
Karatsuba Multiplication for Integers

Jakob Schulz, Emin Karayel

April 18, 2024

Abstract

We give a verified implementation of the Karatsuba Multiplication
on Integers [1] as well as verified runtime bounds. Integers are rep-
resented as LSBF (least significant bit first) boolean lists, on which
the algorithm by Karatsuba [1] is implemented. The running time of
O
(
nlog2 3

)
is verified using the Time Monad defined in [2].

Contents
1 Preliminaries 3

2 Auxiliary Sum Lemmas 9
2.1 semiring-1 Sums . 11

2.1.1 Power Sums . 13
2.2 nat Sums . 16

3 Sums in Monoids 18
3.1 Kronecker delta . 25
3.2 Power sums . 26

3.2.1 Algebraic operations 28
3.3 monoid-sum-list in the context residues 30

4 The estimation tactic 30

5 Some Automation for Root-Balanced-Tree.Time-Monad 31

6 Running Time Formalization for some functions available in
Main 32
6.1 Functions on bool . 32

6.1.1 Not . 32
6.1.2 disj / conj . 32
6.1.3 equal . 32

6.2 Functions involving pairs . 33
6.2.1 fst / snd . 33

1

6.3 Functions on nat . 33
6.3.1 (+) . 33
6.3.2 (∗) . 33
6.3.3 (^) . 34
6.3.4 (−) . 35
6.3.5 (<) / (≤) . 35
6.3.6 (=) . 36
6.3.7 max . 37
6.3.8 (div) / (mod) . 37
6.3.9 (dvd) . 40
6.3.10 even / odd . 40

6.4 List functions . 40
6.4.1 take . 40
6.4.2 drop . 41
6.4.3 (@) . 41
6.4.4 fold . 41
6.4.5 rev . 42
6.4.6 replicate . 42
6.4.7 length . 42
6.4.8 List.null . 42
6.4.9 butlast . 43
6.4.10 map . 43
6.4.11 foldl . 44
6.4.12 concat . 44
6.4.13 (!) . 45
6.4.14 zip . 45
6.4.15 map2 . 46
6.4.16 upt . 46

6.5 Syntactic sugar . 47

7 Representations 49
7.1 Abstract Representations . 49
7.2 Abstract Representations 2 51

8 Representing nat in LSBF 54
8.1 Type definition . 55
8.2 Conversions . 55
8.3 Truncating and filling . 59
8.4 Right-shifts . 66
8.5 Subdividing lists . 67

8.5.1 Splitting a list in two blocks 67
8.5.2 Splitting a list in multiple blocks 67

8.6 The bitsize function . 71
8.6.1 The next-power-of-2 function 73

2

8.7 Addition . 75
8.7.1 Increment operation 75
8.7.2 Addition with a carry bit 77
8.7.3 Addition . 83

8.8 Comparison and subtraction 84
8.8.1 Comparison . 84
8.8.2 Subtraction . 86

8.9 (Grid) Multiplication . 89
8.10 Syntax bundles . 90

9 Running time of Nat-LSBF 95
9.1 Truncating and filling . 96
9.2 Right-shifts . 97
9.3 Subdividing lists . 97

9.3.1 Splitting a list in two blocks 97
9.3.2 Splitting a list in multiple blocks 98

9.4 The bitsize function . 99
9.4.1 The is-power-of-2 function 99

9.5 Addition . 101
9.6 Comparison and subtraction 103
9.7 (Grid) Multiplication . 106
9.8 Syntax bundles . 107

10 Representing int in LSBF 108
10.1 Type definition . 108
10.2 Conversions . 108
10.3 Addition . 109
10.4 Grid Multiplication . 110

11 Karatsuba Multiplication 110

12 Running Time of Karatsuba Multiplication 120

13 Code Generation 132

1 Preliminaries

Some general preliminaries.
theory Karatsuba-Preliminaries
imports Main Expander-Graphs.Extra-Congruence-Method HOL−Number-Theory.Residues

begin

lemma prop-ifI :
assumes Q =⇒ P R
assumes ¬ Q =⇒ P S

3

shows P (if Q then R else S)
using assms by argo

lemma let-prop-cong:
assumes T = T ′

assumes P (f T) (f ′ T ′)
shows P (let x = T in f x) (let x = T ′ in f ′ x)
using assms by simp

lemma set-subseteqD:
assumes set xs ⊆ A
shows

∧
i. i < length xs =⇒ xs ! i ∈ A

using assms by fastforce

lemma set-subseteqI :
assumes

∧
i. i < length xs =⇒ xs ! i ∈ A

shows set xs ⊆ A
using assms
by (metis in-set-conv-nth subsetI)

lemma Nat-max-le-sum: max (a :: nat) b ≤ a + b
by simp

lemma upt-add-eq-append ′:
assumes a ≤ b b ≤ c
shows [a..<c] = [a..<b] @ [b..<c]
using assms upt-add-eq-append[of a b c − b] by auto

lemma map-add-const-upt: map (λj. j + c) [a..<b] = [a + c..<b + c]
proof (cases a < b)

case True
then have map (λj. j + c) [a..<b] = map (λj. j + c) (map (λj. j + a) [0 ..<b−a])

using map-add-upt[of a b − a] by simp
also have ... = map (λj. j + (a + c)) [0 ..<b−a]

by simp
also have ... = [a+c..<b+c]

using map-add-upt[of a + c b − a] True by simp
finally show ?thesis .

next
case False
then show ?thesis by simp

qed

lemma filter-even-upt-even: filter even [0 ..<2∗n] = map ((∗) 2) [0 ..<n]
by (induction n) simp-all

lemma filter-even-upt-odd: filter even [0 ..<2∗n + 1] = map ((∗) 2) [0 ..<n + 1]
by (simp add: filter-even-upt-even)

lemma filter-odd-upt-even: filter odd [0 ..<2∗n] = map (λi. 2∗i + 1) [0 ..<n]

4

by (induction n) simp-all
lemma filter-odd-upt-odd: filter odd [0 ..<2∗n + 1] = map (λi. 2∗i + 1) [0 ..<n]

by (simp add: filter-odd-upt-even)

lemma length-filter-even: length (filter even [0 ..<n]) = (if even n then n div 2 else
n div 2 + 1)

by (induction n) simp-all
lemma length-filter-odd: length (filter odd [0 ..<n]) = n div 2

by (induction n) simp-all

lemma filter-even-nth:
assumes i < length (filter even [0 ..<n])
shows filter even [0 ..<n] ! i = 2 ∗ i

proof (cases even n)
case True
then obtain n ′ where n = 2 ∗ n ′ by blast
then show ?thesis using filter-even-upt-even[of n ′] assms by auto

next
case False
then obtain n ′ where n = 2 ∗ n ′ + 1 using oddE by blast
show ?thesis

using assms
apply (simp only: ‹n = 2 ∗ n ′ + 1 › filter-even-upt-odd length-map nth-map)
apply (intro arg-cong[where f = (∗) 2])
by (metis add-0 diff-zero length-upt nth-upt)

qed

lemma filter-odd-nth:
assumes i < length (filter odd [0 ..<n])
shows filter odd [0 ..<n] ! i = 2 ∗ i + 1

proof (cases even n)
case True
then obtain n ′ where n = 2 ∗ n ′ by blast
then show ?thesis using filter-odd-upt-even assms by auto

next
case False
then obtain n ′ where n = 2 ∗ n ′ + 1 using oddE by blast
then show ?thesis

using assms
by (simp only: filter-odd-upt-odd length-map)

(simp add: ‹n = 2 ∗ n ′ + 1 › length-filter-odd)
qed

fun sublist where
sublist 0 n xs = take n xs
| sublist (Suc m) (Suc n) (a # xs) = sublist m n xs
| sublist (Suc m) 0 xs = []
| sublist (Suc m) (Suc n) [] = []

5

lemma length-sublist[simp]: length (sublist m n xs) = card ({m..<n} ∩ {0 ..<length
xs})

by (induction m n xs rule: sublist.induct) simp-all

lemma length-sublist ′:
assumes m ≤ n
assumes n ≤ length xs
shows length (sublist m n xs) = n − m
using assms by simp

lemma nth-sublist:
assumes m ≤ n
assumes n ≤ length xs
assumes i < n − m
shows sublist m n xs ! i = xs ! (m + i)
using assms
by (induction m n xs arbitrary: i rule: sublist.induct) simp-all

lemma filter-map-map2 :
assumes length b = m
assumes length c = m
shows [f (b!i) (c!i). i ← [0 ..<m]] = map2 f b c
using assms by (intro nth-equalityI) simp-all

fun map3 where
map3 f (x # xs) (y # ys) (z # zs) = f x y z # map3 f xs ys zs
| map3 f - - - = []

lemma map3-as-map: map3 f xs ys zs = map (λ((x, y), z). f x y z) (zip (zip xs
ys) zs)

by (induction f xs ys zs rule: map3 .induct; simp)

lemma filter-map-map3 :
assumes length b = m
assumes length c = m
shows [f (b!i) (c!i) i. i ← [0 ..<m]] = map3 f b c [0 ..<m]
using assms
apply (intro nth-equalityI)
unfolding map3-as-map by simp-all

fun map4 where
map4 f (x # xs) (y # ys) (z # zs) (w # ws) = f x y z w # map4 f xs ys zs ws
| map4 f - - - - = []

lemma map4-as-map: map4 f xs ys zs ws = map (λ(((x,y),z),w). f x y z w) (zip
(zip (zip xs ys) zs) ws)

by (induction f xs ys zs ws rule: map4 .induct; simp)

lemma nth-map2 :

6

assumes i < length xs
assumes i < length ys
shows map2 f xs ys ! i = f (xs ! i) (ys ! i)
using assms by simp

lemma nth-map3 :
assumes i < length xs
assumes i < length ys
assumes i < length zs
shows map3 f xs ys zs ! i = f (xs ! i) (ys ! i) (zs ! i)
using assms unfolding map3-as-map by simp

lemma nth-map4 :
assumes i < length xs
assumes i < length ys
assumes i < length zs
assumes i < length ws
shows map4 f xs ys zs ws ! i = f (xs ! i) (ys ! i) (zs ! i) (ws ! i)
using assms unfolding map4-as-map by simp

lemma nth-map4 ′:
assumes i < l
assumes length xs = l
assumes length ys = l
assumes length zs = l
assumes length ws = l
shows map4 f xs ys zs ws ! i = f (xs ! i) (ys ! i) (zs ! i) (ws ! i)
using assms unfolding map4-as-map by simp

lemma map2-of-map-r : map2 f xs (map g ys) = map2 (λx y. f x (g y)) xs ys
by (intro nth-equalityI) simp-all

lemma map2-of-map-l: map2 f (map g xs) ys = map2 (λx y. f (g x) y) xs ys
by (intro nth-equalityI) simp-all

lemma map2-of-map2-r : map2 f xs (map2 g ys zs) = map3 (λx y z. f x (g y z))
xs ys zs

unfolding map3-as-map by (intro nth-equalityI) simp-all
lemma map-of-map3 : map f (map3 g xs ys zs) = map3 (λx y z. f (g x y z)) xs ys
zs

unfolding map3-as-map by (intro nth-equalityI) simp-all

lemma cyclic-index-lemma:
fixes n :: nat
assumes σ < n % < n i < n
shows (σ + %) mod n = i ←→ % = (n + i − σ) mod n

proof
assume (σ + %) mod n = i
then have (int σ + int %) mod (int n) = int i

using zmod-int by fastforce
also have ... = (int n + int i) mod int n

using ‹i < n› by auto
finally have (int σ + int % − int σ) mod (int n) = (int n + int i − int σ) mod

int n

7

using mod-diff-cong by blast
then have (int %) mod (int n) = (int n + int i − int σ) mod (int n)

by simp
also have ... = (int (n + i − σ)) mod (int n)

using assms by (simp add: int-ops(6))
finally show % = (n + i − σ) mod n

using zmod-int assms by (metis mod-less of-nat-eq-iff)
next

assume % = (n + i − σ) mod n
then have (σ + %) mod n = (σ + (n + i − σ)) mod n

by presburger
also have ... = (n + i) mod n

using assms by simp
also have ... = i

using assms by simp
finally show (σ + %) mod n = i .

qed

lemma (in residues) residues-minus-eq: x 	R y = (x − y) mod m
proof −

have x 	R y = x ⊕R (R y)
using a-minus-def by fast

also have 	R y = (− y) mod m
using res-neg-eq[of y] .

also have x ⊕R ((−y) mod m) = (x + ((−y) mod m)) mod m
by (simp add: R-m-def residue-ring-def)

also have ... = (x − y) mod m
by (simp add: mod-add-right-eq)

finally show ?thesis .
qed

lemma residue-ring-carrier-eq: {0 ..(n::int) − 1} = {0 ..<n}
by auto

context ring
begin

fun nat-embedding :: nat ⇒ ′a where
nat-embedding 0 = 0
| nat-embedding (Suc n) = nat-embedding n ⊕ 1
fun int-embedding :: int ⇒ ′a where
int-embedding n = (if n ≥ 0 then nat-embedding (nat n) else 	 nat-embedding (nat
(−n)))

lemma nat-embedding-closed[simp]: nat-embedding x ∈ carrier R
by (induction x)(simp-all)

lemma int-embedding-closed[simp]: int-embedding x ∈ carrier R
by simp

8

lemma nat-embedding-a-hom: nat-embedding (x + y) = nat-embedding x ⊕ nat-embedding
y

apply (induction x arbitrary: y)
using a-comm a-assoc by simp-all

lemma nat-embedding-m-hom: nat-embedding (x ∗ y) = nat-embedding x ⊗ nat-embedding
y

apply (induction x arbitrary: y)
by (simp-all add: nat-embedding-a-hom l-distr a-comm)

lemma nat-embedding-exp-hom: nat-embedding (x ^ y) = nat-embedding x [^] y
apply (induction y)
by (simp-all add: nat-embedding-m-hom group-commutes-pow)

lemma int-embedding-neg-hom: int-embedding (− x) = 	 int-embedding x
by simp

end

lemma int-exp-hom: int x ^ i = int (x ^ i)
by simp

end

2 Auxiliary Sum Lemmas
theory Karatsuba-Sum-Lemmas

imports Karatsuba-Preliminaries Expander-Graphs.Extra-Congruence-Method
begin

lemma sum-list-eq: (
∧

x. x ∈ set xs =⇒ f x = g x) =⇒ sum-list (map f xs) =
sum-list (map g xs)

by (rule arg-cong[OF list.map-cong0])

lemma sum-list-split-0 : (
∑

i ← [0 ..<Suc n]. f i) = f 0 + (
∑

i ← [1 ..<Suc n]. f
i)

using upt-eq-Cons-conv
proof −

have [0 ..<Suc n] = 0 # [1 ..<Suc n] using upt-eq-Cons-conv by auto
then show ?thesis by simp

qed
lemma sum-list-index-trafo: (

∑
i ← xs. f (g i)) = (

∑
i ← map g xs. f i)

by (induction xs) simp-all
lemma sum-list-index-shift: (

∑
i ← [a..<b]. f (i + c)) = (

∑
i ← [a+c..<b+c]. f

i)
proof −

have (
∑

i ← [a..<b]. f (i + c)) = (
∑

i ← (map (λj. j + c) [a..<b]). f i)
by (intro sum-list-index-trafo)

also have map (λj. j + c) [a..<b] = [a+c..<b+c]
using map-add-const-upt by simp

finally show ?thesis .
qed

9

lemma list-sum-index-shift: n = j − k =⇒ (
∑

i ← [k+1 ..<j+1]. f i) = (
∑

i ←
[k..<j]. f (i + 1))

using sum-list-index-trafo[where g = λl. l + 1 and xs = [k..<j] and f = f ,
symmetric]

using map-Suc-upt by simp

lemma list-sum-index-shift ′: (
∑

i ← [0 ..<m]. a (i + c)) = (
∑

i ← [c..<m+c]. a
i)

by (induction m arbitrary: a c) auto

lemma list-sum-index-concat: (
∑

i ← [0 ..<m]. a i) + (
∑

i ← [m..<m+c]. a i)
= (

∑
i ← [0 ..<m+c]. a i)

proof −
have (

∑
i ← [0 ..<m+c]. a i) = (

∑
i ← [0 ..<m] @ [m..<m+c]. a i)

using upt-add-eq-append[of 0 m c] by simp
then show ?thesis using sum-list-append by simp

qed

lemma sum-list-linear :
assumes

∧
a b. f (a + b) = f a + f b

assumes f 0 = 0
shows f (

∑
i ← xs. g i) = (

∑
i ← xs. f (g i))

using assms
by (induction xs) simp-all

lemma sum-list-int:
shows int (

∑
i ← xs. g i) = (

∑
i ← xs. int (g i))

by (intro sum-list-linear int-ops(5) int-ops(1))

lemma sum-list-split-Suc:
assumes n = Suc n ′

shows (
∑

i ← [0 ..<n]. f i) = (
∑

i ← [0 ..<n ′]. f i) + f n ′

using assms by simp

lemma sum-list-estimation-leq:
assumes

∧
i. i ∈ set xs =⇒ f i ≤ B

shows (
∑

i ← xs. f i) ≤ length xs ∗ B
using assms by (induction xs)(simp, fastforce)

lemma sum-list-estimation-le:
assumes

∧
i. i ∈ set xs =⇒ f i < B

assumes xs 6= []
shows (

∑
i ← xs. f i) < length xs ∗ B

proof −
from ‹xs 6= []› have length xs > 0 by simp
from ‹xs 6= []› obtain x where x ∈ set xs by fastforce
then have B > 0 using assms(1) by fastforce
then obtain B ′ where B = Suc B ′ using not0-implies-Suc by blast
with assms(1) have

∧
i. i ∈ set xs =⇒ f i ≤ B ′ by fastforce

10

with sum-list-estimation-leq have (
∑

i ← xs. f i) ≤ length xs ∗ B ′ by blast
also have ... < length xs ∗ B using ‹B = Suc B ′› ‹length xs > 0 › by simp
finally show ?thesis .

qed

2.1 semiring-1 Sums
lemma (in semiring-1) of-bool-mult: of-bool x ∗ a = (if x then a else 0)

by simp

lemma (in semiring-1-cancel) of-bool-disj: of-bool (x ∨ y) = of-bool x + of-bool y
− of-bool x ∗ of-bool y

by simp
lemma (in semiring-1) of-bool-disj-excl: ¬ (x ∧ y) =⇒ of-bool (x ∨ y) = of-bool
x + of-bool y

by simp

lemma (in semiring-1) of-bool-var-swap:
(
∑

i ← xs. of-bool (i = j) ∗ f i) = (
∑

i ← xs. of-bool (i = j) ∗ f j)
by (induction xs) simp-all

lemma (
∑

i ← xs. of-bool (i = j) ∗ f i) = count-list xs j ∗ f j
by (induction xs) simp-all

lemma (in semiring-1) of-bool-distinct:
distinct xs =⇒ (

∑
i ← xs. of-bool (i = j) ∗ f i j) = of-bool (j ∈ set xs) ∗ f j j

by (induction xs) auto
lemma (in semiring-1) of-bool-distinct-in:

distinct xs =⇒ j ∈ set xs =⇒ (
∑

i ← xs. of-bool (i = j) ∗ f i j) = f j j
using of-bool-distinct[of xs j f] of-bool-mult by simp

lemma (in linordered-semiring-1) of-bool-sum-leq-1 :
assumes distinct xs
assumes

∧
i j. i ∈ set xs =⇒ j ∈ set xs =⇒ P i =⇒ P j =⇒ i = j

shows (
∑

l ← xs. of-bool (P l)) ≤ 1
using assms

proof (induction xs)
case Nil
then show ?case by simp

next
case (Cons a xs)
consider P a | ¬ P a by blast
then show ?case
proof cases

case 1
then have r : (

∑
l←a # xs. of-bool (P l)) = 1 + (

∑
l←xs. of-bool (P l))

by simp
have of-bool (P l) = 0 if l ∈ set xs for l
proof −

from that have a 6= l using Cons by auto
then have ¬ P l using Cons ‹l ∈ set xs› 1 by force

11

then show of-bool (P l) = 0 by simp
qed
then have (

∑
l←xs. of-bool (P l)) = (

∑
l←xs. 0)

using list.map-cong0 [of xs] by metis
then show ?thesis using r by simp

next
case 2
then have (

∑
l←a # xs. of-bool (P l)) = (

∑
l←xs. of-bool (P l))

by simp
then show ?thesis using Cons by simp

qed
qed
instantiation nat :: linordered-semiring-1
begin

instance ..
end

lemma (in semiring-1) sum-list-mult-sum-list: (
∑

i ← xs. f i) ∗ (
∑

j ← ys. g j)
= (

∑
i ← xs.

∑
j ← ys. f i ∗ g j)

by (simp add: sum-list-const-mult sum-list-mult-const)

lemma (in semiring-1) semiring-1-sum-list-eq:
(
∧

i. i ∈ set xs =⇒ f i = g i) =⇒ (
∑

i ← xs. f i) = (
∑

i ← xs. g i)
using arg-cong[OF list.map-cong0] by blast

lemma (in semiring-1) sum-swap:
(
∑

i ← xs. (
∑

j ← ys. f i j)) = (
∑

j ← ys. (
∑

i ← xs. f i j))
proof (induction xs)

case (Cons a xs)
have (

∑
i ← (a # xs). (

∑
j ← ys. f i j)) = (

∑
j ← ys. f a j) + (

∑
i ← xs.

(
∑

j ← ys. f i j))
by simp

also have ... = (
∑

j ← ys. f a j) + (
∑

j ← ys. (
∑

i ← xs. f i j))
using Cons by simp

also have ... = (
∑

j ← ys. f a j + (
∑

i ← xs. f i j))
using sum-list-addf [of λj. f a j - ys] by simp

also have ... = (
∑

j ← ys. (
∑

i ← (a # xs). f i j)) by simp
finally show ?case .

qed simp

lemma (in semiring-1) sum-append:
(
∑

i ← (xs @ ys). f i) = (
∑

i ← xs. f i) + (
∑

i ← ys. f i)
by (induction xs) (simp-all add: add.assoc)

lemma (in semiring-1) sum-append ′:
assumes zs = xs @ ys
shows (

∑
i ← zs. f i) = (

∑
i ← xs. f i) + (

∑
i ← ys. f i)

using assms sum-append by blast

12

2.1.1 Power Sums
lemma (in semiring-1) sum-list-of-bool-filter : (

∑
i ← xs. of-bool (P i) ∗ f i) =

(
∑

i ← filter P xs. f i)
by (induction xs; simp)

lemma upt-filter-less: filter (λi. i < c) [a..<b] = [a..<min b c]
by (induction b; simp)

lemma upt-filter-geq: filter (λi. i ≥ c) [a..<b] = [max a c..<b]
by (induction b; simp)

lemma (in semiring-1) sum-list-of-bool-less: (
∑

i ← [a..<b]. of-bool (i < c) ∗ f i)
= (

∑
i ← [a..<min b c]. f i)

unfolding sum-list-of-bool-filter upt-filter-less by (rule refl)

lemma (in semiring-1) sum-list-of-bool-geq: (
∑

i ← [a..<b]. of-bool (i ≥ c) ∗ f i)
= (

∑
i ← [max a c..<b]. f i)

unfolding sum-list-of-bool-filter upt-filter-geq by (rule refl)

lemma (in semiring-1) sum-list-of-bool-range: (
∑

i ← [a..<b]. of-bool (i ∈ set
[c..<d]) ∗ f i) =

(
∑

i ← [max a c..<min b d]. f i)
proof −

have (
∑

i ← [a..<b]. of-bool (i ∈ set [c..<d]) ∗ f i) =
(
∑

i ← [a..<b]. of-bool (i ≥ c) ∗ (of-bool (i < d) ∗ f i))
by (intro semiring-1-sum-list-eq; simp)

then show ?thesis unfolding sum-list-of-bool-geq sum-list-of-bool-less .
qed

lemma (in comm-semiring-1) cauchy-product:
(
∑

i ← [0 ..<n]. f i) ∗ (
∑

j ← [0 ..<m]. g j) =
(
∑

k ← [0 ..<n + m − 1].
∑

l ← [k + 1 − m..<min (k + 1) n]. f l ∗ g (k −
l))
proof −

have (
∑

i ← [0 ..<n]. f i) ∗ (
∑

j ← [0 ..<m]. g j) =
(
∑

i ← [0 ..<n].
∑

j ← [0 ..<m]. f i ∗ g j)
unfolding sum-list-mult-const[symmetric]
unfolding sum-list-const-mult[symmetric]
by (rule refl)

also have ... = (
∑

i ← [0 ..<n].
∑

j ← [0 ..<m].
∑

k ← [0 ..<n + m − 1].
of-bool (k = i + j) ∗ (f i ∗ g j))

by (intro semiring-1-sum-list-eq of-bool-distinct-in[symmetric]; simp)
also have ... = (

∑
k ← [0 ..<n + m − 1].

∑
i ← [0 ..<n].

∑
j ← [0 ..<m].

of-bool (k = i + j) ∗ (f i ∗ g j))
unfolding sum-swap[where xs = [0 ..<m] and ys = [0 ..<n + m − 1]]
unfolding sum-swap[where xs = [0 ..<n] and ys = [0 ..<n + m − 1]]
by (rule refl)

also have ... = (
∑

k ← [0 ..<n + m − 1].
∑

i ← [0 ..<n].
∑

j ← [0 ..<m].
of-bool (k ≥ i ∧ j = k − i) ∗ (f i ∗ g j))

13

by (intro semiring-1-sum-list-eq; simp)
also have ... = (

∑
k ← [0 ..<n + m − 1].

∑
i ← [0 ..<n].

∑
j ← [0 ..<m].

of-bool (j = k − i) ∗ (of-bool (k ≥ i) ∗ (f i ∗ g j)))
by (intro semiring-1-sum-list-eq; simp)

also have ... = (
∑

k ← [0 ..<n + m − 1].
∑

i ← [0 ..<n]. of-bool (k − i ∈ set
[0 ..<m]) ∗ ((of-bool (k ≥ i) ∗ (f i ∗ g (k − i)))))

by (intro semiring-1-sum-list-eq of-bool-distinct distinct-upt)
also have ... = (

∑
k ← [0 ..<n + m − 1].

∑
i ← [0 ..<n]. of-bool (i ≥ k + 1 −

m) ∗ ((of-bool (k + 1 > i) ∗ (f i ∗ g (k − i)))))
by (intro semiring-1-sum-list-eq; auto)

also have ... = (
∑

k ← [0 ..<n + m − 1].
∑

l ← [k + 1 − m..<min (k + 1)
n]. f l ∗ g (k − l))

apply (intro semiring-1-sum-list-eq)
unfolding sum-list-of-bool-geq sum-list-of-bool-less max-0L min.commute[of n]
by (rule refl)

finally show ?thesis .
qed

lemma (in comm-semiring-1) power-sum-product:
assumes m > 0
assumes n ≥ m
shows

(
∑

i←[0 ..<n]. f i ∗ x ^ i) ∗ (
∑

j←[0 ..<m]. g j ∗ x ^ j) =
(
∑

k←[0 ..<m]. (
∑

i←[0 ..<Suc k]. f i ∗ g (k − i)) ∗ x ^ k) +
(
∑

k←[m..<n]. (
∑

i←[Suc k − m..<Suc k]. f i ∗ g (k − i)) ∗ x ^ k) +
(
∑

k←[n..<n + m − 1]. (
∑

i←[Suc k − m..<n]. f i ∗ g (k − i)) ∗ x ^ k)
proof −

have 1 : [0 ..<n + m − 1] = [0 ..<m] @ [m..<n] @ [n..<n + m − 1]
using upt-add-eq-append ′[of 0 m n + m − 1] upt-add-eq-append ′[of m n n +

m − 1] assms by simp

have (
∑

i ← [0 ..<n]. f i ∗ x ^ i) ∗ (
∑

j ← [0 ..<m]. g j ∗ x ^ j) =
(
∑

k ← [0 ..<n + m − 1].
∑

l ← [k + 1 − m..<min (k + 1) n]. (f l ∗ x ^
l) ∗ (g (k − l) ∗ x ^ (k − l)))

by (rule cauchy-product)
also have ... = (

∑
k ← [0 ..<n + m − 1].

∑
l ← [k + 1 − m..<min (k + 1)

n]. f l ∗ g (k − l) ∗ x ^ k)
apply (intro semiring-1-sum-list-eq)
using mult.commute mult.assoc power-add[symmetric]
by simp

also have ... = (
∑

k ← [0 ..<n + m − 1]. (
∑

l ← [k + 1 − m..<min (k + 1)
n]. f l ∗ g (k − l)) ∗ x ^ k)

by (intro semiring-1-sum-list-eq sum-list-mult-const)
also have ... = (

∑
k←[0 ..<m]. (

∑
i←[k + 1 − m..<min (k + 1) n]. f i ∗ g (k

− i)) ∗ x ^ k) +
(
∑

k←[m..<n]. (
∑

i←[k + 1 − m..<min (k + 1) n]. f i ∗ g (k − i)) ∗ x ^
k) +

(
∑

k←[n..<n + m − 1]. (
∑

i←[k + 1 − m..<min (k + 1) n]. f i ∗ g (k −
i)) ∗ x ^ k)

14

unfolding 1 sum-append add.assoc by (rule refl)
also have ... = (

∑
k←[0 ..<m]. (

∑
i←[0 ..<Suc k]. f i ∗ g (k − i)) ∗ x ^ k) +

(
∑

k←[m..<n]. (
∑

i←[Suc k − m..<Suc k]. f i ∗ g (k − i)) ∗ x ^ k) +
(
∑

k←[n..<n + m − 1]. (
∑

i←[Suc k − m..<n]. f i ∗ g (k − i)) ∗ x ^ k)
using assms by (intro-cong [cong-tag-2 (+)] more: semiring-1-sum-list-eq; simp)

finally show ?thesis .
qed

lemma (in comm-semiring-1) power-sum-product-same-length:
assumes n > 0
shows (

∑
i←[0 ..<n]. f i ∗ x ^ i) ∗ (

∑
j←[0 ..<n]. g j ∗ x ^ j) =

(
∑

k←[0 ..<n]. (
∑

i←[0 ..<Suc k]. f i ∗ g (k − i)) ∗ x ^ k) +
(
∑

k←[n..<2 ∗ n − 1]. (
∑

i←[Suc k − n..<n]. f i ∗ g (k − i)) ∗ x ^ k)
using power-sum-product[of n n f x g, OF assms order .refl]
by (simp add: semiring-numeral-class.mult-2)

lemma (in semiring-1) sum-index-transformation:
shows (

∑
i ← xs. f (g i)) = (

∑
j ← map g xs. f j)

by (induction xs) simp-all

lemma (in comm-semiring-1) power-sum-split:
fixes f :: nat ⇒ ′a
fixes x :: ′a
fixes c :: nat
assumes j ≤ n
shows (

∑
i ← [0 ..<n]. f i ∗ x ^ (i ∗ c)) =

(
∑

i ← [0 ..<j]. f i ∗ x ^ (i ∗ c)) +
x ^ (j ∗ c) ∗ (

∑
i ← [0 ..<n − j]. f (j + i) ∗ x ^ (i ∗ c))

proof −
have (λi. i + j) = (+) j by fastforce
have (

∑
i ← [0 ..<n]. f i ∗ x ^ (i ∗ c)) =

(
∑

i ← [0 ..<j]. f i ∗ x ^ (i ∗ c)) + (
∑

i ← [j..<n]. f i ∗ x ^ (i ∗ c))
apply (intro sum-append ′ upt-add-eq-append ′) using ‹j ≤ n› by auto

also have (
∑

i ← [j..<n]. f i ∗ x ^ (i ∗ c)) =
(
∑

i ← map ((+) j) [0 ..<n − j]. f i ∗ x ^ (i ∗ c))
apply (intro-cong [cong-tag-1 sum-list, cong-tag-2 map] more: refl)
using ‹j ≤ n› map-add-upt[of j n − j] ‹(λi. i + j) = (+) j› by simp

also have ... = (
∑

i ← [0 ..<n − j]. f (j + i) ∗ x ^ ((j + i) ∗ c))
by (intro sum-index-transformation[symmetric])

also have ... = (
∑

i ← [0 ..<n − j]. x ^ (j ∗ c) ∗ (f (j + i) ∗ x ^ (i ∗ c)))
apply (intro semiring-1-sum-list-eq)
using mult.commute mult.assoc by (simp add: power-add add-mult-distrib)

also have ... = x ^ (j ∗ c) ∗ (
∑

i ← [0 ..<n − j]. (f (j + i) ∗ x ^ (i ∗ c)))
by (intro sum-list-const-mult)

finally show ?thesis .
qed

15

2.2 nat Sums
lemma geo-sum-nat:

assumes (q :: nat) > 1
shows (q − 1) ∗ (

∑
i ← [0 ..<n]. q ^ i) = q ^ n − 1

proof (induction n)
case (Suc n)
have (q − 1) ∗ (

∑
i ← [0 ..<Suc n]. q ^ i) = (q − 1) ∗ (q ^ n + (

∑
i ← [0 ..<n].

q ^ i))
by simp

also have ... = (q − 1) ∗ q ^ n + (q − 1) ∗ (
∑

i ← [0 ..<n]. q ^ i)
using add-mult-distrib mult.commute by metis

also have ... = (q − 1) ∗ q ^ n + (q ^ n − 1)
using Suc.IH by simp

also have ... = q ∗ q ^ n − 1 using ‹q > 1 › by (simp add: diff-mult-distrib)
finally show ?case by simp

qed simp

lemma geo-sum-bound:
assumes (q :: nat) > 1
assumes

∧
i. i < n =⇒ f i < q

shows (
∑

i ← [0 ..<n]. f i ∗ q ^ i) < q ^ n
proof −

from assms have
∧

i. i < n =⇒ f i ≤ (q − 1) by fastforce
then have (

∑
i ← [0 ..<n]. f i ∗ q ^ i) ≤ (

∑
i ← [0 ..<n]. (q − 1) ∗ q ^ i)

apply (intro sum-list-mono mult-le-mono1)
using assms by simp

also have ... = (q − 1) ∗ (
∑

i ← [0 ..<n]. q ^ i)
by (intro sum-list-const-mult)

also have ... = q ^ n − 1
by (intro geo-sum-nat assms)

also have ... < q ^ n using ‹q > 1 › by simp
finally show ?thesis .

qed

lemma power-sum-nat-split-div-mod:
assumes x > 1
assumes c > 0
assumes

∧
i. i < n =⇒ (f i :: nat) < x ^ c

assumes j ≤ n
shows (

∑
i ← [0 ..<n]. f i ∗ x ^ (i ∗ c)) div x ^ (j ∗ c)

= (
∑

i ← [0 ..<n − j]. f (j + i) ∗ x ^ (i ∗ c))
(
∑

i ← [0 ..<n]. f i ∗ x ^ (i ∗ c)) mod x ^ (j ∗ c)
= (

∑
i ← [0 ..<j]. f i ∗ x ^ (i ∗ c))

proof −
define sum where sum = (

∑
i ← [0 ..<n]. f i ∗ x ^ (i ∗ c))

then have sum = (
∑

i ← [0 ..<j]. f i ∗ x ^ (i ∗ c)) +
x ^ (j ∗ c) ∗ (

∑
i ← [0 ..<n − j]. f (j + i) ∗ x ^ (i ∗ c))

(is sum = ?sum1 + x ^ (j ∗ c) ∗ ?sum2)
using power-sum-split ‹j ≤ n› by blast

16

have ?sum1 = (
∑

i ← [0 ..<j]. f i ∗ (x ^ c) ^ i)
apply (intro-cong [cong-tag-2 (∗)] more: semiring-1-sum-list-eq refl)
using power-mult mult.commute by metis

also have ... < (x ^ c) ^ j
apply (intro geo-sum-bound)
subgoal using assms one-less-power by blast
subgoal using assms by simp
done

finally have ?sum1 < x ^ (j ∗ c) by (simp add: power-mult mult.commute)
then show sum mod x ^ (j ∗ c) = ?sum1 sum div (x ^ (j ∗ c)) = ?sum2 using

