Decomposition of totally ordered hoops

Sebastián Buss

April 18, 2024

Abstract

We formalize a well known result in theory of hoops: every totally ordered hoop can be written as an ordinal sum of irreducible (equivalently Wajsberg) hoops. This formalization is based on the proof for BL-chains (i.e., bounded totally ordered hoops) by Busaniche [5].

Contents

1 Some order tools: posets with explicit universe 4
2 Hoops 5
2.1 Definitions 5
2.2 Basic properties 6
2.3 Multiplication monotonicity 8
2.4 Implication monotonicity and anti-monotonicity 9
$2.5\left(\leq^{A}\right)$ defines a partial order over A 9
2.6 Order properties 11
2.7 Additional multiplication properties 12
2.8 Additional implication properties 13
$2.9\left(\wedge^{A}\right)$ defines a semilattice over A 14
2.10 Properties of $\left(\vee^{* A}\right)$ 15
3 Ordinal sums 16
3.1 Tower of hoops 17
3.2 Ordinal sum universe 17
3.3 Floor function: definition and properties 18
3.4 Ordinal sum multiplication and implication 19
3.4.1 Some multiplication properties 19
3.4.2 Some implication properties 21
3.5 The ordinal sum of a tower of hoops is a hoop 23
3.5.1 S is not empty 23
3.5.2 $\left(*^{S}\right)$ and $\left(\rightarrow^{S}\right)$ are well defined 23
3.5.3 Neutrality of 1^{S} 24
3.5.4 Commutativity of $\left(*^{S}\right)$ 25
3.5.5 Associativity of $\left(*^{S}\right)$ 26
3.5.6 Reflexivity of $\left(\rightarrow^{S}\right)$ 27
3.5.7 Divisibility 28
3.5.8 Residuation 29
3.5.9 Main result 31
4 Totally ordered hoops 32
4.1 Definitions 32
4.2 Properties of F 33
4.3 Properties of $(\sim F)$ 38
4.3.1 $\quad(\sim F)$ is an equivalence relation 38
4.3.2 Equivalent definition 38
4.3.3 Properties of equivalence classes given by $(\sim F)$ 39
4.4 Irreducible hoops: definition and equivalences 41
4.5 Decomposition 51
4.5.1 Definition of index set I 51
4.5.2 Definition of total partial order over I 52
4.5.3 Definition of universes 56
4.5.4 Universes are subhoops of A 57
4.5.5 Universes are irreducible hoops 59
4.5.6 Some useful results 60
4.5.7 Definition of multiplications, implications and one 62
4.5.8 Main result 62
4.5.9 Remarks on the nontrivial case 67
4.5.10 Converse of main result 70
5 BL-chains 71
5.1 Definitions 71
5.2 First element of I 72
5.3 Main result for BL-chains 73
5.4 Converse of main result for BL-chains 74

1 Some order tools: posets with explicit universe

theory Posets
imports Main HOL-Library.LaTeXsugar

begin

```
locale poset-on \(=\)
    fixes \(P\) :: 'b set
    fixes \(P\)-lesseq :: \(b \Rightarrow{ }^{\prime} b \Rightarrow\) bool (infix \(\leq^{P} 60\) )
    fixes \(P\)-less :: \(b \Rightarrow{ }^{\prime} b \Rightarrow\) bool (infix \(<^{P} 60\) )
    assumes not-empty \([\) simp \(]: P \neq \emptyset\)
    and reflex: reflp-on \(P\left(\leq^{P}\right)\)
    and antisymm: antisymp-on \(P\left(\leq^{P}\right)\)
    and trans: transp-on \(P\left(\leq^{P}\right)\)
    and strict-iff-order: \(x \in P \Longrightarrow y \in P \Longrightarrow x<^{P} y=\left(x \leq^{P} y \wedge x \neq y\right)\)
begin
lemma strict-trans:
    assumes \(a \in P b \in P c \in P a<^{P} b b<^{P} c\)
    shows \(a<^{P} c\)
    using antisymm antisymp-onD assms trans strict-iff-order transp-onD
    by (smt (verit, ccfv-SIG))
end
```

locale bot-poset-on $=$ poset-on +
fixes bot :: $b\left(0^{P}\right)$
assumes bot-closed: $0^{P} \in P$
and bot-first: $x \in P \Longrightarrow 0^{P} \leq^{P} x$
locale top-poset-on $=$ poset-on +
fixes top :: ' $b\left(1^{P}\right)$
assumes top-closed: $1^{P} \in P$
and top-last: $x \in P \Longrightarrow x \leq^{P} 1^{P}$
locale bounded-poset-on $=$ bot-poset-on + top-poset-on
locale total-poset-on $=$ poset-on +
assumes total: totalp-on $P\left(\leq^{P}\right)$
begin
lemma trichotomy:
assumes $a \in P b \in P$
shows $\left(a<^{P} b \wedge \neg\left(a=b \vee b<^{P} a\right)\right) \vee$
$\left(a=b \wedge \neg\left(a<^{P} b \vee b<^{P} a\right)\right) \vee$
$\left(b<^{P} a \wedge \neg\left(a=b \vee a<^{P} b\right)\right)$
using antisymm antisymp-onD assms strict-iff-order total totalp-onD by metis

```
lemma strict-order-equiv-not-converse:
    assumes a f Pb\inP
    shows }a\mp@subsup{<}{}{P}b\longleftrightarrow\neg(b\mp@subsup{\leq}{}{P}a
    using assms strict-iff-order reflex reflp-onD strict-trans trichotomy by metis
```

end
end

2 Hoops

A hoop is a naturally ordered pocrim (i.e., a partially ordered commutative residuated integral monoid). This structures have been introduced by Büchi and Owens in [4] and constitute the algebraic counterpart of fragments without negation and falsum of some nonclassical logics.

```
theory Hoops
    imports Posets
begin
```


2.1 Definitions

locale hoop $=$
fixes universe :: 'a set (A)
and multiplication :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\left(\right.$ infix $\left.*^{A} 60\right)$
and implication $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a\left(\right.$ infix $\left.\rightarrow^{A} 60\right)$
and one :: 'a (1^{A})
assumes mult-closed: $x \in A \Longrightarrow y \in A \Longrightarrow x *^{A} y \in A$
and imp-closed: $x \in A \Longrightarrow y \in A \Longrightarrow x \rightarrow^{A} y \in A$
and one-closed $[$ simp $]: 1^{A} \in A$
and mult-comm: $x \in A \Longrightarrow y \in A \Longrightarrow x *^{A} y=y *^{A} x$
and mult-assoc: $x \in A \Longrightarrow y \in A \Longrightarrow z \in A \Longrightarrow x *^{A}\left(y *^{A} z\right)=\left(x *^{A} y\right) *^{A} z$
and mult-neutr [simp]: $x \in A \Longrightarrow x *^{A} 1^{A}=x$
and imp-reflex [simp]: $x \in A \Longrightarrow x \rightarrow^{A} x=1^{A}$
and divisibility: $x \in A \Longrightarrow y \in A \Longrightarrow x *^{A}\left(x \rightarrow^{A} y\right)=y *^{A}\left(y \rightarrow^{A} x\right)$
and residuation: $x \in A \Longrightarrow y \in A \Longrightarrow z \in A \Longrightarrow$

$$
x \rightarrow^{A}\left(y \rightarrow^{A} z\right)=\left(x *^{A} y\right) \rightarrow^{A} z
$$

begin
definition hoop-order :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow$ bool (infix $\leq^{A} 60$)
where $x \leq^{A} y \equiv\left(x \rightarrow^{A} y=1^{A}\right)$
definition hoop-order-strict :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow$ bool (infix $<{ }^{A} 60$)
where $x<^{A} y \equiv\left(x \leq^{A} y \wedge x \neq y\right)$
definition hoop-inf :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow^{\prime} a\left(\right.$ infix $\left.\wedge^{A} 60\right)$
where $x \wedge^{A} y=x *^{A}\left(x \rightarrow^{A} y\right)$
definition hoop-pseudo-sup :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\left(\right.$ infix $\left.\vee^{* A} 60\right)$
where $x \vee^{* A} y=\left(\left(x \rightarrow^{A} y\right) \rightarrow^{A} y\right) \wedge^{A}\left(\left(y \rightarrow^{A} x\right) \rightarrow^{A} x\right)$
end
locale wajsberg-hoop $=$ hoop +
assumes $T: x \in A \Longrightarrow y \in A \Longrightarrow\left(x \rightarrow^{A} y\right) \rightarrow^{A} y=\left(y \rightarrow^{A} x\right) \rightarrow^{A} x$
begin
definition wajsberg-hoop-sup :: ' $a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\left(\right.$ infix $\left.\vee{ }^{A} 60\right)$ where $x \vee^{A} y=\left(x \rightarrow^{A} y\right) \rightarrow^{A} y$
end

2.2 Basic properties

context hoop
begin
lemma mult-neutr-2 [simp]:
assumes $a \in A$
shows $1^{A} *^{A} a=a$
using assms mult-comm by simp
lemma imp-one- A :
assumes $a \in A$
shows $\left(1^{A} \rightarrow^{A} a\right) \rightarrow^{A} 1^{A}=1^{A}$
proof -
have $\left(1^{A} \rightarrow^{A} a\right) \rightarrow^{A} 1^{A}=\left(1^{A} \rightarrow^{A} a\right) \rightarrow^{A}\left(1^{A} \rightarrow^{A} 1^{A}\right)$
using assms by simp
also
have $\ldots=\left(\left(1^{A} \rightarrow^{A} a\right) *^{A} 1^{A}\right) \rightarrow^{A} 1^{A}$
using assms imp-closed residuation by simp
also
have $\ldots=\left(\left(a \rightarrow^{A} 1^{A}\right) *^{A} a\right) \rightarrow^{A} 1^{A}$
using assms divisibility imp-closed mult-comm by simp
also
have $\ldots=\left(a \rightarrow^{A} 1^{A}\right) \rightarrow^{A}\left(a \rightarrow^{A} 1^{A}\right)$
using assms imp-closed one-closed residuation by metis
also
have $\ldots=1^{A}$
using assms imp-closed by simp
finally
show ?thesis
by auto
qed
lemma imp-one-B:
assumes $a \in A$
shows $\left(1^{A} \rightarrow^{A} a\right) \rightarrow^{A} a=1^{A}$

```
proof -
    have \(\left(1^{A} \rightarrow^{A} a\right) \rightarrow^{A} a=\left(\left(1^{A} \rightarrow^{A} a\right) *^{A} 1^{A}\right) \rightarrow^{A} a\)
        using assms imp-closed by simp
    also
    have \(\ldots=\left(1^{A} \rightarrow^{A} a\right) \rightarrow^{A}\left(1^{A} \rightarrow^{A} a\right)\)
        using assms imp-closed one-closed residuation by metis
    also
    have \(\ldots=1^{A}\)
        using assms imp-closed by simp
    finally
    show ?thesis
        by auto
qed
lemma imp-one- \(C\) :
    assumes \(a \in A\)
    shows \(1^{A} \rightarrow^{A} a=a\)
proof -
    have \(1^{A} \rightarrow^{A} a=\left(1^{A} \rightarrow^{A} a\right) *^{A} 1^{A}\)
        using assms imp-closed by simp
    also
    have \(\ldots=\left(1^{A} \rightarrow^{A} a\right) *^{A}\left(\left(1^{A} \rightarrow^{A} a\right) \rightarrow^{A} a\right)\)
        using assms imp-one- \(B\) by simp
    also
    have \(\ldots=a *^{A}\left(a \rightarrow^{A}\left(1^{A} \rightarrow^{A} a\right)\right)\)
        using assms divisibility imp-closed by simp
    also
    have ... = \(a\)
        using assms residuation by simp
    finally
    show ?thesis
        by auto
qed
lemma imp-one-top:
    assumes \(a \in A\)
    shows \(a \rightarrow^{A} 1^{A}=1^{A}\)
proof -
    have \(a \rightarrow^{A} 1^{A}=\left(1^{A} \rightarrow^{A} a\right) \rightarrow^{A} 1^{A}\)
        using assms imp-one- \(C\) by auto
    also
    have \(\ldots=1^{A}\)
        using assms imp-one- \(A\) by auto
    finally
    show ?thesis
    by auto
qed
```

The proofs of imp-one- A, imp-one- B, imp-one- C and imp-one-top are based
on proofs found in [3] (see Section 1: (4), (6), (7) and (12)).

lemma swap:

assumes $a \in A b \in A c \in A$
shows $a \rightarrow^{A}\left(b \rightarrow^{A} c\right)=b \rightarrow^{A}\left(a \rightarrow^{A} c\right)$
proof -
have $a \rightarrow^{A}\left(b \rightarrow^{A} c\right)=\left(a *^{A} b\right) \rightarrow^{A} c$ using assms residuation by auto
also
have $\ldots=\left(b *^{A} a\right) \rightarrow^{A} c$ using assms mult-comm by auto
also
have $\ldots=b \rightarrow^{A}\left(a \rightarrow^{A} c\right)$
using assms residuation by auto
finally
show ?thesis by auto
qed
lemma imp- A :
assumes $a \in A b \in A$
shows $a \rightarrow^{A}\left(b \rightarrow^{A} a\right)=1^{A}$
proof -
have $a \rightarrow^{A}\left(b \rightarrow^{A} a\right)=b \rightarrow^{A}\left(a \rightarrow^{A} a\right)$ using assms swap by blast
then
show ?thesis using assms imp-one-top by simp
qed

2.3 Multiplication monotonicity

lemma mult-mono:
assumes $a \in A b \in A c \in A$
shows $\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(\left(a *^{A} c\right) \rightarrow^{A}\left(b *^{A} c\right)\right)=1^{A}$
proof -
have $\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(\left(a *^{A} c\right) \rightarrow^{A}\left(b *^{A} c\right)\right)=$

$$
\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(a \rightarrow^{A}\left(c \rightarrow^{A}\left(b *^{A} c\right)\right)\right)
$$

using assms mult-closed residuation by auto
also
have $\ldots=\left(\left(a \rightarrow^{A} b\right) *^{A} a\right) \rightarrow^{A}\left(c \rightarrow^{A}\left(b *^{A} c\right)\right)$
using assms imp-closed mult-closed residuation by metis
also
have $\ldots=\left(\left(b \rightarrow^{A} a\right) *^{A} b\right) \rightarrow^{A}\left(c \rightarrow^{A}\left(b *^{A} c\right)\right)$
using assms divisibility imp-closed mult-comm by simp
also
have $\ldots=\left(b \rightarrow^{A} a\right) \rightarrow^{A}\left(b \rightarrow^{A}\left(c \rightarrow^{A}\left(b *^{A} c\right)\right)\right)$
using assms imp-closed mult-closed residuation by metis
also
have $\ldots=\left(b \rightarrow^{A} a\right) \rightarrow^{A}\left(\left(b *^{A} c\right) \rightarrow^{A}\left(b *^{A} c\right)\right)$
using assms(2,3) mult-closed residuation by simp
also
have $\ldots=1^{A}$
using assms imp-closed imp-one-top mult-closed by simp
finally
show ?thesis
by auto
qed

2.4 Implication monotonicity and anti-monotonicity

lemma imp-mono:

$$
\text { assumes } a \in A b \in A c \in A
$$

shows $\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(\left(c \rightarrow^{A} a\right) \rightarrow^{A}\left(c \rightarrow^{A} b\right)\right)=1^{A}$
proof -
have $\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(\left(c \rightarrow^{A} a\right) \rightarrow^{A}\left(c \rightarrow^{A} b\right)\right)=$ $\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(\left(\left(c \rightarrow^{A} a\right) *^{A} c\right) \rightarrow^{A} b\right)$
using assms imp-closed residuation by simp
also
have $\ldots=\left(a \rightarrow{ }^{A} b\right) \rightarrow^{A}\left(\left(\left(a \rightarrow^{A} c\right) *^{A} a\right) \rightarrow^{A} b\right)$
using assms divisibility imp-closed mult-comm by simp
also
have $\ldots=\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(\left(a \rightarrow^{A} c\right) \rightarrow^{A}\left(a \rightarrow^{A} b\right)\right)$
using assms imp-closed residuation by simp
also
have $\ldots=1^{A}$
using assms imp-A imp-closed by simp
finally
show ?thesis
by auto
qed
lemma imp-anti-mono:
assumes $a \in A b \in A c \in A$
shows $\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(\left(b \rightarrow^{A} c\right) \rightarrow^{A}\left(a \rightarrow^{A} c\right)\right)=1^{A}$
using assms imp-closed imp-mono swap by metis

$2.5\left(\leq^{A}\right)$ defines a partial order over A

lemma ord-reflex:
assumes $a \in A$
shows $a \leq{ }^{A} a$
using assms hoop-order-def by simp
lemma ord-trans:
assumes $a \in A b \in A c \in A a \leq^{A} b b \leq^{A} c$
shows $a \leq{ }^{A}{ }_{c}$
proof -
have $a \rightarrow^{A} c=1^{A} \rightarrow^{A}\left(1^{A} \rightarrow^{A}\left(a \rightarrow^{A} c\right)\right)$
using $\operatorname{assms}(1,3)$ imp-closed imp-one- C by simp

```
    also
    have ... = (a ->* 
    using assms(4,5) hoop-order-def by simp
    also
    have ... = 1 }\mp@subsup{}{}{A
    using assms(1-3) imp-anti-mono by simp
    finally
    show ?thesis
    using hoop-order-def by auto
qed
lemma ord-antisymm:
    assumes a f A b\inA a < A}bb\mp@subsup{\leq}{}{A}
    shows }a=
proof -
    have }a=a***(a\mp@subsup{->}{}{A}b
        using assms(1,3) hoop-order-def by simp
    also
    have ... = b** ( }b\mp@subsup{->}{}{A}a
    using assms(1,2) divisibility by simp
    also
    have ... = b
        using assms(2,4) hoop-order-def by simp
    finally
    show ?thesis
        by auto
qed
lemma ord-antisymm-equiv:
    assumes }a\inAb\inAa->\mp@subsup{A}{}{A}b=\mp@subsup{1}{}{A}b\mp@subsup{->}{}{A}a=\mp@subsup{1}{}{A
    shows }a=
    using assms hoop-order-def ord-antisymm by auto
lemma ord-top:
    assumes a\inA
    shows a\leq' }\mp@subsup{}{}{A}\mp@subsup{1}{}{A
    using assms hoop-order-def imp-one-top by simp
sublocale top-poset-on A (\mp@subsup{\leq}{}{A})(\mp@subsup{<}{}{A})\mp@subsup{1}{}{A}
proof
    show }A\not=
        using one-closed by blast
next
    show reflp-on A (\leq's)
        using ord-reflex reflp-onI by blast
next
    show antisymp-on A ( }\mp@subsup{\leq}{}{A}
        using antisymp-onI ord-antisymm by blast
next
```

show transp-on $A\left(\leq^{A}\right)$
using ord-trans transp-onI by blast
next
show $x<^{A} y=\left(x \leq^{A} y \wedge x \neq y\right)$ if $x \in A y \in A$ for $x y$
using hoop-order-strict-def by blast
next
show $1^{A} \in A$
by simp
next
show $x \leq^{A} 1^{A}$ if $x \in A$ for x
using ord-top that by simp
qed

2.6 Order properties

lemma ord-mult-mono- A :
assumes $a \in A b \in A c \in A$
shows $\left(a \rightarrow^{A} b\right) \leq^{A}\left(\left(a *^{A} c\right) \rightarrow^{A}\left(b *^{A} c\right)\right)$
using assms hoop-order-def mult-mono by simp
lemma ord-mult-mono-B:
assumes $a \in A b \in A c \in A a \leq^{A} b$
shows $\left(a *^{A} c\right) \leq^{A}\left(b *^{A} c\right)$
using assms hoop-order-def imp-one-C swap mult-closed mult-mono top-closed
by metis
lemma ord-residuation:
assumes $a \in A b \in A c \in A$
shows $\left(a *^{A} b\right) \leq^{A} c \longleftrightarrow a \leq^{A}\left(b \rightarrow^{A} c\right)$
using assms hoop-order-def residuation by simp
lemma ord-imp-mono- A :
assumes $a \in A b \in A c \in A$
shows $\left(a \rightarrow^{A} b\right) \leq^{A}\left(\left(c \rightarrow^{A} a\right) \rightarrow^{A}\left(c \rightarrow^{A} b\right)\right)$
using assms hoop-order-def imp-mono by simp
lemma ord-imp-mono-B:
assumes $a \in A b \in A c \in A a \leq^{A} b$
shows $\left(c \rightarrow^{A} a\right) \leq^{A}\left(c \rightarrow^{A} b\right)$
using assms imp-closed ord-trans ord-reflex ord-residuation mult-closed
by metis
lemma ord-imp-anti-mono- A :
assumes $a \in A b \in A c \in A$
shows $\left(a \rightarrow^{A} b\right) \leq^{A}\left(\left(b \rightarrow^{A} c\right) \rightarrow^{A}\left(a \rightarrow^{A} c\right)\right)$
using assms hoop-order-def imp-anti-mono by simp
lemma ord-imp-anti-mono-B:
assumes $a \in A b \in A c \in A a \leq^{A} b$
shows $\left(b \rightarrow^{A} c\right) \leq^{A}\left(a \rightarrow^{A} c\right)$
using assms hoop-order-def imp-one-C swap ord-imp-mono-A top-closed by metis
lemma ord- A :
assumes $a \in A b \in A$
shows $b \leq^{A}\left(a \rightarrow^{A} b\right)$
using assms hoop-order-def imp- A by simp
lemma ord- B :
assumes $a \in A b \in A$
shows $b \leq^{A}\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} b\right)$
using assms imp-closed ord- A by simp
lemma ord- C :
assumes $a \in A b \in A$
shows $a \leq^{A}\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} b\right)$
using assms imp-one- C one-closed ord-imp-anti-mono- A by metis
lemma ord- D :
assumes $a \in A b \in A a<^{A} b$
shows $b \rightarrow^{A} a \neq 1^{A}$
using assms hoop-order-def hoop-order-strict-def ord-antisymm by auto

