
Interpolation Polynomials (in HOL-Algebra)

Emin Karayel

March 11, 2024

Abstract

A well known result from algebra is that, on any field, there is
exactly one polynomial of degree less than n interpolating n points [1,
§7].

This entry contains a formalization of the above result, as well as
the following generalization in the case of finite fields F : There are
|F |m−n polynomials of degree less than m ≥ n interpolating the same
n points, where |F | denotes the size of the domain of the field. To
establish the result the entry also includes a formalization of Lagrange
interpolation, which might be of independent interest.

The formalized results are defined on the algebraic structures from
HOL-Algebra, which are distinct from the type-class based structures
defined in HOL. Note that there is an existing formalization for polyno-
mial interpolation and, in particular, Lagrange interpolation by Thie-
mann and Yamada [2] on the type-class based structures in HOL.

Contents
1 Bounded Degree Polynomials 1

2 Lagrange Interpolation 5

3 Cardinalities of Interpolation Polynomials 13

1 Bounded Degree Polynomials

This section contains a definition for the set of polynomials with a degree
bound and establishes its cardinality.
theory Bounded-Degree-Polynomials

imports HOL−Algebra.Polynomial-Divisibility
begin

lemma (in ring) coeff-in-carrier : p ∈ carrier (poly-ring R) =⇒ coeff p i ∈ carrier
R

1

using poly-coeff-in-carrier carrier-is-subring by (simp add: univ-poly-carrier)

definition bounded-degree-polynomials
where bounded-degree-polynomials F n = {x. x ∈ carrier (poly-ring F) ∧ (degree

x < n ∨ x = [])}

Note: The definition for bounded-degree-polynomials includes the zero poly-
nomial in bounded-degree-polynomials F 0. The reason for this adjustment
is that, contrary to definition in HOL Algebra, most authors set the degree
of the zero polynomial to −∞ [1, §7.2.2]. That definition make some identi-
ties, such as deg(fg) = deg f+deg g for polynomials f and g unconditionally
true. In particular, it prevents an unnecessary corner case in the statement
of the results established in this entry.
lemma bounded-degree-polynomials-length:

bounded-degree-polynomials F n = {x. x ∈ carrier (poly-ring F) ∧ length x ≤ n}
unfolding bounded-degree-polynomials-def using leI order-less-le-trans by fast-

force

lemma (in ring) fin-degree-bounded:
assumes finite (carrier R)
shows finite (bounded-degree-polynomials R n)

proof −
have bounded-degree-polynomials R n ⊆ {p. set p ⊆ carrier R ∧ length p ≤ n}

unfolding bounded-degree-polynomials-length
using assms polynomial-incl univ-poly-carrier by blast

thus ?thesis
using assms finite-lists-length-le finite-subset by fast

qed

lemma (in ring) non-empty-bounded-degree-polynomials:
bounded-degree-polynomials R k 6= {}

proof −
have 0poly-ring R ∈ bounded-degree-polynomials R k
by (simp add: bounded-degree-polynomials-def univ-poly-zero univ-poly-zero-closed)

thus ?thesis by auto
qed

lemma in-image-by-witness:
assumes

∧
x. x ∈ A =⇒ g x ∈ B ∧ f (g x) = x

shows A ⊆ f ‘ B
by (metis assms image-eqI subsetI)

lemma card-mostly-constant-maps:
assumes y ∈ B
shows card {f . range f ⊆ B ∧ (∀ x. x ≥ n −→ f x = y)} = card B ^ n (is card

?A = ?B)
proof −

define f where f = (λf k. if k < n then f k else y)

2

have a:?A ⊆ (f ‘ ({0 ..<n} →E B))
unfolding f-def
by (rule in-image-by-witness[where g=λf . restrict f {0 ..<n}], auto)

have b:(f ‘ ({0 ..<n} →E B)) ⊆ ?A
using f-def assms by auto

have c: inj-on f ({0 ..<n} →E B)
by (rule inj-onI , metis PiE-E atLeastLessThan-iff ext f-def)

have card ?A = card (f ‘ ({0 ..<n} →E B))
using a b by auto

also have ... = card ({0 ..<n} →E B)
by (metis c card-image)

also have ... = card B ^ n
by (simp add: card-PiE [OF finite-atLeastLessThan])

finally show ?thesis by simp
qed

definition (in ring) build-poly where
build-poly f n = normalize (rev (map f [0 ..<n]))

lemma (in ring) poly-degree-bound-from-coeff :
assumes x ∈ carrier (poly-ring R)
assumes

∧
k. k ≥ n =⇒ coeff x k = 0

shows degree x < n ∨ x = 0poly-ring R
proof (rule ccontr)

assume a:¬(degree x < n ∨ x = 0poly-ring R)
hence b:lead-coeff x 6= 0R

by (metis assms(1) polynomial-def univ-poly-carrier univ-poly-zero)
hence coeff x (degree x) 6= 0

by (metis a lead-coeff-simp univ-poly-zero)
moreover have degree x ≥ n by (meson a not-le)
ultimately show False using assms(2) by blast

qed

lemma (in ring) poly-degree-bound-from-coeff-1 :
assumes x ∈ carrier (poly-ring R)
assumes

