Conformance Relations between Input/Output Languages

Robert Sachtleben

April 18, 2024

Abstract

This entry formalises the paper of the same name by Huang et al. [1] and presents a unifying characterisation of well-known conformance relations such as equivalence and language inclusion (reduction) on languages over input/output pairs. This characterisation simplifies comparisons between conformance relations and from it a fundamental necessary and sufficient criterion for conformance testing is developed.

Contents

1 Preliminaries 2
2 Conformance Relations 6
3 Unifying Characterisations 7
$3.1 \preceq$ Conformance 7
$3.2 \leq$ Conformance 12
4 Comparing Conformance Relations 19
4.1 Completely Specified Languages 21
5 Conformance Testing 21
6 Reductions Between Relations 29
6.1 Quasi-Equivalence via Quasi-Reduction and Absences 29
6.2 Quasi-Reduction via Reduction and explicit Undefined Be- haviour 49
6.3 Strong Reduction via Reduction and Undefinedness Outputs 66
theory Input-Output-Language-Conformanceimports HOL-Library.Sublist
begin

1 Preliminaries

type-synonym ('a) alphabet $=$ 'a set
type-synonym $\left({ }^{\prime} x,{ }^{\prime} y\right)$ word $=\left({ }^{\prime} x \times{ }^{\prime} y\right)$ list
type-synonym ('x,'y) language $=\left({ }^{\prime} x, ' y\right)$ word set
type-synonym ('y) output-relation $=\left({ }^{\prime} y\right.$ set \times ' y set $)$ set

```
fun is-language :: 'x alphabet \(\Rightarrow\) ' \(y\) alphabet \(\Rightarrow\left({ }^{\prime} x\right.\), ' \(y\) ) language \(\Rightarrow\) bool where
    is-language \(X Y L=(\)
        - nonempty
        \((L \neq\{ \}) \wedge\)
        ( \(\forall \pi \in L\).
            - over X and Y
            \((\forall x y \in\) set \(\pi\). fst \(x y \in X \wedge\) snd \(x y \in Y) \wedge\)
            - prefix closed
            \(\left(\forall \pi^{\prime}\right.\). prefix \(\left.\left.\pi^{\prime} \pi \longrightarrow \pi^{\prime} \in L\right)\right)\) )
lemma language-contains-nil :
    assumes is-language \(X Y L\)
shows [] \(\in L\)
    using assms by auto
lemma language-intersection-is-language :
    assumes is-language \(X\) Y L1
    and is-language \(X\) Y L2
shows is-language \(X Y(L 1 \cap L 2)\)
    using assms
    using language-contains-nil[OF assms(1)] language-contains-nil[OF assms(2)]
    unfolding is-language.simps
    by (metis IntD1 IntD2 IntI disjoint-iff)
```

fun language-for-state :: ('x,'y) language $\Rightarrow\left({ }^{\prime} x, ' y\right)$ word $\Rightarrow\left({ }^{\prime} x,^{\prime} y\right)$ language where
language-for-state $L \pi=\{\tau . \pi @ \tau \in L\}$
notation language-for-state $(\mathcal{L}[-,-])$
lemma language-for-state-is-language :
assumes is-language $X Y L$
and $\quad \pi \in L$
shows is-language $X \quad Y \mathcal{L}[L, \pi]$
proof -
have $\wedge \tau . \tau \in \mathcal{L}[L, \pi] \Longrightarrow(\forall x y \in$ set $\tau . f s t x y \in X \wedge$ snd $x y \in Y) \wedge\left(\forall \tau^{\prime}\right.$.
prefix $\left.\tau^{\prime} \tau \longrightarrow \tau^{\prime} \in \mathcal{L}[L, \pi]\right)$
proof -
fix τ assume $\tau \in \mathcal{L}[L, \pi]$

```
    then have }\pi@\tau\inL\mathrm{ by auto
    then have }\xy.xy\in\operatorname{set}(\pi@\tau)\Longrightarrowfst xy\inX\wedge snd xy\in
            and }\bigwedge\mp@subsup{\pi}{}{\prime}\mathrm{ . prefix }\mp@subsup{\pi}{}{\prime}(\pi@\tau)\Longrightarrow\mp@subsup{\pi}{}{\prime}\in
        using assms(1) by auto
    have }\bigwedgexy.xy\in\operatorname{set}\tau\Longrightarrowfst xy\inX\wedge snd xy\in
        using <\ xy. xy \in set ( }\pi@\tau)\Longrightarrowfst xy\inX\wedge snd xy\inY> by aut
    moreover have }\bigwedge\mp@subsup{\tau}{}{\prime}\mathrm{ . prefix }\mp@subsup{\tau}{}{\prime}\tau\Longrightarrow\mp@subsup{\tau}{}{\prime}\in\mathcal{L}[L,\pi
    by (simp add:<\bigwedge}\mp@subsup{\pi}{}{\prime}.\mathrm{ prefix }\mp@subsup{\pi}{}{\prime}(\pi@\tau)\Longrightarrow\mp@subsup{\pi}{}{\prime}\inL>
    ultimately show ( }\forall\mathrm{ xy G set }\tau.fst xy\inX\wedge snd xy \inY)^(\forall \mp@subsup{\tau}{}{\prime}.\mathrm{ prefix
\tau
    by simp
qed
moreover have }\mathcal{L}[L,\pi]\not={
    using assms(2)
    by (metis (no-types, lifting) append.right-neutral empty-Collect-eq language-for-state.simps)
    ultimately show ?thesis
    by simp
qed
```

lemma language-of-state-empty-iff : assumes is-language $X Y L$
shows $(\mathcal{L}[L, \pi]=\{ \}) \longleftrightarrow(\pi \notin L)$
using assms unfolding is-language.simps language-for-state.simps
by (metis Collect-empty-eq append.right-neutral prefixI)
fun are-equivalent-for-language :: ('x,'y) language $\Rightarrow\left({ }^{\prime} x,,^{\prime} y\right)$ word $\Rightarrow\left({ }^{\prime} x, ' y\right)$ word \Rightarrow bool where
are-equivalent-for-language $L \alpha \beta=(\mathcal{L}[L, \alpha]=\mathcal{L}[L, \beta])$
abbreviation(input) input-projection $\pi \equiv$ map fst π abbreviation(input) output-projection $\pi \equiv$ map snd π notation input-projection $\left([-]_{I}\right)$
notation output-projection $\left([-]_{O}\right)$
fun is-executable :: ('x,'y) language $\Rightarrow\left({ }^{\prime} x\right.$, ' y) word $\Rightarrow{ }^{\prime}$ ' list \Rightarrow bool where is-executable $L \pi x s=\left(\exists \tau \in \mathcal{L}[L, \pi] .[\tau]_{I}=x s\right)$
fun executable-sequences :: (' $x,{ }^{\prime} y$) language $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ word $\Rightarrow{ }^{\prime} x$ list set where executable-sequences $L \pi=\{x s$. is-executable $L \pi x s\}$
fun executable-inputs :: ('x,'y) language $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ word $\Rightarrow{ }^{\prime} x$ set where executable-inputs $L \pi=\{x$. is-executable $L \pi[x]\}$

```
notation executable-inputs (exec[-,-])
```

lemma executable-sequences-alt-def : executable-sequences $L \pi=\{x s . \exists$ ys. length ys $=$ length $x s \wedge$ zip xs ys $\in \mathcal{L}[L, \pi]\}$
proof -
have $*: \bigwedge A$ xs. $(\exists \tau \in A$. map fst $\tau=x s)=(\exists$ ys. length ys $=$ length $x s \wedge$ zip xs
$y s \in A$)
by (metis length-map map-fst-zip zip-map-fst-snd)
show ?thesis
unfolding executable-sequences.simps is-executable.simps
unfolding *
by simp
qed
lemma executable-inputs-alt-def : executable-inputs $L \pi=\{x \cdot \exists y \cdot[(x, y)] \in$
$\mathcal{L}[L, \pi]\}$
proof -
have $*: \bigwedge A x s .(\exists \tau \in A$. map fst $\tau=x s)=(\exists$ ys. length ys $=$ length $x s \wedge$ zip $x s$
$y s \in A$)
by (metis length-map map-fst-zip zip-map-fst-snd)
have $* *: \wedge A x \cdot(\exists y s$. length $y s=$ length $[x] \wedge z i p[x] y s \in A)=(\exists y \cdot[(x, y)]$
$\in A$)
by (metis length-Suc-conv length-map zip-Cons-Cons zip-Nil)
show ?thesis
unfolding executable-inputs.simps is-executable.simps
unfolding *
unfolding ** *
by fastforce
qed
lemma executable-inputs-in-alphabet :
assumes is-language $X Y L$
and $\quad x \in \operatorname{exec}[L, \pi]$
shows $x \in X$
using assms unfolding executable-inputs-alt-def by auto
fun output-sequences :: ('x,'y) language $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ word $\Rightarrow{ }^{\prime} x$ list $\Rightarrow{ }^{\prime} y$ list set
where
output-sequences $L \pi$ xs $=$ output-projection' $\left\{\tau \in \mathcal{L}[L, \pi] .[\tau]_{I}=x s\right\}$
lemma prefix-closure-no-member :
assumes is-language $X Y L$
and $\quad \pi \notin L$

```
shows }\pi@\tau\not\in
    by (meson assms(1) assms(2) is-language.elims(2) prefixI)
lemma output-sequences-empty-iff :
    assumes is-language X Y L
shows (output-sequences L \pixs={})=((\pi\not\inL)\vee(\neg is-executable L \pixs))
    unfolding output-sequences.simps is-executable.simps language-for-state.simps
    using Collect-empty-eq assms image-empty mem-Collect-eq prefix-closure-no-member
by auto
fun outputs :: ('x,'y) language }=>('x,'y) word = ' ' x ' 'y set where
    outputs L \pix ={y.[(x,y)]\in\mathcal{L}[L,\pi]}
notation outputs (out[-,-,-])
lemma outputs-in-alphabet:
    assumes is-language X Y L
shows out[L,\pi,x]\subseteqY
    using assms by auto
lemma outputs-executable : (out[L,\pi,x]={})\longleftrightarrow(x\not\in exec[L,\pi])
    by auto
fun is-completely-specified-for :: 'x set }=>('x,'y) language => bool where
    is-completely-specified-for X L = (\forall\pi\inL.\forallx\inX.out[L,\pi,x]\not={})
lemma prefix-executable:
    assumes is-language X Y L
    and }\pi\in
    and i< length \pi
shows fst ( }\pi!i)\in\operatorname{exec}[L,take i \pi
proof -
    define }\mp@subsup{\pi}{}{\prime}\mathrm{ where }\mp@subsup{\pi}{}{\prime}=\mathrm{ take i }
    moreover define }\mp@subsup{\pi}{}{\prime\prime}\mathrm{ where }\mp@subsup{\pi}{}{\prime\prime}=drop (Suc i) 
    moreover define xy where xy=\pi!i
    ultimately have }\pi=\mp@subsup{\pi}{}{\prime}@[xy]@\mp@subsup{\pi}{}{\prime\prime
        by (simp add: Cons-nth-drop-Suc assms(3))
    then have }\mp@subsup{\pi}{}{\prime}@[xy]\in
        using assms(1,2) by auto
    then show ?thesis
        unfolding }\mp@subsup{\pi}{}{\prime}\mathrm{ -def xy-def
        unfolding executable-inputs-alt-def language-for-state.simps
        by (metis (mono-tags, lifting) CollectI eq-fst-iff)
```


qed

2 Conformance Relations

definition language-equivalence :: ('x,'y) language $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ language \Rightarrow bool where

$$
\text { language-equivalence L1 L2 }=(L 1=L 2)
$$

definition language-inclusion $::\left({ }^{\prime} x,{ }^{\prime} y\right)$ language $\Rightarrow\left(' x,{ }^{\prime} y\right)$ language \Rightarrow bool where

$$
\text { language-inclusion L1 L2 }=(L 1 \subseteq L 2)
$$

abbreviation(input) reduction L1 L2 \equiv language-inclusion L1 L2
definition quasi-equivalence :: ('x,'y) language $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ language \Rightarrow bool where quasi-equivalence L1 L2 $=(\forall \pi \in L 1 \cap L 2 . \forall x \in \operatorname{exec}[L 2, \pi]$. out $[L 1, \pi, x]=$ out $[L 2, \pi, x])$
definition quasi-reduction :: ('x,'y) language \Rightarrow ('x,'y) language \Rightarrow bool where quasi-reduction L1 L2 $=(\forall \pi \in L 1 \cap L 2 . \forall x \in \operatorname{exec}[L 2, \pi] .($ out $[L 1, \pi, x] \neq\{ \}$ \wedge out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x]))$
definition strong-reduction :: (' x,'y) language $\Rightarrow\left({ }^{\prime} x\right.$, ' y) language \Rightarrow bool where strong-reduction L1 L2 $=$ (quasi-reduction L1 L2 $\wedge(\forall \pi \in L 1 \cap L 2 . \forall x$. out $[L 2, \pi, x]=\{ \} \longrightarrow$ out $[L 1, \pi, x]=\{ \}))$
definition semi-equivalence :: ($\left.{ }^{\prime} x,{ }^{\prime} y\right)$ language $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ language \Rightarrow bool where semi-equivalence L1 L2 $=(\forall \pi \in L 1 \cap L 2 . \forall x \in \operatorname{exec}[L 2, \pi]$.
$(\operatorname{out}[L 1, \pi, x]=\{ \} \vee$ out $[L 1, \pi, x]=\operatorname{out}[L 2, \pi, x]) \wedge$
$\left(\exists x^{\prime}\right.$. out $[L 1, \pi, x] \cap$ out $\left.\left.[L 2, \pi, x] \neq\{ \}\right)\right)$
definition semi-reduction :: ('x,'y) language $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ language \Rightarrow bool where semi-reduction L1 L2 $=(\forall \pi \in L 1 \cap L 2 . \forall x \in \operatorname{exec}[L 2, \pi]$.
$($ out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x]) \wedge$
$\left.\left(\exists x^{\prime} . \operatorname{out}\left[L \overline{1}, \pi, x^{\prime}\right] \cap \operatorname{out}\left[L 2, \pi, x^{\prime}\right] \neq\{ \}\right)\right)$
definition strong-semi-equivalence :: ('x,'y) language $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ language \Rightarrow bool where

```
    strong-semi-equivalence L1 L2 = ( }\forall\pi\inL1\capL2. \forallx .
```

 \(\left(x \in \operatorname{exec}[L 2, \pi] \longrightarrow\left((\right.\right.\) out \([L 1, \pi, x]=\{ \} \vee\) out \([L 1, \pi, x]=\) out \([L 2, \pi, x]) \wedge\left(\exists x^{\prime}\right.\)
 . $\operatorname{out}[L 1, \pi, x] \cap \operatorname{out}[L 2, \pi, x\rangle \neq\{ \}))) \wedge$
$(x \notin \operatorname{exec}[L 2, \pi] \longrightarrow \operatorname{out}[L 1, \pi, x]=\{ \}))$
definition strong-semi-reduction $::\left(' x\right.$, ' y) language $\Rightarrow\left(' x,{ }^{\prime} y\right)$ language \Rightarrow bool where
strong-semi-reduction L1 L2 $=(\forall \pi \in L 1 \cap L 2 . \forall x$.
$\left(x \in \operatorname{exec}[L 2, \pi] \longrightarrow\left(\right.\right.$ out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x] \wedge\left(\exists x^{\prime}\right.$. out $[L 1, \pi, x] \cap$ out $[L 2, \pi, x] \neq\{ \}))) \wedge$
$(x \notin \operatorname{exec}[L 2, \pi] \longrightarrow \operatorname{out}[L 1, \pi, x]=\{ \}))$

3 Unifying Characterisations

$3.1 \preceq$ Conformance

```
fun type-1-conforms \(::\left({ }^{\prime} x, ' y\right)\) language \(\Rightarrow\) ' \(x\) alphabet \(\Rightarrow\) ' \(y\) output-relation \(\Rightarrow\left(' x,{ }^{\prime} y\right)\)
language \(\Rightarrow\) bool where
    type-1-conforms L1 X H L2 \(=(\forall \pi \in L 1 \cap L 2 . \forall x \in X .(\) out \([L 1, \pi, x]\), out \([L 2, \pi, x])\)
\(\in H)\)
```

notation type-1-conforms (- $\preceq[-,-]$-)
fun equiv :: 'y alphabet \Rightarrow ' y output-relation where
equiv $Y=\{(A, A) \mid A . A \subseteq Y\}$
fun red $::$ ' y alphabet \Rightarrow ' y output-relation where
red $Y=\{(A, B) \mid A B . A \subseteq B \wedge B \subseteq Y\}$
fun quasieq :: 'y alphabet \Rightarrow ' y output-relation where
quasieq $Y=\{(A, A) \mid A . A \subseteq Y\} \cup\{(A,\{ \}) \mid A . A \subseteq Y\}$
fun quasired $::$ ' y alphabet \Rightarrow ' y output-relation where
quasired $Y=\{(A, B) \mid A B . A \neq\{ \} \wedge A \subseteq B \wedge B \subseteq Y\} \cup\{(C,\{ \}) \mid C . C \subseteq$
$Y\}$
fun strongred $::$ ' y alphabet \Rightarrow ' y output-relation where
strongred $Y=\{(A, B) \mid A B . A \neq\{ \} \wedge A \subseteq B \wedge B \subseteq Y\} \cup\{(\{ \},\{ \})\}$

```
lemma red-type-1:
    assumes is-language \(X\) Y L1
    and is-language \(X\) Y L2
shows reduction L1 L2 \(\longleftrightarrow(L 1 \preceq[X\),red \(Y]\) L2 \()\)
unfolding language-inclusion-def proof
    show \(L 1 \subseteq L 2 \Longrightarrow L 1 \preceq[X\), red \(Y] L 2\)
        using outputs-in-alphabet [OF assms(2)]
        unfolding type-1-conforms.simps red.simps
        by auto
show \(L 1 \preceq[X\),red \(Y] L 2 \Longrightarrow L 1 \subseteq L 2\)
proof
        fix \(\pi\) assume \(\pi \in L 1\) and \(L 1 \preceq[X\), red \(Y] L 2\)
        then show \(\pi \in L\) 2 proof (induction \(\pi\) rule: rev-induct)
            case Nil
            then show ?case using assms(2) by auto
        next
            case (snoc \(x y \pi\) )
            then have \(\pi \in L 1\) and \(\pi \in L 1 \cap L 2\)
                using assms(1) by auto
```

```
        obtain x y where xy = (x,y)
            by fastforce
        then have }y\in\operatorname{out}[L1,\pi,x
            using snoc.prems(1)
            by simp
        moreover have }x\inX\mathrm{ and }y\in
            using snoc.prems(1) assms(1) unfolding <xy = (x,y)\rangle by auto
            ultimately have }y\in\mathrm{ out [L2, , ,x]
            using snoc.prems(2)<\pi \inL1\capL2\rangle
            unfolding type-1-conforms.simps
            by fastforce
            then show ?case
            using <xy = (x,y)> by auto
        qed
    qed
qed
```

lemma equiv-by-reduction : (L1 $\preceq[X$, equiv $Y] L 2) \longleftrightarrow((L 1 \preceq[X$, red $Y] L 2) \wedge$
(L2 $\preceq[X$, red $Y] L 1$))
by fastforce
lemma equiv-type-1:
assumes is-language X Y L1
and is-language X Y L2
shows $(L 1=L 2) \longleftrightarrow(L 1 \preceq[X$, equiv $Y] L 2)$
unfolding equiv-by-reduction
unfolding red-type- 1 [OF assms(1,2), symmetric]
unfolding red-type-1 $[O F \operatorname{assms}(2,1)$, symmetric $]$
unfolding language-inclusion-def
by blast
lemma quasired-type-1:
assumes is-language X Y L1
and is-language X Y L2
shows quasi-reduction L1 L2 $\longleftrightarrow(L 1 \preceq[X, q u a s i r e d Y] L 2)$
proof
have $\wedge \pi x$. quasi-reduction L1 L2 $\Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow($ out $[L 1, \pi, x]$,
out $[L 2, \pi, x]) \in$ quasired Y
proof -
fix πx assume quasi-reduction L1 L2 and $\pi \in L 1 \cap L 2$ and $x \in X$
show $($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in$ quasired Y
proof (cases $x \in \operatorname{exec}[L 2, \pi])$
case False
then show? ?thesis
by (metis (mono-tags, lifting) CollectI UnCI assms(1) outputs-executable

```
outputs-in-alphabet quasired.elims)
    next
        case True
        then obtain }y\mathrm{ where }y\in\mathrm{ out [L2, , ,x] by auto
        then have out[L1,\pi,x]\subseteq out[L2,\pi,x] and out[L1,\pi,x]\not={}
            using <\pi \inL1\cap L2\rangle\langlex\inX\rangle\langlequasi-reduction L1 L2\rangle
            unfolding quasi-reduction-def by force+
        moreover have out[L2,\pi,x]\subseteqY
            by (meson assms(2) outputs-in-alphabet)
        ultimately show ?thesis
            unfolding quasired.simps by blast
    qed
qed
then show quasi-reduction L1 L2 \Longrightarrow(L1\preceq[X,quasired Y] L2)
    by auto
```

 have \(\wedge \pi x . L 1 \preceq[X\), quasired \(Y] L 2 \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow\)
 out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x]$
and $\wedge \pi x . L 1 \preceq[X$, quasired $Y] L 2 \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow$
out $[L 1, \pi, x] \neq\{ \}$
proof -
fix πx assume $L 1 \preceq[X$, quasired $Y] L 2$ and $\pi \in L 1 \cap L 2$ and $x \in \operatorname{exec}[L 2, \pi]$
then have $x \in X$
using executable-inputs-in-alphabet $[$ OF assms(2)] by auto
have out $[L 2, \pi, x] \neq\{ \}$
using $\langle x \in \operatorname{exec}[L 2, \pi]\rangle$
by (meson outputs-executable)
moreover have $($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in$ quasired Y
by (meson $\langle L 1 \preceq[X$, quasired $Y] L 2\rangle\langle\pi \in L 1 \cap L 2\rangle\langle x \in X\rangle$ type-1-conforms.elims(2))
ultimately show out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x]$
and out $[L 1, \pi, x] \neq\{ \}$
unfolding quasired.simps
by blast+
qed
then show $L 1 \preceq[X$, quasired $Y] L 2 \Longrightarrow$ quasi-reduction L1 L2
by (meson quasi-reduction-def)
qed
lemma quasieq-type-1:
assumes is-language X Y L1
and is-language X Y L2
shows quasi-equivalence L1 L2 $\longleftrightarrow($ L1 $\preceq[X, q u a s i e q ~ Y] L 2)$
proof
have $\bigwedge \pi x$. quasi-equivalence $L 1 L 2 \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow$
$($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in$ quasieq Y
proof -
fix πx assume quasi-equivalence L1 L2 and $\pi \in L 1 \cap L 2$ and $x \in X$
show $($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in$ quasieq Y
proof (cases $x \in \operatorname{exec}[L 2, \pi]$)
case False
then show ?thesis
by (metis (mono-tags, lifting) CollectI UnCI assms(1) outputs-executable outputs-in-alphabet quasieq.simps)
next
case True
then show ?thesis
by (metis (mono-tags, lifting) CollectI UnCI $\langle\pi \in L 1 \cap$ L2〉 $\langle q u a s i$-equivalence
L1 L2> assms(1) outputs-in-alphabet quasi-equivalence-def quasieq.simps)
qed
qed
then show quasi-equivalence L1 L2 $\Longrightarrow(L 1 \preceq[X, q u a s i e q ~ Y] L 2)$
by auto
have $\wedge \pi x . L 1 \preceq[X$, quasieq $Y] L 2 \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow$ out $[L 1, \pi, x]=$ out $[L 2, \pi, x]$
proof -
fix πx assume $L 1 \preceq[X$, quasieq $Y] L 2$ and $\pi \in L 1 \cap L 2$ and $x \in \operatorname{exec}[L 2, \pi]$ then have $x \in X$
using executable-inputs-in-alphabet[OF assms(2)] by auto
have out $[L 2, \pi, x] \neq\{ \}$
using $\langle x \in \operatorname{exec}[L 2, \pi]\rangle$
by (meson outputs-executable)
moreover have (out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in$ quasieq Y
by (meson $\langle L 1 \preceq[X, q u a s i e q ~ Y] L 2\rangle\langle\pi \in L 1 \cap L 2\rangle\langle x \in X\rangle$ type-1-conforms.elims(2))
ultimately show out $[L 1, \pi, x]=\operatorname{out}[L 2, \pi, x]$
unfolding quasieq.simps
by blast
qed
then show $L 1 \preceq[X, q u a s i e q ~ Y] L 2 \Longrightarrow$ quasi-equivalence L1 L2
by (meson quasi-equivalence-def)
qed
lemma strongred-type-1:
assumes is-language X Y L1
and is-language X Y L2
shows strong-reduction L1 L2 $\longleftrightarrow(L 1 \preceq[X$, strongred $Y] L 2)$
proof
have $\wedge \pi x$.strong-reduction L1 L2 $\Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow($ out $[L 1, \pi, x]$,
out $[L 2, \pi, x]) \in$ strongred Y
proof -
fix πx assume strong-reduction L1 L2 and $\pi \in L 1 \cap L 2$ and $x \in X$

```
    have out[L2,\pi,x]\subseteqY
    using outputs-in-alphabet[OF assms(2)].
    show (out[L1,\pi,x], out [L2,\pi,x]) \in strongred Y
    proof (cases x \in exec[L2,\pi])
    case False
    then have out [L2,\pi,x]={}
        using outputs-executable by force
    then have out[L1,\pi,x]={}
        using <strong-reduction L1 L2\rangle\langle\pi\inL1\cap L2\rangle
        unfolding strong-reduction-def by blast
    then show ?thesis
        using <out [L2,\pi,x]={}> by auto
    next
    case True
    then have out [L1,\pi,x]\not={}
        using <strong-reduction L1 L2\rangle\langle\pi\inL1\cap L2\rangle
        unfolding strong-reduction-def
        by (meson quasi-reduction-def)
    moreover have out[L1,\pi,x]\subseteqout[L2,\pi,x]
        by (meson True <\pi \inL1\cap L2\rangle\langlestrong-reduction L1 L2\rangle quasi-reduction-def
strong-reduction-def)
    ultimately show ?thesis
        unfolding strongred.simps
        using outputs-executable outputs-in-alphabet[OF assms(2)]
        by force
    qed
qed
then show strong-reduction L1 L2 \Longrightarrow(L1\preceq[X,strongred Y] L2)
    by auto
```

have $\wedge \pi x . L 1 \preceq[X$, strongred $Y] L 2 \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow$
out $[L 1, \pi, x] \neq\{ \}$
and $\wedge \pi x . L 1 \preceq[X$, strongred $Y] L 2 \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow$
out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x]$
proof -
fix $\pi x y$ assume $L 1 \preceq[X$, strongred $Y] L 2$ and $\pi \in L 1 \cap L 2$ and $x \in \operatorname{exec}[L 2, \pi]$
then have $x \in X$
using executable-inputs-in-alphabet $[$ OF assms(2)] by auto
have out $[L 2, \pi, x] \neq\{ \}$
using $\langle x \in \operatorname{exec}[L 2, \pi]\rangle$
by (meson outputs-executable)
moreover have (out $[L 1, \pi, x]$,out $[L 2, \pi, x]) \in$ strongred Y
by (meson $\langle L 1 \preceq[X$, strongred $Y] L 2\rangle\langle\pi \in L 1 \cap L 2\rangle\langle x \in X\rangle$ type-1-conforms.elims(2))
ultimately show out $[L 1, \pi, x] \neq\{ \}$ and out $[L 1, \pi, x] \subseteq \operatorname{out}[L 2, \pi, x]$
unfolding strongred.simps

```
        by blast+
    qed
moreover have }\bigwedge\pix.L1\preceq[X,strongred Y] L2 \Longrightarrow\pi\inL1\capL2\Longrightarrowout[L2,\pi,x
={}\Longrightarrowout[L1,\pi,x]={}
    proof -
    fix }\pix\mathrm{ assume L1 }\preceq[X,\mathrm{ strongred Y] L2 and }\pi\inL1\capL2 and out[L2,\pi,x]
{}
    show out[L1,\pi,x] = {}
    proof (rule ccontr)
        assume out[L1,\pi,x]\not={}
        then have }x\in
            by (meson assms(1) executable-inputs-in-alphabet outputs-executable)
            then have out[L2,\pi,x]\not={}
            using <L1 \preceq[X,strongred Y] L2\rangle\langle\pi \inL1\cap L2\rangle\langleout[L1,\pi,x] \not={}> by
fastforce
            then show False
                using <out[L2,\pi,x] = {}> by simp
    qed
qed
ultimately show L1 \preceq[X,strongred Y] L2 \Longrightarrow strong-reduction L1 L2
    unfolding strong-reduction-def quasi-reduction-def by blast
qed
```


