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Abstract

Recently, parameterized termination has been introduced in HOL-CSP, allow-
ing the termination event tick to carry a result value, in a way analogous to
the return of a state monad. This conservative extension of the CSP the-
ory required the generalization of several denotational definitions and the
adaptation of numerous proofs. Since Isabelle2025, this work has been com-
pleted for the HOL-CSP, HOL-CSPM, and HOL-CSP_OpSem sessions. However,
for two operators—namely sequential composition and the synchronization
product—the most direct generalizations turn out to be conceptually un-
satisfactory, in particular with respect to their interaction with SKIP . To
address this issue, we introduce in this entry generalized versions of these
operators that fully exploit the expressive power of parameterized termina-
tion; in particular, the resulting notion of sequential composition satisfies the
monad laws. Building on these definitions, we establish a range of algebraic
and operational laws, as well as fundamental properties such as continuity
and non-destructiveness.
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Chapter 1

Introduction

1.1 Motivations

Recently, the question arose whether HOL-CSP could accommodate a param-
eterized notion of termination.1 The idea is very simple: replace at the very
beginning of the formalization

datatype ′a event = ev ′a | tick (‹3›)

(isomorphic to option type) by

datatype ( ′a, ′r) eventptick = ev ′a | tick ′r (‹3 ′(- ′)›)

(isomorphic to sum type), so that the explicit termination event carries a
return value.

Certain definitions must therefore be adapted (mainly by replacing 3 with
range tick). For example, a trace t was said to be tick-free if 3 /∈ set t. In
this new setup, such a trace instead satisfies range tick ∩ set t = {}. Sur-
prisingly, once these few intuitive adjustments have been made, most of the
existing Isar proofs remain valid with little to no modification. This gen-
eralization has already been carried out, and the AFP entries for HOL-CSP,
HOL-CSPM, and HOL-CSP_OpSem have all been updated accordingly [2, 1, 3].
More recently, HOL-CSP_RS [5] has been added as well. However, two oper-
ators do not behave as satisfactorily as one might hope.

Firstly, sequential composition no longer admits SKIP as a neutral element.
In the classical theory, we have Skip ; P = P and P ; Skip = P. But in
the generalized setting, SKIP carries a value and if the first law can still be
adapted and proven: SKIP r ; P = P, the second one only holds when the
return type is unit (which amounts to ignoring the generalization). From a

1This idea was sparked by an innocent remark from Simon Foster, which we later
explored in depth.
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broader perspective, one would in fact like the right-hand process to depend
on the return value of the left-hand process, which is not the case in the
current framework.

Secondly, the synchronization product does not properly support synchro-
nized termination. Classically, we have Skip [[S ]] Skip = Skip, adapted in
the last version of HOL-CSP as SKIP r [[A]] SKIP s = (if r = s then SKIP r
else STOP). When restricted to ′a process (which is ( ′a, unit) processptick)
the behavior is fine, but with general return values deadlocks may occur.
One would rather expect a law like SKIP r [[A]] SKIP s = SKIP (r , s), yet
defining such an operator raises non-trivial technical challenges.

In this entry, we propose generalized definitions for sequential composition
and synchronization product that not only respect the invariant is-process
but also fulfill the expectations outlined above. Beyond this substantial
work, we establish algebraic and operational properties of these operators,
as well as the lemmas required for fixed-point reasoning. In particular, it
can be pointed out that the resulting sequential composition operator fulfills
the laws of a monad.

1.2 The Global Architecture of HOL-CSP_PTick

Our formalization attempts to take full advantage of parallelization, explain-
ing the shape of the session graph shown in Figure 1.1.
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Chapter 2

Finite Ticks Predicate

2.1 Definitions

Due to our generalization, the generalized sequential composition will require
this additional assumption for continuity. Intuitively, having an infinite
number of possible terminations after a given trace will lead to a infinite
branching preventing continuity, to a certain extent like what happens with
global non deterministic choice.
definition finite-all-ticks :: ‹( ′a, ′r) processptick ⇒ bool›

where ‹finite-all-ticks P ≡ ∀ t ∈ T P. finite {r . t @ [3(r)] ∈ T P}›

lemma finite-all-ticksI : ‹(
∧

t. t ∈ T P =⇒ finite {r . t @ [3(r)] ∈ T P}) =⇒
finite-all-ticks P›

by (simp add: finite-all-ticks-def )

lemma finite-all-ticksD : ‹finite-all-ticks P =⇒ finite {r . t @ [3(r)] ∈ T P}›
by (simp add: finite-all-ticks-def )
(meson is-processT3-TR-append not-finite-existsD)

Actually, when a tick only appears in divergences, it will not matter for
continuity. We therefore introduce the modified predicate, which is much
more useful.
definition finite-ticks :: ‹( ′a, ′r) processptick ⇒ bool› (‹�3

′(- ′)›)
where ‹�3(P) ≡ ∀ t ∈ T P. finite {r . t @ [3(r)] ∈ T P − D P}›

lemma finite-ticksI :
‹(
∧

t. t ∈ T P =⇒ t /∈ D P =⇒ finite {r . t @ [3(r)] ∈ T P}) =⇒ �3(P)›
by (simp add: finite-ticks-def )
(metis (mono-tags, lifting) Collect-cong append-T-imp-tickFree front-tickFree-Cons-iff

is-processT7 is-processT9 not-Cons-self2 not-finite-existsD)

lemma finite-ticksD :
‹�3(P) =⇒ t /∈ D P =⇒ finite {r . t @ [3(r)] ∈ T P}›
by (simp add: finite-ticks-def )
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(metis (lifting) Collect-cong is-processT3-TR-append
is-processT9 not-finite-existsD)

lemma finite-all-ticks-imp-finite-ticks [simp] : ‹finite-all-ticks P =⇒ �3(P)›
by (simp add: finite-all-ticksD finite-ticksI )

lemma finite-all-ticks-is-finite-ticks-or-finite-UNIV :
‹finite-all-ticks P ←→ (if D P = {} then �3(P) else finite (UNIV :: ′r set))›
— This is justifying why finite-all-ticks is not really interesting.
for P :: ‹( ′a, ′r) processptick›

proof (rule iffI )
show ‹if D P = {} then �3(P) else finite (UNIV :: ′r set)›

if ‹finite-all-ticks P›
proof (split if-split, intro conjI impI )

from ‹finite-all-ticks P› show ‹D P = {} =⇒ �3(P)›
by (simp add: finite-ticksI finite-all-ticksD)

next
assume ‹D P 6= {}›
with nonempty-divE obtain t where ‹tF t› ‹t ∈ D P› by blast
hence ‹t @ [3(r)] ∈ D P› for r by (simp add: is-processT7 )
with ‹finite-all-ticks P› show ‹finite (UNIV :: ′r set)›

by (metis (mono-tags, lifting) Collect-cong D-T UNIV-I ‹t ∈ D P›
finite-all-ticks-def mem-Collect-eq top-set-def )

qed
next

show ‹if D P = {} then �3(P) else finite (UNIV :: ′r set) =⇒ finite-all-ticks
P›

by (simp add: finite-ticksD finite-all-ticks-def split: if-split-asm)
(meson rev-finite-subset subset-UNIV )

qed

We also introduce the concept that a function can preserve finite-ticks. Un-
fortunately, we will not succeed in proving continuity under this condition
for generalized sequential composition.

definition finite-ticks-fun :: ‹(( ′a, ′r) processptick ⇒ ( ′b, ′s) processptick) ⇒ bool›
(‹�3⇒

′(- ′)›)
where ‹�3⇒(f ) ≡ ∀P. �3(P) −→ �3(f P)›

lemma finite-ticks-funI : ‹(
∧

P. �3(P) =⇒ �3(f P)) =⇒ �3⇒(f )›
by (simp add: finite-ticks-fun-def )

lemma finite-ticks-funD: ‹�3⇒(f ) =⇒ �3(P) =⇒ �3(f P)›
by (simp add: finite-ticks-fun-def )

2.2 Properties
named-theorems finite-ticks-simps
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named-theorems finite-ticks-fun-simps

2.2.1 Constant Processes
lemma finite-ticks-BOT [finite-ticks-simps] : ‹�3(⊥)›

by (simp add: finite-ticks-def BOT-projs)

lemma finite-ticks-fun-BOT [finite-ticks-fun-simps] : ‹�3⇒(⊥)›
by (simp add: finite-ticks-fun-def finite-ticks-BOT )

lemma finite-ticks-SKIP [finite-ticks-simps] : ‹�3(SKIP r)›
by (simp add: finite-ticks-def SKIP-projs)

lemma finite-ticks-STOP [finite-ticks-simps] : ‹�3(STOP)›
by (simp add: finite-ticks-def T-STOP)

lemma finite-ticks-SKIPS-iff [finite-ticks-simps] : ‹�3(SKIPS R) ←→ finite R›
by (auto simp add: finite-ticks-def SKIPS-projs)

2.2.2 Other properties
lemma finite-strict-ticks-of-imp-finite-ticks [finite-ticks-simps] :

‹finite 3s(P) =⇒ �3(P)›
by (metis (mono-tags, lifting) finite-subset finite-ticksI

is-processT9 mem-Collect-eq strict-ticks-of-memI subsetI )

lemma finite-strict-ticks-of-image-imp-finite-ticks-fun [finite-ticks-fun-simps] :
‹(
∧

x. finite 3s(f x)) =⇒ �3⇒(f )›
by (simp add: finite-strict-ticks-of-imp-finite-ticks finite-ticks-funI )

lemma anti-mono-finite-ticks [finite-ticks-simps] :
‹�3(P)› if ‹P v Q› ‹�3(Q)›

proof (rule finite-ticksI )
fix t assume ‹t ∈ T P› ‹t /∈ D P›
have ‹{r . t @ [3(r)] ∈ T P} = {r . t @ [3(r)] ∈ T Q}›

by (meson ‹t /∈ D P› is-processT9 le-approx2T ‹P v Q›)
also have ‹finite . . .›
proof (rule ‹�3(Q)›[THEN finite-ticksD])

from ‹t /∈ D P› le-approx1 ‹P v Q› show ‹t /∈ D (Q)› by blast
qed
finally show ‹finite {r . t @ [3(r)] ∈ T P}› .

qed

lemma anti-mono-finite-ticks-fun [finite-ticks-fun-simps] :
‹f v g =⇒ �3⇒(g) =⇒ �3⇒(f )›
by (metis anti-mono-finite-ticks finite-ticks-fun-def fun-below-iff )

lemma finite-ticks-LUB-iff [finite-ticks-fun-simps] :
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‹�3(
⊔

i. Y i) ←→ (∀ i. �3(Y i))› if ‹chain Y ›
proof safe

from anti-mono-finite-ticks is-ub-thelub ‹chain Y ›
show ‹�3(

⊔
i. Y i) =⇒ �3(Y i)› for i by blast

next
show ‹�3(

⊔
i. Y i)› if ‹∀ i. �3(Y i)›

proof (rule finite-ticksI )
fix t assume ‹t ∈ T (

⊔
i. Y i)› ‹t /∈ D (

⊔
i. Y i)›

from ‹t /∈ D (
⊔

i. Y i)› obtain j where ‹t /∈ D (Y j)›
by (metis D-LUB-2 ‹chain Y › limproc-is-thelub)

have ‹{r . t @ [3(r)] ∈ T (
⊔

i. Y i)} = {r . t @ [3(r)] ∈ T (Y j)}›
by (meson ‹chain Y › ‹t /∈ D (Y j)› is-processT9 is-ub-thelub le-approx2T )

also have ‹finite . . .›
by (fact ‹∀ i. �3(Y i)›[THEN spec, THEN finite-ticksD, OF ‹t /∈ D (Y j)›])

finally show ‹finite {r . t @ [3(r)] ∈ T (
⊔

i. Y i)}› .
qed

qed

lemma adm-finite-ticks [finite-ticks-simps] : ‹adm (λP. �3(P))›
by (rule admI ) (simp add: finite-ticks-LUB-iff )

lemma finite-ticks-fix [finite-ticks-simps] :
‹�3(µ X . f X)› if ‹cont f › and ‹�3⇒(f )›

proof (induct rule: fix-ind)
show ‹adm finite-ticks› by (fact adm-finite-ticks)

next
show ‹�3(⊥)› by (fact finite-ticks-BOT )

next
show ‹�3((Λ X . f X)·X)› if ‹�3(X)› for X

by (simp add: ‹cont f ›) (fact finite-ticks-funD[OF ‹�3⇒(f )› ‹�3(X)›])
qed

lemma adm-finite-ticks-fun [finite-ticks-fun-simps] : ‹adm (λf . �3⇒(f ))›
by (simp add: admI ch2ch-fun finite-ticks-LUB-iff finite-ticks-fun-def lub-fun)

lemma finite-ticks-fun-fix [finite-ticks-fun-simps] :
‹�3⇒(µ X . f X)› if ‹cont f › and ‹

∧
x. �3⇒(x) =⇒ �3⇒(f x)›

proof (induct f rule: cont-fix-ind)
from ‹cont f › show ‹cont f › .

next
from adm-finite-ticks-fun show ‹adm (λf . �3⇒(f ))› .

next
from finite-ticks-fun-BOT show ‹�3⇒(⊥)› .

next
from ‹

∧
y. �3⇒(y) =⇒ �3⇒(f y)› show ‹�3⇒(x) =⇒ �3⇒(f x)› for x .

qed
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lemma finite-ticks-fun-id [finite-ticks-fun-simps] :
‹�3⇒(id)› ‹�3⇒(λx. x)›
by (simp-all add: finite-ticks-funI )

lemma finite-ticks-fun-const-iff [finite-ticks-fun-simps] :
‹�3⇒(λx. P) ←→ �3(P)›
by (meson finite-ticks-STOP finite-ticks-fun-def )

lemma finite-ticks-fun-comp [finite-ticks-fun-simps] :
‹�3⇒(g) =⇒ �3⇒(f ) =⇒ �3⇒(λx. g (f x))›
by (simp add: finite-ticks-fun-def )

2.3 Laws

2.3.1 Laws of �3(P)

lemma finite-ticks-Ndet [finite-ticks-simps] :
‹�3(P u Q)› if ‹�3(P)› ‹�3(Q)›

proof (rule finite-ticksI )
fix t assume ‹t ∈ T (P u Q)› ‹t /∈ D (P u Q)›
from ‹t ∈ T (P u Q)›
have ‹t ∈ T P ∧ t ∈ T Q ∨ t ∈ T P ∧ (∀ r . t @ [3(r)] /∈ T Q) ∨ (∀ r . t @

[3(r)] /∈ T P) ∧ t ∈ T Q›
unfolding T-Ndet by (metis Un-iff is-processT3-TR-append)

with ‹�3(P)› ‹�3(Q)› ‹t /∈ D (P u Q)› show ‹finite {r . t @ [3(r)] ∈ T (P u
Q)}›

by (auto simp add: Ndet-projs dest: finite-ticksD)
qed

lemma finite-ticks-Det [finite-ticks-simps] :
‹�3(P � Q)› if ‹�3(P)› ‹�3(Q)›

proof −
have ‹�3(P � Q) = �3(P u Q)› by (simp add: finite-ticks-def Det-projs

Ndet-projs)
with ‹�3(P)› ‹�3(Q)› show ‹�3(P � Q)› by (simp add: finite-ticks-Ndet)

qed

lemma finite-ticks-Sliding [finite-ticks-simps] :
‹�3(P) =⇒ �3(Q) =⇒ �3(P B Q)›
by (simp add: Sliding-def finite-ticks-Ndet finite-ticks-Det)

lemma finite-ticks-Interrupt [finite-ticks-simps] :
‹�3(P 4 Q)› if ‹�3(P)› ‹�3(Q)›

proof (cases ‹Q = ⊥›)
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show ‹Q = ⊥ =⇒ �3(P 4 Q)› by (simp add: finite-ticks-BOT )
next

show ‹�3(P 4 Q)› if ‹Q 6= ⊥›
proof (rule finite-ticksI )

fix t assume ‹t ∈ T (P 4 Q)› ‹t /∈ D (P 4 Q)›
have ‹{r . t @ [3(r)] ∈ T (P 4 Q)} ⊆

{r . t @ [3(r)] ∈ T P} ∪
(
⋃

u ∈ {u. ∃ v. t = u @ v ∧ u ∈ T P}. {r . drop (length u) t @ [3(r)] ∈
T Q})›

by (simp add: subset-iff T-Interrupt)
(metis Prefix-Order .prefix-length-le Prefix-Order .same-prefix-nil

append-eq-append-conv-if append-eq-first-pref-spec butlast-append but-
last-snoc)

moreover have ‹finite . . .›
proof (rule finite-UnI )

from D-Interrupt ‹t /∈ D (P 4 Q)› have ‹t /∈ D P› by blast
thus ‹finite {r . t @ [3(r)] ∈ T P}› by (simp add: finite-ticksD ‹�3(P)›)

next
show ‹finite (

⋃
u∈{u. ∃ v. t = u @ v ∧ u ∈ T P}. {r . drop (length u) t @

[3(r)] ∈ T Q})›
proof (rule finite-UN-I )
show ‹finite {u. ∃ v. t = u @ v ∧ u ∈ T P}› by (prove-finite-subset-of-prefixes

t)
next

fix u assume ‹u ∈ {u. ∃ v. t = u @ v ∧ u ∈ T P}›
then obtain v where ‹u ∈ T P› ‹t = u @ v› by blast
with ‹t ∈ T (P 4 Q)› append-T-imp-tickFree consider ‹tF u› | ‹v = []›

by blast
thus ‹finite {r . drop (length u) t @ [3(r)] ∈ T Q}›
proof cases

assume ‹tF u›
with ‹u ∈ T P› ‹t /∈ D (P 4 Q)› have ‹v /∈ D Q›

by (simp add: D-Interrupt ‹t = u @ v›)
thus ‹tF u =⇒ finite {r . drop (length u) t @ [3(r)] ∈ T Q}›

by (simp add: ‹t = u @ v› finite-ticksD ‹�3(Q)›)
next

from BOT-iff-Nil-D ‹Q 6= ⊥› have ‹[] /∈ D Q› by blast
with ‹�3(Q)› finite-ticksD have ‹finite {r . [3(r)] ∈ T Q}› by force
thus ‹v = [] =⇒ finite {r . drop (length u) t @ [3(r)] ∈ T Q}›

by (simp add: ‹t = u @ v›)
qed

qed
qed
ultimately show ‹finite {r . t @ [3(r)] ∈ T (P 4 Q)}› by (fact finite-subset)

qed
qed

lemma finite-ticks-Throw [finite-ticks-simps] :
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‹�3(P Θ a∈A. Q a)› if ‹�3(P)› ‹
∧

a. a ∈ A =⇒ �3(Q a)›
proof (rule finite-ticksI )

fix t assume ‹t ∈ T (P Θ a∈A. Q a)› ‹t /∈ D (P Θ a∈A. Q a)›
then consider ‹t ∈ T P› ‹set t ∩ ev ‘ A = {}›
| t1 a t2 where ‹t = t1 @ ev a # t2 › ‹t1 @ [ev a] ∈ T P›

‹set t1 ∩ ev ‘ A = {}› ‹a ∈ A› ‹t2 ∈ T (Q a)›
unfolding Throw-projs by blast

thus ‹finite {r . t @ [3(r)] ∈ T (P Θ a∈A. Q a)}›
proof cases

assume ‹t ∈ T P› ‹set t ∩ ev ‘ A = {}›
hence ‹{r . t @ [3(r)] ∈ T (P Θ a∈A. Q a)} ⊆ {r . t @ [3(r)] ∈ T P}›

by (auto simp add: T-Throw D-T is-processT7 disjoint-iff image-iff )
(metis (no-types) butlast.simps(2 ) butlast-append butlast-snoc in-set-conv-decomp)

moreover have ‹finite . . .›
proof (rule ‹�3(P)›[THEN finite-ticksD])

from ‹set t ∩ ev ‘ A = {}›
have ‹t ∈ D P =⇒ (if tF t then t else butlast t) ∈ D (P Θ a∈A. Q a)›

by (cases t rule: rev-cases, simp-all add: D-Throw)
(metis D-imp-front-tickFree ‹set t ∩ ev ‘ A = {}› append.right-neutral

butlast-snoc
div-butlast-when-non-tickFree-iff front-tickFree-Nil front-tickFree-nonempty-append-imp

not-Cons-self2 not-is-ev tickFree-Cons-iff tickFree-append-iff )
with ‹t /∈ D (P Θ a∈A. Q a)› D-imp-front-tickFree div-butlast-when-non-tickFree-iff

show ‹t /∈ D P› by blast
qed
ultimately show ‹finite {r . t @ [3(r)] ∈ T (P Θ a∈A. Q a)}› by (fact

finite-subset)
next

fix t1 a t2 assume ∗ : ‹t = t1 @ ev a # t2 › ‹t1 @ [ev a] ∈ T P›
‹set t1 ∩ ev ‘ A = {}› ‹a ∈ A› ‹t2 ∈ T (Q a)›

from ‹t /∈ D (P Θ a∈A. Q a)›
have ‹t /∈ {t1 @ t2 |t1 t2 . t1 ∈ D P ∧ tF t1 ∧ set t1 ∩ ev ‘ A = {} ∧ ftF t2}›

by (simp add: D-Throw UnI1 )

with ∗ have ‹{r . t @ [3(r)] ∈ T (P Θ a∈A. Q a)} = {r . t2 @ [3(r)] ∈ T (Q
a)}›

by (simp add: T-Throw, safe)
(metis Cons-eq-appendI append-assoc butlast-snoc front-tickFree-charn
non-tickFree-tick tickFree-Nil tickFree-append-iff tickFree-imp-front-tickFree,

solves ‹simp add: Throw-T-third-clause-breaker›, metis)
also have ‹finite . . .›
proof (rule ‹

∧
a. a ∈ A =⇒ �3(Q a)›[THEN finite-ticksD, OF ‹a ∈ A›])

from ‹t /∈ D (P Θ a∈A. Q a)› ‹t1 @ [ev a] ∈ T P› ‹set t1 ∩ ev ‘ A = {}›
show ‹t2 /∈ D (Q a)› by (auto simp add: D-Throw ‹t = t1 @ ev a # t2 › ‹a

∈ A›)
qed
finally show ‹finite {r . t @ [3(r)] ∈ T (P Θ a∈A. Q a)}› .

qed
qed
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lemma finite-ticks-Renaming [finite-ticks-simps] :
‹�3(Renaming P f g)› if ‹finitary f › ‹finitary g› ‹�3(P)›

proof (rule finite-ticksI )
fix t assume ‹t /∈ D (Renaming P f g)›
hence ‹{s. t @ [3(s)] ∈ T (Renaming P f g)} ⊆

(
⋃

u∈{u. t = map (map-eventptick f g) u ∧ u ∈ T P}. {g r |r . u @ [3(r)]
∈ T P})›

by (auto simp add: subset-iff Renaming-projs append-eq-map-conv tick-eq-map-eventptick-iff )
(use is-processT3-TR-append in blast,
metis append-Nil butlast-append eventptick.disc(2 ) front-tickFree-iff-tickFree-butlast

map-eventptick-tickFree snoc-eq-iff-butlast tickFree-butlast)
moreover have ‹finite . . .›
proof (rule finite-UN-I )

have ‹finitary (map-eventptick f g)› by (simp add: Cont-RenH2 ‹finitary f ›
‹finitary g›)

have ‹{u. t = map (map-eventptick f g) u ∧ u ∈ T P} ⊆ {u. t = map
(map-eventptick f g) u}› by blast

moreover from Cont-RenH4 ‹finitary (map-eventptick f g)› have ‹finite . . .›
by blast

ultimately show ‹finite {u. t = map (map-eventptick f g) u ∧ u ∈ T P}› by
(fact finite-subset)

next
fix u assume ‹u ∈ {u. t = map (map-eventptick f g) u ∧ u ∈ T P}›
hence ‹t = map (map-eventptick f g) u› ‹u ∈ T P› by simp-all
with ‹t /∈ D (Renaming P f g)› have ‹u /∈ D P›

by (simp add: D-Renaming)
(metis (no-types, opaque-lifting) D-imp-front-tickFree append-Nil append-Nil2

div-butlast-when-non-tickFree-iff front-tickFree-charn map-butlast
map-eventptick-tickFree snoc-eq-iff-butlast tickFree-Nil)

thus ‹finite {g r |r . u @ [3(r)] ∈ T P}›
by (simp add: finite-ticksD ‹�3(P)›)

qed
ultimately show ‹finite {r . t @ [3(r)] ∈ T (Renaming P f g)}› by (fact fi-

nite-subset)
qed

lemma finite-ticks-Seq [finite-ticks-simps] :
‹�3(P ; Q)› if ‹�3(Q)›

proof (cases ‹Q = ⊥›)
from not-finite-existsD show ‹Q = ⊥ =⇒ �3(P ; Q)›

by (auto simp add: finite-ticks-def Seq-projs BOT-projs)
next

show ‹�3(P ; Q)› if ‹Q 6= ⊥›
proof (rule finite-ticksI )

fix t assume ‹t /∈ D (P ; Q)›
hence ‹{r . t @ [3(r)] ∈ T (P ; Q)} ⊆

22



(
⋃

u ∈ {u. ∃ v r . t = u @ v ∧ u @ [3(r)] ∈ T P}. {r . drop (length u) t
@ [3(r)] ∈ T Q})›

by (auto simp add: Seq-projs intro: is-processT9 )
(metis (no-types, opaque-lifting) T-imp-front-tickFree append-butlast-last-id

append-eq-conv-conj butlast-append butlast-snoc front-tickFree-nonempty-append-imp
last-appendR list.distinct(1 ) non-tickFree-tick tickFree-append-iff )

moreover have ‹finite . . .›
proof (rule finite-UN-I )

show ‹finite {u. ∃ v r . t = u @ v ∧ u @ [3(r)] ∈ T P}›
by (prove-finite-subset-of-prefixes t)

next
fix u assume ‹u ∈ {u. ∃ v r . t = u @ v ∧ u @ [3(r)] ∈ T P}›
then obtain v r where ‹u @ [3(r)] ∈ T P› ‹t = u @ v› by blast
with append-T-imp-tickFree consider ‹tF u› | ‹v = []› by blast
thus ‹finite {r . drop (length u) t @ [3(r)] ∈ T Q}›
proof cases

assume ‹tF u›
with ‹u @ [3(r)] ∈ T P› ‹t /∈ D (P ; Q)› have ‹v /∈ D Q›

by (auto simp add: D-Seq ‹t = u @ v›)
thus ‹tF u =⇒ finite {r . drop (length u) t @ [3(r)] ∈ T Q}›

by (simp add: ‹t = u @ v› finite-ticksD ‹�3(Q)›)
next

from BOT-iff-Nil-D ‹Q 6= ⊥› have ‹[] /∈ D Q› by blast
with ‹�3(Q)› finite-ticksD have ‹finite {r . [3(r)] ∈ T Q}› by force
thus ‹v = [] =⇒ finite {r . drop (length u) t @ [3(r)] ∈ T Q}›

by (simp add: ‹t = u @ v›)
qed

qed
ultimately show ‹finite {r . t @ [3(r)] ∈ T (P ; Q)}› by (fact finite-subset)

qed
qed

lemma finite-ticks-Sync [finite-ticks-simps] :
‹�3(P [[S ]] Q)› if ‹�3(P) ∨ �3(Q)›

proof (rule finite-ticksI )
fix t assume ‹t /∈ D (P [[S ]] Q)›
have ‹{r . t @ [3(r)] ∈ T (P [[S ]] Q)} ⊆

(
⋃

(t-P, t-Q)∈{(t-P, t-Q). t setinterleaves ((t-P, t-Q), range tick ∪ ev ‘ S)}.
{r . t-P @ [3(r)] ∈ T P ∧ t-P /∈ D P ∧ t-Q @ [3(r)] ∈ T Q ∧

t-Q /∈ D Q})›
(is ‹- ⊆ ?rhs›)

proof (rule subsetI )
fix r assume ‹r ∈ {r . t @ [3(r)] ∈ T (P [[S ]] Q)}›
hence ‹t @ [3(r)] ∈ T (P [[S ]] Q)› ..
moreover from ‹t /∈ D (P [[S ]] Q)› have ‹t @ [3(r)] /∈ D (P [[S ]] Q)›

by (meson is-processT9 )
ultimately obtain t-P t-Q where ‹t-P ∈ T P› ‹t-Q ∈ T Q› ‹t-P /∈ D P›
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‹t-Q /∈ D Q›
‹(t @ [3(r)]) setinterleaves ((t-P, t-Q), range tick ∪ ev ‘ S)›
by (simp add: Sync-projs)
(metis (no-types, lifting) append.right-neutral front-tickFree-Nil setinterleav-

ing-sym)
from this(1−4 ) SyncWithTick-imp-NTF [OF this(5 )] show ‹r ∈ ?rhs›

by simp (metis T-imp-front-tickFree front-tickFree-append-iff is-processT7
not-Cons-self2 )

qed
moreover have ‹finite . . .›
proof (rule finite-UN-I , safe)

show ‹finite {(t-P, t-Q). t setinterleaves ((t-P, t-Q), range tick ∪ ev ‘ S)}›
by (fact finite-interleaves)

next
from ‹�3(P) ∨ �3(Q)› finite-ticksD
show ‹finite {r . t-P @ [3(r)] ∈ T P ∧ t-P /∈ D P ∧

t-Q @ [3(r)] ∈ T Q ∧ t-Q /∈ D Q}› for t-P t-Q by fastforce
qed
ultimately show ‹finite {r . t @ [3(r)] ∈ T (P [[S ]] Q)}› by (fact finite-subset)

qed

corollary ‹�3(P) ∨ �3(Q) =⇒ �3(P || Q)›
and ‹�3(P) ∨ �3(Q) =⇒ �3(P ||| Q)›
by (fact finite-ticks-Sync)+

lemma finite-ticks-GlobalNdet [finite-ticks-simps] :
‹finite A =⇒ (

∧
a. a ∈ A =⇒ �3(P a)) =⇒ �3(ua∈A. P a)›

— We can’t expect infinite A here, see �3(SKIPS R) = finite R.
by (induct A rule: induct-subset-empty-single)
(simp-all add: GlobalNdet-distrib-unit finite-ticks-Ndet finite-ticks-STOP)

lemma finite-ticks-GlobalDet [finite-ticks-simps] :
‹finite A =⇒ (

∧
a. a ∈ A =⇒ �3(P a)) =⇒ �3(�a∈A. P a)›

by (induct A rule: finite-induct)
(simp-all add: GlobalDet-distrib-unit-bis finite-ticks-Det finite-ticks-STOP)

lemma ‹L = [] =⇒ �3(SEQ l∈@L. P l)› by (simp add: finite-ticks-SKIP)

lemma finite-ticks-MultiSeq-nonempty [finite-ticks-simps] :
‹L 6= [] =⇒ �3(P (last L)) =⇒ �3(SEQ l∈@L. P l)›
by (induct L rule: rev-induct) (simp-all add: finite-ticks-Seq)

lemma finite-ticks-MultiSync [finite-ticks-simps] :
‹(
∧

m. m ∈# M =⇒ �3(P m)) =⇒ �3([[S]] m∈#M . P m)›
by (induct M rule: induct-subset-mset-empty-single)
(simp-all add: finite-ticks-Sync finite-ticks-STOP)
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corollary ‹(
∧

m. m ∈# M =⇒ �3(P m)) =⇒ �3(|| m∈#M . P m)›
and ‹(

∧
m. m ∈# M =⇒ �3(P m)) =⇒ �3(||| m∈#M . P m)›

by (fact finite-ticks-MultiSync)+

lemma finite-ticks-Mprefix-iff [finite-ticks-simps] :
‹�3(�a∈A → P a) ←→ (∀ a∈A. �3(P a))›

proof (safe intro!: finite-ticksI )
fix t a assume ‹�3(�a∈A → P a)› ‹a ∈ A› ‹t ∈ T (P a)› ‹t /∈ D (P a)›
have ‹{r . t @ [3(r)] ∈ T (P a)} = {r . (ev a # t) @ [3(r)] ∈ T (�a∈A → P

a)}›
by (auto simp add: ‹a ∈ A› T-Mprefix)

also have ‹finite . . .›
by (rule ‹�3(�a∈A → P a)›[THEN finite-ticksD])
(simp add: D-Mprefix ‹t /∈ D (P a)›)

finally show ‹finite {r . t @ [3(r)] ∈ T (P a)}› .
next

fix t assume ‹∀ a∈A. �3(P a)› ‹t ∈ T (�a∈A → P a)› ‹t /∈ D (�a∈A → P a)›
from ‹t ∈ T (�a∈A → P a)› consider ‹t = []› | u a where ‹a ∈ A› ‹t = ev a

# u›
by (auto simp add: T-Mprefix)

thus ‹finite {r . t @ [3(r)] ∈ T (�a∈A → P a)}›
proof cases

show ‹t = [] =⇒ finite {r . t @ [3(r)] ∈ T (�a∈A → P a)}› by (simp add:
T-Mprefix)

next
fix u a assume ‹a ∈ A› ‹t = ev a # u›
hence ‹{r . t @ [3(r)] ∈ T (�a∈A → P a)} = {r . u @ [3(r)] ∈ T (P a)}›

by (simp add: set-eq-iff T-Mprefix)
also have ‹finite . . .›

by (rule ‹∀ a∈A. �3(P a)›[THEN bspec, OF ‹a ∈ A›, THEN finite-ticksD])
(use ‹t /∈ D (�a∈A → P a)› in ‹simp add: ‹t = ev a # u› D-Mprefix ‹a ∈

A››)
finally show ‹finite {r . t @ [3(r)] ∈ T (�a∈A → P a)}› .

qed
qed

lemma finite-ticks-Mndetprefix-iff [finite-ticks-simps] :
‹�3(ua∈A → P a) ←→ (∀ a∈A. �3(P a))›

proof −
have ‹�3(ua∈A → P a) ←→ �3(�a∈A → P a)›

by (simp add: finite-ticks-def Mndetprefix-projs Mprefix-projs)
thus ‹�3(ua∈A→ P a)←→ (∀ a∈A. �3(P a))› by (simp add: finite-ticks-Mprefix-iff )

qed

lemma finite-ticks-write0-iff [finite-ticks-simps] : ‹�3(a → P) ←→ �3(P)›
by (simp add: write0-def finite-ticks-Mprefix-iff )
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lemma finite-ticks-write-iff [finite-ticks-simps] : ‹�3(c!a → P) ←→ �3(P)›
by (simp add: write-def finite-ticks-Mprefix-iff )

lemma finite-ticks-read-iff :
‹�3(c?a∈A → P a) ←→ (∀ b∈c ‘ A. �3(P (inv-into A c b)))›
by (simp add: read-def finite-ticks-Mprefix-iff )

lemma finite-ticks-inj-on-read-iff [finite-ticks-simps] :
‹inj-on c A =⇒ �3(c?a∈A → P a) ←→ (∀ a∈A. �3(P a))›
by (simp add: read-def finite-ticks-Mprefix-iff )

lemma finite-ticks-ndet-write-iff :
‹�3(c!!a∈A → P a) ←→ (∀ b∈c ‘ A. �3(P (inv-into A c b)))›
by (simp add: ndet-write-def finite-ticks-Mndetprefix-iff )

lemma finite-ticks-inj-on-ndet-write-iff [finite-ticks-simps] :
‹inj-on c A =⇒ �3(c!!a∈A → P a) ←→ (∀ a∈A. �3(P a))›
by (simp add: ndet-write-def finite-ticks-Mndetprefix-iff )

2.3.2 Laws of �3⇒(f )
lemma finite-ticks-fun-Det [finite-ticks-fun-simps] :

‹�3⇒(f ) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x � g x)›
by (simp add: finite-ticks-Det finite-ticks-fun-def )

lemma finite-ticks-fun-Ndet [finite-ticks-fun-simps] :
‹�3⇒(f ) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x u g x)›
by (simp add: finite-ticks-Ndet finite-ticks-fun-def )

lemma finite-ticks-fun-Sliding [finite-ticks-fun-simps] :
‹�3⇒(f ) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x B g x)›
by (simp add: finite-ticks-Sliding finite-ticks-fun-def )

lemma finite-ticks-fun-Interrupt [finite-ticks-fun-simps] :
‹�3⇒(f ) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x 4 g x)›
by (simp add: finite-ticks-Interrupt finite-ticks-fun-def )

lemma finite-ticks-fun-Throw [finite-ticks-fun-simps] :
‹�3⇒(f ) =⇒ (

∧
a. a ∈ A =⇒ �3⇒(g a)) =⇒ �3⇒(λx. f x Θ a∈A. g a x)›

by (simp add: finite-ticks-Throw finite-ticks-fun-def )

lemma finite-ticks-fun-Renaming [finite-ticks-fun-simps] :
‹�3⇒(P) =⇒ finitary f =⇒ finitary g =⇒ �3⇒(λx. Renaming (P x) f g)›
by (simp add: finite-ticks-Renaming finite-ticks-fun-def )

lemma finite-ticks-fun-RenamingF [finite-ticks-fun-simps] :
‹�3⇒(P) =⇒ �3⇒(λx. (P x) [[a := b]] [[c := d]])›
by (simp add: finite-ticks-fun-Renaming)
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lemma finite-ticks-fun-Seq [finite-ticks-fun-simps] :
‹�3⇒(g) =⇒ �3⇒(λx. f x ; g x)›
by (simp add: finite-ticks-Seq finite-ticks-fun-def )

lemma finite-ticks-fun-Sync [finite-ticks-fun-simps] :
‹�3⇒(f ) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x [[S ]] g x)›
by (simp add: finite-ticks-Sync finite-ticks-fun-def )

corollary ‹�3⇒(f ) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x || g x)›
and ‹�3⇒(f ) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x ||| g x)›
by (fact finite-ticks-fun-Sync)+

lemma finite-ticks-fun-GlobalNdet [finite-ticks-fun-simps] :
‹finite A =⇒ (

∧
a. a ∈ A =⇒ �3⇒(f a)) =⇒ �3⇒(λx. ua∈A. f a x)›

by (simp add: finite-ticks-GlobalNdet finite-ticks-fun-def )

lemma finite-ticks-fun-GlobalDet :
‹finite A =⇒ (

∧
a. a ∈ A =⇒ �3⇒(f a)) =⇒ �3⇒(λx. �a∈A. f a x)›

by (simp add: finite-ticks-GlobalDet finite-ticks-fun-def )

lemma finite-ticks-fun-MultiSeq [finite-ticks-fun-simps] :
‹L = [] =⇒ �3⇒(λx. SEQ l∈@L. f l x)›
‹L 6= [] =⇒ �3⇒(f (last L)) =⇒ �3⇒(λx. SEQ l∈@L. f l x)›
by (simp-all add: finite-ticks-MultiSeq-nonempty finite-ticks-fun-def finite-ticks-SKIP)

lemma finite-ticks-fun-MultiSync [finite-ticks-fun-simps] :
‹(
∧

m. m ∈# M =⇒ �3⇒(f m)) =⇒ �3⇒(λx. [[S]] m∈#M . f m x)›
by (simp add: finite-ticks-MultiSync finite-ticks-fun-def )

corollary ‹(
∧

m. m ∈# M =⇒ �3⇒(f m)) =⇒ �3⇒(λx. || m∈#M . f m x)›
and ‹(

∧
m. m ∈# M =⇒ �3⇒(f m)) =⇒ �3⇒(λx. ||| m∈#M . f m x)›

by (fact finite-ticks-fun-MultiSync)+

lemma finite-ticks-fun-Mprefix-iff :
‹�3⇒(λx. �a∈A → f a x) ←→ (∀ a ∈ A. �3⇒(f a))›
by (auto simp add: finite-ticks-fun-def finite-ticks-Mprefix-iff )

lemma finite-ticks-fun-Mprefix [finite-ticks-fun-simps] :
‹(
∧

a. a ∈ A =⇒ �3⇒(f a)) =⇒ �3⇒(λx. �a∈A → f a x)›
by (simp add: finite-ticks-fun-Mprefix-iff )

lemma finite-ticks-fun-Mndetprefix-iff [finite-ticks-fun-simps] :
‹�3⇒(λx. ua∈A → f a x) ←→ (∀ a ∈ A. �3⇒(f a))›
by (auto simp add: finite-ticks-fun-def finite-ticks-Mndetprefix-iff )
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lemma finite-ticks-fun-Mndetprefix [finite-ticks-fun-simps] :
‹(
∧

a. a ∈ A =⇒ �3⇒(f a)) =⇒ �3⇒(λx. ua∈A → f a x)›
by (simp add: finite-ticks-fun-Mndetprefix-iff )

lemma finite-ticks-fun-write0-iff [finite-ticks-fun-simps] :
‹�3⇒(λx. a → f x) ←→ �3⇒(f )›
by (simp add: write0-def finite-ticks-fun-Mprefix-iff )

lemma finite-ticks-fun-write-iff [finite-ticks-fun-simps] :
‹�3⇒(λx. c!a → f x) ←→ �3⇒(f )›
by (simp add: write-def finite-ticks-fun-Mprefix-iff )

lemma finite-ticks-fun-read-iff :
‹�3⇒(λx. c?a∈A → f a x) ←→ (∀ b∈c ‘ A. �3⇒(f (inv-into A c b)))›
by (simp add: read-def finite-ticks-fun-Mprefix-iff )

lemma finite-ticks-fun-read [finite-ticks-fun-simps] :
‹(
∧

a. a ∈ A =⇒ �3⇒(λx. f a x)) =⇒ �3⇒(λx. c?a∈A → f a x)›
by (simp add: read-def o-def inv-into-into finite-ticks-fun-Mprefix-iff )

lemma finite-ticks-fun-ndet-write-iff :
‹�3⇒(λx. c!!a∈A → f a x) ←→ (∀ b∈c ‘ A. �3⇒(f (inv-into A c b)))›
by (simp add: ndet-write-def finite-ticks-fun-Mndetprefix-iff )

lemma finite-ticks-fun-ndet-write [finite-ticks-fun-simps] :
‹(
∧

a. a ∈ A =⇒ �3⇒(λx. f a x)) =⇒ �3⇒(λx. c!!a∈A → f a x)›
by (simp add: ndet-write-def o-def inv-into-into finite-ticks-fun-Mndetprefix-iff )
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Chapter 3

Generalization of the
Sequential Composition

3.1 Definition

For the sequential composition, the generalization seems quite straightfor-
ward. In a nutshell, we just replace Q with Q r in the definition of P
; Q since Q is now of type ′r ⇒ ( ′a, ′r) processptick (instead of ( ′a, ′r)
processptick).
lift-definition Seqptick ::

‹[( ′a, ′r) processptick, ′r ⇒ ( ′a, ′r) processptick] ⇒ ( ′a, ′r) processptick› (infixl
‹;3› 74 )

is ‹λP Q. ({(t, X) |t X . (t, X ∪ range tick) ∈ F P ∧ tF t} ∪
{(t @ u, X) |t u r X . t @ [3(r)] ∈ T P ∧ (u, X) ∈ F (Q r)} ∪
{(t, X). t ∈ D P},
D P ∪ {t @ u |t u r . t @ [3(r)] ∈ T P ∧ u ∈ D (Q r)})›

oops

Except that this is not a fully satisfactory definition yet. Indeed, here, the
right-hand side argument must produce processes whose terminations keep
the same type. In other words, Q is of type ′r ⇒ ( ′a, ′r) processptick while
we would like to have in full generality ′r ⇒ ( ′a, ′s) processptick. The final
definition given below is not immediate, and involves a precise understanding
of the behaviour of the sequential composition.

3.1.1 Preliminaries

The first key for generalizing the definition is to see that map (ev ◦ of-ev)
allows for changing the type of termination in tick-free traces.
lemma tickFree-map-ev-of-ev-same-type-is : ‹tF t =⇒ map (ev ◦ of-ev) t = t›

— In this case the type of termination remains unchanged.
by (induct t) simp-all
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lemma tickFree-map-ev-of-ev-eq-iff :
‹tF t =⇒ map (ev ◦ of-ev) t = t ′ =⇒ t = map (ev ◦ of-ev) t ′›
by (induct t arbitrary: t ′) auto

lemma tickFree-map-ev-of-ev-inj :
‹tF t =⇒ tF t ′ =⇒ map (ev ◦ of-ev) t = map (ev ◦ of-ev) t ′←→ t = t ′›
by (induct t arbitrary: t ′) (use eventptick.expand in auto)+

lemma map-ev-of-ev-map-ev-of-ev [simp] :
‹map (ev ◦ of-ev) (map (ev ◦ of-ev) t) = map (ev ◦ of-ev) t› by simp

lemma map-ev-of-ev-map-ev-of-ev-simplified [simp] :
‹map (ev ◦ of-ev ◦ (ev ◦ of-ev)) t = map (ev ◦ of-ev) t› by simp

lemma tickFree-map-ev-of-ev-eq-imp-ev-mem-iff :
‹tF t ′ =⇒ t = map (ev ◦ of-ev) t ′ =⇒ ev a ∈ set t ←→ ev a ∈ set t ′›
by (induct t ′ arbitrary: t) auto

The second key is to understand that X ∪ range tick can be rewritten as
(ev ◦ of-ev) ‘ (X ∩ range ev) ∪ range tick, and that this second expression
also allows for changing the type of termination.
definition ref-Seqptick :: ‹( ′a, ′r) eventptick set ⇒ ( ′a, ′s) eventptick set›

where ‹ref-Seqptick X ≡ (ev ◦ of-ev) ‘ (X ∩ range ev) ∪ range tick›

lemma ref-Seqptick-same-type-is : ‹ref-Seqptick X = X ∪ range tick›
— In this case the type of termination remains unchanged.
by (auto simp add: ref-Seqptick-def set-eq-iff image-iff )
(metis Int-iff eventptick.exhaust eventptick.sel(1 ) rangeI )

lemma mono-ref-Seqptick : ‹X ⊆ Y =⇒ ref-Seqptick X ⊆ ref-Seqptick Y ›
unfolding ref-Seqptick-def by fast

lemma ref-Seqptick-idem : ‹ref-Seqptick (ref-Seqptick X) = ref-Seqptick X›
by (auto simp add: image-iff ref-Seqptick-def )
(metis Int-iff eventptick.sel(1 ) rangeI ,

metis (lifting) Int-iff Un-iff eventptick.sel(1 ) image-eqI rangeI )

lemma ref-Seqptick-comp-ref-Seqptick : ‹ref-Seqptick ◦ ref-Seqptick = ref-Seqptick›
by (rule ext) (simp add: ref-Seqptick-idem)

lemma ref-Seqptick-eq-iff :
‹ref-Seqptick X = ref-Seqptick Y ←→ X ∩ range ev = Y ∩ range ev›

proof (rule iffI )
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show ‹X ∩ range ev = Y ∩ range ev =⇒ ref-Seqptick X = ref-Seqptick Y ›
by (auto simp add: ref-Seqptick-def )

next
show ‹X ∩ range ev = Y ∩ range ev› if ‹ref-Seqptick X = ref-Seqptick Y ›
proof (rule set-eqI )

show ‹e ∈ X ∩ range ev ←→ e ∈ Y ∩ range ev› for e
using that[unfolded set-eq-iff , THEN spec, of ‹(ev ◦ of-ev) e›]
by (auto simp add: ref-Seqptick-def )

qed
qed

lemma ref-Seqptick-is-map-eventptick-image :
‹ref-Seqptick X = map-eventptick id g ‘ (X ∩ range ev) ∪ range tick›
— Note that g is free here and does not matter.
by (auto simp add: ref-Seqptick-def image-iff )
(metis Int-iff eq-id-iff map-eventptick-eq-ev-iff rangeI ,

metis Int-iff eventptick.sel(1 ) rangeI )

lemma ref-Seqptick-union-image-ev :
‹ref-Seqptick (X ∪ ev ‘ S) = ref-Seqptick X ∪ ev ‘ S›
by (auto simp add: ref-Seqptick-def image-iff )
(metis Int-iff Un-iff eventptick.sel(1 ) image-eqI rangeI )

lemma ref-Seqptick-UNIV : ‹ref-Seqptick UNIV = UNIV ›
by (simp add: set-eq-iff ref-Seqptick-def image-iff )
(meson eventptick.exhaust)

3.1.2 Formal Definition
definition div-Seqptick ::

‹[( ′a, ′r) processptick, ′r ⇒ ( ′a, ′s) processptick] ⇒ ( ′a, ′s) traceptick set›
where ‹div-Seqptick P Q ≡

{map (ev ◦ of-ev) t @ u |t u. t ∈ D P ∧ tF t ∧ ftF u} ∪
{map (ev ◦ of-ev) t @ u |t u r . t @ [3(r)] ∈ T P ∧ tF t ∧ u ∈ D (Q r)}›

definition fail-Seqptick ::
‹[( ′a, ′r) processptick, ′r ⇒ ( ′a, ′s) processptick] ⇒ ( ′a, ′s) failureptick set›
where ‹fail-Seqptick P Q ≡

{(map (ev ◦ of-ev) t, X) |t X . (t, ref-Seqptick X) ∈ F P ∧ tF t} ∪
{(map (ev ◦ of-ev) t @ u, X) |t u r X . t @ [3(r)] ∈ T P ∧ tF t ∧ (u, X)

∈ F (Q r)} ∪
{(map (ev ◦ of-ev) t @ u, X) |t u X . t ∈ D P ∧ tF t ∧ ftF u}›

— tF t is trivial when t @ [3(r)] ∈ T P, but we add it for proof automation

lift-definition Seqptick ::
‹[( ′a, ′r) processptick, ′r ⇒ ( ′a, ′s) processptick] ⇒ ( ′a, ′s) processptick› (infixl

‹;3› 74 )
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is ‹λP Q. (fail-Seqptick P Q, div-Seqptick P Q)›
proof −

show ‹?thesis P Q› (is ‹is-process(?f , ?d)›) for P and Q
proof (unfold is-process-def FAILURES-def DIVERGENCES-def fst-conv snd-conv,

intro conjI allI impI )
show ‹([], {}) ∈ ?f ›

by (simp add: fail-Seqptick-def ref-Seqptick-def )
(metis append-Nil is-processT1 trace-tick-continuation-or-all-tick-failuresE)

next
show ‹(t, X) ∈ ?f =⇒ ftF t› for t X

by (auto simp add: fail-Seqptick-def div-Seqptick-def
F-imp-front-tickFree D-imp-front-tickFree
intro: front-tickFree-append)

next
show ‹(t @ u, {}) ∈ ?f =⇒ (t, {}) ∈ ?f › for t u
proof (induct u arbitrary: t)

show ‹(t @ [], {}) ∈ ?f =⇒ (t, {}) ∈ ?f › for t by simp
next

fix t e u assume prem : ‹(t @ e # u, {}) ∈ ?f ›
assume hyp : ‹(t @ u, {}) ∈ ?f =⇒ (t, {}) ∈ ?f › for t
from prem have ‹((t @ [e]) @ u, {}) ∈ ?f › by simp
with hyp have ‹(t @ [e], {}) ∈ ?f › by presburger
then consider (D-P) t ′ u where ‹t @ [e] = map (ev ◦ of-ev) t ′ @ u› ‹t ′ ∈

D P› ‹tF t ′› ‹ftF u›
| (F-P) t ′ where ‹t @ [e] = map (ev ◦ of-ev) t ′› ‹(t ′, range tick) ∈ F P›

‹tF t ′›
| (F-Q) t ′ r u where ‹t @ [e] = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T

P› ‹(u, {}) ∈ F (Q r)›
by (auto simp add: fail-Seqptick-def div-Seqptick-def ref-Seqptick-def )

thus ‹(t, {}) ∈ ?f ›
proof cases

case D-P
show ?thesis
proof (cases u rule: rev-cases)

assume ‹u = []›
have ‹(butlast t ′, {}) ∈ F P›

by (metis D-P(2 ) D-T prefixI T-F-spec append-butlast-last-id
butlast.simps(1 ) is-processT3-TR)

thus ‹(t, {}) ∈ ?f ›
by (elim trace-tick-continuation-or-all-tick-failuresE , simp-all add:

fail-Seqptick-def ref-Seqptick-def )
(metis (no-types, opaque-lifting) D-P(1 ) ‹u = []› append.right-neutral

append-T-imp-tickFree butlast-snoc is-processT1 map-butlast not-Cons-self2 ,
metis D-P(1 ,3 ) ‹u = []› append.right-neutral butlast-snoc

front-tickFree-iff-tickFree-butlast map-butlast tickFree-imp-front-tickFree)
next

fix e ′ u ′ assume ‹u = u ′ @ [e ′]›
with D-P have ‹t = map (ev ◦ of-ev) t ′ @ u ′› ‹t ′ ∈ D P› ‹tF t ′› ‹ftF u ′›

by (simp-all add: front-tickFree-append-iff )
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thus ‹(t, {}) ∈ ?f › by (auto simp add: fail-Seqptick-def )
qed

next
case F-P
have ‹(butlast t ′, {}) ∈ F P›

by (metis F-P(1 , 2 ) is-processT3 is-processT4-empty list.map-disc-iff
snoc-eq-iff-butlast)

with F-P(2 ) show ‹(t, {}) ∈ ?f ›
by (elim trace-tick-continuation-or-all-tick-failuresE , simp-all add: fail-Seqptick-def

ref-Seqptick-def )
(metis (no-types, lifting) F-P(1 ) T-imp-front-tickFree append.right-neutral

butlast-snoc
front-tickFree-iff-tickFree-butlast is-processT1 map-butlast,

metis F-P(1 ) F-imp-front-tickFree butlast-snoc front-tickFree-iff-tickFree-butlast
map-butlast)

next
case F-Q
show ‹(t, {}) ∈ ?f ›
proof (cases u rule: rev-cases)

assume ‹u = []›
have ‹(butlast t ′, {}) ∈ F P›

by (metis F-Q(2 ) T-F-spec append-butlast-last-id butlast.simps(1 )
is-processT3-TR-append)

thus ‹(t, {}) ∈ ?f ›
by (elim trace-tick-continuation-or-all-tick-failuresE , simp-all add:

fail-Seqptick-def ref-Seqptick-def )
(metis (no-types, lifting) F-Q(1 ) ‹u = []› append-T-imp-tickFree

butlast-snoc
is-processT1 map-butlast not-Cons-self2 self-append-conv,

metis F-Q(1 , 2 ) T-imp-front-tickFree ‹u = []› append-self-conv
butlast-snoc

front-tickFree-iff-tickFree-butlast is-processT3-TR-append map-butlast)
next

from F-Q show ‹u = u ′ @ [e ′] =⇒ (t, {}) ∈ ?f › for u ′ e ′

by (simp add: fail-Seqptick-def )
(metis append-T-imp-tickFree is-processT3 list.distinct(1 ))

qed
qed

qed
next

fix t X Y assume ‹(t, Y ) ∈ ?f ∧ X ⊆ Y ›
hence ‹(t, Y )∈ ?f › ‹X ⊆ Y › by simp-all
from ‹(t, Y )∈ ?f › consider (F-P) t ′ where ‹t = map (ev ◦ of-ev) t ′›

‹(t ′, (ev ◦ of-ev) ‘ (Y ∩ range ev) ∪ range tick) ∈ F P› ‹tF t ′›
| (F-Q) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T P› ‹tF

t ′› ‹(u, Y ) ∈ F (Q r)›
| (D-P) t ′ u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ ∈ D P› ‹tF t ′› ‹ftF u›

by (auto simp add: fail-Seqptick-def ref-Seqptick-def )
thus ‹(t, X) ∈ ?f ›

33



proof cases
case F-P
from ‹X ⊆ Y › have ‹(ev ◦ of-ev) ‘ (X ∩ range ev) ∪ range tick ⊆

(ev ◦ of-ev) ‘ (Y ∩ range ev) ∪ range tick› by blast
with F-P(2 ) have ‹(t ′, (ev ◦ of-ev) ‘ (X ∩ range ev) ∪ range tick) ∈ F P›

by (metis is-processT4 )
with F-P(1 , 3 ) show ‹(t, X) ∈ ?f ›

by (auto simp add: fail-Seqptick-def ref-Seqptick-def )
next

case F-Q thus ‹(t, X) ∈ ?f ›
by (simp add: fail-Seqptick-def ) (metis ‹X ⊆ Y › is-processT4 )

next
case D-P thus ‹(t, X) ∈ ?f › by (auto simp add: fail-Seqptick-def )

qed
next

fix t X Y assume ∗ : ‹(t, X) ∈ ?f ∧ (∀ e. e ∈ Y −→ (t @ [e], {}) /∈ ?f )›
from ∗ consider ‹t ∈ ?d›
| (F-P) t ′ where ‹t = map (ev ◦ of-ev) t ′› ‹(t ′, (ev ◦ of-ev) ‘ (X ∩ range ev)

∪ range tick) ∈ F P› ‹tF t ′›
| (F-Q) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T P› ‹tF

t ′› ‹(u, X) ∈ F (Q r)›
unfolding fail-Seqptick-def div-Seqptick-def ref-Seqptick-def by auto

thus ‹(t, X ∪ Y ) ∈ ?f ›
proof cases

show ‹t ∈ ?d =⇒ (t, X ∪ Y ) ∈ ?f ›
by (simp add: div-Seqptick-def fail-Seqptick-def ) (metis is-processT8 )

next
case F-P
have ‹(t ′, (ev ◦ of-ev) ‘ (X ∩ range ev) ∪ range tick ∪ (ev ◦ of-ev) ‘ (Y ∩

range ev)) ∈ F P›
proof (intro is-processT5 [OF F-P(2 )] allI impI )

fix e :: ‹( ′a, ′r) eventptick› assume ‹e ∈ (ev ◦ of-ev) ‘ (Y ∩ range ev)›
then obtain a where ‹e = ev a› ‹ev a ∈ Y › by auto

from ∗[THEN conjunct2 , rule-format, OF this(2 ), unfolded fail-Seqptick-def ]
F-P(1 , 3 )

show ‹(t ′ @ [e], {}) /∈ F P›
apply (simp add: fail-Seqptick-def ‹e = ev a› append-eq-map-conv

ref-Seqptick-def )
by (smt (verit, del-insts) append-Nil2 comp-apply eventptick.sel(1 )

is-processT1
list.simps(8 , 9 ) map-append tickFree-append-iff
tickFree-map-ev-comp trace-tick-continuation-or-all-tick-failuresE)

qed
also have ‹(ev ◦ of-ev) ‘ (X ∩ range ev) ∪ range tick ∪ (ev ◦ of-ev) ‘ (Y ∩

range ev) =
ref-Seqptick (X ∪ Y )› unfolding ref-Seqptick-def by blast

finally show ‹(t, X ∪ Y ) ∈ ?f ›
using F-P(1 , 3 ) by (auto simp add: fail-Seqptick-def )

next
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case F-Q
from ∗ have ‹∀ e. e ∈ Y −→ (u @ [e], {}) /∈ F (Q r)›

by (simp add: fail-Seqptick-def F-Q(1 , 2 ))
(metis F-Q(2 ) append-T-imp-tickFree not-Cons-self2 )

with F-Q(3 , 4 ) have ‹(u, X ∪ Y ) ∈ F (Q r)› by (simp add: is-processT5 )
with F-Q(1−3 ) show ‹(t, X ∪ Y ) ∈ ?f › by (auto simp add: fail-Seqptick-def )
qed

next
show ‹t ∈ ?d ∧ tF t ∧ ftF u =⇒ t @ u ∈ ?d› for t u

by (simp add: div-Seqptick-def , elim conjE disjE exE)
(solves ‹use front-tickFree-append in auto›,

meson append.assoc is-processT7 tickFree-append-iff )
next

show ‹t ∈ ?d =⇒ (t, X) ∈ ?f › for t X
by (simp add: div-Seqptick-def fail-Seqptick-def ) (metis is-processT8 )

next
show ∗ : ‹t @ [3(r ′)] ∈ ?d =⇒ t ∈ ?d› for t r ′

by (simp add: div-Seqptick-def , elim disjE exE conjE)
(metis butlast-append butlast-snoc front-tickFree-iff-tickFree-butlast non-tickFree-tick

tickFree-append-iff tickFree-imp-front-tickFree tickFree-map-ev-comp,
metis D-imp-front-tickFree butlast-append butlast-snoc
div-butlast-when-non-tickFree-iff non-tickFree-tick
tickFree-append-iff tickFree-map-ev-comp)

fix t r ′ X assume ‹(t @ [3(r ′)], {}) ∈ ?f ›
then consider ‹t @ [3(r ′)] ∈ ?d›
| (F-Q) t ′ r u where ‹t @ [3(r ′)] = map (ev ◦ of-ev) t ′ @ u›

‹t ′ @ [3(r)] ∈ T P› ‹tF t ′› ‹(u, X) ∈ F (Q r)›
by (auto simp add: fail-Seqptick-def div-Seqptick-def )
(metis non-tickFree-tick tickFree-append-iff tickFree-map-ev-comp,

metis F-T F-imp-front-tickFree nonTickFree-n-frontTickFree
non-tickFree-tick tickFree-append-iff tickFree-map-ev-comp tick-T-F)

thus ‹(t, X − {3(r ′)}) ∈ ?f ›
proof cases

assume ‹t @ [3(r ′)] ∈ ?d›
with ∗ have ‹t ∈ ?d› .
thus ‹(t, X − {3(r ′)}) ∈ ?f ›

by (simp add: fail-Seqptick-def div-Seqptick-def ) (metis is-processT8 )
next

case F-Q
from F-Q(1 , 2 ) obtain u ′ where ‹u = u ′ @ [3(r ′)]›

by (cases u rule: rev-cases, simp-all)
(metis non-tickFree-tick tickFree-append-iff tickFree-map-ev-comp)

with F-Q(4 ) have ‹(u ′, X − {3(r ′)}) ∈ F (Q r)› by (simp add: F-T
is-processT6-TR)

with F-Q(1−3 ) ‹u = u ′ @ [3(r ′)]› show ‹(t, X − {3(r ′)}) ∈ ?f ›
by (auto simp add: fail-Seqptick-def )

qed
qed
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qed

3.2 Projections
lemma F-Seqptick : ‹F (P ;3 Q) = fail-Seqptick P Q›

by (simp add: Failures.rep-eq FAILURES-def Seqptick.rep-eq)

lemma D-Seqptick : ‹D (P ;3 Q) = div-Seqptick P Q›
by (simp add: Divergences.rep-eq DIVERGENCES-def Seqptick.rep-eq)

lemma T-Seqptick-bis :
‹T (P ;3 Q) = {map (ev ◦ of-ev) t |t. (t, range tick) ∈ F P ∧ tF t} ∪

{map (ev ◦ of-ev) t @ u |t u r . t @ [3(r)] ∈ T P ∧ tF t ∧ u ∈ T (Q
r)} ∪

{map (ev ◦ of-ev) t @ u |t u. t ∈ D P ∧ tF t ∧ ftF u}›
by (auto simp add: Traces.rep-eq TRACES-def F-Seqptick fail-Seqptick-def ref-Seqptick-def

intro: is-processT4 simp flip: Failures.rep-eq)
(metis, metis (lifting) image-empty inf-bot-left sup-bot-left, blast)

lemma T-Seqptick :
‹T (P ;3 Q) = {map (ev ◦ of-ev) t |t. t ∈ T P ∧ tF t} ∪

{map (ev ◦ of-ev) t @ u |t u r . t @ [3(r)] ∈ T P ∧ tF t ∧ u ∈ T (Q
r)} ∪

{map (ev ◦ of-ev) t @ u |t u. t ∈ D P ∧ tF t ∧ ftF u}›
— Often easier to use
by (auto simp add: T-Seqptick-bis F-T )
(metis T-F-spec append.right-neutral is-processT1-TR

trace-tick-continuation-or-all-tick-failuresE)

lemmas Seqptick-projs = F-Seqptick D-Seqptick T-Seqptick fail-Seqptick-def div-Seqptick-def

lemma mono-Seqptick-eq : ‹P ;3 Q = P ′ ;3 Q ′› if ∗ : ‹P = P ′› ‹
∧

r . r ∈ 3s(P)
=⇒ Q r = Q ′ r›

for P P ′ :: ‹( ′a, ′r) processptick› and Q Q ′ :: ‹ ′r ⇒ ( ′a, ′s) processptick›
proof (fold ∗(1 ), subst Process-eq-spec-optimized, safe)

{ fix t and Q Q ′ :: ‹ ′r ⇒ ( ′a, ′s) processptick›
assume ‹t ∈ D (P ;3 Q)› and ∗ : ‹r ∈ 3s(P) =⇒ Q r = Q ′ r› for r
from ‹t ∈ D (P ;3 Q)› consider (D-P) t ′ u where ‹t = map (ev ◦ of-ev) t ′

@ u› ‹t ′ ∈ D P› ‹tF t ′› ‹ftF u›
| (D-Q) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T P› ‹tF

t ′› ‹u ∈ D (Q r)›
unfolding Seqptick-projs by blast

hence ‹t ∈ D (P ;3 Q ′)›
proof cases

case D-P thus ‹t ∈ D (P ;3 Q ′)› by (auto simp add: Seqptick-projs)
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next
case D-Q thus ‹t ∈ D (P ;3 Q ′)›

by (simp add: Seqptick-projs)
(metis ∗ D-imp-front-tickFree is-processT9 strict-ticks-of-memI )

qed
} note $ = this
show ‹t ∈ D (P ;3 Q) =⇒ t ∈ D (P ;3 Q ′)›

and ‹t ∈ D (P ;3 Q ′) =⇒ t ∈ D (P ;3 Q)› for t
by (erule $, simp add: ∗(2 ))+

next
{ fix t X and Q Q ′ :: ‹ ′r ⇒ ( ′a, ′s) processptick›

assume ‹(t, X) ∈ F (P ;3 Q)› and same-div : ‹D (P ;3 Q) = D (P ;3 Q ′)›
and ∗ : ‹r ∈ 3s(P) =⇒ Q r = Q ′ r› for r

from ‹(t, X) ∈ F (P ;3 Q)›
consider (F-P) t ′ where ‹t = map (ev ◦ of-ev) t ′› ‹(t ′, ref-Seqptick X) ∈ F

P› ‹tF t ′›
| (F-Q) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T P› ‹tF

t ′› ‹(u, X) ∈ F (Q r)›
| (D-P) t ′ u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ ∈ D P› ‹tF t ′› ‹ftF u›
unfolding Seqptick-projs by blast

hence ‹(t, X) ∈ F (P ;3 Q ′)›
proof cases

case F-P thus ‹(t, X) ∈ F (P ;3 Q ′)› by (auto simp add: Seqptick-projs)
next

case F-Q thus ‹(t, X) ∈ F (P ;3 Q ′)›
by (simp add: Seqptick-projs)
(metis ∗ F-imp-front-tickFree is-processT9 strict-ticks-of-memI )

next
case D-P thus ‹(t, X) ∈ F (P ;3 Q ′)› by (auto simp add: Seqptick-projs)

qed
} note $ = this
show ‹D (P ;3 Q) = D (P ;3 Q ′) =⇒ (t, X) ∈ F (P ;3 Q) =⇒ (t, X) ∈ F (P

;3 Q ′)›
and ‹D (P ;3 Q) = D (P ;3 Q ′) =⇒ (t, X) ∈ F (P ;3 Q ′) =⇒ (t, X) ∈ F (P

;3 Q)› for t X
by (erule $; simp add: ∗(2 ))+

qed

Note that this definition allowing for changing the type of termination is
actually a generalization of the first idea that we mentioned at the beginning.
Indeed, when we enforce the type of P and Q to be ( ′a, ′r) processptick and
′r ⇒ ( ′a, ′s) processptick respectively, the projections can be rewritten as
follows.
lemma F-Seqptick-same-type :

‹F (P ;3 Q) = {(t, X) |t X . (t, X ∪ range tick) ∈ F P ∧ tF t} ∪
{(t @ u, X) |t u r X . t @ [3(r)] ∈ T P ∧ (u, X) ∈ F (Q r)} ∪
{(t, X). t ∈ D P}›

by (auto simp add: Seqptick-projs tickFree-map-ev-of-ev-same-type-is ref-Seqptick-same-type-is
is-processT7 )
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(metis tickFree-map-ev-of-ev-same-type-is,
metis append-T-imp-tickFree not-Cons-self2 ,

metis D-T T-imp-front-tickFree T-nonTickFree-imp-decomp append.right-neutral
front-tickFree-nonempty-append-imp is-processT9 not-Cons-self2
tickFree-Nil tickFree-imp-front-tickFree)

lemma D-Seqptick-same-type : ‹D (P ;3 Q) = D P ∪ {t @ u |t u r . t @ [3(r)] ∈
T P ∧ u ∈ D (Q r)}›
by (auto simp add: Seqptick-projs tickFree-map-ev-of-ev-same-type-is is-processT7 )
(blast,

metis D-imp-front-tickFree butlast-snoc div-butlast-when-non-tickFree-iff
front-tickFree-charn front-tickFree-nonempty-append-imp
self-append-conv tickFree-Nil tickFree-map-ev-of-ev-same-type-is,

metis append-T-imp-tickFree not-Cons-self2 )

lemma T-Seqptick-same-type-bis :
‹T (P ;3 Q) = {t. (t, range tick) ∈ F P ∧ tF t} ∪

{t @ u |t u r . t @ [3(r)] ∈ T P ∧ u ∈ T (Q r)} ∪
D P›

by (auto simp add: Traces.rep-eq TRACES-def F-Seqptick-same-type simp flip:
Failures.rep-eq)

(meson is-processT4 sup-ge2 , meson is-processT5-S7 ′, blast)

lemma T-Seqptick-same-type :
‹T (P ;3 Q) = {t ∈ T P. tF t} ∪ {t @ u |t u r . t @ [3(r)] ∈ T P ∧ u ∈ T (Q

r)} ∪ D P›
— Often easier to use
by (auto simp add: T-Seqptick-same-type-bis F-T )
(metis T-F-spec append.right-neutral is-processT1-TR

trace-tick-continuation-or-all-tick-failuresE)

lemmas Seqptick-same-type-projs = F-Seqptick-same-type D-Seqptick-same-type T-Seqptick-same-type
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Chapter 4

Generalization of the
Synchronization Product

4.1 Trace Interleaving
4.1.1 Motivation

The notion of trace interleaving found in HOL-CSP does not allow us to
precisely handle termination. Indeed, as soon as r 6= s, we cannot have t
setinterleaves (([3(r)], [3(s)]), range tick ∪ ev ‘ A).
lemma ‹r 6= s =⇒ ¬ t setinterleaves (([3(r)], [3(s)]), range tick ∪ ev ‘ A)› by
simp

The actual issue of this previous definition is that no distinction is done
between the “regular” events (like ev a) and the terminations (like 3(r)).
Here, while we still want the same behaviour for regular events, we want
instead the interleaving of 3(r) and 3(s) to be 3((r , s)). But we would
also like this interleaving to generalize the old one, i.e. be able to prevent
sometimes two ticks from being combined. Our solution is therefore to rely
on a parameter: tick-join of type ′r ⇒ ′s ⇒ ′t option whose role is to specify
how two ticks can be combined (or not).
bundle option-type-syntax
begin

no-notation floor (‹(‹open-block notation=‹mixfix floor››b-c)›)
no-notation ceiling (‹(‹open-block notation=‹mixfix ceiling››d-e)›)

notation Some (‹(‹open-block notation=‹mixfix Some››b-c)›)
notation the (‹(‹open-block notation=‹mixfix the››d-e)›)
notation None (‹♦›)

end
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unbundle option-type-syntax

4.1.2 Definition
type-synonym ( ′a, ′r , ′s, ′t) setinterleavingptick-args =

‹( ′r ⇒ ′s ⇒ ′t option) × ( ′a, ′r) traceptick × ′a set × ( ′a, ′s) traceptick›

fun setinterleavingptick ::
‹( ′a, ′r , ′s, ′t) setinterleavingptick-args ⇒ ( ′a, ′t) traceptick set›
where Nil-setinterleavingptick-Nil :

‹setinterleavingptick (tick-join, [], A, []) = {[]}›

| ev-setinterleavingptick-Nil :
‹setinterleavingptick (tick-join, ev a # u, A, []) =
( if a ∈ A then {}
else {ev a # t| t. t ∈ setinterleavingptick (tick-join, u, A, [])})›

| tick-setinterleavingptick-Nil :
‹setinterleavingptick (tick-join, 3(r) # u, A, []) = {}›

| Nil-setinterleavingptick-ev :
‹setinterleavingptick (tick-join, [], A, ev b # v) =
( if b ∈ A then {}
else {ev b # t| t. t ∈ setinterleavingptick (tick-join, [], A, v)})›

| Nil-setinterleavingptick-tick :
‹setinterleavingptick (tick-join, [], A, 3(s) # v) = {}›

| ev-setinterleavingptick-ev :
‹setinterleavingptick (tick-join, ev a # u, A, ev b # v) =
( if a ∈ A
then if b ∈ A

then if a = b
then {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, v)}
else {}

else {ev b # t |t. t ∈ setinterleavingptick (tick-join, ev a # u, A, v)}
else if b ∈ A

then {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, ev b # v)}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, ev b # v)} ∪
{ev b # t |t. t ∈ setinterleavingptick (tick-join, ev a # u, A, v)})›

| ev-setinterleavingptick-tick :
‹setinterleavingptick (tick-join, ev a # u, A, 3(s) # v) =
( if a ∈ A then {}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, 3(s) # v)})›

| tick-setinterleavingptick-ev :
‹setinterleavingptick (tick-join, 3(r) # u, A, ev b # v) =
( if b ∈ A then {}
else {ev b # t |t. t ∈ setinterleavingptick (tick-join, 3(r) # u, A, v)})›

| tick-setinterleavingptick-tick :
‹setinterleavingptick (tick-join, 3(r) # u, A, 3(s) # v) =
(case tick-join r s
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of br-sc ⇒ {3(r-s) # t |t. t ∈ setinterleavingptick (tick-join, u, A, v)}
| ♦ ⇒ {})›

lemmas setinterleavingptick-induct
[case-names Nil-setinterleavingptick-Nil ev-setinterleavingptick-Nil

tick-setinterleavingptick-Nil Nil-setinterleavingptick-ev
Nil-setinterleavingptick-tick ev-setinterleavingptick-ev
ev-setinterleavingptick-tick tick-setinterleavingptick-ev
tick-setinterleavingptick-tick,
induct type: setinterleavingptick-args] = setinterleavingptick.induct

lemma Cons-setinterleavingptick-Nil :
‹setinterleavingptick (tick-join, e # u, A, []) =
(case e of ev a ⇒
( if a ∈ A then {}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, [])})

| 3(r) ⇒ {})›
by (cases e) simp-all

lemma Nil-setinterleavingptick-Cons :
‹setinterleavingptick (tick-join, [], A, e # v) =
(case e of ev a ⇒
( if a ∈ A then {}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, [], A, v)})

| 3(r) ⇒ {})›
by (cases e) simp-all

lemma Cons-setinterleavingptick-Cons :
‹setinterleavingptick (tick-join, e # u, A, f # v) =
(case e of ev a ⇒
(case f of ev b ⇒

if a ∈ A
then if b ∈ A

then if a = b
then {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, v)}
else {}

else {ev b # t |t. t ∈ setinterleavingptick (tick-join, ev a # u, A, v)}
else if b ∈ A

then {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, ev b # v)}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, ev b # v)} ∪
{ev b # t |t. t ∈ setinterleavingptick (tick-join, ev a # u, A, v)}

| 3(s) ⇒ if a ∈ A then {}
else {ev a # t |t. t ∈ setinterleavingptick (tick-join, u, A, 3(s)

# v)})
| 3(r) ⇒

(case f of ev b ⇒
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if b ∈ A then {}
else {ev b # t| t. t ∈ setinterleavingptick (tick-join, 3(r) # u, A, v)}

| 3(s) ⇒
(case tick-join r s of br-sc ⇒
{3(r-s) # t |t. t ∈ setinterleavingptick (tick-join, u, A, v)}

| ♦ ⇒ {})))›
by (cases e; cases f ) simp-all

lemmas setinterleavingptick-simps =
Cons-setinterleavingptick-Nil Nil-setinterleavingptick-Cons Cons-setinterleavingptick-Cons

abbreviation setinterleavesptick ::
‹[( ′a, ′t) traceptick, ′r ⇒ ′s ⇒ ′t option,
( ′a, ′r) traceptick, ( ′a, ′s) traceptick, ′a set] ⇒ bool›

(‹(- /(setinterleaves3)-/ ′(() ′(-, - ′)(), - ′))› [63 ,0 ,0 ,0 ,0 ] 64 )
where ‹t setinterleaves3tick-join ((u, v), A) ≡

t ∈ setinterleavingptick (tick-join, u, A, v)›

4.1.3 First Properties

First of all: this formalization may seem tricky, but is actually a generaliza-
tion of the old setup.

theorem setinterleaves-is-setinterleavesptick :
‹t setinterleaves ((u, v), range tick ∪ ev ‘ A) ←→
t setinterleaves3λr s. if r = s then brc else ♦ ((u, v), A)›

for t :: ‹( ′a, ′r) traceptick›
by (induct ‹(λr :: ′r . λs :: ′r . if r = s then brc else ♦, u, A, v)›

arbitrary: t u v) (simp-all add: image-iff )

corollary setinterleaves-is-setinterleavesptick-unit :
‹t setinterleaves ((u, v), insert 3 (ev ‘ A)) ←→
t setinterleaves3λr s. brc ((u, v), A)› (is ‹?lhs ←→ ?rhs›)

proof −
have ‹?lhs ←→ t setinterleaves ((u, v), range tick ∪ ev ‘ A)›

by (simp add: UNIV-unit)
also have ‹. . . ←→ ?rhs›

by (simp add: setinterleaves-is-setinterleavesptick)
finally show ‹?lhs ←→ ?rhs› .

qed

lemma setinterleavesptick-sym :
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— Of course not suitable for simplifier.
‹t setinterleaves3λs r . tick-join r s ((v, u), A) ←→
t setinterleaves3λr s. tick-join r s ((u, v), A)›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v) (auto split: option.split)

lemma setinterleavesP air-UNIV-iff :
‹t setinterleaves3λr s. b(r , s)c ((u, v), UNIV ) ←→
u = map (map-eventptick id fst) t ∧
v = map (map-eventptick id snd) t› for t :: ‹( ′a, ′r × ′s) traceptick›

by (induct ‹(λr :: ′r . λs :: ′s. b(r , s)c, u, UNIV :: ′a set, v)› arbitrary: t u v)
(auto simp add: ev-eq-map-eventptick-iff tick-eq-map-eventptick-iff )

lemma setinterleavesptick-empty :
‹t setinterleaves3tick-join ((u, v), {}) =⇒
ev a ∈ set t ←→ ev a ∈ set u ∨ ev a ∈ set v›

for u :: ‹( ′a, ′r) traceptick ›
by (induct ‹(tick-join, u, {} :: ′a set, v)› arbitrary: t u v)
(auto split: option.split-asm)

lemma tickFree-setinterleavesptick-any-tick-join :
‹t setinterleaves3tick-join ((u, v), A) ←→
t setinterleaves3tick-join ′ ((u, v), A)›

if ‹tF t ∨ tF u ∨ tF v›
proof (rule iffI )

from ‹tF t ∨ tF u ∨ tF v›
show ‹t setinterleaves3tick-join ((u, v), A) =⇒

t setinterleaves3tick-join ′ ((u, v), A)›
for tick-join tick-join ′

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

thus ‹t setinterleaves3tick-join ′ ((u, v), A) =⇒
t setinterleaves3tick-join ((u, v), A)› .

qed

lemma tickFree-setinterleavesptick-iff :
‹t setinterleaves3tick-join ((u, v), A) =⇒ tF t ←→ tF u ∧ tF v›
by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma setinterleavesptick-tickFree-imp :
‹tF u ∨ tF v =⇒ t setinterleaves3tick-join ((u, v), A) =⇒ tF t ∧ tF u ∧ tF v›
by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
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(auto split: if-split-asm)

lemma setinterleavesptick-NilL-iff :
‹t setinterleaves3tick-join (([], v), A) ←→
tF v ∧ set v ∩ ev ‘ A = {} ∧ t = map ev (map of-ev v)›

for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option›
by (induct ‹(tick-join, [] :: ( ′a, ′r) traceptick, A, v)›

arbitrary: t v) (auto split: if-split-asm)

lemma setinterleavesptick-NilR-iff :
‹t setinterleaves3tick-join ((u, []), A) ←→
tF u ∧ set u ∩ ev ‘ A = {} ∧ t = map ev (map of-ev u)›

for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option›
by (induct ‹(tick-join, u, A, [] :: ( ′a, ′s) traceptick)›

arbitrary: t u) (auto split: if-split-asm)

lemma setinterleavesptick-subsetL :
‹tF t =⇒ {a. ev a ∈ set u} ⊆ A =⇒
t setinterleaves3tick-join ((u, v), A) =⇒
t = map ev (map of-ev v)›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto simp add: subset-iff split: if-split-asm option.split-asm)

lemma setinterleavesptick-subsetR :
‹tF t =⇒ {a. ev a ∈ set v} ⊆ A =⇒
t setinterleaves3tick-join ((u, v), A) =⇒
t = map ev (map of-ev u)›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto simp add: subset-iff split: if-split-asm option.split-asm)

lemma Nil-setinterleavesptick :
‹[] setinterleaves3tick-join ((u, v), A) =⇒ u = [] ∧ v = []›
by (induct ‹(tick-join, u, A, v)› arbitrary: u v)
(simp-all split: if-split-asm option.split-asm)

lemma front-tickFree-setinterleavesptick-iff :
‹t setinterleaves3tick-join ((u, v), A) =⇒ ftF t ←→ ftF u ∧ ftF v›

proof (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
case Nil-setinterleavingptick-Nil thus ?case by simp

next
case (ev-setinterleavingptick-Nil a u)
thus ?case by (simp add: setinterleavesptick-NilR-iff split: if-split-asm)

next
case (tick-setinterleavingptick-Nil r u) thus ?case by simp

next
case (Nil-setinterleavingptick-ev b v)
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thus ?case by (simp add: setinterleavesptick-NilL-iff split: if-split-asm)
next

case (Nil-setinterleavingptick-tick s v) thus ?case by simp
next

case (ev-setinterleavingptick-ev a u b v)
thus ?case by (simp split: if-split-asm)

(metis eventptick.disc(1 ) front-tickFree-Cons-iff front-tickFree-Nil)+
next

case (ev-setinterleavingptick-tick a u s v)
thus ?case by (simp split: if-split-asm)

(metis eventptick.disc(1 ) front-tickFree-Cons-iff front-tickFree-Nil)
next

case (tick-setinterleavingptick-ev r u b v)
thus ?case by (simp split: if-split-asm)

(metis eventptick.disc(1 ) front-tickFree-Cons-iff front-tickFree-Nil)
next

case (tick-setinterleavingptick-tick r u s v) thus ?case
by (simp split: option.split-asm)
(metis Nil-setinterleavesptick Nil-setinterleavingptick-Nil

eventptick.disc(2 ) front-tickFree-Cons-iff singletonD)
qed

lemma setinterleavesptick-snoc-notinL :
‹t setinterleaves3tick-join ((u, v), A) =⇒ a /∈ A =⇒
t @ [ev a] setinterleaves3tick-join ((u @ [ev a], v), A)›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma setinterleavesptick-snoc-notinR :
‹t setinterleaves3tick-join ((u, v), A) =⇒ a /∈ A =⇒
t @ [ev a] setinterleaves3tick-join ((u, v @ [ev a]), A)›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma setinterleavesptick-snoc-inside :
‹t setinterleaves3tick-join ((u, v), A) =⇒ a ∈ A =⇒
t @ [ev a] setinterleaves3tick-join ((u @ [ev a], v @ [ev a]), A)›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma setinterleavesptick-snoc-tick :
‹t setinterleaves3tick-join ((u, v), A) =⇒ tick-join r s = br-sc =⇒
t @ [3(r-s)] setinterleaves3tick-join ((u @ [3(r)], v @ [3(s)]), A)›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
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(auto split: if-split-asm option.split-asm)

lemma Cons-tick-setinterleavesptickE :
‹3(r-s) # t setinterleaves3tick-join ((u, v), A) =⇒
(
∧

u ′ v ′ r s. [[tick-join r s = br-sc; u = 3(r) # u ′; v = 3(s) # v ′;
t setinterleaves3tick-join ((u ′, v ′), A)]] =⇒ thesis) =⇒ thesis›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(simp-all split: if-split-asm option.split-asm)

lemma Cons-ev-setinterleavesptickE :
‹ev a # t setinterleaves3tick-join ((u, v), A) =⇒
(
∧

u ′. a /∈ A =⇒ u = ev a # u ′ =⇒ t setinterleaves3tick-join ((u ′, v), A) =⇒
thesis) =⇒

(
∧

v ′. a /∈ A =⇒ v = ev a # v ′ =⇒ t setinterleaves3tick-join ((u, v ′), A) =⇒
thesis) =⇒

(
∧

u ′ v ′. a ∈ A =⇒ u = ev a # u ′ =⇒ v = ev a # v ′ =⇒
t setinterleaves3tick-join ((u ′, v ′), A) =⇒ thesis) =⇒ thesis›

proof (induct ‹(tick-join, u, A, v)› arbitrary: u v t)
case Nil-setinterleavingptick-Nil thus ?case by simp

next
case (ev-setinterleavingptick-Nil b u)
from ev-setinterleavingptick-Nil.prems(1 ) show ?case

by (simp add: ev-setinterleavingptick-Nil.prems(2 ) split: if-split-asm)
next

case (tick-setinterleavingptick-Nil r u) thus ?case by simp
next

case (Nil-setinterleavingptick-ev c v)
from Nil-setinterleavingptick-ev.prems(1 ) show ?case

by (simp add: Nil-setinterleavingptick-ev.prems(3 ) split: if-split-asm)
next

case (Nil-setinterleavingptick-tick s v) thus ?case by simp
next

case (ev-setinterleavingptick-ev b u c v)
from ev-setinterleavingptick-ev.prems(1 ) show ?case

by (simp add: ev-setinterleavingptick-ev.prems(2 , 3 , 4 ) split: if-split-asm)
(use ev-setinterleavingptick-ev.prems(2 , 3 ) in presburger)

next
case (ev-setinterleavingptick-tick b u s v)
from ev-setinterleavingptick-tick.prems(1 ) show ?case

by (simp add: ev-setinterleavingptick-tick.prems(2 ) split: if-split-asm)
next

case (tick-setinterleavingptick-ev r u c v)
from tick-setinterleavingptick-ev.prems(1 ) show ?case

by (simp add: tick-setinterleavingptick-ev.prems(3 ) split: if-split-asm)
next

case (tick-setinterleavingptick-tick r u s v)
thus ?case by (simp split: option.split-asm)

qed
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lemma rev-setinterleavesptick-rev-rev-iff :
‹rev t setinterleaves3tick-join ((rev u, rev v), A)

←→ t setinterleaves3tick-join ((u, v), A)›
for u :: ‹( ′a, ′r) traceptick› and v :: ‹( ′a, ′s) traceptick›

proof (rule iffI )
show ‹t setinterleaves3tick-join ((u, v), A) =⇒

rev t setinterleaves3tick-join ((rev u, rev v), A)›
for u :: ‹( ′a, ′r) traceptick› and v :: ‹( ′a, ′s) traceptick› and t

proof (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
case Nil-setinterleavingptick-Nil thus ?case by simp

next
case (ev-setinterleavingptick-Nil a u)
thus ?case by (auto simp add: setinterleavesptick-snoc-notinL split: if-split-asm

)
next

case (tick-setinterleavingptick-Nil r v) thus ?case by simp
next

case (Nil-setinterleavingptick-ev b v)
thus ?case by (auto simp add: setinterleavesptick-snoc-notinR split: if-split-asm

)
next

case (Nil-setinterleavingptick-tick s v) thus ?case by simp
next

case (ev-setinterleavingptick-ev a u b v)
from ev-setinterleavingptick-ev.prems
consider (both-in) t ′ where ‹a ∈ A› ‹a = b› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, v), A)›
| (inR-mvL) t ′ where ‹a /∈ A› ‹b ∈ A› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, ev b # v), A)›
| (inL-mvR) t ′ where ‹a ∈ A› ‹b /∈ A› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((ev a # u, v), A)›
| (notin-mvL) t ′ where ‹a /∈ A› ‹b /∈ A› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, ev b # v), A)›
| (notin-mvR) t ′ where ‹a /∈ A› ‹b /∈ A› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((ev a # u, v), A)›
by (auto split: if-split-asm)

thus ?case
proof cases

case both-in thus ?thesis
by (simp add: ev-setinterleavingptick-ev.hyps(1 ) setinterleavesptick-snoc-inside)

next
case inR-mvL thus ?thesis
by (metis ev-setinterleavingptick-ev.hyps(3 ) rev.simps(2 ) setinterleavesptick-snoc-notinL)

next
case inL-mvR thus ?thesis
by (metis ev-setinterleavingptick-ev.hyps(2 ) rev.simps(2 ) setinterleavesptick-snoc-notinR)
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next
case notin-mvL thus ?thesis
by (metis ev-setinterleavingptick-ev.hyps(4 ) rev.simps(2 ) setinterleavesptick-snoc-notinL)

next
case notin-mvR thus ?thesis
by (metis ev-setinterleavingptick-ev.hyps(5 ) rev.simps(2 ) setinterleavesptick-snoc-notinR)

qed
next

case (ev-setinterleavingptick-tick a u s v) thus ?case
by (auto simp add: setinterleavesptick-snoc-notinL split: if-split-asm)

next
case (tick-setinterleavingptick-ev r u b v) thus ?case

by (auto simp add: setinterleavesptick-snoc-notinR split: if-split-asm)
next

case (tick-setinterleavingptick-tick r u s v)
from tick-setinterleavingptick-tick.prems
obtain t ′ r-s where ‹tick-join r s = br-sc› ‹t = 3(r-s) # t ′›

‹t ′ setinterleaves3tick-join ((u, v), A)›
by (auto split: option.split-asm)

from ‹t ′ setinterleaves3tick-join ((u, v), A)›
have ‹rev t ′ setinterleaves3tick-join ((rev u, rev v), A)›

by (simp add: ‹tick-join r s = br-sc› tick-setinterleavingptick-tick.hyps)
hence ‹rev t ′ @ [3(r-s)] setinterleaves3tick-join ((rev u @ [3(r)], rev v @ [3(s)]),

A)›
by (simp add: ‹tick-join r s = br-sc› setinterleavesptick-snoc-tick)

thus ?case by (simp add: ‹t = 3(r-s) # t ′› )
qed
from this[of ‹rev t› ‹rev u› ‹rev v›, simplified]
show ‹rev t setinterleaves3tick-join ((rev u, rev v), A) =⇒

t setinterleaves3tick-join ((u, v), A)› .
qed

lemma setinterleavesptick-preserves-ev-notin-set :
‹[[ev a /∈ set u; ev a /∈ set v; t setinterleaves3tick-join ((u, v), A)]] =⇒ ev a /∈ set

t›
by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma setinterleavesptick-inj-preserves-tick-notin-set :
‹[[tick-join r s = br-sc; 3(r) /∈ set u ∨ 3(s) /∈ set v;

t setinterleaves3tick-join ((u, v), A)]] =⇒ 3(r-s) /∈ set t›
— This is a weakened injectivity property.
if inj-tick-join : ‹

∧
r ′ s ′. tick-join r ′ s ′ = br-sc =⇒ r ′ = r ∧ s ′ = s›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto split: if-split-asm option.split-asm, (metis inj-tick-join)+)

lemma setinterleavesptick-preserves-ev-inside-set :
‹[[ev a ∈ set u; ev a ∈ set v; t setinterleaves3tick-join ((u, v), A)]] =⇒ ev a ∈ set
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t›
by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma ev-notin-both-sets-imp-empty-setinterleavingptick :
‹[[ev a ∈ set u ∧ ev a /∈ set v ∨ ev a /∈ set u ∧ ev a ∈ set v; a ∈ A]] =⇒
setinterleavingptick (tick-join, u, A, v) = {}›

by (induct ‹(tick-join, u, A, v)› arbitrary: u v)
(simp-all, safe, auto split: option.split-asm)

lemma setinterleavesptick-snoc-tick-snoc-tickE :
‹(
∧

t ′ r-s. tick-join r s = br-sc =⇒ t ′ setinterleaves3tick-join ((u, v), A) =⇒
t = t ′ @ [3(r-s)] =⇒ thesis) =⇒ thesis›

if ‹t setinterleaves3tick-join ((u @ [3(r)], v @ [3(s)]), A)›
proof −

from that have ‹rev t setinterleaves3tick-join ((3(r) # rev u, 3(s) # rev v), A)›
by (metis (no-types) rev.simps(2 ) rev-rev-ident rev-setinterleavesptick-rev-rev-iff )

then obtain t ′ r-s where ‹tick-join r s = br-sc› ‹rev t = 3(r-s) # t ′›
‹t ′ setinterleaves3tick-join ((rev u, rev v), A)›
by (cases t rule: rev-cases) (simp-all split: option.split-asm)

hence ‹rev t ′ setinterleaves3tick-join ((u, v), A) ∧ t = rev t ′ @ [3(r-s)]›
using rev-setinterleavesptick-rev-rev-iff by force

with ‹tick-join r s = br-sc›
show ‹(

∧
t ′ r-s. tick-join r s = br-sc =⇒ t ′ setinterleaves3tick-join ((u, v), A)

=⇒
t = t ′ @ [3(r-s)] =⇒ thesis) =⇒ thesis› by blast

qed

lemma snoc-tick-setinterleavesptickE :
‹(
∧

u ′ v ′ r s. [[tick-join r s = br-sc; t setinterleaves3tick-join ((u ′, v ′), A);

u = u ′ @ [3(r)]; v = v ′ @ [3(s)]]] =⇒ thesis) =⇒ thesis›
if ‹t @ [3(r-s)] setinterleaves3tick-join ((u, v), A)›

proof −
from that have ‹rev (t @ [3(r-s)]) setinterleaves3tick-join ((rev u, rev v), A)›
by (metis (no-types) rev.simps(2 ) rev-rev-ident rev-setinterleavesptick-rev-rev-iff )

hence ‹3(r-s) # rev t setinterleaves3tick-join ((rev u, rev v), A)› by simp
then obtain u ′ v ′ r s where ‹tick-join r s = br-sc›

‹rev t setinterleaves3tick-join ((u ′, v ′), A)›
‹rev u = 3(r) # u ′› ‹rev v = 3(s) # v ′›
by (elim Cons-tick-setinterleavesptickE)

hence ‹t setinterleaves3tick-join ((rev u ′, rev v ′), A) ∧
u = rev u ′ @ [3(r)] ∧ v = rev v ′ @ [3(s)]›

using rev-setinterleavesptick-rev-rev-iff by fastforce
with ‹tick-join r s = br-sc›
show ‹(

∧
u ′ v ′ r s. [[tick-join r s = br-sc; t setinterleaves3tick-join ((u ′, v ′), A);

u = u ′ @ [3(r)]; v = v ′ @ [3(s)]]] =⇒ thesis) =⇒ thesis› by blast
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qed

4.1.4 Lengths
lemma length-setinterleavesptick-eq-sum-minus-filterL :

‹t setinterleaves3tick-join ((u, v), A) =⇒
length t = length u + length v − length (filter (λe. e ∈ range tick ∪ ev ‘ A) u)›

proof (induct t arbitrary: u v)
case Nil
thus ?case by (auto dest: Nil-setinterleavesptick)

next
note thms = Suc-diff-le le-add1 length-filter-le order-trans
case (Cons e t)
from Cons.prems consider (mv-left) a u ′ where ‹a /∈ A› ‹e = ev a› ‹u = ev a

# u ′›
‹t setinterleaves3tick-join ((u ′, v), A)›
| (mv-right) a v ′ where ‹a /∈ A› ‹e = ev a› ‹v = ev a # v ′›

‹t setinterleaves3tick-join ((u, v ′), A)›
| (mv-both-ev) a u ′ v ′ where ‹a ∈ A› ‹e = ev a› ‹u = ev a # u ′› ‹v = ev a #

v ′›
‹t setinterleaves3tick-join ((u ′, v ′), A)›
| (mv-both-tick) r s r-s u ′ v ′ where ‹tick-join r s = br-sc› ‹e = 3(r-s)›

‹u = 3(r) # u ′› ‹v = 3(s) # v ′› ‹t setinterleaves3tick-join ((u ′, v ′), A)›
by (cases e) (auto elim: Cons-ev-setinterleavesptickE Cons-tick-setinterleavesptickE)

thus ?case
proof cases

case mv-left
from Cons.hyps[OF mv-left(4 )] show ?thesis

by (simp add: mv-left(1−3 ) image-iff ) (metis (no-types, lifting) thms)
next

case mv-right
from Cons.hyps[OF mv-right(4 )] show ?thesis

by (simp add: mv-right(1−3 ) image-iff ) (metis (no-types, lifting) thms)
next

case mv-both-ev
from Cons.hyps[OF mv-both-ev(5 )] show ?thesis

by (simp add: mv-both-ev(1 , 3 , 4 ) image-iff ) (metis (no-types, lifting) thms)
next

case mv-both-tick
from Cons.hyps[OF mv-both-tick(5 )] show ?thesis

by (simp add: mv-both-tick(3 , 4 ) image-iff ) (metis (no-types, lifting) thms)
qed

qed

lemma length-setinterleavesptick-eq-sum-minus-filterR :
‹t setinterleaves3tick-join ((u, v), A) =⇒
length t = length u + length v − length (filter (λe. e ∈ range tick ∪ ev ‘ A) v)›

by (subst (asm) setinterleavesptick-sym)
(auto dest: length-setinterleavesptick-eq-sum-minus-filterL)
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lemma setinterleavesptick-eq-length :
‹t setinterleaves3tick-join ((u, v), A) =⇒
t ′ setinterleaves3tick-join ((u, v), A) =⇒ length t = length t ′›

by (simp add: length-setinterleavesptick-eq-sum-minus-filterL)

lemma setinterleavesptick-imp-lengthLR-le :
‹t setinterleaves3tick-join ((u, v), A) =⇒
length u ≤ length t ∧ length v ≤ length t›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(fastforce split: if-split-asm option.split-asm)+

4.1.5 Trace Prefix Interleaving

We start with versions involving (@) before giving corollaries about the
prefix ordering on traces.

lemma setinterleavesptick-appendL :
‹t setinterleaves3tick-join ((u1 @ u2 , v), A) =⇒
∃ t1 t2 v1 v2 . t = t1 @ t2 ∧ v = v1 @ v2 ∧

t1 setinterleaves3tick-join ((u1 , v1 ), A) ∧
t2 setinterleaves3tick-join ((u2 , v2 ), A)›

proof (induct ‹(tick-join, u1 , A, v)› arbitrary: t u1 v)
case Nil-setinterleavingptick-Nil
thus ?case by simp

next
case (ev-setinterleavingptick-Nil a u1 )
from ev-setinterleavingptick-Nil.prems
have ‹a /∈ A› ‹t = ev a # map ev (map of-ev (u1 @ u2 ))›

‹map ev (map of-ev (u1 @ u2 )) setinterleaves3tick-join ((u1 @ u2 , []), A)›
by (simp-all add: setinterleavesptick-NilR-iff split: if-split-asm)

from ev-setinterleavingptick-Nil.hyps[OF ‹a /∈ A› this(3 )]
obtain t1 t2 v1 v2 where ‹map ev (map of-ev (u1 @ u2 )) = t1 @ t2 ›

‹[] = v1 @ v2 › ‹t1 setinterleaves3tick-join ((u1 , v1 ), A)›
‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast

thus ?case
by (simp add: ‹a /∈ A› ‹t = ev a # map ev (map of-ev (u1 @ u2 ))›)
(metis append-Cons)

next
case (tick-setinterleavingptick-Nil r u1 )
from tick-setinterleavingptick-Nil.prems have False by simp
thus ?case ..

next
case (Nil-setinterleavingptick-ev b v)
thus ?case

by (cases u2 , simp-all split: if-split-asm)
(fastforce, metis Nil-setinterleavingptick-Nil self-append-conv2 singleton-iff )
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next
case (Nil-setinterleavingptick-tick s v)
thus ?case by (cases u2 , simp-all add: setinterleavingptick-simps

split: eventptick.split-asm) fastforce+
next

case (ev-setinterleavingptick-ev a u1 b v)
from ev-setinterleavingptick-ev.prems [simplified]
consider (mv-both) t ′ where ‹a ∈ A› ‹b ∈ A› ‹a = b› ‹t = ev b # t ′› ‹t ′

setinterleaves3tick-join ((u1 @ u2 , v), A)›
| (mvR-inL) t ′ where ‹a ∈ A› ‹b /∈ A› ‹t = ev b # t ′› ‹t ′ setinter-

leaves3tick-join (((ev a # u1 ) @ u2 , v), A)›
| (mvL-inR) t ′ where ‹a /∈ A› ‹b ∈ A› ‹t = ev a # t ′› ‹t ′ setinter-

leaves3tick-join ((u1 @ u2 , ev b # v), A)›
| (mvR-notin) t ′ where ‹a /∈ A› ‹b /∈ A› ‹t = ev b # t ′› ‹t ′ setinter-

leaves3tick-join (((ev a # u1 ) @ u2 , v), A)›
| (mvL-notin) t ′ where ‹a /∈ A› ‹b /∈ A› ‹t = ev a # t ′› ‹t ′ setinter-

leaves3tick-join ((u1 @ u2 , ev b # v), A)›
by (auto split: if-split-asm)

thus ?case
proof cases

case mv-both
from ev-setinterleavingptick-ev.hyps(1 )[OF mv-both(1−3 , 5 )] obtain t1 t2 v1

v2
where ‹t ′ = t1 @ t2 › ‹v = v1 @ v2 › ‹t1 setinterleaves3tick-join ((u1 , v1 ),

A)›
‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast

hence ‹t = (ev b # t1 ) @ t2 ∧ ev b # v = (ev b # v1 ) @ v2 ∧
ev b # t1 setinterleaves3tick-join ((ev a # u1 , ev b # v1 ), A) ∧
t2 setinterleaves3tick-join ((u2 , v2 ), A)› by (simp add: mv-both(1−4 ))

thus ?thesis by blast
next

case mvR-inL
from ev-setinterleavingptick-ev.hyps(2 )[OF mvR-inL(1 , 2 , 4 )] obtain t1 t2 v1

v2
where ‹t ′ = t1 @ t2 › ‹v = v1 @ v2 › ‹t1 setinterleaves3tick-join ((ev a # u1 ,

v1 ), A)›
‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast

hence ‹t = (ev b # t1 ) @ t2 ∧ ev b # v = (ev b # v1 ) @ v2 ∧
ev b # t1 setinterleaves3tick-join ((ev a # u1 , ev b # v1 ), A) ∧
t2 setinterleaves3tick-join ((u2 , v2 ), A)› by (simp add: mvR-inL(1−3 ))

thus ?thesis by blast
next

case mvL-inR
from ev-setinterleavingptick-ev.hyps(3 )[OF mvL-inR(1 , 2 , 4 )] obtain t1 t2 v1

v2
where ‹t ′ = t1 @ t2 › ‹ev b # v = v1 @ v2 › ‹t1 setinterleaves3tick-join ((u1 ,

v1 ), A)›
‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast
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hence ‹t = (ev a # t1 ) @ t2 ∧ ev b # v = v1 @ v2 ∧
ev a # t1 setinterleaves3tick-join ((ev a # u1 , v1 ), A) ∧
t2 setinterleaves3tick-join ((u2 , v2 ), A)›

by (cases v1 , simp-all add: mvL-inR(1 , 3 ))
thus ?thesis by blast

next
case mvR-notin
from ev-setinterleavingptick-ev.hyps(5 )[OF mvR-notin(1 , 2 , 4 )] obtain t1 t2

v1 v2
where ‹t ′ = t1 @ t2 › ‹v = v1 @ v2 › ‹t1 setinterleaves3tick-join ((ev a # u1 ,

v1 ), A)›
‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast

hence ‹t = (ev b # t1 ) @ t2 ∧ ev b # v = (ev b # v1 ) @ v2 ∧
ev b # t1 setinterleaves3tick-join ((ev a # u1 , ev b # v1 ), A) ∧

t2 setinterleaves3tick-join ((u2 , v2 ), A)› by (simp add: mvR-notin(1−3 ))
thus ?thesis by blast

next
case mvL-notin
from ev-setinterleavingptick-ev.hyps(4 )[OF mvL-notin(1 , 2 , 4 )] obtain t1 t2

v1 v2
where ‹t ′ = t1 @ t2 › ‹ev b # v = v1 @ v2 › ‹t1 setinterleaves3tick-join ((u1 ,

v1 ), A)›
‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast

hence ‹t = (ev a # t1 ) @ t2 ∧ ev b # v = v1 @ v2 ∧
ev a # t1 setinterleaves3tick-join ((ev a # u1 , v1 ), A) ∧
t2 setinterleaves3tick-join ((u2 , v2 ), A)›

by (cases v1 , simp-all add: mvL-notin(1 , 3 ))
thus ?thesis by blast

qed
next

case (ev-setinterleavingptick-tick a u1 s v)
from ev-setinterleavingptick-tick.prems obtain t ′

where ‹a /∈ A› ‹t = ev a # t ′› ‹t ′ setinterleaves3tick-join ((u1 @ u2 , 3(s) #

v), A)›
by (auto split: if-split-asm)

from ev-setinterleavingptick-tick.hyps[OF this(1 , 3 )] obtain t1 t2 v1 v2
where ‹t ′ = t1 @ t2 › ‹3(s) # v = v1 @ v2 ›

‹t1 setinterleaves3tick-join ((u1 , v1 ), A)›
‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast

hence ‹t = (ev a # t1 ) @ t2 ∧ 3(s) # v = v1 @ v2 ∧
ev a # t1 setinterleaves3tick-join ((ev a # u1 , v1 ), A) ∧
t2 setinterleaves3tick-join ((u2 , v2 ), A)›

by (cases v1 , simp-all add: ‹t = ev a # t ′› ‹a /∈ A›)
thus ?case by blast

next
case (tick-setinterleavingptick-ev r u1 b v)
from tick-setinterleavingptick-ev.prems obtain t ′

where ‹b /∈ A› ‹t = ev b # t ′› ‹t ′ setinterleaves3tick-join (((3(r) # u1 ) @ u2 ,
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v), A)›
by (auto split: if-split-asm)

from tick-setinterleavingptick-ev.hyps[OF this(1 , 3 )] obtain t1 t2 v1 v2
where ‹t ′ = t1 @ t2 › ‹v = v1 @ v2 ›

‹t1 setinterleaves3tick-join ((3(r) # u1 , v1 ), A)›
‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast

hence ‹t = (ev b # t1 ) @ t2 ∧ ev b # v = (ev b # v1 ) @ v2 ∧
ev b # t1 setinterleaves3tick-join ((3(r) # u1 , ev b # v1 ), A) ∧
t2 setinterleaves3tick-join ((u2 , v2 ), A)›

by (simp add: ‹t = ev b # t ′› ‹b /∈ A›)
thus ?case by blast

next
case (tick-setinterleavingptick-tick r u1 s v)
from tick-setinterleavingptick-tick.prems obtain r-s t ′

where ‹tick-join r s = br-sc› ‹t = 3(r-s) # t ′›
‹t ′ setinterleaves3tick-join ((u1 @ u2 , v), A)› by (auto split: option.split-asm)

from tick-setinterleavingptick-tick.hyps[OF this(1 , 3 )] obtain t1 t2 v1 v2
where ‹t ′ = t1 @ t2 › ‹v = v1 @ v2 › ‹t1 setinterleaves3tick-join ((u1 , v1 ), A)›

‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast
hence ‹t = (3(r-s) # t1 ) @ t2 ∧ 3(s) # v = (3(s) # v1 ) @ v2 ∧

3(r-s) # t1 setinterleaves3tick-join ((3(r) # u1 , 3(s) # v1 ), A) ∧
t2 setinterleaves3tick-join ((u2 , v2 ), A)›

by (simp add: ‹tick-join r s = br-sc› ‹t = 3(r-s) # t ′›)
thus ?case by blast

qed

corollary setinterleavesptick-appendR :
‹∃ t1 t2 u1 u2 . t = t1 @ t2 ∧ u = u1 @ u2 ∧

t1 setinterleaves3tick-join ((u1 , v1 ), A) ∧
t2 setinterleaves3tick-join ((u2 , v2 ), A)›

if ‹t setinterleaves3tick-join ((u, v1 @ v2 ), A)›
proof −

from that have ‹t setinterleaves3λs r . tick-join r s ((v1 @ v2 , u), A)›
using setinterleavesptick-sym by blast

from setinterleavesptick-appendL[OF this]
obtain t1 t2 u1 u2 where ‹t = t1 @ t2 › ‹u = u1 @ u2 ›

‹t1 setinterleaves3λs r . tick-join r s ((v1 , u1 ), A)›
‹t2 setinterleaves3λs r . tick-join r s ((v2 , u2 ), A)› by blast

from this(3 , 4 ) have ‹t1 setinterleaves3tick-join ((u1 , v1 ), A)›
‹t2 setinterleaves3tick-join ((u2 , v2 ), A)›
using setinterleavesptick-sym by blast+

with ‹t = t1 @ t2 › ‹u = u1 @ u2 › show ?thesis by blast
qed

lemma append-setinterleavesptick :
‹t1 @ t2 setinterleaves3tick-join ((u, v), A) =⇒
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∃ u1 u2 v1 v2 . u = u1 @ u2 ∧ v = v1 @ v2 ∧
t1 setinterleaves3tick-join ((u1 , v1 ), A) ∧
t2 setinterleaves3tick-join ((u2 , v2 ), A)›

proof (induct t1 arbitrary: u v)
case Nil
hence ‹u = [] @ u› ‹v = [] @ v›

‹[] setinterleaves3tick-join (([], []), A)›
‹t2 setinterleaves3tick-join ((u, v), A)› by simp-all

thus ?case by blast
next

case (Cons e t1 )
from Cons.prems consider (mv-left) a u ′ where ‹a /∈ A› ‹e = ev a› ‹u = ev a

# u ′›
‹t1 @ t2 setinterleaves3tick-join ((u ′, v), A)›
| (mv-right) a v ′ where ‹a /∈ A› ‹e = ev a› ‹v = ev a # v ′›

‹t1 @ t2 setinterleaves3tick-join ((u, v ′), A)›
| (mv-both-ev) a u ′ v ′ where ‹a ∈ A› ‹e = ev a› ‹u = ev a # u ′› ‹v = ev a #

v ′›
‹t1 @ t2 setinterleaves3tick-join ((u ′, v ′), A)›
| (mv-both-tick) r s r-s u ′ v ′ where ‹tick-join r s = br-sc› ‹e = 3(r-s)›

‹u = 3(r) # u ′› ‹v = 3(s) # v ′› ‹t1 @ t2 setinterleaves3tick-join ((u ′, v ′), A)›
by (cases e) (auto elim: Cons-ev-setinterleavesptickE Cons-tick-setinterleavesptickE)

thus ?case
proof cases

case mv-left
from Cons.hyps[OF mv-left(4 )] obtain u1 u2 v1 v2

where ‹u ′ = u1 @ u2 › ‹t1 setinterleaves3tick-join ((u1 , v1 ), A)›
and ∗ : ‹v = v1 @ v2 › ‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast

from this(2 ) have ‹e # t1 setinterleaves3tick-join ((ev a # u1 , v1 ), A)›
by (cases v1 ) (auto simp add: ‹a /∈ A› ‹e = ev a› setinterleavingptick-simps

split: eventptick.split)
moreover from ‹u ′ = u1 @ u2 › have ‹u = (ev a # u1 ) @ u2 ›

by (simp add: mv-left(3 ))
ultimately show ?thesis using ∗(1 , 2 ) by blast

next
case mv-right
from Cons.hyps[OF mv-right(4 )] obtain u1 u2 v1 v2

where ‹v ′ = v1 @ v2 › ‹t1 setinterleaves3tick-join ((u1 , v1 ), A)›
and ∗ : ‹u = u1 @ u2 › ‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast

from this(2 ) have ‹e # t1 setinterleaves3tick-join ((u1 , ev a # v1 ), A)›
by (cases u1 ) (auto simp add: ‹a /∈ A› ‹e = ev a› setinterleavingptick-simps

split: eventptick.split)
moreover from ‹v ′ = v1 @ v2 › have ‹v = (ev a # v1 ) @ v2 ›

by (simp add: mv-right(3 ))
ultimately show ?thesis using ∗(1 , 2 ) by blast

next
case mv-both-ev
from Cons.hyps[OF mv-both-ev(5 )] obtain u1 u2 v1 v2
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where ‹u ′ = u1 @ u2 › ‹v ′ = v1 @ v2 › ‹t1 setinterleaves3tick-join ((u1 , v1 ),
A)›

and ∗ : ‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast
from this(3 ) have ‹e # t1 setinterleaves3tick-join ((ev a # u1 , ev a # v1 ),

A)›
by (simp add: ‹a ∈ A› ‹e = ev a›)

moreover from ‹u ′ = u1 @ u2 › have ‹u = (ev a # u1 ) @ u2 ›
by (simp add: mv-both-ev(3 ))

moreover from ‹v ′ = v1 @ v2 › have ‹v = (ev a # v1 ) @ v2 ›
by (simp add: mv-both-ev(4 ))

ultimately show ?thesis using ∗ by blast
next

case mv-both-tick
from Cons.hyps[OF mv-both-tick(5 )] obtain u1 u2 v1 v2

where ‹u ′ = u1 @ u2 › ‹v ′ = v1 @ v2 › ‹t1 setinterleaves3tick-join ((u1 , v1 ),
A)›

and ∗ : ‹t2 setinterleaves3tick-join ((u2 , v2 ), A)› by blast
from this(3 ) have ‹e # t1 setinterleaves3tick-join ((3(r) # u1 , 3(s) # v1 ),

A)›
by (simp add: mv-both-tick(1 , 2 ))

moreover from ‹u ′ = u1 @ u2 › have ‹u = (3(r) # u1 ) @ u2 ›
by (simp add: mv-both-tick(3 ))

moreover from ‹v ′ = v1 @ v2 › have ‹v = (3(s) # v1 ) @ v2 ›
by (simp add: mv-both-tick(4 ))

ultimately show ?thesis using ∗ by blast
qed

qed

corollary setinterleavesptick-le-prefixL :
‹t setinterleaves3tick-join ((u, v), A) =⇒ u ′ ≤ u =⇒
∃ t ′ ≤ t. ∃ v ′ ≤ v. t ′ setinterleaves3tick-join ((u ′, v ′), A)›

by (auto elim!: prefixE dest!: setinterleavesptick-appendL intro: prefixI )

corollary setinterleavesptick-le-prefixR :
‹t setinterleaves3tick-join ((u, v), A) =⇒ v ′ ≤ v =⇒
∃ t ′ ≤ t. ∃ u ′ ≤ u. t ′ setinterleaves3tick-join ((u ′, v ′), A)›

by (auto elim!: prefixE dest!: setinterleavesptick-appendR intro: prefixI )

corollary le-prefix-setinterleavesptick :
‹t setinterleaves3tick-join ((u, v), A) =⇒ t ′ ≤ t =⇒
∃ u ′ ≤ u. ∃ v ′ ≤ v. t ′ setinterleaves3tick-join ((u ′, v ′), A)›

by (auto elim!: prefixE dest!: append-setinterleavesptick intro: prefixI )
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lemma setinterleavesptick-less-prefixL :
‹t setinterleaves3tick-join ((u, v), A) =⇒ u ′ < u =⇒
∃ t ′ v ′. t ′ < t ∧ v ′ ≤ v ∧ t ′ setinterleaves3tick-join ((u ′, v ′), A)›

proof (induct ‹(tick-join, u, A, v)› arbitrary: t u u ′ v)
case Nil-setinterleavingptick-Nil thus ?case by simp

next
case (ev-setinterleavingptick-Nil a u)
from ‹u ′ < ev a # u› consider ‹u ′ = []› | u ′′ where ‹u ′ = ev a # u ′′› ‹u ′′ <

u›
by (metis Prefix-Order .prefix-Cons less-list-def )

thus ?case
proof cases

from ev-setinterleavingptick-Nil.prems(1 )
show ‹u ′ = [] =⇒ ?case› by (auto split: if-split-asm)

next
fix u ′′ assume ‹u ′ = ev a # u ′′› ‹u ′′ < u›
from ev-setinterleavingptick-Nil.prems(1 )
obtain t ′ where ‹a /∈ A› ‹t = ev a # t ′› ‹t ′ setinterleaves3tick-join ((u, []),

A)›
by (auto split: if-split-asm)

from ev-setinterleavingptick-Nil.hyps[OF ‹a /∈ A› this(3 ) ‹u ′′ < u›]
obtain t ′′ v ′ where ‹t ′′ < t ′› ‹v ′ ≤ []› ‹t ′′ setinterleaves3tick-join ((u ′′, v ′),

A)› by blast
hence ‹ev a # t ′′ < t ∧ v ′ ≤ [] ∧ ev a # t ′′ setinterleaves3tick-join ((u ′, v ′),

A)›
by (simp add: ‹u ′ = ev a # u ′′› ‹t = ev a # t ′› ‹a /∈ A›)

thus ?case by blast
qed

next
case (tick-setinterleavingptick-Nil r u) thus ?case by simp

next
case (Nil-setinterleavingptick-ev b v) thus ?case by simp

next
case (Nil-setinterleavingptick-tick s v) thus ?case by simp

next
case (ev-setinterleavingptick-ev a u b v)
from ‹u ′ < ev a # u› consider ‹u ′ = []› | u ′′ where ‹u ′ = ev a # u ′′› ‹u ′′ <

u›
by (metis Prefix-Order .prefix-Cons less-list-def )

thus ?case
proof cases

from ev-setinterleavingptick-ev.prems(1 )
show ‹u ′ = [] =⇒ ?case› by (simp split: if-split-asm) force+

next
fix u ′′ assume ‹u ′ = ev a # u ′′› ‹u ′′ < u›
hence ‹ev a # u ′′ < ev a # u› by simp
from ev-setinterleavingptick-ev.prems(1 )
consider (both-in) t ′ where ‹a ∈ A› ‹b ∈ A› ‹a = b› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, v), A)›
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| (inR-mvL) t ′ where ‹a /∈ A› ‹b ∈ A› ‹t = ev a # t ′›
‹t ′ setinterleaves3tick-join ((u, ev b # v), A)›
| (inL-mvR) t ′ where ‹a ∈ A› ‹b /∈ A› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((ev a # u, v), A)›
| (notin-mvL) t ′ where ‹a /∈ A› ‹b /∈ A› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, ev b # v), A)›
| (notin-mvR) t ′ where ‹a /∈ A› ‹b /∈ A› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((ev a # u, v), A)›
by (auto split: if-split-asm)

thus ?case
proof cases

case both-in
from ev-setinterleavingptick-ev.hyps(1 )[OF both-in(1−3 , 5 ) ‹u ′′ < u›]
obtain t ′′ v ′ where ‹t ′′ < t ′ ∧ v ′ ≤ v ∧ t ′′ setinterleaves3tick-join ((u ′′, v ′),

A)› by blast
hence ‹ev a # t ′′ < t ∧ ev b # v ′ ≤ ev b # v ∧

ev a # t ′′ setinterleaves3tick-join ((u ′, ev b # v ′), A)›
by (simp add: both-in(2 , 3 , 4 ) ‹u ′ = ev a # u ′′›)

thus ?thesis by blast
next

case inR-mvL
from ev-setinterleavingptick-ev.hyps(3 )[OF inR-mvL(1 , 2 , 4 ) ‹u ′′ < u›]
obtain t ′′ v ′ where ‹t ′′ < t ′ ∧ v ′ ≤ ev b # v ∧ t ′′ setinterleaves3tick-join

((u ′′, v ′), A)› by blast
hence ‹ev a # t ′′ < t ∧ v ′ ≤ ev b # v ∧

ev a # t ′′ setinterleaves3tick-join ((u ′, v ′), A)›
by (cases v ′) (simp-all add: inR-mvL(1−3 ) ‹u ′ = ev a # u ′′›)

thus ?thesis by blast
next

case inL-mvR
from ev-setinterleavingptick-ev.hyps(2 )[OF inL-mvR(1 , 2 , 4 ) ‹ev a # u ′′ <

ev a # u›]
obtain t ′′ v ′ where ‹t ′′ < t ′ ∧ v ′ ≤ v ∧ t ′′ setinterleaves3tick-join ((ev a #

u ′′, v ′), A)› by blast
hence ‹ev b # t ′′ < t ∧ ev b # v ′ ≤ ev b # v ∧

ev b # t ′′ setinterleaves3tick-join ((u ′, ev b # v ′), A)›
by (simp add: inL-mvR(1−3 ) ‹u ′ = ev a # u ′′›)

thus ?thesis by blast
next

case notin-mvL
from ev-setinterleavingptick-ev.hyps(4 )[OF notin-mvL(1 , 2 , 4 ) ‹u ′′ < u›]
obtain t ′′ v ′ where ‹t ′′ < t ′ ∧ v ′ ≤ ev b # v ∧ t ′′ setinterleaves3tick-join

((u ′′, v ′), A)› by blast
hence ‹ev a # t ′′ < t ∧ v ′ ≤ ev b # v ∧

ev a # t ′′ setinterleaves3tick-join ((u ′, v ′), A)›
by (cases v ′) (simp-all add: notin-mvL(1−3 ) ‹u ′ = ev a # u ′′›)

thus ?thesis by blast
next
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case notin-mvR
from ev-setinterleavingptick-ev.hyps(5 )[OF notin-mvR(1 , 2 , 4 ) ‹ev a # u ′′

< ev a # u›]
obtain t ′′ v ′ where ‹t ′′ < t ′ ∧ v ′ ≤ v ∧ t ′′ setinterleaves3tick-join ((ev a #

u ′′, v ′), A)› by blast
hence ‹ev b # t ′′ < t ∧ ev b # v ′ ≤ ev b # v ∧

ev b # t ′′ setinterleaves3tick-join ((u ′, ev b # v ′), A)›
by (simp add: notin-mvR(1−3 ) ‹u ′ = ev a # u ′′›)

thus ?thesis by blast
qed

qed
next

case (ev-setinterleavingptick-tick a u s v)
from ‹u ′ < ev a # u› consider ‹u ′ = []› | u ′′ where ‹u ′ = ev a # u ′′› ‹u ′′ <

u›
by (metis Prefix-Order .prefix-Cons less-list-def )

thus ?case
proof cases

from ev-setinterleavingptick-tick.prems(1 )
show ‹u ′ = [] =⇒ ?case› by (simp split: if-split-asm) force+

next
fix u ′′ assume ‹u ′ = ev a # u ′′› ‹u ′′ < u›
from ev-setinterleavingptick-tick.prems obtain t ′

where ‹a /∈ A› ‹t = ev a # t ′› ‹t ′ setinterleaves3tick-join ((u, 3(s) # v), A)›
by (auto split: if-split-asm)

from ev-setinterleavingptick-tick.hyps[OF ‹a /∈ A› this(3 ) ‹u ′′ < u›]
obtain t ′′ v ′ where ‹t ′′ < t ′ ∧ v ′ ≤ 3(s) # v ∧ t ′′ setinterleaves3tick-join

((u ′′, v ′), A)› by blast
hence ‹ev a # t ′′ < t ∧ v ′ ≤ 3(s) # v ∧ ev a # t ′′ setinterleaves3tick-join

((u ′, v ′), A)›
by (cases v ′) (simp-all add: ‹a /∈ A› ‹u ′ = ev a # u ′′› ‹t = ev a # t ′›)

thus ?case by blast
qed

next
case (tick-setinterleavingptick-ev r u b v)
from ‹u ′ < 3(r) # u› consider ‹u ′ = []› | u ′′ where ‹u ′ = 3(r) # u ′′› ‹u ′′ <

u›
by (metis Prefix-Order .prefix-Cons less-list-def )

thus ?case
proof cases

from tick-setinterleavingptick-ev.prems(1 )
show ‹u ′ = [] =⇒ ?case› by (simp split: if-split-asm) force+

next
fix u ′′ assume ‹u ′ = 3(r) # u ′′› ‹u ′′ < u›
hence ‹3(r) # u ′′ < 3(r) # u› by simp
from tick-setinterleavingptick-ev.prems obtain t ′

where ‹b /∈ A› ‹t = ev b # t ′› ‹t ′ setinterleaves3tick-join ((3(r) # u, v), A)›
by (auto split: if-split-asm)

from tick-setinterleavingptick-ev.hyps[OF ‹b /∈ A› this(3 ) ‹3(r) # u ′′ < 3(r)
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# u›]
obtain t ′′ v ′ where ‹t ′′ < t ′ ∧ v ′ ≤ v ∧ t ′′ setinterleaves3tick-join ((3(r) #

u ′′, v ′), A)› by blast
hence ‹ev b # t ′′ < t ∧ ev b # v ′ ≤ ev b # v ∧

ev b # t ′′ setinterleaves3tick-join ((u ′, ev b # v ′), A)›
by (simp add: ‹b /∈ A› ‹u ′ = 3(r) # u ′′› ‹t = ev b # t ′›)

thus ?case by blast
qed

next
case (tick-setinterleavingptick-tick r u s v)
from ‹u ′ < 3(r) # u› consider ‹u ′ = []› | u ′′ where ‹u ′ = 3(r) # u ′′› ‹u ′′ <

u›
by (metis Prefix-Order .prefix-Cons less-list-def )

thus ?case
proof cases

from tick-setinterleavingptick-tick.prems(1 )
show ‹u ′ = [] =⇒ ?case› by (force split: option.split-asm)

next
fix u ′′ assume ‹u ′ = 3(r) # u ′′› ‹u ′′ < u›
from tick-setinterleavingptick-tick.prems(1 )
obtain t ′ r-s
where ‹tick-join r s = br-sc› ‹t = 3(r-s) # t ′› ‹t ′ setinterleaves3tick-join ((u,

v), A)›
by (auto split: option.split-asm)

from tick-setinterleavingptick-tick.hyps[OF this(1 , 3 ) ‹u ′′ < u›]
obtain t ′′ v ′ where ‹t ′′ < t ′ ∧ v ′ ≤ v ∧ t ′′ setinterleaves3tick-join ((u ′′, v ′),

A)› by blast
hence ‹3(r-s) # t ′′ < t ∧ 3(s) # v ′ ≤ 3(s) # v ∧ 3(r-s) # t ′′ setinter-

leaves3tick-join ((u ′, 3(s) # v ′), A)›
by (simp add: ‹tick-join r s = br-sc› ‹u ′ = 3(r) # u ′′› ‹t = 3(r-s) # t ′›)

thus ?case by blast
qed

qed

corollary setinterleavesptick-less-prefixR :
‹t setinterleaves3tick-join ((u, v), A) =⇒ v ′ < v =⇒
∃ t ′ u ′. t ′ < t ∧ u ′ ≤ u ∧ t ′ setinterleaves3tick-join ((u ′, v ′), A)›

using setinterleavesptick-less-prefixL setinterleavesptick-sym by blast

lemma setinterleavesptick-le-prefixLR :
‹t setinterleaves3tick-join ((u, v), A) =⇒ u ′ ≤ u =⇒ v ′ ≤ v =⇒
(∃ t ′ ≤ t. ∃ v ′′ ≤ v ′. t ′ setinterleaves3tick-join ((u ′, v ′′), A)) ∨
(∃ t ′ ≤ t. ∃ u ′′ ≤ u ′. t ′ setinterleaves3tick-join ((u ′′, v ′), A))›

proof (induct ‹(tick-join, u, A, v)› arbitrary: t u u ′ v v ′)
case Nil-setinterleavingptick-Nil thus ?case by simp
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next
case (ev-setinterleavingptick-Nil a u) thus ?case by simp fastforce

next
case (tick-setinterleavingptick-Nil r u) thus ?case by simp

next
case (Nil-setinterleavingptick-ev b v) thus ?case by simp fastforce

next
case (Nil-setinterleavingptick-tick s v) thus ?case by simp

next
case (ev-setinterleavingptick-ev a u b v)
show ?case
proof (cases ‹u ′ = [] ∨ v ′ = []›)

show ‹u ′ = [] ∨ v ′ = [] =⇒ ?case› by force
next

assume ‹¬ (u ′ = [] ∨ v ′ = [])›
with ev-setinterleavingptick-ev.prems(2 , 3 )
obtain u ′′ v ′′ where ‹u ′ = ev a # u ′′› ‹u ′′ ≤ u› ‹v ′ = ev b # v ′′› ‹v ′′ ≤ v›

by (meson Prefix-Order .prefix-Cons)
from ev-setinterleavingptick-ev.prems(1 )
consider (both-in) t ′ where ‹a ∈ A› ‹b ∈ A› ‹a = b› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, v), A)›
| (inR-mvL) t ′ where ‹a /∈ A› ‹b ∈ A› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, ev b # v), A)›
| (inL-mvR) t ′ where ‹a ∈ A› ‹b /∈ A› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((ev a # u, v), A)›
| (notin-mvL) t ′ where ‹a /∈ A› ‹b /∈ A› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, ev b # v), A)›
| (notin-mvR) t ′ where ‹a /∈ A› ‹b /∈ A› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((ev a # u, v), A)›
by (auto split: if-split-asm)

thus ?case
proof cases

case both-in
from ev-setinterleavingptick-ev.hyps(1 )[OF both-in(1−3 , 5 ) ‹u ′′ ≤ u› ‹v ′′ ≤

v›]
show ?thesis
proof (elim disjE exE conjE)

fix t ′′ v ′′′

assume ‹t ′′ ≤ t ′› ‹v ′′′ ≤ v ′′› ‹t ′′ setinterleaves3tick-join ((u ′′, v ′′′), A)›
hence ‹ev b # t ′′ ≤ t ∧ ev b # v ′′′ ≤ v ′ ∧

ev b # t ′′ setinterleaves3tick-join ((u ′, ev b # v ′′′), A)›
by (simp add: ‹u ′ = ev a # u ′′› ‹v ′ = ev b # v ′′› both-in(2−4 ))

thus ?thesis by blast
next

fix t ′′ u ′′′

assume ‹t ′′ ≤ t ′› ‹u ′′′ ≤ u ′′› ‹t ′′ setinterleaves3tick-join ((u ′′′, v ′′), A)›
hence ‹ev a # t ′′ ≤ t ∧ ev a # u ′′′ ≤ u ′ ∧

ev a # t ′′ setinterleaves3tick-join ((ev a # u ′′′, v ′), A)›
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by (simp add: ‹u ′ = ev a # u ′′› ‹v ′ = ev b # v ′′› both-in(2−4 ))
thus ?thesis by blast

qed
next

case inR-mvL
from ev-setinterleavingptick-ev.hyps(3 )[OF inR-mvL(1 , 2 , 4 ) ‹u ′′ ≤ u› ‹v ′ ≤

ev b # v›]
show ?thesis
proof (elim disjE exE conjE)

fix t ′′ v ′′′

assume ‹t ′′ ≤ t ′› ‹v ′′′ ≤ v ′› ‹t ′′ setinterleaves3tick-join ((u ′′, v ′′′), A)›
hence ‹ev a # t ′′ ≤ t ∧ v ′′′ ≤ v ′ ∧

ev a # t ′′ setinterleaves3tick-join ((u ′, v ′′′), A)›
by (cases v ′′′) (simp-all add: ‹u ′ = ev a # u ′′› ‹v ′ = ev b # v ′′› inR-mvL(1 ,

