Information Flow Control via Stateful Intransitive Noninterference in Language IMP

Pasquale Noce
Senior Staff Firmware Engineer at HID Global, Italy
pasquale dot noce dot lavoro at gmail dot com
pasquale dot noce at hidglobal dot com

April 18, 2024

Abstract

The scope of information flow control via static type systems is in principle much broader than information flow security, since this concept promises to cope with information flow correctness in full generality. Such a correctness policy can be expressed by extending the notion of a single stateless level-based interference relation applying throughout a program - addressed by the static security type systems described by Volpano, Smith, and Irvine, and formalized in Nipkow and Klein's book on formal programming language semantics (in the version of February 2023) - to that of a stateful interference function mapping program states to (generally) intransitive interference relations.

This paper studies information flow control via stateful intransitive noninterference. First, the notion of termination-sensitive information flow security with respect to a level-based interference relation is generalized to that of termination-sensitive information flow correctness with respect to such a correctness policy. Then, a static type system is specified and is proven to be capable of enforcing such policies. Finally, the information flow correctness notion and the static type system introduced here are proven to degenerate to the counterparts formalized in Nipkow and Klein's book in case of a stateless level-based information flow correctness policy. Although the operational semantics of the didactic programming language IMP employed in the book is used for this purpose, the introduced concepts apply to larger, real-world imperative programming languages as well.

Contents

1 Underlying concepts and formal definitions 2
1.1 Global context definitions 6
1.2 Local context definitions 7
2 Idempotence of the auxiliary type system meant for loop bodies 25
2.1 Global context proofs 26
2.2 Local context proofs 26
3 Overapproximation of program semantics by the type sys- tem 38
3.1 Global context proofs 39
3.2 Local context proofs 39
4 Sufficiency of well-typedness for information flow correct- ness 66
4.1 Global context proofs 66
4.2 Local context proofs 74
5 Degeneracy to stateless level-based information flow control 134
5.1 Global context definitions and proofs 135
5.2 Local context definitions and proofs 137

1 Underlying concepts and formal definitions

theory Definitions
imports HOL-IMP.Small-Step
begin
In a passage of his book Clean Architecture: A Craftsman's Guide to Software Structure and Design (Prentice Hall, 2017), Robert C. Martin defines a computer program as "a detailed description of the policy by which inputs are transformed into outputs", remarking that "indeed, at its core, that's all a computer program actually is". Accordingly, the scope of information flow control via static type systems is in principle much broader than languagebased information flow security, since this concept promises to cope with information flow correctness in full generality.
This is already shown by a basic program implementing the Euclidean algorithm, in Donald Knuth's words "the granddaddy of all algorithms, because it is the oldest nontrivial algorithm that has survived to the present day" (from The Art of Computer Programming, Volume 2: Seminumerical Algorithms, third edition, Addison-Wesley, 1997). Here below is a sample such C program, where variables a and b initially contain two positive integers and a will finally contain the output, namely the greatest common divisor of those integers.

```
do
{
    r = a % b;
    a = b;
    b = r;
} while (b);
```

Even in a so basic program, information is not allowed to indistinctly flow from any variable to any other one, on pain of the program being incorrect. If an incautious programmer swapped a for b in the assignment at line 4, the greatest common divisor output for any two inputs a and b would invariably match a, whereas swapping the sides of the assignment at line 5 would give rise to an endless loop. Indeed, despite the marked differences in the resulting program behavior, both of these potential errors originate in information flowing between variables along paths other than the demanded ones. A sound implementation of the Euclidean algorithm does not provide for any information flow from a to b, or from b to r.
The static security type systems addressed in [11], [10], and [7] restrict the information flows occurring in a program based on a mapping of each of its variables to a domain along with an interference relation between such domains, including any pair of domains such that the former may interfere with the latter. Accordingly, if function dom stands for such a mapping, and infix notation $u \rightsquigarrow v$ denotes the inclusion of any pair of domains (u, v) in such a relation (both notations are borrowed from [9]), the above errors would be detected at compile time by a static type system enforcing an interference relation such that:

- dom $a \rightsquigarrow \operatorname{dom} r$, dom $b \rightsquigarrow \operatorname{dom} r($ line 3$)$,
- dom $b \rightsquigarrow$ dom a (line 4),
- dom $r \rightsquigarrow \operatorname{dom} b$ (line 5),
and ruling out any other pair of distinct domains. Such an interference relation would also embrace the implicit information flow from b to the other two variables arising from the loop's termination condition (line 6).
Remarkably, as dom $a \rightsquigarrow d o m r$ and dom $r \rightsquigarrow d o m b$ but $\neg \operatorname{dom} a \rightsquigarrow$ dom b, this interference relation turns out to be intransitive. Therefore, unlike the security static type systems studied in [11] and [10], which deal with level-based, and then transitive, interference relations, a static type system aimed at enforcing information flow correctness in full generality must be capable of dealing with intransitive interference relations as well. This should come as no surprise, since [9] shows that this is the general
case already for interference relations expressing information flow security policies.
But the bar can be raised further. Considering the above program again, the information flows needed for its operation, as listed above, need not be allowed throughout the program. Indeed, information needs to flow from a and b to r at line 3 , from b to a at line 4 , from r to b at line 5 , and then (implicitly) from b to the other two variables at line 6 . Based on this observation, error detection at compile time can be made finer-grained by rewriting the program as follows, where i is a further integer variable introduced for this purpose.

```
do
{
    i = 0;
    r = a % b;
    i = 1;
    a = b;
    i = 2;
    b = r;
    i = 3;
} while (b);
```

In this program, i serves as a state variable whose value in every execution step can be determined already at compile time. Since a distinct set of information flows is allowed for each of its values, a finer-grained information flow correctness policy for this program can be expressed by extending the concept of a single, stateless interference relation applying throughout the program to that of a stateful interference function mapping program states to interference relations (in this case, according to the value of i). As a result of this extension, for each program state, a distinct interference relation that is, the one to which the applied interference function maps that state - can be enforced at compile time by a suitable static type system.

If mixfix notation $s: u \rightsquigarrow v$ denotes the inclusion of any pair of domains (u, v) in the interference relation associated with any state s, a finer-grained information flow correctness policy for this program can then be expressed as an interference function such that:

- $s: d o m a \rightsquigarrow d o m r, s: d o m b \rightsquigarrow d o m r$ for any s where $\mathrm{i}=0$ (line 4),
- $s: \operatorname{dom} b \rightsquigarrow d o m a$ for any s where $\mathrm{i}=1$ (line 6),
- $s: \operatorname{dom} r \rightsquigarrow d o m b$ for any s where $\mathrm{i}=2$ (line 8),
- s: dom $b \rightsquigarrow \operatorname{dom} a, s: d o m b \rightsquigarrow d o m r, s: d o m b \rightsquigarrow d o m i f o r ~ a n y ~ s$ where $\mathrm{i}=3$ (line 10),
and ruling out any other pair of distinct domains in any state.
Notably, to enforce such an interference function, a static type system would not need to keep track of the full program state in every program execution step (which would be unfeasible, as the values of a, b, and r cannot be determined at compile time), but only of the values of some specified state variables (in this case, of i alone). Accordingly, term state variable will henceforth refer to any program variable whose value may affect that of the interference function expressing the information flow correctness policy in force, namely the interference relation to be applied.
Needless to say, there would be something artificial about the introduction of such a state variable into the above sample program, since it is indeed so basic as not to provide for a state machine on its own, so that i would be aimed exclusively at enabling the enforcement of such an information flow correctness policy. Yet, real-world imperative programs, for which error detection at compile time is truly meaningful, do typically provide for state machines such that only a subset of all the potential information flows is allowed in each state; and even for those which do not, the addition of some $a d h o c$ state variable to enforce such a policy could likely be an acceptable trade-off.

Accordingly, the goal of this paper is to study information flow control via stateful intransitive noninterference. First, the notion of terminationsensitive information flow security with respect to a level-based interference relation, as defined in [7], section 9.2.6, is generalized to that of terminationsensitive information flow correctness with respect to a stateful interference function having (generally) intransitive interference relations as values. Then, a static type system is specified and is proven to be capable of enforcing such information flow correctness policies. Finally, the information flow correctness notion and the static type system introduced here are proven to degenerate to the counterparts addressed in [7], section 9.2.6, in case of a stateless level-based information flow correctness policy.

Although the operational semantics of the didactic imperative programming language IMP employed in [7] is used for this purpose, the introduced concepts are applicable to larger, real-world imperative programming languages as well, by just affording the additional type system complexity arising from richer language constructs. Accordingly, the informal explanations accompanying formal content in what follows will keep making use of sample C code snippets.
For further information about the formal definitions and proofs contained in this paper, see Isabelle documentation, particularly [8], [4], [2], [3], and [1].

1.1 Global context definitions

```
declare \([[\) syntax-ambiguity-warning \(=\) false \(]\) ]
```

datatype com-flow $=$
Assign vname aexp $(-::=-[1000,61]$ 70) |
Observe vname set (<->[61] 70)
type-synonym flow $=$ com-flow list
type-synonym config $=$ state set \times vname set
type-synonym scope $=$ config set \times bool
abbreviation eq-states $::$ state \Rightarrow state \Rightarrow vname set \Rightarrow bool
$\left(\left(-=-^{\prime}\left(\subseteq-^{\prime}\right)\right)[51,51] 50\right)$ where
$s=t(\subseteq X) \equiv \forall x \in X . s x=t x$
abbreviation univ-states :: state set \Rightarrow vname set \Rightarrow state set
((Univ - '($\left.\subseteq-{ }^{-}\right)$) [51] 75) where
$\operatorname{Univ} A(\subseteq X) \equiv\{s . \exists t \in A . s=t(\subseteq X)\}$
abbreviation univ-vars-if $::$ state set \Rightarrow vname set \Rightarrow vname set
((Univ?? - -) [51, 75] 75) where
Univ?? $A X \equiv$ if $A=\{ \}$ then UNIV else X
abbreviation $t l 2 x s \equiv t l(t l x s)$
fun run-flow :: flow \Rightarrow state \Rightarrow state where
run-flow $(x::=a \# c s) s=$ run-flow $c s(s(x:=$ aval $a s)) \mid$
run-flow (- \# cs) $s=$ run-flow cs s
run-flow $-s=s$
primrec no-upd :: flow \Rightarrow vname \Rightarrow bool where
no-upd ($c \# c s$) $x=$
$(($ case c of $y::=-\Rightarrow y \neq x \mid-\Rightarrow$ True $) \wedge$ no-upd cs $x) \mid$
no-upd [] - = True
primrec avars :: aexp \Rightarrow vname set where
avars $(N i)=\{ \} \mid$
avars $(V x)=\{x\} \mid$
avars $\left(\right.$ Plus $\left.a_{1} a_{2}\right)=$ avars $a_{1} \cup$ avars a_{2}
primrec bvars :: bexp \Rightarrow vname set where
bvars $(B c v)=\{ \} \mid$
bvars $($ Not $b)=$ bvars $b \mid$
bvars $\left(\right.$ And $\left.b_{1} b_{2}\right)=$ bvars $b_{1} \cup$ bvars $b_{2} \mid$
bvars $\left(\right.$ Less $\left.a_{1} a_{2}\right)=$ avars $a_{1} \cup$ avars a_{2}

```
fun flow-aux :: com list \(\Rightarrow\) flow where
flow-aux \(((x::=a) \#\) cs \()=(x::=a)\) \# flow-aux cs \(\mid\)
flow-aux \(((\) IF b THEN - ELSE -) \# cs) \(=\langle\) bvars \(b\rangle \#\) flow-aux cs
flow-aux \(((c ; ;-) \# c s)=\) flow-aux \((c \# c s) \mid\)
flow-aux \((-\#\) cs \()=\) flow-aux cs \(\mid\)
flow-aux [] = []
definition flow :: (com \(\times\) state) list \(\Rightarrow\) flow where
flow cfs = flow-aux (map fst cfs)
function small-stepsl ::
    com \(\times\) state \(\Rightarrow(\) com \(\times\) state \()\) list \(\Rightarrow\) com \(\times\) state \(\Rightarrow\) bool
    ( \(\left.\left(-\rightarrow *^{\prime}\left\{-{ }^{-}\right\}-\right)[51,51] 55\right)\)
where
\(c f \rightarrow *\{[]\} \quad c f^{\prime}=\left(c f=c f^{\prime}\right) \mid\)
\(c f \rightarrow *\left\{c f s @\left[c f^{\prime}\right]\right\} c f^{\prime \prime}=\left(c f \rightarrow *\{c f s\} c f^{\prime} \wedge c f^{\prime} \rightarrow c f^{\prime \prime}\right)\)
by (atomize-elim, auto intro: rev-cases)
termination by lexicographic-order
lemmas small-stepsl-induct \(=\) small-stepsl.induct \([\) split-format \((\) complete \()]\)
```


1.2 Local context definitions

In what follows, stateful intransitive noninterference will be formalized within the local context defined by means of a locale [1], named noninterf. Later on, this will enable to prove the degeneracy of the following definitions to the stateless level-based counterparts addressed in [11], [10], and [7], and formalized in [5] and [6], via a suitable locale interpretation.
Locale noninterf contains three parameters, as follows.

- A stateful interference function interf mapping program states to interference predicates of two domains, intended to be true just in case the former domain is allowed to interfere with the latter.
- A function dom mapping program variables to their respective domains.
- A set state collecting all state variables.

As the type of the domains is modeled using a type variable, it may be assigned arbitrarily by any locale interpretation, which will enable to set it to nat upon proving degeneracy. Moreover, the above mixfix notation $s: u$ $\rightsquigarrow v$ is adopted to express the fact that any two domains u, v satisfy the interference predicate interf s associated with any state s, namely the fact that u is allowed to interfere with v in state s.

Locale noninterf also contains an assumption, named interf-state, which serves the purpose of supplying parameter state with its intended semantics, namely standing for the set of all state variables. The assumption is that function interf maps any two program states agreeing on the values of all the variables in set state to the same interference predicate. Correspondingly, any locale interpretation instantiating parameter state as the empty set must instantiate parameter interf as a function mapping any two program states, even if differing in the values of all variables, to the same interference predicate - namely, as a constant function. Hence, any such locale interpretation refers to a single, stateless interference predicate applying throughout the program. Unsurprisingly, this is the way how those parameters will be instantiated upon proving degeneracy.

The one just mentioned is the only locale assumption. Particularly, the following formalization does not rely upon the assumption that the interference predicates returned by function interf be reflexive, although this will be the case for any meaningful real-world information flow correctness policy.

```
locale noninterf \(=\)
    fixes
        interf :: state \(\Rightarrow^{\prime} d \Rightarrow{ }^{\prime} d \Rightarrow\) bool
                ((-:- \(\rightsquigarrow-)[51,51,51] 50)\) and
        dom :: vname \(\Rightarrow\) 'd and
        state :: vname set
    assumes
        interf-state: \(s=t(\subseteq\) state \() \Longrightarrow\) interf \(s=\operatorname{interf} t\)
```

context noninterf
begin

Locale parameters interf and dom are provided with their intended semantics by the definitions of functions sources and correct, which are formalized here below based on the following underlying ideas.
As long as a stateless transitive interference relation between domains is considered, the condition for the correctness of the value of a variable resulting from a full or partial program execution need not take into account the execution flow producing it, but rather the initial program state only. In fact, this is what happens with the stateless level-based correctness condition addressed in [11], [10], and [7]: the resulting value of a variable of level l is correct if the same value is produced for any initial state agreeing with the given one on the value of every variable of level not higher than l.
Things are so simple because, for any variables x, y, and z , if dom $z \rightsquigarrow d o m$ y and $\operatorname{dom} y \rightsquigarrow \operatorname{dom} x$, transitivity entails $\operatorname{dom} z \rightsquigarrow \operatorname{dom} x$, and these interference relationships hold statelessly. Therefore, z may be counted among
the variables whose initial values are allowed to affect x independently of whether some intermediate value of y may affect x within the actual execution flow.
Unfortunately, switching to stateful intransitive interference relations puts an end to that happy circumstance - indeed, even statefulness or intransitivity alone would suffice for this sad ending. In this context, deciding about the correctness of the resulting value of a variable x still demands the detection of the variables whose initial values are allowed to interfere with x, but the execution flow leading from the initial program state to the resulting one needs to be considered to perform such detection.
This is precisely the task of function sources, so named after its finite state machine counterpart defined in [9]. It takes as inputs an execution flow $c s$, an initial program state s, and a variable x , and outputs the set of the variables whose values in s are allowed to affect the value of x in the state s^{\prime} into which $c s$ turns s, according to $c s$ as well as to the information flow correctness policy expressed by parameters interf and dom.
In more detail, execution flows are modeled as lists comprising items of two possible kinds, namely an assignment of the value of an arithmetic expression a to a variable z or else an observation of the values of the variables in a set X, denoted through notations $z::=a$ (same as with assignment commands) and $\langle X\rangle$ and keeping track of explicit and implicit information flows, respectively. Particularly, item $\langle X\rangle$ refers to the act of observing the values of the variables in X leaving the program state unaltered. During the execution of an IMP program, this happens upon any evaluation of a boolean expression containing all and only the variables in X.
Function sources is defined along with an auxiliary function sources-aux by means of mutual recursion. Based on this definition, sources cs $s x$ contains a variable y if there exist a descending sequence of left sublists $c s_{n+1}, c s_{n}$ @ $\left[c_{n}\right], \ldots, c s_{1} @\left[c_{1}\right]$ of $c s$ and a sequence of variables y_{n+1}, \ldots, y_{1}, where $n \geq 1, c s_{n+1}=c s, y_{n+1}=x$, and $y_{1}=y$, satisfying the following conditions.

- For each positive integer $i \leq n, c_{i}$ is an assignment $y_{i+1}::=a_{i}$ where:
$-y_{i} \in$ avars a_{i},
- run-flow $c s_{i}$ s: dom $y_{i} \rightsquigarrow$ dom y_{i+1}, and
- the right sublist of $c s_{i+1}$ complementary to $c s_{i} @\left[c_{i}\right]$ does not comprise any assignment to variable y_{i+1} (as assignment c_{i} would otherwise be irrelevant),
or else an observation $\left\langle X_{i}\right\rangle$ where:
$-y_{i} \in X_{i}$ and
- run-flow $c s_{i} s:$ dom $y_{i} \rightsquigarrow$ dom y_{i+1}.
- $c s_{1}$ does not comprise any assignment to variable y.

In addition, sources cs $s x$ contains variable x also if $c s$ does not comprise any assignment to variable x.

```
function
    sources :: flow }=>\mathrm{ state }=>\mathrm{ vname }=>\mathrm{ vname set and
    sources-aux :: flow }=>\mathrm{ state }=>\mathrm{ vname }=>\mathrm{ vname set where
sources(cs@ @c])sx=(case c of
    z::=a=> if z=x
        then sources-aux cs s }x\cup\bigcup{\mathrm{ sources cs s y | y.
        run-flow cs s:dom y}\rightsquigarrowdom x ^ y\in avars a
    else sources cs s x 
    <X\rangle =>
    sources cs s }x\cup\bigcup{\mathrm{ sources cs s y | y.
        run-flow cs s:dom y}\rightsquigarrow\operatorname{dom}x\wedgey\inX})
sources [] - x = {x} |
sources-aux (cs @ [c]) s x = (case c of
    - ::= - =
        sources-aux cs s x |
    <X\rangle =>
        sources-aux cs s x U \{sources cs s y | y.
        run-flow cs s:dom y dom x}\wedgey\inX})
sources-aux [] -- = {}
proof (atomize-elim)
    fix }a::\mathrm{ flow }\times\mathrm{ state }\times\mathrm{ vname }+\mathrm{ flow }\times\mathrm{ state }\times\mathrm{ vname
    {
        assume
        \forallcs c s x. a\not= Inl (cs @ [c], s, x) and
        \forallsx.a\not= Inl ([],s,x) and
        \foralls x.a\not= Inr ([],s,x)
        hence \exists cs c s x.a=Inr (cs @ [c], s, x)
        by (metis obj-sumE prod-cases3 rev-exhaust)
    }
    thus
        (\existscs c s x.a=Inl (cs@ @c], s, x))\vee
        (\existssx.a=Inl ([],s,x))\vee
        (\existscs c s x.a=Inr (cs@ @c],s,x))\vee
        (\existssx.a=Inr ([],s,x))
        by blast
qed auto
```

termination by lexicographic-order

Predicate correct takes as inputs a program c, a set of program states A, and a set of variables X. Its truth value equals that of the following terminationsensitive information flow correctness condition: for any state s agreeing with a state in A on the values of the state variables in X, if the small-step program semantics turns configuration (c, s) into configuration $\left(c_{1}, s_{1}\right)$, and (c_{1}, s_{1}) into configuration (c_{2}, s_{2}), then for any state t_{1} agreeing with s_{1} on the values of the variables in sources $c s s_{1} x$, where $c s$ is the execution flow leading from $\left(c_{1}, s_{1}\right)$ to $\left(c_{2}, s_{2}\right)$, the small-step semantics turns $\left(c_{1}, t_{1}\right)$ into some configuration $\left(c_{2}{ }^{\prime}, t_{2}\right)$ such that:

- $c_{2}{ }^{\prime}=S K I P$ (namely, $\left(c_{2}^{\prime}, t_{2}\right)$ is a final configuration) just in case c_{2} $=$ SKIP, and
- the value of variable x in state t_{2} is the same as in state s_{2}.

Here below are some comments about this definition.

- As sources cs $s_{1} x$ is the set of the variables whose values in s_{1} are allowed to affect the value of x in s_{2}, this definition requires any state t_{1} indistinguishable from s_{1} in the values of those variables to produce a state where variable x has the same value as in s_{2} in the continuation of program execution.
- Configuration $\left(c_{2}^{\prime}, t_{2}\right)$ must be the same one for any variable \times such that s_{1} and t_{1} agree on the values of any variable in sources cs s_{1} x. Otherwise, even if states s_{2} and t_{2} agreed on the value of x , they could be distinguished all the same based on a discrepancy between the respective values of some other variable. Likewise, if state t_{2} alone had to be the same for any such x , while command c_{2} ' were allowed to vary, state t_{1} could be distinguished from s_{1} based on the continuation of program execution. This is the reason why the universal quantification over x is nested within the existential quantification over both $c_{2}{ }^{\prime}$ and t_{2}.
- The state machine for a program typically provides for a set of initial states from which its execution is intended to start. In any such case, information flow correctness need not be assessed for arbitrary initial states, but just for those complying with the settled tuples of initial values for state variables. The values of any other variables do not matter, as they do not affect function interf's ones. This is the motivation for parameter A, which then needs to contain just one state for each of such tuples, while parameter X enables to exclude the state variables, if any, whose initial values are not settled.
- If locale parameter state matches the empty set, s will be any state agreeing with some state in A on the value of possibly even no variable at all, that is, a fully arbitrary state provided that A is nonempty. This makes s range over all possible states, as required for establishing the degeneracy of the present definition to the stateless level-based counterpart addressed in [7], section 9.2.6.

Why express information flow correctness in terms of the small-step program semantics, instead of resorting to the big-step one as happens with the stateless level-based correctness condition in [7], section 9.2.6? The answer is provided by the following sample C programs, where i is a state variable.

```
y = i;
i = (i) ? 1 : 0;
x = i + y;
```

```
x = 0;
if (i == 10)
{
    x = 10;
}
i = (i) ? 1 : 0;
x += i;
```

Let i be allowed to interfere with x just in case i matches 0 or 1 , and y be never allowed to do so. If s_{1} were constrained to be the initial state, for both programs i would be included among the variables on which t_{1} needs to agree with s_{1} in order to be indistinguishable from s_{1} in the value of x resulting from the final assignment. Thus, both programs would fail to be labeled as wrong ones, although in both of them the information flow blatantly bypasses the sanitization of the initial value of i, respectively due to an illegal explicit flow and an illegal implicit flow. On the contrary, the present information flow correctness definition detects any such illegal information flow by checking every partial program execution on its own.

```
abbreviation ok-flow :: com \(\Rightarrow\) com \(\Rightarrow\) state \(\Rightarrow\) state \(\Rightarrow\) flow \(\Rightarrow\) bool where
ok-flow \(c_{1} c_{2} s_{1} s_{2} c s \equiv\)
    \(\forall t_{1} . \exists c_{2}{ }^{\prime} t_{2} . \forall x\).
    \(s_{1}=t_{1}\left(\subseteq\right.\) sources cs \(\left.s_{1} x\right) \longrightarrow\)
        \(\left(c_{1}, t_{1}\right) \rightarrow *\left(c_{2}^{\prime}, t_{2}\right) \wedge\left(c_{2}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right) \wedge s_{2} x=t_{2} x\)
```

definition correct $::$ com \Rightarrow state set \Rightarrow vname set \Rightarrow bool where
correct c $A X \equiv$

```
\foralls\inUniv A (\subseteq state \capX).}\forall\mp@subsup{c}{1}{}\mp@subsup{c}{2}{}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}cfs
    (c,s)->* (c, c, s1)\wedge (c, c, s1)->*{cfs} (c, c, s2)\longrightarrow
        ok-flow clllll
```

abbreviation interf-set :: state set \Rightarrow 'd set \Rightarrow 'd set \Rightarrow bool
((-: - $\rightsquigarrow-)[51,51,51] 50)$ where
$A: U \rightsquigarrow W \equiv \forall s \in A . \forall u \in U . \forall w \in W . s: u \rightsquigarrow w$
abbreviation ok-flow-aux ::
config set \Rightarrow com \Rightarrow com \Rightarrow state \Rightarrow state \Rightarrow flow \Rightarrow bool where
ok-flow-aux $U c_{1} c_{2} s_{1} s_{2} c s \equiv$
$\left(\forall t_{1} . \exists c_{2}{ }^{\prime} t_{2} . \forall x\right.$.
$\left(s_{1}=t_{1}\left(\subseteq\right.\right.$ sources-aux cs $\left.s_{1} x\right) \longrightarrow$
$\left.\left(c_{1}, t_{1}\right) \rightarrow *\left(c_{2}{ }^{\prime}, t_{2}\right) \wedge\left(c_{2}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge$
$\left(s_{1}=t_{1}\left(\subseteq\right.\right.$ sources cs $\left.\left.\left.s_{1} x\right) \longrightarrow s_{2} x=t_{2} x\right)\right) \wedge$
$(\forall x .(\exists p \in U$. case p of $(B, Y) \Rightarrow$
$\exists s \in B . \exists y \in Y . \neg$ s: dom $y \rightsquigarrow \operatorname{dom} x) \longrightarrow$ no-upd cs $x)$

The next step is defining a static type system guaranteeing that well-typed programs satisfy this information flow correctness criterion. Whenever defining a function, and the pursued type system is obviously no exception, the primary question that one has to answer is: which inputs and outputs should it provide for? The type system formalized in [6] simply makes a pass/fail decision on an input program, based on an input security level, and outputs the verdict as a boolean value. Is this still enough in the present case? The answer can be found by considering again the above C program that computes the greatest common divisor of two positive integers a, b using a state variable i, along with its associated stateful interference function. For the reader's convenience, the program is reported here below.

```
do
{
    i = 0;
    r = a % b;
    i = 1;
    a = b;
    i = 2;
    b = r;
    i = 3;
} while (b);
```

As s : dom $a \rightsquigarrow$ dom r only for a state s where $\mathrm{i}=0$, the type system cannot determine that the assignment $r=a \% b$ at line 4 is well-typed without knowing that $i=0$ whenever that step is executed. Consequently, upon
checking the assignment $\mathrm{i}=0$ at line 3 , the type system must output information indicating that $\mathrm{i}=0$ as a result of its execution. This information will then be input to the type system when it is recursively invoked to check line 4 , so as to enable the well-typedness of the next assignment to be ascertained.
Therefore, in addition to the program under scrutiny, the type system needs to take a set of program states as input, and as long as the program is well-typed, the output must include a set of states covering any change to the values of the state variables possibly triggered by the input program. In other words, the type system has to simulate the execution of the input program at compile time as regards the values of its state variables. In the following formalization, this results in making the type system take an input of type state set and output a value of the same type. Yet, since state variables alone are relevant, a real-world implementation of the type system would not need to work with full state values, but just with tuples of state variables' values.
Is the input/output of a set of program states sufficient to keep track of the possible values of the state variables at each execution step? Here below is a sample C program helping find an answer, which determines the minimum of two integers a, b and assigns it to variable a using a state variable i.

```
i = (a > b) ? 1 : 0;
if (i > 0)
{
    a = b;
}
```

Assuming that the initial value of i is 0 , the information flow correctness policy for this program will be such that:

- $s: \operatorname{dom} a \rightsquigarrow \operatorname{dom} i, s: \operatorname{dom} b \rightsquigarrow d o m i$ for any program state s where $i=0($ line 1$)$,
- s : dom $i \rightsquigarrow \operatorname{dom} a$ for any s where $\mathrm{i}=0$ or $\mathrm{i}=1$ (line 2 , more on this later),
- $s: \operatorname{dom} b \rightsquigarrow \operatorname{dom} a$ for any s where $\mathrm{i}=1$ (line 4$)$,
ruling out any other pair of distinct domains in any state.
So far, everything has gone smoothly. However, what happens if the program is changed as follows?

```
1 i = a - b;
```

```
if (i > 0)
{
    a = b;
}
```

Upon simulating the execution of the former program, the type system can determine the set $\{0,1\}$ of the possible values of variable i arising from the conditional assignment $\mathrm{i}=(\mathrm{a}>\mathrm{b}) ~ ? 1: 0$ at line 1 . On the contrary, in the case of the latter program, the possible values of i after the assignment $\mathrm{i}=\mathrm{a}-\mathrm{b}$ at line 1 must be marked as being indeterminate, since they depend on the initial values of variables a and b, which are unknown at compile time. Hence, the type system needs to provide for an additional input/output parameter of type vname set, whose input and output values shall collect the variables whose possible values before and after the execution of the input program are determinate.

The correctness of the simulation of program execution by the type system can be expressed as the following condition. Suppose that the type system outputs a state set A^{\prime} and a vname set X^{\prime} when it is input a program c, a state set A, and a vname set X. Then, for any state s agreeing with some state in A on the value of every state variable in X, if $(c, s) \Rightarrow s^{\prime}, s^{\prime}$ must agree with some state in A^{\prime} on the value of every state variable in X^{\prime}. This can be summarized by saying that the type system must overapproximate program semantics, since any algorithm simulating program execution cannot but be imprecise (see [7], incipit of chapter 13).
In turn, if the outputs for $c, A^{\prime}, X^{\prime}$ are $A^{\prime \prime}, X^{\prime \prime}$ and $\left(c, s^{\prime}\right) \Rightarrow s^{\prime \prime}, s^{\prime \prime}$ must agree with some state in $A^{\prime \prime}$ on the value of every state variable in $X^{\prime \prime}$. But if c is a loop and $(c, s) \Rightarrow s^{\prime}$, then $\left(c, s^{\prime}\right) \Rightarrow s^{\prime \prime}$ just in case $s^{\prime}=s^{\prime \prime}$, so that the type system is guaranteed to overapproximate the semantics of c only if states consistent with A^{\prime}, X^{\prime} are also consistent with $A^{\prime \prime}, X^{\prime \prime}$ and vice versa. Thus, the type system needs to be idempotent if c is a loop, that is, it must be such that $A^{\prime}=A^{\prime \prime}$ and $X^{\prime}=X^{\prime \prime}$ in this case. Since idempotence is not required for control structures other than loops, the main type system ctyping2 formalized in what follows will delegate the simulation of the execution of loop bodies to an auxiliary, idempotent type system ctyping1.
This type system keeps track of the program state updates possibly occurring in its input program using sets of lists of functions of type vname \Rightarrow val option option. Command SKIP is mapped to a singleton made of the empty list, as no state update takes place. An assignment to a variable x is mapped to a singleton made of a list comprising a single function, whose value is Some (Some i) or Some None for x if it is a state variable and the righthand side is a constant $N i$ or a non-constant expression, respectively, and None otherwise. That is, None stands for unchanged/non-state variable
(remember, only state variable updates need to be tracked), whereas Some None stands for indeterminate variable, since the value of a non-constant expression in a loop iteration (remember, ctyping1 is meant for simulating the execution of loop bodies) is in general unknown at compile time.
At first glance, a conditional statement could simply be mapped to the union of the sets tracking the program state updates possibly occurring in its branches. However, things are not so simple, as shown by the sample C loop here below, which has a conditional statement as its body.

```
for (i = 0; i < 2; i++)
{
    if (n % 2)
    {
        a = 1;
        b = 1;
        n++;
    }
    else
    {
        a = 2;
        c = 2;
        n++;
    }
}
```

If the initial value of the integer variable n is even, the final values of variables a, b, and c will be $1,1,2$, whereas if the initial value of n is odd, the final values of the aforesaid variables will be $2,1,2$. Assuming that their initial value is 0 , the potential final values tracked by considering each branch individually are $1,1,0$ and $2,0,2$ instead. These are exactly the values generated by a single loop iteration; if they are fed back into the loop body along with the increased value of n, the actual final values listed above are produced.
As a result, a mere union of the sets tracking the program state updates possibly occurring in each branch would not be enough for the type system to be idempotent. The solution is to rather construct every possible alternate concatenation without repetitions of the lists contained in each set, which is referred to as merging those sets in the following formalization. In fact, alternating the state updates performed by each branch in the previous example produces the actual final values listed above. Since the latest occurrence of a state update makes any previous occurrence irrelevant for the final state, repetitions need not be taken into account, which ensures the finiteness of the construction provided that the sets being merged are finite. In the special case where the boolean condition can be evaluated at
compile time, considering the picked branch alone is of course enough.
Another case trickier than what one could expect at first glance is that of sequential composition. This is shown by the sample C loop here below, whose body consists of the sequential composition of some assignments with a conditional statement.

```
for (i = 0; i < 2; i++)
{
    a = 1;
    b = 1;
    if (n % 2)
    {
        a = 2;
        c = 2;
        n++;
    }
    else
    {
        b = 3;
        d = 3;
        n++;
    }
}
```

If the initial value of the integer variable n is even, the final values of variables $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d will be $2,1,2$, 3 , whereas if the initial value of n is odd, the final values of the aforesaid variables will be $1,3,2,3$. Assuming that their initial value is 0 , the potential final values tracked by considering the sequences of the state updates triggered by the starting assignments with the updates, simulated as described above, possibly triggered by the conditional statement rather are:

- $2,1,2,0$,
- $1,3,0,3$,
- $2,3,2,3$.

The first two tuples of values match the ones generated by a single loop iteration, and produce the actual final values listed above if they are fed back into the loop body along with the increased value of n.
Hence, concatenating the lists tracking the state updates possibly triggered by the first command in the sequence (the starting assignment sequence in the previous example) with the lists tracking the updates possibly triggered by the second command in the sequence (the conditional statement in
the previous example) would not suffice for the type system to be idempotent. The solution is to rather append the latter lists to those constructed by merging the sets tracking the state updates possibly performed by each command in the sequence. Again, provided that such sets are finite, this construction is finite, too. In the special case where the latter set is a singleton, the aforesaid merging is unnecessary, as it would merely insert a preceding occurrence of the single appended list into the resulting concatenated lists, and such repetitions are irrelevant as observed above.
Surprisingly enough, the case of loops is actually simpler than possible firstglance expectations. A loop defines two branches, namely its body and an implicit alternative branch doing nothing. Thus, it can simply be mapped to the union of the set tracking the state updates possibly occurring in its body with a singleton made of the empty list. As happens with conditional statements, in the special case where the boolean condition can be evaluated at compile time, considering the selected branch alone is obviously enough. Type system ctyping1 uses the set of lists resulting from this recursion over the input command to construct a set F of functions of type vname \Rightarrow val option option, as follows: for each list $y s$ in the former set, F contains the function mapping any variable x to the rightmost occurrence, if any, of pattern Some v to which x is mapped by any function in $y s$ (that is, to the latest update, if any, of x tracked in $y s$), or else to None. Then, if A, X are the input state set and vname set, and B, Y the output ones:

- B is the set of the program states constructed by picking a function f and a state s from F and A, respectively, and mapping any variable x to i if $f x=$ Some (Some i), or else to $s x$ if $f x=$ None (namely, to its value in the initial state s if f marks it as being unchanged).
- Y is UNIV if $A=\{ \}$ (more on this later), or else the set of the variables not mapped to Some None (that is, not marked as being indeterminate) by any function in F, and contained in X (namely, being initially determinate) if mapped to None (that is, if marked as being unchanged) by some function in F.

When can ctyping1 evaluate the boolean condition of a conditional statement or a loop, so as to possibly detect and discard some "dead" branch? This question can be answered by examining the following sample C loop, where n is a state variable, while integer j is unknown at compile time.

```
for (i = 0; i != j; i++)
{
    if (n == 1)
    {
        n = 2;
```

```
    }
    else if ( }\textrm{n}===0
    {
        n = 1;
    }
}
```

Assuming that the initial value of n is 0 , its final value will be 0,1 , or 2 according to whether j matches 0,1 , or any other positive integer, respectively, whereas the loop will not even terminate if j is negative. Consequently, the type system cannot avoid tracking the state updates possibly triggered in every branch, on pain of failing to be idempotent. As a result, evaluating the boolean conditions in the conditional statement at compile time so as to discard some branch is not possible, even though they only depend on an initially determinate state variable. The conclusion is that ctyping1 may generally evaluate boolean conditions just in case they contain constants alone, namely only if they are trivial enough to be possibly eliminated by program optimization. This is exactly what ctyping1 does by passing any boolean condition found in the input program to the type system btyping1 for boolean expressions, defined here below as well.

```
primrec btyping1 :: bexp \(\Rightarrow\) bool option \(((\vdash-)[51] 55)\) where
\(\vdash B c v=\) Some \(v \mid\)
\(\vdash\) Not \(b=(\) case \(\vdash b\) of
    Some \(v \Rightarrow\) Some \((\neg v) \mid-\Rightarrow\) None \() \mid\)
\(\vdash\) And \(b_{1} b_{2}=\left(\right.\) case \(\left(\vdash b_{1}, \vdash b_{2}\right)\) of
    (Some \(v_{1}\), Some \(\left.v_{2}\right) \Rightarrow\) Some \(\left(v_{1} \wedge v_{2}\right) \mid-\Rightarrow\) None \() \mid\)
\(\vdash\) Less \(a_{1} a_{2}=\left(\right.\) if avars \(a_{1} \cup\) avars \(a_{2}=\{ \}\)
    then Some (aval \(a_{1}(\lambda x .0)<\) aval \(\left.a_{2}(\lambda x .0)\right)\) else None)
```

type-synonym state-upd $=$ vname \Rightarrow val option option
inductive-set ctyping1-merge-aux :: state-upd list set \Rightarrow
state-upd list set \Rightarrow (state-upd list \times bool) list set
(infix $\bigsqcup 55$) for A and B where

```
\(x s \in A \Longrightarrow[(x s\), True \()] \in A \bigsqcup B \mid\)
\(y s \in B \Longrightarrow[(y s\), False \()] \in A \bigsqcup B \mid\)
\(\llbracket w s \in A \bigsqcup B ; \neg\) snd (last ws); xs \(\in A ;(x s\), True \() \notin\) set ws \(\rrbracket \Longrightarrow\)
```

```
ws@[(xs,True)]\inA\bigsqcupB|
|s}\inA\bigsqcupB;\mathrm{ snd (last ws); ys }\inB;(ys, False) & set ws\rrbracket
    ws @ [(ys, False)]\inA\bigsqcupB
declare ctyping1-merge-aux.intros [intro]
definition ctyping1-append ::
    state-upd list set }=>\mathrm{ state-upd list set }=>\mathrm{ state-upd list set
    (infixl @ 55) where
A@ B\equiv{xs@ys|xs ys.xs \inA^ ys \inB}
definition ctyping1-merge ::
    state-upd list set }=>\mathrm{ state-upd list set }=>\mathrm{ state-upd list set
    (infixl \sqcup 55) where
A \sqcupB\equiv{concat (map fst ws)| ws. ws \inA\bigsqcupB}
definition ctyping1-merge-append ::
    state-upd list set }=>\mathrm{ state-upd list set }=>\mathrm{ state-upd list set
    (infixl ப@ 55) where
A \sqcup@ B\equiv(if card B = Suc 0 then A else A \sqcupB)@ B
```

primrec ctyping1-aux :: com \Rightarrow state-upd list set
$((\vdash-)$ [51] 60) where
$\vdash S K I P=\{[]\} \mid$
$\vdash y::=a=\{[\lambda x$. if $x=y \wedge y \in$ state
then if avars $a=\{ \}$ then Some (Some (aval a (λx. 0))) else Some None
else None]\} |
$\vdash c_{1} ; ; c_{2}=\vdash c_{1} \sqcup_{@} \vdash c_{2} \mid$
$\vdash I F b$ THEN c_{1} ELSE $c_{2}=($ let $f=\vdash b$ in
(if $f \in\{$ Some True, None $\}$ then $\vdash c_{1}$ else $\}) \sqcup$
(if $f \in\{$ Some False, None $\}$ then $\vdash c_{2}$ else $\})$) \mid
\vdash WHILE b DO $c=(\operatorname{let} f=\vdash b$ in
(if $f \in\{$ Some False, None $\}$ then $\{[]\}$ else $\}$) \cup
(if $f \in\{$ Some True, None $\}$ then $\vdash c$ else $\}$))
definition ctyping1-seq :: state-upd \Rightarrow state-upd \Rightarrow state-upd (infixl ;; 55) where
$S ; T \equiv \lambda x$. case $T x$ of None $\Rightarrow S x \mid$ Some $v \Rightarrow$ Some v
definition ctyping1 $::$ com \Rightarrow state set \Rightarrow vname set \Rightarrow config $\left(\left(\vdash-{ }^{\prime}\left(\subseteq--^{\prime}\right)\right)[51] 55\right)$ where
$\vdash c(\subseteq A, X) \equiv$ let $F=\{\lambda x$. foldl $(; ;)(\lambda x$. None $)$ ys $x \mid$ ys. ys $\in \vdash c\}$ in

```
\((\{\lambda x\). case \(f x\) of None \(\Rightarrow s x \mid\) Some None \(\Rightarrow t x \mid\) Some (Some \(i) \Rightarrow i \mid\)
    fst. \(f \in F \wedge s \in A\}\),
    Univ?? \(A\{x . \forall f \in F . f x \neq\) Some None \(\wedge(f x=\) None \(\longrightarrow x \in X)\})\)
```

A further building block propaedeutic to the definition of the main type system ctyping2 is the definition of its own companion type system btyping2 for boolean expressions. The goal of btyping2 is splitting, whenever feasible at compile time, an input state set into two complementary subsets, respectively comprising the program states making the input boolean expression true or false. This enables ctyping2 to apply its information flow correctness checks to conditional branches by considering only the program states in which those branches are executed.
As opposed to btyping1, btyping2 may evaluate its input boolean expression even if it contains variables, provided that all of their values are known at compile time, namely that all of them are determinate state variables - hence btyping2, like ctyping2, needs to take a vname set collecting determinate variables as an additional input. In fact, in the case of a loop body, the dirty work of covering any nested branch by skipping the evaluation of nonconstant boolean conditions is already done by ctyping1, so that any state set and vname set input to btyping2 already encompass every possible execution flow.

```
primrec btyping2-aux :: bexp \(\Rightarrow\) state set \(\Rightarrow\) vname set \(\Rightarrow\) state set option
    \(((\|=-'(\subseteq-,-))[51] 55)\) where
\(\|=B c v(\subseteq A,-)=\) Some (if \(v\) then \(A\) else \(\}) \mid\)
\(\|=\operatorname{Not} b(\subseteq A, X)=(\) case \(\|=b(\subseteq A, X)\) of
    Some \(B \Rightarrow\) Some \((A-B) \mid-\Rightarrow\) None \() \mid\)
\(\|=\) And \(b_{1} b_{2}(\subseteq A, X)=\left(\right.\) case \(\left(\left\|b_{1}(\subseteq A, X),\right\| \models b_{2}(\subseteq A, X)\right)\) of
    (Some \(B_{1}\), Some \(\left.B_{2}\right) \Rightarrow\) Some \(\left(B_{1} \cap B_{2}\right) \mid-\Rightarrow\) None \() \mid\)
\(\|=\) Less \(a_{1} a_{2}(\subseteq A, X)=\left(\right.\) if avars \(a_{1} \cup\) avars \(a_{2} \subseteq\) state \(\cap X\)
    then Some \(\left\{s . s \in A \wedge\right.\) aval \(a_{1} s<\) aval \(\left.a_{2} s\right\}\) else None)
definition btyping2 :: bexp \(\Rightarrow\) state set \(\Rightarrow\) vname set \(\Rightarrow\)
    state set \(\times\) state set
    ( \(\left(=-{ }^{\prime}(\subseteq-,-)\right)\) [51] 55) where
\(\vDash b(\subseteq A, X) \equiv\) case \(\|=b(\subseteq A, X)\) of
    Some \(A^{\prime} \Rightarrow\left(A^{\prime}, A-A^{\prime}\right) \mid-\Rightarrow(A, A)\)
```

It is eventually time to define the main type system ctyping2. Its output consists of the state set of the final program states and the vname set of the finally determinate variables produced by simulating the execution of
the input program, based on the state set of initial program states and the vname set of initially determinate variables taken as inputs, if information flow correctness checks are passed; otherwise, the output is None.
An additional input is the counterpart of the level input to the security type systems formalized in [6], in that it specifies the scope in which information flow correctness is validated. It consists of a set of state set \times vname set pairs and a boolean flag. The set keeps track of the variables contained in the boolean conditions, if any, nesting the input program, in association with the program states in which they are evaluated. The flag is False if the input program is nested in a loop, in which case state variables set to non-constant expressions are marked as being indeterminate (as observed previously, the value of a non-constant expression in a loop iteration is in general unknown at compile time).
In the recursive definition of ctyping2, the equations dealing with conditional branches, namely those applying to conditional statements and loops, construct the output state set and vname set respectively as the union and the intersection of the sets computed for each branch. In fact, a possible final state is any one resulting from either branch, and a variable is finally determinate just in case it is such regardless of the branch being picked. Yet, a "dead" branch should have no impact on the determinateness of variables, as it only depends on the other branch. Accordingly, provided that information flow correctness checks are passed, the cases where the output is constructed non-recursively, namely those of SKIP, assignments, and loops, return $U N I V$ as vname set if the input state set is empty. In the case of a loop, the state set and the vname set resulting from one or more iterations of its body are computed using the auxiliary type system ctyping1. This explains why ctyping1 returns UNIV as vname set if the input state set is empty, as mentioned previously.
As happens with the syntax-directed security type system formalized in [6], the cases performing non-recursive information flow correctness checks are those of assignments and loops. In the former case, ctyping2 verifies that the sets of variables contained in the scope, as well as any variable occurring in the expression on the right-hand side of the assignment, are allowed to interfere with the variable on the left-hand side, respectively in their associated sets of states and in the input state set. In the latter case, ctyping2 verifies that the sets of variables contained in the scope, as well as any variable occurring in the boolean condition of the loop, are allowed to interfere with every variable, respectively in their associated sets of states and in the states in which the boolean condition is evaluated. In both cases, if the applying interference relation is unknown as some state variable is indeterminate, each of those checks must be passed for any possible state (unless the respective set of states is empty).
Why do the checks performed for loops test interference with every variable?

The answer is provided by the following sample C program, which sets variables a and b to the terms in the zero-based positions j and $j+1$ of the Fibonacci sequence.

```
a = 0;
b}=1
for (i = 0; i ! = j; i++)
{
    c = b;
    b += a;
    a = c;
}
```

The loop in this program terminates for any nonnegative value of j. For any variable x, suppose that j is not allowed to interfere with x in such an initial state, say s. According to the above information flow correctness definition, any initial state t differing from s in the value of j must make execution terminate all the same in order for the program to be correct. However, this is not the case, since execution does not terminate for any negative value of j. Thus, the type system needs to verify that j may interfere with x, on pain of returning a wrong pass verdict.
The cases that change the scope upon recursively calling the type system are those of conditional statements and loops. In the latter case, the boolean flag is set to False, and the set of state set \times vname set pairs is empty as the whole scope nesting the loop body, including any variable occurring in the boolean condition of the loop, must be allowed to interfere with every variable. In the former case, for both branches, the boolean flag is left unchanged, whereas the set of pairs is extended with the pair composed of the input state set (or of UNIV if some state variable is indeterminate, unless the input state set is empty) and of the set of the variables, if any, occurring in the boolean condition of the statement.
Why is the scope extended with the whole input state set for both branches, rather than just with the set of states in which each single branch is selected? Once more, the question can be answered by considering a sample C program, namely a previous one determining the minimum of two integers a and b using a state variable i. For the reader's convenience, the program is reported here below.

```
i = (a > b) ? 1 : 0;
if (i > 0)
{
    a = b;
}
```

Since the branch changing the value of variable a is executed just in case i $=1$, suppose that in addition to b , i also is not allowed to interfere with a for $\mathrm{i}=0$, and let s be any initial state where $\mathrm{a} \leq \mathrm{b}$. Based on the above information flow correctness definition, any initial state t differing from s in the value of b (not bound by the interference of i with a) must produce the same final value of a in order for the program to be correct. However, this is not the case, as the final value of a will change for any state t where a > b. Therefore, the type system needs to verify that i may interfere with a for $\mathrm{i}=0$, too, on pain of returning a wrong pass verdict. This is the reason why, as mentioned previously, an information flow correctness policy for this program should be such that s : dom $i \rightsquigarrow d o m a$ even for any state s where $\mathrm{i}=0$.
An even simpler example explains why, in the case of an assignment or a loop, the information flow correctness checks described above need to be applied to the set of state set \times vname set pairs in the scope even if the input state set is empty, namely even if the assignment or the loop are nested in a "dead" branch. Here below is a sample C program showing this.

```
if (i)
{
    a = 1;
}
```

Assuming that the initial value of i is 0 , the assignment nested within the conditional statement is not executed, so that the final value of a matches the initial one, say 0 . Suppose that i is not allowed to interfere with a in such an initial state, say s. According to the above information flow correctness definition, any initial state t differing from s in the value of i must produce the same final value of a in order for the program to be correct. However, this is not the case, as the final value of a is 1 for any nonzero value of i. Therefore, the type system needs to verify that i may interfere with a in state s even though the conditional branch is not executed in that state, on pain of returning a wrong pass verdict.

```
abbreviation atyping :: bool }=>\mathrm{ aexp }=>\mathrm{ vname set }=>\mathrm{ bool
    ((- \models-'(\subseteq-'))[51, 51] 50) where
v\modelsa(\subseteqX)\equiv avars a={}\vee avars a\subseteq state \cap X\wedgev
definition univ-states-if :: state set }=>\mathrm{ vname set }=>\mathrm{ state set
    ((Univ? - -) [51, 75] 75) where
Univ? A X \equiv if state }\subseteqX\mathrm{ then A else Univ A ( }\subseteq{}
```

```
fun ctyping2 :: scope }=>\mathrm{ com }=>\mathrm{ state set }=>\mathrm{ vname set }=>\mathrm{ config option
    ((- \models-'(\subseteq-, -')) [51, 51] 55) where
- }=\operatorname{SKIP}(\subseteqA,X)=Some (A,Univ?? A X)
(U,v) =x ::=a(\subseteqA,X)=
(if }(\forall(B,Y)\in\mathrm{ insert (Univ? A X, avars a) U. B:dom` Y}{\mp@code{dom x})
    then Some (if x 新ate ^A\not={}
        then if v}\modelsa(\subseteqX
            then ({s(x:= aval a s)| s. s\inA}, insert x X) else (A,X - {x})
        else (A,Univ?? A X))
    else None)
(U,v) = c. ; ; c c (\subseteqA,X)=
(case (U,v)\models c. (\subseteqA,X) of
    Some (B,Y) => (U,v)\models c. (\subseteqB,Y)| - = None) |
(U,v)\modelsIF b THEN c
    (case (insert (Univ? A X, bvars b) U, \modelsb (\subseteqA,X)) of (U', B},\mp@subsup{B}{1}{\prime},\mp@subsup{B}{2}{})
        case ((U',
            (Some (C C , Y ) , Some (C2, Y
            - = None)|
(U,v) =WHILE b DO c (\subseteqA,X)=(case \modelsb (\subseteqA,X) of (B
    case\vdashc}\vdash(\subseteq\mp@subsup{B}{1}{},X)\mathrm{ of (C,Y) # case }\vDashb(\subseteqC,Y) of ( (B1', B ' ') =>
        if }\forall(B,W)\in\mathrm{ insert (Univ? A X U Univ? C Y, bvars b) U.
            B:dom'W }\rightsquigarrow\mathrm{ ' UNIV
        then case (({}, False) \modelsc(\subseteq\mp@subsup{B}{1}{},X),({}, False) \modelsc(\subseteq\mp@subsup{B}{1}{\prime},Y)) of
            (Some -, Some -) =>Some ( }\mp@subsup{B}{2}{}\cup\mp@subsup{B}{2}{\prime}\mp@subsup{}{}{\prime},\mathrm{ Univ?? B }\mp@subsup{\mp@code{N}}{2}{}X\capY)
            - }=>\mathrm{ None
        else None)
end
end
```


2 Idempotence of the auxiliary type system meant for loop bodies

theory Idempotence
imports Definitions
begin

The purpose of this section is to prove that the auxiliary type system ctyping1 used to simulate the execution of loop bodies is idempotent, namely that if its output for a given input is the pair composed of state set B and
vname set Y, then the same output is returned if B and Y are fed back into the type system (lemma ctyping1-idem).