$3.2 \leq$ Conformance

fun type-2-conforms $::\left({ }^{\prime} x, ' y\right)$ language $\Rightarrow{ }^{\prime} x$ alphabet \Rightarrow ' y output-relation $\Rightarrow(' x, ' y)$ language \Rightarrow bool where
type-2-conforms L1 X H L2 $=($
$(\forall \pi \in L 1 \cap L 2 . \forall x \in X .($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in H) \wedge$ $(\forall \pi \in L 1 \cap L 2 . \operatorname{exec}[L 2, \pi] \neq\{ \} \longrightarrow(\exists x \cdot$ out $[L 1, \pi, x] \cap$ out $[L 2, \pi, x] \neq$ \{\})))
notation type-2-conforms (- $\leq[-,-]-$)
fun semieq :: ' y alphabet \Rightarrow ' y output-relation where
semieq $Y=\{(A, A) \mid A . A \subseteq Y\} \cup\{(\{ \}, A) \mid A . A \subseteq Y\} \cup\{(A,\{ \}) \mid A . A \subseteq$ $Y\}$
fun semired $::$ ' y alphabet \Rightarrow ' y output-relation where
semired $Y=\{(A, B) \mid A B . A \subseteq B \wedge B \subseteq Y\} \cup\{(C,\{ \}) \mid C . C \subseteq Y\}$
fun strongsemieq :: 'y alphabet \Rightarrow ' y output-relation where

$$
\text { strongsemieq } Y=\{(A, A) \mid A . A \subseteq Y\} \cup\{(\{ \}, A) \mid A . A \subseteq Y\}
$$

fun strongsemired $::$ ' y alphabet \Rightarrow ' y output-relation where strongsemired $Y=\{(A, B) \mid A B . A \subseteq B \wedge B \subseteq Y\}$
lemma strongsemieq-alt-def : strongsemieq $Y=$ semieq $Y \cap$ red Y

```
lemma semired-type-2 :
    assumes is-language X Y L1
    and is-language X Y L2
shows (semi-reduction L1 L2) \(\longleftrightarrow(L 1 \leq[X\), semired \(Y] L 2)\)
proof
    show semi-reduction L1 L2 \(\Longrightarrow L 1 \leq[X\), semired \(Y] L 2\)
    proof -
        assume semi-reduction L1 L2
        then have \(p 1: \wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow(\operatorname{out}[L 1, \pi, x] \subseteq\)
out \([L 2, \pi, x]\) )
            and \(p 2: \bigwedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow \exists x^{\prime} . \operatorname{out}\left[L 1, \pi, x^{\prime}\right]\)
\(\cap\) out \(\left[L 2, \pi, x^{\prime}\right] \neq\{ \}\)
            unfolding semi-reduction-def by blast+
    have \(\wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow(\) out \([L 1, \pi, x]\), out \([L 2, \pi, x]) \in\) semired
Y
    by (metis (mono-tags, lifting) CollectI UnCI assms(1) assms(2) outputs-executable
outputs-in-alphabet p1 semired.simps)
    moreover have \(\bigwedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow \operatorname{exec}[L 2, \pi] \neq\{ \} \Longrightarrow \exists x\) out \([L 1, \pi, x]\)
\(\cap\) out \([L 2, \pi, x] \neq\{ \}\)
            using \(p 2\) by fastforce
    ultimately show \(L 1 \leq[X\), semired \(Y] L 2\)
        by auto
    qed
    show \(L 1 \leq[X\), semired \(Y] L 2 \Longrightarrow\) semi-reduction L1 L2
    proof -
    assume \(L 1 \leq[X\), semired \(Y] L 2\)
    then have \(p 1: \bigwedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow(\) out \([L 1, \pi, x]\), out \([L 2, \pi, x])\)
\(\in\) semired \(Y\)
            and \(p 2: \wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow \operatorname{exec}[L 2, \pi] \neq\{ \} \Longrightarrow \exists x . \operatorname{out}[L 1, \pi, x]\)
\(\cap\) out \([L 2, \pi, x] \neq\{ \}\)
            by auto
have \(\wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow(\operatorname{out}[L 1, \pi, x] \subseteq \operatorname{out}[L 2, \pi, x])\)
proof -
    fix \(\pi x\) assume \(\pi \in L 1 \cap L 2\) and \(x \in \operatorname{exec}[L 2, \pi]\)
        then have \((\) out \([L 1, \pi, x]\), out \([L 2, \pi, x]) \in\) semired \(Y\)
            using \(p 1\) executable-inputs-in-alphabet[OF assms(2)] by auto
        moreover have out \([L 2, \pi, x] \neq\{ \}\)
            using \(\langle x \in \operatorname{exec}[L 2, \pi]\rangle\) by auto
        ultimately show (out \([L 1, \pi, x] \subseteq\) out \([L 2, \pi, x])\)
            unfolding semired.simps by blast
```

```
    qed
    moreover have }\\pix.\pi\inL1\capL2\Longrightarrowx\in\operatorname{exec}[L2,\pi]\Longrightarrow\exists\mp@subsup{x}{}{\prime}.\operatorname{out}[L1,\pi,x
~out[L2,\pi,x]}\not={
            using p2 by blast
    ultimately show ?thesis
        unfolding semi-reduction-def by blast
    qed
qed
lemma semieq-type-2:
    assumes is-language X Y L1
    and is-language X Y L2
shows (semi-equivalence L1 L2) \longleftrightarrow(L1\leq[X, semieq Y] L2)
proof
    show semi-equivalence L1 L2 \LongrightarrowL1\leq[X, semieq Y] L2
    proof -
    assume semi-equivalence L1 L2
    then have p1: \bigwedge \pix.\pi\inL1\capL2 \Longrightarrow < < exec[L2, m] \Longrightarrowout[L1,\pi,x]={}
Vout [L1,\pi,x] = out[L2,\pi,x]
            and p2: \bigwedge\pi x.\pi \inL1\capL2\Longrightarrow < < exec[L2,\pi]\Longrightarrow\exists > . out[L1,\pi,x]
\capout[L2,\pi,x] = {}
            unfolding semi-equivalence-def by blast+
    have }\bigwedge\pix.\pi\inL1\capL2\Longrightarrowx\inX\Longrightarrow(out[L1,\pi,x],out[L2,\pi,x])\in semieq
Y
    proof -
            fix }\pix\mathrm{ assume }\pi\inL1\capL2 and x\in
            show (out[L1,\pi,x], out[L2,\pi,x]) \in semieq Y
            proof (cases x exec[L2,\pi])
            case True
            then have out [L2,\pi,x] \not={} by auto
            then show ?thesis
                    using p1[OF <\pi \inL1\cap L2> True]
                    using outputs-in-alphabet[OF assms(2)]
                    unfolding semieq.simps
                by fastforce
            next
                case False
            then show ?thesis
                    by (metis (mono-tags, lifting) CollectI UnI2 assms(1) outputs-executable
outputs-in-alphabet semieq.elims)
            qed
    qed
    moreover have }\bigwedge\pix.\pi\inL1\capL2 \Longrightarrow exec[L2,\pi]\not={}\Longrightarrow\existsx.out[L1,\pi,x
\capout [L2, , , x] ={}
            using p2 by fastforce
    ultimately show L1 \leq[X, semieq Y] L2
            by auto
```


qed

show $L 1 \leq[X$, semieq $Y]$ L2 \Longrightarrow semi-equivalence L1 L2 proof -
assume L1 $\leq[X$, semieq $Y] L 2$
then have $p 1: \wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow(o u t[L 1, \pi, x]$, out $[L 2, \pi, x])$ \in semieq Y
and $p 2: \bigwedge \pi x \cdot \pi \in L 1 \cap L 2 \Longrightarrow \operatorname{exec}[L 2, \pi] \neq\{ \} \Longrightarrow \exists x \cdot \operatorname{out}[L 1, \pi, x]$ \cap out $[L 2, \pi, x] \neq\{ \}$
by auto

```
    have \(\wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow \operatorname{out}[L 1, \pi, x]=\{ \} \vee\) out \([L 1, \pi, x]\)
\(=\) out \([L 2, \pi, x]\)
    proof -
        fix \(\pi x\) assume \(\pi \in L 1 \cap L 2\) and \(x \in \operatorname{exec}[L 2, \pi]\)
        then have \((\) out \([L 1, \pi, x]\), out \([L 2, \pi, x]) \in\) semieq \(Y\)
            using \(p 1\) executable-inputs-in-alphabet[OF assms(2)] by auto
        moreover have out \([L 2, \pi, x] \neq\{ \}\)
            using \(\langle x \in \operatorname{exec}[L 2, \pi]\rangle\) by auto
        ultimately show out \([L 1, \pi, x]=\{ \} \vee \operatorname{out}[L 1, \pi, x]=\operatorname{out}[L 2, \pi, x]\)
            unfolding semieq.simps
            by blast
    qed
    moreover have \(\wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow \exists x^{\prime}\). out \([L 1, \pi, x]\)
\(\cap\) out \([L 2, \pi, x] \neq\{ \}\)
            using p2 by blast
    ultimately show ?thesis
        unfolding semi-equivalence-def by blast
    qed
qed
```

lemma strongsemired-type-2 :
assumes is-language X Y L1
and is-language X Y L2
shows (strong-semi-reduction L1 L2) $\longleftrightarrow($ L1 $\leq[X$, strongsemired $Y] L 2)$
proof
show strong-semi-reduction L1 L2 $\Longrightarrow L 1 \leq[X$, strongsemired $Y]$ L2
proof -
assume strong-semi-reduction L1 L2
then have $p 1: \wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow(o u t[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x])$
and $p 2: \bigwedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow \exists x^{\prime} . \operatorname{out}\left[L 1, \pi, x^{\prime}\right]$
\cap out $[L 2, \pi, x] \neq\{ \}$
and $p 3: \bigwedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \notin \operatorname{exec}[L 2, \pi] \Longrightarrow \operatorname{out}[L 1, \pi, x]=\{ \}$
unfolding strong-semi-reduction-def by blast+
have $\wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow(\operatorname{out}[L 1, \pi, x]$, out $[L 2, \pi, x]) \in$ strongsemired Y

```
    unfolding strongsemired.simps
        by (metis (mono-tags, lifting) CollectI assms(2) outputs-executable out-
puts-in-alphabet p1 p3 set-eq-subset)
    moreover have }\\pix.\pi\inL1\capL2\Longrightarrow\operatorname{exec}[L2,\pi]\not={}\Longrightarrow\existsx.out[L1,\pi,x
out [L2,\pi,x] \not= {}
            using p2 by fastforce
    ultimately show L1 \leq[X, strongsemired Y] L2
        by auto
    qed
    show L1 \leq[X,strongsemired Y] L2 \Longrightarrow strong-semi-reduction L1 L2
    proof -
    assume L1 \leq[X,strongsemired Y] L2
    then have p1:^\pix.\pi\inL1\capL2\Longrightarrowx\inX\Longrightarrow(out[L1,\pi,x],out[L2,\pi,x])
strongsemired Y
            and p2: ^\pix.\pi\inL1\capL2\Longrightarrow exec[L2,\pi]\not={} \Longrightarrow\exists x.out[L1,\pi,x]
\capout[L2,\pi,x] \not= {}
            by auto
    have }\\pix.\pi\inL1\capL2\Longrightarrowx\in\operatorname{exec}[L2,\pi]\Longrightarrow(out[L1,\pi,x]\subseteq out[L2,\pi,x]
    proof -
        fix \pix assume }\pi\inL1\capL2 and x\inexec[L2,\pi
        then have (out[LL,\pi,x],out[LQ,\pi,x])\in semired Y
            using p1 executable-inputs-in-alphabet[OF assms(2)] by auto
            moreover have out[L2,\pi,x]\not={}
            using <x \in exec[L2,\pi]> by auto
            ultimately show (out[LL,\pi,x]\subseteq out[L2,\pi,x])
            unfolding semired.simps by blast
    qed
    moreover have }\\pix.\pi\inL1\capL2\Longrightarrowx\in\operatorname{exec}[L2,\pi]\Longrightarrow\exists\mp@subsup{x}{}{\prime}.\mathrm{ out [L1, , x, x]
~out[L2,\pi,x] = {}
            using p2 by blast
    moreover have }\\pix.\pi\inL1\capL2\Longrightarrowx\not\in\operatorname{exec}[L2,\pi]\Longrightarrowout[L1,\pi,x]={
    proof -
        fix }\pix\mathrm{ assume }\pi\inL1\capL2 and x\not\in exec[L2,\pi
    have (out[L1,\pi,x],out[L2,\pi,x])\in strongsemired Y
    proof (cases x\inexec[L1,\pi])
        case True
        then show ?thesis
            by(meson }\langle\pi\inL1\capL2\rangle assms(1) executable-inputs-in-alphabet p1
    next
        case False
        then show ?thesis
            using «x & exec[L2,\pi]` by fastforce
    qed
    moreover have out[L2,\pi,x]={}
        using «x \not\in exec[L2,\pi]` by auto
    ultimately show out[L1,\pi,x]={}
```

```
        unfolding strongsemired.simps
        by blast
    qed
    ultimately show ?thesis
        unfolding strong-semi-reduction-def by blast
    qed
qed
lemma strongsemieq-type-2 :
    assumes is-language X Y L1
    and is-language X Y L2
shows (strong-semi-equivalence L1 L2) \longleftrightarrow(L1\leq[X, strongsemieq Y] L2)
proof
    show strong-semi-equivalence L1 L2 \LongrightarrowL1\leq[X, strongsemieq Y] L2
    proof -
    assume strong-semi-equivalence L1 L2
    then have p1: \bigwedge \pix.\pi\inL1\capL2 \Longrightarrowx\inexec[L2,\pi] \Longrightarrowout[L1,\pi,x]={}
vout [L1,\pi,x] = out [L2,\pi,x]
            and p2: \\pi x.\pi\inL1\capL2 \Longrightarrow x exec[L2,\pi] \Longrightarrow\exists x'.out[L1,\pi,x]
\capout[L2,\pi,x] = {}
                and p3: \bigwedge\pi x. \pi \inL1\capL2 \Longrightarrow < & exec[L2,\pi] \Longrightarrowout[L1,\pi,x]={}
        unfolding strong-semi-equivalence-def by blast+
        have }\bigwedge\pix.\pi\inL1\capL2 \Longrightarrowx\inX\Longrightarrow(out[L1,\pi,x],out[L2,\pi,x])
strongsemieq Y
    proof -
            fix }\pix\mathrm{ assume }\pi\inL1\capL2 and x\in
            show (out[L1,\pi,x], out[L2,\pi,x]) \in strongsemieq Y
            proof (cases x }\in\operatorname{exec}[L2,\pi]
            case True
            then have out [L2,\pi,x] = {} by auto
            then show ?thesis
                    using p1[OF <\pi \inL1\cap L2`True]
                    using outputs-in-alphabet[OF assms(2)]
            by fastforce
        next
            case False
            then show ?thesis
            using <\pi \inL1\capL2`p3 by fastforce
        qed
    qed
    moreover have }\\pix.\pi\inL1\capL2\Longrightarrow\operatorname{exec}[L2,\pi]\not={}\Longrightarrow\existsx.out[L1,\pi,x
~out[L2,\pi,x] = {}
            using p2 by fastforce
    ultimately show L1 \leq[X, strongsemieq Y] L2
        by auto
    qed
```

```
    show L1\leq[X,strongsemieq Y] L2 \Longrightarrowstrong-semi-equivalence L1 L2
    proof -
    assume L1 \leq[X,strongsemieq Y] L2
    then have p1: \bigwedge\pix.\pi\inL1\capL2 \Longrightarrowx\inX\Longrightarrow(out[L1,\pi,x],out[L2,\pi,x])
\epsilon strongsemieq Y
        and p2: \bigwedge \pix.\pi \inL1\capL2\Longrightarrow exec[L2,\pi] # {} \Longrightarrow\exists x.out[L1,\pi,x]
out[L2,\pi,x]\not={}
            by auto
    have }\\pix.\pi\inL1\capL2\Longrightarrowx\in\operatorname{exec}[L2,\pi]\Longrightarrowout[L1,\pi,x]={}\vee out[L1,\pi,x
=out[L2,\pi,x]
    proof -
        fix }\pix\mathrm{ assume }\pi\inL1\capL2 and x\inexec[L2,\pi
        then have (out[L1,\pi,x],out[L2,\pi,x]) \in semieq Y
            using p1 executable-inputs-in-alphabet[OF assms(2)] by auto
            moreover have out[L2,\pi,x]\not={}
            using <x \in exec[L2,\pi]〉 by auto
            ultimately show out [L1,\pi,x]={}\vee out [L1,\pi,x] = out [L2,\pi,x]
            unfolding semieq.simps
            by blast
    qed
    moreover have }\\pix.\pi\inL1\capL2\Longrightarrowx\in\operatorname{exec}[L2,\pi]\Longrightarrow\exists > ' .out[L1,\pi,x]
\capout[L2,\pi,x] = {}
            using p2 by blast
    moreover have }\\pix.\pi\inL1\capL2\Longrightarrowx\not\in\operatorname{exec}[L2,\pi]\Longrightarrowout[L1,\pi,x]={
    proof -
        fix }\pix\mathrm{ assume }\pi\inL1\capL2 and x\not\inexec[L2,\pi
        have (out[L1,\pi,x],out [L2,\pi,x]) \in strongsemieq Y
        proof (cases x }\in\operatorname{exec}[L1,\pi]
            case True
            then show ?thesis
                by (meson <\pi \inL1\cap L2`assms(1) executable-inputs-in-alphabet p1)
        next
            case False
            then show ?thesis
                using <x \not\in exec[L2,\pi]> by fastforce
        qed
        moreover have out[L2,\pi,x]={}
            using <x \not\in exec[L2,\pi]〉 by auto
        ultimately show out[L1,\pi,x]={}
            unfolding strongsemieq.simps
            by blast
    qed
    ultimately show ?thesis
        unfolding strong-semi-equivalence-def by blast
    qed
qed
```


4 Comparing Conformance Relations

```
lemma type-1-subset :
    assumes L1 \preceq[X,H1] L2
    and H1\subseteqH2
shows L1 \preceq[X,H2] L2
    using assms by auto
lemma type-1-subsets :
shows equiv }Y\subseteq\mathrm{ strongred Y
    and equiv }Y\subseteqquasieq 
    and strongred }Y\subseteq\mathrm{ red }
    and strongred Y\subseteq quasired Y
    and quasieq }Y\subseteqquasired 
    by auto
```

lemma type-1-implications :
shows $L 1 \preceq[X$, equiv $Y] L 2 \Longrightarrow L 1 \preceq[X$, strongred $Y] L 2$
and $L 1 \preceq[X$, equiv $Y] L 2 \Longrightarrow L 1 \preceq[X$, red $Y] L 2$
and $L 1 \preceq[X$, equiv $Y] L 2 \Longrightarrow L 1 \preceq[X$, quasired $Y] L 2$
and $L 1 \preceq[X$, equiv $Y] L 2 \Longrightarrow L 1 \preceq[X$, quasieq $Y] L 2$
and $L 1 \preceq[X$, strongred $Y] L 2 \Longrightarrow L 1 \preceq[X$, red $Y]$ L2
and $L 1 \preceq[X$, strongred $Y] L 2 \Longrightarrow L 1 \preceq[X$, quasired $Y] L 2$
and $L 1 \preceq[X$, quasieq $Y] L 2 \Longrightarrow L 1 \preceq[X$, quasired $Y] L 2$
using type-1-subset[OF - type-1-subsets(4), of L1 X Y L2]
using type-1-subset[OF - type-1-subsets(5), of L1 X Y L2]
by auto
lemma type-2-subset :
assumes $L 1 \leq[X, H 1] L 2$
and $H 1 \subseteq H 2$
shows $L 1 \leq[X, H 2] L 2$
using assms by auto
lemma type-2-subsets :
shows strongsemieq $Y \subseteq$ strongsemired Y
and strongsemieq $Y \subseteq$ semieq Y
and semieq $Y \subseteq$ semired Y
and strongsemired $Y \subseteq$ semired Y
and strongsemired $Y \subseteq$ red Y
by auto
lemma type-2-implications :
shows $L 1 \leq[X$, strongsemieq $Y] L 2 \Longrightarrow L 1 \leq[X$, strongsemired $Y] L 2$
and $L 1 \leq[X$, strongsemieq $Y] L 2 \Longrightarrow L 1 \leq[X$, semieq $Y] L 2$
and $L 1 \leq[X$, strongsemieq $Y] L 2 \Longrightarrow L 1 \leq[X$, semired $Y] L 2$
and $L 1 \leq[X$, strongsemired $Y] L 2 \Longrightarrow L 1 \leq[X$, semired $Y] L 2$
and $L 1 \leq[X$, semieq $Y] L 2 \Longrightarrow L 1 \leq[X$, semired $Y] L 2$
by auto

```
lemma type-1-conformance-to-type-2 :
    assumes is-language X Y L2
    and \(\quad L 1 \preceq[X, H 1] L 2\)
    and \(H 1 \subseteq H 2\)
    and \(\wedge A B \cdot(A, B) \in H 1 \Longrightarrow B \neq\{ \} \Longrightarrow A \cap B \neq\{ \}\)
shows \(L 1 \leq[X, H 2] L 2\)
proof -
    have \(\wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow(\operatorname{out}[L 1, \pi, x]\), out \([L 2, \pi, x]) \in H_{2}\)
    using \(\operatorname{assms}(2,3)\) by auto
    moreover have \(\bigwedge \pi . \pi \in L 1 \cap L 2 \Longrightarrow \operatorname{exec}[L 2, \pi] \neq\{ \} \Longrightarrow \exists x\). out \([L 1, \pi, x] \cap\)
out \([L 2, \pi, x] \neq\{ \}\)
    proof -
    fix \(\pi\) assume \(\pi \in L 1 \cap L 2\) and \(\operatorname{exec}[L 2, \pi] \neq\{ \}\)
    then obtain \(x\) where \(x \in \operatorname{exec}[L 2, \pi]\)
        by blast
    then have \(x \in X\)
        by (meson assms(1) executable-inputs-in-alphabet)
        then have \((\) out \([L 1, \pi, x]\), out \([L 2, \pi, x]) \in H 1\)
            using \(\langle\pi \in L 1 \cap L 2\rangle \operatorname{assms}(2)\) by auto
    moreover have out \([L 2, \pi, x] \neq\{ \}\)
        by (meson \(\langle x \in \operatorname{exec}[L 2, \pi]\rangle\) outputs-executable)
        ultimately have out \([L 1, \pi, x] \cap\) out \([L 2, \pi, x] \neq\{ \}\)
            using assms(4) by blast
    then show \(\exists x\). out \([L 1, \pi, x] \cap\) out \([L 2, \pi, x] \neq\{ \}\)
        by blast
    qed
    ultimately show ?thesis
        by auto
qed
lemma type-1-and-2-mixed-implications :
    assumes is-language X Y L2
shows \(L 1 \leq[X\), strongsemieq \(Y] L 2 \Longrightarrow L 1 \preceq[X\), red \(Y] L 2\)
    and \(L 1 \leq[X\), strongsemired \(Y] L 2 \Longrightarrow L 1 \preceq[X\), red \(Y] L 2\)
    and \(L 1 \preceq[X\), quasieq \(Y] L 2 \Longrightarrow L 1 \leq[X\), semieq \(Y] L 2\)
    and \(L 1 \preceq[X\), quasired \(Y] L 2 \Longrightarrow L 1 \leq[X\), semired \(Y] L 2\)
    and \(L 1 \preceq[X\), equiv \(Y] L 2 \Longrightarrow L 1 \leq[X\), strongsemieq \(Y] L 2\)
    and \(L 1 \preceq[X\), strongred \(Y] L 2 \Longrightarrow L 1 \leq[X\), strongsemired \(Y] L 2\)
proof -
show \(L 1 \leq[X\), strongsemieq \(Y] L 2 \Longrightarrow L 1 \preceq[X\), red \(Y] L 2\)
and \(L 1 \leq[X\), strongsemired \(Y] L 2 \Longrightarrow L 1 \preceq[X\), red \(Y] L 2\)
by auto
have \(\wedge A B .(A, B) \in\) quasieq \(Y \Longrightarrow B \neq\{ \} \Longrightarrow A \cap B \neq\{ \}\)
by auto
```

moreover have quasieq $Y \subseteq$ semieq Y
by auto
ultimately show $L 1 \preceq[X$, quasieq $Y] L 2 \Longrightarrow L 1 \leq[X$, semieq $Y] L 2$
using type-1-conformance-to-type-2[OF assms] by blast
have $\wedge A B .(A, B) \in$ quasired $Y \Longrightarrow B \neq\{ \} \Longrightarrow A \cap B \neq\{ \}$
by auto
moreover have quasired $Y \subseteq$ semired Y
unfolding quasired.simps semired.simps by blast
ultimately show $L 1 \preceq[X$, quasired $Y] L 2 \Longrightarrow L 1 \leq[X$, semired $Y] L 2$ using type-1-conformance-to-type-2[OF assms] by blast
have $\wedge A B \cdot(A, B) \in$ equiv $Y \Longrightarrow B \neq\{ \} \Longrightarrow A \cap B \neq\{ \}$ by auto
moreover have equiv $Y \subseteq$ strongsemieq Y unfolding equiv.simps strongsemieq.simps by blast
ultimately show $L 1 \preceq[X$, equiv $Y] L 2 \Longrightarrow L 1 \leq[X$, strongsemieq $Y] L 2$ using type-1-conformance-to-type-2[OF assms $]$ by blast
have $\wedge A B .(A, B) \in$ strongred $Y \Longrightarrow B \neq\{ \} \Longrightarrow A \cap B \neq\{ \}$ by auto
moreover have strongred $Y \subseteq$ strongsemired Y
unfolding strongred.simps strongsemired.simps by blast
ultimately show $L 1 \preceq[X$, strongred $Y] L 2 \Longrightarrow L 1 \leq[X$, strongsemired $Y] L 2$ using type-1-conformance-to-type-2[OF assms] by blast
qed

4.1 Completely Specified Languages

definition partiality-component $::$ ' y set \Rightarrow ' y output-relation where partiality-component $Y=\{(A,\{ \}) \mid A . A \subseteq Y\} \cup\{(\{ \}, A) \mid A . A \subseteq Y\}$
abbreviation(input) $\Pi Y \equiv$ partiality-component Y
lemma conformance-without-partiality :
shows strongsemieq $Y-\Pi Y=$ semieq $Y-\Pi Y$
and semieq $Y-\Pi Y=$ equiv $Y-\Pi Y$
and strongsemired $Y-\Pi Y=$ semired $Y-\Pi Y$
and semired $Y-\Pi Y=$ red $Y-\Pi Y$
unfolding partiality-component-def
by fastforce+

5 Conformance Testing

type-synonym $\left({ }^{\prime} x, ' y\right)$ state-cover $=\left({ }^{\prime} x, ' y\right)$ language
type-synonym ('x,'y) transition-cover $=\left({ }^{\prime} x, ' y\right)$ state-cover \times ' x set
fun $i s$-state-cover :: ('x,'y) language $\Rightarrow\left({ }^{\prime} x, ' y\right)$ language $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ state-cover \Rightarrow
bool where
is-state-cover L1 L2 $V=(\forall \pi \in L 1 \cap L 2 . \exists \alpha \in V . \mathcal{L}[L 1, \pi]=\mathcal{L}[L 1, \alpha] \wedge$ $\mathcal{L}[L 2, \pi]=\mathcal{L}[L 2, \alpha])$
lemma state-cover-subset :
assumes is-language X Y L1
and is-language X Y L2
and is-state-cover L1 L2 V
and $\pi \in L 1 \cap L 2$
obtains α where $\alpha \in V$
and $\alpha \in L 1 \cap L 2$
and $\mathcal{L}[L 1, \pi]=\mathcal{L}[L 1, \alpha]$
and $\mathcal{L}[L 2, \pi]=\mathcal{L}[L 2, \alpha]$
proof -
obtain α where $\alpha \in V$
and $\mathcal{L}[L 1, \pi]=\mathcal{L}[L 1, \alpha]$
and $\mathcal{L}[L 2, \pi]=\mathcal{L}[L 2, \alpha]$
using assms
by (meson is-state-cover.elims(2))
moreover have $\mathcal{L}[L 1, \pi] \neq\{ \}$ and $\mathcal{L}[L 2, \pi] \neq\{ \}$
by (metis Collect-empty-eq-bot Int-iff append.right-neutral assms(4) empty-def language-for-state.elims)+
ultimately have $\alpha \in L 1 \cap L 2$
using language-of-state-empty-iff[OF assms(1)] language-of-state-empty-iff[OF $\operatorname{assms}(2)]$
by blast
then show ?thesis using that $[O F\langle\alpha \in V\rangle-\langle\mathcal{L}[L 1, \pi]=\mathcal{L}[L 1, \alpha]\rangle\langle\mathcal{L}[L 2, \pi]=$ $\mathcal{L}[L 2, \alpha]\rangle]$
by blast
qed

```
theorem sufficient-condition-for-type-1-conformance :
    assumes is-language X Y L1
    and is-language X Y L2
    and is-state-cover L1 L2 V
shows \((L 1 \preceq[X, H] L 2) \longleftrightarrow(\forall \pi \in V . \forall x \in X . \pi \in L 1 \cap L 2 \longrightarrow(\) out \([L 1, \pi, x]\),
out \([L 2, \pi, x]) \in H)\)
proof
    show \((L 1 \preceq[X, H] L 2) \Longrightarrow(\forall \pi \in V . \forall x \in X . \pi \in L 1 \cap L 2 \longrightarrow(\) out \([L 1, \pi, x]\),
out \([L 2, \pi, x]) \in H)\)
    by auto
```

 have \((\bigwedge \pi x . \pi \in V \Longrightarrow x \in X \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow(\) out \([L 1, \pi, x]\), out \([L 2, \pi, x])\)
 $\in H) \Longrightarrow(\bigwedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow(\operatorname{out}[L 1, \pi, x]$, out $[L 2, \pi, x]) \in H)$
proof -
fix πx assume $(\bigwedge \pi x . \pi \in V \Longrightarrow x \in X \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow(o u t[L 1, \pi, x]$,
out $[L 2, \pi, x]) \in H)$
and $\pi \in L 1 \cap L 2$
and $x \in X$
obtain α where $\alpha \in V$ and $\alpha \in L 1 \cap L 2$ and $\mathcal{L}[L 1, \pi]=\mathcal{L}[L 1, \alpha]$ and $\mathcal{L}[L 2, \pi]$ $=\mathcal{L}[L 2, \alpha]$
using state-cover-subset[OF assms $\langle\pi \in L 1 \cap$ L2 \rangle] by auto
then have out $[L 1, \pi, x]=\operatorname{out}[L 1, \alpha, x]$ and $\operatorname{out}[L 2, \pi, x]=\operatorname{out}[L 2, \alpha, x]$
by force+
moreover have (out $[L 1, \alpha, x]$, out $[L 2, \alpha, x]) \in H$
using $\langle(\bigwedge \pi x . \pi \in V \Longrightarrow x \in X \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow$ (out $[L 1, \pi, x]$,
out $[L 2, \pi, x]) \in H)\rangle\langle\alpha \in V\rangle\langle x \in X\rangle\langle\alpha \in L 1 \cap L 2\rangle$
by blast
ultimately show $(\operatorname{out}[L 1, \pi, x]$, out $[L 2, \pi, x]) \in H$
by simp
qed
then show $\forall \pi \in V . \forall x \in X . \pi \in L 1 \cap L 2 \longrightarrow($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in H \Longrightarrow$ $L 1 \preceq[X, H] L 2$
by auto
qed
theorem sufficient-condition-for-type-2-conformance :
assumes is-language X Y L1
and is-language X Y L2
and is-state-cover L1 L2 V
shows $(L 1 \leq[X, H] L 2) \longleftrightarrow(\forall \pi \in V . \forall x \in X . \pi \in L 1 \cap L 2 \longrightarrow($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in H \wedge\left(\right.$ out $[L 2, \pi, x] \neq\{ \} \longrightarrow\left(\exists x^{\prime} \in X\right.$. out $[L 1, \pi, x] \cap$ out $[L 2, \pi, x]$ $\neq\{ \})$)
proof
have $\wedge \pi x .(L 1 \leq[X, H] L 2) \Longrightarrow \pi \in V \Longrightarrow x \in X \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow$ $($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in H \wedge\left(\operatorname{out}[L 2, \pi, x] \neq\{ \} \longrightarrow\left(\exists x^{\prime} \in X\right.\right.$. out $[L 1, \pi, x]$ \cap out $[L 2, \pi, x] \neq\{ \}))$

proof -

fix πx assume $L 1 \leq[X, H] L 2$ and $\pi \in V$ and $x \in X$ and $\pi \in L 1 \cap L 2$
have $($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in H$
using $\langle L 1 \leq[X, H] L 2\rangle\langle\pi \in L 1 \cap L 2\rangle\langle x \in X\rangle$ by force
moreover have out $[L 2, \pi, x] \neq\{ \} \Longrightarrow\left(\exists x^{\prime} \in X\right.$. out $[L 1, \pi, x] \cap$ out $\left[L 2, \pi, x^{\prime}\right]$ $\neq\{ \}$)
by (metis (no-types, lifting) $\langle L 1 \leq[X, H] L 2\rangle\langle\pi \in L 1 \cap L 2\rangle \operatorname{assms}(2)$ empty-iff executable-inputs-in-alphabet inf-bot-right outputs-executable type-2-conforms.elims(2))
ultimately show $($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in H \wedge($ out $[L 2, \pi, x] \neq\{ \} \longrightarrow(\exists$ $x^{\prime} \in X$. out $[L 1, \pi, x] \cap$ out $\left.\left.\left[L 2, \pi, x^{\prime}\right] \neq\{ \}\right)\right)$
by blast
qed
then show $(L 1 \leq[X, H] L 2) \Longrightarrow(\forall \pi \in V . \forall x \in X . \pi \in L 1 \cap L 2 \longrightarrow$ $($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in H \wedge\left(\right.$ out $[L 2, \pi, x] \neq\{ \} \longrightarrow\left(\exists x^{\prime} \in X\right.$. out $[L 1, \pi, x]$

```
\cap out[L2,\pi,x]\not={})))
```

 by auto
 have \((\bigwedge \pi x . \pi \in V \Longrightarrow x \in X \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow(o u t[L 1, \pi, x]\), out \([L 2, \pi, x])\)
 $\in H \wedge\left(\operatorname{out}[L 2, \pi, x] \neq\{ \} \longrightarrow\left(\exists x^{\prime} \in X . \operatorname{out}[L 1, \pi, x] \cap\right.\right.$ out $\left.\left.\left.[L 2, \pi, x] \neq\{ \}\right)\right)\right) \Longrightarrow$
$(\bigwedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow($ out $[L 1, \pi, x]$, out $[L 2, \pi, x]) \in H)$
by (meson assms (1) assms(2) assms (3) sufficient-condition-for-type-1-conformance
type-1-conforms.elims(2))
moreover have $(\bigwedge \pi x . \pi \in V \Longrightarrow x \in X \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow$ (out $[L 1, \pi, x]$,
out $[L 2, \pi, x]) \in H \wedge\left(\right.$ out $[L 2, \pi, x] \neq\{ \} \longrightarrow\left(\exists x^{\prime} \in X\right.$. out $[L 1, \pi, x] \cap$ out $[L 2, \pi, x]$
$\neq\{ \}))$) $\Longrightarrow(\bigwedge \pi . \pi \in L 1 \cap L 2 \Longrightarrow \operatorname{exec}[L 2, \pi] \neq\{ \} \Longrightarrow(\exists x$. out $[L 1, \pi, x] \cap$
out $[L 2, \pi, x] \neq\{ \}))$
proof -
fix π assume $\pi \in L 1 \cap L 2$
and $\operatorname{exec}[L 2, \pi] \neq\{ \}$
and $*:(\bigwedge \pi x . \pi \in V \Longrightarrow x \in X \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow($ out $[L 1, \pi, x]$,
out $[L 2, \pi, x]) \in H \wedge\left(\right.$ out $[L 2, \pi, x] \neq\{ \} \longrightarrow\left(\exists x^{\prime} \in X . \operatorname{out}[L 1, \pi, x] \cap\right.$ out $\left[L 2, \pi, x^{\prime}\right]$
$\neq\{ \})$)
then obtain x where $x \in X$ and out $[L 2, \pi, x] \neq\{ \}$
by (metis all-not-in-conv assms(2) executable-inputs-in-alphabet outputs-executable)
moreover obtain α where $\alpha \in V$
and $\alpha \in L 1 \cap L$ 2
and $\mathcal{L}[L 1, \pi]=\mathcal{L}[L 1, \alpha]$
and $\mathcal{L}[L 2, \pi]=\mathcal{L}[L 2, \alpha]$
using state-cover-subset[OF assms $\langle\pi \in L 1 \cap$ L2〉] by blast
ultimately show $(\exists x$. out $[L 1, \pi, x] \cap$ out $[L 2, \pi, x] \neq\{ \})$
using *
by (metis outputs.elims)
qed
ultimately show $(\forall \pi \in V . \forall x \in X . \pi \in L 1 \cap L 2 \longrightarrow(o u t[L 1, \pi, x]$,
out $[L 2, \pi, x]) \in H \wedge\left(\right.$ out $[L 2, \pi, x] \neq\{ \} \longrightarrow\left(\exists x^{\prime} \in X\right.$. out $[L 1, \pi, x] \cap$ out $\left[L 2, \pi, x^{\prime}\right]$
$\neq\{ \}))) \Longrightarrow(L 1 \leq[X, H] L 2)$
by auto
qed
lemma intersections-card-helper :
assumes finite X
and finite Y
shows card $\{A \cap B \mid A B . A \in X \wedge B \in Y\} \leq \operatorname{card} X * \operatorname{card} Y$
proof -
have $\{A \cap B \mid A B . A \in X \wedge B \in Y\}=(\lambda(A, B) . A \cap B)$ ' $(X \times Y)$
by auto
then have card $\{A \cap B \mid A B . A \in X \wedge B \in Y\} \leq \operatorname{card}(X \times Y)$
by (metis (no-types, lifting) assms(1) assms(2) card-image-le finite-SigmaI)
then show? ?thesis
by (simp add: card-cartesian-product)

