Decomposition of totally ordered hoops

Sebastián Buss April 18, 2024

Abstract

We formalize a well known result in theory of hoops: every totally ordered hoop can be written as an ordinal sum of irreducible (equivalently Wajsberg) hoops. This formalization is based on the proof for BL-chains (i.e., bounded totally ordered hoops) by Busaniche [5].

Contents

1	Some order tools: posets with explicit universe					
2	Hoo	$_{ m ps}$	5			
	2.1	Definitions	5			
	2.2	Basic properties	6			
	2.3	Multiplication monotonicity	8			
	2.4	Implication monotonicity and anti-monotonicity	9			
	2.5	(\leq^A) defines a partial order over $A \ldots \ldots \ldots \ldots$	9			
	2.6	Order properties				
	2.7	Additional multiplication properties	12			
	2.8	Additional implication properties	13			
	2.9	(\wedge^A) defines a semilattice over $A \ldots \ldots \ldots \ldots$	14			
	2.10	Properties of (\vee^{*A})	15			
3	\mathbf{Ord}	inal sums	16			
	3.1	Tower of hoops	17			
	3.2	Ordinal sum universe	17			
	3.3	Floor function: definition and properties	18			
	3.4	Ordinal sum multiplication and implication	19			
		3.4.1 Some multiplication properties	19			
		3.4.2 Some implication properties	21			
	3.5	The ordinal sum of a tower of hoops is a hoop	23			
		$3.5.1$ S is not empty \dots	23			
		3.5.2 $(*^S)$ and (\rightarrow^S) are well defined	23			
		3.5.3 Neutrality of 1^S	24			
		3.5.4 Commutativity of $(*^S)$	25			
		3.5.5 Associativity of $(*^{\hat{S}})$	26			
		3.5.6 Reflexivity of (\rightarrow^S)	27			
		3.5.7 Divisibility	28			
		3.5.8 Residuation	29			
		3.5.9 Main result	31			
4	Tota	ally ordered hoops	32			
-	4.1	Definitions	32			
	4.2	Properties of F	33			
	4.3	Properties of $(\sim F)$	38			
	_	$4.3.1 (\sim F)$ is an equivalence relation	38			
		4.3.2 Equivalent definition	38			
		4.3.3 Properties of equivalence classes given by $(\sim F)$	39			
	4.4	Irreducible hoops: definition and equivalences	41			
	4.5	Decomposition	51			
	2.0	4.5.1 Definition of index set <i>I</i>	51			

		4.5.2	Definition of total partial order over I	52
		4.5.3	Definition of universes	56
		4.5.4	Universes are subhoops of $A cdots$	57
		4.5.5	Universes are irreducible hoops	59
		4.5.6	Some useful results	6(
		4.5.7	Definition of multiplications, implications and one	62
		4.5.8	Main result	62
		4.5.9	Remarks on the nontrivial case	67
		4.5.10	Converse of main result	7(
5	BL-	chains	7	71
	5.1	Definit	ions	71
	5.2	First e	lement of I	72
5.3 Main result for BL-chains				73
	5.4	Conve	rse of main result for BL-chains	74

1 Some order tools: posets with explicit universe

```
theory Posets
imports Main HOL-Library.LaTeX sugar
begin
locale poset-on =
   fixes P :: 'b \ set
   fixes P-lesseq :: 'b \Rightarrow 'b \Rightarrow bool (infix \leq^P 60)
   fixes P-less :: 'b \Rightarrow 'b \Rightarrow bool (infix < ^P 60)
  assumes not-empty [simp]: P \neq \emptyset
   and reflex: reflp-on P (\leq^P)
   and antisymm: antisymp-on P (\leq^P)
  and trans: transp-on P (\leq^P)
  and strict-iff-order: x \in P \Longrightarrow y \in P \Longrightarrow x <^P y = (x \leq^P y \land x \neq y)
begin
lemma strict-trans:
   assumes a \in P b \in P c \in P a <^P b b <^P c
  shows a <^P c
  using antisymm antisymp-onD assms trans strict-iff-order transp-onD
  by (smt (verit, ccfv-SIG))
end
locale bot-poset-on = poset-on +
   fixes bot :: 'b (0^P)
   assumes bot-closed: \theta^P \in P
  and bot-first: x \in P \Longrightarrow \theta^P \leq^P x
locale top-poset-on = poset-on +
   fixes top :: 'b (1^P)
  assumes top-closed: 1^P \in P
  and top-last: x \in P \Longrightarrow x \leq^P 1^P
{f locale}\ bounded	ext{-}poset	ext{-}on\ =\ bot	ext{-}poset	ext{-}on\ +\ top	ext{-}poset	ext{-}on
locale total-poset-on = poset-on +
  assumes total: totalp-on P (\leq^P)
begin
lemma trichotomy:
  assumes a \in P b \in P

shows (a <^P b \land \neg(a = b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \lor b <^P a)) \lor (a = b \land \neg(a <^P b \land \neg(a <^P b \lor b <^P a)) \lor (a <^P b \land \neg(a <^P b \lor b <^P a)) \lor (a <^P b \land \neg(a <^P b \lor b <^P a)) \lor (a <^P b \lor b <^P a)) \lor (a <^P b \lor b <^P a)
            (b <^P a \land \neg (a = b \lor a <^P b))
   using antisymm antisymp-onD assms strict-iff-order total totalp-onD by metis
```

```
lemma strict\text{-}order\text{-}equiv\text{-}not\text{-}converse:

assumes a \in P \ b \in P

shows a <^P \ b \longleftrightarrow \neg (b \le^P \ a)

using assms \ strict\text{-}iff\text{-}order \ reflex \ reflp\text{-}onD \ strict\text{-}trans \ trichotomy \ by \ metis
end

end
```

2 Hoops

A hoop is a naturally ordered pocrim (i.e., a partially ordered commutative residuated integral monoid). This structures have been introduced by Büchi and Owens in [4] and constitute the algebraic counterpart of fragments without negation and falsum of some nonclassical logics.

```
theory Hoops
imports Posets
begin
```

2.1 Definitions

```
locale hoop =
  fixes universe :: 'a set (A)
  and multiplication :: 'a \Rightarrow 'a \Rightarrow 'a \text{ (infix } *^A 60)
  and implication :: 'a \Rightarrow 'a \Rightarrow 'a \text{ (infix } \rightarrow^A 60)
  and one :: 'a (1^A)
  assumes mult-closed: x \in A \Longrightarrow y \in A \Longrightarrow x *^A y \in A
   and imp-closed: x \in A \Longrightarrow y \in A \Longrightarrow x \to^A y \in A
  and one-closed [simp]: 1^A \in A
  and mult-comm: x \in A \Longrightarrow y \in A \Longrightarrow x *^A y = y *^A x
  and mult-assoc: x \in A \Longrightarrow y \in A \Longrightarrow z \in A \Longrightarrow x *^A (y *^A z) = (x *^A y) *^A z
  and mult-neutr [simp]: x \in A \implies x *^A 1^A = x
  and imp-reflex [simp]: x \in A \Longrightarrow x \to^A x = 1^A
  and divisibility: x \in A \Longrightarrow y \in A \Longrightarrow x *^A (x \to^A y) = y *^A (y \to^A x)
  and residuation: x \in A \Longrightarrow y \in A \Longrightarrow z \in A \Longrightarrow x \to^A (y \to^A z) = (x *^A y) \to^A z
begin
definition hoop-order :: 'a \Rightarrow 'a \Rightarrow bool (infix \leq^A 60) where x \leq^A y \equiv (x \rightarrow^A y = 1^A)
definition hoop-order-strict :: 'a \Rightarrow 'a \Rightarrow bool (infix <^A 60)
  where x <^A y \equiv (x \le^A y \land x \ne y)
definition hoop-inf :: 'a \Rightarrow 'a \Rightarrow 'a \text{ (infix } \wedge^A 60)
  where x \wedge^A y = x *^A (x \rightarrow^A y)
definition hoop-pseudo-sup :: 'a \Rightarrow 'a \Rightarrow 'a \text{ (infix } \vee^{*A} 60)
```

```
where x \vee^{*A} y = ((x \to^A y) \to^A y) \wedge^A ((y \to^A x) \to^A x)
end
locale wajsberg-hoop = hoop +
  assumes T: x \in A \Longrightarrow y \in A \Longrightarrow (x \to^A y) \to^A y = (y \to^A x) \to^A x
begin
definition wajsberg-hoop-sup :: 'a \Rightarrow 'a \Rightarrow 'a \text{ (infix } \vee^A 60) where x \vee^A y = (x \rightarrow^A y) \rightarrow^A y
\mathbf{end}
2.2
        Basic properties
context hoop
begin
lemma mult-neutr-2 [simp]:
  assumes a \in A
  shows 1^A *^A a = a
  using assms mult-comm by simp
lemma imp-one-A:
  assumes a \in A
  shows (1^A \rightarrow^A a) \rightarrow^A 1^A = 1^A
  have (1^A \rightarrow^A a) \rightarrow^A 1^A = (1^A \rightarrow^A a) \rightarrow^A (1^A \rightarrow^A 1^A)
    using assms by simp
  also
  have \dots = ((1^A \rightarrow^A a) *^A 1^A) \rightarrow^A 1^A
    using assms imp-closed residuation by simp
  have \dots = ((a \rightarrow^A 1^A) *^A a) \rightarrow^A 1^A
    using assms divisibility imp-closed mult-comm by simp
  have ... = (a \rightarrow^A 1^A) \rightarrow^A (a \rightarrow^A 1^A)
    using assms imp-closed one-closed residuation by metis
  also
  have \dots = 1^A
    using assms imp-closed by simp
  finally
  show ?thesis
    by auto
qed
lemma imp-one-B:
  assumes a \in A
```

shows $(1^A \rightarrow^A a) \rightarrow^A a = 1^A$

```
have (1^A \rightarrow^A a) \rightarrow^A a = ((1^A \rightarrow^A a) *^A 1^A) \rightarrow^A a
   using assms imp-closed by simp
 have ... = (1^A \rightarrow^A a) \rightarrow^A (1^A \rightarrow^A a)
   using assms imp-closed one-closed residuation by metis
  also
 have \dots = 1^A
   using assms imp-closed by simp
  finally
 show ?thesis
   by auto
qed
lemma imp-one-C:
 assumes a \in A
 shows 1^A \rightarrow^A a = a
 have 1^A \rightarrow^A a = (1^A \rightarrow^A a) *^A 1^A
   using assms imp-closed by simp
 have ... = (1^A \rightarrow^A a) *^A ((1^A \rightarrow^A a) \rightarrow^A a)
   using assms imp-one-B by simp
  also
 have ... = a *^A (a \rightarrow^A (1^A \rightarrow^A a))
   using assms divisibility imp-closed by simp
  also
  have \dots = a
   using assms residuation by simp
 finally
 show ?thesis
   by auto
\mathbf{qed}
lemma imp-one-top:
 assumes a \in A
 shows a \rightarrow^A 1^A = 1^A
  have a \rightarrow^A 1^A = (1^A \rightarrow^A a) \rightarrow^A 1^A
   using assms imp-one-C by auto
 also
 have \dots = 1^A
   using assms imp-one-A by auto
  finally
 show ?thesis
   by auto
```

The proofs of imp-one-A, imp-one-B, imp-one-C and imp-one-top are based

```
on proofs found in [3] (see Section 1: (4), (6), (7) and (12)).
lemma swap:
 assumes a \in A b \in A c \in A
 shows a \to^A (b \to^A c) = b \to^A (a \to^A c)
proof -
 have a \rightarrow^A (b \rightarrow^A c) = (a *^A b) \rightarrow^A c
   using assms residuation by auto
 have \dots = (b *^A a) \rightarrow^A c
   using assms mult-comm by auto
 have \dots = b \to^A (a \to^A c)
   using assms residuation by auto
 finally
 show ?thesis
   by auto
\mathbf{qed}
lemma imp-A:
 assumes a \in A b \in A
 shows a \rightarrow^A (b \rightarrow^A a) = 1^A
proof -
 have a \to^A (b \to^A a) = b \to^A (a \to^A a)
   using assms swap by blast
 then
 show ?thesis
   using assms imp-one-top by simp
\mathbf{qed}
```

2.3 Multiplication monotonicity

```
lemma mult-mono:

assumes a \in A \ b \in A \ c \in A

shows (a \to^A b) \to^A ((a *^A c) \to^A (b *^A c)) = 1^A

proof -

have (a \to^A b) \to^A ((a *^A c) \to^A (b *^A c)) =
(a \to^A b) \to^A (a \to^A (c \to^A (b *^A c)))

using assms \ mult-closed \ residuation \ by \ auto

also

have \dots = ((a \to^A b) *^A a) \to^A (c \to^A (b *^A c))

using assms \ imp-closed \ mult-closed \ residuation \ by \ metis

also

have \dots = ((b \to^A a) *^A b) \to^A (c \to^A (b *^A c))

using assms \ divisibility \ imp-closed \ mult-comm \ by \ simp

also

have \dots = (b \to^A a) \to^A (b \to^A (c \to^A (b *^A c)))

using assms \ imp-closed \ mult-closed \ residuation \ by \ metis

also

have \dots = (b \to^A a) \to^A (b \to^A (c \to^A (b *^A c)))
```

```
using assms(2,3) mult-closed residuation by simp also have ... = 1^A using assms imp-closed imp-one-top mult-closed by simp finally show ?thesis by auto qed
```

2.4 Implication monotonicity and anti-monotonicity

```
lemma imp-mono:
  assumes a \in A \ b \in A \ c \in A
  shows (a \rightarrow^A b) \rightarrow^A ((c \rightarrow^A a) \rightarrow^A (c \rightarrow^A b)) = 1^A
proof
  have (a \rightarrow^A b) \rightarrow^A ((c \rightarrow^A a) \rightarrow^A (c \rightarrow^A b)) =
        (a \rightarrow^A b) \rightarrow^A (((c \rightarrow^A a) *^A c) \rightarrow^A b)
    using assms imp-closed residuation by simp
  have ... = (a \rightarrow^A b) \rightarrow^A (((a \rightarrow^A c) *^A a) \rightarrow^A b)
    using assms divisibility imp-closed mult-comm by simp
  have ... = (a \rightarrow^A b) \rightarrow^A ((a \rightarrow^A c) \rightarrow^A (a \rightarrow^A b))
    using assms imp-closed residuation by simp
  have \dots = 1^A
    using assms imp-A imp-closed by simp
  finally
  show ?thesis
    by auto
qed
lemma imp-anti-mono:
  assumes a \in A \ b \in A \ c \in A
  shows (a \rightarrow^A b) \rightarrow^A ((b \rightarrow^A c) \rightarrow^A (a \rightarrow^A c)) = 1^A
  using assms imp-closed imp-mono swap by metis
```

2.5 (\leq^A) defines a partial order over A

```
lemma ord-reflex:

assumes a \in A

shows a \leq^A a

using assms hoop-order-def by simp

lemma ord-trans:

assumes a \in A b \in A c \in A a \leq^A b b \leq^A c

shows a \leq^A c

proof –

have a \to^A c = 1^A \to^A (1^A \to^A (a \to^A c))

using assms(1,3) imp-closed imp-one-C by simp
```

```
have \dots = (a \to^A b) \to^A ((b \to^A c) \to^A (a \to^A c))
   using assms(4,5) hoop-order-def by simp
 have \dots = 1^A
   using assms(1-3) imp-anti-mono by simp
 finally
 show ?thesis
   using hoop-order-def by auto
qed
lemma ord-antisymm:
 assumes a \in A b \in A a \leq^A b b \leq^A a
 shows a = b
proof -
 have a = a *^A (a \rightarrow^A b)
   using assms(1,3) hoop-order-def by simp
 have \dots = b *^A (b \rightarrow^A a)
   using assms(1,2) divisibility by simp
 have \dots = b
   using assms(2,4) hoop-order-def by simp
 finally
 \mathbf{show} \ ?thesis
   by auto
qed
lemma ord-antisymm-equiv:
 assumes a \in A b \in A a \rightarrow^A b = 1^A b \rightarrow^A a = 1^A
 shows a = b
 using assms hoop-order-def ord-antisymm by auto
lemma ord-top:
 assumes a \in A
 shows a \leq^A 1^A
 using assms hoop-order-def imp-one-top by simp
sublocale top-poset-on A (\leq^A) (<^A) 1^A
proof
 show A \neq \emptyset
   using one-closed by blast
 show reflp-on A (\leq^A)
   using ord-reflex reflp-onI by blast
 show antisymp-on A (\leq^A)
   using antisymp-onI ord-antisymm by blast
next
```

```
show transp-on A (\leq^A)
   using ord-trans transp-onI by blast
 show x <^A y = (x \le^A y \land x \ne y) if x \in A y \in A for x y
   using hoop-order-strict-def by blast
 show 1^A \in A
   by simp
\mathbf{next}
 show x \leq^A 1^A if x \in A for x
   using ord-top that by simp
        Order properties
2.6
lemma ord-mult-mono-A:
 assumes a \in A b \in A c \in A
 shows (a \rightarrow^A b) \leq^A ((a *^A c) \rightarrow^A (b *^A c))
 using assms hoop-order-def mult-mono by simp
lemma ord-mult-mono-B:
 assumes a \in A b \in A c \in A a \leq^A b shows (a *^A c) \leq^A (b *^A c)
 using assms hoop-order-def imp-one-C swap mult-closed mult-mono top-closed
 by metis
lemma ord-residuation:
  assumes a \in A \ b \in A \ c \in A
 shows (a *^A b) \leq^A c \longleftrightarrow a \leq^A (b \to^A c)
 using assms hoop-order-def residuation by simp
lemma ord-imp-mono-A:
 assumes a \in A \ b \in A \ c \in A
 shows (a \rightarrow^A b) \leq^A ((c \rightarrow^A a) \rightarrow^A (c \rightarrow^A b))
 using assms hoop-order-def imp-mono by simp
lemma ord-imp-mono-B:
 assumes a \in A b \in A c \in A a \leq^A b
 shows (c \to^A a) \leq^A (c \to^A b)
 using assms imp-closed ord-trans ord-reflex ord-residuation mult-closed
 by metis
\mathbf{lemma} \ \mathit{ord-imp-anti-mono-A} :
 assumes a \in A b \in A c \in A
 shows (a \rightarrow^A b) \leq^A ((b \rightarrow^A c) \rightarrow^A (a \rightarrow^A c))
 using assms hoop-order-def imp-anti-mono by simp
lemma ord-imp-anti-mono-B:
 assumes a \in A b \in A c \in A a \leq^A b
```

```
shows (b \to^A c) \leq^A (a \to^A c)
 using assms hoop-order-def imp-one-C swap ord-imp-mono-A top-closed
 by metis
lemma ord-A:
 assumes a \in A b \in A
 shows b \leq^A (a \rightarrow^A b)
 using assms hoop-order-def imp-A by simp
lemma ord-B:
 assumes a \in A b \in A
 shows b \leq^A ((a \rightarrow^A b) \rightarrow^A b)
 using assms imp-closed ord-A by simp
lemma ord-C:
 assumes a \in A \ b \in A
 shows a \leq^A ((a \rightarrow^A b) \rightarrow^A b)
 using assms imp-one-C one-closed ord-imp-anti-mono-A by metis
lemma ord-D:
 assumes a \in A \ b \in A \ a <^A b
 shows b \to^A a \neq 1^A
 using assms hoop-order-def hoop-order-strict-def ord-antisymm by auto
2.7
       Additional multiplication properties
lemma mult-lesseq-inf:
 assumes a \in A b \in A
 shows (a *^A b) \leq^A (a \wedge^A b)
proof
 have b \leq^A (a \rightarrow^A b)
   using assms ord-A by simp
 have (a *^{A} b) <^{A} (a *^{A} (a \rightarrow^{A} b))
   using assms imp-closed ord-mult-mono-B mult-comm by metis
 then
 show ?thesis
   using hoop-inf-def by metis
\mathbf{qed}
lemma mult-A:
 assumes a \in A b \in A
 shows (a *^A b) \leq^A a
 using assms ord-A ord-residuation by simp
lemma mult-B:
 assumes a \in A \ b \in A
 shows (a *^A b) \leq^A b
 using assms mult-A mult-comm by metis
```

```
lemma mult-C:
assumes a \in A - \{1^A\} b \in A - \{1^A\}
shows a *^A b \in A - \{1^A\}
using assms ord-antisymm ord-top mult-A mult-closed by force
```

