Hypergraph Basics

Chelsea Edmonds and Lawrence C. Paulson

May 14, 2024

Abstract

This entry is a simple extension of our previous entry for Combinatorial design theory [1], which presents new and existing concepts using hypergraph language. Both designs and hypergraphs are types of incident set systems, hence have the same underlying foundation. However, they are often used in different contexts, and some definitions are as such unique. This library uses locales to rewrite equivalent definitions and build a basic hypergraph hierarchy with direct links to equivalent design theory concepts to avoid repetition, further demonstrating the power of the "locale-centric" approach. The library includes all standard definitions (order, degree etc.), as well as some extensions on hypergraph decompositions and spanning subhypergraphs.

Contents

1	Bas	ic Hypergraphs	1
	1.1	Sub hypergraphs	4
2	Hypergraph Variations		5
	2.1	Non-trivial hypergraphs	6
	2.2	Regular and Uniform Hypergraphs	7
	2.3	Factorisations	8
	2.4	Sample Graph Theory Connections	9

1 Basic Hypergraphs

Converting Design theory to hypergraph notation. Hypergraphs have technically already been formalised

theory Hypergraph imports Design-Theory.Block-Designs Design-Theory.Sub-Designs Fishers-Inequality.Design-Extras begin **lemma** *is-singleton-image*: is-singleton $C \Longrightarrow$ is-singleton (f ' C) by (metis image-empty image-insert is-singletonE is-singletonI) **lemma** *bij-betw-singleton-image*: assumes bij-betw f A Bassumes $C \subseteq A$ **shows** is-singleton $C \leftrightarrow$ is-singleton (f ' C) **proof** (*intro iffI*) **show** is-singleton $C \Longrightarrow$ is-singleton (f ' C) by (rule is-singleton-image) show is-singleton $(f \, C) \Longrightarrow$ is-singleton C using assms is-singleton-image **by** (*metis bij-betw-def inv-into-image-cancel*) qed **lemma** *image-singleton*: assumes $A \neq \{\}$ assumes $\bigwedge x. x \in A \Longrightarrow f x = c$ shows $f \cdot A = \{c\}$ using assms(1) assms(2) by blast

```
type-synonym colour = nat
```

type-synonym 'a hyp-edge = 'a set

type-synonym 'a hyp-graph = ('a set) \times ('a hyp-edge multiset)

abbreviation hyp-edges :: 'a hyp-graph \Rightarrow 'a hyp-edge multiset where hyp-edges $H \equiv snd H$

abbreviation hyp-verts :: 'a hyp-graph \Rightarrow 'a set where hyp-verts $H \equiv fst H$

locale hypersystem = incidence-system vertices :: 'a set edges :: 'a hyp-edge multiset

for vertices (\mathcal{V}) and edges (E)

begin

Basic definitions using hypergraph language

abbreviation horder :: nat where horder \equiv card (V)

definition hdegree :: $'a \Rightarrow nat$ where hdegree $v \equiv size \{ \#e \in \# E : v \in e \# \}$

lemma hdegree-rep-num: hdegree v = point-replication-number E vunfolding hdegree-def point-replication-number-def by simp **definition** hdegree-set :: 'a set \Rightarrow nat where hdegree-set $vs \equiv size \{ \#e \in \# E. vs \subseteq e\# \}$

lemma hdegree-set-points-index: hdegree-set <math>vs = points-index E vsunfolding hdegree-set-def points-index-def by simp

definition hvert-adjacent :: $a \Rightarrow a \Rightarrow bool$ where hvert-adjacent v1 v2 $\equiv \exists e . e \in \# E \land v1 \in e \land v2 \in e \land v1 \in V \land v2 \in V$

definition hedge-adjacent :: 'a hyp-edge \Rightarrow 'a hyp-edge \Rightarrow bool where hedge-adjacent e1 e2 \equiv e1 \cap e2 \neq {} \land e1 \in # $E \land$ e2 \in # E

lemma edge-adjacent-alt-def: $e1 \in \# E \implies e2 \in \# E \implies \exists x . x \in \mathcal{V} \land x \in e1$ $\land x \in e2 \implies$ hedge-adjacent e1 e2 **unfolding** hedge-adjacent-def by auto

definition hneighborhood :: $a \Rightarrow a$ set where hneighborhood $x \equiv \{v \in \mathcal{V} : hvert-adjacent x v\}$

definition hmax-degree :: nat where hmax-degree \equiv Max {hdegree $v \mid v. v \in \mathcal{V}$ }