2.7 Additional multiplication properties

lemma mult-lesseq-inf:
assumes $a \in A b \in A$
shows $\left(a *^{A} b\right) \leq^{A}\left(a \wedge^{A} b\right)$
proof -
have $b \leq^{A}\left(a \rightarrow^{A} b\right)$
using assms ord- A by simp
then
have $\left(a *^{A} b\right) \leq^{A}\left(a *^{A}\left(a \rightarrow^{A} b\right)\right)$
using assms imp-closed ord-mult-mono-B mult-comm by metis
then
show ?thesis
using hoop-inf-def by metis
qed
lemma mult- A :
assumes $a \in A b \in A$
shows $\left(a *^{A} b\right) \leq^{A} a$
using assms ord-A ord-residuation by simp
lemma mult-B:
assumes $a \in A b \in A$
shows $\left(a *^{A} b\right) \leq^{A} b$
using assms mult-A mult-comm by metis

lemma mult- C :

```
assumes \(a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\}\)
shows \(a *^{A} b \in A-\left\{1^{A}\right\}\)
using assms ord-antisymm ord-top mult-A mult-closed by force
```


2.8 Additional implication properties

lemma $i m p-B$:
assumes $a \in A b \in A$
shows $a \rightarrow^{A} b=\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} b\right) \rightarrow^{A} b$
proof -
have $a \leq^{A}\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} b\right)$
using assms ord- C by simp
then
have $\left(\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} b\right) \rightarrow^{A} b\right) \leq^{A}\left(a \rightarrow^{A} b\right)$
using assms imp-closed ord-imp-anti-mono-B by simp
moreover
have $\left(a \rightarrow^{A} b\right) \leq^{A}\left(\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} b\right) \rightarrow^{A} b\right)$
using assms imp-closed ord-C by simp
ultimately
show ?thesis
using assms imp-closed ord-antisymm by simp
qed
The following two results can be found in [2] (see Proposition 1.7 and 2.2).
lemma $i m p-C$:
assumes $a \in A b \in A$
shows $\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(b \rightarrow^{A} a\right)=b \rightarrow^{A} a$
proof -
have $a \leq^{A}\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} a\right)$
using assms imp-closed ord- A by simp
then
have $\left(\left(\left(a \rightarrow{ }^{A} b\right) \rightarrow^{A} a\right) \rightarrow^{A} b\right) \leq^{A}\left(a \rightarrow^{A} b\right)$ using assms imp-closed ord-imp-anti-mono- B by simp
moreover
have $\left(a \rightarrow^{A} b\right) \leq^{A}\left(\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} a\right) \rightarrow^{A} a\right)$
using assms imp-closed ord-C by simp
ultimately
have $\left(\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} a\right) \rightarrow^{A} b\right) \leq^{A}\left(\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} a\right) \rightarrow^{A} a\right)$
using assms imp-closed ord-trans by meson
then
have $\left(\left(\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} a\right) \rightarrow^{A} b\right) *^{A}\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} a\right)\right) \leq^{A} a$
using assms imp-closed ord-residuation by simp
then
have $\left(\left(b \rightarrow^{A}\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} a\right)\right) *^{A} b\right) \leq^{A} a$
using assms divisibility imp-closed mult-comm by simp
then
have $\left(b \rightarrow^{A}\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A} a\right)\right) \leq^{A}\left(b \rightarrow^{A} a\right)$
using assms imp-closed ord-residuation by simp
then
have $\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(b \rightarrow^{A} a\right)\right) \leq^{A}\left(b \rightarrow^{A} a\right)$
using assms imp-closed swap by simp
moreover
have $\left(b \rightarrow^{A} a\right) \leq^{A}\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(b \rightarrow^{A} a\right)\right)$
using assms imp-closed ord- A by simp
ultimately
show ?thesis
using assms imp-closed ord-antisymm by auto
qed
lemma imp- D :
assumes $a \in A b \in A$
shows $\left(\left(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\right) \rightarrow^{A} b\right) \rightarrow^{A}\left(b \rightarrow^{A} a\right)=b \rightarrow^{A} a$
proof -
have $\left(\left(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\right) \rightarrow^{A} b\right) \rightarrow^{A}\left(b \rightarrow^{A} a\right)=$
$\left(\left(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\right) \rightarrow^{A} b\right) \rightarrow^{A}\left(\left(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\right) \rightarrow^{A} a\right)$
using assms imp-B by simp
also
have $\ldots=\left(\left(\left(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\right) \rightarrow^{A} b\right) *^{A}\left(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\right)\right) \rightarrow^{A} a$ using assms imp-closed residuation by simp
also
have $\ldots=\left(\left(b \rightarrow^{A}\left(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\right)\right) *^{A} b\right) \rightarrow^{A} a$
using assms divisibility imp-closed mult-comm by simp
also
have $\ldots=\left(1^{A} *^{A} b\right) \rightarrow^{A} a$
using assms hoop-order-def ord-C by simp
also
have $\ldots=b \rightarrow^{A} a$
using assms(2) mult-neutr-2 by simp
finally
show ?thesis
by auto
qed

$2.9\left(\wedge^{A}\right)$ defines a semilattice over A

lemma inf-closed:
assumes $a \in A b \in A$
shows $a \wedge^{A} b \in A$
using assms hoop-inf-def imp-closed mult-closed by simp
lemma inf-comm:
assumes $a \in A b \in A$
shows $a \wedge^{A} b=b \wedge^{A} a$
using assms divisibility hoop-inf-def by simp
lemma inf- A :

```
    assumes \(a \in A b \in A\)
    shows \(\left(a \wedge^{A} b\right) \leq^{A} a\)
proof -
    have \(\left(a \wedge^{A} b\right) \rightarrow^{A} a=\left(a *^{A}\left(a \rightarrow^{A} b\right)\right) \rightarrow^{A} a\)
        using hoop-inf-def by simp
    also
    have \(\ldots=\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(a \rightarrow^{A} a\right)\)
    using assms mult-comm imp-closed residuation by metis
    finally
    show ?thesis
    using assms hoop-order-def imp-closed imp-one-top by simp
qed
lemma inf-B:
    assumes \(a \in A b \in A\)
    shows \(\left(a \wedge^{A} b\right) \leq^{A} b\)
    using assms inf-comm inf- \(A\) by metis
lemma inf- \(C\) :
    assumes \(a \in A b \in A c \in A a \leq^{A} b a \leq^{A} c\)
    shows \(a \leq^{A}\left(b \wedge^{A} c\right)\)
proof -
    have \(\left(b \rightarrow^{A} a\right) \leq^{A}\left(b \rightarrow^{A} c\right)\)
        using assms( \(1-3,5\) ) ord-imp-mono-B by simp
    then
    have \(\left(b *^{A}\left(b \rightarrow^{A} a\right)\right) \leq^{A}\left(b *^{A}\left(b \rightarrow^{A} c\right)\right)\)
        using assms imp-closed ord-mult-mono-B mult-comm by metis
    moreover
    have \(a=b *^{A}\left(b \rightarrow^{A} a\right)\)
        using assms ( \(1-3,4\) ) divisibility hoop-order-def mult-neutr by simp
    ultimately
    show ?thesis
        using hoop-inf-def by auto
qed
lemma inf-order:
    assumes \(a \in A b \in A\)
    shows \(a \leq^{A} b \longleftrightarrow\left(a \wedge^{A} b=a\right)\)
    using assms hoop-inf-def hoop-order-def inf-B mult-neutr by metis
```


2.10 Properties of $\left(\mathrm{V}^{* A}\right)$

lemma pseudo-sup-closed:
assumes $a \in A b \in A$
shows $a \vee^{* A} b \in A$
using assms hoop-pseudo-sup-def imp-closed inf-closed by simp
lemma pseudo-sup-comm:
assumes $a \in A b \in A$

```
    shows a\vee** b = b `*A a
    using assms hoop-pseudo-sup-def imp-closed inf-comm by auto
lemma pseudo-sup-A:
    assumes }a\inAb\in
    shows a\leq'A}(a\mp@subsup{\vee}{}{*A}b
    using assms hoop-pseudo-sup-def imp-closed inf-C ord-B ord-C by simp
lemma pseudo-sup-B:
    assumes a\inAb\inA
    shows b\leq'A}(a\mp@subsup{\vee}{}{*A}b
    using assms pseudo-sup-A pseudo-sup-comm by metis
lemma pseudo-sup-order:
    assumes }a\inAb\in
    shows }a\mp@subsup{\leq}{}{A}b\longleftrightarrowa\mp@subsup{\vee}{}{*A}b=
proof
    assume a < }\mp@subsup{}{}{A}
    then
    have }a\mp@subsup{\vee}{}{*A}b=b\mp@subsup{\wedge}{}{A}((b\mp@subsup{->}{}{A}a)\mp@subsup{->}{}{A}a
        using assms(2) hoop-order-def hoop-pseudo-sup-def imp-one-C by simp
    also
    have ... = b
        using assms imp-closed inf-order ord-C by meson
    finally
    show }a\mp@subsup{\vee}{}{*A}b=
        by auto
next
    assume }a\mp@subsup{\vee}{}{*A}b=
    then
    show a < A}
    using assms pseudo-sup-A by metis
qed
end
end
```


3 Ordinal sums

We define tower of hoops, a family of almost disjoint hoops indexed by a total order. This is based on the definition of bounded tower of irreducible hoops in [5] (see paragraph after Lemma 3.3). Parting from a tower of hoops we can define a hoop known as ordinal sum. Ordinal sums are a fundamental tool in the study of totally ordered hoops.

```
theory Ordinal-Sums
    imports Hoops
begin
```


3.1 Tower of hoops

```
locale tower-of-hoops=
    fixes index-set :: 'b set (I)
    fixes index-lesseq :: 'b > 'b b bool (infix }\mp@subsup{\leq}{}{I}60
    fixes index-less :: 'b = 'b b bool (infix < ' 60)
    fixes universes :: 'b b ('a set) (UNI)
```



```
    fixes sum-one :: 'a (1')
    assumes index-set-total-order: total-poset-on I ( }\mp@subsup{{}{}{I})(\mp@subsup{<}{}{I}
    and almost-disjoint: i\inI\Longrightarrowj\inI\Longrightarrowi\not=j\LongrightarrowUNI i\capUNI j={1S
    and family-of-hoops:i\inI\Longrightarrow hoop (UNI i)(MUL i) (IMP i) 1S
begin
sublocale total-poset-on I (\mp@subsup{\leq}{}{I})(\mp@subsup{<}{}{I})
    using index-set-total-order by simp
abbreviation (uni-i)
    uni-i :: ['b] => ('a set) ((\mathbb{A}(-)) [61] 60)
    where }\mp@subsup{\mathbb{A}}{i}{}\equivUNI 
abbreviation (mult-i)
    mult-i :: ['b] => ('a m 'a m 'a)((*(')) [61] 60)
    where ** }\equivMUL 
abbreviation (imp-i)
    imp-i :: ['b] => ('a m 'a m 'a) (( }->(\mp@subsup{(}{}{-}))[61] 60)
    where }\mp@subsup{->}{}{i}\equivIMP 
abbreviation (mult-i-xy)
    mult-i-xy :: ['a, 'b, 'a] => 'a (((-)/ *(-) / (-)) [61, 50, 61] 60)
    where x * }\mp@subsup{}{}{i}y\equivMUL ix y
abbreviation (imp-i-xy)
    imp-i-xy :: ['a, 'b, 'a] = 'a (((-)/ ->(-)/ (-)) [61, 50, 61] 60)
    where x }\mp@subsup{->}{}{i}y\equivIMP ix
```


3.2 Ordinal sum universe

definition sum-univ :: ' a set (S)
where $S=\left\{x . \exists i \in I . x \in \mathbb{A}_{i}\right\}$
lemma sum-one-closed [simp]: $1^{S} \in S$
using family-of-hoops hoop.one-closed not-empty sum-univ-def by fastforce
lemma sum-subsets:
assumes $i \in I$
shows $\mathbb{A}_{i} \subseteq S$
using sum-univ-def assms by blast

3.3 Floor function: definition and properties

```
lemma floor-unique:
    assumes }a\inS-{\mp@subsup{1}{}{S}
    shows \exists! i. i\inI\wedgea\in\mp@subsup{\mathbb{A}}{i}{}
    using assms sum-univ-def almost-disjoint by blast
function floor :: ' }a=>\mathrm{ ' }b\mathrm{ where
    floor x=(THE i. i\inI\wedgex\in (\mathbb{A}
| floor x = undefined if x=1 1S}\veex\not\in
    by auto
termination by lexicographic-order
abbreviation (uni-floor)
```



```
    where }\mp@subsup{\mathbb{A}}{\mathrm{ floor x }}{}\equivUNI(floor x
abbreviation (mult-floor)
    mult-floor :: ['}a]=>('a=>'a 'a 'a) ((**loor (-)) [61] 60)
    where *floor a}\equivMUL(floor a)
abbreviation (imp-floor)
    imp-floor :: ['a] => ('a = ' }a=>\mp@subsup{|}{}{\prime}a) (( ( > floor (-)) [61] 60) 
    where }->\mathrm{ floor a}\equivIMP(floor a)
abbreviation (mult-floor-xy)
    mult-floor-xy :: ['a, 'a,'a] = 'a (((-)/ *floor (-) / (-)) [61, 50, 61] 60)
    where }x**\mathrm{ floor y }z\equivMUL (floor y) x z
abbreviation (imp-floor-xy)
    imp-floor-xy :: ['a, 'a, 'a] => 'a (((-)/ 隹floor (-) / (-)) [61, 50, 61] 60)
    where }x->\mathrm{ floor y }z\equivIMP(floor y) x z
lemma floor-prop:
    assumes }a\inS-{\mp@subsup{1}{}{S}
    shows floor }a\inI\wedgea\in\mp@subsup{\mathbb{A}}{\mathrm{ floor a}}{
proof -
    have floor a=(THE i. i\inI\wedgea\in\mathbb{A}
        using assms by auto
    then
    show ?thesis
        using assms theI-unique floor-unique by (metis (mono-tags, lifting))
qed
lemma floor-one-closed:
    assumes i\inI
    shows 1}\mp@subsup{}{}{S}\in\mp@subsup{\mathbb{A}}{i}{
    using assms floor-prop family-of-hoops hoop.one-closed by metis
lemma floor-mult-closed:
```

```
assumes \(i \in I a \in \mathbb{A}_{i} b \in \mathbb{A}_{i}\)
shows \(a *^{i} b \in \mathbb{A}_{i}\)
using assms family-of-hoops hoop.mult-closed by meson
lemma floor-imp-closed:
assumes \(i \in I a \in \mathbb{A}_{i} b \in \mathbb{A}_{i}\)
shows \(a \rightarrow^{i} b \in \mathbb{A}_{i}\)
using assms family-of-hoops hoop.imp-closed by meson
```


3.4 Ordinal sum multiplication and implication

```
function sum-mult :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\left(\right.\) infix \(\left.*^{S} 60\right)\) where
    \(x *^{S} y=x *^{\text {floor } x} y\) if \(x \in S-\left\{1^{S}\right\} y \in S-\left\{1^{S}\right\}\) floor \(x=\) floor \(y\)
\(\mid x *^{S} y=x\) if \(x \in S-\left\{1^{S}\right\} y \in S-\left\{1^{S}\right\}\) floor \(x<^{I}\) floor \(y\)
\(\mid x *^{S} y=y\) if \(x \in S-\left\{1^{S}\right\} y \in S-\left\{1^{S}\right\}\) floor \(y<^{I}\) floor \(x\)
\(\mid x *^{S} y=y\) if \(x=1^{S} \quad y \in S-\left\{1^{S}\right\}\)
\(\mid x *^{S} y=x\) if \(x \in S-\left\{1^{S}\right\} y=1^{S}\)
\(\mid x *^{S} y=1^{S}\) if \(x=1^{S} y=1^{S}\)
\(\mid x *^{S} y=\) undefined if \(x \notin S \vee y \notin S\)
    apply auto
    using floor.cases floor.simps(1) floor-prop trichotomy apply (smt (verit))
    using floor-prop strict-iff-order apply force
    using floor-prop strict-iff-order apply force
    using floor-prop trichotomy by auto
termination by lexicographic-order
```

function sum-imp :: ' $a \Rightarrow^{\prime} a \Rightarrow{ }^{\prime} a$ (infix $\rightarrow^{S} 60$) where
$x \rightarrow^{S} y=x \rightarrow^{\text {floor } x} y$ if $x \in S-\left\{1^{S}\right\} y \in S-\left\{1^{S}\right\}$ floor $x=$ floor y
$\mid x \rightarrow{ }^{S} y=1^{S}$ if $x \in S-\left\{1^{S}\right\} y \in S-\left\{1^{S}\right\}$ floor $x<^{I}$ floor y
$\mid x \rightarrow{ }^{S} y=y$ if $x \in S-\left\{1^{S}\right\} y \in S-\left\{1^{S}\right\}$ floor $y<^{I}$ floor x
$\mid x \rightarrow{ }^{S} y=y$ if $x=1^{S} y \in S-\left\{1^{S}\right\}$
$x \rightarrow{ }^{S} y=1^{S}$ if $x \in S-\left\{1^{S}\right\} y=1^{S}$
$x \rightarrow{ }^{S} y=1^{S}$ if $x=1^{S} y=1^{S}$
$\mid x \rightarrow^{S} y=$ undefined if $x \notin S \vee y \notin S$
apply auto
using floor.cases floor.simps(1) floor-prop trichotomy apply (smt (verit))
using floor-prop strict-iff-order apply force
using floor-prop strict-iff-order apply force
using floor-prop trichotomy by auto
termination by lexicographic-order

3.4.1 Some multiplication properties

lemma sum-mult-not-one-aux:
assumes $a \in S-\left\{1^{S}\right\} b \in \mathbb{A}_{\text {floor } a}$
shows $a *^{S} b \in\left(\mathbb{A}_{\text {floor } a}\right)-\left\{1^{S}\right\}$
proof -
consider (1) $b \in S-\left\{1^{S}\right\}$
|(2) $b=1^{S}$
using sum-subsets assms floor-prop by blast

```
    then
    show ?thesis
    proof(cases)
    case 1
    then
    have same-floor: floor a = floor b
        using assms floor-prop floor-unique by metis
    moreover
    have a*S b=a* floor a }
        using 1 assms(1) same-floor by simp
    moreover
    have }a\in(\mp@subsup{\mathbb{A}}{\mathrm{ floor a}}{\mathrm{ a }
        using 1 assms floor-prop by simp
    ultimately
    show ?thesis
        using assms(1) family-of-hoops floor-prop hoop.mult-C by metis
    next
    case 2
    then
    show ?thesis
        using assms(1) floor-prop by auto
    qed
qed
corollary sum-mult-not-one:
    assumes a\inS-{\mp@subsup{1}{}{S}}b\in\mp@subsup{\mathbb{A}}{\mathrm{ floor a}}{},\mp@code{}
    shows }a\mp@subsup{*}{}{S}b\inS-{\mp@subsup{1}{}{S}}\wedge\mathrm{ floor ( }a*\mp@subsup{*}{}{S}b)=\mathrm{ floor }
proof -
    have a**S}b\in(\mp@subsup{\mathbb{A}}{\mathrm{ floor a }}{})-{\mp@subsup{1}{}{S}
    using sum-mult-not-one-aux assms by meson
    then
    have }a\mp@subsup{*}{}{S}b\inS-{\mp@subsup{1}{}{S}}\wedgea*S b\in\mp@subsup{\mathbb{A}}{\mathrm{ floor a}}{
        using sum-subsets assms(1) floor-prop by fastforce
    then
    show ?thesis
        using assms(1) floor-prop floor-unique by metis
qed
lemma sum-mult-A:
    assumes a }\inS-{\mp@subsup{1}{}{S}
    shows }a\mp@subsup{*}{}{S}b=a*\mathrm{ floor a }b\wedgeb*\mp@subsup{*}{}{S}a=b*\mathrm{ floor a }
proof -
    consider (1) b \inS-{1'S
        |(2) }b=\mp@subsup{1}{}{S
    using sum-subsets assms floor-prop by blast
then
show ?thesis
proof(cases)
    case 1
```

```
    then
    have floor a = floor b
        using assms floor.cases floor-prop floor-unique by metis
    then
    show ?thesis
        using 1 assms by auto
    next
    case 2
    then
    show ?thesis
        using assms(1) family-of-hoops floor-prop hoop.mult-neutr hoop.mult-neutr-2
        by fastforce
    qed
qed
```