∧
k. k ≥ n =⇒ coeff x k = 0

shows x ∈ bounded-degree-polynomials R n
using poly-degree-bound-from-coeff [OF assms]
by (simp add:bounded-degree-polynomials-def univ-poly-zero assms)

lemma (in ring) length-build-poly:
length (build-poly f n) ≤ n
by (metis length-map build-poly-def normalize-length-le length-rev length-upt

less-imp-diff-less linorder-not-less)

3

lemma (in ring) build-poly-degree:
degree (build-poly f n) ≤ n−1
using length-build-poly diff-le-mono by presburger

lemma (in ring) build-poly-poly:
assumes

∧
i. i < n =⇒ f i ∈ carrier R

shows build-poly f n ∈ carrier (poly-ring R)
unfolding build-poly-def univ-poly-carrier [symmetric]
by (rule normalize-gives-polynomial, simp add:image-subset-iff Ball-def assms)

lemma (in ring) build-poly-coeff :
coeff (build-poly f n) i = (if i < n then f i else 0)

proof −
show coeff (build-poly f n) i = (if i < n then f i else 0)

unfolding build-poly-def normalize-coeff [symmetric]
by (cases i < n, (simp add:coeff-nth rev-nth coeff-length)+)

qed

lemma (in ring) build-poly-bounded:
assumes

∧
k. k < n =⇒ f k ∈ carrier R

shows build-poly f n ∈ bounded-degree-polynomials R n
unfolding bounded-degree-polynomials-length
using build-poly-poly[OF assms] length-build-poly by auto

The following establishes the total number of polynomials with a degree less
than n. Unlike the results in the following sections, it is already possible to
establish this property for polynomials with coefficients in a ring.
lemma (in ring) bounded-degree-polynomials-card:

card (bounded-degree-polynomials R n) = card (carrier R) ^ n
proof −

have a:coeff ‘ bounded-degree-polynomials R n ⊆ {f . range f ⊆ (carrier R) ∧ (∀ k
≥ n. f k = 0)}

by (rule image-subsetI , auto simp add:bounded-degree-polynomials-def coeff-length
coeff-in-carrier)

have b:{f . range f ⊆ (carrier R) ∧ (∀ k ≥ n. f k = 0)} ⊆ coeff ‘ bounded-degree-polynomials
R n

apply (rule in-image-by-witness[where g=λx. build-poly x n])
by (auto simp add:build-poly-coeff intro:build-poly-bounded)

have inj-on coeff (carrier (poly-ring R))
by (rule inj-onI , simp add: coeff-iff-polynomial-cond univ-poly-carrier)

hence coeff-inj: inj-on coeff (bounded-degree-polynomials R n)
using inj-on-subset bounded-degree-polynomials-def by blast

have card (bounded-degree-polynomials R n) = card (coeff ‘ bounded-degree-polynomials
R n)

using coeff-inj card-image[symmetric] by blast

4

also have ... = card {f . range f ⊆ (carrier R) ∧ (∀ k ≥ n. f k = 0)}
by (rule arg-cong[where f=card], rule order-antisym[OF a b])

also have ... = card (carrier R)^n
by (rule card-mostly-constant-maps, simp)

finally show ?thesis by simp
qed

end

2 Lagrange Interpolation

This section introduces the function interpolate, which constructs the La-
grange interpolation polynomials for a given set of points, followed by a
theorem of its correctness.
theory Lagrange-Interpolation

imports HOL−Algebra.Polynomial-Divisibility
begin

A finite product in a domain is 0 if and only if at least one factor is. This
could be added to HOL−Algebra.FiniteProduct or HOL−Algebra.Ring.
lemma (in domain) finprod-zero-iff :

assumes finite A
assumes

∧
a. a ∈ A =⇒ f a ∈ carrier R

shows finprod R f A = 0 ←→ (∃ x ∈ A. f x = 0)
using assms

proof (induct A rule: finite-induct)
case empty
then show ?case by simp

next
case (insert y F)
moreover have f ∈ F → carrier R using insert by blast
ultimately show ?case by (simp add:integral-iff)

qed

lemma (in ring) poly-of-const-in-carrier :
assumes s ∈ carrier R
shows poly-of-const s ∈ carrier (poly-ring R)
using poly-of-const-def assms
by (simp add:univ-poly-carrier [symmetric] polynomial-def)

lemma (in ring) eval-poly-of-const:
assumes x ∈ carrier R
shows eval (poly-of-const x) y = x
using assms by (simp add:poly-of-const-def)

lemma (in ring) eval-in-carrier-2 :
assumes x ∈ carrier (poly-ring R)

5

assumes y ∈ carrier R
shows eval x y ∈ carrier R
using eval-in-carrier univ-poly-carrier polynomial-incl assms by blast

lemma (in domain) poly-mult-degree-le-1 :
assumes x ∈ carrier (poly-ring R)
assumes y ∈ carrier (poly-ring R)
shows degree (x ⊗poly-ring R y) ≤ degree x + degree y

proof −
have degree (x ⊗poly-ring R y) = (if x = [] ∨ y = [] then 0 else degree x + degree

y)
unfolding univ-poly-mult
by (metis univ-poly-carrier assms(1 ,2) carrier-is-subring poly-mult-degree-eq)

thus ?thesis by (metis nat-le-linear zero-le)
qed

lemma (in domain) poly-mult-degree-le:
assumes x ∈ carrier (poly-ring R)
assumes y ∈ carrier (poly-ring R)
assumes degree x ≤ n
assumes degree y ≤ m
shows degree (x ⊗poly-ring R y) ≤ n + m
using poly-mult-degree-le-1 assms add-mono by force

