
A Verified Reduction Algorithm from MLSSmf to
MLSS

Yiran Duan, Lukas Stevens

September 1, 2025

Abstract

Multi-level syllogistic with monotone functions (MLSSmf) is a sub-
language of set theory introduced by Cantone et al. [1], involving set-
to-set functions and their monotonicity, additivity, and multiplicativ-
ity. It is an extension of multi-level syllogistic with singleton (MLSS),
which involves the predicates membership, set equality, set inclusion,
and the operators union, intersection, set difference, and singleton.

In this work we formalize the reduction algorithm from MLSSmf
to MLSS, and verify the correctness proof originally presented by
Cantone et al. [1]. Combined with the verified decision procedure for
MLSS formalized by Stevens [2], this yields an executable and verified
decision procedure for MLSSmf.

1

theory MLSSmf-to-MLSS-Complexity
imports MLSSmf-to-MLSS

begin

definition sizem :: (′v, ′f) MLSSmf-clause ⇒ nat where
sizem C ≡ card (set C)

lemma (in normalized-MLSSmf-clause) card-V-upper-bound:
card V ≤ 3 ∗ sizem C
unfolding V-def
using norm-C

proof (induction C)
case 1
then show ?case by simp

next
case (2 ls l)
from ‹norm-literal l› have card (varsm l) ≤ 3

by (cases l rule: norm-literal.cases) (auto simp: card-insert-if)
with 2 show ?case
proof (cases l ∈ set ls)

case True
then have varsm l ⊆ varsm ls by blast
moreover
have varsm (l # ls) = varsm l ∪ varsm ls by auto
ultimately
have varsm (l # ls) = varsm ls by blast
then have card (varsm (l # ls)) = card (varsm ls) by argo
moreover
from True have sizem (l # ls) = sizem ls

unfolding sizem-def
by (simp add: insert-absorb)

ultimately
show ?thesis using 2.IH by argo

next
case False
have varsm (l # ls) = varsm l ∪ varsm ls by auto
then have card (varsm (l # ls)) ≤ card (varsm l) + card (varsm ls)

by (simp add: card-Un-le)
with ‹card (varsm l) ≤ 3› 2.IH
have card (varsm (l # ls)) ≤ 3 ∗ (Suc (sizem ls))

by simp
moreover
from False have sizem (l # ls) = Suc (sizem ls)

unfolding sizem-def by simp
ultimately
show ?thesis by argo

qed
qed

2

lemma (in normalized-MLSSmf-clause) card-F-upper-bound:
card F ≤ 2 ∗ sizem C
unfolding F-def
using norm-C

proof (induction C)
case 1
then show ?case by simp

next
case (2 ls l)
from ‹norm-literal l› have card (funsm l) ≤ 2

by (cases l rule: norm-literal.cases) (auto simp: card-insert-if)
with 2 show ?case
proof (cases l ∈ set ls)

case True
then have funsm l ⊆ funsm ls by blast
moreover
have funsm (l # ls) = funsm l ∪ funsm ls by auto
ultimately
have funsm (l # ls) = funsm ls by blast
then have card (funsm (l # ls)) = card (funsm ls) by argo
moreover
from True have sizem (l # ls) = sizem ls

unfolding sizem-def
by (simp add: insert-absorb)

ultimately
show ?thesis using 2.IH by argo

next
case False
have funsm (l # ls) = funsm l ∪ funsm ls by auto
then have card (funsm (l # ls)) ≤ card (funsm l) + card (funsm ls)

by (simp add: card-Un-le)
with ‹card (funsm l) ≤ 2› 2.IH
have card (funsm (l # ls)) ≤ 2 ∗ (Suc (sizem ls))

by simp
moreover
from False have sizem (l # ls) = Suc (sizem ls)

unfolding sizem-def by simp
ultimately
show ?thesis by argo

qed
qed

lemma (in normalized-MLSSmf-clause) size-restriction-on-InterOfVars:
card (restriction-on-InterOfVars vs) ≤ 2 ∗ length vs

proof (induction vs rule: restriction-on-InterOfVars.induct)
case (3 x v vs)
have length zs > length ys =⇒ InterOfVarsAux zs /∈

⋃
(vars ‘ restriction-on-InterOfVars

ys)
for y ys zs

3

by (induction ys rule: restriction-on-InterOfVars.induct) auto
then have InterOfVarsAux (x # v # vs) /∈

⋃
(vars ‘ restriction-on-InterOfVars

(v # vs))
by force

then have Var (InterOfVarsAux (x # v # vs)) =s Var (Solo x) −s Var
(InterOfVars (v # vs)) /∈ restriction-on-InterOfVars (v # vs)

Var (InterOfVars (x # v # vs)) =s Var (Solo x) −s Var (InterOfVarsAux
(x # v # vs)) /∈ restriction-on-InterOfVars (v # vs)

by auto
then have card (restriction-on-InterOfVars (x # v # vs)) = Suc (Suc (card

(restriction-on-InterOfVars (v # vs))))
using restriction-on-InterOfVar-finite by force

with 3.IH show ?case by simp
qed simp+

lemma (in normalized-MLSSmf-clause) size-restriction-on-UnionOfVars:
card (restriction-on-UnionOfVars vs) ≤ Suc (length vs)
apply (induction vs rule: restriction-on-UnionOfVars.induct)
apply simp

by (simp add: card-insert-if restriction-on-UnionOfVar-finite)

theorem (in normalized-MLSSmf-clause) size-introduce-v:
card introduce-v ≤ (3 ∗ card V + 2) ∗ (2 ^ card V)

proof −
have card (restriction-on-v ‘ P+ V) ≤ card (P+ V)

using P-plus-finite card-image-le by blast
then have 1: card (restriction-on-v ‘ P+ V) ≤ card (Pow V)

by simp

have card ((restriction-on-InterOfVars ◦ var-set-to-list) α) ≤ 2 ∗ card V for α
proof −

have length (var-set-to-list α) ≤ length V-list by simp
then have length (var-set-to-list α) ≤ card V

unfolding V-list-def
by (metis V-list-def distinct-V-list distinct-card set-V-list)

with size-restriction-on-InterOfVars[of var-set-to-list α]
have card (restriction-on-InterOfVars (var-set-to-list α)) ≤ 2 ∗ card V

by linarith
then show ?thesis by fastforce

qed
then have (

∑
α∈P+ V . card ((restriction-on-InterOfVars ◦ var-set-to-list) α))

≤ 2 ∗ card V ∗ card (P+ V)
by (smt (verit) card-eq-sum nat-mult-1-right sum-distrib-left sum-mono)

moreover
from card-UN-le[where ?I = P+ V and ?A = restriction-on-InterOfVars ◦

var-set-to-list]
have card (

⋃
((restriction-on-InterOfVars ◦ var-set-to-list) ‘ P+ V)) ≤

(
∑

α∈P+ V . card ((restriction-on-InterOfVars ◦ var-set-to-list) α))
using P-plus-finite finite-V by blast

4

ultimately
have card (

⋃
((restriction-on-InterOfVars ◦ var-set-to-list) ‘ P+ V)) ≤ 2 ∗ card

V ∗ card (P+ V)
by linarith

also have ... ≤ 2 ∗ card V ∗ card (Pow V) by simp
finally have 2: card (

⋃
((restriction-on-InterOfVars ◦ var-set-to-list) ‘ P+ V))

≤ 2 ∗ card V ∗ card (Pow V)
by blast

have card ((restriction-on-UnionOfVars ◦ var-set-to-list) α) ≤ Suc (card V) for
α

proof −
have length (var-set-to-list α) ≤ length V-list by simp
then have length (var-set-to-list α) ≤ card V

unfolding V-list-def
by (metis V-list-def distinct-V-list distinct-card set-V-list)

with size-restriction-on-UnionOfVars[of var-set-to-list α]
have card (restriction-on-UnionOfVars (var-set-to-list α)) ≤ Suc (card V)

by linarith
then show ?thesis by fastforce

qed
then have (

∑
α∈Pow V . card ((restriction-on-UnionOfVars ◦ var-set-to-list)

α)) ≤ Suc (card V) ∗ card (Pow V)
by (smt (verit) card-eq-sum nat-mult-1-right sum-distrib-left sum-mono)

moreover
from card-UN-le[where ?I = Pow V and ?A = restriction-on-UnionOfVars ◦

var-set-to-list]
have card (

⋃
((restriction-on-UnionOfVars ◦ var-set-to-list) ‘ Pow V)) ≤

(
∑

α∈Pow V . card ((restriction-on-UnionOfVars ◦ var-set-to-list) α))
using finite-V by blast

ultimately
have 3: card (

⋃
((restriction-on-UnionOfVars ◦ var-set-to-list) ‘ Pow V)) ≤ Suc

(card V) ∗ card (Pow V)
by linarith

let ?atoms = restriction-on-v ‘ P+ V ∪⋃
((restriction-on-InterOfVars ◦ var-set-to-list) ‘ P+ V) ∪⋃
((restriction-on-UnionOfVars ◦ var-set-to-list) ‘ Pow V)

from restriction-on-InterOfVar-finite restriction-on-UnionOfVar-finite
have finite ?atoms using finite-V by auto
then have card introduce-v ≤ card ?atoms

unfolding introduce-v-def
using card-image-le by meson

also have ... ≤ card (restriction-on-v ‘ P+ V) +
card (

⋃
((restriction-on-InterOfVars ◦ var-set-to-list) ‘ P+ V)) +

card (
⋃

((restriction-on-UnionOfVars ◦ var-set-to-list) ‘ Pow V))
using finite-V by (auto intro!: order .trans[OF card-Un-le])

also have ... ≤ card (Pow V) +
card (

⋃
((restriction-on-InterOfVars ◦ var-set-to-list) ‘ P+ V)) +

5

card (
⋃

((restriction-on-UnionOfVars ◦ var-set-to-list) ‘ Pow V))
using 1 by linarith

also have ... ≤ card (Pow V) + 2 ∗ card V ∗ card (Pow V) +
card (

⋃
((restriction-on-UnionOfVars ◦ var-set-to-list) ‘ Pow V))

using 2 by linarith
also have ... ≤ card (Pow V) + 2 ∗ card V ∗ card (Pow V) + Suc (card V) ∗

card (Pow V)
using 3 by linarith

also have ... = (1 + 2 ∗ card V + Suc (card V)) ∗ card (Pow V)
by algebra

also have ... = (3 ∗ card V + 2) ∗ card (Pow V)
by simp

also have ... = (3 ∗ card V + 2) ∗ (2 ^ card V)
using card-Pow finite-V by fastforce

finally show ?thesis .
qed

lemma (in normalized-MLSSmf-clause) size-restriction-on-UnionOfVennRegions:
card (restriction-on-UnionOfVennRegions αs) ≤ Suc (length αs)
apply (induction αs rule: restriction-on-UnionOfVennRegions.induct)
apply simp+
by (metis add-mono-thms-linordered-semiring(2) card.infinite card-insert-if fi-

nite-insert le-SucI plus-1-eq-Suc)

lemma (in normalized-MLSSmf-clause) length-all-V-set-lists:
length all-V-set-lists = 2 ^ card (P+ V)
unfolding all-V-set-lists-def
using length-subseqs set-V-set-list distinct-V-set-list distinct-card
by force

lemma (in normalized-MLSSmf-clause) length-F-list:
length F-list = card F
unfolding F-list-def F-def
by (auto simp add: length-remdups-card-conv)

lemma (in normalized-MLSSmf-clause) size-introduce-UnionOfVennRegions:
card introduce-UnionOfVennRegions ≤ Suc (2 ^ card V) ∗ 2 ^ 2 ^ card V

proof −
have 1: card (restriction-on-UnionOfVennRegions αs) ≤ Suc (2 ^ card V)

if αs ∈ set all-V-set-lists for αs
proof −

from that have length αs ≤ length V-set-list
unfolding all-V-set-lists-def
using length-subseq-le by blast

then have length αs ≤ card (P+ V)
by (metis distinct-V-set-list distinct-card set-V-set-list)

then have length αs ≤ 2 ^ card V
using card-Pow finite-V by fastforce

with size-restriction-on-UnionOfVennRegions[of αs]

6

have card (restriction-on-UnionOfVennRegions αs) ≤ Suc (2 ^ card V)
by linarith

then show ?thesis by fastforce
qed

from length-all-V-set-lists have card (set all-V-set-lists) = 2 ^ card (P+ V)
using distinct-card distinct-all-V-set-lists by metis

also have ... ≤ 2 ^ card (Pow V) by auto
also have ... = 2 ^ 2 ^ card V

using finite-V by (simp add: card-Pow)
finally have 2: card (set all-V-set-lists) ≤ 2 ^ 2 ^ card V .

let ?atoms =
⋃

(restriction-on-UnionOfVennRegions ‘ set all-V-set-lists)
from AT-inj have inj-on AT ?atoms

using inj-on-def by force
from 1 have (

∑
αs∈set all-V-set-lists. card (restriction-on-UnionOfVennRegions

αs)) ≤
Suc (2 ^ card V) ∗ (card (set all-V-set-lists))
using Sum-le-times[where ?s = set all-V-set-lists

and ?f = λαs. card (restriction-on-UnionOfVennRegions αs)]
by blast

with 2 have (
∑

αs∈set all-V-set-lists. card (restriction-on-UnionOfVennRegions
αs)) ≤

Suc (2 ^ card V) ∗ 2 ^ 2 ^ card V
by (meson Suc-mult-le-cancel1 le-trans)

moreover
from card-UN-le[where ?I = set all-V-set-lists and ?A = restriction-on-UnionOfVennRegions]
have card ?atoms ≤ (

