Formalizing a Seligman-Style Tableau System for
Hybrid Logic

Asta Halkjr From

October 24, 2020

Abstract

This work is a formalization of soundness and completeness proofs
for a Seligman-style tableau system for hybrid logic. The complete-
ness result is obtained via a synthetic approach using maximally con-
sistent sets of tableau blocks. The formalization differs from previous
work [1, 2] in a few ways. First, to avoid the need to backtrack in
the construction of a tableau, the formalized system has no unnamed
initial segment, and therefore no Name rule. Second, I show that the
full Bridge rule is admissible in the system. Third, I start from rules
restricted to only extend the branch with new formulas, including only
witnessing diamonds that are not already witnessed, and show that
the unrestricted rules are admissible. Similarly, I start from simpler
versions of the @-rules and show that these are sufficient. The GoTo
rule is restricted using a notion of potential such that each application
consumes potential and potential is earned through applications of the
remaining rules. I show that if a branch can be closed then it can be
closed starting from a single unit. Finally, Nom is restricted by a fixed
set of allowed nominals. The resulting system should be terminating.

Preamble

The formalization was part of the author’s MSc thesis in Computer Science
and Engineering at the Technical University of Denmark (DTU).

Supervisors:
e Jrgen Villadsen
e Alexander Birch Jensen (co-supervisor)

e Patrick Blackburn (Roskilde University, external supervisor)

Contents

1 Syntax 3
2 Semantics 4
2.1 Examples 4

3 Tableau 5
4 Soundness 7
5 No Detours 8
5.1 Free GoTo 9

6 Indexed Mapping 9
6.1 Indexing 9
6.2 Mapping 10

7 Duplicate Formulas 12
7.1 Removable indices 12
7.2 Omitting formulas L. 13
7.3 Induction 16
7.4 Unrestricted rules o 16

8 Substitution 17
8.1 Unrestricted (Q)ruleo oo 20

9 Structural Properties 20
10 Bridge 22
10.1 Replacing o oo 22
10.2 Descendantso 23
10.3 Induction e 25
10.4 Derivation e 25
11 Completeness 25
11.1 Hintikka 25
11.1.1 Named model 27

11.2 Lindenbaum-Henkin 29
11.2.1 Conmsistency o 30

11.2.2 Maximality 32

11.2.3 Saturation 32

11.3 Smullyan-Fitting 33
11.4 Result e 33
References 34

theory Hybrid-Logic imports HOL— Library. Countable begin

1 Syntax

datatype (‘a, 'b) fm
= Pro 'a
| Nom b
| Neg «("a, 'b) fm) (<= - [40] 40)
| Dis «(("a, 'b) fmy «('a, 'b) fm (infixr V) 30)
| Dia «("a, 'b) fmy (<<> - 10)
| Sat ' <(a, 'b) fmy ((@ - - 10)

We can give other connectives as abbreviations.

abbreviation Top («T)) where
(T = (undefined V — undefined))

abbreviation Con (infixr (A) 35) where
PpANg=-(0pV g

abbreviation Imp (infixr (— 25) where
p—>q==(pA—gq)

abbreviation Box (<O - 10) where
Op=-(0—p)

primrec nominals :: (("a, 'b) fm = 'b set) where
(nominals (Pro z) = {h

| (nominals (Nom i) = {i}p

| (nominals (- p) = nominals p>

| (nominals (p V q) = nominals p U nominals ¢

| (nominals (O p) = nominals p)

| (nominals (@Q i p) = {i} U nominals p

primrec sub :: (b = ‘¢c) = (‘a, 'b) fm = (‘a, 'c) fm) where
(sub - (Pro x) = Pro o

| <sub f (Nom i) = Nom (f i)

| sub f (= p) = (= sub [p)

| <sub f (pV q) = (subfpV subfq)

| sub f (O p) = (O sub fp)

[sub f (@i p) = (@ (i) (sub fp))

lemma sub-nominals: (nominals (sub f p) = f ‘ nominals p»
(proof)

lemma sub-id: (sub id p = p
(proof)

lemma sub-upd-fresh: ¢ ¢ nominals p = sub (f(i := 7)) p = sub fp
(proof)

2 Semantics

Type variable ‘w stands for the set of worlds and 'a for the set of proposi-
tional symbols. The accessibility relation is given by R and the valuation
by V. The mapping from nominals to worlds is an extra argument g to the
semantics.
datatype (‘w, ‘a) model =

Model (R: Jw = 'w set)) (V: dw = 'a = bool))

primrec semantics
= ("w, 'a) model = (b = 'w) = 'w = ('a, 'b) fm = bool
(-, - - E = [50, 50, 50] 50) where
(M, -, wkE Proz)=VMuwaz

(-, 9, w E Nom i) = (w = g i)

(M, g,wkE=p) =M g wkEp)

(

(

(

(M, g,wE=Op)=EveERMw M, g, v p)
M,g,—'z@ip)Z(M,g,gZ’:p)>

lemma (M, g, w = T
(proof)

lemma semantics-fresh:
@ ¢ nominals p = (M, g, w E p) = (M, g(i :==v), w = p)
(proof)

2.1 Examples

abbreviation is-named :: ('w, 'b) model = bool) where
us-named M =Vw. Ja. VMa=w

abbreviation reflezive :: (('w, 'b) model = bool) where
(reflexive M =Vw. w € R M w

abbreviation irreflezive :: ('w, 'b) model = bool) where
arreflexive M =Vw. w ¢ R M w»

abbreviation symmetric :: (‘w, 'b) model = bool) where
(symmetric M =Vow. w € RMv+—veRMuw

abbreviation asymmetric :: ('w, 'b) model = bool) where
asymmetric M =Vow. ~(w e RMv AveRMuw)

abbreviation transitive :: (‘w, 'b) model = bool) where
(transitive M =Vowz. we RMvAz e RMw —z€ RMw

abbreviation universal :: (‘w, 'b) model = bool) where
(universal M =Vvw. v € R M w

lemma crreflezive M = M, g, w = @Q i = (O Nom i)
(proof)
We can automatically show some characterizations of frames by pure axioms.
lemma drreflezive M = (Vg w. M, g, w = @ i = (O Nom i))
(proof)

lemma (asymmetric M = Vgw. M, g, w = @ ¢ (O = (O Nom i)))
(proof)

lemma (universal M = (Vg w. M, g, w = O Nom i)
{proof)

3 Tableau

A block is defined as a list of formulas paired with an opening nominal. The
opening nominal is not necessarily in the list. A branch is a list of blocks.

type-synonym (‘a, 'b) block = «('a, 'b) fm list x b
type-synonym ('a, 'b) branch = (’a, 'b) block list)

abbreviation member-list :: <a = 'a list = booly («- €. - [51, 51] 50) where
(x €. 18 = x € set x8)

The predicate on presents the opening nominal as appearing on the block.