2.1 Global context proofs

lemma remdups-filter-last:
last $[x \leftarrow$ remdups xs. $P x]=$ last $[x \leftarrow x s . P x]$
by (induction xs, auto simp: filter-empty-conv)
lemma remdups-append:
set $x s \subseteq$ set $y s \Longrightarrow$ remdups $(x s @ y s)=$ remdups ys
by (induction xs, simp-all)
lemma remdups-concat-1:
remdups $($ concat $($ remdups [])) $=$ remdups $($ concat [])
by simp
lemma remdups-concat-2:
remdups $($ concat $($ remdups xs $))=$ remdups $($ concat $x s) \Longrightarrow$
remdups $($ concat $(\operatorname{remdups}(x \# x s)))=$ remdups $(\operatorname{concat}(x \# x s))$
by (simp, subst (2 3) remdups-append2 [symmetric], clarsimp,
subst remdups-append, auto)
lemma remdups-concat:
remdups $($ concat $($ remdups $x s))=$ remdups $($ concat $x s)$
by (induction xs, rule remdups-concat-1, rule remdups-concat-2)

2.2 Local context proofs

context noninterf

begin
lemma ctyping1-seq-last:
foldl $(; ;) S x s=\left(\lambda x\right.$. let $x s^{\prime}=[T \leftarrow x s . T x \neq$ None $]$ in if $x s^{\prime}=[]$ then $S x$ else last $\left.x s^{\prime} x\right)$
by (rule ext, induction xs rule: rev-induct, auto simp: ctyping1-seq-def)
lemma ctyping1-seq-remdups:
foldl (;;) S (remdups xs) $=$ foldl (;;) S xs
by (simp add: Let-def ctyping1-seq-last, subst remdups-filter-last, simp add: remdups-filter [symmetric])
lemma ctyping1-seq-remdups-concat:
foldl $(; ;) S($ concat $($ remdups xs $))=$ foldl $(; ;) S($ concat $x s)$
by (subst (1 2) ctyping1-seq-remdups [symmetric], simp add: remdups-concat)
lemma ctyping1-seq-eq:
assumes $A:$ foldl $(; ;)(\lambda x$. None $) x s=$ foldl $(; ;)(\lambda x$. None $)$ ys

```
    shows foldl (;;)S xs = foldl (;;)S ys
proof -
    have }\forallx.([T\leftarrowxs.Tx\not=None]=[]\longleftrightarrow[T\leftarrowys.Tx\not=None]=[])
        last [T\leftarrowxs.T }x\not=\mathrm{ None ] }x=\mathrm{ last [T}\leftarrowys. T x = None] x
        (is }\forallx.(?x\mp@subsup{s}{}{\prime}x=[]\longleftrightarrow?y\mp@subsup{s}{}{\prime}x=[])\wedge-
    proof
        fix }
        from A have (if ?xs' }x=[] then None else last (?xs' x) x)
                (if ?ys' }x=[] then None else last (?ys' x) x)
            by (drule-tac fun-cong [where x=x], auto simp: ctyping1-seq-last)
    moreover have ?xs' }x\not=[]\Longrightarrow\mathrm{ last (?xs' x) x = None
            by (drule last-in-set, simp)
    moreover have ?ys' }x\not=[]\Longrightarrow\mathrm{ last (?ys' x) }x\not=\mathrm{ None
        by (drule last-in-set, simp)
    ultimately show (?xs' }x=[]\longleftrightarrow\mathrm{ ?ys' }x=[])
            last (?xs' x) x = last (?ys' x) x
            by (auto split: if-split-asm)
    qed
    thus ?thesis
    by (auto simp: ctyping1-seq-last)
qed
```

lemma ctyping1-merge-aux-butlast:
$\llbracket w s \in A \bigsqcup B ;$ butlast $w s \neq[] \rrbracket \Longrightarrow$
snd $($ last $($ butlast ws $))=(\neg$ snd (last ws $))$
by (erule ctyping1-merge-aux.cases, simp-all)
lemma ctyping1-merge-aux-distinct:
ws $\in A \bigsqcup B \Longrightarrow$ distinct ws
by (induction rule: ctyping1-merge-aux.induct, simp-all)
lemma ctyping1-merge-aux-nonempty:
$w s \in A \bigsqcup B \Longrightarrow w s \neq[]$
by (induction rule: ctyping1-merge-aux.induct, simp-all)
lemma ctyping1-merge-aux-item:
$\llbracket w s \in A \bigsqcup B ; w \in \operatorname{set} w s \rrbracket \Longrightarrow$ fst $w \in($ if snd w then A else $B)$
by (induction rule: ctyping1-merge-aux.induct, auto)
lemma ctyping1-merge-aux-take-1 [elim]:
$\llbracket t a k e n w s \in A \bigsqcup B ; \neg$ snd (last ws); xs $\in A ;(x s$, True $) \notin$ set ws】 \Longrightarrow take nws @ take (n - length ws) $[(x s$, True $)] \in A \bigsqcup B$
by (cases $n \leq$ length ws, auto)
lemma ctyping1-merge-aux-take-2 [elim]:
$\llbracket t a k e n$ ws $\in A \bigsqcup B ;$ snd (last ws); ys $\in B ;(y s$, False) \notin set ws】 \Longrightarrow take n ws @ take (n - length ws) $[(y s$, False $)] \in A \bigsqcup B$
by (cases $n \leq$ length ws, auto)

```
lemma ctyping1-merge-aux-take:
    \(\llbracket w s \in A \bigsqcup B ; 0<n \rrbracket \Longrightarrow\) take \(n\) ws \(\in A \bigsqcup B\)
by (induction rule: ctyping1-merge-aux.induct, auto)
lemma ctyping1-merge-aux-drop-1 [elim]:
    assumes
        \(A: x s \in A\) and
        \(B: y s \in B\)
    shows drop \(n[(x s\), True \()]\) @ \([(y s\), False \()] \in A \bigsqcup B\)
proof -
    from \(A\) have \([(x s\), True \()] \in A \bigsqcup B\)..
    with \(B\) have \([(x s\), True \()] @[(y s\), False \()] \in A \bigsqcup B\)
        by fastforce
    with \(B\) show ?thesis
        by (cases \(n\), auto)
qed
lemma ctyping1-merge-aux-drop-2 [elim]:
    assumes
        \(A: x s \in A\) and
        \(B: y s \in B\)
    shows drop \(n[(y s\), False \()]\) @ \([(x s\), True \()] \in A \bigsqcup B\)
proof -
    from \(B\) have \([(y s\), False \()] \in A \bigsqcup B .\).
    with \(A\) have \([(y s\), False \()] @[(x s\), True \()] \in A \bigsqcup B\)
        by fastforce
    with \(A\) show ?thesis
        by (cases \(n\), auto)
qed
lemma ctyping1-merge-aux-drop-3:
    assumes
        \(A: \bigwedge x s v .(x s\), True \() \notin \operatorname{set}(d r o p n w s) \Longrightarrow\)
            \(x s \in A \Longrightarrow v \Longrightarrow\) drop \(n\) ws @ \([(x s\), True \()] \in A \bigsqcup B\) and
            \(B: x s \in A\) and
            \(C: y s \in B\) and
            \(D:(x s, T r u e) \notin\) set ws and
            \(E:(y s\), False \() \notin\) set (drop \(n\) ws \()\)
    shows drop nws @ drop \((n-l e n g t h ~ w s)[(x s, T r u e)] @\)
        \([(y s\), False \()] \in A \bigsqcup B\)
proof -
    have set (drop \(n\) ws \() \subseteq\) set ws
        by (rule set-drop-subset)
    hence drop nws @ \([(x s\), True \()] \in A \bigsqcup B\)
        using \(A\) and \(B\) and \(D\) by blast
    hence (drop n ws @ [(xs, True)]) @ [(ys, False)] \(A \bigsqcup B\)
        using \(C\) and \(E\) by fastforce
```

```
    thus ?thesis
    using}C\mathrm{ by (cases n < length ws, auto)
qed
lemma ctyping1-merge-aux-drop-4:
    assumes
    A: \ys v. (ys, False) }\not\mathrm{ set (drop n ws) }
        ys }\inB\Longrightarrow\negv\Longrightarrow\mathrm{ drop n ws @ [(ys, False)] }\inA\bigsqcupB\mathrm{ and
    B:ys\inB and
    C:xs}\inA\mathrm{ and
    D: (ys, False) & set ws and
    E: (xs,True) & set (drop n ws)
    shows drop n ws @ drop (n - length ws) [(ys, False)] @
    [(xs,True)]\inA\bigsqcupB
proof -
    have set (drop n ws)\subseteq set ws
        by (rule set-drop-subset)
    hence drop n ws @ [(ys, False)]\inA\bigsqcupB
        using }A\mathrm{ and }B\mathrm{ and }D\mathrm{ by blast
    hence (drop n ws @ [(ys, False)]) @ [(xs,True)]\inA\bigsqcupB
        using C and E by fastforce
    thus ?thesis
        using C by (cases n \leq length ws, auto)
qed
lemma ctyping1-merge-aux-drop:
    \llbrackets}\inA\bigsqcupB;w\not\in\operatorname{set (drop n ws);
    fst w\in(if snd w then A else B); snd w = (\neg snd (last ws))\rrbracket\Longrightarrow
    drop n ws @ [w]\inA\bigsqcupB
proof (induction arbitrary: w rule: ctyping1-merge-aux.induct)
    fix xs ws w
    show
    |w}\inA\bigsqcupB
    \w.w\not\in set (drop n ws)\Longrightarrow
            fst w}\in(\mathrm{ if snd w then A else B) }
            snd w}=(\neg\mathrm{ snd (last ws)) }
            drop n ws @ [w] \inA\bigsqcupB;
            \neg snd (last ws);
    xs \inA;
    (xs,True) & set ws;
    w\not\in set (drop n (ws @ [(xs,True)]));
    fst w\in(if snd w then A else B);
    snd w=(\neg snd (last (ws @ [(xs,True)])))]\Longrightarrow
        drop n (ws @ [(xs,True)])@ [w]\inA\bigsqcupB
    by (cases w, auto intro: ctyping1-merge-aux-drop-3)
next
    fix ys ws w
    show
    \llbracketws\inA\bigsqcupB;
```

```
    \w.w\not\in set (drop n ws) \Longrightarrow
    fst w
    snd w}=(\neg\mathrm{ snd (last ws)) }
    dropnws @ [w]\inA\bigsqcupB;
    snd (last ws);
    ys}\inB
    (ys, False) }\not\in\mathrm{ set ws;
    w\not\in\operatorname{set (drop n (ws @ [(ys, False)]));}
    fst w\in(if snd w then A else B);
    snd w = (\neg snd (last (ws @ [(ys, False)])))] \Longrightarrow
    drop n (ws@ [(ys,False)]) @ [w]\inA\bigsqcupB
    by (cases w, auto intro: ctyping1-merge-aux-drop-4)
qed auto
lemma ctyping1-merge-aux-closed-1:
    assumes
    A: \forallvs.length vs \leq length us }
        (\forallls rs.vs=ls@rs\longrightarrowls\inA\bigsqcupB\longrightarrowrs\inA\bigsqcupB\longrightarrow
            (\existsws\inA\bigsqcup B. foldl (;;) (\lambdax. None) (concat (map fst ws))}
            foldl (;;) (\lambdax. None) (concat (map fst (ls @ rs))) ^
        length ws \leqlength (ls @ rs) ^ snd (last ws) = snd (last rs)))
            (is }\forall-.\longrightarrow(\forallls rs.-\longrightarrow-\longrightarrow-\longrightarrow(\exists\mathrm{ ws 旺. ?P ws ls rs))) and
    B:us\inA\bigsqcupB and
    C: fst v}\in(\mathrm{ if snd v then A else B) and
    D: snd v = (\neg snd (last us))
shows \existsws \inA\bigsqcupB. foldl (;;) (\lambdax. None) (concat (map fst ws))=
    foldl (;;)(\lambdax. None) (concat (map fst (us @ [v]))) ^
    length ws \leqSuc (length us) ^ snd (last ws) = snd v
proof (cases v set us, cases hd us=v)
    assume E: hd us=v
    moreover have distinct us
    using B by (rule ctyping1-merge-aux-distinct)
    ultimately have v}\not=\mathrm{ set (drop (Suc 0) us)
    by (cases us, simp-all)
    with B have drop (Suc 0) us @ [v]\inA\bigsqcupB
    (is ?ws \in-)
    using C and D by (rule ctyping1-merge-aux-drop)
    moreover have foldl (;;) (\lambdax. None) (concat (map fst ?ws)) =
    foldl (;;) (\lambdax. None) (concat (map fst (us @ [v])))
    using E by (cases us, simp, subst (1 2) ctyping1-seq-remdups-concat
        [symmetric], simp)
    ultimately show ?thesis
        by fastforce
next
    assume v\in set us
    then obtain ls and rs where E:us=ls@v#rs\wedgev\not\inset rs
    by (blast dest: split-list-last)
moreover assume hd us \not=v
```

```
    ultimately have ls \not= []
    by (cases ls, simp-all)
    hence take (length ls) us\inA \bigsqcup B
    by (simp add:ctyping1-merge-aux-take B)
    moreover have v}\not=\mathrm{ set (drop (Suc (length ls))us)
    using E by simp
    with B have drop (Suc (length ls)) us @ [v]\inA 
    using C and D by (rule ctyping1-merge-aux-drop)
    ultimately have }\exists\mathrm{ ws }\inA\bigsqcupB\mathrm{ . ?P ws ls (rs @ [v])
    using A and E by (drule-tac spec [of-ls@ rs @ [v]],
        simp, drule-tac spec [of-ls], simp)
    moreover have foldl (;;) (\lambdax. None) (concat (map fst (ls @ rs @ [v])))=
    foldl (;;) (\lambdax. None) (concat (map fst (us @ [v])))
    using E by (subst (1 2) ctyping1-seq-remdups-concat [symmetric],
        simp, subst (1 2) remdups-append2 [symmetric], simp)
    ultimately show ?thesis
    using E by auto
next
    assume E:v\not\in set us
    show ?thesis
    proof (rule bexI [of - us @ [v]])
    show foldl (;;) (\lambdax. None) (concat (map fst (us @ [v]))) =
        foldl (;;) (\lambdax. None) (concat (map fst (us @ [v]))) ^
        length (us @ [v]) \leq Suc (length us) ^
        snd (last (us @ [v]))=snd v
        by simp
    next
    from B and C and D and E show us @ [v]\inA\bigsqcupB
        by (cases v, cases snd (last us), auto)
    qed
qed
lemma ctyping1-merge-aux-closed:
    assumes
    A: \forallxs\inA.}\forallys\inA.\existszs\inA
        foldl (;;) (\lambdax. None) zs = foldl (;;) ( }\lambdax.None) (xs @ ys) an
    B:\forallxs\inB.}\forallys\inB.\existszs\inB
        foldl (;;) (\lambdax.None) zs = foldl (;;) (\lambdax. None) (xs @ ys)
    shows \llbracketus }\inA\bigsqcupB;vs\inA\bigsqcupB\rrbracket
    \existsws\inA\bigsqcupB. foldl (;;) (\lambdax. None) (concat (map fst ws)) =
        foldl (;;) (\lambdax. None) (concat (map fst (us@ @s)))^
    length ws \leqlength (us @ vs) ^ snd (last ws) = snd (last vs)
    (is \llbracket-; -\rrbracket\Longrightarrow\exists यs \in -. ?P ws us vs)
proof (induction us @ vs arbitrary:us vs rule: length-induct)
    fix us vs
    let ?f = foldl (;;)( }\lambdax\mathrm{ . None)
    assume
        C:\forallts.length ts < length (us @ vs) }
            (\forallls rs.ts = ls@ rs \longrightarrow ls\inA\bigsqcupB\longrightarrowrs\inA\bigsqcupB\longrightarrow
```

```
        (\exists ws \inA \bigsqcup B. ?f (concat (map fst ws)) =
        ?f (concat (map fst (ls @ rs))) ^
        length ws \leqlength (ls @ rs) ^ snd (last ws)=snd (last rs)))
    (is }\forall-.-\longrightarrow(\foralllsrs.-\longrightarrow-\longrightarrow-\longrightarrow(\exists\mathrm{ ws }\in-.?Q ws ls rs))) and
D:us}\inA\bigsqcupB\mathrm{ and
    E:vs}\inA\bigsqcup
{
fix vs'v
assume F:vs=vs' @ [v]
have }\exists\mathrm{ ws }\inA\bigsqcupB\mathrm{ . ?f (concat (map fst ws)) =
    ?f (concat (map fst (us @ vs' @ [v]))) ^
    length ws \leq Suc (length us + length vs') ^ snd (last ws) = snd v
proof (cases vs',}\mathrm{ cases }(\neg\mathrm{ snd (last us)) = snd v)
    assume vs' = [] and ( }\neg\mathrm{ snd (last us)) = snd v
    thus ?thesis
        using ctyping1-merge-aux-closed-1 [OF - D] and
            ctyping1-merge-aux-item [OF E] and C and F
        by (auto simp: less-Suc-eq-le)
next
    have G:us \not= []
        using D by (rule ctyping1-merge-aux-nonempty)
    hence fst (last us) }\in\mathrm{ (if snd (last us) then A else B)
        using ctyping1-merge-aux-item and D by auto
    moreover assume H:(\neg snd (last us))}\not=\mathrm{ snd v
    ultimately have fst (last us) }\in(\mathrm{ if snd v then A else B)
        by simp
    moreover have fst v\in(if snd v then A else B)
        using ctyping1-merge-aux-item and E and F by auto
    ultimately have }\existszs\in\mathrm{ if snd v
        then A else B. ?f zs = ?f (concat (map fst [last us,v]))
        (is \existszs\in -. ?R zs)
        using }A\mathrm{ and }B\mathrm{ by auto
    then obtain zs where
            I:zs \in (if snd v then A else B) and J:?R zs ..
    let ?}w=(zs,snd v
    assume K:vs' = []
    {
        fix us'u
        assume Cons: butlast us = u # us'
        hence L: snd v=( ᄀ snd (last (butlast us)))
            using D and H by (drule-tac ctyping1-merge-aux-butlast, simp-all)
        let ?S = ?f (concat (map fst (butlast us)))
        have take (length (butlast us)) us \inA\bigsqcupB
        using Cons by (auto intro: ctyping1-merge-aux-take [OF D])
            hence M: butlast us }\inA\bigsqcup
                by (subst (asm) (2) append-butlast-last-id [OF G, symmetric], simp)
            have N:\forallts.length ts < length (butlast us @ [last us,v])\longrightarrow
                ( }\foralllsrs.ts=ls@rs\longrightarrowls\inA\bigsqcupB\longrightarrowrs\inA\bigsqcupB
                    (\existsws\inA\bigsqcup B.?Q ws ls rs))
```

using C and F and K by (subst (asm) append-butlast-last-id [OF G, symmetric], simp)
have \exists ws $\in A \bigsqcup B$. ?f $($ concat $($ map fst ws $))=$?f $($ concat $($ map fst $($ butlast us @ [?w]))) \wedge length ws \leq Suc $($ length $($ butlast us $)) \wedge$ snd $($ last ws $)=$ snd ? w
proof (rule ctyping1-merge-aux-closed-1)
show \forall ts. length $t s \leq$ length (butlast us) \longrightarrow
$(\forall l s r s . t s=l s @ r s \longrightarrow l s \in A \bigsqcup B \longrightarrow r s \in A \bigsqcup B \longrightarrow$ $(\exists$ ws $\in A \bigsqcup B$. ? Q ws $l s r s))$
using N by force
next
from M show butlast us $\in A \bigsqcup B$.
next
show f st $(z s$, snd $v) \in($ if snd $(z s$, snd $v)$ then A else $B)$
using I by simp
next
show snd $(z s$, snd $v)=(\neg$ snd (last (butlast us)))
using L by simp
qed
moreover have foldl (;;) ? S zs $=$
foldl (;;)?S (concat (map fst [last us, v]))
using J by (rule ctyping1-seq-eq)
ultimately have \exists ws $\in A \bigsqcup B$. ?f $(\operatorname{concat}($ map fst ws $))=$?f (concat (map fst ((butlast us @ [last us]) @ [v]))) ^
length ws \leq Suc (length us) \wedge snd (last ws) $=$ snd v
by auto
\}
with K and I and J show ?thesis
by (simp, subst append-butlast-last-id [OF G, symmetric], cases butlast us, (force split: if-split-asm)+)
next
case Cons
hence take (length vs') vs $\in A \bigsqcup B$
by (auto intro: ctyping1-merge-aux-take [OF E])
hence $v s^{\prime} \in A \bigsqcup B$
using F by simp
then obtain ws where $G:$ ws $\in A \bigsqcup B$ and $H:$? Q ws us vs ${ }^{\prime}$ using C and D and F by force
have $I: \forall$ ts. length $t s \leq$ length ws \longrightarrow
$(\forall l s r s . t s=l s @ r s \longrightarrow l s \in A \bigsqcup B \longrightarrow r s \in A \bigsqcup B \longrightarrow$ $(\exists$ ws $\in A \bigsqcup B$.? Q ws ls rs) $)$
proof (rule allI, rule impI)
fix $t s::($ state-upd list \times bool) list
assume J : length $t s \leq$ length ws
show $\forall l s$ rs. ts $=l s @ r s \longrightarrow l s \in A \bigsqcup B \longrightarrow r s \in A \bigsqcup B \longrightarrow$ $(\exists$ ws $\in A \sqcup B$. ? Q ws ls rs)
proof (rule spec [OF C, THEN mp])
show length ts < length (us @ vs) using F and H and J by simp

```
            qed
            qed
            hence J: snd (last (butlast vs)) = (\neg snd (last vs))
                by (metis E F Cons butlast-snoc ctyping1-merge-aux-butlast
                list.distinct(1))
    have }\existsw\mp@subsup{s}{}{\prime}\inA\bigsqcupB.?f(\mathrm{ concat (map fst ws'))}
                ?f (concat (map fst (ws @ [v]))) ^
                length ws'}\leq\mathrm{ Suc (length ws) ^ snd (last ws')= snd v
                    proof (rule ctyping1-merge-aux-closed-1 [OF I G])
                show fst v\in(if snd v then A else B)
                by (rule ctyping1-merge-aux-item [OF E], simp add: F)
    next
        show snd v=( ᄀ snd (last ws))
            using F and H and J by simp
        qed
        thus ?thesis
        using H by auto
    qed
}
note F= this
show \exists ws \inA\bigsqcupB.?P ws us vs
proof (rule rev-cases [of vs])
    assume vs=[]
    thus ?thesis
        by (simp add: ctyping1-merge-aux-nonempty [OF E])
    next
    fix vs'v
    assume vs=v\mp@subsup{s}{}{\prime}@[v]
    thus ?thesis
        using F by simp
    qed
qed
lemma ctyping1-merge-closed:
    assumes
    A:\forallxs\inA.\forallys\inA. \existszs\inA.
        foldl (;;) (\lambdax.None) zs = foldl (;;) (\lambdax. None) (xs @ ys) and
    B:\forallxs\inB..}\forallys\inB.\existszs\inB
        foldl (;;) (\lambdax. None) zs = foldl (;;) (\lambdax.None) (xs @ ys) and
    C:xs\inA\sqcupB and
    D:ys}\inA\sqcup
    shows \existszs \inA\sqcupB. foldl (;;) ( }\lambdax.\mathrm{ None) zs =
    foldl (;;)(\lambdax. None) (xs @ ys)
proof -
    let ?f = foldl (;;) ( }\lambdax\mathrm{ . None)
    obtain us where us\inA\bigsqcupB and
        E:xs = concat (map fst us)
        using C by (auto simp: ctyping1-merge-def)
```

```
    moreover obtain vs where vs }\inA\bigsqcupB\mathrm{ and
    F:ys = concat (map fst vs)
    using D by (auto simp: ctyping1-merge-def)
    ultimately have }\exists\mathrm{ ws }\inA\bigsqcupB\mathrm{ . ?f (concat (map fst ws))}
        ?f (concat (map fst (us @ vs))) ^
        length ws \leqlength (us @ vs) ^ snd (last ws) = snd (last vs)
    using }A\mathrm{ and B by (blast intro: ctyping1-merge-aux-closed)
    then obtain ws where ws \inA\bigsqcupB and
    ?f (concat (map fst ws)) = ?f (xs @ ys)
    using }E\mathrm{ and }F\mathrm{ by auto
    thus ?thesis
    by (auto simp: ctyping1-merge-def)
qed
lemma ctyping1-merge-append-closed:
    assumes
        A: \forallxs\inA.}\forallys\inA.\existszs\inA
        foldl (;;) (\lambdax. None) zs = foldl (;;) (\lambdax.None) (xs @ ys) and
        B:\forallxs\inB.}\forallys\inB.\existszs\inB
        foldl (;;) ( }\lambdax.None) zs = foldl (;;) (\lambdax. None) (xs @ ys) an
        C:xs}\inA\mp@subsup{\sqcup}{@ B and}{
    D:ys}\inA\mp@subsup{\sqcup}{@}{@
    shows \existszs \in A \sqcup@ B. foldl (;;) ( }\lambdax\mathrm{ . None) zs =
        foldl (;;) (\lambdax. None) (xs @ ys)
proof -
    let ?f = foldl (;;) ( }\lambdax.None
    {
        assume E: card B=Suc 0
        moreover from C and this obtain as bs where
            xs=as@bs^as\inA\wedgebs\inB
            by (auto simp: ctyping1-append-def ctyping1-merge-append-def)
        moreover from D and E obtain as' bs' where
    ys=a\mp@subsup{s}{}{\prime}@b\mp@subsup{s}{}{\prime}\wedgea\mp@subsup{s}{}{\prime}\inA\wedgeb\mp@subsup{s}{}{\prime}\inB
    by (auto simp: ctyping1-append-def ctyping1-merge-append-def)
    ultimately have F:xs@ ys=as@ bs @ as'@ bs ^
            {as,as'}\subseteqA\wedgebs\inB
            by (auto simp: card-1-singleton-iff)
    hence ?f (xs @ ys) = ?f (remdups(as @ remdups (bs @ as' @ bs)))
    by (simp add: ctyping1-seq-remdups)
    also have ... =?f (remdups(as @ remdups(as'@ bs)))
    by (simp add: remdups-append)
    finally have G:?f (xs@ ys)=?f (as@ as' @ bs)
    by (simp add: ctyping1-seq-remdups)
    obtain as" where H:as" }\inA\mathrm{ and I: ?f as" =?f (as@ as')
            using }A\mathrm{ and }F\mathrm{ by auto
        have }\existszs\inA@B.?f zs=?f(xs@ys
        proof (rule bexI [of - as'\prime@ @s])
            show foldl (;;) (\lambdax. None) (as" @ bs) =
            foldl (;;)(\lambdax. None) (xs @ ys)
```

```
        using G and I by simp
    next
    show as'\prime @ bs \inA @ B
        using F and H by (auto simp: ctyping1-append-def)
    qed
}
moreover {
    fix n
    assume E: card B}\not=\mathrm{ Suc 0
    moreover from C and this obtain ws bs where
    xs=ws @ bs ^ws\inA \sqcupB^bs\inB
    by (auto simp: ctyping1-append-def ctyping1-merge-append-def)
moreover from D and E obtain ws' bs' where
    ys=ws'@bs'^}^w\mp@subsup{s}{}{\prime}\inA\sqcupB\wedgeb\mp@subsup{s}{}{\prime}\in
    by (auto simp: ctyping1-append-def ctyping1-merge-append-def)
ultimately have F:xs @ ys=ws @ bs @ ws'@ bs'^
    {ws,ws'}}\subseteqA\sqcupB\wedge{bs,bs'}\subseteq
    by simp
hence [(bs, False)]\inA\bigsqcupB
    by blast
hence }G:bs\inA\sqcup
    by (force simp: ctyping1-merge-def)
have }\existsvs\inA\sqcupB.?f vs=?f(ws @ bs
    (is \existsvs\in -. ?P vs ws bs)
proof (rule ctyping1-merge-closed)
    show }\forallxs\inA.\forallys\inA.\existszs\inA.foldl (;;)(\lambdax. None)zs
        foldl (;;) (\lambdax. None) (xs @ ys)
        using A by simp
next
    show }\forallxs\inB.\forallys\inB.\existszs\inB. foldl (;;)(\lambdax.None)zs
        foldl (;;) ( }\lambdax\mathrm{ . None) (xs @ ys)
        using B by simp
next
    show ws \inA \sqcupB
        using F by simp
next
    from G show bs }\inA\sqcupB\mathrm{ .
qed
then obtain vs where H:vs\inA \sqcupB and I:?P vs ws bs ..
have }\existsv\mp@subsup{s}{}{\prime}\inA\sqcupB. ?P vs' vs ws
proof (rule ctyping1-merge-closed)
    show }\forallxs\inA.\forallys\inA.\existszs\inA. foldl (;;) (\lambdax.None) zs
        foldl (;;) (\lambdax.None) (xs @ ys)
        using A by simp
next
    show }\forallxs\inB.\forallys\inB.\existszs\inB. foldl (;;) (\lambdax. None) zs
        foldl (;;) ( }\lambdax\mathrm{ . None) (xs @ ys)
        using B by simp
next
```

```
            from H show vs \inA \sqcup B .
    next
            show ws'}\inA\sqcup
                using F by simp
    qed
    then obtain vs' where }J:v\mp@subsup{s}{}{\prime}\inA\sqcupB\mathrm{ and }K:?P vs vs ws'..
    have \existszs \inA\sqcupB@B.?f zs = ?f (xs @ ys)
    proof (rule bexI [of-vs' @ bs ])
        show foldl (;;) ( }\lambdax.None) (v\mp@subsup{s}{}{\prime}@bs')
            foldl (;;) (\lambdax. None) (xs @ ys)
            using}F\mathrm{ and }I\mathrm{ and K by simp
    next
        show vs'@ @s'}\inA\sqcupB@
            using}F\mathrm{ and J by (auto simp: ctyping1-append-def)
    qed
}
ultimately show ?thesis
    using A and B and C and D by (auto simp: ctyping1-merge-append-def)
qed
lemma ctyping1-aux-closed:
\llbracketxs\in\vdashc;ys\in\vdashc\rrbracket\Longrightarrow\exists\existszs\in\vdashc. foldl (;;)(\lambdax. None)zs=
    foldl (;;)(\lambdax. None) (xs @ ys)
by (induction c arbitrary: xs ys, auto
intro: ctyping1-merge-closed ctyping1-merge-append-closed
simp: Let-def ctyping1-seq-def simp del: foldl-append)
lemma ctyping1-idem-1:
    assumes
        A:s\inA and
        B:xs\in\vdashc
        C:ys\in\vdashc
    shows }\existsfr\mathrm{ .
    ( }\existst\mathrm{ .
            ( }\lambdax.\mathrm{ case foldl (;;) ( }\lambdax.None) ys x of
                        None }=>\mathrm{ case foldl (;;) ( }\lambdax\mathrm{ . None) xs x of
                        None }=>sx|\mathrm{ Some None }=>\mp@subsup{t}{}{\prime}x|\mathrm{ Some (Some i) = i |
            Some None => t t' x | Some (Some i) => i)=
            (\lambdax. case f x of
            None }=>rx|\mathrm{ Some None }=>tx|\mathrm{ Some (Some i) mi))^
        (\existszs.f= foldl (;;)(\lambdax. None) zs ^zs\in\vdashc)^
    r\inA
proof -
    let ?f = foldl (;;)( }\lambdax.None
    let ?t = \lambdax.case ?f ys x of
            None }=>\mathrm{ case ?f xs x of Some None }=>\mp@subsup{t}{}{\prime}x|-=>(0::val)
            Some None }=>\mp@subsup{t}{}{\prime\prime}x|-=>
    have }\existszs\in\vdashc. ?f zs=?f(xs @ ys
```

```
    using B and C by (rule ctyping1-aux-closed)
then obtain zs where zs\in\vdashc and ?f zs=?f (xs @ ys)..
with A show ?thesis
    by (rule-tac exI [of - ?f zs], rule-tac exI [of - s],
    rule-tac conjI, rule-tac exI [of - ?t], fastforce dest: last-in-set
    simp: Let-def ctyping1-seq-last split: option.split, blast)
qed
lemma ctyping1-idem-2:
    assumes
        A:s\inA and
    B:xs\in\vdashc
shows }\existsfr\mathrm{ .
    ( }\existst\mathrm{ .
                (\lambdax. case foldl (;;) ( }\lambdax\mathrm{ . None) xs x of
                        None }=>sx|\mathrm{ Some None }=>\mp@subsup{t}{}{\prime}x|\mathrm{ Some (Some i) }=>i)
                (\lambdax. case f x of
            None }=>rx|\mathrm{ Some None }=>tx|\mathrm{ Some (Some i) mi))^
        (\existsxs.f= foldl (;;)(\lambdax. None) xs ^ xs \in\vdashc)^
    (\existsfs.
        ( 
            None = s x | Some None =>t t | Some (Some i) = i)) ^
        (\existsxs.f = foldl (;;)(\lambdax. None) xs ^ xs \in\vdash c)^
        s\inA)
proof -
    let ?f = foldl (;;)(\lambdax. None)
    let ?g=\lambdafstx.case f x of
        None }=>sx|\mathrm{ Some None }=>tx|\mathrm{ Some (Some i) mi
    show ?thesis
        by (rule exI [of - ?f xs], rule exI [of - ?g (?f xs) st'],
            (fastforce simp: A B split:option.split)+)
qed
lemma ctyping1-idem:
\vdash c ( \subseteq A , X ) = ( B , Y ) \Longrightarrow \vdash c ( \subseteq B , Y ) = ( B , Y )
by (cases }A={}\mathrm{ , auto simp: ctyping1-def
intro: ctyping1-idem-1 ctyping1-idem-2)
end
end
```


3 Overapproximation of program semantics by the type system

theory Overapproximation
imports Idempotence
begin

The purpose of this section is to prove that type system ctyping2 overapproximates program semantics, namely that if (a) $(c, s) \Rightarrow t$, (b) the type system outputs a state set B and a vname set Y when it is input program c, state set A, and vname set X, and (c) state s agrees with a state in A on the value of every state variable in X, then t must agree with some state in B on the value of every state variable in Y (lemma ctyping2-approx).
This proof makes use of the lemma ctyping1-idem proven in the previous section.

3.1 Global context proofs

lemma avars-aval:

```
s=t(\subseteq\mathrm{ avars a) }\Longrightarrow\mathrm{ aval a s= aval a t}
by (induction a, simp-all)
```


3.2 Local context proofs

```
context noninterf
begin
```


lemma interf-set-mono:

```
    \llbracket A ^ { \prime } \subseteq A ; X \subseteq X ^ { \prime } ; \forall ( B ^ { \prime } , Y ^ { \prime } ) \in U ^ { \prime } . \exists ( B , Y ) \in U . B ^ { \prime } \subseteq B \wedge Y ^ { \prime } \subseteq Y ;
        \forall(B,Y)\ininsert (Univ? A X,Z)U.B:dom' }Y\rightsquigarrowW\rrbracket
    \forall(B,Y)\ininsert (Univ? A' X',Z) U'. B: dom ' }Y\rightsquigarrow
by (subgoal-tac Univ? A' X'\subseteq Univ? A X, fastforce,
    auto simp: univ-states-if-def)
lemma btyping1-btyping2-aux-1 [elim]:
    assumes
        A: avars }\mp@subsup{a}{1}{}={}\mathrm{ and
        B: avars a}\mp@subsup{a}{2}{}={}\mathrm{ and
        C: aval a ( 
    shows aval }\mp@subsup{a}{1}{}s<\mathrm{ aval }\mp@subsup{a}{2}{}
proof -
    have aval a }\mp@subsup{a}{1}{}s=\mathrm{ aval }\mp@subsup{a}{1}{}(\lambdax.0)\wedge\mathrm{ aval }\mp@subsup{a}{2}{}s=\mathrm{ aval }\mp@subsup{a}{2}{}(\lambdax.0
        using A and B by (blast intro:avars-aval)
    thus ?thesis
        using C by simp
qed
lemma btyping1-btyping2-aux-2 [elim]:
    assumes
        A: avars }\mp@subsup{a}{1}{}={}\mathrm{ and
        B: avars }\mp@subsup{a}{2}{}={}\mathrm{ and
        C:\negaval }\mp@subsup{a}{1}{}(\lambdax.0)<\mathrm{ aval a a ( }\lambdax.0)\mathrm{ and
```

$D:$ aval $a_{1} s<$ aval $a_{2} s$
shows False
proof -
have aval $a_{1} s=$ aval $a_{1}(\lambda x .0) \wedge$ aval $a_{2} s=$ aval $a_{2}(\lambda x .0)$ using A and B by (blast intro: avars-aval)
thus ?thesis
using C and D by simp
qed
lemma btyping1-btyping2-aux:
$\vdash b=$ Some $v \Longrightarrow \|=b(\subseteq A, X)=$ Some (if v then A else $\}$)
by (induction b arbitrary: v, auto split: if-split-asm option.split-asm)
lemma btyping1-btyping2:
$\vdash b=$ Some $v \Longrightarrow \vDash b(\subseteq A, X)=($ if v then $(A,\{ \})$ else $(\{ \}, A))$
by (simp add: btyping2-def btyping1-btyping2-aux)
lemma btyping2-aux-subset:
$\|=b(\subseteq A, X)=$ Some $A^{\prime} \Longrightarrow A^{\prime}=\{s . s \in A \wedge$ bval $b s\}$
by (induction b arbitrary: A^{\prime}, auto split: if-split-asm option.split-asm)
lemma btyping2-aux-diff:
$\llbracket \|=b(\subseteq A, X)=$ Some $B ; \| b\left(\subseteq A^{\prime}, X^{\prime}\right)=$ Some $B^{\prime} ; A^{\prime} \subseteq A ; B^{\prime} \subseteq B \rrbracket \Longrightarrow$ $A^{\prime}-B^{\prime} \subseteq A-B$
by (blast dest: btyping2-aux-subset)
lemma btyping2-aux-mono:
$\llbracket \|=b(\subseteq A, X)=$ Some $B ; A^{\prime} \subseteq A ; X \subseteq X^{\prime} \rrbracket \Longrightarrow$ $\exists B^{\prime} . \|=b\left(\subseteq A^{\prime}, X^{\prime}\right)=$ Some $B^{\prime} \wedge B^{\prime} \subseteq B$
by (induction b arbitrary: B, auto dest: btyping2-aux-diff split:
if-split-asm option.split-asm)
lemma btyping2-mono:
$\llbracket=b(\subseteq A, X)=\left(B_{1}, B_{2}\right) ; \models b\left(\subseteq A^{\prime}, X^{\prime}\right)=\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right) ; A^{\prime} \subseteq A ; X \subseteq X^{\rrbracket} \Longrightarrow$ $B_{1}{ }^{\prime} \subseteq B_{1} \wedge B_{2}{ }^{\prime} \subseteq B_{2}$
by (simp add: btyping2-def split: option.split-asm,
frule-tac [3-4] btyping2-aux-mono, auto dest: btyping2-aux-subset)
lemma btyping2-un-eq:
$\vDash b(\subseteq A, X)=\left(B_{1}, B_{2}\right) \Longrightarrow B_{1} \cup B_{2}=A$
by (auto simp: btyping2-def dest: btyping2-aux-subset split: option.split-asm)
lemma btyping2-fst-empty:
$\vDash b(\subseteq\}, X)=(\{ \},\{ \})$
by (auto simp: btyping2-def dest: btyping2-aux-subset split: option.split)
lemma btyping2-aux-eq:
$\llbracket \|=b(\subseteq A, X)=$ Some $A^{\prime} ; s=t(\subseteq$ state $\cap X) \rrbracket \Longrightarrow$ bval $b s=$ bval $b t$
proof (induction b arbitrary: A^{\prime})

```
    fix }\mp@subsup{A}{}{\prime}
    show
    ||=Bcv(\subseteqA,X)=Some A'; s=t(\subseteq state \cap X)\rrbracket\Longrightarrow
        bval (Bcv) s=bval (Bcv)t
    by simp
next
    fix }\mp@subsup{A}{}{\prime}
    show
    \llbracket \bigwedge A ^ { \prime } . \| = b ( \subseteq A , X ) = \text { Some A' } \Longrightarrow s = t ( \subseteq \text { state } \cap X ) \Longrightarrow
        bval b s = bval b t;
    \| = N o t b ( \subseteq A , X ) = S o m e ~ A ' ; ~ s = t ( \subseteq ~ s t a t e ~ \cap X ) \rrbracket \Longrightarrow
        bval (Not b) s = bval (Not b) t
    by (simp split:option.split-asm)
next
    fix }\mp@subsup{A}{}{\prime}\mp@subsup{b}{1}{}\mp@subsup{b}{2}{
    show
    \llbracket \ A A ^ { \prime } . \| = b _ { 1 } ( \subseteq A , X ) = \text { Some } A ^ { \prime } \Longrightarrow s = t ( \subseteq \text { state } \cap X ) \Longrightarrow
        bval b}\mp@subsup{b}{1}{}s=\mathrm{ bval b b t;
    \A'.|=\mp@subsup{b}{2}{}(\subseteqA,X)=\mathrm{ Some A' }\Longrightarrows=t(\subseteq\mathrm{ state }\capX)\Longrightarrow
        bval \mp@subsup{b}{2}{}s=bval b}\mp@subsup{b}{2}{}t
    \| = \text { And b b b b (`A,X)= Some A'; s=t (` state } \cap X ) \rrbracket \Longrightarrow
        bval (And bl b b)s=bval (And b b b b ) t
    by (simp split: option.split-asm)
next
    fix }\mp@subsup{A}{}{\prime}\mp@subsup{a}{1}{}\mp@subsup{a}{2}{
    show
    \llbracket|=Less a a }\mp@subsup{a}{2}{}(\subseteqA,X)=\mathrm{ Some A'; s=t(`state }\capX)\rrbracket
        bval (Less a 
    by (subgoal-tac aval a }\mp@subsup{a}{1}{}s=\mathrm{ aval }\mp@subsup{a}{1}{}t\mathrm{ ,
        subgoal-tac aval a}\mp@subsup{a}{2}{}s=\mathrm{ aval }\mp@subsup{a}{2}{}t\mathrm{ ,
        auto intro!: avars-aval split: if-split-asm)
qed
```

lemma ctyping1-merge-in:
$x s \in A \cup B \Longrightarrow x s \in A \sqcup B$
by (force simp: ctyping1-merge-def)
lemma ctyping1-merge-append-in:
$\llbracket x s \in A ; y s \in B \rrbracket \Longrightarrow x s @ y s \in A \sqcup_{@} B$
by (force simp: ctyping1-merge-append-def ctyping1-append-def ctyping1-merge-in)
lemma ctyping1-aux-nonempty:
$\vdash c \neq\{ \}$
by (induction c, simp-all add: Let-def ctyping1-append-def
ctyping1-merge-def ctyping1-merge-append-def, fastforce+)
lemma ctyping1-mono:
$\llbracket(B, Y)=\vdash c(\subseteq A, X) ;\left(B^{\prime}, Y^{\prime}\right)=\vdash c\left(\subseteq A^{\prime}, X^{\prime}\right) ; A^{\prime} \subseteq A ; X \subseteq X^{\rrbracket} \Longrightarrow$

```
    B}\subseteq\subseteqB\wedgeY\subseteq\mp@subsup{Y}{}{\prime
by (auto simp: ctyping1-def)
lemma ctyping2-fst-empty:
    Some (B,Y)=(U,v)\modelsc(\subseteq{},X)\Longrightarrow(B,Y)=({},UNIV)
proof (induction (U,v) c {} :: state set X arbitrary: B Y U v
    rule: ctyping2.induct)
    fix CXYUvb c1 c
    show
    \llbracket^U' p B B C Y.
        (U',p)=(insert (Univ? {} X, bvars b) U, \modelsb(\subseteq{},X))\Longrightarrow
        ({}, B2) = p\LongrightarrowSome (C,Y)=(U',v)\models c
        (C,Y)=({},UNIV);
    \U' p B 位 C Y.
        (U', p) = (insert (Univ? {} X, bvars b) U, \modelsb(\subseteq{},X))\Longrightarrow
        (B1, {}) = p\LongrightarrowSome (C,Y)=(U',v)\models c
        (C,Y) = ({}, UNIV);
    Some (C,Y)=(U,v)\modelsIF b THEN c
        (C,Y)=({},UNIV)
    by (fastforce simp: btyping2-fst-empty split: option.split-asm)
next
    fix B XZUvbc
    show
```



```
        ({}, B2)=\vDashb(\subseteq{},X)\Longrightarrow
        (C,Y) = \vdashc(\subseteq{},X)\Longrightarrow
        (B1',}\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)
        \forall(B,W)\in insert (Univ? {} X \cup Univ? C Y, bvars b) U.
            B:dom' W}\rightsquigarrowUNIV
        Some }(B,Z)=({},\mathrm{ False )}\modelsc(\subseteq{},X)
        (B,Z)=({},UNIV);
    \B1 B C C Y B ' ' B Z.
        (B1, B2)=\vDashb(\subseteq{},X)\Longrightarrow
        (C,Y)=\vdashc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow
        ({}, B2') = \modelsb(\subseteqC,Y)\Longrightarrow
    \forall(B,W)\in insert (Univ? {} X \cup Univ? C Y, bvars b) U.
        B:dom`}W\rightsquigarrowUNIV
        Some (B,Z)=({}, False) \modelsc(\subseteq{},Y)\Longrightarrow
        (B,Z) = ({},UNIV);
    Some (B,Z)=(U,v)\modelsWHILE b DO c (\subseteq{},X)\rrbracket\Longrightarrow
        (B,Z)=({},UNIV)
    by (simp split: if-split-asm option.split-asm prod.split-asm,
    (fastforce simp: btyping2-fst-empty ctyping1-def)+)
qed (simp-all split: if-split-asm option.split-asm prod.split-asm)
```

lemma ctyping2-mono-assign [elim!]:
$\llbracket(U$, False $) \models x::=a(\subseteq A, X)=$ Some $(C, Z) ; A^{\prime} \subseteq A ; X \subseteq X^{\prime} ;$
$\forall\left(B^{\prime}, Y^{\prime}\right) \in U^{\prime} . \exists(B, Y) \in U . B^{\prime} \subseteq B \wedge Y^{\prime} \subseteq Y \rrbracket \Longrightarrow$

```
\exists\mp@subsup{C}{}{\prime}}\mp@subsup{Z}{}{\prime}.(\mp@subsup{U}{}{\prime},\mathrm{ False )}\modelsx::=a(\subseteq\mp@subsup{A}{}{\prime},\mp@subsup{X}{}{\prime})=\mathrm{ Some }(\mp@subsup{C}{}{\prime},\mp@subsup{Z}{}{\prime})
    C'\subseteqC^Z\subseteq\mp@subsup{Z}{}{\prime}
```

by (frule interf-set-mono [where $W=\{\operatorname{dom} x\}]$, auto split: if-split-asm)

```
lemma ctyping2-mono-seq:
    assumes
        A: \(\bigwedge A^{\prime} B X^{\prime} Y U^{\prime}\).
            \((U\), False \() \models c_{1}(\subseteq A, X)=\operatorname{Some}(B, Y) \Longrightarrow A^{\prime} \subseteq A \Longrightarrow X \subseteq X^{\prime} \Longrightarrow\)
            \(\forall\left(B^{\prime}, Y^{\prime}\right) \in U^{\prime} . \exists(B, Y) \in U . B^{\prime} \subseteq B \wedge Y^{\prime} \subseteq Y \Longrightarrow\)
                        \(\exists B^{\prime} Y^{\prime} .\left(U^{\prime}\right.\), False \() \models c_{1}\left(\subseteq A^{\prime}, X^{\prime}\right)=\) Some \(\left(B^{\prime}, Y^{\prime}\right) \wedge\)
                \(B^{\prime} \subseteq B \wedge Y \subseteq Y^{\prime}\) and
    \(B: \bigwedge p B Y B^{\prime} C Y^{\prime} Z U^{\prime}\).
        \((U\), False \() \models c_{1}(\subseteq A, X)=\) Some \(p \Longrightarrow(B, Y)=p \Longrightarrow\)
            \((U\), False \() \models c_{2}(\subseteq B, Y)=\) Some \((C, Z) \Longrightarrow B^{\prime} \subseteq B \Longrightarrow Y \subseteq Y^{\prime} \Longrightarrow\)
                \(\forall\left(B^{\prime}, Y^{\prime}\right) \in U^{\prime} . \exists(B, Y) \in U . B^{\prime} \subseteq B \wedge Y^{\prime} \subseteq Y \Longrightarrow\)
                        \(\exists C^{\prime} Z^{\prime} .\left(U^{\prime}\right.\), False \() \vDash c_{2}\left(\subseteq B^{\prime}, Y^{\prime}\right)=\) Some \(\left(C^{\prime}, Z^{\prime}\right) \wedge\)
                        \(C^{\prime} \subseteq C \wedge Z \subseteq Z^{\prime}\) and
    \(C:(U\), False \() \models c_{1} ; ; c_{2}(\subseteq A, X)=\operatorname{Some}(C, Z)\) and
    \(D: A^{\prime} \subseteq A\) and
    \(E: X \subseteq X^{\prime}\) and
    \(F: \forall\left(B^{\prime}, Y^{\prime}\right) \in U^{\prime} . \exists(B, Y) \in U . B^{\prime} \subseteq B \wedge Y^{\prime} \subseteq Y\)
    shows \(\exists C^{\prime} Z^{\prime} .\left(U^{\prime}\right.\), False \() \models c_{1} ; ; c_{2}\left(\subseteq A^{\prime}, X^{\prime}\right)=\operatorname{Some}\left(C^{\prime}, Z^{\prime}\right) \wedge\)
    \(C^{\prime} \subseteq C \wedge Z \subseteq Z^{\prime}\)
proof -
    obtain \(B Y\) where \((U\), False \() \models c_{1}(\subseteq A, X)=\) Some \((B, Y) \wedge\)
        \((U\), False \() \models c_{2}(\subseteq B, Y)=\) Some \((C, Z)\)
        using \(C\) by (auto split: option.split-asm)
    moreover from this obtain \(B^{\prime} Y^{\prime}\) where
        \(G:\left(U^{\prime}\right.\), False \() \models c_{1}\left(\subseteq A^{\prime}, X^{\prime}\right)=\) Some \(\left(B^{\prime}, Y^{\prime}\right) \wedge B^{\prime} \subseteq B \wedge Y \subseteq Y^{\prime}\)
        using \(A\) and \(D\) and \(E\) and \(F\) by fastforce
    ultimately obtain \(C^{\prime} Z^{\prime}\) where
    \(\left(U^{\prime}\right.\), False \() \models c_{2}\left(\subseteq B^{\prime}, Y^{\prime}\right)=\) Some \(\left(C^{\prime}, Z^{\prime}\right) \wedge C^{\prime} \subseteq C \wedge Z \subseteq Z^{\prime}\)
        using \(B\) and \(F\) by fastforce
    thus ?thesis
        using \(G\) by \(\operatorname{simp}\)
qed
```

lemma ctyping2-mono-if:
assumes
$A: \wedge W p B_{1} B_{2} B_{1}^{\prime} C_{1} X^{\prime} Y_{1} W^{\prime} .(W, p)=$
(insert (Univ? A X, bvars b) $U, \models b(\subseteq A, X)) \Longrightarrow\left(B_{1}, B_{2}\right)=p \Longrightarrow$
$(W$, False $) \vDash c_{1}\left(\subseteq B_{1}, X\right)=$ Some $\left(C_{1}, Y_{1}\right) \Longrightarrow B_{1}{ }^{\prime} \subseteq B_{1} \Longrightarrow$
$X \subseteq X^{\prime} \Longrightarrow \forall\left(B^{\prime}, Y^{\prime}\right) \in W^{\prime} . \exists(B, Y) \in W . B^{\prime} \subseteq B \wedge Y^{\prime} \subseteq Y \Longrightarrow$
$\exists C_{1}{ }^{\prime} Y_{1}{ }^{\prime} .\left(W^{\prime}\right.$, False $) \models c_{1}\left(\subseteq B_{1}{ }^{\prime}, X^{\prime}\right)=$ Some $\left(C_{1}{ }^{\prime}, Y_{1}{ }^{\prime}\right) \wedge$
$C_{1}{ }^{\prime} \subseteq C_{1} \wedge Y_{1} \subseteq Y_{1}{ }^{\prime}$ and
$B: \wedge W p B_{1} B_{2} B_{2}{ }^{\prime} C_{2} X^{\prime} Y_{2} W^{\prime} .(W, p)=$
(insert (Univ? A X, bvars b) $U, \models b(\subseteq A, X)) \Longrightarrow\left(B_{1}, B_{2}\right)=p \Longrightarrow$
$(W$, False $) \vDash c_{2}\left(\subseteq B_{2}, X\right)=\operatorname{Some}\left(C_{2}, Y_{2}\right) \Longrightarrow B_{2}{ }^{\prime} \subseteq B_{2} \Longrightarrow$
$X \subseteq X^{\prime} \Longrightarrow \forall\left(B^{\prime}, Y^{\prime}\right) \in W^{\prime} . \exists(B, Y) \in W . B^{\prime} \subseteq B \wedge Y^{\prime} \subseteq Y \Longrightarrow$

```
    \exists\mp@subsup{C}{2}{\prime}}\mp@subsup{}{\prime}{\prime}\mp@subsup{Y}{2}{\prime}\mp@subsup{}{}{\prime}.(\mp@subsup{W}{}{\prime},\mathrm{ False ) }\models\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{\prime},\mp@subsup{X}{}{\prime})=\mathrm{ Some ( }\mp@subsup{C}{2}{\prime},\mp@subsup{Y}{2}{\prime})
    C}\mp@subsup{}{2}{\prime}\subseteq\mp@subsup{C}{2}{}\wedge\mp@subsup{Y}{2}{}\subseteq\mp@subsup{Y}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and
    C:(U, False)}\modelsIF b THEN c c ELSE c. (\subseteqA,X)=Some (C,Y) and
    D: A'\subseteqA and
    E:X\subseteq X' and
    F:\forall(\mp@subsup{B}{}{\prime},\mp@subsup{Y}{}{\prime})\in\mp@subsup{U}{}{\prime}.\exists(B,Y)\inU.\mp@subsup{B}{}{\prime}\subseteqB\wedge\mp@subsup{Y}{}{\prime}\subseteqY
shows \exists\mp@subsup{C}{}{\prime}\mp@subsup{Y}{}{\prime}.(U\mp@subsup{U}{}{\prime},\mathrm{ False )}\vDashIF b THEN c
    Some (C', Y')^ C'\subseteqC^Y\subseteq Y'
proof -
    let ?W = insert (Univ? A X, bvars b) U
    let ? W' = insert (Univ? A' X', bvars b) U'
    obtain B1 B B Clllll
        G:(C,Y)=(C1\cupC C , Y \ \cap Y 2) ^(B , B},\mp@subsup{B}{2}{})=\vDashb(\subseteqA,X)
            Some }(\mp@subsup{C}{1}{},\mp@subsup{Y}{1}{})=(?W, False) \models\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{},X)
            Some (C C , Y ) = (?W, False) }\models\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{},X
    using C by (simp split: option.split-asm prod.split-asm)
    moreover obtain }\mp@subsup{B}{1}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{B}{2}{\prime}'\mathrm{ where }H:(\mp@subsup{B}{1}{\prime},\mp@subsup{B}{2}{\prime})=\modelsb(\subseteq\mp@subsup{A}{}{\prime},\mp@subsup{X}{}{\prime}
        by (cases }\modelsb(\subseteq\mp@subsup{A}{}{\prime},\mp@subsup{X}{}{\prime}), simp
    ultimately have I: B}\mp@subsup{B}{1}{\prime}\subseteq\mp@subsup{B}{1}{}\wedge\mp@subsup{B}{2}{\prime}\subseteq\mp@subsup{B}{2}{
        by (metis btyping2-mono D E)
    moreover have J:\forall(\mp@subsup{B}{}{\prime},\mp@subsup{Y}{}{\prime})\in?\mp@subsup{W}{}{\prime}.\exists(B,Y)\in?W. B'\subseteqB\wedge Y'\subseteqY
        using D and E and F by (auto simp: univ-states-if-def)
    ultimately have \exists}\mp@subsup{C}{1}{}\mp@subsup{}{}{\prime}\mp@subsup{Y}{1}{}\mp@subsup{}{}{\prime}\mathrm{ .
        (?W}\mp@subsup{}{}{\prime},\mathrm{ False )}\vDash\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{\prime},\mp@subsup{X}{}{\prime})=Some (\mp@subsup{C}{1}{\prime},\mp@subsup{Y}{1}{\prime})\wedge\mp@subsup{C}{1}{\prime}\subseteq\mp@subsup{C}{1}{}\wedge\mp@subsup{Y}{1}{}\subseteq\mp@subsup{Y}{1}{\prime
        using }A\mathrm{ and }E\mathrm{ and }G\mathrm{ by force
    moreover have \exists C C '' }\mp@subsup{Y}{2}{\prime}\mp@subsup{}{}{\prime}
        (?W', False ) }\vDash\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{\prime},\mp@subsup{X}{}{\prime})=\mathrm{ Some }(\mp@subsup{C}{2}{\prime}\mp@subsup{}{}{\prime},\mp@subsup{Y}{2}{\prime})\wedge\mp@subsup{C}{2}{\prime}\subseteq\subseteq\mp@subsup{C}{2}{}\wedge\mp@subsup{Y}{2}{}\subseteq\mp@subsup{Y}{2}{\prime
        using }B\mathrm{ and }E\mathrm{ and }G\mathrm{ and }I\mathrm{ and }J\mathrm{ by force
    ultimately show ?thesis
        using G and H by (auto split: prod.split)
qed
lemma ctyping2-mono-while:
    assumes
```



```
        (C,Y) =\vdashc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow(\mp@subsup{B}{1}{\prime},\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)\Longrightarrow
        \forall(B,W)\ininsert (Univ? A X \cup Univ? C Y, bvars b) U.
            B:dom`}W\rightsquigarrowUNIV
                ({}, False) \modelsc(\subseteq\mp@subsup{B}{1}{},X)=Some (E,V)\Longrightarrow D \ \subseteq B C \Longrightarrow
                    X\subseteq\mp@subsup{X}{}{\prime}\Longrightarrow}\not=(\mp@subsup{B}{}{\prime},\mp@subsup{Y}{}{\prime})\in\mp@subsup{U}{}{\prime}.\exists(B,Y)\in{}.\mp@subsup{B}{}{\prime}\subseteqB\wedge 林\subseteqY
                        \exists}\mp@subsup{E}{}{\prime}\mp@subsup{V}{}{\prime}.(\mp@subsup{U}{}{\prime},\mathrm{ False )}\vDashc(\subseteq\mp@subsup{D}{1}{\prime},\mp@subsup{X}{}{\prime})=\mathrm{ Some (E',}\mp@subsup{V}{}{\prime})
                        E'\subseteqE\wedgeV\subseteq V' and
```



```
        (C,Y) =\vdashc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow(\mp@subsup{B}{1}{\prime},\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)\Longrightarrow
            \forall(B,W)\in insert (Univ? A X \cup Univ? C Y, bvars b) U.
                B:dom' }W\rightsquigarrowUNIV
            ({}, False) }=c(\subseteq\mp@subsup{B}{1}{\prime},Y)=Some (F,W)\Longrightarrow\mp@subsup{D}{1}{\prime}\subseteq\mp@subsup{B}{1}{\prime}
                    Y\subseteq\mp@subsup{Y}{}{\prime}\Longrightarrow\forall(\mp@subsup{B}{}{\prime},\mp@subsup{Y}{}{\prime})\in\mp@subsup{U}{}{\prime}.\exists(B,Y)\in{}.\mp@subsup{B}{}{\prime}\subseteqB\wedge\mp@subsup{Y}{}{\prime}\subseteqY\Longrightarrow
                        \exists}\mp@subsup{F}{}{\prime}\mp@subsup{W}{}{\prime}.(\mp@subsup{U}{}{\prime},\mathrm{ False })\modelsc(\subseteq\mp@subsup{D}{1}{\prime},\mp@subsup{Y}{}{\prime})=Some (F', W') ^
```


