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Abstract

A well known result from algebra is that, on any field, there is
exactly one polynomial of degree less than n interpolating n points [1,
§7].

This entry contains a formalization of the above result, as well as
the following generalization in the case of finite fields F : There are
|F |m−n polynomials of degree less than m ≥ n interpolating the same
n points, where |F | denotes the size of the domain of the field. To
establish the result the entry also includes a formalization of Lagrange
interpolation, which might be of independent interest.

The formalized results are defined on the algebraic structures from
HOL-Algebra, which are distinct from the type-class based structures
defined in HOL. Note that there is an existing formalization for polyno-
mial interpolation and, in particular, Lagrange interpolation by Thie-
mann and Yamada [2] on the type-class based structures in HOL.
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1 Bounded Degree Polynomials

This section contains a definition for the set of polynomials with a degree
bound and establishes its cardinality.
theory Bounded-Degree-Polynomials

imports HOL−Algebra.Polynomial-Divisibility
begin

lemma (in ring) coeff-in-carrier : p ∈ carrier (poly-ring R) =⇒ coeff p i ∈ carrier
R
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〈proof 〉

definition bounded-degree-polynomials
where bounded-degree-polynomials F n = {x. x ∈ carrier (poly-ring F) ∧ (degree

x < n ∨ x = [])}

Note: The definition for bounded-degree-polynomials includes the zero poly-
nomial in bounded-degree-polynomials F 0. The reason for this adjustment
is that, contrary to definition in HOL Algebra, most authors set the degree
of the zero polynomial to −∞ [1, §7.2.2]. That definition make some identi-
ties, such as deg(fg) = deg f+deg g for polynomials f and g unconditionally
true. In particular, it prevents an unnecessary corner case in the statement
of the results established in this entry.
lemma bounded-degree-polynomials-length:

bounded-degree-polynomials F n = {x. x ∈ carrier (poly-ring F) ∧ length x ≤ n}
〈proof 〉

lemma (in ring) fin-degree-bounded:
assumes finite (carrier R)
shows finite (bounded-degree-polynomials R n)
〈proof 〉

lemma (in ring) non-empty-bounded-degree-polynomials:
bounded-degree-polynomials R k 6= {}
〈proof 〉

lemma in-image-by-witness:
assumes

∧
x. x ∈ A =⇒ g x ∈ B ∧ f (g x) = x

shows A ⊆ f ‘ B
〈proof 〉

lemma card-mostly-constant-maps:
assumes y ∈ B
shows card {f . range f ⊆ B ∧ (∀ x. x ≥ n −→ f x = y)} = card B ^ n (is card

?A = ?B)
〈proof 〉

definition (in ring) build-poly where
build-poly f n = normalize (rev (map f [0 ..<n]))

lemma (in ring) poly-degree-bound-from-coeff :
assumes x ∈ carrier (poly-ring R)
assumes

∧
k. k ≥ n =⇒ coeff x k = 0

shows degree x < n ∨ x = 0poly-ring R
〈proof 〉

lemma (in ring) poly-degree-bound-from-coeff-1 :
assumes x ∈ carrier (poly-ring R)
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assumes
∧

k. k ≥ n =⇒ coeff x k = 0
shows x ∈ bounded-degree-polynomials R n
〈proof 〉

lemma (in ring) length-build-poly:
length (build-poly f n) ≤ n
〈proof 〉

lemma (in ring) build-poly-degree:
degree (build-poly f n) ≤ n−1
〈proof 〉

lemma (in ring) build-poly-poly:
assumes

∧
i. i < n =⇒ f i ∈ carrier R

shows build-poly f n ∈ carrier (poly-ring R)
〈proof 〉

lemma (in ring) build-poly-coeff :
coeff (build-poly f n) i = (if i < n then f i else 0)
〈proof 〉

lemma (in ring) build-poly-bounded:
assumes

∧
k. k < n =⇒ f k ∈ carrier R

shows build-poly f n ∈ bounded-degree-polynomials R n
〈proof 〉

The following establishes the total number of polynomials with a degree less
than n. Unlike the results in the following sections, it is already possible to
establish this property for polynomials with coefficients in a ring.
lemma (in ring) bounded-degree-polynomials-card:

card (bounded-degree-polynomials R n) = card (carrier R) ^ n
〈proof 〉

end

2 Lagrange Interpolation

This section introduces the function interpolate, which constructs the La-
grange interpolation polynomials for a given set of points, followed by a
theorem of its correctness.
theory Lagrange-Interpolation

imports HOL−Algebra.Polynomial-Divisibility
begin

A finite product in a domain is 0 if and only if at least one factor is. This
could be added to HOL−Algebra.FiniteProduct or HOL−Algebra.Ring.
lemma (in domain) finprod-zero-iff :
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assumes finite A
assumes