‹sum = ?sum1 + x ^ (j ∗ c) ∗ ?sum2 ›
using assms(1) by fastforce+

qed

lemma power-sum-nat-extract-coefficient:
assumes x > 1
assumes c > 0
assumes

∧
i. i < n =⇒ (f i :: nat) < x ^ c

assumes j < n
shows ((

∑
i ← [0 ..<n]. f i ∗ x ^ (i ∗ c)) div x ^ (j ∗ c)) mod x ^ c = f j

proof −
have (

∑
i ← [0 ..<n]. f i ∗ x ^ (i ∗ c)) div x ^ (j ∗ c) =

(
∑

i ← [0 ..<n − j]. f (j + i) ∗ x ^ (i ∗ c)) (is ?sum = -)
apply (intro power-sum-nat-split-div-mod(1) assms)
using assms by simp-all

moreover have ... mod x ^ (1 ∗ c) = (
∑

i ← [0 ..<1]. f (j + i) ∗ x ^ (i ∗ c))
apply (intro power-sum-nat-split-div-mod(2) assms)
using assms by simp-all

ultimately show ?sum mod x ^ c = f j by simp
qed

lemma power-sum-nat-eq:
assumes x > 1
assumes c > 0
assumes

∧
i. i < n =⇒ (f i :: nat) < x ^ c

assumes
∧

i. i < n =⇒ g i < x ^ c
assumes (

∑
i ← [0 ..<n]. f i ∗ x ^ (i ∗ c)) = (

∑
i ← [0 ..<n]. g i ∗ x ^ (i ∗ c))

(is ?sumf = ?sumg)
shows

∧
i. i < n =⇒ f i = g i

proof −
fix i
assume i < n
then have f i = (?sumf div x ^ (i ∗ c)) mod x ^ c

apply (intro power-sum-nat-extract-coefficient[symmetric] assms) by assump-
tion

also have ... = (?sumg div x ^ (i ∗ c)) mod x ^ c
using assms by argo

also have ... = g i
apply (intro power-sum-nat-extract-coefficient assms) using ‹i < n› by simp-all

17

finally show f i = g i .
qed

end

3 Sums in Monoids
theory Monoid-Sums

imports HOL−Algebra.Ring Expander-Graphs.Extra-Congruence-Method Karat-
suba-Preliminaries HOL−Library.Multiset HOL−Number-Theory.Residues Karat-
suba-Sum-Lemmas
begin

This section contains a version of sum-list for entries in some abelian monoid.
Contrary to sum-list, which is defined for the type class comm-monoid-add,
this version is for the locale abelian-monoid. After the definition, some
simple lemmas about sums are proven for this sum function.
context abelian-monoid
begin

fun monoid-sum-list :: [′c ⇒ ′a, ′c list] ⇒ ′a where
monoid-sum-list f [] = 0
| monoid-sum-list f (x # xs) = f x ⊕ monoid-sum-list f xs

lemma monoid-sum-list f xs = foldr (⊕) (map f xs) 0
by (induction xs) simp-all

end

The syntactic sugar used for finsum is adapted accordingly.
syntax

-monoid-sum-list :: index ⇒ idt ⇒ ′c list ⇒ ′c ⇒ ′a
((3

⊕
--←-. -) [1000 , 0 , 51 , 10] 10)

translations⊕
Gi←xs. b
 CONST abelian-monoid.monoid-sum-list G (λi. b) xs

context abelian-monoid
begin

lemma monoid-sum-list-finsum:
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier G

assumes distinct xs
shows (

⊕
i ← xs. f i) = (

⊕
i ∈ set xs. f i)

using assms
proof (induction xs)

case Nil
then show ?case by simp

next

18

case (Cons a xs)
then show ?case using finsum-insert[of set xs a f] by simp

qed

lemma monoid-sum-list-cong:
assumes

∧
i. i ∈ set xs =⇒ f i = g i

shows (
⊕

i ← xs. f i) = (
⊕

i ← xs. g i)
using assms by (induction xs) simp-all

lemma monoid-sum-list-closed[simp]:
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier G

shows (
⊕

i ← xs. f i) ∈ carrier G
using assms by (induction xs) simp-all

lemma monoid-sum-list-add-in:
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier G

assumes
∧

i. i ∈ set xs =⇒ g i ∈ carrier G
shows (

⊕
i ← xs. f i) ⊕ (

⊕
i ← xs. g i) =

(
⊕

i ← xs. f i ⊕ g i)
using assms

proof (induction xs)
case (Cons a xs)
have (

⊕
i ← (a # xs). f i) ⊕ (

⊕
i ← (a # xs). g i)

= (f a ⊕ (
⊕

i ← xs. f i)) ⊕ (g a ⊕ (
⊕

i ← xs. g i))
by simp

also have ... = (f a ⊕ g a) ⊕ ((
⊕

i ← xs. f i) ⊕ (
⊕

i ← xs. g i))
using a-comm a-assoc Cons.prems by simp

also have ... = (f a ⊕ g a) ⊕ (
⊕

i ← xs. f i ⊕ g i)
using Cons by simp

finally show ?case by simp
qed simp

lemma monoid-sum-list-0 [simp]: (
⊕

i ← xs. 0) = 0
by (induction xs) simp-all

lemma monoid-sum-list-swap:
assumes[simp]:

∧
i j. i ∈ set xs =⇒ j ∈ set ys =⇒ f i j ∈ carrier G

shows (
⊕

i ← xs. (
⊕

j ← ys. f i j)) =
(
⊕

j ← ys. (
⊕

i ← xs. f i j))
using assms

proof (induction xs arbitrary: ys)
case (Cons a xs)
have (

⊕
i ← (a # xs). (

⊕
j ← ys. f i j))

= (
⊕

j ← ys. f a j) ⊕ (
⊕

i ← xs. (
⊕

j ← ys. f i j))
by simp

also have ... = (
⊕

j ← ys. f a j) ⊕ (
⊕

j ← ys. (
⊕

i ← xs. f i j))
using Cons by simp

also have ... = (
⊕

j ← ys. f a j ⊕ (
⊕

i ← xs. f i j))
using monoid-sum-list-add-in[of ys λj. f a j λj. (

⊕
i ← xs. f i j)] Cons.prems

19

by simp
finally show ?case by simp

qed simp

lemma monoid-sum-list-index-transformation:
(
⊕

i ← (map g xs). f i) = (
⊕

i ← xs. f (g i))
by (induction xs) simp-all

lemma monoid-sum-list-index-shift-0 :
(
⊕

i ← [c..<c+n]. f i) = (
⊕

i ← [0 ..<n]. f (c + i))
using monoid-sum-list-index-transformation[of f λi. c + i [0 ..<n]]
by (simp add: add.commute map-add-upt)

lemma monoid-sum-list-index-shift:
(
⊕

l ← [a..<b]. f (l+c)) = (
⊕

l ← [(a+c)..<(b+c)]. f l)
using monoid-sum-list-index-transformation[of f λi. i + c [a..<b]]
by (simp add: map-add-const-upt)

lemma monoid-sum-list-app:
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier G

assumes
∧

i. i ∈ set ys =⇒ f i ∈ carrier G
shows (

⊕
i ← xs @ ys. f i) = (

⊕
i ← xs. f i) ⊕ (

⊕
i ← ys. f i)

using assms
by (induction xs) (simp-all add: a-assoc)

lemma monoid-sum-list-app ′:
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier G

assumes
∧

i. i ∈ set ys =⇒ f i ∈ carrier G
assumes xs @ ys = zs
shows (

⊕
i ← zs. f i) = (

⊕
i ← xs. f i) ⊕ (

⊕
i ← ys. f i)

using monoid-sum-list-app assms by blast

lemma monoid-sum-list-extract:
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier G

assumes
∧

i. i ∈ set ys =⇒ f i ∈ carrier G
assumes f x ∈ carrier G
shows (

⊕
i ← xs @ x # ys. f i) = f x ⊕ (

⊕
i ← (xs @ ys). f i)

proof −
have (

⊕
i ← xs @ x # ys. f i) = (

⊕
i ← xs. f i) ⊕ f x ⊕ (

⊕
i ← ys. f i)

using assms monoid-sum-list-app[of xs f x # ys]
using a-assoc by auto

also have ... = f x ⊕ ((
⊕

i ← xs. f i) ⊕ (
⊕

i ← ys. f i))
using assms a-assoc a-comm by auto

finally show ?thesis using monoid-sum-list-app[of xs f ys] assms by algebra
qed

lemma monoid-sum-list-Suc:
assumes

∧
i. i < Suc r =⇒ f i ∈ carrier G

shows (
⊕

i ← [0 ..<Suc r]. f i) = (
⊕

i ← [0 ..<r]. f i) ⊕ f r

20

using assms monoid-sum-list-app[of [0 ..<r] f [r]]
by simp

lemma bij-betw-diff-singleton: a ∈ A =⇒ b ∈ B =⇒ bij-betw f A B =⇒ f a = b
=⇒ bij-betw f (A − {a}) (B − {b})
by (metis (no-types, lifting) DiffE Diff-Diff-Int Diff-cancel Diff-empty Int-insert-right-if1

Un-Diff-Int notIn-Un-bij-betw3 singleton-iff)

lemma a ∈ A =⇒ bij-betw f A B =⇒ bij-betw f (A − {a}) (B − {f a})
using bij-betw-diff-singleton[of a A f a B f]
by (simp add: bij-betwE)

lemma monoid-sum-list-multiset-eq:
assumes mset xs = mset ys
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier G

shows (
⊕

i ← xs. f i) = (
⊕

i ← ys. f i)
using assms

proof (induction xs arbitrary: ys)
case Nil
then show ?case by simp

next
case (Cons a xs)
then have a ∈ set ys using mset-eq-setD by fastforce
then obtain ys1 ys2 where ys = ys1 @ a # ys2 by (meson split-list)
with Cons.prems have 1 : mset xs = mset (ys1 @ ys2) by simp
from Cons.prems mset-eq-setD have

∧
i. i ∈ set ys =⇒ f i ∈ carrier G by blast

then have[simp]:
∧

i. i ∈ set ys1 =⇒ f i ∈ carrier G f a ∈ carrier G
∧

i. i ∈
set ys2 =⇒ f i ∈ carrier G

using ‹ys = ys1 @ a # ys2 › by simp-all
from 1 have (

⊕
i ← xs. f i) = (

⊕
i ← (ys1 @ ys2). f i)

using Cons by simp
also have ... = (

⊕
i ← ys1 . f i) ⊕ (

⊕
i ← ys2 . f i)

by (intro monoid-sum-list-app) simp-all
also have f a ⊕ ... = (

⊕
i ← ys1 . f i) ⊕ (f a ⊕ (

⊕
i ← ys2 . f i))

using a-comm a-assoc monoid-sum-list-closed by simp
also have ... = (

⊕
i ← ys1 . f i) ⊕ (

⊕
i ← (a # ys2). f i)

by simp
also have ... = (

⊕
i ← ys. f i)

unfolding ‹ys = ys1 @ a # ys2 ›
by (intro monoid-sum-list-app[symmetric]) auto

finally show ?case by simp
qed
lemma monoid-sum-list-index-permutation:

assumes distinct xs
assumes distinct ys ∨ length xs = length ys
assumes bij-betw f (set xs) (set ys)
assumes

∧
i. i ∈ set ys =⇒ g i ∈ carrier G

shows (
⊕

i ← ys. g i) = (
⊕

i ← xs. g (f i))
using assms

21

proof (induction xs arbitrary: ys)
case Nil
then have ys = [] using bij-betw-same-card by fastforce
then show ?case by simp

next
case (Cons a xs)
then have length ys = length (a # xs) distinct ys
by (metis bij-betw-same-card distinct-card, metis bij-betw-same-card distinct-card

card-distinct)

have 0 :
∧

i. i ∈ set (a # xs) =⇒ g (f i) ∈ carrier G
proof −

fix i
assume i ∈ set (a # xs)
then have f i ∈ set ys using Cons.prems(3) by (simp add: bij-betw-apply)
then show g (f i) ∈ carrier G using Cons.prems(4) by blast

qed

define b where b = f a
then have b ∈ set ys using Cons(4) bij-betw-apply by fastforce
then obtain ys1 ys2 where ys = ys1 @ b # ys2 by (meson split-list)
then have b /∈ set ys1 b /∈ set ys2 using ‹distinct ys› by simp-all
have bij-betw f (set xs) (set (ys1 @ ys2))

using ‹ys = ys1 @ b # ys2 › Cons(4) b-def
using bij-betw-diff-singleton[of a set (a # xs) f a set ys f]
using Cons.prems(1) ‹distinct ys› by auto

moreover have length (ys1 @ ys2) = length xs using ‹length ys = length (a #
xs)› ‹ys = ys1 @ b # ys2 ›

by simp
ultimately have 1 : (

⊕
i ← (ys1@ys2). g i) = (

⊕
i ← xs. g (f i)) using

Cons.IH [of ys1@ys2] Cons.prems(4)
using Cons.prems(1) 0 ‹ys = ys1 @ b # ys2 › by auto

have (
⊕

i ← (a # xs). g (f i)) = g b ⊕ (
⊕

i ← xs. g (f i))
using ‹b = f a› by simp

also have ... = g b ⊕ (
⊕

i ← (ys1@ys2). g i) using 1 by simp
also have ... = (

⊕
i ← (ys1@b#ys2). g i)

apply (intro monoid-sum-list-extract[symmetric])
using Cons.prems(4) ‹ys = ys1 @ b # ys2 › by simp-all

finally show (
⊕

i ← ys. g i) = (
⊕

i ← (a # xs). g (f i))
using ‹ys = ys1 @ b # ys2 › by simp

qed

lemma monoid-sum-list-split:
assumes[simp]:

∧
i. i < b + c =⇒ f i ∈ carrier G

shows (
⊕

l ← [0 ..<b]. f l) ⊕ (
⊕

l ← [b..< b + c]. f l) = (
⊕

l ← [0 ..< b + c].
f l)

using monoid-sum-list-app[of [0 ..<b] f [b..< b + c], symmetric]
using upt-add-eq-append[of 0 b c]

22

by simp

lemma monoid-sum-list-splice:
assumes[simp]:

∧
i. i < 2 ∗ n =⇒ f i ∈ carrier G

shows (
⊕

i ← [0 ..< 2 ∗ n]. f i) = (
⊕

i ← [0 ..<n]. f (2∗i)) ⊕ (
⊕

i ← [0 ..<n].
f (2∗i+1))
proof −

let ?es = filter even [0 ..< 2 ∗ n]
let ?os = filter odd [0 ..< 2 ∗ n]
have 1 : (

⊕
i ← [0 ..< 2 ∗ n]. f i) = (

⊕
i ∈ {0 ..< 2 ∗ n}. f i)

using monoid-sum-list-finsum[of [0 ..< 2 ∗ n] f] by simp

let ?E = {i ∈ {0 ..<2∗n}. even i}
let ?O = {i ∈ {0 ..<2∗n}. odd i}
have ?E ∩ ?O = {} by blast
moreover have ?E ∪ ?O = {0 ..<2∗n} by blast
ultimately have (

⊕
i ∈ {0 ..<2∗n}. f i) = (

⊕
i ∈ ?E . f i) ⊕ (

⊕
i ∈ ?O. f i)

using finsum-Un-disjoint[of ?E ?O f] assms by auto
moreover have ?E = set ?es ?O = set ?os by simp-all
ultimately have (

⊕
i ∈ {0 ..<2∗n}. f i) = (

⊕
i ∈ set ?es. f i) ⊕ (

⊕
i ∈ set

?os. f i)
by presburger

also have (
⊕

i ∈ set ?es. f i) = (
⊕

i ← ?es. f i)
using monoid-sum-list-finsum[of ?es f] by simp

also have ... = (
⊕

i ← [0 ..<n]. f (2∗i))
using monoid-sum-list-index-transformation[of f λi. 2 ∗ i [0 ..<n]]
using filter-even-upt-even
by algebra

also have (
⊕

i ∈ set ?os. f i) = (
⊕

i ← ?os. f i)
using monoid-sum-list-finsum[of ?os f] by simp

also have ... = (
⊕

i ← [0 ..<n]. f (2∗i + 1))
using monoid-sum-list-index-transformation[of f λi. 2 ∗ i + 1 [0 ..<n]]
using filter-odd-upt-even
by algebra

finally show ?thesis using 1 by presburger
qed

lemma monoid-sum-list-even-odd-split:
assumes even (n::nat)
assumes

∧
i. i < n =⇒ f i ∈ carrier G

shows (
⊕

i ← [0 ..<n]. f i) = (
⊕

i ← [0 ..< n div 2]. f (2∗i)) ⊕ (
⊕

i ← [0 ..<
n div 2]. f (2∗i+1))

using assms monoid-sum-list-splice by auto

end

context abelian-group
begin

23

lemma monoid-sum-list-minus-in:
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier G

shows 	 (
⊕

i ← xs. f i) = (
⊕

i ← xs. 	 f i)
using assms by (induction xs) (simp-all add: minus-add)

lemma monoid-sum-list-diff-in:
assumes[simp]:

∧
i. i ∈ set xs =⇒ f i ∈ carrier G

assumes[simp]:
∧

i. i ∈ set xs =⇒ g i ∈ carrier G
shows (

⊕
i ← xs. f i) 	 (

⊕
i ← xs. g i) =

(
⊕

i ← xs. f i 	 g i)
proof −

have (
⊕

i ← xs. f i) 	 (
⊕

i ← xs. g i) = (
⊕

i ← xs. f i) ⊕ ((
⊕

i ← xs. g
i))

unfolding minus-eq by simp
also have ... = (

⊕
i ← xs. f i) ⊕ (

⊕
i ← xs. 	 g i)

using monoid-sum-list-minus-in[of xs g] by simp
also have ... = (

⊕
i ← xs. f i ⊕ (g i))

using monoid-sum-list-add-in[of xs f] by simp
finally show ?thesis unfolding minus-eq .

qed

end

context ring
begin

lemma monoid-sum-list-const:
assumes[simp]: c ∈ carrier R
shows (

⊕
i ← xs. c) = (nat-embedding (length xs)) ⊗ c

apply (induction xs)
using a-comm l-distr by auto

lemma monoid-sum-list-in-right:
assumes y ∈ carrier R
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier R

shows (
⊕

i ← xs. f i ⊗ y) = (
⊕

i ← xs. f i) ⊗ y
using assms by (induction xs) (simp-all add: l-distr)

lemma monoid-sum-list-in-left:
assumes y ∈ carrier R
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier R

shows (
⊕

i ← xs. y ⊗ f i) = y ⊗ (
⊕

i ← xs. f i)
using assms by (induction xs) (simp-all add: r-distr)

lemma monoid-sum-list-prod:
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier R

assumes
∧

i. i ∈ set ys =⇒ g i ∈ carrier R
shows (

⊕
i ← xs. f i) ⊗ (

⊕
j ← ys. g j) = (

⊕
i ← xs. (

⊕
j ← ys. f i ⊗ g j))

proof −

24

have (
⊕

i ← xs. f i) ⊗ (
⊕

j ← ys. g j) = (
⊕

i ← xs. f i ⊗ (
⊕

j ← ys. g j))
apply (intro monoid-sum-list-in-right[symmetric])
using assms by simp-all

also have ... = (
⊕

i ← xs. (
⊕

j ← ys. f i ⊗ g j))
apply (intro monoid-sum-list-cong monoid-sum-list-in-left[symmetric])
using assms by simp-all

finally show ?thesis .
qed

3.1 Kronecker delta
definition delta where
delta i j = (if i = j then 1 else 0)

lemma delta-closed[simp]: delta i j ∈ carrier R
unfolding delta-def by simp

lemma delta-sym: delta i j = delta j i
unfolding delta-def by simp

lemma delta-refl[simp]: delta i i = 1
unfolding delta-def by simp

lemma monoid-sum-list-delta[simp]:
assumes[simp]:

∧
i. i < n =⇒ f i ∈ carrier R

assumes[simp]: j < n
shows (

⊕
i ← [0 ..<n]. delta i j ⊗ f i) = f j

proof −
from assms have 0 : [0 ..<n] = [0 ..<j] @ j # [Suc j..<n]

by (metis le-add1 le-add-same-cancel1 less-imp-add-positive upt-add-eq-append
upt-conv-Cons)

then have [0 ..<n] = [0 ..<j] @ [j] @ [Suc j..<n]
by simp

moreover have 1 :
∧

i. i ∈ set [0 ..<j] =⇒ delta i j ⊗ f i ∈ carrier R
using 0 assms delta-closed m-closed atLeastLessThan-iff

by (metis le-add1 less-imp-add-positive linorder-le-less-linear set-upt upt-conv-Nil)
moreover have 2 :

∧
i. i ∈ set ([j] @ [Suc j..<n]) =⇒ delta i j ⊗ f i ∈ carrier R

using 0 assms delta-closed m-closed
by auto

ultimately have (
⊕

i ← [0 ..<n]. delta i j ⊗ f i) = (
⊕

i ← [0 ..<j]. delta i j ⊗
f i) ⊕ (

⊕
i ← [j] @ [Suc j..<n]. delta i j ⊗ f i)

using monoid-sum-list-app[of [0 ..<j] λi. delta i j ⊗ f i [j] @ [Suc j..<n]]
by presburger

also have (
⊕

i ← [j] @ [Suc j..<n]. delta i j ⊗ f i) = (
⊕

i ← [j]. delta i j ⊗ f
i) ⊕ (

⊕
i ← [Suc j..<n]. delta i j ⊗ f i)

using 2 monoid-sum-list-app[of [j] λi. delta i j ⊗ f i [Suc j..<n]]
by simp

also have (
⊕

i ← [0 ..<j]. delta i j ⊗ f i) = 0
using monoid-sum-list-0 [of [0 ..<j]] monoid-sum-list-cong[of [0 ..<j] λi. 0 λi.

25

delta i j ⊗ f i]
unfolding delta-def using ‹j < n› by simp

also have (
⊕

i ← [Suc j..<n]. delta i j ⊗ f i) = 0
using monoid-sum-list-0 [of [Suc j..<n]] monoid-sum-list-cong[of [Suc j..<n]

λi. 0 λi. delta i j ⊗ f i]
unfolding delta-def by simp

also have (
⊕

i ← [j]. delta i j ⊗ f i) = f j by simp
finally show ?thesis by simp

qed

lemma mononid-sum-list-only-delta[simp]:
j < n =⇒ (

⊕
i ← [0 ..<n]. delta i j) = 1

using monoid-sum-list-delta[of n λi. 1 j] by simp

3.2 Power sums
lemma geo-monoid-list-sum:

assumes[simp]: x ∈ carrier R
shows (1 	 x) ⊗ (

⊕
l ← [0 ..<r]. x [^] l) = (1 	 x [^] r)

using assms
proof (induction r)

case 0
then show ?case using assms by (simp, algebra)

next
case (Suc r)
have (1 	 x) ⊗ (

⊕
l ← [(0 ::nat)..< Suc r]. x [^] l) = (1 	 x) ⊗ (x [^] r ⊕ (

⊕
l

← [0 ..<r]. x [^] l))
using monoid-sum-list-Suc[of r λl. x [^] l] a-comm
by simp

also have ... = (1 	 x) ⊗ x [^] r ⊕ (1 	 x) ⊗ (
⊕

l ← [0 ..<r]. x [^] l)
using r-distr by auto

also have ... = x [^] r 	 x [^] (Suc r) ⊕ (1 	 x) ⊗ (
⊕

l ← [0 ..<r]. x [^] l)
apply (intro arg-cong2 [where f = (⊕)] refl)
unfolding minus-eq
l-distr [OF one-closed a-inv-closed[OF ‹x ∈ carrier R›] nat-pow-closed[OF ‹x

∈ carrier R›]]
using ‹x ∈ carrier R›
using l-minus nat-pow-Suc2 by force

also have ... = x [^] r 	 x [^] (Suc r) ⊕ (1 	 x [^] r)
using Suc by presburger

also have ... = 1 	 x [^] (Suc r)
using one-closed minus-add assms nat-pow-closed[of x] by algebra

finally show ?case .
qed

rewrite ?x ∈ carrier R =⇒ (?x [^] ?n) [^] ?m = ?x [^] (?n ∗ ?m) and ?a ∗
?b = ?b ∗ ?a inside power sum
lemma monoid-pow-sum-nat-pow-pow:

26

assumes x ∈ carrier R
shows (

⊕
i ← xs. f i ⊗ x [^] ((g i :: nat) ∗ h i)) = (

⊕
i ← xs. f i ⊗ (x [^] h i)

[^] g i)
apply (intro-cong [cong-tag-2 (⊗)] more: monoid-sum-list-cong refl)
using nat-pow-pow[OF assms] by (simp add: mult.commute)

end

context cring
begin

Split a power sum at some term
lemma monoid-pow-sum-list-split:

assumes l + k = n
assumes

∧
i. i < n =⇒ f i ∈ carrier R

assumes x ∈ carrier R
shows (

⊕
i ← [0 ..<n]. f i ⊗ x [^] i) =

(
⊕

i ← [0 ..<l]. f i ⊗ x [^] i) ⊕
x [^] l ⊗ (

⊕
i ← [0 ..<k]. f (l + i) ⊗ x [^] i)

proof −
have (

⊕
i ← [0 ..<n]. f i ⊗ x [^] i) =

(
⊕

i ← [0 ..<l]. f i ⊗ x [^] i) ⊕
(
⊕

i ← [l..<n]. f i ⊗ x [^] i)
apply (intro monoid-sum-list-app ′ m-closed nat-pow-closed upt-add-eq-append ′[symmetric])
using assms by simp-all

also have (
⊕

i ← [l..<n]. f i ⊗ x [^] i) =
(
⊕

i ← [0 ..<k]. f (l + i) ⊗ x [^] (l + i))
using monoid-sum-list-index-shift-0 [of - l n−l] ‹l + k = n›
by fastforce

also have ... = (
⊕

i ← [0 ..<k]. x [^] l ⊗ (f (l + i) ⊗ x [^] i))
apply (intro monoid-sum-list-cong)
using assms m-comm m-assoc nat-pow-mult[symmetric, OF ‹x ∈ carrier R›]

by simp
also have ... = x [^] l ⊗ (

⊕
i ← [0 ..<k]. f (l + i) ⊗ x [^] i)

apply (intro monoid-sum-list-in-left m-closed nat-pow-closed)
using assms by simp-all

finally show ?thesis .
qed

split power sum at term, more general
lemma monoid-pow-sum-split:

assumes l + k = n
assumes

∧
i. i < n =⇒ f i ∈ carrier R

assumes x ∈ carrier R
shows (

⊕
i ← [0 ..<n]. f i ⊗ x [^] (i ∗ c)) =

(
⊕

i ← [0 ..<l]. f i ⊗ x [^] (i ∗ c)) ⊕
x [^] (l ∗ c) ⊗ (

⊕
i ← [0 ..<k]. f (l + i) ⊗ x [^] (i ∗ c))

proof −
have (

⊕
i ← [0 ..<n]. f i ⊗ x [^] (i ∗ c)) = (

⊕
i ← [0 ..<n]. f i ⊗ (x [^] c) [^]

27

i)
by (intro monoid-pow-sum-nat-pow-pow ‹x ∈ carrier R›)

also have ... = (
⊕

i ← [0 ..<l]. f i ⊗ (x [^] c) [^] i) ⊕
(x [^] c) [^] l ⊗ (

⊕
i ← [0 ..<k]. f (l + i) ⊗ (x [^] c) [^] i)

by (intro monoid-pow-sum-list-split assms nat-pow-closed) argo
also have ... = (

⊕
i ← [0 ..<l]. f i ⊗ x [^] (i ∗ c)) ⊕

x [^] (c ∗ l) ⊗ (
⊕

i ← [0 ..<k]. f (l + i) ⊗ x [^] (i ∗ c))
by (intro-cong [cong-tag-2 (⊕), cong-tag-2 (⊗)] more: monoid-pow-sum-nat-pow-pow[symmetric]

nat-pow-pow ‹x ∈ carrier R›)
also have ... = (

⊕
i ← [0 ..<l]. f i ⊗ x [^] (i ∗ c)) ⊕

x [^] (l ∗ c) ⊗ (
⊕

i ← [0 ..<k]. f (l + i) ⊗ x [^] (i ∗ c))
by (intro-cong [cong-tag-2 (⊕), cong-tag-2 (⊗), cong-tag-2 ([^])] more: refl

mult.commute)
finally show ?thesis .

qed

3.2.1 Algebraic operations

addition
lemma monoid-pow-sum-add:

assumes
∧

i. i ∈ set xs =⇒ f i ∈ carrier R
assumes

∧
i. i ∈ set xs =⇒ g i ∈ carrier R

assumes x ∈ carrier R
shows (

⊕
i ← xs. f i ⊗ x [^] (i::nat)) ⊕ (

⊕
i ← xs. g i ⊗ x [^] i) = (

⊕
i ←

xs. (f i ⊕ g i) ⊗ x [^] i)
proof −

have (
⊕

i ← xs. f i ⊗ x [^] i) ⊕ (
⊕

i ← xs. g i ⊗ x [^] i) =
(
⊕

i ← xs. (f i ⊗ x [^] i) ⊕ (g i ⊗ x [^] i))
apply (intro monoid-sum-list-add-in m-closed nat-pow-closed assms) by as-

sumption+
also have ... = (

⊕
i ← xs. (f i ⊕ g i) ⊗ x [^] i)

apply (intro monoid-sum-list-cong l-distr [symmetric] nat-pow-closed assms) by
assumption+

finally show ?thesis .
qed

lemma monoid-pow-sum-add ′:
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier R

assumes
∧

i. i ∈ set xs =⇒ g i ∈ carrier R
assumes x ∈ carrier R

shows (
⊕

i ← xs. f i ⊗ x [^] ((i::nat) ∗ c)) ⊕ (
⊕

i ← xs. g i ⊗ x [^] (i ∗ c)) =
(
⊕

i ← xs. (f i ⊕ g i) ⊗ x [^] (i ∗ c))
proof −

have (
⊕

i ← xs. f i ⊗ x [^] ((i::nat) ∗ c)) ⊕ (
⊕

i ← xs. g i ⊗ x [^] (i ∗ c)) =
(
⊕

i ← xs. (f i ⊗ (x [^] c) [^] i)) ⊕ (
⊕

i ← xs. (g i ⊗ (x [^] c) [^] i))
by (intro-cong [cong-tag-2 (⊕)] more: monoid-pow-sum-nat-pow-pow ‹x ∈ carrier

R›)
also have ... = (

⊕
i ← xs. (f i ⊕ g i) ⊗ (x [^] c) [^] i)

apply (intro monoid-pow-sum-add nat-pow-closed) using assms by simp-all

28

also have ... = (
⊕

i ← xs. (f i ⊕ g i) ⊗ x [^] (i ∗ c))
by (intro monoid-pow-sum-nat-pow-pow[symmetric] ‹x ∈ carrier R›)

finally show ?thesis .
qed

unary minus
lemma monoid-pow-sum-minus:

assumes
∧

i. i ∈ set xs =⇒ f i ∈ carrier R
assumes x ∈ carrier R
shows 	 (

⊕
i ← xs. f i ⊗ x [^] (i :: nat)) = (

⊕
i ← xs. (f i) ⊗ x [^] i)

proof −
have 	 (

⊕
i ← xs. f i ⊗ x [^] (i :: nat)) = (

⊕
i ← xs. 	 (f i ⊗ x [^] (i :: nat)))

apply (intro monoid-sum-list-minus-in m-closed nat-pow-closed assms) by as-
sumption

also have ... = (
⊕

i ← xs. (f i) ⊗ x [^] i)
apply (intro monoid-sum-list-cong l-minus[symmetric] nat-pow-closed assms)

by assumption
finally show ?thesis .

qed

minus
lemma monoid-pow-sum-diff :

assumes
∧

i. i ∈ set xs =⇒ f i ∈ carrier R
assumes

∧
i. i ∈ set xs =⇒ g i ∈ carrier R

assumes x ∈ carrier R
shows (

⊕
i ← xs. f i ⊗ x [^] (i::nat)) 	 (

⊕
i ← xs. g i ⊗ x [^] (i :: nat)) =

(
⊕

i ← xs. (f i 	 g i) ⊗ x [^] i)
using assms
by (simp add: minus-eq monoid-pow-sum-add[symmetric] monoid-pow-sum-minus)

lemma monoid-pow-sum-diff ′:
assumes

∧
i. i ∈ set xs =⇒ f i ∈ carrier R

assumes
∧

i. i ∈ set xs =⇒ g i ∈ carrier R
assumes x ∈ carrier R
shows (

⊕
i ← xs. f i ⊗ x [^] ((i::nat) ∗ c)) 	 (

⊕
i ← xs. g i ⊗ x [^] (i ∗ c)) =

(
⊕

i ← xs. (f i 	 g i) ⊗ x [^] (i ∗ c))
proof −

have (
⊕

i ← xs. f i ⊗ x [^] ((i::nat) ∗ c)) 	 (
⊕

i ← xs. g i ⊗ x [^] (i ∗ c)) =
(
⊕

i ← xs. f i ⊗ (x [^] c) [^] i) 	 (
⊕

i ← xs. g i ⊗ (x [^] c) [^] i)
by (intro-cong [cong-tag-2 (λi j. i 	 j)] more: monoid-pow-sum-nat-pow-pow

‹x ∈ carrier R›)
also have ... = (

⊕
i ← xs. (f i 	 g i) ⊗ (x [^] c) [^] i)

apply (intro monoid-pow-sum-diff nat-pow-closed) using assms by simp-all
also have ... = (

⊕
i ← xs. (f i 	 g i) ⊗ x [^] (i ∗ c))

by (intro monoid-pow-sum-nat-pow-pow[symmetric] ‹x ∈ carrier R›)
finally show ?thesis .

qed

end

29

3.3 monoid-sum-list in the context residues
context residues
begin

lemma monoid-sum-list-eq-sum-list:
(
⊕

R i ← xs. f i) = (
∑

i ← xs. f i) mod m
apply (induction xs)
subgoal by (simp add: zero-cong)
subgoal for a xs by (simp add: mod-add-right-eq res-add-eq)
done

lemma monoid-sum-list-mod-in:
(
⊕

R i ← xs. f i) = (
⊕

R i ← xs. (f i) mod m)
by (induction xs) (simp-all add: mod-add-left-eq res-add-eq)

lemma monoid-sum-list-eq-sum-list ′:
(
⊕

R i ← xs. f i mod m) = (
∑

i ← xs. f i) mod m
using monoid-sum-list-eq-sum-list monoid-sum-list-mod-in by metis

end

end

4 The estimation tactic
theory Estimation-Method

imports Main HOL−Eisbach.Eisbach-Tools
begin

A few useful lemmas for working with inequalities.
lemma if-prop-cong:

assumes C = C ′

assumes C =⇒ P A A ′

assumes ¬ C =⇒ P B B ′

shows P (if C then A else B) (if C ′ then A ′ else B ′)
using assms by simp

lemma if-leqI :
assumes C =⇒ A ≤ t
assumes ¬ C =⇒ B ≤ t
shows (if C then A else B) ≤ t
using assms by simp

lemma if-le-max:
(if C then (t1 :: ′a :: linorder) else t2) ≤ max t1 t2
by simp

Prove some inequality by showing a chain of inequalities via an intermediate

30

term.
method itrans for step :: ′a :: order =
(match conclusion in s ≤ t for s t :: ′a ⇒ ‹rule order .trans[of s step t]›)

A collection of monotonicity intro rules that will be automatically used by
estimation.
lemmas mono-intros =
order .refl add-mono diff-mono mult-le-mono max.mono min.mono power-increasing

power-mono
iffD2 [OF Suc-le-mono] if-prop-cong[where P = (≤)] Nat.le0 one-le-numeral

Try to apply a given estimation rule estimate in a forward-manner.
method estimation uses estimate =
(match estimate in

∧
a. f a ≤ h a (multi) for f h ⇒ ‹

match conclusion in g f ≤ t for g and t :: nat ⇒
‹rule order .trans[of g f g h t], intro mono-intros refl estimate››

| x ≤ y for x y ⇒ ‹
match conclusion in g x ≤ t for g and t :: nat ⇒
‹rule order .trans[of g x g y t], intro mono-intros refl estimate››)

end
theory Time-Monad-Extended

imports Root-Balanced-Tree.Time-Monad
begin

5 Some Automation for Root-Balanced-Tree.Time-Monad

A bit of automation for statements involving the time component.
lemma time-bind-tm: time (s >>= f) = time s + time (f (val s))

unfolding bind-tm-def
by (simp split: tm.splits)

lemma time-tick: time (tick s) = 1
by (simp add: tick-def)

lemmas tm-time-simps[simp] = time-bind-tm time-return time-tick if-distrib[of
time]

lemma bind-tm-cong[fundef-cong]:
assumes f1 = f2
assumes g1 (val f1) = g2 (val f2)
shows f1 >>= g1 = f2 >>= g2
using assms unfolding bind-tm-def
by (auto split: tm.splits)

Introduce val-simp as named theorem. The idea is to collect simplification
rules for the Time-Monad.val component that can be unfolded on their own.