2.8 Additional implication properties

```
lemma imp-B:
  assumes a \in A \ b \in A
  shows a \to^A b = ((a \to^A b) \to^A b) \to^A b
  have a \leq^A ((a \rightarrow^A b) \rightarrow^A b)
    using assms ord-C by simp
  then
  have (((a \rightarrow^A b) \rightarrow^A b) \rightarrow^A b) <^A (a \rightarrow^A b)
    using assms imp-closed ord-imp-anti-mono-B by simp
  have (a \rightarrow^A b) \leq^A (((a \rightarrow^A b) \rightarrow^A b) \rightarrow^A b)
    using assms imp-closed ord-C by simp
  ultimately
  show ?thesis
    using assms imp-closed ord-antisymm by simp
qed
The following two results can be found in [2] (see Proposition 1.7 and 2.2).
lemma imp-C:
  assumes a \in A \ b \in A
  shows (a \rightarrow^A b) \rightarrow^A (b \rightarrow^A a) = b \rightarrow^A a
  have a \leq^A ((a \rightarrow^A b) \rightarrow^A a)
    using assms imp-closed ord-A by simp
  have (((a \rightarrow^A b) \rightarrow^A a) \rightarrow^A b) \leq^A (a \rightarrow^A b)
    using assms imp-closed ord-imp-anti-mono-B by simp
  have (a \rightarrow^A b) \leq^A (((a \rightarrow^A b) \rightarrow^A a) \rightarrow^A a)
    using assms imp-closed ord-C by simp
  ultimately
  have (((a \rightarrow^A b) \rightarrow^A a) \rightarrow^A b) \leq^A (((a \rightarrow^A b) \rightarrow^A a) \rightarrow^A a)
    using assms imp-closed ord-trans by meson
  have ((((a \rightarrow^A b) \rightarrow^A a) \rightarrow^A b) *^A ((a \rightarrow^A b) \rightarrow^A a)) \leq^A a
    using assms imp-closed ord-residuation by simp
  have ((b \rightarrow^A ((a \rightarrow^A b) \rightarrow^A a)) *^A b) \leq^A a
    using assms divisibility imp-closed mult-comm by simp
  have (b \rightarrow^A ((a \rightarrow^A b) \rightarrow^A a)) \leq^A (b \rightarrow^A a)
```

```
using assms imp-closed ord-residuation by simp
  have ((a \rightarrow^A b) \rightarrow^A (b \rightarrow^A a)) \leq^A (b \rightarrow^A a)
   using assms imp-closed swap by simp
  have (b \to^A a) \leq^A ((a \to^A b) \to^A (b \to^A a))
   using assms imp-closed ord-A by simp
  ultimately
 show ?thesis
   using assms imp-closed ord-antisymm by auto
lemma imp-D:
 assumes a \in A \ b \in A
 shows (((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A b) \rightarrow^A (b \rightarrow^A a) = b \rightarrow^A a
 have (((b \to^A a) \to^A a) \to^A b) \to^A (b \to^A a) = (((b \to^A a) \to^A a) \to^A b) \to^A (((b \to^A a) \to^A a) \to^A a)
   using assms\ imp-B by simp
  have ... = ((((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A b) *^A ((b \rightarrow^A a) \rightarrow^A a)) \rightarrow^A a
   using assms imp-closed residuation by simp
  have ... = ((b \rightarrow^A ((b \rightarrow^A a) \rightarrow^A a)) *^A b) \rightarrow^A a
   using assms divisibility imp-closed mult-comm by simp
  also
  have \dots = (1^A *^A b) \rightarrow^A a
   using assms hoop-order-def ord-C by simp
  also
 have \dots = b \to^A a
   using assms(2) mult-neutr-2 by simp
 show ?thesis
   by auto
\mathbf{qed}
        (\wedge^A) defines a semilattice over A
2.9
lemma inf-closed:
 assumes a \in A \ b \in A
 shows a \wedge^A b \in A
  using assms hoop-inf-def imp-closed mult-closed by simp
lemma inf-comm:
  assumes a \in A \ b \in A
 shows a \wedge^A b = b \wedge^A a
 using assms divisibility hoop-inf-def by simp
lemma inf-A:
```

```
assumes a \in A \ b \in A
 shows (a \wedge^A b) \leq^A a
 have (a \wedge^A b) \rightarrow^A a = (a *^A (a \rightarrow^A b)) \rightarrow^A a
   using hoop-inf-def by simp
 have \dots = (a \rightarrow^A b) \rightarrow^A (a \rightarrow^A a)
   using assms mult-comm imp-closed residuation by metis
 finally
 show ?thesis
   using assms hoop-order-def imp-closed imp-one-top by simp
qed
lemma inf-B:
 assumes a \in A b \in A
 shows (a \wedge^A b) <^A b
 using assms inf-comm inf-A by metis
lemma inf-C:
 assumes a \in A b \in A c \in A a \leq^A b a \leq^A c
 shows a \leq^A (b \wedge^A c)
proof -
 have (b \to^A a) \leq^A (b \to^A c)
   using assms(1-3,5) ord-imp-mono-B by simp
 have (b *^A (b \rightarrow^A a)) \leq^A (b *^A (b \rightarrow^A c))
   using assms imp-closed ord-mult-mono-B mult-comm by metis
 moreover
 have a = b *^A (b \rightarrow^A a)
   using assms(1-3,4) divisibility hoop-order-def mult-neutr by simp
 ultimately
 show ?thesis
   using hoop-inf-def by auto
qed
lemma inf-order:
 assumes a \in A \ b \in A
 shows a <^A b \longleftrightarrow (a \wedge^A b = a)
 using assms hoop-inf-def hoop-order-def inf-B mult-neutr by metis
       Properties of (\vee^{*A})
2.10
{f lemma}\ pseudo-sup-closed:
 assumes a \in A \ b \in A
 shows a \vee^{*A} b \in A
 using assms hoop-pseudo-sup-def imp-closed inf-closed by simp
lemma pseudo-sup-comm:
 assumes a \in A b \in A
```

```
shows a \vee^{*A} b = b \vee^{*A} a
 using assms hoop-pseudo-sup-def imp-closed inf-comm by auto
lemma pseudo-sup-A:
 assumes a \in A b \in A
 shows a \leq^A (a \vee^{*A} b)
 using assms hoop-pseudo-sup-def imp-closed inf-C ord-B ord-C by simp
lemma pseudo-sup-B:
 assumes a \in A \ b \in A
 shows b \leq^A (a \vee^{*A} b)
 using assms pseudo-sup-A pseudo-sup-comm by metis
lemma pseudo-sup-order:
 assumes a \in A \ b \in A
 \mathbf{shows}\ a \leq^A b \longleftrightarrow a \vee^{*A} b = b
 assume a \leq^A b
 then
 have a \vee^{*A} b = b \wedge^A ((b \rightarrow^A a) \rightarrow^A a)
   using assms(2) hoop-order-def hoop-pseudo-sup-def imp-one-C by simp
 also
 have \dots = b
   using assms imp-closed inf-order ord-C by meson
 finally
 \mathbf{show}\ a\ \vee^{*A}\ b=b
   by auto
next
 assume a \vee^{*A} b = b
 then
 show a \leq^A b
   using assms pseudo-sup-A by metis
qed
end
end
```

3 Ordinal sums

We define tower of hoops, a family of almost disjoint hoops indexed by a total order. This is based on the definition of bounded tower of irreducible hoops in [5] (see paragraph after Lemma 3.3). Parting from a tower of hoops we can define a hoop known as ordinal sum. Ordinal sums are a fundamental tool in the study of totally ordered hoops.

```
theory Ordinal-Sums
imports Hoops
begin
```

3.1 Tower of hoops

fixes index-lesseq :: $'b \Rightarrow 'b \Rightarrow bool (infix \leq^I 60)$

locale tower-of-hoops = fixes index-set :: 'b set (I)

```
fixes index-less :: 'b \Rightarrow 'b \Rightarrow bool (infix <^I 60)
 fixes universes :: 'b \Rightarrow ('a \ set) \ (UNI)
 fixes multiplications :: 'b \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) (MUL)
  fixes implications :: 'b \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) (IMP)
 fixes sum\text{-}one :: 'a (1^S)
 assumes index-set-total-order: total-poset-on I (\leq^I) (<^I)
 and almost-disjoint: i \in I \implies j \in I \implies i \neq j \implies UNI \ i \cap UNI \ j = \{1^S\}
  and family-of-hoops: i \in I \Longrightarrow hoop (UNI i) (MUL i) (IMP i) 1^S
begin
sublocale total-poset-on I (\leq^I) (<^I)
  using index-set-total-order by simp
abbreviation (uni-i)
  uni-i :: ['b] \Rightarrow ('a \ set) ((\mathbb{A}(\underline{\ })) [61] 60)
  where \mathbb{A}_i \equiv UNI i
abbreviation (mult-i)
  mult-i :: ['b] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) ((*(\bar{})) [61] 60)
  where *^i \equiv MUL i
abbreviation (imp-i)
  imp-i :: ['b] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) ((\rightarrow(\bar{\ })) [61] 60)
 where \rightarrow^i \equiv IMP i
abbreviation (mult-i-xy)
  mult-i-xy :: ['a, 'b, 'a] \Rightarrow 'a (((-)/*(^-)/(-)) [61, 50, 61] 60)
  where x *^i y \equiv MUL \ i \ x \ y
abbreviation (imp-i-xy)
  imp-i-xy :: ['a, 'b, 'a] \Rightarrow 'a (((-)/ \rightarrow (-)/ (-)) [61, 50, 61] 60)
  where x \to^i y \equiv IMP \ i \ x \ y
3.2
         Ordinal sum universe
definition sum-univ :: 'a set (S)
  where S = \{x. \exists i \in I. x \in \mathbb{A}_i\}
lemma sum-one-closed [simp]: 1^S \in S
 using family-of-hoops hoop.one-closed not-empty sum-univ-def by fastforce
\mathbf{lemma}\ \mathit{sum\text{-}subsets}:
  assumes i \in I
  shows \mathbb{A}_i \subseteq S
  using sum-univ-def assms by blast
```

3.3 Floor function: definition and properties

```
lemma floor-unique:
  assumes a \in S - \{1^S\}
  shows \exists ! i. i \in I \land a \in \mathbb{A}_i
  using assms sum-univ-def almost-disjoint by blast
function floor :: 'a \Rightarrow 'b where
  floor x = (THE \ i. \ i \in I \land x \in \mathbb{A}_i) \ \text{if} \ x \in S - \{1^S\}
| floor x = undefined if x = 1^S \lor x \notin S
  by auto
termination by lexicographic-order
abbreviation (uni-floor)
  uni-floor :: ['a] \Rightarrow ('a \ set) \ ((\mathbb{A}_{floor} \ (-)) \ [61] \ 60)
  where \mathbb{A}_{floor\ x} \equiv UNI\ (floor\ x)
abbreviation (mult-floor)
  mult-floor :: ['a] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) ((*^{floor} (\bar{\ })) [61] 60)
  where *^{floor} \stackrel{\circ}{a} \equiv MUL \ (floor \ a)
abbreviation (imp-floor)
  imp\text{-floor} :: ['a] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) \ ((\rightarrow^{floor} (\bar{\ }))) \ [61] \ 60)
  where \rightarrow^{floor} a \equiv IMP \ (floor \ a)
abbreviation (mult-floor-xy)
  mult-floor-xy :: ['a, 'a, 'a] \Rightarrow 'a (((-)/*^{floor}(^{-})/(-))) [61, 50, 61] 60)
  where x *^{floor} y z \equiv MUL (floor y) x z
abbreviation (imp-floor-xy)
  imp-floor-xy :: ['a, 'a, 'a] \Rightarrow 'a (((-)/\rightarrowfloor (-)/(-)) [61, 50, 61] 60) where x \rightarrowfloor y z \equiv IMP (floor y) x z
lemma floor-prop:
  assumes a \in S - \{1^S\}
  shows floor a \in I \land a \in \mathbb{A}_{floor\ a}
  have floor a = (THE \ i. \ i \in I \land a \in \mathbb{A}_i)
    using assms by auto
  then
  show ?thesis
    using assms the I-unique floor-unique by (metis (mono-tags, lifting))
qed
lemma floor-one-closed:
  assumes i \in I
  shows 1^S \in \mathbb{A}_i
  using assms floor-prop family-of-hoops hoop.one-closed by metis
```

lemma *floor-mult-closed*:

```
assumes i \in I a \in \mathbb{A}_i b \in \mathbb{A}_i

shows a *^i b \in \mathbb{A}_i

using assms family-of-hoops hoop.mult-closed by meson

lemma floor-imp-closed:

assumes i \in I a \in \mathbb{A}_i b \in \mathbb{A}_i

shows a \to^i b \in \mathbb{A}_i

using assms family-of-hoops hoop.imp-closed by meson
```

3.4 Ordinal sum multiplication and implication

```
function sum-mult :: 'a \Rightarrow 'a \ (\text{infix} *^S 60) \ \text{where}
   x *^S y = x *^{floor x} y \text{ if } x \in S - \{1^S\} y \in S - \{1^S\} \text{ floor } x = \text{floor } y
  x *^S y = x \text{ if } x \in S - \{1^S\} \text{ floor } x < I \text{ floor } y
  x *^S y = y \text{ if } x \in S - \{1^S\} y \in S - \{1^S\} \text{ floor } y <^I \text{ floor } x
 x *^{S} y = y \text{ if } x \in S - \{1^{S}\} y \in S - \{1^{S}\} x *^{S} y = x \text{ if } x \in S - \{1^{S}\} y = 1^{S} x *^{S} y = x \text{ if } x \in S - \{1^{S}\} y = 1^{S} x *^{S} y = 1^{S} \text{ if } x = 1^{S} y = 1^{S} x *^{S} y = undefined \text{ if } x \notin S \lor y \notin S
   apply auto
   using floor.cases floor.simps(1) floor-prop trichotomy apply (smt (verit))
   using floor-prop strict-iff-order apply force
   using floor-prop strict-iff-order apply force
   using floor-prop trichotomy by auto
termination by lexicographic-order
function sum-imp :: 'a \Rightarrow 'a \Rightarrow 'a \text{ (infix } \rightarrow^S 60) \text{ where}
   x \to^S y = x \to^{floor x} y \text{ if } x \in S - \{1^S\} y \in S - \{1^S\} \text{ floor } x = floor y
  x \rightarrow^S y = 1^S \text{ if } x \in S - \{1^S\} \ y \in S - \{1^S\} \ floor \ x <^I \ floor \ y
  x \to^S y = y if x \in S - \{1^S\} y \in S - \{1^S\} floor y < I floor x \in S - \{1^S\}
|x \rightarrow S = y \text{ if } x \in S - \{1\} \text{ } y \in S - \{1\} \}
|x \rightarrow S \text{ } y = y \text{ if } x = 1^S \text{ } y \in S - \{1^S\} \}
|x \rightarrow S \text{ } y = 1^S \text{ if } x \in S - \{1^S\} \text{ } y = 1^S \}
|x \rightarrow S \text{ } y = 1^S \text{ if } x = 1^S \text{ } y = 1^S \}
|x \rightarrow S \text{ } y = undefined \text{ if } x \notin S \vee y \notin S 
  apply auto
   using floor.cases floor.simps(1) floor-prop trichotomy apply (smt (verit))
   using floor-prop strict-iff-order apply force
   using floor-prop strict-iff-order apply force
   using floor-prop trichotomy by auto
termination by lexicographic-order
```