3 ))
thus ?thesis by blast

next
fix t ′′ u ′′′

assume ‹t ′′ ≤ t ′› ‹u ′′′ ≤ u ′′› ‹t ′′ setinterleaves3tick-join ((u ′′′, v ′), A)›
hence ‹ev a # t ′′ ≤ t ∧ ev a # u ′′′ ≤ u ′ ∧

ev a # t ′′ setinterleaves3tick-join ((ev a # u ′′′, v ′), A)›
by (simp add: ‹u ′ = ev a # u ′′› ‹v ′ = ev b # v ′′› inR-mvL(1 , 3 ))

thus ?thesis by blast
qed

next
case inL-mvR
from ev-setinterleavingptick-ev.hyps(2 )[OF inL-mvR(1 , 2 , 4 ) ‹u ′ ≤ ev a #

u› ‹v ′′ ≤ v›]
show ?thesis
proof (elim disjE exE conjE)

fix t ′′ v ′′′

assume ‹t ′′ ≤ t ′› ‹v ′′′ ≤ v ′′› ‹t ′′ setinterleaves3tick-join ((u ′, v ′′′), A)›
hence ‹ev b # t ′′ ≤ t ∧ ev b # v ′′′ ≤ v ′ ∧

ev b # t ′′ setinterleaves3tick-join ((u ′, ev b # v ′′′), A)›
by (simp add: ‹u ′ = ev a # u ′′› ‹v ′ = ev b # v ′′› inL-mvR(2 , 3 ))

thus ?thesis by blast
next

fix t ′′ u ′′′

assume ‹t ′′ ≤ t ′› ‹u ′′′ ≤ u ′› ‹t ′′ setinterleaves3tick-join ((u ′′′, v ′′), A)›
hence ‹ev b # t ′′ ≤ t ∧ u ′′′ ≤ u ′ ∧

ev b # t ′′ setinterleaves3tick-join ((u ′′′, v ′), A)›
by (cases u ′′′) (simp-all add: ‹u ′ = ev a # u ′′› ‹v ′ = ev b # v ′′› inL-mvR(2 ,

3 ))
thus ?thesis by blast

qed
next

case notin-mvL
from ev-setinterleavingptick-ev.hyps(4 )[OF notin-mvL(1 , 2 , 4 ) ‹u ′′ ≤ u› ‹v ′

≤ ev b # v›]
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show ?thesis
proof (elim disjE exE conjE)

fix t ′′ v ′′′

assume ‹t ′′ ≤ t ′› ‹v ′′′ ≤ v ′› ‹t ′′ setinterleaves3tick-join ((u ′′, v ′′′), A)›
hence ‹ev a # t ′′ ≤ t ∧ v ′′′ ≤ v ′ ∧

ev a # t ′′ setinterleaves3tick-join ((u ′, v ′′′), A)›
by (cases v ′′′) (simp-all add: ‹u ′= ev a # u ′′› ‹v ′= ev b # v ′′› notin-mvL(1 ,

3 ))
thus ?thesis by blast

next
fix t ′′ u ′′′

assume ‹t ′′ ≤ t ′› ‹u ′′′ ≤ u ′′› ‹t ′′ setinterleaves3tick-join ((u ′′′, v ′), A)›
hence ‹ev a # t ′′ ≤ t ∧ ev a # u ′′′ ≤ u ′ ∧

ev a # t ′′ setinterleaves3tick-join ((ev a # u ′′′, v ′), A)›
by (simp add: ‹u ′ = ev a # u ′′› ‹v ′ = ev b # v ′′› notin-mvL(1 , 3 ))

thus ?thesis by blast
qed

next
case notin-mvR
from ev-setinterleavingptick-ev.hyps(5 )[OF notin-mvR(1 , 2 , 4 ) ‹u ′ ≤ ev a #

u› ‹v ′′ ≤ v›]
show ?thesis
proof (elim disjE exE conjE)

fix t ′′ v ′′′

assume ‹t ′′ ≤ t ′› ‹v ′′′ ≤ v ′′› ‹t ′′ setinterleaves3tick-join ((u ′, v ′′′), A)›
hence ‹ev b # t ′′ ≤ t ∧ ev b # v ′′′ ≤ v ′ ∧

ev b # t ′′ setinterleaves3tick-join ((u ′, ev b # v ′′′), A)›
by (simp add: ‹u ′ = ev a # u ′′› ‹v ′ = ev b # v ′′› notin-mvR(2 , 3 ))

thus ?thesis by blast
next

fix t ′′ u ′′′

assume ‹t ′′ ≤ t ′› ‹u ′′′ ≤ u ′› ‹t ′′ setinterleaves3tick-join ((u ′′′, v ′′), A)›
hence ‹ev b # t ′′ ≤ t ∧ u ′′′ ≤ u ′ ∧

ev b # t ′′ setinterleaves3tick-join ((u ′′′, v ′), A)›
by (cases u ′′′) (simp-all add: ‹u ′= ev a # u ′′› ‹v ′= ev b # v ′′› notin-mvR(2 ,

3 ))
thus ?thesis by blast

qed
qed

qed
next

case (ev-setinterleavingptick-tick a u s v)
show ?case
proof (cases ‹u ′ = [] ∨ v ′ = []›)

show ‹u ′ = [] ∨ v ′ = [] =⇒ ?case› by force
next

assume ‹¬ (u ′ = [] ∨ v ′ = [])›
with ev-setinterleavingptick-tick.prems(2 , 3 )
obtain u ′′ v ′′ where ‹u ′ = ev a # u ′′› ‹u ′′ ≤ u› ‹v ′ = 3(s) # v ′′› ‹v ′′ ≤ v›

63



by (meson Prefix-Order .prefix-Cons)
from ev-setinterleavingptick-tick.prems(1 )
obtain t ′ where ‹a /∈ A› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, 3(s) # v), A)›
by (auto split: if-split-asm)

from ev-setinterleavingptick-tick.hyps[OF this(1 , 3 ) ‹u ′′ ≤ u› ‹v ′ ≤ 3(s) # v›]
show ?case
proof (elim disjE exE conjE)

fix t ′′ v ′′′ assume ‹t ′′ ≤ t ′› ‹v ′′′ ≤ v ′› ‹t ′′ setinterleaves3tick-join ((u ′′, v ′′′),

A)›
hence ‹ev a # t ′′ ≤ t ∧ v ′′′ ≤ v ′ ∧ ev a # t ′′ setinterleaves3tick-join ((u ′,

v ′′′), A)›
by (cases v ′′′) (simp-all add: ‹a /∈ A› ‹t = ev a # t ′› ‹u ′ = ev a # u ′′› ‹v ′

= 3(s) # v ′′›)
thus ?case by blast

next
fix t ′′ u ′′′ assume ‹t ′′ ≤ t ′› ‹u ′′′ ≤ u ′′› ‹t ′′ setinterleaves3tick-join ((u ′′′, v ′),

A)›
hence ‹ev a # t ′′ ≤ t ∧ ev a # u ′′′ ≤ u ′ ∧ ev a # t ′′ setinterleaves3tick-join

((ev a # u ′′′, v ′), A)›
by (simp add: ‹a /∈ A› ‹t = ev a # t ′› ‹u ′ = ev a # u ′′› ‹v ′ = 3(s) # v ′′›)

thus ?case by blast
qed

qed
next

case (tick-setinterleavingptick-ev r u b v)
show ?case
proof (cases ‹u ′ = [] ∨ v ′ = []›)

show ‹u ′ = [] ∨ v ′ = [] =⇒ ?case› by force
next

assume ‹¬ (u ′ = [] ∨ v ′ = [])›
with tick-setinterleavingptick-ev.prems(2 , 3 )
obtain u ′′ v ′′ where ‹u ′ = 3(r) # u ′′› ‹u ′′ ≤ u› ‹v ′ = ev b # v ′′› ‹v ′′ ≤ v›

by (meson Prefix-Order .prefix-Cons)
from tick-setinterleavingptick-ev.prems(1 )
obtain t ′ where ‹b /∈ A› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((3(r) # u, v), A)›
by (auto split: if-split-asm)

from tick-setinterleavingptick-ev.hyps[OF this(1 , 3 ) ‹u ′ ≤ 3(r) # u› ‹v ′′ ≤ v›]
show ?case
proof (elim disjE exE conjE)

fix t ′′ v ′′′ assume ‹t ′′ ≤ t ′› ‹v ′′′ ≤ v ′′› ‹t ′′ setinterleaves3tick-join ((u ′, v ′′′),

A)›
hence ‹ev b # t ′′ ≤ t ∧ ev b # v ′′′ ≤ v ′ ∧ ev b # t ′′ setinterleaves3tick-join

((u ′, ev b # v ′′′), A)›
by (simp add: ‹b /∈ A› ‹t = ev b # t ′› ‹u ′ = 3(r) # u ′′› ‹v ′ = ev b # v ′′›)

thus ?case by blast
next
fix t ′′ u ′′′ assume ‹t ′′ ≤ t ′› ‹u ′′′ ≤ u ′› ‹t ′′ setinterleaves3tick-join ((u ′′′, v ′′),
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A)›
hence ‹ev b # t ′′ ≤ t ∧ u ′′′ ≤ u ′ ∧ ev b # t ′′ setinterleaves3tick-join ((u ′′′,

v ′), A)›
by (cases u ′′′) (simp-all add: ‹b /∈ A› ‹t = ev b # t ′› ‹u ′ = 3(r) # u ′′› ‹v ′

= ev b # v ′′›)
thus ?case by blast

qed
qed

next
case (tick-setinterleavingptick-tick r u s v)
show ?case
proof (cases ‹u ′ = [] ∨ v ′ = []›)

show ‹u ′ = [] ∨ v ′ = [] =⇒ ?case› by force
next

assume ‹¬ (u ′ = [] ∨ v ′ = [])›
with tick-setinterleavingptick-tick.prems(2 , 3 )
obtain u ′′ v ′′ where ‹u ′ = 3(r) # u ′′› ‹u ′′ ≤ u› ‹v ′ = 3(s) # v ′′› ‹v ′′ ≤ v›

by (meson Prefix-Order .prefix-Cons)
from tick-setinterleavingptick-tick.prems(1 )
obtain t ′ r-s where ‹t = 3(r-s) # t ′› ‹tick-join r s = br-sc›

‹t ′ setinterleaves3tick-join ((u, v), A)›
by (auto split: option.split-asm)

from tick-setinterleavingptick-tick.hyps[OF this(2 , 3 ) ‹u ′′ ≤ u› ‹v ′′ ≤ v›]
show ?case
proof (elim disjE exE conjE)

fix t ′′ v ′′′

assume ‹t ′′ ≤ t ′› ‹v ′′′ ≤ v ′′› ‹t ′′ setinterleaves3tick-join ((u ′′, v ′′′), A)›
hence ‹3(r-s) # t ′′ ≤ t ∧ 3(s) # v ′′′ ≤ v ′ ∧

3(r-s) # t ′′ setinterleaves3tick-join ((u ′, 3(s) # v ′′′), A)›
by (simp add: ‹tick-join r s = br-sc› ‹t = 3(r-s) # t ′›

‹u ′ = 3(r) # u ′′› ‹v ′ = 3(s) # v ′′›)
thus ?case by blast

next
fix t ′′ u ′′′

assume ‹t ′′ ≤ t ′› ‹u ′′′ ≤ u ′′› ‹t ′′ setinterleaves3tick-join ((u ′′′, v ′′), A)›
hence ‹3(r-s) # t ′′ ≤ t ∧ 3(r) # u ′′′ ≤ u ′ ∧

3(r-s) # t ′′ setinterleaves3tick-join ((3(r) # u ′′′, v ′), A)›
by (simp add: ‹tick-join r s = br-sc› ‹t = 3(r-s) # t ′›

‹u ′ = 3(r) # u ′′› ‹v ′ = 3(s) # v ′′›)
thus ?case by blast

qed
qed

qed

4.1.6 Hiding Events
lemma setinterleavesptick-trace-hide :

‹t setinterleaves3tick-join ((u, v), S) =⇒
trace-hide t (ev ‘ A) setinterleaves3tick-join
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((trace-hide u (ev ‘ A), trace-hide v (ev ‘ A)), S)›
proof (induct ‹(tick-join, u, S , v)› arbitrary: t u v)

case Nil-setinterleavingptick-Nil
thus ?case by simp

next
case (ev-setinterleavingptick-Nil a u)
from ev-setinterleavingptick-Nil.prems obtain t ′ where ‹a /∈ S› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, []), S)› by (auto split: if-split-asm)

from ev-setinterleavingptick-Nil.hyps[OF this(1 , 3 )]
show ?case by (simp add: image-iff [of ‹ev -›] ‹a /∈ S› ‹t = ev a # t ′›)

next
case (tick-setinterleavingptick-Nil r u)
from tick-setinterleavingptick-Nil have False by simp
thus ?case ..

next
case (Nil-setinterleavingptick-ev b v)
from Nil-setinterleavingptick-ev.prems obtain t ′ where ‹b /∈ S› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join (([], v), S)› by (auto split: if-split-asm)

from Nil-setinterleavingptick-ev.hyps[OF this(1 , 3 )]
show ?case by (simp add: image-iff [of ‹ev -›] ‹b /∈ S› ‹t = ev b # t ′›)

next
case (Nil-setinterleavingptick-tick s v)
from Nil-setinterleavingptick-tick.prems have False by simp
thus ?case ..

next
case (ev-setinterleavingptick-ev a u b v)
from ev-setinterleavingptick-ev.prems
consider (both-in) t ′ where ‹a ∈ S› ‹b ∈ S› ‹a = b› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, v), S)›
| (inR-mvL) t ′ where ‹a /∈ S› ‹b ∈ S› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, ev b # v), S)›
| (inL-mvR) t ′ where ‹a ∈ S› ‹b /∈ S› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((ev a # u, v), S)›
| (notin-mvL) t ′ where ‹a /∈ S› ‹b /∈ S› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u, ev b # v), S)›
| (notin-mvR) t ′ where ‹a /∈ S› ‹b /∈ S› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((ev a # u, v), S)›
by (auto split: if-split-asm)

thus ?case
proof cases

case both-in
from ev-setinterleavingptick-ev.hyps(1 )[OF both-in(1−3 , 5 )]
show ?thesis by (simp add: both-in(2−5 ) image-iff [of ‹ev -›])

next
case inR-mvL
from ev-setinterleavingptick-ev.hyps(3 )[OF inR-mvL(1 , 2 , 4 )]
show ?thesis by (cases ‹trace-hide v (ev ‘ A)›)

(auto simp add: inR-mvL(1−3 ) setinterleavingptick-simps
split: if-split-asm eventptick.split)
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next
case inL-mvR
from ev-setinterleavingptick-ev.hyps(2 )[OF inL-mvR(1 , 2 , 4 )]
show ?thesis by (cases ‹trace-hide u (ev ‘ A)›)

(auto simp add: inL-mvR(1−3 ) setinterleavingptick-simps
split: if-split-asm eventptick.split)

next
case notin-mvL
from ev-setinterleavingptick-ev.hyps(4 )[OF notin-mvL(1 , 2 , 4 )]
show ?thesis by (cases ‹trace-hide v (ev ‘ A)›)

(auto simp add: notin-mvL(1−3 ) setinterleavingptick-simps
split: if-split-asm eventptick.split)

next
case notin-mvR
from ev-setinterleavingptick-ev.hyps(5 )[OF notin-mvR(1 , 2 , 4 )]
show ?thesis by (cases ‹trace-hide u (ev ‘ A)›)

(auto simp add: notin-mvR(1−3 ) setinterleavingptick-simps
split: if-split-asm eventptick.split)

qed
next

case (ev-setinterleavingptick-tick a u s v)
from ev-setinterleavingptick-tick.prems obtain t ′ where ‹a /∈ S› ‹t = ev a #

t ′›
‹t ′ setinterleaves3tick-join ((u, 3(s) # v), S)› by (auto split: if-split-asm)

from ev-setinterleavingptick-tick.hyps[OF this(1 , 3 )]
show ?case by (simp add: image-iff [of ‹ev -›] image-iff [of ‹3(-)›] ‹a /∈ S› ‹t =

ev a # t ′›)
next

case (tick-setinterleavingptick-ev r u b v)
from tick-setinterleavingptick-ev.prems obtain t ′ where ‹b /∈ S› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((3(r) # u, v), S)› by (auto split: if-split-asm)

from tick-setinterleavingptick-ev.hyps[OF this(1 , 3 )]
show ?case by (simp add: image-iff [of ‹ev -›] image-iff [of ‹3(-)›] ‹b /∈ S› ‹t =

ev b # t ′›)
next

case (tick-setinterleavingptick-tick r u s v)
from tick-setinterleavingptick-tick.prems
obtain r-s t ′ where ‹tick-join r s = br-sc› ‹t = 3(r-s) # t ′›

‹t ′ setinterleaves3tick-join ((u, v), S)› by (auto split: option.split-asm)

from tick-setinterleavingptick-tick.hyps[OF this(1 , 3 )]
show ?case by (simp add: image-iff [of ‹3(-)›] ‹tick-join r s = br-sc› ‹t = 3(r-s)

# t ′›)
qed

lemma trace-hide-map-map-eventptick :
‹trace-hide (map (map-eventptick f g) t) S =
map (map-eventptick f g) (trace-hide t (map-eventptick f g −‘ S))›

by (induct t) simp-all
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lemma tickFree-trace-hide-map-ev-comp-of-ev :
‹tF t =⇒ trace-hide (map (ev ◦ of-ev) t) (ev ‘ A) =

map (ev ◦ of-ev) (trace-hide t (ev ‘ A))›
by (induct t) (auto simp add: image-iff )

lemma tickFree-disjoint-setinterleavesptick-appendL :
‹tF u1 =⇒ {a. ev a ∈ set u1} ∩ A = {} =⇒ t setinterleaves3tick-join ((u2 , v),

A)
=⇒ map (ev ◦ of-ev) u1 @ t setinterleaves3tick-join ((u1 @ u2 , v), A)›

proof (induct u1 )
case Nil
from Nil.prems(3 ) show ?case by simp

next
case (Cons e u1 )
from Cons.prems(1 , 2 ) obtain a

where ‹e = ev a› ‹a /∈ A› ‹tF u1 › ‹{a. ev a ∈ set u1} ∩ A = {} ›
by (auto simp add: disjoint-iff is-ev-def )

from Cons.hyps[OF this(3 , 4 ) Cons.prems(3 )]
have ‹map (ev ◦ of-ev) u1 @ t setinterleaves3tick-join ((u1 @ u2 , v), A)› .
with ‹e = ev a› ‹a /∈ A›
show ?case by (cases v)

(auto simp add: setinterleavingptick-simps comp-def split: eventptick.split)
qed

corollary tickFree-disjoint-setinterleavesptick-appendR :
‹[[tF v1 ; {a. ev a ∈ set v1} ∩ A = {}; t setinterleaves3tick-join ((u, v2 ), A)]]

=⇒ map (ev ◦ of-ev) v1 @ t setinterleaves3tick-join ((u, v1 @ v2 ), A)›
by (metis setinterleavesptick-sym tickFree-disjoint-setinterleavesptick-appendL)

lemma tickFree-disjoint-setinterleavesptick-append-tailL :
‹t @ map (ev ◦ of-ev) u2 setinterleaves3tick-join ((u1 @ u2 , v), A)›
if ‹tF u2 › ‹{a. ev a ∈ set u2} ∩ A = {}› ‹t setinterleaves3tick-join ((u1 , v), A)›

proof −
have ‹t @ map (ev ◦ of-ev) u2 setinterleaves3tick-join ((u1 @ u2 , v), A) ←→

map (ev ◦ of-ev) (rev u2 ) @ rev t setinterleaves3tick-join ((rev u2 @ rev u1 ,
rev v), A)›

by (subst rev-setinterleavesptick-rev-rev-iff [symmetric])
(simp add: rev-map)

also have . . .
proof (rule tickFree-disjoint-setinterleavesptick-appendL)

show ‹tF (rev u2 )› by (simp add: that(1 ))
next

show ‹{a. ev a ∈ set (rev u2 )} ∩ A = {}› by (simp add: that(2 ))
next

show ‹rev t setinterleaves3tick-join ((rev u1 , rev v), A)›
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by (simp add: rev-setinterleavesptick-rev-rev-iff that(3 ))
qed
finally show ?thesis .

qed

corollary tickFree-disjoint-setinterleavesptick-append-tailR :
‹[[tF v2 ; {a. ev a ∈ set v2} ∩ A = {}; t setinterleaves3tick-join ((u, v1 ), A)]]

=⇒ t @ map (ev ◦ of-ev) v2 setinterleaves3tick-join ((u, v1 @ v2 ), A)›
by (metis setinterleavesptick-sym tickFree-disjoint-setinterleavesptick-append-tailL)

lemma disjoint-trace-hide-setinterleavesptick :
‹t setinterleaves3tick-join
((trace-hide u (ev ‘ A), trace-hide v (ev ‘ A)), S) =⇒
∃ t ′. t = trace-hide t ′ (ev ‘ A) ∧
t ′ setinterleaves3tick-join ((u, v), S)› if ‹A ∩ S = {}›

for t :: ‹( ′a, ′t) traceptick› and u :: ‹( ′a, ′r) traceptick› and v :: ‹( ′a, ′s) traceptick›
proof −

let ?th = trace-hide and ?A = ‹ev ‘ A›
show ‹t setinterleaves3tick-join

((?th u ?A, ?th v ?A), S) =⇒ ∃ t ′. t = ?th t ′ ?A ∧ t ′ setinterleaves3tick-join
((u, v), S)›

proof (induct ‹(tick-join, u, S , v)› arbitrary: t u v)
case Nil-setinterleavingptick-Nil
then show ?case by simp

next
case (ev-setinterleavingptick-Nil a u)
from ev-setinterleavingptick-Nil.prems
consider t ′ where ‹a /∈ S› ‹a /∈ A› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((?th u ?A, ?th [] ?A), S)›
| ‹a ∈ A› ‹t setinterleaves3tick-join ((?th u ?A, ?th [] ?A), S)›

by (auto split: if-split-asm)
thus ?case
proof cases

fix t ′ assume ‹a /∈ S› ‹a /∈ A› ‹t = ev a # t ′›
‹t ′ setinterleaves3tick-join ((?th u ?A, ?th [] ?A), S)›

from ev-setinterleavingptick-Nil.hyps[OF this(1 , 4 )] obtain t ′′

where ‹t ′ = ?th t ′′ ?A ∧ t ′′ setinterleaves3tick-join ((u, []), S)› ..
hence ‹t = ?th (ev a # t ′′) ?A ∧ ev a # t ′′ setinterleaves3tick-join ((ev a #

u, []), S)›
by (simp add: ‹a /∈ A› ‹a /∈ S› ‹t = ev a # t ′› image-iff [of ‹ev -›])

thus ?case ..
next

assume ‹a ∈ A›
with ‹A ∩ S = {}› have ‹a /∈ S› by blast
moreover assume ‹t setinterleaves3tick-join ((?th u ?A, ?th [] ?A), S)›
ultimately obtain t ′ where ‹t = ?th t ′ ?A› ‹t ′ setinterleaves3tick-join ((u,
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[]), S)›
using ev-setinterleavingptick-Nil.hyps by blast

hence ‹t = ?th (ev a # t ′) ?A ∧ ev a # t ′ setinterleaves3tick-join ((ev a #

u, []), S)›
by (simp add: ‹a ∈ A› ‹a /∈ S›)

thus ?case ..
qed

next
case (tick-setinterleavingptick-Nil r u)
from tick-setinterleavingptick-Nil.prems have False by (simp add: image-iff [of

‹3(-)›])
thus ?case ..

next
case (Nil-setinterleavingptick-ev b v)
from Nil-setinterleavingptick-ev.prems
consider t ′ where ‹b /∈ S› ‹b /∈ A› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((?th [] ?A, ?th v ?A), S)›
| ‹b ∈ A› ‹t setinterleaves3tick-join ((?th [] ?A, ?th v ?A), S)›

by (auto split: if-split-asm)
thus ?case
proof cases

fix t ′ assume ‹b /∈ S› ‹b /∈ A› ‹t = ev b # t ′›
‹t ′ setinterleaves3tick-join ((?th [] ?A, ?th v ?A), S)›

from Nil-setinterleavingptick-ev.hyps[OF this(1 , 4 )] obtain t ′′

where ‹t ′ = ?th t ′′ ?A ∧ t ′′ setinterleaves3tick-join (([], v), S)› ..
hence ‹t = ?th (ev b # t ′′) ?A ∧ ev b # t ′′ setinterleaves3tick-join (([], ev b

# v), S)›
by (simp add: ‹b /∈ A› ‹b /∈ S› ‹t = ev b # t ′› image-iff [of ‹ev -›])

thus ?case ..
next

assume ‹b ∈ A›
with ‹A ∩ S = {}› have ‹b /∈ S› by blast
moreover assume ‹t setinterleaves3tick-join ((?th [] ?A, ?th v ?A), S)›
ultimately obtain t ′ where ‹t = ?th t ′ ?A› ‹t ′ setinterleaves3tick-join (([],

v), S)›
using Nil-setinterleavingptick-ev.hyps by blast

hence ‹t = ?th (ev b # t ′) ?A ∧ ev b # t ′ setinterleaves3tick-join (([], ev b
# v), S)›

by (simp add: ‹b ∈ A› ‹b /∈ S›)
thus ?case ..

qed
next

case (Nil-setinterleavingptick-tick s v)
from Nil-setinterleavingptick-tick.prems have False by (simp add: image-iff [of

‹3(-)›])
thus ?case ..

next
case (ev-setinterleavingptick-ev a u b v)
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show ?case
proof (cases ‹a ∈ A›; cases ‹b ∈ A›)

assume ‹a ∈ A› ‹b ∈ A›
with ev-setinterleavingptick-ev.prems
have ∗ : ‹t setinterleaves3tick-join ((?th (ev a # u) ?A, ?th v ?A), S)›

‹t setinterleaves3tick-join ((?th u ?A, ?th (ev b # v) ?A), S)› by simp-all
from ‹A ∩ S = {}› ‹a ∈ A› ‹b ∈ A› have ‹a /∈ S› ‹b /∈ S› by blast+
from ev-setinterleavingptick-ev.hyps(4 )[OF this ∗(2 )]

ev-setinterleavingptick-ev.hyps(5 )[OF this ∗(1 )]
obtain t ′ where ‹t = ?th t ′ ?A›

‹t ′ setinterleaves3tick-join ((ev a # u, v), S) ∨
t ′ setinterleaves3tick-join ((u, ev b # v), S)› by blast

hence ‹t = ?th (ev b # t ′) ?A ∧ ev b # t ′ setinterleaves3tick-join ((ev a #

u, ev b # v), S) ∨
t = ?th (ev a # t ′) ?A ∧ ev a # t ′ setinterleaves3tick-join ((ev a # u,

ev b # v), S)›
by (auto simp add: ‹a ∈ A› ‹b ∈ A› ‹a /∈ S› ‹b /∈ S›)

thus ?case by blast
next

assume ‹a ∈ A› ‹b /∈ A›
with ev-setinterleavingptick-ev.prems
have ∗ : ‹t setinterleaves3tick-join ((?th u ?A, ?th (ev b # v) ?A), S)› by

simp
from ‹A ∩ S = {}› ‹a ∈ A› have ‹a /∈ S› by blast
from ev-setinterleavingptick-ev.hyps(3 )[OF ‹a /∈ S› - ∗(1 )]

ev-setinterleavingptick-ev.hyps(4 )[OF ‹a /∈ S› - ∗] obtain t ′

where ‹t = ?th t ′ ?A› ‹t ′ setinterleaves3tick-join ((u, ev b # v), S)› by
blast

hence ‹t = ?th (ev a # t ′) ?A ∧
ev a # t ′ setinterleaves3tick-join ((ev a # u, ev b # v), S)›

by (simp add: ‹a ∈ A› ‹a /∈ S›)
thus ?case ..

next
assume ‹a /∈ A› ‹b ∈ A›
with ev-setinterleavingptick-ev.prems
have ∗ : ‹t setinterleaves3tick-join ((?th (ev a # u) ?A, ?th v ?A), S)› by

simp
from ‹A ∩ S = {}› ‹b ∈ A› have ‹b /∈ S› by blast
from ev-setinterleavingptick-ev.hyps(2 )[OF - ‹b /∈ S› ∗]

ev-setinterleavingptick-ev.hyps(5 )[OF - ‹b /∈ S› ∗] obtain t ′

where ‹t = ?th t ′ ?A› ‹t ′ setinterleaves3tick-join ((ev a # u, v), S)› by
blast

hence ‹t = ?th (ev b # t ′) ?A ∧
ev b # t ′ setinterleaves3tick-join ((ev a # u, ev b # v), S)›

by (simp add: ‹b ∈ A› ‹b /∈ S›)
thus ?case ..

next
assume ‹a /∈ A› ‹b /∈ A›
hence ‹?th (ev a # u) ?A = ev a # ?th u ?A›
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‹?th (ev b # v) ?A = ev b # ?th v ?A› by auto
from ev-setinterleavingptick-ev.prems[unfolded this]
have ‹t setinterleaves3tick-join ((ev a # ?th u ?A, ev b # ?th v ?A), S)› .
then consider (mv-both) t ′ where ‹a ∈ S› ‹b ∈ S› ‹a = b› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((?th u ?A, ?th v ?A), S)›
| (mvL) t ′ where ‹a /∈ S› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((?th u ?A, ev b # ?th v ?A), S)›
| (mvR) t ′ where ‹b /∈ S› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((ev a # ?th u ?A, ?th v ?A), S)›
by (auto split: if-split-asm)

thus ?case
proof cases

case mv-both
from ev-setinterleavingptick-ev.hyps(1 )[OF mv-both(1−3 , 5 )] obtain t ′′

where ‹t ′ = ?th t ′′ ?A ∧ t ′′ setinterleaves3tick-join ((u, v), S)› ..
hence ‹t = ?th (ev b # t ′′) ?A ∧ ev b # t ′′ setinterleaves3tick-join ((ev a

# u, ev b # v), S)›
by (simp add: mv-both(2−4 ) ‹b /∈ A› image-iff [of ‹ev -›] )

thus ?thesis ..
next

case mvL
from ev-setinterleavingptick-ev.hyps(3 , 4 )
[OF mvL(1 ) - mvL(3 )[folded ‹?th (ev b # v) ?A = ev b # ?th v ?A›]]

obtain t ′′ where ‹t ′ = ?th t ′′ ?A›
‹t ′′ setinterleaves3tick-join ((u, ev b # v), S)› by blast

hence ‹t = ?th (ev a # t ′′) ?A ∧
ev a # t ′′ setinterleaves3tick-join ((ev a # u, ev b # v), S)›

by (simp add: mvL(1 , 2 ) ‹a /∈ A› image-iff [of ‹ev -›])
thus ?thesis ..

next
case mvR
from ev-setinterleavingptick-ev.hyps(2 , 5 )
[OF - mvR(1 ) mvR(3 )[folded ‹?th (ev a # u) ?A = ev a # ?th u ?A›]]

obtain t ′′ where ‹t ′ = ?th t ′′ ?A›
‹t ′′ setinterleaves3tick-join ((ev a # u, v), S)› by blast

hence ‹t = ?th (ev b # t ′′) ?A ∧
ev b # t ′′ setinterleaves3tick-join ((ev a # u, ev b # v), S)›

by (simp add: mvR(1 , 2 ) ‹b /∈ A› image-iff [of ‹ev -›])
thus ?thesis ..

qed
qed

next
case (ev-setinterleavingptick-tick a u s v)
from ev-setinterleavingptick-tick.prems
consider t ′ where ‹a /∈ S› ‹a /∈ A› ‹t = ev a # t ′›

‹t ′ setinterleaves3tick-join ((?th u ?A, ?th (3(s) # v) ?A), S)›
| ‹a ∈ A› ‹t setinterleaves3tick-join ((?th u ?A, ?th (3(s) # v) ?A), S)›

by (auto split: if-split-asm)
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thus ?case
proof cases

fix t ′ assume ‹a /∈ S› ‹a /∈ A› ‹t = ev a # t ′›
‹t ′ setinterleaves3tick-join ((?th u ?A, ?th (3(s) # v) ?A), S)›

from ev-setinterleavingptick-tick.hyps[OF this(1 , 4 )] obtain t ′′

where ‹t ′ = ?th t ′′ ?A› ‹t ′′ setinterleaves3tick-join ((u, 3(s) # v), S)› by
blast

hence ‹t = ?th (ev a # t ′′) ?A ∧
ev a # t ′′ setinterleaves3tick-join ((ev a # u, 3(s) # v), S)›

by (simp add: ‹a /∈ A› ‹a /∈ S› ‹t = ev a # t ′› image-iff [of ‹ev -›])
thus ?case ..

next
assume ‹a ∈ A›
with ‹A ∩ S = {}› have ‹a /∈ S› by blast
moreover assume ‹t setinterleaves3tick-join ((?th u ?A, ?th (3(s) # v) ?A),

S)›
ultimately obtain t ′ where ‹t = ?th t ′ ?A› ‹t ′ setinterleaves3tick-join ((u,

3(s) # v), S)›
using ev-setinterleavingptick-tick.hyps by blast

hence ‹t = ?th (ev a # t ′) ?A ∧ ev a # t ′ setinterleaves3tick-join ((ev a #

u, 3(s) # v), S)›
by (simp add: ‹a ∈ A› ‹a /∈ S›)

thus ?case ..
qed

next
case (tick-setinterleavingptick-ev r u b v)
from tick-setinterleavingptick-ev.prems
consider t ′ where ‹b /∈ S› ‹b /∈ A› ‹t = ev b # t ′›

‹t ′ setinterleaves3tick-join ((?th (3(r) # u) ?A, ?th v ?A), S)›
| ‹b ∈ A› ‹t setinterleaves3tick-join ((?th (3(r) # u) ?A, ?th v ?A), S)›

by (auto split: if-split-asm)
thus ?case
proof cases

fix t ′ assume ‹b /∈ S› ‹b /∈ A› ‹t = ev b # t ′›
‹t ′ setinterleaves3tick-join ((?th (3(r) # u) ?A, ?th v ?A), S)›

from tick-setinterleavingptick-ev.hyps[OF this(1 , 4 )] obtain t ′′

where ‹t ′ = ?th t ′′ ?A› ‹t ′′ setinterleaves3tick-join ((3(r) # u, v), S)› by
blast

hence ‹t = ?th (ev b # t ′′) ?A ∧
ev b # t ′′ setinterleaves3tick-join ((3(r) # u, ev b # v), S)›

by (simp add: ‹b /∈ A› ‹b /∈ S› ‹t = ev b # t ′› image-iff [of ‹ev -›])
thus ?case ..

next
assume ‹b ∈ A›
with ‹A ∩ S = {}› have ‹b /∈ S› by blast
moreover assume ‹t setinterleaves3tick-join ((?th (3(r) # u) ?A, ?th v ?A),

S)›
ultimately obtain t ′ where ‹t = ?th t ′ ?A› ‹t ′ setinterleaves3tick-join ((3(r)
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# u, v), S)›
using tick-setinterleavingptick-ev.hyps by blast

hence ‹t = ?th (ev b # t ′) ?A ∧ ev b # t ′ setinterleaves3tick-join ((3(r) #

u, ev b # v), S)›
by (simp add: ‹b ∈ A› ‹b /∈ S›)

thus ?case ..
qed

next
case (tick-setinterleavingptick-tick r u s v)
from tick-setinterleavingptick-tick.prems obtain r-s t ′

where ‹tick-join r s = br-sc› ‹t = 3(r-s) # t ′›
‹t ′ setinterleaves3tick-join ((?th u ?A, ?th v ?A), S)›

by (auto split: if-split-asm option.split-asm)
from tick-setinterleavingptick-tick.hyps[OF this(1 , 3 )] obtain t ′′

where ‹t ′ = ?th t ′′ ?A› ‹t ′′ setinterleaves3tick-join ((u, v), S)› by blast
hence ‹t = ?th (3(r-s) # t ′′) ?A ∧

3(r-s) # t ′′ setinterleaves3tick-join ((3(r) # u, 3(s) # v), S)›
by (simp add: ‹tick-join r s = br-sc› ‹t = 3(r-s) # t ′› image-iff [of ‹3(-)›])

thus ?case ..
qed

qed

lemma setinterleavesptick-inj-map-map-eventptick-iff-weak :
‹map (map-eventptick f id) t setinterleaves3tick-join
((map (map-eventptick f id) u, map (map-eventptick f id) v), f ‘ A) ←→
t setinterleaves3tick-join ((u, v), A)› if ‹inj f ›

by (induct ‹(tick-join, u, A, v)› arbitrary: t u v)
(auto simp add: image-iff map-eventptick-eq-ev-iff map-eventptick-eq-tick-iff

dest!: injD[OF ‹inj f ›] split: option.split-asm)

lemma setinterleavesptick-inj-map-map-eventptick-iff-strong :
‹t setinterleaves3tick-join
((map (map-eventptick f id) u, map (map-eventptick f id) v), f ‘ A) ←→
(∃ t ′. t = map (map-eventptick f id) t ′ ∧
t ′ setinterleaves3tick-join ((u, v), A))› if ‹inj f ›

— We could probably prove a stronger version with inj-on f (A ∪ {a. ev a ∈ set
u ∨ ev a ∈ set v}) instead of inj f.
proof −

let ?map = ‹map (map-eventptick f id)›
have ‹t setinterleaves3tick-join ((?map u, ?map v), f ‘ A) =⇒ ∃ t ′. t = ?map t ′›
proof (induct ‹(tick-join, u, A, v)› arbitrary: t u v)

case Nil-setinterleavingptick-Nil
thus ?case by simp

next
case (ev-setinterleavingptick-Nil a u)
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from ev-setinterleavingptick-Nil.prems obtain t ′

where ‹a /∈ A› ‹t = ev (f a) # t ′› ‹t ′ setinterleaves3tick-join ((?map u, ?map
[]), f ‘ A)›

by (auto split: if-split-asm)
from ev-setinterleavingptick-Nil.hyps[OF this(1 , 3 )]
obtain t ′′ where ‹t ′ = ?map t ′′› ..
hence ‹t = ?map (ev a # t ′′)› by (simp add: ‹t = ev (f a) # t ′›)
thus ?case ..

next
case (tick-setinterleavingptick-Nil r u)
from tick-setinterleavingptick-Nil.prems have False by simp
thus ?case ..

next
case (Nil-setinterleavingptick-ev b v)
from Nil-setinterleavingptick-ev.prems obtain t ′

where ‹b /∈ A› ‹t = ev (f b) # t ′› ‹t ′ setinterleaves3tick-join ((?map [], ?map
v), f ‘ A)›

by (auto split: if-split-asm)
from Nil-setinterleavingptick-ev.hyps[OF this(1 , 3 )]
obtain t ′′ where ‹t ′ = ?map t ′′› ..
hence ‹t = ?map (ev b # t ′′)› by (simp add: ‹t = ev (f b) # t ′›)
thus ?case ..

next
case (Nil-setinterleavingptick-tick s v)
from Nil-setinterleavingptick-tick.prems have False by simp
thus ?case ..

next
case (ev-setinterleavingptick-ev a u b v)
from ev-setinterleavingptick-ev.prems
consider (mv-left) t ′ where ‹a /∈ A› ‹t = ev (f a) # t ′›

‹t ′ setinterleaves3tick-join ((?map u, ?map (ev b # v)), f ‘ A)›
| (mv-right) t ′ where ‹b /∈ A› ‹t = ev (f b) # t ′›

‹t ′ setinterleaves3tick-join ((?map (ev a # u), ?map v), f ‘ A)›
| (mv-both) t ′ where ‹a ∈ A› ‹b ∈ A› ‹a = b› ‹t = ev (f b) # t ′›

‹t ′ setinterleaves3tick-join ((?map u, ?map v), f ‘ A)›
by (auto simp add: image-iff split: if-split-asm dest!: injD[OF ‹inj f ›])

thus ?case
proof cases

case mv-left
from ev-setinterleavingptick-ev.hyps(3 , 4 )[OF mv-left(1 ) - mv-left(3 )]
obtain t ′′ where ‹t ′ = ?map t ′′› by blast
hence ‹t = ?map (ev a # t ′′)› by (simp add: mv-left(2 ))
thus ?thesis ..

next
case mv-right
from ev-setinterleavingptick-ev.hyps(2 , 5 )[OF - mv-right(1 , 3 )]
obtain t ′′ where ‹t ′ = ?map t ′′› by blast
hence ‹t = ?map (ev b # t ′′)› by (simp add: mv-right(2 ))
thus ?thesis ..
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next
case mv-both
from ev-setinterleavingptick-ev.hyps(1 )[OF mv-both(1−3 , 5 )]
obtain t ′′ where ‹t ′ = ?map t ′′› ..
hence ‹t = ?map (ev b # t ′′)› by (simp add: mv-both(4 ))
thus ?thesis ..

qed
next

case (ev-setinterleavingptick-tick a u s v)
from ev-setinterleavingptick-tick.prems obtain t ′

where ‹a /∈ A› ‹t = ev (f a) # t ′› ‹t ′ setinterleaves3tick-join ((?map u, ?map
(3(s) # v)), f ‘ A)›

by (auto split: if-split-asm)
from ev-setinterleavingptick-tick.hyps[OF this(1 , 3 )]
obtain t ′′ where ‹t ′ = ?map t ′′› ..
hence ‹t = ?map (ev a # t ′′)› by (simp add: ‹t = ev (f a) # t ′›)
thus ?case ..

next
case (tick-setinterleavingptick-ev r u b v)
from tick-setinterleavingptick-ev.prems obtain t ′

where ‹b /∈ A› ‹t = ev (f b) # t ′› ‹t ′ setinterleaves3tick-join ((?map (3(r)
# u), ?map v), f ‘ A)›

by (auto split: if-split-asm)
from tick-setinterleavingptick-ev.hyps[OF this(1 , 3 )]
obtain t ′′ where ‹t ′ = ?map t ′′› ..
hence ‹t = ?map (ev b # t ′′)› by (simp add: ‹t = ev (f b) # t ′›)
thus ?case ..

next
case (tick-setinterleavingptick-tick r u s v)
from tick-setinterleavingptick-tick.prems obtain r-s t ′

where ‹tick-join r s = br-sc› ‹t = 3(r-s) # t ′›
‹t ′ setinterleaves3tick-join ((?map u, ?map v), f ‘ A)›

by (auto split: option.split-asm)
from tick-setinterleavingptick-tick.hyps[OF this(1 , 3 )]
obtain t ′′ where ‹t ′ = ?map t ′′› ..
hence ‹t = ?map (3(r-s) # t ′′)› by (simp add: ‹t = 3(r-s) # t ′›)
thus ?case ..

qed
with setinterleavesptick-inj-map-map-eventptick-iff-weak[OF ‹inj f ›]
show ?thesis by blast

qed

lemma setinterleavesptick-append-setinterleavesptick :
‹t1 @ t2 setinterleaves3tick-join ((u1 @ u2 , v1 @ v2 ), A)›
if ‹t1 setinterleaves3tick-join ((u1 , v1 ), A)›

and ‹t2 setinterleaves3tick-join ((u2 , v2 ), A)›
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using that(1 ) proof (induct ‹(tick-join, u1 , A, v1 )› arbitrary: t1 u1 v1 )
case Nil-setinterleavingptick-Nil
from Nil-setinterleavingptick-Nil.prems(1 ) have ‹t1 = []› by simp
with that(2 ) show ?case by simp

next
case (ev-setinterleavingptick-Nil a u1 )
from ev-setinterleavingptick-Nil.prems(1 ) obtain t1 ′ where ‹a /∈ A› ‹t1 = ev

a # t1 ′›
‹t1 ′ setinterleaves3tick-join ((u1 , []), A)› by (auto split: if-split-asm)

from ev-setinterleavingptick-Nil.hyps[OF this(1 , 3 )]
show ?case

by (cases v2 )
(auto simp add: ‹a /∈ A› ‹t1 = ev a # t1 ′› setinterleavingptick-simps

split: eventptick.split)
next

case (tick-setinterleavingptick-Nil r u1 )
from tick-setinterleavingptick-Nil.prems(1 ) have False by simp
thus ?case ..

next
case (Nil-setinterleavingptick-ev b v1 )
from Nil-setinterleavingptick-ev.prems(1 ) obtain t1 ′ where ‹b /∈ A› ‹t1 = ev b

# t1 ′›
‹t1 ′ setinterleaves3tick-join (([], v1 ), A)› by (auto split: if-split-asm)

from Nil-setinterleavingptick-ev.hyps[OF this(1 , 3 )]
show ?case

by (cases u2 )
(auto simp add: ‹b /∈ A› ‹t1 = ev b # t1 ′› setinterleavingptick-simps

split: eventptick.split)
next

case (Nil-setinterleavingptick-tick s v1 )
from Nil-setinterleavingptick-tick.prems(1 ) have False by simp
thus ?case ..

next
case (ev-setinterleavingptick-ev a u1 b v1 )
from ev-setinterleavingptick-ev.prems
consider (mv-both) t ′ where ‹a ∈ A› ‹b ∈ A› ‹a = b› ‹t1 = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u1 , v1 ), A)›
| (mvL) t ′ where ‹a /∈ A› ‹t1 = ev a # t ′›

‹t ′ setinterleaves3tick-join ((u1 , ev b # v1 ), A)›
| (mvR) t ′ where ‹b /∈ A› ‹t1 = ev b # t ′›

‹t ′ setinterleaves3tick-join ((ev a # u1 , v1 ), A)›
by (auto split: if-split-asm)

thus ?case
proof cases

case mv-both
from ev-setinterleavingptick-ev.hyps(1 )[OF mv-both(1−3 , 5 )]
show ?thesis by (simp add: mv-both(2−4 ))

next
case mvL
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from ev-setinterleavingptick-ev.hyps(3 , 4 )[OF mvL(1 ) - mvL(3 )]
show ?thesis by (simp add: mvL(1 , 2 ))

next
case mvR
from ev-setinterleavingptick-ev.hyps(2 , 5 )[OF - mvR(1 , 3 )]
show ?thesis by (simp add: mvR(1 , 2 ))

qed
next

case (ev-setinterleavingptick-tick a u1 s v1 )
from ev-setinterleavingptick-tick.prems(1 )
obtain t1 ′ where ‹a /∈ A› ‹t1 = ev a # t1 ′›

‹t1 ′ setinterleaves3tick-join ((u1 , 3(s) # v1 ), A)› by (auto split: if-split-asm)

from ev-setinterleavingptick-tick.hyps[OF this(1 , 3 )]
show ?case

by (cases v2 )
(auto simp add: ‹a /∈ A› ‹t1 = ev a # t1 ′› setinterleavingptick-simps

split: eventptick.split)
next

case (tick-setinterleavingptick-ev r u1 b v1 )
from tick-setinterleavingptick-ev.prems(1 ) obtain t1 ′ where ‹b /∈ A› ‹t1 = ev

b # t1 ′›
‹t1 ′ setinterleaves3tick-join ((3(r) # u1 , v1 ), A)› by (auto split: if-split-asm)

from tick-setinterleavingptick-ev.hyps[OF this(1 , 3 )]
show ?case

by (cases u2 )
(auto simp add: ‹b /∈ A› ‹t1 = ev b # t1 ′› setinterleavingptick-simps

split: eventptick.split)
next

case (tick-setinterleavingptick-tick r u1 s v1 )
from tick-setinterleavingptick-tick.prems(1 ) obtain r-s t1 ′

where ‹tick-join r s = br-sc› ‹t1 = 3(r-s) # t1 ′›
‹t1 ′ setinterleaves3tick-join ((u1 , v1 ), A)›

by (auto split: option.split-asm)
from tick-setinterleavingptick-tick.hyps[OF this(1 , 3 )]
show ?case by (simp add: ‹tick-join r s = br-sc› ‹t1 = 3(r-s) # t1 ′›)

qed

lemma setinterleavesptick-set-subsetL :
‹t setinterleaves3tick-join ((u, v), A) =⇒
{a. ev a ∈ set (drop n u)} ⊆ {a. ev a ∈ set (drop n t)}›

proof (induct t arbitrary: n u v)
case Nil
thus ?case by (auto dest: Nil-setinterleavesptick)

next
case (Cons e t)
from Cons.prems consider (mv-left) a u ′ where ‹a /∈ A› ‹e = ev a› ‹u = ev a
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# u ′›
‹t setinterleaves3tick-join ((u ′, v), A)›
| (mv-right) a v ′ where ‹a /∈ A› ‹e = ev a› ‹v = ev a # v ′›

‹t setinterleaves3tick-join ((u, v ′), A)›
| (mv-both-ev) a u ′ v ′ where ‹a ∈ A› ‹e = ev a› ‹u = ev a # u ′› ‹v = ev a #

v ′›
‹t setinterleaves3tick-join ((u ′, v ′), A)›
| (mv-both-tick) r s r-s u ′ v ′ where ‹tick-join r s = br-sc› ‹e = 3(r-s)›

‹u = 3(r) # u ′› ‹v = 3(s) # v ′› ‹t setinterleaves3tick-join ((u ′, v ′), A)›
by (cases e) (auto elim: Cons-ev-setinterleavesptickE Cons-tick-setinterleavesptickE)

thus ?case
proof cases

case mv-left
from Cons.hyps[OF mv-left(4 )] show ?thesis

by (cases n, simp-all add: mv-left(2 , 3 ) subset-iff ) (metis drop0 )
next

case mv-right
from Cons.hyps[OF mv-right(4 )] show ?thesis

by (cases n, simp-all add: subset-iff )
(metis drop0 , meson Suc-n-not-le-n in-mono nle-le set-drop-subset-set-drop)

next
case mv-both-ev
from Cons.hyps[OF mv-both-ev(5 )] show ?thesis

by (cases n, simp-all add: mv-both-ev(2 , 3 ) subset-iff ) (metis drop0 )
next

case mv-both-tick
from Cons.hyps[OF mv-both-tick(5 )] show ?thesis

by (cases n, simp-all add: mv-both-tick(3 ) subset-iff ) (metis drop0 )
qed

qed

lemma setinterleavesptick-set-subsetR :
‹t setinterleaves3tick-join ((u, v), A) =⇒
{a. ev a ∈ set (drop n v)} ⊆ {a. ev a ∈ set (drop n t)}›

by (rule setinterleavesptick-set-subsetL)
(fact setinterleavesptick-sym[THEN iffD2 ])

4.2 Synchronization Product
4.2.1 Definition
definition super-ref-Syncptick ::

‹[ ′r ⇒ ′s ⇒ ′t option, ( ′a, ′r) refusalptick, ′a set, ( ′a, ′s) refusalptick] ⇒ ( ′a, ′t)
refusalptick›

where ‹super-ref-Syncptick tick-join X-P A X-Q ≡
{ev a |a. ev a ∈ X-P ∧ ev a ∈ X-Q ∨ (a ∈ A ∧ (ev a ∈ X-P ∨ ev a ∈

X-Q))} ∪
{3(r-s) |r s r-s. tick-join r s = br-sc ∧ (3(r) ∈ X-P ∨ 3(s) ∈ X-Q)} ∪

— This is the last addition: since we generalize with the parameter tick-join,
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we must add the following term to refuse the unreachable ticks.
{3(r-s) |r-s. @ r s. tick-join r s = br-sc}›

For proving that the invariant is-process is preserved, we will need a kind of
injectivity for the parameter tick-join. We implement this through a locale.

locale Syncptick-locale =
fixes tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option› (infixl ‹⊗3› 100 )
assumes inj-tick-join :

‹r ⊗3 s = br-sc =⇒ r ′ ⊗3 s ′ = br-sc =⇒ r ′ = r ∧ s ′ = s›
begin

sublocale Syncptick-locale-sym : Syncptick-locale ‹λs r . r ⊗3 s›
by unfold-locales (simp add: inj-tick-join)

lift-definition Syncptick ::
‹[( ′a, ′r) processptick, ′a set, ( ′a, ′s) processptick] ⇒ ( ′a, ′t) processptick›
(‹(- [[-]]3 -)› [70 , 0 , 71 ] 70 )
is ‹λP A Q.

({(t, X). ∃ t-P t-Q X-P X-Q.
(t-P, X-P) ∈ F P ∧ (t-Q, X-Q) ∈ F Q ∧
t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q} ∪

{(t @ u, X) |t u t-P t-Q X .
ftF u ∧ (tF t ∨ u = []) ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)},

{t @ u |t u t-P t-Q.
ftF u ∧ (tF t ∨ u = []) ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)})›

proof −
show ‹?thesis P A Q›
(is ‹is-process(?f , ?d)›) for P and Q :: ‹( ′a, ′s) processptick› and A

proof (unfold is-process-def FAILURES-def DIVERGENCES-def fst-conv snd-conv,
intro conjI impI allI )

have ‹([], {}) ∈ F P› and ‹([], {}) ∈ F Q› by (simp-all add: is-processT1 )
with Nil-setinterleavingptick-Nil show ‹([], {}) ∈ ?f › by fast

next
show ‹(t, X) ∈ ?f =⇒ ftF t› for t X
by simp (metis (no-types, opaque-lifting) D-T F-imp-front-tickFree T-imp-front-tickFree

append.right-neutral front-tickFree-append front-tickFree-setinterleavesptick-iff )
next

fix t u assume ‹(t @ u, {}) ∈ ?f ›
then consider (fail) t-P t-Q X-P X-Q where

‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q› ‹t @ u setinterleaves3(⊗3) ((t-P,

t-Q), A)›
| (div) t ′ u ′ t-P t-Q where
‹t @ u = t ′ @ u ′› ‹ftF u ′› ‹tF t ′ ∨ u ′ = []› ‹t ′ setinterleaves3(⊗3) ((t-P, t-Q),
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A)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q› by simp blast

thus ‹(t, {}) ∈ ?f ›
proof cases

case fail
from fail(3 ) obtain t ′ u ′

where ∗ : ‹t ′ ≤ t-P› ‹u ′ ≤ t-Q› ‹t setinterleaves3(⊗3) ((t ′, u ′), A)›
by (auto dest!: append-setinterleavesptick intro: prefixI )

from fail(1 , 2 ) ∗(1 , 2 ) F-T is-processT3-TR have ‹t ′ ∈ T P› ‹u ′ ∈ T Q›
by blast+

thus ‹(t, {}) ∈ ?f › by simp (metis T-F-spec ∗(3 ))
next

case div
show ‹(t, {}) ∈ ?f ›
proof (cases ‹length t ′ ≤ length t›)

assume ‹length t ′ ≤ length t›
with div(1−3 ) have ‹ftF (take (length t − length t ′) u ′) ∧

(tF t ′ ∨ take (length t − length t ′) u ′ = []) ∧
t = t ′ @ take (length t − length t ′) u ′›

by (simp add: append-eq-conv-conj)
(metis append-take-drop-id front-tickFree-dw-closed)

with div(4 , 5 ) show ‹(t, {}) ∈ ?f › by blast
next

assume ‹¬ length t ′ ≤ length t›
with div obtain r ′ where ‹t ′ = t @ r ′›

by (metis append-eq-append-conv-if append-take-drop-id)
with div(4 ) obtain t ′′ u ′′

where ∗ : ‹t ′′ ≤ t-P› ‹u ′′ ≤ t-Q› ‹t setinterleaves3(⊗3) ((t ′′, u ′′), A)›
by (auto dest!: append-setinterleavesptick intro: prefixI )
from ∗(1 , 2 ) have ‹t ′′ ∈ T P ∧ u ′′ ∈ T Q› by (meson D-T div(5 )

is-processT3-TR)
hence $ : ‹(t ′′, {}) ∈ F P› ‹(u ′′, {}) ∈ F Q› by (simp-all add: T-F)
have $$ : ‹{ev a| a. ev a ∈ {} ∧ ev a ∈ {} ∨ (a ∈ A ∧ (ev a ∈ {} ∨ ev a ∈

{}))} ∪
{3(r ⊗3 s)| r s. 3(r) ∈ {} ∨ 3(s) ∈ {}} = {}› by simp

show ‹(t, {}) ∈ ?f › by (auto intro!: $ ∗(3 ))
qed

qed
next

{ fix t X Y
assume ‹(t, Y ) ∈ ?f ∧ X ⊆ Y ›
then consider ‹t ∈ ?d›
| (fail) t-P t-Q X-P X-Q where

‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
‹t setinterleaves3(⊗3) ((t-P, t-Q), A)›
‹Y ⊆ super-ref-Syncptick (⊗3) X-P A X-Q› by blast

thus ‹(t, X) ∈ ?f ›
proof cases

show ‹t ∈ ?d =⇒ (t, X) ∈ ?f › by blast
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next
case fail
define X-P ′ where ‹X-P ′ ≡ X-P ∩ ({ev a| a. ev a ∈ X} ∪

{3(r)| r s r-s. r ⊗3 s = br-sc ∧ 3(r-s) ∈ X})›
define X-Q ′ where ‹X-Q ′ ≡ X-Q ∩ ({ev a| a. ev a ∈ X} ∪

{3(s)| r s r-s. r ⊗3 s = br-sc ∧ 3(r-s) ∈ X})›
have ‹(t-P, X-P ′) ∈ F P› unfolding X-P ′-def by (meson fail(1 ) inf-le1

process-charn)
moreover have ‹(t-Q, X-Q ′) ∈ F Q› unfolding X-Q ′-def by (meson

fail(2 ) inf-le1 process-charn)
moreover have ‹X ⊆ super-ref-Syncptick (⊗3) X-P ′ A X-Q ′›

by (subst ‹(t, Y ) ∈ ?f ∧ X ⊆ Y ›[THEN conjunct2 , THEN Int-absorb1 ,
symmetric])

(use fail(4 ) in ‹fastforce simp add: X-P ′-def X-Q ′-def subset-iff su-
per-ref-Syncptick-def ›)

ultimately show ‹(t, X) ∈ ?f › using fail(3 ) by simp blast
qed } note processT4 = this

fix t X Y
assume ‹(t, X) ∈ ?f ∧ (∀ e. e ∈ Y −→ (t @ [e], {}) /∈ ?f )›
then consider ‹t ∈ ?d› | ‹(t, X) ∈ ?f ∧ t /∈ ?d› by linarith
thus ‹(t, X ∪ Y ) ∈ ?f ›
proof cases

show ‹t ∈ ?d =⇒ (t, X ∪ Y ) ∈ ?f › by blast
next

assume ‹(t, X) ∈ ?f ∧ t /∈ ?d›
then obtain t-P X-P t-Q X-Q

where assms : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
‹t setinterleaves3(⊗3) ((t-P, t-Q), A)›
‹X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q› by blast

have assms5 : ‹e ∈ Y =⇒ t @ [e] setinterleaves3(⊗3) ((t ′, u ′), A) =⇒
((t ′, {}) ∈ F P −→ (u ′, {}) /∈ F Q) ∧
((u ′, {}) ∈ F Q −→ (t ′, {}) /∈ F P)› for e t ′ u ′

using ‹(t, X) ∈ ?f ∧ (∀ e. e ∈ Y −→ (t @ [e], {}) /∈ ?f )› by auto

define Y-ev-inside and Y-ev-notin and Y-tick
where ∗ : ‹Y-ev-inside ≡ {a. ev a ∈ Y ∧ a ∈ A}›

‹Y-ev-notin ≡ {a. ev a ∈ Y ∧ a /∈ A}›
‹Y-tick ≡ {r-s |r s r-s. r ⊗3 s = br-sc ∧ 3(r-s) ∈ Y }›

define Y-ev-inside-P and Y-ev-inside-Q and Y-ev-notin-P
and Y-ev-notin-Q and Y-tick-P and Y-tick-Q
where ∗∗ : ‹Y-ev-inside-P ≡ {a∈Y-ev-inside. (t-P @ [ev a], {}) /∈ F P}›

‹Y-ev-inside-Q ≡ {a∈Y-ev-inside. (t-Q @ [ev a], {}) /∈ F Q}›
‹Y-ev-notin-P ≡ {a∈Y-ev-notin. (t-P @ [ev a], {}) /∈ F P}›
‹Y-ev-notin-Q ≡ {a∈Y-ev-notin. (t-Q @ [ev a], {}) /∈ F Q}›
‹Y-tick-P ≡ {r-s∈Y-tick. ∃ r s. r ⊗3 s = br-sc ∧ (t-P @ [3(r)], {}) /∈

F P}›
‹Y-tick-Q ≡ {r-s∈Y-tick. ∃ r s. r ⊗3 s = br-sc ∧ (t-Q @ [3(s)], {})
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/∈ F Q}›

have e : ‹∀ a∈Y-ev-inside. (t-P @ [ev a], {}) /∈ F P ∨ (t-Q @ [ev a], {}) /∈
F Q›

proof (rule ccontr)
assume ‹¬ (∀ a∈Y-ev-inside. (t-P @ [ev a], {}) /∈ F P ∨ (t-Q @ [ev a], {})

/∈ F Q)›
then obtain a where facts : ‹a ∈ A› ‹ev a ∈ Y › ‹(t-P @ [ev a], {}) ∈ F

P›
‹(t-Q @ [ev a], {}) ∈ F Q›
unfolding ∗ by blast

have ‹t @ [ev a] setinterleaves3(⊗3) ((t-P @ [ev a], t-Q @ [ev a]), A)›
by (simp add: facts(1 ) assms(3 ) setinterleavesptick-snoc-inside)

with facts(2−4 ) assms5 show False by blast
qed
hence ££ : ‹Y-ev-inside-P ∪ Y-ev-inside-Q = Y-ev-inside› by (auto simp

add: ∗∗)

have ee : ‹∀ a∈Y-ev-notin. (t-P @ [ev a], {}) /∈ F P ∨ (t-Q @ [ev a], {}) /∈
F Q›

proof (rule ccontr)
assume ‹¬ (∀ a∈Y-ev-notin. (t-P @ [ev a], {}) /∈ F P ∨ (t-Q @ [ev a], {})

/∈ F Q)›
then obtain a where facts : ‹a /∈ A› ‹ev a ∈ Y › ‹(t-P @ [ev a], {}) ∈ F

P›
‹(t-Q @ [ev a], {}) ∈ F Q› unfolding ∗ by blast

have ‹t @ [ev a] setinterleaves3(⊗3) ((t-P, t-Q @ [ev a]), A) ∨
t @ [ev a] setinterleaves3(⊗3) ((t-P @ [ev a], t-Q), A)›

by (simp add: facts(1 ) assms(3 ) setinterleavesptick-snoc-notinL)
with facts assms(1−3 ) assms5 show False by (metis is-processT4-empty)

qed
hence £££ : ‹Y-ev-notin-P ∪ Y-ev-notin-Q = Y-ev-notin› by (auto simp

add: ∗∗)

have eee : ‹∀ r-s∈Y-tick. ∃ r s. r ⊗3 s = br-sc ∧ ((t-P @ [3(r)], {}) /∈ F
P ∨ (t-Q @ [3(s)], {}) /∈ F Q)›

proof (rule ccontr)
assume ‹¬ (∀ r-s∈Y-tick. ∃ r s. r ⊗3 s = br-sc ∧

((t-P @ [3(r)], {}) /∈ F P ∨ (t-Q @ [3(s)], {}) /∈ F Q))›
then obtain r-s r s where facts : ‹3(r-s) ∈ Y › ‹r ⊗3 s = br-sc›

‹(t-P @ [3(r)], {}) ∈ F P› ‹(t-Q @ [3(s)], {}) ∈ F Q›
unfolding ∗ by blast

have ‹t @ [3(r-s)] setinterleaves3(⊗3) ((t-P @ [3(r)], t-Q @ [3(s)]), A)›
by (simp add: facts(2 ) assms(3 ) setinterleavesptick-snoc-tick)

with facts assms5 show False by blast
qed
hence ££££ : ‹Y-tick-P ∪ Y-tick-Q = Y-tick› unfolding ∗∗ by blast

define X-P ′ and X-Q ′
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where ∗∗∗ : ‹X-P ′ ≡ X-P ∪ ev ‘ Y-ev-inside-P ∪ ev ‘ Y-ev-notin-P ∪
{3(r) |r s r-s. r ⊗3 s = br-sc ∧ r-s ∈ Y-tick-P}›

‹X-Q ′ ≡ X-Q ∪ ev ‘ Y-ev-inside-Q ∪ ev ‘ Y-ev-notin-Q ∪
{3(s) |r s r-s. r ⊗3 s = br-sc ∧ r-s ∈ Y-tick-Q}›

have $ : ‹(t-P, X-P ′) ∈ F P› ‹(t-Q, X-Q ′) ∈ F Q›
by (auto simp add: ∗∗ ∗∗∗ intro!: is-processT5 assms dest: inj-tick-join)

have ‹Y ⊆ super-ref-Syncptick (⊗3) X-P ′ A X-Q ′›
proof (rule subsetI )

show ‹e ∈ super-ref-Syncptick (⊗3) X-P ′ A X-Q ′› if ‹e ∈ Y › for e
proof (cases e)

from ‹e ∈ Y › show ‹e = ev a =⇒ e ∈ super-ref-Syncptick (⊗3) X-P ′ A
X-Q ′› for a

by (cases ‹a ∈ A›, simp-all add: ∗ ∗∗ ∗∗∗ image-iff super-ref-Syncptick-def )
(use ∗(1 ) e in blast,

meson $(2 ) assms(1 , 3 ) assms5 is-processT4-empty
setinterleavesptick-snoc-notinL setinterleavesptick-snoc-notinR)

next
show ‹e ∈ super-ref-Syncptick (⊗3) X-P ′ A X-Q ′› if ‹e = 3(r-s)› for r-s
proof (cases ‹∃ r s. r ⊗3 s = br-sc›)

assume ‹∃ r s. r ⊗3 s = br-sc›
then obtain r s where ‹r ⊗3 s = br-sc› by blast
with ‹e ∈ Y › ‹e = 3(r-s)› have ‹r-s ∈ Y-tick›

by (auto simp add: ∗)
thus ‹e ∈ super-ref-Syncptick (⊗3) X-P ′ A X-Q ′›

by (simp add: ∗ super-ref-Syncptick-def )
(metis (mono-tags, lifting) ∗(3 ) ∗∗∗(1 ,2 ) ££££

Un-iff mem-Collect-eq ‹e = 3(r-s)›)
next

show ‹@ r s. r ⊗3 s = br-sc =⇒
e ∈ super-ref-Syncptick (⊗3) X-P ′ A X-Q ′›

by (simp add: ‹e = 3(r-s)› super-ref-Syncptick-def )
qed

qed
qed

moreover from assms(4 ) have ‹X ⊆ super-ref-Syncptick (⊗3) X-P ′ A X-Q ′›
by (fastforce simp add: ∗∗∗ subset-iff super-ref-Syncptick-def )

ultimately show ‹(t, X ∪ Y ) ∈ ?f › using $ assms(3 ) by auto
qed

next
show processT9 : ‹t ∈ ?d› if ‹t @ [3(r-s)] ∈ ?d› for t r-s
proof −

from ‹t @ [3(r-s)] ∈ ?d› obtain u v t-P t-Q
where assms : ‹ftF v› ‹tF u ∨ v = []›

‹t @ [3(r-s)] = u @ v›
‹u setinterleaves3(⊗3) ((t-P, t-Q), A)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q› by blast

from assms(2 ) show ‹t ∈ ?d›
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proof (elim disjE)
assume ‹tF u›
with assms(3 ) obtain v ′ where ‹v = v ′ @ [3(r-s)]› ‹t = u @ v ′›

by (cases v rule: rev-cases) auto
from ‹v = v ′ @ [3(r-s)]› assms(1 ) front-tickFree-dw-closed
have ‹ftF v ′› by blast
with ‹t = u @ v ′› ‹tF u› assms(1 , 4 , 5 ) show ‹t ∈ ?d› by blast

next
assume ‹v = []›
with assms(3 ) obtain u ′ where ‹u = u ′ @ [3(r-s)]› ‹t = u ′› by auto
from snoc-tick-setinterleavesptickE [OF assms(4 )[unfolded this(1 )]]
obtain r s t-P ′ t-Q ′ where ‹r ⊗3 s = br-sc›

‹u ′ setinterleaves3(⊗3) ((t-P ′, t-Q ′), A)›
‹t-P = t-P ′ @ [3(r)]› ‹t-Q = t-Q ′ @ [3(s)]› by metis

with assms(5 ) ‹t = u ′› show ‹t ∈ ?d›
by simp (metis append.right-neutral front-tickFree-Nil

is-processT3-TR-append is-processT9 )
qed

qed

fix t X r-s
assume ‹(t @ [3(r-s)], {}) ∈ ?f ›
then consider (div) ‹t @ [3(r-s)] ∈ ?d›
| (fail) t-P t-Q X-P X-Q
where ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›

‹(t @ [3(r-s)]) setinterleaves3(⊗3) ((t-P, t-Q), A)› by auto
thus ‹(t, X − {3(r-s)}) ∈ ?f ›
proof cases

show ‹t @ [3(r-s)] ∈ ?d =⇒ (t, X − {3(r-s)}) ∈ ?f › by (drule processT9 )
simp

next
case fail
from fail(3 )[THEN snoc-tick-setinterleavesptickE ]
obtain r s t-P ′ t-Q ′ where ∗ : ‹r ⊗3 s = br-sc›

‹t setinterleaves3(⊗3) ((t-P ′, t-Q ′), A)›
‹t-P = t-P ′ @ [3(r)]› ‹t-Q = t-Q ′ @ [3(s)]› by metis

from fail(1 , 2 ) have ‹t-P ′ @ [3(r)] ∈ T P› ‹t-Q ′ @ [3(s)] ∈ T Q›
by (simp-all add: ∗(3 , 4 ) F-T )

hence ‹(t-P ′, UNIV − {3(r)}) ∈ F P›
‹(t-Q ′, UNIV − {3(s)}) ∈ F Q› by (meson is-processT6-TR)+

moreover have ‹X − {3(r-s)} ⊆ super-ref-Syncptick (⊗3) (UNIV − {3(r)})
A (UNIV − {3(s)})›

by (simp add: subset-iff super-ref-Syncptick-def )
(metis ∗(1 ) eventptick.exhaust option.inject)

ultimately show ‹(t, X − {3(r-s)}) ∈ ?f › using ∗(2 ) by fast
qed

next
show ‹s ∈ ?d ∧ tF s ∧ ftF t =⇒ s @ t ∈ ?d› for s t

using front-tickFree-append by fastforce
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next
show ‹s ∈ ?d =⇒ (s, X) ∈ ?f › for s X by blast

qed
qed

Here X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q may seem surprising (in-
stead of for example X = super-ref-Syncptick (⊗3) X-P A X-Q, closer to the
specification of Sync). Actually, edge cases in the behaviour of tick ensure
that a definition with the latter would violate the invariant.
end

abbreviation (in Syncptick-locale) Interptick ::
‹[( ′a, ′r) processptick, ( ′a, ′s) processptick] ⇒
( ′a, ′t) processptick› (‹(- |||3 -)› [72 , 73 ] 72 )

where ‹P |||3 Q ≡ P [[ {} ]]3 Q›

abbreviation (in Syncptick-locale) Parptick ::
‹[( ′a, ′r) processptick, ( ′a, ′s) processptick] ⇒
( ′a, ′t) processptick› (‹(- ||3 -)› [74 , 75 ] 74 )

where ‹P ||3 Q ≡ P [[ UNIV ]]3 Q›

notation (in Syncptick-locale) Syncptick-locale-sym.Syncptick
(‹(- [[-]]3sym -)› [70 , 0 , 71 ] 70 )

notation (in Syncptick-locale) Syncptick-locale-sym.Interptick

(‹(- |||3sym -)› [72 , 73 ] 72 )

notation (in Syncptick-locale) Syncptick-locale-sym.Parptick

(‹(- ||3sym -)› [74 , 75 ] 74 )

4.2.2 Projections
context Syncptick-locale begin

lemma D-Syncptick ′ :
‹D (P [[A]]3 Q) =
{t @ u |t u t-P t-Q.

ftF u ∧ (tF t ∨ u = []) ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

by (simp add: Divergences.rep-eq Syncptick.rep-eq DIVERGENCES-def )

corollary D-Syncptick :
— This version is easier to use.
‹D (P [[A]]3 Q) =
{t @ u |t u t-P t-Q.

tF t ∧ ftF u ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

(is ‹- = ?rhs›)
proof (intro subset-antisym subsetI )
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show ‹d ∈ ?rhs =⇒ d ∈ D (P [[A]]3 Q)› for d
by (auto simp add: D-Syncptick ′)

next
fix d assume ‹d ∈ D (P [[A]]3 Q)›
then obtain t u t-P t-Q

where ∗ : ‹d = t @ u› ‹ftF u› ‹tF t ∨ u = []›
‹t setinterleaves3(⊗3) ((t-P, t-Q), A)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›

unfolding D-Syncptick ′ by blast
show ‹d ∈ ?rhs›
proof (cases ‹tF t›)

from ∗ show ‹tF t =⇒ d ∈ ?rhs› by blast
next

assume ‹¬ tF t›
with ∗(1 , 3 ) have ‹u = []› ‹d = t› by simp-all
from D-imp-front-tickFree ‹d = t› ‹d ∈ D (P [[A]]3 Q)›
have ‹ftF t› by blast
with ‹¬ tF t› obtain r-s t ′ where ‹t = t ′ @ [3(r-s)]›

by (meson nonTickFree-n-frontTickFree)
with ∗(4 ) obtain r t-P ′ s t-Q ′

where ∗∗ : ‹r ⊗3 s = br-sc›
‹t-P = t-P ′ @ [3(r)]› ‹t-Q = t-Q ′ @ [3(s)]›
‹t ′ setinterleaves3(⊗3) ((t-P ′, t-Q ′), A)›

by (auto simp add: ‹t = t ′ @ [3(r-s)]›
elim: snoc-tick-setinterleavesptickE)

have ‹t-P ′ ∈ D P ∧ t-Q ′ ∈ T Q ∨ t-P ′ ∈ T P ∧ t-Q ′ ∈ D Q›
by (metis ∗(5 ) ∗∗(2 , 3 ) is-processT3-TR-append is-processT9 )

with ∗∗(4 ) ‹d = t› ‹ftF t› ‹t = t ′ @ [3(r-s)]›
front-tickFree-nonempty-append-imp show ‹d ∈ ?rhs› by blast

qed
qed

lemma F-Syncptick ′ :
‹F (P [[A]]3 Q) =
{(t, X). ∃ t-P t-Q X-P X-Q.

(t-P, X-P) ∈ F P ∧ (t-Q, X-Q) ∈ F Q ∧
t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q} ∪

{(t @ u, X) |t u t-P t-Q X .
ftF u ∧ (tF t ∨ u = []) ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

by (simp add: Failures.rep-eq Syncptick.rep-eq FAILURES-def )

lemma F-Syncptick :
‹F (P [[A]]3 Q) =
{(t, X). ∃ t-P t-Q X-P X-Q.

(t-P, X-P) ∈ F P ∧ (t-Q, X-Q) ∈ F Q ∧
t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
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X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q} ∪
{(t @ u, X) |t u t-P t-Q X .

tF t ∧ ftF u ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

unfolding F-Syncptick ′ using D-Syncptick[of P A Q, unfolded D-Syncptick ′]
by (intro arg-cong2 [where f = ‹(∪)›], simp)
(simp add: set-eq-iff , blast)

lemma T-Syncptick ′ :
‹T (P [[A]]3 Q) =
{t. ∃ t-P t-Q. t-P ∈ T P ∧ t-Q ∈ T Q ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A)}

∪
{t @ u |t u t-P t-Q.

ftF u ∧ (tF t ∨ u = []) ∧
t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

by (simp add: Traces.rep-eq TRACES-def Failures.rep-eq[symmetric] F-Syncptick ′)
blast

lemma T-Syncptick :
‹T (P [[A]]3 Q) =
{t. ∃ t-P t-Q. t-P ∈ T P ∧ t-Q ∈ T Q ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A)}

∪
{t @ u |t u t-P t-Q.

tF t ∧ ftF u ∧ t setinterleaves3(⊗3) ((t-P, t-Q), A) ∧
(t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q)}›

unfolding T-Syncptick ′ using D-Syncptick[of P A Q, unfolded D-Syncptick ′]
by (intro arg-cong2 [where f = ‹(∪)›]) (simp-all add: set-eq-iff )

lemmas Syncptick-projs ′ = F-Syncptick ′ D-Syncptick ′ T-Syncptick ′

— Classical versions, but the ones below are often more convenient to use.

lemmas Syncptick-projs = F-Syncptick D-Syncptick T-Syncptick

lemma (in Syncptick-locale) Syncptick-same-tick-join-on-strict-ticks-of :
‹Syncptick-locale.Syncptick tick-join ′ P S Q = P [[S ]]3 Q›
if ‹Syncptick-locale tick-join ′› and ‹

∧
r s. r ∈ 3s(P) =⇒ s ∈ 3s(Q) =⇒ tick-join ′

r s = r ⊗3 s›
proof −

interpret tjoin-interpreted : Syncptick-locale tick-join ′

by (fact ‹Syncptick-locale tick-join ′›)
show ‹Syncptick-locale.Syncptick tick-join ′ P S Q = P [[S ]]3 Q›
proof (rule Process-eq-optimizedI )

show ‹t ∈ D (tjoin-interpreted.Syncptick P S Q) =⇒ t ∈ D (P [[S ]]3 Q)› for t
by (simp add: D-Syncptick tjoin-interpreted.D-Syncptick)
(metis tickFree-setinterleavesptick-any-tick-join)
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next
show ‹t ∈ D (P [[S ]]3 Q) =⇒ t ∈ D (tjoin-interpreted.Syncptick P S Q)› for t

by (simp add: D-Syncptick tjoin-interpreted.D-Syncptick)
(metis tickFree-setinterleavesptick-any-tick-join)

next
fix t X assume ‹(t, X) ∈ F (tjoin-interpreted.Syncptick P S Q)›

‹t /∈ D (tjoin-interpreted.Syncptick P S Q)›
then obtain t-P X-P t-Q X-Q where ∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈

F Q›
‹t setinterleaves3tick-join ′ ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join ′ X-P S X-Q›
unfolding tjoin-interpreted.Syncptick-projs by blast

define X-P-plus where ‹X-P-plus ≡ X-P ∪ {3(r) |r . t-P @ [3(r)] /∈ T P −
D P}›

define X-Q-plus where ‹X-Q-plus ≡ X-Q ∪ {3(s) |s. t-Q @ [3(s)] /∈ T Q −
D Q}›

have ‹t setinterleaves3(⊗3) ((t-P, t-Q), S)›
proof (cases ‹tF t›)

show ‹tF t =⇒ t setinterleaves3(⊗3) ((t-P, t-Q), S)›
using ∗(3 ) tickFree-setinterleavesptick-any-tick-join by blast

next
assume ‹¬ tF t›
then obtain t ′ r-s where ‹tF t ′› ‹t = t ′ @ [3(r-s)]›

by (metis F-imp-front-tickFree ‹(t, X) ∈ F (tjoin-interpreted.Syncptick P S
Q)›

front-tickFree-append-iff nonTickFree-n-frontTickFree not-Cons-self2 )
with ∗(3 ) obtain t-P ′ r t-Q ′ s where ∗∗ : ‹tick-join ′ r s = br-sc›

‹t ′ setinterleaves3tick-join ′ ((t-P ′, t-Q ′), S)›
‹t-P = t-P ′ @ [3(r)]› ‹t-Q = t-Q ′ @ [3(s)]›
by (auto elim: snoc-tick-setinterleavesptickE)

have ‹r ∈ 3s(P) ∧ s ∈ 3s(Q)›
proof (rule ccontr)

assume ‹¬ (r ∈ 3s(P) ∧ s ∈ 3s(Q))›
hence ‹t-P ′ @ [3(r)] ∈ D P ∨ t-Q ′ @ [3(s)] ∈ D Q›

by (metis ∗(1 , 2 ) ∗∗(3 , 4 ) F-T strict-ticks-of-memI )
with ‹t /∈ D (tjoin-interpreted.Syncptick P S Q)› show False

by (simp add: tjoin-interpreted.D-Syncptick ′)
(metis ∗(1−3 ) ∗∗(3 , 4 ) F-T append.right-neutral front-tickFree-Nil)

qed
moreover from ∗∗(2 ) have ‹t ′ setinterleaves3(⊗3) ((t-P ′, t-Q ′), S)›

using ‹tF t ′› tickFree-setinterleavesptick-any-tick-join by blast
ultimately show ‹t setinterleaves3(⊗3) ((t-P, t-Q), S)›

by (subst rev-setinterleavesptick-rev-rev-iff [symmetric],
subst (asm) rev-setinterleavesptick-rev-rev-iff [symmetric])

(use ∗∗(1 ) that(2 ) in ‹auto simp add: ‹t = t ′ @ [3(r-s)]› ∗∗(3 , 4 )›)
qed
moreover from ∗(1 ) is-processT5-S7 ′ is-processT8 is-processT9
have ‹(t-P, X-P-plus) ∈ F P› by (fastforce simp add: X-P-plus-def )
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moreover from ∗(2 ) is-processT5-S7 ′ is-processT8 is-processT9
have ‹(t-Q, X-Q-plus) ∈ F Q› by (fastforce simp add: X-Q-plus-def )

moreover have ‹e ∈ X =⇒ e ∈ super-ref-Syncptick (⊗3) X-P-plus S X-Q-plus›
for e

using ∗(4 )[THEN set-mp, of e]
by (cases e, simp-all add: X-P-plus-def X-Q-plus-def super-ref-Syncptick-def

subset-iff )
(metis strict-ticks-of-memI that(2 ) tjoin-interpreted.inj-tick-join)

ultimately show ‹(t, X) ∈ F (P [[S ]]3 Q)› by (simp add: F-Syncptick) blast
next

fix t X assume ‹(t, X) ∈ F (P [[S ]]3 Q)› ‹t /∈ D (P [[S ]]3 Q)›
then obtain t-P X-P t-Q X-Q where ∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈

F Q›
‹t setinterleaves3(⊗3) ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick (⊗3) X-P S X-Q›
unfolding Syncptick-projs by blast

define X-P-plus where ‹X-P-plus ≡ X-P ∪ {3(r) |r . t-P @ [3(r)] /∈ T P −
D P}›

define X-Q-plus where ‹X-Q-plus ≡ X-Q ∪ {3(s) |s. t-Q @ [3(s)] /∈ T Q −
D Q}›

have ‹t setinterleaves3tick-join ′ ((t-P, t-Q), S)›
proof (cases ‹tF t›)

show ‹tF t =⇒ t setinterleaves3tick-join ′ ((t-P, t-Q), S)›
using ∗(3 ) tickFree-setinterleavesptick-any-tick-join by blast

next
assume ‹¬ tF t›
then obtain t ′ r-s where ‹tF t ′› ‹t = t ′ @ [3(r-s)]›

by (metis F-imp-front-tickFree ‹(t, X) ∈ F (P [[S ]]3 Q)›
front-tickFree-append-iff nonTickFree-n-frontTickFree not-Cons-self2 )

with ∗(3 ) obtain t-P ′ r t-Q ′ s where ∗∗ : ‹r ⊗3 s = br-sc›
‹t ′ setinterleaves3(⊗3) ((t-P ′, t-Q ′), S)›
‹t-P = t-P ′ @ [3(r)]› ‹t-Q = t-Q ′ @ [3(s)]›
by (auto elim: snoc-tick-setinterleavesptickE)

have ‹r ∈ 3s(P) ∧ s ∈ 3s(Q)›
proof (rule ccontr)

assume ‹¬ (r ∈ 3s(P) ∧ s ∈ 3s(Q))›
hence ‹t-P ′ @ [3(r)] ∈ D P ∨ t-Q ′ @ [3(s)] ∈ D Q›

by (metis ∗(1 , 2 ) ∗∗(3 , 4 ) F-T strict-ticks-of-memI )
with ‹t /∈ D (P [[S ]]3 Q)› show False

by (simp add: D-Syncptick ′)
(metis ∗(1−3 ) ∗∗(3 , 4 ) F-T append.right-neutral front-tickFree-Nil)

qed
moreover from ∗∗(2 ) have ‹t ′ setinterleaves3tick-join ′ ((t-P ′, t-Q ′), S)›

using ‹tF t ′› tickFree-setinterleavesptick-any-tick-join by blast
ultimately show ‹t setinterleaves3tick-join ′ ((t-P, t-Q), S)›

by (subst rev-setinterleavesptick-rev-rev-iff [symmetric],
subst (asm) rev-setinterleavesptick-rev-rev-iff [symmetric])

(use ∗∗(1 ) that(2 ) in ‹auto simp add: ‹t = t ′ @ [3(r-s)]› ∗∗(3 , 4 )›)
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qed
moreover from ∗(1 ) is-processT5-S7 ′ is-processT8 is-processT9
have ‹(t-P, X-P-plus) ∈ F P› by (fastforce simp add: X-P-plus-def )
moreover from ∗(2 ) is-processT5-S7 ′ is-processT8 is-processT9
have ‹(t-Q, X-Q-plus) ∈ F Q› by (fastforce simp add: X-Q-plus-def )
moreover have ‹e ∈ X =⇒ e ∈ super-ref-Syncptick tick-join ′ X-P-plus S

X-Q-plus› for e
using ∗(4 )[THEN set-mp, of e]
by (cases e, simp-all add: X-P-plus-def X-Q-plus-def super-ref-Syncptick-def

subset-iff )
(metis strict-ticks-of-memI that(2 ) inj-tick-join)

ultimately show ‹(t, X) ∈ F (tjoin-interpreted.Syncptick P S Q)›
by (simp add: tjoin-interpreted.F-Syncptick) blast

qed
qed

4.2.3 First Properties
abbreviation range-tick-join :: ‹ ′t set›

where ‹range-tick-join ≡ {r-s |r-s r s. r ⊗3 s = br-sc}›

lemma setinterleavesptick-imp-set-range-tick-join :
‹t setinterleaves3(⊗3) ((u, v), A) =⇒
{r-s. 3(r-s) ∈ set t} ⊆ range-tick-join›

by (induct ‹((⊗3), u, A, v)› arbitrary: t u v)
(auto simp add: subset-iff split: if-split-asm option.split-asm)+

end

lemma
— Of course not suitable for simplifier.
‹t setinterleaves3λs r . tick-join r s ((v, u), A) ←→
t setinterleaves3λr s. tick-join r s ((u, v), A)›

by (fact setinterleavesptick-sym)

lemma super-ref-Syncptick-sym :
— Of course not suitable for simplifier.
‹super-ref-Syncptick (λs r . tick-join r s) X-Q S X-P =
super-ref-Syncptick (λr s. tick-join r s) X-P S X-Q›

by (auto simp add: super-ref-Syncptick-def )

lemma super-ref-Syncptick-mono :
‹A ⊆ A ′ =⇒ X-P ⊆ X-P ′ =⇒ X-Q ⊆ X-Q ′ =⇒
super-ref-Syncptick tick-join X-P A X-Q ⊆
super-ref-Syncptick tick-join X-P ′ A ′ X-Q ′›

by (auto simp add: super-ref-Syncptick-def )
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context Syncptick-locale begin

lemma Syncptick-sym : ‹Q [[A]]3sym P = P [[A]]3 Q›
proof (rule Process-eq-optimizedI )

show ‹t ∈ D (Q [[A]]3sym P) =⇒ t ∈ D (P [[A]]3 Q)› for t
by (simp add: Syncptick-locale-sym.D-Syncptick D-Syncptick)
(subst setinterleavesptick-sym, blast)

next
show ‹t ∈ D (P [[A]]3 Q) =⇒ t ∈ D (Q [[A]]3sym P)› for t

by (simp add: Syncptick-locale-sym.D-Syncptick D-Syncptick)
(subst setinterleavesptick-sym, blast)

next
show ‹(t, X) ∈ F (Q [[A]]3sym P) =⇒ (t, X) ∈ F (P [[A]]3 Q)› for t X

by (simp add: Syncptick-locale-sym.F-Syncptick F-Syncptick)
(subst (1 2 ) setinterleavesptick-sym,

subst super-ref-Syncptick-sym, blast)
next

show ‹(t, X) ∈ F (P [[A]]3 Q) =⇒ (t, X) ∈ F (Q [[A]]3sym P)› for t X
by (simp add: Syncptick-locale-sym.F-Syncptick F-Syncptick)
(subst (1 2 ) setinterleavesptick-sym,

subst super-ref-Syncptick-sym, blast)
qed

lemma interpretable-inj-on-range-tick-join :
‹inj-on g range-tick-join =⇒
Syncptick-locale (λr s. case r ⊗3 s of br-sc ⇒ bg r-sc | ♦ ⇒ ♦)›

by (unfold-locales, simp split: option.split-asm)
(metis (mono-tags, lifting) inj-onD inj-tick-join mem-Collect-eq)

lemma inj-on-map-map-eventptick-setinterleavesptick :
‹t setinterleaves3(⊗3) ((u, v), A) =⇒
map (map-eventptick id g) t
setinterleaves3λr s. case r ⊗3 s of br-sc ⇒ bg r-sc | ♦ ⇒ ♦ ((u, v), A)›
(is ‹- =⇒ - setinterleaves3?tick-join ′ ((u, v), A)›)
if inj-on-g : ‹inj-on g range-tick-join›

proof (induct ‹((⊗3), u, A, v)› arbitrary: t u v)
case (tick-setinterleavingptick-tick r u s v)
from tick-setinterleavingptick-tick.prems [simplified]
obtain r-s t ′ where ∗ : ‹r ⊗3 s = br-sc› ‹t = 3(r-s) # t ′›

‹t ′ setinterleaves3(⊗3) ((u, v), A)›
by (auto split: option.split-asm)

from tick-setinterleavingptick-tick.hyps[OF ∗(1 , 3 )]
have ‹map (map-eventptick id g) t ′

setinterleaves3?tick-join ′ ((u, v), A)› .
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thus ?case by (simp add: ∗(1 , 2 ))
qed auto

lemma vimage-inj-on-subset-super-ref-Syncptick-iff :
‹map-eventptick id g −‘ X ⊆
super-ref-Syncptick (⊗3) X-P A X-Q ←→
X ⊆ super-ref-Syncptick (λr s. case r ⊗3 s of br-sc ⇒ bg r-sc | ♦ ⇒ ♦) X-P A

X-Q›
(is ‹?lhs1 ⊆ ?lhs2 ←→ X ⊆ ?rhs›)
if inj-on-g : ‹inj-on g range-tick-join›

proof −
let ?tick-join ′ = ‹λr s. case r ⊗3 s of br-sc ⇒ bg r-sc | ♦ ⇒ ♦›
interpret Syncptick ′ : Syncptick-locale ?tick-join ′

by (intro interpretable-inj-on-range-tick-join inj-on-g)
from inv-into-f-f inj-on-g have expanded-tick-join :

‹tick-join =
(λr s. case ?tick-join ′ r s of ♦ ⇒ ♦ | br-sc ⇒ binv-into range-tick-join g r-sc)›
by (fastforce split: split: option.split)

let ?f1 = ‹map-eventptick id g›
let ?f2 = ‹map-eventptick id (inv-into range-tick-join g)›
show ‹?lhs1 ⊆ ?lhs2 ←→ X ⊆ ?rhs›
proof (intro iffI subsetI )

show ‹e ∈ ?rhs› if ‹?lhs1 ⊆ ?lhs2 › ‹e ∈ X› for e
proof (cases e)

fix a assume ‹e = ev a›
with ‹e ∈ X› have ‹?f2 e ∈ ?f1 −‘ X› by simp
with ‹?lhs1 ⊆ ?lhs2 › have ‹?f2 e ∈ ?lhs2 › by blast
with ‹e = ev a› show ‹e ∈ ?rhs›

by (auto simp add: super-ref-Syncptick-def )
next

show ‹e ∈ ?rhs› if ‹e = 3(r-s)› for r-s
proof (cases ‹∃ r s. ?tick-join ′ r s = br-sc›)

from ‹e = 3(r-s)› show ‹@ r s. ?tick-join ′ r s = br-sc =⇒ e ∈ ?rhs›
by (simp add: super-ref-Syncptick-def )

next
assume ‹∃ r s. ?tick-join ′ r s = br-sc›
with ‹e = 3(r-s)› ‹e ∈ X›
have ‹?f2 e ∈ ?f1 −‘ X›

by (auto split: option.split-asm)
(metis (no-types, lifting) expanded-tick-join option.simps(5 ))

with ‹?lhs1 ⊆ ?lhs2 › have ‹?f2 e ∈ ?lhs2 › by blast
with ‹e = 3(r-s)› show ‹e ∈ ?rhs›

by (simp add: super-ref-Syncptick-def )
(metis (no-types, lifting) expanded-tick-join option.simps(5 ))

qed
qed

next
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show ‹e ∈ ?lhs2 › if ‹X ⊆ ?rhs› and ‹e ∈ ?lhs1 › for e
proof (cases e)

fix a assume ‹e = ev a›
with ‹e ∈ ?lhs1 › have ‹ev a ∈ X› by simp
with ‹X ⊆ ?rhs› have ‹ev a ∈ ?rhs› by blast
thus ‹e ∈ ?lhs2 › by (auto simp add: ‹e = ev a› super-ref-Syncptick-def )

next
show ‹e ∈ ?lhs2 › if ‹e = 3(s-r)› for s-r
proof (cases ‹∃ s r . tick-join s r = bs-rc›)

from ‹e = 3(s-r)› show ‹@ s r . tick-join s r = bs-rc =⇒ e ∈ ?lhs2 ›
by (simp add: super-ref-Syncptick-def )

next
assume ‹∃ s r . tick-join s r = bs-rc›
with ‹e = 3(s-r)› ‹e ∈ ?lhs1 ›
have ‹3(g s-r) ∈ X› by simp
with ‹X ⊆ ?rhs› have ‹3(g s-r) ∈ ?rhs› by blast
with ‹e = 3(s-r)› show ‹e ∈ ?lhs2 ›

by (simp add: super-ref-Syncptick-def )
(metis Syncptick ′.inj-tick-join option.simps(5 ))

qed
qed

qed
qed

The two following lemmas are necessary for the proof of continuity.

lemma finite-setinterleavesptick-tick-join :
‹finite {(u, v). t setinterleaves3(⊗3) ((u, v), A)}›
(is ‹finite {(u, v). ?f t u v}›)

proof (induct t)
have ‹{(u, v). ?f [] u v} = {([], [])}› by (auto simp add: Nil-setinterleavesptick)
thus ‹finite {(u, v). ?f [] u v}› by simp

next
fix e t assume ‹finite {(u, v). ?f t u v}›
have ∗ : ‹{(x # u, v) | u v. ?f t u v} = (λ(u, v). (x # u, v)) ‘ {(u, v). ?f t u v}›

‹{(u, y # v) | u v. ?f t u v} = (λ(u, v). (u, y # v)) ‘ {(u, v). ?f t u v}›
‹{(x # u, y # v) | u v. ?f t u v} = (λ(u, v). (x # u, y # v)) ‘ {(u, v). ?f t u

v}›
for x y by auto

show ‹finite {(u, v). ?f (e # t) u v}›
proof (cases e)

fix a assume ‹e = ev a›
hence ‹?f (e # t) u v =⇒

u 6= [] ∧ hd u = ev a ∧ ?f t (tl u) v ∨
v 6= [] ∧ hd v = ev a ∧ ?f t u (tl v) ∨
u 6= [] ∧ hd u = ev a ∧ v 6= [] ∧ hd v = ev a ∧ ?f t (tl u) (tl v)› for u v

by (cases e) (auto elim: Cons-ev-setinterleavesptickE Cons-tick-setinterleavesptickE)
hence ‹{(u, v). ?f (e # t) u v} ⊆

{(ev a # u, v) | u v. ?f t u v} ∪
{(u, ev a # v) | u v. ?f t u v} ∪
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{(ev a # u, ev a # v) | u v. ?f t u v}›
by (simp add: subset-iff ) (metis list.collapse)

moreover have ‹finite {(ev a # u, v) | u v. ?f t u v}›
by (simp add: ∗(1 ) ‹finite {(u, v). ?f t u v}›)

moreover have ‹finite {(u, ev a # v) | u v. ?f t u v}›
by (simp add: ∗(2 ) ‹finite {(u, v). ?f t u v}›)

moreover have ‹finite {(ev a # u, ev a # v) | u v. ?f t u v}›
by (simp add: ∗(3 ) ‹finite {(u, v). ?f t u v}›)

ultimately show ‹finite {(u, v). ?f (e # t) u v}›
by (simp add: finite-subset)

next
show ‹finite {(u, v). ?f (e # t) u v}› if ‹e = 3(r-s)› for r-s
proof (cases ‹r-s ∈ range-tick-join›)

assume ‹r-s ∈ range-tick-join›
then obtain r s where ‹r ⊗3 s = br-sc› by blast
hence ‹?f (e # t) u v =⇒

u 6= [] ∧ hd u = 3(r) ∧ v 6= [] ∧ hd v = 3(s) ∧ ?f t (tl u) (tl v)› for u v
by (cases u; cases v)
(auto simp add: ‹e = 3(r-s)› setinterleavingptick-simps inj-tick-join

split: eventptick.splits option.split-asm if-split-asm)
hence ‹{(u, v). ?f (e # t) u v} ⊆ {(3(r) # u, 3(s) # v) |u v. ?f t u v}›

by (simp add: subset-iff ) (metis list.collapse)
moreover have ‹finite {(3(r) # u, 3(s) # v) |u v. ?f t u v}›

by (simp add: ∗(3 ) ‹finite {(u, v). ?f t u v}›)
ultimately show ‹finite {(u, v). ?f (e # t) u v}›

by (simp add: finite-subset)
next

assume ‹r-s /∈ range-tick-join›
hence ‹¬ ?f (e # t) u v› for u v

by (cases u; cases v)
(auto simp add: ‹e = 3(r-s)› setinterleavingptick-simps

split: eventptick.splits option.split-asm)
thus ‹finite {(u, v). ?f (e # t) u v}› by simp

qed
qed

qed

lemma finite-setinterleavesptick-tick-join-Syncptick:
‹finite {(t-P, t-Q, u). u setinterleaves3(⊗3) ((t-P, t-Q), A) ∧

(∃ v. t = u @ v ∧ ftF v ∧ (tF u ∨ v = []))}›
(is ‹finite {(t-P, t-Q, u). ?f u t-P t-Q ∧ ?g t u}›)

proof −
have ‹{(t-P, t-Q, u) |t-P t-Q. ?f u t-P t-Q} ⊆

(λ(t-P, t-Q). (t-P, t-Q, u)) ‘ {(t-P, t-Q). ?f u t-P t-Q}› for u by auto
hence ‹finite {(t-P, t-Q, u) |t-P t-Q. ?f u t-P t-Q}› for u

by (rule finite-subset) (simp add: finite-setinterleavesptick-tick-join)
moreover have ‹{(t-P, t-Q, u). ?f u t-P t-Q ∧ ?g t u} ⊆

(
⋃

u ∈ {u. u ≤ t}. {(t-P, t-Q, u) |t-P t-Q. ?f u t-P t-Q})›
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unfolding less-eq-list-def prefix-def by blast
moreover have ‹finite {u. u ≤ t}› by (prove-finite-subset-of-prefixes t)
ultimately show ?thesis by (simp add: finite-subset)

qed

end
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Chapter 5

Some Work on Renaming

unbundle option-type-syntax

This chapter contains several developments related to the Renaming oper-
ator. Some are not directly related to this session and may be moved to
HOL-CSP or HOL-CSPM in the future, while others specifically concern the
operator Syncptick-locale.Syncptick.

5.1 Tick Swap Operator

We want to define an operator for swapping the values inside termination.
Intuitively, we want TickSwap (SKIP (r , s)) = SKIP (s, r).

5.1.1 Preliminaries
Swapping an Event

We start by defining tick-swap, which is swapping the values inside termina-
tion but only for an event. Then this will be generalized to a trace, a refusal
and a failure.
fun tick-swap :: ‹( ′a, ′r × ′s) eventptick ⇒ ( ′a, ′s × ′r) eventptick›

where ‹tick-swap (ev a) = ev a›
| ‹tick-swap 3((r , s)) = 3((s, r))›

lemma tick-swap-tick : ‹tick-swap 3(r-s) = (case r-s of (r , s) ⇒ 3((s, r)))›
by (cases r-s) simp

lemma tick-swap-tick-swap [simp] : ‹tick-swap (tick-swap e) = e›
proof (cases e)

show ‹e = ev a =⇒ tick-swap (tick-swap e) = e› for a by simp
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next
show ‹e = 3(r-s) =⇒ tick-swap (tick-swap e) = e› for r-s

by (cases r-s) simp-all
qed

lemma tick-swap-comp-tick-swap [simp] : ‹tick-swap ◦ tick-swap = id›
by (rule ext) simp

lemma inj-tick-swap [simp] : ‹inj tick-swap›
by (metis injI tick-swap-tick-swap)

lemma surj-tick-swap [simp] : ‹surj tick-swap›
by (metis surjI tick-swap-tick-swap)

lemma bij-tick-swap [simp] : ‹bij tick-swap›
by (simp add: bij-betw-def )

lemma bij-betw-tick-swap :
‹bij-betw tick-swap (range ev ) (range ev )›
‹bij-betw tick-swap (range tick) (range tick)›
by (auto simp add: bij-betw-def inj-on-def set-eq-iff image-iff )

lemma ev-eq-tick-swap-iff [simp] : ‹ev a = tick-swap e ←→ e = ev a›
and tick-swap-eq-ev-iff [simp] : ‹tick-swap e = ev a ←→ e = ev a›
and tick-eq-tick-swap-iff [simp] : ‹3((r , s)) = tick-swap e ←→ e = 3((s, r))›
and tick-swap-eq-tick-iff [simp] : ‹tick-swap e = 3((r , s)) ←→ e = 3((s, r))›
by (cases e, auto)+

Swapping a Trace

fun trace-tick-swap :: ‹( ′a, ( ′r × ′s)) traceptick ⇒ ( ′a, ( ′s × ′r)) traceptick›
where ‹trace-tick-swap [] = []›
| ‹trace-tick-swap (ev a # t) = ev a # trace-tick-swap t›
| ‹trace-tick-swap (3((r , s)) # t) = 3((s, r)) # trace-tick-swap t›

lemma trace-tick-swap-tick-Cons :
‹trace-tick-swap (3(r-s) # t) = (case r-s of (r , s) ⇒ 3((s, r)) # trace-tick-swap

t)›
by (cases r-s) simp

lemma trace-tick-swap-def : ‹trace-tick-swap = map tick-swap›
proof (rule ext)

show ‹trace-tick-swap t = map tick-swap t› for t :: ‹( ′a, ( ′r × ′s)) traceptick›
by (induct t rule: trace-tick-swap.induct) simp-all

qed
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lemma trace-tick-swap-append : ‹trace-tick-swap (t @ u) = trace-tick-swap t @
trace-tick-swap u›

by (simp add: trace-tick-swap-def )

lemma trace-tick-swap-singl [simp] : ‹trace-tick-swap [e] = [tick-swap e]›
by (cases e) auto

lemma trace-tick-swap-comp-trace-tick-swap [simp] : ‹trace-tick-swap ◦ trace-tick-swap
= id›

by (simp add: trace-tick-swap-def )

lemma trace-tick-swap-trace-tick-swap [simp] : ‹trace-tick-swap (trace-tick-swap t)
= t›

by (metis comp-def id-apply trace-tick-swap-comp-trace-tick-swap)

lemma inj-trace-tick-swap [simp] : ‹inj trace-tick-swap›
by (metis injI trace-tick-swap-trace-tick-swap)

lemma surj-trace-tick-swap [simp] : ‹surj trace-tick-swap›
by (metis surjI trace-tick-swap-trace-tick-swap)

lemma bij-trace-tick-swap [simp] : ‹bij trace-tick-swap›
by (simp add: bij-betw-def )

lemma strict-mono-trace-tick-swap : ‹strict-mono trace-tick-swap›
by (unfold trace-tick-swap-def )
(rule strict-mono-map, simp add: strict-monoI )

lemma image-trace-tick-swap-min-elems :
‹trace-tick-swap ‘ (min-elems T ) = min-elems (trace-tick-swap ‘ T )›

proof (intro subset-antisym subsetI )
show ‹t ∈ trace-tick-swap ‘ min-elems T =⇒ t ∈ min-elems (trace-tick-swap ‘

T )› for t
by (auto simp add: min-elems-def less-list-def less-eq-list-def prefix-def )
(metis Prefix-Order .prefixI Prefix-Order .same-prefix-nil

trace-tick-swap-append trace-tick-swap-trace-tick-swap)
next

show ‹t ∈ min-elems (trace-tick-swap ‘ T ) =⇒ t ∈ trace-tick-swap ‘ min-elems
T › for t

by (auto simp add: min-elems-def less-list-def less-eq-list-def prefix-def image-iff )
(metis trace-tick-swap-append trace-tick-swap-trace-tick-swap)

qed

lemma Nil-eq-trace-tick-swap-iff [iff ] : ‹[] = trace-tick-swap t ←→ t = []›
and trace-tick-swap-eq-Nil-iff [iff ] : ‹trace-tick-swap t = [] ←→ t = []›
by (metis trace-tick-swap.simps(1 ) trace-tick-swap-trace-tick-swap)+
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lemma ev-Cons-eq-trace-tick-swap-iff [iff ] :
‹ev a # t = trace-tick-swap u ←→ u = ev a # trace-tick-swap t›
and trace-tick-swap-eq-ev-Cons-iff [iff ] :
‹trace-tick-swap u = ev a # t ←→ u = ev a # trace-tick-swap t›
by (metis trace-tick-swap.simps(2 ) trace-tick-swap-trace-tick-swap)+

lemma tick-Cons-eq-trace-tick-swap-iff [iff ] :
‹3((r , s)) # t = trace-tick-swap u ←→ u = 3((s, r)) # trace-tick-swap t›
and trace-tick-swap-eq-tick-Cons-iff [iff ] :
‹trace-tick-swap u = 3((r , s)) # t ←→ u = 3((s, r)) # trace-tick-swap t›
by (metis trace-tick-swap.simps(3 ) trace-tick-swap-trace-tick-swap)+

lemma snoc-ev-eq-trace-tick-swap-iff [iff ] :
‹t @ [ev a] = trace-tick-swap u ←→ u = trace-tick-swap t @ [ev a]›
and trace-tick-swap-eq-snoc-ev-iff [iff ] :
‹trace-tick-swap u = t @ [ev a] ←→ u = trace-tick-swap t @ [ev a]›
by (metis trace-tick-swap-append trace-tick-swap.simps(1 , 2 ) trace-tick-swap-trace-tick-swap)+

lemma snoc-tick-eq-trace-tick-swap-iff [iff ] :
‹t @ [3((r , s))] = trace-tick-swap u ←→ u = trace-tick-swap t @ [3((s, r))]›
and trace-tick-swap-eq-snoc-tick-iff [iff ] :
‹trace-tick-swap u = t @ [3((r , s))] ←→ u = trace-tick-swap t @ [3((s, r))]›
by (metis trace-tick-swap-append trace-tick-swap.simps(1 , 3 ) trace-tick-swap-trace-tick-swap)+

lemma trace-tick-swap-eq-ev-ConsE :
‹trace-tick-swap u = ev a # t =⇒ (

∧
u ′. u = ev a # u ′ =⇒ t = trace-tick-swap

u ′ =⇒ thesis) =⇒ thesis›
and trace-tick-swap-eq-tick-ConsE :
‹trace-tick-swap u = 3((r , s)) # t =⇒ (

∧
u ′. u = 3((s, r)) # u ′ =⇒ t =

trace-tick-swap u ′ =⇒ thesis) =⇒ thesis›
and trace-tick-swap-eq-snoc-evE :
‹trace-tick-swap u = t @ [ev a] =⇒ (

∧
u ′. u = u ′ @ [ev a] =⇒ t = trace-tick-swap

u ′ =⇒ thesis) =⇒ thesis›
and trace-tick-swap-eq-snoc-tickE :
‹trace-tick-swap u = t @ [3((r , s))] =⇒ (

∧
u ′. u = u ′ @ [3((s, r))] =⇒ t =

trace-tick-swap u ′ =⇒ thesis) =⇒ thesis›
by (simp, metis trace-tick-swap-trace-tick-swap)+

lemma trace-tick-swap-tickFree :
‹tF t =⇒ trace-tick-swap t = map (ev ◦ of-ev) t› for t :: ‹( ′a, ( ′r × ′s)) traceptick›

proof (induct t)
show ‹trace-tick-swap [] = map (ev ◦ of-ev) []› by simp

next
fix e and t :: ‹( ′a, ( ′r × ′s)) traceptick›
assume ‹tF (e # t)› and ‹tF t =⇒ trace-tick-swap t = map (ev ◦ of-ev) t›
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moreover from ‹tF (e # t)› obtain a where ‹e = ev a› ‹tF t›
by (meson is-ev-def tickFree-Cons-iff )

ultimately show ‹trace-tick-swap (e # t) = map (ev ◦ of-ev) (e # t)› by simp
qed

lemma trace-tick-swap-front-tickFree :
‹trace-tick-swap t = ( if tF t then map (ev ◦ of-ev) t

else map (ev ◦ of-ev) (butlast t) @ [case last t of 3((r , s)) ⇒ 3((s,
r))])›

if ‹ftF t› for t :: ‹( ′a, ( ′r × ′s)) traceptick›
proof −

show ?thesis
proof (split if-split, intro conjI impI )

show ‹tF t =⇒ trace-tick-swap t = map (ev ◦ of-ev) t›
by (simp add: trace-tick-swap-tickFree)

next
assume ‹¬ tF t›
with ‹ftF t› obtain t ′ r s where ‹t = t ′ @ [3((r , s))]› ‹tF t ′›
by (metis front-tickFree-append-iff nonTickFree-n-frontTickFree not-Cons-self2

surj-pair)
hence ‹trace-tick-swap t = trace-tick-swap t ′ @ [3((s, r))]›

by (metis trace-tick-swap-append trace-tick-swap.simps(1 , 3 ))
also from ‹tF t ′› ‹t = t ′ @ [3((r , s))]›

have ‹trace-tick-swap t ′= map (ev ◦ of-ev) (butlast t)› by (simp add: trace-tick-swap-tickFree)
also from ‹t = t ′ @ [3((r , s))]›
have ‹[3((s, r))] = [case last t of 3((r , s)) ⇒ 3((s, r))]› by simp
finally show ‹trace-tick-swap t = map (ev ◦ of-ev) (butlast t) @

[case last t of 3((r , s)) ⇒ 3((s, r))]› .
qed

qed

lemma tickFree-trace-tick-swap-iff [simp] : ‹tF (trace-tick-swap t) ←→ tF t›
by (metis tickFree-map-ev-comp trace-tick-swap-tickFree trace-tick-swap-trace-tick-swap)

lemma front-tickFree-trace-tick-swap-iff [simp] : ‹ftF (trace-tick-swap t) ←→ ftF
t›

by (metis (no-types, lifting) front-tickFree-iff-tickFree-butlast map-butlast
tickFree-trace-tick-swap-iff trace-tick-swap-def )

Swapping a Refusal

definition refusal-tick-swap :: ‹( ′a, ( ′r × ′s)) refusalptick ⇒ ( ′a, ( ′s × ′r)) re-
fusalptick›

where ‹refusal-tick-swap X = tick-swap ‘ X›

lemma refusal-tick-swap-empty [simp] : ‹refusal-tick-swap {} = {}›
by (simp add: refusal-tick-swap-def )
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lemma refusal-tick-swap-insert [simp] :
‹refusal-tick-swap (insert x X) = insert (tick-swap x) (refusal-tick-swap X)›
by (simp add: refusal-tick-swap-def )

lemma refusal-tick-swap-union :
‹refusal-tick-swap (X ∪ Y ) = refusal-tick-swap X ∪ refusal-tick-swap Y ›
by (simp add: refusal-tick-swap-def image-Un)

lemma refusal-tick-swap-diff :
‹refusal-tick-swap (X − Y ) = refusal-tick-swap X − refusal-tick-swap Y ›
by (simp add: refusal-tick-swap-def image-set-diff )

lemma refusal-tick-swap-inter :
‹refusal-tick-swap (X ∩ Y ) = refusal-tick-swap X ∩ refusal-tick-swap Y ›
by (simp add: refusal-tick-swap-def image-Int)

lemma refusal-tick-swap-singl : ‹refusal-tick-swap {e} = {tick-swap e}› by simp

lemma refusal-tick-swap-comp-refusal-tick-swap [simp] :
‹refusal-tick-swap ◦ refusal-tick-swap = id›
by (auto simp add: refusal-tick-swap-def image-iff )

lemma refusal-tick-swap-refusal-tick-swap [simp] :
‹refusal-tick-swap (refusal-tick-swap X) = X›
by (simp add: comp-eq-dest-lhs)

lemma inj-refusal-tick-swap [simp] : ‹inj refusal-tick-swap›
by (metis injI refusal-tick-swap-refusal-tick-swap)

lemma surj-refusal-tick-swap [simp] : ‹surj refusal-tick-swap›
by (metis surjI refusal-tick-swap-refusal-tick-swap)

lemma bij-refusal-tick-swap [simp] : ‹bij refusal-tick-swap›
by (simp add: bij-betw-def )

lemma strict-mono-refusal-tick-swap : ‹strict-mono refusal-tick-swap›
by (rule strict-monoI )
(metis refusal-tick-swap-refusal-tick-swap sup.strict-order-iff refusal-tick-swap-union)

lemma empty-eq-refusal-tick-swap-iff [iff ] : ‹{} = refusal-tick-swap X ←→ X =
{}›

and refusal-tick-swap-eq-empty-iff [iff ] : ‹refusal-tick-swap X = {} ←→ X = {}›
by (simp-all add: refusal-tick-swap-def )

lemma insert-ev-eq-refusal-tick-swap-iff [iff ] :
‹insert (ev a) X = refusal-tick-swap Y ←→ Y = insert (ev a) (refusal-tick-swap

X)›
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and refusal-tick-swap-eq-insert-ev-iff [iff ] :
‹refusal-tick-swap Y =insert (ev a) X ←→ Y = insert (ev a) (refusal-tick-swap

X)›
by (metis refusal-tick-swap-insert refusal-tick-swap-refusal-tick-swap tick-swap.simps(1 ))+

lemma insert-tick-eq-refusal-tick-swap-iff [iff ] :
‹insert 3((r , s)) X = refusal-tick-swap Y ←→ Y = insert 3((s, r)) (refusal-tick-swap

X)›
and refusal-tick-swap-eq-insert-tick-iff [iff ] :
‹refusal-tick-swap Y = insert 3((r , s)) X ←→ Y = insert 3((s, r)) (refusal-tick-swap

X)›
by (metis refusal-tick-swap-insert refusal-tick-swap-refusal-tick-swap tick-swap.simps(2 ))+

lemma refusal-tick-swap-eq-insert-evE :
‹refusal-tick-swap Y = insert (ev a) X =⇒ (

∧
Y ′. Y = insert (ev a) Y ′ =⇒ X

= refusal-tick-swap Y ′ =⇒ thesis) =⇒ thesis›
and refusal-tick-swap-eq-insert-tickE :
‹refusal-tick-swap Y = insert 3((r , s)) X =⇒ (

∧
Y ′. Y = insert 3((s, r)) Y ′

=⇒ X = refusal-tick-swap Y ′ =⇒ thesis) =⇒ thesis›
by (simp, metis refusal-tick-swap-refusal-tick-swap)+

lemma refusal-tick-swap-tickFree :
‹X ⊆ range ev =⇒ refusal-tick-swap X = (ev ◦ of-ev) ‘ X›
by (force simp add: refusal-tick-swap-def )

lemma tickFree-refusal-tick-swap-iff :
‹refusal-tick-swap X ⊆ range ev ←→ X ⊆ range ev›
by (simp add: refusal-tick-swap-def subset-iff image-def )
(metis tick-swap.simps(1 ) tick-swap-tick-swap)

The old version of interleaving of traces is not affected.

lemma setinterleaves-imp-setinterleaves-trace-tick-swap :
‹t setinterleaves ((u, v), S) =⇒
trace-tick-swap t setinterleaves ((trace-tick-swap u, trace-tick-swap v), refusal-tick-swap

S)›
proof (induct ‹(u, S , v)› arbitrary: t u v rule: setinterleaving.induct)

case 1 thus ?case by simp
next

case (2 y v)
from 2 .prems obtain t ′ where ‹y /∈ S› ‹t = y # t ′› ‹t ′ setinterleaves (([], v),

S)›
by (auto split: if-split-asm)

from 2 .hyps[OF ‹y /∈ S› ‹t ′ setinterleaves (([], v), S)›]
have ‹trace-tick-swap t ′ setinterleaves (([], trace-tick-swap v), refusal-tick-swap

S)› by simp
with ‹y /∈ S› show ?case by (cases y) (auto simp add: ‹t = y # t ′› re-

fusal-tick-swap-def split: prod.split)
next
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case (3 x u)
from 3 .prems obtain t ′ where ‹x /∈ S› ‹t = x # t ′› ‹t ′ setinterleaves ((u, []),

S)›
by (auto split: if-split-asm)

from 3 .hyps[OF ‹x /∈ S› ‹t ′ setinterleaves ((u, []), S)›]
have ‹trace-tick-swap t ′ setinterleaves ((trace-tick-swap u, []), refusal-tick-swap

S)› by simp
with ‹x /∈ S› show ?case by (cases x) (auto simp add: ‹t = x # t ′› re-

fusal-tick-swap-def split: prod.split)
next

case (4 x u y v)
from 4 .prems
consider (both-in) t ′ where ‹x ∈ S› ‹y ∈ S› ‹x = y› ‹t = x # t ′› ‹t ′ setinter-

leaves ((u, v), S)›
| (inR-mvL) t ′ where ‹x /∈ S› ‹y ∈ S› ‹t = x # t ′› ‹t ′ setinterleaves ((u,

y # v), S)›
| (inL-mvR) t ′ where ‹x ∈ S› ‹y /∈ S› ‹t = y # t ′› ‹t ′ setinterleaves ((x

# u, v), S)›
| (notin-mvL) t ′ where ‹x /∈ S› ‹y /∈ S› ‹t = x # t ′› ‹t ′ setinterleaves ((u,

y # v), S)›
| (notin-mvR) t ′ where ‹x /∈ S› ‹y /∈ S› ‹t = y # t ′› ‹t ′ setinterleaves ((x

# u, v), S)›
by (auto split: if-split-asm)

thus ?case
proof cases

case both-in
from 4 .hyps(1 )[OF both-in(1−3 , 5 )] both-in(1−3 )
show ?thesis by (cases y, auto simp add: both-in(4 ) refusal-tick-swap-def split:

prod.split)
next

case inR-mvL
have ‹¬ y /∈ S› by (simp add: inR-mvL(2 ))
from 4 .hyps(5 )[OF inR-mvL(1 ) ‹¬ y /∈ S› inR-mvL(4 )] inR-mvL(1 , 2 )
show ?thesis by (cases x, auto simp add: inR-mvL(3 ) refusal-tick-swap-def

SyncSingleHeadAdd image-iff split: prod.split)
next

case inL-mvR
have ∗ : ‹a setinterleaves ((t, u), tick-swap ‘ S) =⇒ h /∈ tick-swap ‘ S =⇒

(h # a) setinterleaves ((t, h # u), tick-swap ‘ S)› for a t h u
by (cases t, auto split: if-split-asm)

from 4 .hyps(2 )[OF inL-mvR(1 , 2 , 4 )] inL-mvR(1 , 2 )
show ?thesis by (cases y, auto simp add: inL-mvR(3 ) refusal-tick-swap-def

image-iff ∗ split: prod.split)
next

case notin-mvL
from 4 .hyps(3 )[OF notin-mvL(1 , 2 , 4 )] notin-mvL(1 , 2 )
show ?thesis by (cases y, auto simp add: notin-mvL(3 ) refusal-tick-swap-def

split: prod.split)
(simp-all add: inj-image-mem-iff trace-tick-swap-def )
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next
case notin-mvR
from 4 .hyps(4 )[OF notin-mvR(1 , 2 , 4 )] notin-mvR(1 , 2 )
show ?thesis by (cases x, auto simp add: notin-mvR(3 ) refusal-tick-swap-def

split: prod.split)
(simp-all add: inj-image-mem-iff trace-tick-swap-def )

qed
qed

lemma trace-tick-swap-setinterleaves-iff :
‹trace-tick-swap t setinterleaves ((u, v), S) ←→
t setinterleaves ((trace-tick-swap u, trace-tick-swap v), refusal-tick-swap S)›

by (metis refusal-tick-swap-refusal-tick-swap trace-tick-swap-trace-tick-swap
setinterleaves-imp-setinterleaves-trace-tick-swap)

Swapping a Failure

definition failure-tick-swap :: ‹( ′a, ( ′r × ′s)) failureptick ⇒ ( ′a, ( ′s × ′r)) fail-
ureptick›
where ‹failure-tick-swap F ≡ case F of (t, X)⇒ (trace-tick-swap t, refusal-tick-swap

X)›

lemma failure-tick-swap-empty [simp] : ‹failure-tick-swap ([], {}) = ([], {})›
by (simp add: failure-tick-swap-def )

lemma failure-tick-swap-comp-failure-tick-swap [simp] :
‹failure-tick-swap ◦ failure-tick-swap = id›
by (auto simp add: failure-tick-swap-def )

lemma failure-tick-swap-failure-tick-swap [simp] :
‹failure-tick-swap (failure-tick-swap F) = F›
by (simp add: comp-eq-dest-lhs)

lemma inj-failure-tick-swap [simp] : ‹inj failure-tick-swap›
by (metis injI failure-tick-swap-failure-tick-swap)

lemma surj-failure-tick-swap [simp] : ‹surj failure-tick-swap›
by (metis surjI failure-tick-swap-failure-tick-swap)

lemma bij-failure-tick-swap [simp] : ‹bij failure-tick-swap›
by (simp add: bij-betw-def )

lemma empty-eq-failure-tick-swap-iff [iff ] : ‹([], {}) = failure-tick-swap F ←→ F
= ([], {})›

and failure-tick-swap-eq-empty-iff [iff ] : ‹failure-tick-swap F = ([], {}) ←→ F =
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([], {})›
by (auto simp add: failure-tick-swap-def split: prod.split)

5.1.2 The Operator
Definition
lift-definition TickSwap :: ‹( ′a, ′r × ′s) processptick ⇒ ( ′a, ′s × ′r) processptick›

is ‹λP. ({(t, X). failure-tick-swap (t, X) ∈ F P}, {t. trace-tick-swap t ∈ D P})›
— One might expect λP. (failure-tick-swap ‘ F P, trace-tick-swap ‘ D P) instead.