$F^{\prime} \subseteq F \wedge W \subseteq W^{\prime}$ and

$C:(U$, False $) \models W H I L E$ b DO $c(\subseteq A, X)=\operatorname{Some}(B, Z)$ and
$D: A^{\prime} \subseteq A$ and
$E: X \subseteq X^{\prime}$ and $F: \forall\left(B^{\prime}, Y^{\prime}\right) \in U^{\prime} . \exists(B, Y) \in U . B^{\prime} \subseteq B \wedge Y^{\prime} \subseteq Y$
shows $\exists B^{\prime} Z^{\prime}$. (U^{\prime}, False $) \vDash$ WHILE b DO c $\left(\subseteq A^{\prime}, X^{\prime}\right)=$ Some $\left(B^{\prime}, Z^{\prime}\right) \wedge$ $B^{\prime} \subseteq B \wedge Z \subseteq Z^{\prime}$
proof -
obtain $B_{1} B_{1}{ }^{\prime} B_{2} B_{2}{ }^{\prime} C E F V W Y$ where $G:\left(B_{1}, B_{2}\right)=\vDash b(\subseteq A, X) \wedge$
$(C, Y)=\vdash c\left(\subseteq B_{1}, X\right) \wedge\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right)=\models b(\subseteq C, Y) \wedge$
$(\forall(B, W) \in$ insert (Univ? A $X \cup$ Univ? $C Y$, bvars b) U.
$B:$ dom ' $W \rightsquigarrow U N I V) \wedge$
Some $(E, V)=(\{ \}$, False $) \models c\left(\subseteq B_{1}, X\right) \wedge$
Some $(F, W)=(\{ \}$, False $) \vDash c\left(\subseteq B_{1}^{\prime}, Y\right) \wedge$ $(B, Z)=\left(B_{2} \cup B_{2}{ }^{\prime}\right.$, Univ?? $\left.B_{2} X \cap Y\right)$
using C by (force split: if-split-asm option.split-asm prod.split-asm)
moreover obtain $D_{1} D_{2}$ where $H: \models b\left(\subseteq A^{\prime}, X^{\prime}\right)=\left(D_{1}, D_{2}\right)$
by (cases $\models b\left(\subseteq A^{\prime}, X^{\prime}\right)$, simp $)$
ultimately have $I: D_{1} \subseteq B_{1} \wedge D_{2} \subseteq B_{2}$ by (smt (verit) btyping2-mono $D E$)
moreover obtain $C^{\prime} Y^{\prime}$ where $J:\left(C^{\prime}, Y^{\prime}\right)=\vdash c\left(\subseteq D_{1}, X^{\prime}\right)$
by $\left(\right.$ cases $\vdash c\left(\subseteq D_{1}, X^{\prime}\right)$, simp $)$
ultimately have $K: C^{\prime} \subseteq C \wedge Y \subseteq Y^{\prime}$
by (meson ctyping1-mono $E G$)
moreover obtain $D_{1}{ }^{\prime} D_{2}{ }^{\prime}$ where $L: \vDash b\left(\subseteq C^{\prime}, Y^{\prime}\right)=\left(D_{1}{ }^{\prime}, D_{2}{ }^{\prime}\right)$
by (cases $\models b\left(\subseteq C^{\prime}, Y^{\prime}\right)$, simp)
ultimately have $M: D_{1}{ }^{\prime} \subseteq B_{1}{ }^{\prime} \wedge D_{2}{ }^{\prime} \subseteq B_{2}{ }^{\prime}$
by (smt (verit) btyping2-mono G)
then obtain $F^{\prime} W^{\prime}$ where
$\left(\}\right.$, False $) \vDash c\left(\subseteq D_{1}^{\prime}, Y^{\prime}\right)=$ Some $\left(F^{\prime}, W^{\prime}\right) \wedge F^{\prime} \subseteq F \wedge W \subseteq W^{\prime}$ using B and F and G and K by force
moreover obtain $E^{\prime} V^{\prime}$ where
$\left(\}\right.$, False $) \models c\left(\subseteq D_{1}, X^{\prime}\right)=$ Some $\left(E^{\prime}, V^{\prime}\right) \wedge E^{\prime} \subseteq E \wedge V \subseteq V^{\prime}$
using A and E and F and G and I by force
moreover have Univ? $A^{\prime} X^{\prime} \subseteq$ Univ? A X
using D and E by (auto simp: univ-states-if-def)
moreover have Univ? $C^{\prime} Y^{\prime} \subseteq$ Univ? C Y using K by (auto simp: univ-states-if-def)
ultimately have $\left(U^{\prime}\right.$, False $) \models$ WHILE b DO c $\left(\subseteq A^{\prime}, X^{\prime}\right)=$ Some ($D_{2} \cup D_{2}^{\prime}$, Univ?? $D_{2} X^{\prime} \cap Y^{\prime}$)
using F and G and H and J [symmetric] and L by force
moreover have $D_{2} \cup D_{2}{ }^{\prime} \subseteq B$
using G and I and M by auto
moreover have $Z \subseteq$ Univ?? $D_{2} X^{\prime} \cap Y^{\prime}$
using E and G and I and K by auto
ultimately show ?thesis
by simp
qed

```
lemma ctyping2-mono:
    \llbracket(U, False) }\modelsc(\subseteqA,X)=Some (C,Z); A'\subseteqA;X\subseteq\mp@subsup{X}{}{\prime}
    \forall(\mp@subsup{B}{}{\prime},\mp@subsup{Y}{}{\prime})\in\mp@subsup{U}{}{\prime}.\exists(B,Y)\inU.\mp@subsup{B}{}{\prime}\subseteqB\wedge\mp@subsup{Y}{}{\prime}\subseteqY\rrbracket\Longrightarrow
    \exists\mp@subsup{C}{}{\prime}\mp@subsup{Z}{}{\prime}.(\mp@subsup{U}{}{\prime},\mathrm{ False })\modelsc(\subseteq\mp@subsup{A}{}{\prime},\mp@subsup{X}{}{\prime})=\mathrm{ Some ( }\mp@subsup{C}{}{\prime},\mp@subsup{Z}{}{\prime})\wedge\mp@subsup{C}{}{\prime}\subseteqC\wedgeZ\subseteq\mp@subsup{Z}{}{\prime}
proof (induction (U, False) с A X arbitrary: A' C X' Z U U'
    rule: ctyping2.induct)
    fix A A' X X' U U' C Z c c c c c
    show
    \llbracket\A' B X' Y U'.
        (U, False)}=\mp@subsup{c}{1}{}(\subseteqA,X)=Some (B,Y)
        A ^ { \prime } \subseteq A \Longrightarrow X \subseteq X ^ { \prime } \Longrightarrow
        \forall(\mp@subsup{B}{}{\prime},\mp@subsup{Y}{}{\prime})\in\mp@subsup{U}{}{\prime}.\exists(B,Y)\inU.\mp@subsup{B}{}{\prime}\subseteqB\wedge Y'\subseteqY\Longrightarrow
        \exists}\mp@subsup{B}{}{\prime}\mp@subsup{Y}{}{\prime}.(\mp@subsup{U}{}{\prime},\mathrm{ False })\models\mp@subsup{c}{1}{}(\subseteq\mp@subsup{A}{}{\prime},\mp@subsup{X}{}{\prime})=Some (B',Y')
        B ^ { \prime } \subseteq B \wedge Y \subseteq Y ^ { \prime } ;
    \pB Y A'C X'Z U'.(U, False) }\vDash\mp@subsup{c}{1}{}(\subseteqA,X)=\mathrm{ Some p }
        (B,Y)=p\Longrightarrow(U, False)}\models\mp@subsup{c}{2}{}(\subseteqB,Y)=Some (C,Z)
        A ^ { \prime } \subseteq B \Longrightarrow Y \subseteq X ^ { \prime } \Longrightarrow
        \forall(\mp@subsup{B}{}{\prime},\mp@subsup{Y}{}{\prime})\in\mp@subsup{U}{}{\prime}.\exists(B,Y)\inU.\mp@subsup{B}{}{\prime}\subseteqB\wedge Y'\subseteqY\Longrightarrow
        \exists}\mp@subsup{C}{}{\prime}\mp@subsup{Z}{}{\prime}.(\mp@subsup{U}{}{\prime},\mathrm{ False })\models\mp@subsup{c}{2}{}(\subseteq\mp@subsup{A}{}{\prime},\mp@subsup{X}{}{\prime})=\mathrm{ Some }(\mp@subsup{C}{}{\prime},\mp@subsup{Z}{}{\prime})
        C'\subseteqC^Z\subseteqZ';
    (U, False)}\models\mp@subsup{c}{1}{};;\mp@subsup{c}{2}{}(\subseteqA,X)=Some (C,Z)
    A'\subseteqA; X\subseteq X';
    \forall(\mp@subsup{B}{}{\prime},\mp@subsup{Y}{}{\prime})\in\mp@subsup{U}{}{\prime}.\exists(B,Y)\inU.\mp@subsup{B}{}{\prime}\subseteqB\wedge Y'\subseteqY\rrbracket\Longrightarrow
    \exists\mp@subsup{C}{}{\prime}\mp@subsup{Z}{}{\prime}.(\mp@subsup{U}{}{\prime},\mathrm{ False )}\vDash\mp@subsup{c}{1}{};;\mp@subsup{c}{2}{}(\subseteq\mp@subsup{A}{}{\prime},\mp@subsup{X}{}{\prime})=Some (C',}\mp@subsup{Z}{}{\prime})
        C ^ { \prime } \subseteq C \wedge Z \subseteq Z ^ { \prime }
    by (rule ctyping2-mono-seq)
next
    fix A A' X X ' U U' C Z b c c c c 
    show
    \\U'|
        (U'', p) = (insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
        (B1, B2)=p\Longrightarrow(U'\prime, False) \modelsc
        A'\subseteq\mp@subsup{B}{1}{}\LongrightarrowX\subseteq\mp@subsup{X}{}{\prime}\Longrightarrow
```



```
        \exists}\mp@subsup{C}{}{\prime}\mp@subsup{Z}{}{\prime}.(\mp@subsup{U}{}{\prime},\mathrm{ False })\models\mp@subsup{c}{1}{}(\subseteq\mp@subsup{A}{}{\prime},\mp@subsup{X}{}{\prime})=\mathrm{ Some }(\mp@subsup{C}{}{\prime},\mp@subsup{Z}{}{\prime})
        C'\subseteqC^Z\subseteq\mp@subsup{Z}{}{\prime};
    \U'\prime
        (U', p) = (insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
        (B1, B2) = p\Longrightarrow(U'\prime, False) \modelsc
        A'\subseteq\mp@subsup{B}{2}{}\LongrightarrowX\subseteq\mp@subsup{X}{}{\prime}\Longrightarrow
        \forall(\mp@subsup{B}{}{\prime},\mp@subsup{Y}{}{\prime})\in\mp@subsup{U}{}{\prime}.\exists(B,Y)\in\mp@subsup{U}{}{\prime\prime}.\mp@subsup{B}{}{\prime}\subseteqB\wedge Y'\subseteqY\Longrightarrow
        \exists}\mp@subsup{C}{}{\prime}\mp@subsup{Z}{}{\prime}.(\mp@subsup{U}{}{\prime},\mathrm{ False })\vDash\mp@subsup{c}{2}{}(\subseteq\mp@subsup{A}{}{\prime},\mp@subsup{X}{}{\prime})=\mathrm{ Some }(\mp@subsup{C}{}{\prime},\mp@subsup{Z}{}{\prime})
                C'\subseteqC^Z\subseteq\mp@subsup{Z}{}{\prime}
    (U, False) \modelsIF b THEN c
    A'\subseteqA;X\subseteq X';
    \forall(\mp@subsup{B}{}{\prime},\mp@subsup{Y}{}{\prime})\in\mp@subsup{U}{}{\prime}.\exists(B,Y)\inU.\mp@subsup{B}{}{\prime}\subseteqB\wedge Y'\subseteqY\rrbracket\Longrightarrow
        \exists}\mp@subsup{C}{}{\prime}\mp@subsup{Z}{}{\prime}.(\mp@subsup{U}{}{\prime},\mathrm{ False )}=IF b THEN c EL ELSE c c (\subseteqA', X')
            Some (C', Z') ^ C'\subseteqC^Z\subseteq Z'
    by (rule ctyping2-mono-if)
```

```
next
    fix \(A A^{\prime} X X^{\prime} U U^{\prime} B Z b c\)
    show
    \(\llbracket \bigwedge B_{1} B_{2} C \quad Y B_{1}{ }^{\prime} B_{2}^{\prime} A^{\prime} B X^{\prime} Z U^{\prime}\).
        \(\left(B_{1}, B_{2}\right)=\vDash b(\subseteq A, X) \Longrightarrow\)
        \((C, Y)=\vdash c\left(\subseteq B_{1}, X\right) \Longrightarrow\)
        \(\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right)=\models b(\subseteq C, Y) \Longrightarrow\)
            \(\forall(B, W) \in\) insert (Univ? A \(X \cup\) Univ? \(C Y\), bvars b) \(U\).
                B: dom' \(W \rightsquigarrow U N I V \Longrightarrow\)
                \(\left(\}\right.\), False \()=c\left(\subseteq B_{1}, X\right)=\) Some \((B, Z) \Longrightarrow\)
                \(A^{\prime} \subseteq B_{1} \Longrightarrow X \subseteq X^{\prime} \Longrightarrow\)
            \(\forall\left(B^{\prime}, Y^{\prime}\right) \in U^{\prime} . \exists(B, Y) \in\{ \} . B^{\prime} \subseteq B \wedge Y^{\prime} \subseteq Y \Longrightarrow\)
                    \(\exists B^{\prime} Z^{\prime} .\left(U^{\prime}\right.\), False \() \vDash c\left(\subseteq A^{\prime}, X^{\prime}\right)=\operatorname{Some}\left(B^{\prime}, Z^{\prime}\right) \wedge\)
                    \(B^{\prime} \subseteq B \wedge Z \subseteq Z^{\prime} ;\)
    \(\bigwedge B_{1} B_{2} C Y B_{1}{ }^{\prime} B_{2}{ }^{\prime} A^{\prime} B X^{\prime} Z U^{\prime}\).
            \(\left(B_{1}, B_{2}\right)=\vDash b(\subseteq A, X) \Longrightarrow\)
            \((C, Y)=\vdash c\left(\subseteq B_{1}, X\right) \Longrightarrow\)
            \(\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right)=\models b(\subseteq C, Y) \Longrightarrow\)
            \(\forall(B, W) \in\) insert (Univ? A \(X \cup\) Univ? \(C Y\), bvars b) \(U\).
                \(B\) : dom' \(W \rightsquigarrow U N I V \Longrightarrow\)
                \(\left(\}\right.\), False \() \vDash c\left(\subseteq B_{1}{ }^{\prime}, Y\right)=\) Some \((B, Z) \Longrightarrow\)
            \(A^{\prime} \subseteq B_{1}{ }^{\prime} \Longrightarrow Y \subseteq X^{\prime} \Longrightarrow\)
            \(\forall\left(\overline{B^{\prime}}, Y^{\prime}\right) \in U^{\prime} . \exists(B, Y) \in\{ \} . B^{\prime} \subseteq B \wedge Y^{\prime} \subseteq Y \Longrightarrow\)
                    \(\exists B^{\prime} Z^{\prime} .\left(U^{\prime}\right.\), False \() \vDash c\left(\subseteq A^{\prime}, X^{\prime}\right)=\operatorname{Some}\left(B^{\prime}, Z^{\prime}\right) \wedge\)
                    \(B^{\prime} \subseteq B \wedge Z \subseteq Z^{\prime} ;\)
    \((U\), False \() \models W H I L E\) b DO c \((\subseteq A, X)=\operatorname{Some}(B, Z)\);
    \(A^{\prime} \subseteq A ; X \subseteq X^{\prime} ;\)
    \(\forall\left(B^{\prime}, Y^{\prime}\right) \in U^{\prime} . \exists(B, Y) \in U . B^{\prime} \subseteq B \wedge Y^{\prime} \subseteq Y \rrbracket \Longrightarrow\)
            \(\exists B^{\prime} Z^{\prime} .\left(U^{\prime}\right.\), False \()=\) WHILE b \(\bar{D} O c\left(\subseteq A^{\prime}, X^{\prime}\right)=\)
                Some \(\left(B^{\prime}, Z^{\prime}\right) \wedge B^{\prime} \subseteq B \wedge Z \subseteq Z^{\prime}\)
    by (rule ctyping2-mono-while)
qed fastforce+
```

lemma ctyping1-ctyping2-fst-assign [elim!]:
assumes
$A:(C, Z)=\vdash x::=a(\subseteq A, X)$ and
B: Some $\left(C^{\prime}, Z^{\prime}\right)=(U$, False $) \models x::=a(\subseteq A, X)$
shows $C^{\prime} \subseteq C$
proof -
\{
fix s
assume $s \in A$
moreover assume avars $a=\{ \}$
hence aval a $s=$ aval $a(\lambda x .0)$
by (blast intro: avars-aval)
ultimately have $\exists s^{\prime} .\left(\exists t . s(x:=\right.$ aval $a s)=\left(\lambda x^{\prime}\right.$. case case
if $x^{\prime}=x$ then Some (Some (aval a $\left.(\lambda x .0)\right)$) else None of
None \Rightarrow None \mid Some $v \Rightarrow$ Some v of

None $\Rightarrow s^{\prime} x^{\prime} \mid$ Some None $\Rightarrow t x^{\prime} \mid$ Some $($ Some $\left.\left.i) \Rightarrow i\right)\right) \wedge s^{\prime} \in A$ by fastforce
\}
note $C=$ this
from A and B show ?thesis
by (clarsimp simp: ctyping1-def ctyping1-seq-def split: if-split-asm, erule-tac C, simp, fastforce)
qed
lemma ctyping1-ctyping2-fst-seq:
assumes
$A: \wedge B B^{\prime} Y Y^{\prime} .(B, Y)=\vdash c_{1}(\subseteq A, X) \Longrightarrow$
Some $\left(B^{\prime}, Y^{\prime}\right)=(U$, False $) \models c_{1}(\subseteq A, X) \Longrightarrow B^{\prime} \subseteq B$ and
$B: \bigwedge p B Y C C^{\prime} Z Z^{\prime} .(U$, False $) \models c_{1}(\subseteq A, X)=$ Some $p \Longrightarrow$ $(B, Y)=p \Longrightarrow(C, Z)=\vdash c_{2}(\subseteq B, Y) \Longrightarrow$
Some $\left(C^{\prime}, Z^{\prime}\right)=(U$, False $) \models c_{2}(\subseteq B, Y) \Longrightarrow C^{\prime} \subseteq C$ and
$C:(C, Z)=\vdash c_{1} ; ; c_{2}(\subseteq A, X)$ and
D : Some $\left(C^{\prime}, Z^{\prime}\right)=(U$, False $) \models c_{1} ; ; c_{2}(\subseteq A, X)$
shows $C^{\prime} \subseteq C$
proof -
let $? f=$ foldl $(; ;)(\lambda x$. None $)$
let ? $P=\lambda r A S . \exists f s .(\exists t . r=(\lambda x$. case $f x$ of
None $\Rightarrow s x \mid$ Some None $\Rightarrow t x \mid$ Some $($ Some $i) \Rightarrow i)) \wedge$
$(\exists y s . f=$?f $y s \wedge y s \in S) \wedge s \in A$
let ? $F=\lambda A S .\{r . ? P r A S\}$
\{
fix $s_{3} B^{\prime} Y^{\prime}$

assume

$E: \wedge B^{\prime \prime} B C C^{\prime} Z^{\prime} . B^{\prime}=B^{\prime \prime} \Longrightarrow B=B^{\prime \prime} \Longrightarrow C=? F B^{\prime \prime}\left(\vdash c_{2}\right) \Longrightarrow$ Some $\left(C^{\prime}, Z^{\prime}\right)=(U$, False $) \models c_{2}\left(\subseteq B^{\prime \prime}, Y^{\prime}\right) \Longrightarrow$ $C^{\prime} \subseteq ? F B^{\prime \prime}\left(\vdash c_{2}\right)$ and
$F: \wedge B B^{\prime \prime} . B=? F A\left(\vdash c_{1}\right) \Longrightarrow B^{\prime \prime}=B^{\prime} \Longrightarrow B^{\prime} \subseteq ? F A\left(\vdash c_{1}\right)$ and
G : Some $\left(C^{\prime}, Z^{\prime}\right)=(U$, False $) \models c_{2}\left(\subseteq B^{\prime}, Y^{\prime}\right)$ and
$H: s_{3} \in C^{\prime}$
have ? P $s_{3} A\left(\vdash c_{1} \sqcup_{@} \vdash c_{2}\right)$
proof -
obtain s_{2} and t_{2} and $y s_{2}$ where
$I: s_{3}=\left(\lambda x\right.$. case ?f ys $s_{2} x$ of
None $\Rightarrow s_{2} x \mid$ Some None $\Rightarrow t_{2} x \mid$ Some $($ Some $\left.i) \Rightarrow i\right) \wedge$
$s_{2} \in B^{\prime} \wedge y s_{2} \in \vdash c_{2}$
using E and G and H by fastforce
from this obtain s_{1} and t_{1} and $y s_{1}$ where
$J: s_{2}=\left(\lambda x\right.$. case ?f $y s_{1} x$ of
None $\Rightarrow s_{1} x \mid$ Some None $\Rightarrow t_{1} x \mid$ Some $($ Some $\left.i) \Rightarrow i\right) \wedge$
$s_{1} \in A \wedge y s_{1} \in \vdash c_{1}$
using F by fastforce
let ? $t=\lambda x$. case ?f $y s_{2} x$ of
None \Rightarrow case?f ys $s_{1} x$ of Some None $\Rightarrow t_{1} x|-\Rightarrow 0|$
Some None $\Rightarrow t_{2} x \mid-\Rightarrow 0$

```
            from I and J have s}\mp@subsup{s}{3}{}=(\lambdax.case ?f (ys @ @ ys ) x of
            None }=>\mp@subsup{s}{1}{}x|\mathrm{ Some None }=>\mathrm{ ?t }x|\mathrm{ Some (Some i) }=>i
            by (fastforce dest: last-in-set simp: Let-def ctyping1-seq-last
            split: option.split)
            moreover have ys
                by (simp add: ctyping1-merge-append-in I J)
            ultimately show ?thesis
            using }J\mathrm{ by fastforce
    qed
}
note E = this
from }A\mathrm{ and }B\mathrm{ and }C\mathrm{ and D show ?thesis
    by (auto simp: ctyping1-def split:option.split-asm, erule-tac E)
qed
lemma ctyping1-ctyping2-fst-if:
    assumes
    A: \bigwedgeU U' p B B B B C C C C C ' }\mp@subsup{\}{1}{\prime}\mp@subsup{Y}{1}{\prime}
        (U', p)=(insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
            (B1, B2) = p\Longrightarrow(C C , Y })=\vdash\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{},X)
            Some (C C1', Y ' )}=(\mp@subsup{U}{}{\prime},\mathrm{ False ) }\models\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow\mp@subsup{C}{1}{\prime}\subseteq\mp@subsup{C}{1}{}\mathrm{ and
    B: \bigwedgeU'' p B B B B C C C C C ' }\mp@subsup{Y}{2}{\prime}\mp@subsup{Y}{2}{\prime}\mp@subsup{}{}{\prime}
        (U',
            (B1, B2) = p\Longrightarrow(\mp@subsup{C}{2}{},\mp@subsup{Y}{2}{})=\vdash\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{},X)\Longrightarrow
            Some (C}\mp@subsup{C}{2}{\prime},\mp@subsup{Y}{2}{\prime})=(\mp@subsup{U}{}{\prime},\mathrm{ False ) }\models\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{\prime},X)\Longrightarrow\mp@subsup{C}{2}{\prime}\subseteq\mp@subsup{C}{2}{}\mathrm{ and
    C:(C,Y)}=\vdashIF b THEN c c ELSE con (\subseteqA,X) and
    D:Some (C', Y') = (U, False) \modelsIF b THEN c
    shows C'\subseteqC
proof -
    let ?f = foldl (;;) ( }\lambdax\mathrm{ . None)
    let ?P = \lambdar A S. \existsfs. (\existst.r=( \lambdax. case f x of
        None }=>sx|\mathrm{ Some None }=>tx|\mathrm{ Some (Some i) mi))^
    (\existsys.f= ?f ys ^ ys }\inS)\wedges\in
    let ?F = \lambdaAS. {r.?PrAS}
    let ?S S = \lambdaf. if f=Some True \veef=None then }\vdash\mp@subsup{c}{1}{}\mathrm{ else {}
```



```
    {
        fix s}\mp@subsup{s}{}{\prime}\mp@subsup{B}{1}{}\mp@subsup{B}{2}{}\mp@subsup{C}{1}{
        assume
            E: \bigwedgeU'' B1' }\mp@subsup{}{}{\prime}\mp@subsup{C}{1}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{C}{1}{\prime}\mp@subsup{}{}{\prime\prime}.\mp@subsup{U}{}{\prime}= insert (Univ? A X, bvars b) U
                B}\mp@subsup{}{\prime}{\prime}=\mp@subsup{B}{1}{\prime}\Longrightarrow\mp@subsup{C}{1}{\prime}=? ?F B B (\vdash\mp@subsup{c}{1}{})\Longrightarrow\mp@subsup{C}{1}{\prime\prime}=\mp@subsup{C}{1}{}
                    C1\subseteq?F B B (\vdashcc) and
            F:\modelsb(\subseteqA,X)=(B1, B2) and
            G: s'\in C C 
    have ?P s'A(let f}=\vdashb\mathrm{ in ?S S f ப?S S f)
    proof -
            obtain s and t and ys where
                H: s' = (\lambdax. case ?f ys x of
                    None = s x | Some None = tx| Some (Some i) = i)^
```

```
                s\in\mp@subsup{B}{1}{}\wedgeys\in\vdash\mp@subsup{c}{1}{}
                using E and G by fastforce
    moreover from F and this have s\inA
                by (blast dest: btyping2-un-eq)
    moreover from F and H have }\vdashb\not=\mathrm{ Some False
            by (auto dest: btyping1-btyping2 [where A=A and X=X])
    hence ys }\in(let f=\vdashb in??S f f ? SS f
            using H by (auto simp: Let-def)
    hence ys}\in(let f=\vdashb in?? S f \sqcup ? S S f)
        by (auto simp: Let-def intro: ctyping1-merge-in)
            ultimately show ?thesis
            by blast
    qed
}
note E = this
{
    fix s}\mp@subsup{s}{}{\prime}\mp@subsup{B}{1}{}\mp@subsup{B}{2}{}\mp@subsup{C}{2}{
    assume
```



```
            B2}\mp@subsup{}{}{\prime}=\mp@subsup{B}{1}{}\Longrightarrow\mp@subsup{C}{2}{\prime}=? ?F B B (\vdash\mp@subsup{c}{2}{})\Longrightarrow\mp@subsup{C}{2}{\prime\prime}=\mp@subsup{C}{2}{}
            C
        G:\modelsb(\subseteqA,X)=(B1, B2) and
        H: s
    have ?P s'A(let f}=\vdashb\mathrm{ in ?S S f ப?S S f)
    proof -
        obtain s and t and ys where
            I: s' = ( \lambdax.case ?f ys x of
                None }=>sx|\mathrm{ Some None }=>tx|\mathrm{ Some (Some i) }=>\mathrm{ \) }
            s\in\mp@subsup{B}{2}{}\wedge ys\in\vdash c
        using F and H by fastforce
    moreover from G}\mathrm{ and this have s}\in
        by (blast dest: btyping2-un-eq)
    moreover from G and I have }\vdashb\not=Some Tru
        by (auto dest: btyping1-btyping2 [where A=A and X=X])
    hence ys \in(let f=\vdashb in?? S f f\cup?S S f)
            using I by (auto simp: Let-def)
    hence ys \in(let f=\vdashb in ?S S f \sqcup?S S f)
            by (auto simp: Let-def intro: ctyping1-merge-in)
            ultimately show ?thesis
            by blast
    qed
}
note F= this
from }A\mathrm{ and }B\mathrm{ and }C\mathrm{ and D show ?thesis
    by (auto simp: ctyping1-def split: option.split-asm prod.split-asm,
    erule-tac [2] F, erule-tac E)
qed
lemma ctyping1-ctyping2-fst-while:
```

```
assumes
    A:(C,Y) =\vdash WHILE b DO c (\subseteqA,X) and
    B:Some (C', Y') = (U, False) \modelsWHILE b DO c (\subseteqA,X)
    shows C}\mp@subsup{C}{}{\prime}\subseteq
proof -
    let ?f = foldl (;;) ( }\lambdax.None
    let ?P = \lambdar A S. \existsfs. (\existst.r= (\lambdax. case f x of
    None }=>sx|\mathrm{ Some None }=>tx|\mathrm{ Some (Some i) mi))^
    (\existsys.f=?f ys }\wedge ys\inS)\wedges\in
    let ?F = \lambdaAS.{r.?P r A S}
    let ?S S = \lambdaf. if f=Some False \vee }f=\mathrm{ None then {[]} else {}
    let ?S S }=\lambdaf\mathrm{ . if f}=\mathrm{ Some True }\veef=None then \vdashc else {
    {
```



```
    assume
        C:\modelsb(\subseteqA,X)=( 
        D:\modelsb(\subseteq?F B ( }
            fx\not=Some None ^ (fx=None \longrightarrowx\inX)})=(B\mp@subsup{B}{1}{\prime},\mp@subsup{B}{2}{\prime})
        (is }=-(\subseteq?C,?Y)=-
    assume s}\mp@subsup{s}{}{\prime}\in\mp@subsup{C}{}{\prime}\mathrm{ and Some ( }\mp@subsup{C}{}{\prime},\mp@subsup{Y}{}{\prime})=(\mathrm{ if ( }\foralls\inUniv? A X 
        Univ? ?C ?Y. \forallx b bvars b. All (interf s (dom x)))^
        (\forallp\inU.\forallBW.p=(B,W)\longrightarrow(\foralls\inB.}\forallx\inW.All (interf s (dom x))))
        then Some ( }\mp@subsup{B}{2}{}\cup\mp@subsup{B}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ , Univ?? B2 }X\cap\mathrm{ ?Y)
        else None)
    hence }\mp@subsup{s}{}{\prime}\in\mp@subsup{B}{2}{}\cup\mp@subsup{B}{2}{\prime
    by (simp split: if-split-asm)
    hence ?P s'A(let f=\vdashb in ?S S f U?S S f)
    proof
    assume E: s}\mp@subsup{s}{}{\prime}\in\mp@subsup{B}{2}{
    hence s'\inA
        using C by (blast dest: btyping2-un-eq)
    moreover from C and E have \vdashb\not=Some True
        by (auto dest: btyping1-btyping2 [where A=A and X=X])
    hence [] \in(let f=\vdashb in ?S S f \cup?S S f)
        by (auto simp: Let-def)
    ultimately show ?thesis
        by force
    next
    assume s'\in B ' '
    then obtain s and t and ys where
        E: s}=(\lambdax\mathrm{ . case ?f ys x of
            None = s x | Some None }=>tx|\mathrm{ Some (Some i) # i)^
            s\in\mp@subsup{B}{1}{}\wedge ys }\in
        using D by (blast dest: btyping2-un-eq)
    moreover from C and this have s\inA
        by (blast dest: btyping2-un-eq)
    moreover from C and E have }\vdashb\not=Some Fals
        by (auto dest: btyping1-btyping2 [where A=A and X=X])
    hence ys\in(let f=\vdashb in ?S S f \cup?S S f)
```

```
            using E by (auto simp: Let-def)
            ultimately show ?thesis
            by blast
    qed
}
note C= this
from }A\mathrm{ and }B\mathrm{ show ?thesis
    by (auto intro: C simp: ctyping1-def
        split: option.split-asm prod.split-asm)
qed
lemma ctyping1-ctyping2-fst:
    \llbracket(C,Z)}=\vdashc(\subseteqA,X);Some (C', Z')=(U, False) \modelsc(\subseteqA,X)\rrbracket
        C'\subseteqC
proof (induction (U, False) с A X arbitrary: C C' Z Z'}
rule: ctyping2.induct)
    fix A X C C' Z Z'}U\mp@subsup{c}{1}{\prime}\mp@subsup{c}{2}{
    show
    \llbracket^C C'Z Z'.
        (C,Z) =\vdash c c (\subseteqA,X)\Longrightarrow
        Some (C', Z')=(U, False) \modelsc
        C'\subseteqC;
    \pBYC C'Z Z'.(U, False) }\models\mp@subsup{c}{1}{}(\subseteqA,X)=\mathrm{ Some p }
        (B,Y)=p\Longrightarrow(C,Z)=\vdash\mp@subsup{c}{2}{}(\subseteqB,Y)\Longrightarrow
        Some }(\mp@subsup{C}{}{\prime},\mp@subsup{Z}{}{\prime})=(U,\mathrm{ False })\models\mp@subsup{c}{2}{}(\subseteqB,Y)
        C'\subseteqC;
    (C,Z)=\vdash c
    Some (C', Z') = (U, False) \models c c ; ; c c ( }\subseteqA,X)\rrbracket
        C'\subseteqC
    by (rule ctyping1-ctyping2-fst-seq)
next
    fix AXC C'Z Z'Ub c
    show
    \llbracket\U'㓦 p B B B B C C ' Z Z'.
        (U',
        (B1, B2) = p\Longrightarrow(C,Z)=\vdash\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow
        Some (C', Z') =(U', False) }\models\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{\prime},X)
        C'\subseteqC;
    \U' p B B B B C C' Z Z'.
        (U', p)=(insert (Univ? A X, bvars b) U,\modelsb(\subseteqA,X))\Longrightarrow
        (B1, B2) = p\Longrightarrow(C,Z)=\vdash\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{},X)\Longrightarrow
        Some (C', Z')=(U', False)}\vDash\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{\prime},X)
        C'\subseteqC;
    (C,Z)}=\vdashIF b THEN c. ELSE c. (\subseteqA,X)
    Some }(\mp@subsup{C}{}{\prime},\mp@subsup{Z}{}{\prime})=(U,\mathrm{ False )}\modelsIF b THEN c ELSE coc (\subseteqA,X)\rrbracket
        C'\subseteqC
    by (rule ctyping1-ctyping2-fst-if)
next
    fix }AXB\mp@subsup{B}{}{\prime}Z\mp@subsup{Z}{}{\prime}Ub
```

```
show
```



```
        (B},\mp@subsup{B}{2}{\prime})=\vDashb(\subseteqA,X)
    (C,Y)}=\vdashc(\subseteq\mp@subsup{B}{1}{},X)
    (B\mp@subsup{B}{1}{\prime},\mp@subsup{B}{2}{\prime})})=\modelsb(\subseteqC,Y)
    \forall(B,W)\ininsert (Univ? A X \cup Univ? C Y, bvars b) U.
        B:dom' W}\rightsquigarrowUNIV
        (B,Z)}=\vdashc(\subseteq\mp@subsup{B}{1}{},X)
    Some (B', Z')=({}, False) \modelsc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow
        B'\subseteqB;
    \ B1 B B C Y B 午 ' B2 ' B B' Z Z'.
        (B},\mp@subsup{B}{2}{})=\modelsb(\subseteqA,X)
    (C,Y)}=\vdashc(\subseteq\mp@subsup{B}{1}{},X)
    (B\mp@subsup{}{1}{\prime},\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)\Longrightarrow
    \forall(B,W)\in insert (Univ? A X \cup Univ? C Y, bvars b) U.
            B:dom`}W`UNIV
        (B,Z)}=\vdashc(\subseteq\mp@subsup{B}{1}{\prime},Y)
        Some (B', Z')}=({},\mathrm{ False )}\vDashc(\subseteq\mp@subsup{B}{1}{\prime}\mp@subsup{}{}{\prime},Y)
        B'\subseteqB;
    (B,Z) = \vdash WHILE b DO c (\subseteqA,X);
    Some (B', Z')=(U, False)}=\mathrm{ WHILE b DO c (`A,X)】 व
        B ^ { \prime } \subseteq B
    by (rule ctyping1-ctyping2-fst-while)
qed (simp add: ctyping1-def, auto)
lemma ctyping1-ctyping2-snd-assign [elim!]:
\llbracket(C,Z)=\vdashx::=a(\subseteqA,X);
    Some }(\mp@subsup{C}{}{\prime},\mp@subsup{Z}{}{\prime})=(U,\mathrm{ False })\modelsx::=a(\subseteqA,X)\rrbracket\LongrightarrowZ\subseteq\mp@subsup{Z}{}{\prime
by (auto simp: ctyping1-def ctyping1-seq-def split: if-split-asm)
lemma ctyping1-ctyping2-snd-seq:
    assumes
    A: \bigwedgeB B' Y Y'.(B,Y)=\vdash c
        Some (B', Y') = (U, False) \models\mp@subsup{c}{1}{}(\subseteqA,X)\LongrightarrowY\subseteq\mp@subsup{Y}{}{\prime}\mathrm{ and}
    B:\bigwedgepBYC C'Z Z'.(U, False) }\models\mp@subsup{c}{1}{}(\subseteqA,X)=\mathrm{ Some p }
        (B,Y)=p\Longrightarrow(C,Z)=\vdash\mp@subsup{c}{2}{}(\subseteqB,Y)\Longrightarrow
            Some (C', Z') = (U, False) \vDashcc}(\subseteqB,Y)\LongrightarrowZ\subseteq\mp@subsup{Z}{}{\prime}\mathrm{ and
    C:(C,Z)=\vdash c
    D:Some (C',}\mp@subsup{Z}{}{\prime})=(U,\mathrm{ False )}\models\mp@subsup{c}{1}{};;\mp@subsup{c}{2}{}(\subseteqA,X
    shows Z\subseteq\mp@subsup{Z}{}{\prime}
proof -
    let ?f = foldl (;;) ( }\lambdax.None
    let ?F = \lambdaA S.{r. \existsf s. ( }\exists\textrm{t}.r=(\lambdax.case fx of
    None }=>sx|\mathrm{ Some None }=>tx|\mathrm{ Some (Some i) mi))^
    (\existsys.f=?f ys ^ ys \inS)^s\inA}
    let ?G = \lambdaXS.{x.\forallf\in{?f ys | ys.ys }\inS}\mathrm{ .
    fx\not= Some None ^ (fx=None \longrightarrowx\inX)}
    {
```

```
fix x B Y
assume }\\mp@subsup{B}{}{\prime}\mp@subsup{B}{}{\prime\prime}C\mp@subsup{C}{}{\prime}\mp@subsup{Z}{}{\prime}.B=\mp@subsup{B}{}{\prime}\Longrightarrow\mp@subsup{B}{}{\prime\prime}=\mp@subsup{B}{}{\prime}\LongrightarrowC=?F\mp@subsup{B}{}{\prime}(\vdash\mp@subsup{c}{2}{})
    Some }(\mp@subsup{C}{}{\prime},\mp@subsup{Z}{}{\prime})=(U,\mathrm{ False })\models\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{}{\prime},Y)
        Univ?? B'}(?GY(\vdash\mp@subsup{c}{2}{}))\subseteq\mp@subsup{Z}{}{\prime}\mathrm{ and
    Some (C', Z') = (U, False) }=\mp@subsup{c}{2}{}(\subseteqB,Y
hence E:Univ?? B (?G Y (\vdash c c ))\subseteq 林
    by simp
assume }\C\mp@subsup{B}{}{\prime}.C=?FA(\vdash\mp@subsup{c}{1}{})\Longrightarrow\mp@subsup{B}{}{\prime}=B
    Univ?? A (?G X (\vdash
hence F:Univ?? A (?G X (\vdash
    by simp
assume G: }\forallf.(\existszs.f=\mathrm{ ?f zs }\wedgezs\in\vdash\mp@subsup{c}{1}{}\mp@subsup{\sqcup}{@}{}\vdash\mp@subsup{c}{2}{})
    fx\not=Some None ^(fx=None }\longrightarrowx\inX
{
    fix ys
    have }\vdash\mp@subsup{c}{1}{}\not={
        by (rule ctyping1-aux-nonempty)
    then obtain xs where xs}\in\vdash\mp@subsup{c}{1}{
        by blast
    moreover assume ys }\in\vdash\mp@subsup{c}{2}{
    ultimately have xs @ ys }\in\vdash\mp@subsup{c}{1}{}\mp@subsup{\sqcup}{@}{}\vdash\mp@subsup{c}{2}{
        by (rule ctyping1-merge-append-in)
    moreover assume ?f ys x=Some None
    hence ?f (xs @ ys) x= Some None
        by (simp add: Let-def ctyping1-seq-last split: if-split-asm)
    ultimately have False
        using G by blast
}
hence }H:\forallys\in\vdash\mp@subsup{c}{2}{}\mathrm{ . ?f ys }x\not=\mathrm{ Some None
    by blast
{
    fix xs ys
    assume xs \in\vdash c
    hence xs@ys @\vdash c
        by (rule ctyping1-merge-append-in)
    moreover assume ?f xs x=Some None and ?f ys }x=\mathrm{ None
    hence ?f (xs @ ys) x= Some None
        by (auto dest: last-in-set simp: Let-def ctyping1-seq-last
        split: if-split-asm)
    ultimately have ( }\exists\mathrm{ ys }\in\vdash\mp@subsup{c}{2}{}\mathrm{ . ?f ys }x=\mathrm{ None) }
        (}\forallxs\in\vdash\mp@subsup{c}{1}{}\mathrm{ . ?f xs }x\not=\mathrm{ Some None)
        using G by blast
}
hence I:(\existsys\in\vdash\mp@subsup{c}{2}{}\mathrm{ . ?f ys }x=\mathrm{ None )}\longrightarrow
    (}\forallxs\in\vdash\mp@subsup{c}{1}{}\mathrm{ . ?f xs }x\not=\mathrm{ Some None)
    by blast
{
    fix xs ys
    assume xs \in\vdash c
```

```
    hencexs@ys}\in\vdash\mp@subsup{c}{1}{}\mp@subsup{\sqcup}{@}{}\vdash\mp@subsup{c}{2}{
        by (rule ctyping1-merge-append-in)
    moreover assume ?f xs x=None and K: ?f ys }x=\mathrm{ None
    hence ?f (xs @ ys) x=None
        by (simp add: Let-def ctyping1-seq-last split: if-split-asm)
    ultimately have }x\in
        using G by blast
    moreover have }\forallxs\in\vdash\mp@subsup{c}{1}{}\mathrm{ . ?f xs x}\not=\mathrm{ Some None
        using I and J and K by blast
    ultimately have }x\in\mp@subsup{Z}{}{\prime
        using E and F and H by fastforce
    }
    moreover {
    fix ys
    assume ys }\in\vdash\mp@subsup{c}{2}{}\mathrm{ and ?f ys }x=\mathrm{ None
    hence }\forallxs\in\vdash\mp@subsup{c}{1}{}\mathrm{ . ?f xs }x\not=\mathrm{ Some None
        using I by blast
    moreover assume }\forallxs\in\vdash\mp@subsup{c}{1}{}.\existsv\mathrm{ . ?f xs }x=\mathrm{ Some v
    ultimately have }x\in\mp@subsup{Z}{}{\prime
    using E and F}\mathrm{ and }H\mathrm{ by fastforce
    }
    moreover {
    assume }\forallys\in\vdash\mp@subsup{c}{2}{}.\existsv\mathrm{ . ?f ys }x=\mathrm{ Some v
    hence }x\in\mp@subsup{Z}{}{\prime
        using E and H by fastforce
    }
    ultimately have }x\in\mp@subsup{Z}{}{\prime
    by (cases \existsys\in\vdash c. . ?f ys x=None,
        cases \existsxs\in\vdash c. . ?f xs x=None, auto)
    moreover assume x\not\inZ'
    ultimately have False
    by contradiction
}
note E = this
from }A\mathrm{ and }B\mathrm{ and }C\mathrm{ and D show ?thesis
    by (auto dest: ctyping2-fst-empty ctyping2-fst-empty [OF sym]
    simp:ctyping1-def split:option.split-asm, erule-tac E)
qed
lemma ctyping1-ctyping2-snd-if:
    assumes
    A: \bigwedgeU'' p B B B B C C C C }\mp@subsup{}{1}{\prime}\mp@subsup{Y}{1}{\prime}\mp@subsup{Y}{1}{\prime}
    (U', p) = (insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
    (B1, B2) = p\Longrightarrow(C C , Y })=\vdash\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{},X)
            Some (C\mp@subsup{1}{1}{\prime},\mp@subsup{Y}{1}{\prime}})=(\mp@subsup{U}{}{\prime},\mathrm{ False })\models\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{\prime},X)\Longrightarrow\mp@subsup{Y}{1}{}\subseteq\mp@subsup{Y}{1}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and
```



```
    (U', p)=(insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
    (B1, B2) = p\Longrightarrow(\mp@subsup{C}{2}{},\mp@subsup{Y}{2}{})=\vdash\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{},X)\Longrightarrow
                        Some (C}\mp@subsup{C}{2}{\prime},\mp@subsup{Y}{2}{\prime})=(\mp@subsup{U}{}{\prime},\mathrm{ False })\models\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{\prime},X)\Longrightarrow\mp@subsup{Y}{2}{}\subseteq\mp@subsup{Y}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and
```

```
    C:(C,Y) = \vdashIF b THEN c
    D:Some (C', Y') = (U, False) \modelsIF b THEN c
    shows }Y\subseteq\mp@subsup{Y}{}{\prime
proof -
    let ?f = foldl (;;) ( }\lambdax.None
    let ?F = \lambdaA S.{r.\existsfs.(\existst.r=( \x. case f x of
            None }=>sx|\mathrm{ Some None }=>tx|\mathrm{ Some (Some i) mi))^
            (\existsys.f=?f ys ^ ys \inS)^s\inA}
    let ?G=\lambdaXS.{x.}\forallff\in{?f ys|ys.ys\inS}
    fx\not= Some None ^(fx=None \longrightarrowx\inX)}
    let ?S S = \lambdaf. if f=Some True \veef=None then }\vdash\mp@subsup{c}{1}{}\mathrm{ else {}
    let ?S S = \lambdaf. if f=Some False \veef=None then }\vdash\mp@subsup{c}{2}{}\mathrm{ else {}
    let ?P = \lambdax.}\forallf.(\existsys.f=?f ys ^ ys \in(let f=\vdashb in ?S S f \sqcup ?S S f))
    fx\not=Some None ^(fx=None \longrightarrowx 位)
    let ?U = insert (Univ? A X, bvars b) U
    {
    fix B}\mp@subsup{B}{1}{}\mp@subsup{B}{2}{}\mp@subsup{Y}{1}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{Y}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{C}{1}{\prime}\mp@subsup{}{}{\prime}:: state set and C C ' ':: state se
    assume }\\mp@subsup{U}{}{\prime}\mp@subsup{B}{1}{\prime}\mp@subsup{C}{1}{}\mp@subsup{C}{1}{\prime\prime}.,\mp@subsup{U}{}{\prime}=?U\Longrightarrow\mp@subsup{B}{1}{\prime}=\mp@subsup{B}{1}{}
```



```
    hence E:Univ?? B1 (?G X (\vdash
        by simp
    moreover assume }\\mp@subsup{U}{}{\prime}\mp@subsup{B}{1}{\prime}\mp@subsup{C}{2}{}\mp@subsup{C}{2}{\prime\prime}.,\mp@subsup{U}{}{\prime}=? ?U\Longrightarrow\mp@subsup{B}{1}{\prime}=\mp@subsup{B}{1}{}
        C}=\mp@code{? FF B 隹 (\vdash
    hence F:Univ?? B
    by simp
    moreover assume G: \modelsb(\subseteqA,X)=(B},\mp@subsup{B}{1}{},\mp@subsup{B}{2}{}
    moreover {
    fix }
    assume ?P }
    have }x\in\mp@subsup{Y}{1}{\prime
    proof (cases }\vdashb=\mathrm{ Some False)
        case True
        with E and G show ?thesis
            by (drule-tac btyping1-btyping2 [where A=A and X=X], auto)
    next
        case False
        {
            fix xs
            assume xs \in\vdash c
            with False have xs \in(let f=\vdashb in ? S S f \sqcup ? S S f f)
                by (auto intro: ctyping1-merge-in simp: Let-def)
            hence ?f xs x\not= Some None ^(?f xs x = None \longrightarrowx\inX)
                using <?P x〉 by auto
    }
    hence }x\in\mathrm{ Univ?? B}\mp@subsup{B}{1}{}(?GX(\vdash\mp@subsup{c}{1}{})
            by auto
            thus ?thesis
                using E ..
    qed
```



```
moreover {
    fix }
    assume ?P }
    have }x\in\mp@subsup{Y}{2}{\prime
    proof (cases }\vdashb=Some True
        case True
        with F}\mathrm{ and G show ?thesis
            by (drule-tac btyping1-btyping2 [where A=A and X = X], auto)
    next
        case False
        {
            fix ys
            assume ys }\in\vdash\mp@subsup{c}{2}{
            with False have ys\in(let f=\vdashb in ?S S f }f\mathrm{ U?S S f)
                by (auto intro: ctyping1-merge-in simp: Let-def)
            hence ?f ys }x\not=\mathrm{ Some None }\wedge(?f ys x=None \longrightarrowx\inX
            using <?P x by auto
        }
        hence x \inUniv?? B }\mp@subsup{B}{2}{}(?GX(\vdash\mp@subsup{c}{2}{})
            by auto
        thus ?thesis
            using F ..
    qed
}
ultimately have ( }A={}\longrightarrowUNIV\subseteq\mp@subsup{Y}{1}{\prime}^^UNIV\subseteq\mp@subsup{Y}{2}{}\mp@subsup{}{}{\prime})
    (A\not={}\longrightarrow{x.?P x}\subseteq Y ' '^ ^{x. ?P }x}\subseteq\mp@subsup{Y}{2}{\prime}
    by (auto simp: btyping2-fst-empty)
}
note E = this
from }A\mathrm{ and }B\mathrm{ and }C\mathrm{ and D show ?thesis
    by (clarsimp simp: ctyping1-def split: option.split-asm prod.split-asm,
    erule-tac E)
qed
lemma ctyping1-ctyping2-snd-while:
    assumes
    A:(C,Y) =\vdash WHILE b DO c (\subseteqA,X) and
    B:Some (C', Y')=(U, False) \modelsWHILE b DO c (\subseteqA,X)
    shows Y\subseteq\mp@subsup{Y}{}{\prime}
proof -
    let ?f = foldl (;;) ( }\lambdax.None
    let ?F = \lambdaAS.{r.\existsfs.(\existst.r=(\lambdax.case f x of
        None }=>sx|\mathrm{ Some None }=>tx|\mathrm{ Some (Some i) mi))^
        (\existsys.f=?f ys ^ ys \inS)^s\inA}
    let ?S S = \f. if f=Some False }\veef=None then {[]} else {
    let ?S S }=\lambdaf\mathrm{ . if }f=\mathrm{ Some True }\veef=None then \vdashc else {
    let ?P = \lambdax.}\forallf.(\existsys.f=?f ys ^ ys \in(let f=\vdashb in ?S S f U ?S S f)) 
    fx\not=Some None ^(fx=None \longrightarrowx 位)
```

```
let ?Y = \lambdaA. Univ?? A {x.\forallf\in{?f ys |ys. ys }\in\vdashc}
    fx\not= Some None ^ (fx=None \longrightarrowx\inX)}
{
fix }\mp@subsup{B}{1}{}\mp@subsup{B}{2}{}\mp@subsup{B}{1}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{B}{2}{\prime
assume C: \modelsb(\subseteqA,X)=(B1, B2)
assume Some (C', Y') = (if ( }\foralls\inUniv? A X \cup
    Univ? (?F B B (\vdashc)) (?Y B 有. \forallx b bvars b. All (interf s (dom x))) ^
    (\forallp\inU.\forallBW.p=(B,W)\longrightarrow(\foralls\inB.\forallx\inW.All (interf s (dom x))))
        then Some ( }\mp@subsup{B}{2}{}\cup\mp@subsup{B}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ , Univ?? B2 X }\cap\mathrm{ ?Y B }\mp@subsup{B}{1}{}
        else None)
    hence D: Y' = Univ?? B }\mp@subsup{B}{2}{}X\cap\mathrm{ ? Y B B
        by (simp split: if-split-asm)
{
    fix }
    assume A={}
    hence }x\in\mp@subsup{Y}{}{\prime
        using C and D by (simp add: btyping2-fst-empty)
}
moreover {
    fix }
    assume ?P x
    {
        assume }\vdashb\not=\mathrm{ Some True
        hence [] \in(let f=\vdashb in ?S S f U ?S S f)
            by (auto simp: Let-def)
        hence }x\in
            using <?P x\rangle by auto
    }
    hence E:\vdashb\not=Some True }\longrightarrowx\inUniv?? B2 X
        by auto
    {
        fix ys
        assume }\vdashb\not=\mathrm{ Some False and ys }\in\vdash
        hence ys\in(let f=\vdashb in ?S S f\cup?SS f)
            by (auto simp: Let-def)
        hence ?f ys }x\not=\mathrm{ Some None }\wedge(?f ys x=None \longrightarrowx\inX
            using <?P x\rangle by auto
    }
    hence F:\vdashb\not= Some False }\longrightarrowx\in?Y Y B
        by auto
    have }x\in\mp@subsup{Y}{}{\prime
    proof (cases }\vdash\mathrm{ b)
        case None
        thus ?thesis
            using D and E and F by simp
    next
        case (Some v)
        show ?thesis
        proof (cases v)
```

```
                    case True
            with C and D and F and Some show ?thesis
                by (drule-tac btyping1-btyping2 [where A=A and X=X], simp)
            next
            case False
            with C and D and E and Some show ?thesis
                by (drule-tac btyping1-btyping2 [where A=A and X=X], simp)
        qed
        qed
    }
    ultimately have }(A={}\longrightarrowUNIV\subseteq\mp@subsup{Y}{}{\prime})\wedge(A\not={}\longrightarrow{x.?P x}\subseteq Y'
        by auto
}
note C= this
from }A\mathrm{ and B show ?thesis
    by (auto intro!: C simp: ctyping1-def
        split: option.split-asm prod.split-asm)
qed
lemma ctyping1-ctyping2-snd:
    \llbracket(C,Z)=\vdashc(\subseteqA,X);Some (C', Z')=(U,False)\modelsc(\subseteqA,X)\rrbracket\Longrightarrow
    Z\subseteq\mp@subsup{Z}{}{\prime}
proof (induction (U, False) с A X arbitrary: C C' Z Z' U
rule: ctyping2.induct)
    fix A XC C' Z Z' U c1 c
    show
    \llbracket^B B' Y Y'.
        (B,Y) = \vdash c. (\subseteqA,X)\Longrightarrow
            Some (B', Y') = (U, False) \models c
            Y\subseteq\mp@subsup{Y}{}{\prime};
            \pBYC C' Z Z'.(U, False) }=\mp@subsup{c}{1}{}(\subseteqA,X)=\mathrm{ Some p }
                    (B,Y)=p\Longrightarrow(C,Z)=\vdash c
            Some (C', Z') = (U, False) \modelsc. c}(\subseteqB,Y)
            Z\subseteq\mp@subsup{Z}{}{\prime};
            (C,\overline{Z})=\vdash\mp@subsup{c}{1}{};;\mp@subsup{c}{2}{}(\subseteqA,X);
            Some (C', Z')=(U, False)}\models\mp@subsup{c}{1}{};;\mp@subsup{c}{2}{}(\subseteqA,X)\rrbracket
            Z\subseteq\mp@subsup{Z}{}{\prime}
    by (rule ctyping1-ctyping2-snd-seq)
next
    fix AXC C'Z Z'Ub c
    show
            \llbracket\U'㕵 p B B B B C C' Z Z'.
                (U', p)=(insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
            (B1, B2) = p\Longrightarrow(C,Z)=\vdash\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow
            Some (C', Z') =(U', False)}\vDash\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{\prime},X)
            Z\subseteq\mp@subsup{Z}{}{\prime};
            \U'
            (U', p)=(insert (Univ? A X, bvars b) U,\modelsb(\subseteqA,X))\Longrightarrow
            (B},\mp@subsup{B}{2}{})=p\Longrightarrow(C,Z)=\vdash\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{},X)
```

```
        Some \(\left(C^{\prime}, Z^{\prime}\right)=\left(U^{\prime}\right.\), False \() \models c_{2}\left(\subseteq B_{2}, X\right) \Longrightarrow\)
        \(Z \subseteq Z^{\prime}\);
    \((C, Z)=\vdash I F\) b THEN \(c_{1} E L S E c_{2}(\subseteq A, X)\);
    Some \(\left(C^{\prime}, Z^{\prime}\right)=(U\), False \() \models\) IF b THEN \(c_{1} E L S E c_{2}(\subseteq A, X) \rrbracket \Longrightarrow\)
        \(Z \subseteq Z^{\prime}\)
    by (rule ctyping1-ctyping2-snd-if)
next
    fix \(A X B B^{\prime} Z Z^{\prime} U b c\)
    show
    \(\llbracket \bigwedge B_{1} B_{2} C Y B_{1}{ }^{\prime} B_{2}{ }^{\prime} B B^{\prime} Z Z^{\prime}\).
        \(\left(B_{1}, B_{2}\right)=\models b(\subseteq A, X) \Longrightarrow\)
        \((C, Y)=\vdash c\left(\subseteq B_{1}, X\right) \Longrightarrow\)
        \(\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right)=\models b(\subseteq C, Y) \Longrightarrow\)
        \(\forall(B, W) \in\) insert (Univ? A \(X \cup\) Univ? \(C Y\), bvars b) \(U\).
        B: dom ' \(W \rightsquigarrow U N I V \Longrightarrow\)
        \((B, Z)=\vdash c\left(\subseteq B_{1}, X\right) \Longrightarrow\)
        Some \(\left(B^{\prime}, Z^{\prime}\right)=(\{ \}\), False \() \models c\left(\subseteq B_{1}, X\right) \Longrightarrow\)
        \(Z \subseteq Z^{\prime}\);
    \(\wedge B_{1} B_{2} C Y B_{1}{ }^{\prime} B_{2}{ }^{\prime} B B^{\prime} Z Z^{\prime}\).
        \(\left(B_{1}, B_{2}\right)=\vDash b(\subseteq A, X) \Longrightarrow\)
        \((C, Y)=\vdash c\left(\subseteq B_{1}, X\right) \Longrightarrow\)
        \(\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right)=\models b(\subseteq C, Y) \Longrightarrow\)
        \(\forall(B, W) \in\) insert (Univ? A \(X \cup\) Univ? \(C Y\), bvars b) \(U\).
            \(B:\) dom ' \(W \rightsquigarrow U N I V \Longrightarrow\)
        \((B, Z)=\vdash c\left(\subseteq B_{1}{ }^{\prime}, Y\right) \Longrightarrow\)
        Some \(\left(B^{\prime}, Z^{\prime}\right)=(\{ \}\), False \() \models c\left(\subseteq B_{1}{ }^{\prime}, Y\right) \Longrightarrow\)
        \(Z \subseteq Z^{\prime}\);
    \((B, Z)=\vdash\) WHILE b DO c \((\subseteq A, X)\);
    Some \(\left(B^{\prime}, Z^{\prime}\right)=(U\), False \() \models\) WHILE b DO \(c(\subseteq A, X) \rrbracket \Longrightarrow\)
        \(Z \subseteq Z^{\prime}\)
    by (rule ctyping1-ctyping2-snd-while)
qed (simp add: ctyping1-def, auto)
```

lemma ctyping1-ctyping2:
$\llbracket \vdash c(\subseteq A, X)=(C, Z) ;(U$, False $) \vDash c(\subseteq A, X)=$ Some $\left(C^{\prime}, Z^{\prime}\right) \rrbracket \Longrightarrow$ $C^{\prime} \subseteq C \wedge Z \subseteq Z^{\prime}$
by (rule conjI, ((rule ctyping1-ctyping2-fst [OF sym sym] |
rule ctyping1-ctyping2-snd $[$ OF sym sym $]$), assumption +)+)
lemma btyping2-aux-approx-1 [elim]:

assumes

$A: \|=b_{1}(\subseteq A, X)=$ Some B_{1} and
$B: \|=b_{2}(\subseteq A, X)=$ Some B_{2} and
C : bval $b_{1} s$ and
$D: b v a l b_{2} s$ and
$E: r \in A$ and
$F: s=r(\subseteq$ state $\cap X)$

```
    shows }\exists\mp@subsup{r}{}{\prime}\in\mp@subsup{B}{1}{}\cap\mp@subsup{B}{2}{}.r=\mp@subsup{r}{}{\prime}(\subseteq\mathrm{ state }\capX
proof -
    from }A\mathrm{ and }C\mathrm{ and E and F have }r\in\mp@subsup{B}{1}{
    by (frule-tac btyping2-aux-subset, drule-tac btyping2-aux-eq, auto)
    moreover from B and D and E and F have r\in B2
    by (frule-tac btyping2-aux-subset, drule-tac btyping2-aux-eq, auto)
    ultimately show ?thesis
    by blast
qed
lemma btyping2-aux-approx-2 [elim]:
    assumes
    A: avars }\mp@subsup{a}{1}{}\subseteq\mathrm{ state and
    B: avars }\mp@subsup{a}{2}{}\subseteq\mathrm{ state and
    C: avars a}\mp@subsup{a}{1}{}\subseteqX\mathrm{ and
    D: avars a}\mp@subsup{a}{2}{}\subseteqX\mathrm{ and
    E: aval }\mp@subsup{a}{1}{}s<aval \mp@subsup{a}{2}{}s\mathrm{ and
    F:r\inA and
    G:s=r(\subseteq\mathrm{ state }\capX)
    shows }\exists\mp@subsup{r}{}{\prime}.\mp@subsup{r}{}{\prime}\inA\wedge\mathrm{ aval a1 }\mp@subsup{r}{}{\prime}<\mathrm{ aval a a r r'^r= r'(` state }\capX
proof -
    have aval a }\mp@subsup{a}{1}{}s=\mathrm{ aval a }\mp@subsup{a}{1}{}r\wedge\mathrm{ aval }\mp@subsup{a}{2}{}s=\mathrm{ aval }\mp@subsup{a}{2}{}
        using A and B and C and D and G by (blast intro: avars-aval)
    thus ?thesis
        using E and F by auto
qed
lemma btyping2-aux-approx-3 [elim]:
    assumes
    A: avars }\mp@subsup{a}{1}{}\subseteq\mathrm{ state and
    B: avars }\mp@subsup{a}{2}{}\subseteq\mathrm{ state and
    C: avars a}\mp@subsup{a}{1}{}\subseteqX and
    D: avars a}\mp@subsup{a}{2}{}\subseteqX\mathrm{ and
    E:\neg aval }\mp@subsup{a}{1}{}s<aval \mp@subsup{a}{2}{}s\mathrm{ and
    F:r\inA and
    G:s=r(\subseteq\mathrm{ state }\capX)
    shows \existsr'\inA-{s\inA. aval a }\mp@subsup{a}{1}{}s<\mathrm{ aval a a s}.r= r'(` state }\capX
proof -
    have aval \mp@subsup{a}{1}{}s=\mathrm{ aval }\mp@subsup{a}{1}{}r\wedge\mathrm{ aval }\mp@subsup{a}{2}{}s=\mathrm{ aval }\mp@subsup{a}{2}{}r
    using}A\mathrm{ and }B\mathrm{ and }C\mathrm{ and }D\mathrm{ and G by (blast intro: avars-aval)
    thus ?thesis
    using E and F by auto
qed
lemma btyping2-aux-approx:
\(\llbracket \|=b(\subseteq A, X)=\) Some \(A^{\prime} ; s \in\) Univ \(A(\subseteq\) state \(\cap X) \rrbracket \Longrightarrow\)
\(s \in\) Univ (if bval \(b s\) then \(A^{\prime}\) else \(\left.A-A^{\prime}\right)(\subseteq\) state \(\cap X)\)
by (induction b arbitrary: \(A^{\prime}\), auto dest: btyping2-aux-subset split: if-split-asm option.split-asm)
```


lemma btyping2-approx:

$\llbracket=b(\subseteq A, X)=\left(B_{1}, B_{2}\right) ; s \in$ Univ $A(\subseteq$ state $\cap X) \rrbracket \Longrightarrow$ $s \in$ Univ (if bval bsthen B_{1} else $\left.B_{2}\right)(\subseteq$ state $\cap X)$
by (drule sym, simp add: btyping2-def split: option.split-asm, drule btyping2-aux-approx, auto)
lemma ctyping2-approx-assign [elim!]:
$\llbracket \forall t^{\prime}$. aval a $s=t^{\prime} x \longrightarrow\left(\forall s . t^{\prime}=s(x:=\right.$ aval $\left.a s) \longrightarrow s \notin A\right) \vee$ $\left(\exists y \in\right.$ state $\left.\cap X . y \neq x \wedge t y \neq t^{\prime} y\right)$;
$v \models a(\subseteq X) ; t \in A ; s=t(\subseteq$ state $\cap X) \rrbracket \Longrightarrow$ False
by (drule spec $[$ of $-t(x:=$ aval $a t)]$, cases a,
(fastforce simp del: aval.simps(3) intro: avars-aval)+)
lemma ctyping2-approx-if-1:
【bval b $s ; \models b(\subseteq A, X)=\left(B_{1}, B_{2}\right) ; r \in A ; s=r(\subseteq$ state $\cap X)$;
(insert (Univ? A X, bvars b) $U, v) \models c_{1}\left(\subseteq B_{1}, X\right)=\operatorname{Some}\left(C_{1}, Y_{1}\right)$;
$\bigwedge A B X Y U v .(U, v) \models c_{1}(\subseteq A, X)=$ Some $(B, Y) \Longrightarrow$
$\exists r \in A . s=r(\subseteq$ state $\cap X) \Longrightarrow \exists r^{\prime} \in B . t=r^{\prime}(\subseteq$ state $\cap Y) \rrbracket \Longrightarrow$
$\exists r^{\prime} \in C_{1} \cup C_{2} . t=r^{\prime}\left(\subseteq\right.$ state $\left.\cap\left(Y_{1} \cap Y_{2}\right)\right)$
by (drule btyping2-approx, blast, fastforce)
lemma ctyping2-approx-if-2:
$\llbracket \neg$ bval $b s ; \models b(\subseteq A, X)=\left(B_{1}, B_{2}\right) ; r \in A ; s=r(\subseteq$ state $\cap X)$;
(insert (Univ? A X, bvars b) $U, v) \models c_{2}\left(\subseteq B_{2}, X\right)=\operatorname{Some}\left(C_{2}, Y_{2}\right)$;
$\wedge A B X Y U v .(U, v) \models c_{2}(\subseteq A, X)=\operatorname{Some}(B, Y) \Longrightarrow$
$\exists r \in A . s=r(\subseteq$ state $\cap X) \Longrightarrow \exists r^{\prime} \in B . t=r^{\prime}(\subseteq$ state $\cap Y) \rrbracket \Longrightarrow$ $\exists r^{\prime} \in C_{1} \cup C_{2} . t=r^{\prime}\left(\subseteq\right.$ state $\left.\cap\left(Y_{1} \cap Y_{2}\right)\right)$
by (drule btyping2-approx, blast, fastforce)
lemma ctyping2-approx-while-1 [elim]:
$\llbracket \neg$ bval b s;r$\in A ; s=r(\subseteq$ state $\cap X) ; \models b(\subseteq A, X)=(B,\{ \}) \rrbracket \Longrightarrow$ $\exists t \in C . s=t(\subseteq$ state $\cap Y)$
by (drule btyping2-approx, blast, simp)
lemma ctyping2-approx-while-2 [elim]:
$\llbracket \forall t \in B_{2} \cup B_{2}{ }^{\prime} . \exists x \in$ state $\cap(X \cap Y) . r x \neq t x ; \neg$ bval $b s ;$
$r \in A ; s=r(\subseteq$ state $\cap X) ; \models b(\subseteq A, X)=\left(B_{1}, B_{2}\right) \rrbracket \Longrightarrow$ False
by (drule btyping2-approx, blast, auto)
lemma ctyping2-approx-while-aux:
assumes
$A: \models b(\subseteq A, X)=\left(B_{1}, B_{2}\right)$ and
$B: \vdash c\left(\subseteq B_{1}, X\right)=(C, Y)$ and
$C: \vDash b(\subseteq C, Y)=\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right)$ and
$D:(\{ \}$, False $)=c\left(\subseteq B_{1}, X\right)=$ Some (D, Z) and
$E:(\{ \}$, False $) \models c\left(\subseteq B_{1}{ }^{\prime}, Y\right)=$ Some $\left(D^{\prime}, Z^{\prime}\right)$ and
$F: r_{1} \in A$ and

```
    \(G: s_{1}=r_{1}(\subseteq\) state \(\cap X)\) and
    \(H\) : bval \(b s_{1}\) and
    \(I: \bigwedge C B Y W U\). \(\left(\right.\) case \(\models b(\subseteq C, Y)\) of \(\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right) \Rightarrow\)
    case \(\vdash c\left(\subseteq B_{1}{ }^{\prime}, Y\right)\) of \(\left(C^{\prime}, Y^{\prime}\right) \Rightarrow\)
    case \(\vDash b\left(\subseteq C^{\prime}, Y^{\prime}\right)\) of \(\left(B_{1}{ }^{\prime \prime}, B_{2}{ }^{\prime \prime}\right) \Rightarrow\)
    if \(\left(\forall s \in\right.\) Univ? \(C Y \cup\) Univ? \(C^{\prime} Y^{\prime} . \forall x \in\) bvars \(b\). All (interf \(\left.\left.s(\operatorname{dom} x)\right)\right) \wedge\)
        \((\forall p \in U\). case \(p\) of \((B, W) \Rightarrow \forall s \in B . \forall x \in W\). All (interf \(s(\operatorname{dom} x)))\)
        then case \(\left(\}\right.\), False \() \models c\left(\subseteq B_{1}{ }^{\prime}, Y\right)\) of
            None \(\Rightarrow\) None \(\mid\) Some \(-\Rightarrow\) case \(\left(\}\right.\), False \() \models c\left(\subseteq B_{1}{ }^{\prime \prime}, Y^{\prime}\right)\) of
            None \(\Rightarrow\) None \(\mid\) Some \(-\Rightarrow\) Some \(\left(B_{2}^{\prime} \cup B_{2}{ }^{\prime \prime}\right.\), Univ?? \(\left.B_{2}{ }^{\prime} Y \cap Y^{\prime}\right)\)
        else None \()=\) Some \((B, W) \Longrightarrow\)
            \(\exists r \in C . s_{2}=r(\subseteq\) state \(\cap Y) \Longrightarrow \exists r \in B . s_{3}=r(\subseteq\) state \(\cap W)\)
    (is \(\wedge C B Y W U\). ?P \(C B Y W U \Longrightarrow-\Longrightarrow-)\) and
    \(J: \bigwedge A B X Y U v .(U, v) \vDash c(\subseteq A, X)=\operatorname{Some}(B, Y) \Longrightarrow\)
    \(\exists r \in A . s_{1}=r(\subseteq\) state \(\cap X) \Longrightarrow \exists r \in B . s_{2}=r(\subseteq\) state \(\cap Y)\) and
    \(K: \forall s \in\) Univ? A \(X \cup\) Univ? \(C Y . \forall x \in\) bvars \(b\). All (interf \(s(\operatorname{dom} x)\) ) and
    \(L: \forall p \in U . \forall B W . p=(B, W) \longrightarrow\)
        \((\forall s \in B . \forall x \in W\). All (interf \(s(\operatorname{dom} x)))\)
    shows \(\exists r \in B_{2} \cup B_{2}{ }^{\prime} . s_{3}=r\left(\subseteq\right.\) state \(\cap\) Univ?? \(\left.B_{2} X \cap Y\right)\)
proof -
    obtain \(C^{\prime} Y^{\prime}\) where \(M:\left(C^{\prime}, Y^{\prime}\right)=\vdash c\left(\subseteq B_{1}{ }^{\prime}, Y\right)\)
    by \(\left(\right.\) cases \(\vdash c\left(\subseteq B_{1}{ }^{\prime}, Y\right)\), simp)
    obtain \(B_{1}{ }^{\prime \prime} B_{2}{ }^{\prime \prime}\) where \(N:\left(B_{1}{ }^{\prime \prime}, B_{2}{ }^{\prime \prime}\right)=\models b\left(\subseteq C^{\prime}, Y^{\prime}\right)\)
    by (cases \(\models b\left(\subseteq C^{\prime}, Y^{\prime}\right)\), simp)
    let ? \(B=B_{2}{ }^{\prime} \cup B_{2}{ }^{\prime \prime}\)
    let ? \(W=\) Univ?? \(B_{2}{ }^{\prime} Y \cap Y^{\prime}\)
    have \((C, Y)=\vdash c(\subseteq C, Y)\)
    using ctyping1-idem and \(B\) by auto
moreover have \(B_{1}{ }^{\prime} \subseteq C\)
    using \(C\) by (blast dest: btyping2-un-eq)
ultimately have \(O: C^{\prime} \subseteq C \wedge Y \subseteq Y^{\prime}\)
    by (rule ctyping1-mono [OF - M], simp)
hence Univ? \(C^{\prime} Y^{\prime} \subseteq\) Univ? \(C ~ Y\)
    by (auto simp: univ-states-if-def)
moreover from \(I\) have ? \(P C\) ? \(B Y\) ? \(W ~ U \Longrightarrow\)
    \(\exists r \in C . s_{2}=r(\subseteq\) state \(\cap Y) \Longrightarrow \exists r \in\) ?B. \(s_{3}=r(\subseteq\) state \(\cap\) ? \(W\) ).
ultimately have (case \(\left(\}\right.\), False \() \models c\left(\subseteq B_{1}{ }^{\prime \prime}, Y^{\prime}\right)\) of
    None \(\Rightarrow\) None \(\mid\) Some \(-\Rightarrow\) Some \((? B\), ? \(W))=\) Some \((? B\), ?W) \(\Longrightarrow\)
            \(\exists r \in C . s_{2}=r(\subseteq\) state \(\cap Y) \Longrightarrow \exists r \in\) ?B. \(s_{3}=r(\subseteq\) state \(\cap\) ? \(W)\)
    using \(C\) and \(E\) and \(K\) and \(L\) and \(M\) and \(N\)
        by (fastforce split: if-split-asm prod.split-asm)
moreover have \(P: B_{1}{ }^{\prime \prime} \subseteq B_{1}{ }^{\prime} \wedge B_{2}{ }^{\prime \prime} \subseteq B_{2}{ }^{\prime}\)
    by (metis btyping2-mono \(C N O\) )
hence \(\exists D^{\prime \prime} Z^{\prime \prime}\). \(\left(\}\right.\), False \() \models c\left(\subseteq B_{1}{ }^{\prime \prime}, Y^{\prime}\right)=\)
    Some \(\left(D^{\prime \prime}, Z^{\prime \prime}\right) \wedge D^{\prime \prime} \subseteq D^{\prime} \wedge Z^{\prime} \subseteq Z^{\prime \prime}\)
    using \(E\) and \(O\) by (auto intro: ctyping2-mono)
ultimately have
    \(\exists r \in C . s_{2}=r(\subseteq\) state \(\cap Y) \Longrightarrow \exists r \in\) ?B. \(s_{3}=r(\subseteq\) state \(\cap\) ? \(W)\)
    by fastforce
```

```
    moreover from A and D and F and G and H and J obtain r}\mp@subsup{r}{2}{}\mathrm{ where
    r}\mp@subsup{r}{2}{\inD}\mathrm{ and }\mp@subsup{s}{2}{}=\mp@subsup{r}{2}{(}\subseteq\mathrm{ state }\capZ
    by (drule-tac btyping2-approx, blast, force)
    moreover have D\subseteqC^Y\subseteqZ
    using B and D by (rule ctyping1-ctyping2)
    ultimately obtain }\mp@subsup{r}{3}{}\mathrm{ where }Q:\mp@subsup{r}{3}{}\in?B\mathrm{ and R: s
    by blast
    show ?thesis
    proof (rule bexI [of - r r ])
    show su = r ( }\subseteq\mathrm{ state }\cap\mathrm{ Univ?? B B X }\capY
        using}O\mathrm{ and }R\mathrm{ by auto
    next
        show }\mp@subsup{r}{3}{}\in\mp@subsup{B}{2}{}\cup\mp@subsup{B}{2}{\prime
        using P and Q by blast
    qed
qed
```

lemmas ctyping2-approx-while-3 =
ctyping2-approx-while-aux [where $B_{2}=\{ \}$, simplified]
lemma ctyping2-approx-while-4:
$\mathbb{L}=b(\subseteq A, X)=\left(B_{1}, B_{2}\right)$;
$\vdash c\left(\subseteq B_{1}, X\right)=(C, Y)$;
$\vDash b(\subseteq C, Y)=\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right)$;
$\left(\}\right.$, False $) \models c\left(\subseteq B_{1}, X\right)=$ Some (D, Z);
$\left(\}\right.$, False $) \models c\left(\subseteq B_{1}{ }^{\prime}, Y\right)=$ Some $\left(D^{\prime}, Z^{\prime}\right) ;$
$r_{1} \in A ; s_{1}=r_{1}(\subseteq$ state $\cap X)$; bval b s_{1};
$\wedge C B Y W U$. $\left(\right.$ case $\vDash b(\subseteq C, Y)$ of $\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right) \Rightarrow$
case $\vdash c\left(\subseteq B_{1}{ }^{\prime}, Y\right)$ of $\left(C^{\prime}, Y^{\prime}\right) \Rightarrow$
case $\models b\left(\subseteq C^{\prime}, Y^{\prime}\right)$ of $\left(B_{1}{ }^{\prime \prime}, B_{2}{ }^{\prime \prime}\right) \Rightarrow$
if $\left(\forall s \in\right.$ Univ? $C Y \cup$ Univ? $C^{\prime} Y^{\prime} . \forall x \in$ bvars b. All $($ interf $\left.s(\operatorname{dom} x))\right) \wedge$
$(\forall p \in U$. case p of $(B, W) \Rightarrow \forall s \in B . \forall x \in W$. All (interf $s(\operatorname{dom} x)))$
then case $\left(\}\right.$, False $) \models c\left(\subseteq B_{1}{ }^{\prime}, Y\right)$ of
None \Rightarrow None \mid Some $-\Rightarrow$ case $\left(\}\right.$, False $) \models c\left(\subseteq B_{1}{ }^{\prime \prime}, Y^{\prime}\right)$ of
None \Rightarrow None \mid Some $-\Rightarrow$ Some $\left(B_{2}{ }^{\prime} \cup B_{2}{ }^{\prime \prime}\right.$, Univ?? $\left.B_{2}^{\prime} Y \cap Y^{\prime}\right)$
else None $)=\operatorname{Some}(B, W) \Longrightarrow$
$\exists r \in C . s_{2}=r(\subseteq$ state $\cap Y) \Longrightarrow \exists r \in B . s_{3}=r(\subseteq$ state $\cap W) ;$
$\bigwedge A B X Y U v .(U, v) \models c(\subseteq A, X)=\operatorname{Some}(B, Y) \Longrightarrow$
$\exists r \in A . s_{1}=r(\subseteq$ state $\cap X) \Longrightarrow \exists r \in B . s_{2}=r(\subseteq$ state $\cap Y) ;$
$\forall s \in$ Univ? A $X \cup$ Univ? C Y. $\forall x \in$ bvars b. All (interf $s($ dom $x)$);
$\forall p \in U . \forall B W . p=(B, W) \longrightarrow(\forall s \in B . \forall x \in W$. All (interf $s($ dom $x))$);
$\forall r \in B_{2} \cup B_{2}{ }^{\prime} . \exists x \in$ state $\cap(X \cap Y) . s_{3} x \neq r x \rrbracket \Longrightarrow$
False
by (drule ctyping2-approx-while-aux, assumption+, auto)
lemma ctyping2-approx:
$\llbracket(c, s) \Rightarrow t ;(U, v) \models c(\subseteq A, X)=\operatorname{Some}(B, Y)$;
$s \in \operatorname{Univ} A(\subseteq$ state $\cap X) \rrbracket \Longrightarrow t \in \operatorname{Univ} B(\subseteq$ state $\cap Y)$
proof (induction arbitrary: A B X Y v v rule: big-step-induct)
fix $A B X Y U v b c_{1} c_{2} s t$

show

$\llbracket b v a l b s ;\left(c_{1}, s\right) \Rightarrow t$;
$\bigwedge A C X Y U v .(U, v) \vDash c_{1}(\subseteq A, X)=\operatorname{Some}(C, Y) \Longrightarrow$ $s \in \operatorname{Univ} A(\subseteq$ state $\cap X) \Longrightarrow$ $t \in \operatorname{Univ} C(\subseteq$ state $\cap Y)$;
$(U, v) \models I F$ b THEN $c_{1} E L S E c_{2}(\subseteq A, X)=\operatorname{Some}(B, Y)$;
$s \in \operatorname{Univ} A(\subseteq$ state $\cap X) \rrbracket \Longrightarrow$ $t \in \operatorname{Univ} B(\subseteq$ state $\cap Y)$
by (auto split: option.split-asm prod.split-asm, rule ctyping2-approx-if-1)
next
fix $A B X Y U v b c_{1} c_{2} s t$
show
$\llbracket \neg$ bval $b s ;\left(c_{2}, s\right) \Rightarrow t$;
$\bigwedge A C X Y U v .(U, v) \models c_{2}(\subseteq A, X)=\operatorname{Some}(C, Y) \Longrightarrow$ $s \in \operatorname{Univ} A(\subseteq$ state $\cap X) \Longrightarrow$ $t \in \operatorname{Univ} C(\subseteq$ state $\cap Y)$;
$(U, v) \models I F$ b THEN $c_{1} E L S E c_{2}(\subseteq A, X)=\operatorname{Some}(B, Y)$;
$s \in \operatorname{Univ} A(\subseteq$ state $\cap X) \rrbracket \Longrightarrow$ $t \in$ Univ $B(\subseteq$ state $\cap Y)$
by (auto split: option.split-asm prod.split-asm, rule ctyping2-approx-if-2)
next
fix $A B X Y U v b c s_{1} s_{2} s_{3}$
show
$\llbracket b v a l b s_{1} ;\left(c, s_{1}\right) \Rightarrow s_{2}$;
$\bigwedge A B X Y U v .(U, v) \models c(\subseteq A, X)=\operatorname{Some}(B, Y) \Longrightarrow$
$s_{1} \in \operatorname{Univ} A(\subseteq$ state $\cap X) \Longrightarrow$
$s_{2} \in$ Univ $B(\subseteq$ state $\cap Y)$;
(WHILE b DO $\left.c, s_{2}\right) \Rightarrow s_{3}$;
$\bigwedge A B X Y U v .(U, v) \models$ WHILE b DO c $(\subseteq A, X)=\operatorname{Some}(B, Y) \Longrightarrow$
$s_{2} \in$ Univ $A(\subseteq$ state $\cap X) \Longrightarrow$
$s_{3} \in \operatorname{Univ} B(\subseteq$ state $\cap Y)$;
$(U, v) \models W H I L E$ b DO $c(\subseteq A, X)=\operatorname{Some}(B, Y)$;
$s_{1} \in \operatorname{Univ} A(\subseteq$ state $\cap X) \rrbracket \Longrightarrow$ $s_{3} \in$ Univ $B(\subseteq$ state $\cap Y)$
by (auto split: if-split-asm option.split-asm prod.split-asm,
erule-tac [2] ctyping2-approx-while-4,
erule ctyping2-approx-while-3)
qed (auto split: if-split-asm option.split-asm prod.split-asm)
end
end

4 Sufficiency of well-typedness for information flow correctness

theory Correctness
imports Overapproximation
begin

The purpose of this section is to prove that type system ctyping2 is correct in that it guarantees that well-typed programs satisfy the information flow correctness criterion expressed by predicate correct, namely that if the type system outputs a value other than None (that is, a pass verdict) when it is input program c, state set A, and vname set X, then correct c $A X$ (theorem ctyping2-correct).
This proof makes use of the lemmas ctyping1-idem and ctyping2-approx proven in the previous sections.

4.1 Global context proofs

```
lemma flow-append-1:
    assumes \(A: \bigwedge c f s^{\prime}::(c o m \times\) state \()\) list.
        c \# map fst \((c f s::(\) com \(\times\) state \()\) list \()=\) map fst \(c f s^{\prime} \Longrightarrow\)
        flow-aux (map fst cfs' @ map fst cfs \({ }^{\prime \prime}\) ) =
        flow-aux (map fst cfs') @ flow-aux (map fst cfs'")
    shows flow-aux ( \(c\) \# map fst cfs @ map fst cfs \({ }^{\prime \prime}\) ) =
    flow-aux ( \(c\) \# map fst cfs) @ flow-aux (map fst cfs \({ }^{\prime \prime}\) )
using \(A[o f(c, \lambda x .0) \# c f s]\) by \(\operatorname{simp}\)
lemma flow-append:
flow \(\left(c f s @ c f s^{\prime}\right)=\) flow cfs @ flow cfs \({ }^{\prime}\)
by (simp add: flow-def, induction map fst cfs arbitrary: cfs
    rule: flow-aux.induct, auto, rule flow-append-1)
lemma flow-cons:
flow \((c f \# c f s)=\) flow-aux (fst cf \# []) @ flow cfs
by (subgoal-tac cf \(\# c f s=[c f] @ c f s\), simp only: flow-append,
simp-all add: flow-def)
lemma small-stepsl-append:
\(\llbracket(c, s) \rightarrow *\{c f s\}\left(c^{\prime}, s^{\prime}\right) ;\left(c^{\prime}, s^{\prime}\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(c^{\prime \prime}, s^{\prime \prime}\right) \rrbracket \Longrightarrow\)
    \((c, s) \rightarrow *\left\{c f s @ c f s^{\prime}\right\}\left(c^{\prime \prime}, s^{\prime \prime}\right)\)
by (induction \(c^{\prime} s^{\prime} c f s^{\prime} c^{\prime \prime} s^{\prime \prime}\) rule: small-stepsl-induct,
simp, simp only: append-assoc [symmetric] small-stepsl.simps)
lemma small-stepsl-cons-1:
\((c, s) \rightarrow *\{[c f]\}\left(c^{\prime \prime}, s^{\prime \prime}\right) \Longrightarrow\)
    \(c f=(c, s) \wedge\)
```

$$
\left(\exists c^{\prime} s^{\prime} .(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) \wedge\left(c^{\prime}, s^{\prime}\right) \rightarrow *\{[]\}\left(c^{\prime \prime}, s^{\prime \prime}\right)\right)
$$

by (subst (asm) append-Nil [symmetric],
simp only: small-stepsl.simps, simp)
lemma small-stepsl-cons-2:
$\llbracket(c, s) \rightarrow *\{c f \# c f s\}\left(c^{\prime \prime}, s^{\prime \prime}\right) \Longrightarrow$

$$
c f=(c, s) \wedge
$$

$\left(\exists c^{\prime} s^{\prime} .(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) \wedge\left(c^{\prime}, s^{\prime}\right) \rightarrow *\{c f s\}\left(c^{\prime \prime}, s^{\prime \prime}\right)\right) ;$
$\left.(c, s) \rightarrow *\left\{c f \# c f s @\left[\left(c^{\prime \prime}, s^{\prime \prime}\right)\right]\right\}\left(c^{\prime \prime \prime}, s^{\prime \prime \prime}\right)\right] \Longrightarrow$

$$
c f=(c, s) \wedge
$$

$$
\left(\exists c^{\prime} s^{\prime} \cdot(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) \wedge\right.
$$

$$
\left.\left(c^{\prime}, s^{\prime}\right) \rightarrow *\left\{c f s @\left[\left(c^{\prime \prime}, s^{\prime \prime}\right)\right]\right\}\left(c^{\prime \prime \prime}, s^{\prime \prime \prime}\right)\right)
$$

by (simp only: append-Cons [symmetric],
simp only: small-stepsl.simps, simp)
lemma small-stepsl-cons:
$(c, s) \rightarrow *\{c f \# c f s\}\left(c^{\prime \prime}, s^{\prime \prime}\right) \Longrightarrow$ $c f=(c, s) \wedge$
$\left(\exists c^{\prime} s^{\prime} .(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) \wedge\left(c^{\prime}, s^{\prime}\right) \rightarrow *\{c f s\}\left(c^{\prime \prime}, s^{\prime \prime}\right)\right)$
by (induction c s cfs $c^{\prime \prime} s^{\prime \prime}$ rule: small-stepsl-induct, erule small-stepsl-cons-1, rule small-stepsl-cons-2)
lemma small-steps-stepsl-1:
$\exists c f s .(c, s) \rightarrow *\{c f s\}(c, s)$
by (rule exI [of - []], simp)
lemma small-steps-stepsl-2:
$\llbracket(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) ;\left(c^{\prime}, s^{\prime}\right) \rightarrow *\{c f s\}\left(c^{\prime \prime}, s^{\prime \prime}\right) \rrbracket \Longrightarrow$

$$
\exists c f s^{\prime} .(c, s) \rightarrow *\left\{c f s^{\prime}\right\}\left(c^{\prime \prime}, s^{\prime \prime}\right)
$$

by (rule exI $[o f-[(c, s)] @ c f s]$, rule small-stepsl-append [where $c^{\prime}=c^{\prime}$ and $s^{\prime}=s^{\prime}$], subst append-Nil [symmetric], simp only: small-stepsl.simps)
lemma small-steps-stepsl:
$(c, s) \rightarrow *\left(c^{\prime}, s^{\prime}\right) \Longrightarrow \exists c f s .(c, s) \rightarrow *\{c f s\}\left(c^{\prime}, s^{\prime}\right)$
by (induction c s $\quad c^{\prime} s^{\prime}$ rule: star-induct, rule small-steps-stepsl-1, blast intro: small-steps-stepsl-2)
lemma small-stepsl-steps:
$(c, s) \rightarrow *\{c f s\}\left(c^{\prime}, s^{\prime}\right) \Longrightarrow(c, s) \rightarrow *\left(c^{\prime}, s^{\prime}\right)$
by (induction c s cfs $c^{\prime} s^{\prime}$ rule: small-stepsl-induct, auto intro: star-trans)
lemma small-stepsl-skip:
$(S K I P, s) \rightarrow *\{c f s\}(c, t) \Longrightarrow$
$(c, t)=(S K I P, s) \wedge$ flow $c f s=[]$
by (induction SKIP s cfs c t rule: small-stepsl-induct, auto simp: flow-def)
lemma small-stepsl-assign-1:

```
\((x::=a, s) \rightarrow *\{[]\}\left(c^{\prime}, s^{\prime}\right) \Longrightarrow\)
    \(\left(c^{\prime}, s^{\prime}\right)=(x::=a, s) \wedge\) flow []\(=[] \vee\)
    \(\left(c^{\prime}, s^{\prime}\right)=(S K I P, s(x:=\) aval a s \()) \wedge\) flow []\(=[x::=a]\)
```

by (simp add: flow-def)
lemma small-stepsl-assign-2:

```
\(\llbracket(x::=a, s) \rightarrow *\{c f s\}\left(c^{\prime}, s^{\prime}\right) \Longrightarrow\)
    \(\left(c^{\prime}, s^{\prime}\right)=(x::=a, s) \wedge\) flow \(c f s=[] \vee\)
            \(\left(c^{\prime}, s^{\prime}\right)=(S K I P, s(x:=\) aval a s) \() \wedge\) flow \(c f s=[x::=a]\);
        \(\left.(x::=a, s) \rightarrow *\left\{c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right\}\left(c^{\prime \prime}, s^{\prime \prime}\right)\right] \Longrightarrow\)
    \(\left(c^{\prime \prime}, s^{\prime \prime}\right)=(x::=a, s) \wedge\)
    flow \(\left(c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right)=[] \vee\)
    \(\left(c^{\prime \prime}, s^{\prime \prime}\right)=(S K I P, s(x:=\) aval a \(s)) \wedge\)
    flow \(\left(c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right)=[x::=a]\)
by (auto, (simp add: flow-append, simp add: flow-def)+)
```

lemma small-stepsl-assign:

```
\((x::=a, s) \rightarrow *\{c f s\}(c, t) \Longrightarrow\)
    \((c, t)=(x::=a, s) \wedge\) flow \(c f s=[] \vee\)
    \((c, t)=(S K I P, s(x:=\) aval a \(s)) \wedge\) flow \(c f s=[x::=a]\)
```

by (induction $x::=a$:: com s cfs ct rule: small-stepsl-induct,
erule small-stepsl-assign-1, rule small-stepsl-assign-2)
lemma small-stepsl-seq-1:
$\left(c_{1} ; ; c_{2}, s\right) \rightarrow *\{[]\}\left(c^{\prime}, s^{\prime}\right) \Longrightarrow$ $\left(\exists c^{\prime \prime} c f s^{\prime} . c^{\prime}=c^{\prime \prime} ; ; c_{2} \wedge\right.$
$\left(c_{1}, s\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(c^{\prime \prime}, s^{\prime}\right) \wedge$
flow [] = flow cfs') \vee
$\left(\exists s^{\prime \prime} c f s^{\prime}\right.$ cfs ${ }^{\prime \prime}$. length cfs ${ }^{\prime \prime}<$ length []\wedge
$\left(c_{1}, s\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(S K I P, s^{\prime \prime}\right) \wedge$
$\left(c_{2}, s^{\prime \prime}\right) \rightarrow *\left\{c f s^{\prime \prime}\right\}\left(c^{\prime}, s^{\prime}\right) \wedge$
flow [] = flow cfs ${ }^{\prime} @$ flow cfs ${ }^{\prime \prime}$)
by force
lemma small-stepsl-seq-2:

assumes

$$
\begin{aligned}
& \text { A: }\left(c_{1} ; ; c_{2}, s\right) \rightarrow *\{c f s\}\left(c^{\prime}, s^{\prime}\right) \Longrightarrow \\
& \left(\exists c^{\prime \prime} c f s^{\prime} . c^{\prime}=c^{\prime \prime} ; c_{2} \wedge\right. \\
& \quad\left(c_{1}, s\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(c^{\prime \prime}, s^{\prime}\right) \wedge \\
& \quad \text { flow cfs }=\text { flow cfs }) \vee \\
& \left(\exists s^{\prime \prime} \text { cfs } s^{\prime} c f s^{\prime \prime} . \text { length cfs } s^{\prime \prime}<\text { length } c f s \wedge\right. \\
& \quad\left(c_{1}, s\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(S K I P, s^{\prime \prime}\right) \wedge \\
& \quad\left(c_{2}, s^{\prime \prime}\right) \rightarrow *\left\{c s^{\prime \prime}\right\}\left(c^{\prime}, s^{\prime}\right) \wedge \\
& \left.\quad \text { flow cfs }=\text { flow cfs } @ \text { flow cfs } s^{\prime \prime}\right) \text { and } \\
& B:\left(c_{1} ; ; c_{2}, s\right) \rightarrow *\left\{c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right\}\left(c^{\prime \prime}, s^{\prime \prime}\right)
\end{aligned}
$$

```
shows
    (\existsdcfs'. c'|}=d;;\mp@subsup{c}{2}{}
        (c},\mp@code{,}s)->*{cfs'} (d, s') ) ^
        flow (cfs @ [(c', s')])= flow cfs') \vee
    (\existstcfs' cfs'\prime. length cfs'\prime < length (cfs @ [(c', s')])^
        (c},\mp@code{s)->*{cfs'} (SKIP,t)^
        (c2,t)->*{cf\mp@subsup{s}{}{\prime\prime}}(\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{}{\prime\prime})\wedge
        flow (cfs @ [(c', s')])= flow cfs'`@ flow cfs'')
    (is ?P \vee?Q)
proof -
{
    assume C:(c', s') ->(c\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{}{\prime\prime})
    assume
    (\existsd. c' = d;; c c ^ ( }\existscf\mp@subsup{s}{}{\prime}
        (c, c,s)->*{cfs'} (d, s')^
        flow cfs = flow cfs')) \vee
        (\existst cfs' cfs"'. length cfs" }\mp@subsup{}{}{\prime\prime}<l= length cfs ^
            (c, s) ->*{cfs'} (SKIP,t)^
            (c2,t) ->*{cfs''}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{}{\prime})
            flow cfs = flow cfs' @ flow cfs')
        is (\existsd. ?R d ^(\existscf\mp@subsup{s}{}{\prime}. ?S d cfs'}))
            (\existstcfs' cfs''. ?T t cfs'' cfs''))
    hence ?thesis
    proof
        assume }\exists\mp@subsup{c}{}{\prime\prime}\mathrm{ . ?R c}\mp@subsup{c}{}{\prime\prime}\wedge(\existscf\mp@subsup{s}{}{\prime}.?S S c' cfs'
        then obtain d and cfs' where
            D:}\mp@subsup{c}{}{\prime}=d;;\mp@subsup{c}{2}{}\mathrm{ and
            E: (c.,s) ->*{cfs'} (d, s') and
            F: flow cfs = flow cfs'
            by blast
        hence (d;; c⿱亠⿱八乂,
            using C by simp
        moreover {
            assume
                    G:d =SKIP and
                    H:(c'\prime},\mp@subsup{s}{}{\prime\prime})=(\mp@subsup{c}{2}{},\mp@subsup{s}{}{\prime}
            have ?Q
            proof (rule exI [of-s'], rule exI [of-cfs'],
                    rule exI [of - []])
                    from D and E and F and G and H show
                        length [] < length (cfs @ [(c', s')])^
                        (c, s) ->*{cfs'} (SKIP, s')^
                (c, c, s')->*{[]}( (c'\prime, s')})
                flow (cfs @ [(c', s')])= flow cfs' @ flow []
                by (simp add: flow-append, simp add: flow-def)
            qed
        }
        moreover {
            fix }\mp@subsup{d}{}{\prime}\mp@subsup{t}{}{\prime
```

```
            assume
                    G:(d, s') -> (\mp@subsup{d}{}{\prime},\mp@subsup{t}{}{\prime})\mathrm{ and}
                    H:(c'\prime},\mp@subsup{s}{}{\prime\prime})=(\mp@subsup{d}{}{\prime};;\mp@subsup{c}{2}{},\mp@subsup{t}{}{\prime}
            have ?P
            proof (rule exI [of - d ], rule exI [of - cfs' @ [(d, s')]])
            from D and E and F and G and H show
                    c'\prime}=\mp@subsup{d}{}{\prime};;\mp@subsup{c}{2}{}
                    (c, s)->*{cf\mp@subsup{s}{}{\prime}@[(d, s')]} (\mp@subsup{d}{}{\prime},\mp@subsup{s}{}{\prime\prime})\wedge
                    flow (cfs @ [(c', s')])= flow (cfs''@ [(d, s')])
                by (simp add: flow-append, simp add: flow-def)
            qed
        }
    ultimately show ?thesis
        by blast
    next
        assume \existst cfs' cfs'". ?T t cfs' cfs'"
        then obtain t and cfs' and cfs "' where
            D: length cfs" < length cfs and
            E: (c, c, s) ->*{cfs'} (SKIP,t) and
            F:(c, c, t)->*{cf\mp@subsup{s}{}{\prime\prime}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{}{\prime})\mathrm{ and}
            G: flow cfs = flow cfs' @ flow cfs"
            by blast
        show ?thesis
        proof (rule disjI2, rule exI [of-t], rule exI [of - cfs ],
        rule exI [of - cfs" @ [(c', s')]])
            from C and D and E and F and G show
            length (cfs"' @ [(c', s')]) < length (cfs @ [(c', s')])^
                (c, s) ->*{cfs'} (SKIP,t)^
                (c2,t)->*{cf\mp@subsup{s}{}{\prime\prime}@[(\mp@subsup{c}{}{\prime},\mp@subsup{s}{}{\prime})]}(\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{}{\prime\prime})\wedge
                    flow (cfs @ [(c', s')])=
                    flow cfs' @ flow (cfs'" @ [(c', s')])
            by (simp add: flow-append)
        qed
    qed
}
with }A\mathrm{ and }B\mathrm{ show ?thesis
    by simp
qed
lemma small-stepsl-seq:
(c}\mp@subsup{c}{1}{};;\mp@subsup{c}{2}{},s)->*{cfs}(c,t)
    (\exists\mp@subsup{c}{}{\prime}cf\mp@subsup{s}{}{\prime}.c=\mp@subsup{c}{}{\prime};;\mp@subsup{c}{2}{}\wedge
        (c, s) ->*{cfs'} (c',t)^
        flow cfs = flow cfs') \vee
    (\existss'cfs' cfs''. length cfs'" < length cfs }
        (c,s)->*{cf\mp@subsup{s}{}{\prime}}(SKIP, s')\wedge(c, c, s')->*{cf\mp@subsup{s}{}{\prime\prime}}}(c,t)
        flow cfs = flow cfs' @ flow cfs'')
by (induction c}\mp@subsup{c}{1}{};;\mp@subsup{c}{2}{}s\mathrm{ cfs c t arbitrary: }\mp@subsup{c}{1}{}\mp@subsup{c}{2}{
rule: small-stepsl-induct, erule small-stepsl-seq-1,
```

rule small-stepsl-seq-2)

lemma small-stepsl-if-1:

```
(IF b THEN \(c_{1}\) ELSE \(\left.c_{2}, s\right) \rightarrow *\{[]\}\left(c^{\prime}, s^{\prime}\right) \Longrightarrow\)
    \(\left(c^{\prime}, s^{\prime}\right)=\left(\right.\) IF \(b\) THEN \(c_{1}\) ELSE \(\left.c_{2}, s\right) \wedge\)
        flow []\(=[] \vee\)
    bval b \(s \wedge\left(c_{1}, s\right) \rightarrow *\{t l[]\}\left(c^{\prime}, s^{\prime}\right) \wedge\)
        flow [] \(=\langle\) bvars \(b\rangle \#\) flow \((t l[]) \vee\)
    \(\neg\) bval b \(s \wedge\left(c_{2}, s\right) \rightarrow *\{t l[]\}\left(c^{\prime}, s^{\prime}\right) \wedge\)
        flow [] \(=\langle\) bvars \(b\rangle\) \# flow ( \(t l\) [])
by (simp add: flow-def)
```

lemma small-stepsl-if-2:

```
assumes
A: (IF b THEN \(c_{1}\) ELSE \(\left.c_{2}, s\right) \rightarrow *\{c f s\}\left(c^{\prime}, s^{\prime}\right) \Longrightarrow\)
\(\left(c^{\prime}, s^{\prime}\right)=\left(\right.\) IF \(b\) THEN \(\left.c_{1} E L S E c_{2}, s\right) \wedge\)
                flow cfs \(=[] \vee\)
    bval \(b s \wedge\left(c_{1}, s\right) \rightarrow *\{t l c f s\}\left(c^{\prime}, s^{\prime}\right) \wedge\)
        flow cfs \(=\langle\) bvars \(b\rangle \#\) flow (tl cfs) \(\vee\)
        \(\neg\) bval \(b s \wedge\left(c_{2}, s\right) \rightarrow *\{t l c f s\}\left(c^{\prime}, s^{\prime}\right) \wedge\)
        flow cfs \(=\langle\) bvars \(b\rangle \#\) flow (tl cfs) and
    B: (IF b THEN \(c_{1}\) ELSE \(\left.c_{2}, s\right) \rightarrow *\left\{c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right\}\left(c^{\prime \prime}, s^{\prime \prime}\right)\)
shows
    \(\left(c^{\prime \prime}, s^{\prime \prime}\right)=\left(\right.\) IF \(b\) THEN \(\left.c_{1} E L S E c_{2}, s\right) \wedge\)
        flow \(\left(c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right)=[] \vee\)
    bval \(b s \wedge\left(c_{1}, s\right) \rightarrow *\left\{t l\left(c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right)\right\}\left(c^{\prime \prime}, s^{\prime \prime}\right) \wedge\)
        flow \(\left(c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right)=\left\langle\right.\) bvars b〉\# flow \(\left(t l\left(c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right)\right) \vee\)
    \(\neg\) bval b \(s \wedge\left(c_{2}, s\right) \rightarrow *\left\{t l\left(c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right)\right\}\left(c^{\prime \prime}, s^{\prime \prime}\right) \wedge\)
        flow \(\left(c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right)=\langle\) bvars \(b\rangle \#\) flow \(\left(t l\left(c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right)\right)\)
    (is \(-\vee\) ? \(P\) )
proof -
\{
    assume
```

 \(C:\left(\right.\) IF \(b\) THEN \(c_{1}\) ELSE \(\left.c_{2}, s\right) \rightarrow *\{c f s\}\left(c^{\prime}, s^{\prime}\right)\) and
 \(D:\left(c^{\prime}, s^{\prime}\right) \rightarrow\left(c^{\prime \prime}, s^{\prime \prime}\right)\)
 assume
 $c^{\prime}=I F b$ THEN $c_{1} E L S E c_{2} \wedge s^{\prime}=s \wedge$
flow cfs $=[] \vee$
bval $b s \wedge\left(c_{1}, s\right) \rightarrow *\{t l c f s\}\left(c^{\prime}, s^{\prime}\right) \wedge$
flow $c f s=\langle$ bvars $b\rangle \#$ flow $(t l c f s) \vee$
\neg bval $b s \wedge\left(c_{2}, s\right) \rightarrow *\{t l c f s\}\left(c^{\prime}, s^{\prime}\right) \wedge$
flow cfs $=\langle$ bvars $b\rangle \#$ flow $(t l c f s)$
$($ is ? $Q \vee ? R \vee ? S)$
hence ? P
proof (rule disjE, erule-tac [2] disjE)
assume? Q
moreover from this have (IF b THEN $\left.c_{1} E L S E c_{2}, s\right) \rightarrow\left(c^{\prime \prime}, s^{\prime \prime}\right)$
using D by simp

```
            ultimately show ?thesis
                    using C by (erule-tac IfE, auto dest: small-stepsl-cons
                    simp: tl-append flow-cons split: list.split)
    next
        assume ?R
        with C and D show ?thesis
            by (auto simp: tl-append flow-cons split: list.split)
        next
        assume ?S
        with C and D show ?thesis
            by (auto simp: tl-append flow-cons split: list.split)
        qed
}
with }A\mathrm{ and }B\mathrm{ show ?thesis
    by simp
qed
lemma small-stepsl-if:
(IF b THEN c
    (c,t) = (IF b THEN c
        flow cfs = [] \vee
    bval b s ^ (c, s) }->*{tl cfs} (c,t)
        flow cfs = \langlebvars b\rangle # flow (tl cfs) \vee
    \neg \text { bval b s ^ (c, c, s) } \rightarrow * \{ t l c f s \} ~ ( c , t ) \wedge
        flow cfs = \langlebvars b\rangle# flow (tl cfs)
by (induction IF b THEN c
    rule: small-stepsl-induct, erule small-stepsl-if-1,
    rule small-stepsl-if-2)
lemma small-stepsl-while-1:
    (WHILE b DO c,s) ->*{[]} (c', s')\Longrightarrow
        ( c', s') = (WHILE b DO c,s) ^ flow [] = [] \vee
        (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ->*{tl []} (c', s')^
        flow [] = flow (tl [])
by (simp add: flow-def)
lemma small-stepsl-while-2:
    assumes
        A:(WHILE b DO c, s) ->*{cfs} (c', s')\Longrightarrow
            (c', s') = (WHILE b DO c,s)^
            flow cfs = [] V
            (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ->*{tl cfs} (c', s')^
                flow cfs = flow (tl cfs) and
            B:(WHILE b DO c, s) ->*{cfs @ [(c', s')]} (c'\prime},\mp@subsup{s}{}{\prime\prime}
```


shows

```
            (c', s')}=(\mathrm{ WHILE b DO c,s)^
            flow (cfs@ @ [c', s')])=[] \vee
            (IF b THEN c;;WHILE b DO c ELSE SKIP, s)
```

```
        ->*{tl (cfs @ [(c', s')])} (c'\prime, s')})
        flow (cfs @ [(c', s')]) = flow (tl (cfs @ [(c', s')]))
    (is - \vee ? P)
proof -
    {
        assume
            C:(WHILE b DO c, s) ->*{cfs} (c', s') and
            D:(c', s') ->(cc', s')
        assume
            c'}=WHILE b DO c ^ s'=s
                flow cfs = [] \vee
            (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ->*{tl cfs} (c', s')^
            flow cfs= flow (tl cfs)
            (is ?Q Q ? R)
        hence ?P
        proof
            assume ?Q
            moreover from this have (WHILE b DO c,s) ->( c c', s')
                using D by simp
            ultimately show ?thesis
                using C by (erule-tac WhileE, auto dest: small-stepsl-cons
                    simp: tl-append flow-cons split: list.split)
        next
            assume ?R
            with C and D show ?thesis
                by (auto simp: tl-append flow-cons split: list.split)
        qed
    }
    with }A\mathrm{ and }B\mathrm{ show ?thesis
        by simp
qed
lemma small-stepsl-while:
    (WHILE b DO c,s)->*{cfs} (c', s')\Longrightarrow
        (c', s')}=(\mathrm{ WHILE b DO c, s)^
            flow cfs = [] \vee
        (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ->*{tl cfs} (c', s')^
            flow cfs = flow (tl cfs)
by (induction WHILE b DO cscfs c' s' arbitrary: b c
    rule: small-stepsl-induct, erule small-stepsl-while-1,
    rule small-stepsl-while-2)
lemma bvars-bval:
    s=t(\subseteq\mathrm{ bvars b) ఋ bval b s=bval b t}
by (induction b, simp-all, rule arg-cong2, auto intro: avars-aval)
lemma run-flow-append:
    run-flow(cs@cs')s=run-flow cs'(run-flow cs s)
```

by (induction cs s rule: run-flow.induct, simp-all (no-asm))
lemma no-upd-append:
no-upd (cs@cs') $x=\left(\right.$ no-upd cs $x \wedge$ no-upd $\left.c s^{\prime} x\right)$
by (induction cs, simp-all)
lemma no-upd-run-flow:
no-upd cs $x \Longrightarrow$ run-flow cs $s x=s x$
by (induction cs s rule: run-flow.induct, auto)
lemma small-stepsl-run-flow-1:
$(c, s) \rightarrow *\{[]\}\left(c^{\prime}, s^{\prime}\right) \Longrightarrow s^{\prime}=$ run-flow $($ flow []) s
by (simp add: flow-def)
lemma small-stepsl-run-flow-2:
$(c, s) \rightarrow\left(c^{\prime}, s^{\prime}\right) \Longrightarrow s^{\prime}=$ run-flow (flow-aux $\left.[c]\right) s$
by (induction [c] arbitrary: c c^{\prime} rule: flow-aux.induct, auto)
lemma small-stepsl-run-flow-3:
$\llbracket(c, s) \rightarrow *\{c f s\}\left(c^{\prime}, s^{\prime}\right) \Longrightarrow s^{\prime}=$ run-flow (flow cfs) s; $\left.(c, s) \rightarrow *\left\{c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right\}\left(c^{\prime \prime}, s^{\prime \prime}\right)\right] \Longrightarrow$
$s^{\prime \prime}=$ run-flow $\left(\right.$ flow $\left.\left(c f s @\left[\left(c^{\prime}, s^{\prime}\right)\right]\right)\right) s$
by (simp add: flow-append run-flow-append, auto intro: small-stepsl-run-flow-2 simp: flow-def)
lemma small-stepsl-run-flow:
$(c, s) \rightarrow *\{c f s\} \quad\left(c^{\prime}, s^{\prime}\right) \Longrightarrow s^{\prime}=$ run-flow $($ flow $c f s) s$
by (induction $c \quad s \quad c f s c^{\prime} s^{\prime}$ rule: small-stepsl-induct,
erule small-stepsl-run-flow-1, rule small-stepsl-run-flow-3)

