Karatsuba Multiplication for Integers

Jakob Schulz, Emin Karayel

April 18, 2024

Abstract

We give a verified implementation of the Karatsuba Multiplication on Integers [1] as well as verified runtime bounds. Integers are represented as LSBF (least significant bit first) boolean lists, on which the algorithm by Karatsuba [1] is implemented. The running time of $O\left(n^{\log _{2} 3}\right)$ is verified using the Time Monad defined in [2].

Contents

1 Preliminaries 3
2 Auxiliary Sum Lemmas 9
2.1 semiring-1 Sums 11
2.1.1 Power Sums 13
2.2 nat Sums 16
3 Sums in Monoids 18
3.1 Kronecker delta 25
3.2 Power sums 26
3.2.1 Algebraic operations 28
3.3 monoid-sum-list in the context residues 30
4 The estimation tactic 30
5 Some Automation for Root-Balanced-Tree.Time-Monad 31
6 Running Time Formalization for some functions available in Main 32
6.1 Functions on bool 32
6.1.1 Not 32
6.1.2 disj / conj 32
6.1.3 equal 32
6.2 Functions involving pairs 33
6.2.1 fst / snd 33
6.3 Functions on nat 33
6.3.1 (+) 33
6.3.2 (*) 33
6.3.3 ($)$ 34
6.3.4 (-) 35
6.3.5 $(<) /(\leq)$ 35
6.3.6 (=) 36
6.3.7 max 37
6.3.8 (div) / (mod) 37
6.3.9 (dvd) 40
6.3.10 even / odd 40
6.4 List functions 40
6.4.1 take 40
6.4.2 drop 41
6.4.3 (@) 41
6.4.4 fold 41
6.4.5 rev 42
6.4.6 replicate 42
6.4.7 length 42
6.4.8 List.null 42
6.4.9 butlast 43
6.4.10 map 43
6.4.11 foldl 44
6.4.12 concat 44
6.4.13 (!) 45
6.4.14 zip 45
6.4.15 map2 46
6.4.16 upt 46
6.5 Syntactic sugar 47
7 Representations 49
7.1 Abstract Representations 49
7.2 Abstract Representations 2 51
8 Representing nat in LSBF 54
8.1 Type definition 55
8.2 Conversions 55
8.3 Truncating and filling 59
8.4 Right-shifts 66
8.5 Subdividing lists 67
8.5.1 Splitting a list in two blocks 67
8.5.2 Splitting a list in multiple blocks 67
8.6 The bitsize function 71
8.6.1 The next-power-of-2 function 73
8.7 Addition 75
8.7.1 Increment operation 75
8.7.2 Addition with a carry bit 77
8.7.3 Addition 83
8.8 Comparison and subtraction 84
8.8.1 Comparison 84
8.8.2 Subtraction 86
8.9 (Grid) Multiplication 89
8.10 Syntax bundles 90
9 Running time of Nat-LSBF 95
9.1 Truncating and filling 96
9.2 Right-shifts 97
9.3 Subdividing lists 97
9.3.1 Splitting a list in two blocks 97
9.3.2 Splitting a list in multiple blocks 98
9.4 The bitsize function 99
9.4.1 The is-power-of-2 function 99
9.5 Addition 101
9.6 Comparison and subtraction 103
9.7 (Grid) Multiplication 106
9.8 Syntax bundles 107
10 Representing int in LSBF 108
10.1 Type definition 108
10.2 Conversions 108
10.3 Addition 109
10.4 Grid Multiplication 110
11 Karatsuba Multiplication 110
12 Running Time of Karatsuba Multiplication 120
13 Code Generation 132

1 Preliminaries

Some general preliminaries.
theory Karatsuba-Preliminaries
imports Main Expander-Graphs.Extra-Congruence-Method HOL-Number-Theory.Residues
begin

```
lemma prop-ifI:
    assumes Q\LongrightarrowPR
    assumes }\negQ\LongrightarrowP
```

```
        shows P (if Q then R else S)
        using assms by argo
lemma let-prop-cong:
    assumes T= T'
    assumes P(fT) (f'T')
    shows P(let x=T in fx) (let x= T' in f' }x
    using assms by simp
lemma set-subseteqD:
    assumes set xs \subseteqA
    shows \bigwedgei. i< length xs \Longrightarrowxs!i\inA
    using assms by fastforce
lemma set-subseteqI:
    assumes \bigwedgei. i< length xs \Longrightarrowxs!i\inA
    shows set xs \subseteqA
    using assms
    by (metis in-set-conv-nth subsetI)
lemma Nat-max-le-sum: max (a :: nat) b \leqa+b
    by simp
lemma upt-add-eq-append':
    assumes a\leqbb\leqc
    shows [a..<c]=[a..<b]@ [b..<c]
    using assms upt-add-eq-append[of a b c-b] by auto
lemma map-add-const-upt: map (\lambdaj.j+c) [a..<b] = [a+c..<b+c]
proof (cases a<b)
    case True
    then have map (\lambdaj.j+c)[a..<b]= map (\lambdaj.j+c) (map (\lambdaj.j+a)[0..<b-a])
    using map-add-upt[of a b-a] by simp
    also have ... = map (\lambdaj.j+(a+c))[0..<b-a]
    by simp
    also have ... = [a+c..<b+c]
    using map-add-upt[of a+cb-a] True by simp
    finally show ?thesis.
next
    case False
    then show ?thesis by simp
qed
lemma filter-even-upt-even: filter even [0..<2*n] = map ((*) 2) [0..<n]
    by (induction n) simp-all
lemma filter-even-upt-odd: filter even [0..<2*n + 1] = map ((*)2) [0..<n+1]
    by (simp add: filter-even-upt-even)
lemma filter-odd-upt-even: filter odd [0..<2*n] = map (\lambdai.2*i + 1)[0..<n]
```

```
    by (induction n) simp-all
lemma filter-odd-upt-odd: filter odd [0..<2*n + 1] = map (\lambdai.2*i + 1) [0..<n]
    by (simp add: filter-odd-upt-even)
lemma length-filter-even: length (filter even [0..<n]) = (if even }n\mathrm{ then n div 2 else
ndiv 2 + 1)
    by (induction n) simp-all
lemma length-filter-odd: length (filter odd [0..<n]) = n div 2
    by (induction n) simp-all
lemma filter-even-nth:
    assumes }i<length (filter even [0..<n]
    shows filter even [0..<n]!i=2*i
proof (cases even n)
    case True
    then obtain }\mp@subsup{n}{}{\prime}\mathrm{ where }n=2*\mp@subsup{n}{}{\prime}\mathrm{ by blast
    then show ?thesis using filter-even-upt-even[of n] assms by auto
next
    case False
    then obtain n' where n=2* n' + 1 using oddE by blast
    show ?thesis
        using assms
        apply (simp only: <n=2 * n' + 1> filter-even-upt-odd length-map nth-map)
        apply (intro arg-cong[where f=(*) 2])
        by (metis add-0 diff-zero length-upt nth-upt)
qed
lemma filter-odd-nth:
    assumes }i<l\mathrm{ length (filter odd [0..<n])
    shows filter odd [0..<n]!i=2*i+1
proof (cases even n)
    case True
    then obtain }\mp@subsup{n}{}{\prime}\mathrm{ where }n=2~\mp@subsup{n}{}{\prime}\mathrm{ by blast
    then show ?thesis using filter-odd-upt-even assms by auto
next
    case False
    then obtain n' where n=2* n' + 1 using oddE by blast
    then show ?thesis
        using assms
    by (simp only: filter-odd-upt-odd length-map)
        (simp add: <n=2* n'+1` length-filter-odd)
qed
fun sublist where
sublist 0 n xs = take n xs
| sublist (Suc m) (Suc n) (a# xs) = sublist m n xs
| sublist (Suc m) 0 xs = []
| sublist (Suc m) (Suc n) [] = []
```

lemma length-sublist $[$ simp $]$: length (sublist $m n x s)=$ card $(\{m . .<n\} \cap\{0 . .<$ length $x s\}$)
by (induction $m n$ xs rule: sublist.induct) simp-all
lemma length-sublist':
assumes $m \leq n$
assumes $n \leq$ length xs
shows length (sublist $m n x s$) $=n-m$
using assms by simp
lemma nth-sublist:
assumes $m \leq n$
assumes $n \leq$ length xs
assumes $i<n-m$
shows sublist $m n x s!i=x s!(m+i)$
using assms
by (induction $m n$ xs arbitrary: i rule: sublist.induct) simp-all
lemma filter-map-map2:
assumes length $b=m$
assumes length $c=m$
shows $[f(b!i)(c!i) . i \leftarrow[0 . .<m]]=\operatorname{map2} f b c$
using assms by (intro nth-equalityI) simp-all
fun map3 where
map3 $f(x \# x s)(y \# y s)(z \# z s)=f x y z \#$ map3 f xs ys $z s$
| map3 $f--=[]$
lemma map3-as-map: map3 f xs ys zs $=\operatorname{map}(\lambda((x, y), z) . f x y z)(z i p(z i p x s$ ys) zs)
by (induction f xs ys zs rule: map3.induct; simp)
lemma filter-map-map3:
assumes length $b=m$
assumes length $c=m$
shows $[f(b!i)(c!i) i . i \leftarrow[0 . .<m]]=\operatorname{map} 3 f b c[0 . .<m]$
using assms
apply (intro nth-equalityI)
unfolding map3-as-map by simp-all
fun map 4 where
map4 $f(x \# x s)(y \# y s)(z \# z s)(w \# w s)=f x y z w \#$ map4 f xs ys zs ws | map4 $f-\cdots=[]$
lemma map4-as-map: map4 f xs ys zs ws $=\operatorname{map}(\lambda(((x, y), z), w) . f$ x y $z w)(z i p$ (zip (zip xs ys) zs) ws)
by (induction f xs ys zs ws rule: map4.induct; simp)
lemma nth-map2:

```
    assumes i< length xs
    assumes i< length ys
    shows map2 f xs ys ! i=f(xs!i) (ys!i)
    using assms by simp
lemma nth-map3:
    assumes i< length xs
    assumes i< length ys
    assumes i< length zs
    shows map3 f xs ys zs!i=f(xs!i) (ys!i) (zs!i)
    using assms unfolding map3-as-map by simp
lemma nth-map4:
    assumes i< length xs
    assumes i< length ys
    assumes i< length zs
    assumes i< length ws
    shows map4 f xs ys zs ws !i=f(xs!i) (ys!i)(zs!i) (ws!i)
    using assms unfolding map4-as-map by simp
lemma nth-map4':
    assumes i<l
    assumes length xs = l
    assumes length ys =l
    assumes length zs =l
    assumes length ws =l
    shows map4 f xs ys zs ws!i=f(xs!i) (ys!i)(zs!i) (ws!i)
    using assms unfolding map4-as-map by simp
lemma map2-of-map-r:map2 fxs (map g ys) = map2 (\lambdaxy.fx (gy)) xs ys
    by (intro nth-equalityI) simp-all
lemma map2-of-map-l: map2 f (map gxs) ys=map2 ( }\lambdaxy.f(gx)y)xs y
    by (intro nth-equalityI) simp-all
lemma map2-of-map2-r:map2 fxs (map2 g ys zs) = map3 (\lambdax y z.fx (g y z))
xs ys zs
    unfolding map3-as-map by (intro nth-equalityI) simp-all
lemma map-of-map3: map f (map3 g xs ys zs) = map3 (\lambdaxyz.f(gxyz)) xs ys
zs
    unfolding map3-as-map by (intro nth-equalityI) simp-all
lemma cyclic-index-lemma:
    fixes n :: nat
    assumes }\sigma<n\varrho<ni<
    shows}(\sigma+\varrho)\operatorname{mod}n=i\longleftrightarrow\varrho=(n+i-\sigma)\operatorname{mod}
proof
    assume (\sigma+\varrho) mod n=i
    then have (int \sigma + int \varrho) mod (int n)= int i
            using zmod-int by fastforce
    also have ... = (int n + int i) mod int n
            using <i< n` by auto
    finally have (int \sigma + int \varrho-int \sigma) mod (int n)=(int n + int i - int \sigma) mod
int n
```

using mod-diff-cong by blast
then have $($ int @) $\bmod (\operatorname{int} n)=($ int $n+i n t i-i n t \sigma) \bmod ($ int $n)$
by simp
also have $\ldots=(\operatorname{int}(n+i-\sigma)) \bmod ($ int $n)$
using assms by (simp add: int-ops(6))
finally show $\varrho=(n+i-\sigma) \bmod n$
using zmod-int assms by (metis mod-less of-nat-eq-iff)
next
assume $\varrho=(n+i-\sigma) \bmod n$
then have $(\sigma+\varrho) \bmod n=(\sigma+(n+i-\sigma)) \bmod n$
by presburger
also have $\ldots=(n+i) \bmod n$
using assms by simp
also have $\ldots=i$
using assms by simp
finally show $(\sigma+\varrho) \bmod n=i$.
qed
lemma (in residues) residues-minus-eq: $x \ominus_{R} y=(x-y) \bmod m$
proof -
have $x \ominus_{R} y=x \oplus_{R}\left(\ominus_{R} y\right)$
using a-minus-def by fast
also have $\ominus_{R} y=(-y) \bmod m$
using res-neg-eq[of y].
also have $x \oplus_{R}((-y) \bmod m)=(x+((-y) \bmod m)) \bmod m$
by (simp add: R-m-def residue-ring-def)
also have $\ldots=(x-y) \bmod m$
by (simp add: mod-add-right-eq)
finally show ?thesis .
qed
lemma residue-ring-carrier-eq: $\{0 . .(n:: i n t)-1\}=\{0 . .<n\}$
by auto
context ring
begin
fun nat-embedding :: nat $\Rightarrow{ }^{\prime} a$ where
nat-embedding $0=\mathbf{0}$
\mid nat-embedding $($ Suc $n)=$ nat-embedding $n \oplus \mathbf{1}$
fun int-embedding $::$ int $\Rightarrow{ }^{\prime} a$ where
int-embedding $n=($ if $n \geq 0$ then nat-embedding (nat $n)$ else \ominus nat-embedding (nat $(-n))$)
lemma nat-embedding-closed[simp]: nat-embedding $x \in \operatorname{carrier} R$
by (induction x) (simp-all)
lemma int-embedding-closed[simp]: int-embedding $x \in \operatorname{carrier} R$
by simp

```
lemma nat-embedding-a-hom: nat-embedding \((x+y)=\) nat-embedding \(x \oplus\) nat-embedding
\(y\)
    apply (induction x arbitrary: y)
    using a-comm a-assoc by simp-all
lemma nat-embedding-m-hom: nat-embedding \((x * y)=\) nat-embedding \(x \otimes\) nat-embedding
\(y\)
    apply (induction \(x\) arbitrary: \(y\) )
    by (simp-all add: nat-embedding-a-hom l-distr a-comm)
lemma nat-embedding-exp-hom: nat-embedding \((x \wedge y)=\) nat-embedding \(x[ \} y\)
    apply (induction y)
    by (simp-all add: nat-embedding-m-hom group-commutes-pow)
lemma int-embedding-neg-hom: int-embedding \((-x)=\ominus\) int-embedding \(x\)
    by \(\operatorname{simp}\)
end
lemma int-exp-hom: int \(x{ }^{\wedge} i=\operatorname{int}\left(x{ }^{\wedge} i\right)\)
    by \(\operatorname{simp}\)
end
```


2 Auxiliary Sum Lemmas

```
theory Karatsuba-Sum-Lemmas
    imports Karatsuba-Preliminaries Expander-Graphs.Extra-Congruence-Method
begin
lemma sum-list-eq: \((\bigwedge x . x \in\) set \(x s \Longrightarrow f x=g x) \Longrightarrow\) sum-list \((\operatorname{map} f x s)=\)
sum-list (map g xs)
    by (rule arg-cong[OF list.map-cong0])
lemma sum-list-split-0: \(\left(\sum i \leftarrow[0 . .<\right.\) Suc \(\left.n] . f i\right)=f 0+\left(\sum i \leftarrow[1 . .<\right.\) Suc \(n] . f\)
i)
    using upt-eq-Cons-conv
proof -
    have \([0 . .<\) Suc \(n]=0 \#[1 . .<\) Suc \(n]\) using upt-eq-Cons-conv by auto
    then show ?thesis by simp
qed
lemma sum-list-index-trafo: \(\left(\sum i \leftarrow x s . f(g i)\right)=\left(\sum i \leftarrow\right.\) map \(\left.g x s . f i\right)\)
    by (induction xs) simp-all
lemma sum-list-index-shift: \(\left(\sum i \leftarrow[a . .<b] . f(i+c)\right)=\left(\sum i \leftarrow[a+c . .<b+c] . f\right.\)
i)
proof -
    have \(\left(\sum i \leftarrow[a . .<b] . f(i+c)\right)=\left(\sum i \leftarrow(\operatorname{map}(\lambda j . j+c)[a . .<b]) . f i\right)\)
        by (intro sum-list-index-trafo)
    also have map \((\lambda j . j+c)[a . .<b]=[a+c . .<b+c]\)
        using map-add-const-upt by simp
    finally show?thesis .
qed
```

lemma list-sum-index-shift: $n=j-k \Longrightarrow\left(\sum i \leftarrow[k+1 . .<j+1] . f i\right)=\left(\sum i \leftarrow\right.$ $[k . .<j] . f(i+1))$
using sum-list-index-trafo[where $g=\lambda l . l+1$ and $x s=[k . .<j]$ and $f=f$, symmetric]
using map-Suc-upt by simp
lemma list-sum-index-shift': $\left(\sum i \leftarrow[0 . .<m] . a(i+c)\right)=\left(\sum i \leftarrow[c . .<m+c] . a\right.$ i)
by (induction m arbitrary: a c) auto
lemma list-sum-index-concat: $\left(\sum i \leftarrow[0 . .<m] . a i\right)+\left(\sum i \leftarrow[m . .<m+c] . a i\right)$
$=\left(\sum i \leftarrow[0 . .<m+c] . a i\right)$
proof -
have $\left(\sum i \leftarrow[0 . .<m+c] . a i\right)=\left(\sum i \leftarrow[0 . .<m] @[m . .<m+c] . a i\right)$ using upt-add-eq-append[of $0 \mathrm{~m} c$] by simp
then show ?thesis using sum-list-append by simp
qed
lemma sum-list-linear:
assumes $\bigwedge a b . f(a+b)=f a+f b$
assumes $f 0=0$
shows $f\left(\sum i \leftarrow x s . g i\right)=\left(\sum i \leftarrow x s . f(g i)\right)$
using assms
by (induction xs) simp-all
lemma sum-list-int:
shows int $\left(\sum i \leftarrow x s . g i\right)=\left(\sum i \leftarrow x s\right.$. int $\left.(g i)\right)$
by (intro sum-list-linear int-ops(5) int-ops(1))
lemma sum-list-split-Suc:
assumes $n=$ Suc n^{\prime}
shows $\left(\sum i \leftarrow[0 . .<n] . f i\right)=\left(\sum i \leftarrow[0 . .<n] . f i\right)+f n^{\prime}$
using assms by simp
lemma sum-list-estimation-leq:
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i \leq B$
shows $\left(\sum i \leftarrow x s . f i\right) \leq$ length $x s * B$
using assms by (induction xs)(simp, fastforce)
lemma sum-list-estimation-le:
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i<B$
assumes $x s \neq[]$
shows $\left(\sum i \leftarrow x s . f i\right)<$ length $x s * B$
proof -
from $\langle x s \neq[]\rangle$ have length $x s>0$ by simp
from $\langle x s \neq[]\rangle$ obtain x where $x \in$ set $x s$ by fastforce
then have $B>0$ using assms(1) by fastforce
then obtain B^{\prime} where $B=$ Suc B^{\prime} using not0-implies-Suc by blast
with $\operatorname{assms}(1)$ have $\bigwedge i . i \in$ set $x s \Longrightarrow f i \leq B^{\prime}$ by fastforce
with sum-list-estimation-leq have $\left(\sum i \leftarrow x s . f i\right) \leq$ length $x s * B^{\prime}$ by blast also have $\ldots<$ length $x s * B$ using $\left\langle B=\right.$ Suc $\left.B^{\prime}\right\rangle\langle l e n g t h ~ x s>0\rangle$ by simp finally show ?thesis .
qed

2.1 semiring-1 Sums

lemma (in semiring-1) of-bool-mult: of-bool $x * a=($ if x then a else 0$)$
by simp
lemma (in semiring-1-cancel) of-bool-disj: of-bool $(x \vee y)=o f$-bool $x+$ of-bool y - of-bool $x *$ of-bool y
by simp
lemma (in semiring-1) of-bool-disj-excl: $\neg(x \wedge y) \Longrightarrow$ of-bool $(x \vee y)=o f$-bool $x+$ of-bool y
by simp
lemma (in semiring-1) of-bool-var-swap:
$\left(\sum i \leftarrow x s\right.$. of-bool $\left.(i=j) * f i\right)=\left(\sum i \leftarrow x s\right.$. of-bool $\left.(i=j) * f j\right)$
by (induction xs) simp-all
lemma $\left(\sum i \leftarrow x s\right.$. of-bool $\left.(i=j) * f i\right)=$ count-list xs $j * f j$
by (induction xs) simp-all
lemma (in semiring-1) of-bool-distinct:
distinct $x s \Longrightarrow\left(\sum i \leftarrow x s\right.$. of-bool $\left.(i=j) * f i j\right)=$ of-bool $(j \in$ set $x s) * f j j$ by (induction xs) auto
lemma (in semiring-1) of-bool-distinct-in:
distinct $x s \Longrightarrow j \in$ set $x s \Longrightarrow\left(\sum i \leftarrow x s\right.$. of-bool $\left.(i=j) * f i j\right)=f j j$
using of-bool-distinct[of xs jf] of-bool-mult by simp
lemma (in linordered-semiring-1) of-bool-sum-leq-1:
assumes distinct xs
assumes $\bigwedge i j . i \in$ set $x s \Longrightarrow j \in$ set $x s \Longrightarrow P i \Longrightarrow P j \Longrightarrow i=j$
shows $\left(\sum l \leftarrow x s\right.$. of-bool $\left.(P l)\right) \leq 1$
using assms
proof (induction $x s$)
case Nil
then show? case by simp
next
case (Cons a xs)
consider $P a \mid \neg P a$ by blast
then show ?case
proof cases
case 1
then have $r:\left(\sum l \leftarrow a \#\right.$ xs. of-bool $\left.(P l)\right)=1+\left(\sum l \leftarrow x s\right.$. of-bool $\left.(P l)\right)$
by simp
have of-bool $(P l)=0$ if $l \in$ set $x s$ for l
proof -
from that have $a \neq l$ using Cons by auto then have $\neg P l$ using Cons $\langle l \in$ set $x s\rangle 1$ by force

```
            then show of-bool (P l)=0 by simp
    qed
    then have }(\suml\leftarrowxs.of-bool (Pl))=(\suml\leftarrowxs.0
            using list.map-cong0[of xs] by metis
        then show ?thesis using r by simp
    next
    case 2
    then have }(\suml\leftarrowa# #s.of-bool (Pl))=(\suml\leftarrowxs.of-bool (Pl)
        by simp
    then show ?thesis using Cons by simp
    qed
qed
instantiation nat :: linordered-semiring-1
begin
    instance ..
end
lemma (in semiring-1) sum-list-mult-sum-list: (\sumi\leftarrowxs.fi)*(\sumj\leftarrowys.g j)
=(\sumi\leftarrowxs.\sumj\leftarrowys.fi*gj)
    by (simp add: sum-list-const-mult sum-list-mult-const)
lemma (in semiring-1) semiring-1-sum-list-eq:
\((\bigwedge i . i \in\) set \(x s \Longrightarrow f i=g i) \Longrightarrow\left(\sum i \leftarrow x s . f i\right)=\left(\sum i \leftarrow x s . g i\right)\)
using arg-cong[OF list.map-cong0] by blast
lemma (in semiring-1) sum-swap:
```

```
\(\left(\sum i \leftarrow x s .\left(\sum j \leftarrow y s . f i j\right)\right)=\left(\sum j \leftarrow y s .\left(\sum i \leftarrow x s . f i j\right)\right)\)
```

$\left(\sum i \leftarrow x s .\left(\sum j \leftarrow y s . f i j\right)\right)=\left(\sum j \leftarrow y s .\left(\sum i \leftarrow x s . f i j\right)\right)$
proof (induction xs)
proof (induction xs)
case (Cons a xs)
case (Cons a xs)
have $\left(\sum i \leftarrow(a \# x s) .\left(\sum j \leftarrow y s . f i j\right)\right)=\left(\sum j \leftarrow y s . f a j\right)+\left(\sum i \leftarrow x s\right.$.
have $\left(\sum i \leftarrow(a \# x s) .\left(\sum j \leftarrow y s . f i j\right)\right)=\left(\sum j \leftarrow y s . f a j\right)+\left(\sum i \leftarrow x s\right.$.
$\left.\left(\sum j \leftarrow y s . f i j\right)\right)$
$\left.\left(\sum j \leftarrow y s . f i j\right)\right)$
by simp
by simp
also have $\ldots=\left(\sum j \leftarrow y s . f a j\right)+\left(\sum j \leftarrow y s .\left(\sum i \leftarrow x s . f i j\right)\right)$
also have $\ldots=\left(\sum j \leftarrow y s . f a j\right)+\left(\sum j \leftarrow y s .\left(\sum i \leftarrow x s . f i j\right)\right)$
using Cons by simp
using Cons by simp
also have $\ldots=\left(\sum j \leftarrow y s . f a j+\left(\sum i \leftarrow x s\right.\right.$. $\left.\left.f i j\right)\right)$
also have $\ldots=\left(\sum j \leftarrow y s . f a j+\left(\sum i \leftarrow x s\right.\right.$. $\left.\left.f i j\right)\right)$
using sum-list-addf[of λj. faj-ys] by simp
using sum-list-addf[of λj. faj-ys] by simp
also have $\ldots=\left(\sum j \leftarrow y s .\left(\sum i \leftarrow(a \# x s) . f i j\right)\right)$ by simp
also have $\ldots=\left(\sum j \leftarrow y s .\left(\sum i \leftarrow(a \# x s) . f i j\right)\right)$ by simp
finally show? case .
finally show? case .
qed simp
qed simp
lemma (in semiring-1) sum-append:
lemma (in semiring-1) sum-append:
$\left(\sum i \leftarrow(x s @ y s) . f i\right)=\left(\sum i \leftarrow x s . f i\right)+\left(\sum i \leftarrow y s . f i\right)$
$\left(\sum i \leftarrow(x s @ y s) . f i\right)=\left(\sum i \leftarrow x s . f i\right)+\left(\sum i \leftarrow y s . f i\right)$
by (induction xs) (simp-all add: add.assoc)
by (induction xs) (simp-all add: add.assoc)
lemma (in semiring-1) sum-append':
lemma (in semiring-1) sum-append':
assumes $z s=x s @ y s$
assumes $z s=x s @ y s$
shows $\left(\sum i \leftarrow z s . f i\right)=\left(\sum i \leftarrow x s . f i\right)+\left(\sum i \leftarrow y s . f i\right)$
shows $\left(\sum i \leftarrow z s . f i\right)=\left(\sum i \leftarrow x s . f i\right)+\left(\sum i \leftarrow y s . f i\right)$
using assms sum-append by blast

```
    using assms sum-append by blast
```


2.1.1 Power Sums

lemma (in semiring-1) sum-list-of-bool-filter: $\left(\sum i \leftarrow x s\right.$. of-bool $\left.(P i) * f i\right)=$ $\left(\sum i \leftarrow\right.$ filter P xs. $\left.f i\right)$
by (induction xs; simp)
lemma upt-filter-less: filter $(\lambda i . i<c)[a . .<b]=\left[\begin{array}{ll}a . .<\min & b\end{array}\right]$
by (induction b; simp)
lemma upt-filter-geq: filter $(\lambda i . i \geq c)[a . .<b]=\left[\begin{array}{lll}\max & a & c . .\end{array}\right)$
by (induction b; simp)
lemma (in semiring-1) sum-list-of-bool-less: $\left(\sum i \leftarrow[a . .<b]\right.$. of-bool $\left.(i<c) * f i\right)$ $=\left(\sum i \leftarrow[a . .<\min b c] . f i\right)$
unfolding sum-list-of-bool-filter upt-filter-less by (rule refl)
lemma (in semiring-1) sum-list-of-bool-geq: $\left(\sum i \leftarrow[a . .<b]\right.$. of-bool $\left.(i \geq c) * f i\right)$ $=\left(\sum i \leftarrow\left[\begin{array}{lll}\max & a & c . .<b\end{array}\right] . f i\right)$
unfolding sum-list-of-bool-filter upt-filter-geq by (rule refl)
lemma (in semiring-1) sum-list-of-bool-range: $\left(\sum i \leftarrow[a . .<b]\right.$. of-bool $(i \in$ set $[c . .<d]) * f i)=$
$\left(\sum i \leftarrow[\max a c . .<\min b d] . f i\right)$
proof -
have $\left(\sum i \leftarrow[a . .<b]\right.$. of-bool $\left.(i \in \operatorname{set}[c . .<d]) * f i\right)=$ $\left(\sum i \leftarrow[a . .<b]\right.$. of-bool $(i \geq c) *($ of-bool $\left.(i<d) * f i)\right)$
by (intro semiring-1-sum-list-eq; simp)
then show ?thesis unfolding sum-list-of-bool-geq sum-list-of-bool-less . qed
lemma (in comm-semiring-1) cauchy-product:

```
(\sumi\leftarrow[0..<n].fi)* (\sumj\leftarrow[0..<m].gj)=
    (\sumk\leftarrow[0..<n+m-1].\suml\leftarrow[k+1-m..<min (k+1)n].fl*g(k-
l))
proof -
    have}(\sumi\leftarrow[0..<n].fi)*(\sumj\leftarrow[0..<m].gj)
        (\sumi\leftarrow[0..<n].\sumj\leftarrow[0..<m].fi*gj)
        unfolding sum-list-mult-const[symmetric]
        unfolding sum-list-const-mult[symmetric]
        by (rule refl)
    also have ... =( \sumi\leftarrow[0..<n]. \sumj\leftarrow[0..<m]. \sumk\leftarrow[0..<n+m-1].
of-bool (k=i+j)*(fi*gj))
    by (intro semiring-1-sum-list-eq of-bool-distinct-in[symmetric]; simp)
    also have ... = (\sumk\leftarrow[0..<n+m-1].\sumi\leftarrow[0..<n].\sumj\leftarrow[0..<m].
of-bool (k=i+j)*(fi*gj))
    unfolding sum-swap[where xs = [0..<m] and ys = [0..<n+m-1]]
    unfolding sum-swap[where xs =[0..<n] and ys =[0..<n+m-1]]
    by (rule refl)
    also have ... =(\sumk\leftarrow[0..<n+m-1].\sumi\leftarrow[0..<n]. \sumj\leftarrow[0..<m].
of-bool (k\geqi^j=k-i)*(fi*gj))
```

```
    by (intro semiring-1-sum-list-eq; simp)
    also have \(\ldots=\left(\sum k \leftarrow[0 . .<n+m-1] . \sum i \leftarrow[0 . .<n] . \sum j \leftarrow[0 . .<m]\right.\).
of-bool \((j=k-i) *(\) of-bool \((k \geq i) *(f i * g j)))\)
    by (intro semiring-1-sum-list-eq; simp)
    also have \(\ldots=\left(\sum k \leftarrow[0 . .<n+m-1] . \sum i \leftarrow[0 . .<n]\right.\). of-bool \((k-i \in\) set
\([0 . .<m]) *((\) of-bool \((k \geq i) *(f i * g(k-i)))))\)
    by (intro semiring-1-sum-list-eq of-bool-distinct distinct-upt)
    also have \(\ldots=\left(\sum k \leftarrow[0 . .<n+m-1] . \sum i \leftarrow[0 . .<n]\right.\). of-bool \((i \geq k+1-\)
\(m) *((\) of-bool \((k+1>i) *(f i * g(k-i)))))\)
    by (intro semiring-1-sum-list-eq; auto)
    also have \(\ldots=\left(\sum k \leftarrow[0 . .<n+m-1] . \sum l \leftarrow[k+1-m . .<\min (k+1)\right.\)
\(n] . f l * g(k-l))\)
    apply (intro semiring-1-sum-list-eq)
    unfolding sum-list-of-bool-geq sum-list-of-bool-less max-0L min.commute[of \(n\) ]
    by (rule refl)
    finally show? thesis.
qed
```

lemma (in comm-semiring-1) power-sum-product:
assumes $m>0$
assumes $n \geq m$
shows
$\left(\sum i \leftarrow[0 . .<n] . f i * x^{\wedge} i\right) *\left(\sum j \leftarrow[0 . .<m] . g j * x^{\wedge} j\right)=$
$\left(\sum k \leftarrow[0 . .<m] .\left(\sum i \leftarrow[0 . .<\right.\right.$ Suc $\left.\left.k] . f i * g(k-i)\right) * x^{\wedge} k\right)+$
$\left(\sum k \leftarrow[m . .<n] .\left(\sum i \leftarrow[\right.\right.$ Suc $k-m . .<$ Suc $\left.\left.k] . f i * g(k-i)\right) * x^{\wedge} k\right)+$
$\left(\sum k \leftarrow[n . .<n+m-1] .\left(\sum i \leftarrow[S u c k-m . .<n] . f i * g(k-i)\right) * x^{\wedge} k\right)$
proof -
have 1: $[0 . .<n+m-1]=[0 . .<m] @[m . .<n] @[n . .<n+m-1]$
using upt-add-eq-append'[of $0 m n+m-1]$ upt-add-eq-append'[of $m n n+$ $m-1]$ assms by simp

$$
\text { have }\left(\sum i \leftarrow[0 . .<n] . f i * x^{\wedge} i\right) *\left(\sum j \leftarrow[0 . .<m] . g j * x^{\wedge} j\right)=
$$

$$
\left(\sum k \leftarrow[0 . .<n+m-1] . \sum l \leftarrow[k+1-\operatorname{mi.}<\min (k+1) n] .(f l * x\right.
$$

$$
\left.l) *\left(g(k-l) * x^{\wedge}(k-l)\right)\right)
$$

by (rule cauchy-product)
also have $\ldots=\left(\sum k \leftarrow[0 . .<n+m-1] . \sum l \leftarrow[k+1-m . .<\min (k+1)\right.$ $\left.n] . f l * g(k-l) * x^{\wedge} k\right)$
apply (intro semiring-1-sum-list-eq)
using mult.commute mult.assoc power-add[symmetric]
by simp
also have $\ldots=\left(\sum k \leftarrow[0 . .<n+m-1] .\left(\sum l \leftarrow[k+1-m . .<\min (k+1)\right.\right.$ $n]$. $\left.f l * g(k-l)) * x{ }^{\wedge} k\right)$
by (intro semiring-1-sum-list-eq sum-list-mult-const)
also have $\ldots=\left(\sum k \leftarrow[0 . .<m] .\left(\sum i \leftarrow[k+1-\operatorname{mo.}<\min (k+1) n] . f i * g(k\right.\right.$ $\left.-i)) * x^{\wedge} k\right)+$
k) +
$\left(\sum k \leftarrow[m . .<n] .\left(\sum i \leftarrow[k+1-m . .<\min (k+1) n] . f i * g(k-i)\right) * x^{\wedge}\right.$
$\left(\sum k \leftarrow[n . .<n+m-1] .\left(\sum i \leftarrow[k+1-m . .<\min (k+1) n] . f i * g(k-\right.\right.$
i)) $\left.* x^{\wedge} k\right)$
unfolding 1 sum-append add.assoc by (rule refl)
also have $\ldots=\left(\sum k \leftarrow[0 . .<m] .\left(\sum i \leftarrow[0 . .<\right.\right.$ Suc $\left.\left.k] . f i * g(k-i)\right) * x^{\wedge} k\right)+$ $\left(\sum k \leftarrow[m . .<n] .\left(\sum i \leftarrow[\right.\right.$ Suc $k-m . .<$ Suc $\left.\left.k] . f i * g(k-i)\right) * x^{\wedge} k\right)+$ $\left(\sum k \leftarrow[n . .<n+m-1] .\left(\sum i \leftarrow[S u c k-m . .<n] . f i * g(k-i)\right) * x^{\wedge} k\right)$
using assms by (intro-cong [cong-tag-2 (+)] more: semiring-1-sum-list-eq; simp) finally show ?thesis.
qed
lemma (in comm-semiring-1) power-sum-product-same-length:
assumes $n>0$
shows $\left(\sum i \leftarrow[0 . .<n] . f i * x^{\wedge} i\right) *\left(\sum j \leftarrow[0 . .<n] . g j * x^{\wedge} j\right)=$
$\left(\sum k \leftarrow[0 . .<n] .\left(\sum i \leftarrow[0 . .<\right.\right.$ Suc $\left.\left.k] . f i * g(k-i)\right) * x^{\wedge} k\right)+$
$\left(\sum k \leftarrow[n . .<2 * n-1] .\left(\sum i \leftarrow[\right.\right.$ Suc $\left.\left.k-n . .<n] . f i * g(k-i)\right) * x{ }^{\wedge} k\right)$
using power-sum-product[of $n n f x g$, OF assms order.refl]
by (simp add: semiring-numeral-class.mult-2)
lemma (in semiring-1) sum-index-transformation:
shows $\left(\sum i \leftarrow x s . f(g i)\right)=\left(\sum j \leftarrow\right.$ map g xs. $\left.f j\right)$
by (induction xs) simp-all
lemma (in comm-semiring-1) power-sum-split:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a$
fixes $x::{ }^{\prime} a$
fixes $c::$ nat
assumes $j \leq n$
shows $\left(\sum i \leftarrow[0 . .<n] . f i * x^{\wedge}(i * c)\right)=$ $\left(\sum i \leftarrow[0 . .<j] . f i * x^{\wedge}(i * c)\right)+$ $x^{\wedge}(j * c) *\left(\sum i \leftarrow[0 . .<n-j] . f(j+i) * x \wedge(i * c)\right)$
proof -
have $(\lambda i . i+j)=(+) j$ by fastforce
have $\left(\sum i \leftarrow[0 . .<n] . f i * x^{\wedge}(i * c)\right)=$ $\left(\sum i \leftarrow[0 . .<j] . f i * x^{\wedge}(i * c)\right)+\left(\sum i \leftarrow[j . .<n] . f i * x^{\wedge}(i * c)\right)$
apply (intro sum-append' upt-add-eq-append') using $\langle j \leq n\rangle$ by auto
also have $\left(\sum i \leftarrow[j . .<n] . f i * x^{\wedge}(i * c)\right)=$
$\left(\sum i \leftarrow \operatorname{map}((+) j)[0 . .<n-j] . f i * x \wedge(i * c)\right)$
apply (intro-cong [cong-tag-1 sum-list, cong-tag-2 map] more: refl)
using $\langle j \leq n\rangle$ map-add-upt[of $j n-j]\langle(\lambda i . i+j)=(+) j\rangle$ by simp
also have $\ldots=\left(\sum i \leftarrow[0 . .<n-j] . f(j+i) * x \wedge((j+i) * c)\right)$
by (intro sum-index-transformation [symmetric])
also have $\ldots=\left(\sum i \leftarrow[0 . .<n-j] . x \wedge(j * c) *(f(j+i) * x \wedge(i * c))\right)$
apply (intro semiring-1-sum-list-eq)
using mult.commute mult.assoc by (simp add: power-add add-mult-distrib)
also have $\ldots=x^{\wedge}(j * c) *\left(\sum i \leftarrow[0 . .<n-j] .\left(f(j+i) * x^{\wedge}(i * c)\right)\right)$ by (intro sum-list-const-mult)
finally show ?thesis.
qed