definition hrank :: nat where hrank \equiv Max {card e | e . e $\in \# E$ }

definition hcorank :: nat where $hcorank = Min \{ card \ e \ | \ e \ . \ e \in \# E \}$

definition hedge-neighbourhood :: 'a \Rightarrow 'a hyp-edge multiset where hedge-neighbourhood $x \equiv \{\# e \in \# E : x \in e \ \#\}$

lemma degree-alt-neigbourhood: hdegree x = size (hedge-neighbourhood x) using hedge-neighbourhood-def by (simp add: hdegree-def)

definition hinduced-edges:: 'a set \Rightarrow 'a hyp-edge multiset where hinduced-edges $V' = \{\#e \in \#E : e \subseteq V'\#\}$

end

Sublocale for rewriting definition purposes rather than inheritance

sublocale hypersystem \subseteq incidence-system \mathcal{V} E

rewrites point-replication-number E v = hdegree v and points-index E vs = hdegree-set vs

by (unfold-locales) (simp-all add: hdegree-rep-num hdegree-set-points-index)

Reverse sublocale to establish equality

sublocale incidence-system \subseteq hypersystem $\mathcal{V} \mathcal{B}$ rewrites hdegree v = point-replication-number $\mathcal{B} v$ and hdegree-set vs = points-index $\mathcal{B} vs$ **proof** (unfold-locales) **interpret** hs: hypersystem $\mathcal{V} \mathcal{B}$ by (unfold-locales) **show** hs.hdegree $v = \mathcal{B}$ rep v using hs.hdegree-rep-num by simp **show** hs.hdegree-set $vs = \mathcal{B}$ index vs using hs.hdegree-set-points-index by simp **ged**

Missing design identified in the design theory hierarchy

locale inf-design = incidence-system + assumes blocks-nempty: $bl \in \# \mathcal{B} \Longrightarrow bl \neq \{\}$

sublocale $design \subseteq inf$ -designby unfold-locales ($simp \ add$: blocks-nempty)

locale fin-hypersystem = hypersystem + finite-incidence-system \mathcal{V} E

```
sublocale finite-incidence-system \subseteq fin-hypersystem \mathcal{V} \mathcal{B} by unfold-locales
```

locale hypergraph = hypersystem + inf-design V E

sublocale inf-design \subseteq hypergraph $\mathcal{V} \mathcal{B}$ by unfold-locales (simp add: wellformed)

locale fin-hypergraph = hypergraph + fin-hypersystem

sublocale design \subseteq fin-hypergraph $\mathcal{V} \mathcal{B}$ by unfold-locales

sublocale fin-hypergraph \subseteq design \mathcal{V} E using blocks-nempty by (unfold-locales) simp

1.1 Sub hypergraphs

Sub hypergraphs and related concepts (spanning hypergraphs etc)

locale sub-hypergraph = sub: hypergraph $\mathcal{V}H \ EH + \text{orig:}$ hypergraph $\mathcal{V} :: 'a \ set \ E + sub-set-system \ \mathcal{V}H \ EH \ \mathcal{V} \ E \ for \ \mathcal{V}H \ EH \ \mathcal{V} \ E$

locale spanning-hypergraph = sub-hypergraph + assumes $\mathcal{V} = \mathcal{V}H$

```
lemma spanning-hypergraphI: sub-hypergraph VH EH V E \implies V = VH \implies
spanning-hypergraph VH EH V E
using spanning-hypergraph-def spanning-hypergraph-axioms-def by blast
```

context hypergraph begin

definition is-subhypergraph :: 'a hyp-graph \Rightarrow bool where

is-subhypergraph $H \equiv$ sub-hypergraph (hyp-verts H) (hyp-edges H) \mathcal{V} E

```
lemma is-subhypergraphI:

assumes (hyp-verts H \subseteq \mathcal{V})

assumes (hyp-edges H \subseteq \# E)

assumes hypergraph (hyp-verts H) (hyp-edges H)

shows is-subhypergraph H

unfolding is-subhypergraph-def

proof –

interpret h: hypergraph hyp-verts H hyp-edges H

using assms(3) by simp

show sub-hypergraph (hyp-verts H) (hyp-edges H) \mathcal{V} E

by (unfold-locales) (simp-all add: assms)

qed
```

definition hypergraph-decomposition :: 'a hyp-graph multiset \Rightarrow bool where hypergraph-decomposition $S \equiv (\forall h \in \# S . is-subhypergraph h) \land$ partition-on-mset $E \{\#hyp\text{-edges } h . h \in \# S\#\}$