This is equivalent, see the projections below, but easier for the following proof
obligation.
proof −

show ‹?thesis P› (is ‹is-process (?f , ?d)›) for P
proof (unfold is-process-def FAILURES-def DIVERGENCES-def fst-conv snd-conv,

intro conjI impI allI )
show ‹([], {}) ∈ ?f › by (simp add: is-processT1 )

next
show ‹(t, X) ∈ ?f =⇒ ftF t› for t X

by (simp add: failure-tick-swap-def )
(use is-processT2 front-tickFree-trace-tick-swap-iff in blast)

next
show ‹(t @ u, {}) ∈ ?f =⇒ (t, {}) ∈ ?f › for t u
by (simp add: failure-tick-swap-def ) (metis trace-tick-swap-append is-processT3 )

next
show ‹(t, Y ) ∈ ?f ∧ X ⊆ Y =⇒ (t, X) ∈ ?f › for t X Y

by (simp add: failure-tick-swap-def )
(metis is-processT4 le-iff-sup refusal-tick-swap-union)

next
fix t X Y assume ‹(t, X) ∈ ?f ∧ (∀ e. e ∈ Y −→ (t @ [e], {}) /∈ ?f )›
hence ‹(trace-tick-swap t, refusal-tick-swap X) ∈ F P ∧

(∀ e. e ∈ refusal-tick-swap Y −→ (trace-tick-swap t @ [e], {}) /∈ F P)›
by (auto simp add: failure-tick-swap-def refusal-tick-swap-def trace-tick-swap-append)
thus ‹(t, X ∪ Y ) ∈ ?f ›

by (simp add: failure-tick-swap-def is-processT5 refusal-tick-swap-union)
next

show ‹(t @ [3(s-r)], {}) ∈ ?f =⇒ (t, X − {3(s-r)}) ∈ ?f › for t X s-r
by (cases s-r) (simp add: failure-tick-swap-def trace-tick-swap-append

is-processT6 refusal-tick-swap-diff )
next

show ‹t ∈ ?d ∧ tF t ∧ ftF u =⇒ t @ u ∈ ?d› for t u
by (simp add: trace-tick-swap-append is-processT7 )

next
show ‹t ∈ ?d =⇒ (t, X) ∈ ?f › for t X

by (simp add: failure-tick-swap-def is-processT8 )
next

show ‹t @ [3(s-r)] ∈ ?d =⇒ t ∈ ?d› for t s-r
by (cases s-r) (auto simp add: trace-tick-swap-append intro: is-processT9 )

qed
qed
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Projections
lemma F-TickSwap ′ : ‹F (TickSwap P) = {(t, X). failure-tick-swap (t, X) ∈ F
P}›

by (simp add: Failures.rep-eq TickSwap.rep-eq FAILURES-def )

lemma D-TickSwap ′ : ‹D (TickSwap P) = {t. trace-tick-swap t ∈ D P}›
by (simp add: Divergences.rep-eq TickSwap.rep-eq DIVERGENCES-def )

lemma T-TickSwap ′ : ‹T (TickSwap P) = {t. trace-tick-swap t ∈ T P}›
by (simp add: set-eq-iff F-TickSwap ′ failure-tick-swap-def flip: T-F-spec)

lemmas TickSwap-projs ′ = F-TickSwap ′ D-TickSwap ′ T-TickSwap ′

This is not very intuitive. The following lemmas are more intuitive.
lemma F-TickSwap : ‹F (TickSwap P) = failure-tick-swap ‘ F P›

by (simp add: set-eq-iff F-TickSwap ′)
(metis (no-types, lifting) failure-tick-swap-failure-tick-swap imageE image-eqI )

lemma D-TickSwap : ‹D (TickSwap P) = trace-tick-swap ‘ D P›
by (simp add: set-eq-iff D-TickSwap ′)
(metis (no-types, lifting) trace-tick-swap-trace-tick-swap imageE image-eqI )

lemma T-TickSwap : ‹T (TickSwap P) = trace-tick-swap ‘ T P›
by (simp add: set-eq-iff T-TickSwap ′)
(metis (no-types, lifting) trace-tick-swap-trace-tick-swap imageE image-eqI )

lemmas TickSwap-projs = F-TickSwap D-TickSwap T-TickSwap

We finally give the following versions, sometimes more convenient to use.
lemma F-TickSwap ′′ : ‹F (TickSwap P) = {(trace-tick-swap t, refusal-tick-swap
X)| t X . (t, X) ∈ F P}›

by (auto simp add: F-TickSwap failure-tick-swap-def )

lemma D-TickSwap ′′ : ‹D (TickSwap P) = {trace-tick-swap t| t. t ∈ D P}›
by (auto simp add: D-TickSwap)

lemma T-TickSwap ′′ : ‹T (TickSwap P) = {trace-tick-swap t| t. t ∈ T P}›
by (auto simp add: T-TickSwap)

lemmas TickSwap-projs ′′ = F-TickSwap ′′ D-TickSwap ′′ T-TickSwap ′′

Properties
lemma events-TickSwap [simp] : ‹events-of (TickSwap P) = events-of P›

by (auto simp add: events-of-def T-TickSwap trace-tick-swap-def )

lemma ticks-TickSwap [simp] : ‹ticks-of (TickSwap P) = {(s, r). (r , s) ∈ ticks-of
P}›

by (auto simp add: ticks-of-def T-TickSwap ′ trace-tick-swap-append)
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(metis trace-tick-swap-trace-tick-swap)

lemma strict-ticks-TickSwap [simp] :
‹strict-ticks-of (TickSwap P) = {(s, r). (r , s) ∈ strict-ticks-of P}›
by (auto simp add: strict-ticks-of-def TickSwap-projs ′ trace-tick-swap-append)
(metis trace-tick-swap-trace-tick-swap)

lemma trace-tick-swap-image-setinterleavingP air :
‹trace-tick-swap ‘ setinterleavingptick (λr s. b(r , s)c, u, A, v) =
setinterleavingptick (λr s. b(r , s)c, v, A, u)›

for u :: ‹( ′a, ′r) traceptick› and v :: ‹( ′a, ′s) traceptick›
by (rule sym, induct ‹(λr :: ′r . λs :: ′s. b(r , s)c, u, A, v)›

arbitrary: u v) (simp-all, safe, auto)

lemma trace-tick-swap-setinterleavesP air-iff [iff ] :
‹trace-tick-swap t setinterleaves3λr s. b(r , s)c ((u, v), A) ←→
t setinterleaves3λr s. b(r , s)c ((v, u), A)›

by (metis (mono-tags, lifting) image-eqI trace-tick-swap-image-setinterleavingP air

trace-tick-swap-trace-tick-swap)

The following theorem is a bridge with the existing operators: TickSwap can
be expressed via the Renaming operator.
lemma tick-swap-is-map-eventptick : ‹tick-swap = map-eventptick id prod.swap›
proof (rule ext)

show ‹tick-swap e = map-eventptick id prod.swap e› for e :: ‹( ′a, ′r × ′s)
eventptick›

by (cases e) (auto split: eventptick.splits prod.splits)
qed

lemma trace-tick-swap-is-map-map-eventptick :
‹trace-tick-swap = map (map-eventptick id prod.swap)›
by (simp add: tick-swap-is-map-eventptick trace-tick-swap-def )

lemma refusal-tick-swap-is-image-map-eventptick :
‹refusal-tick-swap = (‘) (map-eventptick id prod.swap)›
by (rule ext) (simp add: refusal-tick-swap-def tick-swap-is-map-eventptick)

theorem TickSwap-is-Renaming :
‹TickSwap P = Renaming P id prod.swap› (is ‹?lhs = ?rhs›)

proof (subst Process-eq-spec-optimized, safe)
fix t assume ‹t ∈ D ?lhs›
with D-imp-front-tickFree have ‹ftF t› by blast
define t1 where ‹t1 ≡ trace-tick-swap (if tF t then t else butlast t)›
define t2 where ‹t2 ≡ if tF t then [] else [last t]›
have ‹t = map (map-eventptick id prod.swap) t1 @ t2 ›

by (simp add: t1-def t2-def flip: trace-tick-swap-is-map-map-eventptick)
(metis append-butlast-last-id tickFree-Nil)

moreover from ‹ftF t› front-tickFree-iff-tickFree-butlast t1-def have ‹tF t1 › by
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auto
moreover have ‹ftF t2 › by (simp add: t2-def )
moreover from t1-def D-TickSwap ′ ‹ftF t› ‹t ∈ D ?lhs›

div-butlast-when-non-tickFree-iff have ‹t1 ∈ D P› by blast
ultimately show ‹t ∈ D ?rhs› unfolding D-Renaming by blast

next
fix t assume ‹t ∈ D ?rhs›
then obtain t1 t2

where ‹t = map (map-eventptick id prod.swap) t1 @ t2 › ‹tF t1 › ‹ftF t2 › ‹t1
∈ D P›

unfolding D-Renaming by blast
thus ‹t ∈ D ?lhs› by (simp add: D-TickSwap ′ trace-tick-swap-append is-processT7

flip: trace-tick-swap-is-map-map-eventptick)
next

fix t X assume ‹(t, X) ∈ F ?lhs›
then obtain t ′ X ′ where ‹t = trace-tick-swap t ′› ‹X = refusal-tick-swap X ′›

‹(t ′, X ′) ∈ F P›
unfolding F-TickSwap failure-tick-swap-def by auto

moreover have ‹map-eventptick id prod.swap −‘ refusal-tick-swap X ′ = X ′›
by (simp add: set-eq-iff ) (metis inj-image-mem-iff inj-tick-swap

refusal-tick-swap-def tick-swap-is-map-eventptick)
ultimately show ‹(t, X) ∈ F ?rhs›
by (auto simp add: F-Renaming simp flip: trace-tick-swap-is-map-map-eventptick)

next
fix t X assume same-div : ‹D ?lhs = D ?rhs›
assume ‹(t, X) ∈ F ?rhs›
then consider ‹t ∈ D ?rhs›
| t ′ where ‹t = map (map-eventptick id prod.swap) t ′› ‹(t ′, map-eventptick id

prod.swap −‘ X) ∈ F P›
unfolding Renaming-projs by blast

thus ‹(t, X) ∈ F ?lhs›
proof cases

from same-div D-F show ‹t ∈ D ?rhs =⇒ (t, X) ∈ F ?lhs› by blast
next

fix t ′ assume ∗ : ‹t = map (map-eventptick id prod.swap) t ′›
‹(t ′, map-eventptick id prod.swap −‘ X) ∈ F P›

from ∗(1 ) have ‹(t, X) = failure-tick-swap (t ′, map-eventptick id prod.swap
−‘ X)›

by (simp add: failure-tick-swap-def refusal-tick-swap-def trace-tick-swap-def
flip: tick-swap-is-map-eventptick)

with ∗(2 ) show ‹(t, X) ∈ F ?lhs› by (simp add: F-TickSwap)
qed

qed

lemma TickSwap-TickSwap [simp] : ‹TickSwap (TickSwap P) = P›
by (simp add: Process-eq-spec TickSwap-projs ′)
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lemma TickSwap-comp-TickSwap [simp] : ‹TickSwap ◦ TickSwap = id›
by (rule ext) simp

lemma TickSwap-eq-iff-eq-TickSwap : ‹TickSwap P = Q ←→ P = TickSwap Q›
by auto

lemma inj-TickSwap [simp] : ‹inj TickSwap›
by (metis injI TickSwap-TickSwap)

lemma surj-TickSwap [simp] : ‹surj TickSwap›
by (metis surjI TickSwap-TickSwap)

lemma bij-TickSwap [simp] : ‹bij TickSwap›
by (simp add: bij-betw-def )

lemma strict-mono-TickSwap : ‹strict-mono TickSwap›
by (rule strict-monoI )
(metis D-TickSwap F-TickSwap failure-refine-def image-mono injD inj-TickSwap

nless-le failure-divergence-refine-def divergence-refine-def )

Monotonicity Properties

lemma mono-TickSwap : ‹P v Q =⇒ TickSwap P v TickSwap Q›
by (simp add: TickSwap-is-Renaming mono-Renaming)

lemma mono-TickSwap-FD : ‹P vFD Q =⇒ TickSwap P vFD TickSwap Q›
and mono-TickSwap-DT : ‹P vDT Q =⇒ TickSwap P vDT TickSwap Q›
and mono-TickSwap-F : ‹P vF Q =⇒ TickSwap P vF TickSwap Q›
and mono-TickSwap-D : ‹P vD Q =⇒ TickSwap P vD TickSwap Q›
and mono-TickSwap-T : ‹P vT Q =⇒ TickSwap P vT TickSwap Q›
by (simp-all add: TickSwap-projs refine-defs image-mono)

lemmas monos-TickSwap = mono-TickSwap mono-TickSwap-FD mono-TickSwap-DT
mono-TickSwap-F mono-TickSwap-D mono-TickSwap-T

lemma le-approx-TickSwap-iff : ‹TickSwap P v TickSwap Q ←→ P v Q›
and FD-TickSwap-iff : ‹TickSwap P vFD TickSwap Q ←→ P vFD Q›
and DT-TickSwap-iff : ‹TickSwap P vDT TickSwap Q ←→ P vDT Q›
and F-TickSwap-iff : ‹TickSwap P vF TickSwap Q ←→ P vF Q›
and D-TickSwap-iff : ‹TickSwap P vD TickSwap Q ←→ P vD Q›
and T-TickSwap-iff : ‹TickSwap P vT TickSwap Q ←→ P vT Q›
by (rule iffI ; drule monos-TickSwap, simp add: monos-TickSwap)+

lemmas le-TickSwap-iff = le-approx-TickSwap-iff FD-TickSwap-iff DT-TickSwap-iff
F-TickSwap-iff D-TickSwap-iff T-TickSwap-iff
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Continuity

Continuity is a direct corollary of the continuity of Renaming.
lemma TickSwap-cont[simp] : ‹cont P =⇒ cont (λx. TickSwap (P x))›

by (simp add: TickSwap-is-Renaming)

Algebraic Laws
Constant Processes lemma TickSwap-STOP [simp] : ‹TickSwap STOP =
STOP›

by (simp add: STOP-iff-T T-TickSwap T-STOP)

lemma TickSwap-is-STOP-iff [simp] : ‹TickSwap P = STOP ←→ P = STOP›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-BOT [simp] : ‹TickSwap ⊥ = ⊥›
by (simp add: BOT-iff-Nil-D D-TickSwap D-BOT )

lemma TickSwap-is-BOT-iff [simp] : ‹TickSwap P = ⊥ ←→ P = ⊥›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-SKIP [simp] : ‹TickSwap (SKIP (r , s)) = SKIP (s, r)›
by (simp add: TickSwap-is-Renaming)

lemma TickSwap-is-SKIP-iff [simp] : ‹TickSwap P = SKIP (r , s) ←→ P = SKIP
(s, r)›

by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-SKIPS [simp] : ‹TickSwap (SKIPS R-S) = SKIPS {(s, r). (r ,
s) ∈ R-S}›

by (auto simp add: Process-eq-spec TickSwap-projs ′ SKIPS-projs)
(auto simp add: failure-tick-swap-def refusal-tick-swap-def )

lemma TickSwap-is-SKIPS-iff [simp] :
‹TickSwap P = SKIPS R-S ←→ P = SKIPS {(s, r). (r , s) ∈ R-S}›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

Binary (or less) Operators lemma TickSwap-Ndet [simp] : ‹TickSwap (P
u Q) = TickSwap P u TickSwap Q›

by (simp add: Process-eq-spec TickSwap-projs Ndet-projs image-Un)

lemma TickSwap-is-Ndet-iff [simp] : ‹TickSwap P = Q u R ←→ P = TickSwap
Q u TickSwap R›

by (simp add: TickSwap-eq-iff-eq-TickSwap)
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lemma TickSwap-Det [simp] :
‹TickSwap (P � Q) = TickSwap P � TickSwap Q›
by (simp add: TickSwap-is-Renaming Renaming-Det)

lemma TickSwap-is-Det-iff [simp] : ‹TickSwap P = Q � R ←→ P = TickSwap
Q � TickSwap R›

by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Sliding [simp] : ‹TickSwap (P B Q) = TickSwap P B TickSwap
Q›

by (simp add: Sliding-def )

lemma TickSwap-is-Sliding-iff [simp] : ‹TickSwap P = Q B R ←→ P = TickSwap
Q B TickSwap R›

by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Sync [simp] :
‹TickSwap (P [[S ]] Q) = TickSwap P [[S ]] TickSwap Q›
by (simp add: TickSwap-is-Renaming bij-Renaming-Sync)

lemma TickSwap-is-Sync-iff [simp] :
‹TickSwap P = Q [[S ]] R ←→ P = TickSwap Q [[S ]] TickSwap R›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Seq [simp] :
‹TickSwap (P ; Q) = TickSwap P ; TickSwap Q›
by (simp add: Renaming-Seq TickSwap-is-Renaming)

lemma TickSwap-is-Seq-iff [simp] :
‹TickSwap P = Q ; R ←→ P = TickSwap Q ; TickSwap R›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Renaming [simp] :
‹TickSwap (Renaming P f g) =
Renaming (TickSwap P) f (prod.swap ◦ g ◦ prod.swap)›

by (simp add: TickSwap-is-Renaming flip: Renaming-comp)
(metis comp-apply swap-swap)

lemma TickSwap-Renaming ′ :
‹TickSwap (Renaming P f g) = Renaming P f (prod.swap ◦ g)›
by (simp add: TickSwap-is-Renaming flip: Renaming-comp)

lemma TickSwap-is-Renaming-iff [simp] :
‹TickSwap P = Renaming Q f g ←→ P = Renaming (TickSwap Q) f (prod.swap
◦ g ◦ prod.swap)›

112



by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Hiding [simp] : ‹TickSwap (P \ S) = TickSwap P \ S›
by (simp add: TickSwap-is-Renaming bij-Renaming-Hiding)

lemma TickSwap-is-Hiding-iff [simp] : ‹TickSwap P = Q \ S ←→ P = TickSwap
Q \ S›

by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Interrupt [simp] :
‹TickSwap (P 4 Q) = TickSwap P 4 TickSwap Q›
by (simp add: TickSwap-is-Renaming Renaming-Interrupt)

lemma TickSwap-is-Interrupt-iff [simp] :
‹TickSwap P = Q 4 R ←→ P = TickSwap Q 4 TickSwap R›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Throw [simp] :
‹TickSwap (P Θ a ∈ A. Q a) = TickSwap P Θ a ∈ A. TickSwap (Q a)›
by (simp add: TickSwap-is-Renaming inj-on-Renaming-Throw)
(rule mono-Throw-eq, metis id-apply inj-on-id inv-into-f-f )

lemma TickSwap-is-Throw-iff [simp] :
‹TickSwap P = Q Θ a ∈ A. R a ←→ P = TickSwap Q Θ a ∈ A. TickSwap (R

a)›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

Architectural Operators lemma TickSwap-GlobalNdet [simp] :
‹TickSwap (ua ∈ A. P a) = ua ∈ A. TickSwap (P a)›
by (simp add: TickSwap-is-Renaming Renaming-distrib-GlobalNdet)

lemma TickSwap-is-GlobalNdet-iff [simp] :
‹TickSwap P = ua ∈ A. Q a ←→ P = ua ∈ A. TickSwap (Q a)›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-GlobalDet [simp] :
‹TickSwap (�a ∈ A. P a) = �a ∈ A. TickSwap (P a)›
by (simp add: TickSwap-is-Renaming Renaming-distrib-GlobalDet)

lemma TickSwap-is-GlobalDet-iff [simp] :
‹TickSwap P = �a ∈ A. Q a ←→ P = �a ∈ A. TickSwap (Q a)›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-MultiSync [simp] :
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‹TickSwap ([[S]] m ∈# M . P m) = [[S]] m ∈# M . TickSwap (P m)›
by (induct M rule: induct-subset-mset-empty-single) simp-all

lemma TickSwap-is-TickSwap-MultiSync-iff [simp] :
‹TickSwap P = [[S]] m ∈# M . Q m ←→ P = [[S]] m ∈# M . TickSwap (Q m)›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-MultiSeq [simp] :
‹L 6= [] =⇒ TickSwap (SEQ l ∈@ L. P l) = SEQ l ∈@ L. TickSwap (P l)›
by (induct L rule: rev-induct, simp-all)
(metis MultiSeq-Nil SKIP-Seq TickSwap-Seq)

lemma TickSwap-is-MultiSeq-iff [simp] :
‹L 6= [] =⇒ TickSwap P = SEQ l ∈@ L. Q l ←→ P = SEQ l ∈@ L. TickSwap

(Q l)›
by (metis TickSwap-MultiSeq TickSwap-TickSwap)

Communications lemma TickSwap-write0 [simp] : ‹TickSwap (e → P) = e
→ TickSwap P›

by (simp add: TickSwap-is-Renaming Renaming-write0 )

lemma TickSwap-is-write0-iff [simp] : ‹TickSwap P = e → Q ←→ P = e →
TickSwap Q›

by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-write [simp] : ‹TickSwap (c!e → P) = c!e → TickSwap P›
by (simp add: TickSwap-is-Renaming Renaming-write)

lemma TickSwap-is-write-iff [simp] : ‹TickSwap P = c!e → Q ←→ P = c!e →
TickSwap Q›

by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Mprefix [simp] :
‹TickSwap (�a ∈ A → P a) = �a ∈ A → TickSwap (P a)›
by (simp add: Mprefix-GlobalDet)

lemma TickSwap-is-Mprefix-iff [simp] :
‹TickSwap P = (�a ∈ A → Q a) ←→ P = �a ∈ A → TickSwap (Q a)›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-read [simp] : ‹TickSwap (c?a∈A → P a) = c?a∈A → TickSwap
(P a)›

by (simp add: read-def comp-def )

lemma TickSwap-is-read-iff [simp] :
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‹TickSwap P = c?a∈A → Q a ←→ P = c?a∈A → TickSwap (Q a)›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Mndetprefix [simp] :
‹TickSwap (ua ∈ A → P a) = ua ∈ A → TickSwap (P a)›
by (simp add: Mndetprefix-GlobalNdet)

lemma TickSwap-is-Mndetprefix-iff [simp] :
‹TickSwap P = (ua ∈ A → Q a) ←→ P = ua ∈ A → TickSwap (Q a)›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-ndet-write [simp] : ‹TickSwap (c!!a∈A → P a) = c!!a∈A →
TickSwap (P a)›

by (simp add: ndet-write-def comp-def )

lemma TickSwap-is-ndet-write-iff [simp] :
‹TickSwap P = c!!a∈A → Q a ←→ P = c!!a∈A → TickSwap (Q a)›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

5.2 Splitting the Renaming Operator

We split the Renaming operator in two: the first one only renames the
“regular” events, the second one only the ticks.

5.2.1 Renaming only Events
abbreviation RenamingEv :: ‹[( ′a, ′r) processptick, ′a ⇒ ′b] ⇒ ( ′b, ′r) pro-
cessptick›

where ‹RenamingEv P f ≡ Renaming P f id›

lemma RenamingEv-id-unfolded [iff ] :
‹Renaming P f (λr . r) = RenamingEv P f › by (simp add: id-def )

lemmas strict-ticks-of-RenamingEv-subset = strict-ticks-of-Renaming-subset [where
g = id, simplified]

and strict-ticks-of-inj-on-RenamingEv = strict-ticks-of-inj-on-Renaming [where
g = id, simplified]

lemmas monos-RenamingEv = monos-Renaming[where g = id]

lemma RenamingEv-SKIP : ‹RenamingEv (SKIP r) f = SKIP r› by simp

lemma RenamingEv-cont :
‹cont P =⇒ finitary f =⇒ cont (λx. RenamingEv (P x) f )› by simp
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lemma RenamingEv-Seq :
‹RenamingEv (P ; Q) f = RenamingEv P f ; RenamingEv Q f ›
by (simp add: Renaming-Seq)

declare Renaming-id [simp]

lemmas RenamingEv-id = Renaming-id
and RenamingEv-STOP = Renaming-STOP [where g = id]
and RenamingEv-BOT = Renaming-BOT [where g = id]
and RenamingEv-is-STOP-iff = Renaming-is-STOP-iff [where g = id]
and RenamingEv-is-BOT-iff = Renaming-is-BOT-iff [where g = id]

lemmas RenamingEv-Det = Renaming-Det [where g = id]
and RenamingEv-Ndet = Renaming-Ndet [where g = id]
and RenamingEv-Sliding = Renaming-Sliding [where g = id]
and RenamingEv-Interrupt = Renaming-Interrupt [where g = id]
and RenamingEv-write0 = Renaming-write0 [where g = id]
and RenamingEv-write = Renaming-write [where g = id]
and RenamingEv-comp = Renaming-comp [of - - - id id, simplified]
and RenamingEv-inv = Renaming-inv [where g = id, simplified]
and inv-RenamingEv = inv-Renaming [where g = id, simplified]

lemmas bij-RenamingEv-Sync = bij-Renaming-Sync [where g = id, sim-
plified]

and bij-RenamingEv-Hiding = bij-Renaming-Hiding [where g = id, simplified]
and inj-on-RenamingEv-Throw = inj-on-Renaming-Throw [where g = id]
and RenamingEv-fix = Renaming-fix [where g = id, simplified]

lemmas RenamingEv-distrib-GlobalDet = Renaming-distrib-GlobalDet [where g
= id]

and RenamingEv-distrib-GlobalNDet = Renaming-distrib-GlobalNdet [where g
= id]

and RenamingEv-Mprefix = Renaming-Mprefix [where g = id]
and RenamingEv-Mndetprefix = Renaming-Mndetprefix [where g =

id]
and RenamingEv-read = Renaming-read [where g = id]
and RenamingEv-ndet-write = Renaming-ndet-write [where g = id]

5.2.2 Renaming only Ticks
abbreviation RenamingTick :: ‹[( ′a, ′r) processptick, ′r ⇒ ′s] ⇒ ( ′a, ′s) pro-
cessptick›
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where ‹RenamingTick P g ≡ Renaming P id g›

lemma RenamingTick-id-unfolded [iff ] :
‹Renaming P (λa. a) g = RenamingTick P g› by (simp add: id-def )

lemmas strict-ticks-of-RenamingTick-subset = strict-ticks-of-Renaming-subset [where
f = id]
and strict-ticks-of-inj-on-RenamingTick = strict-ticks-of-inj-on-Renaming [where

f = id, simplified]

lemmas monos-RenamingTick = monos-Renaming[where f = id]

lemma RenamingTick-cont :
‹cont P =⇒ finitary g =⇒ cont (λx. RenamingTick (P x) g)› by simp

lemmas RenamingTick-id = Renaming-id
and RenamingTick-STOP = Renaming-STOP [where f = id]
and RenamingTick-SKIP = Renaming-SKIP [where f = id]
and RenamingTick-BOT = Renaming-BOT [where f = id]
and RenamingTick-is-STOP-iff = Renaming-is-STOP-iff [where f = id]
and RenamingTick-is-BOT-iff = Renaming-is-BOT-iff [where f = id]

lemmas RenamingTick-Seq = Renaming-Seq[where f = id]
and RenamingTick-Det = Renaming-Det [where f = id]
and RenamingTick-Ndet = Renaming-Ndet [where f = id]
and RenamingTick-Sliding = Renaming-Sliding [where f = id]
and RenamingTick-Interrupt = Renaming-Interrupt [where f = id]
and RenamingTick-write0 = Renaming-write0 [where f = id, simplified]
and RenamingTick-write = Renaming-write [where f = id, simplified]
and RenamingTick-comp = Renaming-comp [of - id id , simplified]
and RenamingTick-inv = Renaming-inv [where f = id, simplified]
and inv-RenamingTick = inv-Renaming [where f = id, simplified]

lemmas bij-RenamingTick-Sync = bij-Renaming-Sync [where f = id,
simplified]

and RenamingTick-fix = Renaming-fix [where f = id, simplified]

— The assumption bij g is actually not necessary for RenamingTick and (\), see
below.

lemma RenamingTick-Throw :
‹RenamingTick (P Θ a∈A. Q a) g = RenamingTick P g Θ a∈A. RenamingTick

(Q a) g›
proof (subst inj-on-Renaming-Throw)

show ‹inj-on id (events-of P ∪ A)› by simp
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next
show ‹RenamingTick P g Θ b∈id ‘ A. RenamingTick (Q (inv-into A id b)) g =

RenamingTick P g Θ a∈A. RenamingTick (Q a) g›
by (simp, rule mono-Throw-eq)
(metis f-inv-into-f id-apply image-id)

qed

lemmas RenamingTick-distrib-GlobalDet = Renaming-distrib-GlobalDet [where
f = id]

and RenamingTick-distrib-GlobalNDet = Renaming-distrib-GlobalNdet [where f
= id]

and RenamingTick-Mprefix = Renaming-Mprefix-image-inj [where f
= id, simplified]

and RenamingTick-Mndetprefix = Renaming-Mndetprefix-inj [where f
= id, simplified]

and RenamingTick-read = Renaming-read [where f = id,
simplified]

and RenamingTick-ndet-write = Renaming-ndet-write [where f =
id, simplified]

lemma RenamingEv-RenamingTick-is-Renaming :
‹RenamingEv (RenamingTick P g) f = Renaming P f g›
and RenamingTick-RenamingEv-is-Renaming :
‹RenamingTick (RenamingEv P f ) g = Renaming P f g›
by (metis Renaming-comp comp-id fun.map-id)+

5.2.3 Properties
lemma isInfHidden-seqRun-imp-tickFree-seqRun :

‹isInfHidden-seqRun x P A t =⇒ tF (seqRun t x i)›
by (metis eventptick.disc(1 ) image-iff isInfHidden-seqRun-imp-tickFree tickFree-seqRun-iff )

lemma tickFree-map-map-eventptick-is :
‹tF t =⇒ map (map-eventptick f g) t = map (ev ◦ f ◦ of-ev) t›
by (induct t) (auto simp add: is-ev-def )

lemma RenamingTick-Hiding :
‹RenamingTick (P \ A) g = RenamingTick P g \ A›
(is ‹?lhs = ?rhs›) for P :: ‹( ′a, ′r) processptick›

proof −
let ?RT = ‹λP. RenamingTick P g›
let ?th-A = ‹λt. trace-hide t (ev ‘ A)›
let ?map = ‹map (map-eventptick id g)›
have $ : ‹?th-A (?map t) = ?map (?th-A t)› for t

by (induct t) (simp-all add: image-iff map-eventptick-eq-ev-iff )
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have $$ : ‹map-eventptick id g −‘ X ∪ ev ‘ A =
map-eventptick id g −‘ X ∪ map-eventptick id g −‘ ev ‘ A› for X

by (auto simp add: map-eventptick-eq-ev-iff )
show ‹?lhs = ?rhs›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ?lhs›
then obtain t1 t2 where ∗ : ‹t = ?map t1 @ t2 ›

‹tF t1 › ‹ftF t2 › ‹t1 ∈ D (P \ A)› unfolding D-Renaming by blast
from ∗(4 ) obtain u v where ∗∗ : ‹ftF v› ‹tF u› ‹t1 = ?th-A u @ v›

‹u ∈ D P ∨ (∃ x. isInfHidden-seqRun-strong x P A u)›
by (blast elim: D-Hiding-seqRunE)

from ∗∗(4 ) show ‹t ∈ D ?rhs›
proof (elim disjE exE)

assume ‹u ∈ D P›
with ∗∗(2 ) have ‹?map u ∈ D (?RT P)›

by (auto simp add: D-Renaming intro: front-tickFree-Nil)
thus ‹t ∈ D ?rhs›

by (simp add: D-Hiding ∗(1 ) ∗∗(3 ) flip: $)
(metis ∗(2 , 3 ) ∗∗(2 , 3 ) front-tickFree-append

map-eventptick-tickFree tickFree-append-iff )
next

fix x assume ∗∗∗ : ‹isInfHidden-seqRun-strong x P A u›
have ‹isInfHidden-seqRun (ev ◦ of-ev ◦ x) (?RT P) A (?map u)›
proof (intro allI conjI )

fix i
have ‹seqRun (?map u) (ev ◦ of-ev ◦ x) i = ?map (seqRun u x i)›

by (simp add: seqRun-def image-iff ev-eq-map-eventptick-iff )
(metis ∗∗∗ eventptick.sel(1 ) imageE)

also have ‹?map (seqRun u x i) ∈ T (?RT P)›
unfolding T-Renaming using ∗∗∗ Un-iff by blast

finally show ‹seqRun (?map u) (ev ◦ of-ev ◦ x) i ∈ T (?RT P)› .
next

show ‹(ev ◦ of-ev ◦ x) i ∈ ev ‘ A› for i
by (metis ∗∗∗ comp-apply eventptick.sel(1 ) image-iff )

qed
thus ‹t ∈ D ?rhs›

by (simp (no-asm) add: D-Hiding-seqRun ∗(1 ) ∗∗(3 ) flip: $)
(metis ∗(2 , 3 ) ∗∗(2 , 3 ) front-tickFree-append

map-eventptick-tickFree tickFree-append-iff )
qed

next
fix t assume ‹t ∈ D ?rhs›
then obtain u v where ∗ : ‹ftF v› ‹tF u› ‹t = ?th-A u @ v›

‹u ∈ D (?RT P) ∨ (∃ x. isInfHidden-seqRun-strong x (?RT P) A u)›
by (blast elim: D-Hiding-seqRunE)

from ∗(4 ) show ‹t ∈ D ?lhs›
proof (elim disjE exE)

assume ‹u ∈ D (?RT P)›
then obtain u1 u2 where ∗∗ : ‹u = ?map u1 @ u2 ›
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‹tF u1 › ‹ftF u2 › ‹u1 ∈ D P› unfolding D-Renaming by blast
from mem-D-imp-mem-D-Hiding ∗∗(4 ) have ‹?th-A u1 ∈ D (P \ A)› .
thus ‹t ∈ D ?lhs›

by (simp add: D-Renaming ∗(3 ) ∗∗(1 ) $)
(metis ∗(1 , 2 ) ∗∗(1 , 2 ) Hiding-tickFree

front-tickFree-append tickFree-append-iff )
next

fix x assume ∗∗ : ‹isInfHidden-seqRun-strong x (?RT P) A u›
hence ‹∀ i. ∃ v. seqRun u x i = ?map v ∧ v ∈ T P›

unfolding Renaming-projs by blast
then obtain f where ∗∗∗ : ‹seqRun u x i = ?map (f i)› ‹f i ∈ T P› for i

by metis
have ‹tF (f i)› for i

by (metis isInfHidden-seqRun-imp-tickFree-seqRun
∗∗ ∗∗∗(1 ) map-eventptick-tickFree)

hence ‹?map (f i) = map (ev ◦ of-ev) (f i)› for i
by (simp add: tickFree-map-map-eventptick-is)

from ∗∗∗(1 )[unfolded this]
have ‹map (ev ◦ of-ev) (seqRun u x i) =

(map (ev ◦ of-ev) (map (ev ◦ of-ev) (f i)) :: ( ′a, ′r) traceptick)› for i by
simp

also have ‹map (ev ◦ of-ev) (map (ev ◦ of-ev) (f i)) = f i› for i
using ‹

∧
i. tF (f i)›[of i]

by (auto simp add: tickFree-iff-is-map-ev)
finally have ‹f i = map (ev ◦ of-ev) (seqRun u x i)› for i by (rule sym)
hence ∗∗∗∗ : ‹f i = seqRun (f 0 ) (ev ◦ of-ev ◦ x) i› for i

by (simp add: seqRun-def ∗∗∗(1 ))
have ‹isInfHidden-seqRun (ev ◦ of-ev ◦ x) P A (f 0 )›
proof (intro allI conjI )
show ‹seqRun (f 0 ) (ev ◦ of-ev ◦ x) i ∈ T P› for i by (metis ∗∗∗(2 ) ∗∗∗∗)

next
show ‹(ev ◦ of-ev ◦ x) i ∈ ev ‘ A› for i

using ∗∗[THEN spec, of i] by auto
qed
with ‹

∧
i. tF (f i)› have ‹?th-A (f 0 ) ∈ D (P \ A)›

by (simp add: D-Hiding-seqRun)
(metis append.right-neutral comp-apply front-tickFree-Nil)

moreover have ‹?th-A u = ?map (?th-A (f 0 ))›
by (metis $ ∗∗∗(1 ) seqRun-0 )

ultimately show ‹t ∈ D ?lhs›
by (simp add: D-Renaming ∗(3 ))
(use ∗(1 ) Hiding-tickFree ‹

∧
i. tF (f i)› in blast)

qed
next

fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
then obtain t ′ where ∗ : ‹t = ?map t ′›

‹(t ′, map-eventptick id g −‘ X) ∈ F (P \ A)›
unfolding Renaming-projs by blast

from ∗(2 ) consider ‹t ′ ∈ D (P \ A)›
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| (∗∗) t ′′ where ‹t ′ = ?th-A t ′′›
‹(t ′′, map-eventptick id g −‘ X ∪ ev ‘ A) ∈ F P›

unfolding F-Hiding D-Hiding by blast
thus ‹(t, X) ∈ F ?rhs›
proof cases

assume ‹t ′ ∈ D (P \ A)›
hence ‹tF t ′ ∨ (∃ t ′′ r . t ′ = t ′′ @ [3(r)] ∧ tF t ′′)›

by (metis D-imp-front-tickFree front-tickFree-append-iff
nonTickFree-n-frontTickFree not-Cons-self2 )

with ‹t ′ ∈ D (P \ A)› ‹t /∈ D ?lhs› have False
by (elim disjE exE conjE , simp-all add: D-Renaming ∗(1 ))
(use front-tickFree-Nil in blast, metis front-tickFree-single is-processT9 )

thus ‹(t, X) ∈ F ?rhs› ..
next

case ∗∗
from ∗∗(2 ) have ‹(?map t ′′, X ∪ ev ‘ A) ∈ F (?RT P)›

by (auto simp add: F-Renaming $$)
thus ‹(t, X) ∈ F ?rhs› by (simp add: F-Hiding ∗(1 ) ∗∗(1 )) (metis $)

qed
next

fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs›
then obtain t ′ where ∗ : ‹t = ?th-A t ′› ‹(t ′, X ∪ ev ‘ A) ∈ F (?RT P)›

unfolding F-Hiding D-Hiding by blast
from ∗(2 ) consider ‹t ′ ∈ D (?RT P)›
| (∗∗) t ′′ where ‹t ′ = ?map t ′′›

‹(t ′′, map-eventptick id g −‘ X ∪ map-eventptick id g −‘ ev ‘ A) ∈ F P›
by (auto simp add: Renaming-projs)

thus ‹(t, X) ∈ F ?lhs›
proof cases

assume ‹t ′ ∈ D (?RT P)›
hence ‹tF t ′ ∨ (∃ t ′′ r . t ′ = t ′′ @ [3(r)] ∧ tF t ′′)›

by (metis D-imp-front-tickFree front-tickFree-append-iff
nonTickFree-n-frontTickFree not-Cons-self2 )

with ‹t ′ ∈ D (?RT P)› ‹t /∈ D ?rhs› have False
by (elim disjE exE , auto simp add: D-Hiding-seqRun ∗(1 ) image-iff

intro: front-tickFree-single is-processT9 )
thus ‹(t, X) ∈ F ?lhs› ..

next
case ∗∗
from ∗∗(2 ) have ‹(?th-A t ′′, map-eventptick id g −‘ X) ∈ F (P \ A)›

by (auto simp add: F-Hiding $$)
thus ‹(t, X) ∈ F ?lhs›

by (auto simp add: F-Renaming ∗(1 ) ∗∗(1 ) $)
qed

qed
qed

corollary bij-Renaming-Hiding :
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‹Renaming (P \ S) f g = Renaming P f g \ f ‘ S› (is ‹?lhs = ?rhs›) if ‹bij f ›
— We already have [[bij fa; bij ga]] =⇒ Renaming (Pa \ Sa) fa ga = Renaming

Pa fa ga \ fa ‘ Sa, but he assumption bij g is actually not necessary.
proof −

have ‹?lhs = RenamingTick (RenamingEv (P \ S) f ) g›
by (simp only: RenamingTick-RenamingEv-is-Renaming)

also have ‹. . . = RenamingTick (RenamingEv P f \ f ‘ S) g›
by (simp only: bij-RenamingEv-Hiding[OF ‹bij f ›])

also have ‹. . . = RenamingTick (RenamingEv P f ) g \ f ‘ S›
by (simp only: RenamingTick-Hiding)

also have ‹. . . = ?rhs›
by (simp only: RenamingTick-RenamingEv-is-Renaming)

finally show ‹?lhs = ?rhs› .
qed

lemma Renaming-is-restrictable-on-events-of-strict-ticks-of :
‹Renaming P f g = Renaming P f ′ g ′›
if fun-hyps : ‹

∧
a. a ∈ α(P) =⇒ f a = f ′ a›

‹
∧

r . r ∈ 3s(P) =⇒ g r = g ′ r›
for f f ′ :: ‹ ′a ⇒ ′b› and g g ′ :: ‹ ′r ⇒ ′t›

— probably also possible to strengthen with strict-events-of
proof −

have ∗ : ‹Renaming P f g vFD Renaming P f ′ g ′›
if fun-hyps-bis : ‹

∧
a. a ∈ α(P) =⇒ f a = f ′ a› ‹

∧
r . r ∈ 3s(P) =⇒ g r = g ′ r›

for f f ′ :: ‹ ′a ⇒ ′b› and g g ′ :: ‹ ′r ⇒ ′t›
proof −

have $ : ‹map (map-eventptick f g) u = map (map-eventptick f ′ g ′) u›
if ‹u ∈ T P› and ‹tF u› for u

proof −
from ‹u ∈ T P› have ‹ev a ∈ set u =⇒ a ∈ α(P)› for a

by (meson events-of-memI )
with ‹tF u› show ‹map (map-eventptick f g) u = map (map-eventptick f ′ g ′)

u›
by (induct u, simp-all)
(metis eventptick.collapse(1 ) eventptick.simps(9 ) fun-hyps-bis(1 ))

qed
have ‹(∀ t. t ∈ D (Renaming P f ′ g ′) −→ t ∈ D (Renaming P f g)) ∧

(∀ t X . (t, X) ∈ F (Renaming P f ′ g ′) −→ t /∈ D (Renaming P f ′ g ′) −→
(t, X) ∈ F (Renaming P f g))›

proof (intro conjI allI impI )
fix t assume ‹t ∈ D (Renaming P f ′ g ′)›
then obtain u1 u2 where ∗ : ‹t = map (map-eventptick f ′ g ′) u1 @ u2 ›

‹tF u1 › ‹ftF u2 › ‹u1 ∈ D P› unfolding D-Renaming by blast
have ‹map (map-eventptick f ′ g ′) u1 = map (map-eventptick f g) u1 ›

by (simp add: ‹tF u1 › $ ∗(4 ) D-T )
with ∗ show ‹t ∈ D (Renaming P f g)›

by (auto simp add: D-Renaming)
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next
fix t X assume ‹(t, X) ∈ F (Renaming P f ′ g ′)› ‹t /∈ D (Renaming P f ′ g ′)›
then obtain u where ∗ : ‹t = map (map-eventptick f ′ g ′) u›

‹(u, map-eventptick f ′ g ′ −‘ X) ∈ F P›
unfolding Renaming-projs by blast

show ‹(t, X) ∈ F (Renaming P f g)›
proof (cases ‹tF u›)

assume ‹tF u›
have ‹(u, map-eventptick f ′ g ′ −‘ X ∪ {ev a |a. a /∈ α(P)} ∪

{3(r) |r . r /∈ 3s(P)}) ∈ F P› (is ‹(u, ?Y ) ∈ F P›)
by (intro is-processT5 , simp-all add: ∗(2 ))
(meson T-F-spec events-of-memI in-set-conv-decomp,

metis (mono-tags, lifting) ∗(1 ) D-Renaming F-imp-front-tickFree T-F-spec
‹t /∈ D (Renaming P f ′ g ′)› append-Nil2 append-T-imp-tickFree

is-processT1
is-processT9 list.simps(3 ) mem-Collect-eq strict-ticks-of-memI )

moreover from fun-hyps-bis
have ‹e ∈ map-eventptick f g −‘ X =⇒ e ∈ ?Y › for e

by (cases e) auto
ultimately have ‹(u, map-eventptick f g −‘ X) ∈ F P›

by (meson is-processT4 subset-eq)
moreover have ‹t = map (map-eventptick f g) u›

by (metis $ ∗ F-T ‹tF u›)
ultimately show ‹(t, X) ∈ F (Renaming P f g)›

by (auto simp add: F-Renaming)
next

assume ‹¬ tF u›
then obtain u ′ r where ‹tF u ′› ‹u = u ′ @ [3(r)]›

by (metis ∗(2 ) F-imp-front-tickFree front-tickFree-append-iff
nonTickFree-n-frontTickFree not-Cons-self2 )

from ∗(2 ) F-T ‹u = u ′ @ [3(r)]› have ‹u ′ @ [3(r)] ∈ T P› by blast
have $$ : ‹map (map-eventptick f ′ g ′) u ′ = map (map-eventptick f g) u ′›

by (metis $ ∗(2 ) F-T ‹tF u ′› ‹u = u ′ @ [3(r)]› is-processT3-TR-append)
have ‹map (map-eventptick f ′ g ′) u ′ @ [3(g ′ r)] ∈ T (Renaming P f g)›
proof (cases ‹r ∈ 3s(P)›)

assume ‹r ∈ 3s(P)›
hence ‹g ′ r = g r› by (simp add: fun-hyps-bis(2 ))
with $$ show ‹map (map-eventptick f ′ g ′) u ′ @ [3(g ′ r)] ∈ T (Renaming

P f g)›
by (simp add: T-Renaming) (use ‹u ′ @ [3(r)] ∈ T P› in auto)

next
assume ‹r /∈ 3s(P)›
hence ‹u ′ ∈ D P›

by (metis ‹u ′ @ [3(r)] ∈ T P› is-processT9 strict-ticks-of-memI )
hence ‹map (map-eventptick f g) u ′ ∈ D (Renaming P f g)›

using D-Renaming F-imp-front-tickFree ‹tF u ′› is-processT1 by blast
with $$ have ‹map (map-eventptick f ′ g ′) u ′ ∈ D (Renaming P f g)› by

presburger
hence ‹map (map-eventptick f ′ g ′) u ′ @ [3(g ′ r)] ∈ D (Renaming P f g)›
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by (simp add: ‹tF u ′› is-processT7 map-eventptick-tickFree)
thus ‹map (map-eventptick f ′ g ′) u ′ @ [3(g ′ r)] ∈ T (Renaming P f g)›

by (simp add: D-T )
qed
hence ‹(map (map-eventptick f ′ g ′) u ′ @ [3(g ′ r)], X) ∈ F (Renaming P f

g)›
by (simp add: tick-T-F)

also have ‹map (map-eventptick f ′ g ′) u ′ @ [3(g ′ r)] = t›
by (simp add: ∗(1 ) ‹u = u ′ @ [3(r)]›)

finally show ‹(t, X) ∈ F (Renaming P f g)› .
qed

qed
thus ‹Renaming P f g vFD Renaming P f ′ g ′›

by (auto simp add: refine-defs intro: is-processT8 )
qed
show ‹Renaming P f g = Renaming P f ′ g ′›
proof (rule FD-antisym)

show ‹Renaming P f g vFD Renaming P f ′ g ′› ‹Renaming P f ′ g ′ vFD

Renaming P f g›
by (simp-all add: ∗ fun-hyps)

qed
qed

corollary Renaming-is-restrictable-on-events-of-ticks-of :
‹[[
∧

a. a ∈ α(P) =⇒ f a = f ′ a;
∧

r . r ∈ 3s(P) =⇒ g r = g ′ r ]]
=⇒ Renaming P f g = Renaming P f ′ g ′›

by (rule Renaming-is-restrictable-on-events-of-strict-ticks-of )
(simp-all add: ticks-of-is-strict-ticks-of-or-UNIV )

corollary RenamingEv-is-restrictable-on-events-of :
‹(
∧

a. a ∈ α(P) =⇒ f a = f ′ a) =⇒ RenamingEv P f = RenamingEv P f ′›
by (fact Renaming-is-restrictable-on-events-of-ticks-of

[of P f f ′ id id, simplified])

corollary RenamingTick-is-restrictable-on-strict-ticks-of :
‹(
∧

r . r ∈ 3s(P) =⇒ g r = g ′ r) =⇒ RenamingTick P g = RenamingTick P g ′›
by (fact Renaming-is-restrictable-on-events-of-strict-ticks-of

[of P id id g g ′, simplified])

corollary RenamingTick-is-restrictable-on-ticks-of :
‹(
∧

r . r ∈ 3s(P) =⇒ g r = g ′ r) =⇒ RenamingTick P g = RenamingTick P g ′›
by (fact Renaming-is-restrictable-on-events-of-ticks-of

[of P id id g g ′, simplified])
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5.3 Renaming and Generalized Synchronization Prod-
uct

lemma (in Syncptick-locale) inj-on-RenamingTick-Syncptick :
‹RenamingTick (P [[S ]]3 Q) g =
Syncptick-locale.Syncptick (λr s. case r ⊗3 s of br-sc ⇒ bg r-sc | ♦ ⇒ ♦) P S

Q›
(is ‹?lhs = ?rhs›)
if inj-on-g : ‹inj-on g range-tick-join›

proof −
let ?map-evt = ‹λg. map (map-eventptick id g)›
let ?tick-join ′ = ‹λr s. case r ⊗3 s of br-sc ⇒ bg r-sc | ♦ ⇒ ♦›
interpret Syncptick ′ : Syncptick-locale ?tick-join ′

by (intro interpretable-inj-on-range-tick-join inj-on-g)
— Thus Syncptick ′.Syncptick P S Q is well defined.

have inj-on-inv-into-g :
‹inj-on (inv-into range-tick-join g) Syncptick ′.range-tick-join›
by (rule inj-onI , simp split: option.split-asm)
(metis (mono-tags, lifting) f-inv-into-f image-eqI mem-Collect-eq)

from inv-into-f-f inj-on-g have expanded-tick-join :
‹(⊗3) = (λr s. case ?tick-join ′ r s of ♦ ⇒ ♦ | br-sc ⇒ binv-into range-tick-join

g r-sc)›
by (fastforce split: split: option.split)

show ‹?lhs = ?rhs›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ?lhs›
then obtain u1 u2 where ∗ : ‹t = map (map-eventptick id g) u1 @ u2 ›

‹tF u1 › ‹ftF u2 › ‹u1 ∈ D (P [[S ]]3 Q)›
unfolding D-Renaming by blast

from ∗(4 ) obtain v1 w1 t-P t-Q
where ∗∗ : ‹u1 = v1 @ w1 › ‹tF v1 › ‹ftF w1 ›

‹v1 setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›

unfolding D-Syncptick by blast
from inj-on-map-map-eventptick-setinterleavesptick[OF inj-on-g ∗∗(4 )]
have ‹?map-evt g v1 setinterleaves3?tick-join ′ ((t-P, t-Q), S)› .
moreover from ∗(1−3 ) ∗∗(1 , 2 )
have ‹t = ?map-evt g v1 @ (?map-evt g w1 @ u2 ) ∧

tF (?map-evt g v1 ) ∧ ftF (?map-evt g w1 @ u2 )›
by (simp add: front-tickFree-append-iff map-eventptick-tickFree)

ultimately show ‹t ∈ D ?rhs›
using ∗∗(5 ) by (simp (no-asm) add: Syncptick ′.D-Syncptick) blast

next
fix t assume ‹t ∈ D ?rhs›
then obtain u v t-P t-Q

where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3?tick-join ′ ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›

unfolding Syncptick ′.D-Syncptick by blast
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from ‹tF u› have ‹e ∈ set u =⇒ map-eventptick id (g ◦ inv-into range-tick-join
g) e = e› for e

by (cases e) (simp-all add: tickFree-def disjoint-iff )
hence ‹t = ?map-evt g (?map-evt (inv-into range-tick-join g) u) @ v›

by (simp add: ∗(1 ) flip: map-eventptick-comp)
(induct u, simp-all)

moreover have ‹tF (?map-evt (inv-into range-tick-join g) u)›
by (simp add: ∗(2 ) map-eventptick-tickFree)

moreover
{

have ‹?map-evt (inv-into range-tick-join g) u =
?map-evt (inv-into range-tick-join g) u @ []› by simp

moreover have ‹tF ((map (map-eventptick id (inv-into range-tick-join g)))
u)›

by (simp add: ∗(2 ) map-eventptick-tickFree)
moreover have ‹ftF []› by simp
moreover from Syncptick ′.inj-on-map-map-eventptick-setinterleavesptick
[OF inj-on-inv-into-g ∗(4 ), folded expanded-tick-join]

have ‹?map-evt (inv-into range-tick-join g) u
setinterleaves3tick-join ((t-P, t-Q), S)› .

ultimately have ‹?map-evt (inv-into range-tick-join g) u ∈ D (P [[S ]]3 Q)›
unfolding D-Syncptick using ∗(5 ) by blast

}
ultimately show ‹t ∈ D ?lhs›

unfolding D-Renaming using ∗(3 ) by blast
next

fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
then obtain u

where ∗ : ‹t = ?map-evt g u› ‹(u, map-eventptick id g −‘ X) ∈ F (P [[S ]]3
Q)›

unfolding Renaming-projs by blast
with ‹t /∈ D ?lhs› obtain t-P t-Q X-P X-Q

where ∗∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹map-eventptick id g −‘ X ⊆ super-ref-Syncptick (⊗3) X-P S X-Q›

by (auto simp add: D-Renaming Syncptick-projs)
(metis append.right-neutral front-tickFree-Nil map-eventptick-front-tickFree)+

have ‹t setinterleaves3?tick-join ′ ((t-P, t-Q), S)›
using ∗(1 ) ∗∗(3 ) inj-on-map-map-eventptick-setinterleavesptick inj-on-g by

blast
moreover from vimage-inj-on-subset-super-ref-Syncptick-iff [OF inj-on-g, THEN

iffD1 , OF ∗∗(4 )]
have ‹X ⊆ super-ref-Syncptick ?tick-join ′ X-P S X-Q› .
ultimately show ‹(t, X) ∈ F ?rhs›

unfolding Syncptick ′.F-Syncptick using ∗∗(1 , 2 ) by fast
next

fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs›
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
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‹t setinterleaves3?tick-join ′ ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick ?tick-join ′ X-P S X-Q›

unfolding Syncptick ′.Syncptick-projs by blast
from Syncptick ′.setinterleavesptick-imp-set-range-tick-join[OF ∗(3 )]
have ‹{r-s. 3(r-s) ∈ set t} ⊆ Syncptick ′.range-tick-join› .
hence ‹e ∈ set t =⇒ map-eventptick id (g ◦ inv-into range-tick-join g) e = e›

for e
by (cases e, auto simp add: subset-iff split: option.split-asm)
(metis (mono-tags, lifting) inv-into-f-f mem-Collect-eq inj-on-g)

hence ‹t = ?map-evt g (?map-evt (inv-into range-tick-join g) t)›
by (simp add: ∗(1 ) flip: map-eventptick-comp)
(induct t, simp-all)

moreover
{ from Syncptick ′.inj-on-map-map-eventptick-setinterleavesptick

[OF inj-on-inv-into-g ∗(3 ), folded expanded-tick-join]
have ‹?map-evt (inv-into range-tick-join g) t

setinterleaves3tick-join ((t-P, t-Q), S)› .
moreover from vimage-inj-on-subset-super-ref-Syncptick-iff
[OF inj-on-g, THEN iffD2 , OF ∗(4 )]

have ‹map-eventptick id g −‘ X ⊆
super-ref-Syncptick (⊗3) X-P S X-Q› .

ultimately have ‹(?map-evt (inv-into range-tick-join g) t,
map-eventptick id g −‘ X) ∈ F (P [[S ]]3 Q)›

by (auto simp add: F-Syncptick ∗(1 , 2 ))
}
ultimately show ‹(t, X) ∈ F ?lhs› unfolding F-Renaming by blast

qed
qed

lemma (in Syncptick-locale) inj-RenamingTick-Syncptick-inj-RenamingTick :
‹RenamingTick P g [[S ]]3 RenamingTick Q h =
Syncptick-locale.Syncptick (λr s. g r ⊗3 h s) P S Q› (is ‹?lhs = ?rhs›)

if ‹inj g› and ‹inj h›

for P :: ‹( ′a, ′r ′) processptick› and Q :: ‹( ′a, ′s ′) processptick›
proof −

interpret tjoin-interpreted : Syncptick-locale ‹λr s. g r ⊗3 h s›
by unfold-locales (meson injD inj-tick-join ‹inj g› ‹inj h›)

let ?map-evt = ‹λg. map (map-eventptick id g)›
let ?map-ev = ‹λt. map ev (map of-ev t)›
let ?RT = RenamingTick
have ∗ : ‹tF t =⇒ ?map-evt g t = ?map-ev t› for t :: ‹( ′a, ′r ′) traceptick›

by (induct t) (auto simp add: is-ev-def )
have ∗∗ : ‹tF t =⇒ ?map-evt h t = ?map-ev t› for t :: ‹( ′a, ′s ′) traceptick›

by (induct t) (auto simp add: is-ev-def )
have ∗∗∗ : ‹t setinterleaves3(⊗3) ((?map-evt g u, ?map-evt h v), S)
←→ t setinterleaves3λr s. g r ⊗3 h s ((u, v), S)› for t u v
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by (induct ‹(λr s. g r ⊗3 h s, u, S , v)› arbitrary: t u v) (auto split: option.split)
have ∗∗∗∗ : ‹?map-evt g t = ?map-evt g t ′ ←→ t = t ′› for t t ′ :: ‹( ′a, ′r ′)

traceptick›
by (rule iffI , induct t arbitrary: t ′, auto)
(metis eventptick.inj-map id-apply inj-def ‹inj g›)

have ∗∗∗∗∗ : ‹?map-evt h t = ?map-evt h t ′ ←→ t = t ′› for t t ′ :: ‹( ′a, ′s ′)
traceptick›

by (rule iffI , induct t arbitrary: t ′, auto)
(metis eventptick.inj-map id-apply inj-def ‹inj h›)

show ‹?lhs = ?rhs›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ?lhs›
then obtain u v t-P ′ t-Q ′ where $ : ‹t = u @ v› ‹tF u› ‹ftF v›

‹u setinterleaves3(⊗3) ((t-P ′, t-Q ′), S)›
‹t-P ′ ∈ D (?RT P g) ∧ t-Q ′ ∈ T (?RT Q h) ∧ t-Q ′ /∈ D (?RT Q h) ∨

t-P ′ ∈ T (?RT P g) ∧ t-P ′ /∈ D (?RT P g) ∧ t-Q ′ ∈ D (?RT Q h) ∨
t-P ′ ∈ D (?RT P g) ∧ t-Q ′ ∈ D (?RT Q h)›
unfolding D-Syncptick by blast

from $(5 ) show ‹t ∈ D ?rhs›
proof (elim disjE conjE)

assume ‹t-P ′ ∈ D (?RT P g)› ‹t-Q ′ ∈ T (?RT Q h)› ‹t-Q ′ /∈ D (?RT Q h)›
then obtain t-P1 t-P2 t-Q
where $$ : ‹t-P ′ = ?map-evt g t-P1 @ t-P2› ‹tF t-P1› ‹ftF t-P2› ‹t-P1 ∈ D

P›
‹t-Q ′ = ?map-evt h t-Q› ‹t-Q ∈ T Q› unfolding Renaming-projs by blast

from $(4 )[unfolded $$(1 ), THEN setinterleavesptick-appendL]
obtain u1 u2 t-Q ′

1 t-Q ′
2 where $$$ : ‹u = u1 @ u2› ‹t-Q ′ = t-Q ′

1 @ t-Q ′
2›

‹u1 setinterleaves3(⊗3) ((?map-evt g t-P1, t-Q ′
1), S)› by blast

obtain t-Q1 t-Q2 where ‹t-Q = t-Q1 @ t-Q2› ‹t-Q ′
1 = ?map-evt h t-Q1›

by (metis $$(5 ) $$$(2 ) map-eq-append-conv)
from $$$(3 )[unfolded this(2 ), THEN ∗∗∗[THEN iffD1 ]]
have ‹u1 setinterleaves3λr s. g r ⊗3 h s ((t-P1, t-Q1), S)› .
moreover from ‹t-Q = t-Q1 @ t-Q2› is-processT3-TR-append $$(6 )
have ‹t-Q1 ∈ T Q› by blast
ultimately show ‹t ∈ D ?rhs›

using $(1−3 ) $$(4 ) $$$(1 ) front-tickFree-append
by (auto simp add: tjoin-interpreted.D-Syncptick)

next
assume ‹t-Q ′ ∈ D (?RT Q h)› ‹t-P ′ ∈ T (?RT P g)› ‹t-P ′ /∈ D (?RT P g)›
then obtain t-Q1 t-Q2 t-P

where $$ : ‹t-Q ′ = ?map-evt h t-Q1 @ t-Q2› ‹tF t-Q1› ‹ftF t-Q2› ‹t-Q1 ∈
D Q›

‹t-P ′ = ?map-evt g t-P› ‹t-P ∈ T P› unfolding Renaming-projs by blast
from $(4 )[unfolded $$(1 ), THEN setinterleavesptick-appendR]
obtain u1 u2 t-P ′

1 t-P ′
2 where $$$ : ‹u = u1 @ u2› ‹t-P ′ = t-P ′

1 @ t-P ′
2›

‹u1 setinterleaves3(⊗3) ((t-P ′
1, ?map-evt h t-Q1), S)› by blast

obtain t-P1 t-P2 where ‹t-P = t-P1 @ t-P2› ‹t-P ′
1 = ?map-evt g t-P1›

by (metis $$(5 ) $$$(2 ) map-eq-append-conv)
from $$$(3 )[unfolded this(2 ), THEN ∗∗∗[THEN iffD1 ]]
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have ‹u1 setinterleaves3λr s. g r ⊗3 h s ((t-P1, t-Q1), S)› .
moreover from ‹t-P = t-P1 @ t-P2› is-processT3-TR-append $$(6 )
have ‹t-P1 ∈ T P› by blast
ultimately show ‹t ∈ D ?rhs›

using $(1−3 ) $$(4 ) $$$(1 ) front-tickFree-append
by (auto simp add: tjoin-interpreted.D-Syncptick)

next
assume ‹t-P ′ ∈ D (?RT P g)› ‹t-Q ′ ∈ D (?RT Q h)›
then obtain t-P1 t-P2 t-Q1 t-Q2

where $$ : ‹t-P ′ = ?map-evt g t-P1 @ t-P2› ‹tF t-P1› ‹ftF t-P2› ‹t-P1 ∈ D
P›

‹t-Q ′ = ?map-evt h t-Q1 @ t-Q2› ‹tF t-Q1› ‹ftF t-Q2› ‹t-Q1 ∈ D Q›
unfolding D-Renaming by blast

from $(4 )[unfolded $$(1 , 5 ), THEN setinterleavesptick-appendL]
obtain u1 u2 t-Q1-bis t-Q2-bis
where $$$ : ‹u = u1 @ u2› ‹?map-evt h t-Q1 @ t-Q2 = t-Q1-bis @ t-Q2-bis›

‹u1 setinterleaves3(⊗3) ((?map-evt g t-P1, t-Q1-bis), S)› by blast
from $$$(2 ) have ‹t-Q1-bis = ?map-evt h (take (length t-Q1-bis) t-Q1) ∨

t-Q1-bis = ?map-evt h t-Q1 @ take (length t-Q1-bis − length t-Q1) t-Q2›
by (cases ‹length t-Q1-bis ≤ length t-Q1›)
(simp-all add: append-eq-append-conv-if take-map split: if-split-asm)

thus ‹t ∈ D ?rhs›
proof (elim disjE)

assume ‹t-Q1-bis = ?map-evt h (take (length t-Q1-bis) t-Q1)›
hence ‹u1 setinterleaves3λr s. g r ⊗3 h s ((t-P1, take (length t-Q1-bis) t-Q1),

S)›
by (metis $$$(3 ) ∗∗∗)

moreover have ‹take (length t-Q1-bis) t-Q1 ∈ T Q›
by (metis $$(8 ) D-T append-take-drop-id is-processT3-TR-append)

ultimately show ‹t ∈ D ?rhs›
using $(1−3 ) $$(4 ) $$$(1 ) front-tickFree-append
by (auto simp add: tjoin-interpreted.D-Syncptick)

next
assume ‹t-Q1-bis = ?map-evt h t-Q1 @ take (length t-Q1-bis − length t-Q1)

t-Q2›
with $$$(3 )
have ‹u1 setinterleaves3(⊗3) ((?map-evt g t-P1,

?map-evt h t-Q1 @ take (length t-Q1-bis − length t-Q1) t-Q2), S)›
by simp

from setinterleavesptick-appendR[OF this] obtain u11 u12 t-P11 t-P12

where $$$$ : ‹u1 = u11 @ u12› ‹?map-evt g t-P1 = t-P11 @ t-P12›
‹u11 setinterleaves3(⊗3) ((t-P11, ?map-evt h t-Q1), S)› by blast

have ‹t-P11 = ?map-evt g (take (length t-P11) t-P1)›
by (metis $$$$(2 ) append-eq-conv-conj take-map)

hence ‹u11 setinterleaves3λr s. g r ⊗3 h s((take (length t-P11) t-P1, t-Q1),

S)›
by (metis $$$$(3 ) ∗∗∗)

moreover have ‹take (length t-P11) t-P1 ∈ T P›
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by (metis $$(4 ) D-T append-take-drop-id is-processT3-TR-append)
ultimately show ‹t ∈ D ?rhs›

by (simp add: tjoin-interpreted.D-Syncptick)
(metis (no-types, lifting) $(1 ,2 ,3 ) $$(8 ) $$$(1 ) $$$$(1 )

append.assoc front-tickFree-append tickFree-append-iff )
qed

qed
next

fix t assume ‹t ∈ D ?rhs›
then obtain u v t-P t-Q where $ : ‹t = u @ v› ‹tF u› ‹ftF v›

‹u setinterleaves3λr s. g r ⊗3 h s ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›
unfolding tjoin-interpreted.D-Syncptick by blast

from tickFree-setinterleavesptick-iff [THEN iffD1 , OF $(4 , 2 )]
have ‹tF t-P› ‹tF t-Q› by simp-all

with $(5 ) have ‹?map-evt g t-P ∈ D (?RT P g) ∧ ?map-evt h t-Q ∈ T (?RT
Q h) ∨

?map-evt g t-P ∈ T (?RT P g) ∧ ?map-evt h t-Q ∈ D (?RT Q h)›
by (simp add: Renaming-projs) (metis append.right-neutral front-tickFree-Nil)

moreover from ∗∗∗[THEN iffD2 , OF $(4 )]
have ‹u setinterleaves3(⊗3) ((?map-evt g t-P, ?map-evt h t-Q), S)› .
ultimately show ‹t ∈ D ?lhs›

using $(1−3 ) by (auto simp add: D-Syncptick)
next

fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
then obtain t-P ′ X-P ′ t-Q ′ X-Q ′

where $ : ‹(t-P ′, X-P ′) ∈ F (?RT P g)› ‹(t-Q ′, X-Q ′) ∈ F (?RT Q h)›
‹t setinterleaves3(⊗3) ((t-P

′, t-Q ′), S)› ‹X ⊆ super-ref-Syncptick (⊗3) X-P ′

S X-Q ′›
unfolding Syncptick-projs by blast

from ‹t /∈ D ?lhs› $(1 , 2 )[THEN F-T ] $(3 )
have ‹t-P ′ /∈ D (?RT P g) ∧ t-Q ′ /∈ D (?RT Q h)›

by (simp add: D-Syncptick ′) (metis append-self-conv front-tickFree-Nil)
with $(1 , 2 ) obtain t-P t-Q

where $$ : ‹t-P ′ = ?map-evt g t-P› ‹(t-P, map-eventptick id g −‘ X-P ′) ∈ F
P›

‹t-Q ′ = ?map-evt h t-Q› ‹(t-Q, map-eventptick id h −‘ X-Q ′) ∈ F Q›
unfolding Renaming-projs by blast

from $(3 )[unfolded $$(1 , 3 ), THEN ∗∗∗[THEN iffD1 ]]
have ‹t setinterleaves3λr s. g r ⊗3 h s ((t-P, t-Q), S)› .
moreover from $(4 ) inj-tick-join
have ‹X ⊆ super-ref-Syncptick (λr s. g r ⊗3 h s)

(map-eventptick id g −‘ X-P ′) S (map-eventptick id h −‘ X-Q ′)›
by (simp add: super-ref-Syncptick-def , safe) blast

ultimately show ‹(t, X) ∈ F ?rhs›
using $$(2 , 4 ) by (auto simp add: tjoin-interpreted.F-Syncptick)

next
fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs›
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then obtain t-P t-Q X-P X-Q
where $ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›

‹t setinterleaves3λr s. g r ⊗3 h s ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick (λr s. g r ⊗3 h s) X-P S X-Q›

unfolding tjoin-interpreted.Syncptick-projs by blast
from ‹t /∈ D ?rhs› have ‹t-P /∈ D P ∧ t-Q /∈ D Q›

by (simp add: tjoin-interpreted.D-Syncptick ′)
(metis $(1−3 ) F-T append.right-neutral front-tickFree-Nil)

hence $$ : ‹t-P @ [3(r)] ∈ T P =⇒ r ∈ 3s(P)›
‹t-Q @ [3(s)] ∈ T Q =⇒ s ∈ 3s(Q)› for r s
by (meson is-processT9 strict-ticks-of-memI )+

have $$$ : ‹?map-evt g t-P @ [3(g-r)] ∈ T (?RT P g) ←→ (∃ r . g-r = g r ∧
t-P @ [3(r)] ∈ T P)› for g-r

proof (rule iffI )
from ‹t-P /∈ D P ∧ t-Q /∈ D Q› have ‹?map-evt g t-P /∈ D (?RT P g)›

by (simp add: D-Renaming map-eq-append-conv ∗∗∗∗)
(use is-processT7 map-eventptick-front-tickFree in blast)

hence ‹?map-evt g t-P @ [3(g-r)] /∈ D (?RT P g)› by (meson is-processT9 )
moreover assume ‹?map-evt g t-P @ [3(g-r)] ∈ T (?RT P g)›
ultimately show ‹?map-evt g t-P @ [3(g-r)] ∈ T (?RT P g) =⇒ ∃ r . g-r =

g r ∧ t-P @ [3(r)] ∈ T P›
by (auto simp add: Renaming-projs append-eq-map-conv tick-eq-map-eventptick-iff

∗∗∗∗)
next

show ‹∃ r . g-r = g r ∧ t-P @ [3(r)] ∈ T P =⇒ ?map-evt g t-P @ [3(g-r)]
∈ T (?RT P g)›

by (auto simp add: T-Renaming)
qed
have $$$$ : ‹?map-evt h t-Q @ [3(h-s)] ∈ T (?RT Q h) ←→ (∃ s. h-s = h s ∧

t-Q @ [3(s)] ∈ T Q)› for h-s
proof (rule iffI )

from ‹t-P /∈ D P ∧ t-Q /∈ D Q› have ‹?map-evt h t-Q /∈ D (?RT Q h)›
by (simp add: D-Renaming map-eq-append-conv ∗∗∗∗∗)
(use is-processT7 map-eventptick-front-tickFree in blast)

hence ‹?map-evt h t-Q @ [3(h-s)] /∈ D (?RT Q h)› by (meson is-processT9 )
moreover assume ‹?map-evt h t-Q @ [3(h-s)] ∈ T (?RT Q h)›
ultimately show ‹?map-evt h t-Q @ [3(h-s)] ∈ T (?RT Q h) =⇒ ∃ s. h-s =

h s ∧ t-Q @ [3(s)] ∈ T Q›
by (auto simp add: Renaming-projs append-eq-map-conv tick-eq-map-eventptick-iff

∗∗∗∗∗)
next

show ‹∃ s. h-s = h s ∧ t-Q @ [3(s)] ∈ T Q =⇒ ?map-evt h t-Q @ [3(h-s)]
∈ T (?RT Q h)›

by (auto simp add: T-Renaming)
qed

define X-P ′ where ‹X-P ′≡ map-eventptick id g ‘ X-P ∪ {3(g-r) |g-r . ?map-evt
g t-P @ [3(g-r)] /∈ T (?RT P g)}›

define X-Q ′ where ‹X-Q ′≡ map-eventptick id h ‘ X-Q ∪ {3(h-s) |h-s. ?map-evt
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h t-Q @ [3(h-s)] /∈ T (?RT Q h)}›

have ‹map-eventptick id g −‘ (map-eventptick id g ‘ X-P) = X-P›
‹map-eventptick id h −‘ (map-eventptick id h ‘ X-Q) = X-Q›
by (simp-all add: set-eq-iff image-iff )
(metis eventptick.inj-map injD inj-on-id ‹inj g›,

metis eventptick.inj-map injD inj-on-id ‹inj h›)
with $(1 , 2 ) have ‹(?map-evt g t-P, map-eventptick id g ‘ X-P) ∈ F (?RT P

g)›
‹(?map-evt h t-Q, map-eventptick id h ‘ X-Q) ∈ F (?RT Q h)›
by (auto simp add: F-Renaming)

hence ‹(?map-evt g t-P, X-P ′) ∈ F (?RT P g)›
‹(?map-evt h t-Q, X-Q ′) ∈ F (?RT Q h)›
by (auto simp add: X-P ′-def X-Q ′-def intro: is-processT5 F-T )

moreover have ‹t setinterleaves3(⊗3) ((?map-evt g t-P, ?map-evt h t-Q), S)›
by (simp add: $(3 ) ∗∗∗)

moreover have ‹e ∈ X =⇒ e ∈ super-ref-Syncptick (⊗3) X-P ′ S X-Q ′› for e
using $(4 )[THEN set-mp, of e]
by (cases e,

simp-all add: X-P ′-def X-Q ′-def super-ref-Syncptick-def image-iff
ev-eq-map-eventptick-iff tick-eq-map-eventptick-iff $$$ $$$$)

metis
ultimately show ‹(t, X) ∈ F ?lhs› by (simp add: F-Syncptick) blast

qed
qed
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Chapter 6

Commutativity and
Associativity of
Synchronization

6.1 Commutativity
6.1.1 Motivation

The classical synchronization product is commutative: P [[A]] Q = Q [[A]]
P but in our generalization such a law cannot be obtained in all generality.
Imagine for example that the (⊗3) parameter is actually λr s. b(r , s)c: we
easily figure out that in this case the corresponding law should be something
like P [[A]]3P air Q = TickSwap (Q [[A]]3P air P). More generally, in the
locale, when writing P [[A]]3 Q, P is of type ( ′a, ′r) processptick while Q is
of type ( ′a, ′s) processptick so we want to find an abstract setup in which we
can establish a quasi-commutativity. This is done in the next subsection.

6.1.2 Formalization
locale Syncptick-comm-locale =

Syncptick-locale ‹(⊗3)› for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option› (infixl ‹⊗3› 100 )
+
fixes tick-join-rev :: ‹ ′s ⇒ ′r ⇒ ′u option› (infixl ‹⊗3rev› 100 )

and tick-join-conv :: ‹ ′t ⇒ ′u› (‹⊗3⇒⊗3rev›)
and tick-join-rev-conv :: ‹ ′u ⇒ ′t› (‹⊗3rev⇒⊗3›)

assumes tick-join-None-iff :
‹r ⊗3 s = ♦ ←→ s ⊗3rev r = ♦›
and tick-join-Some-imp :
‹r ⊗3 s = br-sc =⇒ s ⊗3rev r = b⊗3⇒⊗3rev r-sc›
and tick-join-rev-Some-imp :
‹s ⊗3rev r = bs-rc =⇒ r ⊗3 s = b⊗3rev⇒⊗3 s-rc›

begin
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There is an obvious symmetry over the variables.

sublocale Syncptick-comm-locale-sym :
Syncptick-comm-locale ‹(⊗3rev)› ‹(⊗3)› ‹⊗3rev⇒⊗3› ‹⊗3⇒⊗3rev›

proof unfold-locales
show ‹s ⊗3rev r = bs-rc =⇒ s ′ ⊗3rev r ′ = bs-rc

=⇒ s ′ = s ∧ r ′ = r› for s r s-r s ′ r ′

using inj-tick-join tick-join-rev-Some-imp by blast
next

show ‹s ⊗3rev r = ♦ ←→ r ⊗3 s = ♦› for s r
by (simp add: tick-join-None-iff )

next
show ‹s ⊗3rev r = bs-rc =⇒ r ⊗3 s = b⊗3rev⇒⊗3 s-rc› for s r s-r

by (simp add: tick-join-rev-Some-imp)
next

show ‹r ⊗3 s = br-sc =⇒ s ⊗3rev r = b⊗3⇒⊗3rev r-sc› for r s r-s
by (simp add: tick-join-Some-imp)

qed

notation Syncptick-comm-locale-sym.Syncptick (‹(- [[-]]3rev -)› [70 , 0 , 71 ] 70 )
notation Syncptick-comm-locale-sym.Interptick (‹(- |||3rev -)› [72 , 73 ] 72 )
notation Syncptick-comm-locale-sym.Parptick (‹(- ||3rev -)› [74 , 75 ] 74 )

6.1.3 First Properties
lemma tick-join-conv-image-range-tick-join :

‹⊗3⇒⊗3rev ‘ range-tick-join = Syncptick-comm-locale-sym.range-tick-join›
by (simp add: set-eq-iff flip: setcompr-eq-image)
(metis option.inject tick-join-Some-imp tick-join-rev-Some-imp)

lemma tick-join-rev-conv-comp-tick-join-conv [simp] :
‹r-s ∈ range-tick-join =⇒ ⊗3rev⇒⊗3 (⊗3⇒⊗3rev r-s) = r-s›
using tick-join-Some-imp tick-join-rev-Some-imp by fastforce

lemma inj-on-tick-join-conv : ‹inj-on ⊗3⇒⊗3rev range-tick-join›
by (rule inj-onI , simp)
(metis option.inject tick-join-Some-imp tick-join-rev-Some-imp)

lemma bij-betw-tick-join-conv :
‹bij-betw ⊗3⇒⊗3rev range-tick-join Syncptick-comm-locale-sym.range-tick-join›

proof (rule bij-betw-imageI )
show ‹inj-on ⊗3⇒⊗3rev range-tick-join›

by (fact inj-on-tick-join-conv)
next
show ‹⊗3⇒⊗3rev ‘ range-tick-join = Syncptick-comm-locale-sym.range-tick-join›

using tick-join-conv-image-range-tick-join by blast
qed
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lemma map-tick-join-rev-conv-map-tick-join-conv :
‹{r-s. 3(r-s) ∈ set t} ⊆ range-tick-join =⇒
map (map-eventptick id ⊗3rev⇒⊗3) (map (map-eventptick id ⊗3⇒⊗3rev) t)

= t›
proof (induct t)

case Nil show ?case by simp
next

let ?f1 = ‹map-eventptick id ⊗3⇒⊗3rev›
let ?f2 = ‹map-eventptick id ⊗3rev⇒⊗3›
case (Cons e t)
have ‹map ?f2 (map ?f1 (e # t)) = ?f2 (?f1 e) # map ?f2 (map ?f1 t)› by simp
also have ‹?f2 (?f1 e) = e›
proof (cases e)

show ‹e = ev a =⇒ ?f2 (?f1 e) = e› for a by simp
next

fix r-s assume ‹e = 3(r-s)›
with Cons.prems have ‹r-s ∈ range-tick-join› by auto
with ‹e = 3(r-s)› inj-on-tick-join-conv
show ‹?f2 (?f1 e) = e› by simp

qed
also have ‹map ?f2 (map ?f1 t) = t›

by (rule Cons.hyps) (use Cons.prems in auto)
finally show ‹map ?f2 (map ?f1 (e # t)) = e # t› .

qed

end

6.1.4 Commutativity
context Syncptick-comm-locale begin

lemma setinterleavesptick-imp-setinterleavesptick-rev :
‹t setinterleaves3(⊗3) ((u, v), A) =⇒
map (map-eventptick id ⊗3⇒⊗3rev) t
setinterleaves3(⊗3rev) ((v, u), A)›

— Finally not used, and probably obtainable as a corollary of t setinterleaves3(⊗3)
((u, v), A) =⇒ map (map-eventptick id ⊗3⇒⊗3rev) t setinterleaves3λr s. case r ⊗3 s of ♦ ⇒ ♦ | br-sc ⇒ b⊗3⇒⊗3rev r-sc
((u, v), A)
proof (induct ‹((⊗3), u, A, v)› arbitrary: t u v)

case (tick-setinterleavingptick-tick r u s v)
from tick-setinterleavingptick-tick.prems
obtain r-s t ′

where ∗ : ‹r ⊗3 s = br-sc› ‹t = 3(r-s) # t ′›
‹t ′ setinterleaves3(⊗3) ((u, v), A)›

by (auto split: option.split-asm)
from tick-setinterleavingptick-tick.hyps[OF ∗(1 ), OF ∗(3 )]
have ‹map (map-eventptick id ⊗3⇒⊗3rev) t ′

setinterleaves3(⊗3rev) ((v, u), A)› .
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moreover from tick-join-Some-imp[OF ∗(1 )]
have ‹s ⊗3rev r = b⊗3⇒⊗3rev r-sc› .
ultimately show ‹map (map-eventptick id ⊗3⇒⊗3rev) t

setinterleaves3(⊗3rev) ((3(s) # v, 3(r) # u), A)›
by (simp add: ∗(1 , 2 ))

qed auto

lemma vimage-tick-join-rev-conv-subset-super-ref-Syncptick-iff :
‹map-eventptick id ⊗3rev⇒⊗3 −‘ X ⊆ super-ref-Syncptick (⊗3rev) X-Q A X-P
←→ X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q›
(is ‹?lhs1 ⊆ ?lhs2 ←→ X ⊆ ?rhs›)
— Same: finally not used, and probably obtainable as a corollary of (map-eventptick

id ⊗3rev⇒⊗3 −‘ ?X ⊆ super-ref-Syncptick (⊗3rev) ?X-P ?A ?X-Q) = (?X ⊆
super-ref-Syncptick (λr s. case r ⊗3rev s of ♦ ⇒ ♦ | br-sc ⇒ b⊗3rev⇒⊗3 r-sc)
?X-P ?A ?X-Q).
proof −

have ∗ : ‹(λr s. case r ⊗3rev s of ♦ ⇒ ♦ | br-sc ⇒ b⊗3rev⇒⊗3 r-sc) =
(λs r . r ⊗3 s)›

by (intro ext, simp split: option.split)
(metis tick-join-None-iff tick-join-rev-Some-imp)

show ?thesis
proof (subst Syncptick-comm-locale-sym.vimage-inj-on-subset-super-ref-Syncptick-iff )

show ‹inj-on ⊗3rev⇒⊗3 Syncptick-comm-locale-sym.range-tick-join›
by (fact Syncptick-comm-locale-sym.inj-on-tick-join-conv)

next
show ‹X ⊆ super-ref-Syncptick

(λr s. case r ⊗3rev s of ♦ ⇒ ♦ | br-sc ⇒ b⊗3rev⇒⊗3 r-sc) X-Q A
X-P

←→ X ⊆ super-ref-Syncptick (⊗3) X-P A X-Q›
using super-ref-Syncptick-sym by (simp add: ∗) blast

qed
qed

In the end, the proof is quite simple: mainly a corollary of inj-on g range-tick-join
=⇒ RenamingTick (P [[S ]]3 Q) g = Syncptick-locale.Syncptick (λr s. case r
⊗3 s of ♦ ⇒ ♦ | br-sc ⇒ bg r-sc) P S Q.
theorem Syncptick-commute :

‹RenamingTick (P [[A]]3 Q) ⊗3⇒⊗3rev = Q [[A]]3rev P›
proof −

from inj-on-RenamingTick-Syncptick[OF inj-on-tick-join-conv]
have ‹RenamingTick (P [[A]]3 Q) ⊗3⇒⊗3rev =

Syncptick-locale.Syncptick
(λr s. case r ⊗3 s of ♦ ⇒ ♦ | br-sc ⇒ b⊗3⇒⊗3rev r-sc) P A Q›

(is ‹- = Syncptick-locale.Syncptick ?tick-join ′ P A Q›) .
also have ‹?tick-join ′ = (λr s. s ⊗3rev r)›

by (intro ext)
(simp add: Syncptick-comm-locale-sym.tick-join-rev-Some-imp

tick-join-None-iff split: option.split)
finally show ‹RenamingTick (P [[A]]3 Q) ⊗3⇒⊗3rev = Q [[A]]3rev P›

136



by (metis Syncptick-comm-locale-sym.Syncptick-sym)
qed

end

6.2 Associativity
6.2.1 Motivation

The classical synchronization product is associative: P [[A]] (Q [[A]] R) = P
[[A]] Q [[A]] R but in our generalization such a law cannot be obtained in all
generality. We already encountered a similar issue for the commutativity:
we have to find a setup in which the different combinations of the ticks that
we need make sense, and prove the quasi-associativity.

6.2.2 Formalization
locale Syncptick-assoc-locale =

Syncptick1 : Syncptick-locale ‹(⊗31 )› +
Syncptick2 : Syncptick-locale ‹(⊗32 )› +
Syncptick3 : Syncptick-locale ‹(⊗33 )› +
Syncptick4 : Syncptick-locale ‹(⊗34 )›
for tick-join1 :: ‹ ′r ⇒ ′s ⇒ ′t option› (infixl ‹⊗31 › 100 )

and tick-join2 :: ‹ ′t ⇒ ′u ⇒ ′v option› (infixl ‹⊗32 › 100 )
and tick-join3 :: ‹ ′r ⇒ ′w ⇒ ′x option› (infixl ‹⊗33 › 100 )
and tick-join4 :: ‹ ′s ⇒ ′u ⇒ ′w option› (infixl ‹⊗34 › 100 ) +

fixes tick-assoc-ren :: ‹ ′v ⇒ ′x› (‹⊗32⇒⊗33 ›)
and tick-assoc-ren-conv :: ‹ ′x ⇒ ′v› (‹⊗33⇒⊗32 ›)

assumes None-assms-tick-join :
‹r ⊗31 s = ♦ =⇒ s ⊗34 u = ♦ ∨ r ⊗33 ds ⊗34 ue = ♦›
‹r ⊗31 s 6= ♦ =⇒ dr ⊗31 se ⊗32 u = ♦ =⇒ s ⊗34 u = ♦ ∨ r ⊗33 ds ⊗34

ue = ♦›
‹s ⊗34 u = ♦ =⇒ r ⊗31 s = ♦ ∨ dr ⊗31 se ⊗32 u = ♦›
‹s ⊗34 u 6= ♦ =⇒ r ⊗33 ds ⊗34 ue = ♦ =⇒ r ⊗31 s = ♦ ∨ dr ⊗31 se ⊗32

u = ♦›
and tick-assoc-ren-hyp :
‹r ⊗31 s = btc =⇒ t ⊗32 u = bvc =⇒ dr ⊗33 ds ⊗34 uee = ⊗32⇒⊗33 v›
and tick-assoc-ren-conv-hyp :
‹s ⊗34 u = bwc =⇒ r ⊗33 w = bxc =⇒ ddr ⊗31 se ⊗32 ue = ⊗33⇒⊗32

x›
begin

There is a symmetry over the variables.
sublocale Syncptick-assoc-locale-sym :

Syncptick-assoc-locale ‹λu s. s ⊗34 u› ‹λw r . r ⊗33 w› ‹λu t. t ⊗32 u›
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‹λs r . r ⊗31 s› ‹⊗33⇒⊗32 › ‹⊗32⇒⊗33 ›
by unfold-locales
(fact None-assms-tick-join tick-assoc-ren-hyp tick-assoc-ren-conv-hyp)+

end

6.2.3 First Properties
lemma (in Syncptick-assoc-locale) tick-assoc-ren-tick-assoc-ren-conv :

‹∃ r s u w. s ⊗34 u = bwc ∧ r ⊗33 w = bxc =⇒
⊗32⇒⊗33 (⊗33⇒⊗32 x) = x›

by (metis None-assms-tick-join(1 ,2 ) option.collapse option.distinct(1 )
option.sel tick-assoc-ren-hyp tick-assoc-ren-conv-hyp)

lemma (in Syncptick-assoc-locale) tick-assoc-ren-conv-tick-assoc-ren :
‹∃ r s t u. r ⊗31 s = btc ∧ t ⊗32 u = bvc =⇒ ⊗33⇒⊗32 (⊗32⇒⊗33 v) =

v›
by (metis Syncptick-assoc-locale-sym.tick-assoc-ren-tick-assoc-ren-conv)

lemma (in Syncptick-assoc-locale) inj-on-tick-assoc-ren :
‹inj-on ⊗32⇒⊗33 {v. ∃ r s t u. r ⊗31 s = btc ∧ t ⊗32 u = bvc}›
by (rule inj-onI , simp) (metis tick-assoc-ren-conv-tick-assoc-ren)

lemma (in Syncptick-assoc-locale) inj-on-tick-assoc-ren-conv :
‹inj-on ⊗33⇒⊗32 {x. ∃ r s u w. s ⊗34 u = bwc ∧ r ⊗33 w = bxc}›
by (rule inj-onI , simp) (metis tick-assoc-ren-tick-assoc-ren-conv)

6.2.4 Associativity for the Traces
lemma (in Syncptick-assoc-locale) setinterleavesptick-assoc-left :

‹[[tt setinterleaves3(⊗31 ) ((tr, ts), A);

tv setinterleaves3(⊗32 ) ((tt, tu), A)]] =⇒
∃ tw. map (map-eventptick id ⊗32⇒⊗33 ) tv setinterleaves3(⊗33 ) ((tr, tw),

A) ∧
tw setinterleaves3(⊗34 ) ((ts, tu), A)›

proof −
let ?map = ‹λt. map ev (map of-ev t)›
let ?map-event = ‹λt. map (map-eventptick id ⊗32⇒⊗33 ) t›
show ‹[[tt setinterleaves3(⊗31 ) ((tr, ts), A);

tv setinterleaves3(⊗32 ) ((tt, tu), A)]] =⇒ ?thesis›
proof (induct ‹((⊗32 ), tt, A, tu)› arbitrary: tr ts tt tu tv)

case Nil-setinterleavingptick-Nil
thus ?case

by (cases tr; cases ts)
(auto intro: Nil-setinterleavesptick simp add: setinterleavingptick-simps

split: if-split-asm eventptick.split-asm option.split-asm)
next

case (ev-setinterleavingptick-Nil a tt)
from ev-setinterleavingptick-Nil.prems(2 )
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have ‹a /∈ A› ‹tF tt› ‹set tt ∩ ev ‘ A = {}› ‹tv = ?map (ev a # tt)›
and $ : ‹?map tt setinterleaves3(⊗32 ) ((tt, []), A)›
by (auto simp add: setinterleavesptick-NilR-iff split: if-split-asm)

from ev-setinterleavingptick-Nil.prems(1 )
consider (mv-left) tr ′ where ‹tr = ev a # tr ′› ‹tt setinterleaves3(⊗31 ) ((tr ′,

ts), A)›
| (mv-right) ts ′ where ‹ts = ev a # ts ′› ‹tt setinterleaves3(⊗31 ) ((tr, ts ′),

A)›
by (auto simp add: ‹a /∈ A› elim: Cons-ev-setinterleavesptickE)

thus ?case
proof cases

case mv-left
from ev-setinterleavingptick-Nil.hyps[OF ‹a /∈ A› mv-left(2 ) $]
obtain tw where ∗ : ‹?map-event (?map tt) setinterleaves3(⊗33 )((tr

′, tw),
A)›

‹tw setinterleaves3(⊗34 ) ((ts, []), A)› by blast
from ∗(1 ) have ‹?map-event tv setinterleaves3(⊗33 ) ((tr, tw), A)›

by (cases tw, auto simp add: mv-left(1 ) ‹a /∈ A› ‹tv = ?map (ev a # tt)›
setinterleavingptick-simps split: eventptick.split)

with ∗(2 ) show ?thesis by blast
next

case mv-right
from ev-setinterleavingptick-Nil.hyps[OF ‹a /∈ A› mv-right(2 ) $]
obtain tw where ∗ : ‹?map-event (?map tt) setinterleaves3(⊗33 ) ((tr, tw),

A)›
‹tw setinterleaves3(⊗34 ) ((ts ′, []), A)› by blast

from ∗(2 ) have ‹ev a # tw setinterleaves3(⊗34 ) ((ts, []), A)›
by (simp add: ‹a /∈ A› ‹tv = ?map (ev a # tt)› mv-right(1 ))

moreover from ∗(1 )
have ‹?map-event tv setinterleaves3(⊗33 ) ((tr, ev a # tw), A)›

by (cases tr, auto simp add: ‹a /∈ A› ‹tv = ?map (ev a # tt)› setinterleav-
ingptick-simps

split: eventptick.split)
ultimately show ?thesis by blast

qed
next

case (tick-setinterleavingptick-Nil r tt)
from tick-setinterleavingptick-Nil.prems(2 ) have False by simp
thus ?case ..

next
case (Nil-setinterleavingptick-ev b tu)

from Nil-setinterleavingptick-ev.prems(1 )[THEN setinterleavesptick-imp-lengthLR-le]
have ‹tr = []› ‹ts = []› by simp-all
from Nil-setinterleavingptick-ev.prems(2 )
have ‹b /∈ A› ‹tF tu› ‹set tu ∩ ev ‘ A = {}› ‹tv = ?map (ev b # tu)›

and $ : ‹?map tu setinterleaves3(⊗32 ) (([], tu), A)›
by (auto simp add: setinterleavesptick-NilL-iff split: if-split-asm)
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from Nil-setinterleavingptick-ev.hyps[OF ‹b /∈ A› Nil-setinterleavingptick-ev.prems(1 )
$]

obtain tw where ‹?map-event (?map tu) setinterleaves3(⊗33 ) ((tr, tw), A)›
‹tw setinterleaves3(⊗34 ) ((ts, tu), A)› by blast

hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, ev b # tw), A) ∧
ev b # tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)›

by (simp add: ‹tv = ?map (ev b # tu)› ‹tr = []› ‹ts = []› ‹b /∈ A›)
thus ?case ..

next
case (Nil-setinterleavingptick-tick ru tu)
from Nil-setinterleavingptick-tick.prems(2 ) have False by simp
thus ?case ..

next
case (ev-setinterleavingptick-ev a tt b tu)
from ev-setinterleavingptick-ev.prems(2 )
consider (mv-both) tv ′ where ‹a ∈ A› ‹b ∈ A› ‹a = b› ‹tv = ev b # tv ′› ‹tv ′

setinterleaves3(⊗32 ) ((tt, tu), A)›
| (mvR-inL) tv ′ where ‹a ∈ A› ‹b /∈ A› ‹tv = ev b # tv ′› ‹tv ′ setinter-

leaves3(⊗32 ) ((ev a # tt, tu), A)›
| (mvL-inR) tv ′ where ‹a /∈ A› ‹b ∈ A› ‹tv = ev a # tv ′› ‹tv ′ setinter-

leaves3(⊗32 ) ((tt, ev b # tu), A)›
| (mvR-notin) tv ′ where ‹a /∈ A› ‹b /∈ A› ‹tv = ev b # tv ′› ‹tv ′

setinterleaves3(⊗32 ) ((ev a # tt, tu), A)›
| (mvL-notin) tv ′ where ‹a /∈ A› ‹b /∈ A› ‹tv = ev a # tv ′› ‹tv ′

setinterleaves3(⊗32 ) ((tt, ev b # tu), A)›
by (auto split: if-split-asm)

thus ?case
proof cases

case mv-both
from ev-setinterleavingptick-ev.prems(1 )
obtain tr ′ ts ′ where ‹tr = ev a # tr ′› ‹ts = ev a # ts ′›

‹tt setinterleaves3(⊗31 ) ((tr ′, ts ′), A)›
by (auto simp add: ‹a ∈ A› elim: Cons-ev-setinterleavesptickE)

from ev-setinterleavingptick-ev.hyps(1 )[OF mv-both(1−3 ) ‹tt setinterleaves3(⊗31 )
((tr ′, ts ′), A)› mv-both(5 )]

obtain tw where ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr ′, tw), A)›
‹tw setinterleaves3(⊗34 ) ((ts ′, tu), A)› by blast

hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, ev a # tw), A) ∧
ev a # tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)›

by (simp add: mv-both(2−4 ) ‹ts = ev a # ts ′› ‹tr = ev a # tr ′›)
thus ?thesis ..

next
case mvR-inL
from ev-setinterleavingptick-ev.prems(1 )
obtain tr ′ ts ′ where ‹tr = ev a # tr ′› ‹ts = ev a # ts ′›

‹tt setinterleaves3(⊗31 ) ((tr ′, ts ′), A)›
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by (auto simp add: ‹a ∈ A› elim: Cons-ev-setinterleavesptickE)
from ev-setinterleavingptick-ev.hyps(2 )[OF mvR-inL(1 , 2 ) ev-setinterleavingptick-ev.prems(1 )

mvR-inL(4 )]
obtain tw where ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr, tw), A)›

‹tw setinterleaves3(⊗34 ) ((ts, tu), A)› by blast
hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, ev b # tw), A) ∧

ev b # tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)›
by (simp add: ‹tr = ev a # tr ′› ‹ts = ev a # ts ′› mvR-inL(1−3 ))

thus ?thesis ..
next

case mvL-inR
from ev-setinterleavingptick-ev.prems(1 )

consider (mv-left) tr ′ where ‹tr = ev a # tr ′› ‹tt setinterleaves3(⊗31 ) ((tr
′,

ts), A)›
| (mv-right) ts ′ where ‹ts = ev a # ts ′› ‹tt setinterleaves3(⊗31 ) ((tr, ts ′),

A)›
by (auto simp add: ‹a /∈ A› elim: Cons-ev-setinterleavesptickE)

thus ?thesis
proof cases

case mv-left
from ev-setinterleavingptick-ev.hyps(3 )[OF mvL-inR(1 , 2 ) mv-left(2 )

mvL-inR(4 )]
obtain tw where ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr ′, tw), A)›

‹tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)› by blast
hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, tw), A) ∧

tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)›
by (cases tw) (auto simp add: mvL-inR(1−3 ) mv-left(1 )

setinterleavingptick-simps split: eventptick.split)
thus ?thesis ..

next
case mv-right

from ev-setinterleavingptick-ev.hyps(3 )[OF mvL-inR(1 , 2 ) mv-right(2 )
mvL-inR(4 )]

obtain tw where ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr, tw), A)›
‹tw setinterleaves3(⊗34 ) ((ts ′, ev b # tu), A)› by blast

hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, ev a # tw), A) ∧
ev a # tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)›

by (cases tr) (auto simp add: mvL-inR(1−3 ) mv-right(1 )
setinterleavingptick-simps split: eventptick.split)

thus ?thesis ..
qed

next
case mvR-notin
from ev-setinterleavingptick-ev.prems(1 )

consider (mv-left) tr ′ where ‹tr = ev a # tr ′› ‹tt setinterleaves3(⊗31 ) ((tr
′,

ts), A)›
| (mv-right) ts ′ where ‹ts = ev a # ts ′› ‹tt setinterleaves3(⊗31 ) ((tr, ts ′),
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A)›
by (auto simp add: ‹a /∈ A› elim: Cons-ev-setinterleavesptickE)

thus ?thesis
proof cases

case mv-left
from mv-left(2 ) have ‹ev a # tt setinterleaves3(⊗31 ) ((tr, ts), A)›

by (cases ts) (auto simp add: mv-left(1 ) mvR-notin(1 )
setinterleavingptick-simps split: eventptick.split)

from ev-setinterleavingptick-ev.hyps(5 )[OF mvR-notin(1 , 2 ) this mvR-notin(4 )]
obtain tw where ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr, tw), A)›

‹tw setinterleaves3(⊗34 ) ((ts, tu), A)› by blast
hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, ev b # tw), A) ∧

ev b # tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)›
by (cases ts) (auto simp add: mvR-notin(1−3 ) mv-left(1 )

setinterleavingptick-simps split: eventptick.split)
thus ?thesis ..

next
case mv-right
from mv-right(2 ) have ‹ev a # tt setinterleaves3(⊗31 ) ((tr, ts), A)›

by (cases tr) (auto simp add: mv-right(1 ) mvR-notin(1 )
setinterleavingptick-simps split: eventptick.split)

from ev-setinterleavingptick-ev.hyps(5 )[OF mvR-notin(1 , 2 ) this mvR-notin(4 )]
obtain tw where ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr, tw), A)›

‹tw setinterleaves3(⊗34 ) ((ts, tu), A)› by blast
hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, ev b # tw), A) ∧

ev b # tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)›
by (cases tr) (auto simp add: mvR-notin(1−3 ) mv-right(1 )

setinterleavingptick-simps split: eventptick.split)
thus ?thesis ..

qed
next

case mvL-notin
from ev-setinterleavingptick-ev.prems(1 )

consider (mv-left) tr ′ where ‹tr = ev a # tr ′› ‹tt setinterleaves3(⊗31 ) ((tr
′,

ts), A)›
| (mv-right) ts ′ where ‹ts = ev a # ts ′› ‹tt setinterleaves3(⊗31 ) ((tr, ts ′),

A)›
by (auto simp add: ‹a /∈ A› elim: Cons-ev-setinterleavesptickE)

thus ?thesis
proof cases

case mv-left
from ev-setinterleavingptick-ev.hyps(4 )[OF mvL-notin(1 , 2 ) mv-left(2 )

mvL-notin(4 )]
obtain tw where ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr ′, tw), A)›

‹tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)› by blast
hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, tw), A) ∧

tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)›

142



by (cases tw) (auto simp add: mv-left(1 ) mvL-notin(1 , 3 )
setinterleavingptick-simps split: eventptick.split)

thus ?thesis ..
next

case mv-right
from ev-setinterleavingptick-ev.hyps(4 )[OF mvL-notin(1 , 2 ) mv-right(2 )

mvL-notin(4 )]
obtain tw where ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr, tw), A)›

‹tw setinterleaves3(⊗34 ) ((ts ′, ev b # tu), A)› by blast
hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, ev a # tw), A) ∧

ev a # tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)›
by (cases tr) (auto simp add: mv-right(1 ) mvL-notin(1 , 3 )

setinterleavingptick-simps split: eventptick.split)
thus ?thesis ..

qed
qed

next
case (ev-setinterleavingptick-tick a tt s tu)
from ev-setinterleavingptick-tick.prems(2 ) obtain tv ′

where ‹a /∈ A› ‹tv = ev a # tv ′›
and $ : ‹tv ′ setinterleaves3(⊗32 ) ((tt, 3(s) # tu), A)›

by (auto split: if-split-asm)
from ev-setinterleavingptick-tick.prems(1 )
have ‹tr 6= [] ∧ hd tr = ev a ∧ tt setinterleaves3(⊗31 ) ((tl tr, ts), A) ∨

ts 6= [] ∧ hd ts = ev a ∧ tt setinterleaves3(⊗31 ) ((tr, tl ts), A)›
by (auto simp add: ‹a /∈ A› elim: Cons-ev-setinterleavesptickE)

thus ?case
proof (elim disjE conjE)

assume ‹tr 6= []› ‹hd tr = ev a› ‹tt setinterleaves3(⊗31 ) ((tl tr, ts), A)›
from ev-setinterleavingptick-tick.hyps[OF ‹a /∈ A› this(3 ) $]
obtain tw where ∗ : ‹?map-event tv ′ setinterleaves3(⊗33 )((tl tr, tw), A)›

‹tw setinterleaves3(⊗34 ) ((ts, 3(s) # tu), A)› by blast
from ∗(1 ) have ‹?map-event tv setinterleaves3(⊗33 ) ((tr, tw), A)›

by (subst list.collapse[OF ‹tr 6= []›, symmetric])
(cases tw, auto simp add: ‹a /∈ A› ‹hd tr = ev a› ‹tv = ev a # tv ′›

setinterleavingptick-simps split: eventptick.split)
with ∗(2 ) show ?case by blast

next
assume ‹ts 6= []› ‹hd ts = ev a› ‹tt setinterleaves3(⊗31 ) ((tr, tl ts), A)›
from ev-setinterleavingptick-tick.hyps[OF ‹a /∈ A› this(3 ) $]
obtain tw where ∗ : ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr, tw), A)›

‹tw setinterleaves3(⊗34 ) ((tl ts, 3(s) # tu), A)› by blast
from ∗(2 ) have ‹ev a # tw setinterleaves3(⊗34 ) ((ts, 3(s) # tu), A)›

by (subst list.collapse[OF ‹ts 6= []›, symmetric])
(simp add: ‹a /∈ A› ‹tv = ev a # tv ′› ‹hd ts = ev a›)

moreover from ∗(1 )
have ‹?map-event tv setinterleaves3(⊗33 ) ((tr, ev a # tw), A)›
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by (cases tr, auto simp add: ‹a /∈ A› ‹tv = ev a # tv ′› setinterleav-
ingptick-simps

split: eventptick.split)
ultimately show ?case by blast

qed
next

case (tick-setinterleavingptick-ev r t tt b tu)
from tick-setinterleavingptick-ev.prems(1 )
obtain rr rs tr ′ ts ′ where ‹(rr ⊗31 rs) = br tc› ‹tr = 3(rr) # tr ′› ‹ts =

3(rs) # ts ′›
by (auto elim: Cons-tick-setinterleavesptickE)

from tick-setinterleavingptick-ev.prems(2 ) obtain tv ′

where ‹b /∈ A› ‹tv = ev b # tv ′›
and $ : ‹tv ′ setinterleaves3(⊗32 ) ((3(r t) # tt, tu), A)›

by (auto split: if-split-asm)
from tick-setinterleavingptick-ev.hyps[OF ‹b /∈ A› tick-setinterleavingptick-ev.prems(1 )

$]
obtain tw where ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr, tw), A)›

‹tw setinterleaves3(⊗34 ) ((ts, tu), A)› by blast
hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, ev b # tw), A) ∧

ev b # tw setinterleaves3(⊗34 ) ((ts, ev b # tu), A)›
by (simp add: ‹b /∈ A› ‹tv = ev b # tv ′› ‹tr = 3(rr) # tr ′› ‹ts = 3(rs) #

ts ′›)
thus ?case ..

next
case (tick-setinterleavingptick-tick r t tt ru tu)
from tick-setinterleavingptick-tick.prems(1 )
obtain rr rs tr ′ ts ′ where ‹rr ⊗31 rs = br tc› ‹tr = 3(rr) # tr ′› ‹ts = 3(rs)

# ts ′›
‹tt setinterleaves3(⊗31 ) ((tr ′, ts ′), A)›
by (auto elim: Cons-tick-setinterleavesptickE)

from tick-setinterleavingptick-tick.prems(2 )
obtain rv tv ′ where ‹r t ⊗32 ru = brvc› ‹tv = 3(rv) # tv ′›

‹tv ′ setinterleaves3(⊗32 ) ((tt, tu), A)›
by (auto split: option.split-asm)

from ‹rr ⊗31 rs = br tc› ‹r t ⊗32 ru = brvc› obtain rw where ‹rs ⊗34 ru

= brwc›
by (metis None-assms-tick-join(3 ) not-None-eq option.sel)

from ‹rs ⊗34 ru = brwc› ‹rr ⊗31 rs = br tc› ‹r t ⊗32 ru = brvc›
obtain rx where ‹rr ⊗33 rw = brxc›

by (metis None-assms-tick-join(4 ) option.distinct(1 ) option.exhaust-sel op-
tion.sel)

have ‹⊗32⇒⊗33 rv = rx›
by (metis ‹rr ⊗31 rs = br tc› ‹rr ⊗33 rw = brxc› ‹rs ⊗34 ru = brwc›

‹r t ⊗32 ru = brvc› tick-assoc-ren-hyp option.sel)
from tick-setinterleavingptick-tick.hyps
[OF ‹r t ⊗32 ru = brvc› ‹tt setinterleaves3(⊗31 ) ((tr ′, ts ′), A)›

‹tv ′ setinterleaves3(⊗32 ) ((tt, tu), A)›]
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obtain tw where ‹?map-event tv ′ setinterleaves3(⊗33 ) ((tr ′, tw), A)›
‹tw setinterleaves3(⊗34 ) ((ts ′, tu), A)› by blast

hence ‹?map-event tv setinterleaves3(⊗33 ) ((tr, 3(rw) # tw), A) ∧
3(rw) # tw setinterleaves3(⊗34 ) ((ts, 3(ru) # tu), A)›

by (simp add: ‹tr = 3(rr) # tr ′› ‹ts = 3(rs) # ts ′› ‹tv = 3(rv) # tv ′›
‹rs ⊗34 ru = brwc› ‹rr ⊗33 rw = brxc› ‹⊗32⇒⊗33 rv = rx›)

thus ?case ..
qed

qed

lemma (in Syncptick-assoc-locale) setinterleavesptick-assoc-right :
‹tw setinterleaves3(⊗34 ) ((ts, tu), A) =⇒
tx setinterleaves3(⊗33 ) ((tr, tw), A) =⇒
∃ tt. map (map-eventptick id ⊗33⇒⊗32 ) tx setinterleaves3(⊗32 ) ((tt, tu), A)

∧
tt setinterleaves3(⊗31 ) ((tr, ts), A)›

by (subst (1 2 ) setinterleavesptick-sym, subst (asm) (1 2 ) setinterleavesptick-sym)
(fact Syncptick-assoc-locale-sym.setinterleavesptick-assoc-left)

6.2.5 Associativity
context Syncptick-assoc-locale
begin

notation Syncptick1.Syncptick (‹(- [[-]]31 -)› [70 , 0 , 71 ] 70 )
notation Syncptick2.Syncptick (‹(- [[-]]32 -)› [70 , 0 , 71 ] 70 )
notation Syncptick3.Syncptick (‹(- [[-]]33 -)› [70 , 0 , 71 ] 70 )
notation Syncptick4.Syncptick (‹(- [[-]]34 -)› [70 , 0 , 71 ] 70 )

lemma Syncptick-assoc-oneside :
‹P [[S ]]33 (Q [[S ]]34 R) vFD RenamingTick (P [[S ]]31 Q [[S ]]32 R) ⊗32⇒⊗33 ›

(is ‹?lhs vFD ?rhs›)
proof −

let ?map-event = ‹λt. map (map-eventptick id ⊗32⇒⊗33 ) t›
let ?map-event-conv = ‹λt. map (map-eventptick id ⊗33⇒⊗32 ) t›
show ‹?lhs vFD ?rhs›
proof (rule failure-divergence-refine-optimizedI )

fix t assume ‹t ∈ D ?rhs›
then obtain t1 t2 where ‹t = ?map-event t1 @ t2›

‹tF t1› ‹ftF t2› ‹t1 ∈ D (P [[S ]]31 Q [[S ]]32 R)›
unfolding D-Renaming by blast

from ‹t1 ∈ D (P [[S ]]31 Q [[S ]]32 R)› obtain t11 t12 t-P-Q t-R
where ∗ : ‹t1 = t11 @ t12› ‹tF t11› ‹ftF t12›

‹t11 setinterleaves3(⊗32 ) ((t-P-Q, t-R), S)›
‹t-P-Q ∈ D (P [[S ]]31 Q) ∧ t-R ∈ T R ∨
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t-P-Q ∈ T (P [[S ]]31 Q) ∧ t-P-Q /∈ D (P [[S ]]31 Q) ∧ t-R ∈ D R›
unfolding Syncptick2.D-Syncptick using D-T by blast

from ∗(5 ) show ‹t ∈ D ?lhs›
proof (elim disjE conjE)

assume ‹t-P-Q ∈ D (P [[S ]]31 Q)› ‹t-R ∈ T R›
from ‹t-P-Q ∈ D (P [[S ]]31 Q)› obtain t-P-Q1 t-P-Q2 t-P t-Q

where ∗∗ : ‹t-P-Q = t-P-Q1 @ t-P-Q2› ‹tF t-P-Q1› ‹ftF t-P-Q2›
‹t-P-Q1 setinterleaves3(⊗31 ) ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›

unfolding Syncptick1.D-Syncptick by blast
from ∗(4 )[unfolded ∗∗(1 ), THEN setinterleavesptick-appendL]
obtain t111 t112 t-R1 t-R2

where ∗∗∗ : ‹t11 = t111 @ t112› ‹t-R = t-R1 @ t-R2›
‹t111 setinterleaves3(⊗32 ) ((t-P-Q1, t-R1), S)›
‹t112 setinterleaves3(⊗32 ) ((t-P-Q2, t-R2), S)› by blast

from setinterleavesptick-assoc-left[OF ∗∗(4 ) ∗∗∗(3 )]
obtain t-Q-R where ∗∗∗∗ : ‹?map-event t111 setinterleaves3(⊗33 ) ((t-P,

t-Q-R), S)›
‹t-Q-R setinterleaves3(⊗34 ) ((t-Q, t-R1), S)› by blast

have ‹tF (?map-event t1)›
by (simp add: ‹tF t1› map-eventptick-tickFree)

moreover have ‹ftF (?map-event (t112 @ t12) @ t2)›
by (metis ∗(1 ) ∗∗∗(1 ) ‹ftF t2› ‹tF t1› front-tickFree-append

map-eventptick-tickFree tickFree-append-iff )
moreover from ∗∗(5 )
have ‹t-P ∈ D P ∧ t-Q-R ∈ T (Q [[S ]]34 R) ∨ t-P ∈ T P ∧ t-Q-R ∈ D (Q

[[S ]]34 R)›
proof (elim disjE conjE)

assume ‹t-P ∈ D P› ‹t-Q ∈ T Q›
hence ‹t-P ∈ D P ∧ t-Q-R ∈ T (Q [[S ]]34 R)›

by (simp add: Syncptick4.T-Syncptick)
(metis ∗∗∗∗(2 ) ∗∗∗(2 ) ‹t-R ∈ T R› is-processT3-TR-append)

thus ?thesis ..
next

assume ‹t-P ∈ T P› ‹t-Q ∈ D Q›
from ∗∗(2 , 4 ) have ‹tF t-Q› by (simp add: tickFree-setinterleavesptick-iff )
with ∗∗∗∗(2 ) setinterleavesptick-tickFree-imp have ‹tF t-Q-R› by blast
moreover from ∗∗∗(2 ) ‹t-R ∈ T R› is-processT3-TR-append have ‹t-R1

∈ T R› by blast
ultimately have ‹t-P ∈ T P ∧ t-Q-R ∈ D (Q [[S ]]34 R)›

unfolding Syncptick4.D-Syncptick
using ∗∗∗∗(2 ) ‹t-P ∈ T P› ‹t-Q ∈ D Q› front-tickFree-Nil by blast

thus ?thesis ..
qed
ultimately show ‹t ∈ D ?lhs›

using ∗∗∗∗(1 ) by (auto simp add: ‹t = ?map-event t1 @ t2›
∗(1 ) ∗∗∗(1 ) Syncptick3.D-Syncptick)

next
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assume ‹t-P-Q ∈ T (P [[S ]]31 Q)› ‹t-P-Q /∈ D (P [[S ]]31 Q)› ‹t-R ∈ D R›
from this(1 , 2 ) obtain t-P t-Q

where ∗∗ : ‹t-P ∈ T P› ‹t-Q ∈ T Q› ‹t-P-Q setinterleaves3(⊗31 ) ((t-P,

t-Q), S)›
unfolding Syncptick1.Syncptick-projs by blast

from setinterleavesptick-assoc-left[OF ∗∗(3 ) ∗(4 )] obtain t-Q ′

where ∗∗∗ : ‹?map-event t11 setinterleaves3(⊗33 ) ((t-P, t-Q ′), S)›
‹t-Q ′ setinterleaves3(⊗34 ) ((t-Q, t-R), S)› by blast

from ∗(2 ) ∗∗(2 ) ∗∗∗ ‹t-R ∈ D R› have ‹t-Q ′ ∈ D (Q [[S ]]34 R)›
by (simp add: Syncptick4.D-Syncptick)
(metis append.right-neutral front-tickFree-Nil

map-eventptick-tickFree tickFree-setinterleavesptick-iff )
moreover have ‹t = ?map-event t11 @ (?map-event t12 @ t2)›

by (simp add: ∗(1 ) ‹t = ?map-event t1 @ t2›)
moreover have ‹tF (?map-event t11)›

by (simp add: ∗(2 ) map-eventptick-tickFree)
moreover from ∗(1 ) ‹ftF t2› ‹tF t1› have ‹ftF (?map-event t12 @ t2)›

using front-tickFree-append map-eventptick-tickFree tickFree-append-iff by
blast

ultimately show ‹t ∈ D ?lhs›
unfolding Syncptick3.D-Syncptick using ∗∗(1 ) ∗∗∗(1 ) by blast

qed
next

fix t X assume ‹(t, X) ∈ F ?rhs› ‹D ?rhs ⊆ D ?lhs›
then consider ‹t ∈ D ?rhs›
| t1 where ‹t = ?map-event t1› ‹t /∈ D ?rhs›

‹(t1, map-eventptick id ⊗32⇒⊗33 −‘ X) ∈ F (P [[S ]]31 Q [[S ]]32 R)›
unfolding Renaming-projs by blast

thus ‹(t, X) ∈ F ?lhs›
proof cases

assume ‹t ∈ D ?rhs›
with ‹D ?rhs ⊆ D ?lhs› have ‹t ∈ D ?lhs› by blast
thus ‹(t, X) ∈ F ?lhs› by (fact is-processT8 )

next
fix t1 assume ∗ : ‹t = ?map-event t1› ‹t /∈ D ?rhs›

‹(t1, map-eventptick id ⊗32⇒⊗33 −‘ X) ∈ F (P [[S ]]31 Q [[S ]]32 R)›
from ∗(1 ) ‹t /∈ D ?rhs› have ‹t1 /∈ D (P [[S ]]31 Q [[S ]]32 R)›

by (cases ‹tF t1›, simp-all add: D-Renaming)
(use front-tickFree-Nil in blast,

metis D-imp-front-tickFree front-tickFree-append-iff is-processT9
map-append map-eventptick-front-tickFree
nonTickFree-n-frontTickFree non-tickFree-tick tickFree-Nil)

with ∗(3 ) obtain t-P-Q X-P-Q t-R X-R
where ∗∗ : ‹(t-P-Q, X-P-Q) ∈ F (P [[S ]]31 Q)› ‹(t-R, X-R) ∈ F R›

‹t1 setinterleaves3(⊗32 ) ((t-P-Q, t-R), S)›
‹map-eventptick id ⊗32⇒⊗33 −‘ X ⊆ super-ref-Syncptick (⊗32 ) X-P-Q

S X-R›
unfolding Syncptick2.Syncptick-projs by blast

from ∗∗(1 ) consider ‹t-P-Q ∈ D (P [[S ]]31 Q)›
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| (fail) t-P X-P t-Q X-Q where ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
‹t-P-Q setinterleaves3(⊗31 ) ((t-P, t-Q), S)›
‹X-P-Q ⊆ super-ref-Syncptick (⊗31 ) X-P S X-Q›

unfolding Syncptick1.Syncptick-projs by blast
thus ‹(t, X) ∈ F ?lhs›
proof cases

assume ‹t-P-Q ∈ D (P [[S ]]31 Q)›
have ‹t1 ∈ D (P [[S ]]31 Q [[S ]]32 R)›
proof (cases ‹tF t-P-Q›)

assume ‹tF t-P-Q›
with ∗∗(3 )[THEN setinterleavesptick-tickFree-imp[rotated]] have ‹tF t1›

by simp
with ∗∗(3 ) ∗∗(2 )[THEN F-T ] ‹t-P-Q ∈ D (P [[S ]]31 Q)›
show ‹t1 ∈ D (P [[S ]]31 Q [[S ]]32 R)›

by (simp add: Syncptick2.D-Syncptick)
(meson front-tickFree-Nil self-append-conv)

next
assume ‹¬ tF t-P-Q›
then obtain t-P-Q ′ r where ‹tF t-P-Q ′› ‹t-P-Q = t-P-Q ′ @ [3(r)]›

by (metis D-imp-front-tickFree ‹t-P-Q ∈ D (P [[S ]]31 Q)› butlast-snoc
front-tickFree-iff-tickFree-butlast nonTickFree-n-frontTickFree)

moreover from ∗∗(2 ,3 ) ‹¬ tF t-P-Q› obtain t-R ′ s
where ‹tF t-R ′› ‹t-R = t-R ′ @ [3(s)]›

by (metis F-imp-front-tickFree butlast-snoc front-tickFree-iff-tickFree-butlast
nonTickFree-n-frontTickFree setinterleavesptick-tickFree-imp)

ultimately obtain r-s t1 ′ where ‹t1 = t1 ′ @ [3(r-s)]›
‹t1 ′ setinterleaves3(⊗32 ) ((t-P-Q ′, t-R ′), S)›
using ∗∗(3 ) by (auto elim!: setinterleavesptick-snoc-tick-snoc-tickE)

moreover have ‹t-P-Q ′ ∈ D (P [[S ]]31 Q)›
by (metis D-imp-front-tickFree ‹¬ tF t-P-Q› ‹t-P-Q = t-P-Q ′ @ [3(r)]›
‹t-P-Q ∈ D (P [[S ]]31 Q)› butlast-snoc div-butlast-when-non-tickFree-iff )

moreover have ‹t-R ′ ∈ T R›
using ∗∗(2 ) F-T ‹t-R = t-R ′ @ [3(s)]› is-processT3-TR-append by blast

ultimately have ‹t1 ′ ∈ D (P [[S ]]31 Q [[S ]]32 R)›
by (simp add: Syncptick2.D-Syncptick)
(metis ∗∗(3 ) D-imp-front-tickFree ‹tF t-R ′› ‹t-P-Q ∈ D (P [[S ]]31 Q)›

‹t-R = t-R ′@ [3(s)]› append.right-neutral butlast-snoc front-tickFree-charn
front-tickFree-setinterleavesptick-iff tickFree-Nil tickFree-append-iff )

thus ‹t1 ∈ D (P [[S ]]31 Q [[S ]]32 R)›
by (simp add: ‹t1 = t1 ′ @ [3(r-s)]›)
(metis ∗(3 ) F-imp-front-tickFree ‹t1 = t1 ′ @ [3(r-s)]› butlast-snoc
div-butlast-when-non-tickFree-iff non-tickFree-tick tickFree-append-iff )

qed
with ‹t1 /∈ D (P [[S ]]31 Q [[S ]]32 R)› show ‹(t, X) ∈ F ?lhs› ..

next
case fail
from setinterleavesptick-assoc-left[OF fail(3 ) ∗∗(3 )] obtain t-Q ′

where ∗∗∗ : ‹?map-event t1 setinterleaves3(⊗33 ) ((t-P, t-Q ′), S)›
‹t-Q ′ setinterleaves3(⊗34 ) ((t-Q, t-R), S)› by blast
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from ∗∗(2 ) ∗∗∗(2 ) fail(2 )
have ‹(t-Q ′, super-ref-Syncptick (⊗34 ) X-Q S X-R) ∈ F (Q [[S ]]34 R)›

by (auto simp add: Syncptick4.F-Syncptick)
moreover have ‹t setinterleaves3(⊗33 ) ((t-P, t-Q ′), S)›

by (simp add: ∗(1 ) ∗∗∗(1 ))
have ‹X ⊆ super-ref-Syncptick (⊗33 ) X-P S (super-ref-Syncptick (⊗34 )

X-Q S X-R)›
proof (rule subsetI )

fix e assume ‹e ∈ X›
show ‹e ∈ super-ref-Syncptick (⊗33 ) X-P S (super-ref-Syncptick (⊗34 )

X-Q S X-R)›
proof (cases e)

fix a assume ‹e = ev a›
obtain a ′ where ‹map-eventptick id ⊗32⇒⊗33 (ev a ′) = ev a› by

simp
with ‹e ∈ X› have ‹ev a ′ ∈ map-eventptick id ⊗32⇒⊗33 −‘ X›

by (simp add: ‹e = ev a›)
with ∗∗(4 )[THEN set-mp, OF this] fail(4 )

‹map-eventptick id ⊗32⇒⊗33 (ev a ′) = ev a›
show ‹e ∈ super-ref-Syncptick (⊗33 ) X-P S (super-ref-Syncptick (⊗34 )

X-Q S X-R)›
by (auto simp add: ‹e = ev a› subset-iff super-ref-Syncptick-def )

next
fix r-s-t assume ‹e = 3(r-s-t)›

show ‹e ∈ super-ref-Syncptick (⊗33 ) X-P S (super-ref-Syncptick (⊗34 )
X-Q S X-R)›

proof (cases ‹∃ r s t s-t. s ⊗34 t = bs-tc ∧ r ⊗33 s-t = br-s-tc›)
assume ‹∃ r s t s-t. s ⊗34 t = bs-tc ∧ r ⊗33 s-t = br-s-tc›
then obtain r s t s-t

where $ : ‹s ⊗34 t = bs-tc› ‹r ⊗33 s-t = br-s-tc› by blast
then obtain r ′ s ′ t ′ r-s ′

where $$ : ‹r ′ ⊗31 s ′ = br-s ′c› ‹r-s ′ ⊗32 t ′ = b⊗33⇒⊗32 r-s-tc›
by (metis None-assms-tick-join(1 ,2 ) option.collapse option.discI

option.sel tick-assoc-ren-conv-hyp)
have ‹3(⊗33⇒⊗32 r-s-t) ∈ map-eventptick id ⊗32⇒⊗33 −‘ X›

by (metis ‹e = 3(r-s-t)› ‹e ∈ X› $ eventptick.simps(10 )
tick-assoc-ren-tick-assoc-ren-conv vimage-eq)

from ∗∗(4 )[THEN set-mp, OF this] fail(4 )[THEN set-mp, of ‹3(r-s ′)›]
show ‹e ∈ super-ref-Syncptick (⊗33 ) X-P S (super-ref-Syncptick (⊗34 )

X-Q S X-R)›
by (simp add: ‹e = 3(r-s-t)› subset-iff super-ref-Syncptick-def )
(metis (no-types, lifting) $$ None-assms-tick-join(3 ,4 )

Syncptick2.inj-tick-join option.collapse option.discI
option.sel tick-assoc-ren-hyp tick-assoc-ren-tick-assoc-ren-conv)

next
assume ‹@ r s t s-t. s ⊗34 t = bs-tc ∧ r ⊗33 s-t = br-s-tc›

thus ‹e ∈ super-ref-Syncptick (⊗33 ) X-P S (super-ref-Syncptick (⊗34 )
X-Q S X-R)›

by (simp add: ‹e = 3(r-s-t)› super-ref-Syncptick-def ) blast

149



qed
qed

qed
ultimately show ‹(t, X) ∈ F ?lhs›

using ∗(1 ) ∗∗∗(1 ) fail(1 ) by (auto simp add: Syncptick3.F-Syncptick)
qed

qed
qed

qed

end

lemma (in Syncptick-locale) strict-ticks-of-Syncptick-subset :
‹3s(P [[S ]]3 Q) ⊆ {r-s |r-s r s. r ⊗3 s = br-sc ∧

r ∈ 3s(P) ∧ s ∈ 3s(Q)}› (is ‹- ⊆ ?S›)
proof (rule subsetI , elim strict-ticks-of-memE)

fix t r-s assume ‹t @ [3(r-s)] ∈ T (P [[S ]]3 Q)› ‹t /∈ D (P [[S ]]3 Q)›
from ‹t /∈ D (P [[S ]]3 Q)› have ‹t @ [3(r-s)] /∈ D (P [[S ]]3 Q)› by (meson

is-processT9 )
with ‹t @ [3(r-s)] ∈ T (P [[S ]]3 Q)› obtain t-P t-Q
where ‹t-P ∈ T P› ‹t-Q ∈ T Q› ‹t @ [3(r-s)] setinterleaves3(⊗3) ((t-P, t-Q),

S)›
unfolding Syncptick-projs by blast

from this(3 ) show ‹r-s ∈ ?S›
proof (elim snoc-tick-setinterleavesptickE)

fix t-P ′ t-Q ′ r s
assume ∗ : ‹r ⊗3 s = Some r-s› ‹t-P = t-P ′ @ [3(r)]› ‹t-Q = t-Q ′ @ [3(s)]›

‹t setinterleaves3(⊗3) ((t-P ′, t-Q ′), S)›
have ‹t-P ′ /∈ D P ∧ t-Q ′ /∈ D Q›
proof (rule ccontr)

assume ‹¬ (t-P ′ /∈ D P ∧ t-Q ′ /∈ D Q)›
with ‹t-P ∈ T P› ‹t-Q ∈ T Q› have ‹t ∈ D (P [[S ]]3 Q)›

by (simp add: D-Syncptick ∗(2 ,3 ,4 ))
(metis ∗(4 ) append.right-neutral append-T-imp-tickFree front-tickFree-Nil

is-processT3-TR-append not-Cons-self2 setinterleavesptick-tickFree-imp)
with ‹t /∈ D (P [[S ]]3 Q)› show False ..

qed
with ∗(2 , 3 ) ‹t-P ∈ T P› ‹t-Q ∈ T Q› have ‹r ∈ 3s(P)› ‹s ∈ 3s(Q)›

by (metis is-processT9 strict-ticks-of-memI )+
with ∗(1 ) show ‹r-s ∈ ?S› by blast

qed
qed

theorem (in Syncptick-assoc-locale) Syncptick-assoc :
‹P [[S ]]33 (Q [[S ]]34 R) = RenamingTick (P [[S ]]31 Q [[S ]]32 R) ⊗32⇒⊗33 › (is

‹?lhs = ?rhs›)
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proof (rule FD-antisym)
show ‹?lhs vFD ?rhs› by (fact Syncptick-assoc-oneside)

next
from Syncptick-assoc-locale-sym.Syncptick-assoc-oneside[of R S Q P]
have ‹Syncptick2.Syncptick-locale-sym.Syncptick R S

(Syncptick1.Syncptick-locale-sym.Syncptick Q S P) vFD

RenamingTick (Syncptick3.Syncptick-locale-sym.Syncptick
(Syncptick4.Syncptick-locale-sym.Syncptick R S Q) S P) ⊗33⇒⊗32 › .

also have ‹Syncptick1.Syncptick-locale-sym.Syncptick Q S P = P [[S ]]31 Q›
by (simp add: Syncptick1.Syncptick-sym)

also have ‹Syncptick2.Syncptick-locale-sym.Syncptick R S P-Q = P-Q [[S ]]32 R›
for P-Q

by (simp add: Syncptick2.Syncptick-sym)
also have ‹Syncptick4.Syncptick-locale-sym.Syncptick R S Q = Q [[S ]]34 R›

by (simp add: Syncptick4.Syncptick-sym)
also have ‹Syncptick3.Syncptick-locale-sym.Syncptick Q-R S P = P [[S ]]33 Q-R›

for Q-R
by (simp add: Syncptick3.Syncptick-sym)

finally have ‹P [[S ]]31 Q [[S ]]32 R vFD RenamingTick ?lhs ⊗33⇒⊗32 › .
hence ‹?rhs vFD RenamingTick (RenamingTick ?lhs ⊗33⇒⊗32 ) ⊗32⇒⊗33 ›

by (fact mono-Renaming-FD)
also have ‹. . . = RenamingTick ?lhs (⊗32⇒⊗33 ◦ ⊗33⇒⊗32 )›

by (simp add: RenamingTick-comp)
also have ‹. . . = RenamingTick ?lhs id›
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of )

fix r-s-t assume ‹r-s-t ∈ 3s(P [[S ]]33 (Q [[S ]]34 R))›
with Syncptick3.strict-ticks-of-Syncptick-subset obtain r s-t

where ‹r ⊗33 s-t = br-s-tc› ‹r ∈ 3s(P)› ‹s-t ∈ 3s(Q [[S ]]34 R)› by blast
from this(3 ) Syncptick4.strict-ticks-of-Syncptick-subset obtain s t

where ‹s ⊗34 t = bs-tc› ‹s ∈ 3s(Q)› ‹t ∈ 3s(R)› by blast
from ‹r ⊗33 s-t = br-s-tc› ‹s ⊗34 t = bs-tc›
show ‹(⊗32⇒⊗33 ◦ ⊗33⇒⊗32 ) r-s-t = id r-s-t›

by (auto intro!: tick-assoc-ren-tick-assoc-ren-conv)
qed
also have ‹. . . = ?lhs› by simp
finally show ‹?rhs vFD ?lhs› .

qed
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Chapter 7

First Laws

unbundle option-type-syntax

7.1 Behaviour with Constant Processes

By “basic” laws we mean the behaviour of ⊥, STOP and SKIP, plus the
associativity of some concerned operators.

lemma Seqptick-const [simp] : ‹P ;3 (λr . Q) = P ; Q›
— Very basic law.
by (simp add: Process-eq-spec Seqptick-same-type-projs Seq-projs)

7.1.1 The Laws of ⊥
lemma Seqptick-is-BOT-iff : ‹P ;3 Q = ⊥ ←→ P = ⊥ ∨ (∃ r . [3(r)] ∈ T P ∧ Q
r = ⊥)›

by (simp add: BOT-iff-Nil-D Seqptick-projs)

lemma BOT-Seqptick [simp] : ‹⊥ ;3 P = ⊥› by (simp add: Seqptick-is-BOT-iff )

lemma (in Syncptick-locale) Syncptick-is-BOT-iff : ‹P [[S ]]3 Q = ⊥ ←→ P = ⊥
∨ Q = ⊥›

by (simp add: BOT-iff-Nil-D D-Syncptick)
(metis Nil-setinterleavesptick Nil-setinterleavingptick-Nil insertCI is-processT1-TR)

lemma (in Syncptick-locale) Syncptick-BOT [simp] : ‹P [[S ]]3 ⊥ = ⊥› and BOT-Syncptick
[simp] : ‹⊥ [[S ]]3 Q = ⊥›

by (simp-all add: Syncptick-is-BOT-iff )

