A Case Study in Basic Algebra

Clemens Ballarin

Abstract

The focus of this case study is re-use in abstract algebra. It contains locale-based formalisations of selected parts of set, group and ring theory from Jacobson's Basic Algebra leading to the respective fundamental homomorphism theorems. The study is not intended as a library base for abstract algebra. It rather explores an approach towards abstract algebra in Isabelle.

hide-const map
hide-const partition
no-notation divide (infixl '/70)
no-notation inverse-divide (infixl '/ 70)
Each statement in the formal text is annotated with the location of the originating statement in Jacobson's text [1]. Each fact that Jacobson states explicitly is marked as theorem unless it is translated to a sublocale declaration. Literal quotations from Jacobson's text are reproduced in double quotes.
Auxiliary results needed for the formalisation that cannot be found in Jacobson's text are marked as lemma or are interpretations. Such results are annotated with the location of a related statement. For example, the introduction rule of a constant is annotated with the location of the definition of the corresponding operation.

1 Concepts from Set Theory. The Integers

1.1 The Cartesian Product Set. Maps

Maps as extensional HOL functions
p 5, ll 21-25
locale $m a p=$
fixes α and S and T
assumes graph [intro, simp]: $\alpha \in S \rightarrow_{E} T$
begin
p 5, ll 21-25

```
lemma map-closed [intro, simp]:
    a\inS\Longrightarrow\alphaa\inT
<proof\rangle
p 5, ll 21-25
lemma map-undefined [intro]:
    a\not\inS\Longrightarrow\alphaa= undefined
\langleproof\rangle
end
p 7, ll 7-8
locale surjective-map = map + assumes surjective [intro]: \alpha'S=T
p 7, ll 8-9
locale injective-map = map + assumes injective [intro, simp]: inj-on \alphaS
Enables locale reasoning about the inverse restrict (inv-into S \alpha)T of \alpha.
p 7, ll 9-10
locale bijective =
    fixes \alpha and S and T
    assumes bijective [intro, simp]: bij-betw \alpha S T
Exploit existing knowledge about bij-betw rather than extending surjective-map and injective-map.
p 7, ll 9-10
locale bijective-map = map + bijective begin
p 7, ll 9-10
sublocale surjective-map <proof\rangle
p 7, ll 9-10
sublocale injective-map <proof\rangle
p 9, ll 12-13
sublocale inverse: map restrict (inv-into S \alpha) T TS
    <proof\rangle
p 9, ll 12-13
sublocale inverse: bijective restrict (inv-into S \alpha) T T S
    <proof>
end
p 8, ll 14-15
```

abbreviation identity $S \equiv(\lambda x \in S . x)$
context map begin
p 8, ll 18-20; p 9, ll 1-8
theorem bij-betw-iff-has-inverse:
bij-betw $\alpha S T \longleftrightarrow\left(\exists \beta \in T \rightarrow_{E} S\right.$. compose $S \beta \alpha=$ identity $S \wedge$ compose $T \alpha$ $\beta=$ identity T)
$\left(\right.$ is $\left.-\longleftrightarrow\left(\exists \beta \in T \rightarrow_{E} S . ? I N V \beta\right)\right)$
$\langle p r o o f\rangle$
end

1.2 Equivalence Relations. Factoring a Map Through an Equivalence Relation

```
p 11, ll 6-11
locale equivalence =
    fixes }S\mathrm{ and }
    assumes closed [intro, simp]: E\subseteqS\timesS
        and reflexive [intro, simp]: a\inS\Longrightarrow(a,a)\inE
        and symmetric [sym]: (a,b) \inE\Longrightarrow(b,a)\inE
        and transitive [trans]:\llbracket (a,b) \inE;(b,c)\inE\rrbracket\Longrightarrow(a,c)\inE
begin
p 11, ll 6-11
lemma left-closed [intro]:
    (a,b) \inE\Longrightarrowa\inS
    <proof>
p 11, ll 6-11
lemma right-closed [intro]:
    (a,b) \inE\Longrightarrowb\inS
    <proof\rangle
end
p 11, ll 16-20
locale partition =
    fixes S and P
    assumes subset: P\subseteq Pow S
        and non-vacuous: {} &P
        and complete: \P=S
        and disjoint: \llbracketA\inP;B\inP;A\not=B\rrbracket\LongrightarrowA\capB={}
context equivalence begin
p 11, ll 24-26
```

```
definition Class \(=(\lambda a \in S .\{b \in S .(b, a) \in E\})\)
p 11, ll 24-26
lemma Class-closed [dest]:
    \(\llbracket a \in\) Class \(b ; b \in S \rrbracket \Longrightarrow a \in S\)
        \(\langle p r o o f\rangle\)
p 11, ll 24-26
lemma Class-closed2 [intro, simp]:
        \(a \in S \Longrightarrow\) Class \(a \subseteq S\)
        \(\langle\) proof \(\rangle\)
p 11, ll 24-26
lemma Class-undefined [intro, simp]:
    \(a \notin S \Longrightarrow\) Class \(a=\) undefined
    \(\langle p r o o f\rangle\)
p 11, ll 24-26
lemma ClassI [intro, simp]:
    \((a, b) \in E \Longrightarrow a \in\) Class \(b\)
    \(\langle p r o o f\rangle\)
p 11, ll 24-26
lemma Class-revI [intro, simp]:
    \((a, b) \in E \Longrightarrow b \in\) Class \(a\)
    〈proof〉
p 11, ll 24-26
lemma ClassD [dest]:
    \(\llbracket b \in\) Class \(a ; a \in S \rrbracket \Longrightarrow(b, a) \in E\)
    \(\langle p r o o f\rangle\)
p 11, ll 30-31
theorem Class-self [intro, simp]:
    \(a \in S \Longrightarrow a \in\) Class \(a\)
    \(\langle p r o o f\rangle\)
p 11, l 31; p 12, l 1
theorem Class-Union [simp]:
    \((\bigcup a \in S\). Class \(a)=S\)
    〈proof〉
p 11, ll 2-3
theorem Class-subset:
    \((a, b) \in E \Longrightarrow\) Class \(a \subseteq\) Class \(b\)
〈proof〉
```

```
p 11, ll 3-4
theorem Class-eq:
    (a,b) \inE\LongrightarrowClass a Class b
    <proof\rangle
p 12, ll 1-5
theorem Class-equivalence:
    \llbracketa\inS;b\inS\rrbracket\LongrightarrowClass a = Class b\longleftrightarrow }\longleftrightarrow(a,b)\in
<proof\rangle
p 12, ll 5-7
theorem not-disjoint-implies-equal:
    assumes not-disjoint: Class a \cap Class b}={
    assumes closed: }a\inSb\in
    shows Class a = Class b
<proof\rangle
p 12, ll 7-8
definition Partition = Class' }
p 12, ll 7-8
lemma Class-in-Partition [intro, simp]:
    a}\=\mathrm{ Class a }\in\mathrm{ Partition
    <proof>
p 12, ll 7-8
theorem partition:
    partition S Partition
<proof\rangle
end
context partition begin
p 12, ll 9-10
theorem block-exists:
    a\inS\Longrightarrow\existsA.a\inA\wedgeA\inP
    <proof\rangle
p 12, ll 9-10
theorem block-unique:
    \llbracket \| a \in A ; A \in P ; a \in B ; B \in P \rrbracket \Longrightarrow A = B
    <proof>
p 12, ll 9-10
lemma block-closed [intro]:
    \llbracketa\inA;A\inP\rrbracket\Longrightarrowa\inS
```

〈proof〉
p 12，ll 9－10
lemma element－exists： $A \in P \Longrightarrow \exists a \in S . a \in A$ $\langle p r o o f\rangle$
p 12，ll 9－10
definition Block $=(\lambda a \in S . T H E A . a \in A \wedge A \in P)$
p 12，ll 9－10
lemma Block－closed［intro，simp］： assumes［intro］：$a \in S$ shows Block $a \in P$ $\langle p r o o f\rangle$
p 12，ll 9－10
lemma Block－undefined［intro，simp］： $a \notin S \Longrightarrow$ Block $a=$ undefined $\langle p r o o f\rangle$
p 12，ll 9－10
lemma Block－self：
$\llbracket a \in A ; A \in P \rrbracket \Longrightarrow$ Block $a=A$ $\langle p r o o f\rangle$
p 12，ll 10－11
definition Equivalence $=\{(a, b) . \exists A \in P . a \in A \wedge b \in A\}$
p 12，ll 11－12
theorem equivalence：equivalence S Equivalence $\langle p r o o f\rangle$

Temporarily introduce equivalence associated to partition．
p 12，ll 12－14
interpretation equivalence S Equivalence $\langle p r o o f\rangle$
p 12，ll 12－14
theorem Class－is－Block：
assumes $a \in S$ shows Class $a=$ Block a $\langle p r o o f\rangle$
p 12，l 14
lemma Class－equals－Block：
Class $=$ Block
〈proof〉
p 12，l 14
theorem partition－of－equivalence：
Partition $=P$
$\langle p r o o f\rangle$
end
context equivalence begin
p 12，ll 14－17
interpretation partition S Partition 〈proof〉
p 12，ll 14－17
theorem equivalence－of－partition：
Equivalence $=E$
$\langle p r o o f\rangle$
end
p 12， 114
sublocale partition \subseteq equivalence S Equivalence
rewrites equivalence．Partition S Equivalence $=P$ and equivalence．Class S Equiva－
lence $=$ Block
$\langle p r o o f\rangle$
p 12，ll 14－17
sublocale equivalence \subseteq partition S Partition
rewrites partition．Equivalence Partition $=E$ and partition．Block S Partition $=$ Class $\langle p r o o f\rangle$

