Hypergraph Basics

Chelsea Edmonds and Lawrence C. Paulson

April 18, 2024

Abstract

This entry is a simple extension of our previous entry for Combinatorial design theory [1], which presents new and existing concepts using hypergraph language. Both designs and hypergraphs are types of incident set systems, hence have the same underlying foundation. However, they are often used in different contexts, and some definitions are as such unique. This library uses locales to rewrite equivalent definitions and build a basic hypergraph hierarchy with direct links to equivalent design theory concepts to avoid repetition, further demonstrating the power of the "locale-centric" approach. The library includes all standard definitions (order, degree etc.), as well as some extensions on hypergraph decompositions and spanning subhypergraphs.

Contents

1 Basic Hypergraphs 1
1.1 Sub hypergraphs 4
2 Hypergraph Variations 5
2.1 Non-trivial hypergraphs 6
2.2 Regular and Uniform Hypergraphs 7
2.3 Factorisations 8
2.4 Sample Graph Theory Connections 9

1 Basic Hypergraphs

Converting Design theory to hypergraph notation. Hypergraphs have technically already been formalised

theory Hypergraph
imports
Design-Theory.Block-Designs
Design-Theory.Sub-Designs
Fishers-Inequality.Design-Extras
begin

```
lemma is-singleton-image:
    is-singleton \(C \Longrightarrow i s\)-singleton \(\left(f^{\prime} C\right)\)
    by (metis image-empty image-insert is-singletonE is-singletonI)
lemma bij-betw-singleton-image:
    assumes bij-betw \(f A B\)
    assumes \(C \subseteq A\)
    shows is-singleton \(C \longleftrightarrow\) is-singleton \(\left(f^{\prime} C\right)\)
proof (intro iffI)
    show is-singleton \(C \Longrightarrow i s\)-singleton \(\left(f^{\prime} C\right)\) by (rule is-singleton-image)
    show is-singleton \(\left(f^{\prime} C\right) \Longrightarrow\) is-singleton \(C\) using assms is-singleton-image
        by (metis bij-betw-def inv-into-image-cancel)
qed
lemma image-singleton:
    assumes \(A \neq\{ \}\)
    assumes \(\bigwedge x . x \in A \Longrightarrow f x=c\)
    shows \(f^{\prime} A=\{c\}\)
    using assms(1) assms(2) by blast
type-synonym colour \(=\) nat
type-synonym 'a hyp-edge \(=\) 'a set
type-synonym 'a hyp-graph \(=\left({ }^{\prime} a\right.\) set \() \times\left({ }^{\prime} a\right.\) hyp-edge multiset \()\)
abbreviation hyp-edges :: 'a hyp-graph \(\Rightarrow\) ' \(a\) hyp-edge multiset where
    hyp-edges \(H \equiv\) snd \(H\)
abbreviation hyp-verts :: 'a hyp-graph \(\Rightarrow\) 'a set where
    hyp-verts \(H \equiv\) fst \(H\)
locale hypersystem \(=\) incidence-system vertices :: 'a set edges :: 'a hyp-edge multiset
    for vertices \((\mathcal{V})\) and edges \((E)\)
begin
    Basic definitions using hypergraph language
abbreviation horder :: nat where
horder \(\equiv \operatorname{card}(\mathcal{V})\)
definition hdegree :: ' \(a \Rightarrow\) nat where
\(h d e g r e e ~ v \equiv\) size \(\{\# e \in \# E . v \in e \#\}\)
lemma hdegree-rep-num: hdegree \(v=\) point-replication-number \(E v\)
    unfolding hdegree-def point-replication-number-def by simp
```

definition hdegree-set :: 'a set \Rightarrow nat where

$$
\text { hdegree-set vs } \equiv \text { size }\{\# e \in \# E . v s \subseteq e \#\}
$$