7.1.2 The Laws of STOP
lemma Seqptick-is-STOP-iff :

‹P ;3 Q = STOP ←→ T P ⊆ insert [] {[3(r)]| r . True} ∧
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(∀ r . [3(r)] ∈ T P −→ Q r = STOP)› (is ‹?lhs ←→ ?rhs›)
proof (intro iffI conjI subsetI allI impI )

show ‹?lhs =⇒ t ∈ T P =⇒ t ∈ insert [] {[3(r)] |r . True}› for t
by (simp add: STOP-iff-T Seqptick-projs set-eq-iff )
(metis Prefix-Order .prefixI T-nonTickFree-imp-decomp append-Nil
append-T-imp-tickFree is-processT3-TR length-0-conv length-map list.distinct(1 ))

next
show ‹?lhs =⇒ [3(r)] ∈ T P =⇒ Q r = STOP› for r

by (force simp add: STOP-iff-T Seqptick-projs set-eq-iff )
next

show ‹?rhs =⇒ P ;3 Q = STOP›
by (auto simp add: STOP-iff-T Seqptick-projs subset-iff )
(metis D-T non-tickFree-tick,
metis BOT-iff-Nil-D D-T D-BOT append-Nil eventptick.distinct(1 ) mem-Collect-eq

front-tickFree-single is-processT9 list.distinct(1 ) list.inject)
qed

lemma Seqptick-is-STOP-iff-bis :
‹P ;3 Q = STOP ←→ SKIPS {r . [3(r)] ∈ T P} vDT P ∧ (∀ r . [3(r)] ∈ T P
−→ Q r = STOP)›
(is ‹?lhs ←→ ?rhs›)

proof (rule iffI )
assume ?lhs
from this[THEN arg-cong, where f = D]
have ‹D P = {}›

by (simp add: Seqptick-projs D-STOP)
(metis front-tickFree-Nil nonempty-divE [of P])

with ‹?lhs› show ?rhs
by (subst (asm) Seqptick-is-STOP-iff )
(auto simp add: refine-defs SKIPS-projs)

next
show ‹?rhs =⇒ ?lhs›

unfolding Seqptick-is-STOP-iff by (auto simp add: refine-defs SKIPS-projs)
qed

corollary STOP-Seqptick [simp] : ‹STOP ;3 P = STOP›
by (simp add: Seqptick-is-STOP-iff T-STOP)

lemma (in Syncptick-locale) STOP-Syncptick-STOP [simp] : ‹STOP [[S ]]3 STOP
= STOP›

by (simp add: STOP-iff-T T-Syncptick STOP-projs)

More powerful Laws lemma (in Syncptick-locale) Interptick-STOP :
— Here, g is a free parameter.
‹P |||3 STOP = RenamingTick (P ; STOP)

(λr . the (tick-join r (g r)))› (is ‹?lhs = ?rhs›)
proof −
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let ?f = ‹λr . the (tick-join r (g r))›
have ∗ : ‹tF t =⇒ map (map-eventptick id ?f ) t

= map ev (map of-ev t)› for t :: ‹( ′a, ′r) traceptick›
by (induct t, simp-all)
(metis (no-types, lifting) eventptick.collapse(1 ) eventptick.simps(9 ) id-apply)

show ‹?lhs = ?rhs›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ?lhs›
then obtain u v t-P

where ‹t = u @ v› ‹ftF v› ‹tF u ∨ v = []›
‹u setinterleaves3tick-join ((t-P, []), {})› ‹t-P ∈ D P›

unfolding D-Syncptick STOP-projs by blast
from this(4 ) setinterleavesptick-NilR-iff
have ‹tF t-P› ‹u = map ev (map of-ev t-P)› by auto

from ∗ ‹tF t-P› have ‹u @ v = map (map-eventptick id ?f ) t-P @ v›
by (simp add: ‹u = map ev (map of-ev t-P)›)

moreover have ‹t-P ∈ D (P ; STOP)› by (simp add: D-Seq ‹t-P ∈ D P›)
ultimately show ‹t ∈ D ?rhs›

using ‹ftF v› ‹tF t-P› by (auto simp add: D-Renaming ‹t = u @ v›)
next

fix t assume ‹t ∈ D ?rhs›
then obtain u v

where $ : ‹t = map (map-eventptick id ?f ) u @ v›
and ‹tF u› ‹ftF v› ‹u ∈ D P› unfolding D-Renaming D-Seq D-STOP by

blast
have ‹tF (map (map-eventptick id ?f ) u)›

by (simp add: ‹tF u› map-eventptick-tickFree)
moreover from ‹tF u›
have ‹map (map-eventptick id ?f ) u

setinterleaves3tick-join ((u, []), {})›
proof (induct u)

case Nil show ?case by simp
next

case (Cons e u)
obtain a where ‹e = ev a› ‹tF u› by (meson Cons.prems is-ev-def tick-

Free-Cons-iff )
from Cons.hyps[OF ‹tF u›] show ?case by (simp add: ‹e = ev a›)

qed
ultimately show ‹t ∈ D (P |||3 STOP)›

using ‹ftF v› ‹u ∈ D P› by (auto simp add: D-Syncptick STOP-projs $)
next

fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
then obtain t-P X-P X-Q

where ‹(t-P, X-P) ∈ F P› ‹t setinterleaves3tick-join ((t-P, []), {})›
‹X ⊆ super-ref-Syncptick tick-join X-P {} X-Q›

unfolding Syncptick-projs F-STOP by blast

from ‹X ⊆ super-ref-Syncptick tick-join X-P {} X-Q›
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have $ : ‹e ∈ map-eventptick id ?f −‘ X ∪ range tick
=⇒ e ∈ X-P ∪ range tick› for e

by (cases e) (auto simp add: super-ref-Syncptick-def )
from setinterleavesptick-NilR-iff
[THEN iffD1 , OF ‹t setinterleaves3tick-join ((t-P, []), {})›]

have ‹tF t-P› ‹t = map ev (map of-ev t-P)› by simp-all
have $$ : ‹t = map (map-eventptick id ?f ) t-P›

by (simp add: ∗ ‹t = map ev (map of-ev t-P)› ‹tF t-P›)
show ‹(t, X) ∈ F ?rhs›
proof (cases ‹∃ r . t-P @ [3(r)] ∈ T P›)

show ‹∃ r . t-P @ [3(r)] ∈ T P =⇒ (t, X) ∈ F ?rhs›
by (auto simp add: F-Renaming F-Seq F-STOP $$)

next
assume ‹@ r . t-P @ [3(r)] ∈ T P›
hence ‹(t-P, X-P ∪ range tick) ∈ F P›

by (auto intro!: is-processT5 ‹(t-P, X-P) ∈ F P› F-T )
with $ have ‹(t-P, map-eventptick id ?f −‘ X ∪ range tick) ∈ F P›

by (meson is-processT4 subsetI )
with ‹tF t-P› show ‹(t, X) ∈ F ?rhs› by (auto simp add: F-Renaming F-Seq

$$)
qed

next
fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs›
then obtain u where $ : ‹t = map (map-eventptick id ?f ) u›

‹(u, map-eventptick id ?f −‘ X) ∈ F (P ; STOP)›
unfolding Renaming-projs by blast

from $(2 ) consider ‹u ∈ D P› | r where ‹u @ [3(r)] ∈ T P›
| ‹(u, map-eventptick id ?f −‘ X ∪ range tick) ∈ F P› ‹tF u›
by (auto simp add: Seq-projs F-STOP)

thus ‹(t, X) ∈ F ?lhs›
proof cases

let ?u ′ = ‹if tF u then u else butlast u›
let ?v ′ = ‹if tF u then [] else [3(?f (of-tick (last u)))]›
assume ‹u ∈ D P›

hence ‹?u ′∈ D P› by (simp add: D-imp-front-tickFree div-butlast-when-non-tickFree-iff )
moreover from D-imp-front-tickFree ‹u ∈ D P› front-tickFree-iff-tickFree-butlast

have ‹tF ?u ′› by auto
moreover have ‹ftF ?v ′› by simp
moreover from ‹tF ?u ′› have ‹t = map (map-eventptick id ?f ) ?u ′ @ ?v ′›

by (cases u rule: rev-cases, auto simp add: $(1 ) split: if-split-asm)
(metis eventptick.collapse(2 ) eventptick.simps(10 ))

ultimately have ‹t ∈ D ?rhs› unfolding D-Renaming D-Seq by blast
with ‹t /∈ D ?rhs› show ‹(t, X) ∈ F ?lhs› ..

next
fix r assume ‹u @ [3(r)] ∈ T P›
hence ‹(u, UNIV − {3(r)}) ∈ F P› by (simp add: is-processT6-TR)
moreover from $(1 ) ∗ ‹u @ [3(r)] ∈ T P› append-T-imp-tickFree
have ‹t setinterleaves3tick-join ((u, []), {})›

by (auto simp add: setinterleavesptick-NilR-iff )

156



moreover have ‹X ⊆ super-ref-Syncptick tick-join (UNIV − {3(r)}) {}
UNIV ›

by (simp add: subset-iff super-ref-Syncptick-def ) (metis eventptick.exhaust)
ultimately show ‹(t, X) ∈ F ?lhs› unfolding F-Syncptick F-STOP by

clarify blast
next

assume ‹(u, map-eventptick id ?f −‘ X ∪ range tick) ∈ F P› ‹tF u›
moreover from $(1 ) ∗ ‹tF u› have ‹t setinterleaves3tick-join ((u, []), {})›

by (auto simp add: setinterleavesptick-NilR-iff )
moreover have ‹X ⊆ super-ref-Syncptick tick-join (map-eventptick id ?f −‘

X ∪ range tick) {} UNIV ›
by (simp add: subset-iff super-ref-Syncptick-def ) (metis eventptick.exhaust)
ultimately show ‹(t, X) ∈ F ?lhs› unfolding F-Syncptick F-STOP by

clarify blast
qed

qed
qed

lemma (in Syncptick-locale) STOP-Interptick :
‹STOP |||3 Q = RenamingTick (Q ; STOP)

(λs. the (tick-join (g s) s))›
by (metis Syncptick-locale-sym.Interptick-STOP Syncptick-sym)

lemma (in Syncptick-locale) Parptick-STOP [simp] : ‹P ||3 STOP = (if P = ⊥
then ⊥ else STOP)›
proof (split if-split, intro conjI impI )

show ‹P = ⊥ =⇒ P ||3 STOP = ⊥› by simp
next

show ‹P 6= ⊥ =⇒ P ||3 STOP = STOP›
by (auto simp add: STOP-iff-T T-Syncptick STOP-projs set-eq-iff

BOT-iff-Nil-D setinterleavesptick-NilR-iff image-iff )
(metis eventptick.collapse(1 ) last-in-set tickFree-butlast)+

qed

lemma (in Syncptick-locale) STOP-Parptick [simp] : ‹STOP ||3 P = (if P = ⊥
then ⊥ else STOP)›
proof (split if-split, intro conjI impI )

show ‹P = ⊥ =⇒ STOP ||3 P = ⊥› by simp
next

show ‹P 6= ⊥ =⇒ STOP ||3 P = STOP›
by (auto simp add: STOP-iff-T T-Syncptick STOP-projs set-eq-iff

BOT-iff-Nil-D setinterleavesptick-NilL-iff image-iff )
(metis eventptick.collapse(1 ) last-in-set tickFree-butlast)+

qed
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7.1.3 The Laws of SKIP

Sequential Composition

SKIP is neutral for Seqptick!

lemma SKIP-Seqptick [simp] : ‹SKIP r ;3 P = P r›
by (simp add: Process-eq-spec Seqptick-projs ref-Seqptick-def SKIP-projs)

lemma Seqptick-SKIP [simp] : ‹P ;3 SKIP = P›
proof (subst Process-eq-spec-optimized, safe)

show ‹s ∈ D (P ;3 SKIP) =⇒ s ∈ D P›
and ‹s ∈ D P =⇒ s ∈ D (P ;3 SKIP)› for s
by (simp-all add: D-Seqptick-same-type D-SKIP)

next
show ‹(s, X) ∈ F (P ;3 SKIP) =⇒ (s, X) ∈ F P› for s X
by (auto simp add : F-Seqptick-same-type F-SKIP is-processT6-TR-notin tick-T-F

intro : is-processT4 is-processT8 )
next

show ‹(s, X) ∈ F P =⇒ (s, X) ∈ F (P ;3 SKIP)› for s X
by (simp add : F-Seqptick-same-type F-SKIP)
(metis (mono-tags, opaque-lifting) F-T T-nonTickFree-imp-decomp

append.right-neutral f-inv-into-f is-processT5-S7 ′)
qed

lemma SKIPS-Seqptick [simp] : ‹SKIPS R ;3 P = ur ∈ R. P r›
by (auto simp add: Process-eq-spec GlobalNdet-projs Seqptick-projs

STOP-projs SKIPS-projs ref-Seqptick-def )

lemma finite-ticks-Seqptick [finite-ticks-simps] : ‹�3(P ;3 Q)›
if ‹�3(P)› and ‹(

∧
r . r ∈ 3s(P) =⇒ �3(Q r))›

proof (rule finite-ticksI )
fix t assume ‹t ∈ T (P ;3 Q)› ‹t /∈ D (P ;3 Q)›
have ‹{r ′. t @ [3(r ′)] ∈ T (P ;3 Q)} ⊆

(
⋃

u ∈ {u. ∃ v r . t = map (ev ◦ of-ev) u @ v ∧ u @ [3(r)] ∈ T P ∧ u /∈ D
P ∧ tF u ∧ ftF v}.⋃

r ∈ {r . u @ [3(r)] ∈ T P}. {s. drop (length u) t @ [3(s)] ∈ T (Q r)})›
(is ‹?lhs ⊆ ?rhs›)

proof (rule subsetI )
fix r ′ assume ‹r ′ ∈ ?lhs›
hence ‹t @ [3(r ′)] ∈ T (P ;3 Q)› by simp
with ‹t /∈ D (P ;3 Q)› obtain t ′ r u ′

where ‹t @ [3(r ′)] = map (ev ◦ of-ev) t ′ @ u ′› ‹t ′ @ [3(r)] ∈ T P› ‹t ′ /∈ D
P› ‹tF t ′› ‹u ′ ∈ T (Q r)›

by (auto simp add: Seqptick-projs)
(metis non-tickFree-tick tickFree-append-iff tickFree-map-ev-comp,

metis (no-types, opaque-lifting) T-imp-front-tickFree butlast-append but-
last-snoc

front-tickFree-iff-tickFree-butlast non-tickFree-tick tickFree-append-iff
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tickFree-imp-front-tickFree tickFree-map-ev-comp,
metis (no-types, opaque-lifting) append.assoc butlast-snoc front-tickFree-charn

non-tickFree-tick
tickFree-Nil tickFree-append-iff tickFree-imp-front-tickFree tick-

Free-map-ev-comp)

thus ‹r ′ ∈ ?rhs›
apply auto
by (smt (verit, ccfv-SIG) Prefix-Order .same-prefix-nil T-imp-front-tickFree

append-eq-append-conv2 append-eq-append-conv-if append-eq-conv-conj
append-eq-first-pref-spec append-same-eq eventptick.disc(2 ) front-tickFree-dw-closed

length-map tickFree-Cons-iff tickFree-append-iff
tickFree-map-ev-comp)

qed
moreover have ‹finite . . .›
proof (rule finite-UN-I )

show ‹finite {u. ∃ v r . t = map (ev ◦ of-ev) u @ v ∧ u @ [3(r)] ∈ T P ∧ u /∈
D P ∧ tF u ∧ ftF v}›

by (rule finite-subset[of - ‹{u. u ≤ map (ev ◦ of-ev) (if tF t then t else butlast
t)}›])

(auto simp add: append-T-imp-tickFree tickFree-map-ev-of-ev-same-type-is
prefixes-fin,

metis prefixI append-T-imp-tickFree butlast-append map-append
not-Cons-self2 tickFree-Nil tickFree-map-ev-of-ev-eq-iff )

next
fix u assume ‹u ∈ {u. ∃ v r . t = map (ev ◦ of-ev) u @ v ∧ u @ [3(r)] ∈ T P

∧ u /∈ D P ∧ tF u ∧ ftF v}›
then obtain r v where ‹t = map (ev ◦ of-ev) u @ v› ‹u @ [3(r)] ∈ T P› ‹u

/∈ D P› ‹tF u› ‹ftF v› by blast
show ‹finite (

⋃
r∈{r . u @ [3(r)] ∈ T P}. {s. drop (length u) t @ [3(s)] ∈ T

(Q r)})›
proof (rule finite-UN-I )

show ‹finite {r . u @ [3(r)] ∈ T P}›
by (simp add: ‹�3(P)› ‹u /∈ D P› finite-ticksD)

next
fix r assume ‹r ∈ {r . u @ [3(r)] ∈ T P}›
hence ‹u @ [3(r)] ∈ T P› ..
with ‹t /∈ D (P ;3 Q)› ‹u @ [3(r)] ∈ T P› ‹tF u› have ‹v /∈ D (Q r)›

by (auto simp add: ‹t = map (ev ◦ of-ev) u @ v› Seqptick-projs)
show ‹finite {s. drop (length u) t @ [3(s)] ∈ T (Q r)}›

by (simp add: ‹t = map (ev ◦ of-ev) u @ v›)
(metis ‹u @ [3(r)] ∈ T P› ‹u /∈ D P› ‹v /∈ D (Q r)› finite-ticksD

is-processT9 strict-ticks-of-memI ‹(
∧

r . r ∈ 3s(P) =⇒ �3(Q r))›)
qed

qed
ultimately show ‹finite {r . t @ [3(r)] ∈ T (P ;3 Q)}› by (fact finite-subset)

qed
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lemma finite-ticks-fun-Seqptick-bis :
‹�3⇒(f ) =⇒ (

∧
x r . r ∈ 3s(f x) =⇒ �3(x) =⇒ �3(g x r)) =⇒ �3⇒(λx. f x ;3

g x)›
by (simp add: finite-ticks-fun-def finite-ticks-Seqptick)

lemma finite-ticks-fun-Seqptick [finite-ticks-fun-simps] :
— Big approximation.
‹�3⇒(f ) =⇒ (

∧
r . r ∈ (

⋃
x. 3s(f x)) =⇒ �3⇒(λx. g x r)) =⇒ �3⇒(λx. f x ;3

g x)›
by (rule finite-ticks-fun-Seqptick-bis)
(auto simp add: finite-ticks-fun-def )

Synchronization Product

The generalization of the synchronization product was essentially motivated
by the following theorem (in comparison to SKIP r [[A]] SKIP s = (if r =
s then SKIP r else STOP)).
theorem (in Syncptick-locale) SKIP-Syncptick-SKIP [simp] :

‹SKIP r [[A]]3 SKIP s = (case tick-join r s of br-sc ⇒ SKIP r-s | ♦ ⇒ STOP)›
proof (split option.split, intro conjI impI allI )

show ‹tick-join r s = ♦ =⇒ SKIP r [[A]]3 SKIP s = STOP›
unfolding STOP-iff-T T-Syncptick SKIP-projs set-eq-iff
by (safe, simp-all, metis Nil-setinterleavingptick-Nil insertCI )

next
show ‹SKIP r [[A]]3 SKIP s = SKIP r-s› if ‹tick-join r s = br-sc› for r-s
proof (rule Process-eq-optimizedI )

show ‹t ∈ D (SKIP r [[A]]3 SKIP s) =⇒ t ∈ D (SKIP r-s)› for t
by (simp add: D-Syncptick SKIP-projs)

next
show ‹t ∈ D (SKIP r-s) =⇒ t ∈ D (SKIP r [[A]]3 SKIP s)› for t

by (simp add: D-Syncptick SKIP-projs)
next

fix t X assume ‹(t, X) ∈ F (SKIP r [[A]]3 SKIP s)› ‹t /∈ D (SKIP r [[A]]3
SKIP s)›

then obtain t-P t-Q X-P X-Q
where fail: ‹(t-P, X-P) ∈ F (SKIP r)› ‹(t-Q, X-Q) ∈ F (SKIP s)›

‹t setinterleaves3tick-join ((t-P, t-Q), A)›
‹X ⊆ super-ref-Syncptick tick-join X-P A X-Q›

unfolding Syncptick-projs by blast
from fail(1−3 ) consider ‹t = []› ‹3(r) /∈ X-P› ‹3(s) /∈ X-Q› | ‹t = [3(r-s)]›

by (cases t-P; cases t-Q) (simp-all add: F-SKIP ‹tick-join r s = br-sc›)
thus ‹(t, X) ∈ F (SKIP r-s)›
proof cases

assume ‹t = []› ‹3(r) /∈ X-P› ‹3(s) /∈ X-Q›
from ‹3(r) /∈ X-P› ‹3(s) /∈ X-Q› fail(4 ) ‹tick-join r s = br-sc›
have ‹3(r-s) /∈ X›

by (simp add: super-ref-Syncptick-def subset-iff )
(metis eventptick.distinct(1 ) eventptick.inject(2 ) inj-tick-join)
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with ‹t = []› show ‹(t, X) ∈ F (SKIP r-s)› by (simp add: F-SKIP)
next

show ‹t = [3(r-s)] =⇒ (t, X) ∈ F (SKIP r-s)› by (simp add: F-SKIP)
qed

next
fix t :: ‹( ′a, -) traceptick› and X assume ‹(t, X) ∈ F (SKIP r-s)›
then consider ‹t = []› ‹3(r-s) /∈ X› | ‹t = [3(r-s)]›

unfolding F-SKIP by blast
thus ‹(t, X) ∈ F (SKIP r [[A]]3 SKIP s)›
proof cases

assume ‹t = []› ‹3(r-s) /∈ X›
have ‹([], − {3(r)}) ∈ F (SKIP r)›

by (simp add: F-SKIP)
moreover have ‹([], − {3(s)}) ∈ F (SKIP s)›

by (simp add: F-SKIP)
moreover have ‹t setinterleaves3tick-join (([], []), A)›

by (simp add: ‹t = []›)
moreover have ‹X ⊆ super-ref-Syncptick tick-join (− {3(r)}) A (− {3(s)})›

using ‹3(r-s) /∈ X› ‹tick-join r s = br-sc›
by (simp add: super-ref-Syncptick-def subset-iff )
(metis eventptick.exhaust option.inject)

ultimately show ‹(t, X) ∈ F (SKIP r [[A]]3 SKIP s)›
by (simp (no-asm) add: F-Syncptick) blast

next
assume ‹t = [3(r-s)]›
have ‹([3(r)], UNIV ) ∈ F (SKIP r)›

by (simp add: F-SKIP)
moreover have ‹([3(s)], UNIV ) ∈ F (SKIP s)›

by (simp add: F-SKIP)
moreover have ‹t setinterleaves3tick-join (([3(r)], [3(s)]), A)›

by (simp add: ‹t = [3(r-s)]› ‹tick-join r s = br-sc›)
moreover have ‹X ⊆ super-ref-Syncptick tick-join UNIV A UNIV ›

by (simp add: super-ref-Syncptick-def subset-iff )
(metis eventptick.exhaust)

ultimately show ‹(t, X) ∈ F (SKIP r [[A]]3 SKIP s)›
by (simp (no-asm) add: F-Syncptick) blast

qed
qed

qed

lemma (in Syncptick-locale) STOP-Syncptick-SKIP [simp] : ‹STOP [[A]]3 SKIP
s = STOP›

and SKIP-Syncptick-STOP [simp] : ‹SKIP r [[A]]3 STOP = STOP›
by (force simp add: STOP-iff-T T-Syncptick STOP-projs SKIP-projs)+

lemma (in Syncptick-locale) Mprefix-Syncptick-SKIP :
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‹�a ∈ A → P a [[S ]]3 SKIP r =
�a ∈ (A − S) → (P a [[S ]]3 SKIP r)› (is ‹?lhs = ?rhs›)

proof (rule Process-eq-optimizedI )
fix t assume ‹t ∈ D ?lhs›
then obtain u v t-P a t-Q

where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v› ‹a ∈ A› ‹t-P ∈ D (P a)›
‹u setinterleaves3(⊗3) ((ev a # t-P, t-Q), S)› ‹t-Q = [] ∨ t-Q = [3(r)]›

unfolding D-Syncptick SKIP-projs Mprefix-projs by blast
from ∗(6 , 7 ) obtain u ′

where ‹a /∈ S› ‹u = ev a # u ′› ‹u ′ setinterleaves3(⊗3) ((t-P, t-Q), S)›
by (auto split: if-split-asm)

from this(2 , 3 ) ∗(2 , 5 , 7 ) front-tickFree-charn have ‹u ′ ∈ D (P a [[S ]]3 SKIP
r)›

by (auto simp add: D-Syncptick SKIP-projs)
with ∗(1−4 ) ‹a /∈ S› ‹u = ev a # u ′› is-processT7 show ‹t ∈ D ?rhs›

by (auto simp add: D-Mprefix)
next

fix t assume ‹t ∈ D ?rhs›
then obtain a t ′ where ‹t = ev a # t ′› ‹a ∈ A› ‹a /∈ S› ‹t ′ ∈ D (P a [[S ]]3

SKIP r)›
unfolding D-Mprefix by blast

then obtain u v t-P t-Q
where ∗ : ‹t ′ = u @ v› ‹tF u› ‹ftF v› ‹t-P ∈ D (P a)›

‹u setinterleaves3(⊗3) ((t-P, t-Q), S)› ‹t-Q = [] ∨ t-Q = [3(r)]›
unfolding D-Syncptick SKIP-projs by blast

have ‹t = (ev a # u) @ v› by (simp add: ∗(1 ) ‹t = ev a # t ′›)
moreover from ∗(2 ) have ‹tF (ev a # u)› by simp
moreover from ∗(5 , 6 ) have ‹ev a # u setinterleaves3(⊗3) ((ev a # t-P, t-Q),

S)›
by (cases t-Q) (simp-all add: ‹a /∈ S› Cons-setinterleavingptick-Cons)

moreover have ‹ev a # t-P ∈ D (�a ∈ A → P a)›
by (simp add: ∗(4 ) D-Mprefix ‹a ∈ A›)

ultimately show ‹t ∈ D ?lhs›
unfolding D-Syncptick SKIP-projs using ∗(3 , 6 ) by blast

next
fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F (�a ∈ A → P a)› ‹(t-Q, X-Q) ∈ F (SKIP r)›
‹t setinterleaves3(⊗3) ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick (⊗3) X-P S X-Q›

unfolding Syncptick-projs by blast
from ∗(1 ) consider ‹t-P = []› ‹X-P ∩ ev ‘ A = {}›
| a t-P ′ where ‹t-P = ev a # t-P ′› ‹a ∈ A› ‹(t-P ′, X-P) ∈ F (P a)›
unfolding F-Mprefix by blast

thus ‹(t, X) ∈ F ?rhs›
proof cases

assume ‹t-P = []› ‹X-P ∩ ev ‘ A = {}›
from ‹t-P = []› ∗(2 , 3 ) have ‹t = []› ‹t-Q = []› ‹3(r) /∈ X-Q›

162



by (auto simp add: F-SKIP)
with ∗(4 ) show ‹t-P = [] =⇒ X-P ∩ ev ‘ A = {} =⇒ (t, X) ∈ F ?rhs›

by (auto simp add: F-Mprefix super-ref-Syncptick-def )
next

fix a t-P ′ assume ‹t-P = ev a # t-P ′› ‹a ∈ A› ‹(t-P ′, X-P) ∈ F (P a)›
from ∗(2 , 3 ) obtain t ′

where ‹t = ev a # t ′› ‹a /∈ S› ‹t ′ setinterleaves3(⊗3) ((t-P ′, t-Q), S)›
by (auto simp add: ‹t-P = ev a # t-P ′› F-SKIP split: if-split-asm)

from ∗(2 , 4 ) ‹(t-P ′, X-P) ∈ F (P a)› this(3 )
have ‹(t ′, X) ∈ F (P a [[S ]]3 SKIP r)› by (auto simp add: F-Syncptick)
thus ‹(t, X) ∈ F ?rhs› by (simp add: ‹t = ev a # t ′› F-Mprefix ‹a ∈ A› ‹a /∈

S›)
qed

next
fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs›
from ‹(t, X) ∈ F ?rhs› consider ‹t = []› ‹X ∩ ev ‘ (A − S) = {}›
| a t ′ where ‹t = ev a # t ′› ‹a ∈ A› ‹a /∈ S› ‹(t ′, X) ∈ F (P a [[S ]]3 SKIP r)›
unfolding F-Mprefix by blast

thus ‹(t, X) ∈ F ?lhs›
proof cases

assume ‹t = []› ‹X ∩ ev ‘ (A − S) = {}›
from ‹X ∩ ev ‘ (A − S) = {}›
have ‹([], range tick ∪ {ev a |a. ev a ∈ X ∧ a /∈ S}) ∈ F (�a ∈ A → P a)›

by (auto simp add: F-Mprefix)
moreover have ‹([], UNIV − {3(r)}) ∈ F (SKIP r)› by (simp add: F-SKIP)
moreover have ‹X ⊆ super-ref-Syncptick (⊗3)

(range tick ∪ {ev a |a. ev a ∈ X ∧ a /∈ S}) S (UNIV − {3(r)})›
by (simp add: subset-iff super-ref-Syncptick-def ) (metis eventptick.exhaust)

moreover have ‹[] setinterleaves3(⊗3) (([], []), S)› by simp
ultimately show ‹(t, X) ∈ F ?lhs› by (simp (no-asm) add: ‹t = []› F-Syncptick)

blast
next

fix a t ′ assume ‹t = ev a # t ′› ‹a ∈ A› ‹a /∈ S› ‹(t ′, X) ∈ F (P a [[S ]]3 SKIP
r)›

from this(1 , 4 ) ‹t /∈ D ?rhs› ‹a ∈ A› ‹a /∈ S›
obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F (P a)› ‹(t-Q, X-Q) ∈ F (SKIP r)›
‹t ′ setinterleaves3(⊗3) ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick (⊗3) X-P S X-Q›

unfolding D-Mprefix Syncptick-projs by force
have ‹(ev a # t-P, X-P) ∈ F (�a ∈ A → P a)›

by (simp add: ∗(1 ) F-Mprefix ‹a ∈ A›)
moreover from ∗(2 , 3 ) have ‹t setinterleaves3(⊗3) ((ev a # t-P, t-Q), S)›

by (auto simp add: ‹t = ev a # t ′› F-SKIP ‹a /∈ S›)
ultimately show ‹(t, X) ∈ F ?lhs› unfolding F-Syncptick using ∗(2 , 4 ) by

auto
qed

qed
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corollary (in Syncptick-locale) SKIP-Syncptick-Mprefix :
‹SKIP r [[S ]]3 �b ∈ B → Q b = �b ∈ (B − S) → (SKIP r [[S ]]3 Q b)› (is ‹?lhs

= ?rhs›)
by (subst (1 2 ) Syncptick-locale-sym.Syncptick-sym mono-Mprefix-eq)
(fact Syncptick-locale-sym.Mprefix-Syncptick-SKIP)

lemma (in Syncptick-locale) finite-ticks-Syncptick [finite-ticks-simps] :
‹�3(P [[S ]]3 Q)› if ‹�3(P)› and ‹�3(Q)›

proof (rule finite-ticksI )
fix t assume ‹t /∈ D (P [[S ]]3 Q)›
have ‹{r-s. t @ [3(r-s)] ∈ T (P [[S ]]3 Q)} ⊆

(
⋃
(t-P, t-Q)∈{(t-P, t-Q). t setinterleaves3(⊗3) ((t-P, t-Q), S)}.

{r-s. ∃ r s. r ⊗3 s = br-sc ∧
t-P @ [3(r)] ∈ T P ∧ t-P /∈ D P ∧
t-Q @ [3(s)] ∈ T Q ∧ t-Q /∈ D Q})›

(is ‹- ⊆ ?rhs›)
proof (rule subsetI )

fix r-s assume ‹r-s ∈ {r-s. t @ [3(r-s)] ∈ T (P [[S ]]3 Q)}›
hence ‹t @ [3(r-s)] ∈ T (P [[S ]]3 Q)› ..
moreover from ‹t /∈ D (P [[S ]]3 Q)› have ‹t @ [3(r-s)] /∈ D (P [[S ]]3 Q)›

by (meson is-processT9 )
ultimately obtain t-P t-Q where ‹t-P ∈ T P› ‹t-Q ∈ T Q› ‹t-P /∈ D P›

‹t-Q /∈ D Q›
‹t @ [3(r-s)] setinterleaves3(⊗3) ((t-P, t-Q), S)›
by (simp add: T-Syncptick D-Syncptick ′) (use front-tickFree-Nil in blast)

from this(5 ) show ‹r-s ∈ ?rhs›
proof (elim snoc-tick-setinterleavesptickE)

fix r s t-P ′ t-Q ′

assume assms : ‹t setinterleaves3(⊗3) ((t-P ′, t-Q ′), S)›
‹r ⊗3 s = br-sc› ‹t-P = t-P ′ @ [3(r)]› ‹t-Q = t-Q ′ @ [3(s)]›

from ‹t-P ∈ T P› ‹t-Q ∈ T Q› ‹t-P /∈ D P› ‹t-Q /∈ D Q› assms(3 , 4 )
have ‹t-P ′ /∈ D P› ‹t-Q ′ /∈ D Q›
by (meson T-imp-front-tickFree front-tickFree-append-iff is-processT7 not-Cons-self2 )+
with ‹t-P ∈ T P› ‹t-Q ∈ T Q› assms show ‹r-s ∈ ?rhs› by auto

qed
qed
moreover have ‹finite . . .›
proof (rule finite-UN-I , safe)

show ‹finite {(t-P, t-Q). t setinterleaves3(⊗3) ((t-P, t-Q), S)}›
by (fact finite-setinterleavesptick-tick-join)

next
fix t-P t-Q
let ?S = ‹{r-s. ∃ r s. r ⊗3 s = br-sc ∧

t-P @ [3(r)] ∈ T P ∧ t-P /∈ D P ∧
t-Q @ [3(s)] ∈ T Q ∧ t-Q /∈ D Q}›

have ‹Some ‘ ?S ⊆ (λ(r , s). r ⊗3 s) ‘
({r . t-P @ [3(r)] ∈ T P ∧ t-P /∈ D P} ×
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{s. t-Q @ [3(s)] ∈ T Q ∧ t-Q /∈ D Q})› by force
moreover have ‹finite . . .› by (simp add: finite-ticksD ‹�3(P)› ‹�3(Q)›)
ultimately have ‹finite (Some ‘ ?S)› by (fact finite-subset)
thus ‹finite ?S› by (simp add: finite-image-iff )

qed
ultimately show ‹finite {r-s. t @ [3(r-s)] ∈ T (P [[S ]]3 Q)}› by (fact fi-

nite-subset)
qed

lemma (in Syncptick-locale) finite-ticks-fun-Syncptick [finite-ticks-fun-simps] :
‹�3⇒(f ) =⇒ �3⇒(g) =⇒ �3⇒(λx. f x [[S ]]3 g x)›
by (simp add: finite-ticks-fun-def finite-ticks-Syncptick)

7.2 Associativity of Sequential Composition
lemma Seqptick-assoc : ‹P ;3 (λr . Q r ;3 R) = P ;3 Q ;3 R›

for P :: ‹( ′a, ′r) processptick›
and Q :: ‹ ′r ⇒ ( ′a, ′s) processptick›
and R :: ‹ ′s ⇒ ( ′a, ′t) processptick›

proof (rule Process-eq-optimizedI )
fix t assume ‹t ∈ D (P ;3 (λr . Q r ;3 R))›
then consider (D-P) t ′ u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ ∈ D P› ‹tF

t ′› ‹ftF u›
| (D-Q-R) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T P› ‹u

∈ D (Q r ;3 R)›
unfolding Seqptick-projs[of P] by fast

thus ‹t ∈ D (P ;3 Q ;3 R)›
proof cases

case D-P
define t ′′ :: ‹( ′a, ′s) traceptick› where ‹t ′′ = map (ev ◦ of-ev) t ′›
from D-P have ‹t ′′ ∈ D (P ;3 Q)›

by (auto simp add: t ′′-def Seqptick-projs intro: front-tickFree-Nil)
moreover have ‹tF t ′′› by (simp add: t ′′-def )
ultimately have ‹map (ev ◦ of-ev) t ′′ ∈ D (P ;3 Q ;3 R)›

by (simp add: Seqptick-projs[of ‹P ;3 Q›])
(metis append.right-neutral front-tickFree-Nil)

also have ‹map (ev ◦ of-ev) t ′′ = map (ev ◦ of-ev) t ′›
by (simp add: t ′′-def )

finally have ‹map (ev ◦ of-ev) t ′ ∈ D (P ;3 Q ;3 R)› .
with D-P(1 , 3 , 4 ) show ‹t ∈ D (P ;3 Q ;3 R)› by (simp add: is-processT7 )

next
case D-Q-R
from D-Q-R(3 ) consider (D-Q) u ′ v where ‹u = map (ev ◦ of-ev) u ′ @ v›

‹u ′ ∈ D (Q r)› ‹tF u ′› ‹ftF v›
| (D-R) u ′ s v where ‹u = map (ev ◦ of-ev) u ′ @ v› ‹u ′ @ [3(s)] ∈ T (Q r)›

‹tF u ′› ‹v ∈ D (R s)›
unfolding Seqptick-projs by blast

thus ‹t ∈ D (P ;3 Q ;3 R)›
proof cases
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case D-Q
define t ′′ :: ‹( ′a, ′s) traceptick› where ‹t ′′ = map (ev ◦ of-ev) t ′ @ map (ev

◦ of-ev) u ′›
have ‹t ′′ ∈ D (P ;3 Q)›

by (simp add: t ′′-def Seqptick-projs)
(metis D-Q(2 ,3 ) D-Q-R(2 ) append-T-imp-tickFree list.distinct(1 )

tickFree-map-ev-of-ev-same-type-is)
moreover have ‹tF t ′′› by (simp add: t ′′-def )
ultimately have ‹map (ev ◦ of-ev) t ′′ ∈ D (P ;3 Q ;3 R)›

by (simp add: Seqptick-projs[of ‹P ;3 Q›])
(metis append.right-neutral front-tickFree-Nil)

also have ‹map (ev ◦ of-ev) t ′′ = map (ev ◦ of-ev) t ′ @ map (ev ◦ of-ev) u ′›
by (simp add: t ′′-def )

finally have ‹map (ev ◦ of-ev) t ′ @ map (ev ◦ of-ev) u ′ ∈ D (P ;3 Q ;3 R)›
.

with D-Q(1 ,4 ) D-Q-R(1 ) is-processT7 show ‹t ∈ D (P ;3 Q ;3 R)› by
fastforce

next
case D-R
define t ′′ :: ‹( ′a, ′s) traceptick› where ‹t ′′ = map (ev ◦ of-ev) (map (ev ◦

of-ev) t ′ @ u ′)›
have ‹t ′′ @ [3(s)] ∈ T (P ;3 Q)›

by (simp add: t ′′-def Seqptick-projs[of P] del: map-map)
(metis D-Q-R(2 ) D-R(2 ) append-T-imp-tickFree not-Cons-self2

tickFree-map-ev-of-ev-same-type-is)
moreover have ‹tF t ′′› unfolding t ′′-def by (blast intro: tickFree-map-ev-comp)

ultimately have ‹map (ev ◦ of-ev) t ′′ @ v ∈ D (P ;3 Q ;3 R)›
unfolding Seqptick-projs[of ‹P ;3 Q›] using D-R(4 ) by blast

also have ‹map (ev ◦ of-ev) t ′′ @ v = t›
by (simp add: D-Q-R(1 ) D-R(1 ) t ′′-def )

finally show ‹t ∈ D (P ;3 Q ;3 R)› .
qed

qed
next

fix t assume ‹t ∈ D (P ;3 Q ;3 R)›
then consider (D-P-Q) t ′ u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ ∈ D (P

;3 Q)› ‹tF t ′› ‹ftF u›
| (D-R) t ′ s u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(s)] ∈ T (P ;3 Q)›

‹u ∈ D (R s)›
unfolding Seqptick-projs[of ‹P ;3 Q›] by blast

thus ‹t ∈ D (P ;3 (λr . Q r ;3 R))›
proof cases

case D-P-Q
from D-P-Q(2 ) consider (D-P) t ′′ u ′ where ‹t ′ = map (ev ◦ of-ev) t ′′ @ u ′›

‹t ′′ ∈ D P› ‹tF t ′′› ‹ftF u ′›
| (D-Q) t ′′ r u ′ where ‹t ′ = map (ev ◦ of-ev) t ′′ @ u ′› ‹t ′′ @ [3(r)] ∈ T P›

‹tF t ′′› ‹u ′ ∈ D (Q r)›
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unfolding Seqptick-projs by blast
thus ‹t ∈ D (P ;3 (λr . Q r ;3 R))›
proof cases

case D-P
from D-P(2 , 3 ) have ‹map (ev ◦ of-ev) t ′′ ∈ D (P ;3 (λr . Q r ;3 R))›

by (auto simp add: Seqptick-projs[of P] intro: front-tickFree-Nil)
thus ‹t ∈ D (P ;3 (λr . Q r ;3 R))›

by (simp add: D-P-Q(1 ) D-P(1 ))
(metis (mono-tags, lifting) D-P-Q(4 ) front-tickFree-append

is-processT7 tickFree-map-ev-comp)
next

case D-Q
from D-P-Q(3 ) D-Q(1 , 4 ) have ‹map (ev ◦ of-ev) u ′ ∈ D (Q r ;3 R)›
by (simp add: Seqptick-projs) (metis append.right-neutral front-tickFree-Nil)

with D-Q(2 , 3 ) have ‹map (ev ◦ of-ev) (map (ev ◦ of-ev) t ′′ @ u ′) ∈ D (P
;3 (λr . Q r ;3 R))›

by (auto simp add: Seqptick-projs[of P])
with D-P-Q(4 ) is-processT7 show ‹t ∈ D (P ;3 (λr . Q r ;3 R))›

by (fastforce simp add: D-P-Q(1 ) D-Q(1 ))
qed

next
case D-R
then consider (T-P) t ′′ r u ′ where ‹t ′ = map (ev ◦ of-ev) t ′′ @ u ′›

‹t ′′ @ [3(r)] ∈ T P› ‹tF t ′′› ‹u ′ @ [3(s)] ∈ T (Q r)›
| (D-P) t ′′ u ′ where ‹t ′ = map (ev ◦ of-ev) t ′′ @ u ′› ‹t ′′ ∈ D P› ‹tF t ′′› ‹tF

u ′›
by (auto simp add: Seqptick-projs append-eq-append-conv2 append-eq-map-conv

Cons-eq-append-conv front-tickFree-append-iff intro: D-P T-P)
thus ‹t ∈ D (P ;3 (λr . Q r ;3 R))›
proof cases

case T-P
from D-R(3 ) T-P(4 ) have ‹map (ev ◦ of-ev) u ′ @ u ∈ D (Q r ;3 R)›
by (simp add: Seqptick-projs) (metis append-T-imp-tickFree not-Cons-self2 )

with T-P(2 , 3 ) have ‹map (ev ◦ of-ev) t ′′ @ map (ev ◦ of-ev) u ′ @ u ∈
D (P ;3 (λr . Q r ;3 R))›

by (auto simp add: Seqptick-projs[of P])
also have ‹map (ev ◦ of-ev) t ′′ @ map (ev ◦ of-ev) u ′ @ u = t›

by (simp add: D-R(1 ) T-P(1 ))
finally show ‹t ∈ D (P ;3 (λr . Q r ;3 R))› .

next
case D-P
from D-P(2 , 3 ) have ‹map (ev ◦ of-ev) t ′′ ∈ D (P ;3 (λr . Q r ;3 R))›

by (auto simp add: Seqptick-projs[of P] intro: front-tickFree-Nil)
with D-R(3 ) show ‹t ∈ D (P ;3 (λr . Q r ;3 R))›

by (simp add: D-R(1 ) D-P(1 ))
(metis (mono-tags, lifting) D-imp-front-tickFree

front-tickFree-append is-processT7 tickFree-map-ev-comp)
qed

qed
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next

fix t X assume ‹(t, X) ∈ F (P ;3 (λr . Q r ;3 R))› ‹t /∈ D (P ;3 (λr . Q r ;3
R))›

then consider (F-P) t ′ where ‹t = map (ev ◦ of-ev) t ′› ‹(t ′, ref-Seqptick X) ∈
F P› ‹tF t ′›
| (F-Q-R) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T P›

‹tF t ′› ‹(u, X) ∈ F (Q r ;3 R)›
unfolding Seqptick-projs[of P] by fast

thus ‹(t, X) ∈ F (P ;3 Q ;3 R)›
proof cases

case F-P
from F-P(2 ) have ‹(t ′, ref-Seqptick (ref-Seqptick X)) ∈ F P›

by (simp add: ref-Seqptick-idem)
with F-P(3 ) have ‹(map (ev ◦ of-ev) t ′, ref-Seqptick X) ∈ F (P ;3 Q)›

by (auto simp add: Seqptick-projs)
thus ‹(t, X) ∈ F (P ;3 Q ;3 R)›

by (simp add: Seqptick-projs[of ‹P ;3 Q›] F-P(1 ))
(metis map-ev-of-ev-map-ev-of-ev tickFree-map-ev-comp)

next
case F-Q-R
from F-Q-R(4 )
consider (F-Q) u ′ where ‹u = map (ev ◦ of-ev) u ′›

‹(u ′, ref-Seqptick X) ∈ F (Q r)› ‹tF u ′›
| (F-R) u ′ s u ′′ where ‹u = map (ev ◦ of-ev) u ′ @ u ′′› ‹u ′ @ [3(s)] ∈ T (Q

r)› ‹tF u ′› ‹(u ′′, X) ∈ F (R s)›
| (D-Q) u ′ u ′′ where ‹u = map (ev ◦ of-ev) u ′ @ u ′′› ‹u ′ ∈ D (Q r)› ‹tF u ′›

‹ftF u ′′›
unfolding Seqptick-projs by blast

thus ‹(t, X) ∈ F (P ;3 Q ;3 R)›
proof cases

case F-Q
from F-Q(2 ) F-Q-R(2 , 3 )
have ‹(map (ev ◦ of-ev) t ′ @ u ′,ref-Seqptick X) ∈ F (P ;3 Q)›

by (auto simp add: Seqptick-projs)
with F-Q(1 ,3 ) F-Q-R(1 ) show ‹(t, X) ∈ F (P ;3 Q ;3 R)›

by (simp add: Seqptick-projs[of ‹P ;3 Q›])
(metis map-append map-ev-of-ev-map-ev-of-ev tickFree-append-iff tick-

Free-map-ev-comp)
next

case F-R
from F-Q-R(2 , 3 ) F-R(2 ) have $ : ‹map (ev ◦ of-ev) t ′ @ u ′ @ [3(s)] ∈ T

(P ;3 Q)›
by (auto simp add: Seqptick-projs)

have $$ : ‹tF (map (ev ◦ of-ev) t ′ @ u ′)› by (simp add: F-R(3 ))
show ‹(t, X) ∈ F (P ;3 Q ;3 R)›

by (simp add: Seqptick-projs[of ‹P ;3 Q›])
(metis map-append[of ‹ev ◦ of-ev› ‹map (ev ◦ of-ev) t ′› u ′]
F-Q-R(1 ) F-R(1 , 4 ) $ $$ append-eq-appendI map-ev-of-ev-map-ev-of-ev)
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next
case D-Q
from D-Q(2 ) F-Q-R(2 , 3 ) have $ : ‹map (ev ◦ of-ev) t ′ @ u ′ ∈ D (P ;3 Q)›

by (auto simp add: Seqptick-projs)
have $$ : ‹tF (map (ev ◦ of-ev) t ′ @ u ′)› by (simp add: D-Q(3 ))
have ‹t ∈ D (P ;3 Q ;3 R)›

by (simp add: Seqptick-projs[of ‹P ;3 Q›])
(metis D-Q(1 , 4 ) F-Q-R(1 ) $ $$ append-assoc map-append map-ev-of-ev-map-ev-of-ev)

thus ‹(t, X) ∈ F (P ;3 Q ;3 R)› by (fact is-processT8 )
qed

qed
next

fix t X assume ‹(t, X) ∈ F (P ;3 Q ;3 R)› ‹t /∈ D (P ;3 Q ;3 R)›
then consider (F-P-Q) t ′ where ‹t = map (ev ◦ of-ev) t ′›

‹(t ′, ref-Seqptick X) ∈ F (P ;3 Q)› ‹tF t ′›
| (F-R) t ′ s u where ‹t = map (ev ◦ of-ev) t ′ @ u›

‹t ′ @ [3(s)] ∈ T (P ;3 Q)› ‹tF t ′› ‹(u, X) ∈ F (R s)›
unfolding Seqptick-projs[of ‹P ;3 Q›] by fast

thus ‹(t, X) ∈ F (P ;3 (λr . Q r ;3 R))›
proof cases

case F-P-Q
from F-P-Q(1 , 3 ) ‹t /∈ D (P ;3 Q ;3 R)› have ‹t ′ /∈ D (P ;3 Q)›

by (simp add: Seqptick-projs) (metis front-tickFree-Nil self-append-conv)
with F-P-Q(2 ) consider (F-P) t ′′ where ‹t ′ = map (ev ◦ of-ev) t ′′›

‹(t ′′, ref-Seqptick (ref-Seqptick X :: ( ′a, ′s) refusalptick)) ∈ F P› ‹tF t ′′›
| (F-Q) t ′′ r u where ‹t ′ = map (ev ◦ of-ev) t ′′ @ u› ‹t ′′ @ [3(r)] ∈ T P› ‹tF

t ′′›
‹(u, ref-Seqptick X) ∈ F (Q r)›
unfolding Seqptick-projs by fast

thus ‹(t, X) ∈ F (P ;3 (λr . Q r ;3 R))›
proof cases

case F-P
from F-P(2 , 3 ) have ‹(t ′′,ref-Seqptick X) ∈ F P›

by (simp add: ref-Seqptick-idem)
moreover have ‹t = map (ev ◦ of-ev) t ′′›

by (simp add: F-P-Q(1 ) F-P(1 ))
ultimately show ‹(t, X) ∈ F (P ;3 (λr . Q r ;3 R))›

by (auto simp add: Seqptick-projs[of P] F-P(3 ))
next

case F-Q
from F-P-Q(3 ) F-Q(1 , 4 ) have ‹(map (ev ◦ of-ev) u, X) ∈ F (Q r ;3 R)›

by (auto simp add: Seqptick-projs)
with F-Q(2 , 3 ) show ‹(t, X) ∈ F (P ;3 (λr . Q r ;3 R))›

by (auto simp add: Seqptick-projs[of P] F-P-Q(1 ) F-Q(1 ))
qed

next
case F-R
from F-R(2 ) consider (T-P) t ′′ r u ′ where ‹t ′ = map (ev ◦ of-ev) t ′′ @ u ′›

‹t ′′ @ [3(r)] ∈ T P› ‹tF t ′′› ‹u ′ @ [3(s)] ∈ T (Q r)›
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| (D-P) t ′′ u ′ where ‹t ′ = map (ev ◦ of-ev) t ′′ @ u ′› ‹t ′′ ∈ D P› ‹tF t ′′› ‹tF
u ′›

by (auto simp add: Seqptick-projs append-eq-append-conv2 Cons-eq-append-conv)
(auto simp add: append-eq-map-conv front-tickFree-append-iff intro: D-P

T-P)
thus ‹(t, X) ∈ F (P ;3 (λr . Q r ;3 R))›
proof cases

case T-P
with F-R(3 , 4 ) T-P(1 , 4 ) have ‹(map (ev ◦ of-ev) u ′ @ u, X) ∈ F (Q r ;3

R)›
by (auto simp add: Seqptick-projs)

with T-P(2 , 3 ) show ‹(t, X) ∈ F (P ;3 (λr . Q r ;3 R))›
by (auto simp add: Seqptick-projs[of P] F-R(1 ) T-P(1 ))

next
case D-P
with D-P(2 ,3 ) F-R(4 ) have ‹t ∈ D (P ;3 (λr . Q r ;3 R))›

by (simp add: Seqptick-projs F-R(1 ) D-P(1 ))
(metis F-imp-front-tickFree front-tickFree-append tickFree-map-ev-comp)

thus ‹(t, X) ∈ F (P ;3 (λr . Q r ;3 R))› by (fact is-processT8 )
qed

qed
qed

7.3 Distributivity of Non-Determinism

7.3.1 Sequential Composition
lemma Seqptick-distrib-GlobalNdet-left :

‹P ;3 (λr . u a∈A. Q a r) = (if A = {} then P ;3 (λr . STOP) else u a∈A. (P
;3 Q a))›
by simp (auto simp add: Process-eq-spec GlobalNdet-projs STOP-projs Seqptick-projs)

lemma Seqptick-distrib-GlobalNdet-right : ‹(u a∈A. P a) ;3 Q = u a∈A. (P a ;3
Q)›

by (simp add: Process-eq-spec GlobalNdet-projs STOP-projs Seqptick-projs)
(safe; simp; blast) — quicker than auto proof

lemma Seqptick-distrib-Ndet-left : ‹P ;3 (λr . Q r u R r) = (P ;3 Q) u (P ;3 R)›
by (fact Seqptick-distrib-GlobalNdet-left[of P ‹{0 :: nat, 1}›

‹λn. if n = 0 then Q else if n = 1 then R else undefined›,
simplified GlobalNdet-distrib-unit-bis, simplified])
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lemma Seqptick-distrib-Ndet-right : ‹P u Q ;3 R = (P ;3 R) u (Q ;3 R)›
by (fact Seqptick-distrib-GlobalNdet-right[of ‹{0 :: nat, 1}›

‹λn. if n = 0 then P else if n = 1 then Q else undefined› R,
simplified GlobalNdet-distrib-unit-bis, simplified])

7.3.2 Synchronization Product
context Syncptick-locale begin

lemma Syncptick-distrib-GlobalNdet-left :
‹P [[S ]]3 u a∈A. Q a = (if A = {} then P [[S ]]3 STOP else u a∈A. (P [[S ]]3 Q

a))›
(is ‹?lhs = (if A = {} then P [[S ]]3 STOP else ?rhs)›)

proof (split if-split, intro conjI impI )
show ‹A = {} =⇒ ?lhs = P [[S ]]3 STOP›

by (simp add: GlobalNdet.abs-eq STOP.abs-eq)
next

show ‹?lhs = ?rhs› if ‹A 6= {}›
proof (subst Process-eq-spec-optimized, safe)

show ‹t ∈ D ?lhs =⇒ t ∈ D ?rhs› for t
by (simp add: D-Syncptick GlobalNdet-projs)
(metis ‹A 6= {}› ex-in-conv is-processT1-TR)

next
show ‹t ∈ D ?rhs =⇒ t ∈ D ?lhs› for t

by (simp add: GlobalNdet-projs D-Syncptick) blast
next

assume same-div : ‹D ?lhs = D ?rhs›
fix t X assume ‹(t, X) ∈ F ?lhs›
with ‹A 6= {}› consider ‹t ∈ D ?lhs›
| (fail) t-P t-Q X-P X-Q a where

‹(t-P, X-P) ∈ F P› ‹a ∈ A› ‹(t-Q, X-Q) ∈ F (Q a)›
‹t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs F-GlobalNdet by force
thus ‹(t, X) ∈ F ?rhs›
proof cases

from same-div D-F show ‹t ∈ D ?lhs =⇒ (t, X) ∈ F ?rhs› by blast
next

case fail
thus ‹(t, X) ∈ F ?rhs› by (simp add: F-GlobalNdet F-Syncptick) blast

qed
next

show ‹(t, X) ∈ F ?rhs =⇒ (t, X) ∈ F ?lhs› for t X
by (simp add: GlobalNdet-projs F-Syncptick ‹A 6= {}›) blast

qed
qed

lemma Syncptick-distrib-GlobalNdet-right :
‹u a∈A. P a [[S ]]3 Q = (if A = {} then STOP [[S ]]3 Q else u a∈A. (P a [[S ]]3
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Q))›
(is ‹?lhs = (if A = {} then STOP [[S ]]3 Q else ?rhs)›)

proof (split if-split, intro conjI impI )
show ‹A = {} =⇒ ?lhs = STOP [[S ]]3 Q›

by (simp add: GlobalNdet.abs-eq STOP.abs-eq)
next

show ‹?lhs = ?rhs› if ‹A 6= {}›
proof (subst Process-eq-spec-optimized, safe)

show ‹t ∈ D ?lhs =⇒ t ∈ D ?rhs› for t
by (simp add: D-Syncptick GlobalNdet-projs)
(metis ‹A 6= {}› ex-in-conv is-processT1-TR)

next
show ‹t ∈ D ?rhs =⇒ t ∈ D ?lhs› for t

by (simp add: GlobalNdet-projs D-Syncptick) blast
next

assume same-div : ‹D ?lhs = D ?rhs›
fix t X assume ‹(t, X) ∈ F ?lhs›
with ‹A 6= {}› consider ‹t ∈ D ?lhs›
| (fail) t-P t-Q X-P X-Q a where

‹(t-P, X-P) ∈ F (P a)› ‹a ∈ A› ‹(t-Q, X-Q) ∈ F Q›
‹t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs F-GlobalNdet by force
thus ‹(t, X) ∈ F ?rhs›
proof cases

from same-div D-F show ‹t ∈ D ?lhs =⇒ (t, X) ∈ F ?rhs› by blast
next

case fail
thus ‹(t, X) ∈ F ?rhs› by (simp add: F-GlobalNdet F-Syncptick) blast

qed
next

show ‹(t, X) ∈ F ?rhs =⇒ (t, X) ∈ F ?lhs› for t X
by (simp add: GlobalNdet-projs F-Syncptick ‹A 6= {}›) blast

qed
qed

lemma (in Syncptick-locale) Syncptick-GlobalNdet-cartprod:
‹(u (a, b) ∈ A × B. (P a [[S ]]3 Q b)) =
(if A = {} ∨ B = {} then STOP else (ua ∈ A. P a) [[S ]]3 (ub ∈ B. Q b))›

by (simp add: GlobalNdet-cartprod Syncptick-distrib-GlobalNdet-left
Syncptick-distrib-GlobalNdet-right GlobalNdet-sets-commute[of A])

lemma Syncptick-distrib-Ndet-left :
‹P [[S ]]3 Q u R = (P [[S ]]3 Q) u (P [[S ]]3 R)›
by (rule trans[OF trans[OF - Syncptick-distrib-GlobalNdet-left

[of P S ‹{True, False}› ‹λb. if b then Q else R›]]])
(simp-all add: GlobalNdet-distrib-unit)
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corollary Syncptick-distrib-Ndet-right :
‹P u Q [[S ]]3 R = (P [[S ]]3 R) u (Q [[S ]]3 R)›
by (rule trans[OF trans[OF - Syncptick-distrib-GlobalNdet-right

[of ‹{True, False}› ‹λb. if b then P else Q› S R]]])
(simp-all add: GlobalNdet-distrib-unit)

end
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Chapter 8

Communications

8.1 Step Laws

8.1.1 Sequential Composition

lemma Mprefix-Seqptick: ‹�a ∈ A → P a ;3 Q = �a ∈ A → (P a ;3 Q)› (is
‹?lhs = ?rhs›)
proof (rule Process-eq-optimizedI )

show ‹t ∈ D ?lhs =⇒ t ∈ D ?rhs› for t
by (cases t, auto simp add: Seqptick-projs Mprefix-projs image-iff Cons-eq-append-conv)

blast
next

show ‹t ∈ D ?rhs =⇒ t ∈ D ?lhs› for t
by (cases t, auto simp add: Seqptick-projs Mprefix-projs image-iff Cons-eq-map-conv

Cons-eq-append-conv)
(metis eventptick.disc(1 ) eventptick.sel(1 ) tickFree-Cons-iff ,

metis append-Cons eventptick.discI (1 ) eventptick.sel(1 ) tickFree-Cons-iff )
next

fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
then consider (F-P) t ′ where ‹t = map (ev ◦ of-ev) t ′›

‹(t ′, ref-Seqptick X) ∈ F (�a ∈ A → P a)› ‹tF t ′›
| (F-Q) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T (�a ∈ A
→ P a)› ‹tF t ′› ‹(u, X) ∈ F (Q r)›

unfolding Seqptick-projs by fast
thus ‹(t, X) ∈ F ?rhs›
proof cases

case F-P thus ‹(t, X) ∈ F ?rhs›
by (cases t ′; simp add: Seqptick-projs ref-Seqptick-def Mprefix-projs disjoint-iff

image-iff )
(metis IntI eventptick.sel(1 ) rangeI , metis eventptick.sel(1 ))

next
case F-Q thus ‹(t, X) ∈ F ?rhs›
by (cases t) (auto simp add: Seqptick-projs Mprefix-projs Cons-eq-append-conv)+

qed
next
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fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs›
from ‹(t, X) ∈ F ?rhs› consider ‹t = []› ‹X ∩ ev ‘ A = {}›
| a t ′ where ‹t = ev a # t ′› ‹a ∈ A› ‹(t ′, X) ∈ F (P a ;3 Q)›
unfolding F-Mprefix by blast

thus ‹(t, X) ∈ F ?lhs›
proof cases

show ‹t = [] =⇒ X ∩ ev ‘ A = {} =⇒ (t, X) ∈ F ?lhs›
by (auto simp add: Seqptick-projs ref-Seqptick-def F-Mprefix)

next
fix a t ′ assume ‹t = ev a # t ′› ‹a ∈ A› ‹(t ′, X) ∈ F (P a ;3 Q)›
from ‹(t ′, X) ∈ F (P a ;3 Q)› ‹t /∈ D ?rhs› ‹a ∈ A› ‹t = ev a # t ′›
consider (F-P) t ′′ where ‹t ′ = map (ev ◦ of-ev) t ′′› ‹(t ′′, ref-Seqptick X) ∈

F (P a)› ‹tF t ′′›
| (F-Q) t ′′ r u where ‹t ′ = map (ev ◦ of-ev) t ′′ @ u› ‹t ′′ @ [3(r)] ∈ T (P

a)› ‹tF t ′′› ‹(u, X) ∈ F (Q r)›
by (auto simp add: Seqptick-projs D-Mprefix)

thus ‹(t, X) ∈ F ?lhs›
proof cases

case F-P thus ‹(t, X) ∈ F ?lhs›
by (simp add: Mprefix-projs Seqptick-projs ‹t = ev a # t ′› Cons-eq-map-conv)

(metis ‹a ∈ A› eventptick.disc(1 ) eventptick.sel(1 ) tickFree-Cons-iff )
next

case F-Q thus ‹(t, X) ∈ F ?lhs›
by (simp add: Mprefix-projs Seqptick-projs ‹t = ev a # t ′› Cons-eq-map-conv

append-eq-Cons-conv)
(metis (no-types, lifting) ‹a ∈ A› append-Cons comp-apply eventptick.disc(1 )

eventptick.sel(1 ) list.simps(9 ) tickFree-Cons-iff )
qed

qed
qed

8.1.2 Synchronization Product
lemma (in Syncptick-locale) Mprefix-Syncptick-Mprefix-bis :

‹�a∈(A ∪ A ′) → P a [[S ]]3 �b∈(B ∪ B ′) → Q b =
(�a∈A → (P a [[S ]]3 �b∈(B ∪ B ′) → Q b)) �
(�b∈B → (�a∈(A ∪ A ′) → P a [[S ]]3 Q b)) �
(�x∈(A ′ ∩ B ′) → (P x [[S ]]3 Q x))›
(is ‹?lhs1 [[S ]]3 ?lhs2 = ?rhs1 � ?rhs2 � ?rhs3 ›)
if sets-assms: ‹A ∩ S = {}› ‹A ′ ⊆ S› ‹B ∩ S = {}› ‹B ′ ⊆ S›

proof (rule Process-eq-optimizedI )
fix t assume ‹t ∈ D (?lhs1 [[S ]]3 ?lhs2 )›
then obtain u v t-P t-Q

where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D ?lhs1 ∧ t-Q ∈ T ?lhs2 ∨

t-P ∈ T ?lhs1 ∧ t-Q ∈ D ?lhs2 ›
unfolding D-Syncptick by blast

from ∗(5 ) show ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )›

176



proof (elim disjE conjE)
assume ‹t-P ∈ D ?lhs1 › ‹t-Q ∈ T ?lhs2 ›
from ‹t-P ∈ D ?lhs1 › obtain a t-P ′

where ∗∗ : ‹a ∈ A ∨ a ∈ A ′› ‹t-P = ev a # t-P ′› ‹t-P ′ ∈ D (P a)›
unfolding D-Mprefix by blast

from ‹t-Q ∈ T ?lhs2 › consider ‹t-Q = []›
| b t-Q ′ where ‹b ∈ B ∨ b ∈ B ′› ‹t-Q = ev b # t-Q ′› ‹t-Q ′ ∈ T (Q b)›
unfolding T-Mprefix by blast

thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )›
proof cases

assume ‹t-Q = []›
with ∗(4 ) obtain u ′ where ‹a /∈ S› ‹u = ev a # u ′›

‹u ′ setinterleaves3tick-join ((t-P ′, t-Q), S)›
by (auto simp add: ∗∗(2 ) split: if-split-asm)

moreover from ‹u = ev a # u ′› ∗(2 ) have ‹tF u ′› by simp
ultimately have ‹t ∈ D ?rhs1 ›

using ∗(1 , 3 ) ∗∗(1 , 3 ) ‹t-Q ∈ T ?lhs2 › ‹A ′ ⊆ S›
by (auto simp add: simp add: D-Mprefix D-Syncptick)

thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› by (simp add: D-Det)
next

fix b t-Q ′ assume ∗∗∗ : ‹b ∈ B ∨ b ∈ B ′› ‹t-Q = ev b # t-Q ′› ‹t-Q ′ ∈ T (Q
b)›

from ∗(2 ) have $ : ‹u = ev x # u ′ =⇒ tF u ′› for x u ′ by simp
from ∗(4 ) sets-assms ∗∗(1 ) ∗∗∗(1 )
consider (mv-both) u ′ where ‹a ∈ S› ‹b = a› ‹a ∈ A ′› ‹a ∈ B ′› ‹u = ev a

# u ′›
‹u ′ setinterleaves3tick-join ((t-P ′, t-Q ′), S)›
| (mv-left) u ′ where ‹a /∈ S› ‹a ∈ A› ‹u = ev a # u ′›

‹u ′ setinterleaves3tick-join ((t-P ′, t-Q), S)›
| (mv-right) u ′ where ‹b /∈ S› ‹b ∈ B› ‹u = ev b # u ′›

‹u ′ setinterleaves3tick-join ((t-P, t-Q ′), S)›
by (auto simp add: ∗∗(2 ) ∗∗∗(2 ) disjoint-iff

split: if-split-asm)
thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )›
proof cases

case mv-both
have ‹tF u ′› by (simp add: $ mv-both(5 ))
with ∗(3 ) ∗∗(3 ) ∗∗∗(3 ) mv-both(2 , 6 )
have ‹u ′ @ v ∈ D (P a [[S ]]3 Q a)› by (auto simp add: D-Syncptick)
hence ‹t ∈ D ?rhs3 › by (simp add: D-Mprefix ∗(1 ) mv-both(3−5 ))
thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› by (simp add: D-Det)

next
case mv-left
have ‹tF u ′› by (simp add: $ mv-left(3 ))
with ∗(3 ) ∗∗(3 ) ‹t-Q ∈ T ?lhs2 › mv-left(4 )
have ‹u ′ @ v ∈ D (P a [[S ]]3 �b∈(B ∪ B ′) → Q b)› by (auto simp add:

D-Syncptick)
hence ‹t ∈ D ?rhs1 › by (simp add: D-Mprefix ∗(1 ) mv-left(2 , 3 ))
thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› by (simp add: D-Det)
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next
case mv-right
have ‹tF u ′› by (simp add: $ mv-right(3 ))
with ∗(3 ) ∗∗∗(3 ) mv-right(4 ) ‹t-P ∈ D ?lhs1 ›
have ‹u ′ @ v ∈ D (�a∈(A ∪ A ′) → P a [[S ]]3 Q b)›

by (auto simp add: D-Syncptick)
hence ‹t ∈ D ?rhs2 › by (simp add: D-Mprefix ∗(1 ) mv-right(2 , 3 ))
thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› by (simp add: D-Det)

qed
qed

next
assume ‹t-P ∈ T ?lhs1 › ‹t-Q ∈ D ?lhs2 ›
from ‹t-Q ∈ D ?lhs2 › obtain b t-Q ′

where ∗∗ : ‹b ∈ B ∨ b ∈ B ′› ‹t-Q = ev b # t-Q ′› ‹t-Q ′ ∈ D (Q b)›
unfolding D-Mprefix by blast

from ‹t-P ∈ T ?lhs1 › consider ‹t-P = []›
| a t-P ′ where ‹a ∈ A ∨ a ∈ A ′› ‹t-P = ev a # t-P ′› ‹t-P ′ ∈ T (P a)›
unfolding T-Mprefix by blast

thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )›
proof cases

assume ‹t-P = []›
with ∗(4 ) obtain u ′ where ‹b /∈ S› ‹u = ev b # u ′›

‹u ′ setinterleaves3tick-join ((t-P, t-Q ′), S)›
by (auto simp add: ∗∗(2 ) split: if-split-asm)

moreover from ‹u = ev b # u ′› ‹tF u› have ‹tF u ′› by simp
ultimately have ‹t ∈ D ?rhs2 ›

using ∗(1 , 3 ) ∗∗(1 , 3 ) ‹t-P ∈ T ?lhs1 › ‹B ′ ⊆ S›
by (auto simp add: simp add: D-Mprefix D-Syncptick)

thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› by (simp add: D-Det)
next

fix a t-P ′ assume ∗∗∗ : ‹a ∈ A ∨ a ∈ A ′› ‹t-P = ev a # t-P ′› ‹t-P ′ ∈ T (P
a)›

from ‹tF u› have $ : ‹u = ev x # u ′ =⇒ tF u ′› for x u ′ by simp
from ∗(4 ) sets-assms ∗∗(1 ) ∗∗∗(1 )
consider (mv-both) u ′ where ‹a ∈ S› ‹b = a› ‹a ∈ A ′› ‹a ∈ B ′›

‹u = ev a # u ′› ‹u ′ setinterleaves3tick-join ((t-P ′, t-Q ′), S)›
| (mv-left) u ′ where ‹a /∈ S› ‹a ∈ A› ‹u = ev a # u ′›

‹u ′ setinterleaves3tick-join ((t-P ′, t-Q), S)›
| (mv-right) u ′ where ‹b /∈ S› ‹b ∈ B› ‹u = ev b # u ′›

‹u ′ setinterleaves3tick-join ((t-P, t-Q ′), S)›
by (auto simp add: ∗∗(2 ) ∗∗∗(2 ) disjoint-iff split: if-split-asm)

thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )›
proof cases

case mv-both
have ‹tF u ′› by (simp add: $ mv-both(5 ))
with ∗(3 ) ∗∗(3 ) ∗∗∗(3 ) mv-both(2 , 6 )
have ‹u ′ @ v ∈ D (P a [[S ]]3 Q a)› by (auto simp add: D-Syncptick)
hence ‹t ∈ D ?rhs3 › by (simp add: D-Mprefix ∗(1 ) mv-both(3−5 ))
thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› by (simp add: D-Det)
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next
case mv-left
have ‹tF u ′› by (simp add: $ mv-left(3 ))
with ∗(3 ) ∗∗∗(3 ) mv-left(4 ) ‹t-Q ∈ D ?lhs2 ›
have ‹u ′ @ v ∈ D (P a [[S ]]3 �b∈(B ∪ B ′) → Q b)› by (auto simp add:

D-Syncptick)
hence ‹t ∈ D ?rhs1 › by (simp add: D-Mprefix ∗(1 ) mv-left(2 , 3 ))
thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› by (simp add: D-Det)

next
case mv-right
have ‹tF u ′› by (simp add: $ mv-right(3 ))
with ∗(3 ) ∗∗(3 ) ‹t-P ∈ T ?lhs1 › mv-right(4 )
have ‹u ′ @ v ∈ D (�a∈(A ∪ A ′) → P a [[S ]]3 Q b)›

by (auto simp add: D-Syncptick)
hence ‹t ∈ D ?rhs2 › by (simp add: D-Mprefix ∗(1 ) mv-right(2 , 3 ))
thus ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› by (simp add: D-Det)

qed
qed

qed
next

fix t assume ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )›
consider ‹t = []› | r-s t ′ where ‹t = 3(r-s) # t ′› | x t ′ where ‹t = ev x # t ′›

by (metis eventptick.exhaust neq-Nil-conv)
thus ‹t ∈ D (?lhs1 [[S ]]3 ?lhs2 )›
proof cases

assume ‹t = []›
with ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› have False

by (simp add: D-Det D-Mprefix)
thus ‹t ∈ D (?lhs1 [[S ]]3 ?lhs2 )› ..

next
fix r-s t ′ assume ‹t = 3(r-s) # t ′›
with ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› have False

by (simp add: D-Det D-Mprefix)
thus ‹t ∈ D (?lhs1 [[S ]]3 ?lhs2 )› ..

next
fix x t ′ assume ‹t = ev x # t ′›
with ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )› consider
(mv-left) ‹x ∈ A› ‹t ′ ∈ D (P x [[S ]]3 ?lhs2 )›
| (mv-right) ‹x ∈ B› ‹t ′ ∈ D (?lhs1 [[S ]]3 Q x)›
| (mv-both) ‹x ∈ A ′› ‹x ∈ B ′› ‹t ′ ∈ D (P x [[S ]]3 Q x)›
by (auto simp add: D-Det D-Mprefix)

thus ‹t ∈ D (?lhs1 [[S ]]3 ?lhs2 )›
proof cases

case mv-left
from ‹x ∈ A› ‹A ∩ S = {}› have ‹x /∈ S› by blast
from mv-left(2 ) obtain u v t-P t-Q

where ∗ : ‹t ′ = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
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‹t-P ∈ D (P x) ∧ t-Q ∈ T ?lhs2 ∨
t-P ∈ T (P x) ∧ t-Q ∈ D ?lhs2 ›

unfolding D-Syncptick by blast
have ‹t = (ev x # u) @ v› by (simp add: ∗(1 ) ‹t = ev x # t ′›)
moreover have ‹tF (ev x # u)› by (simp add: ∗(2 ))
moreover from ∗(4 ) have ‹ev x # u setinterleaves3tick-join ((ev x # t-P,

t-Q), S)›
by (cases t-Q) (auto simp add: ‹x /∈ S› setinterleavingptick-simps split:

eventptick.split)
moreover from ∗(5 ) mv-left(1 )
have ‹ev x # t-P ∈ D ?lhs1 ∧ t-Q ∈ T ?lhs2 ∨

ev x # t-P ∈ T ?lhs1 ∧ t-Q ∈ D ?lhs2 › by (simp add: Mprefix-projs)
ultimately show ‹t ∈ D (?lhs1 [[S ]]3 ?lhs2 )›

using ∗(3 ) by (simp (no-asm) add: D-Syncptick) blast
next

case mv-right
from ‹x ∈ B› ‹B ∩ S = {}› have ‹x /∈ S› by blast
from mv-right(2 ) obtain u v t-P t-Q

where ∗ : ‹t ′ = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D ?lhs1 ∧ t-Q ∈ T (Q x) ∨

t-P ∈ T ?lhs1 ∧ t-Q ∈ D (Q x)›
unfolding D-Syncptick by blast

have ‹t = (ev x # u) @ v› by (simp add: ∗(1 ) ‹t = ev x # t ′›)
moreover have ‹tF (ev x # u)› by (simp add: ∗(2 ))
moreover from ∗(4 ) have ‹ev x # u setinterleaves3tick-join ((t-P, ev x #

t-Q), S)›
by (cases t-P) (auto simp add: ‹x /∈ S› setinterleavingptick-simps split:

eventptick.split)
moreover from ∗(5 ) mv-right(1 )
have ‹t-P ∈ D ?lhs1 ∧ ev x # t-Q ∈ T ?lhs2 ∨

t-P ∈ T ?lhs1 ∧ ev x # t-Q ∈ D ?lhs2 › by (simp add: Mprefix-projs)
ultimately show ‹t ∈ D (?lhs1 [[S ]]3 ?lhs2 )›

using ∗(3 ) by (simp (no-asm) add: D-Syncptick) blast
next

case mv-both
from ‹x ∈ A ′› ‹A ′ ⊆ S› have ‹x ∈ S› by blast
from mv-both(3 ) obtain u v t-P t-Q

where ∗ : ‹t ′ = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D (P x) ∧ t-Q ∈ T (Q x) ∨

t-P ∈ T (P x) ∧ t-Q ∈ D (Q x)›
unfolding D-Syncptick by blast

have ‹t = (ev x # u) @ v› by (simp add: ∗(1 ) ‹t = ev x # t ′›)
moreover have ‹tF (ev x # u)› by (simp add: ∗(2 ))
moreover from ∗(4 ) have ‹ev x # u setinterleaves3tick-join ((ev x # t-P,

ev x # t-Q), S)›
by (auto simp add: ‹x ∈ S›)

moreover from ∗(5 ) mv-both(1 , 2 )
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have ‹ev x # t-P ∈ D ?lhs1 ∧ ev x # t-Q ∈ T ?lhs2 ∨
ev x # t-P ∈ T ?lhs1 ∧ ev x # t-Q ∈ D ?lhs2 › by (simp add: Mprefix-projs)

ultimately show ‹t ∈ D (?lhs1 [[S ]]3 ?lhs2 )›
using ∗(3 ) by (simp (no-asm) add: D-Syncptick) blast

qed
qed

next

fix t X assume ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )› ‹t /∈ D (?lhs1 [[S ]]3 ?lhs2 )›
then obtain t-P t-Q X-P X-Q

where fail : ‹(t-P, X-P) ∈ F ?lhs1 › ‹(t-Q, X-Q) ∈ F ?lhs2 ›
‹t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
consider ‹t = []› | r-s t ′ where ‹t = 3(r-s) # t ′› | a t ′ where ‹t = ev a # t ′›

by (metis eventptick.exhaust neq-Nil-conv)
thus ‹(t, X) ∈ F (?rhs1 � ?rhs2 � ?rhs3 )›
proof cases

assume ‹t = []›
with Nil-setinterleavesptick fail(3 ) have ‹t-P = []› ‹t-Q = []› by blast+
with fail(1 , 2 ) have ‹X-P ∩ ev ‘ (A ∪ A ′) = {}› ‹X-Q ∩ ev ‘ (B ∪ B ′) = {}›

by (simp-all add: F-Mprefix)
with fail(4 ) ‹A ∩ S = {}› ‹B ∩ S = {}› show ‹(t, X) ∈ F (?rhs1 � ?rhs2 �

?rhs3 )›
by (simp add: ‹t = []› Det-projs Mprefix-projs super-ref-Syncptick-def )
(use eventptick.distinct(1 ) in blast)

next
fix r-s t ′ assume ‹t = 3(r-s) # t ′›
hence ‹t = [3(r-s)]›

by (metis F-imp-front-tickFree ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )›
eventptick.disc(2 ) front-tickFree-Cons-iff )

with fail(3 ) obtain r s where ‹tick-join r s = Some r-s›
by (auto elim: Cons-tick-setinterleavesptickE)

from ‹t = [3(r-s)]› fail(3 ) ‹tick-join r s = Some r-s›
have ‹t-P = [3(r)]›

by (auto dest: inj-tick-join Nil-setinterleavesptick
elim: Cons-tick-setinterleavesptickE)

with fail(1 ) ‹t = [3(r-s)]› have False by (simp add: F-Mprefix)
thus ‹(t, X) ∈ F (?rhs1 � ?rhs2 � ?rhs3 )› ..

next
fix a t ′ assume ‹t = ev a # t ′›
from fail(1−3 ) sets-assms consider
(mv-left) t-P ′ where
‹a /∈ S› ‹a ∈ A› ‹t-P = ev a # t-P ′› ‹(t-P ′, X-P) ∈ F (P a)›
‹t ′ setinterleaves3tick-join ((t-P ′, t-Q), S)›
| (mv-right) t-Q ′ where

‹a /∈ S› ‹a ∈ B› ‹t-Q = ev a # t-Q ′› ‹(t-Q ′, X-Q) ∈ F (Q a)›
‹t ′ setinterleaves3tick-join ((t-P, t-Q ′), S)›
| (mv-both) t-P ′ t-Q ′ where
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‹a ∈ S› ‹a ∈ A ′› ‹a ∈ B ′› ‹t-P = ev a # t-P ′› ‹t-Q = ev a # t-Q ′›
‹(t-P ′, X-P) ∈ F (P a)› ‹(t-Q ′, X-Q) ∈ F (Q a)› ‹t ′ setinterleaves3tick-join

((t-P ′, t-Q ′), S)›
by (unfold ‹t = ev a # t ′›, elim Cons-ev-setinterleavesptickE)
(simp-all add: F-Mprefix subset-iff disjoint-iff , blast+)

thus ‹(t, X) ∈ F (?rhs1 � ?rhs2 � ?rhs3 )›
proof cases

case mv-left
with fail(2 , 4 ) have ‹(t, X) ∈ F ?rhs1 ›

by (subst F-Mprefix) (auto simp add: F-Syncptick ‹t = ev a # t ′›)
thus ‹(t, X) ∈ F (?rhs1 � ?rhs2 � ?rhs3 )›

by (simp add: F-Det ‹t = ev a # t ′›)
next

case mv-right
with fail(1 , 4 ) have ‹(t, X) ∈ F ?rhs2 ›

by (subst F-Mprefix) (auto simp add: F-Syncptick ‹t = ev a # t ′›)
thus ‹(t, X) ∈ F (?rhs1 � ?rhs2 � ?rhs3 )›

by (simp add: F-Det ‹t = ev a # t ′›)
next

case mv-both
with fail(4 ) have ‹(t, X) ∈ F ?rhs3 ›

by (auto simp add: F-Mprefix F-Syncptick ‹t = ev a # t ′›)
thus ‹(t, X) ∈ F (?rhs1 � ?rhs2 � ?rhs3 )›

by (simp add: F-Det ‹t = ev a # t ′›)
qed

qed
next

fix t X assume ‹(t, X) ∈ F (?rhs1 � ?rhs2 � ?rhs3 )›
‹t /∈ D (?rhs1 � ?rhs2 � ?rhs3 )›

consider ‹t = []› | r-s t ′ where ‹t = 3(r-s) # t ′› | a t ′ where ‹t = ev a # t ′›
by (metis eventptick.exhaust neq-Nil-conv)

thus ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )›
proof cases

define X-P where ‹X-P ≡ {ev a |a. ev a ∈ X ∧ a ∈ − (A ∪ A ′)} ∪
{3(r) |r-s r s. tick-join r s = Some r-s ∧ 3(r-s) ∈ X}›

define X-Q where ‹X-Q ≡ {ev b |b. ev b ∈ X ∧ b ∈ − (B ∪ B ′)} ∪
{3(s) |r-s r s. tick-join r s = Some r-s ∧ 3(r-s) ∈ X}›

assume ‹t = []›
with ‹(t, X) ∈ F (?rhs1 � ?rhs2 � ?rhs3 )›
have ‹X ∩ ev ‘ A = {} ∧ X ∩ ev ‘ B = {} ∧ X ∩ ev ‘ (A ′ ∩ B ′) = {}›

unfolding Det-projs F-Mprefix by auto
with sets-assms(2 , 4 ) have ‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

by (simp add: super-ref-Syncptick-def X-P-def X-Q-def
subset-iff disjoint-iff image-iff )

(metis IntI eventptick.exhaust)
moreover have ‹([], X-P) ∈ F ?lhs1 › by (auto simp add: F-Mprefix X-P-def )
moreover have ‹([], X-Q) ∈ F ?lhs2 › by (auto simp add: F-Mprefix X-Q-def )
ultimately show ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )›
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by (simp add: ‹t = []› F-Syncptick) (use Nil-setinterleavingptick-Nil in blast)
next

fix r-s t ′ assume ‹t = 3(r-s) # t ′›
with ‹(t, X) ∈ F (?rhs1 � ?rhs2 � ?rhs3 )›
have False by (simp add: F-Det F-Mprefix)
thus ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )› ..

next
fix x t ′ assume ‹t = ev x # t ′›
with ‹(t, X) ∈ F (?rhs1 � ?rhs2 � ?rhs3 )›
consider (mv-left) ‹x ∈ A› ‹(t ′, X) ∈ F (P x [[S ]]3 ?lhs2 )›
| (mv-right) ‹x ∈ B› ‹(t ′, X) ∈ F (?lhs1 [[S ]]3 Q x)›
| (mv-both) ‹x ∈ A ′› ‹x ∈ B ′› ‹(t ′, X) ∈ F (P x [[S ]]3 Q x)›
unfolding F-Det F-Mprefix by auto

thus ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )›
proof cases

case mv-left
from mv-left(2 ) consider ‹t ′ ∈ D (P x [[S ]]3 ?lhs2 )›
| (fail) t-P t-Q X-P X-Q where

‹(t-P, X-P) ∈ F (P x)› ‹(t-Q, X-Q) ∈ F ?lhs2 ›
‹t ′ setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
thus ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )›
proof cases

assume ‹t ′ ∈ D (P x [[S ]]3 ?lhs2 )›
hence ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )›

by (simp add: D-Det D-Mprefix ‹t = ev x # t ′› mv-left(1 ))
with ‹t /∈ D (?rhs1 � ?rhs2 � ?rhs3 )› have False ..
thus ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )› ..

next
case fail
have ‹(ev x # t-P, X-P) ∈ F ?lhs1 ›

by (simp add: F-Mprefix fail(1 ) mv-left(1 ))
moreover from ‹t = ev x # t ′› fail(3 ) mv-left(1 ) ‹A ∩ S = {}›
have ‹t setinterleaves3tick-join ((ev x # t-P, t-Q), S)›

by (cases t-Q) (auto simp add: setinterleavingptick-simps split: eventptick.split)
ultimately show ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )›

using fail(2 , 4 ) by (auto simp add: F-Syncptick)
qed

next
case mv-right
from mv-right(2 ) consider ‹t ′ ∈ D (?lhs1 [[S ]]3 Q x)›
| (fail) t-P t-Q X-P X-Q where

‹(t-P, X-P) ∈ F ?lhs1 › ‹(t-Q, X-Q) ∈ F (Q x)›
‹t ′ setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
thus ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )›
proof cases
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assume ‹t ′ ∈ D (?lhs1 [[S ]]3 Q x)›
hence ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )›

by (simp add: D-Det D-Mprefix ‹t = ev x # t ′› mv-right(1 ))
with ‹t /∈ D (?rhs1 � ?rhs2 � ?rhs3 )› have False ..
thus ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )› ..

next
case fail
have ‹(ev x # t-Q, X-Q) ∈ F ?lhs2 ›

by (simp add: F-Mprefix fail(2 ) mv-right(1 ))
moreover from ‹t = ev x # t ′› fail(3 ) mv-right(1 ) ‹B ∩ S = {}›
have ‹t setinterleaves3tick-join ((t-P, ev x # t-Q), S)›

by (cases t-P) (auto simp add: setinterleavingptick-simps split: eventptick.split)
ultimately show ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )›

using fail(1 , 4 ) by (auto simp add: F-Syncptick)
qed

next
case mv-both
from mv-both(3 ) consider ‹t ′ ∈ D (P x [[S ]]3 Q x)›
| (fail) t-P t-Q X-P X-Q where

‹(t-P, X-P) ∈ F (P x)› ‹(t-Q, X-Q) ∈ F (Q x)›
‹t ′ setinterleaves3tick-join ((t-P, t-Q), S)› ‹X ⊆ super-ref-Syncptick tick-join

X-P S X-Q›
unfolding Syncptick-projs by blast

thus ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )›
proof cases

assume ‹t ′ ∈ D (P x [[S ]]3 Q x)›
hence ‹t ∈ D (?rhs1 � ?rhs2 � ?rhs3 )›

by (simp add: D-Det D-Mprefix ‹t = ev x # t ′› mv-both(1 , 2 ))
with ‹t /∈ D (?rhs1 � ?rhs2 � ?rhs3 )› have False ..
thus ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )› ..

next
case fail
have ‹(ev x # t-P, X-P) ∈ F ?lhs1 ›

by (simp add: F-Mprefix fail(1 ) mv-both(1 ))
moreover have ‹(ev x # t-Q, X-Q) ∈ F ?lhs2 ›

by (simp add: F-Mprefix fail(2 ) mv-both(2 ))
moreover from ‹t = ev x # t ′› fail(3 ) mv-both(1 ) ‹A ′ ⊆ S›
have ‹t setinterleaves3tick-join ((ev x # t-P, ev x # t-Q), S)› by auto
ultimately show ‹(t, X) ∈ F (?lhs1 [[S ]]3 ?lhs2 )›

using fail(4 ) by (simp (no-asm) add: F-Syncptick) blast
qed

qed
qed

qed

corollary (in Syncptick-locale) Mprefix-Syncptick-Mprefix:
— This version is easier to use.
‹�a∈A → P a [[S ]]3 �b∈B → Q b =
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(�a∈(A − S) → (P a [[S ]]3 �b∈B → Q b)) �
(�b∈(B − S) → (�a∈A → P a [[S ]]3 Q b)) �
(�x∈(A ∩ B ∩ S) → (P x [[S ]]3 Q x))›

by (subst Mprefix-Syncptick-Mprefix-bis
[of ‹A − S› S ‹A ∩ S› ‹B − S› ‹B ∩ S›, simplified Un-Diff-Int])

(simp-all add: Int-commute inf-left-commute)

corollary (in Syncptick-locale) Mprefix-Syncptick-Mprefix-for-procomata:
— Specialized version for Proc-Omata.
‹�a∈A → P a [[S ]]3 �b∈B → Q b =
(�a∈(A − S − B) → (P a [[S ]]3 �b∈B → Q b)) �
(�b∈(B − S − A) → (�a∈A → P a [[S ]]3 Q b)) �
(�x∈(A ∩ B − S) → (P x [[S ]]3 �b∈B → Q b) u (�a∈A → P a [[S ]]3 Q x)) �
(�x∈(A ∩ B ∩ S) → (P x [[S ]]3 Q x))›

proof −
have ∗ : ‹�a∈(A − S) → (P a [[S ]]3 �b∈B → Q b) =

(�a∈(A − S − B) → (P a [[S ]]3 �b∈B → Q b)) �
(�a∈(A ∩ B − S) → (P a [[S ]]3 �b∈B → Q b))›

by (metis Diff-Int2 Diff-Int-distrib2 Mprefix-Un-distrib Un-Diff-Int)
have ∗∗ : ‹�b∈(B − S) → (�a∈A → P a [[S ]]3 Q b) =

(�b∈(B − S − A) → (�a∈A → P a [[S ]]3 Q b)) �
(�b∈(A ∩ B − S) → (�a∈A → P a [[S ]]3 Q b))›

by (metis (no-types) Int-Diff Int-commute Mprefix-Un-distrib Un-Diff-Int)
have ‹�a∈A → P a [[S ]]3 �b∈B → Q b =

(�a∈(A − S − B) → (P a [[S ]]3 �b∈B → Q b)) �
(�b∈(B − S − A) → (�a∈A → P a [[S ]]3 Q b)) �
((�a∈(A ∩ B − S) → (P a [[S ]]3 �b∈B → Q b)) �
(�b∈(A ∩ B − S) → (�a∈A → P a [[S ]]3 Q b))) �
(�x∈(A ∩ B ∩ S) → (P x [[S ]]3 Q x))›

unfolding Mprefix-Syncptick-Mprefix
by (auto simp add: ∗∗ Det-assoc intro!: arg-cong[where f = ‹λP. P � -›])
(subst (3 ) Det-commute, subst Det-assoc,

auto simp add: ∗ Det-commute intro: arg-cong[where f = ‹λP. P � -›])
also have ‹(�a∈(A ∩ B − S) → (P a [[S ]]3 �b∈B → Q b)) �

(�b∈(A ∩ B − S) → (�a∈A → P a [[S ]]3 Q b)) =
�x∈(A ∩ B − S) → ((P x [[S ]]3 �b∈B → Q b)) u (�a∈A → P a [[S ]]3

Q x)›
by (simp add: Mprefix-Det-Mprefix, rule mono-Mprefix-eq, simp)

finally show ?thesis .
qed

unbundle option-type-syntax
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8.2 Extended step Laws
8.2.1 Sequential Composition
lemma Mndetprefix-Seqptick: ‹ua ∈ A → P a ;3 Q = ua ∈ A → (P a ;3 Q)›

by (auto simp add: Mndetprefix-GlobalNdet Seqptick-distrib-GlobalNdet-right
write0-def Mprefix-Seqptick intro: mono-GlobalNdet-eq)

8.2.2 Synchronization Product
Behaviour of SKIPS
lemma (in Syncptick-locale) SKIPS-Syncptick-SKIPS :

‹SKIPS R [[A]]3 SKIPS S = u(r , s) ∈ R × S . (case r ⊗3 s of br-sc ⇒ SKIP
r-s | ♦ ⇒ STOP)›
by (simp add: SKIPS-def Syncptick-distrib-GlobalNdet-left Syncptick-distrib-GlobalNdet-right)
(simp add: GlobalNdet-cartprod[of R S ‹λr s. case r ⊗3 s of ♦ ⇒ STOP | br-sc

⇒ SKIP r-s›]
GlobalNdet-sets-commute[of R S ‹λr s. case r ⊗3 s of ♦ ⇒ STOP | br-sc ⇒

SKIP r-s›])

In order for the right-hand side to be rewritten as a SKIPS, an assumption
is required: the ticks involved must be able to be combined.
lemma GlobalNdet-prod-SKIP-is-SKIPS :

‹u(r , s) ∈ R × S . SKIP dtick-join r se =
SKIPS ((the ◦ (λ(r , s). tick-join r s)) ‘ (R × S))›

by (simp add: SKIPS-def mono-GlobalNdet-eq2 split-def )

lemma GlobalNdet-prod-case-SKIP-STOP-is-GlobalNdet-prod-SKIP-iff :
‹u(r , s) ∈ R × S . (case tick-join r s of ♦ ⇒ STOP | br-sc ⇒ SKIP r-s) =
u(r , s) ∈ R × S . SKIP dtick-join r se
←→ (∀ r s. r ∈ R −→ s ∈ S −→ tick-join r s 6= ♦)›
(is ‹?lhs1 = ?lhs2 ←→ ?rhs›)

proof (rule iffI )
show ‹?rhs =⇒ ?lhs1 = ?lhs2 ›

by (force intro: mono-GlobalNdet-eq)
next

have ‹UNIV ∈ R ?lhs2 ←→ R = {} ∨ S = {}›
by (simp add: Refusals-iff F-GlobalNdet F-SKIP)

moreover have ‹UNIV ∈ R ?lhs1 ←→ R = {} ∨ S = {} ∨ (∃ r s. r ∈ R ∧ s
∈ S ∧ tick-join r s = ♦)›

by (auto simp add: Refusals-iff F-GlobalNdet F-SKIP F-STOP split: option.split)
ultimately show ‹?lhs1 = ?lhs2 =⇒ ?rhs› by (metis empty-iff )

qed

lemma (in Syncptick-locale) SKIPS-Syncptick-SKIPS-bis :
‹SKIPS R [[A]]3 SKIPS S = SKIPS ((the ◦ (λ(r , s). r ⊗3 s)) ‘ (R × S))›
if ‹

∧
r s. r ∈ R =⇒ s ∈ S =⇒ r ⊗3 s 6= ♦›

by (unfold SKIPS-Syncptick-SKIPS , fold GlobalNdet-prod-SKIP-is-SKIPS)
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(simp add: SKIPS-Syncptick-SKIPS GlobalNdet-prod-case-SKIP-STOP-is-GlobalNdet-prod-SKIP-iff
that)

lemma (in Syncptick-locale)
SKIPS-Syncptick-STOP [simp] : ‹SKIPS R [[A]]3 STOP = STOP›
and STOP-Syncptick-SKIPS [simp] : ‹STOP [[A]]3 SKIPS S = STOP›
by (fact SKIPS-Syncptick-SKIPS [where S = ‹{}›, simplified]

SKIPS-Syncptick-SKIPS [where R = ‹{}›, simplified])+

Derived step Laws with Non-Determinism

context Syncptick-locale begin

lemma Mprefix-Interptick-Mprefix :
‹�a∈A → P a |||3 �b∈B → Q b =
(�a∈A → (P a |||3 �b∈B → Q b)) � (�b∈B → (�a ∈ A → P a |||3 Q b))›

by (fact Mprefix-Syncptick-Mprefix[where S = ‹{}›, simplified])

lemma Mprefix-Parptick-Mprefix : ‹�a∈A → P a ||3 �b∈B → Q b = �x∈(A ∩
B) → (P x ||3 Q x)›

by (fact Mprefix-Syncptick-Mprefix[where S = ‹UNIV ›, simplified])

lemma Mprefix-Syncptick-Mprefix-subset :
‹[[A ⊆ S ; B ⊆ S ]] =⇒ �a∈A → P a [[S ]]3 �b∈B → Q b = �x∈(A ∩ B) → (P

x [[S ]]3 Q x)›
by (fact Mprefix-Syncptick-Mprefix-bis[of ‹{}› S A ‹{}› B, simplified])

lemma Mprefix-Syncptick-Mprefix-indep :
‹[[A ∩ S = {}; B ∩ S = {}]] =⇒
�a∈A → P a [[S ]]3 �b∈B → Q b =
(�a∈A → (P a [[S ]]3 �b∈B → Q b)) � (�b∈B → (�a∈A → P a [[S ]]3 Q b))›

by (fact Mprefix-Syncptick-Mprefix-bis[of A S ‹{}› B ‹{}›, simplified])

lemma Mprefix-Syncptick-Mprefix-left :
‹[[A ∩ S = {}; B ⊆ S ]] =⇒ �a∈A → P a [[S ]]3 �b∈B → Q b = �a∈A → (P a

[[S ]]3 �b∈B → Q b)›
by (fact Mprefix-Syncptick-Mprefix-bis[of A S ‹{}› ‹{}› B, simplified])

lemma Mprefix-Syncptick-Mprefix-right :
‹[[A ⊆ S ; B ∩ S = {}]] =⇒ �a∈A → P a [[S ]]3 �b∈B → Q b = �b∈B → (�a∈A
→ P a [[S ]]3 Q b)›

by (fact Mprefix-Syncptick-Mprefix-bis[of ‹{}› S A B ‹{}›, simplified])

lemma Mprefix-Syncptick-STOP : ‹�a ∈ A → P a [[S ]]3 STOP = �a ∈ (A − S)
→ (P a [[S ]]3 STOP)›

by (subst Mprefix-empty[symmetric], subst Mprefix-Syncptick-Mprefix, simp)
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lemma STOP-Syncptick-Mprefix : ‹STOP [[S ]]3 �b ∈ B → Q b = �b ∈ (B − S)
→ (STOP [[S ]]3 Q b)›

by (subst Mprefix-empty[symmetric], subst Mprefix-Syncptick-Mprefix, simp)

Mixing deterministic and non deterministic prefix choices lemma
Mndetprefix-Syncptick-Mprefix :

‹(ua ∈ A → P a) [[S ]]3 (�b ∈ B → Q b) =
( if A = {} then STOP [[S ]]3 (�b ∈ B → Q b)
else ua∈A. (if a ∈ S then STOP else (a → (P a [[S ]]3 (�b ∈ B → Q b)))) �

(�b∈(B − S) → ((a → P a) [[S ]]3 Q b)) �
(if a ∈ B ∩ S then (a → (P a [[S ]]3 Q a)) else STOP))›

unfolding Mndetprefix-GlobalNdet Syncptick-distrib-GlobalNdet-right
write0-def Mprefix-Syncptick-Mprefix

by (auto simp add: Mprefix-singl insert-Diff-if Int-insert-left
intro: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›])

lemma Mprefix-Syncptick-Mndetprefix :
‹(�a ∈ A → P a) [[S ]]3 (ub ∈ B → Q b) =
( if B = {} then (�a ∈ A → P a) [[S ]]3 STOP
else ub∈B. (if b ∈ S then STOP else (b → ((�a ∈ A → P a) [[S ]]3 Q b))) �

(�a∈(A − S) → (P a [[S ]]3 (b → Q b))) �
(if b ∈ A ∩ S then (b → (P b [[S ]]3 Q b)) else STOP))›

unfolding Mndetprefix-GlobalNdet Syncptick-distrib-GlobalNdet-left
write0-def Mprefix-Syncptick-Mprefix

by (subst Det-commute)
(auto simp add: Diff-triv Mprefix-singl Mprefix-is-STOP-iff disjoint-iff

intro!: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›] split: if-split-asm)

In particular, we can obtain the theorem for Mndetprefix synchronized with
STOP.
lemma Mndetprefix-Syncptick-STOP :

‹(ua ∈ A → P a) [[S ]]3 STOP =
( if A ∩ S = {} then ua ∈ A → (P a [[S ]]3 STOP)
else (ua ∈ (A − S) → (P a [[S ]]3 STOP)) u STOP)›

(is ‹?lhs = (if A ∩ S = {} then ?rhs1 else ?rhs2 u STOP)›)
proof −

have ‹(ua ∈ A → P a) [[S ]]3 STOP =
ua∈A. (if a ∈ S then STOP else (a → (P a [[S ]]3 STOP)))› (is ‹?lhs =

?rhs ′›)
by (subst Mndetprefix-Syncptick-Mprefix[where B = ‹{}›, simplified])
(auto intro: mono-GlobalNdet-eq)

also have ‹?rhs ′ = (if A ∩ S = {} then ?rhs1 else ?rhs2 u STOP)›
proof (split if-split, intro conjI impI )

show ‹A ∩ S = {} =⇒ ?rhs ′ = ?rhs1 ›
by (auto simp add: Mndetprefix-GlobalNdet intro!: mono-GlobalNdet-eq)

next
show ‹?rhs ′ = ?rhs2 u STOP› if ‹A ∩ S 6= {}›
proof (cases ‹A − S = {}›)

show ‹?rhs ′ = ?rhs2 u STOP› if ‹A − S = {}›
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by (simp add: ‹A − S = {}› GlobalNdet-is-STOP-iff )
(use ‹A − S = {}› in blast)

next
show ‹?rhs ′ = ?rhs2 u STOP› if ‹A − S 6= {}›
proof (subst Int-Diff-Un[symmetric],

subst GlobalNdet-factorization-union
[OF ‹A ∩ S 6= {}› ‹A − S 6= {}›, symmetric])

have ‹(ua∈(A ∩ S). (if a ∈ S then STOP else (a → (P a [[S ]]3 STOP))))
= STOP› (is ‹?fact1 = STOP›)

by (simp add: GlobalNdet-is-STOP-iff )
moreover have ‹(ua∈(A − S). (if a ∈ S then STOP else (a → (P a [[S ]]3

STOP))))
= ?rhs2 › (is ‹?fact2 = ?rhs2 ›)

by (auto simp add: Mndetprefix-GlobalNdet intro: mono-GlobalNdet-eq)
ultimately show ‹?fact1 u ?fact2 = ?rhs2 u STOP› by (metis Ndet-commute)
qed

qed
qed
finally show ‹?lhs = (if A ∩ S = {} then ?rhs1 else ?rhs2 u STOP)› .

qed

lemma STOP-Syncptick-Mndetprefix :
‹STOP [[S ]]3 (ub ∈ B → Q b) =
( if B ∩ S = {} then ub ∈ B → (STOP [[S ]]3 Q b)
else (ub ∈ (B − S) → (STOP [[S ]]3 Q b)) u STOP)›

(is ‹?lhs = (if B ∩ S = {} then ?rhs1 else ?rhs2 u STOP)›)
proof −

have ‹STOP [[S ]]3 (ub ∈ B → Q b) =
ub∈B. (if b ∈ S then STOP else (b → (STOP [[S ]]3 Q b)))› (is ‹?lhs =

?rhs ′›)
by (subst Mprefix-Syncptick-Mndetprefix[where A = ‹{}›, simplified])
(auto intro: mono-GlobalNdet-eq)

also have ‹?rhs ′ = (if B ∩ S = {} then ?rhs1 else ?rhs2 u STOP)›
proof (split if-split, intro conjI impI )

show ‹B ∩ S = {} =⇒ ?rhs ′ = ?rhs1 ›
by (auto simp add: Mndetprefix-GlobalNdet intro!: mono-GlobalNdet-eq)

next
show ‹?rhs ′ = ?rhs2 u STOP› if ‹B ∩ S 6= {}›
proof (cases ‹B − S = {}›)

show ‹?rhs ′ = ?rhs2 u STOP› if ‹B − S = {}›
by (simp add: ‹B − S = {}› GlobalNdet-is-STOP-iff )
(use ‹B − S = {}› in blast)

next
show ‹?rhs ′ = ?rhs2 u STOP› if ‹B − S 6= {}›
proof (subst Int-Diff-Un[symmetric],

subst GlobalNdet-factorization-union
[OF ‹B ∩ S 6= {}› ‹B − S 6= {}›, symmetric])

have ‹(ub∈(B ∩ S). (if b ∈ S then STOP else (b → (STOP [[S ]]3 Q b))))
= STOP› (is ‹?fact1 = STOP›)
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by (simp add: GlobalNdet-is-STOP-iff )
moreover have ‹(ub∈(B − S). (if b ∈ S then STOP else (b → (STOP

[[S ]]3 Q b))))
= ?rhs2 › (is ‹?fact2 = ?rhs2 ›)

by (auto simp add: Mndetprefix-GlobalNdet intro: mono-GlobalNdet-eq)
ultimately show ‹?fact1 u ?fact2 = ?rhs2 u STOP› by (metis Ndet-commute)
qed

qed
qed
finally show ‹?lhs = (if B ∩ S = {} then ?rhs1 else ?rhs2 u STOP)› .

qed

corollary Mndetprefix-Syncptick-Mprefix-subset :
‹(ua ∈ A → P a) [[S ]]3 (�b ∈ B → Q b) =
( if A ⊆ B then u a ∈ A → (P a [[S ]]3 Q a)
else (ua ∈ (A ∩ B) → (P a [[S ]]3 Q a)) u STOP)›

(is ‹?lhs = (if A ⊆ B then ?rhs1 else ?rhs2 )›) if ‹A ⊆ S› ‹B ⊆ S›
proof (cases ‹A = {}›)

show ‹A = {} =⇒ ?lhs = (if A ⊆ B then ?rhs1 else ?rhs2 )›
by (simp add: Mprefix-is-STOP-iff STOP-Syncptick-Mprefix ‹B ⊆ S›)

next
from ‹A ⊆ S› have ∗ : ‹a ∈ A =⇒ a ∈ S› for a by blast
from ‹B ⊆ S› have ∗∗ : ‹B − S = {}› ‹b ∈ B ∧ b ∈ S ←→ b ∈ B› for b by

auto
assume ‹A 6= {}›
have ‹?lhs = ua∈A. (if a ∈ B then (a → (P a [[S ]]3 Q a)) else STOP)› (is ‹?lhs

= ?rhs ′›)
by (auto simp add: Mndetprefix-Syncptick-Mprefix ∗ ∗∗ ‹A 6= {}› intro: mono-GlobalNdet-eq)

also have ‹?rhs ′ = (if A ⊆ B then ?rhs1 else ?rhs2 )›
proof (split if-split, intro conjI impI )

show ‹A ⊆ B =⇒ ?rhs ′ = ua∈A → (P a [[S ]]3 Q a)›
by (auto simp add: Mndetprefix-GlobalNdet intro!: mono-GlobalNdet-eq)

next
show ‹?rhs ′ = (ua∈(A ∩ B) → (P a [[S ]]3 Q a)) u STOP› if ‹¬ A ⊆ B›
proof (cases ‹A ∩ B = {}›)

show ‹A ∩ B = {} =⇒ ?rhs ′ = (ua∈(A ∩ B) → (P a [[S ]]3 Q a)) u STOP›
by (auto simp add: GlobalNdet-is-STOP-iff )

next
assume ‹A ∩ B 6= {}›
from ‹¬ A ⊆ B› have ‹A − B 6= {}› by blast
show ‹?rhs ′ = (ua∈(A ∩ B) → (P a [[S ]]3 Q a)) u STOP›

by (auto simp add: Mndetprefix-GlobalNdet GlobalNdet-is-STOP-iff
simp flip: GlobalNdet-factorization-union
[OF ‹A ∩ B 6= {}› ‹A − B 6= {}›, unfolded Int-Diff-Un]
intro!: arg-cong2 [where f = ‹(u)›] mono-GlobalNdet-eq)

qed
qed
finally show ‹?lhs = (if A ⊆ B then ?rhs1 else ?rhs2 )› by simp
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qed

corollary Mprefix-Syncptick-Mndetprefix-subset :
‹�a ∈ A → P a [[S ]]3 ub ∈ B → Q b =
( if B ⊆ A then ub ∈ B → (P b [[S ]]3 Q b)
else (ub ∈ (A ∩ B) → (P b [[S ]]3 Q b)) u STOP)›

(is ‹?lhs = (if B ⊆ A then ?rhs1 else ?rhs2 )›) if ‹A ⊆ S› ‹B ⊆ S›
proof (cases ‹B = {}›)

show ‹B = {} =⇒ ?lhs = (if B ⊆ A then ?rhs1 else ?rhs2 )›
by (simp add: Mprefix-is-STOP-iff Mprefix-Syncptick-STOP ‹A ⊆ S›)

next
from ‹B ⊆ S› have ∗ : ‹b ∈ B =⇒ b ∈ S› for b by blast
from ‹A ⊆ S› have ∗∗ : ‹A − S = {}› ‹a ∈ A ∧ a ∈ S ←→ a ∈ A› for a by

auto
assume ‹B 6= {}›
have ‹?lhs = ub∈B. (if b ∈ A then (b → (P b [[S ]]3 Q b)) else STOP)› (is ‹?lhs

= ?rhs ′›)
by (auto simp add: Mprefix-Syncptick-Mndetprefix ∗ ∗∗ ‹B 6= {}› intro: mono-GlobalNdet-eq)

also have ‹?rhs ′ = (if B ⊆ A then ?rhs1 else ?rhs2 )›
proof (split if-split, intro conjI impI )

show ‹B ⊆ A =⇒ ?rhs ′ = ub∈B → (P b [[S ]]3 Q b)›
by (auto simp add: Mndetprefix-GlobalNdet intro!: mono-GlobalNdet-eq)

next
show ‹?rhs ′ = (ua∈(A ∩ B) → (P a [[S ]]3 Q a)) u STOP› if ‹¬ B ⊆ A›
proof (cases ‹A ∩ B = {}›)

show ‹A ∩ B = {} =⇒ ?rhs ′ = (ua∈(A ∩ B) → (P a [[S ]]3 Q a)) u STOP›
by (auto simp add: GlobalNdet-is-STOP-iff )

next
assume ‹A ∩ B 6= {}›
hence ‹B ∩ A 6= {}› by blast
from ‹¬ B ⊆ A› have ‹B − A 6= {}› by blast
show ‹?rhs ′ = (ua∈(A ∩ B) → (P a [[S ]]3 Q a)) u STOP›

by (auto simp add: Mndetprefix-GlobalNdet GlobalNdet-is-STOP-iff
simp flip: Int-commute GlobalNdet-factorization-union
[OF ‹B ∩ A 6= {}› ‹B − A 6= {}›, unfolded Int-Diff-Un]
intro!: arg-cong2 [where f = ‹(u)›] mono-GlobalNdet-eq)

qed
qed
finally show ‹?lhs = (if B ⊆ A then ?rhs1 else ?rhs2 )› by simp

qed

corollary Mndetprefix-Syncptick-Mprefix-indep :
‹(ua ∈ A → P a) [[S ]]3 (�b ∈ B → Q b) =
( if A = {} then �b∈B → (STOP [[S ]]3 Q b)
else ua∈A. (a → (P a [[S ]]3 (�b ∈ B → Q b))) �

(�b∈B → ((a → P a) [[S ]]3 Q b)))›
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if ‹A ∩ S = {}› and ‹B ∩ S = {}›
proof (cases ‹A = {}›)

show ‹A = {} =⇒ ?thesis›
by (simp add: Diff-triv STOP-Syncptick-Mprefix ‹B ∩ S = {}›)

next
from that(1 ) have ∗ : ‹a ∈ A =⇒ a /∈ S› for a by blast
from that(2 ) have ∗∗ : ‹B − S = B› by blast
show ?thesis if ‹A 6= {}›

by (simp add: Mndetprefix-Syncptick-Mprefix ‹A 6= {}›)
(rule mono-GlobalNdet-eq, simp add: ∗ ∗∗)

qed

corollary Mprefix-Syncptick-Mndetprefix-indep :
‹(�a ∈ A → P a) [[S ]]3 (ub ∈ B → Q b) =
( if B = {} then �a ∈ A → (P a [[S ]]3 STOP)
else ub∈B. (b → ((�a ∈ A → P a) [[S ]]3 Q b)) �

(�a∈A → (P a [[S ]]3 (b → Q b))))›
if ‹A ∩ S = {}› ‹B ∩ S = {}›

proof (cases ‹B = {}›)
show ‹B = {} =⇒ ?thesis›

by (simp add: Diff-triv Mprefix-Syncptick-STOP ‹A ∩ S = {}›)
next

from that(2 ) have ∗ : ‹b ∈ B =⇒ b /∈ S› for b by blast
from that(1 ) have ∗∗ : ‹A − S = A› by blast
show ?thesis if ‹B 6= {}›

by (simp add: Mprefix-Syncptick-Mndetprefix ‹B 6= {}›)
(rule mono-GlobalNdet-eq, simp add: ∗ ∗∗)

qed

corollary Mndetprefix-Syncptick-Mprefix-left :
‹(ua ∈ A → P a) [[S ]]3 (�b ∈ B → Q b) =
( if A = {} then STOP [[S ]]3 (�b ∈ B → Q b)
else ua∈A → (P a [[S ]]3 (�b ∈ B → Q b)))›

if ‹A ∩ S = {}› and ‹B ⊆ S›
proof (cases ‹A = {}›)

show ‹A = {} =⇒ ?thesis› by simp
next

from that(1 ) have ∗ : ‹a ∈ A =⇒ a /∈ S› for a by blast
from that(2 ) have ∗∗ : ‹B − S = {}› by blast
show ?thesis if ‹A 6= {}›

by (simp add: Mndetprefix-Syncptick-Mprefix ‹A 6= {}›, unfold Mndetpre-
fix-GlobalNdet)

(rule mono-GlobalNdet-eq, simp add: ∗ ∗∗)
qed

corollary Mndetprefix-Syncptick-Mprefix-right :
‹(ua ∈ A → P a) [[S ]]3 (�b ∈ B → Q b) =
( if A = {} then STOP [[S ]]3 (�b ∈ B → Q b)
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else �b∈B → ((ua∈A → P a) [[S ]]3 Q b))›
if ‹A ⊆ S› and ‹B ∩ S = {}›

proof (cases ‹A = {}›)
show ‹A = {} =⇒ ?thesis› by simp

next
from that(1 ) have ∗ : ‹a ∈ A =⇒ a ∈ S› for a by blast
from that(2 ) have ∗∗ : ‹B − S = B› by blast
show ?thesis if ‹A 6= {}›

by (simp add: Mndetprefix-Syncptick-Mprefix ‹A 6= {}›,
simp add: Mndetprefix-GlobalNdet Syncptick-distrib-GlobalNdet-right ‹A 6=

{}›
flip: GlobalNdet-Mprefix-distr)

(rule mono-GlobalNdet-eq, use ∗ ∗∗ in auto)
qed

corollary Mprefix-Syncptick-Mndetprefix-left :
‹(�a ∈ A → P a) [[S ]]3 (ub ∈ B → Q b) =
( if B = {} then (�a ∈ A → P a) [[S ]]3 STOP
else �a∈A → (P a [[S ]]3 (ub ∈ B → Q b)))›

if ‹A ∩ S = {}› ‹B ⊆ S›
proof (cases ‹B = {}›)

show ‹B = {} =⇒ ?thesis› by simp
next

from that(2 ) have ∗ : ‹b ∈ B =⇒ b ∈ S› for b by blast
from that(1 ) have ∗∗ : ‹A − S = A› by blast
show ?thesis if ‹B 6= {}›

by (simp add: Mprefix-Syncptick-Mndetprefix ‹B 6= {}›,
simp add: Mndetprefix-GlobalNdet Syncptick-distrib-GlobalNdet-left ‹B 6= {}›
flip: GlobalNdet-Mprefix-distr)

(rule mono-GlobalNdet-eq, use ∗ ∗∗ in auto)
qed

corollary Mprefix-Syncptick-Mndetprefix-right :
‹(�a ∈ A → P a) [[S ]]3 (ub ∈ B → Q b) =
( if B = {} then (�a ∈ A → P a) [[S ]]3 STOP
else ub∈B → ((�a ∈ A → P a) [[S ]]3 Q b))›

if ‹A ⊆ S› ‹B ∩ S = {}›
proof (cases ‹B = {}›)

show ‹B = {} =⇒ ?thesis› by simp
next

from that(2 ) have ∗ : ‹b ∈ B =⇒ b /∈ S› for b by blast
from that(1 ) have ∗∗ : ‹A − S = {}› by blast
show ?thesis if ‹B 6= {}›

by (simp add: Mprefix-Syncptick-Mndetprefix ‹B 6= {}›,
unfold Mndetprefix-GlobalNdet)

(rule mono-GlobalNdet-eq, simp add: ∗ ∗∗)
qed
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corollary Mndetprefix-Parptick-Mprefix :
‹ua ∈ A → P a ||3 �b ∈ B → Q b =
(if A ⊆ B then ua ∈ A → (P a ||3 Q a) else (ua ∈ (A ∩ B) → (P a ||3 Q a))

u STOP)›
by (simp add: Mndetprefix-Syncptick-Mprefix-subset)

corollary Mprefix-Parptick-Mndetprefix :
‹�a ∈ A → P a ||3 ub ∈ B → Q b =
(if B ⊆ A then ub ∈ B → (P b ||3 Q b) else (ub ∈ (A ∩ B) → (P b ||3 Q b))

u STOP)›
by (simp add: Mprefix-Syncptick-Mndetprefix-subset)

corollary Mndetprefix-Interptick-Mprefix :
‹ua ∈ A → P a |||3 �b ∈ B → Q b =
( if A = {} then �b ∈ B → RenamingTick (Q b ; STOP) (λs. the (tick-join (g

s) s))
else ua∈A. (a → (P a |||3 �b ∈ B → Q b)) �

(�b∈B → (a → P a |||3 Q b)))›
by (simp add: Mndetprefix-Syncptick-Mprefix-indep

Mprefix-Seq STOP-Interptick[of - g])

corollary Mprefix-Interptick-Mndetprefix :
‹�a ∈ A → P a |||3 ub ∈ B → Q b =
( if B = {} then �a ∈ A → RenamingTick (P a ; STOP) (λr . the (tick-join r

(g r)))
else ub∈B. (b → (�a ∈ A → P a |||3 Q b)) �

(�a∈A → (P a |||3 b → Q b)))›
by (simp add: Mprefix-Syncptick-Mndetprefix-indep

Mprefix-Seq Interptick-STOP[of - g])

Mixing two non deterministic prefix choices lemma Mndetprefix-Syncptick-Mndetprefix
:

‹ua∈A → P a [[S ]]3 ub∈B → Q b =
( if A = {} then if B ∩ S = {} then ub∈B → (STOP [[S ]]3 Q b)

else (ux ∈ (B − S) → (STOP [[S ]]3 Q x)) u STOP
else if B = {} then if A ∩ S = {} then ua∈A → (P a [[S ]]3 STOP)

else (ux ∈(A − S) → (P x [[S ]]3 STOP)) u STOP
else ub∈B. ua∈A.

(if a ∈ S then STOP else a → (P a [[S ]]3 b → Q b)) �
(if b ∈ S then STOP else b → (a → P a [[S ]]3 Q b)) �
(if a = b ∧ b ∈ S then b → (P a [[S ]]3 Q b) else STOP))›

(is ‹?lhs = ( if A = {} then if B ∩ S = {} then ?mv-right else ?mv-right ′ u
STOP

else if B = {} then if A ∩ S = {} then ?mv-left else ?mv-left ′ u
STOP

else ?huge-mess)›)
proof (split if-split, intro conjI impI )

show ‹A = {} =⇒ ?lhs = (if B ∩ S = {} then ?mv-right else ?mv-right ′ u
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STOP)›
by (auto simp add: STOP-Syncptick-Mndetprefix intro: mono-Mndetprefix-eq)

next
show ‹?lhs = (if B = {} then if A ∩ S = {} then ?mv-left else ?mv-left ′ u STOP

else ?huge-mess)› if ‹A 6= {}›
proof (split if-split, intro conjI impI )
show ‹B = {} =⇒ ?lhs = (if A ∩ S = {} then ?mv-left else ?mv-left ′ u STOP)›

by (auto simp add: Mndetprefix-Syncptick-STOP intro: mono-Mndetprefix-eq)
next

assume ‹B 6= {}›
have ‹?lhs = ub∈B. ua∈A. (a → P a [[S ]]3 (b → Q b))›

by (simp add: Mndetprefix-GlobalNdet ‹A 6= {}› ‹B 6= {}›
Syncptick-distrib-GlobalNdet-left Syncptick-distrib-GlobalNdet-right)

also have ‹. . . = ?huge-mess›
by (auto simp add: write0-def Mprefix-Syncptick-Mprefix Diff-triv Mpre-

fix-is-STOP-iff
intro!: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›])

finally show ‹?lhs = ?huge-mess› .
qed

qed

lemma Mndetprefix-Syncptick-Mndetprefix-subset :
‹ua∈A → P a [[S ]]3 ub∈B → Q b =
( if ∃ b. A = {b} ∧ B = {b}
then (THE b. B = {b}) → (P (THE a. A = {a}) [[S ]]3 Q (THE b. B = {b}))
else (ux ∈ (A ∩ B) → (P x [[S ]]3 Q x)) u STOP)›

(is ‹?lhs = (if ?cond then ?rhs1 else ?rhs2 )›) if ‹A ⊆ S› ‹B ⊆ S›
proof (split if-split, intro conjI impI )

show ‹?cond =⇒ ?lhs = ?rhs1 ›
by (elim exE , simp add: write0-def )
(subst Mprefix-Syncptick-Mprefix-subset, use ‹A ⊆ S› in simp-all)

next
assume ‹¬ ?cond›
let ?term = ‹λa b. (b → (P a [[S ]]3 Q b))›
have ‹?lhs = ub∈B. ua∈A. (if a = b then ?term a b else STOP)›
(is ‹?lhs = ub∈B. ua∈A. ?rhs ′ b a›)

proof (cases ‹A = {} ∨ B = {}›)
from ‹A ⊆ S› ‹B ⊆ S› show ‹A = {} ∨ B = {} =⇒ ?lhs = (ub∈B. ua∈A.

?rhs ′ b a)›
by (elim disjE) (simp-all add: Mndetprefix-Syncptick-STOP STOP-Syncptick-Mndetprefix

Int-absorb2 Mndetprefix-is-STOP-iff Ndet-is-STOP-iff )
next

show ‹¬ (A = {} ∨ B = {}) =⇒ ?lhs = (ub∈B. ua∈A. ?rhs ′ b a)›
by (simp add: Mndetprefix-Syncptick-Mndetprefix)
(intro mono-GlobalNdet-eq, use ‹A ⊆ S› ‹B ⊆ S› in auto)

qed

also have ‹(ub∈B. ua∈A. ?rhs ′ b a) = ?rhs2 ›
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proof (cases ‹B ∩ A = {}›)
assume ‹B ∩ A = {}›
hence ‹A ∩ B = {}› by blast

hence ‹(ub∈B. ua∈A. ?rhs ′ b a) = STOP› by (auto simp add: Global-
Ndet-is-STOP-iff )

thus ‹(ub∈B. ua∈A. ?rhs ′ b a) = ?rhs2 › by (auto simp add: ‹A ∩ B = {}›)
next

show ‹(ub∈B. ua∈A. ?rhs ′ b a) = ?rhs2 › if ‹B ∩ A 6= {}›
proof (cases ‹B − A = {}›)

assume ‹B − A = {}›
hence ‹A ∩ B = B› by blast
have ‹(ua∈A. ?rhs ′ b a) = (if A = {b} then ?term b b else ?term b b u

STOP)›
(is ‹(ua∈A. ?rhs ′ b a) = ?rhs ′′ b›) if ‹b ∈ B› for b

proof (cases ‹A ∩ {b} = {}›)
from ‹B − A = {}› ‹b ∈ B›
show ‹A ∩ {b} = {} =⇒ (ua∈A. ?rhs ′ b a) = ?rhs ′′ b› by auto

next
show ‹(ua∈A. ?rhs ′ b a) = ?rhs ′′ b› if ‹A ∩ {b} 6= {}›
proof (cases ‹A − {b} = {}›)

show ‹A − {b} = {} =⇒ (ua∈A. ?rhs ′ b a) = ?rhs ′′ b›
using ‹A ∩ {b} 6= {}› by auto

next
show ‹ua∈A. ?rhs ′ b a = ?rhs ′′ b› if ‹A − {b} 6= {}›

using ‹A − {b} 6= {}› ‹A ∩ {b} 6= {}›
by (auto simp add: GlobalNdet-is-STOP-iff

simp flip: GlobalNdet-factorization-union
[OF ‹A ∩ {b} 6= {}› ‹A − {b} 6= {}›, unfolded Int-Diff-Un]
intro: arg-cong2 [where f = ‹(u)›])

qed
qed
hence ‹(ub ∈ B. ua ∈ A. ?rhs ′ b a) = ub ∈ B. ?rhs ′′ b›

by (fact mono-GlobalNdet-eq)
also have ‹(ub ∈ B. ?rhs ′′ b) = ?rhs2 ›
proof −

from ‹¬ ?cond› have ‹(ub ∈ B. ?rhs ′′ b) = ub ∈ B. ?term b b u STOP›
by (metis Diff-eq-empty-iff Int-commute ‹A ∩ B = B›

‹B − A = {}› subset-singleton-iff ‹B ∩ A 6= {}›)
also have ‹. . . = (ub ∈ B. ?term b b) u STOP›

by (simp add: Process-eq-spec Ndet-projs GlobalNdet-projs STOP-projs)
finally show ‹(ub ∈ B. ?rhs ′′ b) = ?rhs2 ›

by (simp add: Mndetprefix-GlobalNdet ‹A ∩ B = B›)
qed
finally show ‹(ub ∈ B. ua ∈ A. ?rhs ′ b a) = ?rhs2 › .

next
assume ‹B − A 6= {}›
have ‹ua∈A. (if a = b then ?term a b else STOP) =

(if b ∈ A then if A = {b} then ?term b b else (?term b b) u STOP else
STOP)›
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if ‹b ∈ B› for b
proof (split if-split, intro conjI impI )

show ‹ua∈A. (if a = b then ?term a b else STOP) =
(if A = {b} then ?term b b else (?term b b) u STOP)› if ‹b ∈ A›

proof (split if-split, intro conjI impI )
show ‹A = {b} =⇒ ua ∈ A. (if a = b then ?term a b else STOP) = ?term

b b› by simp
next

assume ‹A 6= {b}›
with ‹b ∈ A› have ‹insert b A = A› ‹A − {b} 6= {}› by auto
show ‹A 6= {b} =⇒ ua∈A. (if a = b then ?term a b else STOP) = ?term

b b u STOP›
by (auto simp add: GlobalNdet-is-STOP-iff intro!: arg-cong2 [where f =

‹(u)›]
simp flip: GlobalNdet-factorization-union
[of ‹{b}›, OF - ‹A − {b} 6= {}›, simplified, unfolded ‹insert b A =

A›])
qed

next
show ‹b /∈ A =⇒ ua∈A. (if a = b then ?term a b else STOP) = STOP›

by (auto simp add: GlobalNdet-is-STOP-iff )
qed

hence ‹ub ∈ B. ua∈A. ?rhs ′ b a =
ub ∈ B. (if b ∈ A then if A = {b} then ?term b b else (?term b b) u

STOP else STOP)›
by (fact mono-GlobalNdet-eq)

also from ‹B − A 6= {}› have ‹. . . = (ub ∈ B. (if b ∈ A then ?term b b else
STOP)) u STOP›

by (simp add: Process-eq-spec GlobalNdet-projs, safe)
(simp-all add: GlobalNdet-projs STOP-projs Ndet-projs split: if-split-asm,

auto)
also have ‹. . . = ?rhs2 ›
proof (fold GlobalNdet-factorization-union

[OF ‹B ∩ A 6= {}› ‹B − A 6= {}›, unfolded Int-Diff-Un])
have ‹ub∈(B ∩ A). (if b ∈ A then ?term b b else STOP) =

ub∈(B ∩ A). ?term b b› by (auto intro: mono-GlobalNdet-eq)
moreover have ‹ub∈(B − A). (if b ∈ A then ?term b b else STOP) =

STOP›
by (simp add: GlobalNdet-is-STOP-iff )

ultimately show ‹(ub∈(B ∩ A). (if b ∈ A then ?term b b else STOP)) u
(ub∈(B − A). (if b ∈ A then ?term b b else STOP)) u STOP

= ?rhs2 ›
by (metis Mndetprefix-GlobalNdet Int-commute Ndet-assoc Ndet-id)

qed
finally show ‹(ub ∈ B. ua ∈ A. ?rhs ′ b a) = ?rhs2 › .

qed
qed
finally show ‹?lhs = ?rhs2 › .
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qed

lemma Mndetprefix-Syncptick-Mndetprefix-indep :
‹A ∩ S = {} =⇒ B ∩ S = {} =⇒
ua∈A → P a [[S ]]3 ub∈B → Q b =
( if A = {} then ub∈B → (STOP [[S ]]3 Q b)
else if B = {} then ua∈A → (P a [[S ]]3 STOP)

else ub∈B. ua∈A.
((a → (P a [[S ]]3 b → Q b))) �
((b → (a → P a [[S ]]3 Q b))))›

by (simp add: Mndetprefix-Syncptick-STOP STOP-Syncptick-Mndetprefix)
(auto simp add: Mndetprefix-GlobalNdet Syncptick-distrib-GlobalNdet-left

Syncptick-distrib-GlobalNdet-right disjoint-iff write0-def
Mprefix-Syncptick-Mprefix Int-assoc insert-Diff-if
intro!: mono-GlobalNdet-eq)

lemma Mndetprefix-Syncptick-Mndetprefix-left :
‹ua∈A → P a [[S ]]3 ub∈B → Q b = ua∈A → (P a [[S ]]3 ub∈B → Q b)›
(is ‹?lhs = ?rhs›) if ‹A ∩ S = {}› ‹B ⊆ S›

proof −
let ?rhs ′ = ‹ub∈B. ua∈A. a → (P a [[S ]]3 b → Q b)›
have ‹?lhs = ( if A = {} then if B ∩ S = {} then ub∈B → (STOP [[S ]]3 Q b)

else (ux∈(B − S) → (STOP [[S ]]3 Q x)) u STOP
else if B = {} then if A ∩ S = {} then ua∈A → (P a [[S ]]3 STOP)

else (ux∈(A − S) → (P x [[S ]]3 STOP)) u STOP
else ub∈B. ua∈A.