2.2 nat Sums

```
lemma geo-sum-nat:
    assumes \((q::\) nat \()>1\)
    shows \((q-1) *\left(\sum i \leftarrow[0 . .<n] . q{ }^{\wedge} i\right)=q へ n-1\)
proof (induction n)
    case (Suc n)
    have \((q-1) *\left(\sum i \leftarrow[0 . .<\right.\) Suc \(\left.n] . q \wedge i\right)=(q-1) *\left(q^{\wedge} n+\left(\sum i \leftarrow[0 . .<n]\right.\right.\).
\(\left.q^{\wedge} i\right)\) )
    by \(\operatorname{simp}\)
    also have \(\ldots=(q-1) * q^{\wedge} n+(q-1) *\left(\sum i \leftarrow[0 . .<n] . q^{\wedge} i\right)\)
        using add-mult-distrib mult.commute by metis
    also have \(\ldots=(q-1) * q^{へ} n+\left(q^{へ} n-1\right)\)
        using Suc.IH by simp
    also have \(\ldots=q * q \wedge n-1\) using \(\langle q>1\rangle\) by (simp add: diff-mult-distrib)
    finally show? case by simp
qed \(\operatorname{simp}\)
lemma geo-sum-bound:
    assumes \((q::\) nat \()>1\)
    assumes \(\bigwedge i . i<n \Longrightarrow f i<q\)
    shows \(\left(\sum i \leftarrow[0 . .<n] . f i * q \wedge i\right)<q^{\wedge} n\)
proof -
    from assms have \(\bigwedge i . i<n \Longrightarrow f i \leq(q-1)\) by fastforce
    then have \(\left(\sum i \leftarrow[0 . .<n] . f i * q \wedge i\right) \leq\left(\sum i \leftarrow[0 . .<n] .(q-1) * q^{\wedge} i\right)\)
        apply (intro sum-list-mono mult-le-mono1)
        using assms by simp
    also have \(\ldots=(q-1) *\left(\sum i \leftarrow[0 . .<n] . q^{\wedge} i\right)\)
        by (intro sum-list-const-mult)
    also have \(\ldots=q^{\wedge} n-1\)
        by (intro geo-sum-nat assms)
    also have \(\ldots<q^{\wedge} n\) using \(\langle q>1\rangle\) by \(\operatorname{simp}\)
    finally show? thesis.
qed
lemma power-sum-nat-split-div-mod:
    assumes \(x>1\)
    assumes \(c>0\)
    assumes \(\bigwedge i . i<n \Longrightarrow(f i:: n a t)<x{ }^{\wedge} c\)
    assumes \(j \leq n\)
    shows \(\left(\sum i \leftarrow[0 . .<n] . f i * x^{\wedge}(i * c)\right) d i v x^{\wedge}(j * c)\)
        \(=\left(\sum i \leftarrow[0 . .<n-j] . f(j+i) * x \wedge(i * c)\right)\)
    \(\left(\sum i \leftarrow[0 . .<n] . f i * x \wedge(i * c)\right) \bmod x \wedge(j * c)\)
    \(=\left(\sum i \leftarrow[0 . .<j] . f i * x^{\wedge}(i * c)\right)\)
proof
    define sum where sum \(=\left(\sum i \leftarrow[0 . .<n] . f i * x^{\wedge}(i * c)\right)\)
    then have sum \(=\left(\sum i \leftarrow[0 . .<j] . f i * x \wedge(i * c)\right)+\)
        \(x^{\wedge}(j * c) *\left(\sum i \leftarrow[0 . .<n-j] . f(j+i) * x^{\wedge}(i * c)\right)\)
    (is sum \(=\) ?sum1 \(+x^{\wedge}(j * c) *\) ?sum2 \()\)
    using power-sum-split \(\langle j \leq n\rangle\) by blast
```

```
    have ? sum1 \(=\left(\sum i \leftarrow[0 . .<j] . f i *\left(x^{\wedge} c\right)^{\wedge} i\right)\)
    apply (intro-cong \([\) cong-tag-2 \((*)]\) more: semiring-1-sum-list-eq refl)
    using power-mult mult.commute by metis
    also have \(\ldots<\left(x^{\wedge} c\right){ }^{\wedge} j\)
    apply (intro geo-sum-bound)
    subgoal using assms one-less-power by blast
    subgoal using assms by simp
    done
    finally have ?sum1 \(<x^{\wedge}(j * c)\) by (simp add: power-mult mult.commute)
    then show sum \(\bmod x^{\wedge}(j * c)=\) ?sum1 sum div \(\left(x^{\wedge}(j * c)\right)=\) ?sum2 using
\(\langle\) sum \(=\) ?sum1 \(+x\) ^ \((j * c) *\) ?sum2〉
    using assms(1) by fastforce+
qed
lemma power-sum-nat-extract-coefficient:
    assumes \(x>1\)
    assumes \(c>0\)
    assumes \(\bigwedge i . i<n \Longrightarrow(f i::\) nat \()<x{ }^{\wedge} c\)
    assumes \(j<n\)
    shows \(\left(\left(\sum i \leftarrow[0 . .<n] . f i * x^{\wedge}(i * c)\right) \operatorname{div} x \wedge(j * c)\right) \bmod x \wedge c=f j\)
proof -
    have \(\left(\sum i \leftarrow[0 . .<n] . f i * x^{\wedge}(i * c)\right) \operatorname{div} x^{\wedge}(j * c)=\)
        \(\left(\sum i \leftarrow[0 . .<n-j] . f(j+i) * x^{\wedge}(i * c)\right)(\) is ?sum \(=-)\)
        apply (intro power-sum-nat-split-div-mod(1) assms)
        using assms by simp-all
    moreover have \(\ldots \bmod x^{\wedge}(1 * c)=\left(\sum i \leftarrow[0 . .<1] . f(j+i) * x^{\wedge}(i * c)\right)\)
        apply (intro power-sum-nat-split-div-mod(2) assms)
        using assms by simp-all
    ultimately show ?sum \(\bmod x^{\wedge} c=f j\) by \(\operatorname{simp}\)
qed
lemma power-sum-nat-eq:
    assumes \(x>1\)
    assumes \(c>0\)
    assumes \(\bigwedge i . i<n \Longrightarrow(f i:: n a t)<x^{\wedge} c\)
    assumes \(\bigwedge i . i<n \Longrightarrow g i<x^{\wedge} c\)
    assumes \(\left(\sum i \leftarrow[0 . .<n] . f i * x^{\wedge}(i * c)\right)=\left(\sum i \leftarrow[0 . .<n] . g i * x^{\wedge}(i * c)\right)\)
    (is ?sumf \(=\) ? sumg)
    shows \(\bigwedge i . i<n \Longrightarrow f i=g i\)
proof -
    fix \(i\)
    assume \(i<n\)
    then have \(f i=\left(\right.\) ?sumf div \(\left.x^{\wedge}(i * c)\right) \bmod x{ }^{\wedge} c\)
        apply (intro power-sum-nat-extract-coefficient[symmetric] assms) by assump-
tion
    also have \(\ldots=\left(\right.\) ? sumg div \(\left.x^{\wedge}(i * c)\right) \bmod x^{\wedge} c\)
        using assms by argo
    also have \(\ldots=g i\)
    apply (intro power-sum-nat-extract-coefficient assms) using \(\langle i<n\rangle\) by simp-all
```

```
    finally show fi=gi.
qed
end
```


3 Sums in Monoids

theory Monoid-Sums
imports HOL-Algebra.Ring Expander-Graphs.Extra-Congruence-Method Karat-suba-Preliminaries HOL-Library.Multiset HOL-Number-Theory.Residues Karat-suba-Sum-Lemmas
begin
This section contains a version of sum-list for entries in some abelian monoid. Contrary to sum-list, which is defined for the type class comm-monoid-add, this version is for the locale abelian-monoid. After the definition, some simple lemmas about sums are proven for this sum function.

```
context abelian-monoid
```

begin
fun monoid-sum-list :: $\left[{ }^{\prime} c \Rightarrow{ }^{\prime} a,^{\prime} c\right.$ list $] \Rightarrow{ }^{\prime} a$ where
monoid-sum-list $f[]=\mathbf{0}$
\mid monoid-sum-list $f(x \# x s)=f x \oplus$ monoid-sum-list f xs
lemma monoid-sum-list fxs $=$ foldr $(\oplus)(\operatorname{map} f x s) \mathbf{0}$
by (induction xs) simp-all
end

The syntactic sugar used for finsum is adapted accordingly.

```
syntax
    -monoid-sum-list :: index }=>\mathrm{ idt }=>\mp@subsup{}{}{\prime}c\mathrm{ list }=>\mp@subsup{}{}{\prime}c=\mp@subsup{}{}{\prime}
        ((3\bigoplus--\leftarrow-.-) [1000, 0, 51, 10] 10)
```

```
translations
    \bigoplusG}\mp@subsup{G}{}{i\leftarrowxs.b}\rightleftharpoonsCONST abelian-monoid.monoid-sum-list G (\lambdai.b)x
context abelian-monoid
begin
lemma monoid-sum-list-finsum:
    assumes \i. i\in set xs \Longrightarrowfi\in carrier G
    assumes distinct xs
    shows }(\bigoplusi\leftarrowxs.fi)=(\bigoplusi\in\mathrm{ set xs.fi)
    using assms
proof (induction xs)
    case Nil
    then show ?case by simp
next
```

```
    case (Cons a xs)
    then show ?case using finsum-insert[of set xs a f] by simp
qed
lemma monoid-sum-list-cong:
    assumes \bigwedgei.i\in set xs \Longrightarrowfi=gi
    shows }(\bigoplusi\leftarrowxs.fi)=(\bigoplusi\leftarrowxs.gi
    using assms by (induction xs) simp-all
lemma monoid-sum-list-closed[simp]:
    assumes \i.i i\in set xs \Longrightarrowfi\in carrier G
    shows }(\bigoplusi\leftarrowxs.fi)\in\mathrm{ carrier }
    using assms by (induction xs) simp-all
lemma monoid-sum-list-add-in:
    assumes \i.i\in set xs \Longrightarrowfi\in carrier G
    assumes \i.i i\in set xs \Longrightarrowgi\in carrier G
    shows}(\bigoplusi\leftarrowxs.fi)\oplus(\bigoplusi\leftarrowxs.gi)
                                    (\bigoplusi\leftarrowxs.fi\oplusgi)
    using assms
proof (induction xs)
    case (Cons a xs)
    have}(\bigoplusi\leftarrow(a#xs).fi)\oplus(\bigoplusi\leftarrow(a#xs).gi
        =(fa\oplus(\bigoplusi\leftarrowxs.fi))\oplus(ga\oplus(\bigoplusi\leftarrowxs.gi))
    by simp
    also have ... =(fa\oplusga)\oplus((\bigoplusi\leftarrowxs.fi)\oplus(\bigoplusi\leftarrowxs.gi))
    using a-comm a-assoc Cons.prems by simp
    also have ... =(fa\oplusga)\oplus(\bigoplusi\leftarrowxs.fi\oplusgi)
    using Cons by simp
    finally show?case by simp
qed simp
lemma monoid-sum-list-0[simp]: (\bigoplusi\leftarrowxs.0) = 0
    by (induction xs) simp-all
lemma monoid-sum-list-swap:
    assumes[simp]: \ij.i\in set xs \Longrightarrowj\in set ys \Longrightarrowfij\in carrier G
    shows}(\bigoplusi\leftarrowxs.(\bigoplusj\leftarrowys.fij))
    (\bigoplusj\leftarrowys. (\bigoplusi\leftarrowxs.fij))
    using assms
proof (induction xs arbitrary: ys)
    case (Cons a xs)
    have}(\bigoplusi\leftarrow(a#xs).(\bigoplusj\leftarrowys.fij)
        =(\bigoplusj\leftarrowys.f a j)\oplus(\bigoplusi\leftarrowxs. }(\bigoplusj\leftarrowys.fij)
    by simp
    also have ... =(\bigoplusj\leftarrowys.faj)\oplus(\bigoplusj\leftarrowys. (\bigoplusi\leftarrowxs.fij))
    using Cons by simp
    also have ... = (\bigoplusj\leftarrowys.f aj\oplus(\bigoplusi\leftarrowxs.fij))
    using monoid-sum-list-add-in[of ys \lambdaj.f a j \lambdaj. (\bigoplusi\leftarrowxs.f i j)] Cons.prems
```

```
by simp
    finally show ?case by simp
qed simp
```

lemma monoid-sum-list-index-transformation:
$(\oplus i \leftarrow($ map $g x s) . f i)=(\oplus i \leftarrow x s . f(g i))$
by (induction xs) simp-all
lemma monoid-sum-list-index-shift-0:
$(\bigoplus i \leftarrow[c . .<c+n] . f i)=(\oplus i \leftarrow[0 . .<n] . f(c+i))$
using monoid-sum-list-index-transformation[of $f \lambda i . c+i[0 . .<n]]$
by (simp add: add.commute map-add-upt)
lemma monoid-sum-list-index-shift:
$(\oplus l \leftarrow[a . .<b] . f(l+c))=(\oplus l \leftarrow[(a+c) . .<(b+c)] . f l)$
using monoid-sum-list-index-transformation[of f di. $i+c[a . .<b]]$
by (simp add: map-add-const-upt)
lemma monoid-sum-list-app:
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i \in$ carrier G
assumes $\bigwedge i . i \in$ set $y s \Longrightarrow f i \in$ carrier G
shows $(\bigoplus i \leftarrow x s @ y s . f i)=(\bigoplus i \leftarrow x s . f i) \oplus(\bigoplus i \leftarrow y s . f i)$
using assms
by (induction xs) (simp-all add: a-assoc)
lemma monoid-sum-list-app':
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i \in$ carrier G
assumes $\bigwedge i . i \in$ set $y s \Longrightarrow f i \in$ carrier G
assumes $x s @ y s=z s$
shows $(\bigoplus i \leftarrow z s . f i)=(\bigoplus i \leftarrow x s . f i) \oplus(\bigoplus i \leftarrow y s . f i)$
using monoid-sum-list-app assms by blast
lemma monoid-sum-list-extract:
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i \in$ carrier G
assumes $\bigwedge i . i \in$ set $y s \Longrightarrow f i \in$ carrier G
assumes $f x \in$ carrier G
shows $(\bigoplus i \leftarrow x s @ x \# y s . f i)=f x \oplus(\bigoplus i \leftarrow(x s @ y s) . f i)$
proof -
have $(\bigoplus i \leftarrow x s @ x \# y s . f i)=(\bigoplus i \leftarrow x s . f i) \oplus f x \oplus(\bigoplus i \leftarrow y s . f i)$
using assms monoid-sum-list-app[of xs f x \# ys]
using a-assoc by auto
also have $\ldots=f x \oplus((\bigoplus i \leftarrow x s . f i) \oplus(\bigoplus i \leftarrow y s . f i))$
using assms a-assoc a-comm by auto
finally show ?thesis using monoid-sum-list-app[of xs f ys] assms by algebra qed
lemma monoid-sum-list-Suc:
assumes $\bigwedge i . i<$ Suc $r \Longrightarrow f i \in$ carrier G
shows $(\bigoplus i \leftarrow[0 . .<S u c r] . f i)=(\bigoplus i \leftarrow[0 . .<r] . f i) \oplus f r$
using assms monoid-sum-list-app $[$ of $[0 . .<r] f[r]]$
by simp
lemma bij-betw-diff-singleton: $a \in A \Longrightarrow b \in B \Longrightarrow$ bij-betw $f A B \Longrightarrow f a=b$
\Longrightarrow bij-betw $f(A-\{a\})(B-\{b\})$
by (metis (no-types, lifting) DiffE Diff-Diff-Int Diff-cancel Diff-empty Int-insert-right-if1 Un-Diff-Int notIn-Un-bij-betw3 singleton-iff)
lemma $a \in A \Longrightarrow$ bij-betw $f A B \Longrightarrow$ bij-betw $f(A-\{a\})(B-\{f a\})$
using bij-betw-diff-singleton[of a A fabf]
by (simp add: bij-betwE)
lemma monoid-sum-list-multiset-eq:
assumes mset $x s=m s e t$ ys
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i \in$ carrier G
shows $(\bigoplus i \leftarrow x s . f i)=(\bigoplus i \leftarrow y s . f i)$
using assms
proof (induction xs arbitrary: ys)
case Nil
then show? case by simp
next
case (Cons a $x s$)
then have $a \in$ set ys using mset-eq-set D by fastforce
then obtain ys1 ys2 where ys =ys1 @ a \# ys2 by (meson split-list)
with Cons.prems have 1: mset $x s=m s e t$ (ys1 @ ys2) by simp
from Cons.prems mset-eq-setD have $\bigwedge i . i \in$ set ys $\Longrightarrow f i \in$ carrier G by blast
then have $[\operatorname{simp}]: \bigwedge i . i \in \operatorname{set} y s 1 \Longrightarrow f i \in \operatorname{carrier} G f a \in \operatorname{carrier} G \bigwedge i . i \in$
set ys2 $\Longrightarrow f i \in$ carrier G
using 〈ys = ys1 @ a \# ys2〉 by simp-all
from 1 have $(\bigoplus i \leftarrow x s . f i)=(\bigoplus i \leftarrow(y s 1 @ y s 2) . f i)$
using Cons by simp
also have $\ldots=(\bigoplus i \leftarrow y s 1 . f i) \oplus(\bigoplus i \leftarrow y s 2 . f i)$
by (intro monoid-sum-list-app) simp-all
also have $f a \oplus \ldots=(\bigoplus i \leftarrow y s 1 . f i) \oplus(f a \oplus(\bigoplus i \leftarrow y s 2 . f i))$
using a-comm a-assoc monoid-sum-list-closed by simp
also have $\ldots=(\bigoplus i \leftarrow y s 1 . f i) \oplus(\bigoplus i \leftarrow(a \# y s 2) . f i)$
by simp
also have $\ldots=(\bigoplus i \leftarrow y s . f i)$
unfolding $\langle y s=y s 1$ @ $a \# y s 2\rangle$
by (intro monoid-sum-list-app[symmetric]) auto
finally show? case by simp
qed
lemma monoid-sum-list-index-permutation:
assumes distinct xs
assumes distinct $y s \vee$ length $x s=$ length ys
assumes bij-betw f (set xs) (set ys)
assumes $\bigwedge i . i \in$ set $y s \Longrightarrow g i \in$ carrier G
shows $(\bigoplus i \leftarrow y s . g i)=(\bigoplus i \leftarrow x s . g(f i))$
using assms

```
proof (induction xs arbitrary: ys)
    case Nil
    then have ys = [] using bij-betw-same-card by fastforce
    then show ?case by simp
next
    case (Cons a xs)
    then have length ys = length ( }a#\mathrm{ # xs) distinct ys
    by (metis bij-betw-same-card distinct-card, metis bij-betw-same-card distinct-card
card-distinct)
    have 0:\bigwedgei. i \in set (a#xs)\Longrightarrowg(fi)\in\operatorname{carrier G}
    proof -
        fix }
        assume i\in set (a#xs)
        then have fi\in set ys using Cons.prems(3) by (simp add: bij-betw-apply)
        then show g}(fi)\in\mathrm{ carrier G using Cons.prems(4) by blast
    qed
    define b where b=fa
    then have b set ys using Cons(4) bij-betw-apply by fastforce
    then obtain ys1 ys2 where ys = ys1 @ b # ys2 by (meson split-list)
    then have b & set ys1 b & set ys2 using <distinct ys` by simp-all
    have bij-betw f (set xs) (set (ys1 @ ys2))
        using〈ys=ys1 @ b # ys2>Cons(4)b-def
        using bij-betw-diff-singleton[of a set (a# xs) f a set ys f]
        using Cons.prems(1) <distinct ys> by auto
    moreover have length (ys1 @ ys2) = length xs using <length ys = length (a #
xs)>\langleys = ys1@ b # ys2>
    by simp
    ultimately have 1:(\bigoplusi\leftarrow(ys1@ys2).g i)=(\bigoplusi\leftarrowxs.g (fi)) using
Cons.IH[of ys1@ys2] Cons.prems(4)
    using Cons.prems(1) 0 <ys = ys1 @ b # ys2> by auto
    have}(\bigoplusi\leftarrow(a#xs).g(fi))=gb\oplus(\bigoplusi\leftarrowxs.g(fi)
    using < b = f a b by simp
    also have ...=gb\oplus(\bigoplusi\leftarrow(ys1@ysQ).gi) using 1 by simp
    also have ... =(\bigoplusi\leftarrow(ys1@b#ys2).gi)
    apply (intro monoid-sum-list-extract[symmetric])
    using Cons.prems(4)<ys = ys1 @ b # ys2` by simp-all
    finally show }(\bigoplusi\leftarrowys.gi)=(\bigoplusi\leftarrow(a#xs).g(fi)
    using <ys = ys1@ @ # ys2` by simp
qed
lemma monoid-sum-list-split:
    assumes[simp]: \bigwedgei. i< b+c\Longrightarrowfi\incarrier G
    shows }(\bigoplusl\leftarrow[0..<b].fl)\oplus(\bigoplusl\leftarrow[b..<b+c].fl)=(\bigoplusl\leftarrow[0..<b+c]
fl)
    using monoid-sum-list-app[of [0..<b] f [b..<b+c], symmetric]
    using upt-add-eq-append[of 0 b c]
```

```
    by simp
```

lemma monoid-sum-list-splice:
assumes $[$ simp $]: \bigwedge i . i<2 * n \Longrightarrow f i \in$ carrier G
shows $(\bigoplus i \leftarrow[0 . .<2 * n] . f i)=(\bigoplus i \leftarrow[0 . .<n] . f(2 * i)) \oplus(\bigoplus i \leftarrow[0 . .<n]$.
$f(2 * i+1))$
proof -
let ?es $=$ filter even $[0 . .<2 * n]$
let ?os $=$ filter odd $[0 . .<2 * n]$
have 1: $(\bigoplus i \leftarrow[0 . .<2 * n] . f i)=(\bigoplus i \in\{0 . .<2 * n\} . f i)$
using monoid-sum-list-finsum $[$ of $[0 . .<2 * n] f]$ by simp
let $? E=\{i \in\{0 . .<2 * n\}$. even $i\}$
let $? O=\{i \in\{0 . .<2 * n\}$. odd $i\}$
have ? $E \cap$? $O=\{ \}$ by blast
moreover have ? $E \cup ? O=\{0 . .<2 * n\}$ by blast
ultimately have $(\bigoplus i \in\{0 . .<2 * n\} . f i)=(\bigoplus i \in ? E . f i) \oplus(\bigoplus i \in ? O . f i)$
using finsum-Un-disjoint $[o f$? E ? $O f]$ assms by auto
moreover have $? E=$ set ? es ? $O=$ set ?os by simp-all
ultimately have $(\bigoplus i \in\{0 . .<2 * n\} . f i)=(\bigoplus i \in$ set ?es. $f i) \oplus(\bigoplus i \in$ set
?os. fi)
by presburger
also have $(\bigoplus i \in$ set ?es. $f i)=(\bigoplus i \leftarrow$? es. $f i)$
using monoid-sum-list-finsum [of ?es f] by simp
also have $\ldots=(\bigoplus i \leftarrow[0 . .<n] . f(2 * i))$
using monoid-sum-list-index-transformation[of f di. $2 * i[0 . .<n]]$
using filter-even-upt-even
by algebra
also have $(\bigoplus i \in$ set ?os. $f i)=(\bigoplus i \leftarrow$?os. $f i)$
using monoid-sum-list-finsum [of ?os f] by simp
also have $\ldots=(\bigoplus i \leftarrow[0 . .<n] . f(2 * i+1))$
using monoid-sum-list-index-transformation[of f di. $2 * i+1[0 . .<n]]$
using filter-odd-upt-even
by algebra
finally show ?thesis using 1 by presburger
qed
lemma monoid-sum-list-even-odd-split:
assumes even ($n::$ nat)
assumes $\bigwedge i . i<n \Longrightarrow f i \in$ carrier G
shows $(\bigoplus i \leftarrow[0 . .<n] . f i)=(\bigoplus i \leftarrow[0 . .<n$ div 2]. $f(2 * i)) \oplus(\bigoplus i \leftarrow[0 . .<$ $n \operatorname{div} 2] . f(2 * i+1))$
using assms monoid-sum-list-splice by auto
end
context abelian-group
begin

```
lemma monoid-sum-list-minus-in:
    assumes }\bigwedgei.i\in\mathrm{ set xs #fi}\in\mathrm{ carrier }
    shows }\ominus(\bigoplusi\leftarrowxs.fi)=(\bigoplusi\leftarrowxs.\ominusfi
    using assms by (induction xs) (simp-all add: minus-add)
lemma monoid-sum-list-diff-in:
    assumes[simp]: \bigwedgei.i\in set xs \Longrightarrowfi\in carrier G
    assumes[simp]: \i. i set xs \Longrightarrowgi\in carrier G
    shows}(\bigoplusi\leftarrowxs.fi)\ominus(\bigoplusi\leftarrowxs.gi)
                            (\bigoplusi\leftarrowxs.fi\ominusgi)
proof -
    have}(\bigoplusi\leftarrowxs.fi)\ominus(\bigoplusi\leftarrowxs.g i)=(\bigoplusi\leftarrowxs.fi)\oplus(\ominus(\bigoplusi\leftarrowxs.
i))
    unfolding minus-eq by simp
    also have ... =(\bigoplusi\leftarrowxs.fi)\oplus(\bigoplusi\leftarrowxs.\ominusgi)
        using monoid-sum-list-minus-in[of xs g] by simp
    also have ... =(\bigoplusi\leftarrowxs.fi\oplus(\ominusgi))
        using monoid-sum-list-add-in[of xs f] by simp
    finally show ?thesis unfolding minus-eq.
qed
end
context ring
begin
lemma monoid-sum-list-const:
    assumes[simp]:c c carrier R
    shows }(\bigoplusi\leftarrowxs.c)=(\mathrm{ nat-embedding (length xs))}\otimes
    apply (induction xs)
    using a-comm l-distr by auto
lemma monoid-sum-list-in-right:
    assumes }y\in\mathrm{ carrier }
    assumes }\bigwedgei.i\in\mathrm{ set xs # fi
    shows }(\bigoplusi\leftarrowxs.fi\otimesy)=(\bigoplusi\leftarrowxs.fi)\otimes
    using assms by (induction xs) (simp-all add:l-distr)
lemma monoid-sum-list-in-left:
    assumes }y\in\mathrm{ carrier R
    assumes \i. i\in set xs \Longrightarrowfi\incarrier R
    shows }(\bigoplusi\leftarrowxs.y\otimesfi)=y\otimes(\bigoplusi\leftarrowxs.fi
    using assms by (induction xs) (simp-all add: r-distr)
lemma monoid-sum-list-prod:
    assumes \i. i set xs \Longrightarrowfi\in carrier R
    assumes \i.i set ys \Longrightarrowgi\in carrier R
    shows}(\bigoplusi\leftarrowxs.fi)\otimes(\bigoplusj\leftarrowys.gj)=(\bigoplusi\leftarrowxs.(\bigoplusj\leftarrowys.fi\otimesgj)
proof -
```

```
    have \((\bigoplus i \leftarrow x s . f i) \otimes(\bigoplus j \leftarrow y s . g j)=(\bigoplus i \leftarrow x s . f i \otimes(\bigoplus j \leftarrow y s . g j))\)
    apply (intro monoid-sum-list-in-right[symmetric])
    using assms by simp-all
    also have \(\ldots=(\bigoplus i \leftarrow x s\). \((\bigoplus j \leftarrow y s . f i \otimes g j))\)
    apply (intro monoid-sum-list-cong monoid-sum-list-in-left[symmetric])
    using assms by simp-all
    finally show ?thesis .
qed
```


3.1 Kronecker delta

definition delta where

delta $i j=($ if $i=j$ then $\mathbf{1}$ else $\mathbf{0})$
lemma delta-closed[simp]: delta $i j \in$ carrier R
unfolding delta-def by simp
lemma delta-sym: delta $i j=$ delta $j i$
unfolding delta-def by simp
lemma delta-refl[simp]: delta $i i=\mathbf{1}$
unfolding delta-def by simp
lemma monoid-sum-list-delta[simp]:
assumes $[$ simp $]: \bigwedge i . i<n \Longrightarrow f i \in \operatorname{carrier} R$
assumes $[\operatorname{simp}]: j<n$
shows $(\bigoplus i \leftarrow[0 . .<n]$. delta $i j \otimes f i)=f j$
proof -
from assms have $0:[0 . .<n]=[0 . .<j]$ @ $j \#[$ Suc $j . .<n]$
by (metis le-add1 le-add-same-cancel1 less-imp-add-positive upt-add-eq-append upt-conv-Cons)
then have $[0 . .<n]=[0 . .<j] @[j] @[S u c j . .<n]$
by simp
moreover have $1: \bigwedge i . i \in \operatorname{set}[0 . .<j] \Longrightarrow$ delta $i j \otimes f i \in \operatorname{carrier} R$ using 0 assms delta-closed m-closed atLeastLessThan-iff
by (metis le-add1 less-imp-add-positive linorder-le-less-linear set-upt upt-conv-Nil)
moreover have 2: $\bigwedge i . i \in \operatorname{set}([j] @[S u c j . .<n]) \Longrightarrow$ delta $i j \otimes f i \in \operatorname{carrier} R$
using 0 assms delta-closed m-closed
by auto
ultimately have $(\bigoplus i \leftarrow[0 . .<n]$. delta $i j \otimes f i)=(\bigoplus i \leftarrow[0 . .<j]$. delta $i j \otimes$ $f i) \oplus(\bigoplus i \leftarrow[j] @[S u c j . .<n]$. delta $i j \otimes f i)$
using monoid-sum-list-app $[$ of $[0 . .<j] \lambda i$.delta $i j \otimes f i[j] @[S u c j . .<n]]$
by presburger
also have $(\bigoplus i \leftarrow[j] @[S u c j . .<n]$. delta $i j \otimes f i)=(\bigoplus i \leftarrow[j]$. delta $i j \otimes f$
i) $\oplus(\bigoplus i \leftarrow[$ Suc $j . .<n]$. delta $i j \otimes f i)$
using 2 monoid-sum-list-app[of $[j] \lambda i$. delta $i j \otimes f i[S u c j . .<n]]$
by simp
also have $(\bigoplus i \leftarrow[0 . .<j]$. delta $i j \otimes f i)=\mathbf{0}$
using monoid-sum-list- $0[$ of $[0 . .<j]]$ monoid-sum-list-cong $[o f[0 . .<j] \lambda i .0 \lambda i$.

```
delta i j\otimesfi]
```

 unfolding delta-def using \(\langle j<n\rangle\) by simp
 also have \((\bigoplus i \leftarrow[S u c j . .<n]\). delta \(i j \otimes f i)=\mathbf{0}\)
 using monoid-sum-list- \(0[\) of \([S u c j . .<n]]\) monoid-sum-list-cong \([\) of \([S u c j . .<n]\)
 $\lambda i .0 \lambda i$. delta $i j \otimes f i]$
unfolding delta-def by simp
also have $(\bigoplus i \leftarrow[j]$. delta $i j \otimes f i)=f j$ by simp
finally show? ?thesis by simp
qed
lemma mononid-sum-list-only-delta[simp]:

$$
j<n \Longrightarrow(\bigoplus i \leftarrow[0 . .<n] . \text { delta } i j)=\mathbf{1}
$$ using monoid-sum-list-delta[of $n \lambda i .1 j$ by simp

3.2 Power sums

```
lemma geo-monoid-list-sum:
    assumes \([\) simp \(]: x \in\) carrier \(R\)
    shows \((\mathbf{1} \ominus x) \otimes(\bigoplus l \leftarrow[0 . .<r] . x[ \urcorner l)=(\mathbf{1} \ominus x[ \urcorner r)\)
    using assms
proof (induction \(r\) )
    case 0
    then show ?case using assms by (simp, algebra)
next
    case (Suc r)
    have \((\mathbf{1} \ominus x) \otimes(\bigoplus l \leftarrow[(0:: n a t) . .<\) Suc \(r] . x[\uparrow l)=(\mathbf{1} \ominus x) \otimes(x[ \urcorner r \oplus(\bigoplus l\)
\(\leftarrow[0 . .<r] . x[ \urcorner l))\)
    using monoid-sum-list-Suc[of r \(\lambda l\). \(x[\uparrow l] a\)-comm
    by \(\operatorname{simp}\)
    also have \(\ldots=(\mathbf{1} \ominus x) \otimes x[ \rceil r \oplus(\mathbf{1} \ominus x) \otimes(\bigoplus l \leftarrow[0 . .<r] . x[ \urcorner l)\)
    using \(r\)-distr by auto
    also have \(\ldots=x[ \} r \ominus x[\uparrow(\) Suc \(r) \oplus(\mathbf{1} \ominus x) \otimes(\bigoplus l \leftarrow[0 . .<r] . x[ \rceil l)\)
    apply (intro arg-cong2[where \(f=(\oplus)]\) refl)
    unfolding minus-eq
        \(l\)-distr \([O F\) one-closed a-inv-closed \([O F\langle x \in\) carrier \(R\rangle]\) nat-pow-closed \([O F<x\)
\(\in\) carrier \(R\rangle]\) ]
    using \(\langle x \in\) carrier \(R\rangle\)
    using \(l\)-minus nat-pow-Suc2 by force
    also have \(\ldots=x[\uparrow r \ominus x[ \urcorner(S u c r) \oplus(\mathbf{1} \ominus x[ \urcorner r)\)
    using Suc by presburger
    also have \(\ldots=\mathbf{1} \ominus x[ \urcorner(\) Suc \(r\) )
    using one-closed minus-add assms nat-pow-closed \([\) of \(x]\) by algebra
    finally show ?case .
qed
rewrite ? \(x \in\) carrier \(R \Longrightarrow(? x[ \urcorner ? n)[ \urcorner ? m=? x[ \urcorner(? n * ? m)\) and \(? a *\)
\(? b=? b * ? a\) inside power sum
lemma monoid-pow-sum-nat-pow-pow:
```

```
    assumes x c carrier R
    shows}(\bigoplusi\leftarrowxs.fi\otimesx[`]((gi:: nat)*hi))=(\bigoplusi\leftarrowxs.fi\otimes(x[`hi
[` g i)
    apply (intro-cong [cong-tag-2 (\otimes)] more: monoid-sum-list-cong refl)
    using nat-pow-pow[OF assms] by (simp add: mult.commute)
end
context cring
begin
Split a power sum at some term
```

split power sum at term, more general
lemma monoid-pow-sum-split:

```
lemma monoid-pow-sum-list-split:
```

lemma monoid-pow-sum-list-split:
assumes $l+k=n$
assumes $l+k=n$
assumes $\bigwedge i . i<n \Longrightarrow f i \in$ carrier R
assumes $\bigwedge i . i<n \Longrightarrow f i \in$ carrier R
assumes $x \in$ carrier R
assumes $x \in$ carrier R
shows $(\bigoplus i \leftarrow[0 . .<n] . f i \otimes x[\} i)=$
shows $(\bigoplus i \leftarrow[0 . .<n] . f i \otimes x[\} i)=$
$(\bigoplus i \leftarrow[0 . .<l] . f i \otimes x[] i) \oplus$
$(\bigoplus i \leftarrow[0 . .<l] . f i \otimes x[] i) \oplus$
$x[\urcorner l \otimes(\bigoplus i \leftarrow[0 . .<k] . f(l+i) \otimes x[\urcorner i)$
$x[\urcorner l \otimes(\bigoplus i \leftarrow[0 . .<k] . f(l+i) \otimes x[\urcorner i)$
proof -
proof -
have $(\bigoplus i \leftarrow[0 . .<n] . f i \otimes x[\urcorner i)=$
have $(\bigoplus i \leftarrow[0 . .<n] . f i \otimes x[\urcorner i)=$
$(\bigoplus i \leftarrow[0 . .<l] . f i \otimes x[\urcorner i) \oplus$
$(\bigoplus i \leftarrow[0 . .<l] . f i \otimes x[\urcorner i) \oplus$
$(\bigoplus i \leftarrow[l . .<n] . f i \otimes x[\urcorner i)$
$(\bigoplus i \leftarrow[l . .<n] . f i \otimes x[\urcorner i)$
apply (intro monoid-sum-list-app' m-closed nat-pow-closed upt-add-eq-append'[symmetric])
apply (intro monoid-sum-list-app' m-closed nat-pow-closed upt-add-eq-append'[symmetric])
using assms by simp-all
using assms by simp-all
also have $(\bigoplus i \leftarrow[l . .<n] . f i \otimes x[\upharpoonleft i)=$
also have $(\bigoplus i \leftarrow[l . .<n] . f i \otimes x[\upharpoonleft i)=$
$(\bigoplus i \leftarrow[0 . .<k] . f(l+i) \otimes x[\}(l+i))$
$(\bigoplus i \leftarrow[0 . .<k] . f(l+i) \otimes x[\}(l+i))$
using monoid-sum-list-index-shift- $0[$ of $-l n-l]\langle l+k=n\rangle$
using monoid-sum-list-index-shift- $0[$ of $-l n-l]\langle l+k=n\rangle$
by fastforce
by fastforce
also have $\ldots=(\bigoplus i \leftarrow[0 . .<k] . x[\urcorner l \otimes(f(l+i) \otimes x[\urcorner i))$
also have $\ldots=(\bigoplus i \leftarrow[0 . .<k] . x[\urcorner l \otimes(f(l+i) \otimes x[\urcorner i))$
apply (intro monoid-sum-list-cong)
apply (intro monoid-sum-list-cong)
using assms m-comm m-assoc nat-pow-mult[symmetric, OF $\langle x \in \operatorname{carrier} R\rangle]$
using assms m-comm m-assoc nat-pow-mult[symmetric, OF $\langle x \in \operatorname{carrier} R\rangle]$
by simp
by simp
also have $\ldots=x[\uparrow l \otimes(\bigoplus i \leftarrow[0 . .<k] . f(l+i) \otimes x[\urcorner i)$
also have $\ldots=x[\uparrow l \otimes(\bigoplus i \leftarrow[0 . .<k] . f(l+i) \otimes x[\urcorner i)$
apply (intro monoid-sum-list-in-left m-closed nat-pow-closed)
apply (intro monoid-sum-list-in-left m-closed nat-pow-closed)
using assms by simp-all
using assms by simp-all
finally show ?thesis .
finally show ?thesis .
qed
qed
assumes $l+k=n$
assumes $l+k=n$
assumes $\bigwedge i . i<n \Longrightarrow f i \in$ carrier R
assumes $\bigwedge i . i<n \Longrightarrow f i \in$ carrier R
assumes $x \in$ carrier R
assumes $x \in$ carrier R
shows $(\bigoplus i \leftarrow[0 . .<n] . f i \otimes x[\urcorner(i * c))=$
shows $(\bigoplus i \leftarrow[0 . .<n] . f i \otimes x[\urcorner(i * c))=$
$(\bigoplus i \leftarrow[0 . .<l] . f i \otimes x[\uparrow(i * c)) \oplus$
$(\bigoplus i \leftarrow[0 . .<l] . f i \otimes x[\uparrow(i * c)) \oplus$
$x[\urcorner](l * c) \otimes(\bigoplus i \leftarrow[0 . .<k] . f(l+i) \otimes x[\urcorner(i * c))$
$x[\urcorner](l * c) \otimes(\bigoplus i \leftarrow[0 . .<k] . f(l+i) \otimes x[\urcorner(i * c))$
proof -
proof -
have $(\bigoplus i \leftarrow[0 . .<n] . f i \otimes x[\uparrow(i * c))=(\bigoplus i \leftarrow[0 . .<n] . f i \otimes(x[\urcorner c)[\urcorner$

```
    have \((\bigoplus i \leftarrow[0 . .<n] . f i \otimes x[\uparrow(i * c))=(\bigoplus i \leftarrow[0 . .<n] . f i \otimes(x[ \urcorner c)[ \urcorner\)
```

i)
by (intro monoid-pow-sum-nat-pow-pow $\langle x \in$ carrier $R\rangle$)
also have $\ldots=(\oplus i \leftarrow[0 . .<l] . f i \otimes(x[\} c)[\} i) \oplus$

$$
(x[\} c)[\} l \otimes(\oplus i \leftarrow[0 . .<k] \cdot f(l+i) \otimes(x[\} c)[\} i)
$$

by (intro monoid-pow-sum-list-split assms nat-pow-closed) argo
also have $\ldots=(\oplus i \leftarrow[0 . .<l]$. $f i \otimes x[\}(i * c)) \oplus$
$x[\rceil(c * l) \otimes(\oplus i \leftarrow[0 . .<k] \cdot f(l+i) \otimes x[\upharpoonleft(i * c))$
by (intro-cong [cong-tag-2 (\oplus), cong-tag-2 (\otimes)] more: monoid-pow-sum-nat-pow-pow[symmetric] nat-pow-pow $\langle x \in$ carrier $R\rangle$)
also have $\ldots=(\oplus i \leftarrow[0 . .<l]$. f $i \otimes x[\upharpoonleft(i * c)) \oplus$

$$
x[\rceil(l * c) \otimes(\oplus i \leftarrow[0 . .<k] \cdot f(l+i) \otimes x[\}(i * c))
$$

by (intro-cong [cong-tag-2 (\oplus), cong-tag-2 (\otimes), cong-tag-2 ([$]$)] more: refl mult.commute)
finally show? thesis .
qed