lemma (in domain) poly-add-degree-le:
assumes x ∈ carrier (poly-ring R) degree x ≤ n
assumes y ∈ carrier (poly-ring R) degree y ≤ n
shows degree (x ⊕poly-ring R y) ≤ n
using assms poly-add-degree
by (metis dual-order .trans max.bounded-iff univ-poly-add)

lemma (in domain) poly-sub-degree-le:
assumes x ∈ carrier (poly-ring R) degree x ≤ n
assumes y ∈ carrier (poly-ring R) degree y ≤ n
shows degree (x 	poly-ring R y) ≤ n

proof −
interpret x:cring poly-ring R

using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

show ?thesis
unfolding a-minus-def

using assms univ-poly-a-inv-degree carrier-is-subring poly-add-degree-le x.a-inv-closed
by simp

qed

lemma (in domain) poly-sum-degree-le:
assumes finite A
assumes

∧
x. x ∈ A =⇒ degree (f x) ≤ n

assumes
∧

x. x ∈ A =⇒ f x ∈ carrier (poly-ring R)

6

shows degree (finsum (poly-ring R) f A) ≤ n
using assms

proof (induct A rule:finite-induct)
case empty
interpret x:cring poly-ring R

using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
show ?case using empty by (simp add:univ-poly-zero)

next
case (insert x F)
interpret x:cring poly-ring R

using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
have a: degree (f x ⊕poly-ring R finsum (poly-ring R) f F) ≤ n

using insert poly-add-degree-le x.finsum-closed by auto
show ?case using insert a by auto

qed

definition (in ring) lagrange-basis-polynomial-aux where
lagrange-basis-polynomial-aux S =
(
⊗

poly-ring R s ∈ S . X 	poly-ring R (poly-of-const s))

lemma (in domain) lagrange-aux-eval:
assumes finite S
assumes S ⊆ carrier R
assumes x ∈ carrier R
shows (eval (lagrange-basis-polynomial-aux S) x) = (

⊗
s ∈ S . x 	 s)

proof −
interpret x:ring-hom-cring poly-ring R R (λp. eval p x)

by (rule eval-cring-hom[OF carrier-is-subring assms(3)])

have
∧

a. a ∈ S =⇒ X 	poly-ring R poly-of-const a ∈ carrier (poly-ring R)

by (meson poly-of-const-in-carrier carrier-is-subring assms(2) cring.cring-simprules(4)
domain-def subsetD univ-poly-is-domain var-closed(1))

moreover have
∧

s. s ∈ S =⇒ eval (X 	poly-ring R poly-of-const s) x = x 	 s
using assms var-closed carrier-is-subring poly-of-const-in-carrier subsetD[OF

assms(2)]
by (simp add:eval-var eval-poly-of-const)

moreover have a-minus R x ∈ S → carrier R
using assms by blast

ultimately show ?thesis
by (simp add:lagrange-basis-polynomial-aux-def x.hom-finprod cong:finprod-cong ′)

qed

lemma (in domain) lagrange-aux-poly:
assumes finite S
assumes S ⊆ carrier R
shows lagrange-basis-polynomial-aux S ∈ carrier (poly-ring R)

7

proof −
have a:subring (carrier R) R

using carrier-is-subring assms by blast

have b:
∧

a. a ∈ S =⇒ X 	poly-ring R poly-of-const a ∈ carrier (poly-ring R)

by (meson poly-of-const-in-carrier a assms(2) cring.cring-simprules(4) do-
main-def subsetD

univ-poly-is-domain var-closed(1))

interpret x:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

show ?thesis
using lagrange-basis-polynomial-aux-def b x.finprod-closed[OF Pi-I] by simp

qed

lemma (in domain) poly-prod-degree-le:
assumes finite A
assumes

∧
x. x ∈ A =⇒ f x ∈ carrier (poly-ring R)

shows degree (finprod (poly-ring R) f A) ≤ (
∑

x ∈ A. degree (f x))
using assms

proof (induct A rule:finite-induct)
case empty
interpret x:cring poly-ring R

using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
show ?case by (simp add:univ-poly-one)

next
case (insert x F)
interpret x:cring poly-ring R

using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
have a:f ∈ F → carrier (poly-ring R)

using insert by blast
have b:f x ∈ carrier (poly-ring R)

using insert by blast
have degree (finprod (poly-ring R) f (insert x F)) = degree (f x ⊗poly-ring R

finprod (poly-ring R) f F)
using a b insert by simp

also have ... ≤ degree (f x) + degree (finprod (poly-ring R) f F)
using poly-mult-degree-le x.finprod-closed[OF a] b by auto

also have ... ≤ degree (f x) + (
∑

y ∈ F . degree (f y))
using insert(3) a add-mono by auto

also have ... = (
∑

y ∈ (insert x F). degree (f y)) using insert by simp
finally show ?case by simp

qed

lemma (in domain) lagrange-aux-degree:
assumes finite S
assumes S ⊆ carrier R
shows degree (lagrange-basis-polynomial-aux S) ≤ card S