4.2 Local context proofs

context noninterf
begin
lemma no-upd-sources:
no-upd cs $x \Longrightarrow x \in$ sources cs s x
by (induction cs rule: rev-induct, auto simp: no-upd-append split: com-flow.split)
lemma sources-aux-sources:
sources-aux cs s $x \subseteq$ sources cs s x
by (induction cs rule: rev-induct, auto split: com-flow.split)
lemma sources-aux-append:
sources-aux cs s $x \subseteq$ sources-aux (cs @ cs') sx
by (induction cs' rule: rev-induct, simp, subst append-assoc [symmetric], auto simp del: append-assoc split: com-flow.split)
lemma sources-aux-observe-hd-1:
$\forall y \in X . s:$ dom $y \rightsquigarrow$ dom $x \Longrightarrow X \subseteq$ sources-aux $[\langle X\rangle]$ s x
by (subst append-Nil [symmetric], subst sources-aux.simps, auto)
lemma sources-aux-observe-hd-2:
$(\forall y \in X$. s: dom $y \rightsquigarrow$ dom $x \Longrightarrow X \subseteq$ sources-aux $(\langle X\rangle \# x s) s x) \Longrightarrow$ $\forall y \in X$. s: dom $y \rightsquigarrow$ dom $x \Longrightarrow X \subseteq$ sources-aux $(\langle X\rangle \# x s @[x]) s x$
by (subst append-Cons [symmetric], subst sources-aux.simps, auto split: com-flow.split)
lemma sources-aux-observe-hd:
$\forall y \in X$. s: dom $y \rightsquigarrow$ dom $x \Longrightarrow X \subseteq$ sources-aux $(\langle X\rangle \#$ cs) s x
by (induction cs rule: rev-induct,
erule sources-aux-observe-hd-1, rule sources-aux-observe-hd-2)
lemma sources-observe-tl-1:

assumes

$A: \bigwedge z a . c=(x::=a::$ com-flow $) \Longrightarrow z=x \Longrightarrow$ sources-aux cs s $x \subseteq$ sources-aux $(\langle X\rangle \#$ cs) s x and
$B: \bigwedge z a y . c=(x::=a::$ com-flow $) \Longrightarrow z=x \Longrightarrow$ sources cs s $y \subseteq$ sources $(\langle X\rangle \# c s)$ s y and
$C: \bigwedge z a . c=(z::=a::$ com-flow $) \Longrightarrow z \neq x \Longrightarrow$ sources cs s $x \subseteq$ sources $(\langle X\rangle \# c s)$ s x and
$D: \bigwedge Y y . c=\langle Y\rangle \Longrightarrow$
sources cs s $y \subseteq$ sources $(\langle X\rangle \# c s)$ s y and
$E: z \in($ case c of
$z::=a \Rightarrow$ if $z=x$
then sources-aux cs s $x \cup \bigcup\{$ sources cs s $y \mid y$. run-flow cs s : dom $y \rightsquigarrow \operatorname{dom} x \wedge y \in$ avars $a\}$
else sources cs s $x \mid$
$\langle X\rangle \Rightarrow$
sources cs s $x \cup \bigcup$ \{sources cs s $y \mid y$.
run-flow cs s: dom $y \rightsquigarrow \operatorname{dom} x \wedge y \in X\}$)
shows $z \in \operatorname{sources}(\langle X\rangle \#$ cs @ $[c]) s x$
proof -
\{
fix a

assume

$F: \forall A .(\forall y$. run-flow cs $s: d o m y \rightsquigarrow d o m ~ x \longrightarrow$ $A=$ sources $(\langle X\rangle \#$ cs $)$ s $y \longrightarrow y \notin$ avars $a) \vee z \notin A$ and $G: c=x::=a$
have $z \in$ sources-aux cs s $x \cup \bigcup\{$ sources cs s $y \mid y$. run-flow cs s : dom $y \rightsquigarrow$ dom $x \wedge y \in$ avars $a\}$ using E and G by simp
hence $z \in$ sources-aux $(\langle X\rangle \# c s) s x$
using A and G proof (erule-tac UnE, blast)
assume $z \in \bigcup\{$ sources cs s $y \mid y$.

```
        run-flow cs s:dom y}\rightsquigarrowd\mathrm{ dom }x\wedgey\in\mathrm{ avars a}
    then obtain }y\mathrm{ where
        H:z\in sources cs s y and
        I: run-flow cs s:dom y dom x and
        J:y \in avars a
        by blast
    have z\in sources (\langleX\rangle# cs) s y
        using }B\mathrm{ and }G\mathrm{ and }H\mathrm{ by blast
    hence }y\not\in\mathrm{ avars a
        using F and I by blast
    thus ?thesis
        using J by contradiction
    qed
}
moreover {
    fix y a
    assume c=y::= a and y\not=x
    moreover from this have z\in sources cs s x
        using E by simp
    ultimately have z\in sources ( }\langleX\rangle#cs) s x
        using C by blast
}
moreover {
    fix Y
    assume
        F:\forallA.(\forally.run-flow cs s:dom y dom x \longrightarrow
        A= sources (\langleX\rangle# cs) s y \longrightarrowy\not\inY)\veez\not\inA and
        G:c=\langleY\rangle
    have z\in sources cs s x U { {ources cs s y | y.
        run-flow cs s:dom y dom x}\wedge y\inY
        using E and G by simp
    hence z \in sources (\langleX\rangle# cs) s x
    using D and G proof (erule-tac UnE, blast)
        assume z U \{sources cs s y|y.
        run-flow cs s:dom y}\rightsquigarrow\operatorname{dom}x\wedgey\inY
    then obtain }y\mathrm{ where
        H:z\in sources cs s y and
        I: run-flow cs s:dom y dom x and
        J:y\inY
        by blast
    have z\in sources (\langleX\rangle# cs) s y
        using D and G and H by blast
    hence y}\not\in
        using}F\mathrm{ and I by blast
    thus ?thesis
        using }J\mathrm{ by contradiction
    qed
}
ultimately show ?thesis
```

```
    by (simp only: append-Cons [symmetric] sources.simps,
    auto split: com-flow.split)
qed
lemma sources-observe-tl-2:
    assumes
    \(A: \bigwedge z a . c=(z::=a::\) com-flow \() \Longrightarrow\)
        sources-aux cs s \(x \subseteq\) sources-aux \((\langle X\rangle \# c s) s x\) and
    \(B: \wedge Y . c=\langle Y\rangle \Longrightarrow\)
        sources-aux cs s \(x \subseteq\) sources-aux \((\langle X\rangle \# c s)\) s \(x\) and
    \(C: \bigwedge Y y . c=\langle Y\rangle \Longrightarrow\)
        sources cs s \(y \subseteq\) sources \((\langle X\rangle \# c s)\) s \(y\) and
    \(D: z \in\) (case \(c\) of
        \(z::=a \Rightarrow\)
        sources-aux cs s \(x \mid\)
        \(\langle X\rangle \Rightarrow\)
            sources-aux cs s \(x \cup \bigcup\{\) sources cs s \(y \mid y\).
            run-flow cs s: dom \(y \rightsquigarrow \operatorname{dom} x \wedge y \in X\}\) )
    shows \(z \in\) sources-aux \((\langle X\rangle \#\) cs @ \([c]) s x\)
proof -
    \{
    fix \(y a\)
    assume \(c=y::=a\)
    moreover from this have \(z \in\) sources-aux cs \(s x\)
        using \(D\) by \(\operatorname{simp}\)
    ultimately have \(z \in\) sources-aux \((\langle X\rangle \# c s)\) s \(x\)
        using \(A\) by blast
\}
moreover \{
    fix \(Y\)
    assume
        \(E: \forall A .(\forall y\). run-flow cs s: dom \(y \rightsquigarrow \operatorname{dom} x \longrightarrow\)
            \(A=\) sources \((\langle X\rangle \# c s) s y \longrightarrow y \notin Y) \vee z \notin A\) and
        \(F: c=\langle Y\rangle\)
    have \(z \in\) sources-aux cs s \(x \cup \bigcup\{\) sources cs s \(y \mid y\).
        run-flow cs \(s\) : dom \(y \rightsquigarrow d o m x \wedge y \in Y\}\)
        using \(D\) and \(F\) by simp
    hence \(z \in\) sources-aux \((\langle X\rangle \#\) cs) s \(x\)
    using \(B\) and \(F\) proof (erule-tac UnE, blast)
        assume \(z \in \bigcup\) \{sources cs s \(y \mid y\).
            run-flow cs \(s: d o m y \rightsquigarrow \operatorname{dom} x \wedge y \in Y\}\)
        then obtain \(y\) where
            \(H: z \in\) sources cs s \(y\) and
            I: run-flow cs s: dom \(y \rightsquigarrow \operatorname{dom} x\) and
            \(J: y \in Y\)
            by blast
            have \(z \in\) sources \((\langle X\rangle \#\) cs \()\) s \(y\)
                using \(C\) and \(F\) and \(H\) by blast
            hence \(y \notin Y\)
```

```
            using E and I by blast
            thus ?thesis
            using }J\mathrm{ by contradiction
    qed
}
ultimately show ?thesis
    by (simp only: append-Cons [symmetric] sources-aux.simps,
    auto split: com-flow.split)
qed
lemma sources-observe-tl:
sources cs s x\subseteq sources ( }\langleX\rangle# cs) s x
and sources-aux-observe-tl:
sources-aux cs s x \subseteq sources-aux (\langleX\rangle# cs) s x
proof (induction cs s x and cs s x rule: sources-induct)
    fix cs c s x
    show
    \llbracket\za.c=z::=a\Longrightarrowz=x\Longrightarrow
        sources-aux cs s x \subseteq sources-aux ( }\langleX\rangle#\mathrm{ cs) s x;
    \abby.c=z::=a\Longrightarrowz=x\Longrightarrow
        sources cs s y\subseteq sources (\langleX\rangle# cs) s y;
    \za.c=z::=a\Longrightarrowz\not=x\Longrightarrow
        sources cs s x\subseteq sources (\langleX\rangle# cs) s x;
    \Y.c=\langleY\rangle\Longrightarrow
        sources cs s x\subseteq sources (}\langleX\rangle# cs) s x
    \Yay.c=\langleY\rangle\Longrightarrow
        sources cs s y \subseteq sources (}\langleX\rangle# cs) s y\rrbracket
        sources(cs@ [c]) s x\subseteq sources (\langleX\rangle# cs @ [c]) s x
    by (auto, rule sources-observe-tl-1)
next
    fix s x
    show sources [] s x\subseteq sources [\langleX\rangle] s x
    by (subst (3) append-Nil [symmetric],
        simp only: sources.simps, simp)
next
    fix cs cs x
    show
    \llbracket\za.c=z::=a\Longrightarrow
        sources-aux cs s x\subseteq sources-aux (\langleX\rangle# cs) s x;
    \Y.c=\langleY\rangle\Longrightarrow
        sources-aux cs s x \subseteq sources-aux ( }\langleX\rangle#\mathrm{ cs) s x;
    \Yay.c=\langleY\rangle\Longrightarrow
        sources cs s y \subseteq sources (\langleX\rangle# cs) s y\rrbracket\Longrightarrow
        sources-aux (cs@ [c])s x\subseteq sources-aux (\langleX\rangle# cs@ [c])sx
    by (auto, rule sources-observe-tl-2)
qed simp
```

lemma sources-member-1:

```
    assumes
    A:\bigwedgeza.c=(x::=a :: com-flow ) \Longrightarrowz=x\Longrightarrow
        y\in sources-aux cs'(run-flow cs s) x\Longrightarrow
        sources cs s y\subseteq sources-aux (cs@ cs')sx and
    B:\bigwedgezaw.c=(x::=a :: com-flow )}\Longrightarrowz=x
        y\in sources cs'(run-flow cs s) w\Longrightarrow
        sources cs s y\subseteqsources(cs@ cs')sw and
    C:\bigwedgeza.c=(z::=a :: com-flow) \Longrightarrowz\not=x\Longrightarrow
        y}\in\mathrm{ sources cs'(run-flow cs s) x >
        sources cs s y \subseteqsources (cs@ cs') s x and
    D:\Yw.c=\langleY\rangle\Longrightarrow
        y\in sources cs'(run-flow cs s) w\Longrightarrow
        sources cs s y\subseteqsources (cs@ cs')sw and
    E:y (case c of
    z::=a=> if z=x
        then sources-aux cs'(run-flow cs s) x \cup
            \ {sources cs'(run-flow cs s) y | y.
                run-flow cs'(run-flow cs s): dom y}\rightsquigarrow\operatorname{dom}x\wedgey\in\mathrm{ avars a}
        else sources cs'(run-flow cs s) }
    <X\rangle =>
        sources cs'(run-flow cs s) x \cup
            \ sources cs'(run-flow cs s) y | y.
                run-flow cs'(run-flow cs s):dom y}\rightsquigarrow\operatorname{dom}x\wedgey\inX})\mathrm{ and
    F:z\in sources cs s y
    shows z \in sources(cs @ cs' @ [c]) s x
proof -
    {
    fix a
    assume
            G:\forallA.(\forally.run-flow cs'(run-flow cs s): dom y dom x \longrightarrow
        A=sources (cs@cs')sy\longrightarrowy\not\inavars a)\veez\not\inA and
        H:c=x ::=a
    have }y\in\mathrm{ sources-aux cs'(run-flow cs s) x U
        \ {sources cs'(run-flow cs s) y | y.
        run-flow cs'(run-flow cs s):dom y}\rightsquigarrow\operatorname{dom}x\wedgey\in\mathrm{ avars a}
    using E and H by simp
    hence z}\in\mathrm{ sources-aux (cs @ cs') s x
    using A and F and H proof (erule-tac UnE, blast)
    assume y}\in\bigcup{\mathrm{ {sources cs'(run-flow cs s) y | y.
        run-flow cs'(run-flow cs s): dom y}\rightsquigarrow\operatorname{dom}x\wedgey\in\mathrm{ avars a}
    then obtain w where
        I:y f sources cs'(run-flow cs s) w and
        J: run-flow cs' (run-flow cs s):dom w}\rightsquigarrowdom x an
        K:w f avars a
        by blast
    have z\in sources(cs@cs')sw
        using }B\mathrm{ and }F\mathrm{ and }H\mathrm{ and }I\mathrm{ by blast
    hence w\not\in avars a
        using G and J by blast
```

```
        thus ?thesis
        using K by contradiction
    qed
}
moreover {
    fix wa
    assume c=w ::= a and w\not=x
    moreover from this have }y\in\mathrm{ sources cs' (run-flow cs s) }
    using E by simp
    ultimately have z\in sources (cs@ cs')sx
        using C and F by blast
}
moreover {
    fix }
    assume
        G:\forallA.(\forally.run-flow cs'(run-flow cs s):dom y\rightsquigarrowdom x }
        A=sources (cs@ cs')sy\longrightarrowy\not\inY)\veez\not\inA and
        H:c=\langleY\rangle
    have }y\in\mathrm{ sources cs' (run-flow cs s)}x
        \ {sources cs'(run-flow cs s) y | y.
        run-flow cs'(run-flow cs s): dom y}\rightsquigarrow\operatorname{dom}x\wedgey\inY
        using E and H by simp
    hence z\in sources(cs@cs')sx
    using D and F and H proof (erule-tac UnE, blast)
        assume y U {sources cs'(run-flow cs s) y|y.
        run-flow cs'(run-flow cs s): dom y}\rightsquigarrow\operatorname{dom}x\wedgey\inY
        then obtain w where
            I:y f sources cs'(run-flow cs s) w and
            J: run-flow cs' (run-flow cs s):dom w}\rightsquigarrowdom x an
            K:w\inY
            by blast
        have z\in sources(cs@cs')sw
            using D and F and H and I by blast
        hence w\not\inY
            using G and J by blast
        thus ?thesis
            using K by contradiction
    qed
}
ultimately show ?thesis
    by (simp only: append-assoc [symmetric] sources.simps,
    auto simp: run-flow-append split: com-flow.split)
qed
lemma sources-member-2:
```

```
assumes
\(A: \bigwedge z a \cdot c=(z::=a::\) com-flow \() \Longrightarrow\)
\(y \in\) sources-aux cs' (run-flow cs s) \(x \Longrightarrow\) sources cs sy sources-aux (cs@cs') sx and
```

```
    B: \Y.c=\langleY\rangle\Longrightarrow
        y}\in\mathrm{ sources-aux cs'(run-flow cs s) x }
        sources cs s y\subseteqsources-aux (cs@ @s')s x and
    C:\bigwedgeYw.c=\langleY\rangle\Longrightarrow
        y\in sources cs'(run-flow cs s) w\Longrightarrow
        sources cs s y\subseteqsources (cs@ @s') sw and
    D:y\in(case c of
        z::=a=>
        sources-aux cs'(run-flow cs s) x 
    <X\rangle =>
        sources-aux cs'(run-flow cs s) x U
            \ {ources cs'(run-flow cs s) y | y.
                run-flow cs'(run-flow cs s):dom y}\rightsquigarrow\operatorname{dom}x\wedgey\inX})\mathrm{ and
    E:z\in sources cs s y
    shows z \in sources-aux(cs @ cs' @ [c]) s x
proof -
    {
        fix wa
    assume c=w ::= a
    moreover from this have y\in sources-aux cs'(run-flow cs s) }
        using D by simp
    ultimately have z\in sources-aux (cs@ @s')sx
        using A and E by blast
}
moreover {
    fix Y
    assume
        G:\forallA.(\forally.run-flow cs'(run-flow cs s):dom y}\rightsquigarrow\operatorname{dom}x
        A= sources (cs@ cs')sy\longrightarrowy\not\existsY)\veez\not\inA and
        H:c=\langleY\rangle
    have }y\in\mathrm{ sources-aux cs' (run-flow cs s) }x
        \ {sources cs'(run-flow cs s) y | y.
        run-flow cs'(run-flow cs s): dom y}\rightsquigarrow\operatorname{dom x}\wedgey\inY
    using D and H by simp
    hence z f sources-aux (cs @ cs') sx
    using B and E and H proof (erule-tac UnE, blast)
    assume y U \{sources cs'(run-flow cs s) y | y.
        run-flow cs'(run-flow cs s): dom y }\rightsquigarrow\operatorname{dom}x\wedgey\inY
    then obtain w where
            I:y\in sources cs'(run-flow cs s) w and
            J: run-flow cs' (run-flow cs s):dom w}\rightsquigarrowdom x an
            K:w\inY
            by blast
            have z\in sources(cs@cs')sw
            using C and E and H and I by blast
            hence w}\not=
            using G and J by blast
            thus ?thesis
                using K by contradiction
```


qed

\}
ultimately show ?thesis
by (simp only: append-assoc [symmetric] sources-aux.simps, auto simp: run-flow-append split: com-flow.split)

qed

lemma sources-member:

```
y}\mathrm{ sources cs'(run-flow cs s) }x
    sources cs s y \subseteq sources (cs@ @c') s x
```

and sources-aux-member:
$y \in$ sources-aux cs' (run-flow cs s) $x \Longrightarrow$
sources cs s $y \subseteq$ sources-aux (cs@cs) sx
proof (induction $c s^{\prime} s x$ and $c s^{\prime} s x$ rule: sources-induct)
fix $c s^{\prime}$ c s x
show
$\llbracket \bigwedge z a . c=z::=a \Longrightarrow z=x \Longrightarrow$
$y \in$ sources-aux cs ${ }^{\prime}$ (run-flow cs s) $x \Longrightarrow$
sources cs sy sources-aux (cs@cs') sx;
$\bigwedge z a b w . c=z::=a \Longrightarrow z=x \Longrightarrow$
$y \in$ sources cs' (run-flow cs s) $w \Longrightarrow$
sources cs sy y sources (cs @ cs') sw;
$\bigwedge z a . c=z::=a \Longrightarrow z \neq x \Longrightarrow$
$y \in$ sources cs ${ }^{\prime}$ (run-flow cs s) $x \Longrightarrow$
sources cs s $y \subseteq$ sources $\left(c s @ c s^{\prime}\right) s x$;
$\wedge Y . c=\langle Y\rangle \Longrightarrow$
$y \in$ sources cs ${ }^{\prime}$ (run-flow cs s) $x \Longrightarrow$
sources cs s $y \subseteq$ sources (cs@ cs') s x;
$\bigwedge Y a w . c=\langle Y\rangle \Longrightarrow$
$y \in$ sources cs ${ }^{\prime}$ (run-flow cs s) $w \Longrightarrow$
sources cs sy y sources $\left(c s @ c s^{\prime}\right) s w$;
$y \in \operatorname{sources}\left(c s^{\prime} @[c]\right)$ (run-flow cs s) $x \rrbracket \Longrightarrow$
sources cs s $y \subseteq$ sources (cs@cs @ [c])sx
by (auto, rule sources-member-1)
next
fix $c s^{\prime} c s x$
show
$\llbracket \bigwedge z a \cdot c=z::=a \Longrightarrow$
$y \in$ sources-aux cs' (run-flow cs s) $x \Longrightarrow$
sources cs s $y \subseteq$ sources-aux (cs @ cs') sx;
$\wedge Y . c=\langle Y\rangle \Longrightarrow$
$y \in$ sources-aux cs' (run-flow cs s) $x \Longrightarrow$
sources cs s $y \subseteq$ sources-aux (cs @ cs') sx;
$\bigwedge Y a w . c=\langle Y\rangle \Longrightarrow$
$y \in$ sources $c s^{\prime}($ run-flow cs s) $w \Longrightarrow$
sources cs sy y sources (cs@cs') sw;
$y \in$ sources-aux (cs' @ [c]) (run-flow cs s) $x \rrbracket \Longrightarrow$
sources cs s $y \subseteq$ sources-aux (cs @ cs' @ [c])sx
by (auto, rule sources-member-2)
lemma ctyping2-confine:

```
\(\llbracket(c, s) \Rightarrow s^{\prime} ;(U, v) \vDash c(\subseteq A, X)=\) Some \((B, Y) ;\)
    \(\exists(C, Z) \in U . \neg C: d o m ' Z \rightsquigarrow\{\operatorname{dom} x\} \rrbracket \Longrightarrow s^{\prime} x=s x\)
```

by (induction arbitrary: A B X Y U v rule: big-step-induct,
auto split: if-split-asm option.split-asm prod.split-asm, fastforce+)
lemma ctyping2-term-if:
$\llbracket \bigwedge x^{\prime} y^{\prime} z^{\prime \prime} s . x^{\prime}=x \Longrightarrow y^{\prime}=y \Longrightarrow z=z^{\prime \prime} \Longrightarrow \exists s^{\prime} .\left(c_{1}, s\right) \Rightarrow s^{\prime}$;
$\bigwedge x^{\prime} y^{\prime} z^{\prime \prime} s . x^{\prime}=x \Longrightarrow y^{\prime}=y \Longrightarrow z^{\prime}=z^{\prime \prime} \Longrightarrow \exists s^{\prime} .\left(c_{2}, s\right) \Rightarrow s^{\dagger} \rrbracket$ $\exists s^{\prime} .\left(\right.$ IF b THEN $\left.c_{1} E L S E c_{2}, s\right) \Rightarrow s^{\prime}$
by (cases bval bs, fastforce+)
lemma ctyping2-term:

```
\(\llbracket(U, v) \vDash c(\subseteq A, X)=\) Some \((B, Y)\);
    \(\exists(C, Z) \in U . \neg C: d o m ' Z \rightsquigarrow U N I V \rrbracket \Longrightarrow \exists s^{\prime} .(c, s) \Rightarrow s^{\prime}\)
```

by (induction (U, v) c A X arbitrary: $B Y U v$ s rule: ctyping2.induct,
auto split: if-split-asm option.split-asm prod.split-asm, fastforce,
erule ctyping2-term-if)
lemma ctyping2-correct-aux-skip [elim]:
$\llbracket(S K I P, s) \rightarrow *\left\{c f s_{1}\right\}\left(c_{1}, s_{1}\right) ;\left(c_{1}, s_{1}\right) \rightarrow *\left\{c f s_{2}\right\}\left(c_{2}, s_{2}\right) \rrbracket \Longrightarrow$
$\left(\forall t_{1} . \exists c_{2}{ }^{\prime} t_{2} . \forall x\right.$.
($s_{1}=t_{1}\left(\subseteq\right.$ sources-aux (flow cfs $\left.\left.s_{2}\right) s_{1} x\right) \longrightarrow$
$\left.\left(c_{1}, t_{1}\right) \rightarrow *\left(c_{2}^{\prime}, t_{2}\right) \wedge\left(c_{2}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge$
$\left(s_{1}=t_{1}\left(\subseteq\right.\right.$ sources $\left(\right.$ flow $\left.\left.\left.\left.c f s_{2}\right) s_{1} x\right) \longrightarrow s_{2} x=t_{2} x\right)\right) \wedge$
$(\forall x .(\exists p \in U$. case p of $(B, W) \Rightarrow$
$\exists s \in B . \exists y \in W . \neg s:$ dom $y \rightsquigarrow \operatorname{dom} x) \longrightarrow$ no-upd $\left(\right.$ flow $\left.^{c} f s_{2}\right) x$)
by (fastforce dest: small-stepsl-skip)
lemma ctyping2-correct-aux-assign [elim]:
assumes
A: (if $(\forall s \in$ Univ? A $X . \forall y \in$ avars $a . s: \operatorname{dom} y \rightsquigarrow \operatorname{dom} x) \wedge$
$(\forall p \in U . \forall B Y \cdot p=(B, Y) \longrightarrow$
$(\forall s \in B . \forall y \in Y . s: \operatorname{dom} y \rightsquigarrow \operatorname{dom} x))$
then Some (if $x \in$ state $\wedge A \neq\{ \}$
then if $v \models a(\subseteq X)$
then $(\{s(x:=$ aval a $s) \mid s . s \in A\}$, insert $x X)$
else $(A, X-\{x\})$
else $(A$, Univ?? $A X))$
else None) $=$ Some (B, Y)
(is (if ?P then - else -) $=-$) and
$B:(x::=a, s) \rightarrow *\left\{c f s_{1}\right\}\left(c_{1}, s_{1}\right)$ and
$C:\left(c_{1}, s_{1}\right) \rightarrow *\left\{c f s_{2}\right\}\left(c_{2}, s_{2}\right)$ and
$D: r \in A$ and
$E: s=r(\subseteq$ state $\cap X)$

```
shows
    (\forall\mp@subsup{t}{1}{},\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{2}{2}.,\forallx\mathrm{ .
        (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources-aux (flow cfs s) ) s1 x)}
            (c, ct ) ->* (c\mp@subsup{c}{}{\prime},\mp@subsup{t}{2}{})\wedge(\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))\wedge
            (s1 = tr (\subseteq sources (flow cfs\mp@subsup{s}{2}{})}\mp@subsup{s}{1}{}x)\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x))
    (\forallx. (\existsp\inU. case p of (B,Y) =>
        \existss\inB.\existsy\inY.\negs:dom y\rightsquigarrowdom x)\longrightarrow no-upd (flow cfs s) x)
proof -
    have ?P
        using A by (simp split: if-split-asm)
    have F: avars a}\subseteq{y.s:dom y\rightsquigarrow\operatorname{dom}x
    proof (cases state}\subseteqX
    case True
    with E have interf s= interf r
        by (blast intro: interf-state)
    with D and 〈?P\rangle show ?thesis
        by (erule-tac conjE, drule-tac bspec, auto simp: univ-states-if-def)
    next
    case False
    with D and 〈?P\rangle show ?thesis
        by (erule-tac conjE, drule-tac bspec, auto simp: univ-states-if-def)
    qed
    have}(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})=(x::=a,s)\vee(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})=(SKIP,s(x:= aval a s)
    using B by (blast dest: small-stepsl-assign)
    thus ?thesis
    proof
    assume (c}\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})=(x::=a,s
    moreover from this have (x::=a,s) ->*{cfs\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})
        using C by simp
    hence (c2, s2)=(x::=a,s)\wedge flow cfs s = [] \vee
            (c, , s2) = (SKIP, s(x:= aval a s)) ^ flow cfs s }=[x::=a
        by (rule small-stepsl-assign)
    moreover {
        fix }
        have \exists}\mp@subsup{c}{}{\prime}\mp@subsup{t}{}{\prime}.\forally\mathrm{ .
            ( }y=x
                (s=t(\subseteq sources-aux [x::=a] s x)}
                        (x::=a,t) ->* (c}\mp@subsup{c}{}{\prime},\mp@subsup{t}{}{\prime})\wedge\mp@subsup{c}{}{\prime}=SKIP)
                (s=t(\subseteq sources [x::=a]s x)\longrightarrow aval a s=\mp@subsup{t}{}{\prime}x))\wedge
            (y\not=x\longrightarrow
                    (s=t(\subseteqsources-aux [x::=a] s y)\longrightarrow
                    (x::=a,t) ->* (c}\mp@subsup{c}{}{\prime},\mp@subsup{t}{}{\prime})\wedge\mp@subsup{c}{}{\prime}=SKIP)
                    (s=t (\subseteq sources [x::=a]s y)\longrightarrows y = t' y))
        proof (rule exI [of-SKIP], rule exI [of - t(x:= aval a t)])
            {
            assume s=t(\subseteq sources [x::=a]sx)
            hence s=t(\subseteq{y.s:dom y\rightsquigarrowdom x ^ y f avars a})
                        by (subst (asm) append-Nil [symmetric],
                        simp only: sources.simps, auto)
```

```
            hence aval a s=aval a t
            using F by (blast intro:avars-aval)
        }
        moreover {
            fix y
            assume s=t(\subseteq sources [x::=a]s y) and y}\not=
            hence s y = ty
                by (subst (asm) append-Nil [symmetric],
                simp only: sources.simps, auto)
        }
        ultimately show }\forally\mathrm{ .
            (y=x\longrightarrow
                    (s=t(\subseteq sources-aux [x::= a]s s)\longrightarrow
                            (x::=a,t)->* (SKIP,t(x:= aval a t))}\wedge SKIP =SKIP ) ^
                (s=t(\subseteq sources [x::=a]s x)\longrightarrow
                    aval a }s=(t(x:= aval a t)) x)) ^
                (y\not=x\longrightarrow
                    (s=t(\subseteq sources-aux [x::=a]s y)\longrightarrow
                    (x::=a,t)->* (SKIP,t(x:= aval a t))\wedge SKIP = SKIP ) ^
                (s=t(\subseteq sources [x::=a]s y)\longrightarrow
                    s y = (t(x:= aval a t)) y))
                by simp
        qed
    }
    ultimately show ?thesis
        using <?P` by fastforce
    next
    assume (c
    moreover from this have (SKIP, s(x:= aval a s)) }->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{}
        using C by simp
    hence (c2, s2) = (SKIP, s(x := aval a s)) ^ flow cfs 2 = []
        by (rule small-stepsl-skip)
    ultimately show ?thesis
        by auto
    qed
qed
lemma ctyping2-correct-aux-seq:
assumes
    A: \bigwedge\mp@subsup{B}{}{\prime}s\mp@subsup{c}{}{\prime}\mp@subsup{c}{}{\prime\prime}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}cf\mp@subsup{s}{1}{}cf\mp@subsup{s}{2}{}.B=\mp@subsup{B}{}{\prime}\Longrightarrow
    \existsr\inA.s=r(\subseteq\mathrm{ state }\capX)\Longrightarrow
    (c, c) s)->*{cfs\mp@subsup{s}{1}{}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})\Longrightarrow(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{2}{})\Longrightarrow
        (\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{\prime}{\prime
            (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs s) ) s1 x)}
                    (c',}\mp@subsup{t}{1}{\prime})->* (\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
            (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs⿱2)}\mp@subsup{)}{1}{\prime}x)\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x))
            ( }\forallx.(\existsp\inU.case p of (B,W)
                    \existss\inB.\existsy\inW.\negs:dom y}\rightsquigarrow\operatorname{dom}x)
                        no-upd (flow cfs⿱2)}\mathrm{ ) x) and
```

$$
\begin{aligned}
& B: \wedge B^{\prime} B^{\prime \prime} C Z s c^{\prime} c^{\prime \prime} s_{1} s_{2} c f s_{1} c f s_{2} . B=B^{\prime} \Longrightarrow B^{\prime \prime}=B^{\prime} \Longrightarrow \\
& (U, v) \models c_{2}\left(\subseteq B^{\prime}, Y\right)=\text { Some }(C, Z) \Longrightarrow \\
& \exists r \in B^{\prime} \cdot s=r(\subseteq \text { state } \cap Y) \Longrightarrow \\
& \quad\left(c_{2}, s\right) \rightarrow *\left\{c f s_{1}\right\}\left(c^{\prime}, s_{1}\right) \Longrightarrow\left(c^{\prime}, s_{1}\right) \rightarrow *\left\{c f s_{2}\right\}\left(c^{\prime \prime}, s_{2}\right) \Longrightarrow \\
& \quad\left(\forall t_{1} \cdot \exists c_{2}^{\prime} t_{2} . \forall x .\right. \\
& \quad\left(s_{1}=t_{1}\left(\subseteq \text { sources-aux }\left(\text { flow } c f s_{2}\right) s_{1} x\right) \longrightarrow\right. \\
& \left.\quad\left(c^{\prime}, t_{1}\right) \rightarrow *\left(c_{2}^{\prime}, t_{2}\right) \wedge\left(c^{\prime \prime}=\text { SKIP }\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge \\
& \left.\quad\left(s_{1}=t_{1}\left(\subseteq \text { sources }\left(\text { flow } c f s_{2}\right) s_{1} x\right) \longrightarrow s_{2} x=t_{2} x\right)\right) \wedge \\
& \quad(\forall x \cdot(\exists p \in U \cdot \text { case } p \text { of }(B, W) \Rightarrow \\
& \quad \exists s \in B . \exists y \in W . \neg s: \text { dom } y \rightsquigarrow \text { dom } x) \longrightarrow \\
& \quad \text { no-upd }(\text { flow cfs }) x) \text { and } \\
& C:(U, v) \models c_{1}(\subseteq A, X)=\text { Some }(B, Y) \text { and } \\
& D:(U, v) \models c_{2}(\subseteq B, Y)=\operatorname{Some}(C, Z) \text { and } \\
& E:\left(c_{1} ; c_{2}, s\right) \rightarrow *\left\{c f s_{1}\right\}\left(c^{\prime}, s_{1}\right) \text { and } \\
& F:\left(c^{\prime}, s_{1}\right) \rightarrow *\left\{c f s_{2}\right\}\left(c^{\prime \prime}, s_{2}\right) \text { and } \\
& G: r \in A \text { and } \\
& H: s=r(\subseteq \text { state } \cap X)
\end{aligned}
$$

shows

$\left(\forall t_{1} . \exists c_{2}{ }^{\prime} t_{2} . \forall x\right.$.

$$
\left(s_{1}=t_{1}\left(\subseteq \text { sources-aux }\left(\text { flow } c f s_{2}\right) s_{1} x\right) \longrightarrow\right.
$$

$$
\left.\left(c^{\prime}, t_{1}\right) \rightarrow *\left(c_{2}^{\prime}, t_{2}\right) \wedge\left(c^{\prime \prime}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge
$$

$$
\left.\left(s_{1}=t_{1}\left(\subseteq \text { sources }\left(\text { flow cfs } s_{2}\right) s_{1} x\right) \longrightarrow s_{2} x=t_{2} x\right)\right) \wedge
$$

($\forall x .(\exists p \in U$. case p of $(B, W) \Rightarrow$
$\exists s \in B . \exists y \in W . \neg s: \operatorname{dom} y \rightsquigarrow \operatorname{dom} x) \longrightarrow$ no-upd $\left(\right.$ flow $\left.c f s_{2}\right) x$)

proof -

have
$\left(\exists d^{\prime} c f s . c^{\prime}=d^{\prime} ; ; c_{2} \wedge\right.$
$\left.\left(c_{1}, s\right) \rightarrow *\{c f s\}\left(d^{\prime}, s_{1}\right)\right) \vee$
($\exists s^{\prime} c f s c f s^{\prime}$.
$\left(c_{1}, s\right) \rightarrow *\{c f s\}\left(S K I P, s^{\prime}\right) \wedge$
$\left.\left(c_{2}, s^{\prime}\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(c^{\prime}, s_{1}\right)\right)$
using E by (blast dest: small-stepsl-seq)
thus ?thesis
proof (rule disjE, (erule-tac exE)+, (erule-tac [2] exE)+,
erule-tac [!] conjE)
fix $d^{\prime} c f s$
assume
I: $c^{\prime}=d^{\prime} ; ; c_{2}$ and
$J:\left(c_{1}, s\right) \rightarrow *\{c f s\}\left(d^{\prime}, s_{1}\right)$
hence $\left(d^{\prime} ; ; c_{2}, s_{1}\right) \rightarrow *\left\{c f s_{2}\right\}\left(c^{\prime \prime}, s_{2}\right)$
using F by simp

hence

$$
\begin{aligned}
& \left(\exists d^{\prime \prime} c f s^{\prime} . c^{\prime \prime}=d^{\prime \prime} ; c_{2} \wedge\right. \\
& \quad\left(d^{\prime}, s_{1}\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(d^{\prime \prime}, s_{2}\right) \wedge \\
& \text { flow cfs } \left.s_{2}=\text { flow cfs } s^{\prime}\right) \vee \\
& \left(\exists s^{\prime} c f s^{\prime} \text { cfs }{ }^{\prime \prime} .\right. \\
& \left(d^{\prime}, s_{1}\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(S K I P, s^{\prime}\right) \wedge \\
& \left(c_{2}, s^{\prime}\right) \rightarrow *\left\{c f s^{\prime \prime}\right\}\left(c^{\prime \prime}, s_{2}\right) \wedge
\end{aligned}
$$

$$
\text { flow } \left.c f s_{2}=\text { flow cfs } s^{\prime} @ \text { flow cfs }{ }^{\prime \prime}\right)
$$

```
by (blast dest: small-stepsl-seq)
thus?thesis
proof (rule disjE, (erule-tac exE)+,(erule-tac [2] exE)+,
    (erule-tac [!] conjE)+)
    fix }\mp@subsup{d}{}{\prime\prime}cf\mp@subsup{s}{}{\prime
    assume ( d', s1) ->*{cfs'}(\mp@subsup{d}{}{\prime\prime},\mp@subsup{s}{2}{})
hence K
    (\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{2}{2}.,\forallx
        (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs') s1 x)}
                            (d',}\mp@subsup{t}{1}{\prime})->*(\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{d}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
        (s1 = tr (\subseteq sources (flow cfs') s1 x)\longrightarrow < s x m= t2 x))^
        (\forallx. (\existsp)U. case p of (B,W) =>
        \existss\inB.\existsy\inW.\neg s: dom y\rightsquigarrow dom x)\longrightarrowno-upd (flow cfs') x)
        using A [of B scfs d}\mp@subsup{d}{}{\prime}\mp@subsup{s}{1}{c}cf\mp@subsup{s}{}{\prime}\mp@subsup{d}{}{\prime\prime}\mp@subsup{s}{2}{}]\mathrm{ and J and G and H by blast
    moreover assume c'|}=\mp@subsup{d}{}{\prime\prime};;\mp@subsup{c}{2}{}\mathrm{ and flow cfss2 = flow cfs'
    moreover {
    fix }\mp@subsup{t}{1}{
    obtain }\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and t}\mp@subsup{t}{2}{}\mathrm{ where L: }\forallx\mathrm{ .
                (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs') s1 }\mp@subsup{s}{1}{\prime})
            (\mp@subsup{d}{}{\prime},\mp@subsup{t}{1}{})->* (\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{d}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))\wedge
        (s
        using K by blast
    have \exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{\prime2}{\prime}.\forallx\mathrm{ .
                (s s = tr (\subseteq sources-aux (flow cfs') s1 s)\longrightarrow
```



```
        (s1}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs') s}\mp@subsup{s}{1}{}x)\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x
```



```
        show }\forallx\mathrm{ .
            (s)=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs') s1 }\mp@subsup{s}{1}{})\longrightarrow
                    (d';; c. , tr1)->* (c}\mp@subsup{c}{2}{\prime};;\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge\mp@subsup{c}{2}{\prime};;\mp@subsup{c}{2}{\prime}\not=SKIP)
                (s
                using L by (auto intro: star-seq2)
    qed
}
    ultimately show ?thesis
    using I by auto
next
    fix s' cfs' cfs"
    assume
        K:(\mp@subsup{d}{}{\prime},\mp@subsup{s}{1}{})->*{cfs'} (SKIP, s') and
        L:(c, c, s')->*{cf\mp@subsup{s}{}{\prime\prime}}(c'\prime},\mp@subsup{s}{2}{}
moreover have M: s' = run-flow (flow cfs') s1
    using K by (rule small-stepsl-run-flow)
    ultimately have N:
    (}\forall\mp@subsup{t}{1}{},\exists\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{t}{2}{}.\forallx
        (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs')}\mp@subsup{s}{1}{\prime}x)
            (d',}\mp@subsup{t}{1}{})->*(\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(SKIP=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
        (s
            run-flow (flow cfs') s1 }x=\mp@subsup{t}{2}{\prime}x))
```

```
\((\forall x .(\exists p \in U\). case \(p\) of \((B, W) \Rightarrow\)
    \(\exists s \in B . \exists y \in W . \neg s:\) dom \(y \rightsquigarrow\) dom \(x) \longrightarrow\) no-upd (flow cfs') \(x\) )
    using \(A\left[o f B s c f s d^{\prime} s_{1} c f s^{\prime} S K I P s^{\prime}\right]\) and \(J\) and \(G\) and \(H\) by blast
have \(O: s_{2}=\) run-flow (flow cfs \({ }^{\prime \prime}\) ) \(s^{\prime}\)
using \(L\) by (rule small-stepsl-run-flow)
moreover have \(\left(c_{1}, s\right) \rightarrow *\left\{c f s @ c f s s^{\prime}\right\}\left(S K I P, s^{\prime}\right)\)
    using \(J\) and \(K\) by (simp add: small-stepsl-append)
hence \(\left(c_{1}, s\right) \Rightarrow s^{\prime}\)
    by (auto dest: small-stepsl-steps simp: big-iff-small)
hence \(s^{\prime} \in\) Univ \(B(\subseteq\) state \(\cap Y)\)
    using \(C\) and \(G\) and \(H\) by (erule-tac ctyping2-approx, auto)
ultimately have \(P\) :
\(\left(\forall t_{1} . \exists c_{2}{ }^{\prime} t_{2} . \forall x\right.\).
    (run-flow (flow cfs') \(s_{1}=t_{1}\)
            ( \(\subseteq\) sources-aux (flow cfs \({ }^{\prime \prime}\) ) (run-flow (flow cfs \(\left.\left.{ }^{\prime}\right) s_{1}\right) x\) ) \(\longrightarrow\)
                \(\left.\left(c_{2}, t_{1}\right) \rightarrow *\left(c_{2}{ }^{\prime}, t_{2}\right) \wedge\left(c^{\prime \prime}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge\)
        (run-flow (flow cfs') \(s_{1}=t_{1}\)
            \(\left(\subseteq\right.\) sources \(\left(\right.\) flow cfs \(\left.{ }^{\prime \prime}\right)\) (run-flow \(\left(\right.\) flow cfs \(\left.\left.\left.{ }^{\prime}\right) s_{1}\right) x\right) \longrightarrow\)
            run-flow (flow cfs \({ }^{\prime \prime}\) ) (run-flow (flow cfs') \(\left.\left.\left.s_{1}\right) x=t_{2} x\right)\right) \wedge\)
    \((\forall x .(\exists p \in U\). case \(p\) of \((B, W) \Rightarrow\)
    \(\exists s \in B . \exists y \in W . \neg s:\) dom \(y \rightsquigarrow\) dom \(x) \longrightarrow\) no-upd (flow cfs \({ }^{\prime \prime}\) ) \(x\) )
    using \(B\) [of \(\left.B \quad B C Z s^{\prime}[] c_{2} s^{\prime} c f s^{\prime \prime} c^{\prime \prime} s_{2}\right]\)
    and \(D\) and \(L\) and \(M\) by simp
moreover assume flow \(c f s_{2}=\) flow cfs \({ }^{\prime}\) @ flow \(c f s^{\prime \prime}\)
moreover \{
    fix \(t_{1}\)
    obtain \(c_{2}{ }^{\prime}\) and \(t_{2}\) where \(Q: \forall x\).
        \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources-aux (flow cfs') \(\left.s_{1} x\right) \longrightarrow\)
        \(\left.\left(d^{\prime}, t_{1}\right) \rightarrow *\left(S K I P, t_{2}\right) \wedge(S K I P=S K I P)=\left(c_{2}{ }^{\prime}=S K I P\right)\right) \wedge\)
    \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources \(\left(\right.\) flow cfs \(\left.\left.s^{\prime}\right) s_{1} x\right) \longrightarrow\)
        run-flow (flow cfs') \(s_{1} x=t_{2} x\) )
    using \(N\) by blast
obtain \(c_{3}{ }^{\prime}\) and \(t_{3}\) where \(R\) : \(\forall x\).
    (run-flow (flow cfs') \(s_{1}=t_{2}\)
        \(\left(\subseteq\right.\) sources-aux \(\left(\right.\) flow cfs \(\left.{ }^{\prime \prime}\right)\left(\right.\) run-flow \(\left.\left.(\text { flow cfs' })^{\prime}\right) x\right) \longrightarrow\)
            \(\left.\left(c_{2}, t_{2}\right) \rightarrow *\left(c_{3}{ }^{\prime}, t_{3}\right) \wedge\left(c^{\prime \prime}=S K I P\right)=\left(c_{3}{ }^{\prime}=S K I P\right)\right) \wedge\)
    (run-flow (flow cfs') \(s_{1}=t_{2}\)
        \(\left(\subseteq\right.\) sources \(\left(\right.\) flow cfs \(\left.{ }^{\prime \prime}\right)\) (run-flow \(\left(\right.\) flow cfs \(\left.\left.\left.{ }^{\prime}\right) s_{1}\right) x\right) \longrightarrow\)
            run-flow (flow cfs' \({ }^{\prime \prime}\) ) (run-flow (flow cfs') \(\left.\left.s_{1}\right) x=t_{3} x\right)\)
    using \(P\) by blast
\{
fix \(x\)
assume \(S: s_{1}=t_{1}\)
        \(\left(\subseteq\right.\) sources-aux (flow cfs' @ flow cfs \({ }^{\prime \prime}\) ) \(s_{1}\) x)
    moreover have sources-aux (flow cfs') \(s_{1} x \subseteq\)
        sources-aux (flow cfs \({ }^{\prime}\) @ flow cfs \({ }^{\prime \prime}\) ) \(s_{1} x\)
        by (rule sources-aux-append)
    ultimately have \(\left(d^{\prime}, t_{1}\right) \rightarrow *\left(S K I P, t_{2}\right)\)
        using \(Q\) by blast
```

```
    hence ( }\mp@subsup{d}{}{\prime};;\mp@subsup{c}{2}{},\mp@subsup{t}{1}{})->*(SKIP;;\mp@subsup{c}{2}{},\mp@subsup{t}{2}{}
    by (rule star-seq2)
    hence (d';;}\mp@subsup{c}{2}{},\mp@subsup{t}{1}{})->* (\mp@subsup{c}{2}{},\mp@subsup{t}{2}{}
        by (blast intro: star-trans)
    moreover have run-flow (flow cfs') s
        (\subseteq sources-aux (flow cfs'') (run-flow (flow cfs') s1) x)
    proof
        fix }
        assume y \in sources-aux (flow cfs')
        (run-flow (flow cfs') s1) x
    hence sources (flow cfs') s1 y\subseteq
        sources-aux (flow cfs' @ flow cfs'') s}\mp@subsup{s}{1}{}
        by (rule sources-aux-member)
        thus run-flow (flow cfs')}\mp@subsup{s}{1}{}y=\mp@subsup{t}{2}{}
        using Q and S by blast
    qed
```



```
        using R by simp
    ultimately have ( }\mp@subsup{d}{}{\prime};;\mp@subsup{c}{2}{},\mp@subsup{t}{1}{})->* (\mp@subsup{c}{3}{}\mp@subsup{}{}{\prime},\mp@subsup{t}{3}{})
        (c}\mp@subsup{}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{3}{\prime}=SKIP
        by (blast intro: star-trans)
}
moreover {
    fix }
    assume S: s
        (\subseteq sources (flow cfs' @ flow cfs')) s1 x)
    have run-flow (flow cfs') s1 = t2
        (\subseteq sources (flow cfs'') (run-flow (flow cfs') s') x)
    proof
        fix y
        assume y \in sources (flow cfs')
            (run-flow (flow cfs') s1) x
        hence sources (flow cfs') s1 y\subseteq
            sources (flow cfs'@ flowcfs'') s1 x
            by (rule sources-member)
        thus run-flow (flow cfs') s1 y = t2 y
            using Q and S by blast
    qed
    hence run-flow (flow cfs'\prime) (run-flow (flow cfs') s1) x = tr3
        using R by simp
}
    ultimately have }\exists\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{t}{2}{}.\forallx\mathrm{ .
    (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs'' @ flow cfs'') s}\mp@subsup{s}{1}{}x)
```



```
    (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs'' @ flow cfs'') s s x)}
        run-flow (flow cfs'') (run-flow (flow cfs') s1) x = t2 x)
    by auto
}
ultimately show ?thesis
```

```
            using}I\mathrm{ and }N\mathrm{ and }M\mathrm{ and }O\mathrm{ by (auto simp: no-upd-append)
        qed
    next
    fix s}\mp@subsup{s}{}{\prime}cfscf\mp@subsup{s}{}{\prime
    assume (c, s) ->*{cfs} (SKIP, s')
    hence (c, s) => s'
        by (auto dest: small-stepsl-steps simp: big-iff-small)
    hence s}\mp@subsup{s}{}{\prime}\in\mathrm{ Univ B(` state }\capY
        using C and G and H by (erule-tac ctyping2-approx, auto)
    moreover assume (c, c, s') ->*{cfs}\mp@subsup{}{}{\prime}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{}
    ultimately show ?thesis
        using B [of B B C Z s'cfs' c' s}\mp@subsup{s}{1}{cfs\mp@subsup{s}{2}{}}\mp@subsup{c}{}{\prime\prime}\mp@subsup{s}{2}{}]\mathrm{ and D and F by simp
    qed
qed
lemma ctyping2-correct-aux-if:
assumes
    A: \bigwedgeUU'B Cs c' c't s}\mp@subsup{s}{1}{\prime}\mp@subsup{s}{2}{}cf\mp@subsup{s}{1}{}cff\mp@subsup{s}{2}{}
    U'= insert (Univ? A X, bvars b) U\LongrightarrowB= B
        \existsr\in\mp@subsup{B}{1}{}.s=r(\subseteq\mathrm{ state }\capX)\Longrightarrow
                (c, c,s)->*{cfs\mp@subsup{s}{1}{}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})\Longrightarrow(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{2}{})\Longrightarrow
                    (\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{\prime}{\prime
                    (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources-aux (flow cfs s) ) s1 x)}
                    (c', tr ) ->* (c2', t2 ) ^(c'\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
                        (s
                    ( }\forallx\mathrm{ .
                        ((\existss\inUniv? A X.\existsy\inbvars b. ᄀs:dom y dom x)\longrightarrow
                        no-upd (flow cfs s) x) ^
                    ( (\existsp)UU. case p of (B,W) =>
                    \existss\inB.\existsy\inW.\negs:dom y\rightsquigarrowdom x)\longrightarrow
                        no-upd (flow cfs s) x)) and
    B: \bigwedgeU'U}\mp@subsup{|}{}{\prime}C|\mp@subsup{c}{}{\prime}\mp@subsup{c}{}{\prime\prime}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}cf\mp@subsup{s}{1}{}cff\mp@subsup{s}{2}{}
        U' = insert (Univ? A X, bvars b) U C B= B1 \Longrightarrow C C = C 
        \existsr\in\mp@subsup{B}{2}{}.s=r(\subseteq\mathrm{ state }\capX)\Longrightarrow
            (c2,s)->*{cf\mp@subsup{s}{1}{}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})\Longrightarrow(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{2}{})\Longrightarrow
                    (}\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime}\mp@subsup{t}{2}{}.\forallx
                            (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources-aux (flow cfs s) s}\mp@subsup{s}{1}{}x)
                        (c', tr1)->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))}
```



```
                    ( }\forallx\mathrm{ .
                            ((\existss\inUniv? A X.\existsy\in bvars b. ᄀ s:dom y\rightsquigarrow dom x)\longrightarrow
                        no-upd (flow cfs s) x)^
                    ((\existsp)\inU. case p of (B,W) =>
                        \existss\inB.\existsy\inW.\negs:dom y\rightsquigarrowdom x)\longrightarrow
                        no-upd (flow cfs\mp@subsup{s}{2}{})}x\mathrm{ )) and
    C:\modelsb}(\subseteqA,X)=(\mp@subsup{B}{1}{},\mp@subsup{B}{2}{})\mathrm{ and
    D:(insert (Univ? A X, bvars b) U,v)\models c
        Some (C C , Y % ) and
E: (insert (Univ? A X, bvars b) U,v) \modelsc. c}(\subseteq\mp@subsup{B}{2}{},X)
```

```
        Some (C2, Y ) and
    F:(IF b THEN c, ELSE c}\mp@subsup{c}{2}{},s)->*{cf\mp@subsup{s}{1}{}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})\mathrm{ and
    G:(c', s1)->*{cfs⿱\mp@code{2}}(\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{2}{})\mathrm{ and}
    H:r\inA and
    I:s=r(\subseteq state \capX)
shows
    (\forall\mp@subsup{t}{1}{},\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{2}{2}.,\forallx\mathrm{ .
    (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources-aux (flow cfs s) ) s 
    (c',}\mp@subsup{t}{1}{\prime})->* (\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
    (s}\mp@subsup{s}{1}{=}\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs s) s}\mp@subsup{s}{1}{}x)\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x))
    ( }\forallx.(\existsp\inU.case p of (B,W)
```



```
proof -
    let ? }\mp@subsup{U}{}{\prime}=\mathrm{ insert (Univ? A X, bvars b) U
    have J:\forallcstx.s=t(\subseteq sources-aux (\langlebvars b\rangle#cs) s x)}
        bval b s\not= bval b t\longrightarrow\negUniv? A X:dom'bvars b}\rightsquigarrow{\mathrm{ dom }x
    proof (clarify del: notI)
    fix cs t }
    assume s=t(\subseteq sources-aux (\langlebvars b\rangle# cs) s x )
    moreover assume bval b s\not= bval b t
    hence }\negs=t(\subseteq\mathrm{ bvars b)
            by (erule-tac contrapos-nn, auto dest: bvars-bval)
    ultimately have}\neg(\forally\in\mathrm{ bvars b. s: dom y dom x)
            by (blast dest: sources-aux-observe-hd)
    moreover {
        fix ry
        assume }r\inA\mathrm{ and }y\inbvars b and \negs:dom y\rightsquigarrowdom x
        moreover assume state}\subseteqX and s=r(\subseteq state\capX
        hence interf s=interf r
            by (blast intro: interf-state)
            ultimately have }\existss\inA.\existsy\inbvars b.\negs:dom y\rightsquigarrowdom x
            by auto
    }
    ultimately show \neg Univ? A X:dom'bvars b}\rightsquigarrow{dom x
        using H}\mathrm{ and I by (auto simp: univ-states-if-def)
    qed
    have
    (c',}\mp@subsup{s}{1}{})=(\mathrm{ IF b THEN c/ ELSE c}\mp@subsup{c}{2}{},s)
    bval b s ^ (c, c,s)->*{tl cfs s } (c', s1)\vee
    \neg \text { bval b s ^ (c, c,s) } \rightarrow * \{ t l c f s _ { 1 } \} ( c ^ { \prime } , s _ { 1 } )
    using F by (blast dest: small-stepsl-if)
    thus ?thesis
    proof (rule disjE, erule-tac [2] disjE, erule-tac [2-3] conjE)
```



```
    hence (IF b THEN c}\mp@subsup{c}{1}{}ELSE co,s)->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{2}{}
        using G by simp
    hence
        (c'\prime, s2)=(IF b THEN c
            flow cfs 2 = [] \vee
```

```
    bval b s ^ (c, c, s) ->*{tl cfs s } (c'\prime},\mp@subsup{s}{2}{})
    flow cfs\mp@subsup{s}{2}{}}=\langle\mathrm{ bvars b # # flow (tl cfs 2) 
    \neg \text { bval b s ^ (c, c,s) } \rightarrow * \{ t l ~ c f s _ { 2 } \} ( c ^ { \prime \prime } , s _ { 2 } ) \wedge
    flow cfs s = <bvars b\rangle # flow (tl cfs 2)
    by (rule small-stepsl-if)
thus ?thesis
proof (rule disjE, erule-tac [2] disjE, (erule-tac [2-3] conjE)+)
```



```
    thus ?thesis
    using K by auto
next
    assume L: bval b s
    with C and H}\mathrm{ and I have s}\in\mathrm{ Univ B}\mp@subsup{B}{1}{}(\subseteq\mathrm{ state }\capX
    by (drule-tac btyping2-approx [where s=s], auto)
moreover assume M: (c,s) ->*{tl cfs s } (c'\prime, s2)
moreover from this have N: s, run-flow (flow (tl cfs 2))s
    by (rule small-stepsl-run-flow)
ultimately have O
    (}\forall\mp@subsup{t}{1}{},\exists\mp@subsup{c}{2}{\prime}\mp@subsup{}{2}{\prime}.,\forallx\mathrm{ .
        (s=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources-aux (flow (tl cfs s)) s x)}\longrightarrow
            (c, c, t1) ->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{})\wedge(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))\wedge
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow (tl cfs s)) s x)}\longrightarrow
            run-flow (flow (tl cfs 2)) s x = t2 x))^
        ( }\forallx\mathrm{ .
        ((\existss\inUniv? A X.\existsy\in bvars b. ᄀ s: dom y \rightsquigarrow dom x)\longrightarrow
            no-upd (flow (tl cfs⿱土
        ((\existsp)\inU. case p of (B,W) =>
            \existss\inB.\existsy\inW.\negs:dom y}\rightsquigarrow\operatorname{dom}x)
```



```
moreover assume flow cfs\mp@subsup{s}{2}{}=\langlebvars b\rangle# flow (tl cfs s)
moreover {
    fix }\mp@subsup{t}{1}{
    have \exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{\prime2}{
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (<bvars b> # flow (tl cfs s)) s x }\longrightarrow
                (IF b THEN c c ELSE c}\mp@subsup{c}{2}{},\mp@subsup{t}{1}{\prime})->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})
                (c}\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (<bvars b># flow (tl cfs s))s s)}\longrightarrow
            run-flow (flow (tl cfs\mp@subsup{s}{2}{})) s x = t2 x)
    proof (cases bval b tr )
        case True
        hence P: (IF b THEN c/ ELSE c}\mp@subsup{c}{2}{},\mp@subsup{t}{1}{})->(\mp@subsup{c}{1}{},\mp@subsup{t}{1}{}).
        obtain }\mp@subsup{c}{2}{\prime}\mathrm{ ' and t2 where Q: }\forallx\mathrm{ .
            (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow (tl cfs 2)) s x)}\longrightarrow
                    (cc, tr ) ->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))\wedge
                (s=\mp@subsup{t}{1}{}}(\subseteq\mathrm{ sources (flow (tl cfs s)) s x)}
            run-flow (flow (tl cfs )
        using O by blast
        {
```

```
    fix }
    assume s= t
        (\subseteq sources-aux (<bvars b\rangle# flow (tl cfs s )) s x )
    moreover have sources-aux (flow (tl cfs 2)) s x\subseteq
        sources-aux (\langlebvars b\rangle # flow (tl cfs s)) s x
        by (rule sources-aux-observe-tl)
    ultimately have (IF b THEN c}\mp@subsup{c}{1}{}ELSE \mp@subsup{c}{2}{},\mp@subsup{t}{1}{})->* (\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime},\mp@subsup{t}{2}{\prime})
        (c}\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP
        using P and Q by (blast intro: star-trans)
    }
    moreover {
    fix }
    assume s= t 
        (\subseteq sources (\langlebvars b\rangle# flow (tl cfs s}2)) s x)
    moreover have sources (flow (tl cfs s)) s x\subseteq
        sources (\langlebvars b\rangle# flow (tl cfs s2)) s x
        by (rule sources-observe-tl)
    ultimately have run-flow (flow (tl cfs 2)) s x = t th
        using Q by blast
}
ultimately show ?thesis
    by auto
next
    assume P: \neg bval b t 
    show ?thesis
    proof (cases \existsx.s= t1
    (\subseteq sources-aux (\langlebvars b\rangle# flow (tl cfs }2\mathrm{ )) s x))
```



```
    moreover assume \existsx.s= t1
        (\subseteq sources-aux (\langlebvars b\rangle# flow (tl cfs 2)) s x)
    hence \existsx.\neg Univ? A X: dom'bvars b}\rightsquigarrow{dom x
        using}J\mathrm{ and L and P by blast
    then obtain t}\mp@subsup{t}{2}{}\mathrm{ where Q:(c, c},\mp@subsup{t}{1}{})=>\mp@subsup{t}{2}{
        using E by (blast dest: ctyping2-term)
    hence ( }\mp@subsup{c}{2}{},\mp@subsup{t}{1}{})->*(SKIP,\mp@subsup{t}{2}{}
        by (simp add: big-iff-small)
    ultimately have
        R:(IF b THEN c}\mp@subsup{c}{1}{}ELSE \mp@subsup{c}{2}{},\mp@subsup{t}{1}{})->* (SKIP, t 2 )
        by (blast intro: star-trans)
    show ?thesis
    proof (cases c'l}=SKIP
        case True
        show ?thesis
        proof (rule exI [of - SKIP], rule exI [of - t t2])
            {
            have (IF b THEN c
                    (c'\prime}=SKIP)=(SKIP =SKIP)
            using R and True by simp
        }
```

```
    moreover {
    fix }
    assume S:s= t1
        (\subseteq sources (\langlebvars b\rangle # flow (tl cfs 2)) s x)
    moreover have
        sources-aux (\langlebvars b\rangle # flow (tl cfs s)) s x\subseteq
```



```
        by (rule sources-aux-sources)
    ultimately have s=\mp@subsup{t}{1}{}
        (\subseteq sources-aux (\langlebvars b\rangle # flow (tl cfs⿱s )) s x)
        by blast
    hence T:\neg Univ? A X:dom'bvars b}\rightsquigarrow{dom x
        using }J\mathrm{ and L and P by blast
    hence U}\mathrm{ : no-upd (<bvars b> # flow (tl cfs⿱2)) x
        using O by simp
```



```
        by (simp add: no-upd-run-flow)
    also from S and U have \ldots= = tr x
        by (blast dest: no-upd-sources)
    also from E and Q and T have \ldots= 放x
        by (drule-tac ctyping2-confine, auto)
    finally have run-flow (flow (tl cfs )})\mathrm{ ) s }x=\mp@subsup{t}{2}{}x
    }
    ultimately show }\forallx\mathrm{ .
        (s=\mp@subsup{t}{1}{}
            (\subseteq sources-aux (\langlebvars b\rangle# flow (tl cfs 2 )) s x)\longrightarrow
```



```
                (c}\mp@subsup{c}{}{\prime\prime}=SKIP)=(SKIP=SKIP))
    (s=t
            (\subseteq sources (\langlebvars b\rangle # flow (tl cfs s)) s x)}
                run-flow (flow (tl cfs⿱2)) s x = t t x )
        by blast
    qed
next
    case False
    show ?thesis
    proof (rule exI [of - IF b THEN c1 ELSE c c ],
    rule exI[of-t, ])
        {
```



```
            (IF b THEN c
```



```
            using False by simp
        }
        moreover {
            fix }
            assume S:s=t
            (\subseteq sources (\langlebvars b\rangle # flow (tl cfs 2)) s x)
            moreover have
```

```
                    sources-aux (\langlebvars b\rangle # flow (tl cfs\mp@subsup{s}{2}{})) s x \subseteq
                    sources (\langlebvars b\rangle # flow (tl cfs ) ) s x
                    by (rule sources-aux-sources)
                    ultimately have s=\mp@subsup{t}{1}{}
                        (\subseteq sources-aux (\langlebvars b\rangle # flow (tl cfs\mp@subsup{s}{2}{})) s x )
                by blast
                    hence \neg Univ? A X: dom`bvars b\rightsquigarrow{dom x}
                    using }J\mathrm{ and L and P by blast
                hence T: no-upd (\langlebvars b\rangle # flow (tl cfs ) ) x
                    using O by simp
                    hence run-flow (flow (tl cfs⿱\mp@code{2})) s x = s x
                    by (simp add: no-upd-run-flow)
                    also have ... = tr x
                    using S and T by (blast dest: no-upd-sources)
                    finally have run-flow (flow (tl cfs⿱2)) s x = tr x .
            }
                ultimately show }\forallx\mathrm{ .
                    (s=\mp@subsup{t}{1}{}
                    (\subseteq sources-aux (\langlebvars b\rangle # flow (tl cfs s)) s x)\longrightarrow
                        (IF b THEN c
                        (IF b THEN c
                        (c'\prime}=SKIP)=(IF b THEN c cl ELSE c c = SKIP))^
                    (s=t t
                    (\subseteq sources (\langlebvars b\rangle # flow (tl cfs s)) s x)}
                        run-flow (flow (tl cfs⿱2)) s x = t t x )
                by blast
            qed
                qed
        qed blast
    qed
}
ultimately show ?thesis
    using K and N by auto
next
    assume L: \neg bval b s
    with C and H}\mathrm{ and I have s Univ B B (` state }\capX
    by (drule-tac btyping2-approx [where s=s], auto)
    moreover assume M: (cc,s)->*{tl cfs s } (c'\prime, s, s)
    moreover from this have N: s2 = run-flow (flow (tl cfs⿱丶万⿱⿰㇒一乂口灬))s
    by (rule small-stepsl-run-flow)
ultimately have O:
    (}\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime}\mp@subsup{}{\prime}{\prime
    (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow (tl cfs )})\mathrm{ ) s x) }\longrightarrow
        (c2, tr ) ->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))\wedge
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow (tl cfs s)) s x)}\longrightarrow
            run-flow (flow (tl cfs 2)) s x = t2 x))^
    ( }\forallx\mathrm{ .
        ((\existss\inUniv? A X.\existsy\in bvars b. ᄀs:dom y \rightsquigarrowdom x)\longrightarrow
            no-upd (flow (tl cfs 2)) x)^
```

```
    ((\existsp)\inU. case p of (B,W) =>
    \existss\inB.\existsy\inW.\negs:dom y}\rightsquigarrow\operatorname{dom}x)
```



```
    using B [of? ? U' B1 C C s [] c c stl cfs 2 c c' }\mp@subsup{s}{2}{}]\mathrm{ by simp
```



```
moreover {
    fix }\mp@subsup{t}{1}{
    have \exists\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{t}{2}{}.\forallx
        (s=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources-aux (<bvars b> # flow (tl cfs 2)) s x)}\longrightarrow
```



```
        (c}\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (<bvars b># flow (tl cfs s))s s)}\longrightarrow
        run-flow (flow (tl cfs⿱丶万一2)) s x = t t x)
    proof (cases }\neg\mathrm{ bval b t t )
        case True
        hence P: (IF b THEN c
        obtain }\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{t}{2}{}\mathrm{ where }Q:\forallx\mathrm{ .
            (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow (tl cfs s)) s x)}\longrightarrow
```



```
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow (tl cfs s)) s x)}\longrightarrow
            run-flow (flow (tl cfs 2)) s x = t t x )
        using O by blast
    {
        fix }
        assume s=\mp@subsup{t}{1}{}
            (\subseteq sources-aux (\langlebvars b\rangle # flow (tl cfs\mp@subsup{s}{2}{})) s x)
        moreover have sources-aux (flow (tl cfs )) s x\subseteq
            sources-aux (\langlebvars b\rangle # flow (tl cfs\mp@subsup{s}{2}{})) s x
            by (rule sources-aux-observe-tl)
        ultimately have (IF b THEN c}\mp@subsup{c}{1}{}ELSE \mp@subsup{c}{2}{},\mp@subsup{t}{1}{})->* (\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})
            (c'\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP
            using P and Q by (blast intro: star-trans)
    }
    moreover {
            fix }
            assume s= t1
                (\subseteq sources (\langlebvars b\rangle # flow (tl cfs 2)) s x)
```



```
                sources (\langlebvars b\rangle # flow (tl cfs\mp@subsup{s}{2}{})) s x
            by (rule sources-observe-tl)
```



```
            using Q by blast
    }
    ultimately show ?thesis
            by auto
    next
        case False
        hence P: bval b t 
            by simp
```

```
show ?thesis
proof (cases \existsx.s= tr
(\subseteq sources-aux (\langlebvars b\rangle # flow (tl cfs s )) s x))
from P have (IF b THEN c
moreover assume \existsx.s=\mp@subsup{t}{1}{}
    (\subseteq sources-aux (\langlebvars b\rangle # flow (tl cfss2)) s x)
hence }\existsx\mathrm{ . ᄀUniv? A X:dom'bvars b}\rightsquigarrow{\mathrm{ dom x}
    using }J\mathrm{ and L and P by blast
then obtain t2 where Q:( }\mp@subsup{t}{1}{},\mp@subsup{t}{1}{})=>\mp@subsup{t}{2}{
    using D by (blast dest: ctyping2-term)
hence (c
    by (simp add: big-iff-small)
ultimately have
    R:(IF b THEN c}\mp@subsup{c}{1}{}\mathrm{ ELSE c c, t t ) >* (SKIP, t t )
    by (blast intro: star-trans)
show ?thesis
proof (cases c'l}=SKIP
    case True
    show ?thesis
    proof (rule exI [of - SKIP], rule exI [of - t t ])
    {
        have (IF b THEN c
            (c'\prime}=SKIP)=(SKIP =SKIP)
            using R and True by simp
    }
    moreover {
        fix }
        assume S:s=\mp@subsup{t}{1}{}
                (\subseteq sources (\langlebvars b\rangle # flow (tl cfs 2)) s x)
        moreover have
                sources-aux (\langlebvars b\rangle # flow (tl cfs⿱s)) s x \subseteq
                sources (\langlebvars b\rangle # flow (tl cfs\mp@subsup{s}{2}{})) s x
                by (rule sources-aux-sources)
            ultimately have s=\mp@subsup{t}{1}{}
                (\subseteq sources-aux (\langlebvars b\rangle # flow (tl cfs⿱s )) s x)
                by blast
            hence T:\neg Univ? A X:dom'bvars b}\rightsquigarrow{\mathrm{ dom x}
                using J and L and P by blast
            hence U: no-upd (\langlebvars b\rangle # flow (tl cfs s)) x
                using O by simp
```



```
                by (simp add: no-upd-run-flow)
            also from S and U have \ldots= 斻x
                by (blast dest: no-upd-sources)
            also from D and Q and T have \ldots= 质 }
                by (drule-tac ctyping2-confine, auto)
            finally have run-flow (flow (tl cfs s)) s x = t2 x .
        }
        ultimately show }\forallx\mathrm{ .
```

```
        (s= t1
            (\subseteq sources-aux (\langlebvars b\rangle # flow (tl cfs s)) s x)}
            (IF b THEN c
                (c}\mp@subsup{c}{}{\prime\prime}=SKIP)=(SKIP=SKIP))
        (s=t1
    (\subseteq sources (\langlebvars b\rangle # flow (tl cfs 2)) s x)}
            run-flow (flow (tl cfs⿱2)) s x = t2 x)
        by blast
    qed
next
    case False
    show ?thesis
    proof (rule exI [of - IF b THEN c
    rule exI [of - t t ])
    {
        have (IF b THEN c
            (IF b THEN c
                (c}\mp@subsup{c}{}{\prime\prime}=SKIP)=(IF b THEN c c ELSE con = SKIP) 
            using False by simp
    }
    moreover {
        fix }
        assume S:s= t
            (\subseteq sources (\langlebvars b\rangle # flow (tl cfs 2)) s x)
        moreover have
            sources-aux (\langlebvars b\rangle # flow (tl cfs s)) s x\subseteq
                sources (\langlebvars b\rangle # flow (tl cfs\mp@subsup{s}{2}{})) s x
                by (rule sources-aux-sources)
    ultimately have s=\mp@subsup{t}{1}{}
                (\subseteq sources-aux (\langlebvars b\rangle # flow (tl cfs s)) s x )
                by blast
            hence \neg Univ? A X: dom'bvars b}\rightsquigarrow{\operatorname{dom}x
                using J and L and P by blast
```



```
                using O by simp
            hence run-flow (flow (tl cfs\mp@subsup{s}{2}{})) s x = s x
                by (simp add: no-upd-run-flow)
            also have ... = tr x
                using S and T by (blast dest: no-upd-sources)
    finally have run-flow (flow (tl cfs 2)) s x = tr x .
}
ultimately show }\forallx\mathrm{ .
    (s= t1
        (\subseteq sources-aux (\langlebvars b\rangle # flow (tl cfs s)) s x)}
                        (IF b THEN c
                        (IF b THEN c}\mp@subsup{c}{1}{}ELSE co, tr ) ^
                        (c'\prime}=SKIP)=(IF b THEN c c1 ELSE c c = SKIP))
        (s=t,
            (\subseteq sources (\langlebvars b\rangle # flow (tl cfs s)) s x)}
```



```
                    by blast
                qed
                qed
            qed blast
        qed
    }
    ultimately show ?thesis
        using K and N by auto
    qed
next
    assume bval b s and (c, c,s)->*{tl cfs s } ( c', s1)
    moreover from this and C and H}\mathrm{ and I have s}\in\mathrm{ Univ B
    by (drule-tac btyping2-approx [where s=s], auto)
    ultimately show ?thesis
```



```
next
    assume }\neg\mathrm{ bval b s and (c2,s) }->*{tlcf\mp@subsup{s}{1}{}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{}
    moreover from this and C and H}\mathrm{ and I have s}\in\mathrm{ Univ B
        by (drule-tac btyping2-approx [where s=s], auto)
    ultimately show ?thesis
```



```
    qed
qed
lemma ctyping2-correct-aux-while:
assumes
    A: \bigwedgeB C' B' D's scllllll
    B=\mp@subsup{B}{1}{}\Longrightarrow\mp@subsup{C}{}{\prime}=C\Longrightarrow\mp@subsup{B}{}{\prime}=\mp@subsup{B}{1}{\prime}\Longrightarrow
    (\foralls\inUniv? A X \cup Univ? C Y.\forallx 旃ars b. All (interf s (dom x))) ^
    (\forallp\inU. case p of (B,W)=>\foralls\inB.}\forallx\inW.All (interf s (dom x)))
        D= D'\Longrightarrow\existsr\in B1.s=r(\subseteq state \capX)\Longrightarrow
            (c,s)->*{cf\mp@subsup{s}{1}{}}(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})\Longrightarrow(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})\Longrightarrow
                \forallt. . \exists c c}\mp@subsup{}{\prime}{\prime}\mp@subsup{t}{2}{}.\forallx
                    (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources-aux (flow cfs 2) s}\mp@subsup{s}{1}{}x)
                    (c, c, t1)->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{})\wedge(\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))}
                (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs⿱2)})\mp@subsup{s}{1}{}x)\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x)\mathrm{ and
```



```
    B=\mp@subsup{B}{1}{}\Longrightarrow\mp@subsup{C}{}{\prime}=C\Longrightarrow\mp@subsup{B}{}{\prime}=\mp@subsup{B}{1}{\prime}\Longrightarrow
    (\foralls\inUniv? A X \cup Univ? C Y. \forallx b bvars b. All (interf s (dom x))) ^
```



```
        D ^ { \prime } = D ^ { \prime \prime } \Longrightarrow \exists r \in B _ { 1 } ^ { \prime } . s = r ( \subseteq \text { state } \cap Y ) \Longrightarrow
            (c,s)->*{cf\mp@subsup{s}{1}{}}(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})\Longrightarrow(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})\Longrightarrow
            \forallt1.\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{t}{2}{}.\forallx
                (s}\mp@subsup{s}{1}{=}\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources-aux (flow cfs 2) s}\mp@subsup{s}{1}{}x)
                    (c, ct ) ->* (c2', t2)}\(\mp@subsup{c}{2}{\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
                (s
C:(if (\foralls\inUniv? A X \cupUniv? C Y. \forallx b bvars b. All (interf s (dom x)))^
    (\forallp\inU.\forallBW.p=(B,W)\longrightarrow(\foralls\inB.\forallx\inW.All (interf s (dom x))))
```