3.4.2 Some implication properties

lemma sum-imp-floor:
assumes $a \in S-\left\{1^{S}\right\} b \in S-\left\{1^{S}\right\}$ floor $a=$ floor $b a \rightarrow^{S} b \in S-\left\{1^{S}\right\}$
shows floor $\left(a \rightarrow^{S} b\right)=$ floor a
proof -
have $a \rightarrow{ }^{S} b \in \mathbb{A}_{\text {floor } a}$
using sum-imp.simps(1) assms(1-3) floor-imp-closed floor-prop
by metis
then
show ?thesis
using $\operatorname{assms}(1,4)$ floor-prop floor-unique by blast
qed
lemma sum-imp-A:
assumes $a \in S-\left\{1^{S}\right\} b \in \mathbb{A}_{\text {floor a }}$
shows $a \rightarrow^{S} b=a \rightarrow{ }^{\text {floor } a} b$
proof -
consider (1) $b \in S-\left\{1^{S}\right\}$
|(2) $b=1^{S}$
using sum-subsets assms floor-prop by blast
then
show ?thesis
proof (cases)
case 1
then
show ?thesis
using sum-imp.simps(1) assms floor-prop floor-unique by metis
next
case 2
then
show ?thesis
using sum-imp.simps(5) assms(1) family-of-hoops floor-prop
hoop.imp-one-top

```
        by metis
    qed
qed
lemma sum-imp-B:
    assumes a\inS-{1'S } b\in A}\mp@subsup{\mathbb{A}}{\mathrm{ floor a}}{\mathrm{ f}
    shows b 㕵 a = b 隹 floor a a
proof -
    consider (1) b\inS-{1S}
        |(2) b=1 1S
        using sum-subsets assms floor-prop by blast
    then
    show ?thesis
    proof(cases)
        case 1
        then
        show ?thesis
            using sum-imp.simps(1) assms floor-prop floor-unique by metis
    next
        case 2
        then
    show ?thesis
            using sum-imp.simps(4) assms(1) family-of-hoops floor-prop
                hoop.imp-one-C
            by metis
    qed
qed
lemma sum-imp-floor-antisymm:
    assumes }a\inS-{\mp@subsup{1}{}{S}}b\inS-{\mp@subsup{1}{}{S}}\mathrm{ floor }a=\mathrm{ floor b
```



```
    shows }a=
proof -
    have }a\in\mp@subsup{\mathbb{A}}{\mathrm{ floor a }}{}\wedgeb\in\mp@subsup{\mathbb{A}}{\mathrm{ floor a }}{}\wedge\mathrm{ floor }a\in
        using floor-prop assms by metis
    moreover
    have }a\mp@subsup{->}{}{S}b=a->\mp@subsup{->}{}{\mathrm{ floor a }}b\wedgeb->\mp@subsup{->}{}{S}a=b->\mp@subsup{->}{\mathrm{ floor a }}{
        using assms by auto
    ultimately
    show ?thesis
        using assms(4,5) family-of-hoops hoop.ord-antisymm-equiv by metis
qed
corollary sum-imp-C:
    assumes }a\inS-{\mp@subsup{1}{}{S}}b\inS-{\mp@subsup{1}{}{S}}a\not=b\mathrm{ floor }a=\mathrm{ floor b a }\mp@subsup{->}{}{S}b=\mp@subsup{1}{}{S
    shows b }\mp@subsup{->}{}{S}a\not=\mp@subsup{1}{}{S
    using sum-imp-floor-antisymm assms by blast
lemma sum-imp-D:
```

```
assumes \(a \in S\)
shows \(1^{S} \rightarrow^{S} a=a\)
using sum-imp. \(\operatorname{simps}(4,6)\) assms by blast
lemma sum-imp- \(E\) :
assumes \(a \in S\)
shows \(a \rightarrow{ }^{S} 1^{S}=1^{S}\)
using sum-imp. \(\operatorname{simps}(5,6)\) assms by blast
```


3.5 The ordinal sum of a tower of hoops is a hoop

3.5.1 S is not empty

lemma sum-not-empty: $S \neq \emptyset$
using sum-one-closed by blast

3.5.2 $\left(*^{S}\right)$ and $\left(\rightarrow^{S}\right)$ are well defined

lemma sum-mult-closed-one:

```
    assumes }a\inSb\inSa=\mp@subsup{1}{}{S}\veeb=1\mp@subsup{1}{}{S
```

 shows \(a *^{S} b \in S\)
 using sum-mult.simps(4-6) assms floor.cases by metis
 lemma sum-mult-closed-not-one:
assumes $a \in S-\left\{1^{S}\right\} b \in S-\left\{1^{S}\right\}$
shows $a *^{S} b \in S-\left\{1^{S}\right\}$
proof -
from assms
consider (1) floor $a=$ floor b
(2) floor $a<^{I}$ floor $b \vee$ floor $b<^{I}$ floor a
using trichotomy floor-prop by blast
then
show ?thesis
proof (cases)
case 1
then
show ?thesis
using sum-mult-not-one assms floor-prop by metis
next
case 2
then
show ?thesis
using assms by auto
qed
qed
lemma sum-mult-closed:
assumes $a \in S b \in S$
shows $a *^{S} b \in S$
using sum-mult-closed-not-one sum-mult-closed-one assms by auto

```
lemma sum-imp-closed-one:
```



```
    shows a ->'S}b\in
    using sum-imp.simps(4-6) assms floor.cases by metis
lemma sum-imp-closed-not-one:
    assumes }a\inS-{\mp@subsup{1}{}{S}}b\inS-{\mp@subsup{1}{}{S}
    shows a 梠 b GS
proof -
    from assms
    consider (1) floor a = floor b
        (2) floor a < Ifloor b}\vee\mathrm{ floor b < Ifloor a
        using trichotomy floor-prop by blast
    then
    show a ->S b b S
    proof(cases)
        case 1
        then
        have }a\mp@subsup{->}{}{S}b=a->\mp@subsup{->}{}{\mathrm{ floor a }}
            using assms by auto
        moreover
        have a }\mp@subsup{->}{}{\mathrm{ floor a }}b\in\mp@subsup{\mathbb{A}}{\mathrm{ floor a}}{
            using 1 assms floor-imp-closed floor-prop by metis
        ultimately
        show ?thesis
        using sum-subsets assms(1) floor-prop by auto
    next
        case 2
        then
        show ?thesis
        using assms by auto
    qed
qed
lemma sum-imp-closed:
    assumes a\inSb\inS
    shows a 鸮 b\inS
    using sum-imp-closed-one sum-imp-closed-not-one assms by auto
```


3.5.3 Neutrality of 1^{S}

lemma sum-mult-neutr:
assumes $a \in S$
shows $a *^{S} 1^{S}=a \wedge 1^{S} *^{S} a=a$
using assms sum-mult.simps(4-6) by blast

3.5.4 Commutativity of $\left(*^{S}\right)$

Now we prove $x *^{S} y=y *^{S} x$ by showing that it holds when one of the variables is equal to 1^{S}. Then we consider when none of them is 1^{S}.
lemma sum-mult-comm-one:
assumes $a \in S b \in S a=1^{S} \vee b=1^{S}$
shows $a *^{S} b=b *{ }^{S} a$
using sum-mult-neutr assms by auto
lemma sum-mult-comm-not-one:
assumes $a \in S-\left\{1^{S}\right\} b \in S-\left\{1^{S}\right\}$
shows $a *^{S} b=b *{ }^{S}{ }_{a}$
proof -
from assms
consider (1) floor $a=$ floor b
| (2) floor $a<^{I}$ floor $b \vee$ floor $b<^{I}$ floor a
using trichotomy floor-prop by blast
then
show ?thesis
proof(cases)
case 1
then
have same-floor: $b \in \mathbb{A}_{\text {floor } a}$ using assms(2) floor-prop by simp
then
have $a *^{S} b=a *^{\text {floor }}{ }^{a} b$
using sum-mult-A assms(1) by blast
also
have $\ldots=b *^{\text {floor }}{ }^{a}{ }_{a}$
using assms(1) family-of-hoops floor-prop hoop.mult-comm same-floor by meson
also
have $\ldots=b *^{S}{ }_{a}$
using sum-mult-A assms(1) same-floor by simp
finally
show ?thesis
by auto
next
case 2
then
show ?thesis using assms by auto
qed
qed
lemma sum-mult-comm:
assumes $a \in S b \in S$
shows $a *^{S} b=b *^{S} a$
using assms sum-mult-comm-one sum-mult-comm-not-one by auto

3.5.5 Associativity of $\left(*^{S}\right)$

Next we prove $x *^{S}\left(y *^{S} z\right)=\left(x *^{S} y\right) *^{S} z$.
lemma sum-mult-assoc-one:
assumes $a \in S b \in S c \in S a=1^{S} \vee b=1^{S} \vee c=1^{S}$
shows $a *^{S}\left(b *^{S} c\right)=\left(a *^{S} b\right) *^{S} c$
using sum-mult-neutr assms sum-mult-closed by metis
lemma sum-mult-assoc-not-one:
assumes $a \in S-\left\{1^{S}\right\} b \in S-\left\{1^{S}\right\} c \in S-\left\{1^{S}\right\}$
shows $a *^{S}\left(b *^{S} c\right)=\left(a *^{S} b\right) *^{S} c$
proof -
from assms
consider (1) floor $a=$ floor b floor $b=$ floor c
(2) floor $a=$ floor b floor $b<{ }^{I}$ floor c
(3) floor $a=$ floor b floor $c<^{I}$ floor b
(4) floor $a<^{I}$ floor b floor $b=$ floor c
(5) floor $a<^{I}$ floor b floor $b<^{I}$ floor c
(6) floor $a<^{I}$ floor b floor $c<^{I}$ floor b
(7) floor $b<1$ floor a floor $b=$ floor c
(8) floor $b<{ }^{I}$ floor a floor $b<{ }^{I}$ floor c
(9) floor $b<^{I}$ floor a floor $c<^{I}$ floor b using trichotomy floor-prop by meson
then
show ?thesis
proof(cases)
case 1
then
have $a *^{S}\left(b *^{S} c\right)=a *^{\text {floor } a}\left(b *^{\text {floor }}{ }^{\text {a }} c\right)$
using sum-mult-A assms floor-mult-closed floor-prop by metis
also
have $\ldots=\left(a *^{\text {floor } a} b\right) *^{\text {floor } a} c$
using 1 assms family-of-hoops floor-prop hoop.mult-assoc by metis
also
have $\ldots=\left(a *^{\text {floor } b} b\right) *^{\text {floor } b} c$
using 1 by simp
also
have $\ldots=\left(a *^{S} b\right) *^{S} c$
using 1 sum-mult-A assms floor-mult-closed floor-prop by metis
finally
show ?thesis by auto
next
case 2
then
show ?thesis using sum-mult.simps $(2,3)$ sum-mult-not-one assms floor-prop by metis
next
case 3

```
    then
    show ?thesis
    using sum-mult.simps(3) sum-mult-not-one assms floor-prop by metis
next
    case 4
    then
    show ?thesis
        using sum-mult.simps(2) sum-mult-not-one assms floor-prop by metis
    next
    case 5
    then
    show ?thesis
        using sum-mult.simps(2) assms floor-prop strict-trans by metis
    next
        case 6
        then
        show ?thesis
        using sum-mult.simps(2,3) assms by metis
    next
        case 7
        then
    show ?thesis
        using sum-mult.simps(3) sum-mult-not-one assms floor-prop by metis
    next
        case }
        then
        show ?thesis
            using sum-mult.simps(2,3) assms by metis
        next
        case 9
        then
        show ?thesis
        using sum-mult.simps(3) assms floor-prop strict-trans by metis
        qed
qed
lemma sum-mult-assoc:
    assumes a GSb\inSc\inS
    shows a**S}(b\mp@subsup{*}{}{S}c)=(a\mp@subsup{*}{}{S}b)*\mp@subsup{*}{}{S}
    using assms sum-mult-assoc-one sum-mult-assoc-not-one by blast
3.5.6 Reflexivity of ( }\mp@subsup{->}{}{S}\mathrm{ )
lemma sum-imp-reflex:
    assumes a\inS
    shows }a->\mp@subsup{->}{}{S}a=1\mp@subsup{1}{}{S
proof -
    consider (1) }a\inS-{\mp@subsup{1}{}{S}
    (2) }a=\mp@subsup{1}{}{S
```

using assms by blast
then
show ?thesis
proof (cases)
case 1
then
have $a \rightarrow^{S} a=a \rightarrow^{\text {floor } a} a$
by simp
then
show ?thesis
using 1 family-of-hoops floor-prop hoop.imp-reflex by metis

next

case 2
then
show ?thesis
by simp
qed
qed

3.5.7 Divisibility

We prove $x *^{S}\left(x \rightarrow^{S} y\right)=y *^{S}\left(y \rightarrow^{S} x\right)$ using the same methods as before.
lemma sum-divisibility-one:
assumes $a \in S b \in S a=1^{S} \vee b=1^{S}$
shows $a *^{S}\left(a \rightarrow^{S} b\right)=b *^{S}\left(b \rightarrow^{S} a\right)$
proof -
have $x \rightarrow^{S} y=y \wedge y \rightarrow{ }^{S} x=1^{S}$ if $x=1^{S} y \in S$ for $x y$ using sum-imp-D sum-imp-E that by simp
then
show ?thesis
using assms sum-mult-neutr by metis
qed
lemma sum-divisibility-aux:
assumes $a \in S-\left\{1^{S}\right\} b \in \mathbb{A}_{\text {floor } a}$
shows $a *^{S}\left(a \rightarrow^{S} b\right)=a *^{\text {floor } a}(a \rightarrow$ floor a $b)$
using sum-imp-A sum-mult-A assms floor-imp-closed floor-prop by metis
lemma sum-divisibility-not-one:
assumes $a \in S-\left\{1^{S}\right\} b \in S-\left\{1^{S}\right\}$
shows $a *^{S}\left(a \rightarrow^{S} b\right)=b *^{S}\left(b \rightarrow^{S} a\right)$
proof -
from assms
consider (1) floor $a=$ floor b
(2) floor $a<^{I}$ floor $b \vee$ floor $b<^{I}$ floor a
using trichotomy floor-prop by blast
then
show ?thesis
proof (cases)

```
    case 1
    then
    have }a\mp@subsup{*}{}{S}(a->\mp@subsup{}{}{S}b)=a*\mathrm{ floor a ( }a->\mp@subsup{->}{}{\mathrm{ floor a }}b
    using 1 sum-divisibility-aux assms floor-prop by metis
    also
    have ... = b* floor a ( }b->\mp@subsup{->}{}{\mathrm{ floor a a a )}
        using 1 assms family-of-hoops floor-prop hoop.divisibility by metis
    also
    have ... =b* floor b ( }b->\mp@subsup{->}{}{\mathrm{ floor b }}a
        using 1 by simp
    also
    have ... =b**
        using 1 sum-divisibility-aux assms floor-prop by metis
    finally
    show ?thesis
        by auto
next
    case 2
    then
    show ?thesis
        using assms by auto
    qed
qed
lemma sum-divisibility:
assumes \(a \in S b \in S\)
shows \(a *^{S}\left(a \rightarrow^{S} b\right)=b *^{S}\left(b \rightarrow^{S} a\right)\)
using assms sum-divisibility-one sum-divisibility-not-one by auto
```


3.5.8 Residuation

Finally we prove $\left(x *^{S} y\right) \rightarrow^{S} z=x \rightarrow{ }^{S}\left(y \rightarrow^{S} z\right)$.
lemma sum-residuation-one:
assumes $a \in S b \in S c \in S a=1^{S} \vee b=1^{S} \vee c=1^{S}$
shows $\left(a *^{S} b\right) \rightarrow^{S} c=a \rightarrow{ }^{S}\left(b \rightarrow^{S} c\right)$
using sum-imp-D sum-imp-E sum-imp-closed sum-mult-closed sum-mult-neutr assms
by metis
lemma sum-residuation-not-one:
assumes $a \in S-\left\{1^{S}\right\} b \in S-\left\{1^{S}\right\} c \in S-\left\{1^{S}\right\}$
shows $\left(a *^{S} b\right) \rightarrow^{S} c=a \rightarrow^{S}\left(b \rightarrow^{S} c\right)$
proof -
from assms
consider (1) floor $a=$ floor b floor $b=$ floor c
(2) floor $a=$ floor b floor $b<^{I}$ floor c
(3) floor $a=$ floor b floor $c<^{I}$ floor b
(4) floor $a<^{I}$ floor b floor $b=$ floor c
(5) floor $a<{ }^{I}$ floor b floor $b<^{I}$ floor c

```
    ( 6 ) floor \(a<{ }^{I}\) floor \(b\) floor \(c<^{I}\) floor \(b\)
    (7) floor \(b<^{I}\) floor a floor \(b=\) floor \(c\)
    ( 8 ) floor \(b<^{I}\) floor a floor \(b<^{I}\) floor \(c\)
    | (9) floor \(b<^{I}\) floor a floor \(c<^{I}\) floor \(b\)
    using trichotomy floor-prop by meson
then
show ?thesis
proof(cases)
    case 1
    then
    have \(\left(a *^{S} b\right) \rightarrow{ }^{S} c=\left(a *^{\text {floor } a} b\right) \rightarrow{ }^{\text {floor } a} c\)
    using sum-imp-B sum-mult-A assms floor-mult-closed floor-prop by metis
also
have \(\ldots=a \rightarrow^{\text {floor } a}\left(b \rightarrow_{\text {floor } a} c\right)\)
    using 1 assms family-of-hoops floor-prop hoop.residuation by metis
    also
    have \(\ldots=a \rightarrow\) floor \(b\left(b \rightarrow^{\text {floor } b} c\right)\)
        using 1 by simp
    also
    have \(\ldots=a \rightarrow^{S}\left(b \rightarrow^{S} c\right)\)
    using 1 sum-imp-A assms floor-imp-closed floor-prop by metis
    finally
    show ?thesis
    by auto
next
    case 2
    then
    show ?thesis
        using sum-imp.simps(2,5) sum-mult-not-one assms floor-prop by metis
next
    case 3
    then
    show ?thesis
        using sum-imp.simps(3) sum-mult-not-one assms floor-prop by metis
next
    case 4
    then
    have \(\left(a *^{S} b\right) \rightarrow^{S} c=1^{S}\)
        using 4 sum-imp.simps(2) sum-mult.simps(2) assms by metis
    moreover
    have \(b \rightarrow^{S} c=1^{S} \vee\left(b \rightarrow^{S} c \in S-\left\{1^{S}\right\} \wedge\right.\) floor \(\left(b \rightarrow^{S} c\right)=\) floor \(\left.b\right)\)
        using 4 (2) sum-imp-closed-not-one sum-imp-floor \(\operatorname{assms}(2,3)\) by blast
    ultimately
    show ?thesis
        using 4(1) sum-imp.simps(2,5) assms(1) by metis
next
    case 5
    then
    show ?thesis
```

using sum-imp.simps(2,5) sum-mult.simps(2) assms floor-prop strict-trans by metis
next
case 6
then
show ?thesis
using assms by auto
next
case 7
then
have $\left(a *^{S} b\right) \rightarrow^{S} c=\left(b \rightarrow^{S} c\right)$
using $\operatorname{assms}(1,2)$ by auto
moreover
have $b \rightarrow^{S} c=1^{S} \vee\left(b \rightarrow^{S} c \in S-\left\{1^{S}\right\} \wedge\right.$ floor $\left(b \rightarrow{ }^{S} c\right)=$ floor $\left.b\right)$ using 7(2) sum-imp-closed-not-one sum-imp-floor assms(2,3) by blast
ultimately
show ?thesis
using $7(1)$ sum-imp. $\operatorname{simps}(3,5) \operatorname{assms}(1)$ by metis
next
case 8
then
show ?thesis
using assms by auto
next
case 9
then
show ?thesis
using sum-imp.simps(3) sum-mult.simps(3) assms floor-prop strict-trans by metis
qed
qed
lemma sum-residuation:
assumes $a \in S b \in S c \in S$
shows $\left(a *^{S} b\right) \rightarrow^{S} c=a \rightarrow{ }^{S}\left(b \rightarrow^{S} c\right)$
using assms sum-residuation-one sum-residuation-not-one by blast

