
Lovasz Local Lemma

Chelsea Edmonds and Lawrence C. Paulson

April 18, 2024

Abstract

This entry aims to formalise several useful general techniques for
using the probabilistic method for combinatorial structures (or discrete
spaces more generally). In particular, it focuses on bounding tools,
such as the union and complete independence bounds, and the first for-
malisation of the pivotal Lovász local lemma. The formalisation focuses
on the general lemma, however also proves several useful variations,
including the more well known symmetric version. Both the original
formalisation and several of the variations used dependency graphs,
which were formalised using Noschinski’s general directed graph library
[2]. Additionally, the entry provides several useful existence lemmas,
required at the end of most probabilistic proofs on combinatorial struc-
tures. Finally, the entry includes several significant extensions to the
existing probability libraries, particularly for conditional probability
(such as Bayes theorem) and independent events. The formalisation is
primarily based on Alon and Spencer’s textbook [1], as well as Zhao’s
course notes [3].

Contents
1 Extensional function extras 2

1.1 Relations and Extensional Function sets 2
1.2 Cardinality Lemmas . 6

2 Digraph extensions 7

3 General Event Lemmas 8

4 Conditional Probability Library Extensions 14
4.1 Miscellaneous Set and List Lemmas 14
4.2 Conditional Probability Basics 16
4.3 Bayes Theorem . 18
4.4 Conditional Probability Multiplication Rule 20

1

5 Independent Events 35
5.1 More bijection helpers . 35
5.2 Independent Event Extensions 35
5.3 Mutual Independent Events 53

6 The Basic Probabilistic Method Framework 64
6.1 More Set and Multiset lemmas 64
6.2 Existence Lemmas . 66
6.3 Basic Bounds . 67

7 Lovasz Local Lemma 72
7.1 Random Lemmas on Product Operator 72
7.2 Dependency Graph Concept 73
7.3 Lovasz Local General Lemma 74
7.4 Lovasz Corollaries and Variations 82

1 Extensional function extras
Counting lemmas (i.e. reasoning on cardinality) of sets on the extensional
function relation
theory PiE-Rel-Extras imports Card-Partitions.Card-Partitions
begin

1.1 Relations and Extensional Function sets
A number of lemmas to convert between relations and functions for counting
purposes. Note, ultimately not needed in this formalisation, but may be of
use in the future
lemma Range-unfold: Range r = {y. ∃ x. (x, y) ∈ r}

by blast

definition fun-to-rel:: ′a set ⇒ ′b set ⇒ (′a ⇒ ′b) ⇒(′a × ′b) set where
fun-to-rel A B f ≡ {(a, b) | a b . a ∈ A ∧ b ∈ B ∧ f a = b}

definition rel-to-fun:: (′a × ′b) set ⇒ (′a ⇒ ′b) where
rel-to-fun R ≡ λ a . (if a ∈ Domain R then (THE b . (a, b) ∈ R) else undefined)

lemma fun-to-relI : a ∈ A =⇒ b ∈ B =⇒ f a = b =⇒ (a, b) ∈ fun-to-rel A B f
unfolding fun-to-rel-def by auto

lemma fun-to-rel-alt: fun-to-rel A B f ≡ {(a, f a) | a b . a ∈ A ∧ f a ∈ B}
unfolding fun-to-rel-def by simp

lemma fun-to-relI2: a ∈ A =⇒ f a ∈ B =⇒ (a, f a) ∈ fun-to-rel A B f
using fun-to-rel-alt by fast

2

lemma rel-to-fun-in[simp]: a ∈ Domain R =⇒ (rel-to-fun R) a = (THE b . (a, b)
∈ R)

unfolding rel-to-fun-def by simp

lemma rel-to-fun-undefined[simp]: a /∈ Domain R =⇒ (rel-to-fun R) a = undefined
unfolding rel-to-fun-def by simp

lemma single-valued-unique-Dom-iff : single-valued R ←→ (∀ x ∈ Domain R. ∃ !
y . (x, y) ∈ R)

using single-valued-def by fastforce

lemma rel-to-fun-range:
assumes single-valued R
assumes a ∈ Domain R
shows (THE b . (a, b) ∈ R) ∈ Range R
using single-valued-unique-Dom-iff
by (metis Range-iff assms(1) assms(2) theI ′)

lemma rel-to-fun-extensional: single-valued R =⇒ rel-to-fun R ∈ (Domain R →E

Range R)
by (intro PiE-I) (simp-all add: rel-to-fun-range)

lemma single-value-fun-to-rel: single-valued (fun-to-rel A B f)
unfolding single-valued-def fun-to-rel-def
by simp

lemma fun-to-rel-domain:
assumes f ∈ A →E B
shows Domain (fun-to-rel A B f) = A
unfolding fun-to-rel-def using assms by (auto simp add: subset-antisym subsetI

Domain-unfold)

lemma fun-to-rel-range:
assumes f ∈ A →E B
shows Range (fun-to-rel A B f) ⊆ B
unfolding fun-to-rel-def using assms by (auto simp add: subsetI Range-unfold)

lemma rel-to-fun-to-rel:
assumes f ∈ A →E B
shows rel-to-fun (fun-to-rel A B f) = f

proof (intro ext allI)
fix x
show rel-to-fun (fun-to-rel A B f) x = f x
proof (cases x ∈ A)

case True
then have ind: x ∈ Domain (fun-to-rel A B f) using fun-to-rel-domain assms

by blast
have (x, f x) ∈ fun-to-rel A B f using fun-to-rel-alt True single-value-fun-to-rel

using assms by fastforce

3

moreover have rel-to-fun (fun-to-rel A B f) x = (THE b. (x, b) ∈ (fun-to-rel
A B f)) by (simp add: ind)

ultimately show ?thesis using single-value-fun-to-rel single-valuedD the-equality
by (metis (no-types, lifting))

next
case False
then have x /∈ Domain (fun-to-rel A B f) unfolding fun-to-rel-def

by blast
then show ?thesis

using False assms by auto
qed

qed

lemma fun-to-rel-to-fun:
assumes single-valued R
shows fun-to-rel (Domain R) (Range R) (rel-to-fun R) = R

proof (intro subset-antisym subsetI)
fix x assume x ∈ fun-to-rel (Domain R) (Range R) (rel-to-fun R)
then obtain a b where x = (a, b) and a ∈ Domain R and b ∈ Range R and

(rel-to-fun R a) = b
using fun-to-rel-def by (smt (verit) mem-Collect-eq)

then have b = (THE b ′. (a, b ′) ∈ R) using rel-to-fun-in
by simp

then show x ∈ R
by (metis (no-types, lifting) ‹a ∈ Domain R› ‹x = (a, b)› assms single-valued-unique-Dom-iff

the1-equality)
next

fix x assume x ∈ R
then obtain a b where x = (a, b) and (a, b) ∈ R and ∀ c . (a, c) ∈ R −→ b

= c
using assms
by (metis prod.collapse single-valued-def)

then have a ∈ Domain R b ∈ Range R by blast+
then have b = (THE b ′ . (a, b ′) ∈ R)

by (metis ‹∀ c. (a, c) ∈ R −→ b = c› ‹x = (a, b)› ‹x ∈ R› the-equality)
then have (a, b) ∈ fun-to-rel (Domain R) (Range R) (rel-to-fun R)

using ‹a ∈ Domain R› ‹b ∈ Range R› by (intro fun-to-relI) (simp-all)
then show x ∈ fun-to-rel (Domain R) (Range R) (rel-to-fun R) using ‹x = (a,

b)› by simp
qed

lemma bij-betw-fun-to-rel:
assumes f ∈ A →E B
shows bij-betw (λ a . (a, f a)) A (fun-to-rel A B f)

proof (intro bij-betw-imageI inj-onI)
show

∧
x y. x ∈ A =⇒ y ∈ A =⇒ (x, f x) = (y, f y) =⇒ x = y by simp

next
show (λa. (a, f a)) ‘ A = fun-to-rel A B f
proof (intro subset-antisym subsetI)

4

fix x assume x ∈ (λa. (a, f a)) ‘ A
then obtain a where a ∈ A and x = (a, f a) by blast
then show x ∈ fun-to-rel A B f using fun-to-rel-alt assms

by fastforce
next

fix x assume x ∈ fun-to-rel A B f
then show x ∈ (λa. (a, f a)) ‘ A using fun-to-rel-alt

using image-iff by fastforce
qed

qed

lemma fun-to-rel-indiv-card:
assumes f ∈ A →E B
shows card (fun-to-rel A B f) = card A
using bij-betw-fun-to-rel assms bij-betw-same-card[of (λ a . (a, f a)) A (fun-to-rel

A B f)]
by (metis)

lemma fun-to-rel-inj:
assumes C ⊆ A →E B
shows inj-on (fun-to-rel A B) C

proof (intro inj-onI ext allI)
fix f g x assume fin: f ∈ C and gin: g ∈ C and eq: fun-to-rel A B f = fun-to-rel

A B g
then show f x = g x
proof (cases x ∈ A)

case True
then have (x, f x) ∈ fun-to-rel A B f using fun-to-rel-alt

by (smt (verit) PiE-mem assms fin fun-to-rel-def mem-Collect-eq subset-eq)
moreover have (x, g x) ∈ fun-to-rel A B g using fun-to-rel-alt True

by (smt (verit) PiE-mem assms fun-to-rel-def gin mem-Collect-eq subset-eq)
ultimately show ?thesis using eq single-value-fun-to-rel single-valued-def

by metis
next

case False
then have f x = undefined g x = undefined using fin gin assms by auto
then show ?thesis by simp

qed
qed

lemma fun-to-rel-ss: fun-to-rel A B f ⊆ A × B
unfolding fun-to-rel-def by auto

lemma card-fun-to-rel: C ⊆ A →E B =⇒ card C = card ((λ f . fun-to-rel A B f
) ‘ C)

using card-image fun-to-rel-inj by metis

5

1.2 Cardinality Lemmas
Lemmas to count variations of filtered sets over the extensional function set
relation
lemma card-PiE-filter-range-set:

assumes
∧

a. a ∈ A ′ =⇒ X a ∈ C
assumes A ′ ⊆ A
assumes finite A
shows card {f ∈ A →E C . ∀ a ∈ A ′ . f a = X a} = (card C)^(card A − card

A ′)
proof −

have finA: finite A ′ using assms(3) finite-subset assms(2) by auto
have c1: card (A − A ′) = card A − card A ′ using assms(2)
using card-Diff-subset finA by blast
define g :: (′a ⇒ ′b) ⇒ (′a ⇒ ′b) where g ≡ λ f . (λ a ′ . if a ′ ∈ A ′ then

undefined else f a ′)
have bij-betw g {f ∈ A →E C . ∀ a ∈ A ′ . f a = X a} ((A − A ′) →E C)
proof (intro bij-betw-imageI inj-onI)

fix h h ′ assume h1in: h ∈ {f ∈ A →E C . ∀ a ∈ A ′ . f a = X a} and h2in: h ′

∈ {f ∈ A →E C . ∀ a ∈ A ′ . f a = X a} g h = g h ′

then have eq: (λ a ′ . if a ′ ∈ A ′ then undefined else h a ′) = (λ a ′ . if a ′ ∈ A ′

then undefined else h ′ a ′)
using g-def by simp

show h = h ′

proof (intro ext allI)
fix x
show h x = h ′ x using h1in h2in eq by (cases x ∈ A ′, simp, meson)

qed
next

show g ‘ {f ∈ A →E C . ∀ a ∈ A ′ . f a = X a} = A − A ′→E C
proof (intro subset-antisym subsetI)

fix g ′ assume g ′ ∈ g ‘ {f ∈ A →E C . ∀ a ∈ A ′ . f a = X a}
then obtain f ′ where geq: g ′ = g f ′ and fin: f ′ ∈ A →E C and ∀ a ∈ A ′ .

f ′ a = X a
by blast

show g ′ ∈ A − A ′→E C
using g-def fin geq by (intro PiE-I)(auto)

next
fix g ′ assume gin: g ′ ∈ A − A ′→E C
define f ′ where f ′ = (λ a ′ . (if a ′ ∈ A ′ then X a ′ else g ′ a ′))
then have eqc: ∀ a ′ ∈ A ′ . f ′ a ′ = X a ′ by auto
have fin: f ′ ∈ A →E C
proof (intro PiE-I)

fix x assume x ∈ A
have x /∈ A ′ =⇒ f ′ x = g ′ x using f ′-def by auto
moreover have x ∈ A ′ =⇒ f ′ x = X x using f ′-def by (simp add: ‹x ∈

A›)
ultimately show f ′ x ∈ C

using gin PiE-E ‹x ∈ A› assms(1)[of x] by (metis Diff-iff)

6

next
fix x assume x /∈ A
then show f ′ x = undefined

using f ′-def gin assms(2) by auto
qed
have g ′ = g f ′ unfolding f ′-def g-def

by (auto simp add: fun-eq-iff) (metis DiffE PiE-arb gin)
then show g ′ ∈ g ‘ {f ∈ A →E C . ∀ a ∈ A ′ . f a = X a} using fin eqc by

blast
qed

qed
then have card {f ∈ A →E C . ∀ a ∈ A ′ . f a = X a} = card ((A − A ′) →E C)

using bij-betw-same-card by blast
also have ... = (card C)^card (A − A ′)

using card-funcsetE assms(3) by (metis finite-Diff)
finally show ?thesis using c1 by auto

qed

lemma card-PiE-filter-range-indiv: X a ′ ∈ C =⇒ a ′ ∈ A =⇒ finite A =⇒
card {f ∈ A →E C . f a ′ = X a ′} = (card C)^(card A − 1)

using card-PiE-filter-range-set[of {a ′} X C A] by auto

lemma card-PiE-filter-range-set-const: c ∈ C =⇒ A ′ ⊆ A =⇒ finite A =⇒
card {f ∈ A →E C . ∀ a ∈ A ′ . f a = c} = (card C)^(card A − card A ′)

using card-PiE-filter-range-set[of A ′ λ a . c] by auto

lemma card-PiE-filter-range-set-nat: c ∈ {0..<n} =⇒ A ′ ⊆ A =⇒ finite A =⇒
card {f ∈ A →E {0..<n} . ∀ a ∈ A ′ . f a = c} = n^(card A − card A ′)

using card-PiE-filter-range-set-const[of c {0..<n} A ′ A] by auto

end

2 Digraph extensions
Extensions to the existing library for directed graphs, basically neighborhood
theory Digraph-Extensions

imports
Graph-Theory.Digraph
Graph-Theory.Pair-Digraph

begin

definition (in pre-digraph) neighborhood :: ′a ⇒ ′a set where
neighborhood u ≡ {v ∈ verts G . dominates G u v}

lemma (in wf-digraph) neighborhood-wf : neighborhood v ⊆ verts G
unfolding neighborhood-def by auto

lemma (in pair-pre-digraph) neighborhood-alt:

7

neighborhood u = {v ∈ pverts G . (u, v) ∈ parcs G}
unfolding neighborhood-def by simp

lemma (in fin-digraph) neighborhood-finite: finite (neighborhood v)
using neighborhood-wf finite-subset finite-verts by fast

lemma (in wf-digraph) neighborhood-edge-iff : y ∈ neighborhood x ←→ (x, y) ∈
arcs-ends G

unfolding neighborhood-def using in-arcs-imp-in-arcs-ends by auto

lemma (in loopfree-digraph) neighborhood-self-not: v /∈ (neighborhood v)
unfolding neighborhood-def using adj-not-same by auto

lemma (in nomulti-digraph) inj-on-head-out-arcs: inj-on (head G) (out-arcs G u)
proof (intro inj-onI)

fix x y assume xin: x ∈ out-arcs G u and yin: y ∈ out-arcs G u and heq: head
G x = head G y

then have tail G x = u tail G y = u
using out-arcs-def by auto

then have arc-to-ends G x = arc-to-ends G y
unfolding arc-to-ends-def heq by auto

then show x = y using no-multi-arcs xin yin by simp
qed

lemma (in nomulti-digraph) out-degree-neighborhood: out-degree G u = card (neighborhood
u)
proof −

let ?f = λ e. head G e
have bij-betw ?f (out-arcs G u) (neighborhood u)
proof (intro bij-betw-imageI)

show inj-on (head G) (out-arcs G u) using inj-on-head-out-arcs by simp
show head G ‘ out-arcs G u = neighborhood u

unfolding neighborhood-def using in-arcs-imp-in-arcs-ends by auto
qed
then show ?thesis unfolding out-degree-def

by (simp add: bij-betw-same-card)
qed

lemma (in digraph) neighborhood-empty-iff : out-degree G u = 0 ←→ neighborhood
u = {}

using out-degree-neighborhood neighborhood-finite by auto

end

3 General Event Lemmas
General lemmas for reasoning on events in probability spaces after different
operations

8

theory Prob-Events-Extras
imports

HOL−Probability.Probability
PiE-Rel-Extras

begin

context prob-space
begin

lemma prob-sum-Union:
assumes measurable: finite A A ⊆ events disjoint A
shows prob (

⋃
A) = (

∑
e∈A. prob (e))

proof −
obtain f where bb: bij-betw f {0..<card A} A

using assms(1) ex-bij-betw-nat-finite by auto
then have eq: f ‘ {0..<card A} = A

by (simp add: bij-betw-imp-surj-on)
moreover have inj-on f {0..<card A}

using bb bij-betw-def by blast
ultimately have disjoint-family-on f {0..<card A}

using disjoint-image-disjoint-family-on[of f {0..<card A}] assms by auto
moreover have (

∑
e∈A. prob (e)) = (

∑
i∈{0..<card A}. prob (f i)) using

sum.reindex bb
by (simp add: sum.reindex-bij-betw)

ultimately show ?thesis using finite-measure-finite-Union eq assms(1) assms(2)
by (metis bb bij-betw-finite)

qed

lemma events-inter :
assumes finite S
assumes S 6= {}
shows (

∧
A. A ∈ S =⇒ A ∈ events) =⇒

⋂
S ∈ events

using assms proof (induct S rule: finite-ne-induct)
case (singleton x)
then show ?case by auto

next
case (insert x F)
then show ?case using sets.Int

by (metis complete-lattice-class.Inf-insert insertCI)
qed

lemma events-union:
assumes finite S
shows (

∧
A. A ∈ S =⇒ A ∈ events) =⇒

⋃
S ∈ events

using assms(1) proof (induct S rule: finite-induct)
case empty
then show ?case by auto

next
case (insert x F)

9

then show ?case using sets.Un
by (simp add: insertI1)

qed

lemma prob-inter-set-lt-elem: A ∈ events =⇒ prob (A ∩ (
⋂

AS)) ≤ prob A
by (simp add: finite-measure-mono)

lemma Inter-event-ss: finite A =⇒ A ⊆ events =⇒ A 6= {} =⇒
⋂

A ∈ events
by (simp add: events-inter subset-iff)

lemma prob-inter-ss-lt:
assumes finite A
assumes A ⊆ events
assumes B 6= {}
assumes B ⊆ A
shows prob (

⋂
A) ≤ prob (

⋂
B)

proof (cases B = A)
case True
then show ?thesis by simp

next
case False
then obtain C where C = A − B and C 6= {}

using assms(4) by auto
then have

⋂
A =

⋂
C ∩

⋂
B

by (metis Inter-Un-distrib Un-Diff-cancel2 assms(4) sup.orderE)
moreover have

⋂
B ∈ events using assms(1) assms(3) assms(2) Inter-event-ss

by (meson assms(2) assms(4) dual-order .trans finite-subset)
ultimately show ?thesis using prob-inter-set-lt-elem

by (simp add: inf-commute)
qed

lemma prob-inter-ss-lt-index:
assumes finite A
assumes F ‘ A ⊆ events
assumes B 6= {}
assumes B ⊆ A
shows prob (

⋂
(F ‘ A)) ≤ prob (

⋂
(F ‘B))

using prob-inter-ss-lt[of F ‘ A F ‘ B] assms by auto

lemma space-compl-double:
assumes S ⊆ events
shows ((−) (space M)) ‘ (((−) (space M)) ‘ S) = S

proof (intro subset-antisym subsetI)
fix x assume x ∈ (−) (space M) ‘ (−) (space M) ‘ S
then obtain x ′ where xeq: x = space M − x ′ and x ′ ∈ (−) (space M) ‘ S by

blast
then obtain x ′′ where x ′ = space M − x ′′ and xin: x ′′ ∈ S by blast
then have x ′′ = x using xeq assms

by (simp add: Diff-Diff-Int Set.basic-monos(7))

10

then show x ∈ S using xin by simp
next

fix x assume x ∈ S
then obtain x ′ where xeq: x ′ = space M − x and x ′ ∈ (−) (space M) ‘ S by

simp
then have space M − x ′ ∈(−) (space M) ‘ (−) (space M) ‘ S by auto
moreover have space M − x ′ = x using xeq assms

by (simp add: Diff-Diff-Int ‹x ∈ S› subset-iff)
ultimately show x ∈ (−) (space M) ‘ (−) (space M) ‘ S by simp

qed

lemma bij-betw-compl-sets:
assumes S ⊆ events
assumes S ′ = ((−) (space M)) ‘ S
shows bij-betw ((−) (space M)) S ′ S

proof (intro bij-betwI ′)
show

∧
x y. x ∈ S ′ =⇒ y ∈ S ′ =⇒ (space M − x = space M − y) = (x = y)

using assms(2) by blast
next

show
∧

x. x ∈ S ′ =⇒ space M − x ∈ S using space-compl-double assms by auto
next

show
∧

y. y ∈ S =⇒ ∃ x∈S ′. y = space M − x using space-compl-double assms
by auto
qed

lemma bij-betw-compl-sets-rev:
assumes S ⊆ events
assumes S ′ = ((−) (space M)) ‘ S
shows bij-betw ((−) (space M)) S S ′

proof (intro bij-betwI ′)
show

∧
x y. x ∈ S =⇒ y ∈ S =⇒ (space M − x = space M − y) = (x = y)

using assms by (metis Diff-Diff-Int sets.Int-space-eq1 subset-eq)
next

show
∧

x. x ∈ S =⇒ space M − x ∈ S ′ using space-compl-double assms by auto
next

show
∧

y. y ∈ S ′ =⇒ ∃ x∈S . y = space M − x using space-compl-double assms
by auto
qed

lemma prob0-basic-inter : A ∈ events =⇒ B ∈ events =⇒ prob A = 0 =⇒ prob
(A ∩ B) = 0

by (metis Int-lower1 finite-measure-mono measure-le-0-iff)

lemma prob0-basic-Inter : A ∈ events =⇒ B ⊆ events =⇒ prob A = 0 =⇒ prob
(A ∩ (

⋂
B)) = 0

by (metis Int-lower1 finite-measure-mono measure-le-0-iff)

lemma prob1-basic-inter : A ∈ events =⇒ B ∈ events =⇒ prob A = 1 =⇒ prob
(A ∩ B) = prob B

11

by (metis inf-commute measure-space-inter prob-space)

lemma prob1-basic-Inter :
assumes A ∈ events B ⊆ events
assumes prob A = 1
assumes B 6= {}
assumes finite B
shows prob (A ∩ (

⋂
B)) = prob (

⋂
B)

proof −
have

⋂
B ∈ events using Inter-event-ss assms by auto

then show ?thesis using assms prob1-basic-inter by auto
qed

lemma compl-identity: A ∈ events =⇒ space M − (space M − A) = A
by (simp add: double-diff sets.sets-into-space)

lemma prob-addition-rule: A ∈ events =⇒ B ∈ events =⇒
prob (A ∪ B) = prob A + prob B − prob (A ∩ B)

by (simp add: finite-measure-Diff ′ finite-measure-Union ′ inf-commute)

lemma compl-subset-in-events: S ⊆ events =⇒ (−) (space M) ‘ S ⊆ events
by auto

lemma prob-compl-diff-inter : A ∈ events =⇒ B ∈ events =⇒
prob (A ∩ (space M − B)) = prob A − prob (A ∩ B)

by (simp add: Diff-Int-distrib finite-measure-Diff sets.Int)

lemma bij-betw-prod-prob: bij-betw f A B =⇒ (
∏

b∈B. prob b) = (
∏

a∈A. prob (f
a))

by (simp add: prod.reindex-bij-betw)

definition event-compl :: ′a set ⇒ ′a set where
event-compl A ≡ space M − A

lemma compl-Union: A 6= {} =⇒ space M − (
⋃

A) = (
⋂

a ∈ A . (space M − a))
by (simp)

lemma compl-Union-fn: A 6= {} =⇒ space M − (
⋃

(F ‘ A)) = (
⋂

a ∈ A . (space
M − F a))

by (simp)

end

Reasoning on the probability of function sets
lemma card-PiE-val-ss-eq:

assumes finite A
assumes b ∈ B
assumes d ⊆ A
assumes B 6= {}

12

assumes finite B
shows card {f ∈ (A →E B) . (∀ v ∈ d .f v = b)}/card (A →E B) = 1/((card

B) powi (card d))
(is card {f ∈ ?C . (∀ v ∈ d .f v = b)}/card ?C = 1/((card B) powi (card d)))

proof −
have lt: card d ≤ card A

by (simp add: card-mono assms(1) assms(3))
then have scard: card {f ∈ ?C . ∀ v ∈ d . f v = b} = (card B) powi ((card A)
− card d)

using assms(1) card-PiE-filter-range-set-const[of b B d A] assms(3) assms(2)
by fastforce

have Ccard: card ?C = (card B) powi (card A) using card-funcsetE assms(2)
assms(1) by auto

have bgt: card B 6= 0 using assms(5) assms(4) by auto
have card {f ∈ ?C . ∀ v ∈ d . f v = b}/ (card ?C) =