(if a ∈ S then STOP else (a → (P a [[S ]]3 b → Q b))) �
(if b ∈ S then STOP else (b → (a → P a [[S ]]3 Q b))) �
(if a = b ∧ b ∈ S then b → (P a [[S ]]3 Q b) else STOP))›

(is ‹?lhs = (if A = {} then ?rhs1 else if B = {} then ?rhs2 else ?rhs3 )›)
by (fact Mndetprefix-Syncptick-Mndetprefix)

also from ‹B ⊆ S› have ‹?rhs1 = STOP›
by (auto simp add: Ndet-is-STOP-iff Mndetprefix-GlobalNdet GlobalNdet-is-STOP-iff )
also from ‹A ∩ S = {}› have ‹?rhs2 = ua∈A → (P a [[S ]]3 STOP)› by

presburger
also from ‹A ∩ S = {}› ‹B ⊆ S›
have ‹?rhs3 = ub∈B. ua∈A. a → (P a [[S ]]3 b → Q b)›

by (intro mono-GlobalNdet-eq) auto
finally have ‹?lhs = ( if A = {} then STOP

else if B = {} then ua∈A → (P a [[S ]]3 STOP)
else ?rhs ′)› .

moreover have ‹B 6= {} =⇒ ?rhs ′ = ua∈A. a → (P a [[S ]]3 ub∈B. b → Q b)›
by (subst GlobalNdet-sets-commute)
(simp add: Syncptick-distrib-GlobalNdet-left write0-GlobalNdet)

moreover have ‹. . . = ua∈A → (P a [[S ]]3 ub∈B → Q b)›
by (simp add: Mndetprefix-GlobalNdet)

ultimately show ‹?lhs = ?rhs› by simp
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qed

end

corollary (in Syncptick-locale) Mndetprefix-Syncptick-Mndetprefix-right :
‹ua∈A → P a [[S ]]3 ub∈B → Q b = ub∈B → (ua∈A → P a [[S ]]3 Q b)›
(is ‹?lhs = ?rhs›) if ‹A ⊆ S› ‹B ∩ S = {}›
by (subst (1 2 ) Syncptick-locale-sym.Syncptick-sym)
(simp add: Syncptick-locale-sym.Mndetprefix-Syncptick-Mndetprefix-left that)

8.3 Read and Write Laws
8.3.1 Sequential Composition
lemma read-Seqptick : ‹c?a∈A → P a ;3 Q = c?a∈A → (P a ;3 Q)›

by (simp add: read-def Mprefix-Seqptick comp-def )

lemma write0-Seqptick : ‹a → P ;3 Q = a → (P ;3 Q)›
by (simp add: write0-def Mprefix-Seqptick)

lemma ndet-write-Seqptick : ‹c!!a∈A → P a ;3 Q = c!!a∈A → (P a ;3 Q)›
by (simp add: ndet-write-is-GlobalNdet-write0 Seqptick-distrib-GlobalNdet-right

write0-Seqptick)

lemma write-Seqptick : ‹c!a → P ;3 Q = c!a → (P ;3 Q)›
by (simp add: write0-Seqptick write-is-write0 )

8.3.2 Synchronization Product

General Laws
context Syncptick-locale begin

read lemma read-Syncptick-read :
— This is the general case.
‹c?a∈A → P a [[S ]]3 d?b∈B → Q b =
(c?a∈(A − c −‘ S) → (P a [[S ]]3 d?b∈B → Q b)) �
(d?b∈(B − d −‘ S) → (c?a∈A → P a [[S ]]3 Q b)) �
(�x∈(c ‘ A ∩ d ‘ B ∩ S) → (P (inv-into A c x) [[S ]]3 Q (inv-into B d x)))›
(is ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 ›)
if ‹c ‘ A ∩ S = {} ∨ c ‘ A ⊆ S ∨ inj-on c A›

‹d ‘ B ∩ S = {} ∨ d ‘ B ⊆ S ∨ inj-on d B›

199



— Assumptions may seem strange, but the motivation is that when A \ c −‘ S
6= {} (which is equivalent to ¬ c ‘ A ⊆ S), we need to ensure that inv-into (A \ c
−‘ S) c is equal to inv-into A c. This requires A \ c −‘ S = A (which is equivalent
to c ‘ A ∩ S = {}) or inj-on c A. We need obviously a similar assumption for B.
proof −

have ∗ : ‹
∧

e X . e ‘ (X − e −‘ S) = e ‘ X − S› by auto
have ‹?lhs = (�a∈(c ‘ A − S) → (P (inv-into A c a) [[S ]]3 (�x∈d ‘ B → Q

(inv-into B d x)))) �
(�b∈(d ‘ B − S) → ((�x∈c ‘ A → P (inv-into A c x)) [[S ]]3 Q (inv-into

B d b))) �
(�x∈(c ‘ A ∩ d ‘ B ∩ S) → (P (inv-into A c x) [[S ]]3 Q (inv-into B d

x)))›
(is ‹?lhs = ?rhs1 ′ � ?rhs2 ′ � ?rhs3 ›)
by (simp add: read-def Mprefix-Syncptick-Mprefix comp-def )

also from that(1 ) have ‹?rhs1 ′ = ?rhs1 ›
proof (elim disjE)

assume ‹c ‘ A ∩ S = {}›
hence ‹A − c −‘ S = A ∧ c ‘ A − S = c ‘ A› by fast
thus ‹?rhs1 ′ = ?rhs1 › by (simp add: read-def comp-def )

next
assume ‹c ‘ A ⊆ S›
hence ‹A − c −‘ S = {} ∧ c ‘ A − S = {}› by fast
show ‹?rhs1 ′ = ?rhs1 › by (simp add: ‹?this›)

next
assume ‹inj-on c A›
hence ‹inj-on c (A − c −‘ S)› by (simp add: inj-on-diff )
with ‹inj-on c A› show ‹?rhs1 ′ = ?rhs1 ›

by (auto simp add: read-def comp-def ∗ intro: mono-Mprefix-eq)
qed
also from that(2 ) have ‹?rhs2 ′ = ?rhs2 ›
proof (elim disjE)

assume ‹d ‘ B ∩ S = {}›
hence ‹B − d −‘ S = B ∧ d ‘ B − S = d ‘ B› by fast
thus ‹?rhs2 ′ = ?rhs2 › by (simp add: read-def comp-def )

next
assume ‹d ‘ B ⊆ S›
hence ‹B − d −‘ S = {} ∧ d ‘ B − S = {}› by fast
show ‹?rhs2 ′ = ?rhs2 › by (simp add: ‹?this›)

next
assume ‹inj-on d B›
hence ‹inj-on d (B − d −‘ S)› by (simp add: inj-on-diff )
with ‹inj-on d B› show ‹?rhs2 ′ = ?rhs2 ›

by (auto simp add: read-def comp-def ∗ intro: mono-Mprefix-eq)
qed
finally show ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 › .

qed

Enforce read lemma read-Syncptick-read-forced-read-left :
‹c?a∈A → P a [[S ]]3 d?b∈B → Q b =
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(c?a∈(A − c −‘ S) → (P a [[S ]]3 d?b∈B → Q b)) �
(d?b∈(B − d −‘ S) → (c?a∈A → P a [[S ]]3 Q b)) �
(c?x∈(A ∩ c −‘ (d ‘ B ∩ S)) → (P x [[S ]]3 Q x))›
(is ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 ›)
if ‹c ‘ A ∩ S = {} ∨ inj-on c A›

‹d ‘ B ∩ S = {} ∨ inj-on d B›
‹
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ d b ∈ S =⇒ a = b›
proof −

let ?rhs3 ′ = ‹(�x∈(c ‘ A ∩ d ‘ B ∩ S) → (P (inv-into A c x) [[S ]]3 Q (inv-into
B d x)))›

have ∗ : ‹c ‘ (A ∩ c −‘ (d ‘ B ∩ S)) = c ‘ A ∩ d ‘ B ∩ S› by blast
have ∗∗ : ‹c ‘ (A ∩ c −‘ d ‘ B) = c ‘ A ∩ d ‘ B› by blast
from that(1 , 2 ) consider ‹c ‘ A ∩ S = {} ∨ d ‘ B ∩ S = {}›
| ‹inj-on c A› ‹inj-on d B› by blast

hence ‹?rhs3 ′ = ?rhs3 ›
proof cases

assume ‹c ‘ A ∩ S = {} ∨ d ‘ B ∩ S = {}›
hence ‹c ‘ A ∩ d ‘ B ∩ S = {} ∧ A ∩ c −‘ (d ‘ B ∩ S) = {}› by blast
thus ‹?rhs3 ′ = ?rhs3 › by simp

next
assume ‹inj-on c A› ‹inj-on d B›
show ‹?rhs3 ′ = ?rhs3 ›
proof (unfold read-def ∗ comp-def ,

intro mono-Mprefix-eq arg-cong2 [where f = ‹λP Q. P [[S ]]3 Q›])
fix x assume ‹x ∈ c ‘ A ∩ d ‘ B ∩ S›
moreover from ‹inj-on c A› inj-on-Int
have ‹inj-on c A ∧ inj-on c (A ∩ c −‘ (d ‘ B ∩ S))› by blast
ultimately show ‹P (inv-into A c x) = P (inv-into (A ∩ c −‘ (d ‘ B ∩ S))

c x)›
by (simp add: image-iff , elim conjE bexE , simp)

next
fix x assume $ : ‹x ∈ c ‘ A ∩ d ‘ B ∩ S›
then obtain a b where $$ : ‹x = c a› ‹a ∈ A› ‹x = d b› ‹b ∈ B› by blast
from ‹inj-on c A› inj-on-Int have $$$ : ‹inj-on c (A ∩ c −‘ (d ‘ B ∩ S))›

by blast
have ‹inv-into B d x = b› by (simp add: $$(3 , 4 ) ‹inj-on d B›)
also have ‹b = a› by (metis $ $$ Int-iff that(3 ))
also have ‹a = inv-into (A ∩ c −‘ (d ‘ B ∩ S)) c x›

by (metis $ $$(1 , 2 ) $$$ ∗ Int-lower1
‹inj-on c A› inj-on-image-mem-iff inv-into-f-eq)

finally have ‹inv-into B d x = inv-into (A ∩ c −‘ (d ‘ B ∩ S)) c x› .
thus ‹Q (inv-into B d x) = Q (inv-into (A ∩ c −‘ (d ‘ B ∩ S)) c x)› by simp

qed
qed
moreover have ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 ′›

using that(1 , 2 ) by (subst read-Syncptick-read) auto
ultimately show ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 › by argo

qed

201



corollary (in Syncptick-locale) read-Syncptick-read-forced-read-right:
‹c?a∈A → P a [[S ]]3 d?b∈B → Q b =
(c?a∈(A − c −‘ S) → (P a [[S ]]3 d?b∈B → Q b)) �
(d?b∈(B − d −‘ S) → (c?a∈A → P a [[S ]]3 Q b)) �
(d?x∈(B ∩ d −‘ (c ‘ A ∩ S)) → (P x [[S ]]3 Q x))›
(is ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 ›)
if ‹c ‘ A ∩ S = {} ∨ inj-on c A›

‹d ‘ B ∩ S = {} ∨ inj-on d B›
‹
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ d b ∈ S =⇒ a = b›
unfolding Syncptick-locale-sym.Syncptick-sym
by (subst Syncptick-locale-sym.read-Syncptick-read-forced-read-left[OF that(2 , 1 )],

metis that(3 ))
(auto simp add: Det-commute intro: arg-cong2 [where f = ‹(�)›])

Special Cases lemma read-Syncptick-read-subset :
‹c?a∈A → P a [[S ]]3 d?b∈B → Q b =
�x∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c x) [[S ]]3 Q (inv-into B d x))›

if ‹c ‘ A ⊆ S› ‹d ‘ B ⊆ S›
proof −

from that have ∗ : ‹A − c −‘ S = {}› ‹B − d −‘ S = {}› by auto
from that(1 ) have ∗∗ : ‹c ‘ A ∩ d ‘ B ∩ S = c ‘ A ∩ d ‘ B› by blast
show ?thesis by (subst read-Syncptick-read)

(use that in ‹simp-all add: ∗ ∗∗›)
qed

lemma read-Syncptick-read-subset-forced-read-left :
‹c?a∈A → P a [[S ]]3 d?b∈B → Q b = c?x∈(A ∩ c −‘ d ‘ B) → (P x [[S ]]3 Q x)›
if ‹c ‘ A ⊆ S› ‹d ‘ B ⊆ S› ‹inj-on c A› ‹inj-on d B›

‹
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ d b ∈ S =⇒ a = b›
proof −

from that have ∗ : ‹A − c −‘ S = {}› ‹B − d −‘ S = {}› by auto
from that(1 ) have ∗∗ : ‹A ∩ (c −‘ d ‘ B ∩ c −‘ S) = A ∩ c −‘ d ‘ B› by blast
show ?thesis by (subst read-Syncptick-read-forced-read-left)

(use that(3 , 4 , 5 ) in ‹simp-all add: ∗ ∗∗›)
qed

lemma read-Syncptick-read-subset-forced-read-right :
‹c?a∈A → P a [[S ]]3 d?b∈B → Q b = d?x∈(B ∩ d −‘ c ‘ A) → (P x [[S ]]3 Q x)›
if ‹c ‘ A ⊆ S› ‹d ‘ B ⊆ S› ‹inj-on c A› ‹inj-on d B›

‹
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ d b ∈ S =⇒ a = b›
proof −

from that have ∗ : ‹B − d −‘ S = {}› ‹A − c −‘ S = {}› by auto
from that(1 ) have ∗∗ : ‹B ∩ (d −‘ c ‘ A ∩ d −‘ S) = B ∩ d −‘ c ‘ A› by blast
show ?thesis by (subst read-Syncptick-read-forced-read-right)

(use that(3 , 4 , 5 ) in ‹simp-all add: ∗ ∗∗›)
qed
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lemma read-Syncptick-read-indep :
‹c?a∈A → P a [[S ]]3 d?b∈B → Q b =
(c?a∈A → (P a [[S ]]3 (d?b∈B → Q b))) � (d?b∈B → ((c?a∈A → P a) [[S ]]3 Q

b))›
if ‹c ‘ A ∩ S = {}› ‹d ‘ B ∩ S = {}›

proof −
from that have ∗ : ‹A − c −‘ S = A› ‹B − d −‘ S = B› by auto
from that(1 ) have ∗∗ : ‹c ‘ A ∩ d ‘ B ∩ S = {}› by blast
show ?thesis by (subst read-Syncptick-read) (use that in ‹simp-all add: ∗ ∗∗›)

qed

lemma read-Syncptick-read-left :
‹c?a∈A → P a [[S ]]3 d?b∈B → Q b = c?a∈A → (P a [[S ]]3 (d?b∈B → Q b))›
if ‹c ‘ A ∩ S = {}› ‹d ‘ B ⊆ S›

proof −
from that(1 ) have ∗ : ‹A − c −‘ S = A› ‹c ‘ A ∩ d ‘ B ∩ S = {}› by auto
from that(2 ) have ∗∗ : ‹B − d −‘ S = {}› by blast
show ?thesis by (subst read-Syncptick-read)

(use that in ‹simp-all add: ∗ ∗∗›)
qed

lemma read-Syncptick-read-right :
‹c?a∈A → P a [[S ]]3 d?b∈B → Q b = d?b∈B → ((c?a∈A → P a) [[S ]]3 Q b)›
if ‹c ‘ A ⊆ S› ‹d ‘ B ∩ S = {}›

proof −
from that(2 ) have ∗ : ‹B − d −‘ S = B› ‹c ‘ A ∩ d ‘ B ∩ S = {}› by auto
from that(1 ) have ∗∗ : ‹A − c −‘ S = {}› by blast
show ?thesis by (subst read-Syncptick-read)

(use that in ‹simp-all add: ∗ ∗∗›)
qed

corollary read-Parptick-read :
‹c?a∈A → P a ||3 d?b∈B → Q b =
�x∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c x) ||3 Q (inv-into B d x))›

by (simp add: read-Syncptick-read-subset)

corollary read-Parptick-read-forced-read-left :
‹[[inj-on c A; inj-on d B;

∧
a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ a = b]] =⇒

c?a∈A → P a ||3 d?b∈B → Q b = c?x∈(A ∩ c −‘ d ‘ B) → (P x ||3 Q x)›
by (subst read-Syncptick-read-forced-read-left) simp-all

corollary read-Parptick-read-forced-read-right :
‹[[inj-on c A; inj-on d B;

∧
a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ a = b]] =⇒

c?a∈A → P a ||3 d?b∈B → Q b = d?x∈(B ∩ d −‘ c ‘ A) → (P x ||3 Q x)›
by (subst read-Syncptick-read-forced-read-right) simp-all

corollary read-Interptick-read :
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‹[[inj-on c A; inj-on d B;
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = d b =⇒ a = b]] =⇒
c?a∈A → P a |||3 d?b∈B → Q b =
(c?a∈A → (P a |||3 d?b∈B → Q b)) � (d?b∈B → (c?a∈A → P a |||3 Q b))›

by (simp add: read-Syncptick-read)

Same channel Some results can be rewritten when we have the same
channel.

lemma read-Syncptick-read-forced-read-same-chan :
‹c?a∈A → P a [[S ]]3 c?b∈B → Q b =
(c?a∈(A − c −‘ S) → (P a [[S ]]3 c?b∈B → Q b)) �
(c?b∈(B − c −‘ S) → (c?a∈A → P a [[S ]]3 Q b)) �
(c?x∈(A ∩ B ∩ c −‘ S) → (P x [[S ]]3 Q x))›
(is ‹?lhs = ?rhs1 � ?rhs2 � ?rhs3 ›)
if ‹c ‘ A ∩ S = {} ∨ inj-on c A› ‹c ‘ B ∩ S = {} ∨ inj-on c B›

‹
∧

a b. a ∈ A =⇒ b ∈ B =⇒ c a = c b =⇒ c b ∈ S =⇒ a = b›
proof −

— Actually, the third assumption is equivalent to the following (we of course do
not use that(3) in the proof of equivalence).

from that(1 , 2 )
have ‹inj-on c ((A ∪ B) ∩ c −‘ S) ←→

(∀ a b. a ∈ A −→ b ∈ B −→ c a = c b −→ c b ∈ S −→ a = b)›
by (elim disjE , simp-all add: inj-on-def )
((auto)[3 ], metis Int-iff Un-iff vimageE vimageI )

from that(3 ) have ∗ : ‹A ∩ (c −‘ c ‘ B ∩ c −‘ S) = A ∩ B ∩ c −‘ S› by auto
blast

show ?thesis by (simp add: read-Syncptick-read-forced-read-left that ∗)
qed

lemma read-Syncptick-read-forced-read-same-chan-weaker :
— Easier with a stronger assumption.
‹inj-on c (A ∪ B) =⇒
c?a∈A → P a [[S ]]3 c?b∈B → Q b =
(c?a∈(A − c −‘ S) → (P a [[S ]]3 c?b∈B → Q b)) �
(c?b∈(B − c −‘ S) → (c?a∈A → P a [[S ]]3 Q b)) �
(c?x∈(A ∩ B ∩ c −‘ S) → (P x [[S ]]3 Q x))›

by (rule read-Syncptick-read-forced-read-same-chan)
(simp-all add: inj-on-Un, metis Un-iff inj-onD inj-on-Un)

lemma read-Syncptick-read-subset-forced-read-same-chan :
— In the subset case, the assumption inj-on c (A ∪ B) is equivalent. The result

is not weaker anymore.
‹c?a∈A → P a [[S ]]3 c?b∈B → Q b = c?x∈(A ∩ B) → (P x [[S ]]3 Q x)›
if ‹c ‘ A ⊆ S› ‹c ‘ B ⊆ S› ‹inj-on c (A ∪ B)›

proof −
from that(3 ) have ‹A ∩ c −‘ c ‘ B = A ∩ B› by (auto simp add: inj-on-def )
with that(3 ) show ?thesis

204



by (subst read-Syncptick-read-subset-forced-read-left)
(simp-all add: that(1 , 2 ) inj-on-Un, meson Un-iff inj-on-contraD that(3 ))

qed

read and ndet-write. lemma ndet-write-Syncptick-read :
‹c!!a∈A → P a [[S ]]3 d?b∈B → Q b =
( if A = {} then STOP [[S ]]3 d?b∈B → Q b
else ua∈c ‘ A. (if a ∈ S then STOP else a → (P (inv-into A c a) [[S ]]3 d?b∈B

→ Q b)) �
(�b∈(d ‘ B − S) → (a → P (inv-into A c a) [[S ]]3 Q (inv-into B d

b))) �
(if a ∈ d ‘ B ∩ S then a → (P (inv-into A c a) [[S ]]3 Q (inv-into B

d a)) else STOP))›
by (auto simp add: ndet-write-def read-def Mndetprefix-Syncptick-Mprefix

intro: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›])

lemma read-Syncptick-ndet-write :
‹c?a∈A → P a [[S ]]3 d!!b∈B → Q b =
( if B = {} then c?a∈A → P a [[S ]]3 STOP
else ub∈d ‘ B. (if b ∈ S then STOP else b → (c?a∈A → P a [[S ]]3 Q (inv-into

B d b))) �
(�a∈(c ‘ A − S) → (P (inv-into A c a) [[S ]]3 b → Q (inv-into B d

b))) �
(if b ∈ c ‘ A ∩ S then b → (P (inv-into A c b) [[S ]]3 Q (inv-into B

d b)) else STOP))›
by (auto simp add: ndet-write-def read-def Mprefix-Syncptick-Mndetprefix

intro: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›])

lemma ndet-write-Syncptick-read-subset :
‹c ‘ A ⊆ S =⇒ d ‘ B ⊆ S =⇒
c!!a∈A → P a [[S ]]3 d?b∈B → Q b =
( if c ‘ A ⊆ d ‘ B then ua∈c ‘ A → (P (inv-into A c a) [[S ]]3 Q (inv-into B d

a))
else (ua∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c a) [[S ]]3 Q (inv-into B d a))) u

STOP)›
by (simp add: read-def ndet-write-def Mndetprefix-Syncptick-Mprefix-subset)

lemma read-Syncptick-ndet-write-subset :
‹c ‘ A ⊆ S =⇒ d ‘ B ⊆ S =⇒
c?a∈A → P a [[S ]]3 d!!b∈B → Q b =
( if d ‘ B ⊆ c ‘ A then ub∈d ‘ B → (P (inv-into A c b) [[S ]]3 Q (inv-into B d

b))
else (ub∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c b) [[S ]]3 Q (inv-into B d b))) u

STOP)›
by (simp add: read-def ndet-write-def Mprefix-Syncptick-Mndetprefix-subset)

— If we have the same injective channel, it’s better.
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lemma ndet-write-Syncptick-read-subset-same-chan:
‹c!!a∈A → P a [[S ]]3 c?b∈B → Q b =
(if A ⊆ B then c!!a∈A → (P a [[S ]]3 Q a) else (c!!a∈(A ∩ B) → (P a [[S ]]3 Q

a)) u STOP)›
if ‹c ‘ A ⊆ S› ‹c ‘ B ⊆ S› ‹inj-on c (A ∪ B)›

proof −
from ‹inj-on c (A ∪ B)› have ∗ : ‹c ‘ A ⊆ c ‘ B ←→ A ⊆ B›

by (auto simp add: inj-on-eq-iff )
from ‹inj-on c (A ∪ B)› have ∗∗ : ‹c ‘ A ∩ c ‘ B = c ‘ (A ∩ B)›

by (auto simp add: inj-on-Un)
from ‹inj-on c (A ∪ B)› show ?thesis

by (unfold ndet-write-Syncptick-read-subset[OF ‹c ‘ A ⊆ S› ‹c ‘ B ⊆ S›] ∗ ∗∗)
(auto simp add: ndet-write-def inj-on-Un inj-on-Int

intro!: mono-Mndetprefix-eq arg-cong2 [where f = ‹(u)›])
qed

corollary (in Syncptick-locale) read-Syncptick-ndet-write-subset-same-chan:
‹c?a∈A → P a [[S ]]3 c!!b∈B → Q b =
(if B ⊆ A then c!!b∈B → (P b [[S ]]3 Q b) else (c!!b∈(A ∩ B) → (P b [[S ]]3 Q

b)) u STOP)›
if ‹c ‘ A ⊆ S› ‹c ‘ B ⊆ S› ‹inj-on c (A ∪ B)›
by (subst (1 2 3 ) Syncptick-locale-sym.Syncptick-sym)
(simp add: Syncptick-locale-sym.ndet-write-Syncptick-read-subset-same-chan
[OF that(2 , 1 )] Un-commute Int-commute that(3 ))

lemma ndet-write-Syncptick-read-indep :
‹c ‘ A ∩ S = {} =⇒ d ‘ B ∩ S = {} =⇒
c!!a∈A → P a [[S ]]3 d?b∈B → Q b =
( if A = {} then d?b∈B → (STOP [[S ]]3 Q b)
else ua∈c ‘ A. (a → (P (inv-into A c a) [[S ]]3 d?b∈B → Q b)) �

(d?b∈B → (a → P (inv-into A c a) [[S ]]3 Q b)))›
by (auto simp add: ndet-write-def read-def Mndetprefix-Syncptick-Mprefix-indep

comp-def
intro: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›])

lemma read-Syncptick-ndet-write-indep :
‹c ‘ A ∩ S = {} =⇒ d ‘ B ∩ S = {} =⇒
c?a∈A → P a [[S ]]3 d!!b∈B → Q b =
( if B = {} then c?a∈A → (P a [[S ]]3 STOP)
else ub∈d ‘ B. (b → (c?a∈A → P a [[S ]]3 Q (inv-into B d b))) �

(c?a∈A → (P a [[S ]]3 b → Q (inv-into B d b))))›
by (auto simp add: ndet-write-def read-def Mprefix-Syncptick-Mndetprefix-indep

comp-def
intro: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›])

lemma ndet-write-Syncptick-read-left :
‹c!!a∈A → P a [[S ]]3 d?b∈B → Q b = c!!a∈A → (P a [[S ]]3 d?b∈B → Q b)›
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(is ‹?lhs = ?rhs›) if ‹c ‘ A ∩ S = {}› ‹d ‘ B ⊆ S›
proof −

from that have ‹?lhs = (if A = {} then STOP [[S ]]3 d?b∈B → Q b else ?rhs)›
by (auto simp add: ndet-write-def read-def

Mndetprefix-Syncptick-Mprefix-left comp-def
intro: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›])

also have ‹. . . = ?rhs›
by (simp add: read-def ndet-write-def Mprefix-is-STOP-iff

STOP-Syncptick-Mprefix that(2 ))
finally show ‹?lhs = ?rhs› .

qed

lemma read-Syncptick-ndet-write-left :
‹c?a∈A → P a [[S ]]3 d!!b∈B → Q b = c?a∈A → (P a [[S ]]3 d!!b∈B → Q b)›
(is ‹?lhs = ?rhs›) if ‹c ‘ A ∩ S = {}› ‹d ‘ B ⊆ S›

proof −
from that have ‹?lhs = (if B = {} then (c?a∈A → P a) [[S ]]3 STOP else ?rhs)›

by (auto simp add: ndet-write-def read-def
Mprefix-Syncptick-Mndetprefix-left comp-def
intro: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›])

also have ‹. . . = ?rhs›
by (simp add: read-def comp-def )
(use Mprefix-Syncptick-Mprefix-left that(1 ) in force)

finally show ‹?lhs = ?rhs› .
qed

corollary (in Syncptick-locale) ndet-write-Syncptick-read-right :
‹c!!a∈A → P a [[S ]]3 d?b∈B → Q b = d?b∈B → (c!!a∈A → P a [[S ]]3 Q b)›
if ‹c ‘ A ⊆ S› ‹d ‘ B ∩ S = {}›
by (subst (1 2 ) Syncptick-locale-sym.Syncptick-sym)
(simp add: Syncptick-locale-sym.read-Syncptick-ndet-write-left[OF that(2 , 1 )])

corollary (in Syncptick-locale) read-Syncptick-ndet-write-right :
‹c?a∈A → P a [[S ]]3 d!!b∈B → Q b = d!!b∈B → (c?a∈A → P a [[S ]]3 Q b)›
if ‹c ‘ A ⊆ S› ‹d ‘ B ∩ S = {}›
by (subst (1 2 ) Syncptick-locale-sym.Syncptick-sym)
(simp add: Syncptick-locale-sym.ndet-write-Syncptick-read-left[OF that(2 , 1 )])

read and write. lemma write-Syncptick-read :
‹c!a → P [[S ]]3 d?b∈B → Q b =
(if c a ∈ S then STOP else c!a → (P [[S ]]3 d?b∈B → Q b)) �
(�b∈(d ‘ B − S) → (c!a → P [[S ]]3 Q (inv-into B d b))) �
(if c a ∈ d ‘ B ∩ S then c!a → (P [[S ]]3 Q (inv-into B d (c a))) else STOP)›

by (subst ndet-write-Syncptick-read[where A = ‹{a}›, simplified])
(simp add: write-is-write0 image-iff )

lemma read-Syncptick-write :
‹c?a∈A → P a [[S ]]3 d!b → Q =
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(if d b ∈ S then STOP else d!b → (c?a∈A → P a [[S ]]3 Q)) �
(�a∈(c ‘ A − S) → (P (inv-into A c a) [[S ]]3 d!b → Q)) �
(if d b ∈ c ‘ A ∩ S then d!b → (P (inv-into A c (d b)) [[S ]]3 Q) else STOP)›

by (subst read-Syncptick-ndet-write[where B = ‹{b}›, simplified])
(simp add: write-is-write0 image-iff )

lemma write-Syncptick-read-subset :
‹c a ∈ S =⇒ d ‘ B ⊆ S =⇒
c!a → P [[S ]]3 d?b∈B → Q b =
(if c a ∈ d ‘ B then c!a → (P [[S ]]3 Q (inv-into B d (c a))) else STOP)›

by (simp add: write-Syncptick-read)
(metis Det-STOP Det-commute Diff-eq-empty-iff Mprefix-empty)

lemma read-Syncptick-write-subset :
‹c ‘ A ⊆ S =⇒ d b ∈ S =⇒
c?a∈A → P a [[S ]]3 d!b → Q =
(if d b ∈ c ‘ A then d!b → (P (inv-into A c (d b)) [[S ]]3 Q) else STOP)›

by (simp add: read-Syncptick-write)
(metis Diff-eq-empty-iff Mprefix-empty STOP-Det)

— If we have the same injective channel, it’s better.
lemma write-Syncptick-read-subset-same-chan:

‹c a ∈ S =⇒ c ‘ B ⊆ S =⇒ inj-on c (insert a B) =⇒
c!a → P [[S ]]3 c?b∈B → Q b = (if a ∈ B then c!a → (P [[S ]]3 Q a) else STOP)›
by (subst ndet-write-Syncptick-read-subset-same-chan[where A = ‹{a}›, simpli-

fied]) simp-all

lemma read-Syncptick-write-subset-same-chan:
‹c ‘ A ⊆ S =⇒ c b ∈ S =⇒ inj-on c (insert b A) =⇒
c?a∈A → P a [[S ]]3 c!b → Q = (if b ∈ A then c!b → (P b [[S ]]3 Q) else STOP)›
by (subst read-Syncptick-ndet-write-subset-same-chan[where B = ‹{b}›, simpli-

fied]) simp-all

lemma write-Syncptick-read-indep :
‹c a /∈ S =⇒ d ‘ B ∩ S = {} =⇒
c!a → P [[S ]]3 d?b∈B → Q b =
(c!a → (P [[S ]]3 d?b∈B → Q b)) � (d?b∈B → (c!a → P [[S ]]3 Q b))›

by (subst ndet-write-Syncptick-read-indep[where A = ‹{a}›, simplified])
(simp-all add: write-is-write0 )

lemma read-Syncptick-write-indep :
‹c ‘ A ∩ S = {} =⇒ d b /∈ S =⇒
c?a∈A → P a [[S ]]3 d!b → Q =
(d!b → (c?a∈A → P a [[S ]]3 Q)) � (c?a∈A → (P a [[S ]]3 d!b → Q))›

by (subst read-Syncptick-ndet-write-indep[where B = ‹{b}›, simplified])
(simp-all add: write-is-write0 )

208



lemma write-Syncptick-read-left :
‹c a /∈ S =⇒ d ‘ B ⊆ S =⇒
c!a → P [[S ]]3 d?b∈B → Q b = c!a → (P [[S ]]3 d?b∈B → Q b)›

by (subst ndet-write-Syncptick-read-left[where A = ‹{a}›, simplified]) simp-all

lemma read-Syncptick-write-left :
‹c ‘ A ∩ S = {} =⇒ d b ∈ S =⇒
c?a∈A → P a [[S ]]3 d!b → Q = c?a∈A → (P a [[S ]]3 d!b → Q)›

by (subst read-Syncptick-ndet-write-left[where B = ‹{b}›, simplified]) simp-all

lemma write-Syncptick-read-right :
‹c a ∈ S =⇒ d ‘ B ∩ S = {} =⇒
c!a → P [[S ]]3 d?b∈B → Q b = d?b∈B → (c!a → P [[S ]]3 Q b)›

by (subst ndet-write-Syncptick-read-right[where A = ‹{a}›, simplified]) simp-all

lemma read-Syncptick-write-right :
‹c ‘ A ⊆ S =⇒ d b /∈ S =⇒
c?a∈A → P a [[S ]]3 d!b → Q = d!b → (c?a∈A → P a [[S ]]3 Q)›

by (subst read-Syncptick-ndet-write-right[where B = ‹{b}›, simplified]) simp-all

ndet-write and ndet-write lemma ndet-write-Syncptick-ndet-write :
‹c!!a∈A → P a [[S ]]3 d!!b∈B → Q b =
( if A = {} then if d ‘ B ∩ S = {} then d!!b∈B → (STOP [[S ]]3 Q b)

else (ux∈d ‘ (B − d −‘ S) → (STOP [[S ]]3 Q (inv-into B d x)))
u STOP

else if B = {} then if c ‘ A ∩ S = {} then c!!a∈A → (P a [[S ]]3 STOP)
else (ux∈c ‘ (A − c −‘ S) → (P (inv-into A c x) [[S ]]3

STOP)) u STOP
else ub∈d ‘ B. ua∈c ‘ A.

(if a ∈ S then STOP else a → (P (inv-into A c a) [[S ]]3 b → Q (inv-into
B d b))) �

(if b ∈ S then STOP else b → (a → P (inv-into A c a) [[S ]]3 Q (inv-into
B d b))) �

(if a = b ∧ b ∈ S then b → (P (inv-into A c a) [[S ]]3 Q (inv-into B d
b)) else STOP))›
proof −

have ‹d ‘ (B − d −‘ S) = d ‘ B − S› ‹c ‘ (A − c −‘ S) = c ‘ A − S› by auto
thus ?thesis

by (auto simp add: ndet-write-def Mndetprefix-Syncptick-Mndetprefix comp-def
intro!: mono-GlobalNdet-eq split: if-split-asm)

qed

lemma ndet-write-Syncptick-ndet-write-subset :
‹c ‘ A ⊆ S =⇒ d ‘ B ⊆ S =⇒
c!!a∈A → P a [[S ]]3 d!!b∈B → Q b =
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( if ∃ b. c ‘ A = {b} ∧ d ‘ B = {b}
then (THE b. d ‘ B = {b}) → (P (inv-into A c (THE a. c ‘ A = {a})) [[S ]]3 Q

(inv-into B d (THE b. d ‘ B = {b})))
else (ux∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c x) [[S ]]3 Q (inv-into B d x))) u

STOP)›
by (auto simp add: ndet-write-def Mndetprefix-Syncptick-Mndetprefix-subset)

corollary inj-on-ndet-write-Syncptick-ndet-write-subset :
‹c!!a∈A → P a [[S ]]3 d!!b∈B → Q b =
( if ∃ b. c ‘ A = {b} ∧ d ‘ B = {b}
then d (THE b. B = {b}) → (P (THE a. A = {a}) [[S ]]3 Q (THE b. B = {b}))
else (ux∈(c ‘ A ∩ d ‘ B) → (P (inv-into A c x) [[S ]]3 Q (inv-into B d x))) u

STOP)›
if ‹inj-on c A› ‹inj-on d B› ‹c ‘ A ⊆ S› ‹d ‘ B ⊆ S›

proof −
from that(1 ) have ‹c ‘ A = {a ′} =⇒ ∃ !a. A = {a} ∧ a ′ = c a› for a ′

by (fastforce elim!: inj-img-insertE)
moreover from that(2 ) have ‹d ‘ B = {b ′} =⇒ ∃ !b. B = {b} ∧ b ′ = d b› for

b ′

by (fastforce elim!: inj-img-insertE)
ultimately show ?thesis
by (auto simp add: ndet-write-Syncptick-ndet-write-subset[OF that(3 , 4 )] inv-into-f-eq

intro: arg-cong2 [where f = ‹(→)›] arg-cong2 [where f = ‹λP Q. P [[S ]]3
Q›])
qed

lemma ndet-write-Syncptick-ndet-write-indep :
‹c ‘ A ∩ S = {} =⇒ d ‘ B ∩ S = {} =⇒
c!!a∈A → P a [[S ]]3 d!!b∈B → Q b =
( if A = {} then d!!b∈B → (STOP [[S ]]3 Q b)
else if B = {} then c!!a∈A → (P a [[S ]]3 STOP)

else ub∈d ‘ B. ua∈c ‘ A.
((a → (P (inv-into A c a) [[S ]]3 b → Q (inv-into B d b)))) �
((b → (a → P (inv-into A c a) [[S ]]3 Q (inv-into B d b)))))›

by (auto simp add: ndet-write-Syncptick-ndet-write disjoint-iff intro!: mono-GlobalNdet-eq)

lemma ndet-write-Syncptick-ndet-write-left :
‹c ‘ A ∩ S = {} =⇒ d ‘ B ⊆ S =⇒
c!!a∈A → P a [[S ]]3 d!!b∈B → Q b = c!!a∈A → (P a [[S ]]3 d!!b∈B → Q b)›

by (simp add: ndet-write-def Mndetprefix-Syncptick-Mndetprefix-left comp-def )

lemma ndet-write-Syncptick-ndet-write-right :
‹c ‘ A ⊆ S =⇒ d ‘ B ∩ S = {} =⇒
c!!a∈A → P a [[S ]]3 d!!b∈B → Q b = d!!b∈B → (c!!a∈A → P a [[S ]]3 Q b)›

by (simp add: ndet-write-def Mndetprefix-Syncptick-Mndetprefix-right comp-def )
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ndet-write and write lemma write-Syncptick-ndet-write :
‹c!a → P [[S ]]3 d!!b∈B → Q b =
( if B = {} then c!a → P [[S ]]3 STOP
else ub∈d ‘ B. (if b ∈ S then STOP else b → (c!a → P [[S ]]3 Q (inv-into B d

b))) �
(if c a ∈ S then STOP else c!a → (P [[S ]]3 b → Q (inv-into B d

b))) �
(if b = c a ∧ c a ∈ S then c!a → (P [[S ]]3 Q (inv-into B d (c a)))

else STOP))›
by (subst read-Syncptick-ndet-write[where A = ‹{a}›, simplified],

auto simp add: write-def Mprefix-singl split: if-split-asm
intro!: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›] mono-Mprefix-eq)

(simp add: insert-Diff-if write0-def )

lemma ndet-write-Syncptick-write :
‹c!!a∈A → P a [[S ]]3 d!b → Q =
( if A = {} then STOP [[S ]]3 d!b → Q
else ua∈c ‘ A. (if a ∈ S then STOP else a → (P (inv-into A c a) [[S ]]3 d!b →

Q)) �
(if d b ∈ S then STOP else d!b → (a → P (inv-into A c a) [[S ]]3

Q)) �
(if a = d b ∧ d b ∈ S then d!b → (P (inv-into A c a) [[S ]]3 Q) else

STOP))›
by (subst ndet-write-Syncptick-read[where B = ‹{b}›, simplified],

auto simp add: write-def Mprefix-singl split: if-split-asm
intro!: mono-GlobalNdet-eq arg-cong2 [where f = ‹(�)›] mono-Mprefix-eq)

(simp add: insert-Diff-if write0-def )

lemma write-Syncptick-ndet-write-subset :
‹c!a → P [[S ]]3 d!!b∈B → Q b =
( if c a /∈ d ‘ B then STOP else if d ‘ B = {c a} then c!a → (P [[S ]]3 Q (inv-into

B d (c a)))
else (c!a → (P [[S ]]3 Q (inv-into B d (c a)))) u STOP)› if ‹c a ∈ S› ‹d ‘ B ⊆

S›
proof (subst read-Syncptick-ndet-write-subset[where A = ‹{a}›, simplified])

from ‹c a ∈ S› show ‹c a ∈ S› .
next

from ‹d ‘ B ⊆ S› show ‹d ‘ B ⊆ S› .
next

show ‹( if d ‘ B ⊆ {c a} then ub∈d ‘ B → (P [[S ]]3 Q (inv-into B d b))
else (ub∈(c ‘ {a} ∩ d ‘ B) → (P [[S ]]3 Q (inv-into B d b))) u STOP) =
( if c a /∈ d ‘ B then STOP else if d ‘ B = {c a} then c!a → (P [[S ]]3 Q

(inv-into B d (c a)))
else (c!a → (P [[S ]]3 Q (inv-into B d (c a)))) u STOP)›

(is ‹?lhs = (if c a /∈ d ‘ B then STOP else if d ‘ B = {c a} then ?rhs else ?rhs
u STOP)›)

proof (split if-split, intro conjI impI )
show ‹c a /∈ d ‘ B =⇒ ?lhs = STOP›
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by (auto simp add: GlobalNdet-is-STOP-iff image-subset-iff image-iff )
next
show ‹¬ c a /∈ d ‘ B =⇒ ?lhs = (if d ‘ B = {c a} then ?rhs else ?rhs u STOP)›

by (auto simp add: image-subset-iff Ndet-is-STOP-iff write-is-write0 )
qed

qed

corollary (in Syncptick-locale) ndet-write-Syncptick-write-subset :
‹(c!!a∈A → P a) [[S ]]3 (d!b → Q) =
( if d b /∈ c ‘ A then STOP else if c ‘ A = {d b} then d!b → (P (inv-into A c

(d b)) [[S ]]3 Q)
else (d!b → (P (inv-into A c (d b)) [[S ]]3 Q)) u STOP)› if ‹c ‘ A ⊆ S› ‹d b ∈

S›
by (subst (1 2 3 ) Syncptick-locale-sym.Syncptick-sym)
(simp add: Syncptick-locale-sym.write-Syncptick-ndet-write-subset that)

lemma write-Syncptick-ndet-write-indep :
‹c a /∈ S =⇒ d ‘ B ∩ S = {} =⇒
c!a → P [[S ]]3 d!!b∈B → Q b =
( if B = {} then c!a → (P [[S ]]3 STOP)
else ub∈d ‘ B. (c!a → (P [[S ]]3 b → Q (inv-into B d b))) �

(b → (c!a → P [[S ]]3 Q (inv-into B d b))))›
by (subst ndet-write-Syncptick-ndet-write-indep[where A = ‹{a}›, simplified])
(auto simp add: write-is-write0 intro: mono-GlobalNdet-eq)

lemma ndet-write-Syncptick-write-indep :
‹c ‘ A ∩ S = {} =⇒ d b /∈ S =⇒
c!!a∈A → P a [[S ]]3 d!b → Q =
( if A = {} then d!b → (STOP [[S ]]3 Q)
else ua∈c ‘ A. (a → (P (inv-into A c a) [[S ]]3 d!b → Q)) �

(d!b → (a → P (inv-into A c a) [[S ]]3 Q)))›
by (subst ndet-write-Syncptick-ndet-write-indep[where B = ‹{b}›, simplified])
(auto simp add: write-is-write0 intro: mono-GlobalNdet-eq)

lemma write-Syncptick-ndet-write-left :
‹c a /∈ S =⇒ d ‘ B ⊆ S =⇒ c!a → P [[S ]]3 d!!b∈B → Q b = c!a → (P [[S ]]3

d!!b∈B → Q b)›
by (subst ndet-write-Syncptick-ndet-write-left[where A = ‹{a}›, simplified]) simp-all

lemma ndet-write-Syncptick-write-left :
‹c ‘ A ∩ S = {} =⇒ d b ∈ S =⇒ c!!a∈A → P a [[S ]]3 d!b → Q = c!!a∈A → (P

a [[S ]]3 d!b → Q)›
by (subst ndet-write-Syncptick-ndet-write-left[where B = ‹{b}›, simplified]) simp-all

lemma write-Syncptick-ndet-write-right :
‹c a ∈ S =⇒ d ‘ B ∩ S = {} =⇒ c!a → P [[S ]]3 d!!b∈B → Q b = d!!b∈B →
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(c!a → P [[S ]]3 Q b)›
by (subst ndet-write-Syncptick-ndet-write-right[where A = ‹{a}›, simplified])

simp-all

lemma ndet-write-Syncptick-write-right :
‹c ‘ A ⊆ S =⇒ d b /∈ S =⇒ c!!a∈A → P a [[S ]]3 d!b → Q = d!b → (c!!a∈A →

P a [[S ]]3 Q)›
by (subst ndet-write-Syncptick-ndet-write-right[where B = ‹{b}›, simplified])

simp-all

write and write lemma write-Syncptick-write :
‹c!a → P [[S ]]3 d!b → Q =
(if d b ∈ S then STOP else d!b → (c!a → P [[S ]]3 Q)) �
(if c a ∈ S then STOP else c!a → (P [[S ]]3 d!b → Q)) �
(if c a = d b ∧ d b ∈ S then c!a → (P [[S ]]3 Q) else STOP)›

by (subst read-Syncptick-read[where A = ‹{a}› and B = ‹{b}›, simplified])
(simp add: write-def insert-Diff-if Det-commute Int-insert-right)

lemma write-Interptick-write :
‹c!a → P |||3 d!b → Q = (c!a → (P |||3 d!b → Q)) � (d!b → (c!a → P |||3

Q))›
by (simp add: write-Syncptick-write Det-commute)

lemma write-Parptick-write :
‹c!a → P ||3 d!b → Q = (if c a = d b then c!a → (P ||3 Q) else STOP)›
by (simp add: write-Syncptick-write)

lemma write-Syncptick-write-subset :
‹c a ∈ S =⇒ d b ∈ S =⇒
c!a → P [[S ]]3 d!b → Q = (if c a = d b then c!a → (P [[S ]]3 Q) else STOP)›

by (simp add: write-Syncptick-write)

lemma write-Syncptick-write-indep :
‹c a /∈ S =⇒ d b /∈ S =⇒
c!a → P [[S ]]3 d!b → Q = (c!a → (P [[S ]]3 d!b → Q)) � (d!b → (c!a → P [[S ]]3

Q))›
by (simp add: Det-commute write-Syncptick-write)

lemma write-Syncptick-write-left :
‹c a /∈ S =⇒ d b ∈ S =⇒ c!a → P [[S ]]3 d!b → Q = c!a → (P [[S ]]3 d!b → Q)›
by (auto simp add: write-Syncptick-write)

lemma write-Syncptick-write-right :
‹c a ∈ S =⇒ d b /∈ S =⇒ c!a → P [[S ]]3 d!b → Q = d!b → (c!a → P [[S ]]3 Q)›
by (auto simp add: write-Syncptick-write)
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read and (→). lemma write0-Syncptick-read :
‹a → P [[S ]]3 d?b∈B → Q b =
(if a ∈ S then STOP else a → (P [[S ]]3 d?b∈B → Q b)) �
(�b∈(d ‘ B − S) → (a → P [[S ]]3 Q (inv-into B d b))) �
(if a ∈ d ‘ B ∩ S then a → (P [[S ]]3 Q (inv-into B d a)) else STOP)›

by (simp add: write-Syncptick-read[where c = id, unfolded write-is-write0 , sim-
plified])

lemma read-Syncptick-write0 :
‹c?a∈A → P a [[S ]]3 b → Q =
(if b ∈ S then STOP else b → (c?a∈A → P a [[S ]]3 Q)) �
(�a∈(c ‘ A − S) → (P (inv-into A c a) [[S ]]3 b → Q)) �
(if b ∈ c ‘ A ∩ S then b → (P (inv-into A c b) [[S ]]3 Q) else STOP)›

by (simp add: read-Syncptick-write[where d = id, unfolded write-is-write0 , sim-
plified])

lemma write0-Syncptick-read-subset :
‹a ∈ S =⇒ d ‘ B ⊆ S =⇒
a → P [[S ]]3 d?b∈B → Q b =
(if a ∈ d ‘ B then a → (P [[S ]]3 Q (inv-into B d a)) else STOP)›

by (simp add: write-Syncptick-read-subset[where c = id, unfolded write-is-write0 ,
simplified])

lemma read-Syncptick-write0-subset :
‹c ‘ A ⊆ S =⇒ b ∈ S =⇒
c?a∈A → P a [[S ]]3 b → Q =
(if b ∈ c ‘ A then b → (P (inv-into A c b) [[S ]]3 Q) else STOP)›

by (simp add: read-Syncptick-write-subset[where d = ‹λx. x›, unfolded write-is-write0 ])

lemma write0-Syncptick-read-subset-same-chan:
‹a ∈ S =⇒ B ⊆ S =⇒
a → P [[S ]]3 id?b∈B → Q b = (if a ∈ B then a → (P [[S ]]3 Q a) else STOP)›

by (simp add: write-Syncptick-read-subset-same-chan
[where c = id, unfolded write-is-write0 , simplified])

lemma read-Syncptick-write0-subset-same-chan:
‹A ⊆ S =⇒ b ∈ S =⇒
id?a∈A → P a [[S ]]3 b → Q = (if b ∈ A then b → (P b [[S ]]3 Q) else STOP)›

by (simp add: read-Syncptick-write-subset-same-chan
[where c = id, unfolded write-is-write0 , simplified])

lemma write0-Syncptick-read-indep :
‹a /∈ S =⇒ d ‘ B ∩ S = {} =⇒
a → P [[S ]]3 d?b∈B → Q b =
(a → (P [[S ]]3 d?b∈B → Q b)) � (d?b∈B → (a → P [[S ]]3 Q b))›

by (simp add: write-Syncptick-read-indep[where c = id, unfolded write-is-write0 ,
simplified])

lemma read-Syncptick-write0-indep :
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‹c ‘ A ∩ S = {} =⇒ b /∈ S =⇒
c?a∈A → P a [[S ]]3 b → Q =
(b → (c?a∈A → P a [[S ]]3 Q)) � (c?a∈A → (P a [[S ]]3 b → Q))›

by (simp add: read-Syncptick-write-indep[where d = id, unfolded write-is-write0 ,
simplified])

lemma write0-Syncptick-read-left :
‹a /∈ S =⇒ d ‘ B ⊆ S =⇒ a → P [[S ]]3 d?b∈B → Q b = a → (P [[S ]]3 d?b∈B
→ Q b)›

by (simp add: write-Syncptick-read-left[where c = id, unfolded write-is-write0 ,
simplified])

lemma read-Syncptick-write0-left :
‹c ‘ A ∩ S = {} =⇒ b ∈ S =⇒ c?a∈A → P a [[S ]]3 b → Q = c?a∈A → (P a

[[S ]]3 b → Q)›
by (simp add: read-Syncptick-write-left[where d = id, unfolded write-is-write0 ,

simplified])

lemma write0-Syncptick-read-right :
‹a ∈ S =⇒ d ‘ B ∩ S = {} =⇒ a → P [[S ]]3 d?b∈B → Q b = d?b∈B → (a →

P [[S ]]3 Q b)›
by (simp add: write-Syncptick-read-right[where c = id, unfolded write-is-write0 ,

simplified])

lemma read-Syncptick-write0-right :
‹c ‘ A ⊆ S =⇒ b /∈ S =⇒ c?a∈A → P a [[S ]]3 b → Q = b → (c?a∈A → P a

[[S ]]3 Q)›
by (simp add: read-Syncptick-write-right[where d = id, unfolded write-is-write0 ,

simplified])

ndet-write and (→) lemma write0-Syncptick-ndet-write :
‹a → P [[S ]]3 d!!b∈B → Q b =
( if B = {} then a → P [[S ]]3 STOP
else ub∈d ‘ B. (if b ∈ S then STOP else b → (a → P [[S ]]3 Q (inv-into B d

b))) �
(if a ∈ S then STOP else a → (P [[S ]]3 b → Q (inv-into B d b))) �

(if b = a ∧ a ∈ S then a → (P [[S ]]3 Q (inv-into B d a)) else
STOP))›
by (simp add: write-Syncptick-ndet-write[where c = ‹λx. x›, unfolded write-is-write0 ,

simplified])

lemma ndet-write-Syncptick-write0 :
‹c!!a∈A → P a [[S ]]3 b → Q =
( if A = {} then STOP [[S ]]3 b → Q
else ua∈c ‘ A. (if a ∈ S then STOP else a → (P (inv-into A c a) [[S ]]3 b →

Q)) �
(if b ∈ S then STOP else b → (a → P (inv-into A c a) [[S ]]3 Q)) �

(if a = b ∧ b ∈ S then b → (P (inv-into A c a) [[S ]]3 Q) else
STOP))›
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by (simp add: ndet-write-Syncptick-write[where d = ‹λx. x›, unfolded write-is-write0 ,
simplified])

lemma write0-Syncptick-ndet-write-subset :
‹a ∈ S =⇒ d ‘ B ⊆ S =⇒
a → P [[S ]]3 d!!b∈B → Q b =
( if a /∈ d ‘ B then STOP else if d ‘ B = {a} then a → (P [[S ]]3 Q (inv-into B

d a))
else (a → (P [[S ]]3 Q (inv-into B d a))) u STOP)›

by (simp add: write-Syncptick-ndet-write-subset[where c = id, unfolded write-is-write0 ,
simplified])

lemma ndet-write-Syncptick-write0-subset :
‹c ‘ A ⊆ S =⇒ b ∈ S =⇒
c!!a∈A → P a [[S ]]3 b → Q =
( if b /∈ c ‘ A then STOP else if c ‘ A = {b} then b → (P (inv-into A c b) [[S ]]3

Q)
else (b → (P (inv-into A c b) [[S ]]3 Q)) u STOP)›

by (simp add: ndet-write-Syncptick-write-subset[where d = id, unfolded write-is-write0 ,
simplified])

lemma write0-Syncptick-ndet-write-indep :
‹a /∈ S =⇒ d ‘ B ∩ S = {} =⇒
a → P [[S ]]3 d!!b∈B → Q b =
( if B = {} then a → (P [[S ]]3 STOP)
else ub∈d ‘ B. (a → (P [[S ]]3 b → Q (inv-into B d b))) �

(b → (a → P [[S ]]3 Q (inv-into B d b))))›
by (simp add: write-Syncptick-ndet-write-indep[where c = id, unfolded write-is-write0 ,

simplified])

lemma ndet-write-Syncptick-write0-indep :
‹c ‘ A ∩ S = {} =⇒ b /∈ S =⇒
c!!a∈A → P a [[S ]]3 b → Q =
( if A = {} then b → (STOP [[S ]]3 Q)
else ua∈c ‘ A. (a → (P (inv-into A c a) [[S ]]3 b → Q)) �

(b → (a → P (inv-into A c a) [[S ]]3 Q)))›
by (simp add: ndet-write-Syncptick-write-indep[where d = id, unfolded write-is-write0 ,

simplified])

lemma write0-Syncptick-ndet-write-left :
‹a /∈ S =⇒ d ‘ B ⊆ S =⇒ a → P [[S ]]3 d!!b∈B → Q b = a → (P [[S ]]3 d!!b∈B
→ Q b)›
by (simp add: write-Syncptick-ndet-write-left[where c = id, unfolded write-is-write0 ,

simplified])

lemma ndet-write-Syncptick-write0-left :
‹c ‘ A ∩ S = {} =⇒ b ∈ S =⇒ c!!a∈A → P a [[S ]]3 b → Q = c!!a∈A → (P a

[[S ]]3 b → Q)›
by (simp add: ndet-write-Syncptick-write-left[where d = id, unfolded write-is-write0 ,
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simplified])

lemma write-Syncptick-ndet-write0-right :
‹a ∈ S =⇒ d ‘ B ∩ S = {} =⇒ a → P [[S ]]3 d!!b∈B → Q b = d!!b∈B → (a →

P [[S ]]3 Q b)›
by (simp add: write-Syncptick-ndet-write-right[where c = id, unfolded write-is-write0 ,

simplified])

lemma ndet-write-Syncptick-write0-right :
‹c ‘ A ⊆ S =⇒ b /∈ S =⇒ c!!a∈A → P a [[S ]]3 b → Q = b → (c!!a∈A → P a

[[S ]]3 Q)›
by (simp add: ndet-write-Syncptick-write-right[where d = id, unfolded write-is-write0 ,

simplified])

(→) and (→) lemma write0-Syncptick-write0 :
‹a → P [[S ]]3 b → Q =
(if b ∈ S then STOP else b → (a → P [[S ]]3 Q)) �
(if a ∈ S then STOP else a → (P [[S ]]3 b → Q)) �
(if a = b ∧ b ∈ S then a → (P [[S ]]3 Q) else STOP)›

by (simp add: write-Syncptick-write[where c = id and d = id, unfolded write-is-write0 ,
simplified])

lemma write0-Syncptick-write0-bis :
‹(a → P) [[S ]]3 (b → Q) =
( if a ∈ S
then if b ∈ S

then if a = b
then a → (P [[S ]]3 Q)
else STOP

else (b → ((a → P) [[S ]]3 Q))
else if b ∈ S

then a → (P [[S ]]3 (b → Q))
else (a → (P [[S ]]3 (b → Q))) � (b → ((a → P) [[S ]]3 Q)))›

by (cases ‹a ∈ S›; cases ‹b ∈ S›) (auto simp add: write0-Syncptick-write0
Det-commute)

lemma write0-Interptick-write0 :
‹a → P |||3 b → Q = (a → (P |||3 b → Q)) � (b → (a → P |||3 Q))›
by (simp add: write0-Syncptick-write0 Det-commute)

lemma write0-Parptick-write0 :
‹a → P ||3 b → Q = (if a = b then a → (P ||3 Q) else STOP)›
by (simp add: write0-Syncptick-write0 )

lemma write0-Syncptick-write0-subset :
‹a ∈ S =⇒ b ∈ S =⇒ a → P [[S ]]3 b → Q = (if a = b then a → (P [[S ]]3 Q)

else STOP)›
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by (simp add: write-Syncptick-write-subset[where c = id and d = id, unfolded
write-is-write0 , simplified])

lemma write0-Syncptick-write0-indep :
‹a /∈ S =⇒ b /∈ S =⇒ a → P [[S ]]3 b → Q = (a → (P [[S ]]3 b → Q)) � (b →

(a → P [[S ]]3 Q))›
by (simp add: write-Syncptick-write-indep[where c = id and d = id, unfolded

write-is-write0 , simplified])

lemma write0-Syncptick-write0-left :
‹a /∈ S =⇒ b ∈ S =⇒ a → P [[S ]]3 b → Q = a → (P [[S ]]3 b → Q)›
by (simp add: write-Syncptick-write-left[where c = id and d = id, unfolded

write-is-write0 , simplified])

lemma write0-Syncptick-write0-right :
‹a ∈ S =⇒ b /∈ S =⇒ a → P [[S ]]3 b → Q = b → (a → P [[S ]]3 Q)›
by (simp add: write-Syncptick-write-right[where c = id and d = id, unfolded

write-is-write0 , simplified])

write and (→) lemma write0-Syncptick-write :
‹a → P [[S ]]3 d!b → Q =
(if d b ∈ S then STOP else d!b → (a → P [[S ]]3 Q)) �
(if a ∈ S then STOP else a → (P [[S ]]3 d!b → Q)) �
(if a = d b ∧ d b ∈ S then a → (P [[S ]]3 Q) else STOP)›

by (simp add: write0-Syncptick-write0 write-is-write0 )

lemma write-Syncptick-write0 :
‹c!a → P [[S ]]3 b → Q =
(if b ∈ S then STOP else b → (c!a → P [[S ]]3 Q)) �
(if c a ∈ S then STOP else c!a → (P [[S ]]3 b → Q)) �
(if c a = b ∧ b ∈ S then c!a → (P [[S ]]3 Q) else STOP)›

by (simp add: write0-Syncptick-write0 write-is-write0 )

lemma write0-Syncptick-write-subset :
‹a ∈ S =⇒ d b ∈ S =⇒
a → P [[S ]]3 d!b → Q = (if a = d b then a → (P [[S ]]3 Q) else STOP)›

by (simp add: write0-Syncptick-write)

lemma write-Syncptick-write0-subset :
‹c a ∈ S =⇒ b ∈ S =⇒
c!a → P [[S ]]3 b → Q = (if c a = b then c!a → (P [[S ]]3 Q) else STOP)›

by (simp add: write-Syncptick-write0 )

lemma write0-Syncptick-write-indep :
‹a /∈ S =⇒ d b /∈ S =⇒
a → P [[S ]]3 d!b → Q = (a → (P [[S ]]3 d!b → Q)) � (d!b → (a → P [[S ]]3 Q))›
by (simp add: Det-commute write0-Syncptick-write)
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lemma write-Syncptick-write0-indep :
‹c a /∈ S =⇒ b /∈ S =⇒
c!a → P [[S ]]3 b → Q = (c!a → (P [[S ]]3 b → Q)) � (b → (c!a → P [[S ]]3 Q))›
by (simp add: Det-commute write-Syncptick-write0 )

lemma write0-Syncptick-write-left :
‹a /∈ S =⇒ d b ∈ S =⇒ a → P [[S ]]3 d!b → Q = a → (P [[S ]]3 d!b → Q)›
by (simp add: write0-Syncptick-write0-left write-is-write0 )

lemma write-Syncptick-write0-left :
‹c a /∈ S =⇒ b ∈ S =⇒ c!a → P [[S ]]3 b → Q = c!a → (P [[S ]]3 b → Q)›
by (simp add: write0-Syncptick-write0-left write-is-write0 )

lemma write0-Syncptick-write-right :
‹a ∈ S =⇒ d b /∈ S =⇒ a → P [[S ]]3 d!b → Q = d!b → (a → P [[S ]]3 Q)›
by (simp add: write0-Syncptick-write0-right write-is-write0 )

lemma write-Syncptick-write0-right :
‹c a ∈ S =⇒ b /∈ S =⇒ c!a → P [[S ]]3 b → Q = b → (c!a → P [[S ]]3 Q)›
by (simp add: write0-Syncptick-write0-right write-is-write0 )

Synchronization with SKIP and STOP

SKIP Without injectivity, the result is a trivial corollary of read c A P ≡
Mprefix (c ‘ A) (P ◦ inv-into A c) and Mprefix A P [[S ]]3 SKIP r = �a∈(A
\ S) → (P a [[S ]]3 SKIP r).
lemma read-Syncptick-SKIP :

‹c?a∈A → P a [[S ]]3 SKIP r = c?a∈(A − c −‘ S) → (P a [[S ]]3 SKIP r)› if
‹inj-on c A›
proof −

have ‹c ‘ (A − c −‘ S) = c ‘ A − S› by blast
show ‹c?a∈A → P a [[S ]]3 SKIP r = c?a∈(A − c −‘ S) → (P a [[S ]]3 SKIP r)›

by (auto simp add: read-def Mprefix-Syncptick-SKIP ‹?this› inj-on-diff ‹inj-on
c A›

intro: mono-Mprefix-eq)
qed

lemma SKIP-Syncptick-read :
‹SKIP r [[S ]]3 d?b∈B → Q b = d?b∈(B − d −‘ S) → (SKIP r [[S ]]3 Q b)› if

‹inj-on d B›
proof −

have ‹d ‘ (B − d −‘ S) = d ‘ B − S› by blast
show ‹SKIP r [[S ]]3 d?b∈B → Q b = d?b∈(B − d −‘ S) → (SKIP r [[S ]]3 Q b)›

by (auto simp add: read-def SKIP-Syncptick-Mprefix ‹?this› inj-on-diff ‹inj-on
d B›

intro: mono-Mprefix-eq)
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qed

corollary write-Syncptick-SKIP :
‹c!a → P [[S ]]3 SKIP s = (if c a ∈ S then STOP else c!a → (P [[S ]]3 SKIP s))›
and SKIP-Syncptick-write :
‹SKIP r [[S ]]3 d!b → Q = (if d b ∈ S then STOP else d!b → (SKIP r [[S ]]3 Q))›
by (simp-all add: write-def Mprefix-Syncptick-SKIP SKIP-Syncptick-Mprefix Diff-triv)

corollary write0-Syncptick-SKIP :
‹a → P [[S ]]3 SKIP s = (if a ∈ S then STOP else a → (P [[S ]]3 SKIP s))›
and SKIP-Syncptick-write0 :
‹SKIP r [[S ]]3 b → Q = (if b ∈ S then STOP else b → (SKIP r [[S ]]3 Q))›
by (simp-all add: write0-def Mprefix-Syncptick-SKIP SKIP-Syncptick-Mprefix

Diff-triv)

lemma ndet-write-Syncptick-SKIP :
‹c!!a∈A → P a [[S ]]3 SKIP r =
( if c ‘ A ∩ S = {} then c!!a∈A → (P a [[S ]]3 SKIP r)
else (c!!a∈(A − c −‘ S) → (P a [[S ]]3 SKIP r)) u STOP)›

(is ‹?lhs = (if - then ?rhs1 else ?rhs2 u STOP)›) if ‹inj-on c A›
proof (split if-split, intro conjI impI )

assume ‹c ‘ A ∩ S = {}›
hence ‹A − c −‘ S = A› by blast
from ‹c ‘ A ∩ S = {}› show ‹?lhs = ?rhs1 ›

by (auto simp add: ‹?this› ndet-write-is-GlobalNdet-write0 disjoint-iff
Syncptick-distrib-GlobalNdet-right write0-Syncptick-SKIP
intro!: mono-GlobalNdet-eq split: if-split-asm)

next
show ‹?lhs = ?rhs2 u STOP› if ‹c ‘ A ∩ S 6= {}›
proof (cases ‹c ‘ A − S = {}›)

assume ‹c ‘ A − S = {}›
hence ‹A − c −‘ S = {}› by blast
from ‹c ‘ A − S = {}› show ‹?lhs = ?rhs2 u STOP›

by (auto simp add: ndet-write-is-GlobalNdet-write0 GlobalNdet-is-STOP-iff
‹?this› Syncptick-distrib-GlobalNdet-right write0-Syncptick-SKIP)

next
have ‹c ‘ (A − c −‘ S) = c ‘ A − S› by blast
show ‹?lhs = ?rhs2 u STOP› if ‹c ‘ A − S 6= {}›
by (subst Ndet-commute, unfold ndet-write-is-GlobalNdet-write0 Syncptick-distrib-GlobalNdet-right)

(auto simp add: GlobalNdet-is-STOP-iff write0-Syncptick-SKIP
‹?this› ‹inj-on c A› inj-on-diff
simp flip: GlobalNdet-factorization-union
[OF ‹c ‘ A ∩ S 6= {}› ‹c ‘ A − S 6= {}›, unfolded Int-Diff-Un]
intro!: arg-cong2 [where f = ‹(u)›] mono-GlobalNdet-eq)

qed
qed
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corollary (in Syncptick-locale) SKIP-Syncptick-ndet-write :
‹inj-on d B =⇒ SKIP r [[S ]]3 d!!b∈B → Q b =
( if d ‘ B ∩ S = {} then d!!b∈B → (SKIP r [[S ]]3 Q b)
else (d!!b∈(B − d −‘ S) → (SKIP r [[S ]]3 Q b)) u STOP)›

by (subst (1 2 3 ) Syncptick-locale-sym.Syncptick-sym)
(simp add: Syncptick-locale-sym.ndet-write-Syncptick-SKIP)

corollary (in Syncptick-locale) Mndetprefix-Syncptick-SKIP :
‹ua ∈ A → P a [[S ]]3 SKIP r =
(if A ∩ S = {} then ua ∈ A → (P a [[S ]]3 SKIP r)
else (ua ∈ (A − S) → (P a [[S ]]3 SKIP r)) u STOP)›

using ndet-write-Syncptick-SKIP[of id A P S r ]
by (simp add: ndet-write-id-is-Mndetprefix)

corollary (in Syncptick-locale) Syncptick-SKIP-Mndetprefix :
‹SKIP r [[S ]]3 ub ∈ B → Q b =
( if B ∩ S = {} then ub ∈ B → (SKIP r [[S ]]3 Q b)
else (ub ∈ (B − S) → (SKIP r [[S ]]3 Q b)) u STOP)›

by (subst (1 2 3 ) Syncptick-locale-sym.Syncptick-sym)
(simp add: Syncptick-locale-sym.Mndetprefix-Syncptick-SKIP)

STOP Without injectivity, the result is a trivial corollary of read c A P ≡
Mprefix (c ‘ A) (P ◦ inv-into A c) and Mprefix A P [[S ]]3 SKIP r = �a∈(A
\ S) → (P a [[S ]]3 SKIP r).

lemma read-Syncptick-STOP :
‹c?a∈A→ P a [[S ]]3 STOP = c?a∈(A − c −‘ S)→ (P a [[S ]]3 STOP)› if ‹inj-on

c A›
proof −

have ‹c ‘ (A − c −‘ S) = c ‘ A − S› by blast
show ‹c?a∈A → P a [[S ]]3 STOP = c?a∈(A − c −‘ S) → (P a [[S ]]3 STOP)›

by (auto simp add: ‹?this› read-def Mprefix-Syncptick-STOP inj-on-diff ‹inj-on
c A›

intro: mono-Mprefix-eq)
qed

lemma STOP-Syncptick-read :
‹STOP [[S ]]3 d?b∈B → Q b = d?b∈(B − d −‘ S) → (STOP [[S ]]3 Q b)› if

‹inj-on d B›
proof −

have ‹d ‘ (B − d −‘ S) = d ‘ B − S› by blast
show ‹STOP [[S ]]3 d?b∈B → Q b = d?b∈(B − d −‘ S) → (STOP [[S ]]3 Q b)›

by (auto simp add: ‹?this› read-def STOP-Syncptick-Mprefix inj-on-diff ‹inj-on
d B›

intro: mono-Mprefix-eq)
qed
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corollary write-Syncptick-STOP :
‹c!a → P [[S ]]3 STOP = (if c a ∈ S then STOP else c!a → (P [[S ]]3 STOP))›
and STOP-Syncptick-write :
‹STOP [[S ]]3 d!b → Q = (if d b ∈ S then STOP else d!b → (STOP [[S ]]3 Q))›
by (simp-all add: write-def Mprefix-Syncptick-STOP STOP-Syncptick-Mprefix

Diff-triv)

corollary write0-Syncptick-STOP :
‹a → P [[S ]]3 STOP = (if a ∈ S then STOP else a → (P [[S ]]3 STOP))›
and STOP-Syncptick-write0 :
‹STOP [[S ]]3 b → Q = (if b ∈ S then STOP else b → (STOP [[S ]]3 Q))›
by (simp-all add: write0-def Mprefix-Syncptick-STOP STOP-Syncptick-Mprefix

Diff-triv)

lemma ndet-write-Syncptick-STOP :
‹c!!a∈A → P a [[S ]]3 STOP =
( if c ‘ A ∩ S = {} then c!!a∈A → (P a [[S ]]3 STOP)
else (c!!a∈(A − c −‘ S) → (P a [[S ]]3 STOP)) u STOP)›

(is ‹?lhs = (if - then ?rhs1 else ?rhs2 u STOP)›) if ‹inj-on c A›
proof (split if-split, intro conjI impI )

assume ‹c ‘ A ∩ S = {}›
hence ‹A − c −‘ S = A› by blast
from ‹c ‘ A ∩ S = {}› show ‹?lhs = ?rhs1 ›

by (auto simp add: ‹?this› ndet-write-is-GlobalNdet-write0 disjoint-iff
Syncptick-distrib-GlobalNdet-right write0-Syncptick-STOP
intro!: mono-GlobalNdet-eq split: if-split-asm)

next
show ‹?lhs = ?rhs2 u STOP› if ‹c ‘ A ∩ S 6= {}›
proof (cases ‹c ‘ A − S = {}›)

assume ‹c ‘ A − S = {}›
hence ‹A − c −‘ S = {}› by blast
from ‹c ‘ A − S = {}› show ‹?lhs = ?rhs2 u STOP›

by (auto simp add: ndet-write-is-GlobalNdet-write0 GlobalNdet-is-STOP-iff
‹?this› Syncptick-distrib-GlobalNdet-right write0-Syncptick-STOP)

next
have ‹c ‘ (A − c −‘ S) = c ‘ A − S› by blast
show ‹?lhs = ?rhs2 u STOP› if ‹c ‘ A − S 6= {}›
by (subst Ndet-commute, unfold ndet-write-is-GlobalNdet-write0 Syncptick-distrib-GlobalNdet-right)

(auto simp add: GlobalNdet-is-STOP-iff write0-Syncptick-STOP
‹?this› ‹inj-on c A› inj-on-diff
simp flip: GlobalNdet-factorization-union
[OF ‹c ‘ A ∩ S 6= {}› ‹c ‘ A − S 6= {}›, unfolded Int-Diff-Un]
intro!: arg-cong2 [where f = ‹(u)›] mono-GlobalNdet-eq)

qed
qed
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corollary (in Syncptick-locale) STOP-Syncptick-ndet-write :
‹inj-on d B =⇒ STOP [[S ]]3 d!!b∈B → Q b =
( if d ‘ B ∩ S = {} then d!!b∈B → (STOP [[S ]]3 Q b)
else (d!!b∈(B − d −‘ S) → (STOP [[S ]]3 Q b)) u STOP)›

by (subst (1 2 3 ) Syncptick-locale-sym.Syncptick-sym)
(simp add: Syncptick-locale-sym.ndet-write-Syncptick-STOP)

end
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Chapter 9

Operational Semantics Laws

9.1 Behaviour of initials
9.1.1 TickSwap
lemma initials-TickSwap :

‹(TickSwap P)0 = ( if P = ⊥ then UNIV
else {ev a |a. ev a ∈ P0} ∪ {3((s, r)) |r s. 3((r , s)) ∈ P0})›

by (auto simp add: TickSwap-is-Renaming initials-Renaming image-iff
map-eventptick-eq-tick-iff map-eventptick-eq-ev-iff
tick-eq-map-eventptick-iff ev-eq-map-eventptick-iff )

(metis tick-swap.elims)

9.1.2 Sequential Composition
lemma initials-Seqptick :

‹(P ;3 Q)0 = ( if P = ⊥ then UNIV
else {ev a |a. ev a ∈ P0} ∪ (

⋃
r∈{r . 3(r) ∈ P0}. (Q r)0))›

(is ‹- = (if - then - else ?rhs)›)
proof (split if-split, intro conjI impI )

show ‹P = ⊥ =⇒ (P ;3 Q)0 = UNIV › by simp
next

show ‹(P ;3 Q)0 = {ev a |a. ev a ∈ P0} ∪ (
⋃

r∈{r . 3(r) ∈ P0}. (Q r)0)› if ‹P
6= ⊥›

proof (intro subset-antisym subsetI )
fix e assume ‹e ∈ (P ;3 Q)0›
from eventptick.exhaust consider a where ‹e = ev a› | r where ‹e = 3(r)›

by blast
thus ‹e ∈ ?rhs›
proof cases

from ‹e ∈ (P ;3 Q)0› ‹P 6= ⊥› show ‹e = ev a =⇒ e ∈ ?rhs› for a
by (auto simp add: image-iff initials-def Seqptick-projs Cons-eq-append-conv

BOT-iff-Nil-D intro: D-T dest: initials-memD)
(use initials-memI in ‹blast dest: initials-memD›)

next
from ‹e ∈ (P ;3 Q)0› ‹P 6= ⊥› show ‹e = 3(r) =⇒ e ∈ ?rhs› for r
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by (auto simp add: image-iff initials-def Seqptick-projs BOT-iff-Nil-D
Cons-eq-append-conv)

qed
next

show ‹e ∈ ?rhs =⇒ e ∈ (P ;3 Q)0› for e
by (simp add: initials-def Seqptick-projs, elim disjE exE conjE)
(fastforce, metis list.simps(8 ) self-append-conv2 tickFree-Nil)

qed
qed

9.1.3 Synchronization Product
lemma (in Syncptick-locale) initials-Syncptick :

‹(P [[S ]]3 Q)0 =
(if P = ⊥ ∨ Q = ⊥ then UNIV else
{ev a |a. a ∈ S ∧ ev a ∈ P0 ∧ ev a ∈ Q0 ∨ a /∈ S ∧ (ev a ∈ P0 ∨ ev a ∈ Q0)}

∪
{3(r-s) |r-s r s. tick-join r s = Some r-s ∧ 3(r) ∈ P0 ∧ 3(s) ∈ Q0})›

(is ‹(P [[S ]]3 Q)0 = (if P = ⊥ ∨ Q = ⊥ then UNIV else ?rhs-ev ∪ ?rhs-tick)›)
proof (split if-split, intro conjI impI )

show ‹P = ⊥ ∨ Q = ⊥ =⇒ (P [[S ]]3 Q)0 = UNIV ›
by (metis Syncptick-is-BOT-iff initials-BOT )

next
show ‹(P [[S ]]3 Q)0 = ?rhs-ev ∪ ?rhs-tick› if non-BOT : ‹¬ (P = ⊥ ∨ Q = ⊥)›
proof (intro subset-antisym subsetI )

show ‹e ∈ ?rhs-ev ∪ ?rhs-tick =⇒ e ∈ (P [[S ]]3 Q)0› for e
proof (elim UnE)

assume ‹e ∈ ?rhs-ev›
then consider a where ‹e = ev a› ‹a ∈ S› ‹ev a ∈ P0› ‹ev a ∈ Q0›
| a where ‹e = ev a› ‹a /∈ S› ‹ev a ∈ P0 ∨ ev a ∈ Q0› by blast

thus ‹e ∈ (P [[S ]]3 Q)0›
proof cases

fix a assume ‹e = ev a› ‹a ∈ S› ‹ev a ∈ P0› ‹ev a ∈ Q0›
have ∗ : ‹[ev a] setinterleaves3tick-join (([ev a], [ev a]), S)›

by (simp add: ‹a ∈ S›)
from ‹ev a ∈ P0› ‹ev a ∈ Q0› show ‹e ∈ (P [[S ]]3 Q)0›

by (simp add: ‹e = ev a› initials-def T-Syncptick) (use ∗ in blast)
next

fix a assume ‹e = ev a› ‹a /∈ S› ‹ev a ∈ P0 ∨ ev a ∈ Q0›
from ‹ev a ∈ P0 ∨ ev a ∈ Q0› show ‹e ∈ (P [[S ]]3 Q)0›
proof (elim disjE)

assume ‹ev a ∈ P0›
have ∗ : ‹[ev a] setinterleaves3tick-join (([ev a], []), S)›

by (simp add: ‹a /∈ S›)
from ‹ev a ∈ P0› show ‹e ∈ (P [[S ]]3 Q)0›

by (simp add: ‹e = ev a› initials-def T-Syncptick) (meson ∗ is-processT1-TR)
next

assume ‹ev a ∈ Q0›
have ∗ : ‹[ev a] setinterleaves3tick-join (([], [ev a]), S)›
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by (simp add: ‹a /∈ S›)
from ‹ev a ∈ Q0› show ‹e ∈ (P [[S ]]3 Q)0›

by (simp add: ‹e = ev a› initials-def T-Syncptick) (meson ∗ is-processT1-TR)
qed

qed
next

assume ‹e ∈ ?rhs-tick›
then obtain r-s r s where ‹tick-join r s = Some r-s›

‹e = 3(r-s)› ‹3(r) ∈ P0› ‹3(s) ∈ Q0› by blast
have ∗ : ‹[3(r-s)] setinterleaves3tick-join (([3(r)], [3(s)]), S)›

by (simp add: ‹tick-join r s = Some r-s›)
from ‹3(r) ∈ P0› ‹3(s) ∈ Q0› show ‹e ∈ (P [[S ]]3 Q)0›

by (simp add: ‹e = 3(r-s)› initials-def T-Syncptick) (use ∗ in blast)
qed

next
fix e assume ‹e ∈ (P [[S ]]3 Q)0›
then consider t-P t-Q where ‹t-P ∈ T P› ‹t-Q ∈ T Q›

‹[e] setinterleaves3tick-join ((t-P, t-Q), S)›
| (div) t u t-P t-Q
where ‹[e] = t @ u› ‹ftF u› ‹tF t ∨ u = []›

‹t setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›
unfolding initials-def T-Syncptick by blast

thus ‹e ∈ ?rhs-ev ∪ ?rhs-tick›
proof cases

show ‹t-P ∈ T P =⇒ t-Q ∈ T Q =⇒
[e] setinterleaves3tick-join ((t-P, t-Q), S) =⇒
e ∈ ?rhs-ev ∪ ?rhs-tick› for t-P t-Q

by (cases e; cases t-P; cases t-Q)
(auto simp add: initials-def setinterleavingptick-simps

split: if-split-asm option.split-asm eventptick.splits
dest!: Nil-setinterleavesptick)

next
case div

have ‹t 6= []› by (metis BOT-iff-Nil-D Nil-setinterleavesptick div(4 ,5 ) non-BOT )
hence ‹t = [e] ∧ u = []›

by (metis append-Cons append-Nil div(1 ) list.inject neq-Nil-conv)
with div(4 , 5 ) non-BOT show ‹e ∈ ?rhs-ev ∪ ?rhs-tick›

by (cases e; cases t-P; cases t-Q)
(auto simp add: initials-def setinterleavingptick-simps BOT-iff-Nil-D

split: if-split-asm eventptick.splits option.split-asm
dest!: Nil-setinterleavesptick intro: D-T )

qed
qed

qed
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9.2 Laws of After

9.2.1 Sequential Composition
locale AfterDuplicated-same-events = AfterDuplicated Ψα Ψβ

for Ψα :: ‹( ′a, ′r ) processptick ⇒ ′a ⇒ ( ′a, ′r ) processptick›
and Ψβ :: ‹( ′a, ′s) processptick ⇒ ′a ⇒ ( ′a, ′s) processptick›

begin

notation Afterα.After (infixl ‹afterα› 86 )
notation Afterβ .After (infixl ‹afterβ› 86 )

lemma not-skippable-or-not-initialR-After-Seqptick:
‹(P ;3 Q) afterβ a = (if ev a ∈ P0 then P afterα a ;3 Q else Ψβ (P ;3 Q) a)›
if ‹range tick ∩ P0 = {} ∨ (∀ r . 3(r) ∈ P0 −→ ev a /∈ (Q r)0)›

proof (cases ‹P = ⊥›)
show ‹P = ⊥ =⇒ (P ;3 Q) afterβ a =

(if ev a ∈ P0 then P afterα a ;3 Q else Ψβ (P ;3 Q) a)›
by (simp add: After .After-BOT )

next
note denot-projs = After .After-projs Seqptick-projs
assume non-BOT : ‹P 6= ⊥›
with that have $ : ‹ev a ∈ (P ;3 Q)0 ←→ ev a ∈ P0›

by (auto simp add: initials-Seqptick)
show ‹(P ;3 Q) afterβ a = (if ev a ∈ P0 then P afterα a ;3 Q else Ψβ (P ;3

Q) a)›
proof (split if-split, intro conjI impI )

from $ show ‹ev a /∈ P0 =⇒ (P ;3 Q) afterβ a = Ψβ (P ;3 Q) a›
by (simp add: Afterβ .not-initial-After)

next
assume initial-P : ‹ev a ∈ P0›
show ‹(P ;3 Q) afterβ a = P afterα a ;3 Q›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ((P ;3 Q) afterβ a)›
then consider (D-P) t ′ u where ‹ev a # t = map (ev ◦ of-ev) t ′ @ u› ‹t ′

∈ D P› ‹tF t ′› ‹ftF u›
| (D-Q) t ′ r u where ‹ev a # t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈

T P› ‹tF t ′› ‹u ∈ D (Q r)›
by (auto simp add: denot-projs $ initial-P)

thus ‹t ∈ D (P afterα a ;3 Q)›
proof cases

case D-P with non-BOT initial-P show ‹t ∈ D (P afterα a ;3 Q)›
by (cases t ′) (auto simp add: BOT-iff-Nil-D denot-projs)

next
case D-Q with initial-P show ‹t ∈ D (P afterα a ;3 Q)›

by (cases t ′, simp-all add: BOT-iff-Nil-D denot-projs)
(metis D-T disjoint-iff initials-memI rangeI that, blast)

qed
next
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fix t assume ‹t ∈ D (P afterα a ;3 Q)›
then consider (D-P) t ′ u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹ev a # t ′

∈ D P› ‹tF t ′› ‹ftF u›
| (D-Q) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹ev a # t ′ @ [3(r)] ∈

T P› ‹tF t ′› ‹u ∈ D (Q r)›
by (auto simp add: denot-projs initial-P)

thus ‹t ∈ D ((P ;3 Q) afterβ a)›
proof cases

case D-P thus ‹t ∈ D ((P ;3 Q) afterβ a)›
by (simp add: denot-projs $ initial-P Cons-eq-append-conv Cons-eq-map-conv)

(metis eventptick.disc(1 ) eventptick.sel(1 ) tickFree-Cons-iff )
next

case D-Q thus ‹t ∈ D ((P ;3 Q) afterβ a)›
by (simp add: denot-projs $ initial-P Cons-eq-append-conv Cons-eq-map-conv)

(metis append-Cons eventptick.sel(1 ) is-ev-def tickFree-Cons-iff )
qed

next
fix t X assume ‹(t, X) ∈ F ((P ;3 Q) afterβ a)› ‹t /∈ D ((P ;3 Q) afterβ

a)›
then consider (F-P) t ′ where ‹ev a # t = map (ev ◦ of-ev) t ′›

‹(t ′, ref-Seqptick X) ∈ F P› ‹tF t ′›
| (F-Q) t ′ r u where ‹ev a # t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T

P›
‹tF t ′› ‹(u, X) ∈ F (Q r)›
by (auto simp add: denot-projs $ initial-P)
(metis (mono-tags, lifting) comp-apply list.simps(9 ) tickFree-Cons-iff )

thus ‹(t, X) ∈ F (P afterα a ;3 Q)›
proof cases

case F-P thus ‹(t, X) ∈ F (P afterα a ;3 Q)›
by (auto simp add: denot-projs initial-P)

next
case F-Q thus ‹(t, X) ∈ F (P afterα a ;3 Q)›

by (cases t ′, auto simp add:denot-projs initial-P intro: initials-memI )
(metis F-T Int-iff empty-iff initials-memI rangeI that)

qed
next

fix t X assume ‹(t, X) ∈ F (P afterα a ;3 Q)› ‹t /∈ D (P afterα a ;3 Q)›
then consider (F-P) t ′ where ‹t = map (ev ◦ of-ev) t ′›

‹(ev a # t ′, ref-Seqptick X) ∈ F P› ‹tF t ′›
| (F-Q) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹ev a # t ′ @ [3(r)] ∈ T

P›
‹tF t ′› ‹(u, X) ∈ F (Q r)›
by (auto simp add: denot-projs initial-P)

thus ‹(t, X) ∈ F ((P ;3 Q) afterβ a)›
proof cases

case F-P thus ‹(t, X) ∈ F ((P ;3 Q) afterβ a)›
by (simp add: denot-projs $ initial-P Cons-eq-map-conv)
(metis eventptick.disc(1 ) eventptick.sel(1 ) tickFree-Cons-iff )

next
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case F-Q thus ‹(t, X) ∈ F ((P ;3 Q) afterβ a)›
by (simp add: denot-projs $ initial-P Cons-eq-append-conv Cons-eq-map-conv)

(metis append-Cons eventptick.disc(1 ) eventptick.sel(1 ) tickFree-Cons-iff )
qed

qed
qed

qed

lemma skippable-not-initialL-After-Seqptick:
‹(P ;3 Q) afterβ a = ( if (∃ r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0)

then ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}. Q r afterβ a
else Ψβ (P ;3 Q) a)›

(is ‹(P ;3 Q) afterβ a = (if ?prem then ?rhs else -)›) if ‹ev a /∈ P0›
proof −

note denot-projs = After .After-projs Seqptick-projs GlobalNdet-projs
from initials-BOT ‹ev a /∈ P0› have non-BOT : ‹P 6= ⊥› by blast
with ‹ev a /∈ P0› have $ : ‹ev a ∈ (P ;3 Q)0 ←→ ?prem›

by (auto simp add: initials-Seqptick)
show ‹(P ;3 Q) afterβ a = (if ?prem then ?rhs else Ψβ (P ;3 Q) a)›
proof (split if-split, intro conjI impI )

show ‹¬ ?prem =⇒ (P ;3 Q) afterβ a = Ψβ (P ;3 Q) a›
by (rule Afterβ .not-initial-After , use $ in blast)

next
show ‹(P ;3 Q) afterβ a = ?rhs› if ?prem
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ((P ;3 Q) afterβ a)›
then consider (D-P) t ′ u where ‹ev a # t = map (ev ◦ of-ev) t ′ @ u› ‹t ′

∈ D P› ‹tF t ′› ‹ftF u›
| (D-Q) t ′ r u where ‹ev a # t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈

T P› ‹tF t ′› ‹u ∈ D (Q r)›
by (auto simp add: denot-projs ‹?prem› $ ‹ev a /∈ P0›)

thus ‹t ∈ D ?rhs›
proof cases

case D-P with non-BOT ‹ev a /∈ P0› show ‹t ∈ D ?rhs›
by (simp add: denot-projs Cons-eq-append-conv Cons-eq-map-conv BOT-iff-Nil-D)

(metis D-T eventptick.collapse(1 ) initials-memI tickFree-Cons-iff )
next

case D-Q with ‹ev a /∈ P0› show ‹t ∈ D ?rhs›
by (simp add: denot-projs Cons-eq-append-conv Cons-eq-map-conv)
(metis D-T append-Nil eventptick.collapse(1 ) initials-memI

is-processT3-TR-append tickFree-Cons-iff )
qed

next
from ‹?prem› show ‹t ∈ D ?rhs =⇒ t ∈ D ((P ;3 Q) afterβ a)› for t

by (simp add: denot-projs $ Cons-eq-append-conv)
(metis append-Nil initials-memD tickFree-Nil)

next
fix t X assume ‹(t, X) ∈ F ((P ;3 Q) afterβ a)› ‹t /∈ D ((P ;3 Q) afterβ
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a)›
then consider (F-P) t ′ where ‹ev a # t = map (ev ◦ of-ev) t ′›

‹(t ′, ref-Seqptick X) ∈ F P› ‹tF t ′›
| (F-Q) t ′ r u where ‹ev a # t = map (ev ◦ of-ev) t ′ @ u›

‹t ′ @ [3(r)] ∈ T P› ‹tF t ′› ‹(u, X) ∈ F (Q r)›
by (simp add: denot-projs $ ‹?prem›) metis

thus ‹(t, X) ∈ F ?rhs›
proof cases

case F-P with ‹ev a /∈ P0› show ‹(t, X) ∈ F ?rhs›
by (cases t ′, simp-all add: denot-projs ‹?prem›)
(use F-T initials-memI in blast)

next
case F-Q with ‹ev a /∈ P0› ‹?prem› show ‹(t, X) ∈ F ?rhs›

by (cases t ′, auto simp add: denot-projs intro: initials-memI )
(metis F-T initials-memI )

qed
next

from ‹?prem› show ‹(t, X) ∈ F ?rhs =⇒ t /∈ D ?rhs =⇒
(t, X) ∈ F ((P ;3 Q) afterβ a)› for t X

by (simp add: denot-projs $ Cons-eq-append-conv Cons-eq-map-conv split:
if-split-asm)

(metis initials-memD self-append-conv2 tickFree-Nil)
qed

qed
qed

lemma skippable-initialL-initialR-After-Seqptick:
‹(P ;3 Q) afterβ a = (P afterα a ;3 Q) u (ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}.

Q r afterβ a)›
(is ‹(P ;3 Q) afterβ a = (P afterα a ;3 Q) u ?rhs›)
if assms : ‹∃ r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0› ‹ev a ∈ P0›

proof (cases ‹P = ⊥›)
show ‹P = ⊥ =⇒ (P ;3 Q) afterβ a = (P afterα a ;3 Q) u ?rhs›

by (simp add: After .After-BOT )
next

note denot-projs = After .After-projs Seqptick-projs GlobalNdet-projs Ndet-projs
show ‹(P ;3 Q) afterβ a = (P afterα a ;3 Q) u ?rhs› if ‹P 6= ⊥›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ((P ;3 Q) afterβ a)›
then consider (D-P) t ′ u where ‹ev a # t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ ∈

D P› ‹tF t ′› ‹ftF u›
| (D-Q) t ′ r u where ‹ev a # t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T

P› ‹tF t ′› ‹u ∈ D (Q r)›
by (auto simp add: denot-projs initials-Seqptick assms split: if-split-asm)

thus ‹t ∈ D ((P afterα a ;3 Q) u ?rhs)›
proof cases

case D-P with ‹P 6= ⊥› show ‹t ∈ D ((P afterα a ;3 Q) u ?rhs)›
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by (auto simp add: denot-projs assms Cons-eq-append-conv BOT-iff-Nil-D)
next

case D-Q thus ‹t ∈ D ((P afterα a ;3 Q) u ?rhs)›
by (auto simp add: denot-projs assms Cons-eq-append-conv)
(meson D-T initials-memI , blast)

qed
next

from ‹P 6= ⊥› show ‹t ∈ D ((P afterα a ;3 Q) u ?rhs) =⇒ t ∈ D ((P ;3 Q)
afterβ a)› for t

by (auto simp add: denot-projs assms initials-Seqptick Cons-eq-append-conv
Cons-eq-map-conv)

(metis eventptick.disc(1 ) eventptick.sel(1 ) tickFree-Cons-iff ,
metis Cons-eq-appendI append-T-imp-tickFree eventptick.sel(1 ) list.distinct(1 ),

metis append-Nil initials-memD tickFree-Nil)
next

fix t X assume ‹(t, X) ∈ F ((P ;3 Q) afterβ a)› ‹t /∈ D ((P ;3 Q) afterβ a)›
then consider (F-P) t ′ where ‹ev a # t = map (ev ◦ of-ev) t ′›

‹(t ′, ref-Seqptick X) ∈ F P› ‹tF t ′›
| (F-Q) t ′ r u where ‹ev a # t = map (ev ◦ of-ev) t ′ @ u›

‹t ′ @ [3(r)] ∈ T P› ‹tF t ′› ‹(u, X) ∈ F (Q r)›
by (simp add: denot-projs assms initials-Seqptick split: if-split-asm) meson+

thus ‹(t, X) ∈ F ((P afterα a ;3 Q) u ?rhs)›
proof cases

case F-P thus ‹(t, X) ∈ F ((P afterα a ;3 Q) u ?rhs)›
by (auto simp add: denot-projs assms)

next
case F-Q with assms show ‹(t, X) ∈ F ((P afterα a ;3 Q) u ?rhs)›

by (cases t ′, simp-all add: denot-projs)
(meson F-T initials-memI , blast)

qed
next

fix t X assume ‹(t, X) ∈ F ((P afterα a ;3 Q) u ?rhs)› ‹t /∈ D ((P afterα a
;3 Q) u ?rhs)›

hence ‹(t, X) ∈ F (P afterα a ;3 Q) ∧ t /∈ D (P afterα a ;3 Q) ∨
(t, X) ∈ F ?rhs ∧ t /∈ D ?rhs› by (simp add: Ndet-projs)

thus ‹(t, X) ∈ F ((P ;3 Q) afterβ a)›
proof (elim disjE conjE)

show ‹(t, X) ∈ F (P afterα a ;3 Q) =⇒ t /∈ D (P afterα a ;3 Q) =⇒
(t, X) ∈ F ((P ;3 Q) afterβ a)›

by (simp add: denot-projs assms initials-Seqptick ‹P 6= ⊥› Cons-eq-append-conv
Cons-eq-map-conv)

(metis (no-types, lifting) Cons-eq-appendI eventptick.sel(1 ) is-ev-def tick-
Free-Cons-iff )

next
from assms show ‹(t, X) ∈ F ?rhs =⇒ t /∈ D ?rhs =⇒ (t, X) ∈ F ((P ;3

Q) afterβ a)›
by (simp add: denot-projs initials-Seqptick ‹P 6= ⊥›

Cons-eq-append-conv Cons-eq-map-conv split: if-split-asm)
(metis append-Nil initials-memD tickFree-Nil)
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qed
qed

qed

lemma not-initialL-not-initialR-After-Seqptick:
‹ev a /∈ P0 =⇒ (

∧
r . 3(r) ∈ P0 =⇒ ev a /∈ (Q r)0) =⇒

(P ;3 Q) afterβ a = Ψβ (P ;3 Q) a›
by (meson skippable-not-initialL-After-Seqptick)

lemma After-Seqptick:
‹(P ;3 Q) afterβ a =
( if ∀ r . 3(r) ∈ P0 −→ ev a /∈ (Q r)0
then if ev a ∈ P0 then P afterα a ;3 Q else Ψβ (P ;3 Q) a
else if ev a ∈ P0

then (P afterα a ;3 Q) u (ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}. Q r afterβ

a)
else ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}. Q r afterβ a)›

by (simp add: not-skippable-or-not-initialR-After-Seqptick

skippable-initialL-initialR-After-Seqptick skippable-not-initialL-After-Seqptick)

end

9.2.2 Synchronization Product

Because of the types, we have to extend the locale.
locale After-Syncptick-locale = Syncptick-locale tick-join +

After lhs : After Ψlhs + Afterrhs : After Ψrhs + Afterptick : After Ψptick

for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option›
and Ψlhs :: ‹[( ′a, ′r) processptick, ′a] ⇒ ( ′a, ′r) processptick›
and Ψrhs :: ‹[( ′a, ′s) processptick, ′a] ⇒ ( ′a, ′s) processptick›
and Ψptick :: ‹[( ′a, ′t) processptick, ′a] ⇒ ( ′a, ′t) processptick›

begin

notation After lhs.After (infixl ‹after lhs› 86 )
notation Afterrhs.After (infixl ‹afterrhs› 86 )
notation Afterptick.After (infixl ‹afterptick› 86 )

sublocale After-Syncptick-locale-sym :
After-Syncptick-locale ‹λs r . tick-join r s› Ψrhs Ψlhs Ψptick

by unfold-locales

lemma initialL-not-initialR-not-in-After-Syncptick:
‹(P [[S ]]3 Q) afterptick a = P after lhs a [[S ]]3 Q› (is ‹?lhs = ?rhs›)
if initial-hyps: ‹ev a ∈ P0› ‹ev a /∈ Q0› and notin: ‹a /∈ S›

proof (cases ‹P = ⊥ ∨ Q = ⊥›)
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show ‹P = ⊥ ∨ Q = ⊥ =⇒ ?lhs = ?rhs›
by (elim disjE) (simp-all add: Afterptick.After-BOT After lhs.After-BOT )

next
from initial-hyps and notin have init : ‹ev a ∈ (P [[S ]]3 Q)0›

by (simp add: initials-Syncptick)
show ‹?lhs = ?rhs› if non-BOT : ‹¬ (P = ⊥ ∨ Q = ⊥)›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ?lhs›
with init have ‹ev a # t ∈ D (P [[S ]]3 Q)› by (simp add: Afterptick.D-After)
then obtain u v t-P t-Q

where ∗ : ‹ev a # t = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›

unfolding D-Syncptick by blast
from ∗(4 , 5 ) non-BOT have ‹u 6= []›

by (auto simp add: BOT-iff-Nil-D dest: Nil-setinterleavesptick)
with ∗(1 ) obtain u ′ where ‹u = ev a # u ′› ‹t = u ′ @ v›

by (cases u) simp-all
from ∗(4 , 5 ) initial-hyps(2 ) obtain t-P ′

where ‹t-P = ev a # t-P ′› ‹u ′ setinterleaves3tick-join ((t-P ′, t-Q), S)›
by (cases t-P; cases t-Q)
(auto simp add: setinterleavingptick-simps ‹u = ev a # u ′›

split: eventptick.splits if-split-asm option.split-asm
intro: D-T initials-memI )

moreover from ‹t-P = ev a # t-P ′› ∗(2 , 5 )
have ‹t-P ′ ∈ D (P after lhs a) ∧ t-Q ∈ T Q ∨

t-P ′ ∈ T (P after lhs a) ∧ t-Q ∈ D Q›
by (simp add: After lhs.After-projs initial-hyps(1 ))

moreover from ∗(2 ) have ‹tF u ′› by (simp add: ‹u = ev a # u ′›)
ultimately show ‹t ∈ D ?rhs›

using ∗(3 ) by (auto simp add: ‹t = u ′ @ v› D-Syncptick)
next

fix t assume ‹t ∈ D ?rhs›
then obtain u v t-P t-Q

where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D (P after lhs a) ∧ t-Q ∈ T Q ∨
t-P ∈ T (P after lhs a) ∧ t-Q ∈ D Q›

unfolding D-Syncptick by blast
have ‹ev a # t = (ev a # u) @ v› by (simp add: ∗(1 ))
moreover from ∗(2 ) have ‹tF (ev a # u)› by simp
moreover from ∗(4 )
have ‹ev a # u setinterleaves3tick-join ((ev a # t-P, t-Q), S)›

by (metis notin rev.simps(2 ) rev-setinterleavesptick-rev-rev-iff
setinterleavesptick-snoc-notinL)

moreover from ∗(5 ) have ‹ev a # t-P ∈ D P ∧ t-Q ∈ T Q ∨
ev a # t-P ∈ T P ∧ t-Q ∈ D Q›

by (simp add: After lhs.After-projs initial-hyps(1 ))
ultimately have ‹ev a # t ∈ D (P [[S ]]3 Q)›
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using ∗(3 ) unfolding D-Syncptick by blast
thus ‹t ∈ D ?lhs›

by (simp add: Afterptick.D-After init)
next

fix t X assume ‹(t, X) ∈ F ?lhs›
‹t /∈ D ?lhs›

hence ‹(ev a # t, X) ∈ F (P [[S ]]3 Q)› ‹ev a # t /∈ D (P [[S ]]3 Q)›
by (simp-all add: Afterptick.After-projs init)

then obtain t-P t-Q X-P X-Q
where ∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›

‹ev a # t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
from ∗(2 , 3 ) initial-hyps(2 ) obtain t-P ′

where ‹t-P = ev a # t-P ′› ‹t setinterleaves3tick-join ((t-P ′, t-Q), S)›
by (metis Cons-ev-setinterleavesptickE F-T initials-memI )

moreover from ∗(1 ) have ‹(t-P ′, X-P) ∈ F (P after lhs a)›
by (simp add: ‹t-P = ev a # t-P ′› After lhs.F-After initial-hyps(1 ))

ultimately show ‹(t, X) ∈ F ?rhs›
using ∗(2 , 4 ) by (auto simp add: Syncptick-projs)

next
fix t X assume ‹(t, X) ∈ F ?rhs›

‹t /∈ D ?rhs›
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F (P after lhs a)› ‹(t-Q, X-Q) ∈ F Q›
‹t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
from ∗(1 ) have ‹(ev a # t-P, X-P) ∈ F P›

by (simp add: After lhs.F-After initial-hyps(1 ))
moreover from ∗(3 )
have ‹ev a # t setinterleaves3tick-join ((ev a # t-P, t-Q), S)›

by (metis notin rev.simps(2 ) rev-setinterleavesptick-rev-rev-iff
setinterleavesptick-snoc-notinL)

ultimately have ‹(ev a # t, X) ∈ F (P [[S ]]3 Q)›
using ∗(2 , 4 ) by (auto simp add: F-Syncptick)

thus ‹(t, X) ∈ F ?lhs› by (simp add: Afterptick.F-After init)
qed

qed

lemma (in After-Syncptick-locale) not-initialL-initialR-not-in-After-Syncptick:
‹(P [[S ]]3 Q) afterptick a = P [[S ]]3 Q afterrhs a› (is ‹?lhs = ?rhs›)
if initial-hyps: ‹ev a /∈ P0› ‹ev a ∈ Q0› and notin: ‹a /∈ S›
using After-Syncptick-locale-sym.initialL-not-initialR-not-in-After-Syncptick
[OF ‹ev a ∈ Q0› ‹ev a /∈ P0› ‹a /∈ S›]

by (simp add: Syncptick-sym)
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lemma not-initialL-in-After-Syncptick:
‹ev a /∈ P0 =⇒ a ∈ S =⇒
(P [[S ]]3 Q) afterptick a = (if Q = ⊥ then ⊥ else Ψptick (P [[S ]]3 Q) a)›

by (simp add: Afterptick.After-BOT , rule impI )
(subst Afterptick.not-initial-After , auto simp add: initials-Syncptick)

lemma not-initialR-in-After-Syncptick:
‹ev a /∈ Q0 =⇒ a ∈ S =⇒
(P [[S ]]3 Q) afterptick a = (if P = ⊥ then ⊥ else Ψptick (P [[S ]]3 Q) a)›

by (simp add: Afterptick.After-BOT , rule impI )
(subst Afterptick.not-initial-After , auto simp add: initials-Syncptick)

lemma initialL-initialR-in-After-Syncptick:
‹(P [[S ]]3 Q) afterptick a = P after lhs a [[S ]]3 Q afterrhs a› (is ‹?lhs = ?rhs›)
if initial-hyps: ‹ev a ∈ P0› ‹ev a ∈ Q0› and inside: ‹a ∈ S›

proof (cases ‹P = ⊥ ∨ Q = ⊥›)
show ‹P = ⊥ ∨ Q = ⊥ =⇒ ?lhs = ?rhs›

by (elim disjE) (simp-all add: After .After-BOT )
next

from initial-hyps inside have init : ‹ev a ∈ (P [[S ]]3 Q)0›
by (simp add: initials-Syncptick)

show ‹?lhs = ?rhs› if non-BOT : ‹¬ (P = ⊥ ∨ Q = ⊥)›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ((P [[S ]]3 Q) afterptick a)›
hence ‹ev a # t ∈ D (P [[S ]]3 Q)› by (simp add: Afterptick.D-After init)
then obtain u v t-P t-Q

where ∗ : ‹ev a # t = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›

unfolding D-Syncptick by blast
from ∗(4 , 5 ) non-BOT have ‹u 6= []›

by (auto simp add: BOT-iff-Nil-D dest: Nil-setinterleavesptick)
with ∗(1 ) obtain u ′ where ‹u = ev a # u ′› ‹t = u ′ @ v›

by (cases u) simp-all
from ∗(4 ) inside initial-hyps(1 , 2 ) ‹u = ev a # u ′›
obtain t-P ′ t-Q ′ where ‹t-P = ev a # t-P ′› ‹t-Q = ev a # t-Q ′›

‹u ′ setinterleaves3tick-join ((t-P ′, t-Q ′), S)›
by (metis (no-types, opaque-lifting) Cons-ev-setinterleavesptickE)

moreover from ∗(2 ) have ‹tF u ′› by (simp add: ‹u = ev a # u ′›)
moreover from ∗(5 )
have ‹t-P ′ ∈ D (P after lhs a) ∧ t-Q ′ ∈ T (Q afterrhs a) ∨

t-P ′ ∈ T (P after lhs a) ∧ t-Q ′ ∈ D (Q afterrhs a)›
by (simp add: ‹t-P = ev a # t-P ′› ‹t-Q = ev a # t-Q ′›

After .After-projs initial-hyps)
ultimately show ‹t ∈ D ?rhs›

using ∗(3 ) by (auto simp add: ‹t = u ′ @ v› D-Syncptick)
next

fix t assume ‹t ∈ D ?rhs›
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then obtain u v t-P t-Q
where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›

‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D (P after lhs a) ∧ t-Q ∈ T (Q afterrhs a) ∨

t-P ∈ T (P after lhs a) ∧ t-Q ∈ D (Q afterrhs a)›
unfolding D-Syncptick by blast

from ∗(1 ) have ‹ev a # t = (ev a # u) @ v› by simp
moreover from ∗(2 ) have ‹tF (ev a # u)› by simp
moreover from ∗(4 ) have ‹ev a # u setinterleaves3tick-join

((ev a # t-P, ev a # t-Q), S)›
by (simp add: inside)

moreover from ∗(5 ) have ‹ev a # t-P ∈ D P ∧ ev a # t-Q ∈ T Q ∨
ev a # t-P ∈ T P ∧ ev a # t-Q ∈ D Q›

by (simp add: After .After-projs initial-hyps)
ultimately have ‹ev a # t ∈ D (P [[S ]]3 Q)›

unfolding D-Syncptick using ∗(3 ) by blast
thus ‹t ∈ D ?lhs› by (simp add: Afterptick.D-After init)

next
fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
hence ‹(ev a # t, X) ∈ F (P [[S ]]3 Q)› ‹ev a # t /∈ D (P [[S ]]3 Q)›

by (simp-all add: After .After-projs init)
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
‹ev a # t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
from ∗(3 ) obtain t-P ′ t-Q ′

where ‹t-P = ev a # t-P ′› ‹t-Q = ev a # t-Q ′›
‹t setinterleaves3tick-join ((t-P ′, t-Q ′), S)›

by (metis (no-types) Cons-ev-setinterleavesptickE inside)
moreover from ∗(1 , 2 ) have ‹(t-P ′, X-P) ∈ F (P after lhs a)›

‹(t-Q ′, X-Q) ∈ F (Q afterrhs a)›
by (simp-all add: ‹t-P = ev a # t-P ′› ‹t-Q = ev a # t-Q ′›

After .F-After initial-hyps)
ultimately show ‹(t, X) ∈ F ?rhs›

by (auto simp add: F-Syncptick intro!: ∗(4 ))
next

fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs›
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F (P after lhs a)›
‹(t-Q, X-Q) ∈ F (Q afterrhs a)›
‹t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
from ∗(1 , 2 ) have ‹(ev a # t-P, X-P) ∈ F P›

‹(ev a # t-Q, X-Q) ∈ F Q›
by (simp-all add: After .F-After initial-hyps)

moreover from ∗(3 ) have ‹ev a # t setinterleaves3tick-join
((ev a # t-P, ev a # t-Q), S)›
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by (simp add: inside)
ultimately have ‹(ev a # t, X) ∈ F (P [[S ]]3 Q)›

using ∗(4 ) by (simp (no-asm) add: F-Syncptick) blast
thus ‹(t, X) ∈ F ?lhs› by (simp add: Afterptick.F-After init)

qed
qed

lemma initialL-initialR-not-in-After-Syncptick:
‹(P [[S ]]3 Q) afterptick a = (P after lhs a [[S ]]3 Q) u (P [[S ]]3 Q afterrhs a)›
(is ‹?lhs = ?rhs1 u ?rhs2 ›)
if initial-hyps: ‹ev a ∈ P0› ‹ev a ∈ Q0› and notin: ‹a /∈ S›

proof (cases ‹P = ⊥ ∨ Q = ⊥›)
show ‹P = ⊥ ∨ Q = ⊥ =⇒ ?lhs = ?rhs1 u ?rhs2 ›

by (elim disjE) (simp-all add: After .After-BOT )
next

from initial-hyps(1 ) notin have init : ‹ev a ∈ (P [[S ]]3 Q)0›
by (simp add: initials-Syncptick)

show ‹?lhs = ?rhs1 u ?rhs2 › if non-BOT : ‹¬ (P = ⊥ ∨ Q = ⊥)›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ?lhs›
hence ‹ev a # t ∈ D (P [[S ]]3 Q)›

by (simp add: Afterptick.D-After init)
then obtain u v t-P t-Q

where ∗ : ‹ev a # t = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›

unfolding D-Syncptick by blast
from ∗(4 , 5 ) non-BOT have ‹u 6= []›

by (auto simp add: BOT-iff-Nil-D dest: Nil-setinterleavesptick)
with ∗(1 ) obtain u ′ where ‹u = ev a # u ′› ‹t = u ′ @ v›

by (cases u) simp-all
from ∗(2 ) have ‹tF u ′› by (simp add: ‹u = ev a # u ′›)
from ∗(4 ) notin ‹u = ev a # u ′›
consider t-P ′ where ‹t-P = ev a # t-P ′›

‹u ′ setinterleaves3tick-join ((t-P ′, t-Q), S)›
| t-Q ′ where ‹t-Q = ev a # t-Q ′›

‹u ′ setinterleaves3tick-join ((t-P, t-Q ′), S)›
by (metis (no-types) Cons-ev-setinterleavesptickE)

thus ‹t ∈ D (?rhs1 u ?rhs2 )›
proof cases

fix t-P ′ assume $ : ‹t-P = ev a # t-P ′›
‹u ′ setinterleaves3tick-join ((t-P ′, t-Q), S)›

from ∗(5 ) have ‹t-P ′ ∈ D (P after lhs a) ∧ t-Q ∈ T Q ∨
t-P ′ ∈ T (P after lhs a) ∧ t-Q ∈ D Q›

by (simp add: $(1 ) After lhs.After-projs initial-hyps(1 ))
with $(2 ) ∗(3 ) ‹tF u ′› have ‹t ∈ D ?rhs1 ›

by (auto simp add: ‹t = u ′ @ v› D-Syncptick)
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thus ‹t ∈ D (?rhs1 u ?rhs2 )› by (simp add: D-Ndet)
next

fix t-Q ′ assume $ : ‹t-Q = ev a # t-Q ′›
‹u ′ setinterleaves3tick-join ((t-P, t-Q ′), S)›

from ∗(5 ) have ‹t-P ∈ D P ∧ t-Q ′ ∈ T (Q afterrhs a) ∨
t-P ∈ T P ∧ t-Q ′ ∈ D (Q afterrhs a)›

by (simp add: $(1 ) Afterrhs.After-projs initial-hyps(2 ))
with $(2 ) ∗(3 ) ‹tF u ′› have ‹t ∈ D ?rhs2 ›

by (auto simp add: ‹t = u ′ @ v› D-Syncptick)
thus ‹t ∈ D (?rhs1 u ?rhs2 )› by (simp add: D-Ndet)

qed
next

fix t assume ‹t ∈ D (?rhs1 u ?rhs2 )›
then consider ‹t ∈ D ?rhs1 › | ‹t ∈ D ?rhs2 ›

by (auto simp add: D-Ndet)
hence ‹ev a # t ∈ D (P [[S ]]3 Q)›
proof cases

assume ‹t ∈ D ?rhs1 ›
then obtain u v t-P t-Q

where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D (P after lhs a) ∧ t-Q ∈ T Q ∨

t-P ∈ T (P after lhs a) ∧ t-Q ∈ D Q›
unfolding D-Syncptick by blast

from ∗(1 ) have ‹ev a # t = (ev a # u) @ v› by simp
moreover from ∗(2 ) have ‹tF (ev a # u)› by simp
moreover from ∗(4 )
have ‹ev a # u setinterleaves3tick-join ((ev a # t-P, t-Q), S)›

by (metis notin rev.simps(2 ) rev-setinterleavesptick-rev-rev-iff
setinterleavesptick-snoc-notinL)

moreover from ∗(5 ) have ‹ev a # t-P ∈ D P ∧ t-Q ∈ T Q ∨
ev a # t-P ∈ T P ∧ t-Q ∈ D Q›

by (simp add: After lhs.After-projs initial-hyps(1 ))
ultimately show ‹ev a # t ∈ D (P [[S ]]3 Q)›

using ∗(3 ) unfolding D-Syncptick by blast
next

assume ‹t ∈ D ?rhs2 ›
then obtain u v t-P t-Q

where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T (Q afterrhs a) ∨

t-P ∈ T P ∧ t-Q ∈ D (Q afterrhs a)›
unfolding D-Syncptick by blast

from ∗(1 ) have ‹ev a # t = (ev a # u) @ v› by simp
moreover from ∗(2 ) have ‹tF (ev a # u)› by simp
moreover from ∗(4 ) have ‹ev a # u setinterleaves3tick-join ((t-P, ev a #

t-Q), S)›
by (metis notin rev.simps(2 ) rev-setinterleavesptick-rev-rev-iff

setinterleavesptick-snoc-notinR)
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moreover from ∗(5 ) have ‹t-P ∈ D P ∧ ev a # t-Q ∈ T Q ∨
t-P ∈ T P ∧ ev a # t-Q ∈ D Q›

by (simp add: Afterrhs.After-projs initial-hyps(2 ))
ultimately show ‹ev a # t ∈ D (P [[S ]]3 Q)›

using ∗(3 ) unfolding D-Syncptick by blast
qed
thus ‹t ∈ D ?lhs› by (simp add: Afterptick.D-After init)

next
fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
hence ‹(ev a # t, X) ∈ F (P [[S ]]3 Q)› ‹ev a # t /∈ D (P [[S ]]3 Q)›

by (simp-all add: Afterptick.After-projs init)
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
‹ev a # t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
from ∗(3 ) notin
consider t-P ′ where ‹t-P = ev a # t-P ′›

‹t setinterleaves3tick-join ((t-P ′, t-Q), S)›
| t-Q ′ where ‹t-Q = ev a # t-Q ′›

‹t setinterleaves3tick-join ((t-P, t-Q ′), S)›
by (metis (no-types) Cons-ev-setinterleavesptickE)

thus ‹(t, X) ∈ F (?rhs1 u ?rhs2 )›
proof cases

fix t-P ′ assume $ : ‹t-P = ev a # t-P ′›
‹t setinterleaves3tick-join ((t-P ′, t-Q), S)›

from ∗(1 ) have ‹(t-P ′, X-P) ∈ F (P after lhs a)›
by (simp add: $(1 ) After lhs.F-After initial-hyps(1 ))

with $(2 ) ∗(2 , 4 ) have ‹(t, X) ∈ F ?rhs1 ›
by (auto simp add: F-Syncptick)

thus ‹(t, X) ∈ F (?rhs1 u ?rhs2 )› by (simp add: F-Ndet)
next

fix t-Q ′ assume $ : ‹t-Q = ev a # t-Q ′›
‹t setinterleaves3tick-join ((t-P, t-Q ′), S)›

from ∗(2 ) have ‹(t-Q ′, X-Q) ∈ F (Q afterrhs a)›
by (simp add: $(1 ) Afterrhs.F-After initial-hyps(2 ))

with $(2 ) ∗(1 , 4 ) have ‹(t, X) ∈ F ?rhs2 ›
by (auto simp add: F-Syncptick)

thus ‹(t, X) ∈ F (?rhs1 u ?rhs2 )› by (simp add: F-Ndet)
qed

next
fix t X assume ‹(t, X) ∈ F (?rhs1 u ?rhs2 )› ‹t /∈ D (?rhs1 u ?rhs2 )›
then consider ‹(t, X) ∈ F ?rhs1 › ‹t /∈ D ?rhs1 ›
| ‹(t, X) ∈ F ?rhs2 › ‹t /∈ D ?rhs2 ›
by (auto simp add: Ndet-projs)

hence ‹(ev a # t, X) ∈ F (P [[S ]]3 Q)›
proof cases

assume ‹(t, X) ∈ F ?rhs1 › ‹t /∈ D ?rhs1 ›
then obtain t-P t-Q X-P X-Q
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where ∗ : ‹(t-P, X-P) ∈ F (P after lhs a)› ‹(t-Q, X-Q) ∈ F Q›
‹t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
from ∗(1 ) have ‹(ev a # t-P, X-P) ∈ F P›

by (simp add: After lhs.F-After initial-hyps(1 ))
moreover from ∗(3 )
have ‹ev a # t setinterleaves3tick-join ((ev a # t-P, t-Q), S)›

by (metis notin rev.simps(2 ) rev-setinterleavesptick-rev-rev-iff
setinterleavesptick-snoc-notinL)

ultimately show ‹(ev a # t, X) ∈ F (P [[S ]]3 Q)›
by (auto simp add: F-Syncptick intro!: ∗(2 , 4 ))

next
assume ‹(t, X) ∈ F ?rhs2 › ‹t /∈ D ?rhs2 ›
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F (Q afterrhs a)›
‹t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
from ∗(2 ) have ‹(ev a # t-Q, X-Q) ∈ F Q›

by (simp add: Afterrhs.F-After initial-hyps(2 ))
moreover from ∗(3 )
have ‹ev a # t setinterleaves3tick-join ((t-P, ev a # t-Q), S)›

by (metis notin rev.simps(2 ) rev-setinterleavesptick-rev-rev-iff
setinterleavesptick-snoc-notinR)

ultimately show ‹(ev a # t, X) ∈ F (P [[S ]]3 Q)›
by (auto simp add: F-Syncptick intro!: ∗(1 , 4 ))

qed
thus ‹(t, X) ∈ F ?lhs› by (simp add: Afterptick.F-After init)

qed
qed

lemma not-initialL-not-initialR-After-Syncptick :
‹ev a /∈ P0 =⇒ ev a /∈ Q0 =⇒ (P [[S ]]3 Q) afterptick a = Ψptick (P [[S ]]3 Q) a›
by (subst Afterptick.not-initial-After) (auto simp add: initials-Syncptick)

Finally, the monster theorem !

theorem After-Syncptick:
‹(P [[S ]]3 Q) afterptick a =
( if P = ⊥ ∨ Q = ⊥ then ⊥
else if ev a ∈ P0 ∧ ev a ∈ Q0

then if a ∈ S then P after lhs a [[S ]]3 Q afterrhs a
else (P after lhs a [[S ]]3 Q) u (P [[S ]]3 Q afterrhs a)

else if ev a ∈ P0 ∧ a /∈ S then P after lhs a [[S ]]3 Q
else if ev a ∈ Q0 ∧ a /∈ S then P [[S ]]3 Q afterrhs a

else Ψptick (P [[S ]]3 Q) a)›
by (auto simp add: Afterptick.After-BOT initialL-not-initialR-not-in-After-Syncptick
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initialL-initialR-in-After-Syncptick initialL-initialR-not-in-After-Syncptick
not-initialL-initialR-not-in-After-Syncptick not-initialL-not-initialR-After-Syncptick

not-initialR-in-After-Syncptick not-initialL-in-After-Syncptick)

end

9.3 Small Steps Transitions

9.3.1 Extension of the After Operator

9.3.2 Sequential Composition
locale AfterExtDuplicated-same-events = AfterExtDuplicated Ψα Ωα Ψβ Ωβ

for Ψα :: ‹[( ′a, ′r) processptick, ′a] ⇒ ( ′a, ′r) processptick›
and Ωα :: ‹[( ′a, ′r) processptick, ′r ] ⇒ ( ′a, ′r) processptick›
and Ψβ :: ‹[( ′a, ′s) processptick, ′a] ⇒ ( ′a, ′s) processptick›
and Ωβ :: ‹[( ′a, ′s) processptick, ′s] ⇒ ( ′a, ′s) processptick›

sublocale AfterExtDuplicated-same-events ⊆ AfterDuplicated-same-events .
— Recovering AfterDuplicated-same-events.After-Seqptick

context AfterExtDuplicated-same-events
begin

notation After tickα.After (infixl ‹afterα› 86 )
notation After tickβ .After (infixl ‹afterβ› 86 )
notation After tickα.After tick (infixl ‹after3α› 86 )
notation After tickβ .After tick (infixl ‹after3β› 86 )

lemma After tick-Seqptick :
‹(P ;3 Q) after3β e =
(case e of 3(r) ⇒ Ωβ (P ;3 Q) r

| ev a ⇒
if ∀ r . 3(r) ∈ P0 −→ ev a /∈ (Q r)0

then if ev a ∈ P0

then P after3α ev a ;3 Q else Ψβ (P ;3 Q) a
else if ev a ∈ P0

then (P after3α ev a ;3 Q) u
(ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}. Q r after3β ev a)

else ur∈{r . 3(r) ∈ P0 ∧ ev a ∈ (Q r)0}. Q r after3β ev a)›
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by (auto simp add: After tickβ .After tick-def After tickα.After tick-def After-Seqptick

split: eventptick.split)

end

Synchronization Product

locale AfterExt-Syncptick-locale = Syncptick-locale tick-join +
AfterExtlhs : AfterExt Ψlhs Ωlhs +
AfterExtrhs : AfterExt Ψrhs Ωrhs +
AfterExtptick : AfterExt Ψptick Ωptick

for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option›
and Ψlhs :: ‹[( ′a, ′r) processptick, ′a] ⇒ ( ′a, ′r) processptick›
and Ωlhs :: ‹[( ′a, ′r) processptick, ′r ] ⇒ ( ′a, ′r) processptick›
and Ψrhs :: ‹[( ′a, ′s) processptick, ′a] ⇒ ( ′a, ′s) processptick›
and Ωrhs :: ‹[( ′a, ′s) processptick, ′s] ⇒ ( ′a, ′s) processptick›
and Ψptick :: ‹[( ′a, ′t) processptick, ′a] ⇒ ( ′a, ′t) processptick›
and Ωptick :: ‹[( ′a, ′t) processptick, ′t] ⇒ ( ′a, ′t) processptick›

begin

sublocale After-Syncptick-locale tick-join Ψlhs Ψrhs Ψptick by unfold-locales

sublocale AfterExt-Syncptick-locale-sym :
AfterExt-Syncptick-locale ‹λs r . tick-join r s› Ψrhs Ωrhs Ψlhs Ωlhs Ψptick Ωptick

by unfold-locales

notation AfterExtlhs.After tick (infixl ‹after3lhs› 86 )
notation AfterExtrhs.After tick (infixl ‹after3rhs› 86 )
notation AfterExtptick.After tick (infixl ‹after3ptick› 86 )

theorem After tick-Syncptick:
‹(P [[S ]]3 Q) after3ptick e =
(case e of 3(r-s) ⇒ Ωptick (P [[S ]]3 Q) r-s

| ev a ⇒
if P = ⊥ ∨ Q = ⊥ then ⊥

else if ev a ∈ P0 ∧ ev a ∈ Q0

then if a ∈ S then P after3lhs ev a [[S ]]3 Q after3rhs ev a
else (P after3lhs ev a [[S ]]3 Q) u (P [[S ]]3 Q after3rhs ev a)

else if ev a ∈ P0 ∧ a /∈ S then P after3lhs ev a [[S ]]3 Q
else if ev a ∈ Q0 ∧ a /∈ S then P [[S ]]3 Q after3rhs ev a

else Ψptick (P [[S ]]3 Q) a)›
by (cases e) (simp-all add: AfterExt.After tick-def After-Syncptick)

end
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9.3.3 Generic Operational Semantics as Locales

Sequential Composition

locale OpSemTransitionsDuplicated-same-events =
OpSemTransitionsDuplicated Ψα Ωα τ -transα Ψβ Ωβ τ -transβ
for Ψα :: ‹[( ′a, ′r) processptick, ′a] ⇒ ( ′a, ′r) processptick›

and Ωα :: ‹[( ′a, ′r) processptick, ′r ] ⇒ ( ′a, ′r) processptick›
and τ -transα :: ‹[( ′a, ′r) processptick, ( ′a, ′r) processptick] ⇒ bool› (infixl

‹α τ › 50 )
and Ψβ :: ‹[( ′a, ′s) processptick, ′a] ⇒ ( ′a, ′s) processptick›
and Ωβ :: ‹[( ′a, ′s) processptick, ′s] ⇒ ( ′a, ′s) processptick›

and τ -transβ :: ‹[( ′a, ′s) processptick, ( ′a, ′s) processptick]⇒ bool› (infixl ‹β τ ›
50 )

sublocale OpSemTransitionsDuplicated-same-events ⊆ AfterExtDuplicated-same-events
by unfold-locales

context OpSemTransitionsDuplicated-same-events begin

notation OpSemTransitionsα.ev-trans (‹- α - -› [50 , 3 , 51 ] 50 )
notation OpSemTransitionsα.tick-trans (‹- α 3- -› [50 , 3 , 51 ] 50 )
notation OpSemTransitionsβ .ev-trans (‹- β - -› [50 , 3 , 51 ] 50 )
notation OpSemTransitionsβ .tick-trans (‹- β 3- -› [50 , 3 , 51 ] 50 )

lemma τ -trans-SeqptickR: ‹P ;3 Q β τ Q ′› if ‹P α 3r P ′› and ‹Q r β τ Q ′›
proof −

from that(1 ) have ‹P vFD SKIP r›
by (meson OpSemTransitionsα.exists-tick-trans-is-initial-tick initial-tick-iff-FD-SKIP)

with FD-iff-eq-Ndet have ‹P = P u SKIP r› ..
hence ‹P ;3 Q = (P ;3 Q) u (SKIP r ;3 Q)›

by (metis Seqptick-distrib-Ndet-right)
also have ‹. . . = (P ;3 Q) u Q r› by simp
also have ‹. . . β τ Q r› by (simp add: OpSemTransitionsβ .τ -trans-NdetR)
finally show ‹P ;3 Q β τ Q ′› by (rule OpSemTransitionsβ .τ -trans-transitivity)

(fact that(2 ))
qed

lemma ‹3(r) ∈ P0 =⇒ Q r β e Q ′ =⇒ P ;3 Q β e Q ′› for P :: ‹( ′a, ′r)
processptick›

by (meson OpSemTransitionsβ .τ -trans-eq OpSemTransitionsβ .τ -trans-ev-trans
τ -trans-SeqptickR OpSemTransitionsα.exists-tick-trans-is-initial-tick)

end

locale OpSemTransitionsSeqptick =
OpSemTransitionsDuplicated-same-events Ψα Ωα τ -transα Ψβ Ωβ τ -transβ
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for Ψα :: ‹[( ′a, ′r) processptick, ′a] ⇒ ( ′a, ′r) processptick›
and Ωα :: ‹[( ′a, ′r) processptick, ′r ] ⇒ ( ′a, ′r) processptick›
and τ -transα :: ‹[( ′a, ′r) processptick, ( ′a, ′r) processptick] ⇒ bool› (infixl

‹α τ › 50 )
and Ψβ :: ‹[( ′a, ′s) processptick, ′a] ⇒ ( ′a, ′s) processptick›
and Ωβ :: ‹[( ′a, ′s) processptick, ′s] ⇒ ( ′a, ′s) processptick›

and τ -transβ :: ‹[( ′a, ′s) processptick, ( ′a, ′s) processptick]⇒ bool› (infixl ‹β τ ›
50 ) +

assumes τ -trans-SeqptickL : ‹P α τ P ′ =⇒ P ;3 Q β τ P ′ ;3 Q›
begin

lemma ev-trans-SeqptickL: ‹P α e P ′ =⇒ P ;3 Q β e P ′ ;3 Q›
by (cases ‹P = ⊥›, solves ‹simp add: OpSemTransitionsβ .BOT-ev-trans-anything›)
(auto simp add: OpSemTransitionsβ .ev-trans-def After tick-Seqptick initials-Seqptick

OpSemTransitionsα.ev-trans-def
intro: OpSemTransitionsβ .τ -trans-NdetL OpSemTransitionsβ .τ -trans-transitivity

τ -trans-SeqptickL)

lemmas Seqptick-OpSem-rules = τ -trans-SeqptickL ev-trans-SeqptickL τ -trans-SeqptickR

end

Synchronization Product

locale OpSemTransitions-Syncptick-locale = Syncptick-locale ‹(⊗3)› +
OpSemTransitionslhs : OpSemTransitions Ψlhs Ωlhs ‹(lhs τ )› +
OpSemTransitionsrhs : OpSemTransitions Ψrhs Ωrhs ‹(rhs τ )› +
OpSemTransitionsptick : OpSemTransitions Ψptick Ωptick ‹(ptick τ )›
for tick-join :: ‹ ′r ⇒ ′s ⇒ ′t option› (infixl ‹⊗3› 100 )

and Ψlhs :: ‹[( ′a, ′r) processptick, ′a] ⇒ ( ′a, ′r) processptick›
and Ωlhs :: ‹[( ′a, ′r) processptick, ′r ] ⇒ ( ′a, ′r) processptick›
and τ -translhs :: ‹[( ′a, ′r) processptick, ( ′a, ′r) processptick] ⇒ bool› (infixl

‹lhs τ › 50 )
and Ψrhs :: ‹[( ′a, ′s) processptick, ′a] ⇒ ( ′a, ′s) processptick›
and Ωrhs :: ‹[( ′a, ′s) processptick, ′s] ⇒ ( ′a, ′s) processptick›
and τ -transrhs :: ‹[( ′a, ′s) processptick, ( ′a, ′s) processptick] ⇒ bool› (infixl

‹rhs τ › 50 )
and Ψptick :: ‹[( ′a, ′t) processptick, ′a] ⇒ ( ′a, ′t) processptick›
and Ωptick :: ‹[( ′a, ′t) processptick, ′t] ⇒ ( ′a, ′t) processptick›
and τ -transptick :: ‹[( ′a, ′t) processptick, ( ′a, ′t) processptick] ⇒ bool› (infixl

‹ptick τ › 50 ) +
assumes τ -trans-SyncptickL : ‹P lhs τ P ′ =⇒ P [[A]]3 Q ptick τ P ′ [[A]]3 Q›

and τ -trans-SyncptickR : ‹Q rhs τ Q ′ =⇒ P [[A]]3 Q ptick τ P [[A]]3 Q ′›
begin

sublocale AfterExt-Syncptick-locale by unfold-locales
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sublocale OpSemTransitions-Syncptick-locale-sym :
OpSemTransitions-Syncptick-locale
‹λs r . r ⊗3 s› Ψrhs Ωrhs ‹(rhs τ )› Ψlhs Ωlhs ‹(lhs τ )› Ψptick Ωptick ‹(ptick τ )›

proof unfold-locales
show ‹P rhs τ P ′ =⇒ P [[A]]3sym Q ptick τ P ′ [[A]]3sym Q› for P P ′ A Q

by (simp add: Syncptick-sym τ -trans-SyncptickR)
next

show ‹Q lhs τ Q ′ =⇒ P [[A]]3sym Q ptick τ P [[A]]3sym Q ′› for Q Q ′ A P
by (simp add: Syncptick-sym τ -trans-SyncptickL)

qed

notation OpSemTransitionslhs.ev-trans (‹- lhs - -› [50 , 3 , 51 ] 50 )
notation OpSemTransitionslhs.tick-trans (‹- lhs 3- -› [50 , 3 , 51 ] 50 )
notation OpSemTransitionsrhs.ev-trans (‹- rhs - -› [50 , 3 , 51 ] 50 )
notation OpSemTransitionsrhs.tick-trans (‹- rhs 3- -› [50 , 3 , 51 ] 50 )
notation OpSemTransitionsptick.ev-trans (‹- ptick - -› [50 , 3 , 51 ] 50 )
notation OpSemTransitionsptick.tick-trans (‹- ptick 3- -› [50 , 3 , 51 ] 50 )

We do not need the assumptions τ -trans-SyncptickL τ -trans-SyncptickR for
the three following lemmas.

lemma τ -trans-SKIP-SyncptickL :
‹P [[A]]3 Q ptick τ SKIP r [[A]]3 Q› if ‹P lhs 3r P ′›

proof −
from that have ‹P vFD SKIP r›

by (simp add: OpSemTransitionslhs.tick-trans-def initial-tick-iff-FD-SKIP)
with FD-iff-eq-Ndet have ‹P = P u SKIP r› ..
hence ‹P [[A]]3 Q = (P [[A]]3 Q) u (SKIP r [[A]]3 Q)›

by (metis Syncptick-distrib-Ndet-right)
also have ‹. . . ptick τ SKIP r [[A]]3 Q›

by (fact OpSemTransitionsptick.τ -trans-NdetR)
finally show ‹P [[A]]3 Q ptick τ SKIP r [[A]]3 Q› .

qed

lemma τ -trans-SKIP-SyncptickR :
‹P [[A]]3 Q ptick τ P [[A]]3 SKIP s› if ‹Q rhs 3s Q ′›

proof −
from that have ‹Q vFD SKIP s›

by (simp add: OpSemTransitionsrhs.tick-trans-def initial-tick-iff-FD-SKIP)
with FD-iff-eq-Ndet have ‹Q = Q u SKIP s› ..
hence ‹P [[A]]3 Q = (P [[A]]3 Q) u (P [[A]]3 SKIP s)›

by (metis Syncptick-distrib-Ndet-left)
also have ‹. . . ptick τ P [[A]]3 SKIP s›

by (fact OpSemTransitionsptick.τ -trans-NdetR)
finally show ‹P [[A]]3 Q ptick τ P [[A]]3 SKIP s› .

qed

lemma tick-trans-SKIP-Syncptick-SKIP:
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‹r ⊗3 s = Some r-s =⇒ SKIP r [[A]]3 SKIP s ptick 3r-s Ωptick (SKIP r-s)
r-s›

by (simp add: OpSemTransitionsptick.SKIP-trans-tick-Ω-SKIP)

lemma ev-trans-SyncptickL :
‹a /∈ A =⇒ P lhs a P ′ =⇒ P [[A]]3 Q ptick a P ′ [[A]]3 Q›
by (auto simp add: OpSemTransitionsptick.ev-trans-def After tick-Syncptick

initials-Syncptick OpSemTransitionslhs.ev-trans-def
intro: OpSemTransitionsptick.BOT-τ -trans-anything OpSemTransi-

tionsptick.τ -trans-NdetL
OpSemTransitionsptick.τ -trans-transitivity τ -trans-SyncptickL)

lemma ev-trans-SyncptickR :
‹a /∈ A =⇒ Q rhs a Q ′ =⇒ P [[A]]3 Q ptick a P [[A]]3 Q ′›
by (auto simp add: OpSemTransitionsptick.ev-trans-def After tick-Syncptick

initials-Syncptick OpSemTransitionsrhs.ev-trans-def
intro: OpSemTransitionsptick.BOT-τ -trans-anything OpSemTransi-

tionsptick.τ -trans-NdetR
OpSemTransitionsptick.τ -trans-transitivity τ -trans-SyncptickR)

lemma ev-trans-SyncptickLR :
‹a ∈ A =⇒ P lhs a P ′ =⇒ Q rhs a Q ′ =⇒ P [[A]]3 Q ptick a P ′ [[A]]3 Q ′›
by (auto simp add: OpSemTransitionsptick.ev-trans-def OpSemTransitionslhs.ev-trans-def

OpSemTransitionsrhs.ev-trans-def After tick-Syncptick ini-
tials-Syncptick

intro: OpSemTransitionsptick.BOT-τ -trans-anything
OpSemTransitionsptick.τ -trans-transitivity
τ -trans-SyncptickL τ -trans-SyncptickR)

lemmas Syncptick-OpSem-rules = τ -trans-SyncptickL τ -trans-SyncptickR
ev-trans-SyncptickL ev-trans-SyncptickR
ev-trans-SyncptickLR
τ -trans-SKIP-SyncptickL τ -trans-SKIP-SyncptickR
tick-trans-SKIP-Syncptick-SKIP

end
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Chapter 10

Declensions of the
Generalized Synchronization
Product

unbundle option-type-syntax

10.1 Interpretations

For practical reasons, we directly interpret Syncptick-comm-locale. Then,
the laws of associativity will be derived manually (instead of globally inter-
preting the locale Syncptick-assoc-locale).