∑
αs∈set all-V-set-lists. card (restriction-on-UnionOfVennRegions

αs))
by blast

ultimately
have card ?atoms ≤ Suc (2 ^ card V) ∗ 2 ^ 2 ^ card V

by linarith
moreover
from introduce-UnionOfVennRegions-normalized
have finite introduce-UnionOfVennRegions

unfolding normalized-MLSS-clause-def by blast
then have finite ?atoms

using finite-image-iff ‹inj-on AT ?atoms›
unfolding introduce-UnionOfVennRegions-def by blast

ultimately
show ?thesis

unfolding introduce-UnionOfVennRegions-def
using card-image[where ?f = AT and ?A = ?atoms]
using ‹inj-on AT ?atoms›
by presburger

qed

lemma (in normalized-MLSSmf-clause) length-choices-from-lists:

7

∀ choice ∈ set (choices-from-lists xss). length choice = length xss
by (induction xss) auto

lemma (in normalized-MLSSmf-clause) size-introduce-w:
∀ clause ∈ introduce-w. card clause ≤ 2 ^ (2 ∗ 2 ^ card V) ∗ card F

proof
let ?xss = map (λ(l, m, f). restriction-on-FunOfUnionOfVennRegions l m f)

(List.product all-V-set-lists (List.product all-V-set-lists F-list))
fix clause assume clause ∈ introduce-w
then obtain choice where choice: choice ∈ set (choices-from-lists ?xss) clause

= set choice
unfolding introduce-w-def by auto

then have card clause ≤ length choice
using card-length by blast

also have length choice = length ?xss
using choice length-choices-from-lists by blast

also have ... = length (List.product all-V-set-lists (List.product all-V-set-lists
F-list))

by simp
also have ... = length all-V-set-lists ∗ length all-V-set-lists ∗ length F-list

using length-product by auto
also have ... = 2 ^ card (P+ V) ∗ 2 ^ card (P+ V) ∗ card F

using length-all-V-set-lists length-F-list by presburger
also have ... = 2 ^ (2 ∗ (card (P+ V))) ∗ card F

by (simp add: mult-2 power-add)
also have ... ≤ 2 ^ (2 ∗ (card (Pow V))) ∗ card F

by simp
also have ... = 2 ^ (2 ∗ 2 ^ card V) ∗ card F

using card-Pow by auto
finally show card clause ≤ 2 ^ (2 ∗ 2 ^ card V) ∗ card F .

qed

lemma (in normalized-MLSSmf-clause) card-P-P-V-ge-1:
card (Pow (P+ V) × Pow (P+ V)) ≥ 1

proof −
have Pow (P+ V) 6= {} by blast
then have Pow (P+ V) × Pow (P+ V) 6= {} by blast
moreover
from finite-V P-plus-finite have finite (Pow (P+ V)) by blast
then have finite (Pow (P+ V) × Pow (P+ V)) by blast
ultimately
have card (Pow (P+ V) × Pow (P+ V)) > 0 by auto
then show ?thesis by linarith

qed

lemma (in normalized-MLSSmf-clause) size-reduce-norm-literal:
assumes norm-literal lt

shows card (reduce-literal lt) ≤ 2 ∗ card (Pow (P+ V) × Pow (P+ V))
using assms

8

proof (cases lt rule: norm-literal.cases)
case (inc f)
let ?l = λ(l, m). AT (Var wfm =s Var wfm ts Var wfl)
from inc have reduce-literal lt ⊆ ?l ‘ (Pow (P+ V) × Pow (P+ V))

by force
then have card (reduce-literal lt) ≤ card (Pow (P+ V) × Pow (P+ V))

by (meson finite-SigmaI finite-V pow-of-p-Plus-finite surj-card-le)
also have ... ≤ 2 ∗ card (Pow (P+ V) × Pow (P+ V)) by linarith
finally show ?thesis .

next
case (dec f)
let ?l = λ(l, m). AT (Var wfl =s Var wfl ts Var wfm)

from dec have reduce-literal lt ⊆ ?l ‘ (Pow (P+ V) × Pow (P+ V))
by force

then have card (reduce-literal lt) ≤ card (Pow (P+ V) × Pow (P+ V))
by (meson finite-SigmaI finite-V pow-of-p-Plus-finite surj-card-le)

also have ... ≤ 2 ∗ card (Pow (P+ V) × Pow (P+ V)) by linarith
finally show ?thesis .

next
case (add f)
let ?l = λ(l, m). AT (Var wfl ∪ m =s Var wfl ts Var wfm)

from add have reduce-literal lt ⊆ ?l ‘ (Pow (P+ V) × Pow (P+ V))
by force

then have card (reduce-literal lt) ≤ card (Pow (P+ V) × Pow (P+ V))
by (meson finite-SigmaI finite-V pow-of-p-Plus-finite surj-card-le)

also have ... ≤ 2 ∗ card (Pow (P+ V) × Pow (P+ V)) by linarith
finally show ?thesis .

next
case (mul f)
let ?l1 = λ(l, m). AT (Var (InterOfWAux f l m) =s Var wfl −s Var wfm)

let ?l2 = λ(l, m). AT (Var wfl∩m =s Var wfl −s Var (InterOfWAux f l m))

from mul have reduce-literal lt ⊆ ?l1 ‘ (Pow (P+ V) × Pow (P+ V)) ∪ ?l2 ‘
(Pow (P+ V) × Pow (P+ V))

by force
moreover
have ?l1 ‘ (Pow (P+ V) × Pow (P+ V)) ∩ ?l2 ‘ (Pow (P+ V) × Pow (P+ V))

= {}
by fastforce

moreover
from finite-V P-plus-finite have finite (Pow (P+ V) × Pow (P+ V))

by auto
then have finite (?l1 ‘ (Pow (P+ V) × Pow (P+ V))) finite (?l2 ‘ (Pow (P+

V) × Pow (P+ V)))
by blast+

ultimately
have card (reduce-literal lt) ≤ card (?l1 ‘ (Pow (P+ V) × Pow (P+ V))) + card

(?l2 ‘ (Pow (P+ V) × Pow (P+ V)))
using card-Un-disjoint[where ?A = ?l1 ‘ (Pow (P+ V) × Pow (P+ V)) and

?B = ?l2 ‘ (Pow (P+ V) × Pow (P+ V))]

9

using card-mono[where ?A = reduce-literal lt and ?B = ?l1 ‘ (Pow (P+ V)
× Pow (P+ V)) ∪ ?l2 ‘ (Pow (P+ V) × Pow (P+ V))]

by fastforce
also have ... ≤ card (Pow (P+ V) × Pow (P+ V)) + card (Pow (P+ V) ×

Pow (P+ V))
using card-image-le[where ?A = Pow (P+ V) × Pow (P+ V)]
using ‹finite (Pow (P+ V) × Pow (P+ V))› add-mono by blast

also have ... = 2 ∗ card (Pow (P+ V) × Pow (P+ V)) by linarith
finally show ?thesis .

next
case (le f g)
let ?l = λl. AT (Var wgl =s Var wgl ts Var wfl)
from le have reduce-literal lt ⊆ ?l ‘ Pow (P+ V)

by force
then have card (reduce-literal lt) ≤ card (Pow (P+ V))

by (simp add: finite-V surj-card-le)
also have ... ≤ card (Pow (P+ V) × Pow (P+ V))

by (simp add: finite-V surj-card-le)
also have ... ≤ 2 ∗ card (Pow (P+ V) × Pow (P+ V))

by linarith
finally show ?thesis .

next
case (eq x y)
then have card (reduce-literal lt) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith

next
case (eq-empty x n)
then have card (reduce-literal lt) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith

next
case (neq x y)
then have card (reduce-literal lt) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith

next
case (union x y z)
then have card (reduce-literal lt) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith

next
case (diff x y z)
then have card (reduce-literal lt) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith

next
case (single x y)
then have card (reduce-literal lt) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith

next
case (app x f y)
then have card (reduce-literal lt) = 1 by simp
with card-P-P-V-ge-1 show ?thesis by linarith

10

qed

lemma (in normalized-MLSSmf-clause) size-reduce-clause:
card reduce-clause ≤ 2 ^ (Suc (2 ∗ 2 ^ card V)) ∗ sizem C

proof −
have card (P+ V) ≤ 2 ^ card V

using card-Pow[of V] finite-V by simp
from card-UN-le
have card reduce-clause ≤ (

∑
lt∈set C. card (reduce-literal lt))

using reduce-clause-finite
unfolding reduce-clause-def
by blast

also have ... ≤ 2 ∗ card (Pow (P+ V) × Pow (P+ V)) ∗ card (set C)
using size-reduce-norm-literal norm-C literal-in-norm-clause-is-norm
using Sum-le-times[where ?s = set C and ?f = λlt. card (reduce-literal lt)

and ?n = 2 ∗ card (Pow (P+ V) × Pow (P+ V))]
by blast

also have ... = 2 ∗ card (Pow (P+ V)) ∗ card (Pow (P+ V)) ∗ card (set C)
using card-cartesian-product by auto

also have ... = 2 ∗ 2 ^ (card (P+ V)) ∗ 2 ^ (card (P+ V)) ∗ card (set C)
using card-Pow[of P+ V] finite-V P-plus-finite by fastforce

also have ... ≤ 2 ∗ 2 ^ (2 ^ card V) ∗ 2 ^ (2 ^ card V) ∗ card (set C)
using ‹card (P+ V) ≤ 2 ^ card V ›
using power-increasing-iff [where ?b = 2 and ?x = card (P+ V) and ?y = 2

^ card V]
by (simp add: mult-le-mono)

also have ... = 2 ^ (Suc (2 ∗ 2 ^ card V)) ∗ card (set C)
by (simp add: power2-eq-square power-even-eq)

also have ... = 2 ^ (Suc (2 ∗ 2 ^ card V)) ∗ sizem C
unfolding sizem-def by blast

finally show ?thesis .
qed

theorem (in normalized-MLSSmf-clause) size-reduced-dnf :
∀ clause ∈ reduced-dnf . card clause ≤

2 ^ (2 ∗ 2 ^ (3 ∗ sizem C)) ∗ (2 ∗ sizem C) +
(3 ∗ (3 ∗ sizem C) + 2) ∗ (2 ^ (3 ∗ sizem C)) +
Suc (2 ^ (3 ∗ sizem C)) ∗ 2 ^ 2 ^ (3 ∗ sizem C) +
2 ^ (Suc (2 ∗ 2 ^ (3 ∗ sizem C))) ∗ sizem C

proof −
let ?upper-bound = 2 ^ (2 ∗ 2 ^ (3 ∗ sizem C)) ∗ (2 ∗ sizem C) +

(3 ∗ (3 ∗ sizem C) + 2) ∗ (2 ^ (3 ∗ sizem C)) +
Suc (2 ^ (3 ∗ sizem C)) ∗ 2 ^ 2 ^ (3 ∗ sizem C) +
2 ^ (Suc (2 ∗ 2 ^ (3 ∗ sizem C))) ∗ sizem C

{fix clause assume clause ∈ reduced-dnf
then obtain fms where fms ∈ introduce-w

and clause: clause = fms ∪ introduce-v ∪ introduce-UnionOfVennRegions
∪ reduce-clause

unfolding reduced-dnf-def by blast

11

then have card clause ≤ card fms + card introduce-v + card introduce-UnionOfVennRegions
+ card reduce-clause

by (auto intro!: order .trans[OF card-Un-le])
also have ... ≤ 2 ^ (2 ∗ 2 ^ card V) ∗ card F + card introduce-v + card

introduce-UnionOfVennRegions + card reduce-clause
using size-introduce-w ‹fms ∈ introduce-w› by fastforce

also have ... ≤ 2 ^ (2 ∗ 2 ^ card V) ∗ card F + (3 ∗ card V + 2) ∗ (2 ^ card
V) + card introduce-UnionOfVennRegions + card reduce-clause

using size-introduce-v by simp
also have ... ≤ 2 ^ (2 ∗ 2 ^ card V) ∗ card F + (3 ∗ card V + 2) ∗ (2 ^ card

V) + Suc (2 ^ card V) ∗ 2 ^ 2 ^ card V + card reduce-clause
using size-introduce-UnionOfVennRegions by simp

also have ... ≤ 2 ^ (2 ∗ 2 ^ card V) ∗ card F + (3 ∗ card V + 2) ∗ (2 ^ card
V) + Suc (2 ^ card V) ∗ 2 ^ 2 ^ card V + 2 ^ (Suc (2 ∗ 2 ^ card V)) ∗ sizem C

using size-reduce-clause by simp
also have ... ≤ ?upper-bound

using card-V-upper-bound card-F-upper-bound
by (metis Suc-le-mono add-le-mono add-le-mono1 mult-le-mono mult-le-mono1

mult-le-mono2 one-le-numeral power-increasing)
finally have card clause ≤ ?upper-bound .

