HOL-CSP_ PTick
Parameterized Termination for Sequential
Composition and Synchronization Product

Benoit Ballenghien

February 10, 2026

Abstract

Recently, parameterized termination has been introduced in HOL-CSP, allow-
ing the termination event tick to carry a result value, in a way analogous to
the return of a state monad. This conservative extension of the CSP the-
ory required the generalization of several denotational definitions and the
adaptation of numerous proofs. Since Isabelle2025, this work has been com-
pleted for the HOL-CSP, HOL-CSPM, and HOL-CSP_OpSem sessions. However,
for two operators—namely sequential composition and the synchronization
product—the most direct generalizations turn out to be conceptually un-
satisfactory, in particular with respect to their interaction with SKIP. To
address this issue, we introduce in this entry generalized versions of these
operators that fully exploit the expressive power of parameterized termina-
tion; in particular, the resulting notion of sequential composition satisfies the
monad laws. Building on these definitions, we establish a range of algebraic
and operational laws, as well as fundamental properties such as continuity
and non-destructiveness.

Contents

Introduction
1.1 Motivations
1.2 The Global Architecture of HOL-CSP_PTick

Finite Ticks Predicate

2.1 Definitions
2.2 Properties
2.2.1 Constant Processes
2.2.2 Other properties,
23 Laws e e
231 Lawsof F (P)
232 Lawsof F = (f)

Generalization of the Sequential Composition
3.1 Definition oo

3.1.1 Preliminaries
3.1.2 Formal Definition
3.2 Projections o

Generalization of the Synchronization Product

4.1 Trace Interleavingo,
4.1.1 DMotivation oL
4.1.2 Definitiono
4.1.3 First Properties.
414 Lengths L o
4.1.5 Trace Prefix Interleaving
4.1.6 Hiding Events.

4.2 Synchronization Producto
4.2.1 Definitiono
4.2.2 Projections oo
4.2.3 First Properties L.

11
11
12

15
15
16
17
17
19
19
26

29
29
29
31
36

5 Some Work on Renaming 97

5.1 Tick Swap Operator 97
5.1.1 Preliminaries 0. 97
5.1.2 The Operator, 106

5.2 Splitting the Renaming Operator 115
5.2.1 Renaming only Events 115
5.2.2 Renaming only Ticks 116
5.2.3 Propertieso 118

5.3 Renaming and Generalized Synchronization Product 125

6 Commutativity and Associativity of Synchronization 133

6.1 Commutativity L 133
6.1.1 Motivation 133
6.1.2 Formalization 133
6.1.3 First Properties. 134
6.1.4 Commutativity 135

6.2 Associativity 137
6.2.1 Motivation 137
6.2.2 Formalization 137
6.2.3 First Properties. oL 138
6.2.4 Associativity for the Traces 138
6.2.5 Associativity 145

7 First Laws 153

7.1 Behaviour with Constant Processes 153
711 TheLawsof L 153
7.1.2 TheLaws of STOP 153
7.1.3 The Lawsof SKIP 158

7.2 Associativity of Sequential Composition 165

7.3 Distributivity of Non-Determinism 170
7.3.1 Sequential Composition 170
7.3.2 Synchronization Product 171

8 Communications 175

81 StepLaws 175
8.1.1 Sequential Composition 175
8.1.2 Synchronization Product. 176

8.2 Extended step Laws L. 186
8.2.1 Sequential Composition 186
8.2.2 Synchronization Product 186

8.3 Read and Write Laws 199
8.3.1 Sequential Composition 199
8.3.2 Synchronization Product 199

6

9 Operational Semantics Laws 225

9.1

9.2

9.3

Behaviour of initials 225
9.1.1 TickSwap 225
9.1.2 Sequential Composition 225
9.1.3 Synchronization Product 226
Laws of After 228
9.2.1 Sequential Composition 228
9.2.2 Synchronization Product. 233
Small Steps Transitions 242
9.3.1 Extension of the After Operator 242
9.3.2 Sequential Composition 242
9.3.3 Generic Operational Semantics as Locales 244

10 Declensions of the Generalized Synchronization Product 249

10.1 Interpretationso 249
10.1.1 Classical Version 249
10.1.2 Product Type 249
10.1.3 List Type o o o 250

10.2 Associativities 252
10.2.1 Classical Version 252
10.2.2 Product Type 252
10.2.3 List Type o oo 253

10.3 Properties 255
10.3.1 Actual Generalization 255
10.3.2 Other Properties 256

10.4 Ticks Length and Conversions 256
10.4.1 Ticks Length 256
10.4.2 Conversions v v i e e 264

105 First Laws 267

10.6 Operational Laws 270
10.6.1 Classical Version 270
10.6.2 Product Typeo . 270
10.6.3 List Type 271

11 Architectural Versions 275

11.1 Sequential Composition, 275
11.1.1 Definition, 275
11.1.2 First Properties. 275
11.1.3 Behaviour with binary version 276
11.1.4 Other Properties 276
11.1.5 Behaviour with injectivity 277

11.2 Synchronization Product 277
11.2.1 Definition 277
11.2.2 First properties, 278

11.2.3 Properties o 279

11.2.4 Behaviour with binary version 279

11.2.5 Behaviour with injectivity 280

11.2.6 Permuting the Sequence 280

12 Events and Ticks 301
12.1 Preliminaries L 301
12.2 Sequential Composition 302
12.2.1 Events oo 302

12.2.2 Ticks o oL 304

12.3 Synchronization Product 304
12.3.1 Events Lo 304

12.3.2 Ticks 306

12.4 Architectural Operators 306
12.4.1 Events oo 306

12.4.2 Ticks L 307

13 Continuity Rules 309
13.1 Sequential Composition 309
13.1.1 Monotonicityo 309

13.1.2 Preliminaries 311

13.1.3 Continuity 0oL 315

13.2 Synchronization Product 317
13.2.1 Monotonicity 317

13.2.2 Preliminaries 319

13.2.3 Continuityo 320

14 Monotonicity Properties 323
14.0.1 Sequential Composition 323

14.0.2 Multiple Sequential Composition 324

14.0.3 Synchronization Product 324

14.0.4 Multiple Synchronization Product 325

15 Non Destructiveness Rules 327
15.1 Synchronization Product 327
15.1.1 Refinement 327

15.1.2 Non Destructiveness 332

15.1.3 Setup 333

16 Other Laws 335
16.1 Laws of Renaming 335
16.1.1 Renaming and Sequential Composition 335

16.1.2 Renaming and Synchronization Product 342

16.2 Laws of Hiding 349

16.3 Hiding and Sequential Composition 349

16.4 Hiding and Synchronization Product 353
16.5 Other Laws of Synchronization Product 365
16.5.1 Synchronization Set can be restricted 365
16.5.2 Some Refinements 367
17 Deadlock Results 369
17.1 First Results 369
17.1.1 Non Terminating 369
17.1.2 Deadlock Free. 369
17.2 Renaming and reference Processes 371
17.2.1 Alternative Definitions with restriction fixed-point Op-
erator 371
17.2.2 Stronger Results 372
17.3 Data Independence oo 372
17.3.1 An interesting equivalence oL 373
17.3.2 STOP and SKIP synchronized with DFF A 373
17.3.3 Finally, deadlock-free (P ||| Q) 374
18 Conclusion 381
18.1 Main Entry Point oo 381
18.2 Conclusion L 381
18.2.1 Summary 381
18.2.2 Sequential Composition 382
18.2.3 Synchronization Product 383

10

Chapter 1

Introduction

1.1 Motivations

Recently, the question arose whether HOL-CSP could accommodate a param-
eterized notion of termination.! The idea is very simple: replace at the very
beginning of the formalization

datatype ‘a event = ev a | tick («vV»)
(isomorphic to option type) by
datatype (‘a, ') eventpiick = ev 'a | tick 'r («/(-'))

(isomorphic to sum type), so that the explicit termination event carries a
return value.

Certain definitions must therefore be adapted (mainly by replacing v with
range tick). For example, a trace t was said to be tick-free if v ¢ set ¢t. In
this new setup, such a trace instead satisfies range tick N set t = {}. Sur-
prisingly, once these few intuitive adjustments have been made, most of the
existing Isar proofs remain valid with little to no modification. This gen-
eralization has already been carried out, and the AFP entries for HOL-CSP,
HOL-CSPM, and HOL-CSP_OpSem have all been updated accordingly [2, 1, 3].
More recently, HOL-CSP_RS [5] has been added as well. However, two oper-
ators do not behave as satisfactorily as one might hope.

Firstly, sequential composition no longer admits SKIP as a neutral element.
In the classical theory, we have Skip ; P = P and P ; Skip = P. But in
the generalized setting, SKIP carries a value and if the first law can still be
adapted and proven: SKIP r ; P = P, the second one only holds when the
return type is unit (which amounts to ignoring the generalization). From a

'This idea was sparked by an innocent remark from Simon Foster, which we later
explored in depth.

11

broader perspective, one would in fact like the right-hand process to depend
on the return value of the left-hand process, which is not the case in the
current framework.

Secondly, the synchronization product does not properly support synchro-
nized termination. Classically, we have Skip [S] Skip = Skip, adapted in
the last version of HOL-CSP as SKIP r [A] SKIP s = (if r = s then SKIP r
else STOP). When restricted to ‘a process (which is (‘a, unit) processpticr)
the behavior is fine, but with general return values deadlocks may occur.
One would rather expect a law like SKIP r [A] SKIP s = SKIP (r, s), yet
defining such an operator raises non-trivial technical challenges.

In this entry, we propose generalized definitions for sequential composition
and synchronization product that not only respect the invariant is-process
but also fulfill the expectations outlined above. Beyond this substantial
work, we establish algebraic and operational properties of these operators,
as well as the lemmas required for fixed-point reasoning. In particular, it
can be pointed out that the resulting sequential composition operator fulfills
the laws of a monad.

1.2 The Global Architecture of HOL-CSP_PTick

Our formalization attempts to take full advantage of parallelization, explain-
ing the shape of the session graph shown in Figure 1.1.

12

[Tools]

[HOL-Library]

[HOL-Combinatorics] | [THOLCF]] [[Restriction_spaces] |

[HOL-Eisbach] [(Restriction_Spaces-HOLCF] |

[HOL-CSP]

CSP_PTick_Introduction | [Sequential_Composition_¢] [synd _Product_ | TiroLcsem)

Non_Deterministic_CSP_PTick_Distributivity | [Step_CSP_PTick_Laws | [CSP_PTick Renaming | [Finite_Ticks | [[HOL-CSP_Opsem]

Basic_CSP_PTick Laws | [Synchronization_Product (] [synd _Product_ [HoL-csp rs)

Step_CSP_PTick_Laws_Extended | [(After_csP_pTick_taws

Read_Write_CSP_PTick_Laws. ‘ ‘ Operational_Semantics_CSP_PTick_Laws

Sy fon_Product_{

Multi_Sequential_Composition ¢] [Multisynd fon_Product_(

Sequential_Composition_Generalized Cont | [Events_Ticks_C5P_PTick_Laws | [Synchronization_Product_Generalized_Cont

CSP_PTick_Monotonicities

CSP_PTick_Deadlock Results | [CsP_PTick Laws | [Sequential_Composition_Generalized_Non_Destructive | [Synchronization_Product_Generalized_Non_Destructive

HOL-CSP_PTick

CSP_PTick_Conclusion

Figure 1.1: The overall architecture

13

14

Chapter 2

Finite Ticks Predicate

2.1 Definitions

Due to our generalization, the generalized sequential composition will require
this additional assumption for continuity. Intuitively, having an infinite
number of possible terminations after a given trace will lead to a infinite
branching preventing continuity, to a certain extent like what happens with
global non deterministic choice.

definition finite-all-ticks :: <('a, 'r) processptick = bool>
where (finite-all-ticks P =Vt € T P. finite {r. t Q [/(r)] € T P}

lemma finite-all-ticksl : «(A\t. t € T P = finite {r. t Q [/ (r)] € T P}) =
finite-all-ticks P>
by (simp add: finite-all-ticks-def)

lemma finite-all-ticksD : «finite-all-ticks P = finite {r. t Q [/ (r)] € T P}
by (simp add: finite-all-ticks-def)
(meson is-process T3- TR-append not-finite-existsD)

Actually, when a tick only appears in divergences, it will not matter for
continuity. We therefore introduce the modified predicate, which is much
more useful.
definition finite-ticks :: «("a, 'r) processpiicr = bool> (<F,'(-")»)

where (F,(P) =Vt e T P. finite {r. t Q [/(r)] e T P —-D P}

lemma finite-ticksl :
(Nt.te T P=t¢DP = finite {r. t Q [/(r)] € T P}) = F,(P)
by (simp add: finite-ticks-def)
(metis (mono-tags, lifting) Collect-cong append-T-imp-tickFree front-tickFree-Cons-iff
is-processT7 is-processT9 not-Cons-self2 not-finite-existsD)

lemma finite-ticksD :
F, (P) =t ¢ D P = finite {r. t Q[/(r)] € T P}h
by (simp add: finite-ticks-def)

15

(metis (lifting) Collect-cong is-processT3-TR-append
is-processT9 not-finite-existsD)

lemma finite-all-ticks-imp-finite-ticks [simp)| : «finite-all-ticks P = F /(P)»
by (simp add: finite-all-ticksD finite-ticksI)

lemma finite-all-ticks-is-finite-ticks-or-finite-UNIV :
finite-all-ticks P <— (if D P = {} then F /(P) else finite (UNIV :: 'r set))>
— This is justifying why finite-all-ticks is not really interesting.
for P :: «('a, 'r) processpiick>
proof (rule iffI)
show (if D P = {} then F /(P) else finite (UNIV :: 'r set))
if «<finite-all-ticks P>
proof (split if-split, intro conjl impl)
from «finite-all-ticks P> show <D P = {} = F/(P)»
by (simp add: finite-ticksI finite-all-ticksD)
next
assume D P # {}h
with nonempty-divE obtain t where <tF' t» <t € D P» by blast
hence ¢t @ [/(r)] € D P» for r by (simp add: is-processT7)
with «finite-all-ticks P> show «finite (UNIV :: 'r set)»
by (metis (mono-tags, lifting) Collect-cong D-T UNIV-I <t € D P»
finite-all-ticks-def mem-Collect-eq top-set-def)

qed
next
show «if D P = {} then F /(P) else finite (UNIV :: 'r set) = finite-all-ticks
P
by (simp add: finite-ticksD finite-all-ticks-def split: if-split-asm)
(meson rev-finite-subset subset-UNIV)
qed

We also introduce the concept that a function can preserve finite-ticks. Un-
fortunately, we will not succeed in proving continuity under this condition
for generalized sequential composition.

definition finite-ticks-fun :: <(('a, 'r) processpiick = ('b, 's) processpiick) = bool>
(dFy/="(-"))
where (F,_ (f) =VP.F,(P) — F/(f P)

lemma finite-ticks-funl: «(\P. ¥, (P) = F,/(f P)) = F /~(f)
by (simp add: finite-ticks-fun-def)

lemma finite-ticks-funD: <F - (f) = F ,(P) = F /(f P)
by (simp add: finite-ticks-fun-def)

2.2 Properties

named-theorems finite-ticks-simps

16

named-theorems finite-ticks-fun-simps

2.2.1 Constant Processes

lemma finite-ticks-BOT |finite-ticks-simps| : <F /(L)
by (simp add: finite-ticks-def BOT-projs)

lemma finite-ticks-fun-BOT |finite-ticks-fun-simps] : <F s (L)
by (simp add: finite-ticks-fun-def finite-ticks-BOT)

lemma finite-ticks-SKIP [finite-ticks-simps] : <F ,(SKIP r)»
by (simp add: finite-ticks-def SKIP-projs)

lemma finite-ticks-STOP |finite-ticks-simps] : <F ,(STOP)»
by (simp add: finite-ticks-def T-STOP)

lemma finite-ticks-SKIPS-iff [finite-ticks-simps| : <F ,(SKIPS R) <— finite R»
by (auto simp add: finite-ticks-def SKIPS-projs)

2.2.2 Other properties

lemma finite-strict-ticks-of-imp-finite-ticks [finite-ticks-simps]
(finite /'s(P) = F /(P)»
by (metis (mono-tags, lifting) finite-subset finite-ticksl
is-processT9 mem-Collect-eq strict-ticks-of-memlI subsetl)

lemma finite-strict-ticks-of-image-imp-finite-ticks-fun [finite-ticks-fun-simps] :
(Az. finite /s(f z)) = F = (f)
by (simp add: finite-strict-ticks-of-imp-finite-ticks finite-ticks-funl)

lemma anti-mono-finite-ticks [finite-ticks-simps] :
dF,(P)y if <P C @ F/(Q)
proof (rule finite-ticksI)
fix t assume <t € T Py <t ¢ D P»
have {r. t @ [V(r)] e T P} ={r.t Q@ [V(r)] € T Qp
by (meson <t ¢ D P is-processT9 le-approz2T <P C Q)
also have «<finite .. .»
proof (rule <F,(Q)[THEN finite-ticksD])
from <t ¢ D P» le-approzl <P T @» show <t ¢ D (Q)> by blast
qed
finally show «finite {r. t @ [/(r)] € T P} .
qed

lemma anti-mono-finite-ticks-fun [finite-ticks-fun-simps| :

fEg=F,=(9) = Fy=(f)
by (metis anti-mono-finite-ticks finite-ticks-fun-def fun-below-iff)

lemma finite-ticks-LUB-iff [finite-ticks-fun-simps] :

17

F (i Yi)— (Vi.F (Y i) if <chain Y
proof safe
from anti-mono-finite-ticks is-ub-thelub <chain Y
show F,(| |i. Y i) = F,(Y ¢)» for ¢ by blast
next
show (F /(|4 Y o) if «Vi. F (Y i)
proof (rule finite-ticksI)
fix t assume <t € T (|]i. Vi) <t ¢ D (|]i. Vi)
from <t ¢ D (| |i. Y i) obtain j where <t ¢ D (Y j)»
by (metis D-LUB-2 <chain Y limproc-is-thelub)
have ({r.tQ [V(r)] eT (Ui Y} ={r.tQ@[V(r)] eT (Yjp
by (meson <chain Y» <t ¢ D (Y j)» is-processT9 is-ub-thelub le-approx2T)
also have «finite .. .»
by (fact <Vi. F,(Y i))[THEN spec, THEN finite-ticksD, OF <t ¢ D (Y j)])
finally show «finite {r. t @ [V/(r)] € T (|]i. Y i)} .
qed
ged

lemma adm-finite-ticks [finite-ticks-simps] : <adm (AP.F ,(P))
by (rule admlI) (simp add: finite-ticks-LUB-iff)

lemma finite-ticks-fix [finite-ticks-simps] :

A (pn X. fX)if <cont f> and (F,_(f)
proof (induct rule: fiz-ind)

show <adm finite-ticks) by (fact adm-finite-ticks)
next

show (F,(L)» by (fact finite-ticks-BOT)
next

show (F,((A X. f X)-X)» if <F,(X)» for X

by (simp add: <cont f») (fact finite-ticks-funD[OF <F /- (f)> <F/(X)])

qed

lemma adm-finite-ticks-fun [finite-ticks-fun-simps] : <adm (Af. F /= (f))
by (simp add: admlI ch2ch-fun finite-ticks-L UB-iff finite-ticks-fun-def lub-fun)

lemma finite-ticks-fun-fix [finite-ticks-fun-simps] :

Fyo(p X. fX)if cont fr and «A\z. F, - (2) = F /- (f z)
proof (induct f rule: cont-fiz-ind)

from <cont f> show <cont f» .