primrec on :: (‘a, 'b) fm = ('a, 'b) block = bool> (- on - [51, 51] 50) where
(p on (ps, i) = (p €. ps V p = Nom i)

syntax
-Ballon :: (pttrn = 'a set = bool = booly («(3V (-/on-)./ -)» [0, 0, 10] 10)
-Bezxon :: (pttrn = 'a set = bool = bool) («(33(-/on-)./ -)» [0, 0, 10] 10)

translations
VponA. P =~Vp.pon A — P
dponA. P —3dp.pon AN P

abbreviation list-nominals :: (‘a, 'b) fm list = 'b set) where
dist-nominals ps = (Up € set ps. nominals p))

primrec block-nominals :: ((‘a, 'b) block = 'b set) where
(block-nominals (ps, i) = {i} U list-nominals ps

definition branch-nominals :: ((‘a, 'b) branch = 'b set) where
(branch-nominals branch = (| block € set branch. block-nominals block))

abbreviation at-in-branch :: «(‘a, 'b) fm = 'b = (‘a, 'b) branch = bool> where
(at-in-branch p a branch = Ips. (ps, a) €. branch A p on (ps, a)

notation at-in-branch (- at - in - [51, 51, 51] 50)

definition new :: «(‘a, 'd) fm = 'b = ('a, 'b) branch = bool) where
(mew p a branch = — p at a in branch

definition witnessed :: (("a, 'b) fm = 'b = (‘a, 'b) branch = bool) where
(witnessed p a branch = 3i. (Q i p) at a in branch A (O Nom i) at a in branch

A branch has a closing tableau iff it is contained in the following inductively
defined set. In that case I call the branch closeable. The first argument on
the left of the turnstile, A, is a fixed set of nominals restricting Nom. This
set rules out the copying of nominals and accessibility formulas introduced
by DiaP. The second argument is ” potential”, used to restrict the GoTo rule.

inductive STA :: (b set = nat = ('a, 'b) branch = bool) («-, - F - [50, 50, 50]
50)
for A :: b set) where
Close:
(p at i in branch = (= p) at i in branch =
A, n F branch)
| Neg:
(= = p) at ain (ps, a) # branch =
new p a ((ps, a) # branch) =
A, Suc n - (p # ps, a) # branch =
A, nt (ps, a) # branch
| DisP:
(pV q) at ain (ps, a) # branch =
new p a ((ps, a) # branch) = new q a ((ps, a) # branch) =
A, Sucn b (p # ps, a) # branch = A, Suc n F (¢ # ps, a) # branch =
A, nt (ps, a) # branch
| DisN:
(= (pV q) at ain (ps, a) # branch =
new (— p) a ((ps, a) # branch) V new (= q) a ((ps, a) # branch) =
A, Sucnk (= q) # (- p) # ps, a) # branch =
A, nt (ps, a) # branch
| DiaP:
(O p) at ain (ps, a) # branch =
i ¢ A U branch-nominals ((ps, a) # branch) =
Ba. p = Nom a = — witnessed p a ((ps, a) # branch) =
A, Sucn - ((@Qip) # (O Nom i) # ps, a) # branch =
A, nt (ps, a) # branch
| DiaN:
(= (O p)) at ain (ps, a) # branch =
(O Nom i) at a in (ps, a) # branch =
new (— (Q i p)) a ((ps, a) # branch) =
A, Sucn - (- (Qip)) # ps, a) # branch =
A, nt (ps, a) # branch
| SatP:
(@ ap) at bin (ps, a) # branch =
new p a ((ps, a) # branch) =

A, Sucn b (p # ps, a) # branch =
A, nF (ps, a) # branch
| SatN:
(= (@ ap)) at b in (ps, a) # branch =
new (- p) a ((ps, a) # branch) =
A, Sucnt ((— p) # ps, a) # branch =
A, nF (ps, a) # branch
| GoTo:
(1 € branch-nominals branch —
A, nt (], i) # branch =
A, Suc n = branch)
| Nom:
(p at b in (ps, a) # branch = Nom a at b in (ps, a) # branch —
Vi.p=NomiVp=(0Nomi) —icAdA=
new p a ((ps, a) # branch) =
A, Sucn b (p # ps, a) # branch =
A, nt (ps, a) # branch

abbreviation STA-ez-potential :: ('b set = (‘a, 'b) branch = bool (- - [50,
50] 50) where
(A F branch = 3dn. A, n - branch)

lemma STA-Suc: (A, n F branch = A, Suc n - branch)
(proof)

A verified derivation in the calculus.

lemma
fixes ¢
defines (p = — (@ ¢ (Nom 7))
shows (A4, Suc n F [([p], a)]
(proof)

4 Soundness

An i-block is satisfied by a model M and assignment ¢ if all formulas on the
block are true under M at the world ¢ ¢ A branch is satisfied by a model
and assignment if all blocks on it are.
primrec block-sat :: «('w, 'a) model = ('b = 'w) = ('a, 'b) block = bool>

(-, - EB - [50, 50] 50) where

(M, g g (ps, i) = (Ypon (ps,i). M, g, giF p)

abbreviation branch-sat ::
("w, 'a) model = (b = 'w) = (‘a, 'b) branch = bool
(¢, - Ee ~ [50, 50] 50) where
(M, g Eeo branch =¥ (ps, i) € set branch. M, g =5 (ps, i)

lemma block-nominals:
(p on block = 1 € nominals p = i € block-nominals block)

{proof)

lemma block-sat-fresh:
assumes (M, g =g block) i ¢ block-nominals block)
shows (M, g(i := v) =p block

{proof)

lemma branch-sat-fresh:
assumes (M, g o branch) < ¢ branch-nominals branch)
shows (M, g(i :== v) =e branch)

(proof)

If a branch has a derivation then it cannot be satisfied.

lemma soundness’: (A, n - branch = M, g Eeo branch = False)
(proof)

lemma block-sat: v p on block. M, g, w E p = M, g Ep block)
(proof)

lemma branch-sat:
assumes (ps, i) € set branch. Vp on (ps, i). M, g, w = p
shows (M, g e branch)

(proof)

lemma soundness:
assumes (A, n F branch)
shows G block € set branch. 3p on block. - M, g, w E p

(proof)

corollary (= A, n - [
{proof)

theorem soundness-fresh:
assumes (A, n = [([- p], ©)] < ¢ nominals p
shows (M, g, w E p

(proof)

5 No Detours

We only need to spend initial potential when we apply GoTo twice in a row.
Otherwise another rule will have been applied in-between that justifies the
GoTo. Therefore, by filtering out detours we can close any closeable branch
starting from a single unit of potential.

primrec nonempty :: «(('a, 'b) block = bool> where
(monempty (ps, i) = (ps # [|)

lemma nonempty-Suc:

assumes
(A, n b (ps, a) # filter nonempty left Q right
(q at a in (ps, a) # filter nonempty left @ right> (¢ # Nom
shows (A, Suc n & filter nonempty ((ps, a) # left) Q right)

(proof)

lemma STA-nonempty:
(A, n F left Q right = A, Suc m & filter nonempty left @Q right

(proof)

theorem STA-potential: (A, n & branch = A, Suc m + branch
(proof)

corollary STA-one: (A, n F branch = A, 1 + branch
(proof)

5.1 Free GoTo

The above result allows us to prove a version of GoTo that works ”for free.”

lemma GoTo":
assumes (A, Suc n b ([], i) # branch) ¢ € branch-nominals branch)
shows (A, Suc n = branch

{proof)

6 Indexed Mapping

This section contains some machinery for showing admissible rules.