Unfortunately only effective on input
p 12，ll 18－20
notation equivalence．Partition（infixl＇／75）
context equivalence begin
p 12，ll 18－20
lemma representant－exists［dest］：$A \in S / E \Longrightarrow \exists a \in S . a \in A \wedge A=$ Class a〈proof〉
p 12，ll 18－20
lemma quotient－ClassE：$A \in S / E \Longrightarrow(\bigwedge a . a \in S \Longrightarrow P($ Class $a)) \Longrightarrow P A$ $\langle p r o o f\rangle$
end

```
p 12, ll 21-23
sublocale equivalence \(\subseteq\) natural: surjective-map Class \(S\) S / E
    \(\langle p r o o f\rangle\)
```

Technical device to achieve Jacobson＇s syntax；context where α is not a param－ eter．
p 12，ll 25－26
locale fiber－relation－notation $=$ fixes S ：：＇a set begin
p 12，ll 25－26
definition Fiber－Relation $\left(E^{\prime}\left(-^{\prime}\right)\right)$ where Fiber－Relation $\alpha=\{(x, y) . x \in S \wedge y \in S$ $\wedge \alpha x=\alpha y\}$
end
Context where classes and the induced map are defined through the fiber rela－ tion．This will be the case for monoid homomorphisms but not group homo－ morphisms．

Avoids infinite interpretation chain．
p 12，ll 25－26
locale fiber－relation $=$ map begin
Install syntax
p 12，ll 25－26
sublocale fiber－relation－notation 〈proof〉
p 12，ll 26－27
sublocale equivalence where $E=E(\alpha)$
〈proof〉
＂define $\bar{\alpha}$ by $\bar{\alpha}(\bar{a})=\alpha(a)$＂
p 13，ll 8－9
definition induced $=(\lambda A \in S / E(\alpha)$. THE $b . \exists a \in A . b=\alpha a)$
p 13，l 10
theorem Fiber－equality：
$\llbracket a \in S ; b \in S \rrbracket \Longrightarrow$ Class $a=$ Class $b \longleftrightarrow \alpha a=\alpha b$
$\langle p r o o f\rangle$
p 13，ll 8－9
theorem induced－Fiber－simp［simp］：
assumes［intro，simp］：$a \in S$ shows induced（Class a）$=\alpha a$

```
<proof\rangle
p 13, ll 10-11
interpretation induced: map induced S / E(\alpha)T
<proof>
p 13, ll 12-13
sublocale induced: injective-map induced S / E(\alpha)T
<proof>
p 13, ll 16-19
theorem factorization-lemma:
    a\inS\Longrightarrow compose S induced Class a = \alpha a
    \langleproof\rangle
p 13, ll 16-19
theorem factorization [simp]: compose S induced Class =\alpha
    <proof\rangle
p 14, ll 2-4
theorem uniqueness:
    assumes map: }\beta\inS/E(\alpha)\mp@subsup{->}{E}{}
        and factorization: compose S \beta Class =\alpha
    shows }\beta=\mathrm{ induced
<proof>
end
hide-const monoid
hide-const group
hide-const inverse
no-notation quotient (infixl '/'/ 90)
```


2 Monoids and Groups

2.1 Monoids of Transformations and Abstract Monoids

Def 1.1
p 28, ll 28-30
locale monoid $=$
fixes M and composition (infixl • 70) and unit (1)
assumes composition-closed [intro, simp]: $\llbracket a \in M ; b \in M \rrbracket \Longrightarrow a \cdot b \in M$ and unit-closed [intro, simp]: $\mathbf{1} \in M$
and associative [intro]: $\llbracket a \in M ; b \in M ; c \in M \rrbracket \Longrightarrow(a \cdot b) \cdot c=a \cdot(b \cdot c)$

```
    and left-unit [intro, simp]: a }\inM\Longrightarrow1.a=
    and right-unit [intro, simp]: a\inM\Longrightarrowa\cdot\mathbf{1}=a
p 29, ll 27-28
locale submonoid = monoid M (.) 1
    for N and M and composition (infixl · 70) and unit (1) +
    assumes subset: N\subseteqM
        and sub-composition-closed: \llbracketa\inN;b\inN\rrbracket\Longrightarrowa}\Longrightarrow,b\in
        and sub-unit-closed: 1 \inN
begin
p 29, ll 27-28
lemma sub [intro, simp]:
    a\inN\Longrightarrowa\inM
    <proof>
p 29, ll 32-33
sublocale sub: monoid N(.) 1
    <proof>
end
p 29, ll 33-34
theorem submonoid-transitive:
    assumes submonoid K N composition unit
        and submonoid N M composition unit
    shows submonoid K M composition unit
<proof\rangle
p 28, l }2
locale transformations =
    fixes S :: 'a set
Monoid of all transformations
```

p 28, ll 23-24
sublocale transformations \subseteq monoid $S \rightarrow_{E} S$ compose S identity S〈proof〉
N is a monoid of transformations of the set S.
p 29, ll 34-36
locale transformation-monoid $=$
transformations $S+$ submonoid $M S \rightarrow_{E} S$ compose S identity S for M and S
begin
p 29, ll 34-36
lemma transformation-closed [intro, simp]:

```
    \llbracket\alpha\inM;x\inS\rrbracket\Longrightarrow\alphax\inS
    \langleproof\rangle
p 29, ll 34-36
lemma transformation-undefined [intro, simp]:
    \llbracket \alpha\inM;x\not\inS\rrbracket\Longrightarrow\alphax= undefined
    \langleproof\rangle
end
```


2.2 Groups of Transformations and Abstract Groups

context monoid begin
Invertible elements
p 31, ll 3-5
definition invertible where $u \in M \Longrightarrow$ invertible $u \longleftrightarrow(\exists v \in M \cdot u \cdot v=\mathbf{1} \wedge v$. $u=1$)
p 31, ll 3-5
lemma invertibleI [intro]:
$\llbracket u \cdot v=\mathbf{1} ; v \cdot u=\mathbf{1} ; u \in M ; v \in M \rrbracket \Longrightarrow$ invertible u \langle proof \rangle
p 31, ll 3-5
lemma invertible E [elim]:
\llbracket invertible $u ; \bigwedge v . \llbracket u \cdot v=\mathbf{1} \wedge v \cdot u=\mathbf{1} ; v \in M \rrbracket \Longrightarrow P ; u \in M \rrbracket \Longrightarrow P$
$\langle p r o o f\rangle$
p 31, ll 6-7
theorem inverse-unique:
$\llbracket u \cdot v^{\prime}=\mathbf{1} ; v \cdot u=\mathbf{1} ; u \in M ; v \in M ; v^{\prime} \in M \rrbracket \Longrightarrow v=v^{\prime}$ \langle proof \rangle
p 31, 17
definition inverse where inverse $=(\lambda u \in M$. THE $v . v \in M \wedge u \cdot v=\mathbf{1} \wedge v \cdot u=$ 1)
p 31, 17
theorem inverse-equality:
$\llbracket u \cdot v=\mathbf{1} ; v \cdot u=\mathbf{1} ; u \in M ; v \in M \rrbracket \Longrightarrow$ inverse $u=v$ $\langle p r o o f\rangle$
p 31, 17
lemma invertible-inverse-closed [intro, simp]:
\llbracket invertible $u ; u \in M \rrbracket \Longrightarrow$ inverse $u \in M$

```
<proof>
p 31, l }
lemma inverse-undefined [intro, simp]:
    u\not\inM\Longrightarrow inverse }u=\mathrm{ undefined
    \langleproof\rangle
```

p 31, l 7
lemma invertible-left-inverse [simp]:
\llbracket invertible $u ; u \in M \rrbracket \Longrightarrow$ inverse $u \cdot u=\mathbf{1}$
〈proof〉
p 31, 17
lemma invertible-right-inverse [simp]:
【invertible $u ; u \in M \rrbracket \Longrightarrow u \cdot$ inverse $u=\mathbf{1}$
〈proof〉
p 31, 17
lemma invertible-left-cancel [simp]:
【invertible $x ; x \in M ; y \in M ; z \in M \rrbracket \Longrightarrow x \cdot y=x \cdot z \longleftrightarrow y=z$
$\langle p r o o f\rangle$
p 31, 17
lemma invertible-right-cancel [simp]:
【invertible $x ; x \in M ; y \in M ; z \in M \rrbracket \Longrightarrow y \cdot x=z \cdot x \longleftrightarrow y=z$
〈proof〉
p 31, 17
lemma inverse-unit [simp]: inverse $\mathbf{1}=\mathbf{1}$
$\langle p r o o f\rangle$
p 31, ll 7-8
theorem invertible-inverse-invertible [intro, simp]:
\llbracket invertible $u ; u \in M \rrbracket \Longrightarrow$ invertible (inverse u)
〈proof〉
p 31, 18
theorem invertible-inverse-inverse [simp]:
\llbracket invertible $u ; u \in M \rrbracket \Longrightarrow$ inverse (inverse u) $=u$
$\langle p r o o f\rangle$
end
context submonoid begin

Reasoning about invertible and inverse in submonoids．
p 31， 17

```
lemma submonoid-invertible [intro, simp]:
    【 sub.invertible \(u ; u \in N \rrbracket \Longrightarrow\) invertible \(u\)
    \(\langle p r o o f\rangle\)
```

p 31, 17
lemma submonoid-inverse-closed [intro, simp]:
\llbracket sub.invertible $u ; u \in N \rrbracket \Longrightarrow$ inverse $u \in N$
\langle proof \rangle
end
Def 1.2
p 31, ll 9-10
locale group $=$
monoid $G(\cdot) \mathbf{1}$ for G and composition (infixl • 70) and unit (1) +
assumes invertible [simp, intro]: $u \in G \Longrightarrow$ invertible u
p 31, ll 11-12
locale subgroup $=$ submonoid $G M(\cdot) \mathbf{1}+$ sub: group $G(\cdot) \mathbf{1}$
for G and M and composition (infixl • 70) and unit (1)
begin