then Some $\left(B_{2} \cup B_{2}{ }^{\prime}\right.$, Univ?? $\left.B_{2} X \cap Y\right)$ else None $)=$ Some (B, W) and $D: \models b(\subseteq A, X)=\left(B_{1}, B_{2}\right)$ and
$E: \vdash c\left(\subseteq B_{1}, X\right)=(C, Y)$ and
$F: \models b(\subseteq C, Y)=\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right)$ and
$G:(\{ \}$, False $) \models c\left(\subseteq B_{1}, X\right)=$ Some (D, Z) and
$H:(\{ \}$, False $) \models c\left(\subseteq B_{1}{ }^{\prime}, Y\right)=$ Some $\left(D^{\prime}, Z^{\prime}\right)$

shows

$\llbracket($ WHILE b DO $c, s) \rightarrow *\left\{c f s_{1}\right\}\left(c_{1}, s_{1}\right)$;
$\left(c_{1}, s_{1}\right) \rightarrow *\left\{c f s_{2}\right\}\left(c_{2}, s_{2}\right)$;
$s \in \operatorname{Univ} A(\subseteq$ state $\cap X) \cup$ Univ $C(\subseteq$ state $\cap Y) \rrbracket \Longrightarrow$
$\left(\forall t_{1} . \exists c_{2}{ }^{\prime} t_{2} . \forall x\right.$.
$\left(s_{1}=t_{1}\left(\subseteq\right.\right.$ sources-aux $\left(\right.$ flow cfs $\left.\left.s_{2}\right) s_{1} x\right) \longrightarrow$
$\left.\left(c_{1}, t_{1}\right) \rightarrow *\left(c_{2}^{\prime}, t_{2}\right) \wedge\left(c_{2}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge$
$\left(s_{1}=t_{1}\left(\subseteq\right.\right.$ sources $\left(\right.$ flow $\left.\left.\left.\left.c f s_{2}\right) s_{1} x\right) \longrightarrow s_{2} x=t_{2} x\right)\right) \wedge$
$(\forall x .(\exists p \in U$. case p of $(B, W) \Rightarrow$
$\exists s \in B . \exists y \in W . \neg s: \operatorname{dom} y \rightsquigarrow \operatorname{dom} x) \longrightarrow$ no-upd $\left(\right.$ flow $\left.c f s_{2}\right) x$)

fix $c f s_{1} c f s_{2} s c_{1} s_{1}$
assume
$I:($ WHILE b DO $c, s) \rightarrow *\left\{c f s_{1}\right\}\left(c_{1}, s_{1}\right)$ and
$J:\left(c_{1}, s_{1}\right) \rightarrow *\left\{c f s_{2}\right\}\left(c_{2}, s_{2}\right)$
assume $\forall c f s$. length $c f s<$ length $\left(c f s_{1} @ c f s_{2}\right) \longrightarrow$
$\left(\forall c f s_{1} c f s_{2} . c f s=c f s_{1} @ c f s_{2} \longrightarrow\right.$

$$
\begin{aligned}
& \left(\forall s c_{1} s_{1} .(\text { WHILE } b \text { DO } c, s) \rightarrow *\left\{c f s_{1}\right\}\left(c_{1}, s_{1}\right) \longrightarrow\right. \\
& \left(c_{1}, s_{1}\right) \rightarrow *\left\{c f s_{2}\right\}\left(c_{2}, s_{2}\right) \longrightarrow \\
& s \in \text { Univ }(\subseteq \text { state } \cap X) \cup \text { Univ } C(\subseteq \text { state } \cap Y) \longrightarrow \\
& \quad\left(\forall t_{1} \cdot \exists c_{2}^{\prime} t_{2} \cdot \forall x .\right. \\
& \quad\left(s_{1}=t_{1}\left(\subseteq \text { sources-aux }\left(\text { flow }^{\prime} \text { cfs } s_{2}\right) s_{1} x\right) \longrightarrow\right. \\
& \left.\quad\left(c_{1}, t_{1}\right) \rightarrow *\left(c_{2}{ }^{\prime}, t_{2}\right) \wedge\left(c_{2}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge \\
& \left.\left(s_{1}=t_{1}\left(\subseteq \text { sources }\left(\text { flow } c f s_{2}\right) s_{1} x\right) \longrightarrow s_{2} x=t_{2} x\right)\right) \wedge \\
& (\forall x \cdot(\exists(B, W) \in U . \exists s \in B . \exists y \in W . \neg s: \operatorname{dom} y \rightsquigarrow \text { dom } x) \longrightarrow \\
& \quad \text { no-upd }(\text { flow cfs }) x)))
\end{aligned}
$$

note $K=$ this [rule-format]
assume $L: s \in \operatorname{Univ} A(\subseteq$ state $\cap X) \cup$ Univ $C(\subseteq$ state $\cap Y)$
moreover \{
fix s^{\prime}
assume $s \in \operatorname{Univ} A(\subseteq$ state $\cap X)$ and bval bs
hence $N: s \in$ Univ $B_{1}(\subseteq$ state $\cap X)$
using D by (drule-tac btyping2-approx, auto)
assume $(c, s) \Rightarrow s^{\prime}$
hence $s^{\prime} \in \operatorname{Univ} D(\subseteq$ state $\cap Z)$
using G and N by (rule ctyping2-approx)
moreover have $D \subseteq C \wedge Y \subseteq Z$
using E and G by (rule ctyping1-ctyping2)
ultimately have $s^{\prime} \in$ Univ $C(\subseteq$ state $\cap Y)$
by blast
\}
moreover \{
fix s^{\prime}

```
assume s}\in\operatorname{Univ}C(\subseteq\mathrm{ state }\capY)\mathrm{ and bval b s
hence N:s\inUniv B }\mp@subsup{}{1}{\prime}(\subseteq\mathrm{ state }\capY
    using F by (drule-tac btyping2-approx, auto)
    assume (c,s) => s'
    hence }\mp@subsup{s}{}{\prime}\in\mathrm{ Univ D' ( }\subseteq\mathrm{ state }\cap\mp@subsup{Z}{}{\prime}
    using H and N by (rule ctyping2-approx)
moreover obtain C' and Y' where }O:\vdashc(\subseteq\mp@subsup{B}{1}{\prime},Y)=(\mp@subsup{C}{}{\prime},\mp@subsup{Y}{}{\prime}
    by (cases }\vdashc(\subseteq\mp@subsup{B}{1}{}\mp@subsup{}{}{\prime},Y), simp
hence }\mp@subsup{D}{}{\prime}\subseteq\mp@subsup{C}{}{\prime}\wedge\mp@subsup{Y}{}{\prime}\subseteq\mp@subsup{Z}{}{\prime
    using H by (rule ctyping1-ctyping2)
ultimately have P: s'\in\operatorname{Univ}\mp@subsup{C}{}{\prime}(\subseteq\mathrm{ state }\cap\mp@subsup{Y}{}{\prime})
    by blast
have }\vdashc(\subseteqC,Y)=(C,Y
    using E by (rule ctyping1-idem)
moreover have }\mp@subsup{B}{1}{\prime}\subseteq
    using F by (blast dest: btyping2-un-eq)
ultimately have C}\mp@subsup{C}{}{\prime}\subseteqC\wedgeY\subseteq\mp@subsup{Y}{}{\prime
    by (metis order-refl ctyping1-mono O)
hence s}\mp@subsup{s}{}{\prime}\in\mathrm{ Univ C(` state }\capY
    using P by blast
}
ultimately have M:
\forall\mp@subsup{s}{}{\prime}.(c,s)=> s'\longrightarrowbval bs\longrightarrow\mp@subsup{s}{}{\prime}\inUniv}C(\subseteq\mathrm{ state }\capY
    by blast
have N:
(\foralls\inUniv? A X \cup Univ? C Y. \forallx 旃ars b. All (interf s (dom x))) ^
    (\forallp\inU.\forallBW.p=(B,W)\longrightarrow(\foralls\inB.}\forallx\inW.All (interf s (dom x)))
    using C by (simp split: if-split-asm)
hence }\forall\mathrm{ cs x. }(\exists(B,Y)\inU\mathrm{ .
    \existss\inB.\existsy\inY.\negs:dom y\rightsquigarrowdom x)\longrightarrow no-upd cs x
    by auto
moreover {
    fix r t1
    assume }O:r\inA\mathrm{ and }P:s=r(\subseteq\mathrm{ state }\capX
    have Q:\forallx.}\forally\in\mathrm{ bvars b. s: dom y dom x
    proof (cases state \subseteqX)
    case True
    with P have interf s= interf r
        by (blast intro: interf-state)
    with }N\mathrm{ and }O\mathrm{ show ?thesis
        by (erule-tac conjE, drule-tac bspec,
            auto simp: univ-states-if-def)
next
    case False
    with N and O show ?thesis
            by (erule-tac conjE, drule-tac bspec,
            auto simp: univ-states-if-def)
qed
have }(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})=(\mathrm{ WHILE b DO c,s)}
```

（IF b THEN $c ;$ WHILE b DO c ELSE SKIP，$s) \rightarrow *\left\{t l c f s_{1}\right\}\left(c_{1}, s_{1}\right)$ using I by（blast dest：small－stepsl－while）
hence $\exists c_{2}{ }^{\prime} t_{2} . \forall x$ ．

```
    \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources-aux \(\left(\right.\) flow \(\left.\left.c f s_{2}\right) s_{1} x\right) \longrightarrow\)
    \(\left.\left(c_{1}, t_{1}\right) \rightarrow *\left(c_{2}^{\prime}, t_{2}\right) \wedge\left(c_{2}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge\)
    \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources \(\left(\right.\) flow \(\left.\left.\left.c f s_{2}\right) s_{1} x\right) \longrightarrow s_{2} x=t_{2} x\right)\)
proof
    assume \(R:\left(c_{1}, s_{1}\right)=(\) WHILE b DO \(c, s)\)
    hence \((W H I L E b D O c, s) \rightarrow *\left\{c f s_{2}\right\}\left(c_{2}, s_{2}\right)\)
        using \(J\) by \(\operatorname{simp}\)
    hence
    \(\left(c_{2}, s_{2}\right)=(\) WHILE \(b D O c, s) \wedge\)
        flow \(c f s_{2}=[] \vee\)
        (IF b THEN \(c\); ; WHILE b DO c ELSE SKIP, s) \(\rightarrow *\left\{t l c f s_{2}\right\}\left(c_{2}, s_{2}\right) \wedge\)
        flow \(c f s_{2}=\) flow \(\left(t l c f s_{2}\right)\)
        (is ? \(P \vee ? Q \wedge ? R\) )
        by (rule small-stepsl-while)
    thus ?thesis
    proof (rule disjE, erule-tac [2] conjE)
    assume ? \(P\)
    with \(R\) show ?thesis
        by auto
    next
```

 assume ? \(Q\) and ? \(R\)
 have
 \(\left(c_{2}, s_{2}\right)=(\) IF b THEN \(c ;\);WHILE b DO c ELSE SKIP, s \() \wedge\)
 flow \(\left(t l c f s_{2}\right)=[] \vee\)
 bval bs \(s(c ;\) WHILE b DO \(c, s) \rightarrow *\left\{t l 2 c f s_{2}\right\}\left(c_{2}, s_{2}\right) \wedge\)
 flow \(\left(t l c f s_{2}\right)=\langle\) bvars \(b\rangle \#\) flow \(\left(t l 2 c f s_{2}\right) \vee\)
 \(\neg\) bval \(b s \wedge(S K I P, s) \rightarrow *\left\{t l 2 c f s_{2}\right\}\left(c_{2}, s_{2}\right) \wedge\)
 flow \(\left(t l c f s_{2}\right)=\langle\) bvars \(b\rangle \#\) flow \(\left(t l 2 c f s_{2}\right)\)
 using 〈? \(Q\) 〉 by (rule small-stepsl-if)
 thus ?thesis
 proof (erule-tac disjE, erule-tac [2] disjE, (erule-tac [2-3] conjE)+)
 assume \(\left(c_{2}, s_{2}\right)=(\) IF b THEN \(c ;\); WHILE b DO cELSE SKIP, s) \(\wedge\)
 flow \(\left(t l c f s_{2}\right)=[]\)
 with \(R\) and 〈? \(R\) 〉show ?thesis
 by auto
 next
 assume \(S\) : bval \(b s\)
 with \(D\) and \(O\) and \(P\) have \(T: s \in U n i v B_{1}(\subseteq\) state \(\cap X)\)
 by (drule-tac btyping2-approx [where \(s=s\)], auto)
 assume \(U\) : \((c ;\) WHILE \(b\) DO \(c, s) \rightarrow *\left\{t l 2 c f s_{2}\right\}\left(c_{2}, s_{2}\right)\)
 hence
 (\(\exists c^{\prime} c f s . c_{2}=c^{\prime} ; ;\) WHILE b DO \(c \wedge\)
 \((c, s) \rightarrow *\{c f s\}\left(c^{\prime}, s_{2}\right) \wedge\)
 flow \(\left(t l 2 c f s_{2}\right)=\) flow \(\left.c f s\right) \vee\)
 \(\left(\exists s^{\prime} c f s c f s^{\prime}\right.\). length cfs \({ }^{\prime}<\) length \(\left(t l 2 c f s_{2}\right) \wedge\)
 \((c, s) \rightarrow *\{c f s\}\left(S K I P, s^{\prime}\right) \wedge\)
    ```
        (WHILE b DO c, s') ->*{cfs'} (c, c, s2)^
        flow (tl2 cfs 2) = flow cfs @ flow cfs')
    by (rule small-stepsl-seq)
moreover assume flow (tl cfs s) = \langlebvars b\rangle # flow (tl2 cfss)
moreover have s}\mp@subsup{s}{2}{}=\mathrm{ run-flow (flow (tl2 cfs )}\mathrm{ ))s
    using U by (rule small-stepsl-run-flow)
moreover {
    fix c}\mp@subsup{c}{}{\prime}cf
    assume (c,s) ->*{cfs} (c', run-flow (flow cfs) s)
    then obtain }\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and t2 where V:}\forallx\mathrm{ .
        (s=\mp@subsup{t}{1}{}}(\subseteq\mathrm{ sources-aux (flow cfs) s x)}
            (c, tr ) ->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{})\wedge(\mp@subsup{c}{}{\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))\wedge
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs) s x)}\longrightarrow
        run-flow (flow cfs) s x = t t x )
        using A [of B1 C B B ' D s [] c s cfs c'
        run-flow (flow cfs) s] and N and T by force
    {
        fix }
    assume W:s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (<bvars b># flow cfs) s x)}
    moreover have sources-aux (flow cfs) s x\subseteq
        sources-aux (\langlebvars b\rangle # (flow cfs)) s x
        by (rule sources-aux-observe-tl)
    ultimately have (c, tr ) ->* ( }\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime}
        using V by blast
    hence (c;; WHILE b DO c, tr ) ->* (cc
        by (rule star-seq2)
    moreover have s=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ bvars b)}
        using Q and W by (blast dest: sources-aux-observe-hd)
    hence bval b t 
        using S by (blast dest: bvars-bval)
    hence (WHILE b DO c, tr ) ->* (c;;WHILE b DO c, t t )
        by (blast intro: star-trans)
    ultimately have (WHILE b DO c, tr ) ->*
```



```
        by (blast intro: star-trans)
    }
    moreover {
        fix }
        assume s = t ( \subseteq sources (\langlebvars b\rangle # flow cfs) s x)
    moreover have sources (flow cfs) sx\subseteq
        sources (\langlebvars b\rangle # (flow cfs)) s x
        by (rule sources-observe-tl)
    ultimately have run-flow (flow cfs) s x = t2 x
        using V by blast
    }
    ultimately have }\exists\mp@subsup{c}{2}{\prime}\mp@subsup{}{2}{\prime
        (s=\mp@subsup{t}{1}{}(\subseteq sources-aux (\langlebvars b\rangle # flow cfs) s x)\longrightarrow
        (WHILE b DO c, tr ) ->* (c2', th2)^ c c2'\not=SKIP) ^
    (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (<bvars b> # flow cfs) s x)}\longrightarrow
```

```
        run-flow (flow cfs) s x = t2 x)
    by blast
}
moreover {
    fix s'cfs cfs'
    assume
        V: length cfs }\mp@subsup{}{}{\prime}<l= length cfs 2 - Suc (Suc 0) and
        W:(c,s)->*{cfs} (SKIP, s) and
        X:(WHILE b DO c, s') ->*{cfs'}
        (c2, run-flow (flow cfs') (run-flow (flow cfs) s))
    then obtain }\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and t2 where }\forallx\mathrm{ .
        (s=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources-aux (flow cfs) s x)}\longrightarrow
            (c, tr ) ->* (c2',}\mp@subsup{t}{2}{\prime})\wedge(SKIP = SKIP ) = (c\mp@subsup{c}{2}{\prime}=SKIP)) ^
        (s=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs) s x) }\longrightarrow\mp@subsup{s}{}{\prime}x=\mp@subsup{t}{2}{}x)
        using A [of B B C B 的'Ds[] cscfs SKIP s']
        and N and T by force
    moreover have Y: s'= run-flow (flow cfs)s
        using W by (rule small-stepsl-run-flow)
    ultimately have Z: }\forallx\mathrm{ .
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs) s x)}\longrightarrow
            (c, t1) ->* (SKIP, t2 ))^
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs) s x)}\longrightarrow
            run-flow (flow cfs) s x = t2 x)
        by blast
    assume s s = run-flow (flow cfs')(run-flow (flow cfs) s)
    moreover have (c,s)=> s'
        using W by (auto dest: small-stepsl-steps simp: big-iff-small)
    hence s'\inUniv C (\subseteq state \capY)
        using }M\mathrm{ and }S\mathrm{ by blast
    ultimately obtain }\mp@subsup{c}{3}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{t}{3}{}\mathrm{ where }AA:\forallx\mathrm{ .
        (run-flow (flow cfs) s= t2
            (\subseteq sources-aux (flow cfs') (run-flow (flow cfs) s) x)}
                        (WHILE b DO c, t2) ->* (c3', tra)^
            (c2 =SKIP) = (c3''=SKIP))^
        (run-flow (flow cfs) s=\mp@subsup{t}{2}{}
            (\subseteq sources (flow cfs') (run-flow (flow cfs) s) x)\longrightarrow
            run-flow (flow cfs') (run-flow (flow cfs) s) x = tr3 x)
        using K [of cfs' [] cfs' ' s' WHILE b DO c s']
        and}V\mathrm{ and }X\mathrm{ and }Y\mathrm{ by force
    {
        fix }
        assume AB: s= t1
            (\subseteq sources-aux (\langlebvars b\rangle # flow cfs @ flow cfs') s x)
        moreover have sources-aux (flow cfs) s x\subseteq
            sources-aux (flow cfs @ flow cfs') s x
        by (rule sources-aux-append)
        moreover have AC: sources-aux (flow cfs @ flow cfs') s x\subseteq
            sources-aux (\langlebvars b\rangle # flow cfs @ flow cfs') s x
            by (rule sources-aux-observe-tl)
```

```
ultimately have \(\left(c, t_{1}\right) \rightarrow *\left(S K I P, t_{2}\right)\)
    using \(Z\) by blast
    hence \(\left(c ;\right.\) WHILE \(b\) DO \(\left.c, t_{1}\right) \rightarrow *\left(S K I P ;\right.\) WHILE b DO \(\left.c, t_{2}\right)\)
        by (rule star-seq2)
    moreover have \(s=t_{1}\) ( \(\subseteq\) bvars \(b\) )
        using \(Q\) and \(A B\) by (blast dest: sources-aux-observe-hd)
    hence bval \(b t_{1}\)
        using \(S\) by (blast dest: bvars-bval)
    hence (WHILE b DO \(\left.c, t_{1}\right) \rightarrow *\left(c ;\right.\) WHILE b DO \(\left.c, t_{1}\right)\)
        by (blast intro: star-trans)
    ultimately have (WHILE b DO \(\left.c, t_{1}\right) \rightarrow *\left(W H I L E b D O c, t_{2}\right)\)
    by (blast intro: star-trans)
    moreover have run-flow (flow cfs) \(s=t_{2}\)
        \((\subseteq\) sources-aux (flow cfs') (run-flow (flow cfs) s) x)
    proof
        fix \(y\)
        assume \(y \in\) sources-aux (flow cfs')
        (run-flow (flow cfs) s) \(x\)
    hence sources (flow cfs) s \(y \subseteq\)
        sources-aux (flow cfs @ flow cfs') s x
        by (rule sources-aux-member)
    hence sources (flow cfs) sy \(\subseteq\)
        sources-aux (〈bvars b〉\# flow cfs @ flow cfs') sx
        using \(A C\) by simp
    thus run-flow (flow cfs) s \(y=t_{2} y\)
        using \(Z\) and \(A B\) by blast
    qed
    hence \(\left(\right.\) WHILE \(b\) DO \(\left.c, t_{2}\right) \rightarrow *\left(c_{3}{ }^{\prime}, t_{3}\right) \wedge\)
        \(\left(c_{2}=S K I P\right)=\left(c_{3}{ }^{\prime}=\right.\) SKIP \()\)
        using \(A A\) by simp
    ultimately have \(\left(W H I L E b D O c, t_{1}\right) \rightarrow *\left(c_{3}{ }^{\prime}, t_{3}\right) \wedge\)
        \(\left(c_{2}=S K I P\right)=\left(c_{3}{ }^{\prime}=S K I P\right)\)
        by (blast intro: star-trans)
\}
moreover \{
    fix \(x\)
    assume \(A B: s=t_{1}\)
        ( \(\subseteq\) sources ( \(\langle\) bvars \(b\rangle\) \# flow cfs @ flow cfs \(\left.s^{\prime}\right) ~ s x\) )
    have run-flow (flow cfs) \(s=t_{2}\)
        \((\subseteq\) sources (flow cfs') (run-flow (flow cfs) s) \(x\) )
    proof
        fix \(y\)
        assume \(y \in\) sources (flow cfs')
        (run-flow (flow cfs) s) \(x\)
        hence sources (flow cfs) s \(y \subseteq\)
            sources (flow cfs @ flow cfs') sx
        by (rule sources-member)
        moreover have sources (flow cfs @ flow cfs \({ }^{\prime}\) ) s \(x \subseteq\)
            sources ( \(\langle\) bvars b〉\# flow cfs @ flow cfs') s x
```

```
                by (rule sources-observe-tl)
            ultimately have sources (flow cfs) s y \(\subseteq\)
                sources ( \(\langle\) bvars b〉\# flow cfs @ flow cfs') s x
                    by \(\operatorname{simp}\)
            thus run-flow (flow cfs) s \(y=t_{2} y\)
                using \(Z\) and \(A B\) by blast
        qed
        hence run-flow (flow cfs') (run-flow (flow cfs) \(s\) ) \(x=t_{3} x\)
        using \(A A\) by simp
    \}
    ultimately have \(\exists c_{3}{ }^{\prime} t_{3}\). \(\forall x\).
        ( \(s=t_{1}\)
            \((\subseteq\) sources-aux \((\langle\) bvars \(b\rangle \#\) flow cfs @ flow cfs') s \(x) \longrightarrow\)
            (WHILE b DO \(\left.c, t_{1}\right) \rightarrow *\left(c_{3}{ }^{\prime}, t_{3}\right) \wedge\)
            \(\left.\left(c_{2}=S K I P\right)=\left(c_{3}^{\prime}=S K I P\right)\right) \wedge\)
        ( \(s=t_{1}\)
            ( \(\subseteq\) sources \(\left(\langle\right.\) bvars b \(\rangle\) \# flow cfs @ flow cfs \(\left.{ }^{\prime}\right)\) s \(x\) ) \(\longrightarrow\)
                run-flow (flow cfs') (run-flow (flow cfs) \(s\) ) \(x=t_{3} x\) )
            by auto
\}
ultimately show ?thesis
    using \(R\) and 〈? \(R\rangle\) by (auto simp: run-flow-append)
next
    assume
        \(S: \neg\) bval \(b s\) and
        T: flow \(\left(t l c f s_{2}\right)=\langle\) bvars \(b\rangle \#\) flow \(\left(t l 2 ~ c f s_{2}\right)\)
    moreover assume \((S K I P, s) \rightarrow *\left\{t l 2 c f s_{2}\right\}\left(c_{2}, s_{2}\right)\)
    hence \(U:\left(c_{2}, s_{2}\right)=(S K I P, s) \wedge\) flow \(\left(t l 2 c f s_{2}\right)=[]\)
    by (rule small-stepsl-skip)
show ?thesis
proof (rule exI [of - SKIP], rule exI \(\left[\right.\) of \(\left.-t_{1}\right]\) )
    \{
        fix \(x\)
        have \(\left(W H I L E b D O c, t_{1}\right) \rightarrow\)
            (IF b THEN c; WHILE b DO c ELSE SKIP, \(t_{1}\) ) ..
            moreover assume \(s=t_{1}(\subseteq\) sources-aux \([\langle\) bvars \(b\rangle]\) s \(x)\)
            hence \(s=t_{1}\) ( \(\subseteq\) bvars b)
                using \(Q\) by (blast dest: sources-aux-observe-hd)
            hence \(\neg\) bval \(b t_{1}\)
                using \(S\) by (blast dest: bvars-bval)
            hence (IF b THEN \(c\); ; WHILE b DO c ELSE SKIP, \(t_{1}\) ) \(\rightarrow\)
            \(\left(S K I P, t_{1}\right) .\).
            ultimately have (WHILE b DO \(\left.c, t_{1}\right) \rightarrow *\left(S K I P, t_{1}\right)\)
            by (blast intro: star-trans)
    \}
    moreover \{
        fix \(x\)
        assume \(s=t_{1}(\subseteq\) sources \([\langle\) bvars \(b\rangle] s x)\)
    hence \(s x=t_{1} x\)
```

```
                by (subst (asm) append-Nil [symmetric],
                    simp only: sources.simps, auto)
        }
            ultimately show }\forallx\mathrm{ .
                (s1 = tr (\subseteq sources-aux (flow cfs 2) s1 x)}
                (c, ct t ) ->* (SKIP, tr ) ^( (c2 =SKIP) = (SKIP =SKIP ) ) ^
            (s
            using }R\mathrm{ and T and U and 〈?R〉 by auto
        qed
        qed
    qed
next
assume (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ->*{tl cfs s } (c
hence
    (c. s, s) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s)^
        flow (tl cfs s ) = [] V
        bval b s ^(c;; WHILE b DO c, s) ->*{tl2 cfs s } ( }\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})
        flow (tl cfs ) = \langlebvars b\rangle # flow (tl2 cfs ) \
```



```
        flow (tl cf\mp@subsup{s}{1}{})=\langlebvars b\rangle# flow (tl2 cfs )
    by (rule small-stepsl-if)
thus ?thesis
proof (rule disjE, erule-tac [2] disjE, erule-tac conjE,
    (erule-tac [2-3] conjE)+)
    assume R: (c. c, s1) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s)
    hence (IF b THEN c;;WHILE b DO c ELSE SKIP, s) ->*{cfs s } (c, c, s, )
        using J by simp
    hence
        (c}\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})=(\mathrm{ IF b THEN c;;WHILE b DO c ELSE SKIP, s)^
        flow cfs 2 = [] V
        bval b s ^ (c;;WHILE b DO c, s) ->*{tl cfs s } ( c2, s, s) ^
            flow cfs\mp@subsup{s}{2}{}=\langlebvars b\rangle# flow (tl cfs\mp@subsup{s}{2}{})\vee
            bval b s ^ (SKIP,s) ->*{tl cfs s } (cc, s2) ^
            flow cfs\mp@subsup{s}{2}{}}=\langle\mathrm{ bvars b # # flow (tl cfs s)
    by (rule small-stepsl-if)
    thus ?thesis
    proof (erule-tac disjE, erule-tac [2] disjE, (erule-tac [2-3] conjE)+)
    assume ( }\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})=(\mathrm{ IF b THEN c;;WHILE b DO c ELSE SKIP, s)^
            flow cfss2 = []
    with R show ?thesis
        by auto
    next
    assume S: bval b s
    with D and O and P have T:s\inUniv B1 (\subseteq state \capX)
            by (drule-tac btyping2-approx [where s=s], auto)
            assume U:(c;; WHILE b DO c,s)->*{tl cfs s } (c, c, s2)
        hence
        (\exists\mp@subsup{c}{}{\prime}cfs. c}\mp@subsup{c}{2}{}=\mp@subsup{c}{}{\prime};;\mathrm{ WHILE b DO c ^
            (c,s)->*{cfs} (c', s2)^
```

```
    flow (tl cfs s) = flow cfs) \vee
    (\existss'cfs cfs'.}\mathrm{ . length cfs' < length (tl cfs 2 ) ^
        (c,s)->*{cfs} (SKIP, s) ^
        (WHILE b DO c, s') ->*{cfs'} (c, c, s2)^
    flow (tl cfs\mp@subsup{s}{2}{})= flow cfs @ flow cfs')
    by (rule small-stepsl-seq)
moreover assume flow cfs\mp@subsup{s}{2}{}=\langlebvars b\rangle# flow (tl cfs\mp@subsup{s}{2}{})
moreover have }\mp@subsup{s}{2}{}=\mathrm{ run-flow (flow (tl cfs s)) s
    using U by (rule small-stepsl-run-flow)
moreover {
    fix c}\mp@subsup{c}{}{\prime}cf
    assume (c,s)->*{cfs} (c', run-flow (flow cfs) s)
    then obtain }\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and t}\mp@subsup{t}{2}{}\mathrm{ where V: }\forallx\mathrm{ .
    (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs) s x)}\longrightarrow
        (c,\mp@subsup{t}{1}{})->* (\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{}{\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))}
    (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs) s x)}\longrightarrow
    run-flow(flow cfs) s x = t2 x)
    using A [of B }\mp@subsup{B}{1}{C}\mp@subsup{B}{1}{\prime}\mp@subsup{}{}{\prime}Ds[] cscfs c
    run-flow (flow cfs) s] and N and T by force
{
    fix }
    assume W:s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (<bvars b \# flow cfs) s x)}
    moreover have sources-aux (flow cfs) s x\subseteq
        sources-aux (\langlebvars b\rangle # (flow cfs)) s x
        by (rule sources-aux-observe-tl)
    ultimately have (c, tr ) ->* ( }\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime}
        using V by blast
    hence (c;; WHILE b DO c, t1) ->* (c, ';; WHILE b DO c, t t )
        by (rule star-seq2)
    moreover have s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ bvars b)}
        using Q and W by (blast dest: sources-aux-observe-hd)
    hence bval b t1
        using S by (blast dest: bvars-bval)
    hence (IF b THEN c;; WHILE b DO c ELSE SKIP, tr ) }
        (c;; WHILE b DO c, tr )..
    ultimately have
    (IF b THEN c;; WHILE b DO c ELSE SKIP, t t ) ->*
                ( cce';;WHILE b DO c, t2) ^ c c2';;WHILE b DO c F=SKIP
        by (blast intro: star-trans)
}
moreover {
    fix }
    assume s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (<bvars b> # flow cfs) s x)}
    moreover have sources (flow cfs) s x\subseteq
        sources (\langlebvars b\rangle# (flow cfs)) s x
        by (rule sources-observe-tl)
    ultimately have run-flow (flow cfs) s x = tre
        using V by blast
    }
```

ultimately have $\exists c_{2}{ }^{\prime} t_{2}$. $\forall x$.
$\left(s=t_{1}(\subseteq\right.$ sources-aux $(\langle$ bvars $b\rangle \#$ flow cfs $) s x) \longrightarrow$
(IF b THEN c; WHILE b DO c ELSE SKIP, t_{1}) $\rightarrow *\left(c_{2}{ }^{\prime}, t_{2}\right) \wedge$
$c_{2}{ }^{\prime} \neq$ SKIP $) \wedge$
$\left(s=t_{1}(\subseteq\right.$ sources $(\langle$ bvars $b\rangle \#$ flow cfs $) s x) \longrightarrow$
run-flow (flow cfs) s $x=t_{2} x$)
by blast
\}
moreover \{
fix $s^{\prime} c f s c f s^{\prime}$
assume
V : length $c f s^{\prime}<$ length $c f s_{2}-$ Suc 0 and
$W:(c, s) \rightarrow *\{c f s\}\left(S K I P, s^{\prime}\right)$ and
$X:\left(\right.$ WHILE b DO $\left.c, s^{\prime}\right) \rightarrow *\left\{c f s^{\prime}\right\}$
(c_{2}, run-flow (flow cfs') (run-flow (flow cfs) s))
then obtain $c_{2}{ }^{\prime}$ and t_{2} where $\forall x$.
$\left(s=t_{1}(\subseteq\right.$ sources-aux $($ flow cfs $)$ s $x) \longrightarrow$
$\left.\left(c, t_{1}\right) \rightarrow *\left(c_{2}{ }^{\prime}, t_{2}\right) \wedge(S K I P=S K I P)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge$
$\left(s=t_{1}(\subseteq\right.$ sources $($ flow cfs $\left.) s x) \longrightarrow s^{\prime} x=t_{2} x\right)$
using A [of $B_{1} C B_{1}{ }^{\prime} D s[] c s c f s$ SKIP s]
and N and T by force
moreover have $Y: s^{\prime}=$ run-flow (flow cfs) s
using W by (rule small-stepsl-run-flow)
ultimately have $Z: \forall x$.
$\left(s=t_{1}(\subseteq\right.$ sources-aux $($ flow cfs $) s x) \longrightarrow$
$\left.\left(c, t_{1}\right) \rightarrow *\left(S K I P, t_{2}\right)\right) \wedge$
$\left(s=t_{1}(\subseteq\right.$ sources $($ flow cfs $) s x) \longrightarrow$
run-flow (flow cfs) s $x=t_{2} x$)
by blast
assume $s_{2}=$ run-flow $($ flow cfs $)($ run-flow (flow cfs) $s)$
moreover have $(c, s) \Rightarrow s^{\prime}$
using W by (auto dest: small-stepsl-steps simp: big-iff-small)
hence $s^{\prime} \in$ Univ $C(\subseteq$ state $\cap Y)$
using M and S by blast
ultimately obtain $c_{3}{ }^{\prime}$ and t_{3} where $A A: \forall x$.
(run-flow (flow cfs) $s=t_{2}$
(\subseteq sources-aux (flow cfs') (run-flow (flow cfs) s) x) \longrightarrow
(WHILE bDO $\left.c, t_{2}\right) \rightarrow *\left(c_{3}{ }^{\prime}, t_{3}\right) \wedge$
$\left.\left(c_{2}=S K I P\right)=\left(c_{3}{ }^{\prime}=S K I P\right)\right) \wedge$
(run-flow (flow cfs) $s=t_{2}$
(\subseteq sources $\left(\right.$ flow cfs ${ }^{\prime}$) (run-flow (flow cfs) s) x) \longrightarrow
run-flow (flow cfs') (run-flow (flow cfs) s) $x=t_{3} x$)
using K [of $c f s^{\prime}[] c f s^{\prime} s^{\prime}$ WHILE b DO $\left.c s^{\prime}\right]$
and V and X and Y by force
\{
fix x
assume $A B: s=t_{1}$
(\subseteq sources-aux (〈bvars b〉\# flow cfs @ flow cfs') s x)
moreover have sources-aux (flow cfs) s $x \subseteq$

```
    sources-aux (flow cfs @ flow cfs') s x
    by (rule sources-aux-append)
    moreover have AC: sources-aux (flow cfs @ flow cfs') s x\subseteq
    sources-aux (\langlebvars b\rangle # flow cfs @ flow cfs') s x
    by (rule sources-aux-observe-tl)
    ultimately have (c, tr ) ->* (SKIP, t2)
    using Z by blast
    hence (c;;WHILE b DO c, tr ) ->* (SKIP;;WHILE b DO c, tr )
    by (rule star-seq2)
    moreover have s=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ bvars b)}
    using Q and AB by (blast dest: sources-aux-observe-hd)
    hence bval b t1
        using S by (blast dest: bvars-bval)
    hence (IF b THEN c;;WHILE b DO c ELSE SKIP, , tr ) ->
    (c;; WHILE b DO c, tr ) ..
ultimately have (IF b THEN c;;WHILE b DO c ELSE SKIP, tr ) ->*
    (WHILE b DO c, tr )
    by (blast intro: star-trans)
    moreover have run-flow (flow cfs) s=t2
    (\subseteq sources-aux (flow cfs') (run-flow (flow cfs) s) x)
    proof
    fix }
    assume y f sources-aux (flow cfs')
        (run-flow (flow cfs) s) x
    hence sources(flow cfs) s y\subseteq
            sources-aux (flow cfs @ flowcfs') s x
            by (rule sources-aux-member)
    hence sources (flow cfs) s y\subseteq
            sources-aux (\langlebvars b\rangle # flow cfs @ flow cfs') s x
            using AC by simp
    thus run-flow (flow cfs) s y = t2 y
            using Z and }AB\mathrm{ by blast
    qed
    hence (WHILE b DO c, t2) ->* (c c3',}\mp@subsup{t}{3}{})
        (c}\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{3}{\prime}=SKIP
        using AA by simp
    ultimately have
    (IF b THEN c;; WHILE b DO c ELSE SKIP, t t ) ->*
        (c3}\mp@subsup{}{\prime}{\prime},\mp@subsup{t}{3}{})\wedge(\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{3}{\prime}=SKIP
    by (blast intro: star-trans)
}
moreover {
    fix }
    assume AB: s= t1
        (\subseteq sources (\langlebvars b\rangle# flow cfs @ flow cfs') s x)
    have run-flow (flow cfs) s=\mp@subsup{t}{2}{}
        (\subseteq sources (flow cfs') (run-flow (flow cfs) s) x)
    proof
        fix }
```

```
            assume y \in sources (flow cfs')
                (run-flow (flow cfs) s) x
            hence sources (flow cfs) s y\subseteq
                    sources (flow cfs @ flow cfs') s x
                    by (rule sources-member)
            moreover have sources (flow cfs @ flow cfs') s x\subseteq
                    sources (\langlebvars b\rangle # flow cfs @ flow cfs') s x
                    by (rule sources-observe-tl)
            ultimately have sources (flow cfs) s y\subseteq
                    sources (\langlebvars b\rangle # flow cfs @ flow cfs') s x
            by simp
            thus run-flow (flow cfs) s y = t2 y
            using Z and }AB\mathrm{ by blast
        qed
        hence run-flow (flow cfs')(run-flow(flow cfs) s) x = t3 x
        using AA by simp
    }
    ultimately have }\exists\mp@subsup{c}{3}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{t}{3}{}.\forallx\mathrm{ .
        (s=\mp@subsup{t}{1}{}
            (\subseteq sources-aux (\langlebvars b\rangle # flow cfs @ flow cfs') s x) \longrightarrow
                (IF b THEN c;; WHILE b DO c ELSE SKIP, tr ) ->* (c3',}\mp@subsup{t}{3}{\prime})
            (c2 =SKIP) = (c3' =SKIP))^
        (s=\mp@subsup{t}{1}{}
            (\subseteq sources (\langlebvars b\rangle # flow cfs @ flow cfs') s x)\longrightarrow
                run-flow (flow cfs') (run-flow (flow cfs) s) }x=\mp@subsup{t}{3}{}x\mathrm{ )
        by auto
    }
ultimately show ?thesis
        using R by (auto simp: run-flow-append)
next
    assume
        S:\neg bval b s and
        T: flow cfs 2 = \langlebvars b\rangle # flow (tl cfs s)
    assume (SKIP,s)->*{tlcf\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})
    hence U:(c, c, s2)=(SKIP,s)^ flow (tl cfs s) = []
        by (rule small-stepsl-skip)
    show ?thesis
    proof (rule exI [of-SKIP], rule exI [of - t t ])
        {
        fix }
        assume s= t1 (\subseteq sources-aux [\langlebvars b\rangle] s x)
        hence }s=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ bvars b)
            using Q by (blast dest: sources-aux-observe-hd)
        hence }\neg\mathrm{ bval b t1
            using S by (blast dest: bvars-bval)
        hence (IF b THEN c;;WHILE b DO c ELSE SKIP, tri) ->
        (SKIP, tr ) ..
    }
    moreover {
```

```
            fix }
            assume s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources [<bvars b \] s x)}
            hence s x = t t x
                        by (subst (asm) append-Nil [symmetric],
            simp only: sources.simps, auto)
    }
    ultimately show }\forallx\mathrm{ .
        (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs s) ) s s x)}
            (c, ct ) ->* (SKIP, t t ) ^( (c2 =SKIP) = (SKIP =SKIP ) ) ^
            (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs s) s s x) }\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{1}{}x
            using R and T and U by auto
    qed
    qed
next
    assume R:bval b s
    with D and O and P have S:s\inUniv B (\subseteq state \capX)
    by (drule-tac btyping2-approx [where s=s], auto)
assume (c;; WHILE b DO c, s) ->*{tl2 cfs s } (c, c, s1)
hence
    (\exists\mp@subsup{c}{}{\prime}cf\mp@subsup{s}{}{\prime}.\mp@subsup{c}{1}{}=\mp@subsup{c}{}{\prime};;\mathrm{ WHILE b DO c ^}
        (c,s)->*{cfs'} (c', s, s)^
        flow (tl2 cfs ) = flow cfs') \vee
    (\exists\mp@subsup{s}{}{\prime}cf\mp@subsup{s}{}{\prime}cf\mp@subsup{s}{}{\prime\prime}. length cfs'" < length (tl2 cfs 的)^
        (c,s)->*{cfs'} (SKIP, s')^
        (WHILE b DO c, s') ->*{cfs\mp@subsup{s}{}{\prime\prime}}}(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})
        flow (tl2 cfs s ) = flow cfs' @ flow cfs'')
    by (rule small-stepsl-seq)
moreover {
    fix c}\mp@subsup{c}{}{\prime}cf
    assume
        T:(c,s)->*{cfs} (c', s, ) and
        U: c}\mp@subsup{c}{1}{}=\mp@subsup{c}{}{\prime};;\mathrm{ WHILE b DO c
    hence V:(c';; WHILE b DO c, s, s) ->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})
        using J by simp
    hence W: s}\mp@subsup{s}{2}{}=\mathrm{ run-flow (flow cfs⿱2)}\mp@subsup{)}{1}{
        by (rule small-stepsl-run-flow)
    have
    (\exists\mp@subsup{c}{}{\prime\prime}cf\mp@subsup{s}{}{\prime}.\mp@subsup{c}{2}{}=\mp@subsup{c}{}{\prime\prime};;\mathrm{ WHILE b DO c^}\
            (c', s, ) ->*{cfs'} (c'\prime},\mp@subsup{s}{2}{})
            flow cfs s2 = flow cfs') \vee
        (\exists s'cfs\mp@subsup{s}{}{\prime}cf\mp@subsup{s}{}{\prime\prime}.length cfs'" < length cfs s 
            (c', s1) ->*{cfs'} (SKIP, s')^
            (WHILE b DO c, s') ->*{cfs\mp@subsup{s}{}{\prime\prime}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})\wedge
            flow cfss2 = flow cfs' @ flow cfs'')
        using V by (rule small-stepsl-seq)
    moreover {
        fix c}\mp@subsup{c}{}{\prime\prime}cf\mp@subsup{s}{}{\prime
        assume ( }\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})->*{cf\mp@subsup{s}{}{\prime}}(\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{2}{}
        then obtain }\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and t2 where X:}\forallx\mathrm{ .
```

```
    (s)}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs') s1 }x)
        (c',\mp@subsup{t}{1}{\prime})->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))}
    ( s
        run-flow (flow cf\mp@subsup{s}{2}{}) s
```



```
        run-flow (flow cfs s) s_] and N and S and T and W by force
    assume
    Y: c
    Z: flow cfs 2 = flow cfs'
    have?thesis
    proof (rule exI [of - c2';; WHILE b DO c], rule exI [of - t 2])
    from U and W and X and Y and Z show }\forallx\mathrm{ .
        (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs⿱丶万⿱⿰㇒一乂心()}\mp@subsup{s}{1}{}x)
                (c
                        (c}\mp@subsup{c}{2}{\prime=SKIP) = (c}\mp@subsup{c}{2}{\prime};;\mathrm{ WHILE b DO c =SKIP)) ^
        (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs 2) s1 
        by (auto intro: star-seq2)
    qed
}
moreover {
    fix }\mp@subsup{s}{}{\prime}cf\mp@subsup{s}{}{\prime}cf\mp@subsup{s}{}{\prime\prime
    assume
        X: length cfs" }\mp@subsup{}{}{\prime\prime}<l=length cfs\mp@subsup{s}{2}{}\mathrm{ and
        Y:(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})->*{cfs}
        Z:(WHILE b DO c, s') ->*{cfs''}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{}
    then obtain }\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and t}\mp@subsup{t}{2}{}\mathrm{ where }\forallx\mathrm{ .
        (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs') s1 x)}
            (c',}\mp@subsup{t}{1}{})->*(\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{})\wedge(SKIP=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
        ( }\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs') s1 }\mp@subsup{s}{1}{
        using A [of B}\mp@subsup{B}{1}{C}C\mp@subsup{B}{1}{\prime}\mp@subsup{}{}{\prime}Dscfs co' socfs\mp@subsup{s}{}{\prime}SKIP s'
        and N and S and T by force
    moreover have AA: s'= run-flow (flow cfs') s}\mp@subsup{s}{1}{
        using Y by (rule small-stepsl-run-flow)
    ultimately have AB:}\forallx\mathrm{ .
        (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs') s}\mp@subsup{s}{1}{}x)
            (c',}\mp@subsup{t}{1}{})->*(SKIP,\mp@subsup{t}{2}{}))
        (s
            run-flow (flow cfs') s1 }x=\mp@subsup{t}{2}{}x\mathrm{ )
        by blast
    have AC: s2 = run-flow (flow cfs '') s'
        using Z by (rule small-stepsl-run-flow)
    moreover have (c,s)->*{cfs@cfs'} (SKIP, s')
        using T and Y by (simp add: small-stepsl-append)
    hence (c,s)=> s'
        by (auto dest: small-stepsl-steps simp: big-iff-small)
    hence s}\mp@subsup{s}{}{\prime}\in\mathrm{ Univ C (` state }\capY
        using M and R by blast
    ultimately obtain }\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and t t3 where AD:}\forallx\mathrm{ .
        (run-flow (flow cfs') s}\mp@subsup{s}{1}{}=\mp@subsup{t}{2}{
```