6.1 Indexing

We use pairs of natural numbers to index into the branch. The first compo-
nent specifies the block and the second specifies the formula on that block.
We index from the back to ensure that indices are stable under the addition
of new formulas and blocks.

primrec rev-nth :: (a list = nat = 'a option) (infixl (. 100) where
(' v = None
| (z # xzs) . v = (if length xs = v then Some x else zs |. v)

lemma rev-nth-last: «xs !. 0 = Some v = last zs =)
(proof)

lemma rev-nth-zero: «(zs @Q [z]) !. 0 = Some
{proof)

lemma rev-nth-snoc: (zs @ [z]) I. Suc v = Some y = xs |. v = Some ¥
{proof)

lemma rev-nth-Suc: «(zs @ [z]) !. Suc v = zs |. v
{proof)

lemma rev-nth-bounded: «w < length rs =—> Jx. xs . v = Some)
(proof)

lemma rev-nth-Cons: xs . v = Some y = (x # xs) l. v = Some y
(proof)

lemma rev-nth-append: s !. v = Some y = (ys Q zs) . v = Some y
(proof)

lemma rev-nth-mem: (block €. branch <— (Jv. branch !. v = Some block)

(proof)

lemma rev-nth-on: (p on (ps, i) +— (Fv. ps I. v = Some p) V p = Nom »
(proof)

lemma rev-nth-Some: <xs !. v = Some y = v < length xs)

(proof)

lemma index-Cons:

assumes (((ps, a) # branch) . v = Some (gs, b)) <gs |. v/ = Some @

shows J¢s’. ((p # ps, a) # branch) . v = Some (gs’, b) A ¢s’!. v/ = Some ¢
(proof)

6.2 Mapping

primrec mapi :: (nat = ‘a = 'b) = 'a list = 'b list» where
cmapi f [] = [}
| cmapi f (x # xzs) = [(length xzs) z # mapi f zs)

primrec mapi-block ::
(nat = ('a, 'b) fm = (‘a, 'b) fm) = (('a, ') block = ('a, 'b) block)> where
(mapi-block f (ps, i) = (mapi f ps, i)

definition mapi-branch ::

(nat = nat = (‘a, ') fm = (‘a, 'b) fm) = (("a, 'b) branch = (‘a, 'b) branch))
where

(mapi-branch f branch = mapi (Av. mapi-block (f v)) branch

abbreviation mapper :
«(('a, 'b) fm = ('a, 'b) fm) =
(nat x nat) set = nat = nat = (‘a, 'b) fm = (‘a, 'b) fm where
(mapper fxs v v’ p = (if (v, v') € xs then f p else p))

lemma mapi-block-add-o0b:
assumes (length ps < v’

10

shows
(mapi-block (mapper f ({(v, v/)} U zs) v) (ps, i) =
mapi-block (mapper f zs v) (ps, i)

(proof)

lemma mapi-branch-add-oob:
assumes <length branch < v
shows
(mapi-branch (mapper f ({(v, v")} U xs)) branch =
mapi-branch (mapper f xs) branch)

(proof)

lemma mapi-branch-head-add-oob:
(mapi-branch (mapper f ({(length branch, length ps)} U zs)) ((ps, a) # branch)

mapi-branch (mapper f xs) ((ps, a) # branch))
(proof)

lemma mapi-branch-mem:
assumes ((ps, i) €. branch)
shows Jv. (mapi (fv) ps, i) €. mapi-branch f branch)

{proof)

lemma rev-nth-mapi-branch:
assumes (branch |. v = Some (ps, a)
shows (mapi (f v) ps, a) €. mapi-branch f branch)

{proof)

lemma rev-nth-mapi-block:
assumes (ps |. v/ = Some p
shows «(f v’ p on (mapi f ps, a)
(proof)

lemma mapi-append:
mapi f (zs Q ys) = mapi (Av. [(v + length ys)) zs Q@ mapi f ys
(proof)

lemma mapi-block-id: (mapi-block (mapper f {} v) (ps, i) = (ps, i)
(proof)

lemma mapi-branch-id: <mapi-branch (mapper f {}) branch = branch
(proof)

lemma length-mapi: dength (mapi f xs) = length xs)
(proof)

lemma mapi-rev-nth:

assumes (s |. v = Some
shows (mapi fzs I. v = Some (fv z)

11

{proof)

7 Duplicate Formulas

7.1 Removable indices

abbreviation (proj = Fquiv-Relations.proj)

definition all-is :: «(‘a, 'b) fm = (‘a, 'b) fm list = nat set = bool) where
all-is p ps xs =Vv € zs. ps . v = Some p

definition is-at :: «(‘a, 'b) fm = b = (‘a, 'b) branch = nat = nat = bool>
where
ts-at p i branch v v’ = I ps. branch !. v = Some (ps, i) A ps l. v/ = Some p

This definition is slightly complicated by the inability to index the opening
nominal.

definition is-elsewhere :: «(‘a, 'b) fm = 'b = ('a, 'b) branch = (nat x nat) set
= bool) where
tis-elsewhere p i branch s = Jw w’ ps. (w, w') & zs A
branch !. w = Some (ps, i) A (p = Nom i V ps|. w' = Some p))

definition Dup :: «(‘a, 'b) fm = 'b = (‘a, 'b) branch = (nat x nat) set = bool>
where
(Dup p i branch zs = V (v, v') € xs.
is-at p 1 branch v v’ A is-elsewhere p i branch xs

lemma Dup-all-is:
assumes (Dup p i branch x$) <branch |. v = Some (ps, a)
shows (all-is p ps (proj zs v))
(proof)

lemma Dup-branch:
(Dup p i branch s => Dup p i (extra Q branch) zs

(proof)

lemma Dup-block:
assumes Dup p i ((ps, a) # branch) zs
shows (Dup p i ((ps’ Q ps, a) # branch) xs

(proof)
definition only-touches :: b = ('a, 'b) branch = (nat x nat) set = bool> where
(only-touches i branch xs = V (v, v') € zs. Vps a. branch |. v = Some (ps, a)

— =

lemma Dup-touches: <Dup p i branch xs => only-touches i branch xs)
(proof)

lemma only-touches-opening:

12

assumes (only-touches i branch xs) (v, v’) € x$) <branch . v = Some (ps, a)
shows (i =

{proof)

lemma Dup-head:
(Dup p i ((ps, a) # branch) xs = Dup p i ((¢ # ps, a) # branch) xs
(proof)

lemma Dup-head-oob":
assumes Dup p i ((ps, a) # branch) xs
shows ((length branch, k + length ps) ¢ xs
(proof)

lemma Dup-head-oob:
assumes Dup p i ((ps, a) # branch) xs
shows (length branch, length ps) ¢ s
(proof)