next

from adm-finite-ticks-fun show <adm (Af. F, = (f)) .
next

from finite-ticks-fun-BOT show <F,_ (L)) .
next

from <A\y. F/-(y) = F/ = (fy)> show (F,_(z) = F - (f z)» for z .
qed

18

lemma finite-ticks-fun-id [finite-ticks-fun-simps) :
F = (id)> <F o (Az. z)
by (simp-all add: finite-ticks-funl)

lemma finite-ticks-fun-const-iff [finite-ticks-fun-simps] :
(]F/=>()\l’. P) —]F/(P))
by (meson finite-ticks-STOP finite-ticks-fun-def)

lemma finite-ticks-fun-comp [finite-ticks-fun-simps| :

Fyo(g) = Fy=(f) = Fyo(Az. g (f2))
by (simp add: finite-ticks-fun-def)

2.3 Laws

2.3.1 Laws of F/(P)

lemma finite-ticks-Ndet [finite-ticks-simps] :
dF (P Q) if <F,(P) F, (Q)
proof (rule finite-ticksI)
fix t assume <t € T (P11 Q) <t ¢ D (P11 Q)
from <t € T (PN Q)
have <t e TPALeT QVteTPANr.tQV(r)¢T Q) VvV (Vr.taQ
V() e¢TP)ANteT
unfolding T-Ndet by (metis Un-iff is-processT3-TR-append)
with <F/(P)» <F/(Q)» <t ¢ D (P 1 Q)> show «finite {r. t @ [/ (r)] € T (P I
Qb
by (auto simp add: Ndet-projs dest: finite-ticksD)
qed

lemma finite-ticks-Det |finite-ticks-simps| :

@F, (P O Q) if <F,(P) F,(Q)
proof —

have F, (P O Q) = F, (P 1N Q) by (simp add: finite-ticks-def Det-projs
Ndet-projs)

with (F,(P)» (F,(Q)» show (F,(P O Q) by (simp add: finite-ticks-Ndet)
qed

lemma finite-ticks-Sliding [finite-ticks-simps] :
(]F/(P) -]F/(Q) -]F/(P > Q))
by (simp add: Sliding-def finite-ticks-Ndet finite-ticks-Det)

lemma finite-ticks-Interrupt [finite-ticks-simps] :

A, (P A Q) if F, (P) F, (Q)
proof (cases «Q = 1))

19

show «Q = L = F /(P A Q)» by (simp add: finite-ticks-BOT)
next
show (F,(P A Q) if «Q # L»
proof (rule finite-ticksI)
fix t assume <t € T (P A Q) <t ¢ D (P A Q)
have ({r. t @ [V(r)] e T (P A Q)} C
{r.t@[/(r)] €T P} U
(Uu € {u. Jv.t =u@ov AueT P} {r. drop (length u) t Q [/ (r)] €
T Q)
by (simp add: subset-iff T-Interrupt)
(metis Prefiz-Order.prefiz-length-le Prefiz-Order.same-prefiz-nil
append-eq-append-conv-if append-eq-first-pref-spec butlast-append but-
last-snoc)
moreover have <finite ...
proof (rule finite-Unl)
from D-Interrupt <t ¢ D (P A Q)» have <t ¢ D P) by blast
thus (finite {r. t Q [/ (r)] € T P}» by (simp add: finite-ticksD <F /(P)>)
next
show <finite (Jue{u. Jv. t = u @ v A u € T P}. {r. drop (length u) t Q
V() eT Qb
proof (rule finite-UN-I)
show <finite {u. Jv. t =u Qv A u €T P} by (prove-finite-subset-of-prefizes
t)
next
fix v assume (v € {u. Jv. t=u Qv Au€eT Ph
then obtain v where <u € T P) <t = u Q v» by blast
with <t € T (P A Q) append-T-imp-tickFree consider <tF u) | <v = [
by blast
thus <finite {r. drop (length uv) t Q [V (r)] € T Q}
proof cases
assume <tF' u»
with «u € T Py <t ¢ D (P A Q) have <v ¢ D ()
by (simp add: D-Interrupt <t = u @ v»)
thus «tF v = finite {r. drop (length u) t @ [V (r)] € T Q}
by (simp add: <t = u Q v finite-ticksD <F,(Q)>)
next
from BOT-iff-Nil-D <Q # 1) have <[] ¢ D Q> by blast
with «F/(Q) finite-ticksD have «finite {r. [V (r)] € T @Q}> by force
thus v = [| = finite {r. drop (length u) t @ [/ (r)] € T Q}p
by (simp add: <t = u Q v)
qed
qed
qed
ultimately show «finite {r. t @ [V (r)] € T (P A @)} by (fact finite-subset)
qed
qed

lemma finite-ticks-Throw [finite-ticks-simps] :

20

dF, (P © acA. Q a) if F, (P) <Na. a € A = F,/(Q a)
proof (rule finite-ticksI)
fix t assume ¢t € T (P © a€A. Qa) <t ¢ D (P © acA. Q a)
then consider <t € T Py «settNev ‘A= {}p
| t1 a t2 where <t =11 Q eva # t2> <t1 Qeval € T P»
settl Nev‘A={}p € A «2eT (Qa)
unfolding Throw-projs by blast
thus «finite {r. t Q@ [/ (r)] € T (P © a€A. Q a)p
proof cases
assume <t € T PrsettNev ‘A= {}p
hence ({r. t Q@ [V (r)] € T (PO a€A. Qa)} C{r.tQ [V(r) €T Pp
by (auto simp add: T-Throw D-T is-processT7 disjoint-iff image-iff)
(metis (no-types) butlast.simps(2) butlast-append butlast-snoc in-set-conv-decomp)
moreover have «finite ...
proof (rule <F,(P))[THEN finite-ticksD])
from «sett Nev ‘A ={p
have <t € D P = (if tF t then t else butlast t) € D (P © a€A. Q a))
by (cases t rule: rev-cases, simp-all add: D-Throw)
(metis D-imp-front-tickFree <set t N ev * A = {}» append.right-neutral
butlast-snoc
div-butlast-when-non-tickFree-iff front-tickFree-Nil front-tickFree-nonempty-append-imp
not-Cons-self2 not-is-ev tickFree-Cons-iff tickFree-append-iff)
with «t ¢ D (P © acA. Q a)» D-imp-front-tickFree div-butlast-when-non-tickFree-iff
show «t ¢ D P> by blast
qed
ultimately show <finite {r. t Q [/ (r)] € T (P © acA. Q a)}> by (fact
finite-subset)
next
fix t1 a t2 assume * : <t = t1 Q ev a # t2)> <t1 Q [eva] € T P>
settl Nev‘A={ph e A 2eT (Qa)
from <t ¢ D (P © acA. Q a)
have <t ¢ {t1 Q ¢2 |t1t2.t1 e D P ANtFtl Nsettl Nev ‘A= {} N ftF t2}
by (simp add: D-Throw Unll)

with x have «({r. t Q [V(r)] € T (PO acd. Qa)} ={r.t2Q [vV(r)] € T (Q
a)}»
by (simp add: T-Throw, safe)
(metis Cons-eq-appendl append-assoc butlast-snoc front-tickFree-charn
non-tickFree-tick tickFree-Nil tickFree-append-iff tickFree-imp-front-tickFree,
solves «simp add: Throw-T-third-clause-breakery, metis)
also have «finite ...»
proof (rule <Aa. a € A = F,(Q a)»[THEN finite-ticksD, OF <a € A»])
from <t ¢ D (P © acA. Qa) <tl1 Qleval €T Py«settl Nev‘A={p
show «t2 ¢ D (Q a)» by (auto simp add: D-Throw <t = tI Q ev a # t2) <a
€ A)
qed
finally show <finite {r. t Q [/ (r)] € T (P © acA. Q a)}> .
qed
qed

21

lemma finite-ticks-Renaming [finite-ticks-simps] :
F /(Renaming P f g) if <finitary f> «finitary ¢» <F /(P)>
proof (rule finite-ticksI)
fix ¢t assume <t ¢ D (Renaming P f g)»
hence «{s. t @ [/ (s)] € T (Renaming P f g)} C
(Uue{u. t = map (map-eventpick fg) u A
€T P})
by (auto simp add: subset-iff Renaming-projs append-eq-map-conv tick-eq-map-eventy;c,-iff)
(use is-processT3-TR-append in blast,
metis append-Nil butlast-append eventy;ck.disc(2) front-tickFree-iff-tickFree-butlast
map-eventy,;r-tickFree snoc-eg-iff-butlast tickFree-butlast)
moreover have «finite ...
proof (rule finite-UN-I)
have <finitary (map-eventypiick f g)» by (simp add: Cont-RenH2 «finitary f»
Sfinitary g»)
have ({u. t = map (map-eventpiick fg) u AN u € T P} C {u. t = map
(map-eventpiick fg) ub» by blast
moreover from Cont-RenHj «finitary (map-eventyiicr f g)> have (finite ...
by blast
ultimately show «finite {u. t = map (map-eventyiicr f9) u AN u €T P} by
(fact finite-subset)
next
fix u assume <u € {u. t = map (map-eventpiicr fg) u AN u €T Ph
hence «t = map (map-eventpiick fg) w <u € T P> by simp-all
with «t ¢ D (Renaming P f g)» have <u ¢ D P»

by (simp add: D-Renaming)

(metis (no-types, opaque-lifting) D-imp-front-tickFree append-Nil append-Nil2
div-butlast-when-non-tickFree-iff front-tickFree-charn map-butlast
map-eventy;cr-tickFree snoc-eq-iff-butlast tickFree-Nil)

thus <finite {gr |[r. v Q [V (r)] € T Ph
by (simp add: finite-ticksD <F ,(P)>)
qed
ultimately show «finite {r. t @ [/(r)] € T (Renaming P f g)}> by (fact fi-
nite-subset)
qed

weT Pt {gr|r. uv@[V(r)]

lemma finite-ticks-Seq [finite-ticks-simps| :
A, (P; Q) if F, (Q)
proof (cases «(Q = 1))
from not-finite-existsD show «Q = L = F /(P ; Q)
by (auto simp add: finite-ticks-def Seq-projs BOT-projs)
next
show (F,(P; Q) if «Q # L»
proof (rule finite-ticksI)
fix ¢t assume <t ¢ D (P; Q)
hence ({r. t @ [V (r)] € T (P; Q)} C

22

UuvefuJvr.t=uQuAuwQl[/(r)] €T P} {r. drop (length u) ¢
Q) eT Q)
by (auto simp add: Seq-projs intro: is-processT9)
(metis (no-types, opaque-lifting) T-imp-front-tickFree append-butlast-last-id
append-eq-conv-conj butlast-append butlast-snoc front-tickFree-nonempty-append-imp
last-appendR list.distinct(1) non-tickFree-tick tickFree-append-iff)
moreover have «(finite ...
proof (rule finite-UN-I)
show <finite {u. Jvr.t=u Qv A u @ [/(r)] €T Ph
by (prove-finite-subset-of-prefizes t)
next
fix v assume v € {u. Jvr. t=uQuAuw@[/(r)] €T Pp
then obtain v r where <u Q [/ (r)] € T P» <t = u @ v» by blast
with append-T-imp-tickFree consider «tF w) | <v = [> by blast
thus «finite {r. drop (length u) t Q [V (r)] € T Qp
proof cases
assume (¢tF w»
with «v Q [V (r)] € T Py <t ¢ D (P; Q) have <v ¢ D
by (auto simp add: D-Seq <t = u Q v»)
thus «¢tF v = finite {r. drop (length u) t Q [V(r)] € T Q}
by (simp add: <t = uw Q v finite-ticksD <F ,(Q)»)
next
from BOT-iff-Nil-D <Q # L) have <[] ¢ D Q> by blast
with «F/(Q)» finite-ticksD have «finite {r. [/ (r)] € T @Q}> by force
thus v = [| = finite {r. drop (length u) t Q [V (r)] € T @}
by (simp add: <t = v Q v)
qed
qged
ultimately show <finite {r. t Q@ [V (r)] € T (P; Q)}»> by (fact finite-subset)
qed
qed

lemma finite-ticks-Sync [finite-ticks-simps] :
(]F/(P [[Sﬂ Q) if (]F/(P) V]F/(Q))
proof (rule finite-ticksI)
fix ¢t assume <t ¢ D (P [S] Q)
have ({r. t @ [/(r)] € T (P [S] @)} <
(U (P, t-Q)e{(t-P, t-Q). t setinterleaves ((t-P, t-Q), range tick U ev ‘ S)}.
(rtPQ/(r)]eTPAtLPEDPALQQ/ (1) eT QA
£Q ¢ D Q)
(is «<- C ?rhsy)
proof (rule subsetl)
fix r assume «r € {r. t Q [V (r)] € T (P [S] Q)}»
hence <t @ [V/(r)] € T (P [S] @) ..
moreover from <t ¢ D (P [S] Q) have <t @ [/(r)] ¢ D (P [S] Q)
by (meson is-processT9)
ultimately obtain ¢-P t-Q where «t-P € T Py «t-Q € T Q> «t-P ¢ D P»

23

«t-Q ¢ D Q)
«(t @ [v(r)]) setinterleaves ((t-P, t-Q), range tick U ev © S)»
by (simp add: Sync-projs)
(metis (no-types, lifting) append.right-neutral front-tickFree-Nil setinterleav-
ing-sym)
from this(1—4) SyncWithTick-imp-NTF[OF this(5)] show <r € ?rhs»
by simp (metis T-imp-front-tickFree front-tickFree-append-iff is-processT7
not-Cons-self2)
qed
moreover have «finite ...)
proof (rule finite-UN-I, safe)
show «finite {(t-P, t-Q). t setinterleaves ((¢-P, t-Q), range tick U ev * S)}
by (fact finite-interleaves)
next
from <F,(P) vV F/(Q)> finite-ticksD
show «finite {r. t-P Q [/(r)] € T PAt-P ¢ D P A
-QQ[V(r)]eT QAt-Q¢D Q) for -P t-Q by fastforce
qed
ultimately show «finite {r. t @ [V(r)] € T (P [S] Q)}> by (fact finite-subset)
qed

corollary <F,(P) V F,(Q) = F, (P || Q)
and (F,/(P) VF/(Q) = F,(P ||| Q)
by (fact finite-ticks-Sync)+

lemma finite-ticks-GlobalNdet [finite-ticks-simps] :
finite A = (Na. a € A = F /(P a)) = F,(NacA. P a)
— We can’t expect infinite A here, see F,(SKIPS R) = finite R.
by (induct A rule: induct-subset-empty-single)
(simp-all add: GlobalNdet-distrib-unit finite-ticks-Ndet finite-ticks-STOP)

lemma finite-ticks-GlobalDet [finite-ticks-simps] :
finite A = (Na. a € A = F /(P a)) = F,(OacA. P a)
by (induct A rule: finite-induct)
(simp-all add: GlobalDet-distrib-unit-bis finite-ticks-Det finite-ticks-STOP)

lemma <L = [| = F/(SEQ I€QL. P l)) by (simp add: finite-ticks-SKIP)

lemma finite-ticks-MultiSeq-nonempty [finite-ticks-simps] :
(L # || = F/(P (last L)) = F (SEQ l€QL. P)
by (induct L rule: rev-induct) (simp-all add: finite-ticks-Seq)

lemma finite-ticks-MultiSync [finite-ticks-simps] :
(Am. m e# M = F,(P m)) = F,([S] me#M. P m),
by (induct M rule: induct-subset-mset-empty-single)
(simp-all add: finite-ticks-Sync finite-ticks-STOP)

24

corollary «(Am. m €e# M = F (P m)) = F /(|| me#M. P m),
and (Am. m €# M = F,(P m)) = F /(||| me#M. P m),
by (fact finite-ticks-MultiSync)+

lemma finite-ticks-Mprefiz-iff [finite-ticks-simps] :
F, (OacA = Pa) «— (VacA. F /(P a))
proof (safe intro!: finite-ticksI)
fix t a assume (F,(dacA — Pa) <a € Ay <t €T (Pa) <t ¢ D(Pa)
have ({r. t @ [V(r)] € T (Pa)} ={r. (eva # t) Q [V(r)] € T (JacAd — P
a)p
by (auto simp add: <a € Ay T-Mprefiz)
also have «finite .. .»
by (rule <F,(0acA — P a))[THEN finite-ticksD])
(simp add: D-Mprefiz <t ¢ D (P a))
finally show «<finite {r. t @ [V/(r)] € T (P a)}> .
next
fix t assume Va€A. F /(P a) <t € T (HDacA — Pa) <t ¢ D (DacA — Pa)
from <t € T (Ha€A — P a)> consider <t = []> | u a where <a € A <t = eva
w
by (auto simp add: T-Mprefiz)
thus «finite {r. t Q V(r)] € T (HDa€d — P a)}p
proof cases
show «t = [| = finite {r. t Q [V (r)] € T (HacA — P a)}p> by (simp add:
T-Mprefix)
next
fix u a assume <a € A) <t = eva # w
hence ({r.t Q [V (r)] € T (Ha€A — Pa)} ={r.uQ [V (r)] € T (Pa)}h
by (simp add: set-eq-iff T-Mprefix)
also have «finite .. .»
by (rule <V a€A. F /(P a)[THEN bspec, OF <a € Ay, THEN finite-ticksD])
(use <t ¢ D (Ha€A — P a)y in <simp add: <t = ev a # w D-Mprefix <a €
Ayy)
finally show «<finite {r. t @ [/ (r)] € T (Ha€A — P a)} .
qed
qed

lemma finite-ticks-Mndetprefiz-iff [finite-ticks-simps] :
F, (MacA — Pa) «— (VacA. F (P a))
proof —
have <F,(MacA — P a) +— F,(0acA — P a)
by (simp add: finite-ticks-def Mndetprefiz-projs Mprefix-projs)
thus (F/(MacA — Pa) «— (Yac€A.F /(P a)) by (simp add: finite-ticks-Mprefiz-iff)
qed

lemma finite-ticks-write0-iff [finite-ticks-simps] : <F,(a — P) <— F /(P)»
by (simp add: write0-def finite-ticks-Mprefiz-iff)

25

lemma finite-ticks-write-iff [finite-ticks-simps] : <F /(cla — P) «<— F /(P)»
by (simp add: write-def finite-ticks-Mprefix-iff)

lemma finite-ticks-read-iff :
F/(c?acA — P a) «— (Ybec ‘ A. F /(P (inv-into A ¢ b)))»
by (simp add: read-def finite-ticks-Mprefiz-iff)

lemma finite-ticks-inj-on-read-iff [finite-ticks-simps| :
dnj-on ¢ A = F (c?a€A — P a) «— (VacA. F /(P a))
by (simp add: read-def finite-ticks-Mprefiz-iff)

lemma finite-ticks-ndet-write-iff :
Fy(cMacA = Pa) +— (Vbec “ A. F (P (inv-into A c b))
by (simp add: ndet-write-def finite-ticks-Mndetprefiz-iff)

lemma finite-ticks-inj-on-ndet-write-iff [finite-ticks-simps] :
dnj-on ¢ A = F,(ctla€A — P a) «— (VacA. E /(P a))
by (simp add: ndet-write-def finite-ticks-Mndetprefiz-iff)

2.3.2 Laws of F,_ (f)

lemma finite-ticks-fun-Det [finite-ticks-fun-simps] :
Fy=(f) = F/=(9) = Fyo(Az. faOga)
by (simp add: finite-ticks-Det finite-ticks-fun-def)

lemma finite-ticks-fun-Ndet [finite-ticks-fun-simps] :
Fy-(f) = F/=(9) = Fy=o(Az. fz 1 ga)
by (simp add: finite-ticks-Ndet finite-ticks-fun-def)

lemma finite-ticks-fun-Sliding [finite-ticks-fun-simps] :
Fy=(f) = F/=(9) = Fyo(Az. fo > g o)
by (simp add: finite-ticks-Sliding finite-ticks-fun-def)

lemma finite-ticks-fun-Interrupt [finite-ticks-fun-simps] :
Fyo(f) =Fs=(9) = Fyo(Az. fz A ga)
by (simp add: finite-ticks-Interrupt finite-ticks-fun-def)

lemma finite-ticks-fun-Throw [finite-ticks-fun-simps] :
Fy=s(f) = (Na. a € A= F, -(9a)) = F/o(Az. fz © acA. ga z)
by (simp add: finite-ticks-Throw finite-ticks-fun-def)

lemma finite-ticks-fun-Renaming [finite-ticks-fun-simps] :
- (P) = finitary f = finitary g = F = (Az. Renaming (P z) f g)»
by (simp add: finite-ticks-Renaming finite-ticks-fun-def)

lemma finite-ticks-fun-RenamingF [finite-ticks-fun-simps] :