3.5.9 Main result

sublocale hoop $S\left(*^{S}\right)\left(\rightarrow^{S}\right) 1^{S}$
proof
show $x *^{S} y \in S$ if $x \in S y \in S$ for $x y$
using that sum-mult-closed by simp
next
show $x \rightarrow{ }^{S} y \in S$ if $x \in S y \in S$ for $x y$
using that sum-imp-closed by simp
next
show $1^{S} \in S$
by simp
next
show $x *^{S} y=y *^{S} x$ if $x \in S y \in S$ for $x y$ using that sum-mult-comm by simp
next
show $x *^{S}\left(y *^{S} z\right)=\left(x *^{S} y\right) *^{S} z$ if $x \in S y \in S z \in S$ for $x y z$ using that sum-mult-assoc by simp
next
show $x *^{S} 1^{S}=x$ if $x \in S$ for x
using that sum-mult-neutr by simp
next
show $x \rightarrow^{S} x=1^{S}$ if $x \in S$ for x
using that sum-imp-reflex by simp
next
show $x *^{S}\left(x \rightarrow^{S} y\right)=y *^{S}\left(y \rightarrow^{S} x\right)$ if $x \in S y \in S$ for $x y$
using that sum-divisibility by simp
next
show $x \rightarrow{ }^{S}\left(y \rightarrow{ }^{S} z\right)=\left(x *^{S} y\right) \rightarrow^{S} z$ if $x \in S y \in S z \in S$ for $x y z$ using that sum-residuation by simp
qed
end
end

4 Totally ordered hoops

theory Totally-Ordered-Hoops
imports Ordinal-Sums
begin

4.1 Definitions

locale totally-ordered-hoop $=$ hoop +
assumes total-order: $x \in A \Longrightarrow y \in A \Longrightarrow x \leq^{A} y \vee y \leq^{A} x$
begin
function fixed-points :: ' $a \Rightarrow$ ' a set (F) where
$F a=\left\{b \in A-\left\{1^{A}\right\} . a \rightarrow^{A} b=b\right\}$ if $a \in A-\left\{1^{A}\right\}$
$\mid F a=\left\{1^{A}\right\}$ if $a=1^{A}$
$\mid F a=$ undefined if $a \notin A$
by auto
termination by lexicographic-order

```
definition rel-F :: ' \(a \Rightarrow{ }^{\prime} a \Rightarrow\) bool (infix \(\sim F 60\) )
    where \(x \sim F y \equiv \forall z \in A .\left(x \rightarrow^{A} z=z\right) \longleftrightarrow\left(y \rightarrow^{A} z=z\right)\)
definition rel-F-canonical-map \(::\) ' \(a \Rightarrow\) ' \(a\) set \((\pi)\)
    where \(\pi x=\{b \in A . x \sim F b\}\)
```

end

4.2 Properties of F

context totally-ordered-hoop
begin
lemma F-equiv:
assumes $a \in A-\left\{1^{A}\right\} b \in A$
shows $b \in F a \longleftrightarrow\left(b \in A \wedge b \neq 1^{A} \wedge a \rightarrow^{A} b=b\right)$
using assms by auto
lemma F-subset:
assumes $a \in A$
shows $F a \subseteq A$
proof -
have $a=1^{A} \vee a \neq 1^{A}$
by auto
then
show ?thesis
using assms by fastforce
qed
lemma F-of-one:
assumes $a \in A$
shows $F a=\left\{1^{A}\right\} \longleftrightarrow a=1^{A}$
using F-equiv assms fixed-points.simps(2) top-closed by blast
lemma F-of-mult:
assumes $a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\}$
shows $F\left(a *^{A} b\right)=\left\{c \in A-\left\{1^{A}\right\} .\left(a *^{A} b\right) \rightarrow^{A} c=c\right\}$
using assms mult- C by auto
lemma F-of-imp:
assumes $a \in A b \in A a \rightarrow^{A} b \neq 1^{A}$
shows $F\left(a \rightarrow^{A} b\right)=\left\{c \in A-\left\{1^{A}\right\} .\left(a \rightarrow^{A} b\right) \rightarrow^{A} c=c\right\}$
using assms imp-closed by auto
lemma F-bound:
assumes $a \in A b \in A a \in F b$
shows $a \leq^{A} b$
proof -
consider (1) $b \neq 1^{A}$
(2) $b=1^{A}$
by auto
then
show ?thesis
proof(cases)
case 1

```
    then
    have b}\mp@subsup{->}{}{A}a\not=\mp@subsup{1}{}{A
        using assms(2,3) by simp
    then
    show ?thesis
        using assms hoop-order-def total-order by auto
    next
    case 2
    then
    show ?thesis
        using assms(1) ord-top by auto
    qed
qed
```

The following results can be found in Lemma 3.3 in [5].

```
lemma LEMMA-3-3-1:
    assumes \(a \in A-\left\{1^{A}\right\} b \in A c \in A b \in F a c \leq^{A} b\)
    shows \(c \in F a\)
proof -
    from assms
    have \(\left(a \rightarrow^{A} c\right) \leq^{A}\left(a \rightarrow^{A} b\right)\)
        using DiffD1 F-equiv ord-imp-mono-B by metis
    then
    have \(\left(a \rightarrow^{A} c\right) \leq^{A} b\)
        using \(\operatorname{assms}(1,4,5)\) by \(\operatorname{simp}\)
    then
    have \(\left(a \rightarrow^{A} c\right) \rightarrow^{A} c=\left(\left(a \rightarrow^{A} c\right) *^{A}\left(\left(a \rightarrow^{A} c\right) \rightarrow^{A} b\right)\right) \rightarrow^{A} c\)
    using assms \((1,3)\) hoop-order-def imp-closed by force
    also
    have \(\ldots=\left(b *^{A}\left(b \rightarrow^{A}\left(a \rightarrow^{A} c\right)\right)\right) \rightarrow^{A} c\)
        using assms divisibility imp-closed by simp
    also
    have \(\ldots=\left(b \rightarrow^{A}\left(a \rightarrow^{A} c\right)\right) \rightarrow^{A}\left(b \rightarrow^{A} c\right)\)
    using DiffD1 assms(1-3) imp-closed swap residuation by metis
also
have \(\ldots=\left(\left(a \rightarrow^{A} b\right) \rightarrow^{A}\left(a \rightarrow^{A} c\right)\right) \rightarrow^{A}\left(b \rightarrow^{A} c\right)\)
    using \(\operatorname{assms}(1,4)\) by \(\operatorname{simp}\)
also
have \(\ldots=\left(\left(\left(a \rightarrow^{A} b\right) *^{A} a\right) \rightarrow^{A} c\right) \rightarrow^{A}\left(b \rightarrow^{A} c\right)\)
    using \(\operatorname{assms}(1,3,4)\) residuation by simp
also
have \(\ldots=\left(\left(\left(b \rightarrow^{A} a\right) *^{A} b\right) \rightarrow^{A} c\right) \rightarrow^{A}\left(b \rightarrow^{A} c\right)\)
    using assms (1,2) divisibility imp-closed mult-comm by simp
also
have \(\ldots=\left(b \rightarrow^{A} c\right) \rightarrow^{A}\left(b \rightarrow^{A} c\right)\)
    using \(F\)-bound assms \((1,4)\) hoop-order-def by simp
also
have \(\ldots=1^{A}\)
    using \(F\)-bound assms hoop-order-def imp-closed by simp
```

```
    finally
    have \(\left(a \rightarrow^{A} c\right) \leq^{A} c\)
    using hoop-order-def by simp
    moreover
    have \(c \leq^{A}\left(a \rightarrow{ }^{A} c\right)\)
    using \(\operatorname{assms}(1,3)\) ord- \(A\) by \(\operatorname{simp}\)
    ultimately
    have \(a \rightarrow^{A} c=c\)
    using \(\operatorname{assms}(1,3)\) imp-closed ord-antisymm by simp
    moreover
    have \(c \in A-\left\{1^{A}\right\}\)
    using assms(1,3-5) hoop-order-def imp-one-C by auto
ultimately
show ?thesis
    using \(F\)-equiv assms(1) by blast
qed
lemma LEMMA-3-3-2:
    assumes \(a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\} F a=F b\)
    shows \(F a=F\left(a *^{A} b\right)\)
proof
    show \(F a \subseteq F\left(a *^{A} b\right)\)
    proof
        fix \(c\)
        assume \(c \in F a\)
        then
        have \(\left(a *^{A} b\right) \rightarrow^{A} c=b \rightarrow^{A}\left(a \rightarrow^{A} c\right)\)
            using DiffD1 F-subset assms \((1,2)\) in-mono swap residuation by metis
    also
    have \(\ldots=b \rightarrow^{A} c\)
        using \(\langle c \in F a\rangle \operatorname{assms}(1)\) by auto
    also
    have ... = \(c\)
        using \(\langle c \in F\) a〉 \(\operatorname{assms}(2,3)\) by auto
    finally
    show \(c \in F\left(a *^{A} b\right)\)
        using \(\langle c \in F a\rangle \operatorname{assms}(1,2)\) mult- \(C\) by auto
    qed
next
show \(F\left(a *^{A} b\right) \subseteq F a\)
proof
    fix \(c\)
    assume \(c \in F\left(a *^{A} b\right)\)
    then
    have \(\left(a *^{A} b\right) \leq^{A} a\)
        using \(\operatorname{assms}(1,2)\) mult- \(A\) by auto
    then
    have \(\left(a \rightarrow^{A} c\right) \leq^{A}\left(\left(a *^{A} b\right) \rightarrow^{A} c\right)\)
        using DiffD1 \(F\)-subset \(\left\langle c \in F\left(a *^{A} b\right)\right\rangle\) assms mult-closed
```

ord-imp-anti-mono-B subsetD
by meson
moreover
have $\left(a *^{A} b\right) \rightarrow^{A} c=c$
using $\left\langle c \in F\left(a *^{A} b\right)\right\rangle \operatorname{assms}(1,2)$ mult- C by auto
ultimately
have $\left(a \rightarrow^{A} c\right) \leq^{A} c$
by simp
moreover
have $c \leq^{A}\left(a \rightarrow^{A} c\right)$
using DiffD1 F-subset $\left\langle c \in F\left(a *^{A} b\right)\right\rangle \operatorname{assms}(1,2)$ insert-Diff insert-subset mult-closed ord-A
by metis
ultimately
show $c \in F a$
using $\left\langle c \in F\left(a *^{A} b\right)\right\rangle \operatorname{assms}(1,2)$ imp-closed mult- C ord-antisymm by auto qed
qed
lemma LEMMA-3-3-3:
assumes $a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\} a \leq^{A} b$
shows $F a \subseteq F b$
proof
fix c
assume $c \in F a$
then
have $\left(b \rightarrow^{A} c\right) \leq^{A}\left(a \rightarrow^{A} c\right)$
using DiffD1 F-subset assms in-mono ord-imp-anti-mono-B by meson
moreover
have $a \rightarrow^{A} c=c$
using $\langle c \in F$ a〉 assms(1) by auto
ultimately
have $\left(b \rightarrow^{A} c\right) \leq^{A} c$ by simp
moreover
have $c \leq^{A}\left(b \rightarrow^{A} c\right)$
using $\langle c \in F$ a〉 $\operatorname{assms}(1,2)$ ord- A by force
ultimately
show $c \in F b$
using $\langle c \in F a\rangle \operatorname{assms}(1,2)$ imp-closed ord-antisymm by auto
qed
lemma LEMMA-3-3-4:
assumes $a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\} a<^{A} b F a \neq F b$
shows $a \in F b$
proof -
from assms
obtain c where $c \in F b \wedge c \notin F a$
using LEMMA-3-3-3 hoop-order-strict-def by auto

```
    then
    have witness: \(c \in A-\left\{1^{A}\right\} \wedge b \rightarrow^{A} c=c \wedge c<^{A}\left(a \rightarrow^{A} c\right)\)
    using DiffD1 assms \((1,2)\) hoop-order-strict-def ord- \(A\) by auto
    then
    have \(\left(a \rightarrow^{A} c\right) \rightarrow^{A} c \in F b\)
    using DiffD1 F-equiv assms(1,2) imp-closed swap ord-D by metis
moreover
have \(a \leq^{A}\left(\left(a \rightarrow^{A} c\right) \rightarrow^{A} c\right)\)
    using \(\operatorname{assms}(1)\) ord- \(C\) witness by force
    ultimately
    show \(a \in F b\)
    using Diff-iff LEMMA-3-3-1 assms(1,2) imp-closed witness by metis
qed
lemma LEMMA-3-3-5:
    assumes \(a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\} F a \neq F b\)
    shows \(a *^{A} b=a \wedge^{A} b\)
proof -
    have \(a<^{A} b \vee b<^{A} a\)
        using DiffD1 assms hoop-order-strict-def total-order by metis
    then
    have \(a \in F b \vee b \in F a\)
        using LEMMA-3-3-4 assms by metis
    then
    have \(a *^{A} b=\left(b \rightarrow^{A} a\right) *^{A} b \vee a *^{A} b=a *^{A}\left(a \rightarrow^{A} b\right)\)
        using \(\operatorname{assms}(1,2)\) by force
    then
    show ?thesis
        using assms \((1,2)\) divisibility hoop-inf-def imp-closed mult-comm by auto
qed
lemma LEMMA-3-3-6:
    assumes \(a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\} a<^{A} b F a=F b\)
    shows \(F\left(b \rightarrow^{A} a\right)=F b\)
proof -
    have \(a \notin F a\)
        using assms(1) DiffD1 F-equiv imp-reflex by metis
    then
    have \(a<^{A}\left(b \rightarrow^{A} a\right)\)
    using \(\operatorname{assms}(1,2,4)\) hoop-order-strict-def ord- \(A\) by auto
moreover
have \(b *^{A}\left(b \rightarrow^{A} a\right)=a\)
    using assms (1-3) divisibility hoop-order-def hoop-order-strict-def by simp
moreover
have \(b \leq^{A}\left(b \rightarrow^{A} a\right) \vee\left(b \rightarrow^{A} a\right) \leq^{A} b\)
    using DiffD1 assms(1,2) imp-closed ord-reflex total-order by metis
ultimately
have \(b *^{A}\left(b \rightarrow^{A} a\right) \neq b \wedge^{A}\left(b \rightarrow^{A} a\right)\)
```

 using assms (1-3) hoop-order-strict-def imp-closed inf-comm inf-order by force
    ```
    then
    show F (b -> }\mp@subsup{}{A}{A}a)=F
    using LEMMA-3-3-5 assms(1-3) imp-closed ord-D by blast
qed
```


4.3 Properties of $(\sim F)$

4.3.1 $\quad(\sim F)$ is an equivalence relation

lemma rel-F-reflex:
assumes $a \in A$
shows $a \sim F a$
using rel-F-def by auto
lemma rel-F-symm:
assumes $a \in A b \in A a \sim F b$
shows $b \sim F a$
using assms rel-F-def by auto
lemma rel-F-trans:
assumes $a \in A b \in A c \in A a \sim F b b \sim F c$
shows $a \sim F c$
using assms rel-F-def by auto

4.3.2 Equivalent definition

```
lemma rel-F-equiv:
    assumes }a\inAb\in
    shows (a~Fb)=(Fa=Fb)
proof
    assume a~Fb
    then
    consider (1) }a\not=\mp@subsup{1}{}{A}b\not=\mp@subsup{1}{}{A
    | (2) a = 1 A}b=\mp@subsup{1}{}{A
    using assms imp-one-C rel-F-def by fastforce
    then
    show Fa=Fb
    proof(cases)
        case 1
        then
        show ?thesis
        using <a ~F b〉 assms rel-F-def by auto
    next
        case 2
        then
        show ?thesis
        by simp
    qed
next
assume Fa=Fb
```

```
    then
    consider (1) a\not=1 A b}=1\mp@subsup{1}{}{A
    | (2) a = 1 A}b=1\mp@code{1
    using F-of-one assms by blast
    then
    show a ~Fb
    proof(cases)
    case 1
    then
    show ?thesis
        using <F a =F b> assms imp-one-A imp-one-C rel-F-def by auto
    next
    case 2
    then
    show ?thesis
        using rel-F-reflex by simp
    qed
qed
4.3.3 Properties of equivalence classes given by ( }~F
lemma class-one: \pi 1 1 = {1 A}
    using imp-one-C rel-F-canonical-map-def rel-F-def by auto
lemma classes-subsets:
    assumes a}\in
    shows }\pia\subseteq
    using rel-F-canonical-map-def by simp
lemma classes-not-empty:
    assumes a \inA
    shows }a\in\pi
    using assms rel-F-canonical-map-def rel-F-reflex by simp
corollary class-not-one:
    assumes }a\inA-{\mp@subsup{1}{}{A}
    shows }\pia\not={\mp@subsup{1}{}{A}
    using assms classes-not-empty by blast
lemma classes-disjoint:
    assumes }a\inAb\inA\pia\cap\pib\not=
    shows }\pia=\pi
    using assms rel-F-canonical-map-def rel-F-def rel-F-trans by force
lemma classes-cover: }A={x.\existsy\inA.x\in\piy
    using classes-subsets classes-not-empty by auto
lemma classes-convex:
    assumes }a\inAb\inAc\inAd\inAb\in\piac\in\piab\leq\mp@subsup{\}{}{A}dd\mp@subsup{\leq}{}{A}
```

```
    shows d\in\pia
proof -
    have eq-F:Fa=Fb\wedgeFa=Fc
    using assms(1,5,6) rel-F-canonical-map-def rel-F-equiv by auto
    from assms
    consider (1) c=1 A
        (2)}c\not=\mp@subsup{1}{}{A
    by auto
    then
    show ?thesis
    proof(cases)
    case 1
    then
    have b=1 }\mp@subsup{}{}{A
        using F-of-one eq-F assms(2) by auto
    then
    show ?thesis
        using 1 assms(2,4,5,7,8) ord-antisymm by blast
    next
    case 2
    then
    have b\not=\mp@subsup{1}{}{A}\wedgec\not=\mp@subsup{1}{}{A}\wedged\not=\mp@subsup{1}{}{A}
        using eq-F assms(3,8) ord-antisymm ord-top by auto
    then
    have Fb\subseteqFd^Fd\subseteqFc
        using LEMMA-3-3-3 assms(2-4,7,8) by simp
    then
    have Fa=Fd
        using eq-F by blast
    then
    have a~Fd
        using assms(1,4) rel-F-equiv by simp
    then
    show ?thesis
        using assms(4) rel-F-canonical-map-def by simp
    qed
qed
lemma related-iff-same-class:
    assumes }a\inAb\in
    shows }a~Fb\longleftrightarrow\pia=\pi
proof
    assume a~Fb
    then
    have }a=\mp@subsup{1}{}{A}\longleftrightarrowb=\mp@subsup{1}{}{A
    using assms imp-one-C imp-reflex rel-F-def by metis
then
have (a=\mp@subsup{1}{}{A}\wedgeb=\mp@subsup{1}{}{A})\vee(a\not=\mp@subsup{1}{}{A}\wedgeb\not=\mp@subsup{1}{}{A})
    by auto
```

