
Hypergraph Basics

Chelsea Edmonds and Lawrence C. Paulson

April 18, 2024

Abstract

This entry is a simple extension of our previous entry for Combi-
natorial design theory [1], which presents new and existing concepts
using hypergraph language. Both designs and hypergraphs are types
of incident set systems, hence have the same underlying foundation.
However, they are often used in different contexts, and some defini-
tions are as such unique. This library uses locales to rewrite equiv-
alent definitions and build a basic hypergraph hierarchy with direct
links to equivalent design theory concepts to avoid repetition, further
demonstrating the power of the “locale-centric” approach. The library
includes all standard definitions (order, degree etc.), as well as some ex-
tensions on hypergraph decompositions and spanning subhypergraphs.

Contents
1 Basic Hypergraphs 1

1.1 Sub hypergraphs . 4

2 Hypergraph Variations 5
2.1 Non-trivial hypergraphs . 6
2.2 Regular and Uniform Hypergraphs 7
2.3 Factorisations . 8
2.4 Sample Graph Theory Connections 9

1 Basic Hypergraphs
Converting Design theory to hypergraph notation. Hypergraphs have tech-
nically already been formalised
theory Hypergraph

imports
Design-Theory.Block-Designs
Design-Theory.Sub-Designs
Fishers-Inequality.Design-Extras

begin

1

lemma is-singleton-image:
is-singleton C =⇒ is-singleton (f ‘ C)
by (metis image-empty image-insert is-singletonE is-singletonI)

lemma bij-betw-singleton-image:
assumes bij-betw f A B
assumes C ⊆ A
shows is-singleton C ←→ is-singleton (f ‘ C)

proof (intro iffI)
show is-singleton C =⇒ is-singleton (f ‘ C) by (rule is-singleton-image)
show is-singleton (f ‘ C) =⇒ is-singleton C using assms is-singleton-image

by (metis bij-betw-def inv-into-image-cancel)
qed

lemma image-singleton:
assumes A 6= {}
assumes

∧
x. x ∈ A =⇒ f x = c

shows f ‘ A = {c}
using assms(1) assms(2) by blast

type-synonym colour = nat

type-synonym ′a hyp-edge = ′a set

type-synonym ′a hyp-graph = (′a set) × (′a hyp-edge multiset)

abbreviation hyp-edges :: ′a hyp-graph ⇒ ′a hyp-edge multiset where
hyp-edges H ≡ snd H

abbreviation hyp-verts :: ′a hyp-graph ⇒ ′a set where
hyp-verts H ≡ fst H

locale hypersystem = incidence-system vertices :: ′a set edges :: ′a hyp-edge multiset

for vertices (V) and edges (E)

begin

Basic definitions using hypergraph language
abbreviation horder :: nat where
horder ≡ card (V)

definition hdegree :: ′a ⇒ nat where
hdegree v ≡ size {#e ∈# E . v ∈ e #}

lemma hdegree-rep-num: hdegree v = point-replication-number E v
unfolding hdegree-def point-replication-number-def by simp

2

definition hdegree-set :: ′a set ⇒ nat where
hdegree-set vs ≡ size {#e ∈# E . vs ⊆ e#}

lemma hdegree-set-points-index: hdegree-set vs = points-index E vs
unfolding hdegree-set-def points-index-def by simp

definition hvert-adjacent :: ′a ⇒ ′a ⇒ bool where
hvert-adjacent v1 v2 ≡ ∃ e . e ∈# E ∧ v1 ∈ e ∧ v2 ∈ e ∧ v1 ∈ V ∧ v2 ∈ V

definition hedge-adjacent :: ′a hyp-edge ⇒ ′a hyp-edge ⇒ bool where
hedge-adjacent e1 e2 ≡ e1 ∩ e2 6= {} ∧ e1 ∈# E ∧ e2 ∈# E

lemma edge-adjacent-alt-def : e1 ∈# E =⇒ e2 ∈# E =⇒ ∃ x . x ∈ V ∧ x ∈ e1
∧ x ∈ e2 =⇒