10.1.1 Classical Version

The following interpretation is initially the reason we wanted the parame-
ter (⊗3) to be of type ′r ⇒ ′s ⇒ ′t option instead of just ′r ⇒ ′s ⇒ ′t
(we wanted the operator Sync already defined in HOL-CSP to indeed be a
particular case of the new one).
interpretation SyncClassic : Syncptick-comm-locale

‹λr s. if r = s then brc else ♦›
‹λs r . if s = r then bsc else ♦› id id
by unfold-locales (auto split: if-split-asm)

notation SyncClassic.Syncptick (‹(- [[-]]3Classic -)› [70 , 0 , 71 ] 70 )
notation SyncClassic.Interptick (‹(- |||3Classic -)› [72 , 73 ] 72 )
notation SyncClassic.Parptick (‹(- ||3Classic -)› [74 , 75 ] 74 )

10.1.2 Product Type
interpretation SyncP air : Syncptick-comm-locale
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‹λr s. b(r , s)c› ‹λs r . b(s, r)c› prod.swap prod.swap
by unfold-locales (auto split: if-split-asm)

notation SyncP air.Syncptick (‹(- [[-]]3P air -)› [70 , 0 , 71 ] 70 )
notation SyncP air.Interptick (‹(- |||3P air -)› [72 , 73 ] 72 )
notation SyncP air.Parptick (‹(- ||3P air -)› [74 , 75 ] 74 )

10.1.3 List Type

Pair

interpretation SyncP airlist : Syncptick-comm-locale
‹λr s. b[r , s]c› ‹λs r . b[s, r ]c›
‹λrs. [rs ! Suc 0 , rs ! 0 ]› ‹λrs. [rs ! Suc 0 , rs ! 0 ]›
by unfold-locales (auto intro: inj-onI )

notation SyncP airlist.Syncptick (‹(- [[-]]3P airlist -)› [70 , 0 , 71 ] 70 )
notation SyncP airlist.Interptick (‹(- |||3P airlist -)› [72 , 73 ] 72 )
notation SyncP airlist.Parptick (‹(- ||3P airlist -)› [74 , 75 ] 74 )

Right List

Here, we want to have one process of type ( ′a, ′r) processptick on the left
hand side, and one of type ( ′a, ′r list) processptick on the right hand side.

interpretation SyncRlist : Syncptick-comm-locale
‹λr s. br # sc› ‹λs r . bs @ [r ]c›
‹rotate1 › ‹λrs. if rs = [] then [] else last rs # butlast rs›
— λrs. last rs # butlast rs is not injective.
by unfold-locales (auto intro: inj-onI )

notation SyncRlist.Syncptick (‹(- [[-]]3Rlist -)› [70 , 0 , 71 ] 70 )
notation SyncRlist.Interptick (‹(- |||3Rlist -)› [72 , 73 ] 72 )
notation SyncRlist.Parptick (‹(- ||3Rlist -)› [74 , 75 ] 74 )

Left List

Here, we want to have one process of type ( ′a, ′r list) processptick on the
left hand side, and one of type ( ′a, ′r) processptick on the right hand side.
There is no need to do a new interpretation, the operator we are looking for
is actually the symmetric of the one we defined just above.

notation SyncRlist.Syncptick-comm-locale-sym.Syncptick (‹(- [[-]]3Llist -)› [70 ,
0 , 71 ] 70 )
notation SyncRlist.Syncptick-comm-locale-sym.Interptick (‹(- |||3Llist -)› [72 , 73 ]
72 )
notation SyncRlist.Syncptick-comm-locale-sym.Parptick (‹(- ||3Llist -)› [74 ,
75 ] 74 )
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Arbitrary Lists

We believed for a long time that it was not possible to handle the case where
both processes have their ticks of type ′r list. Indeed the concatenation
on the lists is not injective, resulting in the impossibility of interpreting
Syncptick-locale. But it turns out that by adding some control on the length
of the lists, we actually can!

Control on one side context fixes lenL :: nat begin

global-interpretation SyncListslenL : Syncptick-comm-locale
‹λr s. if length r = lenL then br @ sc else ♦›
‹λs r . if length r = lenL then bs @ rc else ♦›
‹λrs. drop lenL rs @ take lenL rs›
‹λrs. rev (take lenL (rev rs)) @ rev (drop lenL (rev rs))›
by unfold-locales (auto split: if-split-asm)

end

abbreviation SyncListslenL-syntax ::
‹[( ′a, ′r list) processptick, nat, ′a set, ( ′a, ′r list) processptick]
⇒ ( ′a, ′r list) processptick› (‹(- -([[-]]3ListslenL) -)› [70 , 0 , 0 , 71 ] 70 )

where ‹P lenL[[A]]3ListslenL Q ≡ SyncListslenL.Syncptick lenL P A Q›

abbreviation InterListslenL-syntax ::
‹[( ′a, ′r list) processptick, nat, ( ′a, ′r list) processptick]
⇒ ( ′a, ′r list) processptick› (‹(- -(|||3ListslenL) -)› [72 , 0 , 73 ] 72 )

where ‹P lenL|||3ListslenL Q ≡ SyncListslenL.Interptick lenL P Q›

abbreviation ParListslenL-syntax ::
‹[( ′a, ′r list) processptick, nat, ( ′a, ′r list) processptick]
⇒ ( ′a, ′r list) processptick› (‹(- -(||3ListslenL) -)› [74 , 0 , 75 ] 75 )

where ‹P lenL||3ListslenL Q ≡ SyncListslenL.Parptick lenL P Q›

The control is done on the left process, so with the symmetric version of this
operator we control the ticks length of the right one.
abbreviation SyncListslenR-syntax ::

‹[( ′a, ′r list) processptick, nat, ′a set, ( ′a, ′r list) processptick]
⇒ ( ′a, ′r list) processptick› (‹(- -([[-]]3ListslenR) -)› [70 , 0 , 0 , 71 ] 70 )

where ‹P lenL[[A]]3ListslenR Q ≡ SyncListslenL.Syncptick-comm-locale-sym.Syncptick
lenL P A Q›

abbreviation InterListslenR-syntax ::
‹[( ′a, ′r list) processptick, nat, ( ′a, ′r list) processptick]
⇒ ( ′a, ′r list) processptick› (‹(- -(|||3ListslenR) -)› [72 , 0 , 73 ] 72 )

where ‹P lenL|||3ListslenR Q ≡ SyncListslenL.Syncptick-comm-locale-sym.Interptick

lenL P Q›
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abbreviation ParListslenR-syntax ::
‹[( ′a, ′r list) processptick, nat, ( ′a, ′r list) processptick]
⇒ ( ′a, ′r list) processptick› (‹(- -(||3ListslenR) -)› [74 , 0 , 75 ] 75 )
where ‹P lenL||3ListslenR Q ≡ SyncListslenL.Syncptick-locale-sym.Parptick

lenL P Q›

Control on both sides context fixes lenL :: nat and lenR :: nat begin

global-interpretation SyncLists : Syncptick-comm-locale
‹λr s. if length r = lenL ∧ length s = lenR then br @ sc else ♦›
‹λs r . if length s = lenR ∧ length r = lenL then bs @ rc else ♦›
‹λrs. drop lenL rs @ take lenL rs›
‹λrs. drop lenR rs @ take lenR rs›
by unfold-locales (auto split: if-split-asm)

end

abbreviation SyncLists-syntax ::
‹[( ′a, ′r list) processptick, nat, ′a set, nat, ( ′a, ′r list) processptick]
⇒ ( ′a, ′r list) processptick› (‹(- -([[-]]3)- -)› [70 , 0 , 0 , 0 , 71 ] 70 )

where ‹P lenL[[A]]3lenR Q ≡ SyncLists.Syncptick lenL lenR P A Q›

abbreviation InterLists-syntax ::
‹[( ′a, ′r list) processptick, nat, nat, ( ′a, ′r list) processptick]
⇒ ( ′a, ′r list) processptick› (‹(- -(|||3)- -)› [72 , 0 , 0 , 73 ] 72 )

where ‹P lenL|||3lenR Q ≡ SyncLists.Interptick lenL lenR P Q›

abbreviation ParLists-syntax ::
‹[( ′a, ′r list) processptick, nat, nat, ( ′a, ′r list) processptick]
⇒ ( ′a, ′r list) processptick› (‹(- -(||3)- -)› [74 , 0 , 0 , 75 ] 75 )

where ‹P lenL||3lenR Q ≡ SyncLists.Parptick lenL lenR P Q›

10.2 Associativities
10.2.1 Classical Version
lemma SyncClassic-assoc :

‹P [[S ]]3Classic (Q [[S ]]3Classic R) = P [[S ]]3Classic Q [[S ]]3Classic R›
proof −

let ?f = ‹λr s. if r = s then brc else ♦›
interpret ∗ : Syncptick-assoc-locale ?f ?f ?f ?f id id

by (unfold-locales) (auto split: if-split-asm)
show ?thesis by (fact ∗.Syncptick-assoc[simplified Renaming-id])

qed

10.2.2 Product Type
lemma SyncP air-assoc :
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‹P [[S ]]3P air (Q [[S ]]3P air R) = RenamingTick (P [[S ]]3P air Q [[S ]]3P air R)
(λ((r , s), t). (r , s, t))›
proof −

interpret ∗ : Syncptick-assoc-locale ‹λr s. b(r , s)c› ‹λr s. b(r , s)c› ‹λr s. b(r ,
s)c›

‹λr s. b(r , s)c› ‹λ((r , s), t). (r , s, t)› ‹λ(r , s, t). ((r , s), t)›
by unfold-locales auto

show ?thesis by (fact ∗.Syncptick-assoc)
qed

10.2.3 List Type
lemma SyncRlist-SyncP airlist-assoc :

‹P [[S ]]3Rlist (Q [[S ]]3P airlist R) = (P [[S ]]3P airlist Q) [[S ]]3Llist R›
proof −

interpret ∗ : Syncptick-assoc-locale ‹λr s. b[r , s]c› ‹λr s. br @ [s]c›
‹λr s. br # sc› ‹λr s. b[r , s]c› id id
by unfold-locales auto

show ?thesis by (fact ∗.Syncptick-assoc[unfolded Renaming-id])
qed

lemma SyncRlist-SyncLlist-assoc :
‹P [[S ]]3Rlist (Q [[S ]]3Llist R) = (P [[S ]]3Rlist Q) [[S ]]3Llist R›

proof −
interpret ∗ : Syncptick-assoc-locale ‹λr s. br # sc› ‹λr s. br @ [s]c›

‹λr s. br # sc› ‹λr s. br @ [s]c› id id
by unfold-locales auto

show ?thesis by (fact ∗.Syncptick-assoc[unfolded Renaming-id])
qed

lemma SyncRlist-SyncListslenL-assoc :
‹P [[S ]]3Rlist (Q lenQ[[S ]]3ListslenL R) = (P [[S ]]3Rlist Q) Suc lenQ[[S ]]3ListslenL

R›
proof −

interpret ∗ : Syncptick-assoc-locale
‹λr s. br # sc›
‹λr s. if length r = Suc lenQ then br @ sc else ♦›
‹λr s. br # sc›
‹λr s. if length r = lenQ then br @ sc else ♦› id id
by unfold-locales (auto split: if-split-asm)

show ?thesis by (fact ∗.Syncptick-assoc[unfolded Renaming-id])
qed

lemma SyncListslenR-SyncLlist-assoc :
‹P Suc lenQ[[S ]]3ListslenR (Q [[S ]]3Llist R) = (P lenQ[[S ]]3ListslenR Q) [[S ]]3Llist

R›
proof −
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interpret ∗ : Syncptick-assoc-locale
‹λr s. if length s = lenQ then br @ sc else ♦›
‹λr s. br @ [s]c›
‹λr s. if length s = Suc lenQ then br @ sc else ♦›
‹λr s. br @ [s]c› id id
by unfold-locales (auto split: if-split-asm)

show ?thesis by (fact ∗.Syncptick-assoc[unfolded Renaming-id])
qed

lemma SyncLists-assoc :
‹P lenP[[S ]]3lenQ + lenR (Q lenQ[[S ]]3lenR R) =

P lenP[[S ]]3lenQ Q lenP + lenQ[[S ]]3lenR R›
proof −

interpret ∗ : Syncptick-assoc-locale
‹λr s. if length r = lenP ∧ length s = lenQ then br @ sc else ♦›
‹λr s. if length r = lenP + lenQ ∧ length s = lenR then br @ sc else ♦›
‹λr s. if length r = lenP ∧ length s = lenQ + lenR then br @ sc else ♦›
‹λr s. if length r = lenQ ∧ length s = lenR then br @ sc else ♦› id id
by unfold-locales (auto split: if-split-asm)

show ?thesis by (fact ∗.Syncptick-assoc[unfolded Renaming-id])
qed

lemma SyncRlist-SyncRlist-assoc :
‹P [[S ]]3Rlist (Q [[S ]]3Rlist R) = (P [[S ]]3P airlist Q) Suc (Suc 0 )[[S ]]3ListslenL

R›
proof −

interpret ∗ : Syncptick-assoc-locale
‹λr s. b[r , s]c›
‹λr s. if length r = Suc (Suc 0 ) then br @ sc else ♦›
‹λr s. br # sc›
‹λr s. br # sc› id id
by unfold-locales (auto split: if-split-asm)

show ?thesis by (fact ∗.Syncptick-assoc[unfolded Renaming-id])
qed

lemma SyncListslenR-SyncP airlist-assoc :
‹P Suc (Suc 0 )[[S ]]3ListslenR (Q [[S ]]3P airlist R) = (P [[S ]]3Llist Q) [[S ]]3Llist

R›
proof −

interpret ∗ : Syncptick-assoc-locale
‹λr s. br @ [s]c›
‹λr s. br @ [s]c›
‹λr s. if length s = Suc (Suc 0 ) then br @ sc else ♦›
‹λr s. b[r , s]c› id id
by unfold-locales (auto split: if-split-asm)

show ?thesis by (fact ∗.Syncptick-assoc[unfolded Renaming-id])
qed
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10.3 Properties

10.3.1 Actual Generalization

We can actually recover the classical synchronization product defined in
session HOL-CSP as a particular case of our generalization.

theorem SyncClassic-is-Sync : ‹P [[A]]3Classic Q = P [[A]] Q›
proof (rule Process-eq-optimizedI )

show ‹t ∈ D (P [[A]] Q) =⇒ t ∈ D (P [[A]]3Classic Q)› for t
by (simp add: D-Sync SyncClassic.D-Syncptick ′

flip: setinterleaves-is-setinterleavesptick)
(metis setinterleaving-sym)

next
show ‹t ∈ D (P [[A]]3Classic Q) =⇒ t ∈ D (P [[A]] Q)› for t

by (simp add: D-Sync SyncClassic.D-Syncptick
flip: setinterleaves-is-setinterleavesptick)

(metis setinterleaving-sym)
next

fix t X assume ‹(t, X) ∈ F (P [[A]] Q)› ‹t /∈ D (P [[A]] Q)›
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
‹t setinterleaves ((t-P, t-Q), range tick ∪ ev ‘ A)›
‹X = (X-P ∪ X-Q) ∩ (range tick ∪ ev ‘ A) ∪ X-P ∩ X-Q›

unfolding Sync-projs by blast
from ∗(4 ) have ‹X ⊆ super-ref-Syncptick (λr s. if r = s then brc else ♦) X-P

A X-Q›
by (auto simp add: super-ref-Syncptick-def subset-iff )
(metis eventptick.exhaust)

with ∗(1−3 ) show ‹(t, X) ∈ F (P [[A]]3Classic Q)›
by (auto simp add: SyncClassic.F-Syncptick setinterleaves-is-setinterleavesptick)

next
fix t X assume ‹(t, X) ∈ F (P [[A]]3Classic Q)› ‹t /∈ D (P [[A]]3Classic Q)›
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
‹t setinterleaves3λr s. if r = s then brc else ♦ ((t-P, t-Q), A)›
‹X ⊆ super-ref-Syncptick (λr s. if r = s then brc else ♦) X-P A X-Q›

unfolding SyncClassic.Syncptick-projs by blast
from ∗(1−3 ) have ‹(t, (X-P ∪ X-Q) ∩ (range tick ∪ ev ‘ A) ∪ X-P ∩ X-Q) ∈
F (P [[A]] Q)›

by (simp add: F-Sync setinterleaves-is-setinterleavesptick) blast
moreover from ∗(4 ) have ‹X ⊆ (X-P ∪ X-Q) ∩ (range tick ∪ ev ‘ A) ∪ X-P
∩ X-Q›

by (auto simp add: super-ref-Syncptick-def subset-iff split: if-split-asm)
ultimately show ‹(t, X) ∈ F (P [[A]] Q)› by (meson is-processT4 )

qed
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10.3.2 Other Properties
lemma ‹SyncLists.Syncptick-locale-sym.Syncptick lenL lenR Q A P = P lenL[[A]]3lenR
Q›

by (simp add: SyncLists.Syncptick-locale-sym.Syncptick-sym)

corollary TickSwap-SyncP air [simp] : ‹TickSwap (P [[S ]]3P air Q) = Q [[S ]]3P air

P›
by (simp add: SyncP air.Syncptick-commute TickSwap-is-Renaming)

lemma TickSwap-is-SyncP air-iff [simp] :
‹TickSwap P = Q [[S ]]3P air R ←→ P = R [[S ]]3P air Q›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

corollary SyncClassic-commute : ‹P [[S ]]3Classic Q = Q [[S ]]3Classic P›
by (fact SyncClassic.Syncptick-commute[simplified])

lemma ‹RenamingTick (P lenL[[S ]]3lenR Q) (λr-s. drop lenL r-s @ take lenL r-s)
=

Q lenR[[S ]]3lenL P›
by (fact SyncLists.Syncptick-commute)

10.4 Ticks Length and Conversions

Through RenamingTick, conversions can be established between the inter-
pretations. For this, we sometimes need an assumption about the length of
the ticks.

10.4.1 Ticks Length
Definition and first Properties
definition is-ticks-length ::

‹nat ⇒ ( ′a, ′r list) processptick ⇒ bool› (‹(length3)-( ′(- ′))›)
where ‹length3n(P) ≡ ∀ rs ∈ 3s(P). length rs = n›

We might imagine ∀ rs∈3s(P). length rs = n instead. But when the process
P has divergences, the predicate would not hold. Additionally, we only need
the control about traces that are not divergences.
lemma is-ticks-lengthI : ‹(

∧
rs. rs ∈ 3s(P) =⇒ length rs = n) =⇒ length3n(P)›

by (simp add: is-ticks-length-def )

lemma is-ticks-lengthD : ‹length3n(P) =⇒ rs ∈ 3s(P) =⇒ length rs = n›
by (simp add: is-ticks-length-def )
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lemma is-ticks-length-unique :
— Not suitable for simplifier.
‹length3n(P) ←→ 3s(P) = {} ∨ (∀m. length3m(P) ←→ m = n)›
by (auto simp add: is-ticks-length-def )

lemma empty-strict-ticks-of-imp-is-ticks-length :
‹3s(P) = {} =⇒ length3n(P)›
using is-ticks-length-unique by blast

lemma nonempty-strict-ticks-of-imp-is-ticks-length-unique :
‹3s(P) 6= {} =⇒ length3n(P) =⇒ length3m(P) =⇒ m = n›
using is-ticks-length-unique by blast

Behaviour
named-theorems is-ticks-length-simp
named-theorems is-ticks-length-intro

Constant Processes lemma is-ticks-length-STOP [is-ticks-length-simp] :
‹length3n(STOP)› by (simp add: empty-strict-ticks-of-imp-is-ticks-length)

lemma is-ticks-length-BOT [is-ticks-length-simp] :
‹length3n(⊥)› by (simp add: empty-strict-ticks-of-imp-is-ticks-length)

lemma is-ticks-length-SKIP-iff [is-ticks-length-simp] :
‹length3n(SKIP rs) ←→ length rs = n›
by (simp add: is-ticks-length-def )

lemma is-ticks-length-SKIPS-iff [is-ticks-length-simp] :
‹length3n(SKIPS R) ←→ (∀ rs ∈ R. length rs = n)›
by (simp add: is-ticks-length-def strict-ticks-of-def SKIPS-projs)

Binary (or less) Operators lemma is-ticks-length-Ndet [is-ticks-length-intro]
:

‹length3n(P) =⇒ length3n(Q) =⇒ length3n(P u Q)›
by (simp add: is-ticks-length-def )
(meson Un-iff strict-ticks-of-Ndet-subset subset-iff )

lemma is-ticks-length-Det [is-ticks-length-intro] :
‹length3n(P) =⇒ length3n(Q) =⇒ length3n(P � Q)›
by (simp add: is-ticks-length-def )
(meson Un-iff strict-ticks-of-Det-subset subset-iff )

lemma is-ticks-length-Sliding [is-ticks-length-intro] :
‹length3n(P) =⇒ length3n(Q) =⇒ length3n(P B Q)›
by (simp add: is-ticks-length-def )
(meson Un-iff strict-ticks-of-Sliding-subset subset-iff )
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lemma is-ticks-length-Sync [is-ticks-length-intro] :
‹length3n(P) =⇒ length3n(Q) =⇒ length3n(P [[S ]] Q)›
by (simp add: is-ticks-length-def )
(meson Int-iff strict-ticks-of-Sync-subset subset-iff )

lemma is-ticks-length-Seq [is-ticks-length-intro] :
‹non-terminating P ∨ length3n(Q) =⇒ length3n(P ; Q)›

proof (elim disjE)
show ‹non-terminating P =⇒ length3n(P ; Q)›

by (metis is-ticks-length-def non-terminating-Seq non-terminating-is-right
non-tickFree-tick strict-ticks-of-memE tickFree-append-iff )

next
from strict-ticks-of-Seq-subset[of P Q]
show ‹length3n(Q) =⇒ length3n(P ; Q)›

by (auto simp add: is-ticks-length-def split: if-split-asm)
qed

lemma is-ticks-length-Hiding [is-ticks-length-intro] :
‹length3n(P \ S)› if ‹length3n(P)›

proof (rule is-ticks-lengthI )
fix rs assume ‹rs ∈ 3s(P \ S)›
then obtain t t ′ where ‹t = t ′ @ [3(rs)]› ‹t ∈ T (P \ S)› ‹t /∈ D (P \ S)›

by (metis is-processT9 strict-ticks-of-memE)
from this(2 , 3 ) obtain u where ‹t = trace-hide u (ev ‘ S)› ‹u ∈ T P›

unfolding T-Hiding D-Hiding using F-T by fast
from this(1 ) this(2 )[THEN T-imp-front-tickFree] obtain u ′ where ‹u = u ′ @

[3(rs)]›
by (cases u rule: rev-cases, simp-all add: ‹t = t ′ @ [3(rs)]› split: if-split-asm)
(metis Hiding-tickFree front-tickFree-nonempty-append-imp list.distinct(1 )

non-tickFree-tick tickFree-append-iff )
from ‹t /∈ D (P \ S)› mem-D-imp-mem-D-Hiding[of u P S ]
have ‹u /∈ D P› unfolding ‹t = trace-hide u (ev ‘ S)› by blast
with ‹u ∈ T P› ‹u = u ′ @ [3(rs)]› have ‹rs ∈ 3s(P)›

by (simp add: strict-ticks-of-memI )
with that show ‹length rs = n› by (simp add: is-ticks-lengthD)

qed

lemma is-ticks-length-Interrupt [is-ticks-length-intro] :
‹length3n(P) =⇒ length3n(Q) =⇒ length3n(P 4 Q)›
by (simp add: is-ticks-length-def )
(meson Un-iff strict-ticks-of-Interrupt-subset subsetD)

— Missing lemma from HOL-CSPM
lemma strict-ticks-Throw-subset :

‹3s(P Θ a∈A. Q a) ⊆ 3s(P) ∪ (
⋃

a∈A ∩ α(P). 3s(Q a))›
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proof (rule subsetI )
fix r assume ‹r ∈ 3s(P Θ a∈A. Q a)›
then obtain t where ‹t @ [3(r)] ∈ T (P Θ a∈A. Q a)› ‹t @ [3(r)] /∈ D (P Θ

a∈A. Q a)›
by (meson is-processT9 strict-ticks-of-memE)

then consider ‹t @ [3(r)] ∈ T P› ‹t @ [3(r)] /∈ D P›
| t1 a t2 where ‹t @ [3(r)] = t1 @ ev a # t2 › ‹t1 @ [ev a] ∈ T P›

‹a ∈ A› ‹t2 ∈ T (Q a)› ‹t2 /∈ D (Q a)›
by (simp add: Throw-projs)
(metis (no-types, lifting) append-T-imp-tickFree

front-tickFree-single is-processT9 not-Cons-self2 )
thus ‹r ∈ 3s(P) ∪ (

⋃
a∈A ∩ α(P). 3s(Q a))›

proof cases
show ‹t @ [3(r)] ∈ T P =⇒ t @ [3(r)] /∈ D P =⇒ r ∈ 3s(P) ∪ (

⋃
a∈A ∩

α(P). 3s(Q a))›
by (simp add: strict-ticks-of-memI )

next
show ‹[[t @ [3(r)] = t1 @ ev a # t2 ; t1 @ [ev a] ∈ T P; a ∈ A; t2 ∈ T (Q

a); t2 /∈ D (Q a)]]
=⇒ r ∈ 3s(P) ∪ (

⋃
a∈A ∩ α(P). 3s(Q a))› for t1 a t2

by (cases t2 rule: rev-cases, simp-all)
(meson IntI events-of-memI in-set-conv-decomp strict-ticks-of-memI )

qed
qed

lemma is-ticks-length-Throw [is-ticks-length-intro] :
‹length3n(P Θ a ∈ A. Q a)›
if ‹length3n(P)› ‹

∧
a. a ∈ α(P) =⇒ length3n(Q a)›

proof −
from that have ‹∀ rs∈3s(P) ∪ (

⋃
a∈A ∩ α(P). 3s(Q a)). length rs = n›

by (auto simp add: is-ticks-length-def )
with strict-ticks-Throw-subset show ‹length3n(P Θ a ∈ A. Q a)›

unfolding is-ticks-length-def by fast
qed

lemma is-ticks-length-Renaming [is-ticks-length-intro] :
‹length3n(Renaming P f g) › if ‹

∧
r . r ∈ 3s(P) =⇒ length (g r) = n›

proof (rule is-ticks-lengthI )
fix rs assume ‹rs ∈ 3s(Renaming P f g)›
then obtain t where ‹t @ [3(rs)] ∈ T (Renaming P f g)›

‹t @ [3(rs)] /∈ D (Renaming P f g)›
by (meson is-processT9 strict-ticks-of-memE)

then obtain u where ∗ : ‹t @ [3(rs)] = map (map-eventptick f g) u› and ‹u ∈
T P›

by (auto simp add: Renaming-projs)
from this(1 ) ‹u ∈ T P› append-T-imp-tickFree obtain u ′ r

where ‹rs = g r› ‹u = u ′ @ [3(r)]› ‹tF u ′›
by (cases u rule: rev-cases) (auto simp add: tick-eq-map-eventptick-iff )

from ∗ ‹t @ [3(rs)] /∈ D (Renaming P f g)› this(2 , 3 ) front-tickFree-Cons-iff
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have ‹u ′ /∈ D P› by (auto simp add: D-Renaming)
moreover from ‹u ∈ T P› have ‹u ′ @ [3(r)] ∈ T P›

by (simp add: ‹u = u ′ @ [3(r)]›)
ultimately have ‹r ∈ 3s(P)› by (meson is-processT9 strict-ticks-of-memI )
with that have ‹length (g r) = n› by blast
thus ‹length rs = n› by (simp add: ‹rs = g r›)

qed

Architectural Operators lemma is-ticks-length-GlobalNdet [is-ticks-length-intro]
:

‹(
∧

a. a ∈ A =⇒ length3n(P a)) =⇒ length3n(ua ∈ A. P a)›
by (simp add: is-ticks-length-def )
(metis (no-types, lifting) UN-E strict-ticks-of-GlobalNdet-subset subsetD)

lemma is-ticks-length-GlobalDet [is-ticks-length-intro] :
‹(
∧

a. a ∈ A =⇒ length3n(P a)) =⇒ length3n(�a ∈ A. P a)›
by (simp add: is-ticks-length-def )
(metis (no-types, lifting) UN-E strict-ticks-of-GlobalDet-subset subsetD)

lemma is-ticks-length-MultiSync [is-ticks-length-intro] :
‹(
∧

m. m ∈ set-mset M =⇒ length3n(P m)) =⇒ length3n([[S]] m ∈# M . P m)›
by (induct M rule: induct-subset-mset-empty-single)
(simp-all add: is-ticks-length-STOP is-ticks-length-Sync)

lemma is-ticks-length-MultiSeq [is-ticks-length-intro] :
‹L 6= [] =⇒ length3n(P (last L)) =⇒ length3n(SEQ l ∈@ L. P l)›
by (induct L rule: rev-induct)
(simp-all add: is-ticks-length-Seq)

Communications lemma is-ticks-length-write0-iff [is-ticks-length-simp] :
‹length3n(e → P) ←→ length3n(P)›
by (simp add: is-ticks-length-def strict-ticks-of-write0 )

lemma is-ticks-length-write-iff [is-ticks-length-simp] :
‹length3n(c!e → P) ←→ length3n(P)›
by (simp add: is-ticks-length-def strict-ticks-of-write)

lemma is-ticks-length-Mprefix-iff [is-ticks-length-simp] :
‹length3n(�a ∈ A → P a) = (∀ a ∈ A. length3n(P a))›
by (auto simp add: is-ticks-length-def strict-ticks-of-Mprefix)

lemma is-ticks-length-read-iff [is-ticks-length-simp] :
‹length3n(c?a∈A → P a) = (∀ b ∈ c ‘ A. length3n(P (inv-into A c b)))›
by (simp add: read-def is-ticks-length-Mprefix-iff )

corollary ‹inj-on c A =⇒ length3n(c?a∈A → P a) = (∀ a ∈ A. length3n(P a))›
by (simp add: is-ticks-length-read-iff )

lemma is-ticks-length-Mndetprefix-iff [is-ticks-length-simp] :
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‹length3n(ua ∈ A → P a) = (∀ a ∈ A. length3n(P a))›
by (auto simp add: is-ticks-length-def strict-ticks-of-Mndetprefix)

lemma is-ticks-length-ndet-write-iff [is-ticks-length-simp] :
‹length3n(c!!a∈A → P a) = (∀ b ∈ c ‘ A. length3n(P (inv-into A c b)))›
by (simp add: ndet-write-def is-ticks-length-Mndetprefix-iff )

corollary ‹inj-on c A =⇒ length3n(c!!a∈A → P a) = (∀ a ∈ A. length3n(P a))›
by (simp add: is-ticks-length-ndet-write-iff )

Generalizations lemma strict-ticks-of-Seqptick-subset : ‹3s(P ;3 Q) ⊆
⋃

{3s(Q r) |r . r ∈ 3s(P)}›
by (auto simp add: Seqptick-projs append-eq-map-conv elim!: strict-ticks-of-memE)
(metis tickFree-Nil non-tickFree-tick tickFree-map-ev-comp

front-tickFree-charn tickFree-append-iff tickFree-append-iff
last-snoc[of ‹map (ev ◦ of-ev) - @ -›] last-snoc[of - ‹3(-)›]
butlast-snoc[of ‹map (ev ◦ of-ev) - @ -›] butlast-snoc[of - ‹3(-)›]
append.assoc[of ‹map (ev ◦ of-ev) -› - ‹[-]›] tickFree-imp-front-tickFree
T-imp-front-tickFree is-processT9 strict-ticks-of-memI ,

metis butlast-append butlast-snoc front-tickFree-iff-tickFree-butlast non-tickFree-tick
tickFree-append-iff tickFree-imp-front-tickFree tickFree-map-ev-comp)

lemma non-terminating-Seqptick :
‹P ;3 Q = RenamingTick P g› if ‹non-terminating P›

proof −
from ‹non-terminating P› have £ : ‹D P = {}› ‹t @ [3(r)] /∈ T P› for t r

by (force simp add: non-terminating-is-right nonterminating-implies-div-free)+
show ‹P ;3 Q = RenamingTick P g›
proof (rule Process-eq-optimizedI )

show ‹t ∈ D (P ;3 Q) =⇒ t ∈ D (RenamingTick P g)›
and ‹t ∈ D (RenamingTick P g) =⇒ t ∈ D (P ;3 Q)› for t
by (simp-all add: Seqptick-projs Renaming-projs £)

next
fix t X assume ‹(t, X) ∈ F (P ;3 Q)›
then obtain t ′ where ∗ : ‹t = map (ev ◦ of-ev) t ′›

‹(t ′, ref-Seqptick X) ∈ F P› ‹tF t ′›
by (auto simp add: Seqptick-projs Renaming-projs £)

have $ : ‹t = map (map-eventptick id g) t ′›
by (simp add: ∗(1 , 3 ) tickFree-map-map-eventptick-is)

have $$ : ‹map-eventptick id g −‘ X ⊆ ref-Seqptick X›
by (simp add: subset-iff ref-Seqptick-def image-iff )
(metis Int-iff eventptick.exhaust eventptick.sel(1 ) eventptick.simps(9 ) id-apply

rangeI )
show ‹(t, X) ∈ F (RenamingTick P g)›

by (simp add: Renaming-projs) (metis $ $$ ∗(2 ) is-processT4 )
next

fix t X assume ‹(t, X) ∈ F (RenamingTick P g)›
then obtain t ′ where ∗ : ‹t = map (map-eventptick id g) t ′›
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‹(t ′, map-eventptick id g −‘ X) ∈ F P›
by (auto simp add: Renaming-projs £)

from ∗(2 ) F-T non-terminating-is-right ‹non-terminating P› have ‹tF t ′› by
blast

have ‹(t ′, map-eventptick id g −‘ X ∪ range tick) ∈ F P›
by (rule is-processT5 [OF ∗(2 )]) (use £(2 ) F-T in blast)

moreover have ‹ref-Seqptick X ⊆ map-eventptick id g −‘ X ∪ range tick›
by (auto simp add: ref-Seqptick-def )

ultimately have ‹(t ′, ref-Seqptick X) ∈ F P›
by (metis is-processT4 )

moreover have ‹t = map (ev ◦ of-ev) t ′›
by (simp add: ∗(1 ) ‹tF t ′› tickFree-map-map-eventptick-is)

ultimately show ‹(t, X) ∈ F (P ;3 Q)›
by (auto simp add: Seqptick-projs ‹tF t ′›)

qed
qed

lemma is-ticks-length-Seqptick [is-ticks-length-intro] :
‹non-terminating P ∨ (∀ r∈3s(P). length3n(Q r)) =⇒ length3n(P ;3 Q)›

proof (elim disjE)
assume ‹non-terminating P›
hence ‹3s(P) = {}›

by (metis (full-types) non-terminating-Seq strict-ticks-of-BOT
strict-ticks-of-Seq-subset subset-empty)

show ‹non-terminating P =⇒ length3n(P ;3 Q)›
by (subst non-terminating-Seqptick, assumption)
(rule is-ticks-length-Renaming, simp add: is-ticks-length-Renaming ‹3s(P) =

{}›)
next

from strict-ticks-of-Seqptick-subset[of P Q]
show ‹∀ r∈3s(P). length3n(Q r) =⇒ length3n(P ;3 Q)›

by (auto simp add: is-ticks-length-def )
qed

lemma is-ticks-length-Syncptick :
‹length3n(Syncptick-locale.Syncptick tick-join P A Q)›
— We cannot work directly inside the locale since in this context the types of

ticks ′t cannot be set to ′r list.
if ‹Syncptick-locale tick-join›

and ‹
∧

r s. r ∈ 3s(P) =⇒ s ∈ 3s(Q) =⇒
case tick-join r s of ♦ ⇒ True | br-sc ⇒ length r-s = n›

proof −
interpret Syncptick-locale tick-join

by (fact ‹Syncptick-locale tick-join›)
show ‹length3n(P [[A]]3 Q)›
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proof (rule is-ticks-lengthI )
fix rs assume ‹rs ∈ 3s(P [[A]]3 Q)›
then obtain t where ‹t @ [3(rs)] ∈ T (P [[A]]3 Q)› ‹t @ [3(rs)] /∈ D (P [[A]]3

Q)›
by (meson is-processT9 strict-ticks-of-memE)

then obtain t-P t-Q where ‹t-P ∈ T P› ‹t-Q ∈ T Q›
and ∗ : ‹t @ [3(rs)] setinterleaves3tick-join ((t-P, t-Q), A)›
unfolding Syncptick-projs by blast

with ‹t @ [3(rs)] /∈ D (P [[A]]3 Q)› have ‹t-P /∈ D P› ‹t-Q /∈ D Q›
by (simp add: D-Syncptick ′, use front-tickFree-Nil in blast)+

from ∗ obtain r s t-P ′ t-Q ′

where ‹tick-join r s = brsc› ‹t-P = t-P ′ @ [3(r)]› ‹t-Q = t-Q ′ @ [3(s)]›
by (blast elim: snoc-tick-setinterleavesptickE)

from this(2 , 3 ) ‹t-P /∈ D P› ‹t-Q /∈ D Q› ‹t-P ∈ T P› ‹t-Q ∈ T Q›
have ‹r ∈ 3s(P)› ‹s ∈ 3s(Q)› by (metis strict-ticks-of-memI )+
from that(2 )[OF this, unfolded ‹tick-join r s = brsc›] show ‹length rs = n› by

simp
qed

qed

lemma is-ticks-length-One-RenamingTick-singl [is-ticks-length-simp] :
‹length3Suc 0(RenamingTick P (λr . [r ]))›
by (simp add: is-ticks-length-Renaming)

lemma is-ticks-length-Two-SyncP airlist [is-ticks-length-simp] :
‹length3Suc (Suc 0 )(P [[S ]]3P airlist Q)›
by (simp add: is-ticks-length-Syncptick[OF SyncP airlist.Syncptick-locale-axioms])

lemma is-ticks-length-Suc-SyncRlist [is-ticks-length-intro] :
‹length3n(Q) =⇒ length3Suc n(P [[S ]]3Rlist Q)›
by (rule is-ticks-length-Syncptick[OF SyncRlist.Syncptick-locale-axioms])
(simp add: is-ticks-lengthD)

The equivalence is false.

lemma False if ‹
∧

P Q n. length3Suc n(P [[S ]]3Rlist Q) =⇒ length3n(Q)›
using that[of 0 STOP ‹SKIP [undefined]›]
by (simp add: is-ticks-length-STOP is-ticks-length-SKIP-iff )

lemma is-ticks-length-Suc-SyncLlist [is-ticks-length-intro] :
‹length3n(P) =⇒ length3Suc n(P [[S ]]3Llist Q)›
by (rule is-ticks-length-Syncptick

[OF SyncRlist.Syncptick-comm-locale-sym.Syncptick-locale-axioms])
(simp add: is-ticks-lengthD)

lemma is-ticks-length-sum-SyncListslenL [is-ticks-length-intro] :
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‹length3m(Q) =⇒ length3n + m(P n[[S ]]3ListslenL Q)›
by (rule is-ticks-length-Syncptick[OF SyncListslenL.Syncptick-locale-axioms])
(simp add: is-ticks-lengthD)

lemma is-ticks-length-sum-SyncListslenR [is-ticks-length-intro] :
‹length3n(P) =⇒ length3n + m(P m[[S ]]3ListslenR Q)›
by (rule is-ticks-length-Syncptick

[OF SyncListslenL.Syncptick-comm-locale-sym.Syncptick-locale-axioms])
(simp add: is-ticks-lengthD)

lemma is-ticks-length-sum-SyncLists [is-ticks-length-intro] :
‹length3n + m(P n[[S ]]3m Q)›
by (rule is-ticks-length-Syncptick[OF SyncLists.Syncptick-locale-axioms]) simp

10.4.2 Conversions
lemma SyncP airlist-to-SyncRlist :

‹P [[S ]]3P airlist Q = P [[S ]]3Rlist RenamingTick Q (λs. [s])›
by (rule SyncRlist.inj-RenamingTick-Syncptick-inj-RenamingTick

[of id ‹λs. [s]›, simplified, symmetric])
(auto intro: inj-onI )

lemma SyncP airlist-to-SyncLlist :
‹P [[S ]]3P airlist Q = RenamingTick P (λr . [r ]) [[S ]]3Llist Q›
by (rule SyncRlist.Syncptick-comm-locale-sym.inj-RenamingTick-Syncptick-inj-RenamingTick

[of ‹λr . [r ]› id, simplified, symmetric])
(auto intro: inj-onI )

lemma SyncRlist-to-SyncListslenL :
‹P [[S ]]3Rlist Q = RenamingTick P (λr . [r ]) Suc 0[[S ]]3ListslenL Q›
by (rule SyncListslenL.inj-RenamingTick-Syncptick-inj-RenamingTick

[of ‹λr . [r ]› id ‹Suc 0 ›, simplified, symmetric])
(auto intro: inj-onI )

lemma SyncLlist-to-SyncListslenR :
‹P [[S ]]3Llist Q = P Suc 0[[S ]]3ListslenR RenamingTick Q (λs. [s])›
by (rule SyncListslenL.Syncptick-comm-locale-sym.inj-RenamingTick-Syncptick-inj-RenamingTick

[of id ‹λs. [s]› ‹Suc 0 ›, simplified, symmetric])
(auto intro: inj-onI )

lemma SyncListslenL-to-SyncLists :
‹length3m(Q) =⇒ P n[[S ]]3ListslenL Q = P n[[S ]]3m Q›
by (auto intro!: SyncLists.Syncptick-same-tick-join-on-strict-ticks-of

SyncListslenL.Syncptick-locale-axioms
dest: is-ticks-lengthD)

lemma SyncListslenR-to-SyncLists :
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‹length3n(P) =⇒ P m[[S ]]3ListslenR Q = P n[[S ]]3m Q›
by (auto intro!: SyncLists.Syncptick-same-tick-join-on-strict-ticks-of

SyncListslenL.Syncptick-comm-locale-sym.Syncptick-locale-axioms
dest: is-ticks-lengthD)

corollary SyncListslenL-is-SyncListslenR :
‹length3n(P) =⇒ length3m(Q) =⇒ P n[[S ]]3ListslenL Q = P m[[S ]]3ListslenR

Q›
by (simp add: SyncListslenL-to-SyncLists SyncListslenR-to-SyncLists)

corollary SyncP airlist-to-SyncListslenL :
‹P [[S ]]3P airlist Q = RenamingTick P (λr . [r ]) Suc 0[[S ]]3ListslenL Renam-

ingTick Q (λs. [s])›
by (simp add: SyncP airlist-to-SyncRlist SyncRlist-to-SyncListslenL)

corollary SyncP airlist-to-SyncListslenR :
‹P [[S ]]3P airlist Q = RenamingTick P (λr . [r ]) Suc 0[[S ]]3ListslenR Renam-

ingTick Q (λs. [s])›
by (simp add: SyncLlist-to-SyncListslenR SyncP airlist-to-SyncLlist)

corollary SyncRlist-to-SyncLists :
‹length3m(Q) =⇒ P [[S ]]3Rlist Q = RenamingTick P (λr . [r ]) Suc 0[[S ]]3m Q›
by (simp add: SyncListslenL-to-SyncLists SyncRlist-to-SyncListslenL)

corollary SyncLlist-to-SyncLists :
‹length3n(P) =⇒ P [[S ]]3Llist Q = P n[[S ]]3Suc 0 RenamingTick Q (λs. [s])›
by (simp add: SyncListslenR-to-SyncLists SyncLlist-to-SyncListslenR)

corollary SyncP airlist-to-SyncLists :
‹P [[S ]]3P airlist Q = RenamingTick P (λr . [r ]) Suc 0[[S ]]3Suc 0 RenamingTick

Q (λs. [s])›
by (simp add: SyncLlist-to-SyncLists SyncP airlist-to-SyncLlist

is-ticks-length-One-RenamingTick-singl)

lemma SyncP air-to-SyncP airlist :
‹RenamingTick (P [[S ]]3P air Q) (λ(r , s). [r , s]) = P [[S ]]3P airlist Q›
by (rule SyncP air.inj-on-RenamingTick-Syncptick

[of ‹λ(r , s). [r , s]›, simplified])
(auto intro: inj-onI )

lemma SyncP airlist-to-SyncP air :
‹RenamingTick (P [[S ]]3P airlist Q) (λrs. (rs ! 0 , rs ! Suc 0 )) = P [[S ]]3P air Q›
by (rule SyncP airlist.inj-on-RenamingTick-Syncptick

[of ‹λrs. (rs ! 0 , rs ! Suc 0 )›, simplified])
(auto intro: inj-onI )
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lemma SyncP air-to-SyncRlist :
‹RenamingTick (P [[S ]]3P air Q) (λ(r , s). r # s) = P [[S ]]3Rlist Q›
by (rule SyncP air.inj-on-RenamingTick-Syncptick

[of ‹λ(r , s). r # s›, simplified])
(auto intro: inj-onI )

lemma SyncP air-to-SyncLlist :
‹RenamingTick (P [[S ]]3P air Q) (λ(r , s). r @ [s]) = P [[S ]]3Llist Q›
by (rule SyncP air.inj-on-RenamingTick-Syncptick

[of ‹λ(r , s). r @ [s]›, simplified])
(auto intro: inj-onI )

lemma SyncP air-to-SyncListslenL :
‹RenamingTick (P [[S ]]3P air Q) (λ(r , s). r @ s) = P n[[S ]]3ListslenL Q›
(is ‹?lhs = ?rhs›) if ‹length3n(P)›

proof −
let ?g = ‹λrs. (take n rs, drop n rs)›
let ?g ′ = ‹λ(r , s). r @ s›
let ?RT = RenamingTick
have ‹?RT ?lhs ?g = ?RT ?rhs ?g›
proof (subst SyncListslenL.inj-on-RenamingTick-Syncptick)

show ‹inj-on ?g (SyncListslenL.range-tick-join n)›
by (rule inj-onI ) (auto split: if-split-asm)

next
have ‹?RT (?RT (P [[S ]]3P air Q) ?g ′) ?g = P [[S ]]3P air Q›
proof (fold RenamingTick-comp, subst (2 ) RenamingTick-id[of ‹P [[S ]]3P air

Q›, symmetric])
show ‹?RT (P [[S ]]3P air Q) (?g ◦ ?g ′) = ?RT (P [[S ]]3P air Q) id›
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of )

from that show ‹rs ∈ 3s(P [[S ]]3P air Q) =⇒ (?g ◦ (λ(x, y). x @ y)) rs =
id rs› for rs

by (auto dest!: set-mp[OF SyncP air.strict-ticks-of-Syncptick-subset]
is-ticks-lengthD)

qed
qed
also have ‹P [[S ]]3P air Q =

Syncptick-locale.Syncptick
(λr s. case if length r = n then br @ sc else ♦

of ♦ ⇒ ♦ | brsc ⇒ b?g rsc) P S Q› (is ‹- = ?rhs ′›)
by (rule SyncP air.Syncptick-same-tick-join-on-strict-ticks-of [symmetric], un-

fold-locales)
(use ‹length3n(P)› in ‹auto split: if-split-asm dest: is-ticks-lengthD›)

finally show ‹?RT ?lhs ?g = ?rhs ′› .
qed
hence ‹?RT (?RT ?lhs ?g) ?g ′ = ?RT (?RT ?rhs ?g) ?g ′› by simp
also from ‹length3n(P)› have ‹?RT (?RT ?lhs ?g) ?g ′ = ?lhs›
by (auto simp flip: RenamingTick-comp intro!: RenamingTick-is-restrictable-on-strict-ticks-of
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dest!: set-mp[OF SyncP air.strict-ticks-of-Syncptick-subset] is-ticks-lengthD)
also from ‹length3n(P)› have ‹?RT (?RT ?rhs ?g) ?g ′ = ?rhs›

by (fold RenamingTick-comp, subst (2 ) RenamingTick-id[of ?rhs, symmetric])
(auto simp del: RenamingTick-id intro!: RenamingTick-is-restrictable-on-strict-ticks-of

dest!: set-mp[OF SyncP air.strict-ticks-of-Syncptick-subset] is-ticks-lengthD)
finally show ‹?lhs = ?rhs› .

qed

corollary SyncP air-to-SyncListslenR :
‹RenamingTick (P [[S ]]3P air Q) (λ(r , s). r @ s) = P n[[S ]]3ListslenR Q›
(is ‹?lhs = ?rhs›) if ‹length3n(Q)›

proof −
let ?RT = RenamingTick
have ‹?RT (P [[S ]]3P air Q) (λ(x, y). x @ y) =

?RT (Q [[S ]]3P air P) ((λ(x, y). x @ y) ◦ prod.swap)›
by (simp add: RenamingTick-comp subst SyncP air.Syncptick-commute)

also from ‹length3n(Q)›
have ‹. . . = ?RT (Q [[S ]]3P air P) ((λrs. drop n rs @ take n rs) ◦ (λ(x, y). x @

y))›
by (auto intro!: RenamingTick-is-restrictable-on-strict-ticks-of

dest!: set-mp[OF SyncP air.strict-ticks-of-Syncptick-subset] is-ticks-lengthD)
also have ‹. . . = ?RT (Q n[[S ]]3ListslenL P) (λrs. drop n rs @ take n rs)›
by (simp add: RenamingTick-comp SyncP air-to-SyncListslenL[OF ‹length3n(Q)›])

also have ‹. . . = P n[[S ]]3ListslenR Q›
by (fact SyncListslenL.Syncptick-commute)

finally show ‹?lhs = ?rhs› .
qed

corollary SyncP air-to-SyncLists :
‹RenamingTick (P [[S ]]3P air Q) (λ(r , s). r @ s) = P n[[S ]]3m Q›
(is ‹?lhs = ?rhs›) if ‹length3n(P)› and ‹length3m(Q)›
by (subst SyncP air-to-SyncListslenL[OF ‹length3n(P)›])
(rule SyncListslenL-to-SyncLists[OF ‹length3m(Q)›])

10.5 First Laws
corollary InterClassic-STOP [simp] :

‹P |||3Classic STOP = P ; STOP›
by (simp add: SyncClassic.Interptick-STOP[of P id])

corollary InterP air-STOP :
‹P |||3P air STOP = RenamingTick (P ; STOP) (λr . (r , g r))›
by (simp add: SyncP air.Interptick-STOP[of P g])

corollary InterP airlist-STOP :
‹P |||3P airlist STOP = RenamingTick (P ; STOP) (λr . [r , g r ])›
by (simp add: SyncP airlist.Interptick-STOP[of P g])
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corollary InterRlist-STOP :
‹P |||3Rlist STOP = RenamingTick (P ; STOP) (λr . r # g r)›
by (simp add: SyncRlist.Interptick-STOP[of P g])

corollary InterLlist-STOP :
‹P |||3Llist STOP = RenamingTick (P ; STOP) (λr . r @ [g r ])›
by (simp add: SyncRlist.Syncptick-comm-locale-sym.Interptick-STOP[of P g])

corollary InterListslenL-STOP :
‹P n|||3ListslenL STOP =
RenamingTick (P ; STOP) (λr . if length r = n then r @ g r else undefined)›

by (auto simp add: SyncListslenL.Interptick-STOP[of n P g] option.the-def
intro!: arg-cong[where f = ‹RenamingTick (P ; STOP)›])

corollary InterListslenR-STOP :
‹P n|||3ListslenR STOP =
RenamingTick (P ; STOP) (λr . if length (g r) = n then r @ g r else undefined)›

by (auto simp add: SyncListslenL.Syncptick-comm-locale-sym.Interptick-STOP[of
n P g] option.the-def

intro!: arg-cong[where f = ‹RenamingTick (P ; STOP)›])

corollary InterLists-STOP :
‹P n|||3m STOP =
RenamingTick (P ; STOP) (λr . if length r = n ∧ length (g r) = m then r @ g

r else undefined)›
by (auto simp add: SyncLists.Interptick-STOP[of n m P g] option.the-def

intro!: arg-cong[where f = ‹RenamingTick (P ; STOP)›])

corollary STOP-InterClassic [simp] :
‹STOP |||3Classic Q = Q ; STOP›
by (simp add: SyncClassic.STOP-Interptick[of Q id])

corollary STOP-InterP air :
‹STOP |||3P air Q = RenamingTick (Q ; STOP) (λs. (g s, s))›
by (simp add: SyncP air.STOP-Interptick[of Q g])

corollary STOP-InterP airlist :
‹STOP |||3P airlist Q = RenamingTick (Q ; STOP) (λs. [g s, s])›
by (simp add: SyncP airlist.STOP-Interptick[of Q g])

corollary STOP-InterRlist :
‹STOP |||3Rlist Q = RenamingTick (Q ; STOP) (λs. g s # s)›
by (simp add: SyncRlist.STOP-Interptick[of Q g])

corollary STOP-InterLlist :
‹STOP |||3Llist Q = RenamingTick (Q ; STOP) (λs. g s @ [s])›
by (simp add: SyncRlist.Syncptick-comm-locale-sym.STOP-Interptick[of Q g])
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corollary STOP-InterListslenL :
‹STOP n|||3ListslenL Q =
RenamingTick (Q ; STOP) (λr . if length (g r) = n then g r @ r else undefined)›
by (auto simp add: SyncListslenL.STOP-Interptick[of n Q g] option.the-def

intro!: arg-cong[where f = ‹RenamingTick (Q ; STOP)›])

corollary STOP-InterListslenR :
‹STOP n|||3ListslenR Q =
RenamingTick (Q ; STOP) (λr . if length r = n then g r @ r else undefined)›

by (auto simp add: SyncListslenL.Syncptick-comm-locale-sym.STOP-Interptick[of
n Q g] option.the-def

intro!: arg-cong[where f = ‹RenamingTick (Q ; STOP)›])

corollary STOP-InterLists :
‹STOP n|||3m Q =
RenamingTick (Q ; STOP) (λr . if length (g r) = n ∧ length r = m then g r @

r else undefined)›
by (auto simp add: SyncLists.STOP-Interptick[of n m Q g] option.the-def

intro!: arg-cong[where f = ‹RenamingTick (Q ; STOP)›])

corollary SKIP-SyncClassic-SKIP :
‹SKIP r [[A]]3Classic SKIP s =
(if r = s then SKIP r else STOP)› by simp

corollary SKIP-SyncP air-SKIP :
‹SKIP r [[A]]3P air SKIP s = SKIP (r , s)› by simp

corollary SKIP-SyncP airlist-SKIP :
‹SKIP r [[A]]3P airlist SKIP s = SKIP [r , s]› by simp

corollary SKIP-SyncRlist-SKIP :
‹SKIP r [[A]]3Rlist SKIP s = SKIP (r # s)› by simp

corollary SKIP-SyncLlist-SKIP :
‹SKIP r [[A]]3Llist SKIP s = SKIP (r @ [s])› by simp

corollary SKIP-SyncListslenL-SKIP :
‹SKIP r n[[A]]3ListslenL SKIP s =
(if length r = n then SKIP (r @ s) else STOP)› by simp

corollary SKIP-SyncListslenR-SKIP :
‹SKIP r n[[A]]3ListslenR SKIP s =
(if length s = n then SKIP (r @ s) else STOP)› by simp

corollary SKIP-SyncLists-SKIP :
‹SKIP r n[[A]]3m SKIP s =

269



(if length r = n ∧ length s = m then SKIP (r @ s) else STOP)› by simp

10.6 Operational Laws

10.6.1 Classical Version
locale After-SyncClassic-locale = After-Syncptick-locale ‹λr s. if r = s then brc
else ♦›
begin

— Just checking...
lemma ‹Syncptick P S Q = P [[S ]]3Classic Q› by (fact refl)

end

locale AfterExt-SyncClassic-locale =
AfterExt-Syncptick-locale ‹λr s. if r = s then brc else ♦›

sublocale AfterExt-SyncClassic-locale ⊆ After-SyncClassic-locale
by unfold-locales

locale OpSemTransitions-SyncClassic-locale =
OpSemTransitions-Syncptick-locale ‹λr s. if r = s then brc else ♦›

sublocale OpSemTransitions-SyncClassic-locale ⊆ AfterExt-SyncClassic-locale
by unfold-locales

10.6.2 Product Type
locale After-SyncP air-locale = After-Syncptick-locale ‹λr s. b(r , s)c›
begin

— Just checking...
lemma ‹Syncptick P S Q = P [[S ]]3P air Q› by (fact refl)

end

locale AfterExt-SyncP air-locale =
AfterExt-Syncptick-locale ‹λr s. b(r , s)c›

sublocale AfterExt-SyncP air-locale ⊆ After-SyncP air-locale
by unfold-locales

locale OpSemTransitions-SyncP air-locale =
OpSemTransitions-Syncptick-locale ‹λr s. b(r , s)c›

sublocale OpSemTransitions-SyncP air-locale ⊆ AfterExt-SyncP air-locale
by unfold-locales
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10.6.3 List Type

Pair

locale After-SyncP airlist-locale = After-Syncptick-locale ‹λr s. b[r , s]c›
begin

— Just checking...
lemma ‹Syncptick P S Q = P [[S ]]3P airlist Q› by (fact refl)

end

locale AfterExt-SyncP airlist-locale =
AfterExt-Syncptick-locale ‹λr s. b[r , s]c›

sublocale AfterExt-SyncP airlist-locale ⊆ After-SyncP airlist-locale
by unfold-locales

locale OpSemTransitions-SyncP airlist-locale =
OpSemTransitions-Syncptick-locale ‹λr s. b[r , s]c›

sublocale OpSemTransitions-SyncP airlist-locale ⊆ AfterExt-SyncP airlist-locale
by unfold-locales

Right List

locale After-SyncRlist-locale = After-Syncptick-locale ‹λr s. br # sc›
begin

— Just checking...
lemma ‹Syncptick P S Q = P [[S ]]3Rlist Q› by (fact refl)

end

locale AfterExt-SyncRlist-locale =
AfterExt-Syncptick-locale ‹λr s. br # sc›

sublocale AfterExt-SyncRlist-locale ⊆ After-SyncRlist-locale
by unfold-locales

locale OpSemTransitions-SyncRlist-locale =
OpSemTransitions-Syncptick-locale ‹λr s. br # sc›

sublocale OpSemTransitions-SyncRlist-locale ⊆ AfterExt-SyncRlist-locale
by unfold-locales

Left List

locale After-SyncLlist-locale = After-Syncptick-locale ‹λr s. br @ [s]c›
begin
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— Just checking...
lemma ‹Syncptick P S Q = P [[S ]]3Llist Q› by (fact refl)

end

locale AfterExt-SyncLlist-locale =
AfterExt-Syncptick-locale ‹λr s. br @ [s]c›

sublocale AfterExt-SyncLlist-locale ⊆ After-SyncLlist-locale
by unfold-locales

locale OpSemTransitions-SyncLlist-locale =
OpSemTransitions-Syncptick-locale ‹λr s. br @ [s]c›

sublocale OpSemTransitions-SyncLlist-locale ⊆ AfterExt-SyncLlist-locale
by unfold-locales

Arbitrary Lists

Control on left side locale After-SyncListslenL-locale =
After-Syncptick-locale ‹λr s. if length r = lenL then br @ sc else ♦›
for lenL :: nat

begin

— Just checking...
lemma ‹Syncptick P S Q = P lenL[[S ]]3ListslenL Q› by (fact refl)

end

locale AfterExt-SyncListslenL-locale =
AfterExt-Syncptick-locale ‹λr s. if length r = lenL then br @ sc else ♦›
for lenL :: nat

sublocale AfterExt-SyncListslenL-locale ⊆ After-SyncListslenL-locale
by unfold-locales

locale OpSemTransitions-SyncListslenL-locale =
OpSemTransitions-Syncptick-locale ‹λr s. if length r = lenL then br @ sc else ♦›
for lenL :: nat

sublocale OpSemTransitions-SyncListslenL-locale ⊆ AfterExt-SyncListslenL-locale
by unfold-locales

Control on right side locale After-SyncListslenR-locale =
After-Syncptick-locale ‹λr s. if length s = lenR then br @ sc else ♦›
for lenR :: nat

begin
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— Just checking...
lemma ‹Syncptick P S Q = P lenR[[S ]]3ListslenR Q› by (fact refl)

end

locale AfterExt-SyncListslenR-locale =
AfterExt-Syncptick-locale ‹λr s. if length s = lenR then br @ sc else ♦›
for lenR :: nat

sublocale AfterExt-SyncListslenR-locale ⊆ After-SyncListslenR-locale
by unfold-locales

locale OpSemTransitions-SyncListslenR-locale =
OpSemTransitions-Syncptick-locale ‹λr s. if length r = lenL then br @ sc else ♦›
for lenL :: nat

sublocale OpSemTransitions-SyncListslenR-locale ⊆ AfterExt-SyncListslenR-locale
by unfold-locales

Control on both sides locale After-SyncLists-locale =
After-Syncptick-locale
‹λr s. if length r = lenL ∧ length s = lenR then br @ sc else ♦›
for lenL lenR :: nat

begin

— Just checking...
lemma ‹Syncptick P S Q = P lenL[[S ]]3lenR Q› by (fact refl)

end

locale AfterExt-SyncLists-locale =
AfterExt-Syncptick-locale
‹λr s. if length r = lenL ∧ length s = lenR then br @ sc else ♦›
for lenL lenR :: nat

sublocale AfterExt-SyncLists-locale ⊆ After-SyncLists-locale
by unfold-locales

locale OpSemTransitions-SyncLists-locale =
OpSemTransitions-Syncptick-locale
‹λr s. if length r = lenL ∧ length s = lenR then br @ sc else ♦›
for lenL lenR :: nat

sublocale OpSemTransitions-SyncLists-locale ⊆ AfterExt-SyncLists-locale
by unfold-locales
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Chapter 11

Architectural Versions

11.1 Sequential Composition
11.1.1 Definition
fun MultiSeqptick :: ‹[ ′b list, ′b ⇒ ′r ⇒ ( ′a, ′r) processptick, ′r ] ⇒ ( ′a, ′r) pro-
cessptick›

where MultiSeqptick-Nil : ‹MultiSeqptick [] P = SKIP›
| MultiSeqptick-Cons : ‹MultiSeqptick (l # L) P = (λr . P l r ;3 MultiSeqptick

L P)›

syntax -MultiSeqptick ::
‹[pttrn, ′b list, ′b ⇒ ′r ⇒ ( ′a, ′r) processptick, ′r ] ⇒ ( ′a, ′r) processptick›
(‹(3SEQ3 - ∈@ -./ -)› [78 ,78 ,77 ] 77 )

syntax-consts -MultiSeqptick 
 MultiSeqptick

translations SEQ3 p ∈@ L. P 
 CONST MultiSeqptick L (λp. P)

11.1.2 First Properties
lemma ‹SEQ3 p ∈@ []. P p = SKIP›

and ‹SEQ3 p ∈@ [a]. P p = (λr . P a r)›
and ‹SEQ3 p ∈@ [a, b]. P p = (λr . P a r ;3 P b)›
and ‹SEQ3 p ∈@ [a, b, c]. P p = (λr . P a r ;3 P b ;3 P c)›
by (simp-all add: Seqptick-assoc)

lemma ‹SEQ3 p ∈@ [1 ::int .. 3 ]. P p = (λr . P 1 r ;3 P 2 ;3 P 3 )›
by (simp add: upto.simps Seqptick-assoc)

lemma ‹(SEQ3 p ∈@ []. P p) = SKIP› by (fact MultiSeqptick-Nil)

lemma ‹(SEQ3 l ∈@ (a # L). P l) = (λr . P a r ;3 SEQ3 l ∈@ L. P l)› by (fact
MultiSeqptick-Cons)
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lemma MultiSeqptick-singl [simp] : ‹SEQ3 l ∈@ [a]. P l = P a› by simp

lemma MultiSeqptick-snoc : ‹SEQ3 l ∈@ (L @ [a]). P l = (λr . (SEQ3 l ∈@ L.
P l) r ;3 P a)›

by (induct L) (simp-all add: Seqptick-assoc)

lemma mono-MultiSeqptick-eq:
‹(
∧

l. l ∈ set L =⇒ P l = Q l) =⇒ SEQ3 l ∈@ L. P l = SEQ3 l ∈@ L. Q l›
by (induct L) fastforce+

lemma MultiSeqptick-const [simp] :
‹(SEQ3 l ∈@ L. (λr . P l)) =
(if L = [] then SKIP else (λr . SEQ l ∈@ L. P l))›

by (induct L rule: rev-induct) (auto simp add: MultiSeqptick-snoc)

11.1.3 Behaviour with binary version
lemma MultiSeqptick-append:

‹SEQ3 l ∈@ (L1 @ L2 ). P l = (λr . (SEQ3 l ∈@ L1 . P l) r ;3 SEQ3 l ∈@ L2 .
P l)›

by (induct L1 rule: list.induct, simp-all, metis Seqptick-assoc)

11.1.4 Other Properties
lemma MultiSeqptick-SKIP-neutral:

‹P a = SKIP =⇒ SEQ3 l ∈@ (L1 @ [a] @ L2 ). P l = SEQ3 l ∈@ (L1 @ L2 ).
P l›

by (simp add: MultiSeqptick-append)

lemma MultiSeqptick-BOT-absorb:
‹P a = ⊥ =⇒ SEQ3 l ∈@ (L1 @ [a] @ L2 ). P l = (λr . (SEQ3 l ∈@ L1 . P l)

r ;3 ⊥)›
by (simp add: MultiSeqptick-append lambda-strict)

lemma MultiSeqptick-STOP-absorb:
‹P a = (λr . STOP) =⇒ SEQ3 l ∈@ (L1 @ [a] @ L2 ). P l =

(λr . (SEQ3 l ∈@ L1 . P l) r ; STOP)›
by (simp add: MultiSeqptick-append)

lemma is-ticks-length-MultiSeqptick [is-ticks-length-intro] :
‹length3n((SEQ3 l ∈@ L. P l) r)›
if ‹L 6= []› and ‹

∧
r ′. r ′ ∈ 3s((SEQ3 l ∈@ (butlast L). P l) r) =⇒ length3n(P

(last L) r ′)›
proof −

from that(1 ) obtain l L ′ where ‹L = L ′ @ [l]›
by (cases L rule: rev-cases) auto
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with that(2 ) have ‹r ′ ∈ 3s((SEQ3 l ∈@ L ′. P l) r) =⇒ length3n(P l r ′)› for
r ′ by simp

thus ?thesis
by (auto simp add: ‹L = L ′@ [l]› MultiSeqptick-snoc intro: is-ticks-length-Seqptick)

qed

11.1.5 Behaviour with injectivity
lemma inj-on-mapping-over-MultiSeqptick:

‹inj-on f (set L) =⇒
SEQ3 l ∈@ L. P l = SEQ3 l ∈@ map f L. P (inv-into (set L) f l)›

proof (induct L)
show ‹inj-on f (set []) =⇒ MultiSeqptick [] P =

SEQ3 x∈@map f []. P (inv-into (set []) f x)› by simp
next

case (Cons a L)
show ?case
proof (rule ext)

fix r
have ‹(SEQ3 l ∈@ (a # L). P l) r = P a r ;3 SEQ3 l ∈@ L. P l› by simp
also have ‹SEQ3 l ∈@ L. P l = SEQ3 l ∈@ map f L. P (inv-into (set L) f l)›

using Cons.hyps Cons.prems by auto
also have ‹. . . = SEQ3 l ∈@ map f L. P (inv-into (set (a # L)) f l)›

using Cons.prems by (auto intro!: mono-MultiSeqptick-eq)
finally show ‹(SEQ3 l ∈@ (a # L). P l) r =

(SEQ3 l ∈@ map f (a # L). P (inv-into (set (a # L)) f l)) r›
using Cons.prems by auto

qed
qed

unbundle no funcset-syntax
— Inherited from HOL−Combinatorics.List-Permutation.

11.2 Synchronization Product
11.2.1 Definition

The generalized synchronization product is not really commutative (see Re-
namingTick (P [[A]]3 Q) ⊗3⇒⊗3rev = Q [[A]]3rev P). We therefore define
the architectural version on a list.

fun MultiSyncptick ::
‹[ ′a set, ′b list, ′b ⇒ ( ′a, ′r) processptick] ⇒ ( ′a, ′r list) processptick›
where ‹MultiSyncptick S [] P = STOP›
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| ‹MultiSyncptick S [l] P = RenamingTick (P l) (λr . [r ])›
| ‹MultiSyncptick S (l # m # L) P = P l [[S ]]3Rlist MultiSyncptick S (m #

L) P›

syntax -MultiSyncptick ::
‹[pttrn, ′a set, ′b list, ( ′a, ′r) processptick] ⇒ ( ′a, ′r) processptick›
(‹(3[[-]]3 - ∈@ -./ -)› [78 ,78 ,78 ,77 ] 77 )

syntax-consts -MultiSyncptick 
 MultiSyncptick
translations [[S]]3 l ∈@ L. P 
 CONST MultiSyncptick S L (λl. P)

Special case of MultiSyncptick S P when S = {}.
abbreviation MultiInterptick ::

‹[ ′b list, ′b ⇒ ( ′a, ′r) processptick] ⇒ ( ′a, ′r list) processptick›
where ‹MultiInterptick L P ≡ MultiSyncptick {} L P›

syntax -MultiInterptick ::
‹[pttrn, ′b list, ( ′a, ′r) processptick] ⇒ ( ′a, ′r) processptick›
(‹(3|||3 -∈@-./ -)› [78 ,78 ,77 ] 77 )

syntax-consts -MultiInterptick 
 MultiInterptick

translations |||3 l ∈@ L. P 
 CONST MultiInterptick L (λl. P)

Special case of MultiSyncptick S P when S = UNIV.
abbreviation MultiParptick ::

‹[ ′b list, ′b ⇒ ( ′a, ′r) processptick] ⇒ ( ′a, ′r list) processptick›
where ‹MultiParptick L P ≡ MultiSyncptick UNIV L P›

syntax -MultiParptick ::
‹[pttrn, ′b list, ( ′a, ′r) processptick] ⇒ ( ′a, ′r) processptick›
(‹(3||3 -∈@-./ -)› [78 ,78 ,77 ] 77 )

syntax-consts -MultiParptick 
 MultiParptick

translations ||3 l ∈@ L. P 
 CONST MultiParptick L (λl. P)

11.2.2 First properties
lemma is-ticks-length-MultiSyncptick [is-ticks-length-intro] :

‹length3length L([[S]]3 l ∈@ L. P l)›
by (induct L rule: induct-list012 )
(simp-all add: is-ticks-length-STOP is-ticks-length-Renaming

is-ticks-length-Suc-SyncRlist)

lemma MultiSyncptick-Cons :
‹[[S]]3 m ∈@ (l # L). P m =
( if L = [] then RenamingTick (P l) (λr . [r ])
else P l [[S ]]3Rlist [[S]]3 m ∈@ L. P m)›

by (cases L) simp-all
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lemma mono-MultiSyncptick-eq :
‹(
∧

l. l ∈ set L =⇒ P l = Q l) =⇒ [[S]]3 l ∈@ L. P l = [[S]]3 l ∈@ L. Q l›
by (induct L rule: induct-list012 ) simp-all

lemma mono-MultiSyncptick-eq2 :
‹(
∧

l. l ∈ set L =⇒ P (f l) = Q l) =⇒ [[S]]3 l ∈@ map f L. P l = [[S]]3 l ∈@ L.
Q l›

by (induct L rule: induct-list012 ) simp-all

— Some tests
lemma ‹([[S]]3 l ∈@ []. P l) = STOP›

and ‹([[S]]3 l ∈@ [a]. P l) = RenamingTick (P a) (λr . [r ])›
and ‹([[S]]3 l ∈@ [a, b]. P l) = P a [[S ]]3Rlist RenamingTick (P b) (λr . [r ])›
and ‹([[S]]3 l ∈@ [a, b, c]. P l) = P a [[S ]]3Rlist (P b [[S ]]3Rlist RenamingTick

(P c) (λr . [r ]))›
by simp-all

11.2.3 Properties
lemma MultiSyncptick-is-BOT-iff :

‹[[S]]3 l ∈@ L. P l = ⊥ ←→ (∃ l ∈ set L. P l = ⊥)›
by (induct L rule: induct-list012 )
(simp-all add: Renaming-is-BOT-iff SyncRlist.Syncptick-is-BOT-iff )

lemma MultiSyncptick-BOT-absorb:
‹l ∈ set L =⇒ P l = ⊥ =⇒ [[S]]3 l ∈@ L. P l = ⊥›
using MultiSyncptick-is-BOT-iff by blast

lemma MultiSyncptick-SKIP-id :
‹[[S]]3 r ∈@ L. SKIP r = (if L = [] then STOP else SKIP L)›
by (induct L rule: induct-list012 ) simp-all

11.2.4 Behaviour with binary version
lemma MultiSyncptick-append :

‹L1 6= [] =⇒ L2 6= [] =⇒
[[S]]3 l ∈@ (L1 @ L2 ). P l =
[[S]]3 l ∈@ L1 . P l length L1[[S ]]3length L2 [[S]]3 l ∈@ L2 . P l›

proof (induct L1 rule: list-nonempty-induct)
case (single l) thus ?case
by (simp add: is-ticks-length-MultiSyncptick MultiSyncptick-Cons flip: SyncRlist-to-SyncLists)

next
let ?RT = ‹λP. RenamingTick P (λr . [r ])›
case (cons l L1 )
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have ‹[[S]]3 l ∈@ ((l # L1 ) @ L2 ). P l = P l [[S ]]3Rlist [[S]]3 l ∈@ (L1 @ L2 ).
P l›

by (simp add: MultiSyncptick-Cons ‹L1 6= []›)
also have ‹. . . = ?RT (P l) Suc 0[[S ]]3length (L1 @ L2 ) [[S]]3 l ∈@ (L1 @ L2 ).

P l›
by (intro SyncRlist-to-SyncLists is-ticks-length-MultiSyncptick)

also have ‹. . . = ?RT (P l) Suc 0[[S ]]3length L1 + length L2
([[S]]3 l ∈@ L1 . P l length L1[[S ]]3length L2 [[S]]3 l ∈@ L2 . P l)›

using cons.hyps(2 ) cons.prems by simp
also have ‹. . . = ?RT (P l) Suc 0[[S ]]3length L1 [[S]]3 l ∈@ L1 . P l

Suc 0 + length L1[[S ]]3length L2 [[S]]3 l ∈@ L2 . P l›
by (simp add: SyncLists-assoc)

also have ‹?RT (P l) Suc 0[[S ]]3length L1 [[S]]3 l ∈@ L1 . P l =
P l [[S ]]3Rlist [[S]]3 l ∈@ L1 . P l›

by (intro SyncRlist-to-SyncLists[symmetric] is-ticks-length-MultiSyncptick)
also have ‹. . . = [[S]]3 l ∈@ (l # L1 ). P l›

by (simp add: MultiSyncptick-Cons ‹L1 6= []›)
finally show ?case by simp

qed

11.2.5 Behaviour with injectivity
lemma inj-on-mapping-over-MultiSyncptick:

‹inj-on f (set L) =⇒
[[S]]3 l ∈@ L. P l = [[S]]3 l ∈@ map f L. P (inv-into (set L) f l)›

proof (induct L rule: induct-list012 )
case (3 l ′ l ′′ L)
have ‹[[S]]3 l ∈@ (l ′ # l ′′ # L). P l =

P l ′ [[S ]]3Rlist [[S]]3 l ∈@ (l ′′ # L). P l› by simp
also have ‹[[S]]3 l ∈@ (l ′′ # L). P l =

[[S]]3 l ∈@ map f (l ′′ # L). P (inv-into (set (l ′′ # L)) f l)›
by (metis 3 .hyps(2 ) 3 .prems inj-on-insert list.simps(15 ))

also have ‹. . . = [[S]]3 l ∈@ map f (l ′′ # L). P (inv-into (set (l ′ # l ′′ # L)) f
l)›

using 3 .prems by (auto intro!: mono-MultiSyncptick-eq)
also have ‹P l ′ = P (inv-into (set (l ′ # l ′′ # L)) f (f l ′))›

using 3 .prems by auto
finally show ?case by simp

qed simp-all

11.2.6 Permuting the Sequence

A particular Case

lemma MultiSyncptick-snoc :
‹[[S]]3 m ∈@ (L @ [l]). P m =
( if L = [] then RenamingTick (P l) (λr . [r ])
else [[S]]3 m ∈@ L. P m [[S ]]3Llist P l)›

by (simp add: MultiSyncptick-append)
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(metis (lifting) ext SyncLlist-to-SyncLists is-ticks-length-MultiSyncptick)

At the beginning, we wanted to prove the following property.

theorem MultiSyncptick-rev :
‹[[S]]3 l ∈@ (rev L). P l = RenamingTick ([[S]]3 l ∈@ L. P l) rev›

proof (induct L)
case Nil show ?case by simp

next
let ?RT = ‹RenamingTick›
case (Cons l L)
show ?case
proof (cases ‹L = []›)

show ‹L = [] =⇒ ?case› by (simp add: comp-def flip: Renaming-comp id-def )
next

assume ‹L 6= []›
have ‹[[S]]3 m ∈@ (rev (l # L)). P m = [[S]]3 m ∈@ (rev L). P m [[S ]]3Llist

P l›
by (simp add: MultiSyncptick-snoc ‹L 6= []›)

also have ‹. . . = ?RT ([[S]]3 m ∈@ L. P m) rev [[S ]]3Llist P l›
by (simp only: Cons.hyps)

also have ‹. . . = ?RT ([[S]]3 m ∈@ L. P m) rev [[S ]]3Llist ?RT (P l) id› by
simp

also have ‹. . . = Syncptick-locale.Syncptick (λr s. Some (rev r @ [s]))
([[S]]3 m ∈@ L. P m) S (P l)›

by (subst SyncRlist.Syncptick-comm-locale-sym.inj-RenamingTick-Syncptick-inj-RenamingTick)
simp-all

also have ‹. . . = ?RT (P l [[S ]]3Rlist [[S]]3 m ∈@ L. P m) rev›
proof (subst SyncRlist.inj-on-RenamingTick-Syncptick)

show ‹inj-on rev SyncRlist.range-tick-join› by simp
next

show ‹Syncptick-locale.Syncptick (λr s. Some (rev r @ [s])) ([[S]]3 m ∈@ L.
P m) S (P l) =

Syncptick-locale.Syncptick
(λr s. case Some (r # s) of None ⇒ None | Some r-s ⇒ Some (rev r-s))
(P l) S (MultiSyncptick S L P)›

by (subst Syncptick-locale.Syncptick-sym, simp-all)
(unfold-locales, blast)

qed
also have ‹P l [[S ]]3Rlist [[S]]3 m ∈@ L. P m = [[S]]3 m ∈@ (l # L). P m›

by (simp add: MultiSyncptick-Cons ‹L 6= []›)
finally show ?case .

qed
qed

This has just been established for rev L, which is a particular permutation
of the list L. It turns out that it actually holds for any permutation. The
rest of this file constitutes the proof.
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Arbitrary Permutation

Some preliminary results lemma permute-list-transpose-eq-list-update :
‹i < length xs =⇒ j < length xs =⇒
permute-list (Transposition.transpose i j) xs = xs[i := xs!j, j := xs!i]›

by (auto simp add: permute-list-def transpose-def intro: nth-equalityI )

lemma inj-on-permute-list-transpose :
‹i < n =⇒ j < n =⇒ inj-on (permute-list (Transposition.transpose i j)) {xs. n
≤ length xs}›

by (auto intro!: inj-onI simp add: permute-list-transpose-eq-list-update)
(metis length-list-update nth-equalityI nth-list-update-eq nth-list-update-neq or-

der-less-le-trans)

lemma rev-permute-list-transpose :
‹i < length L =⇒ j < length L =⇒
rev (permute-list (Transposition.transpose i j) L) =
permute-list (Transposition.transpose (length L − Suc i) (length L − Suc j)) (rev

L)›
by (simp add: permute-list-transpose-eq-list-update rev-nth rev-update)

lemma permute-list-transpose-rev :
‹i < length L =⇒ j < length L =⇒
permute-list (Transposition.transpose i j) (rev L) =
rev (permute-list (Transposition.transpose (length L − Suc i) (length L − Suc

j)) L)›
by (simp add: permute-list-transpose-eq-list-update rev-nth rev-update)

lemma tickFree-map-map-eventptick-id-eq :
‹tF t =⇒ map (map-eventptick id g) t = t›
and tickFree-mem-T-RenamingTick-iff-mem-T :
‹tF t =⇒ t ∈ T (RenamingTick P g) ←→ t ∈ T P›
and tickFree-mem-D-RenamingTick-iff-mem-D :
‹tF t =⇒ t ∈ D (RenamingTick P g) ←→ t ∈ D P›
for P :: ‹( ′a, ′r) processptick› and g :: ‹ ′r ⇒ ′r›

— Necessarily here, antecedents and images for g share the same type.
proof −

show ∗ : ‹tF t =⇒ map (map-eventptick id g) t = t› for t :: ‹( ′a, ′r) traceptick›
by (induct t) (auto simp add: is-ev-def )

show ‹tF t =⇒ t ∈ T (RenamingTick P g) ←→ t ∈ T P›
by (auto simp add: T-Renaming ∗ map-eventptick-tickFree D-T is-processT7 )

show ‹tF t =⇒ t ∈ D (RenamingTick P g) ←→ t ∈ D P›
by (auto simp add: D-Renaming ∗ is-processT7 )
(metis ∗ front-tickFree-Nil self-append-conv)

qed

The proof We start by proving that the RenamingTick of the right-hand
side process Q by a transposition can be “taken to the outside” of the syn-
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chronization P [[S ]]3Rlist Q.

lemma SyncRlist-RenamingTick-permute-list-transpose :
‹P [[S ]]3Rlist RenamingTick Q (permute-list (Transposition.transpose i j)) =
RenamingTick (P [[S ]]3Rlist Q) (permute-list (Transposition.transpose (Suc i)

(Suc j)))›
(is ‹?lhs = ?rhs›) if ‹i < n› ‹j < n› ‹

∧
rs. rs ∈ 3s(Q) =⇒ n ≤ length rs›

proof −
let ?τ = Transposition.transpose
let ?pl-τ = ‹λi j. permute-list (?τ i j)›
let ?fun-evt = ‹λi j. map-eventptick id (?pl-τ i j)›
let ?map-evt = ‹λi j. map (?fun-evt i j)›
let ?RT = ‹λi j P. RenamingTick P (?pl-τ i j)›
let ?tj = ‹λr s. br # sc›
note map-eventptick-eq-iffs [simp] =

ev-eq-map-eventptick-iff tick-eq-map-eventptick-iff
map-eventptick-eq-ev-iff map-eventptick-eq-tick-iff

have length-ge-eq-pl-τ -imp-eq : ‹r = r ′›
if ‹n ≤ length r› and ‹?pl-τ i j r = ?pl-τ i j r ′› for r r ′ :: ‹ ′r list›

proof −
from ‹n ≤ length r› have ‹n ≤ length (?pl-τ i j r)› by simp
with ‹?pl-τ i j r = ?pl-τ i j r ′› have ‹n ≤ length r ′› by simp
have ‹inj-on (?pl-τ i j) {r . n ≤ length r}›

by (simp add: ‹i < n› ‹j < n› inj-on-permute-list-transpose)
with ‹n ≤ length r› ‹n ≤ length r ′› ‹?pl-τ i j r = ?pl-τ i j r ′›
show ‹r = r ′› by (auto dest: inj-onD)

qed
have pl-τ -pl-τ : ‹n ≤ length r =⇒ ?pl-τ i j (?pl-τ i j r) = r› for r :: ‹ ′r list›

by (subst permute-list-compose[symmetric])
(metis lessThan-iff order-less-le-trans permutes-swap-id ‹i < n› ‹j < n›, simp)

have fun-evt-fun-evt :
‹(case e of ev a ⇒ True | 3(r) ⇒ n ≤ length r) =⇒ ?fun-evt i j (?fun-evt i j

e) = e›
for e :: ‹( ′a, ′r list) eventptick›
by (cases e) (simp-all add: pl-τ -pl-τ)

have map-evt-map-evt :
‹(
∧

e. e ∈ set t =⇒ case e of ev a ⇒ True | 3(r) ⇒ n ≤ length r)
=⇒ ?map-evt i j (?map-evt i j t) = t› for t :: ‹( ′a, ′r list) traceptick›

by (induct t) (simp-all add: fun-evt-fun-evt)
from ‹i < n› ‹j < n› have pl-τ -Cons :

‹n ≤ length s =⇒ ?pl-τ (Suc i) (Suc j) (r # s) = r # ?pl-τ i j s› for r and s
:: ‹ ′r list›

by (simp add: list-update-append1 nth-append-left permute-list-transpose-eq-list-update)
show ‹?lhs = ?rhs›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ?lhs›
then obtain u v t-P t-Q where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›

‹u setinterleaves3?tj ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T (?RT i j Q) ∨ t-P ∈ T P ∧ t-Q ∈ D (?RT i j Q)›
unfolding SyncRlist.D-Syncptick by blast
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from tickFree-setinterleavesptick-iff [THEN iffD1 , OF ∗(4 , 2 )] have ‹tF t-Q›
..

with ∗(5 ) have ‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›
by (simp add: tickFree-mem-T-RenamingTick-iff-mem-T tickFree-mem-D-RenamingTick-iff-mem-D)
with ∗(1−4 ) have ‹t ∈ D (P [[S ]]3Rlist Q)›

by (auto simp add: SyncRlist.D-Syncptick)
thus ‹t ∈ D ?rhs›

by (meson D-imp-front-tickFree div-butlast-when-non-tickFree-iff
front-tickFree-iff-tickFree-butlast tickFree-mem-D-RenamingTick-iff-mem-D)

next
fix t assume ‹t ∈ D ?rhs›
then obtain t1 t2

where ∗ : ‹t = ?map-evt (Suc i) (Suc j) t1 @ t2 › ‹tF t1 › ‹ftF t2 › ‹t1 ∈ D
(P [[S ]]3Rlist Q)›

by (auto simp add: D-Renaming)
from ∗(1 , 2 ) have ‹t = t1 @ t2 ›

by (simp add: tickFree-map-map-eventptick-id-eq)
from ∗(4 ) obtain u1 u2 t-P t-Q where ∗∗ : ‹t1 = u1 @ u2 › ‹tF u1 › ‹ftF u2 ›

‹u1 setinterleaves3?tj ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›
unfolding SyncRlist.D-Syncptick by blast

from tickFree-setinterleavesptick-iff [THEN iffD1 , OF ∗∗(4 , 2 )] have ‹tF t-Q›
..

with ∗∗(5 ) have ‹t-P ∈ D P ∧ t-Q ∈ T (?RT i j Q) ∨ t-P ∈ T P ∧ t-Q ∈ D
(?RT i j Q)›

by (simp-all add: tickFree-mem-T-RenamingTick-iff-mem-T tickFree-mem-D-RenamingTick-iff-mem-D)
with ∗∗(1−4 ) ∗(2 , 3 ) ‹t = t1 @ t2 › show ‹t ∈ D ?lhs›

by (auto simp add: SyncRlist.D-Syncptick intro: front-tickFree-append)
next

fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs› ‹t /∈ D ?lhs›
then obtain t ′ where ∗ : ‹t = ?map-evt (Suc i) (Suc j) t ′›

‹(t ′, ?fun-evt (Suc i) (Suc j) −‘ X) ∈ F (P [[S ]]3Rlist Q)›
unfolding Renaming-projs by blast

from ∗(2 ) ‹t /∈ D ?rhs› have ‹t ′ /∈ D (P [[S ]]3Rlist Q)›
by (metis (no-types, lifting) ∗(1 ) D-imp-front-tickFree div-butlast-when-non-tickFree-iff

front-tickFree-iff-tickFree-butlast map-butlast map-eventptick-tickFree
tickFree-map-map-eventptick-id-eq tickFree-mem-D-RenamingTick-iff-mem-D)

with ∗(2 ) obtain t-P t-Q X-P X-Q
where ∗∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›

‹t ′ setinterleaves3?tj ((t-P, t-Q), S)›
‹?fun-evt (Suc i) (Suc j) −‘ X ⊆ super-ref-Syncptick ?tj X-P S X-Q›

unfolding SyncRlist.Syncptick-projs by force
from ∗(2 ) consider ‹tF t ′› | t ′′ rs where ‹tF t ′′› ‹t ′ = t ′′ @ [3(rs)]›

by (metis (lifting) F-T F-imp-front-tickFree T-nonTickFree-imp-decomp
butlast-snoc front-tickFree-iff-tickFree-butlast)

thus ‹(t, X) ∈ F ?lhs›
proof cases

assume ‹tF t ′›
have ‹?map-evt (Suc i) (Suc j) t ′ = t ′›
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by (simp add: ‹tF t ′› tickFree-map-map-eventptick-id-eq)
have ‹?map-evt i j t-Q = t-Q›
using ∗∗(3 ) ‹tF t ′› tickFree-map-map-eventptick-id-eq tickFree-setinterleavesptick-iff

by blast
define X-Q ′ where ‹X-Q ′ ≡ X-Q ∩ (range ev ∪ {3(r) |r . n ≤ length r})›
define X ′ where ‹X ′ ≡ X ∩ (range ev ∪ {3(rs) |rs. Suc n ≤ length rs})›
have ‹X-Q ′ ⊆ X-Q› unfolding X-Q ′-def by blast
with ∗∗(2 ) is-processT4 have ‹(t-Q, X-Q ′) ∈ F Q› by blast
moreover have ‹?fun-evt i j −‘ (?fun-evt i j ‘ X-Q ′) = X-Q ′›

by (auto simp add: X-Q ′-def )
(use length-ge-eq-pl-τ -imp-eq in blast)+

moreover have ‹?map-evt i j t-Q = t-Q› by fact
ultimately have ‹(t-Q, ?fun-evt i j ‘ X-Q ′) ∈ F (?RT i j Q)›

by (auto simp add: F-Renaming)
moreover have ‹e ∈ X ′ =⇒ e ∈ super-ref-Syncptick ?tj X-P S (?fun-evt i j

‘ X-Q ′)› for e
using ∗∗(4 )[THEN set-mp, of ‹?fun-evt (Suc i) (Suc j) e›]
unfolding X ′-def X-Q ′-def super-ref-Syncptick-def
by (auto simp add: image-iff pl-τ -Cons) (use pl-τ -pl-τ in force)

ultimately have ‹(t, X ′) ∈ F ?lhs›
by (simp add: SyncRlist.F-Syncptick)
(metis ∗(1 ) ∗∗(1 , 3 ) ‹?map-evt (Suc i) (Suc j) t ′ = t ′› subsetI )

moreover have ‹Suc n ≤ length (rs)› if ‹t @ [3(rs)] ∈ T ?lhs› for rs
proof −

from ‹t /∈ D ?lhs› have ‹t @ [3(rs)] /∈ D ?lhs›
by (meson is-processT9 )

with ‹t @ [3(rs)] ∈ T ?lhs›
obtain t-P ′′ t-Q ′′ where £ : ‹t-P ′′ ∈ T P› ‹t-Q ′′ ∈ T (?RT i j Q)›

‹t @ [3(rs)] setinterleaves3λr s. br # sc ((t-P ′′, t-Q ′′), S)›
unfolding SyncRlist.Syncptick-projs by blast

from £ obtain t-P ′′′ t-Q ′′′ r s
where ££ : ‹rs = r # s› ‹t-P ′′ = t-P ′′′ @ [3(r)]› ‹t-Q ′′ = t-Q ′′′ @ [3(s)]›

‹t setinterleaves3λr s. br # sc ((t-P ′′′, t-Q ′′′), S)›
by (auto elim: snoc-tick-setinterleavesptickE)

have ‹tF t-Q ′′′› using £(2 ) ££(3 ) append-T-imp-tickFree by blast
from ‹t /∈ D ?lhs› £(1 ) ££(2 , 4 ) have ‹t-Q ′′′ /∈ D (?RT i j Q)›

by (simp add: SyncRlist.D-Syncptick ′)
(use front-tickFree-Nil is-processT3-TR-append in blast)

with £(2 ) obtain t-Q ′′′′

where ‹?map-evt i j t-Q ′′′′ = t-Q ′′′ @ [3(s)]› ‹t-Q ′′′′ ∈ T Q›
by (simp add: Renaming-projs)
(metis ££(3 ) ‹t-Q ′′′ /∈ D (?RT i j Q)› is-processT7 is-processT9

tickFree-map-map-eventptick-id-eq tickFree-mem-D-RenamingTick-iff-mem-D)
then obtain s ′ where £££ : ‹s = ?pl-τ i j s ′› ‹t-Q ′′′ @ [3(s ′)] ∈ T Q›

by (auto simp add: map-eq-append-conv Cons-eq-map-conv
append-T-imp-tickFree tickFree-map-map-eventptick-id-eq)

have ‹s ′ ∈ 3s(Q)›
by (meson £££(2 ) ‹tF t-Q ′′′› ‹t-Q ′′′ /∈ D (?RT i j Q)› is-processT9

strict-ticks-of-memI tickFree-mem-D-RenamingTick-iff-mem-D)
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with ‹
∧

rs. rs ∈ 3s(Q) =⇒ n ≤ length rs› have ‹n ≤ length s ′› .
with ‹s = ?pl-τ i j s ′› have ‹n ≤ length s› by simp
with ‹rs = r # s› show ‹Suc n ≤ length rs› by simp

qed
ultimately have ‹(t, X ′ ∪ (X ∩ {3(rs) |rs. ¬ Suc n ≤ length rs})) ∈ F ?lhs›

using is-processT5-S7 ′ by blast
also have ‹X ′ ∪ (X ∩ {3(rs) |rs. ¬ Suc n ≤ length rs}) = X›

by (simp add: set-eq-iff X ′-def image-iff ) (meson eventptick.exhaust)
finally show ‹(t, X) ∈ F ?lhs› .

next
fix t ′′ rs assume ‹tF t ′′› ‹t ′ = t ′′ @ [3(rs)]›
from ∗∗(3 ) obtain t-P ′ t-Q ′ r s

where ∗∗∗ : ‹r # s = rs›
‹t ′′ setinterleaves3?tj ((t-P ′, t-Q ′), S)›
‹t-P = t-P ′ @ [3(r)]› ‹t-Q = t-Q ′ @ [3(s)]›

by (auto elim: snoc-tick-setinterleavesptickE
simp add: ‹t ′ = t ′′ @ [3(rs)]› split: if-split-asm)

have ‹n ≤ length s›
proof −
from ∗∗(1 )[THEN F-T ] ∗∗(3 ) ‹t ′ /∈ D (P [[S ]]3Rlist Q)› have ‹t-Q /∈ D Q›

by (simp add: SyncRlist.Syncptick-projs ′)
(use front-tickFree-Nil in blast)

with ‹(t-Q, X-Q) ∈ F Q›[THEN F-T ] have ‹s ∈ 3s(Q)›
by (simp add: ∗∗∗(4 ) strict-ticks-of-memI )

with ‹
∧

rs. rs ∈ 3s(Q) =⇒ n ≤ length rs› show ‹n ≤ length s› .
qed
from ‹t ′′ setinterleaves3?tj ((t-P ′, t-Q ′), S)›

have ‹?map-evt (Suc i) (Suc j) t ′′ setinterleaves3?tj ((t-P ′, ?map-evt i j t-Q ′),

S)›
by (metis (no-types, lifting) ‹tF t ′′› tickFree-map-map-eventptick-id-eq

tickFree-setinterleavesptick-iff )
from setinterleavesptick-snoc-tick
[OF this, of r ‹?pl-τ i j s› ‹?pl-τ (Suc i) (Suc j) rs›] ‹n ≤ length s›

have ‹?map-evt (Suc i) (Suc j) t ′ setinterleaves3?tj ((t-P, ?map-evt i j t-Q),

S)›
by (simp add: ∗∗∗(1 , 3 , 4 ) ‹t ′ = t ′′ @ [3(rs)]›) (metis ∗∗∗(1 ) pl-τ -Cons)

moreover from ∗∗(2 )[THEN F-T ] have ‹(?map-evt i j t-Q, UNIV ) ∈ F
(?RT i j Q)›

by (simp add: ∗∗∗(4 ), intro tick-T-F) (auto simp add: T-Renaming)
moreover have ‹(t-P, UNIV ) ∈ F P›

by (metis ∗∗(1 ) ∗∗∗(3 ) F-T tick-T-F)
moreover have ‹e ∈ X =⇒ e ∈ super-ref-Syncptick ?tj UNIV S UNIV › for

e
using ∗∗(4 )[THEN set-mp, of ‹?fun-evt (Suc i) (Suc j) e›]
by (cases e) (auto simp add: super-ref-Syncptick-def )

ultimately show ‹(t, X) ∈ F ?lhs›
using ∗(1 ) by (simp add: SyncRlist.F-Syncptick) blast

qed
next
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fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F (?RT i j Q)›
‹t setinterleaves3?tj ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick ?tj X-P S X-Q›

unfolding SyncRlist.Syncptick-projs by force
from ∗(1 , 3 ) ‹t /∈ D ?lhs› F-T front-tickFree-Nil
have ‹t-Q /∈ D (?RT i j Q)› unfolding SyncRlist.D-Syncptick ′ by blast
with ∗(2 ) obtain t-Q ′ where ∗∗ : ‹t-Q = ?map-evt i j t-Q ′› ‹(t-Q ′, ?fun-evt i

j −‘ X-Q) ∈ F Q›
unfolding Renaming-projs by blast

define X-Q ′ where ‹X-Q ′ ≡ X-Q ∩ (range ev ∪ {3(rs) |rs. n ≤ length rs})›
define X ′ where ‹X ′ ≡ X ∩ (range ev ∪ {3(rs) |rs. Suc n ≤ length rs})›

from ‹(t, X) ∈ F ?lhs›[THEN F-T ] consider ‹tF t› | t ′ rs where ‹tF t ′› ‹t
= t ′ @ [3(rs)]›

using T-nonTickFree-imp-decomp append-T-imp-tickFree by blast
thus ‹(t, X) ∈ F ?rhs›
proof cases

assume ‹tF t›
hence ‹?map-evt (Suc i) (Suc j) t = t›

by (simp add: tickFree-map-map-eventptick-id-eq)
have ‹?map-evt i j t-Q ′ = t-Q ′›
using ∗(3 ) ∗∗(1 ) ‹tF t› map-eventptick-tickFree tickFree-map-map-eventptick-id-eq

tickFree-setinterleavesptick-iff by blast
have ‹(t-Q, ?fun-evt i j −‘ X-Q) ∈ F Q›

by (simp add: ∗∗(1 , 2 ) ‹?map-evt i j t-Q ′ = t-Q ′›)
hence ‹(t-Q, ?fun-evt i j −‘ X-Q ′) ∈ F Q›

by (simp add: X-Q ′-def is-processT4 )
moreover have ‹(t-P, X-P) ∈ F P› by (fact ∗(1 ))
moreover have ‹t setinterleaves3?tj ((t-P, t-Q), S)› by (fact ∗(3 ))
moreover have ‹e ∈ ?fun-evt (Suc i) (Suc j) −‘ X ′ =⇒

e ∈ super-ref-Syncptick ?tj X-P S (?fun-evt i j −‘ X-Q)› for e
using set-mp[OF ∗(4 ), of ‹?fun-evt (Suc i) (Suc j) e›]
by (auto simp add: super-ref-Syncptick-def X ′-def pl-τ -Cons)

ultimately have ‹(t, ?fun-evt (Suc i) (Suc j) −‘ X ′) ∈ F (P [[S ]]3Rlist Q)›
by (unfold SyncRlist.F-Syncptick, clarify)
(metis ∗∗(1 , 2 ) ‹?map-evt i j t-Q ′ = t-Q ′› subsetI )

moreover have ‹Suc n ≤ length (rs)› if ‹t @ [3(rs)] ∈ T (P [[S ]]3Rlist Q)›
for rs

proof −
from ‹t /∈ D ?lhs› have ‹t /∈ D (P [[S ]]3Rlist Q)›

by (simp add: SyncRlist.D-Syncptick)
(metis tickFree-mem-D-RenamingTick-iff-mem-D

tickFree-mem-T-RenamingTick-iff-mem-T tickFree-setinterleavesptick-iff )
hence ‹t @ [3(rs)] /∈ D (P [[S ]]3Rlist Q)›

by (meson is-processT9 )
with ‹t @ [3(rs)] ∈ T (P [[S ]]3Rlist Q)›
obtain t-P ′′ t-Q ′′ where £ : ‹t-P ′′ ∈ T P› ‹t-Q ′′ ∈ T Q›
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‹t @ [3(rs)] setinterleaves3λr s. br # sc ((t-P ′′, t-Q ′′), S)›
unfolding SyncRlist.Syncptick-projs by blast

from £ obtain t-P ′′′ t-Q ′′′ r s
where ££ : ‹rs = r # s› ‹t-P ′′ = t-P ′′′ @ [3(r)]› ‹t-Q ′′ = t-Q ′′′ @ [3(s)]›

‹t setinterleaves3λr s. br # sc ((t-P ′′′, t-Q ′′′), S)›
by (auto elim: snoc-tick-setinterleavesptickE)

from ‹t /∈ D (P [[S ]]3Rlist Q)› have ‹t-Q ′′ /∈ D Q›
by (simp add: SyncRlist.D-Syncptick ′)
(metis £(1 ) ££(2−4 ) append.right-neutral

front-tickFree-Nil is-processT3-TR-append is-processT9 )
have ‹s ∈ 3s(Q)›

by (metis £(2 ) ££(3 ) ‹t-Q ′′ /∈ D Q› strict-ticks-of-memI )
with ‹

∧
rs. rs ∈ 3s(Q) =⇒ n ≤ length rs› have ‹n ≤ length s› .

thus ‹Suc n ≤ length rs› by (simp add: ‹rs = r # s›)
qed
ultimately have ‹(t, ?fun-evt (Suc i) (Suc j) −‘ X ′ ∪

?fun-evt (Suc i) (Suc j) −‘
(X ∩ {3(rs) |rs. ¬ Suc n ≤ length rs})) ∈ F (P [[S ]]3Rlist

Q)›
using is-processT5-S7 ′ by force

also have ‹?fun-evt (Suc i) (Suc j) −‘ X ′ ∪
?fun-evt (Suc i) (Suc j) −‘ (X ∩ {3(rs) |rs. ¬ Suc n ≤ length rs}) =
?fun-evt (Suc i) (Suc j) −‘ X›

by (auto simp add: X ′-def image-iff ) (metis eventptick.exhaust)
finally show ‹(t, X) ∈ F ?rhs›

using ‹?map-evt (Suc i) (Suc j) t = t› by (auto simp add: F-Renaming)
next

fix t ′ rs assume ‹tF t ′› ‹t = t ′ @ [3(rs)]›
from ∗(3 ) obtain t-P ′′ t-Q ′′ r s

where ∗∗∗ : ‹rs = r # s›
‹t ′ setinterleaves3?tj ((t-P ′′, t-Q ′′), S)›
‹t-P = t-P ′′ @ [3(r)]› ‹t-Q = t-Q ′′ @ [3(s)]›
‹tF t-P ′′› ‹tF t-Q ′′›

by (auto elim!: snoc-tick-setinterleavesptickE
simp add: ‹t = t ′ @ [3(rs)]› split: if-split-asm)

(metis ‹tF t ′› tickFree-setinterleavesptick-iff )
have ‹t-Q ′′ /∈ D Q›

by (metis ∗(2 ) ∗∗∗(4 ) F-imp-front-tickFree ‹t-Q /∈ D (?RT i j Q)›
front-tickFree-append-iff is-processT7 non-tickFree-tick
tickFree-Nil tickFree-mem-D-RenamingTick-iff-mem-D)

from ∗∗(1 ) ∗∗∗(4 ) obtain s ′ where ‹s = ?pl-τ i j s ′›
by (auto simp add: ∗∗(2 ) append-eq-map-conv Cons-eq-map-conv)

with ∗∗(1 ) ∗∗(2 )[THEN F-T ] ∗∗∗(4 ) have ‹t-Q ′′ @ [3(s ′)] ∈ T Q›
by (simp add: ∗∗∗(4 ) append-eq-map-conv Cons-eq-map-conv)
(metis ∗∗∗(6 ) ‹t-Q ′′ /∈ D Q› is-processT9 length-permute-list map-eventptick-tickFree

pl-τ -pl-τ strict-ticks-of-memI that(3 ) tickFree-map-map-eventptick-id-eq)
with ‹t-Q ′′ /∈ D Q› have ‹s ′ ∈ 3s(Q)›

by (metis is-processT9 strict-ticks-of-memI )
with ‹

∧
rs. rs ∈ 3s(Q) =⇒ n ≤ length rs› have ‹n ≤ length s ′› .
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with ‹s = ?pl-τ i j s ′› have ‹n ≤ length s› by simp
hence ‹Suc n ≤ length rs› by (simp add: ‹rs = r # s›)

have ‹?map-evt (Suc i) (Suc j) t setinterleaves3?tj ((t-P, ?map-evt i j t-Q),

S)›
by (simp add: ∗∗∗(1−3 , 4 , 6 ) ‹t = t ′ @ [3(rs)]› ‹n ≤ length s› ‹tF t ′›

pl-τ -Cons
setinterleavesptick-snoc-tick tickFree-map-map-eventptick-id-eq)

moreover have ‹t-P ∈ T P› using ∗(1 ) F-T by blast
moreover from ∗(2 )[THEN F-T ] ‹n ≤ length s› have ‹?map-evt i j t-Q ∈

T Q›
by (auto simp add: T-Renaming ∗∗∗(4 , 6 ) append-eq-map-conv Cons-eq-map-conv

tickFree-map-map-eventptick-id-eq pl-τ -pl-τ)
(metis append-T-imp-tickFree not-Cons-self2 tickFree-map-map-eventptick-id-eq,

metis ‹t-Q ′′ /∈ D Q› is-processT7 is-processT9 )
ultimately have ‹?map-evt (Suc i) (Suc j) t ∈ T (P [[S ]]3Rlist Q)›

by (auto simp add: SyncRlist.T-Syncptick)
with ‹n ≤ length s› have ‹t ∈ T ?rhs›

by (auto simp add: T-Renaming ‹t = t ′ @ [3(rs)]› append-eq-map-conv
Cons-eq-map-conv)

(metis ∗∗∗(1 ) ‹tF t ′› length-permute-list pl-τ -Cons pl-τ -pl-τ tickFree-map-map-eventptick-id-eq)
thus ‹(t, X) ∈ F ?rhs› by (simp add: ‹t = t ′ @ [3(rs)]› tick-T-F)

qed
qed

qed

lemma RenamingTick-permute-list-transpose-SyncListslenL :
‹RenamingTick P (permute-list (Transposition.transpose i j)) n[[S ]]3ListslenL Q

=
RenamingTick (P n[[S ]]3ListslenL Q) (permute-list (Transposition.transpose i

j))›
(is ‹?lhs = ?rhs›) if ‹i < n› ‹j < n› for P :: ‹( ′a, ′r list) processptick›

proof −
let ?pl = ‹permute-list (Transposition.transpose i j)›
let ?fun-evt = ‹map-eventptick id (permute-list (Transposition.transpose i j))›
let ?map-evt = ‹map ?fun-evt›

and ?RT = ‹λP. RenamingTick P (permute-list (Transposition.transpose i j))›
and ?tj = ‹λr s. if length r = n then br @ sc else ♦›

note map-eventptick-eq-iffs [simp] =
ev-eq-map-eventptick-iff tick-eq-map-eventptick-iff map-eventptick-eq-ev-iff map-eventptick-eq-tick-iff

have length-eq-pl-imp : ‹r = r ′› if ‹n ≤ length r› and ‹?pl r = ?pl r ′› for r r ′

:: ‹ ′r list›
proof −

from ‹n ≤ length r› have ‹n ≤ length (?pl r)› by simp
with ‹?pl r = ?pl r ′› have ‹n ≤ length r ′› by simp
have ‹inj-on ?pl {r . n ≤ length r}›

by (simp add: ‹i < n› ‹j < n› inj-on-permute-list-transpose)
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with ‹n ≤ length r› ‹n ≤ length r ′› ‹?pl r = ?pl r ′›
show ‹r = r ′› by (auto dest: inj-onD)

qed
have pl-pl : ‹n ≤ length r =⇒ ?pl (?pl r) = r› for r :: ‹ ′r list›

by (subst permute-list-compose[symmetric])
(metis lessThan-iff order-less-le-trans permutes-swap-id ‹i < n› ‹j < n›, simp)

have fun-evt-fun-evt :
‹(case e of ev a ⇒ True | 3(r) ⇒ n ≤ length r) =⇒ ?fun-evt (?fun-evt e) = e›
for e :: ‹( ′a, ′r list) eventptick›
by (cases e) (simp-all add: pl-pl)

have map-evt-map-evt :
‹(
∧

e. e ∈ set t =⇒ case e of ev a ⇒ True | 3(r) ⇒ n ≤ length r)
=⇒ ?map-evt (?map-evt t) = t› for t :: ‹( ′a, ′r list) traceptick›

by (induct t) (simp-all add: fun-evt-fun-evt)
from ‹i < n› ‹j < n› have pl-append :

‹n ≤ length r =⇒ ?pl (r @ r ′) = ?pl r @ r ′› for r r ′ :: ‹ ′r list›
by (simp add: list-update-append1 nth-append-left permute-list-transpose-eq-list-update)

show ‹?lhs = ?rhs›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ?lhs›
then obtain u v t-P t-Q where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›

‹u setinterleaves3?tj ((t-P, t-Q), S)›
‹t-P ∈ D (?RT P) ∧ t-Q ∈ T Q ∨ t-P ∈ T (?RT P) ∧ t-Q ∈ D Q›
unfolding SyncListslenL.D-Syncptick by blast

from tickFree-setinterleavesptick-iff [THEN iffD1 , OF ∗(4 , 2 )] have ‹tF t-P›
..

with ∗(5 ) have ‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›
by (simp-all add: tickFree-mem-T-RenamingTick-iff-mem-T tickFree-mem-D-RenamingTick-iff-mem-D)
with ∗(1−4 ) have ‹t ∈ D (P n[[S ]]3ListslenL Q)›

by (auto simp add: SyncListslenL.D-Syncptick)
thus ‹t ∈ D ?rhs›

by (meson D-imp-front-tickFree div-butlast-when-non-tickFree-iff
front-tickFree-iff-tickFree-butlast tickFree-mem-D-RenamingTick-iff-mem-D)

next
fix t assume ‹t ∈ D ?rhs›
then obtain t1 t2
where ∗ : ‹t = ?map-evt t1 @ t2 › ‹tF t1 › ‹ftF t2 › ‹t1 ∈ D (P n[[S ]]3ListslenL

Q)›
by (auto simp add: D-Renaming)

from ∗(1 , 2 ) have ‹t = t1 @ t2 ›
by (simp add: tickFree-map-map-eventptick-id-eq)

from ∗(4 ) obtain u1 u2 t-P t-Q where ∗∗ : ‹t1 = u1 @ u2 › ‹tF u1 › ‹ftF u2 ›
‹u1 setinterleaves3?tj ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›
unfolding SyncListslenL.D-Syncptick by blast

from tickFree-setinterleavesptick-iff [THEN iffD1 , OF ∗∗(4 , 2 )] have ‹tF t-P›
..

with ∗∗(5 ) have ‹t-P ∈ D (?RT P) ∧ t-Q ∈ T Q ∨ t-P ∈ T (?RT P) ∧ t-Q
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∈ D Q›
by (simp-all add: tickFree-mem-T-RenamingTick-iff-mem-T tickFree-mem-D-RenamingTick-iff-mem-D)
with ∗∗(1−4 ) ∗(2 , 3 ) ‹t = t1 @ t2 › show ‹t ∈ D ?lhs›

by (auto simp add: SyncListslenL.D-Syncptick intro: front-tickFree-append)
next

fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F (?RT P)› ‹(t-Q, X-Q) ∈ F Q›
‹t setinterleaves3?tj ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick ?tj X-P S X-Q›

unfolding SyncListslenL.Syncptick-projs by force
from ∗(2 , 3 ) ‹t /∈ D ?lhs› F-T front-tickFree-Nil
have ‹t-P /∈ D (?RT P)› unfolding SyncListslenL.D-Syncptick ′ by blast
with ∗(1 ) obtain t-P ′ where ∗∗ : ‹t-P = ?map-evt t-P ′› ‹(t-P ′, ?fun-evt −‘

X-P) ∈ F P›
unfolding Renaming-projs by blast

from ‹(t, X) ∈ F ?lhs›[THEN F-T ] consider ‹tF t› | t ′ rs where ‹tF t ′› ‹t
= t ′ @ [3(rs)]›

using T-nonTickFree-imp-decomp append-T-imp-tickFree by blast
thus ‹(t, X) ∈ F ?rhs›
proof cases

assume ‹tF t›
hence ‹?map-evt t = t›

by (simp add: tickFree-map-map-eventptick-id-eq)
have ‹?map-evt t-P ′ = t-P ′›
using ∗(3 ) ∗∗(1 ) ‹tF t› map-eventptick-tickFree tickFree-map-map-eventptick-id-eq

tickFree-setinterleavesptick-iff by blast
have ‹(t-P, ?fun-evt −‘ X-P) ∈ F P›

by (simp add: ∗∗(1 ,2 ) ‹?map-evt t-P ′ = t-P ′›)
moreover have ‹(t-Q, X-Q) ∈ F Q› by (fact ∗(2 ))
moreover have ‹t setinterleaves3?tj ((t-P, t-Q), S)› by (fact ∗(3 ))
moreover have ‹e ∈ ?fun-evt −‘ X =⇒ e ∈ super-ref-Syncptick ?tj (?fun-evt

−‘ X-P) S X-Q› for e
using ∗(4 )[THEN set-mp, of ‹?fun-evt e›]
by (cases e, auto simp add: super-ref-Syncptick-def split: if-split-asm)
(metis append-eq-append-conv dual-order .refl length-permute-list pl-append,
metis append-eq-append-conv dual-order .refl length-permute-list pl-append,

metis dual-order .refl length-permute-list pl-append)
ultimately have ‹(t, ?fun-evt −‘ X) ∈ F (P n[[S ]]3ListslenL Q)›

by (simp add: SyncListslenL.F-Syncptick) blast
with ‹?map-evt t = t› show ‹(t, X) ∈ F ?rhs›

by (auto simp add: F-Renaming)
next

fix t ′ rs assume ‹tF t ′› ‹t = t ′ @ [3(rs)]›
from ∗(3 ) obtain t-P ′′ t-Q ′′ r s

where ∗∗∗ : ‹length r = n› ‹r @ s = rs›
‹t ′ setinterleaves3?tj ((t-P ′′, t-Q ′′), S)›
‹t-P = t-P ′′ @ [3(r)]› ‹t-Q = t-Q ′′ @ [3(s)]›

by (auto elim: snoc-tick-setinterleavesptickE
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simp add: ‹t = t ′ @ [3(rs)]› split: if-split-asm)
have ‹?pl r @ s = ?pl rs› using ∗∗∗(1 , 2 ) pl-append by force
from ‹t ′ setinterleaves3?tj ((t-P ′′, t-Q ′′), S)›
have ‹?map-evt t ′ setinterleaves3?tj ((?map-evt t-P ′′, t-Q ′′), S)›

by (metis (no-types, lifting) ‹tF t ′› tickFree-map-map-eventptick-id-eq
tickFree-setinterleavesptick-iff )

have ‹case e of ev a ⇒ True | 3(r) ⇒ n ≤ length r› if ‹e ∈ set t-P ′› for e
proof −

have ‹tF t-P ′′›
using ∗∗∗(3 ) ‹tF t ′› tickFree-setinterleavesptick-iff by blast

hence ‹e ∈ set t-P ′′ =⇒ is-ev e› for e
by (metis in-set-conv-decomp tickFree-Cons-iff tickFree-append-iff )

moreover from ‹e ∈ set t-P ′› have ‹?fun-evt e ∈ set t-P›
by (simp add: ∗∗(1 ))

ultimately show ‹case e of ev a ⇒ True | 3(r) ⇒ n ≤ length r›
using ∗∗∗(1 ) by (cases e, auto simp add: ∗∗∗(4 )) (metis eventptick.disc(2 ))

qed
with arg-cong[OF ∗∗(1 ), where f = ?map-evt] map-evt-map-evt
have ‹?map-evt t-P = t-P ′› by presburger
with ∗∗ have ‹?map-evt t-P ∈ T P› by (simp add: F-T )
moreover have ‹t-Q ∈ T Q› using ∗(2 ) F-T by blast
moreover from ‹?map-evt t ′ setinterleaves3?tj ((?map-evt t-P ′′, t-Q ′′), S)›
have ‹?map-evt t setinterleaves3?tj ((?map-evt t-P, t-Q), S)›

by (simp add: ‹t = t ′ @ [3(rs)]› ∗∗∗(1 , 4 , 5 )
‹?pl r @ s = ?pl rs› setinterleavesptick-snoc-tick)

ultimately have ‹?map-evt t ∈ T (P n[[S ]]3ListslenL Q)›
unfolding SyncListslenL.T-Syncptick by blast

hence ‹?map-evt (?map-evt t) ∈ T ?rhs›
by (auto simp add: T-Renaming)

also have ‹?map-evt (?map-evt t) = t›
by (simp add: ‹t = t ′ @ [3(rs)]› )
(metis ∗∗∗(1 , 2 ) ‹tF t ′› dual-order .refl length-permute-list

list.map-comp pl-append pl-pl tickFree-map-map-eventptick-id-eq)
finally show ‹(t, X) ∈ F ?rhs› by (simp add: ‹t = t ′ @ [3(rs)]› tick-T-F)

qed
next

fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs› ‹t /∈ D ?lhs›
then obtain t ′ where ∗ : ‹t = ?map-evt t ′›

‹(t ′, ?fun-evt −‘ X) ∈ F (P n[[S ]]3ListslenL Q)›
unfolding Renaming-projs by blast

from ∗(2 ) ‹t /∈ D ?rhs› have ‹t ′ /∈ D (P n[[S ]]3ListslenL Q)›
by (metis (no-types, lifting) ∗(1 ) D-imp-front-tickFree div-butlast-when-non-tickFree-iff

front-tickFree-iff-tickFree-butlast map-butlast map-eventptick-tickFree
tickFree-map-map-eventptick-id-eq tickFree-mem-D-RenamingTick-iff-mem-D)

with ∗(2 ) obtain t-P t-Q X-P X-Q
where ∗∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›

‹t ′ setinterleaves3?tj ((t-P, t-Q), S)›
‹?fun-evt −‘ X ⊆ super-ref-Syncptick ?tj X-P S X-Q›

unfolding SyncListslenL.Syncptick-projs by force
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from ∗(2 ) consider ‹tF t ′› | t ′′ rs where ‹tF t ′′› ‹t ′ = t ′′ @ [3(rs)]›
by (metis (lifting) F-T F-imp-front-tickFree T-nonTickFree-imp-decomp

butlast-snoc front-tickFree-iff-tickFree-butlast)
thus ‹(t, X) ∈ F ?lhs›
proof cases

assume ‹tF t ′›
have ‹?map-evt t ′ setinterleaves3?tj ((?map-evt t-P, t-Q), S)›

by (metis (lifting) ∗∗(3 ) ‹tF t ′› tickFree-map-map-eventptick-id-eq
tickFree-setinterleavesptick-iff )

define X-P ′ where ‹X-P ′ ≡ X-P ∩ (range ev ∪ {3(r) |r . length r = n})›
define X ′ where ‹X ′ ≡ X ∩ (range ev ∪ {3(rs) |rs. n ≤ length rs})›
have ‹X-P ′ ⊆ X-P› unfolding X-P ′-def by blast
with ∗∗(1 ) is-processT4 have ‹(t-P, X-P ′) ∈ F P› by blast
moreover have ‹?fun-evt −‘ (?fun-evt ‘ X-P ′) = X-P ′›

by (auto simp add: X-P ′-def ) (use length-eq-pl-imp in blast)+
moreover have ‹?map-evt t-P = t-P›
using ∗∗(3 ) ‹tF t ′› tickFree-map-map-eventptick-id-eq tickFree-setinterleavesptick-iff

by blast
ultimately have ‹(t-P, ?fun-evt ‘ X-P ′) ∈ F (?RT P)›

by (auto simp add: F-Renaming)
moreover have ‹e ∈ X ′ =⇒ e ∈ super-ref-Syncptick ?tj (?fun-evt ‘ X-P ′) S

X-Q› if ‹e ∈ X ′› for e
using ∗∗(4 )[THEN set-mp, of ‹?fun-evt e›] fun-evt-fun-evt[of e]
unfolding X ′-def X-P ′-def super-ref-Syncptick-def
by (auto simp add: image-iff pl-append split: if-split-asm)
(metis (mono-tags, lifting) Int-iff Un-iff length-permute-list mem-Collect-eq,

blast, metis length-permute-list)
ultimately have ‹(t, X ′) ∈ F ?lhs›

by (simp add: SyncListslenL.F-Syncptick)
(metis (lifting) ∗(1 ) ∗∗(2 , 3 ) ‹tF t ′› subsetI tickFree-map-map-eventptick-id-eq)
moreover from ‹t /∈ D ?lhs› have ‹t @ [3(rs)] ∈ T ?lhs =⇒ n ≤ length

(rs)› for rs
by (auto simp add: SyncListslenL.Syncptick-projs

elim!: snoc-tick-setinterleavesptickE split: if-split-asm)
(metis (no-types, lifting) append.assoc butlast-snoc front-tickFree-charn

non-tickFree-tick tickFree-Nil tickFree-append-iff tickFree-imp-front-tickFree)+
ultimately have ‹(t, X ′ ∪ (X ∩ {3(rs) |rs. ¬ n ≤ length rs})) ∈ F ?lhs›

using is-processT5-S7 ′ by fastforce
also have ‹X ′ ∪ (X ∩ {3(rs) |rs. ¬ n ≤ length rs}) = X›

by (simp add: set-eq-iff X ′-def image-iff ) (meson eventptick.exhaust)
finally show ‹(t, X) ∈ F ?lhs› .

next
fix t ′′ rs assume ‹tF t ′′› ‹t ′ = t ′′ @ [3(rs)]›
from ∗∗(3 ) obtain t-P ′ t-Q ′ r s

where ∗∗∗ : ‹length r = n› ‹r @ s = rs›
‹t ′′ setinterleaves3?tj ((t-P ′, t-Q ′), S)›
‹t-P = t-P ′ @ [3(r)]› ‹t-Q = t-Q ′ @ [3(s)]›

by (auto elim: snoc-tick-setinterleavesptickE
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simp add: ‹t ′ = t ′′ @ [3(rs)]› split: if-split-asm)
have ‹?pl r @ s = ?pl rs›

using ∗∗∗(1 , 2 ) pl-append by force
from ‹t ′′ setinterleaves3?tj ((t-P ′, t-Q ′), S)›
have ‹?map-evt t ′′ setinterleaves3?tj ((?map-evt t-P ′, t-Q ′), S)›

by (metis (no-types, lifting) ‹tF t ′′› tickFree-map-map-eventptick-id-eq
tickFree-setinterleavesptick-iff )

from setinterleavesptick-snoc-tick[OF this, of ‹?pl r› s ‹?pl rs›]
have ‹?map-evt t ′ setinterleaves3?tj ((?map-evt t-P, t-Q), S)›

by (simp add: ∗∗∗(1 , 4 , 5 ) ‹t ′ = t ′′ @ [3(rs)]› ‹?pl r @ s = ?pl rs›)
moreover from ∗∗(1 )[THEN F-T ] have ‹(?map-evt t-P, UNIV ) ∈ F (?RT

P)›
by (simp add: ∗∗∗(4 ), intro tick-T-F) (auto simp add: T-Renaming)

moreover have ‹(t-Q, UNIV ) ∈ F Q›
by (metis ∗∗(2 ) ∗∗∗(5 ) F-T tick-T-F)

moreover have ‹e ∈ X =⇒ e ∈ super-ref-Syncptick ?tj UNIV S UNIV › for
e

using ∗∗(4 )[THEN set-mp, of ‹?fun-evt e›]
by (cases e) (auto simp add: super-ref-Syncptick-def )

ultimately show ‹(t, X) ∈ F ?lhs›
using ∗(1 ) by (simp add: SyncListslenL.F-Syncptick) blast

qed
qed

qed

Then, we establish the result when the permutation is only a transposition.

lemma MultiSyncptick-permute-list-transpose :
‹i < length L =⇒ j < length L =⇒
[[S]]3 l ∈@ permute-list (Transposition.transpose i j) L. P l =
RenamingTick ([[S]]3 l ∈@ L. P l) (permute-list (Transposition.transpose i j))›

for L :: ‹ ′b list›
proof −

let ?RT = RenamingTick and ?MS = ‹λL. [[S]]3 l ∈@ L. P l›
let ?RS = ‹λL. [[S]]3 l ∈@ L. P l›
let ?τ = ‹Transposition.transpose›
let ?pl-τ = ‹λi j. permute-list (?τ i j)›
have custom-nat-induct [case-names 0 1 2 Suc] :

‹thesis 0 =⇒ thesis 1 =⇒ thesis 2 =⇒
(
∧

n. 2 ≤ n =⇒ (
∧

k. k ≤ n =⇒ thesis k) =⇒ thesis (Suc n)) =⇒ thesis n›
for thesis n

by (metis One-nat-def Suc-1 less-2-cases linorder-not-le strong-nat-induct)
have ∗ : ‹i ≤ j =⇒ i < length L =⇒ j < length L =⇒

?RS (?pl-τ i j L) = ?RT (?RS L) (?pl-τ i j)› for i j
proof (induct ‹length L› arbitrary: i j L rule: custom-nat-induct)

case 0 thus ?case by simp
next

case 1 thus ?case by (cases L) simp-all
next

case 2
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from 2 .hyps 2 .prems(1 , 3 ) consider ‹i = j› | ‹i = 0 › ‹j = 1 › by linarith
thus ?case
proof cases

show ‹i = j =⇒ ?case› by simp
next

let ?g = ‹λrs. if rs = [] then [] else last rs # butlast rs›
assume ‹i = 0 › ‹j = 1 ›
moreover obtain l1 l2 where ‹L = [l1 , l2 ]›

by (metis 2 .hyps One-nat-def Suc-1 diff-Suc-1 ′ length-tl lessI
list.exhaust-sel nat-less-le order .refl take0 take-all-iff )

ultimately have ‹?MS (?pl-τ i j L) = P l2 [[S ]]3Rlist ?RT (P l1 ) (λr . [r ])›
by (simp add: permute-list-transpose-eq-list-update)

also have ‹. . . = ?RT (?RT (P l1 ) (λr . [r ]) [[S ]]3Llist P l2 ) ?g›
by (simp add: SyncRlist.Syncptick-comm-locale-sym.Syncptick-commute)

also have ‹... = ?RT (?MS L) ?g›
by (simp add: ‹L = [l1 , l2 ]› MultiSyncptick-snoc[of - ‹[l1 ]›, simplified])

also have ‹. . . = ?RT (?MS L) (?pl-τ i j)›
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of )

fix rs assume ‹rs ∈ 3s(?MS L)›
from is-ticks-lengthD is-ticks-length-MultiSyncptick this
have ‹length rs = length L› .
thus ‹?g rs = ?pl-τ i j rs›

by (cases rs; cases ‹tl rs›)
(simp-all add: ‹L = [l1 , l2 ]› ‹i = 0 › ‹j = 1 ›

permute-list-transpose-eq-list-update)
qed
finally show ?case .

qed
next

case (Suc n)
show ?case
proof (cases ‹i = j›)

show ‹i = j =⇒ ?case›
by simp (metis RenamingTick-id eq-id-iff permute-list-id)

next
assume ‹i 6= j› hence ‹i < j›

by (simp add: Suc.prems(1 ) nat-less-le)

{ fix i j L l0 l1 and L ′ :: ‹ ′b list›
assume ‹i 6= 0 › ‹i < j› ‹i < length L› ‹j < length L› ‹Suc n = length L›

‹L = l0 # l1 # L ′›
with ‹i < length L› ‹j < length L› ‹i < j› ‹i 6= 0 ›
have ∗ : ‹i − 1 < j − 1 › ‹i − 1 < length (l1 # L ′)›

‹j − 1 < length (l1 # L ′)› by auto
have ‹?pl-τ i j L = l0 # ?pl-τ (i − 1 ) (j − 1 ) (l1 # L ′)›
proof (subst (1 2 ) permute-list-transpose-eq-list-update)

show ‹i − 1 < length (l1 # L ′)› ‹j − 1 < length (l1 # L ′)›
‹i < length L› ‹j < length L›
by (fact ∗(2 , 3 ) ‹i < length L› ‹j < length L›)+
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next
from ∗ ‹i 6= 0 ›
show ‹L[i := L ! j, j := L ! i] =

l0 # (l1 # L ′)[i − 1 := (l1 # L ′) ! (j − 1 ), j − 1 := (l1 # L ′) ! (i
− 1 )]›

by (cases i; cases j) (simp-all add: ‹L = l0 # l1 # L ′› nat.case-eq-if )
qed
hence ‹?MS (?pl-τ i j L) = P l0 [[S ]]3Rlist ?MS (?pl-τ (i − 1 ) (j − 1 ) (l1

# L ′))›
by (simp add: MultiSyncptick-Cons)
(metis Zero-not-Suc length-Cons length-permute-list list.size(3 ))

also have ‹?MS (?pl-τ (i − 1 ) (j − 1 ) (l1 # L ′)) =
?RT (?MS (l1 # L ′)) (?pl-τ (i − 1 ) (j − 1 ))›

by (subst Suc.hyps)
(use ∗ ‹Suc n = length L› ‹L = l0 # l1 # L ′› in simp-all)

also have ‹P l0 [[S ]]3Rlist ?RT (?MS (l1 # L ′)) (?pl-τ (i − 1 ) (j − 1 )) =
?RT (P l0 [[S ]]3Rlist ?MS (l1 # L ′)) (?pl-τ (Suc (i − 1 )) (Suc (j

− 1 )))›
by (rule SyncRlist-RenamingTick-permute-list-transpose[OF ∗(2 , 3 )])
(metis is-ticks-lengthD is-ticks-length-MultiSyncptick order-le-less)

also have ‹(Suc (i − 1 )) = i› using ‹i 6= 0 › by simp
also have ‹(Suc (j − 1 )) = j› using ∗(1 ) by linarith
also have ‹P l0 [[S ]]3Rlist ?MS (l1 # L ′) = ?MS L›

by (simp add: ‹L = l0 # l1 # L ′›)
finally have ‹?MS (?pl-τ i j L) = ?RT (?MS L) (?pl-τ i j)› .