3.4.1 Some multiplication properties

```
lemma sum-mult-not-one-aux:

assumes a \in S - \{1^S\} b \in \mathbb{A}_{floor\ a}

shows a *^S b \in (\mathbb{A}_{floor\ a}) - \{1^S\}

proof -

consider (1) b \in S - \{1^S\}

|(2) b = 1^S

using sum-subsets assms floor-prop by blast
```

```
then
  show ?thesis
  proof(cases)
    case 1
    then
   \mathbf{have}\ \mathit{same-floor:}\ \mathit{floor}\ \mathit{a} = \mathit{floor}\ \mathit{b}
      using assms floor-prop floor-unique by metis
    moreover
   have a *^S b = a *^{floor a} b
      using 1 \ assms(1) \ same-floor \ by \ simp
    moreover
    have a \in (\mathbb{A}_{floor\ a}) - \{1^S\} \land b \in (\mathbb{A}_{floor\ a}) - \{1^S\}
      using 1 assms floor-prop by simp
    ultimately
    show ?thesis
      using assms(1) family-of-hoops floor-prop hoop.mult-C by metis
  next
    case 2
    then
    show ?thesis
      using assms(1) floor-prop by auto
  \mathbf{qed}
qed
corollary sum-mult-not-one:
  assumes a \in S - \{1^S\} b \in \mathbb{A}_{floor\ a}
  shows a *^S b \in S - \{1^S\} \land floor(a *^S b) = floor a
proof
 have a *^S b \in (\mathbb{A}_{floor\ a}) - \{1^S\}
   using sum-mult-not-one-aux assms by meson
  have a *^S b \in S - \{1^S\} \land a *^S b \in \mathbb{A}_{floor\ a}
    using sum-subsets assms(1) floor-prop by fastforce
  then
 show ?thesis
    using assms(1) floor-prop floor-unique by metis
qed
lemma sum-mult-A:
 assumes a \in S - \{1^S\} b \in \mathbb{A}_{floor\ a} shows a *^S b = a *^{floor\ a} b \wedge b *^S a = b *^{floor\ a} a
proof -
  \mathbf{consider}\ (1)\ b \in S \mathrm{-}\{1^S\}
   |(2)|b=1^{S}
   \mathbf{using} \ \mathit{sum-subsets} \ \mathit{assms} \ \mathit{floor-prop} \ \mathbf{by} \ \mathit{blast}
  then
  show ?thesis
  proof(cases)
    case 1
```

```
have floor a = floor b
     using assms floor.cases floor-prop floor-unique by metis
   show ?thesis
     using 1 assms by auto
  next
   case 2
   then
   show ?thesis
     using assms(1) family-of-hoops floor-prop hoop.mult-neutr hoop.mult-neutr-2
     by fastforce
 qed
qed
         Some implication properties
3.4.2
lemma sum-imp-floor:
 assumes a \in S - \{1^S\} b \in S - \{1^S\} floor a = floor \ b \ a \to^S \ b \in S - \{1^S\}
 shows floor (a \rightarrow^S b) = floor a
proof -
 have a \to^S b \in \mathbb{A}_{floor\ a}
   using sum\text{-}imp.simps(1) assms(1-3) floor-imp\text{-}closed floor-prop
   by metis
 then
 show ?thesis
   using assms(1,4) floor-prop floor-unique by blast
\mathbf{qed}
lemma sum-imp-A:
 assumes a \in S - \{1^S\} b \in \mathbb{A}_{floor\ a} shows a \to^S b = a \to^{floor\ a} b
proof -
 consider (1) b \in S - \{1^S\}
   \mid (2) \ b = 1^{S}
   using sum-subsets assms floor-prop by blast
 then
 show ?thesis
 proof(cases)
   case 1
   then
     using sum-imp.simps(1) assms floor-prop floor-unique by metis
 next
   case 2
   then
   \mathbf{show} \ ? the sis
     using sum\text{-}imp.simps(5) assms(1) family\text{-}of\text{-}hoops floor\text{-}prop
           hoop.imp-one-top
```

then

```
by metis
 qed
qed
lemma sum-imp-B:
  assumes a \in S - \{1^S\} b \in \mathbb{A}_{floor\ a}
  shows b \to^S a = b \to^{floor} a
proof -
 \mathbf{using} \ \mathit{sum-subsets} \ \mathit{assms} \ \mathit{floor-prop} \ \mathbf{by} \ \mathit{blast}
  then
 show ?thesis
 proof(cases)
   case 1
   then
   show ?thesis
     using sum-imp.simps(1) assms floor-prop floor-unique by metis
  next
   case 2
   then
   \mathbf{show} \ ?thesis
      using sum-imp.simps(4) assms(1) family-of-hoops floor-prop
            hoop.imp-one-C
     by metis
 qed
qed
\mathbf{lemma} \ \mathit{sum-imp-floor-antisymm}:
 assumes a \in S - \{1^S\} b \in S - \{1^S\} floor a = floor b
a \rightarrow^S b = 1^S b \rightarrow^S a = 1^S
 shows a = b
proof -
 have a \in \mathbb{A}_{floor\ a} \land b \in \mathbb{A}_{floor\ a} \land floor\ a \in I
   using floor-prop assms by metis
 have a \rightarrow^S b = a \rightarrow^{floor\ a} b \wedge b \rightarrow^S a = b \rightarrow^{floor\ a} a
   using assms by auto
  ultimately
 show ?thesis
   using assms(4,5) family-of-hoops hoop.ord-antisymm-equiv by metis
qed
corollary sum-imp-C:
 assumes a \in S - \{1^S\} b \in S - \{1^S\} a \neq b floor a = floor b a \to^S b = 1^S shows b \to^S a \neq 1^S
  using sum-imp-floor-antisymm assms by blast
lemma sum-imp-D:
```

```
assumes a \in S

shows 1^S \to^S a = a

using sum\text{-}imp.simps(4,6) assms by blast

lemma sum\text{-}imp\text{-}E:

assumes a \in S

shows a \to^S 1^S = 1^S

using sum\text{-}imp.simps(5,6) assms by blast
```

3.5 The ordinal sum of a tower of hoops is a hoop

3.5.1 S is not empty

```
lemma sum-not-empty: S \neq \emptyset using sum-one-closed by blast
```

3.5.2 $(*^S)$ and (\rightarrow^S) are well defined

```
\mathbf{lemma}\ \mathit{sum-mult-closed-one} :
 assumes a \in S b \in S a = 1^S \lor b = 1^S
 shows a *^S b \in S
 using sum-mult.simps(4-6) assms floor.cases by metis
{\bf lemma}\ sum\text{-}mult\text{-}closed\text{-}not\text{-}one\text{:}
 assumes a \in S - \{1^S\} b \in S - \{1^S\}
 shows a *^S b \in S - \{1^S\}
proof -
 from \ assms
 consider (1) floor \ a = floor \ b
   |(2)| floor a < I floor b \lor floor b < I floor a
   using trichotomy floor-prop by blast
 then
 show ?thesis
 proof(cases)
   case 1
   then
   show ?thesis
     using sum-mult-not-one assms floor-prop by metis
 next
   case 2
   then
   show ?thesis
     using assms by auto
 qed
qed
\mathbf{lemma}\ \mathit{sum-mult-closed} \colon
 assumes a \in S \ b \in S
 shows a *^S b \in S
 using sum-mult-closed-not-one sum-mult-closed-one assms by auto
```

```
lemma sum-imp-closed-one:
 assumes a \in S \ b \in S \ a = 1^S \lor b = 1^S
 shows a \to^S b \in S
 using sum-imp.simps(4-6) assms floor.cases by metis
\mathbf{lemma}\ \mathit{sum-imp-closed-not-one}:
 assumes a \in S - \{1^S\} b \in S - \{1^S\}
 shows a \to^S b \in S
proof -
 \mathbf{from}\ \mathit{assms}
 consider (1) floor a = floor b
   | (2) floor a <^{I} floor b \lor floor b <^{I} floor a
   using trichotomy floor-prop by blast
 then
 \mathbf{show}\ a \to^S b \in S
 proof(cases)
   case 1
   then
   have a \rightarrow^S b = a \rightarrow^{floor \ a} b
     using assms by auto
   moreover
   have a \to^{floor} a b \in \mathbb{A}_{floor} a
     using 1 assms floor-imp-closed floor-prop by metis
   ultimately
   show ?thesis
     using sum-subsets assms(1) floor-prop by auto
 next
   case 2
   then
   show ?thesis
     using assms by auto
 qed
\mathbf{qed}
lemma sum-imp-closed:
 assumes a \in S \ b \in S
 shows a \to^S b \in S
 using sum-imp-closed-one sum-imp-closed-not-one assms by auto
3.5.3 Neutrality of 1^S
\mathbf{lemma}\ sum\text{-}mult\text{-}neutr:
 assumes a \in S
 shows a *^S 1^S = a \wedge 1^S *^S a = a
 using assms sum-mult.simps(4-6) by blast
```

3.5.4 Commutativity of $(*^S)$

Now we prove $x *^S y = y *^S x$ by showing that it holds when one of the variables is equal to 1^S . Then we consider when none of them is 1^S .

```
\mathbf{lemma}\ \mathit{sum-mult-comm-one}:
 assumes a \in S \ b \in S \ a = 1^S \lor b = 1^S
 shows a *^S b = b *^S a
 using sum-mult-neutr assms by auto
\mathbf{lemma}\ \mathit{sum-mult-comm-not-one}:
 assumes a \in S - \{1^S\} b \in S - \{1^S\}
 shows a *^S b = b *^{S'} a
proof -
 \mathbf{from}\ \mathit{assms}
 consider (1) floor a = floor b
   |(2) floor a <^{I} floor b \lor floor b <^{I} floor a
   using trichotomy floor-prop by blast
 then
 show ?thesis
 proof(cases)
   case 1
   then
   have same-floor: b \in \mathbb{A}_{floor\ a}
     using assms(2) floor-prop by simp
   have a *^S b = a *^{floor a} b
     using sum-mult-A assms(1) by blast
   have \dots = b *^{floor a} a
     using assms(1) family-of-hoops floor-prop hoop.mult-comm same-floor
     by meson
   also
   have \dots = b *^S a
     using sum-mult-A assms(1) same-floor by simp
   show ?thesis
     by auto
 next
   case 2
   then
   show ?thesis
     using assms by auto
 qed
\mathbf{qed}
lemma sum-mult-comm:
 assumes a \in S \ b \in S
 shows a *^S b = b *^S a
 using assms sum-mult-comm-one sum-mult-comm-not-one by auto
```

3.5.5 Associativity of $(*^S)$

```
Next we prove x *^S (y *^S z) = (x *^S y) *^S z.
\mathbf{lemma}\ \mathit{sum-mult-assoc-one} :
  assumes a \in S b \in S c \in S a = 1^S \lor b = 1^S \lor c = 1^S
  shows a *^{S} (b *^{S} c) = (a *^{S} b) *^{S} c
  using sum-mult-neutr assms sum-mult-closed by metis
\mathbf{lemma}\ \mathit{sum-mult-assoc-not-one}:
 assumes a \in S - \{1^S\} b \in S - \{1^S\} c \in S - \{1^S\} shows a *^S (b *^S c) = (a *^S b) *^S c
proof -
  from assms
  consider (1) floor \ a = floor \ b \ floor \ b = floor \ c
    |(2)| floor a = floor b floor b < I floor c
    | (3)  floor a =  floor b  floor c < I  floor b 
     (4) floor a <^I floor b floor b = floor c

(5) floor a <^I floor b floor b <^I floor c

(6) floor a <^I floor b floor c <^I floor b
    | (7) floor b <^I floor a floor b = floor c
    (8) floor b < I floor a floor b < I floor c
    (9) floor b < I floor a floor c < I floor b
    using trichotomy floor-prop by meson
  then
  show ?thesis
  proof(cases)
    case 1
    then
   have a *^S (b *^S c) = a *^{floor a} (b *^{floor a} c)
     using sum-mult-A assms floor-mult-closed floor-prop by metis
    also
   have \dots = (a *^{floor \ a} \ b) *^{floor \ a} c
      using 1 assms family-of-hoops floor-prop hoop.mult-assoc by metis
   have \dots = (a *^{floor b} b) *^{floor b} c
      using 1 by simp
    also
   have ... = (a *^S b) *^S c
     using 1 sum-mult-A assms floor-mult-closed floor-prop by metis
    finally
    show ?thesis
     by auto
  \mathbf{next}
    case 2
    then
    show ?thesis
      using sum-mult.simps(2,3) sum-mult-not-one assms floor-prop by metis
  next
    case 3
```

```
then
   show ?thesis
     using sum-mult.simps(3) sum-mult-not-one assms floor-prop by metis
   case 4
   then
   show ?thesis
     using sum-mult.simps(2) sum-mult-not-one assms floor-prop by metis
 next
   case 5
   then
   show ?thesis
     using sum-mult.simps(2) assms floor-prop strict-trans by metis
 next
   case \theta
   then
   show ?thesis
     using sum-mult.simps(2,3) assms by metis
 next
   case 7
   then
   show ?thesis
     using sum-mult.simps(3) sum-mult-not-one assms floor-prop by metis
 next
   case 8
   then
   show ?thesis
     using sum-mult.simps(2,3) assms by metis
 \mathbf{next}
   case 9
   then
   show ?thesis
     using sum-mult.simps(3) assms floor-prop strict-trans by metis
 qed
qed
lemma sum-mult-assoc:
 assumes a \in S \ b \in S \ c \in S
 shows a *^{S} (b *^{S} c) = (a *^{S} b) *^{S} c
 using assms sum-mult-assoc-one sum-mult-assoc-not-one by blast
3.5.6 Reflexivity of (\rightarrow^S)
lemma sum-imp-reflex:
 \mathbf{assumes}\ a \in S
 shows a \rightarrow^S a = 1^S
proof -
 consider (1) a \in S - \{1^S\}
   \mid (2) \ a = 1^{S}
```

```
_{
m then}
  show ?thesis
  proof(cases)
    case 1
    then
    have a \rightarrow^S a = a \rightarrow^{floor \ a} a
      by simp
    then
    show ?thesis
      using 1 family-of-hoops floor-prop hoop.imp-reflex by metis
  next
    case 2
    then
    show ?thesis
      by simp
  qed
\mathbf{qed}
3.5.7
           Divisibility
We prove x *^S (x \to^S y) = y *^S (y \to^S x) using the same methods as before.
\mathbf{lemma}\ \mathit{sum-divisibility-one} :
  assumes a \in S b \in S a = 1^S \lor b = 1^S
  shows a *^S (a \rightarrow^S b) = b *^S (b \rightarrow^S a)
  have x \to^S y = y \land y \to^S x = 1^S if x = 1^S y \in S for x y
    using sum-imp-D sum-imp-E that by simp
  then
  show ?thesis
    using assms sum-mult-neutr by metis
\mathbf{qed}
{f lemma}\ sum-divisibility-aux:
  assumes a \in S - \{1^{\check{S}}\}\ b \in \mathbb{A}_{floor}\ _a shows a *^S (a \rightarrow^S b) = a *^{floor}\ ^a (a \rightarrow^{floor}\ ^a b)
  using sum-imp-A sum-mult-A assms floor-imp-closed floor-prop by metis
\mathbf{lemma}\ sum\text{-}divisibility\text{-}not\text{-}one:
  assumes a \in S - \{1^{S}\}\ b \in S - \{1^{S}\}\
shows a *^{S} (a \rightarrow^{S} b) = b *^{S} (b \rightarrow^{S} a)
proof -
  from assms
  \mathbf{consider}\ (1)\ \mathit{floor}\ a = \mathit{floor}\ b
    \mid (2) \text{ floor } a <^{I} \text{ floor } b \vee \text{ floor } b <^{I} \text{ floor } a
    using trichotomy floor-prop by blast
  then
  show ?thesis
  proof(cases)
```

using assms by blast

```
case 1
    then
   have a *^S (a \rightarrow^S b) = a *^{floor a} (a \rightarrow^{floor a} b)
      using 1 sum-divisibility-aux assms floor-prop by metis
   have ... = b *^{floor a} (b \rightarrow^{floor a} a)
      using 1 assms family-of-hoops floor-prop hoop.divisibility by metis
   have ... = b *^{floor b} (b \rightarrow^{floor b} a)
      using 1 by simp
    also
   have \dots = b *^S (b \rightarrow^S a)
      using 1 sum-divisibility-aux assms floor-prop by metis
    finally
    show ?thesis
      by auto
  \mathbf{next}
    case 2
    then
    show ?thesis
      using assms by auto
  \mathbf{qed}
qed
lemma sum-divisibility:
  assumes a \in S \ b \in S
  shows a *^S (a \rightarrow^S b) = b *^S (b \rightarrow^S a)
  using assms sum-divisibility-one sum-divisibility-not-one by auto
3.5.8
          Residuation
Finally we prove (x *^S y) \to^S z = x \to^S (y \to^S z).
\mathbf{lemma}\ \mathit{sum-residuation-one} :
 assumes a \in S b \in S c \in S a = 1^S \lor b = 1^S \lor c = 1^S
 shows (a *^S b) \rightarrow^S c = a \rightarrow^S (b \rightarrow^S c)
  \mathbf{using}\ \mathit{sum-imp-D}\ \mathit{sum-imp-E}\ \mathit{sum-imp-closed}\ \mathit{sum-mult-closed}\ \mathit{sum-mult-neutr}
        assms
  by metis
lemma sum-residuation-not-one:
 assumes a \in S - \{1^S\} b \in S - \{1^S\} c \in S - \{1^S\} shows (a *^S b) \rightarrow^S c = a \rightarrow^S (b \rightarrow^S c)
proof -
  from assms
   consider (1) floor a = floor \ b \ floor \ b = floor \ c
    |(2)| floor a = floor b floor b < I floor c
    (3) floor a = floor \ b \ floor \ c <^I \ floor \ b
(4) floor a <^I \ floor \ b \ floor \ b = floor \ c
    (5) floor a <^I floor b floor b <^I floor c
```

```
\mid (8) \text{ floor } b <^I \text{ floor } a \text{ floor } b <^I \text{ floor } c
 \mid (9) \text{ floor } b <^I \text{ floor } a \text{ floor } c <^I \text{ floor } b
  using trichotomy floor-prop by meson
then
show ?thesis
proof(cases)
 case 1
 then
 have (a *^S b) \rightarrow^S c = (a *^{floor a} b) \rightarrow^{floor a} c
   using sum-imp-B sum-mult-A assms floor-mult-closed floor-prop by metis
 also
 have \dots = a \rightarrow^{floor\ a} (b \rightarrow^{floor\ a} c)
   using 1 assms family-of-hoops floor-prop hoop.residuation by metis
 have \dots = a \rightarrow^{floor\ b} (b \rightarrow^{floor\ b} c)
   using 1 by simp
 have \dots = a \to^S (b \to^S c)
   using 1 sum-imp-A assms floor-imp-closed floor-prop by metis
 finally
 show ?thesis
   by auto
\mathbf{next}
 case 2
 then
 show ?thesis
   using sum-imp.simps(2,5) sum-mult-not-one assms floor-prop by metis
next
 case 3
 then
 show ?thesis
   using sum-imp.simps(3) sum-mult-not-one assms floor-prop by metis
next
 case 4
 then
 have (a *^S b) \rightarrow^S c = 1^S
   \mathbf{using} \not 4 \ sum\text{-}imp.simps(2) \ sum\text{-}mult.simps(2) \ assms \ \mathbf{by} \ met is
 have b \rightarrow^S c = 1^S \lor (b \rightarrow^S c \in S - \{1^S\} \land floor (b \rightarrow^S c) = floor b)
   using 4(2) sum-imp-closed-not-one sum-imp-floor assms(2,3) by blast
 ultimately
 show ?thesis
   using 4(1) sum-imp.simps(2,5) assms(1) by metis
\mathbf{next}
 case 5
 then
 show ?thesis
```

```
using sum-imp.simps(2,5) sum-mult.simps(2) assms floor-prop strict-trans
     by metis
 \mathbf{next}
   case \theta
   then
   show ?thesis
     using assms by auto
  next
   case 7
   then
   have (a *^S b) \rightarrow^S c = (b \rightarrow^S c)
     using assms(1,2) by auto
   moreover
   have b \rightarrow^S c = 1^S \lor (b \rightarrow^S c \in S - \{1^S\} \land floor (b \rightarrow^S c) = floor b)
     using 7(2) sum-imp-closed-not-one sum-imp-floor assms(2,3) by blast
   ultimately
   show ?thesis
     using 7(1) sum-imp.simps(3,5) assms(1) by metis
  next
   case 8
   then
   show ?thesis
     using assms by auto
  \mathbf{next}
   case 9
   then
   show ?thesis
     using sum\text{-}imp.simps(3) sum\text{-}mult.simps(3) assms floor-prop strict\text{-}trans
     by metis
 \mathbf{qed}
qed
lemma sum-residuation:
 assumes a \in S \ b \in S \ c \in S
 shows (a *^S b) \rightarrow^S c = a \rightarrow^S (b \rightarrow^S c)
 using assms sum-residuation-one sum-residuation-not-one by blast
3.5.9
        Main result
sublocale hoop S (*^S) (\rightarrow^S) 1
proof
 show x *^S y \in S if x \in S y \in S for x y
   using that sum-mult-closed by simp
 show x \to^S y \in S if x \in S y \in S for x y
   using that sum-imp-closed by simp
 show 1^S \in S
   by simp
```

```
next show x *^S y = y *^S x if x \in S y \in S for x y using that sum-mult-comm by simp next show x *^S (y *^S z) = (x *^S y) *^S z if x \in S y \in S z \in S for x y z using that sum-mult-assoc by simp next show x *^S 1^S = x if x \in S for x using that sum-mult-neutr by simp next show x \to^S x = 1^S if x \in S for x using that sum-imp-reflex by simp next show x *^S (x \to^S y) = y *^S (y \to^S x) if x \in S y \in S for x y using that sum-divisibility by simp next show x \to^S (y \to^S z) = (x *^S y) \to^S z if x \in S y \in S z \in S for x y z using that sum-residuation by simp qed end
```