hedge-adjacent e1 e2
unfolding hedge-adjacent-def by auto

definition hneighborhood :: ′a ⇒ ′a set where
hneighborhood x ≡ {v ∈ V . hvert-adjacent x v}

definition hmax-degree :: nat where
hmax-degree ≡ Max {hdegree v | v. v ∈ V}

definition hrank :: nat where
hrank ≡ Max {card e | e . e ∈# E}

definition hcorank :: nat where
hcorank = Min {card e | e . e ∈# E}

definition hedge-neighbourhood :: ′a ⇒ ′a hyp-edge multiset where
hedge-neighbourhood x ≡ {# e ∈# E . x ∈ e #}

lemma degree-alt-neigbourhood: hdegree x = size (hedge-neighbourhood x)
using hedge-neighbourhood-def by (simp add: hdegree-def)

definition hinduced-edges:: ′a set ⇒ ′a hyp-edge multiset where
hinduced-edges V ′ = {#e ∈# E . e ⊆ V ′#}

end

Sublocale for rewriting definition purposes rather than inheritance
sublocale hypersystem ⊆ incidence-system V E

rewrites point-replication-number E v = hdegree v and points-index E vs =
hdegree-set vs

by (unfold-locales) (simp-all add: hdegree-rep-num hdegree-set-points-index)

Reverse sublocale to establish equality
sublocale incidence-system ⊆ hypersystem V B
rewrites hdegree v = point-replication-number B v and hdegree-set vs = points-index
B vs

3

proof (unfold-locales)
interpret hs: hypersystem V B by (unfold-locales)
show hs.hdegree v = B rep v using hs.hdegree-rep-num by simp
show hs.hdegree-set vs = B index vs using hs.hdegree-set-points-index by simp

qed

Missing design identified in the design theory hierarchy
locale inf-design = incidence-system +

assumes blocks-nempty: bl ∈# B =⇒ bl 6= {}

sublocale design ⊆ inf-design
by unfold-locales (simp add: blocks-nempty)

locale fin-hypersystem = hypersystem + finite-incidence-system V E

sublocale finite-incidence-system ⊆ fin-hypersystem V B
by unfold-locales

locale hypergraph = hypersystem + inf-design V E

sublocale inf-design ⊆ hypergraph V B
by unfold-locales (simp add: wellformed)

locale fin-hypergraph = hypergraph + fin-hypersystem

sublocale design ⊆ fin-hypergraph V B
by unfold-locales

sublocale fin-hypergraph ⊆ design V E
using blocks-nempty by (unfold-locales) simp

1.1 Sub hypergraphs
Sub hypergraphs and related concepts (spanning hypergraphs etc)
locale sub-hypergraph = sub: hypergraph VH EH + orig: hypergraph V :: ′a set E
+

sub-set-system VH EH V E for VH EH V E

locale spanning-hypergraph = sub-hypergraph +
assumes V = VH

lemma spanning-hypergraphI : sub-hypergraph VH EH V E =⇒ V = VH =⇒
spanning-hypergraph VH EH V E

using spanning-hypergraph-def spanning-hypergraph-axioms-def by blast

context hypergraph
begin

definition is-subhypergraph :: ′a hyp-graph ⇒ bool where

4

is-subhypergraph H ≡ sub-hypergraph (hyp-verts H) (hyp-edges H) V E

lemma is-subhypergraphI :
assumes (hyp-verts H ⊆ V)
assumes (hyp-edges H ⊆# E)
assumes hypergraph (hyp-verts H) (hyp-edges H)
shows is-subhypergraph H
unfolding is-subhypergraph-def

proof −
interpret h: hypergraph hyp-verts H hyp-edges H

using assms(3) by simp
show sub-hypergraph (hyp-verts H) (hyp-edges H) V E

by (unfold-locales) (simp-all add: assms)
qed

definition hypergraph-decomposition :: ′a hyp-graph multiset ⇒ bool where
hypergraph-decomposition S ≡ (∀ h ∈# S . is-subhypergraph h) ∧