7.2 Omitting formulas

primrec omit :: (nat set = ('a, 'b) fm list = ('a, 'b) fm list) where
omit zs [| = [
| comit zs (p # ps) = (if length ps € xs then omit xs ps else p # omit zs ps))

primrec omit-block :: (nat set = ('a, 'b) block = ('a, 'b) block) where
(omit-block xs (ps, a) = (omit xs ps, a)

definition omit-branch :: (nat x nat) set = (‘a, 'b) branch = ('a, 'b) branch
where
(omit-branch xs branch = mapi (Av. omit-block (proj xs v)) branch)

lemma omit-mem: (ps |. v = Some p = v ¢ s = p €. omit xs ps
(proof)

lemma omit-id: comit {} ps = ps)

{proof)

lemma omit-block-id: comit-block {} block = block)
{proof)

lemma omit-branch-id: comit-branch {} branch = branch
(proof)

lemma omit-branch-mem-diff-opening:

assumes (only-touches i branch xs) «(ps, a) €. branchy (i # @
shows ((ps, a) €. omit-branch zs branch

(proof)

lemma Dup-omit-branch-mem-same-opening:

13

assumes <Dup p i branch xs) (p at i in branch)
shows (p at i in omit-branch zs branch)

(proof)

lemma omit-del:
assumes (p €. ps) (p & set (omit xs ps))
shows (Jv. ps . v = Some p A v € z

{proof)

lemma omit-all-is:
assumes (all-is p ps xs) (q €. ps) «q & set (omit xs ps)
shows (¢ = p
(proof)

definition all-is-branch :: «(‘a, 'b) fm = b = (‘a, 'b) branch = (nat x nat) set
= booly where

(all-is-branch p i branch zs = V (v, v') € xs. v < length branch — is-at p i
branch v v’

lemma all-is-branch:

(all-is-branch p i branch s = branch !. v = Some (ps, a) = all-is p ps (proj
xs V)

(proof)

lemma Dup-all-is-branch: (Dup p i branch xs = all-is-branch p i branch xs)
(proof)

lemma omit-branch-mem-diff-formula:
assumes <all-is-branch p i branch zs) (q at i in branch) (p # @
shows (q at i in omit-branch xs branch)

{(proof)

lemma Dup-omit-branch-mem:
assumes <Dup p i branch xs) (q at a in branch)
shows (q at a in omit-branch xs branch)

{proof)

lemma omit-set: (set (omit xs ps) C set ps
(proof)

lemma on-omit: (p on (omit zs ps, 1) => p on (ps, i)
(proof)

lemma all-is-set:
assumes <all-is p ps xs)
shows ({p} U set (omit zs ps) = {p} U set ps

(proof)

lemma all-is-list-nominals:

14

assumes <all-is p ps xs)

shows (nominals p U list-nominals (omit zs ps) = nominals p U list-nominals
DS

(proof)

lemma all-is-block-nominals:

assumes <all-is p ps xs)

shows (nominals p U block-nominals (omit xs ps, i) = nominals p U block-nominals
(ps, i)

(proof)

lemma all-is-branch-nominals’:
assumes <all-is-branch p i branch xs)
shows
(mominals p U branch-nominals (omit-branch xs branch) =
nominals p U branch-nominals branch)

(proof)

lemma Dup-branch-nominals:
assumes <Dup p i branch xs)
shows (branch-nominals (omit-branch xs branch) = branch-nominals branch)

(proof)

lemma omit-branch-mem-dual:
assumes (p at i in omit-branch xs branch)
shows (p at i in branch)

(proof)

lemma witnessed-omit-branch:
assumes (witnessed p a (omit-branch xs branch))
shows (witnessed p a branch)

(proof)

lemma new-omit-branch:
assumes (new p a branch)
shows (mew p a (omit-branch s branch)

(proof)

lemma omit-oob:
assumes <length ps < v
shows (omit ({v} U xs) ps = omit zs ps
(proof)

lemma omit-branch-oob:
assumes <length branch < v
shows <omit-branch ({(v, v')} U zs) branch = omit-branch xs branch

(proof)

15

7.3 Induction

lemma STA-Dup:
assumes (A, n F branch) (Dup q i branch xs)
shows (A, n = omit-branch zs branch)

(proof)

theorem Dup:
assumes (A, n = (p # ps, a) # branchy (- new p a ((ps, a) # branch),
shows (A, n - (ps, a) # branch

(proof)

7.4 Unrestricted rules

lemma STA-add: (A, n b branch = A, m + n & branch
(proof)

lemma STA-le: <A, n b+ branch = n < m — A, m F branch)
(proof)

lemma Neg”:
assumes
(= = p) at ain (ps, a) # branch
(A, n = (p # ps, a) # branch)
shows (A, n b (ps, a) # branch
(proof)

lemma DisP":
assumes
(pV q) at ain (ps, a) # branch)
(A, n t+ (p # ps, a) # branch) <A, n - (¢ # ps, a) # branch
shows (4, n F (ps, a) # branch

(proof)

lemma DisP"":
assumes
(pV q) at ain (ps, a) # branch)
(A, n + (p # ps, a) # branch) (A, m & (q # ps, a) # branch
shows (A, maz n m - (ps, a) # branch

(proof)

lemma DisN "
assumes
(= (pV q) at ain (ps, a) # branch
A, nF ((— q) # (— p) # ps, a) # branch)
shows (A, n b (ps, a) # branch
(proof)

lemma DiaP"
assumes

16

(O p) at ain (ps, a) # branch

i ¢ A U branch-nominals ((ps, a) # branch)

Pa. p=Nom a

(- witnessed p a ((ps, a) # branch)

A, n = ((@ i p) # (O Nom i) # ps, a) # branch
shows (4, n b (ps, a) # branch

{proof)

lemma DiaN "
assumes
(= (O p)) at ain (ps, a) # branch)
(O Nom i) at a in (ps, a) # branch
A, nE ((- (@ ip)) # ps, a) # branch
shows (4, n F (ps, a) # branch
(proof)

lemma SatP":
assumes
(@ a p) at bin (ps, a) # branch
(A, n F (p # ps, a) # branch
shows (A, n - (ps, a) # branch

{proof)

lemma SatN":
assumes
(= (@ ap)) at b in (ps, a) # branch
(A, n b ((— p) # ps, a) # branch
shows (4, n b (ps, a) # branch
(proof)

lemma Nom':
assumes
(p at b in (ps, a) # branch)
(Nom a at b in (ps, a) # branch
~i.p=NomiVp=(Nomi)— i€
(A, n F (p # ps, a) # branch
shows (A, n - (ps, a) # branch

(proof)

8 Substitution

lemma finite-nominals: (finite (nominals p)
(proof)

lemma finite-block-nominals: finite (block-nominals block)»
{proof)

lemma finite-branch-nominals: (finite (branch-nominals branch))
(proof)

17

abbreviation sub-list :: «('b = c) = (‘a, 'b) fm list = ('a, 'c) fm list) where
(sub-list f ps = map (sub f) ps

primrec sub-block :: ('b = 'c) = (‘a, 'b) block = ('a, 'c) block> where
(sub-block f (ps, 1) = (sub-list f ps, fi)

definition sub-branch :: (b = 'c) = (‘a, 'b) branch = ('a, 'c) branch) where
(sub-branch f blocks = map (sub-block f) blocks

lemma sub-block-mem: <p on block = sub f p on sub-block f block)
(proof)

lemma sub-branch-mem:
assumes ((ps, i) €. branch
shows ((sub-list f ps, f1i) €. sub-branch f branch)
(proof)

lemma sub-block-nominals: <block-nominals (sub-block f block) = f * block-nominals
block>