}
then show ?thesis by blast

qed

end
theory MLSSmf-to-MLSS-Soundness
imports MLSSmf-to-MLSS MLSSmf-Semantics Proper-Venn-Regions MLSSmf-HF-Extras

begin

locale satisfiable-normalized-MLSSmf-clause =
normalized-MLSSmf-clause C for C :: (′v, ′f) MLSSmf-clause +

fixes M v :: ′v ⇒ hf
and M f :: ′f ⇒ hf ⇒ hf

assumes model-for-C: I cl M v M f C
begin

interpretation proper-Venn-regions V M v

using finite-V by unfold-locales

function M :: (′v, ′f) Composite ⇒ hf where
M (Solo x) = M v x
| M (vα) = proper-Venn-region α
| M (UnionOfVennRegions xss) =

⊔
HF ((M ◦ VennRegion) ‘ set xss)

| M (wfl) = (M f f) (M (UnionOfVennRegions (var-set-set-to-var-set-list l)))
| M (UnionOfVars xs) =

⊔
HF (M v ‘ set xs)

| M (InterOfVars xs) =
d

HF (M v ‘ set xs)
| M (MemAux x) = HF {M v x}
| M (InterOfWAux f l m) =M wfl − M wfm
| M (InterOfVarsAux xs) = M v (hd xs) − M (InterOfVars (tl xs))

12

by pat-completeness auto
termination

apply (relation measure (λcomp. case comp of
InterOfVarsAux - ⇒ Suc 0
| UnionOfVennRegions - ⇒ Suc 0
| w-- ⇒ Suc (Suc 0)
| InterOfWAux - - - ⇒ Suc (Suc (Suc 0))
| - ⇒ 0))

apply auto
done

lemma soundness-restriction-on-InterOfVars:
assumes set xs ∈ P+ V

shows ∀ a ∈ restriction-on-InterOfVars xs. I sa M a
proof (induction xs rule: restriction-on-InterOfVars.induct)

case (2 x)
{fix a assume a ∈ restriction-on-InterOfVars [x]

then have a = Var (InterOfVars [x]) =s Var (Solo x) by simp
then have I sa M a by (simp add: HInter-singleton)

}
then show ?case by blast

next
case (3 y x xs)
{fix a assume a ∈ restriction-on-InterOfVars (y # x # xs) − restriction-on-InterOfVars
(x # xs)

then consider a = Var (InterOfVarsAux (y # x # xs)) =s Var (Solo y) −s

Var (InterOfVars (x # xs))
| a = Var (InterOfVars (y # x # xs)) =s Var (Solo y) −s Var

(InterOfVarsAux (y # x # xs))
by fastforce

then have I sa M a
proof (cases)

case 1
then show ?thesis by simp

next
case 2
have

d
HF (insert (M v y) (insert (M v x) (M v ‘ set xs))) =d
(HF ((insert (M v x) (M v ‘ set xs))) / M v y)

using HF-insert-hinsert by auto
also have ... = M v y u

d
HF (insert (M v x) (M v ‘ set xs))

by (simp add: HF-nonempty)
also have ... = M v y − (M v y −

d
HF (insert (M v x) (M v ‘ set xs)))

by blast
finally show ?thesis using 2 by simp

qed
}
with 3.IH show ?case by blast

qed simp

13

lemma soundness-restriction-on-UnionOfVars:
assumes set xs ∈ Pow V

shows ∀ a ∈ restriction-on-UnionOfVars xs. I sa M a
proof (induction xs rule: restriction-on-UnionOfVars.induct)

case 1
then show ?case by auto

next
case (2 x xs)
{fix a assume a ∈ restriction-on-UnionOfVars (x # xs) − restriction-on-UnionOfVars

xs
then have a: a = Var (UnionOfVars (x # xs)) =s Var (Solo x) ts Var

(UnionOfVars xs)
by fastforce

have
⊔

HF (insert (M v x) (M v ‘ set xs)) =
⊔

(HF (M v ‘ set xs) / M v x)
by (simp add: HF-insert-hinsert)

also have ... = M v x t
⊔

HF (M v ‘ set xs) by auto
finally have I sa M a

using a by simp
}
with 2.IH show ?case by blast

qed

lemma soundness-introduce-v:
∀ fml ∈ introduce-v. interp I sa M fml

proof −
{fix α assume α ∈ P+ V

have M vα =
d

HF (M v ‘ α) −
⊔

HF (M v ‘ (V − α))
by simp

also have ... =
d

HF ((M ◦ Solo) ‘ α) −
⊔

HF ((M ◦ Solo) ‘ (V − α))
by simp

finally have I sa M (restriction-on-v α)
apply (simp add: set-V-list)
using ‹α ∈ P+ V ›
by (metis Int-def inf .absorb2 mem-P-plus-subset set-diff-eq)

}
then have ∀α ∈ P+ V . interp I sa M (AT (restriction-on-v α))

by simp
moreover
from soundness-restriction-on-InterOfVars
have ∀ a ∈ (restriction-on-InterOfVars ◦ var-set-to-list) α. I sa M a if α ∈ P+

V for α
by (metis comp-apply mem-P-plus-subset set-var-set-to-list that)

then have ∀ lt ∈ AT ‘
⋃

((restriction-on-InterOfVars ◦ var-set-to-list) ‘ P+ V).
interp I sa M lt

by fastforce
moreover
from soundness-restriction-on-UnionOfVars
have ∀ a ∈ (restriction-on-UnionOfVars ◦ var-set-to-list) α. I sa M a if α ∈ Pow

V for α

14

by (metis Pow-iff comp-apply set-var-set-to-list that)
then have ∀ lt ∈ AT ‘

⋃
((restriction-on-UnionOfVars ◦ var-set-to-list) ‘ Pow

V). interp I sa M lt
by fastforce

ultimately
show ?thesis

unfolding introduce-v-def by blast
qed

lemma soundness-restriction-on-UnionOfVennRegions:
assumes set αs ∈ Pow (Pow V)

shows ∀ a ∈ restriction-on-UnionOfVennRegions αs. I sa M a
proof (induction αs rule: restriction-on-UnionOfVennRegions.induct)

case 1
then show ?case by auto

next
case (2 α αs)
{fix a assume a ∈ restriction-on-UnionOfVennRegions (α # αs) − restric-

tion-on-UnionOfVennRegions αs
then have a: a = Var (UnionOfVennRegions (α # αs)) =s Var vα ts Var

(UnionOfVennRegions αs)
by fastforce

have
⊔

HF ((M ◦ VennRegion) ‘ set (α # αs)) =
⊔

HF (insert (M vα) ((M
◦ VennRegion) ‘ set αs))

by simp
also have ... =

⊔
(HF ((M ◦ VennRegion) ‘ set αs) /M vα)

by (simp add: HF-insert-hinsert)
also have ... =M vα t

⊔
HF ((M ◦ VennRegion) ‘ set αs)

by blast
finally have I sa M a using a by simp

}
with 2.IH show ?case by blast

qed

lemma soundness-introduce-UnionOfVennRegions:
∀ lt ∈ introduce-UnionOfVennRegions. interp I sa M lt

proof
fix lt assume lt ∈ introduce-UnionOfVennRegions
then obtain αs where αs ∈ set all-V-set-lists lt ∈ AT ‘ restriction-on-UnionOfVennRegions
αs

unfolding introduce-UnionOfVennRegions-def by blast
with soundness-restriction-on-UnionOfVennRegions
show interp I sa M lt

using set-all-V-set-lists by fastforce
qed

lemma soundness-restriction-on-FunOfUnionOfVennRegions:
assumes l ′-l: l ′ = var-set-set-to-var-set-list l

and m ′-m: m ′ = var-set-set-to-var-set-list m

15

shows ∃ lt ∈ set (restriction-on-FunOfUnionOfVennRegions l ′ m ′ f). interp I sa

M lt
proof (cases M (UnionOfVennRegions l ′) =M (UnionOfVennRegions m ′))

case True
then have M wfl =M wfm

using l ′-l m ′-m by auto
then have interp I sa M (AT (Var wfset l ′ =s Var wfset m ′))

using l ′-l m ′-m by auto
then show ?thesis by simp

next
case False
then have interp I saM (AF (Var (UnionOfVennRegions l ′) =s Var (UnionOfVennRegions

m ′)))
by fastforce

then show ?thesis by simp
qed

lemma soundness-introduce-w:
∃ clause ∈ introduce-w. ∀ lt ∈ clause. interp I sa M lt

proof −
let ?f = λlts. if interp I sa M (lts ! 0) then lts ! 0 else lts ! 1
let ?g = λ(l, m, f). restriction-on-FunOfUnionOfVennRegions l m f
let ?xs = List.product all-V-set-lists (List.product all-V-set-lists F-list)
have ∀ (l ′, m ′, f) ∈ set ?xs. ?f (?g (l ′, m ′, f)) ∈ set (?g (l ′, m ′, f))

by fastforce
with valid-choice[where ?f = ?f and ?g = ?g and ?xs = ?xs]
have map ?f (map ?g ?xs) ∈ set (choices-from-lists (map ?g ?xs))

by fast
then have set (map ?f (map ?g ?xs)) ∈ introduce-w

unfolding introduce-w-def
using mem-set-map[where ?x = map ?f (map ?g ?xs) and ?f = set]
by blast

moreover
have {x ∈ set V-set-list. x ∈ set l ′} = set l ′ if l ′ ∈ set all-V-set-lists for l ′

using that set-V-set-list set-all-V-set-lists by auto
then have interp I sa M (?f (restriction-on-FunOfUnionOfVennRegions l ′ m ′

f))
if l ′ ∈ set all-V-set-lists m ′ ∈ set all-V-set-lists for l ′ m ′ f
using that by auto

then have ∀ lt ∈ set (map ?f (map ?g ?xs)). interp I sa M lt
by force

ultimately
show ?thesis by blast

qed

lemma soundness-reduce-literal:
assumes lt ∈ set C

shows ∀ fml ∈ reduce-literal lt. interp I sa M fml
proof −

16

from norm-C ‹lt ∈ set C› have norm-literal lt by auto
then show ?thesis
proof (cases rule: norm-literal.cases)

case (inc f)
show ?thesis
proof

fix fml assume fml ∈ reduce-literal lt
then have fml ∈ reduce-literal (ATm (inc(f)))

using inc by blast
then obtain l m where lm: l ⊆ P+ V m ⊆ P+ V l ⊆ m

and fml: fml = AT (Var wfm =s Var wfm ts Var wfl)
by auto

from model-for-C ‹lt ∈ set C› inc have I a M v M f (inc(f)) by fastforce
then have ∀ s t. s ≤ t −→ (M f f) s ≤ (M f f) t by simp
moreover
from lm have

⊔
HF ((M ◦ VennRegion) ‘ l) ≤

⊔
HF ((M ◦ VennRegion) ‘

m)
by (metis HUnion-proper-Venn-region-inter M.simps(2) comp-apply im-

age-cong inf .absorb-iff2)
ultimately

have M f f (
⊔

HF ((M ◦ VennRegion) ‘ l)) ≤M f f (
⊔

HF ((M ◦ VennRegion)
‘ m))

by blast
then have M f f (

⊔
HF ((M ◦ VennRegion) ‘ m)) =

M f f (
⊔

HF ((M ◦ VennRegion) ‘ m)) t M f f (
⊔

HF ((M ◦
VennRegion) ‘ l))

by blast
with fml lm show interp I sa M fml
by (auto simp only: interp.simps I sa.simps I st.simpsM.simps set-var-set-set-to-var-set-list)

qed
next

case (dec f)
show ?thesis
proof

fix fml assume fml ∈ reduce-literal lt
then have fml ∈ reduce-literal (ATm (dec(f)))

using dec by blast
then obtain l m where lm: l ⊆ P+ V m ⊆ P+ V l ⊆ m

and fml: fml = AT (Var wfl =s Var wfl ts Var wfm)
by auto

from model-for-C ‹lt ∈ set C› dec have I a M v M f (dec(f)) by fastforce
then have ∀ s t. s ≤ t −→ (M f f) t ≤ (M f f) s by simp
moreover
from lm have

⊔
HF ((M ◦ VennRegion) ‘ l) ≤

⊔
HF ((M ◦ VennRegion) ‘

m)
by (metis HUnion-proper-Venn-region-inter M.simps(2) comp-apply im-

age-cong inf .absorb-iff2)
ultimately

have M f f (
⊔

HF ((M ◦ VennRegion) ‘ m)) ≤ M f f (
⊔

HF ((M ◦

17

VennRegion) ‘ l))
by blast

then have M f f (
⊔

HF ((M ◦ VennRegion) ‘ l)) =
M f f (

⊔
HF ((M ◦ VennRegion) ‘ l)) t M f f (

⊔
HF ((M ◦

VennRegion) ‘ m))
by blast

with fml lm show interp I sa M fml
by (auto simp only: interp.simps I sa.simps I st.simpsM.simps set-var-set-set-to-var-set-list)

qed
next

case (add f)
show ?thesis
proof

fix fml assume fml ∈ reduce-literal lt
then have fml ∈ reduce-literal (ATm (add(f)))

using add by blast
then obtain l m where lm: l ⊆ P+ V m ⊆ P+ V

and fml: fml = AT (Var wfl∪m =s Var wfl ts Var wfm)
by auto

from model-for-C ‹lt ∈ set C› add have I a M v M f (add(f)) by fastforce
then have ∀ s t. (M f f) (s t t) = (M f f) s t (M f f) t by simp
moreover
have

⊔
HF ((M ◦ VennRegion) ‘ (l ∪ m)) =

⊔
HF ((M ◦ VennRegion) ‘ l)

t
⊔

HF ((M ◦ VennRegion) ‘ m)
using HUnion-proper-Venn-region-union M.simps(2) lm(1) lm(2) by auto

ultimately
have M f f (

⊔
HF ((M ◦ VennRegion) ‘ (l ∪ m))) =

M f f (
⊔

HF ((M ◦ VennRegion) ‘ l)) t M f f (
⊔

HF ((M ◦ VennRegion)
‘ m))

by auto
with fml lm show interp I sa M fml

using set-var-set-set-to-var-set-list
apply (simp only: interp.simps I sa.simps I st.simps M.simps)
by (metis le-sup-iff)

qed
next

case (mul f)
with model-for-C ‹lt ∈ set C› have I a M v M f (mul(f)) by fastforce
then have f-mul: ∀ s t. (M f f) (s u t) = (M f f) s u (M f f) t by simp
have InterOfWAux: I sa M (Var (InterOfWAux f l m) =s Var wfl −s Var wfm)

for l m
by auto

{fix l m assume l ⊆ P+ V m ⊆ P+ V
then have

⊔
HF ((M ◦ VennRegion) ‘ (l ∩ m)) =

⊔
HF ((M ◦ VennRegion)