qed

lemma prefix-length-take :
(prefix xs ys \wedge length $x s \leq k) \longleftrightarrow$ (prefix xs (take $k y s)$)
proof
show prefix xs ys \wedge length $x s \leq k \Longrightarrow$ prefix xs (take $k y s$)
using prefix-length-prefix take-is-prefix by fastforce
show prefix xs (take k ys) \Longrightarrow prefix xs ys \wedge length $x s \leq k$
by (metis le-trans length-take min.cobounded2 prefix-length-le prefix-order.order-trans take-is-prefix)
qed
lemma brute-force-state-cover :
assumes is-language X Y L1
and is-language X Y L2
and finite $\{\mathcal{L}[L 1, \pi] \mid \pi . \pi \in L 1\}$
and finite $\{\mathcal{L}[L 2, \pi] \mid \pi . \pi \in L 2\}$
and $\operatorname{card}\{\mathcal{L}[L 1, \pi] \mid \pi . \pi \in L 1\} \leq n$
and card $\{\mathcal{L}[L 2, \pi] \mid \pi . \pi \in L 2\} \leq m$
shows is-state-cover L1 L2 $\{\alpha$. length $\alpha \leq m * n-1 \wedge(\forall x y \in$ set α.fst $x y \in X \wedge$ snd $x y \in Y)\}$
proof (rule ccontr)
let ? $V=\{\alpha$. length $\alpha \leq m * n-1 \wedge(\forall x y \in$ set α. fst $x y \in X \wedge$ snd $x y \in Y)\}$
assume \neg is-state-cover L1 L2? ?
define is-covered where is-covered $=(\lambda \pi . \exists \alpha \in$? $V . \mathcal{L}[L 1, \pi]=\mathcal{L}[L 1, \alpha] \wedge$ $\mathcal{L}[L 2, \pi]=\mathcal{L}[L 2, \alpha])$
define missing-traces where missing-traces $=\{\tau . \tau \in L 1 \cap L 2 \wedge \neg i s$-covered $\tau\}$
define τ where $\tau=$ arg-min length $(\lambda \pi . \pi \in$ missing-traces $)$
have missing-traces $\neq\{ \}$
using « \neg is-state-cover L1 L2 ? V〉
using is-covered-def missing-traces-def by fastforce
then have $\tau \in$ missing-traces
$\bigwedge \tau^{\prime} \cdot \tau^{\prime} \in$ missing-traces \Longrightarrow length $\tau \leq$ length τ^{\prime}
using arg-min-nat-lemma[where $P=(\lambda \pi . \pi \in$ missing-traces $)$ and $m=$ length]
unfolding τ-def[symmetric] by blast +
then have τ-props: $\tau \in L 1 \cap L 2$
$\wedge \alpha . \alpha \in ? V \Longrightarrow \neg(\mathcal{L}[L 1, \tau]=\mathcal{L}[L 1, \alpha] \wedge \mathcal{L}[L 2, \tau]=\mathcal{L}[L 2, \alpha])$
unfolding missing-traces-def is-covered-def by blast+
have $\bigwedge x y . x y \in$ set $\tau \Longrightarrow f s t x y \in X \wedge$ snd $x y \in Y$
using $\langle\tau \in L 1 \cap L 2\rangle \operatorname{assms}(1)$ by auto
moreover have $\tau \notin ? V$
using τ－props（2）by blast
ultimately have length $\tau>m * n-1$
by simp

$$
\text { let } ? L 12=\{\mathcal{L}[L 1, \pi] \mid \pi \cdot \pi \in L 1\} \times\{\mathcal{L}[L 2, \pi] \mid \pi \cdot \pi \in L 2\}
$$

have finite？${ }^{2} 12$
using $\operatorname{assms}(3,4)$
by blast
have card ？ $212 \leq m * n$
using $\operatorname{assms}(3,4,5,6)$
by（metis（no－types，lifting）Sigma－cong card－cartesian－product mult．commute mult－le－mono）
let ？visited－states $=\left\{(\mathcal{L}[L 1, \tau], \mathcal{L}[L 2, \tau]) \mid \tau^{\prime} . \tau^{\prime} \in\right.$ set $($ prefixes $\tau) \wedge$ length $\tau^{\prime} \leq$ $m * n-1\}$
have $\wedge \tau^{\prime} \cdot \tau^{\prime} \in \operatorname{set}($ prefixes $\tau) \Longrightarrow \tau^{\prime} \in L 1 \cap L 2$
by（meson τ－props（1）assms（1）assms（2）in－set－prefixes is－language．elims（2）
language－intersection－is－language）
then have ？visited－states \subseteq ？L12
by blast
then have card ？visited－states $\leq m * n$
using 〈finite ？L12〉〈card ？L12 $\leq m * n$ 〉
by（meson card－mono dual－order．trans）
have no－index－loop ：$\wedge i j . i<j \Longrightarrow j \leq$ length $\tau \Longrightarrow \mathcal{L}[L 1$ ，take $i \tau] \neq \mathcal{L}[L 1$ ， take $j \tau] \vee \mathcal{L}[L 2$, take $i \tau] \neq \mathcal{L}[L 2$, take $j \tau]$
proof（rule ccontr）
fix $i j$
assume $i<j$ and $j \leq$ length τ and $\neg(\mathcal{L}[$ L1，take $i \tau] \neq \mathcal{L}[L 1$, take $j \tau] \vee$ $\mathcal{L}[$ L2，take $i \tau] \neq \mathcal{L}[$ L2，take $j \tau])$
then have $\mathcal{L}[L 1$, take $i \tau]=\mathcal{L}[L 1$, take $j \tau]$ and $\mathcal{L}[L 2$, take $i \tau]=\mathcal{L}[L 2$, take $j \tau]$
by auto
have $\left\{\tau^{\prime} . \tau @ \tau^{\prime} \in L 1\right\}=\left\{\tau^{\prime}\right.$. take $\left.j \tau @ \operatorname{drop} j \tau @ \tau^{\prime} \in L 1\right\}$
by (metis append.assoc append-take-drop-id)
have $\left\{\tau^{\prime} . \tau @ \tau^{\prime} \in L 2\right\}=\left\{\tau^{\prime}\right.$. take $\left.j \tau @ \operatorname{drop} j \tau @ \tau^{\prime} \in L 2\right\}$
by (metis append.assoc append-take-drop-id)
have $\mathcal{L}[L 1$,take i τ @drop $j \tau]=\mathcal{L}[L 1, \tau]$
using $\langle\mathcal{L}[L 1$, take $i \tau]=\mathcal{L}[L 1$, take $j \tau]\rangle$
unfolding language-for-state.simps
unfolding $\left\langle\left\{\tau^{\prime} . \tau @ \tau^{\prime} \in L 1\right\}=\left\{\tau^{\prime}\right.\right.$. take $\left.\left.j \tau @ \operatorname{drop} j \tau @ \tau^{\prime} \in L 1\right\}\right\rangle$ append.assoc by blast
moreover have $\mathcal{L}[L 2$, take $i \tau$ @ drop $j \tau]=\mathcal{L}[L 2, \tau]$
using $\langle\mathcal{L}[L 2$, take $i \tau]=\mathcal{L}[L 2$, take $j \tau]\rangle$
unfolding language-for-state.simps
unfolding $\left\langle\left\{\tau^{\prime} . \tau\right.\right.$ @ $\left.\tau^{\prime} \in L 2\right\}=\left\{\tau^{\prime}\right.$. take $j \tau$ @ drop $\left.\left.j \tau @ \tau^{\prime} \in L 2\right\}\right\rangle$
append.assoc by blast
have (take i τ @drop $j \tau) \in$ missing-traces
proof (rule ccontr)
assume take $i \tau$ @ drop $j \tau \notin$ missing-traces
moreover have take $i \tau$ @ drop $j \tau \in L 1 \cap L 2$
by (metis IntD1 IntD2 IntI 〈L $[L 1$,take $i \tau]=\mathcal{L}[L 1$ 1,take $j \tau]\rangle\langle\mathcal{L}[L 2$, take $i \tau]=$ $\mathcal{L}[L 2$, take $j \tau]>\tau$-props(1) append-take-drop-id language-for-state.elims mem-Collect-eq)
ultimately obtain α where length $\alpha \leq m * n-1$

$$
\begin{aligned}
& (\forall x y \in \text { set } \alpha \text {. fst xy } \in X \wedge \text { snd } x y \in Y) \\
& \mathcal{L}[L 1, \text { take i } \tau \text { @drop } j \tau]=\mathcal{L}[L 1, \alpha] \\
& \mathcal{L}[L 2, \text { take } i \tau @ \text { drop } j \tau]=\mathcal{L}[L 2, \alpha]
\end{aligned}
$$

unfolding missing-traces-def is-covered-def
by blast
then have $\tau \notin$ missing-traces
unfolding missing-traces-def is-covered-def
using $\langle\tau \in L 1 \cap L 2\rangle$
unfolding $\langle\mathcal{L}[L 1$, take $i \tau @$ drop $j \tau]=\mathcal{L}[L 1, \tau]\rangle$
unfolding $\langle\mathcal{L}[L 2$, take $i \tau$ @ drop $j \tau]=\mathcal{L}[L 2, \tau]\rangle$
by blast
then show False
using $\langle\tau \in$ missing-traces \rangle by simp
qed
moreover have length (take i τ @ drop $j \tau$) < length τ
using $\langle i<j\rangle\langle j \leq$ length $\tau\rangle$
by (induction τ arbitrary: $i j$; auto)
ultimately show False
using $\left\langle\wedge \tau^{\prime} \cdot \tau^{\prime} \in\right.$ missing-traces \Longrightarrow length $\tau \leq$ length $\left.\tau^{\prime}\right\rangle$
using leD by blast
qed
have no-prefix-loop : $\bigwedge \tau^{\prime} \tau^{\prime \prime} . \tau^{\prime} \in \operatorname{set}$ (prefixes $\left.\tau\right) \Longrightarrow \tau^{\prime \prime} \in \operatorname{set}$ (prefixes τ) $\Longrightarrow \tau^{\prime} \neq \tau^{\prime \prime} \Longrightarrow\left(\mathcal{L}\left[L 1, \tau^{\prime}\right], \mathcal{L}\left[L 2, \tau^{\prime}\right]\right) \neq\left(\mathcal{L}\left[L 1, \tau^{\prime}\right], \mathcal{L}\left[L 2, \tau^{\prime \prime}\right]\right)$
proof -
fix $\tau^{\prime} \tau^{\prime \prime}$ assume $\tau^{\prime} \in \operatorname{set}\left(\right.$ prefixes τ) and $\tau^{\prime \prime} \in$ set (prefixes τ) and $\tau^{\prime} \neq \tau^{\prime \prime}$
obtain i where $\tau^{\prime}=$ take $i \tau$ and $i \leq$ length τ
using $\left\langle\tau^{\prime} \in \operatorname{set}(\right.$ prefixes $\left.\tau)\right\rangle$
by (metis append-eq-conv-conj in-set-prefixes linorder-linear prefix-def take-all-iff)
obtain j where $\tau^{\prime \prime}=$ take $j \tau$ and $j \leq$ length τ using $\left\langle\tau^{\prime \prime} \in \operatorname{set}(\right.$ prefixes $\left.\tau)\right\rangle$
by (metis append-eq-conv-conj in-set-prefixes linorder-linear prefix-def take-all-iff)
have $i \neq j$
using $\left\langle\tau^{\prime}=\right.$ take $\left.i \tau\right\rangle\left\langle\tau^{\prime} \neq \tau^{\prime \prime}\right\rangle\left\langle\tau^{\prime \prime}=\right.$ take $\left.j \tau\right\rangle$ by blast
then consider $(a) i<j \mid(b) j<i$
using nat-neq-iff by blast
then show $\left(\mathcal{L}\left[L 1, \tau^{\prime}\right], \mathcal{L}\left[L 2, \tau^{\prime}\right]\right) \neq\left(\mathcal{L}\left[L 1, \tau^{\prime}\right], \mathcal{L}\left[L 2, \tau^{\prime \prime}\right]\right)$
using no-index-loop
using $\langle j \leq$ length $\tau\rangle\langle i \leq$ length $\tau\rangle$
unfolding $\left\langle\tau^{\prime}=\right.$ take $\left.i \tau\right\rangle\left\langle\tau^{\prime \prime}=\right.$ take $\left.j \tau\right\rangle$
by (cases; blast)
qed
then have inj-on $\left(\lambda \tau^{\prime} .\left(\mathcal{L}\left[L 1, \tau^{\prime}\right], \mathcal{L}\left[L 2, \tau^{\prime}\right]\right)\right)\left\{\tau^{\prime} \cdot \tau^{\prime} \in\right.$ set $($ prefixes $\tau) \wedge$ length $\left.\tau^{\prime} \leq m * n-1\right\}$
using inj-onI
by (metis (mono-tags, lifting) mem-Collect-eq)
then have $\operatorname{card}\left(\left(\lambda \tau^{\prime} .(\mathcal{L}[L 1, \tau], \mathcal{L}[L 2, \tau\rceil)\right)\right.$ ' $\left\{\tau^{\prime} . \tau^{\prime} \in\right.$ set $($ prefixes $\tau) \wedge$ length $\left.\left.\tau^{\prime} \leq m * n-1\right\}\right)=\operatorname{card}\left\{\tau^{\prime} \cdot \tau^{\prime} \in \operatorname{set}(\right.$ prefixes $\tau) \wedge$ length $\left.\tau^{\prime} \leq m * n-1\right\}$
using card-image by blast
moreover have ?visited-states $=\left(\lambda \tau^{\prime} \cdot(\mathcal{L}[L 1, \tau\rceil, \mathcal{L}[L 2, \tau\rceil)\right)$ ' $\left\{\tau^{\prime} \cdot \tau^{\prime} \in\right.$ set (prefixes $\tau) \wedge$ length $\left.\tau^{\prime} \leq m * n-1\right\}$
by auto
ultimately have card ? visited-states $=\operatorname{card}\left\{\tau^{\prime} . \tau^{\prime} \in\right.$ set $($ prefixes $\tau) \wedge$ length $\left.\tau^{\prime} \leq m * n-1\right\}$
by simp
moreover have card $\left\{\tau^{\prime} . \tau^{\prime} \in \operatorname{set}(\right.$ prefixes $\tau) \wedge$ length $\left.\tau^{\prime} \leq m * n-1\right\}=$ $m * n$
proof -
have $\left\{\tau^{\prime} . \tau^{\prime} \in \operatorname{set}(\right.$ prefixes $\tau) \wedge$ length $\left.\tau^{\prime} \leq m * n-1\right\}=$ set (prefixes (take $(m * n-1) \tau))$
unfolding in-set-prefixes prefix-length-take
by auto
moreover have length (take $(m * n-1) \tau)=m * n-1$
using 〈length $\tau>m * n-1$ by auto
ultimately show ?thesis
using length-prefixes distinct-prefixes
by (metis $\left\langle\right.$ card $\left\{\left(\mathcal{L}\left[L 1, \tau^{\prime}\right], \mathcal{L}\left[L 2, \tau^{\prime}\right]\right) \mid \tau^{\prime} . \tau^{\prime} \in\right.$ set (prefixes $\left.\tau\right) \wedge$ length $\tau^{\prime} \leq m$ $* n-1\}=\operatorname{card}\left\{\tau^{\prime} \in\right.$ set (prefixes $\left.\tau\right)$. length $\left.\left.\tau^{\prime} \leq m * n-1\right\}\right\rangle\left\langle\operatorname{card}\left\{\left(\mathcal{L}\left[L 1, \tau^{\prime}\right]\right.\right.\right.$, $\mathcal{L}[L 2, \tau\rceil] \mid \tau^{\prime} . \tau^{\prime} \in \operatorname{set}($ prefixes $\tau) \wedge$ length $\left.\left.\tau^{\prime} \leq m * n-1\right\} \leq m * n\right\rangle$ distinct-card less-diff-conv not-less-iff-gr-or-eq order-le-less)
qed

```
ultimately have card ?visited-states \(=m * n\)
    by simp
then have ? visited-states \(=\) ? L12
    by (metis (no-types, lifting) \(\langle\) card \((\{\mathcal{L}[L 1, \pi] \mid \pi . \pi \in L 1\} \times\{\mathcal{L}[L 2, \pi] \mid \pi . \pi \in\)
\(L 2\}) \leq m * n\rangle\langle\) finite \((\{\mathcal{L}[L 1, \pi] \mid \pi . \pi \in L 1\} \times\{\mathcal{L}[L 2, \pi] \mid \pi . \pi \in L 2\})\rangle\left\langle\left\{\left(\mathcal{L}\left[L 1, \tau^{\prime}\right]\right.\right.\right.\),
\(\left.\mathcal{L}\left[L 2, \tau^{\prime}\right]\right) \mid \tau^{\prime} . \tau^{\prime} \in\) set (prefixes \(\left.\tau\right) \wedge\) length \(\left.\tau^{\prime} \leq m * n-1\right\} \subseteq\{\mathcal{L}[L 1, \pi] \mid \pi . \pi \in\)
L1 \(\} \times\{\mathcal{L}[L 2, \pi] \mid \pi . \pi \in L 2\}\rangle\) card-seteq \()\)
```

```
have \((\mathcal{L}[L 1, \tau], \mathcal{L}[L 2, \tau]) \in\) ?L12
    using \(\langle\tau \in L 1 \cap L 2\rangle\)
    by blast
    moreover have \((\mathcal{L}[L 1, \tau], \mathcal{L}[L 2, \tau]) \notin\) ?visited-states
    proof
    assume \((\mathcal{L}[L 1, \tau], \mathcal{L}[L 2, \tau]) \in\) ?visited-states
    then obtain \(\tau^{\prime}\) where \((\mathcal{L}[L 1, \tau], \mathcal{L}[L 2, \tau])=(\mathcal{L}[L 1, \tau], \mathcal{L}[L 2, \tau\rceil)\)
                        and \(\tau^{\prime} \in\) set (prefixes \(\tau\) )
                        and length \(\tau^{\prime} \leq m * n-1\)
        by blast
    then have \(\tau \neq \tau^{\prime}\)
        using 〈length \(\tau>m * n-1\) 〉 by auto
    show False
        using \(\langle(\mathcal{L}[L 1, \tau], \mathcal{L}[L 2, \tau])=(\mathcal{L}[L 1, \tau], \mathcal{L}[L 2, \tau\rceil)\rangle\)
        using no-prefix-loop \(\left[O F-\left\langle\tau^{\prime} \in\right.\right.\) set (prefixes \(\left.\left.\left.\tau\right)\right\rangle\left\langle\tau \neq \tau^{\prime}\right\rangle\right]\)
        by \(\operatorname{simp}\)
qed
ultimately show False
    unfolding〈?visited-states \(=\) ?L12〉
    by blast
qed
```


6 Reductions Between Relations

6．1 Quasi－Equivalence via Quasi－Reduction and Absences

fun absence－completion $::$＇x alphabet $\Rightarrow{ }^{\prime} y$ alphabet $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ language $\Rightarrow\left({ }^{\prime} x,^{\prime} y\right.$ \times bool）language where absence－completion X Y $L=$
$\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y, \text { True }))) \pi)^{\prime} L\right)$
$\cup\{(\operatorname{map}(\lambda(x, y) .(x,(y$, True $))) \pi) @[(x,(y$, False $))] @ \tau \mid \pi y \tau . \pi \in L \wedge$

```
\(\operatorname{out}[L, \pi, x] \neq\{ \} \wedge y \in Y \wedge y \notin \operatorname{out}[L, \pi, x] \wedge(\forall(x,(y, a)) \in \operatorname{set} \tau . x \in X \wedge y \in\)
```

$Y)\}$
lemma absence-completion-is-language :
assumes is-language $X Y L$
shows is-language $X(Y \times U N I V)$ (absence-completion $X Y L)$
proof -
let $? L=($ absence-completion $X Y L)$
have []\in ? L
using language-contains-nil[OF assms] by auto
have ? $L \neq\{ \}$
using language-contains-nil[OF assms $]$ by auto
moreover have $\wedge \gamma x y . \gamma \in ? L \Longrightarrow x y \in$ set $\gamma \Longrightarrow$ fst $x y \in X \wedge$ snd $x y \in(Y$
\times UNIV)
and $\bigwedge \gamma \gamma^{\prime} \cdot \gamma \in ? L \Longrightarrow$ prefix $\gamma^{\prime} \gamma \Longrightarrow \gamma^{\prime} \in ? L$
proof -
fix $\gamma x y \gamma^{\prime}$ assume $\gamma \in ?, L$
then consider $(a) \gamma \in((\lambda \pi . \operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{Tr} u e))) \pi) \cdot L) \mid$

$$
\text { (b) } \gamma \in\{(\operatorname{map}(\lambda(x, y) \cdot(x,(y, \text { True }))) \pi) @[(x,(y, \text { False }))] @ \tau \mid \pi x y \tau
$$. $\pi \in L \wedge$ out $[L, \pi, x] \neq\{ \} \wedge y \in Y \wedge y \notin$ out $[L, \pi, x] \wedge(\forall(x,(y, a)) \in$ set $\tau . x \in$ $X \wedge y \in Y)\}$

unfolding absence-completion.simps by blast
then have $(x y \in \operatorname{set} \gamma \longrightarrow f s t x y \in X \wedge$ snd $x y \in(Y \times U N I V)) \wedge\left(\right.$ prefix γ^{\prime} $\left.\gamma \longrightarrow \gamma^{\prime} \in ? L\right)$
proof cases
case a
then obtain π where $*: \gamma=\operatorname{map}(\lambda(x, y) .(x,(y, \operatorname{Tr} u e))) \pi$ and $\pi \in L$
by auto
then have $p 1: \bigwedge x y . x y \in$ set $\pi \Longrightarrow f s t x y \in X \wedge$ snd $x y \in Y$
and $p 2: \bigwedge \pi^{\prime}$. prefix $\pi^{\prime} \pi \Longrightarrow \pi^{\prime} \in L$
using assms by auto

```
have }xy\in\mathrm{ set }\gamma\Longrightarrow\mathrm{ fst xy }\inX\wedge\mathrm{ snd xy }\in(Y\timesUNIV
proof -
assume xy \in set \gamma
then have (fst xy,fst (snd xy)) \in set \pi and snd (snd xy) = True
unfolding * by auto
then show fst xy \inX\wedge snd xy\in(Y\timesUNIV)
by (metis p1 SigmaI UNIV-I fst-conv prod.collapse snd-conv)
qed
moreover have prefix }\mp@subsup{\gamma}{}{\prime}\gamma\Longrightarrow\mp@subsup{\gamma}{}{\prime}\in\mathrm{ ?L
proof -
assume prefix }\mp@subsup{\gamma}{}{\prime}
then obtain i}\mathrm{ where }\mp@subsup{\gamma}{}{\prime}=\mathrm{ take i }
                    by (metis append-eq-conv-conj prefix-def)
then have }\mp@subsup{\gamma}{}{\prime}=\operatorname{map}(\lambda(x,y).(x,(y,True)))(take i\pi
                    unfolding * using take-map by blast
moreover have take i }\pi\in
```

using $p 2\langle\pi \in L\rangle$ take-is-prefix by blast
ultimately have $\gamma^{\prime} \in\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{True}))) \pi)^{\prime} L\right)$
by simp
then show $\gamma^{\prime} \in ? L$
by auto
qed
ultimately show ?thesis by blast

next

case b
then obtain $\pi x y \tau$ where $*: \gamma=(\operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{True}))) \pi) @[(x,(y, F a l s e))] @ \tau$
and $\pi \in L$
and out $[L, \pi, x] \neq\{ \}$
and $y \in Y$
and $y \notin$ out $[L, \pi, x]$
and $(\forall(x,(y, a)) \in$ set $\tau . x \in X \wedge y \in Y)$
by blast
then have $p 1: \wedge x y . x y \in$ set $\pi \Longrightarrow f s t x y \in X \wedge$ snd $x y \in Y$
and $p 2: \bigwedge \pi^{\prime}$. prefix $\pi^{\prime} \pi \Longrightarrow \pi^{\prime} \in L$
using assms by auto
have $x \in X$
using <out $[L, \pi, x] \neq\{ \}$ 〉 assms
by (meson executable-inputs-in-alphabet outputs-executable)
have $x y \in$ set $\gamma \Longrightarrow$ fst $x y \in X \wedge$ snd $x y \in(Y \times U N I V)$
proof -
assume $x y \in$ set γ
then consider (b1) $x y \in \operatorname{set}(\operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{Tr} u e))) \pi) \mid$
(b2) $x y=(x,(y$, False $)) \mid$
(b3) $x y \in$ set τ
unfolding $*$ by force
then show ?thesis proof cases
case b1
then have $(f s t x y, f s t(s n d x y)) \in$ set π and snd $($ snd $x y)=$ True unfolding $*$ by auto
then show f st $x y \in X \wedge$ snd $x y \in(Y \times U N I V)$
by (metis p1 SigmaI UNIV-I fst-conv prod.collapse snd-conv)
next
case ${ }^{2} 2$
then show ?thesis
using $\langle x \in X\rangle\langle y \in Y\rangle$ by simp
next
case $b 3$
then show ?thesis
using $\langle(\forall(x,(y, a)) \in$ set $\tau . x \in X \wedge y \in Y)\rangle$ by force
qed
qed
moreover have prefix $\gamma^{\prime} \gamma \Longrightarrow \gamma^{\prime} \in$? L
proof -

```
assume prefix }\mp@subsup{\gamma}{}{\prime}
then obtain i}\mathrm{ where }\mp@subsup{\gamma}{}{\prime}=\mathrm{ take i }
    by (metis append-eq-conv-conj prefix-def)
then consider (b1) i\leq length \pi|
                                    (b2) }i>\mathrm{ length }
    by linarith
then show }\mp@subsup{\gamma}{}{\prime}\in?L\mathrm{ proof cases
    case b1
    then have i\leqlength (map (\lambda(x,y). (x,y,True)) \pi)
        by auto
    then have }\mp@subsup{\gamma}{}{\prime}=\operatorname{map}(\lambda(x,y).(x,(y,True)))(take i \pi
        unfolding * \langle\mp@subsup{\gamma}{}{\prime}= take i \gamma\rangle
        by (simp add: take-map)
    moreover have take i }\pi\in
        using p2 <\pi \in L\rangle take-is-prefix by blast
    ultimately have }\mp@subsup{\gamma}{}{\prime}\in((\lambda\pi\cdot\operatorname{map}(\lambda(x,y).(x,(y,True)))\pi\mp@subsup{)}{}{\prime}L
        by simp
    then show }\mp@subsup{\gamma}{}{\prime}\in
        by auto
        next
    case b2
    then have i> length (map (\lambda(x,y). (x,y,True)) \pi)
        by auto
```

 have \(\bigwedge k x s y s . k>\) length \(x s \Longrightarrow\) take \(k(x s @ y s)=x s @(\) take \((k-\) length
 \(x s) y s)\)
 by \(\operatorname{simp}\)
 have take-helper: \(\wedge k x s y z s . k>\) length \(x s \Longrightarrow\) take \(k(x s @[y] @ z s)=\)
 $x s @[y] @($ take $(k-$ length $x s-1) z s)$
by (metis One-nat-def Suc-pred 〈\ys xs k. length xs $<k \Longrightarrow$ take k
$(x s @ y s)=x s @ t a k e(k-$ length $x s)$ ys> append-Cons append-Nil take-Suc-Cons
zero-less-diff)
have $* *: \gamma^{\prime}=(\operatorname{map}(\lambda(x, y) \cdot(x,(y$, True $))) \pi) @[(x,(y$, False $))] @($ take $(i-$
length $\pi-1) \tau$)
unfolding $*\left\langle\gamma^{\prime}=\right.$ take $\left.i \gamma\right\rangle$
using take-helper $[$ OF $\langle i>$ length $(\operatorname{map}(\lambda(x, y) .(x, y$, True $)) \pi)\rangle]$ by
simp
have $(\forall(x,(y, a)) \in \operatorname{set}($ take $(i-$ length $\pi-1) \tau) . x \in X \wedge y \in Y)$
using $\langle(\forall(x,(y, a)) \in \operatorname{set} \tau . x \in X \wedge y \in Y)\rangle$
by (meson in-set-takeD)
then show?thesis
unfolding $* *$ absence-completion.simps
using $\langle\pi \in L\rangle\langle o u t[L, \pi, x] \neq\{ \}\rangle\langle y \in Y\rangle\langle y \notin$ out $[L, \pi, x]\rangle$
by blast
qed
qed
ultimately show ?thesis by simp

qed

then show $x y \in$ set $\gamma \Longrightarrow f s t x y \in X \wedge$ snd $x y \in(Y \times U N I V)$ and prefix $\gamma^{\prime} \gamma \Longrightarrow \gamma^{\prime} \in$? L
by blast+
qed
ultimately show ?thesis
unfolding is-language.simps by blast
qed
lemma absence-completion-inclusion- R :
assumes is-language $X Y L$
and $\quad \pi \in$ absence-completion $X Y L$
shows $(\operatorname{map}(\lambda(x, y, a) \cdot(x, y)) \pi \in L) \longleftrightarrow(\forall(x, y, a) \in$ set $\pi \cdot a=\operatorname{Tr} u e)$
proof -
define $L^{\prime} a$ where $L^{\prime} a=\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{Tr} u e))) \pi)^{\prime} L\right)$
define $L^{\prime} b$ where $L^{\prime} b=\{(\operatorname{map}(\lambda(x, y) \cdot(x,(y$, True $))) \pi) @[(x,(y, F a l s e))] @ \tau \mid \pi$ $x y \tau . \pi \in L \wedge$ out $[L, \pi, x] \neq\{ \} \wedge y \in Y \wedge y \notin$ out $[L, \pi, x] \wedge(\forall(x,(y, a)) \in \operatorname{set} \tau$. $x \in X \wedge y \in Y)\}$
have $\bigwedge \pi x y a . \pi \in L^{\prime} a \Longrightarrow x y a \in$ set $\pi \Longrightarrow$ snd $($ snd $x y a)=$ True
unfolding $L^{\prime} a$-def by auto
moreover have $\bigwedge \pi . \pi \in L^{\prime} b \Longrightarrow \exists$ xya \in set π. snd $($ snd xya $)=$ False
unfolding $L^{\prime} b$-def by auto
moreover have $\pi \in L^{\prime} a \cup L^{\prime} b$
using assms(2) unfolding absence-completion.simps L'a-def L'b-def.
ultimately have $(\forall(x, y, a) \in$ set $\pi . a=\operatorname{Tr} u e)=\left(\pi \in L^{\prime} a\right)$
by fastforce
show ?thesis proof $(\operatorname{cases}(\forall(x, y, a) \in$ set $\pi \cdot a=$ True $))$
case True
then obtain τ where $\pi=\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{True})) \tau$ and $\tau \in L$
unfolding $\left\langle(\forall(x, y, a) \in\right.$ set $\pi . a=$ True $\left.)=\left(\pi \in L^{\prime} a\right)\right\rangle L^{\prime} a$-def by blast
have $\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi=\tau$
unfolding $\langle\pi=\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{Tr} u e)) \tau\rangle$
by (induction τ; auto)
show ?thesis
using True $\langle\tau \in L\rangle$
unfolding $\left\langle(\forall(x, y, a) \in\right.$ set $\pi . a=$ True $\left.)=\left(\pi \in L^{\prime} a\right)\right\rangle L^{\prime} a$-def
unfolding $\langle\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi=\tau\rangle$
unfolding $\langle\pi=\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{True})) \tau\rangle$
by blast
next
case False
then have $\pi \in L^{\prime} b$
using $\left\langle(\forall(x, y, a) \in\right.$ set $\pi . a=$ True $\left.)=\left(\pi \in L^{\prime} a\right)\right\rangle\left\langle\pi \in L^{\prime} a \cup L^{\prime} b\right\rangle$ by blast

```
    then obtain \(\tau x y \tau^{\prime}\) where \(\pi=(\operatorname{map}(\lambda(x, y) \cdot(x,(y\), True \())) \tau) @[(x,(y\), False \())] @ \tau^{\prime}\)
                    and \(\tau \in L\)
                    and out \([L, \tau, x] \neq\{ \}\)
                    and \(y \in Y\)
                    and \(y \notin\) out \([L, \tau, x]\)
                        and \(\left(\forall(x,(y, a)) \in \operatorname{set} \tau^{\prime} . x \in X \wedge y \in Y\right)\)
        unfolding \(L^{\prime} b\)-def by blast
    then have \(\tau @[(x, y)] \notin L\)
        by fastforce
    then have \(\tau @[(x, y)] @\left(\operatorname{map}(\lambda(x, y, a) .(x, y)) \tau^{\prime}\right) \notin L\)
        using assms(1)
        by (metis append.assoc prefix-closure-no-member)
    moreover have \(\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi=\tau @[(x, y)] @(\operatorname{map}(\lambda(x, y, a) .(x\),
y)) \(\tau^{\prime}\) )
        unfolding \(\left\langle\pi=(\operatorname{map}(\lambda(x, y) \cdot(x,(y\right.\), True \())) \tau) @[(x,(y\), False \(\left.))] @ \tau^{\prime}\right\rangle\)
        by (induction \(\tau\); auto)
    ultimately have \(\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi \notin L\)
        by simp
    then show?thesis
        using False by blast
    qed
qed
lemma absence-completion-inclusion-L :
    \((\pi \in L) \longleftrightarrow(\operatorname{map}(\lambda(x, y) \cdot(x, y\), True \()) \pi \in\) absence-completion X Y L)
proof -
let \(? L=\) absence-completion \(X Y L\)
define \(L^{\prime} a\) where \(L^{\prime} a=\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{Tr} u e))) \pi)^{\prime} L\right)\)
define \(L^{\prime} b\) where \(L^{\prime} b=\{(\operatorname{map}(\lambda(x, y) .(x,(y\), True \())) \pi) @[(x,(y\), False \())] @ \tau \mid \pi\)
\(x y \tau . \pi \in L \wedge\) out \([L, \pi, x] \neq\{ \} \wedge y \in Y \wedge y \notin\) out \([L, \pi, x] \wedge(\forall(x,(y, a)) \in\) set \(\tau\)
. \(x \in X \wedge y \in Y)\}\)
    have ? \(L=L^{\prime} a \cup L^{\prime} b\)
        unfolding \(L^{\prime} a\)-def \(L^{\prime} b\)-def absence-completion.simps by blast
    have \(\wedge \pi . \pi \in L^{\prime} b \Longrightarrow \exists\) xya \(\operatorname{set} \pi\). snd \((\) snd \(x y a)=\) False
        unfolding \(L^{\prime} b\)-def by auto
    then have \((\operatorname{map}(\lambda(x, y) \cdot(x, y, \operatorname{True})) \pi \in ? L)=(\operatorname{map}(\lambda(x, y) \cdot(x, y, \operatorname{Tr} u e)) \pi \in\)
\(\left.L^{\prime} a\right)\)
    unfolding \(\left\langle ? L=L^{\prime} a \cup L^{\prime} b\right\rangle\)
    by fastforce
    have \(\operatorname{inj}(\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y\), True \())) \pi)\)
    by (simp add: inj-def)
    then show ?thesis
    unfolding \(\prec(\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{True})) \pi \in ? L)=(\operatorname{map}(\lambda(x, y) \cdot(x, y, \operatorname{Tr} u e)) \pi\)
\(\left.\in L^{\prime} a\right)\) >
    unfolding \(L^{\prime} a\)-def
    by (simp add: image-iff inj-def)
```


