper-Venn-region.simps that by force
    from \mathcal{B}-sat-clause clause eval-w
    have \mathcal{B}-w: |HF|(\mathcal{B} \circ VennRegion) \cdot l| = |HF|(\mathcal{B} \circ VennRegion) \cdot m| \longrightarrow
\mathcal{B} w_{fl} = \mathcal{B} w_{fm}
      if l \subseteq P^+ \ V \ m \subseteq P^+ \ V \ f \in F \ \text{for} \ l \ m \ f
      by (meson in-mono introduce-UnionOfVennRegions-subset-reduced-fms intro-
duce-w-subset-reduced-fms that)
    from app \langle lt \in set C \rangle have y \in V using V-def by fastforce
    with variable-as-composition-of-proper-Venn-regions
    have | HF (proper-Venn-region ` \mathcal{L} V y) = discretize_v \mathcal{B} y \text{ by } blast
    with \Lambda-discr \mathcal{L}-subset-P-plus \mathcal{B}-v
     have \bigsqcup HF ((\mathcal{B} \circ VennRegion) ` \mathcal{L} V y) = \bigsqcup HF ((\mathcal{B} \circ VennRegion) ` \Lambda
(discretize_v \mathcal{B} y)
      by (smt (verit, best) HUnion-eq subset-eq)
    with \mathcal{B}\text{-}w have \mathcal{B}\text{-}w\text{-}eq: \mathcal{B} w_{f\mathcal{L}} V y = \mathcal{B} w_{f\Lambda} (discretize_v \mathcal{B} y)
      using \mathcal{L}-subset-P-plus \Lambda-subset-V \langle f \in F \rangle finite-V by meson
    let ?lt = AT (Var (Solo x) =_s Var w_{fL V y})
    from app have ?lt \in reduce\text{-}literal\ lt
      using \langle lt \in set \ \mathcal{C} \rangle by simp
    then have ?lt \in clause
      using neq \langle lt \in set  \mathcal{C} \rangle \ clause
      unfolding reduced-dnf-def reduce-clause-def by fastforce
    with \mathcal{B}-sat-clause have interp I_{sa} \mathcal{B} ?lt by fastforce
    then have \mathcal{B}(Solo\ x) = \mathcal{B}\ w_{f\mathcal{L}\ V\ y} by simp
    with \mathcal{B}-w-eq have \mathcal{B} (Solo x) = \mathcal{B} w_{f\Lambda} (discretize<sub>v</sub> \mathcal{B} y) by argo
    then have \mathcal{B}(Solo\ x) = (discretize_f\ \mathcal{B}\ f)(discretize_v\ \mathcal{B}\ y) by simp
    then have discretize_v \mathcal{B} x = (discretize_f \mathcal{B} f) (discretize_v \mathcal{B} y) by simp
    with app show ?thesis by simp
  qed
qed
```

lemma C-sat: I_{cl} (discretize_v \mathcal{B}) (discretize_f \mathcal{B}) \mathcal{C}

using all-literal-sat by blast

```
\mathbf{end}
```

```
\mathbf{lemma} \ (\mathbf{in} \ normalized\text{-}MLSSmf\text{-}clause) \ MLSSmf\text{-}to\text{-}MLSS\text{-}completeness:
  assumes is-model-for-reduced-dnf M
     shows \exists M_v \ M_f. I_{cl} \ M_v \ M_f \ C
proof -
  from assms singleton-model-for-reduced-MLSS-clause obtain M where
     \mathcal{M}-singleton: \forall \alpha \in P^+ \ V. heard (\mathcal{M}(v_\alpha)) \leq 1 and
     \mathcal{M}-model: is-model-for-reduced-dnf \mathcal{M}
     using normalized-MLSSmf-clause-axioms V-def by blast
  then obtain clause where clause \in reduced-dnf \forall lt \in clause. interp I_{sa} \mathcal{M} lt
     unfolding is-model-for-reduced-dnf-def by blast
  with normalized-clause-contains-all-v-\alpha have v-\alpha-in-vars:
     \forall \alpha \in P^+ \ V. \ v_{\alpha} \in \bigcup \ (vars \ `clause)
     bv blast
  from \mathcal{M}-singleton have assigned-set-card-0-or-1:
     \forall \alpha \in P^+ \ V. \ hcard \ (\mathcal{M} \ (v_{\alpha})) = 0 \ \lor \ hcard \ (\mathcal{M} \ (v_{\alpha})) = 1
    using antisym-conv2 by blast
  let ?\Lambda = \lambda a. \{\alpha \in P^+ \ V . \ \mathcal{M} \ v_{\alpha} \ \sqcap \ a \neq 0\}
  have \Lambda-subset-V: ?\Lambda x \subseteq P^+ V for x
     by fast
  have \Lambda-preserves-zero: ?\Lambda \ \theta = \{\} by blast