```
    then
    show }\pi\quada=\pi
    using <a ~F b> assms rel-F-canonical-map-def rel-F-def rel-F-symm by force
next
    show }\pia=\pib\Longrightarrowa~F
    using assms(2) classes-not-empty rel-F-canonical-map-def by auto
qed
corollary same-F-iff-same-class:
    assumes }a\inAb\in
    shows Fa=Fb\longleftrightarrow\pia=\pib
    using assms rel-F-equiv related-iff-same-class by auto
end
```


4.4 Irreducible hoops: definition and equivalences

A totally ordered hoop is irreducible if it cannot be written as the ordinal sum of two nontrivial totally ordered hoops.
locale totally-ordered-irreducible-hoop $=$ totally-ordered-hoop + assumes irreducible: $\nexists B C$.
$(A=B \cup C) \wedge$
$\left(\left\{1^{A}\right\}=B \cap C\right) \wedge$
$\left(\exists y \in B . y \neq 1^{A}\right) \wedge$
$\left(\exists y \in C . y \neq 1^{A}\right) \wedge$
$\left(\right.$ hoop $\left.B\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}\right) \wedge$
(hoop $\left.C\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}\right) \wedge$
$\left(\forall x \in B-\left\{1^{A}\right\} . \forall y \in C . x *^{A} y=x\right) \wedge$
$\left(\forall x \in B-\left\{1^{A}\right\} . \forall y \in C . x \rightarrow^{A} y=1^{A}\right) \wedge$
$\left(\forall x \in C . \forall y \in B . x \rightarrow^{A} y=y\right)$
lemma irr-test:
assumes totally-ordered-hoop A PA RA a
\neg totally-ordered-irreducible-hoop A PA RA a
shows $\exists B C$.
$(A=B \cup C) \wedge$
$(\{a\}=B \cap C) \wedge$
$(\exists y \in B . y \neq a) \wedge$
$(\exists y \in C . y \neq a) \wedge$
(hoop B PA RA a) \wedge
(hoop C PA RA a) \wedge
$(\forall x \in B-\{a\} . \forall y \in C . P A x y=x) \wedge$
$(\forall x \in B-\{a\} . \forall y \in C . R A x y=a) \wedge$
$(\forall x \in C . \forall y \in B . R A x y=y)$
using assms unfolding totally-ordered-irreducible-hoop-def totally-ordered-irreducible-hoop-axioms-def
by force
locale totally-ordered-one-fixed-hoop $=$ totally-ordered-hoop +
assumes one-fixed: $x \in A \Longrightarrow y \in A \Longrightarrow y \rightarrow^{A} x=x \Longrightarrow x=1^{A} \vee y=1^{A}$
locale totally-ordered-wajsberg-hoop $=$ totally-ordered-hoop + wajsberg-hoop
context totally-ordered-hoop
begin
The following result can be found in [1] (see Lemma 3.5).
lemma not-one-fixed-implies-not-irreducible:
assumes \neg totally-ordered-one-fixed-hoop $A\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}$
shows \neg totally-ordered-irreducible-hoop $A\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}$
proof -
have $\exists x y . x \in A \wedge y \in A \wedge y \rightarrow^{A} x=x \wedge x \neq 1^{A} \wedge y \neq 1^{A}$
using assms totally-ordered-hoop-axioms totally-ordered-one-fixed-hoop.intro totally-ordered-one-fixed-hoop-axioms.intro
by meson
then
obtain $b_{0} c_{0}$ where witnesses: $b_{0} \in A-\left\{1^{A}\right\} \wedge c_{0} \in A-\left\{1^{A}\right\} \wedge b_{0} \rightarrow^{A} c_{0}=c_{0}$ by auto
define $B C$ where $B=\left(F b_{0}\right) \cup\left\{1^{A}\right\}$ and $C=A-\left(F b_{0}\right)$
have B-mult- $b 0: b *^{A} b_{0}=b$ if $b \in B-\left\{1^{A}\right\}$ for b
proof -
have upper-bound: $b \leq^{A} b_{0}$ if $b \in B-\left\{1^{A}\right\}$ for b using B-def F-bound witnesses that by force
then
have $b *^{A} b_{0}=b_{0} *^{A} b$
using B-def witnesses mult-comm that by simp
also
have $\ldots=b_{0} *^{A}\left(b_{0} \rightarrow^{A} b\right)$
using B-def witnesses that by fastforce
also
have $\ldots=b *^{A}\left(b \rightarrow^{A} b_{0}\right)$
using B-def witnesses that divisibility by auto
also
have $\ldots=b$
using B-def hoop-order-def that upper-bound witnesses by auto
finally
show $b *^{A} b_{0}=b$
by auto
qed
have C-upper-set: $a \in C$ if $a \in A c \in C c \leq^{A} a$ for $a c$
proof -
consider (1) $a \neq 1^{A}$
(2) $a=1^{A}$
by auto
then
show $a \in C$

```
    proof(cases)
        case 1
        then
        have }a\not\inC\Longrightarrowa\inF\mp@subsup{b}{0}{
        using C-def that(1) by blast
    then
    have a\not\inC\Longrightarrowc\inF b
        using C-def DiffD1 witnesses LEMMA-3-3-1 that by metis
    then
    show ?thesis
        using C-def that(2) by blast
    next
    case 2
    then
    show ?thesis
        using C-def witnesses by auto
    qed
qed
have B-union-C: }A=B\cup
    using B-def C-def witnesses one-closed by auto
moreover
have B-inter-C: {1 A}}=B\cap
    using B-def C-def witnesses by force
moreover
have B-not-trivial: }\existsy\inB.y\not=\mp@subsup{1}{}{A
proof -
    have }\mp@subsup{c}{0}{}\inB\wedge\mp@subsup{c}{0}{}\not=\mp@subsup{1}{}{A
        using B-def witnesses by auto
    then
    show ?thesis
        by auto
qed
moreover
have C-not-trivial: }\existsy\inC.y\not=\mp@subsup{1}{}{A
proof -
    have }\mp@subsup{b}{0}{}\inC\wedge\mp@subsup{b}{0}{}\not=\mp@subsup{1}{}{A
        using C-def witnesses by auto
    then
    show ?thesis
        by auto
qed
```

```
moreover
have \(B\)-mult-closed: \(a *^{A} b \in B\) if \(a \in B b \in B\) for \(a b\)
proof -
    from that
    consider (1) \(a \in F b_{0}\)
        (2) \(a=1^{A}\)
        using \(B\)-def by blast
    then
    show \(a *^{A} b \in B\)
    proof (cases)
        case 1
        then
        have \(a \in A \wedge a *^{A} b \in A \wedge\left(a *^{A} b\right) \leq^{A} a\)
        using \(B\)-union- \(C\) that mult- \(A\) mult-closed by blast
        then
        have \(a *^{A} b \in F b_{0}\)
            using 1 witnesses LEMMA-3-3-1 by metis
        then
        show ?thesis
                using \(B\)-def by simp
    next
        case 2
        then
        show ?thesis
        using \(B\)-union- \(C\) that(2) by simp
    qed
qed
moreover
have \(B\)-imp-closed: \(a \rightarrow^{A} b \in B\) if \(a \in B b \in B\) for \(a b\)
proof -
    from that
    consider (1) \(a=1^{A} \vee b=1^{A} \vee\left(a \in F b_{0} \wedge b \in F b_{0} \wedge a \rightarrow^{A} b=1^{A}\right)\)
        | (2) \(a \in F b_{0} b \in F b_{0} a \rightarrow^{A} b \neq 1^{A}\)
        using \(B\)-def by fastforce
then
show \(a \rightarrow^{A} b \in B\)
proof (cases)
    case 1
    then
    have \(a \rightarrow^{A} b=b \vee a \rightarrow^{A} b=1^{A}\)
        using \(B\)-union- \(C\) that imp-one-C imp-one-top by blast
    then
    show ?thesis
        using \(B\)-inter- \(C\) that(2) by fastforce
next
    case 2
```

```
    then
    have a**A}\mp@subsup{b}{0}{}=
        using B-def B-mult-b0 witnesses by auto
    then
```



```
        using B-union-C witnesses that mult-comm residuation by simp
    then
    have }a->\mp@subsup{}{}{A}b\inF\mp@subsup{b}{0}{
        using 2(3) B-union-C F-equiv witnesses that imp-closed by auto
    then
    show ?thesis
        using B-def by auto
    qed
qed
moreover
have B-hoop: hoop B (**) ( }\mp@subsup{->}{}{A})\mp@subsup{1}{}{A
proof
    show }x\mp@subsup{*}{}{A}y\inB\mathrm{ if }x\inBy\inB\mathrm{ for }x
        using B-mult-closed that by simp
next
    show }x\mp@subsup{->}{}{A}y\inB\mathrm{ if }x\inBy\inB\mathrm{ for }x
        using B-imp-closed that by simp
next
    show 1 }\mp@subsup{1}{}{A}\in
        using B-def by simp
next
    show }x\mp@subsup{*}{}{A}y=y*\mp@subsup{*}{}{A}x\mathrm{ if }x\inBy\inB\mathrm{ for }x
        using B-union-C mult-comm that by simp
next
    show }x\mp@subsup{*}{}{A}(y\mp@subsup{*}{}{A}z)=(x\mp@subsup{*}{}{A}y)\mp@subsup{*}{}{A}z\mathrm{ if }x\inBy\inBz\inB\mathrm{ for x y z
        using B-union-C mult-assoc that by simp
next
    show }x\mp@subsup{*}{}{A}\mp@subsup{1}{}{A}=x\mathrm{ if }x\inB\mathrm{ for }
        using B-union-C that by simp
next
    show }x\mp@subsup{->}{}{A}x=1\mp@subsup{1}{}{A}\mathrm{ if }x\inB\mathrm{ for }
        using B-union-C that by simp
next
    show }x\mp@subsup{*}{}{A}(x\mp@subsup{->}{}{A}y)=y\mp@subsup{*}{}{A}(y\mp@subsup{->}{}{A}x)\mathrm{ if }x\inBy\inB\mathrm{ for x y
        using B-union-C divisibility that by simp
next
    show }x\mp@subsup{->}{}{A}(y\mp@subsup{->}{}{A}z)=(x\mp@subsup{*}{}{A}y)\mp@subsup{->}{}{A}z\mathrm{ if }x\inBy\inBz\inB\mathrm{ for x yz
        using B-union-C residuation that by simp
qed
moreover
```

```
have C-imp-B: \(c \rightarrow^{A} b=b\) if \(b \in B c \in C\) for \(b c\)
proof -
    from that
    consider (1) \(b \in F b_{0} c \neq 1^{A}\)
        | (2) \(b=1^{A} \vee c=1^{A}\)
    using \(B\)-def by blast
    then
    show \(c \rightarrow^{A} b=b\)
    proof (cases)
        case 1
        have \(b_{0} \rightarrow^{A}\left(\left(c \rightarrow^{A} b\right) \rightarrow^{A} b\right)=\left(c \rightarrow^{A} b\right) \rightarrow^{A}\left(b_{0} \rightarrow^{A} b\right)\)
        using \(B\)-union- \(C\) witnesses that imp-closed swap by simp
    also
    have \(\ldots=\left(c \rightarrow^{A} b\right) \rightarrow^{A} b\)
        using 1 (1) witnesses by auto
    finally
    have \(\left(c \rightarrow^{A} b\right) \rightarrow^{A} b \in F b_{0}\) if \(\left(c \rightarrow^{A} b\right) \rightarrow^{A} b \neq 1^{A}\)
        using \(B\)-union- \(C\) F-equiv witnesses \(\langle b \in B\rangle\langle c \in C\rangle\) that imp-closed by auto
    moreover
    have \(c \leq^{A}\left(\left(c \rightarrow^{A} b\right) \rightarrow^{A} b\right)\)
        using \(B\)-union- \(C\) that ord- \(C\) by simp
    ultimately
    have \(\left(c \rightarrow^{A} b\right) \rightarrow^{A} b=1^{A}\)
        using \(B\)-def \(B\)-union-C C-def \(C\)-upper-set that(2) by blast
    moreover
    have \(b \rightarrow^{A}\left(c \rightarrow^{A} b\right)=1^{A}\)
        using \(B\)-union- \(C\) that imp- \(A\) by simp
    ultimately
    show ?thesis
        using B-union-C that imp-closed ord-antisymm-equiv by blast
    next
        case 2
        then
        show ?thesis
        using \(B\)-union- \(C\) that imp-one-C imp-one-top by auto
    qed
qed
moreover
have \(B\)-imp- \(C: b \rightarrow^{A} c=1^{A}\) if \(b \in B-\left\{1^{A}\right\} c \in C\) for \(b c\)
proof -
    from that
    have \(b \leq^{A} c \vee c \leq^{A} b\)
        using total-order \(B\)-union- \(C\) by blast
    moreover
    have \(c \rightarrow^{A} b=b\)
        using \(C\)-imp-B that by simp
    ultimately
```

```
    show b }\mp@subsup{->}{}{A}c=1\mp@subsup{1}{}{A
    using that(1) hoop-order-def by force
qed
moreover
```

have B-mult- $C: b *^{A} c=b$ if $b \in B-\left\{1^{A}\right\} c \in C$ for $b c$
proof -
have $b=b *^{A} 1^{A}$
using that(1) B-union-C by fastforce
also
have $\ldots=b *^{A}\left(b \rightarrow^{A} c\right)$
using B-imp- C that by blast
also
have $\ldots=c *^{A}\left(c \rightarrow^{A} b\right)$
using that divisibility B-union- C by simp
also
have $\ldots=c *^{A} b$
using C-imp- B that by auto
finally
show $b *^{A} c=b$
using that mult-comm B-union- C by auto
qed
moreover
have C-mult-closed: $c *^{A} d \in C$ if $c \in C d \in C$ for $c d$
proof -
consider (1) $c \neq 1^{A} d \neq 1^{A}$
(2) $c=1^{A} \vee d=1^{A}$
by auto
then
show $c *^{A} d \in C$
proof (cases)
case 1
have $c *^{A} d \in F b_{0}$ if $c *^{A} d \notin C$
using C-def $\langle c \in C\rangle\langle d \in C\rangle$ mult-closed that by force
then
have $c \rightarrow^{A}\left(c *^{A} d\right) \in F b_{0}$ if $c *^{A} d \notin C$
using B-def C-imp- $B\langle c \in C\rangle$ that by simp
moreover
have $d \leq^{A}\left(c \rightarrow^{A}\left(c *^{A} d\right)\right)$
using C-def DiffD1 that ord-reflex ord-residuation residuation
mult-closed mult-comm
by metis
moreover
have $c \rightarrow^{A}\left(c *^{A} d\right) \in A \wedge d \in A$
using C-def Diff-iff that imp-closed mult-closed by metis
ultimately

```
    have d\inF bo if c** d}d\not\in
    using witnesses LEMMA-3-3-1 that by blast
    then
    show ?thesis
        using C-def that(2) by blast
    next
        case 2
        then
        show ?thesis
        using B-union-C that mult-neutr mult-neutr-2 by auto
    qed
qed
```

moreover
have C-imp-closed: $c \rightarrow^{A} d \in C$ if $c \in C d \in C$ for $c d$
using C-upper-set imp-closed ord-A B-union- C that by blast
moreover
have C-hoop: hoop $C\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}$
proof
show $x *^{A} y \in C$ if $x \in C y \in C$ for $x y$
using C-mult-closed that by simp
next
show $x \rightarrow^{A} y \in C$ if $x \in C y \in C$ for $x y$
using C-imp-closed that by simp
next
show $1^{A} \in C$
using B-inter- C by auto
next
show $x *^{A} y=y *^{A} x$ if $x \in C y \in C$ for $x y$
using B-union- C mult-comm that by simp
next
show $x *^{A}\left(y *^{A} z\right)=\left(x *^{A} y\right) *^{A} z$ if $x \in C y \in C z \in C$ for $x y z$
using B-union- C mult-assoc that by simp
next
show $x *^{A} 1^{A}=x$ if $x \in C$ for x
using B-union- C that by simp
next
show $x \rightarrow^{A} x=1^{A}$ if $x \in C$ for x
using B-union- C that by simp
next
show $x *^{A}\left(x \rightarrow^{A} y\right)=y *^{A}\left(y \rightarrow^{A} x\right)$ if $x \in C y \in C$ for $x y$
using B-union- C divisibility that by simp
next
show $x \rightarrow{ }^{A}\left(y \rightarrow^{A} z\right)=\left(x *^{A} y\right) \rightarrow^{A} z$ if $x \in C y \in C z \in C$ for $x y z$
using B-union- C residuation that by simp
qed

ultimately

```
have \(\exists B C\).
    \((A=B \cup C) \wedge\)
    \(\left(\left\{1^{A}\right\}=B \cap C\right) \wedge\)
    \(\left(\exists y \in B . y \neq 1^{A}\right) \wedge\)
    \(\left(\exists y \in C . y \neq 1^{A}\right) \wedge\)
    \(\left(\right.\) hoop \(\left.B\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}\right) \wedge\)
    (hoop C \(\left.\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}\right) \wedge\)
    \(\left(\forall x \in B-\left\{1^{A}\right\} . \forall y \in C . x *^{A} y=x\right) \wedge\)
    \(\left(\forall x \in B-\left\{1^{A}\right\} . \forall y \in C \cdot x \rightarrow^{A} y=1^{A}\right) \wedge\)
    \(\left(\forall x \in C . \forall y \in B . x \rightarrow^{A} y=y\right)\)
    by (smt (verit))
then
show ?thesis
    using totally-ordered-irreducible-hoop.irreducible by (smt (verit))
qed
```

Next result can be found in [2] (see Proposition 2.2).

```
lemma one-fixed-implies-wajsberg:
    assumes totally-ordered-one-fixed-hoop \(A\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}\)
    shows totally-ordered-wajsberg-hoop \(A\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}\)
proof
    have \(\left(a \rightarrow^{A} b\right) \rightarrow^{A} b=\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\) if \(a \in A b \in A a<^{A} b\) for \(a b\)
    proof -
    from that
    have \(\left(\left(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\right) \rightarrow^{A} b\right) \rightarrow^{A}\left(b \rightarrow^{A} a\right)=b \rightarrow^{A} a \wedge b \rightarrow^{A} a \neq 1^{A}\)
        using imp-D ord-D by simp
    then
    have \(\left(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\right) \rightarrow^{A} b=1^{A}\)
        using assms that (1,2) imp-closed totally-ordered-one-fixed-hoop.one-fixed
        by metis
    moreover
    have \(b \rightarrow^{A}\left(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\right)=1^{A}\)
        using hoop-order-def that(1,2) ord-C by simp
    ultimately
    have \(\left(b \rightarrow^{A} a\right) \rightarrow^{A} a=b\)
        using imp-closed ord-antisymm-equiv hoop-axioms that(1,2) by metis
    also
    have \(\ldots=\left(a \rightarrow^{A} b\right) \rightarrow^{A} b\)
        using hoop-order-def hoop-order-strict-def that(2,3) imp-one-C by force
    finally
    show \(\left(a \rightarrow^{A} b\right) \rightarrow^{A} b=\left(b \rightarrow^{A} a\right) \rightarrow^{A} a\)
        by auto
    qed
    then
    show \(\left(x \rightarrow^{A} y\right) \rightarrow^{A} y=\left(y \rightarrow^{A} x\right) \rightarrow^{A} x\) if \(x \in A y \in A\) for \(x y\)
    using total-order hoop-order-strict-def that by metis
```


qed

The proof of the following result can be found in [1] (see Theorem 3.6).
lemma not-irreducible-implies-not-wajsberg:
assumes \neg totally-ordered-irreducible-hoop $A\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}$
shows \neg totally-ordered-wajsberg-hoop $A\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}$
proof -
have $\exists B C$.
$(A=B \cup C) \wedge$
$\left(\left\{1^{A}\right\}=B \cap C\right) \wedge$
$\left(\exists y \in B . y \neq 1^{A}\right) \wedge$
$\left(\exists y \in C . y \neq 1^{A}\right) \wedge$
$\left(\right.$ hoop $\left.B\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}\right) \wedge$
(hoop $\left.C\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}\right) \wedge$
$\left(\forall x \in B-\left\{1^{A}\right\} . \forall y \in C . x *^{A} y=x\right) \wedge$
$\left(\forall x \in B-\left\{1^{A}\right\} . \forall y \in C \cdot x \rightarrow^{A} y=1^{A}\right) \wedge$
$\left(\forall x \in C . \forall y \in B . x \rightarrow^{A} y=y\right)$
using irr-test[OF totally-ordered-hoop-axioms] assms by auto
then
obtain $B C$ where H :
$(A=B \cup C) \wedge$
$\left(\left\{1^{A}\right\}=B \cap C\right) \wedge$
$\left(\exists y \in B . y \neq 1^{A}\right) \wedge$
$\left(\exists y \in C . y \neq 1^{A}\right) \wedge$
$\left(\forall x \in B-\left\{1^{A}\right\} . \forall y \in C . x \rightarrow^{A} y=1^{A}\right) \wedge$
$\left(\forall x \in C . \forall y \in B . x \rightarrow^{A} y=y\right)$
by blast
then
obtain $b c$ where assms: $b \in B-\left\{1^{A}\right\} \wedge c \in C-\left\{1^{A}\right\}$
by auto
then
have $b \rightarrow^{A} c=1^{A}$
using H by simp
then
have $\left(b \rightarrow^{A} c\right) \rightarrow^{A} c=c$ using H assms imp-one- C by blast
moreover
have $\left(c \rightarrow^{A} b\right) \rightarrow^{A} b=1^{A}$
using assms H by force
ultimately
have $\left(b \rightarrow^{A} c\right) \rightarrow^{A} c \neq\left(c \rightarrow^{A} b\right) \rightarrow^{A} b$
using assms by force
moreover
have $b \in A \wedge c \in A$
using assms H by blast
ultimately
show ?thesis
using totally-ordered-wajsberg-hoop.axioms(2) wajsberg-hoop.T by meson qed

Summary of all results in this subsection:

```
theorem one-fixed-equivalent-to-wajsberg:
    shows totally-ordered-one-fixed-hoop A (**) ( }\mp@subsup{->}{}{A})\mp@subsup{1}{}{A}
        totally-ordered-wajsberg-hoop A (**)}(\mp@subsup{->}{}{A})\mp@subsup{1}{}{A
    using not-irreducible-implies-not-wajsberg not-one-fixed-implies-not-irreducible
        one-fixed-implies-wajsberg
    by linarith
theorem wajsberg-equivalent-to-irreducible:
    shows totally-ordered-wajsberg-hoop A (**) ( }\mp@subsup{->}{}{A})\mp@subsup{1}{}{A}
        totally-ordered-irreducible-hoop A (**)}(\mp@subsup{->}{}{A})\mp@subsup{1}{}{A
    using not-irreducible-implies-not-wajsberg not-one-fixed-implies-not-irreducible
        one-fixed-implies-wajsberg
    by linarith
theorem irreducible-equivalent-to-one-fixed:
    shows totally-ordered-irreducible-hoop A (**)}(\mp@subsup{->}{}{A})\mp@subsup{1}{}{A}
        totally-ordered-one-fixed-hoop A (**) (->\mp@subsup{}{}{A})\mp@subsup{1}{}{A}
    using one-fixed-equivalent-to-wajsberg wajsberg-equivalent-to-irreducible
    by simp
end
```


4.5 Decomposition

locale tower-of-irr-hoops $=$ tower-of-hoops +
assumes family-of-irr-hoops: $i \in I \Longrightarrow$
totally-ordered-irreducible-hoop $\left(\mathbb{A}_{i}\right)\left(*^{i}\right)\left(\rightarrow^{i}\right) 1^{S}$
locale tower-of-nontrivial-irr-hoops $=$ tower-of-irr-hoops +
assumes nontrivial: $i \in I \Longrightarrow \exists x \in \mathbb{A}_{i} . x \neq 1^{S}$
context totally-ordered-hoop
begin

4.5.1 Definition of index set I

definition index-set :: ('a set) set (I) where $I=\{y .(\exists x \in A . \pi x=y)\}$
lemma indexes-subsets:
assumes $i \in I$
shows $i \subseteq A$
using index-set-def assms rel-F-canonical-map-def by auto
lemma indexes-not-empty:
assumes $i \in I$
shows $i \neq \emptyset$
using index-set-def assms classes-not-empty by blast

```
lemma indexes-disjoint:
    assumes i\inIj\inIi\not=j
    shows }i\capj=
proof -
    obtain ab where }a\inA\wedgeb\inA\wedgea\not=b\wedgei=\pia\wedgej=\pi
        using index-set-def assms by auto
    then
    show ?thesis
        using assms(3) classes-disjoint by auto
qed
lemma indexes-cover: }A={x.\existsi\inI.x\ini
    using classes-subsets classes-not-empty index-set-def by auto
lemma indexes-class-of-elements:
    assumes i\inIa\inAa
    shows \pia=i
proof -
    obtain c where class-element: c\inA\wedgei=\pic
        using assms(1) index-set-def by auto
    then
    have }a~F
        using assms(3) rel-F-canonical-map-def rel-F-symm by auto
    then
    show ?thesis
        using assms(2) class-element related-iff-same-class by simp
qed
lemma indexes-convex:
```



```
    shows d\ini
proof -
    have }a\inA\wedgeb\inA\wedged\inA\wedgei=\pi
        using assms(1-4) indexes-class-of-elements indexes-subsets by blast
    then
    show ?thesis
        using assms(2-6) classes-convex by auto
qed
```


4.5.2 Definition of total partial order over I

Since each equivalence class is convex, $\left(\leq^{A}\right)$ induces a total order on I.
function index-order $::($ 'a set $) \Rightarrow\left({ }^{\prime} a\right.$ set) \Rightarrow bool (infix $\left.\leq^{I} 60\right)$ where
$x \leq^{I} y=\left((x=y) \vee\left(\forall v \in x . \forall w \in y . v \leq^{A} w\right)\right)$ if $x \in I y \in I$
$\mid x \leq^{I} y=$ undefined if $x \notin I \vee y \notin I$
by auto
termination by lexicographic-order

```
definition index-order-strict (infix \(<^{I} 60\) )
    where \(x<^{I} y=\left(x \leq^{I} y \wedge x \neq y\right)\)
lemma index-ord-reflex:
    assumes \(i \in I\)
    shows \(i \leq^{I} i\)
    using assms by simp
lemma index-ord-antisymm:
    assumes \(i \in I j \in I i \leq^{I} j j \leq^{I} i\)
    shows \(i=j\)
proof -
    have \(i=j \vee\left(\forall a \in i . \forall b \in j . a \leq^{A} b \wedge b \leq^{A} a\right)\)
        using assms by auto
    then
    have \(i=j \vee(\forall a \in i . \forall b \in j . a=b)\)
        using assms(1,2) indexes-subsets insert-Diff insert-subset ord-antisymm
        by metis
    then
    show ?thesis
        using \(\operatorname{assms}(1,2)\) indexes-not-empty by force
qed
lemma index-ord-trans:
    assumes \(i \in I j \in I k \in I i \leq^{I} j j \leq^{I} k\)
    shows \(i \leq^{I} k\)
proof -
    consider (1) \(i \neq j j \neq k\)
        | (2) \(i=j \vee j=k\)
    by auto
then
show \(i \leq^{I} k\)
proof(cases)
    case 1
    then
    have \(\left(\forall a \in i . \forall b \in j . a \leq^{A} b\right) \wedge\left(\forall b \in j . \forall c \in k . b \leq^{A} c\right)\)
        using assms by force
    moreover
    have \(j \neq \emptyset\)
        using assms(2) indexes-not-empty by simp
    ultimately
    have \(\forall a \in i . \forall c \in k . \exists b \in j . a \leq^{A} b \wedge b \leq^{A} c\)
        using all-not-in-conv by meson
    then
    have \(\forall a \in i . \forall c \in k . a \leq^{A} c\)
        using assms indexes-subsets ord-trans subsetD by metis
    then
    show ?thesis
        using \(\operatorname{assms}(1,3)\) by \(\operatorname{simp}\)
```

next
case 2
then
show ?thesis
using $\operatorname{assms}(4,5)$ by auto
qed
qed
lemma index-order-total :
assumes $i \in I j \in I \neg\left(j \leq^{I} i\right)$
shows $i \leq^{I} j$
proof -
have $i \neq j$
using assms $(1,3)$ by auto
then
have disjoint: $i \cap j=\emptyset$
using $\operatorname{assms}(1,2)$ indexes-disjoint by simp
moreover
have $\exists x \in j$. $\exists y \in i . \neg\left(x \leq^{A} y\right)$
using assms index-order.simps(1) by blast
moreover
have subsets: $i \subseteq A \wedge j \subseteq A$
using assms indexes-subsets by simp
ultimately
have $\exists x \in j$. $\exists y \in i . y<^{A} x$
using total-order hoop-order-strict-def insert-absorb insert-subset by metis
then
obtain $a_{i} a_{j}$ where witnesses: $a_{i} \in i \wedge a_{j} \in j \wedge a_{i}<^{A} a_{j}$
using assms (1,2) total-order hoop-order-strict-def indexes-subsets by metis
then
have $a \leq^{A} b$ if $a \in i b \in j$ for $a b$
proof
from that
consider (1) $a_{i} \leq^{A} a a_{j} \leq^{A} b$
(2) $a<{ }^{A} a_{i} b<^{A} a_{j}$
|(3) $a_{i} \leq^{A} a b<^{A} a_{j}$
| (4) $a<^{A} a_{i} a_{j} \leq^{A} b$
using total-order hoop-order-strict-def subset-eq subsets witnesses by metis
then
show $a \leq{ }^{A} b$
proof (cases)
case 1
then
have $a_{i} \leq^{A} a_{j} \wedge a_{j} \leq^{A} b \wedge b \leq^{A} a$ if $b<^{A} a$
using hoop-order-strict-def that witnesses by blast
then
have $a_{i} \leq^{A} b \wedge b \leq^{A} a$ if $b<^{A} a$
using $\langle b \in j\rangle$ in-mono ord-trans subsets that witnesses by meson
then

```
    have \(b \in i\) if \(b<^{A} a\)
        using \(\operatorname{assms}(1)\langle a \in i\rangle\langle b \in j\rangle\) indexes-convex subsets that witnesses
        by blast
    then
    show \(a \leq^{A} b\)
        using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
        subsets that total-order
    by metis
next
    case 2
    then
    have \(b \leq^{A} a \wedge a \leq^{A} a_{i} \wedge a_{i} \leq^{A} a_{j}\) if \(b<^{A} a\)
        using hoop-order-strict-def that witnesses by blast
    then
    have \(b \leq^{A} a \wedge a \leq{ }^{A} a_{j}\) if \(b<^{A} a\)
        using \(\langle a \in i\rangle\) ord-trans subset-eq subsets that witnesses by metis
    then
    have \(a \in j\) if \(b<^{A} a\)
        using \(\operatorname{assms}(2)\langle a \in i\rangle\langle b \in j\rangle\) indexes-convex subsets that witnesses
        by blast
    then
    show \(a \leq^{A} b\)
        using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
        subsets that total-order
        by metis
next
    case 3
    have \(b \leq^{A} a_{i} \wedge a_{i} \leq^{A} a_{j}\) if \(b \leq^{A} a_{i}\)
    using hoop-order-strict-def that witnesses by auto
then
have \(a_{i} \in j\) if \(b \leq^{A} a_{i}\)
    using assms(2) \(\langle b \in j\rangle\) indexes-convex subsets that witnesses by blast
moreover
have \(a_{i} \notin j\)
    using disjoint witnesses by blast
ultimately
have \(a_{i}<{ }^{A} b\)
        using total-order hoop-order-strict-def \(\langle b \in j\rangle\) subsets witnesses by blast
then
have \(a_{i} \leq^{A} b \wedge b \leq^{A} a\) if \(b<^{A} a\)
        using hoop-order-strict-def that by auto
    then
    have \(b \in i\) if \(b<^{A} a\)
        using \(\operatorname{assms}(1)\langle a \in i\rangle\langle b \in j\rangle\) indexes-convex subsets that witnesses
        by blast
then
show \(a \leq{ }^{A} b\)
        using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
            subsets that total-order
```

```
        by metis
    next
        case 4
        then
        show a < A}
            using hoop-order-strict-def in-mono ord-trans subsets that witnesses
            by meson
        qed
    qed
    then
    show i\leq }\mp@subsup{}{}{I}
        using assms by simp
qed
sublocale total-poset-on I ( }\mp@subsup{\leq}{}{I})(\mp@subsup{<}{}{I}
proof
    show I}=
        using indexes-cover by auto
next
    show reflp-on I ( }\mp@subsup{\leq}{}{I}\mathrm{ )
        using index-ord-reflex reflp-onI by blast
next
    show antisymp-on I ( }\mp@subsup{\leq}{}{I}\mathrm{ )
        using antisymp-on-def index-ord-antisymm by blast
next
    show transp-on I ( }\mp@subsup{\}{}{I}
        using index-ord-trans transp-on-def by blast
next
    show }x\mp@subsup{<}{}{I}y=(x\mp@subsup{\leq}{}{I}y\wedgex\not=y)\mathrm{ if }x\inIy\inI\mathrm{ for x y
        using index-order-strict-def by auto
next
    show totalp-on I ( }\mp@subsup{\leq}{}{I}\mathrm{ )
        using index-order-total totalp-onI by metis
qed
```


4.5.3 Definition of universes

```
definition universes :: 'a set => 'a set (UNI A)
```

definition universes :: 'a set => 'a set (UNI A)
where UNI
where UNI
abbreviation (uniA-i)
abbreviation (uniA-i)
uniA-i :: ['a set] = ('a set) ((\mathbb{A}(-)) [61] 60)
uniA-i :: ['a set] = ('a set) ((\mathbb{A}(-)) [61] 60)
where }\mp@subsup{\mathbb{A}}{i}{}\equivUN\mp@subsup{I}{A}{}\mp@subsup{}{i}{
where }\mp@subsup{\mathbb{A}}{i}{}\equivUN\mp@subsup{I}{A}{}\mp@subsup{}{i}{
abbreviation (uniA-pi)
abbreviation (uniA-pi)
uniA-pi :: ['a] => ('a set) ((舨 (-)) [61] 60)
uniA-pi :: ['a] => ('a set) ((舨 (-)) [61] 60)
where }\mp@subsup{\mathbb{A}}{\pix}{}\equivUN\mp@subsup{I}{A}{}(\pix
where }\mp@subsup{\mathbb{A}}{\pix}{}\equivUN\mp@subsup{I}{A}{}(\pix
abbreviation (uniA-pi-one)

```
abbreviation (uniA-pi-one)
```

```
    uniA-pi-one :: 'a set (( }\mp@subsup{\mathbb{A}}{\pi1A}{})60
    where }\mp@subsup{\mathbb{A}}{\pi1A}{}\equivUN\mp@subsup{I}{A}{}(\pi\mp@subsup{1}{}{A}
lemma universes-subsets:
    assumes i\inI a\in\mp@subsup{\mathbb{A}}{i}{}
    shows a\inA
    using assms universes-def indexes-subsets one-closed by fastforce
lemma universes-not-empty:
    assumes i\inI
    shows }\mp@subsup{\mathbb{A}}{i}{}\not=
    using universes-def by simp
lemma universes-almost-disjoint:
    assumes }i\inIj\inIi\not=
    shows (\mp@subsup{\mathbb{A}}{i}{})\cap(\mp@subsup{\mathbb{A}}{j}{})={\mp@subsup{1}{}{A}}
    using assms indexes-disjoint universes-def by auto
lemma universes-cover: }A={x.\existsi\inI.x\in\mp@subsup{\mathbb{A}}{i}{}
    using one-closed indexes-cover universes-def by auto
lemma universes-aux:
    assumes i\inIa\ini
    shows }\mp@subsup{\mathbb{A}}{i}{}=\pia\cup{\mp@subsup{1}{}{A}
    using assms universes-def universes-subsets indexes-class-of-elements by force
```


4.5.4 Universes are subhoops of A

lemma universes-one-closed:

```
assumes i\inI
```

shows $1^{A} \in \mathbb{A}_{i}$
using universes-def by auto
lemma universes-mult-closed:
assumes $i \in I a \in \mathbb{A}_{i} b \in \mathbb{A}_{i}$
shows $a *^{A} b \in \mathbb{A}_{i}$
proof -
consider (1) $a \neq 1^{A} b \neq 1^{A}$
| (2) $a=1^{A} \vee b=1^{A}$
by auto
then
show ?thesis
proof(cases)
case 1
then
have UNI-def: $\mathbb{A}_{i}=\pi a \cup\left\{1^{A}\right\} \wedge \mathbb{A}_{i}=\pi b \cup\left\{1^{A}\right\}$
using assms universes-def universes-subsets indexes-class-of-elements
by simp
then

```
    have }\pia=\pi
        using 1 assms universes-def universes-subsets indexes-class-of-elements
        by force
    then
    have Fa=Fb
        using assms universes-subsets rel-F-equiv related-iff-same-class by meson
    then
    have F}(a\mp@subsup{*}{}{A}b)=F
        using 1 LEMMA-3-3-2 assms universes-subsets by blast
    then
    have \pia=\pi(a** b)
        using assms universes-subsets mult-closed rel-F-equiv related-iff-same-class
        by metis
    then
    show ?thesis
        using UNI-def UnI1 assms classes-not-empty universes-subsets mult-closed
        by metis
    next
        case 2
        then
        show ?thesis
        using assms universes-subsets by auto
    qed
qed
lemma universes-imp-closed:
    assumes }i\inIa\in\mp@subsup{\mathbb{A}}{i}{}b\in\mp@subsup{\mathbb{A}}{i}{
    shows a -> }\mp@subsup{}{}{A}b\in\mp@subsup{\mathbb{A}}{i}{
proof -
from assms
consider (1) }a\not=\mp@subsup{1}{}{A}b\not=\mp@subsup{1}{}{A}b<\mp@subsup{<}{}{A}
    |(2) }a=\mp@subsup{1}{}{A}\veeb=\mp@subsup{1}{}{A}\vee(a\not=\mp@subsup{1}{}{A}\wedgeb\not=\mp@subsup{1}{}{A}\wedgea\mp@subsup{\leq}{}{A}b
    using total-order universes-subsets hoop-order-strict-def by auto
    then
    show ?thesis
    proof(cases)
        case 1
        then
        have UNI-def: }\mp@subsup{\mathbb{A}}{i}{}=\pia\cup{\mp@subsup{1}{}{A}}\wedge\mp@subsup{\mathbb{A}}{i}{}=\pib\cup{\mp@subsup{1}{}{A}
            using assms universes-def universes-subsets indexes-class-of-elements
            by simp
    then
    have \pia=\pib
        using 1 assms universes-def universes-subsets indexes-class-of-elements
        by force
    then
    have Fa=Fb
        using assms universes-subsets rel-F-equiv related-iff-same-class by simp
    then
```

have $F\left(a \rightarrow^{A} b\right)=F a$
using 1 LEMMA-3-3-6 assms universes-subsets by simp
then
have $\pi a=\pi\left(a \rightarrow^{A} b\right)$
using assms universes-subsets imp-closed same-F-iff-same-class by simp

then

show ?thesis
using UNI-def UnI1 assms classes-not-empty universes-subsets imp-closed by metis
next
case 2
then
show ?thesis
using assms universes-subsets universes-one-closed hoop-order-def imp-one-A imp-one-C
by auto
qed
qed

4.5.5 Universes are irreducible hoops