8

proof −
interpret x:cring poly-ring R

using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

have degree X ≤ 1 by (simp add:var-def)
moreover have

∧
y. y∈ S =⇒ degree (poly-of-const y) ≤ 1 by (simp add:poly-of-const-def)

ultimately have a:
∧

y. y∈ S =⇒ degree (X 	poly-ring R poly-of-const y) ≤ 1
by (meson assms(2) in-mono poly-of-const-in-carrier poly-sub-degree-le var-closed[OF

carrier-is-subring])

have b:
∧

y. y ∈ S =⇒ (X 	poly-ring R poly-of-const y) ∈ carrier (poly-ring R)

by (meson subsetD x.minus-closed var-closed(1)[OF carrier-is-subring] poly-of-const-in-carrier
assms(2))

have degree (lagrange-basis-polynomial-aux S) ≤ (
∑

y ∈ S . degree (X 	poly-ring R
poly-of-const y))

using lagrange-basis-polynomial-aux-def b poly-prod-degree-le[OF assms(1)] by
auto

also have ... ≤ (
∑

y ∈ S . 1)
using sum-mono a by force

also have ... = card S by simp
finally show ?thesis by simp

qed

definition (in ring) lagrange-basis-polynomial where
lagrange-basis-polynomial S x = lagrange-basis-polynomial-aux S
⊗poly-ring R (poly-of-const (invR (

⊗
s ∈ S . x 	 s)))

lemma (in field)
assumes finite S
assumes S ⊆ carrier R
assumes x ∈ carrier R − S
shows

lagrange-one: eval (lagrange-basis-polynomial S x) x = 1 and
lagrange-degree: degree (lagrange-basis-polynomial S x) ≤ card S and
lagrange-zero:

∧
s. s ∈ S =⇒ eval (lagrange-basis-polynomial S x) s = 0 and

lagrange-poly: lagrange-basis-polynomial S x ∈ carrier (poly-ring R)
proof −

interpret x:ring-hom-cring poly-ring R R (λp. eval p x)
using assms carrier-is-subring eval-cring-hom by blast

define p where p = lagrange-basis-polynomial-aux S
have a:eval p x = (

⊗
s ∈ S . x 	 s)

using assms by (simp add:p-def lagrange-aux-eval)

have b:p ∈ carrier (poly-ring R) using assms
by (simp add:p-def lagrange-aux-poly)

have
∧

y. y ∈ S =⇒ a-minus R x y ∈ carrier R

9

using assms by blast

hence c:finprod R (a-minus R x) S ∈ Units R
using finprod-closed[OF Pi-I] assms
by (auto simp add:field-Units finprod-zero-iff)

have eval (lagrange-basis-polynomial S x) x =
(
⊗

s ∈ S . x 	 s) ⊗ eval (poly-of-const (inv finprod R (a-minus R x) S)) x
using poly-of-const-in-carrier Units-inv-closed c p-def [symmetric]
by (simp add: lagrange-basis-polynomial-def x.hom-mult[OF b] a)

also have ... = 1
using poly-of-const-in-carrier Units-inv-closed c eval-poly-of-const by simp

finally show eval (lagrange-basis-polynomial S x) x = 1 by simp

have degree (lagrange-basis-polynomial S x) ≤ degree p + degree (poly-of-const
(inv finprod R (a-minus R x) S))

unfolding lagrange-basis-polynomial-def p-def [symmetric]
using poly-mult-degree-le[OF b] poly-of-const-in-carrier Units-inv-closed c by

auto
also have ... ≤ card S + 0
using add-mono lagrange-aux-degree[OF assms(1) assms(2)] p-def poly-of-const-def

by auto
finally show degree (lagrange-basis-polynomial S x) ≤ card S by simp

show
∧

s. s ∈ S =⇒ eval (lagrange-basis-polynomial S x) s = 0
proof −

fix s
assume d:s ∈ S

interpret s:ring-hom-cring poly-ring R R (λp. eval p s)
using eval-cring-hom carrier-is-subring assms d by blast

have eval p s = finprod R (a-minus R s) S
using subsetD[OF assms(2) d] assms
by (simp add:p-def lagrange-aux-eval)

also have ... = 0
using subsetD[OF assms(2)] d assms by (simp add: finprod-zero-iff)

finally have eval p s = 0R by simp

moreover have eval (poly-of-const (inv finprod R (a-minus R x) S)) s ∈ carrier
R

using s.hom-closed poly-of-const-in-carrier Units-inv-closed c by blast

ultimately show eval (lagrange-basis-polynomial S x) s = 0
using poly-of-const-in-carrier Units-inv-closed c

by (simp add:lagrange-basis-polynomial-def Let-def p-def [symmetric] s.hom-mult[OF
b])

qed

10

interpret r :cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

show lagrange-basis-polynomial S x ∈ carrier (poly-ring R)
using lagrange-basis-polynomial-def p-def [symmetric] poly-of-const-in-carrier

Units-inv-closed
a b c by simp

qed

definition (in ring) interpolate where
interpolate S f =
(
⊕

poly-ring Rs ∈ S . lagrange-basis-polynomial (S − {s}) s ⊗poly-ring R (poly-of-const
(f s)))

Let f be a function and S be a finite subset of the domain of the field.
Then interpolate S f will return a polynomial with degree less than card S
interpolating f on S.
theorem (in field)

assumes finite S
assumes S ⊆ carrier R
assumes f ‘ S ⊆ carrier R
shows

interpolate-poly: interpolate S f ∈ carrier (poly-ring R) and
interpolate-degree: degree (interpolate S f) ≤ card S − 1 and
interpolate-eval:

∧
s. s ∈ S =⇒ eval (interpolate S f) s = f s

proof −
interpret r :cring poly-ring R

using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

have a:
∧

x. x ∈ S =⇒ lagrange-basis-polynomial (S − {x}) x ∈ carrier (poly-ring
R)

by (meson lagrange-poly assms Diff-iff finite-Diff in-mono insertI1 subset-insertI2
subset-insert-iff)

have b:
∧

x. x ∈ S =⇒ f x ∈ carrier R using assms by blast

have c:
∧

x. x ∈ S =⇒ degree (lagrange-basis-polynomial (S − {x}) x) ≤ card S
− 1

by (metis (full-types) lagrange-degree DiffI Diff-insert-absorb assms(1) assms(2)
card-Diff-singleton finite-insert insert-subset mk-disjoint-insert)

have d:
∧

x. x ∈ S =⇒
degree (lagrange-basis-polynomial (S − {x}) x ⊗poly-ring R poly-of-const (f x))

≤ (card S − 1) + 0
using poly-of-const-in-carrier [OF b] poly-mult-degree-le[OF a] c poly-of-const-def

by fastforce

show interpolate S f ∈ carrier (poly-ring R)
using interpolate-def poly-of-const-in-carrier a b by simp

11

show degree (interpolate S f) ≤ card S − 1
using poly-sum-degree-le[OF assms(1) d] poly-of-const-in-carrier [OF b] inter-

polate-def a by simp

have e:subring (carrier R) R
using carrier-is-subring assms by blast

show
∧

s. s ∈ S =⇒ eval (interpolate S f) s = f s
proof −

fix s
assume f :s ∈ S
interpret s:ring-hom-cring poly-ring R R (λp. eval p s)

using eval-cring-hom[OF e] assms f by blast
have g:

∧
i. i ∈ S =⇒

eval (lagrange-basis-polynomial (S − {i}) i ⊗poly-ring R poly-of-const (f i))
s =

(if s = i then f s else 0)
proof −

fix i
assume i-in-S : i ∈ S
have eval (lagrange-basis-polynomial (S − {i}) i ⊗poly-ring R poly-of-const (f

i)) s =
eval (lagrange-basis-polynomial (S − {i}) i) s ⊗ f i
using b i-in-S poly-of-const-in-carrier
by (simp add: s.hom-mult[OF a] eval-poly-of-const)

also have ... = (if s = i then f s else 0)
using b i-in-S poly-of-const-in-carrier assms f
apply (cases s=i, simp, subst lagrange-one, auto)
by (subst lagrange-zero, auto)

finally show
eval (lagrange-basis-polynomial (S − {i}) i ⊗poly-ring R poly-of-const (f i))

s =
(if s = i then f s else 0) by simp

qed

have eval (interpolate S f) s =
(
⊕

x∈S . eval (lagrange-basis-polynomial (S − {x}) x ⊗poly-ring R poly-of-const
(f x)) s)

using poly-of-const-in-carrier [OF b] a e
by (simp add: interpolate-def s.hom-finsum[OF Pi-I] comp-def)

also have ... = (
⊕

x∈S . if s = x then f s else 0)
using b g by (simp cong: finsum-cong)

also have ... = f s
using finsum-singleton[OF f assms(1)] f assms by auto

finally show eval (interpolate S f) s = f s by simp
qed

qed

12

end

3 Cardinalities of Interpolation Polynomials

This section establishes the cardinalities of the set of polynomials with a
degree bound interpolating a given set of points.
theory Interpolation-Polynomial-Cardinalities

imports Bounded-Degree-Polynomials Lagrange-Interpolation
begin

lemma (in ring) poly-add-coeff :
assumes x ∈ carrier (poly-ring R)
assumes y ∈ carrier (poly-ring R)
shows coeff (x ⊕poly-ring R y) k = coeff x k ⊕ coeff y k
by (metis assms univ-poly-carrier polynomial-incl univ-poly-add poly-add-coeff)

lemma (in domain) poly-neg-coeff :
assumes x ∈ carrier (poly-ring R)
shows coeff (poly-ring R x) k = 	coeff x k

proof −
interpret x:cring poly-ring R
using assms cring-def carrier-is-subring domain.univ-poly-is-cring domain-axioms

by auto

have a:0poly-ring R = x 	poly-ring R x
by (metis x.r-right-minus-eq assms(1))

have 0 = coeff (0poly-ring R) k by (simp add:univ-poly-zero)
also have ... = coeff x k ⊕ coeff (poly-ring R x) k using a assms

by (simp add:a-minus-def poly-add-coeff)
finally have 0 = coeff x k ⊕ coeff (poly-ring R x) k by simp
thus ?thesis

by (metis local.minus-minus x.a-inv-closed sum-zero-eq-neg coeff-in-carrier
assms)
qed

lemma (in domain) poly-substract-coeff :
assumes x ∈ carrier (poly-ring R)
assumes y ∈ carrier (poly-ring R)
shows coeff (x 	poly-ring R y) k = coeff x k 	 coeff y k

proof −
interpret x:cring poly-ring R
using assms cring-def carrier-is-subring domain.univ-poly-is-cring domain-axioms

by auto
show ?thesis

using assms by (simp add:a-minus-def poly-add-coeff poly-neg-coeff)
qed

13

A polynomial with more zeros than its degree is the zero polynomial.
lemma (in field) max-roots:

assumes p ∈ carrier (poly-ring R)
assumes K ⊆ carrier R
assumes finite K
assumes degree p < card K
assumes