3.2.1 Algebraic operations

addition
lemma monoid-pow-sum-add:
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i \in$ carrier R
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow g i \in$ carrier R
assumes $x \in$ carrier R
shows $(\oplus i \leftarrow x s . f i \otimes x[\rceil(i:: n a t)) \oplus(\oplus i \leftarrow x s . g i \otimes x[\rceil i)=(\oplus i \leftarrow$ $x s .(f i \oplus g i) \otimes x[\rceil i)$
proof -
have $(\oplus i \leftarrow x s . f i \otimes x[\rceil i) \oplus(\oplus i \leftarrow x s . g i \otimes x[\rceil i)=$
$(\oplus i \leftarrow x s .(f i \otimes x[\} i) \oplus(g i \otimes x[\rceil i))$
apply (intro monoid-sum-list-add-in m-closed nat-pow-closed assms) by as-

sumption+

also have..$=(\oplus i \leftarrow x s .(f i \oplus g i) \otimes x[\} i)$
apply (intro monoid-sum-list-cong l-distr[symmetric] nat-pow-closed assms) by assumption+
finally show? thesis.
qed
lemma monoid-pow-sum-add':
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i \in$ carrier R
assumes $\wedge i . i \in$ set $x s \Longrightarrow g i \in$ carrier R
assumes $x \in$ carrier R
shows $(\oplus i \leftarrow x s$. $f i \otimes x[\upharpoonleft((i:: n a t) * c)) \oplus(\oplus i \leftarrow x s . g i \otimes x[\upharpoonleft(i * c))=$ $(\oplus i \leftarrow x s .(f i \oplus g i) \otimes x[\rceil(i * c))$
proof -
have $(\oplus i \leftarrow x s . f i \otimes x[\rceil((i:: n a t) * c)) \oplus(\oplus i \leftarrow x s . g i \otimes x[\rceil(i * c))=$ $(\oplus i \leftarrow x s .(f i \otimes(x[\rceil c)[\rceil i)) \oplus(\oplus i \leftarrow x s .(g i \otimes(x[\rceil c)[\rceil i))$
by (intro-cong [cong-tag-2 $(\oplus)]$ more: monoid-pow-sum-nat-pow-pow $\langle x \in$ carrier R)
also have $\ldots=(\oplus i \leftarrow x s .(f i \oplus g i) \otimes(x[\} c)[\} i)$
apply (intro monoid-pow-sum-add nat-pow-closed) using assms by simp-all

```
    also have ... =(\bigoplusi\leftarrowxs. (fi\oplusgi)\otimesx[`](i*c))
    by (intro monoid-pow-sum-nat-pow-pow[symmetric]}\langlex\in\operatorname{carrier R>)
    finally show ?thesis .
qed
```

unary minus
lemma monoid-pow-sum-minus:
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i \in$ carrier R
assumes $x \in$ carrier R
shows $\ominus(\bigoplus i \leftarrow x s . f i \otimes x[\urcorner(i:: n a t))=(\bigoplus i \leftarrow x s .(\ominus f i) \otimes x[\urcorner i)$
proof -
have $\ominus(\bigoplus i \leftarrow x s . f i \otimes x[\urcorner(i:: n a t))=(\bigoplus i \leftarrow x s . \ominus(f i \otimes x[\}(i:: n a t)))$
apply (intro monoid-sum-list-minus-in m-closed nat-pow-closed assms) by as-
sumption
also have $\ldots=(\bigoplus i \leftarrow x s .(\ominus f i) \otimes x[\rceil i)$
apply (intro monoid-sum-list-cong l-minus[symmetric] nat-pow-closed assms)
by assumption
finally show ?thesis.
qed
minus
lemma monoid-pow-sum-diff:
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i \in$ carrier R
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow g i \in$ carrier R
assumes $x \in$ carrier R
shows $(\bigoplus i \leftarrow x s . f i \otimes x[\uparrow(i:: n a t)) \ominus(\bigoplus i \leftarrow x s . g i \otimes x[\urcorner(i:: n a t))=$ $(\bigoplus i \leftarrow x s .(f i \ominus g i) \otimes x[\urcorner i)$
using assms
by (simp add: minus-eq monoid-pow-sum-add[symmetric] monoid-pow-sum-minus)
lemma monoid-pow-sum-diff ':
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow f i \in$ carrier R
assumes $\bigwedge i . i \in$ set $x s \Longrightarrow g i \in$ carrier R
assumes $x \in$ carrier R
shows $(\bigoplus i \leftarrow x s . f i \otimes x[\urcorner((i:: n a t) * c)) \ominus(\bigoplus i \leftarrow x s . g i \otimes x[\urcorner(i * c))=$ $(\bigoplus i \leftarrow x s .(f i \ominus g i) \otimes x[\urcorner(i * c))$
proof -
have $(\bigoplus i \leftarrow x s . f i \otimes x[\urcorner((i:: n a t) * c)) \ominus(\bigoplus i \leftarrow x s . g i \otimes x[\urcorner(i * c))=$ $(\bigoplus i \leftarrow x s . f i \otimes(x[\urcorner c)[\urcorner i) \ominus(\bigoplus i \leftarrow x s . g i \otimes(x[\uparrow c)[\uparrow i)$
by (intro-cong [cong-tag-2 ($\lambda i j . i \ominus j)]$ more: monoid-pow-sum-nat-pow-pow
$\langle x \in$ carrier $R\rangle$)
also have $\ldots=(\bigoplus i \leftarrow x s .(f i \ominus g i) \otimes(x[\urcorner c)[\urcorner] i)$
apply (intro monoid-pow-sum-diff nat-pow-closed) using assms by simp-all
also have $\ldots=(\bigoplus i \leftarrow x s .(f i \ominus g i) \otimes x[\rceil(i * c))$
by (intro monoid-pow-sum-nat-pow-pow[symmetric] $\langle x \in$ carrier $R\rangle$)
finally show ?thesis.
qed
end

```
3.3 monoid-sum-list in the context residues
context residues
begin
lemma monoid-sum-list-eq-sum-list:
(\bigoplusRR}i\leftarrowxs.fi)=(\sumi\leftarrowxs.fi)\operatorname{mod}
    apply (induction xs)
    subgoal by (simp add: zero-cong)
    subgoal for a xs by (simp add: mod-add-right-eq res-add-eq)
    done
lemma monoid-sum-list-mod-in:
(}\mp@subsup{\bigoplus}{R}{}i\leftarrowxs.fi)=(\mp@subsup{\bigoplus}{R}{}i\leftarrowxs.(fi)\operatorname{mod}m
    by (induction xs) (simp-all add: mod-add-left-eq res-add-eq)
lemma monoid-sum-list-eq-sum-list':
(\bigoplus R
    using monoid-sum-list-eq-sum-list monoid-sum-list-mod-in by metis
end
end
```


4 The estimation tactic

```
theory Estimation-Method
    imports Main HOL-Eisbach.Eisbach-Tools
begin
```

A few useful lemmas for working with inequalities.
lemma if-prop-cong:
assumes $C=C^{\prime}$
assumes $C \Longrightarrow P A A^{\prime}$
assumes $\neg C \Longrightarrow P B B^{\prime}$
shows P (if C then A else B) (if C^{\prime} then A^{\prime} else $\left.B^{\prime}\right)$
using assms by simp
lemma if-leqI:
assumes $C \Longrightarrow A \leq t$
assumes $\neg C \Longrightarrow B \leq t$
shows (if C then A else B) $\leq t$
using assms by simp
lemma if-le-max:
(if C then ($t 1$:: ' a :: linorder) else t2) $\leq \max$ t1 t2
by simp
Prove some inequality by showing a chain of inequalities via an intermediate
term．
method itrans for step ：：＇a ：：order $=$
（match conclusion in $s \leq t$ for $s t::{ }^{\prime} a \Rightarrow\langle$ rule order．trans $[$ of s step $t]\rangle$ ）
A collection of monotonicity intro rules that will be automatically used by estimation．

```
lemmas mono-intros \(=\)
    order.refl add-mono diff-mono mult-le-mono max.mono min.mono power-increasing
power-mono
    iffD2 [OF Suc-le-mono] if-prop-cong[where \(P=(\leq)]\) Nat.le0 one-le-numeral
```

Try to apply a given estimation rule estimate in a forward-manner.
method estimation uses estimate $=$
(match estimate in $\bigwedge a . f a \leq h a$ (multi) for $f h \Rightarrow$ く
match conclusion in $g f \leq t$ for g and $t::$ nat \Rightarrow
〈rule order.trans $[$ of $g f g h t$], intro mono-intros refl estimate〉〉
$\mid x \leq y$ for $x y \Rightarrow$
match conclusion in $g x \leq t$ for g and $t::$ nat \Rightarrow
〈rule order.trans[of $g x g y t$, intro mono-intros refl estimate〉〉)
end
theory Time-Monad-Extended
imports Root-Balanced-Tree.Time-Monad
begin

5 Some Automation for Root－Balanced－Tree．Time－Monad

A bit of automation for statements involving the time component．

```
lemma time-bind-tm: time \((s \gg f)=\) time \(s+\) time \((f(\) val \(s))\)
    unfolding bind-tm-def
    by (simp split: tm.splits)
lemma time-tick: time (tick s) \(=1\)
    by (simp add: tick-def)
```

lemmas tm-time-simps $[$ simp $]=$ time-bind-tm time-return time-tick if-distrib $[$ of
time]
lemma bind-tm-cong[fundef-cong]:
assumes $f 1=f 2$
assumes $g 1($ val f1 $)=g 2($ val f2 $)$
shows $f 1 \gg g 1=f 2 \gg g 2$
using assms unfolding bind-tm-def
by (auto split: tm.splits)

Introduce val－simp as named theorem．The idea is to collect simplification rules for the Time－Monad．val component that can be unfolded on their own．
named-theorems val-simp
declare val-simps[val-simp]
end
theory Main-TM
imports Main Time-Monad-Extended Estimation-Method
begin

6 Running Time Formalization for some functions available in Main

6.1 Functions on bool

6.1. 1 Not

fun Not-tm :: bool \Rightarrow bool tm where
Not-tm True $=1$ return False
| Not-tm False $=1$ return True
lemma val-Not-tm[simp, val-simp]: val $($ Not-tm $x)=$ Not x by (cases x; simp)
lemma time-Not-tm[simp]: time (Not-tm $x)=1$
by (cases x; simp)

6.1.2 disj / conj

definition disj-tm where disj-tm $x y=1$ return $(x \vee y)$
definition conj-tm where conj-tm $x y=1$ return $(x \wedge y)$
lemma val-disj-tm[simp, val-simp]: val (disj-tm $x y)=(x \vee y)$ by (simp add: disj-tm-def)
lemma time-disj-tm[simp]: time ($\operatorname{disj-tm~} x$ y) $=1$ by (simp add: disj-tm-def)
lemma val-conj-tm[simp, val-simp]: val $(\operatorname{conj-tm~} x y)=(x \wedge y)$ by (simp add: conj-tm-def)
lemma time-conj-tm [simp]: time (conj-tm x y) $=1$ by (simp add: conj-tm-def)

6.1.3 equal

fun equal-bool-tm :: bool \Rightarrow bool \Rightarrow bool tm where equal-bool-tm True $p=1$ return p
| equal-bool-tm False $p=1$ Not-tm p
lemma val-equal-bool-tm[simp, val-simp]: val (equal-bool-tm $x y)=(x=y)$
by (cases x; simp)
lemma time-equal-bool-tm-le: time (equal-bool-tm x y) ≤ 2

```
by (cases x; simp)
```


6.2 Functions involving pairs

6.2.1 fst / snd

fun $f s t-t m::{ }^{\prime} a \times{ }^{\prime} b \Rightarrow{ }^{\prime} a$ tm where
fst-tm $(x, y)=1$ return x
fun snd-tm :: ' $a \times$ ' $b \Rightarrow{ }^{\prime} b t m$ where
$\operatorname{snd-tm}(x, y)=1$ return y
lemma val-fst-tm[simp, val-simp]: val $(f s t-t m p)=f s t p$
by (subst prod.collapse[symmetric], unfold fst-tm.simps, simp)
lemma time-fst-tm[simp]: time $(f s t-t m p)=1$
by (subst prod.collapse[symmetric], unfold fst-tm.simps, simp)
lemma val-snd-tm[simp, val-simp]: val (snd-tm p) $=$ snd p
by (subst prod.collapse[symmetric], unfold snd-tm.simps, simp)
lemma time-snd-tm[simp]: time (snd-tm p) =1
by (subst prod.collapse[symmetric], unfold snd-tm.simps, simp)

6.3 Functions on nat

6.3.1 (+)

fun plus-nat-tm :: nat \Rightarrow nat \Rightarrow nat tm where plus-nat-tm (Suc m) $n=1$ plus-nat-tm m (Suc n)
| plus-nat-tm $0 n=1$ return n
lemma val-plus-nat-tm[simp, val-simp]: val (plus-nat-tm mn) $n=m+n$
by (induction m n rule: plus-nat-tm.induct) simp-all
lemma time-plus-nat-tm[simp]: time (plus-nat-tm mn)=m+1
by (induction m n rule: plus-nat-tm.induct) simp-all

6.3.2 (*)

fun times-nat-tm :: nat \Rightarrow nat \Rightarrow nat tm where
times-nat-tm $0 n=1$ return 0
|times-nat-tm (Suc m) n=1 do \{
$r \leftarrow$ times-nat-tm $m n ;$
plus-nat-tm $n r$
\}
lemma val-times-nat-tm[simp]: val (times-nat-tm mn)=m*n
by (induction m n rule: times-nat-tm.induct) simp-all
lemma time-times-nat-tm[simp]: time (times-nat-tm mn) $=m *(n+2)+1$ by (induction m n rule: times-nat-tm.induct) simp-all

6.3.3 $\left.{ }^{\wedge}\right)$

fun power-nat-tm :: nat \Rightarrow nat \Rightarrow nat tm where power-nat-tm a $0=1$ return 1
| power-nat-tm a (Suc n) =1 do \{ $r \leftarrow$ power-nat-tm a n;
times-nat-tm a r
\}
lemma val-power-nat-tm[simp, val-simp]: val (power-nat-tm a n) $=a{ }^{\wedge} n$ by (induction a n rule: power-nat-tm.induct) simp-all
lemma time-power-nat-tm-aux0: time (power-nat-tm $0 n$) $=2 * n+1$ by (induction n) simp-all
lemma time-power-nat-tm-aux1: time (power-nat-tm $1 n$) $=5 * n+1$ by (induction n) simp-all
lemma time-power-nat-tm-aux2: assumes $m \geq 2$
shows time (power-nat-tm $m n) \leq(2 * n+m \wedge n) * m+2 * n+1$
proof (induction n)
case 0
then have time (power-nat-tm m 0) $=1$ by simp
then show? case by simp
next
case (Suc n)
have time (power-nat-tm m (Suc n)) \leq time (power-nat-tm mn) $+(m \wedge n+$ 2) $* m+2$
by simp
also have $\ldots \leq\left(2 * n+m^{\wedge} n\right) * m+2 * n+1+\left(m^{\wedge} n+2\right) * m+2$
using Suc by simp
also have $\ldots=\left(2 * n+m^{\wedge} n\right) * m+\left(m^{\wedge} n+2\right) * m+2 * S u c n+1$
by simp
also have $\ldots=(2 *$ Suc $n+2 * m \wedge n) * m+2 * S u c n+1$
using add-mult-distrib by simp
also have $\ldots \leq\left(2 *\right.$ Suc $n+m{ }^{\wedge}$ Suc $\left.n\right) * m+2 *$ Suc $n+1$
using assms by simp
finally show ?case .
qed
lemma time-power-nat-tm-le: time (power-nat-tm mn) $\leq 3 * m{ }^{\wedge}$ Suc $n+5 * n$ $+1$
proof -
consider $m=0|m=1| m \geq 2$ by linarith
then show ?thesis
proof cases
case 1
then show ?thesis using time-power-nat-tm-aux0 [of n] by simp
next

```
    case 2
    then show ?thesis using time-power-nat-tm-aux1[of n] by simp
    next
        case 3
        then have 2 ^ n sm` ^ n using power-mono by fast
        moreover have n<2 ^ n by simp
        ultimately have n-le-m-pow-n: n \leqm^^n by linarith
        have time (power-nat-tm m n)\leq (2*m^^n+m^^n)*m+2*n+1
        apply (estimation estimate: time-power-nat-tm-aux2[OF 3, of n])
        using n-le-m-pow-n by simp
    also have ... = 3*m^ Suc n+2*n+1 by simp
    finally show ?thesis by simp
    qed
qed
lemma time-power-nat-tm-2-le: time (power-nat-tm 2 n) \leq 12 * 2`n
proof -
    have time (power-nat-tm 2 n) \leq 3* 2 `Suc n + 5*n+1
    by (fact time-power-nat-tm-le)
    also have ... S 3*2^Suc n+5*2^n + 2^n
    apply (intro add-mono mult-le-mono order.refl)
    using less-exp[of n] by simp-all
    finally show ?thesis by simp
qed
```


6.3.4 (-)

fun minus-nat-tm :: nat \Rightarrow nat \Rightarrow nat tm where minus-nat-tm m $0=1$ return m
| minus-nat-tm $0 m=1$ return 0
| minus-nat-tm (Suc m) (Suc n) =1 minus-nat-tm m n
lemma val-minus-nat-tm[simp, val-simp]: val (minus-nat-tm mn) $n=m-n$
by (induction $m n$ rule: minus-nat-tm.induct) simp-all
lemma time-minus-nat-tm[simp]: time (minus-nat-tm mn)=min $m n+1$
by (induction m n rule: minus-nat-tm.induct) simp-all

6.3.5 $(<) /(\leq)$

fun less-eq-nat-tm :: nat \Rightarrow nat \Rightarrow bool tm and less-nat-tm $::$ nat \Rightarrow nat \Rightarrow bool $t m$ where
less-eq-nat-tm (Suc m) $n=1$ less-nat-tm $m n$
| less-eq-nat-tm $0 n=1$ return True
| less-nat-tm m (Suc n) $=1$ less-eq-nat-tm $m n$
| less-nat-tm m $0=1$ return False
lemma val-less-eq-nat-tm[simp, val-simp]: (val (less-eq-nat-tm $n m)=(n \leq m))$
and val-less-nat-tm[simp, val-simp]: (val (less-nat-tm $m n)=(m<n))$
by (induction m and n rule: less-eq-nat-tm-less-nat-tm.induct) auto
lemma time-less-eq-nat-tm-aux: time (less-eq-nat-tm $(m+k)(n+k))=2 * k$ + time (less-eq-nat-tm m) by (induction k) simp-all
lemma time-less-nat-tm-aux: time (less-nat-tm $(m+k)(n+k))=2 * k+$ time (less-nat-tm $m n$)
by (induction k) simp-all
lemma time-less-eq-nat-tm: time (less-eq-nat-tm $n m$) $=2 * \min n m+1+$ of-bool ($m<n$)
proof (cases $m<n$)
case True
then obtain k where $n=m+$ Suc k by (metis add-Suc-right less-natE)
then have time (less-eq-nat-tm $n m$) $=2 * m+2$
using time-less-eq-nat-tm-aux[of Suc $k m 0]$ by (simp add: add.commute)
then show? ?hesis using True by simp
next
case False
then obtain k where $m=n+k$ using nat-le-iff-add[of $n m$] by auto
then have time (less-eq-nat-tm $n m$) $=2 * n+1$
using time-less-eq-nat-tm-aux[of $0 n k$ by (simp add: add.commute)
then show?thesis using False by simp
qed
lemma time-less-nat-tm: time (less-nat-tm $m n$) $=2 * \min m n+1+$ of-bool ($m<n$)
proof (cases $m<n$)
case True
then obtain k where $n=m+S u c k$ by (metis add-Suc-right less-natE)
then have time (less-nat-tm mn) $2=2 * m+2$
using time-less-nat-tm-aux[of 0 m Suc k] by (simp add: add.commute)
then show? ?thesis using True by simp
next
case False
then obtain k where $m=n+k$ using nat-le-iff-add[of $n m$ by auto
then have time (less-nat-tm mn) $2 * 2 * 1$
using time-less-nat-tm-aux[of $k n 0]$ by (simp add: add.commute)
then show ?thesis using False by simp
qed
lemma time-less-eq-nat-tm-le: time (less-eq-nat-tm $n m$) $\leq 2 * \min n m+2$ by (simp add: time-less-eq-nat-tm)
lemma time-less-nat-tm-le: time (less-nat-tm $m n$) $\leq 2 * \min m n+2$
by (simp add: time-less-nat-tm)

6.3.6 (=)

fun equal-nat-tm :: nat \Rightarrow nat \Rightarrow bool tm where
equal-nat-tm $00=1$ return True
| equal-nat-tm (Suc $x) 0=1$ return False

```
| equal-nat-tm 0 (Suc y) =1 return False
```

| equal-nat-tm (Suc $x)($ Suc $y)=1$ equal-nat-tm $x y$
lemma val-equal-nat-tm[simp, val-simp]: val (equal-nat-tm $x y)=(x=y)$
by (induction x y rule: equal-nat-tm.induct) simp-all
lemma time-equal-nat-tm: time (equal-nat-tm $x y)=\min x y+1$
by (induction x y rule: equal-nat-tm.induct) simp-all

6.3.7 max

fun max-nat-tm :: nat \Rightarrow nat \Rightarrow nat $t m$ where

$$
\text { max-nat-tm } x y=1 \text { do }\{
$$

$$
b \leftarrow \text { less-eq-nat-tm } x y
$$

if b then return y else return x

\}

lemma val-max-nat-tm $[$ simp, val-simp $]$: val (max-nat-tm $x y)=\max x y$ by simp
lemma time-max-nat-tm: time $(\max -n a t-t m x y)=2 * \min x y+2+o f-b o o l(y$ $<x$)
by (simp add: time-less-eq-nat-tm)
lemma time-max-nat-tm-le: time (max-nat-tm $x y) \leq 2 * \min x y+3$
unfolding time-max-nat-tm by simp

6.3.8 (div) / (mod)

fun divmod-nat-tm :: nat \Rightarrow nat \Rightarrow (nat \times nat $)$ tm where
divmod-nat-tm $m n=1$ do \{ n0 \leftarrow equal-nat-tm $n 0$;
m-lt-n \leftarrow less-nat-tm $m n$; $b \leftarrow$ disj-tm n0 m-lt-n; if b then return $(0, m)$ else do \{ m-minus- $n \leftarrow$ minus-nat-tm $m n$; $(q, r) \leftarrow$ divmod-nat-tm m-minus-n n; return (Suc q, r)
\}
\}
declare divmod-nat-tm.simps[simp del]
lemma val-divmod-nat-tm[simp, val-simp]: val (divmod-nat-tm m n) $=$ Euclidean-Rings.divmod-nat $m n$ proof (induction m n rule: divmod-nat-tm.induct)
case ($1 \mathrm{~m} n$)
show ?case
proof (cases $n=0 \vee m<n$)
case True
then show ?thesis unfolding divmod-nat-tm.simps $[$ of $m n]$ by (simp add: Euclidean-Rings.divmod-nat-if)

next

case False

then have val (divmod-nat-tm $m n)=(\operatorname{let}(q, r)=$ val (divmod-nat-tm $(m-$ n) n) in (Suc q, r))
unfolding divmod-nat-tm.simps[of m n]
by (simp add: Let-def split: prod.splits)
also have $\ldots=($ let $(q, r)=$ Euclidean-Rings.divmod-nat $(m-n) n$ in (Suc q, r))
using 1 False by simp
also have $\ldots=$ Euclidean-Rings.divmod-nat $m n$
unfolding Euclidean-Rings.divmod-nat-if [of m n]
by (simp add: False split: prod.splits)
finally show? ?thesis .
qed
qed
lemma time-divmod-nat-tm-aux:
assumes $r<n$
assumes $n>0$
shows time (divmod-nat-tm $(n * k+r) n)=5 * k+3 * n * k+$ time
(divmod-nat-tm r n)
using assms
proof (induction k)
case 0
then show? case by simp
next
case (Suc k)
then show ?case
unfolding divmod-nat-tm.simps[of $n *(S u c k)+r n]$
by (simp add: time-equal-nat-tm time-less-nat-tm split: prod.splits)
qed
lemma time-divmod-nat-tm-le: time (divmod-nat-tm $m n$) $\leq 8 * m+2 * n+5$ proof (cases $n=0 \vee m<n$)
case True
have time (divmod-nat-tm ma) $=$ time (equal-nat-tm $n 0)+$ time (less-nat-tm $m n)+2$
unfolding divmod-nat-tm.simps[of $m n]$
by (simp add: True)
also have $\ldots \leq 2 * \min m n+5$
apply (subst time-equal-nat-tm)
apply (estimation estimate: time-less-nat-tm-le)
by simp
finally show ?thesis by simp
next
case False
define $k r$ where $k=m$ div $n r=m \bmod n$
then have $k r n$: $m=n * k+r$ by simp
from k - r-def have $r<n$ using False by simp
have time (divmod-nat-tm mn) $=5 * k+3 * n * k+$ time (divmod-nat-tm r n)
apply (subst krn, intro time-divmod-nat-tm-aux, intro $\langle r<n\rangle$)
using False by simp
also have time (divmod-nat-tm rn) n time (equal-nat-tm n 0) + time (less-nat-tm $r n)+2$
unfolding divmod-nat-tm.simps[of r n]
by (simp add: $\langle r<n\rangle$)
also have $\ldots \leq 2 * \min r n+5$
apply (subst time-equal-nat-tm)
apply (estimation estimate: time-less-nat-tm-le)
by simp
finally have time (divmod-nat-tm mn) $\leq 5 * k+3 * n * k+2 * n+5$
by simp
also have $\ldots \leq 5 * k+3 * m+2 * n+5$
using k - r-def by simp
also have $\ldots \leq 8 * m+2 * n+5$
using k - r-def by simp
finally show? ?thesis .
qed
definition divide-nat-tm :: nat \Rightarrow nat \Rightarrow nat $t m$ where
divide-nat-tm $m n=1$ divmod-nat-tm $m n \gg$ fst-tm
lemma val-divide-nat-tm[simp, val-simp]: val (divide-nat-tm $m n)=m$ div n by (simp add: divide-nat-tm-def Euclidean-Rings.divmod-nat-def)
lemma time-divide-nat-tm-le: time (divide-nat-tm $m n) \leq 8 * m+2 * n+7$ using time-divmod-nat-tm-le[of man by (simp add: divide-nat-tm-def)
definition mod-nat-tm :: nat \Rightarrow nat \Rightarrow nat $t m$ where
mod-nat-tm $m n=1$ divmod-nat-tm $m n \gg$ snd-tm
lemma val-mod-nat-tm $[$ simp, val-simp $]$: val $($ mod-nat-tm $m n)=m \bmod n$ by (simp add: mod-nat-tm-def Euclidean-Rings.divmod-nat-def)
lemma time-mod-nat-tm-le: time (mod-nat-tm $m n) \leq 8 * m+2 * n+7$ using time-divmod-nat-tm-le[of $m n]$ by (simp add: mod-nat-tm-def)
definition $d v d$-tm where $d v d-t m$ a $b=1$ do \{
b-mod- $a \leftarrow$ mod-nat-tm ba;
equal-nat-tm b-mod-a 0
\}

6.3.9 (dvd)

lemma val-dvd-tm[simp, val-simp]: val (dvd-tm ab) $=\left(\begin{array}{l}a \text { dvd } b)\end{array}\right.$
unfolding $d v d-t m$-def $d v d-e q-m o d-e q-0$ by simp
lemma time-dvd-tm-le: time (dvd-tm ab) $\leq 8 * b+2 * a+9$ unfolding dvd-tm-def tm-time-simps val-mod-nat-tm time-equal-nat-tm using time-mod-nat-tm-le[of b a] by simp

6.3.10 even / odd

definition even-tm where even-tm $a=d v d-t m 2 a$
lemma val-even-tm $[$ simp, val-simp $]$: val $($ even-tm $a)=$ even a unfolding even-tm-def by simp
lemma time-even-tm-le: time (even-tm $a) \leq 8 * a+13$ unfolding even-tm-def tm-time-simps using time-dvd-tm-le[of 2 a] by simp
definition odd-tm where odd-tm $a=d v d-t m 2 a \gg$ Not-tm
lemma val-odd-tm[simp, val-simp]: val (odd-tm a) = odd a unfolding odd-tm-def by simp
lemma time-odd-tm-le: time (odd-tma) $\leq 8 * a+14$
unfolding odd-tm-def tm-time-simps
using time-dvd-tm-le[of 2 a] by simp

6.4 List functions

6.4.1 take
fun take-tm :: nat \Rightarrow 'a list \Rightarrow 'a list tm where
take-tm n [] $=1$ return []
\mid take-tm $n(x \#$ xs $)=1$ (case n of $0 \Rightarrow$ return [] | Suc $m \Rightarrow$ do \{
$r \leftarrow$ take-tm m xs;
return $(x \# r)$
\})
lemma val-take-tm[simp, val-simp]: val (take-tm $n x s)=$ take n xs by (induction n xs rule: take-tm.induct) (simp-all split: nat.splits)
lemma time-take-tm: time (take-tm $n x s)=\min n(l e n g t h ~ x s)+1$ by (induction n xs rule: take-tm.induct) (simp-all split: nat.splits)
lemma time-take-tm-le: time (take-tm $n x s) \leq n+1$
by (simp add: time-take-tm)

6.4.2 drop

fun drop-tm :: nat $\Rightarrow{ }^{\prime}$ a list $\Rightarrow{ }^{\prime}$ 'a list tm where
drop-tm n [] $=1$ return []
\mid drop-tm $n(x \# x s)=1$ (case n of $0 \Rightarrow \operatorname{return}(x \# x s) \mid$ Suc $m \Rightarrow$ do \{
$r \leftarrow d r o p-t m m x s ;$
return r
\})
lemma val-drop-tm $[$ simp, val-simp $]$: val (drop-tm n xs $)=$ drop n xs by (induction n xs rule: drop-tm.induct) (simp-all split: nat.splits)
lemma time-drop-tm: time $($ drop-tm $n x s)=\min n($ length $x s)+1$ by (induction n xs rule: drop-tm.induct) (simp-all split: nat.splits)
lemma time-drop-tm-le: time (drop-tm n xs $) \leq n+1$
by (simp add: time-drop-tm)

6.4.3 (@)

fun append-tm :: 'a list \Rightarrow ' a list \Rightarrow 'a list tm where
append-tm [] ys $=1$ return ys
\mid append-tm $(x \# x s)$ ys $=1$ do \{
$r \leftarrow$ append-tm xs ys;
return $(x \# r)$
\}
lemma val-append-tm[simp, val-simp]: val (append-tm xs ys) $=$ append xs ys by (induction xs ys rule: append-tm.induct) simp-all
lemma time-append-tm[simp]: time (append-tm xs ys) $=$ length $x s+1$ by (induction xs ys rule: append-tm.induct) simp-all

6.4.4 fold

fun fold-tm where

fold-tm $f[] s=1$ return s
\mid fold-tm $f(x \# x s) s=1$ do $\{$
$r \leftarrow f x s ;$
fold-tm f xs r
\}
lemma val-fold-tm $[$ simp, val-simp $]$: val $($ fold-tm $f x s s)=$ fold $(\lambda x y$ val $(f x y))$ xs s
by (induction xs s rule: fold-tm.induct; simp)
lemma time-fold-tm-Cons: time $($ fold-tm $(\lambda x y . \operatorname{return}(x \# y))$ xs $s)=$ length $x s$ $+1$
by (induction xs arbitrary: s; simp)

6.4.5 rev

definition rev-tm where rev-tm $x s=1$ fold-tm $(\lambda x y$. return $(x \# y)) x s[]$
lemma val-rev-tm $[$ simp, val-simp $]$: val (rev-tm xs) $=$ rev xs
by (induction xs; simp add: rev-tm-def fold-Cons-rev)
lemma time-rev-tm-le[simp]: time (rev-tm xs) = length $x s+2$ unfolding rev-tm-def using time-fold-tm-Cons by auto

6.4.6 replicate

fun replicate-tm :: nat $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ list tm where
replicate-tm $0 x=1$ return []
| replicate-tm (Suc n) $x=1$ do \{
$r \leftarrow$ replicate-tm $n x$;
return $(x \# r)$
\}
lemma val-replicate-tm[simp, val-simp]: val (replicate-tm $n x)=$ replicate $n x$ by (induction n x rule: replicate-tm.induct) simp-all
lemma time-replicate-tm: time (replicate-tm $n x)=n+1$
by (induction n x rule: replicate-tm.induct) simp-all

6.4.7 length

fun gen-length-tm :: nat $\Rightarrow{ }^{\prime}$ a list \Rightarrow nat tm where gen-length-tm $n[]=1$ return n
| gen-length-tm $n(x \#$ xs $)=1$ gen-length-tm (Suc n) xs
lemma val-gen-length-tm $[$ simp, val-simp $]$: val (gen-length-tm $n x s)=$ List.gen-length n xs
by (induction n xs rule: gen-length-tm.induct) (simp-all add: List.gen-length-def)
lemma time-gen-length-tm[simp]: time (gen-length-tm n xs) $=$ length $x s+1$
by (induction n xs rule: gen-length-tm.induct) simp-all
definition length-tm $::$ 'a list \Rightarrow nat $t m$ where
length-tm xs = gen-length-tm 0 xs
lemma val-length-tm[simp, val-simp]: val (length-tm xs) = length xs by (simp add: length-tm-def length-code)
lemma time-length-tm[simp]: time (length-tm xs) $=$ length $x s+1$
by (simp add: length-tm-def)

6.4.8 List.null

fun null-tm :: 'a list \Rightarrow bool tm where

```
null-tm [] =1 return True
| null-tm (x # xs) =1 return False
lemma val-null-tm[simp, val-simp]: val (null-tm xs) = List.null xs
    by (cases xs; simp add: List.null-def)
lemma time-null-tm[simp]: time (null-tm xs) = 1
    by (cases xs; simp)
```


6.4.9 butlast

```
fun butlast-tm :: 'a list \(\Rightarrow\) 'a list tm where
```

fun butlast-tm :: 'a list \Rightarrow 'a list tm where
butlast-tm [] =1 return []
| butlast-tm (x \# xs) =1 do {
b}\leftarrownull-tm xs
if b then return [] else do {
\leftarrow\leftarrow butlast-tm xs;
return (x \# r)
}
}

```
lemma val-butlast-tm[simp, val-simp]: val (butlast-tm xs) \(=\) butlast \(x s\) by (induction xs rule: butlast-tm.induct) (simp-all add: List.null-def)
lemma time-butlast-tm: time (butlast-tm xs) \(=2 *(\) length \(x s-1)+1+\) of-bool (length \(x s \geq 1\) )
by (induction xs rule: butlast-tm.induct) (auto simp: List.null-def not-less-eq-eq)
lemma time-butlast-tm-le: time (butlast-tm xs) \(\leq 2 *\) length \(x s+1\)
unfolding time-butlast-tm by (cases xs; simp)

\subsection*{6.4.10 map}
fun map-tm :: ('a \(\Rightarrow\) ' \(b \mathrm{tm}) \Rightarrow{ }^{\prime}\) 'a list \(\Rightarrow\) 'b list tm where
\(\operatorname{map-tm} f[]=1\) return []
\(\mid \operatorname{map}-t m f(x \# x s)=1\) do \(\{\)
\(r \leftarrow f x ;\)
\(r s \leftarrow \operatorname{map-tm} f x s\);
return ( \(r\) \# rs)
\}
lemma val-map-tm[simp, val-simp]: val (map-tm \(f x s)=\operatorname{map}(\lambda x\).val \((f x)) x s\) by (induction \(f\) xs rule: map-tm.induct) simp-all
lemma time-map-tm: time \((\) map-tm \(f x s)=\left(\sum i \leftarrow x s\right.\). time \(\left.(f i)\right)+\) length \(x s+\) 1
by (induction \(f\) xs rule: map-tm.induct) (simp-all)
lemma time-map-tm-constant:
assumes \(\bigwedge i . i \in\) set \(x s \Longrightarrow\) time \((f i)=c\)
```

 shows time (map-tm f xs) = (c+1) * length xs + 1
 proof -
have time (map-tm fxs)=(\sumi\leftarrowxs.time (fi)) + length xs + 1
by (simp add: time-map-tm)
also have ... = (\sumi\leftarrowxs.c) + length xs + 1
using assms iffD2[OF map-eq-conv, of xs] by metis
also have ... = c* length xs + length xs + 1
using sum-list-triv[of c xs] by simp
finally show?thesis by simp
qed
lemma time-map-tm-bounded:
assumes \bigwedgei. i set xs \Longrightarrow time (fi)\leqc
shows time (map-tm fxs)\leq(c+1)* length xs +1
proof -
have time (map-tm fxs)=(\sumi\leftarrowxs. time (fi)) + length xs + 1
by (simp add: time-map-tm)
also have ... \leq(\sumi\leftarrowxs.c) + length xs + 1
by (intro add-mono order.refl sum-list-mono assms) argo
also have ... = c* length xs + length xs + 1
using sum-list-triv[of c xs] by simp
finally show ?thesis by simp
qed

```

\subsection*{6.4.11 foldl}
fun foldl-tm :: (' \(\left.a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} a \mathrm{tm}\right) \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} b\) list \(\Rightarrow^{\prime} a \mathrm{tm}\) where
foldl-tm fa[]=1 return a
| foldl-tm fa(x\#xs)=1 do \{
    \(r \leftarrow f a x ;\)
    foldl-tm frxs
    \}
lemma val-foldl-tm \([\) simp, val-simp]: val \((\) foldl-tm \(f a x s)=\) foldl \((\lambda x y . v a l(f x y))\) a xs by (induction \(f\) a xs rule: foldl-tm.induct; simp)

\subsection*{6.4.12 concat}
fun concat-tm where
concat-tm [] \(=1\) return []
\(\mid\) concat-tm \((x \# x s)=1\) do \(\{\)
    \(r \leftarrow\) concat-tm xs;
    append-tm \(x\) r
    \}
lemma val-concat-tm \([\) simp, val-simp]: val (concat-tm xs) \(=\) concat \(x s\) by (induction \(x s\); simp)
lemma time-concat-tm[simp]: time \((\) concat-tm \(x s)=1+2 *\) length \(x s+\) length (concat xs)
by (induction \(x s\); simp)

\subsection*{6.4.13 (!)}
fun \(n t h-t m\) where nth-tm ( \(x \#\) xs) \(0=1\) return \(x\)
\(\mid n t h-t m(x \# x s)(S u c i)=1\) nth-tm xs \(i\)
| nth-tm [] - = 1 undefined
lemma val-nth-tm[simp, val-simp]:
assumes \(i<\) length xs
shows val (nth-tm xs \(i\) ) \(=x s!i\)
using assms
proof (induction \(i\) arbitrary: \(x s\) )
case 0
then show ?case using length-greater-0-conv[of xs] neq-Nil-conv[of xs] by auto next
case (Suc i)
then obtain \(x x^{\prime}{ }^{\prime}\) where \(x s r\) : \(x s=x \# x s^{\prime}\) by (meson Suc-lessE length-Suc-conv)
then have \(i<\) length \(x s^{\prime}\) using Suc.prems by simp
from Suc.IH[OF this] show ?case unfolding ast by simp
qed
lemma time-nth-tm[simp]:
assumes \(i<\) length xs
shows time (nth-tm xs \(i)=i+1\)
using assms
proof (induction \(i\) arbitrary: xs)
case 0
then show ?case using length-greater-0-conv[of xs] neq-Nil-conv[of xs] by auto

\section*{next}
case (Suc i)
then obtain \(x x^{\prime}{ }^{\prime}\) where \(x s r\) : \(x s=x \# x s^{\prime}\) by (meson Suc-lessE length-Suc-conv)
then have \(i<\) length \(x s^{\prime}\) using Suc.prems by simp
from Suc.IH[OF this] show ?case unfolding xsr by simp
qed

\subsection*{6.4.14 zip}
fun zip-tm :: 'a list \(\Rightarrow\) 'b list \(\Rightarrow\left({ }^{\prime} a \times ' b\right)\) list tm where
zip-tm xs [] \(=1\) return []
| zip-tm [] ys =1 return []
\(\mid z i p-t m(x \# x s)(y \# y s)=1\) do \(\{r s \leftarrow z i p-t m x s\) ys; return \(((x, y) \# r s)\}\)
lemma val-zip-tm[simp, val-simp]: val (zip-tm xs ys) \(=\) zip xs ys
by (induction xs ys rule: zip-tm.induct; simp)
lemma time-zip-tm \([\) simp \(]\) : time \((\) zip-tm xs ys \()=\min (\) length \(x s)(\) length ys \()+1\)
```

by (induction xs ys rule:zip-tm.induct; simp)

```

\subsection*{6.4.15 map2}
```

definition map2-tm where
map2-tm f xs ys=1 do {
xys}\leftarrowzip-tm xs ys;
map-tm(}\lambda(x,y).fxy) xy
}
lemma val-map2-tm[simp,val-simp]: val (map2-tm f xs ys) = map2 (}\lambdaxy.val (
x y)) xs ys
unfolding map2-tm-def by (simp split: prod.splits)
lemma time-map2-tm-bounded:
assumes length xs = length ys
assumes \xy. x\in set xs \Longrightarrowy\in set ys \Longrightarrow time (fxy)\leqc
shows time (map2-tm fxs ys) \leq (c+2)* length xs + 3
proof -
have time (map2-tm f xs ys) = length xs + 2 + time (map-tm (}\lambda(x,y).fxy
(zip xs ys))
unfolding map2-tm-def by (simp add: assms)
also have ... \leqlength xs + 2 + ((c+1) * length (zip xs ys) + 1)
apply (intro add-mono order.refl time-map-tm-bounded)
using assms by (auto split: prod.splits elim: in-set-zipE)
also have ... = (c+2)* length xs + 3
using assms by simp
finally show ?thesis.
qed

```
6.4.16 upt
function upt-tm where
upt-tm \(i j=1\) do \{
    \(b \leftarrow\) less-nat-tm \(i j\);
    (if b then do \{
        \(r s \leftarrow u p t-t m(S u c i) j\);
        return ( \(i\) \# rs)
    \} else return [] )
\}
    by pat-completeness auto
termination by (relation Wellfounded.measure \((\lambda(i, j) . j-i))\) simp-all
declare upt-tm.simps[simp del]
lemma val-upt-tm[simp, val-simp]: val \((u p t-t m i j)=[i . .<j]\)
    apply (induction \(i j\) rule: upt-tm.induct)
    subgoal for \(i j\)
        by (cases \(i<j\); simp add: upt-tm.simps[of \(i j]\) upt-conv-Cons)
    done
lemma time-upt-tm-le: time \((\) upt-tm \(i j) \leq(j-i) *(2 * j+3)+2 * j+2\)
```