```
lemma universes-one-fixed:
    assumes \(i \in I a \in \mathbb{A}_{i} b \in \mathbb{A}_{i} a \rightarrow^{A} b=b\)
    shows \(a=1^{A} \vee b=1^{A}\)
proof -
    from assms
    have \(\pi a=\pi b\) if \(a \neq 1^{A} b \neq 1^{A}\)
    using universes-def universes-subsets indexes-class-of-elements that by force
    then
    have \(F a=F b\) if \(a \neq 1^{A} b \neq 1^{A}\)
        using assms (1-3) universes-subsets same-F-iff-same-class that by blast
    then
    have \(b=1^{A}\) if \(a \neq 1^{A} \quad b \neq 1^{A}\)
    using \(F\)-equiv assms universes-subsets fixed-points.cases imp-reflex that by metis
    then
    show ?thesis
        by blast
qed
corollary universes-one-fixed-hoops:
    assumes \(i \in I\)
    shows totally-ordered-one-fixed-hoop \(\left(\mathbb{A}_{i}\right)\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}\)
proof
    show \(x *^{A} y \in \mathbb{A}_{i}\) if \(x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}\) for \(x y\)
        using assms universes-mult-closed that by simp
next
    show \(x \rightarrow^{A} y \in \mathbb{A}_{i}\) if \(x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}\) for \(x y\)
        using assms universes-imp-closed that by simp
next
```

show $1^{A} \in \mathbb{A}_{i}$
using assms universes-one-closed by simp
next
show $x *^{A} y=y *^{A} x$ if $x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}$ for $x y$
using assms universes-subsets mult-comm that by simp
next
show $x *^{A}\left(y *^{A} z\right)=\left(x *^{A} y\right) *^{A} z$ if $x \in \mathbb{A}_{i} y \in \mathbb{A}_{i} z \in \mathbb{A}_{i}$ for $x y z$
using assms universes-subsets mult-assoc that by simp
next
show $x *^{A} 1^{A}=x$ if $x \in \mathbb{A}_{i}$ for x
using assms universes-subsets that by simp
next
show $x \rightarrow^{A} x=1^{A}$ if $x \in \mathbb{A}_{i}$ for x
using assms universes-subsets that by simp
next
show $x *^{A}\left(x \rightarrow^{A} y\right)=y *^{A}\left(y \rightarrow^{A} x\right)$ if $x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}$ for $x y$
using assms divisibility universes-subsets that by simp
next
show $x \rightarrow^{A}\left(y \rightarrow^{A} z\right)=\left(x *^{A} y\right) \rightarrow^{A} z$ if $x \in \mathbb{A}_{i} y \in \mathbb{A}_{i} z \in \mathbb{A}_{i}$ for $x y z$
using assms universes-subsets residuation that by simp
next
show $x \leq^{A} y \vee y \leq^{A} x$ if $x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}$ for $x y$
using assms total-order universes-subsets that by simp
next
show $x=1^{A} \vee y=1^{A}$ if $x \in \mathbb{A}_{i} y \in \mathbb{A}_{i} y \rightarrow^{A} x=x$ for $x y$
using assms universes-one-fixed that by blast
qed
corollary universes-irreducible-hoops:
assumes $i \in I$
shows totally-ordered-irreducible-hoop $\left(\mathbb{A}_{i}\right)\left(*^{A}\right)\left(\rightarrow^{A}\right) 1^{A}$
using assms universes-one-fixed-hoops totally-ordered-hoop.irreducible-equivalent-to-one-fixed totally-ordered-one-fixed-hoop.axioms(1)
by metis

4.5.6 Some useful results

lemma index-aux:
assumes $i \in I j \in I i<^{I} j a \in\left(\mathbb{A}_{i}\right)-\left\{1^{A}\right\} b \in\left(\mathbb{A}_{j}\right)-\left\{1^{A}\right\}$
shows $a<^{A} b \wedge \neg(a \sim F b)$
proof -
have noteq: $i \neq j \wedge x \leq^{A} y$ if $x \in i y \in j$ for $x y$
using assms that index-order-strict-def by fastforce
moreover
have $i j$-def: $i=\pi a \wedge j=\pi b$
using UnE assms universes-def universes-subsets indexes-class-of-elements
by auto
ultimately
have $a<^{A} b$
using assms $(1,2,4,5)$ classes-not-empty universes-subsets hoop-order-strict-def by blast
moreover
have $i=j$ if $a \sim F b$
using $\operatorname{assms}(1,2,4,5)$ that universes-subsets $i j$-def related-iff-same-class by auto ultimately
show ?thesis
using assms(2,3) trichotomy by blast
qed
lemma different-indexes-mult:
assumes $i \in I j \in I i<^{I} j a \in\left(\mathbb{A}_{i}\right)-\left\{1^{A}\right\} b \in\left(\mathbb{A}_{j}\right)-\left\{1^{A}\right\}$
shows $a *^{A} b=a$
proof -
have $a<^{A} b \wedge \neg(a \sim F b)$
using assms index-aux by blast
then
have $a<^{A} b \wedge F a \neq F b$
using DiffD1 assms $(1,2,4,5)$ universes-subsets rel-F-equiv by meson
then
have $a<^{A} b \wedge a *^{A} b=a \wedge^{A} b$
using DiffD1 LEMMA-3-3-5 assms $(1,2,4,5)$ universes-subsets by auto
then
show ?thesis
using assms $(1,2,4,5)$ universes-subsets hoop-order-strict-def inf-order by auto qed
lemma different-indexes-imp-1:
assumes $i \in I j \in I i<^{I} j a \in\left(\mathbb{A}_{i}\right)-\left\{1^{A}\right\} b \in\left(\mathbb{A}_{j}\right)-\left\{1^{A}\right\}$
shows $a \rightarrow^{A} b=1^{A}$
proof -
have $x \leq^{A} y$ if $x \in i y \in j$ for $x y$
using assms(1-3) index-order-strict-def that by fastforce
moreover
have $a \in i \wedge b \in j$
using $\operatorname{assms}(4,5) \operatorname{assms}(5)$ universes-def by auto
ultimately
show ?thesis
using hoop-order-def by auto
qed
lemma different-indexes-imp-2 :
assumes $i \in I j \in I i<^{I} j a \in\left(\mathbb{A}_{j}\right)-\left\{1^{A}\right\} b \in\left(\mathbb{A}_{i}\right)-\left\{1^{A}\right\}$
shows $a \rightarrow^{A} b=b$
proof -
have $b<^{A} a \wedge \neg(b \sim F a)$
using assms index-aux by blast
then
have $b<^{A} a \wedge F b \neq F a$
using DiffD1 assms $(1,2,4,5)$ universes-subsets rel-F-equiv by metis
then
have $b \in F a$
using $L E M M A-3-3-4 \operatorname{assms}(1,2,4,5)$ universes-subsets by simp
then
show ?thesis
using assms(2,4,5) universes-subsets by fastforce
qed

4.5.7 Definition of multiplications, implications and one

```
definition mult-map :: 'a set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right)\left(M U L_{A}\right)\)
    where \(M U L_{A} x=\left(*^{A}\right)\)
definition imp-map :: 'a set \(\Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right)\left(I M P_{A}\right)\)
    where \(I M P_{A} x=\left(\rightarrow^{A}\right)\)
definition sum-one :: ' \(a\left(1^{S}\right)\)
    where \(1^{S}=1^{A}\)
abbreviation (mult \(A-i\) )
    mult \(A-i::\left[{ }^{\prime} a\right.\) set \(] \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right) \quad\left(\left(*\left(^{-}\right)\right)\right.\)[50] 60)
    where \(*^{i} \equiv M U L_{A} i\)
abbreviation ( \(i m p A-i\) )
    impA-i:: ['a set \(] \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a\right)\left(\left(\rightarrow\left(^{-}\right)\right)[50] 60\right)\)
    where \(\rightarrow^{i} \equiv I M P_{A} i\)
abbreviation (mult \(A-i-x y\) )
    mult \(A-i-x y::\left[' a, ' a\right.\) set, \(\left.{ }^{\prime} a\right] \Rightarrow{ }^{\prime} a(((-) / *(-) /(-))[61,50,61] 60)\)
    where \(x *^{i} y \equiv M U L_{A} i x y\)
abbreviation (impA-i-xy)
    \(\operatorname{imp} A-i-x y::\left[{ }^{\prime} a,{ }^{\prime} a\right.\) set, \(\left.{ }^{\prime} a\right] \Rightarrow{ }^{\prime} a\left(\left((-) / \rightarrow\left({ }^{-}\right) /(-)\right)[61,50,61] 60\right)\)
    where \(x \rightarrow^{i} y \equiv I M P_{A} i x y\)
abbreviation (ord-i-xy)
    ord-i-xy :: ['a, 'a set, ' \(a] \Rightarrow\) bool \(\left(\left((-) / \leq\left(^{-}\right) /(-)\right)[61,50,61] 60\right)\)
    where \(x \leq^{i} y \equiv\) hoop.hoop-order \(\left(I M P_{A}\right.\) i) \(1^{S} x y\)
```


4.5.8 Main result

We prove the main result: a totally ordered hoop is equal to an ordinal sum of a tower of irreducible hoops.
sublocale A-SUM: tower-of-irr-hoops $I\left(\leq^{I}\right)\left(<^{I}\right) U N I_{A} M U L_{A} I M P_{A} 1^{S}$ proof
show $\left(\mathbb{A}_{i}\right) \cap\left(\mathbb{A}_{j}\right)=\left\{1^{S}\right\}$ if $i \in I j \in I i \neq j$ for $i j$
using universes-almost-disjoint sum-one-def that by simp
next

```
    show }x\mp@subsup{*}{}{i}y\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ if }i\inIx\in\mp@subsup{\mathbb{A}}{i}{}y\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ for ix 
    using universes-mult-closed mult-map-def that by simp
next
    show }x\mp@subsup{->}{}{i}y\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ if }i\inIx\in\mp@subsup{\mathbb{A}}{i}{}y\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ for ix y
    using universes-imp-closed imp-map-def that by simp
next
    show 1'S}\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ if }i\inI\mathrm{ for }
        using universes-one-closed sum-one-def that by simp
next
    show }x\mp@subsup{*}{}{i}y=y\mp@subsup{*}{}{i}x\mathrm{ if }i\inIx\in\mp@subsup{\mathbb{A}}{i}{}y\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ for ix y
        using universes-subsets mult-comm mult-map-def that by simp
next
    show }x\mp@subsup{*}{}{i}(y\mp@subsup{*}{}{i}z)=(x\mp@subsup{*}{}{i}y)\mp@subsup{*}{}{i}
        if }i\inIx\in\mp@subsup{\mathbb{A}}{i}{}y\in\mp@subsup{\mathbb{A}}{i}{}z\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ for ix yz
        using universes-subsets mult-assoc mult-map-def that by simp
next
    show }x\mp@subsup{*}{}{i}\mp@subsup{1}{}{S}=x\mathrm{ if }i\inIx\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ for ix
    using universes-subsets sum-one-def mult-map-def that by simp
next
    show }x\mp@subsup{->}{}{i}x=\mp@subsup{1}{}{S}\mathrm{ if }i\inIx\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ for ix
        using universes-subsets imp-map-def sum-one-def that by simp
next
    show }x\mp@subsup{*}{}{i}(x\mp@subsup{->}{}{i}y)=y\mp@subsup{*}{}{i}(y\mp@subsup{->}{}{i}x
    if }i\inIx\in\mp@subsup{\mathbb{A}}{i}{}y\in\mp@subsup{\mathbb{A}}{i}{}z\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ for ixyz
    using divisibility universes-subsets imp-map-def mult-map-def that by simp
next
    show }x\mp@subsup{->}{}{i}(y\mp@subsup{->}{}{i}z)=(x\mp@subsup{*}{}{i}y)\mp@subsup{->}{}{i}
    if i\inIx\in\mp@subsup{\mathbb{A}}{i}{}y\in\mp@subsup{\mathbb{A}}{i}{}z\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ for ix yz}
    using universes-subsets imp-map-def mult-map-def residuation that by simp
next
    show }x\mp@subsup{\leq}{}{i}y\veey\mp@subsup{\leq}{}{i}x\mathrm{ if }i\inIx\in\mp@subsup{\mathbb{A}}{i}{}y\in\mp@subsup{\mathbb{A}}{i}{}\mathrm{ for ix }
        using total-order universes-subsets imp-map-def sum-one-def that by simp
next
    show ## B C.
        (\mp@subsup{\mathbb{A}}{i}{}=B\cupC)\wedge
        ({1'S}}=B\capC)
        (\existsy\inB. y = 1'S)^
        (\existsy\inC.y\not=1 1})
        (hoop B (*i})(\mp@subsup{->}{}{i})\mp@subsup{1}{}{S})
        (hoop C (**) (->')}\mp@subsup{|}{}{S})
        (}\forallx\inB-{\mp@subsup{1}{}{S}}.\forally\inC.x*\mp@subsup{*}{}{i}y=x)
        (}\forallx\inB-{\mp@subsup{1}{}{S}}.\forally\inC.x->\mp@subsup{->}{}{i}y=\mp@subsup{1}{}{S})
        (}\forallx\inC.\forally\inB.x\mp@subsup{->}{}{i}y=y
    if }i\inI\mathrm{ for }
    using that Un-iff universes-one-fixed-hoops imp-map-def sum-one-def
        totally-ordered-one-fixed-hoop.one-fixed
    by metis
qed
```

lemma floor-is-class:
assumes $a \in A-\left\{1^{A}\right\}$
shows A-SUM.floor $a=\pi a$
proof -
have $a \in \pi a \wedge \pi a \in I$
using index-set-def assms classes-not-empty by fastforce
then
show ?thesis
using same-uni A-SUM.floor-prop A-SUM.floor-unique UnCI assms universes-aux sum-one-def
by metis
qed
lemma same-mult:
assumes $a \in A b \in A$
shows $a *^{A} b=A$-SUM.sum-mult $a b$
proof -
from assms
consider (1) $a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\}$ A-SUM.floor $a=A$-SUM.floor b
(2) $a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\}$ A-SUM.floor $a<{ }^{I} A$-SUM.floor b
(3) $a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\} A$-SUM.floor $b<^{I} A$-SUM.floor a
|(4) $a=1^{A} \vee b=1^{A}$
using same-uni A-SUM.floor-prop fixed-points.cases sum-one-def trichotomy
by metis
then
show ?thesis
proof (cases)
case 1
then
show ?thesis
using A-SUM.sum-mult.simps(1) sum-one-def mult-map-def by auto
next
case 2
define $i j$ where $i=A$-SUM.floor a and $j=A$-SUM.floor b
then
have $i \in I \wedge j \in I \wedge a \in\left(\mathbb{A}_{i}\right)-\left\{1^{A}\right\} \wedge b \in\left(\mathbb{A}_{j}\right)-\left\{1^{A}\right\}$
using 2(1,2) A-SUM.floor-prop sum-one-def by auto
then
have $a *^{A} b=a$
using 2(3) different-indexes-mult i-def j-def by blast
moreover
have A-SUM.sum-mult $a b=a$
using 2 A-SUM.sum-mult.simps(2) sum-one-def by simp
ultimately
show ?thesis
by simp

```
    next
        case 3
        define \(i j\) where \(i=A\)-SUM.floor \(a\) and \(j=A\)-SUM.floor \(b\)
    then
    have \(i \in I \wedge j \in I \wedge a \in\left(\mathbb{A}_{i}\right)-\left\{1^{A}\right\} \wedge b \in\left(\mathbb{A}_{j}\right)-\left\{1^{A}\right\}\)
        using \(3(1,2)\)-SUM.floor-prop sum-one-def by auto
    then
    have \(a *^{A} b=b\)
        using 3(3) assms different-indexes-mult i-def \(j\)-def mult-comm by metis
    moreover
    have \(A\)-SUM.sum-mult \(a b=b\)
        using 3 A-SUM.sum-mult.simps(3) sum-one-def by simp
    ultimately
    show ?thesis
        by \(\operatorname{simp}\)
    next
    case 4
    then
    show ?thesis
        using A-SUM.mult-neutr A-SUM.mult-neutr-2 assms sum-one-def by force
    qed
qed
lemma same-imp:
    assumes \(a \in A b \in A\)
    shows \(a \rightarrow{ }^{A} b=A\)-SUM.sum-imp a \(b\)
proof -
    from assms
    consider (1) \(a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\} A\)-SUM.floor \(a=A\)-SUM.floor \(b\)
        (2) \(a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\} A\)-SUM.floor \(a<^{I} A\)-SUM.floor \(b\)
        (3) \(a \in A-\left\{1^{A}\right\} b \in A-\left\{1^{A}\right\} A\)-SUM.floor \(b<^{I} A\)-SUM.floor \(a\)
        | (4) \(a=1^{A} \vee b=1^{A}\)
    using same-uni A-SUM.floor-prop fixed-points.cases sum-one-def trichotomy
    by metis
then
show ?thesis
proof(cases)
    case 1
    then
    show ?thesis
        using \(A\)-SUM.sum-imp.simps(1) imp-map-def sum-one-def by auto
    next
    case 2
    define \(i j\) where \(i=A\)-SUM.floor \(a\) and \(j=A\)-SUM.floor \(b\)
    then
    have \(i \in I \wedge j \in I \wedge a \in\left(\mathbb{A}_{i}\right)-\left\{1^{A}\right\} \wedge b \in\left(\mathbb{A}_{j}\right)-\left\{1^{A}\right\}\)
        using 2(1,2) A-SUM.floor-prop sum-one-def by simp
    then
    have \(a \rightarrow^{A} b=1^{A}\)
```

using 2(3) different-indexes-imp-1 i-def j-def by blast moreover
have A-SUM.sum-imp a $b=1^{A}$
using 2 A-SUM.sum-imp.simps(2) sum-one-def by simp
ultimately
show ?thesis
by simp
next
case 3
define $i j$ where $i=A$-SUM.floor a and $j=A$-SUM.floor b
then
have $i \in I \wedge j \in I \wedge a \in\left(\mathbb{A}_{i}\right)-\left\{1^{A}\right\} \wedge b \in\left(\mathbb{A}_{j}\right)-\left\{1^{A}\right\}$
using $3(1,2)$ A-SUM.floor-prop sum-one-def by simp
then
have $a \rightarrow^{A} b=b$
using 3(3) different-indexes-imp-2 i-def j-def by blast
moreover
have A-SUM.sum-imp a $b=b$
using 3 A-SUM.sum-imp.simps(3) sum-one-def by auto
ultimately
show ?thesis
by simp
next
case 4
then
show ?thesis
using A-SUM.imp-one-C A-SUM.imp-one-top assms imp-one-C
imp-one-top sum-one-def
by force
qed
qed
lemma ordinal-sum-is-totally-ordered-hoop:
totally-ordered-hoop A-SUM.sum-univ A-SUM.sum-mult A-SUM.sum-imp 1^{S}
proof
show A-SUM.hoop-order x y $\vee A$-SUM.hoop-order $y x$
if $x \in A$-SUM.sum-univ $y \in A$-SUM.sum-univ for $x y$
using that A-SUM.hoop-order-def total-order hoop-order-def sum-one-def same-imp
by auto
qed
theorem totally-ordered-hoop-is-equal-to-ordinal-sum-of-tower-of-irr-hoops:
shows eq-universe: $A=A$-SUM.sum-univ
and eq-mult $: x \in A \Longrightarrow y \in A \Longrightarrow x *^{A} y=A$-SUM.sum-mult $x y$
and eq-imp: $x \in A \Longrightarrow y \in A \Longrightarrow x \rightarrow^{A} y=A$-SUM.sum-imp $x y$
and eq-one: $1^{A}=1^{S}$
proof
show $A \subseteq A$-SUM.sum-univ

```
    by \(\operatorname{simp}\)
next
    show \(A\)-SUM.sum-univ \(\subseteq A\)
        by \(\operatorname{simp}\)
next
    show \(x *^{A} y=A\)-SUM.sum-mult \(x y\) if \(x \in A y \in A\) for \(x y\)
        using same-mult that by blast
next
    show \(x \rightarrow^{A} y=A\)-SUM.sum-imp \(x y\) if \(x \in A y \in A\) for \(x y\)
        using same-imp that by blast
next
    show \(1^{A}=1^{S}\)
        using sum-one-def by simp
qed
```


4.5.9 Remarks on the nontrivial case

In the nontrivial case we have that every totally ordered hoop can be written as the ordinal sum of a tower of nontrivial irreducible hoops. The proof of this fact is almost immediate. By definition, $\mathbb{A}_{\pi 1 A}=\left\{1^{A}\right\}$ is the only trivial hoop in our tower. Moreover, $\mathbb{A}_{\pi a}$ is non-trivial for every $a \in A-\left\{1^{A}\right\}$. Given that $1^{A} \in \mathbb{A}_{i}$ for every $i \in I$ we can simply remove $\pi 1^{A}$ from I and obtain the desired result.