qed

```
fun is-present :: ('x,'y \(\times\) bool) word \(\Rightarrow\left({ }^{\prime} x, ' y\right)\) language \(\Rightarrow\) bool where
    is-present \(\pi L=\left(\pi \in \operatorname{map}(\lambda(x, y) .(x, y, \text { True }))^{\prime} L\right)\)
lemma is-present-rev :
    assumes is-present \(\pi L\)
shows map \((\lambda(x, y, a) .(x, y)) \pi \in L\)
proof -
    obtain \(\pi^{\prime}\) where \(\pi=\operatorname{map}(\lambda(x, y) .(x, y\), True \()) \pi^{\prime}\) and \(\pi^{\prime} \in L\)
    using assms by auto
    moreover have \(\operatorname{map}(\lambda(x, y, a) .(x, y))\left(\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{True})) \pi^{\prime}\right)=\pi^{\prime}\)
    by (induction \(\pi^{\prime}\); auto)
    ultimately show ?thesis
    by force
qed
```

lemma absence-completion-out :
assumes is-language $X Y L$
and $\quad x \in X$
and $\quad \pi \in$ absence-completion $X Y L$
shows is-present $\pi L \Longrightarrow$ out $[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x] \neq\{ \} \Longrightarrow$ out $[$ absence-completion
$X Y L, \pi, x]=\{(y$, True $) \mid y . y \in \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]\} \cup\{(y$, False $)$
$\mid y \cdot y \in Y \wedge y \notin \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]\}$
and is-present $\pi L \Longrightarrow$ out $[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]=\{ \} \Longrightarrow$ out $[$ absence-completion
$X Y L, \pi, x]=\{ \}$
and \neg is-present $\pi L \Longrightarrow$ out $[$ absence-completion $X Y L, \pi, x]=Y \times$ UNIV
proof -
let ? $L=$ absence-completion X Y L
define $L^{\prime} a$ where $L^{\prime} a=\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{Tr} u e))) \pi)^{\prime} L\right)$
define $L^{\prime} b$ where $L^{\prime} b=\{(\operatorname{map}(\lambda(x, y) .(x,(y$, True $))) \pi) @[(x,(y$, False $))] @ \tau \mid \pi$
$x y \tau . \pi \in L \wedge$ out $[L, \pi, x] \neq\{ \} \wedge y \in Y \wedge y \notin$ out $[L, \pi, x] \wedge(\forall(x,(y, a)) \in$ set τ
. $x \in X \wedge y \in Y)\}$
have ? $L=L^{\prime} a \cup L^{\prime} b$
unfolding $L^{\prime} a$-def $L^{\prime} b$-def absence-completion.simps by blast
then have out $[? L, \pi, x]=\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\} \cup\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\}$ unfolding outputs.simps language-for-state.simps by blast
show is-present $\pi L \Longrightarrow \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x] \neq\{ \} \Longrightarrow$ out $[? L, \pi$, $x]=\{(y$, True $) \mid y \cdot y \in \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]\} \cup\{(y$, False $) \mid y \cdot y \in$ $Y \wedge y \notin \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]\}$ proof -
assume is-present πL and out $[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x] \neq\{ \}$
then have $\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi \in L$
using assms(1) by auto

$$
\text { have }\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\}=\{(y, \operatorname{Tr} u e) \mid y \cdot y \in \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) \cdot(x
$$ y)) $\pi, x]\}$

proof

show $\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\} \subseteq\{(y$, True $) \mid y . y \in \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x$, y)) $\pi, x]\}$
proof
fix $y a$ assume $y a \in\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\}$
then have $\pi @[(x, y a)] \in \operatorname{map}(\lambda(x, y) .(x, y, \text { True }))^{\prime} L$
unfolding $L^{\prime} a$-def by blast
then obtain γ where $\gamma \in L$ and $\pi @[(x, y a)]=\operatorname{map}(\lambda(x, y) .(x, y$, True)) γ
by blast
then have length $(\pi @[(x, y a)])=$ length γ
by auto
then obtain $\gamma^{\prime} x y$ where $\gamma=\gamma^{\prime} @[x y]$
by (metis add.right-neutral dual-order.strict-iff-not length-append-singleton less-add-Suc2 rev-exhaust take0 take-all-iff)
then have $(x, y a)=(\lambda(x, y) .(x, y$, True $)) x y$
using $\langle\pi @[(x, y a)]=\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{Tr} u e)) \gamma\rangle$ unfolding $\langle\gamma=$ $\gamma^{\prime} @[x y]>$ by auto
then have $y a=($ snd $x y$, True $)$ and $x y=(x$, snd $x y)$
by (simp add: split-beta) +
moreover define y where $y=$ snd $x y$
ultimately have $y a=(y$, True $)$ and $x y=(x, y)$
by auto
have $\pi=\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{Tr} u e)) \gamma^{\prime}$
using $\langle\pi @[(x, y a)]=\operatorname{map}(\lambda(x, y) .(x, y$, True $)) \gamma\rangle$ unfolding $\langle\gamma=$ $\gamma^{\prime} @[x y]>$ by auto
then have $\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi=\gamma^{\prime}$
by (induction π arbitrary: γ^{\prime}; auto)
have $[(x, y)] \in\{\tau . \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi @ \tau \in L\}$
using $\langle\gamma \in L\rangle$
unfolding $\left\langle\gamma=\gamma^{\prime} @[x y]\right\rangle\langle y a=(y$, True $)\rangle\langle x y=(x, y)\rangle$
unfolding $\left\langle\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi=\gamma^{\prime}\right\rangle$
by auto
then show $y a \in\{(y$, True $) \mid y . y \in \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]\}$
unfolding $\langle y a=($ snd $x y$, True $)\rangle$ outputs.simps language-for-state.simps
unfolding $\langle y a=(y$, True $)\rangle\langle x y=(x, y)\rangle\left\langle\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi=\gamma^{\prime}\right\rangle$
by auto
qed
show $\{(y, \operatorname{True}) \mid y . y \in \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]\} \subseteq\{y . \pi @[(x$, $\left.y)] \in L^{\prime} a\right\}$
proof
fix ya assume $y a \in\{(y$, True $) \mid y . y \in \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]\}$ then obtain y where $y a=(y, \operatorname{Tr} u e)$ and $y \in \operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x$, y)) $\pi, x]$

```
        by blast
            then have \([(x, y)] \in\{\tau . \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi @ \tau \in L\}\)
            unfolding outputs.simps language-for-state.simps by auto
            then have \((\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi) @[(x, y)] \in L\)
                by auto
                            moreover have \(\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{True}))((\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi) @\)
\([(x, y)])=\pi @[(x,(y\), True \())]\)
            using 〈is-present \(\pi L\) 〉unfolding is-present.simps
            by (induction \(\pi\) arbitrary: \(x y\); auto)
            ultimately have \(\pi\) @ \([(x,(y\), True \())] \in L^{\prime} a\)
            unfolding \(L^{\prime} a\)-def
            by force
            then show \(y a \in\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\}\)
            unfolding \(\langle y a=(y\), True \()\rangle\)
            by blast
        qed
    qed
        moreover have \(\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\}=\{(y\), False \() \mid y . y \in Y \wedge y \notin\)
\(\operatorname{out}[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]\}\)
    proof
        show \(\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\} \subseteq\{(y\), False \() \mid y . y \in Y \wedge y \notin \operatorname{out}[L, \operatorname{map}(\lambda(x\),
\(y, a) .(x, y)) \pi, x]\}\)
            proof
            fix \(y a\) assume \(y a \in\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\}\)
            then have \(\pi @[(x, y a)] \in L^{\prime} b\)
            by auto
            then obtain \(\pi^{\prime} x^{\prime} y^{\prime} \tau\) where \(\pi @[(x, y a)]=\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{Tr} u e))\)
\(\pi^{\prime} @\left[\left(x^{\prime}, y^{\prime}\right.\right.\), False \(\left.)\right] @ \tau\)
                    and \(\pi^{\prime} \in L\)
                    and out \(\left[L, \pi^{\prime}, x^{\prime}\right] \neq\{ \}\)
                    and \(y^{\prime} \in Y\)
                    and \(y^{\prime} \notin\) out \(\left[L, \pi^{\prime}, x^{\prime}\right]\)
                    and \((\forall(x, y, a) \in \operatorname{set} \tau . x \in X \wedge y \in Y)\)
            unfolding \(L^{\prime} b\)-def by blast
            obtain \(\pi^{\prime \prime}\) where \(\pi=\operatorname{map}(\lambda(x, y) .(x, y\), True \()) \pi^{\prime \prime}\) and \(\pi^{\prime \prime} \in L\)
            using 〈is-present \(\pi L\) 〉 by auto
            then have \(\bigwedge x y a . x y a \in\) set \(\pi \Longrightarrow\) snd (snd xya) \(=\) True
            by (induction \(\pi\); auto)
            have \(\tau=[]\)
            proof (rule ccontr)
            assume \(\tau \neq[]\)
            then obtain \(\tau^{\prime} x y z\) where \(\tau=\tau^{\prime} @[x y z]\)
            by (metis append-butlast-last-id)
            then have \(\pi=\operatorname{map}(\lambda(x, y) .(x, y\), True \()) \pi^{\prime} @\left[\left(x^{\prime}, y^{\prime}\right.\right.\), False \(\left.)\right] @ \tau^{\prime}\)
            using \(<\pi @[(x, y a)]=\operatorname{map}(\lambda(x, y) .(x, y\), True \()) \pi^{\prime} @\left[\left(x^{\prime}, y^{\prime}\right.\right.\), False \(\left.)\right]\)
                    @ \(\tau\) >
            by auto
```

```
            then have ( }\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime},\mathrm{ False ) }\in\mathrm{ set }
                    by auto
            then show False
                    using <\ xya . xya \in set \pi\Longrightarrow snd (snd xya) = True〉 by force
qed
    then have }\mp@subsup{x}{}{\prime}=x\mathrm{ and ya=( (', False) and }\pi=\operatorname{map}(\lambda(x,y).(x,y,\operatorname{True})
\pi
    using}<\pi@[(x,ya)]=\operatorname{map}(\lambda(x,y).(x,y,True))\pi\mp@subsup{\pi}{}{\prime}@[(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime},\mathrm{ False )]@
\tau>
    by auto
    have *: map }(\lambda(x,y,a).(x,y))(\operatorname{map}(\lambda(x,y).(x,y,True)) \mp@subsup{\pi}{}{\prime})=\mp@subsup{\pi}{}{\prime
    by (induction \pi'; auto)
    have }\mp@subsup{y}{}{\prime}\not\in\operatorname{out}[L,map (\lambda(x,y,a).(x,y))\pi,x
    using < ' ' }\not\in\mathrm{ out [L, 尔,x]`
    unfolding outputs.simps language-for-state.simps
    unfolding }\langle\pi=\operatorname{map}(\lambda(x,y).(x,y,True)) \mp@subsup{\pi}{}{\prime}\rangle\langle\mp@subsup{x}{}{\prime}=x
    unfolding * .
    then show ya\in{(y, False) |y. y\inY\wedge y\not\in out[L,map (\lambda(x,y,a). (x,y))
\pi,x]}
    using < }\mp@subsup{y}{}{\prime}\inY
    unfolding <ya = ( y', False)> by auto
qed
```



```
\pi@ [(x,y)] \in L'b}
    proof
        fix ya assume ya\in{(y, False) |y. y \inY\wedge y\not\in out[L,map (\lambda(x,y,a). (x,
y)) }\pi,x]
    then obtain y where ya=(y,False)
        and }y\in
        and y \not\inout[L,map (\lambda(x,y,a).(x,y))\pi,x]
    by blast
    obtain }\mp@subsup{\pi}{}{\prime}\mathrm{ where }\pi=\operatorname{map}(\lambda(x,y).(x,y,True)) \mp@subsup{\pi}{}{\prime}\mathrm{ and }\mp@subsup{\pi}{}{\prime}\in
    using <is-present \pi L` by auto
    have *: map (\lambda(x,y,a). (x,y)) (map (\lambda(x,y). (x,y,True)) \mp@subsup{\pi}{}{\prime})=\mp@subsup{\pi}{}{\prime}
    by (induction \pi'; auto)
    have out[L, 片,x]\not={}
    using<out [L,map (\lambda(x,y,a). (x,y)) \pi,x]\not={}>
    unfolding < }\pi=\operatorname{map}(\lambda(x,y).(x,y,True)) \mp@subsup{\pi}{}{\prime}>*
    have }y\not\in\mathrm{ out [L, 片,x]
    using < y & out[L,map ( }\lambda(x,y,a).(x,y))\pi,x]
    unfolding <\pi = map (\lambda(x,y). (x,y,True)) \mp@subsup{\pi}{}{\prime}>* .
have }\pi@[(x,ya)]=\operatorname{map}(\lambda(x,y).(x,y,True))\pi\mp@subsup{\pi}{}{\prime}@[(x,y,False)
    unfolding <ya = (y,False)\rangle\langle\pi=map (\lambda(x,y). (x, y, True)) \mp@subsup{\pi}{}{\prime}\rangle
    by auto
```

```
            then show ya\in{y.\pi@ [(x,y)]\in\mp@subsup{L}{}{\prime}b}
            unfolding L'b-def
            using <\mp@subsup{\pi}{}{\prime}\inL><out[L,\mp@subsup{\pi}{}{\prime},x]\not={}>\langley\inY\rangle\langley\not\in\operatorname{out}[L,\mp@subsup{\pi}{}{\prime},x]\rangle
            by force
        qed
    qed
    ultimately show ?thesis
        unfolding <out[?L, \pi, x]={y.\pi@ [(x,y)]\in\mp@subsup{L}{}{\prime}a}\cup{y.\pi@[(x,y)]\in\mp@subsup{L}{}{\prime}b}>
        by blast
qed
```

show $i s$-present $\pi L \Longrightarrow \operatorname{out}[L$, map $(\lambda(x, y, a) .(x, y)) \pi, x]=\{ \} \Longrightarrow$ out $[$ absence-completion $X Y L, \pi, x]=\{ \}$
proof -
assume is-present πL and out $[L, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]=\{ \}$
obtain π^{\prime} where $\pi=\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{True})) \pi^{\prime}$ and $\pi^{\prime} \in L$
using $\langle i s$-present $\pi L\rangle$ by auto
have $*: \operatorname{map}(\lambda(x, y, a) \cdot(x, y))\left(\operatorname{map}(\lambda(x, y) \cdot(x, y, \operatorname{True})) \pi^{\prime}\right)=\pi^{\prime}$
by (induction $\pi^{\prime} ;$ auto)
then have $\operatorname{map}(\lambda(x, y, a) \cdot(x, y)) \pi=\pi^{\prime}$
using $\left\langle\pi=\operatorname{map}(\lambda(x, y) .(x, y\right.$, True $\left.)) \pi^{\prime}\right\rangle$ by blast
have $\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\}=\{ \}$
proof -
have $\nexists y . \pi @[(x, y)] \in L^{\prime} a$
proof
assume $\exists y . \pi$ @ $[(x, y)] \in L^{\prime} a$
then obtain $y a$ where $\pi @[(x, y a)] \in L^{\prime} a$
by blast
then obtain $\pi^{\prime \prime}$ where $\pi^{\prime \prime} \in L$ and map $(\lambda(x, y) .(x, y$, True $)) \pi^{\prime \prime}=\pi @$
$[(x, y a)]$
unfolding $L^{\prime} a$-def by force
then have $(x, y a)=(\lambda(x, y) .(x, y$, True $))\left(\right.$ last $\left.\pi^{\prime \prime}\right)$
by (metis (mono-tags, lifting) append-is-Nil-conv last-map last-snoc
list.map-disc-iff not-Cons-self2)
then obtain y where $y a=(y$, True $)$
by (simp add: split-beta)
have map $(\lambda(x, y) .(x, y, \operatorname{True})) \pi^{\prime \prime}=\operatorname{map}(\lambda(x, y) .(x, y$, True $))\left(\pi^{\prime} @\right.$
$[(x, y)])$
using 〈map $(\lambda(x, y) .(x, y$, True $\left.)) \pi^{\prime \prime}=\pi @[(x, y a)]\right\rangle$
unfolding $\left\langle\pi=\operatorname{map}(\lambda(x, y) .(x, y\right.$, True $\left.)) \pi^{\prime}\right\rangle\langle y a=(y$, True $)\rangle$ by auto
moreover have $\operatorname{inj}(\lambda(x, y) .(x, y$, True $))$
by (simp add: inj-def)
ultimately have $\pi^{\prime \prime}=\pi^{\prime}$ @ $[(x, y)]$
using inj-map-eq-map by blast

```
            show False
            using <\pi '\prime \inL\rangle\langleout[L,map (\lambda(x,y,a). (x,y)) \pi, x]={}>
            unfolding <map (\lambda(x,y,a).(x,y))\pi=\mp@subsup{\pi}{}{\prime}\rangle\langle\mp@subsup{\pi}{}{\prime\prime}=\mp@subsup{\pi}{}{\prime}@[(x,y)]>
            by simp
        qed
        then show ?thesis
        by blast
    qed
    moreover have {y.\pi @ [(x,y)]\in L'b}={}
    proof -
    have # y.\pi@ @(x,y)]\in L'b
    proof
        assume \existsy.\pi@ @ [(x,y)]\in L'b
        then obtain ya where }\pi\mathrm{ @ [(x,ya)] E L'b
            by blast
    then obtain }\mp@subsup{\pi}{}{\prime\prime}\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}\tau\mathrm{ where }\pi@[(x,ya)]=\operatorname{map}(\lambda(x,y).(x,y,True)
\pi}\mp@subsup{}{\prime\prime}{@}[(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime},\mathrm{ False )]@ 
and}\mp@subsup{\pi}{}{\prime\prime}\in
and out[L,\mp@subsup{\pi}{}{\prime\prime},x]\not={}
and }\mp@subsup{y}{}{\prime}\in
and }\mp@subsup{y}{}{\prime}\not\in\mathrm{ out [L, 告,x]
and (\forall(x,y,a)\inset \tau. x\inX\wedge y\inY)
    unfolding L'b-def by blast
    have \ xya . xya \in set \pi \Longrightarrow snd (snd xya)= True
    using <\pi = map (\lambda(x,y). (x,y,True)) \mp@subsup{\pi}{}{\prime}>
    by (induction \pi; auto)
    have }\tau=[
    proof (rule ccontr)
    assume }\tau\not=[
    then obtain }\mp@subsup{\tau}{}{\prime}xyz\mathrm{ where }\tau=\mp@subsup{\tau}{}{\prime}@[xyz
        by (metis append-butlast-last-id)
    then have }\pi=map (\lambda(x,y).(x,y,True)) \mp@subsup{\pi}{}{\prime\prime}@[(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime},\mathrm{ False )]@ }\mp@subsup{\tau}{}{\prime
            using<\pi@ @[x,ya)] = map (\lambda(x,y).(x,y,True)) \mp@subsup{\pi}{}{\prime\prime}@ [(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime},\mathrm{ False )]}]
@ \tau>
            by auto
        then have ( }\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime},\mathrm{ False ) }\in\mathrm{ set }
            by auto
        then show False
            using <\bigwedge xya . xya \in set \pi \Longrightarrow snd (snd xya) = True〉 by force
        qed
        then have }\mp@subsup{x}{}{\prime}=x\mathrm{ and ya=( ( ', False) and }\pi=\operatorname{map}(\lambda(x,y).(x,y,True)
\pi"
    using<\pi @ [(x,ya)] = map (\lambda(x,y). (x,y,True)) \mp@subsup{\pi}{}{\prime\prime}@ [(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime},\mathrm{ False )}]
@ \tau>
            by auto
    moreover have inj (\lambda(x,y). (x, y, True))
    by (simp add: inj-def)
```

```
            ultimately have }\mp@subsup{\pi}{}{\prime\prime}=\mp@subsup{\pi}{}{\prime
            unfolding <\pi = map (\lambda(x,y). (x, y, True)) \mp@subsup{\pi}{}{\prime}>
            using map-injective by blast
            then show False
                using <out[L, \mp@subsup{\pi}{}{\prime\prime},x]}\not={}><out[L,map (\lambda(x,y,a). (x,y))\pi,x]={}
            unfolding <map ( }\lambda(x,y,a).(x,y))\pi=\mp@subsup{\pi}{}{\prime}\rangle\langle\mp@subsup{x}{}{\prime}=x
            by blast
    qed
    then show ?thesis
        by blast
    qed
    ultimately show ?thesis
        unfolding <out[?L, \pi, x]={y.\pi@ [(x,y)]\in\mp@subsup{L}{}{\prime}a}\cup{y.\pi@[(x,y)]\in\mp@subsup{L}{}{\prime}b}>
        by blast
qed
show \neg is-present \pi L\Longrightarrow out[absence-completion X Y L,\pi,x]=Y 
proof
show out[absence-completion X Y L,\pi,x]\subseteqY\timesUNIV
    using absence-completion-is-language[OF assms(1)]
    by (meson outputs-in-alphabet)
```

assume \neg is-present πL
then have $\pi \notin L^{\prime} a$
unfolding $L^{\prime} a$-def by auto
then have $\pi \in L^{\prime} b$
using $\langle\pi \in ?, L\rangle\left\langle ? L=L^{\prime} a \cup L^{\prime} b\right\rangle$ by blast
then obtain $\pi^{\prime} x^{\prime} y^{\prime} \tau$ where $\pi=\operatorname{map}(\lambda(x, y) .(x, y, T r u e)) \pi^{\prime} @\left[\left(x^{\prime}, y^{\prime}\right.\right.$,
False)] @ τ

```
and \(\pi^{\prime} \in L\)
and out \(\left[L, \pi^{\prime}, x^{\prime}\right] \neq\{ \}\)
and \(y^{\prime} \in Y\)
and \(y^{\prime} \notin\) out \(\left[L, \pi^{\prime}, x^{\prime}\right]\)
and \((\forall(x, y, a) \in \operatorname{set} \tau . x \in X \wedge y \in Y)\)
```

 unfolding \(L^{\prime} b\)-def by blast
 show \(Y \times U N I V \subseteq\) out \([\) absence-completion \(X \quad Y \quad L, \pi, x]\)
 proof
 fix \(y a\) assume \(y a \in Y \times(U N I V::\) bool set \()\)
 have \(\pi @[(x, y a)]=\operatorname{map}(\lambda(x, y) .(x, y\), True \()) \pi^{\prime} @\left[\left(x^{\prime}, y^{\prime}\right.\right.\), False \(\left.)\right] @(\tau @\)
 [(x,ya)])
using $\left\langle\pi=\operatorname{map}(\lambda(x, y) .(x, y\right.$, True $)) \pi^{\prime} @\left[\left(x^{\prime}, y^{\prime}\right.\right.$, False $\left.\left.)\right] @ \tau\right\rangle$
by auto
moreover have $\langle(\forall(x, y, a) \in \operatorname{set}(\tau @[(x, y a)]) . x \in X \wedge y \in Y)\rangle$
using $\langle(\forall(x, y, a) \in$ set $\tau . x \in X \wedge y \in Y)\rangle\langle x \in X\rangle\langle y a \in Y \times($ UNIV $::$

```
bool set)>
    by auto
    ultimately have }\pi@[(x,ya)]\in\mp@subsup{L}{}{\prime}
        unfolding L'b-def
```



```
        by blast
    then show ya \inout[?L,\pi,x]
        unfolding <out [?L, \pi, x]={y.\pi@ [(x,y)]\in L'a}\cup{y.\pi@ [(x,y)]\in
L'b}>
            by blast
        qed
    qed
qed
```

theorem quasieq-via-quasired :
assumes is-language X Y L1
and is-language X Y L2
shows $($ L1 $\preceq[X$, quasieq $Y] L 2) \longleftrightarrow(($ absence-completion $X Y L 1) \preceq[X$, quasired $(Y \times U N I V)]($ absence-completion X Y L2))
proof
define $L 1^{\prime}$ where $L 1^{\prime}=$ absence-completion $X Y L 1$
define $L 2^{\prime}$ where $L 2^{\prime}=$ absence-completion X Y L2
define $L 1^{\prime} a$ where $L 1^{\prime} a=\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y, \text { True }))) \pi)^{\prime} L 1\right)$
define $L 1^{\prime} b$ where $L 1^{\prime} b=\{(\operatorname{map}(\lambda(x, y) .(x,(y$, True $))) \pi) @[(x,(y$, False $))] @ \tau$ $\pi x y \tau . \pi \in L 1 \wedge$ out $[L 1, \pi, x] \neq\{ \} \wedge y \in Y \wedge y \notin$ out $[L 1, \pi, x] \wedge(\forall(x,(y, a)) \in$ set $\tau . x \in X \wedge y \in Y)\}$
define $L 2^{\prime} a$ where $L 2^{\prime} a=((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y$, True $))) \pi)$ 'L2 $)$
define $L 2^{\prime} b$ where $L 2^{\prime} b=\{(\operatorname{map}(\lambda(x, y) .(x,(y$, True $))) \pi) @[(x,(y$, False $))] @ \tau \mid$ $\pi x y \tau . \pi \in L \mathcal{2} \wedge$ out $[L 2, \pi, x] \neq\{ \} \wedge y \in Y \wedge y \notin$ out $[L 2, \pi, x] \wedge(\forall(x,(y, a)) \in$ set $\tau . x \in X \wedge y \in Y)\}$
have $\wedge \pi x y a . \pi \in L 1^{\prime} a \Longrightarrow x y a \in$ set $\pi \Longrightarrow$ snd $($ snd $x y a)=$ True
unfolding $L 1^{\prime} a$-def by auto
moreover have $\wedge \pi$ xya $\pi \in L 2^{\prime} a \Longrightarrow x y a \in$ set $\pi \Longrightarrow$ snd $($ snd $x y a)=$ True
unfolding $L 2^{\prime} a$-def by auto
moreover have $\wedge \pi . \pi \in L 1^{\prime} b \Longrightarrow \exists x y a \in$ set π. snd (snd xya) $=$ False unfolding $L 1^{\prime} b$-def by auto
moreover have $\bigwedge \pi . \pi \in L 2^{\prime} b \Longrightarrow \exists$ xya \in set π. snd (snd xya) = False
unfolding $L{ }^{2}$ ' b-def by auto
ultimately have $L 1^{\prime} a \cap L 2^{\prime} b=\{ \}$ and $L 1^{\prime} b \cap L 2^{\prime} a=\{ \}$
by blast+
moreover have $L 1^{\prime}=L 1^{\prime} a \cup L 1^{\prime} b$
unfolding $L 1^{\prime}$-def $L 1^{\prime} a$-def $L 1^{\prime} b$-def by auto
moreover have $L 2^{\prime}=L 2^{\prime} a \cup L 2^{\prime} b$
unfolding $L 2^{\prime}$-def $L 2^{\prime}$ 'a-def $L 2^{\prime} b$-def by auto
ultimately have $L 1^{\prime} \cap L 2^{\prime}=\left(L 1^{\prime} a \cap L 2^{\prime} a\right) \cup\left(L 1^{\prime} b \cap L 2^{\prime} b\right)$
by blast

```
have \(\operatorname{inj}(\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{True}))) \pi)\)
    by (simp add: inj-def)
then have \(L 1^{\prime} a \cap L 2^{\prime} a=((\lambda \pi . \operatorname{map}(\lambda(x, y) .(x,(y, \operatorname{True}))) \pi)\) ' \((L 1 \cap L \mathcal{L}))\)
    unfolding \(L 1^{\prime} a\)-def \(L 2^{\prime} a\)-def
    using image-Int by blast
```