proof (induction ij rule: upt-tm.induct)
case ($1 i j$)
then show ?case
proof (cases $i<j$)
case True
then have time $($ upt-tm $i j)=(2 * i+3)+$ time $(u p t-t m(S u c i) j)$
unfolding upt-tm.simps[of ij] tm-time-simps by (simp add: time-less-nat-tm)
also have $\ldots \leq(2 * j+3)+((j-\operatorname{Suc} i) *(2 * j+3)+2 * j+2)$
apply (intro add-mono mult-le-mono order.refl)
subgoal using True by simp
subgoal using 1 True by simp
done
also have $\ldots=(j-\operatorname{Suc} i+1) *(2 * j+3)+2 * j+2$
by simp
also have $j-$ Suc $i+1=(j-i)$
using True by simp
finally show? ?thesis .
next
case False
then show ?thesis by (simp add: upt-tm.simps[of ij] time-less-nat-tm)
qed
qed
lemma time-upt-tm-le': time (upt-tm $i j) \leq 2 * j * j+5 * j+2$
apply (intro order.trans[OF time-upt-tm-le[of i j]])
apply (estimation estimate: diff-le-self)
by (simp add: add-mult-distrib2)

```

\subsection*{6.5 Syntactic sugar}
consts equal-tm :: ' \(a \Rightarrow\) ' \(a \Rightarrow\) bool tm adhoc-overloading equal-tm equal-nat-tm adhoc-overloading equal-tm equal-bool-tm
consts plus-tm :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) tm
adhoc-overloading plus-tm plus-nat-tm
consts times-tm \(::{ }^{\prime} a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a\) tm adhoc-overloading times-tm times-nat-tm
consts power-tm :: ' \(a \Rightarrow\) nat \(\Rightarrow{ }^{\prime} a \mathrm{tm}\) adhoc-overloading power-tm power-nat-tm
consts minus-tm :: ' \(a \Rightarrow\) ' \(a \Rightarrow\) ' \(a\) tm adhoc-overloading minus-tm minus-nat-tm
consts less-tm :: ' \(a \Rightarrow\) ' \(a \Rightarrow\) bool tm
adhoc-overloading less-tm less-nat-tm
consts less-eq-tm :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow\) bool tm adhoc-overloading less-eq-tm less-eq-nat-tm
consts divide-tm :: ' \(a \Rightarrow\) ' \(a \Rightarrow\) ' \(a\) tm adhoc-overloading divide-tm divide-nat-tm
consts mod-tm :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\) tm adhoc-overloading mod-tm mod-nat-tm
bundle main-tm-syntax
begin
notation equal-tm (infixl \(={ }_{t} 51\) )
notation Not-tm ( \(\left.\neg_{t}-[40] 40\right)\)
notation conj-tm (infixr \(\left.\wedge_{t} 35\right)\)
notation disj-tm (infixr \(\vee_{t}\) 30)
notation append-tm (infixr @ \({ }_{t} 65\) )
notation plus-tm (infixl \(+_{t} 65\) )
notation times-tm (infixl \(*_{t} 70\) )
notation power-tm (infixr \(\widehat{t}_{t} 80\) )
notation minus-tm (infixl \(-_{t}\) 65)
notation less-tm (infix \(<_{t} 50\) )
notation less-eq-tm (infix \(\leq_{t} 50\) )
notation mod-tm (infixl mod \(_{t} 70\) )
notation divide-tm (infixl divt 70)
notation \(d v d-t m\) (infix \(d v d_{t} 50\) )
end
bundle no-main-tm-syntax
begin
no-notation equal-tm \(\left(\right.\) infixl \(\left.={ }_{t} 51\right)\)
no-notation Not-tm ( \(\neg_{t}-[40] 40\) )
no-notation conj-tm (infixr \(\wedge_{t} 35\) )
no-notation disj-tm (infixr \(\vee_{t} 30\) )
no-notation append-tm (infixr @ \({ }_{t} 65\) )
no-notation plus-tm (infixl \(+_{t} 65\) )
no-notation times-tm (infixl \(*_{t} 70\) )
no-notation power-tm (infixr \(\widehat{t}_{t} 80\) )
no-notation minus-tm (infixl \(-_{t} 65\) )
no-notation less-tm (infix \(<_{t} 50\) )
no-notation less-eq-tm (infix \(\leq_{t} 50\) )
no-notation mod-tm (infixl mod \(_{t} 70\) )
no-notation divide-tm (infixl div \(_{t} 70\) )
no-notation \(d v d\)-tm (infix \(\left.d v d_{t} 50\right)\)
end
unbundle main-tm-syntax
end

\section*{7 Representations}

\subsection*{7.1 Abstract Representations}

\author{
theory Abstract-Representations imports Main \\ begin
}

Idea: some type ' \(a\) is represented non-uniquely by some type ' \(b\). The function \(f\) produces a unique representant.
locale abstract-representation \(=\)
fixes from-type :: ' \(a \Rightarrow\) 'b
fixes to-type :: ' \(b \Rightarrow{ }^{\prime} a\)
fixes \(f:: ' b \Rightarrow\) ' \(b\)
assumes to-from: to-type \(\circ\) from-type \(=i d\) assumes from-to: from-type \(\circ\) to-type \(=f\)
begin
lemma to-from-elem \([\) simp \(]\) : to-type (from-type \(x)=x\)
using to-from by (metis comp-apply id-apply)
lemma from-to-elem: from-type (to-type \(x\) ) \(=f x\)
using from-to by (metis comp-apply)
lemma \(f\)-idem: \(f \circ f=f\)
proof -
have \(f \circ f=\) from-type \(\circ\) to-type \(\circ\) from-type \(\circ\) to-type using from-to by fastforce
also have \(\ldots=\) from-type \(\circ\) to-type using to-from by (simp add: rewriteR-comp-comp)
finally show ?thesis using from-to by simp
qed
corollary \(f\)-idem-elem \([\) simp \(]: f(f x)=f x\)
using \(f\)-idem by (metis comp-apply)
lemma f-from: \(f \circ\) from-type \(=\) from-type
proof -
have \(f \circ\) from-type \(=\) from-type \(\circ\) to-type \(\circ\) from-type using from-to by simp
also have \(\ldots=\) from-type
using to-from by (simp add: rewriteR-comp-comp)
finally show ?thesis
qed
corollary \(f\)-from-elem \([\) simp \(]: f(\) from-type \(x)=\) from-type \(x\)
using \(f\)-from by (metis comp-apply)
lemma to-f: to-type \(\circ f=\) to-type
proof -
have to-type \(\circ f=\) to-type \(\circ\) from-type \(\circ\) to-type
using from-to by fastforce
also have \(\ldots=\) to-type using to-from by simp finally show ?thesis.
qed
```

corollary to-f-elem[simp]: to-type (f x) = to-type x

```
    using to-f by (metis comp-apply)
lemma \(f\)-fixed-point-iff: \(f x=x \longleftrightarrow(\exists y . x=\) from-type \(y)\)
proof
    assume \(f x=x\)
    then show \(\exists y . x=\) from-type \(y\) using from-to-elem by metis
next
    assume \(\exists y\). \(x=\) from-type \(y\)
    then obtain \(y\) where \(x=\) from-type \(y\) by blast
    then show \(f x=x\) by simp
qed
lemma \(f\)-fixed-point-iff': \(f x=x \longleftrightarrow x=\) from-type (to-type \(x\) )
    using from-to by auto
lemma range-f-range-from: range \(f=\) range from-type
proof (standard; standard)
    fix \(x\)
    assume \(x \in\) range \(f\)
    then obtain \(x^{\prime}\) where \(x=f x^{\prime}\) by blast
    then have \(f x=x\) by simp
    then show \(x \in\) range from-type using \(f\)-fixed-point-iff by blast
next
    fix \(x\)
    assume \(x \in\) range from-type
    then obtain \(y\) where \(x=\) from-type \(y\) by blast
    then have \(f x=x\) using \(f\)-fixed-point-iff by simp
    then show \(x \in\) range \(f\) by (metis rangeI)
qed
lemma to-eq-iff-f-eq: to-type \(x=\) to-type \(y \longleftrightarrow f x=f y\)
proof
    show to-type \(x=\) to-type \(y \Longrightarrow f x=f y\) using from-to-elem[symmetric] by simp
next
    show \(f x=f y \Longrightarrow\) to-type \(x=\) to-type \(y\) using to-f-elem by metis
qed
lemma from-inj: inj from-type
    using to-from by (metis inj-on-id inj-on-imageI2)
end
lemma from-to-f-criterion:
```

 assumes to-type \circ from-type =id
 assumes }f\circ\mathrm{ from-type = from-type
 assumes }\xy\mathrm{ . to-type x= to-type }y\Longrightarrowfx=f
 shows from-type o to-type =f
 proof
fix }
have to-type (from-type (to-type x)) = to-type x
using assms(1) by (metis comp-apply id-apply)
hence f(from-type (to-type x)) =fx
using assms(3) by metis
hence from-type (to-type x) =fx
using assms(2) by (metis comp-apply)
thus (from-type o to-type) }x=f
by (metis comp-apply)
qed
end

```

\subsection*{7.2 Abstract Representations 2}
theory Abstract-Representations-2
imports Main
begin
Idea: a subset represented-set of some type ' \(a\) is represented non-uniquely by some type ' \(b\).
```

locale abstract-representation-2 $=$
fixes from-type :: ' $a \Rightarrow$ ' b
fixes to-type $::{ }^{\prime} b \Rightarrow{ }^{\prime} a$
fixes represented-set :: 'a set
assumes to-from: $\bigwedge x . x \in$ represented-set \Longrightarrow to-type (from-type x) $=x$
assumes to-type-in-represented-set: $\bigwedge y$. to-type $y \in$ represented-set
begin
definition reduce where
reduce $x \equiv$ from-type (to-type x)
abbreviation reduced where
reduced $x \equiv$ reduce $x=x$
lemma reduce-reduce[simp]: reduced (reduce x)
unfolding reduce-def
by (simp add: to-from to-type-in-represented-set)
definition representations where
representations \equiv from-type 'represented-set
lemma range-reduce: representations $=$ range reduce
unfolding representations-def reduce-def

```
```

image-def
apply (intro equalityI subsetI)
subgoal for }
proof -
assume }x\in{y.\existsx\in\mathrm{ represented-set. }y=\mathrm{ from-type }x
then have \existsy\inrepresented-set. }x=\mathrm{ from-type }y\mathrm{ by simp
then obtain }y\mathrm{ where }x=\mathrm{ from-type y }y\in\mathrm{ represented-set by blast
then have to-type }x=y\mathrm{ using to-from by simp
then have }x=\mathrm{ from-type (to-type }x\mathrm{) using «x= from-type }y>\mathrm{ by simp
then show ?thesis by blast
qed
subgoal for }
using to-type-in-represented-set by blast
done
corollary reduced-from-type[simp]: x \in represented-set \Longrightarrow reduced (from-type x)
using range-reduce representations-def reduce-reduce by force
lemma to-type-reduce: to-type (reduce x) = to-type x
unfolding reduce-def
by (simp add: to-from to-type-in-represented-set)
lemma reduced-iff: reduced }x\longleftrightarrow(\existsy\in\mathrm{ represented-set. }x=\mathrm{ from-type y)
apply standard
subgoal
using reduce-def to-type-in-represented-set by metis
subgoal
by fastforce
done
lemma to-eq-iff-f-eq: to-type }x=\mathrm{ to-type }y\longleftrightarrow\mathrm{ reduce }x=\mathrm{ reduce }
proof
show to-type x = to-type y 的duce x = reduce y unfolding reduce-def by
simp
next
show reduce x = reduce y to-type x = to-type y using to-type-reduce by
metis
qed
lemma from-inj: inj-on from-type represented-set
unfolding inj-on-def
apply standard+
subgoal for }x
using to-from[of x, symmetric] to-from[of y] by simp
done
corollary from-bij-betw: bij-betw from-type represented-set representations
unfolding representations-def
using from-inj

```
```

 by (simp add: inj-on-imp-bij-betw)
 lemma correctness-to-from:
fixes }h::' 'a=>''a=>'
fixes }g::'b=>'b=>'
assumes }\xy.to-type (gxy)=h(to-type x)(to-type y
shows }\bigwedgexy.x\in\mathrm{ represented-set }\Longrightarrowy\in\mathrm{ represented-set }\Longrightarrow\mathrm{ reduce (g (from-type
x)(from-type y))=from-type (h x y)
proof -
fix x y
assume x f represented-set y \in represented-set
have reduce (g (from-type x) (from-type y)) = from-type (to-type (g (from-type
x) (from-type y)))
unfolding reduce-def by simp
also have ... = from-type (h (to-type (from-type x))(to-type (from-type y)))
using assms by simp
also have ... = from-type (}hxy\mathrm{)
using to-from }\langlex\in\mathrm{ represented-set>< }y\in\mathrm{ represented-set> by simp
finally show reduce (g (from-type x) (from-type y)) = from-type (hxy).
qed
end
lemma from-to-f-criterion:
assumes }\x.x\in\mathrm{ represented-set }\Longrightarrow\mathrm{ to-type (from-type x)=x
assumes }\x.x\in\mathrm{ represented-set }\Longrightarrowf(\mathrm{ from-type }x)=\mathrm{ from-type }
assumes }\xy\mathrm{ . to-type }x=\mathrm{ to-type }y\Longrightarrowfx=f
assumes }\bigwedgey\mathrm{ . to-type y G represented-set
shows \x.from-type (to-type x) =fx
proof -
fix }
have to-type (from-type (to-type x)) = to-type x
using assms(1) assms(4) by simp
hence f(from-type (to-type x)) =f x
using assms(3) by metis
thus from-type (to-type x)=fx
using assms(2) assms(4) by simp
qed
end
theory Nat-LSBF
imports Main ../Preliminaries/Karatsuba-Sum-Lemmas Abstract-Representations
HOL-Library.Log-Nat
begin

```

\section*{8 Representing nat in LSBF}

In this theory, a representation of nat is chosen and simple algorithms implemented thereon.
```

lemma list-isolate-nth: $i<$ length $x s \Longrightarrow \exists x s 1$ xs2. $x s=x s 1 @(x s!i) \# x s 2 \wedge$

```
length \(x s 1=i\)
    using id-take-nth-drop by fastforce
```

lemma list-is-replicate-iff: $x s=$ replicate (length $x s) x \longleftrightarrow(\forall i \in\{0 . .<$ length $x s\}$.

```
\(x s!i=x)\)
proof
    assume 1: \(x s=\) replicate (length \(x s\) ) \(x\)
    show \(\forall i \in\{0 . .<\) length \(x s\}\). xs \(!i=x\)
        using 1 nth-replicate \([o f\) - length \(x s x]\) by auto
next
    assume \(\forall i \in\{0 . .<\) length \(x s\}\). xs \(!i=x\)
    then have \(\forall i \in\{0 . .<\) length \(x s\} . x s!i=(\) replicate (length \(x s) x)!i\)
        using nth-replicate by auto
    then show \(x s=\) replicate (length xs) \(x\)
        using \(n\) th-equalityI [of \(x\) s replicate (length \(x s\) ) \(x\) ] by simp
qed
lemma list-is-replicate-iff2: \(x s=\) replicate (length \(x s) x \longleftrightarrow\) set \(x s=\{x\} \vee x s=\)
[]
    by (metis empty-replicate length-0-conv replicate-eqI set-replicate singleton-iff)
lemma set-bool-list: set \(x s \subseteq\{\) True, False \(\}\)
    by auto
lemma bool-list-is-replicate-if:
    assumes \(a \notin\) set \(x s\) shows \(x s=\) replicate (length xs) \((\neg a)\)
proof (intro iffD2[OF list-is-replicate-iff2])
    from assms set-bool-list have set \(x s \subseteq\{\neg a\}\) by fastforce
    then have set \(x s=\{\neg a\} \vee\) set \(x s=\{ \}\) by (meson subset-singletonD)
    then show set \(x s=\{\neg a\} \vee x s=[]\) by \(\operatorname{simp}\)
qed
lemma bit-strong-decomp-2: \(\exists y s z s . x s=y s @ a \# z s \Longrightarrow \exists y s^{\prime} n . x s=y s^{\prime} @ a\)
\# (replicate \(n(\neg a)\) )
proof -
    assume \(\exists y s\) zs. xs \(=y s\) @ \(a \# z s\)
    then have \(a \in\) set \(x s\) by auto
    from split-list-last[OF this] obtain ys zs where \(x s=y s @ a \# z s ~ a \notin\) set zs by
blast
    from this(2) have \(z s=\) replicate (length \(z s)(\neg a)\)
        by (intro bool-list-is-replicate-if)
    with \(\langle x s=y s @ a \# z s\rangle\) show ?thesis by blast
qed
lemma bit-strong-decomp-1: \(\exists\) ys zs. xs \(=y s @ a \# z s \Longrightarrow \exists y s^{\prime} n . x s=(\) replicate
```

$\left.n(\neg a) @ a \# y s^{\prime}\right)$
proof -
assume $\exists y s z s . x s=y s @ a \# z s$
then obtain $y s z s$ where $x s=y s @ a \# z s$ by blast
then have rev xs =revzs @ [a]@ rev ys by simp
then obtain $n y s^{\prime}$ where rev $x s=y s^{\prime} @[a]$ @ replicate $n(\neg a)$
using bit-strong-decomp-2[of rev xs a] by auto
then have $x s=$ replicate $n(\neg a) @[a] @$ rev ys ${ }^{\prime}$
by (metis append-assoc rev-append rev-replicate rev-rev-ident rev-singleton-conv)
thus?thesis by auto
qed

```

\subsection*{8.1 Type definition}
type-synonym nat-lsbf \(=\) bool list

\subsection*{8.2 Conversions}
fun eval-bool :: bool \(\Rightarrow\) nat where eval-bool True \(=1\)
| eval-bool False \(=0\)
lemma eval-bool-is-of-bool[simp]: eval-bool \(=\) of-bool by auto
lemma eval-bool-leq-1: eval-bool \(a \leq 1\)
by (cases a) simp-all
lemma eval-bool-inj: eval-bool \(a=\) eval-bool \(b \Longrightarrow a=b\)
by (cases a; cases b) simp-all
fun to-nat :: nat-lsbf \(\Rightarrow\) nat where
to-nat []\(=0\)
|to-nat \((x \# x s)=(\) eval-bool \(x)+2 *\) to-nat xs
fun from-nat :: nat \(\Rightarrow\) nat-lsbf where
from-nat \(0=[]\)
\(\mid\) from-nat \(x=(\) if \(x \bmod 2=0\) then False else True \() \#(\) from-nat \((x\) div 2) \()\)
value from-nat 103
value to-nat (from-nat 103)
```

lemma to-nat-from-nat[simp]: to-nat (from-nat x) =x
proof (induction x rule: less-induct)
case (less x)
consider x = 0 | x>0 by auto
then show ?case
proof (cases)
case 1
then show ?thesis by simp

```
```

 next
 case 2
 then have to-nat (from-nat x) = eval-bool (if x mod 2 = 0 then False else
 True) + 2 * to-nat (from-nat (x div 2))
by (metis from-nat.elims nat-less-le to-nat.simps(2))
also have }···=(x\operatorname{mod}2)+2*to-nat (from-nat (x div 2))
by simp
also have ···. = (x\operatorname{mod}2) +2 *(x\operatorname{div}2)
using less 2 by simp
also have ...=x by simp
finally show ?thesis.
qed
qed
lemma to-nat-explicitly: to-nat xs =(\sumi\leftarrow [0..<length xs]. eval-bool (xs!i)* 2
`i)
proof (induction xs rule: to-nat.induct)
case 1
then show ?case by simp
next
case (2 x xs)
let ?xs = \lambdai. eval-bool ((x \# xs)!i)
have (\sumi\leftarrow[0..<length (x\#\#xs)]. ?xs i* 2 ^ i)
=?xs 0 + (\sumi\leftarrow[1..<length (x\#xs)]. ?xs i*2^i)
by (simp add: upt-rec)
also have ... = ?xs 0 + (\sumi\leftarrow[0..<length xs]. ?xs (i+1)* 2^ (i+1))
using list-sum-index-shift[of-length xs 0 \lambdai. ?xs i* 2 ^ i] by simp
also have ... = ?xs 0 + 2* (\sumi\leftarrow[0..<length xs]. ?xs (i+1)* 2^i)
by (simp add: sum-list-const-mult mult.left-commute)
also have ···. = ?xs 0 + 2 * to-nat xs
using 2 by simp
also have ... = to-nat (}x\#\mathrm{ \# xs) by simp
finally show ?case by simp
qed
lemma to-nat-app: to-nat (xs @ ys) = to-nat xs + (2 ^ length xs) * to-nat ys
by (induction xs) auto
lemma to-nat-length-upper-bound: to-nat xs \leq 2 ^ (length xs) - 1
proof (induction xs)
case Nil
then show ?case by simp
next
case (Cons a xs)
then have to-nat (a\#xs)= eval-bool a + 2* to-nat xs by simp
also have ... \leq eval-bool a + 2* (2^ (length xs) - 1) using Cons.IH by simp
also have .. \leq 1 + 2 * (2 ^ (length xs) - 1) using eval-bool-leq-1[of a] by
simp
also have ... = 1 +(2^ (length xs +1) - 1 - 1) by simp

```
```

 also have ... = 2 ^(length xs + 1) - 1
 apply (intro add-diff-inverse-nat)
 using power-increasing[of 1 length xs + 1 2::nat]
 by (simp add: add.commute)
 finally show ?case by simp
 qed
lemma to-nat-length-bound: to-nat xs <2 `length xs using to-nat-length-upper-bound[of xs] using le-eq-less-or-eq by fastforce lemma to-nat-length-lower-bound: to-nat (xs @ [True]) \geq2 ^length xs by (induction xs) auto lemma to-nat-replicate-false[simp]: to-nat (replicate n False) = 0 by (induction n) simp-all lemma to-nat-one-bit[simp]: to-nat (replicate n False @ [True]) = 2`n
by (simp add: to-nat-app)
lemma to-nat-replicate-true[simp]: to-nat (replicate n True) = 2 ` n-1
proof (induction n)
case 0
then show ?case by simp
next
case (Suc n)
have 2 ^(Suc n) \geq(2 :: nat) by simp
hence 1: 2^ (Suc n) - 1 \geq (1 :: nat) by linarith
have to-nat (replicate (Suc n) True) = 1 + 2 * to-nat (replicate n True)
by simp
also have ... = 1 + 2 * (2 ^}n-1
using Suc.IH by simp
also have ... = 2 ^
using le-add-diff-inverse[of 1 2 ^(Suc n) - 1]
using 1 by simp
finally show ?case .
qed
lemma to-nat xs=0\longleftrightarrow(\existsn. xs = replicate n False)
proof
show to-nat xs =0\Longrightarrow\existsn. xs = replicate n False
proof (induction xs)
case Nil
then show ?case by simp
next
case (Cons a xs)
then have }a=\mathrm{ False to-nat xs=0 by auto
then obtain n where xs = replicate n False using Cons.IH by auto
hence a\# xs = replicate (Suc n) False using <a = False> by simp
then show ?case by blast
qed

```
```

 show \existsn. xs = replicate n False \Longrightarrow to-nat xs =0
 using to-nat-replicate-false by auto
 qed
lemma to-nat-app-replicate[simp]: to-nat (xs @ replicate n False) = to-nat xs
by (induction xs) auto
lemma change-bit-ineq: length xs = length ys \Longrightarrow to-nat (xs @ False \# zs)<
to-nat (ys @ True \# zs)
proof -
assume length xs = length ys
have to-nat (xs @ False \# zs) = to-nat xs + 2 ^ (length xs + 1) * to-nat zs
using to-nat-app-replicate[of xs 1] to-nat-app by simp
also have ... \leq2^(length xs) - 1 + 2 ` (length xs + 1)* to-nat zs using to-nat-length-upper-bound[of xs] by linarith also have ... < 2 ^(length xs) + 2^ (length xs + 1) * to-nat zs by simp also have ... = 2^ (length ys) + 2^ (length ys + 1) * to-nat zs using <length xs = length ys` by simp
also have ... \leq to-nat (ys @ [True]) + 2^ (length ys + 1)* to-nat zs
using to-nat-length-lower-bound[of ys] by simp
also have ... = to-nat (ys @ True \# zs)
using to-nat-app by simp
finally show ?thesis .
qed
lemma to-nat-ineq-imp-False-bit:to-nat xs <2^ length xs - 1\Longrightarrow\existsyszs.xs=
ys @ False \# zs
proof (rule ccontr)
assume \#ys zs.xs=ys @ False \# zs
then have }\foralli\in{0..<length xs }. xs !i= Tru
by (metis(full-types) atLeastLessThan-iff in-set-conv-decomp-first in-set-conv-nth)
then have xs = replicate (length xs) True using list-is-replicate-iff by fast
then have to-nat xs = 2 `length xs - 1 using to-nat-replicate-true by metis thus to-nat xs <2` length xs - 1 \Longrightarrow False by simp
qed
lemma to-nat-bound-to-length-bound: to-nat xs \geq2 ^ n \Longrightarrow length xs \geqn+1
proof (rule ccontr)
assume to-nat xs \geq2 ^n
assume }\negn+1\leq\mathrm{ length xs
then have n\geq length xs by simp
then have to-nat xs \geq2^ length xs using <to-nat xs \geq2 ^n>
using power-increasing le-trans one-le-numeral by meson
then show False using to-nat-length-bound[of xs] by simp
qed
lemma to-nat-drop-take: to-nat xs = to-nat (take kxs)+2 ^ k* to-nat (drop k
xs)
proof -

```
```

 have xs = take k xs @ drop k xs by simp
 then have to-nat xs = to-nat (take kxs)+2 ^ (length (take kxs))*to-nat
 (drop k xs)
using to-nat-app by metis
also have 2 ` (length (take kxs)) * to-nat (drop kxs)= 2` k * to-nat (drop k
xs)
by (cases length xs <k) simp-all
finally show ?thesis.
qed
lemma to-nat-take: to-nat (take kxs)= to-nat xs mod 2 ^ k
proof -
have to-nat xs=to-nat (take kxs)+2`k* to-nat (drop kxs) by (simp add: to-nat-drop-take) then have to-nat xs mod 2 ^ k= to-nat (take kxs) mod 2 ^ k by simp moreover have to-nat (take k xs)<2^k using to-nat-length-bound[of take k xs] length-take[of k xs] by (metis add-leD1 leI min-absorb2 min-def to-nat-bound-to-length-bound) ultimately show ?thesis by simp qed lemma to-nat-drop: to-nat (drop k xs) = to-nat xs div 2 ^k proof - have to-nat xs = to-nat xs mod 2 ^ k + 2 ^ k*to-nat (drop kxs) using to-nat-drop-take[of xs k] to-nat-take[of k xs] by argo then have to-nat xs div 2` k = to-nat (drop k xs)
by (metis add.right-neutral bits-mod-div-trivial div-mult-self2 power-not-zero
zero-neq-numeral)
thus?thesis by rule
qed
lemma to-nat-nth-True-bound:
assumes i< length xs
assumes xs !i=True
shows to-nat xs \geq2 ^
proof -
from assms have xs = (take i xs @ [True]) @ drop (Suc i) xs
using id-take-nth-drop by fastforce
then show to-nat xs \geq2 ^i
using to-nat-app[of-drop (Suc i) xs] to-nat-length-lower-bound[of take i xs]<i
< length xs>
by (metis append-eq-conv-conj le-add1 le-eq-less-or-eq list-isolate-nth trans-less-add1)
qed

```

\subsection*{8.3 Truncating and filling}
fun truncate-reversed :: bool list \(\Rightarrow\) bool list where
truncate-reversed [] = []
\(\mid\) truncate-reversed \((x \# x s)=(\) if \(x\) then \(x \#\) xs else truncate-reversed \(x s)\)
definition truncate :: nat-lsbf \(\Rightarrow\) nat-lsbf where
truncate xs \(=\operatorname{rev}(\) truncate-reversed (rev xs))
abbreviation truncated where truncated \(x \equiv\) truncate \(x=x\)
lemma truncate-reversed-eqI[simp]: xs \(=(\) replicate \(n\) False \() @ y s \Longrightarrow\) truncate-reversed \(x s=\) truncate-reversed ys
by (induction \(n\) arbitrary: xs ys) auto
corollary truncate-eq \([\) simp \(]\) : xs \(=y s\) @ (replicate \(n\) False) \(\Longrightarrow\) truncate \(x s=\) truncate ys
by (simp add: truncate-def)
lemma replicate-truncate-reversed: \(\exists n\).(replicate n False) @ truncate-reversed xs \(=x s\)
proof (induction \(x s\) )
case Nil
then show? case by simp
next
case (Cons a xs)
then obtain \(n\) where 1: replicate \(n\) False @ truncate-reversed \(x s=x s\) by blast
hence \(a \# x s=a \#\) replicate \(n\) False @ truncate-reversed xs by simp
show ?case
proof (cases a)
case True
then have truncate-reversed \((a \# x s)=a \# x s\) by simp
also have \(\ldots\) = replicate 0 False @ a \# xs by simp
finally show? ?thesis by simp
next
case False
then have truncate-reversed ( \(a \#\) xs) \(=\) truncate-reversed xs by simp
hence replicate (Suc n) False @ truncate-reversed ( \(a \neq x s\) ) = False \# replicate
\(n\) False @ truncate-reversed xs
by \(\operatorname{simp}\)
with 1 False have replicate (Suc n) False @ truncate-reversed ( \(a \# x s\) ) \(=a \#\) xs by simp
then show ?thesis by blast
qed
qed
corollary truncate-replicate: \(\exists\) n. truncate xs @ (replicate n False) \(=x s\) proof -
from replicate-truncate-reversed[of rev xs]
obtain \(n\) where replicate \(n\) False @ truncate-reversed (rev xs) \(=\) rev xs by blast
hence rev (truncate-reversed (rev xs)) @ rev (replicate n False) =xs
using rev-append[symmetric, of truncate-reversed (rev xs) replicate \(n\) False]
using rev-rev-ident[of \(x s\) ]
by \(\operatorname{simp}\)
hence truncate xs @ replicate \(n\) False \(=x s\) by \((\operatorname{simp}\) add: truncate-def)
thus ?thesis by blast

\section*{qed}
lemma decompose-trailing-zeros: xs = truncate xs @ (replicate (length xs - length (truncate xs)) False)
using truncate-replicate[of xs]
by (metis add-diff-cancel-left' length-append length-replicate)
lemma truncate-reversed-length-ineq: length (truncate-reversed \(x s) \leq\) length \(x s\) by (induction xs) simp-all
lemma truncate-length-ineq: length (truncate xs) \(\leq\) length \(x s\) by (metis Nat-LSBF.truncate-def length-rev truncate-reversed-length-ineq)
lemma truncate-reversed-fixed-point-iff: truncate-reversed \(x=x \longleftrightarrow(x=[] \vee h d\) \(x=\operatorname{Tr} u e\) )
proof (induction \(x\) )
case Nil
then show? case by simp
next
case (Cons a \(x\) )
then have \((a \# x=[] \vee h d(a \# x)=\) True \()=a\) by simp
moreover have \(a \Longrightarrow\) truncate-reversed \((a \# x)=a \# x\) by simp
moreover have \(\neg a \Longrightarrow\) truncate-reversed \((a \# x)=\) truncate-reversed \(x\) by
\(\operatorname{simp}\)
hence \(\neg a \Longrightarrow\) length (truncate-reversed \((a \# x)) \leq\) length \(x\)
using truncate-reversed-length-ineq \([\) of \(x]\) by simp
hence \(\neg a \Longrightarrow\) truncate-reversed \((a \# x) \neq(a \# x)\)
using neq-if-length-neq \([o f a \# x x]\) by force
ultimately show? case by simp
qed
lemma truncated-iff: truncated \(x \longleftrightarrow(x=[] \vee\) last \(x=\) True \()\)
proof -
have truncated \(x \longleftrightarrow\) truncate-reversed \((\) rev \(x)=\) rev \(x\)
by (simp add: truncate-def rev-swap)
also have \(\ldots \longleftrightarrow\) rev \(x=[] \vee h d(\) rev \(x)=\) True
using truncate-reversed-fixed-point-iff [of rev \(x\) ].
also have \(\ldots \longleftrightarrow x=[] \vee\) last \(x=\) True
by (simp add: hd-rev)
finally show ?thesis.
qed
lemma hd-truncate-reversed: truncate-reversed \(x s \neq[] \Longrightarrow h d\) (truncate-reversed \(x s)=\operatorname{Tr} u e\)
proof (induction \(x s\) )
case Nil
then show? case by simp
next
case (Cons a xs)
show ?case
proof (rule ccontr)
```

 assume 1: hd (truncate-reversed (a#xs)) = True
 then have }a=\mathrm{ False by auto
 with 1 have hd (truncate-reversed xs) }=\mathrm{ True by simp
 hence truncate-reversed xs = [] using Cons.IH by blast
 hence truncate-reversed (a#xs)=[] using < a = False> by simp
 thus False using Cons.prems by simp
 qed
 qed
lemma last-truncate: truncate xs }\not=[]\Longrightarrow\mathrm{ last (truncate xs) = True
using hd-truncate-reversed last-rev by (auto simp: truncate-def)
lemma truncate-truncate[simp]: truncate (truncate xs) = truncate xs
using truncated-iff[of truncate xs] last-truncate by auto
lemma truncate-reversed-Nil-iff: truncate-reversed xs = []\longleftrightarrow(\existsn.xs= replicate
n False)
proof
show truncate-reversed xs = []\Longrightarrow\existsn. xs = replicate n False
proof (induction xs)
case Nil
then show ?case by simp
next
case (Cons a xs)
then have a= False truncate-reversed (a\#xs) = truncate-reversed xs
by (auto split: if-splits)
then obtain n where xs = replicate n False using Cons by auto
hence a\# xs = replicate (Suc n) False using <a = False> by simp
thus?case by blast
qed
next
show \existsn. xs = replicate n False \Longrightarrow truncate-reversed xs = []
proof (induction xs)
case Nil
then show ?case by simp
next
case (Cons a xs)
then show ?case
by (metis Cons-replicate-eq truncate-reversed.simps(2))
qed
qed
lemma truncate-Nil-iff: truncate xs = [] \longleftrightarrow(\existsn.xs = replicate n False)
using truncate-reversed-Nil-iff[of rev xs]
by (auto simp: truncate-def) (metis rev-replicate rev-rev-ident)
corollary truncate-neq-Nil: truncate xs }\not=[]\Longrightarrow\existsyszs.xs=ys@ True \# z
using truncate-Nil-iff[of xs]

```
by (metis (full-types) hd-Cons-tl hd-truncate-reversed replicate-truncate-reversed truncate-reversed-Nil-iff)
lemma truncate-Cons: truncate \((a \# x s)=(\) if \(\neg a \wedge(\) truncate \(x s=[])\) then [] else a \# truncate xs)
proof (cases truncate \(x s=[]\) )
case True
then obtain \(n\) where \(x s=\) replicate \(n\) False using truncate-Nil-iff by blast
then have truncate \((a \# x s)=\) truncate \([a]\) by simp
then show?thesis using True by (simp add: truncate-def)
next
case False
then obtain ys \(n\) where \(x s=y s\) @ True \# (replicate n False)
using truncate-neq-Nil[of xs] bit-strong-decomp-2[of xs True] by auto
then have truncate \(x s=y s @[T r u e]\) by (auto simp: truncate-def)
moreover have truncate \((a \# x s)=a \# y s @[T r u e]\)
using 〈xs =ys @ True \# (replicate n False) > by (auto simp: truncate-def)
ultimately show ?thesis by simp
qed
lemma truncate-eq-Cons: truncate \(x s=\) truncate \(y s \Longrightarrow\) truncate \((a \# x s)=\) truncate ( \(a\) \# ys)
using truncate-Cons by simp
lemma truncate-as-take: \(\bigwedge x s . \exists n\). truncate xs \(=\) take \(n x s\)
using truncate-replicate append-eq-conv-conj by blast
lemma to-nat-zero-iff: to-nat \(x s=0 \longleftrightarrow\) truncate \(x s=[]\)
proof (induction \(x s\) )
case Nil
then show? ?case by (simp add: truncate-def)
next
case (Cons a xs)
have to-nat \((a \# x s)=0 \longleftrightarrow(\) eval-bool \(a=0 \wedge\) to-nat \(x s=0)\) by simp
also have \(\ldots \longleftrightarrow(a=\) False \(\wedge\) to-nat \(x s=0)\) using eval-bool-inj[of a False] by auto
also have \(\ldots \longleftrightarrow(a=\) False \(\wedge\) truncate \(x s=[])\) using Cons.IH by simp
also have \(\ldots \longleftrightarrow\) (truncate ( \(a \# x s\) ) = []) using truncate-Cons by simp
finally show ?case .
qed
lemma to-nat-eq-imp-truncate-eq: to-nat \(x s=\) to-nat \(y s \Longrightarrow\) truncate \(x s=\) truncate ys
proof (induction xs arbitrary: ys)
case Nil
then show ?case using to-nat-zero-iff by (simp add: truncate-def)
next
```

 case (Cons a xs)
    ```
show ?case
```

 proof (cases ys = [])
 case True
 then have to-nat ys = 0 by simp
 hence to-nat (a # xs) = 0 using Cons.prems by simp
 with <to-nat ys = 0> show truncate (a # xs) = truncate ys
 using to-nat-zero-iff[of a # xs] to-nat-zero-iff[of ys] by simp
 next
 case False
 then obtain bzs where ys=b#zs by (meson neq-Nil-conv)
 then have to-nat (a# xs) = to-nat (b # zs) using Cons.prems by simp
 then have 1: eval-bool a + 2* to-nat xs = eval-bool b+2* to-nat zs by simp
 then have eval-bool a = eval-bool b
 by (metis add-cancel-right-left double-not-eq-Suc-double eval-bool.elims plus-1-eq-Suc)
 hence }a=b\mathrm{ using eval-bool-inj by simp
 from 1 have to-nat xs = to-nat zs
 using <eval-bool a = eval-bool b> by auto
 hence truncate xs = truncate zs using Cons.IH by simp
 hence truncate (a# xs) = truncate (b#zs) using <a = b>
 using truncate-eq-Cons[of xs zs a] by simp
 thus ?thesis using <ys = b # zs` by simp
 qed
 qed
lemma truncate-from-nat[simp]: truncate (from-nat x) = from-nat x
unfolding truncated-iff
by (induction x rule: from-nat.induct) auto
lemma truncate-and-length-eq-imp-eq:
assumes truncate xs = truncate ys length xs = length ys
shows xs = ys
proof -
obtain n where 1:xs= truncate xs @ replicate n False
by (metis truncate-replicate)
then have 2: length xs = length (truncate xs) + n
by (metis length-append length-replicate)
obtain m}\mathrm{ where 3:ys= truncate ys @ replicate m False
by (metis truncate-replicate)
then have length ys = length (truncate ys) +m
by (metis length-append length-replicate)
with 2 assms have n=m by simp
with 13 assms show ?thesis by algebra
qed
lemma nat-lsbf-eqI:
assumes to-nat xs = to-nat ys
assumes length xs = length ys
shows xs = ys
using assms
using to-nat-eq-imp-truncate-eq truncate-and-length-eq-imp-eq by blast

```
```

interpretation nat-lsbf: abstract-representation from-nat to-nat truncate
proof
show to-nat \circ from-nat $=i d$
using to-nat-from-nat comp-apply by fastforce
next
show from-nat \circ to-nat $=$ truncate
using from-to-f-criterion[of to-nat from-nat truncate]
using to-nat-from-nat truncate-from-nat to-nat-eq-imp-truncate-eq
using comp-apply
by fastforce
qed

```
lemma truncated-Cons-imp-truncated-tl: truncated \((x \# x s) \Longrightarrow\) truncated \(x s\)
    using truncated-iff by fastforce
definition fill where fill \(n x s=x s\) @ replicate \((n-l e n g t h ~ x s)\) False
lemma to-nat-fill[simp]: to-nat (fill \(n\) xs \()=\) to-nat \(x s\)
    by (simp add: fill-def)
lemma length-fill[intro]: length \(x s \leq n \Longrightarrow\) length (fill \(n x s)=n\)
    by (simp add: fill-def)
lemma take-id: length \(x s=k \Longrightarrow\) take \(k x s=x s\)
    by simp
lemma fill-id: length \(x s \geq k \Longrightarrow\) fill \(k x s=x s\)
    unfolding fill-def by simp
lemma length-fill': length \((\) fill \(n x s)=\max n(\) length \(x s)\)
    by (simp add: fill-def)
lemma length-fill-max[simp]:
    length \((\) fill \((\max (\) length \(x s)(\) length \(y s)) x s)=\max (\) length \(x s)(\) length \(y s)\)
    length \((\) fill \((\max (\) length \(x s)(\) length \(y s)) y s)=\max (\) length \(x s)(\) length ys \()\)
    by (intro length-fill, simp) +
lemma truncate-fill: truncate (fill \(k x s)=\) truncate \(x s\)
    by (simp add: fill-def)
lemma fill-truncate: length \(x s \leq k \Longrightarrow\) fill \(k\) (truncate \(x s)=\) fill \(k x s\)
proof -
    assume length \(x s \leq k\)
    obtain \(n\) where \(n\)-def: xs = truncate xs @ replicate n False
        using truncate-replicate by metis
    then have length \(x s=\) length (truncate \(x s)+n\) by (metis length-append length-replicate)
    then have length (truncate \(x s\) ) \(+n \leq k\) using 〈length \(x s \leq k\rangle\) by simp
from \(n\)－def have fill \(k x s=(\) truncate xs＠replicate \(n\) False）＠replicate \((k-\) length（truncate xs＠replicate n False））False
using fill－def by presburger
also have \(\ldots=\) truncate xs＠replicate \((n+(k-\) length（truncate xs＠replicate \(n\) False）））False
by（simp add：replicate－add）
also have \(\ldots=\) truncate xs＠replicate \((n+(k-(\) length \((\) truncate \(x s)+n)))\) False
by \(\operatorname{simp}\)
also have \(\ldots=\) truncate xs＠replicate \((k-(\) length（truncate \(x s))\) ）False
using 〈length（truncate \(x s\) ）\(+n \leq k\rangle\) by \(\operatorname{simp}\)
also have \(\ldots=\) fill \(k\)（truncate xs）by（simp add：fill－def）
finally show ？thesis by simp
qed
lemma fill－take－com：fill \(k\)（take \(k x s)=\) take \(k\)（fill \(k x s)\)
using fill－def by fastforce
lemma to－nat－length－lower－bound－truncated：\(x s \neq[] \Longrightarrow\) truncated \(x s \Longrightarrow\) to－nat \(x s \geq 2 へ\)（length \(x s-1)\)
proof－
assume \(x s \neq[]\) truncated \(x s\)
then obtain \(x s^{\prime}\) where \(x s=x s^{\prime}\)＠［True］
by（metis（full－types）append－butlast－last－id last－truncate）
then show ？thesis using to－nat－length－lower－bound［of xs \(]\) by simp
qed
lemma to－nat－length－bound－truncated：truncated \(x s \Longrightarrow\) to－nat \(x s<\mathcal{D}^{\wedge} n \Longrightarrow\)
length \(x s \leq n\)
proof（rule ccontr）
assume truncated xs to－nat \(x s<2\) へ \(n \neg\) length \(x s \leq n\)
show False
proof（cases xs \(=[]\) ）
case True
then show ？thesis using \(\prec \neg\) length \(x s \leq n\rangle\) by \(\operatorname{simp}\)
next