4 Totally ordered hoops

```
theory Totally-Ordered-Hoops
imports Ordinal-Sums
begin
```

4.1 Definitions

```
locale totally-ordered-hoop = hoop + assumes total-order: x \in A \Longrightarrow y \in A \Longrightarrow x \leq^A y \vee y \leq^A x begin function fixed-points :: {}'a \Rightarrow {}'a \ set \ (F) where F \ a = \{b \in A - \{1^A\}. \ a \to^A b = b\} if a \in A - \{1^A\} | F \ a = \{1^A\} if a = 1^A | F \ a = undefined if a \notin A by auto termination by lexicographic-order definition rel-F :: {}'a \Rightarrow {}'a \Rightarrow bool \ (infix \sim F \ 60) where x \sim F \ y \equiv \forall \ z \in A. \ (x \to^A z = z) \longleftrightarrow (y \to^A z = z) definition rel-F-canonical-map :: {}'a \Rightarrow {}'a \ set \ (\pi) where \pi \ x = \{b \in A. \ x \sim F \ b\}
```

4.2 Properties of F

```
context totally-ordered-hoop
begin
lemma F-equiv:
 assumes a \in A - \{1^A\} b \in A
 shows b \in F a \longleftrightarrow (b \in A \land b \neq 1^A \land a \rightarrow^A b = b)
 using assms by auto
lemma F-subset:
 assumes a \in A
 \mathbf{shows}\ F\ a\subseteq A
proof -
  have a = 1^A \lor a \neq 1^A
   by auto
  then
 show ?thesis
   using assms by fastforce
qed
lemma F-of-one:
  assumes a \in A
 shows F a = \{1^A\} \longleftrightarrow a = 1^A
 using F-equiv assms fixed-points.simps(2) top-closed by blast
lemma F-of-mult:
  assumes a \in A - \{1^A\} b \in A - \{1^A\}
 shows F\left(a*^{A}b\right)=\left\{c\in A-\left\{1^{A}\right\}\right\},\left(a*^{A}b\right)\rightarrow^{A}c=c\right\}
 using assms mult-C by auto
lemma F-of-imp:
 assumes a \in A b \in A a \rightarrow^A b \neq 1^A
 shows F(a \to^A b) = \{c \in A - \{1^A\}, (a \to^A b) \to^A c = c\}
 using assms imp-closed by auto
lemma F-bound:
 assumes a \in A b \in A a \in F b
 shows a \leq^A b
proof -
  consider (1) b \neq 1^A
   |(2)|b = 1^A
   by auto
  then
  show ?thesis
 proof(cases)
   case 1
```

```
then
   have b \rightarrow^A a \neq 1^A
     using assms(2,3) by simp
   show ?thesis
     using assms hoop-order-def total-order by auto
  \mathbf{next}
   case 2
   then
   show ?thesis
      using assms(1) ord-top by auto
 qed
\mathbf{qed}
The following results can be found in Lemma 3.3 in [5].
lemma LEMMA-3-3-1:
 assumes a \in A - \{1^A\} b \in A c \in A b \in F a c \leq^A b
 shows c \in F a
proof -
  \mathbf{from}\ \mathit{assms}
  have (a \rightarrow^A c) \leq^A (a \rightarrow^A b)
   using DiffD1 F-equiv ord-imp-mono-B by metis
  then
  have (a \to^A c) \leq^A b
   using assms(1,4,5) by simp
  have (a \rightarrow^A c) \rightarrow^A c = ((a \rightarrow^A c) *^A ((a \rightarrow^A c) \rightarrow^A b)) \rightarrow^A c
   using assms(1,3) hoop-order-def imp-closed by force
  also
  have ... = (b *^A (b \rightarrow^A (a \rightarrow^A c))) \rightarrow^A c
   using assms divisibility imp-closed by simp
  have \dots = (b \to^A (a \to^A c)) \to^A (b \to^A c)
   using DiffD1 \ assms(1-3) \ imp-closed \ swap \ residuation by metis
  also
 have ... = ((a \rightarrow^A b) \rightarrow^A (a \rightarrow^A c)) \rightarrow^A (b \rightarrow^A c)
   using assms(1,4) by simp
  have ... = (((a \rightarrow^A b) *^A a) \rightarrow^A c) \rightarrow^A (b \rightarrow^A c)
   using assms(1,3,4) residuation by simp
  have ... = (((b \rightarrow^A a) *^A b) \rightarrow^A c) \rightarrow^A (b \rightarrow^A c)
   using assms(1,2) divisibility imp-closed mult-comm by simp
  also
 have ... = (b \rightarrow^A c) \rightarrow^A (b \rightarrow^A c)
   using F-bound assms(1,4) hoop-order-def by simp
  also
  have \dots = 1^A
   using F-bound assms hoop-order-def imp-closed by simp
```

```
finally
  have (a \to^A c) \leq^A c
   using hoop-order-def by simp
  moreover
  have c \leq^A (a \rightarrow^A c)
   using assms(1,3) ord-A by simp
  ultimately
 have a \rightarrow^A c = c
   using assms(1,3) imp-closed ord-antisymm by simp
  moreover
 have c \in A - \{1^A\}
   using assms(1,3-5) hoop-order-def imp-one-C by auto
 ultimately
 show ?thesis
   using F-equiv assms(1) by blast
qed
lemma LEMMA-3-3-2:
 assumes a \in A - \{1^A\} b \in A - \{1^A\} F = F b shows F = F (a *^A b)
  show F a \subseteq F (a *^A b)
  proof
   \mathbf{fix} c
   assume c \in F a
   then
   have (a *^A b) \rightarrow^A c = b \rightarrow^A (a \rightarrow^A c)
     using DiffD1 F-subset assms(1,2) in-mono swap residuation by metis
   have \dots = b \to^A c
     using \langle c \in F \ a \rangle \ assms(1) by auto
   have \dots = c
     using \langle c \in F \ a \rangle \ assms(2,3) by auto
   finally
   \mathbf{show}\ c \in F\ (a *^A b)
     using \langle c \in F \ a \rangle \ assms(1,2) \ mult-C \ by \ auto
  qed
\mathbf{next}
  show F(a *^A b) \subseteq F a
  proof
   \mathbf{fix} c
   assume c \in F (a *^A b)
   have (a *^A b) \leq^A a
     using assms(1,2) mult-A by auto
   have (a \rightarrow^A c) \leq^A ((a *^A b) \rightarrow^A c)
     using DiffD1 F-subset \langle c \in F \ (a *^A b) \rangle assms mult-closed
```

```
ord-imp-anti-mono-B subset D
     by meson
   moreover
   have (a *^A b) \rightarrow^A c = c
     using \langle c \in F \ (a *^A b) \rangle \ assms(1,2) \ mult-C \ by \ auto
   ultimately
   have (a \rightarrow^A c) \leq^A c
     by simp
   moreover
   have c \leq^A (a \rightarrow^A c)
     using DiffD1 \ F-subset \langle c \in F \ (a *^A b) \rangle \ assms(1,2) \ insert-Diff
           insert-subset mult-closed ord-A
     by metis
   ultimately
   show c \in F a
     using \langle c \in F \ (a *^A b) \rangle assms(1,2) imp-closed mult-C ord-antisymm by auto
 qed
qed
lemma LEMMA-3-3-3:
 assumes a \in A - \{1^A\} b \in A - \{1^A\} a \leq^A b
 shows F a \subseteq F b
proof
 \mathbf{fix} c
 assume c \in F a
 then
 have (b \to^A c) \leq^A (a \to^A c)
   using DiffD1 F-subset assms in-mono ord-imp-anti-mono-B by meson
 moreover
 have a \to^A c = c
   using \langle c \in F \ a \rangle \ assms(1) by auto
 ultimately
 have (b \to^A c) \leq^A c
   by simp
 moreover
 have c <^A (b \rightarrow^A c)
   using \langle c \in F \ a \rangle \ assms(1,2) \ ord\text{-}A \ by force
 ultimately
 show c \in F b
   using \langle c \in F \ a \rangle \ assms(1,2) \ imp-closed \ ord-antisymm \ by \ auto
\mathbf{qed}
lemma LEMMA-3-3-4:
 assumes a \in A - \{1^A\} b \in A - \{1^A\} a <^A b F a \neq F b
 shows a \in F b
proof -
 from assms
 obtain c where c \in F b \land c \notin F a
   using LEMMA-3-3-3 hoop-order-strict-def by auto
```

```
have witness: c \in A - \{1^A\} \land b \rightarrow^A c = c \land c <^A (a \rightarrow^A c)
   using DiffD1 \ assms(1,2) \ hoop-order-strict-def \ ord-A \ by \ auto
 have (a \rightarrow^A c) \rightarrow^A c \in F b
   using DiffD1 F-equiv assms(1,2) imp-closed swap ord-D by metis
 moreover
 have a \leq^A ((a \rightarrow^A c) \rightarrow^A c)
   using assms(1) ord-C witness by force
 ultimately
 show a \in F b
   using Diff-iff LEMMA-3-3-1 assms(1,2) imp-closed witness by metis
qed
lemma LEMMA-3-3-5:
 assumes a \in A - \{1^A\} b \in A - \{1^A\} F a \neq F b shows a *^A b = a \wedge^A b
proof -
 have a <^A b \lor b <^A a
   using DiffD1 assms hoop-order-strict-def total-order by metis
 have a \in F \ b \lor b \in F \ a
   using LEMMA-3-3-4 assms by metis
 have a *^{A} b = (b \to^{A} a) *^{A} b \lor a *^{A} b = a *^{A} (a \to^{A} b)
   using assms(1,2) by force
 then
 show ?thesis
   using assms(1,2) divisibility hoop-inf-def imp-closed mult-comm by auto
qed
lemma LEMMA-3-3-6:
 assumes a \in A - \{ \mathbf{1}^A \} \ b \in A - \{ \mathbf{1}^A \} \ a <^A \ b \ F \ a = F \ b
 shows F(b \rightarrow^A a) = F b
proof -
 have a \notin F a
   using assms(1) DiffD1 F-equiv imp-reflex by metis
 have a <^A (b \rightarrow^A a)
   using assms(1,2,4) hoop-order-strict-def ord-A by auto
 moreover
 have b *^A (b \rightarrow^A a) = a
   using assms(1-3) divisibility hoop-order-def hoop-order-strict-def by simp
 have b \leq^A (b \rightarrow^A a) \lor (b \rightarrow^A a) \leq^A b
   using DiffD1 assms(1,2) imp-closed ord-reflex total-order by metis
  ultimately
 have b *^A (b \rightarrow^A a) \neq b \wedge^A (b \rightarrow^A a)
  using assms(1-3) hoop-order-strict-def imp-closed inf-comm inf-order by force
```

```
then show F (b \rightarrow^A a) = F b using LEMMA-3-3-5 assms(1-3) imp\text{-}closed ord\text{-}D by blast qed

4.3 Properties of (\sim F)

4.3.1 (\sim F) is an equivalence relation lemma rel\text{-}F\text{-}reflex: assumes a \in A
```

```
shows a \sim F a using rel-F-def by auto

\begin{array}{c}
\mathbf{lemma} & rel-F-symm:
\mathbf{assumes} & a \in A \ b \in A \ a \sim F \ b
\mathbf{shows} & b \sim F \ a
\mathbf{using} & assms & rel-F-def by auto
```

lemma rel-F-trans: assumes $a \in A$ $b \in A$ $c \in A$ $a \sim F$ b $b \sim F$ cshows $a \sim F$ cusing assms rel-F-def by auto

4.3.2 Equivalent definition

```
lemma rel-F-equiv:
 assumes a \in A \ b \in A
 shows (a \sim F b) = (F a = F b)
proof
 assume a \sim F b
 then
 consider (1) a \neq 1^A b \neq 1^A
   |(2) a = 1^A b = 1^A
   using assms imp-one-C rel-F-def by fastforce
 then
 \mathbf{show}\ F\ a=F\ b
 proof(cases)
   case 1
   then
   show ?thesis
     using \langle a \sim F b \rangle assms rel-F-def by auto
 next
   case 2
   then
   show ?thesis
     \mathbf{by} \ simp
 \mathbf{qed}
\mathbf{next}
 assume F a = F b
```

```
then
 consider (1) a \neq 1^A b \neq 1^A
   |(2) a = 1^A b = 1^A
   using F-of-one assms by blast
 then
 show a \sim F b
 proof(cases)
   case 1
   then
   show ?thesis
     using \langle F | a = F | b \rangle assms imp-one-A imp-one-C rel-F-def by auto
 next
   case 2
   then
   show ?thesis
     using rel-F-reflex by simp
 qed
qed
         Properties of equivalence classes given by (\sim F)
lemma class-one: \pi 1<sup>A</sup> = {1<sup>A</sup>}
 using imp-one-C rel-F-canonical-map-def rel-F-def by auto
lemma classes-subsets:
 assumes a \in A
 shows \pi a \subseteq A
 using rel-F-canonical-map-def by simp
lemma classes-not-empty:
 assumes a \in A
 shows a \in \pi a
 using assms rel-F-canonical-map-def rel-F-reflex by simp
corollary class-not-one:
 assumes a \in A - \{1^A\}
 shows \pi a \neq \{1^A\}
 using assms classes-not-empty by blast
lemma classes-disjoint:
 assumes a \in A b \in A \pi a \cap \pi b \neq \emptyset
 shows \pi a = \pi b
 using assms rel-F-canonical-map-def rel-F-def rel-F-trans by force
lemma classes-cover: A = \{x. \exists y \in A. x \in \pi y\}
 using classes-subsets classes-not-empty by auto
lemma classes-convex:
 assumes a \in A b \in A c \in A d \in A b \in \pi a c \in \pi a b \leq^A d d \leq^A
```

```
shows d \in \pi a
proof -
 have eq-F: F a = F b \wedge F a = F c
   using assms(1,5,6) rel-F-canonical-map-def rel-F-equiv by auto
 from assms
 consider (1) c = 1^A
   |(2) c \neq 1^A
   by auto
 then
 show ?thesis
 proof(cases)
   case 1
   then
   have b = 1^A
     using F-of-one eq-F assms(2) by auto
   then
   show ?thesis
     using 1 assms(2,4,5,7,8) ord-antisymm by blast
  \mathbf{next}
   case 2
   then
   have b \neq 1^A \land c \neq 1^A \land d \neq 1^A
     using eq-F assms(3,8) ord-antisymm ord-top by auto
   then
   have F \ b \subseteq F \ d \wedge F \ d \subseteq F \ c
     using LEMMA-3-3-3 assms(2-4,7,8) by simp
   then
   have F a = F d
     using eq-F by blast
   then
   have a \sim F d
     using assms(1,4) rel-F-equiv by simp
   then
   show ?thesis
     using assms(4) rel-F-canonical-map-def by simp
 qed
qed
\mathbf{lemma} related-iff-same-class:
 assumes a \in A \ b \in A
 shows a \sim F b \longleftrightarrow \pi \ a = \pi \ b
proof
 assume a \sim F b
 then
 have a = 1^A \longleftrightarrow b = 1^A
   using assms imp-one-C imp-reflex rel-F-def by metis
 have (a = 1^A \land b = 1^A) \lor (a \ne 1^A \land b \ne 1^A)
   by auto
```

```
then show \pi a=\pi b using \langle a \sim F b \rangle assms rel-F-canonical-map-def rel-F-def rel-F-symm by force next show \pi a=\pi b\Longrightarrow a\sim F b using assms(2) classes-not-empty rel-F-canonical-map-def by auto qed corollary same-F-iff-same-class: assumes a\in A b\in A shows F a=F b\longleftrightarrow \pi a=\pi b using assms rel-F-equiv related-iff-same-class by auto
```

end

4.4 Irreducible hoops: definition and equivalences

A totally ordered hoop is *irreducible* if it cannot be written as the ordinal sum of two nontrivial totally ordered hoops.

```
locale totally-ordered-irreducible-hoop = totally-ordered-hoop +
  assumes irreducible: \nexists B C.
    (A = B \cup C) \land
    (\{1^A\} = B \cap C) \wedge
     (\exists y \in B. y \neq 1^A) \land
    (\exists y \in C. y \neq 1^A) \land
    (hoop \ B\ (*^A)\ (\rightarrow^A)\ 1^A)\ \land
     (hoop\ C\ (*^{A'})\ (\rightarrow^{A'})\ 1^{A'})\ \land
     \begin{array}{l} (\forall \ x \in B - \{1^A\}. \ \forall \ y \in C. \ x *^A y = x) \land \\ (\forall \ x \in B - \{1^A\}. \ \forall \ y \in C. \ x \rightarrow^A y = 1^A) \land \end{array} 
    (\forall x \in C. \ \forall y \in B. \ x \to^A y = y)
lemma irr-test:
  assumes totally-ordered-hoop A PA RA a
            ¬totally-ordered-irreducible-hoop A PA RA a
  shows \exists B C.
    (A = B \cup C) \land
    (\{a\} = B \cap C) \land
    (\exists y \in B. y \neq a) \land
    (\exists y \in C. y \neq a) \land
    (hoop B PA RA a) \land
    (hoop\ C\ PA\ RA\ a)\ \land
    (\forall x \in B - \{a\}. \ \forall y \in C. \ PA \ x \ y = x) \land
     (\forall x \in B - \{a\}. \ \forall y \in C. \ RA \ x \ y = a) \land
     (\forall x \in C. \ \forall y \in B. \ RA \ x \ y = y)
  using assms unfolding totally-ordered-irreducible-hoop-def
                            totally-ordered-irreducible-hoop-axioms-def
  by force
```