31

named-theorems val-simp
declare val-simps[val-simp]

end
theory Main-TM

imports Main Time-Monad-Extended Estimation-Method
begin

6 Running Time Formalization for some functions
available in Main

6.1 Functions on bool
6.1.1 Not
fun Not-tm :: bool ⇒ bool tm where
Not-tm True =1 return False
| Not-tm False =1 return True

lemma val-Not-tm[simp, val-simp]: val (Not-tm x) = Not x
by (cases x; simp)

lemma time-Not-tm[simp]: time (Not-tm x) = 1
by (cases x; simp)

6.1.2 disj / conj
definition disj-tm where disj-tm x y =1 return (x ∨ y)
definition conj-tm where conj-tm x y =1 return (x ∧ y)

lemma val-disj-tm[simp, val-simp]: val (disj-tm x y) = (x ∨ y)
by (simp add: disj-tm-def)

lemma time-disj-tm[simp]: time (disj-tm x y) = 1
by (simp add: disj-tm-def)

lemma val-conj-tm[simp, val-simp]: val (conj-tm x y) = (x ∧ y)
by (simp add: conj-tm-def)

lemma time-conj-tm[simp]: time (conj-tm x y) = 1
by (simp add: conj-tm-def)

6.1.3 equal
fun equal-bool-tm :: bool ⇒ bool ⇒ bool tm where
equal-bool-tm True p =1 return p
| equal-bool-tm False p =1 Not-tm p

lemma val-equal-bool-tm[simp, val-simp]: val (equal-bool-tm x y) = (x = y)
by (cases x; simp)

lemma time-equal-bool-tm-le: time (equal-bool-tm x y) ≤ 2

32

by (cases x; simp)

6.2 Functions involving pairs
6.2.1 fst / snd
fun fst-tm :: ′a × ′b ⇒ ′a tm where
fst-tm (x, y) =1 return x
fun snd-tm :: ′a × ′b ⇒ ′b tm where
snd-tm (x, y) =1 return y

lemma val-fst-tm[simp, val-simp]: val (fst-tm p) = fst p
by (subst prod.collapse[symmetric], unfold fst-tm.simps, simp)

lemma time-fst-tm[simp]: time (fst-tm p) = 1
by (subst prod.collapse[symmetric], unfold fst-tm.simps, simp)

lemma val-snd-tm[simp, val-simp]: val (snd-tm p) = snd p
by (subst prod.collapse[symmetric], unfold snd-tm.simps, simp)

lemma time-snd-tm[simp]: time (snd-tm p) = 1
by (subst prod.collapse[symmetric], unfold snd-tm.simps, simp)

6.3 Functions on nat
6.3.1 (+)

fun plus-nat-tm :: nat ⇒ nat ⇒ nat tm where
plus-nat-tm (Suc m) n =1 plus-nat-tm m (Suc n)
| plus-nat-tm 0 n =1 return n

lemma val-plus-nat-tm[simp, val-simp]: val (plus-nat-tm m n) = m + n
by (induction m n rule: plus-nat-tm.induct) simp-all

lemma time-plus-nat-tm[simp]: time (plus-nat-tm m n) = m + 1
by (induction m n rule: plus-nat-tm.induct) simp-all

6.3.2 (∗)
fun times-nat-tm :: nat ⇒ nat ⇒ nat tm where
times-nat-tm 0 n =1 return 0
| times-nat-tm (Suc m) n =1 do {

r ← times-nat-tm m n;
plus-nat-tm n r
}

lemma val-times-nat-tm[simp]: val (times-nat-tm m n) = m ∗ n
by (induction m n rule: times-nat-tm.induct) simp-all

lemma time-times-nat-tm[simp]: time (times-nat-tm m n) = m ∗ (n + 2) + 1
by (induction m n rule: times-nat-tm.induct) simp-all

33

6.3.3 (^)
fun power-nat-tm :: nat ⇒ nat ⇒ nat tm where
power-nat-tm a 0 =1 return 1
| power-nat-tm a (Suc n) =1 do {

r ← power-nat-tm a n;
times-nat-tm a r
}

lemma val-power-nat-tm[simp, val-simp]: val (power-nat-tm a n) = a ^ n
by (induction a n rule: power-nat-tm.induct) simp-all

lemma time-power-nat-tm-aux0 : time (power-nat-tm 0 n) = 2 ∗ n + 1
by (induction n) simp-all

lemma time-power-nat-tm-aux1 : time (power-nat-tm 1 n) = 5 ∗ n + 1
by (induction n) simp-all

lemma time-power-nat-tm-aux2 :
assumes m ≥ 2
shows time (power-nat-tm m n) ≤ (2 ∗ n + m ^ n) ∗ m + 2 ∗ n + 1

proof (induction n)
case 0
then have time (power-nat-tm m 0) = 1 by simp
then show ?case by simp

next
case (Suc n)
have time (power-nat-tm m (Suc n)) ≤ time (power-nat-tm m n) + (m ^ n +

2) ∗ m + 2
by simp

also have ... ≤ (2 ∗ n + m ^ n) ∗ m + 2 ∗ n + 1 + (m ^ n + 2) ∗ m + 2
using Suc by simp

also have ... = (2 ∗ n + m ^ n) ∗ m + (m ^ n + 2) ∗ m + 2 ∗ Suc n + 1
by simp

also have ... = (2 ∗ Suc n + 2 ∗ m ^ n) ∗ m + 2 ∗ Suc n + 1
using add-mult-distrib by simp

also have ... ≤ (2 ∗ Suc n + m ^ Suc n) ∗ m + 2 ∗ Suc n + 1
using assms by simp

finally show ?case .
qed

lemma time-power-nat-tm-le: time (power-nat-tm m n) ≤ 3 ∗ m ^ Suc n + 5 ∗ n
+ 1
proof −

consider m = 0 | m = 1 | m ≥ 2 by linarith
then show ?thesis
proof cases

case 1
then show ?thesis using time-power-nat-tm-aux0 [of n] by simp

next

34

case 2
then show ?thesis using time-power-nat-tm-aux1 [of n] by simp

next
case 3
then have 2 ^ n ≤ m ^ n using power-mono by fast
moreover have n < 2 ^ n by simp
ultimately have n-le-m-pow-n: n ≤ m ^ n by linarith
have time (power-nat-tm m n) ≤ (2 ∗ m ^ n + m ^ n) ∗ m + 2 ∗ n + 1

apply (estimation estimate: time-power-nat-tm-aux2 [OF 3 , of n])
using n-le-m-pow-n by simp

also have ... = 3 ∗ m ^ Suc n + 2 ∗ n + 1 by simp
finally show ?thesis by simp

qed
qed

lemma time-power-nat-tm-2-le: time (power-nat-tm 2 n) ≤ 12 ∗ 2 ^ n
proof −

have time (power-nat-tm 2 n) ≤ 3 ∗ 2 ^ Suc n + 5 ∗ n + 1
by (fact time-power-nat-tm-le)

also have ... ≤ 3 ∗ 2 ^ Suc n + 5 ∗ 2 ^ n + 2 ^ n
apply (intro add-mono mult-le-mono order .refl)
using less-exp[of n] by simp-all

finally show ?thesis by simp
qed

6.3.4 (−)
fun minus-nat-tm :: nat ⇒ nat ⇒ nat tm where
minus-nat-tm m 0 =1 return m
| minus-nat-tm 0 m =1 return 0
| minus-nat-tm (Suc m) (Suc n) =1 minus-nat-tm m n

lemma val-minus-nat-tm[simp, val-simp]: val (minus-nat-tm m n) = m − n
by (induction m n rule: minus-nat-tm.induct) simp-all

lemma time-minus-nat-tm[simp]: time (minus-nat-tm m n) = min m n + 1
by (induction m n rule: minus-nat-tm.induct) simp-all

6.3.5 (<) / (≤)
fun less-eq-nat-tm :: nat ⇒ nat ⇒ bool tm and less-nat-tm :: nat ⇒ nat ⇒ bool
tm where
less-eq-nat-tm (Suc m) n =1 less-nat-tm m n
| less-eq-nat-tm 0 n =1 return True
| less-nat-tm m (Suc n) =1 less-eq-nat-tm m n
| less-nat-tm m 0 =1 return False

lemma val-less-eq-nat-tm[simp, val-simp]: (val (less-eq-nat-tm n m) = (n ≤ m))
and val-less-nat-tm[simp, val-simp]: (val (less-nat-tm m n) = (m < n))
by (induction m and n rule: less-eq-nat-tm-less-nat-tm.induct) auto

35

lemma time-less-eq-nat-tm-aux: time (less-eq-nat-tm (m + k) (n + k)) = 2 ∗ k
+ time (less-eq-nat-tm m n)

by (induction k) simp-all
lemma time-less-nat-tm-aux: time (less-nat-tm (m + k) (n + k)) = 2 ∗ k + time
(less-nat-tm m n)

by (induction k) simp-all

lemma time-less-eq-nat-tm: time (less-eq-nat-tm n m) = 2 ∗ min n m + 1 +
of-bool (m < n)
proof (cases m < n)

case True
then obtain k where n = m + Suc k by (metis add-Suc-right less-natE)
then have time (less-eq-nat-tm n m) = 2 ∗ m + 2

using time-less-eq-nat-tm-aux[of Suc k m 0] by (simp add: add.commute)
then show ?thesis using True by simp

next
case False
then obtain k where m = n + k using nat-le-iff-add[of n m] by auto
then have time (less-eq-nat-tm n m) = 2 ∗ n + 1

using time-less-eq-nat-tm-aux[of 0 n k] by (simp add: add.commute)
then show ?thesis using False by simp

qed
lemma time-less-nat-tm: time (less-nat-tm m n) = 2 ∗ min m n + 1 + of-bool
(m < n)
proof (cases m < n)

case True
then obtain k where n = m + Suc k by (metis add-Suc-right less-natE)
then have time (less-nat-tm m n) = 2 ∗ m + 2

using time-less-nat-tm-aux[of 0 m Suc k] by (simp add: add.commute)
then show ?thesis using True by simp

next
case False
then obtain k where m = n + k using nat-le-iff-add[of n m] by auto
then have time (less-nat-tm m n) = 2 ∗ n + 1

using time-less-nat-tm-aux[of k n 0] by (simp add: add.commute)
then show ?thesis using False by simp

qed

lemma time-less-eq-nat-tm-le: time (less-eq-nat-tm n m) ≤ 2 ∗ min n m + 2
by (simp add: time-less-eq-nat-tm)

lemma time-less-nat-tm-le: time (less-nat-tm m n) ≤ 2 ∗ min m n + 2
by (simp add: time-less-nat-tm)

6.3.6 (=)

fun equal-nat-tm :: nat ⇒ nat ⇒ bool tm where
equal-nat-tm 0 0 =1 return True
| equal-nat-tm (Suc x) 0 =1 return False

36

| equal-nat-tm 0 (Suc y) =1 return False
| equal-nat-tm (Suc x) (Suc y) =1 equal-nat-tm x y

lemma val-equal-nat-tm[simp, val-simp]: val (equal-nat-tm x y) = (x = y)
by (induction x y rule: equal-nat-tm.induct) simp-all

lemma time-equal-nat-tm: time (equal-nat-tm x y) = min x y + 1
by (induction x y rule: equal-nat-tm.induct) simp-all

6.3.7 max
fun max-nat-tm :: nat ⇒ nat ⇒ nat tm where
max-nat-tm x y =1 do {

b ← less-eq-nat-tm x y;
if b then return y else return x
}

lemma val-max-nat-tm[simp, val-simp]: val (max-nat-tm x y) = max x y
by simp

lemma time-max-nat-tm: time (max-nat-tm x y) = 2 ∗ min x y + 2 + of-bool (y
< x)

by (simp add: time-less-eq-nat-tm)

lemma time-max-nat-tm-le: time (max-nat-tm x y) ≤ 2 ∗ min x y + 3
unfolding time-max-nat-tm by simp

6.3.8 (div) / (mod)
fun divmod-nat-tm :: nat ⇒ nat ⇒ (nat × nat) tm where
divmod-nat-tm m n =1 do {

n0 ← equal-nat-tm n 0 ;
m-lt-n ← less-nat-tm m n;
b ← disj-tm n0 m-lt-n;
if b then return (0 , m) else do {

m-minus-n ← minus-nat-tm m n;
(q, r) ← divmod-nat-tm m-minus-n n;
return (Suc q, r)
}
}
declare divmod-nat-tm.simps[simp del]

lemma val-divmod-nat-tm[simp, val-simp]: val (divmod-nat-tm m n) = Euclidean-Rings.divmod-nat
m n
proof (induction m n rule: divmod-nat-tm.induct)

case (1 m n)
show ?case
proof (cases n = 0 ∨ m < n)

case True

37

then show ?thesis unfolding divmod-nat-tm.simps[of m n] by (simp add:
Euclidean-Rings.divmod-nat-if)

next
case False
then have val (divmod-nat-tm m n) = (let (q, r) = val (divmod-nat-tm (m −

n) n) in (Suc q, r))
unfolding divmod-nat-tm.simps[of m n]
by (simp add: Let-def split: prod.splits)

also have ... = (let (q, r) = Euclidean-Rings.divmod-nat (m − n) n in (Suc q,
r))

using 1 False by simp
also have ... = Euclidean-Rings.divmod-nat m n

unfolding Euclidean-Rings.divmod-nat-if [of m n]
by (simp add: False split: prod.splits)

finally show ?thesis .
qed

qed

lemma time-divmod-nat-tm-aux:
assumes r < n
assumes n > 0
shows time (divmod-nat-tm (n ∗ k + r) n) = 5 ∗ k + 3 ∗ n ∗ k + time

(divmod-nat-tm r n)
using assms

proof (induction k)
case 0
then show ?case by simp

next
case (Suc k)
then show ?case

unfolding divmod-nat-tm.simps[of n ∗ (Suc k) + r n]
by (simp add: time-equal-nat-tm time-less-nat-tm split: prod.splits)

qed

lemma time-divmod-nat-tm-le: time (divmod-nat-tm m n) ≤ 8 ∗ m + 2 ∗ n + 5
proof (cases n = 0 ∨ m < n)

case True
have time (divmod-nat-tm m n) = time (equal-nat-tm n 0) + time (less-nat-tm

m n) + 2
unfolding divmod-nat-tm.simps[of m n]
by (simp add: True)

also have ... ≤ 2 ∗ min m n + 5
apply (subst time-equal-nat-tm)
apply (estimation estimate: time-less-nat-tm-le)
by simp

finally show ?thesis by simp
next

case False

38

define k r where k = m div n r = m mod n
then have krn: m = n ∗ k + r by simp
from k-r-def have r < n using False by simp
have time (divmod-nat-tm m n) = 5 ∗ k + 3 ∗ n ∗ k + time (divmod-nat-tm r

n)
apply (subst krn, intro time-divmod-nat-tm-aux, intro ‹r < n›)
using False by simp

also have time (divmod-nat-tm r n) = time (equal-nat-tm n 0) + time (less-nat-tm
r n) + 2

unfolding divmod-nat-tm.simps[of r n]
by (simp add: ‹r < n›)

also have ... ≤ 2 ∗ min r n + 5
apply (subst time-equal-nat-tm)
apply (estimation estimate: time-less-nat-tm-le)
by simp

finally have time (divmod-nat-tm m n) ≤ 5 ∗ k + 3 ∗ n ∗ k + 2 ∗ n + 5
by simp

also have ... ≤ 5 ∗ k + 3 ∗ m + 2 ∗ n + 5
using k-r-def by simp

also have ... ≤ 8 ∗ m + 2 ∗ n + 5
using k-r-def by simp

finally show ?thesis .
qed

definition divide-nat-tm :: nat ⇒ nat ⇒ nat tm where
divide-nat-tm m n =1 divmod-nat-tm m n >>= fst-tm

lemma val-divide-nat-tm[simp, val-simp]: val (divide-nat-tm m n) = m div n
by (simp add: divide-nat-tm-def Euclidean-Rings.divmod-nat-def)

lemma time-divide-nat-tm-le: time (divide-nat-tm m n) ≤ 8 ∗ m + 2 ∗ n + 7
using time-divmod-nat-tm-le[of m n] by (simp add: divide-nat-tm-def)

definition mod-nat-tm :: nat ⇒ nat ⇒ nat tm where
mod-nat-tm m n =1 divmod-nat-tm m n >>= snd-tm

lemma val-mod-nat-tm[simp, val-simp]: val (mod-nat-tm m n) = m mod n
by (simp add: mod-nat-tm-def Euclidean-Rings.divmod-nat-def)

lemma time-mod-nat-tm-le: time (mod-nat-tm m n) ≤ 8 ∗ m + 2 ∗ n + 7
using time-divmod-nat-tm-le[of m n] by (simp add: mod-nat-tm-def)

definition dvd-tm where dvd-tm a b =1 do {
b-mod-a ← mod-nat-tm b a;
equal-nat-tm b-mod-a 0
}

39

6.3.9 (dvd)
lemma val-dvd-tm[simp, val-simp]: val (dvd-tm a b) = (a dvd b)

unfolding dvd-tm-def dvd-eq-mod-eq-0 by simp

lemma time-dvd-tm-le: time (dvd-tm a b) ≤ 8 ∗ b + 2 ∗ a + 9
unfolding dvd-tm-def tm-time-simps val-mod-nat-tm time-equal-nat-tm
using time-mod-nat-tm-le[of b a] by simp

6.3.10 even / odd
definition even-tm where even-tm a = dvd-tm 2 a

lemma val-even-tm[simp, val-simp]: val (even-tm a) = even a
unfolding even-tm-def by simp

lemma time-even-tm-le: time (even-tm a) ≤ 8 ∗ a + 13
unfolding even-tm-def tm-time-simps
using time-dvd-tm-le[of 2 a] by simp

definition odd-tm where odd-tm a = dvd-tm 2 a >>= Not-tm

lemma val-odd-tm[simp, val-simp]: val (odd-tm a) = odd a
unfolding odd-tm-def by simp

lemma time-odd-tm-le: time (odd-tm a) ≤ 8 ∗ a + 14
unfolding odd-tm-def tm-time-simps
using time-dvd-tm-le[of 2 a] by simp

6.4 List functions
6.4.1 take
fun take-tm :: nat ⇒ ′a list ⇒ ′a list tm where
take-tm n [] =1 return []
| take-tm n (x # xs) =1 (case n of 0 ⇒ return [] | Suc m ⇒

do {
r ← take-tm m xs;
return (x # r)
})

lemma val-take-tm[simp, val-simp]: val (take-tm n xs) = take n xs
by (induction n xs rule: take-tm.induct) (simp-all split: nat.splits)

lemma time-take-tm: time (take-tm n xs) = min n (length xs) + 1
by (induction n xs rule: take-tm.induct) (simp-all split: nat.splits)

lemma time-take-tm-le: time (take-tm n xs) ≤ n + 1
by (simp add: time-take-tm)

40

6.4.2 drop
fun drop-tm :: nat ⇒ ′a list ⇒ ′a list tm where
drop-tm n [] =1 return []
| drop-tm n (x # xs) =1 (case n of 0 ⇒ return (x # xs) | Suc m ⇒

do {
r ← drop-tm m xs;
return r
})

lemma val-drop-tm[simp, val-simp]: val (drop-tm n xs) = drop n xs
by (induction n xs rule: drop-tm.induct) (simp-all split: nat.splits)

lemma time-drop-tm: time (drop-tm n xs) = min n (length xs) + 1
by (induction n xs rule: drop-tm.induct) (simp-all split: nat.splits)

lemma time-drop-tm-le: time (drop-tm n xs) ≤ n + 1
by (simp add: time-drop-tm)

6.4.3 (@)

fun append-tm :: ′a list ⇒ ′a list ⇒ ′a list tm where
append-tm [] ys =1 return ys
| append-tm (x # xs) ys =1 do {

r ← append-tm xs ys;
return (x # r)
}

lemma val-append-tm[simp, val-simp]: val (append-tm xs ys) = append xs ys
by (induction xs ys rule: append-tm.induct) simp-all

lemma time-append-tm[simp]: time (append-tm xs ys) = length xs + 1
by (induction xs ys rule: append-tm.induct) simp-all

6.4.4 fold
fun fold-tm where
fold-tm f [] s =1 return s
| fold-tm f (x # xs) s =1 do {

r ← f x s;
fold-tm f xs r
}

lemma val-fold-tm[simp, val-simp]: val (fold-tm f xs s) = fold (λx y. val (f x y))
xs s

by (induction xs s rule: fold-tm.induct; simp)

lemma time-fold-tm-Cons: time (fold-tm (λx y. return (x # y)) xs s) = length xs
+ 1

by (induction xs arbitrary: s; simp)

41

6.4.5 rev
definition rev-tm where rev-tm xs =1 fold-tm (λx y. return (x # y)) xs []

lemma val-rev-tm[simp, val-simp]: val (rev-tm xs) = rev xs
by (induction xs; simp add: rev-tm-def fold-Cons-rev)

lemma time-rev-tm-le[simp]: time (rev-tm xs) = length xs + 2
unfolding rev-tm-def using time-fold-tm-Cons by auto

6.4.6 replicate
fun replicate-tm :: nat ⇒ ′a ⇒ ′a list tm where
replicate-tm 0 x =1 return []
| replicate-tm (Suc n) x =1 do {

r ← replicate-tm n x;
return (x # r)
}

lemma val-replicate-tm[simp, val-simp]: val (replicate-tm n x) = replicate n x
by (induction n x rule: replicate-tm.induct) simp-all

lemma time-replicate-tm: time (replicate-tm n x) = n + 1
by (induction n x rule: replicate-tm.induct) simp-all

6.4.7 length
fun gen-length-tm :: nat ⇒ ′a list ⇒ nat tm where
gen-length-tm n [] =1 return n
| gen-length-tm n (x # xs) =1 gen-length-tm (Suc n) xs

lemma val-gen-length-tm[simp, val-simp]: val (gen-length-tm n xs) = List.gen-length
n xs

by (induction n xs rule: gen-length-tm.induct) (simp-all add: List.gen-length-def)

lemma time-gen-length-tm[simp]: time (gen-length-tm n xs) = length xs + 1
by (induction n xs rule: gen-length-tm.induct) simp-all

definition length-tm :: ′a list ⇒ nat tm where
length-tm xs = gen-length-tm 0 xs

lemma val-length-tm[simp, val-simp]: val (length-tm xs) = length xs
by (simp add: length-tm-def length-code)

lemma time-length-tm[simp]: time (length-tm xs) = length xs + 1
by (simp add: length-tm-def)

6.4.8 List.null
fun null-tm :: ′a list ⇒ bool tm where

42

null-tm [] =1 return True
| null-tm (x # xs) =1 return False

lemma val-null-tm[simp, val-simp]: val (null-tm xs) = List.null xs
by (cases xs; simp add: List.null-def)

lemma time-null-tm[simp]: time (null-tm xs) = 1
by (cases xs; simp)

6.4.9 butlast
fun butlast-tm :: ′a list ⇒ ′a list tm where
butlast-tm [] =1 return []
| butlast-tm (x # xs) =1 do {

b ← null-tm xs;
if b then return [] else do {

r ← butlast-tm xs;
return (x # r)
}
}

lemma val-butlast-tm[simp, val-simp]: val (butlast-tm xs) = butlast xs
by (induction xs rule: butlast-tm.induct) (simp-all add: List.null-def)

lemma time-butlast-tm: time (butlast-tm xs) = 2 ∗ (length xs − 1) + 1 + of-bool
(length xs ≥ 1)

by (induction xs rule: butlast-tm.induct) (auto simp: List.null-def not-less-eq-eq)

lemma time-butlast-tm-le: time (butlast-tm xs) ≤ 2 ∗ length xs + 1
unfolding time-butlast-tm by (cases xs; simp)

6.4.10 map
fun map-tm :: (′a ⇒ ′b tm) ⇒ ′a list ⇒ ′b list tm where
map-tm f [] =1 return []
| map-tm f (x # xs) =1 do {

r ← f x;
rs ← map-tm f xs;
return (r # rs)
}

lemma val-map-tm[simp, val-simp]: val (map-tm f xs) = map (λx. val (f x)) xs
by (induction f xs rule: map-tm.induct) simp-all

lemma time-map-tm: time (map-tm f xs) = (
∑

i ← xs. time (f i)) + length xs +
1

by (induction f xs rule: map-tm.induct) (simp-all)

lemma time-map-tm-constant:
assumes

∧
i. i ∈ set xs =⇒ time (f i) = c

43

shows time (map-tm f xs) = (c + 1) ∗ length xs + 1
proof −

have time (map-tm f xs) = (
∑

i ← xs. time (f i)) + length xs + 1
by (simp add: time-map-tm)

also have ... = (
∑

i ← xs. c) + length xs + 1
using assms iffD2 [OF map-eq-conv, of xs] by metis

also have ... = c ∗ length xs + length xs + 1
using sum-list-triv[of c xs] by simp

finally show ?thesis by simp
qed

lemma time-map-tm-bounded:
assumes

∧
i. i ∈ set xs =⇒ time (f i) ≤ c

shows time (map-tm f xs) ≤ (c + 1) ∗ length xs + 1
proof −

have time (map-tm f xs) = (
∑

i ← xs. time (f i)) + length xs + 1
by (simp add: time-map-tm)

also have ... ≤ (
∑

i ← xs. c) + length xs + 1
by (intro add-mono order .refl sum-list-mono assms) argo

also have ... = c ∗ length xs + length xs + 1
using sum-list-triv[of c xs] by simp

finally show ?thesis by simp
qed

6.4.11 foldl
fun foldl-tm :: (′a ⇒ ′b ⇒ ′a tm) ⇒ ′a ⇒ ′b list ⇒ ′a tm where
foldl-tm f a [] =1 return a
| foldl-tm f a (x # xs) =1 do {

r ← f a x;
foldl-tm f r xs
}

lemma val-foldl-tm[simp, val-simp]: val (foldl-tm f a xs) = foldl (λx y. val (f x y))
a xs

by (induction f a xs rule: foldl-tm.induct; simp)

6.4.12 concat
fun concat-tm where
concat-tm [] =1 return []
| concat-tm (x # xs) =1 do {

r ← concat-tm xs;
append-tm x r
}

lemma val-concat-tm[simp, val-simp]: val (concat-tm xs) = concat xs
by (induction xs; simp)

44

lemma time-concat-tm[simp]: time (concat-tm xs) = 1 + 2 ∗ length xs + length
(concat xs)

by (induction xs; simp)

6.4.13 (!)

fun nth-tm where
nth-tm (x # xs) 0 =1 return x
| nth-tm (x # xs) (Suc i) =1 nth-tm xs i
| nth-tm [] - =1 undefined

lemma val-nth-tm[simp, val-simp]:
assumes i < length xs
shows val (nth-tm xs i) = xs ! i
using assms

proof (induction i arbitrary: xs)
case 0
then show ?case using length-greater-0-conv[of xs] neq-Nil-conv[of xs] by auto

next
case (Suc i)
then obtain x xs ′ where xsr : xs = x # xs ′ by (meson Suc-lessE length-Suc-conv)
then have i < length xs ′ using Suc.prems by simp
from Suc.IH [OF this] show ?case unfolding xsr by simp

qed

lemma time-nth-tm[simp]:
assumes i < length xs
shows time (nth-tm xs i) = i + 1
using assms

proof (induction i arbitrary: xs)
case 0
then show ?case using length-greater-0-conv[of xs] neq-Nil-conv[of xs] by auto

next
case (Suc i)
then obtain x xs ′ where xsr : xs = x # xs ′ by (meson Suc-lessE length-Suc-conv)
then have i < length xs ′ using Suc.prems by simp
from Suc.IH [OF this] show ?case unfolding xsr by simp

qed

6.4.14 zip
fun zip-tm :: ′a list ⇒ ′b list ⇒ (′a × ′b) list tm where
zip-tm xs [] =1 return []
| zip-tm [] ys =1 return []
| zip-tm (x # xs) (y # ys) =1 do { rs ← zip-tm xs ys; return ((x, y) # rs) }

lemma val-zip-tm[simp, val-simp]: val (zip-tm xs ys) = zip xs ys
by (induction xs ys rule: zip-tm.induct; simp)

lemma time-zip-tm[simp]: time (zip-tm xs ys) = min (length xs) (length ys) + 1

45

by (induction xs ys rule: zip-tm.induct; simp)

6.4.15 map2
definition map2-tm where
map2-tm f xs ys =1 do {

xys ← zip-tm xs ys;
map-tm (λ(x,y). f x y) xys
}

lemma val-map2-tm[simp, val-simp]: val (map2-tm f xs ys) = map2 (λx y. val (f
x y)) xs ys

unfolding map2-tm-def by (simp split: prod.splits)

lemma time-map2-tm-bounded:
assumes length xs = length ys
assumes

∧
x y. x ∈ set xs =⇒ y ∈ set ys =⇒ time (f x y) ≤ c

shows time (map2-tm f xs ys) ≤ (c + 2) ∗ length xs + 3
proof −

have time (map2-tm f xs ys) = length xs + 2 + time (map-tm (λ(x, y). f x y)
(zip xs ys))

unfolding map2-tm-def by (simp add: assms)
also have ... ≤ length xs + 2 + ((c + 1) ∗ length (zip xs ys) + 1)

apply (intro add-mono order .refl time-map-tm-bounded)
using assms by (auto split: prod.splits elim: in-set-zipE)

also have ... = (c + 2) ∗ length xs + 3
using assms by simp

finally show ?thesis .
qed

6.4.16 upt
function upt-tm where
upt-tm i j =1 do {

b ← less-nat-tm i j;
(if b then do {

rs ← upt-tm (Suc i) j;
return (i # rs)
} else return [])
}

by pat-completeness auto
termination by (relation Wellfounded.measure (λ(i, j). j − i)) simp-all
declare upt-tm.simps[simp del]

lemma val-upt-tm[simp, val-simp]: val (upt-tm i j) = [i..<j]
apply (induction i j rule: upt-tm.induct)
subgoal for i j

by (cases i < j; simp add: upt-tm.simps[of i j] upt-conv-Cons)
done

lemma time-upt-tm-le: time (upt-tm i j) ≤ (j − i) ∗ (2 ∗ j + 3) + 2 ∗ j + 2

46

proof (induction i j rule: upt-tm.induct)
case (1 i j)
then show ?case
proof (cases i < j)

case True
then have time (upt-tm i j) = (2 ∗ i + 3) + time (upt-tm (Suc i) j)
unfolding upt-tm.simps[of i j] tm-time-simps by (simp add: time-less-nat-tm)

also have ... ≤ (2 ∗ j + 3) + ((j − Suc i) ∗ (2 ∗ j + 3) + 2 ∗ j + 2)
apply (intro add-mono mult-le-mono order .refl)
subgoal using True by simp
subgoal using 1 True by simp
done

also have ... = (j − Suc i + 1) ∗ (2 ∗ j + 3) + 2 ∗ j + 2
by simp

also have j − Suc i + 1 = (j − i)
using True by simp

finally show ?thesis .
next

case False
then show ?thesis by (simp add: upt-tm.simps[of i j] time-less-nat-tm)

qed
qed

lemma time-upt-tm-le ′: time (upt-tm i j) ≤ 2 ∗ j ∗ j + 5 ∗ j + 2
apply (intro order .trans[OF time-upt-tm-le[of i j]])
apply (estimation estimate: diff-le-self)
by (simp add: add-mult-distrib2)

6.5 Syntactic sugar
consts equal-tm :: ′a ⇒ ′a ⇒ bool tm
adhoc-overloading equal-tm equal-nat-tm
adhoc-overloading equal-tm equal-bool-tm

consts plus-tm :: ′a ⇒ ′a ⇒ ′a tm
adhoc-overloading plus-tm plus-nat-tm

consts times-tm :: ′a ⇒ ′a ⇒ ′a tm
adhoc-overloading times-tm times-nat-tm

consts power-tm :: ′a ⇒ nat ⇒ ′a tm
adhoc-overloading power-tm power-nat-tm

consts minus-tm :: ′a ⇒ ′a ⇒ ′a tm
adhoc-overloading minus-tm minus-nat-tm

consts less-tm :: ′a ⇒ ′a ⇒ bool tm
adhoc-overloading less-tm less-nat-tm

47

consts less-eq-tm :: ′a ⇒ ′a ⇒ bool tm
adhoc-overloading less-eq-tm less-eq-nat-tm

consts divide-tm :: ′a ⇒ ′a ⇒ ′a tm
adhoc-overloading divide-tm divide-nat-tm

consts mod-tm :: ′a ⇒ ′a ⇒ ′a tm
adhoc-overloading mod-tm mod-nat-tm

bundle main-tm-syntax
begin

notation equal-tm (infixl =t 51)
notation Not-tm (¬t - [40] 40)
notation conj-tm (infixr ∧t 35)
notation disj-tm (infixr ∨t 30)
notation append-tm (infixr @t 65)
notation plus-tm (infixl +t 65)
notation times-tm (infixl ∗t 70)
notation power-tm (infixr ^t 80)
notation minus-tm (infixl −t 65)
notation less-tm (infix <t 50)
notation less-eq-tm (infix ≤t 50)
notation mod-tm (infixl modt 70)
notation divide-tm (infixl divt 70)
notation dvd-tm (infix dvdt 50)

end

bundle no-main-tm-syntax
begin

no-notation equal-tm (infixl =t 51)
no-notation Not-tm (¬t - [40] 40)
no-notation conj-tm (infixr ∧t 35)
no-notation disj-tm (infixr ∨t 30)
no-notation append-tm (infixr @t 65)
no-notation plus-tm (infixl +t 65)
no-notation times-tm (infixl ∗t 70)
no-notation power-tm (infixr ^t 80)
no-notation minus-tm (infixl −t 65)
no-notation less-tm (infix <t 50)
no-notation less-eq-tm (infix ≤t 50)
no-notation mod-tm (infixl modt 70)
no-notation divide-tm (infixl divt 70)
no-notation dvd-tm (infix dvdt 50)

end

unbundle main-tm-syntax

end

48

7 Representations
7.1 Abstract Representations
theory Abstract-Representations

imports Main
begin

Idea: some type ′a is represented non-uniquely by some type ′b. The function
f produces a unique representant.
locale abstract-representation =

fixes from-type :: ′a ⇒ ′b
fixes to-type :: ′b ⇒ ′a
fixes f :: ′b ⇒ ′b
assumes to-from: to-type ◦ from-type = id
assumes from-to: from-type ◦ to-type = f

begin

lemma to-from-elem[simp]: to-type (from-type x) = x
using to-from by (metis comp-apply id-apply)

lemma from-to-elem: from-type (to-type x) = f x
using from-to by (metis comp-apply)

lemma f-idem: f ◦ f = f
proof −

have f ◦ f = from-type ◦ to-type ◦ from-type ◦ to-type
using from-to by fastforce

also have ... = from-type ◦ to-type
using to-from by (simp add: rewriteR-comp-comp)

finally show ?thesis using from-to by simp
qed

corollary f-idem-elem[simp]: f (f x) = f x
using f-idem by (metis comp-apply)

lemma f-from: f ◦ from-type = from-type
proof −

have f ◦ from-type = from-type ◦ to-type ◦ from-type
using from-to by simp

also have ... = from-type
using to-from by (simp add: rewriteR-comp-comp)

finally show ?thesis .
qed

corollary f-from-elem[simp]: f (from-type x) = from-type x
using f-from by (metis comp-apply)

lemma to-f : to-type ◦ f = to-type
proof −

have to-type ◦ f = to-type ◦ from-type ◦ to-type

49

using from-to by fastforce
also have ... = to-type using to-from by simp
finally show ?thesis .

qed

corollary to-f-elem[simp]: to-type (f x) = to-type x
using to-f by (metis comp-apply)

lemma f-fixed-point-iff : f x = x ←→ (∃ y. x = from-type y)
proof

assume f x = x
then show ∃ y. x = from-type y using from-to-elem by metis

next
assume ∃ y. x = from-type y
then obtain y where x = from-type y by blast
then show f x = x by simp

qed

lemma f-fixed-point-iff ′: f x = x ←→ x = from-type (to-type x)
using from-to by auto

lemma range-f-range-from: range f = range from-type
proof (standard; standard)

fix x
assume x ∈ range f
then obtain x ′ where x = f x ′ by blast
then have f x = x by simp
then show x ∈ range from-type using f-fixed-point-iff by blast

next
fix x
assume x ∈ range from-type
then obtain y where x = from-type y by blast
then have f x = x using f-fixed-point-iff by simp
then show x ∈ range f by (metis rangeI)

qed

lemma to-eq-iff-f-eq: to-type x = to-type y ←→ f x = f y
proof

show to-type x = to-type y =⇒ f x = f y using from-to-elem[symmetric] by simp
next

show f x = f y =⇒ to-type x = to-type y using to-f-elem by metis
qed

lemma from-inj: inj from-type
using to-from by (metis inj-on-id inj-on-imageI2)

end

lemma from-to-f-criterion:

50

assumes to-type ◦ from-type = id
assumes f ◦ from-type = from-type
assumes

∧
x y. to-type x = to-type y =⇒ f x = f y

shows from-type ◦ to-type = f
proof

fix x
have to-type (from-type (to-type x)) = to-type x

using assms(1) by (metis comp-apply id-apply)
hence f (from-type (to-type x)) = f x

using assms(3) by metis
hence from-type (to-type x) = f x

using assms(2) by (metis comp-apply)
thus (from-type ◦ to-type) x = f x

by (metis comp-apply)
qed

end

7.2 Abstract Representations 2
theory Abstract-Representations-2

imports Main
begin

Idea: a subset represented-set of some type ′a is represented non-uniquely
by some type ′b.
locale abstract-representation-2 =

fixes from-type :: ′a ⇒ ′b
fixes to-type :: ′b ⇒ ′a
fixes represented-set :: ′a set
assumes to-from:

∧
x. x ∈ represented-set =⇒ to-type (from-type x) = x

assumes to-type-in-represented-set:
∧

y. to-type y ∈ represented-set
begin

definition reduce where
reduce x ≡ from-type (to-type x)

abbreviation reduced where
reduced x ≡ reduce x = x

lemma reduce-reduce[simp]: reduced (reduce x)
unfolding reduce-def
by (simp add: to-from to-type-in-represented-set)

definition representations where
representations ≡ from-type ‘ represented-set

lemma range-reduce: representations = range reduce
unfolding representations-def reduce-def

51

image-def
apply (intro equalityI subsetI)
subgoal for x
proof −

assume x ∈ {y. ∃ x∈represented-set. y = from-type x}
then have ∃ y∈represented-set. x = from-type y by simp
then obtain y where x = from-type y y ∈ represented-set by blast
then have to-type x = y using to-from by simp
then have x = from-type (to-type x) using ‹x = from-type y› by simp
then show ?thesis by blast

qed
subgoal for x

using to-type-in-represented-set by blast
done

corollary reduced-from-type[simp]: x ∈ represented-set =⇒ reduced (from-type x)
using range-reduce representations-def reduce-reduce by force

lemma to-type-reduce: to-type (reduce x) = to-type x
unfolding reduce-def
by (simp add: to-from to-type-in-represented-set)

lemma reduced-iff : reduced x ←→ (∃ y∈represented-set. x = from-type y)
apply standard
subgoal

using reduce-def to-type-in-represented-set by metis
subgoal

by fastforce
done

lemma to-eq-iff-f-eq: to-type x = to-type y ←→ reduce x = reduce y
proof

show to-type x = to-type y =⇒ reduce x = reduce y unfolding reduce-def by
simp
next

show reduce x = reduce y =⇒ to-type x = to-type y using to-type-reduce by
metis
qed

lemma from-inj: inj-on from-type represented-set
unfolding inj-on-def
apply standard+
subgoal for x y

using to-from[of x, symmetric] to-from[of y] by simp
done

corollary from-bij-betw: bij-betw from-type represented-set representations
unfolding representations-def
using from-inj

52

by (simp add: inj-on-imp-bij-betw)

lemma correctness-to-from:
fixes h :: ′a ⇒ ′a ⇒ ′a
fixes g :: ′b ⇒ ′b ⇒ ′b
assumes

∧
x y. to-type (g x y) = h (to-type x) (to-type y)

shows
∧

x y. x ∈ represented-set =⇒ y ∈ represented-set =⇒ reduce (g (from-type
x) (from-type y)) = from-type (h x y)
proof −

fix x y
assume x ∈ represented-set y ∈ represented-set
have reduce (g (from-type x) (from-type y)) = from-type (to-type (g (from-type

x) (from-type y)))
unfolding reduce-def by simp

also have ... = from-type (h (to-type (from-type x)) (to-type (from-type y)))
using assms by simp

also have ... = from-type (h x y)
using to-from ‹x ∈ represented-set› ‹y ∈ represented-set› by simp

finally show reduce (g (from-type x) (from-type y)) = from-type (h x y) .
qed

end

lemma from-to-f-criterion:
assumes

∧
x. x ∈ represented-set =⇒ to-type (from-type x) = x

assumes
∧

x. x ∈ represented-set =⇒ f (from-type x) = from-type x
assumes

∧
x y. to-type x = to-type y =⇒ f x = f y

assumes
∧

y. to-type y ∈ represented-set
shows

∧
x. from-type (to-type x) = f x

proof −
fix x
have to-type (from-type (to-type x)) = to-type x

using assms(1) assms(4) by simp
hence f (from-type (to-type x)) = f x

using assms(3) by metis
thus from-type (to-type x) = f x

using assms(2) assms(4) by simp
qed

end
theory Nat-LSBF
imports Main ../Preliminaries/Karatsuba-Sum-Lemmas Abstract-Representations

HOL−Library.Log-Nat
begin

53

8 Representing nat in LSBF

In this theory, a representation of nat is chosen and simple algorithms im-
plemented thereon.
lemma list-isolate-nth: i < length xs =⇒ ∃ xs1 xs2 . xs = xs1 @ (xs ! i) # xs2 ∧
length xs1 = i

using id-take-nth-drop by fastforce

lemma list-is-replicate-iff : xs = replicate (length xs) x ←→ (∀ i ∈ {0 ..<length xs}.
xs ! i = x)
proof

assume 1 : xs = replicate (length xs) x
show ∀ i ∈ {0 ..<length xs}. xs ! i = x

using 1 nth-replicate[of - length xs x] by auto
next

assume ∀ i ∈ {0 ..<length xs}. xs ! i = x
then have ∀ i ∈ {0 ..<length xs}. xs ! i = (replicate (length xs) x) ! i

using nth-replicate by auto
then show xs = replicate (length xs) x

using nth-equalityI [of xs replicate (length xs) x] by simp
qed

lemma list-is-replicate-iff2 : xs = replicate (length xs) x ←→ set xs = {x} ∨ xs =
[]

by (metis empty-replicate length-0-conv replicate-eqI set-replicate singleton-iff)

lemma set-bool-list: set xs ⊆ {True, False}
by auto

lemma bool-list-is-replicate-if :
assumes a /∈ set xs shows xs = replicate (length xs) (¬ a)

proof (intro iffD2 [OF list-is-replicate-iff2])
from assms set-bool-list have set xs ⊆ {¬ a} by fastforce
then have set xs = {¬ a} ∨ set xs = {} by (meson subset-singletonD)
then show set xs = {¬ a} ∨ xs = [] by simp

qed

lemma bit-strong-decomp-2 : ∃ ys zs. xs = ys @ a # zs =⇒ ∃ ys ′ n. xs = ys ′ @ a
(replicate n (¬ a))
proof −

assume ∃ ys zs. xs = ys @ a # zs
then have a ∈ set xs by auto
from split-list-last[OF this] obtain ys zs where xs = ys @ a # zs a /∈ set zs by

blast
from this(2) have zs = replicate (length zs) (¬a)

by (intro bool-list-is-replicate-if)
with ‹xs = ys @ a # zs› show ?thesis by blast

qed

lemma bit-strong-decomp-1 : ∃ ys zs. xs = ys @ a # zs =⇒ ∃ ys ′ n. xs = (replicate

54

n (¬ a) @ a # ys ′)
proof −

assume ∃ ys zs. xs = ys @ a # zs
then obtain ys zs where xs = ys @ a # zs by blast
then have rev xs = rev zs @ [a] @ rev ys by simp
then obtain n ys ′ where rev xs = ys ′ @ [a] @ replicate n (¬ a)

using bit-strong-decomp-2 [of rev xs a] by auto
then have xs = replicate n (¬ a) @ [a] @ rev ys ′

by (metis append-assoc rev-append rev-replicate rev-rev-ident rev-singleton-conv)
thus ?thesis by auto

qed

8.1 Type definition
type-synonym nat-lsbf = bool list

8.2 Conversions
fun eval-bool :: bool ⇒ nat where
eval-bool True = 1
| eval-bool False = 0

lemma eval-bool-is-of-bool[simp]: eval-bool = of-bool
by auto

lemma eval-bool-leq-1 : eval-bool a ≤ 1
by (cases a) simp-all

lemma eval-bool-inj: eval-bool a = eval-bool b =⇒ a = b
by (cases a; cases b) simp-all

fun to-nat :: nat-lsbf ⇒ nat where
to-nat [] = 0
| to-nat (x#xs) = (eval-bool x) + 2 ∗ to-nat xs

fun from-nat :: nat ⇒ nat-lsbf where
from-nat 0 = []
| from-nat x = (if x mod 2 = 0 then False else True)#(from-nat (x div 2))

value from-nat 103
value to-nat (from-nat 103)

lemma to-nat-from-nat[simp]: to-nat (from-nat x) = x
proof (induction x rule: less-induct)

case (less x)
consider x = 0 | x > 0 by auto
then show ?case
proof (cases)

case 1
then show ?thesis by simp

55

next
case 2
then have to-nat (from-nat x) = eval-bool (if x mod 2 = 0 then False else

True) + 2 ∗ to-nat (from-nat (x div 2))
by (metis from-nat.elims nat-less-le to-nat.simps(2))

also have ... = (x mod 2) + 2 ∗ to-nat (from-nat (x div 2))
by simp

also have ... = (x mod 2) + 2 ∗ (x div 2)
using less 2 by simp

also have ... = x by simp
finally show ?thesis .

qed
qed

lemma to-nat-explicitly: to-nat xs = (
∑

i ← [0 ..<length xs]. eval-bool (xs ! i) ∗ 2
^ i)
proof (induction xs rule: to-nat.induct)

case 1
then show ?case by simp

next
case (2 x xs)
let ?xs = λi. eval-bool ((x # xs) ! i)
have (

∑
i←[0 ..<length (x # xs)]. ?xs i ∗ 2 ^ i)

= ?xs 0 + (
∑

i←[1 ..<length (x # xs)]. ?xs i ∗ 2 ^ i)
by (simp add: upt-rec)

also have ... = ?xs 0 + (
∑

i←[0 ..<length xs]. ?xs (i + 1) ∗ 2 ^ (i + 1))
using list-sum-index-shift[of - length xs 0 λi. ?xs i ∗ 2 ^ i] by simp

also have ... = ?xs 0 + 2 ∗ (
∑

i←[0 ..<length xs]. ?xs (i + 1) ∗ 2 ^ i)
by (simp add: sum-list-const-mult mult.left-commute)

also have ... = ?xs 0 + 2 ∗ to-nat xs
using 2 by simp

also have ... = to-nat (x # xs) by simp
finally show ?case by simp

qed

lemma to-nat-app: to-nat (xs @ ys) = to-nat xs + (2 ^ length xs) ∗ to-nat ys
by (induction xs) auto

lemma to-nat-length-upper-bound: to-nat xs ≤ 2 ^ (length xs) − 1
proof (induction xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then have to-nat (a # xs) = eval-bool a + 2 ∗ to-nat xs by simp
also have ... ≤ eval-bool a + 2 ∗ (2 ^ (length xs) − 1) using Cons.IH by simp
also have ... ≤ 1 + 2 ∗ (2 ^ (length xs) − 1) using eval-bool-leq-1 [of a] by

simp
also have ... = 1 + (2 ^ (length xs + 1) − 1 − 1) by simp

56

also have ... = 2 ^ (length xs + 1) − 1
apply (intro add-diff-inverse-nat)
using power-increasing[of 1 length xs + 1 2 ::nat]
by (simp add: add.commute)

finally show ?case by simp
qed
lemma to-nat-length-bound: to-nat xs < 2 ^ length xs

using to-nat-length-upper-bound[of xs]
using le-eq-less-or-eq by fastforce

lemma to-nat-length-lower-bound: to-nat (xs @ [True]) ≥ 2 ^ length xs
by (induction xs) auto

lemma to-nat-replicate-false[simp]: to-nat (replicate n False) = 0
by (induction n) simp-all

lemma to-nat-one-bit[simp]: to-nat (replicate n False @ [True]) = 2 ^ n
by (simp add: to-nat-app)

lemma to-nat-replicate-true[simp]: to-nat (replicate n True) = 2 ^ n − 1
proof (induction n)

case 0
then show ?case by simp

next
case (Suc n)
have 2 ^ (Suc n) ≥ (2 :: nat) by simp
hence 1 : 2 ^ (Suc n) − 1 ≥ (1 :: nat) by linarith
have to-nat (replicate (Suc n) True) = 1 + 2 ∗ to-nat (replicate n True)

by simp
also have ... = 1 + 2 ∗ (2 ^ n − 1)

using Suc.IH by simp
also have ... = 2 ^ (Suc n) − 1

using le-add-diff-inverse[of 1 2 ^ (Suc n) − 1]
using 1 by simp

finally show ?case .
qed

lemma to-nat xs = 0 ←→ (∃n. xs = replicate n False)
proof

show to-nat xs = 0 =⇒ ∃n. xs = replicate n False
proof (induction xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then have a = False to-nat xs = 0 by auto
then obtain n where xs = replicate n False using Cons.IH by auto
hence a # xs = replicate (Suc n) False using ‹a = False› by simp
then show ?case by blast

qed

57

show ∃n. xs = replicate n False =⇒ to-nat xs = 0
using to-nat-replicate-false by auto

qed

lemma to-nat-app-replicate[simp]: to-nat (xs @ replicate n False) = to-nat xs
by (induction xs) auto

lemma change-bit-ineq: length xs = length ys =⇒ to-nat (xs @ False # zs) <
to-nat (ys @ True # zs)
proof −

assume length xs = length ys
have to-nat (xs @ False # zs) = to-nat xs + 2 ^ (length xs + 1) ∗ to-nat zs

using to-nat-app-replicate[of xs 1] to-nat-app by simp
also have ... ≤ 2 ^ (length xs) − 1 + 2 ^ (length xs + 1) ∗ to-nat zs

using to-nat-length-upper-bound[of xs] by linarith
also have ... < 2 ^ (length xs) + 2 ^ (length xs + 1) ∗ to-nat zs by simp
also have ... = 2 ^ (length ys) + 2 ^ (length ys + 1) ∗ to-nat zs

using ‹length xs = length ys› by simp
also have ... ≤ to-nat (ys @ [True]) + 2 ^ (length ys + 1) ∗ to-nat zs

using to-nat-length-lower-bound[of ys] by simp
also have ... = to-nat (ys @ True # zs)

using to-nat-app by simp
finally show ?thesis .

qed

lemma to-nat-ineq-imp-False-bit: to-nat xs < 2 ^ length xs − 1 =⇒ ∃ ys zs. xs =
ys @ False # zs
proof (rule ccontr)

assume @ ys zs. xs = ys @ False # zs
then have ∀ i∈{0 ..<length xs}. xs ! i = True
by (metis(full-types) atLeastLessThan-iff in-set-conv-decomp-first in-set-conv-nth)

then have xs = replicate (length xs) True using list-is-replicate-iff by fast
then have to-nat xs = 2 ^ length xs − 1 using to-nat-replicate-true by metis
thus to-nat xs < 2 ^ length xs − 1 =⇒ False by simp

qed

lemma to-nat-bound-to-length-bound: to-nat xs ≥ 2 ^ n =⇒ length xs ≥ n + 1
proof (rule ccontr)

assume to-nat xs ≥ 2 ^ n
assume ¬ n + 1 ≤ length xs
then have n ≥ length xs by simp
then have to-nat xs ≥ 2 ^ length xs using ‹to-nat xs ≥ 2 ^ n›

using power-increasing le-trans one-le-numeral by meson
then show False using to-nat-length-bound[of xs] by simp

qed

lemma to-nat-drop-take: to-nat xs = to-nat (take k xs) + 2 ^ k ∗ to-nat (drop k
xs)
proof −

58

have xs = take k xs @ drop k xs by simp
then have to-nat xs = to-nat (take k xs) + 2 ^ (length (take k xs)) ∗ to-nat

(drop k xs)
using to-nat-app by metis

also have 2 ^ (length (take k xs)) ∗ to-nat (drop k xs) = 2 ^ k ∗ to-nat (drop k
xs)

by (cases length xs < k) simp-all
finally show ?thesis .

qed

lemma to-nat-take: to-nat (take k xs) = to-nat xs mod 2 ^ k
proof −

have to-nat xs = to-nat (take k xs) + 2 ^ k ∗ to-nat (drop k xs)
by (simp add: to-nat-drop-take)

then have to-nat xs mod 2 ^ k = to-nat (take k xs) mod 2 ^ k by simp
moreover have to-nat (take k xs) < 2 ^ k

using to-nat-length-bound[of take k xs] length-take[of k xs]
by (metis add-leD1 leI min-absorb2 min-def to-nat-bound-to-length-bound)

ultimately show ?thesis by simp
qed

lemma to-nat-drop: to-nat (drop k xs) = to-nat xs div 2 ^ k
proof −

have to-nat xs = to-nat xs mod 2 ^ k + 2 ^ k ∗ to-nat (drop k xs)
using to-nat-drop-take[of xs k] to-nat-take[of k xs] by argo

then have to-nat xs div 2 ^ k = to-nat (drop k xs)
by (metis add.right-neutral bits-mod-div-trivial div-mult-self2 power-not-zero

zero-neq-numeral)
thus ?thesis by rule

qed

lemma to-nat-nth-True-bound:
assumes i < length xs
assumes xs ! i = True
shows to-nat xs ≥ 2 ^ i

proof −
from assms have xs = (take i xs @ [True]) @ drop (Suc i) xs

using id-take-nth-drop by fastforce
then show to-nat xs ≥ 2 ^ i

using to-nat-app[of - drop (Suc i) xs] to-nat-length-lower-bound[of take i xs] ‹i
< length xs›

by (metis append-eq-conv-conj le-add1 le-eq-less-or-eq list-isolate-nth trans-less-add1)
qed

8.3 Truncating and filling
fun truncate-reversed :: bool list ⇒ bool list where
truncate-reversed [] = []
| truncate-reversed (x#xs) = (if x then x#xs else truncate-reversed xs)

59

definition truncate :: nat-lsbf ⇒ nat-lsbf where
truncate xs = rev (truncate-reversed (rev xs))

abbreviation truncated where truncated x ≡ truncate x = x

lemma truncate-reversed-eqI [simp]: xs = (replicate n False) @ ys =⇒ truncate-reversed
xs = truncate-reversed ys

by (induction n arbitrary: xs ys) auto
corollary truncate-eqI [simp]: xs = ys @ (replicate n False) =⇒ truncate xs =
truncate ys

by (simp add: truncate-def)

lemma replicate-truncate-reversed: ∃n. (replicate n False) @ truncate-reversed xs
= xs
proof (induction xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then obtain n where 1 : replicate n False @ truncate-reversed xs = xs by blast
hence a # xs = a # replicate n False @ truncate-reversed xs by simp
show ?case
proof (cases a)

case True
then have truncate-reversed (a # xs) = a # xs by simp
also have ... = replicate 0 False @ a # xs by simp
finally show ?thesis by simp

next
case False
then have truncate-reversed (a # xs) = truncate-reversed xs by simp
hence replicate (Suc n) False @ truncate-reversed (a # xs) = False # replicate

n False @ truncate-reversed xs
by simp

with 1 False have replicate (Suc n) False @ truncate-reversed (a # xs) = a #
xs by simp

then show ?thesis by blast
qed

qed
corollary truncate-replicate: ∃n. truncate xs @ (replicate n False) = xs
proof −

from replicate-truncate-reversed[of rev xs]
obtain n where replicate n False @ truncate-reversed (rev xs) = rev xs by blast
hence rev (truncate-reversed (rev xs)) @ rev (replicate n False) = xs

using rev-append[symmetric, of truncate-reversed (rev xs) replicate n False]
using rev-rev-ident[of xs]
by simp

hence truncate xs @ replicate n False = xs by (simp add: truncate-def)
thus ?thesis by blast

60

qed
lemma decompose-trailing-zeros: xs = truncate xs @ (replicate (length xs − length
(truncate xs)) False)

using truncate-replicate[of xs]
by (metis add-diff-cancel-left ′ length-append length-replicate)

lemma truncate-reversed-length-ineq: length (truncate-reversed xs) ≤ length xs
by (induction xs) simp-all

lemma truncate-length-ineq: length (truncate xs) ≤ length xs
by (metis Nat-LSBF .truncate-def length-rev truncate-reversed-length-ineq)

lemma truncate-reversed-fixed-point-iff : truncate-reversed x = x ←→ (x = [] ∨ hd
x = True)
proof (induction x)

case Nil
then show ?case by simp

next
case (Cons a x)
then have (a # x = [] ∨ hd (a # x) = True) = a by simp
moreover have a =⇒ truncate-reversed (a # x) = a # x by simp
moreover have ¬ a =⇒ truncate-reversed (a # x) = truncate-reversed x by

simp
hence ¬ a =⇒ length (truncate-reversed (a # x)) ≤ length x

using truncate-reversed-length-ineq[of x] by simp
hence ¬ a =⇒ truncate-reversed (a # x) 6= (a # x)

using neq-if-length-neq[of a#x x] by force
ultimately show ?case by simp

qed

lemma truncated-iff : truncated x ←→ (x = [] ∨ last x = True)
proof −

have truncated x ←→ truncate-reversed (rev x) = rev x
by (simp add: truncate-def rev-swap)

also have ... ←→ rev x = [] ∨ hd (rev x) = True
using truncate-reversed-fixed-point-iff [of rev x] .

also have ... ←→ x = [] ∨ last x = True
by (simp add: hd-rev)

finally show ?thesis .
qed

lemma hd-truncate-reversed: truncate-reversed xs 6= [] =⇒ hd (truncate-reversed
xs) = True
proof (induction xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
show ?case
proof (rule ccontr)

61

assume 1 : hd (truncate-reversed (a # xs)) 6= True
then have a = False by auto
with 1 have hd (truncate-reversed xs) 6= True by simp
hence truncate-reversed xs = [] using Cons.IH by blast
hence truncate-reversed (a # xs) = [] using ‹a = False› by simp
thus False using Cons.prems by simp

qed
qed

lemma last-truncate: truncate xs 6= [] =⇒ last (truncate xs) = True
using hd-truncate-reversed last-rev by (auto simp: truncate-def)

lemma truncate-truncate[simp]: truncate (truncate xs) = truncate xs
using truncated-iff [of truncate xs] last-truncate by auto

lemma truncate-reversed-Nil-iff : truncate-reversed xs = [] ←→ (∃n. xs = replicate
n False)
proof

show truncate-reversed xs = [] =⇒ ∃n. xs = replicate n False
proof (induction xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then have a = False truncate-reversed (a#xs) = truncate-reversed xs

by (auto split: if-splits)
then obtain n where xs = replicate n False using Cons by auto
hence a # xs = replicate (Suc n) False using ‹a = False› by simp
thus ?case by blast

qed
next

show ∃n. xs = replicate n False =⇒ truncate-reversed xs = []
proof (induction xs)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (metis Cons-replicate-eq truncate-reversed.simps(2))
qed

qed

lemma truncate-Nil-iff : truncate xs = [] ←→ (∃n. xs = replicate n False)
using truncate-reversed-Nil-iff [of rev xs]
by (auto simp: truncate-def) (metis rev-replicate rev-rev-ident)

corollary truncate-neq-Nil: truncate xs 6= [] =⇒ ∃ ys zs. xs = ys @ True # zs
using truncate-Nil-iff [of xs]

62

by (metis (full-types) hd-Cons-tl hd-truncate-reversed replicate-truncate-reversed
truncate-reversed-Nil-iff)

lemma truncate-Cons: truncate (a # xs) = (if ¬a ∧ (truncate xs = []) then [] else
a # truncate xs)
proof (cases truncate xs = [])

case True
then obtain n where xs = replicate n False using truncate-Nil-iff by blast
then have truncate (a # xs) = truncate [a] by simp
then show ?thesis using True by (simp add: truncate-def)

next
case False
then obtain ys n where xs = ys @ True # (replicate n False)

using truncate-neq-Nil[of xs] bit-strong-decomp-2 [of xs True] by auto
then have truncate xs = ys @ [True] by (auto simp: truncate-def)
moreover have truncate (a # xs) = a # ys @ [True]

using ‹xs = ys @ True # (replicate n False)› by (auto simp: truncate-def)
ultimately show ?thesis by simp

qed

lemma truncate-eq-Cons: truncate xs = truncate ys =⇒ truncate (a # xs) = trun-
cate (a # ys)

using truncate-Cons by simp

lemma truncate-as-take:
∧

xs. ∃n. truncate xs = take n xs
using truncate-replicate append-eq-conv-conj by blast

lemma to-nat-zero-iff : to-nat xs = 0 ←→ truncate xs = []
proof (induction xs)

case Nil
then show ?case by (simp add: truncate-def)

next
case (Cons a xs)
have to-nat (a # xs) = 0 ←→ (eval-bool a = 0 ∧ to-nat xs = 0) by simp
also have ... ←→ (a = False ∧ to-nat xs = 0) using eval-bool-inj[of a False] by

auto
also have ... ←→ (a = False ∧ truncate xs = []) using Cons.IH by simp
also have ... ←→ (truncate (a # xs) = []) using truncate-Cons by simp
finally show ?case .

qed

lemma to-nat-eq-imp-truncate-eq: to-nat xs = to-nat ys =⇒ truncate xs = truncate
ys
proof (induction xs arbitrary: ys)

case Nil
then show ?case using to-nat-zero-iff by (simp add: truncate-def)

next
case (Cons a xs)
show ?case

63

proof (cases ys = [])
case True
then have to-nat ys = 0 by simp
hence to-nat (a # xs) = 0 using Cons.prems by simp
with ‹to-nat ys = 0 › show truncate (a # xs) = truncate ys

using to-nat-zero-iff [of a # xs] to-nat-zero-iff [of ys] by simp
next

case False
then obtain b zs where ys = b # zs by (meson neq-Nil-conv)
then have to-nat (a # xs) = to-nat (b # zs) using Cons.prems by simp
then have 1 : eval-bool a + 2 ∗ to-nat xs = eval-bool b + 2 ∗ to-nat zs by simp
then have eval-bool a = eval-bool b
by (metis add-cancel-right-left double-not-eq-Suc-double eval-bool.elims plus-1-eq-Suc)
hence a = b using eval-bool-inj by simp
from 1 have to-nat xs = to-nat zs

using ‹eval-bool a = eval-bool b› by auto
hence truncate xs = truncate zs using Cons.IH by simp
hence truncate (a # xs) = truncate (b # zs) using ‹a = b›

using truncate-eq-Cons[of xs zs a] by simp
thus ?thesis using ‹ys = b # zs› by simp

qed
qed

lemma truncate-from-nat[simp]: truncate (from-nat x) = from-nat x
unfolding truncated-iff
by (induction x rule: from-nat.induct) auto

lemma truncate-and-length-eq-imp-eq:
assumes truncate xs = truncate ys length xs = length ys
shows xs = ys

proof −
obtain n where 1 : xs = truncate xs @ replicate n False

by (metis truncate-replicate)
then have 2 : length xs = length (truncate xs) + n

by (metis length-append length-replicate)
obtain m where 3 : ys = truncate ys @ replicate m False

by (metis truncate-replicate)
then have length ys = length (truncate ys) + m

by (metis length-append length-replicate)
with 2 assms have n = m by simp
with 1 3 assms show ?thesis by algebra

qed

lemma nat-lsbf-eqI :
assumes to-nat xs = to-nat ys
assumes length xs = length ys
shows xs = ys
using assms
using to-nat-eq-imp-truncate-eq truncate-and-length-eq-imp-eq by blast

64

interpretation nat-lsbf : abstract-representation from-nat to-nat truncate
proof

show to-nat ◦ from-nat = id
using to-nat-from-nat comp-apply by fastforce

next
show from-nat ◦ to-nat = truncate

using from-to-f-criterion[of to-nat from-nat truncate]
using to-nat-from-nat truncate-from-nat to-nat-eq-imp-truncate-eq
using comp-apply
by fastforce

qed

lemma truncated-Cons-imp-truncated-tl: truncated (x # xs) =⇒ truncated xs
using truncated-iff by fastforce

definition fill where fill n xs = xs @ replicate (n − length xs) False

lemma to-nat-fill[simp]: to-nat (fill n xs) = to-nat xs
by (simp add: fill-def)

lemma length-fill[intro]: length xs ≤ n =⇒ length (fill n xs) = n
by (simp add: fill-def)

lemma take-id: length xs = k =⇒ take k xs = xs
by simp

lemma fill-id: length xs ≥ k =⇒ fill k xs = xs
unfolding fill-def by simp

lemma length-fill ′: length (fill n xs) = max n (length xs)
by (simp add: fill-def)

lemma length-fill-max[simp]:
length (fill (max (length xs) (length ys)) xs) = max (length xs) (length ys)
length (fill (max (length xs) (length ys)) ys) = max (length xs) (length ys)
by (intro length-fill, simp)+

lemma truncate-fill: truncate (fill k xs) = truncate xs
by (simp add: fill-def)

lemma fill-truncate: length xs ≤ k =⇒ fill k (truncate xs) = fill k xs
proof −

assume length xs ≤ k
obtain n where n-def : xs = truncate xs @ replicate n False

using truncate-replicate by metis
then have length xs = length (truncate xs) + n by (metis length-append length-replicate)
then have length (truncate xs) + n ≤ k using ‹length xs ≤ k› by simp

65

from n-def have fill k xs = (truncate xs @ replicate n False) @ replicate (k −
length (truncate xs @ replicate n False)) False

using fill-def by presburger
also have ... = truncate xs @ replicate (n + (k − length (truncate xs @ replicate

n False))) False
by (simp add: replicate-add)

also have ... = truncate xs @ replicate (n + (k − (length (truncate xs) + n)))
False

by simp
also have ... = truncate xs @ replicate (k − (length (truncate xs))) False

using ‹length (truncate xs) + n ≤ k› by simp
also have ... = fill k (truncate xs) by (simp add: fill-def)
finally show ?thesis by simp

qed

lemma fill-take-com: fill k (take k xs) = take k (fill k xs)
using fill-def by fastforce

lemma to-nat-length-lower-bound-truncated: xs 6= [] =⇒ truncated xs =⇒ to-nat
xs ≥ 2 ^ (length xs − 1)
proof −

assume xs 6= [] truncated xs
then obtain xs ′ where xs = xs ′ @ [True]

by (metis(full-types) append-butlast-last-id last-truncate)
then show ?thesis using to-nat-length-lower-bound[of xs ′] by simp

qed

lemma to-nat-length-bound-truncated: truncated xs =⇒ to-nat xs < 2 ^ n =⇒
length xs ≤ n
proof (rule ccontr)

assume truncated xs to-nat xs < 2 ^ n ¬ length xs ≤ n
show False
proof (cases xs = [])

case True
then show ?thesis using ‹¬ length xs ≤ n› by simp

next
case False
have length xs ≥ n + 1 using ‹¬ length xs ≤ n› by simp
then have to-nat xs ≥ 2 ^ n

using to-nat-length-lower-bound-truncated[of xs]
using False ‹truncated xs›

by (meson add-le-imp-le-diff dual-order .trans one-le-numeral power-increasing)
then show ?thesis using ‹to-nat xs < 2 ^ n› by simp

qed
qed

8.4 Right-shifts
definition shift-right :: nat ⇒ nat-lsbf ⇒ nat-lsbf where

66

shift-right n xs = (replicate n False) @ xs

lemma to-nat-shift-right[simp]: to-nat (shift-right n xs) = 2 ^ n ∗ to-nat xs
unfolding shift-right-def using to-nat-app by simp

lemma length-shift-right[simp]: length (shift-right n xs) = n + length xs
unfolding shift-right-def by simp

8.5 Subdividing lists
8.5.1 Splitting a list in two blocks
fun split-at :: nat ⇒ ′a list ⇒ ′a list × ′a list where

split-at m xs = (take m xs, drop m xs)

definition split :: nat-lsbf ⇒ nat-lsbf × nat-lsbf where
split xs = (let n = length xs div (2 ::nat) in split-at n xs)

lemma app-split: split xs = (x0 , x1) =⇒ xs = x0 @ x1
unfolding split-def Let-def using append-take-drop-id[of length xs div 2 xs] by

simp

lemma length-split: length xs mod 2 = 0 =⇒ split xs = (x0 , x1) =⇒ length x0 =
length xs div 2 ∧ length x1 = length xs div 2

unfolding split-def by fastforce

lemma length-split-le:
assumes split xs = (x0 , x1)
shows length x0 ≤ length xs and length x1 ≤ length xs
using app-split[OF assms] by simp-all

8.5.2 Splitting a list in multiple blocks

subdivide n xs divides the list xs into blocks of size n.
fun subdivide :: nat ⇒ ′a list ⇒ ′a list list where
subdivide 0 xs = undefined
| subdivide n [] = []
| subdivide n xs = take n xs # subdivide n (drop n xs)

value concat [[0 ..<2], [4 ..<7], [1 ..<5]]

value subdivide 2 [0 ..<6]
value subdivide 3 [0 ..<6]
value subdivide (2 ^ 2) [0 ..<2 ^ 6]

lemma concat-subdivide: n > 0 =⇒ concat (subdivide n xs) = xs
by (induction n xs rule: subdivide.induct) simp-all

lemma subdivide-step:

67

assumes n > 0
assumes xs 6= []
assumes length xs = n ∗ k
obtains ys zs where xs = ys @ zs length ys = n length zs = n ∗ (k − 1)

subdivide n xs = ys # subdivide n zs
proof −

from assms obtain a xs ′ where xs = a # xs ′ using list.exhaust by blast
from assms have k > 0

using zero-less-iff-neq-zero by fastforce
then obtain k ′ where k = Suc k ′ using gr0-implies-Suc by auto
then have length xs = n + n ∗ k ′ using assms(3) by simp
define ys zs where ys = take n xs zs = drop n xs
with ‹length xs = n + n ∗ k ′› have xs = ys @ zs length ys = n length zs = n ∗

k ′ by simp-all
moreover have subdivide n xs = ys # subdivide n zs using ys-zs-def assms(1)

assms(2) Suc-diff-1 subdivide.simps(3)
‹xs = a # xs ′› by metis

ultimately show (
∧

ys zs.
xs = ys @ zs =⇒
length ys = n =⇒
length zs = n ∗ (k − 1) =⇒
subdivide n xs = ys # subdivide n zs =⇒ thesis) =⇒

thesis
by (simp add: ‹k = Suc k ′›)

qed

lemma subdivide-step ′:
assumes n > 0
assumes xs 6= []
shows subdivide n xs = (take n xs) # subdivide n (drop n xs)
using assms
by (cases n; cases xs; simp-all)

lemma subdivide-correct:
assumes n > 0
assumes length xs = n ∗ k
shows length (subdivide n xs) = k ∧ (x ∈ set (subdivide n xs) −→ length x = n)
using assms

proof (induction k arbitrary: xs n x)
case 0
then have subdivide n xs = [] using 0 gr0-conv-Suc by force
then show ?case by simp

next
case (Suc k)
then have xs 6= [] by force
from subdivide-step[OF ‹n > 0 › this ‹length xs = n ∗ Suc k›] obtain ys zs

where ys-zs:
xs = ys @ zs
length ys = n

68

length zs = n ∗ (Suc k − 1)
subdivide n xs = ys # subdivide n zs
by blast

then have length zs = n ∗ k by simp
note IH = Suc.IH [OF ‹n > 0 › this]
from IH show ?case using ys-zs by simp

qed

lemma nth-nth-subdivide:
assumes n > 0
assumes length xs = n ∗ k
assumes i < k j < n
shows subdivide n xs ! i ! j = xs ! (i ∗ n + j)
using assms

proof (induction k arbitrary: xs i)
case 0
then show ?case by simp

next
case (Suc k)
then have xs 6= [] by auto
with Suc subdivide-step obtain ys zs where xs = ys @ zs length ys = n length

zs = n ∗ (Suc k − 1)
subdivide n xs = ys # subdivide n zs by blast

then have length zs = n ∗ k by simp
show ?case
proof (cases i)

case 0
then have subdivide n xs ! i ! j = ys ! (i ∗ n + j) using ‹subdivide n xs = ys

subdivide n zs› by simp
then show ?thesis using ‹xs = ys @ zs› 0 ‹j < n› ‹length ys = n›

by (simp add: nth-append)
next

case (Suc i ′)
then have subdivide n xs ! i ! j = subdivide n zs ! i ′ ! j

using ‹subdivide n xs = ys # subdivide n zs› by simp
also have ... = zs ! (i ′ ∗ n + j)

apply (intro Suc.IH [of zs i ′])
subgoal using ‹n > 0 › .
subgoal using ‹length zs = n ∗ k› .
subgoal using ‹i < Suc k› ‹i = Suc i ′› by simp
subgoal using ‹j < n› .
done

also have ... = xs ! (i ∗ n + j)
using ‹i = Suc i ′› ‹xs = ys @ zs› ‹length ys = n›
by (metis ab-semigroup-add-class.add-ac(1) mult-Suc nth-append-length-plus)

finally show ?thesis .
qed

qed

69

lemma subdivide-concat:
assumes n > 0
assumes

∧
i. i < length xs =⇒ length (xs ! i) = n

shows subdivide n (concat xs) = xs
proof (intro iffD1 [OF concat-eq-concat-iff])

show concat (subdivide n (concat xs)) = concat xs
using concat-subdivide[OF ‹n > 0 ›] .