Reasoning about invertible and inverse in subgroups．
p 31，ll 11－12
lemma subgroup－inverse－equality $[$ simp $]$ ： $u \in G \Longrightarrow$ inverse $u=$ sub．inverse u $\langle p r o o f\rangle$
p 31，ll 11－12
lemma subgroup－inverse－iff［simp］：
【invertible $x ; x \in M \rrbracket \Longrightarrow$ inverse $x \in G \longleftrightarrow x \in G$〈proof〉
end
p 31，ll 11－12
lemma subgroup－transitive［trans］：
assumes subgroup K H composition unit and subgroup $H G$ composition unit
shows subgroup K G composition unit
$\langle p r o o f\rangle$
context monoid begin
Jacobson states both directions，but the other one is trivial．
p 31，ll 12－15

```
theorem subgroupI:
    fixes G
    assumes subset [THEN subsetD, intro]: G\subseteqM
        and [intro]: 1 \inG
        and [intro]: \gh.\llbracketg\inG;h\inG\rrbracket\Longrightarrowg.h\inG
        and [intro]: \g. g\inG\Longrightarrow invertible g
        and [intro]: \g. g\inG\Longrightarrow inverse g}\in
    shows subgroup G M (.) 1
<proof\rangle
p 31, l }1
definition Units ={u\inM. invertible u}
p 31, l 16
lemma mem-UnitsI:
    \llbracket invertible }u;u\inM\rrbracket\Longrightarrowu\in\mathrm{ Units
    <proof\rangle
p 31, l 16
lemma mem-UnitsD:
    \llbracketu\inUnits \rrbracket\Longrightarrow invertible }u\wedgeu\in
    \langleproof\rangle
p 31, ll 16-21
interpretation units: subgroup Units M
<proof>
p 31, ll 21-22
theorem group-of-Units [intro, simp]:
    group Units (.) 1
    <proof\rangle
p 31, l }1
lemma composition-invertible [simp, intro]:
    \llbracket invertible x; invertible y;x\inM;y\inM\rrbracket\Longrightarrow invertible (x | y)
    <proof\rangle
```

p 31, 120
lemma unit-invertible:
invertible 1
$\langle p r o o f\rangle$

Useful simplification rules
p 31, l 22
lemma invertible-right-inverse2:
\llbracket invertible $u ; u \in M ; v \in M \rrbracket \Longrightarrow u \cdot($ inverse $u \cdot v)=v$
〈proof〉
p 31, l 22
lemma invertible-left-inverse2:
\llbracket invertible $u ; u \in M ; v \in M \rrbracket \Longrightarrow$ inverse $u \cdot(u \cdot v)=v$
〈proof〉
p 31, l 22
lemma inverse-composition-commute:
assumes [simp]: invertible x invertible $y x \in M y \in M$
shows inverse $(x \cdot y)=$ inverse $y \cdot$ inverse x
\langle proof \rangle
end
p 31, 124
context transformations begin
p 31, ll 25-26
theorem invertible-is-bijective:
assumes dom: $\alpha \in S \rightarrow_{E} S$
shows invertible $\alpha \longleftrightarrow$ bij-betw $\alpha S S$
$\langle p r o o f\rangle$
p 31, ll 26-27
theorem Units-bijective:
Units $=\left\{\alpha \in S \rightarrow_{E} S\right.$. bij-betw $\left.\alpha S S\right\}$
〈proof〉
p 31, ll 26-27
lemma Units-bij-betwI [intro, simp]:
$\alpha \in$ Units \Longrightarrow bij-betw $\alpha S S$
$\langle p r o o f\rangle$
p 31, ll 26-27
lemma Units-bij-betwD [dest, simp]:
$\llbracket \alpha \in S \rightarrow_{E} S ;$ bij-betw $\alpha S S \rrbracket \Longrightarrow \alpha \in$ Units
$\langle p r o o f\rangle$
p 31, ll 28-29
abbreviation Sym \equiv Units
p 31, ll 26-28
sublocale symmetric: group Sym compose S identity S
〈proof〉
end

```
p 32, ll 18-19
locale transformation-group =
    transformations S + symmetric: subgroup G Sym compose S identity S for G and
S
begin
```

p 32, ll 18-19
lemma transformation-group-closed [intro, simp]:
$\llbracket \alpha \in G ; x \in S \rrbracket \Longrightarrow \alpha x \in S$
$\langle p r o o f\rangle$
p 32, ll 18-19
lemma transformation-group-undefined [intro, simp]:
$\llbracket \alpha \in G ; x \notin S \rrbracket \Longrightarrow \alpha x=$ undefined
〈proof〉
end

2．3 Isomorphisms．Cayley＇s Theorem

Def 1.3
p 37，ll 7－11
locale monoid－isomorphism $=$
bijective－map $\eta M M^{\prime}+$ source：monoid $M(\cdot) \mathbf{1}+$ target：monoid $M^{\prime}(\cdot) \mathbf{1}^{\prime}$
for η and M and composition（infixl • 70）and unit（1）
and M^{\prime} and composition＇（infixl.$\left.^{\prime \prime} 70\right)$ and unit＇$\left(\mathbf{1}^{\prime \prime}\right)+$
assumes commutes－with－composition：$\llbracket x \in M ; y \in M \rrbracket \Longrightarrow \eta x \cdot^{\prime} \eta y=\eta(x \cdot y)$ and commutes－with－unit：$\eta \mathbf{1}=\mathbf{1}^{\prime}$
p 37，l 10
definition isomorphic－as－monoids（infixl $\cong_{M} 50$ ）
where $\mathcal{M} \cong_{M} \mathcal{M}^{\prime} \longleftrightarrow\left(\right.$ let $(M$, composition，unit $)=\mathcal{M} ;\left(M^{\prime}\right.$ ，composition ${ }^{\prime}$ ，unit $\left.{ }^{\prime}\right)$ $=\mathcal{M}^{\prime}$ in
$\left(\exists \eta\right.$ ．monoid－isomorphism ηM composition unit M^{\prime} composition＇unit＇$)$ ）
p 37，ll 11－12
locale monoid－isomorphism ${ }^{\prime}=$
bijective－map $\eta M M^{\prime}+$ source：monoid $M(\cdot) \mathbf{1}+$ target：monoid $M^{\prime}\left(\cdot{ }^{\prime}\right) \mathbf{1}^{\prime}$
for η and M and composition（infixl • 70）and unit（1）
and M^{\prime} and composition＇（infixl.$\left.^{\prime \prime} 70\right)$ and unit＇$\left(\mathbf{1}^{\prime \prime}\right)+$
assumes commutes－with－composition：$\llbracket x \in M ; y \in M \rrbracket \Longrightarrow \eta x \cdot^{\prime} \eta y=\eta(x \cdot y)$
p 37，ll 11－12
sublocale monoid－isomorphism \subseteq monoid－isomorphism ${ }^{\prime}$
〈proof〉
Both definitions are equivalent．

```
p 37, ll 12-15
sublocale monoid-isomorphism' \subseteq monoid-isomorphism
<proof\rangle
context monoid-isomorphism begin
p 37, ll 30-33
theorem inverse-monoid-isomorphism:
    monoid-isomorphism (restrict (inv-into M \eta) M') M'(·') 1' M (·) 1
    <proof\rangle
end
We only need that \(\eta\) is symmetric.
p 37, ll 28-29
theorem isomorphic-as-monoids-symmetric:
( \(M\), composition, unit \() \cong_{M}\) ( \(M^{\prime}\), composition \({ }^{\prime}\), unit \(\left.{ }^{\prime}\right) \Longrightarrow\left(M^{\prime}\right.\), composition \({ }^{\prime}\), unit \(\left.{ }^{\prime}\right)\)
\(\cong_{M}\) ( \(M\), composition, unit)
\(\langle p r o o f\rangle\)
p 38, 14
locale left-translations-of-monoid \(=\) monoid begin
p 38, ll 5-7
definition translation \(\left({ }^{\prime}(-)_{L}\right)\) where translation \(=(\lambda a \in M . \lambda x \in M . a \cdot x)\)
p 38, ll 5-7
lemma translation-map [intro, simp]: \(a \in M \Longrightarrow(a)_{L} \in M \rightarrow_{E} M\) \(\langle p r o o f\rangle\)
p 38, ll 5-7
lemma Translations-maps [intro, simp]:
translation' \(M \subseteq M \rightarrow_{E} M\) \(\langle p r o o f\rangle\)
p 38, ll 5-7
lemma translation-apply:
\(\llbracket a \in M ; b \in M \rrbracket \Longrightarrow(a)_{L} b=a \cdot b\) \(\langle p r o o f\rangle\)
p 38, ll 5-7
lemma translation-exist:
\(f \in\) translation' \(M \Longrightarrow \exists a \in M . f=(a)_{L}\) \(\langle p r o o f\rangle\)
```