definition is-spanning-subhypergraph :: 'a hyp-graph \Rightarrow bool where is-spanning-subhypergraph $H \equiv$ spanning-hypergraph (hyp-verts H) (hyp-edges H) $\mathcal{V} \in E$

lemma is-spanning-subhypergraphI: is-subhypergraph $H \implies (hyp\text{-verts } H) = \mathcal{V} \implies$

is-spanning-subhypergraph H

unfolding *is-subhypergraph-def is-spanning-subhypergraph-def* **using** *spanning-hypergraphI* **by** *blast*

lemma spanning-subhypergraphI: (hyp-verts H) = $\mathcal{V} \implies$ (hyp-edges H) $\subseteq \# E$ \implies hypergraph (hyp-verts H) (hyp-edges H) \implies is-spanning-subhypergraph H

using is-spanning-subhypergraphI by (simp add: is-subhypergraphI)

end end

2 Hypergraph Variations

This section presents many different types of hypergraphs, introducing conditions such as non-triviality, regularity, and uniform. Additionally, it briefly formalises decompositions

```
theory Hypergraph-Variations

imports

Hypergraph

Undirected-Graph-Theory.Bipartite-Graphs

begin
```

2.1 Non-trivial hypergraphs

Non empty (ne) implies that the vertex (and edge) set is not empty. Non trivial typically requires at least two edges

```
locale hyper-system-vne = hypersystem +
 assumes V-nempty: \mathcal{V} \neq \{\}
locale hyper-system-ne = hyper-system-vne +
 assumes E-nempty: E \neq \{\#\}
locale hypergraph-ne = hypergraph +
 assumes E-nempty: E \neq \{\#\}
begin
lemma V-nempty: \mathcal{V} \neq \{\}
 using wellformed E-nempty blocks-nempty by fastforce
lemma sizeE-not-zero: size E \neq 0
 using E-nempty by auto
\mathbf{end}
sublocale hypergraph-ne \subseteq hyper-system-ne
 by (unfold-locales) (simp-all add: V-nempty E-nempty)
locale hyper-system-ns = hypersystem +
 assumes V-not-single: \neg is-singleton \mathcal{V}
locale hypersystem-nt = hyper-system-ne + hyper-system-ns
locale hypergraph-nt = hypergraph-ne + hyper-system-ns
sublocale hypergraph-nt \subseteq hypersystem-nt
 by (unfold-locales)
locale fin-hypersystem-vne = fin-hypersystem + hyper-system-vne
begin
lemma order-gt-zero: horder > 0
 using V-nempty finite-sets by auto
lemma order-ge-one: horder \geq 1
 using order-gt-zero by auto
end
```

$$\label{eq:locale_fin-hypersystem-nt} \begin{split} & \textbf{locale} \ \textit{fin-hypersystem-nt} = \textit{fin-hypersystem-vne} + \textit{hypersystem-nt} \\ & \textbf{begin} \end{split}$$

lemma order-gt-one: horder > 1
using V-nempty V-not-single
by (simp add: finite-sets is-singleton-altdef nat-neq-iff)

lemma order-ge-two: horder ≥ 2 using order-gt-one by auto

end

locale fin-hypergraph-ne = fin-hypergraph + hypergraph-ne

sublocale fin-hypergraph-ne \subseteq fin-hypersystem-vne by unfold-locales

locale fin-hypergraph-nt = fin-hypergraph + hypergraph-nt

sublocale fin-hypergraph- $nt \subseteq fin$ -hypersystem-ntby (unfold-locales)

sublocale fin-hypergraph-ne \subseteq proper-design \mathcal{V} E using blocks-nempty sizeE-not-zero by unfold-locales simp

sublocale proper-design \subseteq fin-hypergraph-ne $\mathcal{V} \mathcal{B}$ using blocks-nempty design-blocks-nempty by unfold-locales simp