have map length xs = replicate (length xs) n
apply (intro replicate-eqI)
subgoal by simp
subgoal using assms by (metis in-set-conv-nth length-map nth-map)
done

then have length (concat xs) = length xs ∗ n
by (simp add: length-concat sum-list-replicate)

then show length (subdivide n (concat xs)) = length xs
apply (intro conjunct1 [OF subdivide-correct] ‹n > 0 ›) by simp

show ∀ (x, y)∈set (zip (subdivide n (concat xs)) xs). length x = length y
proof

fix z
assume a: z ∈ set (zip (subdivide n (concat xs)) xs)
then obtain x y where z = (x, y) by fastforce
from a obtain i where i < length xs z = zip (subdivide n (concat xs)) xs ! i

using ‹length (subdivide n (concat xs)) = length xs›
by (metis (no-types, lifting) gen-length-def in-set-conv-nth length-code length-zip

min-0R min-add-distrib-left)
then have subdivide n (concat xs) ! i = x xs ! i = y

using ‹z = (x, y)› ‹length (subdivide n (concat xs)) = length xs› by simp-all
then have length x = n using ‹i < length xs› ‹length (subdivide n (concat xs))

= length xs›
using ‹length (concat xs) = length xs ∗ n›
‹n > 0 › mult.commute[of n length xs]
by (metis nth-mem subdivide-correct)

moreover from ‹xs ! i = y› ‹i < length xs› have length y = n using assms
by blast

ultimately show case z of (x, y) ⇒ length x = length y using ‹z = (x, y)›
by simp

qed
qed

lemma to-nat-subdivide:
assumes n > 0
assumes length xs = n ∗ k
shows to-nat xs = (

∑
i ← [0 ..<k]. to-nat (subdivide n xs ! i) ∗ 2 ^ (i ∗ n))

using assms
proof (induction k arbitrary: xs)

case 0
then show ?case by simp

next
case (Suc k)

70

then have length (take n xs) = n length (drop n xs) = n ∗ k by simp-all
from Suc have xs 6= [] by auto
have (

∑
i ← [0 ..<Suc k]. to-nat (subdivide n xs ! i) ∗ 2 ^ (i ∗ n))

= to-nat (subdivide n xs ! 0) ∗ 2 ^ (0 ∗ n) + (
∑

i ← [1 ..<Suc k]. to-nat
(subdivide n xs ! i) ∗ 2 ^ (i ∗ n))

by (intro sum-list-split-0)
also have subdivide n xs ! 0 = take n xs

using Suc ‹xs 6= []› subdivide-step ′[OF ‹0 < n› ‹xs 6= []›] by simp
also have (

∑
i ← [1 ..<Suc k]. to-nat (subdivide n xs ! i) ∗ 2 ^ (i ∗ n))

= (
∑

i ← [0 ..<k]. to-nat (subdivide n xs ! (i + 1)) ∗ 2 ^ ((i + 1) ∗ n))
using sum-list-index-shift[of λi. to-nat (subdivide n xs ! i) ∗ 2 ^ (i ∗ n) 1 0 k]
by simp

also have ... = (
∑

i ← [0 ..<k]. to-nat (subdivide n (drop n xs) ! i) ∗ 2 ^ ((i +
1) ∗ n))

using subdivide-step ′[OF ‹0 < n› ‹xs 6= []›] by simp
also have ... = (

∑
i ← [0 ..<k]. (to-nat (subdivide n (drop n xs) ! i) ∗ (2 ^ n ∗

2 ^ (i ∗ n))))
by (simp add: power-add)

also have ... = (
∑

i ← [0 ..<k]. 2 ^ n ∗ (to-nat (subdivide n (drop n xs) ! i) ∗ 2
^ (i ∗ n)))

by (simp add: mult.left-commute)
also have ... = 2 ^ n ∗ (

∑
i ← [0 ..<k]. to-nat (subdivide n (drop n xs) ! i) ∗ 2

^ (i ∗ n))
by (simp add: sum-list-const-mult)

also have ... = 2 ^ n ∗ to-nat (drop n xs)
using Suc.IH [OF ‹0 < n› ‹length (drop n xs) = n ∗ k›] by argo

finally have (
∑

i ← [0 ..<Suc k]. to-nat (subdivide n xs ! i) ∗ 2 ^ (i ∗ n))
= to-nat (take n xs) + 2 ^ n ∗ to-nat (drop n xs)
by simp

also have ... = to-nat (take n xs @ drop n xs)
by (simp only: to-nat-app ‹length (take n xs) = n›)

also have ... = to-nat xs by simp
finally show to-nat xs = (

∑
i ← [0 ..<Suc k]. to-nat (subdivide n xs ! i) ∗ 2 ^

(i ∗ n))
by simp

qed

8.6 The bitsize function

bitsize n calculates how many bits are needed in the LSBF encoding of n.
fun bitsize :: nat ⇒ nat where
bitsize 0 = 0
| bitsize n = 1 + bitsize (n div 2)

lemma bitsize-is-floorlog: bitsize = floorlog 2
apply (intro ext)
subgoal for n

apply (induction n rule: bitsize.induct)
by (auto simp add: floorlog-eq-zero-iff compute-floorlog)

71

done

corollary bitsize-bitlen: int (bitsize n) = bitlen (int n)
unfolding bitsize-is-floorlog bitlen-def by simp

lemma bitsize-eq: bitsize n = length (from-nat n)
proof (induction n rule: less-induct)

case (less n)
then show ?case
proof (cases n = 0)

case True
then show ?thesis by simp

next
case False
then have 1 : bitsize n = 1 + bitsize (n div 2)

by (metis bitsize.elims)
from False have length (from-nat n) = length ((if n mod 2 = 0 then False else

True) # from-nat (n div 2))
by (metis from-nat.elims)

also have ... = 1 + bitsize (n div 2) using less[of n div 2] False by simp
finally show bitsize n = length (from-nat n) using 1 by simp

qed
qed

lemma bitsize-zero-iff : bitsize n = 0 ←→ n = 0
by (simp add: bitsize-is-floorlog floorlog-eq-zero-iff)

lemma truncated-iff ′: truncated x ←→ length x = bitsize (to-nat x)
proof

assume truncated x
then have x = from-nat (to-nat x) unfolding nat-lsbf .f-fixed-point-iff ′ .
then show length x = bitsize (to-nat x) unfolding bitsize-eq by simp

next
assume length x = bitsize (to-nat x)
then have length x = length (from-nat (to-nat x)) unfolding bitsize-eq .
moreover have to-nat x = to-nat (from-nat (to-nat x)) by simp
ultimately show truncated x unfolding nat-lsbf .f-fixed-point-iff ′

by (intro nat-lsbf-eqI ; argo)
qed

lemma bitsize-length: bitsize n ≤ k ←→ n < 2 ^ k
unfolding bitsize-is-floorlog floorlog-le-iff by simp

lemma two-pow-bitsize-pos-bound: n > 0 =⇒ 2 ^ bitsize n ≤ 2 ∗ n
proof −

assume n > 0
then have 2 ^ (bitsize n − 1) ≤ n

using bitsize-length[of n bitsize n − 1] by fastforce
then have 2 ^ (bitsize n − 1 + 1) ≤ 2 ∗ n by simp

72

also have bitsize n − 1 + 1 = bitsize n using bitsize-zero-iff [of n] ‹n > 0 › by
simp

finally show ?thesis .
qed

lemma two-pow-bitsize-bound: 2 ^ bitsize n ≤ 2 ∗ n + 1
using two-pow-bitsize-pos-bound[of n] by (cases n) simp-all

lemma bitsize-mono: n1 ≤ n2 =⇒ bitsize n1 ≤ bitsize n2
unfolding bitsize-is-floorlog by (rule floorlog-mono)

8.6.1 The next-power-of-2 function
lemma power-of-2-recursion: (∃ k. (n::nat) = 2 ^ k) ←→ (n = 1 ∨ (n mod 2 = 0
∧ (∃ k. n div 2 = 2 ^ k)))
proof

assume ∃ k. n = 2 ^ k
then obtain k where k-def : n = 2 ^ k by blast
show n = 1 ∨ (n mod 2 = 0 ∧ (∃ k. n div 2 = 2 ^ k))

using k-def by (cases k) simp-all
next

assume n = 1 ∨ (n mod 2 = 0 ∧ (∃ k. n div 2 = 2 ^ k))
then consider n = 1 | n mod 2 = 0 ∧ (∃ k. n div 2 = 2 ^ k) by argo
then show ∃ k. n = 2 ^ k
proof cases

case 1
then have n = 2 ^ 0 by simp
then show ?thesis by blast

next
case 2
then obtain k where n div 2 = 2 ^ k by blast
with 2 have n = 2 ^ Suc k by auto
then show ?thesis by blast

qed
qed

fun is-power-of-2 :: nat ⇒ bool where
is-power-of-2 0 = False
| is-power-of-2 (Suc 0) = True
| is-power-of-2 n = ((n mod 2 = 0) ∧ is-power-of-2 (n div 2))

lemma is-power-of-2-correct: is-power-of-2 n ←→ (∃ k. n = 2 ^ k)
proof (induction n rule: is-power-of-2 .induct)

case 1
then show ?case by simp

next
case 2
then show ?case by (metis is-power-of-2 .simps(2) nat-power-eq-Suc-0-iff)

next

73

case (3 va)
let ?n = Suc (Suc va)
have is-power-of-2 ?n = ((?n mod 2 = 0) ∧ is-power-of-2 (?n div 2))

by simp
also have ... = ((?n mod 2 = 0) ∧ (∃ k. (?n div 2) = 2 ^ k))

using 3 by argo
also have ... = (∃ k. ?n = 2 ^ k)

using power-of-2-recursion[of ?n] by simp
finally show ?case .

qed

fun next-power-of-2 :: nat ⇒ nat where
next-power-of-2 n = (if is-power-of-2 n then n else 2 ^ (bitsize n))

lemma next-power-of-2-lower-bound: next-power-of-2 k ≥ k
apply (cases is-power-of-2 k)
subgoal by simp
subgoal premises prems
proof −

from prems have next-power-of-2 k − 1 = 2 ^ bitsize k − 1 by simp
also have ... = 2 ^ (length (from-nat k)) − 1 using bitsize-eq by simp
also have ... ≥ k using to-nat-length-upper-bound[of from-nat k] by simp
finally show ?thesis by simp

qed
done

lemma next-power-of-2-upper-bound:
assumes k 6= 0
shows next-power-of-2 k ≤ 2 ∗ k
apply (cases is-power-of-2 k)
subgoal by simp
subgoal premises prems
proof −

have 2 ^ (length (from-nat k) − 1) ≤ to-nat (from-nat k)
apply (intro to-nat-length-lower-bound-truncated)
subgoal using assms by (cases k; simp)
subgoal by simp
done

then have 2 ^ length (from-nat k) ≤ 2 ∗ to-nat (from-nat k)
using assms by (cases k; simp)

also have ... = 2 ∗ k by simp
also have 2 ^ length (from-nat k) = next-power-of-2 k

using prems bitsize-eq by simp
finally show ?thesis .

qed
done

lemma next-power-of-2-upper-bound ′: next-power-of-2 k ≤ 2 ∗ k + 1

74

apply (cases k)
subgoal by simp
subgoal using next-power-of-2-upper-bound[of k] by simp
done

lemma next-power-of-2-is-power-of-2 : ∃ k. next-power-of-2 n = 2 ^ k
using is-power-of-2-correct by simp

8.7 Addition
fun bit-add-carry :: bool ⇒ bool ⇒ bool ⇒ bool × bool where
bit-add-carry False False False = (False, False)
| bit-add-carry False False True = (True, False)
| bit-add-carry False True False = (True, False)
| bit-add-carry False True True = (False, True)
| bit-add-carry True False False = (True, False)
| bit-add-carry True False True = (False, True)
| bit-add-carry True True False = (False, True)
| bit-add-carry True True True = (True, True)

lemma bit-add-carry-correct: bit-add-carry c x y = (a, b) =⇒ eval-bool c + eval-bool
x + eval-bool y = eval-bool a + 2 ∗ eval-bool b

by (cases c; cases x; cases y) auto

8.7.1 Increment operation
fun inc-nat :: nat-lsbf ⇒ nat-lsbf where
inc-nat [] = [True]
| inc-nat (False # xs) = True # xs
| inc-nat (True # xs) = False # (inc-nat xs)

lemma length-inc-nat ′: length (inc-nat xs) = length xs + of-bool (to-nat xs + 1 ≥
2 ^ length xs)
proof (induction xs rule: inc-nat.induct)

case 1
then show ?case by simp

next
case (2 xs)
then show ?case using to-nat-length-bound[of xs] by simp

next
case (3 xs)
then show ?case by simp

qed

lemma length-inc-nat-lower : length (inc-nat xs) ≥ length xs
unfolding length-inc-nat ′ by simp

lemma length-inc-nat-upper : length (inc-nat xs) ≤ length xs + 1
unfolding length-inc-nat ′ by simp

75

lemma inc-nat-nonempty: inc-nat xs 6= []
by (induction xs rule: inc-nat.induct) simp-all

lemma inc-nat-replicate-True: inc-nat (replicate m True) = replicate m False @
[True]

by (induction m) simp-all

lemma inc-nat-replicate-True-2 : inc-nat (replicate m True @ False # ys) = repli-
cate m False @ True # ys

by (induction m) simp-all

lemma length-inc-nat-iff : length (inc-nat xs) = length xs ←→ (∃ ys zs. xs = ys @
False # zs)
proof (intro iffI , rule ccontr)

assume @ ys zs. xs = ys @ False # zs
then have ∀ i ∈ {0 ..<length xs}. xs!i = True

by (metis(full-types) atLeastLessThan-iff in-set-conv-nth split-list)
then have xs = replicate (length xs) True

by (simp only: list-is-replicate-iff)
then show length (inc-nat xs) = length xs =⇒ False

using inc-nat-replicate-True
by (metis length-append-singleton length-replicate n-not-Suc-n)

next
assume ∃ ys zs. xs = ys @ False # zs
then have ∃n zs ′. xs = replicate n True @ False # zs ′

using bit-strong-decomp-1 by fastforce
then show length (inc-nat xs) = length xs

using inc-nat-replicate-True-2 by fastforce
qed

lemma inc-nat-last-bit-True: length (inc-nat xs) = Suc (length xs) =⇒ ∃ zs. inc-nat
xs = zs @ [True]

by (induction xs rule: inc-nat.induct) auto

lemma inc-nat-truncated: truncated xs =⇒ truncated (inc-nat xs)
proof (induction xs rule: inc-nat.induct)

case 1
then show ?case using truncate-def by simp

next
case (2 xs)
then show ?case by (simp add: truncated-iff)

next
case (3 xs)
then show ?case by (simp add: truncated-iff inc-nat-nonempty split: if-splits)

qed

lemma inc-nat-correct: to-nat (inc-nat xs) = to-nat xs + 1
by (induction xs rule: inc-nat.induct) simp-all

76

lemma length-inc-nat: length (inc-nat xs) = max (length xs) (floorlog 2 (to-nat xs
+ 1))
proof (induction xs rule: inc-nat.induct)

case 1
then show ?case by (simp add: compute-floorlog)

next
case (2 xs)
then show ?case using to-nat-length-bound[of False # xs]

by (simp add: floorlog-leI)
next

case (3 xs)
then have length (inc-nat (True # xs)) = Suc (max (length xs) (floorlog 2 (Suc

(to-nat xs))))
by simp

also have ... = max (length (True # xs)) (Suc (floorlog 2 (Suc (to-nat xs))))
by simp

also have ... = max (length (True # xs)) (floorlog 2 (2 ∗ Suc (to-nat xs)))
apply (intro arg-cong2 [where f = max] refl)
by (simp add: compute-floorlog)

finally show ?case by simp
qed

8.7.2 Addition with a carry bit
fun add-carry :: bool ⇒ nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
add-carry False [] y = y
| add-carry False x [] = x
| add-carry True [] y = inc-nat y
| add-carry True x [] = inc-nat x
| add-carry c (x#xs) (y#ys) = (let (a, b) = bit-add-carry c x y in a#(add-carry b
xs ys))

lemma add-carry-correct: to-nat (add-carry c x y) = eval-bool c + to-nat x +
to-nat y
proof (induction c x y rule: add-carry.induct)

case (1 y)
then show ?case by simp

next
case (2 v va)
then show ?case by simp

next
case (3 y)
then show ?case using inc-nat-correct by simp

next
case (4 v va)
then show ?case using inc-nat-correct by simp

next
case (5 c x xs y ys)
define a b where a = fst (bit-add-carry c x y) b = snd (bit-add-carry c x y)

77

then have to-nat (add-carry c (x#xs) (y#ys)) = to-nat (a # add-carry b xs ys)
by (simp add: case-prod-beta ′ Let-def)

also have ... = eval-bool a + 2 ∗ to-nat (add-carry b xs ys) by simp
also have ... = eval-bool a + 2 ∗ (eval-bool b + to-nat xs + to-nat ys)

using 5 a-b-def prod.collapse[of bit-add-carry c x y] by algebra
also have ... = eval-bool c + eval-bool x + eval-bool y + 2 ∗ (to-nat xs + to-nat

ys)
using bit-add-carry-correct a-b-def by (simp add: prod-eq-iff)

also have ... = eval-bool c + to-nat (x#xs) + to-nat (y#ys) by simp
finally show ?case .

qed

lemma length-add-carry ′: length (add-carry c xs ys) = max (length xs) (length ys)
+ of-bool (to-nat xs + to-nat ys + of-bool c ≥ 2 ^ max (length xs) (length ys))
proof (induction c xs ys rule: add-carry.induct)

case (1 y)
then show ?case using to-nat-length-bound[of y] by simp

next
case (2 v va)
then show ?case

using to-nat-length-bound[of va] by simp
next

case (3 y)
then show ?case by (simp add: length-inc-nat ′)

next
case (4 v va)
then show ?case by (simp add: length-inc-nat ′)

next
case (5 c x xs y ys)

have l: 2 ^ Suc a ≤ 2 ∗ b + 1 ←→ 2 ^ Suc a ≤ 2 ∗ b for a b :: nat
by fastforce

obtain a b where bit-add-carry c x y = (a, b) by fastforce
then have add-carry c (x # xs) (y # ys) = a # (add-carry b xs ys) by simp
then have length (add-carry c (x # xs) (y # ys)) = 1 + max (length xs) (length

ys) + of-bool (2 ^ max (length xs) (length ys) ≤ to-nat xs + to-nat ys + of-bool b)
using 5 .IH [OF ‹bit-add-carry c x y = (a, b)›[symmetric] refl] by (simp only:

length-Cons)
also have ... = max (length (x # xs)) (length (y # ys)) + of-bool (2 ^ max

(length xs) (length ys) ≤ to-nat xs + to-nat ys + of-bool b)
by simp

also have ... = max (length (x # xs)) (length (y # ys)) + of-bool (2 ^ max
(length (x # xs)) (length (y # ys)) ≤ to-nat (x # xs) + to-nat (y # ys) + of-bool
c)

proof (intro arg-cong2 [where f = (+)] refl arg-cong[where f = of-bool])
have to-nat (x # xs) + to-nat (y # ys) + of-bool c =

2 ∗ to-nat xs + 2 ∗ to-nat ys + of-bool x + of-bool y + of-bool c
by simp

78

also have ... = 2 ∗ to-nat xs + 2 ∗ to-nat ys + of-bool a + 2 ∗ of-bool b
using bit-add-carry-correct[OF ‹bit-add-carry c x y = (a, b)›] by simp

finally have r : to-nat (x # xs) + to-nat (y # ys) + of-bool c =
show (2 ^ max (length xs) (length ys) ≤ to-nat xs + to-nat ys + of-bool b) =
(2 ^ max (length (x # xs)) (length (y # ys)) ≤ to-nat (x # xs) + to-nat (y #

ys) + of-bool c)
unfolding r using l[of max (length xs) (length ys) to-nat xs + to-nat ys +

of-bool b]
by auto

qed
finally show ?case .

qed

lemma length-add-carry: length (add-carry c xs ys) = max (max (length xs) (length
ys)) (floorlog 2 (of-bool c + to-nat xs + to-nat ys))
proof (induction c xs ys rule: add-carry.induct)

case (1 y)
then show ?case using to-nat-length-bound[of y]

by (simp add: floorlog-leI)
next

case (2 v va)
then show ?case using to-nat-length-bound[of v # va]

by (simp add: floorlog-leI)
next

case (3 y)
then show ?case by (simp add: length-inc-nat)

next
case (4 v va)
then show ?case by (simp add: length-inc-nat)

next
case (5 c x xs y ys)
obtain a b where bit-add-carry c x y = (a, b) by fastforce
then have add-carry c (x # xs) (y # ys) = a # (add-carry b xs ys) by simp
then have length (add-carry c (x # xs) (y # ys)) = Suc (max (max (length xs)

(length ys)) (floorlog 2 (of-bool b + to-nat xs + to-nat ys)))
using 5 ‹bit-add-carry c x y = (a, b)› by (simp only: length-Cons)

also have ... = max (max (length (x # xs)) (length (y # ys))) (1 + floorlog 2
(of-bool b + to-nat xs + to-nat ys))

by simp
also have ... = max (max (length (x # xs)) (length (y # ys))) (floorlog 2 (of-bool

c + to-nat (x # xs) + to-nat (y # ys)))
proof (cases of-bool a + 2 ∗ (of-bool b + to-nat xs + to-nat ys) > 0)

case True
then show ?thesis
proof (intro arg-cong2 [where f = max] refl)

have floorlog 2 (of-bool c + to-nat (x # xs) + to-nat (y # ys)) =
floorlog 2 ((of-bool c + of-bool x + of-bool y) + 2 ∗ (to-nat xs + to-nat

ys))
by simp

79

also have ... = floorlog 2 ((of-bool a + 2 ∗ of-bool b) + 2 ∗ (to-nat xs +
to-nat ys))

using bit-add-carry-correct[OF ‹bit-add-carry c x y = (a, b)›] by simp
also have ... = floorlog 2 (of-bool a + 2 ∗ (of-bool b + to-nat xs + to-nat ys))

by simp
also have ... = 1 + floorlog 2 (of-bool b + to-nat xs + to-nat ys)

using compute-floorlog[of 2 of-bool a + 2 ∗ (of-bool b + to-nat xs + to-nat
ys)] True

by simp
finally show ... = floorlog 2 (of-bool c + to-nat (x # xs) + to-nat (y # ys))

by simp
qed

next
case False
then have 01 : of-bool a = 0 of-bool b = 0 to-nat xs = 0 to-nat ys = 0 by

simp-all
then have 02 : of-bool c = 0 of-bool x = 0 of-bool y = 0

using bit-add-carry-correct[OF ‹bit-add-carry c x y = (a, b)›] by simp-all
from 01 02 show ?thesis by (simp add: floorlog-def)

qed
finally show ?case .

qed

lemma length-add-carry-lower : length (add-carry c xs ys) ≥ max (length xs) (length
ys)

unfolding length-add-carry ′ by simp

lemma length-add-carry-upper : length (add-carry c xs ys) ≤ max (length xs) (length
ys) + 1

unfolding length-add-carry ′ by simp

lemma add-carry-last-bit-True: length (add-carry c xs ys) = max (length xs) (length
ys) + 1 =⇒ ∃ zs. add-carry c xs ys = zs @ [True]
proof (induction c xs ys rule: add-carry.induct)

case (1 y)
then show ?case by simp

next
case (2 v va)
then show ?case by simp

next
case (3 y)
then show ?case by (simp add: inc-nat-last-bit-True)

next
case (4 v va)
then show ?case by (simp add: inc-nat-last-bit-True)

next
case (5 c x xs y ys)
obtain a b where bit-add-carry c x y = (a, b) by fastforce
then have 1 : add-carry c (x # xs) (y # ys) = a # (add-carry b xs ys)

80

by simp
from 5 have length (add-carry b xs ys) = max (length (x # xs)) (length (y #

ys))
using ‹bit-add-carry c x y = (a, b)› by auto

also have ... = max (length xs) (length ys) + 1 by simp
finally obtain zs where add-carry b xs ys = zs @ [True] using 5 ‹bit-add-carry

c x y = (a, b)›
by presburger

then show ?case using 1 by simp
qed

lemma add-carry-com: add-carry c xs ys = add-carry c ys xs
apply (intro nat-lsbf-eqI)
subgoal by (simp add: add-carry-correct)
subgoal by (simp only: length-add-carry ′ max.commute add.commute)
done

lemma add-carry-rNil[simp]: add-carry True y [] = inc-nat y
by (cases y; simp)

lemma add-carry-rNil-nocarry[simp]: add-carry False y [] = y
by (cases y; simp)

lemma add-carry-True-inc-nat:
add-carry True xs ys = inc-nat (add-carry False xs ys) ∧
add-carry True xs ys = add-carry False (inc-nat xs) ys ∧
add-carry True xs ys = add-carry False xs (inc-nat ys)

proof (induction xs arbitrary: ys)
case Nil
then show ?case

apply (intro conjI)
subgoal by simp
subgoal

apply (cases ys)
subgoal by simp
subgoal for a ys ′

by (cases a) simp-all
done

subgoal by simp
done

next
case (Cons a xs)
then show ?case

apply (cases a; cases ys)
subgoal by simp
subgoal for b ys ′

apply (cases b)
subgoal by fastforce
subgoal by simp

81

done
subgoal by (simp add: add-carry-com)
subgoal for b ys ′

apply (cases b)
subgoal by fastforce
subgoal by simp
done

done
qed

lemma inc-nat-add-carry:
inc-nat (add-carry c xs ys) = add-carry c (inc-nat xs) ys ∧
inc-nat (add-carry c xs ys) = add-carry c xs (inc-nat ys)

proof (cases c)
case True
then have

add-carry c (inc-nat xs) ys = inc-nat (add-carry False (inc-nat xs) ys)
add-carry c xs (inc-nat ys) = inc-nat (add-carry False xs (inc-nat ys))
using add-carry-True-inc-nat by simp-all

moreover have
add-carry False (inc-nat xs) ys = inc-nat (add-carry False xs ys)
using add-carry-True-inc-nat[of xs ys] by argo

moreover have add-carry False xs (inc-nat ys) = inc-nat (add-carry False xs
ys)

using add-carry-True-inc-nat[of xs ys] by argo
ultimately show ?thesis using add-carry-True-inc-nat True by simp

next
case False
then show ?thesis using add-carry-True-inc-nat[of xs ys] by auto

qed

lemma add-carry-inc-nat-simps:
add-carry True xs ys = inc-nat (add-carry False xs ys)
add-carry False (inc-nat xs) ys = inc-nat (add-carry False xs ys)
add-carry False xs (inc-nat ys) = inc-nat (add-carry False xs ys)
using inc-nat-add-carry[of - xs ys] add-carry-True-inc-nat[of xs ys]
by argo+

lemma add-carry-assoc: add-carry c2 (add-carry c1 xs ys) zs = add-carry c1 xs
(add-carry c2 ys zs)

apply (intro nat-lsbf-eqI)
subgoal by (simp add: add-carry-correct)
subgoal
proof −

let ?t1 = of-bool c1 + to-nat xs + to-nat ys
let ?t2 = of-bool c2 + to-nat ys + to-nat zs
let ?t3 = of-bool c1 + of-bool c2 + to-nat xs + to-nat ys + to-nat zs

have length (add-carry c2 (add-carry c1 xs ys) zs) = max (max (max (max

82

(length xs) (length ys)) (floorlog 2 ?t1)) (length zs))
(floorlog 2 ?t3)
unfolding length-add-carry add-carry-correct eval-bool-is-of-bool

by (intro arg-cong2 [where f = max] refl arg-cong2 [where f = floorlog]) simp
also have ... = max (max (max (max (floorlog 2 ?t1) (floorlog 2 ?t3)) (length

xs)) (length ys)) (length zs)
using max.commute max.assoc by presburger

also have ... = max (max (max (floorlog 2 ?t3) (length xs)) (length ys)) (length
zs) (is ... = ?t4)

by (intro arg-cong2 [where f = max] refl max.absorb2 floorlog-mono) simp
finally have 1 : length (add-carry c2 (add-carry c1 xs ys) zs) = ?t4 .

have length (add-carry c1 xs (add-carry c2 ys zs)) = max (max (length xs)
(max (max (length ys) (length zs)) (floorlog 2 ?t2)))

(floorlog 2 ?t3)
unfolding length-add-carry add-carry-correct eval-bool-is-of-bool

by (intro arg-cong2 [where f = max] refl arg-cong2 [where f = floorlog]) simp
also have ... = max (max (max (max (floorlog 2 ?t2) (floorlog 2 ?t3)) (length

xs)) (length ys)) (length zs)
using max.commute max.assoc by presburger

also have ... = max (max (max (floorlog 2 ?t3) (length xs)) (length ys)) (length
zs)

by (intro arg-cong2 [where f = max] refl max.absorb2 floorlog-mono) simp
finally have 2 : length (add-carry c1 xs (add-carry c2 ys zs)) = ?t4 .

show ?thesis unfolding 1 2 by (rule refl)
qed
done

lemma truncated-add-carry:
assumes truncated xs truncated ys
shows truncated (add-carry c xs ys)

proof −
have length (add-carry c xs ys) =

max (max (length xs) (length ys)) (bitsize (of-bool c + to-nat xs + to-nat ys))
unfolding length-add-carry bitsize-is-floorlog by argo

also have ... = max (max (bitsize (to-nat xs)) (bitsize (to-nat ys))) (bitsize
(of-bool c + to-nat xs + to-nat ys))

using truncated-iff ′ assms by algebra
also have ... = bitsize (of-bool c + to-nat xs + to-nat ys)

using bitsize-mono by simp
also have ... = bitsize (to-nat (add-carry c xs ys))

by (simp add: add-carry-correct)
finally show ?thesis unfolding truncated-iff ′ .

qed

8.7.3 Addition
definition add-nat :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where

83

add-nat x y = add-carry False x y

corollary length-add-nat-lower : length (add-nat xs ys) ≥ max (length xs) (length
ys)

unfolding add-nat-def by (simp only: length-add-carry-lower)

corollary length-add-nat-upper : length (add-nat xs ys) ≤ max (length xs) (length
ys) + 1

unfolding add-nat-def using length-add-carry-upper [of False xs ys] by simp

corollary add-nat-last-bit-True: length (add-nat xs ys) = max (length xs) (length
ys) + 1 =⇒ ∃ zs. add-nat xs ys = zs @ [True]

unfolding add-nat-def by (simp add: add-carry-last-bit-True)

lemma add-nat-correct: to-nat (add-nat x y) = to-nat x + to-nat y
unfolding add-nat-def using add-carry-correct by simp

corollary add-nat-com: add-nat xs ys = add-nat ys xs
unfolding add-nat-def by (simp add: add-carry-com)

corollary add-nat-assoc: add-nat xs (add-nat ys zs) = add-nat (add-nat xs ys) zs
unfolding add-nat-def using add-carry-assoc by simp

corollary truncated-add-nat:
assumes truncated xs truncated ys
shows truncated (add-nat xs ys)
unfolding add-nat-def
by (intro truncated-add-carry assms)

8.8 Comparison and subtraction
8.8.1 Comparison
fun compare-nat-same-length-reversed :: bool list ⇒ bool list ⇒ bool where
compare-nat-same-length-reversed [] [] = True
| compare-nat-same-length-reversed (False#xs) (False#ys) = compare-nat-same-length-reversed
xs ys
| compare-nat-same-length-reversed (True#xs) (False#ys) = False
| compare-nat-same-length-reversed (False#xs) (True#ys) = True
| compare-nat-same-length-reversed (True#xs) (True#ys) = compare-nat-same-length-reversed
xs ys
| compare-nat-same-length-reversed - - = undefined

lemma compare-nat-same-length-reversed-correct:
length xs = length ys =⇒ compare-nat-same-length-reversed xs ys ←→ to-nat (rev

xs) ≤ to-nat (rev ys)
proof (induction xs ys rule: compare-nat-same-length-reversed.induct)

case 1
then show ?case by simp

next

84

case (2 xs ys)
have to-nat (rev (False # xs)) = to-nat (rev xs) to-nat (rev (False # ys)) =

to-nat (rev ys)
using to-nat-app by simp-all

then have to-nat (rev (False # xs)) ≤ to-nat (rev (False # ys)) ←→ to-nat (rev
xs) ≤ to-nat (rev ys)

by simp
then show ?case using 2 by simp

next
case (3 xs ys)
have to-nat (rev (True # xs)) = 2 ^ (length xs) + to-nat (rev xs)

using to-nat-app by simp
also have ... > to-nat (rev ys)
using 3 to-nat-length-upper-bound[of rev ys] leI le-add-diff-inverse2 by fastforce

also have to-nat (rev ys) = to-nat (rev (False # ys))
using to-nat-app by simp

finally have to-nat (rev (True # xs)) > to-nat (rev (False # ys)) .
thus ?case using 3 by simp

next
case (4 xs ys)
have to-nat (rev (False # xs)) = to-nat (rev xs)

using to-nat-app by simp
also have ... ≤ 2 ^ (length xs)

using to-nat-length-upper-bound[of rev xs] by simp
also have ... ≤ to-nat (rev (True # ys))

using to-nat-app 4 by simp
finally have to-nat (rev (False # xs)) ≤ to-nat (rev (True # ys)) .
thus ?case using 4 by simp

next
case (5 xs ys)
have to-nat (rev (True # xs)) = 2 ^ (length xs) + to-nat (rev xs) to-nat (rev

(True # ys)) = 2 ^ (length ys) + to-nat (rev ys)
using to-nat-app by simp-all

then have to-nat (rev (True # xs)) ≤ to-nat (rev (True # ys)) ←→ to-nat (rev
xs) ≤ to-nat (rev ys)

using 5 by simp
then show ?case using 5 by simp

next
case (6-1 va)
then show ?case by simp

next
case (6-2 v va)
then show ?case by simp

next
case (6-3 v va)
then show ?case by simp

next
case (6-4 va)
then show ?case by simp

85

qed

fun compare-nat-same-length :: nat-lsbf ⇒ nat-lsbf ⇒ bool where
compare-nat-same-length xs ys = compare-nat-same-length-reversed (rev xs) (rev
ys)

lemma compare-nat-same-length-correct:
length xs = length ys =⇒ compare-nat-same-length xs ys = (to-nat xs ≤ to-nat

ys)
using compare-nat-same-length-reversed-correct by simp

definition make-same-length :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf × nat-lsbf where
make-same-length xs ys = (let n = max (length xs) (length ys) in ((fill n xs), (fill
n ys)))

lemma make-same-length-correct:
assumes (fill-xs, fill-ys) = make-same-length xs ys
shows length fill-ys = length fill-xs
length fill-xs = max (length xs) (length ys)
to-nat fill-xs = to-nat xs
to-nat fill-ys = to-nat ys
using assms by (simp-all add: Let-def make-same-length-def)

definition compare-nat :: nat-lsbf ⇒ nat-lsbf ⇒ bool where
compare-nat xs ys = (let (fill-xs, fill-ys) = make-same-length xs ys in compare-nat-same-length
fill-xs fill-ys)

lemma compare-nat-correct: compare-nat xs ys = (to-nat xs ≤ to-nat ys)
proof −

obtain fill-xs fill-ys where fills-def : make-same-length xs ys = (fill-xs, fill-ys)
by fastforce

then show ?thesis unfolding compare-nat-def Let-def
using make-same-length-correct[OF fills-def [symmetric]]
using compare-nat-same-length-reversed-correct[of rev fill-xs rev fill-ys]
by simp

qed

8.8.2 Subtraction
definition subtract-nat :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where

subtract-nat xs ys = (if compare-nat xs ys then [] else
let (fill-xs, fill-ys) = make-same-length xs ys in
butlast (add-carry True fill-xs (map Not fill-ys)))

lemma add-complement: add-nat xs (map Not xs) = replicate (length xs) True
proof (induction xs)

case Nil
then show ?case unfolding add-nat-def by simp

next

86

case (Cons a xs)
have add-nat (a # xs) (map Not (a # xs)) = True # (add-carry False xs (map