have intersection-b: $L 1^{\prime} b \cap L 2^{\prime} b=\{(\operatorname{map}(\lambda(x, y) .(x,(y$, True $))) \pi) @[(x,(y$, False $))] @ \tau$
$\mid \pi x y \tau . \pi \in L 1 \cap \operatorname{L2} \wedge \operatorname{out}[L 1, \pi, x] \neq\{ \} \wedge$ out $[L 2, \pi, x] \neq\{ \} \wedge y \in Y \wedge y \notin$
out $[L 1, \pi, x] \wedge y \notin \operatorname{out}[L 2, \pi, x] \wedge(\forall(x,(y, a)) \in \operatorname{set} \tau . x \in X \wedge y \in Y)\}$
(is $L 1^{\prime} b \cap L 2^{\prime} b=? L 12^{\prime} b$)
proof
show ? $L 12^{\prime} b \subseteq L 1^{\prime} b \cap L 2^{\prime} b$
unfolding $L 1^{\prime} b$-def $L 2^{\prime} b$-def by blast
show $L 1^{\prime} b \cap L 2^{\prime} b \subseteq ? L 12^{\prime} b$
proof
fix γ assume $\gamma \in L 1^{\prime} b \cap L 2^{\prime} b$
obtain $\pi 1 x 1 y 1 \tau 1$ where $\gamma=(\operatorname{map}(\lambda(x, y) \cdot(x,(y$, True $))) \pi 1) @[(x 1,(y 1$, False $))] @ 1$
and $\pi 1 \in L 1$
and out $[L 1, \pi 1, x 1] \neq\{ \}$
and $y 1 \in Y$
and $y 1 \notin$ out $[L 1, \pi 1, x 1]$
and $(\forall(x,(y, a)) \in \operatorname{set} \tau 1 . x \in X \wedge y \in Y)$
using $\left\langle\gamma \in L 1^{\prime} b \cap L \mathcal{Q}^{\prime} b\right\rangle$ unfolding $L 1^{\prime} b$-def by blast
obtain π 2 $x 2 y$ 2 τ 2 where $\gamma=(\operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{True}))) \pi$ 2 $) @[(x 2,(y 2, F a l s e))] @$ 2
and $\pi 2 \in L 2$
and out $[L 2, \pi 2, x 2] \neq\{ \}$
and $y 2 \in Y$
and y 2 \notin out $[L 2, \pi 2, x 2]$
and $(\forall(x,(y, a)) \in \operatorname{set} \tau$ 2. $x \in X \wedge y \in Y)$
using $\left\langle\gamma \in L 1^{\prime} b \cap L 2^{\prime} b\right\rangle$ unfolding $L 2^{\prime} b$-def by blast
have $\wedge i . i<$ length $\pi 1 \Longrightarrow$ snd $($ snd $(\gamma!i))=$ True
proof -
fix i assume $i<$ length $\pi 1$
then have $i<$ length $(\operatorname{map}(\lambda(x, y) .(x,(y, \operatorname{True}))) \pi 1)$ by auto
then have $\gamma!i=(\operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{True}))) \pi 1)!i$
unfolding $\langle\gamma=(\operatorname{map}(\lambda(x, y) .(x,(y$, True $))) \pi 1) @[(x 1,(y 1$, False $))] @ \tau 1\rangle$
by (simp add: nth-append)
also have $\ldots=(\lambda(x, y) \cdot(x,(y, \operatorname{Tr} u e)))(\pi 1!i)$
using $\langle i<$ length $\pi 1\rangle$ nth-map by blast

```
    finally show snd \((\operatorname{snd}(\gamma!i))=\) True
    by (metis (no-types, lifting) case-prod-conv old.prod.exhaust snd-conv)
qed
have \(\gamma\) ! length \(\pi 1=(x 1,(y 1\), False \())\)
    unfolding \(\langle\gamma=(\operatorname{map}(\lambda(x, y) \cdot(x,(y\), True \())) \pi 1) @[(x 1,(y 1\), False \())] @ \tau 1\rangle\)
    by (metis append-Cons length-map nth-append-length)
have \(\bigwedge i . i<\) length \(\pi 2 \Longrightarrow\) snd \((\) snd \((\gamma!i))=\) True
proof -
    fix \(i\) assume \(i<\) length \(\pi 2\)
    then have \(i<\) length \((\operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{True}))) \pi\) 2) by auto
    then have \(\gamma!i=(\operatorname{map}(\lambda(x, y) \cdot(x,(y\), True \())) \pi \mathcal{Z})!i\)
        unfolding \(\left\langle\gamma=\left(\operatorname{map}(\lambda(x, y) \cdot(x,(y\right.\right.\), True \())) \pi\) 2) \(@\left[\left(x\right.\right.\) 2, \(\left.\left.\left.\left(y^{2}, F a l s e\right)\right)\right] @ \tau 2\right\rangle\)
        by (simp add: nth-append)
    also have \(\ldots=(\lambda(x, y) .(x,(y, \operatorname{Tr} u e)))(\pi 2!i)\)
    using <i< length \(\pi\) 2〉 nth-map by blast
    finally show snd \((\) snd \((\gamma!i))=\) True
    by (metis (no-types, lifting) case-prod-conv old.prod.exhaust snd-conv)
qed
have \(\gamma\) ! length \(\pi \mathcal{2}=(x 2,(y 2\), False \())\)
    unfolding \(\langle\gamma=(\operatorname{map}(\lambda(x, y) \cdot(x,(y\), True \())) \pi 2) @[(x 2,(y 2, F a l s e))] @ \tau 2\rangle\)
    by (metis append-Cons length-map nth-append-length)
    have length \(\pi 1=\) length \(\pi 2\)
    by \((\) metis \(<\bigwedge i . i<\) length \(\pi 1 \Longrightarrow\) snd \((\) snd \((\gamma!i))=\) True〉< \(\bigwedge i . i<\) length
\(\pi 2 \Longrightarrow\) snd \((\) snd \((\gamma!i))=\) True \(\langle\gamma!\) length \(\pi 1=(x 1, y 1\), False \()\rangle\langle\gamma!\) length \(\pi 2\)
\(=(x 2, y 2\), False \()\rangle\) not-less-iff-gr-or-eq snd-conv \()\)
    then have \(\pi 1=\pi 2\)
        using \(\langle\gamma=(\operatorname{map}(\lambda(x, y) .(x,(y\), True \())) \pi 1) @[(x 1,(y 1\), False \())] @ \tau 1\rangle\langle\operatorname{inj}(\lambda\)
\(\pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y\), True \())) \pi)\rangle\)
    unfolding \(\langle\gamma=(\operatorname{map}(\lambda(x, y) .(x,(y\), True \())) \pi\) 2 \() @[(x 2,(y 2, F a l s e))] @ \tau 2\rangle\)
    using map-injective by fastforce
    then have \([(x 1,(y 1\), False \())] @ \tau 1=[(x 2,(y 2\), False \())] @ \tau 2\)
        using \(\langle\gamma=(\operatorname{map}(\lambda(x, y) .(x,(y\), True \())) \pi 1) @[(x 1,(y 1\), False \())] @ \tau 1\rangle\)
        unfolding \(\langle\gamma=(\operatorname{map}(\lambda(x, y) \cdot(x,(y\), True \())) \pi\) 2 \() @[(x 2,(y 2, F a l s e))] @ \tau 2\rangle\)
        by force
    then have \(x 1=x 2\) and \(y 1=y 2\) and \(\tau 1=\tau 2\)
    by auto
    show \(\gamma \in ?\) L12' \(^{\prime} b\)
        using \(\langle\pi 1 \in L 1\rangle\langle o u t[L 1, \pi 1, x 1] \neq\{ \}\rangle\langle y 1 \in Y\rangle\langle y 1 \notin\) out \([L 1, \pi 1, x 1]\rangle\langle(\forall\)
\((x,(y, a)) \in\) set \(\tau 1 . x \in X \wedge y \in Y)\rangle\)
        using \(\langle\pi 2 \in L 2\rangle\langle o u t[L 2, \pi 2, x 2] \neq\{ \}\rangle\langle y 2 \in Y\rangle\langle y 2 \notin\) out \([L 2, \pi 2, x 2]\rangle\langle(\forall\)
\((x,(y, a)) \in \operatorname{set} \tau \mathcal{Z} . x \in X \wedge y \in Y)\rangle\)
        unfolding \(\left\langle\pi 1=\pi^{2}\right\rangle\left\langle x 1=x_{2}\right\rangle\left\langle y 1=y^{2}\right\rangle\langle\tau 1=\tau 2\rangle\langle\gamma=(\operatorname{map}(\lambda(x, y)\).
\((x,(y, \operatorname{True}))) \pi\) 2 \() @[(x 2,(y 2\), False \())] @ \tau 2>\)
        by blast
    qed
qed
```

have is－language $X(Y \times$ UNIV $)$ L1＇
using absence－completion－is－language $[O F$ assms（1）］unfolding L1＇－def ．
have is－language $X(Y \times U N I V) L 2^{\prime}$ using absence－completion－is－language［OF assms（2）］unfolding L2＇－def．
have $($ L1 $\preceq[X$, quasieq $Y] L 2)=$ quasi－equivalence L1 L2 using quasieq－type－1［OF assms］by blast
have $\left(L 1^{\prime} \preceq[X, q u a s i r e d ~(Y \times U N I V)] L 2^{\prime}\right)=$ quasi－reduction $L 1^{\prime} L 2^{\prime}$
using quasired－type－1［OF〈is－language $X(Y \times U N I V) L 1$＇〉＜is－language $X(Y$
\times UNIV）L2＇〉］by blast
have $\wedge \pi x$ ．quasi－equivalence $L 1 L 2 \Longrightarrow \pi \in L 1^{\prime} \cap L 2^{\prime} \Longrightarrow x \in \operatorname{exec}\left[L 2^{\prime}, \pi\right]$ $\Longrightarrow\left(\operatorname{out}\left[L 1^{\prime}, \pi, x\right] \neq\{ \} \wedge\right.$ out $\left.\left[L 1^{\prime}, \pi, x\right] \subseteq \operatorname{out}\left[L 2^{\prime}, \pi, x\right]\right)$
proof－
fix πx assume quasi－equivalence $L 1 L 2$ and $\pi \in L 1^{\prime} \cap L 2^{\prime}$ and $x \in \operatorname{exec}\left[L 2^{\prime}, \pi\right]$
have $x \in X$
using $\left\langle x \in \operatorname{exec}\left[L 2^{\prime}, \pi\right]\right\rangle$ absence－completion－is－language［OF assms（2）］
by（metis L2＇－def executable－inputs－in－alphabet）
have $\pi \in$ absence－completion $X Y L 1$ and $\pi \in$ absence－completion X Y L2
using $\left\langle\pi \in L 1^{\prime} \cap L 2^{\prime}\right\rangle$ unfolding $L 1^{\prime}-\operatorname{def} L 2^{\prime}-$ def by blast＋
consider $(a) \pi \in L 1^{\prime} a \cap L 2^{\prime} a \mid(b) \pi \in\left(L 1^{\prime} b \cap L 2^{\prime} b\right)-\left(L 1^{\prime} a \cap L 2^{\prime} a\right)$
using $\left\langle\pi \in L 1^{\prime} \cap L 2^{\prime}\right\rangle\left\langle L 1^{\prime} \cap L 2^{\prime}=\left(L 1^{\prime} a \cap L 2^{\prime} a\right) \cup\left(L 1^{\prime} b \cap L 2^{\prime} b\right)\right\rangle$ by blast then show $\left(\right.$ out $\left[L 1^{\prime}, \pi, x\right] \neq\{ \} \wedge$ out $\left[L 1^{\prime}, \pi, x\right] \subseteq$ out $\left[L 2^{\prime}, \pi, x\right]$ ）
proof cases
case a
then obtain τ where $\tau \in L 1 \cap L 2$
and $\pi=\operatorname{map}(\lambda(x, y) \cdot(x,(y$, True $))) \tau$
using $\left\langle L 1^{\prime} a \cap L 2^{\prime} a=\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x,(y, \text { True }))) \pi)^{\prime}(L 1 \cap L 2)\right)\right\rangle$
by blast
have $\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi=\tau$ unfolding $\langle\pi=\operatorname{map}(\lambda(x, y) \cdot(x,(y$, True $))) \tau\rangle$ by（induction τ ；auto）
have is－present $\pi L 1$ and is－present $\pi L 2$
using $\langle\tau \in L 1 \cap L 2\rangle$ unfolding $\langle\pi=\operatorname{map}(\lambda(x, y) \cdot(x,(y, \operatorname{Tr} u e))) \tau\rangle$ by
auto
have $\operatorname{out}[\operatorname{L2}, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x] \neq\{ \}$ using $\left\langle x \in \operatorname{exec}\left[L 2^{\prime}, \pi\right]\right.$ 〉
using absence－completion－out（2）［OF assms（2）$\langle x \in X\rangle\langle\pi \in$ absence－completion
X Y L2〉〈is－present π L2〉］ unfolding $L 2^{2}$＇－def［symmetric］ by（meson outputs－executable）
then have $x \in \operatorname{exec}[L 2, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi]$ by auto
then have out $[L 1, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x] \neq\{ \}$ and $\operatorname{out}[L 1, \operatorname{map}(\lambda(x$, $y, a) .(x, y)) \pi, x]=\operatorname{out}[\operatorname{L2}, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]$
using «quasi－equivalence L1 L2 $\langle\tau \tau \in L 1 \cap L 2\rangle$
unfolding quasi－equivalence－def $\langle\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi=\tau\rangle$ by force +
have $\operatorname{out}\left[L 1^{\prime}, \pi, x\right]=\operatorname{out}\left[L\right.$ 2 $\left.^{\prime}, \pi, x\right]$
unfolding $L 1^{\prime}$－def $L 2^{\prime}$－def
unfolding absence－completion－out（1）［OF assms（2）$\langle x \in X\rangle\langle\pi \in a b$－ sence－completion X Y L2〉〈is－present π L2〉〈out $[L 2, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]$ $\neq\{ \}>$ ］
unfolding absence－completion－out（1）［OF assms（1）$\langle x \in X\rangle\langle\pi \in a b-$ sence－completion X Y L1〉〈is－present π L1〉 \langle out $[L 1, \operatorname{map}(\lambda(x, y, a) .(x, y)) \pi, x]$ $\neq\{ \}>$ ］
using 〈quasi－equivalence L1 L2 $\langle\tau \in L 1 \cap L 2\rangle\langle x \in \operatorname{exec}[L 2$, map $(\lambda(x, y$ ， a）．$(x, y)) \pi]$ 〉
unfolding quasi－equivalence－def
unfolding $\langle\operatorname{map}(\lambda(x, y, a) .(x, y)) \pi=\tau\rangle$
by blast
then show？thesis
by（metis $\left\langle x \in \operatorname{exec}\left[L 2^{\prime}, \pi\right]\right\rangle$ dual－order．refl outputs－executable）
next
case b
then obtain $\pi^{\prime} x^{\prime} y^{\prime} \tau^{\prime}$ where $\pi=\operatorname{map}(\lambda(x, y) .(x, y$, True $)) \pi^{\prime} @\left[\left(x^{\prime}, y^{\prime}\right.\right.$, False）］＠$\tau^{\prime}$

```
                                    and }\mp@subsup{\pi}{}{\prime}\inL1\capL
                                    and out[L1,\mp@subsup{\pi}{}{\prime},x]\not={}
                                    and out[L2,\mp@subsup{\pi}{}{\prime},x]\not={}
                                    and }\mp@subsup{y}{}{\prime}\in
                                    and }\mp@subsup{y}{}{\prime}\not\in\mathrm{ out [L1, 片,x}
                                    and }\mp@subsup{y}{}{\prime}\not\in\mathrm{ out [L2,, 吕, ']
                                    and (\forall(x,y,a)\inset \mp@subsup{\tau}{}{\prime}.x\inX\wedgey\inY)
```

unfolding intersection－b
by blast
have \neg is－present π L1
using $\left\langle L 1^{\prime} a \equiv \operatorname{map}(\lambda(x, y) .(x, y\right.$, True $\left.)) ‘ L 1\right\rangle\left\langle L 1^{\prime} a \cap L 2^{\prime} b=\{ \}\right\rangle b$ by auto
have \neg is－present π L2
using $\left\langle L 2^{\prime} a \equiv \operatorname{map}(\lambda(x, y) .(x, y, \text { True }))^{‘} L 2\right\rangle\left\langle L 1^{\prime} b \cap L 2^{\prime} a=\{ \}\right\rangle b$ by auto

show ？thesis

unfolding $L 1^{\prime}$－def $L 2^{\prime}$－def
unfolding absence－completion－out（3）［OF assms（1）$\langle x \in X\rangle\langle\pi \in a b-$ sence－completion $X Y$ L1〉 $\neg ~ i s-p r e s e n t ~ \pi L 1\rangle]$
unfolding absence－completion－out（3）［OF assms（2）$\langle x \in X\rangle\langle\pi \in a b$－ sence－completion X Y L2〉〈 \neg is－present π L2〉］

```
        using < }\mp@subsup{y}{}{\prime}\inY
        by blast
        qed
    qed
    then show L1 \preceq[X,quasieq Y] L2 \Longrightarrow (absence-completion X Y L1) \preceq[X,quasired
(Y\timesUNIV)] (absence-completion X Y L2)
    unfolding L1'-def[symmetric] L2'-def[symmetric]
    unfolding «(L1' \preceq[X,quasired (Y 人 UNIV )] L2') = quasi-reduction L1' L2'>
    unfolding <(L1\preceq[X,quasieq Y] L2) = quasi-equivalence L1 L2`
    unfolding quasi-reduction-def
    by blast
```

 have \(\wedge \pi x\). quasi-reduction \(L 1^{\prime} L^{\prime} 2^{\prime} \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow x \in \operatorname{exec}[L 2, \pi] \Longrightarrow\)
 out $[L 1, \pi, x]=\operatorname{out}[L 2, \pi, x]$
proof -
fix πx assume quasi-reduction $L 1^{\prime} L 2^{\prime}$ and $\pi \in L 1 \cap L 2$ and $x \in \operatorname{exec}[L 2, \pi]$
then have $x \in X$
by (meson assms(2) executable-inputs-in-alphabet)
let ${ }^{2} \pi=\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{True})) \pi$
have $\operatorname{map}(\lambda(x, y, a) .(x, y)) ? \pi=\pi$
by (induction π; auto)
then have out $[L 2, \operatorname{map}(\lambda(x, y, a) .(x, y)) ? \pi, x] \neq\{ \}$
using $\langle x \in \operatorname{exec}[L 2, \pi]\rangle$ by auto
have is-present ? π L1 and is-present ? $\pi ~ L 2$
using $\langle\pi \in L 1 \cap L 2\rangle$ by auto
have $? \pi \in L 1^{\prime} a \cap L 2^{\prime} a$
using $L 1^{\prime} a-d e f\left\langle L 2^{\prime} a \equiv \operatorname{map}(\lambda(x, y) .(x, y, \text { True }))^{‘}\right.$ L2〉〈is-present (map
$(\lambda(x, y) .(x, y$, True $)) \pi)$ L1〉〈is-present $(\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{True})) \pi) L 2\rangle$ by
auto
then have $? \pi \in$ absence-completion $X Y L 1$ and $? \pi \in$ absence-completion X
$Y L 2$ and $? \pi \in L 1^{\prime} \cap L 2^{\prime}$
unfolding $L 1^{\prime}$ - $\operatorname{def}\left[\right.$ symmetric] $L 2^{\prime}-\operatorname{def}[$ symmetric]
unfolding $\left\langle L 1^{\prime}=L 1^{\prime} a \cup L 1^{\prime} b\right\rangle\left\langle L 2^{\prime}=L 2^{\prime} a \cup L 2^{\prime} b\right\rangle$
by blast+
have $\operatorname{out}\left[L 2^{\prime}, ? \pi, x\right]=\{(y$, True $) \mid y . y \in \operatorname{out}[L 2, \pi, x]\} \cup\{(y$, False $) \mid y . y \in Y$
$\wedge y \notin$ out $[L 2, \pi, x]\}$
using absence-completion-out(1)[OF assms(2) $\langle x \in X\rangle\langle ? \pi \in$ absence-completion
X Y L2〉〈is-present ? π L2〉〈out $[$ L2, map $(\lambda(x, y, a) .(x, y)) ? \pi, x] \neq\{ \}\rangle]$
unfolding $L 2^{\prime}$-def $[$ symmetric $]\langle\operatorname{map}(\lambda(x, y, a) .(x, y)) ? \pi=\pi\rangle$.
then have $x \in \operatorname{exec}\left[L 2^{\prime}, ? \pi\right]$
using $\langle x \in \operatorname{exec}[L 2, \pi]\rangle$ by fastforce
then have $\operatorname{out}\left[L 1^{\prime}, ? \pi, x\right] \neq\{ \}$ and $\operatorname{out}\left[L 1^{\prime}, ? \pi, x\right] \subseteq \operatorname{out}\left[L 2^{\prime}, ? \pi, x\right]$
using «quasi-reduction $\left.L 1^{\prime} L 2^{\prime}\right\rangle\left\langle ? \pi \in L 1^{\prime} \cap L 2^{\prime}\right\rangle$
unfolding quasi-reduction-def
by blast＋
have out $[L 1, \pi, x] \neq\{ \}$
by（metis L1＇－def 〈is－present $(\operatorname{map}(\lambda(x, y) .(x, y, \operatorname{True})) \pi) L 1\rangle\langle m a p(\lambda(x$, $y) .(x, y$, True $)) \pi \in$ absence－completion $X Y \operatorname{L1\rangle }\langle\operatorname{map}(\lambda(x, y, a) .(x, y))($ map $(\lambda(x, y) .(x, y, \operatorname{True})) \pi)=\pi\rangle\left\langle o u t\left[L 1^{\prime}, \operatorname{map}(\lambda(x, y) .(x, y, \operatorname{True})) \pi, x\right] \neq\{ \}\right\rangle\langle x$ $\in X>$ absence－completion－out（2）assms（1））
then have out $\left[L 1^{\prime}, ? \pi, x\right]=\{(y$ ，True $) \mid y . y \in$ out $[L 1, \pi, x]\} \cup\{(y$, False $) \mid y . y$ $\in Y \wedge y \notin$ out $[L 1, \pi, x]\}$
using absence－completion－out（1）［OF assms（1）$\langle x \in X\rangle\langle ? \pi \in$ absence－completion X Y L1〉〈is－present ？π L1〉］
unfolding L1＇－def［symmetric］$\langle\operatorname{map}(\lambda(x, y, a) .(x, y)) ? ? \pi=\pi\rangle$
by blast

```
have out [L1,\pi,x]\subseteqY and out[L2,\pi,x]\subseteqY
```

by（meson assms（1，2）outputs－in－alphabet）+

$$
\begin{aligned}
& \text { have } \bigwedge y \cdot y \in \operatorname{out}[L 1, \pi, x] \Longrightarrow y \in \operatorname{out}[L 2, \pi, x] \\
& \text { proof }-
\end{aligned}
$$

fix y assume $y \in \operatorname{out}[L 1, \pi, x]$
then have $(y, \operatorname{True}) \in$ out $\left[L 1^{\prime}, ? \pi, x\right]$
unfolding $<o u t\left[L 1^{\prime}, ? \pi, x\right]=\{(y$, True $) \mid y . y \in \operatorname{out}[L 1, \pi, x]\} \cup\{(y$, False $) \mid y$.
$y \in Y \wedge y \notin$ out $[L 1, \pi, x]\}>$ by blast
then have $(y$, True $) \in$ out $\left[L 2^{\prime}, ?, ?, x\right]$
using＜out $\left[L 1^{\prime}, ? \pi, x\right] \subseteq$ out $\left[L 2^{\prime}, ? \pi, x\right]>$ by blast
then show $y \in \operatorname{out}[L 2, \pi, x]$
unfolding $<$ out $\left[L 2^{\prime}, ? \pi, x\right]=\{(y$, True $) \mid y . y \in \operatorname{out}[L 2, \pi, x]\} \cup\{(y$, False $)$
$\mid y . y \in Y \wedge y \notin \operatorname{out}[L 2, \pi, x]\}>$
by fastforce
qed
moreover have $\bigwedge y . y \in \operatorname{out}[L 2, \pi, x] \Longrightarrow y \in \operatorname{out}[L 1, \pi, x]$
proof－
fix y assume $y \in$ out $[L 2, \pi, x]$
then have $(y$, True $) \in \operatorname{out}\left[L 2^{\prime}, ? \pi, x\right]$ and $(y$, False $) \notin$ out $\left[L 2^{\prime}, ? \pi, x\right]$ unfolding $\left\langle o u t\left[L 2^{\prime}, ? \pi, x\right]=\{(y\right.$, True $) \mid y . y \in \operatorname{out}[L 2, \pi, x]\} \cup\{(y$, False $)$
$\mid y . y \in Y \wedge y \notin \operatorname{out}[L 2, \pi, x]\}>$ by blast +
moreover have $(y$, True $) \in \operatorname{out}\left[L 1^{\prime}, ? \pi, x\right] \vee(y$, False $) \in$ out $\left[L 1^{\prime}, ? \pi, x\right]$
unfolding $<o u t\left[L 1^{\prime}, ?, \pi, x\right]=\{(y$, True $) \mid y . y \in \operatorname{out}[L 1, \pi, x]\} \cup\{(y$, False $) \mid y$.
$y \in Y \wedge y \notin \operatorname{out}[L 1, \pi, x]\}>$
using $\langle o u t[L 2, \pi, x] \subseteq Y\rangle\langle y \in$ out $[L 2, \pi, x]\rangle$ by auto
ultimately have $(y$, True $) \in \operatorname{out}\left[L 1^{\prime}, ? \pi, x\right]$ using＜out $\left[L 1^{\prime}, ? \pi, x\right] \subseteq$ out $\left[L 2^{\prime}, ? \pi, x\right]>$ by blast
then show $y \in$ out $[L 1, \pi, x]$ unfolding $<o u t\left[L 1^{\prime}, ? \pi, x\right]=\{(y$, True $) \mid y . y \in \operatorname{out}[L 1, \pi, x]\} \cup\{(y$, False $) \mid y$.
$y \in Y \wedge y \notin$ out $[L 1, \pi, x]\}\rangle$ by fastforce
qed
ultimately show out $[L 1, \pi, x]=\operatorname{out}[L 2, \pi, x]$
by blast

qed

then show (absence-completion X YL1) $\preceq[X$,quasired $(Y \times U N I V)]$ (absence-completion $X Y L 2) \Longrightarrow L 1 \preceq[X$, quasieq $Y] L 2$
unfolding L1'-def[symmetric] L2'-def[symmetric]
unfolding «(L1' $\preceq[X$, quasired $\left.(Y \times U N I V)] L 2^{\prime}\right)=$ quasi-reduction L1' L2'〉
unfolding «(L1 $\preceq[$ X,quasieq Y] L2) = quasi-equivalence L1 L2〉
unfolding quasi-reduction-def quasi-equivalence-def
by blast
qed

6.2 Quasi-Reduction via Reduction and explicit Undefined Behaviour

fun bottom-completion :: 'x alphabet \Rightarrow ' y alphabet $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)$ language $\Rightarrow\left({ }^{\prime} x,^{\prime} y\right.$ option) language where
bottom-completion X Y $L=$
$\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x\right.$, Some $\left.y)) \pi){ }^{\prime} L\right)$
$\cup\{(\operatorname{map}(\lambda(x, y) \cdot(x$, Some $y)) \pi) @[(x, y)] @ \tau \mid \pi x y \tau . \pi \in L \wedge$ out $[L, \pi, x]=$ $\left\} \wedge x \in X \wedge\left(y=\right.\right.$ None $\vee y \in$ Some $\left.{ }^{\prime} Y\right) \wedge(\forall(x, y) \in$ set $\tau . x \in X \wedge(y=$ None $\vee y \in S o m e ' Y))\}$
lemma bottom-completion-is-language :
assumes is-language $X Y L$
shows is-language $X(\{N o n e\} \cup S o m e ' Y)($ bottom-completion $X Y L)$
proof -
let $? L=$ bottom-completion $X Y L$
have $? L \neq\{ \}$
using language-contains-nil[OF assms] by auto
moreover have $\wedge \pi . \pi \in ? L \Longrightarrow(\forall x y \in$ set π. fst $x y \in X \wedge$ snd $x y \in(\{$ None $\}$
\cup Some $\left.\left.{ }^{\prime} Y\right)\right) \wedge\left(\forall \pi^{\prime}\right.$. prefix $\left.\pi^{\prime} \pi \longrightarrow \pi^{\prime} \in ? L\right)$
proof -
fix π assume $\pi \in$? L
then consider $(a) \pi \in\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x, \text { Some } y)) \pi)^{\prime} L\right) \mid$
(b) $\pi \in\{(\operatorname{map}(\lambda(x, y) .(x$, Some $y)) \pi) @[(x, y)] @ \tau \mid \pi x y \tau . \pi \in L$
\wedge out $[L, \pi, x]=\{ \} \wedge x \in X \wedge\left(y=\right.$ None $\vee y \in$ Some $\left.{ }^{\prime} Y\right) \wedge(\forall(x, y) \in$ set $\tau \cdot x$
$\in X \wedge(y=$ None $\vee y \in$ Some ' $Y))\}$ unfolding bottom-completion.simps by blast
then show $(\forall x y \in$ set π. fst $x y \in X \wedge$ snd $x y \in(\{$ None $\} \cup$ Some ' $Y)) \wedge$
$\left(\forall \pi^{\prime}\right.$. prefix $\left.\pi^{\prime} \pi \longrightarrow \pi^{\prime} \in ? L\right)$
proof cases
case a
then obtain π^{\prime} where $\pi=\operatorname{map}(\lambda(x, y) .(x$, Some $y)) \pi^{\prime}$ and $\pi^{\prime} \in L$
by auto
then have $\left(\forall x y \in\right.$ set π^{\prime}. fst $x y \in X \wedge$ snd $\left.x y \in Y\right)$
and $\left(\forall \pi^{\prime \prime}\right.$. prefix $\left.\pi^{\prime \prime} \pi^{\prime} \longrightarrow \pi^{\prime \prime} \in L\right)$
using assms by auto
have $\left(\forall \pi^{\prime}\right.$. prefix $\left.\pi^{\prime} \pi \longrightarrow \pi^{\prime} \in\left((\lambda \pi . \operatorname{map}(\lambda(x, y) .(x, \text { Some } y)) \pi)^{\prime} L\right)\right)$ using $\left\langle\left(\forall \pi^{\prime \prime}\right.\right.$. prefix $\left.\left.\pi^{\prime \prime} \pi^{\prime} \longrightarrow \pi^{\prime \prime} \in L\right)\right\rangle$ unfolding $\langle\pi=\operatorname{map}(\lambda(x, y)$. (x, Some y)) $\pi^{\prime}>$
using prefix-map-rightE by force
then have $\left(\forall \pi^{\prime}\right.$. prefix $\left.\pi^{\prime} \pi \longrightarrow \pi^{\prime} \in ? L\right)$ by auto
moreover have $(\forall x y \in$ set π. fst $x y \in X \wedge$ snd $x y \in(\{$ None $\} \cup$ Some '
Y))
using $\left\langle\left(\forall x y \in\right.\right.$ set π^{\prime}. fst $x y \in X \wedge$ snd $\left.\left.x y \in Y\right)\right\rangle$ unfolding $\langle\pi=$ map
$(\lambda(x, y) .(x$, Some $y)) \pi^{\prime}>$
by (induction π^{\prime}; auto)
ultimately show ?thesis
by blast
next
case b
then obtain $\pi^{\prime} x y \tau$ where $\pi=\left(\operatorname{map}(\lambda(x, y) \cdot(x\right.$, Some $\left.y)) \pi^{\prime}\right) @[(x, y)] @ \tau$

```
                    and \(\pi^{\prime} \in L\)
                    and out \(\left[L, \pi^{\prime}, x\right]=\{ \}\)
                        and \(x \in X\)
                            and \((y=\) None \(\vee y \in\) Some ' \(Y\) )
                                    and \((\forall(x, y) \in \operatorname{set} \tau . x \in X \wedge(y=\) None \(\vee y \in\) Some ' \(Y))\)
```

by blast
then have $\left(\forall x y \in\right.$ set π^{\prime}. fst $x y \in X \wedge$ snd $\left.x y \in Y\right)$
and $\left(\forall \pi^{\prime \prime}\right.$. prefix $\left.\pi^{\prime \prime} \pi^{\prime} \longrightarrow \pi^{\prime \prime} \in L\right)$
using assms by auto
have $\left(\forall x y \in \operatorname{set}\left(\operatorname{map}(\lambda(x, y) .(x\right.\right.$, Some $\left.y)) \pi^{\prime}\right) . f$ st $x y \in X \wedge$ snd $x y \in$ $(\{$ None $\} \cup S o m e ‘ Y))$
using $\left\langle\left(\forall x y \in\right.\right.$ set π^{\prime}. fst $x y \in X \wedge$ snd $\left.\left.x y \in Y\right)\right\rangle$
by (induction π^{\prime}; auto)
moreover have set $\pi=\operatorname{set}\left(\operatorname{map}(\lambda(x, y) .(x\right.$, Some $\left.y)) \pi^{\prime}\right) \cup\{(x, y)\} \cup$ set τ unfolding $\left\langle\pi=\left(\operatorname{map}(\lambda(x, y) \cdot(x\right.\right.$, Some $\left.\left.y)) \pi^{\prime}\right) @[(x, y)] @ \tau\right\rangle$
by simp
ultimately have $(\forall x y \in$ set π. fst $x y \in X \wedge$ snd $x y \in(\{$ None $\} \cup$ Some ' Y))
using $\langle x \in X\rangle\left\langle\left(y=\right.\right.$ None $\vee y \in$ Some $\left.\left.{ }^{‘} Y\right)\right\rangle\langle(\forall(x, y) \in$ set $\tau . x \in X \wedge$
$(y=$ None $\vee y \in$ Some ' $Y))$ >
by auto
moreover have $\Lambda \pi^{\prime \prime}$. prefix $\pi^{\prime \prime} \pi \Longrightarrow \pi^{\prime \prime} \in$? L
proof -
fix $\pi^{\prime \prime}$ assume prefix $\pi^{\prime \prime} \pi$
then obtain i where $\pi^{\prime \prime}=$ take $i \pi$
by (metis append-eq-conv-conj prefix-def)
then consider (b1) $i \leq$ length $\pi^{\prime} \mid$
(b2) $i>$ length π^{\prime}
by linarith
then show $\pi^{\prime \prime} \in ? ~$ proof cases
case b1

```
    then have i\leqlength (map (\lambda(x,y).(x,Some y)) \mp@subsup{\pi}{}{\prime})
    by auto
    then have }\mp@subsup{\pi}{}{\prime\prime}=\operatorname{map}(\lambda(x,y).(x,\mathrm{ Some y))(take i }\mp@subsup{\pi}{}{\prime}
    unfolding < }\mp@subsup{\pi}{}{\prime\prime}=\mathrm{ take i }\pi\mathrm{ >
    using<\pi=map (\lambda(x,y).(x,Some y)) \mp@subsup{\pi}{}{\prime}@[(x,y)]@ \tau> take-map by
fastforce
    moreover have take i }\mp@subsup{\pi}{}{\prime}\in
            using \langle\pi'}\inL\rangle\mathrm{ take-is-prefix
            using <\forall\mp@subsup{\pi}{}{\prime\prime}\mathrm{ . prefix }\mp@subsup{\pi}{}{\prime\prime}\mp@subsup{\pi}{}{\prime}\longrightarrow\mp@subsup{\pi}{}{\prime\prime}\inL\rangle by blast
    ultimately have }\mp@subsup{\pi}{}{\prime\prime}\in((\lambda\pi.\operatorname{map}(\lambda(x,y).(x,\mathrm{ Some y)) }\pi\mp@subsup{)}{}{\prime}L
            by simp
    then show }\mp@subsup{\pi}{}{\prime\prime}\in?
            by auto
    next
        case b2
        then have i> length (map (\lambda(x,y).(x,Some y)) \mp@subsup{\pi}{}{\prime})
            by auto
```