  have \Lambda-inc: a \leq b \Longrightarrow ?\Lambda \ a \subseteq ?\Lambda \ b for a \ b
   by (smt (verit) Collect-mono hinter-hempty-right inf.absorb-iff1 inf-left-commute)
  have \Lambda-add: ?\Lambda (a \sqcup b) = ?\Lambda a \cup ?\Lambda b for a b
  proof (standard; standard)
     fix \alpha assume \alpha: \alpha \in \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \ \sqcap \ (a \sqcup b) \neq \emptyset\}
     then have \alpha \in P^+ \ V \ \mathcal{M} \ v_{\alpha} \sqcap (a \sqcup b) \neq 0 \ \text{by} \ blast+
     then have \mathcal{M} v_{\alpha} \sqcap a \neq 0 \vee \mathcal{M} v_{\alpha} \sqcap b \neq 0
       \mathbf{by}\ (\mathit{metis}\ \mathit{hunion-hempty-right}\ \mathit{inf-sup-distrib1})
    then show \alpha \in \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \ \sqcap \ a \neq \emptyset\} \cup \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \ \sqcap \ b \neq \emptyset\}
       using \alpha by blast
  next
     fix \alpha assume \alpha \in \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \ \sqcap \ a \neq \emptyset\} \cup \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \ \sqcap \ b \neq \emptyset\}
     then have \alpha \in P^+ V \mathcal{M} v_{\alpha} \sqcap a \neq 0 \vee \mathcal{M} v_{\alpha} \sqcap b \neq 0
       by blast+
     then have \mathcal{M} \ v_{\alpha} \sqcap (a \sqcup b) \neq \emptyset
     by (metis hinter-hempty-right hunion-hempty-left inf-sup-absorb inf-sup-distrib1)
     then show \alpha \in \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \sqcap (a \sqcup b) \neq \emptyset\}
       using \langle \alpha \in P^+ V \rangle by blast
```

```
qed
```

```
have \Lambda-mul: ?\Lambda (a \sqcap b) = ?\Lambda a \cap ?\Lambda b for a b
     proof (standard; standard)
          fix \alpha assume \alpha: \alpha \in \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \sqcap (a \sqcap b) \neq \emptyset\}
          then have \alpha \in P^+ \ V \ \mathcal{M} \ v_{\alpha} \ \sqcap \ (a \sqcap b) \neq 0 \ \text{by} \ blast+
          then have \mathcal{M} v_{\alpha} \sqcap a \neq 0 \land \mathcal{M} v_{\alpha} \sqcap b \neq 0
                by (metis hinter-hempty-left inf-assoc inf-left-commute)
          then show \alpha \in \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \sqcap a \neq 0\} \cap \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \sqcap b \neq 0\}
                using \alpha by blast
    next
          fix \alpha assume \alpha \in \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \ \sqcap \ a \neq 0\} \cap \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \ \sqcap \ b \neq 0\}
          then have \alpha \in P^+ V \mathcal{M} v_{\alpha} \sqcap a \neq 0 \mathcal{M} v_{\alpha} \sqcap b \neq 0
                by blast+
          then have \mathcal{M} v_{\alpha} \neq 0 by force
          then have hcard (\mathcal{M} \ v_{\alpha}) \neq 0 using hcard\text{-}0E by blast
          then have heard (\mathcal{M} \ v_{\alpha}) = 1
                using assigned-set-card-0-or-1 v-\alpha-in-vars \langle \alpha \in P^+ | V \rangle
                by fastforce
          then obtain c where \mathcal{M} v_{\alpha} = 0 \triangleleft c
                using hcard-1E by blast
          moreover
          from \langle \mathcal{M} | v_{\alpha} = \theta \triangleleft c \rangle \langle \mathcal{M} | v_{\alpha} \sqcap a \neq \theta \rangle
          have \mathcal{M} \ v_{\alpha} \sqcap a = 0 \triangleleft c \ \text{by} \ auto
          moreover