‘ l) u
⊔

HF ((M ◦ VennRegion) ‘ m)
using HUnion-proper-Venn-region-inter by force

then have M (UnionOfVennRegions (var-set-set-to-var-set-list (l ∩ m))) =
M (UnionOfVennRegions (var-set-set-to-var-set-list l)) u
M (UnionOfVennRegions (var-set-set-to-var-set-list m))

18

using set-var-set-set-to-var-set-list ‹l ⊆ P+ V › ‹m ⊆ P+ V ›
by (metis M.simps(3) inf .absorb-iff2 inf-left-commute)

with f-mul have M wfl∩m =M wfl u M wfm
by auto

moreover
from InterOfWAux have M (InterOfWAux f l m) =M wfl − M wfm

by simp
ultimately
have M wfl∩m =M wfl − M (InterOfWAux f l m)

by auto
then have I sa M (Var wfl∩m =s Var wfl −s Var (InterOfWAux f l m))

by auto
}
with InterOfWAux show ?thesis

using mul by auto
next

case (le f g)
show ?thesis
proof

fix fml assume fml ∈ reduce-literal lt
then have fml ∈ reduce-literal (ATm (f �m g))

using le by blast
then obtain l where l: l ⊆ P+ V

and fml: fml = AT (Var wgl =s Var wgl ts Var wfl)
by auto

from model-for-C ‹lt ∈ set C› le have I a M v M f (f �m g) by fastforce
then have ∀ s. (M f f) s ≤ (M f g) s by simp
then have M f f (

⊔
HF ((M ◦ VennRegion) ‘ l)) ≤ M f g (

⊔
HF ((M ◦

VennRegion) ‘ l))
by auto

with fml l show interp I sa M fml
using set-var-set-set-to-var-set-list
by (auto simp only: interp.simps I sa.simps I st.simps M.simps)

qed
next

case (eq-empty x n)
with ‹lt ∈ set C› model-for-C have M v x = 0 by auto
show ?thesis
proof

fix fml assume fml ∈ reduce-literal lt
with eq-empty have fml = AT (Var (Solo x) =s ∅ n)

by simp
with ‹M v x = 0› show interp I sa M fml by auto

qed
next

case (eq x y)
with ‹lt ∈ set C› model-for-C have M v x = M v y by auto
show ?thesis
proof

19

fix fml assume fml ∈ reduce-literal lt
with eq have fml = AT (Var (Solo x) =s Var (Solo y))

by simp
with ‹M v x = M v y› show interp I sa M fml by auto

qed
next

case (neq x y)
with ‹lt ∈ set C› model-for-C have M v x 6= M v y by auto
show ?thesis
proof

fix fml assume fml ∈ reduce-literal lt
with neq have fml = AF (Var (Solo x) =s Var (Solo y))

by simp
with ‹M v x 6= M v y› show interp I sa M fml by auto

qed
next

case (union x y z)
with ‹lt ∈ set C› model-for-C have M v x = M v y t M v z by fastforce
then have interp I sa M (AT (Var (Solo x) =s Var (Solo y) ts Var (Solo z)))

by simp
with union show ?thesis by auto

next
case (diff x y z)
with ‹lt ∈ set C› model-for-C have M v x = M v y − M v z by fastforce
then have interp I sa M (AT (Var (Solo x) =s Var (Solo y) −s Var (Solo z)))

by simp
with diff show ?thesis by auto

next
case (single x y)
with ‹lt ∈ set C› model-for-C have M v x = HF {M v y} by fastforce
then have interp I sa M (AT (Var (Solo x) =s Single (Var (Solo y)))) by

simp
with single show ?thesis by auto

next
case (app x f y)
with ‹lt ∈ set C› model-for-C
have M v x = (M f f) (M v y) by fastforce
moreover
from app ‹lt ∈ set C› have y ∈ V

unfolding V-def by force
with variable-as-composition-of-proper-Venn-regions
have M v y =

⊔
HF (proper-Venn-region ‘ L V y)

by presburger
then have M v y =

⊔
HF ((M ◦ VennRegion) ‘ L V y)

by simp
ultimately
have M (Solo x) =M wfL V y

using M.simps set-var-set-set-to-var-set-list L-subset-P-plus
by metis

20

with app show ?thesis by simp
qed

qed

lemma soundness-reduce-cl:
∀ fml ∈ reduce-clause. interp I sa M fml
unfolding reduce-clause-def
using soundness-reduce-literal
by fastforce

lemma M-is-model-for-reduced-dnf : is-model-for-reduced-dnf M
unfolding is-model-for-reduced-dnf-def
unfolding reduced-dnf-def
using soundness-introduce-v soundness-introduce-w soundness-introduce-UnionOfVennRegions

soundness-reduce-cl
by (metis (no-types, lifting) Un-iff imageI)

end

lemma MLSSmf-to-MLSS-soundness:
assumes C-norm: norm-clause C

and C-has-model: ∃M v M f . I cl M v M f C
shows ∃M . normalized-MLSSmf-clause.is-model-for-reduced-dnf C M

proof −
from C-has-model obtain M v M f where I cl M v M f C by blast
with C-norm
interpret satisfiable-normalized-MLSSmf-clause C M v M f

by unfold-locales
from M-is-model-for-reduced-dnf show ?thesis by auto

qed

end
theory Reduced-MLSS-Formula-Singleton-Model-Property

imports Syntactic-Description Place-Realisation MLSSmf-to-MLSS
begin

locale satisfiable-normalized-MLSS-clause-with-vars-for-proper-Venn-regions =
satisfiable-normalized-MLSS-clause C A for C A +

fixes U :: ′a set
— The collection of variables representing the proper Venn regions of the

”original” variable set of the MLSSmf clause
assumes U-subset-V : U ⊆ V

and no-overlap-within-U : [[u1 ∈ U ; u2 ∈ U ; u1 6= u2]] =⇒ A u1 u A u2 = 0
and U-collect-places-neq: AF (Var x =s Var y) ∈ C =⇒
∃L M . L ⊆ U ∧ M ⊆ U ∧ A x =

⊔
HF (A ‘ L) ∧ A y =

⊔
HF (A ‘ M)

and U-collect-places-single: AT (Var x =s Single (Var y)) ∈ C =⇒
∃L M . L ⊆ U ∧ M ⊆ U ∧ A x =

⊔
HF (A ‘ L) ∧ A y =

⊔
HF (A ‘ M)

begin

21

interpretation B: adequate-place-framework C PI atp
using syntactic-description-is-adequate by blast

lemma fact-1:
assumes u1 ∈ U

and u2 ∈ U
and u1 6= u2

and π ∈ PI
shows ¬ (π u1 ∧ π u2)

proof (rule ccontr)
assume ¬ ¬ (π u1 ∧ π u2)
then have π u1 π u2 by blast+
from ‹π ∈ PI › obtain σ where σ ∈ Σ π = πσ by auto
then have σ 6= 0 by fastforce
from ‹π = πσ› ‹π u1› ‹π u2› have σ ≤ A u1 σ ≤ A u2 by simp+
with ‹σ 6= 0› have A u1 u A u2 6= 0 by blast
with no-overlap-within-U show False

using ‹u1 ∈ U › ‹u2 ∈ U › ‹u1 6= u2› by blast
qed

fun place-eq :: (′a ⇒ bool) ⇒ (′a ⇒ bool) ⇒ bool where
place-eq π1 π2 ←→ (∀ x ∈ V . π1 x = π2 x)

fun place-sim :: (′a ⇒ bool) ⇒ (′a ⇒ bool) ⇒ bool (infixl ∼ 50) where
place-sim π1 π2 ←→ place-eq π1 π2 ∨ (∃ u ∈ U . π1 u ∧ π2 u)

abbreviation rel-place-sim ≡ {(π1, π2) ∈ PI × PI . π1 ∼ π2}

lemma place-sim-rel-equiv-on-PI : equiv PI rel-place-sim
proof (rule equivI)

have rel-place-sim ⊆ PI × PI by blast
moreover
have (π, π) ∈ rel-place-sim if π ∈ PI for π

using that by fastforce
ultimately
show refl-on PI rel-place-sim using refl-onI by blast

show sym rel-place-sim
proof (rule symI)

fix π1 π2 assume (π1, π2) ∈ rel-place-sim
then have π1 ∈ PI π2 ∈ PI π1 ∼ π2 by blast+
then show (π2, π1) ∈ rel-place-sim by auto

qed

show trans rel-place-sim
proof (rule transI)

fix π1 π2 π3

assume (π1, π2) ∈ rel-place-sim (π2, π3) ∈ rel-place-sim
then have π1 ∈ PI π2 ∈ PI π3 ∈ PI π1 ∼ π2 π2 ∼ π3 by blast+

22

then consider place-eq π1 π2 ∧ place-eq π2 π3 | place-eq π1 π2 ∧ (∃ u ∈ U .
π2 u ∧ π3 u)

| (∃ u ∈ U . π1 u ∧ π2 u) ∧ place-eq π2 π3 | (∃ u ∈ U . π1 u ∧ π2 u) ∧ (∃ u ∈
U . π2 u ∧ π3 u)

by auto
then have π1 ∼ π3

proof (cases)
case 1
then have place-eq π1 π3 by auto
then show ?thesis by auto

next
case 2
then obtain u where u ∈ U π2 u π3 u by blast
with U-subset-V have u ∈ V by blast
with 2 have π1 u ←→ π2 u by force
with ‹π2 u› have π1 u by blast
with ‹u ∈ U › ‹π3 u›
show ?thesis by auto

next
case 3
then obtain u where u ∈ U π1 u π2 u by blast
with U-subset-V have u ∈ V by blast
with 3 have π2 u ←→ π3 u by force
with ‹π2 u› have π3 u by blast
with ‹u ∈ U › ‹π1 u›
show ?thesis by auto

next
case 4
then obtain u1 u2 where u1 ∈ U π1 u1 π2 u1 and u2 ∈ U π2 u2 π3 u2

by blast
with fact-1 have u1 = u2

using ‹π2 ∈ PI › by blast
with ‹π3 u2› have π3 u1 by blast
with ‹π1 u1› ‹u1 ∈ U › show ?thesis

by auto
qed
with ‹π1 ∈ PI › ‹π2 ∈ PI › ‹π3 ∈ PI ›
show (π1, π3) ∈ rel-place-sim by blast

qed
qed auto

lemma refl-sim:
assumes a ∈ PI

and b ∈ PI
and a ∼ b

shows b ∼ a
using assms by auto

lemma trans-sim:

23

assumes a ∈ PI
and b ∈ PI
and c ∈ PI
and a ∼ b
and b ∼ c

shows a ∼ c
proof −

from assms have (a, b) ∈ rel-place-sim (b, c) ∈ rel-place-sim
by blast+

with place-sim-rel-equiv-on-PI have (a, c) ∈ rel-place-sim
using equivE transE
by (smt (verit, ccfv-SIG))

then show a ∼ c by blast
qed

lemma fact-2:
assumes x ∈ V

and exL: ∃L ⊆ U . A x =
⊔

HF (A ‘ L)
and π1 ∈ PI
and π2 ∈ PI
and π1 ∼ π2

shows π1 x ←→ π2 x
proof (cases place-eq π1 π2)

case True
with ‹x ∈ V › show ?thesis by force

next
case False
with ‹π1 ∼ π2› obtain u where u ∈ U π1 u π2 u by auto
from exL obtain L where L ⊆ U A x =

⊔
HF (A ‘ L) by blast

from ‹L ⊆ U › U-subset-V finite-V have finite L
by (simp add: finite-subset)

have π x ←→ u ∈ L if π u π ∈ PI for π
proof −

from ‹π ∈ PI › obtain σ where π = πσ σ ∈ Σ by auto
with ‹π u› have σ ≤ A u

using ‹u ∈ U › U-subset-V by auto
have σ ≤ A x ←→ u ∈ L
proof (standard)

assume σ ≤ A x
{assume u /∈ L

then have ∀ v ∈ L. v 6= u by blast
with no-overlap-within-U have ∀ v ∈ L. A v u A u = 0

using ‹L ⊆ U › ‹u ∈ U › by auto
with ‹σ ≤ A u› have ∀ v ∈ L. A v u σ = 0 by blast
then have