} note £ = this

consider ‹i 6= 0 › | ‹j 6= n› | ‹i = 0 › ‹j = n› by argo
thus ?case
proof cases

assume ‹i 6= 0 ›
from Suc.hyps(1 , 3 ) obtain l0 l1 L ′ where ‹L = l0 # l1 # L ′›

by (cases L; cases ‹tl L›) simp-all
from £ ‹i 6= 0 › ‹i < j› Suc.prems(2 , 3 ) Suc.hyps(3 ) this show ?case .

next
assume ‹j 6= n›
from Suc.hyps(1 , 3 ) obtain l0 l1 L ′ where ‹L = L ′ @ [l1 ] @ [l0 ]›

by (cases L rule: rev-cases; cases ‹butlast L› rule: rev-cases) simp-all
hence ‹rev L = l0 # l1 # rev L ′› by simp
have ‹Suc n = length (rev L)› by (simp add: Suc.hyps(3 ))

have ‹?MS (?pl-τ i j L) = ?MS (rev (?pl-τ (length L − Suc i) (length L −
Suc j) (rev L)))›

by (subst rev-rev-ident[of L, symmetric], subst permute-list-transpose-rev)
(simp-all add: Suc.prems(2 , 3 ))

also have ‹. . . = ?RT (?MS (?pl-τ (length L − Suc i) (length L − Suc j)
(rev L))) rev›

by (fact MultiSyncptick-rev)
also have ‹?pl-τ (length L − Suc i) (length L − Suc j) =
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?pl-τ (length L − Suc j) (length L − Suc i)›
by (simp add: transpose-commute)

also have ‹?MS (?pl-τ (length L − Suc j) (length L − Suc i) (rev L)) =
?RT (?MS (rev L)) (?pl-τ (length L − Suc j) (length L − Suc i))›

by (rule £) (use Suc.hyps(3 ) Suc.prems(3 ) ‹j 6= n› ‹i < j›
‹rev L = l0 # l1 # rev L ′› in auto)

also have ‹?MS (rev L) = ?RT (?MS L) rev›
by (fact MultiSyncptick-rev)

also have ‹?RT (?RT (?RT (?MS L) rev) (?pl-τ (length L − Suc j) (length
L − Suc i))) rev =

?RT (?MS L) (rev ◦ (?pl-τ (length L − Suc j) (length L − Suc i))
◦ rev)›

by (simp add: RenamingTick-comp)
also have ‹. . . = ?RT (?MS L) (?pl-τ j i)›
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of )

fix rs assume ‹rs ∈ 3s(?MS L)›
hence ‹length rs = length L›

using is-ticks-lengthD is-ticks-length-MultiSyncptick by blast
thus ‹(rev ◦ (?pl-τ (length L − Suc j) (length L − Suc i)) ◦ rev) rs =

?pl-τ j i rs›
by (unfold comp-def , subst rev-permute-list-transpose)
(use Suc.prems(2 , 3 ) in auto)

qed
also have ‹. . . = ?RT (?MS L) (?pl-τ i j)›

by (simp add: transpose-commute)
finally show ?case .

next
let ?g1 = ‹λrs. if rs = [] then [] else last rs # butlast rs›
let ?g2 = ‹λrs. drop (Suc (Suc 0 )) rs @ take (Suc (Suc 0 )) rs›
let ?g3 = ‹λrs. case rs of r # s ⇒ r # (if s = [] then [] else last s # butlast

s)›
let ?tj = ‹λr s. bid r # (if s = [] then [] else last s # butlast s)c›
assume ‹i = 0 › ‹j = n›
from Suc.hyps(1 , 3 ) obtain l0 l1 L ′

where ‹L = l0 # L ′ @ [l1 ]› ‹L ′ 6= []›
by (cases L; cases ‹tl L› rule: rev-cases; force)

have ‹?pl-τ i j L = l1 # L ′ @ [l0 ]›
by (subst permute-list-transpose-eq-list-update)
(use Suc.prems(3 ) Suc.hyps(3 ) ‹L = l0 # L ′ @ [l1 ]›

in ‹auto simp add: ‹i = 0 › ‹j = n››)
hence ‹?MS (?pl-τ i j L) = P l1 [[S ]]3Rlist (?MS L ′ [[S ]]3Llist P l0 )›

by (simp add: MultiSyncptick-Cons MultiSyncptick-snoc ‹L ′ 6= []›)
also have ‹. . . = ?RT (?MS L ′ [[S ]]3Llist P l0 [[S ]]3Llist P l1 ) ?g1 ›

by (simp only: SyncRlist.Syncptick-comm-locale-sym.Syncptick-commute)
also have ‹?MS L ′ [[S ]]3Llist P l0 [[S ]]3Llist P l1 =

(?MS L ′
Suc (Suc 0 )[[S ]]3ListslenR (P l0 [[S ]]3P airlist P l1 ))›

by (simp only: SyncListslenR-SyncP airlist-assoc)
also have ‹. . . = ?RT (P l0 [[S ]]3P airlist P l1 Suc (Suc 0 )[[S ]]3ListslenL

?MS L ′) ?g2 ›
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by (simp only: SyncListslenL.Syncptick-commute)
also have ‹P l0 [[S ]]3P airlist P l1 Suc (Suc 0 )[[S ]]3ListslenL ?MS L ′ =

P l0 [[S ]]3Rlist (P l1 [[S ]]3Rlist ?MS L ′)›
by (simp only: SyncRlist-SyncRlist-assoc)

also have ‹. . . = P l0 [[S ]]3Rlist ?RT (?MS L ′ [[S ]]3Llist P l1 ) ?g1 ›
by (simp only: SyncRlist.Syncptick-comm-locale-sym.Syncptick-commute)

also have ‹. . . = ?RT (P l0 ) id [[S ]]3Rlist ?RT (?MS L ′ [[S ]]3Llist P l1 )
?g1 › by simp

also have ‹. . . = Syncptick-locale.Syncptick ?tj (P l0 ) S (?MS L ′ [[S ]]3Llist

P l1 )›
proof (rule SyncRlist.inj-RenamingTick-Syncptick-inj-RenamingTick)

show ‹inj id› ‹inj (λrs. if rs = [] then [] else last rs # butlast rs)›
by (auto intro!: injI split: if-split-asm)
(metis append-butlast-last-id)

qed
also have ‹. . . = ?RT (P l0 [[S ]]3Rlist (?MS L ′ [[S ]]3Llist P l1 )) ?g3 ›

by (subst SyncRlist.inj-on-RenamingTick-Syncptick)
(auto intro!: inj-onI split: if-split-asm, metis append-butlast-last-id)

also have ‹P l0 [[S ]]3Rlist (?MS L ′ [[S ]]3Llist P l1 ) = ?MS L›
by (simp add: ‹L = l0 # L ′@ [l1 ]› MultiSyncptick-Cons MultiSyncptick-snoc

‹L ′ 6= []›)
also have ‹?RT (?RT (?RT (?MS L) ?g3 ) ?g2 ) ?g1 = ?RT (?MS L) (?g1

◦ ?g2 ◦ ?g3 )›
by (simp only: RenamingTick-comp)

also have ‹. . . = ?RT (?MS L) (?pl-τ i j)›
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of )

fix rs assume ‹rs ∈ 3s(?MS L)›
hence ‹length rs = length L›

using is-ticks-lengthD is-ticks-length-MultiSyncptick by blast
obtain n ′ where ‹n = Suc (Suc n ′)›

by (metis One-nat-def Suc.hyps(1 ) Suc-1 Suc-n-not-le-n ‹i = 0 › ‹i 6= j›
‹j = n› nat.exhaust-sel)

with Suc.hyps(1 , 3 ) ‹length rs = length L›
obtain r0 r1 r2 rs ′ where ‹rs = r0 # r1 # r2 # rs ′› ‹n ′ = length rs ′›

by (cases rs; cases ‹tl rs›; cases ‹tl (tl rs)›) simp-all
show ‹(?g1 ◦ ?g2 ◦ ?g3 ) rs = ?pl-τ i j rs›
proof (subst permute-list-transpose-eq-list-update)

show ‹i < length rs› ‹j < length rs›
by (simp-all add: Suc.prems(2 , 3 ) ‹length rs = length L›)

next
show ‹(?g1 ◦ ?g2 ◦ ?g3 ) rs = rs[i := rs ! j, j := rs ! i]›
by (simp add: ‹i = 0 › ‹j = n› ‹rs = r0 # r1 # r2 # rs ′› ‹n ′ = length

rs ′›
‹n = Suc (Suc n ′)› butlast-append nat.case-eq-if )

(metis One-nat-def append-butlast-last-id diff-Suc-1 ′ last-conv-nth
length-0-conv length-butlast list-update-length nat.collapse)

qed
qed
finally show ?case .
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qed
qed

qed

consider ‹i ≤ j› | ‹j ≤ i› by linarith
thus ‹?RS (?pl-τ i j L) = ?RT (?RS L) (?pl-τ i j)› if ‹i < length L› ‹j < length

L›
proof cases

from that show ‹i ≤ j =⇒ ?RS (?pl-τ i j L) = ?RT (?RS L) (?pl-τ i j)› by
(fact ∗)

next
from that show ‹j ≤ i =⇒ ?RS (?pl-τ i j L) = ?RT (?RS L) (?pl-τ i j)›

by (subst (1 2 ) transpose-commute) (rule ∗)
qed

qed

Finally, the proof of the general version relies on the fact that a permutation
can be written as finite product of transpositions.

theorem MultiSyncptick-permute-list :
‹[[S]]3 l ∈@ permute-list f L. P l =
RenamingTick ([[S]]3 l ∈@ L. P l) (permute-list f )›

if f-permutes : ‹f permutes {..<length L}›
using finite-lessThan f-permutes

proof (induct f rule: permutes-rev-induct)
case id show ?case by (simp flip: id-def )

next
let ?RT = RenamingTick and ?pl = permute-list and ?τ = Transposition.transpose
case (swap i j f )
have ‹?τ i j permutes {..<length L}›

by (meson permutes-swap-id swap.hyps(1 , 2 ))
hence ‹[[S]]3 l ∈@ ?pl (f ◦ ?τ i j) L. P l =

[[S]]3 l ∈@ (?pl (?τ i j) (?pl f L)). P l›
by (simp add: permute-list-compose)

also have ‹. . . = ?RT ([[S]]3 l ∈@ (?pl f L). P l) (?pl (?τ i j))›
by (metis MultiSyncptick-permute-list-transpose atLeast0LessThan

atLeastLessThan-iff length-permute-list swap.hyps(1 ,2 ))
also have ‹. . . = ?RT (?RT ([[S]]3 l ∈@ L. P l) (?pl f )) (?pl (?τ i j))›

unfolding swap.hyps(4 ) ..
also have ‹. . . = ?RT ([[S]]3 l ∈@ L. P l) (?pl (?τ i j) ◦ ?pl f )›

by (simp flip: Renaming-comp)
also have ‹. . . = ?RT ([[S]]3 l ∈@ L. P l) (?pl (f ◦ (?τ i j)))›
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of )

fix rs assume ‹rs ∈ 3s([[S]]3 l ∈@ L. P l)›
from is-ticks-lengthD is-ticks-length-MultiSyncptick this
have ‹length rs = length L› .
with ‹?τ i j permutes {..<length L}›
show ‹(?pl (?τ i j) ◦ ?pl f ) rs = ?pl (f ◦ ?τ i j) rs›

by (simp add: permute-list-compose)
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qed
finally show ?case .

qed
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Chapter 12

Events and Ticks

12.1 Preliminaries

lemma strict-events-of-memE-optimized-tickFree :
‹(
∧

t. t ∈ T P =⇒ t /∈ D P =⇒ ev a ∈ set t =⇒ tF t =⇒ thesis) =⇒ thesis› if
‹a ∈ α(P)›
proof −

from ‹a ∈ α(P)› obtain t where ‹t ∈ T P› ‹t /∈ D P› ‹ev a ∈ set t›
by (meson strict-events-of-memE)

have ‹(if tF t then t else butlast t) ∈ T P›
by simp (metis ‹t ∈ T P› append-butlast-last-id is-processT3-TR-append tick-

Free-Nil)
moreover have ‹(if tF t then t else butlast t) /∈ D P›
using T-imp-front-tickFree ‹t ∈ T P› ‹t /∈ D P› div-butlast-when-non-tickFree-iff

by blast
moreover from T-nonTickFree-imp-decomp ‹ev a ∈ set t› ‹t ∈ T P›
have ‹ev a ∈ set (if tF t then t else butlast t)› by force
moreover from T-imp-front-tickFree ‹t ∈ T P› front-tickFree-iff-tickFree-butlast
have ‹tF (if tF t then t else butlast t)› by (metis (full-types))
ultimately show ‹(

∧
t. t ∈ T P =⇒ t /∈ D P =⇒ ev a ∈ set t =⇒ tF t =⇒

thesis) =⇒ thesis› by blast
qed

lemma events-of-memE-optimized-tickFree :
‹(
∧

t. t ∈ T P =⇒ ev a ∈ set t =⇒ tF t =⇒ thesis) =⇒ thesis› if ‹a ∈ α(P)›
proof −

from ‹a ∈ α(P)› obtain t where ‹t ∈ T P› ‹ev a ∈ set t›
by (meson events-of-memE)

have ‹(if tF t then t else butlast t) ∈ T P›
by simp (metis ‹t ∈ T P› append-butlast-last-id is-processT3-TR-append tick-

Free-Nil)
moreover from T-nonTickFree-imp-decomp ‹ev a ∈ set t› ‹t ∈ T P›
have ‹ev a ∈ set (if tF t then t else butlast t)› by force
moreover from T-imp-front-tickFree ‹t ∈ T P› front-tickFree-iff-tickFree-butlast
have ‹tF (if tF t then t else butlast t)› by (metis (full-types))
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ultimately show ‹(
∧

t. t ∈ T P =⇒ ev a ∈ set t =⇒ tF t =⇒ thesis) =⇒ thesis›
by blast
qed

12.2 Sequential Composition

12.2.1 Events
lemma events-of-Seqptick : ‹α(P ;3 Q) = α(P) ∪ (

⋃
r ∈ 3s(P). α(Q r))›

proof (intro subset-antisym subsetI )
show ‹a ∈ α(P ;3 Q) =⇒ a ∈ α(P) ∪ (

⋃
r ∈ 3s(P). α(Q r))› for a

proof (elim events-of-memE)
fix t assume ‹t ∈ T (P ;3 Q)› ‹ev a ∈ set t›
from this(1 ) consider (T-P) t ′ where ‹t = map (ev ◦ of-ev) t ′› ‹t ′ ∈ T P›

‹tF t ′›
| (T-Q) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T P› ‹tF

t ′› ‹u ∈ T (Q r)›
| (D-P) t ′ u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ ∈ D P› ‹tF t ′› ‹ftF u›
unfolding Seqptick-projs by blast

thus ‹a ∈ α(P) ∪ (
⋃

r ∈ 3s(P). α(Q r))›
proof cases

case T-P
from T-P(1 , 3 ) ‹ev a ∈ set t› have ‹ev a ∈ set t ′›

by (meson tickFree-map-ev-of-ev-eq-imp-ev-mem-iff )
with T-P(2 ) have ‹a ∈ α(P)› by (rule events-of-memI )
thus ‹a ∈ α(P) ∪ (

⋃
r ∈ 3s(P). α(Q r))› by simp

next
case T-Q
have ‹r ∈ 3s(P) ∨ D P 6= {}›

by (metis T-Q(2 ) empty-iff strict-ticks-of-memI )
thus ‹a ∈ α(P) ∪ (

⋃
r ∈ 3s(P). α(Q r))›

proof (elim disjE)
from T-Q
show ‹r ∈ 3s(P) =⇒ a ∈ α(P) ∪ (

⋃
r ∈ 3s(P). α(Q r))›

by simp (metis Un-iff ‹ev a ∈ set t› events-of-memI set-append
tickFree-map-ev-of-ev-eq-imp-ev-mem-iff )

next
assume ‹D P 6= {}›

hence ‹α(P) = UNIV › by (simp add: events-of-is-strict-events-of-or-UNIV )
thus ‹a ∈ α(P) ∪ (

⋃
r ∈ 3s(P). α(Q r))› by simp

qed
next

case D-P
have ‹α(P) = UNIV ›

by (metis D-P(2 ) empty-iff events-of-is-strict-events-of-or-UNIV )
thus ‹a ∈ α(P) ∪ (

⋃
r ∈ 3s(P). α(Q r))› by simp

qed
qed

next
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show ‹a ∈ α(P) ∪ (
⋃

r ∈ 3s(P). α(Q r)) =⇒ a ∈ α(P ;3 Q)› for a
proof (elim UnE UnionE events-of-memE , safe)

fix t assume ‹t ∈ T P› ‹ev a ∈ set t›
then obtain t ′ where ‹t ′ ∈ T P› ‹tF t ′› ‹ev a ∈ set t ′›

by (cases t rule: rev-cases, simp-all)
(metis prefixI ‹ev a ∈ set t› append-T-imp-tickFree eventptick.disc(1 )

is-processT3-TR
not-Cons-self2 tickFree-Cons-iff tickFree-Nil tickFree-append-iff )

thus ‹a ∈ α(P ;3 Q)› by (auto simp add: Seqptick-projs rev-image-eqI intro!:
events-of-memI )

next
fix a r assume ‹a ∈ α(Q r)› ‹r ∈ 3s(P)›

from ‹r ∈ 3s(P)› obtain t where ‹t @ [3(r)] ∈ T P› by (meson strict-ticks-of-memD)
moreover from ‹a ∈ α(Q r)› obtain u

where ‹u ∈ T (Q r)› ‹ev a ∈ set u› by (meson events-of-memD)
ultimately have ‹map (ev ◦ of-ev) t @ u ∈ T (P ;3 Q)› ‹ev a ∈ set (map (ev

◦ of-ev) t @ u)›
by (auto simp add: Seqptick-projs) (metis append-T-imp-tickFree not-Cons-self2 )
thus ‹a ∈ α(P ;3 Q)› by (simp add: events-of-memI )

qed
qed

— Big approximation.
lemma events-of-Seqptick-subset : ‹α(P ;3 Q) ⊆ α(P) ∪ (

⋃
r . α(Q r))›

by (auto simp add: events-of-Seqptick)

— Big approximation.
corollary events-of-Seq-subset : ‹α(P ; Q) ⊆ α(P) ∪ α(Q)›

by (simp add: events-of-Seq)

lemma strict-events-of-Seqptick-subset : ‹α(P ;3 Q) ⊆ α(P) ∪ (
⋃

r ∈ 3s(P).α(Q
r))›
proof (rule subsetI )

show ‹a ∈ α(P ;3 Q) =⇒ a ∈ α(P) ∪ (
⋃

r ∈ 3s(P).α(Q r))› for a
proof (elim strict-events-of-memE)

fix t assume ‹t ∈ T (P ;3 Q)› ‹t /∈ D (P ;3 Q)› ‹ev a ∈ set t›
from this(1 , 2 ) consider (T-P) t ′ where ‹t = map (ev ◦ of-ev) t ′› ‹t ′ ∈ T

P› ‹t ′ /∈ D P› ‹tF t ′›
| (T-Q) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T P› ‹t ′

/∈ D P› ‹tF t ′› ‹u ∈ T (Q r)› ‹u /∈ D (Q r)›
by (auto simp add: Seqptick-projs) (metis T-imp-front-tickFree)

thus ‹a ∈ α(P) ∪ (
⋃

r ∈ 3s(P).α(Q r))›
proof cases

case T-P
have ‹ev a ∈ set t ′›
by (metis T-P(1 , 4 ) ‹ev a ∈ set t› tickFree-map-ev-of-ev-eq-imp-ev-mem-iff )

have ‹a ∈ α(P)›
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by (meson T-P(2 , 3 ) ‹ev a ∈ set t ′› strict-events-of-memI )
thus ‹a ∈ α(P) ∪ (

⋃
r ∈ 3s(P).α(Q r))› by simp

next
case T-Q
have ‹r ∈ 3s(P)› by (meson T-Q(2 , 3 ) is-processT9 strict-ticks-of-memI )
thus ‹a ∈ α(P) ∪ (

⋃
r ∈ 3s(P).α(Q r))›

by simp (metis T-Q UnE ‹ev a ∈ set t› is-processT3-TR-append set-append
strict-events-of-memI tickFree-map-ev-of-ev-eq-imp-ev-mem-iff )

qed
qed

qed

12.2.2 Ticks
lemma ticks-of-Seqptick :

‹3s(P ;3 Q) = (if D P = {} then (
⋃

r ∈ 3s(P). 3s(Q r)) else UNIV )›
proof (split if-split, intro conjI impI )

show ‹D P 6= {} =⇒ 3s(P ;3 Q) = UNIV ›
by (simp add: Seqptick-projs ticks-of-is-strict-ticks-of-or-UNIV )
(metis front-tickFree-Nil nonempty-divE)

next
show ‹D P = {} =⇒ 3s(P ;3 Q) = (

⋃
r∈3s(P). 3s(Q r))› if ‹D P = {}›

proof (intro subset-antisym subsetI )
from ‹D P = {}› ticks-of-memI [of - - ‹Q -›]
show ‹s ∈ 3s(P ;3 Q) =⇒ s ∈ (

⋃
r∈3s(P). 3s(Q r))› for s

by (auto simp add: Seqptick-projs strict-ticks-of-def append-eq-map-conv
append-eq-append-conv2 Cons-eq-append-conv elim!: ticks-of-memE)

(blast, metis append-Nil)
next

show ‹s ∈ (
⋃

r∈3s(P). 3s(Q r)) =⇒ s ∈ 3s(P ;3 Q)› for s
by (auto simp add: Seqptick-projs ticks-of-def elim!: strict-ticks-of-memE)
(meson append.assoc append-T-imp-tickFree not-Cons-self2 )

qed
qed

lemma ‹3s(P ;3 Q) ⊆
⋃
{3s(Q r) |r . r ∈ 3s(P)}›

— Already proven earlier in the construction.
by (fact strict-ticks-of-Seqptick-subset)

12.3 Synchronization Product
12.3.1 Events
lemma (in Syncptick-locale) events-of-Syncptick-subset : ‹α(P [[S ]]3 Q) ⊆ α(P) ∪
α(Q)›

by (subst events-of-def , simp add: T-Syncptick subset-iff )
(metis UNIV-I empty-iff events-of-is-strict-events-of-or-UNIV

events-of-memI setinterleavesptick-preserves-ev-notin-set)
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lemma (in Syncptick-locale) events-of-Interptick: ‹α(P |||3 Q) = α(P) ∪ α(Q)›
proof (rule subset-antisym[OF events-of-Syncptick-subset])

show ‹α(P) ∪ α(Q) ⊆ α(P |||3 Q)›
proof (rule subsetI , elim UnE)

fix a assume ‹a ∈ α(P)›
then obtain t-P where ‹tF t-P› ‹ev a ∈ set t-P› ‹t-P ∈ T P›

by (meson events-of-memE-optimized-tickFree)
have ‹map ev (map of-ev t-P) setinterleaves3tick-join ((t-P, []), {})›

by (simp add: ‹tF t-P› setinterleavesptick-NilR-iff )
hence ‹map ev (map of-ev t-P) ∈ T (P |||3 Q)›

by (simp add: T-Syncptick) (metis ‹t-P ∈ T P› is-processT1-TR)
moreover from ‹ev a ∈ set t-P› have ‹ev a ∈ set (map ev (map of-ev t-P))›

by force
ultimately show ‹a ∈ α(P |||3 Q)› by (metis events-of-memI )

next
fix a assume ‹a ∈ α(Q)›
then obtain t-Q where ‹tF t-Q› ‹ev a ∈ set t-Q› ‹t-Q ∈ T Q›

by (meson events-of-memE-optimized-tickFree)
have ‹map ev (map of-ev t-Q) setinterleaves3tick-join (([], t-Q), {})›

by (simp add: ‹tF t-Q› setinterleavesptick-NilL-iff )
hence ‹map ev (map of-ev t-Q) ∈ T (P |||3 Q)›

by (simp add: T-Syncptick) (metis ‹t-Q ∈ T Q› is-processT1-TR)
moreover from ‹ev a ∈ set t-Q› have ‹ev a ∈ set (map ev (map of-ev t-Q))›

by force
ultimately show ‹a ∈ α(P |||3 Q)› by (metis events-of-memI )

qed
qed

lemma (in Syncptick-locale) strict-events-of-Syncptick-subset :
‹α(P [[S ]]3 Q) ⊆ α(P) ∪ α(Q)›

proof (rule subsetI )
fix a assume ‹a ∈ α(P [[S ]]3 Q)›
then obtain t where ‹t ∈ T (P [[S ]]3 Q)› ‹ev a ∈ set t› ‹tF t› ‹t /∈ D (P [[S ]]3

Q)›
by (blast elim: strict-events-of-memE-optimized-tickFree)

from ‹t ∈ T (P [[S ]]3 Q)› ‹t /∈ D (P [[S ]]3 Q)›
obtain t-P t-Q where ‹t-P ∈ T P› ‹t-Q ∈ T Q›

and setinter : ‹t setinterleaves3tick-join ((t-P, t-Q), S)›
unfolding Syncptick-projs by blast

from this(3 ) setinterleavesptick-preserves-ev-notin-set ‹ev a ∈ set t›
have ‹ev a ∈ set t-P ∨ ev a ∈ set t-Q› by metis
moreover have ‹t-P /∈ D P ∧ t-Q /∈ D Q›
proof (rule ccontr)

assume ‹¬ (t-P /∈ D P ∧ t-Q /∈ D Q)›
with ‹t-P ∈ T P› ‹t-Q ∈ T Q› ‹tF t› front-tickFree-Nil setinter
have ‹t ∈ D (P [[S ]]3 Q)› unfolding D-Syncptick by blast
with ‹t /∈ D (P [[S ]]3 Q)› show False ..
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qed
ultimately show ‹a ∈ α(P) ∪ α(Q)›

by (meson UnCI ‹t-P ∈ T P› ‹t-Q ∈ T Q› strict-events-of-memI )
qed

12.3.2 Ticks
lemma (in Syncptick-locale)

‹3s(P [[S ]]3 Q) ⊆ {r-s |r-s r s. r ⊗3 s = Some r-s ∧ r ∈ 3s(P) ∧ s ∈ 3s(Q)}›
— Already proven earlier in the construction.
by (fact strict-ticks-of-Syncptick-subset)

lemma (in Syncptick-locale) ticks-of-no-div-Syncptick-subset :
‹D (P [[S ]]3 Q) = {} =⇒

3s(P [[S ]]3 Q) ⊆ {r-s |r-s r s. tick-join r s = Some r-s ∧ r ∈ 3s(P) ∧ s ∈
3s(Q)}›

using strict-ticks-of-Syncptick-subset
by (simp add: ticks-of-is-strict-ticks-of-or-UNIV subset-iff ) blast

12.4 Architectural Operators
12.4.1 Events
lemma events-of-MultiSeq-subset :

‹α(SEQ l ∈@ L. P l) ⊆ (
⋃

l ∈ set L.
⋃

r . α(P l))›
by (induct L rule: rev-induct)
(auto intro!: subset-trans[OF events-of-Seq-subset])

lemma events-of-MultiSeqptick-subset :
‹α((SEQ3 l ∈@ L. P l) r) ⊆ (

⋃
l ∈ set L.

⋃
r . α(P l r))›

by (induct L arbitrary: r)
(auto intro!: subset-trans[OF events-of-Seqptick-subset])

lemma strict-events-of-MultiSeq-subset :

‹α(SEQ l ∈@ L. P l) ⊆ (
⋃

l ∈ set L.
⋃

r . α(P l))›
by (induct L rule: rev-induct)
(auto intro!: subset-trans[OF strict-events-of-Seq-subseteq]

split: if-split-asm)

lemma strict-events-of-MultiSeqptick-subset :
‹α((SEQ3 l ∈@ L. P l) r) ⊆ (

⋃
l ∈ set L.

⋃
r . α(P l r))›

by (induct L arbitrary: r , simp)
(auto intro!: subset-trans[OF strict-events-of-Seqptick-subset])

lemma events-of-MultiSyncptick-subset :
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‹α([[S]]3 l ∈@ L. P l) ⊆ (
⋃

l ∈ set L. α(P l))›
by (induct L rule: induct-list012 , simp-all)
(metis eq-id-iff events-of-Renaming order .order-iff-strict

image-id events-of-is-strict-events-of-or-UNIV ,
use SyncRlist.events-of-Syncptick-subset in fastforce)

lemma events-of-MultiInterptick :
‹α(|||3 l ∈@ L. P l) = (

⋃
l ∈ set L. α(P l))›

by (induct L rule: induct-list012 ,
simp-all add: SyncRlist.events-of-Interptick)
(metis events-of-Renaming events-of-is-strict-events-of-or-UNIV id-apply im-

age-id)

lemma strict-events-of-MultiSyncptick-subset :
‹α([[S]]3 l ∈@ L. P l) ⊆ (

⋃
l ∈ set L. α(P l))›

by (induct L rule: induct-list012 , simp-all add: strict-events-of-inj-on-Renaming)
(use SyncRlist.strict-events-of-Syncptick-subset in fastforce)

12.4.2 Ticks

We only look at strict-ticks-of lemmas: ticks-of is harder to deal with be-
cause it requires more control on the divergences.
lemma strict-ticks-of-MultiSeqptick-subset :

‹3s((SEQ3 l ∈@ L. P l) r) ⊆ (if L = [] then {r} else (
⋃

r . 3s(P (last L) r)))›
proof (induct L arbitrary: r)

case Nil show ?case by simp
next

case (Cons l L)
have ‹(SEQ3 m ∈@ (l # L). P m) r = P l r ;3 SEQ3 l ∈@ L. P l› by simp
also have ‹3s(. . .) ⊆

⋃
{3s((SEQ3 l ∈@ L. P l) r ′) |r ′. r ′ ∈ 3s(P l r)}›

by (fact strict-ticks-of-Seqptick-subset)
also have ‹. . . ⊆

⋃
{if L = [] then {r ′} else

⋃
r . 3s(P (last L) r) |r ′. r ′ ∈ 3s(P

l r)}›
using Cons.hyps by (blast intro: Union-subsetI )

also have ‹. . . ⊆ (if l # L = [] then {r} else
⋃

r . 3s(P (last (l # L)) r))› by
auto

finally show ?case .
qed

lemma strict-ticks-of-MultiSeq-subset :
‹3s(SEQ l ∈@ L. P l) ⊆ (if L = [] then {undefined} else (

⋃
r . 3s(P (last L))))›

using strict-ticks-of-MultiSeqptick-subset[of L ‹λl r . P l›]
unfolding MultiSeqptick-const by auto

lemma strict-ticks-of-MultiSyncptick-subset :
‹3s([[S]]3 l ∈@ L. P l) ⊆
{l. length l = length L ∧ (∀ i < length L. l ! i ∈ 3s(P (L ! i)))}›
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proof (induct L rule: induct-list012 )
case 1 show ?case by simp

next
case (2 l0 ) show ?case

by (auto intro!: subset-trans[OF strict-ticks-of-RenamingTick-subset])
next

case (3 l0 l1 L)
have ‹[[S]]3 l ∈@ (l0 # l1 # L). P l = P l0 [[S ]]3Rlist [[S]]3 l ∈@ (l1 # L). P

l› by simp
also have ‹3s(. . .) ⊆ {r # s |r s. r ∈ 3s(P l0 ) ∧ s ∈ 3s([[S]]3 l ∈@ (l1 # L).

P l)}›
by (rule subset-trans[OF SyncRlist.strict-ticks-of-Syncptick-subset]) blast

also have ‹. . . ⊆
{r # s |r s. r ∈ 3s(P l0 ) ∧

s ∈ {l. length l = length (l1 # L) ∧
(∀ i<length (l1 # L). l ! i ∈ 3s(P ((l1 # L) ! i)))}}›

using 3 .hyps(2 ) by blast
also have ‹. . . = {l. length l = length (l0 # l1 # L) ∧

(∀ i<length (l0 # l1 # L). l ! i ∈ 3s(P ((l0 # l1 # L) ! i)))}›
(is ‹?S1 = ?S2 ›)

proof (unfold set-eq-iff , intro allI )
show ‹l ∈ ?S1 ←→ l ∈ ?S2 › for l

by (cases l, auto, metis less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc)
qed
finally show ?case .

qed
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Chapter 13

Continuity Rules

13.1 Sequential Composition

13.1.1 Monotonicity

lemma tickFree-mem-min-elems-D : ‹t ∈ min-elems (D P) =⇒ tF t›
by (metis D-imp-front-tickFree Prefix-Order .prefixI append-self-conv elem-min-elems

is-processT9 min-elems-no nonTickFree-n-frontTickFree not-Cons-self2 )

lemma mono-Seqptick : ‹P ;3 R v Q ;3 S› if ‹P v Q› and ‹R v S›
for P Q :: ‹( ′a, ′r) processptick› and R S :: ‹ ′r ⇒ ( ′a, ′s) processptick›

proof −
let ?S = ‹λP R. map (ev ◦ of-ev) ‘ min-elems (D P) ∪

{map (ev ◦ of-ev) t @ u| t r u. t @ [3(r)] ∈ T P ∧ t /∈ D P ∧
tF t ∧ u ∈ min-elems (D (R r))}›

{ fix P and R :: ‹ ′r ⇒ ( ′a, ′s) processptick› and t
assume ‹t ∈ min-elems (D (P ;3 R))›
hence ∗ : ‹t ∈ D (P ;3 R)› and ∗∗ : ‹

∧
t ′. t ′ ∈ D (P ;3 R) =⇒ ¬ t ′ < t›

by (simp-all add: min-elems-def )
from ∗ consider (D-P) t ′ u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ ∈ D P›

‹tF t ′› ‹ftF u›
| (D-R) t ′ r u where ‹t = map (ev ◦ of-ev) t ′ @ u› ‹t ′ @ [3(r)] ∈ T P› ‹t ′

/∈ D P› ‹tF t ′› ‹u ∈ D (R r)›
by (simp add: Seqptick-projs) (metis D-imp-front-tickFree)

hence ‹t ∈ ?S P R›
proof cases

case D-P
from D-P(1−3 ) ∗∗[of ‹map (ev ◦ of-ev) t ′›] have ‹u = []›

by (simp add: Seqptick-projs)
(metis strict-prefixI ′ append.right-neutral front-tickFree-Nil neq-Nil-conv)

have ‹t ′ ∈ min-elems (D P)›
proof (rule ccontr)

assume ‹t ′ /∈ min-elems (D P)›
with D-P(2 ) obtain t ′′ where ‹t ′′∈ D P› ‹t ′′< t ′› unfolding min-elems-def

309



by fast
with D-P(1 , 3 ) ∗∗[of ‹map (ev ◦ of-ev) t ′′›] show False

by (auto simp add: Seqptick-projs ‹u = []›)
(metis (no-types, lifting) strict-prefixE ′ strict-prefix-simps(2 ) front-tickFree-Nil
less-append list.simps(9 ) map-append self-append-conv tickFree-append-iff )

qed
thus ‹t ∈ ?S P R› by (simp add: D-P(1 ) ‹u = []›)

next
case D-R
have ‹u ∈ min-elems (D (R r))›
proof (rule ccontr)

assume ‹u /∈ min-elems (D (R r))›
with D-R(5 ) obtain u ′ where ‹u ′ ∈ D (R r)› ‹u ′ < u› unfolding

min-elems-def by fast
with D-R(1 , 2 , 4 ) ∗∗[of ‹map (ev ◦ of-ev) t ′ @ u ′›] show False

by (simp add: Seqptick-projs) (use less-append in blast)
qed
with D-R(1−4 ) show ‹t ∈ ?S P R› by auto

qed
} note $ = this

show ‹P ;3 R v Q ;3 S›
proof (rule below-trans)

show ‹P ;3 R v Q ;3 R›
proof (unfold le-approx-def , safe)

from le-approx1 [OF ‹P v Q›] le-approx-lemma-T [OF ‹P v Q›]
show ‹t ∈ D (Q ;3 R) =⇒ t ∈ D (P ;3 R)› for t

unfolding Seqptick-projs by blast
next

from le-approx2 [OF ‹P v Q›] le-approx2T [OF ‹P v Q›]
show ‹t /∈ D (P ;3 R) =⇒ X ∈ Ra (P ;3 R) t =⇒ X ∈ Ra (Q ;3 R) t› for

t X
by (simp add: Seqptick-projs Refusals-after-def )
(metis F-imp-front-tickFree append.right-neutral front-tickFree-Nil is-processT9 )

next
from le-approx2 [OF ‹P v Q›] le-approx2T [OF ‹P v Q›] le-approx1 [OF ‹P

v Q›]
show ‹t /∈ D (P ;3 R) =⇒ X ∈ Ra (Q ;3 R) t =⇒ X ∈ Ra (P ;3 R) t› for

t X
by (simp add: subset-iff Seqptick-projs Refusals-after-def )
(metis D-T is-processT8 )

next

show ‹t ∈ min-elems (D (P ;3 R)) =⇒ t ∈ T (Q ;3 R)› for t
proof (rule set-mp[OF - $])

from le-approx2T [OF ‹P v Q›] le-approx3 [OF ‹P v Q›] show ‹?S P R ⊆
T (Q ;3 R)›

by (simp add: subset-iff Seqptick-projs)
(meson D-T elem-min-elems image-iff is-processT9 tickFree-mem-min-elems-D)

310



qed
qed

next
show ‹Q ;3 R v Q ;3 S›
proof (unfold le-approx-def , safe)

from le-approx1 [OF fun-belowD[OF ‹R v S›]]
show ‹t ∈ D (Q ;3 S) =⇒ t ∈ D (Q ;3 R)› for t

unfolding Seqptick-projs by blast
next

from proc-ord2a[OF fun-belowD[OF ‹R v S›]]
show ‹t /∈ D (Q ;3 R) =⇒ X ∈ Ra (Q ;3 R) t =⇒ X ∈ Ra (Q ;3 S) t›

‹t /∈ D (Q ;3 R) =⇒ X ∈ Ra (Q ;3 S) t =⇒ X ∈ Ra (Q ;3 R) t› for t X
by (simp add: Seqptick-projs Refusals-after-def , metis)+

next
show ‹t ∈ min-elems (D (Q ;3 R)) =⇒ t ∈ T (Q ;3 S)› for t
proof (rule set-mp[OF - $])

from le-approx3 [OF fun-belowD[OF ‹R v S›]] show ‹?S Q R ⊆ T (Q ;3
S)›

by (simp add: subset-iff Seqptick-projs)
(meson D-T elem-min-elems image-iff tickFree-mem-min-elems-D)

qed
qed

qed
qed

13.1.2 Preliminaries
context begin

private lemma chain-Seqptick-left: ‹chain Y =⇒ chain (λi. Y i ;3 S)›
by (simp add: mono-Seqptick po-class.chain-def )

private lemma chain-Seqptick-right: ‹chain Y =⇒ chain (λi. S ;3 Y i)›
by (simp add: mono-Seqptick po-class.chain-def )

private lemma cont-left-prem-Seqptick :
‹(
⊔

i. Y i) ;3 S = (
⊔

i. Y i ;3 S)› (is ‹?lhs = ?rhs›) if ‹chain Y ›
— We have to add this hypothesis in the generalization.

proof (rule Process-eq-optimizedI )
show ‹t ∈ D ?lhs =⇒ t ∈ D ?rhs› for t

by (simp add: Seqptick-projs limproc-is-thelub ch2ch-fun ‹chain Y › lub-fun
chain-Seqptick-left LUB-projs) blast
next

have ‹t ∈ D ?lhs› if ‹t ∈ D ?rhs› and ‹tF t› for t
proof (cases ‹map (ev ◦ of-ev) t ∈ D (

⊔
i. Y i)›)

show ‹map (ev ◦ of-ev) t ∈ D (
⊔

i. Y i) =⇒ t ∈ D ?lhs›
by (simp add: Seqptick-projs)

(metis append.right-neutral front-tickFree-Nil ‹tF t› tickFree-map-ev-comp
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tickFree-map-ev-of-ev-eq-iff )
next

define T1 and T2
where ‹T1 i ≡ {t1 . ∃ t2 . t = map (ev ◦ of-ev) t1 @ t2 ∧ t1 ∈ D (Y i) ∧ tF

t1 ∧ ftF t2}›
and ‹T2 i ≡ {t1 . ∃ t2 r . t = map (ev ◦ of-ev) t1 @ t2 ∧ t1 @ [3(r)] ∈ T

(Y i) ∧ tF t1 ∧ t2 ∈ D (S r)}› for i
assume ‹map (ev ◦ of-ev) t /∈ D (

⊔
i. Y i)›

with ‹t ∈ D ?rhs› have ‹T1 i ∪ T2 i 6= {}› for i
by (simp add: T1-def T2-def limproc-is-thelub chain-Seqptick-left ‹chain Y ›

LUB-projs Seqptick-projs) fast
moreover have ‹finite (T1 0 ∪ T2 0 )›

unfolding T1-def T2-def
by (rule finite-subset[of - ‹{u. u ≤ map (ev ◦ of-ev) t}›])
(use tickFree-map-ev-of-ev-eq-iff in ‹force simp add: prefixes-fin›)+

moreover have ‹T1 (Suc i) ∪ T2 (Suc i) ⊆ T1 i ∪ T2 i› for i
unfolding T1-def T2-def by (intro allI subsetI ; simp)

(metis (no-types, lifting) ‹chain Y › po-class.chainE le-approx-lemma-T
le-approx1

subsetD[of ‹D (Y (Suc i))› ‹D (Y i)›] subsetD[of ‹T (Y (Suc i))› ‹T (Y
i)› ‹- @ [3(-)]›])

ultimately have ‹(
⋂

i. T1 i ∪ T2 i) 6= {}› by (rule Inter-nonempty-finite-chained-sets)
then obtain t1 where ∗ : ‹∀ i. t1 ∈ T1 i ∪ T2 i› by auto
then obtain t2 where ∗∗ : ‹t = map (ev ◦ of-ev) t1 @ t2 › ‹tF t1 › ‹ftF t2 ›

by (auto simp add: T1-def T2-def dest: D-imp-front-tickFree)
show ‹t ∈ D ?lhs›
proof (cases ‹∀ i. t1 ∈ D (Y i)›)

from ∗∗ show ‹∀ i. t1 ∈ D (Y i) =⇒ t ∈ D ?lhs›
by (auto simp add: Seqptick-projs limproc-is-thelub ‹chain Y › LUB-projs)

next
assume ‹¬ (∀ i. t1 ∈ D (Y i))›
then obtain j where ∗∗∗ : ‹j ≤ i =⇒ t1 /∈ D (Y i)› for i

by (meson ‹chain Y › in-mono le-approx-def po-class.chain-mono)
hence ‹j ≤ i =⇒ t1 /∈ T1 i› for i by (simp add: T1-def )
with ∗ have ‹j ≤ i =⇒ t1 ∈ T2 i› for i by blast
then obtain r where ‹t1 @ [3(r)] ∈ T (Y j)› ‹t2 ∈ D (S r)›

unfolding T2-def by (auto simp add: ∗∗(1 ))
from this(1 ) ‹chain Y › ∗∗∗ have ‹j ≤ i =⇒ t1 @ [3(r)] ∈ T (Y i)› for i

by (metis eq-imp-le is-processT9 le-approx2T po-class.chain-mono)
hence ‹t1 @ [3(r)] ∈ T (

⊔
i. Y i)›

by (meson ∗∗∗ ‹chain Y › dual-order .refl is-processT9 is-ub-thelub le-approx2T )
with ‹t2 ∈ D (S r)› ∗∗(1 , 2 ) show ‹t ∈ D ?lhs›

by (auto simp add: Seqptick-projs)
qed

qed
thus ‹t ∈ D ?rhs =⇒ t ∈ D ?lhs› for t
by (meson D-imp-front-tickFree div-butlast-when-non-tickFree-iff front-tickFree-iff-tickFree-butlast)

next
show ‹(t, X) ∈ F ?lhs =⇒ (t, X) ∈ F ?rhs› for t X
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by (simp add: Seqptick-projs limproc-is-thelub ch2ch-fun ‹chain Y › lub-fun
chain-Seqptick-left LUB-projs) blast
next

fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs›
from ‹t /∈ D ?rhs› obtain j where ‹t /∈ D (Y j ;3 S)›

by (auto simp add: limproc-is-thelub chain-Seqptick-left ‹chain Y › LUB-projs)
moreover from ‹(t, X) ∈ F ?rhs› have ‹(t, X) ∈ F (Y j ;3 S)›

by (simp add: limproc-is-thelub chain-Seqptick-left ‹chain Y › F-LUB)
ultimately show ‹(t, X) ∈ F ?lhs›
by (fact le-approx2 [OF mono-Seqptick[OF is-ub-thelub[OF ‹chain Y ›] below-refl],

THEN iffD2 ])
qed

lemma ‹finite R =⇒ chain Y =⇒ ur ∈ R. (
⊔

i. Y i r) = (
⊔

i. ur ∈ R. Y i r)›
by (subst cont2contlubE [of ‹GlobalNdet R›, symmetric])
(simp-all add: lub-fun)

lemma infinite-GlobalNdet-not-cont :
— This is a counter example.
defines Y-def : ‹Y ≡ λi r :: nat. if r ≤ i then STOP else ⊥ :: (nat, nat)

processptick›
shows ‹chain Y › ‹ur ∈ UNIV . (

⊔
i. Y i r) 6= (

⊔
i. ur ∈ UNIV . Y i r)›

proof −
show ∗ : ‹chain Y › unfolding Y-def by (auto intro!: chainI fun-belowI )
have ∗∗ : ‹chain (λi. Y i r)› for r by (simp add: ‹chain Y › ch2ch-fun)

have ‹(
⊔

i. Y i) = (λr . STOP)›
by (rule ext, simp add: STOP-iff-T lub-fun limproc-is-thelub T-LUB ∗ ∗∗)
(auto simp add: Y-def T-STOP split: if-split-asm)

hence $ : ‹ur ∈ UNIV . (
⊔

i. Y i r) = STOP›
by (simp add: GlobalNdet-is-STOP-iff ∗ lub-fun)

have ‹ur ∈ UNIV . Y i r = ⊥› for i
by (simp add: BOT-iff-Nil-D D-GlobalNdet Y-def D-BOT )
(use Suc-n-not-le-n in blast)

hence $$ : ‹(
⊔

i. ur ∈ UNIV . Y i r) = ⊥› by simp

from $ $$ show ‹ur ∈ UNIV . (
⊔

i. Y i r) 6= (
⊔

i. ur ∈ UNIV . Y i r)› by simp
qed

The same counter-example works for Seqptick.

lemma infinite-Seqptick-not-cont :
— This is a counter example.
defines P-def : ‹P ≡ SKIPS UNIV :: (nat, nat) processptick›
and Y-def : ‹Y ≡ λi r :: nat. if r ≤ i then STOP else ⊥ :: (nat, nat) processptick›

shows ‹chain Y › ‹P ;3 (
⊔

i. Y i) 6= (
⊔

i. P ;3 Y i)›
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proof −
show ∗ : ‹chain Y › unfolding Y-def by (auto intro!: chainI fun-belowI )
have ‹P ;3 (

⊔
i. Y i) = ur ∈ UNIV . (

⊔
i. Y i r)›

by (simp add: P-def ∗ lub-fun)
also have ‹. . . 6= (

⊔
i. ur ∈ UNIV . Y i r)›

unfolding P-def Y-def by (fact infinite-GlobalNdet-not-cont(2 ))
also have ‹(

⊔
i. ur ∈ UNIV . Y i r) = (

⊔
i. P ;3 Y i)›

by (simp add: P-def )
finally show ‹P ;3 (

⊔
i. Y i) 6= (

⊔
i. P ;3 Y i)› .

qed

We must therefore find a condition under which Seqptick is continuous.

private lemma cont-right-prem-Seqptick :
‹S ;3 (

⊔
i. Y i) = (

⊔
i. S ;3 Y i)› (is ‹?lhs = ?rhs›) if ‹chain Y › and ‹�3(S)›

— We have to add this hypothesis in the generalization.
proof (rule Process-eq-optimizedI )

show ‹t ∈ D ?lhs =⇒ t ∈ D ?rhs› for t
by (simp add: Seqptick-projs limproc-is-thelub ch2ch-fun ‹chain Y › lub-fun

chain-Seqptick-right D-LUB) blast
next

have ‹t ∈ D ?lhs› if ‹t ∈ D ?rhs› and ‹tF t› for t
proof (cases ‹map (ev ◦ of-ev) t ∈ D S›)

show ‹map (ev ◦ of-ev) t ∈ D S =⇒ t ∈ D ?lhs›
by (simp add: Seqptick-projs)

(metis append.right-neutral front-tickFree-Nil ‹tF t› tickFree-map-ev-comp
tickFree-map-ev-of-ev-eq-iff )

next
define T where ‹T i ≡ {t1 . ∃ t2 r . t = map (ev ◦ of-ev) t1 @ t2 ∧ t1 @

[3(r)] ∈ T S ∧ tF t1 ∧ t2 ∈ D (Y i r)}› for i
assume ‹map (ev ◦ of-ev) t /∈ D S›
with ‹t ∈ D ?rhs› have ‹T i 6= {}› for i
by (fastforce simp add: T-def limproc-is-thelub chain-Seqptick-right ‹chain Y ›

D-LUB Seqptick-projs is-processT7 tickFree-map-ev-of-ev-same-type-is)
moreover have ‹finite (T 0 )›

unfolding T-def
by (rule finite-subset[of - ‹{u. u ≤ map (ev ◦ of-ev) t}›])
(use tickFree-map-ev-of-ev-eq-iff in ‹force simp add: prefixes-fin›)+

moreover have ‹T (Suc i) ⊆ T i› for i
unfolding T-def by (intro allI Un-mono subsetI ; simp)
(metis ‹chain Y › fun-below-iff subset-iff [of ‹D (Y (Suc i) -)› ‹D (Y i -)›]

po-class.chainE le-approx1 )
ultimately have ‹(

⋂
i. T i) 6= {}› by (rule Inter-nonempty-finite-chained-sets)

then obtain t1 where ‹∀ i. t1 ∈ T i› by auto
then obtain t2 where ∗ : ‹t = map (ev ◦ of-ev) t1 @ t2 ›

‹tF t1 › ‹∀ i. ∃ r . t1 @ [3(r)] ∈ T S ∧ t2 ∈ D (Y i r)›
by (simp add: T-def ) blast

have ‹t1 ∈ T S› by (meson ∗(3 ) prefixI is-processT3-TR)
from ∗(1 , 2 ) ‹map (ev ◦ of-ev) t /∈ D S›
have ‹t1 /∈ D S› using is-processT7 tickFree-map-ev-of-ev-eq-iff by fastforce
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define U where ‹U i ≡ {r . t1 @ [3(r)] ∈ T S ∧ t2 ∈ D (Y i r)}› for i
from ∗(3 ) have ‹U i 6= {}› for i by (simp add: U-def )
moreover have ‹finite (U 0 )›
proof (rule finite-subset[of - ‹{r . t1 @ [3(r)] ∈ T S}›])

show ‹U 0 ⊆ {r . t1 @ [3(r)] ∈ T S}› unfolding U-def by blast
next

show ‹finite {r . t1 @ [3(r)] ∈ T S}›
by (simp add: ‹�3(S)› ‹t1 /∈ D S› finite-ticksD)

qed
moreover have ‹U (Suc i) ⊆ U i› for i

by (simp add: U-def subset-iff )
(meson fun-below-iff in-mono le-approx1 chainE ‹chain Y ›)

ultimately have ‹(
⋂

i. U i) 6= {}› by (rule Inter-nonempty-finite-chained-sets)
then obtain r where ∗∗ : ‹∀ i. r ∈ U i› by auto
with ∗ show ‹t ∈ D ?lhs›

by (simp add: Seqptick-projs U-def ‹chain Y › ch2ch-fun limproc-is-thelub
D-LUB lub-fun) blast

qed
thus ‹t ∈ D ?rhs =⇒ t ∈ D ?lhs› for t
by (meson D-imp-front-tickFree div-butlast-when-non-tickFree-iff front-tickFree-iff-tickFree-butlast)

next
show ‹(t, X) ∈ F ?lhs =⇒ (t, X) ∈ F ?rhs› for t X

by (simp add: Seqptick-projs limproc-is-thelub ch2ch-fun ‹chain Y › lub-fun
chain-Seqptick-right F-LUB) blast
next

fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs›
from ‹t /∈ D ?rhs› obtain j where ‹t /∈ D (S ;3 Y j)›

by (auto simp add: limproc-is-thelub chain-Seqptick-right ‹chain Y › D-LUB)
moreover from ‹(t, X) ∈ F ?rhs› have ‹(t, X) ∈ F (S ;3 Y j)›

by (simp add: limproc-is-thelub chain-Seqptick-right ‹chain Y › F-LUB)
ultimately show ‹(t, X) ∈ F ?lhs›

by (fact le-approx2 [OF mono-Seqptick[OF below-refl is-ub-thelub[OF ‹chain
Y ›]], THEN iffD2 ])
qed

13.1.3 Continuity

We then spent a lot of time trying to prove the continuity under the as-
sumption of finite-ticks-fun.
lemma Seqptick-cont [simp] : ‹cont (λx. f x ;3 g x)›

if ‹cont f › and ‹cont g› and ‹�3⇒(f )›
for g :: ‹- ⇒ - ⇒ ( ′a, ′s) processptick›

proof (rule cont-apply[where f = ‹λx y. f x ;3 y›])
show ‹cont g› by (fact ‹cont g›)

next
show ‹cont (λx. f x ;3 y)› for y :: ‹- ⇒ ( ′a, ′s) processptick›
proof (rule contI2 )

show ‹monofun (λx. f x ;3 y)› by (simp add: cont2monofunE mono-Seqptick

monofunI ‹cont f ›)
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next
show ‹chain Y =⇒ f (

⊔
i. Y i) ;3 y v (

⊔
i. f (Y i) ;3 y)› for Y

by (simp add: ch2ch-cont cont2contlubE cont-left-prem-Seqptick ‹cont f ›)
qed

next
show ‹cont (λy :: - ⇒ ( ′a, ′s) processptick. f x ;3 y)› for x
proof (rule contI2 )

show ‹monofun ((;3) (f x))› by (simp add: mono-Seqptick monofunI )
next

show ‹chain Y =⇒ f x ;3 (
⊔

i. Y i) v (
⊔

i. f x ;3 Y i)›
for Y :: ‹- ⇒ - ⇒ ( ′a, ′s) processptick›

oops
— Unfortunately here, we cannot use cont-right-prem-Seqptick since there is

no reason for �3(x) to hold. Actually, we can find a counter example.

We could therefore only prove the weaker following version.

lemma Seqptick-cont [simp] : ‹cont (λx. f x ;3 g x)›
if ‹cont f › and ‹cont g› and ‹

∧
x. �3(f x)›

for g :: ‹- ⇒ - ⇒ ( ′a, ′s) processptick›
proof (rule cont-apply[where f = ‹λx y. f x ;3 y›])

show ‹cont g› by (fact ‹cont g›)
next

show ‹cont (λx. f x ;3 y)› for y :: ‹- ⇒ ( ′a, ′s) processptick›
proof (rule contI2 )

show ‹monofun (λx. f x ;3 y)› by (simp add: cont2monofunE mono-Seqptick

monofunI ‹cont f ›)
next

show ‹chain Y =⇒ f (
⊔

i. Y i) ;3 y v (
⊔

i. f (Y i) ;3 y)› for Y
by (simp add: ch2ch-cont cont2contlubE cont-left-prem-Seqptick ‹cont f ›)

qed
next

show ‹cont (λy :: - ⇒ ( ′a, ′s) processptick. f x ;3 y)› for x
proof (rule contI2 )

show ‹monofun ((;3) (f x))› by (simp add: mono-Seqptick monofunI )
next

show ‹chain Y =⇒ f x ;3 (
⊔

i. Y i) v (
⊔

i. f x ;3 Y i)›
for Y :: ‹- ⇒ - ⇒ ( ′a, ′s) processptick›
by (simp add: cont-right-prem-Seqptick ‹

∧
x. �3(f x)›)

qed
qed

end

corollary ‹cont f =⇒ cont g =⇒ cont (λx. f x ;3 g x)›
for f :: ‹ ′b :: cpo ⇒ ( ′a, ′r :: finite) processptick›
by (simp add: finite-ticks-simps(5 ))
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lemma MultiSeqptick-cont[simp]:
‹[[
∧

l. l ∈ set L =⇒ cont (f l);
∧

l r x. l ∈ set (butlast L) =⇒ �3(f l x r)]]
=⇒ cont (λx. (SEQ3 l ∈@ L. f l x) r)›

proof (induct L arbitrary: r)
show ‹

∧
r . cont (λx. (SEQ3 l ∈@ []. f l x) r)› by simp

next
case (Cons l0 L)
show ‹cont (λx. (SEQ3 l ∈@ (l0 # L). f l x) r)›
proof (cases ‹L = []›)

show ‹L = [] =⇒ cont (λx. (SEQ3 l ∈@ (l0 # L). f l x) r)›
by (simp add: Cons.prems(1 ) cont2cont-fun)

next
show ‹cont (λx. (SEQ3 l ∈@ (l0 # L). f l x) r)› if ‹L 6= []›
proof (subst MultiSeqptick-Cons, intro cont2cont-lambda Seqptick-cont)

show ‹cont (λx. f l0 x r)› by (simp add: Cons.prems(1 ) cont2cont-fun)
next

have ‹cont (λx. (SEQ3 l ∈@ L. f l x))›
by (rule cont2cont-lambda, rule Cons.hyps)
(simp-all add: Cons.prems(1 , 2 ) ‹L 6= []›)

thus ‹cont (λx. (SEQ3 l ∈@ L. f l x) y)› for y
by (fact cont2cont-fun)

next
show ‹�3(f l0 x r)› for x by (simp add: Cons.prems(2 ) that)

qed
qed

qed

13.2 Synchronization Product
context Syncptick-locale begin

13.2.1 Monotonicity
lemma mono-Syncptick : ‹P [[A]]3 Q v P ′ [[A]]3 Q ′› if ‹P v P ′› and ‹Q v Q ′›
proof (unfold le-approx-def Refusals-after-def , safe)

from le-approx1 [OF ‹P v P ′›] le-approx-lemma-T [OF ‹P v P ′›]
le-approx1 [OF ‹Q v Q ′›] le-approx-lemma-T [OF ‹Q v Q ′›]

show ‹t ∈ D (P ′ [[A]]3 Q ′) =⇒ t ∈ D (P [[A]]3 Q)› for t
by (simp add: D-Syncptick) fast

next
from le-approx2 [OF ‹P v P ′›] le-approx2 [OF ‹Q v Q ′›]
show ‹t /∈ D (P [[A]]3 Q) =⇒ (t, X) ∈ F (P [[A]]3 Q) =⇒
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(t, X) ∈ F (P ′ [[A]]3 Q ′)› for t X
by (simp add: Syncptick-projs ′, elim disjE)
(metis F-T front-tickFree-Nil self-append-conv, metis)

next
from le-approx-lemma-F [OF ‹P v P ′›] le-approx-lemma-F [OF ‹Q v Q ′›]

le-approx1 [OF ‹P v P ′›] le-approx-lemma-T [OF ‹P v P ′›]
le-approx1 [OF ‹Q v Q ′›] le-approx-lemma-T [OF ‹Q v Q ′›]

show ‹t /∈ D (P [[A]]3 Q) =⇒ (t, X) ∈ F (P ′ [[A]]3 Q ′) =⇒
(t, X) ∈ F (P [[A]]3 Q)› for t X

by (simp add: Syncptick-projs subset-iff , elim disjE) metis+
next

fix t assume ‹t ∈ min-elems (D (P [[A]]3 Q))›
hence ‹t ∈ D (P [[A]]3 Q)› by (fact elem-min-elems)
then obtain u v t-P t-Q

where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3tick-join ((t-P, t-Q), A)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›

unfolding D-Syncptick by blast
have ‹v = []›
proof (rule ccontr)

assume ‹v 6= []›
with ∗(1 ) have ‹u < t› by (simp add: dual-order .strict-iff-not)
moreover from ∗(2 ,4 ,5 ) have ‹u ∈ D (P [[A]]3 Q)›

by (simp add: D-Syncptick) (use front-tickFree-Nil in blast)
ultimately show False

using ‹t ∈ min-elems (D (P [[A]]3 Q))› min-elems-no order-less-imp-le by
blast

qed

have ‹t-P ∈ min-elems (D P)› if ‹t-P ∈ D P›
proof (rule ccontr)

assume ‹t-P /∈ min-elems (D P)›
with ‹t-P ∈ D P› obtain t-P ′ where ‹t-P ′ < t-P› ‹t-P ′ ∈ D P›

by (metis antisym-conv2 elem-min-elems min-elems5 )
from setinterleavesptick-less-prefixL[OF ∗(4 ) ‹t-P ′ < t-P›]
obtain u ′ t-Q ′

where $ : ‹u ′ < u› ‹t-Q ′ ≤ t-Q›
‹u ′ setinterleaves3tick-join ((t-P ′, t-Q ′), A)› by blast

from ∗(5 ) D-T have ‹t-Q ∈ T Q› by blast
with $(2 ,3 ) ‹t-P ′ ∈ D P› have ‹u ′ ∈ D (P [[A]]3 Q)›

by (simp add: D-Syncptick ′)
(metis append.right-neutral front-tickFree-Nil is-processT3-TR)

moreover from ‹u ′ < u› have ‹u ′ < t›
by (simp add: ∗(1 )) (meson Prefix-Order .prefixI dual-order .strict-trans1 )

ultimately show False
using ‹t ∈ min-elems (D (P [[A]]3 Q))› min-elems-no nless-le by blast

qed
with ∗(5 ) have ‹t-P ∈ T P ′›

by (meson in-mono le-approx2T le-approx3 ‹P v P ′›)
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have ‹t-Q ∈ min-elems (D Q)› if ‹t-Q ∈ D Q›
proof (rule ccontr)

assume ‹t-Q /∈ min-elems (D Q)›
with ‹t-Q ∈ D Q› obtain t-Q ′ where ‹t-Q ′ < t-Q› ‹t-Q ′ ∈ D Q›

by (metis antisym-conv2 elem-min-elems min-elems5 )
from setinterleavesptick-less-prefixR[OF ∗(4 ) ‹t-Q ′ < t-Q›]
obtain u ′ t-P ′

where $ : ‹u ′ < u› ‹t-P ′ ≤ t-P›
‹u ′ setinterleaves3tick-join ((t-P ′, t-Q ′), A)› by blast

from ∗(5 ) D-T have ‹t-P ∈ T P› by blast
with $(2 ,3 ) ‹t-Q ′ ∈ D Q› have ‹u ′ ∈ D (P [[A]]3 Q)›

by (simp add: D-Syncptick ′)
(metis append.right-neutral front-tickFree-Nil is-processT3-TR)

moreover from ‹u ′ < u› have ‹u ′ < t›
by (simp add: ∗(1 )) (meson Prefix-Order .prefixI dual-order .strict-trans1 )

ultimately show False
using ‹t ∈ min-elems (D (P [[A]]3 Q))› min-elems-no nless-le by blast

qed
with ∗(5 ) have ‹t-Q ∈ T Q ′›

by (meson in-mono le-approx2T le-approx3 ‹Q v Q ′›)

from ‹t-P ∈ T P ′› ‹t-Q ∈ T Q ′› ∗(4 ) show ‹t ∈ T (P ′ [[A]]3 Q ′)›
by (auto simp add: ∗(1 ) ‹v = []› T-Syncptick)

qed

13.2.2 Preliminaries
lemma chain-Syncptick-left : ‹chain Y =⇒ chain (λi. Y i [[A]]3 Q)›

and chain-Syncptick-right : ‹chain Z =⇒ chain (λi. P [[A]]3 Z i)›
by (simp-all add: chain-def mono-Syncptick)

lemma cont-left-prem-Syncptick :
‹(
⊔

i. Y i) [[A]]3 Q = (
⊔

i. Y i [[A]]3 Q)› if chain: ‹chain Y ›
proof (rule Process-eq-optimizedI )

show ‹t ∈ D ((
⊔

i. Y i) [[A]]3 Q) =⇒ t ∈ D (
⊔

i. Y i [[A]]3 Q)› for t
by (simp add: limproc-is-thelub chain chain-Syncptick-left D-Syncptick D-LUB

T-LUB) blast
next

show ‹(t, X) ∈ F ((
⊔

i. Y i) [[A]]3 Q) =⇒ (t, X) ∈ F (
⊔

i. Y i [[A]]3 Q)› for
t X

by (simp add: limproc-is-thelub chain chain-Syncptick-left F-Syncptick D-LUB
T-LUB F-LUB) blast
next

fix t
assume ‹t ∈ D (

⊔
i. Y i [[A]]3 Q)›

define S
where ‹S i ≡ {(t-Y , t-Q, u). ∃ v. tF u ∧ ftF v ∧ t = u @ v ∧
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u setinterleaves3tick-join ((t-Y , t-Q), A) ∧
(t-Y ∈ D (Y i) ∧ t-Q ∈ T Q ∨ t-Y ∈ T (Y i) ∧

t-Q ∈ D Q)}› for i
from ‹t ∈ D (

⊔
i. Y i [[A]]3 Q)› have ‹S i 6= {}› for i

by (simp add: S-def limproc-is-thelub chain chain-Syncptick-left D-Syncptick
D-LUB) fast

moreover have ‹finite (S 0 )›
by (rule finite-subset[OF - finite-setinterleavesptick-tick-join-Syncptick])
(auto simp add: S-def )

moreover from le-approx1 [OF po-class.chainE [OF chain]] D-T
le-approx2T [OF po-class.chainE [OF chain]]

have ‹S (Suc i) ⊆ S i› for i by (simp add: S-def ) blast
ultimately have ‹(

⋂
i. S i) 6= {}› by (rule Inter-nonempty-finite-chained-sets)

then obtain t-Y t-Q u where ‹(t-Y , t-Q, u) ∈ (
⋂

i. S i)› by auto
hence ‹tF u ∧ ftF (drop (length u) t) ∧

t = u @ drop (length u) t ∧ u setinterleaves3tick-join ((t-Y , t-Q), A) ∧
((∀ i. t-Y ∈ D (Y i)) ∧ t-Q ∈ T Q ∨ (∀ i. t-Y ∈ T (Y i)) ∧ t-Q ∈ D Q)›

by (auto simp add: S-def ) (meson chain-lemma le-approx1 le-approx-lemma-T
subsetD chain)

show ‹t ∈ D ((
⊔

i. Y i) [[A]]3 Q)›
by (simp add: limproc-is-thelub chain D-Syncptick T-LUB D-LUB)
(use ‹?this› in blast)

next
fix t X assume ‹(t, X) ∈ F (

⊔
i. Y i [[A]]3 Q)› ‹t /∈ D(

⊔
i. Y i [[A]]3 Q)›

have ‹Y i v (
⊔

i. Y i)› for i by (simp add: is-ub-thelub ‹chain Y ›)
moreover from ‹t /∈ D(

⊔
i. Y i [[A]]3 Q)› obtain j where ‹t /∈ D (Y j [[A]]3

Q)›
by (auto simp add: limproc-is-thelub chain-Syncptick-left ‹chain Y › D-LUB)

moreover from ‹(t, X) ∈ F (
⊔

i. Y i [[A]]3 Q)› have ‹(t, X) ∈ F (Y j [[A]]3
Q)›

by (simp add: limproc-is-thelub chain-Syncptick-left ‹chain Y › F-LUB)
ultimately show ‹(t, X) ∈ F ((

⊔
i. Y i) [[A]]3 Q)›

by (metis (mono-tags, lifting) below-refl le-approx2 mono-Syncptick)
qed

lemma (in Syncptick-locale) cont-right-prem-Syncptick :
‹P [[A]]3 (

⊔
i. Z i) = (

⊔
i. P [[A]]3 Z i)› if ‹chain Z ›

by (subst (1 2 ) Syncptick-locale-sym.Syncptick-sym)
(simp add: Syncptick-locale-sym.cont-left-prem-Syncptick[OF ‹chain Z ›])

13.2.3 Continuity
lemma Syncptick-cont[simp]: ‹cont (λx. f x [[A]]3 g x)› if ‹cont f › ‹cont g›
proof (rule cont-apply[where f = ‹λx y. y [[A]]3 g x›])

from ‹cont f › show ‹cont f › .
next

show ‹cont (λy. y [[A]]3 g x)› for x
proof (rule contI2 )
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show ‹monofun (λy. y [[A]]3 g x)› by (simp add: monofunI mono-Syncptick)
next

show ‹chain Y =⇒ (
⊔

i. Y i) [[A]]3 g x v (
⊔

i. Y i [[A]]3 g x)› for Y
by (simp add: cont-left-prem-Syncptick)

qed
next

show ‹cont (λx. y [[A]]3 g x)› for y
proof (rule cont-compose[of ‹λx. y [[A]]3 x›])

show ‹cont (λx. y [[A]]3 x)›
proof (rule contI2 )

show ‹monofun (Syncptick y A)› by (simp add: monofunI mono-Syncptick)
next

show ‹chain Z =⇒ y [[A]]3 (
⊔

i. Z i) v (
⊔

i. y [[A]]3 Z i)› for Z
by (simp add: cont-right-prem-Syncptick)

qed
next

from ‹cont g› show ‹cont g› .
qed

qed

end

lemma MultiSyncptick-cont [simp] :
‹(
∧

l. l ∈ set L =⇒ cont (P l)) =⇒ cont (λx. [[S]]3 l ∈@ L. P l x)›
by (induct L rule: induct-list012 )
(auto intro: RenamingTick-cont inj-imp-finitary injI )
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Chapter 14

Monotonicity Properties

14.0.1 Sequential Composition

lemma mono-Seqptick-FD : ‹P vFD P ′ =⇒ (
∧

r . Q r vFD Q ′ r) =⇒ P ;3 Q
vFD P ′ ;3 Q ′›
proof (rule trans-FD[of - ‹P ′ ;3 Q›])

show ‹P vFD P ′ =⇒ (
∧

r . Q r vFD Q ′ r) =⇒ P ;3 Q vFD P ′ ;3 Q›
unfolding refine-defs Seqptick-projs
by (auto simp add: subset-iff T-F-spec[symmetric])

next
show ‹P vFD P ′ =⇒ (

∧
r . Q r vFD Q ′ r) =⇒ P ′ ;3 Q vFD P ′ ;3 Q ′›

unfolding less-eq-processptick-def Seqptick-projs
by (simp add: subset-iff T-F-spec[symmetric]) metis

qed

lemma mono-Seqptick-DT : ‹P vDT P ′ =⇒ (
∧

r . Q r vDT Q ′ r) =⇒ P ;3 Q
vDT P ′ ;3 Q ′›
proof (rule trans-DT [of - ‹P ′ ;3 Q›])

show ‹P ;3 Q vDT P ′ ;3 Q› if ‹P vDT P ′›
proof (rule trace-divergence-refine-optimizedI )

from ‹P vDT P ′› show ‹s ∈ D (P ′ ;3 Q) =⇒ s ∈ D (P ;3 Q)› for s
by (auto simp add: refine-defs Seqptick-projs)

next
from ‹P vDT P ′› show ‹s ∈ T (P ′ ;3 Q) =⇒ s ∈ T (P ;3 Q)› for s

by (auto simp add: Seqptick-projs refine-defs)
qed

next
show ‹(

∧
r . Q r vDT Q ′ r) =⇒ P ′ ;3 Q vDT P ′ ;3 Q ′›

by (simp add: refine-defs Seqptick-projs) blast
qed

lemma mono-Seqptick-F-right : ‹(
∧

r . Q r vF Q ′ r) =⇒ P ;3 Q vF P ;3 Q ′›
by (auto simp add: failure-refine-def Seqptick-projs) blast

lemma mono-Seqptick-D-right : ‹(
∧

r . Q r vD Q ′ r) =⇒ P ;3 Q vD P ;3 Q ′›
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by (simp add: divergence-refine-def Seqptick-projs) blast

lemma mono-Seqptick-T-right : ‹(
∧

r . Q r vT Q ′ r) =⇒ P ;3 Q vT P ;3 Q ′›
by (simp add: trace-refine-def Seqptick-projs) blast

Left Sequence monotonicity doesn’t hold for (vF ), (vD) and (vT ).

lemmas monos-Seqptick = mono-Seqptick mono-Seqptick-FD mono-Seqptick-DT
mono-Seqptick-F-right mono-Seqptick-D-right mono-Seqptick-T-right

14.0.2 Multiple Sequential Composition
lemma mono-MultiSeqptick :

‹(
∧

x r . x ∈ set L =⇒ P x r v Q x r) =⇒
(SEQ3 l ∈@ L. P l) r v (SEQ3 l ∈@ L. Q l) r›

by (induct L arbitrary: r , simp-all add: fun-belowI mono-Seqptick)

lemma mono-MultiSeqptick-FD :
‹(
∧

x r . x ∈ set L =⇒ P x r vFD Q x r) =⇒
(SEQ3 l ∈@ L. P l) r vFD (SEQ3 l ∈@ L. Q l) r›

and mono-MultiSeqptick-DT :
‹(
∧

x r . x ∈ set L =⇒ P x r vDT Q x r) =⇒
(SEQ3 l ∈@ L. P l) r vDT (SEQ3 l ∈@ L. Q l) r›

by (induct L arbitrary: r , simp-all add: monos-Seqptick)

lemmas monos-MultiSeqptick =
mono-MultiSeqptick mono-MultiSeqptick-FD mono-MultiSeqptick-FD

14.0.3 Synchronization Product
context Syncptick-locale begin

lemma mono-Syncptick-DT :
‹P vDT P ′ =⇒ Q vDT Q ′ =⇒ P [[A]]3 Q vDT P ′ [[A]]3 Q ′›
by (simp add: refine-defs T-Syncptick D-Syncptick) blast

lemma mono-Syncptick-FD : ‹P [[A]]3 Q vFD P ′ [[A]]3 Q ′›
if ‹P vFD P ′› and ‹Q vFD Q ′›

proof −
from ‹P vFD P ′› ‹Q vFD Q ′› have ‹P vDT P ′› ‹Q vDT Q ′›

by (simp-all add: le-ref2T refine-defs)
with mono-Syncptick-DT have ‹P [[A]]3 Q vDT P ′ [[A]]3 Q ′› by blast
hence ∗ : ‹P [[A]]3 Q vD P ′ [[A]]3 Q ′› by (simp add: leDT-imp-leD)
show ‹P [[A]]3 Q vFD P ′ [[A]]3 Q ′›
proof (rule leF-leD-imp-leFD[OF - ∗],

unfold failure-refine-def , safe)
fix t X assume ‹(t, X) ∈ F (P ′ [[A]]3 Q ′)›
then consider ‹t ∈ D (P ′ [[A]]3 Q ′)›
| (fail) t-P t-Q X-P X-Q
where ‹(t-P, X-P) ∈ F P ′› ‹(t-Q, X-Q) ∈ F Q ′›
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‹t setinterleaves3tick-join ((t-P, t-Q), A)›
‹X ⊆ super-ref-Syncptick tick-join X-P A X-Q›

unfolding Syncptick-projs by blast
thus ‹(t, X) ∈ F (P [[A]]3 Q)›
proof cases

show ‹t ∈ D (P ′ [[A]]3 Q ′) =⇒ (t, X) ∈ F (P [[A]]3 Q)›
using ∗ D-F unfolding divergence-refine-def by blast

next
case fail
from fail(1 , 2 ) ‹P vFD P ′› ‹Q vFD Q ′›
have ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›

unfolding refine-defs by auto
with fail(3 , 4 ) show ‹(t, X) ∈ F (P [[A]]3 Q)›

by (auto simp add: F-Syncptick)
qed

qed
qed

lemmas monos-Syncptick = mono-Syncptick mono-Syncptick-FD mono-Syncptick-DT

end

14.0.4 Multiple Synchronization Product
lemma mono-MultiSyncptick :

‹(
∧

l. l ∈ set L =⇒ P l v Q l) =⇒ [[S]]3 l ∈@ L. P l v [[S]]3 l ∈@ L. Q l›
by (induct L rule: induct-list012 )
(simp-all add: SyncRlist.mono-Syncptick mono-Renaming)

lemma mono-MultiSyncptick-FD :
‹(
∧

l. l ∈ set L =⇒ P l vFD Q l) =⇒ [[S]]3 l ∈@ L. P l vFD [[S]]3 l ∈@ L. Q l›
by (induct L rule: induct-list012 )
(simp-all add: SyncRlist.mono-Syncptick-FD mono-Renaming-FD)

lemma mono-MultiSyncptick-DT :
‹(
∧

l. l ∈ set L =⇒ P l vDT Q l) =⇒ [[S]]3 l ∈@ L. P l vDT [[S]]3 l ∈@ L. Q l›
by (induct L rule: induct-list012 )
(simp-all add: SyncRlist.mono-Syncptick-DT mono-Renaming-DT )

lemmas monos-MultiSyncptick =
mono-MultiSyncptick mono-MultiSyncptick-FD mono-MultiSyncptick-DT
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Chapter 15

Non Destructiveness Rules

15.1 Synchronization Product

15.1.1 Refinement
lemma (in Syncptick-locale) restriction-processptick-Syncptick-FD-div-oneside :

assumes ‹tF u› ‹ftF v› ‹t-P ∈ D (P ↓ n)› ‹t-Q ∈ T (Q ↓ n)›
‹u setinterleaves3tick-join ((t-P, t-Q), A)›

shows ‹u @ v ∈ D (P [[A]]3 Q ↓ n)›
proof (insert assms(3 , 4 ), elim D-restriction-processptickE T-restriction-processptickE)

from assms(1 , 2 , 5 ) show ‹t-P ∈ D P =⇒ t-Q ∈ T Q =⇒ u @ v ∈ D (P [[A]]3
Q ↓ n)›

by (auto simp add: D-restriction-processptick D-Syncptick)
next

fix t-Q ′ t-Q ′′

assume ∗ : ‹t-P ∈ D P› ‹length t-P ≤ n› ‹t-Q = t-Q ′ @ t-Q ′′›
‹t-Q ′ ∈ T Q› ‹length t-Q ′ = n› ‹tF t-Q ′› ‹ftF t-Q ′′›

from ‹t-Q = t-Q ′ @ t-Q ′′› have ‹t-Q ′ ≤ t-Q› by simp
from setinterleavesptick-le-prefixR[OF assms(5 ) this]
obtain t-P ′ t-P ′′ u ′ u ′′

where ∗∗ : ‹u = u ′ @ u ′′› ‹t-P = t-P ′ @ t-P ′′›
‹u ′ setinterleaves3tick-join ((t-P ′, t-Q ′), A)›

by (meson Prefix-Order .prefixE)
from assms(1 ) ‹u = u ′ @ u ′′› have ‹tF u ′› by auto
moreover from ∗(1 ,4 ) ∗∗(2 ,3 ) have ‹u ′ ∈ T (P [[A]]3 Q)›

by (simp add: T-Syncptick) (metis D-T is-processT3-TR-append)
moreover have ‹length t-Q ′ ≤ length u ′›

using ∗∗(3 ) setinterleavesptick-imp-lengthLR-le by blast
ultimately have ‹u ′ ∈ D (P [[A]]3 Q ↓ n)›

by (metis ∗(5 ) D-restriction-processptickI nless-le)
with ∗∗(1 ) assms(1 , 2 ) show ‹u @ v ∈ D (P [[A]]3 Q ↓ n)›
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by (metis is-processT7 tickFree-append-iff tickFree-imp-front-tickFree)
next

fix t-P ′ t-P ′′

assume ∗ : ‹t-P = t-P ′ @ t-P ′′› ‹t-P ′ ∈ T P› ‹length t-P ′ = n›
‹tF t-P ′› ‹ftF t-P ′′› ‹t-Q ∈ T Q› ‹length t-Q ≤ n›

from ‹t-P = t-P ′ @ t-P ′′› have ‹t-P ′ ≤ t-P› by simp
from setinterleavesptick-le-prefixL[OF assms(5 ) this]
obtain t-Q ′ t-Q ′′ u ′ u ′′

where ∗∗ : ‹u = u ′ @ u ′′› ‹t-Q = t-Q ′ @ t-Q ′′›
‹u ′ setinterleaves3tick-join ((t-P ′, t-Q ′), A)›

by (meson Prefix-Order .prefixE)
from assms(1 ) ‹u = u ′ @ u ′′› have ‹tF u ′› by auto
moreover from ∗(2 ,6 ) ∗∗(2 ,3 ) have ‹u ′ ∈ T (P [[A]]3 Q)›

by (simp add: T-Syncptick) (metis is-processT3-TR-append)
moreover have ‹length t-P ′ ≤ length u ′›

using ∗∗(3 ) setinterleavesptick-imp-lengthLR-le by blast
ultimately have ‹u ′ ∈ D (P [[A]]3 Q ↓ n)›

by (metis ∗(3 ) D-restriction-processptickI nless-le)
with ∗∗(1 ) assms(1 , 2 ) show ‹u @ v ∈ D (P [[A]]3 Q ↓ n)›

by (metis is-processT7 tickFree-append-iff tickFree-imp-front-tickFree)
next

fix t-P ′ t-P ′′ t-Q ′ t-Q ′′

assume $ : ‹t-P = t-P ′ @ t-P ′′› ‹t-P ′ ∈ T P› ‹length t-P ′ = n›
‹tF t-P ′› ‹ftF t-P ′′› ‹t-Q = t-Q ′ @ t-Q ′′› ‹t-Q ′ ∈ T Q›
‹length t-Q ′ = n› ‹tF t-Q ′› ‹ftF t-Q ′′›

from $(1 , 6 ) have ‹t-P ′ ≤ t-P› ‹t-Q ′ ≤ t-Q› by simp-all
from setinterleavesptick-le-prefixLR[OF assms(5 ) this]
show ‹u @ v ∈ D (P [[A]]3 Q ↓ n)›
proof (elim disjE conjE exE)

fix u ′ t-Q ′′′ assume $$ : ‹u ′ ≤ u› ‹t-Q ′′′ ≤ t-Q ′›
‹u ′ setinterleaves3tick-join ((t-P ′, t-Q ′′′), A)›

from $(7 ) $$(2 ) is-processT3-TR have ‹t-Q ′′′ ∈ T Q› by blast
with $$(3 ) ‹t-P ′ ∈ T P› have ‹u ′ ∈ T (P [[A]]3 Q)›

by (auto simp add: T-Syncptick)
moreover have ‹n ≤ length u ′›

using $(3 ) $$(3 ) setinterleavesptick-imp-lengthLR-le by blast
ultimately have ‹u ′ ∈ D (P [[A]]3 Q ↓ n)›

by (metis $$(1 ) D-restriction-processptickI Prefix-Order .prefixE
assms(1 ) nless-le tickFree-append-iff )

thus ‹u @ v ∈ D (P [[A]]3 Q ↓ n)›
by (metis $$(1 ) Prefix-Order .prefixE assms(1 ,2 ) is-processT7

tickFree-append-iff tickFree-imp-front-tickFree)
next

fix u ′ t-P ′′′ assume $$ : ‹u ′ ≤ u› ‹t-P ′′′ ≤ t-P ′›
‹u ′ setinterleaves3tick-join ((t-P ′′′, t-Q ′), A)›

from $(2 ) $$(2 ) is-processT3-TR have ‹t-P ′′′ ∈ T P› by blast
with $$(3 ) ‹t-Q ′ ∈ T Q› have ‹u ′ ∈ T (P [[A]]3 Q)›

by (auto simp add: T-Syncptick)
moreover have ‹n ≤ length u ′›
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using $(8 ) $$(3 ) setinterleavesptick-imp-lengthLR-le by blast
ultimately have ‹u ′ ∈ D (P [[A]]3 Q ↓ n)›

by (metis $$(1 ) D-restriction-processptickI Prefix-Order .prefixE
assms(1 ) nless-le tickFree-append-iff )

thus ‹u @ v ∈ D (P [[A]]3 Q ↓ n)›
by (metis $$(1 ) Prefix-Order .prefixE assms(1 ,2 ) is-processT7

tickFree-append-iff tickFree-imp-front-tickFree)
qed

qed

lemma (in Syncptick-locale) restriction-processptick-Syncptick-FD :
‹P [[A]]3 Q ↓ n vFD (P ↓ n) [[A]]3 (Q ↓ n)› (is ‹?lhs vFD ?rhs›)

proof (unfold refine-defs, safe)
show ‹t ∈ D ?rhs =⇒ t ∈ D ?lhs› for t

by (unfold D-Syncptick, safe)
(solves ‹simp add: restriction-processptick-Syncptick-FD-div-oneside›,
metis Syncptick-locale-sym.restriction-processptick-Syncptick-FD-div-oneside
Syncptick-sym setinterleavesptick-sym)

thus ‹(t, X) ∈ F ((P ↓ n) [[A]]3 (Q ↓ n)) =⇒ (t, X) ∈ F (P [[A]]3 Q ↓ n)› for
t X

by (meson is-processT8 le-approx2 mono-Syncptick restriction-processptick-approx-self )
qed

The equality does not hold in general, but we can establish it by adding an
assumption over the strict alphabets of the processes.

lemma (in Syncptick-locale) strict-events-of-subset-restriction-processptick-Syncptick
:

‹P [[A]]3 Q ↓ n = (P ↓ n) [[A]]3 (Q ↓ n)› (is ‹?lhs = ?rhs›)
if ‹α(P) ⊆ A ∨ α(Q) ⊆ A›

proof (rule FD-antisym)
show ‹?lhs vFD ?rhs› by (fact restriction-processptick-Syncptick-FD)

next
have div : ‹t ∈ D (P [[A]]3 Q) =⇒ t ∈ D ?rhs› for t

by (auto simp add: D-Syncptick restriction-processptick-projs)

{ fix t u v assume ‹t = u @ v› ‹u ∈ T (P [[A]]3 Q)› ‹length u = n› ‹tF u› ‹ftF
v›

from this(2 ) consider ‹u ∈ D (P [[A]]3 Q)›
| t-P t-Q where ‹t-P ∈ T P› ‹t-Q ∈ T Q›

‹u setinterleaves3tick-join ((t-P, t-Q), A)›
unfolding Syncptick-projs by blast

hence ‹t ∈ D ?rhs›
proof cases

show ‹u ∈ D (P [[A]]3 Q) =⇒ t ∈ D ?rhs›
by (simp add: ‹ftF v› ‹t = u @ v› ‹tF u› div is-processT7 )

next
fix t-P t-Q assume ‹t-P ∈ T P› ‹t-Q ∈ T Q›
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and setinter : ‹u setinterleaves3tick-join ((t-P, t-Q), A)›
consider ‹t-P ∈ D P ∨ t-Q ∈ D Q› | ‹t-P /∈ D P› ‹t-Q /∈ D Q› by blast
thus ‹t ∈ D ?rhs›
proof cases

assume ‹t-P ∈ D P ∨ t-Q ∈ D Q›
with ‹t-P ∈ T P› ‹t-Q ∈ T Q› setinter ‹ftF v› ‹t = u @ v› ‹tF u›
have ‹t ∈ D (P [[A]]3 Q)› by (auto simp add: D-Syncptick)
thus ‹t ∈ D ?rhs› by (fact div)

next
assume ‹t-P /∈ D P› ‹t-Q /∈ D Q›
with ‹t-P ∈ T P› ‹t-Q ∈ T Q› ‹α(P) ⊆ A ∨ α(Q) ⊆ A›
have ‹{a. ev a ∈ set t-P} ⊆ A ∨ {a. ev a ∈ set t-Q} ⊆ A›

by (auto dest: subsetD intro: strict-events-of-memI )
with setinterleavesptick-subsetL[OF ‹tF u› - setinter ]

setinterleavesptick-subsetR[OF ‹tF u› - setinter ]
have ‹u = map ev (map of-ev t-P) ∨ u = map ev (map of-ev t-Q)› by blast
with ‹length u = n› have ‹length t-P = n ∨ length t-Q = n› by auto
moreover from ‹tF u› tickFree-setinterleavesptick-iff [OF setinter ]
have ‹tF t-P› ‹tF t-Q› by simp-all
ultimately have ‹t-P ∈ D (P ↓ n) ∨ t-Q ∈ D (Q ↓ n)›

using ‹t-P ∈ T P› ‹t-Q ∈ T Q› by (metis D-restriction-processptickI )
moreover from ‹t-P ∈ T P› ‹t-Q ∈ T Q›
have ‹t-P ∈ T (P ↓ n)› ‹t-Q ∈ T (Q ↓ n)›

by (simp-all add: T-restriction-processptickI )
ultimately show ‹t ∈ D ?rhs›
using ‹ftF v› ‹t = u @ v› ‹tF u› setinter by (auto simp add: D-Syncptick)

qed
qed

} note ∗ = this

show ‹?rhs vFD ?lhs›
proof (unfold refine-defs, safe)

show ‹t ∈ D ?lhs =⇒ t ∈ D ?rhs› for t
proof (elim D-restriction-processptickE)

show ‹t ∈ D (P [[A]]3 Q) =⇒ t ∈ D ?rhs› by (fact div)
next

show ‹[[t = u @ v; u ∈ T (P [[A]]3 Q); length u = n; tF u; ftF v]]
=⇒ t ∈ D ?rhs› for u v by (fact ∗)

qed
next

show ‹(t, X) ∈ F ?lhs =⇒ (t, X) ∈ F ?rhs› for t X
proof (elim F-restriction-processptickE)

assume ‹(t, X) ∈ F (P [[A]]3 Q)›
then consider ‹t ∈ D (P [[A]]3 Q)›
| (fail) t-P t-Q X-P X-Q where ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›

‹t setinterleaves3tick-join ((t-P, t-Q), A)›
‹X ⊆ super-ref-Syncptick tick-join X-P A X-Q›

unfolding Syncptick-projs by blast
thus ‹(t, X) ∈ F ?rhs›
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proof cases
from div D-F show ‹t ∈ D (P [[A]]3 Q) =⇒ (t, X) ∈ F ?rhs› by blast

next
case fail
thus ‹(t, X) ∈ F ?rhs›

by (auto simp add: F-Syncptick F-restriction-processptick)
qed

next
show ‹[[t = u @ v; u ∈ T (P [[A]]3 Q); length u = n; tF u; ftF v]]

=⇒ (t, X) ∈ F ?rhs› for u v by (simp add: ∗ is-processT8 )
qed

qed
qed

corollary restriction-processptick-MultiSyncptick-FD :
‹[[A]]3 l ∈@ L. P l ↓ n vFD [[A]]3 l ∈@ L. (P l ↓ n)›

proof (induct L rule: induct-list012 )
show ‹[[A]]3 l ∈@ []. P l ↓ n vFD [[A]]3 l ∈@ []. (P l ↓ n)› by simp

next
show ‹[[A]]3 l ∈@ [l1 ]. P l ↓ n vFD [[A]]3 l ∈@ [l1 ]. (P l ↓ n)› for l1

by (simp add: restriction-processptick-Renaming)
next

fix l1 l2 L
assume hyp : ‹[[A]]3 l ∈@ (l2 # L). P l ↓ n vFD [[A]]3 l ∈@ (l2 # L). (P l ↓

n)›
show ‹[[A]]3 l ∈@ (l1 # l2 # L). P l ↓ n vFD [[A]]3 l ∈@ (l1 # l2 # L). (P l
↓ n)›

by simp
(fact trans-FD[OF SyncRlist.restriction-processptick-Syncptick-FD

SyncRlist.mono-Syncptick-FD[OF idem-FD hyp]])
qed

The generalization of the lemma α(P) ⊆ A ∨ α(Q) ⊆ A =⇒ P [[A]]3 Q ↓
n = (P ↓ n) [[A]]3 (Q ↓ n) is not straightforward. We can already observe
with only three processes that one can not expect the first synchronization
to have its strict alphabets contained in the synchronization set. Therefore,
we have to assume the condition on at least length L − 1 processes.
corollary strict-events-of-subset-restriction-processptick-MultiSyncptick :

‹[[A]]3 l ∈@ L. P l ↓ n = (if n = 0 then ⊥ else [[A]]3 l ∈@ L. (P l ↓ n))›
— if n = 0 then ⊥ else - is necessary because we can have L = [].
if ‹

∧
l. l ∈ set (tl L) =⇒ α(P l) ⊆ A›

proof (split if-split, intro conjI impI )
show ‹n = 0 =⇒ [[A]]3 l ∈@ L. P l ↓ n = ⊥› by simp

next
from that show ‹[[A]]3 l ∈@ L. P l ↓ n = [[A]]3 l ∈@ L. (P l ↓ n)› if ‹n 6= 0 ›
proof (induct L rule: induct-list012 )

case 1 show ?case by (simp add: ‹n 6= 0 ›)
next
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case (2 l1 ) show ?case by (simp add: restriction-processptick-Renaming)
next

case (3 l1 l2 L)
from 3 .prems have ∗ : ‹α(MultiSyncptick A (l2 # L) P) ⊆ A›

by (intro subset-trans[OF strict-events-of-MultiSyncptick-subset]) auto
have ‹[[A]]3 l ∈@ (l1 # l2 # L). P l ↓ n =

P l1 [[A]]3Rlist [[A]]3 l ∈@ (l2 # L). P l ↓ n› by simp
also have ‹. . . = (P l1 ↓ n) [[A]]3Rlist ([[A]]3 l ∈@ (l2 # L). P l ↓ n)›
by (simp add: SyncRlist.strict-events-of-subset-restriction-processptick-Syncptick

∗)
also have ‹. . . = (P l1 ↓ n) [[A]]3Rlist [[A]]3 l ∈@ (l2 # L). (P l ↓ n)›

using 3 .hyps(2 ) 3 .prems by auto
also have ‹. . . = [[A]]3 l ∈@ (l1 # l2 # L). (P l ↓ n)› by simp
finally show ?case .

qed
qed

corollary (in Syncptick-locale) restriction-processptick-Parptick :
‹P ||3 Q ↓ n = (P ↓ n) ||3 (Q ↓ n)›
by (simp add: strict-events-of-subset-restriction-processptick-Syncptick)

corollary restriction-processptick-MultiParptick :
‹||3 l ∈@ L. P l ↓ n = (if n = 0 then ⊥ else ||3 l ∈@ L. (P l ↓ n))›
by (simp add: strict-events-of-subset-restriction-processptick-MultiSyncptick)

15.1.2 Non Destructiveness
lemma (in Syncptick-locale) Syncptick-non-destructive :

‹non-destructive (λ(P, Q). P [[A]]3 Q)›
proof (rule order-non-destructiveI , clarify)

fix P P ′ :: ‹( ′a, ′r) processptick› and Q Q ′ :: ‹( ′a, ′s) processptick› and n
assume ‹(P, Q) ↓ n = (P ′, Q ′) ↓ n›
hence ‹P ↓ n = P ′ ↓ n› ‹Q ↓ n = Q ′ ↓ n›

by (simp-all add: restriction-prod-def )
show ‹P [[A]]3 Q ↓ n vFD P ′ [[A]]3 Q ′ ↓ n›
proof (rule leFD-restriction-processptickI )

show ‹t ∈ D (P ′ [[A]]3 Q ′) =⇒ t ∈ D (P [[A]]3 Q ↓ n)› for t
by (metis (no-types, lifting) ‹P ↓ n = P ′ ↓ n› ‹Q ↓ n = Q ′ ↓ n› in-mono

le-ref1 mono-Syncptick-FD
restriction-processptick-FD-self restriction-processptick-Syncptick-FD)

next
show ‹(t, X) ∈ F (P ′ [[A]]3 Q ′) =⇒ (t, X) ∈ F (P [[A]]3 Q ↓ n)› for t X

by (metis (no-types, lifting) ‹P ↓ n = P ′ ↓ n› ‹Q ↓ n = Q ′ ↓ n› le-ref2
mono-Syncptick-FD

restriction-processptick-FD-self restriction-processptick-Syncptick-FD
subsetD)

qed
qed
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15.1.3 Setup
lemma (in Syncptick-locale) Syncptick-restriction-shift-processptick
[restriction-shift-processptick-simpset, simp] :
‹non-destructive f =⇒ non-destructive g =⇒ non-destructive (λx. f x [[S ]]3 g x)›
‹constructive f =⇒ constructive g =⇒ constructive (λx. f x [[S ]]3 g x)›
by (fact non-destructive-comp-non-destructive

[OF Syncptick-non-destructive non-destructive-prod-codomain, simplified])
(fact non-destructive-comp-constructive
[OF Syncptick-non-destructive constructive-prod-codomain, simplified])

lemma MultiSyncptick-restriction-shift-processptick
[restriction-shift-processptick-simpset, simp] :
‹(
∧

l. l ∈ set L =⇒ non-destructive (f l)) =⇒ non-destructive (λx. [[S]]3 l ∈@ L.
f l x)›

‹(
∧

l. l ∈ set L =⇒ constructive (f l)) =⇒ constructive (λx. [[S]]3 l ∈@ L. f l x)›
by (induct L rule: induct-list012 ; simp)+

corollary MultiSyncptick-non-destructive : ‹non-destructive (λP. [[S]]3 l ∈@ L. P
l)›

by (rule MultiSyncptick-restriction-shift-processptick(1 )[of L ‹λm x. x m›]) simp
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Chapter 16

Other Laws

declare [[metis-instantiate]]

16.1 Laws of Renaming

16.1.1 Renaming and Sequential Composition
lemma FD-Renaming-Seqptick :

‹Renaming P f g ;3 (λg-r . ur ∈ {r ∈ 3s(P). g-r = g r}. Renaming (Q r) f g ′)
vFD Renaming (P ;3 Q) f g ′› (is ‹?lhs vFD ?rhs›)

proof (rule failure-divergence-refine-optimizedI )
fix s assume ‹s ∈ D ?rhs›
then obtain s1 s2 where ∗ : ‹s = map (map-eventptick f g ′) s1 @ s2 › ‹tF s1 ›

‹ftF s2 › ‹s1 ∈ D (P ;3 Q)›
unfolding D-Renaming by blast

from ∗(4 ) consider (D-P) t1 t2 where ‹s1 = map (ev ◦ of-ev) t1 @ t2 › ‹t1 ∈
D P› ‹tF t1 › ‹ftF t2 ›
| (D-Q) t1 r t2 where ‹s1 = map (ev ◦ of-ev) t1 @ t2 › ‹t1 @ [3(r)] ∈ T P›

‹t1 /∈ D P› ‹tF t1 › ‹t2 ∈ D (Q r)›
by (simp add: Seqptick-projs) (metis D-imp-front-tickFree)

thus ‹s ∈ D ?lhs›
proof cases

case D-P
from D-P(2 , 3 ) have ‹map (map-eventptick f g) t1 ∈ D (Renaming P f g)›

by (auto simp add: D-Renaming intro: front-tickFree-Nil)
hence ‹map (ev ◦ of-ev) (map (map-eventptick f g) t1 ) ∈ D ?lhs›

unfolding Seqptick-projs
by (metis (mono-tags, lifting) front-tickFree-Nil D-P(3 )

map-eventptick-tickFree append.right-neutral mem-Collect-eq Un-iff )
also have ‹map (ev ◦ of-ev) (map (map-eventptick f g) t1 ) =

map (map-eventptick f g ′) (map (ev ◦ of-ev) t1 )›
by (simp add: ‹tF t1 › tickFree-map-map-eventptick-is)

finally show ‹s ∈ D ?lhs›
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by (auto simp add: ∗(1 ) D-P(1 ) intro!: is-processT7 )
(metis list.map-comp map-eventptick-tickFree tickFree-map-ev-comp,

use ∗(2 , 3 ) D-P(1 ) front-tickFree-append map-eventptick-tickFree tick-
Free-append-iff in blast)

next
case D-Q
from ∗(2 ) D-Q(1 , 5 ) have ‹map (map-eventptick f g ′) t2 ∈ D (Renaming (Q

r) f g ′)›
by (auto simp add: D-Renaming intro: front-tickFree-Nil)

hence ‹map (map-eventptick f g ′) t2 ∈ D (ur ′ ∈ {r ′ ∈ 3s(P). g r = g r ′}.
Renaming (Q r ′) f g ′)›

by (simp add: D-GlobalNdet)
(metis D-Q(2 , 3 ) is-processT9 strict-ticks-of-memI )

moreover from D-Q(2 ) have ‹map (map-eventptick f g) t1 @ [3(g r)] ∈ T
(Renaming P f g)›

by (auto simp add: T-Renaming)
moreover have ‹tF (map (map-eventptick f g) t1 )›

by (simp add: D-Q(4 ) map-eventptick-tickFree)
ultimately have ‹map (ev ◦ of-ev) (map (map-eventptick f g) t1 ) @

map (map-eventptick f g ′) t2 ∈ D ?lhs›
unfolding Seqptick-projs by blast

with ∗(2 , 3 ) have ‹map (ev ◦ of-ev) (map (map-eventptick f g) t1 ) @
map (map-eventptick f g ′) t2 @ s2 ∈ D ?lhs›

by (auto simp add: D-Q(1 ) comp-assoc map-eventptick-tickFree
intro!: is-processT7 [of ‹- @ -›, simplified])

also from D-Q(4 ) have ‹map (ev ◦ of-ev) (map (map-eventptick f g) t1 ) @
map (map-eventptick f g ′) t2 @ s2 = s›

by (simp add: ∗(1 ) D-Q(1 ))
(metis eventptick.map-sel(1 ) in-set-conv-decomp tickFree-Cons-iff tick-

Free-append-iff )
finally show ‹s ∈ D ?lhs› .

qed
next

assume subset-div : ‹D ?rhs ⊆ D ?lhs›
fix s X assume ‹(s, X) ∈ F ?rhs›
then consider ‹s ∈ D ?rhs›
| (fail) s1 where ‹s = map (map-eventptick f g ′) s1 ›

‹(s1 , map-eventptick f g ′ −‘ X) ∈ F (P ;3 Q)› ‹s1 /∈ D (P ;3 Q)›
by (simp add: Renaming-projs)
(metis (no-types, opaque-lifting) front-tickFree-Nil front-tickFree-iff-tickFree-butlast

front-tickFree-Cons-iff [of ‹last s› ‹[]›] map-butlast[of ‹map-eventptick f g ′›]
map-is-Nil-conv[of ‹map-eventptick f g ′› ‹[]›] map-is-Nil-conv[of ‹map-eventptick

f g ′›]
append-self-conv[of ‹map (map-eventptick f g ′) -› ‹[]›] F-imp-front-tickFree
snoc-eq-iff-butlast[of ‹butlast s› ‹last s› s]
div-butlast-when-non-tickFree-iff non-tickFree-imp-not-Nil)

thus ‹(s, X) ∈ F ?lhs›
proof cases

from subset-div D-F show ‹s ∈ D ?rhs =⇒ (s, X) ∈ F ?lhs› by blast
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next
case fail
from fail(2 , 3 )

consider (F-P) t1 where ‹s1 = map (ev ◦ of-ev) t1 › ‹(t1 , ref-Seqptick

(map-eventptick f g ′ −‘ X)) ∈ F P› ‹tF t1 ›
| (F-Q) t1 r t2 where ‹s1 = map (ev ◦ of-ev) t1 @ t2 › ‹t1 @ [3(r)] ∈ T P›

‹tF t1 › ‹t1 /∈ D P› ‹(t2 , map-eventptick f g ′ −‘ X) ∈ F (Q r)›
by (simp add: Seqptick-projs) (metis F-imp-front-tickFree)

thus ‹(s, X) ∈ F ?lhs›
proof cases

case F-P
have ‹map-eventptick f g −‘ (ref-Seqptick X) = ref-Seqptick (map-eventptick

f g ′ −‘ X)› for X
proof (rule set-eqI )

show ‹e ∈ map-eventptick f g −‘ (ref-Seqptick X) ←→
e ∈ ref-Seqptick (map-eventptick f g ′ −‘ X)› for e

by (cases e, auto simp add: ref-Seqptick-def image-iff )
(metis Int-iff eventptick.sel(1 ) eventptick.simps(9 ) rangeI vimage-eq,

metis IntI UNIV-I eventptick.sel(1 ) image-eqI )
qed

with F-P(2 ) have ‹(map (map-eventptick f g) t1 , ref-Seqptick X) ∈ F
(Renaming P f g)›

by (auto simp add: F-Renaming)
with F-P(3 ) have ‹(map (ev ◦ of-ev) (map (map-eventptick f g) t1 ), X) ∈

F ?lhs›
by (fastforce simp add: Seqptick-projs map-eventptick-tickFree)

also have ‹map (ev ◦ of-ev) (map (map-eventptick f g) t1 ) = s›
by (simp add: fail(1 ) F-P(1 ))
(metis F-P(3 ) eventptick.map-sel(1 ) in-set-conv-decomp tickFree-Cons-iff

tickFree-append-iff )
finally show ‹(s, X) ∈ F ?lhs› .

next
case F-Q
with F-Q(4 ) have ‹(map (map-eventptick f g ′) t2 , X) ∈ F (Renaming (Q r)

f g ′)›
by (auto simp add: F-Renaming)

hence ‹(map (map-eventptick f g ′) t2 , X) ∈
F (ur ′ ∈ {r ′ ∈ 3s(P). g r = g r ′}. Renaming (Q r ′) f g ′)›

by (simp add: F-GlobalNdet)
(metis F-Q(2 , 4 ) is-processT9 strict-ticks-of-memI )

moreover from F-Q(2 ) have ‹map (map-eventptick f g) t1 @ [3(g r)] ∈ T
(Renaming P f g)›

by (auto simp add: T-Renaming)
moreover have ‹tF (map (map-eventptick f g) t1 )›

by (simp add: F-Q(3 ) map-eventptick-tickFree)
ultimately have ‹(map (ev ◦ of-ev) (map (map-eventptick f g) t1 ) @

map (map-eventptick f g ′) t2 , X) ∈ F ?lhs›
unfolding Seqptick-projs by fast

also have ‹map (ev ◦ of-ev) (map (map-eventptick f g) t1 ) @ map (map-eventptick
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f g ′) t2 = s›
by (simp add: fail(1 ) F-Q(1 ))
(metis F-Q(3 ) eventptick.map-sel(1 ) in-set-conv-decomp

tickFree-Cons-iff tickFree-append-iff )
finally show ‹(s, X) ∈ F ?lhs› .

qed
qed

qed

lemma inj-on-Renaming-Seqptick :
‹Renaming (P ;3 Q) f g ′ =
Renaming P f g ;3 (λg-r . Renaming (Q (THE r . r ∈ 3s(P) ∧ g-r = g r)) f g ′)›
(is ‹?lhs = ?rhs›) if ‹inj-on g 3s(P)›
— This assumption is necessary, otherwise we cannot know which tick triggered

Q.
proof (rule FD-antisym)

show ‹?lhs vFD ?rhs›
proof (rule failure-divergence-refine-optimizedI )

fix s assume ‹s ∈ D ?rhs›
then consider (D-P) s1 s2 where ‹s = map (ev ◦ of-ev) s1 @ s2 › ‹s1 ∈ D

(Renaming P f g)› ‹tF s1 › ‹ftF s2 ›
| (D-Q) s1 g-r s2 where ‹s = map (ev ◦ of-ev) s1 @ s2 › ‹s1 @ [3(g-r)] ∈ T

(Renaming P f g)›
‹s1 /∈ D (Renaming P f g)› ‹tF s1 › ‹s2 ∈ D (Renaming (Q (THE r . r ∈

3s(P) ∧ g-r = g r)) f g ′)›
by (simp add: Seqptick-projs) (use D-imp-front-tickFree in blast)

thus ‹s ∈ D ?lhs›
proof cases

case D-P
from D-P(2 ) obtain t1 t2

where ∗ : ‹s1 = map (map-eventptick f g) t1 @ t2 › ‹tF t1 › ‹ftF t2 › ‹t1 ∈
D P›

unfolding D-Renaming by blast
from ∗(2 , 4 ) have ‹map (ev ◦ of-ev) t1 ∈ D (P ;3 Q)›

by (auto simp add: Seqptick-projs intro: front-tickFree-Nil)
hence ‹map (map-eventptick f g ′) (map (ev ◦ of-ev) t1 ) ∈ D ?lhs›

unfolding D-Renaming mem-Collect-eq
by (metis (mono-tags, lifting) front-tickFree-Nil tickFree-map-ev-comp ap-

pend.right-neutral)
also have ‹map (map-eventptick f g ′) (map (ev ◦ of-ev) t1 ) =

map (ev ◦ of-ev) (map (map-eventptick f g) t1 )›
by simp (metis ∗(2 ) eventptick.map-sel(1 ) in-set-conv-decomp tickFree-Cons-iff

tickFree-append-iff )
finally show ‹s ∈ D ?lhs›
by (auto simp add: D-P(1 , 4 ) ∗(1 ) front-tickFree-append comp-assoc intro!:

is-processT7 )
next
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case D-Q
have ‹s1 @ [3(g-r)] /∈ D (Renaming P f g)› by (meson D-Q(3 ) is-processT9 )
with D-Q(2−4 ) obtain t1 r

where ∗ : ‹g-r = g r› ‹r ∈ 3s(P)› ‹s1 = map (map-eventptick f g) t1 › ‹t1
@ [3(r)] ∈ T P›

by (auto simp add: Renaming-projs append-eq-map-conv tick-eq-map-eventptick-iff )
(metis append-Nil2 front-tickFree-Nil is-processT9 map-eventptick-tickFree

strict-ticks-of-memI )
from ∗(1 , 2 ) ‹inj-on g 3s(P)› have ‹(THE r . r ∈ 3s(P) ∧ g-r = g r) = r›

by (auto dest: inj-onD)
with D-Q(5 ) have ‹s2 ∈ D (Renaming (Q r) f g ′)› by simp
then obtain t2 t3

where ∗∗ : ‹s2 = map (map-eventptick f g ′) t2 @ t3 › ‹tF t2 › ‹ftF t3 › ‹t2
∈ D (Q r)›

unfolding D-Renaming by blast
from ∗(4 ) ∗∗(4 ) have ‹map (ev ◦ of-ev) t1 @ t2 ∈ D (P ;3 Q)›

by (simp add: Seqptick-projs) (metis append-T-imp-tickFree not-Cons-self )
with ∗∗(2 ) have ‹map (map-eventptick f g ′) (map (ev ◦ of-ev) t1 @ t2 ) ∈ D

?lhs›
unfolding D-Renaming mem-Collect-eq

by (metis append.right-neutral front-tickFree-Nil tickFree-append-iff tick-
Free-map-ev-comp)

moreover have ‹map (map-eventptick f g ′) (map (ev ◦ of-ev) t1 @ t2 ) @ t3
= s›

by (simp add: D-Q(1 ) ∗(3 ) ∗∗(1 ))
(metis ∗(3 ) D-Q(4 ) eventptick.map-sel(1 ) in-set-conv-decomp

map-eventptick-tickFree tickFree-Cons-iff tickFree-append-iff )
ultimately show ‹s ∈ D ?lhs›

by (auto simp add: ∗∗(3 ) intro!: is-processT7 [of ‹- @ -›, simplified])
(use ∗∗(1 ) D-Q(1 ) in force, use ∗∗(2 ) map-eventptick-tickFree in blast)

qed
next

assume subset-div : ‹D ?rhs ⊆ D ?lhs›
fix s X assume ‹(s, X) ∈ F ?rhs›
then consider ‹s ∈ D ?rhs›
| (F-P) s1 where ‹s = map (ev ◦ of-ev) s1 › ‹(s1 , ref-Seqptick X) ∈ F

(Renaming P f g)› ‹s1 /∈ D (Renaming P f g)› ‹tF s1 ›
| (F-Q) s1 g-r s2 where ‹s = map (ev ◦ of-ev) s1 @ s2 › ‹s1 @ [3(g-r)] ∈ T

(Renaming P f g)›
‹s1 /∈ D (Renaming P f g)› ‹tF s1 › ‹(s2 , X) ∈ F (Renaming (Q (THE r . r

∈ 3s(P) ∧ g-r = g r)) f g ′)›
‹s2 /∈ D (Renaming (Q (THE r . r ∈ 3s(P) ∧ g-r = g r)) f g ′)›

by (simp add: Seqptick-projs)
(metis (no-types, lifting) F-imp-front-tickFree front-tickFree-charn self-append-conv)

thus ‹(s, X) ∈ F ?lhs›
proof cases

from subset-div D-F show ‹s ∈ D ?rhs =⇒ (s, X) ∈ F ?lhs› by blast
next

case F-P
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from F-P(2 , 3 ) obtain t1
where ∗ : ‹s1 = map (map-eventptick f g) t1 › ‹(t1 , map-eventptick f g −‘

ref-Seqptick X) ∈ F P›
unfolding Renaming-projs by blast

have ‹map-eventptick f g −‘ (ref-Seqptick X) = ref-Seqptick (map-eventptick
f g ′ −‘ X)› for X

proof (rule set-eqI )
show ‹e ∈ map-eventptick f g −‘ (ref-Seqptick X) ←→

e ∈ ref-Seqptick (map-eventptick f g ′ −‘ X)› for e
by (cases e, auto simp add: ref-Seqptick-def image-iff )
(metis Int-iff eventptick.sel(1 ) eventptick.simps(9 ) rangeI vimage-eq,

metis IntI UNIV-I eventptick.sel(1 ) image-eqI )
qed
with ∗(2 ) have ‹(t1 , ref-Seqptick (map-eventptick f g ′ −‘ X)) ∈ F P› by

simp
hence ‹(map (ev ◦ of-ev) t1 , map-eventptick f g ′ −‘ X) ∈ F (P ;3 Q)›

by (simp add: Seqptick-projs)
(metis ∗(1 ) F-P(4 ) map-eventptick-tickFree)

hence ‹(map (map-eventptick f g ′) (map (ev ◦ of-ev) t1 ), X) ∈ F ?lhs›
unfolding F-Renaming by blast

also have ‹map (map-eventptick f g ′) (map (ev ◦ of-ev) t1 ) = s›
by (simp add: F-P(1 ) ∗(1 ))
(metis ∗(1 ) F-P(4 ) eventptick.map-sel(1 ) in-set-conv-decomp

map-eventptick-tickFree tickFree-Cons-iff tickFree-append-iff )
finally show ‹(s, X) ∈ F ?lhs› .

next
case F-Q
have ‹s1 @ [3(g-r)] /∈ D (Renaming P f g)› by (meson F-Q(3 ) is-processT9 )
with F-Q(2−4 ) obtain t1 r

where ∗ : ‹g-r = g r› ‹r ∈ 3s(P)› ‹s1 = map (map-eventptick f g) t1 › ‹t1
@ [3(r)] ∈ T P›

by (auto simp add: Renaming-projs append-eq-map-conv tick-eq-map-eventptick-iff )
(metis append-Nil2 front-tickFree-Nil is-processT9 map-eventptick-tickFree

strict-ticks-of-memI )
from ∗(1 , 2 ) ‹inj-on g 3s(P)› have ‹(THE r . r ∈ 3s(P) ∧ g-r = g r) = r›

by (auto dest: inj-onD)
with F-Q(5 , 6 ) have ‹(s2 , X) ∈ F (Renaming (Q r) f g ′)›

‹s2 /∈ D (Renaming (Q r) f g ′)› by simp-all
then obtain t2 where ∗∗ : ‹s2 = map (map-eventptick f g ′) t2 › ‹(t2 ,

map-eventptick f g ′ −‘ X) ∈ F (Q r)›
unfolding Renaming-projs by blast

from ∗(4 ) ∗∗(2 ) have ‹(map (ev ◦ of-ev) t1 @ t2 , map-eventptick f g ′ −‘ X)
∈ F (P ;3 Q)›

by (simp add: Seqptick-projs) (metis append-T-imp-tickFree not-Cons-self2 )
hence ‹(map (map-eventptick f g ′) (map (ev ◦ of-ev) t1 @ t2 ), X) ∈ F ?lhs›

unfolding F-Renaming by blast
also have ‹map (map-eventptick f g ′) (map (ev ◦ of-ev) t1 @ t2 ) = s›

by (simp add: F-Q(1 ) ∗(3 ) ∗∗(1 ))
(metis ∗(3 ) F-Q(4 ) eventptick.map-sel(1 ) in-set-conv-decomp
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map-eventptick-tickFree tickFree-Cons-iff tickFree-append-iff )
finally show ‹(s, X) ∈ F ?lhs› .

qed
qed

next

have ‹?rhs = Renaming P f g ;3 (λg-r . ur ∈ {r ∈ 3s(P). g-r = g r}. Renaming
(Q r) f g ′)›

proof (rule mono-Seqptick-eq)
show ‹Renaming P f g = Renaming P f g› ..

next
fix g-r assume ‹g-r ∈ 3s(Renaming P f g)›
then obtain s s1 where ‹s @ [3(g-r)] = map (map-eventptick f g) s1 › ‹s1 ∈

T P› ‹s1 /∈ D P›
by (simp add: strict-ticks-of-def Renaming-projs)
(metis (no-types, opaque-lifting) T-imp-front-tickFree append-Nil2 butlast-snoc

div-butlast-when-non-tickFree-iff front-tickFree-Nil
front-tickFree-iff-tickFree-butlast front-tickFree-single map-butlast)

from this(1 ) obtain s1 ′ r where ‹g-r = g r› ‹s1 = s1 ′ @ [3(r)]›
by (cases s1 rule: rev-cases) (auto simp add: tick-eq-map-eventptick-iff )

with ‹s1 ∈ T P› ‹s1 /∈ D P› have ‹s1 ′ @ [3(r)] ∈ T P› ‹s1 ′ @ [3(r)] /∈ D
P› by simp-all

hence ‹r ∈ 3s(P)› unfolding strict-ticks-of-def by blast
have ‹{r ∈ 3s(P). g-r = g r} = {r}›

by (auto simp add: ‹r ∈ 3s(P)› ‹g-r = g r› intro: inj-onD[OF ‹inj-on g
3s(P)›])

moreover have ‹(THE r . r ∈ 3s(P) ∧ g-r = g r) = r›
using calculation by blast

ultimately have ‹Q (THE r . r ∈ 3s(P) ∧ g-r = g r) =
GlobalNdet {r ∈ 3s(P). g-r = g r} Q› by simp

thus ‹Renaming (Q (THE r . r ∈ 3s(P) ∧ g-r = g r)) f g ′ =
(ur ∈ {r ∈ 3s(P). g-r = g r}. Renaming (Q r) f g ′)›

by (simp flip: Renaming-distrib-GlobalNdet)
qed
thus ‹?rhs vFD ?lhs› by (simp add: FD-Renaming-Seqptick)

qed

When ′r is set on unit, we recover the version that we had before the gen-
eralization.

lemma ‹Renaming (P ;3 Q) f g = Renaming P f g ;3 (λr . Renaming (Q ()) f g)›
by (subst inj-on-Renaming-Seqptick[where g = g]) (auto intro: inj-onI )

lemma TickSwap-Seqptick [simp] :
‹TickSwap (P ;3 Q) = TickSwap P ;3 (λ(s, r). TickSwap (Q (r , s)))› (is ‹?lhs

= ?rhs›)
proof −
have ‹?lhs = Renaming (P ;3 Q) id prod.swap› by (simp add: TickSwap-is-Renaming)
also have ‹. . . = Renaming P id prod.swap ;3
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(λs-r . Renaming (Q (THE r-s. r-s ∈ strict-ticks-of P ∧
s-r = prod.swap r-s)) id prod.swap)›