```
    (\subseteq sources-aux (flow cfs'') (run-flow (flow cfs') s, ) x) \longrightarrow
        (WHILE b DO c, tr ) ->* ( }\mp@subsup{c}{2}{\prime},\mp@subsup{t}{3}{})
    (c}\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
    (run-flow (flow cfs') s}\mp@subsup{s}{1}{}=\mp@subsup{t}{2}{
    (\subseteq sources (flow cfs'') (run-flow (flow cfs') st) x) \longrightarrow
        run-flow (flow cfs') (run-flow (flow cfs') st) x= tra
    using K [of cfs"'[] cfs"' s' WHILE b DO c s']
    and }X\mathrm{ and }Z\mathrm{ and AA by force
moreover assume flow cfs s = flow cfs' @ flow cfs'"
moreover {
    fix }
    assume AE: }\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{
        (\subseteq sources-aux (flow cfs''@ flow cfs')) s1 x)
    moreover have sources-aux (flow cfs') s}\mp@subsup{s}{1}{}x
        sources-aux (flow cfs' @ flow cfs')}\mp@subsup{}{}{\prime\prime})\mp@subsup{s}{1}{}
        by (rule sources-aux-append)
    ultimately have ( }\mp@subsup{c}{}{\prime},\mp@subsup{t}{1}{})->*(SKIP,\mp@subsup{t}{2}{}
        using AB by blast
    hence (c';;WHILE b DO c, tr ) ->* (SKIP;;WHILE b DO c, tra
        by (rule star-seq2)
    hence (c}\mp@subsup{c}{}{\prime};;\mathrm{ WHILE b DO c, tr ) }->*(WHILE b DO c, th
        by (blast intro: star-trans)
    moreover have run-flow (flow cfs') s}\mp@subsup{s}{1}{}=\mp@subsup{t}{2}{
        (\subseteq sources-aux (flow cfs'') (run-flow (flow cfs') sol) x)
    proof
        fix }
        assume y \in sources-aux (flow cfs')
            (run-flow (flow cfs') s1) x
        hence sources (flow cfs')}\mp@subsup{s}{1}{}y
            sources-aux (flow cfs' @ flow cfs'") s1 
            by (rule sources-aux-member)
        thus run-flow (flow cfs') s1 y = t2 y
            using AB and AE by blast
    qed
    hence (WHILE b DO c, t2) ->* (c}\mp@subsup{c}{2}{\prime},\mp@subsup{t}{3}{\prime})
        (c}\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}=SKIP
        using AD by simp
    ultimately have ( }\mp@subsup{c}{}{\prime};;\mathrm{ WHILE b DO c, tr ) >* ( }\mp@subsup{c}{2}{\prime},\mp@subsup{t}{3}{\prime})
        (c2 =SKIP) = (c2' = SKIP )
        by (blast intro: star-trans)
}
moreover {
    fix }
    assume AE: s1 = t 
        (\subseteq sources (flow cfs' @ flow cfs'') s1 x)
    have run-flow (flow cfs') s}\mp@subsup{s}{1}{}=\mp@subsup{t}{2}{
        (\subseteq sources (flow cfs'') (run-flow (flow cfs') s') x)
    proof
        fix }
```

```
                    assume y \in sources (flow cfs')
                    (run-flow (flow cfs') s1) x
                    hence sources (flow cfs') s}\mp@subsup{s}{1}{}y
                    sources (flow cfs' @ flow cfs'\prime)}\mp@subsup{s}{1}{}
                    by (rule sources-member)
                    thus run-flow (flow cfs') s1 y = t2 y
                    using AB and AE by blast
            qed
            hence run-flow (flow cfs')
                (run-flow (flow cfs') s, )}x=\mp@subsup{t}{3}{}
                    using }AD\mathrm{ by simp
            }
            ultimately have ?thesis
                by (metis U AA AC)
            }
            ultimately have ?thesis
                by blast
        }
        moreover {
            fix s}\mp@subsup{s}{}{\prime}cfs cf\mp@subsup{s}{}{\prime
            assume
                length cfs' < length (tl2 cfs ) and
                (c,s)->*{cfs} (SKIP, s') and
                (WHILE b DO c, s')->*{cfs'} (c, c, s
            moreover from this have (c,s)=> s'
                by (auto dest: small-stepsl-steps simp: big-iff-small)
            hence s'\inUniv C(\subseteq state \capY)
                using M and R by blast
            ultimately have ?thesis
                using K [of cfs''@ cfs\mp@subsup{s}{2}{}cf\mp@subsup{s}{}{\prime}}cf\mp@subsup{s}{2}{}\mp@subsup{s}{}{\prime}\mp@subsup{c}{1}{}\mp@subsup{s}{1}{}]\mathrm{ and J by force
        }
        ultimately show ?thesis
            by blast
        next
            assume (SKIP, s) ->*{tl2 cfs s } (c. c, s s)
            hence (c},\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})=(SKIP,s
            by (blast dest: small-stepsl-skip)
            moreover from this have (c, s, s2)=(SKIP,s)\wedge flow cfs s = []
            using J by (blast dest: small-stepsl-skip)
            ultimately show ?thesis
            by auto
        qed
    qed
}
moreover {
fix r th
assume O:r\inC and P:s=r(\subseteq state \capY)
have Q:\forallx.\forally\in bvars b. s: dom y }\rightsquigarrow\operatorname{dom}
proof (cases state \subseteqY)
```

```
case True
with P have interf s= interf r
    by (blast intro: interf-state)
with }N\mathrm{ and }O\mathrm{ show ?thesis
    by (erule-tac conjE, drule-tac bspec,
    auto simp: univ-states-if-def)
next
    case False
    with }N\mathrm{ and }O\mathrm{ show ?thesis
    by (erule-tac conjE, drule-tac bspec,
        auto simp: univ-states-if-def)
qed
have (c, s, s) = (WHILE b DO c, s)\vee
    (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ->*{tl cfs s } (c. c, s, )
    using I by (blast dest: small-stepsl-while)
hence }\exists\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{t}{2}{}.\forallx\mathrm{ .
    (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs 2) s}\mp@subsup{s}{1}{}x)
    (c, ct ) ->* (c2',}\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
    (s
proof
    assume R: (c, s, s) =(WHILE b DO c, s)
    hence (WHILE b DO c, s) ->*{cfs\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})
        using J by simp
hence
    (c}\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})=(WHILE b DO c, s)
            flow cfs s = [] V
            (IF b THEN c;;WHILE b DO c ELSE SKIP, s) ->*{tl cfs s } (c, c, s2)^
            flow cfs 2 = flow (tl cfs s)
            (is ?P\vee?Q}\\mathrm{ ? ?R)
            by (rule small-stepsl-while)
thus ?thesis
proof (rule disjE, erule-tac [2] conjE)
    assume ?P
    with R show ?thesis
            by auto
next
    assume ?Q and ?R
    have
        (c}\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})=(\mathrm{ IF b THEN c;;WHILE b DO c ELSE SKIP, s)^
            flow (tl cfs 2) = [] \vee
        bval b s ^(c;; WHILE b DO c, s) ->*{tl2 cfs s } (c2, s2)^
            flow (tl cfs 2) = \langlebvars b\rangle # flow (tl2 cfs 2) \vee
            \negval b s ^ (SKIP,s) ->*{tl2 cfss } ( cc, , s2) ^
                flow (tl cfs⿱2)
            using 〈?Q〉 by (rule small-stepsl-if)
    thus ?thesis
    proof (erule-tac disjE, erule-tac [2] disjE, (erule-tac [2-3] conjE)+)
        assume (c, c, s2)=(IF b THEN c;;WHILE b DO c ELSE SKIP, s)^
            flow (tl cfs 2) = []
```

```
    with \(R\) and 〈? \(R\) 〉show ?thesis
    by auto
next
    assume \(S\) : bval bs
    with \(F\) and \(O\) and \(P\) have \(T: s \in\) Univ \(B_{1}{ }^{\prime}(\subseteq\) state \(\cap Y)\)
    by (drule-tac btyping2-approx [where \(s=s\) ], auto)
    assume \(U:(c ;\) WHILE b DO \(c, s) \rightarrow *\left\{t l 2 c f s_{2}\right\}\left(c_{2}, s_{2}\right)\)
    hence
    \(\left(\exists c^{\prime} c f s . c_{2}=c^{\prime} ; ;\right.\) WHILE b DO \(c \wedge\)
        \((c, s) \rightarrow *\{c f s\}\left(c^{\prime}, s_{2}\right) \wedge\)
        flow \(\left(t l 2 c f s_{2}\right)=\) flow \(\left.c f s\right) \vee\)
        \(\left(\exists s^{\prime}\right.\) cfs cfs'. length cfs \(s^{\prime}<\) length \(\left(t l 2 c f s_{2}\right) \wedge\)
        \((c, s) \rightarrow *\{c f s\}\left(S K I P, s^{\prime}\right) \wedge\)
        (WHILE b DO \(c, s^{\prime}\) ) \(\rightarrow *\left\{c f s^{\prime}\right\}\left(c_{2}, s_{2}\right) \wedge\)
        flow \(\left(t l 2 c f s_{2}\right)=\) flow cfs @ flow cfs \(\left.{ }^{\prime}\right)\)
        by (rule small-stepsl-seq)
moreover assume flow \(\left(t l c f s_{2}\right)=\langle\) bvars \(b\rangle \#\) flow \(\left(t l 2 c f s_{2}\right)\)
moreover have \(s_{2}=\) run-flow (flow \(\left.\left(t l 2 c f s_{2}\right)\right) s\)
        using \(U\) by (rule small-stepsl-run-flow)
moreover \{
    fix \(c^{\prime} c f s\)
    assume \((c, s) \rightarrow *\{c f s\}\left(c^{\prime}\right.\), run-flow (flow cfs) s)
    then obtain \(c_{2}{ }^{\prime}\) and \(t_{2}\) where \(V: \forall x\).
        \(\left(s=t_{1}(\subseteq\right.\) sources-aux \((\) flow cfs \() s x) \longrightarrow\)
            \(\left.\left(c, t_{1}\right) \rightarrow *\left(c_{2}^{\prime}, t_{2}\right) \wedge\left(c^{\prime}=S K I P\right)=\left(c_{2}{ }^{\prime}=S K I P\right)\right) \wedge\)
        \(\left(s=t_{1}(\subseteq\right.\) sources \((\) flow cfs \() s x) \longrightarrow\)
            run-flow (flow cfs) s \(x=t_{2} x\) )
        using \(B\) [of \(B_{1} C B_{1}^{\prime} D^{\prime} s\) [] cscfs \(c^{\prime}\)
        run-flow (flow cfs) \(s\) ] and \(N\) and \(T\) by force
    \{
        fix \(x\)
        assume \(W: s=t_{1}(\subseteq\) sources-aux \((\langle\) bvars b \(\rangle \#\) flow cfs) s \(x\) )
        moreover have sources-aux (flow cfs) s \(x \subseteq\)
            sources-aux (〈bvars b〉\# (flow cfs)) s x
            by (rule sources-aux-observe-tl)
        ultimately have \(\left(c, t_{1}\right) \rightarrow *\left(c_{2}{ }^{\prime}, t_{2}\right)\)
            using \(V\) by blast
        hence \(\left(c ;\right.\) WHILE \(b\) DO \(\left.c, t_{1}\right) \rightarrow *\left(c_{2}^{\prime} ; ;\right.\) WHILE b DO \(\left.c, t_{2}\right)\)
                by (rule star-seq2)
        moreover have \(s=t_{1}(\subseteq\) bvars \(b)\)
            using \(Q\) and \(W\) by (blast dest: sources-aux-observe-hd)
        hence bval \(b t_{1}\)
            using \(S\) by (blast dest: bvars-bval)
        hence (WHILE b DO \(\left.c, t_{1}\right) \rightarrow *\left(c ;\right.\) WHILE b DO \(\left.c, t_{1}\right)\)
            by (blast intro: star-trans)
        ultimately have (WHILE b DO \(c, t_{1}\) ) \(\rightarrow *\)
        \(\left(c_{2}{ }^{\prime} ;\right.\) WHILE b DO \(\left.c, t_{2}\right) \wedge c_{2}{ }^{\prime} ; ;\) WHILE b DO \(c \neq S K I P\)
        by (blast intro: star-trans)
    \}
```

```
    moreover {
    fix }
    assume s= t (\subseteq sources (\langlebvars b\rangle # flow cfs) s x)
    moreover have sources (flow cfs) s x\subseteq
        sources(\langlebvars b\rangle # (flow cfs)) s x
        by (rule sources-observe-tl)
    ultimately have run-flow (flow cfs) s x = th2 x
        using V by blast
}
    ultimately have }\exists\mp@subsup{c}{2}{\prime}\mp@subsup{t}{2}{}.\forallx\mathrm{ .
    (s=\mp@subsup{t}{1}{}(\subseteq sources-aux (\langlebvars b\rangle# flow cfs) s x) \longrightarrow
        (WHILE b DO c, tr ) ->* (c c2', tr2)^ c c '
    (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (<bvars b> # flow cfs) s x)}\longrightarrow
        run-flow (flow cfs) s x = t2 x)
    by blast
}
moreover {
    fix }\mp@subsup{s}{}{\prime}cfscf\mp@subsup{s}{}{\prime
    assume
        V: length cfs' < length cfs 2 - Suc (Suc 0) and
        W:(c,s)->*{cfs} (SKIP, s') and
    X:(WHILE b DO c, s') ->*{cfs'}
        (c2, run-flow (flow cfs') (run-flow (flow cfs) s))
    then obtain }\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{t}{2}{}\mathrm{ where }\forallx\mathrm{ .
        (s=\mp@subsup{t}{1}{}}(\subseteq\mathrm{ sources-aux (flow cfs) s x)}
            (c,\mp@subsup{t}{1}{})->* (\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{})\wedge(SKIP = SKIP) = (c2'}=\mathrm{ SKIP ) )^
    (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs) s x)}\longrightarrow\mp@subsup{s}{}{\prime}x=\mp@subsup{t}{2}{}x)
    using B [of B1 C C B ' ' D's[] csccfs SKIP s']
        and N and T by force
    moreover have Y: s'= run-flow (flow cfs) s
    using W by (rule small-stepsl-run-flow)
    ultimately have Z: }\forallx\mathrm{ .
    (s=\mp@subsup{t}{1}{}(\subseteq sources-aux (flow cfs) s x)}
            (c, tr ) ->* (SKIP, t t ) ) ^
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs) s x)}\longrightarrow
            run-flow (flow cfs) s x = th x)
        by blast
assume s}\mp@subsup{s}{2}{}=\mathrm{ run-flow (flow cfs')(run-flow (flow cfs) s)
moreover have (c,s)=>s'
    using W by (auto dest: small-stepsl-steps simp: big-iff-small)
hence s'\inUniv C(\subseteq\mathrm{ state }\capY)
    using M and S by blast
ultimately obtain }\mp@subsup{c}{3}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{t}{3}{}\mathrm{ where }AA:\forallx\mathrm{ .
    (run-flow (flow cfs) s=t2
            (\subseteq sources-aux (flow cfs') (run-flow (flow cfs) s) x)}
                        (WHILE b DO c, tr ) ->* (c>3', th ) ^
                        (cc}=SKIP)=(\mp@subsup{c}{3}{\prime}=SKIP))
(run-flow (flow cfs) s=t 
            (\subseteq sources (flow cfs') (run-flow (flow cfs) s) x)}
```

```
        run-flow (flow cfs') (run-flow (flow cfs) s) x = tra x)
    using K [of cfs' [] cfs's}\mp@subsup{s}{}{\prime}\mathrm{ WHILE b DO c s']
    and}V\mathrm{ and }X\mathrm{ and }Y\mathrm{ by force
{
    fix }
    assume AB: s= t1
        (\subseteq sources-aux (\langlebvars b\rangle# flow cfs @ flow cfs') s x)
    moreover have sources-aux (flow cfs) s x\subseteq
        sources-aux (flow cfs@ flowcfs') s x
        by (rule sources-aux-append)
    moreover have AC: sources-aux (flow cfs @ flow cfs') s x\subseteq
        sources-aux (\langlebvars b\rangle # flow cfs@ @low cfs') s x
        by (rule sources-aux-observe-tl)
    ultimately have (c, tr ) ->* (SKIP, t 
        using Z by blast
    hence (c;; WHILE b DO c, tr ) ->* (SKIP;;WHILE b DO c, tr)
        by (rule star-seq2)
    moreover have s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ bvars b)}
        using Q and AB by (blast dest: sources-aux-observe-hd)
    hence bval b t 
        using S by (blast dest: bvars-bval)
    hence (WHILE b DO c, tr ) ->* (c; WHILE b DO c, tr )
        by (blast intro: star-trans)
    ultimately have (WHILE b DO c, tr ) ->* (WHILE b DO c, th)
        by (blast intro: star-trans)
    moreover have run-flow (flow cfs) s= t2
        (\subseteq sources-aux (flow cfs') (run-flow (flow cfs) s) x)
    proof
        fix }
        assume y \in sources-aux (flow cfs')
            (run-flow (flow cfs) s) x
    hence sources (flow cfs) s y\subseteq
            sources-aux (flowcfs @ flowcfs') s x
            by (rule sources-aux-member)
    hence sources(flow cfs) s y\subseteq
            sources-aux (\langlebvars b\rangle # flow cfs @ flow cfs') s x
            using AC by simp
    thus run-flow (flow cfs) s y = t2 y
            using Z and }AB\mathrm{ by blast
    qed
    hence (WHILE b DO c, t2) ->* (c\mp@subsup{c}{3}{\prime},\mp@subsup{t}{3}{})\wedge
        (c}\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{3}{\prime}=SKIP
        using AA by simp
    ultimately have (WHILE b DO c, tr ) ->* (c c3', th3)^
        (c}\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{3}{\prime}=SKIP
        by (blast intro: star-trans)
}
moreover {
    fix }
```

```
        assume AB: s= t1
            (\subseteq sources (\langlebvars b\rangle# flow cfs @ flowcfs') s x)
        have run-flow (flow cfs) s=\mp@subsup{t}{2}{}
            (\subseteq sources (flow cfs') (run-flow (flow cfs) s) x)
        proof
            fix }
            assume y f sources(flow cfs')
                (run-flow (flow cfs) s) x
            hence sources (flow cfs) s y\subseteq
                sources (flow cfs @ flow cfs') s x
                by (rule sources-member)
            moreover have sources (flow cfs @ flow cfs') s x \subseteq
                sources(\langlebvars b\rangle# flow cfs @ flow cfs') s x
                by (rule sources-observe-tl)
            ultimately have sources (flow cfs) s y\subseteq
                sources (\langlebvars b\rangle # flow cfs @ flow cfs') s x
                by simp
            thus run-flow (flow cfs) s y = t2 y
                using Z and }AB\mathrm{ by blast
            qed
            hence run-flow (flow cfs')(run-flow(flow cfs) s) x = ts x
                using AA by simp
    }
    ultimately have }\exists\mp@subsup{c}{3}{\prime}\mp@subsup{t}{3}{\prime}.\forallx\mathrm{ .
        (s=t1
            (\subseteq sources-aux (\langlebvars b\rangle# flow cfs @ flow cfs') s x)\longrightarrow
                (WHILE b DO c, tr ) ->* (c\mp@subsup{c}{3}{\prime},\mp@subsup{t}{3}{})\wedge
                (c2 =SKIP) = (c3''=SKIP))^
            (s=t
            (\subseteq sources (\langlebvars b\rangle # flow cfs @ flow cfs') s x )\longrightarrow
                run-flow (flow cfs') (run-flow (flow cfs) s) }x=\mp@subsup{t}{3}{}x\mathrm{ )
    by auto
}
ultimately show ?thesis
    using R and 〈?R` by (auto simp: run-flow-append)
next
    assume
        S:\neg bval b s and
        T: flow (tl cfs s) = \langlebvars b\rangle# flow (tl2 cfs s)
    assume (SKIP,s)->*{tl2 cfss } ( }\mp@subsup{c}{2}{},\mp@subsup{s}{2}{}
    hence U:(c, c, s2)=(SKIP,s)^ flow (tl2 cfs s ) = []
        by (rule small-stepsl-skip)
    show ?thesis
    proof (rule exI [of-SKIP], rule exI [of - t t ])
        {
        fix }
        have (WHILE b DO c, tr ) }
            (IF b THEN c;;WHILE b DO c ELSE SKIP, t t) ..
        moreover assume s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux [<bvars b \] s x)}
```

```
            hence }s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ bvars b)
            using Q by (blast dest: sources-aux-observe-hd)
            hence \neg bval b t 
            using S by (blast dest: bvars-bval)
            hence (IF b THEN c;;WHILE b DO c ELSE SKIP, tr ) }
                (SKIP, t t ) ..
            ultimately have (WHILE b DO c, tr ) ->* (SKIP, tr )
            by (blast intro: star-trans)
        }
        moreover {
            fix }
            assume s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources [<bvars b b] s x)}
            hence s x = t1 x
                by (subst (asm) append-Nil [symmetric],
                simp only: sources.simps, auto)
            }
            ultimately show }\forallx\mathrm{ .
            (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs s) ) s 
```



```
            (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs 2) s1 
            using R and T and U and \langle?R\rangle by auto
        qed
    qed
    qed
next
assume (IF b THEN c;; WHILE b DO c ELSE SKIP, s) ->*{tl cfs s } (cc, s, s
hence
    (c
    flow (tl cfs ) = [] \vee
    bval b s ^ (c;; WHILE b DO c, s) ->*{tl2 cfs } } (c, c, s1) ^
    flow (tl cfs 的)=\langlebvars b\rangle # flow (tl2 cfs ) ) \vee
    \negval b s ^ (SKIP, s) ->*{tl2 cfs s } (c, c, s1) ^
    flow (tl cfs⿱1 ) = \langlebvars b\rangle # flow (tl2 cfs )
    by (rule small-stepsl-if)
thus ?thesis
proof (rule disjE, erule-tac [2] disjE, erule-tac conjE,
    (erule-tac [2-3] conjE)+)
    assume R: (c1, s1) = (IF b THEN c;; WHILE b DO c ELSE SKIP, s)
    hence (IF b THEN c;;WHILE b DO c ELSE SKIP, s) ->*{cfs s } (c2, s, s)
    using J by simp
    hence
        (c}\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})=(\mathrm{ IF b THEN c;;WHILE b DO c ELSE SKIP, s)^
        flow cfs s = [] V
        bval b s ^(c;; WHILE b DO c, s) ->*{tl cfs s } (c, c, s2)^
            flow cfs s = \langlebvars b\rangle# flow (tl cfs s) \vee
            bval b s ^ (SKIP,s) ->*{tl cfs s } (c, c, s2)^
            flow cfss }=\langle\mathrm{ bvars b> # flow (tl cfs 2)
    by (rule small-stepsl-if)
    thus ?thesis
```

```
proof (erule-tac disjE, erule-tac [2] disjE, (erule-tac [2-3] conjE)+)
    assume \(\left(c_{2}, s_{2}\right)=(\) IF b THEN \(c ;\) WHILE b DO c ELSE SKIP, s) \(\wedge\)
    flow cfs \(_{2}=\) []
    with \(R\) show ?thesis
        by auto
next
    assume \(S\) : bval bs
    with \(F\) and \(O\) and \(P\) have \(T: s \in U n i v B_{1}{ }^{\prime}(\subseteq\) state \(\cap Y)\)
    by (drule-tac btyping2-approx [where \(s=s\) ], auto)
    assume \(U:(c ;\); WHILE b DO \(c, s) \rightarrow *\left\{t l c f s_{2}\right\}\left(c_{2}, s_{2}\right)\)
    hence
    ( \(\exists c^{\prime} c f s . c_{2}=c^{\prime} ; ;\) WHILE b DO \(c \wedge\)
        \((c, s) \rightarrow *\{c f s\}\left(c^{\prime}, s_{2}\right) \wedge\)
        flow \(\left(t l c f s_{2}\right)=\) flow \(\left.c f s\right) \vee\)
        \(\left(\exists s^{\prime} c f s c f s^{\prime}\right.\). length \(c f s^{\prime}<\) length \(\left(t l c f s_{2}\right) \wedge\)
        \((c, s) \rightarrow *\{c f s\}\left(S K I P, s^{\prime}\right) \wedge\)
        (WHILE b DO \(c, s^{\prime}\) ) \(\rightarrow *\left\{c f s^{\prime}\right\}\left(c_{2}, s_{2}\right) \wedge\)
        flow \(\left(t l c f s_{2}\right)=\) flow cfs @ flow cfs \(\left.s^{\prime}\right)\)
        by (rule small-stepsl-seq)
    moreover assume flow \(c f s_{2}=\langle\) bvars b \(\rangle \#\) flow \(\left(t l c f s_{2}\right)\)
    moreover have \(s_{2}=\) run-flow (flow \(\left.\left(t l c f s_{2}\right)\right) s\)
        using \(U\) by (rule small-stepsl-run-flow)
    moreover \{
        fix \(c^{\prime} c f s\)
    assume \((c, s) \rightarrow *\{c f s\}\) ( \(c^{\prime}\), run-flow (flow \(c f s\) ) \(s\) )
    then obtain \(c_{2}{ }^{\prime}\) and \(t_{2}\) where \(V: \forall x\).
        \(\left(s=t_{1}(\subseteq\right.\) sources-aux (flow cfs) s x) \(\longrightarrow\)
            \(\left.\left(c, t_{1}\right) \rightarrow *\left(c_{2}^{\prime}, t_{2}\right) \wedge\left(c^{\prime}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge\)
        \(\left(s=t_{1}(\subseteq\right.\) sources \((\) flow cfs \() s x) \longrightarrow\)
            run-flow (flow cfs) s \(x=t_{2} x\) )
        using \(B\) [of \(B_{1} C B_{1}^{\prime} D^{\prime} s\) [] cscfs \(c^{\prime}\)
            run-flow (flow cfs) s] and \(N\) and \(T\) by force
        \{
            fix \(x\)
            assume \(W: s=t_{1}(\subseteq\) sources-aux \((\langle\) bvars \(b\rangle \#\) flow cfs) s \(x)\)
            moreover have sources-aux (flow cfs) s \(x \subseteq\)
                sources-aux (〈bvars b〉 \# (flow cfs)) s x
                by (rule sources-aux-observe-tl)
            ultimately have \(\left(c, t_{1}\right) \rightarrow *\left(c_{2}{ }^{\prime}, t_{2}\right)\)
                using \(V\) by blast
            hence \(\left(c ;\right.\); WHILE b DO \(\left.c, t_{1}\right) \rightarrow *\left(c_{2}^{\prime} ;\right.\) WHILE b DO \(\left.c, t_{2}\right)\)
                by (rule star-seq2)
            moreover have \(s=t_{1}(\subseteq\) bvars \(b)\)
                using \(Q\) and \(W\) by (blast dest: sources-aux-observe-hd)
            hence bval \(b t_{1}\)
                using \(S\) by (blast dest: bvars-bval)
            hence (IF b THEN \(c\); WHILE b DO c ELSE SKIP, \(t_{1}\) ) \(\rightarrow\)
                ( \(c\); WHILE b DO \(c, t_{1}\) ) ..
            ultimately have
```

```
    (IF b THEN c;; WHILE b DO c ELSE SKIP, t t ) ->*
        ( c}\mp@subsup{c}{2}{\prime};;\mathrm{ WHILE b DO c, t2) ^ c c2';;WHILE b DO c # SKIP
        by (blast intro: star-trans)
    }
    moreover {
    fix }
    assume s= tr (\subseteq sources (\langlebvars b\rangle# flow cfs) s x)
    moreover have sources (flow cfs) sx\subseteq
        sources(\langlebvars b\rangle # (flow cfs)) s x
        by (rule sources-observe-tl)
    ultimately have run-flow(flow cfs) s x = tr2 x
        using V by blast
    }
    ultimately have }\exists\mp@subsup{c}{2}{\prime}\mp@subsup{}{2}{\prime}
        (s = t ( (\subseteq sources-aux (\langlebvars b\rangle # flow cfs) s x)}
        (IF b THEN c;;WHILE b DO c ELSE SKIP, tr ) ->* (c}\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{})
            c}\mp@subsup{2}{}{\prime}\not=SKIP)
    (s=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (<bvars b> # flow cfs) s x )}\longrightarrow
        run-flow (flow cfs) s x = t2 x)
    by blast
}
moreover {
    fix }\mp@subsup{s}{}{\prime}cfscf\mp@subsup{s}{}{\prime
    assume
        V: length cfs'< length cfs 2 - Suc 0 and
        W:(c,s)->*{cfs} (SKIP, s') and
        X:(WHILE b DO c, s') ->*{cfs'}
        (c2, run-flow (flow cfs') (run-flow (flow cfs) s))
    then obtain c}\mp@subsup{c}{2}{\prime}\mathrm{ 'and t}\mp@subsup{t}{2}{}\mathrm{ where }\forallx\mathrm{ .
        (s=\mp@subsup{t}{1}{}}(\subseteq\mathrm{ sources-aux (flow cfs) s x )}
```



```
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs) s x) }\longrightarrow\mp@subsup{s}{}{\prime}x=\mp@subsup{t}{2}{}x)
        using B [of B1 C C B ' ' D's[] c scfs SKIP s']
        and N and T by force
    moreover have Y: s'= run-flow (flow cfs) s
        using W by (rule small-stepsl-run-flow)
    ultimately have Z: }\forallx\mathrm{ .
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs) s x)}\longrightarrow
            (c, tr ) ->* (SKIP, tr )) ^
        (s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs) s x)}\longrightarrow
            run-flow (flow cfs) s x = th2 x)
        by blast
    assume s2 = run-flow (flow cfs')(run-flow (flow cfs) s)
    moreover have (c,s)=>s'
        using W by (auto dest: small-stepsl-steps simp: big-iff-small)
    hence s}\mp@subsup{s}{}{\prime}\inU\mathrm{ Univ }C(\subseteq\mathrm{ state }\capY
        using M and S by blast
    ultimately obtain }\mp@subsup{c}{3}{}\mp@subsup{}{}{\prime}\mathrm{ and }\mp@subsup{t}{3}{}\mathrm{ where AA: }\forallx\mathrm{ .
        (run-flow (flow cfs) s= t2
```

```
    (\subseteq sources-aux (flow cfs') (run-flow (flow cfs) s) x)}
        (WHILE b DO c, tr ) ->* (c c}\mp@subsup{}{3}{\prime},\mp@subsup{t}{3}{})
    (c}\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{3}{\prime}=SKIP))
    (run-flow (flow cfs) s= t2
    (\subseteq sources (flow cfs') (run-flow (flow cfs) s) x)}
        run-flow (flow cfs') (run-flow (flow cfs) s) x= t3 x)
    using K [of cfs' [] cfs\mp@subsup{s}{}{\prime}}\mp@subsup{s}{}{\prime}\mathrm{ WHILE b DO c s
    and}V\mathrm{ and }X\mathrm{ and }Y\mathrm{ by force
{
    fix }
    assume AB: s= t1
        (\subseteq sources-aux (\langlebvars b\rangle # flow cfs @ flow cfs') s x)
    moreover have sources-aux (flow cfs) s x\subseteq
        sources-aux (flow cfs @ flow cfs') s x
        by (rule sources-aux-append)
    moreover have AC: sources-aux (flow cfs @ flowcfs') sx\subseteq
        sources-aux (\langlebvars b\rangle # flow cfs @ flow cfs')s x
        by (rule sources-aux-observe-tl)
    ultimately have (c, tr ) ->* (SKIP, tra)
        using Z by blast
    hence (c;; WHILE b DO c, tr ) ->* (SKIP;;WHILE b DO c, tr)
        by (rule star-seq2)
    moreover have s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ bvars b)}
        using Q and AB by (blast dest: sources-aux-observe-hd)
    hence bval b t 
        using S by (blast dest: bvars-bval)
    hence (IF b THEN c;;WHILE b DO c ELSE SKIP, tr ) }
        (c;;WHILE b DO c, tr ) ..
ultimately have (IF b THEN c; WHILE b DO c ELSE SKIP, t t ) ->*
        (WHILE b DO c, tra
        by (blast intro: star-trans)
    moreover have run-flow (flow cfs) s=\mp@subsup{t}{2}{}
        (\subseteq sources-aux (flow cfs') (run-flow (flow cfs) s) x)
    proof
        fix }
        assume y \in sources-aux (flow cfs')
        (run-flow (flow cfs) s) x
    hence sources (flow cfs) s y\subseteq
        sources-aux (flow cfs @ flowcfs') s x
        by (rule sources-aux-member)
        hence sources(flow cfs) s y\subseteq
            sources-aux (\langlebvars b\rangle # flow cfs @ flow cfs') s x
            using AC by simp
        thus run-flow (flow cfs)s y = t2 y
            using Z and AB by blast
    qed
    hence (WHILE b DO c, t2) ->* (c}\mp@subsup{c}{3}{\prime},\mp@subsup{t}{3}{})
        (c2 =SKIP) = (c3 ' = SKIP)
        using AA by simp
```

```
        ultimately have
        (IF b THEN c;; WHILE b DO c ELSE SKIP, t t ) ->*
            (c\mp@subsup{c}{3}{\prime},\mp@subsup{t}{3}{})\wedge(\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{3}{\prime}=SKIP}
        by (blast intro: star-trans)
    }
    moreover {
        fix }
        assume AB: s= t1
            (\subseteq sources (\langlebvars b\rangle # flow cfs @ flow cfs') s x)
        have run-flow (flow cfs) s=\mp@subsup{t}{2}{}
            (\subseteq sources (flow cfs') (run-flow (flow cfs) s) x)
        proof
        fix }
        assume y f sources(flow cfs')
            (run-flow (flow cfs) s) x
        hence sources (flow cfs) s y\subseteq
            sources(flow cfs@ flowcfs') s x
            by (rule sources-member)
            moreover have sources (flow cfs @ flow cfs') s x\subseteq
            sources (\langlebvars b\rangle # flow cfs @ flow cfs') s x
            by (rule sources-observe-tl)
            ultimately have sources (flow cfs) s y\subseteq
            sources (\langlebvars b\rangle # flow cfs @ flow cfs') s x
            by simp
            thus run-flow (flow cfs) s y = t2 y
            using Z and AB by blast
    qed
    hence run-flow (flow cfs') (run-flow (flow cfs) s) x = t3 x
        using AA by simp
    }
    ultimately have }\exists\mp@subsup{c}{3}{\prime}\mp@subsup{t}{3}{}.\forallx\mathrm{ .
        (s=t
            (\subseteq sources-aux (\langlebvars b\rangle# flow cfs @ flow cfs') s x) \longrightarrow
            (IF b THEN c;; WHILE b DO c ELSE SKIP, tr ) ->* (c3',}\mp@subsup{t}{3}{\prime})
            (c}\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{3}{\prime}=SKIP))
    (s=t
        (\subseteq sources (\langlebvars b\rangle # flow cfs @ flow cfs') s x) \longrightarrow
            run-flow (flow cfs') (run-flow (flow cfs) s) x= t3 x)
        by auto
}
ultimately show ?thesis
    using R by (auto simp: run-flow-append)
next
    assume
        S:\neg bval b s and
        T: flow cfs 2 = \langlebvars b\rangle # flow (tl cfs\mp@subsup{s}{2}{})
assume (SKIP,s)->*{tl cfs 2 } (c2, s2)
hence U:(c2, s2)=(SKIP,s)^ flow (tl cfs s) = []
    by (rule small-stepsl-skip)
```

```
    show ?thesis
    proof (rule exI [of - SKIP], rule exI [of - t t ])
    {
        fix }
        assume s= tr (\subseteq sources-aux [\langlebvars b\rangle] s x)
        hence s=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ bvars b)}
            using Q by (blast dest: sources-aux-observe-hd)
        hence }\neg\mathrm{ bval b t 
            using S by (blast dest: bvars-bval)
        hence (IF b THEN c;;WHILE b DO c ELSE SKIP, tr1) ->
        (SKIP, t t )..
    }
    moreover {
        fix }
        assume s=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources [<bvars b b] s x)}
        hence s x = tr x
            by (subst (asm) append-Nil [symmetric],
            simp only: sources.simps, auto)
    }
    ultimately show }\forallx\mathrm{ .
        (s}=\mp@subsup{s}{1}{
            (c, ct t ) ->* (SKIP, tr ) ^( (c2 =SKIP) = (SKIP =SKIP ) ) ^
        (s}\mp@subsup{s}{1}{=}\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs s) s s x) }\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{1}{}x
        using R and T and U by auto
    qed
qed
next
assume R:bval b s
with F and O and P have S:s\inUniv B}\mp@subsup{B}{1}{\prime}(\subseteq\mathrm{ state }\capY
    by (drule-tac btyping2-approx [where s=s], auto)
assume (c;; WHILE b DO c,s) ->*{tl2 cfs s } (c
hence
    (\exists\mp@subsup{c}{}{\prime}cfs'. c. c = c';; WHILE b DO c ^
    (c,s)->*{cfs'} (c', s, s)^
    flow (tl2 cfs s) = flow cfs') \vee
    (\exists\mp@subsup{s}{}{\prime}cf\mp@subsup{s}{}{\prime}cf\mp@subsup{s}{}{\prime\prime}. length cfs\mp@subsup{s}{}{\prime\prime}< length (tl2 cfs s ) ^
    (c,s)->*{cfs'} (SKIP, s')^
    (WHILE b DO c, s') ->*{cfs\mp@subsup{s}{}{\prime\prime}}}(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})
    flow (tl2 cfs 1) = flow cfs' @ flow cfs')
    by (rule small-stepsl-seq)
moreover {
fix c' cfs
assume
        T:(c,s)->*{cfs} (c', s_) and
        U: c
    hence V:(c';; WHILE b DO c, s1) ->*{cfs s } (c, c, s2)
        using J by simp
    hence W: s2 = run-flow (flow cfss)}\mathrm{ ) s1
        by (rule small-stepsl-run-flow)
```


have

```
( \(\exists c^{\prime \prime} c f s^{\prime} . c_{2}=c^{\prime \prime} ;\) WHILE b DO \(c \wedge\)
    \(\left(c^{\prime}, s_{1}\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(c^{\prime \prime}, s_{2}\right) \wedge\)
    flow cfs \(s_{2}=\) flow \(\left.c f s^{\prime}\right) \vee\)
    \(\left(\exists s^{\prime} c f s^{\prime} c f s^{\prime \prime}\right.\). length cfs \({ }^{\prime \prime}<\) length \(c f s_{2} \wedge\)
        \(\left(c^{\prime}, s_{1}\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(S K I P, s^{\prime}\right) \wedge\)
        (WHILE b DO \(\left.c, s^{\prime}\right) \rightarrow *\left\{c f s^{\prime \prime}\right\}\left(c_{2}, s_{2}\right) \wedge\)
    flow \(c f s_{2}=\) flow cfs' @ flow cfs \({ }^{\prime \prime}\) )
    using \(V\) by (rule small-stepsl-seq)
moreover \{
    fix \(c^{\prime \prime} c f s^{\prime}\)
    assume \(\left(c^{\prime}, s_{1}\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(c^{\prime \prime}, s_{2}\right)\)
    then obtain \(c_{2}^{\prime}\) and \(t_{2}\) where \(X: \forall x\).
        \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources-aux \(\left(\right.\) flow cfs') \(\left.s_{1} x\right) \longrightarrow\)
            \(\left.\left(c^{\prime}, t_{1}\right) \rightarrow *\left(c_{2}{ }^{\prime}, t_{2}\right) \wedge\left(c^{\prime \prime}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge\)
            \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources \(\left(\right.\) flow cfs \(\left.\left.{ }^{\prime}\right) s_{1} x\right) \longrightarrow\)
            run-flow (flow \(c f s_{2}\) ) \(s_{1} x=t_{2} x\) )
        using \(B\) [of \(B_{1} C B_{1}{ }^{\prime} D^{\prime} s c c f s c^{\prime} s_{1} c f s^{\prime} c^{\prime \prime}\)
            run-flow (flow \(c f s_{2}\) ) \(s_{1}\) ] and \(N\) and \(S\) and \(T\) and \(W\) by force
    assume
        \(Y: c_{2}=c^{\prime \prime} ;\) WHILE b DO c and
        \(Z\) : flow cfs \(s_{2}=\) flow \(c f s^{\prime}\)
    have ?thesis
    proof (rule exI [of - \(c_{2}{ }^{\prime} ; ;\) WHILE b DO \(c\) ], rule exI [of \(\left.-t_{2}\right]\) )
        from \(U\) and \(W\) and \(X\) and \(Y\) and \(Z\) show \(\forall x\).
            \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources-aux (flow cfs \(\left.\left.s_{2}\right) s_{1} x\right) \longrightarrow\)
                \(\left(c_{1}, t_{1}\right) \rightarrow *\left(c_{2}^{\prime} ;\right.\) WHILE b DO \(\left.c, t_{2}\right) \wedge\)
                    \(\left(c_{2}=S K I P\right)=\left(c_{2}^{\prime} ; ;\right.\) WHILE b DO \(\left.\left.c=S K I P\right)\right) \wedge\)
                \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources \(\left(\right.\) flow \(\left.\left.\left.c f s_{2}\right) s_{1} x\right) \longrightarrow s_{2} x=t_{2} x\right)\)
        by (auto intro: star-seq2)
    qed
\}
moreover \{
    fix \(s^{\prime} c f s^{\prime} c f s^{\prime \prime}\)
    assume
        \(X\) : length cfs \({ }^{\prime \prime}<\) length \(c f s_{2}\) and
        \(Y:\left(c^{\prime}, s_{1}\right) \rightarrow *\left\{c f s^{\prime}\right\}\left(S K I P, s^{\prime}\right)\) and
        \(Z:\left(\right.\) WHILE \(b\) DO \(\left.c, s^{\prime}\right) \rightarrow *\left\{c f s^{\prime \prime}\right\}\left(c_{2}, s_{2}\right)\)
    then obtain \(c_{2}{ }^{\prime}\) and \(t_{2}\) where \(\forall x\).
        \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources-aux \(\left(\right.\) flow cfs' \(\left.\left.{ }^{\prime}\right) s_{1} x\right) \longrightarrow\)
            \(\left.\left(c^{\prime}, t_{1}\right) \rightarrow *\left(c_{2}{ }^{\prime}, t_{2}\right) \wedge(S K I P=S K I P)=\left(c_{2}{ }^{\prime}=S K I P\right)\right) \wedge\)
        \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources \(\left(\right.\) flow cfs') \(\left.\left.s_{1} x\right) \longrightarrow s^{\prime} x=t_{2} x\right)\)
        using \(B\) [of \(B_{1} C B_{1}^{\prime} D^{\prime} s c f s c^{\prime} s_{1} c f s^{\prime}\) SKIP \(\left.s^{\prime}\right]\)
        and \(N\) and \(S\) and \(T\) by force
    moreover have \(A A: s^{\prime}=\) run-flow \(\left(\right.\) flow \(\left.c f s^{\prime}\right) s_{1}\)
        using \(Y\) by (rule small-stepsl-run-flow)
    ultimately have \(A B: \forall x\).
        \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources-aux (flow cfs') \(\left.s_{1} x\right) \longrightarrow\)
        \(\left.\left(c^{\prime}, t_{1}\right) \rightarrow *\left(S K I P, t_{2}\right)\right) \wedge\)
```

```
    \(\left(s_{1}=t_{1}\left(\subseteq\right.\right.\) sources \(\left(\right.\) flow cfs \(\left.\left.{ }^{\prime}\right) s_{1} x\right) \longrightarrow\)
    run-flow (flow cfs') \(s_{1} x=t_{2} x\) )
by blast
have \(A C\) : \(s_{2}=\) run-flow (flow cfs \({ }^{\prime \prime}\) ) \(s^{\prime}\)
    using \(Z\) by (rule small-stepsl-run-flow)
moreover have \((c, s) \rightarrow *\left\{c f s @ c f s^{\prime}\right\}\left(S K I P, s^{\prime}\right)\)
    using \(T\) and \(Y\) by (simp add: small-stepsl-append)
hence \((c, s) \Rightarrow s^{\prime}\)
    by (auto dest: small-stepsl-steps simp: big-iff-small)
hence \(s^{\prime} \in\) Univ \(C(\subseteq\) state \(\cap Y)\)
    using \(M\) and \(R\) by blast
ultimately obtain \(c_{2}{ }^{\prime}\) and \(t_{3}\) where \(A D: \forall x\).
    (run-flow (flow cfs') \(s_{1}=t_{2}\)
        ( \(\subseteq\) sources-aux \(\left(\right.\) flow cfs \(\left.{ }^{\prime \prime}\right)\left(\right.\) run-flow \((\) flow cfs' \(\left.\left.) s_{1}\right) x\right) \longrightarrow\)
            (WHILE b DO \(\left.c, t_{2}\right) \rightarrow *\left(c_{2}{ }^{\prime}, t_{3}\right) \wedge\)
            \(\left.\left(c_{2}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right)\right) \wedge\)
    (run-flow (flow cfs') \(s_{1}=t_{2}\)
        \(\left(\subseteq\right.\) sources \(\left(\right.\) flow cfs \(\left.s^{\prime \prime}\right)\) (run-flow \(\left(\right.\) flow cfs \(\left.\left.\left.{ }^{\prime}\right) s_{1}\right) x\right) \longrightarrow\)
            run-flow (flow cfs \(s^{\prime \prime}\) ) (run-flow (flow cfs') \(\left.s_{1}\right) x=t_{3} x\) )
    using \(K\) [of cfs \({ }^{\prime \prime}[] c f s^{\prime \prime} s^{\prime}\) WHILE \(b\) DO \(\left.c s^{\prime}\right]\)
    and \(X\) and \(Z\) and \(A A\) by force
moreover assume flow \(c f s_{2}=\) flow cfs' @ flow cfs \(s^{\prime \prime}\)
moreover \{
    fix \(x\)
    assume \(A E: s_{1}=t_{1}\)
        ( \(\subseteq\) sources-aux (flow cfs' @ flow cfs \({ }^{\prime \prime}\) ) \(s_{1} x\) )
    moreover have sources-aux (flow cfs') \(s_{1} x \subseteq\)
        sources-aux (flow cfs' @ flow cfs'") \(s_{1} x\)
        by (rule sources-aux-append)
    ultimately have \(\left(c^{\prime}, t_{1}\right) \rightarrow *\left(S K I P, t_{2}\right)\)
        using \(A B\) by blast
    hence \(\left(c^{\prime} ;\right.\) WHILE \(b\) DO \(\left.c, t_{1}\right) \rightarrow *\left(S K I P ;\right.\) WHILE b DO \(\left.c, t_{2}\right)\)
        by (rule star-seq2)
    hence \(\left(c^{\prime} ;\right.\) WHILE b DO \(\left.c, t_{1}\right) \rightarrow *\left(\right.\) WHILE b DO \(\left.c, t_{2}\right)\)
        by (blast intro: star-trans)
    moreover have run-flow (flow cfs') \(s_{1}=t_{2}\)
        \(\left(\subseteq\right.\) sources-aux (flow cfs \({ }^{\prime \prime}\) ) (run-flow \(\left(\right.\) flow cfs \(\left.\left.{ }^{\prime}\right) s_{1}\right) x\) )
    proof
        fix \(y\)
        assume \(y \in\) sources-aux (flow cfs \({ }^{\prime \prime}\) )
            (run-flow (flow cfs') \(s_{1}\) ) \(x\)
        hence sources (flow cfs') \(s_{1} y \subseteq\)
            sources-aux (flow cfs' @ flow cfs \({ }^{\prime \prime}\) ) \(s_{1} x\)
            by (rule sources-aux-member)
        thus run-flow (flow cfs') \(s_{1} y=t_{2} y\)
            using \(A B\) and \(A E\) by blast
    qed
    hence \(\left(W H I L E\right.\) b DO \(\left.c, t_{2}\right) \rightarrow *\left(c_{2}^{\prime}, t_{3}\right) \wedge\)
        \(\left(c_{2}=S K I P\right)=\left(c_{2}{ }^{\prime}=S K I P\right)\)
```

```
            using AD by simp
            ultimately have ( }\mp@subsup{c}{}{\prime};;\mathrm{ WHILE b DO c, tr ) >* ( }\mp@subsup{c}{2}{\prime},\mp@subsup{t}{3}{\prime})
            (c}\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}=SKIP
            by (blast intro: star-trans)
        }
        moreover {
            fix }
            assume AE: }\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{
                (\subseteq sources (flow cfs'@ @low cfs'') s1 x)
            have run-flow (flow cfs') s}\mp@subsup{s}{1}{}=\mp@subsup{t}{2}{
                (\subseteq sources (flow cfs'') (run-flow (flow cfs') s_) x)
            proof
                fix }
            assume y f sources (flow cfs'')
                (run-flow (flow cfs') s1) x
            hence sources (flow cfs') s}\mp@subsup{s}{1}{}y
                sources(flow cfs' @ flow cfs'')}\mp@subsup{s}{1}{}
                    by (rule sources-member)
            thus run-flow(flow cfs')}\mp@subsup{s}{1}{}y=\mp@subsup{t}{2}{}
                using AB and AE by blast
            qed
            hence run-flow (flow cfs')
            (run-flow (flow cfs') s1) x = t 3 }
            using }AD\mathrm{ by simp
        }
        ultimately have ?thesis
            by (metis U AA AC)
    }
    ultimately have ?thesis
        by blast
}
moreover {
    fix s'cfs cfs'
    assume
        length cfs' < length (tl2 cfs ) and
        (c,s)->*{cfs} (SKIP, s') and
        (WHILE b DO c, s') ->*{cfs'} (c}\mp@subsup{c}{1}{\prime},\mp@subsup{s}{1}{}
    moreover from this have (c,s)=> s'
        by (auto dest: small-stepsl-steps simp: big-iff-small)
    hence s}\mp@subsup{s}{}{\prime}\in\mathrm{ Univ C (` state }\capY
        using }M\mathrm{ and }R\mathrm{ by blast
    ultimately have ?thesis
        using K [of cfs''@ cfs\mp@subsup{s}{2}{}cf\mp@subsup{s}{}{\prime}}cf\mp@subsup{s}{2}{}\mp@subsup{s}{}{\prime}\mp@subsup{c}{1}{}\mp@subsup{s}{1}{}]\mathrm{ and J by force
    }
    ultimately show ?thesis
    by blast
next
    assume (SKIP, s) }->*{tl2 cfs\mp@subsup{s}{1}{}}(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{}
    hence (c},\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})=(SKIP,s
```

```
                by (blast dest: small-stepsl-skip)
            moreover from this have (c, c, s2)=(SKIP,s)\wedge flow cfs s 
            using J by (blast dest: small-stepsl-skip)
            ultimately show ?thesis
            by auto
        qed
    qed
}
ultimately show
    (\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{}{\prime}\mp@subsup{t}{2}{}.\forallx
    (s}=\mp@subsup{t}{1}{
    (c
    (s}=\mp@subsup{t}{1}{}=\mp@subsup{t}{1}{}\subseteq\mathrm{ sources (flow cfs s) )}\mp@subsup{s}{1}{}x)\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x))
    (\forallx. (\exists(B,Y)\inU.\existss\inB.\existsy\inY.\negs:dom y\rightsquigarrow dom x)\longrightarrow
        no-upd (flow cfs 2) x)
    using L by auto
qed
lemma ctyping2-correct-aux:
\llbracket(U,v)\modelsc(\subseteqA,X)=Some (B,Y); s\inUniv A (\subseteq state \cap X);
    (c,s)->*{cf\mp@subsup{s}{1}{}}}(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{});(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})\rrbracket
    ok-flow-aux U cllllll}\mp@subsup{c}{2}{
proof (induction (U,v) c A X arbitrary: B Y Uvsccllll}\mp@subsup{c}{2}{\prime}\mp@subsup{s}{1}{
    rule: ctyping2.induct)
```



```
    show
    \llbracket\BYsc' c'| s}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}cf\mp@subsup{s}{1}{}cf\mp@subsup{s}{2}{}
            (U,v)\models\mp@subsup{c}{1}{}(\subseteqA,X)=Some (B,Y)\Longrightarrow
            s\inUniv A}(\subseteq\mathrm{ state }\capX)
            (c, s)->*{cf\mp@subsup{s}{1}{}}(c',}\mp@subsup{s}{1}{})
            (c',}\mp@subsup{s}{1}{})->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{2}{})
            (\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{t}{2}{\prime}.\forallx
                    (s}=\mp@subsup{t}{1}{
                    (c',}\mp@subsup{t}{1}{})\xrightarrow{}{->}(\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
                    (s)=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfss2) s1 s) }\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x))\wedge
            (}\forallx.(\exists(B,W)\inU.\existss\inB.\existsy\inW.\negs:\operatorname{dom}y\rightsquigarrow\operatorname{dom}x)
            no-upd (flow cfs⿱2) x);
    \bigwedgepBYCZscc}\mp@subsup{c}{}{\prime\prime}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}cf\mp@subsup{s}{1}{}cf\mp@subsup{s}{2}{}
            (U,v)\models c
            (B,Y) = p\Longrightarrow
            (U,v)\models c (\subseteqB,Y)=Some (C,Z)\Longrightarrow
            s\inUniv B}(\subseteq\mathrm{ state }\capY)
            (c, s) }->*{cf\mp@subsup{s}{1}{}}(c',\mp@subsup{s}{1}{})
            (c', s1)->*{cfs⿱2 } (c'\prime},\mp@subsup{s}{2}{})
            (\forall\mp@subsup{t}{1}{},\exists\mp@subsup{c}{2}{\prime\prime}\mp@subsup{t}{2}{}.\forallx\mathrm{ .}
                (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs 2) s}\mp@subsup{s}{1}{}x)
```



```
                    (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs s) ) s1 x) }\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x))
            (\forallx. (\exists (B,W) \inU.\existss\inB.\existsy\inW.\negs:dom y\rightsquigarrowdom x)\longrightarrow
```

```
    no-upd (flow cfs⿱2) x);
(U,v)\models c
s\inUniv A (\subseteq state \cap X);
(c}\mp@subsup{c}{1}{};;\mp@subsup{c}{2}{},s)->*{cf\mp@subsup{s}{1}{}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})
(c', s, ) ->*{cf\mp@subsup{s}{2}{}}(c\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{2}{\prime})\rrbracket\Longrightarrow
    (\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{\prime}{\prime
    (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources-aux (flow cfs )
            (c', tr ) ->* (c2', t2)}^(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
        (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs s) s s x) }\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x))
    (\forallx. (\exists (B,W) \inU.\existss\inB.\existsy\inW.\neg s:dom y\rightsquigarrowdom x)\longrightarrow
        no-upd (flow cfs⿱2) x)
    by (auto del: conjI split: option.split-asm,
    rule ctyping2-correct-aux-seq)
next
```



```
    show
```



```
        (U', p)=(insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
        (B1, B2)=p\Longrightarrow
        (U',v) =\mp@subsup{c}{1}{}(\subseteq\mp@subsup{B}{1}{},X)=\mathrm{ Some (C,Y) }\Longrightarrow
        s\inUniv B B (\subseteq state \capX)\Longrightarrow
        (c1,s)->*{cf\mp@subsup{s}{1}{}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})\Longrightarrow
        (c', s1) ->*{cfs⿱s } (c'\prime},\mp@subsup{s}{2}{})
        (\forall\mp@subsup{t}{1}{},\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{2}{\prime}\mp@subsup{t}{2}{\prime}.\forallx\mathrm{ .
            (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs 2) s1 s) }
                        (c',}\mp@subsup{t}{1}{\prime})->* (\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
            (s s = tr (\subseteq sources (flow cfs s) ) s1x)\longrightarrow < s2x= t2 x))^
            (\forallx. (\exists(B,W)\inU'.\existss\inB.\existsy\inW.\negs:dom y\rightsquigarrowdom x)\longrightarrow
                no-upd (flow cfs⿱2)}\mathrm{ ) );
    \U'p}\mp@subsup{U}{1}{\prime}\mp@subsup{B}{2}{C}CY\mp@code{Y}\mp@subsup{c}{}{\prime}\mp@subsup{c}{}{\prime\prime}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{ccf\mp@subsup{s}{1}{}cff\mp@subsup{s}{2}{}.
            (U', p)=(insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
            (B},\mp@subsup{B}{2}{\prime})=p
            (U',v)}=\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{},X)=\mathrm{ Some (C,Y) }
            s\in Univ B 
            (c2,s)->*{cf\mp@subsup{s}{1}{}}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})
            (c', s1) ->*{cfs s } (c',},\mp@subsup{s}{2}{})
            (\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime\prime}\mp@subsup{t}{2}{}.\forallx\mathrm{ .}
                (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs 2) s}\mp@subsup{s}{1}{}x)
```



```
            (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs s) ) s1 x) }\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x))
```