((card B) powi ((card A) − card d))/((card B) powi (card A))
using Ccard scard by simp

also have ... = (card B) powi (int (card A − card d) − int (card A))
using bgt by (simp add: power-int-diff)

also have ... = (card B) powi (int (card A) − int (card d) − int (card A))
using int-ops lt by simp

also have ... = (card B) powi −(card d) using assms(1) by (simp add: of-nat-diff)
also have ... = inverse ((card B) powi (card d))

using power-int-minus[of card B (int (card d))] by simp
finally show ?thesis by (simp add: inverse-eq-divide)

qed

lemma card-PiE-val-indiv-eq:
assumes finite A
assumes b ∈ B
assumes d ∈ A
assumes B 6= {}
assumes finite B
shows card {f ∈ (A →E B) . f d = b}/card (A →E B) = 1/(card B)
(is card {f ∈ ?C .f d = b}/card ?C = 1/(card B))

proof −
have {d} ⊆ A using assms(3) by simp
moreover have

∧
f . f ∈ ?C =⇒ f d = b ←→ (∀ d ′ ∈ {d}. f d ′ = b) by auto

ultimately have card {f ∈ ?C .f d = b}/card ?C = 1/((card B) powi (card
{d}))

using card-PiE-val-ss-eq[of A b B {d}] assms by auto
also have ... = 1/((card B) powi 1) by auto
finally show ?thesis by simp

qed

lemma prob-uniform-ex-fun-space:
assumes finite A
assumes b ∈ B
assumes d ⊆ A

13

assumes B 6= {}
assumes A 6= {}
assumes finite B
shows prob-space.prob (uniform-count-measure (A →E B)) {f ∈ (A →E B) . (∀

v ∈ d .f v = b)} =
1/((card B) powi (card d))

proof −
let ?C = (A →E B)
let ?M = uniform-count-measure ?C
have finC : finite ?C using assms(2) assms(6) assms(1)

by (simp add: finite-PiE)
moreover have ?C 6= {} using assms(4) assms(1)

by (simp add: PiE-eq-empty-iff)
ultimately interpret P: prob-space ?M

using assms(3) by (simp add: prob-space-uniform-count-measure)
have P.prob {f ∈ ?C . ∀ v ∈ d . f v = b} = card {f ∈ ?C . ∀ v ∈ d . f v = b}/

(card ?C)
using measure-uniform-count-measure[of ?C {f ∈ ?C . ∀ v ∈ d . f v = b}]

finC assms(3)
by fastforce

then show ?thesis using card-PiE-val-ss-eq assms by (simp)
qed

proposition integrable-uniform-count-measure-finite:
fixes g :: ′a ⇒ ′b::{banach, second-countable-topology}
shows finite A =⇒ integrable (uniform-count-measure A) g
unfolding uniform-count-measure-def
using integrable-point-measure-finite by fastforce

end

4 Conditional Probability Library Extensions
theory Cond-Prob-Extensions

imports
Prob-Events-Extras
Design-Theory.Multisets-Extras

begin

4.1 Miscellaneous Set and List Lemmas
lemma nth-image-tl:

assumes xs 6= []
shows nth xs ‘ {1..<length xs} = set(tl xs)

proof −
have set (tl xs) = {(tl xs)!i | i. i < length (tl xs)}

using set-conv-nth by metis
then have set (tl xs) = {xs! (Suc i) | i. i < length xs − 1}

using nth-tl by fastforce

14

then have set (tl xs) = {xs ! j | j. j > 0 ∧ j < length xs}
by (smt (verit, best) Collect-cong Suc-diff-1 Suc-less-eq assms length-greater-0-conv

zero-less-Suc)
thus ?thesis by auto

qed

lemma exists-list-card:
assumes finite S
obtains xs where set xs = S and length xs = card S
by (metis assms distinct-card finite-distinct-list)

lemma bij-betw-inter-empty:
assumes bij-betw f A B
assumes A ′ ⊆ A
assumes A ′′ ⊆ A
assumes A ′ ∩ A ′′ = {}
shows f ‘ A ′ ∩ f ‘ A ′′ = {}
by (metis assms(1) assms(2) assms(3) assms(4) bij-betw-inter-subsets image-empty)

lemma bij-betw-image-comp-eq:
assumes bij-betw g T S
shows (F ◦ g) ‘ T = F ‘ S
using assms bij-betw-imp-surj-on by (metis image-comp)

lemma prod-card-image-set-eq:
assumes bij-betw f {0..<card S} S
assumes finite S
shows (

∏
i ∈ {n..<(card S)} . g (f i)) = (

∏
i ∈ f ‘ {n..<card S} . g i)

proof (cases n ≥ card S)
case True
then show ?thesis by simp

next
case False
then show ?thesis using assms
proof (induct card S arbitrary: S)

case 0
then show ?case by auto

next
case (Suc x)
then have nlt: n < Suc x by simp
then have split: {n..<Suc x} = {n..<x} ∪ {x} by auto
then have f ‘ {n..<Suc x} = f ‘ ({n..< x} ∪ {x}) by simp
then have fsplit: f ‘ {n..<Suc x} = f ‘ {n..< x} ∪ {f x}

by simp
have {n..<x} ⊆ {0..<card S}

using Suc(2) by auto
moreover have {x} ⊆ {0..<card S} using Suc(2) by auto
moreover have {n..< x} ∩ {x} = {} by auto

15

ultimately have finter : f ‘ {n..< x} ∩ {f x} = {} using Suc.prems(2)
Suc.prems(1)

bij-betw-inter-empty[of f {0..<card S} S {n..< x} {x}] by auto
have (

∏
i = n..<Suc x. g (f i)) = (

∏
i = n..<x. g (f i)) ∗ g (f (x)) using nlt

by simp
moreover have (

∏
x∈f ‘ {n..<Suc x}. g x) = (

∏
i∈f ‘ {n..< x}. g i) ∗ g (f x)

using finter fsplit
by (simp add: Groups.mult-ac(2))

moreover have (
∏

i∈f ‘ {n..< x}. g i) = (
∏

i = n..<x. g (f i))
proof −

let ?S ′ = f ‘ {0..<x}
have {0..<x} ⊆ {0..<card S} using Suc(2) by auto
then have bij: bij-betw f {0..<x} ?S ′ using Suc.prems(2)

using bij-betw-subset by blast
moreover have card ?S ′ = x using bij-betw-same-card[of f {0..<x} ?S ′] bij

by auto
moreover have finite ?S ′ using finite-subset by auto
ultimately show ?thesis
by (metis bij-betw-subset ivl-subset less-eq-nat.simps(1) order-refl prod.reindex-bij-betw)

qed
ultimately show ?case using Suc(2) by auto

qed
qed

lemma set-take-distinct-elem-not:
assumes distinct xs
assumes i < length xs
shows xs ! i /∈ set (take i xs)
by (metis assms(1) assms(2) distinct-take id-take-nth-drop not-distinct-conv-prefix)

4.2 Conditional Probability Basics
context prob-space
begin

Abbreviation to mirror mathematical notations
abbreviation cond-prob-ev :: ′a set ⇒ ′a set ⇒ real (P ′(- | - ′)) where
P(B | A) ≡ P(x in M . (x ∈ B) | (x ∈ A))

lemma cond-prob-inter : P(B | A) = P(ω in M . (ω ∈ B ∩ A)) / P(ω in M . (ω ∈
A))

using cond-prob-def by auto

lemma cond-prob-ev-def :
assumes A ∈ events B ∈ events
shows P(B | A) = prob (A ∩ B) / prob A

proof −
have a: P(B | A) = P(ω in M . (ω ∈ B ∩ A)) / P(ω in M . (ω ∈ A))

using cond-prob-inter by auto

16

also have ... = prob {w ∈ space M . w ∈ B ∩ A} / prob {w ∈ space M . w ∈ A}
by auto

finally show ?thesis using assms
by (simp add: Collect-conj-eq a inf-commute)

qed

lemma measurable-in-ev:
assumes A ∈ events
shows Measurable.pred M (λ x . x ∈ A)
using assms by auto

lemma measure-uniform-measure-eq-cond-prob-ev:
assumes A ∈ events B ∈ events
shows P(A | B) =P(x in uniform-measure M {x∈space M . x ∈ B}. x ∈ A)
using assms measurable-in-ev measure-uniform-measure-eq-cond-prob by auto

lemma measure-uniform-measure-eq-cond-prob-ev2:
assumes A ∈ events B ∈ events
shows P(A | B) = measure (uniform-measure M {x∈space M . x ∈ B}) A
using measure-uniform-measure-eq-cond-prob-ev assms
by (metis Int-def sets.Int-space-eq1 space-uniform-measure)

lemma measure-uniform-measure-eq-cond-prob-ev3:
assumes A ∈ events B ∈ events
shows P(A | B) = measure (uniform-measure M B) A
using measure-uniform-measure-eq-cond-prob-ev assms Int-def sets.Int-space-eq1

space-uniform-measure
by metis

lemma prob-space-cond-prob-uniform:
assumes prob ({x∈space M . Q x}) > 0
shows prob-space (uniform-measure M {x∈space M . Q x})
using assms by (intro prob-space-uniform-measure) (simp-all add: emeasure-eq-measure)

lemma prob-space-cond-prob-event:
assumes prob B > 0
shows prob-space (uniform-measure M B)
using assms by (intro prob-space-uniform-measure) (simp-all add: emeasure-eq-measure)

Note this case shouldn’t be used. Conditional probability should have >
0 assumption
lemma cond-prob-empty: P(B | {}) = 0

using cond-prob-inter [of B {}] by auto

lemma cond-prob-space: P(A | space M) = P(w in M . w ∈ A)
proof −

have p1: prob {ω ∈ space M . ω ∈ space M} = 1
by (simp add: prob-space)

have
∧

w. w ∈ space M =⇒ w ∈ A ∩ (space M) ←→ w ∈ A by auto

17

then have prob {ω ∈ space M . ω ∈ A ∩ space M} = P(w in M . w ∈ A)
by meson

then show ?thesis using cond-prob-inter [of A space M] p1 by auto
qed

lemma cond-prob-space-ev: assumes A ∈ events shows P(A | space M) = prob
A

using cond-prob-space assms
by (metis Int-commute Int-def measure-space-inter sets.top)

lemma cond-prob-UNIV : P(A | UNIV) = P(w in M . w ∈ A)
proof −

have p1: prob {ω ∈ space M . ω ∈ UNIV} = 1
by (simp add: prob-space)

have
∧

w. w ∈ space M =⇒ w ∈ A ∩ UNIV ←→ w ∈ A by auto
then have prob {ω ∈ space M . ω ∈ A ∩ UNIV} = P(w in M . w ∈ A)

by meson
then show ?thesis using cond-prob-inter [of A UNIV] p1 by auto

qed

lemma cond-prob-UNIV-ev: A ∈ events =⇒ P(A | UNIV) = prob A
using cond-prob-UNIV
by (metis Int-commute Int-def measure-space-inter sets.top)

lemma cond-prob-neg:
assumes A ∈ events B ∈ events
assumes prob A >0
shows P((space M − B) | A) = 1 − P(B | A)

proof −
have negB: space M − B ∈ events using assms by auto
have prob ((space M − B) ∩ A) = prob A − prob (B ∩ A)

by (simp add: Diff-Int-distrib2 assms(1) assms(2) finite-measure-Diff sets.Int)
then have P((space M − B) | A) = (prob A − prob (B ∩ A))/prob A
using cond-prob-ev-def [of A space M − B] assms negB by (simp add: Int-commute)

also have ... = ((prob A)/prob A) − ((prob (B ∩ A))/prob A) by (simp add:
field-simps)

also have ... = 1 − ((prob (B ∩ A))/prob A) using assms(3) by (simp add:
field-simps)

finally show P((space M − B) | A) = 1 − P(B | A) using cond-prob-ev-def [of
A B] assms

by (simp add: inf-commute)
qed

4.3 Bayes Theorem
lemma prob-intersect-A:

assumes A ∈ events B ∈ events
shows prob (A ∩ B) = prob A ∗ P(B | A)

18

using cond-prob-ev-def assms apply simp
by (metis Int-lower1 finite-measure-mono measure-le-0-iff)

lemma prob-intersect-B:
assumes A ∈ events B ∈ events
shows prob (A ∩ B) = prob B ∗ P(A | B)
using cond-prob-ev-def assms
by (simp-all add: inf-commute)(metis Int-lower2 finite-measure-mono measure-le-0-iff)

theorem Bayes-theorem:
assumes A ∈ events B ∈ events
shows prob B ∗ P(A | B) = prob A ∗ P(B |A)
using prob-intersect-A prob-intersect-B assms by simp

corollary Bayes-theorem-div:
assumes A ∈ events B ∈ events
shows P(A | B) = (prob A ∗ P(B |A))/(prob B)
using assms Bayes-theorem
by (metis cond-prob-ev-def prob-intersect-A)

lemma cond-prob-dual-intersect:
assumes A ∈ events B ∈ events C ∈ events
assumes prob C 6= 0
shows P(A | (B ∩ C)) = P(A ∩ B | C)/ P(B | C) (is ?LHS = ?RHS)

proof −
have B ∩ C ∈ events using assms by auto
then have lhs: ?LHS = prob (A ∩ B ∩ C)/prob (B ∩ C)

using assms cond-prob-ev-def [of B ∩ C A] inf-commute inf-left-commute by
(metis)

have A ∩ B ∈ events using assms by auto
then have P(A ∩ B | C) = prob (A ∩ B ∩ C) / prob C

using assms cond-prob-ev-def [of C A ∩ B] inf-commute by (metis)
moreover have P(B | C) = prob (B ∩ C)/prob C using cond-prob-ev-def [of C

B] assms inf-commute by metis
ultimately have ?RHS = (prob (A ∩ B ∩ C) / prob C)/(prob (B ∩ C)/prob

C)
by simp

also have ... = (prob (A ∩ B ∩ C) / prob C)∗(prob (C)/prob (B ∩ C)) by simp
also have ... = prob (A ∩ B ∩ C)/prob (B∩ C) using assms(4) by simp
finally show ?thesis using lhs by simp

qed

lemma cond-prob-ev-double:
assumes A ∈ events B ∈ events C ∈ events
assumes prob C > 0
shows P(x in (uniform-measure M C). (x ∈ A) | (x ∈ B)) = P(A | (B ∩ C))

proof −
let ?M = uniform-measure M C

19

interpret cps: prob-space ?M using assms(4) prob-space-cond-prob-event by
auto

have probne: prob C 6= 0 using assms(4) by auto
have ev: cps.events = events using sets-uniform-measure by auto
have iev: A ∩ B ∈ events using assms(1) assms(2) by simp
have 0: P(x in (uniform-measure M C). (x ∈ A) | (x ∈ B)) = cps.cond-prob-ev

A B by simp
also have 1: ... = (measure ?M (A ∩ B))/(measure ?M B) using cond-prob-ev-def

assms(1) assms(2) ev
by (metis Int-commute cps.cond-prob-ev-def)

also have 2: ... = P((A ∩ B) | C)/(measure ?M B)
using measure-uniform-measure-eq-cond-prob-ev3[of A ∩ B C] assms(3) iev by

auto
also have 3: ... = P((A ∩ B) | C)/ P(B | C) using measure-uniform-measure-eq-cond-prob-ev3[of

B C] assms(3) assms(2) by auto
also have 4: ... = P(A | (B ∩ C))

using cond-prob-dual-intersect[of A B C] assms(1) assms(2) assms(3) probne
by presburger

finally show ?thesis using 1 2 3 4 by presburger
qed

lemma cond-prob-inter-set-lt:
assumes A ∈ events B ∈ events AS ⊆ events
assumes finite AS
shows P((A ∩ (

⋂
AS)) | B) ≤ P(A|B) (is ?LHS ≤ ?RHS)

using measure-uniform-measure-eq-cond-prob-ev finite-measure-mono
proof (cases AS = {})

case True
then have (A ∩ (

⋂
AS)) = A by simp

then show ?thesis by simp
next

case False
then have (

⋂
AS) ∈ events using assms(3) assms(4) Inter-event-ss by simp

then have (A ∩ (
⋂

AS)) ∈ events using assms by simp
then have ?LHS = prob (A ∩ (

⋂
AS) ∩ B)/prob B

using assms cond-prob-ev-def [of B (A ∩ (
⋂

AS))] inf-commute by metis
moreover have prob (A ∩ (

⋂
AS) ∩ B) ≤ prob (A ∩ B) using finite-measure-mono

assms(1) inf-commute inf-left-commute by (metis assms(2) inf-sup-ord(1)
sets.Int)

ultimately show ?thesis using cond-prob-ev-def [of B A]
by (simp add: assms(1) assms(2) divide-right-mono inf-commute)

qed

4.4 Conditional Probability Multiplication Rule
Many list and indexed variations of this lemma
lemma prob-cond-Inter-List:

assumes xs 6= []
assumes

∧
A. A ∈ set xs =⇒ A ∈ events

20

shows prob (
⋂
(set xs)) = prob (hd xs) ∗ (

∏
i = 1..<(length xs) .

P((xs ! i) | (
⋂
(set (take i xs)))))

using assms(1) assms(2)
proof (induct xs rule: rev-nonempty-induct)

case (single x)
then show ?case by auto

next
case (snoc x xs)
have xs 6= []

by (simp add: snoc.hyps(1))
then have inev: (

⋂
(set xs)) ∈ events using events-inter

by (simp add: snoc.prems)
have len: (length (xs @ [x])) = length xs + 1 by auto
have last-p: P(x | (

⋂
(set xs))) =

P((xs @ [x]) ! length xs |
⋂

(set (take (length xs) (xs @ [x]))))
by auto

have prob (
⋂

(set (xs @ [x]))) = prob (x ∩ (
⋂
(set xs)))

by auto
also have ... = prob (

⋂
(set xs)) ∗ P(x | (

⋂
(set xs)))

using prob-intersect-B snoc.prems inev by simp
also have ... = prob (hd xs) ∗ (

∏
i = 1..<length xs. P(xs ! i |

⋂
(set (take i

xs)))) ∗
P(x | (

⋂
(set xs)))

using snoc.hyps snoc.prems by auto
finally have prob (

⋂
(set (xs @ [x]))) = prob (hd (xs @[x])) ∗

(
∏

i = 1..<length xs. P((xs @ [x]) ! i |
⋂

(set (take i (xs @ [x]))))) ∗ P(x |
(
⋂
(set xs)))
using nth-append[of xs [x]] nth-take by (simp add: snoc.hyps(1))

then show ?case using last-p by auto
qed

lemma prob-cond-Inter-index:
fixes n :: nat
assumes n > 0
assumes F ‘ {0..<n} ⊆ events
shows prob (

⋂
(F ‘{0..<n})) = prob (F 0) ∗ (

∏
i ∈ {1..<n} .

P(F i | (
⋂

(F‘{0..<i}))))
proof −

define xs where xs ≡ map F [0..<n]
have prob (

⋂
(set xs)) = prob (hd xs) ∗ (

∏
i = 1..<(length xs) .

P((xs ! i) | (
⋂
(set (take i xs))))) using xs-def assms prob-cond-Inter-List[of

xs] by auto
then have prob (

⋂
(set xs)) = prob (hd xs) ∗ (

∏
i ∈ {1..<n} . P((xs ! i) | (

⋂
(set

(take i xs)))))
using xs-def by auto

moreover have hd xs = F 0
unfolding xs-def by (simp add: assms(1) hd-map)

moreover have
∧

i. i ∈ {1..<n} =⇒ F ‘ {0..<i} = set (take i xs)
by (metis atLeastLessThan-iff atLeastLessThan-upt image-set less-or-eq-imp-le

21

plus-nat.add-0
take-map take-upt xs-def)

ultimately show ?thesis using xs-def by auto
qed

lemma prob-cond-Inter-index-compl:
fixes n :: nat
assumes n > 0
assumes F ‘ {0..<n} ⊆ events
shows prob (

⋂
x ∈ {0..<n} . space M − F x) = prob (space M − F 0) ∗ (

∏
i

∈ {1..<n} .
P(space M − F i | (

⋂
j∈ {0..<i}. space M − F j)))

proof −
define G where G ≡ λ i. space M − F i
then have G ‘ {0..<n} ⊆ events using assms(2) by auto
then show ?thesis using prob-cond-Inter-index[of n G] G-def

using assms(1) by blast
qed

lemma prob-cond-Inter-take-cond:
assumes xs 6= []
assumes set xs ⊆ events
assumes S ⊆ events
assumes S 6= {}
assumes finite S
assumes prob (

⋂
S) > 0

shows P((
⋂
(set xs)) | (

⋂
S)) = (

∏
i = 0..<(length xs) . P((xs ! i) | (

⋂
(set

(take i xs) ∪ S))))
proof −

define M ′ where M ′ = uniform-measure M (
⋂

S)
interpret cps: prob-space M ′ using prob-space-cond-prob-event M ′-def assms(6)

by auto
have len: length xs > 0 using assms(1) by simp
have cps-ev: cps.events = events using sets-uniform-measure M ′-def by auto
have sevents:

⋂
S ∈ events using assms(3) assms(4) Inter-event-ss assms(5) by

auto
have fin: finite (set xs) by auto
then have xevents:

⋂
(set xs) ∈ events using assms(1) assms(2) Inter-event-ss

by blast
then have peq: P((

⋂
(set xs)) | (

⋂
S)) = cps.prob (

⋂
(set xs))

using measure-uniform-measure-eq-cond-prob-ev3[of
⋂

(set xs)
⋂

S] sevents
M ′-def

by blast
then have cps.prob (

⋂
(set xs)) = cps.prob (hd xs) ∗ (

∏
i = 1..<(length xs) .

cps.cond-prob-ev (xs ! i) (
⋂
(set (take i xs)))) using assms cps.prob-cond-Inter-List

cps-ev
by blast

moreover have cps.prob (hd xs) = P((xs ! 0) | (
⋂
(set (take 0 xs) ∪ S)))

22

proof −
have ev: hd xs ∈ events using assms(2) len by auto
then have cps.prob (hd xs) = P(hd xs |

⋂
S)

using ev sevents measure-uniform-measure-eq-cond-prob-ev3[of hd xs
⋂

S]
M ′-def by presburger

then show ?thesis using len by (simp add: hd-conv-nth)
qed
moreover have

∧
i. i > 0 =⇒ i < length xs =⇒

cps.cond-prob-ev (xs ! i) (
⋂
(set (take i xs))) = P((xs ! i) | (

⋂
(set (take i xs)

∪ S)))
proof −

fix i assume igt: i > 0 and ilt: i <length xs
then have set (take i xs) ⊆ events using assms(2)

by (meson set-take-subset subset-trans)
moreover have set (take i xs) 6= {} using len igt ilt by auto
ultimately have (

⋂
(set (take i xs))) ∈ events

using Inter-event-ss fin by auto
moreover have xs ! i ∈ events using assms(2)

using nth-mem subset-iff igt ilt by blast
moreover have (

⋂
(set (take i xs) ∪ S)) = (

⋂
(set (take i xs))) ∩ (

⋂
S)

by (simp add: Inf-union-distrib)
ultimately show cps.cond-prob-ev (xs ! i) (

⋂
(set (take i xs))) = P((xs ! i) |

(
⋂
(set (take i xs) ∪ S)))
using sevents cond-prob-ev-double[of xs ! i (

⋂
(set (take i xs)))

⋂
S] assms(6)

M ′-def by presburger
qed
ultimately have eq: cps.prob (

⋂
(set xs)) = P((xs ! 0) | (

⋂
(set (take 0 xs) ∪

S))) ∗ (
∏

i ∈ {1..<(length xs)} .
P((xs ! i) | (

⋂
(set (take i xs) ∪ S)))) by simp

moreover have {1..<length xs} = {0..<length xs} − {0}
by (simp add: atLeast1-lessThan-eq-remove0 lessThan-atLeast0)

moreover have finite {0..<length xs} by auto
moreover have 0 ∈ {0..<length xs}by (simp add: assms(1))
ultimately have P((xs ! 0) | (

⋂
(set (take 0 xs) ∪ S))) ∗ (

∏
i ∈ {1..<(length

xs)} .
P((xs ! i) | (

⋂
(set (take i xs) ∪ S)))) = (

∏
i ∈ {0..<(length xs)} .

P((xs ! i) | (
⋂

(set (take i xs) ∪ S)))) using prod.remove[of {0..<length xs} 0
λ i. P((xs ! i) | (

⋂
(set (take i xs) ∪ S)))]

by presburger
then have cps.prob (

⋂
(set xs)) = (

∏
i ∈ {0..<(length xs)} .