⊔
HF (A ‘ L) u σ = 0

using finite-V U-subset-V ‹L ⊆ U › by auto
with ‹A x =

⊔
HF (A ‘ L)› have A x u σ = 0 by argo

with ‹σ ≤ A x› have False

24

using ‹σ ∈ Σ› mem-Σ-not-empty by blast
}
then show u ∈ L by blast

next
assume u ∈ L
with ‹σ ≤ A u› have σ ≤

⊔
HF (A ‘ L)

using ‹finite L› by force
with ‹A x =

⊔
HF (A ‘ L)› show σ ≤ A x by simp

qed
with ‹π = πσ› show π x ←→ u ∈ L

using ‹x ∈ V › associated-place.simps by blast
qed
with ‹π1 ∈ PI › ‹π1 u› ‹π2 ∈ PI › ‹π2 u›
have π1 x ←→ u ∈ L π2 x ←→ u ∈ L by blast+
then show ?thesis by blast

qed

lemma U-collect-places-single ′: y ∈ W =⇒ ∃L. L ⊆ U ∧ A y =
⊔

HF (A ‘ L)
using U-collect-places-single
by (meson memW-E)

definition PI ′ :: (′a ⇒ bool) set where
PI ′ ≡ (λπs. SOME π. π ∈ πs) ‘ (PI // rel-place-sim)

definition rep :: (′a ⇒ bool) ⇒ (′a ⇒ bool) where
rep π = (SOME π ′. π ′ ∈ rel-place-sim ‘‘ {π})

lemma range-rep:
assumes π ∈ PI

shows rep π ∈ PI ′

using assms
unfolding PI ′-def rep-def
using quotientI [where ?x = π and ?A = PI and ?r = rel-place-sim]
by blast

lemma PI ′-eq-image-of-rep-on-PI : PI ′ = rep ‘ PI
proof (standard; standard)

fix π assume π ∈ PI ′

then obtain πs where πs ∈ PI // rel-place-sim π = (SOME π. π ∈ πs)
unfolding PI ′-def by blast

then obtain π0 where πs = rel-place-sim ‘‘ {π0} π0 ∈ PI
using quotientE [where ?A = PI and ?r = rel-place-sim and ?X = πs]
by blast

with ‹π = (SOME π. π ∈ πs)› have π = rep π0

unfolding rep-def by blast
with ‹π0 ∈ PI › show π ∈ rep ‘ PI by blast

next
fix π assume π ∈ rep ‘ PI
then obtain π0 where π0 ∈ PI π = rep π0 by blast

25

then show π ∈ PI ′ using range-rep by blast
qed

lemma rep-sim:
assumes π ∈ PI

shows π ∼ rep π
and rep π ∼ π

proof −
from ‹π ∈ PI › have π ∈ rel-place-sim ‘‘ {π} by fastforce
then obtain π ′ where π ′ = rep π by blast
with someI [of λx. x ∈ rel-place-sim ‘‘ {π}] have π ′ ∈ rel-place-sim ‘‘ {π}

using ‹π ∈ rel-place-sim ‘‘ {π}›
unfolding rep-def by fast

with ‹π ′ = rep π› show π ∼ rep π by fast
with place-sim-rel-equiv-on-PI show rep π ∼ π

by (metis (full-types) place-eq.simps place-sim.elims(1))
qed

lemma PI ′-subset-PI : PI ′ ⊆ PI
unfolding PI ′-def
using equiv-Eps-preserves place-sim-rel-equiv-on-PI by blast

lemma sim-self :
assumes π ∈ PI ′

and π ′ ∈ PI ′

and π ∼ π ′

shows π ′ = π
proof −

from ‹π ∼ π ′› have (π, π ′) ∈ rel-place-sim
using ‹π ∈ PI ′› ‹π ′ ∈ PI ′› PI ′-subset-PI by blast

from ‹π ∈ PI ′› obtain πs where πs ∈ PI // rel-place-sim π = (SOME π. π ∈
πs)

unfolding PI ′-def by blast
then have π ∈ πs

using equiv-Eps-in place-sim-rel-equiv-on-PI by blast
from ‹π ′ ∈ PI ′› obtain πs ′ where πs ′ ∈ PI // rel-place-sim π ′ = (SOME π. π
∈ πs ′)

unfolding PI ′-def by blast
then have π ′ ∈ πs ′

using equiv-Eps-in place-sim-rel-equiv-on-PI by blast
from place-sim-rel-equiv-on-PI ‹πs ∈ PI // rel-place-sim› ‹πs ′∈ PI // rel-place-sim›

‹π ∈ πs› ‹π ′ ∈ πs ′› ‹(π, π ′) ∈ rel-place-sim›
have πs = πs ′

using quotient-eqI [where ?A = PI and ?r = rel-place-sim and ?x = π and
?X = πs and ?y = π ′ and ?Y = πs ′]

by fast
with ‹π = (SOME π. π ∈ πs)› ‹π ′ = (SOME π. π ∈ πs ′)› show π ′ = π

by auto
qed

26

fun atp-f ′ :: ′a ⇒ (′a ⇒ bool) where
atp-f ′ w = rep (atp-f w)

definition atp ′ = {(y, atp-f ′ y)|y. y ∈ W}
declare atp ′-def [simp]

lemma range-atp-f ′:
assumes w ∈ W
shows atp-f ′ w ∈ PI ′

proof −
from ‹w ∈ W › range-atp-f have atp-f w ∈ PI by blast
then have rel-place-sim ‘‘ {atp-f w} ∈ PI // rel-place-sim

using quotientI by fast
then show ?thesis unfolding PI ′-def

apply (simp only: atp-f ′.simps rep-def)
by (smt (verit, best) Eps-cong atp-f ′.elims image-insert insert-iff mk-disjoint-insert)

qed

lemma rep-at:
assumes π ∈ PI

and (y, π) ∈ atp
shows (y, rep π) ∈ atp ′

proof −
from ‹(y, π) ∈ atp› have atp-f y = π by auto
from ‹(y, π) ∈ atp› have y ∈ W by auto
with W-subset-V have y ∈ V by fast
from ‹(y, π) ∈ atp› obtain x where AT (Var x =s Single (Var y)) ∈ C x ∈ V

using memW-E by fastforce
with U-collect-places-single have ∃L. L ⊆ U ∧ A x =

⊔
HF (A ‘ L) by meson

with fact-2 have π1 x ←→ π2 x if π1 ∼ π2 π1 ∈ PI π2 ∈ PI for π1 π2

using ‹x ∈ V › that by blast
with rep-sim have (rep π) x ←→ π x

using PI ′-subset-PI ‹π ∈ PI › range-rep by blast

from B.C5-1[where ?x = x and ?y = y] have π x ∀π ′∈PI . π ′ 6= π −→ ¬ π ′ x
using ‹AT (Var x =s Single (Var y)) ∈ C› ‹(y, π) ∈ atp› by fastforce+

from ‹π x› ‹(rep π) x ←→ π x› have (rep π) x by blast
with ‹∀π ′∈PI . π ′ 6= π −→ ¬ π ′ x› have rep π = π

using range-rep PI ′-subset-PI ‹π ∈ PI › by blast
then have atp-f ′ y = rep π

using ‹atp-f y = π› by (simp only: atp-f ′.simps)
then show (y, rep π) ∈ atp ′

using ‹y ∈ W ›
by (metis (mono-tags, lifting) atp ′-def mem-Collect-eq)

qed

interpretation B ′: adequate-place-framework C PI ′ atp ′

27

proof −
from PI ′-subset-PI B.PI-subset-places-V
have PI ′-subset-places-V : PI ′ ⊆ places V by blast

have dom-atp ′: Domain atp ′ = W by auto
have range-atp ′: Range atp ′ ⊆ PI ′

proof −
{fix y lt assume lt ∈ C y ∈ singleton-vars lt

then have rep (atp-f y) ∈ PI ′

using range-atp-f [of y] range-rep[of atp-f y]
by blast

}
then show ?thesis by auto

qed

from B.single-valued-atp
have single-valued-atp ′: single-valued atp ′

unfolding single-valued-def atp ′-def
apply (simp only: atp-f ′.simps)
by blast

from PI ′-subset-PI have place-membership C PI ′ ⊆ place-membership C PI by
auto

with B.membership-irreflexive have membership-irreflexive:
(π, π) /∈ place-membership C PI ′ for π
by blast

from PI ′-subset-PI have subgraph: subgraph (place-mem-graph C PI ′) (place-mem-graph
C PI)

proof −
have verts (place-mem-graph C PI ′) = PI ′ by simp
moreover
have verts (place-mem-graph C PI) = PI by simp
ultimately
have verts: verts (place-mem-graph C PI ′) ⊆ verts (place-mem-graph C PI)

using PI ′-subset-PI by presburger

have arcs (place-mem-graph C PI ′) = place-membership C PI ′ by simp
moreover
have arcs (place-mem-graph C PI) = place-membership C PI by simp
moreover
have place-membership C PI ′ ⊆ place-membership C PI

using PI ′-subset-PI by auto
ultimately
have arcs: arcs (place-mem-graph C PI ′) ⊆ arcs (place-mem-graph C PI) by

blast

have compatible (place-mem-graph C PI) (place-mem-graph C PI ′)
unfolding compatible-def by simp

28

with verts arcs show subgraph (place-mem-graph C PI ′) (place-mem-graph C
PI)

unfolding subgraph-def
using place-mem-graph-wf-digraph
by blast

qed

from B.C6 have @ c. pre-digraph.cycle (place-mem-graph C PI) c
using dag.acyclic by blast

then have @ c. pre-digraph.cycle (place-mem-graph C PI ′) c
using subgraph wf-digraph.subgraph-cycle by blast

then have C6: dag (place-mem-graph C PI ′)
using ‹dag (place-mem-graph C PI)› dag-axioms-def dag-def digraph.digraph-subgraph

subgraph
by blast

from B.C1-1 PI ′-subset-PI
have C1-1: ∃n. AT (Var x =s ∅ n) ∈ C =⇒ ∀π ∈ PI ′. ¬ π x for x

by fast

from B.C1-2 PI ′-subset-PI
have C1-2: AT (Var x =s Var y) ∈ C =⇒ ∀π ∈ PI ′. π x ←→ π y for x y

by fast

from B.C2 PI ′-subset-PI
have C2: AT (Var x =s Var y ts Var z) ∈ C =⇒ ∀π ∈ PI ′. π x ←→ π y ∨ π z

for x y z
by fast

from B.C3 PI ′-subset-PI
have C3: AT (Var x =s Var y −s Var z) ∈ C =⇒ ∀π ∈ PI ′. π x ←→ π y ∧ ¬

π z for x y z
by fast

have C4: AF (Var x =s Var y) ∈ C =⇒ ∃π ∈ PI ′. π x ←→ ¬ π y for x y
proof −

assume neq: AF (Var x =s Var y) ∈ C
with B.C4 obtain π where π ∈ PI π x ←→ ¬ π y by blast
from neq have x ∈ V y ∈ V by fastforce+
from neq U-collect-places-neq[where ?x = x and ?y = y] fact-2[of x]
have sim-π-x: π1 x = π2 x if π1 ∈ PI π2 ∈ PI π1 ∼ π2 for π1 π2

using that ‹x ∈ V › by blast
from neq U-collect-places-neq[where ?x = x and ?y = y] fact-2[of y]
have sim-π-y: π1 y = π2 y if π1 ∈ PI π2 ∈ PI π1 ∼ π2 for π1 π2

using that ‹y ∈ V › by blast
from ‹π ∈ PI › have rep π ∈ PI ′ using range-rep by blast
then have rep π ∈ PI using PI ′-subset-PI by blast

from rep-sim sim-π-x have (rep π) x ←→ π x

29

using ‹rep π ∈ PI › ‹π ∈ PI › by blast
moreover
from rep-sim sim-π-y have π y ←→ (rep π) y

using ‹rep π ∈ PI › ‹π ∈ PI › by blast
ultimately
have (rep π) x ←→ ¬ (rep π) y

using ‹π x ←→ ¬ π y› by blast
with ‹rep π ∈ PI ′› show ?thesis by blast

qed

have C5-1: ∃π. (y, π) ∈ atp ′ ∧ π x ∧ (∀π ′ ∈ PI ′. π ′ 6= π −→ ¬ π ′ x)
if AT (Var x =s Single (Var y)) ∈ C for x y

proof −
from that have y ∈ W x ∈ V y ∈ V by fastforce+
from that B.C5-1[where ?y = y and ?x = x]
obtain π where π: (y, π) ∈ atp π x ∀π ′ ∈ PI . π ′ 6= π −→ ¬ π ′ x

by blast
with B.range-atp have π ∈ PI by fast
then have rep π ∈ PI ′ using range-rep by blast
from rep-sim have rep π ∼ π using ‹π ∈ PI › by fast
with U-collect-places-single ‹π x› fact-2 have (rep π) x

using ‹x ∈ V › ‹π ∈ PI › ‹rep π ∈ PI ′› PI ′-subset-PI that
by blast

with π have rep π = π
using ‹rep π ∈ PI ′› PI ′-subset-PI by blast

with π show ?thesis
using ‹rep π ∈ PI ′› PI ′-subset-PI
by (metis rep-at subset-iff)

qed

have C5-2: ∀π ∈ PI ′. π y ←→ π z if y ∈ W z ∈ W and at ′-eq: ∃π. (y, π) ∈
atp ′ ∧ (z, π) ∈ atp ′ for y z

proof
fix π assume π ∈ PI ′

from at ′-eq obtain π ′ where π ′: atp-f ′ y = π ′ atp-f ′ z = π ′

by (simp only: atp ′-def) fast
with range-atp-f ′ ‹y ∈ W › have π ′ ∈ PI ′ by blast
from π ′ have atp-f ′ y ∼ atp-f ′ z

apply (simp only: atp-f ′.simps place-sim.simps place-eq.simps)
by blast

moreover
from rep-sim have atp-f ′ y ∼ atp-f y

using atp-f ′.simps range-atp-f that(1) by presburger
moreover
from rep-sim have atp-f ′ z ∼ atp-f z

using atp-f ′.simps range-atp-f that(2) by presburger
ultimately
have atp-f y ∼ atp-f z

using trans-sim[of atp-f y atp-f ′ y atp-f ′ z]