 $locale\ totally-ordered-one-fixed-hoop\ =\ totally-ordered-hoop\ +$

```
assumes one-fixed: x \in A \Longrightarrow y \in A \Longrightarrow y \to^A x = x \Longrightarrow x = 1^A \lor y = 1^A
\mathbf{locale}\ totally\text{-}ordered\text{-}wajsberg\text{-}hoop = totally\text{-}ordered\text{-}hoop + wajsberg\text{-}hoop
context totally-ordered-hoop
begin
The following result can be found in [1] (see Lemma 3.5).
\mathbf{lemma}\ not\text{-}one\text{-}fixed\text{-}implies\text{-}not\text{-}irreducible\text{:}}
  assumes \neg totally-ordered-one-fixed-hoop A (*^A) (\rightarrow^A) 1^A
 shows \neg totally-ordered-irreducible-hoop A (*^A) (\rightarrow^A) 1^A
proof -
  have \exists \ x \ y. \ x \in A \land y \in A \land y \rightarrow^A x = x \land x \neq 1^A \land y \neq 1^A
   using assms totally-ordered-hoop-axioms totally-ordered-one-fixed-hoop.intro
         totally-ordered-one-fixed-hoop-axioms.intro
   by meson
  then
 obtain b_0 c_0 where witnesses: b_0 \in A - \{1^A\} \land c_0 \in A - \{1^A\} \land b_0 \rightarrow^A c_0 = c_0
  define B C where B = (F b_0) \cup \{1^A\} and C = A - (F b_0)
  have B-mult-b0: b *^A b_0 = b if b \in B - \{1^A\} for b
   have upper-bound: b \leq^A b_0 if b \in B - \{1^A\} for b
     using B-def F-bound witnesses that by force
   have b *^A b_0 = b_0 *^A b
     using B-def witnesses mult-comm that by simp
   have ... = b_0 *^A (b_0 \to^A b)
     using B-def witnesses that by fastforce
   have \dots = b *^A (b \rightarrow^A b_0)
     using B-def witnesses that divisibility by auto
   also
   have \dots = b
     using B-def hoop-order-def that upper-bound witnesses by auto
   \mathbf{show}\ b *^A b_0 = b
     by auto
  have C-upper-set: a \in C if a \in A c \in C c < A a for a c
  proof -
   consider (1) a \neq 1^A
     |(2)| a = 1^A
     by auto
   then
   show a \in C
```

```
proof(cases)
   case 1
   then
   have a \notin C \Longrightarrow a \in F b_0
     using C-def that(1) by blast
   have a \notin C \Longrightarrow c \in F b_0
     using C-def DiffD1 witnesses LEMMA-3-3-1 that by metis
   then
   \mathbf{show}~? the sis
     using C-def that(2) by blast
 \mathbf{next}
   case 2
   then
   show ?thesis
     using C-def witnesses by auto
 qed
\mathbf{qed}
have B-union-C: A = B \cup C
 using B-def C-def witnesses one-closed by auto
moreover
have B-inter-C: \{1^A\} = B \cap C
 using B-def C-def witnesses by force
moreover
have B-not-trivial: \exists y \in B. \ y \neq 1^A
proof -
 have c_0 \in B \land c_0 \neq 1^A
   using B-def witnesses by auto
 then
 show ?thesis
   by auto
qed
moreover
have C-not-trivial: \exists y \in C. y \neq 1^A
proof -
 have b_0 \in C \land b_0 \neq 1^A
   using C-def witnesses by auto
 then
 show ?thesis
   by auto
qed
```

moreover

```
have B-mult-closed: a *^A b \in B if a \in B b \in B for a b
proof -
 from that
 consider (1) a \in F b_0
   |(2)|a = 1^A
   using B-def by blast
 then
 show a *^A b \in B
 proof(cases)
   case 1
   then
   have a \in A \land a *^A b \in A \land (a *^A b) \leq^A a
     using B-union-C that mult-A mult-closed by blast
   have a *^A b \in F b_0
     using 1 witnesses LEMMA-3-3-1 by metis
   then
   show ?thesis
     using B-def by simp
 \mathbf{next}
   case 2
   then
   \mathbf{show}~? the sis
     using B-union-C that(2) by simp
 qed
qed
moreover
have B-imp-closed: a \to^A b \in B if a \in B b \in B for a b
proof -
 {f from}\ that
 consider (1) a = 1^A \lor b = 1^A \lor (a \in F \ b_0 \land b \in F \ b_0 \land a \rightarrow^A b = 1^A)
   \mid (2) \ a \in F \ b_0 \ b \in F \ b_0 \ a \rightarrow^A b \neq 1^A
   using B-def by fastforce
 then
 show a \to^A b \in B
 proof(cases)
   case 1
   have a \rightarrow^A b = b \lor a \rightarrow^A b = 1^A
     using B-union-C that imp-one-C imp-one-top by blast
   then
   \mathbf{show} \ ?thesis
     using B-inter-C that(2) by fastforce
 next
   case 2
```

```
then
   have a *^A b_0 = a
     using B-def B-mult-b0 witnesses by auto
   have b_0 \rightarrow^A (a \rightarrow^A b) = (a \rightarrow^A b)
     \mathbf{using}\ B\text{-}union\text{-}C\ witnesses\ that\ mult-comm\ residuation\ \mathbf{by}\ simp
   then
   have a \to^A b \in F b_0
     using 2(3) B-union-C F-equiv witnesses that imp-closed by auto
   then
   show ?thesis
     using B-def by auto
 qed
qed
moreover
have B-hoop: hoop B (*^A) (\rightarrow^A) 1^A
 show x *^A y \in B if x \in B y \in B for x y
   using B-mult-closed that by simp
 show x \to^A y \in B if x \in B y \in B for x y
   using B-imp-closed that by simp
next
 show 1^A \in B
   using B-def by simp
 show x *^A y = y *^A x if x \in B y \in B for x y
   using B-union-C mult-comm that by simp
 show x *^{A} (y *^{A} z) = (x *^{A} y) *^{A} z if x \in B y \in B z \in B for x y z
   using B-union-C mult-assoc that by simp
 show x *^A 1^A = x if x \in B for x
   using B-union-C that by simp
 show x \to^A x = 1^A if x \in B for x
   using B-union-C that by simp
 show x *^A (x \rightarrow^A y) = y *^A (y \rightarrow^A x) if x \in B y \in B for x y
   using B-union-C divisibility that by simp
 show x \to^A (y \to^A z) = (x *^A y) \to^A z if x \in B y \in B z \in B for x y z
   using B-union-C residuation that by simp
qed
```

moreover

```
have C-imp-B: c \to^A b = b if b \in B c \in C for b c
proof -
 \mathbf{from}\ that
 consider (1) b \in F b_0 \ c \neq 1^A
   |(2)| b = 1^A \lor c = 1^A
   using B-def by blast
 then
 show c \rightarrow^A b = b
 proof(cases)
   case 1
   have b_0 \to^A ((c \to^A b) \to^A b) = (c \to^A b) \to^A (b_0 \to^A b)
     using B-union-C witnesses that imp-closed swap by simp
   also
   have \dots = (c \rightarrow^A b) \rightarrow^A b
     using 1(1) witnesses by auto
   have (c \rightarrow^A b) \rightarrow^A b \in F b_0 if (c \rightarrow^A b) \rightarrow^A b \neq 1^A
    using B-union-C F-equiv witnesses \langle b \in B \rangle \langle c \in C \rangle that imp-closed by auto
   moreover
   have c \leq^A ((c \rightarrow^A b) \rightarrow^A b)
     using B-union-C that ord-C by simp
   ultimately
   have (c \rightarrow^A b) \rightarrow^A b = 1^A
     using B-def B-union-C C-def C-upper-set that (2) by blast
   moreover
   have b \to^A (c \to^A b) = 1^A
     using B-union-C that imp-A by simp
   ultimately
   show ?thesis
     using B-union-C that imp-closed ord-antisymm-equiv by blast
 \mathbf{next}
   case 2
   then
   show ?thesis
     using B-union-C that imp-one-C imp-one-top by auto
 qed
qed
moreover
have B-imp-C: b \to^A c = 1^A if b \in B - \{1^A\} c \in C for b c
proof -
 from that
 have b \leq^A c \lor c \leq^A b
   using total-order B-union-C by blast
 moreover
 have c \to^A b = b
   using C-imp-B that by simp
 ultimately
```

```
\mathbf{show}\ b \to^A c = 1^A
   using that(1) hoop-order-def by force
qed
moreover
have B-mult-C: b *^A c = b if b \in B - \{1^A\} c \in C for b c
proof -
 have b = b *^A 1^A
   using that(1) B-union-C by fastforce
 also
 have \dots = b *^A (b \rightarrow^A c)
   using B-imp-C that by blast
 have \dots = c *^A (c \rightarrow^A b)
   using that divisibility B-union-C by simp
 have \dots = c *^A b
   using C-imp-B that by auto
 finally
 \mathbf{show}\ b \, *^A \, c \, = \, b
   using that mult-comm B-union-C by auto
qed
moreover
have C-mult-closed: c *^A d \in C if c \in C d \in C for c d
 consider (1) c \neq 1^A d \neq 1^A
   |(2) c = 1^A \lor d = 1^A
   by auto
 then
 show c *^A d \in C
 proof(cases)
   case 1
   have c *^A d \in F b_0 if c *^A d \notin C
     using C-def \langle c \in C \rangle \langle d \in C \rangle mult-closed that by force
   have c \to^A (c *^A d) \in F b_0 if c *^A d \notin C
     using B-def C-imp-B \langle c \in C \rangle that by simp
   moreover
   have d \leq^A (c \rightarrow^A (c *^A d))
     using C-def DiffD1 that ord-reflex ord-residuation residuation
          mult\text{-}closed\ mult\text{-}comm
     by metis
   moreover
   have c \to^A (c *^A d) \in A \land d \in A
     using C-def Diff-iff that imp-closed mult-closed by metis
   ultimately
```

```
have d \in F b_0 if c *^A d \notin C
     using witnesses LEMMA-3-3-1 that by blast
   then
   show ?thesis
     using C-def that(2) by blast
 \mathbf{next}
   case 2
   then
   show ?thesis
     using B-union-C that mult-neutr mult-neutr-2 by auto
qed
moreover
have C-imp-closed: c \to^A d \in C if c \in C d \in C for c d
 using C-upper-set imp-closed ord-A B-union-C that by blast
moreover
have C-hoop: hoop C (*A) (\rightarrowA) 1A
proof
 show x *^A y \in C if x \in C y \in C for x y
   using C-mult-closed that by simp
 show x \to^A y \in C if x \in C y \in C for x y
   using C-imp-closed that by simp
next
 show 1^A \in C
   using B-inter-C by auto
 show x *^A y = y *^A x if x \in C y \in C for x y
   \mathbf{using}\ \textit{B-union-C mult-comm that}\ \mathbf{by}\ \textit{simp}
 show x *^{A} (y *^{A} z) = (x *^{A} y) *^{A} z if x \in C y \in C z \in C for x y z
   using B-union-C mult-assoc that by simp
next
 show x *^A 1^A = x if x \in C for x
   using B-union-C that by simp
 show x \to^A x = 1^A if x \in C for x
   using B-union-C that by simp
 show x *^A (x \rightarrow^A y) = y *^A (y \rightarrow^A x) if x \in C y \in C for x y
   using B-union-C divisibility that by simp
 show x \to^A (y \to^A z) = (x *^A y) \to^A z if x \in C y \in C z \in C for x y z
   using B-union-C residuation that by simp
qed
```

```
ultimately
      have \exists B C.
            (A = B \cup C) \land
            (\{1^A\} = B \cap C) \land
            (\exists y \in B. \ y \neq 1^A) \land
           (\exists \ y \in C. \ y \neq 1^A) \land (hoop \ B \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (*^A) \ (\rightarrow^A) \ 1^A) \land (hoop \ C \ (\rightarrow^A) 
            (\forall x \in B - \{1^A\}. \ \forall y \in C. \ x *^A y = x) \land
            (\forall x \in B - \{1^A\}. \ \forall y \in C. \ x \to^A y = 1^A) \land 
            (\forall \ x \in C. \ \forall \ y \in B. \ x \to^A y = y)
            by (smt (verit))
      then
      show ?thesis
            using totally-ordered-irreducible-hoop.irreducible by (smt (verit))
qed
Next result can be found in [2] (see Proposition 2.2).
lemma one-fixed-implies-wajsberg:
      assumes totally-ordered-one-fixed-hoop A (*^A) (\rightarrow^A) 1^A
      shows totally-ordered-wajsberg-hoop \vec{A} (*\vec{A}) (\rightarrow \vec{A}) \vec{A}
      have (a \rightarrow^A b) \rightarrow^A b = (b \rightarrow^A a) \rightarrow^A a if a \in A b \in A a <^A b for a b
      proof -
            from that
           have (((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A b) \rightarrow^A (b \rightarrow^A a) = b \rightarrow^A a \land b \rightarrow^A a \neq 1^A
                  using imp-D ord-D by simp
            have ((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A b = 1^A
                 using assms that (1,2) imp-closed totally-ordered-one-fixed-hoop.one-fixed
                 by metis
            moreover
            have b \to^A ((b \to^A a) \to^A a) = 1^A
                  using hoop-order-def that (1,2) ord-C by simp
           ultimately
           have (b \rightarrow^A a) \rightarrow^A a = b
                 using imp-closed ord-antisymm-equiv hoop-axioms that (1,2) by metis
            also
            have \dots = (a \rightarrow^A b) \rightarrow^A b
                  using hoop-order-def hoop-order-strict-def that (2,3) imp-one-C by force
            show (a \rightarrow^A b) \rightarrow^A b = (b \rightarrow^A a) \rightarrow^A a
                 by auto
      qed
```

show $(x \to^A y) \to^A y = (y \to^A x) \to^A x$ if $x \in A$ $y \in A$ for x y

using total-order hoop-order-strict-def that by metis

```
qed
```

```
The proof of the following result can be found in [1] (see Theorem 3.6).
\mathbf{lemma}\ not\text{-}irreducible\text{-}implies\text{-}not\text{-}wajsberg:
  assumes \neg totally\text{-}ordered\text{-}irreducible\text{-}hoop\ A\ (*^A)\ (\rightarrow^A)\ 1^A
  shows \neg totally-ordered-wajsberg-hoop A (*^A) (\rightarrow^A) 1^A
proof -
  have \exists B C.
    (A = B \cup C) \land
    (\{1^A\} = B \cap C) \wedge
    (\exists y \in B. y \neq 1^A) \land
    (\exists y \in C. \ y \neq 1^A) \land (hoop \ B \ (*^A) \ (\to^A) \ 1^A) \land
    (hoop\ C\ (*^{A})\ (\rightarrow^{A})\ 1^{A})\ \land
   (\forall x \in C. \ \forall y \in B. \ x \to^A y = y)
    using irr-test[OF totally-ordered-hoop-axioms] assms by auto
  then
  obtain B C where H:
    (A = B \cup C) \land
    (\{1^A\} = B \cap C) \wedge
   (\exists y \in B. y \neq 1^A) \land
    (\exists y \in C. y \neq 1^A) \land
    (\forall x \in B - \{1^A\}. \ \forall y \in C. \ x \to^A y = 1^A) \land
    (\forall x \in C. \ \forall y \in B. \ x \to^A y = y)
    by blast
  then
  obtain b c where assms: b \in B - \{1^A\} \land c \in C - \{1^A\}
  then
  have b \rightarrow^A c = 1^A
    using H by simp
  have (b \rightarrow^A c) \rightarrow^A c = c
    using H assms imp-one-C by blast
  moreover
 have (c \rightarrow^A b) \rightarrow^A b = 1^A
    using assms H by force
  ultimately
  have (b \rightarrow^A c) \rightarrow^A c \neq (c \rightarrow^A b) \rightarrow^A b
    using assms by force
 moreover
 have b \in A \land c \in A
    using assms H by blast
  ultimately
 show ?thesis
    using totally-ordered-wajsberg-hoop.axioms(2) wajsberg-hoop.T by meson
qed
```

```
Summary of all results in this subsection:
{\bf theorem}\ one-fixed-equivalent-to-wajsberg:
  shows totally-ordered-one-fixed-hoop A (*^A) (\rightarrow^A) 1^A \equiv
         totally\text{-}ordered\text{-}wajsberg\text{-}hoop\ A\ (*^A)\ (\xrightarrow{A})\ 1^A
  {\bf using} \ \ not\text{-}irreducible\text{-}implies\text{-}not\text{-}wajsberg} \ \ not\text{-}one\text{-}fixed\text{-}implies\text{-}not\text{-}irreducible
        one-fixed-implies-wajsberg
  by linarith
theorem wajsberg-equivalent-to-irreducible:
  shows totally-ordered-wajsberg-hoop A (*^A) (\rightarrow^A) 1^A \equiv
         totally-ordered-irreducible-hoop A (*^A) (\rightarrow^A) 1^A
  using not-irreducible-implies-not-wajsberg not-one-fixed-implies-not-irreducible
        one-fixed-implies-wajsberg
  by linarith
theorem irreducible-equivalent-to-one-fixed:
  shows totally-ordered-irreducible-hoop A (*^A) (\rightarrow^A) 1^A \equiv
         totally-ordered-one-fixed-hoop A (*\overset{A}{}) (\overset{A}{\rightarrow}) 1
```

using one-fixed-equivalent-to-wajsberg wajsberg-equivalent-to-irreducible

 \mathbf{end}

by simp

4.5 Decomposition

```
locale tower-of-irr-hoops = tower-of-hoops + assumes family-of-irr-hoops: i \in I \Longrightarrow totally\text{-}ordered\text{-}irreducible\text{-}hoop} (\mathbb{A}_i) \ (*^i) \ (\to^i) \ 1^S locale tower-of-nontrivial-irr-hoops = tower-of-irr-hoops + assumes nontrivial: i \in I \Longrightarrow \exists \ x \in \mathbb{A}_i. \ x \neq 1^S context totally-ordered-hoop begin
```