Not xs))
unfolding add-nat-def by (cases a) simp-all

also have ... = True # (replicate (length xs) True)
using Cons.IH by (simp add: add-nat-def)

finally show ?case by simp
qed

lemma to-nat-complement: to-nat (map Not xs) = 2 ^ (length xs) − 1 − to-nat
xs

using add-complement[of xs] to-nat-replicate-true[of length xs] add-nat-correct[of
xs map Not xs]

by simp

lemma to-nat-butlast: zs = xs @ [True] =⇒ to-nat (butlast zs) = to-nat zs − 2 ^
length xs

using to-nat-app[of xs [True]] by simp

lemma inc-nat-true-prefix[simp]: inc-nat (replicate n True @ [False] @ ys) = repli-
cate n False @ [True] @ ys

by (induction n arbitrary: ys) simp-all

lemma length-inc-nat-aux: zs = replicate n True @ [False] @ ys =⇒ length (inc-nat
zs) = length zs

using inc-nat-true-prefix[of n ys] by simp

lemma length-inc-nat-aux-2 : length (inc-nat (xs @ [False] @ ys)) = length (xs @
[False] @ ys)
proof −

define zs where zs = xs @ [False] @ ys
with bit-strong-decomp-1 [of zs False] obtain ys ′ n where zs = replicate n True

@ [False] @ ys ′

by auto
then show ?thesis using length-inc-nat-aux zs-def by simp

qed

lemma subtract-nat-aux: to-nat (subtract-nat xs ys) = (to-nat xs) − (to-nat ys) ∧
length (subtract-nat xs ys) ≤ max (length xs) (length ys)
proof (cases compare-nat xs ys)

case True
then show ?thesis using compare-nat-correct unfolding subtract-nat-def by

simp
next

case False

obtain fill-xs fill-ys where fills-def : make-same-length xs ys = (fill-xs, fill-ys)
by fastforce

note fills-props = make-same-length-correct[OF fills-def [symmetric]]

87

define n where n = max (length xs) (length ys)
then have length fill-xs = n length fill-ys = n using fills-props by auto

from False have to-nat fill-xs > to-nat fill-ys
using fills-props compare-nat-correct by simp

then have n > 0 using ‹length fill-xs = n› by auto

let ?add = add-carry True fill-xs (map Not fill-ys)

have subtract-nat-xs-ys: subtract-nat xs ys = butlast ?add
unfolding subtract-nat-def using False fills-def by simp

have to-nat fill-ys ≤ 2 ^ n − 1 to-nat fill-xs ≤ 2 ^ n − 1 to-nat (map Not fill-ys)
≤ 2 ^ n − 1

subgoal using to-nat-length-upper-bound[of fill-ys] ‹length fill-ys = n› by argo
subgoal using to-nat-length-upper-bound[of fill-xs] ‹length fill-xs = n› by argo
subgoal using to-nat-length-upper-bound[of map Not fill-ys] ‹length fill-ys =

n› by simp
done

then have to-nat ?add ≤ (2 ^ n − 1) + (2 ^ n − 1) + 1 unfolding add-carry-correct
by simp

also have ... = 2 ^ (n + 1) − 2 + 1 by simp
also have ... = 2 ^ (n + 1) − 1

using Nat.diff-diff-right[of 1 2 2 ^ (n + 1)] Nat.diff-add-assoc2 [of 2 2 ^ (n +
1) 1]

by simp
finally have to-nat ?add ≤

from ‹to-nat fill-xs > to-nat fill-ys› have to-nat fill-xs ≥ to-nat fill-ys + 1 by
simp

then have to-nat fill-xs + 2 ^ n ≥ 2 ^ n + to-nat fill-ys + 1 by simp
then have to-nat fill-xs + (2 ^ n − 1 − to-nat fill-ys) ≥ 2 ^ n by simp
then have to-nat fill-xs + to-nat (map Not fill-ys) ≥ 2 ^ n

using to-nat-complement[of fill-ys] ‹length fill-ys = n› by simp
then have to-nat ?add ≥ 2 ^ n

using add-carry-correct fills-props by simp
then have length ?add ≥ n + 1

using to-nat-bound-to-length-bound by simp
then have length ?add = n + 1

using length-add-carry-upper [of True fill-xs map Not fill-ys] ‹length fill-xs = n›
‹length fill-ys = n›

by simp

then obtain zs where ?add = zs @ [True] length zs = n
using add-carry-last-bit-True[of True fill-xs map Not fill-ys] ‹length fill-xs = n›

‹length fill-ys = n›
by auto

then have 1 : to-nat (butlast ?add) = to-nat fill-xs + to-nat (map Not fill-ys) +
1 − 2 ^ n

88

unfolding to-nat-butlast[OF ‹?add = zs @ [True]›]
using add-carry-correct by (metis Suc-eq-plus1 add.assoc eval-bool.simps(1)

plus-1-eq-Suc)
also have ... = to-nat fill-xs + (2 ^ n − 1 − to-nat fill-ys) + 1 − 2 ^ n

unfolding to-nat-complement[of fill-ys] ‹length fill-ys = n› by (rule refl)
also have ... = to-nat fill-xs + (2 ^ n − 1) − to-nat fill-ys + 1 − 2 ^ n

using le-add-diff-inverse[OF ‹to-nat fill-ys ≤ 2 ^ n − 1 ›] by linarith
also have ... = to-nat fill-xs − to-nat fill-ys + (2 ^ n − 1) − (2 ^ n − 1)

using ‹to-nat fill-xs > to-nat fill-ys› by simp
also have ... = to-nat fill-xs − to-nat fill-ys by simp
finally have 2 : to-nat (subtract-nat xs ys) = to-nat xs − to-nat ys

unfolding subtract-nat-xs-ys fills-props .

have 3 : length (butlast ?add) = n
using ‹length ?add = n + 1 › by simp

show ?thesis
apply (intro conjI)
subgoal by (fact 2)
subgoal using 3 unfolding subtract-nat-xs-ys n-def [symmetric] by simp
done

qed

corollary subtract-nat-correct: to-nat (subtract-nat xs ys) = (to-nat xs) − (to-nat
ys)

using subtract-nat-aux by simp

corollary length-subtract-nat-le: length (subtract-nat xs ys) ≤ max (length xs)
(length ys)

using subtract-nat-aux by simp

8.9 (Grid) Multiplication
fun grid-mul-nat :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
grid-mul-nat [] - = []
| grid-mul-nat (False#xs) y = False # (grid-mul-nat xs y)
| grid-mul-nat (True#xs) y = add-nat (False # (grid-mul-nat xs y)) y

lemma grid-mul-nat-correct: to-nat (grid-mul-nat x y) = to-nat x ∗ to-nat y
by (induction x y rule: grid-mul-nat.induct) (simp-all add: add-nat-correct)

lemma length-grid-mul-nat: length (grid-mul-nat xs ys) ≤ length xs + length ys
proof (induction xs ys rule: grid-mul-nat.induct)

case (1 uu)
then show ?case by simp

next
case (2 xs y)
then show ?case by simp

next

89

case (3 xs y)
show ?case
proof (rule ccontr)

assume ¬ length (grid-mul-nat (True # xs) y) ≤ length (True # xs) + length
y

then have l: length (grid-mul-nat (True # xs) y) = length xs + length y + 2
using length-add-nat-upper [of False # grid-mul-nat xs y y] 3 by simp

then have length (add-nat (False # grid-mul-nat xs y) y) = max (length (False
grid-mul-nat xs y)) (length y) + 1

using length-add-nat-upper [of False # grid-mul-nat xs y y] 3 by simp
then obtain as where add-nat (False # grid-mul-nat xs y) y = as @ [True]

using add-nat-last-bit-True[of False # grid-mul-nat xs y y] by auto
then have as-def : grid-mul-nat (True # xs) y = as @ [True] by simp
then have length-as: length as = length xs + length y + 1 using l by simp

from as-def have m: to-nat (True # xs) ∗ to-nat y = to-nat (as @ [True])
using grid-mul-nat-correct by metis

also have to-nat (as @ [True]) ≥ 2 ^ length as
using to-nat-length-lower-bound by simp

also have 2 ^ length as = 2 ^ (length xs + length y + 1) using length-as by
simp

also have to-nat (True # xs) ∗ to-nat y < 2 ^ (length xs + 1) ∗ 2 ^ length y
apply (intro mult-less-le-imp-less)
subgoal using to-nat-length-upper-bound[of True # xs] by simp
subgoal using to-nat-length-upper-bound[of y] by simp
subgoal by simp
subgoal

apply (rule ccontr)
using m to-nat-length-lower-bound[of as] by simp

done
finally show False by (simp add: power-add)

qed
qed

8.10 Syntax bundles
abbreviation shift-right-flip xs n ≡ shift-right n xs
bundle nat-lsbf-syntax
begin

notation add-nat (infixl +n 65)
notation compare-nat (infixl ≤n 50)
notation subtract-nat (infixl −n 65)
notation grid-mul-nat (infixl ∗n 70)
notation shift-right-flip (infixl >>n 55)

end

bundle no-nat-lsbf-syntax
begin

90

no-notation add-nat (infixl +n 65)
no-notation compare-nat (infixl ≤n 50)
no-notation subtract-nat (infixl −n 65)
no-notation grid-mul-nat (infixl ∗n 70)
no-notation shift-right-flip (infixl >>n 55)

end

unbundle nat-lsbf-syntax

end
theory Karatsuba-Runtime-Lemmas

imports Complex-Main Akra-Bazzi.Akra-Bazzi-Method
begin

An explicit bound for a specific class of recursive functions.
context

fixes a b c d :: nat
fixes f :: nat ⇒ nat
assumes small-bounds: f 0 ≤ a f (Suc 0) ≤ a
assumes recursive-bound:

∧
n. n > 1 =⇒ f n ≤ c ∗ n + d + f (n div 2)

begin

private fun g where
g 0 = a
| g (Suc 0) = a
| g n = c ∗ n + d + g (n div 2)

private lemma f-g-bound: f n ≤ g n
apply (induction n rule: g.induct)
subgoal using small-bounds by simp
subgoal using small-bounds by simp
subgoal for x using recursive-bound[of Suc (Suc x)] by auto
done

private lemma g-mono-aux: a ≤ g n
by (induction n rule: g.induct) simp-all

private lemma g-mono: m ≤ n =⇒ g m ≤ g n
proof (induction m arbitrary: n rule: g.induct)

case 1
then show ?case using g-mono-aux by simp

next
case 2
then show ?case using g-mono-aux by simp

next
case (3 x)
then obtain y where n = Suc (Suc y) using Suc-le-D by blast
have g (Suc (Suc x)) = c ∗ Suc (Suc x) + d + g (Suc (Suc x) div 2)

by simp

91

also have ... ≤ c ∗ n + d + g (n div 2)
using 3

by (metis add-mono add-mono-thms-linordered-semiring(3) div-le-mono nat-mult-le-cancel-disj)
finally show ?case using ‹n = Suc (Suc y)› by simp

qed

private lemma g-powers-of-2 : g (2 ^ n) = d ∗ n + c ∗ (2 ^ (n + 1) − 2) + a
proof (induction n)

case (Suc n)
then obtain n ′ where 2 ^ Suc n = Suc (Suc n ′)

by (metis g.cases less-exp not-less-eq zero-less-Suc)
then have g (2 ^ Suc n) = c ∗ 2 ^ Suc n + d + g (2 ^ n)
by (metis g.simps(3) nonzero-mult-div-cancel-right power-Suc2 zero-neq-numeral)

also have ... = c ∗ 2 ^ Suc n + d + d ∗ n + c ∗ (2 ^ (n + 1) − 2) + a
using Suc by simp

also have ... = d ∗ Suc n + c ∗ (2 ^ Suc n + (2 ^ (n + 1) − 2)) + a
using add-mult-distrib2 [symmetric, of c] by simp

finally show ?case by simp
qed simp

private lemma pow-ineq:
assumes m ≥ (1 :: nat)
assumes p ≥ 2
shows p ^ m > m
using assms
apply (induction m)
subgoal by simp
subgoal for m

by (cases m) (simp-all add: less-trans-Suc)
done

private lemma next-power-of-2 :
assumes m ≥ (1 :: nat)
shows ∃n k. m = 2 ^ n + k ∧ k < 2 ^ n

proof −
from ex-power-ivl1 [OF order .refl assms] obtain n where 2 ^ n ≤ m m < 2 ^

(n + 1)
by auto

then have m = 2 ^ n + (m − 2 ^ n) m − 2 ^ n < 2 ^ n by simp-all
then show ?thesis by blast

qed

lemma div-2-recursion-linear : f n ≤ (2 ∗ d + 4 ∗ c) ∗ n + a
proof (cases n ≥ 1)

case True
then obtain m k where n = 2 ^ m + k k < 2 ^ m using next-power-of-2 by

blast
have f n ≤ g n using f-g-bound by simp
also have ... ≤ g (2 ^ m + 2 ^ m) using ‹n = 2 ^ m + k› ‹k < 2 ^ m› g-mono

92

by simp
also have ... = d ∗ Suc m + c ∗ (2 ^ (Suc m + 1) − 2) + a

using g-powers-of-2 [of Suc m]
apply (subst mult-2 [symmetric])
apply (subst power-Suc[symmetric])
.

also have ... ≤ d ∗ Suc m + c ∗ 2 ^ (Suc m + 1) + a by simp
also have ... ≤ d ∗ 2 ^ Suc m + c ∗ 2 ^ (Suc m + 1) + a using less-exp[of Suc

m]
by (meson add-le-mono less-or-eq-imp-le mult-le-mono)

also have ... = (2 ∗ d + 4 ∗ c) ∗ 2 ^ m + a using mult.assoc add-mult-distrib
by simp

also have ... ≤ (2 ∗ d + 4 ∗ c) ∗ n + a
using ‹n = 2 ^ m + k› power-increasing[of m n] by simp

finally show ?thesis .
next

case False
then have n = 0 by simp
then show ?thesis using small-bounds by simp

qed

end

General Lemmas for Landau notation.
lemma landau-o-plus-aux ′:

fixes f g
assumes f ∈ o[F](g)
shows O[F](g) = O[F](λx. f x + g x)
apply (intro equalityI subsetI)
subgoal using landau-o.big.trans[OF - landau-o.plus-aux[OF assms]] by simp
subgoal for h

using assms by simp
done

lemma powr-bigo-linear-index-transformation:
fixes fl :: nat ⇒ nat
fixes f :: nat ⇒ real
assumes (λx. real (fl x)) ∈ O(λn. real n)
assumes f ∈ O(λn. real n powr p)
assumes p > 0
shows f ◦ fl ∈ O(λn. real n powr p)

proof −
obtain c1 where c1 > 0 ∀ F x in sequentially. norm (real (fl x)) ≤ c1 ∗ norm

(real x)
using landau-o.bigE [OF assms(1)] by auto

then obtain N1 where fl-bound: ∀ x. x ≥ N1 −→ norm (real (fl x)) ≤ c1 ∗
norm (real x)

unfolding eventually-at-top-linorder by blast
obtain c2 where c2 > 0 ∀ F x in sequentially. norm (f x) ≤ c2 ∗ norm (real x

93

powr p)
using landau-o.bigE [OF assms(2)] by auto

then obtain N2 where f-bound: ∀ x. x ≥ N2 −→ norm (f x) ≤ c2 ∗ norm (real
x powr p)

unfolding eventually-at-top-linorder by blast

define cf :: real where cf = Max {norm (f y) | y. y ≤ N2}
then have cf ≥ 0 using Max-in[of {norm (f y) | y. y ≤ N2}] norm-ge-zero by

fastforce
define c where c = c2 ∗ c1 powr p
then have c > 0 using ‹c1 > 0 › ‹c2 > 0 › by simp

have ∀ x. x ≥ N1 −→ norm (f (fl x)) ≤ cf + c ∗ norm (real x) powr p
proof (intro allI impI)

fix x
assume x ≥ N1
show norm (f (fl x)) ≤ cf + c ∗ norm (real x) powr p
proof (cases fl x ≥ N2)

case True
then have norm (f (fl x)) ≤ c2 ∗ norm (real (fl x) powr p)

using f-bound by simp
also have ... = c2 ∗ norm (real (fl x)) powr p

by simp
also have ... ≤ c2 ∗ (c1 ∗ norm (real x)) powr p

apply (intro mult-mono order .refl powr-mono2 norm-ge-zero)
subgoal using ‹p > 0 › by simp
subgoal using fl-bound ‹x ≥ N1 › by simp
subgoal using ‹c2 > 0 › by simp
subgoal by simp
done

also have ... = c2 ∗ (c1 powr p ∗ norm (real x) powr p)
apply (intro arg-cong[where f = (∗) c2] powr-mult norm-ge-zero)
using ‹c1 > 0 › by simp

also have ... = c ∗ norm (real x) powr p unfolding c-def by simp
also have ... ≤ cf + c ∗ norm (real x) powr p using ‹cf ≥ 0 › by simp
finally show ?thesis .

next
case False
then have norm (f (fl x)) ≤ cf unfolding cf-def

by (intro Max-ge) auto
also have ... ≤ cf + c ∗ norm (real x) powr p

using ‹c > 0 › by simp
finally show ?thesis .

qed
qed
then have f ◦ fl ∈ O(λx. cf + c ∗ (real x) powr p)

apply (intro landau-o.big-mono)
unfolding eventually-at-top-linorder comp-apply by fastforce

also have ... = O(λx. c ∗ (real x) powr p)

94

proof (intro landau-o-plus-aux ′[symmetric])
have (λx. cf) ∈ O(λx. real x powr 0) by simp
moreover have (λx. real x powr 0) ∈ o(λx. real x powr p)
using iffD2 [OF powr-smallo-iff , OF filterlim-real-sequentially sequentially-bot

‹p > 0 ›] .
ultimately have (λx. cf) ∈ o(λx. real x powr p)

by (rule landau-o.big-small-trans)
also have ... = o(λx. c ∗ (real x) powr p)

using landau-o.small.cmult ‹c > 0 › by simp
finally show (λx. cf) ∈

qed
also have ... = O(λx. (real x) powr p) using landau-o.big.cmult ‹c > 0 › by simp
finally show ?thesis .

qed

lemma real-mono: (a ≤ b) = (real a ≤ real b)
by simp

lemma real-linear : real (a + b) = real a + real b
by simp

lemma real-multiplicative: real (a ∗ b) = real a ∗ real b
by simp

lemma (in landau-pair) big-1-mult-left:
fixes f g h
assumes f ∈ L F (g) h ∈ L F (λ-. 1)
shows (λx. h x ∗ f x) ∈ L F (g)

proof −
have (λx. f x ∗ h x) ∈ L F (g) using assms by (rule big-1-mult)
also have (λx. f x ∗ h x) = (λx. h x ∗ f x) by auto
finally show ?thesis .

qed

lemma norm-nonneg: x ≥ 0 =⇒ norm x = x by simp

lemma landau-mono-always:
fixes f g
assumes

∧
x. f x ≥ (0 :: real)

∧
x. g x ≥ 0

assumes
∧

x. f x ≤ g x
shows f ∈ O[F](g)
apply (intro landau-o.bigI [of 1])
using assms by simp-all

end

9 Running time of Nat-LSBF
theory Nat-LSBF-TM

95

imports Nat-LSBF ../Karatsuba-Runtime-Lemmas ../Main-TM ../Estimation-Method
begin

9.1 Truncating and filling
fun truncate-reversed-tm :: nat-lsbf ⇒ nat-lsbf tm where
truncate-reversed-tm [] =1 return []
| truncate-reversed-tm (x # xs) =1 (if x then return (x # xs) else truncate-reversed-tm
xs)

lemma val-truncate-reversed-tm[simp, val-simp]: val (truncate-reversed-tm xs) =
truncate-reversed xs

by (induction xs rule: truncate-reversed-tm.induct) simp-all

lemma time-truncate-reversed-tm-le: time (truncate-reversed-tm xs) ≤ length xs +
1

by (induction xs rule: truncate-reversed-tm.induct) simp-all

definition truncate-tm :: nat-lsbf ⇒ nat-lsbf tm where
truncate-tm xs =1 do {

rev-xs ← rev-tm xs;
truncate-rev-xs ← truncate-reversed-tm rev-xs;
rev-tm truncate-rev-xs
}

lemma val-truncate-tm[simp, val-simp]: val (truncate-tm xs) = truncate xs
by (simp add: truncate-tm-def Nat-LSBF .truncate-def)

lemma time-truncate-tm-le: time (truncate-tm xs) ≤ 3 ∗ length xs + 6
using add-mono[OF time-truncate-reversed-tm-le[of rev xs] truncate-reversed-length-ineq[of

rev xs]]
by (simp add: truncate-tm-def)

definition fill-tm :: nat ⇒ nat-lsbf ⇒ nat-lsbf tm where
fill-tm n xs =1 do {

k ← length-tm xs;
l ← n −t k;
zeros ← replicate-tm l False;
xs @t zeros
}

lemma val-fill-tm[simp, val-simp]: val (fill-tm n xs) = fill n xs
by (simp add: fill-tm-def fill-def)

lemma com-f-of-min-max: f a b = f b a =⇒ f (min a b) (max a b) = f a b
by (cases a ≤ b; simp add: max-def min-def)

lemma add-min-max: min (a:: ′a:: ordered-ab-semigroup-add) b + max a b = a +
b

by (intro com-f-of-min-max add.commute)

96

lemma time-fill-tm: time (fill-tm n xs) = 2 ∗ length xs + n + 5
by (simp add: fill-tm-def time-replicate-tm add-min-max)

lemma time-fill-tm-le: time (fill-tm n xs) ≤ 3 ∗ max n (length xs) + 5
unfolding time-fill-tm by simp

9.2 Right-shifts
definition shift-right-tm :: nat ⇒ nat-lsbf ⇒ nat-lsbf tm where
shift-right-tm n xs =1 do {

r ← replicate-tm n False;
r @t xs
}

lemma val-shift-right-tm[simp, val-simp]: val (shift-right-tm n xs) = xs >>n n
by (simp add: shift-right-tm-def shift-right-def)

lemma time-shift-right-tm[simp]: time (shift-right-tm n xs) = 2 ∗ n + 3
by (simp add: shift-right-tm-def time-replicate-tm)

9.3 Subdividing lists
9.3.1 Splitting a list in two blocks
definition split-at-tm :: nat ⇒ ′a list ⇒ (′a list × ′a list) tm where
split-at-tm k xs =1 do {

xs1 ← take-tm k xs;
xs2 ← drop-tm k xs;
return (xs1 , xs2)
}

lemma val-split-at-tm[simp, val-simp]: val (split-at-tm k xs) = split-at k xs
unfolding split-at-tm-def by simp

lemma time-split-at-tm: time (split-at-tm k xs) = 2 ∗ min k (length xs) + 3
unfolding split-at-tm-def tm-time-simps time-take-tm time-drop-tm by simp

definition split-tm :: nat-lsbf ⇒ (nat-lsbf × nat-lsbf) tm where
split-tm xs =1 do {

n ← length-tm xs;
n-div-2 ← n divt 2 ;
split-at-tm n-div-2 xs
}

lemma val-split-tm[simp, val-simp]: val (split-tm xs) = split xs
by (simp add: split-tm-def split-def Let-def)

lemma time-split-tm-le: time (split-tm xs) ≤ 10 ∗ length xs + 16
using time-divide-nat-tm-le[of length xs 2]

97

by (simp add: split-tm-def time-split-at-tm)

9.3.2 Splitting a list in multiple blocks
fun subdivide-tm :: nat ⇒ ′a list ⇒ ′a list list tm where
subdivide-tm 0 xs =1 undefined
| subdivide-tm n [] =1 return []
| subdivide-tm n xs =1 do {

r ← take-tm n xs;
s ← drop-tm n xs;
rs ← subdivide-tm n s;
return (r # rs)
}

lemma val-subdivide-tm[simp, val-simp]: n > 0 =⇒ val (subdivide-tm n xs) =
subdivide n xs

by (induction n xs rule: subdivide.induct) simp-all

lemma time-subdivide-tm-le-aux:
assumes n > 0
shows time (subdivide-tm n xs) ≤ k ∗ (2 ∗ n + 3) + time (subdivide-tm n (drop

(k ∗ n) xs))
proof (induction k arbitrary: xs)

case (Suc k)
show ?case
proof (cases xs)

case Nil
then show ?thesis by simp

next
case (Cons a l)
then have time (subdivide-tm n (a # l)) ≤ 2 ∗ n + 3 + time (subdivide-tm n

(drop n (a # l)))
using gr0-implies-Suc[OF assms] by (auto simp: time-take-tm time-drop-tm)

also have ... ≤ 2 ∗ n + 3 + (k ∗ (2 ∗ n + 3) + time (subdivide-tm n (drop
(k ∗ n) (drop n (a # l)))))

by (intro add-mono order .refl Suc)
also have ... = Suc k ∗ (2 ∗ n + 3) + time (subdivide-tm n (drop (Suc k ∗ n)

(a # l)))
by (simp add: add.commute)

finally show ?thesis using Cons by simp
qed

qed simp

lemma time-subdivide-tm-le:
fixes xs :: ′a list
assumes n > 0
shows time (subdivide-tm n xs) ≤ 5 ∗ length xs + 2 ∗ n + 4

proof −
define k where k = length xs div n + 1

98

then have k ∗ n ≥ length xs using assms
by (meson div-less-iff-less-mult less-add-one order-less-imp-le)

then have drop-Nil: drop (k ∗ n) xs = [] by simp
have time (subdivide-tm n xs) ≤ k ∗ (2 ∗ n + 3) + time (subdivide-tm n ([] ::

′a list))
using time-subdivide-tm-le-aux[OF assms, of xs k] unfolding drop-Nil .

also have ... = k ∗ (2 ∗ n + 3) + 1 using gr0-implies-Suc[OF assms] by auto
also have ... = (2 ∗ n ∗ (length xs div n) + 2 ∗ n) + 3 ∗ (length xs div n) + 4

unfolding k-def by (simp add: add-mult-distrib2)
also have ... ≤ 5 ∗ length xs + 2 ∗ n + 4

using times-div-less-eq-dividend[of n length xs] div-le-dividend[of length xs n]
by linarith

finally show ?thesis .
qed

9.4 The bitsize function
fun bitsize-tm :: nat ⇒ nat tm where
bitsize-tm 0 =1 return 0
| bitsize-tm n =1 do {

n-div-2 ← n divt 2 ;
r ← bitsize-tm n-div-2 ;
1 +t r
}

lemma val-bitsize-tm[simp, val-simp]: val (bitsize-tm n) = bitsize n
by (induction n rule: bitsize-tm.induct) simp-all

fun time-bitsize-tm-bound :: nat ⇒ nat where
time-bitsize-tm-bound 0 = 1
| time-bitsize-tm-bound n = 14 + 8 ∗ n + time-bitsize-tm-bound (n div 2)

lemma time-bitsize-tm-aux:
time (bitsize-tm n) ≤ time-bitsize-tm-bound n
apply (induction n rule: bitsize-tm.induct)
subgoal by simp
subgoal for n using time-divide-nat-tm-le[of Suc n 2] by simp
done

lemma time-bitsize-tm-aux2 : time-bitsize-tm-bound n ≤ (2 ∗ 8 + 4 ∗ 14) ∗ n +
23

apply (intro div-2-recursion-linear)
using less-iff-Suc-add by auto

lemma time-bitsize-tm-le: time (bitsize-tm n) ≤ 72 ∗ n + 23
using order .trans[OF time-bitsize-tm-aux time-bitsize-tm-aux2] by simp

9.4.1 The is-power-of-2 function
fun is-power-of-2-tm :: nat ⇒ bool tm where

99

is-power-of-2-tm 0 =1 return False
| is-power-of-2-tm (Suc 0) =1 return True
| is-power-of-2-tm n =1 do {

n-mod-2 ← n modt 2 ;
n-div-2 ← n divt 2 ;
c1 ← n-mod-2 =t 0 ;
c2 ← is-power-of-2-tm n-div-2 ;
c1 ∧t c2
}

lemma val-is-power-of-2-tm[simp, val-simp]: val (is-power-of-2-tm n) = is-power-of-2
n

by (induction n rule: is-power-of-2-tm.induct) simp-all

lemma time-is-power-of-2-tm-le: time (is-power-of-2-tm n) ≤ 114 ∗ n + 1
proof −

have time (is-power-of-2-tm n) ≤ (2 ∗ 25 + 4 ∗ 16) ∗ n + 1
apply (intro div-2-recursion-linear)
subgoal by simp
subgoal by simp
subgoal premises prems for n
proof −

from prems obtain n ′ where n = Suc (Suc n ′)
by (metis Suc-diff-1 Suc-diff-Suc order-less-trans zero-less-one)

then have time (is-power-of-2-tm n) =
time (n modt 2) +
time (n divt 2) +
time (is-power-of-2-tm (n div 2)) + 3

by (simp add: time-equal-nat-tm)
also have ... ≤ 16 ∗ n + time (is-power-of-2-tm (n div 2)) + 25

apply (estimation estimate: time-mod-nat-tm-le)
apply (estimation estimate: time-divide-nat-tm-le)
apply simp
done

finally show ?thesis by simp
qed
done

then show ?thesis by simp
qed

definition next-power-of-2-tm :: nat ⇒ nat tm where
next-power-of-2-tm n =1 do {

b ← is-power-of-2-tm n;
if b then return n else do {

r ← bitsize-tm n;
2 ^t r
}
}

100

lemma val-next-power-of-2-tm[simp, val-simp]: val (next-power-of-2-tm n) = next-power-of-2
n

by (simp add: next-power-of-2-tm-def)

lemma time-next-power-of-2-tm-le: time (next-power-of-2-tm n) ≤ 208 ∗ n + 37
proof (cases is-power-of-2 n)

case True
then show ?thesis

using time-is-power-of-2-tm-le[of n]
by (simp add: next-power-of-2-tm-def)

next
case False
then have time (next-power-of-2-tm n) =

time (is-power-of-2-tm n) +
time (bitsize-tm n) +
time (power-nat-tm 2 (bitsize n)) + 1

by (simp add: next-power-of-2-tm-def)
also have ... ≤ 186 ∗ n + 6 ∗ 2 ^ (bitsize n) + 5 ∗ bitsize n + 26

apply (estimation estimate: time-is-power-of-2-tm-le)
apply (estimation estimate: time-bitsize-tm-le)
apply (estimation estimate: time-power-nat-tm-le)
by simp

also have ... ≤ 186 ∗ n + 11 ∗ 2 ^ (bitsize n) + 26
by simp

also have ... ≤ 208 ∗ n + 37
by (estimation estimate: two-pow-bitsize-bound) simp

finally show ?thesis .
qed

9.5 Addition
fun bit-add-carry-tm :: bool ⇒ bool ⇒ bool ⇒ (bool × bool) tm where
bit-add-carry-tm False False False =1 return (False, False)
| bit-add-carry-tm False False True =1 return (True, False)
| bit-add-carry-tm False True False =1 return (True, False)
| bit-add-carry-tm False True True =1 return (False, True)
| bit-add-carry-tm True False False =1 return (True, False)
| bit-add-carry-tm True False True =1 return (False, True)
| bit-add-carry-tm True True False =1 return (False, True)
| bit-add-carry-tm True True True =1 return (True, True)

lemma val-bit-add-carry-tm[simp, val-simp]: val (bit-add-carry-tm x y z) = bit-add-carry
x y z

by (induction x y z rule: bit-add-carry-tm.induct; simp)
lemma time-bit-add-carry-tm[simp]: time (bit-add-carry-tm x y z) = 1

by (induction x y z rule: bit-add-carry-tm.induct; simp)

fun inc-nat-tm :: nat-lsbf ⇒ nat-lsbf tm where

101

inc-nat-tm [] =1 return [True]
| inc-nat-tm (False # xs) =1 return (True # xs)
| inc-nat-tm (True # xs) =1 do {

r ← inc-nat-tm xs;
return (False # r)
}

lemma val-inc-nat-tm[simp, val-simp]: val (inc-nat-tm xs) = inc-nat xs
by (induction xs rule: inc-nat-tm.induct) simp-all

lemma time-inc-nat-tm-le: time (inc-nat-tm xs) ≤ length xs + 1
by (induction xs rule: inc-nat-tm.induct) simp-all

fun add-carry-tm :: bool ⇒ nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf tm where
add-carry-tm False [] y =1 return y
| add-carry-tm False (x # xs) [] =1 return (x # xs)
| add-carry-tm True [] y =1 do {

r ← inc-nat-tm y;
return r
}
| add-carry-tm True (x # xs) [] =1 do {

r ← inc-nat-tm (x # xs);
return r
}
| add-carry-tm c (x # xs) (y # ys) =1 do {

(a, b) ← bit-add-carry-tm c x y;
r ← add-carry-tm b xs ys;
return (a # r)
}

lemma val-add-carry-tm[simp, val-simp]: val (add-carry-tm c xs ys) = add-carry
c xs ys

by (induction c xs ys rule: add-carry-tm.induct) (simp-all split: prod.splits)

lemma time-add-carry-tm-le: time (add-carry-tm c xs ys) ≤ 2 ∗ max (length xs)
(length ys) + 2
proof (induction c xs ys rule: add-carry-tm.induct)

case (3 y)
then show ?case using time-inc-nat-tm-le[of y] by simp

next
case (4 x xs)
then show ?case using time-inc-nat-tm-le[of x # xs] by simp

qed (simp-all split: prod.splits)

definition add-nat-tm :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf tm where
add-nat-tm xs ys =1 do {

r ← add-carry-tm False xs ys;
return r
}

102

lemma val-add-nat-tm[simp, val-simp]: val (add-nat-tm xs ys) = xs +n ys
by (simp add: add-nat-tm-def add-nat-def)

lemma time-add-nat-tm-le: time (add-nat-tm xs ys) ≤ 2 ∗ max (length xs) (length
ys) + 3

using time-add-carry-tm-le[of - xs ys] by (simp add: add-nat-tm-def)

9.6 Comparison and subtraction
fun compare-nat-same-length-reversed-tm :: bool list ⇒ bool list ⇒ bool tm where
compare-nat-same-length-reversed-tm [] [] =1 return True
| compare-nat-same-length-reversed-tm (False # xs) (False # ys) =1 compare-nat-same-length-reversed-tm
xs ys
| compare-nat-same-length-reversed-tm (True # xs) (False # ys) =1 return False
| compare-nat-same-length-reversed-tm (False # xs) (True # ys) =1 return True
| compare-nat-same-length-reversed-tm (True # xs) (True # ys) =1 compare-nat-same-length-reversed-tm
xs ys
| compare-nat-same-length-reversed-tm - - =1 undefined

lemma val-compare-nat-same-length-reversed-tm[simp, val-simp]:
assumes length xs = length ys
shows val (compare-nat-same-length-reversed-tm xs ys) = compare-nat-same-length-reversed

xs ys
using assms by (induction xs ys rule: compare-nat-same-length-reversed-tm.induct)

simp-all

lemma time-compare-nat-same-length-reversed-tm-le:
length xs = length ys =⇒ time (compare-nat-same-length-reversed-tm xs ys) ≤

length xs + 1
by (induction xs ys rule: compare-nat-same-length-reversed-tm.induct) simp-all

fun compare-nat-same-length-tm :: nat-lsbf ⇒ nat-lsbf ⇒ bool tm where
compare-nat-same-length-tm xs ys =1 do {

rev-xs ← rev-tm xs;
rev-ys ← rev-tm ys;
compare-nat-same-length-reversed-tm rev-xs rev-ys
}

lemma val-compare-nat-same-length-tm[simp, val-simp]:
assumes length xs = length ys
shows val (compare-nat-same-length-tm xs ys) = compare-nat-same-length xs ys
using assms by simp

lemma time-compare-nat-same-length-tm-le:
length xs = length ys =⇒ time (compare-nat-same-length-tm xs ys) ≤ 3 ∗ length

xs + 6
using time-compare-nat-same-length-reversed-tm-le[of rev xs rev ys]
by simp