(proof)

lemma sub-branch-nominals:
(branch-nominals (sub-branch f branch) = f ‘ branch-nominals branch)

{proof)

lemma sub-list-id: <sub-list id ps = ps
(proof)

lemma sub-block-id: (sub-block id block = block>
(proof)

lemma sub-branch-id: (sub-branch id branch = branch)
(proof)

lemma sub-block-upd-fresh:
assumes « ¢ block-nominals block)
shows (sub-block (f(i := j)) block = sub-block f block>
(proof)

lemma sub-branch-upd-fresh:
assumes « ¢ branch-nominals branch)
shows (sub-branch (f(i := j)) branch = sub-branch f branch
(proof)

lemma sub-comp: sub f (sub g p) = sub (fo g) p
(proof)

lemma sub-list-comp: (sub-list f (sub-list g ps) = sub-list (f o g) ps

18

{proof)

lemma sub-block-comp: (sub-block f (sub-block g block) = sub-block (f o g) block)
(proof)

lemma sub-branch-comp:
(sub-branch f (sub-branch g branch) = sub-branch (f o g) branch)

{proof)

lemma swap-id: (id(i := 7, j := 1)) o (id(i :== 7, j := 1)) = id
(proof)

lemma at-in-sub-branch:
assumes p at i in (ps, a) # branch
shows «sub f p at fi in (sub-list f ps, f a) # sub-branch f branch)
(proof)

lemma sub-still-allowed:
assumes Vi. p = Nom iV p = (0 Nomi) — i € A
shows sub fp = Nom i V sub fp = (0 Nomi) — i € f* A
(proof)

If a branch has a closing tableau then so does any branch obtained by
renaming nominals as long as the substitution leaves some nominals free.
This is always the case for substitutions that do not change the type of
nominals. Since some formulas on the renamed branch may no longer be
new, they do not contribute any potential and so we existentially quantify
over the potential needed to close the new branch. We assume that the set
of allowed nominals A is finite such that we can obtain a free nominal.

lemma STA-sub”:
fixes f :: b= "o
assumes (A(f = b= c) i A. finite A —= i ¢ A= 3Jj. j ¢ f A
(finite A> <A, n F branch)
shows «f * A b sub-branch f branch)

{proof)

lemma ex-fresh-gt:
fixes f :: ‘b= "o
assumes (Jg :: ‘'c = 'b. surj ¢ (finite A i ¢ A
shows dj.j ¢ f ‘A

(proof)

corollary STA-sub-gt:
fixes f :: ‘b= "o
assumes (3g :: 'c = 'b. surj ¢ <A+ branch
(finite A> Vi € branch-nominals branch. fi € f ‘A — i € A
shows «f “ A F sub-branch f branch

{proof)

19

corollary STA-sub-inf:
fixes f :: b= "o
assumes «nfinite (UNIV :: 'c set)) (A b branch
(finite A Vi € branch-nominals branch. fi € f*A — i € A
shows (f * A = sub-branch f branch

(proof)

corollary STA-sub:
fixes f :: ‘b= "b
assumes (A + branch) (finite A
shows «f “ A F sub-branch f branch)

(proof)

8.1 Unrestricted (¢) rule

lemma DiaP""
assumes
(O p) at ain (ps, a) # branch
(i ¢ A U branch-nominals ((ps, a) # branch)) P a. p = Nom a
(finite A
(AF ((@Qip)# (O Nom i) # ps, a) # branch
shows (A b (ps, a) # branch

(proof)

9 Structural Properties

lemma block-nominals-branch:
assumes <(block €. branch)
shows (block-nominals block C branch-nominals branch)
(proof)

lemma sub-block-fresh.:
assumes & ¢ branch-nominals branch) (block €. branch)
shows (sub-block (f(i := j)) block = sub-block f block)

{proof)

lemma list-down-induct [consumes 1, case-names Start Cons:
assumes Vy € set ys. Q v (P (ys Q zs)
ANy zs. Qy = P (y # zs) = P s
shows (P zs

{proof)

If the last block on a branch has opening nominal ¢ and the last formulas
on that block occur on another block alongside nominal a, then we can drop
those formulas.

lemma STA-drop-prefix:
assumes (set ps C set ¢$) (gs, a) €. branch) <A, n - (ps Q ps’, a) # branch

20

shows (4, n - (ps’, a) # branch)
(proof)

We can drop a block if it is subsumed by another block.
lemma STA-drop-block:

assumes
(set ps C set ps’ (ps’, a) €. branch)
(A, n t (ps, a) # branch

shows (A, Suc n = branch

(proof)

lemma STA-drop-block":
assumes (A, n F (ps, a) # branch) (ps, a) €. branch
shows (A, Suc n = branch

{proof)

lemma sub-branch-image: <set (sub-branch f branch) = sub-block f * set branch

(proof)

lemma sub-block-repl:
assumes j ¢ block-nominals block)
shows « ¢ block-nominals (sub-block (id(i := j, j := 1)) block)
{proof)

lemma sub-branch-repl:
assumes § ¢ branch-nominals branch
shows « ¢ branch-nominals (sub-branch (id(i := j, j := 1)) branch)

(proof)

If a finite set of blocks has a closing tableau then so does any finite superset.

lemma STA-struct:
fixes branch :: ('a, 'b) branch
assumes
inf: nfinite (UNIV :: 'b set)) and fin: (finite A> and
(A, n F branch) (set branch C set branch”
shows <A + branch”

(proof)

If a branch has a closing tableau then we can replace the formulas of the
last block on that branch with any finite superset and still obtain a closing
tableau.

lemma STA-struct-block:
fixes branch :: «(’a, 'b) branch
assumes
inf: nfinite (UNIV :: b set)y and fin: (finite A> and
(A, n b (ps, a) # branch) (set ps C set psh
shows (4 + (ps’, a) # branch)
(proof)

21

10 Bridge

We define a descendants k i branch relation on sets of indices. The sets are
built on the index of a & Nom k on an ¢-block in branch and can be extended
by indices of formula occurrences that can be thought of as descending from
that ¢ Nom k by application of either the (= ¢) or Nom rule.

We show that if we have nominals j and k£ on the same block in a closeable
branch, then the branch obtained by the following transformation is also
closeable: For every index v, if the formula at v is $ Nom k, replace it by ¢
Nom j and if it is = (@ k p) replace it by = (@ j p). There are no other
cases.

From this transformation we can show admissibility of the Bridge rule under
the assumption that j is an allowed nominal.