P((xs ! i) | (
⋂
(set (take i xs) ∪ S)))) using eq by simp

then show ?thesis using peq by auto
qed

lemma prob-cond-Inter-index-cond-set:
fixes n :: nat
assumes n > 0
assumes finite E
assumes E 6= {}

23

assumes E ⊆ events
assumes F ‘ {0..<n} ⊆ events
assumes prob (

⋂
E) > 0

shows P((
⋂
(F ‘ {0..<n})) | (

⋂
E)) = (

∏
i ∈ {0..<n}. P(F i | (

⋂
((F ‘ {0..<i})

∪ E))))
proof −

define M ′ where M ′ = uniform-measure M (
⋂

E)
interpret cps: prob-space M ′ using prob-space-cond-prob-event M ′-def assms(6)

by auto
have cps-ev: cps.events = events using sets-uniform-measure M ′-def by auto
have sevents: (

⋂
(E)) ∈ events using assms(6) assms(2) assms(3) assms(4)

Inter-event-ss by auto
have fin: finite (F ‘ {0..<n}) by auto
then have xevents:

⋂
(F ‘ {0..<n}) ∈ events using assms Inter-event-ss by auto

then have peq: P((
⋂
(F ‘ {0..<n})) | (

⋂
E)) = cps.prob (

⋂
(F ‘ {0..<n}))

using measure-uniform-measure-eq-cond-prob-ev3[of
⋂
(F ‘ {0..<n})

⋂
E] sev-

ents M ′-def
by blast

moreover have F ‘{0..<n} ⊆ cps.events using cps-ev assms(5) by force
ultimately have cps.prob (

⋂
(F ‘ {0..<n})) = cps.prob (F 0) ∗ (

∏
i = 1..<n .

cps.cond-prob-ev (F i) (
⋂
(F ‘ {0..<i})))

using assms(1) cps.prob-cond-Inter-index[of n F] by blast
moreover have cps.prob (F 0) = P((F 0) | (

⋂
E))

proof −
have ev: F 0 ∈ events using assms(1) assms(5) by auto
then show ?thesis

using ev sevents measure-uniform-measure-eq-cond-prob-ev3[of F 0
⋂

E]
M ′-def by presburger

qed
moreover have

∧
i. i > 0 =⇒ i < n =⇒

cps.cond-prob-ev (F i) (
⋂
(F ‘ {0..<i})) = P((F i) | (

⋂
((F ‘ {0..<i}) ∪ E)))

proof −
fix i assume igt: i > 0 and ilt: i <n
then have (

⋂
(F ‘ {0..<i})) ∈ events

using assms subset-trans igt Inter-event-ss fin by auto
moreover have F i ∈ events using assms

using subset-iff igt ilt by simp
moreover have (

⋂
((F ‘ {0..<i}) ∪ (E))) = (

⋂
((F ‘ {0..<i}))) ∩ (

⋂
(E))

by (simp add: Inf-union-distrib)
ultimately show cps.cond-prob-ev (F i) (

⋂
(F ‘ {0..<i})) = P((F i) | (

⋂
((F

‘ {0..<i}) ∪ E)))
using sevents cond-prob-ev-double[of F i (

⋂
((F ‘ {0..<i})))

⋂
E] assms M ′-def

by presburger
qed
ultimately have eq: cps.prob (

⋂
(F ‘ {0..<n})) = P((F 0) | (

⋂
E)) ∗ (

∏
i ∈

{1..<n} .
P((F i) | (

⋂
((F ‘ {0..<i}) ∪ E)))) by simp

moreover have {1..<n} = {0..<n} − {0}
by (simp add: atLeast1-lessThan-eq-remove0 lessThan-atLeast0)

24

ultimately have P((F 0) | (
⋂

E)) ∗ (
∏

i ∈ {1..<n} . P((F i) | (
⋂
((F ‘ {0..<i})

∪ E)))) =
(
∏

i ∈ {0..<n} . P((F i) | (
⋂
((F ‘ {0..<i}) ∪ E)))) using assms(1)

prod.remove[of {0..<n} 0 λ i. P((F i) | (
⋂

((F ‘{0..<i}) ∪ E)))] by fastforce
then show ?thesis using peq eq by auto

qed

lemma prob-cond-Inter-index-cond-compl-set:
fixes n :: nat
assumes n > 0
assumes finite E
assumes E 6= {}
assumes E ⊆ events
assumes F ‘ {0..<n} ⊆ events
assumes prob (

⋂
E) > 0

shows P((
⋂
((−) (space M) ‘ F ‘ {0..<n})) | (

⋂
E)) =

(
∏

i = 0..<n . P((space M − F i) | (
⋂
((−) (space M) ‘ F ‘ {0..<i} ∪ E))))

proof −
define G where G ≡ λ i. (space M − F i)
then have G ‘ {0..<n} ⊆ events using assms(5) by auto
then have P((

⋂
(G ‘ {0..<n})) | (

⋂
E)) = (

∏
i ∈ {0..<n}. P(G i | (

⋂
((G ‘

{0..<i}) ∪ E))))
using prob-cond-Inter-index-cond-set[of n E G] assms by blast

moreover have ((−) (space M) ‘ F ‘ {0..<n}) = (G ‘ {0..<n}) unfolding
G-def by auto

moreover have
∧

i. i ∈ {0..<n} =⇒ P((space M − F i) | (
⋂

((−) (space M) ‘
F ‘ {0..<i} ∪ E))) =
P(G i | (

⋂
((G ‘ {0..<i}) ∪ E)))

proof −
fix i assume iin: i ∈ {0..<n}
have (−) (space M) ‘ F ‘ {0..<i} = G ‘ {0..<i} unfolding G-def using iin

by auto
then show P((space M − F i) | (

⋂
((−) (space M) ‘ F ‘ {0..<i} ∪ E))) =

P(G i | (
⋂
((G ‘ {0..<i}) ∪ E))) unfolding G-def by auto

qed
ultimately show ?thesis by auto

qed

lemma prob-cond-Inter-index-cond:
fixes n :: nat
assumes n > 0
assumes n < m
assumes F ‘ {0..<m} ⊆ events
assumes prob (

⋂
j ∈ {n..<m}. F j) > 0

shows P((
⋂
(F ‘ {0..<n})) | (

⋂
j ∈{n..<m} . F j)) = (

∏
i ∈ {0..<n}. P(F i |

(
⋂
((F ‘ {0..<i}) ∪ (F ‘ {n..<m})))))

proof −
let ?E = F ‘ {n..<m}
have F ‘ {0..<n} ⊆ events using assms(2) assms(3) by auto

25

moreover have ?E ⊆ events using assms(2) assms(3) by auto
moreover have prob(

⋂
?E) > 0 using assms(4) by simp

moreover have ?E 6= {} using assms(2) by simp
ultimately show ?thesis using prob-cond-Inter-index-cond-set[of n ?E F] assms(1)

by blast
qed

lemma prob-cond-Inter-index-cond-compl:
fixes n :: nat
assumes n > 0
assumes n < m
assumes F ‘ {0..<m} ⊆ events
assumes prob (

⋂
j ∈ {n..<m}. F j) > 0

shows P((
⋂
((−) (space M) ‘ F ‘ {0..<n})) | (

⋂
(F ‘ {n..<m}))) =

(
∏

i = 0..<n . P((space M − F i) | (
⋂
((−) (space M) ‘ F ‘ {0..<i} ∪ (F ‘

{n..<m})))))
proof −

define G where G ≡ λ i. if (i < n) then (space M − F i) else F i
then have G ‘ {0..<m} ⊆ events using assms(3) by auto
moreover have prob (

⋂
j ∈ {n..<m}. G j) > 0 using G-def assms(4) by simp

ultimately have P((
⋂
(G ‘ {0..<n})) | (

⋂
(G ‘ {n..<m}))) = (

∏
i ∈ {0..<n}.

P(G i | (
⋂
((G ‘ {0..<i}) ∪ (G ‘ {n..<m})))))

using prob-cond-Inter-index-cond[of n m G] assms(1) assms(2) by blast
moreover have ((−) (space M) ‘ F ‘ {0..<n}) = (G ‘ {0..<n}) unfolding

G-def by auto
moreover have meq: (F ‘ {n..<m}) = (G ‘ {n..<m}) unfolding G-def by

auto
moreover have

∧
i. i ∈ {0..<n} =⇒ P((space M − F i) | (

⋂
((−) (space M) ‘

F ‘ {0..<i} ∪ (F ‘ {n..<m})))) =
P(G i | (

⋂
((G ‘ {0..<i}) ∪ (G ‘ {n..<m}))))

proof −
fix i assume iin: i ∈ {0..<n}
then have (space M − F i) = G i unfolding G-def by auto
moreover have (−) (space M) ‘ F ‘ {0..<i} = G ‘ {0..<i} unfolding G-def

using iin by auto
ultimately show P((space M − F i) | (

⋂
((−) (space M) ‘ F ‘ {0..<i} ∪ (F ‘

{n..<m})))) =
P(G i | (

⋂
((G ‘ {0..<i}) ∪ (G ‘ {n..<m})))) using meq by auto

qed
ultimately show ?thesis by auto

qed

lemma prob-cond-Inter-take-cond-neg:
assumes xs 6= []
assumes set xs ⊆ events
assumes S ⊆ events
assumes S 6= {}
assumes finite S

26

assumes prob (
⋂

S) > 0
shows P((

⋂
((−) (space M) ‘ (set xs))) | (

⋂
S)) =

(
∏

i = 0..<(length xs) . P((space M − xs ! i) | (
⋂
((−) (space M) ‘ (set (take

i xs)) ∪ S))))
proof −

define ys where ys = map ((−) (space M)) xs
have set: ((−) (space M) ‘ (set xs)) = set (ys)

using ys-def by simp
then have set ys ⊆ events

by (metis assms(2) image-subset-iff sets.compl-sets subsetD)
moreover have ys 6= [] using ys-def assms(1) by simp
ultimately have P(

⋂
(set ys) | (

⋂
S)) =

(
∏

i = 0..<(length ys) . P((ys ! i) | (
⋂

(set (take i ys) ∪ S))))
using prob-cond-Inter-take-cond assms by auto

moreover have len: length ys = length xs using ys-def by auto
moreover have

∧
i. i < length xs =⇒ ys ! i = space M − xs ! i using ys-def

nth-map len by auto
moreover have

∧
i. i < length xs =⇒ set (take i ys) = (−) (space M) ‘ set (take

i xs)
using ys-def take-map len by (metis set-map)

ultimately show ?thesis using set by auto
qed

lemma prob-cond-Inter-List-Index:
assumes xs 6= []
assumes set xs ⊆ events
shows prob (

⋂
(set xs)) = prob (hd xs) ∗ (

∏
i = 1..<(length xs) .

P((xs ! i) | (
⋂

j ∈ {0..<i} . xs ! j)))
proof −

have
∧

i. i < length xs =⇒ set (take i xs) = ((!) xs ‘ {0..<i})
by (metis nat-less-le nth-image)

thus ?thesis using prob-cond-Inter-List[of xs] assms by auto
qed

lemma obtains-prob-cond-Inter-index:
assumes S 6= {}
assumes S ⊆ events
assumes finite S
obtains xs where set xs = S and length xs = card S and
prob (

⋂
S) = prob (hd xs) ∗ (

∏
i = 1..<(length xs) . P((xs ! i) | (

⋂
j ∈ {0..<i}

. xs ! j)))
using assms prob-cond-Inter-List-Index exists-list-card
by (metis (no-types, lifting) set-empty2)

lemma obtain-list-index:
assumes bij-betw g {0..<card S} S
assumes finite S
obtains xs where set xs = S and

∧
i . i ∈ {0..<card S} =⇒ g i = xs ! i and

distinct xs

27

proof −
let ?xs = map g [0..<card S]
have seq: g ‘ {0..<card S} = S using assms(1)

by (simp add: bij-betw-imp-surj-on)
then have set-eq: set ?xs = S

by simp
moreover have

∧
i . i ∈ {0..<card S} =⇒ g i = ?xs ! i

by auto
moreover have leneq: length ?xs = card S using seq by auto
moreover have distinct ?xs using set-eq leneq

by (simp add: card-distinct)
ultimately show ?thesis

using that by blast
qed

lemma prob-cond-inter-fn:
assumes bij-betw g {0..<card S} S
assumes finite S
assumes S 6= {}
assumes S ⊆ events
shows prob (

⋂
S) = prob (g 0) ∗ (

∏
i ∈ {1..<(card S)} . P(g i | (

⋂
(g ‘ {0..<i}))))

proof −
obtain xs where seq: set xs = S and geq:

∧
i . i ∈ {0..<card S} =⇒ g i = xs

! i and distinct xs
using obtain-list-index assms by auto

then have len: length xs = card S by (metis distinct-card)
then have prob (

⋂
S) = prob (hd xs) ∗ (

∏
i ∈ {1..<(length xs)} . P((xs ! i) |

(
⋂

j ∈ {0..<i} . xs ! j)))
using prob-cond-Inter-List-Index[of xs] assms(3) assms(4) seq by auto

then have prob (
⋂

S) = prob (hd xs) ∗ (
∏

i ∈ {1..<card S} . P(g i | (
⋂

j ∈
{0..<i} . g j)))

using geq len by auto
moreover have hd xs = g 0
proof −

have length xs > 0 using seq assms(3) by auto
then have hd xs = xs ! 0

by (simp add: hd-conv-nth)
then show ?thesis using geq len

using ‹0 < length xs› by auto
qed
ultimately show ?thesis by simp

qed

lemma prob-cond-inter-obtain-fn:
assumes S 6= {}
assumes S ⊆ events
assumes finite S
obtains f where bij-betw f {0..<card S} S and

prob (
⋂

S) = prob (f 0) ∗ (
∏

i ∈ {1..<(card S)} . P(f i | (
⋂
(f ‘ {0..<i}))))

28

proof −
obtain f where bij-betw f {0..<card S} S

using assms(3) ex-bij-betw-nat-finite by blast
then show ?thesis using that prob-cond-inter-fn assms by auto

qed

lemma prob-cond-inter-obtain-fn-compl:
assumes S 6= {}
assumes S ⊆ events
assumes finite S
obtains f where bij-betw f {0..<card S} S and prob (

⋂
((−) (space M) ‘ S))

=
prob (space M − f 0) ∗ (

∏
i ∈ {1..<(card S)} . P(space M − f i | (

⋂
((−)

(space M) ‘ f ‘ {0..<i}))))
proof −

let ?c = (−) (space M)
obtain f where bb: bij-betw f {0..<card S} S

using assms(3) ex-bij-betw-nat-finite by blast
moreover have bij: bij-betw ?c S ((−) (space M) ‘ S)

using bij-betw-compl-sets-rev assms(2) by auto
ultimately have bij-betw (?c ◦ f) {0..<card S} (?c ‘ S)

using bij-betw-comp-iff by blast
moreover have ?c ‘ S 6= {} using assms(1) by auto
moreover have finite (?c ‘ S) using assms(3) by auto
moreover have ?c ‘ S ⊆ events using assms(2) by auto
moreover have card S = card (?c ‘ S) using bij

by (simp add: bij-betw-same-card)
ultimately have prob (

⋂
(?c ‘ S)) = prob ((?c ◦ f) 0) ∗

(
∏

i ∈ {1..<(card S)} . P((?c ◦ f) i | (
⋂
((?c ◦ f) ‘ {0..<i}))))

using prob-cond-inter-fn[of (?c ◦ f) (?c ‘ S)] by auto
then have prob (

⋂
(?c ‘ S)) = prob (space M − (f 0)) ∗

(
∏

i ∈ {1..<(card S)} . P(space M − (f i) | (
⋂
((?c ◦ f) ‘ {0..<i})))) by simp

then show ?thesis using that bb by simp
qed

lemma prob-cond-Inter-index-cond-fn:
assumes I 6= {}
assumes finite I
assumes finite E
assumes E 6= {}
assumes E ⊆ events
assumes F ‘ I ⊆ events
assumes prob (

⋂
E) > 0

assumes bb: bij-betw g {0..<card I} I
shows P((

⋂
(F ‘ g ‘ {0..<card I})) | (

⋂
E)) =

(
∏

i ∈ {0..<card I}. P(F (g i) | (
⋂
((F ‘ g‘ {0..<i}) ∪ E))))

proof −
let ?n = card I

29

have eq: F ‘ I = (F ◦ g) ‘ {0..<card I} using bij-betw-image-comp-eq bb by
metis

moreover have 0 < ?n using assms(1) assms(2) by auto
ultimately have P(

⋂
((F ◦ g) ‘ {0..<card I}) |

⋂
E) =

(
∏

i = 0..<?n. P(F (g i) |
⋂

((F ◦ g) ‘ {0..<i} ∪ E)))
using prob-cond-Inter-index-cond-set[of ?n E (F ◦ g)] assms(3) assms(4)

assms(5) assms(6)
assms(7) by auto

moreover have
∧

i. i ∈ {0..<?n} =⇒ (F ◦ g) ‘ {0..<i} = F ‘ g ‘ {0..<i} using
image-comp by auto

ultimately have P(
⋂

(F ‘ g ‘ {0..<card I}) |
⋂

E) = (
∏

i = 0..<?n. P(F (g
i) |

⋂
(F ‘ g ‘ {0..<i} ∪ E)))

using image-comp[of F g {0..<card I}] by auto
then show ?thesis using eq bb assms by blast

qed

lemma prob-cond-Inter-index-cond-obtains:
assumes I 6= {}
assumes finite I
assumes finite E
assumes E 6= {}
assumes E ⊆ events
assumes F ‘ I ⊆ events
assumes prob (

⋂
E) > 0

obtains g where bij-betw g {0..<card I} I and P((
⋂
(F ‘ g ‘ {0..<card I})) |

(
⋂

E)) =
(
∏

i ∈ {0..<card I}. P(F (g i) | (
⋂
((F ‘ g‘ {0..<i}) ∪ E))))

proof −
obtain g where bb: bij-betw g {0..<card I} I using assms(2) ex-bij-betw-nat-finite

by auto
then show thesis using assms prob-cond-Inter-index-cond-fn[of I E F g] that by

blast
qed

lemma prob-cond-Inter-index-cond-compl-fn:
assumes I 6= {}
assumes finite I
assumes finite E
assumes E 6= {}
assumes E ⊆ events
assumes F ‘ I ⊆ events
assumes prob (

⋂
E) > 0

assumes bb: bij-betw g {0..<card I} I
shows P((

⋂
Aj ∈ I . space M − F Aj) | (

⋂
E)) =

(
∏

i ∈ {0..<card I}. P(space M − F (g i) | (
⋂

(((λAj. space M − F Aj) ‘ g ‘
{0..<i}) ∪ E))))
proof −

let ?n = card I
let ?G = λ i. space M − F i

30

have eq: ?G ‘ I = (?G ◦ g) ‘ {0..<card I} using bij-betw-image-comp-eq bb by
metis

then have (?G ◦ g) ‘ {0..<card I} ⊆ events using assms(5)
by (metis assms(6) compl-subset-in-events image-image)

moreover have 0 < ?n using assms(1) assms(2) by auto
ultimately have P(

⋂
((?G ◦ g) ‘ {0..<card I}) |

⋂
E) = (

∏
i = 0..<?n. P(?G

(g i) |
⋂

((?G ◦ g) ‘ {0..<i} ∪ E)))
using prob-cond-Inter-index-cond-set[of ?n E (?G ◦ g)] assms(3) assms(4)

assms(5) assms(6)
assms(7) by auto

moreover have
∧

i. i ∈ {0..<?n} =⇒ (?G ◦ g) ‘ {0..<i} = ?G ‘ g ‘ {0..<i}
using image-comp by auto

ultimately have P(
⋂

(?G ‘ I) |
⋂

E) = (
∏

i = 0..<?n. P(?G (g i) |
⋂

(?G
‘ g ‘ {0..<i} ∪ E)))

using image-comp[of ?G g {0..<card I}] eq by auto
then show ?thesis using bb by blast

qed

lemma prob-cond-Inter-index-cond-compl-obtains:
assumes I 6= {}
assumes finite I
assumes finite E
assumes E 6= {}
assumes E ⊆ events
assumes F ‘ I ⊆ events
assumes prob (

⋂
E) > 0

obtains g where bij-betw g {0..<card I} I and P((
⋂

Aj ∈ I . space M − F Aj)
| (

⋂
E)) =

(
∏

i ∈ {0..<card I}. P(space M − F (g i) | (
⋂

(((λAj. space M − F Aj) ‘ g ‘
{0..<i}) ∪ E))))
proof −

let ?n = card I
let ?G = λ i. space M − F i
obtain g where bb: bij-betw g {0..<?n} I using assms(2) ex-bij-betw-nat-finite

by auto
then show ?thesis using assms prob-cond-Inter-index-cond-compl-fn[of I E F g]

that by blast
qed

lemma prob-cond-inter-index-fn2:
assumes F ‘ S ⊆ events
assumes finite S
assumes card S > 0
assumes bij-betw g {0..<card S} S
shows prob (

⋂
(F ‘S)) = prob (F (g 0)) ∗ (

∏
i ∈ {1..<(card S)} . P(F (g i) |

(
⋂
(F ‘ g ‘ {0..<i}))))

proof −
have 1: F ‘ S = (F ◦ g) ‘ {0..<card S} using assms(4) bij-betw-image-comp-eq

by metis

31

moreover have prob (
⋂

((F ◦ g) ‘ {0..<card S})) =
prob (F (g 0)) ∗ (

∏
i ∈ {1..<(card S)} . P(F (g i) | (

⋂
(F ‘ g ‘ {0..<i}))))

using 1 prob-cond-Inter-index[of card S F ◦ g] assms(3) assms(1) by auto
ultimately show ?thesis using assms(4)

by metis
qed

lemma prob-cond-inter-index-fn:
assumes F ‘ S ⊆ events
assumes finite S
assumes S 6= {}
assumes bij-betw g {0..<card S} S
shows prob (

⋂
(F ‘S)) = prob (F (g 0)) ∗ (

∏
i ∈ {1..<(card S)} . P(F (g i) |

(
⋂
(F ‘ g ‘ {0..<i}))))

proof −
have card S > 0 using assms(3) assms(2)

by (simp add: card-gt-0-iff)
moreover have (F ◦ g) ‘ {0..<card S} ⊆ events using assms(1) assms(4)

using bij-betw-imp-surj-on by (metis image-comp)
ultimately have prob (

⋂
((F ◦ g) ‘ {0..<card S})) =

prob (F (g 0)) ∗ (
∏

i ∈ {1..<(card S)} . P(F (g i) | (
⋂

(F ‘ g ‘ {0..<i}))))
using prob-cond-Inter-index[of card S F ◦ g] by auto

moreover have F ‘ S = (F ◦ g) ‘ {0..<card S} using assms(4)
using bij-betw-imp-surj-on image-comp by (metis)

ultimately show ?thesis using assms(4) by presburger
qed

lemma prob-cond-inter-index-obtain-fn:
assumes F ‘ S ⊆ events
assumes finite S
assumes S 6= {}
obtains g where bij-betw g {0..<card S} S and

prob (
⋂
(F ‘S)) = prob (F (g 0)) ∗ (

∏
i ∈ {1..<(card S)} . P(F (g i) | (

⋂
(F ‘

g ‘ {0..<i}))))
proof −

obtain f where bb: bij-betw f {0..<card S} S
using assms(2) ex-bij-betw-nat-finite by blast

then show ?thesis using prob-cond-inter-index-fn that assms by blast
qed

lemma prob-cond-inter-index-fn-compl:
assumes S 6= {}
assumes F ‘ S ⊆ events
assumes finite S
assumes bij-betw f {0..<card S} S
shows prob (

⋂
((−) (space M) ‘ F ‘ S)) = prob (space M − F (f 0)) ∗

(
∏

i ∈ {1..<(card S)} . P(space M − F (f i) | (
⋂
((−) (space M) ‘ F ‘ f ‘

{0..<i}))))
proof −

32

define G where G ≡ λ i. space M − F i
then have G ‘ S ⊆ events using G-def assms(2) by auto
then have prob (

⋂
(G ‘ S)) = prob (G (f 0)) ∗ (

∏
i = 1..<card S . P(G (f i) |⋂

(G ‘ f ‘ {0..<i})))
using prob-cond-inter-index-fn[of G S] assms by auto

moreover have (
⋂
((−) (space M) ‘ F ‘ S)) = (

⋂
i∈S . space M − F i) by auto

ultimately show ?thesis unfolding G-def by auto
qed

lemma prob-cond-inter-index-obtain-fn-compl:
assumes S 6= {}
assumes F ‘ S ⊆ events
assumes finite S
obtains f where bij-betw f {0..<card S} S and

prob (
⋂
((−) (space M) ‘ F ‘ S)) = prob (space M − F (f 0)) ∗

(
∏

i ∈ {1..<(card S)} . P(space M − F (f i) | (
⋂
((−) (space M) ‘ F ‘ f ‘

{0..<i}))))
proof −

obtain f where bb: bij-betw f {0..<card S} S
using assms(3) ex-bij-betw-nat-finite by blast

then show ?thesis using prob-cond-inter-index-fn-compl[of S F f] assms that by
blast
qed

lemma prob-cond-Inter-take:
assumes S 6= {}
assumes S ⊆ events
assumes finite S
obtains xs where set xs = S and length xs = card S and

prob (
⋂

S) = prob (hd xs) ∗ (
∏

i = 1..<(length xs) . P((xs ! i) | (
⋂
(set (take i

xs)))))
using assms prob-cond-Inter-List exists-list-card
by (metis (no-types, lifting) set-empty2 subset-code(1))

lemma prob-cond-Inter-set-bound:
assumes A 6= {}
assumes A ⊆ events
assumes finite A
assumes

∧
Ai . f Ai ≥ 0 ∧ f Ai ≤ 1

assumes
∧

Ai S . Ai ∈ A =⇒ S ⊆ A − {Ai} =⇒ S 6= {} =⇒ P(Ai | (
⋂

S)) ≥ f
Ai

assumes
∧

Ai. Ai ∈ A =⇒ prob Ai ≥ f Ai
shows prob (

⋂
A) ≥ (

∏
a ′ ∈ A . f a ′)

proof −
obtain xs where eq: set xs = A and seq: length xs = card A and

pA: prob (
⋂

A) = prob (hd xs) ∗ (
∏

i = 1..<(length xs) . P((xs ! i) | (
⋂

j ∈
{0..<i} . xs ! j)))

33

using assms obtains-prob-cond-Inter-index[of A] by blast
then have dis: distinct xs using card-distinct

by metis
then have hd xs ∈ A using eq hd-in-set assms(1) by auto
then have prob (hd xs) ≥ (f (hd xs)) using assms(6) by blast
have

∧
i. i ∈ {1..<(length xs)} =⇒ P((xs ! i) | (

⋂
j ∈ {0..<i} . xs ! j)) ≥ f (xs

! i)
proof −

fix i assume i ∈ {1..<length xs}
then have ilb: i ≥ 1 and iub: i < length xs by auto
then have xsin: xs ! i ∈ A using eq by auto
define S where S = (λ j. xs ! j) ‘ {0..<i}
then have S = set (take i xs)

by (simp add: iub less-or-eq-imp-le nth-image)
then have xs ! i /∈ S using dis set-take-distinct-elem-not iub by simp
then have S ⊆ A − {(xs ! i)}

using ‹S = set (take i xs)› eq set-take-subset by fastforce
moreover have S 6= {} using S-def ilb by (simp)
moreover have P((xs ! i) | (

⋂
j ∈ {0..<i} . xs ! j)) = P((xs ! i) | (

⋂
Aj ∈

S . Aj))
using S-def by auto

ultimately show P((xs ! i) | (
⋂

j ∈ {0..<i} . xs ! j)) ≥ f (xs ! i)
using assms(5) xsin by auto

qed
then have (

∏
i = 1..<(length xs) . P((xs ! i) | (

⋂
j ∈ {0..<i} . xs ! j))) ≥

(
∏

i = 1..<(length xs) . f (xs ! i))
by (meson assms(4) prod-mono)

moreover have (
∏

i = 1..<(length xs) . f (xs ! i)) = (
∏

a ∈ A − {hd xs} . f a)
proof −

have ne: xs 6= [] using assms(1) eq by auto
have A = (λ j. xs ! j) ‘ {0..<length xs} using eq

by (simp add: nth-image)
have A − {hd xs} = set (tl xs) using dis
by (metis Diff-insert-absorb distinct.simps(2) eq list.exhaust-sel list.set(2) ne)

also have ... = (λ j. xs ! j) ‘ {1..<length xs} using nth-image-tl ne by auto
finally have Ahdeq: A − {hd xs} = (λ j. xs ! j) ‘ {1..<length xs} by simp
have io: inj-on (nth xs) {1..<length xs} using inj-on-nth dis

by (metis atLeastLessThan-iff)
have (

∏
i = 1..<(length xs) . f (xs ! i)) = (

∏
i ∈ {1..<(length xs)} . f (xs ! i))

by simp
also have ... = (

∏
i ∈ (λ j. xs ! j) ‘ {1..<length xs} . f i)

using io by (simp add: prod.reindex-cong)
finally show ?thesis using Ahdeq

using ‹(
∏

i = 1..<length xs. f (xs ! i)) = prod f ((!) xs ‘ {1..<length xs})›
by presburger

qed
ultimately have prob (

⋂
A) ≥ f (hd xs) ∗ (

∏
a ∈ A − {hd xs} . f a)

using pA ‹f (hd xs) ≤ prob (hd xs)› assms(4) ordered-comm-semiring-class.comm-mult-left-mono
by (simp add: mult-mono ′ prod-nonneg)