p 38，ll 5－7
lemmas Translations－E $[$ elim $]=$ translation－exist $[$ THEN bexE $]$
p 38，l 10
theorem translation－unit－eq［simp］：
identity $M=(\mathbf{1})_{L}$
〈proof〉
p 38，ll 10－11
theorem translation－composition－eq［simp］：
assumes［simp］：$a \in M b \in M$
shows compose $M(a)_{L}(b)_{L}=(a \cdot b)_{L}$
$\langle p r o o f\rangle$
p 38，ll 7－9
sublocale transformation：transformations $M\langle p r o o f\rangle$
p 38，ll 7－9
theorem Translations－transformation－monoid：
transformation－monoid（translation＇M ）M〈proof〉
p 38，ll 7－9
sublocale transformation：transformation－monoid translation＇M M $\langle p r o o f\rangle$
p 38， 112
sublocale map translation M translation＇M
$\langle p r o o f\rangle$
p 38，ll 12－16
theorem translation－isomorphism［intro］：
monoid－isomorphism translation $M(\cdot) \mathbf{1}$（translation＇M ）（compose M ）（identity M）
$\langle p r o o f\rangle$
p 38，ll 12－16
sublocale monoid－isomorphism translation $M(\cdot) \mathbf{1}$ translation＇M compose M iden－ tity $M\langle p r o o f\rangle$
end
context monoid begin
p 38，ll 1－2
interpretation left－translations－of－monoid \langle proof〉
p 38, ll 1-2
theorem cayley-monoid:
$\exists M^{\prime}$ composition' unit' $^{\prime}$. transformation-monoid $M^{\prime} M \wedge(M,(\cdot), \mathbf{1}) \cong_{M}\left(M^{\prime}\right.$, composition', unit')
$\langle p r o o f\rangle$
end
p 38, l 17
locale left-translations-of-group $=$ group begin
p 38, ll 17-18
sublocale left-translations-of-monoid where $M=G\langle p r o o f\rangle$
p 38, ll 17-18
notation translation $\left({ }^{\prime}\left(-^{\prime}\right)_{L}\right)$
The group of left translations is a subgroup of the symmetric group, hence transformation.sub.invertible.
p 38, ll 20-22
theorem translation-invertible [intro, simp]: assumes [simp]: $a \in G$
shows transformation.sub.invertible $(a)_{L}$
$\langle p r o o f\rangle$
p 38, ll 19-20
theorem translation-bijective [intro, simp]:
$a \in G \Longrightarrow$ bij-betw $(a)_{L} G G$
$\langle p r o o f\rangle$
p 38, ll 18-20
theorem Translations-transformation-group:
transformation-group (translation ' G) G
$\langle p r o o f\rangle$
p 38, ll 18-20
sublocale transformation: transformation-group translation' $G G$ $\langle p r o o f\rangle$
end
context group begin
p 38, ll 2-3
interpretation left-translations-of-group $\langle p r o o f\rangle$

```
p 38, ll 2-3
theorem cayley-group:
    \existsG' composition' unit'. transformation-group G'G}G\(G,(\cdot),\mathbf{1})\cong\mp@subsup{M}{M}{\prime}(\mp@subsup{G}{}{\prime},\mathrm{ composi-
tion', unit')
    <proof\rangle
end
```

Exercise 3
p 39, ll 9-10
locale right-translations-of-group $=$ group begin
p 39, ll 9-10
definition translation $\left({ }^{\prime}\left(-^{\prime}\right)_{R}\right)$ where translation $=(\lambda a \in G . \lambda x \in G . x \cdot a)$
p 39, ll 9-10
abbreviation Translations \equiv translation ' G
The isomorphism that will be established is a map different from translation.

```
p 39, ll 9-10
interpretation aux: map translation G Translations
        <proof>
p 39, ll 9-10
lemma translation-map [intro, simp]:
    a\inG\Longrightarrow(a)
    \langleproof\rangle
p 39, ll 9-10
lemma Translation-maps [intro, simp]:
    Translations \subseteqG 勆G
    <proof>
p 39, ll 9-10
lemma translation-apply:
    \llbracketa\inG;b\inG\rrbracket\Longrightarrow(a)
    \langleproof\rangle
p 39, ll 9-10
lemma translation-exist:
    f\in Translations \Longrightarrow\existsa\inG.f=(a)R
    <proof\rangle
p 39, ll 9-10
lemmas Translations-E [elim] = translation-exist [THEN bexE]
```

```
p 39, ll 9-10
lemma translation-unit-eq [simp]:
    identity G = (1) R
    <proof>
p 39, ll 10-11
lemma translation-composition-eq [simp]:
    assumes [simp]: a\inGb\inG
    shows compose G(a)
    <proof\rangle
p 39, ll 10-11
sublocale transformation: transformations G <proof\rangle
p 39, ll 10-11
lemma Translations-transformation-monoid:
    transformation-monoid Translations G
    <proof\rangle
p 39, ll 10-11
sublocale transformation: transformation-monoid Translations G
    \langleproof\rangle
p 39, ll 10-11
lemma translation-invertible [intro, simp]:
    assumes [simp]: a\inG
    shows transformation.sub.invertible (a)
<proof\rangle
p 39, ll 10-11
lemma translation-bijective [intro, simp]:
    a\inG\Longrightarrowbij-betw (a)R G G
    \langleproof\rangle
p 39, ll 10-11
theorem Translations-transformation-group:
    transformation-group Translations G
<proof\rangle
p 39, ll 10-11
sublocale transformation: transformation-group Translations G
    \langleproof\rangle
p 39, ll 10-11
lemma translation-inverse-eq [simp]:
    assumes [simp]: a\inG
```

shows transformation.sub.inverse $(a)_{R}=(\text { inverse } a)_{R}$ $\langle p r o o f\rangle$
p 39, ll 10-11
theorem translation-inverse-monoid-isomorphism [intro]:
monoid-isomorphism $\left(\lambda a \in G\right.$. transformation.symmetric.inverse $\left.(a)_{R}\right) G(\cdot) \mathbf{1}$ Translations (compose G) (identity G)
(is monoid-isomorphism?inv -----) $\langle p r o o f\rangle$
p 39, ll 10-11
sublocale monoid-isomorphism
$\lambda a \in G$. transformation.symmetric.inverse $(a)_{R} G(\cdot) 1$ Translations compose G identity $G\langle p r o o f\rangle$
end

2.4 Generalized Associativity. Commutativity

```
p 40, l 27; p 41, ll 1-2
locale commutative-monoid = monoid +
    assumes commutative: }\llbracketx\inM;y\inM\rrbracket\Longrightarrowx\cdoty=y\cdot
p 41, l }
locale abelian-group = group + commutative-monoid G(\cdot) 1
```


2.5 Orbits. Cosets of a Subgroup

context transformation-group begin
p 51, ll 18-20
definition Orbit-Relation where Orbit-Relation $=\{(x, y) . x \in S \wedge y \in S \wedge(\exists \alpha \in G . y=\alpha x)\}$
p 51, ll 18-20
lemma Orbit-Relation-memI [intro]:
$\llbracket \exists \alpha \in G . y=\alpha x ; x \in S \rrbracket \Longrightarrow(x, y) \in$ Orbit-Relation $\langle p r o o f\rangle$
p 51, ll 18-20
lemma Orbit-Relation-memE [elim]:
$\llbracket(x, y) \in$ Orbit-Relation; $\bigwedge \alpha . \llbracket \alpha \in G ; x \in S ; y=\alpha x \rrbracket \Longrightarrow Q \rrbracket \Longrightarrow Q$ $\langle p r o o f\rangle$
p 51, ll 20-23, 26-27
sublocale orbit: equivalence S Orbit-Relation $\langle p r o o f\rangle$
p 51, ll 23-24

```
theorem orbit-equality:
    x\inS\Longrightarrow orbit.Class }x={\alphax|\alpha.\alpha\inG
<proof\rangle
end
context monoid-isomorphism begin
```

p 52, ll 16-17
theorem image-subgroup:
assumes subgroup $G M(\cdot) \mathbf{1}$
shows subgroup $\left(\eta^{\prime} G\right) M^{\prime}\left(\cdot^{\prime}\right) \mathbf{1}^{\prime}$
\langle proof \rangle
end

Technical device to achieve Jacobson's notation for Right-Coset and Left-Coset. The definitions are pulled out of subgroup-of-group to a context where H is not a parameter.
p 52, l 20
locale coset-notation $=$ fixes composition (infixl $\cdot 70$) begin
Equation 23
p 52, 120
definition Right-Coset (infixl |•70) where $H \mid \cdot x=\{h \cdot x \mid h . h \in H\}$
p 53, ll 8-9
definition Left-Coset (infixl $\cdot \mid 70$) where $x \cdot \mid H=\{x \cdot h \mid h . h \in H\}$
p 52, 120
lemma Right-Coset-memI [intro]:
$h \in H \Longrightarrow h \cdot x \in H \mid \cdot x$ $\langle p r o o f\rangle$
p 52, 120
lemma Right-Coset-memE [elim]:
$\llbracket a \in H \mid \cdot x ; \bigwedge h . \llbracket h \in H ; a=h \cdot x \rrbracket \Longrightarrow P \rrbracket \Longrightarrow P$ $\langle p r o o f\rangle$
p 53, ll 8-9
lemma Left-Coset-memI [intro]:
$h \in H \Longrightarrow x \cdot h \in x \cdot \mid H$〈proof〉
p 53, ll 8-9

```
lemma Left-Coset-memE [elim]:
    \(\llbracket a \in x \cdot \mid H ; \wedge h . \llbracket h \in H ; a=x \cdot h \rrbracket \Longrightarrow P \rrbracket \Longrightarrow P\)
        \(\langle p r o o f\rangle\)
end
p 52, l 12
locale subgroup-of-group \(=\) subgroup \(H G(\cdot) \mathbf{1}+\operatorname{coset}\)-notation \((\cdot)+\) group \(G(\cdot) \mathbf{1}\)
    for \(H\) and \(G\) and composition (infixl • 70) and unit (1)
begin
p 52, ll 12-14
interpretation left: left-translations-of-group \(\langle p r o o f\rangle\)
interpretation right: right-translations-of-group \(\langle p r o o f\rangle\)
left.translation' \(H\) denotes Jacobson's \(H_{L}(G)\) and left.translation' \(G\) denotes
Jacobson's \(G_{L}\).
p 52, ll 16-18
theorem left-translations-of-subgroup-are-transformation-group [intro]:
    transformation-group (left.translation ' \(H\) ) \(G\)
〈proof〉
p 52, l 18
interpretation transformation-group left.translation ' \(H\) G \(\langle p r o o f\rangle\)
p 52, ll 19-20
theorem Right-Coset-is-orbit:
    \(x \in G \Longrightarrow H \mid \cdot x=\) orbit.Class \(x\)
    \(\langle p r o o f\rangle\)
p 52, ll 24-25
theorem Right-Coset-Union:
    \((\bigcup x \in G . H \mid \cdot x)=G\)
    \(\langle p r o o f\rangle\)
p 52, l 26
theorem Right-Coset-bij:
    assumes \(G[\operatorname{simp}]: x \in G y \in G\)
    shows bij-betw (inverse \(x \cdot y)_{R}(H \mid \cdot x)(H \mid \cdot y)\)
〈proof〉
p 52, ll 25-26
theorem Right-Cosets-cardinality:
    \(\llbracket x \in G ; y \in G \rrbracket \Longrightarrow \operatorname{card}(H \mid \cdot x)=\operatorname{card}(H \mid \cdot y)\)
    \(\langle p r o o f\rangle\)
p 52, 127
```

```
theorem Right-Coset-unit:
    H|.1 = H
    <proof\rangle
p 52, l }2
theorem Right-Coset-cardinality:
    x\inG\Longrightarrowcard (H|x) = card H
    \langleproof\rangle
p 52, ll 31-32
definition index = card orbit.Partition
```