10.1 Replacing

abbreviation bridge’ :: b = 'b = (‘a, 'b) fm = ('a, 'b) fm) where
(bridge’ k j p = case p of
(O Nom k') = (if k = k' then (O Nom j) else (O Nom k')
| (= (@& q)) = (if k = k' then (= (@ j q)) else (- (@ k' q)))
lp=p

abbreviation bridge ::
’b = 'b = (nat x nat) set = nat = nat = (‘a, 'b) fm = (‘a, 'b) fm) where
(bridge k j = mapper (bridge’ k j)

lemma bridge-on-Nom:
(Nom i on (ps, a) = Nom i on (mapi (bridge k j zs v) ps, a))
(proof)

lemma bridge’-nominals:
mominals (bridge’ kj p) U {k, 7} = nominals p U {k, j}
(proof)

lemma bridge-nominals:
(nominals (bridge k j s v v’ p) U {k, j} = nominals p U {k, j}
(proof)

lemma bridge-block-nominals:
(block-nominals (mapi-block (bridge k j xs v) (ps, a)) U {k, j} =
block-nominals (ps, a) U {k, jh

(proof)

lemma bridge-branch-nominals:
(branch-nominals (mapi-branch (bridge k j xs) branch) U {k, j} =
branch-nominals branch U {k, jb

(proof)

22

lemma at-in-mapi-branch:
assumes (p at a in branch) (p #= Nom a)
shows (v v'. fv v’ p at a in mapi-branch f branch

(proof)

lemma nom-at-in-bridge:
fixes k j xs
defines f = bridge k j xs)
assumes (Nom i at a in branch
shows (Nom i at a in mapi-branch f branch)

(proof)

lemma nominals-mapi-branch-bridge:

assumes (Nom k at j in branch)

shows (branch-nominals (mapi-branch (bridge k j zs) branch) = branch-nominals
branch)

(proof)

lemma bridge-proper-dia:
assumes Ha. p = Nom
shows (bridge k j zs v v’ (O p) = (O p)
(proof)

lemma bridge-compl-cases:
fixeskjzsvv' ww'p
defines (¢ = bridge k j zs v v’ p» and (¢’ = bridge k j zs w w' (= p)
shows

"= (= (0 Nom k))) V

) A g = (== (@ k) v

¢ = (@jr))) Vv

10.2 Descendants

inductive descendants :: b = 'b = (‘a, 'b) branch = (nat x nat) set = bool)
where
Initial:
(branch . v = Some (gs, i) = gs . v/ = Some (O Nom k) =
descendants k i branch {(v, v\
| Derived:
thranch . v = Some (gs, a) = ¢s . v/ = Some (- (Q k p)) =
descendants k i branch s = (w, w') € zs =
branch . w = Some (rs, a) = rs |. w’ = Some (O Nom k) =
descendants k i branch ({(v, v)} U zs)
| Copied:
(branch 1. v = Some (gs, a) = qs . v/ = Some p =
descendants k i branch xs = (w, w') € zs =

23

branch I. w = Some (rs, b) = rs . w’ = Some p =
Nom a at b in branch =
descendants k i branch ({(v, v/)} U zs)

lemma descendants-initial:
assumes (descendants k i branch s
shows 3 (v, v’) € xs. I ps.
branch 1. v = Some (ps, i) A ps l. v/ = Some (O Nom k)
(proof)

lemma descendants-bounds-fst:
assumes (descendants k i branch zs) (v, v') € zs
shows (v < length branch)

{proof)

lemma descendants-bounds-snd:
assumes (descendants k i branch zs) «(v, v') € zs) <branch |. v = Some (ps, a)
shows w’ < length ps

{proof)

lemma descendants-branch:
(descendants k i branch xs = descendants k i (extra Q branch) xs)

(proof)

lemma descendants-block:
assumes (descendants k i ((ps, a) # branch) zs)
shows (descendants k i ((ps’ Q ps, a) # branch) zs
(proof)

lemma descendants-no-head:
assumes (descendants k i ((ps, a) # branch) s
shows (descendants k i ((p # ps, a) # branch) xs

{proof)

lemma descendants-types:
assumes
(descendants k i branch zs) (v, v') € zs)
(branch . v = Some (ps, a)) ps . v/ = Some p
shows (p = (0 Nom k) V (3¢. p = (= (@ k q)))
(proof)

lemma descendants-oob-head’:
assumes (descendants k i ((ps, a) # branch) zs
shows ((length branch, m + length ps) ¢ xs)

(proof)
lemma descendants-oob-head:

assumes (descendants k i ((ps, a) # branch) zs
shows (length branch, length ps) ¢ s

24

{proof)

10.3 Induction

We induct over an arbitrary set of indices. That way, we can determine in
each case whether the extension gets replaced or not by manipulating the
set before applying the induction hypothesis.

lemma STA-bridge":

fixes a :: b

assumes
inf: dnfinite (UNIV :: 'b set)) and fin: (finite A> and j € A
(A, n t (ps, a) # branch
(descendants k i ((ps, a) # branch) zs
(Nom k at j in branch)

shows (A b mapi-branch (bridge k j zs) ((ps, a) # branch)

(proof)

lemma STA-bridge:
fixes ¢ 2 'b
assumes
inf: nfinite (UNIV :: 'b set)) and
(A & branch) (descendants k i branch zs)
(Nom k at j in branch)

(finite A> j € A
shows (4 + mapi-branch (bridge k j xs) branch
(proof)

10.4 Derivation

theorem Bridge:
fixes 7 :: b
assumes inf: nfinite (UNIV :: 'b set)) and fin: (finite A> and ¢ € A
(Nom k at j in (ps, i) # branch) (O Nom j) at i in (ps, i) # branch
(AF ((O Nom k) # ps, i) # branch
shows (A + (ps, i) # branch)

(proof)
11 Completeness

11.1 Hintikka

abbreviation at-in-set :: (‘a, 'b) fm = b = (‘a, 'b) block set = bool) where
(at-in-set p a S = Ips. (ps, a) € S A p on (ps, a)

notation at-in-set («- at - in"’ - [51, 51, 51] 50)

A set of blocks is Hintikka if it satisfies the following requirements. Intu-
itively, if it corresponds to an exhausted open branch with respect to the

25

fixed set of allowed nominals A. For example, we only require symmetry, ”if
j occurs at ¢ then ¢ occurs at j7 if ¢ € A.

locale Hintikka =
fixes A :: /b sety and H :: «(’a, 'b) block set) assumes
ProP: <Nom jatiin' H= Proxzatjin' H= — (- Proz) atiin’ H> and
NomP: (Nom a at i in’ H = = (= Nom a) at i in’ H> and
NegN: (= = p)atiin’ H= patiin’ H) and
DisP: «((pV q) atiin' H= patiin’ HV qatiin’ H> and
DisN:«(— (pV q) atiin' H= (—mp)atiin’ HA (- q)atiin’ H) and
DiaP: Ba. p= Nom a = (O p) atiin' H =
35. (0 Nom j) atiin’ H A (Q jp) atiin’ H> and
DiaN: (= (O p)) atiin’ H = (0 Nom j) atiin’ H = (- (Q jp)) at i in’
H) and
SatP: (@ i p) at ain’ H = p atiin’ H) and
SatN: (- (@ ip)) at ain’ H = (- p) atiin’ H) and
GoTo: i € nominals p = Ja. p at a in’ H = I ps. (ps, i) € H) and
Nom: Va.p=NomaV p= (0 Noma) — a € A =
patiin’ H=— Nomjatiin' H=— patjin' H)
Two nominals 7 and j are equivalent in respect to a Hintikka set H if H
contains an ¢-block with 5 on it. This is an equivalence relation on the
names in H intersected with the allowed nominals A.