4.5.1 Definition of index set I

```
definition index\text{-}set :: ('a \ set) \ set \ (I) where I = \{y. \ (\exists \ x \in A. \ \pi \ x = y)\} lemma indexes\text{-}subsets: assumes i \in I shows i \subseteq A using index\text{-}set\text{-}def assms rel\text{-}F\text{-}canonical\text{-}map\text{-}def} by auto lemma indexes\text{-}not\text{-}empty: assumes i \in I shows i \neq \emptyset
```

using index-set-def assms classes-not-empty by blast

```
lemma indexes-disjoint:
  assumes i \in I j \in I i \neq j
  shows i \cap j = \emptyset
proof -
  obtain a b where a \in A \land b \in A \land a \neq b \land i = \pi a \land j = \pi b
    using index-set-def assms by auto
  then
  show ?thesis
    using assms(3) classes-disjoint by auto
lemma indexes-cover: A = \{x. \exists i \in I. x \in i\}
  using classes-subsets classes-not-empty index-set-def by auto
lemma indexes-class-of-elements:
  assumes i \in I \ a \in A \ a \in i
  shows \pi \ a = i
proof -
  obtain c where class-element: c \in A \land i = \pi c
   \mathbf{using} \ assms(1) \ index\text{-}set\text{-}def \ \mathbf{by} \ auto
  then
  have a \sim F c
    using assms(3) rel-F-canonical-map-def rel-F-symm by auto
  then
  show ?thesis
    using assms(2) class-element related-iff-same-class by simp
lemma indexes-convex:
  assumes i \in I a \in i b \in i d \in A a \leq^A d d \leq^A b
  shows d \in i
proof -
  have a \in A \land b \in A \land d \in A \land i = \pi \ a
    using assms(1-4) indexes-class-of-elements indexes-subsets by blast
  show ?thesis
    using assms(2-6) classes-convex by auto
qed
          Definition of total partial order over I
Since each equivalence class is convex, (\leq^A) induces a total order on I.
function index-order :: ('a \ set) \Rightarrow ('a \ set) \Rightarrow bool \ (infix \leq^I 60) where
x \leq^{I} y = ((x = y) \lor (\forall v \in x. \ \forall w \in y. \ v \leq^{A} w)) \text{ if } x \in I \ y \in I \\ | \ x \leq^{I} y = undefined \text{ if } x \notin I \lor y \notin I
termination by lexicographic-order
```

```
definition index-order-strict (infix <^I 60)
 where x <^I y = (x \le^I y \land x \ne y)
lemma index-ord-reflex:
 assumes i \in I
 shows i \leq^I i
 using assms by simp
lemma index-ord-antisymm:
 assumes i \in I j \in I i \leq^I j j \leq^I i
 shows i = j
proof -
 have i = j \lor (\forall a \in i. \forall b \in j. a \leq^A b \land b \leq^A a)
   using assms by auto
 then
 have i = j \lor (\forall a \in i. \forall b \in j. a = b)
   using assms(1,2) indexes-subsets insert-Diff insert-subset ord-antisymm
   by metis
 then
 show ?thesis
   using assms(1,2) indexes-not-empty by force
qed
lemma index-ord-trans:
 assumes i \in I j \in I k \in I i \leq^I j j \leq^I k
 shows i \leq^I k
proof -
 consider (1) i \neq j j \neq k
   |(2) i = j \lor j = k
   by auto
 then
 show i <^I k
 proof(cases)
   case 1
   then
   have (\forall a \in i. \forall b \in j. a \leq^A b) \land (\forall b \in j. \forall c \in k. b \leq^A c)
     using assms by force
   moreover
   have j \neq \emptyset
     using assms(2) indexes-not-empty by simp
   ultimately
   have \forall a \in i. \forall c \in k. \exists b \in j. a \leq^A b \land b \leq^A c
     using all-not-in-conv by meson
   have \forall a \in i. \forall c \in k. a \leq^A c
     using assms indexes-subsets ord-trans subsetD by metis
   show ?thesis
     using assms(1,3) by simp
```

```
next
   case 2
   then
   show ?thesis
     using assms(4,5) by auto
 qed
qed
\mathbf{lemma}\ index	ext{-}order	ext{-}total:
 assumes i \in I \ j \in I \ \neg (j \leq^I i)
 shows i \leq^I j
proof -
 have i \neq j
   using assms(1,3) by auto
 then
 have disjoint: i \cap j = \emptyset
   using assms(1,2) indexes-disjoint by simp
 moreover
 have \exists x \in j. \exists y \in i. \neg(x \leq^A y)
   using assms\ index-order.simps(1) by blast
 moreover
 have subsets: i \subseteq A \land j \subseteq A
   using assms indexes-subsets by simp
  ultimately
 have \exists x \in j. \exists y \in i. y <^A x
   using total-order hoop-order-strict-def insert-absorb insert-subset by metis
 obtain a_i a_j where witnesses: a_i \in i \land a_j \in j \land a_i <^A a_j
   using assms(1,2) total-order hoop-order-strict-def indexes-subsets by metis
 have a \leq^A b if a \in i b \in j for a b
 proof
   from that
   consider (1) a_i \leq^A a \ a_i \leq^A b
    |(4) a <^A a_i a_j \le^A b
     using total-order hoop-order-strict-def subset-eq subsets witnesses by metis
   then
   show a \leq^A b
   proof(cases)
     case 1
     then
     have a_i \leq^A a_j \land a_j \leq^A b \land b \leq^A a if b <^A a
       using hoop-order-strict-def that witnesses by blast
     have a_i \leq^A b \wedge b \leq^A a if b <^A a
       using \langle b \in j \rangle in-mono ord-trans subsets that witnesses by meson
     then
```

```
have b \in i if b <^A a
   using assms(1) \langle a \in i \rangle \langle b \in j \rangle indexes-convex subsets that witnesses
   by blast
  then
  show a <^A b
   using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
         subsets that total-order
   by metis
\mathbf{next}
  case 2
  then
  have b \leq^A a \land a \leq^A a_i \land a_i \leq^A a_j if b <^A a
   using hoop-order-strict-def that witnesses by blast
  have b \leq^A a \wedge a \leq^A a_i if b <^A a
   using \langle a \in i \rangle ord-trans subset-eq subsets that witnesses by metis
  have a \in j if b <^A a
   using assms(2) \langle a \in i \rangle \langle b \in j \rangle indexes-convex subsets that witnesses
   by blast
  then
  show a \leq^A b
   using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
         subsets that total-order
   by metis
\mathbf{next}
  have b \leq^A a_i \land a_i \leq^A a_i if b \leq^A a_i
   using hoop-order-strict-def that witnesses by auto
  then
  have a_i \in j if b \leq^A a_i
   using assms(2) \langle b \in j \rangle indexes-convex subsets that witnesses by blast
  moreover
  have a_i \notin j
   using disjoint witnesses by blast
  ultimately
  have a_i <^A b
   using total-order hoop-order-strict-def \langle b \in j \rangle subsets witnesses by blast
  then
  have a_i \leq^A b \wedge b \leq^A a if b <^A a
   using hoop-order-strict-def that by auto
  then
  have b \in i if b <^A a
   using assms(1) \langle a \in i \rangle \langle b \in j \rangle indexes-convex subsets that witnesses
   by blast
  then
  show a \leq^A b
   using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
         subsets that total-order
```

```
by metis
   \mathbf{next}
     case 4
     then
     show a \leq^A b
       using hoop-order-strict-def in-mono ord-trans subsets that witnesses
       by meson
   qed
 qed
 then
 show i \leq^I j
   using assms by simp
\mathbf{qed}
sublocale total-poset-on I (\leq^I) (<^I)
proof
 show I \neq \emptyset
   using indexes-cover by auto
 show reflp-on I (\leq^I)
   using index-ord-reflex reflp-onI by blast
\mathbf{next}
 show antisymp-on I (\leq^I)
   using antisymp-on-def index-ord-antisymm by blast
\mathbf{next}
 show transp-on I (\leq^I)
   using index-ord-trans transp-on-def by blast
 show x <^I y = (x \le^I y \land x \ne y) if x \in I y \in I for x y
   using index-order-strict-def by auto
 show totalp-on I (\leq^I)
   using index-order-total totalp-onI by metis
qed
4.5.3
         Definition of universes
definition universes :: 'a set \Rightarrow 'a set (UNI<sub>A</sub>)
 where UNI_A \ x = x \cup \{1^A\}
abbreviation (uniA-i)
  uniA-i :: ['a set] \Rightarrow ('a set) ((A(_-)) [61] 60)
 where A_i \equiv UNI_A i
abbreviation (uniA-pi)
  uniA-pi :: ['a] \Rightarrow ('a \ set) ((\mathbb{A}_{\pi} \ (\_)) \ [61] \ 60)
 where \mathbb{A}_{\pi x} \equiv UNI_A (\pi x)
abbreviation (uniA-pi-one)
```

```
uniA-pi-one :: 'a set ((\mathbb{A}_{\pi 1A}) 60)
  where \mathbb{A}_{\pi 1A} \equiv UNI_A (\pi 1^A)
\mathbf{lemma}\ universes\text{-}subsets\text{:}
  assumes i \in I \ a \in \mathbb{A}_i
 shows a \in A
 using assms universes-def indexes-subsets one-closed by fastforce
lemma universes-not-empty:
  assumes i \in I
 shows \mathbb{A}_i \neq \emptyset
 using universes-def by simp
\mathbf{lemma} \ universes\text{-}almost\text{-}disjoint:
  assumes i \in I j \in I i \neq j
 shows (\mathbb{A}_i) \cap (\mathbb{A}_j) = \{1^A\}
  using assms indexes-disjoint universes-def by auto
lemma universes-cover: A = \{x. \exists i \in I. x \in \mathbb{A}_i\}
  using one-closed indexes-cover universes-def by auto
lemma universes-aux:
  assumes i \in I \ a \in i
 shows \mathbb{A}_i = \pi \ a \cup \{1^A\}
  using assms universes-def universes-subsets indexes-class-of-elements by force
          Universes are subhoops of A
lemma universes-one-closed:
  assumes i \in I
 shows 1^A \in \mathbb{A}_i
 using universes-def by auto
lemma universes-mult-closed:
  assumes i \in I \ a \in \mathbb{A}_i \ b \in \mathbb{A}_i
 shows a *^A b \in \mathbb{A}_i
proof -
  consider (1) a \neq 1^A b \neq 1^A
    |(2)|a = 1^A \lor b = 1^A
   by auto
  then
  show ?thesis
  proof(cases)
    case 1
    then
    have UNI-def: \mathbb{A}_i = \pi \ a \cup \{1^A\} \land \mathbb{A}_i = \pi \ b \cup \{1^A\}
      {\bf using} \ assms \ universes\text{-}def \ universes\text{-}subsets \ indexes\text{-}class\text{-}of\text{-}elements
      by simp
    then
```

```
have \pi a = \pi b
     using 1 assms universes-def universes-subsets indexes-class-of-elements
     by force
   then
   have F a = F b
     using assms universes-subsets rel-F-equiv related-iff-same-class by meson
   then
   have F(a *^A b) = Fa
     using 1 LEMMA-3-3-2 assms universes-subsets by blast
   then
   have \pi a = \pi (a *^A b)
     using assms universes-subsets mult-closed rel-F-equiv related-iff-same-class
   then
   show ?thesis
     using UNI-def UnI1 assms classes-not-empty universes-subsets mult-closed
 next
   case 2
   then
   show ?thesis
     using assms universes-subsets by auto
 qed
qed
lemma universes-imp-closed:
 assumes i \in I \ a \in \mathbb{A}_i \ b \in \mathbb{A}_i
 shows a \to^A b \in \mathbb{A}_i
proof -
 from assms
 consider (1) a \neq 1^A b \neq 1^A b <^A a
   (2) \ a = 1^A \lor b = 1^A \lor (a \neq 1^A \land b \neq 1^A \land a \leq^A b)
   \mathbf{using}\ total\text{-}order\ universes\text{-}subsets\ hoop\text{-}order\text{-}strict\text{-}def\ \mathbf{by}\ auto
 then
 show ?thesis
 proof(cases)
   case 1
   have UNI-def: \mathbb{A}_i = \pi \ a \cup \{1^A\} \land \mathbb{A}_i = \pi \ b \cup \{1^A\}
     using assms universes-def universes-subsets indexes-class-of-elements
     \mathbf{by} \ simp
   then
   have \pi a = \pi b
     using 1 assms universes-def universes-subsets indexes-class-of-elements
     by force
   then
   have F a = F b
     using assms universes-subsets rel-F-equiv related-iff-same-class by simp
   then
```

```
have F(a \rightarrow^A b) = Fa
     using 1 LEMMA-3-3-6 assms universes-subsets by simp
   then
   have \pi a = \pi (a \rightarrow^A b)
     using assms universes-subsets imp-closed same-F-iff-same-class by simp
   then
   show ?thesis
     using UNI-def UnI1 assms classes-not-empty universes-subsets imp-closed
     by metis
 \mathbf{next}
   case 2
   then
   show ?thesis
     using assms universes-subsets universes-one-closed hoop-order-def imp-one-A
           imp-one-C
     by auto
 qed
qed
4.5.5
          Universes are irreducible hoops
lemma universes-one-fixed:
 assumes i \in I \ a \in \mathbb{A}_i \ b \in \mathbb{A}_i \ a \to^A b = b
 shows a = 1^A \lor b = 1^A
proof -
 from assms
 have \pi a = \pi b if a \neq 1^A b \neq 1^A
   using universes-def universes-subsets indexes-class-of-elements that by force
 then
 have F a = F b if a \neq 1^A b \neq 1^A
   using assms(1-3) universes-subsets same-F-iff-same-class that by blast
 then
 have b = 1^A if a \neq 1^A b \neq 1^A
  {\bf using} \ \textit{F-equiv assms universes-subsets fixed-points.} \textit{cases imp-reflex that } {\bf by} \ \textit{metis}
  then
 show ?thesis
   \mathbf{by} blast
qed
corollary universes-one-fixed-hoops:
 assumes i \in I
 shows totally-ordered-one-fixed-hoop (\mathbb{A}_i) (**A) (\to^A) 1A
proof
 show x *^A y \in \mathbb{A}_i if x \in \mathbb{A}_i y \in \mathbb{A}_i for x y
   using assms universes-mult-closed that by simp
 show x \to^A y \in \mathbb{A}_i if x \in \mathbb{A}_i y \in \mathbb{A}_i for x y
   using assms universes-imp-closed that by simp
next
```

```
show 1^A \in \mathbb{A}_i
   using assms universes-one-closed by simp
  show x *^A y = y *^A x if x \in \mathbb{A}_i y \in \mathbb{A}_i for x y
   using assms universes-subsets mult-comm that by simp
  show x *^A (y *^A z) = (x *^A y) *^A z \text{ if } x \in \mathbb{A}_i \ y \in \mathbb{A}_i \ z \in \mathbb{A}_i \text{ for } x \ y \ z
   using assms universes-subsets mult-assoc that by simp
next
  show x *^A 1^A = x if x \in \mathbb{A}_i for x
   using assms universes-subsets that by simp
  show x \to^A x = 1^A if x \in \mathbb{A}_i for x
   using assms universes-subsets that by simp
  show x *^A (x \to^A y) = y *^A (y \to^A x) if x \in \mathbb{A}_i y \in \mathbb{A}_i for x y
   using assms divisibility universes-subsets that by simp
  show x \to^A (y \to^A z) = (x *^A y) \to^A z \text{ if } x \in \mathbb{A}_i \ y \in \mathbb{A}_i \ z \in \mathbb{A}_i \text{ for } x \ y \ z
   using assms universes-subsets residuation that by simp
  show x \leq^A y \vee y \leq^A x if x \in \mathbb{A}_i y \in \mathbb{A}_i for x y
   using assms total-order universes-subsets that by simp
  show x = 1^A \lor y = 1^A if x \in \mathbb{A}_i y \in \mathbb{A}_i y \to^A x = x for x y
   using assms universes-one-fixed that by blast
corollary universes-irreducible-hoops:
 assumes i \in I
 shows totally-ordered-irreducible-hoop (\mathbb{A}_i) (*^A) (\to^A) 1^A
 using assms universes-one-fixed-hoops totally-ordered-hoop.irreducible-equivalent-to-one-fixed
        totally-ordered-one-fixed-hoop.axioms(1)
 by metis
4.5.6
          Some useful results
lemma index-aux:
 assumes i \in I j \in I i < I j a \in (\mathbb{A}_i) - \{1^A\} b \in (\mathbb{A}_j) - \{1^A\}
 shows a <^A b \land \neg (a \sim F b)
proof -
  have noteq: i \neq j \land x \leq^A y if x \in i y \in j for x y
   using assms that index-order-strict-def by fastforce
  moreover
  have ij-def: i = \pi \ a \land j = \pi \ b
   using UnE assms universes-def universes-subsets indexes-class-of-elements
  ultimately
  have a < A b
```

```
using assms(1,2,4,5) classes-not-empty universes-subsets hoop-order-strict-def
   by blast
 moreover
 have i = j if a \sim F b
  using assms(1,2,4,5) that universes-subsets ij-def related-iff-same-class by auto
 ultimately
 show ?thesis
   using assms(2,3) trichotomy by blast
qed
lemma different-indexes-mult:
 assumes i \in I j \in I i < I j a \in (\mathbb{A}_i) - \{1^A\} b \in (\mathbb{A}_i) - \{1^A\}
 shows a *^A b = a
proof -
 have a <^A b \land \neg (a \sim F b)
   using assms index-aux by blast
 have a <^A b \land F a \neq F b
   using DiffD1 \ assms(1,2,4,5) \ universes-subsets rel-F-equiv by meson
 have a <^A b \land a *^A b = a \land^A b
   using DiffD1 LEMMA-3-3-5 assms(1,2,4,5) universes-subsets by auto
 then
 show ?thesis
   using assms(1,2,4,5) universes-subsets hoop-order-strict-def inf-order by auto
qed
lemma different-indexes-imp-1:
 assumes i \in I j \in I i < I j a \in (\mathbb{A}_i) - \{1^A\} b \in (\mathbb{A}_j) - \{1^A\}
 shows a \rightarrow^A b = 1^A
proof -
 have x \leq^A y if x \in i y \in j for x y
   using assms(1-3) index-order-strict-def that by fastforce
 moreover
 have a \in i \land b \in j
   using assms(4,5) assms(5) universes-def by auto
 ultimately
 show ?thesis
   using hoop-order-def by auto
qed
lemma different-indexes-imp-2:
 assumes i \in I j \in I i < I j a \in (\mathbb{A}_i) - \{1^A\} b \in (\mathbb{A}_i) - \{1^A\}
 shows a \to^A b = b
proof -
 have b <^A a \land \neg(b \sim F a)
   using assms index-aux by blast
 then
 have b <^A a \land F b \neq F a
```

```
using DiffD1 assms(1,2,4,5) universes-subsets rel-F-equiv by metis
  then
  have b \in F a
   using LEMMA-3-3-4 assms(1,2,4,5) universes-subsets by simp
  then
 show ?thesis
   using assms(2,4,5) universes-subsets by fastforce
qed
4.5.7
          Definition of multiplications, implications and one
definition mult-map :: 'a set \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) (MUL<sub>A</sub>)
  where MUL_A \ x = (*^A)
definition imp\text{-}map :: 'a \ set \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) \ (IMP_A)
  where IMP_A x = (\rightarrow^A)
definition sum\text{-}one :: 'a (1^S)
  where 1^S = 1^A
abbreviation (multA-i)
  multA-i :: ['a \ set] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) \ ((*(\bar{})) \ [50] \ 60)
  where *^i \equiv MUL_A i
abbreviation (impA-i)
  impA-i:: ['a set] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) ((\rightarrow(\bar{})) [50] 60)
  where \rightarrow^i \equiv IMP_A i
abbreviation (multA-i-xy)
  mult A-i-xy :: ['a, 'a set, 'a] \Rightarrow 'a (((-)/*(-)) [61, 50, 61] 60)
  where x *^i y \equiv MUL_A i x y
abbreviation (impA-i-xy)
  impA-i-xy :: ['a, 'a set, 'a] <math>\Rightarrow 'a (((-)/\rightarrow(^{-})/(-)) [61, 50, 61] 60)
  where x \to^i y \equiv IMP_A \ i \ x \ y
abbreviation (ord-i-xy)
```