34

then show ?thesis
by (metis ‹hd xs ∈ A› assms(3) prod.remove)

qed
end

end

5 Independent Events
theory Indep-Events imports Cond-Prob-Extensions
begin

5.1 More bijection helpers
lemma bij-betw-obtain-subsetr :

assumes bij-betw f A B
assumes A ′ ⊆ A
obtains B ′ where B ′ ⊆ B and B ′ = f ‘ A ′

using assms by (metis bij-betw-def image-mono)

lemma bij-betw-obtain-subsetl:
assumes bij-betw f A B
assumes B ′ ⊆ B
obtains A ′ where A ′ ⊆ A and B ′ = f ‘ A ′

using assms
by (metis bij-betw-imp-surj-on subset-imageE)

lemma bij-betw-remove: bij-betw f A B =⇒ a ∈ A =⇒ bij-betw f (A − {a}) (B
− {f a})

using bij-betwE notIn-Un-bij-betw3
by (metis Un-insert-right insert-Diff member-remove remove-def sup-bot.right-neutral)

5.2 Independent Event Extensions
Extensions on both the indep_event definition and the indep_events defi-
nition
context prob-space
begin

lemma indep-eventsD: indep-events A I =⇒ (A‘I ⊆ events) =⇒ J ⊆ I =⇒ J 6=
{} =⇒ finite J =⇒

prob (
⋂

j∈J . A j) = (
∏

j∈J . prob (A j))
using indep-events-def [of A I] by auto

lemma
assumes indep: indep-event A B
shows indep-eventD-ev1: A ∈ events

and indep-eventD-ev2: B ∈ events

35

using indep unfolding indep-event-def indep-events-def UNIV-bool by auto

lemma indep-eventD:
assumes ie: indep-event A B
shows prob (A ∩ B) = prob (A) ∗ prob (B)
using assms indep-eventD-ev1 indep-eventD-ev2 ie[unfolded indep-event-def ,

THEN indep-eventsD,of UNIV]
by (simp add: ac-simps UNIV-bool)

lemma indep-eventI [intro]:
assumes ev: A ∈ events B ∈ events

and indep: prob (A ∩ B) = prob A ∗ prob B
shows indep-event A B
unfolding indep-event-def

proof (intro indep-eventsI)
show

∧
i. i ∈ UNIV =⇒ (case i of True ⇒ A | False ⇒ B) ∈ events

using assms by (auto split: bool.split)
next

fix J :: bool set assume jss: J ⊆ UNIV and jne: J 6= {} and finJ : finite J
have J ∈ Pow UNIV by auto
then have c: J = UNIV ∨ J = {True} ∨ J = {False} using jne jss UNIV-bool
by (metis (full-types) UNIV-eq-I insert-commute subset-insert subset-singletonD)

then show prob (
⋂

i∈J . case i of True ⇒ A | False ⇒ B) =
(
∏

i∈J . prob (case i of True ⇒ A | False ⇒ B))
unfolding UNIV-bool using indep by (auto simp: ac-simps)

qed

Alternate set definition - when no possibility of duplicate objects
definition indep-events-set :: ′a set set ⇒ bool where
indep-events-set E ≡ (E ⊆ events ∧ (∀ J . J ⊆ E −→ finite J −→ J 6= {} −→ prob
(
⋂

J) = (
∏

i∈J . prob i)))

lemma indep-events-setI [intro]: E ⊆ events =⇒ (
∧

J . J ⊆ E =⇒ finite J =⇒ J
6= {} =⇒

prob (
⋂

J) = (
∏

i∈J . prob i)) =⇒ indep-events-set E
using indep-events-set-def by simp

lemma indep-events-subset:
indep-events-set E ←→ (∀ J⊆E . indep-events-set J)
by (auto simp: indep-events-set-def)

lemma indep-events-subset2:
indep-events-set E =⇒ J ⊆ E =⇒ indep-events-set J
by (auto simp: indep-events-set-def)

lemma indep-events-set-events: indep-events-set E =⇒ (
∧

e. e ∈ E =⇒ e ∈ events)

using indep-events-set-def by auto

36

lemma indep-events-set-events-ss: indep-events-set E =⇒ E ⊆ events
using indep-events-set-events by auto

lemma indep-events-set-probs: indep-events-set E =⇒ J ⊆ E =⇒ finite J =⇒ J
6= {} =⇒

prob (
⋂

J) = (
∏

i∈J . prob i)
by (simp add: indep-events-set-def)

lemma indep-events-set-prod-all: indep-events-set E =⇒ finite E =⇒ E 6= {} =⇒
prob (

⋂
E) = prod prob E

using indep-events-set-probs by simp

lemma indep-events-not-contain-compl:
assumes indep-events-set E
assumes A ∈ E
assumes prob A > 0 prob A < 1
shows (space M − A) /∈ E (is ?A ′ /∈ E)

proof (rule ccontr)
assume ¬ (?A ′) /∈ E
then have ?A ′ ∈ E by auto
then have {A, ?A ′} ⊆ E using assms(2) by auto
moreover have finite {A, ?A ′} by simp
moreover have {A, ?A ′} 6= {}

by simp
ultimately have prob (

⋂
i∈{A, ?A ′}. i) = (

∏
i∈{A, ?A ′}. prob i)

using indep-events-set-probs[of E {A, ?A ′}] assms(1) by auto
then have prob (A ∩ ?A ′) = prob A ∗ prob ?A ′ by simp
moreover have prob (A ∩ ?A ′) = 0 by simp
moreover have prob A ∗ prob ?A ′ = prob A ∗ (1 − prob A)

using assms(1) assms(2) indep-events-set-events prob-compl by auto
moreover have prob A ∗ (1 − prob A) > 0 using assms(3) assms(4) by (simp

add: algebra-simps)
ultimately show False by auto

qed

lemma indep-events-contain-compl-prob01:
assumes indep-events-set E
assumes A ∈ E
assumes space M − A ∈ E
shows prob A = 0 ∨ prob A = 1

proof (rule ccontr)
let ?A ′ = space M − A
assume a: ¬ (prob A = 0 ∨ prob A = 1)
then have prob A > 0

by (simp add: zero-less-measure-iff)
moreover have prob A < 1

using a measure-ge-1-iff by fastforce
ultimately have ?A ′ /∈ E using assms(1) assms(2) indep-events-not-contain-compl

37

by auto
then show False using assms(3) by auto

qed

lemma indep-events-set-singleton:
assumes A ∈ events
shows indep-events-set {A}

proof (intro indep-events-setI)
show {A} ⊆ events using assms by simp

next
fix J assume J ⊆ {A} finite J J 6= {}
then have J = {A} by auto
then show prob (

⋂
J) = prod prob J by simp

qed

lemma indep-events-pairs:
assumes indep-events-set S
assumes A ∈ S B ∈ S A 6= B
shows indep-event A B
using assms indep-events-set-probs[of S {A, B}]
by (intro indep-eventI) (simp-all add: indep-events-set-events)

lemma indep-events-inter-pairs:
assumes indep-events-set S
assumes finite A finite B
assumes A 6= {} B 6= {}
assumes A ⊆ S B ⊆ S A ∩ B = {}
shows indep-event (

⋂
A) (

⋂
B)

proof (intro indep-eventI)
have A ⊆ events B ⊆ events using indep-events-set-events assms by auto
then show

⋂
A ∈ events

⋂
B ∈ events using Inter-event-ss assms by auto

next
have A ∪ B ⊆ S using assms by auto
then have prob (

⋂
(A ∪ B)) = prod prob (A ∪ B) using assms

by (metis Un-empty indep-events-subset infinite-Un prob-space.indep-events-set-prod-all
prob-space-axioms)

also have ... = prod prob A ∗ prod prob B using assms(8)
by (simp add: assms(2) assms(3) prod.union-disjoint)

finally have prob (
⋂
(A ∪ B)) = prob (

⋂
A) ∗ prob (

⋂
B)

using assms indep-events-subset indep-events-set-prod-all by metis
moreover have

⋂
(A ∪ B) = (

⋂
A ∩

⋂
B) by auto

ultimately show prob (
⋂

A ∩
⋂

B) = prob (
⋂

A) ∗ prob (
⋂

B)
by simp

qed

lemma indep-events-inter-single:
assumes indep-events-set S
assumes finite B

38

assumes B 6= {}
assumes A ∈ S B ⊆ S A /∈ B
shows indep-event A (

⋂
B)

proof −
have {A} 6= {} finite {A} {A} ⊆ S using assms by simp-all
moreover have {A} ∩ B = {} using assms(6) by auto
ultimately show ?thesis using indep-events-inter-pairs[of S {A} B] assms by

auto
qed

lemma indep-events-set-prob1:
assumes A ∈ events
assumes prob A = 1
assumes A /∈ S
assumes indep-events-set S
shows indep-events-set (S ∪ {A})

proof (intro indep-events-setI)
show S ∪ {A} ⊆ events using assms(1) assms(4) indep-events-set-events by

auto
next

fix J assume jss: J ⊆ S ∪ {A} and finJ : finite J and jne: J 6= {}
show prob (

⋂
J) = prod prob J

proof (cases A ∈ J)
case t1: True
then show ?thesis
proof (cases J = {A})

case True
then show ?thesis using indep-events-set-singleton assms(1) by auto

next
case False
then have jun: (J − {A}) ∪ {A} = J using t1 by auto
have J − {A} ⊆ S using jss by auto
then have iej: indep-events-set (J − {A}) using indep-events-subset2[of S J

− {A}] assms(4)
by auto

have jsse: J − {A} ⊆ events using indep-events-set-events jss
using assms(4) by blast

have jne2: J − {A} 6= {} using False jss jne by auto
have split: (J − {A}) ∩ {A} = {} by auto
then have prob (

⋂
i∈J . i) = prob ((

⋂
i∈(J − {A}). i) ∩ A) using jun

by (metis Int-commute Inter-insert Un-ac(3) image-ident insert-is-Un)
also have ... = prob ((

⋂
i∈(J − {A}). i))

using prob1-basic-Inter [of A J − {A}] jsse assms(2) jne2 assms(1) finJ
by (simp add: Int-commute)

also have ... = prob (
⋂
(J − {A})) ∗ prob A using assms(2) by simp

also have ... = (prod prob (J − {A})) ∗ prob A
using iej indep-events-set-prod-all[of J − {A}] jne2 finJ finite-subset by

auto
also have ... = prod prob ((J − {A}) ∪ {A}) using split

39

by (metis finJ jun mult.commute prod.remove t1)
finally show ?thesis using jun by auto

qed
next

case False
then have jss2: J ⊆ S using jss by auto
then have indep-events-set J using assms(4) indep-events-subset2[of S J] by

auto
then show ?thesis using indep-events-set-probs finJ jne jss2 by auto

qed
qed

lemma indep-events-set-prob0:
assumes A ∈ events
assumes prob A = 0
assumes A /∈ S
assumes indep-events-set S
shows indep-events-set (S ∪ {A})

proof (intro indep-events-setI)
show S ∪ {A}⊆ events using assms(1) assms(4) indep-events-set-events by auto

next
fix J assume jss: J ⊆ S ∪ {A} and finJ : finite J and jne: J 6= {}
show prob (

⋂
J) = prod prob J

proof (cases A ∈ J)
case t1: True
then show ?thesis
proof (cases J = {A})

case True
then show ?thesis using indep-events-set-singleton assms(1) by auto

next
case False
then have jun: (J − {A}) ∪ {A} = J using t1 by auto
have J − {A} ⊆ S using jss by auto
then have iej: indep-events-set (J − {A}) using indep-events-subset2[of S J

− {A}] assms(4) by auto
have jsse: J − {A} ⊆ events using indep-events-set-events jss

using assms(4) by blast
have jne2: J − {A} 6= {} using False jss jne by auto
have split: (J − {A}) ∩ {A} = {} by auto
then have prob (

⋂
i∈J . i) = prob ((

⋂
i∈(J − {A}). i) ∩ A) using jun

by (metis Int-commute Inter-insert Un-ac(3) image-ident insert-is-Un)
also have ... = 0

using prob0-basic-Inter [of A J − {A}] jsse assms(2) jne2 assms(1) finJ
by (simp add: Int-commute)

also have ... = prob (
⋂
(J − {A})) ∗ prob A using assms(2) by simp

also have ... = (prod prob (J − {A})) ∗ prob A using iej indep-events-set-prod-all[of
J − {A}] jne2 finJ finite-subset by auto

also have ... = prod prob ((J − {A}) ∪ {A}) using split
by (metis finJ jun mult.commute prod.remove t1)

40

finally show ?thesis using jun by auto
qed

next
case False
then have jss2: J ⊆ S using jss by auto
then have indep-events-set J using assms(4) indep-events-subset2[of S J] by

auto
then show ?thesis using indep-events-set-probs finJ jne jss2 by auto

qed
qed

lemma indep-event-commute:
assumes indep-event A B
shows indep-event B A
using indep-eventI [of B A] indep-eventD[unfolded assms(1), of A B]
by (metis Groups.mult-ac(2) Int-commute assms indep-eventD-ev1 indep-eventD-ev2)

Showing complement operation maintains independence
lemma indep-event-one-compl:

assumes indep-event A B
shows indep-event A (space M − B)

proof −
let ?B ′ = space M − B
have A = (A ∩ B) ∪ (A ∩ ?B ′)
by (metis Int-Diff Int-Diff-Un assms prob-space.indep-eventD-ev1 prob-space-axioms

sets.Int-space-eq2)
then have prob A = prob (A ∩ B) + prob (A ∩ ?B ′)
by (metis Diff-Int-distrib Diff-disjoint assms finite-measure-Union indep-eventD-ev1

indep-eventD-ev2 sets.Int sets.compl-sets)
then have prob (A ∩ ?B ′) = prob A − prob (A ∩ B) by simp
also have ... = prob A − prob A ∗ prob B using indep-eventD assms(1) by auto
also have ... = prob A ∗ (1 − prob B)

by (simp add: vector-space-over-itself .scale-right-diff-distrib)
finally have prob (A ∩ ?B ′) = prob A ∗ prob ?B ′

using prob-compl indep-eventD-ev1 assms(1) indep-eventD-ev2 by presburger
then show indep-event A ?B ′ using indep-eventI indep-eventD-ev2 indep-eventD-ev1

assms(1)
by (meson sets.compl-sets)

qed

lemma indep-event-one-compl-rev:
assumes B ∈ events
assumes indep-event A (space M − B)
shows indep-event A B

proof −
have space M − B ∈ events using indep-eventD-ev2 assms by auto
have space M − (space M − B) = B using compl-identity assms by simp

41

then show ?thesis using indep-event-one-compl[of A space M − B] assms(2)
by auto
qed

lemma indep-event-double-compl: indep-event A B =⇒ indep-event (space M −
A) (space M − B)

using indep-event-one-compl indep-event-commute by auto

lemma indep-event-double-compl-rev: A ∈ events =⇒ B ∈ events =⇒
indep-event (space M − A) (space M − B) =⇒ indep-event A B

using indep-event-double-compl[of space M − A space M − B] compl-identity by
auto

lemma indep-events-set-one-compl:
assumes indep-events-set S
assumes A ∈ S
shows indep-events-set ({space M − A} ∪ (S − {A}))

proof (intro indep-events-setI)
show {space M − A} ∪ (S − {A}) ⊆ events

using indep-events-set-events assms(1) assms(2) by auto
next

fix J assume jss: J ⊆ {space M − A} ∪ (S − {A})
assume finJ : finite J
assume jne: J 6= {}
show prob (

⋂
J) = prod prob J

proof (cases J − {space M − A} = {})
case True
then have J = {space M − A} using jne by blast
then show ?thesis by simp

next
case jne2: False
have jss2: J − {space M − A} ⊆ S using jss assms(2) by auto
moreover have A /∈ (J − {space M − A}) using jss by auto
moreover have finite (J − {space M − A}) using finJ by simp
ultimately have indep-event A (

⋂
(J − {space M − A}))

using indep-events-inter-single[of S (J − {space M − A}) A] assms jne2 by
auto

then have ie: indep-event (space M − A) (
⋂

(J − {space M − A}))
using indep-event-one-compl indep-event-commute by auto

have iess: indep-events-set (J − {space M − A})
using jss2 indep-events-subset2[of S J − {space M − A}] assms(1) by auto

show ?thesis
proof (cases space M − A ∈ J)

case True
then have split: J = (J − {space M − A}) ∪ {space M − A} by auto
then have prob (

⋂
J) = prob (

⋂
((J − {space M − A}) ∪ {space M −

A})) by simp
also have ... = prob ((

⋂
(J − {space M − A})) ∩ (space M − A))

by (metis Inter-insert True ‹J = J − {space M − A} ∪ {space M − A}›

42

inf .commute insert-Diff)
also have ... = prob (

⋂
(J − {space M − A})) ∗ prob (space M − A)

using ie indep-eventD[of
⋂

(J − {space M − A}) space M − A] in-
dep-event-commute by auto

also have ... = (prod prob ((J − {space M − A}))) ∗ prob (space M − A)
using indep-events-set-prod-all[of J − {space M − A}] iess jne2 finJ by

auto
finally have prob (

⋂
J) = prod prob J using split

by (metis Groups.mult-ac(2) True finJ prod.remove)
then show ?thesis by simp

next
case False
then show ?thesis using iess

by (simp add: assms(1) finJ indep-events-set-prod-all jne)
qed

qed
qed

lemma indep-events-set-update-compl:
assumes indep-events-set E
assumes E = A ∪ B
assumes A ∩ B = {}
assumes finite E
shows indep-events-set (((−) (space M) ‘ A) ∪ B)

using assms(2) assms(3) proof (induct card A arbitrary: A B)
case 0
then show ?case using assms(1)

using assms(4) by auto
next

case (Suc x)
then obtain a A ′ where aeq: A = insert a A ′ and anotin: a /∈ A ′

by (metis card-Suc-eq-finite)
then have xcard: card A ′ = x

using Suc(2) Suc(3) assms(4) by auto
let ?B ′ = B ∪ {a}
have E = A ′ ∪ ?B ′ using aeq Suc.prems by auto
moreover have A ′ ∩ ?B ′ = {} using anotin Suc.prems(2) aeq by auto
moreover have ?B ′ 6= {} by simp
ultimately have ies: indep-events-set ((−) (space M) ‘ A ′ ∪ ?B ′)

using Suc.hyps(1)[of A ′ ?B ′] xcard by auto
then have a ∈ A ∪ B using aeq by auto
then show ?case
proof (cases (A ∪ B) − {a} = {})

case True
then have A = {a} B = {} using Suc.prems aeq by auto
then have ((−) (space M) ‘ A ∪ B) = {space M − a} by auto
moreover have space M − a ∈ events using aeq assms(1) Suc.prems in-

dep-events-set-events by auto
ultimately show ?thesis using indep-events-set-singleton by simp

43

next
case False
have a ∈ (−) (space M) ‘ A ′ ∪ ?B ′ using aeq by auto
then have ie: indep-events-set ({space M − a} ∪ ((−) (space M) ‘ A ′ ∪ ?B ′

− {a}))
using indep-events-set-one-compl[of (−) (space M) ‘ A ′ ∪ ?B ′ a] ies by auto

show ?thesis
proof (cases a ∈ (−) (space M) ‘ A ′)

case True
then have space M − a ∈ A ′

by (smt (verit) ‹E = A ′ ∪ (B ∪ {a})› assms(1) compl-identity image-iff
indep-events-set-events

indep-events-subset2 inf-sup-ord(3))
then have space M − a ∈ A using aeq by auto
moreover have indep-events-set A using Suc.prems(1) indep-events-subset2

assms(1)
using aeq by blast

moreover have a ∈ A using aeq by auto
ultimately have probs: prob a = 0 ∨ prob a = 1 using indep-events-contain-compl-prob01[of

A a] by auto
have ((−) (space M) ‘ A ∪ B) = (−) (space M) ‘ A ′ ∪ {space M − a} ∪ B

using aeq by auto
moreover have ((−) (space M) ‘ A ′ ∪ ?B ′ − {a}) = ((−) (space M) ‘ A ′ −

{a}) ∪ B
using Suc.prems(2) aeq by auto

moreover have (−) (space M) ‘ A ′ = ((−) (space M) ‘ A ′ − {a}) ∪ {a}
using True by auto

ultimately have ((−) (space M) ‘ A ∪ B) = {space M − a} ∪ ((−) (space
M) ‘ A ′ ∪ ?B ′ − {a}) ∪ {a}

by (smt (verit) Un-empty-right Un-insert-right Un-left-commute)
moreover have a /∈ {space M − a} ∪ ((−) (space M) ‘ A ′ ∪ ?B ′ − {a})
using Diff-disjoint ‹space M − a ∈ A ′› anotin empty-iff insert-iff by fastforce

moreover have a ∈ events using Suc.prems(1) assms(1) indep-events-set-events
aeq by auto

ultimately show ?thesis
using ie indep-events-set-prob0 indep-events-set-prob1 probs by presburger

next
case False
then have (((−) (space M) ‘A ′ ∪ ?B ′) − {a}) = (−) (space M) ‘A ′ ∪ B

using Suc.prems(2) aeq by auto
moreover have (−) (space M) ‘ A = (−) (space M) ‘ A ′ ∪ {space M − a}

using aeq
by simp

ultimately have ((−) (space M) ‘ A ∪ B) = {space M − a} ∪ ((−) (space
M) ‘ A ′ ∪ ?B ′ − {a})

by auto
then show ?thesis using ie by simp

qed

44

qed
qed

lemma indep-events-set-compl:
assumes indep-events-set E
assumes finite E
shows indep-events-set ((λ e. space M − e) ‘ E)
using indep-events-set-update-compl[of E E {}] assms by auto

lemma indep-event-empty:
assumes A ∈ events
shows indep-event A {}
using assms indep-eventI by auto

lemma indep-event-compl-inter :
assumes indep-event A C
assumes B ∈ events
assumes indep-event A (B ∩ C)
shows indep-event A ((space M − B) ∩ C)

proof (intro indep-eventI)
show A ∈ events using assms(1) indep-eventD-ev1 by auto
show (space M − B) ∩ C ∈ events using assms(3) indep-eventD-ev2

by (metis Diff-Int-distrib2 assms(1) sets.Diff sets.Int-space-eq1)
next

have ac: A ∩ C ∈ events using assms(1) indep-eventD-ev1 indep-eventD-ev2
sets.Int-space-eq1

by auto
have prob (A ∩ ((space M − B) ∩ C)) = prob (A ∩ (space M − B) ∩ C)

by (simp add: inf-sup-aci(2))
also have ... = prob (A ∩ C ∩ (space M − B))

by (simp add: ac-simps)
also have ... = prob (A ∩ C) − prob (A ∩ C ∩ B)

using prob-compl-diff-inter [of A ∩ C B] ac assms(2) by auto
also have ... = prob (A) ∗ prob C − (prob A ∗ prob (C ∩ B))

using assms(1) assms(3) indep-eventD
by (simp add: inf-commute inf-left-commute)

also have ... = prob A ∗ (prob C − prob (C ∩ B)) by (simp add: algebra-simps)
finally have prob (A ∩ ((space M − B) ∩ C)) = prob A ∗ (prob (C ∩ (space M
− B)))

using prob-compl-diff-inter [of C B] using assms(1) assms(2)
by (simp add: indep-eventD-ev2)

then show prob (A ∩ ((space M − B) ∩ C)) = prob A ∗ prob ((space M − B)
∩ C) by (simp add: ac-simps)
qed

lemma indep-events-index-subset:

45

indep-events F E ←→ (∀ J⊆E . indep-events F J)
unfolding indep-events-def
by (meson image-mono set-eq-subset subset-trans)

lemma indep-events-index-subset2:
indep-events F E =⇒ J ⊆ E =⇒ indep-events F J
using indep-events-index-subset by auto

lemma indep-events-events-ss: indep-events F E =⇒ F ‘ E ⊆ events
unfolding indep-events-def by (auto)

lemma indep-events-events: indep-events F E =⇒ (
∧

e. e ∈ E =⇒ F e ∈ events)
using indep-events-events-ss by auto

lemma indep-events-probs: indep-events F E =⇒ J ⊆ E =⇒ finite J =⇒ J 6= {}
=⇒ prob (

⋂
(F ‘ J)) = (

∏
i∈J . prob (F i))

unfolding indep-events-def by auto

lemma indep-events-prod-all: indep-events F E =⇒ finite E =⇒ E 6= {} =⇒ prob
(
⋂
(F ‘ E)) = (

∏
i∈E . prob (F i))

using indep-events-probs by auto

lemma indep-events-ev-not-contain-compl:
assumes indep-events F E
assumes A ∈ E
assumes prob (F A) > 0 prob (F A) < 1
shows (space M − F A) /∈ F ‘ E (is ?A ′ /∈ F ‘ E)

proof (rule ccontr)
assume ¬ ?A ′ /∈ F ‘ E
then have ?A ′ ∈ F ‘ E by auto
then obtain Ae where aeq: ?A ′ = F Ae and Ae ∈ E by blast
then have {A, Ae} ⊆ E using assms(2) by auto
moreover have finite {A, Ae} by simp
moreover have {A, Ae} 6= {}

by simp
ultimately have prob (

⋂
i∈{A, Ae}. F i) = (

∏
i∈{A, Ae}. prob (F i)) using

indep-events-probs[of F E {A, Ae}] assms(1) by auto
moreover have A 6= Ae

using subprob-not-empty using aeq by auto
ultimately have prob (F A ∩ ?A ′) = prob (F A) ∗ prob (?A ′) using aeq by

simp
moreover have prob (F A ∩ ?A ′) = 0 by simp
moreover have prob (F A) ∗ prob ?A ′ = prob (F A) ∗ (1 − prob (F A))

using assms(1) assms(2) indep-events-events prob-compl by metis
moreover have prob (F A) ∗ (1 − prob (F A)) > 0 using assms(3) assms(4)

by (simp add: algebra-simps)
ultimately show False by auto

qed

46

lemma indep-events-singleton:
assumes F A ∈ events
shows indep-events F {A}

proof (intro indep-eventsI)
show

∧
i. i ∈ {A} =⇒ F i ∈ events using assms by simp

next
fix J assume J ⊆ {A} finite J J 6= {}
then have J = {A} by auto
then show prob (

⋂
(F ‘ J)) = (

∏
i∈J . prob (F i)) by simp

qed

lemma indep-events-ev-pairs:
assumes indep-events F S
assumes A ∈ S B ∈ S A 6= B
shows indep-event (F A) (F B)
using assms indep-events-probs[of F S {A, B}]
by (intro indep-eventI) (simp-all add: indep-events-events)

lemma indep-events-ev-inter-pairs:
assumes indep-events F S
assumes finite A finite B
assumes A 6= {} B 6= {}
assumes A ⊆ S B ⊆ S A ∩ B = {}
shows indep-event (