∧
x. x ∈ K =⇒ eval p x = 0

shows p = 0poly-ring R
proof (rule ccontr)

assume p 6= 0poly-ring R
hence a:p 6= [] by (simp add: univ-poly-zero)
have

∧
x. count (mset-set K) x ≤ count (roots p) x

proof −
fix x
show count (mset-set K) x ≤ count (roots p) x
proof (cases x ∈ K)

case True
hence is-root p x

by (meson a assms(2 ,5) is-ring is-root-def subsetD)
hence x ∈ set-mset (roots p)

using assms(1) roots-mem-iff-is-root field-def by force
hence 1 ≤ count (roots p) x by simp
moreover have count (mset-set K) x = 1 using True assms(3) by simp
ultimately show ?thesis by presburger

next
case False
hence count (mset-set K) x = 0 by simp
then show ?thesis by presburger

qed
qed
hence mset-set K ⊆# roots p

by (simp add: subseteq-mset-def)
hence card K ≤ size (roots p)

by (metis size-mset-mono size-mset-set)
moreover have size (roots p) ≤ degree p

using a size-roots-le-degree assms by auto
ultimately show False using assms(4)

by (meson leD less-le-trans)
qed

definition (in ring) split-poly
where split-poly K p = (restrict (eval p) K , λk. coeff p (k+card K))

To establish the count of the number of polynomials of degree less than n
interpolating a function f on K where |K| ≤ n, the function split-poly K
establishes a bijection between the polynomials of degree less than n and
the values of the polynomials on K in combination with the coefficients of
order |K| and greater.

14

For the injectivity: Note that the difference of two polynomials whose coef-
ficients of order |K| and larger agree must have a degree less than |K| and
because their values agree on k points, it must have |K| zeros and hence is
the zero polynomial.
For the surjectivty: Let p be a polynomial whose coefficients larger than
|K| are chosen, and all other coefficients be 0. Now it is possible to find a
polynomial q interpolating f − p on K using Lagrange interpolation. Then
p + q will interpolate f on K and because the degree of q is less than |K|
its coefficients of order |K| will be the same as those of p.
A tempting question is whether it would be easier to instead establish a
bijection between the polynomials of degree less than n and its values on
K ∪ K ′ where K ′ are arbitrarily chosen n − |K| points in the field. This
approach is indeed easier, however, it fails for the case where the size of the
field is less than n.
lemma (in field) split-poly-inj:

assumes finite K
assumes K ⊆ carrier R
shows inj-on (split-poly K) (carrier (poly-ring R))

proof
fix x
fix y
assume a1 :x ∈ carrier (poly-ring R)
assume a2 :y ∈ carrier (poly-ring R)
assume a3 :split-poly K x = split-poly K y

interpret x:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

have x-y-carrier : x 	poly-ring R y ∈ carrier (poly-ring R) using a1 a2 by simp
have

∧
k. coeff x (k+card K) = coeff y (k+card K)

using a3 by (simp add:split-poly-def , meson)
hence

∧
k. coeff (x 	poly-ring R y) (k+card K) = 0

using coeff-in-carrier a1 a2 by (simp add:poly-substract-coeff)
hence degree (x 	poly-ring R y) < card K ∨ (x 	poly-ring R y) = 0poly-ring R

by (metis poly-degree-bound-from-coeff add.commute le-iff-add x-y-carrier)
moreover have

∧
k. k ∈ K =⇒ eval x k = eval y k

using a3 by (simp add:split-poly-def restrict-def , meson)
hence

∧
k. k ∈ K =⇒ eval x k 	 eval y k = 0

by (metis eval-in-carrier univ-poly-carrier polynomial-incl a1 assms(2) in-mono
r-right-minus-eq)

hence
∧

k. k ∈ K =⇒ eval (x 	poly-ring R y) k = 0

using a1 a2 subsetD[OF assms(2)] carrier-is-subring
by (simp add: ring-hom-cring.hom-sub[OF eval-cring-hom])

ultimately have x 	poly-ring R y = 0poly-ring R
using max-roots x-y-carrier assms by blast

then show x = y

15

using x.r-right-minus-eq[OF a1 a2] by simp
qed

lemma (in field) split-poly-image:
assumes finite K
assumes K ⊆ carrier R
shows split-poly K ‘ carrier (poly-ring R) ⊇

(K →E carrier R) × {f . range f ⊆ carrier R ∧ (∃n. ∀ k ≥ n. f k = 0R)}
proof (rule subsetI)

fix x
assume a:x ∈ (K →E carrier R) × {f . range f ⊆ carrier R ∧ (∃ (n::nat). ∀ k ≥

n. f k = 0)}
have a1 : fst x ∈ (K →E carrier R)

using a by (simp add:mem-Times-iff)
obtain n where a2 : snd x ∈ {f . range f ⊆ carrier R ∧ (∀ k ≥ n. f k = 0)}

using a mem-Times-iff by force
have a3 :