30

using trans-sim[of atp-f y atp-f ′ z atp-f z]
using refl-sim[of atp-f ′ y atp-f y]
using range-atp-f [of y] range-atp-f [of z] range-atp-f ′ PI ′-subset-PI that(1−2)
by (meson subset-iff)

then consider atp-f y = atp-f z | ∃ u ∈ U . atp-f y u ∧ atp-f z u
by force

then show π y ←→ π z
proof (cases)

case 1
then have ∃π. (y, π) ∈ atp ∧ (z, π) ∈ atp

using atp-def ‹y ∈ W › ‹z ∈ W › by blast
with B.C5-2 have ∀π ∈ PI . π y ←→ π z

using ‹y ∈ W › ‹z ∈ W › by presburger
with ‹π ∈ PI ′› PI ′-subset-PI show π y ←→ π z

by fast
next

case 2
then obtain u where u ∈ U atp-f y u atp-f z u by blast
then have A y ∈ A u A z ∈ A u

by (simp add: less-eq-hf-def)+
from ‹y ∈ W › obtain x1 where x1-single-y: AT (Var x1 =s Single (Var y))

∈ C
using memW-E by blast

with A-sat-C have A x1 = HF {A y} by fastforce
then have A y ∈ A x1 by simp

from x1-single-y U-collect-places-single obtain L where L ⊆ U A x1 =
⊔

HF
(A ‘ L)

by meson
with ‹A y ∈ A x1› obtain u ′ where u ′ ∈ L A y ∈ A u ′ by auto
from ‹A x1 =

⊔
HF (A ‘ L)› ‹u ′ ∈ L› have A u ′ ≤ A x1

using ‹A y ∈ A x1› by auto
with ‹A x1 = HF {A y}› ‹A y ∈ A u ′› have A u ′ = HF {A y} by auto
with ‹A y ∈ A u› ‹u ∈ U › ‹u ′ ∈ L› ‹L ⊆ U › no-overlap-within-U
have u ′ = u by fastforce
with ‹A u ′ = HF {A y}› ‹A z ∈ A u› have A y = A z by simp
with realise-same-implies-eq-under-all-π[of y z π] show ?thesis

using ‹y ∈ W › ‹z ∈ W › W-subset-V ‹π ∈ PI ′› PI ′-subset-PI by blast
qed

qed

have C5-3: ∃π. (y, π) ∈ atp ′ ∧ (y ′, π) ∈ atp ′

if y ∈ W y ′ ∈ W ∀π ′ ∈ PI ′. π ′ y ′←→ π ′ y for y ′ y
proof −

from ‹∀π ′ ∈ PI ′. π ′ y ′←→ π ′ y› have ∀π ∈ PI . rep π y ′←→ rep π y
by (metis range-rep)

{fix π assume π ∈ PI
with ‹∀π ′ ∈ PI ′. π ′ y ′←→ π ′ y› have rep π y ′←→ rep π y

using range-rep by fast
from ‹π ∈ PI › PI ′-subset-PI range-rep have rep π ∈ PI by blast

31

from U-collect-places-single ′[of y ′] fact-2[of y ′ rep π π] rep-sim[of π]
have rep π y ′←→ π y ′

using ‹y ′ ∈ W › W-subset-V ‹π ∈ PI › ‹rep π ∈ PI ›
by blast

from U-collect-places-single ′[of y] fact-2[of y rep π π] rep-sim[of π]
have rep π y ←→ π y

using ‹y ∈ W › W-subset-V ‹π ∈ PI › ‹rep π ∈ PI ›
by blast

from ‹rep π y ′←→ rep π y› ‹rep π y ′←→ π y ′› ‹rep π y ←→ π y›
have π y ←→ π y ′ by blast

}
with B.C5-3 obtain π where (y, π) ∈ atp (y ′, π) ∈ atp

using ‹y ∈ W › ‹y ′ ∈ W › by blast
then have (y, rep π) ∈ atp ′ (y ′, rep π) ∈ atp ′

by (meson Range-iff B.range-atp rep-at subset-iff)+
then show ?thesis by fast

qed

have π = πHF {0} if π ∈ Range atp ′ − Range (place-membership C PI ′) for π

proof −
from that obtain y where (y, π) ∈ atp ′ by blast
then have y ∈ W π ∈ PI ′

using dom-atp ′ range-atp ′ by blast+
from ‹(y, π) ∈ atp ′› have π = rep (atp-f y) by simp
from ‹y ∈ W › obtain x where lt-in-C: AT (Var x =s Single (Var y)) ∈ C

using memW-E by blast
with A-sat-C have A x = HF {A y} by fastforce
then have σy ≤ A x by simp
with lt-in-C have atp-f y x by force
with ‹π = rep (atp-f y)› fact-2[of x] rep-sim[of atp-f y] U-collect-places-single[of

x y]
have π x

using lt-in-C ‹π ∈ PI ′› PI ′-subset-PI ‹y ∈ W ›
by (smt (verit, best)B.PI-subset-places-V places-domain range-atp-f rev-contra-hsubsetD)

have ∀π ∈ PI . ¬ π y
proof (rule ccontr)

assume ¬ (∀π∈PI . ¬ π y)
then obtain π ′ where π ′ ∈ PI π ′ y by blast
with U-collect-places-single ′[of y] fact-2[of y rep π ′ π ′] rep-sim[of π ′]
have rep π ′ y

using ‹y ∈ W › PI ′-subset-PI W-subset-V range-rep by blast
with ‹AT (Var x =s Single (Var y)) ∈ C› ‹π x›
have (rep π ′, π) ∈ place-membership C PI ′

using ‹π ∈ PI ′› ‹π ′ ∈ PI › range-rep
by (simp only: place-membership.simps) blast

then have π ∈ Range (place-membership C PI ′) by blast
with that show False by blast

qed

32

have ∀α ∈ L V y. proper-Venn-region α = 0
proof (rule ccontr)

assume ¬ (∀α ∈ L V y. proper-Venn-region α = 0)
then obtain α where α: α ∈ L V y proper-Venn-region α 6= 0 by blast
then have y ∈ α α ∈ P+ V by auto
with ‹proper-Venn-region α 6= 0› have proper-Venn-region α ≤ A y

using proper-Venn-region-subset-variable-iff
by (meson mem-P-plus-subset subset-iff)

then have πproper-Venn-region α y
using W-subset-V ‹y ∈ W › by auto

with ‹∀π ∈ PI . ¬ π y› show False
using α by auto

qed
then have

⊔
HF (proper-Venn-region ‘ L V y) = 0

by fastforce
with variable-as-composition-of-proper-Venn-regions[of y]
have A y = 0

using ‹y ∈ W › W-subset-V by auto
with ‹A x = HF {A y}› have A x = HF {0} by argo

from ‹π ∈ PI ′› PI ′-subset-PI obtain σ where σ ∈ Σ π = πσ
by (metis PI-def image-iff in-mono)

with ‹π x› have σ 6= 0 σ ≤ A x by simp+
with ‹A x = HF {0}› have σ = HF {0} by fastforce
with ‹π = πσ› show π = πHF {0} by blast

qed
then have C7 :
[[π1 ∈ Range atp ′ − Range (place-membership C PI ′);
π2 ∈ Range atp ′ − Range (place-membership C PI ′)]] =⇒ π1 = π2 for π1 π2

by blast

from PI ′-subset-places-V dom-atp ′ range-atp ′ single-valued-atp ′

membership-irreflexive C6
C1-1 C1-2 C2 C3 C4 C5-1 C5-2 C5-3 C7

show adequate-place-framework C PI ′ atp ′

apply intro-locales
unfolding adequate-place-framework-axioms-def
by blast

qed

lemma singleton-model-for-normalized-reduced-literals:
∃M. ∀ lt ∈ C. interp I sa M lt ∧ (∀ u ∈ U . hcard (M u) ≤ 1)

proof −
from B ′.finite-PI have finite (PI ′ − Range atp ′) by blast
with u-exists[of PI ′ − Range atp ′ card PI ′] obtain u where
[[π1 ∈ PI ′ − Range atp ′; π2 ∈ PI ′ − Range atp ′; π1 6= π2]] =⇒ u π1 6= u π2

π ∈ PI ′ − Range atp ′ =⇒ hcard (u π) ≥ card PI ′

for π1 π2 π
by blast

33

then have place-realization C PI ′ atp ′ u
by unfold-locales blast+

{fix x assume x ∈ U
then have π1 = π2 if π1 x π2 x π1 ∈ PI ′ π2 ∈ PI ′ for π1 π2

using sim-self that by auto
then consider {π ∈ PI ′. π x} = {} | (∃π. {π ∈ PI ′. π x} = {π})

by blast
then have hcard (place-realization.M C PI ′ atp ′ u x) ≤ 1
proof (cases)

case 1
then have place-realization.M C PI ′ atp ′ u x = 0

using ‹place-realization C PI ′ atp ′ u› place-realization.M.simps
by fastforce

then show ?thesis by simp
next

case 2
then obtain π where {π ∈ PI ′. π x} = {π} π ∈ PI ′ by auto

then have place-realization.MC PI ′ atp ′ u x =
⊔

HF (place-realization.place-realise
C PI ′ atp ′ u ‘ {π})

using ‹place-realization C PI ′ atp ′ u› place-realization.M.simps
by fastforce

also have ... =
⊔

HF {place-realization.place-realise C PI ′ atp ′ u π}
by simp

finally have place-realization.MC PI ′ atp ′ u x =
⊔

HF {place-realization.place-realise
C PI ′ atp ′ u π} .

moreover
from place-realization.place-realise-singleton[of C PI ′ atp ′ u]
have hcard (place-realization.place-realise C PI ′ atp ′ u π) = 1

using ‹place-realization C PI ′ atp ′ u› ‹π ∈ PI ′› by blast
then obtain c where place-realization.place-realise C PI ′ atp ′ u π = HF {c}

using hcard-1E [of place-realization.place-realise C PI ′ atp ′ u π]
by fastforce

ultimately
have place-realization.M C PI ′ atp ′ u x =

⊔
HF {HF {c}}

by presburger
also have ... = HF {c} by fastforce
also have hcard ... = 1

by (simp add: hcard-def)
finally show ?thesis by linarith

qed
}
moreover
from place-realization.M-sat-C
have ∀ lt ∈ C. interp I sa (place-realization.M C PI ′ atp ′ u) lt

using ‹place-realization C PI ′ atp ′ u› by fastforce
ultimately
show ?thesis by blast

qed

34

end

theorem singleton-model-for-reduced-MLSS-clause:
assumes norm-C: normalized-MLSSmf-clause C

and V : V = varsm C
and A-model: normalized-MLSSmf-clause.is-model-for-reduced-dnf C A

shows ∃M. normalized-MLSSmf-clause.is-model-for-reduced-dnf C M ∧
(∀α ∈ P+ V . hcard (M vα) ≤ 1)

proof −
from norm-C interpret normalized-MLSSmf-clause C by blast
interpret proper-Venn-regions V A ◦ Solo

using V by unfold-locales blast

from A-model have ∀ fm∈introduce-v. interp I sa A fm
unfolding is-model-for-reduced-dnf-def reduced-dnf-def
by blast

with eval-v have A-v: ∀α ∈ P+ V . A vα = proper-Venn-region α
using V V-def proper-Venn-region.simps by auto

from A-model have ∀ lt ∈ introduce-UnionOfVennRegions. interp I sa A lt
unfolding is-model-for-reduced-dnf-def reduced-dnf-def by blast

then have ∀ a ∈ restriction-on-UnionOfVennRegions αs. I sa A a
if αs ∈ set all-V-set-lists for αs
unfolding introduce-UnionOfVennRegions-def
using that by simp

with eval-UnionOfVennRegions have A-UnionOfVennRegions:
A (UnionOfVennRegions αs) =

⊔
HF (A ‘ VennRegion ‘ set αs)

if αs ∈ set all-V-set-lists for αs
using that by (simp add: Sup.SUP-image)

have Solo-variable-as-composition-of-v:
∃L ⊆ {vα |α. α ∈ P+ V}. A z =

⊔
HF (A ‘ L) if ∃ z ′ ∈ V . z = Solo z ′ for z

proof −
from that obtain z ′ where z ′ ∈ V z = Solo z ′ by blast
then have VennRegion ‘ L V z ′ ⊆ {vα |α. α ∈ P+ V} by fastforce
moreover
from A-v have ∀α ∈ L V z ′. A vα = proper-Venn-region α

using L-subset-P-plus finite-V by fast
then have

⊔
HF (A ‘ (VennRegion ‘ L V z ′)) =

⊔
HF (proper-Venn-region ‘

L V z ′)
using HUnion-eq[where ?S = L V z ′ and ?f = A ◦ VennRegion and ?g =

proper-Venn-region]
by (simp add: image-comp)

moreover
from variable-as-composition-of-proper-Venn-regions
have (A ◦ Solo) z ′ =

⊔
HF (proper-Venn-region ‘ L V z ′)

using ‹z ′ ∈ V › by presburger
with ‹z = Solo z ′› have A z =

⊔
HF (proper-Venn-region ‘ L V z ′) by simp

35

ultimately
have VennRegion ‘ L V z ′⊆ {vα |α. α ∈ P+ V} ∧ A z =

⊔
HF (A ‘ VennRegion

‘ L V z ′)
by simp

then show ?thesis by blast
qed

from A-model obtain clause where clause:
clause ∈ reduced-dnf ∀ lt ∈ clause. interp I sa A lt
unfolding is-model-for-reduced-dnf-def by blast

with reduced-dnf-normalized have normalized-MLSS-clause clause by blast
with clause
have satisfiable-normalized-MLSS-clause-with-vars-for-proper-Venn-regions clause
A {vα |α. α ∈ P+ V}

proof (unfold-locales, goal-cases)
case 1
then show ?case

using normalized-MLSS-clause.norm-C by blast
next

case 2
then show ?case

by (simp add: normalized-MLSS-clause.finite-C)
next

case 3
then show ?case

by (simp add: finite-vars-fm normalized-MLSS-clause.finite-C)
next

case 4
then show ?case by simp

next
case 5
from ‹clause ∈ reduced-dnf › normalized-clause-contains-all-v-α
have ∀α∈P+ V . vα ∈