⋂
(F ‘ A)) (

⋂
(F ‘ B))

proof (intro indep-eventI)
have (F ‘ A) ⊆ events (F ‘ B) ⊆ events using indep-events-events assms(1)

assms(6) assms(7) by fast+
then show

⋂
(F ‘ A) ∈ events

⋂
(F ‘B) ∈ events using Inter-event-ss assms

by auto
next

have A ∪ B ⊆ S using assms by auto
moreover have finite (A ∪ B) using assms(2) assms(3) by simp
moreover have A ∪ B 6= {} using assms by simp
ultimately have prob (

⋂
(F ‘(A ∪ B))) = (

∏
i∈A ∪ B. prob (F i)) using assms

using indep-events-probs[of F S A ∪ B] by simp
also have ... = (

∏
i∈A. prob (F i)) ∗ (

∏
i∈B. prob (F i))

using assms(8) prod.union-disjoint[of A B λ i. prob (F i)] assms(2) assms(3)
by simp

finally have prob (
⋂
(F ‘(A ∪ B))) = prob (

⋂
(F ‘ A)) ∗ prob (

⋂
(F ‘ B))

using assms indep-events-index-subset indep-events-prod-all by metis
moreover have

⋂
(F ‘ (A ∪ B)) = (

⋂
(F ‘ A)) ∩

⋂
(F ‘ B) by auto

ultimately show prob (
⋂

(F ‘ A) ∩
⋂

(F ‘ B)) = prob (
⋂

(F ‘ A)) ∗ prob (
⋂

(F ‘ B))
by simp

qed

lemma indep-events-ev-inter-single:

47

assumes indep-events F S
assumes finite B
assumes B 6= {}
assumes A ∈ S B ⊆ S A /∈ B
shows indep-event (F A) (

⋂
(F ‘ B))

proof −
have {A} 6= {} finite {A} {A} ⊆ S using assms by simp-all
moreover have {A} ∩ B = {} using assms(6) by auto
ultimately show ?thesis using indep-events-ev-inter-pairs[of F S {A} B] assms

by auto
qed

lemma indep-events-fn-eq:
assumes

∧
Ai. Ai ∈ E =⇒ F Ai = G Ai

assumes indep-events F E
shows indep-events G E

proof (intro indep-eventsI)
show

∧
i. i ∈ E =⇒ G i ∈ events using assms(2) indep-events-events assms(1)

by metis
next

fix J assume jss: J ⊆ E finite J J 6= {}
moreover have G ‘ J = F ‘ J using assms(1) calculation(1) by auto
moreover have

∧
i . i ∈ J =⇒ prob (G i) = prob (F i) using jss assms(1)

by auto
moreover have (

∏
i∈J . prob (F i)) = (

∏
i∈J . prob (G i)) using calculation(5)

by auto
ultimately show prob (

⋂
(G ‘ J)) = (

∏
i∈J . prob (G i))

using assms(2) indep-events-probs[of F E J] by simp
qed

lemma indep-events-fn-eq-iff :
assumes

∧
Ai. Ai ∈ E =⇒ F Ai = G Ai

shows indep-events F E ←→ indep-events G E
using indep-events-fn-eq assms by auto

lemma indep-events-one-compl:
assumes indep-events F S
assumes A ∈ S
shows indep-events (λ i. if (i = A) then (space M − F i) else F i) S (is

indep-events ?G S)
proof (intro indep-eventsI)

show
∧

i. i ∈ S =⇒ (if i = A then space M − F i else F i) ∈ events
using indep-events-events assms(1) assms(2)
by (metis sets.compl-sets)

next
define G where G ≡?G
fix J assume jss: J ⊆ S
assume finJ : finite J
assume jne: J 6= {}

48

show prob (
⋂

i∈J . ?G i) = (
∏

i∈J . prob (?G i))
proof (cases J = {A})

case True
then show ?thesis by simp

next
case jne2: False
have jss2: J − {A} ⊆ S using jss assms(2) by auto
moreover have A /∈ (J − {A}) using jss by auto
moreover have finite (J − {A}) using finJ by simp
moreover have J − {A} 6= {} using jne2 jne by auto
ultimately have indep-event (F A) (

⋂
(F ‘ (J − {A})))

using indep-events-ev-inter-single[of F S (J − {A}) A] assms by auto
then have ie: indep-event (G A) (

⋂
(G ‘ (J − {A})))

using indep-event-one-compl indep-event-commute G-def by auto
have iess: indep-events G (J − {A})

using jss2 G-def indep-events-index-subset2[of F S J − {A}] assms(1)
indep-events-fn-eq[of J − {A}] by auto

show ?thesis
proof (cases A ∈ J)

case True
then have split: G ‘ J = insert (G A) (G ‘ (J − {A})) by auto
then have prob (

⋂
(G ‘ J)) = prob (

⋂
(insert (G A) (G ‘ (J − {A})))) by

auto
also have ... = prob ((G A)∩

⋂
(G ‘ (J − {A})))

using Inter-insert by simp
also have ... = prob (G A) ∗ prob (

⋂
(G ‘ (J − {A})))

using ie indep-eventD[of G A
⋂

(G ‘ (J − {A}))] by auto
also have ... = prob (G A) ∗ (

∏
i ∈ (J − {A}). prob (G i))

using indep-events-prod-all[of G J − {A}] iess jne2 jne finJ by auto
finally have prob (

⋂
(G ‘ J)) = (

∏
i ∈ J . prob (G i)) using split

by (metis True finJ prod.remove)
then show ?thesis using G-def by simp

next
case False
then have prob (

⋂
i∈J . G i) = (

∏
i∈J . prob (G i)) using iess

by (simp add: assms(1) finJ indep-events-prod-all jne)
then show ?thesis using G-def by simp

qed
qed

qed

lemma indep-events-update-compl:
assumes indep-events F E
assumes E = A ∪ B
assumes A ∩ B = {}
assumes finite E
shows indep-events (λ Ai. if (Ai ∈ A) then (space M − (F Ai)) else (F Ai)) E

using assms(2) assms(3) proof (induct card A arbitrary: A B)
case 0

49

let ?G = (λAi. if Ai ∈ A then space M − F Ai else F Ai)
have E = B using assms(4) ‹E = A ∪ B› ‹0 = card A›

by simp
then have

∧
i. i ∈ E =⇒ F i = ?G i using ‹A ∩ B = {}› by auto

then show ?case using assms(1) indep-events-fn-eq[of E F ?G] by simp
next

case (Suc x)
define G where G ≡ (λAi. if Ai ∈ A then space M − F Ai else F Ai)
obtain a A ′ where aeq: A = insert a A ′ and anotin: a /∈ A ′

using Suc.hyps by (metis card-Suc-eq-finite)
then have xcard: card A ′ = x

using Suc(2) Suc(3) assms(4) by auto
define G1 where G1 ≡ (λAi. if Ai ∈ A ′ then space M − F Ai else F Ai)
let ?B ′ = B ∪ {a}
have eeq: E = A ′ ∪ ?B ′ using aeq Suc.prems by auto
moreover have A ′ ∩ ?B ′ = {} using anotin Suc.prems(2) aeq by auto
moreover have ?B ′ 6= {} by simp
ultimately have ies: indep-events G1 (A ′ ∪ ?B ′)

using Suc.hyps(1)[of A ′ ?B ′] xcard G1-def by auto
then have a ∈ A ∪ B using aeq by auto
define G2 where G2 ≡ λ Ai. if Ai = a then (space M − (G1 Ai)) else (G1

Ai)
have a ∈ A ′ ∪ ?B ′ by auto
then have ie: indep-events G2 E

using indep-events-one-compl[of G1 (A ′ ∪ ?B ′) a] ies G2-def eeq by auto
moreover have

∧
i. i ∈ E =⇒ G2 i = G i

unfolding G2-def G1-def G-def
by (simp add: aeq anotin)

ultimately have indep-events G E using indep-events-fn-eq[of E G2 G] by auto
then show ?case using G-def by simp

qed

lemma indep-events-compl:
assumes indep-events F E
assumes finite E
shows indep-events (λ Ai. space M − F Ai) E

proof −
have indep-events (λAi. if Ai ∈ E then space M − F Ai else F Ai) E

using indep-events-update-compl[of F E E {}] assms by auto
moreover have

∧
i. i ∈ E =⇒ (λAi. if Ai ∈ E then space M − F Ai else F Ai)

i = (λ Ai. space M − F Ai) i
by simp

ultimately show ?thesis
using indep-events-fn-eq[of E (λAi. if Ai ∈ E then space M − F Ai else F Ai)]

by auto
qed

lemma indep-events-impl-inj-on:
assumes finite A

50

assumes indep-events F A
assumes

∧
A ′ . A ′ ∈ A =⇒ prob (F A ′) > 0 ∧ prob (F A ′) < 1

shows inj-on F A
proof (intro inj-onI , rule ccontr)

fix x y assume xin: x ∈ A and yin: y ∈ A and feq: F x = F y
assume contr : x 6= y
then have {x, y} ⊆ A {x, y} 6= {} finite {x, y} using xin yin by auto
then have prob (

⋂
j∈{x, y}. F j) = (

∏
j∈{x, y}. prob (F j))

using assms(2) indep-events-probs[of F A {x, y}] by auto
moreover have (

∏
j∈{x, y}. prob (F j)) = prob (F x) ∗ prob (F y) using contr

by auto
moreover have prob (

⋂
j∈{x, y}. F j) = prob (F x) using feq by simp

ultimately have prob (F x) = prob (F x) ∗ prob (F x) using feq by simp
then show False using assms(3) using xin by fastforce

qed

lemma indep-events-imp-set:
assumes finite A
assumes indep-events F A
assumes

∧
A ′ . A ′ ∈ A =⇒ prob (F A ′) > 0 ∧ prob (F A ′) < 1

shows indep-events-set (F ‘ A)
proof (intro indep-events-setI)

show F ‘ A ⊆ events using assms(2) indep-events-events by auto
next

fix J assume jss: J ⊆ F ‘ A and finj: finite J and jne:J 6= {}
have bb: bij-betw F A (F ‘A) using bij-betw-imageI indep-events-impl-inj-on

assms by meson
then obtain I where iss: I ⊆ A and jeq: J = F ‘ I

using bij-betw-obtain-subsetl[OF bb] jss by metis
moreover have I 6= {} finite I using finj jeq jne assms(1) finite-subset iss by

blast+
ultimately have prob (

⋂
(F ‘ I)) = (

∏
i∈I . prob (F i))

using jne finj jss indep-events-probs[of F A I] assms(2) by (simp)
moreover have bij-betw F I J using jeq iss jss bb by (meson bij-betw-subset)
ultimately show prob (

⋂
J) = prod prob J using bij-betw-prod-prob jeq by

(metis)
qed

lemma indep-event-set-equiv-bij:
assumes bij-betw F A E
assumes finite E
shows indep-events-set E ←→ indep-events F A

proof −
have im: F ‘ A = E

using assms(1) by (simp add: bij-betw-def)
then have ss: (∀ e. e ∈ E −→ e ∈ events) ←→ (F ‘ A ⊆ events)

using image-iff by (simp add: subset-iff)
have prob: (∀ J . J ⊆ E −→ finite J −→ J 6= {} −→ prob (

⋂
i∈J . i) = (

∏
i∈J .

prob i)) ←→

51

(∀ I . I ⊆ A −→ finite I −→ I 6= {} −→ prob (
⋂

i∈I . F i) = (
∏

i∈I . prob
(F i)))

proof (intro allI impI iffI)
fix I assume p1: ∀ J⊆E . finite J −→ J 6= {} −→ prob (

⋂
i∈J . i) = prod prob

J
and iss: I ⊆ A and f1: finite I and i1: I 6= {}

then obtain J where jeq: J = F ‘ I and jss: J ⊆ E
using bij-betw-obtain-subsetr [OF assms(1) iss]by metis

then have prob (
⋂

J) = prod prob J using i1 f1 p1 jss by auto
moreover have bij-betw F I J using jeq jss assms(1) iss

by (meson bij-betw-subset)
ultimately show prob (

⋂
(F ‘ I)) = (

∏
i∈I . prob (F i)) using bij-betw-prod-prob

by (metis jeq)
next

fix J assume p2: ∀ I⊆A. finite I −→ I 6= {} −→ prob (
⋂

(F ‘ I)) = (
∏

i∈I .
prob (F i))

and jss: J ⊆ E and f2: finite J and j1: J 6= {}
then obtain I where iss: I ⊆ A and jeq: J = F ‘ I

using bij-betw-obtain-subsetl[OF assms(1)] by metis
moreover have finite A using assms(1) assms(2)

by (simp add: bij-betw-finite)
ultimately have prob (

⋂
(F ‘ I)) = (

∏
i∈I . prob (F i)) using j1 f2 p2 jss

by (simp add: finite-subset)
moreover have bij-betw F I J using jeq iss assms(1) jss by (meson bij-betw-subset)
ultimately show prob (

⋂
i∈J . i) = prod prob J using bij-betw-prod-prob jeq

by (metis image-ident)
qed
have indep-events-set E =⇒ indep-events F A
proof (intro indep-eventsI)

show
∧

i. indep-events-set E =⇒ i ∈ A =⇒ F i ∈ events
using indep-events-set-events ss by auto

show
∧

J . indep-events-set E =⇒ J ⊆ A =⇒ finite J =⇒ J 6= {} =⇒ prob (
⋂

(F ‘ J)) = (
∏

i∈J . prob (F i))
using indep-events-set-probs prob by auto

qed
moreover have indep-events F A =⇒ indep-events-set E
proof (intro indep-events-setI)
have

∧
e. indep-events F A =⇒ e ∈ E =⇒ e ∈ events using ss indep-events-def

by metis
then show indep-events F A =⇒ E ⊆ events by auto
show

∧
J . indep-events F A =⇒ J ⊆ E =⇒ finite J =⇒ J 6= {} =⇒ prob (

⋂
J)

= prod prob J
using prob indep-events-def by (metis image-ident)

qed
ultimately show ?thesis by auto

qed

52

5.3 Mutual Independent Events
Note, set based version only if no duplicates in usage case. The mutual_in-
dep_events definition is more general and recommended
definition mutual-indep-set:: ′a set ⇒ ′a set set ⇒ bool

where mutual-indep-set A S ←→ A ∈ events ∧ S ⊆ events ∧ (∀ T ⊆ S . T 6=
{} −→ prob (A ∩ (

⋂
T)) = prob A ∗ prob (

⋂
T))

lemma mutual-indep-setI [intro]: A ∈ events =⇒ S ⊆ events =⇒ (
∧

T . T ⊆ S
=⇒ T 6= {} =⇒

prob (A ∩ (
⋂

T)) = prob A ∗ prob (
⋂

T)) =⇒ mutual-indep-set A S
using mutual-indep-set-def by simp

lemma mutual-indep-setD[dest]: mutual-indep-set A S =⇒ T ⊆ S =⇒ T 6= {}
=⇒ prob (A ∩ (

⋂
T)) = prob A ∗ prob (

⋂
T)

using mutual-indep-set-def by simp

lemma mutual-indep-setD2[dest]: mutual-indep-set A S =⇒ A ∈ events
using mutual-indep-set-def by simp

lemma mutual-indep-setD3[dest]: mutual-indep-set A S =⇒ S ⊆ events
using mutual-indep-set-def by simp

lemma mutual-indep-subset: mutual-indep-set A S =⇒ T ⊆ S =⇒mutual-indep-set
A T

using mutual-indep-set-def by auto

lemma mutual-indep-event-set-defD:
assumes mutual-indep-set A S
assumes finite T
assumes T ⊆ S
assumes T 6= {}
shows indep-event A (

⋂
T)

proof (intro indep-eventI)
show A ∈ events using mutual-indep-setD2 assms(1) by auto
show

⋂
T ∈ events using Inter-event-ss assms mutual-indep-setD3 finite-subset

by blast
show prob (A ∩

⋂
T) = prob A ∗ prob (

⋂
T)

using assms(1) mutual-indep-setD assms(3) assms(4) by simp
qed

lemma mutual-indep-event-defI : A ∈ events =⇒ S ⊆ events =⇒ (
∧

T . T ⊆ S
=⇒ T 6= {} =⇒

indep-event A (
⋂

T)) =⇒ mutual-indep-set A S
using indep-eventD mutual-indep-set-def by simp

lemma mutual-indep-singleton-event: mutual-indep-set A S =⇒ B ∈ S =⇒ in-

53

dep-event A B
using mutual-indep-event-set-defD empty-subsetI
by (metis Set.insert-mono cInf-singleton finite.emptyI finite-insert insert-absorb

insert-not-empty)

lemma mutual-indep-cond:
assumes A ∈ events and T ⊆ events and finite T
and mutual-indep-set A S and T ⊆ S and T 6= {} and prob (

⋂
T) 6= 0

shows P(A |(
⋂

T)) = prob A
proof −

have
⋂

T ∈ events using assms
by (simp add: Inter-event-ss)

then have P(A | (
⋂

T)) = prob ((
⋂

T) ∩ A)/prob(
⋂

T) using cond-prob-ev-def
assms(1)

by blast
also have ... = prob (A ∩ (

⋂
T))/prob(

⋂
T)

by (simp add: inf-commute)
also have ... = prob A ∗ prob (

⋂
T)/prob(

⋂
T) using assms mutual-indep-setD

by auto
finally show ?thesis using assms(7) by simp

qed

lemma mutual-indep-cond-full:
assumes A ∈ events and S ⊆ events and finite S
and mutual-indep-set A S and S 6= {} and prob (

⋂
S) 6= 0

shows P(A |(
⋂

S)) = prob A
using mutual-indep-cond[of A S S] assms by auto

lemma mutual-indep-cond-single:
assumes A ∈ events and B ∈ events
and mutual-indep-set A S and B ∈ S and prob B 6= 0
shows P(A |B) = prob A
using mutual-indep-cond[of A {B} S] assms by auto

lemma mutual-indep-set-empty: A ∈ events =⇒ mutual-indep-set A {}
using mutual-indep-setI by auto

lemma not-mutual-indep-set-itself :
assumes prob A > 0 and prob A < 1
shows ¬ mutual-indep-set A {A}

proof (rule ccontr)
assume ¬ ¬ mutual-indep-set A {A}
then have mutual-indep-set A {A}

by simp
then have

∧
T . T ⊆ {A} =⇒ T 6= {} =⇒ prob (A ∩ (

⋂
T)) = prob A ∗ prob

(
⋂

T)
using mutual-indep-setD by simp

then have eq: prob (A ∩ (
⋂
{A})) = prob A ∗ prob (

⋂
{A})

by blast

54

have prob (A ∩ (
⋂
{A})) = prob A by simp

moreover have prob A ∗ (prob (
⋂
{A})) = (prob A)^2

by (simp add: power2-eq-square)
ultimately show False using eq assms by auto

qed

lemma is-mutual-indep-set-itself :
assumes A ∈ events
assumes prob A = 0 ∨ prob A = 1
shows mutual-indep-set A {A}

proof (intro mutual-indep-setI)
show A ∈ events {A} ⊆ events using assms(1) by auto
fix T assume T ⊆ {A} and T 6= {}
then have teq: T = {A} by auto
have prob (A ∩ (

⋂
{A})) = prob A by simp

moreover have prob A ∗ (prob (
⋂
{A})) = (prob A)^2

by (simp add: power2-eq-square)
ultimately show prob (A ∩ (

⋂
T)) = prob A ∗ prob (

⋂
T) using teq assms

by auto
qed

lemma mutual-indep-set-singleton:
assumes indep-event A B
shows mutual-indep-set A {B}
using indep-eventD-ev1 indep-eventD-ev2 assms
by (intro mutual-indep-event-defI) (simp-all add: subset-singleton-iff)

lemma mutual-indep-set-one-compl:
assumes mutual-indep-set A S
assumes finite S
assumes B ∈ S
shows mutual-indep-set A ({space M − B} ∪ S)

proof (intro mutual-indep-event-defI)
show A ∈ events using assms(1) mutual-indep-setD2 by auto

next
show {space M − B} ∪ (S) ⊆ events

using assms(1) assms(2) mutual-indep-setD3 assms(3) by blast
next

fix T assume jss: T ⊆ {space M − B} ∪ (S)
assume tne: T 6= {}
let ?T ′ = T − {space M − B}
show indep-event A (

⋂
T)

proof (cases ?T ′ = {})
case True
then have T = {space M − B} using tne by blast

moreover have indep-event A B using assms(1) assms(3) assms(3) mu-
tual-indep-singleton-event by auto

ultimately show ?thesis using indep-event-one-compl by auto
next

55

case tne2: False
have finT : finite T using jss assms(2) finite-subset by fast
have tss2: ?T ′ ⊆ S using jss assms(2) by auto
show ?thesis proof (cases space M − B ∈ T)

case True
have ?T ′ ∪ {B} ⊆ S using assms(3) tss2 by auto

then have indep-event A (
⋂
(?T ′∪ {B})) using assms(1) mutual-indep-event-set-defD

tne2 finT
by (meson Un-empty assms(2) finite-subset)

moreover have indep-event A (
⋂

?T ′)
using assms(1) mutual-indep-event-set-defD finT finite-subset tss2 tne2 by

auto
moreover have

⋂
(?T ′ ∪ {B}) = B ∩ (

⋂
?T ′) by auto

moreover have B ∈ events using assms(3) assms(1) mutual-indep-setD3 by
auto

ultimately have indep-event A ((space M − B) ∩ (
⋂

?T ′)) using in-
dep-event-compl-inter by auto

then show ?thesis
by (metis Inter-insert True insert-Diff)

next
case False
then have T ⊆ S using jss by auto
then show ?thesis using assms(1) mutual-indep-event-set-defD finT tne by

auto
qed

qed
qed

lemma mutual-indep-events-set-update-compl:
assumes mutual-indep-set X E
assumes E = A ∪ B
assumes A ∩ B = {}
assumes finite E
shows mutual-indep-set X (((−) (space M) ‘ A) ∪ B)

using assms(2) assms(3) proof (induct card A arbitrary: A B)
case 0
then show ?case using assms(1)

using assms(4) by auto
next

case (Suc x)
then obtain a A ′ where aeq: A = insert a A ′ and anotin: a /∈ A ′

by (metis card-Suc-eq-finite)
then have xcard: card A ′ = x

using Suc(2) Suc(3) assms(4) by auto
let ?B ′ = B ∪ {a}
have E = A ′ ∪ ?B ′ using aeq Suc.prems by auto
moreover have A ′ ∩ ?B ′ = {} using anotin Suc.prems(2) aeq by auto
ultimately have ies: mutual-indep-set X ((−) (space M) ‘ A ′ ∪ ?B ′)

using Suc.hyps(1)[of A ′ ?B ′] xcard by auto

56

then have a ∈ A ∪ B using aeq by auto
then show ?case
proof (cases (A ∪ B) − {a} = {})

case True
then have A = {a} B = {} using Suc.prems aeq by auto
moreover have indep-event X a using mutual-indep-singleton-event ies by

auto
ultimately show ?thesis using mutual-indep-set-singleton indep-event-one-compl

by simp
next

case False
let ?c = (−) (space M)
have un: ?c ‘ A ∪ B = ?c ‘ A ′ ∪ ({?c a}) ∪ (?B ′ − {a})

using Suc(4) aeq by force
moreover have ?B ′ − {a} ⊆ ?B ′ by auto
moreover have ?B ′ − {a} ⊆ ?c ‘ A ′ ∪ {?c a} ∪ (?B ′) by auto
moreover have ?c ‘ A ′ ∪ {?c a} ⊆ ?c ‘ A ′ ∪ {?c a} ∪ (?B ′) by auto
ultimately have ss: ?c ‘ A ∪ B ⊆ {?c a} ∪ (?c ‘ A ′ ∪ ?B ′)

using Un-least by auto
have a ∈ (−) (space M) ‘ A ′ ∪ ?B ′ using aeq by auto
then have ie: mutual-indep-set X ({?c a} ∪ (?c ‘ A ′ ∪ ?B ′))

using mutual-indep-set-one-compl[of X ?c ‘ A ′ ∪ ?B ′ a] ies ‹E = A ′ ∪ (B ∪
{a})› assms(4) by blast

then show ?thesis using mutual-indep-subset ss by auto
qed

qed

lemma mutual-indep-events-compl:
assumes finite S
assumes mutual-indep-set A S
shows mutual-indep-set A ((λ s . space M − s) ‘ S)
using mutual-indep-events-set-update-compl[of A S S {}] assms by auto

lemma mutual-indep-set-all:
assumes A ⊆ events
assumes

∧
Ai. Ai ∈ A =⇒ (mutual-indep-set Ai (A − {Ai}))

shows indep-events-set A
proof (intro indep-events-setI)

show A ⊆ events
using assms(1) by auto

next
fix J assume ss: J ⊆ A and fin: finite J and ne: J 6= {}
from fin ne ss show prob (

⋂
J) = prod prob J

proof (induct J rule: finite-ne-induct)
case (singleton x)
then show ?case by simp

next
case (insert x F)
then have mutual-indep-set x (A − {x}) using assms(2) by simp

57

moreover have F ⊆ (A − {x}) using insert.prems insert.hyps by auto
ultimately have prob (x ∩ (

⋂
F)) = prob x ∗ prob (

⋂
F)

by (simp add: local.insert(2) mutual-indep-setD)
then show ?case using insert.hyps insert.prems by simp

qed
qed

Prefered version using indexed notation
definition mutual-indep-events:: ′a set ⇒ (nat ⇒ ′a set) ⇒ nat set ⇒ bool

where mutual-indep-events A F I ←→ A ∈ events ∧ (F ‘ I ⊆ events) ∧ (∀ J ⊆
I . J 6= {} −→ prob (A ∩ (

⋂
j ∈ J . F j)) = prob A ∗ prob (

⋂
j ∈ J . F j))

lemma mutual-indep-eventsI [intro]: A ∈ events =⇒ (F ‘ I ⊆ events) =⇒ (
∧

J . J
⊆ I =⇒ J 6= {} =⇒

prob (A ∩ (
⋂

j ∈ J . F j)) = prob A ∗ prob (
⋂

j ∈ J . F j)) =⇒ mu-
tual-indep-events A F I

using mutual-indep-events-def by simp

lemma mutual-indep-eventsD[dest]: mutual-indep-events A F I =⇒ J ⊆ I =⇒ J
6= {} =⇒ prob (A ∩ (