F, = (P) = F o (Az. (P z) [a:=b] [c:=d])
by (simp add: finite-ticks-fun-Renaming)

26

lemma finite-ticks-fun-Seq [finite-ticks-fun-simps] :

Fyo(9) =F,/o(Az. fz;gz)
by (simp add: finite-ticks-Seq finite-ticks-fun-def)

lemma finite-ticks-fun-Sync [finite-ticks-fun-simps] :

Fy=(f) = Fy(g) = Fye(ia £ [5] g o)
by (simp add: finite-ticks-Sync finite-ticks-fun-def)

corollary <F,_.(f) = F /= (9) = F/=(Az. fz || ga)

and (F,/~(f) = F/=(9) = F /= (\z. fz ||| g z)»
by (fact finite-ticks-fun-Sync)+

lemma finite-ticks-fun-GlobalNdet [finite-ticks-fun-simps]
(finite A = (Na. a € A = F /- (fa)) = F o (Az. Na€A. faz)
by (simp add: finite-ticks-GlobalNdet finite-ticks-fun-def)

lemma finite-ticks-fun-GlobalDet :
(finite A = (Na. a € A = F /= (fa)) = F o (Az. DacA. faz)
by (simp add: finite-ticks-GlobalDet finite-ticks-fun-def)

lemma finite-ticks-fun-MultiSeq [finite-ticks-fun-simps| :
(L = = F/ = (Ae. SEQ l€QL. flz)
(L # | = F/ = (f (last L)) = F = (Az. SEQ l€QL. flx)»
by (simp-all add: finite-ticks-MultiSeq-nonempty finite-ticks-fun-def finite-ticks-SKIP)

lemma finite-ticks-fun-MultiSync [finite-ticks-fun-simps] :
(Am. m e# M = F = (f m)) = F o (Az. [S] me#M. fm z)
by (simp add: finite-ticks-MultiSync finite-ticks-fun-def)

corollary <«(Am. m e# M = F, - (fm)) = F o (Az. || me#M. fm z)
and (Am. m €# M = F,_(fm)) = F o (Az. ||| me#M. fm z)
by (fact finite-ticks-fun- MultiSync)+

lemma finite-ticks-fun-Mprefiz-iff :
Fyo(Az. OacAd = faz) «— (Vac A F - (fa))
by (auto simp add: finite-ticks-fun-def finite-ticks-Mprefix-iff)

lemma finite-ticks-fun-Mprefix [finite-ticks-fun-simps] :
(Na.a € A= TF, - (fa)) = F o (Az. DacA — fa z)
by (simp add: finite-ticks-fun-Mprefiz-iff)

lemma finite-ticks-fun-Mndetprefiz-iff [finite-ticks-fun-simps] :

Fyo(Az. Ma€Ad = faz) «— Va € A F o (fa))
by (auto simp add: finite-ticks-fun-def finite-ticks-Mndetprefiz-iff)

27

lemma finite-ticks-fun-Mndetprefix [finite-ticks-fun-simps] :
(Na.a € A= F, - (fa)) = F /o (Az. Ma€A — fa z)
by (simp add: finite-ticks-fun-Mndetprefiz-iff)

lemma finite-ticks-fun-write0-iff [finite-ticks-fun-simps] :
Fyo(Az. a = fz) «— F o (f)
by (simp add: write0-def finite-ticks-fun-Mprefix-iff)

lemma finite-ticks-fun-write-iff [finite-ticks-fun-simps] :
Fyo(Az. cla — fz) «— F o (f)
by (simp add: write-def finite-ticks-fun-Mprefiz-iff)

lemma finite-ticks-fun-read-iff :
Fyo(Az. c?acA = faz) «— (Vbece ‘A F o (f (inv-into A ¢ b))
by (simp add: read-def finite-ticks-fun-Mprefiz-iff)

lemma finite-ticks-fun-read [finite-ticks-fun-simps] :
(Na.a € A= F, . (\z. faz)) = F, o (Az. cTacA — fax)
by (simp add: read-def o-def inv-into-into finite-ticks-fun-Mprefiz-iff)

lemma finite-ticks-fun-ndet-write-iff :
Fyo(Az. MNacAd — fax) «— (Vbec ‘A F o (f (inv-into A ¢ b))
by (simp add: ndet-write-def finite-ticks-fun-Mndetprefiz-iff)

lemma finite-ticks-fun-ndet-write [finite-ticks-fun-simps| :

(Na. a € A= F /o (\z. faz)) = F o (Az. tla€A — faz)
by (simp add: ndet-write-def o-def inv-into-into finite-ticks-fun-Mndetprefiz-iff)

28

Chapter 3

Generalization of the
Sequential Composition

3.1 Definition

For the sequential composition, the generalization seems quite straightfor-
ward. In a nutshell, we just replace) with @ r in the definition of P
; @ since @ is now of type 'r = (a, 'r) processprick (instead of (‘a, r)
PTOCESSptick)-
lift-definition Seqpiicr

(("a, 'r) processpiick, T = ('a, 'r) processpiick] = ('a, 'r) processpiicr> (infixl
Gy 1)

is AP Q. ({(t, X) |t X. (¢, X U range tick) € F P A tF t} U
{tQu, X) turX. tQV(r)]eTPA(u, X)eF(Qr)}U
{(t, X). t € D P},

DPu{tQultur.t@Q/(r)eT PAueD(Qr)})

oops

Except that this is not a fully satisfactory definition yet. Indeed, here, the
right-hand side argument must produce processes whose terminations keep
the same type. In other words, Q is of type 'r = (‘a, 'r) processpiick, while
we would like to have in full generality r = (‘a, 's) processptici. The final
definition given below is not immediate, and involves a precise understanding
of the behaviour of the sequential composition.

3.1.1 Preliminaries
The first key for generalizing the definition is to see that map (ev o of-ev)
allows for changing the type of termination in tick-free traces.

lemma tickFree-map-ev-of-ev-same-type-is : <tF t => map (ev o of-ev) t = b
— In this case the type of termination remains unchanged.
by (induct t) simp-all

29

lemma tickFree-map-ev-of-ev-eq-iff :
tF t = map (ev o of-ev) t = t' = t = map (ev o of-ev) t"
by (induct t arbitrary: t') auto

lemma tickFree-map-ev-of-ev-inj :
(F t = tF t' = map (ev o of-ev) t = map (ev o of-ev) t' +— t =t
by (induct t arbitrary: t') (use eventpick.expand in auto)+

lemma map-ev-of-ev-map-ev-of-ev [simp] :
«map (ev o of-ev) (map (ev o of-ev) t) = map (ev o of-ev) t» by simp

lemma map-ev-of-ev-map-ev-of-ev-simplified [simp] :
<map (ev o of-ev o (ev o of-ev)) t = map (ev o of-ev) t» by simp

lemma tickFree-map-ev-of-ev-eq-imp-ev-mem-iff :
(tF t' =t = map (ev o of-ev) t' = ev a € set t < ev a € set th
by (induct t' arbitrary: t) auto

The second key is to understand that X U range tick can be rewritten as
(ev o of-ev) ‘(X N range ev) U range tick, and that this second expression
also allows for changing the type of termination.

definition ref-Seqpiick :: <('a, 'r) eventpiicr set = (a, 's) eventyyicr sety
where (ref-Seqpic X = (ev o of-ev) ‘(X N range ev) U range tick»

lemma ref-Seqpticr-same-type-is : <ref-Seqpiick X = X U range tick
— In this case the type of termination remains unchanged.
by (auto simp add: ref-Seqpiici-def set-eq-iff image-iff)
(metis Int-iff eventpyick.exhaust eventyy;ck.sel(1) rangel)

lemma mono-ref-Seqptick : <X C Y = ref-Seqpick X C ref-Seqprick Y
unfolding ref-Seqpiick-def by fast

lemma ref-Seqpiick-idem : <ref-Seqpiick (ref-Seqprick X) = ref-Seqptick X»
by (auto simp add: image-iff ref-Seqpi;ck-def)
(metis Int-iff eventpiicr.sel(1) rangel,
metis (lifting) Int-iff Un-iff eventpiick.sel(1) image-eql rangel)

lemma ref-Seqpicr-comp-ref-Seqptick : <ref-Seqptick © Tef-Seqprick = ref-Seqptick?
by (rule ext) (simp add: ref-Seqpiicr-idem)

lemma ref-Seqpticr-eq-iff :
<ref-Seqprick X = ref-Seqptick Y <— X N range ev = Y N range ev
proof (rule iffT)

30

show <X N range ev = Y N range ev = ref-Seqptick X = ref-Seqptick Y
by (auto simp add: ref-Seqpiick-def)
next
show «X N range ev = Y N range ev> if <ref-Seqprick X = ref-Seqprick Y
proof (rule set-eql)
show <e € X N range ev +— e € Y N range evs for e
using that[unfolded set-eq-iff, THEN spec, of <(ev o of-ev) e]
by (auto simp add: ref-Seqpi;cr-def)
qed
qed

lemma ref-Seqpiicr-is-map-eventy; ,-image :
ref-Seqpiick X = map-eventyicr, id g ¢ (X N range ev) U range tick)
— Note that g is free here and does not matter.
by (auto simp add: ref-Seqpiici-def image-iff)
(metis Int-iff eq-id-iff map-eventycx-eq-ev-iff rangel,
metis Int-iff eventyiick.sel(1) rangel)

lemma ref-Seqpticr-union-image-ev :
ref-Seqprick (X U ev ©S) = ref-Seqprick X U ev < S»
by (auto simp add: ref-Seqpi;ck-def image-iff)
(metis Int-iff Un-iff eventpick.sel(1) image-eql rangel)

lemma ref-Seqpiick-UNIV @ «<ref-Seqpiict, UNIV = UNIV»
by (simp add: set-eq-iff ref-Seqpiicr-def image-iff)
(meson eventyyck.exhaust)

3.1.2 Formal Definition

definition div-Seqpiicr
{("a, 'r) processpiick, ' = ('a, 's) processpiick] = (
where <div-Seqpiicr, P Q =
{map (ev o of-ev) t Qu [t u. t € D P AtFtA ftFu} U
{map (evo of-ev) t Qu [tur.tQ/(r) €T PAIFtANueD (Qr)h

‘a, 's) traceptick setr

definition fail-Seqpticr
('a, 'r) processptick, 'r = ('a, 's) processprick] = ('a, 's) failureyi;cr set>
where <fail-Seqpticr, P Q =
{(map (ev o of-ev) t, X) |t X. (t, ref-Seqprick X) € F P A tF t} U
{(map (ev o of-ev) t Qu, X) [turX. tQ [V (r)] € T PAtFtA (u, X)
€F(Qnr}u
{(map (ev o of-ev) t Q u, X) [tuX.t € D P AtFtA ftFup
— tF' t is trivial when t @Q [/ (r)] € T P, but we add it for proof automation

lift-definition Seqpiicr
(("a, 'r) processprick, T = (
Gy 74)

‘a, 's) processpiick| = ('a, 's) processpiick» (infixl

31

is <A\P Q. (fail-Seqpiick P Q, div-Seqpiic P Q)
proof —
show «%thesis P () (is <is-process(?f, ?d))) for P and @
proof (unfold is-process-def FAILURES-def DIVERGENCES-def fst-conv snd-conv,
intro congl alll impl)
show «([], {}) € 2
by (simp add: fail-Seqpiick-def ref-Seqpiick-def)
(metis append-Nil is-processT1 trace-tick-continuation-or-all-tick-failuresE)
next
show «(t, X) € ?9f = ftF't» for t X
by (auto simp add: fail-Seqpiick-def div-Seqpticrk-def
F-imp-front-tickFree D-imp-front-tickFree
intro: front-tickFree-append)
next
show «(t Q u, {}) € o%f = (¢, {}) € 7> for t u
proof (induct u arbitrary: t)
show «(t Q [], {}) € ?f = (¢, {}) € ?f» for t by simp
next
fix t e u assume prem : «(t Q e # u, {}) € 7>
assume hyp : «(t Q u, {}) € ?f = (¢, {}) € ?/> for t
from prem have «(((t @ [e]) Q u, {}) € ?f» by simp
with hyp have «(t Q [e], {}) € ?f» by presburger
then consider (D-P) t’ u where (¢t @ [e] = map (ev o of-ev) t' @ uy <t' €
D Py <tF t) ftF w
| (F-P) t' where <t Q [e] = map (ev o of-ev) t’» «(t’, range tick) € F P>
GEF th
| (F-Q) t' r v where «t @ [e] = map (ev o of-ev) t' Q@ wy <t' Q [V (r)] € T
Py (u, {}) e F(Qr)
by (auto simp add: fail-Seqpiicx-def div-Seqpiick-def ref-Seqpiick-def)
thus «(t, {}) € 2/
proof cases
case D-P
show ?thesis
proof (cases u rule: rev-cases)
assume <u = [
have «(butlast t’, {}) € F P»
by (metis D-P(2) D-T prefix] T-F-spec append-butlast-last-id
butlast.simps(1) is-processT3-TR)
thus «(t, {}) € 2
by (elim trace-tick-continuation-or-all-tick-failuresE, simp-all add:
fail-Seqpiicr-def 7”l‘3f-Sl‘3qp1tick-def)
(metis (no-types, opaque-lifting) D-P(1) «<u = [|> append.right-neutral
append-T-imp-tickFree butlast-snoc is-processT1 map-butlast not-Cons-self2,
metis D-P(1,3) <u = []> append.right-neutral butlast-snoc
front-tickFree-iff-tickFree-butlast map-butlast tickFree-imp-front-tickFree)
next
fix e/ v’ assume (u = v’ Q [e']
with D-P have <t = map (ev o of-ev) t' @ u”y <t' € D Py <tF t"» «ftF u”
by (simp-all add: front-tickFree-append-iff)

32

thus (¢, {}) € 2> by (auto simp add: fail-Seqpick-def)
qed
next
case F-P
have «(butlast t’, {}) € F P»
by (metis F-P(1, 2) is-processT3 is-processT4-empty list.map-disc-iff
snoc-eq-iff-butlast)
with F-P(2) show «(¢, {}) € 2
by (elim trace-tick-continuation-or-all-tick-failuresE, simp-all add: fail-Seqpi;cx-def
ref-Seqpiick-def)
(metis (no-types, lifting) F-P(1) T-imp-front-tickFree append.right-neutral
butlast-snoc
front-tickFree-iff-tickFree-butlast is-processT1 map-butlast,
metis F-P(1) F-imp-front-tickFree butlast-snoc front-tickFree-iff-tickFree-butlast
map-butlast)
next
case F-Q)
show «(t, {}) € 2/
proof (cases u rule: rev-cases)
assume <u = [
have «(butlast t’, {}) € F P>
by (metis F-Q(2) T-F-spec append-butlast-last-id butlast.simps(1)
is-process T3-TR-append)
thus «(¢, {}) € 2>
by (elim trace-tick-continuation-or-all-tick-failuresE, simp-all add:
fail-Se(thick:'def Tef'Se(thick-d@f)
(metis (no-types, lifting) F-Q(1) <u = [|» append-T-imp-tickFree
butlast-snoc
is-processT1 map-butlast not-Cons-self2 self-append-conv,
metis F-Q(1, 2) T-imp-front-tickFree <u = []» append-self-conv
butlast-snoc
front-tickFree-iff-tickFree-butlast is-process T3-TR-append map-butlast)
next
from F-Q show «u = u' Q [¢/]| = (¢, {}) € 2> for u’ ¢’
by (simp add: fail-Seqpi;cx-def)
(metis append-T-imp-tickFree is-processT3 list.distinct(1))
qed
qed
ged
next
fix t X Y assume (¢, V) € f AN X C V>
hence «(t, Y)e ?f» «X C Y» by simp-all
from «(t, Y)€ ?f» consider (F-P) t’' where <t = map (ev o of-ev) t"
«(t', (ev o of-ev) ‘(Y N range ev) U range tick) € F Py <tF t"
| (F-Q) t' r u where ¢t = map (ev o of-ev) t' @ wy <¢t' Q [V (r)] € T P> «tF
th ((u, Y) e F(Qr)y
| (D-P) t’ u where ¢t = map (ev o of-ev) t' Q@ w «t' € D Py «tF t"r ftF w
by (auto simp add: fail-Seqpiick-def ref-Seqpiick-def)
thus «(¢, X) € 2

33

proof cases
case F-P
from <X C Y)» have ((ev o of-ev) ‘(X N range ev) U range tick C
(ev o of-ev) ‘(Y N range ev) U range ticky by blast
with F-P(2) have «(t/, (ev o of-ev) ‘(X N range ev) U range tick) € F P»
by (metis is-processT4)
with F-P(1, 3) show «(t, X) € ?f»
by (auto simp add: fail-Seqpi;cx-def ref-Seqpiicrk-def)
next
case F-Q) thus (¢, X) € 2/»
by (simp add: fail-Seqpiick-def) (metis <X C Y is-processT4)
next
case D-P thus «(t, X) € 2> by (auto simp add: fail-Seqpi;cx-def)
qed
next
fix t X Y assume * : (¢, X) € ?2f A (Ve.e € Y — (t Q [e], {}) ¢ 2f)
from * consider <t € ?d»
| (F-P) t’ where <t = map (ev o of-ev) t» «(t', (ev o of-ev) ‘ (X N range ev)
U range tick) € F Py «tF t)
| (F-Q) t' r uw where <t = map (ev o of-ev) t' @ wy «t' Q [V (r)] € T P» <tF
th «(u, X) € F(Qr)
unfolding fail-Seqp:;ci-def div-Seqpiick-def ref-Seqptick-def by auto
thus «(t, X U Y) € 2f/»
proof cases
show <t € ?d = (t, X U Y) € 2/
by (simp add: div-Seqpiicr-def fail-Seqpiicr-def) (metis is-processT8)
next
case F-P
have «(t', (ev o of-ev) ‘(X N range ev) U range tick U (ev o of-ev) ‘(Y N
range ev)) € F P»
proof (intro is-processT5[OF F-P(2)] alll impI)
fix e :: <("a, 'r) eventpiicr> assume <e € (ev o of-ev) ‘(Y N range ev))
then obtain ¢ where (e = ev a) <ev a € Y by auto
from «[THEN conjunct2, rule-format, OF this(2), unfolded fail-Seqpiick-def]
F-P(1, 3)
show «(¢t' Q [¢], {}) ¢ F P>
apply (simp add: fail-Seqpiick-def <e = ev a> append-eg-map-conv
ref-Seqpiick-def)
by (smt (verit, del-insts) append-Nil2 comp-apply eventp;ck.sel(1)
is-processT'1
list.simps(8, 9) map-append tickFree-append-iff
tickFree-map-ev-comp trace-tick-continuation-or-all-tick-failuresE)
qed
also have ((ev o of-ev) ‘(X N range ev) U range tick U (ev o of-ev) ‘(Y N
range ev) =
ref-Segprick (X U Y)> unfolding ref-Seqpiici-def by blast
finally show «(¢t, X U Y) € 2
using F-P(1, 3) by (auto simp add: fail-Seqpicr-def)
next