partition-on-mset E {#hyp-edges h . h ∈# S#}

definition is-spanning-subhypergraph :: ′a hyp-graph ⇒ bool where
is-spanning-subhypergraph H ≡ spanning-hypergraph (hyp-verts H) (hyp-edges H)
V E

lemma is-spanning-subhypergraphI : is-subhypergraph H =⇒ (hyp-verts H) = V
=⇒

is-spanning-subhypergraph H
unfolding is-subhypergraph-def is-spanning-subhypergraph-def using spanning-hypergraphI

by blast

lemma spanning-subhypergraphI : (hyp-verts H) = V =⇒ (hyp-edges H) ⊆# E
=⇒

hypergraph (hyp-verts H) (hyp-edges H) =⇒ is-spanning-subhypergraph H
using is-spanning-subhypergraphI by (simp add: is-subhypergraphI)

end
end

2 Hypergraph Variations
This section presents many different types of hypergraphs, introducing con-
ditions such as non-triviality, regularity, and uniform. Additionally, it briefly
formalises decompositions
theory Hypergraph-Variations

imports
Hypergraph
Undirected-Graph-Theory.Bipartite-Graphs

begin

5

2.1 Non-trivial hypergraphs
Non empty (ne) implies that the vertex (and edge) set is not empty. Non
trivial typically requires at least two edges
locale hyper-system-vne = hypersystem +

assumes V-nempty: V 6= {}

locale hyper-system-ne = hyper-system-vne +
assumes E-nempty: E 6= {#}

locale hypergraph-ne = hypergraph +
assumes E-nempty: E 6= {#}

begin

lemma V-nempty: V 6= {}
using wellformed E-nempty blocks-nempty by fastforce

lemma sizeE-not-zero: size E 6= 0
using E-nempty by auto

end

sublocale hypergraph-ne ⊆ hyper-system-ne
by (unfold-locales) (simp-all add: V-nempty E-nempty)

locale hyper-system-ns = hypersystem +
assumes V-not-single: ¬ is-singleton V

locale hypersystem-nt = hyper-system-ne + hyper-system-ns

locale hypergraph-nt = hypergraph-ne + hyper-system-ns

sublocale hypergraph-nt ⊆ hypersystem-nt
by (unfold-locales)

locale fin-hypersystem-vne = fin-hypersystem + hyper-system-vne
begin

lemma order-gt-zero: horder > 0
using V-nempty finite-sets by auto

lemma order-ge-one: horder ≥ 1
using order-gt-zero by auto

end

locale fin-hypersystem-nt = fin-hypersystem-vne + hypersystem-nt
begin

6

lemma order-gt-one: horder > 1
using V-nempty V-not-single
by (simp add: finite-sets is-singleton-altdef nat-neq-iff)

lemma order-ge-two: horder ≥ 2
using order-gt-one by auto

end

locale fin-hypergraph-ne = fin-hypergraph + hypergraph-ne

sublocale fin-hypergraph-ne ⊆ fin-hypersystem-vne
by unfold-locales

locale fin-hypergraph-nt = fin-hypergraph + hypergraph-nt

sublocale fin-hypergraph-nt ⊆ fin-hypersystem-nt
by (unfold-locales)

sublocale fin-hypergraph-ne ⊆ proper-design V E
using blocks-nempty sizeE-not-zero by unfold-locales simp

sublocale proper-design ⊆ fin-hypergraph-ne V B
using blocks-nempty design-blocks-nempty by unfold-locales simp

2.2 Regular and Uniform Hypergraphs
locale dregular-hypergraph = hypergraph +

fixes d
assumes const-degree:

∧
x. x ∈ V =⇒ hdegree x = d

locale fin-dregular-hypergraph = dregular-hypergraph + fin-hypergraph

locale kuniform-hypergraph = hypergraph +
fixes k :: nat
assumes uniform:

∧
e . e ∈# E =⇒ card e = k

locale fin-kuniform-hypergraph = kuniform-hypergraph + fin-hypergraph

locale almost-regular-hypergraph = hypergraph +
assumes

∧
x y . x ∈ V =⇒ y ∈ V =⇒ | hdegree x − hdegree y | ≤ 1

locale kuniform-regular-hypgraph = kuniform-hypergraph V E k + dregular-hypergraph
V E k

for V E k

locale fin-kuniform-regular-hypgraph-nt = kuniform-regular-hypgraph V E k +

7

fin-hypergraph-nt V E
for V E k

sublocale fin-kuniform-regular-hypgraph-nt ⊆ fin-kuniform-hypergraph V E k
by unfold-locales

sublocale fin-kuniform-regular-hypgraph-nt ⊆ fin-dregular-hypergraph V E k
by unfold-locales

locale block-balanced-design = block-design + t-wise-balance

locale regular-block-design = block-design + constant-rep-design

sublocale t-design ⊆ block-balanced-design
by unfold-locales

locale fin-kuniform-hypergraph-nt = fin-kuniform-hypergraph + fin-hypergraph-nt

sublocale fin-kuniform-regular-hypgraph-nt ⊆ fin-kuniform-hypergraph-nt V E k
by unfold-locales

Note that block designs are defined as non-trivial and finite as they
automatically build on the proper design locale
sublocale fin-kuniform-hypergraph-nt ⊆ block-design V E k

rewrites point-replication-number E v = hdegree v and points-index E vs =
hdegree-set vs

using uniform by (unfold-locales)
(simp-all add: point-replication-number-def hdegree-def hdegree-set-def points-index-def

E-nempty)

sublocale fin-kuniform-regular-hypgraph-nt ⊆ regular-block-design V E k k
rewrites point-replication-number E v =hdegree v and points-index E vs =

hdegree-set vs
using const-degree by (unfold-locales)
(simp-all add: point-replication-number-def hdegree-def hdegree-set-def points-index-def)

2.3 Factorisations
locale d-factor = spanning-hypergraph + dregular-hypergraph VH EH d for d

context hypergraph
begin

definition is-d-factor :: ′a hyp-graph ⇒ bool where
is-d-factor H ≡ (∃ d. d-factor (hyp-verts H) (hyp-edges H) V E d)

definition d-factorisation :: ′a hyp-graph multiset ⇒ bool where
d-factorisation S ≡ hypergraph-decomposition S ∧ (∀ h ∈# S . is-d-factor h)
end

8

2.4 Sample Graph Theory Connections
sublocale fin-graph-system ⊆ fin-hypersystem V mset-set E

rewrites hedge-adjacent = edge-adj
proof (unfold-locales)

show
∧

b. b ∈# mset-set E =⇒ b ⊆ V using wellformed fin-edges by simp
then interpret hs: hypersystem V mset-set E

by unfold-locales (simp add: fin-edges)
show hs.hedge-adjacent = edge-adj

unfolding hs.hedge-adjacent-def edge-adj-def
by (simp add: fin-edges)

qed(simp add: finV)

sublocale fin-bipartite-graph ⊆ fin-hypersystem-vne V mset-set E
using X-not-empty Y-not-empty partitions-ss(2) by unfold-locales (auto)

end
theory Hypergraph-Basics-Root

imports
Hypergraph
Hypergraph-Variations

begin
end

References
[1] C. Edmonds and L. C. Paulson. Combinatorial design theory. Archive

of Formal Proofs, August 2021. https://isa-afp.org/entries/Design_
Theory.html, Formal proof development.

9

https://isa-afp.org/entries/Design_Theory.html
https://isa-afp.org/entries/Design_Theory.html

	Basic Hypergraphs
	Sub hypergraphs

	Hypergraph Variations
	Non-trivial hypergraphs
	Regular and Uniform Hypergraphs
	Factorisations
	Sample Graph Theory Connections