∧
y. snd x y ∈ carrier R using a2 by blast

define w where w = build-poly (λi. if i ≥ card K then (snd x (i − card K))
else 0) (card K + n)

have w-carr : w ∈ carrier (poly-ring R)
unfolding w-def by (rule build-poly-poly, simp add:a3)

have w-eval-range:
∧

x. x ∈ carrier R =⇒ local.eval w x ∈ carrier R
proof −

fix x
assume w-eval-range-1 :x ∈ carrier R
interpret x:ring-hom-cring poly-ring R R (λp. eval p x)

using eval-cring-hom[OF carrier-is-subring] assms w-eval-range-1 by blast
show eval w x ∈ carrier R

by (rule x.hom-closed[OF w-carr])
qed

interpret r :cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

define y where y = interpolate K (λk. fst x k 	 eval w k)
define r where r = y ⊕poly-ring R w

have x-minus-w-in-carrier :
∧

z. z ∈ K =⇒ fst x z 	 eval w z ∈ carrier R
using a1 PiE-def Pi-def minus-closed subsetD[OF assms(2)] w-eval-range by

auto

have y-poly: y ∈ carrier (poly-ring R) unfolding y-def
using x-minus-w-in-carrier interpolate-poly[OF assms(1) assms(2)] image-subsetI

by force

have y-degree: degree y ≤ card K − 1

16

unfolding y-def
using x-minus-w-in-carrier interpolate-degree[OF assms(1) assms(2)] image-subsetI

by force

have y-len: length y ≤ card K
proof (cases K={})

case True
then show ?thesis

by (simp add:y-def interpolate-def univ-poly-zero)
next

case False
then show ?thesis

by (metis y-degree Suc-le-D assms(1) card-gt-0-iff diff-Suc-1 not-less-eq-eq
order .strict-iff-not)

qed

have r-poly: r ∈ carrier (poly-ring R)
using r-def y-poly w-carr by simp

have coeff-r :
∧

k. coeff r (k + card K) = snd x k
proof −

fix k :: nat
have y-len ′: length y ≤ k + card K using y-len trans-le-add2 by blast
have coeff r (k + card K) = coeff y (k + card K) ⊕ coeff w (k+card K)

by (simp add:r-def poly-add-coeff [OF y-poly w-carr])
also have ... = 0 ⊕ coeff w (k+card K)

using coeff-length[OF y-len ′] by simp
also have ... = coeff w (k+card K)

using coeff-in-carrier [OF w-carr] by simp
also have ... = snd x k

using a2 by (simp add:w-def build-poly-coeff not-less)
finally show coeff r (k + card K) = snd x k by simp

qed

have eval-r :
∧

k. k ∈ K =⇒ eval r k = fst x k
proof −

fix k
assume b:k ∈ K
interpret s:ring-hom-cring poly-ring R R (λp. eval p k)

using eval-cring-hom[OF carrier-is-subring] assms b by blast

have k-carr : k ∈ carrier R using assms(2) b by blast
have fst-x-k-carr :

∧
k. k ∈ K =⇒ fst x k ∈ carrier R

using a1 PiE-def Pi-def by blast
have eval r k = eval y k ⊕ eval w k

using y-poly w-carr by (simp add:r-def)
also have ... = fst x k 	 local.eval w k ⊕ local.eval w k

using assms b x-minus-w-in-carrier
by (simp add:y-def interpolate-eval[OF - - image-subsetI])

17

also have ... = fst x k ⊕ (local.eval w k ⊕ local.eval w k)
using fst-x-k-carr [OF b] w-eval-range[OF k-carr]
by (simp add:a-minus-def a-assoc)

also have ... = fst x k
using fst-x-k-carr [OF b] w-eval-range[OF k-carr]
by (simp add:a-comm r-neg)

finally show eval r k = fst x k by simp
qed

have r ∈ (carrier (poly-ring R))
by (metis r-poly)

moreover have
∧

y. (if y ∈ K then eval r y else undefined) = fst x y
using a1 eval-r PiE-E by auto

hence split-poly K r = x
by (simp add:split-poly-def prod-eq-iff coeff-r restrict-def)

ultimately show x ∈ split-poly K ‘ (carrier (poly-ring R))
by blast

qed

This is like card-vimage-inj but supports inj-on instead.
lemma card-vimage-inj-on:

assumes inj-on f B
assumes A ⊆ f ‘ B
shows card (f −‘ A ∩ B) = card A

proof −
have A = f ‘ (f −‘ A ∩ B) using assms(2) by auto
thus ?thesis using assms card-image

by (metis inf-le2 inj-on-subset)
qed

lemma inv-subsetI :
assumes

∧
x. x ∈ A =⇒ f x ∈ B =⇒ x ∈ C

shows f −‘ B ∩ A ⊆ C
using assms by force

The following establishes the main result of this section: There are |F |n−k

polynomials of degree less than n interpolating k ≤ n points.
lemma restrict-eq-imp:

assumes restrict f A = restrict g A
assumes x ∈ A
shows f x = g x
by (metis restrict-def assms)

theorem (in field) interpolating-polynomials-card:
assumes finite K
assumes K ⊆ carrier R
assumes f ‘ K ⊆ carrier R
shows card {ω ∈ bounded-degree-polynomials R (card K + n). (∀ k ∈ K . eval ω