          from \langle \mathcal{M} v_{\alpha} = 0 \triangleleft c \rangle \langle \mathcal{M} v_{\alpha} \sqcap b \neq 0 \rangle
          have \mathcal{M} v_{\alpha} \sqcap b = 0 \triangleleft c by auto
          ultimately
          have \mathcal{M} \ v_{\alpha} \sqcap (a \sqcap b) = 0 \triangleleft c
               by (simp add: inf-commute inf-left-commute)
          then have \mathcal{M} v_{\alpha} \sqcap (a \sqcap b) \neq 0 by simp
          then show \alpha \in \{\alpha \in P^+ \ V. \ \mathcal{M} \ v_{\alpha} \sqcap (a \sqcap b) \neq \emptyset\}
                using \langle \alpha \in P^+ V \rangle by blast
     qed
    have l \subseteq P^+ \ V \Longrightarrow
                        a = | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) \Longrightarrow a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq | |HF| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((\mathcal{M} \circ VennRegion) \cdot l) = a \leq |H| ((
(?\Lambda \ a)) for l \ a
     proof
          fix c assume l-a-c: l \subseteq P^+ \ V \ a = \coprod HF \ ((\mathcal{M} \circ VennRegion) \ `l) \ c \in a
          then obtain \alpha where \alpha \in l \ c \in \mathcal{M} \ v_{\alpha} by auto
          then have \alpha \in ?\Lambda a using l-a-c by blast
          then have \mathcal{M} \ v_{\alpha} \in (\mathcal{M} \circ VennRegion) ' (?\Lambda \ a) by simp
          then have \mathcal{M} v_{\alpha} \in \mathit{HF} ((\mathcal{M} \circ \mathit{VennRegion}) `(?\Lambda a)) by fastforce
          with \langle c \in \mathcal{M} | v_{\alpha} \rangle show c \in \coprod HF ((\mathcal{M} \circ VennRegion) `(?\Lambda a)) by blast
     ged
     moreover
     have l \subseteq P^+ \ V \Longrightarrow
```

```
a = |HF((\mathcal{M} \circ VennRegion) \cdot l) \Longrightarrow |HF((\mathcal{M} \circ VennRegion) \cdot (?\Lambda a))
\leq a for l a
    proof -
          assume l \subseteq P^+ \ V and a: a = | | HF ((\mathcal{M} \circ VennRegion) \cdot l)
          then have finite l
               by (simp add: finite-V finite-subset)
          have ?\Lambda \ a \subseteq l
          proof
               fix \alpha assume \alpha \in ?\Lambda a
               then obtain c where c \in \mathcal{M} v_{\alpha} \sqcap a by blast
               then have c \in \mathcal{M} v_{\alpha} c \in a by blast+
               then obtain \beta where \beta \in l c \in \mathcal{M} v_{\beta} using a by force
               interpret proper-Venn-regions V \mathcal{M} \circ Solo
                    using finite-V by unfold-locales
               from \langle \alpha \in ? \Lambda \ a \rangle have \alpha \in P^+ \ V by auto
               moreover
               from \langle l \subseteq P^+ \ V \rangle \ \langle \beta \in l \rangle have \beta \in P^+ \ V by auto
               moreover
               from \langle c \in \mathcal{M} | v_{\alpha} \rangle have c \in proper-Venn-region <math>\alpha
                    using eval-v \land \alpha \in P^+ \ V \land \mathcal{M}-model
                    unfolding is-model-for-reduced-dnf-def reduced-dnf-def
                    by fastforce
               moreover
               from \langle c \in \mathcal{M} | v_{\beta} \rangle have c \in proper-Venn-region <math>\beta
                    using eval-v \land \beta \in P^+ \ V \land \mathcal{M}-model
                    {\bf unfolding} \ is {\it -model-for-reduced-dnf-def} \ reduced-dnf-def
                    by fastforce
               ultimately
               have \alpha = \beta
                    using finite-V proper-Venn-region-strongly-injective by auto