Theorem 1.5
p 52, ll 33-35; p 53, ll 1-2
theorem lagrange:
finite $G \Longrightarrow$ card $G=$ card $H *$ index $\langle p r o o f\rangle$
end
Left cosets
context subgroup begin
p 31, ll 11-12
lemma image-of-inverse [intro, simp]: $x \in G \Longrightarrow x \in$ inverse ' G \langle proof〉
end
context group begin
p 53, ll 6-7
lemma inverse-subgroupI:
assumes sub: subgroup $H G(\cdot) \mathbf{1}$
shows subgroup (inverse ' H) $G(\cdot) \mathbf{1}$
$\langle p r o o f\rangle$
p 53, ll 6-7
lemma inverse-subgroupD:
assumes sub: subgroup (inverse ' H) $G(\cdot) \mathbf{1}$ and inv: $H \subseteq$ Units
shows subgroup $H G(\cdot) \mathbf{1}$
$\langle p r o o f\rangle$
end

```
context subgroup-of-group begin
p 53, l 6
interpretation right-translations-of-group \langleproof\rangle
translation ' }H\mathrm{ denotes Jacobson's }\mp@subsup{H}{R}{}(G)\mathrm{ and Translations denotes Jacobson's
G
p 53, ll 6-7
theorem right-translations-of-subgroup-are-transformation-group [intro]:
    transformation-group (translation ' H)G
<proof\rangle
p 53, ll 6-7
interpretation transformation-group translation 'H G <proof\rangle
Equation 23 for left cosets
p 53, ll 7-8
theorem Left-Coset-is-orbit:
    x\inG\Longrightarrowx\cdot| H=orbit.Class }
    <proof\rangle
end
```


2.6 Congruences. Quotient Monoids and Groups

Def 1.4

```
p 54, ll 19-22
```

locale monoid-congruence $=$ monoid + equivalence where $S=M+$
assumes cong: $\llbracket\left(a, a^{\prime}\right) \in E ;\left(b, b^{\prime}\right) \in E \rrbracket \Longrightarrow\left(a \cdot b, a^{\prime} \cdot b^{\prime}\right) \in E$
begin
p 54, ll 26-28
theorem Class-cong:
\llbracket Class $a=$ Class $a^{\prime} ;$ Class $b=$ Class $b^{\prime} ; a \in M ; a^{\prime} \in M ; b \in M ; b^{\prime} \in M \rrbracket \Longrightarrow$
Class $(a \cdot b)=$ Class $\left(a^{\prime} \cdot b^{\prime}\right)$
〈proof〉
p 54, ll 28-30
definition quotient-composition (infixl [•] 70)
where quotient-composition $=(\lambda A \in M / E . \lambda B \in M / E . T H E C . \exists a \in A . \exists b$
$\in B . C=$ Class $(a \cdot b))$
p 54, ll 28-30
theorem Class-commutes-with-composition:

```
    \llbracketa\inM;b\inM\rrbracket\LongrightarrowClass a [.] Class b=Class (a\cdotb)
    \langleproof\rangle
p 54, ll 30-31
theorem quotient-composition-closed [intro, simp]:
    \llbracketA\inM/E;B\inM/E\rrbracket\LongrightarrowA[\cdot] B\inM/E
    \langleproof\rangle
p 54, l 32; p 55, ll 1-3
sublocale quotient: monoid M / E ([.]) Class 1
    <proof>
end
p 55, ll 16-17
locale group-congruence = group + monoid-congruence where M =G begin
p 55, ll 16-17
notation quotient-composition (infixl [·] 70)
p 55, l 18
theorem Class-right-inverse:
    a\inG\LongrightarrowClass a [.] Class (inverse a)= Class 1
    \langleproof\rangle
p 55, l 18
theorem Class-left-inverse:
    a\inG\LongrightarrowClass(inverse a) [.] Class a = Class 1
    \langleproof\rangle
p 55, l 18
theorem Class-invertible:
    a}\inG\Longrightarrow\mathrm{ quotient.invertible (Class a)
    \langleproof\rangle
p 55, l 18
theorem Class-commutes-with-inverse:
    a\inG\Longrightarrowquotient.inverse (Class a)=Class (inverse a)
    \langleproof\rangle
p 55, l 17
sublocale quotient: group G / E ([.]) Class 1
    \langleproof\rangle
end
Def 1.5
```

p 55, ll 22-25
locale normal-subgroup $=$
subgroup-of-group $K G(\cdot) \mathbf{1}$ for K and G and composition (infixl • 70) and unit (1) +
assumes normal: $\llbracket g \in G ; k \in K \rrbracket \Longrightarrow$ inverse $g \cdot k \cdot g \in K$
Lemmas from the proof of Thm 1.6
context subgroup-of-group begin
We use H for K.
p 56, ll 14-16
theorem Left-equals-Right-coset-implies-normality:
assumes [simp]: $\bigwedge g . g \in G \Longrightarrow g \cdot|H=H| \cdot g$
shows normal-subgroup $H G(\cdot) \mathbf{1}$
$\langle p r o o f\rangle$
end
Thm 1.6, first part
context group-congruence begin
Jacobson's K
p 56, l 29
definition Normal $=$ Class $\mathbf{1}$
p 56, ll 3-6
interpretation subgroup Normal $G(\cdot) \mathbf{1}$ $\langle p r o o f\rangle$

Coset notation
p 56, ll 5-6
interpretation subgroup-of-group Normal $G(\cdot) \mathbf{1}\langle$ proof \rangle
Equation 25 for right cosets
p 55, ll 29-30; p 56, ll 6-11
theorem Right-Coset-Class-unit:
assumes $g: g \in G$ shows Normal $\mid \cdot g=$ Class g $\langle p r o o f\rangle$

Equation 25 for left cosets
p 55, ll 29-30; p 56, ll 6-11
theorem Left-Coset-Class-unit:
assumes $g: g \in G$ shows $g \cdot \mid$ Normal $=$ Class g

```
<proof\rangle
```

Thm 1．6，statement of first part
p 55，ll 28－29；p 56，ll 12－16

```
theorem Class-unit-is-normal:
    normal-subgroup Normal G (.) 1
<proof>
```

sublocale normal: normal-subgroup Normal $G(\cdot) \mathbf{1}$
$\langle p r o o f\rangle$
end
context normal-subgroup begin
p 56, ll 16-19
theorem Left-equals-Right-coset:
$g \in G \Longrightarrow g \cdot|K=K| \cdot g$
$\langle p r o o f\rangle$

Thm 1．6，second part
p 55, ll 31-32; p 56, ll 20-21
definition Congruence $=\{(a, b) . a \in G \wedge b \in G \wedge$ inverse $a \cdot b \in K\}$
p 56, ll 21-22
interpretation right-translations-of-group $\langle p r o o f\rangle$
p 56, ll 21-22
interpretation transformation-group translation ' $K ~ G$ rewrites Orbit-Relation $=$
Congruence
〈proof〉
p 56, ll 20-21
lemma CongruenceI: $\llbracket a=b \cdot k ; a \in G ; b \in G ; k \in K \rrbracket \Longrightarrow(a, b) \in$ Congruence
\langle proof \rangle
p 56, ll 20-21
lemma CongruenceD: $(a, b) \in$ Congruence $\Longrightarrow \exists k \in K . a=b \cdot k$
〈proof〉
＂We showed in the last section that the relation we are considering is an equiv－ alence relation in G for any subgroup K of G ．We now proceed to show that normality of K ensures that $[\ldots] a \equiv b(\bmod K)$ is a congruence．＂
p 55，ll 30－32；p 56，ll 1，22－28
sublocale group－congruence where $E=$ Congruence rewrites Normal $=K$
$\langle p r o o f\rangle$
end
context group begin
Pulled out of normal－subgroup to achieve standard notation．
p 56，ll 31－32
abbreviation Factor－Group（infixl＇／＇／75）
where $S / / K \equiv S /($ normal－subgroup．Congruence $K G(\cdot) \mathbf{1})$
end
context normal－subgroup begin
p 56，ll 28－29
theorem Class－unit－normal－subgroup：Class $\mathbf{1}=K$
〈proof〉
p 56，ll 1－2；p 56，l 29
theorem Class－is－Left－Coset：
$g \in G \Longrightarrow$ Class $g=g \cdot \mid K$
$\langle p r o o f\rangle$
p 56， 129
lemma Left－CosetE：$\llbracket A \in G / / K ; \bigwedge a . a \in G \Longrightarrow P(a \cdot \mid K) \rrbracket \Longrightarrow P A$ $\langle p r o o f\rangle$