\section*{case False}
have length \(x s \geq n+1\) using \(\langle\neg\) length \(x s \leq n\rangle\) by \(\operatorname{simp}\)
then have to－nat \(x s \geq 2\)＾\(n\)
using to－nat－length－lower－bound－truncated［of xs］
using False＜truncated xs〉
by（meson add－le－imp－le－diff dual－order．trans one－le－numeral power－increasing）
then show ？thesis using＜to－nat \(x s<2\)＾\(n\rangle\) by simp
qed
qed

\section*{8．4 Right－shifts}
definition shift－right \(::\) nat \(\Rightarrow\) nat－lsbf \(\Rightarrow\) nat－lsbf where
shift-right \(n\) xs \(=(\) replicate \(n\) False \() @\) xs
lemma to-nat-shift-right [simp]: to-nat (shift-right \(n x s)=2{ }^{\wedge} n *\) to-nat xs unfolding shift-right-def using to-nat-app by simp
lemma length-shift-right[simp]: length (shift-right \(n x s)=n+\) length \(x s\) unfolding shift-right-def by simp

\subsection*{8.5 Subdividing lists}

\subsection*{8.5.1 Splitting a list in two blocks}
fun split-at :: nat \(\Rightarrow{ }^{\prime} a\) list \(\Rightarrow{ }^{\prime} a\) list \(\times\) 'a list where split-at \(m x s=(\) take \(m x s\), drop \(m x s)\)
definition split :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\times\) nat-lsbf where split \(x s=(\) let \(n=\) length \(x s \operatorname{div}(2::\) nat \()\) in split-at \(n x s)\)
lemma app-split: split \(x s=(x 0, x 1) \Longrightarrow x s=x 0 @ x 1\) unfolding split-def Let-def using append-take-drop-id[of length xs div 2 xs] by simp
lemma length-split: length \(x s \bmod 2=0 \Longrightarrow\) split \(x s=(x 0, x 1) \Longrightarrow\) length \(x 0=\) length xs div \(2 \wedge\) length \(x 1=\) length \(x s\) div 2
unfolding split-def by fastforce
lemma length-split-le:
assumes split \(x s=(x 0, x 1)\)
shows length \(x 0 \leq\) length \(x s\) and length \(x 1 \leq\) length \(x s\)
using app-split [OF assms] by simp-all

\subsection*{8.5.2 Splitting a list in multiple blocks}
subdivide \(n\) xs divides the list \(x s\) into blocks of size \(n\).
fun subdivide :: nat \(\Rightarrow\) 'a list \(\Rightarrow\) 'a list list where
subdivide 0 xs \(=\) undefined
| subdivide \(n[]=[]\)
| subdivide \(n\) xs \(=\) take \(n\) xs \# subdivide \(n\) (drop \(n x s\) )
value concat \([[0 . .<2],[4 . .<7],[1 . .<5]]\)
value subdivide \(2[0 . .<6]\)
value subdivide \(3[0 . .<6]\)
value subdivide (2 へ 2) \(\left[0 . .<2^{\wedge} 6\right]\)
lemma concat-subdivide: \(n>0 \Longrightarrow\) concat (subdivide \(n x s\) ) \(=x s\)
by (induction \(n\) xs rule: subdivide.induct) simp-all
lemma subdivide-step:
```

 assumes n>0
 assumes xs \not=[]
 assumes length xs =n*k
 obtains ys zs where xs = ys @ zs length ys = n length zs = n* (k-1)
 subdivide n xs = ys # subdivide n zs
 proof -
from assms obtain a xs'' where xs = a\# xs' using list.exhaust by blast
from assms have k>0
using zero-less-iff-neq-zero by fastforce
then obtain k' where k=Suc k' using gr0-implies-Suc by auto
then have length xs =n+n* k' using assms(3) by simp
define ys zs where ys = take n xs zs = drop n xs
with 〈length xs =n + n* k'` have xs=ys@ zs length ys = n length zs = n*
k' by simp-all
moreover have subdivide n xs = ys \# subdivide n zs using ys-zs-def assms(1)
assms(2) Suc-diff-1 subdivide.simps(3)
<xs=a\# xs'> by metis
ultimately show (\bigwedgeys zs.
xs=ys @ zs \Longrightarrow
length ys =n\Longrightarrow
length zs =n* (k-1)\Longrightarrow
subdivide n xs = ys \# subdivide n zs \Longrightarrow thesis) }
thesis
by (simp add: <k=Suc k
qed
lemma subdivide-step':
assumes n>0
assumes xs }=[
shows subdivide n xs = (take n xs) \# subdivide n (drop n xs)
using assms
by (cases n; cases xs; simp-all)
lemma subdivide-correct:
assumes n>0
assumes length xs =n*k
shows length (subdivide n xs) =k\wedge(x\in set (subdivide n xs) \longrightarrow length x = n)
using assms
proof (induction k arbitrary: xs n x)
case 0
then have subdivide n xs = [] using 0 gr0-conv-Suc by force
then show ?case by simp
next
case (Suc k)
then have xs \not= [] by force
from subdivide-step[OF<n> 0〉 this «length xs = n*Suc k〉] obtain ys zs
where ys-zs:
xs=ys@zs
length ys = n

```
```

 length zs =n*(Suc k-1)
 subdivide n xs = ys # subdivide n zs
 by blast
 then have length zs =n*k by simp
 note IH = Suc.IH[OF \langlen> 0\rangle this]
 from IH show ?case using ys-zs by simp
 qed
lemma nth-nth-subdivide:
assumes n>0
assumes length xs =n*k
assumes i<kj<n
shows subdivide n xs !i! j = xs ! (i*n+j)
using assms
proof (induction k arbitrary: xs i)
case 0
then show ?case by simp
next
case (Suc k)
then have xs \not= [] by auto
with Suc subdivide-step obtain ys zs where xs = ys @ zs length ys = n length
zs=n*(Suc k-1)
subdivide n xs = ys \# subdivide n zs by blast
then have length zs=n*k by simp
show ?case
proof (cases i)
case 0
then have subdivide n xs !i!j=ys! (i*n+j) using <subdivide n xs=ys

subdivide n zs> by simp

 then show ?thesis using <xs = ys @ zs\rangle 0<j<n\rangle\langlelength ys = n〉
 by (simp add: nth-append)
 next
 case (Suc i')
 then have subdivide n xs ! i! j= subdivide n zs ! i'! j
 using <subdivide n xs = ys # subdivide n zs` by simp
 also have ... = zs ! (}\mp@subsup{i}{}{\prime}*n+j
 apply (intro Suc.IH[of zs i])
 subgoal using < n > 0\rangle.
 subgoal using <length zs =n*k>.
 subgoal using <i<Suc k\rangle\langlei=Suc i}\mp@subsup{i}{}{\prime}\rangle\mathrm{ by simp
 subgoal using <j<n>.
 done
 also have ... = xs! (}i*n+j
 using <i=Suc i'\rangle\langlexs=ys @ zs\rangle<length ys=n>
 by (metis ab-semigroup-add-class.add-ac(1) mult-Suc nth-append-length-plus)
 finally show ?thesis.
 qed
 qed

```
```

lemma subdivide-concat:
assumes $n>0$
assumes $\bigwedge i . i<$ length $x s \Longrightarrow$ length $(x s!i)=n$
shows subdivide n (concat xs) $=x s$
proof (intro iffD1 [OF concat-eq-concat-iff])
show concat (subdivide n (concat xs)) $=$ concat xs
using concat-subdivide $[O F\langle n>0\rangle]$.
have map length $x s=$ replicate (length $x s$) n
apply (intro replicate-eqI)
subgoal by simp
subgoal using assms by (metis in-set-conv-nth length-map nth-map)
done
then have length $($ concat $x s)=$ length $x s * n$
by (simp add: length-concat sum-list-replicate)
then show length (subdivide $n($ concat $x s)$) $=$ length $x s$
apply (intro conjunct1 [OF subdivide-correct] $\langle n>0\rangle$) by simp
show $\forall(x, y) \in$ set (zip (subdivide $n($ concat $x s)$) xs). length $x=$ length y
proof
fix z
assume $a: z \in \operatorname{set}(z i p$ (subdivide n (concat xs)) xs)
then obtain $x y$ where $z=(x, y)$ by fastforce
from a obtain i where $i<$ length $x s z=$ zip (subdivide $n($ concat xs)) xs!i
using 〈length (subdivide n (concat xs)) = length xs〉
by (metis (no-types, lifting) gen-length-def in-set-conv-nth length-code length-zip
min-0R min-add-distrib-left)
then have subdivide n (concat xs) ! $i=x x s!i=y$
using $\langle z=(x, y)\rangle<l e n g t h($ subdivide $n($ concat $x s))=$ length $x s\rangle$ by simp-all
then have length $x=n$ using $\langle i<l e n g t h ~ x s\rangle<l e n g t h ~(s u b d i v i d e ~ n(c o n c a t ~ x s))$
$=$ length $x s$ >
using 〈length (concat $x s)=$ length $x s * n\rangle$
$\langle n>0\rangle$ mult.commute[of n length $x s$]
by (metis nth-mem subdivide-correct)
moreover from $\langle x s!i=y\rangle\langle i<$ length $x s\rangle$ have length $y=n$ using assms
by blast
ultimately show case z of $(x, y) \Rightarrow$ length $x=$ length y using $\langle z=(x, y)\rangle$
by simp
qed
qed
lemma to-nat-subdivide:
assumes $n>0$
assumes length xs $=n * k$
shows to-nat $x s=\left(\sum i \leftarrow[0 . .<k]\right.$. to-nat (subdivide n xs ! i) * 2 ^ $\left.(i * n)\right)$
using assms
proof (induction k arbitrary: xs)
case 0
then show? case by simp
next
case (Suc k)

```
then have length（take \(n x s)=n\) length（drop \(n x s)=n * k\) by simp－all
from Suc have \(x s \neq[]\) by auto
have \(\left(\sum i \leftarrow[0 . .<\right.\) Suc \(k]\) ．to－nat（subdivide \(\left.\left.n x s!i\right) * \mathcal{2}^{\wedge}(i * n)\right)\)
\(=\) to－nat（subdivide \(n\) xs！0）\(* 2^{\wedge}(0 * n)+\left(\sum i \leftarrow[1 . .<\right.\) Suc k］．to－nat
（subdivide \(n x s!i) * 2 へ(i * n)\) ）
by（intro sum－list－split－0）
also have subdivide \(n\) xs ！ \(0=\) take \(n\) xs
using Suc \(\langle x s \neq[]\rangle\) subdivide－step \({ }^{\prime}[O F\langle 0<n\rangle\langle x s \neq[]\rangle]\) by simp
also have \(\left(\sum i \leftarrow[1 . .<\right.\) Suc \(k]\) ．to－nat（subdivide n xs ！i）＊ \(\mathcal{Z}^{\wedge}(i * n)\) ）
\[
\left.=\left(\sum i \leftarrow[0 . .<k] . \text { to-nat (subdivide } n \text { xs }!(i+1)\right) * \mathcal{Z}^{\wedge}((i+1) * n)\right)
\]
using sum－list－index－shift［of \(\lambda i\) ．to－nat（subdivide n xs！\(\left.i) * \mathcal{Z}^{\wedge}(i * n) 10 k\right]\) by \(\operatorname{simp}\)
also have \(\ldots=\left(\sum i \leftarrow[0 . .<k]\right.\) ．to－nat（subdivide \(n(\) drop \(\left.n x s)!i\right) * 2^{\wedge}((i+\) 1）\(* n)\) ）
using subdivide－step \({ }^{\prime}[\) OF \(\langle 0<n\rangle\langle x s \neq[]\rangle]\) by simp
also have \(\ldots=\left(\sum i \leftarrow[0 . .<k]\right.\) ．（to－nat（subdivide \(n(\) drop \(\left.n x s)!i\right) *(2 へ n *\) \(\left.\left.\left.2^{\wedge}(i * n)\right)\right)\right)\)
by（simp add：power－add）
also have \(\ldots=\left(\sum i \leftarrow[0 . .<k] . \mathcal{2}^{\wedge} n *(\right.\) to－nat（subdivide \(n(\) drop \(n\) xs \()!i) * \mathcal{2}\) へ \((i * n))\) ）
by（simp add：mult．left－commute）
also have \(\ldots=\mathscr{2}^{\wedge} n *\left(\sum i \leftarrow[0 . .<k]\right.\) ．to－nat（subdivide \(n(\) drop \(n\) xs）\(!i) * \mathcal{2}\) \(\left.{ }^{\wedge}(i * n)\right)\)
by（simp add：sum－list－const－mult）
also have \(\ldots=2{ }^{\wedge} n *\) to－nat（drop \(n x s\) ）
using Suc．IH \([O F\langle 0<n\rangle\langle l e n g t h(d r o p ~ n x s)=n * k\rangle]\) by argo
finally have \(\left(\sum i \leftarrow[0 . .<S u c k]\right.\) ．to－nat（subdivide nxs！i）＊2＾（i＊n））
\(=\) to－nat（take nxs）\(+2{ }^{\wedge} n *\) to－nat（drop n xs）
by \(\operatorname{simp}\)
also have \(\ldots=\) to－nat（take \(n\) xs＠drop n xs）
by（simp only：to－nat－app＜length（take \(n\) xs \()=n>\) ）
also have \(\ldots=\) to－nat xs by simp
finally show to－nat \(x s=\left(\sum i \leftarrow[0 . .<\right.\) Suc \(k]\) ．to－nat（subdivide \(\left.n x s!i\right) * 2^{\wedge}\) \((i * n))\)
by simp
qed

\section*{8．6 The bitsize function}
bitsize \(n\) calculates how many bits are needed in the LSBF encoding of \(n\) ．
```

fun bitsize :: nat \Rightarrow nat where
bitsize $0=0$
| bitsize $n=1+$ bitsize (n div 2)
lemma bitsize-is-floorlog: bitsize $=$ floorlog 2
apply (intro ext)
subgoal for n
apply (induction n rule: bitsize.induct)
by (auto simp add: floorlog-eq-zero-iff compute-floorlog)

```
```

 done
 corollary bitsize-bitlen: int (bitsize n) = bitlen (int n)
unfolding bitsize-is-floorlog bitlen-def by simp
lemma bitsize-eq: bitsize n = length (from-nat n)
proof (induction n rule: less-induct)
case (less n)
then show ?case
proof (cases n=0)
case True
then show ?thesis by simp
next
case False
then have 1: bitsize n=1 + bitsize (n div 2)
by (metis bitsize.elims)
from False have length (from-nat n) = length ((if n mod 2 = 0 then False else
True) \# from-nat (n div 2))
by (metis from-nat.elims)
also have ... = 1 + bitsize (n div 2) using less[of n div 2] False by simp
finally show bitsize n = length (from-nat n) using 1 by simp
qed
qed
lemma bitsize-zero-iff: bitsize }n=0\longleftrightarrown=
by (simp add: bitsize-is-floorlog floorlog-eq-zero-iff)
lemma truncated-iff': truncated }x\longleftrightarrow\mathrm{ length }x=\mathrm{ bitsize (to-nat }x\mathrm{)
proof
assume truncated }
then have x = from-nat (to-nat x) unfolding nat-lsbf.f-fixed-point-iff'.
then show length x = bitsize (to-nat x) unfolding bitsize-eq by simp
next
assume length x = bitsize (to-nat x)
then have length x = length (from-nat (to-nat x)) unfolding bitsize-eq .
moreover have to-nat x = to-nat (from-nat (to-nat x)) by simp
ultimately show truncated x unfolding nat-lsbf.f-fixed-point-iff'
by (intro nat-lsbf-eqI; argo)
qed
lemma bitsize-length: bitsize n\leqk\longleftrightarrown<2^k
unfolding bitsize-is-floorlog floorlog-le-iff by simp
lemma two-pow-bitsize-pos-bound: n>0\Longrightarrow2^bitsize n\leq2*n
proof -
assume n>0
then have 2 ^ (bitsize n - 1) \leqn
using bitsize-length[of n bitsize n - 1] by fastforce
then have 2 ^(bitsize n-1 + 1) \leq2* n by simp

```
also have bitsize \(n-1+1=\) bitsize \(n\) using bitsize-zero-iff \([\) of \(n]\langle n>0\rangle\) by simp
finally show ?thesis .
qed
lemma two-pow-bitsize-bound: 2 ^bitsize \(n \leq 2 * n+1\)
using two-pow-bitsize-pos-bound[of \(n]\) by (cases n) simp-all
lemma bitsize-mono: \(n 1 \leq n 2 \Longrightarrow\) bitsize \(n 1 \leq\) bitsize n2
unfolding bitsize-is-floorlog by (rule floorlog-mono)

\subsection*{8.6.1 The next-power-of-2 function}
lemma power-of-2-recursion: \((\exists k .(n:: n a t)=2 へ k) \longleftrightarrow(n=1 \vee(n \bmod 2=0\) \(\wedge\left(\exists k . n \operatorname{div} 2=\right.\) 2 \(\left.\left.\left.^{\wedge} k\right)\right)\right)\)
proof
assume \(\exists k . n=2^{\wedge} k\)
then obtain \(k\) where \(k\)-def: \(n=2^{\wedge} k\) by blast
show \(n=1 \vee\left(n \bmod 2=0 \wedge\left(\exists k . n \operatorname{div} 2=2^{\wedge} k\right)\right)\)
using \(k\)-def by (cases \(k\) ) simp-all
next
assume \(n=1 \vee\left(n \bmod \mathscr{2}=0 \wedge\left(\exists k . n \operatorname{div} \mathscr{2}=\mathscr{2}^{\wedge} k\right)\right)\)
then consider \(n=1 \mid n \bmod 2=0 \wedge\left(\exists k . n \operatorname{div} 2=2^{\wedge} k\right)\) by argo
then show \(\exists k . n=2{ }^{\wedge} k\)
proof cases
case 1
then have \(n=2^{\wedge} 0\) by \(\operatorname{simp}\)
then show ?thesis by blast
next
```

 case 2
    ```
        then obtain \(k\) where \(n\) div \(2=2^{\wedge} k\) by blast
        with 2 have \(n=2{ }^{\wedge}\) Suc \(k\) by auto
        then show ?thesis by blast
    qed
qed
fun is-power-of-2 :: nat \(\Rightarrow\) bool where
is-power-of-2 \(0=\) False
| is-power-of-2 (Suc 0) \(=\) True
| is-power-of-2 \(n=((n \bmod 2=0) \wedge\) is-power-of-2 \((n \operatorname{div} 2))\)
lemma is-power-of-2-correct: is-power-of-2 \(n \longleftrightarrow\left(\exists k . n=2^{\wedge} k\right)\)
proof (induction \(n\) rule: is-power-of-2.induct)
case 1
then show? case by simp
next
case 2
then show ?case by (metis is-power-of-2.simps(2) nat-power-eq-Suc-0-iff)

\section*{next}
```

 case (3 va)
 let ?n = Suc (Suc va)
 have is-power-of-2 ? n = ((?n mod 2 = 0)^is-power-of-2 (?n div 2))
 by simp
 also have .. = ((?n mod 2 = 0) ^(\existsk. (?n div 2) = 2^k))
 using 3 by argo
 also have .. = (\existsk. ? n = 2 ^}k
 using power-of-2-recursion[of ? n] by simp
 finally show ?case.
 qed
fun next-power-of-2 :: nat => nat where
next-power-of-2 n = (if is-power-of-2 n then n else 2 ^ (bitsize n))
lemma next-power-of-2-lower-bound: next-power-of-2 k \geqk
apply (cases is-power-of-2 k)
subgoal by simp
subgoal premises prems
proof -
from prems have next-power-of-2 k-1 = 2`bitsize k-1 by simp also have ... = 2 ^(length (from-nat k)) - 1 using bitsize-eq by simp also have ... \geqk using to-nat-length-upper-bound[of from-nat k] by simp finally show ?thesis by simp qed done lemma next-power-of-2-upper-bound: assumes k\not=0 shows next-power-of-2 k\leq2*k apply (cases is-power-of-2 k) subgoal by simp subgoal premises prems proof - have 2 ^ (length (from-nat k) - 1) \leq to-nat (from-nat k) apply (intro to-nat-length-lower-bound-truncated) subgoal using assms by (cases k; simp) subgoal by simp done then have 2` length (from-nat k)\leq2 2 * to-nat (from-nat k)
using assms by (cases k; simp)
also have ... = 2 * k by simp
also have 2 ` length (from-nat k) = next-power-of-2 k
using prems bitsize-eq by simp
finally show ?thesis .
qed
done
lemma next-power-of-2-upper-bound': next-power-of-2 k \leq 2 * k+1

```
apply (cases \(k\) )
subgoal by \(\operatorname{simp}\)
subgoal using next-power-of-2-upper-bound \([\) of \(k]\) by simp done
lemma next-power-of-2-is-power-of-2: \(\exists k\). next-power-of-2 \(n=2 へ k\)
using is-power-of-2-correct by simp

\subsection*{8.7 Addition}
```

fun bit-add-carry :: bool \Rightarrow bool \Rightarrow bool \Rightarrow bool \times bool where
bit-add-carry False False False $=($ False, False $)$
| bit-add-carry False False True $=($ True, False $)$
| bit-add-carry False True False $=($ True, False $)$
| bit-add-carry False True True $=$ (False, True)
| bit-add-carry True False False $=($ True, False $)$
| bit-add-carry True False True $=($ False, True $)$
bit-add-carry True True False $=($ False, True $)$
| bit-add-carry True True True $=($ True, True $)$

```
lemma bit-add-carry-correct: bit-add-carry c \(x y=(a, b) \Longrightarrow\) eval-bool \(c+\) eval-bool \(x+\) eval-bool \(y=\) eval-bool \(a+2 *\) eval-bool \(b\)
by (cases \(c\); cases \(x\); cases \(y\) ) auto

\subsection*{8.7.1 Increment operation}
fun inc-nat :: nat-lsbf \(\Rightarrow\) nat-lsbf where
inc-nat []\(=[\) True \(]\)
| inc-nat (False \# xs) \(=\) True \# xs
| inc-nat \((\) True \(\#\) xs \()=\) False \# (inc-nat \(x s)\)
```

lemma length-inc-nat': length (inc-nat xs) = length xs + of-bool (to-nat xs +1\geq
2 ` length xs)
proof (induction xs rule: inc-nat.induct)
case 1
then show ?case by simp
next
case (2 xs)
then show ?case using to-nat-length-bound[of xs] by simp
next
case (3 xs)
then show ?case by simp
qed
lemma length-inc-nat-lower: length (inc-nat xs) \geq length xs
unfolding length-inc-nat' by simp
lemma length-inc-nat-upper: length (inc-nat xs) \leqlength xs +1
unfolding length-inc-nat' by simp

```
```

lemma inc-nat-nonempty: inc-nat xs \not= []
by (induction xs rule: inc-nat.induct) simp-all
lemma inc-nat-replicate-True: inc-nat (replicate m True) = replicate m False @
[True]
by (induction m) simp-all
lemma inc-nat-replicate-True-2: inc-nat (replicate m True @ False \# ys)= repli-
cate m False @ True \# ys
by (induction m) simp-all
lemma length-inc-nat-iff:length (inc-nat xs) = length xs \longleftrightarrow (\existsyszs.xs=ys @
False \# zs)
proof (intro iffI, rule ccontr)
assume \#ys zs.xs=ys @ False \# zs
then have }\foralli\in{0..<length xs }.xs!i= Tru
by (metis(full-types) atLeastLessThan-iff in-set-conv-nth split-list)
then have xs = replicate (length xs) True
by (simp only: list-is-replicate-iff)
then show length (inc-nat xs) = length xs \Longrightarrow False
using inc-nat-replicate-True
by (metis length-append-singleton length-replicate n-not-Suc-n)
next
assume \existsys zs.xs=ys @ False \# zs
then have }\existsnz\mp@subsup{s}{}{\prime}.xs=\mathrm{ replicate n True @ False \# zs'
using bit-strong-decomp-1 by fastforce
then show length (inc-nat xs) = length xs
using inc-nat-replicate-True-2 by fastforce
qed
lemma inc-nat-last-bit-True: length (inc-nat xs) = Suc (length xs) \Longrightarrow\existszs.inc-nat
xs=zs @ [True]
by (induction xs rule: inc-nat.induct) auto
lemma inc-nat-truncated: truncated xs \Longrightarrow truncated (inc-nat xs)
proof (induction xs rule: inc-nat.induct)
case 1
then show ?case using truncate-def by simp
next
case (2 xs)
then show ?case by (simp add: truncated-iff)
next
case (3 xs)
then show ?case by (simp add: truncated-iff inc-nat-nonempty split: if-splits)
qed
lemma inc-nat-correct: to-nat (inc-nat xs) = to-nat xs + 1
by (induction xs rule: inc-nat.induct) simp-all

```
```

lemma length-inc-nat: length (inc-nat xs) $=$ max (length xs) (floorlog 2 (to-nat xs
+1))
proof (induction xs rule: inc-nat.induct)
case 1
then show ?case by (simp add: compute-floorlog)
next
case (2 $x s$)
then show ?case using to-nat-length-bound[of False \# xs]
by (simp add: floorlog-leI)
next
case (3 xs)
then have length (inc-nat (True \# xs)) =Suc (max (length xs) (floorlog 2 (Suc
(to-nat $x s)$)))
by simp
also have $\ldots=\max ($ length $($ True $\#$ xs $))($ Suc (floorlog 2 $($ Suc (to-nat xs) $)))$
by simp
also have $\ldots=\max ($ length $($ True $\#$ xs $))($ floorlog $2(2$ * Suc (to-nat xs) $))$
apply (intro arg-cong2[where $f=\max]$ refl)
by (simp add: compute-floorlog)
finally show? case by simp
qed

```

\subsection*{8.7.2 Addition with a carry bit}
```

fun add-carry :: bool \Rightarrow nat-lsbf \Rightarrow nat-lsbf \Rightarrow nat-lsbf where
add-carry False [] $y=y$
| add-carry False $x[]=x$
| add-carry True [] $y=$ inc-nat y
| add-carry True $x[]=$ inc-nat x
\mid add-carry $c(x \# x s)(y \# y s)=($ let $(a, b)=b i t-a d d-c a r r y c x y$ in $a \#(a d d-c a r r y b$
xs ys))
lemma add-carry-correct: to-nat (add-carry c x y) =eval-bool $c+$ to-nat $x+$
to-nat y
proof (induction c x y rule: add-carry.induct)
case (1 y)
then show? case by simp
next
case (2vva)
then show? case by simp
next
case (3y)
then show? case using inc-nat-correct by simp
next
case ($4 v v a$)
then show ?case using inc-nat-correct by simp
next
case (5 cx xs y ys)
define $a b$ where $a=f s t(b i t-a d d-c a r r y c x y) b=s n d(b i t-a d d-c a r r y$ c $x y$)

```
```

 then have to-nat (add-carry \(c(x \# x s)(y \# y s))=\) to-nat (\(a \#\) add-carry b xs ys)
 by (simp add: case-prod-beta' Let-def)
 also have \(\ldots=\) eval-bool \(a+2 *\) to-nat (add-carry b xs ys) by simp
 also have \(\ldots=\) eval-bool \(a+2 *(\) eval-bool \(b+\) to-nat \(x s+\) to-nat ys \()\)
 using 5 a-b-def prod.collapse[of bit-add-carry c \(x\) y] by algebra
 also have \(\ldots=\) eval-bool \(c+\) eval-bool \(x+\) eval-bool \(y+2 *\) (to-nat \(x s+\) to-nat
 ys)
using bit-add-carry-correct a-b-def by (simp add: prod-eq-iff)
also have $\ldots=$ eval-bool $c+$ to-nat $(x \# x s)+$ to-nat $(y \# y s)$ by simp
finally show ?case .
qed
lemma length-add-carry': length (add-carry cxs ys) $=$ max (length xs) (length ys)

+ of-bool (to-nat xs + to-nat ys + of-bool $c \geq 2{ }^{\wedge} \max ($ length xs) (length ys))
proof (induction c xs ys rule: add-carry.induct)
case (1 y)
then show?case using to-nat-length-bound [of y] by simp
next
case (2vva)
then show ?case
using to-nat-length-bound[of va] by simp
next
case (3 y)
then show? case by (simp add: length-inc-nat')
next
case (4 vva)
then show ?case by (simp add: length-inc-nat')
next
case (5cxxs y ys)
have $l: 2^{\wedge}$ Suc $a \leq 2 * b+1 \longleftrightarrow 2$ ^Suc $a \leq 2 * b$ for $a b::$ nat
by fastforce
obtain $a b$ where bit-add-carry c $x y=(a, b)$ by fastforce
then have add-carry $c(x \# x s)(y \# y s)=a \#(a d d-c a r r y b$ xs ys) by simp
then have length (add-carry $c(x \# x s)(y \# y s))=1+\max$ (length xs) (length
$y s)+o f$-bool (2 ^max (length xs) (length ys) \leq to-nat $x s+$ to-nat ys + of-bool b)
using 5.IH[OF 〈bit-add-carry с $x y=(a, b)\rangle[$ symmetric $]$ refl $]$ by (simp only:
length-Cons)
also have $\ldots=\max ($ length $(x \# x s))($ length $(y \# y s))+$ of-bool $\left(2^{\wedge} \max \right.$
(length $x s)($ length $y s) \leq$ to-nat $x s+$ to-nat $y s+o f$-bool b)
by simp
also have $\ldots=\max ($ length $(x \# x s))($ length $(y \# y s))+$ of-bool (2 ^ max
$($ length $(x \# x s))($ length $(y \# y s)) \leq$ to-nat $(x \# x s)+$ to-nat $(y \# y s)+$ of-bool
c)
proof (intro arg-cong2[where $f=(+)]$ refl arg-cong[where $f=o f$-bool $]$)
have to-nat $(x \# x s)+$ to-nat $(y \# y s)+$ of-bool $c=$
$2 *$ to-nat $x s+2 *$ to-nat ys + of-bool $x+$ of-bool $y+o f$-bool c
by simp

```
also have \(\ldots=2 *\) to－nat \(x s+2 *\) to－nat ys + of－bool \(a+2 *\) of－bool \(b\) using bit－add－carry－correct［OF〈bit－add－carry c x \(y=(a, b)\rangle]\) by simp
finally have \(r\) ：to－nat \((x \# x s)+\) to－nat \((y \# y s)+\) of－bool \(c=\ldots\) ．
show（2＾max（length xs）（length ys）\(\leq\) to－nat \(x s+\) to－nat ys + of－bool b）\(=\) （2～max（length \((x \# x s))\)（length \((y \# y s)) \leq\) to－nat \((x \# x s)+\) to－nat \((y \#\) ys）+ of－bool \(c\) ）
unfolding \(r\) using \(l[\) of max（length xs）（length ys）to－nat \(x s+\) to－nat ys + of－bool b］
by auto
qed
finally show？case ．
qed
lemma length－add－carry：length（add－carry cxs ys）\(=\max (\max (\) length \(x s)\)（length
ys））（floorlog 2 （of－bool c + to－nat \(x s+\) to－nat ys）\()\)
proof（induction c xs ys rule：add－carry．induct）
case（1 y）
then show ？case using to－nat－length－bound［of y］ by（simp add：floorlog－leI）
next
case（2vva）
then show ？case using to－nat－length－bound［of v \＃va］
by（simp add：floorlog－leI）
next case（3 \(y\) ）
then show？？ase by（simp add：length－inc－nat）
next
case（4vva）
then show？？ase by（simp add：length－inc－nat）
next
case（5 c x xs y ys）
obtain \(a b\) where bit－add－carry c \(x y=(a, b)\) by fastforce
then have add－carry \(c(x \# x s)(y \# y s)=a \#(a d d-c a r r y b\) xs ys）by simp
then have length（add－carry c \((x \# x s)(y \# y s))=S u c(\max (\max\)（length \(x s)\)
（length ys））（floorlog \(2(\) of－bool \(b+\) to－nat \(x s+\) to－nat ys））\()\)
using 5 〈bit－add－carry c \(x y=(a, b)\) 〉 by（simp only：length－Cons）
also have \(\ldots=\max (\max (\) length \((x \# x s))(l e n g t h(y \# y s)))(1+\) floorlog 2
（of－bool \(b+\) to－nat \(x s+\) to－nat ys））
by \(\operatorname{simp}\)
also have \(\ldots=\max (\max (\) length \((x \# x s))(\) length \((y \# y s)))(\) floorlog 2 （of－bool \(c+\) to－nat \((x \# x s)+\) to－nat \((y \# y s)))\)
proof（cases of－bool \(a+2 *(\) of－bool \(b+\) to－nat \(x s+\) to－nat ys \()>0)\)
case True
then show ？thesis
proof（intro arg－cong2［where \(f=\) max］refl）
have floorlog 2 （of－bool c＋to－nat \((x \#\) xs \()+\) to－nat \((y \# y s))=\)
floorlog 2 （ \((\) of－bool \(c+\) of－bool \(x+\) of－bool \(y)+2 *\)（to－nat \(x s+\) to－nat ys））
by \(\operatorname{simp}\)
```

 also have ... = floorlog 2 ((of-bool a + 2 * of-bool b) + 2 * (to-nat xs +
 to-nat ys))
using bit-add-carry-correct[OF <bit-add-carry c x y = (a,b)>] by simp
also have ... = floorlog 2 (of-bool a + 2 * (of-bool b + to-nat xs + to-nat ys))
by simp
also have ... = 1 + floorlog 2 (of-bool b + to-nat xs + to-nat ys)
using compute-floorlog[of 2 of-bool a + 2 * (of-bool b + to-nat xs + to-nat
ys)] True
by simp
finally show ... = floorlog 2 (of-bool c + to-nat (x \# xs) + to-nat (y \# ys))
by simp
qed
next
case False
then have 01: of-bool a = 0 of-bool b = 0 to-nat xs = 0 to-nat ys = 0 by
simp-all
then have 02: of-bool c = 0 of-bool x = 0 of-bool y = 0
using bit-add-carry-correct[OF <bit-add-carry c x y = (a,b)>] by simp-all
from 01 02 show ?thesis by (simp add: floorlog-def)
qed
finally show ?case.
qed
lemma length-add-carry-lower:length (add-carry c xs ys) \geqmax (length xs) (length
ys)
unfolding length-add-carry' by simp
lemma length-add-carry-upper: length (add-carry c xs ys) \leq max (length xs) (length
ys) + 1
unfolding length-add-carry' by simp
lemma add-carry-last-bit-True: length (add-carry c xs ys) = max (length xs) (length
ys) + 1\Longrightarrow\existszs.add-carry c xs ys = zs @ [True]
proof (induction c xs ys rule: add-carry.induct)
case (1 y)
then show ?case by simp
next
case (2 v va)
then show ?case by simp
next
case (3 y)
then show ?case by (simp add: inc-nat-last-bit-True)
next
case (4vva)
then show ?case by (simp add: inc-nat-last-bit-True)
next
case (5 c x xs y ys)
obtain a b where bit-add-carry c x y = (a,b) by fastforce
then have 1: add-carry c (x \# xs) (y \# ys)=a\# (add-carry b xs ys)

```
```

 by }\operatorname{simp
 from 5 have length (add-carry b xs ys) = max (length (x # xs)) (length (y #
 ys))
using <bit-add-carry с x y = (a,b)> by auto
also have ... = max (length xs) (length ys) + 1 by simp
finally obtain zs where add-carry b xs ys =zs @ [True] using 5 <bit-add-carry
c x y = (a,b)>
by presburger
then show ?case using 1 by simp
qed
lemma add-carry-com: add-carry c xs ys =add-carry c ys xs
apply (intro nat-lsbf-eqI)
subgoal by (simp add: add-carry-correct)
subgoal by (simp only:length-add-carry' max.commute add.commute)
done
lemma add-carry-rNil[simp]: add-carry True y [] = inc-nat y
by (cases y; simp)
lemma add-carry-rNil-nocarry[simp]: add-carry False y [] = y
by (cases y; simp)
lemma add-carry-True-inc-nat:
add-carry True xs ys = inc-nat (add-carry False xs ys) ^
add-carry True xs ys = add-carry False (inc-nat xs) ys }
add-carry True xs ys = add-carry False xs (inc-nat ys)
proof (induction xs arbitrary: ys)
case Nil
then show ?case
apply (intro conjI)
subgoal by simp
subgoal
apply (cases ys)
subgoal by simp
subgoal for a ys'
by (cases a) simp-all
done
subgoal by simp
done
next
case (Cons a xs)
then show ?case
apply (cases a; cases ys)
subgoal by simp
subgoal for b ys'
apply (cases b)
subgoal by fastforce
subgoal by simp

```
```

 done
 subgoal by (simp add: add-carry-com)
 subgoal for b ys'
 apply (cases b)
 subgoal by fastforce
 subgoal by simp
 done
 done
 qed
lemma inc-nat-add-carry:
inc-nat (add-carry c xs ys) = add-carry c (inc-nat xs) ys ^
inc-nat (add-carry c xs ys) =add-carry c xs (inc-nat ys)
proof (cases c)
case True
then have
add-carry c (inc-nat xs) ys = inc-nat (add-carry False (inc-nat xs) ys)
add-carry c xs (inc-nat ys) = inc-nat (add-carry False xs (inc-nat ys))
using add-carry-True-inc-nat by simp-all
moreover have
add-carry False (inc-nat xs) ys = inc-nat (add-carry False xs ys)
using add-carry-True-inc-nat[of xs ys] by argo
moreover have add-carry False xs (inc-nat ys) = inc-nat (add-carry False xs
ys)
using add-carry-True-inc-nat[of xs ys] by argo
ultimately show ?thesis using add-carry-True-inc-nat True by simp
next
case False
then show ?thesis using add-carry-True-inc-nat[of xs ys] by auto
qed
lemma add-carry-inc-nat-simps:
add-carry True xs ys = inc-nat (add-carry False xs ys)
add-carry False (inc-nat xs) ys = inc-nat (add-carry False xs ys)
add-carry False xs (inc-nat ys) = inc-nat (add-carry False xs ys)
using inc-nat-add-carry[of - xs ys] add-carry-True-inc-nat[of xs ys]
by argo+
lemma add-carry-assoc: add-carry c2 (add-carry c1 xs ys) zs = add-carry c1 xs
(add-carry c2 ys zs)
apply (intro nat-lsbf-eqI)
subgoal by (simp add: add-carry-correct)
subgoal
proof -
let ?t1 = of-bool c1 + to-nat xs + to-nat ys
let ?t2 = of-bool c2 + to-nat ys + to-nat zs
let ?t3 = of-bool c1 +of-bool c2 + to-nat xs + to-nat ys + to-nat zs
have length (add-carry c2 (add-carry c1 xs ys) zs) = max (max (max (max

```
```