 have \(\wedge k x s\) ys \(. k>\) length \(x s \Longrightarrow\) take \(k(x s @ y s)=x s @(t a k e(k-\) length
 $x s) y s)$
by simp
have take-helper: $\bigwedge k x s y z s . k>$ length $x s \Longrightarrow$ take $k(x s @[y] @ z s)=$
$x s @[y] @($ take $(k-$ length $x s-1) z s)$
by (metis One-nat-def Suc-pred 〈^ys xs k. length xs $<k \Longrightarrow$ take k
$(x s @ y s)=x s$ @ take $(k-$ length xs) ys> append-Cons append-Nil take-Suc-Cons
zero-less-diff)
have $* *: \pi^{\prime \prime}=\left(\operatorname{map}(\lambda(x, y) \cdot(x\right.$, Some $\left.y)) \pi^{\prime}\right) @[(x, y)] @($ take $(i-$ length
$\left.\left.\pi^{\prime}-1\right) \tau\right)$
unfolding $\left\langle\pi=\operatorname{map}(\lambda(x, y) .(x\right.$, Some $\left.y)) \pi^{\prime} @[(x, y)] @ \tau\right\rangle\left\langle\pi^{\prime \prime}=\right.$
take $i \pi>$
using take-helper $\left[\right.$ OF $\left\langle i>\right.$ length $\left(\operatorname{map}(\lambda(x, y) \cdot(x\right.$, Some $\left.\left.\left.y)) \pi^{\prime}\right)\right\rangle\right]$ by
simp

```
    have \(\left(\forall(x, y) \in \operatorname{set}\left(\right.\right.\) take \(\left(i-\right.\) length \(\left.\left.\pi^{\prime}-1\right) \tau\right) . x \in X \wedge(y=\) None \(\vee\)
\(y \in\) Some ' \(Y\) ))
            using \(\langle(\forall(x, y) \in\) set \(\tau . x \in X \wedge(y=\) None \(\vee y \in\) Some ' \(Y))\) 〉
            by (meson in-set-takeD)
            then show ?thesis
                    unfolding \(* *\) bottom-completion.simps
            using \(\left\langle\pi^{\prime} \in L\right\rangle\left\langle\right.\) out \(\left.\left[L, \pi^{\prime}, x\right]=\{ \}\right\rangle\langle x \in X\rangle\left\langle\left(y=\right.\right.\) None \(\vee y \in\) Some \(\left.\left.{ }^{\prime} Y\right)\right\rangle\)
                by blast
            qed
            qed
            ultimately show ?thesis by auto
    qed
qed
ultimately show ?thesis
    unfolding is-language.simps by blast
```


qed

```
fun is-not-undefined :: ('x,'y option) word \(\Rightarrow\left({ }^{\prime} x, ' y\right)\) language \(\Rightarrow\) bool where
    is-not-undefined \(\pi L=\left(\pi \in \operatorname{map}(\lambda(x, y) .(x\right.\), Some \(\left.y)){ }^{\prime} L\right)\)
lemma bottom-id: \(\operatorname{map}(\lambda(x, y) .(x\), the \(y))(\operatorname{map}(\lambda(x, y) .(x\), Some \(y)) \pi)=\pi\)
    by (induction \(\pi\); auto)
fun maximum-prefix-with-property \(::(\) ( \(a\) list \(\Rightarrow\) bool \() \Rightarrow\) ' \(a\) list \(\Rightarrow\) ' \(a\) list where
    maximum-prefix-with-property \(P\) xs \(=(\) last (filter \(P(\) prefixes xs \())\) )
lemma maximum-prefix-with-property-props :
    assumes \(\exists y s \in \operatorname{set}(\) prefixes xs) . \(P\) ys
shows \(P\) (maximum-prefix-with-property \(P\) xs)
    and (maximum-prefix-with-property \(P\) xs) \(\in\) set (prefixes xs)
    and \(\bigwedge\) ys . prefix ys \(x s \Longrightarrow P\) ys \(\Longrightarrow\) length ys \(\leq\) length (maximum-prefix-with-property
\(P x s)\)
proof -
    have \(P\) ( maximum-prefix-with-property \(P\) xs) \(\wedge\)
        (maximum-prefix-with-property \(P\) xs) \(\in\) set (prefixes \(x s) \wedge\)
        ( \(\forall\) ys . prefix ys \(x s \longrightarrow P\) ys length ys \(\leq\) length ( maximum-prefix-with-property
P \(x s)\) )
        using assms
    proof (induction xs rule: rev-induct)
        case Nil
        then show? case by auto
    next
        case (snoc \(x x s\) )
        have prefixes \((x s\) @ \([x])=(\) prefixes \(x s) @[x s @[x]]\)
            by simp
    show ?case proof (cases \(P(x s @[x]))\)
            case True
            then have maximum-prefix-with-property \(P(x s @[x])=(x s @[x])\)
            unfolding maximum-prefix-with-property.simps \(\langle\) prefixes \((x s @[x])=(\) prefixes
\(x s) @[x s @[x]]>\)
            by auto
            show ?thesis
                using True
                unfolding <maximum-prefix-with-property \(P(x s @[x])=(x s @[x])\) >
                using in-set-prefixes prefix-length-le by blast
    next
        case False
```

then have maximum-prefix-with-property $P(x s @[x])=$ maximum-prefix-with-property $P x s$
unfolding maximum-prefix-with-property.simps \langle prefixes $(x s @[x])=($ prefixes $x s) @[x s @[x]]>$
by auto
have $\exists a \in$ set (prefixes xs). $P a$ using snoc.prems False unfolding <prefixes $(x s @[x])=($ prefixes $x s) @[x s$ @ $[x]]>$ by auto
show ?thesis
using snoc.IH[OF $\langle\exists a \in$ set (prefixes xs). P a $a\rangle$ False
unfolding «maximum-prefix-with-property $P(x s @[x])=$ maximum-prefix-with-property P xs>
unfolding $<$ prefixes $(x s @[x])=($ prefixes $x s) @[x s @[x]]>$ by auto
qed
qed
then show P (maximum-prefix-with-property $P x s$)
and (maximum-prefix-with-property P xs) \in set (prefixes xs)
and \bigwedge ys . prefix ys $x s \Longrightarrow P y s \Longrightarrow$ length ys \leq length (maximum-prefix-with-property P xs)
by blast+
qed
lemma bottom-completion-out :
assumes is-language $X Y L$
and $\quad x \in X$
and $\quad \pi \in$ bottom-completion $X Y L$
shows is-not-undefined $\pi L \Longrightarrow$ out $[L, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \neq\{ \} \Longrightarrow$ out $[$ bottom-completion $X Y L, \pi, x]=$ Some ' $\operatorname{out}[L, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x]$
and \quad is-not-undefined $\pi L \Longrightarrow \operatorname{out}[L, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x]=\{ \} \Longrightarrow$ out $[$ bottom-completion X $Y L, \pi, x]=\{$ None $\} \cup$ Some ' Y
and \neg is-not-undefined $\pi L \Longrightarrow$ out $[$ bottom-completion $X \quad Y, \pi, x]=\{$ None $\}$
\cup Some ' Y
proof -
let $? L=$ bottom-completion $X Y L$
define $L^{\prime} a$ where $L^{\prime} a=\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x, \text { Some } y)) \pi)^{\prime} L\right)$
define $L^{\prime} b$ where $L^{\prime} b=\{(\operatorname{map}(\lambda(x, y) \cdot(x$, Some $y)) \pi) @[(x, y)] @ \tau \mid \pi x y \tau . \pi$
$\in L \wedge$ out $[L, \pi, x]=\{ \} \wedge x \in X \wedge\left(y=\right.$ None $\vee y \in$ Some $\left.{ }^{‘} Y\right) \wedge(\forall(x, y) \in$ set
$\tau . x \in X \wedge(y=$ None $\vee y \in$ Some ' $Y))\}$
have ? $L=L^{\prime} a \cup L^{\prime} b$
unfolding $L^{\prime} a$-def $L^{\prime} b$-def bottom-completion.simps by blast
then have out $[?, L, \pi, x]=\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\} \cup\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\}$ unfolding outputs.simps language-for-state.simps by blast
have is-language $X(\{$ None $\} \cup$ Some' $Y) ? L$ using bottom-completion-is-language[OF assms(1)].
show is-not-undefined $\pi L \Longrightarrow$ out $[L, \operatorname{map}(\lambda(x, y) \cdot(x$, the $y)) \pi, x] \neq\{ \} \Longrightarrow$ out $[$ bottom-completion $X Y L, \pi, x]=$ Some' $\operatorname{out}[L, \operatorname{map}(\lambda(x, y) \cdot(x$, the $y)) \pi, x]$
and is-not-undefined $\pi L \Longrightarrow$ out $[L, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x]=\{ \} \Longrightarrow$ out $[$ bottom-completion $X Y L, \pi, x]=\{$ None $\} \cup$ Some ' Y
proof -
assume is-not-undefined πL
then obtain π^{\prime} where $\pi=\operatorname{map}(\lambda(x, y) .(x$, Some $y)) \pi^{\prime}$ and $\pi^{\prime} \in L$
by auto
then have $\operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi=\pi^{\prime}$
using bottom-id by auto
have $\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\}=$ Some 'out $[L, \operatorname{map}(\lambda(x, y) \cdot(x$, the $y)) \pi, x]$
proof
show $\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\} \subseteq$ Some ${ }^{\prime} \operatorname{out}[L, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x]$
proof
fix y assume $y \in\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\}$
then have $\pi @[(x, y)] \in L^{\prime} a$ by auto
then obtain π^{\prime} where $\pi @[(x, y)]=\operatorname{map}(\lambda(x, y) .(x$, Some $y)) \pi^{\prime}$ and π^{\prime} $\in L$
unfolding $L^{\prime} a-d e f$ by blast
then have length $(\pi$ @ $[(x, y)])=$ length π^{\prime}
by auto
then obtain $\gamma^{\prime} x y$ where $\pi^{\prime}=\gamma^{\prime} @[x y]$
by (metis add.right-neutral dual-order.strict-iff-not length-append-singleton less-add-Suc2 rev-exhaust take0 take-all-iff)
then have $(x, y)=(\lambda(x, y) .(x$, Some $y)) x y$
using $\left\langle\pi @[(x, y)]=\operatorname{map}(\lambda(x, y) .(x\right.$, Some $\left.y)) \pi^{\prime}\right\rangle$ unfolding $\left\langle\pi^{\prime}=\right.$ $\gamma^{\prime} @[x y]>$ by auto
then have $y=$ Some (snd $x y$) and $x y=(x, s n d x y)$
by (simp add: split-beta) +
moreover define y^{\prime} where $y^{\prime}=$ snd $x y$
ultimately have $y=$ Some y^{\prime} and $x y=\left(x, y^{\prime}\right)$
by auto
have $\operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi=\gamma^{\prime}$
using $\left\langle\pi @[(x, y)]=\operatorname{map}(\lambda(x, y) .(x\right.$, Some $\left.y)) \pi^{\prime}\right\rangle$ unfolding $\left\langle\pi^{\prime}=\right.$ $\gamma^{\prime} @[x y]$
using bottom-id by auto
have $y^{\prime} \in \operatorname{out}[L$, map $(\lambda(x, y) .(x$, the $y)) \pi, x]$
using $\left\langle\pi^{\prime} \in L\right\rangle$
unfolding $\left\langle\operatorname{map}(\lambda(x, y)\right.$. $(x$, the $\left.y)) \pi=\gamma^{\prime}\right\rangle\left\langle\pi^{\prime}=\gamma^{\prime} @[x y]\right\rangle\left\langle x y=\left(x, y^{\prime}\right)\right\rangle$
by auto
then show $y \in$ Some' out $[L, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x]$
unfolding $\left\langle y=\right.$ Some y^{\prime} ’ by blast
qed
show Some' out $[L, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \subseteq\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\}$

```
        proof
            fix y assume }y\inSome' out[L,map (\lambda(x,y). (x, the y)) \pi,x
            then obtain }\mp@subsup{y}{}{\prime}\mathrm{ where }y=S\mathrm{ Some }\mp@subsup{y}{}{\prime}\mathrm{ and }\mp@subsup{y}{}{\prime}\in\operatorname{out}[L,map (\lambda(x,y).(x, the
y)) }\pi,x
            by blast
            then have }\mp@subsup{\pi}{}{\prime}@[(x,\mp@subsup{y}{}{\prime})]\in
            unfolding <map }(\lambda(x,y).(x,\mathrm{ the }y))\pi=\mp@subsup{\pi}{}{\prime}>\mathrm{ by auto
            then show }y\in{y.\pi@[(x,y)]\in\mp@subsup{L}{}{\prime}a
            unfolding L'a-def <\pi = map ( }\lambda(x,y).(x,\mathrm{ Some y)) }\mp@subsup{\pi}{}{\prime}
            using «y = Some y'` image-iff by fastforce
        qed
qed
```

show out $[L, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \neq\{ \} \Longrightarrow$ out $[$ bottom-completion $X Y$
$L, \pi, x]=$ Some 'out $[L, \operatorname{map}(\lambda(x, y) \cdot(x$, the $y)) \pi, x]$
proof -
assume $\operatorname{out}[L, \operatorname{map}(\lambda(x, y) \cdot(x$, the $y)) \pi, x] \neq\{ \}$
then obtain $y a$ where $\pi^{\prime} @[(x, y a)] \in L$
using $\left\langle\pi^{\prime} \in L\right\rangle$ unfolding $\left\langle\operatorname{map}(\lambda(x, y) .(x\right.$, the $\left.y)) \pi=\pi^{\prime}\right\rangle$ by auto

```
    have \(\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\}=\{ \}\)
    proof (rule ccontr)
    assume \(\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\} \neq\{ \}\)
    then obtain \(y\) where \(\pi @[(x, y)] \in L^{\prime} b\) by blast
    then obtain \(\pi^{\prime \prime} x^{\prime} y^{\prime} \tau\) where \(\pi @[(x, y)]=(\operatorname{map}(\lambda(x, y) .(x\), Some \(y))\)
\(\left.\pi^{\prime \prime}\right) @\left[\left(x^{\prime}, y^{\prime}\right)\right] @ \tau\)
    and \(\pi^{\prime \prime} \in L\)
    and out \(\left[L, \pi^{\prime \prime}, x\right]=\{ \}\)
    and \(x^{\prime} \in X\)
    and \(\left(y^{\prime}=\right.\) None \(\vee y^{\prime} \in\) Some ' \(Y\) )
and \((\forall(x, y) \in\) set \(\tau . x \in X \wedge(y=\) None \(\vee y \in\) Some
```

- Y)
unfolding $L^{\prime} b$-def
by blast

```
have \(\wedge y^{\prime \prime} . \pi^{\prime \prime} @\left[\left(x^{\prime}, y^{\prime \prime}\right)\right] \notin L\)
    using \(\left\langle\pi^{\prime \prime} \in L\right\rangle\left\langle o u t\left[L, \pi^{\prime \prime}, x^{\prime}\right]=\{ \}\right\rangle\)
    unfolding outputs.simps language-for-state.simps by force
    have length \(\pi^{\prime}=\) length \(\pi^{\prime \prime}\)
    proof -
        have length \(\pi^{\prime}=\) length \(\pi\)
            using \(\left\langle\operatorname{map}(\lambda(x, y)\right.\). \((x\), the \(y)) \pi=\pi^{\prime}>\) length-map by blast
        have \(\neg\) length \(\pi^{\prime}<\) length \(\pi^{\prime \prime}\)
        proof
```

assume length $\pi^{\prime}<$ length $\pi^{\prime \prime}$
then have length $\pi^{\prime \prime}=$ Suc (length π^{\prime})
by (metis (no-types, lifting) One-nat-def $\langle\pi$ @ $[(x, y)]=\operatorname{map}(\lambda(x$, $y) .(x$, Some $\left.y)) \pi^{\prime \prime} @\left[\left(x^{\prime}, y^{\prime}\right)\right] @ \tau\right\rangle\left\langle l e n g t h ~ \pi^{\prime}=\right.$ length $\left.\pi\right\rangle$ add-diff-cancel-left ${ }^{\prime}$ length-append length-append-singleton length-map list.size(3) not-less-eq plus-1-eq-Suc zero-less-Suc zero-less-diff)
then have length $\pi^{\prime \prime}>$ length π
by $\left(\operatorname{simp}\right.$ add: $\left\langle\pi=\operatorname{map}(\lambda(x, y) .(x\right.$, Some $\left.\left.y)) \pi^{\prime}\right\rangle\right)$
then show False
by (metis (no-types, lifting) One-nat-def $\langle\pi$ @ $[(x, y)]=\operatorname{map}(\lambda(x, y)$. $(x$, Some $y)) \pi^{\prime \prime} @\left[\left(x^{\prime}, y^{\prime}\right)\right] @ \tau$ length-Cons length-append length-append-singleton length-map less-add-same-cancel1 list.size(3) not-less-eq plus-1-eq-Suc zero-less-Suc)

qed

moreover have \neg length $\pi^{\prime \prime}<$ length π^{\prime}
proof
assume length $\pi^{\prime \prime}<$ length π^{\prime}
then have prefix $\left(\left(\operatorname{map}(\lambda(x, y) \cdot(x\right.\right.$, Some $\left.\left.y)) \pi^{\prime \prime}\right) @\left[\left(x^{\prime}, y^{\prime}\right)\right]\right)(\operatorname{map}(\lambda(x, y)$. $(x$, Some $\left.y)) \pi^{\prime}\right)$
by (metis (no-types, lifting) $\langle\pi=\operatorname{map}(\lambda(x, y) .(x$, Some $y))$
$\left.\pi^{\prime}\right\rangle\left\langle\pi @[(x, y)]=\operatorname{map}(\lambda(x, y) .(x\right.$, Some $\left.y)) \pi^{\prime \prime} @\left[\left(x^{\prime}, y^{\prime}\right)\right] @ \tau\right\rangle$ append.assoc length-append-singleton length-map linorder-not-le not-less-eq prefixI prefix-length-prefix)
then have prefix $\pi^{\prime \prime} \pi^{\prime}$
by (metis append-prefixD bottom-id map-mono-prefix)
then have take (length $\pi^{\prime \prime}$) $\pi^{\prime}=\pi^{\prime \prime}$
by (metis append-eq-conv-conj prefix-def)

```
    have }(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})=(((\operatorname{map}(\lambda(x,y).(x,\mathrm{ Some y)) 供)@[( (x,},\mp@subsup{y}{}{\prime})]))!(\mathrm{ length }\mp@subsup{\pi}{}{\prime\prime}
    by (induction }\mp@subsup{\pi}{}{\prime\prime}\mathrm{ arbitrary: }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime};\mathrm{ auto)
    then have }(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})=(\operatorname{map}(\lambda(x,y).(x,\mathrm{ Some y)) }\mp@subsup{\pi}{}{\prime})!(\mathrm{ length }\mp@subsup{\pi}{}{\prime\prime}
        by (metis (no-types, lifting)<\pi=map (\lambda(x,y). (x, Some y)) \mp@subsup{\pi}{}{\prime}>\langle\pi @
[(x,y)]=map }(\lambda(x,y).(x,\mathrm{ Some y)) }\mp@subsup{\pi}{}{\prime\prime}@[(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})]@\tau\rangle\langlelength \mp@subsup{\pi}{}{\prime\prime}<length \mp@subsup{\pi}{}{\prime}
append-Cons length-map nth-append nth-append-length)
    then have fst ( }\mp@subsup{\pi}{}{\prime}!(\mathrm{ length }\mp@subsup{\pi}{}{\prime\prime}))=\mp@subsup{x}{}{\prime
        by (simp add: <length }\mp@subsup{\pi}{}{\prime\prime}<\mathrm{ length }\mp@subsup{\pi}{}{\prime}> split-beta
    have out [L, take (length }\mp@subsup{\pi}{}{\prime\prime})\mp@subsup{\pi}{}{\prime}\mathrm{ , fst ( }\mp@subsup{\pi}{}{\prime}!(\mathrm{ length }\mp@subsup{\pi}{}{\prime\prime}))]={
    unfolding <take (length }\mp@subsup{\pi}{}{\prime\prime})\mp@subsup{\pi}{}{\prime}=\mp@subsup{\pi}{}{\prime\prime}\rangle\langlefst (\mp@subsup{\pi}{}{\prime}!(\mathrm{ length }\mp@subsup{\pi}{}{\prime\prime}))=\mp@subsup{x}{}{\prime}
    using <out[L, 先,x] = {}>.
    moreover have }\bigwedge i.i< length \mp@subsup{\pi}{}{\prime}\Longrightarrow\operatorname{out}[L,\mathrm{ take i }\mp@subsup{\pi}{}{\prime},\mathrm{ fst ( }\mp@subsup{\pi}{}{\prime}!i)]\not={
        using prefix-executable[OF assms(1) < < ' }\inL\rangle
        by (meson outputs-executable)
    ultimately show False
        using <length }\mp@subsup{\pi}{}{\prime\prime}<l=length \mp@subsup{\pi}{}{\prime}> by blas
    qed
    ultimately show ?thesis
        by simp
    qed
```

```
    then have }\mp@subsup{\pi}{}{\prime\prime}=\mp@subsup{\pi}{}{\prime
    by (metis<\pi @ [(x,y)]= map (\lambda(x,y). (x, Some y)) \mp@subsup{\pi}{}{\prime\prime}@ [(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})]@ @>
<map}(\lambda(x,y).(x, the y))\pi=\pi'> append-eq-append-conv bottom-id length-map
    show False
    using <\pi@ @ [(x,y)]= map (\lambda(x,y). (x, Some y)) \mp@subsup{\pi}{}{\prime\prime}@ [(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})]@ @\rangle\langle\mp@subsup{\pi}{}{\prime\prime}
```



```
(x, the y)) \pi, x]\not={}>
            by force
    qed
    then show ?thesis
    using <out[bottom-completion X Y L,\pi,x] = {y.\pi @ [(x,y)] \in L'a} \cup {y.\pi
@ [(x,y)]\in\mp@subsup{L}{}{\prime}b}>
    using<{y.\pi@ @ [x,y)]\in L'a}=Some`out[L,map (\lambda(x,y).(x, the y))
\pi,x]>
            by force
    qed
    show out[L,map (\lambda(x,y).(x, the y)) \pi,x]={}\Longrightarrowout[bottom-completion X Y
L,\pi,x]={None }}\cup\mathrm{ Some 'Y
    proof -
    assume out[L,map (\lambda(x,y). (x, the y)) \pi,x]={}
    then have {y.\pi@ [(x,y)]\in\mp@subsup{L}{}{\prime}a}={}
            unfolding < {y.\pi@ @(x,y)]\in L'a} = Some`out[L,map (\lambda(x,y).(x, the
y)) }\pi,x]>\mathrm{ by blast
    moreover have {y. }\pi\mathrm{ @ [(x,y)] }\in\mp@subsup{L}{}{\prime}b}={None}\cupSome'
    proof
        show {y.\pi @ [(x,y)]\in L'b}\subseteq{None }\cupSome 'Y
        proof
            fix y assume y { {y.\pi@ @ [(x,y)]\in L'b}
            then have }\pi@[(x,y)]\in\mp@subsup{L}{}{\prime}b\mathrm{ by blast
            then obtain }\mp@subsup{\pi}{}{\prime\prime}\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}\tau\mathrm{ where }\pi@[(x,y)]=(\operatorname{map}(\lambda(x,y).(x,\mathrm{ Some y)}
\mp@subsup{\pi}{}{\prime\prime})@[(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})]@\tau
                    and}\mp@subsup{\pi}{}{\prime\prime}\in
                    and out[L,\mp@subsup{\pi}{}{\prime\prime},x]={}
                    and }\mp@subsup{x}{}{\prime}\in
                    and ( }\mp@subsup{y}{}{\prime}=N\mathrm{ None }\vee\mp@subsup{y}{}{\prime}\inSome ' Y
                        and (\forall(x,y) \in set \tau.x\inX\wedge(y=None \vee y\in
Some ' Y))
unfolding \(L^{\prime} b\)-def
by blast
show \(y \in\{\) None \(\} \cup\) Some ' \(Y\)
by (metis (no-types, lifting) Un-insert-right «out[bottom-completion \(X\) \(\left.Y L, \pi, x]=\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\} \cup\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\}\right\rangle\langle y \in\{y . \pi @[(x\), \(\left.y)] \in L^{\prime} b\right\}>\) assms (1) bottom-completion-is-language insert-subset mk-disjoint-insert outputs-in-alphabet)
qed
```

```
    show {None} \cupSome'Y\subseteq{y.\pi@ [(x,y)]\in L'b}
    proof
    fix y assume y { {None } \cupSome ' Y
    have }\pi\mathrm{ @ [(x,y)] = map ( }\lambda(x,y).(x,\mathrm{ Some y)) }\mp@subsup{\pi}{}{\prime}@[(x,y)] @ []
        by (simp add:<\pi= map (\lambda(x,y).(x, Some y)) \mp@subsup{\pi}{}{\prime}\rangle)
    moreover note < < '
    moreover have out[L,\mp@subsup{\pi}{}{\prime},x]={}
    using <out[L,map ( }\lambda(x,y).(x,\mathrm{ the }y))\pi,x]={}>\mathrm{ unfolding <map }(\lambda(x,y
. (x, the y)) \pi= 多>.
    moreover note <x \in X>
    moreover have ( }y=None \veey\inSome'Y
                using }<y\in{None}\cupSome ' Y> by blas
            moreover have ( }\forall(x,y)\in\mathrm{ set []. }x\inX\wedge(y=None \veey\inSome`Y)
                by simp
            ultimately show }y\in{y.\pi@[(x,y)]\in\mp@subsup{L}{}{\prime}b
            unfolding L'b-def by blast
            qed
    qed
    ultimately show ?thesis
    using <out[bottom-completion X Y L,\pi,x]={y.\pi @ [(x,y)]\in L'a}\cup{y.\pi
@ [(x,y)]\in L'b}>
            using<{y.\pi@ @ [x,y)]\in L'a}=Some`out[L,map (\lambda(x,y).(x, the y))
\pi,x]>
            by force
        qed
    qed
    show \neg is-not-undefined \pi L\Longrightarrow out[bottom-completion X Y L,\pi,x] ={None}
USome 'Y
    proof -
    assume }\neg\mathrm{ is-not-undefined }\pi
    then have }\pi\not\in\mp@subsup{L}{}{\prime}
        unfolding L'a-def by auto
    have {y.\pi@ [(x,y)]\in\mp@subsup{L}{}{\prime}a}={}
    proof (rule ccontr)
        assume {y.\pi@ @(x,y)]\in\mp@subsup{L}{}{\prime}a}\not={}
        then obtain }y\mathrm{ where }\pi@[(x,y)]\in\mp@subsup{L}{}{\prime}a\mathrm{ by blast
        then obtain \gamma where }\pi@[(x,y)]=\operatorname{map}(\lambda(x,y).(x, Some y)) \gamma and \gamma
L
            unfolding L'a-def by blast
    then have }\pi=\operatorname{map}(\lambda(x,y).(x,\mathrm{ Some y)) (butlast }\gamma
                by (metis (mono-tags, lifting) butlast-snoc map-butlast)
        moreover have butlast }\gamma\in
            using <\gamma \inL` assms(1)
            by (simp add: prefixeq-butlast)
            ultimately show False
            using <\pi\not\in L'a`
```


using $L^{\prime} a$-def by blast

qed
then have out $[? L, \pi, x]=\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\}$
using <out $[$ bottom-completion $X Y L, \pi, x]=\left\{y . \pi @[(x, y)] \in L^{\prime} a\right\} \cup\{y . \pi$
$\left.@[(x, y)] \in L^{\prime} b\right\}>$ by blast
also have $\ldots=\{$ None $\} \cup$ Some ' Y
proof
show $\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\} \subseteq\{$ None $\} \cup$ Some ' Y
proof
fix y assume $y \in\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\}$
then obtain $\pi^{\prime} x^{\prime} y^{\prime} \tau$ where $\pi @[(x, y)]=(\operatorname{map}(\lambda(x, y) .(x$, Some $y))$ $\left.\pi^{\prime}\right) @\left[\left(x^{\prime}, y^{\prime}\right)\right] @ \tau$

```
and \(\pi^{\prime} \in L\)
and \(\operatorname{out}\left[L, \pi^{\prime}, x\right]=\{ \}\)
and \(x^{\prime} \in X\)
and \(\left(y^{\prime}=\right.\) None \(\vee y^{\prime} \in\) Some ' \(Y\) )
and \((\forall(x, y) \in\) set \(\tau . x \in X \wedge(y=\) None \(\vee y \in\) Some
```

' Y)
unfolding $L^{\prime} b$-def
by blast
have $(x, y) \in \operatorname{set}\left(\left[\left(x^{\prime}, y^{\prime}\right)\right] @ \tau\right)$
by $\left(\right.$ metis $<\pi @[(x, y)]=\operatorname{map}(\lambda(x, y) .(x$, Some $y)) \pi^{\prime} @\left[\left(x^{\prime}, y^{\prime}\right)\right]$
@ τ) append-is-Nil-conv last-appendR last-in-set last-snoc length-Cons list.size(3) nat.simps(3))

```
    then show \(y \in\{\) None \(\} \cup\) Some ' \(Y\)
    using \(\left\langle\left(y^{\prime}=\right.\right.\) None \(\vee y^{\prime} \in\) Some \(\left.\left.{ }^{‘} Y\right)\right\rangle\langle(\forall(x, y) \in\) set \(\tau . x \in X \wedge(y=\)
```

None $\vee y \in S o m e$ ' Y)) > by auto
qed
show $\{$ None $\} \cup$ Some ' $Y \subseteq\left\{y . \pi @[(x, y)] \in L^{\prime} b\right\}$
proof
fix y assume $y \in\{$ None $\} \cup$ Some ' Y
have $\pi \in L^{\prime} b$
using $\left\langle\pi \notin L^{\prime} a\right\rangle\left\langle ? L=L^{\prime} a \cup L^{\prime} b\right\rangle$ assms(3) by fastforce
then obtain $\pi^{\prime} x^{\prime} y^{\prime} \tau$ where $\pi=\left(\operatorname{map}(\lambda(x, y) .(x\right.$, Some $\left.y)) \pi^{\prime}\right) @\left[\left(x^{\prime}, y^{\prime}\right)\right] @ \tau$
and $\pi^{\prime} \in L$
and out $\left[L, \pi^{\prime}, x\right]=\{ \}$
and $x^{\prime} \in X$
and $\left(y^{\prime}=\right.$ None $\vee y^{\prime} \in$ Some ' Y)
and $(\forall(x, y) \in \operatorname{set} \tau . x \in X \wedge(y=$ None $\vee y \in$ Some
‘ Y)
unfolding $L^{\prime} b$-def
by blast
have $\pi @[(x, y)]=\left(\operatorname{map}(\lambda(x, y) .(x\right.$, Some $\left.y)) \pi^{\prime}\right) @\left[\left(x^{\prime}, y^{\prime}\right)\right] @(\tau @[(x, y)])$
unfolding $\left\langle\pi=\left(\operatorname{map}(\lambda(x, y) \cdot(x\right.\right.$, Some $\left.\left.y)) \pi^{\prime}\right) @\left[\left(x^{\prime}, y^{\prime}\right)\right] @ \tau\right\rangle$ by auto
moreover note $\left\langle\pi^{\prime} \in L\right\rangle$ and $\left\langle o u t\left[L, \pi^{\prime}, x^{\prime}\right]=\{ \}\right\rangle$ and $\left\langle x^{\prime} \in X\right\rangle$ and $\left\langle\left(y^{\prime}\right.\right.$

```
= None \vee y'\inSome ' Y)`
    moreover have (\forall(x,y)\in\operatorname{set}(\tau@[(x,y)]). x\inX\wedge(y=None \vee y\in
Some ' Y))
            using }\langle\forall(x,y)\in\mathrm{ set }\tau.x\inX\wedge(y=None \vee y \inSome` Y)>\langley
{None} \cup Some ' }Y\rangle\langlex\inX
                by auto
                ultimately show }y\in{y.\pi@[(x,y)]\in\mp@subsup{L}{}{\prime}b
                unfolding L'b-def by blast
            qed
    qed
    finally show out[?L,\pi,x]={None }\cupSome`Y.
    qed
qed
```