Equation 26
p 56，ll 32－34
theorem factor－composition［simp］：
$\llbracket g \in G ; h \in G \rrbracket \Longrightarrow(g \cdot \mid K)[\cdot](h \cdot \mid K)=g \cdot h \cdot \mid K$ $\langle p r o o f\rangle$
p 56，l 35
theorem factor－unit：
$K=1 \cdot \mid K$
〈proof〉
p 56，l 35
theorem factor－inverse［simp］：
$g \in G \Longrightarrow$ quotient．inverse $(g \cdot \mid K)=($ inverse $g \cdot \mid K)$
$\langle p r o o f\rangle$
end

```
p 57, ll 4-5
locale subgroup-of-abelian-group = subgroup-of-group HG(.) 1 + abelian-group G(\cdot)
1
    for H and G and composition (infixl . 70) and unit (1)
p 57, ll 4-5
sublocale subgroup-of-abelian-group \subseteq normal-subgroup HG(.) 1
    \langleproof\rangle
```


2.7 Homomorphims

Def 1.6
p 58, l 33; p 59, ll 1-2
locale monoid-homomorphism $=$ map $\eta M^{\prime}+$ source: monoid $M(\cdot) \mathbf{1}+$ target: monoid $M^{\prime}\left(\cdot{ }^{\prime}\right) \mathbf{1}^{\prime}$ for η and M and composition (infixl • 70) and unit (1)
and M^{\prime} and composition' (infixl ${ }^{\prime \prime} 70$) and unit' $\left(\mathbf{1}^{\prime \prime}\right)+$
assumes commutes-with-composition: $\llbracket x \in M ; y \in M \rrbracket \Longrightarrow \eta(x \cdot y)=\eta x \cdot^{\prime} \eta y$ and commutes-with-unit: $\eta \mathbf{1}=\mathbf{1}^{\prime}$
begin
Jacobson notes that commutes-with-unit is not necessary for groups, but doesn't make use of that later.

```
p 58, l 33; p 59, ll 1-2
notation source.invertible (invertible - [100] 100)
notation source.inverse (inverse - [100] 100)
notation target.invertible (invertible"' - [100] 100)
notation target.inverse (inverse" - [100] 100)
end
p 59, ll 29-30
locale monoid-epimorphism = monoid-homomorphism + surjective-map \eta M M'
p 59, l }3
locale monoid-monomorphism = monoid-homomorphism + injective-map \eta M M'
p 59, ll 30-31
sublocale monoid-isomorphism \subseteq monoid-epimorphism
    \langleproof\rangle
p 59, ll 30-31
sublocale monoid-isomorphism \subseteq monoid-monomorphism
    \langleproof\rangle
```

context monoid-homomorphism begin
p 59, ll 33-34

```
theorem invertible-image-lemma:
    assumes invertible a a \inM
    shows \etaa\cdot'}\eta(\mathrm{ inverse a)= 1' and }\eta(\mathrm{ inverse a) '' }\etaa=\mp@subsup{\mathbf{1}}{}{\prime
    \langleproof\rangle
p 59, l 34; p 60, l 1
theorem invertible-target-invertible [intro, simp]:
    \llbracketinvertible a;a\inM\rrbracket\Longrightarrow invertible' ( }\eta\mathrm{ | a)
    <proof\rangle
p 60,l 1
theorem invertible-commutes-with-inverse:
    \llbracketinvertible a;a}\inM\rrbracket\Longrightarrow\eta(\mathrm{ inverse a)= inverse' }(\etaa
    <proof\rangle
end
p 60, ll 32-34; p 61, l 1
sublocale monoid-congruence \subseteq natural: monoid-homomorphism Class M (.) 1 M /
E ([.]) Class 1
    <proof>
```

Fundamental Theorem of Homomorphisms of Monoids
p 61, ll 5, 14-16
sublocale monoid-homomorphism \subseteq image: submonoid $\eta{ }^{\prime} M M^{\prime}(\cdot) \mathbf{1}^{\prime}$
$\langle p r o o f\rangle$
p 61, 14
locale monoid-homomorphism-fundamental = monoid-homomorphism begin
p 61, ll 17-18
sublocale fiber-relation $\eta M M^{\prime}\langle p r o o f\rangle$
notation Fiber-Relation ($\left.E^{\prime}\left(-^{\prime}\right)\right)$
p 61, ll 6-7, 18-20
sublocale monoid-congruence where $E=E(\eta)$
〈proof〉
p 61, ll 7-9
induced denotes Jacobson's $\bar{\eta}$. We have the commutativity of the diagram, where induced is unique:
compose M induced Class $=\eta$

```
\llbracket?\beta\inPartition }\mp@subsup{->}{E}{}\mp@subsup{M}{}{\prime};\mathrm{ compose M ? }\beta\mathrm{ Class = q】 C? }\beta=\mathrm{ induced
p 61, l }2
notation quotient-composition (infixl [.] 70)
p 61, ll 7-8, 22-25
sublocale induced: monoid-homomorphism induced M / E(\eta)([.]) Class 1 M'(`) 1'
    \langleproof\rangle
p 61, ll 9, 26
sublocale natural: monoid-epimorphism Class M (\cdot) 1 M / E(\eta) ([]]) Class 1 \langleproof\rangle
p 61, ll 9, 26-27
sublocale induced: monoid-monomorphism induced M / E(\eta)([.]) Class 1 M'(·') 1'
<proof>
end
p 62, ll 12-13
locale group-homomorphism =
    monoid-homomorphism \eta G(\cdot) 1 G ' (·) 1' +
    source: group G(\cdot) \mathbf{1}+\mathrm{ target: group G' (.') 1'}
    for }\eta\mathrm{ and }G\mathrm{ and composition (infixl - 70) and unit (1)
        and G' and composition' (infixl '/' 70) and unit' (1')
begin
p 62, l 13
sublocale image: subgroup \eta 'G G' (') 1'
    <proof>
p 62, ll 13-14
definition Ker = \eta-`{1'}\capG
p 62, ll 13-14
lemma Ker-equality:
    Ker ={a|a.a\inG^\etaa=1'}
    <proof>
p 62, ll 13-14
lemma Ker-closed [intro, simp]:
    a\in Ker\Longrightarrowa\inG
        <proof\rangle
p 62, ll 13-14
lemma Ker-image [intro]:
```

```
    a\in Ker\Longrightarrow \etaa= 1'
    <proof\rangle
p 62, ll 13-14
lemma Ker-memI [intro]:
    \llbracket\etaa=1';}a\inG\rrbracket\Longrightarrowa\inKe
    <proof>
p 62, ll 15-16
sublocale kernel: normal-subgroup Ker G
<proof\rangle
p 62, ll 17-20
theorem injective-iff-kernel-unit:
    inj-on \eta G\longleftrightarrow Ker = {1}
<proof>
end
p 62, l }2
locale group-epimorphism = group-homomorphism + monoid-epimorphism \eta G(\cdot)\mathbf{1}
G'(') 1'
p 62, l }2
locale normal-subgroup-in-kernel =
    group-homomorphism + contained: normal-subgroup L G (.) \mathbf{1}}\mathrm{ for L +
    assumes subset: L\subseteq Ker
begin
p 62, l }2
notation contained.quotient-composition (infixl [.] 70)
"homomorphism onto contained.Partition"
p 62, ll 23-24
sublocale natural: group-epimorphism contained.Class G (.) 1 G // L ([.]) con-
tained.Class 1 <proof\rangle
p 62, ll 25-26
theorem left-coset-equality:
    assumes eq: a | L = b | L and [simp]: a\inG and b: b\inG
    shows \etaa=\etab
<proof>
\eta
p 62, ll 26-27
```

```
definition induced \(=(\lambda A \in G / / L . T H E b . \exists a \in G . a \cdot \mid L=A \wedge b=\eta a)\)
p 62, ll 26-27
lemma induced-closed [intro, simp]:
    assumes \([\) simp \(]: A \in G / / L\) shows induced \(A \in G^{\prime}\)
\(\langle p r o o f\rangle\)
p 62, ll 26-27
lemma induced-undefined [intro, simp]:
    \(A \notin G / / L \Longrightarrow\) induced \(A=\) undefined
    \(\langle p r o o f\rangle\)
p 62, ll 26-27
theorem induced-left-coset-closed [intro, simp]:
    \(a \in G \Longrightarrow\) induced \((a \cdot \mid L) \in G^{\prime}\)
    \(\langle p r o o f\rangle\)
p 62, ll 26-27
theorem induced-left-coset-equality [simp]:
    assumes \([\) simp \(]: a \in G\) shows induced \((a \cdot \mid L)=\eta a\)
〈proof〉
p 62, 127
theorem induced-Left-Coset-commutes-with-composition [simp]:
    \(\llbracket a \in G ; b \in G \rrbracket \Longrightarrow\) induced \(((a \cdot \mid L)[\cdot](b \cdot \mid L))=\) induced \((a \cdot \mid L) \cdot{ }^{\prime}\) induced \((b\)
- \(L\) )
    \(\langle\) proof \(\rangle\)
p 62, ll 27-28
theorem induced-group-homomorphism:
    group-homomorphism induced (G//L) ([•]) (contained.Class 1) \(G^{\prime}\left(\cdot{ }^{\prime}\right) \mathbf{1}^{\prime}\)
    〈proof〉
p 62, 128
sublocale induced: group-homomorphism induced \(G / / L([\cdot])\) contained.Class \(\mathbf{1} G^{\prime}\)
\(\left(\cdot{ }^{\prime}\right) \mathbf{1}^{\prime}\)
    \(\langle p r o o f\rangle\)
p 62, ll 28-29
theorem factorization-lemma: \(a \in G \Longrightarrow\) compose \(G\) induced contained.Class \(a=\eta\)
\(a\)
    \(\langle p r o o f\rangle\)
p 62, ll 29-30
theorem factorization [simp]: compose \(G\) induced contained.Class \(=\eta\)
    \(\langle\) proof \(\rangle\)
```