34

case F-Q)
from * have (Ve.e € Y — (v Q [¢], {}) ¢ F (Q r)
by (simp add: fail-Seqpiick-def F-Q(1, 2))
(metis F-Q(2) append-T-imp-tickFree not-Cons-self2)

with F-Q(3, 4) have «(u, X U Y) € F (Q r)» by (simp add: is-processT5)

with F-Q(1—3) show «(t, X U Y) € 2f» by (auto simp add: fail-Seqpyicr-def)

ged
next

show <t € 2d NtFt N ftFu = t Q u € ?d) for t u

by (simp add: div-Seqpiicr-def, elim conjE disjE exE)
(solves <use front-tickFree-append in autoy,
meson append.assoc is-processT7 tickFree-append-iff)

next

show «t € ?d = (¢, X) € ?f» for t X

by (simp add: div-Seqpiicr-def fail-Seqpiicr-def) (metis is-processT8)

next
show * : <t Q [/(r)] € 2d =t € ?d for ¢ r’

by (simp add: div-Seqpiick-def, elim disjE exE conjE)

(metis butlast-append butlast-snoc front-tickFree-iff-tickFree-butlast non-tickFree-tick
tickFree-append-iff tickFree-imp-front-tickFree tickFree-map-ev-comp,
metis D-imp-front-tickFree butlast-append butlast-snoc
div-butlast-when-non-tickFree-iff non-tickFree-tick
tickFree-append-iff tickFree-map-ev-comp)

fix t v’ X assume ((t Q [V (r")], {}) € 2/
then consider «t Q [V (r')] € ?d»
| (F-Q) t' r uw where <t Q [V (r)] = map (ev o of-ev) t' Q w)
@[/ (r) eT Py <tFth «(u, X) € F (Qr)
by (auto simp add: fail-Seqpiicx-def div-Seqpiick-def)
(metis non-tickFree-tick tickFree-append-iff tickFree-map-ev-comp,
metis F-T F-imp-front-tickFree nonTickFree-n-frontTickFree
non-tickFree-tick tickFree-append-iff tickFree-map-ev-comp tick-T-F')
thus «(t, X — {V/(r"}) € ?f»
proof cases
assume <t Q [/ (r')] € ?d>
with x have «t € ?d» .
thus (¢, X — {V/(r)}) € 2/
by (simp add: fail-Seqyiick-def div-Seqpiick-def) (metis is-processT8)
next
case F-(Q)
from F-Q(1, 2) obtain u’ where (v = v’ Q [V (1))
by (cases u rule: rev-cases, simp-all)
(metis non-tickFree-tick tickFree-append-iff tickFree-map-ev-comp)
with F-Q(4) have (v, X — {/(r)}) € F (Q r)» by (simp add: F-T
is-processT6-TR)
with F-Q(1-3) «<u = v’ Q [V (r")]» show «(t, X — {V/(r")}) € 2/
by (auto simp add: fail-Seqpi;ci-def)
qed
qed

35

qed

3.2 Projections
lemma F-Seqpiick - <F (P sy Q) = fail-Seqpiick P Q>
by (simp add: Failures.rep-eq FAILURES-def Seqpiick.rep-eq)

lemma D-Seqpiici - <D (P, Q) = div-Seqptick P Q>
by (simp add: Divergences.rep-eq DIVERGENCES-def Seqpiick.rep-€q)

lemma T-Seqpticr-bis :
(T (P3y Q) = {map (ev o of-ev) t |t. (¢, range tick) € F P A tF t} U
{map (evo of-ev) tQultur.tQ/(r)]e T PANtFtAueT (Q

)} U
{map (ev o of-ev) t Qu |t u.t € D P AtF1L A ftFup
by (auto simp add: Traces.rep-eq TRACES-def F-Seqpiicr fail-Seqpiick-def ref-Seqptick-def

intro: is-processT4 simp flip: Failures.rep-eq)
(metis, metis (lifting) image-empty inf-bot-left sup-bot-left, blast)

lemma T-Seqptick :
(T (P3y Q) = {map (ev o of-ev) t |t. t € T P AN tFt} U
{map (evo of-ev) tQultur.tQ/(r) e T PANtFtAueT (Q

r)} U
{map (ev o of-ev) t Qu |t u. t € D P AtF LA ftFup

— Often easier to use
by (auto simp add: T-Seqptici-bis F-T)
(metis T-F-spec append.right-neutral is-processT1-TR

trace-tick-continuation-or-all-tick-failuresE)

lemmas Seqpicr-projs = F-Seqpiick D-Seqpiick T-Seqpiick fail-Seqpiicr-def div-Seqpyicr-def

lemma mono-Seqpticr-eq : <P s, Q= P35, Q) if x: <P =P (\r. r € /s(P)
= Qr=Q'n
for P P’ :: «('a, 'r) processpiick> and @ Q' :: <'r = (‘a, 's) processpiick’
proof (fold (1), subst Process-eq-spec-optimized, safe)
{fix tand Q Q' :: <'r = ('a, 's) processpiick>
crevs(P)= Qr=@Q"n for r

assume <t € D (P;, Q) and * :
from «t € D (P;, Q) consider (D-P) t' u where <t = map (ev o of-ev) t’

@ wy «t" € D Py «(tF ty «ftF w
| (D-Q) t' r u where «t = map (ev o of-ev) t' Q wy <’ Q [V (r)] € T P> «tF

th «ueD(Qr)
unfolding Seqpticr-projs by blast

hence <t € D (P;, Q')
proof cases
case D-P thus <t € D (P, Q') by (auto simp add: Seqpiick-projs)

36

next
case D-Q thus <t € D (P;, Q')
by (simp add: Seqpiicx-projs)
(metis x D-imp-front-tickFree is-processT9 strict-ticks-of-meml)
qed
} note $§ = this
show <t € D (P;, Q) =t D (P, Q)
and «t€D (P;, Q) =t D (P;, Q) fort
by (erule $, simp add: *(2))+
next
{fixtX and Q Q' :: <'r = (‘a, 's) processpiick>
assume ((t, X) € F (P;, Q) and same-div: <D (P, Q) =D (P, Q)
and x : «r € V/s(P) = Qr = Q' n for r
from ((t, X) € F (P, Q)
consider (F-P) t’ where <t = map (ev o of-ev) t» «(t', ref-Seqprick X) € F
Py «tF th
| (F-Q) t' r v where <t = map (ev o of-ev) t' Q@ wy <t' Q [/ (r)] € T P> «tF
th ((u, X) € F(Qr)
| (D-P) t’' uw where <t = map (ev o of-ev) t' Q@ uy <t € D Py <tF t's ftF w
unfolding Seqptici-projs by blast
hence «(t, X) € F (P, Q')
proof cases
case F-P thus «(t, X) € F (P, Q') by (auto simp add: Seqpt;cr-projs)
next
case F-Q) thus «(t, X) € F (P, Q')
by (simp add: Seqpiici-projs)
(metis * F-imp-front-tickFree is-processT9 strict-ticks-of-meml)
next
case D-P thus «(t, X) € F (P, Q') by (auto simp add: Seqpici-projs)
qed
} note $ = this
show <D (P;, Q) =D (P;, Q) = (t, X) e F (P, Q) = (t, X) € F (P

v Q)

and <D (P, Q) =D (P;, Q)= (t, X) e F (P35, Q) = (t, X) € F (P
sy @) for t X

by (erule $; simp add: *(2))+
qed

Note that this definition allowing for changing the type of termination is
actually a generalization of the first idea that we mentioned at the beginning.
Indeed, when we enforce the type of P and @ to be ('a, 'r) processpticr, and
'r = ("a, 's) processpiick respectively, the projections can be rewritten as
follows.
lemma F-Seqyyicr,-same-type :
(F (Psy Q) ={(t, X) |t X. (t, X U range tick) € F P N\ tF t} U
{tQu, X) turX. tQ[V(r)]eT PA(u, X)e F(Qr)}U
{(t, X). t € D P}h
by (auto simp add: Seqpiick-projs tickFree-map-ev-of-ev-same-type-is ref-Seqpiick-same-type-is
is-processT7)

37

(metis tickFree-map-ev-of-ev-same-type-is,
metis append-T-imp-tickFree not-Cons-self2,
metis D-T T-imp-front-tickFree T-nonTickFree-imp-decomp append.right-neutral
front-tickFree-nonempty-append-imp is-processT9 not-Cons-self2
tickFree-Nil tickFree-imp-front-tickFree)

lemma D-Seqyiicr-same-type : <D (P35, Q) =D PU{tQu[tur. tQ[/(r)] e
TPAueD (Qnr)hb
by (auto simp add: Seqpiici-projs tickFree-map-ev-of-ev-same-type-is is-processT7)
(blast,
metis D-imp-front-tickFree butlast-snoc div-butlast-when-non-tickFree-iff
front-tickFree-charn front-tickFree-nonempty-append-imp
self-append-conv tickFree-Nil tickFree-map-ev-of-ev-same-type-is,
metis append-T-imp-tickFree not-Cons-self2)

lemma T-Seqpiicr-same-type-bis :
(T (P, Q) = {t. (t, range tick) € F P N tF t} U
{tQu|tur.tQ[/(r)]€eT PAueT (Qr)}U
D P
by (auto simp add: Traces.rep-eq TRACES-def F-Seqpiick-same-type simp flip:
Failures.rep-eq)
(meson is-processT4 sup-ge2, meson is-processT5-S7’, blast)

lemma T-Seqpi;cr-same-type :
(T (P35, Q) ={teTP.tFtyu{tQultur.tQ[/(r))eT PAuecT (Q
)} UD P
— Often easier to use
by (auto simp add: T-Seqpyicr-same-type-bis F-T')
(metis T-F-spec append.right-neutral is-processT1-TR
trace-tick-continuation-or-all-tick-failuresE)

lemmas Seqptick-same-type-projs = F-Seqpiicr-same-type D-Seqpiicr-same-type T-Seqpiicr-same-type

38

Chapter 4

Generalization of the
Synchronization Product

4.1 Trace Interleaving

4.1.1 Motivation

The notion of trace interleaving found in HOL-CSP does not allow us to
precisely handle termination. Indeed, as soon as r # s, we cannot have ¢
setinterleaves (([V/ ()], [V (s)]), range tick U ev © A).

lemma <r # s = — t setinterleaves (([V'(r)], [V (s)]), range tick U ev © A)) by
stmp

The actual issue of this previous definition is that no distinction is done
between the “regular” events (like ev a) and the terminations (like v/(7)).
Here, while we still want the same behaviour for regular events, we want
instead the interleaving of v/(r) and v'(s) to be v ((r, s)). But we would
also like this interleaving to generalize the old one, i.e. be able to prevent
sometimes two ticks from being combined. Our solution is therefore to rely
on a parameter: tick-join of type 'r = s = 't option whose role is to specify
how two ticks can be combined (or not).

bundle option-type-syntax
begin

no-notation floor («(<open-block notation=<mizfix floor»»|-|)»)
no-notation ceiling («(<open-block notation=<mizfiz ceiling>»[-]))

notation Some (<(<open-block notation=«mizfiz Somes»|-|)»)
notation the (<(xopen-block notation=«mizfix the»>[-])»)
notation None (<)

end

39

unbundle option-type-syntazx

4.1.2 Definition

type-synonym (‘a, 'r, ’s, 't) setinterleavingpi;cr-args =
('r = 's = "t option) x ('a, ') traceptick X 'a set x ('a,'s) tracepick>

fun setinterleavingpick
«('a, 'r, s, 't) setinterleavingpiick-args = (‘a, 't) tracepiicr sety
where Nil-setinterleavingp;cr-Nil :
(setinterleavingpicr (tick-join, [], A, []) = {[|p

| ev-setinterleavingpt;c,-Nil :
setinterleavingpicr, (tick-join, ev a # u, 4, []) =
(if a € A then {}
else {ev a # t| t. t € setinterleavingpiicr (tick-join, u, A, [])})»
| tick-setinterleavingp;cr-Nil :
«setinterleavingpiicr, (tick-join, /(1) # u, A, []) = {p

| Nil-setinterleavingpicr-ev :
«setinterleavingpicr (tick-join, [], A, ev b # v) =
(if be Athen {}
else {ev b # t| t. t € setinterleavingpiicr (tick-join, [], A, v)})
| Nil-setinterleavingpicr-tick :
«setinterleavingpicr, (tick-join, [], A, vV (s) # v) = {P

| ev-setinterleavingpeicr-€v :
«setinterleavingpicr, (tick-join, ev a # u, A, ev b # v) =

(ifac A
then ifbe A
then ifa =10
then {ev a # t |t. t € setinterleavingpiicr (tick-join, u, A, v)}
else {}

else {ev b # t |t. t € setinterleavingpiicr (tick-join, ev a # u, A, v)}
else ifbe A
then {ev a # t |t. t € setinterleavingpiick (tick-join, u, A, ev b # v)}
else {ev a # t |t. t € setinterleavingpiicr (tick-join, u, A, ev b # v)} U
{ev b # t |t. t € setinterleavingpiick (tick-join, ev a # u, A, v)})
| ev-setinterleavingpe;cr-tick :
setinterleavingpicr, (tick-join, ev a # u, A, /(8) # v) =
(if a € A then {}
else {ev a # t |t. t € setinterleavingpicr (tick-join, u, A, V/(s) # v)})»
| tick-setinterleavingpticr-€v :
«setinterleavingpicr (tick-join, V' (r) # u, A, ev b # v) =
(ifbe Athen {}
else {ev b # t |t. t € setinterleavingpiick (tick-join, V() # u, A, v)})
| tick-setinterleavingpticr -tick :
«setinterleavingpicr (tick-join, V(1) # u, A, /(s) # v) =
(case tick-join r s

40

of |r-s] = {V(r-s) # t |t. t € setinterleavingpiick (tick-join, u, A, v)}
| O={})

lemmas setinterleavingpicr-induct
[case-names Nil-setinterleavingpiick-Nil ev-setinterleavingy;cx-Nil
tick-setinterleavingptcr-INil Nil-setinterleavingptick-ev
Nil-setinterleavingpicr-tick ev-setinterleavingpt;cy-ev
ev-setinterleavingp;c,-tick tick-setinterleavingpticr-ev
tick-setinterleavingpt;cr -tick,
induct type: setinterleavingpicr-args] = setinterleavingpy;ci.induct

lemma Cons-setinterleavingpicr-Nil :
(setinterleavingpicr (tick-join, e # u, A, []) =
(case e of ev a =
(if a € A then {}
else {ev a # t |t. t € setinterleavingyiicr (tick-join, u, A, [)})
MGESH

by (cases e) simp-all

lemma Nil-setinterleavingp;cr-Cons :
(setinterleavingpicr (tick-join, [], A, e # v) =
(case e of ev a =
(ifa € A then {}
else {ev a # t |t. t € setinterleavingpiick (tick-join, [, 4, v)})
/() = ()

by (cases e) simp-all

lemma Cons-setinterleavingpiicr-Cons :
(setinterleavingpicr (tick-join, e # u, A, f # v) =
(case e of ev a =
(case f of ev b =
ifa€e A
then ifbe A
then ifa=1»>
then {ev a # t |t. t € setinterleavingyi;ck, (tick-join, u, A, v)}
else {}
else {ev b # t |t. t € setinterleavingpiick (tick-join, ev a # u, A, v)}
else ifbe A
then {ev a # t |t. t € setinterleavingpiicr (tick-join, u, A, ev b # v)}
else {ev a # t |t. t € setinterleavingpiicr (tick-join, u, A, ev b # v)} U
{ev b # t |t. t € setinterleavingpiick (tick-join, ev a # u, A, v)}
| V(s) = ifac€ Athen {}
else {ev a # t |t. t € setinterleavingpiicr, (tick-join, u, A, /()
£ 0}
| V/(r) =
(case f of ev b =

41

if b€ A then {}
else {ev b # t| t. t € setinterleavingpiick (tick-join, /() # u, A, v)}
| V/(s) =
(case tick-join r s of |[r-s| =
{V(r-s) # t |t. t € setinterleavingyiick (tick-join, u, A, v)}
| 0= {H)

by (cases e; cases f) simp-all

lemmas setinterleavingpeicr-simps =
Cons-setinterleavingpticr-INil Nil-setinterleavingp:;ci,-Cons Cons-setinterleavingpt;cr-Cons

abbreviation setinterleavesyicr, i
(("a, 't) tracepiick, T = 's = 't option,
("a, ') traceptick, ('a, 's) tracepiick, 'a set] = bool
(«(- /(setinterleaves,)-/ '(()'(-, -)(), -"))» [63,0,0,0,0] 64)
where <t setinterleaves y;cf._join ((u, v), 4) =
t € setinterleavingpiick (tick-join, u, A, v))

4.1.3 First Properties

First of all: this formalization may seem tricky, but is actually a generaliza-
tion of the old setup.

theorem setinterleaves-is-setinterleavesyiick
<t setinterleaves ((u, v), range tick U ev ‘ A) <—
t setinterleavesy yy. s if r = s then 7] else O ((u, v), A
for t :: «('a, 'r) tracepiick>
by (induct <(Ar :: 'r. Xs 2 'r. if r = s then |r] else O, u, A, v)
arbitrary: t u v) (simp-all add: image-iff)

corollary setinterleaves-is-setinterleavesp;ci-unit :
<t setinterleaves ((u, v), insert v (ev © A)) «—
t setinterleavesyy,. o 7] ((u, v), A)» (is «?lhs <— 9rhs))
proof —
have «?lhs «— t setinterleaves ((u, v), range tick U ev * A)»
by (simp add: UNIV-unit)
also have «... «— ?rhs»
by (simp add: setinterleaves-is-setinterleavesyi;ck)
finally show < ?lhs «<— ?rhs .
qed

lemma setinterleavesyticr-sym :

42

— Of course not suitable for simplifier.
«t setinterleaves s xs r. tick-join r s (v, w), A) —

t setinterleaves \r s. tick-join r s ((u, v), A
by (induct «(tick-join, u, A, v)» arbitrary: t u v) (auto split: option.split)

lemma setinterleavespqi-- UNIV-iff :
(t setinterleavesy y,. L(r, 5)] ((u, v), UNIV) +—
u = map (map-event,yicr id fst) t A
v = map (map-eventpiick id snd) t» for t :: <«(‘a, 'r X 's) tracepiicr>
by (induct <(Ar = 'r. As i 's. | (7, 8)|, u, UNIV :: 'a set, v)y arbitrary: t u v)
(auto simp add: ev-eq-map-eventy;ci-iff tick-eqg-map-eventy;cr-iff)

lemma setinterleavesyi;cr-empty :
«t setinterleaves s yick_join (4, v), {}) =
evac€ sett<— eva€ setuV eva € set v
for w :: «('a, 'r) tracepiick >
by (induct «(tick-join, u, {} :: 'a set, v)> arbitrary: t u v)
(auto split: option.split-asm)

lemma tickFree-setinterleavesy;c-any-tick-join :
«t setinterleaves s yick-join (4, v), A) +—
t setz’nterleaves/tick_jomf ((u, v), A
if ¢FtV tFuVitF v
proof (rule iffT)
from «tF t VvV tF u V tF v
show <t setinterleaves ek join ((u, v), A) =
t setinterleaves s yicp ioim’ ((u, v), A
for tick-join tick-join’
by (induct «(tick-join, u, A, v)» arbitrary: t u v)
(auto split: if-split-asm option.split-asm)
thus <t setz’nt@rleaves/tick_jom/ ((u, v), A) =
t setinterleaves s yick_join ((u, v), A) .
qed

lemma tickFree-setinterleavesy;cr-iff :
«t setinterleaves s yick_join (U v), A) = tF ¢ <— tF u A tF v
by (induct «(tick-join, u, A, v)» arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma setinterleavesy;cr-tickFree-imp :

UF u vV IF v = t setinterleaves s yickjoin ((u, v), A) = tF t N tF u A tF v
by (induct «(tick-join, u, A, v)» arbitrary: t u v)