4.5.8 Main result

We prove the main result: a totally ordered hoop is equal to an ordinal sum of a tower of irreducible hoops.

```
sublocale A-SUM: tower-of-irr-hoops I (\leq^I) (<^I) UNI<sub>A</sub> MUL<sub>A</sub> IMP<sub>A</sub> 1<sup>S</sup> proof show (\mathbb{A}_i) \cap (\mathbb{A}_j) = \{1^S\} if i \in I \ j \in I \ i \neq j for i \ j using universes-almost-disjoint sum-one-def that by simp next
```

ord-i- $xy :: ['a, 'a set, 'a] <math>\Rightarrow bool (((-)/ \le (^-) / (-)) [61, 50, 61] 60)$

where $x \leq^i y \equiv hoop.hoop-order (IMP_A i) 1^S x y$

```
show x *^i y \in \mathbb{A}_i if i \in I x \in \mathbb{A}_i y \in \mathbb{A}_i for i x y
    using universes-mult-closed mult-map-def that by simp
next
  show x \to^i y \in \mathbb{A}_i if i \in I x \in \mathbb{A}_i y \in \mathbb{A}_i for i \times y
    using universes-imp-closed imp-map-def that by simp
  show 1^S \in \mathbb{A}_i if i \in I for i
    using universes-one-closed sum-one-def that by simp
next
  show x *^i y = y *^i x if i \in I x \in \mathbb{A}_i y \in \mathbb{A}_i for i x y
    using universes-subsets mult-comm mult-map-def that by simp
  show x *^{i} (y *^{i} z) = (x *^{i} y) *^{i} z
    if i \in I \ x \in \mathbb{A}_i \ y \in \mathbb{A}_i \ z \in \mathbb{A}_i for i \ x \ y \ z
    using universes-subsets mult-assoc mult-map-def that by simp
  show x *^i 1^S = x if i \in I x \in \mathbb{A}_i for i x
    using universes-subsets sum-one-def mult-map-def that by simp
  show x \to^i x = 1^S if i \in I x \in \mathbb{A}_i for i x
    using universes-subsets imp-map-def sum-one-def that by simp
\mathbf{next}
  \mathbf{show} \ x *^i (x \to^i y) = y *^i (y \to^i x)
    if i \in I \ x \in \mathbb{A}_i \ y \in \mathbb{A}_i \ z \in \mathbb{A}_i for i \ x \ y \ z
    using divisibility universes-subsets imp-map-def mult-map-def that by simp
next
  show x \to^i (y \to^i z) = (x *^i y) \to^i z
    if i \in I \ x \in \mathbb{A}_i \ y \in \mathbb{A}_i \ z \in \mathbb{A}_i for i \ x \ y \ z
    using universes-subsets imp-map-def mult-map-def residuation that by simp
next
  show x \leq^i y \vee y \leq^i x if i \in I x \in \mathbb{A}_i y \in \mathbb{A}_i for i x y
    using total-order universes-subsets imp-map-def sum-one-def that by simp
next
  show \not\equiv B C.
       (\mathbb{A}_i = B \cup C) \wedge
       (\{1^S\} = B \cap C) \land
       (\exists y \in B. y \neq 1^S) \land
       (\exists y \in C. \ y \neq 1^S) \land (hoop \ B \ (*^i) \ (\rightarrow^i) \ 1^S) \land
       (hoop \ C\ (*^i)\ (\rightarrow^i)\ 1^S)\ \land
       (\forall \ x \in B - \{1^S\}. \ \forall \ y \in C. \ x *^i y = x) \ \land
       (\forall x \in B - \{1^S\}. \ \forall y \in C. \ x \to^i y = 1^S) \land
       (\forall x \in C. \ \forall y \in B. \ x \to^i y = y)
    if i \in I for i
    using that Un-iff universes-one-fixed-hoops imp-map-def sum-one-def
           totally - ordered - one - fixed - hoop. one - fixed
    by metis
qed
```

```
lemma same-uni [simp]: A-SUM.sum-univ = A
 using A-SUM.sum-univ-def universes-cover by auto
lemma floor-is-class:
 assumes a \in A - \{1^A\}
 shows A-SUM.floor a = \pi \ a
proof -
 have a \in \pi a \land \pi a \in I
   using index-set-def assms classes-not-empty by fastforce
 then
 show ?thesis
  using same-uni A-SUM.floor-prop A-SUM.floor-unique UnCI assms universes-aux
        sum-one-def
   by metis
qed
lemma same-mult:
 assumes a \in A b \in A
 shows a *^A b = A-SUM.sum-mult a b
proof -
 from assms
 consider (1) a \in A - \{1^A\} b \in A - \{1^A\} A-SUM.floor a = A-SUM.floor b
   |(4) a = 1^A \lor b = 1^A
   using same-uni A-SUM.floor-prop fixed-points.cases sum-one-def trichotomy
   by metis
 then
 show ?thesis
 \mathbf{proof}(\mathit{cases})
   case 1
   then
   show ?thesis
    using A-SUM.sum-mult.simps(1) sum-one-def mult-map-def by auto
 \mathbf{next}
   case 2
   define i j where i = A-SUM.floor a and j = A-SUM.floor b
   have i \in I \land j \in I \land a \in (\mathbb{A}_i) - \{1^A\} \land b \in (\mathbb{A}_i) - \{1^A\}
    using 2(1,2) A-SUM.floor-prop sum-one-def by auto
   then
   have a *^A b = a
    using 2(3) different-indexes-mult i-def j-def by blast
   moreover
   have A-SUM.sum-mult \ a \ b = a
    using 2 \text{ A-SUM.sum-mult.simps}(2) \text{ sum-one-def by } \text{simp}
   ultimately
   show ?thesis
    \mathbf{by} \ simp
```

```
next
   case 3
   define i j where i = A-SUM.floor a and j = A-SUM.floor b
   have i \in I \land j \in I \land a \in (\mathbb{A}_i) - \{1^A\} \land b \in (\mathbb{A}_i) - \{1^A\}
     using 3(1,2) A-SUM.floor-prop sum-one-def by auto
   then
   have a *^A b = b
     using 3(3) assms different-indexes-mult i-def j-def mult-comm by metis
   moreover
   have A-SUM.sum-mult\ a\ b=b
     using 3 \text{ A-SUM.sum-mult.simps}(3) \text{ sum-one-def by simp}
   ultimately
   show ?thesis
     by simp
 next
   case 4
   then
   show ?thesis
     using A-SUM.mult-neutr A-SUM.mult-neutr-2 assms sum-one-def by force
 qed
qed
lemma same-imp:
 assumes a \in A \ b \in A
 shows a \rightarrow^A b = A-SUM.sum-imp a b
proof -
 from assms
 consider (1) a \in A - \{1^A\} b \in A - \{1^A\} A-SUM.floor a = A-SUM.floor b
    (2) a \in A - \{1^A\} b \in A - \{1^A\} A-SUM.floor a < I A-SUM.floor b
   (3) a \in A - \{1^A\} b \in A - \{1^A\} A-SUM.floor b < A-SUM.floor a
   (4) \ a = 1^A \lor b = 1^A
   using same-uni A-SUM.floor-prop fixed-points.cases sum-one-def trichotomy
   by metis
 then
 show ?thesis
 proof(cases)
   case 1
   then
   show ?thesis
     using A-SUM.sum-imp.simps(1) imp-map-def sum-one-def by auto
 \mathbf{next}
   case 2
   define i j where i = A-SUM.floor a and j = A-SUM.floor b
   have i \in I \land j \in I \land a \in (\mathbb{A}_i) - \{1^A\} \land b \in (\mathbb{A}_j) - \{1^A\}
     using 2(1,2) A-SUM.floor-prop sum-one-def by simp
   then
   have a \rightarrow^A b = 1^A
```

```
using 2(3) different-indexes-imp-1 i-def j-def by blast
   moreover
   have A-SUM.sum-imp \ a \ b = 1^A
     using 2 A-SUM.sum-imp.simps(2) sum-one-def by simp
   ultimately
   show ?thesis
     by simp
  next
   case 3
   define i j where i = A-SUM.floor a and j = A-SUM.floor b
   have i \in I \land j \in I \land a \in (\mathbb{A}_i) - \{1^A\} \land b \in (\mathbb{A}_j) - \{1^A\}
     using 3(1,2) A-SUM.floor-prop sum-one-def by simp
   then
   have a \rightarrow^A b = b
     using 3(3) different-indexes-imp-2 i-def j-def by blast
   moreover
   have A-SUM.sum-imp\ a\ b=b
     using 3 \text{ A-SUM.sum-imp.simps}(3) \text{ sum-one-def by } auto
   ultimately
   show ?thesis
     \mathbf{by} \ simp
  \mathbf{next}
   case 4
   then
   show ?thesis
     using A-SUM.imp-one-C A-SUM.imp-one-top assms imp-one-C
          imp-one-top sum-one-def
     by force
 qed
qed
lemma ordinal-sum-is-totally-ordered-hoop:
  totally-ordered-hoop A-SUM.sum-univ A-SUM.sum-mult A-SUM.sum-imp 1<sup>S</sup>
proof
 show A-SUM.hoop-order x y \vee A-SUM.hoop-order y x
   if x \in A-SUM.sum-univ y \in A-SUM.sum-univ for x y
   using that A-SUM.hoop-order-def total-order hoop-order-def
         sum-one-def same-imp
   by auto
qed
theorem totally-ordered-hoop-is-equal-to-ordinal-sum-of-tower-of-irr-hoops:
 shows eq-universe: A = A-SUM.sum-univ
 and eq-mult: x \in A \Longrightarrow y \in A \Longrightarrow x *^A y = A\text{-}SUM.sum\text{-}mult x y
 and eq-imp: x \in A \Longrightarrow y \in A \Longrightarrow x \to^A y = A\text{-}SUM.sum\text{-}imp\ x\ y
 and eq-one: 1^A = 1^S
proof
 show A \subseteq A\text{-}SUM.sum\text{-}univ
```

```
by simp
next
show A\text{-}SUM.sum\text{-}univ \subseteq A
by simp
next
show x *^A y = A\text{-}SUM.sum\text{-}mult \ x \ y \ \text{if} \ x \in A \ y \in A \ \text{for} \ x \ y
using same\text{-}mult \ that \ \text{by} \ blast
next
show x \to^A y = A\text{-}SUM.sum\text{-}imp \ x \ y \ \text{if} \ x \in A \ y \in A \ \text{for} \ x \ y
using same\text{-}imp \ that \ \text{by} \ blast
next
show 1^A = 1^S
using sum\text{-}one\text{-}def \ \text{by} \ simp
qed
```

4.5.9 Remarks on the nontrivial case

In the nontrivial case we have that every totally ordered hoop can be written as the ordinal sum of a tower of nontrivial irreducible hoops. The proof of this fact is almost immediate. By definition, $\mathbb{A}_{\pi 1A} = \{1^A\}$ is the only trivial hoop in our tower. Moreover, $\mathbb{A}_{\pi a}$ is non-trivial for every $a \in A - \{1^A\}$. Given that $1^A \in \mathbb{A}_i$ for every $i \in I$ we can simply remove π 1^A from I and obtain the desired result.

```
lemma nontrivial-tower:
 assumes \exists x \in A. x \neq 1^A
 shows
   tower-of-nontrivial-irr-hoops (I - \{\pi \ 1^A\}) \ (\leq^I) \ (<^I) \ UNI_A \ MUL_A \ IMP_A \ 1^S
proof
 show I - \{\pi \ 1^A\} \neq \emptyset
 proof -
   obtain a where a \in A - \{1^A\}
     using assms by blast
   have \pi a \in I - \{\pi \ 1^A\}
    using A-SUM.floor-prop class-not-one class-one floor-is-class sum-one-def by
auto
   then
   show ?thesis
     by auto
 qed
next
 show reflp-on (I - \{\pi \ 1^A\}) \ (\leq^I)
   using Diff-subset reflex reflp-on-subset by meson
  show antisymp-on (I - \{\pi \ 1^A\}) \ (\leq^I)
   using Diff-subset antisymm antisymp-on-subset by meson
 show transp-on (I - \{\pi \ 1^A\}) \ (\leq^I)
```

```
using Diff-subset trans transp-on-subset by meson
next
  show i <^I j = (i \le^I j \land i \ne j) if i \in I - \{\pi \ 1^A\} \ j \in I - \{\pi \ 1^A\} for i j
    using index-order-strict-def by simp
  show totalp-on (I - \{\pi \ 1^A\}) \ (\leq^I)
    using Diff-subset total totalp-on-subset by meson
  show (\mathbb{A}_i) \cap (\mathbb{A}_j) = \{1^S\} if i \in I - \{\pi \ 1^A\} \ j \in I - \{\pi \ 1^A\} \ i \neq j for i \ j
    using A-SUM.almost-disjoint that by blast
next
  show x *^i y \in \mathbb{A}_i if i \in I - \{\pi \ 1^A\} x \in \mathbb{A}_i y \in \mathbb{A}_i for i x y
    using A-SUM.floor-mult-closed that by blast
  show x \to^i y \in \mathbb{A}_i if i \in I - \{\pi \ 1^A\} x \in \mathbb{A}_i y \in \mathbb{A}_i for i x y
    using A-SUM.floor-imp-closed that by blast
  show 1^S \in \mathbb{A}_i if i \in I - \{\pi \ 1^A\} for i
    using universes-one-closed sum-one-def that by simp
  show x *^i y = y *^i x if i \in I - \{\pi \ 1^A\} x \in \mathbb{A}_i \ y \in \mathbb{A}_i for i \ x \ y
    using universes-subsets mult-comm mult-map-def that by force
  show x *^{i} (y *^{i} z) = (x *^{i} y) *^{i} z
    if i \in I - \{\pi \ 1^A\} x \in \mathbb{A}_i \ y \in \mathbb{A}_i \ z \in \mathbb{A}_i for i \ x \ y \ z
    using universes-subsets mult-assoc mult-map-def that by force
  show x *^i 1^S = x if i \in I - \{\pi 1^A\} x \in \mathbb{A}_i for i x
    using universes-subsets sum-one-def mult-map-def that by force
  show x \to^i x = 1^S if i \in I - \{\pi \ 1^A\} x \in \mathbb{A}_i for i \ x
    using universes-subsets imp-map-def sum-one-def that by force
next
  \mathbf{show}\ x *^{i} (x \to^{i} y) = y *^{i} (y \to^{i} x)
    if i \in I - \{\pi \ 1^A\} x \in \mathbb{A}_i \ y \in \mathbb{A}_i \ z \in \mathbb{A}_i for i \ x \ y \ z
    using divisibility universes-subsets imp-map-def mult-map-def that by auto
next
  \mathbf{show} \ x \to^i (y \to^i z) = (x *^i y) \to^i z
    if i \in I - \{\pi^{i} 1^{A}\} x \in \mathbb{A}_{i} y \in \mathbb{A}_{i} z \in \mathbb{A}_{i} for i \times y \times z
    using universes-subsets imp-map-def mult-map-def residuation that by force
next
  show x \leq^i y \vee y \leq^i x if i \in I - \{\pi \ 1^A\} \ x \in \mathbb{A}_i \ y \in \mathbb{A}_i for i \ x \ y
     using DiffE total-order universes-subsets imp-map-def sum-one-def that by
metis
\mathbf{next}
  show \not\equiv B C.
       (\mathbb{A}_i = B \cup C) \wedge
       (\{1^S\} = B \cap C) \land 
       (\exists y \in B. \ y \neq 1^S) \land
```

```
 \begin{array}{l} (\exists \ y \in C. \ y \neq 1^S) \ \land \\ (hoop \ B \ (*^i) \ (\rightarrow^i) \ 1^S) \ \land \\ (hoop \ C \ (*^i) \ (\rightarrow^i) \ 1^S) \ \land \end{array} 
        (\forall \ x \in B - \{1^S\}. \ \forall \ y \in C. \ x *^i y = x) \ \land
        (\forall x \in B - \{1^S\}. \ \forall y \in C. \ x \to^i y = 1^S) \land
        (\forall \ x \in C. \ \forall \ y \in B. \ x \to^i y = y)
    if i \in I - \{\pi \ 1^A\} for i
   using that Diff-iff Un-iff universes-one-fixed imp-map-def sum-one-def by metis
next
  show \exists x \in \mathbb{A}_i. x \neq 1^S if i \in I - \{\pi \ 1^A\} for i
    using universes-def indexes-class-of-elements indexes-not-empty that
    by fastforce
qed
\mathbf{lemma} \ \mathit{ordinal\text{-}sum\text{-}of\text{-}nontrivial\text{:}}
  assumes \exists x \in A. x \neq 1^A
  shows A-SUM.sum-univ = \{x. \exists i \in I - \{\pi \ 1^A\}. \ x \in \mathbb{A}_i\}
  show A-SUM.sum-univ \subseteq \{x. \exists i \in I - \{\pi \ 1^A\}. \ x \in \mathbb{A}_i\}
  proof
    \mathbf{fix} \ a
    assume a \in A\text{-}SUM.sum\text{-}univ
    then
    consider (1) a \in A - \{1^A\}
      |(2)| a = 1^A
      by auto
    then
    show a \in \{x. \exists i \in I - \{\pi \ 1^A\}. x \in \mathbb{A}_i\}
    proof(cases)
      case 1
       then
      obtain i where i = \pi \ a
        by simp
       then
       have a \in \mathbb{A}_i \wedge i \in I - \{\pi \ 1^A\}
        using 1 A-SUM.floor-prop class-not-one class-one floor-is-class sum-one-def
        by auto
       then
       show ?thesis
         by blast
    \mathbf{next}
       case 2
      obtain c where c \in A - \{1^A\}
         using assms by blast
       then
       obtain i where i = \pi c
        by simp
       then
      have a \in \mathbb{A}_i \wedge i \in I - \{\pi \ 1^A\}
```