103

definition make-same-length-tm :: nat-lsbf ⇒ nat-lsbf ⇒ (nat-lsbf × nat-lsbf) tm
where
make-same-length-tm xs ys =1 do {

len-xs ← length-tm xs;
len-ys ← length-tm ys;
n ← max-nat-tm len-xs len-ys;
fill-xs ← fill-tm n xs;
fill-ys ← fill-tm n ys;
return (fill-xs, fill-ys)
}

lemma val-make-same-length-tm[simp, val-simp]: val (make-same-length-tm xs ys)
= make-same-length xs ys
by (simp add: make-same-length-tm-def make-same-length-def del: max-nat-tm.simps)

lemma time-make-same-length-tm-le: time (make-same-length-tm xs ys) ≤ 10 ∗
max (length xs) (length ys) + 16
proof −

have time (make-same-length-tm xs ys) = 13 + 3 ∗ length xs + 3 ∗ length ys +
(time (max-nat-tm (length xs) (length ys)) + 2 ∗ max (length xs) (length ys))
by (simp add: make-same-length-tm-def time-fill-tm del: max-nat-tm.simps)

also have ... ≤ 10 ∗ max (length xs) (length ys) + 16
using time-max-nat-tm-le[of length xs length ys] by simp

finally show ?thesis .
qed

definition compare-nat-tm :: nat-lsbf ⇒ nat-lsbf ⇒ bool tm where
compare-nat-tm xs ys =1 do {
(fill-xs, fill-ys) ← make-same-length-tm xs ys;
compare-nat-same-length-tm fill-xs fill-ys
}

lemma val-compare-nat-tm[simp, val-simp]: val (compare-nat-tm xs ys) = (xs ≤n

ys)
using make-same-length-correct[where xs = xs and ys = ys]
by (simp add: compare-nat-tm-def compare-nat-def del: compare-nat-same-length-tm.simps

compare-nat-same-length.simps split: prod.splits)

lemma time-compare-nat-tm-le: time (compare-nat-tm xs ys) ≤ 13 ∗ max (length
xs) (length ys) + 23
proof −

obtain fill-xs fill-ys where fills-defs: make-same-length xs ys = (fill-xs, fill-ys)
by fastforce

then have time (compare-nat-tm xs ys) = time (make-same-length-tm xs ys) +
time (compare-nat-same-length-tm fill-xs fill-ys) + 1

by (simp add: compare-nat-tm-def del: compare-nat-same-length-tm.simps)
also have ... ≤ (10 ∗ max (length xs) (length ys) + 16) +

(3 ∗ max (length xs) (length ys) + 6) + 1

104

apply (intro add-mono order .refl time-make-same-length-tm-le)
using time-compare-nat-same-length-tm-le[of fill-xs fill-ys]
using make-same-length-correct[OF fills-defs[symmetric]] by argo

finally show ?thesis by simp
qed

definition subtract-nat-tm :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf tm where
subtract-nat-tm xs ys =1 do {

b ← compare-nat-tm xs ys;
if b then return [] else do {
(fill-xs, fill-ys) ← make-same-length-tm xs ys;
fill-ys-comp ← map-tm Not-tm fill-ys;
a ← add-carry-tm True fill-xs fill-ys-comp;
butlast-tm a
}
}

lemma val-subtract-nat-tm[simp, val-simp]: val (subtract-nat-tm xs ys) = xs −n ys
by (simp add: subtract-nat-tm-def subtract-nat-def Let-def split: prod.splits)

lemma time-map-tm-Not-tm: time (map-tm Not-tm xs) = 2 ∗ length xs + 1
using time-map-tm-constant[of xs Not-tm 1] by simp

lemma time-subtract-nat-tm-le: time (subtract-nat-tm xs ys) ≤ 30 ∗ max (length
xs) (length ys) + 48
proof −

obtain x1 x2 where x12 : make-same-length xs ys = (x1 , x2) by fastforce
note x12-simps = make-same-length-correct[OF x12 [symmetric]]
then have max12 : max (length x1) (length x2) = max (length xs) (length ys)

by simp
show ?thesis
proof (cases compare-nat xs ys)

case True
then show ?thesis

using time-compare-nat-tm-le[of xs ys]
by (simp add: subtract-nat-tm-def)

next
case False
then have time (subtract-nat-tm xs ys) =

Suc (time (compare-nat-tm xs ys) +
(time (make-same-length-tm xs ys) +
(time (map-tm Not-tm x2) +
(time (add-carry-tm True x1 (map Not x2)) +
(time (butlast-tm (add-carry True x1 (map Not x2))))))))

by (simp add: subtract-nat-tm-def x12)
also have ... ≤ 30 ∗ max (length xs) (length ys) + 48

apply (subst Suc-eq-plus1)
apply (estimation estimate: time-compare-nat-tm-le)
apply (estimation estimate: time-make-same-length-tm-le)

105

apply (subst time-map-tm-Not-tm)
apply (estimation estimate: time-add-carry-tm-le)
apply (estimation estimate: time-butlast-tm-le)
apply (estimation estimate: time-inc-nat-tm-le)
apply (estimation estimate: length-add-carry-upper)
apply (subst length-map)+
apply (subst max12)+
apply (subst x12-simps)+
apply simp
done

finally show ?thesis .
qed

qed

9.7 (Grid) Multiplication
fun grid-mul-nat-tm :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf tm where
grid-mul-nat-tm [] ys =1 return []
| grid-mul-nat-tm (False # xs) ys =1 do {

r ← grid-mul-nat-tm xs ys;
return (False # r)
}
| grid-mul-nat-tm (True # xs) ys =1 do {

r ← grid-mul-nat-tm xs ys;
add-nat-tm (False # r) ys
}

lemma val-grid-mul-nat-tm[simp, val-simp]: val (grid-mul-nat-tm xs ys) = xs ∗n
ys

by (induction xs ys rule: grid-mul-nat-tm.induct) simp-all

lemma euler-sum-bound:
∑
{..(n::nat)} ≤ n ∗ n

by (induction n) simp-all

lemma time-grid-mul-nat-tm-le:
time (grid-mul-nat-tm xs ys) ≤ 8 ∗ length xs ∗ max (length xs) (length ys) + 1

proof −
have time (grid-mul-nat-tm xs ys) ≤ 2 ∗ (

∑
{..length xs}) + length xs ∗ (2 ∗

length ys + 4) + 1
proof (induction xs ys rule: grid-mul-nat-tm.induct)

case (1 ys)
then show ?case by simp

next
case (2 xs ys)
then show ?case by simp

next
case (3 xs ys)
then have time (grid-mul-nat-tm (True # xs) ys) ≤

time (grid-mul-nat-tm xs ys) +

106

time (add-nat-tm (False # grid-mul-nat xs ys) ys) + 1 (is ?l ≤ ?i + - + 1)
by simp

also have ... ≤ ?i + 2 ∗ max (1 + length (grid-mul-nat xs ys)) (length ys) + 4
by (estimation estimate: time-add-nat-tm-le) simp

also have ... ≤ ?i + 2 ∗ (length xs + length ys + 1) + 4
apply (estimation estimate: length-grid-mul-nat[of xs ys])
by (simp-all add: length-grid-mul-nat)

also have ... = ?i + 2 ∗ (length (True # xs)) + 2 ∗ length ys + 4
by simp

also have ... ≤ 2 ∗ (
∑
{..length (True # xs)}) + length (True # xs) ∗ (2 ∗

length ys + 4) + 1
using 3 by simp

finally show ?case .
qed
also have ... ≤ 2 ∗ length xs ∗ length xs + 2 ∗ length xs ∗ length ys + 4 ∗ length

xs + 1
by (estimation estimate: euler-sum-bound) (simp add: distrib-left)

also have ... ≤ 6 ∗ length xs ∗ length xs + 2 ∗ length xs ∗ length ys + 1
by (simp add: leI)

also have ... ≤ 8 ∗ length xs ∗ max (length xs) (length ys) + 1
by (simp add: add.commute add-mult-distrib nat-mult-max-right)

finally show ?thesis .
qed

9.8 Syntax bundles
abbreviation shift-right-tm-flip where shift-right-tm-flip xs n ≡ shift-right-tm n
xs

bundle nat-lsbf-tm-syntax
begin

notation add-nat-tm (infixl +nt 65)
notation compare-nat-tm (infixl ≤nt 50)
notation subtract-nat-tm (infixl −nt 65)
notation grid-mul-nat-tm (infixl ∗nt 70)
notation shift-right-tm-flip (infixl >>nt 55)

end

bundle no-nat-lsbf-tm-syntax
begin

no-notation add-nat-tm (infixl +nt 65)
no-notation compare-nat-tm (infixl ≤nt 50)
no-notation subtract-nat-tm (infixl −nt 65)
no-notation grid-mul-nat-tm (infixl ∗nt 70)
no-notation shift-right-tm-flip (infixl >>nt 55)

end

unbundle nat-lsbf-tm-syntax

107

end
theory Int-LSBF

imports Nat-LSBF HOL−Algebra.IntRing
begin

10 Representing int in LSBF
10.1 Type definition
datatype sign = Positive | Negative
type-synonym int-lsbf = sign × nat-lsbf

10.2 Conversions
fun from-int :: int ⇒ int-lsbf where
from-int x = (if x ≥ 0 then (Positive, from-nat (nat x)) else (Negative, from-nat
(nat (−x))))
fun to-int :: int-lsbf ⇒ int where
to-int (Positive, xs) = int (to-nat xs)
| to-int (Negative, xs) = − int (to-nat xs)

lemma to-int-from-int[simp]: to-int (from-int x) = x
by (cases x ≥ 0) simp-all

fun truncate-int :: int-lsbf ⇒ int-lsbf where
truncate-int (Positive, xs) = (Positive, truncate xs)
| truncate-int (Negative, xs) = (let ys = truncate xs in if ys = [] then (Positive, [])
else (Negative, ys))

lemma to-int-truncate[simp]: to-int (truncate-int xs) = to-int xs
by (induction xs rule: truncate-int.induct) (simp-all add: Let-def to-nat-zero-iff)

lemma truncate-from-int[simp]: truncate-int (from-int x) = from-int x
apply (cases x ≥ 0)
subgoal by simp
subgoal unfolding Let-def
proof −

assume ¬ x ≥ 0
then have to-nat (from-nat (nat (− x))) > 0 by simp
then have truncate (from-nat (nat (− x))) 6= [] using to-nat-zero-iff nless-le

by blast
then show ?thesis by simp

qed
done

lemma pos-and-neg-imp-zero:
assumes to-int (Positive, x) = to-int (Negative, y)
shows to-nat x = 0 ∧ to-nat y = 0

proof −

108

have to-int (Positive, x) ≥ 0 to-int (Negative, y) ≤ 0 by simp-all
with assms have to-int (Positive, x) = 0 to-int (Negative, y) = 0 by simp-all
thus ?thesis by simp-all

qed

lemma to-int-eq-imp-truncate-int-eq: to-int (a, x) = to-int (b, y) =⇒ truncate-int
(a, x) = truncate-int (b, y)

apply (cases a; cases b)
subgoal by (simp add: to-nat-eq-imp-truncate-eq[of x y])
subgoal

using pos-and-neg-imp-zero[of x y] to-nat-zero-iff
by fastforce

subgoal using to-nat-zero-iff by (simp add: Let-def)
subgoal by (simp add: to-nat-eq-imp-truncate-eq[of x y])
done

lemma from-int-to-int: from-int ◦ to-int = truncate-int
proof −

have (
∧

x y. to-int x = to-int y =⇒ truncate-int x = truncate-int y)
using to-int-eq-imp-truncate-int-eq by auto

thus ?thesis
using from-to-f-criterion[of to-int from-int truncate-int]
using truncate-from-int to-int-from-int
using comp-apply
by fastforce

qed

interpretation int-lsbf : abstract-representation from-int to-int truncate-int
proof

show to-int ◦ from-int = id
using to-int-from-int comp-apply by fastforce

next
show from-int ◦ to-int = truncate-int

using from-int-to-int comp-apply by fastforce
qed

10.3 Addition
fun add-int :: int-lsbf ⇒ int-lsbf ⇒ int-lsbf where
add-int (Negative, xs) (Negative, ys) = (Negative, add-nat xs ys)
| add-int (Positive, xs) (Positive, ys) = (Positive, add-nat xs ys)
| add-int (Positive, xs) (Negative, ys) = (if compare-nat xs ys then (Negative, sub-
tract-nat ys xs) else (Positive, subtract-nat xs ys))
| add-int (Negative, xs) (Positive, ys) = (if compare-nat xs ys then (Positive, sub-
tract-nat ys xs) else (Negative, subtract-nat xs ys))

lemma add-int-correct: to-int (add-int x y) = to-int x + to-int y
apply (induction x y rule: add-int.induct)
subgoal by (simp add: add-nat-correct)

109

subgoal by (simp add: add-nat-correct)
apply (auto simp only: add-int.simps compare-nat-correct subtract-nat-correct

to-int.simps split: if-splits)
done

fun nat-mul-to-int-mul :: (nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf) ⇒ int-lsbf ⇒ int-lsbf
⇒ int-lsbf where
nat-mul-to-int-mul f (x, xs) (y, ys) = ((if x = y then Positive else Negative), f xs
ys)

lemma nat-mul-to-int-mul-correct:
assumes

∧
x y. to-nat (f x y) = to-nat x ∗ to-nat y

shows
∧

x y xs ys. to-int (nat-mul-to-int-mul f (x, xs) (y, ys)) = to-int (x, xs) ∗
to-int (y, ys)

subgoal for x y xs ys
by (cases x; cases y) (simp-all add: assms)

done

10.4 Grid Multiplication
fun grid-mul-int where grid-mul-int x y = nat-mul-to-int-mul grid-mul-nat x y

corollary grid-mul-int-correct: to-int (grid-mul-int x y) = to-int x ∗ to-int y
using nat-mul-to-int-mul-correct[OF grid-mul-nat-correct]
by (metis grid-mul-int.elims surj-pair)

end

11 Karatsuba Multiplication
theory Karatsuba
imports ../Binary-Representations/Nat-LSBF ../Binary-Representations/Int-LSBF
../Estimation-Method
begin

This theory contains an implementation of the Karatsuba Multiplication on
type nat-lsbf.
definition abs-diff :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
abs-diff x y = (x −n y) +n (y −n x)

lemma abs-diff-correct: int (to-nat (abs-diff x y)) = abs (int (to-nat x) − int
(to-nat y))

unfolding abs-diff-def by (simp add: add-nat-correct subtract-nat-correct)

lemma abs-diff-length: length (abs-diff xs ys) ≤ max (length xs) (length ys)
proof (cases compare-nat xs ys)

case True
then have xs −n ys = [] by (simp add: subtract-nat-def)
then have abs-diff xs ys = ys −n xs by (simp add: abs-diff-def add-nat-def)

110

then show ?thesis using length-subtract-nat-le[of ys xs] by simp
next

case False
then have ys ≤n xs by (simp only: compare-nat-correct)
then have ys −n xs = [] by (simp add: subtract-nat-def)
then have abs-diff xs ys = xs −n ys by (simp add: abs-diff-def add-nat-com

add-nat-def)
then show ?thesis using length-subtract-nat-le[of xs ys] by simp

qed

For small inputs, implementations of Karatsuba Multiplication usually switch
to grid multiplication. The threshold does not matter for the asymptotic
running time, hence we will just arbitrarily choose 42.
definition karatsuba-lower-bound :: nat where
karatsuba-lower-bound ≡ 42

lemma karatsuba-lower-bound-requirement:
karatsuba-lower-bound ≥ 1
unfolding karatsuba-lower-bound-def by simp

A first version of the algorithm assumes the input numbers have a length
which is a power of 2. The function karatsuba-on-power-of-2-length takes
the specified length as additional first argument.
fun karatsuba-on-power-of-2-length :: nat ⇒ nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
karatsuba-on-power-of-2-length k x y =
(if k ≤ karatsuba-lower-bound
then x ∗n y
else let

(x0 , x1) = split x ;
(y0 , y1) = split y;
k-div-2 = (k div 2);
prod0 = karatsuba-on-power-of-2-length k-div-2 x0 y0 ;
prod1 = karatsuba-on-power-of-2-length k-div-2 x1 y1 ;
prod2 = karatsuba-on-power-of-2-length k-div-2
(fill k-div-2 (abs-diff x0 x1))
(fill k-div-2 (abs-diff y0 y1));

add01 = prod0 +n prod1 ;
r = (if (x1 ≤n x0) = (y1 ≤n y0)

then add01 −n prod2
else add01 +n prod2)

in prod0 +n (r >>n k-div-2) +n (prod1 >>n k))

declare karatsuba-on-power-of-2-length.simps[simp del]

locale karatsuba-context =
fixes k l :: nat
fixes x y :: nat-lsbf
assumes k-power-of-2 : k = 2 ^ l
assumes length-x: length x = k

111

assumes length-y: length y = k
assumes recursion-condition: ¬ k ≤ karatsuba-lower-bound

begin

definition x0 where x0 = fst (split x)
definition x1 where x1 = snd (split x)
definition y0 where y0 = fst (split y)
definition y1 where y1 = snd (split y)
definition k-div-2 where k-div-2 = k div 2
definition prod0 where prod0 = karatsuba-on-power-of-2-length k-div-2 x0 y0
definition prod1 where prod1 = karatsuba-on-power-of-2-length k-div-2 x1 y1
definition prod2 where prod2 = karatsuba-on-power-of-2-length k-div-2

(fill k-div-2 (abs-diff x0 x1))
(fill k-div-2 (abs-diff y0 y1))

definition add01 where add01 = prod0 +n prod1
definition r where r = (if (x1 ≤n x0) = (y1 ≤n y0)

then add01 −n prod2
else add01 +n prod2)

lemma split-x: split x = (x0 , x1) using x0-def x1-def by simp
lemma split-y: split y = (y0 , y1) using y0-def y1-def by simp

lemmas defs1 = split-x split-y
lemmas defs2 = prod0-def prod1-def prod2-def k-div-2-def add01-def r-def

lemma recursive: karatsuba-on-power-of-2-length k x y =
prod0 +n (r >>n k-div-2) +n (prod1 >>n k)
unfolding karatsuba-on-power-of-2-length.simps[of k x y]
using defs1 defs2 recursion-condition
by (simp only: if-False Let-def case-prod-conv)

lemma l-ge-1 : l ≥ 1
using karatsuba-lower-bound-requirement recursion-condition k-power-of-2
by (cases l; simp)

lemma k-even: k mod 2 = 0
using k-power-of-2 l-ge-1 by simp

lemma k-div-2 : k-div-2 = 2 ^ (l − 1)
unfolding k-div-2-def using k-power-of-2 l-ge-1 by (simp add: power-diff)

lemma k-div-2-less-k: k-div-2 < k
unfolding k-div-2-def using k-power-of-2 by simp

lemma length-x-split: length x0 = k-div-2 length x1 = k-div-2
unfolding k-div-2-def using k-even length-split[OF - split-x] length-x by argo+

lemma length-y-split: length y0 = k-div-2 length y1 = k-div-2
unfolding k-div-2-def using k-even length-split[OF - split-y] length-y by argo+

112

lemma length-abs-diff-x0-x1 : length (abs-diff x0 x1) ≤ k-div-2
using abs-diff-length[of x0 x1] length-x-split by simp

lemma length-fill-abs-diff-x0-x1 : length (fill k-div-2 (abs-diff x0 x1)) = k-div-2
by (intro length-fill length-abs-diff-x0-x1)

lemma length-abs-diff-y0-y1 : length (abs-diff y0 y1) ≤ k-div-2
using abs-diff-length[of y0 y1] length-y-split by simp

lemma length-fill-abs-diff-y0-y1 : length (fill k-div-2 (abs-diff y0 y1)) = k-div-2
by (intro length-fill length-abs-diff-y0-y1)

lemmas IH-prems1 = recursion-condition split-x[symmetric] refl split-y[symmetric]
refl k-div-2-def

k-div-2 length-x-split(1) length-y-split(1)

lemmas IH-prems2 = recursion-condition split-x[symmetric] refl split-y[symmetric]
refl k-div-2-def

prod0-def k-div-2 length-x-split(2) length-y-split(2)

lemmas IH-prems3 = recursion-condition split-x[symmetric] refl split-y[symmetric]
refl k-div-2-def

prod0-def prod1-def k-div-2 length-fill-abs-diff-x0-x1 length-fill-abs-diff-y0-y1

end

lemma karatsuba-on-power-of-2-length-correct:
assumes k = 2 ^ l
assumes length x = k length y = k
shows to-nat (karatsuba-on-power-of-2-length k x y) = to-nat x ∗ to-nat y

using assms proof (induction k x y arbitrary: l rule: karatsuba-on-power-of-2-length.induct)
case (1 k x y l)
show ?case
proof (cases k ≤ karatsuba-lower-bound)

case True
then show ?thesis

unfolding karatsuba-on-power-of-2-length.simps[of k x y]
by (simp add: grid-mul-nat-correct)

next
case False
then interpret r : karatsuba-context k l x y using 1 .prems

by (unfold-locales; simp)
from r .l-ge-1 obtain l ′ where l = Suc l ′

by (metis less-eqE plus-1-eq-Suc)
then have k div 2 = 2 ^ l ′ using ‹k = 2 ^ l› by simp

have to-nat-x: to-nat x = to-nat r .x0 + 2 ^ (k div 2) ∗ to-nat r .x1
unfolding r .k-div-2-def [symmetric]

using app-split[OF r .split-x] to-nat-app[of r .x0 r .x1] r .length-x-split by algebra

113

have to-nat-y: to-nat y = to-nat r .y0 + 2 ^ (k div 2) ∗ to-nat r .y1
unfolding r .k-div-2-def [symmetric]

using app-split[OF r .split-y] to-nat-app[of r .y0 r .y1] r .length-y-split by algebra

have 4 : to-nat r .prod0 = to-nat r .x0 ∗ to-nat r .y0
unfolding r .prod0-def
by (intro 1 (1)[OF r .IH-prems1])

have 5 : to-nat r .prod1 = to-nat r .x1 ∗ to-nat r .y1
unfolding r .prod1-def
by (intro 1 (2)[OF r .IH-prems2])

have to-nat r .prod2 = to-nat (fill r .k-div-2 (abs-diff r .x0 r .x1)) ∗ to-nat (fill
r .k-div-2 (abs-diff r .y0 r .y1))

unfolding r .prod2-def
by (intro 1 (3)[OF r .IH-prems3])

hence int (to-nat r .prod2) = abs (int (to-nat r .x0) − int (to-nat r .x1)) ∗ abs
(int (to-nat r .y0) − int (to-nat r .y1))

using abs-diff-correct by simp
then have int (to-nat r .prod2) = abs ((int (to-nat r .x0) − int (to-nat r .x1))

∗ (int (to-nat r .y0) − int (to-nat r .y1)))
by (subst abs-mult, assumption)

then have 6 : (if (compare-nat r .x1 r .x0) = (compare-nat r .y1 r .y0) then int
(to-nat r .prod2) else − int (to-nat r .prod2)) = (int (to-nat r .x0) − int (to-nat
r .x1)) ∗ (int (to-nat r .y0) − int (to-nat r .y1))

apply (cases to-nat r .x0 ≥ to-nat r .x1 ; cases to-nat r .y0 ≥ to-nat r .y1)
by (simp-all add: compare-nat-correct mult-nonneg-nonpos mult-nonneg-nonpos2

mult-nonpos-nonpos)

have 7 : int (to-nat r .r) = int (to-nat r .x0) ∗ int (to-nat r .y1) + int (to-nat
r .x1) ∗ int (to-nat r .y0)

proof (cases (r .x1 ≤n r .x0) = (r .y1 ≤n r .y0))
case True
then have int-p: int (to-nat r .r) = int (to-nat r .prod0 + to-nat r .prod1 −

to-nat r .prod2)
unfolding r .r-def r .add01-def
by (simp add: subtract-nat-correct add-nat-correct)

have int-prod2 : int (to-nat r .prod2) = (int (to-nat r .x0) − int (to-nat r .x1))
∗ (int (to-nat r .y0) − int (to-nat r .y1))

using 6 True by simp
have − (int (to-nat r .x0) ∗ int (to-nat r .y1)) ≤ int (to-nat r .x1) ∗ int (to-nat

r .y0)
apply (intro order .trans[of − (int (to-nat r .x0) ∗ int (to-nat r .y1)) 0 int

(to-nat r .x1) ∗ int (to-nat r .y0)])
by simp-all

then have to-nat r .prod0 + to-nat r .prod1 ≥ to-nat r .prod2
apply (intro iffD1 [OF zle-int])
by (simp add: 4 5 int-prod2 left-diff-distrib right-diff-distrib)

then have int (to-nat r .r) = int (to-nat r .prod0) + int (to-nat r .prod1) −
int (to-nat r .prod2)

using int-p by simp

114

then show ?thesis using int-prod2 by (simp add: left-diff-distrib right-diff-distrib
4 5)

next
case False
then have int (to-nat r .r) = int (to-nat r .prod0) + int (to-nat r .prod1) +

int (to-nat r .prod2)
unfolding r .r-def
by (simp add: add-nat-correct r .add01-def)

moreover from False 6 have − int (to-nat r .prod2) = (int (to-nat r .x0) −
int (to-nat r .x1)) ∗ (int (to-nat r .y0) − int (to-nat r .y1))

by simp
then have int (to-nat r .prod2) = − (int (to-nat r .x0) − int (to-nat r .x1))

∗ (int (to-nat r .y0) − int (to-nat r .y1))
by linarith

ultimately show ?thesis by (simp add: 4 5 left-diff-distrib right-diff-distrib)
qed

from r .recursive have int (to-nat (karatsuba-on-power-of-2-length k x y)) =
int (to-nat (r .prod0 +n (r .r >>n r .k-div-2) +n (r .prod1 >>n k))) by simp

also have ... = int (to-nat r .prod0) + int (to-nat (shift-right r .k-div-2 r .r)) +
int (to-nat (shift-right k r .prod1))

by (simp add: add-nat-correct)
also have ... = int (to-nat r .prod0) + int (2 ^ (k div 2) ∗ to-nat r .r) + int (2

^ k ∗ to-nat r .prod1)
by (simp only: to-nat-shift-right r .k-div-2-def)

also have ... = int (to-nat r .prod0) + 2 ^ (k div 2) ∗ int (to-nat r .r) + 2 ^ k
∗ int (to-nat r .prod1)

by simp
also have ... = int (to-nat r .x0) ∗ int (to-nat r .y0) + 2 ^ (k div 2) ∗ (int

(to-nat r .x0) ∗ int (to-nat r .y1) + int (to-nat r .x1) ∗ int (to-nat r .y0)) + 2 ^ k
∗ int (to-nat r .x1) ∗ int (to-nat r .y1)

using 7 4 5
by simp

also have ... = (int (to-nat r .x0) + 2 ^ (k div 2) ∗ (int (to-nat r .x1)))
∗ (int (to-nat r .y0) + 2 ^ (k div 2) ∗ (int (to-nat r .y1)))

proof −
have 2 ∗ (k div 2) = k

using r .k-even by force
have (int (to-nat r .x0) + 2 ^ (k div 2) ∗ (int (to-nat r .x1)))
∗ (int (to-nat r .y0) + 2 ^ (k div 2) ∗ (int (to-nat r .y1)))

= int (to-nat r .x0) ∗ int (to-nat r .y0)
+ (2 ::int) ^ (k div 2) ∗ (int (to-nat r .x1)) ∗ (int (to-nat r .y0))
+ (int (to-nat r .x0)) ∗ 2 ^ (k div 2) ∗ (int (to-nat r .y1))
+ (2 ::int) ^ (k div 2) ∗ (int (to-nat r .x1)) ∗ 2 ^ (k div 2) ∗ (int (to-nat

r .y1))
using distrib-left[of (int (to-nat r .x0) + 2 ^ (k div 2) ∗ (int (to-nat r .x1)))

int (to-nat r .y0) 2 ^ (k div 2) ∗ (int (to-nat r .y1))]
by (simp add: ring-class.ring-distribs(2))

115

also have ... = int (to-nat r .x0) ∗ int (to-nat r .y0)
+ (2 ::int) ^ (k div 2) ∗ (int (to-nat r .x1)) ∗ (int (to-nat r .y0))
+ (int (to-nat r .x0)) ∗ 2 ^ (k div 2) ∗ (int (to-nat r .y1))
+ ((2 ::int) ^ (k div 2) ∗ 2 ^ (k div 2)) ∗ (int (to-nat r .x1)) ∗ (int (to-nat

r .y1))
by simp

also have (2 ::int) ^ (k div 2) ∗ 2 ^ (k div 2) = 2 ^ k
using power-add[of 2 ::int k div 2 k div 2 , symmetric]
using ‹2 ∗ (k div 2) = k›
by simp

finally have (int (to-nat r .x0) + 2 ^ (k div 2) ∗ (int (to-nat r .x1)))
∗ (int (to-nat r .y0) + 2 ^ (k div 2) ∗ (int (to-nat r .y1)))

= int (to-nat r .x0) ∗ int (to-nat r .y0)
+ 2 ^ (k div 2) ∗ (int (to-nat r .x1)) ∗ (int (to-nat r .y0))
+ (int (to-nat r .x0)) ∗ 2 ^ (k div 2) ∗ (int (to-nat r .y1))
+ (2 ::int) ^ k ∗ (int (to-nat r .x1)) ∗ (int (to-nat r .y1)) by simp

also have ... = int (to-nat r .x0) ∗ int (to-nat r .y0)
+ ((2 ::int) ^ (k div 2) ∗ (int (to-nat r .x1)) ∗ (int (to-nat r .y0))
+ (2 ::int) ^ (k div 2) ∗ (int (to-nat r .x0)) ∗ (int (to-nat r .y1)))
+ (2 ::int) ^ k ∗ (int (to-nat r .x1)) ∗ (int (to-nat r .y1))

by simp
also have ... = int (to-nat r .x0) ∗ int (to-nat r .y0)

+ (2 ::int) ^ (k div 2) ∗ (int (to-nat r .x1) ∗ int (to-nat r .y0) + int (to-nat
r .x0) ∗ int (to-nat r .y1))

+ (2 ::int) ^ k ∗ (int (to-nat r .x1)) ∗ (int (to-nat r .y1))
using distrib-left[of (2 ::int) ^ (k div 2)] by simp

finally show ?thesis by simp
qed
also have ... = int (to-nat x) ∗ int (to-nat y)

by (simp add: to-nat-x to-nat-y)
finally have int (to-nat (karatsuba-on-power-of-2-length k x y)) = int (to-nat

x ∗ to-nat y)
by simp

thus ?thesis by presburger
qed

qed

function len-kar-bound where
len-kar-bound l = (if 2 ^ l ≤ karatsuba-lower-bound then 2 ∗ karatsuba-lower-bound
else 2 ^ l + len-kar-bound (l − 1) + 4)

by pat-completeness auto
termination

apply (relation Wellfounded.measure (λl. l))
subgoal by simp
subgoal for l

using karatsuba-lower-bound-requirement by (cases l; simp)
done

declare len-kar-bound.simps[simp del]

116

lemma length-karatsuba-on-power-of-2-aux:
assumes k = 2 ^ l
assumes length x = k length y = k
shows length (karatsuba-on-power-of-2-length k x y) ≤ len-kar-bound l
using assms proof (induction k x y arbitrary: l rule: karatsuba-on-power-of-2-length.induct)
case (1 k x y)
then show ?case
proof (cases k ≤ karatsuba-lower-bound)

case True
then have karatsuba-on-power-of-2-length k x y = grid-mul-nat x y

unfolding karatsuba-on-power-of-2-length.simps[of k x y] by argo
also have length ... ≤ length x + length y

by (rule length-grid-mul-nat)
also have ... = 2 ∗ k using 1 by linarith
also have ... ≤ len-kar-bound l

unfolding len-kar-bound.simps[of l] using 1 .prems True by simp
finally show ?thesis .

next
case False
then interpret r : karatsuba-context k l x y using 1 .prems by unfold-locales

simp-all
from r .recursive have length (karatsuba-on-power-of-2-length k x y) =

length (r .prod0 +n (r .r >>n r .k-div-2) +n

(r .prod1 >>n k))
by argo

also have ... ≤ max (max (length r .prod0)
(2 ^ (l − 1) +
max (max (length r .prod0) (length r .prod1) + 1) (length r .prod2) + 1)

+ 1)
(k + length r .prod1) + 1

unfolding r .r-def r .add01-def
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: length-add-nat-upper)
unfolding length-shift-right r .k-div-2 if-distrib[of length]
apply (estimation estimate: if-le-max)
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: length-subtract-nat-le)
apply (estimation estimate: length-add-nat-upper)
by simp

also have ... ≤ max (max (len-kar-bound (l − 1))
(2 ^ (l − 1) +
max (max (len-kar-bound (l − 1)) (len-kar-bound (l − 1)) + 1)
(len-kar-bound (l − 1)) + 1) + 1)

(k + len-kar-bound (l − 1)) + 1
unfolding r .prod0-def r .prod1-def r .prod2-def
apply (estimation estimate: 1 .IH (1)[OF r .IH-prems1])
apply (estimation estimate: 1 .IH (2)[OF r .IH-prems2])
apply (estimation estimate: 1 .IH (3)[OF r .IH-prems3])

117

by (rule order .refl)
also have ... = max (2 ^ (l − 1) + len-kar-bound (l − 1) + 3)
(2 ^ l + len-kar-bound (l − 1)) + 1
unfolding max.idem r .k-power-of-2 by (simp del: One-nat-def)

also have ... ≤ (2 ^ l + len-kar-bound (l − 1) + 3) + 1
apply (intro add-mono order .refl)
apply (intro max.boundedI)
subgoal

apply (intro add-mono order .refl) by simp
subgoal by simp
done

also have ... = len-kar-bound l
unfolding len-kar-bound.simps[of l] using False r .k-power-of-2 by simp

finally show ?thesis .
qed

qed

lemma len-kar-bound-le: len-kar-bound l ≤ 6 ∗ 2 ^ l + 2 ∗ karatsuba-lower-bound
proof (induction l rule: less-induct)

case (less l)
then show ?case
proof (cases 2 ^ l ≤ karatsuba-lower-bound)

case True
then show ?thesis

unfolding len-kar-bound.simps[of l] by simp
next

case False
then have l − 1 < l using karatsuba-lower-bound-requirement by (cases l;

simp)
then have l > 0 by simp
from False have len-kar-bound l = 2 ^ l + len-kar-bound (l − 1) + 4

unfolding len-kar-bound.simps[of l] by argo
also have ... ≤ 2 ^ l + (6 ∗ 2 ^ (l − 1) + 2 ∗ karatsuba-lower-bound) + 4

using less[OF ‹l − 1 < l›] by simp
also have ... = 2 ∗ (2 ^ (l − 1)) + (6 ∗ 2 ^ (l − 1) + 2 ∗ karatsuba-lower-bound)

+ 4
unfolding power-Suc[symmetric] Suc-diff-1 [OF ‹l > 0 ›] by (rule refl)

also have ... = 8 ∗ 2 ^ (l − 1) + 4 + 2 ∗ karatsuba-lower-bound by simp
also have ... ≤ 8 ∗ 2 ^ (l − 1) + 4 ∗ 2 ^ (l − 1) + 2 ∗ karatsuba-lower-bound

by simp
also have ... = 12 ∗ 2 ^ (l − 1) + 2 ∗ karatsuba-lower-bound by simp
also have ... = 6 ∗ 2 ^ l + 2 ∗ karatsuba-lower-bound

using Suc-diff-1 [OF ‹l > 0 ›, symmetric] power-Suc[of 2 ::nat l − 1] by simp
finally show ?thesis .

qed
qed

The following is a pretty crude estimate for the length of the result of our
Karatsuba implementation, but it suffices for our purposes.

118

lemma length-karatsuba-on-power-of-2-length-le:
assumes k = 2 ^ l
assumes length x = k length y = k
shows length (karatsuba-on-power-of-2-length k x y) ≤ 6 ∗ k + 2 ∗ karat-

suba-lower-bound
using order .trans[OF length-karatsuba-on-power-of-2-aux[OF assms] len-kar-bound-le]
unfolding assms .