⋂
j ∈ J . F j)) = prob A ∗ prob (

⋂
j ∈ J . F j)

using mutual-indep-events-def by simp

lemma mutual-indep-eventsD2[dest]: mutual-indep-events A F I =⇒ A ∈ events
using mutual-indep-events-def by simp

lemma mutual-indep-eventsD3[dest]: mutual-indep-events A F I =⇒ F ‘ I ⊆ events
using mutual-indep-events-def by simp

lemma mutual-indep-ev-subset: mutual-indep-events A F I =⇒ J ⊆ I =⇒ mu-
tual-indep-events A F J

using mutual-indep-events-def by (meson image-mono subset-trans)

lemma mutual-indep-event-defD:
assumes mutual-indep-events A F I
assumes finite J
assumes J ⊆ I
assumes J 6= {}
shows indep-event A (

⋂
j ∈ J . F j)

proof (intro indep-eventI)
show A ∈ events using mutual-indep-setD2 assms(1) by auto
show prob (A ∩

⋂
(F ‘ J)) = prob A ∗ prob (

⋂
(F ‘ J))

using assms(1) mutual-indep-eventsD assms(3) assms(4) by simp
have finite (F ‘ J) using finite-subset assms(2) by simp
then show (

⋂
j ∈ J . F j) ∈ events

using Inter-event-ss[of F ‘ J] assms mutual-indep-eventsD3 by blast
qed

58

lemma mutual-ev-indep-event-defI : A ∈ events =⇒ F ‘ I ⊆ events =⇒ (
∧

J . J
⊆ I =⇒ J 6= {} =⇒

indep-event A (
⋂
(F‘ J))) =⇒ mutual-indep-events A F I

using indep-eventD mutual-indep-events-def [of A F I] by auto

lemma mutual-indep-ev-singleton-event:
assumes mutual-indep-events A F I
assumes B ∈ F ‘ I
showsindep-event A B

proof −
obtain J where beq: B = F J and J ∈ I using assms(2) by blast
then have {J} ⊆ I and finite {J} and {J} 6= {} by auto
moreover have B =

⋂
(F ‘ {J}) using beq by simp

ultimately show ?thesis using mutual-indep-event-defD assms(1)
by meson

qed

lemma mutual-indep-ev-singleton-event2:
assumes mutual-indep-events A F I
assumes i ∈ I
showsindep-event A (F i)
using mutual-indep-event-defD[of A F I {i}] assms by auto

lemma mutual-indep-iff :
shows mutual-indep-events A F I ←→ mutual-indep-set A (F ‘ I)

proof (intro iffI mutual-indep-setI mutual-indep-eventsI)
show mutual-indep-events A F I =⇒ A ∈ events using mutual-indep-eventsD2

by simp
show mutual-indep-set A (F ‘ I) =⇒ A ∈ events using mutual-indep-setD2 by

simp
show mutual-indep-events A F I =⇒ F ‘ I ⊆ events using mutual-indep-eventsD3

by simp
show mutual-indep-set A (F ‘ I) =⇒ F ‘ I ⊆ events using mutual-indep-setD3

by simp
show

∧
T . mutual-indep-events A F I =⇒ T ⊆ F ‘ I =⇒ T 6= {} =⇒ prob (A

∩
⋂

T) = prob A ∗ prob (
⋂

T)
using mutual-indep-eventsD by (metis empty-is-image subset-imageE)

show
∧

J . mutual-indep-set A (F ‘ I) =⇒ J ⊆ I =⇒ J 6= {} =⇒ prob (A ∩
⋂

(F ‘ J)) = prob A ∗ prob (
⋂

(F ‘ J))
using mutual-indep-setD by (simp add: image-mono)

qed

lemma mutual-indep-ev-cond:
assumes A ∈ events and F ‘ J ⊆ events and finite J
and mutual-indep-events A F I and J ⊆ I and J 6= {} and prob (

⋂
(F ‘J)) 6= 0

shows P(A |(
⋂
(F ‘ J))) = prob A

proof −
have

⋂
(F ‘ J) ∈ events using assms

by (simp add: Inter-event-ss)

59

then have P(A | (
⋂

(F ‘ J))) = prob ((
⋂

(F ‘ J)) ∩ A)/prob(
⋂
(F ‘ J))

using cond-prob-ev-def assms(1) by blast
also have ... = prob (A ∩ (

⋂
(F ‘ J)))/prob(

⋂
(F ‘ J))

by (simp add: inf-commute)
also have ... = prob A ∗ prob (

⋂
(F ‘ J))/prob(

⋂
(F ‘ J))

using assms mutual-indep-eventsD by auto
finally show ?thesis using assms(7) by simp

qed

lemma mutual-indep-ev-cond-full:
assumes A ∈ events and F ‘ I ⊆ events and finite I
and mutual-indep-events A F I and I 6= {} and prob (

⋂
(F ‘ I)) 6= 0

shows P(A |(
⋂
(F ‘I))) = prob A

using mutual-indep-ev-cond[of A F I I] assms by auto

lemma mutual-indep-ev-cond-single:
assumes A ∈ events and B ∈ events
and mutual-indep-events A F I and B ∈ F ‘ I and prob B 6= 0

shows P(A |B) = prob A
proof −

obtain i where B = F i and i ∈ I using assms by blast
then show ?thesis using mutual-indep-ev-cond[of A F {i} I] assms by auto

qed

lemma mutual-indep-ev-empty: A ∈ events =⇒ mutual-indep-events A F {}
using mutual-indep-eventsI by auto

lemma not-mutual-indep-ev-itself :
assumes prob A > 0 and prob A < 1 and A = F i
shows ¬ mutual-indep-events A F {i}

proof (rule ccontr)
assume ¬ ¬ mutual-indep-events A F {i}
then have mutual-indep-events A F {i}

by simp
then have

∧
J . J ⊆ {i} =⇒ J 6= {} =⇒ prob (A ∩ (

⋂
(F ‘ J))) = prob A ∗

prob (
⋂
(F ‘ J))

using mutual-indep-eventsD by simp
then have eq: prob (A ∩ (

⋂
(F ‘{i}))) = prob A ∗ prob (

⋂
(F ‘ {i}))

by blast
have prob (A ∩ (

⋂
(F ‘{i}))) = prob A using assms(3) by simp

moreover have prob A ∗ (prob (
⋂
{A})) = (prob A)^2

by (simp add: power2-eq-square)
ultimately show False using eq assms by auto

qed

lemma is-mutual-indep-ev-itself :
assumes A ∈ events and A = F i
assumes prob A = 0 ∨ prob A = 1
shows mutual-indep-events A F {i}

60

proof (intro mutual-indep-eventsI)
show A ∈ events F ‘ {i} ⊆ events using assms(1) assms(2) by auto
fix J assume J ⊆ {i} and J 6= {}
then have teq: J = {i} by auto
have prob (A ∩ (

⋂
(F ‘{i}))) = prob A using assms(2) by simp

moreover have prob A ∗ (prob (
⋂

(F ‘{i}))) = (prob A)^2
using assms(2) by (simp add: power2-eq-square)

ultimately show prob (A ∩
⋂

(F ‘ J)) = prob A ∗ prob (
⋂

(F ‘ J)) using teq
assms by auto
qed

lemma mutual-indep-ev-singleton:
assumes indep-event A (F i)
shows mutual-indep-events A F {i}
using indep-eventD-ev1 indep-eventD-ev2 assms
by (intro mutual-ev-indep-event-defI) (simp-all add: subset-singleton-iff)

lemma mutual-indep-ev-one-compl:
assumes mutual-indep-events A F I
assumes finite I
assumes i ∈ I
assumes space M − F i = F j
shows mutual-indep-events A F ({j} ∪ I)

proof (intro mutual-ev-indep-event-defI)
show A ∈ events using assms(1) mutual-indep-setD2 by auto

next
show F ‘ ({j} ∪ I) ⊆ events

using assms(1) assms(2) mutual-indep-eventsD3 assms(3) assms(4)
by (metis image-insert image-subset-iff insert-is-Un insert-subset sets.compl-sets)

next
fix J assume jss: J ⊆ {j} ∪ I
assume tne: J 6= {}
let ?J ′ = J − {j}
show indep-event A (

⋂
(F ‘ J))

proof (cases ?J ′ = {})
case True
then have J = {j} using tne by blast
moreover have indep-event A (F i)

using assms(1) assms mutual-indep-ev-singleton-event2 by simp
ultimately show ?thesis using indep-event-one-compl assms(4) by fastforce

next
case tne2: False
have finT : finite J using jss assms(2) finite-subset by fast
have tss2: ?J ′ ⊆ I using jss assms(2) by auto
show ?thesis proof (cases j ∈ J)

case True
have ?J ′ ∪ {i} ⊆ I using assms(3) tss2 by auto
then have indep-event A (

⋂
(F ‘ ?J ′ ∪ { F i}))

61

using assms(1) mutual-indep-event-defD tne2 finT assms(2) finite-subset
by (metis Diff-cancel Un-Diff-cancel Un-absorb Un-insert-right image-insert)

moreover have indep-event A (
⋂

(F ‘ ?J ′))
using assms(1) mutual-indep-event-defD finT finite-subset tss2 tne2 by auto

moreover have (
⋂
(F ‘ ?J ′ ∪ { F i})) = F i ∩ (

⋂
(F ‘ ?J ′)) by auto

moreover have F i ∈ events using assms(3) assms(1) mutual-indep-eventsD3
by simp

ultimately have indep-event A (F j ∩ (
⋂
(F ‘ ?J ′)))

using indep-event-compl-inter [of A
⋂
(F ‘ ?J ′) F i] assms(4) by auto

then show ?thesis using Inter-insert True insert-Diff by (metis image-insert)

next
case False
then have J ⊆ I using jss by auto
then show ?thesis using assms(1) mutual-indep-event-defD finT tne by auto

qed
qed

qed

lemma mutual-indep-events-update-compl:
assumes mutual-indep-events X F S
assumes S = A ∪ B
assumes A ∩ B = {}
assumes finite S
assumes bij-betw G A A ′

assumes
∧

i. i ∈ A =⇒ F (G i) = space M − F i
shows mutual-indep-events X F (A ′ ∪ B)

using assms(2) assms(3) assms(6) assms(5) proof (induct card A arbitrary: A B
A ′)

case 0
then have aempty: A = {} using finite-subset assms(4) by simp
then have A ′= {} using 0.prems(4) by (metis all-not-in-conv bij-betwE bij-betw-inv)
then show ?case using assms(1) using 0.prems(1) aempty by simp

next
case (Suc x)
then obtain a C where aeq: C = A − {a} and ain: a ∈ A

by fastforce
then have xcard: card C = x

using Suc(2) Suc(3) assms(4) by auto
let ?C ′ = A ′ − {G a}
have compl: (

∧
i. i ∈ C =⇒ F (G i) = space M − F i) using Suc.prems aeq

by simp
have bb: bij-betw G C ?C ′ using Suc.prems(4) aeq bij-betw-remove[of G A A ′ a]

ain by simp
let ?B ′ = B ∪ {a}
have S = C ∪ ?B ′ using aeq Suc.prems ain by auto
moreover have C ∩ ?B ′ = {} using ain Suc.prems(2) aeq by auto
ultimately have ies: mutual-indep-events X F (?C ′ ∪ ?B ′)

62

using Suc.hyps(1)[of C ?B ′] xcard compl bb by auto
then have a ∈ A ∪ B using ain by auto
then show ?case
proof (cases (A ∪ B) − {a} = {})

case True
then have aeq: A = {a} and beq: B = {} using Suc.prems ain by auto

then have A ′= {G a} using aeq Suc.prems ain aeq bb bij-betwE bij-betw-empty1
insert-Diff

by (metis Un-Int-eq(4) Un-commute ‹C ∩ (B ∪ {a}) = {}› ‹S = C ∪ (B ∪
{a})›)

moreover have F (G a) = space M − (F a) using Suc.prems ain by auto
moreover have indep-event X (F a) using mutual-indep-ev-singleton-event ies

by auto
ultimately show ?thesis using mutual-indep-ev-singleton indep-event-one-compl

beq by auto
next

case False
have un: A ′ ∪ B = ?C ′ ∪ {G a} ∪ (?B ′ − {a}) using Suc.prems aeq

by (metis Diff-insert-absorb Un-empty-right Un-insert-right ain bij-betwE
disjoint-iff-not-equal insert-Diff)

moreover have ?B ′ − {a} ⊆ ?B ′ by auto
moreover have ?B ′ − {a} ⊆ ?C ′ ∪ {G a} ∪ (?B ′) by auto
moreover have ?C ′ ∪ {G a} ⊆ ?C ′ ∪ {G a} ∪ (?B ′) by auto
ultimately have ss: A ′ ∪ B ⊆ {G a} ∪ (?C ′ ∪ ?B ′)

using Un-least by auto
have a ∈ ?C ′ ∪ ?B ′ using aeq by auto
then have ie: mutual-indep-events X F ({G a} ∪ (?C ′ ∪ ?B ′))
using mutual-indep-ev-one-compl[of X F (?C ′∪ ?B ′) a G a] using Suc.prems(3)
by (metis ‹S = C ∪ (B ∪ {a})› ain assms(4) bb bij-betw-finite ies infinite-Un)

then show ?thesis using mutual-indep-ev-subset ss by auto
qed

qed

lemma mutual-indep-ev-events-compl:
assumes finite S
assumes mutual-indep-events A F S
assumes bij-betw G S S ′

assumes
∧

i. i ∈ S =⇒ F (G i) = space M − F i
shows mutual-indep-events A F S ′

using mutual-indep-events-update-compl[of A F S S {}] assms by auto

Important lemma on relation between independence and mutual inde-
pendence of a set
lemma mutual-indep-ev-set-all:

assumes F ‘ I ⊆ events
assumes

∧
i. i ∈ I =⇒ (mutual-indep-events (F i) F (I − {i}))

shows indep-events F I
proof (intro indep-eventsI)

63

show
∧

i. i ∈ I =⇒ F i ∈ events
using assms(1) by auto

next
fix J assume ss: J ⊆ I and fin: finite J and ne: J 6= {}
from fin ne ss show prob (

⋂
(F ‘ J)) = (

∏
i∈J . prob (F i))

proof (induct J rule: finite-ne-induct)
case (singleton x)
then show ?case by simp

next
case (insert x X)
then have mutual-indep-events (F x) F (I − {x}) using assms(2) by simp
moreover have X ⊆ (I − {x}) using insert.prems insert.hyps by auto
ultimately have prob (F x ∩ (

⋂
(F ‘X))) = prob (F x) ∗ prob (

⋂
(F ‘ X))

by (simp add: local.insert(2) mutual-indep-eventsD)
then show ?case using insert.hyps insert.prems by simp

qed
qed

end
end

6 The Basic Probabilistic Method Framework
This theory includes all aspects of step (3) and (4) of the basic method
framework, which are purely probabilistic
theory Basic-Method imports Indep-Events
begin

6.1 More Set and Multiset lemmas
lemma card-size-set-mset: card (set-mset A) ≤ size A

using size-multiset-overloaded-eq
by (metis card-eq-sum count-greater-eq-one-iff sum-mono)

lemma Union-exists: {a ∈ A . ∃ b ∈ B . P a b} = (
⋃

b ∈ B . {a ∈ A . P a b})
by blast

lemma Inter-forall: B 6= {} =⇒ {a ∈ A . ∀ b ∈ B . P a b} = (
⋂

b ∈ B . {a ∈ A
. P a b})

by auto

lemma function-map-multi-filter-size:
assumes image-mset F (mset-set A) = B and finite A
shows card {a ∈ A . P (F a)} = size {# b ∈# B . P b #}

using assms(2) assms(1) proof (induct A arbitrary: B rule: finite-induct)
case empty
then show ?case by simp

next

64

case (insert x C)
then have beq: B= image-mset F (mset-set C) + {#F x#} by auto
then show ?case proof (cases P (F x))

case True
then have filter-mset P B = filter-mset P (image-mset F (mset-set C)) + {#F

x#}
by (simp add: True beq)

then have s: size (filter-mset P B) = size (filter-mset P (image-mset F (mset-set
C))) + 1

using size-single size-union by auto
have {a ∈ insert x C . P (F a)} = insert x {a ∈ C . P (F a)} using True by

auto
moreover have x /∈ {a ∈ C . P (F a)} using insert.hyps(2) by simp
ultimately have card {a ∈ insert x C . P (F a)} = card {a ∈ C . P (F a)} +

1
using card-insert-disjoint insert.hyps(1) by auto

then show ?thesis using s insert.hyps(3) by simp
next

case False
then have filter-mset P B = filter-mset P (image-mset F (mset-set C)) using

beq by simp
moreover have {a ∈ insert x C . P (F a)} = {a ∈ C . P (F a)} using False

by auto
ultimately show ?thesis using insert.hyps(3) by simp

qed
qed

lemma bij-mset-obtain-set-elem:
assumes image-mset F (mset-set A) = B
assumes b ∈# B
obtains a where a ∈ A and F a = b
using assms set-image-mset
by (metis finite-set-mset-mset-set image-iff mem-simps(2) mset-set.infinite set-mset-empty)

lemma bij-mset-obtain-mset-elem:
assumes finite A
assumes image-mset F (mset-set A) = B
assumes a ∈ A
obtains b where b ∈# B and F a = b
using assms by fastforce

lemma prod-fn-le1:
fixes f :: ′c ⇒ (′d :: {comm-monoid-mult, linordered-semidom})
assumes finite A
assumes A 6= {}
assumes

∧
y. y ∈ A =⇒ f y ≥ 0 ∧ f y < 1

shows (
∏

x∈ A. f x) < 1
using assms(1) assms(2) assms(3) proof (induct A rule: finite-ne-induct)

65

case (singleton x)
then show ?case by auto

next
case (insert x F)
then show ?case
proof (cases x ∈ F)

case True
then show ?thesis using insert.hyps by auto

next
case False
then have prod f (insert x F) = f x ∗ prod f F by (simp add: local.insert(1))
moreover have prod f F < 1 using insert.hyps insert.prems by auto
moreover have f x < 1 f x ≥ 0 using insert.prems by auto
ultimately show ?thesis

by (metis basic-trans-rules(20) basic-trans-rules(23) more-arith-simps(6)
mult-left-less-imp-less verit-comp-simplify1(3))

qed
qed

context prob-space
begin

6.2 Existence Lemmas
lemma prob-lt-one-obtain:

assumes {e ∈ space M . Q e} ∈ events
assumes prob {e ∈ space M . Q e} < 1
obtains e where e ∈ space M and ¬ Q e

proof −
have sin: {e ∈ space M . ¬ Q e} ∈ events using assms(1)

using sets.sets-Collect-neg by blast
have prob {e ∈ space M . ¬ Q e} = 1 − prob {e ∈ space M . Q e} using prob-neg

assms by auto
then have prob {e∈ space M . ¬ Q e} > 0 using assms(2) by auto
then show ?thesis using that

by (smt (verit, best) empty-Collect-eq measure-empty)
qed

lemma prob-gt-zero-obtain:
assumes {e ∈ space M . Q e} ∈ events
assumes prob {e ∈ space M . Q e} > 0
obtains e where e ∈ space M and Q e
using assms by (smt (verit) empty-Collect-eq inf .strict-order-iff measure-empty)

lemma inter-gt0-event:
assumes F ‘ I ⊆ events
assumes prob (

⋂
i ∈ I . (space M − (F i))) > 0

shows (
⋂

i ∈ I . (space M − (F i))) ∈ events and (
⋂

i ∈ I . (space M − (F
i))) 6= {}

66

using assms using measure-notin-sets by (smt (verit), fastforce)

lemma obtain-intersection:
assumes F ‘ I ⊆ events
assumes prob (

⋂
i ∈ I . (space M − (F i)))> 0

obtains e where e ∈ space M and
∧

i. i ∈ I =⇒ e /∈ F i
proof −

have ine: (
⋂

i ∈ I . (space M − (F i))) 6= {} using inter-gt0-event[of F I]
assms by fast

then obtain e where
∧

i. i ∈ I =⇒ e ∈ space M − F i by blast
then show ?thesis

by (metis Diff-iff ex-in-conv subprob-not-empty that)
qed

lemma obtain-intersection-prop:
assumes F ‘ I ⊆ events
assumes

∧
i. i ∈ I =⇒ F i = {e ∈ space M . P e i}

assumes prob (
⋂

i ∈ I . (space M − (F i)))> 0
obtains e where e ∈ space M and

∧
i. i ∈ I =⇒ ¬ P e i

proof −
obtain e where ein: e ∈ space M and

∧
i. i ∈ I =⇒ e /∈ F i

using obtain-intersection assms(1) assms(3) by auto
then have

∧
i. i ∈ I =⇒ e ∈ {e ∈ space M . ¬ P e i} using assms(2) by simp

then show ?thesis using ein that by simp
qed

lemma not-in-big-union:
assumes

∧
i . i ∈ A =⇒ e /∈ i

shows e /∈ (
⋃

A)
using assms by (induct A rule: infinite-finite-induct) auto

lemma not-in-big-union-fn:
assumes

∧
i . i ∈ A =⇒ e /∈ F i

shows e /∈ (
⋃

i ∈ A . F i)
using assms by (induct A rule: infinite-finite-induct) auto

lemma obtain-intersection-union:
assumes F ‘ I ⊆ events
assumes prob (

⋂
i ∈ I . (space M − (F i)))> 0

obtains e where e ∈ space M and e /∈ (
⋃

i ∈ I . F i)
proof −

obtain e where e ∈ space M and cond:
∧

i. i ∈ I =⇒ e /∈ F i
using obtain-intersection[of F I] assms by blast
then show ?thesis using not-in-big-union-fn[of I e F] that by blast

qed

6.3 Basic Bounds
Lemmas on the Complete Independence and Union bound

67

lemma complete-indep-bound1:
assumes finite A
assumes A 6= {}
assumes A ⊆ events
assumes indep-events-set A
assumes

∧
a . a ∈ A =⇒ prob a < 1

shows prob (space M − (
⋂

A)) > 0
proof −

have
⋂

A ∈ events using assms(1) assms(2) assms(3) Inter-event-ss by simp
then have prob (space M − (

⋂
A)) = 1 − prob (

⋂
A)

by (simp add: prob-compl)
then have 1: prob (space M − (

⋂
A)) = 1 − prod prob A

using indep-events-set-prod-all assms by simp
moreover have prod prob A < 1 using assms(5) assms(1) assms(2) assms(4)

indep-events-set-events
by (metis Inf-lower ‹prob (space M −

⋂
A) = 1 − prob (

⋂
A)›

basic-trans-rules(21) 1 diff-gt-0-iff-gt finite-has-maximal finite-measure-mono
)

ultimately show ?thesis by simp
qed

lemma complete-indep-bound1-index:
assumes finite A
assumes A 6= {}
assumes F ‘ A ⊆ events
assumes indep-events F A
assumes

∧
a . a ∈ A =⇒ prob (F a) < 1

shows prob (space M − (
⋂
(F‘ A))) > 0

proof −
have pos:

∧
a. a ∈ A =⇒ prob (F a) ≥ 0 using assms(3) by auto

have
⋂
(F ‘ A) ∈ events using assms(1) assms(2) assms(3) Inter-event-ss by

simp
then have eq: prob (space M − (

⋂
(F ‘ A))) = 1 − prob (

⋂
(F ‘ A))

by (simp add: prob-compl)
then have prob (space M − (

⋂
(F ‘ A))) = 1 − (

∏
i∈A. prob (F i))

using indep-events-prod-all assms by simp
moreover have (

∏
i∈A. prob (F i)) < 1

using assms(5) eq assms(2) assms(1) prod-fn-le1[of A λ i. prob (F i)] by auto
ultimately show ?thesis by simp

qed

lemma complete-indep-bound2:
assumes finite A
assumes A ⊆ events
assumes indep-events-set A
assumes

∧
a . a ∈ A =⇒ prob a < 1

shows prob (space M − (
⋃

A)) > 0
proof (cases A = {})

case True

68

then show ?thesis by (simp add: True prob-space)
next

case False
then have prob (space M −

⋃
A) = prob (

⋂
a ∈ A . (space M − a)) by simp

moreover have indep-events-set ((λ a. space M − a) ‘ A)
using assms(1) assms(3) indep-events-set-compl by auto

moreover have finite ((λ a. space M − a) ‘ A) using assms(1) by auto
moreover have ((λ a. space M − a) ‘ A) 6= {} using False by auto
ultimately have eq: prob (space M −

⋃
A) = prod prob ((λ a. space M − a) ‘

A)
using indep-events-set-prod-all[of ((λ a. space M − a) ‘ A)] by linarith

have
∧

a. a ∈ ((λ a. space M − a) ‘ A) =⇒ prob a > 0
proof −

fix a assume a ∈ ((λ a. space M − a) ‘ A)
then obtain a ′ where a = space M − a ′ and ain: a ′ ∈ A by blast
then have prob a = 1 − prob a ′ using prob-compl assms(2) by auto
moreover have prob a ′ < 1 using assms(4) ain by simp
ultimately show prob a > 0 by simp

qed
then have prod prob ((λ a. space M − a) ‘ A) > 0 by (meson prod-pos)
then show ?thesis using eq by simp

qed

lemma complete-indep-bound2-index:
assumes finite A
assumes F ‘ A ⊆ events
assumes indep-events F A
assumes

∧
a . a ∈ A =⇒ prob (F a) < 1

shows prob (space M − (
⋃
(F ‘ A))) > 0

proof (cases A = {})
case True
then show ?thesis by (simp add: True prob-space)

next
case False
then have prob (space M −

⋃
(F ‘A)) = prob (

⋂
a ∈ A . (space M − F a)) by

simp
moreover have indep-events (λ a. space M − F a) A

using assms(1) assms(3) indep-events-compl by auto
ultimately have eq: prob (space M −

⋃
(F ‘ A)) = (

∏
i∈A. prob ((λ a. space

M − F a) i))
using indep-events-prod-all[of (λ a. space M − F a) A] assms(1) False by

linarith
have

∧
a. a ∈ A =⇒ prob (space M − F a) > 0

using prob-compl assms(2) assms(4) by auto
then have (

∏
i∈A. prob ((λ a. space M − F a) i)) > 0 by (meson prod-pos)

then show ?thesis using eq by simp
qed

lemma complete-indep-bound3:

69

assumes finite A
assumes A 6= {}
assumes F ‘ A ⊆ events
assumes indep-events F A
assumes

∧
a . a ∈ A =⇒ prob (F a) < 1

shows prob (
⋂

a ∈ A. space M − F a) > 0
using complete-indep-bound2-index compl-Union-fn assms by auto