theorem quasired-via-red :
assumes is-language X Y L1
and is-language $X Y$ L2
shows $(L 1 \preceq[X, q u a s i r e d Y] L 2) \longleftrightarrow((b o t t o m-c o m p l e t i o n ~ X ~ Y ~ L 1) ~ \preceq[X, ~ r e d ~$ $(\{$ None $\} \cup$ Some‘ $Y)]$ (bottom-completion X Y L2))
proof -
define $L 1^{\prime}$ where $L 1^{\prime}=$ bottom-completion X Y L1
define $L 2^{\prime}$ where $L 2^{\prime}=$ bottom-completion $X Y$ L2
define $L 1^{\prime} a$ where $L 1^{\prime} a=\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x, \text { Some } y)) \pi)^{\prime} L 1\right)$
define $L 1^{\prime} b$ where $L 1^{\prime} b=\{(\operatorname{map}(\lambda(x, y) .(x$, Some $y)) \pi) @[(x, y)] @ \tau \mid \pi x y \tau$. $\pi \in L 1 \wedge$ out $[L 1, \pi, x]=\{ \} \wedge x \in X \wedge(y=$ None $\vee y \in S o m e ‘ Y) \wedge(\forall(x, y)$ \in set $\tau . x \in X \wedge(y=$ None $\vee y \in$ Some' $Y))\}$
define $L 2^{\prime}{ }^{\prime} a$ where $L 2^{\prime} a=\left((\lambda \pi \cdot \operatorname{map}(\lambda(x, y) \cdot(x, \text { Some } y)) \pi)^{\prime} L 2\right)$
define $L 2^{\prime} b$ where $L 2^{\prime} b=\{(\operatorname{map}(\lambda(x, y) .(x$, Some $y)) \pi) @[(x, y)] @ \tau \mid \pi x y \tau$. $\pi \in L 2 \wedge$ out $[L 2, \pi, x]=\{ \} \wedge x \in X \wedge(y=$ None $\vee y \in$ Some ' $Y) \wedge(\forall(x, y)$
\in set $\tau . x \in X \wedge(y=$ None $\vee y \in$ Some' $Y))\}$
let $? L 1=$ bottom-completion $X Y$ L1
have ? $L 1=L 1^{\prime} a \cup L 1^{\prime} b$
unfolding L1'a-def L1'b-def bottom-completion.simps by blast
then have $\bigwedge \pi x$. out $[? L 1, \pi, x]=\left\{y . \pi @[(x, y)] \in L 1^{\prime} a\right\} \cup\{y . \pi @[(x, y)]$ $\left.\in L 1^{\prime} b\right\}$
unfolding outputs.simps language-for-state.simps by blast
let ?L2 $=$ bottom-completion X Y L2
have $? L 2=L 2^{\prime} a \cup L 2^{\prime} b$
unfolding $L 2^{\prime}$ 'a-def L2'b-def bottom-completion.simps by blast
then have $\bigwedge \pi x$. out $[? L 2, \pi, x]=\left\{y . \pi @[(x, y)] \in L 2^{\prime} a\right\} \cup\{y . \pi @[(x, y)]$ $\left.\in L 2^{\prime} b\right\}$
unfolding outputs.simps language-for-state.simps by blast
have is-language $X(\{$ None $\} \cup$ Some ' $Y)$? L1
using bottom-completion-is-language[OF assms(1)].
have is-language $X(\{N o n e\} \cup S o m e$ ' $Y)$?L2
using bottom-completion-is-language[OF assms(2)].
then have $\wedge \pi x$. out $[$ bottom-completion $X Y L 2, \pi, x] \subseteq\{N o n e\} \cup S o m e$ ' Y by (meson outputs-in-alphabet)
have $(? L 1 \preceq[X$, red $(\{$ None $\} \cup$ Some' $Y)] ? L 2)=(\forall \pi \in$? L1 \cap ?L2.$\forall x \in$ X. out $[? L 1, \pi, x] \subseteq$ out $[? L 2, \pi, x])$
unfolding type-1-conforms.simps red.simps
using $\left\langle\bigwedge \pi x\right.$. out $[$ bottom-completion $X Y L 2, \pi, x] \subseteq\{$ None $\left.\} \cup S o m e{ }^{\prime} Y\right\rangle$ by force
also have $\ldots=(\forall \pi \in$? LL \cap ?L2. $\forall x \in X .($ out $[? L 2, \pi, x]=\{$ None $\} \cup$ Some
' $Y \vee($ out $[? L 1, \pi, x] \neq\{ \} \wedge$ out $[? L 1, \pi, x] \subseteq$ out $[? L 2, \pi, x])))$
by (metis (no-types, lifting) IntD1 «is-language X (\{None \} \cup Some‘ Y)
(bottom-completion $X Y$ L1) ><is-language $X(\{N o n e\} \cup S o m e ‘ Y)($ bottom-completion
X Y L2) > assms(1) bottom-completion-out(1) bottom-completion-out(2) bottom-completion-out(3)
image-is-empty outputs-in-alphabet subset-antisym)
also have $\ldots=(\forall \pi \in ? L 1 \cap$?L2 $. \forall x \in X .($ out $[? L 2, \pi, x]=\{$ None $\} \cup$ Some
' $Y \vee$ (is-not-undefined $\pi L 1 \wedge$ is-not-undefined π L2 \wedge out $[L 1, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \neq\{ \} \wedge$ out $[L 1, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \subseteq \operatorname{out}[L 2, \operatorname{map}(\lambda(x, y)$. $(x$, the $y)) \pi, x]))$)
proof -
have $\bigwedge \pi x . \pi \in ? L 1 \cap ? L 2 \Longrightarrow x \in X \Longrightarrow$ out $[? L 2, \pi, x] \neq\{$ None $\} \cup$ Some ‘ $Y \Longrightarrow$
$($ out $[? L 1, \pi, x] \neq\{ \} \wedge$ out $[? L 1, \pi, x] \subseteq$ out $[? L 2, \pi, x])=($ is-not-undefined $\pi L 1 \wedge$ is-not-undefined $\pi L 2 \wedge \operatorname{out}[L 1, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \neq\{ \} \wedge$ $\operatorname{out}[L 1, \operatorname{map}(\lambda(x, y) \cdot(x$, the $y)) \pi, x] \subseteq \operatorname{out}[\operatorname{L2}, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x])$
proof -
fix πx assume $\pi \in ? L 1 \cap ? L 2$ and $x \in X$ and out $[? L 2, \pi, x] \neq\{$ None $\} \cup$ Some' Y
then have $\pi \in ?$? 1 and $\pi \in ? L 2$ by blast +
have is-not-undefined π L2
using bottom-completion-out[OF assms(2) $\langle x \in X\rangle\langle\pi \in$? L2 \rangle]
using <out $[$ bottom-completion $X \quad Y L 2, \pi, x] \neq\{$ None $\} \cup S o m e ‘ Y>$ by
fastforce
have $\operatorname{out}[L 2, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \neq\{ \}$
using bottom-completion-out(1,2)[OF assms(2) $\langle x \in X\rangle\langle\pi \in$?L2 $\rangle]$
using <is-not-undefined π L2〉〈out[bottom-completion X Y L2, $\pi, x] \neq\{$ None $\}$
\cup Some ' Y > by blast
show $($ out $[? L 1, \pi, x] \neq\{ \} \wedge$ out $[? L 1, \pi, x] \subseteq$ out $[? L 2, \pi, x])=($ is-not-undefined $\pi L 1 \wedge$ is-not-undefined $\pi L 2 \wedge$ out $[L 1, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \neq\{ \} \wedge$ $\operatorname{out}[L 1, \operatorname{map}(\lambda(x, y) \cdot(x$, the $y)) \pi, x] \subseteq \operatorname{out}[\operatorname{L2}, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x])$
proof (cases is-not-undefined $\pi L 1$)
case False
then have out $[? L 1, \pi, x]=\{$ None $\} \cup$ Some＇Y
by（meson IntD1 $\langle\pi \in$ bottom－completion $X Y$ L1 \cap bottom－completion X Y L2〉 $\langle x \in X\rangle \operatorname{assms}(1)$ bottom－completion－out（3））
then have $\neg($ out $[? L 1, \pi, x] \subseteq$ out $[? L 2, \pi, x])$
 \prec out $[$ bottom－completion $X \quad Y L 2, \pi, x] \neq\{$ None $\} \cup S o m e$＇Y＞outputs－in－alphabet subset－antisym）
then show ？thesis
using False by presburger
next
case True
have $($ out $[? L 1, \pi, x] \neq\{ \} \wedge$ out $[? L 1, \pi, x] \subseteq$ out $[? L 2, \pi, x])=($ out $[L 1$, map $(\lambda(x, y) \cdot(x$ ，the $y)) \pi, x] \neq\{ \} \wedge$ out $[\operatorname{L1}, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \subseteq$ out $[L 2$, map $(\lambda(x, y) \cdot(x$, the $y)) \pi, x])$
proof $($ cases out $[L 1, \operatorname{map}(\lambda(x, y) .(x$ ，the $y)) \pi, x]=\{ \})$
case True
have $\neg($ out $[? L 1, \pi, x] \neq\{ \} \wedge$ out $[? L 1, \pi, x] \subseteq$ out $[? L 2, \pi, x])$
unfolding bottom－completion－out（2）［OF assms（1）$\langle x \in X\rangle\langle\pi \in$ ？L1 \rangle〈is－not－undefined π L1〉 True］
by（meson $\langle\bigwedge x \pi$ ．out $[$ bottom－completion $X Y L 2, \pi, x] \subseteq\{$ None $\} \cup$ Some ＇$Y\rangle\langle$ out $[$ bottom－completion $X \quad Y L 2, \pi, x] \neq\{$ None $\} \cup$ Some＇$Y\rangle$ subset－antisym）
moreover have $\neg(\operatorname{out}[L 1, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \neq\{ \} \wedge$ out $[L 1$, map $(\lambda(x, y) \cdot(x$, the $y)) \pi, x] \subseteq \operatorname{out}[L 2, \operatorname{map}(\lambda(x, y) \cdot(x$, the $y)) \pi, x])$
using True by simp
ultimately show ？thesis by blast

next

case False
show ？thesis
unfolding bottom－completion－out（1）［OF $\operatorname{assms}(1)\langle x \in X\rangle\langle\pi \in$ ？L1 \rangle〈is－not－undefined π L1〉 False］
unfolding bottom－completion－out（1）［OF $\operatorname{assms}(2)\langle x \in X\rangle\langle\pi \in$ ？L2 \rangle
$\langle i s-n o t-u n d e f i n e d ~ \pi$ L2〉〈out $[L 2, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \neq\{ \}\rangle]$
by blast
qed
then show ？thesis
using 〈is－not－undefined π L1〉〈is－not－undefined π L2〉
by blast
qed
qed
then show？thesis
by meson
qed
also have $\ldots=((\forall \pi \in ? L 1 \cap$ ？$L 2 . \forall x \in X . \neg i s$－not－undefined $\pi L 1 \longrightarrow$ is－not－undefined π L2 \longrightarrow out $[? L 2, \pi, x]=\{$ None $\} \cup$ Some＇Y）
$\wedge(\forall \pi \in L 1 \cap L 2 . \forall x \in X$. out $[L 2, \pi, x]=\{ \} \vee($ out $[L 1, \pi, x] \neq$
$\} \wedge$ out $[L 1, \pi, x] \subseteq \operatorname{out}[L 2, \pi, x])))$
（is ？$A=$ ？B ）

proof

show ？$A \Longrightarrow ? B$
proof－
assume ？A
have $\bigwedge \pi x . \pi \in ? L 1 \cap ? L 2 \Longrightarrow x \in X \Longrightarrow \neg$ is－not－undefined $\pi L 1 \Longrightarrow$ is－not－undefined $\pi L 2 \Longrightarrow$ out $[? L 2, \pi, x]=\{$ None $\} \cup$ Some＇Y
using 〈？A〉 by blast
moreover have $\wedge \pi x . \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow$ out $[L 2, \pi, x]=\{ \} \vee$ $($ out $[L 1, \pi, x] \neq\{ \} \wedge$ out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x])$
proof－
fix πx assume $\pi \in L 1 \cap L 2$ and $x \in X$
let $? \pi=\operatorname{map}(\lambda(x, y) .(x$, Some $y)) \pi$
have is－not－undefined ？π L1 and is－not－undefined ？π L2
using $\langle\pi \in L 1 \cap L 2\rangle$ by auto
then have $? \pi \in ? L 1$ and $? \pi \in ? L 2$
by auto
show out $[L 2, \pi, x]=\{ \} \vee($ out $[L 1, \pi, x] \neq\{ \} \wedge$ out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x])$
proof（cases out $[L 2, \pi, x]=\{ \})$
case True
then show ？thesis by auto
next
case False
then have out $[$ bottom－completion X Y L2，？$\pi, x] \neq\{$ None $\} \cup$ Some＇Y
using bottom－completion－out（1）［OF $\operatorname{assms}(2)\langle x \in X\rangle\langle ? \pi \in ? L 2\rangle$
〈is－not－undefined ？π L2〉］
unfolding bottom－id by force
then have out $[L 1, \operatorname{map}(\lambda(x, y) .(x$ ，the $y)) ? \pi, x] \neq\{ \} \wedge$ out $[L 1, \operatorname{map}(\lambda(x$ ， $y) .(x$ ，the $y)) ? \pi, x] \subseteq$ out $[L 2, \operatorname{map}(\lambda(x, y) .(x$, the $y)) ? \pi, x]$
using 〈？A 〉
using $\langle ? \pi \in ? L 1\rangle\langle ? \pi \in ? L 2\rangle\langle x \in X\rangle$
by blast
then show out $[L 2, \pi, x]=\{ \} \vee(\operatorname{out}[L 1, \pi, x] \neq\{ \} \wedge$ out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x])$
unfolding bottom－id by blast
qed
qed
ultimately show ？B
by meson
qed
show ？$B \Longrightarrow$ ？A
proof－
assume ？B
have $\wedge \pi x . \pi \in ? L 1 \cap ? L 2 \Longrightarrow x \in X \Longrightarrow$ out $[? L 2, \pi, x]=\{$ None $\} \cup$ Some
＇$Y \vee$ is－not－undefined $\pi L 1 \wedge$ is－not－undefined π L2 \wedge out $[L 1, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \neq\{ \} \wedge \operatorname{out}[L 1, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \subseteq \operatorname{out}[L 2, \operatorname{map}(\lambda(x, y)$ ． $(x$ ，the $y)) \pi, x]$
proof－
fix πx assume $\pi \in ? L 1 \cap ? L 2$ and $x \in X$
then have $\pi \in ? L 1$ and $\pi \in ?, 22$ by auto
show out $[? L 2, \pi, x]=\{$ None $\} \cup$ Some＇$Y \vee$ is－not－undefined $\pi L 1 \wedge$ is－not－undefined π L2 \wedge out $[L 1, \operatorname{map}(\lambda(x, y)$ ．$(x$ ，the $y)) \pi, x] \neq\{ \} \wedge$ out $[L 1$, map $(\lambda(x, y) .(x$, the $y)) \pi, x] \subseteq$ out $[L 2, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x]$
proof $($ cases out $[? L 2, \pi, x]=\{$ None $\} \cup$ Some＇$Y)$
case True
then show ？thesis by blast
next
case False
let $? \pi=\operatorname{map}(\lambda(x, y) .(x$ ，the $y)) \pi$
have is－not－undefined π L2
using False $\prec(\forall \pi \in$ bottom－completion X Y L1 \cap bottom－completion X Y L2． $\forall x \in X$ ．$ᄀ$ is－not－undefined $\pi L 1 \longrightarrow$ is－not－undefined π L2 \longrightarrow out［bottom－completion $X Y L 2, \pi, x]=\{$ None $\} \cup$ Some $\left.{ }^{\prime} Y\right) \wedge(\forall \pi \in L 1 \cap L 2 . \forall x \in X$ ．out $[L 2, \pi, x]=\{ \} \vee$ $\operatorname{out}[L 1, \pi, x] \neq\{ \} \wedge$ out $[L 1, \pi, x] \subseteq \operatorname{out}[L 2, \pi, x])\rangle\langle\pi \in$ bottom－completion X Y L1 \cap bottom－completion $X Y L 2\rangle\langle x \in X\rangle$
by（meson $\langle\pi \in$ bottom－completion X Y L2〉assms（2）bottom－completion－out（3））
then have $? \pi \in L 2$
using bottom－id
by（metis（mono－tags，lifting）imageE is－not－undefined．elims（2））
have is－not－undefined $\pi L 1$
using False $\langle(\forall \pi \in$ bottom－completion X Y L1 \cap bottom－completion X Y L2． $\forall x \in X$ ．\neg is－not－undefined $\pi L 1 \longrightarrow$ is－not－undefined $\pi L 2 \longrightarrow$ out［bottom－completion $X Y L 2, \pi, x]=\{$ None $\} \cup$ Some $\left.{ }^{\prime} Y\right) \wedge(\forall \pi \in L 1 \cap L 2 . \forall x \in X$ ．out $[L 2, \pi, x]=\{ \} \vee$ out $[L 1, \pi, x] \neq\{ \} \wedge$ out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x])\rangle\langle\pi \in$ bottom－completion X Y L1 \cap bottom－completion $X Y$ L2 $\langle\langle x \in X\rangle$
using 〈is－not－undefined π L2〉 by blast
then have $? \pi \in L 1$
using bottom－id
by（metis（mono－tags，lifting）imageE is－not－undefined．elims（2））
have out $[L 2, ? \pi, x] \neq\{ \}$
using False bottom－completion－out（2）［OF assms（2）$\langle x \in X\rangle\langle\pi \in$ ？L2〉
〈is－not－undefined π L2〉］
by blast
then have out $[L 1, ? \pi, x] \neq\{ \}$ and out $[L 1, ? \pi, x] \subseteq$ out $[L 2, ?, \pi, x]$
using 〈？B〉〈？$\pi \in L 1\rangle\langle ? \pi \in L 2\rangle\langle x \in X\rangle$
by（meson IntI）＋
then show？thesis
using 〈is－not－undefined π L1〉〈is－not－undefined π L2〉

```
                by blast
            qed
    qed
    then show ?A
        by blast
    qed
qed
also have ... = ( ( }\forall\pi\in?L1\cap?L2.\forallx\inX.\neg is-not-undefined \pi L1 \longrightarrow
is-not-undefined \pi L2 \longrightarrow out[L2,map ( }\lambda(x,y).(x,\mathrm{ the y)) }\pi,x]={}
                    \wedge(\forall\pi\inL1\capL2.}\forallx\inX.out[L2,\pi,x]={}\vee(out[L1,\pi,x]\not
{} ^ out [L1,\pi,x]\subseteqout[L2,\pi,x])))
    (is }(?A\wedge?B)=(?C\wedge?B)
proof -
    have ?A = ?C
    by (metis IntD2 None-notin-image-Some UnCI assms(2) bottom-completion-out(1)
bottom-completion-out(2) insertCI)
    then show ?thesis by meson
qed
also have ... = (\forall\pi\inL1\capL2. }\forallx\inX . out[L2,\pi,x]={}\vee (out[L1,\pi,x
\not={}\wedge out[L1,\pi,x]\subseteqout[L2,\pi,x]))
    (is (?A\wedge?B)=?B)
proof -
    have ? B\Longrightarrow ? A
    proof -
            assume ?B
```

 have \(\wedge \pi x . \pi \in ? L 1 \cap ? L 2 \Longrightarrow x \in X \Longrightarrow \neg\) is-not-undefined \(\pi L 1 \Longrightarrow\)
 is-not-undefined $\pi L 2 \Longrightarrow$ out $[L 2, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x]=\{ \}$
proof (rule ccontr)
fix πx assume $\pi \in ?$? $1 \cap$? L2 and $x \in X$ and \neg is-not-undefined π L1
and is-not-undefined π L2
and $\operatorname{out}[L 2, \operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi, x] \neq\{ \}$
let $? \pi=\operatorname{map}(\lambda(x, y) .(x$, the $y)) \pi$
have $? \pi \in L 2$
by (metis (mono-tags, lifting)〈is-not-undefined π L2〉bottom-id image-iff
is-not-undefined.elims(2))
have $\pi \in$? L1
using $\langle\pi \in$? L1 \cap ?L2 \rangle by auto
moreover have $\pi \notin L 1^{\prime} a$
unfolding $L 1^{\prime}$ a-def using « \neg is-not-undefined π L1〉 by auto
ultimately have $\pi \in L 1^{\prime} b$
unfolding $\left\langle ? . L 1=L 1^{\prime} a \cup L 1^{\prime} b\right\rangle$ by blast
then obtain $\pi^{\prime} x^{\prime} y^{\prime} \tau$ where $\pi=\left(\operatorname{map}(\lambda(x, y) .(x\right.$, Some $\left.y)) \pi^{\prime}\right) @\left[\left(x^{\prime}, y^{\prime}\right)\right] @ \tau$
and $\pi^{\prime} \in L 1$
and out $\left[L 1, \pi^{\prime}, x\right]=\{ \}$

```
and }\mp@subsup{x}{}{\prime}\in
and ( }\mp@subsup{y}{}{\prime}=N\mathrm{ None }\vee\mp@subsup{y}{}{\prime}\inSome ' Y)
and}(\forall(x,y)\in\mathrm{ set }\tau.x\inX\wedge(y=None \veey\inSom
```

‘ Y))
unfolding $L 1^{\prime} b$-def
by blast

```
    have \(? \pi=\left(\pi^{\prime} @\left[\left(x^{\prime}\right.\right.\right.\), the \(\left.\left.\left.y^{\prime}\right)\right]\right) @(\operatorname{map}(\lambda(x, y) .(x\), the \(y)) \tau)\)
        unfolding \(\left\langle\pi=\left(\operatorname{map}(\lambda(x, y) \cdot(x\right.\right.\), Some \(\left.\left.y)) \pi^{\prime}\right) @\left[\left(x^{\prime}, y^{\prime}\right)\right] @ \tau\right\rangle\)
        using bottom-id by (induction \(\pi^{\prime}\) arbitrary: \(x^{\prime} y^{\prime} \tau\); auto)
    then have \(\pi^{\prime} @\left[\left(x^{\prime}\right.\right.\), the \(\left.\left.y^{\prime}\right)\right] \in L 2\) and \(\pi^{\prime} \in L 2\)
        using \(\langle ? \pi \in L 2\) 〉
        by (metis assms(2) prefix-closure-no-member) +
    then have out \(\left[L 2, \pi^{\prime}, x^{\prime}\right] \neq\{ \}\)
        by fastforce
```

 show False
 using \(\langle ? B\rangle\left\langle\pi^{\prime} \in L 1\right\rangle\left\langle\pi^{\prime} \in L 2\right\rangle\left\langle x^{\prime} \in X\right\rangle\left\langle o u t\left[L 2, \pi^{\prime}, x\right] \neq\{ \}\right\rangle\left\langle\right.\) out \(\left[L 1, \pi^{\prime}, x^{\prime}\right]\)
 $=\{ \}$,
by blast
qed
then show? A
by blast
qed
then show?thesis by meson
qed
also have $\ldots=(L 1 \preceq[X$, quasired $Y] L 2)$
unfolding quasired-type-1[OF assms, symmetric] quasi-reduction-def
by (meson assms(2) executable-inputs-in-alphabet outputs-executable)
finally show ?thesis
by meson
qed

6.3 Strong Reduction via Reduction and Undefinedness Outputs

fun non-bottom-shortening :: ('x,'y option) word $\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right.$ option $)$ word where non-bottom-shortening $\pi=$ filter $(\lambda(x, y) \cdot y \neq$ None $) \pi$
fun non-bottom-projection :: ('x,'y option) word $\Rightarrow\left({ }^{\prime} x, ' y\right)$ word where non-bottom-projection $\pi=\operatorname{map}(\lambda(x, y) .(x$, the $y))$ (non-bottom-shortening $\pi)$
lemma non-bottom-projection-split: non-bottom-projection $\left(\pi^{\prime} @ \pi^{\prime \prime}\right)=($ non-bottom-projection $\left.\pi^{\prime}\right) @\left(\right.$ non-bottom-projection $\left.\pi^{\prime \prime}\right)$
by (induction π^{\prime} arbitrary: $\pi^{\prime \prime}$; auto)
lemma non-bottom-projection-id : non-bottom-projection (map $(\lambda(x, y) \cdot(x, S o m e$ y)) π) $=\pi$
by (induction π; auto)

```
fun undefinedness-completion :: 'x alphabet \(\Rightarrow\left({ }^{\prime} x,{ }^{\prime} y\right)\) language \(\Rightarrow\left({ }^{\prime} x,^{\prime} y\right.\) option \()\)
language where
    undefinedness-completion \(X L=\)
    \(\left\{\pi\right.\). non-bottom-projection \(\pi \in L \wedge\left(\forall \pi^{\prime} x \pi^{\prime \prime} . \pi=\pi^{\prime} @[(x, N o n e)] @ \pi^{\prime \prime}\right.\)
\(\longrightarrow x \in X \wedge\) out \(\left[L\right.\), non-bottom-projection \(\left.\left.\left.\pi^{\prime}, x\right]=\{ \}\right)\right\}\)
lemma undefinedness-completion-is-language :
    assumes is-language X Y L
shows is-language \(X(\{N o n e\} \cup\) Some ' \(Y)\) (undefinedness-completion \(X L)\)
proof -
    let \(? L=\) undefinedness-completion \(X L\)
    have []\(\in L\)
    using language-contains-nil[OF assms].
moreover have non-bottom-projection [] = []
    by auto
ultimately have []\(\in ? L\)
    by \(\operatorname{simp}\)
then have \(? L \neq\{ \}\)
    by blast
moreover have \(\wedge \pi . \pi \in ? L \Longrightarrow(\bigwedge x y . x y \in\) set \(\pi \Longrightarrow f s t x y \in X \wedge\) snd \(x y\)
\(\in\left(\{\right.\) None \(\} \cup\) Some \(\left.\left.{ }^{‘} Y\right)\right)\)
    and \(\bigwedge \pi \cdot \pi \in ? L \Longrightarrow\left(\bigwedge \pi^{\prime}\right.\). prefix \(\left.\pi^{\prime} \pi \Longrightarrow \pi^{\prime} \in ? L\right)\)
proof -
    fix \(\pi\) assume \(\pi \in\) ? \(L\)
    then have p1: non-bottom-projection \(\pi \in L\)
                    and \(p 2: \wedge \pi^{\prime} x \pi^{\prime \prime} . \pi=\pi^{\prime} @[(x\), None \()] @ \pi^{\prime \prime} \Longrightarrow x \in X \wedge\) out \([L\),
non-bottom-projection \(\left.\pi^{\prime}, x\right]=\{ \}\)
        by auto
    show \(\wedge x y . x y \in\) set \(\pi \Longrightarrow f s t x y \in X \wedge\) snd \(x y \in(\{N o n e\} \cup S o m e\) ' \(Y)\)
    proof -
        fix \(x y\) assume \(x y \in\) set \(\pi\)
        then obtain \(\pi^{\prime} x y \pi^{\prime \prime}\) where \(x y=(x, y)\) and \(\pi=\pi^{\prime} @[(x, y)] @ \pi^{\prime \prime}\)
            by (metis append-Cons append-Nil old.prod.exhaust split-list)
```

```
        show fst xy \in X ^ snd xy \in({None } \cup Some'Y)
```

 show fst xy \in X ^ snd xy \in({None } \cup Some'Y)
 proof (cases snd xy)
 proof (cases snd xy)
 case None
 case None
 then show ?thesis
 then show ?thesis
 unfolding <xy = (x,y)> snd-conv
 unfolding <xy = (x,y)> snd-conv
 using p2< < = 片@ [(x,y)] @ \mp@subsup{\pi}{}{\prime\prime}>
 using p2< < = 片@ [(x,y)] @ \mp@subsup{\pi}{}{\prime\prime}>
 by simp
 by simp
 next
 next
 case (Some y')
 case (Some y')
 then have y=Some y'
    ```
            then have y=Some y'
```

```
            unfolding <xy = (x,y)> by auto
            have}(x,\mp@subsup{y}{}{\prime})\in\mathrm{ set (non-bottom-projection }\pi\mathrm{ )
```



```
                    by auto
            then show ?thesis
                    unfolding }\langlexy=(x,y)\rangle\mathrm{ snd-conv }\langley=Some y'>fst-con
            using p1 assms
            unfolding is-language.simps by fastforce
        qed
    qed
    show }\bigwedge\mp@subsup{\pi}{}{\prime}.\mathrm{ prefix }\mp@subsup{\pi}{}{\prime}\pi\Longrightarrow\mp@subsup{\pi}{}{\prime}\in?
    proof -
        fix }\mp@subsup{\pi}{}{\prime}\mathrm{ assume prefix }\mp@subsup{\pi}{}{\prime}
        then obtain }\mp@subsup{\pi}{}{\prime\prime}\mathrm{ where }\pi=\mp@subsup{\pi}{}{\prime}@\mp@subsup{\pi}{}{\prime\prime
            using prefixE by blast
    have non-bottom-projection }\pi=(\mathrm{ non-bottom-projection }\mp@subsup{\pi}{}{\prime})@(\mathrm{ non-bottom-projection
\pi')
            unfolding < }\pi=\mp@subsup{\pi}{}{\prime}@\mp@subsup{\pi}{}{\prime\prime}
            using non-bottom-projection-split .
            then have non-bottom-projection }\mp@subsup{\pi}{}{\prime}\in
                by (metis assms p1 prefix-closure-no-member)
            moreover have }\bigwedge\mp@subsup{\pi}{}{\prime\prime\prime}x\mp@subsup{\pi}{}{\prime\prime\prime\prime}.\mp@subsup{\pi}{}{\prime}=\mp@subsup{\pi}{}{\prime\prime\prime}@[(x,None)]@\mp@subsup{\pi}{}{\prime\prime\prime\prime}\Longrightarrowx\inX
out[L, non-bottom-projection }\mp@subsup{\pi}{}{\prime\prime\prime},x]={
            using p2 unfolding < }\pi=\mp@subsup{\pi}{}{\prime}@\mp@subsup{\pi}{}{\prime\prime}
            by (metis append.assoc)
            ultimately show }\mp@subsup{\pi}{}{\prime}\in
            by fastforce
    qed
    qed
    ultimately show ?thesis
        by (meson is-language.elims(3))
qed
lemma undefinedness-completion-inclusion :
assumes \(\pi \in L\)
shows map \((\lambda(x, y) \cdot(x\), Some \(y)) \pi \in\) undefinedness-completion \(X L\)
proof -
let \({ }^{2} \pi=\operatorname{map}(\lambda(x, y) \cdot(x\), Some \(y)) \pi\)
have \(\wedge a .(a\), None \() \notin\) set ? \(\pi\)
by (induction \(\pi\); auto)
then have \(\forall \pi^{\prime} x \pi^{\prime \prime} . ? 2 \pi=\pi^{\prime} @[(x, N o n e)] @ \pi^{\prime \prime} \longrightarrow x \in X \wedge\) out \([L\), non-bottom-projection \(\left.\pi^{\prime}, x\right]=\{ \}\)
by (metis Cons-eq-appendI in-set-conv-decomp)
moreover have non-bottom-projection \(? \pi \in L\)
using \(\langle\pi \in L\rangle\) unfolding non-bottom-projection-id.
```

```
    ultimately show ?thesis
    by auto
qed
lemma undefinedness-completion-out-shortening :
    assumes is-language X Y L
    and}\quad\pi\in\mathrm{ undefinedness-completion X L
    and}\quadx\in
shows out[undefinedness-completion X L, \pi, x] = out[undefinedness-completion X
L, non-bottom-shortening }\pi,x
using assms(2,3) proof (induction length \pi arbitrary: }\pi\mathrm{ x rule:less-induct)
    case less
    let ?L = undefinedness-completion X L
    show ?case proof (cases \pi rule: rev-cases)
    case Nil
    then show ?thesis by auto
    next
    case (snoc \pi' xy)
    then obtain }\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}\mathrm{ where }xy=(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})\mathrm{ by fastforce
    have }\mp@subsup{x}{}{\prime}\in
        using snoc less.prems(1) unfolding <xy = ( }\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})
        using undefinedness-completion-is-language[OF assms(1)]
        by (metis fst-conv is-language.elims(2) last-in-set snoc-eq-iff-butlast)
    have }\mp@subsup{\pi}{}{\prime}\in?
        using snoc less.prems(1)
        using undefinedness-completion-is-language[OF assms(1)]
        using prefix-closure-no-member by blast
    show ?thesis proof (cases y')
        case None
        then have non-bottom-shortening \pi = non-bottom-shortening }\mp@subsup{\pi}{}{\prime
        unfolding <xy = (x', y')〉 snoc by auto
    then have out[?L, non-bottom-shortening \pi, x] = out[?L, non-bottom-shortening
\pi
            by simp
    also have ... = out[?L, 片,x]
            using less.hyps[OF - <\mp@subsup{\pi}{}{\prime}\in?L\rangle\langlex\inX\rangle] unfolding snoc
            by (metis Suc-lessD length-append-singleton not-less-eq)
            also have ... =out[?L, \pi, x]
            proof
        show out[?L, \pi', x]\subseteq out [?L,\pi,x]
```


proof

fix y assume $y \in$ out $\left[? L, \pi^{\prime}, x\right]$
then have $\pi^{\prime} @[(x, y)] \in ? L$
by auto
then have p1: non-bottom-projection $\left(\pi^{\prime} @[(x, y)]\right) \in L$
and $p 2: \bigwedge \gamma^{\prime} a \gamma^{\prime \prime} \cdot \pi^{\prime} @[(x, y)]=\gamma^{\prime} @[(a, N o n e)] @ \gamma^{\prime \prime} \Longrightarrow a \in X \wedge$
out $\left[L\right.$, non-bottom-projection $\left.\gamma^{\prime}, a\right]=\{ \}$
by auto
have non-bottom-projection $(\pi @[(x, y)])=$ non-bottom-projection $\left(\pi^{\prime} @[(x, y)]\right)$
unfolding snoc 〈xy $\left.=\left(x^{\prime}, y^{\prime}\right)\right\rangle$ None by auto
then have non-bottom-projection $(\pi @[(x, y)]) \in L$
using $p 1$ by simp
moreover have $\bigwedge \gamma^{\prime} a \gamma^{\prime \prime} . \pi @[(x, y)]=\gamma^{\prime} @[(a$, None $)] @ \gamma^{\prime \prime} \Longrightarrow a \in$ $X \wedge$ out $\left[L\right.$, non-bottom-projection $\left.\gamma^{\prime}, a\right]=\{ \}$
proof -
fix $\gamma^{\prime} a \gamma^{\prime \prime}$ assume $\pi @[(x, y)]=\gamma^{\prime} @[(a, N o n e)] @ \gamma^{\prime \prime}$
then have $\pi^{\prime} @\left[\left(x^{\prime}\right.\right.$, None $\left.)\right] @[(x, y)]=\gamma^{\prime} @[(a$, None $)] @ \gamma^{\prime \prime}$
unfolding snoc 〈xy $\left.=\left(x^{\prime}, y^{\prime}\right)\right\rangle$ None by auto
show $a \in X \wedge$ out $\left[L\right.$, non-bottom-projection $\left.\gamma^{\prime}, a\right]=\{ \}$
proof (cases $\gamma^{\prime \prime}$ rule: rev-cases)
case Nil
then show ?thesis
using $\left\langle\pi @[(x, y)]=\gamma^{\prime} @[(a, N o n e)] @ \gamma^{\prime \prime}\right\rangle\langle$ non-bottom-shortening $\pi=$ non-bottom-shortening $\pi^{\prime}>p 2$ by auto
next
case (snoc $\gamma^{\prime \prime \prime} x y^{\prime}$)
then show ?thesis
using $<\pi$ @ $\left.[(x, y)]=\gamma^{\prime} @[(a, N o n e)] @ \gamma^{\prime \prime}\right\rangle$ less.prems(1) by force
qed
qed
ultimately show $y \in \operatorname{out}[? L, \pi, x]$
by auto
qed
show out $[? L, \pi, x] \subseteq$ out $\left[? L, \pi^{\prime}, x\right]$
proof
fix y assume $y \in$ out $[? L, \pi, x]$
then have $\pi^{\prime} @\left[\left(x^{\prime}\right.\right.$, None $\left.)\right] @[(x, y)] \in ? L$
unfolding snoc $\left\langle x y=\left(x^{\prime}, y^{\prime}\right)\right\rangle$ None
by auto
then have p1: non-bottom-projection $\left(\pi^{\prime} @\left[\left(x^{\prime}\right.\right.\right.$, None $\left.\left.)\right] @[(x, y)]\right) \in L$

$$
\text { and p2: } \wedge \gamma^{\prime} a \gamma^{\prime \prime} . \pi^{\prime} @\left[\left(x^{\prime}, N o n e\right)\right] @[(x, y)]=\gamma^{\prime} @[(a, N o n e)] @ \gamma^{\prime \prime}
$$

$\Longrightarrow a \in X \wedge$ out $\left[L\right.$, non-bottom-projection $\left.\gamma^{\prime}, a\right]=\{ \}$
by auto
have non-bottom-projection $\left(\pi^{\prime} @\left[\left(x^{\prime}, N o n e\right)\right] @[(x, y)]\right)=$ non-bottom-projection $\left(\pi^{\prime} @[(x, y)]\right)$