(is ‹- = - ;3 ?rhs ′›) by (simp add: inj-on-Renaming-Seqptick)
also have ‹. . . = ?rhs›
proof (rule mono-Seqptick-eq, unfold TickSwap-is-Renaming)

show ‹Renaming P id prod.swap = Renaming P id prod.swap› ..
next

fix s-r assume ‹s-r ∈ strict-ticks-of (Renaming P id prod.swap)›
then obtain r s where ‹(r , s) ∈ strict-ticks-of P› ‹s-r = (s, r)›

by (auto simp flip: TickSwap-is-Renaming)
hence ‹(THE r-s. r-s ∈ strict-ticks-of P ∧ s-r = prod.swap r-s) = (r , s)› by

auto
thus ‹Renaming (Q (THE r-s. r-s ∈ strict-ticks-of P ∧ s-r = prod.swap r-s))

id prod.swap =
(case s-r of (s, r) ⇒ Renaming (Q (r , s)) id prod.swap)›

by (simp add: ‹s-r = (s, r)›)
qed
finally show ‹?lhs = ?rhs› .

qed

lemma TickSwap-is-Seqptick-iff [simp] :
‹TickSwap P = Q ;3 R ←→ P = TickSwap Q ;3 (λ(r , s). TickSwap (R (s, r)))›
by (simp add: TickSwap-eq-iff-eq-TickSwap)

16.1.2 Renaming and Synchronization Product
theorem (in Syncptick-locale) inj-RenamingEv-Syncptick :

‹RenamingEv (P [[S ]]3 Q) f = RenamingEv P f [[f ‘ S ]]3 RenamingEv Q f ›
(is ‹?lhs = ?rhs›) if ‹inj f ›

proof −
let ?fun = ‹map-eventptick f id›
let ?map = ‹map ?fun›
let ?R = ‹λP. RenamingEv P f ›
show ‹?lhs = ?rhs›
proof (rule Process-eq-optimizedI )

fix t assume ‹t ∈ D ?lhs›
then obtain t1 t2 where ∗ : ‹t = ?map t1 @ t2 ›

‹tF t1 › ‹ftF t2 › ‹t1 ∈ D (P [[S ]]3 Q)› unfolding D-Renaming by blast
from ∗(4 ) obtain u v t-P t-Q where ∗∗ : ‹t1 = u @ v› ‹tF u› ‹ftF v›

‹u setinterleaves3(⊗3) ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›
unfolding D-Syncptick by blast

from setinterleavesptick-inj-map-map-eventptick-iff-weak [THEN iffD2 , OF ‹inj
f › ∗∗(4 )]

have ‹?map u setinterleaves3(⊗3) ((?map t-P, ?map t-Q), f ‘ S)› .
moreover from ∗∗(5 ) have ‹?map t-P ∈ D (?R P) ∧ ?map t-Q ∈ T (?R Q)

∨
?map t-P ∈ T (?R P) ∧ ?map t-Q ∈ D (?R Q)›

by (auto simp add: Renaming-projs dest: D-T )
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(metis ∗∗(2 ,4 ) append-self-conv front-tickFree-map-tick-iff
list.map-disc-iff tickFree-setinterleavesptick-iff )+

moreover have ‹t = ?map u @ (?map v @ t2 )› by (simp add: ∗(1 ) ∗∗(1 ))
moreover have ‹tF (?map u)› by (simp add: ∗∗(2 ) map-eventptick-tickFree)
moreover from ∗(2 ,3 ) ∗∗(1 ) have ‹ftF (?map v @ t2 )›

using front-tickFree-append map-eventptick-tickFree tickFree-append-iff by
blast

ultimately show ‹t ∈ D ?rhs› unfolding D-Syncptick by blast
next

fix t assume ‹t ∈ D ?rhs›
then obtain u v t-P t-Q where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›

‹u setinterleaves3(⊗3) ((t-P, t-Q), f ‘ S)›
‹t-P ∈ D (?R P) ∧ t-Q ∈ T (?R Q) ∨ t-P ∈ T (?R P) ∧ t-Q ∈ D (?R Q)›
unfolding D-Syncptick by blast

from ∗(5 ) show ‹t ∈ D ?lhs›
proof (elim disjE conjE)

assume ‹t-P ∈ D (?R P)› ‹t-Q ∈ T (?R Q)›
from ‹t-P ∈ D (?R P)› obtain t-P1 t-P2

where ∗∗ : ‹t-P = ?map t-P1 @ t-P2 › ‹tF t-P1 › ‹ftF t-P2 › ‹t-P1 ∈ D P›
unfolding D-Renaming by blast

from ‹t-Q ∈ T (?R Q)› consider (T-Q) t-Q1 where ‹t-Q = ?map t-Q1 ›
‹t-Q1 ∈ T Q›

| (D-Q) t-Q1 t-Q2 where ‹t-Q = ?map t-Q1 @ t-Q2 › ‹tF t-Q1 › ‹ftF t-Q2 ›
‹t-Q1 ∈ D Q›

unfolding T-Renaming by blast
thus ‹t ∈ D ?lhs›
proof cases

case T-Q
from ∗(4 )[unfolded ∗∗(1 ) T-Q(1 ), THEN setinterleavesptick-appendL]

obtain u1 u2 t-Q11 t-Q12 where ∗∗∗ : ‹u = u1 @ u2 › ‹?map t-Q1 = t-Q11
@ t-Q12 ›

‹u1 setinterleaves3(⊗3) ((?map t-P1 , t-Q11 ), f ‘ S)› by blast
obtain t-Q11 ′ where ‹t-Q11 ′ ≤ t-Q1 › ‹t-Q11 = ?map t-Q11 ′›

by (metis ∗∗∗(2 ) map-eq-append-conv Prefix-Order .prefixI )
from setinterleavesptick-inj-map-map-eventptick-iff-strong
[THEN iffD1 , OF ‹inj f › ∗∗∗(3 )[unfolded this]]

obtain u1 ′ where ∗∗∗∗ : ‹u1 = ?map u1 ′›
‹u1 ′ setinterleaves3(⊗3) ((t-P1 , t-Q11 ′), S)› by blast

from ∗(2 ) ∗∗∗(1 ) ∗∗∗∗(1 ) map-eventptick-tickFree
T-Q(2 ) ‹t-Q11 ′ ≤ t-Q1 › is-processT3-TR

have ‹u1 ′ = u1 ′ @ []› ‹tF u1 ′› ‹ftF []› ‹t-Q11 ′ ∈ T Q› by simp-all blast
with ∗∗∗∗(2 ) ∗∗(4 ) have ‹u1 ′ ∈ D (P [[S ]]3 Q)›

unfolding D-Syncptick by blast
moreover have ‹t = ?map u1 ′ @ (u2 @ v)› by (simp add: ∗(1 ) ∗∗∗(1 )

∗∗∗∗(1 ))
moreover have ‹ftF (u2 @ v)›

using ∗(2 ,3 ) ∗∗∗(1 ) front-tickFree-append tickFree-append-iff by blast
ultimately show ‹t ∈ D ?lhs› unfolding D-Renaming using ‹tF u1 ′› by

blast
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next
case D-Q
have ‹?map t-P1 ≤ t-P› ‹?map t-Q1 ≤ t-Q›

by (simp-all add: ∗∗(1 ) D-Q(1 ))
from setinterleavesptick-le-prefixLR[OF ∗(4 ) this] show ‹t ∈ D ?lhs›
proof (elim disjE exE conjE)

fix u1 t-Q1 ′ assume ∗∗∗ : ‹u1 ≤ u› ‹t-Q1 ′ ≤ ?map t-Q1 ›
‹u1 setinterleaves3(⊗3) ((?map t-P1 , t-Q1 ′), f ‘ S)›

obtain u2 where ‹u = u1 @ u2 › using ∗∗∗(1 ) prefixE by blast
obtain t-Q1 ′′ where ‹t-Q1 ′ = ?map t-Q1 ′′› ‹t-Q1 ′′ ≤ t-Q1 ›

by (metis ∗∗∗(2 ) prefixE prefixI map-eq-append-conv)
from setinterleavesptick-inj-map-map-eventptick-iff-strong
[THEN iffD1 , OF ‹inj f › ∗∗∗(3 )[unfolded ‹t-Q1 ′ = ?map t-Q1 ′′›]]

obtain u1 ′ where ∗∗∗∗ : ‹u1 = ?map u1 ′›
‹u1 ′ setinterleaves3(⊗3) ((t-P1 , t-Q1 ′′), S)› by blast

have ‹u1 ′ = u1 ′ @ []› ‹ftF []› by simp-all
moreover from ∗∗(2 ) ∗∗∗∗(2 ) setinterleavesptick-tickFree-imp
have ‹tF u1 ′› by blast
moreover from D-Q(4 ) D-T ‹t-Q1 ′′ ≤ t-Q1 › is-processT3-TR
have ‹t-Q1 ′′ ∈ T Q› by blast
ultimately have ‹u1 ′ ∈ D (P [[S ]]3 Q)›

unfolding D-Syncptick using ‹t-P1 ∈ D P› ∗∗∗∗(2 ) by blast
moreover from ∗(1−3 ) ∗∗∗∗(1 )
have ‹t = ?map u1 ′ @ (u2 @ v)› ‹ftF (u2 @ v)›

by (auto simp add: ‹u = u1 @ u2 › front-tickFree-append)
ultimately show ‹t ∈ D ?lhs›

unfolding D-Renaming using ‹tF u1 ′› by blast
next

fix u1 t-P1 ′ assume ∗∗∗ : ‹u1 ≤ u› ‹t-P1 ′ ≤ ?map t-P1 ›
‹u1 setinterleaves3(⊗3) ((t-P1 ′, ?map t-Q1 ), f ‘ S)›

obtain u2 where ‹u = u1 @ u2 › using ∗∗∗(1 ) prefixE by blast
obtain t-P1 ′′ where ‹t-P1 ′ = ?map t-P1 ′′› ‹t-P1 ′′ ≤ t-P1 ›

by (metis ∗∗∗(2 ) prefixE prefixI map-eq-append-conv)
from setinterleavesptick-inj-map-map-eventptick-iff-strong
[THEN iffD1 , OF ‹inj f › ∗∗∗(3 )[unfolded ‹t-P1 ′ = ?map t-P1 ′′›]]

obtain u1 ′ where ∗∗∗∗ : ‹u1 = ?map u1 ′›
‹u1 ′ setinterleaves3(⊗3) ((t-P1 ′′, t-Q1 ), S)› by blast

have ‹u1 ′ = u1 ′ @ []› ‹ftF []› by simp-all
moreover from D-Q(2 ) ∗∗∗∗(2 ) setinterleavesptick-tickFree-imp
have ‹tF u1 ′› by blast
moreover from ∗∗(4 ) D-T ‹t-P1 ′′ ≤ t-P1 › is-processT3-TR
have ‹t-P1 ′′ ∈ T P› by blast
ultimately have ‹u1 ′ ∈ D (P [[S ]]3 Q)›

unfolding D-Syncptick using ‹t-Q1 ∈ D Q› ∗∗∗∗(2 ) by blast
moreover from ∗(1−3 ) ∗∗∗∗(1 )
have ‹t = ?map u1 ′ @ (u2 @ v)› ‹ftF (u2 @ v)›

by (auto simp add: ‹u = u1 @ u2 › front-tickFree-append)
ultimately show ‹t ∈ D ?lhs›

unfolding D-Renaming using ‹tF u1 ′› by blast
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qed
qed

next
assume ‹t-Q ∈ D (?R Q)› ‹t-P ∈ T (?R P)›
from ‹t-Q ∈ D (?R Q)› obtain t-Q1 t-Q2

where ∗∗ : ‹t-Q = ?map t-Q1 @ t-Q2 › ‹tF t-Q1 › ‹ftF t-Q2 › ‹t-Q1 ∈ D Q›
unfolding D-Renaming by blast

from ‹t-P ∈ T (?R P)› consider (T-P) t-P1 where ‹t-P = ?map t-P1 ›
‹t-P1 ∈ T P›

| (D-P) t-P1 t-P2 where ‹t-P = ?map t-P1 @ t-P2 › ‹tF t-P1 › ‹ftF t-P2 ›
‹t-P1 ∈ D P›

unfolding T-Renaming by blast
thus ‹t ∈ D ?lhs›
proof cases

case T-P
from ∗(4 )[unfolded ∗∗(1 ) T-P(1 ), THEN setinterleavesptick-appendR]
obtain u1 u2 t-P11 t-P12 where ∗∗∗ : ‹u = u1 @ u2 › ‹?map t-P1 = t-P11

@ t-P12 ›
‹u1 setinterleaves3(⊗3) ((t-P11 , ?map t-Q1 ), f ‘ S)› by blast

obtain t-P11 ′ where ‹t-P11 ′ ≤ t-P1 › ‹t-P11 = ?map t-P11 ′›
by (metis ∗∗∗(2 ) map-eq-append-conv Prefix-Order .prefixI )

from setinterleavesptick-inj-map-map-eventptick-iff-strong
[THEN iffD1 , OF ‹inj f › ∗∗∗(3 )[unfolded this]]

obtain u1 ′ where ∗∗∗∗ : ‹u1 = ?map u1 ′›
‹u1 ′ setinterleaves3(⊗3) ((t-P11 ′, t-Q1 ), S)› by blast

from ∗(2 ) ∗∗∗(1 ) ∗∗∗∗(1 ) map-eventptick-tickFree
T-P(2 ) ‹t-P11 ′ ≤ t-P1 › is-processT3-TR

have ‹u1 ′ = u1 ′ @ []› ‹tF u1 ′› ‹ftF []› ‹t-P11 ′ ∈ T P› by simp-all blast
with ∗∗∗∗(2 ) ∗∗(4 ) have ‹u1 ′ ∈ D (P [[S ]]3 Q)›

unfolding D-Syncptick by blast
moreover have ‹t = ?map u1 ′ @ (u2 @ v)› by (simp add: ∗(1 ) ∗∗∗(1 )

∗∗∗∗(1 ))
moreover have ‹ftF (u2 @ v)›

using ∗(2 ,3 ) ∗∗∗(1 ) front-tickFree-append tickFree-append-iff by blast
ultimately show ‹t ∈ D ?lhs› unfolding D-Renaming using ‹tF u1 ′› by

blast
next

case D-P
have ‹?map t-P1 ≤ t-P› ‹?map t-Q1 ≤ t-Q›

by (simp-all add: ∗∗(1 ) D-P(1 ))
from setinterleavesptick-le-prefixLR[OF ∗(4 ) this] show ‹t ∈ D ?lhs›
proof (elim disjE exE conjE)

fix u1 t-Q1 ′ assume ∗∗∗ : ‹u1 ≤ u› ‹t-Q1 ′ ≤ ?map t-Q1 ›
‹u1 setinterleaves3(⊗3) ((?map t-P1 , t-Q1 ′), f ‘ S)›

obtain u2 where ‹u = u1 @ u2 › using ∗∗∗(1 ) prefixE by blast
obtain t-Q1 ′′ where ‹t-Q1 ′ = ?map t-Q1 ′′› ‹t-Q1 ′′ ≤ t-Q1 ›

by (metis ∗∗∗(2 ) prefixE prefixI map-eq-append-conv)
from setinterleavesptick-inj-map-map-eventptick-iff-strong
[THEN iffD1 , OF ‹inj f › ∗∗∗(3 )[unfolded ‹t-Q1 ′ = ?map t-Q1 ′′›]]
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obtain u1 ′ where ∗∗∗∗ : ‹u1 = ?map u1 ′›
‹u1 ′ setinterleaves3(⊗3) ((t-P1 , t-Q1 ′′), S)› by blast

have ‹u1 ′ = u1 ′ @ []› ‹ftF []› by simp-all
moreover from D-P(2 ) ∗∗∗∗(2 ) setinterleavesptick-tickFree-imp
have ‹tF u1 ′› by blast
moreover from ∗∗(4 ) D-T ‹t-Q1 ′′ ≤ t-Q1 › is-processT3-TR
have ‹t-Q1 ′′ ∈ T Q› by blast
ultimately have ‹u1 ′ ∈ D (P [[S ]]3 Q)›

unfolding D-Syncptick using ‹t-P1 ∈ D P› ∗∗∗∗(2 ) by blast
moreover from ∗(1−3 ) ∗∗∗∗(1 )
have ‹t = ?map u1 ′ @ (u2 @ v)› ‹ftF (u2 @ v)›

by (auto simp add: ‹u = u1 @ u2 › front-tickFree-append)
ultimately show ‹t ∈ D ?lhs›

unfolding D-Renaming using ‹tF u1 ′› by blast
next

fix u1 t-P1 ′ assume ∗∗∗ : ‹u1 ≤ u› ‹t-P1 ′ ≤ ?map t-P1 ›
‹u1 setinterleaves3(⊗3) ((t-P1 ′, ?map t-Q1 ), f ‘ S)›

obtain u2 where ‹u = u1 @ u2 › using ∗∗∗(1 ) prefixE by blast
obtain t-P1 ′′ where ‹t-P1 ′ = ?map t-P1 ′′› ‹t-P1 ′′ ≤ t-P1 ›

by (metis ∗∗∗(2 ) prefixE prefixI map-eq-append-conv)
from setinterleavesptick-inj-map-map-eventptick-iff-strong
[THEN iffD1 , OF ‹inj f › ∗∗∗(3 )[unfolded ‹t-P1 ′ = ?map t-P1 ′′›]]

obtain u1 ′ where ∗∗∗∗ : ‹u1 = ?map u1 ′›
‹u1 ′ setinterleaves3(⊗3) ((t-P1 ′′, t-Q1 ), S)› by blast

have ‹u1 ′ = u1 ′ @ []› ‹ftF []› by simp-all
moreover from ∗∗(2 ) ∗∗∗∗(2 ) setinterleavesptick-tickFree-imp
have ‹tF u1 ′› by blast
moreover from D-P(4 ) D-T ‹t-P1 ′′ ≤ t-P1 › is-processT3-TR
have ‹t-P1 ′′ ∈ T P› by blast
ultimately have ‹u1 ′ ∈ D (P [[S ]]3 Q)›

unfolding D-Syncptick using ‹t-Q1 ∈ D Q› ∗∗∗∗(2 ) by blast
moreover from ∗(1−3 ) ∗∗∗∗(1 )
have ‹t = ?map u1 ′ @ (u2 @ v)› ‹ftF (u2 @ v)›

by (auto simp add: ‹u = u1 @ u2 › front-tickFree-append)
ultimately show ‹t ∈ D ?lhs›

unfolding D-Renaming using ‹tF u1 ′› by blast
qed

qed
qed

next
fix t X assume ‹(t, X) ∈ F ?lhs› ‹t /∈ D ?lhs›
then obtain t ′ where ‹t = ?map t ′›

and ∗ : ‹(t ′, ?fun −‘ X) ∈ F (P [[S ]]3 Q)›
unfolding Renaming-projs by blast

have ‹t ′ /∈ D (P [[S ]]3 Q)›
proof (rule notI )

assume ‹t ′ ∈ D (P [[S ]]3 Q)›
hence ‹t ∈ D ?lhs›

by (simp add: ‹t = ?map t ′› D-Syncptick D-Renaming)
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(metis (no-types) append-Nil2 front-tickFree-Nil map-append map-eventptick-front-tickFree)
with ‹t /∈ D ?lhs› show False ..

qed
with ∗ obtain t-P t-Q X-P X-Q

where ∗∗ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
‹t ′ setinterleaves3(⊗3) ((t-P, t-Q), S)›
‹?fun −‘ X ⊆ super-ref-Syncptick (⊗3) X-P S X-Q›

unfolding Syncptick-projs by fast
from ∗∗(2 , 3 ) F-T ‹t ′ /∈ D (P [[S ]]3 Q)› append-Nil2 front-tickFree-Nil
have ‹t-P /∈ D P› unfolding D-Syncptick ′ by blast
from ∗∗(1 , 3 ) F-T ‹t ′ /∈ D (P [[S ]]3 Q)› append-Nil2 front-tickFree-Nil
have ‹t-Q /∈ D Q› unfolding D-Syncptick ′ by blast
have ∗∗∗ : ‹?fun −‘ ?fun ‘ X-P = X-P› ‹?fun −‘ ?fun ‘ X-Q = X-Q›

by (simp add: set-eq-iff image-iff ,
metis (mono-tags, opaque-lifting) eventptick.inj-map-strong id-apply injD

‹inj f ›)+
from ∗∗(1 ) have ‹(?map t-P, ?fun ‘ X-P) ∈ F (?R P)›

by (subst (asm) ∗∗∗(1 )[symmetric]) (auto simp add: F-Renaming)
moreover {

fix a assume ‹?map t-P @ [ev a] ∈ T (?R P)› ‹a /∈ range f ›
then consider t-P1 where ‹?map t-P @ [ev a] = ?map t-P1 › ‹t-P1 ∈ T P›
| t-P1 t-P2 where ‹?map t-P @ [ev a] = ?map t-P1 @ t-P2 › ‹tF t-P1 ›

‹t-P1 ∈ D P›
unfolding T-Renaming by blast

hence False
proof cases

from ‹a /∈ range f › show ‹?map t-P @ [ev a] = ?map t-P1 =⇒ False› for
t-P1

by (auto simp add: append-eq-map-conv ev-eq-map-eventptick-iff )
next

fix t-P1 t-P2 assume ‹?map t-P @ [ev a] = ?map t-P1 @ t-P2 › ‹tF t-P1 ›
‹t-P1 ∈ D P›

from this(1 ) ‹a /∈ range f › have ‹t-P1 ≤ t-P›
by (cases t-P2 rule: rev-cases, auto simp add: append-eq-map-conv

ev-eq-map-eventptick-iff )
(metis prefixI eventptick.inj-map inj-map-eq-map inj-on-id map-eq-append-conv

‹inj f ›)
with ‹t-P1 ∈ D P› have ‹t-P ∈ D P›

by (metis ∗∗(1 ) F-imp-front-tickFree prefixE ‹tF t-P1 › front-tickFree-append-iff
is-processT7 tickFree-Nil tickFree-imp-front-tickFree)

with ‹t-P /∈ D P› show False ..
qed

}
ultimately have $ : ‹(?map t-P, ?fun ‘ X-P ∪ {ev a | a. a /∈ range f }) ∈ F

(?R P)›
using is-processT5-S7 ′ by blast

from ∗∗(2 ) have ‹(?map t-Q, ?fun ‘ X-Q) ∈ F (?R Q)›
by (subst (asm) ∗∗∗(2 )[symmetric]) (auto simp add: F-Renaming)

moreover {
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fix a assume ‹?map t-Q @ [ev a] ∈ T (?R Q)› ‹a /∈ range f ›
then consider t-Q1 where ‹?map t-Q @ [ev a] = ?map t-Q1 › ‹t-Q1 ∈ T

Q›
| t-Q1 t-Q2 where ‹?map t-Q @ [ev a] = ?map t-Q1 @ t-Q2 › ‹tF t-Q1 ›

‹t-Q1 ∈ D Q›
unfolding T-Renaming by blast

hence False
proof cases

from ‹a /∈ range f › show ‹?map t-Q @ [ev a] = ?map t-Q1 =⇒ False› for
t-Q1

by (auto simp add: append-eq-map-conv ev-eq-map-eventptick-iff )
next
fix t-Q1 t-Q2 assume ‹?map t-Q @ [ev a] = ?map t-Q1 @ t-Q2 › ‹tF t-Q1 ›

‹t-Q1 ∈ D Q›
from this(1 ) ‹a /∈ range f › have ‹t-Q1 ≤ t-Q›

by (cases t-Q2 rule: rev-cases, auto simp add: append-eq-map-conv
ev-eq-map-eventptick-iff )

(metis prefixI eventptick.inj-map inj-map-eq-map inj-on-id map-eq-append-conv
‹inj f ›)

with ‹t-Q1 ∈ D Q› have ‹t-Q ∈ D Q›
by (metis ∗∗(2 ) F-imp-front-tickFree prefixE ‹tF t-Q1 › front-tickFree-append-iff

is-processT7 tickFree-Nil tickFree-imp-front-tickFree)
with ‹t-Q /∈ D Q› show False ..

qed
}
ultimately have $$ : ‹(?map t-Q, ?fun ‘ X-Q ∪ {ev a | a. a /∈ range f }) ∈ F

(?R Q)›
using is-processT5-S7 ′ by blast

from ∗∗(3 ) have $$$ : ‹t setinterleaves3(⊗3) ((?map t-P, ?map t-Q), f ‘ S)›
by (simp add: ‹t = ?map t ′› setinterleavesptick-inj-map-map-eventptick-iff-weak

‹inj f ›)
have ‹e ∈ X =⇒ e ∈ super-ref-Syncptick (⊗3) (?fun ‘ X-P ∪ {ev a | a. a /∈

range f }) (f ‘ S)
(?fun ‘ X-Q ∪ {ev a | a. a /∈ range f })› for e

using ∗∗(4 )[THEN set-mp, of ‹map-eventptick (inv f ) id e›] ‹inj f ›
unfolding super-ref-Syncptick-def
by (cases e, simp-all add: image-iff tick-eq-map-eventptick-iff ) force

hence $$$$ : ‹X ⊆ super-ref-Syncptick (⊗3) (?fun ‘ X-P ∪ {ev a | a. a /∈ range
f }) (f ‘ S)

(?fun ‘ X-Q ∪ {ev a | a. a /∈ range f })› by blast
from $ $$ $$$ $$$$ show ‹(t, X) ∈ F ?rhs› unfolding F-Syncptick by fast

next
fix t X assume ‹(t, X) ∈ F ?rhs› ‹t /∈ D ?rhs›
then obtain t-P t-Q X-P X-Q

where ∗ : ‹(t-P, X-P) ∈ F (?R P)› ‹(t-Q, X-Q) ∈ F (?R Q)›
‹t setinterleaves3(⊗3) ((t-P, t-Q), f ‘ S)›
‹X ⊆ super-ref-Syncptick (⊗3) X-P (f ‘ S) X-Q›

unfolding Syncptick-projs by blast
have ‹¬ (t-P ∈ D (?R P) ∨ t-Q ∈ D (?R Q))›
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proof (rule notI )
assume ‹t-P ∈ D (?R P) ∨ t-Q ∈ D (?R Q)›
hence ‹t ∈ D ?rhs›

by (simp add: D-Syncptick ′)
(metis ∗(1−3 ) F-T append-Nil2 front-tickFree-Nil)

with ‹t /∈ D ?rhs› show False ..
qed
with ∗(1 , 2 ) obtain t-P ′ t-Q ′

where ∗∗ : ‹t-P = ?map t-P ′› ‹(t-P ′, ?fun −‘ X-P) ∈ F P›
‹t-Q = ?map t-Q ′› ‹(t-Q ′, ?fun −‘ X-Q) ∈ F Q›

unfolding Renaming-projs by blast
from setinterleavesptick-inj-map-map-eventptick-iff-strong
[THEN iffD1 , OF ‹inj f › ∗(3 )[unfolded ∗∗(1 , 3 )]] obtain t ′

where ∗∗∗ : ‹t = ?map t ′› ‹t ′ setinterleaves3(⊗3) ((t-P ′, t-Q ′), S)› by blast
have ‹e ∈ ?fun −‘ X =⇒ e ∈ super-ref-Syncptick (⊗3) (?fun −‘ X-P) S (?fun

−‘ X-Q)› for e
using ∗(4 )[THEN set-mp, of ‹?fun e›]
by (cases e) (auto simp add: super-ref-Syncptick-def dest: injD[OF ‹inj f ›])

hence ‹?fun −‘ X ⊆ super-ref-Syncptick (⊗3) (?fun −‘ X-P) S (?fun −‘ X-Q)›
by blast

with ∗∗(2 , 4 ) ∗∗∗(2 ) have ‹(t ′, ?fun −‘ X) ∈ F (P [[S ]]3 Q)›
unfolding F-Syncptick by auto

thus ‹(t, X) ∈ F ?lhs› by (auto simp add: ∗∗∗(1 ) F-Renaming)
qed

qed

16.2 Laws of Hiding

16.3 Hiding and Sequential Composition

We start by giving a counter example when the assumption �3(P) is not
satisfied.

notepad begin
define Q :: ‹nat ⇒ ( ′a, ′r) processptick›

where ‹Q r ≡ (((→) undefined) ^^ r) STOP› for r
have ‹SKIPS UNIV \ {undefined} = (SKIPS UNIV :: ( ′a, nat) processptick)›

by (simp add: Hiding-SKIPS)
moreover have ‹Q r \ {undefined} = STOP› for r

by (induct r) (simp-all add: Q-def Hiding-write0-non-disjoint)
ultimately have ∗ : ‹(SKIPS UNIV \ {undefined}) ;3 (λr . Q r \ {undefined})

= STOP›
by (simp only: SKIPS-Seqptick) simp

have ‹SKIPS UNIV ;3 Q = ur ∈ UNIV . Q r› by simp
moreover have ‹[] ∈ D (. . . \ {undefined})›
proof (rule D-Hiding-seqRunI )

show ‹ftF []› ‹tF []› ‹[] = trace-hide [] (ev ‘ {undefined}) @ []› by simp-all

349



next
{ fix r

have ‹replicate r (ev undefined) ∈ T (Q r)›
by (induct r) (simp-all add: Q-def T-write0 )

also have ‹replicate r (ev undefined) = map (λi. ev undefined) [0 ..<r ]›
by (simp add: map-replicate-trivial)

finally have ‹map (λi. ev undefined) [0 ..<r ] ∈ T (Q r)› .
}
hence ‹∃ r . map (λi. ev undefined) [0 ..<i] ∈ T (Q r)› for i by blast
thus ‹[] ∈ D (ur ∈ UNIV . Q r) ∨ (∃ x. isInfHidden-seqRun x (ur ∈ UNIV . Q

r) {undefined} [])›
by (auto simp add: T-GlobalNdet)

qed
ultimately have ∗∗ : ‹(SKIPS UNIV ;3 Q) \ {undefined} = ⊥›

by (simp add: BOT-iff-Nil-D)

have ‹(SKIPS UNIV \ {undefined}) ;3 (λr . Q r \ {undefined}) 6= (SKIPS UNIV
;3 Q) \ {undefined}›

unfolding ∗ ∗∗ by simp

hence ‹∃P (Q :: nat ⇒ ( ′a, ′r) processptick) S .
(P \ S) ;3 (λr . Q r \ S) 6= (P ;3 Q) \ S› by blast

end

In general, only one refinement is holding.

theorem Hiding-Seq-FD-Seq-Hiding :
‹(P ;3 Q) \ S vFD (P \ S) ;3 (λr . Q r \ S)› (is ‹?lhs vFD ?rhs›)

proof (rule failure-divergence-refine-optimizedI )
let ?th = ‹λt. trace-hide t (ev ‘ S)› and ?map = ‹λt. map (ev ◦ of-ev) t›
fix t assume ‹t ∈ D ?rhs›
with D-imp-front-tickFree is-processT9
consider (D-P) u v where ‹t = ?map u @ v› ‹u ∈ D (P \ S)› ‹tF u› ‹ftF v›
| (D-Q) u r v where ‹t = ?map u @ v› ‹u @ [3(r)] ∈ T (P \ S)›

‹u @ [3(r)] /∈ D (P \ S)› ‹tF u› ‹v ∈ D (Q r \ S)›
by (fastforce simp add: Seqptick-projs)

thus ‹t ∈ D ?lhs›
proof cases

case D-P
from D-P(2 ) obtain u ′ v ′ x where ∗ : ‹u = ?th u ′ @ v ′› ‹tF u ′› ‹ftF v ′›

‹u ′ ∈ D P ∨ isInfHidden-seqRun x P S u ′›
by (blast elim: D-Hiding-seqRunE)

from ∗(4 ) have ‹?th (?map u ′) ∈ D ?lhs›
proof (elim disjE)

assume ‹u ′ ∈ D P›
with ∗(2 ) have ‹?map u ′ ∈ D (P ;3 Q)›

by (auto simp add: Seqptick-projs intro: front-tickFree-Nil)
with mem-D-imp-mem-D-Hiding show ‹?th (?map u ′) ∈ D ?lhs› .

next
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assume ‹isInfHidden-seqRun x P S u ′›
from this isInfHidden-seqRun-imp-tickFree-seqRun[OF this]
have ‹isInfHidden-seqRun (ev ◦ of-ev ◦ x) (P ;3 Q) S (?map u ′)›

by (simp add: Seqptick-projs image-iff )
(metis eventptick.sel(1 ) list.map-comp map-append seqRun-def )

thus ‹?th (?map u ′) ∈ D ?lhs›
by (simp add: D-Hiding-seqRun)
(metis (no-types) append.right-neutral comp-apply

front-tickFree-Nil tickFree-map-ev-comp)
qed
also have ‹?th (?map u ′) = ?map (?th u ′)›

by (fact tickFree-trace-hide-map-ev-comp-of-ev[OF ‹tF u ′›])
finally show ‹t ∈ D ?lhs›

by (simp add: D-P(1 , 4 ) ∗(1 ) front-tickFree-append is-processT7 )
next

case D-Q
from D-Q(2 , 3 ) obtain u ′ where ‹u @ [3(r)] = ?th u ′› ‹(u ′, ev ‘ S) ∈ F P›

unfolding T-Hiding D-Hiding by fast
then obtain u ′ where ‹u = ?th u ′› ‹(u ′ @ [3(r)], ev ‘ S) ∈ F P›

by (cases u ′ rule: rev-cases, simp-all split: if-split-asm)
(metis F-imp-front-tickFree Hiding-tickFree butlast-snoc

front-tickFree-iff-tickFree-butlast non-tickFree-tick tickFree-append-iff )
from D-Q(5 ) obtain v ′ w ′ x where ∗ : ‹v = ?th v ′ @ w ′› ‹tF v ′› ‹ftF w ′›

‹v ′ ∈ D (Q r) ∨ isInfHidden-seqRun x (Q r) S v ′›
by (blast elim: D-Hiding-seqRunE)

from ∗(4 ) have ‹?th (?map u ′ @ v ′) ∈ D ?lhs›
proof (elim disjE)

assume ‹v ′ ∈ D (Q r)›
hence ‹?map u ′ @ v ′ ∈ D (P ;3 Q)›

by (simp add: Seqptick-projs)
(metis F-T ‹(u ′ @ [3(r)], ev ‘ S) ∈ F P› append-T-imp-tickFree

not-Cons-self )
with mem-D-imp-mem-D-Hiding show ‹?th (?map u ′ @ v ′) ∈ D ?lhs› .

next
assume ‹isInfHidden-seqRun x (Q r) S v ′›
hence ‹isInfHidden-seqRun x (P ;3 Q) S (?map u ′ @ v ′)›

by (simp add: seqRun-def image-iff Seqptick-projs)
(metis F-T ‹(u ′ @ [3(r)], ev ‘ S) ∈ F P› append-T-imp-tickFree list.discI )

thus ‹?th (?map u ′ @ v ′) ∈ D ?lhs›
by (simp add: D-Hiding-seqRun)
(metis append.right-neutral filter-append

front-tickFree-Nil isInfHidden-seqRun-imp-tickFree)
qed
also have ‹?th (?map u ′ @ v ′) = ?map (?th u ′) @ ?th v ′›
using D-Q(4 ) Hiding-tickFree ‹u = ?th u ′› tickFree-trace-hide-map-ev-comp-of-ev

by auto
finally have ‹?map (?th u ′) @ ?th v ′ ∈ D ?lhs› .
moreover have ‹tF (?map (?th u ′) @ ?th v ′)›

by (simp add: ∗(2 ) Hiding-tickFree)
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ultimately show ‹t ∈ D ?lhs›
unfolding ∗(1 ) D-Q(1 ) ‹u = ?th u ′› using ‹ftF w ′›
by (metis append.assoc is-processT7 )

qed
next

assume subset-div : ‹D ?rhs ⊆ D ?lhs›
let ?th = ‹λt. trace-hide t (ev ‘ S)› and ?map = ‹λt. map (ev ◦ of-ev) t›
fix t X assume ‹(t, X) ∈ F ?rhs›
then consider (div) ‹t ∈ D ?rhs›
| (F-P) u where ‹t = ?map u› ‹(u, ref-Seqptick X) ∈ F (P \ S)› ‹u /∈ D (P

\ S)› ‹tF u›
| (F-Q) u r v where ‹t = ?map u @ v› ‹u @ [3(r)] ∈ T (P \ S)› ‹u @ [3(r)]

/∈ D (P \ S)›
‹tF u› ‹(v, X) ∈ F (Q r \ S)› ‹v /∈ D (Q r \ S)›

by (simp add: Seqptick-projs)
(metis F-T T-imp-front-tickFree front-tickFree-Nil is-processT9 self-append-conv)

thus ‹(t, X) ∈ F ?lhs›
proof cases

case div with subset-div show ‹(t, X) ∈ F ?lhs›
by (simp add: in-mono is-processT8 )

next
case F-P
from F-P(2 , 3 ) obtain u ′ where ∗ : ‹u = ?th u ′› ‹(u ′, ref-Seqptick X ∪ ev ‘

S) ∈ F P›
unfolding F-Hiding D-Hiding by fast

have ‹tF u ′› using ∗(1 ) F-P(4 ) Hiding-tickFree by blast
have $ : ‹ref-Seqptick (X ∪ ev ‘ S) = ref-Seqptick X ∪ ev ‘ S›

by (auto simp add: image-iff ref-Seqptick-def )
(metis Int-iff Un-iff eventptick.sel(1 ) image-eqI rangeI )

from ‹tF u ′› ∗(2 ) have ‹(?map u ′, X ∪ ev ‘ S) ∈ F (P ;3 Q)›
by (auto simp add: Seqptick-projs $)

thus ‹(t, X) ∈ F ?lhs›
by (simp add: F-Hiding)
(metis ∗(1 ) F-P(1 ) ‹tF u ′› tickFree-trace-hide-map-ev-comp-of-ev)

next
case F-Q
from F-Q(2 , 3 ) obtain u ′ where ‹u @ [3(r)] = ?th u ′› ‹(u ′, ev ‘ S) ∈ F P›

unfolding T-Hiding D-Hiding by fast
then obtain u ′ where ∗ : ‹u = ?th u ′› ‹(u ′ @ [3(r)], ev ‘ S) ∈ F P›

by (cases u ′ rule: rev-cases, simp-all split: if-split-asm)
(metis F-imp-front-tickFree Hiding-tickFree butlast-snoc

front-tickFree-iff-tickFree-butlast non-tickFree-tick tickFree-append-iff )
from F-Q(5 , 6 ) obtain v ′ where ∗∗ : ‹v = ?th v ′› ‹(v ′, X ∪ ev ‘ S) ∈ F (Q

r)›
unfolding F-Hiding D-Hiding by blast

have ‹(?map u ′ @ v ′, X ∪ ev ‘ S) ∈ F (P ;3 Q)›
by (simp add: Seqptick-projs)
(metis ∗(2 ) ∗∗(2 ) F-T append-T-imp-tickFree list.distinct(1 ))
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with F-Q(4 ) show ‹(t, X) ∈ F ?lhs›
by (simp add: F-Hiding F-Q(1 ) ∗(1 ) ∗∗(1 ))
(metis Hiding-tickFree filter-append tickFree-trace-hide-map-ev-comp-of-ev)

qed
qed

16.4 Hiding and Synchronization Product
lemma setinterleavesptick-imp-superset-ev :

‹t setinterleaves3tick-join ((u, v), A) =⇒
{ev a |a. ev a ∈ set u} ∪ {ev a |a. ev a ∈ set v} ⊆ {ev a |a. ev a ∈ set t}›

proof (induct t arbitrary: u v)
case Nil thus ?case by (auto dest: Nil-setinterleavesptick)

next
case (Cons e t)
from Cons.prems consider (mv-left) a u ′ where ‹e = ev a› ‹u = ev a # u ′›

‹t setinterleaves3tick-join ((u ′, v), A)›
| (mv-right) a v ′ where ‹e = ev a› ‹v = ev a # v ′›

‹t setinterleaves3tick-join ((u, v ′), A)›
| (mv-both-ev) a u ′ v ′ where ‹e = ev a› ‹u = ev a # u ′› ‹v = ev a # v ′›

‹t setinterleaves3tick-join ((u ′, v ′), A)›
| (mv-both-tick) r s u ′ v ′ where ‹u = 3(r) # u ′› ‹v = 3(s) # v ′›

‹t setinterleaves3tick-join ((u ′, v ′), A)›
by (cases e) (auto elim: Cons-ev-setinterleavesptickE Cons-tick-setinterleavesptickE)

thus ?case by cases (auto dest!: Cons.hyps)
qed

lemma (in Syncptick-locale) disjoint-isInfHidden-seqRunL-to-Syncptick :
assumes ‹A ∩ S = {}› and ‹isInfHidden-seqRun x P A t-P›

and ‹t-Q ∈ T Q› and ‹t setinterleaves3(⊗3) ((t-P, t-Q), S)›
shows ‹isInfHidden-seqRun (ev ◦ of-ev ◦ x) (P [[S ]]3 Q) A t›

proof −
have tF-x : ‹tF (map x [0 ..<i])› for i

by (metis assms(2 ) imageE is-ev-def seqRun-def tickFree-append-iff
tickFree-map-tick-comp-iff tickFree-seqRun-iff )

define t ′ where ‹t ′ i ≡ t @ map (ev ◦ of-ev) (map x [0 ..<i])› for i
from assms(1 , 2 ) have ‹{a. ev a ∈ set (map x [0 ..<i])} ∩ S = {}› for i

by (simp add: disjoint-iff image-iff ) (metis eventptick.inject(1 ))
from tickFree-disjoint-setinterleavesptick-append-tailL[OF tF-x this assms(4 )]
have ‹seqRun t (ev ◦ of-ev ◦ x) i setinterleaves3(⊗3) ((seqRun t-P x i, t-Q), S)›

for i
by (simp add: seqRun-def )

moreover have ‹of-ev (x i) ∈ A› for i
by (metis assms(2 ) eventptick.sel(1 ) image-iff )

ultimately show ‹isInfHidden-seqRun (ev ◦ of-ev ◦ x) (P [[S ]]3 Q) A t›
using assms(2 , 3 ) by (auto simp add: T-Syncptick)

qed
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lemma (in Syncptick-locale) disjoint-isInfHidden-seqRunR-to-Syncptick :
‹[[A ∩ S = {}; isInfHidden-seqRun x Q A t-Q; t-P ∈ T P;

t setinterleaves3(⊗3) ((t-P, t-Q), S)]] =⇒
isInfHidden-seqRun (ev ◦ of-ev ◦ x) (P [[S ]]3 Q) A t›

by (fold Syncptick-sym, rule Syncptick-locale.disjoint-isInfHidden-seqRunL-to-Syncptick)
(use setinterleavesptick-sym in ‹blast intro: Syncptick-locale-sym.Syncptick-locale-axioms›)+

lemma (in Syncptick-locale) disjoint-Hiding-Syncptick-FD-Syncptick-Hiding-aux :
— This lemma avoids duplication of the proof work.
assumes ‹A ∩ S = {}› ‹tF u› ‹ftF v› ‹t-P ∈ D (P \ A)› ‹t-Q ∈ T (Q \ A)›

and ∗ : ‹u setinterleaves3(⊗3) ((t-P, t-Q), S)›
shows ‹u @ v ∈ D (P [[S ]]3 Q \ A)›

proof −
let ?th-A = ‹λt. trace-hide t (ev ‘ A)›
from ‹t-P ∈ D (P \ A)› obtain t-P1 t-P2

where D-P : ‹tF t-P1 › ‹ftF t-P2 › ‹t-P = ?th-A t-P1 @ t-P2 ›
‹t-P1 ∈ D P ∨ (∃ t-P-x. isInfHidden-seqRun-strong t-P-x P A t-P1 )›

by (blast elim: D-Hiding-seqRunE)
from setinterleavesptick-appendL[OF ∗[unfolded D-P(3 )]] obtain u1 u2 t-Q1

t-Q2
where ∗∗ : ‹u = u1 @ u2 › ‹t-Q = t-Q1 @ t-Q2 ›

‹u1 setinterleaves3(⊗3) ((?th-A t-P1 , t-Q1 ), S)›
‹u2 setinterleaves3(⊗3) ((t-P2 , t-Q2 ), S)› by blast

from ‹t-Q ∈ T (Q \ A)› consider t-Q1 ′ where ‹t-Q = ?th-A t-Q1 ′› ‹(t-Q1 ′,
ev ‘ A) ∈ F Q›
| (D-Q) t-Q1 ′ t-Q2 ′ where ‹tF t-Q1 ′› ‹ftF t-Q2 ′› ‹t-Q = ?th-A t-Q1 ′ @ t-Q2 ′›

‹t-Q1 ′ ∈ D Q ∨ (∃ t-Q-x. isInfHidden-seqRun-strong t-Q-x Q A t-Q1 ′)›
by (elim T-Hiding-seqRunE)

thus ‹u @ v ∈ D (P [[S ]]3 Q \ A)›
proof cases

fix t-Q1 ′ assume ‹t-Q = ?th-A t-Q1 ′› ‹(t-Q1 ′, ev ‘ A) ∈ F Q›
from ‹t-Q = ?th-A t-Q1 ′› ∗∗(2 ) obtain t-Q1 ′′

where ‹t-Q1 = ?th-A t-Q1 ′′› ‹t-Q1 ′′ ≤ t-Q1 ′›
by (metis Prefix-Order .prefixI le-trace-hide)

from F-T ‹(t-Q1 ′, ev ‘ A) ∈ F Q› ‹t-Q1 ′′ ≤ t-Q1 ′› is-processT3-TR
have ‹t-Q1 ′′ ∈ T Q› by blast
from ∗∗(3 )[unfolded ‹t-Q1 = ?th-A t-Q1 ′′›,

THEN disjoint-trace-hide-setinterleavesptick[OF ‹A ∩ S = {}›]]
obtain u1 ′ where ‹u1 = ?th-A u1 ′› ‹u1 ′ setinterleaves3(⊗3) ((t-P1 , t-Q1 ′′),

S)› by blast
from D-P(4 ) show ‹u @ v ∈ D (P [[S ]]3 Q \ A)›
proof (elim disjE exE)

assume ‹t-P1 ∈ D P›
with ‹u1 ′ setinterleaves3(⊗3) ((t-P1 , t-Q1 ′′), S)› D-P(1 ) setinterleavesptick-tickFree-imp

have ‹u1 ′ = u1 ′ @ []› ‹tF u1 ′› ‹ftF []›
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‹u1 ′ setinterleaves3(⊗3) ((t-P1 , t-Q1 ′′), S)› ‹t-P1 ∈ D P›
by simp-all (blast intro: is-processT3-TR)+

with ‹t-Q1 ′′ ∈ T Q› have ‹u1 ′ ∈ D (P [[S ]]3 Q)› unfolding D-Syncptick
by blast

moreover have ‹u @ v = ?th-A u1 ′ @ (u2 @ v)›
by (simp add: ∗(1 ) ∗∗(1 ) ‹u1 = ?th-A u1 ′›)

ultimately show ‹u @ v ∈ D (P [[S ]]3 Q \ A)›
unfolding D-Hiding using ‹tF u› ‹ftF v› ∗∗(1 ) ‹tF u1 ′›
by (auto intro: front-tickFree-append)

next
fix t-P-x assume ‹isInfHidden-seqRun-strong t-P-x P A t-P1 ›
hence ‹isInfHidden-seqRun (ev ◦ of-ev ◦ t-P-x) (P [[S ]]3 Q) A u1 ′›

by (intro disjoint-isInfHidden-seqRunL-to-Syncptick
[OF ‹A ∩ S = {}› - ‹t-Q1 ′′ ∈ T Q› ‹u1 ′ setinterleaves3(⊗3) ((t-P1 ,

t-Q1 ′′), S)›]) simp
with ∗∗(1 ) ‹u1 = ?th-A u1 ′› assms(2 , 3 ) show ‹u @ v ∈ D (P [[S ]]3 Q \

A)›
unfolding D-Hiding-seqRun by clarify
(metis append-eq-append-conv2 [of u1 ‹u2 @ v› ‹u1 @ u2 › v]

isInfHidden-seqRun-imp-tickFree[of u1 ′ ‹ev ◦ of-ev ◦ t-P-x› ‹P [[S ]]3 Q›
A]

front-tickFree-append[of u2 v] tickFree-append-iff [of u1 u2 ])
qed

next
case D-Q
from setinterleavesptick-le-prefixLR
[OF ∗[unfolded D-P(3 ) D-Q(3 )], of ‹?th-A t-P1 › ‹?th-A t-Q1 ′›]

consider (left) u ′ t-Q1 ′′ where ‹u ′ ≤ u› ‹t-Q1 ′′ ≤ t-Q1 ′›
‹u ′ setinterleaves3(⊗3) ((?th-A t-P1 , ?th-A t-Q1 ′′), S)›
| (right) u ′ t-P1 ′ where ‹u ′ ≤ u› ‹t-P1 ′ ≤ t-P1 ›

‹u ′ setinterleaves3(⊗3) ((?th-A t-P1 ′, ?th-A t-Q1 ′), S)›
by (auto dest!: le-trace-hide)

thus ‹u @ v ∈ D (P [[S ]]3 Q \ A)›
proof cases

case left
have ‹t-Q1 ′′ ∈ T Q› by (meson D-Q(4 ) D-T is-processT3-TR left(2 )

t-le-seqRun)
from disjoint-trace-hide-setinterleavesptick[OF ‹A ∩ S = {}› left(3 )]
obtain u ′′ where $ : ‹u ′ = ?th-A u ′′›

‹u ′′ setinterleaves3(⊗3) ((t-P1 , t-Q1 ′′), S)› by blast
from D-P(4 ) show ‹u @ v ∈ D (P [[S ]]3 Q \ A)›
proof (elim disjE exE)

assume ‹t-P1 ∈ D P›
hence ‹u ′′ ∈ D (P [[S ]]3 Q)›

by (simp add: D-Syncptick)
(metis $(2 ) D-P(1 ) ‹t-Q1 ′′ ∈ T Q› append.right-neutral

front-tickFree-Nil setinterleavesptick-tickFree-imp)
with left(1 ) show ‹u @ v ∈ D (P [[S ]]3 Q \ A)›
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by (elim Prefix-Order .prefixE , simp add: D-Hiding $(1 ))
(metis Hiding-tickFree assms(2 , 3 ) front-tickFree-append tickFree-append-iff )

next
fix t-P-x assume ‹isInfHidden-seqRun-strong t-P-x P A t-P1 ›
hence ‹isInfHidden-seqRun (ev ◦ of-ev ◦ t-P-x) (P [[S ]]3 Q) A u ′′›

by (intro disjoint-isInfHidden-seqRunL-to-Syncptick
[OF ‹A ∩ S = {}› - ‹t-Q1 ′′ ∈ T Q› $(2 )]) simp

from left(1 ) show ‹u @ v ∈ D (P [[S ]]3 Q \ A)›
by (elim Prefix-Order .prefixE , simp add: D-Hiding-seqRun $(1 ))
(metis ‹?this› assms(2 , 3 ) front-tickFree-append

isInfHidden-seqRun-imp-tickFree tickFree-append-iff )
qed

next
case right

have ‹t-P1 ′ ∈ T P› by (meson D-P(4 ) D-T is-processT3-TR right(2 )
t-le-seqRun)

from disjoint-trace-hide-setinterleavesptick[OF ‹A ∩ S = {}› right(3 )]
obtain u ′′ where $ : ‹u ′ = ?th-A u ′′›

‹u ′′ setinterleaves3(⊗3) ((t-P1 ′, t-Q1 ′), S)› by blast
from D-Q(4 ) show ‹u @ v ∈ D (P [[S ]]3 Q \ A)›
proof (elim disjE exE)

assume ‹t-Q1 ′ ∈ D Q›
hence ‹u ′′ ∈ D (P [[S ]]3 Q)›

by (simp add: D-Syncptick)
(metis $(2 ) D-Q(1 ) ‹t-P1 ′ ∈ T P› append.right-neutral

front-tickFree-Nil setinterleavesptick-tickFree-imp)
with right(1 ) show ‹u @ v ∈ D (P [[S ]]3 Q \ A)›

by (elim Prefix-Order .prefixE , simp add: D-Hiding $(1 ))
(metis Hiding-tickFree assms(2 , 3 ) front-tickFree-append tickFree-append-iff )

next
fix t-Q-x assume ‹isInfHidden-seqRun-strong t-Q-x Q A t-Q1 ′›
hence ‹isInfHidden-seqRun (ev ◦ of-ev ◦ t-Q-x) (P [[S ]]3 Q) A u ′′›

by (intro disjoint-isInfHidden-seqRunR-to-Syncptick
[OF ‹A ∩ S = {}› - ‹t-P1 ′ ∈ T P› $(2 )]) simp

from right(1 ) show ‹u @ v ∈ D (P [[S ]]3 Q \ A)›
by (elim Prefix-Order .prefixE , simp add: D-Hiding-seqRun $(1 ))
(metis ‹?this› assms(2 , 3 ) front-tickFree-append

isInfHidden-seqRun-imp-tickFree tickFree-append-iff )
qed

qed
qed

qed

theorem (in Syncptick-locale) disjoint-Hiding-Syncptick-FD-Syncptick-Hiding :
‹P [[S ]]3 Q \ A vFD (P \ A) [[S ]]3 (Q \ A)› if ‹A ∩ S = {}›

proof (rule failure-divergence-refine-optimizedI )
let ?th-A = ‹λt. trace-hide t (ev ‘ A)›
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fix t assume ‹t ∈ D ((P \ A) [[S ]]3 (Q \ A))›
from this obtain u v t-P t-Q

where ∗ : ‹t = u @ v› ‹tF u› ‹ftF v›
‹u setinterleaves3(⊗3) ((t-P, t-Q), S)›
‹t-P ∈ D (P \ A) ∧ t-Q ∈ T (Q \ A) ∨ t-P ∈ T (P \ A) ∧ t-Q ∈ D (Q \

A)›
unfolding D-Syncptick by blast

from ∗(5 ) show ‹t ∈ D (P [[S ]]3 Q \ A)›
proof (elim disjE conjE)

show ‹t-P ∈ D (P \ A) =⇒ t-Q ∈ T (Q \ A) =⇒ t ∈ D (P [[S ]]3 Q \ A)›
by (simp add: ∗(1−4 ) disjoint-Hiding-Syncptick-FD-Syncptick-Hiding-aux ‹A

∩ S = {}›)
next

assume ‹t-P ∈ T (P \ A)› ‹t-Q ∈ D (Q \ A)›
have ‹u setinterleaves3λs r . r ⊗3 s ((t-Q, t-P), S)›

using ∗(4 ) setinterleavesptick-sym by blast
from Syncptick-locale-sym.disjoint-Hiding-Syncptick-FD-Syncptick-Hiding-aux
[OF ‹A ∩ S = {}› ∗(2 , 3 ) ‹t-Q ∈ D (Q \ A)› ‹t-P ∈ T (P \ A)› this]

have ‹u @ v ∈ D (Syncptick-locale-sym.Syncptick Q S P \ A)› .
also have ‹Syncptick-locale-sym.Syncptick Q S P = P [[S ]]3 Q› by (fact

Syncptick-sym)
finally show ‹t ∈ D (P [[S ]]3 Q \ A)› unfolding ∗(1 ) .

qed
next

fix t X assume ‹(t, X) ∈ F ((P \ A) [[S ]]3 (Q \ A))›
and subset-div : ‹D ((P \ A) [[S ]]3 (Q \ A)) ⊆ D (P [[S ]]3 Q \ A)›

from this(1 ) consider ‹t ∈ D ((P \ A) [[S ]]3 (Q \ A))›
| (fail-Sync) t-P t-Q X-P X-Q where ‹(t-P, X-P) ∈ F (P \ A)› ‹(t-Q, X-Q)

∈ F (Q \ A)›
‹t setinterleaves3(⊗3) ((t-P, t-Q), S)› ‹X ⊆ super-ref-Syncptick (⊗3) X-P S

X-Q›
unfolding Syncptick-projs by blast

thus ‹(t, X) ∈ F (P [[S ]]3 Q \ A)›
proof cases

from subset-div show ‹t ∈ D ((P \ A) [[S ]]3 (Q \ A)) =⇒ (t, X) ∈ F (P [[S ]]3
Q \ A)›

by (simp add: in-mono is-processT8 )
next

case fail-Sync
from fail-Sync(1 , 2 ) consider ‹t-P ∈ D (P \ A) ∨ t-Q ∈ D (Q \ A)›
| (fail-Hiding) t-P ′ t-Q ′ where

‹t-P = trace-hide t-P ′ (ev ‘ A)› ‹(t-P ′, X-P ∪ ev ‘ A) ∈ F P›
‹t-Q = trace-hide t-Q ′ (ev ‘ A)› ‹(t-Q ′, X-Q ∪ ev ‘ A) ∈ F Q›

unfolding F-Hiding D-Hiding by blast
thus ‹(t, X) ∈ F (P [[S ]]3 Q \ A)›
proof cases

assume ‹t-P ∈ D (P \ A) ∨ t-Q ∈ D (Q \ A)›
with fail-Sync(1−3 ) have ‹t ∈ D ((P \ A) [[S ]]3 (Q \ A))›

by (simp add: D-Syncptick ′)
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(metis F-T append-self-conv front-tickFree-Nil)
with subset-div show ‹(t, X) ∈ F (P [[S ]]3 Q \ A)›

by (simp add: in-mono is-processT8 )
next

case fail-Hiding
from disjoint-trace-hide-setinterleavesptick
[OF ‹A ∩ S = {}› fail-Sync(3 )[unfolded fail-Hiding(1 , 3 )]]

obtain t ′ where ∗ : ‹t = trace-hide t ′ (ev ‘ A)›
‹t ′ setinterleaves3(⊗3) ((t-P ′, t-Q ′), S)› by blast

from fail-Sync(4 ) have ‹X ∪ ev ‘ A ⊆ super-ref-Syncptick (⊗3) (X-P ∪ ev
‘ A) S (X-Q ∪ ev ‘ A)›

by (auto simp add: super-ref-Syncptick-def image-iff )
with ∗(2 ) fail-Hiding(2 , 4 ) have ‹(t ′, X ∪ ev ‘ A) ∈ F (P [[S ]]3 Q)›

by (auto simp add: F-Syncptick)
with ∗(1 ) show ‹(t, X) ∈ F (P [[S ]]3 Q \ A)› unfolding F-Hiding by blast

qed
qed

qed

theorem (in Syncptick-locale) disjoint-finite-Hiding-Syncptick :
‹P [[S ]]3 Q \ A = (P \ A) [[S ]]3 (Q \ A)› if ‹A ∩ S = {}› and ‹finite A›
— Monster theorem!

proof (rule FD-antisym)
from disjoint-Hiding-Syncptick-FD-Syncptick-Hiding[OF ‹A ∩ S = {}›]
show ‹P [[S ]]3 Q \ A vFD (P \ A) [[S ]]3 (Q \ A)› .

next
let ?th-A = ‹λt. trace-hide t (ev ‘ A)›
show ‹(P \ A) [[S ]]3 (Q \ A) vFD P [[S ]]3 Q \ A›
proof (rule failure-divergence-refine-optimizedI )

fix t X assume ‹(t, X) ∈ F (P [[S ]]3 Q \ A)›
and subset-div : ‹D (P [[S ]]3 Q \ A) ⊆ D ((P \ A) [[S ]]3 (Q \ A))›

from this(1 ) consider ‹t ∈ D (P [[S ]]3 Q \ A)›
| t ′ where ‹t = ?th-A t ′› ‹(t ′, X ∪ ev ‘ A) ∈ F (P [[S ]]3 Q)›
unfolding F-Hiding D-Hiding by blast

thus ‹(t, X) ∈ F ((P \ A) [[S ]]3 (Q \ A))›
proof cases

show ‹t ∈ D (P [[S ]]3 Q \ A) =⇒ (t, X) ∈ F ((P \ A) [[S ]]3 (Q \ A))›
using subset-div is-processT8 by blast

next
fix t ′ assume ‹t = ?th-A t ′› ‹(t ′, X ∪ ev ‘ A) ∈ F (P [[S ]]3 Q)›
from this(2 ) consider ‹t ′ ∈ D (P [[S ]]3 Q)›
| (fail) t-P X-P t-Q X-Q where ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›

‹t ′ setinterleaves3(⊗3) ((t-P, t-Q), S)›
‹X ∪ ev ‘ A ⊆ super-ref-Syncptick (⊗3) X-P S X-Q›

unfolding Syncptick-projs by auto
thus ‹(t, X) ∈ F ((P \ A) [[S ]]3 (Q \ A))›
proof cases
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assume ‹t ′ ∈ D (P [[S ]]3 Q)›
with ‹t = ?th-A t ′› have ‹t ∈ D (P [[S ]]3 Q \ A)›

by (metis mem-D-imp-mem-D-Hiding)
with subset-div is-processT8 show ‹(t, X) ∈ F ((P \ A) [[S ]]3 (Q \ A))›

by blast
next

case fail
from ‹A ∩ S = {}› fail(4 ) have ‹X-P = X-P ∪ ev ‘ A› ‹X-Q = X-Q ∪ ev

‘ A›
— i.e. ev ‘ A ⊆ X-P and ev ‘ A ⊆ X-Q
by (auto simp add: super-ref-Syncptick-def )

with fail(1 , 2 ) have ‹(?th-A t-P, X-P) ∈ F (P \ A)›
‹(?th-A t-Q, X-Q) ∈ F (Q \ A)›
by (auto simp add: F-Hiding)
moreover from fail(3 ) have ‹t setinterleaves3(⊗3) ((?th-A t-P, ?th-A

t-Q), S)›
unfolding ‹t = ?th-A t ′› by (fact setinterleavesptick-trace-hide)

ultimately show ‹(t, X) ∈ F ((P \ A) [[S ]]3 (Q \ A))›
using fail(4 ) unfolding F-Syncptick by fast

qed
qed

next
fix t assume ‹t ∈ D (P [[S ]]3 Q \ A)›
then obtain u v where ∗ : ‹ftF v› ‹tF u› ‹t = ?th-A u @ v›

‹u ∈ D (P [[S ]]3 Q) ∨ (∃ x. isInfHidden-seqRun-strong x (P [[S ]]3 Q) A u)›
by (blast elim: D-Hiding-seqRunE)

from ∗(4 ) show ‹t ∈ D ((P \ A) [[S ]]3 (Q \ A))›
proof (elim disjE exE)

assume ‹u ∈ D (P [[S ]]3 Q)›
then obtain u1 u2 t-P t-Q where ∗∗ : ‹u = u1 @ u2 › ‹tF u1 › ‹ftF u2 ›

‹u1 setinterleaves3(⊗3) ((t-P, t-Q), S)›
‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q›
unfolding D-Syncptick by blast

have ‹t = ?th-A u1 @ (?th-A u2 @ v)›
by (simp add: ∗(3 ) ∗∗(1 ))

moreover from ∗∗(2 ) have ‹tF (?th-A u1 )› using Hiding-tickFree by blast
moreover have ‹ftF (?th-A u2 @ v)›

by (metis D-imp-front-tickFree ‹t ∈ D (P [[S ]]3 Q \ A)› calculation(1 )
front-tickFree-append-iff front-tickFree-charn)

moreover from ∗∗(4 ) have ‹?th-A u1 setinterleaves3(⊗3) ((?th-A t-P, ?th-A
t-Q), S)›

by (fact setinterleavesptick-trace-hide)
moreover from ∗∗(5 ) have ‹?th-A t-P ∈ D (P \ A) ∧ ?th-A t-Q ∈ T (Q \

A) ∨
?th-A t-P ∈ T (P \ A) ∧ ?th-A t-Q ∈ D (Q \ A)›

by (metis mem-D-imp-mem-D-Hiding mem-T-imp-mem-T-Hiding)
ultimately show ‹t ∈ D ((P \ A) [[S ]]3 (Q \ A))›

unfolding D-Syncptick by blast
next
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fix x assume ∗∗ : ‹isInfHidden-seqRun-strong x (P [[S ]]3 Q) A u›
from ∗∗ have ∗∗∗ : ‹∃ t-P t-Q. t-P ∈ T P ∧ t-Q ∈ T Q ∧

seqRun u x i setinterleaves3(⊗3) ((t-P, t-Q), S)› for i
unfolding Syncptick-projs by blast

define t-P-t-Q where ‹t-P-t-Q i ≡ SOME (t-P, t-Q). t-P ∈ T P ∧ t-Q ∈ T
Q ∧

seqRun u x i setinterleaves3(⊗3) ((t-P, t-Q), S)› for i
define t-P where ‹t-P ≡ fst ◦ t-P-t-Q›
define t-Q where ‹t-Q ≡ snd ◦ t-P-t-Q›
have ∗∗∗∗ : ‹t-P i ∈ T P› ‹t-Q i ∈ T Q›

‹seqRun u x i setinterleaves3(⊗3) ((t-P i, t-Q i), S)› for i
by (use ∗∗∗[of i] in ‹simp add: t-P-def t-Q-def ,

cases ‹t-P-t-Q i›, simp add: t-P-t-Q-def ,
metis (mono-tags, lifting) case-prod-conv someI-ex›)+

from ∗(2 ) ∗∗ have ‹set (seqRun u x i) ⊆ {ev a |a. ev a ∈ set u} ∪ ev ‘ A›
for i

by (simp add: seqRun-def subset-iff )
(metis image-iff list.set-map tickFree-iff-is-map-ev)

have ∗∗∗∗∗ : ‹{ev a |a. ev a ∈ set (t-P i)} ∪ {ev a |a. ev a ∈ set (t-Q i)} ⊆
{ev a |a. ev a ∈ set u} ∪ ev ‘ A› for i

by (rule subset-trans[OF setinterleavesptick-imp-superset-ev[OF ∗∗∗∗(3 )]])
(use ‹set (seqRun u x i) ⊆ {ev a |a. ev a ∈ set u} ∪ ev ‘ A› in blast)

have ∗∗∗∗∗∗ : ‹tF (t-P i)› ‹tF (t-Q i)› for i
using tickFree-setinterleavesptick-iff [OF ∗∗∗∗(3 )[of i]]
by (metis ∗(2 ) ∗∗ eventptick.disc(1 ) imageE tickFree-seqRun-iff )+

{ fix i
have ‹{w. tF w ∧ {ev a |a. ev a ∈ set w} ⊆ set u ∪ ev ‘ A ∧ length w ≤ i}

⊆
map (ev ◦ of-ev) ‘ {w. set w ⊆ set u ∪ ev ‘ A ∧ length w ≤ i}›

(is ‹?S1 ⊆ map (ev ◦ of-ev) ‘ ?S2 ›)
proof (rule subsetI )

fix w assume ‹w ∈ ?S1 ›
hence ‹map (ev ◦ of-ev) (map (ev ◦ of-ev) w) = w›

by (induct w) (auto simp add: subset-iff )
moreover from ‹w ∈ ?S1 › have ‹map (ev ◦ of-ev) w ∈ ?S2 ›

by (induct w) (auto simp add: subset-iff )
ultimately show ‹w ∈ map (ev ◦ of-ev) ‘ ?S2 ›

by (metis (lifting) image-eqI )
qed
moreover have ‹finite {w. set w ⊆ set u ∪ ev ‘ A ∧ length w ≤ i}›

by (rule finite-lists-length-le) (simp add: ‹finite A›)
ultimately have ‹finite {w. tF w ∧ {ev a |a. ev a ∈ set w} ⊆ set u ∪ ev ‘

A ∧ length w ≤ i}›
using finite-subset[OF - finite-imageI ] by blast

} note £ = this

have ‹inj t-P-t-Q›
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proof (rule injI )
fix i j assume ‹t-P-t-Q i = t-P-t-Q j›
with ∗∗∗∗(3 ) have ‹seqRun u x i setinterleaves3tick-join ((t-P i, t-Q i), S)

∧
seqRun u x j setinterleaves3tick-join ((t-P i, t-Q i), S)›

unfolding t-P-t-Q-def t-P-def t-Q-def by fastforce
with setinterleavesptick-eq-length
have ‹length (seqRun u x i) = length (seqRun u x j)› by blast
thus ‹i = j› by simp

qed
hence ‹infinite (range t-P-t-Q)› using finite-imageD by blast
moreover have ‹range t-P-t-Q ⊆ range t-P × range t-Q›

by (simp add: t-P-def t-Q-def subset-iff image-iff ) (metis fst-conv snd-conv)
ultimately have ‹infinite (range t-P) ∨ infinite (range t-Q)›

by (meson finite-SigmaI infinite-super)

thus ‹t ∈ D ((P \ A) [[S ]]3 (Q \ A))›
proof (elim disjE)

assume ‹infinite (range t-P)›
have ‹finite {w. ∃ t ′∈range t-P. w = take i t ′}› for i

using ∗∗∗∗∗∗(1 ) ∗∗∗∗∗
by (auto intro!: finite-subset[OF - £[of i]] simp add: image-iff subset-iff )
(metis append-take-drop-id tickFree-append-iff , metis eventptick.inject(1 )

in-set-takeD)
with ‹infinite (range t-P)› obtain t-P ′ :: ‹nat ⇒ -›

where $ : ‹strict-mono t-P ′› ‹range t-P ′ ⊆ {w. ∃ t ′∈range t-P. w ≤ t ′}›
using KoenigLemma by blast

from $(2 ) ∗∗∗∗(1 ) is-processT3-TR have ‹range t-P ′ ⊆ T P› by blast
define t-P ′′ where ‹t-P ′′ i ≡ t-P ′ (i + length u)› for i

from ‹range t-P ′ ⊆ T P› have ‹range t-P ′′ ⊆ T P› and ‹strict-mono t-P ′′›
by (auto simp add: t-P ′′-def $(1 ) strict-monoD strict-monoI )

have $$ : ‹?th-A (t-P ′′ i) = ?th-A (t-P ′′ 0 )› for i
proof −

have ‹length u ≤ length (t-P ′′ 0 )›
by (metis $(1 ) add-0 add-leD1 t-P ′′-def length-strict-mono)

obtain t ′ where ‹t-P ′′ i = t-P ′′ 0 @ t ′›
by (meson prefixE ‹strict-mono t-P ′′› strict-mono-less-eq zero-order(1 ))
moreover from $(2 ) obtain j where ‹t-P ′′ i ≤ t-P j› by (auto simp

add: t-P ′′-def )
ultimately obtain t ′′ where ‹t-P j = t-P ′′ 0 @ t ′ @ t ′′› by (metis prefixE

append.assoc)

have ‹tF (t ′ @ t ′′)›
by (metis ∗∗∗∗∗∗(1 ) ‹t-P j = t-P ′′ 0 @ t ′ @ t ′′› tickFree-append-iff )

with setinterleavesptick-set-subsetL
[OF ∗∗∗∗(3 )[of j], where n = ‹length (t-P ′′ 0 )›, unfolded ‹t-P j = t-P ′′

0 @ t ′ @ t ′′›]
have ‹e ∈ set (t ′ @ t ′′) =⇒ e ∈ {ev a |a. ev a ∈ set (drop (length (t-P ′′

0 )) (seqRun u x j))}› for e
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by (cases e) (auto simp add: tickFree-def )
moreover have ‹{a. ev a ∈ set (drop (length (t-P ′′ 0 )) (seqRun u x j))}

⊆
{a. ev a ∈ set (drop (length u) (seqRun u x j))}›

by (simp add: subset-iff )
(meson ‹length u ≤ length (t-P ′′ 0 )› in-mono set-drop-subset-set-drop)

moreover from ∗∗ have ‹set (drop (length u) (seqRun u x j)) ⊆ ev ‘ A›
by (auto simp add: seqRun-def )

ultimately have ‹set (t ′ @ t ′′) ⊆ ev ‘ A› by blast
thus ‹?th-A (t-P ′′ i) = ?th-A (t-P ′′ 0 )›

by (simp add: ‹t-P ′′ i = t-P ′′ 0 @ t ′› subset-iff )
qed
from $(2 ) obtain i where ‹t-P ′′ 0 ≤ t-P i› by (auto simp add: t-P ′′-def )
with prefixE obtain w where ‹t-P i = t-P ′′ 0 @ w› by blast
have ‹ftF v› by (fact ∗(1 ))
moreover have ‹tF (?th-A (seqRun u x i))›

by (metis ∗(2 ) ∗∗ Hiding-tickFree trace-hide-seqRun-eq-iff )
moreover have ‹t = ?th-A (seqRun u x i) @ v›

by (metis ∗(3 ) ∗∗ trace-hide-seqRun-eq-iff )
moreover have ‹?th-A (seqRun u x i) setinterleaves3(⊗3) ((?th-A (t-P i),

?th-A (t-Q i)), S)›
by (intro setinterleavesptick-trace-hide ∗∗∗∗(3 ))

moreover have ‹?th-A (t-P i) ∈ D (P \ A)›
proof (unfold D-Hiding, clarify, intro exI conjI )

show ‹ftF (?th-A w)›
by (metis ∗∗∗∗∗∗(1 ) Hiding-front-tickFree ‹t-P i = t-P ′′ 0 @ w›

tickFree-append-iff tickFree-imp-front-tickFree)
next

show ‹tF (t-P ′′ 0 )›
by (metis ∗∗∗∗∗∗(1 ) ‹t-P i = t-P ′′ 0 @ w› tickFree-append-iff )

next
show ‹?th-A (t-P i) = ?th-A (t-P ′′ 0 ) @ ?th-A w›

by (simp add: ‹t-P i = t-P ′′ 0 @ w›)
next

show ‹t-P ′′ 0 ∈ D P ∨ (∃ f . isInfHiddenRun f P A ∧ t-P ′′ 0 ∈ range f )›
using $$ ‹range t-P ′′ ⊆ T P› ‹strict-mono t-P ′′› by blast

qed
moreover have ‹?th-A (t-Q i) ∈ T (Q \ A)›
proof (cases ‹∃ t ′. ?th-A t ′ = ?th-A (t-Q i) ∧ (t ′, ev ‘ A) ∈ F Q›)

assume ‹∃ t ′. ?th-A t ′ = ?th-A (t-Q i) ∧ (t ′, ev ‘ A) ∈ F Q›
then obtain t ′ where ‹?th-A (t-Q i) = ?th-A t ′› ‹(t ′, ev ‘ A) ∈ F Q› by

metis
thus ‹?th-A (t-Q i) ∈ T (Q \ A)› unfolding T-Hiding by blast

next
assume ‹@ t ′. ?th-A t ′ = ?th-A (t-Q i) ∧ (t ′, ev ‘ A) ∈ F Q›
with inf-hidden[OF - ∗∗∗∗(2 )] obtain t-Q ′ j

where ‹isInfHiddenRun t-Q ′ Q A› ‹t-Q i = t-Q ′ j› by blast
thus ‹?th-A (t-Q i) ∈ T (Q \ A)›

unfolding T-Hiding using ∗∗∗∗∗∗(2 ) front-tickFree-Nil by blast
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qed
ultimately show ‹t ∈ D ((P \ A) [[S ]]3 (Q \ A))› unfolding D-Syncptick

by blast
next

assume ‹infinite (range t-Q)›
have ‹finite {w. ∃ t ′∈range t-Q. w = take i t ′}› for i

using ∗∗∗∗∗∗(2 ) ∗∗∗∗∗
by (auto intro!: finite-subset[OF - £[of i]] simp add: image-iff subset-iff )
(metis append-take-drop-id tickFree-append-iff , metis eventptick.inject(1 )

in-set-takeD)
with ‹infinite (range t-Q)› obtain t-Q ′ :: ‹nat ⇒ -›

where $ : ‹strict-mono t-Q ′› ‹range t-Q ′ ⊆ {w. ∃ t ′∈range t-Q. w ≤ t ′}›
using KoenigLemma by blast

from $(2 ) ∗∗∗∗(2 ) is-processT3-TR have ‹range t-Q ′ ⊆ T Q› by blast
define t-Q ′′ where ‹t-Q ′′ i ≡ t-Q ′ (i + length u)› for i

from ‹range t-Q ′ ⊆ T Q› have ‹range t-Q ′′ ⊆ T Q› and ‹strict-mono t-Q ′′›
by (auto simp add: t-Q ′′-def $(1 ) strict-monoD strict-monoI )

have $$ : ‹?th-A (t-Q ′′ i) = ?th-A (t-Q ′′ 0 )› for i
proof −

have ‹length u ≤ length (t-Q ′′ 0 )›
by (metis $(1 ) add-0 add-leD1 t-Q ′′-def length-strict-mono)

obtain t ′ where ‹t-Q ′′ i = t-Q ′′ 0 @ t ′›
by (meson prefixE ‹strict-mono t-Q ′′› strict-mono-less-eq zero-order(1 ))
moreover from $(2 ) obtain j where ‹t-Q ′′ i ≤ t-Q j› by (auto simp

add: t-Q ′′-def )
ultimately obtain t ′′ where ‹t-Q j = t-Q ′′ 0 @ t ′ @ t ′′› by (metis

prefixE append.assoc)
have ‹tF (t ′ @ t ′′)›

by (metis ∗∗∗∗∗∗(2 ) ‹t-Q j = t-Q ′′ 0 @ t ′ @ t ′′› tickFree-append-iff )
with setinterleavesptick-set-subsetR
[OF ∗∗∗∗(3 )[of j], where n = ‹length (t-Q ′′ 0 )›, unfolded ‹t-Q j = t-Q ′′

0 @ t ′ @ t ′′›]
have ‹e ∈ set (t ′ @ t ′′) =⇒ e ∈ {ev a |a. ev a ∈ set (drop (length (t-Q ′′

0 )) (seqRun u x j))}› for e
by (cases e) (auto simp add: tickFree-def )

moreover have ‹{a. ev a ∈ set (drop (length (t-Q ′′ 0 )) (seqRun u x j))}
⊆

{a. ev a ∈ set (drop (length u) (seqRun u x j))}›
by (simp add: subset-iff )
(meson ‹length u ≤ length (t-Q ′′ 0 )› in-mono set-drop-subset-set-drop)

moreover from ∗∗ have ‹set (drop (length u) (seqRun u x j)) ⊆ ev ‘ A›
by (auto simp add: seqRun-def )

ultimately have ‹set (t ′ @ t ′′) ⊆ ev ‘ A› by blast
thus ‹?th-A (t-Q ′′ i) = ?th-A (t-Q ′′ 0 )›

by (simp add: ‹t-Q ′′ i = t-Q ′′ 0 @ t ′› subset-iff )
qed
from $(2 ) obtain i where ‹t-Q ′′ 0 ≤ t-Q i› by (auto simp add: t-Q ′′-def )
with prefixE obtain w where ‹t-Q i = t-Q ′′ 0 @ w› by blast
have ‹ftF v› by (fact ∗(1 ))
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moreover have ‹tF (?th-A (seqRun u x i))›
by (metis ∗(2 ) ∗∗ Hiding-tickFree trace-hide-seqRun-eq-iff )

moreover have ‹t = ?th-A (seqRun u x i) @ v›
by (metis ∗(3 ) ∗∗ trace-hide-seqRun-eq-iff )

moreover have ‹?th-A (seqRun u x i) setinterleaves3(⊗3) ((?th-A (t-P i),
?th-A (t-Q i)), S)›

by (intro setinterleavesptick-trace-hide ∗∗∗∗(3 ))
moreover have ‹?th-A (t-Q i) ∈ D (Q \ A)›
proof (unfold D-Hiding, clarify, intro exI conjI )

show ‹ftF (?th-A w)›
by (metis ∗∗∗∗∗∗(2 ) Hiding-front-tickFree ‹t-Q i = t-Q ′′ 0 @ w›

tickFree-append-iff tickFree-imp-front-tickFree)
next

show ‹tF (t-Q ′′ 0 )›
by (metis ∗∗∗∗∗∗(2 ) ‹t-Q i = t-Q ′′ 0 @ w› tickFree-append-iff )

next
show ‹?th-A (t-Q i) = ?th-A (t-Q ′′ 0 ) @ ?th-A w›

by (simp add: ‹t-Q i = t-Q ′′ 0 @ w›)
next

show ‹t-Q ′′ 0 ∈ D Q ∨ (∃ f . isInfHiddenRun f Q A ∧ t-Q ′′ 0 ∈ range f )›
using $$ ‹range t-Q ′′ ⊆ T Q› ‹strict-mono t-Q ′′› by blast

qed
moreover have ‹?th-A (t-P i) ∈ T (P \ A)›
proof (cases ‹∃ t ′. ?th-A t ′ = ?th-A (t-P i) ∧ (t ′, ev ‘ A) ∈ F P›)

assume ‹∃ t ′. ?th-A t ′ = ?th-A (t-P i) ∧ (t ′, ev ‘ A) ∈ F P›
then obtain t ′ where ‹?th-A (t-P i) = ?th-A t ′› ‹(t ′, ev ‘ A) ∈ F P› by

metis
thus ‹?th-A (t-P i) ∈ T (P \ A)› unfolding T-Hiding by blast

next
assume ‹@ t ′. ?th-A t ′ = ?th-A (t-P i) ∧ (t ′, ev ‘ A) ∈ F P›
with inf-hidden[OF - ∗∗∗∗(1 )] obtain t-P ′ j

where ‹isInfHiddenRun t-P ′ P A› ‹t-P i = t-P ′ j› by blast
thus ‹?th-A (t-P i) ∈ T (P \ A)›

unfolding T-Hiding using ∗∗∗∗∗∗(1 ) front-tickFree-Nil by blast
qed
ultimately show ‹t ∈ D ((P \ A) [[S ]]3 (Q \ A))› unfolding D-Syncptick

by blast
qed

qed
qed

qed

lemma disjoint-Hiding-MultiSyncptick-FD-MultiSyncptick-Hiding :
‹[[S]]3 l ∈@ L. P l \ A vFD [[S]]3 l ∈@ L. (P l \ A)› if ‹A ∩ S = {}›

proof (induct L rule: induct-list012 )
case 1 show ?case by simp

next
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case (2 l0 )
show ?case by (simp add: RenamingTick-Hiding)

next
case (3 l0 l1 L)
have ‹[[S]]3 l ∈@ (l0 # l1 # L). P l \ A =

P l0 [[S ]]3Rlist [[S]]3 l ∈@ (l1 # L). P l \ A› by simp
also have ‹. . . vFD (P l0 \ A) [[S ]]3Rlist ([[S]]3 l ∈@ (l1 # L). P l \ A)›

by (simp add: SyncRlist.disjoint-Hiding-Syncptick-FD-Syncptick-Hiding ‹A ∩
S = {}›)

also have ‹. . . vFD (P l0 \ A) [[S ]]3Rlist [[S]]3 l ∈@ (l1 # L). (P l \ A)›
by (simp add: 3 .hyps(2 ) SyncRlist.mono-Syncptick-FD)

also have ‹. . . = [[S]]3 l ∈@ (l0 # l1 # L). (P l \ A)› by simp
finally show ?case .

qed

lemma disjoint-finite-Hiding-MultiSyncptick :
‹[[S]]3 l ∈@ L. P l \ A = [[S]]3 l ∈@ L. (P l \ A)› if ‹A ∩ S = {}› and ‹finite

A›
proof (induct L rule: induct-list012 )

case 1 show ?case by simp
next

case (2 l0 )
show ?case by (simp add: RenamingTick-Hiding)

next
case (3 l0 l1 L)
have ‹[[S]]3 l ∈@ (l0 # l1 # L). P l \ A =

P l0 [[S ]]3Rlist [[S]]3 l ∈@ (l1 # L). P l \ A› by simp
also have ‹. . . = (P l0 \ A) [[S ]]3Rlist ([[S]]3 l ∈@ (l1 # L). P l \ A)›

by (simp add: SyncRlist.disjoint-finite-Hiding-Syncptick ‹A ∩ S = {}› ‹finite
A›)

also have ‹. . . = (P l0 \ A) [[S ]]3Rlist [[S]]3 l ∈@ (l1 # L). (P l \ A)›
by (simp add: 3 .hyps(2 ) SyncRlist.mono-Syncptick-FD)

also have ‹. . . = [[S]]3 l ∈@ (l0 # l1 # L). (P l \ A)› by simp
finally show ?case .

qed

16.5 Other Laws of Synchronization Product
16.5.1 Synchronization Set can be restricted
lemma setinterleavesptick-is-restrictable-on-superset-events-of :

‹{a. ev a ∈ set u ∨ ev a ∈ set v} ⊆ A =⇒
t setinterleaves3tick-join ((u, v), S) ←→
t setinterleaves3tick-join ((u, v), S ∩ A)›

by (induct ‹(tick-join, u, S , v)› arbitrary: t u v)
(auto simp add: subset-iff split: option.split-asm)

lemma (in Syncptick-locale) Syncptick-is-restrictable-on-events-of :
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‹P [[S ]]3 Q = P [[S ∩ (α(P) ∪ α(Q))]]3 Q›
proof −

have ∗ : ‹t-P ∈ D P ∧ t-Q ∈ T Q ∨ t-P ∈ T P ∧ t-Q ∈ D Q =⇒
{a. ev a ∈ set t-P ∨ ev a ∈ set t-Q} ⊆ α(P) ∪ α(Q)›

‹(t-P, X-P) ∈ F P =⇒ (t-Q, X-Q) ∈ F Q =⇒
{a. ev a ∈ set t-P ∨ ev a ∈ set t-Q} ⊆ α(P) ∪ α(Q)› for t-P t-Q X-P X-Q

by (auto intro: events-of-memI dest: F-T D-T )
show ‹P [[S ]]3 Q = P [[S ∩ (α(P) ∪ α(Q))]]3 Q›
proof (rule Process-eq-optimizedI )

show ‹t ∈ D (P [[S ]]3 Q) =⇒ t ∈ D (P [[S ∩ (α(P) ∪ α(Q))]]3 Q)› for t
using setinterleavesptick-is-restrictable-on-superset-events-of [OF ∗(1 )]
unfolding D-Syncptick by blast

next
show ‹t ∈ D (P [[S ∩ (α(P) ∪ α(Q))]]3 Q) =⇒ t ∈ D (P [[S ]]3 Q)› for t

using setinterleavesptick-is-restrictable-on-superset-events-of [OF ∗(1 )]
unfolding D-Syncptick by blast

next
fix t X assume ‹(t, X) ∈ F (P [[S ]]3 Q)› ‹t /∈ D (P [[S ]]3 Q)›
then obtain t-P t-Q X-P X-Q

where $ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›
‹t setinterleaves3tick-join ((t-P, t-Q), S)›
‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

unfolding Syncptick-projs by blast
from $(1 ) have ‹(t-P, X-P ∪ {ev a |a. a /∈ α(P)}) ∈ F P›

by (rule is-processT5 ) (auto intro: events-of-memI dest!: F-T )
moreover from $(2 ) have ‹(t-Q, X-Q ∪ {ev a |a. a /∈ α(Q)}) ∈ F Q›

by (rule is-processT5 ) (auto intro: events-of-memI dest!: F-T )
moreover from setinterleavesptick-is-restrictable-on-superset-events-of
[OF ∗(2 )[OF $(1 , 2 )]] $(3 )

have ‹t setinterleaves3tick-join ((t-P, t-Q), S ∩ (α(P) ∪ α(Q)))› by blast
moreover from $(4 )
have ‹X ⊆ super-ref-Syncptick

tick-join (X-P ∪ {ev a |a. a /∈ α(P)})
(S ∩ (α(P) ∪ α(Q))) (X-Q ∪ {ev a |a. a /∈ α(Q)})›

by (auto simp add: super-ref-Syncptick-def )
ultimately show ‹(t, X) ∈ F (P [[S ∩ (α(P) ∪ α(Q))]]3 Q)›

by (auto simp add: F-Syncptick)
next

fix t X assume ‹(t, X) ∈ F (P [[S ∩ (α(P) ∪ α(Q))]]3 Q)›
‹t /∈ D (P [[S ∩ (α(P) ∪ α(Q))]]3 Q)›

then obtain t-P t-Q X-P X-Q
where $ : ‹(t-P, X-P) ∈ F P› ‹(t-Q, X-Q) ∈ F Q›

‹t setinterleaves3tick-join ((t-P, t-Q), S ∩ (α(P) ∪ α(Q)))›
‹X ⊆ super-ref-Syncptick tick-join X-P (S ∩ (α(P) ∪ α(Q))) X-Q›

unfolding Syncptick-projs by blast
from setinterleavesptick-is-restrictable-on-superset-events-of
[OF ∗(2 )[OF $(1 , 2 )]] $(3 )

have ‹t setinterleaves3tick-join ((t-P, t-Q), S)› by blast
moreover from $(4 ) have ‹X ⊆ super-ref-Syncptick tick-join X-P S X-Q›

366



by (meson Int-lower1 in-mono subsetI super-ref-Syncptick-mono)
ultimately show ‹(t, X) ∈ F (P [[S ]]3 Q)›

using $(1 , 2 ) by (auto simp add: F-Syncptick)
qed

qed

corollary (in Syncptick-locale) Syncptick-is-restrictable-on-superset-events-of :
‹P [[S ]]3 Q = P [[S ∩ A]]3 Q› if ‹α(P) ∪ α(Q) ⊆ A›

proof (rule trans[OF Syncptick-is-restrictable-on-events-of ],
rule trans[OF - Syncptick-is-restrictable-on-events-of [symmetric]])

show ‹P [[S ∩ (α(P) ∪ α(Q))]]3 Q = P [[S ∩ A ∩ (α(P) ∪ α(Q))]]3 Q›
using ‹α(P) ∪ α(Q) ⊆ A› by (auto intro: arg-cong[where f = ‹λS . P [[S ]]3

Q›])
qed

lemma ‹tF t =⇒ {a. ev a ∈ set u} ∩ S = {} =⇒ a ∈ S =⇒
¬ t setinterleaves3tick-join ((u, ev a # v), S)›

proof (induct ‹(tick-join, u, S , v)› arbitrary: t u v)
case (ev-setinterleavingptick-Nil a u)
thus ?case by (simp add: disjoint-iff ) (meson tickFree-Cons-iff )

next
case (ev-setinterleavingptick-ev a u b v)
then show ?case by (simp add: disjoint-iff ) (meson tickFree-Cons-iff )

next
case (ev-setinterleavingptick-tick a u s v)
thus ?case

by (simp add: disjoint-iff )
(metis empty-iff list.set-intros(1 )

ev-notin-both-sets-imp-empty-setinterleavingptick)
qed simp-all

16.5.2 Some Refinements
context Syncptick-locale begin

lemma Mndetprefix-Syncptick-Det-distr-FD :
‹(u a ∈ A → (P a [[ C ]]3 (u b ∈ B → Q b))) �
(u b ∈ B → ((u a ∈ A → P a) [[ C ]]3 Q b))
vFD (u a ∈ A → P a) [[ C ]]3 (u b ∈ B → Q b)›
(is ‹?lhs1 � ?lhs2 vFD ?rhs›)
if ‹A 6= {}› ‹B 6= {}› ‹A ∩ C = {}› ‹B ∩ C = {}›

proof −
have ‹?lhs1 = u b∈B. u a∈A. (a → (P a [[C ]]3 (b → Q b)))› (is ‹- = ?lhs1 ′›)

by (simp add: ‹A 6= {}› ‹B 6= {}› Mndetprefix-GlobalNdet
Syncptick-distrib-GlobalNdet-left Syncptick-distrib-GlobalNdet-right
write0-def GlobalNdet-Mprefix-distr [OF ‹B 6= {}›, symmetric])

(subst GlobalNdet-sets-commute, simp)
moreover have ‹?lhs2 = u b∈B. u a∈A. (b → (a → P a [[C ]]3 Q b))› (is ‹- =
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?lhs2 ′›)
by (simp add: ‹A 6= {}› ‹B 6= {}› Mndetprefix-GlobalNdet

Syncptick-distrib-GlobalNdet-left Syncptick-distrib-GlobalNdet-right
write0-def GlobalNdet-Mprefix-distr [OF ‹A 6= {}›, symmetric])

ultimately have ‹?lhs1 � ?lhs2 = ?lhs1 ′ � ?lhs2 ′› by simp
moreover have ‹?lhs1 ′ � ?lhs2 ′ vFD u b∈B. u a∈A. (a → (P a [[C ]]3 (b →

Q b)))
� (b → ((a → P a) [[C ]]3 Q b))›

by (auto simp add: ‹A 6= {}› ‹B 6= {}› refine-defs GlobalNdet-projs Det-projs
write0-def )

moreover have ‹. . . = u b∈B. u a∈A. ((a → P a) [[C ]]3 (b → Q b))›
by (rule mono-GlobalNdet-eq, rule mono-GlobalNdet-eq,

simp add: write0-def , subst Mprefix-Syncptick-Mprefix-indep)
(use ‹A ∩ C = {}› ‹B ∩ C = {}› in auto)

moreover have ‹. . . = ?rhs›
by (simp add: ‹A 6= {}› ‹B 6= {}› Mndetprefix-GlobalNdet

Syncptick-distrib-GlobalNdet-left Syncptick-distrib-GlobalNdet-right)
ultimately show ‹?lhs1 � ?lhs2 vFD ?rhs› by argo

qed

lemmas Mndetprefix-Syncptick-Det-distr-F =
Mndetprefix-Syncptick-Det-distr-FD[THEN leFD-imp-leF ]

lemmas Mndetprefix-Syncptick-Det-distr-D =
Mndetprefix-Syncptick-Det-distr-FD[THEN leFD-imp-leD]

lemmas Mndetprefix-Syncptick-Det-distr-T =
Mndetprefix-Syncptick-Det-distr-F [THEN leF-imp-leT ]

lemma Mndetprefix-Syncptick-Det-distr-DT :
‹[[A 6= {}; B 6= {}; A ∩ C = {}; B ∩ C = {}]] =⇒
(u a ∈ A → (P a [[ C ]]3 (u b ∈ B → Q b))) �
(u b ∈ B → ((u a ∈ A → P a) [[ C ]]3 Q b))
vDT (u a ∈ A → P a) [[ C ]]3 (u b ∈ B → Q b)›

by (simp add: Mndetprefix-Syncptick-Det-distr-D
Mndetprefix-Syncptick-Det-distr-T leD-leT-imp-leDT )

end
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Chapter 17

Deadlock Results

17.1 First Results
17.1.1 Non Terminating

Keep in mind lifelock-freeSKIP S P = (D P = {}).

Sequential Composition
lemma ‹non-terminating P =⇒ P ;3 Q = RenamingTick P g›

— Already proven earlier.
by (fact non-terminating-Seqptick)

Synchronization Product
lemma (in Syncptick-locale) non-terminating-Syncptick :

‹non-terminating P =⇒ lifelock-freeSKIP S Q =⇒ non-terminating (P [[A]]3 Q)›
‹lifelock-freeSKIP S P =⇒ non-terminating Q =⇒ non-terminating (P [[A]]3 Q)›
by (simp add: lifelock-freeSKIP S-iff-div-free T-Syncptick

non-terminating-is-right nonterminating-implies-div-free,
use setinterleavesptick-tickFree-imp in blast)+

17.1.2 Deadlock Free
Sequential Composition
lemma ‹deadlock-free P =⇒ deadlock-free (P ;3 Q)›
by (metis deadlock-free-imp-deadlock-free-Renaming deadlock-free-implies-lifelock-free

lifelock-free-is-non-terminating non-terminating-Seqptick)

The next lemma is of course more interesting.
lemma deadlock-freeSKIP S-Seqptick :

‹deadlock-freeSKIP S (P ;3 Q)›
if df-assms : ‹deadlock-freeSKIP S P› ‹

∧
r . r ∈ 3s(P) =⇒ deadlock-freeSKIP S

(Q r)›
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proof (unfold deadlock-freeSKIP S-is-right, intro ballI impI )
show ‹t ∈ T (P ;3 Q) =⇒ tF t =⇒ (t, UNIV ) /∈ F (P ;3 Q)› for t
proof (induct t rule: rev-induct)

from df-assms show ‹([], UNIV ) /∈ F (P ;3 Q)›
by (simp add: Seqptick-projs deadlock-freeSKIP S-implies-div-free deadlock-freeSKIP S-is-right

ref-Seqptick-UNIV )
(metis F-T append-Nil deadlock-freeSKIP S-implies-div-free

deadlock-freeSKIP S-is-right empty-iff strict-ticks-of-memI tickFree-Nil)
next

from df-assms(1 ) have ‹D P = {}›
by (simp add: deadlock-freeSKIP S-implies-div-free)

fix t e assume hyp : ‹t ∈ T (P ;3 Q) =⇒ tF t =⇒ (t, UNIV ) /∈ F (P ;3 Q)›
assume ‹t @ [e] ∈ T (P ;3 Q)› ‹tF (t @ [e])›
then consider u v where ‹t @ [e] = map (ev ◦ of-ev) u› ‹u ∈ T P› ‹tF u›
| u r v where ‹t @ [e] = map (ev ◦ of-ev) u @ v› ‹u @ [3(r)] ∈ T P› ‹tF u›

‹v ∈ T (Q r)›
by (auto simp add: Seqptick-projs ‹D P = {}›)

thus ‹(t @ [e], UNIV ) /∈ F (P ;3 Q)›
by (cases; simp-all add: Seqptick-projs ref-Seqptick-UNIV )
(metis (no-types) F-T ‹D P = {}› ‹tF (t @ [e])› deadlock-freeSKIP S-is-right

empty-iff strict-ticks-of-memI that tickFree-append-iff )+
qed

qed

corollary deadlock-free-Seqptick :
‹[[deadlock-freeSKIP S P;

∧
r . r ∈ 3s(P) =⇒ deadlock-free (Q r)]]

=⇒ deadlock-free (P ;3 Q)›
by (simp add: AfterExt.deadlock-free-iff-empty-ticks-of-and-deadlock-freeSKIP S

ticks-of-Seqptick)
(meson deadlock-freeSKIP S-Seqptick deadlock-freeSKIP S-implies-div-free)

Synchronization Product

context Syncptick-locale begin

lemma deadlock-free-Det-bis :
‹P = STOP ∧ Q 6= STOP ∨ deadlock-free P =⇒
Q = STOP ∧ P 6= STOP ∨ deadlock-free Q =⇒ deadlock-free (P � Q)›

using deadlock-free-Det by auto

lemma deadlock-free-Mprefix-Syncptick-Mprefix :
assumes not-all-empty: ‹¬ A ⊆ S ∨ ¬ B ⊆ S ∨ A ∩ B ∩ S 6= {}›

and ‹
∧

a. a ∈ A − S =⇒ deadlock-free (P a [[S ]]3 �b∈B → Q b)›
and ‹

∧
b. b ∈ B − S =⇒ deadlock-free (�a∈A → P a [[S ]]3 Q b)›

and ‹
∧

x. x ∈ A ∩ B ∩ S =⇒ deadlock-free (P x [[S ]]3 Q x)›
shows ‹deadlock-free (�a∈A → P a [[S ]]3 �b ∈ B → Q b)›
unfolding Mprefix-Syncptick-Mprefix using not-all-empty
by (auto intro!: deadlock-free-Det-bis
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simp add: Mprefix-is-STOP-iff Det-is-STOP-iff deadlock-free-Mprefix-iff assms(2−4 ))

lemma deadlock-free-Mprefix-Syncptick-Mprefix-subset :
‹[[A ⊆ S ; B ⊆ S ; A ∩ B 6= {};∧

x. x ∈ A ∩ B ∩ S =⇒ deadlock-free (P x [[S ]]3 Q x)]]
=⇒ deadlock-free (�a∈A → P a [[S ]]3 �b∈B → Q b)›

and deadlock-free-Mprefix-Syncptick-Mprefix-indep :
‹[[A ∩ S = {}; B ∩ S = {}; A 6= {} ∨ B 6= {};∧

a. a ∈ A − S =⇒ deadlock-free (P a [[S ]]3 �b∈B → Q b);∧
b. b ∈ B − S =⇒ deadlock-free (�a∈A → P a [[S ]]3 Q b)]]

=⇒ deadlock-free (�a∈A → P a [[S ]]3 �b∈B → Q b)›
and deadlock-free-Mprefix-Syncptick-Mprefix-right :
‹[[A ⊆ S ; B ∩ S = {}; B 6= {};∧

b. b ∈ B − S =⇒ deadlock-free (�a∈A → P a [[S ]]3 Q b)]]
=⇒ deadlock-free (�a∈A → P a [[S ]]3 �b∈B → Q b)›

and deadlock-free-Mprefix-Syncptick-Mprefix-left :
‹[[A ∩ S = {}; B ⊆ S ; A 6= {};∧

a. a ∈ A − S =⇒ deadlock-free (P a [[S ]]3 �b∈B → Q b)]]
=⇒ deadlock-free (�a∈A → P a [[S ]]3 �b∈B → Q b)›

by (auto intro!: deadlock-free-Mprefix-Syncptick-Mprefix)

end

17.2 Renaming and reference Processes
lemma DF-empty [simp] : ‹DF {} = STOP›

and DFSKIP S-empty [simp] : ‹DFSKIP S {} {} = STOP›
and RUN-empty [simp] : ‹RUN {} = STOP›
and CHAOS-empty [simp] : ‹CHAOS {} = STOP›
and CHAOSSKIP S-empty [simp] : ‹CHAOSSKIP S {} {} = STOP›
by (subst DF-unfold DFSKIP S-unfold RUN-unfold CHAOS-unfold CHAOSSKIP S-unfold,

simp)+

17.2.1 Alternative Definitions with restriction fixed-point Op-
erator

For now, we have lemmas such as DF (f ‘ A) vFD Renaming (DF A) f g, but
the other refinement is requiring finitary assumptions ([[finitary f ; finitary
g]] =⇒ Renaming (DF A) f g vFD DF (f ‘ A)).
lemma DF-restriction-fix-def : ‹DF A = (υ X . ua ∈ A → X)›

unfolding DF-def by (rule restriction-fix-is-fix[symmetric]) simp-all

lemma DFSKIP S-restriction-fix-def : ‹DFSKIP S A R = (υ X . (ua ∈ A → X)
u SKIPS R)›

unfolding DFSKIP S-def by (rule restriction-fix-is-fix[symmetric]) simp-all
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lemma RUN-restriction-fix-def : ‹RUN A = (υ X . �a ∈ A → X)›
unfolding RUN-def by (rule restriction-fix-is-fix[symmetric]) simp-all

lemma CHAOS-restriction-fix-def : ‹CHAOS A = (υ X . STOP u (�a ∈ A →
X))›

unfolding CHAOS-def by (rule restriction-fix-is-fix[symmetric]) simp-all

lemma CHAOSSKIP S-restriction-fix-def : ‹CHAOSSKIP S A R = (υ X . SKIPS
R u STOP u (�a ∈ A → X))›

unfolding CHAOSSKIP S-def by (rule restriction-fix-is-fix[symmetric]) simp-all

17.2.2 Stronger Results

With restriction-fix induction, removing these assumptions is trivial.
lemma Renaming-DF : ‹Renaming (DF A) f g = DF (f ‘ A)›
proof (unfold DF-restriction-fix-def , induct rule: parallel-restriction-fix-ind)

show ‹Renaming STOP f g = STOP› by simp
qed (auto simp add: Renaming-Mndetprefix intro!: mono-Mndetprefix-eq)

lemma Renaming-DFSKIP S : ‹Renaming (DFSKIP S A R) f g = DFSKIP S (f ‘
A) (g ‘ R)›
proof (unfold DFSKIP S-restriction-fix-def , induct rule: parallel-restriction-fix-ind)

show ‹Renaming STOP f g = STOP› by simp
qed (auto simp add: Renaming-Mndetprefix Renaming-Ndet

intro!: mono-Mndetprefix-eq arg-cong2 [where f = ‹(u)›])

lemma Renaming-RUN : ‹Renaming (RUN A) f g = RUN (f ‘ A)›
proof (unfold RUN-restriction-fix-def , induct rule: parallel-restriction-fix-ind)

show ‹Renaming STOP f g = STOP› by simp
qed (auto simp add: Renaming-Mprefix intro!: mono-Mprefix-eq)

lemma Renaming-CHAOS : ‹Renaming (CHAOS A) f g = CHAOS (f ‘ A)›
proof (unfold CHAOS-restriction-fix-def , induct rule: parallel-restriction-fix-ind)

show ‹Renaming STOP f g = STOP› by simp
qed (auto simp add: Renaming-Mprefix Renaming-Ndet

intro!: mono-Mprefix-eq arg-cong2 [where f = ‹(u)›])

lemma Renaming-CHAOSSKIP S : ‹Renaming (CHAOSSKIP S A R) f g = CHAOSSKIP S

(f ‘ A) (g ‘ R)›
proof (unfold CHAOSSKIP S-restriction-fix-def , induct rule: parallel-restriction-fix-ind)

show ‹Renaming STOP f g = STOP› by simp
qed (auto simp add: Renaming-Mprefix Renaming-Ndet

intro!: mono-Mprefix-eq arg-cong2 [where f = ‹(u)›])

17.3 Data Independence

When working with the new interleaving P [[{}]]3 Q, we intuitively expect
it to be deadlock-free when both P and Q are. The purpose of this section
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is to prove it.

17.3.1 An interesting equivalence
lemma (in Syncptick-locale) deadlock-free-of-Syncptick-iff-DF-FD-DF-Syncptick-DF :

‹(∀P Q. deadlock-free P −→ deadlock-free Q −→ deadlock-free (P [[S ]]3 Q))
←→ DF UNIV vFD (DF UNIV [[S ]]3 DF UNIV )› (is ‹?lhs ←→ ?rhs›)

proof (rule iffI )
assume ?lhs
show ?rhs by (fold deadlock-free-def , rule ‹?lhs›[rule-format])

(simp-all add: deadlock-free-def )
next

assume ?rhs
show ?lhs unfolding deadlock-free-def

by (intro allI impI trans-FD[OF ‹?rhs›]) (rule mono-Syncptick-FD)
qed

17.3.2 STOP and SKIP synchronized with DF A

The two results below form a stronger (and generalized) version of r = s
=⇒ (DF A vFD DF A [[S ]] SKIP r) = (A ∩ S = {}).

context Syncptick-locale begin

lemma (in Syncptick-locale) DF-FD-DF-Syncptick-SKIPS-imp-disjoint :
‹A ∩ S = {}› if ‹DF A vFD DF A [[S ]]3 SKIPS R›

proof (rule ccontr)
assume ‹A ∩ S 6= {}›
then obtain a where ‹a ∈ A› and ‹a ∈ S› by blast
have ‹DF A [[S ]]3 SKIPS R vFD DF {a} [[S ]]3 SKIPS R›

by (intro mono-Syncptick-FD[OF - idem-FD]) (simp add: DF-subset ‹a ∈ A›)
also have ‹. . . = STOP›

by (subst DF-unfold)
(simp add: ‹a ∈ S› SKIPS-def Syncptick-distrib-GlobalNdet-left

write0-Syncptick-STOP write0-Syncptick-SKIP)
finally show False

by (metis that ‹a ∈ A› DF-Univ-freeness empty-iff non-deadlock-free-STOP
trans-FD)
qed

lemma disjoint-imp-DF-eq-DF-Syncptick-SKIPS :
‹DF A = DF A [[S ]]3 SKIPS R› if ‹A ∩ S = {}›

proof (subst DF-restriction-fix-def , induct rule: restriction-fix-ind)
show ‹X = DF A [[S ]]3 SKIPS R =⇒ ua∈A → X = DF A [[S ]]3 SKIPS R› for

X
by (subst DF-unfold)
(auto simp add: SKIPS-def Syncptick-distrib-GlobalNdet-left

Mndetprefix-Syncptick-SKIP Mndetprefix-Syncptick-STOP
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‹A ∩ S = {}› Mndetprefix-distrib-GlobalNdet)
qed simp-all

corollary DF-FD-DF-Syncptick-STOP-imp-disjoint :
‹DF A vFD DF A [[S ]]3 STOP =⇒ A ∩ S = {}›
and DF-FD-DF-Syncptick-SKIP-imp-disjoint :
‹DF A vFD DF A [[S ]]3 SKIP r =⇒ A ∩ S = {}›
and disjoint-imp-DF-eq-DF-Syncptick-STOP :
‹A ∩ S = {} =⇒ DF A = DF A [[S ]]3 STOP›
and disjoint-imp-DF-eq-DF-Syncptick-SKIP :
‹A ∩ S = {} =⇒ DF A = DF A [[S ]]3 SKIP r›
by (fact DF-FD-DF-Syncptick-SKIPS-imp-disjoint[where R = ‹{}›, simplified]

DF-FD-DF-Syncptick-SKIPS-imp-disjoint[where R = ‹{r}›, simplified]
disjoint-imp-DF-eq-DF-Syncptick-SKIPS [where R = ‹{}›, simplified]
disjoint-imp-DF-eq-DF-Syncptick-SKIPS [where R = ‹{r}›, simplified])+

end

corollary (in Syncptick-locale) DF-FD-SKIPS-Syncptick-DF-imp-disjoint :
‹DF A vFD SKIPS R [[S ]]3 DF A =⇒ A ∩ S = {}›
by (metis Syncptick-locale-sym.DF-FD-DF-Syncptick-SKIPS-imp-disjoint Syncptick-sym)

lemma (in Syncptick-locale) disjoint-imp-DF-eq-SKIPS-Syncptick-DF :
‹A ∩ S = {} =⇒ DF A = SKIPS R [[S ]]3 DF A›
by (metis Syncptick-locale-sym.disjoint-imp-DF-eq-DF-Syncptick-SKIPS Syncptick-sym)

corollary (in Syncptick-locale) DF-FD-STOP-Syncptick-DF-imp-disjoint :
‹DF A vFD STOP [[S ]]3 DF A =⇒ A ∩ S = {}›
and DF-FD-SKIP-Syncptick-DF-imp-disjoint :
‹DF A vFD SKIP r [[S ]]3 DF A =⇒ A ∩ S = {}›
and disjoint-imp-DF-eq-STOP-Syncptick-DF :
‹A ∩ S = {} =⇒ DF A = STOP [[S ]]3 DF A›
and disjoint-imp-DF-eq-SKIP-Syncptick-DF :
‹A ∩ S = {} =⇒ DF A = SKIP r [[S ]]3 DF A›
by (fact DF-FD-SKIPS-Syncptick-DF-imp-disjoint[where R = ‹{}›, simplified]

DF-FD-SKIPS-Syncptick-DF-imp-disjoint[where R = ‹{r}›, simplified]
disjoint-imp-DF-eq-SKIPS-Syncptick-DF [where R = ‹{}›, simplified]
disjoint-imp-DF-eq-SKIPS-Syncptick-DF [where R = ‹{r}›, simplified])+

17.3.3 Finally, deadlock-free (P ||| Q)

theorem (in Syncptick-locale) DF-F-DF-Syncptick-DF-weak : ‹DF (A ∪ B) vF

DF A [[S ]]3 DF B›
if nonempty: ‹A 6= {}› ‹B 6= {}›

and intersect-hyp: ‹B ∩ S = {} ∨ (∃ y. B ∩ S = {y} ∧ A ∩ S ⊆ {y})›
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proof −
have ‹[[(u, X) ∈ F (DF A); (v, Y ) ∈ F (DF B); t setinterleaves3(⊗3) ((u, v),

S)]]
=⇒ (t, super-ref-Syncptick (⊗3) X S Y ) ∈ F (DF (A ∪ B))› for v t u X Y

proof (induct t arbitrary: u v)
case Nil

from Nil.prems(3 ) have ‹u = []› ‹v = []› by (simp-all add: Nil-setinterleavesptick)
from Nil.prems(1 ) obtain a where ‹a ∈ A› ‹ev a /∈ X›

by (subst (asm) F-DF) (auto simp add: nonempty ‹u = []›)
moreover from Nil.prems(2 ) obtain b where ‹b ∈ B› ‹ev b /∈ Y ›

by (subst (asm) F-DF) (auto simp add: nonempty ‹v = []›)
ultimately show ?case

using intersect-hyp
by (subst F-DF , simp add: nonempty super-ref-Syncptick-def subset-iff )
(metis Int-iff empty-iff insert-iff )

next
case (Cons e t)
from Cons.prems(3 ) consider (mv-left) a u ′ where ‹a /∈ S› ‹e = ev a› ‹u =

ev a # u ′›
‹t setinterleaves3(⊗3) ((u ′, v), S)›
| (mv-right) b v ′ where ‹b /∈ S› ‹e = ev b› ‹v = ev b # v ′›

‹t setinterleaves3(⊗3) ((u, v ′), S)›
| (mv-both-ev) a u ′ v ′ where ‹a ∈ S› ‹e = ev a› ‹u = ev a # u ′› ‹v = ev a #

v ′›
‹t setinterleaves3(⊗3) ((u ′, v ′), S)›
| (mv-both-tick) r s r-s u ′ v ′ where ‹r ⊗3 s = Some r-s› ‹e = 3(r-s)›

‹u = 3(r) # u ′› ‹v = 3(s) # v ′› ‹t setinterleaves3(⊗3) ((u ′, v ′), S)›
by (cases e) (auto elim: Cons-ev-setinterleavesptickE Cons-tick-setinterleavesptickE)
thus ?case
proof cases

case mv-left
from Cons.prems(1 ) have ‹a ∈ A›

by (subst (asm) F-DF) (simp add: mv-left(3 ) split: if-split-asm)
from Cons.prems(1 )[unfolded mv-left(3 ), THEN Cons-F-DF ] have ‹(u ′, X)

∈ F (DF A)› .
from Cons.hyps[OF this Cons.prems(2 ) mv-left(4 )] show ?thesis

by (subst F-DF) (simp add: nonempty ‹e = ev a› ‹a ∈ A›)
next

case mv-right
from Cons.prems(2 ) have ‹b ∈ B›

by (subst (asm) F-DF) (simp add: mv-right(3 ) split: if-split-asm)
from Cons.prems(2 )[unfolded mv-right(3 ), THEN Cons-F-DF ] have ‹(v ′, Y )

∈ F (DF B)› .
from Cons.hyps[OF Cons.prems(1 ) this mv-right(4 )] show ?thesis

by (subst F-DF) (simp add: nonempty ‹e = ev b› ‹b ∈ B›)
next

case mv-both-ev
from Cons.prems(1 ) have ‹a ∈ A›
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by (subst (asm) F-DF) (simp add: mv-both-ev(3 ) split: if-split-asm)
from Cons.prems(1 )[unfolded mv-both-ev(3 ), THEN Cons-F-DF ]

Cons.prems(2 )[unfolded mv-both-ev(4 ), THEN Cons-F-DF ]
have ‹(u ′, X) ∈ F (DF A)› ‹(v ′, Y ) ∈ F (DF B)› .
from Cons.hyps[OF this mv-both-ev(5 )] show ?thesis

by (subst F-DF) (simp add: nonempty ‹e = ev a› ‹a ∈ A›)
next

case mv-both-tick
from Cons.prems(1 ) have False

by (subst (asm) F-DF) (simp add: mv-both-tick(3 ) split: if-split-asm)
thus ?thesis ..

qed
qed
thus ‹DF (A ∪ B) vF DF A [[S ]]3 DF B›

by (simp add: failure-refine-def F-Syncptick div-free-DF)
(use is-processT4 in blast)

qed

theorem (in Syncptick-locale) DF-F-DF-Syncptick-DF :
‹DF (A ∪ B) vF DF A [[S ]]3 DF B› if ‹A 6= {}› ‹B 6= {}›
and ‹A ∩ S = {} ∨ (∃ a. A ∩ S = {a} ∧ B ∩ S ⊆ {a}) ∨

B ∩ S = {} ∨ (∃ b. B ∩ S = {b} ∧ A ∩ S ⊆ {b})›
proof −

from that(3 ) consider ‹A ∩ S = {} ∨ (∃ a. A ∩ S = {a} ∧ B ∩ S ⊆ {a})›
| ‹B ∩ S = {} ∨ (∃ b. B ∩ S = {b} ∧ A ∩ S ⊆ {b})› by metis

thus ‹DF (A ∪ B) vF DF A [[S ]]3 DF B›
proof cases

from that(1 , 2 ) show ‹B ∩ S = {} ∨ (∃ b. B ∩ S = {b} ∧ A ∩ S ⊆ {b}) =⇒
DF (A ∪ B) vF DF A [[S ]]3 DF B›

by (rule DF-F-DF-Syncptick-DF-weak)
next

from that(1 , 2 ) show ‹A ∩ S = {} ∨ (∃ a. A ∩ S = {a} ∧ B ∩ S ⊆ {a}) =⇒
DF (A ∪ B) vF DF A [[S ]]3 DF B›

by (fold Syncptick-sym, subst Un-commute)
(simp add: Syncptick-locale-sym.DF-F-DF-Syncptick-DF-weak)

qed
qed

lemma (in Syncptick-locale) DF-FD-DF-Syncptick-DF :
‹DF (A ∪ B) vFD DF A [[S ]]3 DF B› if ‹A 6= {}› ‹B 6= {}›
and ‹A ∩ S = {} ∨ (∃ a. A ∩ S = {a} ∧ B ∩ S ⊆ {a}) ∨

B ∩ S = {} ∨ (∃ b. B ∩ S = {b} ∧ A ∩ S ⊆ {b})›
using DF-F-DF-Syncptick-DF [OF that]
by (simp add: refine-defs div-free-DF D-Syncptick)

theorem (in Syncptick-locale) DF-FD-DF-Syncptick-DF-iff :

376



‹DF (A ∪ B) vFD DF A [[S ]]3 DF B ←→
( if A = {} then B ∩ S = {}
else if B = {} then A ∩ S = {}
else A ∩ S = {} ∨ (∃ a. A ∩ S = {a} ∧ B ∩ S ⊆ {a}) ∨

B ∩ S = {} ∨ (∃ b. B ∩ S = {b} ∧ A ∩ S ⊆ {b}))›
(is ‹?FD-ref ←→ ( if A = {} then B ∩ S = {}

else if B = {} then A ∩ S = {}
else ?cases)›)

proof −
{ assume ‹A 6= {}› and ‹B 6= {}› and ?FD-ref and ‹¬ ?cases›

from ‹¬ ?cases›[simplified]
obtain a and b where ‹a ∈ A› ‹a ∈ S› ‹b ∈ B› ‹b ∈ S› ‹a 6= b› by blast
have ‹DF A [[S ]]3 DF B vFD (a → DF A) [[S ]]3 (b → DF B)›
by (intro mono-Syncptick-FD; subst DF-unfold, meson Mndetprefix-FD-write0

‹a ∈ A› ‹b ∈ B›)
also have ‹. . . = STOP› by (simp add: ‹a ∈ S› ‹a 6= b› ‹b ∈ S› write0-Syncptick-write0-subset)
finally have False

by (metis DF-Univ-freeness Un-empty ‹A 6= {}›
trans-FD[OF ‹?FD-ref ›] non-deadlock-free-STOP)

} note ∗ = this
show ?thesis
proof (cases ‹A = {}›; cases ‹B = {}›)

show ‹A = {} =⇒ B = {} =⇒ ?thesis› by simp
next

show ‹A = {} =⇒ B 6= {} =⇒ ?thesis›
by simp (metis DF-FD-STOP-Syncptick-DF-imp-disjoint

disjoint-imp-DF-eq-STOP-Syncptick-DF order-refl)
next

show ‹A 6= {} =⇒ B = {} =⇒ ?thesis›
by simp (metis DF-FD-DF-Syncptick-STOP-imp-disjoint

disjoint-imp-DF-eq-DF-Syncptick-STOP order-refl)
next

show ‹A 6= {} =⇒ B 6= {} =⇒ ?thesis›
by simp (metis ∗ DF-FD-DF-Syncptick-DF)

qed
qed

lemma DF-FD-DF-MultiSyncptick-DF :
‹[[
∧

l. l ∈ set L =⇒ X l 6= {}; ∃ s. (
⋃

l ∈ set L. X l) ∩ S ⊆ {s}]]
=⇒ DF (

⋃
l ∈ set L. X l) vFD [[S]]3 l ∈@ L. (DF (X l) :: ( ′a, ′r) processptick)›

proof (induct L rule: induct-list012 )
case 1 show ?case by simp

next
case (2 l0 ) show ?case by (simp add: Renaming-DF)

next
case (3 l0 l1 L)
have ‹(DF (

⋃
l ∈ set (l0 # l1 # L). X l) :: ( ′a, ′r list) processptick) =
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DF (X l0 ∪ (
⋃

l ∈ set (l1 # L). X l))› by simp
also have ‹. . . vFD DF (X l0 ) [[S ]]3Rlist DF (

⋃
l ∈ set (l1 # L). X l)›

by (rule SyncRlist.DF-FD-DF-Syncptick-DF-iff [THEN iffD2 ])
(use 3 .prems(2 ) in ‹simp add: 3 .prems(1 ) subset-singleton-iff

Int-Un-distrib2 Un-singleton-iff , safe, simp-all›)
also have ‹. . . vFD DF (X l0 ) [[S ]]3Rlist [[S]]3 l∈@(l1 # L). (DF (X l))›

by (intro SyncRlist.mono-Syncptick-FD[OF idem-FD] 3 .hyps(2 ))
(use 3 .prems in auto)

also have ‹. . . = [[S]]3 l∈@(l0 # l1 # L). DF (X l)› by simp
finally show ?case .

qed

lemma (in Syncptick-locale) ‹DF {a} = DF {a} [[S ]]3 STOP ←→ a /∈ S›
by (metis DF-FD-DF-Syncptick-STOP-imp-disjoint boolean-algebra.conj-zero-left

disjoint-imp-DF-eq-DF-Syncptick-STOP insert-disjoint(1 ) order-refl)

lemma (in Syncptick-locale) ‹DF {a} [[S ]]3 STOP = STOP ←→ a ∈ S›
by (metis DF-unfold Diff-eq-empty-iff Diff-triv Int-empty-left Int-insert-left

Mndetprefix-Syncptick-Mprefix-right Mndetprefix-Syncptick-STOP
Mndetprefix-is-STOP-iff Mprefix-empty empty-not-insert insert-Diff1 )

corollary (in Syncptick-locale) DF-FD-DF-Interptick-DF : ‹DF A vFD DF A |||3
DF A›

by (metis DF-FD-DF-Syncptick-DF-iff inf-bot-right sup.idem)

corollary (in Syncptick-locale) DF-UNIV-FD-DF-UNIV-Interptick-DF-UNIV :
‹DF UNIV vFD DF UNIV |||3 DF UNIV ›
by (fact DF-FD-DF-Interptick-DF)

corollary (in Syncptick-locale) Interptick-deadlock-free :
‹deadlock-free P =⇒ deadlock-free Q =⇒ deadlock-free (P |||3 Q)›
using DF-FD-DF-Interptick-DF deadlock-free-of-Syncptick-iff-DF-FD-DF-Syncptick-DF

by blast

theorem MultiInterptick-deadlock-free :
‹[[L 6= [];

∧
l. l ∈ set L =⇒ deadlock-free (P l)]] =⇒

deadlock-free (|||3 l ∈@ L. P l)›
proof (induct L rule: induct-list012 )

case 1
from 1 .prems(1 ) have False by simp
thus ?case ..

next
case (2 l0 )
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from 2 .prems(2 ) show ?case
by (simp add: deadlock-free-imp-deadlock-free-Renaming)

next
case (3 l0 l1 L)
have ‹|||3 l ∈@ (l0 # l1 # L). P l = P l0 |||3Rlist |||3 l ∈@ (l1 # L). P l›

by simp
moreover have ‹deadlock-free (P l0 )› by (simp add: 3 .prems(2 ))
moreover have ‹deadlock-free (|||3 l ∈@ (l1 # L). P l)›

by (rule 3 .hyps(2 )) (simp-all add: 3 .prems(2 ))
ultimately show ?case

by (simp add: SyncRlist.Interptick-deadlock-free)
qed
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Chapter 18

Conclusion

18.1 Main Entry Point

This is where the session HOL-CSP_PTick should be imported from.
declare finite-ticks-simps [simp]
declare finite-ticks-fun-simps [simp]

unbundle no option-type-syntax

18.2 Conclusion
18.2.1 Summary

In this session, we introduced generalized versions of the sequential compo-
sition and synchronization operators, thus completing the generalization of
HOL-CSP (and its extensions) to support parameterized termination. The
main motivation was to propagate return values across processes, so that
algebraic laws such as those involving SKIP continue to hold in a natural
way. While the sequential composition adapts relatively smoothly, the syn-
chronization product required a more substantial redesign: the interleaving
theory of the classical Sync operator could not be reused, and the failures
specification had to be carefully adjusted.
Overall, the results confirm that the parameterized setting integrates well
with the broader CSP framework. Most classical laws remain valid with
only minor modifications, and the new operators exhibit the algebraic and
operational properties one expects. The formalization is fairly extensive and
provides a solid foundation for further developments of CSP theories with
enriched termination behavior.
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18.2.2 Sequential Composition

The new version of the sequential composition is of type ( ′a, ′r) processptick
⇒ ( ′r ⇒ ( ′a, ′s) processptick) ⇒ ( ′a, ′s) processptick, so that the process
on the right-hand side is now parameterized with the value returned by the
process on the left-hand side. The main motivation for this generalization
was to have SKIP as neutral element. This is now the case.

P ;3 SKIP = P SKIP r ;3 Q = Q r

Additionally, with the following associativity property :

P ;3 (λr . Q r ;3 R) = P ;3 Q ;3 R

we can conclude that this generalized sequential composition fulfills the
monad laws.
Unsurprisingly, the correspondence with classical version is very intuitive.

P ;3 (λr . Q) = P ; Q

The expected step law has also been established.

�a∈A → P a ;3 Q = �a∈A → (P a ;3 Q)

Additionally, in the same way as described in [4], operational laws have been
derived.

P α τ P ′

P ;3 Q β τ P ′ ;3 Q
a α P P ′

a ;3 Q β P P ′ ;3 Q
r α 3P P ′ Q P β τ Q ′

r ;3 Q β τ Q ′

The continuity has only be obtained under a kind of finiteness assumption,
but non-destructiveness holds in general.
Finally, an architectural version is defined. It satisfies the following property.

SEQ3 l ∈@ (L1 @ L2 ). P l = (λr . (SEQ3 l ∈@ L1 . P l) r ;3 SEQ3 l
∈@ L2 . P l)
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18.2.3 Synchronization Product

The main motivation for generalizing the synchronization product was to
have a satisfying handling of the synchronization of two terminations. In-
deed, with the Sync operator inherited from HOL-CSP, the returned values
were lost (most of the time).

SKIP r [[A]] SKIP s = (if r = s then SKIP r else STOP)

With the new definition, this is not the case anymore.

SKIP r [[A]]3 SKIP s = (case r ⊗3 s of None ⇒ STOP | Some r-s ⇒ SKIP r-s)

This law is directly extracted from the core of the construction, which is
done in a very abstract way through a locale specification. The operator is
then declined in several variations, leading to the following rules.

SKIP r [[A]]3P air SKIP s = SKIP (r , s)
SKIP r [[A]]3P airlist SKIP s = SKIP [r , s]
SKIP r [[A]]3Rlist SKIP s = SKIP (r · s)

SKIP r [[A]]3Llist SKIP s = SKIP (r @ [s])
SKIP r n[[A]]3ListslenL SKIP s = (if |r | = n then SKIP (r @ s) else

STOP)

SKIP r n[[A]]3ListslenR SKIP s = (if |s| = n then SKIP (r @ s) else
STOP)

SKIP r n[[A]]3m SKIP s = (if |r | = n ∧ |s| = m then SKIP (r @ s) else
STOP)

SKIP r [[A]]3Classic SKIP s = (if r = s then SKIP r else STOP)

Moreover, the last declension is proved to be equal to the old version, en-
suring that this work is actually a generalization.

P [[A]]3Classic Q = P [[A]] Q

We also established commutativity and associativity, modulo renaming the
ticks. The underlying abstract setup is quite obscure, so we will only display
here the pair versions.

RenamingTick (P [[A]]3P air Q) prod.swap = Q [[A]]3P air P
P [[A]]3P air (Q [[A]]3P air R) =

RenamingTick (P [[A]]3P air Q [[A]]3P air R) (λ((r , s), t). (r , s, t))

Again, the expected step law has been established.
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�a∈A → P a ;3 Q = �a∈A → (P a ;3 Q)

In this abstract setup, the operational laws have also been derived.

P lhs τ P ′

P [[A]]3 Q ptick τ P ′ [[A]]3 Q
Q rhs τ Q ′

A [[P]]3 Q ptick τ A [[P]]3 Q ′

a /∈ A P lhs a P ′

P [[A]]3 Q ptick a P ′ [[A]]3 Q
a /∈ A Q rhs a Q ′

P [[A]]3 Q ptick a P [[A]]3 Q ′

a ∈ A P lhs a P ′ Q rhs a Q ′

P [[A]]3 Q ptick a P ′ [[A]]3 Q ′

P lhs 3r P ′

P [[A]]3 Q ptick τ SKIP r [[A]]3 Q
Q rhs 3s Q ′

P [[A]]3 Q ptick τ P [[A]]3 SKIP s
r ⊗3 s = Some r-s

SKIP r [[A]]3 SKIP s ptick 3r-s Ωptick (SKIP r-s) r-s

Continuity and non-destructiveness hold in general, and an architectural
version is defined. It satisfies the following property.

L1 6= [] L2 6= []

[[S]]3 l ∈@ (L1 @ L2 ). P l = [[S]]3 l ∈@ L1 . P l |L1 |[[S ]]3|L2 | [[S]]3 l ∈@ L2 . P l

It is defined on a list (while its counterpart MultiSync based on the Sync
operator is defined on a multiset) because the order of appearance of the
ticks matters. However, as long as we keep track of the positions, we can
permute the list. This is summarized by the following theorem.

f permutes {..<|L|}
[[S]]3 l ∈@ permute-list f L. P l = RenamingTick ([[S]]3 l ∈@ L. P l) (permute-list f )
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