Jacobson does not state the uniqueness of induced explicitly but he uses it later, for rings, on p 107.

p 62, 130

```
theorem uniqueness:
    assumes map: }\beta\inG//L\mp@subsup{->}{E}{}\mp@subsup{G}{}{\prime
        and factorization: compose G \beta contained.Class = \eta
    shows }\beta=\mathrm{ induced
<proof\rangle
p 62,l }3
theorem induced-image:
    induced' (G // L) = \eta'G
    <proof\rangle
p 62, l }3
interpretation L: normal-subgroup L Ker
    <proof>
p 62, ll 31-33
theorem induced-kernel:
    induced.Ker = Ker / L.Congruence
<proof>
p 62, ll 34-35
theorem induced-inj-on:
    inj-on induced (G // L) \longleftrightarrowL=Ker
    <proof>
end
```

Fundamental Theorem of Homomorphisms of Groups
p 63,11
locale group-homomorphism-fundamental $=$ group-homomorphism $\mathbf{b e g i n}$
p 63,11
notation kernel.quotient-composition (infixl [•] 70)
p 63, 11
sublocale normal-subgroup-in-kernel where $L=\operatorname{Ker}\langle$ proof \rangle
p 62, ll 36-37; p 63, l 1
induced denotes Jacobson's $\bar{\eta}$. We have the commutativity of the diagram, where induced is unique:

```
compose G induced kernel.Class = \eta
```

```
\llbracket?\beta\inkernel.Partition }\mp@subsup{->}{E}{}\mp@subsup{G}{}{\prime};\mathrm{ compose G ? }\beta\mathrm{ kernel.Class = \】 }\Longrightarrow?\beta=\mathrm{ induced
end
p 63,l }
locale group-isomorphism = group-homomorphism + bijective-map \etaG G' begin
p 63,l }
sublocale monoid-isomorphism \etaG(.) 1 G'(.') 1'
    <proof>
p 63, l 6
lemma inverse-group-isomorphism:
    group-isomorphism (restrict (inv-into G \eta) G') G'(.') 1' G (.) 1
    <proof\rangle
end
p 63, l }
definition isomorphic-as-groups (infixl \cong}\mp@subsup{\cong}{G}{}50
    where \mathcal{G}\cong}\mp@subsup{G}{G}{}\mp@subsup{\mathcal{G}}{}{\prime}\longleftrightarrow(\mathrm{ let (G, composition, unit )}=\mathcal{G};(\mp@subsup{G}{}{\prime},\mp@subsup{composition', unit'}{}{\prime})
\mathcal{G}}\mp@subsup{}{}{\prime}\mathrm{ in
    (\exists\eta. group-isomorphism \eta G composition unit G' composition' unit'))
p 63, l }
lemma isomorphic-as-groups-symmetric:
    (G, composition, unit) \cong}\mp@subsup{\}{G}{}(\mp@subsup{G}{}{\prime},\mp@subsup{composition', unit')}{\prime}{}\Longrightarrow(\mp@subsup{G}{}{\prime},\mp@subsup{\mathrm{ composition'}}{}{\prime},\mp@subsup{unit}{}{\prime}
\cong}\mp@subsup{G}{G}{(G, composition, unit)
    \langleproof\rangle
p 63,l1
sublocale group-isomorphism \subseteqgroup-epimorphism \langleproof\rangle
p 63, l 1
locale group-epimorphism-fundamental = group-homomorphism-fundamental + group-epimorphism
begin
p 63, ll 1-2
interpretation image: group-homomorphism induced G // Ker ([.]) kernel.Class 1
(\eta'G)(\cdot) 1'
    <proof\rangle
p 63, ll 1-2
sublocale image: group-isomorphism induced G // Ker ([[]) kernel.Class 1 ( \eta`G)
(.) 1'
    <proof\rangle
```

```
end
context group-homomorphism begin
p 63, ll 5-7
theorem image-isomorphic-to-factor-group:
    \existsK composition unit. normal-subgroup K G (.) \mathbf{1}^(\eta'G,(\cdot'), 1') \cong}\mp@subsup{\}{G}{}(G//K
composition, unit)
<proof>
end
```

no-notation plus (infixl +65)
no-notation minus (infixl - 65)
no-notation uminus (- [81] 80)
no-notation quotient (infixl '/'/ 90)

3 Rings

3.1 Definition and Elementary Properties

Def 2.1
p 86, ll 20-28
locale ring $=$ additive: abelian-group $R(+) \mathbf{0}+$ multiplicative: monoid $R(\cdot) \mathbf{1}$
for R and addition (infixl +65) and multiplication (infixl • 70) and zero (0) and unit (1) +
assumes distributive: $\llbracket a \in R ; b \in R ; c \in R \rrbracket \Longrightarrow a \cdot(b+c)=a \cdot b+a \cdot c$ $\llbracket a \in R ; b \in R ; c \in R \rrbracket \Longrightarrow(b+c) \cdot a=b \cdot a+c \cdot a$
begin
p 86, ll 20-28
notation additive.inverse (- -[66] 65)
abbreviation subtraction (infixl -65) where $a-b \equiv a+(-b)$
end
p 87, ll 10-12
locale subring $=$
additive: subgroup $S R(+) \mathbf{0}+$ multiplicative: submonoid $S R(\cdot) \mathbf{1}$
for S and R and addition (infixl +65) and multiplication (infixl $\cdot 70$) and zero (0) and unit (1)
context ring begin
p 88, ll 26-28

```
lemma right-zero [simp]:
    assumes [simp]: a\inR shows }a\cdot\mathbf{0}=\mathbf{0
<proof>
p 88, l }2
lemma left-zero [simp]:
    assumes [simp]: a\inR shows 0 - a=0
<proof\rangle
p 88, ll 29-30; p 89, ll 1-2
lemma left-minus:
    assumes [simp]:a\inR b\inR shows (-a)\cdotb=-a\cdotb
<proof\rangle
p 89, l }
lemma right-minus:
    assumes [simp]: a\inR b\inR shows a}(-b)=-a\cdot
<proof>
end
```


3.2 Ideals, Quotient Rings

p 101, ll 2-5
locale ring-congruence $=$ ring +
additive: group-congruence $R(+) \mathbf{0} E+$
multiplicative: monoid-congruence $R(\cdot) \mathbf{1} E$
for E
begin
p 101, ll 2-5
notation additive.quotient-composition (infixl [+] 65)
notation additive.quotient.inverse ($[-]-[66] 65$)
notation multiplicative.quotient-composition (infixl [•] 70)
p 101, ll 5-11
sublocale quotient: ring $R / E([+])([\cdot])$ additive.Class $\mathbf{0}$ additive.Class 1
$\langle p r o o f\rangle$
end
p 101, ll 12-13
locale subgroup-of-additive-group-of-ring $=$
additive: subgroup $I R(+) \mathbf{0}+\operatorname{ring} R(+)(\cdot) \mathbf{0} \mathbf{1}$
for I and R and addition (infixl +65) and multiplication (infixl $\cdot 70$) and zero
(0) and unit (1)
begin
p 101, ll 13-14
definition Ring-Congruence $=\{(a, b) . a \in R \wedge b \in R \wedge a-b \in I\}$
p 101, ll 13-14
lemma Ring-CongruenceI: $\llbracket a-b \in I ; a \in R ; b \in R \rrbracket \Longrightarrow(a, b) \in$ Ring-Congruence \langle proof \rangle
p 101, ll 13-14
lemma Ring-CongruenceD: $(a, b) \in$ Ring-Congruence $\Longrightarrow a-b \in I$ \langle proof \rangle

Jacobson's definition of ring congruence deviates from that of group congruence; this complicates the proof.
p 101, ll 12-14
sublocale additive: subgroup-of-abelian-group $I R(+) \mathbf{0}$
rewrites additive-congruence: additive.Congruence $=$ Ring-Congruence $\langle p r o o f\rangle$
p 101, l 14
notation additive.Left-Coset (infixl +| 65)
end
Def 2.2
p 101, ll 21-22
locale ideal $=$ subgroup-of-additive-group-of-ring +
assumes ideal: $\llbracket a \in R ; b \in I \rrbracket \Longrightarrow a \cdot b \in I \llbracket a \in R ; b \in I \rrbracket \Longrightarrow b \cdot a \in I$
context subgroup-of-additive-group-of-ring begin
p 101, ll 14-17
theorem multiplicative-congruence-implies-ideal:
assumes monoid-congruence $R(\cdot) 1$ Ring-Congruence
shows ideal I $R(+)(\cdot) 01$
$\langle p r o o f\rangle$
end
context ideal begin
p 101, ll 17-20
theorem multiplicative-congruence [intro]:
assumes $a:\left(a, a^{\prime}\right) \in$ Ring-Congruence and $b:\left(b, b^{\prime}\right) \in$ Ring-Congruence
shows $\left(a \cdot b, a^{\prime} \cdot b^{\prime}\right) \in$ Ring-Congruence
$\langle p r o o f\rangle$
p 101, ll 23-24
sublocale ring-congruence where $E=$ Ring-Congruence $\langle p r o o f\rangle$
end
context ring begin
Pulled out of ideal to achieve standard notation.
p 101, ll 24-26
abbreviation Quotient-Ring (infixl '/'/ 75)
where $S / / I \equiv S /$ (subgroup-of-additive-group-of-ring.Ring-Congruence I $R(+)$ 0)
end
p 101, ll 24-26
locale quotient-ring $=$ ideal begin
p 101, ll 24-26
sublocale quotient: ring $R / / I([+])([\cdot])$ additive.Class $\mathbf{0}$ additive.Class $\mathbf{1}\langle p r o o f\rangle$
p 101, l 26
lemmas Left-Coset $=$ additive.Left-CosetE
Equation 17 (1)
p 101, l 28
lemmas quotient-addition $=$ additive.factor-composition
Equation 17 (2)
p 101, 129
theorem quotient-multiplication [simp]:
$\llbracket a \in R ; b \in R \rrbracket \Longrightarrow(a+\mid I)[\cdot](b+\mid I)=a \cdot b+\mid I$
$\langle p r o o f\rangle$
p 101, l 30
lemmas quotient-zero $=$ additive.factor-unit
lemmas quotient-negative $=$ additive.factor-inverse
end