43

(auto split: if-split-asm)

lemma setinterleavesyy;cr-NiL-iff
«t setinterleavess yick_join ([, v), A) —
tFoAsetvnNev A={}At=mapev (map of-ev v)
for tick-join :: <'r = 's = 't option)
by (induct «(tick-join, [] :: (Ya, 'r) tracepiick, A, v)
arbitrary: t v) (auto split: if-split-asm)

lemma setinterleavesyt;cr-NilR-iff :
«t setinterleaves s yick_join (0 []), A) «—
tFuAsetunev‘A={} At=map ev (map of-ev u)
for tick-join :: <'r = 's = 't option»
by (induct «(tick-join, u, A, [] == ("a, 's) tracepiick)
arbitrary: t u) (auto split: if-split-asm)

lemma setinterleavesyi;cr-subsetL :
(tFt = {a. eva € setu} C A =
t setinterleaves s yick_join (4, v), A) =
t = map ev (map of-ev v)»
by (induct «(tick-join, u, A, v)> arbitrary: t u v)
(auto simp add: subset-iff split: if-split-asm option.split-asm)

lemma setinterleavesyi;cr-subsetR :
(tFt = {a. eva € set v} C A =
t setinterleaves s yick_join (4, v), A) =
t = map ev (map of-ev u)»
by (induct «(tick-join, u, A, v)> arbitrary: t u v)
(auto simp add: subset-iff split: if-split-asm option.split-asm)

lemma Nil-setinterleavespiick
«[] setinterleaves s yick_join (v, v), A) = u=1[Av=[p
by (induct «(tick-join, u, A, v)) arbitrary: u v)
(simp-all split: if-split-asm option.split-asm)

lemma front-tickFree-setinterleavesy;ci-iff :

(& setinterleaves.s ick-join ((u, v), A) = ftF t «— ftF u A ftF v
proof (induct <(tick-join, u, A, v)) arbitrary: t u v)

case Nil-setinterleavingpici-Nil thus ?case by simp
next

case (ev-setinterleavingpiick-Nil a)

thus ?case by (simp add: setinterleavesyc,-NilR-iff split: if-split-asm)
next

case (tick-setinterleavingpicr-Nil r u) thus ?case by simp
next

case (Nil-setinterleavingpiick-€v b v)

44

thus ?case by (simp add: setinterleavesyc,-NilL-iff split: if-split-asm)
next
case (Nil-setinterleavingpiicx-tick s v) thus ?case by simp
next
case (ev-setinterleavingptick-ev ¢ u b v)
thus ?case by (simp split: if-split-asm)
(metis eventpyick.disc(1) front-tickFree-Cons-iff front-tickFree-Nil)+
next
case (ev-setinterleavingptick-tick a u s v)
thus ?case by (simp split: if-split-asm)
(metis eventpyick.disc(1) front-tickFree-Cons-iff front-tickFree-Nil)
next
case (tick-setinterleavingpicr-ev r u b v)
thus ?case by (simp split: if-split-asm)
(metis eventpick.disc(1) front-tickFree-Cons-iff front-tickFree-Nil)
next
case (tick-setinterleavingpick-tick r u s v) thus Zcase
by (simp split: option.split-asm,)
(metis Nil-setinterleavespicr Nil-setinterleavingpy;cr-Nil
eventpiick.disc(2) front-tickFree- Cons-iff singletonD)
qed

lemma setinterleaves,ci-snoc-notinkL :
«t setinterleaves s yick_join (4, v), A) = a ¢ A =
t @ [ev a setinterleaves ickjoin ((u @ [ev a], v), A)
by (induct «(tick-join, u, A, v)» arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma setinterleavesy;cr-snoc-notinkt :
«t setinterleaves s yickjoin (4, v), A) = a ¢ A =
t @ [ev a] setinterleaves s yick_join ((u, v @ [ev a]), A)»
by (induct «(tick-join, u, A, v)» arbitrary: t u v)
(auto split: if-split-asm option.split-asm,)

lemma setinterleavesy;c-snoc-inside :
«t setinterleaves s yick_join (v, v), A) = a € A =
t @ [ev d setinterleaves yick_join (v @ [ev a], v @ [ev a]), A))
by (induct «(tick-join, u, A, v)» arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma setinterleavesy;cr-snoc-tick :
«t setinterleaves s yick_join (U, v), A) = tick-join r s = [r-s] =
t @ [V (r-s)] setinterleaves yick_join (v @ [V (r)], v @ [/(s)]), A)»
by (induct «(tick-join, u, A, v)» arbitrary: t u v)

45

(auto split: if-split-asm option.split-asm,)

lemma Cons-tick-setinterleavespicr B
W/ (r-s) # t setinterleavesy ek join ((u, v), A) =
(Au’ v’ rs. [tick-join r s = |r-s|; u =V (r) # u'; v = V(s) # v
t setinterleaves s yickjoin ((u', V), A)] = thesis) = thesis»
by (induct ¢(tick-join, u, A, v)» arbitrary: t u v)
(simp-all split: if-split-asm option.split-asm)

lemma Cons-ev-setinterleavesyiicr B
ev a # t setinterleaves s yick_join ((u, v), A) =
(Au'.a ¢ A= u=cva# u =t setinterleaves yjcpjoin (v, v), A) =
thesis) =
(Av'.a ¢ A= v=-eva v =t setinterleaves s yc}_join ((u, v'), A) =
thesis) =
ANu'"viaed=u=eva# v = v=eva# v =
t setinterleaves s yick_join ((u', v'), A) = thesis) = thesis
proof (induct «(tick-join, u, A, v)) arbitrary: u v t)
case Nil-setinterleavingptici-Nil thus ?case by simp
next
case (ev-setinterleavingpicr-Nil b)
from ev-setinterleavingpy;c,-Nil.prems(1) show ?case
by (simp add: ev-setinterleavingy;cr-Nil.prems(2) split: if-split-asm)
next
case (tick-setinterleavingpicr-Nil u) thus ?case by simp
next
case (Nil-setinterleavingpiick-€v ¢ v)
from Nil-setinterleavingp;c,-ev.prems(1) show ?case
by (simp add: Nil-setinterleavingpicr-ev.prems(3) split: if-split-asm)
next
case (Nil-setinterleavingpiicx-tick s v) thus ?case by simp
next
case (ev-setinterleavingpicr-ev b u ¢ v)
from ev-setinterleavingpic,-ev.prems(1) show ?case
by (simp add: ev-setinterleaving,i;cr-ev.prems(2, 3, 4) split: if-split-asm)
(use ev-setinterleavingpiici-ev.prems(2, 8) in presburger)
next
case (ev-setinterleavingp;cr-tick b u s v)
from ev-setinterleavingyi.r-tick.prems(1) show ?Zcase
by (simp add: ev-setinterleavingy;cr-tick.prems(2) split: if-split-asm)
next
case (tick-setinterleavingpiicr-ev r u ¢ v)
from tick-setinterleaving,i;ci-ev.prems(1) show ?case
by (simp add: tick-setinterleavingy;cx-ev.prems(8) split: if-split-asm)
next
case (tick-setinterleavingpicy-tick r u s v)
thus ?case by (simp split: option.split-asm)
qed

46

lemma rev-setinterleavesy;cr-rev-rev-iff :
<rev t setinterleaves s yick_join ((rev u, rev v), A)
< t setinterleaves s yick_join (4, v), A)
for u :: «('a, 'r) tracepiicr> and v ((’
proof (rule iffT)
show <t setinterleavesy ek join ((u, v), A) =
rev t setinterleaves yicpjoin ((rev u, rev v), A))
for u :: «('a, 'r) tracepiick> and v iz «(‘a, 's) tracepiicrr and t
proof (induct «(tick-join, u, A, v)) arbitrary: t u v)
case Nil-setinterleavingpici-Nil thus ?case by simp
next
case (ev-setinterleavingptick-Nil a)
thus “case by (auto simp add: setinterleavesyiici-snoc-notinL split: if-split-asm
)
next
case (tick-setinterleavingpicr-Nil v v) thus ?case by simp
next
case (Nil-setinterleavingpticr-ev b v)
thus ?case by (auto simp add: setinterleaves,;cx-snoc-notinR split: if-split-asm
)
next
case (Nil-setinterleavingpiicx-tick s v) thus ?case by simp
next
case (ev-setinterleavingptick-ev a v b v)
from ev-setinterleavingpyticr-ev.prems
consider (both-in) t' where <a € Ay <a = b <t = eva # t)
«t! setinterleaves s yick_join ((u, v), A)
| (inR-muL) t'where <a ¢ A <b € A <t = eva# th
«t’ setinterleaves s yick_join ((u, €v b # v), A)
| (inL-muvR) t' where <a € A> <b ¢ A <t =ev b # th
«t’ setinterleaves s yick_join ((€v a # u, v), A)
| (notin-muL) t’ where (a ¢ A> <b ¢ A <t = eva # th
«t’ setinterleaves s yick_join ((u, ev b # v), A)
| (notin-muR) t' where <a ¢ A> <b ¢ A <t =evb # t)
«t’ setinterleaves s yick_join ((€v a # u, v), A)
by (auto split: if-split-asm)
thus “case
proof cases
case both-in thus ?thesis
by (simp add: ev-setinterleavingpici-ev.hyps(1) setinterleavespycr-snoc-inside)
next
case inR-mvL thus ?thesis
by (metis ev-setinterleavingptici-ev.hyps(8) rev.simps(2) setinterleaves,;cx-snoc-notinL)
next
case inL-mvR thus ?thesis
by (metis ev-setinterleavingpt;ci-ev.hyps(2) rev.simps(2) setinterleavesy;ci-snoc-notinR)

a,'s) tracepiick>

47

next
case notin-muL thus ?thesis
by (metis ev-setinterleavingpici-ev.hyps(4) rev.simps(2) setinterleavesy;cx-snoc-notinL)
next
case notin-mvR thus ?thesis
by (metis ev-setinterleavingp;ci-ev.hyps(5) rev.simps(2) setinterleavesyy;c,-snoc-notinR)
qed
next
case (ev-setinterleavingptick-tick a u s v) thus ?case
by (auto simp add: setinterleavespyicr-snoc-notinL split: if-split-asm)
next
case (tick-setinterleavingpick-ev v w b v) thus ?case
by (auto simp add: setinterleavesp;c,-snoc-notinR split: if-split-asm)
next
case (tick-setinterleavingpicr-tick r u s v)
from tick-setinterleavingpticr-tick.prems
obtain ¢’ r-s where <tick-join r s = |r-s|» <t = /(r-s) # t"
«t’ setinterleaves s yick_join ((u, v), A)
by (auto split: option.split-asm)
from «t’ setinterleaves s yick_join (v, v), A)
have (rev t' setinterleaves s ek join ((rev u, rev v), A)»
by (simp add: <tick-join r s = |r-s|» tick-setinterleavingpi;cx-tick.hyps)
hence (rev t' @ [/ (r-s)] setinterleaves ok join ((revu @ [/ (r)], rev v @ [/ (s)]),
A)»
by (simp add: <tick-join r s = |r-s|» setinterleavesyycr-snoc-tick)
thus ?case by (simp add: <t = /(r-s) # t")
qed
from this[of <rev t» <rev wy <rev vy, simplified]
show «(rev ¢ setinterleaves s yick_join ((rev u, rev v), A) =
t setinterleaves s yick_join ((u, v), A) .
qed

lemma setinterleavesy;cr-preserves-ev-notin-set :
(feva ¢ set u; eva ¢ set v; t setinterleaves s yick_join ((u, v), A)] = eva ¢ set
t
by (induct ¢(tick-join, u, A, v)» arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma setinterleavesyy; ., -inj-preserves-tick-notin-set :
(tick-join r s = |r-s]; /(1) & set u V /(s) ¢ set v;
t setinterleaves s yickjoin (4, v), A)] = /(r-s) & set &)
— This is a weakened injectivity property.
if inj-tick-join : <\r' s'. tick-join v’ s' = |r-s] = r'=rAs' =9
by (induct «(tick-join, u, A, v)) arbitrary: t u v)
(auto split: if-split-asm option.split-asm, (metis inj-tick-join)+)

lemma setinterleaves, i -preserves-ev-inside-set :
([eva € set u; ev a € set v; t setinterleaves s yick_join ((u, v), A)] = ev a € set

48

1
by (induct «(tick-join, u, A, v)» arbitrary: t u v)
(auto split: if-split-asm option.split-asm)

lemma ev-notin-both-sets-imp-empty-setinterleavingpiick
JevaesetunevadsetvVevadsetuAevaé€ setv;a€ A] =
setinterleavingpiick (tick-join, u, A, v) = {}
by (induct «(tick-join, u, A, v)s arbitrary: u v)
(simp-all, safe, auto split: option.split-asm)

lemma setinterleavesy;cr-snoc-tick-snoc-tickl:
(At r-s. tick-join r s = [r-s| =t setinterleaves s y;cf_join ((u, v), A) =
t =1t Q [V/(r-s)] = thesis) = thesis
if' <t setinterleavesy jckjoin (v @ [V(r)], v @ [/ (s)]), A
proof —
from that have <rev t setinterleaves s yck_join (V' () # rev u, V' (s) # revv), A)
by (metis (no-types) rev.simps(2) rev-rev-ident rev-setinterleavesy ;i -rev-rev-iff)
then obtain ¢’ r-s where «(tick-join r s = |r-s|» <rev t = /(r-s) # t"
«t’ setinterleaves s yick_join ((rev u, rev v), A)
by (cases t rule: rev-cases) (simp-all split: option.split-asm)
hence <rev t' setinterleaves ek join ((u, v), A) At = revt’ @ [/(r-s)]
using rev-setinterleaves,;.,-rev-rev-iff by force
with «tick-join r s = |r-s|»
show «(At' r-s. tick-join r s = |r-s| = t' setinterleaves jcpjoin ((u, v), A)
.
t =1t'Q [V/(r-s)] = thesis) = thesis» by blast
qed

lemma snoc-tick-setinterleavespticr E :
(Au' v rs. [tick-join r s = [r-s|; t setinterleaves s yjckjoin ((u', v'), A);
u=u"Q[/(r);v=12v Q[/(s)]] = thesis) = thesis»
if «t @ [/ (r-s)] setinterleaves s ick-join ((u, v), A)>
proof —
from that have <rev (t @ [V/(r-s)]) setinterleaves yjck join ((rev u, rev v), A)
by (metis (no-types) rev.simps(2) rev-rev-ident rev-setinterleavesy;.r-rev-rev-iff)
hence «/(r-s) # rev t setinterleaves yicp_join ((rev u, rev v), A)) by simp
then obtain v’ v’ r s where «<tick-join r s = |r-s]>
(rev t setinterleaves s yick join ((u', v'), A)
<revu = V/(r) # u'y <revv = V(s) # vh
by (elim Cons-tick-setinterleavesyici E)
hence (¢ setinterleaves s yjck_join ((rev u’, rev v’), A) A
u=revu Q[(r)] Av=revv @Q[/(s)]
using rev-setinterleavesysicr-rev-rev-iff by fastforce
with <tick-join r s = |r-s]»
show «(Au’ v’ rs. [tick-join r s = |r-s]; t setinterleaves ek join ((u', v'), A);
u=u" Q[(r)]; v=12" Q[/(s)]] = thesis) = thesis) by blast

49

qed

4.1.4 Lengths

lemma length-setinterleavesy;cr-eq-sum-minus-filterL :
«t setinterleaves s yick_join (4, v), A) =
length t = length u + length v — length (filter (Ae. e € range tick U ev * A) u))
proof (induct t arbitrary: u v)
case Nil
thus ?case by (auto dest: Nil-setinterleavesyi;ck)
next
note thms = Suc-diff-le le-add1 length-filter-le order-trans
case (Cons e t)
from Cons.prems consider (mv-left) a v’ where <a ¢ A> <e = ev a) <u = ev a
uh
«t setinterleaves s yick_join ((u', v), A)»
| (mu-right) a v/ where <a ¢ A <e = ev a» (v = ev a # v)
«t setinterleaves s yickjoin (4, v'), A)
| (mv-both-ev) a u’ v’ where (a € A e = evar <u =eva # u «<v=-cva#
v’
«t setinterleaves s yick_join ((u', '), A)>
| (mv-both-tick) r s r-s v’ v’ where <tick-join r s = |r-s]» <e = /(r-s)
w=V(r) # uh «w=7(s) # v’ <t setinterleaves s yicpjoin ((u', v), A)>
by (cases e) (auto elim: Cons-ev-setinterleavesy;c, B Cons-tick-setinterleavesyy;c, E)
thus Zcase
proof cases
case muv-left
from Cons.hyps[OF mu-left(4)] show ?thesis
by (simp add: mv-left(1—3) image-iff) (metis (no-types, lifting) thms)
next
case mu-right
from Cons.hyps|OF mu-right(4)] show ?thesis
by (simp add: mv-right(1—38) image-iff) (metis (no-types, lifting) thms)
next
case muv-both-ev
from Cons.hyps|OF mu-both-ev(5)] show ?thesis
by (simp add: muv-both-ev(1, 3, 4) image-iff) (metis (no-types, lifting) thms)
next
case muv-both-tick
from Cons.hyps|OF mu-both-tick(5)] show ?thesis
by (simp add: mv-both-tick(3, 4) image-iff) (metis (no-types, lifting) thms)
qed
qed

lemma length-setinterleavesyy;qr-eq-sum-minus-filterR :
«t setinterleaves s yick_join (4, v), A) =
length t = length u + length v — length (filter (Ae. e € range tick U ev © A) v))
by (subst (asm) setinterleavespicy-sym)
(auto dest: length-setinterleavesp; i -eq-sum-minus-filterL)

50

lemma setinterleavesy;cr,-eq-length :
«t setinterleaves s yick join ((u, v), A) =
t’ setinterleaves s yick_join (v, v), A) = length t = length t"
by (simp add: length-setinterleavesy;cr-eq-sum-minus-filterL)

lemma setinterleavesy;cr-imp-lengthLR-le :
«t setinterleaves s yick_join (4, v), A) =
length v < length t A length v < length t
by (induct «(tick-join, u, A, v)» arbitrary: t u v)
(fastforce split: if-split-asm option.split-asm)+

4.1.5 Trace Prefix Interleaving

We start with versions involving (@) before giving corollaries about the
prefix ordering on traces.