```
            no-upd (flow cfs 2) x);
(U,v)\modelsIF b THEN c ELSE c
s\inUniv A (\subseteq state \cap X);
    (IF b THEN c}\mp@subsup{c}{1}{}ELSE co,s)->*{cf\mp@subsup{s}{1}{}}(\mp@subsup{c}{}{\prime},\mp@subsup{s}{1}{})
    (c', s1)->*{cfs\mp@subsup{s}{2}{}}(\mp@subsup{c}{}{\prime\prime},\mp@subsup{s}{2}{})\rrbracket\Longrightarrow
    (\forall\mp@subsup{t}{1}{},\exists\mp@subsup{c}{2}{\prime}}\mp@subsup{}{\prime}{\prime
            (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs 2) s1 x)}
                    (c', th1)->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{}{\prime\prime}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))})
```

```
        (s s = tr (\subseteq sources (flow cfs s) ) s1 x)\longrightarrow < < x = t2 x)) ^
        (}\forallx.(\exists(B,W)\inU.\existss\inB.\existsy\inW.\negs:domy\rightsquigarrow\operatorname{dom}x)
        no-upd (flow cfs 2) x)
    by (auto del: conjI split: option.split-asm prod.split-asm,
    rule ctyping2-correct-aux-if)
next
    fix A X B Y Uvbcccllllllll
    show
```



```
        (B},\mp@subsup{B}{2}{})=\vDashb(\subseteqA,X)
        (C,Y) = \vdashc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow
        (B}\mp@subsup{}{1}{\prime},\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)
        \forall(B,W)\in insert (Univ? A X \cup Univ? C Y, bvars b) U.
            B:dom' W}\rightsquigarrowUNIV
        ({}, False) }=c(\subseteq\mp@subsup{B}{1}{},X)=Some (D,Z)
        s\inUniv B 
        (c,s)->*{cfs\mp@subsup{s}{1}{}}(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})\Longrightarrow
        (c1, s})->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})
        (}\forall\mp@subsup{t}{1}{},\exists\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{t}{2}{}.\forall\mp@subsup{B}{1}{}
            (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs 2) s s 的)}
                    (c1, tr ) ->* (c2',}\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))
```



```
        (\forallx. (\exists(B,W) \in{}.\existss\inB.\existsy\inW.\negs:dom y\rightsquigarrowdom x)\longrightarrow
        no-upd (flow cfs2) x);
    \ B
        (B},\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqA,X)
        (C,Y)=\vdashc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow
        (B\mp@subsup{B}{1}{\prime},\mp@subsup{B}{2}{\prime}})=\modelsb(\subseteqC,Y)
        \forall(B,W)\ininsert (Univ? A X \cup Univ? C Y, bvars b) U.
            B:dom' W}\rightsquigarrowUNIV
        ({}, False) }=c(\subseteq\mp@subsup{B}{1}{\prime},Y)=Some (D', Z')
        s\inUniv B}\mp@subsup{1}{1}{\prime}(\subseteq\mathrm{ state }\capY)
        (c,s)->*{cfs\mp@subsup{s}{1}{}}(\mp@subsup{c}{1}{},\mp@subsup{s}{1}{})\Longrightarrow
        (c1, s})->*{cf\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})
        (}\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime}\mp@subsup{t}{2}{\prime}.\forall\mp@subsup{B}{1}{}
            (s}=\mp@subsup{s}{1}{
```



```
            (s}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs s) s s B B ) }\longrightarrow\mp@subsup{s}{2}{}\mp@subsup{B}{1}{}=\mp@subsup{t}{2}{}\mp@subsup{B}{1}{\prime}))
    (\forallx. (\exists (B,W) \in{}.\existss\inB.\existsy\inW.\negs:dom y\rightsquigarrowdom x)\longrightarrow
        no-upd (flow cfs⿱2) x);
    (U,v)\modelsWHILE b DO c (\subseteqA,X)=Some (B,Y);
    s\inUniv A (\subseteq state \cap X);
    (WHILE b DO c,s) ->*{cfs s } (c, c, s
    (c, c, s1)->*{cfs\mp@subsup{s}{2}{}}(\mp@subsup{c}{2}{},\mp@subsup{s}{2}{})\rrbracket\Longrightarrow
    (}\forall\mp@subsup{t}{1}{}.\exists\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{t}{2}{}.\forallx
                (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs s) s}\mp@subsup{s}{1}{}x)
                (c, c, t1)->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{})\wedge(\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP))}
                (s}=\mp@subsup{t}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs s) ) s1 x)}\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x))
    (\forallx. (\exists (B,W) \inU.\existss\inB.\existsy\inW.\negs:dom y\rightsquigarrowdom x)\longrightarrow
```

```
        no-upd (flow cfs 2) x)
    by (auto del: conjI split: option.split-asm prod.split-asm,
    rule ctyping2-correct-aux-while, assumption+, blast)
qed (auto del: conjI split: prod.split-asm)
theorem ctyping2-correct:
    assumes A: (U,v)\modelsc(\subseteqA,X)=Some (B,Y)
    shows correct c A X
proof -
    {
        fix c}\mp@subsup{c}{1}{}\mp@subsup{c}{2}{}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{c}cfs\mp@subsup{t}{1}{
        assume ok-flow-aux U clllll
        then obtain }\mp@subsup{c}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ and t2 where }A:\forallx\mathrm{ .
            (s}\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources-aux (flow cfs) s}\mp@subsup{s}{1}{}x)
                (c, ct ) ->* (c2', th2)^(c
            (s}=\mp@subsup{t}{1}{}=\mp@subsup{t}{1}{\prime}\subseteq\mathrm{ sources (flow cfs) s1 x)}\longrightarrow\mp@subsup{s}{2}{}x=\mp@subsup{t}{2}{}x
            by blast
    have \exists\mp@subsup{c}{2}{\prime}\mp@subsup{t}{2}{\prime}.\forallx.\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs) sod}\mp@subsup{s}{1}{})\longrightarrow
            (c1, tr ) ->* (c\mp@subsup{c}{2}{\prime},\mp@subsup{t}{2}{\prime})\wedge(\mp@subsup{c}{2}{}=SKIP)=(\mp@subsup{c}{2}{\prime}=SKIP)\wedge s
        proof (rule exI [of-c, c}]\mathrm{ ], rule exI [of-t t ])
            have }\forallx.\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs) s1 x)}
                s
            proof (rule allI, rule impI)
                    fix }
                    assume }\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{\prime}(\subseteq\mathrm{ sources (flow cfs) s1 x)
                    moreover have sources-aux (flow cfs) s1 x\subseteq
                    sources (flow cfs) s1 
                    by (rule sources-aux-sources)
                    ultimately show s1 = tr1 (\subseteq sources-aux (flow cfs) s1 x)
                    by blast
            qed
            with A show }\forallx.\mp@subsup{s}{1}{}=\mp@subsup{t}{1}{}(\subseteq\mathrm{ sources (flow cfs) s1 x) }
                    (c, t, t) ->* (c2', tr2)^(c
                    by auto
    qed
    }
    with A show ?thesis
    by (clarsimp dest!: small-steps-stepsl simp: correct-def,
            drule-tac ctyping2-correct-aux, auto)
qed
end
end
```


5 Degeneracy to stateless level-based information flow control

theory Degeneracy
imports Correctness HOL-IMP.Sec-TypingT
begin

The goal of this concluding section is to prove the degeneracy of the information flow correctness notion and the static type system defined in this paper to the classical counterparts addressed in [7], section 9.2.6, and formalized in [5] and [6], in case of a stateless level-based information flow correctness policy.
First of all, locale noninterf is interpreted within the context of the class sec defined in [5], as follows.

- Parameter dom is instantiated as function sec, which also sets the type variable standing for the type of the domains to nat.
- Parameter interf is instantiated as the predicate such that for any program state, the output is True just in case the former input level may interfere with, namely is not larger than, the latter one.
- Parameter state is instantiated as the empty set, consistently with the fact that the policy is represented by a single, stateless interference predicate.

Next, the information flow security notion implied by theorem noninterference in [6] is formalized as a predicate secure taking a program as input. This notion is then proven to be implied, in the degenerate interpretation described above, by the information flow correctness notion formalized as predicate correct (theorem correct-secure). Particularly:

- This theorem demands the additional assumption that the state set A input to correct is nonempty, since correct is vacuously true for $A=$ \{\}.
- In order for this theorem to hold, predicate secure needs to slight differ from the information flow security notion implied by theorem noninterference, in that it requires state t^{\prime} to exist if there also exists some variable with a level not larger than l, namely if condition $s=$ $t(\leq l)$ is satisfied nontrivially - actually, no leakage may arise from two initial states disagreeing on the value of every variable. In fact, predicate correct requires a nontrivial configuration $\left(c_{2}{ }^{\prime}, t_{2}\right)$ to exist in case condition $s_{1}=t_{1}\left(\subseteq\right.$ sources cs $\left.s_{1} x\right)$ is satisfied for some variable x.

Finally, the static type system ctyping2 is proven to be equivalent to the sec-type one defined in [6] in the above degenerate interpretation (theorems ctyping2-sec-type and sec-type-ctyping2). The former theorem, which proves that a pass verdict from ctyping2 implies the issuance of a pass verdict from sec-type as well, demands the additional assumptions that (a) the state set input to ctyping2 is nonempty, (b) the input program does not contain any loop with Bc True as boolean condition, and (c) the input program has undergone constant folding, as addressed in [7], section 3.1.3 for arithmetic expressions and in [7], section 3.2.1 for boolean expressions. Why?
This need arises from the different ways in which the two type systems handle "dead" conditional branches. Type system sec-type does not try to detect "dead" branches; it simply applies its full range of information flow security checks to any conditional branch contained in the input program, even if it actually is a "dead" one. On the contrary, type system ctyping2 detects "dead" branches whenever boolean conditions can be evaluated at compile time, and applies only a subset of its information flow correctness checks to such branches.
As parameter state is instantiated as the empty set, boolean conditions containing variables cannot be evaluated at compile time, yet they can if they only contain constants. Thus, assumption (a) prevents ctyping2 from handling the entire input program as a "dead" branch, while assumptions (b) and (c) ensure that ctyping2 will not detect any "dead" conditional branch within the program. On the whole, those assumptions guarantee that ctyping2, like sec-type, applies its full range of checks to any conditional branch contained in the input program, as required for theorem ctyping2-sec-type to hold.

5.1 Global context definitions and proofs

fun cgood $::$ com \Rightarrow bool where
$\operatorname{cgood}\left(c_{1} ; c_{2}\right)=\left(\operatorname{cgood} c_{1} \wedge \operatorname{cgood} c_{2}\right) \mid$
cgood (IF - THEN $\left.c_{1} E L S E c_{2}\right)=\left(\operatorname{cgood} c_{1} \wedge \operatorname{cgood} c_{2}\right) \mid$
cgood $($ WHILE b DO $c)=(b \neq B c$ True $\wedge \operatorname{cgood} c) \mid$
cgood - = True
fun seq $::$ com \Rightarrow com \Rightarrow com where
seq SKIP $c=c \mid$
seq c SKIP $=c \mid$
seq $c_{1} c_{2}=c_{1} ; c_{2}$
fun ifc :: bexp $\Rightarrow \mathrm{com} \Rightarrow \mathrm{com} \Rightarrow \mathrm{com}$ where
ifc (Bc True) $c-=c \mid$
ifc (Bc False) $-c=c \mid$
ifc $b c_{1} c_{2}=\left(\right.$ if $c_{1}=c_{2}$ then c_{1} else IF b THEN $\left.c_{1} E L S E c_{2}\right)$

```
fun while :: bexp }=>\mathrm{ com }=>\mathrm{ com where
while (Bc False) - = SKIP 
while b c = WHILE b DO c
primrec csimp :: com }=>\mathrm{ com where
csimp SKIP = SKIP |
csimp (x ::= a)= x ::= asimp a |
csimp (c}\mp@subsup{c}{1}{\prime;}\mp@subsup{c}{2}{})=\operatorname{seq}(\operatorname{csimp}\mp@subsup{c}{1}{})(\operatorname{csimp}\mp@subsup{c}{2}{})
```



```
csimp (WHILE b DO c) = while (bsimp b) (csimp c)
lemma not-size:
    size (not b) \leq Suc (size b)
by (induction b rule: not.induct, simp-all)
lemma and-size:
    size (and b}\mp@subsup{b}{1}{}\mp@subsup{b}{2}{})\leq\mathrm{ Suc (size b}\mp@subsup{b}{1}{}+\mathrm{ size }\mp@subsup{b}{2}{}
by (induction bl b b rule: and.induct, simp-all)
lemma less-size:
    size (less a
by (induction a }\mp@subsup{a}{1}{
lemma bsimp-size:
    size (bsimp b) \leq size b
by (induction b, auto intro:le-trans not-size and-size simp: less-size)
lemma seq-size:
    size (seq cl corl)\leqSuc (size c}\mp@subsup{c}{1}{}+\mathrm{ size c}\mp@subsup{c}{2}{}
by (induction c}\mp@subsup{c}{1}{}\mp@subsup{c}{2}{}\mathrm{ rule: seq.induct, simp-all)
lemma ifc-size:
    size (ifc b crlol
by (induction b clll}\mp@subsup{c}{2}{}\mathrm{ rule: ifc.induct, simp-all)
lemma while-size:
    size (while b c)\leqSuc (size c)
by (induction b c rule: while.induct, simp-all)
lemma csimp-size:
    size (csimp c) \leq size c
by (induction c, auto intro: le-trans seq-size ifc-size while-size)
lemma avars-asimp:
avars }a={}\Longrightarrow\existsi.asimp a=N
```

by (induction a, auto)
lemma seq-match [dest!]:
$\operatorname{seq}\left(\operatorname{csimp} c_{1}\right)\left(\operatorname{csimp} c_{2}\right)=c_{1} ; ; c_{2} \Longrightarrow \operatorname{csimp} c_{1}=c_{1} \wedge \operatorname{csimp} c_{2}=c_{2}$ by (rule seq.cases $\left[o f\left(c s i m p ~ c_{1}, ~ c s i m p ~ c_{2}\right)\right]$,
insert csimp-size $\left[\right.$ of c_{1}], insert csimp-size $\left[\right.$ of c_{2}], simp-all)
lemma ifc-match [dest!]:
ifc (bsimp b) (csimp $\left.c_{1}\right)\left(\operatorname{csimp} c_{2}\right)=I F b$ THEN $c_{1} E L S E c_{2} \Longrightarrow$
$b \operatorname{simp} b=b \wedge(\forall v . b \neq B c v) \wedge \operatorname{csimp} c_{1}=c_{1} \wedge \operatorname{csimp} c_{2}=c_{2}$ by (insert csimp-size $\left[o f c_{1}\right.$], insert csimp-size [of c_{2}], subgoal-tac csimp $c_{1} \neq I F$ b THEN $c_{1} E L S E c_{2}$, auto intro: ifc.cases [of (bsimp b, csimp $\left.\left.c_{1}, c \operatorname{simp} c_{2}\right)\right]$ split: if-split-asm)
lemma while-match [dest!]:
while (bsimp b) $(c \operatorname{simp} c)=$ WHILE b DO $c \Longrightarrow$
bsimp $b=b \wedge b \neq$ Bc False \wedge csimp $c=c$
by (rule while.cases $[$ of ($b \operatorname{simp} b, \operatorname{csimp} c)]$, auto)

5.2 Local context definitions and proofs

context sec

begin
interpretation noninterf λ s. (\leq) sec $\}$
by (unfold-locales, simp)
notation interf-set ((-: - -) $[51,51,51] 50)$
notation univ-states-if ((Univ? - -) [51, 75] 75)
notation atyping $\left(\left(-\models-{ }^{\prime}(\subseteq-)\right)[51,51] 50\right)$
notation btyping2-aux $\left(\left(\|=-^{\prime}(\subseteq-)^{-}\right)\right)$[51] 55)
notation btyping2 $\left(\left(\models-^{\prime}\left(\subseteq--^{-}\right)\right)\right.$[51] 55)
notation ctyping1 $\left(\left(\vdash-{ }^{\prime}\left(\subseteq-,-^{\prime}\right)\right)\right.$ [51] 55)
notation ctyping2 $\left(\left(-\vDash-^{\prime}\left(\subseteq--^{\prime}\right)\right)[51,51] 55\right)$
abbreviation eq-le-ext $::$ state \Rightarrow state \Rightarrow level \Rightarrow bool
$\left(\left(-=-^{\prime}\left(\leq-^{\prime}\right)\right)[51,51,0] 50\right)$ where
$s=t(\leq l) \equiv s=t(\leq l) \wedge(\exists x::$ vname. sec $x \leq l)$
definition secure :: com \Rightarrow bool where
secure $c \equiv \forall s s^{\prime} t l .(c, s) \Rightarrow s^{\prime} \wedge s=t(\leq l) \longrightarrow$

$$
\left(\exists t^{\prime} .(c, t) \Rightarrow t^{\prime} \wedge s^{\prime}=t^{\prime}(\leq l)\right)
$$

definition levels :: config set \Rightarrow level set where
levels $U \equiv$ insert $0($ sec ' $\bigcup($ snd' $\{(B, Y) \in U . B \neq\{ \}\}))$

```
lemma avars-finite:
    finite (avars a)
by (induction a, simp-all)
lemma avars-in:
    n< sec a\Longrightarrow sec a f sec ' avars a
by (induction a, auto simp: max-def)
lemma avars-sec:
    x\in avars a > sec x \leq sec a
by (induction a, auto)
lemma avars-ub:
    sec a}\leql=(\forallx\in\mathrm{ avars a. sec }x\leql
by (induction a, auto)
lemma bvars-finite:
    finite (bvars b)
by (induction b, simp-all add: avars-finite)
lemma bvars-in:
    n< sec b\Longrightarrow sec b \insec'bvars b
by (induction b, auto dest!: avars-in simp: max-def)
lemma bvars-sec:
    x\in bvars b\Longrightarrow sec x \leq sec b
by (induction b, auto dest: avars-sec)
lemma bvars-ub:
    sec b\leql=(\forallx\inbvars b. sec x \leql)
by (induction b, auto simp: avars-ub)
lemma levels-insert:
    assumes
        A:A\not={} and
        B: finite (levels U)
    shows finite (levels (insert (A, bvars b) U)) ^
        Max (levels (insert (A, bvars b) U)) = max (sec b) (Max (levels U))
        (is finite (levels ? U') ^?P)
proof -
    have C: levels ? U' = sec 'bvars b U levels }
        using A by (auto simp: image-def levels-def univ-states-if-def)
    hence D: finite (levels ? U')
        using B by (simp add: bvars-finite)
    moreover have ?P
    proof (rule Max-eqI [OF D])
        fix l
```

```
    assume l levels (insert (A, bvars b) U)
    thus l\leqmax (sec b) (Max (levels U))
    using C by (auto dest: Max-ge [OF B] bvars-sec)
    next
    show max (sec b) (Max (levels U)) \in levels (insert (A,bvars b) U)
        using C by (insert Max-in [OF B],
        fastforce dest: bvars-in simp: max-def not-le levels-def)
    qed
    ultimately show ?thesis ..
qed
lemma sources-le:
    y\in sources cs s x \Longrightarrow sec y secc}
and sources-aux-le:
y\in sources-aux cs s }x\Longrightarrow\mathrm{ sec }y\leq\operatorname{sec}
by (induction cs s x and cs s x rule: sources-induct,
    auto split:com-flow.split-asm if-split-asm, fastforce+)
lemma bsimp-btyping2-aux-not [intro]:
    |simp b=b\Longrightarrow\forallv.b\not=Bcv\Longrightarrow|=b(\subseteqA,X)=None;
    not (bsimp b) = Not b\rrbracket\Longrightarrow|=b(\subseteqA,X)=None
by (rule not.cases [of bsimp b], auto)
lemma bsimp-btyping2-aux-and [intro]:
    assumes
        A:\llbracketbsimp b b = b ; ; \forallv. b b # Bc v\rrbracket\Longrightarrow|= b ( \subseteqA,X)=None and
    B: and (bsimp b ) (bsimp b b ) = And b b b b
    shows }|=\mp@subsup{b}{1}{}(\subseteqA,X)=Non
proof -
    {
    assume bsimp b}\mp@subsup{b}{2}{}=And \mp@subsup{b}{1}{}\mp@subsup{b}{2}{
    hence Bc True = bl
            by (insert bsimp-size [of b b ], simp)
    }
    moreover {
        assume bsimp b b = And (Bc True) b}\mp@subsup{b}{2}{
        hence False
        by (insert bsimp-size [of b b ], simp)
    }
    moreover {
    assume bsimp b}\mp@subsup{b}{1}{}=And \mp@subsup{b}{1}{}\mp@subsup{b}{2}{
    hence False
        by (insert bsimp-size [of b l], simp)
    }
    ultimately have bsimp b}\mp@subsup{b}{1}{}=\mp@subsup{b}{1}{}\wedge(\forallv.\mp@subsup{b}{1}{}\not=Bcv
        using B by (auto intro: and.cases [of (bsimp b b , bsimp b b )])
    thus ?thesis
    using A by simp
```


qed

lemma bsimp-btyping2-aux-less [elim]:
【less $\left(\right.$ asimp $\left.a_{1}\right)\left(\right.$ asimp $\left.a_{2}\right)=$ Less $a_{1} a_{2}$;
avars $a_{1}=\{ \} ;$ avars $a_{2}=\{ \} \rrbracket \Longrightarrow$ False
by (fastforce dest: avars-asimp)
lemma bsimp-btyping2-aux:
$\llbracket b s i m p b=b ; \forall v . b \neq B c v \rrbracket \Longrightarrow \| b(\subseteq A, X)=$ None
by (induction b, auto split: option.split)

lemma bsimp-btyping2:

$\llbracket b s i m p b=b ; \forall v . b \neq B c v \rrbracket \Longrightarrow \models b(\subseteq A, X)=(A, A)$
by (auto dest: bsimp-btyping2-aux [of - A X] simp: btyping2-def)

lemma csimp-ctyping2-if:

$\llbracket \bigwedge U^{\prime} B B^{\prime} . U^{\prime}=U \Longrightarrow B=B_{1} \Longrightarrow\{ \}=B^{\prime} \Longrightarrow B_{1} \neq\{ \} \Longrightarrow$ False; $s \in A$;
$\vDash b(\subseteq A, X)=\left(B_{1}, B_{2}\right) ; b \operatorname{simp} b=b ; \forall v . b \neq B c v \rrbracket \Longrightarrow$

False

by (drule bsimp-btyping2 [of - A X], auto)
lemma csimp-ctyping2-while:
$\llbracket\left(\right.$ if P then Some $\left(B_{2} \cup B_{2}{ }^{\prime}, Y\right)$ else None $)=\operatorname{Some}(\{ \}, Z) ; s \in A$;

$$
\vDash b(\subseteq A, X)=\left(B_{1}, B_{2}\right) ; \text { bsimp } b=b ; b \neq B c \text { True } ; b \neq \text { Bc False } \rrbracket \Longrightarrow
$$

False
by (drule bsimp-btyping2 [of - A X], auto split: if-split-asm)

```
lemma csimp-ctyping2:
    \(\llbracket(U, v) \vDash c(\subseteq A, X)=\operatorname{Some}(B, Y) ; A \neq\{ \} ; \operatorname{cgood} c ; \operatorname{csimp} c=c \rrbracket \Longrightarrow\)
        \(B \neq\{ \}\)
proof (induction \((U, v)\) c A X arbitrary: B Y U v rule: ctyping2.induct)
    fix \(A X B Y U v c_{1} c_{2}\)
    show
        \(\llbracket \bigwedge B Y .(U, v) \models c_{1}(\subseteq A, X)=\) Some \((B, Y) \Longrightarrow\)
            \(A \neq\{ \} \Longrightarrow\) cgood \(c_{1} \Longrightarrow\) csimp \(c_{1}=c_{1} \Longrightarrow\)
            \(B \neq\{ \} ;\)
            \(\bigwedge p B Y C Z .(U, v) \models c_{1}(\subseteq A, X)=\) Some \(p \Longrightarrow\)
                \((B, Y)=p \Longrightarrow(U, v) \models c_{2}(\subseteq B, Y)=\operatorname{Some}(C, Z) \Longrightarrow\)
                    \(B \neq\{ \} \Longrightarrow \operatorname{cgood} c_{2} \Longrightarrow \operatorname{csimp} c_{2}=c_{2} \Longrightarrow\)
                \(C \neq\{ \} ;\)
            \((U, v) \models c_{1} ; ; c_{2}(\subseteq A, X)=\operatorname{Some}(B, Y) ;\)
            \(A \neq\{ \} ; \operatorname{cgood}\left(c_{1} ; c_{2}\right)\);
            \(\operatorname{csimp}\left(c_{1} ; ; c_{2}\right)=c_{1} ; ; c_{2} \rrbracket \Longrightarrow\)
                    \(B \neq\{ \}\)
            by (fastforce split: option.split-asm)
next
    fix \(A X C Y U v b c_{1} c_{2}\)
    show
```

```
    |\ U' ( p B B 的 C Y.
        (U', p)=(insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
        (B1, B2) =p\Longrightarrow(U',v)\models c
        B
        C\not={};
    \U'p B B B B C Y.
        (U', p)=(insert (Univ? A X, bvars b) U,\modelsb(\subseteqA,X))\Longrightarrow
        (B1,B2)=p\Longrightarrow(U',v)\models\mp@subsup{c}{2}{}(\subseteq\mp@subsup{B}{2}{},X)=\mathrm{ Some (C,Y) Ø}
        B2}\not={}\Longrightarrow\mathrm{ cgood c}\mp@subsup{c}{2}{}\Longrightarrow\mathrm{ csimp c}\mp@subsup{c}{2}{}=\mp@subsup{c}{2}{}
        C\not={};
        (U,v)\modelsIF b THEN c}\mp@subsup{c}{1}{}ELSE c c (\subseteqA,X) = Some (C, Y)
    A = {}; cgood (IF b THEN c c ELSE c c);
```



```
        C\not={}
    by (auto split: option.split-asm prod.split-asm,
    rule csimp-ctyping2-if)
next
    fix AXBZUvbc
    show
```



```
        (B},\mp@subsup{B}{2}{\prime})=\vDashb(\subseteqA,X)
        (C,Y)=\vdashc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow
        (B}\mp@subsup{}{1}{\prime},\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)
        \forall(B,W)\ininsert (Univ? A X \cup Univ? C Y, bvars b) U.
            B:sec' W
        ({}, False) }=c(\subseteq\mp@subsup{B}{1}{},X)=\mathrm{ Some (B,Z) C
        B1}\not={}\Longrightarrow\mathrm{ cgood c C csimp c=c ב
        B\not={};
    \ B1 B C C Y B1' }\mp@subsup{}{\prime}{\prime}\mp@subsup{B}{2}{\prime}\mp@subsup{}{}{\prime}BZ
        (B1, B})=\vDashb(\subseteqA,X)
        (C,Y)}=\vdashc(\subseteq\mp@subsup{B}{1}{},X)
        (B1',}\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)
        \forall(B,W)\in insert (Univ? A X \cup Univ? C Y, bvars b) U.
            B:sec' W}\rightsquigarrowUNIV
        ({}, False) }=c(\subseteq\mp@subsup{B}{1}{\prime},Y)=Some (B,Z)
        B _ { 1 } ^ { \prime } \neq \{ \} \Longrightarrow \text { cgood c csimp c=c c}
        B\not={};
    (U,v)\modelsWHILE b DO c (\subseteqA,X) = Some (B,Z);
    A\not={}; cgood (WHILE b DO c);
    csimp (WHILE b DO c) = WHILE b DO c\rrbracket\Longrightarrow
        B\not={}
    by (auto split: option.split-asm prod.split-asm,
    rule csimp-ctyping2-while)
qed (simp-all split: if-split-asm)
theorem correct-secure:
    assumes
    A: correct c A X and
```

```
    \(B: A \neq\{ \}\)
    shows secure \(c\)
proof -
    \{
    fix \(s s^{\prime} t l\) and \(x::\) vname
    assume \((c, s) \Rightarrow s^{\prime}\)
    then obtain \(c f s\) where \(C:(c, s) \rightarrow *\{c f s\}\left(S K I P, s^{\prime}\right)\)
        by (auto dest: small-steps-stepsl simp: big-iff-small)
    assume \(D: s=t(\leq l)\)
    have \(E: \forall x\). sec \(x \leq l \longrightarrow s=t\) ( \(\subseteq\) sources (flow cfs) s \(x\) )
    proof (rule allI, rule impI)
        fix \(x\) :: vname
        assume sec \(x \leq l\)
        moreover have sources (flow cfs) s \(x \subseteq\{y\). sec \(y \leq \sec x\}\)
        by (rule subsetI, simp, rule sources-le)
        ultimately show \(s=t(\subseteq\) sources (flow cfs) s \(x\) )
            using \(D\) by auto
    qed
    assume \(\forall s c_{1} c_{2} s_{1} s_{2} c f s\).
        \((c, s) \rightarrow *\left(c_{1}, s_{1}\right) \wedge\left(c_{1}, s_{1}\right) \rightarrow *\{c f s\}\left(c_{2}, s_{2}\right) \longrightarrow\)
            \(\left(\forall t_{1} . \exists c_{2}{ }^{\prime} t_{2} . \forall x\right.\).
                \(s_{1}=t_{1}\left(\subseteq\right.\) sources (flow cfs) \(\left.s_{1} x\right) \longrightarrow\)
                    \(\left(c_{1}, t_{1}\right) \rightarrow *\left(c_{2}^{\prime}, t_{2}\right) \wedge\left(c_{2}=S K I P\right)=\left(c_{2}^{\prime}=S K I P\right) \wedge\)
                    \(\left.s_{2} x=t_{2} x\right)\)
    note \(F=\) this [rule-format]
    obtain \(t^{\prime}\) where \(G: \forall x\).
        \(s=t(\subseteq\) sources (flow cfs) s \(x\) ) \(\longrightarrow\)
            \((c, t) \rightarrow *\left(S K I P, t^{\prime}\right) \wedge s^{\prime} x=t^{\prime} x\)
        using \(F\left[\begin{array}{l}\text { of } s c s c f s ~ S K I P ~ \\ s^{\prime} t\end{array}\right]\) and \(C\) by blast
    assume \(H\) : sec \(x \leq l\)
    \{
        have \(s=t(\subseteq\) sources (flow cfs) s \(x\) )
            using \(E\) and \(H\) by simp
        hence \((c, t) \Rightarrow t^{\prime}\)
            using \(G\) by (simp add: big-iff-small)
    \}
    moreover \{
        fix \(x\) :: vname
        assume sec \(x \leq l\)
    hence \(s=t(\subseteq\) sources (flow cfs) \(s x)\)
            using \(E\) by simp
        hence \(s^{\prime} x=t^{\prime} x\)
            using \(G\) by \(\operatorname{simp}\)
    \}
    ultimately have \(\exists t^{\prime} .(c, t) \Rightarrow t^{\prime} \wedge s^{\prime}=t^{\prime}(\leq l)\)
    by auto
\}
with \(A\) and \(B\) show ?thesis
    by (auto simp: correct-def secure-def split: if-split-asm)
```

```
lemma ctyping2-sec-type-assign [elim]:
    assumes
    A: \((\) if \(((\exists\) s. \(s \in\) Univ? \(A X) \longrightarrow(\forall y \in\) avars a. sec \(y \leq \sec x)) \wedge\)
        \((\forall p \in U . \forall B Y . p=(B, Y) \longrightarrow B=\{ \} \vee(\forall y \in Y . \sec y \leq \sec x))\)
        then Some (if \(x \in\} \wedge A \neq\{ \}\)
            then if \(v \vDash a(\subseteq X)\)
                then \((\{s(x:=\) aval a s \() \mid s . s \in A\}\), insert \(x X)\) else \((A, X-\{x\})\)
            else ( \(A\), Univ?? A X))
            else None \()=\) Some \((B, Y)\)
            (is \((\) if \((-\longrightarrow ? P) \wedge\) ? \(Q\) then - else - ) \(=-\) ) and
        \(B: s \in A\) and
    \(C\) : finite (levels \(U\) )
    shows Max (levels \(U\) ) \(\vdash x::=a\)
proof -
    have ? \(P \wedge\) ? \(Q\)
    using \(A\) and \(B\) by (auto simp: univ-states-if-def split: if-split-asm)
    moreover from this have Max (levels \(U\) ) \(\leq \sec x\)
    using \(C\) by (subst Max-le-iff, auto simp: levels-def, blast)
    ultimately show Max (levels \(U\) ) \(\vdash x::=a\)
    by (auto intro: Assign simp: avars-ub)
qed
lemma ctyping2-sec-type-seq:
    assumes
    \(A: \wedge B^{\prime} s . B=B^{\prime} \Longrightarrow s \in A \Longrightarrow M a x(\) levels \(U) \vdash c_{1}\) and
    \(B: \bigwedge B^{\prime} B^{\prime \prime} C Z s^{\prime} . B=B^{\prime} \Longrightarrow B^{\prime \prime}=B^{\prime} \Longrightarrow\)
        \((U, v) \models c_{2}\left(\subseteq B^{\prime}, Y\right)=\) Some \((C, Z) \Longrightarrow\)
        \(s^{\prime} \in B^{\prime} \Longrightarrow \operatorname{Max}\) (levels \(U\) ) \(\vdash c_{2}\) and
    \(C:(U, v) \models c_{1}(\subseteq A, X)=S o m e(B, Y)\) and
    \(D:(U, v) \models c_{2}(\subseteq B, Y)=\operatorname{Some}(C, Z)\) and
    \(E: s \in A\) and
    \(F\) : cgood \(c_{1}\) and
    \(G: \operatorname{csimp} c_{1}=c_{1}\)
    shows Max (levels \(U\) ) \(\vdash c_{1} ; ; c_{2}\)
proof -
    have Max (levels \(U\) ) \(\vdash c_{1}\)
        using \(A\) and \(E\) by simp
    moreover from \(C\) and \(E\) and \(F\) and \(G\) have \(B \neq\{ \}\)
    by (erule-tac csimp-ctyping2, blast)
    hence Max (levels \(U\) ) \(\vdash c_{2}\)
        using \(B\) and \(D\) by blast
    ultimately show ?thesis ..
qed
lemma ctyping2-sec-type-if:
    assumes
```

A: $\wedge U^{\prime} B$ C s. $U^{\prime}=$ insert (Univ? A X, bvars b) $U \Longrightarrow$ $B=B_{1} \Longrightarrow C_{1}=C \Longrightarrow s \in B_{1} \Longrightarrow$
finite (levels (insert (Univ? A X, bvars b) U)) \Longrightarrow
Max (levels (insert (Univ? A X, bvars b) $U)) \vdash c_{1}$
(is $\wedge----=? U^{\prime} \Longrightarrow-\Longrightarrow-\Longrightarrow-\Longrightarrow-\Longrightarrow-$)
assumes
$B: \bigwedge U^{\prime} B C$ s. $U^{\prime}=? U^{\prime} \Longrightarrow B=B_{1} \Longrightarrow C_{2}=C \Longrightarrow s \in B_{2} \Longrightarrow$ finite (levels ? $\left.U^{\prime}\right) \Longrightarrow$ Max (levels? $\left.U^{\prime}\right) \vdash c_{2}$ and
$C: \models b(\subseteq A, X)=\left(B_{1}, B_{2}\right)$ and
$D: s \in A$ and
E: $b \operatorname{simp} b=b$ and
$F: \forall v . b \neq B c v$ and
G : finite (levels U)
shows Max (levels U) \vdash IF b THEN $c_{1} E L S E c_{2}$
proof -
from D and G have H : finite (levels? $\left.U^{\prime}\right) \wedge$
Max (levels? $\left.U^{\prime}\right)=\max (\sec b)($ Max (levels $\left.U)\right)$
using levels-insert by (auto simp: univ-states-if-def)
moreover have $I: \models b(\subseteq A, X)=(A, A)$
using E and F by (rule bsimp-btyping2)
hence Max (levels? $\left.U^{\prime}\right) \vdash c_{1}$
using A and C and D and H by auto
moreover have Max (levels ? $\left.U^{\prime}\right) \vdash c_{2}$
using B and C and D and H and I by auto
ultimately show ?thesis
by (auto intro: If)
qed
lemma ctyping2-sec-type-while:

assumes

$A: \wedge B C^{\prime} B^{\prime} D^{\prime}$ s. $B=B_{1} \Longrightarrow C^{\prime}=C \Longrightarrow B^{\prime}=B_{1}{ }^{\prime} \Longrightarrow$
$((\exists s . s \in$ Univ? $A X \vee s \in U n i v ? ~ C Y) \longrightarrow$ $(\forall x \in$ bvars b. All $((\leq)(\sec x)))) \wedge$
$(\forall p \in U$. case p of $(B, W) \Rightarrow(\exists s . s \in B) \longrightarrow$ $(\forall x \in W$. All $((\leq)(\sec x)))) \Longrightarrow$ $D=D^{\prime} \Longrightarrow s \in B_{1} \Longrightarrow$ finite (levels $\}) \Longrightarrow \operatorname{Max}$ (levels $\}) \vdash c$
(is $\wedge-\cdots--\Longrightarrow-\Longrightarrow-\Longrightarrow$
$? P \wedge(\forall p \in-$. case p of $(-, W) \Rightarrow-\longrightarrow ? Q W) \Longrightarrow$

$$
-\Longrightarrow-\Longrightarrow-\Longrightarrow-)
$$

assumes

$B:($ if ? $P \wedge(\forall p \in U . \forall B W . p=(B, W) \longrightarrow B=\{ \} \vee ? Q W)$
then Some $\left(B_{2} \cup B_{2}{ }^{\prime}\right.$, Univ?? $\left.B_{2} X \cap Y\right)$ else None $)=\operatorname{Some}(B, Z)$
(is (if ? R then - else -) $=-$) and
$C: \models b(\subseteq A, X)=\left(B_{1}, B_{2}\right)$ and
$D: s \in A$ and
E : $b \operatorname{simp} b=b$ and
$F: b \neq B c$ False and
$G: b \neq B c$ True and
H : finite (levels U)

```
    shows Max (levels U)\vdashWHILE b DO c
proof -
    have ?R
        using B by (simp split: if-split-asm)
    hence sec b\leq0
        using D by (subst bvars-ub, auto simp: univ-states-if-def, fastforce)
    moreover have }\modelsb(\subseteqA,X)=(A,A
    using}E\mathrm{ and F and G by (blast intro: bsimp-btyping2)
    hence 0\vdashc
    using A and C and D and <?R> by (fastforce simp:levels-def)
    moreover have Max (levels U)=0
    proof (rule Max-eqI [OFH])
        fix l
        assume l levels }
        thus l\leq0
        using <?R〉 by (fastforce simp: levels-def)
    next
    show 0 \in levels }
        by (simp add: levels-def)
    qed
    ultimately show ?thesis
        by (auto intro: While)
qed
theorem ctyping2-sec-type:
    \llbracket(U,v)\modelsc(\subseteqA,X)=Some (B,Y);
        s\inA; cgood c; csimp c = c; finite (levels U)\rrbracket\Longrightarrow
    Max (levels U)\vdashc
proof (induction (U,v) c A X arbitrary: B Y Uvs rule: ctyping2.induct)
    fix }
    show Max (levels U)\vdashSKIP
            by (rule Skip)
next
    fix AXCZUv c
    show
    \llbracket\BYs. (U,v)\models c (\subseteqA,X) = Some (B,Y)\Longrightarrow
            s\inA\Longrightarrow\operatorname{cgood}\mp@subsup{c}{1}{}\Longrightarrow\mathrm{ csimp c}\mp@subsup{c}{1}{}=\mp@subsup{c}{1}{}\Longrightarrow\mathrm{ finite (levels }U\mathrm{ ) }\Longrightarrow
            Max (levels U)\vdash }\mp@subsup{c}{1}{}\mathrm{ ;
            \pB Y C Z s. (U,v)\models c (\subseteqA, X)= Some p\Longrightarrow
                (B,Y)=p\Longrightarrow(U,v)\models\mp@subsup{c}{2}{}(\subseteqB,Y)=Some (C,Z)\Longrightarrow
                s\inB\Longrightarrow cgood c}\mp@subsup{c}{2}{}\Longrightarrow\mathrm{ csimp c}\mp@subsup{c}{2}{}=\mp@subsup{c}{2}{}\Longrightarrow\mathrm{ finite (levels U) }
                Max (levels U) }\vdash\mp@subsup{c}{2}{}\mathrm{ ;
            (U,v)\models c c; ; c c (\subseteqA,X) = Some (C,Z);
            s\inA; cgood (c, c; ; c 2);
            csimp (c
            finite (levels U)\rrbracket\Longrightarrow
                Max (levels U)\vdash c c; ; c c 
            by (auto split: option.split-asm, rule ctyping2-sec-type-seq)
```

```
next
    fix \(A X B Y U v b c_{1} c_{2} s\)
    show
    \(\llbracket \bigwedge U^{\prime} p B_{1} B_{2} C Y s\).
        \(\left(U^{\prime}, p\right)=(\) insert \((\) Univ? A \(X\), bvars \(b) U, \models b(\subseteq A, X)) \Longrightarrow\)
        \(\left(B_{1}, B_{2}\right)=p \Longrightarrow\left(U^{\prime}, v\right) \models c_{1}\left(\subseteq B_{1}, X\right)=\) Some \((C, Y) \Longrightarrow\)
        \(s \in B_{1} \Longrightarrow\) cgood \(c_{1} \Longrightarrow\) csimp \(c_{1}=c_{1} \Longrightarrow\) finite (levels \(\left.U^{\prime}\right) \Longrightarrow\)
        Max (levels \(\left.U^{\prime}\right) \vdash c_{1}\);
    \(\bigwedge U^{\prime} p B_{1} B_{2} C Y s\).
        \(\left(U^{\prime}, p\right)=(\) insert (Univ? A X, bvars b) \(U, \models b(\subseteq A, X)) \Longrightarrow\)
        \(\left(B_{1}, B_{2}\right)=p \Longrightarrow\left(U^{\prime}, v\right) \models c_{2}\left(\subseteq B_{2}, X\right)=\) Some \((C, Y) \Longrightarrow\)
        \(s \in B_{2} \Longrightarrow\) cgood \(c_{2} \Longrightarrow\) csimp \(c_{2}=c_{2} \Longrightarrow\) finite (levels \(U^{\prime}\) ) \(\Longrightarrow\)
        Max (levels \(\left.U^{\prime}\right) \vdash c_{2}\);
    \((U, v) \models I F\) b THEN \(c_{1} E L S E c_{2}(\subseteq A, X)=\operatorname{Some}(B, Y)\);
    \(s \in A ; \operatorname{cgood}\left(I F b T H E N ~ c_{1} E L S E c_{2}\right)\);
    csimp (IF b THEN \(c_{1}\) ELSE \(c_{2}\) ) = IF bTHEN \(c_{1}\) ELSE \(c_{2}\);
    finite (levels \(U\) ) \(\Longrightarrow\)
        Max (levels \(U\) ) \(\vdash I F\) b THEN \(c_{1}\) ELSE \(c_{2}\)
    by (auto split: option.split-asm prod.split-asm,
        rule ctyping2-sec-type-if)
next
        fix \(A X B Z U v b c s\)
    show
    \(\llbracket \wedge B_{1} B_{2} C Y B_{1}{ }^{\prime} B_{2}{ }^{\prime} D Z s\).
        \(\left(B_{1}, B_{2}\right)=\vDash b(\subseteq A, X) \Longrightarrow\)
        \((C, Y)=\vdash c\left(\subseteq B_{1}, X\right) \Longrightarrow\)
        \(\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right)=\models b(\subseteq C, Y) \Longrightarrow\)
        \(\forall(B, W) \in\) insert (Univ? A \(X \cup\) Univ? C \(Y\), bvars b) \(U\).
            \(B:\) sec ' \(W \rightsquigarrow U N I V \Longrightarrow\)
        \(\left(\}\right.\), False \() \vDash c\left(\subseteq B_{1}, X\right)=\) Some \((D, Z) \Longrightarrow\)
        \(s \in B_{1} \Longrightarrow\) cgood \(c \Longrightarrow\) csimp \(c=c \Longrightarrow\) finite (levels \(\}\) ) \(\Longrightarrow\)
        Max (levels \(\}) \vdash c\);
    \(\wedge B_{1} B_{2} C Y B_{1}{ }^{\prime} B_{2}{ }^{\prime} D^{\prime} Z^{\prime} s\) s.
        \(\left(B_{1}, B_{2}\right)=\models b(\subseteq A, X) \Longrightarrow\)
        \((C, Y)=\vdash c\left(\subseteq B_{1}, X\right) \Longrightarrow\)
        \(\left(B_{1}{ }^{\prime}, B_{2}{ }^{\prime}\right)=\models b(\subseteq C, Y) \Longrightarrow\)
        \(\forall(B, W) \in\) insert (Univ? A \(X \cup\) Univ? \(C Y\), bvars b) \(U\).
            \(B:\) sec ' \(W \rightsquigarrow U N I V \Longrightarrow\)
        \(\left(\}\right.\), False \()=c\left(\subseteq B_{1}{ }^{\prime}, Y\right)=\) Some \(\left(D^{\prime}, Z^{\prime}\right) \Longrightarrow\)
        \(s \in B_{1}{ }^{\prime} \Longrightarrow\) cgood \(c \Longrightarrow\) csimp \(c=c \Longrightarrow\) finite (levels \(\}) \Longrightarrow\)
        Max (levels \(\}) \vdash c\);
    \((U, v) \models W H I L E\) b DO c \((\subseteq A, X)=\operatorname{Some}(B, Z)\);
    \(s \in A ;\) cgood (WHILE b DO c);
    csimp (WHILE b DO c) = WHILE b DO c;
    finite (levels \(U\) ) \(\Longrightarrow\)
        Max (levels \(U\) ) \(\vdash\) WHILE b DO c
    by (auto split: option.split-asm prod.split-asm,
    rule ctyping2-sec-type-while)
qed (auto split: prod.split-asm)
```

lemma sec-type-ctyping2-if:
assumes
A: $\wedge U^{\prime} B_{1} B_{2} . U^{\prime}=$ insert (Univ? A X, bvars b) $U \Longrightarrow$ $\left(B_{1}, B_{2}\right)=\vDash b(\subseteq A, X) \Longrightarrow$ Max (levels (insert (Univ? A X, bvars b) U)) $\vdash c_{1} \Longrightarrow$ finite (levels (insert (Univ? A X, bvars b) U)) \Longrightarrow $\exists C Y$. (insert (Univ? A X, bvars b) $U, v) \models c_{1}\left(\subseteq B_{1}, X\right)=$ Some (C, Y)
(is $\bigwedge---=? U^{\prime} \Longrightarrow-\Longrightarrow-\Longrightarrow-\Longrightarrow-$)
assumes
$B: \bigwedge U^{\prime} B_{1} B_{2} . U^{\prime}=? U^{\prime} \Longrightarrow\left(B_{1}, B_{2}\right)=\vDash b(\subseteq A, X) \Longrightarrow$ Max (levels ? $\left.U^{\prime}\right) \vdash c_{2} \Longrightarrow$ finite (levels ? $\left.U^{\prime}\right) \Longrightarrow$ $\exists C Y .\left(? U^{\prime}, v\right) \models c_{2}\left(\subseteq B_{2}, X\right)=$ Some (C, Y) and
C : finite (levels U) and
$D: \max ($ sec $b)(\operatorname{Max}($ levels $U)) \vdash c_{1}$ and
$E: \max ($ sec $b)($ Max (levels $U)) \vdash c_{2}$
shows $\exists C Y .(U, v) \models I F b T H E N c_{1} E L S E c_{2}(\subseteq A, X)=\operatorname{Some}(C, Y)$
proof -
obtain $B_{1} B_{2}$ where $F:\left(B_{1}, B_{2}\right)=\models b(\subseteq A, X)$
by (cases $\models b(\subseteq A, X)$, simp $)$
moreover have $\exists C_{1} C_{2} Y_{1} Y_{2} .\left(? U^{\prime}, v\right) \models c_{1}\left(\subseteq B_{1}, X\right)=\operatorname{Some}\left(C_{1}, Y_{1}\right) \wedge$
$\left(? U^{\prime}, v\right) \models c_{2}\left(\subseteq B_{2}, X\right)=\operatorname{Some}\left(C_{2}, Y_{2}\right)$
proof (cases $A=\{ \}$)
case True
hence levels ? $U^{\prime}=$ levels U by (auto simp: levels-def univ-states-if-def)
moreover have Max (levels U) $\vdash c_{1}$
using D by (auto intro: anti-mono)
moreover have Max (levels U) $\vdash c_{2}$
using E by (auto intro: anti-mono)
ultimately show ?thesis
using A and B and C and F by simp
next
case False
with C have finite (levels ? $\left.U^{\prime}\right) \wedge$

$$
\text { Max }\left(\text { levels? } U^{\prime}\right)=\max (\sec b)(\text { Max }(\text { levels } U))
$$

by (simp add: levels-insert univ-states-if-def)
thus ?thesis
using A and B and D and E and F by simp
qed
ultimately show ?thesis
by (auto split: prod.split)
qed
lemma sec-type-ctyping2-while:
assumes
$A: \wedge B_{1} B_{2} C Y B_{1}^{\prime} B_{2}^{\prime} .\left(B_{1}, B_{2}\right)=\models b(\subseteq A, X) \Longrightarrow$

```
    (C,Y) =\vdashc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow(\mp@subsup{B}{1}{\prime},\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)\Longrightarrow
    ((\existss.s\inUniv? A X \vee s\inUniv? C Y)}
        (\forallx\in bvars b. All ((\leq) (sec x)))) ^
    (\forallp\inU. case p of (B,W)=>(\existss.s\inB)\longrightarrow
        (\forallx\inW.All ((\leq) (sec x)))) \Longrightarrow
    Max (levels {})\vdashc\Longrightarrow finite (levels {}) \Longrightarrow
        \exists Z . ({}, False) \modelsc(\subseteq\mp@subsup{B}{1}{},X)=Some (D,Z)
    (is ^-- CY---\Longrightarrow-\Longrightarrow-\Longrightarrow ?P C Y\Longrightarrow-\Longrightarrow-\Longrightarrow-)
    assumes
```



```
        (C,Y) =\vdashc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow(B\mp@subsup{B}{1}{\prime},\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)\Longrightarrow
            ?P C Y\LongrightarrowMax (levels {})\vdashc\Longrightarrow finite (levels {})\Longrightarrow
            \exists Z . ({}, False) \modelsc(\subseteq (\subseteq1',},Y)=Some (D,Z) and
    C: finite (levels U) and
    D:Max (levels U) = 0 and
    E: sec b = 0 and
    F:0\vdashc
    shows \existsBY.(U,v)\modelsWHILE b DO c (\subseteqA,X)=Some (B,Y)
proof -
    obtain B1 B2 where G: (B1, B2) = \modelsb(\subseteqA,X)
    by (cases \modelsb(\subseteqA,X), simp)
    moreover obtain C Y where H:(C,Y) =\vdashc(\subseteq\mp@subsup{B}{1}{},X)
    by (cases}\vdashc(\subseteq\mp@subsup{B}{1}{},X), simp
    moreover obtain }\mp@subsup{B}{1}{\prime}\mp@subsup{}{}{\prime}\mp@subsup{B}{2}{\prime}\mp@subsup{}{}{\prime}\mathrm{ where I: (B1'}\mp@subsup{}{}{\prime},\mp@subsup{B}{2}{\prime})=\vDashb(\subseteqC,Y
    by (cases }\modelsb(\subseteqC,Y), simp
    moreover {
    fix lxs B W
    assume }J:(B,W)\inU\mathrm{ and }K:x\inW\mathrm{ and L:s}\in
    have sec }x\leq
    proof (rule le-trans, rule Max-ge [OF C])
            show sec }x\in\mathrm{ levels }
                using J and K and L by (fastforce simp:levels-def)
    next
        show Max (levels U)\leql
            using D by simp
    qed
}
hence J: ?P C Y
    using E by (auto dest: bvars-sec)
    ultimately have }\existsD\mp@subsup{D}{}{\prime}Z\mp@subsup{Z}{}{\prime}.({},\mathrm{ False )}\vDashc(\subseteq\mp@subsup{B}{1}{\prime},X)=Some (D,Z)
    ({}, False) \modelsc(\subseteq\mp@subsup{B}{1}{\prime},Y)=Some ( }\mp@subsup{D}{}{\prime},\mp@subsup{Z}{}{\prime}
    using A and B and F by (force simp: levels-def)
    thus ?thesis
    using G and H and I and J by (auto split: prod.split)
qed
```

theorem sec-type-ctyping2:
$\llbracket M a x$ (levels U) $\vdash c$; finite (levels U) \Longrightarrow

```
    \existsBY.(U,v)\modelsc(\subseteqA,X)=Some (B,Y)
proof (induction ( }U,v) cAX arbitrary: U v rule: ctyping2.induct
    fix AXUvxa
    show Max (levels U)\vdashx ::= a\Longrightarrow finite (levels U)\Longrightarrow
        \existsBY.(U,v)\modelsx::=a(\subseteqA,X)=Some (B,Y)
        by (fastforce dest: avars-sec simp:levels-def)
next
    fix AXUvb c1 c
    show
```



```
            (U', p)=(insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
            (B},\mp@subsup{B}{2}{})=p\LongrightarrowMax (levels U')\vdash c c \Longrightarrow finite (levels U') 
            \existsBY.(U',v) = c. (\subseteq\mp@subsup{B}{1}{\prime},X)=Some (B,Y);
        \U' p B B B 的.
            (U', p)=(insert (Univ? A X, bvars b) U, \modelsb(\subseteqA,X))\Longrightarrow
            (B},\mp@subsup{B}{2}{\prime})=p\LongrightarrowMax (levels U')\vdash c c \Longrightarrow finite (levels U')
            \existsBY.(U',v) =c, (\subseteq ( B , X) = Some (B,Y);
            Max (levels U)\vdashIF b THEN c
            \existsBY.(U,v) =IF b THEN c
            by (auto simp del: ctyping2.simps(4), rule sec-type-ctyping2-if)
next
    fix AXUvbc
    show
    \\B\mp@subsup{B}{1}{}\mp@subsup{B}{2}{C}CY Y B ' }\mp@subsup{}{}{\prime}\mp@subsup{B}{2}{\prime}\mp@subsup{}{}{\prime}
        (B},\mp@subsup{B}{2}{})=\vDashb(\subseteqA,X)
        (C,Y)=\vdashc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow
        (B1',}\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)
        \forall(B,W)\in insert (Univ? A X \cup Univ? C Y, bvars b) U.
            B:sec' W}~UNIV
        Max (levels {})\vdashc\Longrightarrow finite (levels {}) \Longrightarrow
        \existsBZ.({}, False) }=c(\subseteq\mp@subsup{B}{1}{},X)=\mathrm{ Some (B,Z);
    \ B1 B B C Y B1 ' }\mp@subsup{B}{2}{\prime}\mp@subsup{}{}{\prime}
        (B, B 的)= =b(\subseteqA,X)\Longrightarrow
        (C,Y)=\vdashc(\subseteq\mp@subsup{B}{1}{},X)\Longrightarrow
        (B\mp@subsup{}{1}{\prime},\mp@subsup{B}{2}{\prime})=\modelsb(\subseteqC,Y)\Longrightarrow
        \forall(B,W)\in insert (Univ? A X \cup Univ? C Y, bvars b) U.
            B:sec' W}\rightsquigarrowUNIV
        Max (levels {})\vdashc\Longrightarrow finite (levels {})\Longrightarrow
        \existsBZ.({}, False) }=c(\subseteq\mp@subsup{B}{1}{\prime},Y)=Some (B,Z)
    Max (levels U)\vdashWHILE b DO c; finite (levels U)\rrbracket\Longrightarrow
        \existsBZ.(U,v)\modelsWHILE b DO c (\subseteqA,X)=Some (B,Z)
    by (auto simp del: ctyping2.simps(5), rule sec-type-ctyping2-while)
qed auto
end
end
```


References

[1] C. Ballarin. Tutorial to Locales and Locale Interpretation. https://isabelle.in.tum.de/website-Isabelle2023/dist/Isabelle2023/ doc/locales.pdf.
[2] A. Krauss. Defining Recursive Functions in Isabelle/HOL. https://isabelle.in.tum.de/website-Isabelle2023/dist/Isabelle2023/ doc/functions.pdf.
[3] T. Nipkow. A Tutorial Introduction to Structured Isar Proofs. https://isabelle.in.tum.de/website-Isabelle2011/dist/Isabelle2011/ doc/isar-overview.pdf.
[4] T. Nipkow. Programming and Proving in Isabelle/HOL, Sept. 2023. https://isabelle.in.tum.de/website-Isabelle2023/dist/Isabelle2023/ doc/prog-prove.pdf.
[5] T. Nipkow and G. Klein. Theory HOL-IMP.Sec_Type_Expr (included in the Isabelle2023 distribution). https://isabelle.in.tum.de/ website-Isabelle2023/dist/library/HOL/HOL-IMP/Sec_Type_Expr. html.
[6] T. Nipkow and G. Klein. Theory HOL-IMP.Sec_TypingT (included in the Isabelle2023 distribution). https://isabelle.in.tum.de/ website-Isabelle2023/dist/library/HOL/HOL-IMP/Sec_TypingT. html.
[7] T. Nipkow and G. Klein. Concrete Semantics with Isabelle/HOL. Springer-Verlag, Feb. 2023. (Current version: http://www. concrete-semantics.org/concrete-semantics.pdf).
[8] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, Sept. 2023. https://isabelle.in.tum. de/website-Isabelle2023/dist/Isabelle2023/doc/tutorial.pdf.
[9] J. Rushby. Noninterference, Transitivity, and Channel-Control Security Policies. Technical report, SRI International, Dec. 1992.
[10] D. Volpano and G. Smith. Eliminating Covert Flows with Minimum Typings. In Proc. 10th IEEE Computer Security Foundations Workshop, June 1997.
[11] D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure Flow Analysis. Journal of Computer Security, Jan. 1996.