2.2 Regular and Uniform Hypergraphs

locale dregular-hypergraph = hypergraph + **fixes** d **assumes** const-degree: $\bigwedge x. \ x \in \mathcal{V} \implies$ hdegree x = d

locale fin-dregular-hypergraph = dregular-hypergraph + fin-hypergraph

locale kuniform-hypergraph = hypergraph + fixes k :: natassumes uniform: $\bigwedge e \cdot e \in \# E \Longrightarrow card e = k$

locale fin-kuniform-hypergraph = kuniform-hypergraph + fin-hypergraph

locale almost-regular-hypergraph = hypergraph + **assumes** $\bigwedge x y . x \in \mathcal{V} \Longrightarrow y \in \mathcal{V} \Longrightarrow |$ hdegree x - hdegree $y | \leq 1$

locale kuniform-regular-hypgraph = kuniform-hypergraph $\mathcal{V} E k$ + dregular-hypergraph $\mathcal{V} E k$

for $\mathcal{V} E k$

locale fin-kuniform-regular-hypgraph-nt = kuniform-regular-hypgraph $\mathcal{V} \ E \ k$ +

 $\begin{array}{l} fin-hypergraph-nt \ \mathcal{V} \ E \\ \mathbf{for} \ \mathcal{V} \ E \ k \end{array}$

- sublocale fin-kuniform-regular-hypgraph-nt \subseteq fin-kuniform-hypergraph $\mathcal{V} \ E \ k$ by unfold-locales
- sublocale fin-kuniform-regular-hypgraph-nt \subseteq fin-dregular-hypergraph $\mathcal{V} \mathrel{E} k$ by unfold-locales

locale block-balanced-design = block-design + t-wise-balance

locale regular-block-design = block-design + constant-rep-design

sublocale t-design \subseteq block-balanced-design by unfold-locales

locale fin-kuniform-hypergraph-nt = fin-kuniform-hypergraph + fin-hypergraph-nt

sublocale fin-kuniform-regular-hypgraph-nt \subseteq fin-kuniform-hypergraph-nt $\mathcal{V} \ E \ k$ by unfold-locales

Note that block designs are defined as non-trivial and finite as they automatically build on the proper design locale

sublocale fin-kuniform-hypergraph-nt \subseteq block-design $\mathcal{V} \ E \ k$ **rewrites** point-replication-number $E \ v = h$ degree v and points-index $E \ vs =$ hdegree-set vs **using** uniform by (unfold-locales) (simp-all add: point-replication-number-def hdegree-def hdegree-set-def points-index-def E-nempty)

sublocale fin-kuniform-regular-hypgraph-nt \subseteq regular-block-design $\mathcal{V} \ E \ k \ k$ **rewrites** point-replication-number $E \ v =$ hdegree v and points-index $E \ vs =$ hdegree-set vs

using const-degree **by** (unfold-locales) (simp-all add: point-replication-number-def hdegree-def hdegree-set-def points-index-def)

2.3 Factorisations

locale d-factor = spanning-hypergraph + dregular-hypergraph $\mathcal{V}H \ EH \ d$ for d

context hypergraph begin

definition is-d-factor :: 'a hyp-graph \Rightarrow bool where is-d-factor $H \equiv (\exists d. d-factor (hyp-verts H) (hyp-edges H) V E d)$

definition *d*-factorisation :: 'a hyp-graph multiset \Rightarrow bool where *d*-factorisation $S \equiv$ hypergraph-decomposition $S \land (\forall h \in \# S. is-d$ -factor h) end

2.4 Sample Graph Theory Connections

 $\begin{array}{l} \textbf{sublocale } fin-graph-system \subseteq fin-hypersystem \ V \ mset-set \ E \\ \textbf{rewrites } hedge-adjacent = edge-adj \\ \textbf{proof } (unfold-locales) \\ \textbf{show } \land b. \ b \in \# \ mset-set \ E \implies b \subseteq V \ \textbf{using } wellformed \ fin-edges \ \textbf{by } simp \\ \textbf{then interpret } hs: \ hypersystem \ V \ mset-set \ E \\ \textbf{by } unfold-locales \ (simp \ add: \ fin-edges) \\ \textbf{show } hs.hedge-adjacent = edge-adj \\ \textbf{unfolding } hs.hedge-adjacent-def \ edge-adj-def \\ \textbf{by } (simp \ add: \ fin-edges) \\ \textbf{qed}(simp \ add: \ finV) \\ \end{array}$

```
sublocale fin-bipartite-graph \subseteq fin-hypersystem-vne V mset-set E
using X-not-empty Y-not-empty partitions-ss(2) by unfold-locales (auto)
```

end

theory Hypergraph-Basics-Root imports Hypergraph Hypergraph-Variations begin end

References

 C. Edmonds and L. C. Paulson. Combinatorial design theory. Archive of Formal Proofs, August 2021. https://isa-afp.org/entries/Design_ Theory.html, Formal proof development.