k = f k)} = card (carrier R)^n

18

(is card ?A = ?B)
proof −

define z where z = restrict f K
define M where M = {f . range f ⊆ carrier R ∧ (∀ k ≥ n. f k = 0)}

hence inj-on-bounded: inj-on (split-poly K) (carrier (poly-ring R))
using split-poly-inj[OF assms(1) assms(2)] by blast

have ?A ⊆ split-poly K −‘ ({z} × M)
unfolding split-poly-def z-def M-def bounded-degree-polynomials-length
by (rule subsetI , auto intro!:coeff-in-carrier coeff-length)

moreover have ?A ⊆ carrier (poly-ring R)
unfolding bounded-degree-polynomials-length by blast

ultimately have a:?A ⊆ split-poly K −‘ ({z} × M) ∩ carrier (poly-ring R)
by blast

have
∧

x k . (λk. coeff x (k + card K)) ∈ M =⇒ k ≥ n + card K =⇒ coeff x k
= 0

by (simp add:M-def , metis Nat.le-diff-conv2 Nat.le-imp-diff-is-add add-leD2)
hence split-poly K −‘ ({z} ×M) ∩ carrier (poly-ring R) ⊆ bounded-degree-polynomials

R (card K + n)
unfolding split-poly-def z-def using poly-degree-bound-from-coeff-1 inv-subsetI

by force
moreover have

∧
ω k. ω ∈ split-poly K −‘ ({z} × M) ∩ carrier (poly-ring R)

=⇒ k ∈ K =⇒ eval ω k = f k
unfolding split-poly-def z-def using restrict-eq-imp by fastforce

ultimately have b:split-poly K −‘ ({z} × M) ∩ carrier (poly-ring R) ⊆ ?A
by blast

have z ∈ K →E carrier R
unfolding z-def using assms(3) by auto

moreover have M ⊆ {f . range f ⊆ carrier R ∧ (∃n. (∀ k ≥ n. f k = 0))}
unfolding M-def by blast

ultimately have c:{z} × M ⊆ split-poly K ‘ carrier (poly-ring R)
using split-poly-image[OF assms(1) assms(2)] by fast

have card ?A = card (split-poly K −‘ ({z} × M) ∩ carrier (poly-ring R))
using order-antisym[OF a b] by simp

also have ... = card ({z} × M)
using card-vimage-inj-on[OF inj-on-bounded] c by blast

also have ... = card (carrier R)^n
by (simp add:card-cartesian-product M-def card-mostly-constant-maps)

finally show ?thesis by simp
qed

A corollary is the classic result [1, Theorem 7.15] that there is exactly one
polynomial of degree less than n interpolating n points:
corollary (in field) interpolating-polynomial-one:

assumes finite K

19

assumes K ⊆ carrier R
assumes f ‘ K ⊆ carrier R
shows card {ω ∈ bounded-degree-polynomials R (card K). (∀ k ∈ K . eval ω k =

f k)} = 1
using interpolating-polynomials-card[OF assms(1) assms(2) assms(3), where

n=0]
by simp

In the case of fields with infinite carriers, it is possible to conclude that there
are infinitely many polynomials of degree less than n interpolating k < n
points.
corollary (in field) interpolating-polynomial-inf :

assumes infinite (carrier R)
assumes finite K K ⊆ carrier R f ‘ K ⊆ carrier R
assumes n > 0
shows infinite {ω ∈ bounded-degree-polynomials R (card K + n). (∀ k ∈ K . eval

ω k = f k)}
(is infinite ?A)

proof −
have {} ⊂ {ω ∈ bounded-degree-polynomials R (card K). (∀ k ∈ K . eval ω k = f

k)}
using interpolating-polynomial-one[OF assms(2) assms(3) assms(4)] by fast-

force
also have ... ⊆ ?A

unfolding bounded-degree-polynomials-def by auto
finally have a:?A 6= {} by auto

have card ?A = card (carrier R)^n
using interpolating-polynomials-card[OF assms(2) assms(3) assms(4), where

n=n] by simp
also have ... = 0

using assms(1) assms(5) by simp
finally have b:card ?A = 0 by simp

show ?thesis using a b card-0-eq by blast
qed

The following is an additional independent result: The evaluation homomor-
phism is injective for degree one polynomials.
lemma (in field) eval-inj-if-degree-1 :

assumes p ∈ carrier (poly-ring R) degree p = 1
shows inj-on (eval p) (carrier R)

proof −
obtain u v where p-def : p = [u,v] using assms

by (cases p, cases (tl p), auto)

have u ∈ carrier R − {0} using p-def assms by blast
moreover have v ∈ carrier R using p-def assms by blast
ultimately show ?thesis by (simp add:p-def field-Units inj-on-def)

20

qed

end

References

[1] V. Shoup. A Computational Introduction to Number theory and Algebra.
Cambridge university press, 2009.

[2] R. Thiemann and A. Yamada. Polynomial interpolation. Archive
of Formal Proofs, Jan. 2016. https://isa-afp.org/entries/Polynomial_
Interpolation.html, Formal proof development.

21

https://isa-afp.org/entries/Polynomial_Interpolation.html
https://isa-afp.org/entries/Polynomial_Interpolation.html

	Bounded Degree Polynomials
	Lagrange Interpolation
	Cardinalities of Interpolation Polynomials