⋃
(vars ‘ clause)

using V V-def by simp
then show ?case by blast

next
case (6 x y)
then obtain α β where αβ: α ∈ P+ V β ∈ P+ V x = vα y = vβ

by blast
with ‹x 6= y› have α 6= β by blast

from αβ have α ⊆ V β ⊆ V by auto

from A-model have ∀ fm∈introduce-v. interp I sa A fm
unfolding is-model-for-reduced-dnf-def reduced-dnf-def by blast

with αβ eval-v have A x = proper-Venn-region α A y = proper-Venn-region β
using V V-def proper-Venn-region.simps by auto

with proper-Venn-region-disjoint ‹α 6= β›
show ?case

36

using ‹α ⊆ V › ‹β ⊆ V › by presburger
next

case (7 x y)
from ‹AF (Var x =s Var y) ∈ clause› ‹clause ∈ reduced-dnf ›
consider AF (Var x =s Var y) ∈ reduce-clause | ∃ clause ∈ introduce-w. AF

(Var x =s Var y) ∈ clause
unfolding reduced-dnf-def introduce-v-def introduce-UnionOfVennRegions-def

by blast
then show ?case
proof (cases)

case 1
then obtain lt where lt: lt ∈ set C AF (Var x =s Var y) ∈ reduce-literal lt

unfolding reduce-clause-def by blast
then obtain a where lt = AFm a

by (cases lt rule: reduce-literal.cases) auto
from ‹lt ∈ set C› norm-C have norm-literal lt by blast
with ‹lt = AFm a› norm-literal-neq
obtain x ′ y ′ where lt: lt = AFm (Varm x ′ =m Varm y ′) by blast
then have reduce-literal lt = {AF (Var (Solo x ′) =s Var (Solo y ′))}

by simp
with ‹AF (Var x =s Var y) ∈ reduce-literal lt› have x = Solo x ′ y = Solo y ′

by simp+
from lt ‹lt ∈ set C› have x ′ ∈ V y ′ ∈ V

using V by fastforce+

from Solo-variable-as-composition-of-v show ?thesis
using ‹x = Solo x ′› ‹y = Solo y ′› ‹x ′ ∈ V › ‹y ′ ∈ V ›
by (smt (verit, best))

next
case 2
with lt-in-clause-in-introduce-w-E obtain l ′ m ′ f

where l ′: l ′ ∈ set all-V-set-lists
and m ′: m ′ ∈ set all-V-set-lists
and f : f ∈ set F-list

and AF (Var x =s Var y) ∈ set (restriction-on-FunOfUnionOfVennRegions
l ′ m ′ f)

by blast
then have AF (Var x =s Var y) = AF (Var (UnionOfVennRegions l ′) =s

Var (UnionOfVennRegions m ′))
by auto
then have x = UnionOfVennRegions l ′ y = UnionOfVennRegions m ′ by

blast+
with A-UnionOfVennRegions l ′ m ′

have A x =
⊔

HF (A ‘ VennRegion ‘ set l ′) A y =
⊔

HF (A ‘ VennRegion ‘
set m ′)

by blast+
moreover
from l ′ set-all-V-set-lists have set l ′ ⊆ P+ V

using V V-def by auto

37

then have VennRegion ‘ set l ′ ⊆ {vα |α. α ∈ P+ V}
by blast

moreover
from m ′ set-all-V-set-lists have set m ′ ⊆ P+ V

using V V-def by auto
then have VennRegion ‘ set m ′ ⊆ {vα |α. α ∈ P+ V}

by blast
ultimately
show ?thesis by blast

qed
next

case (8 x y)
then consider AT (Var x =s Single (Var y)) ∈ introduce-v
| ∃ clause ∈ introduce-w. AT (Var x =s Single (Var y)) ∈ clause
| AT (Var x =s Single (Var y)) ∈ introduce-UnionOfVennRegions
| AT (Var x =s Single (Var y)) ∈ reduce-clause
unfolding reduced-dnf-def by blast

then show ?case
proof (cases)

case 1
have Var x =s Single (Var y) 6= restriction-on-v α for α

by simp
moreover
have Var x =s Single (Var y) /∈ restriction-on-InterOfVars xs for xs

by (induction xs rule: restriction-on-InterOfVars.induct) auto
then have Var x =s Single (Var y) /∈ (restriction-on-InterOfVars ◦ var-set-to-list)

α for α
by simp

moreover
have Var x =s Single (Var y) /∈ restriction-on-UnionOfVars xs for xs

by (induction xs rule: restriction-on-UnionOfVars.induct) auto
then have Var x =s Single (Var y) /∈ (restriction-on-UnionOfVars ◦

var-set-to-list) α for α
by simp

ultimately
have AT (Var x =s Single (Var y)) /∈ introduce-v

unfolding introduce-v-def by blast
with 1 show ?thesis by blast

next
case 2
with lt-in-clause-in-introduce-w-E obtain l ′ m ′ f
where AT (Var x =s Single (Var y)) ∈ set (restriction-on-FunOfUnionOfVennRegions

l ′ m ′ f)
by blast

moreover
have AT (Var x =s Single (Var y)) /∈ set (restriction-on-FunOfUnionOfVennRegions

l ′ m ′ f)
by simp

ultimately

38

show ?thesis by blast
next

case 3
have Var x =s Single (Var y) /∈ restriction-on-UnionOfVennRegions αs for

αs
by (induction αs rule: restriction-on-UnionOfVennRegions.induct) auto

then have AT (Var x =s Single (Var y)) /∈ introduce-UnionOfVennRegions
unfolding introduce-UnionOfVennRegions-def by blast

with 3 show ?thesis by blast
next

case 4
then obtain lt where lt ∈ set C and reduce-lt: AT (Var x =s Single (Var

y)) ∈ reduce-literal lt
unfolding reduce-clause-def by blast

with norm-C have norm-literal lt by blast
then have ∃ x ′ y ′. lt = ATm (Varm x ′ =m Singlem (Varm y ′))

apply (cases lt rule: norm-literal.cases)
using reduce-lt by auto

then obtain x ′ y ′ where lt: lt = ATm (Varm x ′ =m Singlem (Varm y ′)) by
blast

with reduce-lt have x = Solo x ′ y = Solo y ′ by simp+
from ‹lt ∈ set C› lt have x ′ ∈ V y ′ ∈ V

using V by fastforce+
from Solo-variable-as-composition-of-v show ?thesis

using ‹x = Solo x ′› ‹y = Solo y ′› ‹x ′ ∈ V › ‹y ′ ∈ V ›
by (smt (verit, best))

qed
qed
then show ?thesis
using satisfiable-normalized-MLSS-clause-with-vars-for-proper-Venn-regions.singleton-model-for-normalized-reduced-literals
unfolding is-model-for-reduced-dnf-def

by (smt (verit) V V-def clause(1) introduce-v-subset-reduced-fms mem-Collect-eq
subset-iff v-α-in-vars-introduce-v)
qed

end
theory MLSSmf-to-MLSS-Completeness

imports MLSSmf-Semantics MLSSmf-to-MLSS MLSSmf-HF-Extras
Proper-Venn-Regions Reduced-MLSS-Formula-Singleton-Model-Property

begin

locale MLSSmf-to-MLSS-complete =
normalized-MLSSmf-clause C for C :: (′v, ′f) MLSSmf-clause +

fixes B :: (′v, ′f) Composite ⇒ hf
assumes B: is-model-for-reduced-dnf B

fixes Λ :: hf ⇒ ′v set set
assumes Λ-subset-V : Λ x ⊆ P+ V

and Λ-preserves-zero: Λ 0 = {}

39

and Λ-inc: a ≤ b =⇒ Λ a ⊆ Λ b
and Λ-add: Λ (a t b) = Λ a ∪ Λ b
and Λ-mul: Λ (a u b) = Λ a ∩ Λ b
and Λ-discr : l ⊆ P+ V =⇒

a =
⊔

HF ((B ◦ VennRegion) ‘ l) =⇒ a =
⊔

HF ((B ◦ VennRegion)
‘ (Λ a))
begin

fun discretizev :: ((′v, ′f) Composite ⇒ hf) ⇒ (′v ⇒ hf) where
discretizev M =M ◦ Solo

fun discretizef :: ((′v, ′f) Composite ⇒ hf) ⇒ (′f ⇒ hf ⇒ hf) where
discretizef M = (λf a.M wfΛ a)

interpretation proper-Venn-regions V discretizev B
using finite-V by unfold-locales

lemma all-literal-sat: ∀ lt ∈ set C. I l (discretizev B) (discretizef B) lt
proof

fix lt assume lt ∈ set C

from B obtain clause where clause: clause ∈ reduced-dnf
and B-sat-clause: ∀ lt ∈ clause. interp I sa B lt

unfolding is-model-for-reduced-dnf-def by blast

from ‹lt ∈ set C› have norm-literal lt
using norm-C by blast

then show I l (discretizev B) (discretizef B) lt
proof (cases lt rule: norm-literal.cases)

case (inc f)
have s ≤ t =⇒ discretizef B f s ≤ discretizef B f t for s t
proof −

let ?atom = Var wfΛ t =s Var wfΛ t ts Var wfΛ s
assume s ≤ t
then have Λ s ⊆ Λ t using Λ-inc by simp
then have ?atom ∈ reduce-atom (inc(f))

using Λ-subset-V
by (simp add: V-def)

then have AT ?atom ∈ clause
using ‹lt = ATm (inc(f))› ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have I sa B ?atom by fastforce
then have B wfΛ t = B wfΛ t t B wfΛ s by simp
then have B wfΛ s ≤ B wfΛ t

by (simp add: sup.order-iff)
then show discretizef B f s ≤ discretizef B f t by simp

qed
then show ?thesis using inc by auto

40

next
case (dec f)
have s ≤ t =⇒ discretizef B f t ≤ discretizef B f s for s t
proof −

let ?atom = Var wfΛ s =s Var wfΛ s ts Var wfΛ t
assume s ≤ t
then have Λ s ⊆ Λ t using Λ-inc by simp
then have ?atom ∈ reduce-atom (dec(f))

using Λ-subset-V
by (simp add: V-def)

then have AT ?atom ∈ clause
using ‹lt = ATm (dec(f))› ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have I sa B ?atom by fastforce
then have B wfΛ s = B wfΛ s t B wfΛ t by simp
then have B wfΛ t ≤ B wfΛ s

by (simp add: sup.order-iff)
then show discretizef B f t ≤ discretizef B f s by simp

qed
then show ?thesis using dec by auto

next
case (add f)
have discretizef B f (s t t) = discretizef B f s t discretizef B f t for s t
proof −

let ?atom = Var wfΛ (s t t) =s Var wfΛ s ts Var wfΛ t
have ?atom ∈ reduce-atom (add(f))

using Λ-subset-V Λ-add
by (simp add: V-def)

then have AT ?atom ∈ clause
using ‹lt = ATm (add(f))› ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have I sa B ?atom by fastforce
then have B wfΛ (s t t) = B wfΛ s t B wfΛ t by simp
then show discretizef B f (s t t) = discretizef B f s t discretizef B f t by

simp
qed
then show ?thesis using add by auto

next
case (mul f)
have discretizef B f (s u t) = discretizef B f s u discretizef B f t for s t
proof −

let ?atom-1 = Var (InterOfWAux f (Λ s) (Λ t)) =s Var wfΛ s −s Var wfΛ t
have ?atom-1 ∈ reduce-atom (mul(f))

using Λ-subset-V
by (simp add: V-def)

then have AT ?atom-1 ∈ clause
using ‹lt = ATm (mul(f))› ‹lt ∈ set C› clause

41

unfolding reduced-dnf-def reduce-clause-def by fastforce
with B-sat-clause have I sa B ?atom-1 by fastforce
then have B (InterOfWAux f (Λ s) (Λ t)) = B wfΛ s − B wfΛ t by simp
moreover
let ?atom-2 = Var wfΛ (s u t) =s Var wfΛ s −s Var (InterOfWAux f (Λ s)

(Λ t))
have ?atom-2 ∈ reduce-atom (mul(f))

using Λ-subset-V Λ-mul
by (simp add: V-def)

then have AT ?atom-2 ∈ clause
using ‹lt = ATm (mul(f))› ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have I sa B ?atom-2 by fastforce
then have B wfΛ (s u t) = B wfΛ s − B (InterOfWAux f (Λ s) (Λ t)) by

simp
ultimately
have B wfΛ (s u t) = B wfΛ s u B wfΛ t by auto
then show discretizef B f (s u t) = discretizef B f s u discretizef B f t by

simp
qed
then show ?thesis using mul by auto

next
case (le f g)
have discretizef B f s ≤ discretizef B g s for s
proof −

let ?atom = Var wgΛ s =s Var wgΛ s ts Var wfΛ s
have ?atom ∈ reduce-atom (f �m g)

using Λ-subset-V
by (simp add: V-def)

then have AT ?atom ∈ clause
using ‹lt = ATm (f �m g)› ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have I sa B ?atom by fastforce
then have B wgΛ s = B wgΛ s t B wfΛ s by simp
then have B wfΛ s ≤ B wgΛ s

by (simp add: sup.orderI)
then show discretizef B f s ≤ discretizef B g s by simp

qed
then show ?thesis using le by auto

next
case (eq-empty x n)
let ?lt = AT (Var (Solo x) =s ∅ n)
from eq-empty have ?lt ∈ reduce-literal lt

using ‹lt ∈ set C› by simp
then have ?lt ∈ clause

using ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

42

with B-sat-clause have interp I sa B ?lt by fastforce
with eq-empty show ?thesis by simp

next
case (eq x y)
let ?lt = AT (Var (Solo x) =s Var (Solo y))
from eq have ?lt ∈ reduce-literal lt

using ‹lt ∈ set C› by simp
then have ?lt ∈ clause

using ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have interp I sa B ?lt by fastforce
with eq show ?thesis by simp

next
case (neq x y)
let ?lt = AF (Var (Solo x) =s Var (Solo y))
from neq have ?lt ∈ reduce-literal lt

using ‹lt ∈ set C› by simp
then have ?lt ∈ clause

using ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have interp I sa B ?lt by fastforce
with neq show ?thesis by simp

next
case (union x y z)
let ?lt = AT (Var (Solo x) =s Var (Solo y) ts Var (Solo z))
from union have ?lt ∈ reduce-literal lt

using ‹lt ∈ set C› by simp
then have ?lt ∈ clause

using neq ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have interp I sa B ?lt by fastforce
with union show ?thesis by simp

next
case (diff x y z)
let ?lt = AT (Var (Solo x) =s Var (Solo y) −s Var (Solo z))
from diff have ?lt ∈ reduce-literal lt

using ‹lt ∈ set C› by simp
then have ?lt ∈ clause

using neq ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have interp I sa B ?lt by fastforce
with diff show ?thesis by simp

next
case (single x y)