3.3 Homomorphisms of Rings. Basic Theorems

Def 2.3
p 106, ll 7-9
locale ring-homomorphism $=$
map $\eta R R^{\prime}+$ source: $\operatorname{ring} R(+)(\cdot) \mathbf{0} \mathbf{1}+$ target: $\operatorname{ring} R^{\prime}\left(+{ }^{\prime}\right)\left(\cdot{ }^{\prime}\right) \mathbf{0}^{\prime} \mathbf{1}^{\prime}+$
additive: group-homomorphism $\eta R(+) \mathbf{0} R^{\prime}\left(+{ }^{\prime}\right) \mathbf{0}^{\prime}+$
multiplicative: monoid-homomorphism $\eta R(\cdot) \mathbf{1} R^{\prime}\left(\cdot{ }^{\prime}\right) \mathbf{1}^{\prime}$
for η
and R and addition (infixl +65) and multiplication (infixl • 70) and zero (0)
and unit (1)
and R^{\prime} and addition ${ }^{\prime}\left(\right.$ infixl $\left.+{ }^{\prime \prime} 65\right)$ and multiplication' (infixl $\left.{ }^{\prime \prime} 70\right)$ and zero'
$\left(\mathbf{0}^{\prime \prime}\right)$ and unit ${ }^{\prime}\left(\mathbf{1}^{\prime \prime}\right)$
p 106, 117
locale ring-epimorphism $=$ ring-homomorphism + surjective-map $\eta R R^{\prime}$
p 106, ll 14-18
sublocale quotient-ring \subseteq natural: ring-epimorphism
where $\eta=$ additive.Class and $R^{\prime}=R / / I$ and addition $^{\prime}=([+])$ and multiplica-
tion $^{\prime}=([\cdot])$
and zero $^{\prime}=$ additive.Class $\mathbf{0}$ and unit $^{\prime}=$ additive.Class $\mathbf{1}$
$\langle p r o o f\rangle$
context ring-homomorphism begin

Jacobson reasons via $a-b \in$ additive.Ker being a congruence; we prefer the direct proof, since it is very simple.
p 106, ll 19-21
sublocale kernel: ideal where $I=$ additive.Ker $\langle p r o o f\rangle$
end
p 106, l 22
locale ring-monomorphism $=$ ring-homomorphism + injective-map $\eta R R^{\prime}$
context ring-homomorphism begin
p 106, ll 21-23
theorem ring-monomorphism-iff-kernel-unit:
ring-monomorphism $\eta R(+)(\cdot) \mathbf{0} \mathbf{1} R^{\prime}\left(+^{\prime}\right)\left(\cdot^{\prime}\right) \mathbf{0}^{\prime} \mathbf{1}^{\prime} \longleftrightarrow$ additive.Ker $=\{\mathbf{0}\}$ (is ?monom \longleftrightarrow ?ker $)$
$\langle p r o o f\rangle$
end
p 106, ll 23-25
sublocale ring-homomorphism \subseteq image: subring η ' $R R^{\prime}\left(+^{\prime}\right)\left(\cdot^{\prime}\right) \mathbf{0}^{\prime} \mathbf{1}^{\prime}\langle$ proof \rangle
p 106, ll 26-27

```
locale ideal-in-kernel =
    ring-homomorphism + contained: ideal I R (+) (.) 0 1 for I +
    assumes subset: I\subseteq additive.Ker
begin
p 106, ll 26-27
notation contained.additive.quotient-composition (infixl [+] 65)
notation contained.multiplicative.quotient-composition (infixl [·] 70)
Provides additive.induced, which Jacobson calls \(\bar{\eta}\).
p 106, l 30
sublocale additive: normal-subgroup-in-kernel \(\eta R(+) \mathbf{0} R^{\prime}\left(+^{\prime}\right) \mathbf{0}^{\prime} I\)
rewrites normal-subgroup.Congruence I \(R\) addition zero \(=\) contained.Ring-Congruence \(\langle p r o o f\rangle\)
```

Only the multiplicative part needs some work.
p 106, ll 27-30
sublocale induced: ring-homomorphism additive.induced $R / / I([+])([\cdot])$ contained.additive.Class 0 contained.additive.Class 1
$\langle p r o o f\rangle$
p 106, l 30; p 107, ll 1-3
additive.induced denotes Jacobson's $\bar{\eta}$. We have the commutativity of the diagram, where additive.induced is unique:
compose R additive.induced contained.additive.Class $=\eta$
$\llbracket ? \beta \in$ contained.additive.Partition $\rightarrow_{E} R^{\prime} ;$
compose R ? β contained.additive.Class $=\eta \rrbracket$
\Longrightarrow ? $\beta=$ additive.induced
end
Fundamental Theorem of Homomorphisms of Rings
p 107, l 6
locale ring-homomorphism-fundamental $=$ ring-homomorphism begin
p 107, l 6
notation kernel.additive.quotient-composition (infixl [+] 65)
notation kernel.multiplicative.quotient-composition (infixl [.] 70)
p 107, l 6
sublocale ideal-in-kernel where $I=$ additive.Ker $\langle p r o o f\rangle$
p 107, ll 8-9
sublocale natural: ring-epimorphism
where $\eta=$ kernel.additive.Class and $R^{\prime}=R / /$ additive.Ker and addition $^{\prime}=$ kernel.additive.quotient-composition and multiplication $^{\prime}=$ kernel.multiplicative.quotient-composition and zero $^{\prime}=$ kernel.additive.Class $\mathbf{0}$ and unit ${ }^{\prime}=$ kernel.additive.Class $\mathbf{1}$ $\langle p r o o f\rangle$
p 107, 19
sublocale induced: ring-monomorphism
where $\eta=$ additive.induced and $R=R / /$ additive.Ker and addition $=$ kernel.additive.quotient-composition and multiplication $=$ kernel.multiplicative.quotient-composition and zero $=$ kernel.additive.Class $\mathbf{0}$ and unit $=$ kernel.additive.Class $\mathbf{1}$
$\langle p r o o f\rangle$
end
p 107, l 11
locale ring-isomorphism $=$ ring-homomorphism + bijective-map $\eta R R^{\prime}$ begin
p 107, l 11
sublocale ring-monomorphism $\langle p r o o f\rangle$
sublocale ring-epimorphism \langle proof \rangle
p 107, l 11
lemma inverse-ring-isomorphism:
ring-isomorphism (restrict (inv-into $\left.R \eta) R^{\prime}\right) R^{\prime}\left(+^{\prime}\right)\left(\cdot^{\prime}\right) \mathbf{0}^{\prime} \mathbf{1}^{\prime} R(+)(\cdot) \mathbf{0} \mathbf{1}$〈proof〉
end
p 107, l 11
definition isomorphic-as-rings (infixl $\cong_{R} 50$)
where $\mathcal{R} \cong_{R} \mathcal{R}^{\prime} \longleftrightarrow$ (let $(R$, addition, multiplication, zero, unit $)=\mathcal{R} ;\left(R^{\prime}\right.$, addition $^{\prime}$, multiplication ${ }^{\prime}$, zero $^{\prime}$, unit $\left.^{\prime}\right)=\mathcal{R}^{\prime}$ in
$\left(\exists \eta\right.$. ring-isomorphism ηR addition multiplication zero unit R^{\prime} addition' multiplication' zero' unit'))
p 107, l 11
lemma isomorphic-as-rings-symmetric:
(R, addition, multiplication, zero, unit $) \cong_{R}\left(R^{\prime}\right.$, addition', multiplication ${ }^{\prime}$, zero ${ }^{\prime}$, unit $\left.{ }^{\prime}\right) \Longrightarrow$
$\left(R^{\prime}\right.$, addition', multiplication' ${ }^{\prime}$, zero ${ }^{\prime}$, unit $\left.{ }^{\prime}\right) \cong_{R}(R$, addition, multiplication, zero, unit)
$\langle p r o o f\rangle$
context ring-homomorphism begin

```
Corollary
p 107, ll 11-12
theorem image-is-isomorphic-to-quotient-ring:
    \existsK add mult zero one. ideal K R (+) (.) 0 1 ^ ( }\mp@subsup{\eta}{}{\prime}R,(+'),(\cdot'),\mp@subsup{\mathbf{0}}{}{\prime},\mp@subsup{\mathbf{1}}{}{\prime})\cong\mp@subsup{\cong}{R}{}(R/
K, add, mult, zero, one)
<proof\rangle
end
```


References

[1] N. Jacobson. Basic Algebra, volume I. Freeman, 2nd edition, 1985.