(length xs) (length ys)) (floorlog 2 ? 11)) (length zs))
(floorlog 2 ?t3)
unfolding length-add-carry add-carry-correct eval-bool-is-of-bool
by (intro arg-cong2[where $f=\max]$ refl arg-cong2[where $f=$ floorlog]) simp
also have $\ldots=\max (\max (\max (\max ($ floorlog 2 ? t 1$)$ (floorlog 2 ?t3) $)$ (length
xs)) (length ys)) (length zs)
using max.commute max.assoc by presburger
also have $\ldots=\max (\max (\max ($ floorlog 2 ?t3) $)($ length xs) $)($ length ys) $)($ length
zs) $\left(\right.$ is $\left.\ldots=? t_{4}\right)$
by (intro arg-cong2[where $f=$ max] refl max.absorb2 floorlog-mono) simp
finally have 1: length (add-carry c2 (add-carry c1 xs ys) zs) $=$? $t_{4} \cdot$
have length (add-carry c1 xs (add-carry c2 ys zs)) $=\max (\max ($ length $x s)$
($\max (\max ($ length ys) (length zs)) (floorlog 2 ?t2)))
(floorlog 2 ?t3)
unfolding length-add-carry add-carry-correct eval-bool-is-of-bool
by (intro arg-cong2[where $f=\max]$ refl arg-cong2[where $f=$ floorlog]) simp
also have $\ldots=\max (\max (\max (\max ($ floorlog 2 ?t2) $($ floorlog 2 ?t3) $)$ (length
$x s)$) (length ys)) (length $z s$)
using max.commute max.assoc by presburger
also have $\ldots=\max (\max (\max ($ floorlog 2 ?t3) $($ length $x s))($ length ys) $)($ length
$z s)$
by (intro arg-cong2[where $f=$ max] refl max.absorb2 floorlog-mono) simp
finally have 2: length (add-carry c1 xs (add-carry c2 ys zs)) $=$? t_{4}.
show ?thesis unfolding 12 by (rule refl)
qed
done
lemma truncated-add-carry:
assumes truncated xs truncated ys
shows truncated (add-carry c xs ys)
proof -
have length (add-carry c xs ys) =
$\max (\max ($ length $x s)($ length $y s))($ bitsize $(o f-b o o l c+t o-n a t x s+$ to-nat $y s))$
unfolding length-add-carry bitsize-is-floorlog by argo
also have $\ldots=\max (\max$ (bitsize (to-nat xs)) (bitsize (to-nat ys))) (bitsize
(of-bool $c+$ to-nat $x s+$ to-nat ys))
using truncated-iff' assms by algebra
also have $\ldots=$ bitsize (of-bool $c+$ to-nat $x s+$ to-nat ys)
using bitsize-mono by simp
also have $\ldots=$ bitsize (to-nat (add-carry c xs ys))
by (simp add: add-carry-correct)
finally show ?thesis unfolding truncated-iff' .
qed

```

\subsection*{8.7.3 Addition}
definition add-nat :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf where
```

add-nat x y = add-carry False x y
corollary length-add-nat-lower: length (add-nat xs ys) \geq max (length xs) (length
ys)
unfolding add-nat-def by (simp only:length-add-carry-lower)
corollary length-add-nat-upper: length (add-nat xs ys) \leq max (length xs) (length
ys) + 1
unfolding add-nat-def using length-add-carry-upper[of False xs ys] by simp
corollary add-nat-last-bit-True: length (add-nat xs ys) = max (length xs) (length
ys) + 1 \Longrightarrow \existszs.add-nat xs ys =zs @ [True]
unfolding add-nat-def by (simp add: add-carry-last-bit-True)
lemma add-nat-correct: to-nat (add-nat x y) = to-nat x + to-nat y
unfolding add-nat-def using add-carry-correct by simp
corollary add-nat-com: add-nat xs ys = add-nat ys xs
unfolding add-nat-def by (simp add: add-carry-com)
corollary add-nat-assoc: add-nat xs (add-nat ys zs) = add-nat (add-nat xs ys) zs
unfolding add-nat-def using add-carry-assoc by simp
corollary truncated-add-nat:
assumes truncated xs truncated ys
shows truncated (add-nat xs ys)
unfolding add-nat-def
by (intro truncated-add-carry assms)

```

\subsection*{8.8 Comparison and subtraction}

\subsection*{8.8.1 Comparison}
fun compare-nat-same-length-reversed \(::\) bool list \(\Rightarrow\) bool list \(\Rightarrow\) bool where compare-nat-same-length-reversed [] [] = True
| compare-nat-same-length-reversed (False\#xs) (False\#ys) = compare-nat-same-length-reversed xs ys
| compare-nat-same-length-reversed (True\#xs) (False\#ys) = False
| compare-nat-same-length-reversed (False\#xs) (True\#ys) = True
| compare-nat-same-length-reversed \((\operatorname{True} \# x s)(\) True\#ys \()=\) compare-nat-same-length-reversed xs ys
| compare-nat-same-length-reversed -- = undefined
lemma compare-nat-same-length-reversed-correct:
length \(x s=\) length \(y s \Longrightarrow\) compare-nat-same-length-reversed \(x s\) ys \(\longleftrightarrow\) to-nat (rev
\(x s) \leq t o-n a t(\) rev ys)
proof (induction xs ys rule: compare-nat-same-length-reversed.induct)
case 1
then show ?case by simp
next
```

 case (2 xs ys)
 have to-nat (rev (False # xs)) = to-nat (rev xs) to-nat (rev (False # ys))=
 to-nat (rev ys)
using to-nat-app by simp-all
then have to-nat (rev (False \# xs)) \leq to-nat (rev (False \# ys)) \longleftrightarrow to-nat (rev
xs)\leqto-nat(rev ys)
by simp
then show ?case using 2 by simp
next
case (3 xs ys)
have to-nat (rev (True \# xs)) = 2 ^ (length xs) + to-nat (rev xs)
using to-nat-app by simp
also have ... > to-nat (rev ys)
using 3 to-nat-length-upper-bound[of rev ys] leI le-add-diff-inverse2 by fastforce
also have to-nat (rev ys) = to-nat (rev (False \# ys))
using to-nat-app by simp
finally have to-nat (rev (True \# xs)) > to-nat (rev (False \# ys)).
thus ?case using 3 by simp
next
case (4 xs ys)
have to-nat (rev (False \# xs)) = to-nat (rev xs)
using to-nat-app by simp
also have ... \leq2^ (length xs)
using to-nat-length-upper-bound[of rev xs] by simp
also have ... \leq to-nat (rev (True \# ys))
using to-nat-app 4 by simp
finally have to-nat (rev (False \# xs)) \leq to-nat (rev (True \# ys)).
thus ?case using 4 by simp
next
case (5 xs ys)
have to-nat (rev (True \# xs)) = 2 ^ (length xs) + to-nat (rev xs) to-nat (rev
(True \# ys)) = 2^ (length ys) + to-nat (rev ys)
using to-nat-app by simp-all
then have to-nat (rev (True \# xs)) \leq to-nat (rev (True \# ys)) \longleftrightarrow to-nat (rev
xs)\leqto-nat (rev ys)
using 5 by simp
then show ?case using 5 by simp
next
case (6-1 va)
then show ?case by simp
next
case (6-2 v va)
then show ?case by simp
next
case (6-3 v va)
then show ?case by simp
next
case (6-4 va)
then show ?case by simp

```

\section*{qed}
fun compare-nat-same-length :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) bool where
compare-nat-same-length xs ys = compare-nat-same-length-reversed (rev xs) (rev ys)
lemma compare-nat-same-length-correct:
length \(x s=\) length \(y s \Longrightarrow\) compare-nat-same-length \(x s\) ys \(=(\) to-nat \(x s \leq\) to-nat ys)
using compare-nat-same-length-reversed-correct by simp
definition make-same-length :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf \(\times\) nat-lsbf where make-same-length xs ys \(=(\) let \(n=\max (\) length \(x s)(\) length ys) in \(((\) fill \(n x s),(\) fill \(n\) ys)))
lemma make-same-length-correct:
assumes \((\) fill-xs, fill-ys) \(=\) make-same-length \(x s\) ys
shows length fill-ys \(=\) length fill-xs
length fill-xs \(=\max (\) length \(x s)(\) length \(y s)\)
to-nat fill-xs \(=\) to-nat \(x s\)
to-nat fill-ys \(=\) to-nat ys
using assms by (simp-all add: Let-def make-same-length-def)
definition compare-nat :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) bool where
compare-nat xs ys \(=(\) let \((\) fill-xs, fill-ys \()=\) make-same-length xs ys in compare-nat-same-length
fill-xs fill-ys)
lemma compare-nat-correct: compare-nat xs ys \(=(\) to-nat \(x s \leq t o-n a t y s)\)
proof -
obtain fill-xs fill-ys where fills-def: make-same-length xs ys \(=(\) fill-xs, fill-ys \()\)
by fastforce
then show ?thesis unfolding compare-nat-def Let-def
using make-same-length-correct[OF fills-def[symmetric]]
using compare-nat-same-length-reversed-correct[of rev fill-xs rev fill-ys]
by \(\operatorname{simp}\)
qed

\subsection*{8.8.2 Subtraction}
definition subtract-nat :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf where
subtract-nat xs ys \(=(\) if compare-nat xs ys then [] else
let \((\) fill-xs, fill-ys \()=\) make-same-length xs ys in
butlast (add-carry True fill-xs (map Not fill-ys)))
lemma add-complement: add-nat xs (map Not xs) = replicate (length xs) True
proof (induction xs)
case Nil
then show ?case unfolding add-nat-def by simp
next
```

 case (Cons a xs)
 have add-nat (a# xs) (map Not (a# xs)) = True # (add-carry False xs (map
 Not xs))
unfolding add-nat-def by (cases a) simp-all
also have ... = True \# (replicate (length xs) True)
using Cons.IH by (simp add: add-nat-def)
finally show?case by simp
qed
lemma to-nat-complement: to-nat (map Not xs) = 2 ^(length xs) - 1 - to-nat
xs
using add-complement[of xs] to-nat-replicate-true[of length xs] add-nat-correct[of
xs map Not xs]
by simp
lemma to-nat-butlast:zs = xs @ [True] \Longrightarrow to-nat (butlast zs) = to-nat zs - 2 ^
length xs
using to-nat-app[of xs [True]] by simp
lemma inc-nat-true-prefix[simp]: inc-nat (replicate n True @ [False] @ ys)=repli-
cate n False @ [True] @ ys
by (induction n arbitrary: ys) simp-all
lemma length-inc-nat-aux:zs=replicate n True @ [False] @ ys \Longrightarrowlength (inc-nat
zs)= length zs
using inc-nat-true-prefix[of n ys] by simp
lemma length-inc-nat-aux-2: length (inc-nat (xs @ [False] @ ys)) = length (xs @
[False] @ ys)
proof -
define zs where zs=xs @ [False] @ ys
with bit-strong-decomp-1 [of zs False] obtain ys' n where zs = replicate n True
@ [False] @ ys'
by auto
then show ?thesis using length-inc-nat-aux zs-def by simp
qed
lemma subtract-nat-aux: to-nat (subtract-nat xs ys) = (to-nat xs) - (to-nat ys) ^
length (subtract-nat xs ys) \leqmax (length xs) (length ys)
proof (cases compare-nat xs ys)
case True
then show ?thesis using compare-nat-correct unfolding subtract-nat-def by
simp
next
case False
obtain fill-xs fill-ys where fills-def: make-same-length xs ys =(fill-xs, fill-ys)
by fastforce
note fills-props = make-same-length-correct[OF fills-def[symmetric]]

```
define \(n\) where \(n=\max\)（length \(x s\) ）（length ys）
then have length fill－xs \(=n\) length fill－ys \(=n\) using fills－props by auto
from False have to－nat fill－xs \(>\) to－nat fill－ys
using fills－props compare－nat－correct by simp
then have \(n>0\) using＜length fill－xs \(=n\) 〉 by auto
let ？add \(=\) add－carry True fill－xs（map Not fill－ys）
have subtract－nat－xs－ys：subtract－nat xs ys＝butlast ？add
unfolding subtract－nat－def using False fills－def by simp
have to－nat fill－ys \(\leq 2{ }^{\wedge} n-1\) to－nat fill－xs \(\leq 2{ }^{\wedge} n-1\) to－nat（map Not fill－ys） \(\leq 2^{\wedge} n-1\)
subgoal using to－nat－length－upper－bound \([\) of fill－ys］〈length fill－ys \(=n\rangle\) by argo subgoal using to－nat－length－upper－bound［of fill－xs］〈length fill－xs \(=n\) 〉 by argo subgoal using to－nat－length－upper－bound［of map Not fill－ys］«length fill－ys＝ \(n\) ）by simp
done
then have to－nat ？add \(\leq\left(2^{\wedge} n-1\right)+\left(2^{\wedge} n-1\right)+1\) unfolding add－carry－correct by \(\operatorname{simp}\)
also have \(\ldots=2^{\wedge}(n+1)-2+1\) by \(\operatorname{simp}\)
also have \(\ldots=\mathcal{Z}^{\wedge}(n+1)-1\)
using Nat．diff－diff－right［of \(\left.122^{\wedge}(n+1)\right]\) Nat．diff－add－assoc2［of 2 2 \({ }^{\wedge}(n+\) 1） 1\(]\)
by \(\operatorname{simp}\)
finally have to－nat ？add \(\leq \ldots\) ．
from 〈to－nat fill－xs \(>\) to－nat fill－ys〉 have to－nat fill－xs \(\geq\) to－nat fill－ys +1 by simp
then have to－nat fill－xs \(+2^{\wedge} n \geq 2^{\wedge} n+\) to－nat fill－ys +1 by simp
then have to－nat fill－xs \(+\left(2^{\wedge} n-1\right.\)－to－nat fill－ys \() \geq 2{ }^{\wedge} n\) by simp
then have to－nat fill－xs＋to－nat（map Not fill－ys）\(\geq 2\)～n
using to－nat－complement［of fill－ys］〈length fill－ys \(=n\rangle\) by simp
then have to－nat ？add \(\geq\) 2 \(^{\text {ヘ }} n\)
using add－carry－correct fills－props by simp
then have length ？add \(\geq n+1\)
using to－nat－bound－to－length－bound by simp
then have length ？add \(=n+1\)
using length－add－carry－upper［of True fill－xs map Not fill－ys］〈length fill－xs \(=n\) 〉
〈length fill－ys \(=n\) 〉
by \(\operatorname{simp}\)
then obtain \(z s\) where ？add \(=z s\)＠［True］length \(z s=n\)
using add－carry－last－bit－True［of True fill－xs map Not fill－ys］〈length fill－xs \(=n\) 〉〈length fill－ys \(=n\rangle\)
by auto
then have 1：to－nat（butlast ？add \()=\) to－nat fill－xs + to－nat \((\) map Not fill－ys \()+\) \(1-2^{\wedge} n\)
```

 unfolding to-nat-butlast[OF <?add = zs @ [True]>]
 using add-carry-correct by (metis Suc-eq-plus1 add.assoc eval-bool.simps(1)
 plus-1-eq-Suc)
also have ... = to-nat fill-xs + (2`n - 1 - to-nat fill-ys) + 1 - 2 ^n unfolding to-nat-complement[of fill-ys] <length fill-ys = n> by (rule reff) also have ... = to-nat fill-xs + (2^n - 1) - to-nat fill-ys + 1 - 2^n using le-add-diff-inverse[OF <to-nat fill-ys \leq2 ^ n - 1〉] by linarith also have ... = to-nat fill-xs - to-nat fill-ys + (2`n - 1) - (2^n n 1)
using <to-nat fill-xs > to-nat fill-ys> by simp
also have ... = to-nat fill-xs - to-nat fill-ys by simp
finally have 2: to-nat (subtract-nat xs ys) = to-nat xs - to-nat ys
unfolding subtract-nat-xs-ys fills-props .
have 3: length (butlast ?add) = n
using <length ?add = n + 1> by simp
show ?thesis
apply (intro conjI)
subgoal by (fact 2)
subgoal using 3 unfolding subtract-nat-xs-ys n-def[symmetric] by simp
done
qed
corollary subtract-nat-correct: to-nat (subtract-nat xs ys)=(to-nat xs) - (to-nat
ys)
using subtract-nat-aux by simp
corollary length-subtract-nat-le: length (subtract-nat xs ys) \leq max (length xs)
(length ys)
using subtract-nat-aux by simp

```

\section*{8.9 (Grid) Multiplication}
```

fun grid-mul-nat :: nat-lsbf \Rightarrow nat-lsbf \Rightarrow nat-lsbf where grid-mul-nat [] - = []
| grid-mul-nat (False\#xs) y = False \# (grid-mul-nat xs y)
| grid-mul-nat (True\#xs) y =add-nat (False \# (grid-mul-nat xs y)) y
lemma grid-mul-nat-correct: to-nat (grid-mul-nat x y) = to-nat x * to-nat y
by (induction x y rule: grid-mul-nat.induct) (simp-all add: add-nat-correct)
lemma length-grid-mul-nat: length (grid-mul-nat xs ys) \leqlength xs + length ys
proof (induction xs ys rule: grid-mul-nat.induct)
case (1 uu)
then show ?case by simp
next
case (2 xs y)
then show ?case by simp
next

```
```

 case (3 xs y)
 show ?case
 proof (rule ccontr)
 assume }\neg\mathrm{ length (grid-mul-nat (True # xs) y) < length (True # xs) + length
 y
then have l: length (grid-mul-nat (True \# xs) y) = length xs + length y + 2
using length-add-nat-upper[of False \# grid-mul-nat xs y y] 3 by simp
then have length (add-nat (False \# grid-mul-nat xs y) y) = max (length (False

grid-mul-nat xs y)) (length y) + 1

 using length-add-nat-upper[of False # grid-mul-nat xs y y] 3 by simp
 then obtain as where add-nat (False # grid-mul-nat xs y) y = as @ [True]
 using add-nat-last-bit-True[of False # grid-mul-nat xs y y] by auto
 then have as-def:grid-mul-nat (True # xs) y=as @ [True] by simp
 then have length-as: length as = length xs + length y + 1 using l by simp
 from as-def have m: to-nat (True # xs)* to-nat y = to-nat (as @ [True])
 using grid-mul-nat-correct by metis
 also have to-nat (as @ [True]) \geq2 ^ length as
 using to-nat-length-lower-bound by simp
 also have 2` length as =2 ^ (length xs + length y + 1) using length-as by
 simp
also have to-nat (True \# xs)* to-nat y<2^(length xs + 1)* 2^ length y
apply (intro mult-less-le-imp-less)
subgoal using to-nat-length-upper-bound[of True \# xs] by simp
subgoal using to-nat-length-upper-bound[of y] by simp
subgoal by simp
subgoal
apply (rule ccontr)
using m to-nat-length-lower-bound[of as] by simp
done
finally show False by (simp add: power-add)
qed
qed

```

\subsection*{8.10 Syntax bundles}
abbreviation shift-right-flip xs \(n \equiv\) shift-right n xs
bundle nat-lsbf-syntax
begin
notation add-nat (infixl \(+_{n} 65\) )
notation compare-nat (infixl \(\leq_{n} 50\) )
notation subtract-nat (infixl \(-_{n} 65\) )
notation grid-mul-nat (infixl \(*_{n} 70\) )
notation shift-right-flip (infixl \(\gg_{n} 55\) )
end
bundle no-nat-lsbf-syntax
begin
```

 no-notation add-nat (infixl +}\mp@subsup{}{n}{}65\mathrm{ 6)
 no-notation compare-nat (infixl }\mp@subsup{\leq}{n}{}50\mathrm{)
 no-notation subtract-nat (infixl - }\mp@subsup{n}{n}{65\mathrm{)}
 no-notation grid-mul-nat (infixl *n
 no-notation shift-right-flip (infixl >>>n
 end
unbundle nat-lsbf-syntax
end
theory Karatsuba-Runtime-Lemmas
imports Complex-Main Akra-Bazzi.Akra-Bazzi-Method
begin

```

An explicit bound for a specific class of recursive functions.
```

context
fixes a b c d :: nat
fixes f:: nat }=>\mathrm{ nat
assumes small-bounds: f 0 \leqaf(Suc 0) \leqa
assumes recursive-bound: \n. n>1\Longrightarrowfn\leqc*n+d+f(n div 2)
begin
private fun g}\mathrm{ where
g 0 = a
g(Suc 0) =a
| gn=c*n+d+g(ndiv 2)
private lemma f-g-bound: fn\leqgn
apply (induction n rule: g.induct)
subgoal using small-bounds by simp
subgoal using small-bounds by simp
subgoal for x using recursive-bound[of Suc (Suc x)] by auto
done
private lemma g-mono-aux: a\leqg n
by (induction n rule: g.induct) simp-all
private lemma g-mono: m\leqn\Longrightarrowgm\leqgn
proof (induction m arbitrary: n rule: g.induct)
case 1
then show ?case using g-mono-aux by simp
next
case 2
then show ?case using g-mono-aux by simp
next
case (3 x)
then obtain y where n=Suc (Suc y) using Suc-le-D by blast
have g(Suc (Suc x)) =c*Suc (Suc x) +d +g(Suc (Suc x) div 2)
by simp

```
```

 also have ... \leqc*n+d+g(n div 2)
 using 3
 by (metis add-mono add-mono-thms-linordered-semiring(3) div-le-mono nat-mult-le-cancel-disj)
 finally show ?case using «n = Suc (Suc y)〉 by simp
 qed
private lemma g-powers-of-2:g(2 `^ n) = d*n +c*(2^(n+1)- 2) +a proof (induction n) case (Suc n) then obtain n' where 2 ^ Suc n = Suc (Suc n') by (metis g.cases less-exp not-less-eq zero-less-Suc) then have g(2 ^ Suc n) = c* 2`Suc n +d + g(2` n) by (metis g.simps(3) nonzero-mult-div-cancel-right power-Suc2 zero-neq-numeral) also have .. = c* 2 ^ Suc n + d + d*n+c* (2` (n+1) - 2) +a
using Suc by simp
also have .. = d* Suc n + c* (2^Suc n + (2^ (n+1)-2)) +a
using add-mult-distrib2[symmetric, of c] by simp
finally show ?case by simp
qed simp
private lemma pow-ineq:
assumes m\geq(1 :: nat)
assumes p\geq2
shows p^ m>m
using assms
apply (induction m)
subgoal by simp
subgoal for m
by (cases m) (simp-all add: less-trans-Suc)
done
private lemma next-power-of-2:
assumes m\geq(1 :: nat)
shows \existsnk.m=2^n+k^k<2^n
proof -
from ex-power-ivl1[OF order.refl assms] obtain n where 2 ^n mmm<2 ^
(n+1)
by auto
then have m=2^ n + (m-2 ^n)m-2`n< 2` n by simp-all
then show ?thesis by blast
qed
lemma div-2-recursion-linear: f n \leq (2*d+4*c)*n+a
proof (cases n\geq1)
case True
then obtain mk where n=2 ^ m + kk< 2^ m using next-power-of-2 by
blast
have f n\leqgn using f-g-bound by simp
also have ... \leqg(2^ m + 2` m) using <n= 2^ m + k><k< 2` m> g-mono

```
    also have \(\ldots=d *\) Suc \(m+c *\left(\right.\) 2 \(^{\wedge}(\) Suc \(\left.m+1)-2\right)+a\)
        using \(g\)-powers-of-2[of Suc m]
        apply (subst mult-2[symmetric])
        apply (subst power-Suc[symmetric])
    also have \(\ldots \leq d *\) Suc \(m+c * 2^{\wedge}(\) Suc \(m+1)+a\) by simp
    also have \(\ldots \leq d * 2^{\wedge}\) Suc \(m+c * 2^{\wedge}(\) Suc \(m+1)+a\) using less-exp \([\) of Suc
\(m\) ]
    by (meson add-le-mono less-or-eq-imp-le mult-le-mono)
    also have \(\ldots=(2 * d+4 * c) * 2^{\wedge} m+a\) using mult.assoc add-mult-distrib
by \(\operatorname{simp}\)
    also have \(\ldots \leq(2 * d+4 * c) * n+a\)
            using \(\left\langle n=2{ }^{\wedge} m+k\right\rangle\) power-increasing[of \(\left.m n\right]\) by simp
    finally show ?thesis.
next
    case False
    then have \(n=0\) by \(\operatorname{simp}\)
    then show ?thesis using small-bounds by simp
qed
end

General Lemmas for Landau notation.
lemma landau-o-plus-aux':
fixes \(f g\)
assumes \(f \in o[F](g)\)
shows \(O[F](g)=O[F](\lambda x . f x+g x)\)
apply (intro equalityI subsetI)
subgoal using landau-o.big.trans[OF - landau-o.plus-aux[OF assms]] by simp
subgoal for \(h\)
using assms by simp
done
lemma powr-bigo-linear-index-transformation:
fixes \(f l::\) nat \(\Rightarrow\) nat
fixes \(f::\) nat \(\Rightarrow\) real
assumes \((\lambda x\). real \((f l x)) \in O(\lambda n\). real \(n)\)
assumes \(f \in O(\lambda n\). real \(n\) powr \(p)\)
assumes \(p>0\)
shows \(f \circ f l \in O(\lambda n\). real \(n\) powr \(p)\)
proof -
obtain \(c 1\) where \(c 1>0 \forall_{F} x\) in sequentially. norm \((\) real \((f x)) \leq c 1 *\) norm (real \(x\) )
using landau-o.bigE[OF assms(1)] by auto
then obtain \(N 1\) where \(f l\)-bound: \(\forall x . x \geq N 1 \longrightarrow \operatorname{norm}(\) real \((f l x)) \leq c 1 *\) norm (real \(x\) )
unfolding eventually-at-top-linorder by blast
obtain \(c \mathcal{Z}\) where \(c \mathcal{Z}>0 \forall_{F} x\) in sequentially. norm \((f x) \leq c \mathcal{Z} *\) norm (real \(x\)
```

powr p)
using landau-o.bigE[OF assms(2)] by auto
then obtain N2 where f-bound: $\forall x . x \geq$ N2 $\longrightarrow \operatorname{norm}(f x) \leq c \mathcal{Z} *$ norm (real
x powr p)
unfolding eventually-at-top-linorder by blast
define $c f::$ real where $c f=\operatorname{Max}\{\operatorname{norm}(f y) \mid y . y \leq N 2\}$
then have $c f \geq 0$ using Max-in[of $\{$ norm $(f y) \mid y . y \leq N Q\}]$ norm-ge-zero by
fastforce
define c where $c=c 2 * c 1$ powr p
then have $c>0$ using $\langle c 1>0\rangle\langle c 2>0\rangle$ by simp
have $\forall x . x \geq N 1 \longrightarrow \operatorname{norm}(f(f l x)) \leq c f+c *$ norm (real $x)$ powr p
proof (intro allI impI)
fix x
assume $x \geq N 1$
show norm $(f(f l x)) \leq c f+c * \operatorname{norm}($ real $x)$ powr p
proof (cases fl $x \geq$ N2)
case True
then have norm $(f(f l x)) \leq c 2 *$ norm (real $(f l x)$ powr p)
using f-bound by simp
also have $\ldots=c \mathcal{Z} * \operatorname{norm}(\operatorname{real}(f l x))$ powr p
by simp
also have $\ldots \leq c \mathcal{Z} *(c 1 * \operatorname{norm}($ real $x))$ powr p
apply (intro mult-mono order.refl powr-mono2 norm-ge-zero)
subgoal using $\langle p>0\rangle$ by simp
subgoal using $f l$-bound $\langle x \geq N 1\rangle$ by simp
subgoal using $\langle c 2>0\rangle$ by simp
subgoal by simp
done
also have $\ldots=c 2 *(c 1$ powr $p * \operatorname{norm}($ real $x)$ powr $p)$
apply (intro arg-cong[where $f=(*)$ c2] powr-mult norm-ge-zero)
using $\langle c 1>0\rangle$ by simp
also have $\ldots=c *$ norm (real x) powr p unfolding c-def by simp
also have $\ldots \leq c f+c *$ norm (real x) powr p using $\langle c f \geq 0\rangle$ by simp
finally show ?thesis.
next
case False
then have norm $(f(f l x)) \leq c f$ unfolding $c f$-def
by (intro Max-ge) auto
also have $\ldots \leq c f+c *$ norm (real x) powr p
using $\langle c>0\rangle$ by simp
finally show ?thesis.
qed
qed
then have $f \circ f l \in O(\lambda x . c f+c *($ real $x)$ powr $p)$
apply (intro landau-o.big-mono)
unfolding eventually-at-top-linorder comp-apply by fastforce
also have $\ldots=O(\lambda x . c *($ real $x)$ powr $p)$

```
```

 proof (intro landau-o-plus-aux'[symmetric])
 have}(\lambdax.cf)\inO(\lambdax. real x powr 0) by sim
 moreover have (}\lambdax\mathrm{ . real x powr 0) }\ino(\lambdax\mathrm{ . real x powr p)
 using iffD2[OF powr-smallo-iff, OF filterlim-real-sequentially sequentially-bot
 <p>0\rangle].
ultimately have (}\lambdax.cf)\ino(\lambdax. real x powr p
by (rule landau-o.big-small-trans)
also have ···}=o(\lambdax.c*(\mathrm{ real x) powr p)
using landau-o.small.cmult }\langlec>0\rangle\mathrm{ by simp
finally show (}\lambdax.cf)\in···
qed
also have ... = O(\lambdax. (real x) powr p) using landau-o.big.cmult 〈c> 0` by simp
finally show ?thesis.
qed
lemma real-mono: (a\leqb)=(real a s real b)
by simp
lemma real-linear: real (a+b)= real a + real b
by simp
lemma real-multiplicative: real (a*b) = real a* real b
by simp
lemma (in landau-pair) big-1-mult-left:
fixes fgh
assumes f\inL F(g)h\inLF (\lambda-. 1)
shows (\lambdax.hx*fx) \inLF(g)
proof -
have (\lambdax.fx*hx)\inLF(g) using assms by (rule big-1-mult)
also have (\lambdax.fx*hx)=(\lambdax.hx*fx) by auto
finally show ?thesis .
qed
lemma norm-nonneg: }x\geq0\Longrightarrow\mathrm{ norm }x=x\mathrm{ by simp
lemma landau-mono-always:
fixes fg
assumes }\bigwedgex.fx\geq(0 :: real) \bigwedgex.g x \geq0
assumes \x.fx\leqgx
shows }f\inO[F](g
apply (intro landau-o.bigI[of 1])
using assms by simp-all
end

```

\section*{9 Running time of Nat-LSBF}
imports Nat-LSBF ../Karatsuba-Runtime-Lemmas ../ Main-TM ../Estimation-Method begin

\subsection*{9.1 Truncating and filling}
fun truncate-reversed-tm :: nat-lsbf \(\Rightarrow\) nat-lsbf tm where truncate-reversed-tm [] \(=1\) return []
\(\mid\) truncate-reversed-tm \((x \# x s)=1\) (if \(x\) then return ( \(x \#\) xs) else truncate-reversed-tm xs)
lemma val-truncate-reversed-tm[simp, val-simp]: val (truncate-reversed-tm xs) = truncate-reversed \(x s\)
by (induction xs rule: truncate-reversed-tm.induct) simp-all
lemma time-truncate-reversed-tm-le: time (truncate-reversed-tm xs) \(\leq\) length xs + 1
by (induction xs rule: truncate-reversed-tm.induct) simp-all
definition truncate-tm :: nat-lsbf \(\Rightarrow\) nat-lsbf tm where
truncate-tm \(x s=1\) do \{
rev-xs \(\leftarrow\) rev-tm xs;
truncate-rev-xs \(\leftarrow\) truncate-reversed-tm rev-xs;
rev-tm truncate-rev-xs
\}
lemma val-truncate-tm[simp, val-simp]: val (truncate-tm xs) \(=\) truncate \(x s\)
by (simp add: truncate-tm-def Nat-LSBF.truncate-def)
lemma time-truncate-tm-le: time (truncate-tm xs) \(\leq 3 *\) length \(x s+6\)
using add-mono[OF time-truncate-reversed-tm-le[of rev xs] truncate-reversed-length-ineq[of rev \(x s\) ]]
by (simp add: truncate-tm-def)
definition fill-tm :: nat \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf tm where
fill-tm \(n x s=1\) do \{
\(k \leftarrow\) length-tm \(x s ;\)
\(l \leftarrow n-{ }_{t} k ;\)
zeros \(\leftarrow\) replicate-tm l False;
xs \(@_{t}\) zeros
\}
lemma val-fill-tm[simp, val-simp]: val (fill-tm \(n\) xs \()=\) fill \(n\) xs
by (simp add: fill-tm-def fill-def)
lemma com-f-of-min-max: \(f a b=f b a \Longrightarrow f(\min a b)(\max a b)=f a b\)
by (cases \(a \leq b\); simp add: max-def min-def)
lemma add-min-max: min ( \(a::{ }^{\prime} a:\) : ordered-ab-semigroup-add) \(b+\max a b=a+\) b
by (intro com-f-of-min-max add.commute)
lemma time-fill-tm: time \((\) fill-tm \(n x s)=2 *\) length \(x s+n+5\)
by (simp add: fill-tm-def time-replicate-tm add-min-max)
lemma time-fill-tm-le: time \((\) fill-tm \(n x s) \leq 3 * \max n(l e n g t h x s)+5\)
unfolding time-fill-tm by simp

\subsection*{9.2 Right-shifts}
definition shift-right-tm \(::\) nat \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf tm where
\[
\text { shift-right-tm } n x s=1 \text { do }\{
\]
\(r \leftarrow\) replicate-tm \(n\) False;
\(r @_{t} x s\)
\}
lemma val-shift-right-tm[simp, val-simp]: val (shift-right-tm \(n x s)=x s \gg_{n} n\) by (simp add: shift-right-tm-def shift-right-def)
lemma time-shift-right-tm[simp]: time (shift-right-tm nxs) \(=2 * n+3\) by (simp add: shift-right-tm-def time-replicate-tm)

\subsection*{9.3 Subdividing lists}

\subsection*{9.3.1 Splitting a list in two blocks}
definition split-at-tm :: nat \(\Rightarrow\) 'a list \(\Rightarrow\) ('a list \(\times\) 'a list) tm where
split-at-tm \(k x s=1\) do \(\{\)
\(x s 1 \leftarrow\) take-tm \(k x s\);
\(x s 2 \leftarrow d r o p-t m k x s ;\)
return (xs1, xs2)
\}
lemma val-split-at-tm[simp, val-simp]: val (split-at-tm \(k x s)=\) split-at \(k x s\) unfolding split-at-tm-def by simp
lemma time-split-at-tm: time (split-at-tm \(k x s)=2 * \min k(l e n g t h ~ x s)+3\) unfolding split-at-tm-def tm-time-simps time-take-tm time-drop-tm by simp
definition split-tm :: nat-lsbf \(\Rightarrow\) (nat-lsbf \(\times\) nat-lsbf) tm where split-tm \(x s=1\) do \(\{\) \(n \leftarrow\) length-tm xs; \(n\)-div-2 \(\leftarrow n\) div \(_{t}\) 2; split-at-tm n-div-2 xs
\}
lemma val-split-tm \([\) simp, val-simp \(]\) : val \((\) split-tm \(x s)=\) split \(x s\) by (simp add: split-tm-def split-def Let-def)
lemma time-split-tm-le: time (split-tm xs) \(\leq 10 *\) length \(x s+16\)
using time-divide-nat-tm-le[of length xs 2]
```

by (simp add: split-tm-def time-split-at-tm)

```

\subsection*{9.3.2 Splitting a list in multiple blocks}
```

fun subdivide-tm :: nat $\Rightarrow{ }^{\prime} a$ list $\Rightarrow{ }^{\prime} a$ list list $t m$ where
subdivide-tm $0 x s=1$ undefined
| subdivide-tm n [] =1 return []
| subdivide-tm n xs $=1$ do \{
$r \leftarrow t a k e-t m n x s ;$
$s \leftarrow$ drop-tm $n x s$;
$r s \leftarrow$ subdivide-tm $n s$;
return ($r \# r s$)
\}
lemma val-subdivide-tm[simp, val-simp]: $n>0 \Longrightarrow$ val (subdivide-tm n xs) $=$ subdivide n xs
by (induction n xs rule: subdivide.induct) simp-all
lemma time-subdivide-tm-le-aux:
assumes $n>0$
shows time (subdivide-tm nxs) $\leq k *(2 * n+3)+$ time (subdivide-tm n (drop $(k * n) x s)$)
proof (induction k arbitrary: xs)
case (Suc k)
show ? case
proof (cases xs)
case Nil
then show? thesis by simp
next
case (Cons a l)
then have time (subdivide-tm $n(a \# l)) \leq 2 * n+3+$ time (subdivide-tm n
(drop $n(a \# l))$)
using gr0-implies-Suc[OF assms] by (auto simp: time-take-tm time-drop-tm)
also have $\ldots \leq 2 * n+3+(k *(2 * n+3)+$ time (subdivide-tm n (drop
$(k * n)(\operatorname{drop} n(a \# l)))))$
by (intro add-mono order.refl Suc)
also have $\ldots=\operatorname{Suc} k *(2 * n+3)+$ time (subdivide-tm $n(\operatorname{drop}(S u c k * n)$
($a \# l$))
by (simp add: add.commute)
finally show ?thesis using Cons by simp
qed
qed simp
lemma time-subdivide-tm-le:
fixes $x s::$ 'a list
assumes $n>0$
shows time (subdivide-tm $n x s) \leq 5 *$ length $x s+2 * n+4$
proof -
define k where $k=$ length xs div $n+1$

```
then have \(k * n \geq\) length xs using assms
by (meson div-less-iff-less-mult less-add-one order-less-imp-le)
then have drop-Nil: drop \((k * n)\) xs \(=[]\) by simp
have time (subdivide-tm \(n x s) \leq k *(2 * n+3)+\) time (subdivide-tm \(n\) ([] :: 'a list))
using time-subdivide-tm-le-aux[OF assms, of xs k] unfolding drop-Nil.
also have \(\ldots=k *(2 * n+3)+1\) using gr0-implies-Suc[OF assms] by auto
also have \(\ldots=(2 * n *(\) length xs div \(n)+2 * n)+3 *(\) length xs div \(n)+4\)
unfolding \(k\)-def by (simp add: add-mult-distrib2)
also have \(\ldots \leq 5 *\) length \(x s+2 * n+4\)
using times-div-less-eq-dividend[of \(n\) length \(x s\) ] div-le-dividend[of length xs \(n\) ] by linarith
finally show ?thesis .
qed

\subsection*{9.4 The bitsize function}
fun bitsize-tm :: nat \(\Rightarrow\) nat \(t m\) where
bitsize-tm \(0=1\) return 0
| bitsize-tm \(n=1\) do \{
\(n\)-div-2 \(\leftarrow n \operatorname{div}_{t}\) 2;
\(r \leftarrow\) bitsize-tm \(n\)-div-2;
\(1+{ }_{t} r\)
\}
lemma val-bitsize-tm[simp, val-simp]: val (bitsize-tm \(n\) ) \(=\) bitsize \(n\)
by (induction \(n\) rule: bitsize-tm.induct) simp-all
fun time-bitsize-tm-bound :: nat \(\Rightarrow\) nat where
time-bitsize-tm-bound \(0=1\)
| time-bitsize-tm-bound \(n=14+8 * n+\) time-bitsize-tm-bound ( \(n\) div 2)
lemma time-bitsize-tm-aux:
time (bitsize-tm \(n\) ) \(\leq\) time-bitsize-tm-bound \(n\)
apply (induction \(n\) rule: bitsize-tm.induct)
subgoal by simp
subgoal for \(n\) using time-divide-nat-tm-le[of Suc n 2] by simp
done
lemma time-bitsize-tm-aux2: time-bitsize-tm-bound \(n \leq(2 * 8+4 * 14) * n+\) 23
apply (intro div-2-recursion-linear)
using less-iff-Suc-add by auto
lemma time-bitsize-tm-le: time (bitsize-tm \(n\) ) \(\leq 72 * n+23\)
using order.trans[OF time-bitsize-tm-aux time-bitsize-tm-aux2] by simp

\subsection*{9.4.1 The is-power-of-2 function}
fun is-power-of-2-tm :: nat \(\Rightarrow\) bool \(t m\) where
```

is-power-of-2-tm 0 = 1 return False
| is-power-of-2-tm (Suc 0) =1 return True
| is-power-of-2-tm n=1 do {
n-mod-2 }\leftarrown\mp@subsup{\mathrm{ mod}}{t}{2}2
n-div-2 \leftarrow n div (2;
c1 \leftarrow n-mod-2 = }\mp@subsup{t}{0}{}0
c2 \leftarrow is-power-of-2-tm n-div-2;
c1 ^ ^c\&
}
lemma val-is-power-of-2-tm[simp, val-simp]: val (is-power-of-2-tm n) =is-power-of-2
n
by (induction n rule: is-power-of-2-tm.induct) simp-all
lemma time-is-power-of-2-tm-le: time (is-power-of-2-tm n) \leq114*n+1
proof -
have time (is-power-of-2-tm n)\leq(2*25 + 4*16)*n+1
apply (intro div-2-recursion-linear)
subgoal by simp
subgoal by simp
subgoal premises prems for n
proof -
from prems obtain n' where n=Suc (Suc n')
by (metis Suc-diff-1 Suc-diff-Suc order-less-trans zero-less-one)
then have time (is-power-of-2-tm n)=
time (n modt 2) +
time (ndiv}\mp@subsup{|}{2}{2)}
time (is-power-of-2-tm (n div 2)) + 3
by (simp add: time-equal-nat-tm)
also have ...\leq16*n + time (is-power-of-2-tm (n div 2)) + 25
apply (estimation estimate: time-mod-nat-tm-le)
apply (estimation estimate: time-divide-nat-tm-le)
apply simp
done
finally show ?thesis by simp
qed
done
then show?thesis by simp
qed
definition next-power-of-2-tm :: nat }=>\mathrm{ nat tm where
next-power-of-2-tm n =1 do {
b}\leftarrow\mathrm{ is-power-of-2-tm n;
if b then return n else do {
r}\leftarrow\mathrm{ bitsize-tm n;
2 \widehat{t}r
}
}

```
lemma val-next-power-of-2-tm[simp, val-simp]: val (next-power-of-2-tm \(n\) ) \(=\) next-power-of-2 \(n\)
by (simp add: next-power-of-2-tm-def)
lemma time-next-power-of-2-tm-le: time (next-power-of-2-tm n) \(\leq 208 * n+37\)
proof (cases is-power-of-2 \(n\) )
case True
then show?thesis
using time-is-power-of-2-tm-le[of \(n\) ]
by (simp add: next-power-of-2-tm-def)
next
case False
then have time (next-power-of-2-tm n) =
time (is-power-of-2-tm n) +
time (bitsize-tm n) +
time (power-nat-tm \(2(\) bitsize \(n))+1\)
by (simp add: next-power-of-2-tm-def)
also have \(\ldots \leq 186 * n+6 * 2^{\wedge}(\) bitsize \(n)+5 *\) bitsize \(n+26\)
apply (estimation estimate: time-is-power-of-2-tm-le)
apply (estimation estimate: time-bitsize-tm-le)
apply (estimation estimate: time-power-nat-tm-le)
by \(\operatorname{simp}\)
also have \(\ldots \leq 186 * n+11 * 2^{\wedge}(\) bitsize \(n)+26\)
by \(\operatorname{simp}\)
also have \(\ldots \leq 208 * n+37\)
by (estimation estimate: two-pow-bitsize-bound) simp
finally show ?thesis.
qed

\subsection*{9.5 Addition}
fun bit-add-carry-tm :: bool \(\Rightarrow\) bool \(\Rightarrow\) bool \(\Rightarrow\) (bool \(\times\) bool \()\) tm where
bit-add-carry-tm False False False \(=1\) return (False, False)
| bit-add-carry-tm False False True \(=1\) return (True, False)
| bit-add-carry-tm False True False \(=1\) return (True, False)
| bit-add-carry-tm False True True \(=1\) return (False, True)
| bit-add-carry-tm True False False \(=1\) return (True, False)
| bit-add-carry-tm True False True \(=1\) return (False, True)
| bit-add-carry-tm True True False \(=1\) return (False, True)
| bit-add-carry-tm True True True \(=1\) return (True, True)
lemma val-bit-add-carry-tm[simp, val-simp]: val (bit-add-carry-tm x y z) \(=\) bit-add-carry \(x y z\)
by (induction \(x\) y z rule: bit-add-carry-tm.induct; simp)
lemma time-bit-add-carry-tm[simp]: time (bit-add-carry-tm x y \(\begin{aligned} & \text { a })=1\end{aligned}\)
by (induction \(x\) y z rule: bit-add-carry-tm.induct; simp)
fun inc-nat-tm :: nat-lsbf \(\Rightarrow\) nat-lsbf tm where
```