```
        by auto
    then have non-bottom-projection ( }\mp@subsup{\pi}{}{\prime}@[(x,y)])\in
            using p1 by auto
    moreover have \ < \gamma
X ^ out[L, non-bottom-projection }\mp@subsup{\gamma}{}{\prime},a]={
    proof -
        fix }\mp@subsup{\gamma}{}{\prime}a\mp@subsup{\gamma}{}{\prime\prime}\mathrm{ assume }\mp@subsup{\pi}{}{\prime}@[(x,y)]=\mp@subsup{\gamma}{}{\prime}@[(a,None)]@ @ ''
        show }a\inX\wedge\mathrm{ out [L, non-bottom-projection }\mp@subsup{\gamma}{}{\prime},a]={
        proof (cases }\mp@subsup{\gamma}{}{\prime\prime}\mathrm{ rule: rev-cases)
            case Nil
            then show ?thesis
                    by (metis None<\mp@subsup{\pi}{}{\prime}@ [(x,y)]= \gamma'@ [(a,None)] @ }\mp@subsup{\gamma}{}{\prime\prime}
\non-bottom-shortening }\pi=\mathrm{ non-bottom-shortening }\mp@subsup{\pi}{}{\prime}\rangle\langlexy=(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})\rangle\mathrm{ append.assoc
append.right-neutral append1-eq-conv non-bottom-projection.simps p2 snoc)
            next
            case (snoc \mp@subsup{\gamma}{}{\prime\prime\prime}xy')
            then show ?thesis
                using< <\mp@subsup{\pi}{}{\prime}@ @ [(x,y)]= \gamma
ness-completion X L> by force
            qed
            qed
            ultimately show y}\in\operatorname{out[?L, \pi
            by auto
        qed
    qed
    finally show ?thesis
        by blast
    next
    case (Some y')
    have non-bottom-shortening }\pi=(\mathrm{ non-bottom-shortening }\mp@subsup{\pi}{}{\prime})@[(\mp@subsup{x}{}{\prime},\mathrm{ Some }\mp@subsup{y}{}{\prime\prime})
        unfolding snoc <xy = (x',}\mp@subsup{y}{}{\prime})\rangle\mathrm{ Some by auto
    then have non-bottom-projection }\pi=(\mathrm{ non-bottom-projection }\mp@subsup{\pi}{}{\prime})@[(\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime\prime})
        by auto
    have }\mp@subsup{\pi}{}{\prime}@[(\mp@subsup{x}{}{\prime},\mathrm{ Some }\mp@subsup{y}{}{\prime\prime})]\in?
        using less.prems(1) unfolding snoc \langlexy = (x', y')\rangle Some.
    then have Some y'| out[?L,\mp@subsup{\pi}{}{\prime},x]
        by auto
    moreover have out[?L, 片, ] = out[?L,non-bottom-shortening }\mp@subsup{\pi}{}{\prime},x
        using less.hyps[OF - \langle\mp@subsup{\pi}{}{\prime}\in? ?L\rangle\langle\mp@subsup{x}{}{\prime}\inX\rangle]
        unfolding snoc <xy = ( }\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})\rangle\mathrm{ Some
        by (metis length-append-singleton lessI)
    ultimately have Some y'
        by blast
    show ?thesis
```


proof

show out $[? L, \pi, x] \subseteq$ out $[? L$, non-bottom-shortening $\pi, x]$
proof
fix y assume $y \in \operatorname{out}[? L, \pi, x]$
then have $\pi^{\prime} @\left[\left(x^{\prime}\right.\right.$,Some $\left.\left.y^{\prime \prime}\right)\right] @[(x, y)] \in ? L$
unfolding snoc $\left\langle x y=\left(x^{\prime}, y^{\prime}\right)\right\rangle$ Some by auto
then have p1: non-bottom-projection $\left(\pi^{\prime} @\left[\left(x^{\prime}\right.\right.\right.$, Some $\left.\left.\left.y^{\prime \prime}\right)\right] @[(x, y)]\right) \in L$
and $p 2: \wedge \gamma^{\prime} a \gamma^{\prime \prime} . \pi^{\prime} @\left[\left(x^{\prime}\right.\right.$, Some $\left.\left.y^{\prime \prime}\right)\right] @[(x, y)]=\gamma^{\prime} @[(a, N o n e)] @$ $\gamma^{\prime \prime} \Longrightarrow a \in X \wedge$ out $\left[L\right.$, non-bottom-projection $\left.\gamma^{\prime}, a\right]=\{ \}$
by auto
have non-bottom-projection ((non-bottom-shortening π)@[(x,y)])= non-bottom-projection ($\pi^{\prime} @\left[\left(x^{\prime}\right.\right.$, Some $\left.\left.\left.y^{\prime \prime}\right)\right] @[(x, y)]\right)$
unfolding \prec non-bottom-shortening $\pi=\left(\right.$ non-bottom-shortening $\left.\pi^{\prime}\right) @\left[\left(x^{\prime}\right.\right.$, Some $\left.\left.y^{\prime \prime}\right)\right]$ >
by auto
then have non-bottom-projection ((non-bottom-shortening π)@ $[(x, y)]) \in L$ using $p 1$ by simp
moreover have $\bigwedge \gamma^{\prime} a \gamma^{\prime \prime}$. (non-bottom-shortening $\left.\pi\right) @[(x, y)]=\gamma^{\prime} @$ $[(a$, None $)] @ \gamma^{\prime \prime} \Longrightarrow a \in X \wedge$ out $\left[L\right.$, non-bottom-projection $\left.\gamma^{\prime}, a\right]=\{ \}$
proof -
fix γ^{\prime} a $\gamma^{\prime \prime}$ assume (non-bottom-shortening $\left.\pi\right) @[(x, y)]=\gamma^{\prime} @[(a, N o n e)]$
@ $\gamma^{\prime \prime}$
moreover have $(a, N o n e) \notin$ set (non-bottom-shortening π)
by (induction π; auto)
moreover have $\bigwedge x s$ a ys bzs.xs@ $[a]=y s @[b] @ z s \Longrightarrow b \notin$ set $x s \Longrightarrow$ $z s=[]$
by (metis append-Cons append-Nil butlast.simps(2) butlast-snoc in-set-butlast-appendI list.distinct(1) list.sel(1) list.set-sel(1))
ultimately have $\gamma^{\prime \prime}=[]$
by fastforce
then have $\gamma^{\prime}=$ non-bottom-shortening π
and $x=a$
and $y=$ None
using 〈(non-bottom-shortening $\left.\pi) @[(x, y)]=\gamma^{\prime} @[(a, N o n e)] @ \gamma^{\prime \prime}\right\rangle$
by auto
show $a \in X \wedge$ out $\left[L\right.$, non-bottom-projection $\left.\gamma^{\prime}, a\right]=\{ \}$
using $\langle x \in X\rangle$ unfolding $\langle x=a\rangle$
unfolding $\left\langle\gamma^{\prime}=\right.$ non-bottom-shortening $\left.\pi\right\rangle$
by (metis (no-types, lifting) «non-bottom-projection (non-bottom-shortening $\pi @[(x, y)])=$ non-bottom-projection $\left(\pi^{\prime} @\left[\left(x^{\prime}\right.\right.\right.$, Some $\left.\left.\left.\left.y^{\prime \prime}\right)\right] @[(x, y)]\right)\right\rangle\langle x=a\rangle\langle y=$ None〉 append.assoc append.right-neutral append-same-eq non-bottom-projection-split p2)
qed
ultimately show $y \in$ out $[? L$, non-bottom-shortening $\pi, x]$ by auto
qed

```
show out \([? L\), non-bottom-shortening \(\pi, x] \subseteq\) out \([? L, \pi, x]\)
```

proof
fix y assume $y \in$ out [?L,non-bottom-shortening $\pi, x]$
then have (non-bottom-shortening $\left.\pi^{\prime}\right) @\left[\left(x^{\prime}\right.\right.$, Some $\left.\left.y^{\prime \prime}\right)\right] @[(x, y)] \in ? L$
unfolding snoc $\left\langle x y=\left(x^{\prime}, y^{\prime}\right)\right\rangle$ Some by auto
then have p1: non-bottom-projection ((non-bottom-shortening $\left.\pi^{\prime}\right) @\left[\left(x^{\prime}\right.\right.$, Some
$\left.\left.\left.y^{\prime \prime}\right)\right] @[(x, y)]\right) \in L$
and $p 2: \wedge \gamma^{\prime}$ a $\gamma^{\prime \prime}$. (non-bottom-shortening $\left.\pi^{\prime}\right) @\left[\left(x^{\prime}\right.\right.$, Some $\left.\left.y^{\prime \prime}\right)\right] @[(x, y)]$
$=\gamma^{\prime} @[(a$, None $)] @ \gamma^{\prime \prime} \Longrightarrow a \in X \wedge$ out $\left[L\right.$, non-bottom-projection $\left.\gamma^{\prime}, a\right]=\{ \}$
by auto
have non-bottom-projection ((non-bottom-shortening $\left.\pi^{\prime}\right) @\left[\left(x^{\prime}\right.\right.$, Some $\left.\left.\left.y^{\prime \prime}\right)\right] @[(x, y)]\right)=$ non-bottom-projection $(\pi @[(x, y)])$ unfolding snoc $\left\langle x y=\left(x^{\prime}, y^{\prime}\right)\right\rangle$ Some by auto
then have non-bottom-projection $(\pi @[(x, y)]) \in L$ using $p 1$ by presburger
moreover have $\wedge \gamma^{\prime} a \gamma^{\prime \prime} . \pi @[(x, y)]=\gamma^{\prime} @[(a, N o n e)] @ \gamma^{\prime \prime} \Longrightarrow a \in$ $X \wedge$ out $\left[L\right.$, non-bottom-projection $\left.\gamma^{\prime}, a\right]=\{ \}$
proof
fix $\gamma^{\prime} a \gamma^{\prime \prime}$ assume $\pi @[(x, y)]=\gamma^{\prime} @[(a, N o n e)] @ \gamma^{\prime \prime}$
then have $(a$, None $) \in \operatorname{set}(\pi @[(x, y)])$
by auto
then consider $(a$, None $) \in$ set $\pi \mid(a$, None $)=(x, y)$
by auto
then show $a \in X$
by (metis assms(1) fst-conv is-language.elims(2) less.prems(1)
less.prems(2) undefinedness-completion-is-language)
show out $\left[L\right.$, non-bottom-projection $\left.\gamma^{\prime}, a\right]=\{ \}$ proof (cases $\gamma^{\prime \prime}$ rule: rev-cases)
case Nil
then have $\pi=\gamma^{\prime}$ and $x=a$ and $y=$ None
using $\left\langle\pi @[(x, y)]=\gamma^{\prime} @[(a\right.$, None $)]$ @ $\left.\gamma^{\prime \prime}\right\rangle$ by auto
then show ?thesis
by (metis (no-types, opaque-lifting) 〈non-bottom-projection (non-bottom-shortening $\pi^{\prime} @\left[\left(x^{\prime}\right.\right.$, Some $\left.\left.\left.y^{\prime \prime}\right)\right] @[(x, y)]\right)=$ non-bottom-projection $(\pi @[(x, y)])\rangle\left\langle n o n\right.$-bottom-shortening $\pi=$ non-bottom-shortening $\pi^{\prime} @\left[\left(x^{\prime}\right.\right.$, Some $\left.y^{\prime \prime}\right)$]> append.assoc append-Cons append-Nil append-same-eq non-bottom-projection-split p2)

```
next
```

 case (snoc \(\gamma^{\prime \prime \prime} x y\))
 then have \(\pi=\gamma^{\prime} @[(a\), None \()]\) @ \(\gamma^{\prime \prime \prime}\)
 using \(\left\langle\pi @[(x, y)]=\gamma^{\prime} @[(a\right.\), None \(\left.)] @ \gamma^{\prime \prime}\right\rangle\) by auto
 have \(\gamma^{\prime} @[(a\), None \()] \in ? L\)
 using less.prems(1) unfolding \(\left\langle\pi=\gamma^{\prime} @[(a, N o n e)] @ \gamma^{\prime \prime \prime}\right\rangle\)
 using undefinedness-completion-is-language[OF assms(1)]
 by (metis append-assoc prefix-closure-no-member)
    ```
                    then show out[L, non-bottom-projection }\mp@subsup{\gamma}{}{\prime},a]={
                    by auto
                qed
                qed
                ultimately show }y\in\operatorname{out[?}[,\pi,x
                    by auto
            qed
        qed
    qed
    qed
qed
```

lemma undefinedness-completion-out-projection-not-empty :
assumes is-language $X Y L$
and $\quad \pi \in$ undefinedness-completion $X L$
and $\quad x \in X$
and \quad out $[L$, non-bottom-projection $\pi, x] \neq\{ \}$
shows out[undefinedness-completion X L, non-bottom-shortening $\pi, x]=$ Some ${ }^{\text {s }}$
out $[L$, non-bottom-projection $\pi, x]$
proof
let ? $L=$ undefinedness-completion $X L$
have $\pi @[(x$, None $)] \notin ? L$
using assms(4) by auto
then have None \notin out $[? L, \pi, x]$
by auto
then have None \notin out $[? L$, non-bottom-shortening $\pi, x]$
using undefinedness-completion-out-shortening[OF assms(1,2,3)] by blast
then have (non-bottom-shortening π)@ $[(x$, None $)] \notin ? L$
by auto
show out $[? L$, non-bottom-shortening $\pi, x] \subseteq$ Some 'out $[L$, non-bottom-projection
$\pi, x]$
proof
fix y assume $y \in \operatorname{out}[? L$, non-bottom-shortening $\pi, x]$
then have (non-bottom-shortening π) @ $[(x, y)] \in ? L$ by auto
then have $y \neq$ None
using 〈(non-bottom-shortening $\pi) @[(x$, None $)] \notin ? L\rangle$
by meson
then obtain y^{\prime} where $y=$ Some y^{\prime}
by auto
have non-bottom-projection ((non-bottom-shortening π) @ $[(x, y)])=($ non-bottom-projection
$\pi) @\left[\left(x, y^{\prime}\right)\right]$
unfolding $\left\langle y=\right.$ Some y^{\prime} 〉
by (induction π; auto)

```
    then have (non-bottom-projection \pi) @ [(x,\mp@subsup{y}{}{\prime})]\inL
        using «(non-bottom-shortening \pi)@ [(x,y)]\in?L> unfolding «y=Some y'>
        by auto
    then show }y\inSome' out[L, non-bottom-projection \pi, x
        unfolding }\langley=Some y'` by aut
    qed
    show Some' out[L,non-bottom-projection \pi,x]\subseteq out[?L,non-bottom-shortening
\pi,x]
    proof
        fix y assume }y\inS\mathrm{ Some ' out[L,non-bottom-projection }\pi,x
        then obtain }\mp@subsup{y}{}{\prime}\mathrm{ where }y=\mathrm{ Some }\mp@subsup{y}{}{\prime}\mathrm{ and }\mp@subsup{y}{}{\prime}\in\mathrm{ out[L,non-bottom-projection }\pi,x
        by auto
        then have (non-bottom-projection \pi) @ [(x,\mp@subsup{y}{}{\prime})]\inL
            by auto
    moreover have non-bottom-projection ((non-bottom-shortening \pi) @ [(x,y)])
= (non-bottom-projection \pi) @ [(x, y')]
            unfolding }\langley=Some y'
            by (induction \pi; auto)
    ultimately have non-bottom-projection ((non-bottom-shortening \pi) @ [(x,y)])
\inL
            unfolding « }\=\mathrm{ Some y }\mp@subsup{}{}{\prime}
            by auto
    moreover have }\\mp@subsup{\pi}{}{\prime}\mp@subsup{x}{}{\prime}\mp@subsup{\pi}{}{\prime\prime}.((\mathrm{ non-bottom-shortening }\pi)@[(x,y)])=\mp@subsup{\pi}{}{\prime}
[(\mp@subsup{x}{}{\prime},None)]@ @ '\prime \Longrightarrow ' 
    proof -
    fix }\mp@subsup{\pi}{}{\prime}\mp@subsup{x}{}{\prime}\mp@subsup{\pi}{}{\prime\prime}\mathrm{ assume ((non-bottom-shortening }\pi)@[(x,y)])=\mp@subsup{\pi}{}{\prime}@[(\mp@subsup{x}{}{\prime},None)
@ \pi
    then have ( }\mp@subsup{x}{}{\prime},None)\in\mathrm{ set (non-bottom-shortening }\pi\mathrm{ )
            by (metis }<y=Some y` append-Cons in-set-conv-decomp old.prod.inject
option.distinct(1) rotate1.simps(2) set-ConsD set-rotate1)
            then have False
                by (induction \pi; auto)
            then show }\mp@subsup{x}{}{\prime}\inX\wedge\mathrm{ out [L, non-bottom-projection }\mp@subsup{\pi}{}{\prime},x]={
            by blast
    qed
    ultimately show }y\in\mathrm{ out[?L,non-bottom-shortening }\pi,x
            by auto
    qed
qed
lemma undefinedness-completion-out-projection-empty :
    assumes is-language X Y L
    and }\quad\pi\in\mathrm{ undefinedness-completion X L
    and}\quadx\in
    and out[L, non-bottom-projection }\pi,x]={
shows out[undefinedness-completion X L, non-bottom-shortening \pi, x] ={None}
proof
```

let $? L=$ undefinedness-completion $X L$
have p1: non-bottom-projection $\pi \in L$
and p2: $\bigwedge \pi^{\prime} x \pi^{\prime \prime} . \pi=\pi^{\prime} @[(x$, None $)] @ \pi^{\prime \prime} \Longrightarrow x \in X \wedge$ out $[L$, non-bottom-projection $\left.\pi^{\prime}, x\right]=\{ \}$
using assms(2) by auto
have non-bottom-projection $(\pi @[(x$, None $)]) \in L$
using $p 1$ by auto
moreover have $\wedge \pi^{\prime} x^{\prime} \pi^{\prime \prime} . \pi @[(x$, None $)]=\pi^{\prime} @\left[\left(x^{\prime}\right.\right.$, None $\left.)\right] @ \pi^{\prime \prime} \Longrightarrow x^{\prime} \in X$
\wedge out $\left[L\right.$, non-bottom-projection $\left.\pi^{\prime}, x^{\prime}\right]=\{ \}$
proof -
fix $\pi^{\prime} x^{\prime} \pi^{\prime \prime}$ assume $\pi @[(x$, None $)]=\pi^{\prime} @\left[\left(x^{\prime}\right.\right.$, None $\left.)\right] @ \pi^{\prime \prime}$
show $x^{\prime} \in X \wedge$ out $\left[L\right.$, non-bottom-projection $\left.\pi^{\prime}, x\right]=\{ \}$
proof (cases $\pi^{\prime \prime}$ rule: rev-cases)
case Nil
then show ?thesis
using $\left\langle\pi\right.$ @ $[(x$, None $\left.)]=\pi^{\prime} @\left[\left(x^{\prime}, N o n e\right)\right] @ \pi^{\prime \prime}\right\rangle \operatorname{assms}(3) \operatorname{assms}(4) \mathbf{b y}$ auto
next
case (snoc ys y)
then show ?thesis
using $\left\langle\pi\right.$ @ $[(x$, None $)]=\pi^{\prime} @\left[\left(x^{\prime}\right.\right.$, None $\left.\left.)\right] @ \pi^{\prime \prime}\right\rangle p 2$ by auto
qed
qed
ultimately have $\pi @[(x$, None $)] \in ? L$
by auto
then show $\{N o n e\} \subseteq$ out $[? L$, non-bottom-shortening $\pi, x]$
unfolding undefinedness-completion-out-shortening $[O F \operatorname{assms}(1,2,3)$, symmetric]
by auto

```
show out \([? L\), non-bottom-shortening \(\pi, x] \subseteq\{\) None \(\}\)
proof (rule ccontr)
    assume \(\neg\) out \([? L\), non-bottom-shortening \(\pi, x] \subseteq\{\) None \(\}\)
    then obtain \(y\) where \(y \in\) out \([\) ? L, non-bottom-shortening \(\pi, x]\) and \(y \neq\) None
        by blast
    then obtain \(y^{\prime}\) where \(y=\) Some \(y^{\prime}\)
        by auto
    have \(\pi @\left[\left(x\right.\right.\), Some \(\left.\left.y^{\prime}\right)\right] \in ? L\)
        using \(\langle y \in\) out \([? L\), non-bottom-shortening \(\pi, x]\rangle\)
        unfolding \(\left\langle y=\right.\) Some \(y^{\prime}\) 〉
            unfolding undefinedness-completion-out-shortening[OF \(\operatorname{assms}(1,2,3)\), sym-
metric]
        by auto
    then have (non-bottom-projection \(\pi\) ) @ \(\left[\left(x, y^{\prime}\right)\right] \in L\)
        by auto
```

```
    then show False
    using assms(4) by auto
    qed
qed
```

theorem strongred-via-red:
assumes is-language X Y L1
and is-language $X Y$ L2
shows $(L 1 \preceq[X$, strongred $Y] L 2) \longleftrightarrow(($ undefinedness-completion $X L 1) \preceq[X$, red
$(\{$ None $\} \cup$ Some ' $Y)]($ undefinedness-completion X L2))
proof -
let $? L 1=$ undefinedness-completion X L1
let ?L2 $=$ undefinedness-completion X L2
have $(L 1 \preceq[X$, strongred $Y] L 2)=(\forall \pi \in L 1 \cap L 2 . \forall x \in X .($ out $[L 1, \pi, x]=$
$\} \wedge \operatorname{out}[L 2, \pi, x]=\{ \}) \vee($ out $[L 1, \pi, x] \neq\{ \} \wedge \operatorname{out}[L 1, \pi, x] \subseteq \operatorname{out}[L 2, \pi, x]))$
(is ? $A=? B$)
proof
show ? $A \Longrightarrow$? B
unfolding strongred-type-1[OF assms, symmetric] strong-reduction-def quasi-reduction-def
by (metis outputs-executable)
show ? $B \Longrightarrow$? A
unfolding strongred-type-1[OF assms, symmetric] strong-reduction-def quasi-reduction-def
by (metis assms(1) assms(2) executable-inputs-in-alphabet outputs-executable
subset-empty)
qed
also have $\ldots=(\forall \pi \in ? L 1 \cap$? L2 $. \forall x \in X .($ out $[L 1$, non-bottom-projection $\pi, x]$
$=\{ \} \wedge$ out $[L 2$, non-bottom-projection $\pi, x]=\{ \}) \vee($ out $[L 1$,non-bottom-projection
$\pi, x] \neq\{ \} \wedge$ out $[L 1$, non-bottom-projection $\pi, x] \subseteq$ out $[L 2$, non-bottom-projection
$\pi, x])$)
(is ? $A=? B)$
proof
have $\wedge \pi x . ? A \Longrightarrow \pi \in ? L 1 \cap ? L \mathcal{Z} \Longrightarrow x \in X \Longrightarrow$ (out[L1,non-bottom-projection
$\pi, x]=\{ \} \wedge$ out $[L 2$, non-bottom-projection $\pi, x]=\{ \}) \vee($ out $[$ L1, non-bottom-projection
$\pi, x] \neq\{ \} \wedge$ out $[L 1$, non-bottom-projection $\pi, x] \subseteq$ out $[L 2$, non-bottom-projection
$\pi, x]$)
proof -
fix πx assume ? A and $\pi \in ? L 1 \cap ? L 2$ and $x \in X$
let $? \pi=$ non-bottom-projection π
have $? \pi \in L 1$
and $? \pi \in L 2$
using $\langle\pi \in$? L $1 \cap$? L2 \rangle by auto
then show $($ out $[L 1, ? \pi, x]=\{ \} \wedge$ out $[L 2, ? \pi, x]=\{ \}) \vee($ out $[L 1, ? \pi, x] \neq\{ \} \wedge$
$\operatorname{out}[L 1, ? \pi, x] \subseteq$ out $[L 2, ? \pi, x])$
using $\langle ? A\rangle\langle x \in X\rangle$ by blast

qed

then show ? $A \Longrightarrow$? B
by blast
have $\wedge \pi x . ? B \Longrightarrow \pi \in L 1 \cap L 2 \Longrightarrow x \in X \Longrightarrow(o u t[L 1, \pi, x]=\{ \} \wedge$
$\operatorname{out}[L 2, \pi, x]=\{ \}) \vee(\operatorname{out}[L 1, \pi, x] \neq\{ \} \wedge$ out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x])$
proof -
fix πx assume ? B and $\pi \in L 1 \cap L 2$ and $x \in X$
let $? \pi=\operatorname{map}(\lambda(x, y) \cdot(x$, Some $y)) \pi$
have $? \pi \in ? L 1$ and $? \pi \in ? L 2$
using $\langle\pi \in L 1 \cap$ L2 \langle undefinedness-completion-inclusion by blast +
then have (out $[L 1$, non-bottom-projection $? \pi, x]=\{ \} \wedge$ out $[L 2$, non-bottom-projection $? \pi, x]=\{ \}) \vee($ out $[L 1$, non-bottom-projection $? \pi, x] \neq\{ \} \wedge$ out $[L 1$, non-bottom-projection $? \pi, x] \subseteq$ out $[L 2$, non-bottom-projection $? \pi, x]$)
using $\langle ? B\rangle\langle x \in X\rangle$ by blast
then show $(\operatorname{out}[L 1, \pi, x]=\{ \} \wedge \operatorname{out}[L 2, \pi, x]=\{ \}) \vee(\operatorname{out}[L 1, \pi, x] \neq\{ \} \wedge$ out $[L 1, \pi, x] \subseteq$ out $[L 2, \pi, x])$
unfolding non-bottom-projection-id .
qed
then show ? $B \Longrightarrow$? A
by blast
qed
also have $\ldots=(\forall \pi \in$?.. 1 \cap ?L2 $. \forall x \in X .($ out $[? L 1, \pi, x]=\{$ None $\} \wedge$ out $[? L 2, \pi, x]=\{$ None $\}) \vee($ out $[? L 1, \pi, x] \neq\{$ None $\} \wedge$ out $[? L 1, \pi, x] \subseteq$ out $[? L 2, \pi, x]))$

proof -

have $\wedge \pi x . \pi \in ?$? $1 \cap ? L 2 \Longrightarrow x \in X \Longrightarrow$ (out[L1,non-bottom-projection $\pi, x]=\{ \} \wedge$ out $[L 2$, non-bottom-projection $\pi, x]=\{ \})=($ out $[? L 1, \pi, x]=\{$ None $\} \wedge$ out $[? L 2, \pi, x]=\{$ None $\}$)
by (metis IntD1 IntD2 None-notin-image-Some $\operatorname{assms(1)} \operatorname{assms}$ (2) insertCI un-definedness-completion-out-projection-empty undefinedness-completion-out-projection-not-empty undefinedness-completion-out-shortening)
moreover have $\bigwedge \pi x . \pi \in$? L1 \cap ? L2 $\Longrightarrow x \in X \Longrightarrow$ (out[L1, non-bottom-projection $\pi, x] \neq\{ \} \wedge$ out $[$ L1, non-bottom-projection $\pi, x] \subseteq$ out $[L 2$, non-bottom-projection $\pi, x])=($ out $[? L 1, \pi, x] \neq\{$ None $\} \wedge$ out $[? L 1, \pi, x] \subseteq$ out $[? L 2, \pi, x])$

proof -

fix πx assume $\pi \in ? L 1 \cap ? L 2$ and $x \in X$
then have $\pi \in ? L 1$ and $\pi \in ? L 2$ by auto
have $($ out $[L 1$, non-bottom-projection $\pi, x] \neq\{ \})=($ out $[? L 1, \pi, x] \neq\{$ None $\})$
by (metis None-notin-image-Some $\langle\pi \in$ undefinedness-completion $X L 1\rangle\langle x \in$
X> assms(1) singletonI undefinedness-completion-out-projection-empty undefined-ness-completion-out-projection-not-empty undefinedness-completion-out-shortening)
show (out $[L 1$, non-bottom-projection $\pi, x] \neq\{ \} \wedge$ out $[$ L1, non-bottom-projection $\pi, x] \subseteq$ out $[$ L2, non-bottom-projection $\pi, x])=($ out $[? L 1, \pi, x] \neq\{$ None $\} \wedge$ out $[? L 1, \pi, x]$ \subseteq out $[? L 2, \pi, x])$
proof (cases out $[L 1$, non-bottom-projection $\pi, x] \neq\{ \}$)
case False
then show ?thesis using $\langle($ out $[L 1$, non-bottom-projection $\pi, x] \neq\{ \})=$ (out $[? L 1, \pi, x] \neq\{$ None $\}$) > by blast
next
case True
have out $[$ undefinedness-completion $X L 1, \pi, x]=$ Some 'out $[L 1$,non-bottom-projection $\pi, x]$
using undefinedness-completion-out-projection-not-empty[OF $\operatorname{assms}(1)<\pi$ \in ? LL1〉 $\langle x \in X\rangle$ True]
unfolding undefinedness-completion-out-shortening[OF assms(1) $\langle\pi \in ? L 1\rangle$ $\langle x \in X\rangle$, symmetric $]$.
show ?thesis proof (cases out $[L 2$, non-bottom-projection $\pi, x]=\{ \})$
case True
then show ?thesis
by $($ metis $\langle($ out $[L 1$, non-bottom-projection $\pi, x] \neq\{ \})=($ out $[$ undefinedness-completion $X L 1, \pi, x] \neq\{$ None $\})\rangle\langle\pi \in$ undefinedness-completion X L2 \langle out [undefinedness-completion $X L 1, \pi, x]=$ Some ' out $[L 1$, non-bottom-projection $\pi, x]\rangle\langle x \in X\rangle \operatorname{assms}(2)$ im-age-is-empty subset-empty subset-singletonD undefinedness-completion-out-projection-empty undefinedness-completion-out-shortening)

next

case False
have out $[$ undefinedness-completion $X L 2, \pi, x]=$ Some ' out $[L 2$, non-bottom-projection $\pi, x]$
using undefinedness-completion-out-projection-not-empty[OF assms(2) $\langle\pi \in$? L2 $\langle\langle x \in X\rangle$ False $]$
unfolding undefinedness-completion-out-shortening $[$ OF $\operatorname{assms}(2)<\pi \in$?L2 $\rangle\langle x \in X\rangle$,symmetric $]$.
show ?thesis
unfolding \langle out $[$ undefinedness-completion $X L 1, \pi, x]=$ Some ‘out $[L 1$, non-bottom-projection
$\pi, x]$ >
unfolding $<$ out $[$ undefinedness-completion $X L 2, \pi, x]=$ Some ‘out $[L 2$, non-bottom-projection
$\pi, x]$ >
by (metis $\langle($ out $[$ L1,non-bottom-projection $\pi, x] \neq\{ \})=($ out $[$ undefinedness-completion
$X L 1, \pi, x] \neq\{$ None $\})\rangle\langle$ out $[$ undefinedness-completion $X L 1, \pi, x]=$ Some 'out $[L 1$, non-bottom-projection
$\pi, x]>$ subset-image-iff these-image-Some-eq)
qed
qed
qed
ultimately show ?thesis
by meson
qed
also have $\ldots=(\forall \pi \in ? L 1 \cap$?L2.$\forall x \in X$. out $[? L 1, \pi, x] \subseteq$ out $[? L 2, \pi, x])$
(is ? $A=? B$)
proof

```
    show ?A \Longrightarrow?B
    by blast
    show ?B\Longrightarrow?A
        by (metis IntD2 None-notin-image-Some assms(2) insert-subset undefined-
ness-completion-out-projection-empty undefinedness-completion-out-projection-not-empty
undefinedness-completion-out-shortening)
    qed
    also have }\ldots=(?L1\preceq[X,\mathrm{ red ({None }}\cupSome'Y)]?L2) 
    unfolding type-1-conforms.simps red.simps
    using outputs-in-alphabet[OF undefinedness-completion-is-language[OF assms(2)]]
    by force
finally show ?thesis.
qed
end
```


References

[1] W.-l. Huang and R. Sachtleben. Conformance Relations Between Input/Output Languages, pages 49-67. Springer Nature Switzerland, Cham, 2023.