lemma setinterleavesycr-appendlL :
«t setinterleaves s yickjoin ((u1 @ u2, v), A) =
Jt1rt2ovliv2. t=1t1 Qt2 ANv=vl Qu2A
t1 setinterleaves s ick-join ((ul, v1), A) A
t2 setinterleaves s ick-join ((u2, v2), A)
proof (induct <(tick-join, ul, A, v)) arbitrary: t ul v)
case Nil-setinterleavingp;cr-Nil
thus ?case by simp
next
case (ev-setinterleavingpiick-Nil a ul)
from ev-setinterleavingpi;cr-Nil.prems
have <a ¢ A) <t = ev a # map ev (map of-ev (ul Q u2))
(map ev (map of-ev (ul @ u?)) setinterleaves yjck join ((ul @ u2, []), A)
by (simp-all add: setinterleavesyi;cr-NilR-iff split: if-split-asm)
from ev-setinterleavingpy;cr-Nil.hyps|OF <a ¢ Ay this(8)]
obtain tI ¢t2 v1 v2 where <map ev (map of-ev (ul @ u2)) = t1 Q t2)
(] = v1 @02y i1 setinterleavesy yjcpjoin ((ul, v1), A)
«t2 setinterleaves s ick-join ((u2, v2), A)) by blast
thus ?case
by (simp add: <a ¢ Ay <t = ev a # map ev (map of-ev (ul @ u2))»)
(metis append-Cons)
next
case (tick-setinterleavingpic,-Nil 7 ul)
from tick-setinterleavingpticr-Nil.prems have False by simp
thus ?case ..
next
case (Nil-setinterleavingpiick-€v b v)
thus ?case
by (cases u2, simp-all split: if-split-asm,)
(fastforce, metis Nil-setinterleavingpiick-Nil self-append-conv2 singleton-iff)

o1

next
case (Nil-setinterleavingpiick-tick s v)
thus “case by (cases u2, simp-all add: setinterleavingpi;cx-simps
split: eventpisck.split-asm) fastforce+
next
case (ev-setinterleavingpick-ev a ul b v)
from ev-setinterleavingpic,-ev.prems [simplified]
consider (mwv-both) t’ where (a € A» <b € A <a = b <t = evb # thH <t/
setinterleaves s yick_join ((ul @ u2, v), A)
| (muR-inL) t' where <a € Ay <b & A <t = ev b # t"» «t’ setinter-
leaves s yick_join (((ev a # ul) @ u2, v), A)
| (mvL-inR) t' where (a ¢ Ay <b € Ay <t = ev a # t» <t setinter-
leavesy ick-join ((ul @ u2, ev b # v), A)
\ (mvR-notin) t' where <a ¢ A <b ¢ Ay <t = ev b # t"» «t' setinter-
leavesy ick-join (((ev a # ul) @ u2, v), A)
| (mvL-notin) t' where <a ¢ A <b ¢ A <t = ev a # t'» «t’ setinter-
leaves s yick_join ((ul @ u2, ev b # v), A)
by (auto split: if-split-asm)
thus “case
proof cases
case muv-both
from ev-setinterleavingyi;ci-ev.hyps(1)[OF mv-both(1—38, 5)] obtain t1 ¢2 v1
v2
where «t' = t1 @ t2) «wv = vl @ v2) <t setinterleaves s ick join ((ul, v1),
A)»
(12 setinterleaves s yickjoin ((u2, v2), A)> by blast
hence «t = (ev b # t1) Q2 Nevb# v = (evb# vl) Qo2 A
ev b # t1 setinterleavesy ickjoin ((ev @ # ul, ev b # vi), A) A
t2 setinterleaves s ick-join ((u2, v2), A)» by (simp add: mv-both(1—4))
thus ?thesis by blast
next
case mvR-inL
from ev-setinterleavingpick-ev.hyps(2)[OF mvR-inL(1, 2, 4)] obtain t1 t2 v1
v2
where (¢’ = t1 @ t2) «v = vl @ v2) «t1 setinterleavesy ek join ((ev a # ul,
vl), A
(12 setinterleaves s ick_join ((u2, v2), A)> by blast
hence <t = (ev b # t1) Qt2 ANevb# v = (evb# vl) Qo2 A
ev b # t1 setinterleavesy yjcpjoin ((ev @ # ul, ev b # v1), A) A
t2 setinterleaves s ick_join ((u2, v2), A)) by (simp add: mvR-inL(1—3))
thus ?thesis by blast
next
case mvL-inR
from ev-setinterleavingp;cr-ev.hyps(3)[OF muL-inR(1, 2, 4)] obtain tI t2 v1
v2
where «t' = t1 @ 12) <ev b # v = vl @ v2) (L1 setinterleaves s ek join ((ul,
vl), A)
(12 setinterleaves s yickjoin ((u2, v2), A)> by blast

52

hence <t = (eva # t1) Q2 ANev b # v =0l Qv2 A
ev a # t1 setinterleaves s ick join ((ev a # ul, v1), A) A
t2 setinterleaves s yick-join ((u2, v2), A)
by (cases v, simp-all add: mvL-inR(1, 3))
thus ?thesis by blast
next
case mvR-notin
from ev-setinterleaving,;ci-ev.hyps(5)[OF muR-notin(1, 2, 4)] obtain ¢1 ¢2
vl v2
where «t' = t1 @ 12) «v = vl @ v2) (L1 setinterleaves s ick join ((€v @ # ul,
vl), A
(12 setinterleaves s yickjoin ((u2, v2), A)> by blast
hence «t = (ev b # t1) Qt2 Nevb# v = (evb# vl) Qu2 A
ev b # t1 setinterleaves s yick_join ((ev a # ul, ev b # vl), A) A
t2 setinterleaves s yick_join (12, v2), A)> by (simp add: mvR-notin(1—3))
thus %thesis by blast
next
case muvL-notin
from ev-setinterleavingpi;cr-ev.hyps(4)|OF mvL-notin(1, 2, 4)] obtain t1 t2
vl v2
where ¢/ = t1 @ t2) <ev b # v = vl @ v2) ({1 setinterleaves s gk join ((ul,
vl), A)
12 setinterleaves s yick-join ((u2, v2), A)) by blast
hence <t = (eva # t1) Q2 ANev b # v =0l Qv2 A
ev a # t1 setinterleaves s ick join ((ev a # ul, v1), A) A
t2 setinterleaves s yick-join ((u2, v2), A)
by (cases v1, simp-all add: mvL-notin(1, 3))
thus ?thesis by blast
qed
next
case (ev-setinterleavingp;ck-tick a ul s v)
from ev-setinterleavingpcy-tick.prems obtain ¢’
where <a ¢ Ay <t = ev a # th <’ setinterleaves s yick_join (0l @ u2, /(s) #
v), A
by (auto split: if-split-asm)
from ev-setinterleavingpy;c,-tick.hyps|OF this(1, 3)] obtain ¢1 t2 vl v2
where <t/ = t1 Q t2) «/(s) # v = vl Q v2)
(t1 setinterleaves s yickjoin ((ul, v1), A)
(12 setinterleaves s yickjoin ((u2, v2), A)> by blast
hence <t = (eva # t1) Q2 AN/ (s) # v=vl Q@ v2 A
ev a # t1 setinterleaves s yick_join ((€v a # ul, v1), A) A
t2 setinterleaves s ick join ((u2, v2), A)>
by (cases v1, simp-all add: <t = ev a # t» <a ¢ A»)
thus ?case by blast
next
case (tick-setinterleavingpicr-ev v ul b v)
from tick-setinterleavingy;cr-ev.prems obtain ¢’
where b & Ay <t = ev b # t" <t setinterleavesy ek join ((V(r) # ul) @ u2,

53

v), A
by (auto split: if-split-asm)
from tick-setinterleaving,i;cr-ev.hyps|OF this(1, 3)] obtain t1 ¢2 v1 v2
where ¢/ = t1 @ t2) «v = v1 Q v2)
(t1 setinterleavesy yick_join (V' () # ul, v1), A)>
(12 setinterleaves s ick_join ((u2, v2), A)> by blast
hence (t = (ev b # t1) Qt2 Nevb# v = (evb# vl) Qo2 A
ev b # t1 setinterleavesy yicpjoin ((V(1) # ul, ev b # v1), A) A
t2 setinterleaves s yick-join ((u2, v2), A)>
by (simp add: <t = ev b # t" b ¢ A»)
thus ?case by blast
next
case (tick-setinterleavingpicr-tick r ul s v)
from tick-setinterleavingpy;cr-tick.prems obtain r-s t’
where <tick-join r s = |[r-s]» <t = /(r-s) # t)
«t! setinterleaves s yick_join ((ul @ u2, v), A)> by (auto split: option.split-asm)
from tick-setinterleaving,;ck-tick.-hyps|OF this(1, 8)] obtain t1 {2 vl v2
where «t' = t1 Q 12) «v = vl @ v2) <1 setinterleaves s yick_join ((ul, v1), A)>
«t2 setinterleaves s ick-join ((u2, v2), A)) by blast
hence <t = (V(r-s) # t1) Q 2 AV (s) # v = (V(s) # vl) Q v2 A
v (r-s) # U1 setinterleaves yick_join ((V(r) # ul, /(s) # vl), A) A
t2 setinterleaves s ickjoin ((u2, v2), A)>
by (simp add: <tick-join r s = |r-s|» <t = V/(r-s) # t")
thus ?case by blast
qed

corollary setinterleaves,;cr-appendR :
Jt1 t2ul u2. t=1t1 Q2 ANu=ul Qu2 A
t1 setinterleaves s ickjoin ((ul, v1), A) A
t2 setinterleaves s ickjoin ((u2, v2), A)>
if' <t setinterleavesy ickjoin ((u, v @ v2), A)
proof —
from that have <t setinterleavesy xg 1. tick-join r s (v1 @ v2, u), A)
using setinterleavesy;cr-sym by blast
from setinterleavespick-appendL]OF this]
obtain ¢ t2 ul u2 where ¢t = t1 Q t2) <u = ul Q u2»
«t1 setinterleavesy \s r. tick-join r s ((v1, ul), A)>
42 setinterleavesy \g 1. tick-join r s ((v2, u2), A)» by blast
from this(3, 4) have <t1 setinterleaves s yc_join ((ul, v1), A)
42 setinterleaves s yickjoin ((u2, v2), A)>
using setinterleavesyi;cr-sym by blast+
with <t = ¢t1 Q t2) <u = ul Q u2> show ?thesis by blast
qed

lemma append-setinterleavesysicr :
(t1 @ t2 setinterleaves s yick_join ((u, v), A) =

54

Jul u2viv2. u=ul Qu2 Av=uvlQuv2A
t1 setinterleaves s ick-join ((ul, v1), A) A
t2 setinterleaves s ick-join ((u2, v2), A)
proof (induct t1 arbitrary: u v)
case Nil
hence «u =[]Qw (w=1[Qw»
([} setinterleaves s ek join ([, 1), A)
(12 setinterleaves s yick_join ((u, v), A)) by simp-all
thus “case by blast
next
case (Cons e t1)
from Cons.prems consider (muv-left) a u’ where <a ¢ 4> <e = ev @) <u = ev a
uh
(t1 @ t2 setinterleaves s ick_join ((u'; v), A)
| (mv-right) a v’ where <a ¢ Ay <e = ev @ (v = ev a # v)
(t1 @ 12 setinterleaves yick_join ((u, v'), A)
| (mv-both-ev) a u’ v’ where <a € Ay ce = eva» <u = eva # u' v =-ceva#
v’
(t1 @ 12 setinterleaves s yjckjoin ((u', v'), A)
| (mv-both-tick) r s r-s u" v’ where <tick-join r s = |r-s]> <e = /(r-s)»
w=V(r) # uh «w="(s) # vh «t1 Q12 setinterleaves yick_join ((u', v'), A)
by (cases e) (auto elim: Cons-ev-setinterleavesy;c, 2 Cons-tick-setinterleaves,i;cr F)
thus “case
proof cases
case mu-left
from Cons.hyps|OF mu-left(4)] obtain ul u2 vl v2
where «u' = ul @ u2» «t1 setinterleaves s ickjoin ((ul, v1), A)>
and * : v = vl @ v2) 12 setinterleaves yicf_join ((u2, v2), A)> by blast
from this(2) have <e # (1 setinterleavesy yickjoin ((ev a # ul, vl), A)
by (cases v1) (auto simp add: <a ¢ A> <e = ev > setinterleavingpcr-simps
split: eventpi;ck.split)
moreover from v’ = ul @ u2> have <u = (ev a # ul) Q u2»
by (simp add: mv-left(3))
ultimately show ?thesis using =(1, 2) by blast
next
case mu-right
from Cons.hyps|OF mv-right(4)] obtain ul u2 vl v2
where v’ = vl @ v2) (1 setinterleaves s ok join ((ul, v1), A)
and * : <u = ul @ u2) «t2 setinterleavesy yjcp_join ((u2, v2), A)» by blast
from this(2) have <e # t1 setinterleavesy yicpjoin ((ul, ev a # vl), A)
by (cases ul) (auto simp add: <a ¢ A> <e = ev a» setinterleavingpt;ck-simps
split: eventyy;ck.split)
moreover from v’ = vl @ v2> have (v = (ev a # vl) Q v2»
by (simp add: mv-right(3))
ultimately show ?thesis using (1, 2) by blast
next
case muv-both-ev
from Cons.hyps|OF muv-both-ev(5)] obtain ul u2 vl v2

55

where «u' = ul @ u2) «v'= vl @ v2) <t1 setinterleaves s yic_join ((ul, v1),
A)»
and * : <2 setinterleaves s yick_join (12, v2), A)> by blast
from this(3) have <e # t1 setinterleaves yicr_join ((ev a # ul, ev a # vl),
A)»
by (simp add: <a € A <e = ev @)
moreover from <u' = ul Q u2) have «u = (ev a # ul) Q u2»
by (simp add: mv-both-ev(8))
moreover from v’ = vl Q v2» have (v = (ev a # vl) Q v2)
by (simp add: mv-both-ev(4))
ultimately show ¢thesis using * by blast
next
case muv-both-tick
from Cons.hyps|OF mu-both-tick(5)] obtain ul u2 vl v2
where «u’' = ul @ u2) «v'= vl @ v2) <t1 setinterleaves s yc_join ((ul, v1),
A)»
and * : <2 setinterleaves s yick_join (02, v2), A)> by blast
from this(3) have e # t1 setinterleaves s yick_join ((V(r) # ul, /(s) # vl),
A)»
by (simp add: mv-both-tick(1, 2))
moreover from v’ = ul Q u2) have «u = (V(r) # ul) Q u2»
by (simp add: muv-both-tick(3))
moreover from (v’ = vl @Q v2) have v = (V/(s) # v1) Q v2)
by (simp add: mv-both-tick(4))
ultimately show ?thesis using * by blast
qed
qed

corollary setinterleavesy;cr-le-prefixL :
«t setinterleaves s yick_join ((u, v), A) = v/ < u =
Jt' < t. I < .t setinterleaves s yickjoin (W', V'), A)
by (auto elim!: preficE dest!: setinterleaves,i;cr-appendL intro: prefizl)

corollary setinterleavesyt;cr-le-prefizR :
«t setinterleaves s yick_join (U, v), A) = v' < v =
' < b Fu’ < et setinterleaves s yick_join (0, 0), A
by (auto elim!: prefixE dest!: setinterleaves,i;.r-appendR intro: prefixl)

corollary le-prefiz-setinterleavespici :
«t setinterleaves s yick_join ((u, v), A) = t' < t =
Ju’ < u. Jv' < vt setinterleaves s yickjoin (0, v), A
by (auto elim!: preficE dest!: append-setinterleavesyticy, intro: prefizl)

56

lemma setinterleavesy;cr-less-prefizL :

«t setinterleaves s yick_join (4, v), A) = v’ < u =

Jt o't <t AV < v At setinterleaves s yiok_join ((u', v), A)
proof (induct «(tick-join, u, A, v)» arbitrary: t u u’ v)

case Nil-setinterleavingpticr-Nil thus case by simp

next

case (ev-setinterleavingpticr-Nil a u)

from «u’ < ev a # w consider v’ = [| " where (v’ = ev a # u'» ' <
u

by (metis Prefiz-Order.prefiz-Cons less-list-def)
thus ?case
proof cases
from ev-setinterleavingyi;cr-Nil.prems(1)
show «u’ = [| = Zcase> by (auto split: if-split-asm)
next
fix u' assume v’ = eva # u'» w'” < w
from ev-setinterleavingp;cr-Nil.prems(1)
obtain t’ where <a ¢ A «¢t = ev a # t" «t’ setinterleaves s yick_join ((u, []),
A)»
by (auto split: if-split-asm)
from ev-setinterleavingy;cr-Nil.hyps|OF <a ¢ A» this(3) «u'' < w]
obtain ¢" v’ where «t" < th ' <[]y «t"" setinterleaves yicp_join ((u”', v’),
A)> by blast
hence <eva # t"" <t AN v <[] A eva # t" setinterleaves s yicp_join (v, V),
A)»
by (simp add: «uv' = eva # u's <t =eva# th <a g A)
thus ?case by blast

qed
next

case (tick-setinterleavingpicr-Nil r u) thus ?case by simp
next

case (Nil-setinterleavingpticr-ev b v) thus case by simp
next

case (Nil-setinterleavingyiicx-tick s v) thus ?case by simp
next

case (ev-setinterleavingptick-ev a u b v)

from «u’ < ev a # w consider v’ = [| " where (v’ = ev a # u'» «w" <
w

by (metis Prefiz-Order.prefiz-Cons less-list-def)
thus Zcase

proof cases
from ev-setinterleavingp;cr-ev.prems(1)
show «u’ = [| = Zcase> by (simp split: if-split-asm) force+
next
fix v assume (v’ = eva # u'» v < w
hence <ev a # u'' < ev a # w by simp
from ev-setinterleavingp;cr-ev.prems(1)
consider (both-in) t' where <a € A> <b € A <a = b <t =eva# th
«t! setinterleaves s yick-join (4, v), A)

o7

| (inR-muvL) t' where <a ¢ A> <b € A <t =eva#th
«t’ setinterleaves s yick_join ((u, ev b # v), A)
(inL-mvR) t' where <a € A> <b ¢ A <t =evb # t)
«t’ setinterleaves s yick_join ((ev a # u, v), A)
| (notin-mvL) t’ where <a ¢ Ay <b ¢ A> <t = eva # th
«t’ setinterleaves s yick-join ((u, ev b # v), A
| (notin-mvR) t’ where <a ¢ A» <b ¢ A> <t = ev b # t)
«t' setinterleaves s yck_join ((ev a # u, v), A))
by (auto split: if-split-asm)
thus “case
proof cases
case both-in
from ev-setinterleavingp;cr-ev.hyps(1)[OF both-in(1—38, 5) «u'" < w)]
obtain t" v’ where " < t' A v' < v At setinterleavesy ek join (0" V'),
A)s by blast
hence ceva # t" <t Nevb# v <evb# v A
ev a # t" setinterleaves yick join ((u', ev b # v'), A)
by (simp add: both-in(2, 3, 4) <u' = eva # u'")
thus “thesis by blast
next
case inR-mvL
from ev-setinterleavingpicr-ev.hyps(3)[OF inR-mvL(1, 2, 4) <u" < w]
obtain t" v’ where " < t' A v' < ev b # v A t" setinterleaves yick join
((u", v"), A)» by blast
hence <eva # t" <t ANv' <evb# v A
ev a # t'' setinterleaves s ick-join ((u', v'), A)
by (cases v') (simp-all add: inR-mvL(1—38) «u' = ev a # u'»)
thus ?thesis by blast
next
case inL-muR
from ev-setinterleaving,iici-ev.hyps(2)[OF inL-mvR(1, 2, 4) <ev a # u'' <
ev a # w]
obtain ¢t v’ where " < t' A v' < v A t" setinterleaves s yick-join ((€v a #
u', v'), A)) by blast
hence <ev b # t" <t ANevb# v <evb#vA
ev b # t" setinterleavesy icp_join ((u's ev b # v), A
by (simp add: inL-mvR(1—3) <u' = ev a # u'»)
thus ?thesis by blast
next
case notin-muvL
from ev-setinterleavingpicr-ev.hyps(4)[OF notin-mvL(1, 2, 4) <u'" < w]
obtain ¢t v/ where <t/ < t' AN v/ < evb# v At" setinterleaves/tick_jom
((u") v"), A)» by blast
hence <eva # t" <t ANv' <evb# v A
ev a # t" setinterleaves yicpjoin (0, v'), A)
by (cases v') (simp-all add: notin-mvL(1—38) <u' = ev a # u'")
thus ?thesis by blast
next