definition hequiv :: (('a, 'b) block set = 'b = 'b = bool) where
thequiv H i j = Nom j at i in’ H)

abbreviation hequiv-rel :: (‘b set = (’a, 'b) block set = ('b x 'b) set> where
thequiv-rel A H = {(i,7) |ij. hequiv Hij ANi € ANjE AD

definition names :: «(’a, 'b) block set = 'b set) where
mames H = {i |psi. (ps, i) € Hp

lemma hequiv-refl: i € names H = hequiv H i D
(proof)

lemma hequiv-refl”: «(ps, i) € H = hequiv H i »

{proof)

lemma hequiv-sym:
assumes (Hintikka A H) i € A (hequiv H i)
shows chequiv H j o

(proof)
lemma hequiv-sym: (Hintikka A H = i € A = j € A = hequiv H i j +—
hequiv H j ©
(proof)
lemma hequiv-trans:

assumes (Hintikka A H) < € A &k € A chequiv H i j) hequiv H j k)
shows <hequiv H i k)

26

(proof)

lemma hequiv-names: <hequiv H i j = 1 € names H)
(proof)

lemma hequiv-names-rel:
assumes (Hintikka A H>
shows (hequiv-rel A H C names H x names H)

{proof)

lemma hequiv-refi-rel:
assumes (Hintikka A H)
shows «refl-on (names H N A) (hequiv-rel A H))

{proof)

lemma hequiv-sym-rel: Hintikka A H = sym (hequiv-rel A H))
(proof)

lemma hequiv-trans-rel: «(Hintikka B A = trans (hequiv-rel B A))
{proof)

lemma hequiv-rel: «Hintikka A H = equiv (names H N A) (hequiv-rel A H))
(proof)

lemma nominal-in-names:
assumes (Hintikka A H) (dblock € H. i € block-nominals block)
shows (i € names H)

{proof)

11.1.1 Named model

Given a Hintikka set H, a formula p on a block in H and a set of allowed

nominals A which contains all ”root-like” nominals in p we construct a model

that satisfies p.

The worlds of our model are sets of equivalent nominals and nominals are

assigned to the equivalence class of an equivalent allowed nominal. This

definition resembles the ”ur-father” notion.

From a world is, we can reach a world js iff there is an ¢ € is and a j € js

s.t. there is an i-block in H with ¢ Nom j on it.

A propositional symbol p is true in a world s if there exists an i € is s.t. p

occurs on an i-block in H.

definition assign :: b set = ('a, 'b) block set = 'b = 'b set) where
(assign A Hi = if 3a. a € AN Nom a at i in’ H

then proj (hequiv-rel A H) (SOME a. a € A A Nom a at i in' H)
else {i}

definition reach :: <'b set = (‘a, 'b) block set = 'b set = 'b set set» where

27

(reach A H is = {assign A Hj |ij. i € is A (O Nom j) atiin’ Hp

definition val :: (‘a, 'b) block set = 'b set = 'a = bool) where
wal His x =314 € is. Pro x at i in’ H»

lemma ex-assignment:
assumes (Hintikka A H)
shows assign A Hi # {}

(proof)

lemma ur-closure:

assumes Hintikka A H) (p at i in’ H) Y a. p = Nom a V p = (0 Nom a) —
ae A

shows Va € assign A H i. p at a in’ H)

(proof)

lemma ur-closure”:

assumes (Hintikka A H) (p at i in’ H) ~Va. p = Nom a V p = (0 Nom a) —
a€ A

shows (da € assign A Hi. p at a in’ H)

(proof)

lemma mem-hequiv-rel: <a € proj (hequiv-rel A H) b = a € A
(proof)

lemma hequiv-proj:
assumes (Hintikka A H)
(Nom a at i in’ H) <a € A (Nom b atiin’ H) (b € A
shows (proj (hequiv-rel A H) a = proj (hequiv-rel A H) b
(proof)

lemma hequiv-proj-opening:
assumes (Hintikka A H) (Nom a at iin’ H> <a € A i € A
shows (proj (hequiv-rel A H) a = proj (hequiv-rel A H)
(proof)

lemma assign-proj-refi:
assumes (Hintikka A H) (Nom i at i in' H) i € A
shows (assign A H i = proj (hequiv-rel A H)
(proof)

lemma assign-named:
assumes (Hintikka A H) « € proj (hequiv-rel A H) a)
shows < € names H)

(proof)
lemma assign-unique:

assumes (Hintikka A H) <a € assign A H i
shows <assign A H a = assign A H ©

28

(proof)

lemma assign-val:
assumes
(Hintikka A H) <Pro z at a in’ H> «(— Pro z) at i in’ H)
(a € assign A H 1) ¢ € names H)
shows Fualse

{proof)

lemma Hintikka-model:
assumes (Hintikka A H)
shows
(p at iin’ H = nominals p C A =
Model (reach A H) (val H), assign A H, assign A H i = p
(= p) at iin’ H = nominals p C A =
= Model (reach A H) (val H), assign A H, assign A Hi = p
(proof)

11.2 Lindenbaum-Henkin

A set of blocks is consistent if no finite subset can be derived. Given a con-
sistent set of blocks we are going to extend it to be saturated and maximally
consistent and show that is then Hintikka. All definitions are with respect
to the set of allowed nominals.

definition consistent :: (‘b set = ('a, 'b) block set = bool) where
(consistent A S =3BS". set S'C S ANAFSH

instance fm :: (countable, countable) countable
{proof)

definition proper-dia :: (('a, 'b) fm = (‘a, 'b) fm option) where
(proper-dia p = case p of (O p) = (if Ba. p = Nom a then Some p else None) |
- = None)

lemma proper-dia: <proper-dia p = Some ¢ => p = (0 q¢) A (Ba. ¢ = Nom a)
(proof)

The following function witnesses each ¢ p in a fresh world.

primrec witness-list :: (("a, 'b) fm list = 'b set = ('a, 'b) fm list) where
(witness-list [| - = [
| witness-list (p # ps) used =
(case proper-dia p of
None = witness-list ps used
| Some q =
let i = SOMFE i. i ¢ used
in (@ 7 q) # (O Nom i) # witness-list ps ({i} U used))

primrec witness :: ('a, 'b) block = 'b set = ('a, 'b) block) where

29

(witness (ps, a) used = (witness-list ps used, a)

lemma witness-list:
(proper-dia p = Some ¢ = witness-list (p # ps) used =
(let i = SOME i. i ¢ used
in (@Qiq)# (O Nom i) # witness-list ps ({i} U used))
(proof)

primrec extend :
b set = ('a, 'b) block set = (nat = (‘a, 'b) block) = nat = ('a, 'b) block set
where
textend A S f0 =9
| cextend A S f (Suc n) =
(if — consistent A ({f n} U extend A S fn)
then extend A S fn
else
let used = A U (Jblock € {f n} U extend A S f n. block-nominals block)
in {f n, witness (f n) used} U extend A S fn)

definition Ezxtend :
b set = ('a, 'b) block set = (nat = ('a, 'b) block) = ('a, 'b) block set) where
(Extend A S f = (Un. extend A S fn)

lemma extend-chain: extend A S fn C extend A S f (Suc n)
{proof)

lemma extend-mem: (S C extend A S fn
(proof)

lemma Ezxtend-mem: (S C Extend A S f)