43

let ?lt = AT (Var (Solo x) =s Single (Var (Solo y)))
from single have ?lt ∈ reduce-literal lt

using ‹lt ∈ set C› by simp
then have ?lt ∈ clause

using neq ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have interp I sa B ?lt by fastforce
with single show ?thesis by simp

next
case (app x f y)
with ‹lt ∈ set C› have f ∈ F unfolding F-def by force
from B-sat-clause clause eval-v
have B-v: (B ◦ VennRegion) α = proper-Venn-region α if α ∈ P+ V for α

unfolding reduced-dnf-def
using proper-Venn-region.simps that by force

from B-sat-clause clause eval-w
have B-w:

⊔
HF ((B ◦ VennRegion) ‘ l) =

⊔
HF ((B ◦ VennRegion) ‘ m) −→

B wfl = B wfm
if l ⊆ P+ V m ⊆ P+ V f ∈ F for l m f
by (meson in-mono introduce-UnionOfVennRegions-subset-reduced-fms intro-

duce-w-subset-reduced-fms that)

from app ‹lt ∈ set C› have y ∈ V using V-def by fastforce
with variable-as-composition-of-proper-Venn-regions
have

⊔
HF (proper-Venn-region ‘ L V y) = discretizev B y by blast

with Λ-discr L-subset-P-plus B-v
have

⊔
HF ((B ◦ VennRegion) ‘ L V y) =

⊔
HF ((B ◦ VennRegion) ‘ Λ

(discretizev B y))
by (smt (verit, best) HUnion-eq subset-eq)

with B-w have B-w-eq: B wfL V y = B wfΛ (discretizev B y)
using L-subset-P-plus Λ-subset-V ‹f ∈ F› finite-V by meson

let ?lt = AT (Var (Solo x) =s Var wfL V y)
from app have ?lt ∈ reduce-literal lt

using ‹lt ∈ set C› by simp
then have ?lt ∈ clause

using neq ‹lt ∈ set C› clause
unfolding reduced-dnf-def reduce-clause-def by fastforce

with B-sat-clause have interp I sa B ?lt by fastforce
then have B (Solo x) = B wfL V y by simp
with B-w-eq have B (Solo x) = B wfΛ (discretizev B y) by argo
then have B (Solo x) = (discretizef B f) (discretizev B y) by simp
then have discretizev B x = (discretizef B f) (discretizev B y) by simp
with app show ?thesis by simp

qed
qed

lemma C-sat: I cl (discretizev B) (discretizef B) C

44

using all-literal-sat by blast

end

lemma (in normalized-MLSSmf-clause) MLSSmf-to-MLSS-completeness:
assumes is-model-for-reduced-dnf M

shows ∃M v M f . I cl M v M f C
proof −

from assms singleton-model-for-reduced-MLSS-clause obtain M where
M-singleton: ∀α ∈ P+ V . hcard (M (vα)) ≤ 1 and
M-model: is-model-for-reduced-dnf M
using normalized-MLSSmf-clause-axioms V-def by blast

then obtain clause where clause ∈ reduced-dnf ∀ lt ∈ clause. interp I sa M lt
unfolding is-model-for-reduced-dnf-def by blast

with normalized-clause-contains-all-v-α have v-α-in-vars:
∀α∈P+ V . vα ∈

⋃
(vars ‘ clause)

by blast

from M-singleton have assigned-set-card-0-or-1:
∀α ∈ P+ V . hcard (M (vα)) = 0 ∨ hcard (M (vα)) = 1
using antisym-conv2 by blast

let ?Λ = λa. {α ∈ P+ V .M vα u a 6= 0}

have Λ-subset-V : ?Λ x ⊆ P+ V for x
by fast

have Λ-preserves-zero: ?Λ 0 = {} by blast

have Λ-inc: a ≤ b =⇒ ?Λ a ⊆ ?Λ b for a b
by (smt (verit) Collect-mono hinter-hempty-right inf .absorb-iff1 inf-left-commute)

have Λ-add: ?Λ (a t b) = ?Λ a ∪ ?Λ b for a b
proof (standard; standard)

fix α assume α: α ∈ {α ∈ P+ V .M vα u (a t b) 6= 0}
then have α ∈ P+ V M vα u (a t b) 6= 0 by blast+
then have M vα u a 6= 0 ∨ M vα u b 6= 0

by (metis hunion-hempty-right inf-sup-distrib1)
then show α ∈ {α ∈ P+ V .M vα u a 6= 0} ∪ {α ∈ P+ V .M vα u b 6= 0}

using α by blast
next

fix α assume α ∈ {α ∈ P+ V .M vα u a 6= 0} ∪ {α ∈ P+ V .M vα u b 6=
0}

then have α ∈ P+ V M vα u a 6= 0 ∨ M vα u b 6= 0
by blast+

then have M vα u (a t b) 6= 0
by (metis hinter-hempty-right hunion-hempty-left inf-sup-absorb inf-sup-distrib1)
then show α ∈ {α ∈ P+ V .M vα u (a t b) 6= 0}

using ‹α ∈ P+ V › by blast

45

qed

have Λ-mul: ?Λ (a u b) = ?Λ a ∩ ?Λ b for a b
proof (standard; standard)

fix α assume α: α ∈ {α ∈ P+ V .M vα u (a u b) 6= 0}
then have α ∈ P+ V M vα u (a u b) 6= 0 by blast+
then have M vα u a 6= 0 ∧ M vα u b 6= 0

by (metis hinter-hempty-left inf-assoc inf-left-commute)
then show α ∈ {α ∈ P+ V .M vα u a 6= 0} ∩ {α ∈ P+ V .M vα u b 6= 0}

using α by blast
next

fix α assume α ∈ {α ∈ P+ V .M vα u a 6= 0} ∩ {α ∈ P+ V .M vα u b 6=
0}

then have α ∈ P+ V M vα u a 6= 0 M vα u b 6= 0
by blast+

then have M vα 6= 0 by force
then have hcard (M vα) 6= 0 using hcard-0E by blast
then have hcard (M vα) = 1

using assigned-set-card-0-or-1 v-α-in-vars ‹α ∈ P+ V ›
by fastforce

then obtain c where M vα = 0 / c
using hcard-1E by blast

moreover
from ‹M vα = 0 / c› ‹M vα u a 6= 0›
have M vα u a = 0 / c by auto
moreover
from ‹M vα = 0 / c› ‹M vα u b 6= 0›
have M vα u b = 0 / c by auto
ultimately
have M vα u (a u b) = 0 / c

by (simp add: inf-commute inf-left-commute)
then have M vα u (a u b) 6= 0 by simp
then show α ∈ {α ∈ P+ V .M vα u (a u b) 6= 0}

using ‹α ∈ P+ V › by blast
qed

have l ⊆ P+ V =⇒
a =

⊔
HF ((M ◦ VennRegion) ‘ l) =⇒ a ≤

⊔
HF ((M ◦ VennRegion) ‘

(?Λ a)) for l a
proof

fix c assume l-a-c: l ⊆ P+ V a =
⊔

HF ((M ◦ VennRegion) ‘ l) c ∈ a
then obtain α where α ∈ l c ∈M vα by auto
then have α ∈ ?Λ a using l-a-c by blast
then have M vα ∈ (M ◦ VennRegion) ‘ (?Λ a) by simp
then have M vα ∈ HF ((M ◦ VennRegion) ‘ (?Λ a)) by fastforce
with ‹c ∈M vα› show c ∈

⊔
HF ((M ◦ VennRegion) ‘ (?Λ a)) by blast

qed
moreover
have l ⊆ P+ V =⇒

46

a =
⊔

HF ((M ◦ VennRegion) ‘ l) =⇒
⊔

HF ((M ◦ VennRegion) ‘ (?Λ a))
≤ a for l a

proof −
assume l ⊆ P+ V and a: a =

⊔
HF ((M ◦ VennRegion) ‘ l)

then have finite l
by (simp add: finite-V finite-subset)

have ?Λ a ⊆ l
proof

fix α assume α ∈ ?Λ a
then obtain c where c ∈M vα u a by blast
then have c ∈M vα c ∈ a by blast+
then obtain β where β ∈ l c ∈M vβ using a by force

interpret proper-Venn-regions V M ◦ Solo
using finite-V by unfold-locales

from ‹α ∈ ?Λ a› have α ∈ P+ V by auto
moreover
from ‹l ⊆ P+ V › ‹β ∈ l› have β ∈ P+ V by auto
moreover
from ‹c ∈M vα› have c ∈ proper-Venn-region α

using eval-v ‹α ∈ P+ V › M-model
unfolding is-model-for-reduced-dnf-def reduced-dnf-def
by fastforce

moreover
from ‹c ∈M vβ› have c ∈ proper-Venn-region β

using eval-v ‹β ∈ P+ V › M-model
unfolding is-model-for-reduced-dnf-def reduced-dnf-def
by fastforce

ultimately
have α = β

using finite-V proper-Venn-region-strongly-injective by auto
with ‹β ∈ l› show α ∈ l by simp

qed
then have (M ◦ VennRegion) ‘ ?Λ a ⊆ (M ◦ VennRegion) ‘ l by blast
moreover
from ‹finite l› have finite ((M ◦ VennRegion) ‘ l) by blast
ultimately
have

⊔
HF ((M ◦ VennRegion) ‘ ?Λ a) ≤

⊔
HF ((M ◦ VennRegion) ‘ l)

by (metis (no-types, lifting) HUnion-hunion finite-subset sup.orderE sup.orderI
union-hunion)

then show
⊔

HF ((M ◦ VennRegion) ‘ (?Λ a)) ≤ a
using a by blast

qed
ultimately
have Λ-discr : l ⊆ P+ V =⇒

a =
⊔

HF ((M ◦ VennRegion) ‘ l) =⇒ a =
⊔

HF ((M ◦ VennRegion)
‘ (?Λ a)) for l a

by (simp add: inf .absorb-iff1 inf-commute)

47

interpret Λ-plus: MLSSmf-to-MLSS-complete C M ?Λ
using assms M-singleton M-model

Λ-subset-V Λ-preserves-zero Λ-inc Λ-add Λ-mul Λ-discr
by unfold-locales

show ?thesis
using Λ-plus.C-sat by fast

qed

end
theory MLSSmf-to-MLSS-Correctness

imports MLSSmf-to-MLSS-Soundness MLSSmf-to-MLSS-Completeness
begin

fun reduce :: (′v, ′f) MLSSmf-clause ⇒ (′v, ′f) Composite pset-fm set set where
reduce C = normalized-MLSSmf-clause.reduced-dnf C

fun interp-DNF :: ((′v, ′f) Composite ⇒ hf) ⇒ (′v, ′f) Composite pset-fm set set
⇒ bool where

interp-DNF M clauses ←→ (∃ clause ∈ clauses. ∀ lt ∈ clause. interp I sa M lt)

corollary MLSSmf-to-MLSS-correct:
assumes norm-clause C

shows (∃M v M f . I cl M v M f C) ←→ (∃M. interp-DNF M (reduce C))
proof

from assms interpret normalized-MLSSmf-clause C by unfold-locales
assume ∃M v M f . I cl M v M f C
with MLSSmf-to-MLSS-soundness obtain M where is-model-for-reduced-dnf
M

using assms by blast
then have interp-DNF M (reduce C) unfolding is-model-for-reduced-dnf-def by

simp
then show ∃M. interp-DNF M (reduce C) by blast

next
from assms interpret normalized-MLSSmf-clause C by unfold-locales
assume ∃M. interp-DNF M (reduce C)
then obtain M where interp-DNF M (reduce C) by blast
then have is-model-for-reduced-dnf M unfolding is-model-for-reduced-dnf-def

by simp
with MLSSmf-to-MLSS-completeness show ∃M v M f . I cl M v M f C by blast

qed

end

48

References
[1] Domenico Cantone, Jacob T. Schwartz, and Calogero G. Zarba. A de-

cision procedure for a sublanguage of set theory involving monotone
additive and multiplicative functions, ii. the multi-level case. Le Matem-
atiche; Vol 60, No 1 (2005); 133-162, 60, 01 2006.

[2] Lukas Stevens. Mlss decision procedure. Archive of Formal Proofs, May
2023. ISSN 2150-914x. https://isa-afp.org/entries/MLSS_Decision_
Proc.html, Formal proof development.

49

https://isa-afp.org/entries/MLSS_Decision_Proc.html
https://isa-afp.org/entries/MLSS_Decision_Proc.html