               with \langle \beta \in l \rangle show \alpha \in l by simp
          qed
          then have (\mathcal{M} \circ VennRegion) '? \Lambda a \subseteq (\mathcal{M} \circ VennRegion) ' l by blast
          moreover
          from \langle finite \ l \rangle have finite \ ((\mathcal{M} \circ VennRegion) \ ' \ l) by blast
          ultimately
          have | HF ((\mathcal{M} \circ VennRegion) `? \Lambda a) \leq | HF ((\mathcal{M} \circ VennRegion) `l)
           by (metis (no-types, lifting) HUnion-hunion finite-subset sup.orderE sup.orderI
union-hunion)
          then show \coprod HF ((\mathcal{M} \circ VennRegion) '(?\Lambda a)) \leq a
               using a by blast
     qed
     ultimately
    have \Lambda-discr: l \subseteq P^+ \ V \Longrightarrow
                                      a = \bigsqcup HF \ ((\mathcal{M} \circ VennRegion) \ `l) \Longrightarrow a = \bigsqcup HF \ ((\mathcal{M} \circ VennRegion)) \ (
 '(?Λ a)) for l a
          by (simp add: inf.absorb-iff1 inf-commute)
```

```
interpret \Lambda-plus: MLSSmf-to-MLSS-complete \mathcal{C} \mathcal{M} ?\Lambda
    using assms \mathcal{M}-singleton \mathcal{M}-model
          \Lambda-subset-V \Lambda-preserves-zero \Lambda-inc \Lambda-add \Lambda-mul \Lambda-discr
    by unfold-locales
  show ?thesis
    using \Lambda-plus.C-sat by fast
\mathbf{qed}
end
theory MLSSmf-to-MLSS-Correctness
  \mathbf{imports}\ \mathit{MLSSmf-to-MLSS-Soundness}\ \mathit{MLSSmf-to-MLSS-Completeness}
begin
fun reduce :: ('v, 'f) MLSSmf-clause \Rightarrow ('v, 'f) Composite pset-fm set set where
  reduce \ \mathcal{C} = normalized\text{-}MLSSmf\text{-}clause.reduced\text{-}dnf \ \mathcal{C}
fun interp-DNF :: (('v, 'f) \ Composite \Rightarrow hf) \Rightarrow ('v, 'f) \ Composite \ pset-fm \ set \ set
\Rightarrow bool \text{ where}
  interp-DNF \mathcal{M} clauses \longleftrightarrow (\exists clause \in clauses. \forall lt \in clause. interp <math>I_{sa} \mathcal{M} lt)
corollary MLSSmf-to-MLSS-correct:
  assumes norm-clause C
    shows (\exists M_v \ M_f. \ I_{cl} \ M_v \ M_f \ \mathcal{C}) \longleftrightarrow (\exists \mathcal{M}. \ interp-DNF \ \mathcal{M} \ (reduce \ \mathcal{C}))
proof
  from assms interpret normalized-MLSSmf-clause C by unfold-locales
  assume \exists M_v \ M_f. I_{cl} \ M_v \ M_f \ C
  with MLSSmf-to-MLSS-soundness obtain M where is-model-for-reduced-dnf
\mathcal{M}
    using assms by blast
 then have interp-DNF \mathcal{M} (reduce \mathcal{C}) unfolding is-model-for-reduced-dnf-def by
  then show \exists \mathcal{M}. interp-DNF \mathcal{M} (reduce \mathcal{C}) by blast
  from assms interpret normalized-MLSSmf-clause C by unfold-locales
  assume \exists \mathcal{M}. interp-DNF \mathcal{M} (reduce \mathcal{C})
  then obtain \mathcal{M} where interp-DNF \mathcal{M} (reduce \mathcal{C}) by blast
  then have is-model-for-reduced-dnf \mathcal{M} unfolding is-model-for-reduced-dnf-def
  with MLSSmf-to-MLSS-completeness show \exists M_v \ M_f. \ I_{cl} \ M_v \ M_f \ C by blast
qed
end
```

References

- [1] Domenico Cantone, Jacob T. Schwartz, and Calogero G. Zarba. A decision procedure for a sublanguage of set theory involving monotone additive and multiplicative functions, ii. the multi-level case. *Le Matematiche; Vol 60, No 1 (2005); 133-162*, 60, 01 2006.
- [2] Lukas Stevens. Mlss decision procedure. Archive of Formal Proofs, May 2023. ISSN 2150-914x. https://isa-afp.org/entries/MLSS_Decision_Proc.html, Formal proof development.