inc-nat-tm [] =1 return [True]
| inc-nat-tm (False \# xs)=1 return (True \# xs)
| inc-nat-tm (True \# xs) =1 do {
\leftarrow\leftarrow inc-nat-tm xs;
return (False \# r)
}

```
lemma val-inc-nat-tm[simp, val-simp]: val (inc-nat-tm xs) \(=\) inc-nat \(x s\)
    by (induction xs rule: inc-nat-tm.induct) simp-all
lemma time-inc-nat-tm-le: time (inc-nat-tm xs) \(\leq\) length \(x s+1\)
    by (induction xs rule: inc-nat-tm.induct) simp-all
fun \(a d d-\) carry-tm \(::\) bool \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf tm where
add-carry-tm False [] \(y=1\) return \(y\)
| add-carry-tm False ( \(x \#\) xs) [] \(=1\) return \((x \# x s)\)
| add-carry-tm True [] \(y=1\) do \{
        \(r \leftarrow\) inc-nat-tm \(y ;\)
        return \(r\)
    \}
| add-carry-tm True ( \(x \#\) xs ) [] \(=1\) do \{
    \(r \leftarrow\) inc-nat-tm ( \(x\) \# xs \()\);
    return \(r\)
    \}
| add-carry-tm c \((x \# x s)(y \# y s)=1\) do \{
        \((a, b) \leftarrow\) bit-add-carry-tm с \(x y ;\)
        \(r \leftarrow a d d\)-carry-tm b xs ys;
        return \((a \# r)\)
    \}
lemma val-add-carry-tm[simp, val-simp]: val (add-carry-tm \(c\) xs ys) \(=\) add-carry c xs ys by (induction \(c\) xs ys rule: add-carry-tm.induct) (simp-all split: prod.splits)
lemma time-add-carry-tm-le: time (add-carry-tm cxs ys) \(\leq 2 * \max\) (length xs)
(length ys) +2
proof (induction c xs ys rule: add-carry-tm.induct)
case (3 y)
then show ?case using time-inc-nat-tm-le[of y] by simp

\section*{next}
case (4 \(x x s\) )
then show ?case using time-inc-nat-tm-le[of \(x \# x s]\) by simp
qed (simp-all split: prod.splits)
definition add-nat-tm :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf tm where
add-nat-tm xs ys \(=1\) do \{
\(r \leftarrow a d d\)-carry-tm False xs ys;
return \(r\)
\}
lemma val-add-nat-tm[simp, val-simp]: val (add-nat-tm xs ys) \(=x s+{ }_{n} y s\) by (simp add: add-nat-tm-def add-nat-def)
lemma time-add-nat-tm-le: time (add-nat-tm xs ys) \(\leq 2 * \max\) (length \(x s\) ) (length \(y s)+3\)
using time-add-carry-tm-le[of-xs ys] by (simp add: add-nat-tm-def)

\subsection*{9.6 Comparison and subtraction}
fun compare-nat-same-length-reversed-tm \(::\) bool list \(\Rightarrow\) bool list \(\Rightarrow\) bool tm where compare-nat-same-length-reversed-tm [] [] =1 return True
| compare-nat-same-length-reversed-tm (False \# xs) (False \# ys) = 1 compare-nat-same-length-reversed-tm xs ys
| compare-nat-same-length-reversed-tm (True \# xs) (False \# ys) \(=1\) return False
| compare-nat-same-length-reversed-tm (False \# xs) (True \# ys) \(=1\) return True
| compare-nat-same-length-reversed-tm (True \(\#\) xs \()(\) True \(\#\) ys) \(=1\) compare-nat-same-length-reversed-tm xs ys
| compare-nat-same-length-reversed-tm -- = 1 undefined
lemma val-compare-nat-same-length-reversed-tm[simp, val-simp]:
assumes length \(x s=\) length \(y s\)
shows val (compare-nat-same-length-reversed-tm xs ys) \(=\) compare-nat-same-length-reversed xs ys
using assms by (induction xs ys rule: compare-nat-same-length-reversed-tm.induct)
simp-all
lemma time-compare-nat-same-length-reversed-tm-le:
length \(x s=\) length \(y s \Longrightarrow\) time (compare-nat-same-length-reversed-tm xs ys) \(\leq\) length \(x s+1\)
by (induction xs ys rule: compare-nat-same-length-reversed-tm.induct) simp-all
fun compare-nat-same-length-tm :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) bool tm where compare-nat-same-length-tm xs ys \(=1\) do \{
rev-xs \(\leftarrow\) rev-tm xs;
rev-ys \(\leftarrow\) rev-tm ys;
compare-nat-same-length-reversed-tm rev-xs rev-ys

\section*{\}}
lemma val-compare-nat-same-length-tm[simp, val-simp]:
assumes length \(x s=\) length \(y s\)
shows val (compare-nat-same-length-tm xs ys) \(=\) compare-nat-same-length xs ys
using assms by simp
lemma time-compare-nat-same-length-tm-le:
length \(x s=\) length \(y s \Longrightarrow\) time (compare-nat-same-length-tm xs ys) \(\leq 3 *\) length \(x s+6\)
using time-compare-nat-same-length-reversed-tm-le[of rev xs rev ys] by \(\operatorname{simp}\)
```

definition make-same-length-tm :: nat-lsbf \Rightarrow nat-lsbf \Rightarrow (nat-lsbf \times nat-lsbf) tm
where
make-same-length-tm xs ys $=1$ do \{
len-xs \leftarrow length-tm xs;
len-ys \leftarrow length-tm ys;
$n \leftarrow$ max-nat-tm len-xs len-ys;
fill-xs \leftarrow fill-tm $n x s$;
fill-ys \leftarrow fill-tm n ys;
return (fill-xs, fill-ys)
\}

```
lemma val-make-same-length-tm[simp, val-simp]: val (make-same-length-tm xs ys) \(=\) make-same-length xs ys
    by (simp add: make-same-length-tm-def make-same-length-def del: max-nat-tm.simps)
lemma time-make-same-length-tm-le: time (make-same-length-tm xs ys) \(\leq 10 *\) \(\max (\) length \(x s)(\) length \(y s)+16\)
proof -
    have time (make-same-length-tm xs ys) \(=13+3 *\) length \(x s+3 *\) length ys +
        (time (max-nat-tm (length xs) (length ys)) \(+2 * \max\) (length \(x s\) ) (length ys))
        by (simp add: make-same-length-tm-def time-fill-tm del: max-nat-tm.simps)
    also have \(\ldots \leq 10 * \max (\) length \(x s)(\) length \(y s)+16\)
        using time-max-nat-tm-le[of length xs length ys] by simp
    finally show ?thesis .
qed
definition compare-nat-tm :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) bool tm where
compare-nat-tm xs ys \(=1\) do \{
    (fill-xs, fill-ys) \(\leftarrow\) make-same-length-tm xs ys;
    compare-nat-same-length-tm fill-xs fill-ys
\}
lemma val-compare-nat-tm[simp, val-simp]: val (compare-nat-tm xs ys) \(=\left(x s \leq_{n}\right.\) ys)
using make-same-length-correct[where \(x s=x s\) and \(y s=y s\) ]
by (simp add: compare-nat-tm-def compare-nat-def del: compare-nat-same-length-tm.simps compare-nat-same-length.simps split: prod.splits)
lemma time-compare-nat-tm-le: time (compare-nat-tm xs ys) \(\leq 13 * \max\) (length xs) \((\) length \(y s)+23\)
proof -
obtain fill-xs fill-ys where fills-defs: make-same-length xs ys \(=(\) fill-xs, fill-ys \()\) by fastforce
then have time (compare-nat-tm xs ys) \(=\) time (make-same-length-tm xs ys) + time (compare-nat-same-length-tm fill-xs fill-ys) +1
by (simp add: compare-nat-tm-def del: compare-nat-same-length-tm.simps) also have \(\ldots \leq(10 * \max (\) length \(x s)(\) length \(y s)+16)+\) \((3 * \max (\) length \(x s)(\) length \(y s)+6)+1\)
```

 apply (intro add-mono order.refl time-make-same-length-tm-le)
 using time-compare-nat-same-length-tm-le[of fill-xs fill-ys]
 using make-same-length-correct[OF fills-defs[symmetric]] by argo
 finally show ?thesis by simp
 qed
definition subtract-nat-tm :: nat-lsbf }=>\mathrm{ nat-lsbf }=>\mathrm{ nat-lsbf tm where
subtract-nat-tm xs ys =1 do {
b}\leftarrow\mathrm{ compare-nat-tm xs ys;
if b then return [] else do {
(fill-xs, fill-ys) \leftarrow make-same-length-tm xs ys;
fill-ys-comp \leftarrow map-tm Not-tm fill-ys;
a\leftarrow add-carry-tm True fill-xs fill-ys-comp;
butlast-tm a
}
}

```
lemma val-subtract-nat-tm[simp, val-simp]: val (subtract-nat-tm xs ys) \(=x s-{ }_{n}\) ys by (simp add: subtract-nat-tm-def subtract-nat-def Let-def split: prod.splits)
lemma time-map-tm-Not-tm: time (map-tm Not-tm xs) \(=2 *\) length \(x s+1\) using time-map-tm-constant[of xs Not-tm 1] by simp
lemma time-subtract-nat-tm-le: time (subtract-nat-tm xs ys) \(\leq 30 * \max\) (length xs) \((\) length \(y s)+48\)
proof -
obtain \(x 1\) x2 where x12: make-same-length xs ys \(=(x 1, x 2)\) by fastforce
note \(x 12\)-simps \(=\) make-same-length-correct \([\) OF x12[symmetric]]
then have max12: max (length x1) (length x2) \(=\max (\) length xs) (length ys)
by simp
show ?thesis
proof (cases compare-nat xs ys)
case True
then show ?thesis
using time-compare-nat-tm-le[of xs ys] by (simp add: subtract-nat-tm-def)
next
case False
then have time (subtract-nat-tm xs ys) \(=\)
Suc (time (compare-nat-tm xs ys) +
(time (make-same-length-tm xs ys) +
(time (map-tm Not-tm x2) +
(time (add-carry-tm True x1 (map Not x2)) +
(time (butlast-tm (add-carry True x1 (map Not x2))))))))
by (simp add: subtract-nat-tm-def x12)
also have \(\ldots \leq 30 * \max\) (length \(x\) s) (length ys) +48
apply (subst Suc-eq-plus1)
apply (estimation estimate: time-compare-nat-tm-le)
apply (estimation estimate: time-make-same-length-tm-le)
```

 apply (subst time-map-tm-Not-tm)
 apply (estimation estimate: time-add-carry-tm-le)
 apply (estimation estimate: time-butlast-tm-le)
 apply (estimation estimate: time-inc-nat-tm-le)
 apply (estimation estimate: length-add-carry-upper)
 apply (subst length-map)+
 apply (subst max12)+
 apply (subst x12-simps)+
 apply simp
 done
 finally show ?thesis.
 qed
 qed

```

\section*{9.7 (Grid) Multiplication}
fun grid-mul-nat-tm :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf tm where grid-mul-nat-tm [] ys \(=1\) return []
| grid-mul-nat-tm (False \# xs) ys \(=1\) do \{
    \(r \leftarrow\) grid-mul-nat-tm xs ys;
    return (False \# r)
    \}
| grid-mul-nat-tm (True \# xs) ys \(=1\) do \{
    \(r \leftarrow\) grid-mul-nat-tm xs ys;
    add-nat-tm (False \#r) ys
    \}
lemma val-grid-mul-nat-tm[simp, val-simp]: val (grid-mul-nat-tm xs ys) \(=x s *_{n}\)
ys
    by (induction xs ys rule: grid-mul-nat-tm.induct) simp-all
lemma euler-sum-bound: \(\sum\{\).. \((n:: n a t)\} \leq n * n\)
    by (induction n) simp-all
lemma time-grid-mul-nat-tm-le:
    time (grid-mul-nat-tm xs ys) \(\leq 8 *\) length \(x s * \max (\) length \(x s)(\) length ys) +1
proof -
    have time (grid-mul-nat-tm xs ys) \(\leq 2 *\left(\sum\{. . l e n g t h ~ x s\}\right)+\) length \(x s *(2 *\)
length ys +4\()+1\)
    proof (induction xs ys rule: grid-mul-nat-tm.induct)
        case (1 ys)
        then show? case by simp
    next
        case (2 xs ys)
        then show? case by simp
    next
        case (3 xs ys)
    then have time (grid-mul-nat-tm (True \# xs) ys) \(\leq\)
            time (grid-mul-nat-tm xs ys) +
```

 time (add-nat-tm (False # grid-mul-nat xs ys) ys) + 1 (is ?l \leq?i + - + 1)
 by simp
 also have ... \leq?i + 2 * max (1 + length (grid-mul-nat xs ys)) (length ys) + 4
 by (estimation estimate: time-add-nat-tm-le) simp
 also have ... \leq?i + 2* (length xs + length ys + 1) +4
 apply (estimation estimate: length-grid-mul-nat[of xs ys])
 by (simp-all add: length-grid-mul-nat)
 also have ... =?i + 2* (length (True #xs)) +2 * length ys + 4
 by simp
 also have ... \leq2* (\sum {..length (True # xs)}) + length (True # xs)*(2*
 length ys + 4) + 1
using 3 by simp
finally show ?case.
qed
also have ... \leq2 * length xs * length xs + 2 * length xs * length ys + 4 * length
xs+1
by (estimation estimate: euler-sum-bound) (simp add: distrib-left)
also have ... \leq6* length xs * length xs + 2 * length xs * length ys + 1
by (simp add:leI)
also have ... \leq8* length xs * max (length xs)(length ys) + 1
by (simp add: add.commute add-mult-distrib nat-mult-max-right)
finally show ?thesis.
qed

```

\subsection*{9.8 Syntax bundles}
abbreviation shift-right-tm-flip where shift-right-tm-flip xs \(n \equiv\) shift-right-tm \(n\) xs
bundle nat-lsbf-tm-syntax
begin
notation add-nat-tm (infixl \(+_{n t} 65\) )
notation compare-nat-tm (infixl \(\left.\leq_{n t} 50\right)\)
notation subtract-nat-tm (infixl \(\left.-_{n t} 65\right)\)
notation grid-mul-nat-tm (infixl \(*_{n t} 70\) )
notation shift-right-tm-flip (infixl \(\gg_{n t} 55\) )
end
bundle no-nat-lsbf-tm-syntax
begin
no-notation \(a d d\)-nat-tm (infixl \(+_{n t} 65\) )
no-notation compare-nat-tm (infixl \(\leq_{n t} 50\) )
no-notation subtract-nat-tm (infixl \(-_{n t} 65\) )
no-notation grid-mul-nat-tm (infixl \(*_{n t} 70\) )
no-notation shift-right-tm-flip (infixl \(\gg_{n t} 55\) )
end
unbundle nat-lsbf-tm-syntax
end
theory Int-LSBF
imports Nat-LSBF HOL-Algebra.IntRing
begin

\section*{10 Representing int in LSBF}

\subsection*{10.1 Type definition}
datatype sign \(=\) Positive \(\mid\) Negative
type-synonym \(\operatorname{int}\)-lsbf \(=\operatorname{sign} \times\) nat-lsbf

\subsection*{10.2 Conversions}
fun from-int \(::\) int \(\Rightarrow\) int-lsbf where
from-int \(x=(\) if \(x \geq 0\) then (Positive, from-nat (nat \(x)\) ) else (Negative, from-nat (nat \((-x)))\) )
fun to-int \(::\) int-lsbf \(\Rightarrow\) int where
to-int (Positive, \(x s)=\) int (to-nat xs)
\(\mid\) to-int \((\) Negative,\(x s)=-\) int \((\) to-nat \(x s)\)
lemma to-int-from-int \([\) simp \(]\) : to-int \((\) from-int \(x)=x\)
by (cases \(x \geq 0\) ) simp-all
fun truncate-int :: int-lsbf \(\Rightarrow\) int-lsbf where
truncate-int (Positive, xs \()=(\) Positive, truncate \(x s)\)
\(\mid\) truncate-int \((\) Negative,\(x s)=(\) let ys \(=\) truncate xs in if \(y s=[]\) then \((\) Positive, []) else (Negative, ys))
lemma to-int-truncate \([\) simp \(]\) : to-int (truncate-int xs) \(=\) to-int xs by (induction xs rule: truncate-int.induct) (simp-all add: Let-def to-nat-zero-iff)
lemma truncate-from-int [simp]: truncate-int (from-int \(x)=\) from-int \(x\)
apply (cases \(x \geq 0\) )
subgoal by simp
subgoal unfolding Let-def
proof -
assume \(\neg x \geq 0\)
then have to-nat (from-nat (nat \((-x)))>0\) by simp
then have truncate (from-nat \((\) nat \((-x))) \neq[]\) using to-nat-zero-iff nless-le
by blast
then show? ?thesis by simp
qed
done
lemma pos-and-neg-imp-zero:
assumes to-int (Positive, \(x)=\) to-int (Negative, \(y\) )
shows to-nat \(x=0 \wedge\) to-nat \(y=0\)
proof -
```

 have to-int (Positive, x)\geq0 to-int (Negative, y) \leq 0 by simp-all
 with assms have to-int (Positive, x) = 0 to-int (Negative, y)=0 by simp-all
 thus?thesis by simp-all
 qed
lemma to-int-eq-imp-truncate-int-eq: to-int (a,x)=to-int (b,y)\Longrightarrow truncate-int
(a,x)= truncate-int (b,y)
apply (cases a; cases b)
subgoal by (simp add: to-nat-eq-imp-truncate-eq[of x y])
subgoal
using pos-and-neg-imp-zero[of x y] to-nat-zero-iff
by fastforce
subgoal using to-nat-zero-iff by (simp add: Let-def)
subgoal by (simp add: to-nat-eq-imp-truncate-eq[of x y])
done
lemma from-int-to-int: from-int \circ to-int = truncate-int
proof -
have (}\bigwedgexy.to-int x= to-int y\Longrightarrow truncate-int x = truncate-int y)
using to-int-eq-imp-truncate-int-eq by auto
thus ?thesis
using from-to-f-criterion[of to-int from-int truncate-int]
using truncate-from-int to-int-from-int
using comp-apply
by fastforce
qed

```
interpretation int-lsbf: abstract-representation from-int to-int truncate-int
proof
    show to-int \(\circ\) from-int \(=i d\)
    using to-int-from-int comp-apply by fastforce
next
    show from-int \(\circ\) to-int \(=\) truncate-int
        using from-int-to-int comp-apply by fastforce
qed

\subsection*{10.3 Addition}
fun add-int :: int-lsbf \(\Rightarrow\) int-lsbf \(\Rightarrow\) int-lsbf where add-int (Negative, xs) \((\) Negative, ys \()=(\) Negative, add-nat xs ys)
\(\mid\) add-int (Positive, xs) (Positive, ys) \(=(\) Positive, add-nat xs ys \()\)
| add-int (Positive, xs) (Negative, ys) = (if compare-nat xs ys then (Negative, sub-tract-nat ys xs) else (Positive, subtract-nat xs ys))
| add-int (Negative, xs) (Positive, ys) \(=\) (if compare-nat xs ys then (Positive, sub-tract-nat ys xs) else (Negative, subtract-nat xs ys))
lemma add-int-correct: to-int (add-int \(x y)=\) to-int \(x+\) to-int \(y\)
apply (induction \(x\) y rule: add-int.induct)
subgoal by (simp add: add-nat-correct)
subgoal by (simp add: add-nat-correct)
apply (auto simp only: add-int.simps compare-nat-correct subtract-nat-correct to-int.simps split: if-splits)
done
fun nat-mul-to-int-mul \(::(\) nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf \() \Rightarrow\) int-lsbf \(\Rightarrow\) int-lsbf \(\Rightarrow\) int-lsbf where
nat-mul-to-int-mul \(f(x, x s)(y, y s)=((\) if \(x=y\) then Positive else Negative \(), f x s\) ys)
lemma nat-mul-to-int-mul-correct:
assumes \(\bigwedge x y\).to-nat \((f x y)=\) to-nat \(x *\) to-nat \(y\)
shows \(\bigwedge x y\) xs ys. to-int (nat-mul-to-int-mul \(f(x, x s)(y, y s))=t o-i n t(x, x s) *\) to-int ( \(y, y s\) )
subgoal for \(x y\) xs ys
by (cases \(x\); cases y) (simp-all add: assms)
done

\subsection*{10.4 Grid Multiplication}
fun grid-mul-int where grid-mul-int \(x y=\) nat-mul-to-int-mul grid-mul-nat \(x y\)
corollary grid-mul-int-correct: to-int (grid-mul-int \(x y)=\) to-int \(x *\) to-int \(y\) using nat-mul-to-int-mul-correct[OF grid-mul-nat-correct]
by (metis grid-mul-int.elims surj-pair)
end

\section*{11 Karatsuba Multiplication}
theory Karatsuba
imports ../Binary-Representations/Nat-LSBF ../Binary-Representations/Int-LSBF ../Estimation-Method
begin
This theory contains an implementation of the Karatsuba Multiplication on type nat-lsbf.
definition abs-diff :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf where
abs-diff \(x y=\left(x-{ }_{n} y\right)+{ }_{n}\left(y-{ }_{n} x\right)\)
lemma abs-diff-correct: int (to-nat (abs-diff \(x y))=a b s(\) int (to-nat \(x)-\) int (to-nat y))
unfolding abs-diff-def by (simp add: add-nat-correct subtract-nat-correct)
lemma abs-diff-length: length (abs-diff xs ys) \(\leq \max (\) length \(x s)\) (length ys)
proof (cases compare-nat xs ys)
case True
then have \(x s-_{n} y s=[]\) by (simp add: subtract-nat-def)
then have abs-diff \(x s\) ys \(=y s-{ }_{n} x s\) by (simp add: abs-diff-def add-nat-def)
```

 then show ?thesis using length-subtract-nat-le[of ys xs] by simp
 next
case False
then have ys \leqn}\mp@subsup{n}{n}{}x\mathrm{ by (simp only:compare-nat-correct)
then have ys -n}\mp@subsup{n}{n}{}xs=[] by (simp add: subtract-nat-def
then have abs-diff xs ys = xs - }\mp@subsup{n}{n}{}ys\mathrm{ by (simp add: abs-diff-def add-nat-com
add-nat-def)
then show ?thesis using length-subtract-nat-le[of xs ys] by simp
qed

```

For small inputs, implementations of Karatsuba Multiplication usually switch to grid multiplication. The threshold does not matter for the asymptotic running time, hence we will just arbitrarily choose 42.
definition karatsuba-lower-bound :: nat where
karatsuba-lower-bound \(\equiv 42\)
lemma karatsuba-lower-bound-requirement:
karatsuba-lower-bound \(\geq 1\)
unfolding karatsuba-lower-bound-def by simp
A first version of the algorithm assumes the input numbers have a length which is a power of 2 . The function karatsuba-on-power-of-2-length takes the specified length as additional first argument.
```

fun karatsuba-on-power-of-2-length $::$ nat \Rightarrow nat-lsbf \Rightarrow nat-lsbf \Rightarrow nat-lsbf where
karatsuba-on-power-of-2-length k $x y=$
(if $k \leq$ karatsuba-lower-bound
then $x *_{n} y$
else let
$(x 0, x 1)=$ split $x ;$
$(y 0, y 1)=$ split $y ;$
k-div-2 $=(k \operatorname{div} 2) ;$
prod0 $=$ karatsuba-on-power-of-2-length k-div-2 x0 y0;
prod1 $=$ karatsuba-on-power-of-2-length k-div-2 $x 1$ y1;
prod2 $=$ karatsuba-on-power-of-2-length k-div-2
(fill k-div-2 (abs-diff x0 x1))
(fill k-div-2 (abs-diff y0 y1));
add01 $=$ prod0 $+{ }_{n}$ prod1;
$r=\left(\right.$ if $\left(x 1 \leq_{n} x 0\right)=\left(y 1 \leq_{n} y 0\right)$
then add01 $-_{n}$ prod2
else add01 $+_{n}$ prod2)
in prod0 $+_{n}\left(r \gg_{n} k\right.$-div-2 $\left.)+_{n}\left(\operatorname{prod} 1 \gg_{n} k\right)\right)$

```
declare karatsuba-on-power-of-2-length.simps[simp del]
locale karatsuba-context \(=\)
    fixes \(k l\) :: nat
    fixes \(x\) y :: nat-lsbf
    assumes \(k\)-power-of-2: \(k=2^{\wedge} l\)
    assumes length-x: length \(x=k\)
```

 assumes length-y: length }y=
 assumes recursion-condition: }\negk\leqkaratsuba-lower-bound
 begin
definition x0 where x0 = fst (split x)
definition x1 where x1 = snd (split x)
definition y0 where y0}=fst(split y)
definition y1 where y1 = snd (split y)
definition k-div-2 where k-div-2 = k div 2
definition prod0 where prod0 = karatsuba-on-power-of-2-length k-div-2 x0 y0
definition prod1 where prod1 = karatsuba-on-power-of-2-length k-div-2 x1 y1
definition prod2 where prod2 = karatsuba-on-power-of-2-length k-div-2
(fill k-div-2 (abs-diff x0 x1))
(fill k-div-2 (abs-diff y0 y1))
definition add01 where add01 = prod0 + }\mp@subsup{n}{n}{}\mathrm{ prod1
definition r where r=(if (x1 \leq
then add01 - n prod2
else add01 + +n prod2)
lemma split-x: split x = (x0, x1) using x0-def x1-def by simp
lemma split-y: split y = (y0,y1) using y0-def y1-def by simp
lemmas defs1 = split-x split-y
lemmas defs2 = prod0-def prod1-def prod2-def k-div-2-def add01-def r-def
lemma recursive: karatsuba-on-power-of-2-length k x y =
prod0 + +n (r>>>n}\mp@subsup{n}{n}{}k\mathrm{ -div-2) + +n (prod1 >>>n}\mp@subsup{n}{n}{}k
unfolding karatsuba-on-power-of-2-length.simps[of k x y]
using defs1 defs2 recursion-condition
by (simp only: if-False Let-def case-prod-conv)
lemma l-ge-1:l\geq1
using karatsuba-lower-bound-requirement recursion-condition k-power-of-2
by (cases l; simp)
lemma k-even: k mod 2 = 0
using k-power-of-2 l-ge-1 by simp
lemma k-div-2: k-div-2 = 2^(l-1)
unfolding k-div-2-def using k-power-of-2 l-ge-1 by (simp add: power-diff)
lemma k-div-2-less-k: k-div-2 <k
unfolding }k\mathrm{ -div-2-def using k-power-of-2 by simp
lemma length-x-split: length x0 = k-div-2 length x1 = k-div-2
unfolding k-div-2-def using k-even length-split[OF - split-x] length-x by argo+
lemma length-y-split:length y0 = k-div-2 length y1 = k-div-2
unfolding k-div-2-def using k-even length-split[OF - split-y] length-y by argo+

```
```

lemma length-abs-diff-x0-x1: length (abs-diff x0 x1) \leq k-div-2
using abs-diff-length[of x0 x1] length-x-split by simp
lemma length-fill-abs-diff-x0-x1: length (fill k-div-2 (abs-diff x0 x1)) =k-div-2
by (intro length-fill length-abs-diff-x0-x1)
lemma length-abs-diff-y0-y1: length (abs-diff y0 y1) \leqk-div-2
using abs-diff-length[of y0 y1] length-y-split by simp
lemma length-fill-abs-diff-y0-y1: length (fill k-div-2 (abs-diff y0 y1)) =k-div-2
by (intro length-fill length-abs-diff-y0-y1)
lemmas IH-prems1 = recursion-condition split-x[symmetric] refl split-y[symmetric]
refl k-div-2-def
k-div-2 length-x-split(1) length-y-split(1)
lemmas IH-prems2 = recursion-condition split-x[symmetric] refl split-y[symmetric]
refl k-div-2-def
prod0-def k-div-2 length-x-split(2) length-y-split(2)
lemmas IH-prems3 = recursion-condition split-x[symmetric] refl split-y[symmetric]
refl k-div-2-def
prod0-def prod1-def k-div-2 length-fill-abs-diff-x0-x1 length-fill-abs-diff-y0-y1
end
lemma karatsuba-on-power-of-2-length-correct:
assumes k=2 ^}
assumes length x = k length }y=
shows to-nat (karatsuba-on-power-of-2-length k x y) = to-nat x * to-nat y
using assms proof (induction kx y arbitrary: l rule: karatsuba-on-power-of-2-length.induct)
case (1 kx y l)
show ?case
proof (cases k\leq karatsuba-lower-bound)
case True
then show ?thesis
unfolding karatsuba-on-power-of-2-length.simps[of k x y]
by (simp add: grid-mul-nat-correct)
next
case False
then interpret r: karatsuba-context klx y using 1.prems
by (unfold-locales; simp)
from r.l-ge-1 obtain l' where l=Suc l l
by (metis less-eqE plus-1-eq-Suc)
then have k div 2 = 2^ `l
have to-nat-x: to-nat x = to-nat r.x0 + 2 ^ (k div 2) * to-nat r.x1
unfolding r.k-div-2-def[symmetric]
using app-split[OF r.split-x] to-nat-app[of r.x0 r.x1] r.length-x-split by algebra

```
have to-nat-y: to-nat \(y=\) to-nat r.y0 \(+2 \wedge(k\) div 2) \(*\) to-nat r.y1
unfolding r.k-div-2-def[symmetric]
using app-split[OF r.split-y] to-nat-app[of r.y0 r.y1] r.length-y-split by algebra
have 4: to-nat r.prod0 \(=\) to-nat r.x0 \(*\) to-nat r.y0
unfolding r.prod0-def
by (intro 1 (1)[OF r.IH-prems1])
have 5: to-nat r.prod1 \(=\) to-nat r.x1 \(*\) to-nat r.y1
unfolding r.prod1-def
by (intro 1 (2)[OF r.IH-prems2])
have to-nat r.prod2 \(=\) to-nat \((\) fill r.k-div-2 (abs-diff r.x0 r.x1 \()) *\) to-nat \((\) fill r.k-div-2 (abs-diff r.y0 r.y1))
unfolding r.prod2-def
by (intro 1 (3)[OF r.IH-prems3])
hence int (to-nat r.prod2) \(=a b s(\) int (to-nat r.x0 \()-\) int (to-nat r.x1) \() * a b s\) (int (to-nat r.y0) - int (to-nat r.y1))
using abs-diff-correct by simp
then have int (to-nat r.prod2) \(=a b s((\) int (to-nat r.x0) - int (to-nat r.x1) \()\) * (int (to-nat r.y0) - int (to-nat r.y1) ) )
by (subst abs-mult, assumption)
then have 6: (if (compare-nat r.x1 r.x0) \(=(\) compare-nat r.y1 r.y0) then int (to-nat r.prod2) else - int (to-nat r.prod2 \())=(\) int (to-nat r.x0) - int (to-nat r.x1) ) * (int (to-nat r.y0) - int (to-nat r.y1))
apply (cases to-nat r.x0 \(\geq\) to-nat r.x1; cases to-nat r.y0 \(\geq\) to-nat r.y1)
by (simp-all add: compare-nat-correct mult-nonneg-nonpos mult-nonneg-nonpos2 mult-nonpos-nonpos)
have 7: int (to-nat r.r) \(=\) int (to-nat r.x0) \(*\) int (to-nat r.y1 \()+\) int (to-nat r.x1) * int (to-nat r.y0)
proof \(\left(\operatorname{cases}\left(r . x 1 \leq_{n} r . x 0\right)=\left(r . y 1 \leq_{n} r . y 0\right)\right)\)
case True
then have int-p: int (to-nat r.r) \(=\) int (to-nat r.prod0 + to-nat r.prod1 -to-nat r.prod2)
unfolding r.r-def r.add01-def
by (simp add: subtract-nat-correct add-nat-correct)
have int-prod2: int (to-nat r.prod2) \(=(\) int (to-nat r.x0) - int (to-nat r.x1) \()\) * (int (to-nat r.y0) - int (to-nat r.y1))
using 6 True by simp
have \(-(\) int (to-nat r.x0 \() *\) int (to-nat r.y1) \() \leq \operatorname{int}(\) to-nat r.x1 \() *\) int (to-nat r. y 0 )
apply (intro order.trans[of \(-(\) int (to-nat r.x0 \() *\) int (to-nat r.y1)) 0 int (to-nat r.x1) * int (to-nat r.y0)])
by simp-all
then have to-nat r.prod0 + to-nat r.prod1 \(\geq\) to-nat r.prod2
apply (intro iffD1 [OF zle-int])
by (simp add: 45 int-prod2 left-diff-distrib right-diff-distrib)
then have int (to-nat r.r) \(=\) int (to-nat r.prod0) + int (to-nat r.prod1) int (to-nat r.prod2)
using int-p by simp
then show ?thesis using int-prod2 by (simp add: left-diff-distrib right-diff-distrib 45)
next
case False
then have int (to-nat r.r) \(=\) int (to-nat r.prod0 \()+\) int \((\) to-nat r.prod1 \()+\) int (to-nat r.prod2)
unfolding \(r\). \(r\)-def
by (simp add: add-nat-correct r.add01-def)
moreover from False 6 have - int (to-nat r.prod2) \(=(\) int (to-nat r.x0) int (to-nat r.x1) ) * (int (to-nat r.y0) - int (to-nat r.y1) \()\)
by \(\operatorname{simp}\)
then have int (to-nat r.prod2 \()=-(\) int (to-nat r.x0 \()-\) int (to-nat r.x1 \())\) * \((\) int (to-nat r.y0) - int (to-nat r.y1) \()\)
by linarith
ultimately show ?thesis by (simp add: 45 left-diff-distrib right-diff-distrib) qed
from r.recursive have int (to-nat (karatsuba-on-power-of-2-length \(k x y)\) ) \(=\) int (to-nat (r.prod0 \(+_{n}\left(r . r \gg_{n} r . k\right.\)-div-2) \(\left.+_{n}\left(r . p r o d 1 \gg_{n} k\right)\right)\) by simp
also have \(\ldots=\operatorname{int}(\) to-nat r.prod0 \()+\operatorname{int}(\) to-nat (shift-right r.k-div-2 r.r) \()+\) int (to-nat (shift-right \(k\) r.prod1))
by (simp add: add-nat-correct)
also have \(\ldots=\operatorname{int}(\) to-nat r.prod0 \()+\operatorname{int}\left(2^{\wedge}(k\right.\) div 2) \(*\) to-nat r.r \()+\operatorname{int}(2\) \({ }^{\wedge} k *\) to-nat r.prod1)
by (simp only: to-nat-shift-right r.k-div-2-def)
also have \(\ldots=\operatorname{int}(\) to-nat r.prod0 \()+2 \wedge(k\) div 2) \(* \operatorname{int}(\) to-nat r.r \()+2 へ k\) * int (to-nat r.prod1)
by simp
also have \(\ldots=\operatorname{int}\left(\right.\) to-nat r.x0) * int (to-nat r.y0) \(+2^{\text {- }}(k\) div 2) \(*\) (int (to-nat r.x0) * int (to-nat r.y1) \(+\operatorname{int}(\) to-nat r.x1 \() * \operatorname{int}(\) to-nat r.y0) \()+2 へ k\) * int (to-nat r.x1) * int (to-nat r.y1)
using 745
by \(\operatorname{simp}\)
also have \(\ldots=\left(\right.\) int \((\) to-nat r.x0 \()+2^{\wedge}(k\) div 2 \() *(\) int (to-nat r.x1 \(\left.\left.)\right)\right)\)
* (int (to-nat r.y0) + 2 \(^{\wedge}(k \operatorname{div} 2) *(\) int (to-nat r.y1 \(\left.\left.)\right)\right)\)
proof -
have 2 \(*(k\) div 2) \(=k\)
using r.k-even by force
have (int (to-nat r.x0) \(+2^{\wedge}(k\) div 2) \(*(\) int (to-nat r.x1) \())\)
* (int (to-nat r.y0) \(+2^{\wedge}(k\) div 2) \(*(\) int (to-nat r.y1 \(\left.))\right)\)
\(=\) int (to-nat r.x0) * int (to-nat r.y0)
\(+(\) 2::int \() \wedge(k \operatorname{div} 2) *(\) int \((\) to-nat r.x1 \()) *(\) int \((\) to-nat r.y0 \())\)
\(+(\) int \((\) to-nat r.x0 \()) * 2^{\wedge}(k \operatorname{div} 2) *(\) int (to-nat r.y1) \()\)
\(+(2::\) int \() \wedge(k \operatorname{div} 2) *(\) int (to-nat r.x1) \() * 2 \wedge(k \operatorname{div} 2) *(\) int (to-nat
r.y1))
using distrib-left \(\left[\right.\) of (int (to-nat r.x0) \(+\boldsymbol{2}^{\wedge}\) ( \(k\) div 2) * (int (to-nat r.x1))) int (to-nat r.y0) 2 \({ }^{\wedge}(k \operatorname{div} 2) *(\) int (to-nat r.y1) \(\left.)\right]\)
by (simp add: ring-class.ring-distribs(2))
```

 also have ... = int (to-nat r.x0) * int (to-nat r.y0)
 +(2::int) ^(k div 2) * (int (to-nat r.x1))* (int (to-nat r.y0))
 +(int (to-nat r.x0))* 2 ^(k div 2) * (int (to-nat r.y1))
 +((2::int) ^ (k div 2) * 2 ^(k div 2))* (int (to-nat r.x1)) * (int (to-nat
 r.y1))
by simp
also have (2::int)^ (k div 2) * 2^ (k div 2) = 2^ k
using power-add[of 2::int k div 2 k div 2, symmetric]
using〈2*(k div 2) = k` by simp finally have (int (to-nat r.x0) + 2` (k div 2) * (int (to-nat r.x1)))
* (int (to-nat r.y0) + 2 ^(k div 2) * (int (to-nat r.y1)))
=int (to-nat r.x0)* int (to-nat r.y0)
+2 ^(k div 2) *(int (to-nat r.x1))*(int (to-nat r.y0))
+(int (to-nat r.x0))* 2 ^(k div 2) * (int (to-nat r.y1))
+(2::int) ^ k*(int (to-nat r.x1))*(int (to-nat r.y1)) by simp
also have ... = int (to-nat r.x0) * int (to-nat r.y0)
+((2::int) ^ (k div 2) * (int (to-nat r.x1))*(int (to-nat r.y0))
+(2::int) 人}(k\operatorname{div 2)*(int (to-nat r.x0))*(int (to-nat r.y1)))
+(2::int) ^ k*(int (to-nat r.x1))*(int (to-nat r.y1))
by simp
also have ... = int (to-nat r.x0) * int (to-nat r.y0)
+(2::int) ^ (k div 2) * (int (to-nat r.x1) * int (to-nat r.y0) + int (to-nat
r.x0) * int (to-nat r.y1))
+(2::int) ^ k*(int (to-nat r.x1)) *(int (to-nat r.y1))
using distrib-left[of (2::int) ^ (k div 2)] by simp
finally show ?thesis by simp
qed
also have ... = int (to-nat x)* int (to-nat y)
by (simp add: to-nat-x to-nat-y)
finally have int (to-nat (karatsuba-on-power-of-2-length k x y)) = int (to-nat
x* to-nat y)
by simp
thus ?thesis by presburger
qed
qed
function len-kar-bound where
len-kar-bound l = (if 2 ^ l \leq karatsuba-lower-bound then 2 * karatsuba-lower-bound
else 2 ^}l+len-kar-bound (l-1)+4
by pat-completeness auto
termination
apply (relation Wellfounded.measure (\lambdal.l))
subgoal by simp
subgoal for l
using karatsuba-lower-bound-requirement by (cases l; simp)
done
declare len-kar-bound.simps[simp del]

```
```

lemma length-karatsuba-on-power-of-2-aux:
assumes }k=2 ^ ` l
assumes length x = k length y =k
shows length (karatsuba-on-power-of-2-length k x y) \leqlen-kar-bound l
using assms proof (induction k x y arbitrary: l rule: karatsuba-on-power-of-2-length.induct)
case (1 kxy)
then show ?case
proof (cases k\leqkaratsuba-lower-bound)
case True
then have karatsuba-on-power-of-2-length k x y = grid-mul-nat x y
unfolding karatsuba-on-power-of-2-length.simps[of kx y] by argo
also have length ... \leqlength }x+\mathrm{ length }
by (rule length-grid-mul-nat)
also have ... = 2*k using 1 by linarith
also have ... \leqlen-kar-bound l
unfolding len-kar-bound.simps[of l] using 1.prems True by simp
finally show ?thesis.
next
case False
then interpret r: karatsuba-context kl x y using 1.prems by unfold-locales
simp-all
from r.recursive have length (karatsuba-on-power-of-2-length k x y) =
length (r.prod0 + }\mp@subsup{n}{n}{(r.r>> n r.k-div-2) + +n
(r.prod1 >>>n k))
by argo
also have ... \leq max (max (length r.prod0)
(2 ^
max (max (length r.prod0) (length r.prod1) + 1) (length r.prod2) + 1)
+1)
(k+ length r.prod1) + 1
unfolding r.r-def r.add01-def
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: length-add-nat-upper)
unfolding length-shift-right r.k-div-2 if-distrib[of length]
apply (estimation estimate: if-le-max)
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: length-subtract-nat-le)
apply (estimation estimate: length-add-nat-upper)
by simp
also have ... \leq max (max (len-kar-bound (l-1))
(2^(l-1)+
max (max (len-kar-bound (l - 1)) (len-kar-bound (l - 1)) + 1)
(len-kar-bound (l-1))+1) + 1)
(k+len-kar-bound (l-1))+1
unfolding r.prod0-def r.prod1-def r.prod2-def
apply (estimation estimate: 1.IH(1)[OF r.IH-prems1])
apply (estimation estimate: 1.IH(2)[OF r.IH-prems2])
apply (estimation estimate: 1.IH(3)[OF r.IH-prems3])

```
```