∧
a. a ∈ A =⇒ f a ∈ carrier R

shows finprod R f A = 0 ←→ (∃ x ∈ A. f x = 0)
〈proof 〉

lemma (in ring) poly-of-const-in-carrier :
assumes s ∈ carrier R
shows poly-of-const s ∈ carrier (poly-ring R)
〈proof 〉

lemma (in ring) eval-poly-of-const:
assumes x ∈ carrier R
shows eval (poly-of-const x) y = x
〈proof 〉

lemma (in ring) eval-in-carrier-2 :
assumes x ∈ carrier (poly-ring R)
assumes y ∈ carrier R
shows eval x y ∈ carrier R
〈proof 〉

lemma (in domain) poly-mult-degree-le-1 :
assumes x ∈ carrier (poly-ring R)
assumes y ∈ carrier (poly-ring R)
shows degree (x ⊗poly-ring R y) ≤ degree x + degree y
〈proof 〉

lemma (in domain) poly-mult-degree-le:
assumes x ∈ carrier (poly-ring R)
assumes y ∈ carrier (poly-ring R)
assumes degree x ≤ n
assumes degree y ≤ m
shows degree (x ⊗poly-ring R y) ≤ n + m
〈proof 〉

lemma (in domain) poly-add-degree-le:
assumes x ∈ carrier (poly-ring R) degree x ≤ n
assumes y ∈ carrier (poly-ring R) degree y ≤ n
shows degree (x ⊕poly-ring R y) ≤ n
〈proof 〉

lemma (in domain) poly-sub-degree-le:
assumes x ∈ carrier (poly-ring R) degree x ≤ n
assumes y ∈ carrier (poly-ring R) degree y ≤ n
shows degree (x 	poly-ring R y) ≤ n
〈proof 〉

lemma (in domain) poly-sum-degree-le:
assumes finite A
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assumes
∧

x. x ∈ A =⇒ degree (f x) ≤ n
assumes

∧
x. x ∈ A =⇒ f x ∈ carrier (poly-ring R)

shows degree (finsum (poly-ring R) f A) ≤ n
〈proof 〉

definition (in ring) lagrange-basis-polynomial-aux where
lagrange-basis-polynomial-aux S =
(
⊗

poly-ring R s ∈ S . X 	poly-ring R (poly-of-const s))

lemma (in domain) lagrange-aux-eval:
assumes finite S
assumes S ⊆ carrier R
assumes x ∈ carrier R
shows (eval (lagrange-basis-polynomial-aux S) x) = (

⊗
s ∈ S . x 	 s)

〈proof 〉

lemma (in domain) lagrange-aux-poly:
assumes finite S
assumes S ⊆ carrier R
shows lagrange-basis-polynomial-aux S ∈ carrier (poly-ring R)
〈proof 〉

lemma (in domain) poly-prod-degree-le:
assumes finite A
assumes

∧
x. x ∈ A =⇒ f x ∈ carrier (poly-ring R)

shows degree (finprod (poly-ring R) f A) ≤ (
∑

x ∈ A. degree (f x))
〈proof 〉

lemma (in domain) lagrange-aux-degree:
assumes finite S
assumes S ⊆ carrier R
shows degree (lagrange-basis-polynomial-aux S) ≤ card S
〈proof 〉

definition (in ring) lagrange-basis-polynomial where
lagrange-basis-polynomial S x = lagrange-basis-polynomial-aux S
⊗poly-ring R (poly-of-const (invR (

⊗
s ∈ S . x 	 s)))

lemma (in field)
assumes finite S
assumes S ⊆ carrier R
assumes x ∈ carrier R − S
shows

lagrange-one: eval (lagrange-basis-polynomial S x) x = 1 and
lagrange-degree: degree (lagrange-basis-polynomial S x) ≤ card S and
lagrange-zero:

∧
s. s ∈ S =⇒ eval (lagrange-basis-polynomial S x) s = 0 and

lagrange-poly: lagrange-basis-polynomial S x ∈ carrier (poly-ring R)
〈proof 〉

5



definition (in ring) interpolate where
interpolate S f =
(
⊕

poly-ring Rs ∈ S . lagrange-basis-polynomial (S − {s}) s ⊗poly-ring R (poly-of-const
(f s)))

Let f be a function and S be a finite subset of the domain of the field.
Then interpolate S f will return a polynomial with degree less than card S
interpolating f on S.
theorem (in field)

assumes finite S
assumes S ⊆ carrier R
assumes f ‘ S ⊆ carrier R
shows

interpolate-poly: interpolate S f ∈ carrier (poly-ring R) and
interpolate-degree: degree (interpolate S f ) ≤ card S − 1 and
interpolate-eval:

∧
s. s ∈ S =⇒ eval (interpolate S f ) s = f s

〈proof 〉

end

3 Cardinalities of Interpolation Polynomials

This section establishes the cardinalities of the set of polynomials with a
degree bound interpolating a given set of points.
theory Interpolation-Polynomial-Cardinalities

imports Bounded-Degree-Polynomials Lagrange-Interpolation
begin

lemma (in ring) poly-add-coeff :
assumes x ∈ carrier (poly-ring R)
assumes y ∈ carrier (poly-ring R)
shows coeff (x ⊕poly-ring R y) k = coeff x k ⊕ coeff y k
〈proof 〉

lemma (in domain) poly-neg-coeff :
assumes x ∈ carrier (poly-ring R)
shows coeff (	poly-ring R x) k = 	coeff x k
〈proof 〉

lemma (in domain) poly-substract-coeff :
assumes x ∈ carrier (poly-ring R)
assumes y ∈ carrier (poly-ring R)
shows coeff (x 	poly-ring R y) k = coeff x k 	 coeff y k
〈proof 〉

A polynomial with more zeros than its degree is the zero polynomial.
lemma (in field) max-roots:
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assumes p ∈ carrier (poly-ring R)
assumes K ⊆ carrier R
assumes finite K
assumes degree p < card K
assumes

∧
x. x ∈ K =⇒ eval p x = 0

shows p = 0poly-ring R
〈proof 〉

definition (in ring) split-poly
where split-poly K p = (restrict (eval p) K , λk. coeff p (k+card K ))

To establish the count of the number of polynomials of degree less than n
interpolating a function f on K where |K| ≤ n, the function split-poly K
establishes a bijection between the polynomials of degree less than n and
the values of the polynomials on K in combination with the coefficients of
order |K| and greater.
For the injectivity: Note that the difference of two polynomials whose coef-
ficients of order |K| and larger agree must have a degree less than |K| and
because their values agree on k points, it must have |K| zeros and hence is
the zero polynomial.
For the surjectivty: Let p be a polynomial whose coefficients larger than
|K| are chosen, and all other coefficients be 0. Now it is possible to find a
polynomial q interpolating f − p on K using Lagrange interpolation. Then
p + q will interpolate f on K and because the degree of q is less than |K|
its coefficients of order |K| will be the same as those of p.
A tempting question is whether it would be easier to instead establish a
bijection between the polynomials of degree less than n and its values on
K ∪ K ′ where K ′ are arbitrarily chosen n − |K| points in the field. This
approach is indeed easier, however, it fails for the case where the size of the
field is less than n.
lemma (in field) split-poly-inj:

assumes finite K
assumes K ⊆ carrier R
shows inj-on (split-poly K ) (carrier (poly-ring R))
〈proof 〉

lemma (in field) split-poly-image:
assumes finite K
assumes K ⊆ carrier R
shows split-poly K ‘ carrier (poly-ring R) ⊇

(K →E carrier R) × {f . range f ⊆ carrier R ∧ (∃n. ∀ k ≥ n. f k = 0R)}
〈proof 〉

This is like card-vimage-inj but supports inj-on instead.
lemma card-vimage-inj-on:

assumes inj-on f B
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assumes A ⊆ f ‘ B
shows card (f −‘ A ∩ B) = card A
〈proof 〉

lemma inv-subsetI :
assumes

∧
x. x ∈ A =⇒ f x ∈ B =⇒ x ∈ C

shows f −‘ B ∩ A ⊆ C
〈proof 〉

The following establishes the main result of this section: There are |F |n−k

polynomials of degree less than n interpolating k ≤ n points.
lemma restrict-eq-imp:

assumes restrict f A = restrict g A
assumes x ∈ A
shows f x = g x
〈proof 〉

theorem (in field) interpolating-polynomials-card:
assumes finite K
assumes K ⊆ carrier R
assumes f ‘ K ⊆ carrier R
shows card {ω ∈ bounded-degree-polynomials R (card K + n). (∀ k ∈ K . eval ω

k = f k)} = card (carrier R)^n
(is card ?A = ?B)

〈proof 〉

A corollary is the classic result [1, Theorem 7.15] that there is exactly one
polynomial of degree less than n interpolating n points:
corollary (in field) interpolating-polynomial-one:

assumes finite K
assumes K ⊆ carrier R
assumes f ‘ K ⊆ carrier R
shows card {ω ∈ bounded-degree-polynomials R (card K ). (∀ k ∈ K . eval ω k =

f k)} = 1
〈proof 〉

In the case of fields with infinite carriers, it is possible to conclude that there
are infinitely many polynomials of degree less than n interpolating k < n
points.
corollary (in field) interpolating-polynomial-inf :

assumes infinite (carrier R)
assumes finite K K ⊆ carrier R f ‘ K ⊆ carrier R
assumes n > 0
shows infinite {ω ∈ bounded-degree-polynomials R (card K + n). (∀ k ∈ K . eval

ω k = f k)}
(is infinite ?A)

〈proof 〉
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The following is an additional independent result: The evaluation homomor-
phism is injective for degree one polynomials.
lemma (in field) eval-inj-if-degree-1 :

assumes p ∈ carrier (poly-ring R) degree p = 1
shows inj-on (eval p) (carrier R)
〈proof 〉

end
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