Combining complete independence with existence step
lemma complete-indep-bound-obtain:

assumes finite A
assumes A ⊆ events
assumes indep-events-set A
assumes

∧
a . a ∈ A =⇒ prob a < 1

obtains e where e ∈ space M and e /∈
⋃

A
proof −

have prob (space M − (
⋃

A)) > 0 using complete-indep-bound2 assms by auto
then show ?thesis

by (metis Diff-eq-empty-iff less-numeral-extra(3) measure-empty subsetI that)
qed

lemma Union-bound-events:
assumes finite A
assumes A ⊆ events
shows prob (

⋃
A) ≤ (

∑
a ∈ A. prob a)

using finite-measure-subadditive-finite[of A λ x. x] assms by auto

lemma Union-bound-events-fun:
assumes finite A
assumes f ‘ A ⊆ events
shows prob (

⋃
(f ‘ A)) ≤ (

∑
a ∈ A. prob (f a))

by (simp add: assms(1) assms(2) finite-measure-subadditive-finite)

lemma Union-bound-avoid:
assumes finite A
assumes (

∑
a ∈ A. prob a) < 1

assumes A ⊆ events
shows prob (space M −

⋃
A) > 0

proof −
have

⋃
A ∈ events

by (simp add: assms(1) assms(3) sets.finite-Union)
then have prob (space M −

⋃
A) = 1 − prob (

⋃
A)

using prob-compl by simp
moreover have prob (

⋃
A) < 1 using assms Union-bound-events

by fastforce
ultimately show ?thesis by simp

qed

70

lemma Union-bound-avoid-fun:
assumes finite A
assumes (

∑
a ∈ A. prob (f a)) < 1

assumes f‘A ⊆ events
shows prob (space M −

⋃
(f ‘ A)) > 0

proof −
have

⋃
(f ‘ A) ∈ events

by (simp add: assms(1) assms(3) sets.finite-Union)
then have prob (space M −

⋃
(f ‘ A)) = 1 − prob (

⋃
(f ‘ A))

using prob-compl by simp
moreover have prob (

⋃
(f ‘ A)) < 1 using assms Union-bound-events-fun

by (smt (verit, ccfv-SIG) sum.cong)
ultimately show ?thesis by simp

qed

Combining union bound with existance step
lemma Union-bound-obtain:

assumes finite A
assumes (

∑
a ∈ A. prob a) < 1

assumes A ⊆ events
obtains e where e ∈ space M and e /∈

⋃
A

proof −
have prob (space M −

⋃
A) > 0 using Union-bound-avoid assms by simp

then show ?thesis using that prob-gt-zero-obtain
by (metis Diff-eq-empty-iff less-numeral-extra(3) measure-empty subsetI)

qed

lemma Union-bound-obtain-fun:
assumes finite A
assumes (

∑
a ∈ A. prob (f a)) < 1

assumes f ‘ A ⊆ events
obtains e where e ∈ space M and e /∈

⋃
(f‘ A)

proof −
have prob (space M −

⋃
(f‘ A)) > 0 using Union-bound-avoid-fun assms by

simp
then show ?thesis using that prob-gt-zero-obtain

by (metis Diff-eq-empty-iff less-numeral-extra(3) measure-empty subsetI)
qed

lemma Union-bound-obtain-compl:
assumes finite A
assumes (

∑
a ∈ A. prob a) < 1

assumes A ⊆ events
obtains e where e ∈ (space M −

⋃
A)

proof −
have prob (space M −

⋃
A) > 0 using Union-bound-avoid assms by simp

then show ?thesis using that prob-gt-zero-obtain
by (metis all-not-in-conv measure-empty verit-comp-simplify(2) verit-comp-simplify1(3))

qed

71

lemma Union-bound-obtain-compl-fun:
assumes finite A
assumes (

∑
a ∈ A. prob (f a)) < 1

assumes f ‘ A ⊆ events
obtains e where e ∈ (space M −

⋃
(f‘ A))

proof −
obtain e where e ∈ space M and e /∈

⋃
(f‘ A)

using assms Union-bound-obtain-fun by blast
then have e ∈ space M −

⋃
(f ‘ A) by simp

then show ?thesis by fact
qed

end

end

7 Lovasz Local Lemma
theory Lovasz-Local-Lemma

imports
Basic-Method
HOL−Real-Asymp.Real-Asymp
Indep-Events
Digraph-Extensions

begin

7.1 Random Lemmas on Product Operator
lemma prod-constant-ge:

fixes y :: ′b :: {comm-monoid-mult, linordered-semidom}
assumes card A ≤ k
assumes y ≥ 0 and y < 1
shows (

∏
x∈A. y) ≥ y ^ k

using assms power-decreasing by fastforce

lemma (in linordered-idom) prod-mono3:
assumes finite J I ⊆ J

∧
i. i ∈ J =⇒ 0 ≤ f i (

∧
i. i ∈ J =⇒ f i ≤ 1)

shows prod f J ≤ prod f I
proof −

have prod f J ≤ (
∏

i∈J . if i ∈ I then f i else 1)
using assms by (intro prod-mono) auto

also have . . . = prod f I
using ‹finite J › ‹I ⊆ J › by (simp add: prod.If-cases Int-absorb1)

finally show ?thesis .
qed

lemma bij-on-ss-image:
assumes A ⊆ B

72

assumes bij-betw g B B ′

shows g ‘ A ⊆ B ′

using assms by (auto simp add: bij-betw-apply subsetD)

lemma bij-on-ss-proper-image:
assumes A ⊂ B
assumes bij-betw g B B ′

shows g ‘ A ⊂ B ′

by (smt (verit, ccfv-SIG) assms bij-betw-iff-bijections bij-betw-subset leD psubsetD
psubsetI subsetI)

7.2 Dependency Graph Concept
Uses directed graphs. The pair_digraph locale was sufficient as multi-edges
are irrelevant
locale dependency-digraph = pair-digraph G :: nat pair-pre-digraph + prob-space
M :: ′a measure

for G M + fixes F :: nat ⇒ ′a set
assumes vss: F ‘ (pverts G) ⊆ events
assumes mis:

∧
i. i ∈ (pverts G) =⇒ mutual-indep-events (F i) F ((pverts G)

− ({i} ∪ neighborhood i))
begin

lemma dep-graph-indiv-nh-indep:
assumes A ∈ pverts G B ∈ pverts G
assumes B /∈ neighborhood A
assumes A 6= B
assumes prob (F B) 6= 0
shows P((F A) | (F B)) = prob (F A)

proof−
have B /∈ {A} ∪ neighborhood A using assms(3) assms(4) by auto
then have B ∈ (pverts G − ({A} ∪ neighborhood A)) using assms(2) by auto
moreover have mutual-indep-events (F A) F (pverts G − ({A} ∪ neighborhood

A)) using mis assms by auto
ultimately show ?thesis using

assms(5) assms(1) assms(2) vss mutual-indep-ev-cond-single by auto
qed

lemma mis-subset:
assumes i ∈ pverts G
assumes A ⊆ pverts G
shows mutual-indep-events (F i) F (A − ({i} ∪ neighborhood i))

proof (cases A ⊆ ({i} ∪ neighborhood i))
case True
then have A − ({i} ∪ neighborhood i) = {} by auto
then show ?thesis using mutual-indep-ev-empty vss assms(1) by blast

next
case False
then have A − ({i} ∪ neighborhood i) ⊆ pverts G − ({i} ∪ neighborhood i)

73

using assms(2) by auto
then show ?thesis using mutual-indep-ev-subset mis assms(1) by blast

qed

lemma dep-graph-indep-events:
assumes A ⊆ pverts G
assumes

∧
Ai. Ai ∈ A =⇒ out-degree G Ai = 0

shows indep-events F A
proof −

have
∧

Ai. Ai ∈ A =⇒ (mutual-indep-events (F Ai) F (A − {Ai}))
proof −

fix Ai assume ain: Ai ∈ A
then have (neighborhood Ai) = {} using assms(2) neighborhood-empty-iff by

simp
moreover have mutual-indep-events (F Ai) F (A − ({Ai} ∪ neighborhood Ai))

using mis-subset[of Ai A] ain assms(1) by auto
ultimately show mutual-indep-events (F Ai) F (A − {Ai}) by simp

qed
then show ?thesis using mutual-indep-ev-set-all[of F A] vss by auto

qed

end

7.3 Lovasz Local General Lemma
context prob-space
begin

lemma compl-sets-index:
assumes F ‘ A ⊆ events
shows (λ i. space M − F i) ‘ A ⊆ events

proof (intro subsetI)
fix x assume x ∈ (λi. space M − F i) ‘ A
then obtain i where xeq: x = space M − F i and i ∈ A by blast
then have F i ∈ events using assms by auto
thus x ∈ events using sets.compl-sets xeq by simp

qed

lemma lovasz-inductive-base:
assumes dependency-digraph G M F
assumes

∧
Ai . Ai ∈ A =⇒ g Ai ≥ 0 ∧ g Ai < 1

assumes
∧

Ai. Ai ∈ A =⇒ (prob (F Ai) ≤ (g Ai) ∗ (
∏

Aj ∈ pre-digraph.neighborhood
G Ai. (1 − (g Aj))))

assumes Ai ∈ A
assumes pverts G = A
shows prob (F Ai) ≤ g Ai

proof −
have genprod:

∧
S . S ⊆ A =⇒ (

∏
Aj ∈ S . (1 − (g Aj))) ≤ 1 using assms(2)

74

by (smt (verit) prod-le-1 subsetD)
interpret dg: dependency-digraph G M F using assms(1) by simp
have dg.neighborhood Ai ⊆ A using assms(3) dg.neighborhood-wf assms(5) by

simp
then show ?thesis

using genprod assms mult-left-le by (smt (verit))
qed

lemma lovasz-inductive-base-set:
assumes N ⊆ A
assumes

∧
Ai . Ai ∈ A =⇒ g Ai ≥ 0 ∧ g Ai < 1

assumes
∧

Ai. Ai ∈ A =⇒ (prob (F Ai) ≤ (g Ai) ∗ (
∏

Aj ∈ N . (1 − (g Aj))))
assumes Ai ∈ A
shows prob (F Ai) ≤ g Ai

proof −
have genprod:

∧
S . S ⊆ A =⇒ (

∏
Aj ∈ S . (1 − (g Aj))) ≤ 1 using assms(2)

by (smt (verit) prod-le-1 subsetD)
then show ?thesis

using genprod assms mult-left-le by (smt (verit))
qed

lemma split-prob-lt-helper :
assumes dep-graph: dependency-digraph G M F
assumes dep-graph-verts: pverts G = A
assumes fbounds:

∧
i . i ∈ A =⇒ f i ≥ 0 ∧ f i < 1

assumes prob-Ai:
∧

Ai. Ai ∈ A =⇒ prob (F Ai) ≤
(f Ai) ∗ (

∏
Aj ∈ pre-digraph.neighborhood G Ai . (1 − (f Aj)))

assumes aiin: Ai ∈ A
assumes N ⊆ pre-digraph.neighborhood G Ai
assumes ∃ P1 P2. P(F Ai |

⋂
Aj∈S . space M − F Aj) = P1/P2 ∧

P1 ≤ prob (F Ai)∧ P2 ≥ (
∏

Aj ∈ N . (1 − (f Aj)))
shows P(F Ai |

⋂
Aj∈S . space M − F Aj) ≤ f Ai

proof −
interpret dg: dependency-digraph G M F using assms(1) by simp
have lt1:

∧
Aj. Aj ∈ A =⇒ (1 − (f Aj)) ≤ 1

using assms(3) by auto
have gt0:

∧
Aj. Aj ∈ A =⇒ (1 − (f Aj)) > 0 using assms(3) by auto

then have prodgt0:
∧

S ′. S ′ ⊆ A =⇒ (
∏

Aj ∈ S ′ . (1 − f Aj)) > 0
using prod-pos by (metis subsetD)

obtain P1 P2 where peq: P(F Ai |
⋂

Aj∈S . space M − F Aj) = P1/P2 and
P1 ≤ prob (F Ai)
and p2gt: P2 ≥ (

∏
Aj ∈ N . (1 − (f Aj))) using assms(7) by auto

then have P1 ≤ (f Ai) ∗ (
∏

Aj ∈ pre-digraph.neighborhood G Ai . (1 − (f Aj)))

using prob-Ai aiin by fastforce
moreover have P2 ≥ (

∏
Aj ∈ dg.neighborhood Ai . (1 − (f Aj))) using assms(6)

gt0 dg.neighborhood-wf dep-graph-verts subset-iff lt1 dg.neighborhood-finite p2gt
by (smt (verit, ccfv-threshold) prod-mono3)

75

ultimately have P1/P2 ≤ ((f Ai) ∗ (
∏

Aj ∈ dg.neighborhood Ai . (1 − (f
Aj)))/(

∏
Aj ∈ dg.neighborhood Ai . (1 − (f Aj))))

using frac-le[of (f Ai) ∗ (
∏

Aj ∈ dg.neighborhood Ai . (1 − (f Aj))) P1 (
∏

Aj ∈ dg.neighborhood Ai . (1 − (f Aj)))]
prodgt0[of dg.neighborhood Ai] assms(3) dg.neighborhood-wf [of Ai]

by (simp add: assms(2) bounded-measure finite-measure-compl assms(5))
then show ?thesis using prodgt0[of dg.neighborhood Ai] dg.neighborhood-wf [of

Ai] assms(2) peq
by (metis divide-eq-imp rel-simps(70))

qed

lemma lovasz-inequality:
assumes finS : finite S
assumes sevents: F ‘ S ⊆ events
assumes S-subset: S ⊆ A − {Ai}
assumes prob2: prob (

⋂
Aj ∈ S . (space M − (F Aj))) > 0

assumes irange: i ∈ {0..<card S1}
assumes bb: bij-betw g {0..<card S1} S1
assumes s1-def : S1 = (S ∩ N)
assumes s2-def : S2 = S − S1
assumes ne-cond: i > 0 ∨ S2 6= {}
assumes hyps:

∧
B. B ⊂ S =⇒ g i ∈ A =⇒ B ⊆ A − {g i} =⇒ B 6= {} =⇒

0 < prob (
⋂

Aj∈B. space M − F Aj) =⇒ P(F (g i) |
⋂

Aj∈B. space M − F
Aj) ≤ f (g i)

shows P((space M − F (g i)) | (
⋂

((λ i. space M − F i) ‘ g ‘ {0..<i} ∪ ((λ i.
space M − F i) ‘ S2))))
≥ (1 − f (g i))

proof −
let ?c = (λ i. space M − F i)
define S1ss where S1ss = g ‘ {0..<i}
have i /∈ {0..<i} by simp
moreover have {0..<i} ⊆ {0..<card S1} using irange by simp
ultimately have ginotin1: g i /∈ S1ss using bb S1ss-def irange

by (smt (verit, best) bij-betw-iff-bijections image-iff subset-eq)
have ginotin2: g i /∈ S2 unfolding s2-def using irange bb by (simp add:

bij-betwE)
have giS : g i ∈ S using irange bij-betw-imp-surj-on imageI Int-iff s1-def bb

by blast
have {0..<i} ⊂ {0..<card S1} using irange by auto
then have S1ss ⊂ S1 unfolding S1ss-def using irange bb bij-on-ss-proper-image

by meson
then have sss: S1ss ∪ S2 ⊂ S using s1-def s2-def by blast
moreover have xsiin: g i ∈ Ausing irange

using giS S-subset by (metis DiffE in-mono)
moreover have ne: S1ss ∪ S2 6= {} using ne-cond S1ss-def by auto
moreover have S1ss ∪ S2 ⊆ A − {g i} using S-subset sss ginotin1 ginotin2

by auto
moreover have gt02: 0 < prob (

⋂
(?c ‘ (S1ss ∪ S2))) using finS prob2 sevents

prob-inter-ss-lt-index[of S ?c S1ss ∪ S2] ne sss compl-sets-index[of F S] by

76

fastforce
ultimately have ltfAi: P(F (g i) |

⋂
(?c ‘ (S1ss ∪ S2))) ≤ f (g i)

using hyps[of S1ss ∪ S2] by blast
have ?c ‘ (S1ss ∪ S2) ⊆ events using sss ‹S1ss ⊂ S1› compl-subset-in-events

sevents s1-def s2-def
by fastforce

then have
⋂

(?c ‘ (S1ss ∪ S2)) ∈ events using Inter-event-ss sss
by (meson ‹S1ss ∪ S2 6= {}› finite-imageI finite-subset image-is-empty finS

subset-iff-psubset-eq)
moreover have F (g i) ∈ events using xsiin giS sevents by auto
ultimately have P(?c (g i) |

⋂
(?c ‘ (S1ss ∪ S2))) ≥ 1 − f (g i)

using cond-prob-neg[of
⋂

(?c ‘ (S1ss ∪ S2)) F (g i)] gt02 xsiin ltfAi by simp
then show P(?c (g i) | (

⋂
(?c ‘ g ‘ {0..<i} ∪ (?c ‘ S2)))) ≥ (1 − f (g i))

by (simp add: S1ss-def image-Un)
qed

The main helper lemma
lemma lovasz-inductive:

assumes finA: finite A
assumes Aevents: F ‘ A ⊆ events
assumes fbounds:

∧
i . i ∈ A =⇒ f i ≥ 0 ∧ f i < 1

assumes dep-graph: dependency-digraph G M F
assumes dep-graph-verts: pverts G = A
assumes prob-Ai:

∧
Ai. Ai ∈ A =⇒ prob (F Ai) ≤

(f Ai) ∗ (
∏

Aj ∈ pre-digraph.neighborhood G Ai . (1 − (f Aj)))
assumes Ai-in: Ai ∈ A
assumes S-subset: S ⊆ A − {Ai}
assumes S-nempty: S 6= {}
assumes prob2: prob (

⋂
Aj ∈ S . (space M − (F Aj))) > 0

shows P((F Ai) | (
⋂

Aj ∈ S . (space M − (F Aj)))) ≤ f Ai
proof −

let ?c = λ i. space M − F i
have ceq:

∧
A. ?c ‘ A = ((−) (space M)) ‘ (F ‘ A) by auto

interpret dg: dependency-digraph G M F using assms(4) by simp
have finS : finite S using assms finite-subset by (metis finite-Diff)
show P((F Ai) | (

⋂
Aj ∈ S . (space M − (F Aj)))) ≤ f Ai

using finS Ai-in S-subset S-nempty prob2
proof (induct S arbitrary: Ai rule: finite-psubset-induct)

case (psubset S)
define S1 where S1 = (S ∩ dg.neighborhood Ai)
define S2 where S2 = S − S1
have

∧
s . s ∈ S2 =⇒ s ∈ A − ({Ai} ∪ dg.neighborhood Ai)

using S1-def S2-def psubset.prems(2) by blast
then have s2ssmis: S2 ⊆ A − ({Ai} ∪ dg.neighborhood Ai) by auto
have sevents: F ‘ S ⊆ events using assms(2) psubset.prems(2) by auto
then have s1events: F ‘ S1 ⊆ events using S1-def by auto
have finS2: finite S2 and finS1: finite S1 using S2-def S1-def by (simp-all

add: psubset(1))
have mutual-indep-set (F Ai) (F ‘ S2) using dg.mis[of Ai] mutual-indep-ev-subset

77

s2ssmis
psubset.prems(1) dep-graph-verts mutual-indep-iff by auto

then have mis2: mutual-indep-set (F Ai) (?c ‘ S2)
using mutual-indep-events-compl[of F ‘ S2 F Ai] finS2 ceq[of S2] by simp

have scompl-ev: ?c ‘ S ⊆ events
using compl-sets-index sevents by simp

then have s2cev: ?c ‘ S2 ⊆ events using S2-def scompl-ev by blast
have (

⋂
Aj ∈ S . space M − (F Aj)) ⊆ (

⋂
Aj ∈ S2 . space M − (F Aj))

unfolding S2-def using Diff-subset image-mono Inter-anti-mono by blast
then have S2 6= {} =⇒ prob (

⋂
Aj ∈ S2 . space M − (F Aj)) 6= 0 using

psubset.prems(4) s2cev
finS2 Inter-event-ss[of ?c ‘ S2] finite-measure-mono[of

⋂
(?c ‘ S)

⋂
(?c ‘ S2)]

by simp
then have s2prob-eq: S2 6= {} =⇒ P((F Ai) | (

⋂
(?c ‘ S2))) = prob (F Ai)

using assms(2)
mutual-indep-cond-full[of F Ai ?c ‘ S2] psubset.prems(1) s2cev finS2 mis2

by simp
show ?case
proof (cases S1 = {})

case True
then show ?thesis using lovasz-inductive-base[of G F A f Ai] psubset.prems(3)

S2-def
assms(3) assms(4) psubset.prems(1) prob-Ai s2prob-eq dep-graph-verts by

(simp)
next

case s1F : False
then have csgt0: card S1 > 0 using s1F finS1 card-gt-0-iff by blast

obtain g where bb: bij-betw g {0..<card S1} S1 using finS1 ex-bij-betw-nat-finite
by auto

have igt0:
∧

i. i ∈ {0..<card S1} =⇒ 1 − f (g i) ≥ 0
using S1-def psubset.prems(2) bb bij-betw-apply assms(3) by fastforce

have s1ss: S1 ⊆ dg.neighborhood Ai using S1-def by auto
moreover have ∃ P1 P2. P(F Ai |

⋂
Aj∈S . space M − F Aj) = P1/P2 ∧

P1 ≤ prob (F Ai)
∧ P2 ≥ (

∏
Aj ∈ S1 . (1 − (f Aj)))

proof (cases S2 = {})
case True
then have Seq: S1 = S using S1-def S2-def by auto

have inter-eventsS : (
⋂

Aj ∈ S . (space M − (F Aj))) ∈ events using
psubset.prems assms

by (meson measure-notin-sets zero-less-measure-iff)
then have peq: P((F Ai) | (

⋂
Aj ∈ S1 . ?c Aj)) =

prob ((
⋂

Aj ∈ S1 . ?c Aj) ∩ (F Ai))/prob ((
⋂

(?c ‘ S1)))
(is P((F Ai) | (

⋂
Aj ∈ S1 . ?c Aj)) = ?Num/?Den)

using cond-prob-ev-def [of (
⋂

Aj ∈ S1 . (space M − (F Aj))) F Ai]
using Seq psubset.prems(1) assms(2) by blast
have ?Num ≤ prob (F Ai) using finite-measure-mono assms(2) psub-

set.prems(1) by simp
moreover have ?Den ≥ (

∏
Aj ∈ S1 . (1 − (f Aj)))

78

proof −
have pcond: prob (

⋂
(?c ‘ S1)) =

prob (?c (g 0)) ∗ (
∏

i ∈ {1..<card S1} . P(?c (g i) | (
⋂

(?c ‘ g ‘
{0..<i}))))

using prob-cond-inter-index-fn-compl[of S1 F] Seq s1events psubset(1)
s1F bb by auto

have ineq:
∧

i. i ∈ {1..<card S1} =⇒ P(?c (g i) | (
⋂
(?c ‘ g ‘ {0..<i})))

≥ (1 − (f (g i)))
using lovasz-inequality[of S1 F A Ai - S1 g S1 {} f] sevents finS

psubset.prems(2)
psubset.prems(4) bb psubset.hyps(2)[of - g -] Seq by fastforce

have (
∧

i. i ∈ {1..<card S1} =⇒ 1 − f (g i) ≥ 0) using igt0 by simp
then have (

∏
i ∈ {1..<(card S1)} . P(?c (g i) | (

⋂
(?c ‘ g ‘ {0..<i}))))

≥ (
∏

i ∈ {1..<(card S1)} . (1 − (f (g i))))
using ineq prod-mono by (smt(verit, ccfv-threshold))

moreover have prob (?c (g 0)) ≥ (1 − f (g 0))
proof −
have g0in: g 0 ∈ A using bb csgt0 using psubset.prems(2) bij-betwE Seq

by fastforce
then have prob (?c (g 0)) = 1 − prob (F (g 0)) using Aevents by (simp

add: prob-compl)
then show ?thesis using lovasz-inductive-base[of G F A f g 0]

prob-Ai assms(4) dep-graph-verts fbounds g0in by auto
qed

moreover have 0 ≤ (
∏

i = 1..<card S1. 1 − f (g i)) using igt0 by (force
intro: prod-nonneg)

ultimately have prob (
⋂
(?c ‘ S1)) ≥ (1 − (f (g 0))) ∗ (

∏
i ∈ {1..<(card

S1)} . (1 − (f (g i))))
using pcond igt0 mult-mono ′[of (1 − (f (g 0)))] by fastforce
moreover have {0..<card S1} = {0} ∪ {1..<card S1} using csgt0 by

auto
ultimately have prob (

⋂
(?c ‘ S1)) ≥ (

∏
i ∈ {0..<(card S1)} . (1 − (f

(g i)))) by auto
moreover have (

∏
i ∈ {0..<(card S1)} . (1 − (f (g i)))) = (

∏
i ∈ S1 .