4.5.10 Converse of main result

by meson

end

We show that the converse of the main result also holds, that is, the ordinal sum of a tower of irreducible hoops is a totally ordered hoop.

```
context tower-of-irr-hoops
begin
proposition ordinal-sum-of-tower-of-irr-hoops-is-totally-ordered-hoop:
  shows totally-ordered-hoop S (*^S) (\rightarrow^S) 1^S
proof
  show hoop-order a\ b\ \lor\ hoop\text{-}order\ b\ a\ \mathbf{if}\ a\in S\ b\in S\ \mathbf{for}\ a\ b
  proof -
   from that
   consider (1) a \in S - \{1^S\} b \in S - \{1^S\} floor a = floor b
     (2) a \in S - \{1^S\} b \in S - \{1^S\} floor a < I floor b \lor floor b < I floor a \in S - \{1^S\}
      (3) \ a = 1^S \lor b = 1^S
     using floor.cases floor-prop trichotomy by metis
   then
   show hoop-order a b \lor hoop-order b a
   proof(cases)
     case 1
      then
      have a \in \mathbb{A}_{floor\ a} \land b \in \mathbb{A}_{floor\ a}
       using 1 floor-prop by metis
      moreover
      have totally-ordered-hoop (\mathbb{A}_{floor\ a})\ (*^{floor\ a})\ (\to^{floor\ a})\ 1^S
       using 1(1) family-of-irr-hoops totally-ordered-irreducible-hoop.axioms(1)
             floor-prop
       by meson
      ultimately
      have a \rightarrow^{\tilde{f}loor \ a} b = 1^S \lor b \rightarrow^{floor \ a} a = 1^S
        using hoop.hoop-order-def totally-ordered-hoop.total-order
              totally	ext{-}ordered	ext{-}hoop	ext{-}def
```

```
have a \rightarrow^S b = a \rightarrow^{floor\ a} b \wedge b \rightarrow^S a = b \rightarrow^{floor\ a} a
       using 1 by auto
     ultimately
     show ?thesis
       using hoop-order-def by force
   \mathbf{next}
     case 2
     then
     show ?thesis
       using sum\text{-}imp.simps(2) hoop-order-def by blast
   \mathbf{next}
     case 3
     then
     show ?thesis
       using that ord-top by auto
   qed
  qed
qed
end
end
```

5 BL-chains

BL-chains generate the variety of BL-algebras, the algebraic counterpart of the Basic Fuzzy Logic (see [6]). As mentioned in the abstract, this formalization is based on the proof for BL-chains found in [5]. We define BL-chain and bounded tower of irreducible hoops and formalize the main result on that paper (Theorem 3.4).

```
theory BL-Chains
imports Totally-Ordered-Hoops
```

begin

5.1 Definitions

```
 \begin{aligned} & \textbf{locale} \ \textit{bl-chain} = \textit{totally-ordered-hoop} \ + \\ & \textbf{fixes} \ \textit{zeroA} :: \ 'a \ (\theta^A) \\ & \textbf{assumes} \ \textit{zero-closed} : \ \theta^A \in A \\ & \textbf{assumes} \ \textit{zero-first} : \ x \in A \Longrightarrow \theta^A \leq^A x \end{aligned}   \begin{aligned} & \textbf{locale} \ \textit{bounded-tower-of-irr-hoops} = \textit{tower-of-irr-hoops} \ + \\ & \textbf{fixes} \ \textit{zeroI} \ (\theta^I) \\ & \textbf{fixes} \ \textit{zeroS} \ (\theta^S) \\ & \textbf{assumes} \ \textit{I-zero-closed} : \ \theta^I \in I \\ & \textbf{and} \ \textit{zero-first} : \ i \in I \Longrightarrow \theta^I \leq^I \ i \end{aligned}
```

```
and first-zero-closed: 0^S \in UNI \ 0^I
 and first-bounded: x \in UNI \ \theta^I \implies IMP \ \theta^I \ \theta^S \ x = 1^S
begin
abbreviation (uni-zero)
  uni-zero :: 'b set (\mathbb{A}_{0I})
  where \mathbb{A}_{0I} \equiv UNI \ \theta^I
abbreviation (imp-zero)
 \begin{array}{l} \textit{imp-zero} :: [\textit{'b}, \textit{'b}] \Rightarrow \textit{'b} \ (((-)/\rightarrow^{0I}/(-)) \ [61,61] \ 60) \\ \mathbf{where} \ x \rightarrow^{0I} y \equiv \textit{IMP} \ 0^{I} \ x \ y \end{array}
end
context bl-chain
begin
5.2
        First element of I
definition zeroI :: 'a \ set \ (\theta^I)
  where \theta^I = \pi \ \theta^A
lemma I-zero-closed: \theta^I \in I
  using index-set-def zero-losed by auto
lemma I-has-first-element:
  assumes i \in I \ i \neq 0^I
  shows \theta^I <^I i
  have x <^A y if i <^I \theta^I x \in i y \in \theta^I for x y
    using I-zero-closed assms(1) index-order-strict-def that by fastforce
 have x <^A \theta^A if i <^I \theta^I x \in i for x
    using classes-not-empty zeroI-def zero-closed that by simp
 moreover
 have 0^A \leq^A x if x \in i for x
    using assms(1) that in-mono indexes-subsets zero-first by meson
  have x = \theta^A if i <^I \theta^I x \in i for x
    using assms(1) indexes-subsets ord-antisymm zero-closed that by blast
  moreover
  have \theta^A \in \theta^I
    using classes-not-empty zeroI-def zero-closed by simp
  ultimately
  have i \cap \theta^I \neq \emptyset if i <^I \theta^I
    using assms(1) indexes-not-empty that by force
  moreover
 have i <^I \theta^I \lor \theta^I <^I i
    using I-zero-closed assms trichotomy by auto
```

```
ultimately
 show ?thesis
   using I-zero-closed assms(1) indexes-disjoint by auto
       Main result for BL-chains
5.3
definition zeroS :: 'a (0^S)
  where \theta^S = \theta^A
abbreviation (uniA-zero)
  uniA-zero :: 'a set ((\mathbb{A}_{0I}))
 where \mathbb{A}_{0I} \equiv UNI_A \ \theta^I
abbreviation (impA-zero-xy)
 impA-zero-xy :: ['a, 'a] \Rightarrow 'a (((-)/\rightarrow<sup>01</sup>/(-)) [61, 61] 60)
 where x \to^{0I} y \equiv IMP_A \ 0^I \ x \ y
lemma tower-is-bounded:
 shows bounded-tower-of-irr-hoops I (\leq^I) (<^I) UNI_A MUL_A IMP_A 1^S \theta^I \theta^S
 show \theta^I \in I
   using I-zero-closed by simp
 show \theta^I \leq^I i if i \in I for i
   using I-has-first-element index-ord-reflex index-order-strict-def that by blast
next
 show \theta^S \in \mathbb{A}_{0I}
   using classes-not-empty universes-def zeroI-def zeroS-def zero-closed by simp
 show \theta^S \to^{0I} x = 1^S if x \in \mathbb{A}_{0I} for x
   using I-zero-closed universes-subsets hoop-order-def imp-map-def sum-one-def
         zeroS-def zero-first that
   by simp
qed
lemma ordinal-sum-is-bl-totally-ordered:
 \mathbf{shows}\ bl\text{-}chain\ A\text{-}SUM.sum\text{-}univ\ A\text{-}SUM.sum\text{-}mult\ A\text{-}SUM.sum\text{-}imp\ 1^S\ 0^S
proof
  show A-SUM.hoop-order x y \vee A-SUM.hoop-order y x
   if x \in A-SUM.sum-univ y \in A-SUM.sum-univ for x y
   using ordinal-sum-is-totally-ordered-hoop totally-ordered-hoop.total-order that
   by meson
 show 0^S \in A\text{-}SUM.sum\text{-}univ
   using zeroS-def zero-closed by simp
 show A-SUM.hoop-order 0^S x if x \in A-SUM.sum-univ for x
  using A-SUM.hoop-order-def eq-imp hoop-order-def sum-one-def zeroS-def zero-closed
```

```
zero-first that
    by simp
qed
\textbf{theorem} \ \ bl\text{-}chain\text{-}is\text{-}equal\text{-}to\text{-}ordinal\text{-}sum\text{-}of\text{-}bounded\text{-}tower\text{-}of\text{-}irr\text{-}hoops:}
  shows eq-universe: A = A-SUM.sum-univ
  \textbf{and} \ \textit{eq-mult:} \ x \in A \Longrightarrow y \in A \Longrightarrow x *^A y = A\text{-}SUM.sum\text{-}mult \ x \ y
  and eq-imp: x \in A \Longrightarrow y \in A \Longrightarrow x \to^A y = A\text{-SUM.sum-imp } x y
  and eq-zero: \theta^A = \theta^S
  and eq-one: 1^A = 1^S
proof
  show A \subseteq A-SUM.sum-univ
    by auto
\mathbf{next}
  show A-SUM.sum-univ \subseteq A
    by auto
next
  show x *^A y = A-SUM.sum-mult x y if x \in A y \in A for x y
    using eq-mult that by blast
  show x \to^A y = A\text{-}SUM.sum\text{-}imp\ x\ y\ \text{if}\ x \in A\ y \in A\ \text{for}\ x\ y
    using eq-imp that by blast
  \mathbf{show} \,\, \theta^A = \theta^S
    using zeroS-def by simp
next
  \mathbf{show} \ 1^A = 1^S
    using sum-one-def by simp
\mathbf{qed}
```

5.4 Converse of main result for BL-chains

 $\begin{array}{ll} \textbf{context} \ \ bounded\text{-}tower\text{-}of\text{-}irr\text{-}hoops \\ \textbf{begin} \end{array}$

end

We show that the converse of the main result holds if $0^S \neq 1^S$. If $0^S = 1^S$ then the converse may not be true. For example, take a trivial hoop A and an arbitrary not bounded Wajsberg hoop B such that $A \cap B = \{1\}$. The ordinal sum of both hoops is equal to B and therefore not bounded.

```
proposition ordinal-sum-of-bounded-tower-of-irr-hoops-is-bl-chain: assumes 0^S \neq 1^S shows bl-chain S (*^S) (\rightarrow^S) 1^S 0^S proof show hoop-order a b \vee hoop-order b a if a \in S b \in S for a b proof — from that consider (1) a \in S - \{1^S\} b \in S - \{1^S\} floor a = floor b
```

```
| (2) a \in S - \{1^S\} b \in S - \{1^S\} floor a <^I floor b \lor floor b <^I floor a \mid (3) a = 1^S \lor b = 1^S
      using floor.cases floor-prop trichotomy by metis
    then
    show ?thesis
    proof(cases)
     case 1
      then
      have a \in \mathbb{A}_{floor\ a} \land b \in \mathbb{A}_{floor\ a}
        using 1 floor-prop by metis
      moreover
      have totally-ordered-hoop (\mathbb{A}_{floor\ a})\ (*^{floor\ a})\ (\to^{floor\ a})\ 1^S
        using 1(1) family-of-irr-hoops totally-ordered-irreducible-hoop.axioms(1)
              floor-prop
       by meson
      ultimately
      have a \rightarrow^{\tilde{f}loor \ a} b = 1^S \lor b \rightarrow^{floor \ a} a = 1^S
        \mathbf{using}\ hoop.hoop\text{-}order\text{-}def\ totally\text{-}ordered\text{-}hoop.total\text{-}order
              totally-ordered-hoop-def
       by meson
      moreover
      have a \rightarrow^S b = a \rightarrow^{floor\ a} b \wedge b \rightarrow^S a = b \rightarrow^{floor\ a} a
        using 1 by auto
      ultimately
     show ?thesis
        using hoop-order-def by force
    \mathbf{next}
     case 2
     then
     show ?thesis
        using sum\text{-}imp.simps(2) hoop-order-def by blast
     case 3
      then
     show ?thesis
        using that ord-top by auto
    qed
  qed
\mathbf{next}
  \mathbf{show}\ \theta^S \in S
    using first-zero-closed I-zero-closed sum-subsets by auto
  show hoop-order 0^S a if a \in S for a
  proof -
   have zero-dom: \theta^S \in \mathbb{A}_{0I} \wedge \theta^S \in S - \{1^S\}
      using I-zero-closed sum-subsets assms first-zero-closed by blast
    have floor 0^S \leq^I floor x if 0^S \in S - \{1^S\} x \in S - \{1^S\} for x
      using I-zero-closed floor-prop floor-unique that(2) zero-dom zero-first
```

```
by metis
    ultimately
    have floor 0^S \leq^I floor x if x \in S - \{1^S\} for x
       using that by blast
     \begin{array}{l} \textbf{consider} \ (1) \ \theta^S \in S - \{1^S\} \ a \in S - \{1^S\} \ floor \ \theta^S = floor \ a \\ \mid (2) \ \theta^S \in S - \{1^S\} \ a \in S - \{1^S\} \ floor \ \theta^S <^I \ floor \ a \end{array} 
       \mathbf{using} \ \langle a \in S \rangle \ floor.cases \ floor-prop \ strict-order-equiv-not-converse
              trichotomy\ zero	ext{-}dom
       \mathbf{by}\ \mathit{metis}
    then
    \mathbf{show}\ hoop\text{-}order\ \theta^S\ a
    proof(cases)
       case 1
       then
       have \theta^S \in \mathbb{A}_{0I} \wedge a \in \mathbb{A}_{0I}
         using I-zero-closed first-zero-closed floor-prop floor-unique by metis
       have \theta^S \to^S a = \theta^S \to^{0I} a \wedge \theta^S \to^{0I} a = 1^S
        using 1 I-zero-closed sum-imp.simps(1) first-bounded floor-prop floor-unique
         by metis
       then
       show ?thesis
         using hoop-order-def by blast
    \mathbf{next}
       \mathbf{case}\ \mathcal{2}
       then
       show ?thesis
         using sum-imp.simps(2,5) hoop-order-def by meson
    \mathbf{next}
       case 3
       then
       \mathbf{show} \ ?thesis
         using ord-top zero-dom by auto
    qed
  qed
qed
end
```

end

References

- [1] P. Agliano and F. Montagna. Varieties of BL-algebras I: general properties. *Journal of Pure and Applied Algebra*, 181(2):105–129, 2003.
- [2] W. J. Blok and M. A. Ferreirim. On the structure of hoops. *Algebra Universalis*, 43(2):233–257, 2000.
- [3] B. Bosbach. Komplementäre Halbgruppen. Axiomatik und Arithmetik. Fundamenta Mathematicae, 64:257–287, 1969.
- [4] J. R. Büchi and T. M. Owens. Complemented monoids and hoops. *unpublished manuscript*, 1975.
- [5] M. Busaniche. Decomposition of BL-chains. *Algebra Universalis*, 52(4):519–525, 2005.
- [6] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, Boston and London, 1998.