(proof)

11.2.1 Consistency

lemma split-list:
set AC{2z}UX =z €. A= 3IB. set (x # B) = set ANz ¢ set B)
(proof)

lemma consistent-drop-single:
fixes a :: b
assumes
inf: cnfinite (UNIV :: b set)) and
fin: (finite A> and
cons: <consistent A ({(p # ps, a)} U S)
shows (consistent A ({(ps, a)} U S)

{proof)

lemma consistent-drop-block: (consistent A ({block} U S) = consistent A S)
{proof)

30

lemma inconsistent-weaken: (= consistent A S = S C S’ = — consistent A S
(proof)

lemma finite-nominals-set: (finite S = finite (| block € S. block-nominals block))
(proof)

lemma witness-list-used:
fixes i :: 'b
assumes inf: <nfinite (UNIV :: 'b set)) and (finite used> i ¢ list-nominals ps)
shows « ¢ list-nominals (witness-list ps ({i} U used)))
{proof)

lemma witness-used:
fixes ¢ :: 'b
assumes inf: <nfinite (UNIV :: 'b set)) and
(finite used) (i ¢ block-nominals block)
shows (i ¢ block-nominals (witness block ({i} U used))

{proof)

lemma consistent-witness-list:
fixes a :: 'b
assumes inf: <nfinite (UNIV :: 'b set)) and (consistent A S»
((ps, a) € & (finite used> (A U |J (block-nominals * S) C used
shows (consistent A ({(witness-list ps used, a)} U S)

(proof)

lemma consistent-witness:
fixes block :: «('a, 'b) block)
assumes «nfinite (UNIV :: 'b set)
(consistent A Sy <finite (I (block-nominals © S))) block € S) «finite A
shows (consistent A ({witness block (A U |J (block-nominals © S))} U S)

{proof)

lemma consistent-extend:
fixes S :: ('a, 'b) block set>
assumes inf: <nfinite (UNIV :: 'b set)) and fin: (finite A> and
(consistent A (extend A S fn) (finite (| (block-nominals ¢ extend A S fn))
shows (consistent A (extend A S f (Suc n))

(proof)

lemma finite-nominals-extend:
assumes (finite (|J (block-nominals ¢ S))
shows (finite (|J (block-nominals ¢ extend A S fn))

(proof)
lemma consistent-extend’:

fixes S :: (("a, 'b) block set
assumes «nfinite (UNIV :: 'b set)) «finite Ay consistent A S) «finite (J (block-nominals

31

‘)
shows (consistent A (extend A S fn))
{proof)

lemma UN-finite-bound:
assumes (finite) (A C (Un. fn)
shows Am :: nat. A C (Un < m. fa)

{proof)

lemma extend-bound: ((Jn < m. extend A S fn) = extend A S f m
(proof)

lemma consistent-Extend:
fixes S :: ('a, 'b) block set>
assumes inf: <nfinite (UNIV :: 'b set)) and (finite A
(consistent A S» finite (U (block-nominals * S))
shows (consistent A (Extend A S f)

{proof)

11.2.2 Maximality

A set of blocks is maximally consistent if any proper extension makes it
inconsistent.

definition mazimal :: b set = ('a, 'b) block set = bool) where
(mazimal A S = consistent A S A (V block. block ¢ S — — consistent A ({block}
us))

lemma extend-not-mem:
fn ¢ extend A S f (Suc n) = — consistent A ({f n} U extend A S fn)

{proof)

lemma mazimal-Extend:
fixes S :: ('a, 'b) block set
assumes inf: «nfinite (UNIV :: 'b set)) and (finite A
(consistent A Sy <finite (| (block-nominals < S))) <surj f
shows (mazimal A (Extend A S f))

(proof)

11.2.3 Saturation

A set of blocks is saturated if every ¢ p is witnessed.

definition saturated :: (‘a, 'b) block set = bool) where
(saturated S =V pi. (O p) atiin’ S — (Ha. p = Nom a) —
(Fj. (@jp)atiim’ S A (O Nomj) atiin’S)

lemma witness-list-append:

3 extra. witness-list (ps Q qs) used = witness-list ps used Q witness-list qs (extra
U used))

32

(proof)

lemma ex-witness-list:
assumes (p €. ps) (proper-dia p = Some @
shows Ji. {@ ¢ ¢, O Nom i} C set (witness-list ps used))
(proof)

lemma saturated-Ezxtend:
fixes S :: ('a, 'b) block set>
assumes inf: <nfinite (UNIV :: 'b set)) and fin: (finite A> and
(consistent A Sy <finite (U (block-nominals * S))) <surj f
shows (saturated (Extend A S f)

{proof)

11.3 Smullyan-Fitting

lemma Hintikka-Exrtend:
fixes S :: ('a, 'b) block set>
assumes inf: «nfinite (UNIV :: 'b set)) and fin: (finite A> and
(maximal A S) (consistent A S) (saturated S)
shows (Hintikka A S

{proof)

11.4 Result

theorem completeness:
fixes p :: «('a :: countable, 'b :: countable) fm)
assumes
inf: anfinite (UNIV :: b set)) and
valid: (M :: ('b set, 'a) model) g w. M, g, w = p
shows mominals p, 1 = [([= p], ©)D
(proof)

We arbitrarily fix nominal and propositional symbols to be natural numbers
(any countably infinite type suffices) and define validity as truth in all models
with sets of natural numbers as worlds. We show below that this implies
validity for any type of worlds.

abbreviation
walid p =V (M :: (nat set, nat) model) (g :: nat = -) w. M, g, w = p

A formula is valid iff its negation has a closing tableau from a fresh world.
We can assume a single unit of potential and take the allowed nominals to
be the root nominals.

theorem main:

assumes i ¢ nominals p)
shows (walid p <— nominals p, 1 F [([- p], 7))

(proof)

The restricted validity implies validity in general.

33

theorem wvalid-semantics:
walidp — M, g, w E p
(proof)

end

References

[1] P. Blackburn, T. Bolander, T. Braiiner, and K. F. Jorgensen. Complete-
ness and Termination for a Seligman-style Tableau System. Journal of
Logic and Computation, 27(1):81-107, 2017.

[2] K. F. Jgrgensen, P. Blackburn, T. Bolander, and T. Bratiner. Synthetic
Completeness Proofs for Seligman-style Tableau Systems. In Advances
in Modal Logic, volume 11, pages 302-321, 2016.

34

	Syntax
	Semantics
	Examples

	Tableau
	Soundness
	No Detours
	Free GoTo

	Indexed Mapping
	Indexing
	Mapping

	Duplicate Formulas
	Removable indices
	Omitting formulas
	Induction
	Unrestricted rules

	Substitution
	Unrestricted 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 () rule

	Structural Properties
	Bridge
	Replacing
	Descendants
	Induction
	Derivation

	Completeness
	Hintikka
	Named model

	Lindenbaum-Henkin
	Consistency
	Maximality
	Saturation

	Smullyan-Fitting
	Result

	References