58

case notin-mvR

from ev-setinterleaving,i;cr-ev.hyps(5)[OF notin-muR(1, 2, 4) <ev a # u”
< eva # w)

obtain t" v’ where «t"" < t' A v’ < v At setinterleavesy ek join ((ev a #
u'; v’), A)> by blast

hence <ev b # t"" <t Nevb# v <evb# v A

ev b # t" setinterleaves s yick_join ((u', ev b # v'), A)
by (simp add: notin-mvR(1—3) <u' = ev a # u'")
thus ?thesis by blast

qged
qed
next
case (ev-setinterleavingpicr-tick a u s v)
from «u’ < ev a # w consider v’ = [» | u” where (v’ = ev a # u'» ' <

u
by (metis Prefiz-Order.prefiz-Cons less-list-def)
thus ?case
proof cases
from ev-setinterleavingp ;. -tick.prems(1)
show «u’ = [| = Zcase> by (simp split: if-split-asm) force+
next
fix u' assume v’ = eva # v’ w" < w
from ev-setinterleavingyi;cr-tick.prems obtain t’
where <a & Ay «t = eva # t" «t' setinterleaves s yicf._join ((u, V() # v), A)
by (auto split: if-split-asm)
from ev-setinterleavingy;ci-tick-hyps|OF <a ¢ A this(3) «u' < w]
obtain t" v’ where <" < t' A v' < /(s) # v At setinterleaves s yick_join
((u”, v"), A)> by blast
hence (eva # t" <t ANV < V/(s) # v A eva#t" setinterleaves s ick-join
((u', v"), A
by (cases v') (simp-all add: <a ¢ Ay <u’' = eva # u'y <t = eva # th)
thus ?case by blast
qed
next
case (tick-setinterleavingpyicr-ev r u b v)
from «u’ < V/(r) # w consider «u’ = [| v” where v’ = V(r) # u'» «u" <
U
by (metis Prefiz-Order.prefiz-Cons less-list-def)
thus ?case
proof cases
from tick-setinterleaving,;cr-ev.prems(1)
show «u’ = [| = Zcase> by (simp split: if-split-asm) force+
next
fix u' assume <u' = V(1) # v’ W’ < w
hence «/(r) # v < /(r) # w by simp
from tick-setinterleavingp,i;cr-ev.prems obtain t’
where «b & Ay <t = ev b # t <t setinterleaves s ick_join ((V (1) # u, v), A)
by (auto split: if-split-asm)
from tick-setinterleavingpicr-ev.hyps|OF <b ¢ A this(3) «/(r) # v’ < /(1)

59

w]
obtain ¢" v’ where " < t' A v < v A t" setinterleaves s ek join ((V(1) #
u', v'), A)) by blast
hence <ev b # t" <t Nevb# v < evb# v A
ev b # t" setinterleaves yichjoin ((u', ev b # v'), A)
by (simp add: <b ¢ A «u' = V(1) # u'» <t = ev b # t")
thus ?case by blast

qed
next

case (tick-setinterleavingpicy-tick r u s v)

from «u’ < V/(r) # w> consider v’ = [| v’ where v’ = V(r) # v’ W <
w

by (metis Prefiz-Order.prefiz-Cons less-list-def)
thus ?case
proof cases
from tick-setinterleavingp ;. -tick.prems(1)
show «u’ = [| = ?case> by (force split: option.split-asm)
next
fix u' assume <u' = /(1) # v’ «w” < w
from tick-setinterleavingy ;. -tick.prems(1)
obtain t’ r-s
where «tick-join s = [r-s]» <t = /(r-s) # t"» <t setinterleaves s ick-join (4,
v), A
by (auto split: option.split-asm)
from tick-setinterleavingy;cr-tick.-hyps|OF this(1, 8) «u'" < w]
obtain ¢" v’ where " < t' A v’ < v A t" setinterleaves s ick-joim ((u”; v'),
A)> by blast
hence /(r-s) # t"" < t ANV (s) # v < V(s) # v A /(r-s) # t' setinter-
leaves s tick-join ((u', /(s) # 0'), A
by (simp add: <tick-join r s = |r-s|» «u' = /(r) # u'» <t = /(r-s) # t)
thus ?case by blast
qed
qed

corollary setinterleavesyt;cr-less-prefixR :
«t setinterleaves s yick_join (4, v), A) = v/ < v =
't <t A’ < u At setinterleaves s yickjoim (0, v'), A)
using setinterleavespi;ci-less-prefizl setinterleavesyi;cr-sym by blast

lemma setinterleavesy;ci-le-prefixLR :
«t setinterleaves s yick_join (4, v), A) = v' < u=v' < v =
(Ft' <t Fv" < o't setinterleaves s ek join ((u', v"), A)) V
(Ft' <t Ju” < ul b’ setinterleavesy ok join (u”, v'), A))
proof (induct «(tick-join, u, A, v)y arbitrary: t u u’ v v’)
case Nil-setinterleavingpici-Nil thus ?case by simp

60

next

case (ev-setinterleavingpiick-Nil a v) thus ?case by simp fastforce
next

case (tick-setinterleavingpicr-Nil r u) thus ?case by simp
next

case (Nil-setinterleavingyiick-ev b v) thus case by simp fastforce
next

case (Nil-setinterleavingpiicx-tick s v) thus ?case by simp
next

case (ev-setinterleavingptick-ev a u b v)

show “case

proof (cases «u’ =[] V v’ =[])

show «u' =[] V v’ =[] = %case> by force
next

assume - (u' = Vo' =)

with ev-setinterleavingp;c,-ev.prems(2, &)
obtain v’ v"" where <u' = eva # v’y «w'" < w W =evb# v W' <w»
by (meson Prefiz-Order.prefiz-Cons)
from ev-setinterleavingp;cr-ev.prems(1)
consider (both-in) t' where <a € 4> <b € A <a = b <t = eva # th
«t’ setinterleaves s yick_join ((u, v), A)
| (inR-muL) t' where <a ¢ Ay <b € Ay <t = eva # t)
«t’ setinterleaves s yick_join ((u, ev b # v), A)»
| (inL-mvR) t' where <a € A» <b ¢ A <t =evb # t)
«t! setinterleaves s yick-join ((€v a # u, v), A)
| (notin-muL) t’ where <a ¢ A> <b ¢ A <t = eva # t)
«t! setinterleaves s yick_join (U, €v b # v), A)
| (notin-muR) t' where <a ¢ A» <b ¢ A <t =ev b # t)
«t! setinterleaves s yick_join ((€v a # u, v), A)
by (auto split: if-split-asm)
thus “case
proof cases
case both-in
from ev-setinterleavingyicr-ev.hyps(1)[OF both-in(1—8, 5) «u" < wy v"" <
]
show ?thesis
proof (elim disjE exE conjE)
ﬁx tll ,U///
assume (¢ < t') " < 0" " setinterleaves s yick_join (v, v""'), A)
hence (ecv b # t" <t ANevb# v <v' A
ev b # t" setinterleavesy yickjoin ((u's ev b # v'"), A
by (simp add: <u' = ev a # v’y v’ = ev b # v both-in(2—4))
thus ?thesis by blast
next
ﬁX t// u///
assume «¢" <t/ ' < u') " setinterleavesy yick join ((u"', v"), A)
hence <eva # t" <t ANeva#u" <u' A
ev a # t" setinterleavesy yick join ((ev a # u'”, v'), A))

61

by (simp add: <u’' = ev a # u'» v’ = ev b # v both-in(2—4))
thus ?thesis by blast
qed
next
case nR-mvL

from ev-setinterleavingpiick-ev.hyps(3)[OF inR-muL(1, 2, 4) «uw” < w v’ <
ev b # v
show ?thesis
proof (elim disjE exE conjFE)
ﬁx t// ,U///
assume (t" < t) """ < v <" setinterleaves s yickjoin ((u”, v"), A
hence <eva # t"”" <t A v < v’ A
ev a # t'' setinterleaves s ick_join ((u', 0""'), A)
by (cases v'") (simp-all add: <u' = eva # u'» «v'=evb# vy inR-mvL(1,
3))
thus ?thesis by blast
next
ﬁx t// u///
assume «t" <t/ ' < w') (" setinterleavesy ok join ((u, v'), A)
hence <eva # t" <t ANeva# v <u A
ev a # t'" setinterleaves s ick_join ((ev a # u'", v'), A)
by (simp add: <u’' = eva # v v’ = ev b # v inR-mvL(1, 8))
thus ?thesis by blast
qed
next
case inL-mvR
from ev-setinterleaving,s;c,-ev.hyps(2)[OF inL-mvR(1, 2, 4) <u' < ev a #
2
wy v < v
show ?thesis
proof (elim disjE exE conjFE)
ﬁx t// ,U///
assume <t < th """ < 0’ <" setinterleaves s gk join ((u', 0"), A
hence <ev b # t" <t ANevb# v < v A
ev b # t"" setinterleaves s yick_join ((u', ev b # v'"), A)
by (simp add: <u’' = ev a # v v’ = ev b # v inL-moR(2, 8))
thus ?thesis by blast
next
ﬁx t/l u///
assume «t" < t') ' < uy <" setinterleaves s yick_joim ((u'”, v"), A
hence <ev b # t"" <t Au'"" < u' A
ev b # t'" setinterleaves s ek join ((u'”, v'), A
by (cases u""’) (simp-all add: «uv' = eva # u'» «v' = ev b # v inL-mvR(2,

3))
thus ?thesis by blast
qed
next
case notin-muvL

from ev-setinterleavingyicr-ev.hyps(4)[OF notin-muL(1, 2, 4) «u" < w «v’
< evb# v

62

show ?thesis
proof (elim disjE exE conjE)
ﬁX t// /U///
assume «t" < t') " < v <t" setinterleaves s yick_join ((u', v""'), A
hence <eva # t"”" <t ANv'" < v A
ev a # t" setinterleaves yicp join (v, v""'), A)
by (cases v""") (simp-all add: <u' = eva # v «v' = ev b # v""y notin-muvL(1,
9)
thus “thesis by blast
next
ﬁX t// u///
assume «¢" < t') ' < u'h " setinterleavesy ek join ((u', v7), A
hence <eva # t" <tANeva#u" <u' A
ev a # t" setinterleavesy ok join ((ev a # u'”, v'), A))
by (simp add: «uv’ = ev a # vy v’ = ev b # v notin-mvL(1, 8))
thus ?thesis by blast
ged
next
case notin-mvR
from ev-setinterleavingp;cx-ev.hyps(5)[OF notin-mvR(1, 2, 4) «u' < ev a #
uy v <]
show ?thesis
proof (elim disjE exE conjE)
ﬁx t// U///
assume <t < th ' < v’ " setinterleaves s yick_join ((u’, 0", A)
hence <ev b # t" <t Nevb# v < v A
ev b # t"" setinterleaves s yick_join ((u', ev b # v'"), A)
by (simp add: «uv’ = ev a # v’ v’ = ev b # v notin-mvR(2, 3))
thus ?thesis by blast
next
ﬁx t// u///
assume <t'" <t '’ < uh <" setinterleaves s yick_join ((u', v"), A)
hence <ecv b # t"”" <t A u"" < u' A
ev b # t" setinterleavesy yick_join ((u", v'), A)
by (cases u'"”) (simp-all add: <u' = eva # u'» <«v' = ev b # v'") notin-mvR(2,
3))
thus ?thesis by blast
qed
ged
qed
next
case (ev-setinterleavingptick-tick a u s v)
show ?case

proof (cases «u’ =[] V v’ =)

show «u' =[] V v/ =[] = ?case> by force
next

assume - (u' = Vo' =)

with ev-setinterleavingp;cr-tick.prems(2, 3)
obtain «'’ v’ where v’ = ev a # u'h <u" < w «w' =V (s) # v W' < w»

63

by (meson Prefix-Order.prefiz-Cons)
from ev-setinterleavingycy-tick.prems(1)
obtain ¢’ where <a ¢ A) <t = eva # t)
«t' setinterleaves s yick_join ((u, V' (8) # v), A)
by (auto split: if-split-asm)
from ev-setinterleavingpe;cr-tick.hyps|OF this(1, 8) «u" < w» v’ < V(s) # »]
show ?Zcase
proof (elim disjE exE conjFE)
fix t" 0" assume <t"" <) """ < v’ X" setinterleaves s yickjoin ((u

A)»

"o
; v’

hence <eva # t" <t ANV < v ANevad#t setinterleaves s yick_join ((u',
U///), /4)>
by (cases v'"') (simp-all add: <a ¢ Ay <t = eva # th «u' = eva # u' W’
=V (s) # v'")
thus ?case by blast
next
fix ¢t" u'" assume " < t") """ < u' " setinterleaves s yick-join (0", v'),
A)»
hence <eva # t"<tANeva#u"" <u' Nevad#t" setinterleaves s yick_join
((eva # u'" v'), A
by (simp add: <a ¢ A> <t = eva # th «u' = eva# u' «w' =/(s) #v'")
thus ?case by blast
qed
qed
next
case (tick-setinterleavingpiicr-ev r u b v)
show ?case

proof (cases «u' = Vv’ =1[])

show (v’ =[] V v/ =[] = ?case> by force
next

assume - (v =[] Vo' =[]

with tick-setinterleavingpi;ci-ev.prems(2, 3)
obtain u" v” where v’ = V(r) # u'» «w"” < w w' = ev b # v W’ < v
by (meson Prefix-Order.prefiz-Cons)
from tick-setinterleavingp;cr-ev.prems(1)
obtain ¢’ where b ¢ A) <t = ev b # ¢
«t! setinterleaves s yick_join (V(1) # u, v), A)
by (auto split: if-split-asm)
from tick-setinterleavingpici-ev.hyps[OF this(1, 3) «u' < /(1) # w» " < w)]
show ?case
proof (elim disjE exE conjF)
fix t" 0" assume <t"" <t " < 0" 4" setinterleaves s ick-join (0, v""),
A)»
hence <ev b # t" < t Aevb # v < v A evb # t" setinterleaves s yickjoin
((u', ev b # 0", A
by (simp add: <b ¢ Ay <t = evb# th «w' =/ (r) # u'» «w' =evb# v'")
thus ?case by blast
next
fix ¢t" u'" assume " < t") W' < uh X" setinterleaves s yick_join ((u'”, v"),

64

A)»
hence <ev b # t"" < t AN u'" < u' A ev b # t" setinterleaves s ek join (v,
v’), A
by (cases u'”) (simp-all add: <b ¢ A> <t = ev b # t «u' =V (r) # u'» v’
=evb# v'")
thus ?case by blast
qed
qed
next
case (tick-setinterleavingpick-tick r u s v)
show ?Zcase

proof (cases <u’ =[] Vv =[])

show «u' =[] V v’ =[] = %caser by force
next

assume - (u' =[] Vo' =[]

with tick-setinterleavingp;cr-tick.prems(2, 3)
obtain u" v where (v’ = V/(r) # u'» «w"” < w w' = (s) # v W’ < w
by (meson Prefiz-Order.prefiz-Cons)
from tick-setinterleaving,;cr-tick.prems(1)
obtain ¢’ r-s where «t = V(r-s) # t"» <tick-join r s = |[r-s]»
«t! setinterleaves s yick_join (4, v), A)
by (auto split: option.split-asm)
from tick-setinterleavingpyic,-tick.hyps|OF this(2, 3) «u" < w " < »]
show Zcase
proof (elim disjE exE conjFE)
ﬁX t// ,U///
assume <" <t "' < 0’ <" setinterleaves s yick join ((u”, v""'), A)
hence «/(r-s) # t"" <t ANV (s) # v < v' A
Vv (r-s) # t"" setinterleaves s yicr_join (0, V() # v""'), A)
by (simp add: <tick-join r s = |r-s]» <t = /(r-5) # t)
' =(r) # u'h ' =(s) # 0h)
thus ?case by blast
next
ﬁX t// u///
assume <" <t ' < u'h " setinterleaves s yickjoin ((u'”, v"), A)>
hence «/(r-s) # t" <t ANV (1) # v’ < u' A
v (r-s) # t" setinterleaves s yicp_join (Y (r) # u'”, v'), A
by (simp add: <tick-join r s = |r-s]» <t = /(r-s) # t)
' =V(r) # u'h ' =v(s) # vh)
thus ?case by blast
qged
qed
qed

4.1.6 Hiding Events

lemma setinterleavesy;c,-trace-hide :
«t setinterleaves s yick_join (4, v), §) =
trace-hide t (ev * A) setinterleaves yickjoin

65

((trace-hide uw (ev * A), trace-hide v (ev © A)), S)
proof (induct <(tick-join, u, S, v)) arbitrary: t u v)
case Nil-setinterleavingp;cr-Nil
thus ?case by simp
next
case (ev-setinterleavingpick-Nil a)
from ev-setinterleavingpiick-Nil.prems obtain t’ where <o ¢ S <t = ev a # t"
«t! setinterleaves s yick_join (4 [1), S)» by (auto split: if-split-asm)
from ev-setinterleavingpic,-Nil.hyps[OF this(1, 3)]
show ?case by (simp add: image-iff[of <ev -] <a & S) <t = eva # t")
next
case (tick-setinterleavingpicr-Nil T u)
from tick-setinterleavingpticr-Nil have False by simp
thus ?case ..
next
case (Nil-setinterleavingpiicr-€v b v)
from Nil-setinterleavingpiick-ev.prems obtain ¢’ where <b ¢ S) <t = ev b # t)
«t’ setinterleaves s yick_join ([, v), S)» by (auto split: if-split-asm)
from Nil-setinterleavingpiick-ev.hyps[OF this(1, 8)]
show ?case by (simp add: image-iff[of <ev -] <b & S» <t = ev b # t")
next
case (Nil-setinterleavingpi;cr-tick s v)
from Nil-setinterleavingpi;c-tick.prems have False by simp
thus ?case ..
next
case (ev-setinterleavingptick-€v a v b v)
from ev-setinterleavingpi;cr-ev.prems
consider (both-in) t' where <a € §) <b € S» <a = b <t =eva#th
«t’ setinterleaves s yickjoin ((4; v), S)
| (inR-muL) t' where <a ¢ S) <b € S» <t =eva# th
«t’ setinterleaves s yick_join (4, v b # v), S)
| (inL-muvR) t' where <a € S» <b ¢ S» <t = ev b # t)
«t’ setinterleaves s yick_join ((ev a # u, v), S)
| (notin-mvL) t’ where <a ¢ S» <b ¢ S» <t = eva # t)
«t’ setinterleaves s yick_join ((u, ev b # v), S)
| (notin-muR) t’' where <a ¢ S» <b ¢ S» <t = ev b # t)
«t’ setinterleaves s yick_join ((€v a # u, v), S)
by (auto split: if-split-asm)
thus ?case
proof cases
case both-in
from ev-setinterleavingpick-ev.hyps(1)[OF both-in(1—3, 5)]
show ?Zthesis by (simp add: both-in(2—5) image-iff[of <ev -)])
next
case nR-muL
from ev-setinterleavingpici-ev.hyps(8)[OF inR-mvL(1, 2, 4)]
show ?thesis by (cases <trace-hide v (ev * A)»)
(auto simp add: inR-mvL(1—3) setinterleavingpcr-simps
split: if-split-asm eventpi;ck.split)

66

next
case inL-mvR
from ev-setinterleavingpicr-ev.hyps(2)[OF inL-muR(1, 2, 4)]
show ?thesis by (cases <trace-hide u (ev © A)»)
(auto simp add: inL-mvR(1—38) setinterleavingp;ck-simps
split: if-split-asm eventyyck.split)
next
case notin-mvL
from ev-setinterleavingpicr-ev.hyps(4)[OF notin-mvL(1, 2, 4)]
show ?thesis by (cases <trace-hide v (ev ‘< A)»)
(auto simp add: notin-mvL(1—38) setinterleavingpiick-simps
split: if-split-asm eventyick.split)
next
case notin-muR
from ev-setinterleavingpic,-ev.hyps(5)[OF notin-mvR(1, 2, 4)]
show ?thesis by (cases (trace-hide u (ev “ A)»)
(auto simp add: notin-mvR(1—3) setinterleavingyi;ck-simps
split: if-split-asm eventyi;ck.split)
qed
next
case (ev-setinterleavingpicr-tick a u s v)
from ev-setinterleavingyi;cx-tick.prems obtain ¢’ where <a ¢ S) <t = ev a #
t’
«t’ setinterleaves s yick_join ((u, V' (s) # v), S)» by (auto split: if-split-asm)
from ev-setinterleavingpci-tick.hyps|OF this(1, 3)]
show ?case by (simp add: image-iff [of <ev -] image-iff[of «/(-)}] <a & S <t =
eva # th)
next
case (tick-setinterleavingpyyicr-ev r u b v)
from tick-setinterleavingpi;c,-ev.prems obtain t’ where b ¢ S» <t = ev b # t%
«t" setinterleaves s yick_join ((V(r) # u, v), S)» by (auto split: if-split-asm)
from tick-setinterleavingp;cr-ev.hyps|OF this(1, 3)]
show ?case by (simp add: image-iff[of <ev -] image-iff [of «/(-))] <b & S» <t =
ev b # th)
next
case (tick-setinterleavingpick-tick r u s v)
from tick-setinterleavingpticr-tick.prems
obtain r-s t’ where <tick-join r s = |[r-s]» <t = /(r-s) # t)
«t’ setinterleaves s yick_join ((u, v), S)» by (auto split: option.split-asm)
from tick-setinterleaving,y;cr-tick.-hyps|OF this(1, 8)]
show ?case by (simp add: image-iff [of «/(-)] <tick-join rs = |r-s]> <t = /(1-s)
4 1)
qed

lemma trace-hide-map-map-event,iicr :
trace-hide (map (map-eventyicr fg) t) S =
map (map-eventpiick fg) (trace-hide t (map-eventyick fg —*S))
by (induct t) simp-all