 by (rule order.refl)
 also have ... = max (2 ^ (l - 1) + len-kar-bound (l - 1) + 3)
 (2 ^l + len-kar-bound (l-1)) +1
 unfolding max.idem r.k-power-of-2 by (simp del: One-nat-def)
 also have .. \leq (2^ l + len-kar-bound (l-1) + 3) + 1
 apply (intro add-mono order.refl)
 apply (intro max.boundedI)
 subgoal
 apply (intro add-mono order.refl) by simp
 subgoal by simp
 done
 also have ... = len-kar-bound l
 unfolding len-kar-bound.simps[of l] using False r.k-power-of-2 by simp
 finally show ?thesis .
 qed
 qed
lemma len-kar-bound-le:len-kar-bound l\leq6*2^ l +2* karatsuba-lower-bound
proof (induction l rule: less-induct)
case (less l)
then show ?case
proof (cases 2 ^ l m karatsuba-lower-bound)
case True
then show ?thesis
unfolding len-kar-bound.simps[of l] by simp
next
case False
then have l - 1 <l using karatsuba-lower-bound-requirement by (cases l;
simp)
then have l>0 by simp
from False have len-kar-bound l=2 ^ l + len-kar-bound (l-1) +4
unfolding len-kar-bound.simps[of l] by argo
also have ... \leq2^ l + (6* 2^(l-1) +2* karatsuba-lower-bound) + 4
using less[OF<l-1<l>] by simp
also have .. =2 * (2` (l-1))+(6*2` (l-1) +2* karatsuba-lower-bound)
+4
unfolding power-Suc[symmetric] Suc-diff-1[OF<l> 0>] by (rule refl)
also have ... = 8* 2^ (l-1)+4+2* karatsuba-lower-bound by simp
also have ... \leq 8*2`(l-1)+4*2`(l-1)+2* karatsuba-lower-bound
by simp
also have ···= 12 * 2^ (l-1) + 2 * karatsuba-lower-bound by simp
also have ···=6* N^ l + 2* karatsuba-lower-bound
using Suc-diff-1[OF<l>0\rangle, symmetric] power-Suc[of 2::nat l - 1] by simp
finally show ?thesis .
qed
qed

```

The following is a pretty crude estimate for the length of the result of our Karatsuba implementation, but it suffices for our purposes.
```

lemma length-karatsuba-on-power-of-2-length-le:
assumes k= 2 ^
assumes length x = k length y =k
shows length (karatsuba-on-power-of-2-length kxy)\leq6*k+2 * karat-
suba-lower-bound
using order.trans[OF length-karatsuba-on-power-of-2-aux[OF assms] len-kar-bound-le]
unfolding assms .

```

In order to multiply two integers of arbitrary length using Karatsuba multiplication, the input numbers can just be zero-padded.
fun karatsuba-mul-nat :: nat-lsbf \(\Rightarrow\) nat-lsbf \(\Rightarrow\) nat-lsbf where

karatsuba-on-power-of-2-length \(k\) (fill \(k x)(\) fill \(k y))\)
We verify the correctness of Karatsuba multiplication:
```

theorem karatsuba-mul-nat-correct: to-nat (karatsuba-mul-nat x y) $=$ to-nat $x *$
to-nat y
proof -
define k where $k=$ next-power-of-2 (max (length $x)$ (length $y)$)
then obtain l where $k=2^{\wedge} l$ using next-power-of-2-is-power-of-2 by blast
have 1: to-nat $($ fill $k x)=$ to-nat x to-nat $($ fill $k y)=$ to-nat y by simp-all
have $k \geq$ length $x k \geq$ length y
using next-power-of-2-lower-bound[of max (length x) (length y)] k-def
by simp-all
hence length $($ fill $k x)=k$ length $($ fill $k y)=k$ using length-fill by simp-all
show ?thesis unfolding k-def[symmetric] karatsuba-lower-bound-def
using karatsuba-on-power-of-2-length-correct[OF $\left\langle k=2{ }^{\wedge} l\right\rangle\langle l e n g t h ~(f i l l ~ k x)$
$=k\rangle\langle l e n g t h($ fill $k y)=k\rangle]$
by (simp only: karatsuba-mul-nat.simps Let-def k-def[symmetric] to-nat-fill)
qed
lemma length-karatsuba-mul-nat-le: length (karatsuba-mul-nat $x y) \leq 12 * \max$
(length $x)($ length $y)+(6+2 *$ karatsuba-lower-bound $)$
proof -
let $? m=\max ($ length $x)($ length $y)$
define k where $k=$ next-power-of-2 ?m
then obtain l where $k=$ 2 $^{\wedge} l$ using next-power-of-2-is-power-of-2 by auto
from k-def have ? $m \leq k$ using next-power-of-2-lower-bound by simp
from k-def have karatsuba-mul-nat $x y=$ karatsuba-on-power-of-2-length k (fill
$k x)($ fill $k y)$
unfolding karatsuba-mul-nat.simps Let-def by argo
also have length $\ldots \leq 6 * k+2 *$ karatsuba-lower-bound
apply (intro length-karatsuba-on-power-of-2-length-le $\left[O F\left\langle k=2^{\wedge} l\right\rangle\right]$ length-fill)
subgoal using $\langle ? m \leq k\rangle$ by simp
subgoal using $\langle ? m \leq k\rangle$ by simp
done
also have $\ldots \leq 6 *(2 * ? m+1)+2 *$ karatsuba-lower-bound
apply (intro add-mono mult-le-mono order.refl)
unfolding k-def by (rule next-power-of-2-upper-bound')

```
```

 also have ... =12*?m + (6+2* karatsuba-lower-bound)
 by simp
 finally show ?thesis.
 qed

```

Formally, we only implemented Karatsuba multiplication on natural numbers (not all integers). However, this does not really matter, as the multiplication can just be lifted to the integers. This lifting has already been done on other types, but for the sake of completeness we will just add it here as well:
fun karatsuba-mul-int where
karatsuba-mul-int \(x\) y \(=\) nat-mul-to-int-mul karatsuba-mul-nat \(x\) y
corollary karatsuba-mul-int-correct:
to-int (karatsuba-mul-int \(x y)=\) to-int \(x *\) to-int \(y\)
using nat-mul-to-int-mul-correct[of karatsuba-mul-nat] karatsuba-mul-nat-correct by (metis karatsuba-mul-int.simps surj-pair)
end

\section*{12 Running Time of Karatsuba Multiplication}
```

theory Karatsuba-TM
imports Karatsuba ../Binary-Representations/Nat-LSBF-TM
../Estimation-Method
begin

```

This theory contains a time monad version of Karatsuba multiplication, which is used to verify the asymptotic running time of \(\mathcal{O}\left(n^{\log _{2} 3}\right)\).
```

definition abs-diff-tm :: nat-lsbf \Rightarrow nat-lsbf \Rightarrow nat-lsbf tm where

```
abs-diff-tm xs ys \(=1\) do \{
    \(r 1 \leftarrow x s-_{n t} y s ;\)
    \(r 2 \leftarrow y s-{ }_{n t} x s ;\)
    \(r 1+{ }_{n t} r 2\)
\}
lemma val-abs-diff-tm[simp, val-simp]: val (abs-diff-tm xs ys) \(=\) abs-diff xs ys
    by (simp add: abs-diff-tm-def abs-diff-def)
lemma time-abs-diff-tm-le: time (abs-diff-tm xs ys) \(\leq 62 * \max\) (length xs) (length
\(y s)+100\)
proof -
    have time \(\left(a b s\right.\)-diff-tm xs ys) \(\leq\) time \(\left(x s-_{n t} y s\right)+\) time \(\left(y s-_{n t} x s\right)+\)
        time \(\left(\left(x s-_{n} y s\right)+{ }_{n t}\left(y s-_{n} x s\right)\right)+1\)
    by (simp add: abs-diff-tm-def)
    also have \(\ldots \leq 62 * \max (\) length \(x s)(\) length \(y s)+100\)
    apply (estimation estimate: time-subtract-nat-tm-le)
    apply (estimation estimate: time-subtract-nat-tm-le)
```

 apply (estimation estimate: time-add-nat-tm-le)
 using length-subtract-nat-le[of xs ys] length-subtract-nat-le[of ys xs]
 by linarith
 finally show ?thesis.
 qed
context karatsuba-context
begin
definition fill-abs-diff-x where fill-abs-diff-x = fill k-div-2 (abs-diff x0 x1)
definition fill-abs-diff-y where fill-abs-diff-y = fill k-div-2 (abs-diff y0 y1)
definition sgnx where sgnx = (x1 \leqn x0)
definition sgny where sgny = (y1 \leqn y0)
definition sgnxy where sgnxy = (sgnx = sgny)
definition r' where r' }\mp@subsup{r}{}{\prime}=(\mathrm{ if sgnxy then add01 -
definition sr where sr=r>>\mp@subsup{n}{n}{}k\mathrm{ -div-2}
definition add0sr where addOsr = prod0 + +n sr
definition s1 where s1 = prod1 >>>n}
lemma r-r':r= r'
unfolding r-def r'-def sgnxy-def sgnx-def sgny-def by argo
lemmas defs3 = fill-abs-diff-x-def fill-abs-diff-y-def sgnx-def sgny-def sgnxy-def r-r'
r'-def sr-def add0sr-def s1-def
end
lemma add-nat-carry-aux:
assumes length x \leqk
assumes length }y\leq
assumes length (x+\mp@subsup{}{n}{}y)=k+1
shows max (length x) (length y) = k Nat-LSBF.to-nat x + Nat-LSBF.to-nat y
\geq2^k
proof -
have length x = k\vee length y = k
proof (rule ccontr)
assume }\neg(length x=k\vee length y=k
then have max (length x) (length y) <k using assms by simp
then have length (add-nat x y) <k+1 using length-add-nat-upper[of x y]
by linarith
then show False using assms by simp
qed
then show max (length x) (length y) = k using assms by linarith
then obtain z where add-nat x y=z @ [True]
using add-nat-last-bit-True assms by blast
from this[symmetric] have Nat-LSBF.to-nat x + Nat-LSBF.to-nat y \geq2 ^length
z
using add-nat-correct[of x y] to-nat-length-lower-bound[of z] by argo
also have 2` length z=2^ \ using <add-nat x y = z @ [True]> assms by simp

```
```

 finally show Nat-LSBF.to-nat \(x+\) Nat-LSBF.to-nat \(y \geq 2{ }^{\wedge} k\) by simp
 qed
context begin
private fun f where
$f k=($ if $k \leq$ karatsuba-lower-bound then $2 * k$ else $f(k \operatorname{div} 2)+k+4)$
declare $f . \operatorname{simps}[\operatorname{simp} d e l]$
private lemma f-linear: $f k \leq 6 * k$
apply (induction k rule: $f . i n d u c t$)
subgoal for k
apply (cases $k \leq$ karatsuba-lower-bound)
subgoal by (simp add: $f . \operatorname{simps}[o f k]$)
subgoal premises prems
proof (cases $k \geq 5$)
case True
then show ?thesis using prems unfolding $f . \operatorname{simps}[$ of $k]$ by simp
next
case False
then consider $k=2|k=3| k=4$ using prems karatsuba-lower-bound-requirement
by linarith
then show ?thesis using prems unfolding f.simps $[$ of $k]$ by fastforce
qed
done
done
private lemma f-bound:
assumes $k=2{ }^{\wedge} l$
assumes length $x=k$
assumes length $y=k$
shows length (karatsuba-on-power-of-2-length $k x y$) $\leq f k$
using assms
proof (induction $k x y$ arbitrary: l rule: karatsuba-on-power-of-2-length.induct)
case (1kxy)
show ?case
proof (cases $k \leq$ karatsuba-lower-bound)
case True
then show ?thesis unfolding karatsuba-on-power-of-2-length.simps $[o f k x y]$
using length-grid-mul-nat [of $x y]$ 1.prems $f . \operatorname{simps}[$ of $k]$ by simp
next
case False
then interpret r : karatsuba-context $k l x y$
using 1.prems by (unfold-locales; simp)
have len0: length r.prod0 $\leq f$ (k div 2)
unfolding r.prod0-def r.k-div-2-def[symmetric]
by (intro 1 (1)[OF r.IH-prems1])
have len1: length r.prod $1 \leq f(k$ div 2)

```
```

 unfolding r.prod1-def r.k-div-2-def[symmetric]
 by (intro 1(2)[OF r.IH-prems2])
 have len2: length r.prod2 }\leqf\mathrm{ (}k\mathrm{ div 2)
 unfolding r.prod2-def r.k-div-2-def[symmetric]
 by (intro 1(3)[OF r.IH-prems3])
 have len-p01: length (r.prod0 + }\mp@subsup{n}{n}{r.prod1) \leqf(k div 2) + 1
 using length-add-nat-upper[of r.prod0 r.prod1] len0 len1 by linarith
 then have length (r.prod0 + +n r.prod1 + +n r.prod2) \leqf(k div 2) + 2
 using length-add-nat-upper[of r.prod0 + }\mp@subsup{n}{n}{}\mathrm{ r.prod1 r.prod2] len2 by linarith
 moreover have length (r.prod0 + }\mp@subsup{n}{n}{r.prod1 -
 using length-subtract-nat-le[of r.prod0 + +n r.prod1 r.prod2] len-p01 len2
 by linarith
 ultimately have lenif: length (if r.sgnxy then r.prod0 + }\mp@subsup{n}{n}{}r.prod1 - -n r.prod2
 else r.prod0 + + r.prod1 + +n r.prod2) }\leqf(k\mathrm{ div 2) +2 (is length ?if }
 -)
by simp
have length (karatsuba-on-power-of-2-length kxy)\leqmax (r.k-div-2 +f(k div
2))}(k+f(k\operatorname{div}2))+
unfolding r.recursive
apply (estimation estimate: length-add-nat-upper)
apply (subst length-shift-right)
apply (estimation estimate: length-add-nat-upper)
apply (subst length-shift-right)
unfolding r.r-def r.add01-def
apply (subst if-distrib[of length])
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: length-subtract-nat-le)
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: len0)
apply (estimation estimate: len1)
apply (estimation estimate: len2)
by auto
also have ... =k+f(k div 2) + 4
using r.k-div-2-less-k by simp
finally show ?thesis unfolding f.simps[of k] using False by simp
qed
qed
lemma length-karatsuba-on-power-of-2-length:
assumes k=2 ^}
assumes length x = k
assumes length }y=
shows length (karatsuba-on-power-of-2-length kxy)\leq6*k
using f-bound[OF assms] f-linear[of k] by simp
end

```
```

function karatsuba-on-power-of-2-length-tm :: nat \Rightarrow nat-lsbf \Rightarrow nat-lsbf \Rightarrow nat-lsbf
$t m$ where
karatsuba-on-power-of-2-length-tm k xs ys $=1$ do \{
$b \leftarrow k \leq_{t}$ karatsuba-lower-bound;
(if b then grid-mul-nat-tm xs ys else do \{
$(x 0, x 1) \leftarrow$ split-tm $x s$;
$(y 0, y 1) \leftarrow$ split-tm $y s ;$
k-div-2 $\leftarrow k \operatorname{div}_{t} 2$;
prod0 \leftarrow karatsuba-on-power-of-2-length-tm k-div-2 x0 y0;
prod1 \leftarrow karatsuba-on-power-of-2-length-tm k-div-2 21 y1;
abs-diff-x \leftarrow (abs-diff-tm x0 x1 > fill-tm k-div-2);
abs-diff- $y \leftarrow($ abs-diff-tm y0 y1 \gg fill-tm k-div-2);
prod2 $\leftarrow k a r a t s u b a-o n-p o w e r-o f-2-l e n g t h-t m ~ k-d i v-2 ~ a b s-d i f f-x ~ a b s-d i f f-y ;$
$\operatorname{sgn} x \leftarrow x 1 \leq_{n t} x 0$;
sgny $\leftarrow y 1 \leq_{n t} y 0 ;$
$\operatorname{sgnxy} \leftarrow \operatorname{sgnx}={ }_{t}$ sgny;
- construct return value
add01 \leftarrow prod0 $+_{n t}$ prod1;
$r \leftarrow$ (if sgnxy then add01 $-_{n t}$ prod2 else add01 $+_{n t}$ prod2);
$s r \leftarrow r \gg_{n t} k$-div-2;
addOsr \leftarrow prod0 $+_{n t} s r$;
$s 1 \leftarrow \operatorname{prod} 1 \gg_{n t} k$;
add0sr $+_{n t} s 1$
\})
\}
by pat-completeness simp
termination
by (relation Wellfounded.measure $(\lambda p$. size $(f s t p)))$ simp-all
declare karatsuba-on-power-of-2-length-tm.simps[simp del]
lemma val-karatsuba-on-power-of-2-length-tm[simp, val-simp]:
assumes $k=2{ }^{\wedge} l$
assumes length $x s=k$ length $y s=k$
shows val (karatsuba-on-power-of-2-length-tm k xs ys) = karatsuba-on-power-of-2-length
$k x s y s$
using assms proof (induction k arbitrary: l xs ys rule: less-induct)
case (less k)
show ?case
proof (cases $k \leq$ karatsuba-lower-bound)
case True
then show ?thesis
unfolding karatsuba-on-power-of-2-length-tm.simps[of k xs ys]
karatsuba-on-power-of-2-length.simps[of k xs ys]
val-bind-tm val-less-eq-nat-tm val-simps val-grid-mul-nat-tm
by simp
next
case False
interpret r : karatsuba-context $k l x s$ ys

```
using less False by unfold-locales simp-all
have val0: val (karatsuba-on-power-of-2-length-tm r.k-div-2 r.x0 r.y0) \(=\) r.prod0 unfolding r.prod0-def
by (intro less.IH[OF r.k-div-2-less-k r.k-div-2 r.length-x-split(1) r.length-y-split(1)])
have val1: val (karatsuba-on-power-of-2-length-tm r.k-div-2 r.x1 r.y1) \(=\) r.prod1 unfolding r.prod1-def
by (intro less.IH[OF r.k-div-2-less-k r.k-div-2 r.length-x-split(2) r.length-y-split(2)])
have val2: val (karatsuba-on-power-of-2-length-tm r.k-div-2 r.fill-abs-diff-x r.fill-abs-diff-y) \(=r . p r o d 2\)
unfolding r.prod2-def r.fill-abs-diff-x-def[symmetric] r.fill-abs-diff-y-def[symmetric] apply (intro less.IH[OF r.k-div-2-less-k r.k-div-2])
subgoal unfolding r.fill-abs-diff-x-def by (rule r.length-fill-abs-diff-x0-x1)
subgoal unfolding r.fill-abs-diff- \(y\)-def by (rule r.length-fill-abs-diff-y0-y1)
done
have val (karatsuba-on-power-of-2-length-tm \(k\) xs ys) \(=r . a d d 0 s r+{ }_{n} r . s 1\) unfolding karatsuba-on-power-of-2-length-tm.simps[of \(k\) xs ys]
val-bind-tm val-less-eq-nat-tm val-simps val-split-tm r.split-x r.split-y
val-divide-nat-tm val-abs-diff-tm val-fill-tm r.k-div-2-def[symmetric]
val-compare-nat-tm val-subtract-nat-tm val-add-nat-tm val-equal-bool-tm val-shift-right-tm
Let-def Product-Type.prod.case r.defs2[symmetric] r.defs3[symmetric] val0
val1 val2
using False by argo
also have \(\ldots=\) karatsuba-on-power-of-2-length \(k\) xs ys
using \(r\).recursive
unfolding karatsuba-on-power-of-2-length.simps[of \(k\) xs ys]
Let-def r.split-x r.split-y Product-Type.prod.case r.defs2[symmetric] r.defs3[symmetric]
by argo
finally show ?thesis.
qed
qed
fun \(h\) where
\(h k=(\) if \(k \leq\) karatsuba-lower-bound then \(2 * k+8 * k * k+3\)
else \(407+224 * k+3 * h(k\) div 2 \())\)
declare h.simps[simp del]
lemma time-karatsuba-on-power-of-2-length-tm-le-h:
assumes \(k=2{ }^{\wedge} l\)
assumes length \(x s=k\) length \(y s=k\)
shows time (karatsuba-on-power-of-2-length-tm kxs ys) \(\leq h k\)
using assms proof (induction \(k\) arbitrary: xs ys l rule: less-induct)
case (less \(k\) )
show ?case
proof (cases \(k \leq\) karatsuba-lower-bound)
case True
then have time (karatsuba-on-power-of-2-length-tm \(k\) xs ys) \(\leq\) \(2 * k+8 *\) length \(x s * \max\) (length \(x s\) ) (length ys) +3
unfolding karatsuba-on-power-of-2-length-tm.simps[of \(k\) xs ys]
apply (simp add: time-less-eq-nat-tm)
```

 apply (subst Suc-eq-plus1)+
 apply (estimation estimate: time-grid-mul-nat-tm-le)
 apply (rule order.refl)
 done
 also have \(\ldots=2 * k+8 * k * k+3\) unfolding less(3) less(4) by simp
 finally show ?thesis unfolding h.simps[of \(k]\) using True by simp
 next
case False
then interpret r : karatsuba-context $k l x s$ ys
by (unfold-locales; simp add: less)
have val0: val (karatsuba-on-power-of-2-length-tm r.k-div-2 r.x0 r.y0) $=$ r.prod0
unfolding r.prod0-def
by (intro val-karatsuba-on-power-of-2-length-tm[OF r.k-div-2 r.length-x-split(1)
r.length-y-split(1)])
have val1: val (karatsuba-on-power-of-2-length-tm r.k-div-2 r.x1 r.y1) $=$ r.prod1
unfolding r.prod1-def
by (intro val-karatsuba-on-power-of-2-length-tm[OF r.k-div-2 r.length-x-split(2)
r.length-y-split(2)])
have val2: val (karatsuba-on-power-of-2-length-tm r.k-div-2 r.fill-abs-diff-x r.fill-abs-diff-y)
$=r . p r o d 2$
unfolding r.prod2-def r.fill-abs-diff-x-def[symmetric] r.fill-abs-diff-y-def[symmetric]
apply (intro val-karatsuba-on-power-of-2-length-tm[OF r.k-div-2])
subgoal unfolding r.fill-abs-diff-x-def by (rule r.length-fill-abs-diff-x0-x1)
subgoal unfolding r.fill-abs-diff- y-def by (rule r.length-fill-abs-diff-y0-y1)
done
have len0: length $(r . p r o d 0) \leq 3 * k$
unfolding r.prod0-def
apply (estimation estimate: length-karatsuba-on-power-of-2-length[OF r.k-div-2
r.length-x-split(1) r.length-y-split(1)])
unfolding r.k-div-2-def
by simp
have len1: length $(r . p r o d 1) \leq 3 * k$
unfolding r.prod1-def
apply (estimation estimate: length-karatsuba-on-power-of-2-length[OF r.k-div-2
r.length-x-split(2) r.length-y-split(2)])
unfolding r.k-div-2-def
by simp
have len2: length (r.prod2) $\leq 3 * k$
unfolding r.prod2-def
apply (estimation estimate: length-karatsuba-on-power-of-2-length[OF r.k-div-2
r.length-fill-abs-diff-x0-x1 r.length-fill-abs-diff-y0-y1])
unfolding r.k-div-2-def
by simp
have len01: length r.add01 $\leq 3 * k+1$
unfolding r.add01-def
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: len0)

```
apply (estimation estimate: len1)
by \(\operatorname{simp}\)
have lenr: length r.r \(\leq 3 * k+2\)
unfolding \(r\).r-def if-distrib[of length]
apply (estimation estimate: length-subtract-nat-le)
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: len01)
apply (estimation estimate: len2)
by simp
have lensr: length r.sr \(\leq r . k\)-div-2 \(+3 * k+2\)
unfolding \(r . s r-d e f\)
apply (subst length-shift-right)
apply (estimation estimate: lenr)
by simp
have len0sr: length r.add0sr \(\leq r . k\)-div-2 \(+3 * k+3\)
unfolding r.add0sr-def
apply (estimation estimate: length-add-nat-upper)
apply (estimation estimate: len0)
apply (estimation estimate: lensr)
by \(\operatorname{simp}\)
have lens1: length r.s1 \(\leq 4 * k\)
unfolding r.s1-def
apply (subst length-shift-right)
apply (estimation estimate: len1)
by \(\operatorname{simp}\)
have time0: time (karatsuba-on-power-of-2-length-tm r.k-div-2 r.x0 r.y0) \(\leq h\) r.k-div-2
by (intro less.IH[OF r.k-div-2-less-k r.k-div-2 r.length-x-split(1) r.length-y-split(1)])
have time1: time (karatsuba-on-power-of-2-length-tm r.k-div-2 r.x1 r.y1) \(\leq h\) r.k-div-2
by (intro less.IH[OF r.k-div-2-less-k r.k-div-2 r.length-x-split(2) r.length-y-split(2)])
have time2: time (karatsuba-on-power-of-2-length-tm r.k-div-2 r.fill-abs-diff-x r.fill-abs-diff-y) \(\leq h\) r.k-div-2
apply (intro less.IH[OF r.k-div-2-less-k r.k-div-2])
subgoal unfolding r.fill-abs-diff-x-def using r.length-fill-abs-diff-x0-x1 by assumption
subgoal unfolding r.fill-abs-diff- \(y\)-def using r.length-fill-abs-diff-y0-y1 by assumption
done
have time (karatsuba-on-power-of-2-length-tm \(k\) xs ys) \(=\) time \(\left(k \leq_{t}\right.\) karatsuba-lower-bound \()+\)
time (split-tm xs) +
time (split-tm ys) +
time ( \(k \operatorname{div}_{t}\) 2) +
time (karatsuba-on-power-of-2-length-tm r.k-div-2 r.x0 r.y0) +
time (karatsuba-on-power-of-2-length-tm r.k-div-2 r.x1 r.y1) + time (abs-diff-tm r.x0 r.x1) + time (fill-tm r.k-div-2 (abs-diff r.x0 r.x1)) +
```

 time (abs-diff-tm r.y0 r.y1) + time (fll-tm r.k-div-2 (abs-diff r.y0 r.y1)) +
 time (karatsuba-on-power-of-2-length-tm r.k-div-2 r.fill-abs-diff-x r.fill-abs-diff-y)
 + time (r.x1 \leq nt r.x0) +
 time (r.y1 \leqnt r.y0) +
 time (r.sgnx = t r.sgny) +
 time (add-nat-tm r.prod0 r.prod1) +
 (if r.sgnxy then time (r.add01 - nt r.prod2)
 else time (r.add01 + nt r.prod2)) +
 time (r.r>> nt r.k-div-2) +
 time (r.prod0 + +nt r.sr) +
 time (r.prod1 >>>nt k)+
 time (r.add0sr + +nt r.s1) + 1

unfolding karatsuba-on-power-of-2-length-tm.simps[of k xs ys]
tm-time-simps if-distrib[of time] val-less-eq-nat-tm val-split-tm r.defs1
Product-Type.prod.case val-divide-nat-tm r.defs2[symmetric] r.defs3[symmetric]
val-abs-diff-tm val-simps val-fill-tm val-karatsuba-on-power-of-2-length-tm
val-compare-nat-tm Let-def val0 val1 val2 val-add-nat-tm val-equal-bool-tm
val-subtract-nat-tm
by (auto simp: False r.defs2[symmetric] r.defs3[symmetric])
also have ... \leq2 * k+2 +
(10*k+16)+(10*k+16)+
(8*k+11)+
h(k div 2) +
h(k div 2) +
(31*k+100)+
(2*k+5)+
(31*k+100)+
(2*k+5)+
h(k div 2) +
(7*k+23) +
(7*k+23)+
2+
(6*k+3)+
(90*k+78)+
(k+3)+
(7*k+7)+
(2*k+3)+
(8*k+9)+
1
apply (intro add-mono)
subgoal by (estimation estimate: time-less-eq-nat-tm-le) simp
subgoal by (estimation estimate: time-split-tm-le) (simp add: less)
subgoal by (estimation estimate: time-split-tm-le) (simp add: less)
subgoal by (estimation estimate: time-divide-nat-tm-le) simp
subgoal by (estimation estimate: time0) (simp add: r.k-div-2-def)
subgoal by (estimation estimate: time1) (simp add: r.k-div-2-def)
subgoal apply (estimation estimate: time-abs-diff-tm-le) unfolding r.length-x-split
r.k-div-2-def by simp

```
subgoal apply (estimation estimate: time-fill-tm-le) using r.length-abs-diff-x0-x1 r.k-div-2-def by simp
subgoal apply (estimation estimate: time-abs-diff-tm-le) unfolding r.length-y-split r.k-div-2-def by simp
subgoal apply (estimation estimate: time-fill-tm-le) using r.length-abs-diff-y0-y1 r.k-div-2-def by simp
subgoal by (estimation estimate: time2) (simp add: r.k-div-2-def)
subgoal apply (estimation estimate: time-compare-nat-tm-le) using r.length-x-split r.k-div-2-def by simp
subgoal apply (estimation estimate: time-compare-nat-tm-le) using r.length-y-split r.k-div-2-def by simp
subgoal using time-equal-bool-tm-le by simp
subgoal
apply (estimation estimate: time-add-nat-tm-le)
apply (estimation estimate: len0)
apply (estimation estimate: len1)
by \(\operatorname{simp}\)
subgoal
apply (estimation estimate: time-subtract-nat-tm-le)
apply (estimation estimate: time-add-nat-tm-le)
apply (estimation estimate: len01)
apply (estimation estimate: len2)
by \(\operatorname{simp}\)
subgoal using \(r\). \(k\)-div-2-def by simp
subgoal
apply (estimation estimate: time-add-nat-tm-le)
apply (estimation estimate: len0)
apply (estimation estimate: lensr)
using r.k-div-2-def by simp
subgoal by simp
subgoal
apply (estimation estimate: time-add-nat-tm-le)
apply (estimation estimate: len0sr)
apply (estimation estimate: lens1)
using \(r\). \(k\)-div-2-less- \(k\) by presburger
subgoal by simp
done
also have \(\ldots=407+224 * k+3 * h(k\) div 2)
by simp
finally show ?thesis unfolding \(h . \operatorname{simps}[\) of \(k]\) using False by simp
qed
qed
lemma \(n\)-div-2: n div 2 \(=\) nat \(\lfloor\) real \(n / 2\rfloor\)
by linarith
function \(h\)-real :: nat \(\Rightarrow\) real where
\(x \leq\) karatsuba-lower-bound \(\Longrightarrow h\)-real \(x=8 * x * x+2 * x+3\)
\(\mid x>k a r a t s u b a-l o w e r-b o u n d \Longrightarrow h\)-real \(x=407+224 * x+3 * h\)-real \((\) nat \((\lfloor\) real
```

x / 2\))
by force simp-all
termination
by (relation Wellfounded.measure (\lambdax.x)) (simp-all add: n-div-2 [symmetric])
lemma h-h-real: real (hk) =h-real k
apply (induction k rule: h.induct)
subgoal for }
apply (cases k\leq karatsuba-lower-bound)
by (simp-all add: h-real.simps[of k] h.simps[of k] n-div-2 del: h-real.simps)
done
lemma h-real-bigo: h-real }\inO(\lambdan.real n powr log 2 3)
by (master-theorem 1 p ': 1) (auto simp: powr-divide)
definition karatsuba-mul-nat-tm :: nat-lsbf }=>\mathrm{ nat-lsbf }=>\mathrm{ nat-lsbf tm where
karatsuba-mul-nat-tm xs ys =1 do {
lenx}\leftarrow length-tm xs
leny }\leftarrow length-tm ys
k\leftarrow max-nat-tm lenx leny >> next-power-of-2-tm;
fillx}\leftarrow\mathrm{ fill-tm k xs;
filly }\leftarrow\mathrm{ fill-tm k ys;
karatsuba-on-power-of-2-length-tm k fillx filly
}
lemma val-karatsuba-mul-nat-tm[simp, val-simp]: val (karatsuba-mul-nat-tm xs ys)
= karatsuba-mul-nat xs ys
proof -
define k where k=next-power-of-2 (max (length xs) (length ys))
then obtain l where k=2 ^ l using next-power-of-2-is-power-of-2 by auto
have val (karatsuba-on-power-of-2-length-tm k (fill k xs) (fill k ys))}
karatsuba-on-power-of-2-length k (fill k xs) (fill k ys)
apply (intro val-karatsuba-on-power-of-2-length-tm[OF〈k=2 ^l>])
unfolding k-def using next-power-of-2-lower-bound[of max (length xs) (length
ys)] by auto
then show ?thesis
unfolding karatsuba-mul-nat-tm-def karatsuba-mul-nat.simps val-simp Let-def
k-def .
qed
definition time-karatsuba-mul-nat-bound where
time-karatsuba-mul-nat-bound m}=53+218*(next-power-of-2 m) +h (next-power-of-2
m)

```

The following two lemmas are one way to formally express the more informal statement "Karatsuba Multiplication needs \(\mathcal{O}\left(n^{\log _{2} 3}\right)\) bit operations for input numbers of length \(n\) ".
theorem time-karatsuba-mul-nat-tm-le:
assumes \(\max (\) length \(x s)(\) length \(y s)=m\)
shows time (karatsuba-mul-nat-tm xs ys) \(\leq\) time-karatsuba-mul-nat-bound \(m\) proof -
define \(k\) where \(k=\) next-power-of-2 \(m\)
then obtain \(l\) where \(k=2{ }^{\wedge} l\) using next-power-of-2-is-power-of-2 by auto
have lens: length \(x s \leq k\) length \(y s \leq k\)
using assms next-power-of-2-lower-bound [of m] \(k\)-def by simp-all
have time (karatsuba-mul-nat-tm xs ys) \(=\)
time (length-tm xs) +
time (length-tm ys) +
time (max-nat-tm (length xs) (length ys)) +
time (next-power-of-2-tm (max (length xs) (length ys))) +
time (fill-tm kxs) +
time \((\) fill-tm \(k y s)+\)
time (karatsuba-on-power-of-2-length-tm \(k\) (fill \(k\) xs) \((\) fill \(k\) ys) \()+1\)
unfolding karatsuba-mul-nat-tm-def tm-time-simps val-simp Let-def
assms \(k\)-def[symmetric \(]\) by presburger
also have ... \(\leq\)
\((k+1)+(k+1)+(2 * k+3)+\)
\((208 * k+37)+\)
\((3 * k+5)+\)
\((3 * k+5)+\)
\(h k+\)
1
apply (intro add-mono order.refl)
subgoal by (simp add: lens)
subgoal by (simp add: lens)
subgoal apply (estimation estimate: time-max-nat-tm-le) using lens by simp
subgoal apply (estimation estimate: time-next-power-of-2-tm-le) using lens
by \(\operatorname{simp}\)
subgoal apply (estimation estimate: time-fill-tm-le) using lens by simp
subgoal apply (estimation estimate: time-fill-tm-le) using lens by simp
subgoal apply (intro time-karatsuba-on-power-of-2-length-tm-le-h[OF \(\langle k=2\)
\(\left.\left.{ }^{\wedge} l\right\rangle\right]\) ) using lens
by auto
done
also have \(\ldots=53+218 * k+h k\) by \(\operatorname{simp}\)
finally show ?thesis unfolding \(k\)-def time-karatsuba-mul-nat-bound-def[symmetric]
qed
theorem time-karatsuba-mul-nat-bound-bigo: time-karatsuba-mul-nat-bound \(\in O(\lambda m\).
\(m\) powr log 2 3)
proof -
define \(t\) where \(t=(\lambda m\). real \((53+218 * m+h m))\)
then have time-karatsuba-mul-nat-bound \(=t \circ\) next-power-of-2
unfolding time-karatsuba-mul-nat-bound-def by auto
also have \(\ldots \in O(\lambda m\). m powr \(\log 23)\)
apply (intro powr-bigo-linear-index-transformation)
subgoal
```

 proof -
 have (\lambdax.real (next-power-of-2 x)) \inO(\lambdax. real (2*x+1))
 apply (intro landau-mono-always)
 using next-power-of-2-upper-bound' real-mono by simp-all
 moreover have (\lambdax. real (2*x+1)) \inO(real) by auto
 ultimately show (}\lambdax\mathrm{ . real (next-power-of-2 }2\mathrm{)) }\inO(\mathrm{ real)
 using landau-o.big.trans by blast
 qed
 subgoal unfolding t-def real-linear real-multiplicative h-h-real
 apply (intro sum-in-bigo)
 subgoal by auto
 subgoal by auto
 subgoal using h-real-bigo .
 done
 subgoal by auto
 done
 finally show?thesis.
qed
end

```

\section*{13 Code Generation}

\author{
theory Karatsuba-Code-Nat imports Main HOL-Library.Code-Binary-Nat Karatsuba begin
}

In this theory, the Karatsuba Multiplication implemented in Karatsuba is used for code generation. This is not really practical (except beginning at 3000 decimal digits), but merely a nice gimmick.
```

fun from-numeral $::$ num \Rightarrow nat-lsbf where
from-numeral num.One $=[$ True $]$
|from-numeral (num.Bit0 x) $=$ False $\#$ from-numeral x
|from-numeral (num.Bit1 x) $=$ True $\#$ from-numeral x

```
lemma from-numeral-nonempty: from-numeral \(x \neq[]\)
    by (induction \(x\) rule: from-numeral.induct; simp)
lemma from-numeral-truncated: truncated (from-numeral \(x\) )
    unfolding truncated-iff
    by (induction x rule: from-numeral.induct; simp add: from-numeral-nonempty)
lemma to-nat-from-numeral-neq-zero: to-nat (from-numeral \(x\) ) \(\neq 0\)
    using to-nat-zero-iff from-numeral-truncated from-numeral-nonempty by simp
fun to-numeral-of-truncated :: nat-lsbf \(\Rightarrow\) num where
to-numeral-of-truncated []\(=\) num.One
| to-numeral-of-truncated \([\) True \(]=\) num.One
```

to-numeral-of-truncated (True \# xs) = num.Bit1 (to-numeral-of-truncated xs)
| to-numeral-of-truncated (False \# xs) = num.Bit0 (to-numeral-of-truncated xs)
lemma to-numeral-of-truncated-from-numeral:
to-numeral-of-truncated (from-numeral x)=x
apply (induction x)
subgoal by simp
subgoal by simp
subgoal for }x\mathrm{ by (cases from-numeral x; simp)
done
lemma nat-of-num-to-numeral-of-truncated:
assumes truncated xs
assumes xs \not=[]
shows nat-of-num (to-numeral-of-truncated xs) = to-nat xs
using assms proof (induction xs rule: to-numeral-of-truncated.induct)
case 1
then show ?case by blast
next
case 2
then show ?case by simp
next
case (3vva)
note truncated-Cons-imp-truncated-tl[OF 3.prems(1)]
from 3.IH[OF this] show ?case by simp
next
case (4 xs)
from 4.prems(1) have xs \not= []
apply (intro ccontr[of xs \not= []])
by (simp add: truncated-iff)
note truncated-Cons-imp-truncated-tl[OF 4.prems(1)]
from 4.IH[OF this \langlexs \not= []>] show ?case by simp
qed
definition to-numeral :: nat-lsbf }=>\mathrm{ num where
to-numeral xs =(let xs'}=Nat-LSBF.truncate xs in to-numeral-of-truncated xs')
lemma to-numeral-from-numeral: to-numeral (from-numeral x) =x
unfolding to-numeral-def Let-def
using from-numeral-truncated to-numeral-of-truncated-from-numeral
by simp
lemma nat-of-num-to-numeral:
assumes to-nat xs }\not=
shows nat-of-num (to-numeral xs) = to-nat xs
unfolding to-numeral-def Let-def
using assms nat-of-num-to-numeral-of-truncated[of truncate xs, OF truncate-truncate]
unfolding nat-lsbf.to-f-elem
using to-nat-zero-iff

```
```

 by simp
 lemma l0:
assumes truncated xs
shows to-numeral-of-truncated xs = num-of-nat (to-nat xs)
using assms
by (metis nat-of-num-inverse nat-of-num-to-numeral-of-truncated num-of-nat.simps(1)
to-nat.simps(1) to-numeral-of-truncated.simps(1))
lemma l1: to-numeral xs = num-of-nat (to-nat xs)
unfolding to-numeral-def Let-def
using l0[of truncate xs] truncate-truncate[of xs] nat-lsbf.to-f-elem
by simp
lemma l2: to-nat (from-numeral x) = nat-of-num x
by (metis nat-of-num-to-numeral to-nat-from-numeral-neq-zero to-numeral-from-numeral)
lemma[code]:
(x::num) * y = to-numeral (karatsuba-mul-nat (from-numeral x) (from-numeral
y))
unfolding l1 karatsuba-mul-nat-correct l2 times-num-def by (rule refl)
end

```

\section*{References}
[1] A. Karatsuba and Y. Ofman. Multiplication of many-digital numbers by automatic computers. Dokl. Akad. Nauk SSSR, 145:293-294, 1962. http://mi.mathnet.ru/dan26729.
[2] T. Nipkow. Verified root-balanced trees. In B.-Y. E. Chang, editor, Asian Symposium on Programming Languages and Systems, APLAS 2017, volume 10695 of LNCS, pages 255-272. Springer, 2017. https: //www21.in.tum.de/~nipkow/pubs/aplas17.pdf.```