lemma hdegree-set-points-index: hdegree-set vs = points-index Evs unfolding hdegree-set-def points-index-def by simp
definition hvert-adjacent $::$ ' $a \Rightarrow$ ' $a \Rightarrow$ bool where
hvert-adjacent v1 v2 $\equiv \exists e . e \in \# E \wedge v 1 \in e \wedge v 2 \in e \wedge v 1 \in \mathcal{V} \wedge v 2 \in \mathcal{V}$
definition hedge-adjacent :: 'a hyp-edge \Rightarrow 'a hyp-edge \Rightarrow bool where
hedge-adjacent e1 $e 2 \equiv e 1 \cap e 2 \neq\{ \} \wedge e 1 \in \# E \wedge e 2 \in \# E$
lemma edge-adjacent-alt-def: e1 $\in \# E \Longrightarrow e 2 \in \# E \Longrightarrow \exists x \cdot x \in \mathcal{V} \wedge x \in e 1$ $\wedge x \in e 2 \Longrightarrow$
hedge-adjacent e1 e2
unfolding hedge-adjacent-def by auto
definition hneighborhood $::$ ' $a \Rightarrow$ 'a set where
hneighborhood $x \equiv\{v \in \mathcal{V}$. hvert-adjacent $x v\}$
definition hmax-degree :: nat where
hmax-degree $\equiv \operatorname{Max}\{$ hdegree $v \mid v . v \in \mathcal{V}\}$
definition hrank :: nat where
hrank $\equiv \operatorname{Max}\{$ card $e \mid e . e \in \# E\}$
definition hcorank :: nat where
hcorank $=\operatorname{Min}\{$ card $e \mid e \cdot e \in \# E\}$
definition hedge-neighbourhood :: ' $a \Rightarrow$ 'a hyp-edge multiset where
hedge-neighbourhood $x \equiv\{\# e \in \# E . x \in e \#\}$
lemma degree-alt-neigbourhood: hdegree $x=$ size (hedge-neighbourhood x)
using hedge-neighbourhood-def by (simp add: hdegree-def)
definition hinduced-edges:: 'a set $\Rightarrow{ }^{\prime}$ 'a hyp-edge multiset where
hinduced-edges $V^{\prime}=\left\{\# e \in \# E . e \subseteq V^{\prime} \#\right\}$
end
Sublocale for rewriting definition purposes rather than inheritance
sublocale hypersystem \subseteq incidence-system $\mathcal{V} E$
rewrites point-replication-number $E v=h$ degree v and points-index $E v s=$

hdegree-set vs

by (unfold-locales) (simp-all add: hdegree-rep-num hdegree-set-points-index)
Reverse sublocale to establish equality
sublocale incidence-system \subseteq hypersystem $\mathcal{V} \mathcal{B}$
rewrites hdegree $v=$ point-replication-number $\mathcal{B} v$ and hdegree-set $v s=$ points-index \mathcal{B} vs

```
proof (unfold-locales)
    interpret hs: hypersystem \mathcal{V B by (unfold-locales)}
    show hs.hdegree v}=\mathcal{B}\mathrm{ rep v using hs.hdegree-rep-num by simp
    show hs.hdegree-set vs =\mathcal{B}}\mathrm{ index vs using hs.hdegree-set-points-index by simp
qed
```

 Missing design identified in the design theory hierarchy
 locale inf-design $=$ incidence-system +
assumes blocks-nempty: $b l \in \# \mathcal{B} \Longrightarrow b l \neq\{ \}$
sublocale design $\subseteq i n f-$-design
by unfold-locales (simp add: blocks-nempty)
locale fin-hypersystem $=$ hypersystem + finite-incidence-system $\mathcal{V} E$
sublocale finite-incidence-system \subseteq fin-hypersystem $\mathcal{V} \mathcal{B}$
by unfold-locales
locale hypergraph $=$ hypersystem + inf-design $\mathcal{V} E$
sublocale inf-design \subseteq hypergraph $\mathcal{V} \mathcal{B}$
by unfold-locales (simp add: wellformed)
locale fin-hypergraph $=$ hypergraph + fin-hypersystem
sublocale design \subseteq fin-hypergraph $\mathcal{V} \mathcal{B}$
by unfold-locales
sublocale fin-hypergraph \subseteq design $\mathcal{V} E$
using blocks-nempty by (unfold-locales) simp