(1 − (f (i))))
using prod.reindex-bij-betw bb by simp

ultimately show ?thesis by simp
qed
ultimately show ?thesis using peq Seq by blast

next
case s2F : False
have s2inter :

⋂
(?c ‘ S2) ∈ events

using s2F finS2 s2cev Inter-event-ss[of ?c ‘ S2] by auto
have split: (

⋂
Aj ∈ S . (?c Aj)) = (

⋂
(?c ‘S1)) ∩ (

⋂
(?c ‘ S2))

using S1-def S2-def by auto
then have P(F Ai | (

⋂
Aj ∈ S . (?c Aj))) = P(F Ai | (

⋂
(?c ‘S1)) ∩ (

⋂
(?c ‘ S2))) by simp

moreover have s2n0: prob (
⋂

(?c ‘ S2)) 6= 0 using psubset.prems(4)
S2-def

79

by (metis Int-lower2 split finite-measure-mono measure-le-0-iff s2inter
semiring-norm(137))

moreover have
⋂

(?c ‘ S1) ∈ events
using finS1 S1-def scompl-ev s1F Inter-event-ss[of (?c ‘ S1)] by auto

ultimately have peq: P(F Ai | (
⋂

Aj ∈ S . (?c Aj))) = P(F Ai ∩ (
⋂

(?c
‘S1)) |

⋂
(?c ‘ S2))/
P(

⋂
(?c ‘S1) |

⋂
(?c ‘S2)) (is P(F Ai | (

⋂
Aj ∈ S . (?c Aj))) =

?Num/?Den)
using cond-prob-dual-intersect[of F Ai

⋂
(?c ‘S1)

⋂
(?c ‘S2)] assms(2)

psubset.prems(1) s2inter by fastforce
have ?Num ≤ P(F Ai |

⋂
(?c ‘S2)) using cond-prob-inter-set-lt[of F Ai⋂

(?c ‘S2) ?c ‘ S1]
using s1events finS1 psubset.prems(1) assms(2) s2inter finite-imageI [of

S1 F] by blast
then have ?Num ≤ prob (F Ai) using s2F s2prob-eq by auto
moreover have ?Den ≥ (

∏
Aj ∈ S1 . (1 − (f Aj))) using psubset.hyps

proof −
have prob (

⋂
(?c ‘ S2)) > 0 using s2n0 by (meson zero-less-measure-iff)

then have pcond: P(
⋂

(?c ‘S1) |
⋂

(?c ‘S2)) =
(
∏

i = 0..<card S1 . P(?c (g i) | (
⋂

(?c ‘ g ‘ {0..<i} ∪ (?c ‘ S2)))))
using prob-cond-Inter-index-cond-compl-fn[of S1 ?c ‘ S2 F] s1F finS1

s2cev finS2 s2F
s1events bb by auto

have
∧

i. i ∈ {0..<card S1} =⇒ P(?c (g i) | (
⋂

(?c ‘ g ‘ {0..<i} ∪ (?c
‘ S2)))) ≥ (1 − f (g i))

using lovasz-inequality[of S F A Ai - S1 g dg.neighborhood Ai S2 f] S1-def
S2-def sevents

finS psubset.prems(2) psubset.prems(4) bb psubset.hyps(2)[of - g -]
psubset(1) s2F by meson

then have c1: P(
⋂

(?c ‘S1) |
⋂

(?c ‘S2)) ≥ (
∏

i = 0..<card S1 . (1 − f
(g i)))

using prod-mono igt0 pcond bb by (smt(verit, ccfv-threshold))
then have P(

⋂
(?c ‘S1) |

⋂
(?c ‘S2)) ≥ (

∏
i ∈ {0..<card S1} . (1 − f

(g i))) by blast
moreover have (

∏
i ∈ {0..<card S1} . (1 − f (g i))) = (

∏
x ∈ S1 . (1

− f x)) using bb
using prod.reindex-bij-betw by fastforce

ultimately show ?thesis by simp
qed
ultimately show ?thesis using peq by blast

qed
ultimately show ?thesis by (intro split-prob-lt-helper [of G F A])
(simp-all add: dep-graph dep-graph-verts fbounds psubset.prems(1) prob-Ai)

qed
qed

qed

The main lemma
theorem lovasz-local-general:

80

assumes A 6= {}
assumes F ‘ A ⊆ events
assumes finite A
assumes

∧
Ai . Ai ∈ A =⇒ f Ai ≥ 0 ∧ f Ai < 1

assumes dependency-digraph G M F
assumes

∧
Ai. Ai ∈ A =⇒ (prob (F Ai) ≤ (f Ai) ∗ (

∏
Aj ∈ pre-digraph.neighborhood

G Ai. (1 − (f Aj))))
assumes pverts G = A
shows prob (

⋂
Ai ∈ A . (space M − (F Ai))) ≥ (

∏
Ai ∈ A . (1 − f Ai)) (

∏
Ai ∈ A . (1 − f Ai)) > 0
proof −

show gt0: (
∏

Ai ∈ A . (1 − f Ai)) > 0 using assms(4) by (simp add: prod-pos)
let ?c = λ i. space M − F i
interpret dg: dependency-digraph G M F using assms(5) by simp
have general:

∧
Ai S . Ai ∈ A =⇒ S ⊆ A − {Ai} =⇒ S 6= {} =⇒ prob (

⋂
Aj

∈ S . (?c Aj)) > 0
=⇒ P(F Ai | (

⋂
Aj ∈ S . (?c Aj))) ≤ f Ai

using assms lovasz-inductive[of A F f G] by simp
have base:

∧
Ai. Ai ∈ A =⇒ prob (F Ai) ≤ f Ai

using lovasz-inductive-base assms(4) assms(6) assms(5) assms(7) by blast
show prob (

⋂
Ai ∈ A . (?c Ai)) ≥ (

∏
Ai ∈ A . (1 − f Ai))

using assms(3) assms(1) assms(2) assms(4) general base
proof (induct A rule: finite-ne-induct)

case (singleton x)
then show ?case using singleton.prems singleton prob-compl by auto

next
case (insert x X)
define Ax where Ax = ?c ‘ (insert x X)
have xie: F x ∈ events using insert.prems by simp
have A ′ie:

⋂
(?c ‘ X) ∈ events using insert.prems insert.hyps by auto

have (
∧

Ai S . Ai ∈ insert x X =⇒ S ⊆ insert x X − {Ai} =⇒ S 6= {} =⇒
prob (

⋂
Aj ∈ S . (?c Aj)) > 0

=⇒ P(F Ai |
⋂

(?c ‘ S)) ≤ f Ai) using insert.prems by simp
then have (

∧
Ai S . Ai ∈ X =⇒ S ⊆ X − {Ai} =⇒ S 6= {} =⇒ prob (

⋂
Aj

∈ S . (?c Aj)) > 0
=⇒ P(F Ai |

⋂
(?c ‘ S)) ≤ f Ai) by auto

then have A ′gt: (
∏

Ai∈X . 1 − f Ai) ≤ prob (
⋂

(?c ‘ X))
using insert.hyps(4) insert.prems(2) insert.prems(1) insert.prems(4) by auto
then have prob (

⋂
(?c ‘ X)) > 0 using insert.hyps insert.prems prod-pos

basic-trans-rules(22)
diff-gt-0-iff-gt by (metis (no-types, lifting) insert-Diff insert-subset sub-

set-insertI)
then have P((?c x) | (

⋂
(?c ‘ X))) = 1 − P(F x | (

⋂
(?c ‘ X)))

using cond-prob-neg[of
⋂
(?c ‘ X) F x] xie A ′ie by simp

moreover have P(F x | (
⋂

(?c ‘ X))) ≤ f x using insert.prems(3)[of x X]
insert.hyps(2) insert(3)

A ′gt ‹0 < prob (
⋂

(?c ‘ X))› by fastforce
ultimately have pnxgt: P((?c x) | (

⋂
(?c ‘ X))) ≥ 1 − f x by simp

have xgt0: 1 − f x ≥ 0 using insert.prems(2)[of x] by auto

81

have prob (
⋂

Ax) = prob ((?c x) ∩
⋂

(?c ‘ X)) using Ax-def by simp
also have ... = prob (

⋂
(?c ‘ X)) ∗ P((?c x) | (

⋂
(?c ‘ X)))

using prob-intersect-B xie A ′ie by simp
also have ... ≥ (

∏
Ai∈X . 1 − f Ai) ∗ (1 − f x) using A ′gt pnxgt mult-left-le

‹0 < prob (
⋂
(?c ‘ X))› xgt0 mult-mono by (smt(verit))

finally have prob (
⋂

Ax) ≥ (
∏

Ai∈insert x X . 1 − f Ai)
by (simp add: local.insert(1) local.insert(3) mult.commute)

then show ?case using Ax-def by auto
qed

qed

7.4 Lovasz Corollaries and Variations
corollary lovasz-local-general-positive:

assumes A 6= {}
assumes F ‘ A ⊆ events
assumes finite A
assumes

∧
Ai . Ai ∈ A =⇒ f Ai ≥ 0 ∧ f Ai < 1

assumes dependency-digraph G M F
assumes

∧
Ai. Ai ∈ A =⇒ (prob (F Ai) ≤

(f Ai) ∗ (
∏

Aj ∈ pre-digraph.neighborhood G Ai. (1 − (f Aj))))
assumes pverts G = A
shows prob (

⋂
Ai ∈ A . (space M − (F Ai))) > 0

using assms lovasz-local-general(1)[of A F f G] lovasz-local-general(2)[of A F f
G] by simp

theorem lovasz-local-symmetric-dep-graph:
fixes e :: real
fixes d :: nat
assumes A 6= {}
assumes F ‘ A ⊆ events
assumes finite A
assumes dependency-digraph G M F
assumes

∧
Ai. Ai ∈ A =⇒ out-degree G Ai ≤ d

assumes
∧

Ai. Ai ∈ A =⇒ prob (F Ai) ≤ p
assumes exp(1)∗ p ∗ (d + 1) ≤ 1
assumes pverts G = A
shows prob (

⋂
Ai ∈ A . (space M − (F Ai))) > 0

proof (cases d = 0)
case True
interpret g: dependency-digraph G M F using assms(4) by simp

have indep-events F A using g.dep-graph-indep-events[of A] assms(8) assms(5)
True by simp

moreover have p < 1
proof −

have exp (1) ∗ p ≤ 1 using assms(7) True by simp
then show ?thesis using exp-gt-one less-1-mult linorder-neqE-linordered-idom

rel-simps(68)

82

verit-prod-simplify(2) by (smt (verit) mult-le-cancel-left1)
qed
ultimately show ?thesis
using complete-indep-bound3[of A F] assms(2) assms(1) assms(3) assms(6) by

force
next

case False
define f :: nat ⇒ real where f ≡ (λ Ai . 1 /(d + 1))
then have fbounds:

∧
Ai. f Ai ≥ 0 ∧ f Ai < 1 using f-def False by simp

interpret dg: dependency-digraph G M F using assms(4) by auto

have
∧

Ai. Ai ∈ A =⇒ prob (F Ai) ≤ (f Ai) ∗ (
∏

Aj ∈ dg.neighborhood Ai .
(1 − (f Aj)))

proof −
fix Ai assume ain: Ai ∈ A
have d-boundslt1: (1/(d + 1)) < 1 and d-boundsgt0: (1/(d + 1))> 0 using

False by fastforce+
have d-bounds2: (1 − (1 /(d + 1)))^d < 1 using False

by(simp add: field-simps) (smt (verit) of-nat-0-le-iff power-mono-iff)
have d-bounds0: (1 − (1 /(d + 1)))^d > 0 using False by (simp)
have exp(1) > (1 + 1/d) powr d using exp-1-gt-powr False by simp
then have exp(1) > (1 + 1/d)^d using False by (simp add: powr-realpow

zero-compare-simps(2))
moreover have 1/(1+ 1/d)^d = (1 − (1/(d+1)))^d
proof −

have 1/(1+ 1/d)^d = 1/((d/d) + 1/d)^d by (simp add: field-simps)
then show ?thesis by (simp add: field-simps)

qed
ultimately have exp-lt: 1/exp(1) < (1 − (1 /(d + 1)))^d
by (metis d-bounds0 frac-less2 less-eq-real-def of-nat-zero-less-power-iff power-eq-if

zero-less-divide-1-iff)
then have (1 /(d + 1))∗ (1 − (1 /(d + 1)))^d > (1 /(d + 1))∗(1/exp(1))
using exp-lt mult-strict-left-mono[of 1/exp(1) (1 − (1 /(d + 1)))^d (1/(d+1))]

d-boundslt1
by simp

then have (1 /(d + 1))∗ (1 − (1 /(d + 1)))^d > (1/((d+1)∗exp(1))) by auto
then have gtp: (1 /(d + 1))∗ (1 − (1 /(d + 1)))^d > p
by (smt (verit, ccfv-SIG) d-boundslt1 d-boundsgt0 assms(7) divide-divide-eq-left

divide-less-cancel
divide-less-eq divide-nonneg-nonpos nonzero-mult-div-cancel-left not-exp-le-zero)

have card (dg.neighborhood Ai) ≤ d using assms(5) dg.out-degree-neighborhood
ain by auto

then have (
∏

Aj ∈ dg.neighborhood Ai . (1 − (1 /(d + 1)))) ≥ (1 − (1 /(d
+ 1)))^d

using prod-constant-ge[of dg.neighborhood Ai d 1 − (1/d+1)] using d-boundslt1
by auto

then have (1 /(d + 1)) ∗ (
∏

Aj ∈ dg.neighborhood Ai . (1 − (1 /(d + 1))))
≥ (1 /(d + 1))∗ (1 − (1 /(d + 1)))^d

83

by (simp add: divide-right-mono)
then have (1 /(d + 1)) ∗ (

∏
Aj ∈ dg.neighborhood Ai . (1 − (1 /(d + 1))))

> p
using gtp by simp

then show prob (F Ai) ≤ f Ai ∗ (
∏

Aj ∈ dg.neighborhood Ai . (1 − f Aj))
using assms(6) ‹Ai ∈ A› f-def by force

qed
then show ?thesis using lovasz-local-general-positive[of A F f G]

assms(4) assms(1) assms(2) assms(3) assms(8) fbounds by auto
qed

corollary lovasz-local-symmetric4gt:
fixes e :: real
fixes d :: nat
assumes A 6= {}
assumes F ‘ A ⊆ events
assumes finite A
assumes dependency-digraph G M F
assumes

∧
Ai. Ai ∈ A =⇒ out-degree G Ai ≤ d

assumes
∧

Ai. Ai ∈ A =⇒ prob (F Ai) ≤ p
assumes 4 ∗ p ∗ d ≤ 1
assumes d ≥ 3
assumes pverts G = A
shows prob (

⋂
Ai ∈ A . (space M − F Ai)) > 0

proof −
have exp(1)∗ p ∗ (d + 1) ≤ 1
proof (cases p = 0)

case True
then show ?thesis by simp

next
case False

then have pgt: p > 0 using assms(1) assms(6) assms(3) ex-min-if-finite
less-eq-real-def

by (meson basic-trans-rules(23) basic-trans-rules(24) linorder-neqE-linordered-idom
measure-nonneg)

have 3 ∗ (d + 1) ≤ 4 ∗ d by (simp add: field-simps assms(8))
then have exp(1) ∗ (d + 1) ≤ 4 ∗d

using exp-le exp-gt-one[of 1] assms(8)
by (smt (verit, del-insts) Num.of-nat-simps(2) Num.of-nat-simps(5) le-add2

le-eq-less-or-eq
mult-right-mono nat-less-real-le numeral.simps(3) numerals(1) of-nat-numeral)

then have exp(1) ∗ (d + 1) ∗ p ≤ 4 ∗d ∗p using pgt by simp
then show ?thesis using assms(7) by (simp add: field-simps)

qed
then show ?thesis using assms lovasz-local-symmetric-dep-graph[of A F G d p]

by auto
qed

84

lemma lovasz-local-symmetric4:
fixes e :: real
fixes d :: nat
assumes A 6= {}
assumes F ‘ A ⊆ events
assumes finite A
assumes dependency-digraph G M F
assumes

∧
Ai. Ai ∈ A =⇒ out-degree G Ai ≤ d

assumes
∧

Ai. Ai ∈ A =⇒ prob (F Ai) ≤ p
assumes 4 ∗ p ∗ d ≤ 1
assumes d ≥ 1
assumes pverts G = A
shows prob (

⋂
Ai ∈ A . (space M − F Ai)) > 0

proof (cases d ≥ 3)
case True
then show ?thesis using lovasz-local-symmetric4gt assms

by presburger
next

case d3: False
define f :: nat ⇒ real where f ≡ (λ Ai . 1 /(d + 1))
then have fbounds:

∧
Ai. f Ai ≥ 0 ∧ f Ai < 1 using f-def assms(8) by simp

interpret dg: dependency-digraph G M F using assms(4) by auto
have

∧
Ai. Ai ∈ A =⇒ prob (F Ai) ≤ (f Ai) ∗ (

∏
Aj ∈ dg.neighborhood Ai .

(1 − (f Aj)))
proof −

fix Ai assume ain: Ai ∈ A
have d-boundslt1: (1/(d + 1)) < 1 and d-boundsgt0: (1/(d + 1))> 0 using

assms by fastforce+
have plt: 1/(4∗d) ≥ p using assms(7) assms(8)
by (metis (mono-tags, opaque-lifting) Num.of-nat-simps(5) bot-nat-0.not-eq-extremum

le-numeral-extra(2)
more-arith-simps(11) mult-of-nat-commute nat-0-less-mult-iff of-nat-0-less-iff

of-nat-numeral
pos-divide-less-eq rel-simps(51) verit-comp-simplify(3))

then have gtp: (1 /(d + 1))∗ (1 − (1 /(d + 1)))^d ≥ p
proof (cases d = 1)

case False
then have d = 2 using d3 assms(8) by auto
then show ?thesis using plt by (simp add: field-simps)

qed (simp)
have card (dg.neighborhood Ai) ≤ d using assms(5) dg.out-degree-neighborhood

ain by auto
then have (

∏
Aj ∈ dg.neighborhood Ai . (1 − (1 /(d + 1)))) ≥ (1 − (1 /(d

+ 1)))^d
using prod-constant-ge[of dg.neighborhood Ai d 1 − (1/d+1)] using d-boundslt1

by auto
then have (1 /(d + 1)) ∗ (

∏
Aj ∈ dg.neighborhood Ai . (1 − (1 /(d + 1))))

≥ (1 /(d + 1))∗ (1 − (1 /(d + 1)))^d

85

by (simp add: divide-right-mono)
then have (1 /(d + 1)) ∗ (

∏
Aj ∈ dg.neighborhood Ai . (1 − (1 /(d + 1))))

≥ p
using gtp by simp

then show prob (F Ai) ≤ f Ai ∗ (
∏

Aj ∈ dg.neighborhood Ai . (1 − f Aj))
using assms(6) ‹Ai ∈ A› f-def by force

qed
then show ?thesis

using lovasz-local-general-positive[of A F f G] assms(4) assms(1) assms(2)
assms(3) assms(9) fbounds by auto
qed

Converting between dependency graph and indexed set representation
of mutual independence
lemma (in pair-digraph) g-Ai-simplification:

assumes Ai ∈ A
assumes g Ai ⊆ A − {Ai}
assumes pverts G = A
assumes parcs G = {e ∈ A × A . snd e ∈ (A − ({fst e} ∪ (g (fst e))))}
shows g Ai = A − ({Ai} ∪ neighborhood Ai)

proof −
have g Ai = A − ({Ai} ∪ {v ∈ A . v ∈ (A − ({Ai} ∪ (g (Ai))))}) using

assms(2) by auto
then have g Ai = A − ({Ai} ∪ {v ∈ A . (Ai, v) ∈ parcs G})

using Collect-cong assms(1) mem-Collect-eq assms(3) assms(4) by auto
then show g Ai = A − ({Ai} ∪ neighborhood Ai) unfolding neighborhood-def

using assms(3) by simp
qed

lemma define-dep-graph-set:
assumes A 6= {}
assumes F ‘ A ⊆ events
assumes finite A
assumes

∧
Ai. Ai ∈ A =⇒ g Ai ⊆ A − {Ai} ∧ mutual-indep-events (F Ai) F

(g Ai)
shows dependency-digraph (| pverts = A, parcs = {e ∈ A × A . snd e ∈ (A −

({fst e} ∪ (g (fst e))))} |) M F
(is dependency-digraph ?G M F)

proof −
interpret pd: pair-digraph ?G

using assms(3)by (unfold-locales) auto
have

∧
Ai. Ai ∈ A =⇒ g Ai ⊆ A − {Ai} using assms(4) by simp

then have
∧

i. i ∈ A =⇒ g i = A − ({i} ∪ pd.neighborhood i)
using pd.g-Ai-simplification[of - A g] pd.pair-digraph by auto

then have dependency-digraph ?G M F using assms(2) assms(4) by (unfold-locales)
auto

then show ?thesis by simp
qed

86

lemma define-dep-graph-deg-bound:
assumes A 6= {}
assumes F ‘ A ⊆ events
assumes finite A
assumes

∧
Ai. Ai ∈ A =⇒ g Ai ⊆ A − {Ai} ∧ card (g Ai) ≥ card A − d − 1

∧
mutual-indep-events (F Ai) F (g Ai)

shows
∧

Ai. Ai ∈ A =⇒
out-degree (| pverts = A, parcs = {e ∈ A × A . snd e ∈ (A − ({fst e} ∪ (g (fst

e))))} |) Ai ≤ d
(is

∧
Ai. Ai ∈ A =⇒ out-degree (with-proj ?G) Ai ≤ d)

proof −
interpret pd: dependency-digraph ?G M F using assms define-dep-graph-set by

simp
show

∧
Ai. Ai ∈ A =⇒ out-degree ?G Ai ≤ d

proof −
fix Ai assume a: Ai ∈ A
then have geq: g Ai = A − ({Ai} ∪ pd.neighborhood Ai)

using assms(4)[of Ai] pd.pair-digraph pd.g-Ai-simplification[of Ai A g] by
simp

then have pss: g Ai ⊂ A using a by auto
then have card (g Ai) = card (A − ({Ai} ∪ pd.neighborhood Ai)) using

assms(4) geq by argo
moreover have ss: ({Ai} ∪ pd.neighborhood Ai) ⊆ A using pd.neighborhood-wf

a by simp
moreover have finite ({Ai} ∪ pd.neighborhood Ai)

using calculation(2) assms(3) finite-subset by auto
moreover have Ai /∈ pd.neighborhood Ai using pd.neighborhood-self-not by

simp
moreover have card {Ai} = 1 using is-singleton-altdef by auto

moreover have cardss: card ({Ai} ∪ pd.neighborhood Ai) = 1 + card (pd.neighborhood
Ai)

using calculation(5) calculation(4) card-Un-disjoint pd.neighborhood-finite by
auto

ultimately have eq: card (g Ai) = card A − 1 − card (pd.neighborhood Ai)
using card-Diff-subset[of ({Ai} ∪ pd.neighborhood Ai) A] assms(3) by pres-

burger
have ggt:

∧
Ai. Ai ∈ A =⇒ card (g Ai) ≥ int (card A) − int d − 1

using assms(4) by fastforce
have card (pd.neighborhood Ai) = card A − 1 − card (g Ai)

using cardss assms(3) card-mono diff-add-inverse diff-diff-cancel diff-le-mono
ss eq

by (metis (no-types, lifting))
moreover have card A ≥ (1 + card (g Ai)) using pss assms(3) card-seteq

not-less-eq-eq by auto
ultimately have card (pd.neighborhood Ai) = int (card A) − 1 − int (card (g

Ai)) by auto
moreover have int (card (g Ai)) ≥ (card A) − (int d) − 1 using ggt a by

simp

87

ultimately show out-degree ?G Ai ≤ d using pd.out-degree-neighborhood by
simp

qed
qed

lemma obtain-dependency-graph:
assumes A 6= {}
assumes F ‘ A ⊆ events
assumes finite A
assumes

∧
Ai. Ai ∈ A =⇒

(∃ S . S ⊆ A − {Ai} ∧ card S ≥ card A − d − 1 ∧ mutual-indep-events (F
Ai) F S)

obtains G where dependency-digraph G M F pverts G = A
∧

Ai. Ai ∈ A =⇒
out-degree G Ai ≤ d
proof −

obtain g where gdef :
∧

Ai. Ai ∈ A =⇒ g Ai ⊆ A − {Ai} ∧ card (g Ai) ≥ card
A − d − 1 ∧

mutual-indep-events (F Ai) F (g Ai) using assms(4) by metis
then show ?thesis
using define-dep-graph-set[of A F g] define-dep-graph-deg-bound[of A F g d]that

assms by auto
qed

This is the variation of the symmetric version most commonly in use
theorem lovasz-local-symmetric:

fixes d :: nat
assumes A 6= {}
assumes F ‘ A ⊆ events
assumes finite A
assumes

∧
Ai. Ai ∈ A =⇒ (∃ S . S ⊆ A − {Ai} ∧ card S ≥ card A − d − 1

∧ mutual-indep-events (F Ai) F S)
assumes

∧
Ai. Ai ∈ A =⇒ prob (F Ai) ≤ p

assumes exp(1)∗ p ∗ (d + 1) ≤ 1
shows prob (

⋂
Ai ∈ A . (space M − (F Ai))) > 0

proof −
obtain G where odg: dependency-digraph G M F pverts G = A

∧
Ai. Ai ∈ A

=⇒ out-degree G Ai ≤ d
using assms obtain-dependency-graph by metis

then show ?thesis using odg assms lovasz-local-symmetric-dep-graph[of A F G
d p] by auto
qed

lemma lovasz-local-symmetric4-set:
fixes d :: nat
assumes A 6= {}
assumes F ‘ A ⊆ events
assumes finite A
assumes

∧
Ai. Ai ∈ A =⇒ (∃ S . S ⊆ A − {Ai} ∧ card S ≥ card A − d − 1

∧ mutual-indep-events (F Ai) F S)

88

assumes
∧

Ai. Ai ∈ A =⇒ prob (F Ai) ≤ p
assumes 4 ∗ p ∗ d ≤ 1
assumes d ≥ 1
shows prob (

⋂
Ai ∈ A . (space M − F Ai)) > 0

proof −
obtain G where odg: dependency-digraph G M F pverts G = A

∧
Ai. Ai ∈ A

=⇒ out-degree G Ai ≤ d
using assms obtain-dependency-graph by metis

then show ?thesis using odg assms lovasz-local-symmetric4[of A F G d p] by
auto
qed
end

end
theory Lovasz-Local-Root

imports
PiE-Rel-Extras
Digraph-Extensions

Prob-Events-Extras
Cond-Prob-Extensions
Indep-Events

Basic-Method
Lovasz-Local-Lemma

begin
end

References
[1] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience

Series in Discrete Mathematics and Optimization. Wiley, Hoboken, N.J,
4th edition, 2016.

[2] L. Noschinski. A Graph Library for Isabelle. Mathematics in Computer
Science, 9(1):23–39, Mar. 2015.

[3] Y. Zhao. Probabilistic methods in combinatorics, 2020. Lec-
ture notes MIT 18.226, Fall 2020, https://ocw.mit.edu/courses/
18-226-probabilistic-method-in-combinatorics-fall-2020/resources/
mit18_226f20_full_notes/.

89

https://ocw.mit.edu/courses/18-226-probabilistic-method-in-combinatorics-fall-2020/resources/mit18_226f20_full_notes/
https://ocw.mit.edu/courses/18-226-probabilistic-method-in-combinatorics-fall-2020/resources/mit18_226f20_full_notes/
https://ocw.mit.edu/courses/18-226-probabilistic-method-in-combinatorics-fall-2020/resources/mit18_226f20_full_notes/

	Extensional function extras
	Relations and Extensional Function sets
	Cardinality Lemmas

	Digraph extensions
	General Event Lemmas
	Conditional Probability Library Extensions
	Miscellaneous Set and List Lemmas
	Conditional Probability Basics
	Bayes Theorem
	Conditional Probability Multiplication Rule

	Independent Events
	More bijection helpers
	Independent Event Extensions
	Mutual Independent Events

	The Basic Probabilistic Method Framework
	More Set and Multiset lemmas
	Existence Lemmas
	Basic Bounds

	Lovasz Local Lemma
	Random Lemmas on Product Operator
	Dependency Graph Concept
	Lovasz Local General Lemma
	Lovasz Corollaries and Variations