In order to multiply two integers of arbitrary length using Karatsuba mul-
tiplication, the input numbers can just be zero-padded.
fun karatsuba-mul-nat :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf where
karatsuba-mul-nat x y = (let k = next-power-of-2 (max (length x) (length y)) in

karatsuba-on-power-of-2-length k (fill k x) (fill k y))

We verify the correctness of Karatsuba multiplication:
theorem karatsuba-mul-nat-correct: to-nat (karatsuba-mul-nat x y) = to-nat x ∗
to-nat y
proof −

define k where k = next-power-of-2 (max (length x) (length y))
then obtain l where k = 2 ^ l using next-power-of-2-is-power-of-2 by blast
have 1 : to-nat (fill k x) = to-nat x to-nat (fill k y) = to-nat y by simp-all
have k ≥ length x k ≥ length y

using next-power-of-2-lower-bound[of max (length x) (length y)] k-def
by simp-all

hence length (fill k x) = k length (fill k y) = k using length-fill by simp-all
show ?thesis unfolding k-def [symmetric] karatsuba-lower-bound-def

using karatsuba-on-power-of-2-length-correct[OF ‹k = 2 ^ l› ‹length (fill k x)
= k› ‹length (fill k y) = k›]

by (simp only: karatsuba-mul-nat.simps Let-def k-def [symmetric] to-nat-fill)
qed

lemma length-karatsuba-mul-nat-le: length (karatsuba-mul-nat x y) ≤ 12 ∗ max
(length x) (length y) + (6 + 2 ∗ karatsuba-lower-bound)
proof −

let ?m = max (length x) (length y)
define k where k = next-power-of-2 ?m
then obtain l where k = 2 ^ l using next-power-of-2-is-power-of-2 by auto
from k-def have ?m ≤ k using next-power-of-2-lower-bound by simp
from k-def have karatsuba-mul-nat x y = karatsuba-on-power-of-2-length k (fill

k x) (fill k y)
unfolding karatsuba-mul-nat.simps Let-def by argo

also have length ... ≤ 6 ∗ k + 2 ∗ karatsuba-lower-bound
apply (intro length-karatsuba-on-power-of-2-length-le[OF ‹k = 2 ^ l›] length-fill)
subgoal using ‹?m ≤ k› by simp
subgoal using ‹?m ≤ k› by simp
done

also have ... ≤ 6 ∗ (2 ∗ ?m + 1) + 2 ∗ karatsuba-lower-bound
apply (intro add-mono mult-le-mono order .refl)
unfolding k-def by (rule next-power-of-2-upper-bound ′)

119

also have ... = 12 ∗ ?m + (6 + 2 ∗ karatsuba-lower-bound)
by simp

finally show ?thesis .
qed

Formally, we only implemented Karatsuba multiplication on natural num-
bers (not all integers). However, this does not really matter, as the multipli-
cation can just be lifted to the integers. This lifting has already been done
on other types, but for the sake of completeness we will just add it here as
well:
fun karatsuba-mul-int where
karatsuba-mul-int x y = nat-mul-to-int-mul karatsuba-mul-nat x y

corollary karatsuba-mul-int-correct:
to-int (karatsuba-mul-int x y) = to-int x ∗ to-int y

using nat-mul-to-int-mul-correct[of karatsuba-mul-nat] karatsuba-mul-nat-correct
by (metis karatsuba-mul-int.simps surj-pair)

end

12 Running Time of Karatsuba Multiplication
theory Karatsuba-TM

imports Karatsuba ../Binary-Representations/Nat-LSBF-TM
../Estimation-Method

begin

This theory contains a time monad version of Karatsuba multiplication,
which is used to verify the asymptotic running time of O

(
nlog2 3

)
.

definition abs-diff-tm :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf tm where
abs-diff-tm xs ys =1 do {

r1 ← xs −nt ys;
r2 ← ys −nt xs;
r1 +nt r2
}

lemma val-abs-diff-tm[simp, val-simp]: val (abs-diff-tm xs ys) = abs-diff xs ys
by (simp add: abs-diff-tm-def abs-diff-def)

lemma time-abs-diff-tm-le: time (abs-diff-tm xs ys) ≤ 62 ∗ max (length xs) (length
ys) + 100
proof −

have time (abs-diff-tm xs ys) ≤ time (xs −nt ys) + time (ys −nt xs) +
time ((xs −n ys) +nt (ys −n xs)) + 1

by (simp add: abs-diff-tm-def)
also have ... ≤ 62 ∗ max (length xs) (length ys) + 100
apply (estimation estimate: time-subtract-nat-tm-le)
apply (estimation estimate: time-subtract-nat-tm-le)

120

apply (estimation estimate: time-add-nat-tm-le)
using length-subtract-nat-le[of xs ys] length-subtract-nat-le[of ys xs]
by linarith
finally show ?thesis .

qed

context karatsuba-context
begin

definition fill-abs-diff-x where fill-abs-diff-x = fill k-div-2 (abs-diff x0 x1)
definition fill-abs-diff-y where fill-abs-diff-y = fill k-div-2 (abs-diff y0 y1)
definition sgnx where sgnx = (x1 ≤n x0)
definition sgny where sgny = (y1 ≤n y0)
definition sgnxy where sgnxy = (sgnx = sgny)
definition r ′ where r ′ = (if sgnxy then add01 −n prod2 else add01 +n prod2)
definition sr where sr = r >>n k-div-2
definition add0sr where add0sr = prod0 +n sr
definition s1 where s1 = prod1 >>n k

lemma r-r ′: r = r ′

unfolding r-def r ′-def sgnxy-def sgnx-def sgny-def by argo

lemmas defs3 = fill-abs-diff-x-def fill-abs-diff-y-def sgnx-def sgny-def sgnxy-def r-r ′

r ′-def sr-def add0sr-def s1-def

end

lemma add-nat-carry-aux:
assumes length x ≤ k
assumes length y ≤ k
assumes length (x +n y) = k + 1
shows max (length x) (length y) = k Nat-LSBF .to-nat x + Nat-LSBF .to-nat y
≥ 2 ^ k
proof −

have length x = k ∨ length y = k
proof (rule ccontr)

assume ¬ (length x = k ∨ length y = k)
then have max (length x) (length y) < k using assms by simp
then have length (add-nat x y) < k + 1 using length-add-nat-upper [of x y]

by linarith
then show False using assms by simp

qed
then show max (length x) (length y) = k using assms by linarith
then obtain z where add-nat x y = z @ [True]

using add-nat-last-bit-True assms by blast
from this[symmetric] have Nat-LSBF .to-nat x + Nat-LSBF .to-nat y ≥ 2 ^ length

z
using add-nat-correct[of x y] to-nat-length-lower-bound[of z] by argo

also have 2 ^ length z = 2 ^ k using ‹add-nat x y = z @ [True]› assms by simp

121

finally show Nat-LSBF .to-nat x + Nat-LSBF .to-nat y ≥ 2 ^ k by simp
qed

context begin

private fun f where
f k = (if k ≤ karatsuba-lower-bound then 2 ∗ k else f (k div 2) + k + 4)

declare f .simps[simp del]

private lemma f-linear : f k ≤ 6 ∗ k
apply (induction k rule: f .induct)
subgoal for k

apply (cases k ≤ karatsuba-lower-bound)
subgoal by (simp add: f .simps[of k])
subgoal premises prems
proof (cases k ≥ 5)

case True
then show ?thesis using prems unfolding f .simps[of k] by simp

next
case False

then consider k = 2 | k = 3 | k = 4 using prems karatsuba-lower-bound-requirement
by linarith

then show ?thesis using prems unfolding f .simps[of k] by fastforce
qed
done

done

private lemma f-bound:
assumes k = 2 ^ l
assumes length x = k
assumes length y = k
shows length (karatsuba-on-power-of-2-length k x y) ≤ f k
using assms

proof (induction k x y arbitrary: l rule: karatsuba-on-power-of-2-length.induct)
case (1 k x y)
show ?case
proof (cases k ≤ karatsuba-lower-bound)

case True
then show ?thesis unfolding karatsuba-on-power-of-2-length.simps[of k x y]

using length-grid-mul-nat[of x y] 1 .prems f .simps[of k] by simp
next

case False
then interpret r : karatsuba-context k l x y

using 1 .prems by (unfold-locales; simp)
have len0 : length r .prod0 ≤ f (k div 2)

unfolding r .prod0-def r .k-div-2-def [symmetric]
by (intro 1 (1)[OF r .IH-prems1])

have len1 : length r .prod1 ≤ f (k div 2)

122

unfolding r .prod1-def r .k-div-2-def [symmetric]
by (intro 1 (2)[OF r .IH-prems2])

have len2 : length r .prod2 ≤ f (k div 2)
unfolding r .prod2-def r .k-div-2-def [symmetric]
by (intro 1 (3)[OF r .IH-prems3])

have len-p01 : length (r .prod0 +n r .prod1) ≤ f (k div 2) + 1
using length-add-nat-upper [of r .prod0 r .prod1] len0 len1 by linarith

then have length (r .prod0 +n r .prod1 +n r .prod2) ≤ f (k div 2) + 2
using length-add-nat-upper [of r .prod0 +n r .prod1 r .prod2] len2 by linarith

moreover have length (r .prod0 +n r .prod1 −n r .prod2) ≤ f (k div 2) + 1
using length-subtract-nat-le[of r .prod0 +n r .prod1 r .prod2] len-p01 len2
by linarith

ultimately have lenif : length (if r .sgnxy then r .prod0 +n r .prod1 −n r .prod2
else r .prod0 +n r .prod1 +n r .prod2) ≤ f (k div 2) + 2 (is length ?if ≤

-)
by simp

have length (karatsuba-on-power-of-2-length k x y) ≤ max (r .k-div-2 + f (k div
2)) (k + f (k div 2)) + 4

unfolding r .recursive
apply (estimation estimate: length-add-nat-upper)
apply (subst length-shift-right)
apply (estimation estimate: length-add-nat-upper)
apply (subst length-shift-right)
unfolding r .r-def r .add01-def
apply (subst if-distrib[of length])
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: length-subtract-nat-le)
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: len0)
apply (estimation estimate: len1)
apply (estimation estimate: len2)
by auto

also have ... = k + f (k div 2) + 4
using r .k-div-2-less-k by simp

finally show ?thesis unfolding f .simps[of k] using False by simp
qed

qed

lemma length-karatsuba-on-power-of-2-length:
assumes k = 2 ^ l
assumes length x = k
assumes length y = k
shows length (karatsuba-on-power-of-2-length k x y) ≤ 6 ∗ k
using f-bound[OF assms] f-linear [of k] by simp

end

123

function karatsuba-on-power-of-2-length-tm :: nat ⇒ nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf
tm where
karatsuba-on-power-of-2-length-tm k xs ys =1 do {

b ← k ≤t karatsuba-lower-bound;
(if b then grid-mul-nat-tm xs ys else do {
(x0 , x1) ← split-tm xs;
(y0 , y1) ← split-tm ys;
k-div-2 ← k divt 2 ;
prod0 ← karatsuba-on-power-of-2-length-tm k-div-2 x0 y0 ;
prod1 ← karatsuba-on-power-of-2-length-tm k-div-2 x1 y1 ;
abs-diff-x ← (abs-diff-tm x0 x1 >>= fill-tm k-div-2);
abs-diff-y ← (abs-diff-tm y0 y1 >>= fill-tm k-div-2);
prod2 ← karatsuba-on-power-of-2-length-tm k-div-2 abs-diff-x abs-diff-y;
sgnx ← x1 ≤nt x0 ;
sgny ← y1 ≤nt y0 ;
sgnxy ← sgnx =t sgny;
— construct return value
add01 ← prod0 +nt prod1 ;
r ← (if sgnxy then add01 −nt prod2 else add01 +nt prod2);
sr ← r >>nt k-div-2 ;
add0sr ← prod0 +nt sr ;
s1 ← prod1 >>nt k;
add0sr +nt s1
})
}

by pat-completeness simp
termination

by (relation Wellfounded.measure (λp. size (fst p))) simp-all

declare karatsuba-on-power-of-2-length-tm.simps[simp del]

lemma val-karatsuba-on-power-of-2-length-tm[simp, val-simp]:
assumes k = 2 ^ l
assumes length xs = k length ys = k
shows val (karatsuba-on-power-of-2-length-tm k xs ys) = karatsuba-on-power-of-2-length

k xs ys
using assms proof (induction k arbitrary: l xs ys rule: less-induct)

case (less k)
show ?case
proof (cases k ≤ karatsuba-lower-bound)

case True
then show ?thesis

unfolding karatsuba-on-power-of-2-length-tm.simps[of k xs ys]
karatsuba-on-power-of-2-length.simps[of k xs ys]
val-bind-tm val-less-eq-nat-tm val-simps val-grid-mul-nat-tm
by simp

next
case False
interpret r : karatsuba-context k l xs ys

124

using less False by unfold-locales simp-all
have val0 : val (karatsuba-on-power-of-2-length-tm r .k-div-2 r .x0 r .y0) = r .prod0

unfolding r .prod0-def
by (intro less.IH [OF r .k-div-2-less-k r .k-div-2 r .length-x-split(1) r .length-y-split(1)])

have val1 : val (karatsuba-on-power-of-2-length-tm r .k-div-2 r .x1 r .y1) = r .prod1
unfolding r .prod1-def

by (intro less.IH [OF r .k-div-2-less-k r .k-div-2 r .length-x-split(2) r .length-y-split(2)])
have val2 : val (karatsuba-on-power-of-2-length-tm r .k-div-2 r .fill-abs-diff-x r .fill-abs-diff-y)

= r .prod2
unfolding r .prod2-def r .fill-abs-diff-x-def [symmetric] r .fill-abs-diff-y-def [symmetric]

apply (intro less.IH [OF r .k-div-2-less-k r .k-div-2])
subgoal unfolding r .fill-abs-diff-x-def by (rule r .length-fill-abs-diff-x0-x1)
subgoal unfolding r .fill-abs-diff-y-def by (rule r .length-fill-abs-diff-y0-y1)
done

have val (karatsuba-on-power-of-2-length-tm k xs ys) = r .add0sr +n r .s1
unfolding karatsuba-on-power-of-2-length-tm.simps[of k xs ys]
val-bind-tm val-less-eq-nat-tm val-simps val-split-tm r .split-x r .split-y
val-divide-nat-tm val-abs-diff-tm val-fill-tm r .k-div-2-def [symmetric]

val-compare-nat-tm val-subtract-nat-tm val-add-nat-tm val-equal-bool-tm val-shift-right-tm
Let-def Product-Type.prod.case r .defs2 [symmetric] r .defs3 [symmetric] val0

val1 val2
using False by argo

also have ... = karatsuba-on-power-of-2-length k xs ys
using r .recursive
unfolding karatsuba-on-power-of-2-length.simps[of k xs ys]

Let-def r .split-x r .split-y Product-Type.prod.case r .defs2 [symmetric] r .defs3 [symmetric]
by argo

finally show ?thesis .
qed

qed

fun h where
h k = (if k ≤ karatsuba-lower-bound then 2 ∗ k + 8 ∗ k ∗ k + 3

else 407 + 224 ∗ k + 3 ∗ h (k div 2))
declare h.simps[simp del]

lemma time-karatsuba-on-power-of-2-length-tm-le-h:
assumes k = 2 ^ l
assumes length xs = k length ys = k
shows time (karatsuba-on-power-of-2-length-tm k xs ys) ≤ h k

using assms proof (induction k arbitrary: xs ys l rule: less-induct)
case (less k)
show ?case
proof (cases k ≤ karatsuba-lower-bound)

case True
then have time (karatsuba-on-power-of-2-length-tm k xs ys) ≤

2 ∗ k + 8 ∗ length xs ∗ max (length xs) (length ys) + 3
unfolding karatsuba-on-power-of-2-length-tm.simps[of k xs ys]
apply (simp add: time-less-eq-nat-tm)

125

apply (subst Suc-eq-plus1)+
apply (estimation estimate: time-grid-mul-nat-tm-le)
apply (rule order .refl)
done

also have ... = 2 ∗ k + 8 ∗ k ∗ k + 3 unfolding less(3) less(4) by simp
finally show ?thesis unfolding h.simps[of k] using True by simp

next
case False
then interpret r : karatsuba-context k l xs ys

by (unfold-locales; simp add: less)
have val0 : val (karatsuba-on-power-of-2-length-tm r .k-div-2 r .x0 r .y0) = r .prod0

unfolding r .prod0-def
by (intro val-karatsuba-on-power-of-2-length-tm[OF r .k-div-2 r .length-x-split(1)

r .length-y-split(1)])
have val1 : val (karatsuba-on-power-of-2-length-tm r .k-div-2 r .x1 r .y1) = r .prod1

unfolding r .prod1-def
by (intro val-karatsuba-on-power-of-2-length-tm[OF r .k-div-2 r .length-x-split(2)

r .length-y-split(2)])
have val2 : val (karatsuba-on-power-of-2-length-tm r .k-div-2 r .fill-abs-diff-x r .fill-abs-diff-y)

= r .prod2
unfolding r .prod2-def r .fill-abs-diff-x-def [symmetric] r .fill-abs-diff-y-def [symmetric]

apply (intro val-karatsuba-on-power-of-2-length-tm[OF r .k-div-2])
subgoal unfolding r .fill-abs-diff-x-def by (rule r .length-fill-abs-diff-x0-x1)
subgoal unfolding r .fill-abs-diff-y-def by (rule r .length-fill-abs-diff-y0-y1)
done

have len0 : length (r .prod0) ≤ 3 ∗ k
unfolding r .prod0-def

apply (estimation estimate: length-karatsuba-on-power-of-2-length[OF r .k-div-2
r .length-x-split(1) r .length-y-split(1)])

unfolding r .k-div-2-def
by simp

have len1 : length (r .prod1) ≤ 3 ∗ k
unfolding r .prod1-def

apply (estimation estimate: length-karatsuba-on-power-of-2-length[OF r .k-div-2
r .length-x-split(2) r .length-y-split(2)])

unfolding r .k-div-2-def
by simp

have len2 : length (r .prod2) ≤ 3 ∗ k
unfolding r .prod2-def

apply (estimation estimate: length-karatsuba-on-power-of-2-length[OF r .k-div-2
r .length-fill-abs-diff-x0-x1 r .length-fill-abs-diff-y0-y1])

unfolding r .k-div-2-def
by simp

have len01 : length r .add01 ≤ 3 ∗ k + 1
unfolding r .add01-def
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: len0)

126

apply (estimation estimate: len1)
by simp

have lenr : length r .r ≤ 3 ∗ k + 2
unfolding r .r-def if-distrib[of length]
apply (estimation estimate: length-subtract-nat-le)
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: len01)
apply (estimation estimate: len2)
by simp

have lensr : length r .sr ≤ r .k-div-2 + 3 ∗ k + 2
unfolding r .sr-def
apply (subst length-shift-right)
apply (estimation estimate: lenr)
by simp

have len0sr : length r .add0sr ≤ r .k-div-2 + 3 ∗ k + 3
unfolding r .add0sr-def
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: len0)
apply (estimation estimate: lensr)
by simp

have lens1 : length r .s1 ≤ 4 ∗ k
unfolding r .s1-def
apply (subst length-shift-right)
apply (estimation estimate: len1)
by simp

have time0 : time (karatsuba-on-power-of-2-length-tm r .k-div-2 r .x0 r .y0) ≤ h
r .k-div-2

by (intro less.IH [OF r .k-div-2-less-k r .k-div-2 r .length-x-split(1) r .length-y-split(1)])
have time1 : time (karatsuba-on-power-of-2-length-tm r .k-div-2 r .x1 r .y1) ≤ h

r .k-div-2
by (intro less.IH [OF r .k-div-2-less-k r .k-div-2 r .length-x-split(2) r .length-y-split(2)])
have time2 : time (karatsuba-on-power-of-2-length-tm r .k-div-2 r .fill-abs-diff-x

r .fill-abs-diff-y) ≤ h r .k-div-2
apply (intro less.IH [OF r .k-div-2-less-k r .k-div-2])
subgoal unfolding r .fill-abs-diff-x-def using r .length-fill-abs-diff-x0-x1 by

assumption
subgoal unfolding r .fill-abs-diff-y-def using r .length-fill-abs-diff-y0-y1 by

assumption
done

have time (karatsuba-on-power-of-2-length-tm k xs ys) =
time (k ≤t karatsuba-lower-bound) +
time (split-tm xs) +
time (split-tm ys) +
time (k divt 2) +
time (karatsuba-on-power-of-2-length-tm r .k-div-2 r .x0 r .y0) +
time (karatsuba-on-power-of-2-length-tm r .k-div-2 r .x1 r .y1) +
time (abs-diff-tm r .x0 r .x1) + time (fill-tm r .k-div-2 (abs-diff r .x0 r .x1)) +

127

time (abs-diff-tm r .y0 r .y1) + time (fill-tm r .k-div-2 (abs-diff r .y0 r .y1)) +
time (karatsuba-on-power-of-2-length-tm r .k-div-2 r .fill-abs-diff-x r .fill-abs-diff-y)

+
time (r .x1 ≤nt r .x0) +
time (r .y1 ≤nt r .y0) +
time (r .sgnx =t r .sgny) +
time (add-nat-tm r .prod0 r .prod1) +
(if r .sgnxy then time (r .add01 −nt r .prod2)

else time (r .add01 +nt r .prod2)) +
time (r .r >>nt r .k-div-2) +
time (r .prod0 +nt r .sr) +
time (r .prod1 >>nt k) +
time (r .add0sr +nt r .s1) + 1

unfolding karatsuba-on-power-of-2-length-tm.simps[of k xs ys]
tm-time-simps if-distrib[of time] val-less-eq-nat-tm val-split-tm r .defs1

Product-Type.prod.case val-divide-nat-tm r .defs2 [symmetric] r .defs3 [symmetric]
val-abs-diff-tm val-simps val-fill-tm val-karatsuba-on-power-of-2-length-tm
val-compare-nat-tm Let-def val0 val1 val2 val-add-nat-tm val-equal-bool-tm
val-subtract-nat-tm
by (auto simp: False r .defs2 [symmetric] r .defs3 [symmetric])

also have ... ≤ 2 ∗ k + 2 +
(10 ∗ k + 16) + (10 ∗ k + 16) +
(8 ∗ k + 11) +
h (k div 2) +
h (k div 2) +
(31 ∗ k + 100) +
(2 ∗ k + 5) +
(31 ∗ k + 100) +
(2 ∗ k + 5) +
h (k div 2) +
(7 ∗ k + 23) +
(7 ∗ k + 23) +
2 +
(6 ∗ k + 3) +
(90 ∗ k + 78) +
(k + 3) +
(7 ∗ k + 7) +
(2 ∗ k + 3) +
(8 ∗ k + 9) +
1

apply (intro add-mono)
subgoal by (estimation estimate: time-less-eq-nat-tm-le) simp
subgoal by (estimation estimate: time-split-tm-le) (simp add: less)
subgoal by (estimation estimate: time-split-tm-le) (simp add: less)
subgoal by (estimation estimate: time-divide-nat-tm-le) simp
subgoal by (estimation estimate: time0) (simp add: r .k-div-2-def)
subgoal by (estimation estimate: time1) (simp add: r .k-div-2-def)

subgoal apply (estimation estimate: time-abs-diff-tm-le) unfolding r .length-x-split
r .k-div-2-def by simp

128

subgoal apply (estimation estimate: time-fill-tm-le) using r .length-abs-diff-x0-x1
r .k-div-2-def by simp

subgoal apply (estimation estimate: time-abs-diff-tm-le) unfolding r .length-y-split
r .k-div-2-def by simp

subgoal apply (estimation estimate: time-fill-tm-le) using r .length-abs-diff-y0-y1
r .k-div-2-def by simp

subgoal by (estimation estimate: time2) (simp add: r .k-div-2-def)
subgoal apply (estimation estimate: time-compare-nat-tm-le) using r .length-x-split

r .k-div-2-def by simp
subgoal apply (estimation estimate: time-compare-nat-tm-le) using r .length-y-split

r .k-div-2-def by simp
subgoal using time-equal-bool-tm-le by simp
subgoal

apply (estimation estimate: time-add-nat-tm-le)
apply (estimation estimate: len0)
apply (estimation estimate: len1)
by simp

subgoal
apply (estimation estimate: time-subtract-nat-tm-le)
apply (estimation estimate: time-add-nat-tm-le)
apply (estimation estimate: len01)
apply (estimation estimate: len2)
by simp

subgoal using r .k-div-2-def by simp
subgoal

apply (estimation estimate: time-add-nat-tm-le)
apply (estimation estimate: len0)
apply (estimation estimate: lensr)
using r .k-div-2-def by simp

subgoal by simp
subgoal

apply (estimation estimate: time-add-nat-tm-le)
apply (estimation estimate: len0sr)
apply (estimation estimate: lens1)
using r .k-div-2-less-k by presburger

subgoal by simp
done

also have ... = 407 + 224 ∗ k + 3 ∗ h (k div 2)
by simp

finally show ?thesis unfolding h.simps[of k] using False by simp
qed

qed

lemma n-div-2 : n div 2 = nat breal n / 2 c
by linarith

function h-real :: nat ⇒ real where
x ≤ karatsuba-lower-bound =⇒ h-real x = 8 ∗ x ∗ x + 2 ∗ x + 3
| x > karatsuba-lower-bound =⇒ h-real x = 407 + 224 ∗ x + 3 ∗ h-real (nat (breal

129

x / 2 c))
by force simp-all

termination
by (relation Wellfounded.measure (λx. x)) (simp-all add: n-div-2 [symmetric])

lemma h-h-real: real (h k) = h-real k
apply (induction k rule: h.induct)
subgoal for k

apply (cases k ≤ karatsuba-lower-bound)
by (simp-all add: h-real.simps[of k] h.simps[of k] n-div-2 del: h-real.simps)

done

lemma h-real-bigo: h-real ∈ O(λn. real n powr log 2 3)
by (master-theorem 1 p ′: 1) (auto simp: powr-divide)

definition karatsuba-mul-nat-tm :: nat-lsbf ⇒ nat-lsbf ⇒ nat-lsbf tm where
karatsuba-mul-nat-tm xs ys =1 do {

lenx ← length-tm xs;
leny ← length-tm ys;
k ← max-nat-tm lenx leny >>= next-power-of-2-tm;
fillx ← fill-tm k xs;
filly ← fill-tm k ys;
karatsuba-on-power-of-2-length-tm k fillx filly
}

lemma val-karatsuba-mul-nat-tm[simp, val-simp]: val (karatsuba-mul-nat-tm xs ys)
= karatsuba-mul-nat xs ys
proof −

define k where k = next-power-of-2 (max (length xs) (length ys))
then obtain l where k = 2 ^ l using next-power-of-2-is-power-of-2 by auto
have val (karatsuba-on-power-of-2-length-tm k (fill k xs) (fill k ys)) =

karatsuba-on-power-of-2-length k (fill k xs) (fill k ys)
apply (intro val-karatsuba-on-power-of-2-length-tm[OF ‹k = 2 ^ l›])
unfolding k-def using next-power-of-2-lower-bound[of max (length xs) (length

ys)] by auto
then show ?thesis

unfolding karatsuba-mul-nat-tm-def karatsuba-mul-nat.simps val-simp Let-def
k-def .
qed

definition time-karatsuba-mul-nat-bound where
time-karatsuba-mul-nat-bound m = 53 + 218 ∗ (next-power-of-2 m) + h (next-power-of-2

m)

The following two lemmas are one way to formally express the more infor-
mal statement ”Karatsuba Multiplication needs O

(
nlog2 3

)
bit operations

for input numbers of length n”.
theorem time-karatsuba-mul-nat-tm-le:

assumes max (length xs) (length ys) = m

130

shows time (karatsuba-mul-nat-tm xs ys) ≤ time-karatsuba-mul-nat-bound m
proof −

define k where k = next-power-of-2 m
then obtain l where k = 2 ^ l using next-power-of-2-is-power-of-2 by auto
have lens: length xs ≤ k length ys ≤ k

using assms next-power-of-2-lower-bound[of m] k-def by simp-all
have time (karatsuba-mul-nat-tm xs ys) =

time (length-tm xs) +
time (length-tm ys) +
time (max-nat-tm (length xs) (length ys)) +
time (next-power-of-2-tm (max (length xs) (length ys))) +
time (fill-tm k xs) +
time (fill-tm k ys) +
time (karatsuba-on-power-of-2-length-tm k (fill k xs) (fill k ys)) + 1

unfolding karatsuba-mul-nat-tm-def tm-time-simps val-simp Let-def
assms k-def [symmetric] by presburger

also have ... ≤
(k + 1) + (k + 1) + (2 ∗ k + 3) +
(208 ∗ k + 37) +
(3 ∗ k + 5) +
(3 ∗ k + 5) +
h k +
1
apply (intro add-mono order .refl)
subgoal by (simp add: lens)
subgoal by (simp add: lens)
subgoal apply (estimation estimate: time-max-nat-tm-le) using lens by simp
subgoal apply (estimation estimate: time-next-power-of-2-tm-le) using lens

by simp
subgoal apply (estimation estimate: time-fill-tm-le) using lens by simp
subgoal apply (estimation estimate: time-fill-tm-le) using lens by simp
subgoal apply (intro time-karatsuba-on-power-of-2-length-tm-le-h[OF ‹k = 2

^ l›]) using lens
by auto

done
also have ... = 53 + 218 ∗ k + h k by simp
finally show ?thesis unfolding k-def time-karatsuba-mul-nat-bound-def [symmetric]

.
qed

theorem time-karatsuba-mul-nat-bound-bigo: time-karatsuba-mul-nat-bound ∈ O(λm.
m powr log 2 3)
proof −

define t where t = (λm. real (53 + 218 ∗ m + h m))
then have time-karatsuba-mul-nat-bound = t ◦ next-power-of-2

unfolding time-karatsuba-mul-nat-bound-def by auto
also have ... ∈ O(λm. m powr log 2 3)

apply (intro powr-bigo-linear-index-transformation)
subgoal

131

proof −
have (λx. real (next-power-of-2 x)) ∈ O(λx. real (2 ∗ x + 1))

apply (intro landau-mono-always)
using next-power-of-2-upper-bound ′ real-mono by simp-all

moreover have (λx. real (2 ∗ x + 1)) ∈ O(real) by auto
ultimately show (λx. real (next-power-of-2 x)) ∈ O(real)

using landau-o.big.trans by blast
qed
subgoal unfolding t-def real-linear real-multiplicative h-h-real

apply (intro sum-in-bigo)
subgoal by auto
subgoal by auto
subgoal using h-real-bigo .
done

subgoal by auto
done

finally show ?thesis .
qed

end

13 Code Generation
theory Karatsuba-Code-Nat

imports Main HOL−Library.Code-Binary-Nat Karatsuba
begin

In this theory, the Karatsuba Multiplication implemented in Karatsuba is
used for code generation. This is not really practical (except beginning at
3000 decimal digits), but merely a nice gimmick.
fun from-numeral :: num ⇒ nat-lsbf where

from-numeral num.One = [True]
| from-numeral (num.Bit0 x) = False # from-numeral x
| from-numeral (num.Bit1 x) = True # from-numeral x

lemma from-numeral-nonempty: from-numeral x 6= []
by (induction x rule: from-numeral.induct; simp)

lemma from-numeral-truncated: truncated (from-numeral x)
unfolding truncated-iff
by (induction x rule: from-numeral.induct; simp add: from-numeral-nonempty)

lemma to-nat-from-numeral-neq-zero: to-nat (from-numeral x) 6= 0
using to-nat-zero-iff from-numeral-truncated from-numeral-nonempty by simp

fun to-numeral-of-truncated :: nat-lsbf ⇒ num where
to-numeral-of-truncated [] = num.One
| to-numeral-of-truncated [True] = num.One

132

| to-numeral-of-truncated (True # xs) = num.Bit1 (to-numeral-of-truncated xs)
| to-numeral-of-truncated (False # xs) = num.Bit0 (to-numeral-of-truncated xs)

lemma to-numeral-of-truncated-from-numeral:
to-numeral-of-truncated (from-numeral x) = x
apply (induction x)
subgoal by simp
subgoal by simp
subgoal for x by (cases from-numeral x; simp)
done

lemma nat-of-num-to-numeral-of-truncated:
assumes truncated xs
assumes xs 6= []
shows nat-of-num (to-numeral-of-truncated xs) = to-nat xs
using assms proof (induction xs rule: to-numeral-of-truncated.induct)
case 1
then show ?case by blast

next
case 2
then show ?case by simp

next
case (3 v va)
note truncated-Cons-imp-truncated-tl[OF 3 .prems(1)]
from 3 .IH [OF this] show ?case by simp

next
case (4 xs)
from 4 .prems(1) have xs 6= []

apply (intro ccontr [of xs 6= []])
by (simp add: truncated-iff)

note truncated-Cons-imp-truncated-tl[OF 4 .prems(1)]
from 4 .IH [OF this ‹xs 6= []›] show ?case by simp

qed

definition to-numeral :: nat-lsbf ⇒ num where
to-numeral xs = (let xs ′ = Nat-LSBF .truncate xs in to-numeral-of-truncated xs ′)

lemma to-numeral-from-numeral: to-numeral (from-numeral x) = x
unfolding to-numeral-def Let-def
using from-numeral-truncated to-numeral-of-truncated-from-numeral
by simp

lemma nat-of-num-to-numeral:
assumes to-nat xs 6= 0
shows nat-of-num (to-numeral xs) = to-nat xs
unfolding to-numeral-def Let-def
using assms nat-of-num-to-numeral-of-truncated[of truncate xs, OF truncate-truncate]
unfolding nat-lsbf .to-f-elem
using to-nat-zero-iff

133

by simp

lemma l0 :
assumes truncated xs
shows to-numeral-of-truncated xs = num-of-nat (to-nat xs)
using assms
by (metis nat-of-num-inverse nat-of-num-to-numeral-of-truncated num-of-nat.simps(1)

to-nat.simps(1) to-numeral-of-truncated.simps(1))

lemma l1 : to-numeral xs = num-of-nat (to-nat xs)
unfolding to-numeral-def Let-def
using l0 [of truncate xs] truncate-truncate[of xs] nat-lsbf .to-f-elem
by simp

lemma l2 : to-nat (from-numeral x) = nat-of-num x
by (metis nat-of-num-to-numeral to-nat-from-numeral-neq-zero to-numeral-from-numeral)

lemma[code]:
(x::num) ∗ y = to-numeral (karatsuba-mul-nat (from-numeral x) (from-numeral

y))
unfolding l1 karatsuba-mul-nat-correct l2 times-num-def by (rule refl)

end

References

[1] A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers
by automatic computers. Dokl. Akad. Nauk SSSR, 145:293–294, 1962.
http://mi.mathnet.ru/dan26729.

[2] T. Nipkow. Verified root-balanced trees. In B.-Y. E. Chang, editor,
Asian Symposium on Programming Languages and Systems, APLAS
2017, volume 10695 of LNCS, pages 255–272. Springer, 2017. https:
//www21.in.tum.de/~nipkow/pubs/aplas17.pdf.

134

http://mi.mathnet.ru/dan26729
https://www21.in.tum.de/~nipkow/pubs/aplas17.pdf
https://www21.in.tum.de/~nipkow/pubs/aplas17.pdf

	Preliminaries
	Auxiliary Sum Lemmas
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 semiring-1 Sums
	Power Sums

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat Sums

	Sums in Monoids
	Kronecker delta
	Power sums
	Algebraic operations

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 monoid-sum-list in the context 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 residues

	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 estimation tactic
	Some Automation for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Root-Balanced-Tree.Time-Monad
	Running Time Formalization for some functions available in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Main
	Functions on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bool
	Not
	disj / conj
	equal

	Functions involving pairs
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fst / 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 snd

	Functions on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (+)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (*)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ()
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (-)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (<) / 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ()
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (=)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 max
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (div) / 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (mod)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (dvd)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 even / 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 odd

	List functions
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 take
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 drop
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (@)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fold
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 rev
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 replicate
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 length
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 List.null
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 butlast
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 foldl
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 concat
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (!)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 zip
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map2
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 upt

	Syntactic sugar

	Representations
	Abstract Representations
	Abstract Representations 2

	Representing 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat in LSBF
	Type definition
	Conversions
	Truncating and filling
	Right-shifts
	Subdividing lists
	Splitting a list in two blocks
	Splitting a list in multiple blocks

	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bitsize function
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 next-power-of-2 function

	Addition
	Increment operation
	Addition with a carry bit
	Addition

	Comparison and subtraction
	Comparison
	Subtraction

	(Grid) Multiplication
	Syntax bundles

	Running time of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Nat-LSBF
	Truncating and filling
	Right-shifts
	Subdividing lists
	Splitting a list in two blocks
	Splitting a list in multiple blocks

	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 bitsize function
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 is-power-of-2 function

	Addition
	Comparison and subtraction
	(Grid) Multiplication
	Syntax bundles

	Representing 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 int in LSBF
	Type definition
	Conversions
	Addition
	Grid Multiplication

	Karatsuba Multiplication
	Running Time of Karatsuba Multiplication
	Code Generation