```
lemma nontrivial-tower:
    assumes \(\exists x \in A . x \neq 1^{A}\)
    shows
        tower-of-nontrivial-irr-hoops \(\left(I-\left\{\pi 1^{A}\right\}\right)\left(\leq^{I}\right)\left(<^{I}\right) U N I_{A} M U L_{A} I M P_{A} 1^{S}\)
proof
    show \(I-\left\{\begin{array}{ll}\pi & 1^{A}\end{array}\right\} \neq \emptyset\)
    proof -
        obtain \(a\) where \(a \in A-\left\{1^{A}\right\}\)
            using assms by blast
        then
        have \(\pi a \in I-\left\{\pi 1^{A}\right\}\)
        using A-SUM.floor-prop class-not-one class-one floor-is-class sum-one-def by
auto
        then
        show ?thesis
            by auto
    qed
next
    show reflp-on \(\left(I-\left\{\begin{array}{ll}\pi & 1^{A}\end{array}\right\}\right)\left(\leq^{I}\right)\)
        using Diff-subset reflex reflp-on-subset by meson
next
    show antisymp-on \(\left(I-\left\{\begin{array}{ll}\pi & 1^{A}\end{array}\right\}\right)\left(\leq^{I}\right)\)
        using Diff-subset antisymm antisymp-on-subset by meson
next
    show transp-on \(\left(I-\left\{\begin{array}{ll}\pi & 1^{A}\end{array}\right\}\right)\left(\leq^{I}\right)\)
```

using Diff-subset trans transp-on-subset by meson
next
show $i<^{I} j=\left(i \leq^{I} j \wedge i \neq j\right)$ if $i \in I-\left\{\pi 1^{A}\right\} j \in I-\left\{\pi 1^{A}\right\}$ for $i j$
using index-order-strict-def by simp
next
show totalp-on $\left(I-\left\{\begin{array}{ll}\pi & 1^{A}\end{array}\right\}\right)\left(\leq^{I}\right)$
using Diff-subset total totalp-on-subset by meson
next
show $\left(\mathbb{A}_{i}\right) \cap\left(\mathbb{A}_{j}\right)=\left\{1^{S}\right\}$ if $i \in I-\left\{\pi 1^{A}\right\} j \in I-\left\{\pi 1^{A}\right\} i \neq j$ for $i j$
using A-SUM.almost-disjoint that by blast
next
show $x *^{i} y \in \mathbb{A}_{i}$ if $i \in I-\left\{\pi 1^{A}\right\} x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}$ for $i x y$
using A-SUM.floor-mult-closed that by blast
next
show $x \rightarrow^{i} y \in \mathbb{A}_{i}$ if $i \in I-\left\{\pi 1^{A}\right\} x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}$ for $i x y$ using A-SUM.floor-imp-closed that by blast
next
show $1^{S} \in \mathbb{A}_{i}$ if $i \in I- \begin{cases}\pi & \left.1^{A}\right\} \text { for } i\end{cases}$
using universes-one-closed sum-one-def that by simp
next
show $x *^{i} y=y *^{i} x$ if $i \in I-\left\{\pi 1^{A}\right\} x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}$ for $i x y$
using universes-subsets mult-comm mult-map-def that by force
next
show $x *^{i}\left(y *^{i} z\right)=\left(x *^{i} y\right) *^{i} z$
if $i \in I-\left\{\pi 1^{A}\right\} x \in \mathbb{A}_{i} y \in \mathbb{A}_{i} z \in \mathbb{A}_{i}$ for $i x y z$
using universes-subsets mult-assoc mult-map-def that by force
next
show $x *^{i} 1^{S}=x$ if $i \in I-\left\{\pi 1^{A}\right\} x \in \mathbb{A}_{i}$ for $i x$
using universes-subsets sum-one-def mult-map-def that by force
next
show $x \rightarrow^{i} x=1^{S}$ if $i \in I-\left\{\pi 1^{A}\right\} x \in \mathbb{A}_{i}$ for $i x$
using universes-subsets imp-map-def sum-one-def that by force
next
show $x *^{i}\left(x \rightarrow^{i} y\right)=y *^{i}\left(y \rightarrow^{i} x\right)$
if $i \in I-\left\{\pi 1^{A}\right\} x \in \mathbb{A}_{i} y \in \mathbb{A}_{i} z \in \mathbb{A}_{i}$ for $i x y z$
using divisibility universes-subsets imp-map-def mult-map-def that by auto
next
show $x \rightarrow^{i}\left(y \rightarrow^{i} z\right)=\left(x *^{i} y\right) \rightarrow^{i} z$
if $i \in I- \begin{cases}1 & \left.1^{A}\right\} x \in \mathbb{A}_{i} y \in \mathbb{A}_{i} z \in \mathbb{A}_{i} \text { for } i x y z\end{cases}$
using universes-subsets imp-map-def mult-map-def residuation that by force
next
show $x \leq^{i} y \vee y \leq^{i} x$ if $i \in I-\left\{\pi 1^{A}\right\} x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}$ for $i x y$
using Diffe total-order universes-subsets imp-map-def sum-one-def that by
metis
next
show $\nexists B C$.
$\left(\mathbb{A}_{i}=B \cup C\right) \wedge$
$\left(\left\{1^{S}\right\}=B \cap C\right) \wedge$
$\left(\exists y \in B . y \neq 1^{S}\right) \wedge$

```
(\existsy\inC. y \not=1 1 )}
(hoop B (*i) (->\mp@subsup{->}{}{i})}\mp@subsup{1}{}{S})
(hoop C (**) (->\mp@subsup{->}{}{i})\mp@subsup{1}{}{S})\wedge
(}\forallx\inB-{\mp@subsup{1}{}{S}}.\forally\inC.x\mp@subsup{*}{}{i}y=x)
(\forallx\inB-{1S}.}\forally\inC.x\mp@subsup{->}{}{i}y=\mp@subsup{1}{}{S})
(\forallx\inC.\forally\inB. x > }\mp@subsup{}{}{i}y=y
    if }i\inI-{\pi\mp@subsup{1}{}{A}}\mathrm{ for i
    using that Diff-iff Un-iff universes-one-fixed imp-map-def sum-one-def by metis
next
    show }\existsx\in\mp@subsup{\mathbb{A}}{i}{}.x\not=\mp@subsup{1}{}{S}\mathrm{ if }i\inI-{\pi\mp@subsup{1}{}{A}}\mathrm{ for }
    using universes-def indexes-class-of-elements indexes-not-empty that
    by fastforce
qed
lemma ordinal-sum-of-nontrivial:
    assumes }\existsx\inA.x\not=\mp@subsup{1}{}{A
    shows A-SUM.sum-univ ={x.\existsi\inI-{\pi 1 A}}..x\in\mp@subsup{\mathbb{A}}{i}{}
proof
    show A-SUM.sum-univ}\subseteq{x.\existsi\inI-{\pi 1 A }. x 雉
    proof
        fix a
        assume a \inA-SUM.sum-univ
        then
        consider (1) }a\inA-{\mp@subsup{1}{}{A}
            | (2) a = 1 A
            by auto
    then
    show }a\in{x.\existsi\inI-{\pi\mp@subsup{1}{}{A}}.x\in\mp@subsup{\mathbb{A}}{i}{}
    proof(cases)
        case 1
        then
        obtain i where }i=\pi
            by simp
        then
        have }a\in\mp@subsup{\mathbb{A}}{i}{}\wedgei\inI-{\pi\mp@subsup{1}{}{A}
            using 1 A-SUM.floor-prop class-not-one class-one floor-is-class sum-one-def
            by auto
        then
        show ?thesis
            by blast
        next
            case 2
            obtain c where c\inA-{1A}
            using assms by blast
        then
        obtain i where }i=\pi
            by simp
        then
        have }a\in\mp@subsup{\mathbb{A}}{i}{}\wedgei\inI-{\pi\mp@subsup{1}{}{A}
```

```
            using 2 A-SUM.floor-prop <c \in A-{14 }> class-not-one class-one
                    universes-one-closed floor-is-class sum-one-def
            by auto
        then
        show ?thesis
            by auto
        qed
    qed
next
    show {x.\existsi\inI-{\pi 1A}. x 侓}\subseteqA-SUM.sum-univ
        using universes-subsets by force
qed
end
```


4.5.10 Converse of main result

We show that the converse of the main result also holds, that is, the ordinal sum of a tower of irreducible hoops is a totally ordered hoop.
context tower-of-irr-hoops
begin
proposition ordinal-sum-of-tower-of-irr-hoops-is-totally-ordered-hoop:
shows totally-ordered-hoop $S\left(*^{S}\right)\left(\rightarrow^{S}\right) 1^{S}$
proof
show hoop-order $a b \vee$ hoop-order b if $a \in S b \in S$ for $a b$
proof -
from that
consider (1) $a \in S-\left\{1^{S}\right\} b \in S-\left\{1^{S}\right\}$ floor $a=$ floor b
(2) $a \in S-\left\{1^{S}\right\} b \in S-\left\{1^{S}\right\}$ floor $a<^{I}$ floor $b \vee$ floor $b<^{I}$ floor a
| (3) $a=1^{S} \vee b=1^{S}$
using floor.cases floor-prop trichotomy by metis
then
show hoop-order a $b \vee$ hoop-order $b a$
proof (cases)
case 1
then
have $a \in \mathbb{A}_{\text {floor } a} \wedge b \in \mathbb{A}_{\text {floor } a}$ using 1 floor-prop by metis
moreover
have totally-ordered-hoop $\left(\mathbb{A}_{\text {floor }}\right)\left(*^{\text {floor }}{ }^{a}\right)\left(\rightarrow^{\text {floor }}{ }^{a}\right) 1^{S}$
using 1 (1) family-of-irr-hoops totally-ordered-irreducible-hoop.axioms(1)
floor-prop
by meson
ultimately
have $a \rightarrow$ floor $a b=1^{S} \vee b \rightarrow^{\text {floor } a} a=1^{S}$
using hoop.hoop-order-def totally-ordered-hoop.total-order totally-ordered-hoop-def
by meson

```
        moreover
```



```
            using 1 by auto
        ultimately
        show ?thesis
        using hoop-order-def by force
    next
        case 2
        then
        show ?thesis
        using sum-imp.simps(2) hoop-order-def by blast
    next
        case 3
        then
        show ?thesis
        using that ord-top by auto
    qed
    qed
qed
end
end
```


5 BL-chains

BL -chains generate the variety of BL-algebras, the algebraic counterpart of the Basic Fuzzy Logic (see [6]). As mentioned in the abstract, this formalization is based on the proof for BL-chains found in [5]. We define $B L-$ chain and bounded tower of irreducible hoops and formalize the main result on that paper (Theorem 3.4).
theory BL-Chains
imports Totally-Ordered-Hoops
begin

5.1 Definitions

```
locale bl-chain \(=\) totally-ordered-hoop +
    fixes zero \(A\) :: ' \(a\left(0^{A}\right)\)
    assumes zero-closed: \(0^{A} \in A\)
    assumes zero-first: \(x \in A \Longrightarrow 0^{A} \leq^{A} x\)
locale bounded-tower-of-irr-hoops \(=\) tower-of-irr-hoops +
    fixes zeroI ( \(0^{I}\) )
    fixes zeroS \(\left(0^{S}\right)\)
    assumes \(I\)-zero-closed : \(0^{I} \in I\)
    and zero-first: \(i \in I \Longrightarrow 0^{I} \leq^{I} i\)
```

and first-zero-closed: $0^{S} \in U N I 0^{I}$
and first-bounded: $x \in$ UNI $0^{I} \Longrightarrow I M P 0^{I} 0^{S} x=1^{S}$
begin
abbreviation (uni-zero)
uni-zero :: 'b set $\left(\mathbb{A}_{0 I}\right)$
where $\mathbb{A}_{0 I} \equiv U N I 0^{I}$
abbreviation (imp-zero)
imp-zero $::\left[\right.$ 'b, 'b] \Rightarrow 'b $\left(\left((-) / \rightarrow^{0 I} /(-)\right)[61,61] 60\right)$
where $x \rightarrow^{0 I} y \equiv \operatorname{IMP} 0^{I} x y$
end
context bl-chain
begin

5.2 First element of I

definition zeroI :: 'a set (0^{I})
where $0^{I}=\pi 0^{A}$
lemma I-zero-closed: $0^{I} \in I$
using index-set-def zeroI-def zero-closed by auto
lemma I-has-first-element:
assumes $i \in I i \neq 0^{I}$
shows $0^{I}<{ }^{I} i$
proof -
have $x \leq^{A} y$ if $i<^{I} 0^{I} x \in i y \in 0^{I}$ for $x y$
using I-zero-closed assms(1) index-order-strict-def that by fastforce
then
have $x \leq^{A} 0^{A}$ if $i<^{I} 0^{I} x \in i$ for x
using classes-not-empty zeroI-def zero-closed that by simp
moreover
have $0^{A} \leq^{A} x$ if $x \in i$ for x
using assms(1) that in-mono indexes-subsets zero-first by meson
ultimately
have $x=0^{A}$ if $i<^{I} 0^{I} x \in i$ for x
using assms(1) indexes-subsets ord-antisymm zero-closed that by blast
moreover
have $0^{A} \in 0^{I}$
using classes-not-empty zeroI-def zero-closed by simp
ultimately
have $i \cap 0^{I} \neq \emptyset$ if $i<^{I} 0^{I}$
using assms(1) indexes-not-empty that by force
moreover
have $i<^{I} 0^{I} \vee 0^{I}<^{I} i$
using I-zero-closed assms trichotomy by auto

```
    ultimately
    show ?thesis
    using I-zero-closed assms(1) indexes-disjoint by auto
qed
```


5.3 Main result for BL-chains

```
definition zeroS :: ' a (0')
    where }\mp@subsup{0}{}{S}=\mp@subsup{0}{}{A
abbreviation (uniA-zero)
    uniA-zero :: 'a set ((}\mp@subsup{\mathbb{A}}{0I}{})
    where }\mp@subsup{\mathbb{A}}{0I}{}\equivUN\mp@subsup{I}{A}{}\mp@subsup{0}{}{I
```

abbreviation (impA-zero-xy)

lemma tower-is-bounded:
shows bounded-tower-of-irr-hoops $I\left(\leq^{I}\right)\left(<^{I}\right) U N I_{A} M U L_{A} I M P_{A} 1^{S} 0^{I} 0^{S}$
proof
show $0^{I} \in I$
using I-zero-closed by simp
next
show $0^{I} \leq^{I} \quad i$ if $i \in I$ for i
using I-has-first-element index-ord-reflex index-order-strict-def that by blast
next
show $0^{S} \in \mathbb{A}_{0 I}$
using classes-not-empty universes-def zeroI-def zeroS-def zero-closed by simp
next
show $0^{S} \rightarrow{ }^{0 I} x=1^{S}$ if $x \in \mathbb{A}_{0 I}$ for x
using I-zero-closed universes-subsets hoop-order-def imp-map-def sum-one-def
zeroS-def zero-first that
by simp
qed
lemma ordinal-sum-is-bl-totally-ordered:
shows bl-chain A-SUM.sum-univ A-SUM.sum-mult A-SUM.sum-imp $1^{S} 0^{S}$
proof
show A-SUM.hoop-order x y $\vee A$-SUM.hoop-order $y x$
if $x \in A$-SUM.sum-univ $y \in A$-SUM.sum-univ for $x y$
using ordinal-sum-is-totally-ordered-hoop totally-ordered-hoop.total-order that
by meson
next
show $0^{S} \in A$-SUM.sum-univ
using zeroS-def zero-closed by simp
next
show A-SUM.hoop-order $0^{S} x$ if $x \in A$-SUM.sum-univ for x
using A-SUM.hoop-order-def eq-imp hoop-order-def sum-one-def zeroS-def zero-closed

zero-first that

by simp
qed

```
theorem bl-chain-is-equal-to-ordinal-sum-of-bounded-tower-of-irr-hoops:
    shows eq-universe: }A=A-SUM.sum-univ
    and eq-mult: }x\inA\Longrightarrowy\inA\Longrightarrowx\mp@subsup{*}{}{A}y=A-SUM.sum-mult x y
    and eq-imp: }x\inA\Longrightarrowy\inA\Longrightarrowx\mp@subsup{->}{}{A}y=A-SUM.sum-imp x y
    and eq-zero: }\mp@subsup{0}{}{A}=\mp@subsup{0}{}{S
    and eq-one: 1 }\mp@subsup{1}{}{A}=\mp@subsup{1}{}{S
proof
    show A\subseteqA-SUM.sum-univ
        by auto
next
    show A-SUM.sum-univ}\subseteq
        by auto
next
    show }x\mp@subsup{*}{}{A}y=A-SUM.sum-mult x y if x\inA y \inA for x y
        using eq-mult that by blast
next
    show }x\mp@subsup{->}{}{A}y=A\mathrm{ -SUM.sum-imp x y if x }\inAy\inA\mathrm{ for x y
        using eq-imp that by blast
next
    show }\mp@subsup{O}{}{A}=\mp@subsup{0}{}{S
        using zeroS-def by simp
next
    show 1 1 }=\mp@subsup{1}{}{S
        using sum-one-def by simp
qed
end
```


5.4 Converse of main result for BL-chains

context bounded-tower-of-irr-hoops
 begin

We show that the converse of the main result holds if $0^{S} \neq 1^{S}$. If $0^{S}=1^{S}$ then the converse may not be true. For example, take a trivial hoop A and an arbitrary not bounded Wajsberg hoop B such that $A \cap B=\{1\}$. The ordinal sum of both hoops is equal to B and therefore not bounded.
proposition ordinal-sum-of-bounded-tower-of-irr-hoops-is-bl-chain:
assumes $0^{S} \neq 1^{S}$
shows bl-chain $S\left(*^{S}\right)\left(\rightarrow^{S}\right) 1^{S} 0^{S}$
proof
show hoop-order $a b \vee h o o p-o r d e r ~ b a$ if $a \in S b \in S$ for $a b$
proof -
from that
consider (1) $a \in S-\left\{1^{S}\right\} b \in S-\left\{1^{S}\right\}$ floor $a=$ floor b

```
    |(2) a 
    | (3) }a=\mp@subsup{1}{}{S}\veeb=\mp@subsup{1}{}{S
    using floor.cases floor-prop trichotomy by metis
    then
    show ?thesis
    proof(cases)
    case 1
    then
    have }a\in\mp@subsup{\mathbb{A}}{\mathrm{ floor a }}{}\wedgeb\in\mp@subsup{\mathbb{A}}{\mathrm{ floor a}}{
        using 1 floor-prop by metis
    moreover
    have totally-ordered-hoop ( ( }\mp@subsup{\mathbb{A}}{\mathrm{ floor a}}{\mathrm{ a }
        using 1(1) family-of-irr-hoops totally-ordered-irreducible-hoop.axioms(1)
            floor-prop
        by meson
    ultimately
    have a filoor a }b=\mp@subsup{1}{}{S}\veeb->\mp@subsup{->}{}{\mathrm{ floor a }}a=\mp@subsup{1}{}{S
        using hoop.hoop-order-def totally-ordered-hoop.total-order
                totally-ordered-hoop-def
        by meson
    moreover
    have }a\mp@subsup{->}{}{S}b=a->\mp@subsup{->}{}{\mathrm{ floor a }}b\wedgeb\mp@subsup{->}{}{S}a=b->\mp@subsup{->}{}{\mathrm{ floor a }}
        using 1 by auto
    ultimately
    show ?thesis
        using hoop-order-def by force
    next
        case 2
        then
        show ?thesis
        using sum-imp.simps(2) hoop-order-def by blast
    next
        case 3
        then
        show ?thesis
        using that ord-top by auto
    qed
    qed
next
    show }\mp@subsup{0}{}{S}\in
        using first-zero-closed I-zero-closed sum-subsets by auto
next
    show hoop-order 0S a if a f S for a
    proof -
        have zero-dom: }\mp@subsup{0}{}{S}\in\mp@subsup{\mathbb{A}}{0I}{}\wedge\mp@subsup{0}{}{S}\inS-{\mp@subsup{1}{}{S}
            using I-zero-closed sum-subsets assms first-zero-closed by blast
    moreover
    have floor 0}\mp@subsup{0}{}{S}\mp@subsup{\leq}{}{I}\mathrm{ floor x if 0}\mp@subsup{0}{}{S}\inS-{\mp@subsup{1}{}{S}}x\inS-{\mp@subsup{1}{}{S}}\mathrm{ for x
        using I-zero-closed floor-prop floor-unique that(2) zero-dom zero-first
```

```
        by metis
    ultimately
    have floor 0}\mp@subsup{0}{}{S}\mp@subsup{\leq}{}{I}\mathrm{ floor x if }x\inS-{1\mp@subsup{1}{}{S}}\mathrm{ for }
    using that by blast
    then
    consider (1) }\mp@subsup{0}{}{S}\inS-{\mp@subsup{1}{}{S}} a\inS-{\mp@subsup{1}{}{S}}\mathrm{ floor 0}\mp@subsup{0}{}{S}=\mathrm{ floor a
    |(2) }\mp@subsup{0}{}{S}\inS-{\mp@subsup{1}{}{S}}a\inS-{\mp@subsup{1}{}{S}}\mathrm{ floor 0}\mp@subsup{0}{}{S}\mp@subsup{<}{}{I}\mathrm{ floor a
    |(3) }a=\mp@subsup{1}{}{S
    using <a\inS` floor.cases floor-prop strict-order-equiv-not-converse
        trichotomy zero-dom
    by metis
    then
    show hoop-order 0'S a
    proof(cases)
    case 1
    then
    have }\mp@subsup{0}{}{S}\in\mp@subsup{\mathbb{A}}{0I}{}\wedgea\in\mp@subsup{\mathbb{A}}{0I}{
        using I-zero-closed first-zero-closed floor-prop floor-unique by metis
    then
    have }\mp@subsup{0}{}{S}->\mp@subsup{}{}{S}a=\mp@subsup{0}{}{S}->\mp@subsup{->}{}{0I}a\wedge\mp@subsup{0}{}{S}->\mp@subsup{->}{}{0I}a=\mp@subsup{1}{}{S
        using 1 I-zero-closed sum-imp.simps(1) first-bounded floor-prop floor-unique
        by metis
    then
    show ?thesis
        using hoop-order-def by blast
    next
    case 2
    then
    show ?thesis
        using sum-imp.simps(2,5) hoop-order-def by meson
    next
    case 3
    then
    show ?thesis
        using ord-top zero-dom by auto
    qed
    qed
qed
end
end
```


References

[1] P. Agliano and F. Montagna. Varieties of BL-algebras I: general properties. Journal of Pure and Applied Algebra, 181(2):105-129, 2003.
[2] W. J. Blok and M. A. Ferreirim. On the structure of hoops. Algebra Universalis, 43(2):233-257, 2000.
[3] B. Bosbach. Komplementäre Halbgruppen. Axiomatik und Arithmetik. Fundamenta Mathematicae, 64:257-287, 1969.
[4] J. R. Büchi and T. M. Owens. Complemented monoids and hoops. unpublished manuscript, 1975.
[5] M. Busaniche. Decomposition of BL-chains. Algebra Universalis, 52(4):519-525, 2005.
[6] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, Boston and London, 1998.