1.1 Sub hypergraphs

Sub hypergraphs and related concepts (spanning hypergraphs etc)
locale sub-hypergraph $=$ sub: hypergraph $\mathcal{V} H E H+$ orig: hypergraph $\mathcal{V}::$ 'a set E $+$ sub-set-system $\mathcal{V} H E H \mathcal{V} E$ for $\mathcal{V} H E H \mathcal{V} E$
locale spanning-hypergraph $=$ sub-hypergraph + assumes $\mathcal{V}=\mathcal{V} H$
lemma spanning-hypergraphI: sub-hypergraph $V H E H V E \Longrightarrow V=V H \Longrightarrow$ spanning-hypergraph $V H E H V E$
using spanning-hypergraph-def spanning-hypergraph-axioms-def by blast
context hypergraph
begin
definition is-subhypergraph :: 'a hyp-graph \Rightarrow bool where

```
is-subhypergraph H \equiv sub-hypergraph (hyp-verts H) (hyp-edges H)\mathcal{V}E
lemma is-subhypergraphI:
    assumes (hyp-verts H\subseteq\mathcal{V})
    assumes (hyp-edges H\subseteq# E)
    assumes hypergraph (hyp-verts H) (hyp-edges H)
    shows is-subhypergraph H
    unfolding is-subhypergraph-def
proof -
    interpret h: hypergraph hyp-verts H hyp-edges H
        using assms(3) by simp
    show sub-hypergraph (hyp-verts H) (hyp-edges H) \mathcal{V E}
        by (unfold-locales) (simp-all add: assms)
qed
definition hypergraph-decomposition :: 'a hyp-graph multiset }=>\mathrm{ bool where
hypergraph-decomposition S \equiv(\forallh\in#S . is-subhypergraph h)^
    partition-on-mset E {#hyp-edges h.h\in#S#}
definition is-spanning-subhypergraph :: 'a hyp-graph }=>\mathrm{ bool where
is-spanning-subhypergraph H \equiv spanning-hypergraph (hyp-verts H) (hyp-edges H)
\mathcal{V}E
lemma is-spanning-subhypergraphI: is-subhypergraph H (hyp-verts H)=\mathcal{V}
\Longrightarrow
        is-spanning-subhypergraph H
    unfolding is-subhypergraph-def is-spanning-subhypergraph-def using spanning-hypergraphI
by blast
lemma spanning-subhypergraphI: (hyp-verts H)=\mathcal{V}\Longrightarrow(hyp-edges H)\subseteq#E
\Longrightarrow
    hypergraph (hyp-verts H) (hyp-edges H)\Longrightarrow is-spanning-subhypergraph H
    using is-spanning-subhypergraphI by (simp add: is-subhypergraphI)
end
end
```


2 Hypergraph Variations

This section presents many different types of hypergraphs, introducing conditions such as non-triviality, regularity, and uniform. Additionally, it briefly formalises decompositions

```
theory Hypergraph-Variations
    imports
        Hypergraph
        Undirected-Graph-Theory.Bipartite-Graphs
begin
```


2.1 Non-trivial hypergraphs

Non empty (ne) implies that the vertex (and edge) set is not empty. Non trivial typically requires at least two edges
locale hyper-system-vne $=$ hypersystem + assumes V-nempty: $\mathcal{V} \neq\{ \}$
locale hyper-system-ne $=$ hyper-system-vne + assumes E-nempty: $E \neq\{\#\}$
locale hypergraph-ne $=$ hypergraph + assumes E-nempty: $E \neq\{\#\}$
begin
lemma V-nempty: $\mathcal{V} \neq\{ \}$ using wellformed E-nempty blocks-nempty by fastforce
lemma sizeE-not-zero: size $E \neq 0$ using E-nempty by auto
end
sublocale hypergraph-ne \subseteq hyper-system-ne
by (unfold-locales) (simp-all add: V-nempty E-nempty)
locale hyper-system-ns $=$ hypersystem + assumes V-not-single: $\neg i$-singleton \mathcal{V}
locale hypersystem-nt $=$ hyper-system-ne + hyper-system-ns
locale hypergraph-nt $=$ hypergraph-ne + hyper-system-ns
sublocale hypergraph-nt \subseteq hypersystem-nt by (unfold-locales)
locale fin-hypersystem-vne $=$ fin-hypersystem + hyper-system-vne begin
lemma order-gt-zero: horder >0
using V-nempty finite-sets by auto
lemma order-ge-one: horder ≥ 1
using order-gt-zero by auto
end
locale fin-hypersystem-nt $=$ fin-hypersystem-vne + hypersystem-nt begin

```
lemma order-gt-one: horder > 1
    using V-nempty V-not-single
    by (simp add: finite-sets is-singleton-altdef nat-neq-iff)
lemma order-ge-two: horder \geq2
    using order-gt-one by auto
end
locale fin-hypergraph-ne = fin-hypergraph + hypergraph-ne
sublocale fin-hypergraph-ne }\subseteq\mathrm{ fin-hypersystem-vne
    by unfold-locales
locale fin-hypergraph-nt = fin-hypergraph + hypergraph-nt
sublocale fin-hypergraph-nt }\subseteq\mathrm{ fin-hypersystem-nt
    by (unfold-locales)
sublocale fin-hypergraph-ne \subseteq proper-design \mathcal{V E}
    using blocks-nempty sizeE-not-zero by unfold-locales simp
sublocale proper-design }\subseteq\mathrm{ fin-hypergraph-ne }\mathcal{V}\mathcal{B
    using blocks-nempty design-blocks-nempty by unfold-locales simp
```


2.2 Regular and Uniform Hypergraphs

```
locale dregular-hypergraph \(=\) hypergraph +
    fixes d
```



```
locale fin-dregular-hypergraph = dregular-hypergraph + fin-hypergraph
locale kuniform-hypergraph = hypergraph +
    fixes }k:: na
    assumes uniform: \ e.e\in# E\Longrightarrowcard e=k
locale fin-kuniform-hypergraph = kuniform-hypergraph + fin-hypergraph
locale almost-regular-hypergraph = hypergraph }
    assumes }\xy.x\in\mathcal{V}\Longrightarrowy\in\mathcal{V}\Longrightarrow| hdegree x - hdegree y | \leq 1
locale kuniform-regular-hypgraph = kuniform-hypergraph \mathcal{V}Ek+dregular-hypergraph
\mathcal{V}Ek
    for }\mathcal{V}E
locale fin-kuniform-regular-hypgraph-nt = kuniform-regular-hypgraph \mathcal{V E k}+
```

fin-hypergraph-nt $\mathcal{V} E$
for $\mathcal{V} E k$
sublocale fin-kuniform-regular-hypgraph-nt \subseteq fin-kuniform-hypergraph $\mathcal{V} E k$
by unfold-locales
sublocale fin-kuniform-regular-hypgraph-nt \subseteq fin-dregular-hypergraph $\mathcal{V} E k$
by unfold-locales
locale block-balanced-design $=$ block-design $+t$-wise-balance
locale regular-block-design $=$ block-design + constant-rep-design
sublocale t-design \subseteq block-balanced-design
by unfold-locales
locale fin-kuniform-hypergraph-nt $=$ fin-kuniform-hypergraph + fin-hypergraph-nt
sublocale fin-kuniform-regular-hypgraph-nt \subseteq fin-kuniform-hypergraph-nt $\mathcal{V} E k$ by unfold-locales

Note that block designs are defined as non-trivial and finite as they automatically build on the proper design locale
sublocale fin-kuniform-hypergraph-nt \subseteq block-design $\mathcal{V} E k$
rewrites point-replication-number $E v=h d e g r e e ~ v a n d ~ p o i n t s-i n d e x ~ E v s=$ hdegree-set vs
using uniform by (unfold-locales)
(simp-all add: point-replication-number-def hdegree-def hdegree-set-def points-index-def
E-nempty)
sublocale fin-kuniform-regular-hypgraph-nt \subseteq regular-block-design $\mathcal{V} E k k$
rewrites point-replication-number $E v=h d e g r e e ~ v a n d$ points-index E vs $=$ $h d e g r e e-s e t ~ v s$
using const-degree by (unfold-locales)
(simp-all add: point-replication-number-def hdegree-def hdegree-set-def points-index-def)

2.3 Factorisations

locale d-factor $=$ spanning-hypergraph + dregular-hypergraph $\mathcal{V} H E H d$ for d

context hypergraph

begin
definition is-d-factor :: 'a hyp-graph \Rightarrow bool where
is-d-factor $H \equiv(\exists$ d. d-factor (hyp-verts $H)($ hyp-edges $H) \mathcal{V} E d)$
definition d-factorisation :: 'a hyp-graph multiset \Rightarrow bool where d-factorisation $S \equiv$ hypergraph-decomposition $S \wedge(\forall h \in \# S$. is-d-factor $h)$ end

2.4 Sample Graph Theory Connections

```
sublocale fin-graph-system \subseteq fin-hypersystem V mset-set E
    rewrites hedge-adjacent = edge-adj
proof (unfold-locales)
    show \}\b.b\in# mset-set E\Longrightarrowb\subseteqV using wellformed fin-edges by sim
    then interpret hs: hypersystem V mset-set E
        by unfold-locales (simp add: fin-edges)
    show hs.hedge-adjacent = edge-adj
        unfolding hs.hedge-adjacent-def edge-adj-def
        by (simp add: fin-edges)
qed(simp add: finV)
sublocale fin-bipartite-graph }\subseteq\mathrm{ fin-hypersystem-vne V mset-set E
    using X-not-empty Y-not-empty partitions-ss(2) by unfold-locales (auto)
end
theory Hypergraph-Basics-Root
    imports
        Hypergraph
        Hypergraph-Variations
begin
end
```


References

[1] C. Edmonds and L. C. Paulson. Combinatorial design theory. Archive of Formal Proofs, August 2021. https://isa-afp.org/entries/Design_ Theory.html, Formal proof development.