67

lemma tickFree-trace-hide-map-ev-comp-of-ev :
(tF t = trace-hide (map (ev o of-ev) t) (ev * A) =
map (ev o of-ev) (trace-hide t (ev * A)))
by (induct t) (auto simp add: image-iff)

lemma tickFree-disjoint-setinterleavesy;cr-appendL :
(tF ul = {a. eva € set ul} N A = {} = t setinterleavesy ek join ((u2, v),
4)
= map (ev o of-ev) ul Q@ t setinterleavesy ek join ((ul @ u2, v), A)
proof (induct ul)
case Nil
from Nil.prems(3) show Zcase by simp
next
case (Cons e ul)
from Cons.prems(1, 2) obtain a
where (¢ = ev > <a ¢ Ay tF uly {a. eva € setul} N A= {}>
by (auto simp add: disjoint-iff is-ev-def)
from Cons.hyps|OF this(3, 4) Cons.prems(3)]
have (map (ev o of-ev) ul @ t setinterleaves s ickjoin ((ul @ u2, v), A)> .
with <e = ev @» (a ¢ A»
show ?case by (cases v)
(auto simp add: setinterleavingyi;cx-simps comp-def split: eventy,y;cr.split)
qed

corollary tickFree-disjoint-setinterleavesy;cr-appendR :
([tF vi; {a. eva € set vi} N A = {}; t setinterleaves yjcpjoin ((u, v2), A)]
= map (ev o of-ev) vl Q@ t setinterleavesy ickjoin ((u, vI @ v2), A)»
by (metis setinterleavespyicr-sym tickFree-disjoint-setinterleavesytcr-appendL)

lemma tickFree-disjoint-setinterleavesyt i -append-taill :
(t @ map (ev o of-ev) u2 setinterleaves yick_join ((ul @ u2, v), A)
if @Fu2)y {a. eva€ setul}t N A={} < setinterleavesy jckjoin ((ul, v), A)
proof —
have <t @ map (ev o of-ev) u2 setinterleaves yick_join ((ul @ u2, v), A) +—
map (ev o of-ev) (rev u2) @ rev t setinterleaves s yick_join ((rev u2 @ rev ul,
rev v), A)
by (subst rev-setinterleavesy ;i -rev-rev-iff [symmetric])
(simp add: rev-map)
also have ...
proof (rule tickFree-disjoint-setinterleavespycr-appendL)
show «tF (rev u2)» by (simp add: that(1))
next
show «{a. ev a € set (revu2)} N A = {}» by (simp add: that(2))
next
show «(rev ¢ setinterleaves s ok join ((rev ul, rev v), A)

68

by (simp add: rev-setinterleavesy ;. -rev-rev-iff that(3))
qed
finally show ?thesis .
qed

corollary tickFree-disjoint-setinterleavesptc-append-tailR :
([tF v2; {a. eva € set v2} N A = {}; ¢ setinterleaves s ek join ((u, v1), A)]
= 1 @ map (ev o of-ev) v2 setinterleaves s yick join ((u, v1 @ v2), A)
by (metis setinterleavesyck-sym tickFree-disjoint-setinterleavesp ;i -append-tailL)

lemma disjoint-trace-hide-setinterleaves,icr,
«t setinterleaves s yick_join
((trace-hide u (ev * A), trace-hide v (ev © A)), S) =
3¢’ t = trace-hide t’ (ev * A) A
t’ setinterleaves s yick_join ((u, v), S) if (AN S ={h
for ¢ :: «(("a, t) traceprick> and u :: «(‘a, 'r) tracepiicr> and v <(‘a, 's) tracepyicy
proof —
let ?th = trace-hide and ?A = <ev ‘< A»
show <t setinterleaves s yick-join
((Pthu ?A, ?th v PA), §) = 3t". t = ?th t' PA N\ t' setinterleavesy yick join
((u, v), §)
proof (induct <(tick-join, u, S, v)» arbitrary: t u v)
case Nil-setinterleavingpi;cr-Nil
then show Zcase by simp
next
case (ev-setinterleavingpiicr-Nil a u)
from ev-setinterleavingpt;cr-Nil.prems
consider t’ where <a ¢ Sy <a ¢ A <t = eva # t)
«t! setinterleaves s yick_join ((?th u 2A, ?th [| 2A), S)
| <a € A <t setinterleaves s yick join ((?th u ?A, ?th [] A), S)
by (auto split: if-split-asm)
thus Zcase
proof cases
fix t’ assume <a ¢ S» <a ¢ A <t = eva # t)
«t! setinterleaves s yick_join ((7th u 24, ?th [| 2A), S)
from ev-setinterleavingyicr-Nil.hyps|OF this(1, 4)] obtain ¢"
where <’ = ?th t" ?A Nt setinterleaves jcpjoin ((u, []), S)> ..
hence ¢t = ?th (ev a # t") YA N\ ev a # t" setinterleaves s yick_join ((ev a #
u, [1), S
by (simp add: <a ¢ A <a ¢ S» <t = ev a # t"» image-iff [of <ev -])
thus Zcase ..
next
assume <a € A>
with <A N S = {}> have «a ¢ S» by blast
moreover assume <t setinterleaves yicr_join ((7th u ?A, ?th [| 24), S)
ultimately obtain ¢’ where ¢t = ?th t' ?A) «t' setinterleaves yjcpjoin ((u,

69

), 5)»

using ev-setinterleavingp:;ci-Nil.hyps by blast
hence «t = ?th (ev a # t') A A ev a # t' setinterleaves s ick_join ((ev a #
w, 1), 8)
by (simp add: <a € A <a ¢ S)
thus ?case ..
qed
next
case (tick-setinterleavingpicr-Nil T u)
from tick-setinterleavingpt;c,-Nil.prems have False by (simp add: image-iff [of
W)
thus ?case ..
next
case (Nil-setinterleavingpiick-€v b v)
from Nil-setinterleavingpi;cr-ev.prems
consider t’ where <b ¢ S» <b ¢ A <t = ev b # t)
«t’ setinterleaves s yick_join ((?th [| ?A, ?th v 24), S)
| <b € Ay <t setinterleaves s yickjoin ((?th [] A, 7th v ?A),)
by (auto split: if-split-asm)
thus ?case
proof cases
fix t' assume b ¢ S) <b ¢ A <t =evb # t)
«t’ setinterleaves s yickjoin ((?th [] A, ?th v ?A), S)
from Nil-setinterleavingp;cr-ev.hyps|OF this(1, 4)] obtain t”
where «t' = ?th t"" A Nt setinterleaves yicpjoin (([],), S) -
hence <t = ?th (ev b # t") PA N ev b # t" setinterleaves ek join ([, ev b
4 v), S)
by (simp add: <b ¢ A> <b & Sy <t = ev b # t'» image-iff[of <ev -)])
thus ?case ..
next
assume b € A
with <A N S = {}» have <b ¢ S) by blast
moreover assume <t setinterleavesy yick_join ((7th [| ?A, ?th v 24), S)
ultimately obtain ¢’ where «t = ?th t’ ?A» <t' setinterleaves yjcpjoin (([],
v),)
using Nil-setinterleavingyicr-ev.hyps by blast
hence «t = ?th (ev b # t') A A ev b # t' setinterleaves s ickjoin (([J, ev b
v), S)
by (simp add: <b € A> <b ¢ S»)
thus ?case ..
qed
next
case (Nil-setinterleavingpi;ck-tick s v)
from Nil-setinterleaving,;cx-tick.prems have False by (simp add: image-iff[of
W)
thus ?case ..
next
case (ev-setinterleavingpiick-€v a u b v)

70

show Zcase
proof (cases <a € Ay; cases <b € Ay)
assume <g € A <b € A
with ev-setinterleavingpi;cr-ev.prems
have « : «t setinterleaves s yick_join ((?th (ev a # u) ?A, ?th v ?4), S)

«t setinterleaves s yick_join ((?th u ?A, ?th (ev b # v) ?A), S)» by simp-all
from AN S={}b «ae€ A be A have <a ¢ S» <b ¢ S by blast+
from ev-setinterleavingyicr-ev.hyps(4)[OF this *(2)]

ev-setinterleavingpiick-ev.hyps(9)[OF this *(1)]
obtain ¢’ where «t = ?th t' 74>

«t’ setinterleaves s yickjoin ((€V a # u, v),) V

t’ setinterleaves s yick_join ((u, ev b # v), S)» by blast
hence «t = ?th (ev b # t) PA N ev b # t' setinterleavesy yicpjoin ((ev a #

u, ev b # v), S)V
= ?th (eva # t') YA N\ ev a # t' setinterleaves jcpjoin ((ev @ # u,
evb # v), S)H
by (auto simp add: <a € Ay <b € A <a ¢ Sy <b ¢ SH)
thus ?case by blast
next
assume <a € A b ¢ A
with ev-setinterleavingyi;cr-ev.prems
have x : «t setinterleaves yick_join ((?th u ?A, ?th (ev b # v) ?A), S)» by
stmp
from <A N S ={}> <a € A have (a ¢ S» by blast
from ev-setinterleavingpicr-ev.hyps(3)[OF <a ¢ S» - *(1)]
ev-setinterleavingpicr-ev.hyps(4)[OF <a ¢ S» - *| obtain ¢’
where «t = ?th t' ?A) «t' setinterleavesy ek join ((u, ev b # v), S)» by
blast
hence «t = 7th (ev a # t') ?A A
ev a # t' setinterleaves yick_join ((ev a # u, ev b # v),)
by (simp add: <a € Ay <a & S»)
thus ?case ..
next
assume <a ¢ A <b € A
with ev-setinterleavingpi;cr-ev.prems
have * : « setinterleaves yick_join ((?th (ev a # u) ?A, ?th v ?4), S)» by
simp
from <A NS ={} b€ A have <b ¢ S» by blast
from ev-setinterleavingpicr-ev.hyps(2)[OF - <b ¢ S» %]
ev-setinterleavingpiick-ev.hyps(5)[OF - <b ¢ S» *] obtain ¢’
where «¢ = ?th t' ?A) «t' setinterleaves s yick_join ((ev a # u, v), S)» by
blast
hence «t = 7th (ev b # t') ?A A
ev b # t' setinterleaves yicpjoin ((€V @ # u, ev b # v), S)
by (simp add: <b € A> <b & S)
thus Zcase ..
next
assume <a ¢ A> <b ¢ A»
hence «%th (ev a # u) A = ev a # 7th u ?4)

71

<?th (ev b # v) ?A = ev b # ?th v 24> by auto
from ev-setinterleavingy ;. -ev.prems|unfolded this]
have «t setinterleaves s jckjoin ((ev a # #th u ?A, ev b 4 ?th v ?A), S) .
then consider (mv-both) t’ where <a € S» <b € S) <a = b <t = eva#th
«t’ setinterleaves s yick_join ((7th u ?A, ?th v 2A), S))
| (mvL) t’ where <a ¢ S» <t = eva # t)
«t’ setinterleaves s yick_join ((7th u ?A, ev b 4 ?th v ?4), S))
| (muR) t' where (b ¢ S» <t = ev b # t)
«t’ setinterleaves s yick_join ((ev a # ?th u A, ?th v ?A), S)
by (auto split: if-split-asm)
thus Zcase
proof cases
case mu-both
from ev-setinterleavingpcr-ev.hyps(1)[OF muv-both(1—3, 5)] obtain t"
where «t' = ?th t'" A Nt setinterleavesy yick join ((u, v), S) .
hence <t = ?th (ev b # t") A N ev b # "' setinterleavesy ek join ((ev a
u, evb# v),)
by (simp add: mv-both(2—4) <b & A> image-iff [of <ev -])
thus Zthesis ..
next
case muL
from ev-setinterleavingpicr-ev.hyps(3, 4)
[OF muL(1) - muL(8)[folded «?th (ev b # v) ?A = ev b # ?th v ?4)]]
obtain ¢’ where <t' = ?th t'" ?4)
«t"" setinterleaves s yickjoin ((u, ev b # v), S)» by blast
hence «t = %th (eva # t”) ?A A
ev a # t' setinterleaves s yick_join ((€v a # u, ev b # v), S)
by (simp add: mvL(1, 2) <a ¢ A image-iff[of <ev -)])
thus Zthesis ..
next
case muvR
from ev-setinterleavingpicr-ev.hyps(2, 5)
[OF - muR(1) muR(3)[folded «?th (ev a # u) ?A = ev a # 7th u 74)]]
obtain t"’ where <t' = %th t"" 24)
«t'" setinterleaves s yick_join ((ev a # u, v), S)» by blast
hence «t = ?th (ev b # t) 24 A
ev b # t" setinterleaves s yick_join ((ev a # u, ev b # v),)
by (simp add: mvR(1, 2) <b & A> image-iff[of <ev -])
thus Zthesis ..
qged
qed
next
case (ev-setinterleavingptick-tick a u s v)
from ev-setinterleavingpy;cr-tick.prems
consider t’ where <a ¢ S) <a ¢ A <t = ev a # th
«t’ setinterleaves s yick_join ((7th u ?A, ?th (/(s) # v) ?A), S)
| <a € A <t setinterleaves s yick join ((?th u PA, ?th (V/(s) # v) ?4), S)
by (auto split: if-split-asm)

72

thus Zcase
proof cases
fix ¢’ assume <a ¢ S» <a ¢ Ay <t = eva # th
«t’ setinterleaves s yickjoin ((?th u ?A, ?th (V/(s) # v) ?A),)
from ev-setinterleavingpicr-tick.hyps|OF this(1, 4)] obtain ¢’
where «t' = ?th t"" ?A) " setinterleaves yicpjoin ((u, V(s) # v), S)» by
blast
hence «t = %th (eva # t") ?A A
ev a # t'" setinterleaves s yick_ioin ((ev a # u, V' (s) # v), S)
by (simp add: <a ¢ A <a ¢ S» <t = ev a # t"» image-iff [of <ev -])
thus ?case ..
next
assume <a € A»
with <A N S = {}> have «a ¢ S» by blast
moreover assume <t setinterleaves yickjoin ((7th u ?A, ?th (/(s) # v) ?4),
S)»
ultimately obtain ¢’ where ¢t = ?th t' ?A) «t' setinterleaves/ yjcpjoin ((u,
v (s) # v),)
using ev-setinterleavingp;cr-tick.hyps by blast
hence <t = ?th (ev a # t') A N ev a # t' setinterleaves ek join ((ev a #
u, V() # v), S
by (simp add: <a € A» <a ¢ S»)
thus Zcase ..
qed
next
case (tick-setinterleavingpiicr-ev r u b v)
from tick-setinterleavingpticy-ev.prems
consider ¢’ where b ¢ S» <b ¢ A <t = ev b # th
«t! setinterleaves s yick_join ((?th (V(r) # u) ?A, ?th v ?A), S)
| <b € Ay <t setinterleavesy icpjoin ((7th (V(r) # u) PA, ?th v ?4), S)
by (auto split: if-split-asm)
thus “case
proof cases
fix t’ assume b ¢ S) <b ¢ A <t =evb # t)
«t! setinterleaves s yick_join ((7th (V(r) 4 u) ?A, ?th v ?A), S)
from tick-setinterleaving,i;ci-ev.hyps|OF this(1, 4)] obtain ¢"’
where <’ = ?th t"" ?4) «t"" setinterleaves s ick join (V(1) # u, v), S)» by
blast
hence «t = 7th (ev b # t"') A A
ev b # t" setinterleaves s yick_join ((V(1) # u, ev b # v), S)
by (simp add: <b ¢ A> <b & S» <t = ev b # t"» image-iff[of <ev -])
thus Zcase ..
next
assume b € A>
with <A N S = {} have <b ¢ S» by blast
moreover assume ¢ setinterleaves yick_join ((7th (V(r) # u) ?A, ?th v 2A),
S
ultimately obtain t' where <t = ?th t' A» «t' setinterleaves ek join ((V (1)

73

u, v), S)
using tick-setinterleavingpticr-ev.hyps by blast
hence «t = ?th (ev b # t') A A ev b # t' setinterleaves yicf._join (V' (1) #
u, ev b # v), S)H
by (simp add: <b € A> <b ¢ S»)
thus ?case ..
qed
next
case (tick-setinterleavingpick-tick r u s v)
from tick-setinterleavingpeicr-tick.prems obtain r-s t’
where <tick-join r s = |r-s]y <t = /(r-s) # t)
«t’ setinterleaves s yickjoin ((?th u ?A, ?th v ?4), S)
by (auto split: if-split-asm option.split-asm)
from tick-setinterleavingp;cr-tick.-hyps|OF this(1, 3)] obtain t”
where <’ = ?th t"" 24) «t"" setinterleaves s jckjoin ((u, v), S)» by blast
hence <t = 7th (V/(r-s) # t') ?A A
v (r-s) # t" setinterleaves s yicf_join ((V (1) # u, /(s) # v), S)
by (simp add: <tick-join r s = |r-s|» <t = /(r-s) # t"» image-iff[of /(-)])
thus ?case ..
qed
qed

lemma setinterleavesy;ck-inj-map-map-eventyicr-iff-weak :
<map (map-eventpiick [id) t setinterleavess yick_join
((map (map-eventyiicr fid) w, map (map-eventyiicr fid) v), f < A) +—
t setinterleaves s yick_join ((u, v), A) if <inj f>
by (induct ¢(tick-join, u, A, v)» arbitrary: t u v)
(auto simp add: image-iff map-eventy, ;. -eq-ev-iff map-eventy;.r-eq-tick-iff
dest!: injD[OF «<inj f>] split: option.split-asm)

lemma setinterleavesyt;cr-inj-map-map-eventp;ck-iff-strong :
(t setinterleaves s ick-join
((map (map-eventyiicr fid) u, map (map-eventyiicr fid) v), f < A) +—
(3t t = map (map-eventpiick fid) t' A
t' setinterleaves yickjoin (4, v), A)) if <inj f>
— We could probably prove a stronger version with inj-on f (A U {a. ev a € set
u V ev a € set v}) instead of inj f.
proof —
let ?map = <map (map-eventyic fid)>
have <t setinterleaves yick_join ((¢map u, ?map v), f *A) = It’. t = ?map t"
proof (induct <(tick-join, u, A, v)> arbitrary: t u v)
case Nil-setinterleavingp;cr-Nil
thus ?case by simp
next
case (ev-setinterleavingpick-Nil a)

74

from ev-setinterleavingyicr-Nil.prems obtain t’
where <a ¢ Ay «t = ev (fa) # t) «t' setinterleaves s yicf_join ((map u, Pmap
D A)
by (auto split: if-split-asm)
from ev-setinterleavingpyicr-Nil.hyps|OF this(1, 3)]
obtain ¢’ where <t' = ?map t'"» ..
hence <t = ?map (ev a # t"")> by (simp add: <t = ev (f a) # t")
thus ?case ..
next
case (tick-setinterleavingpi;cr-Nil v)
from tick-setinterleavingp;cr-Nil.prems have False by simp
thus ?case ..
next
case (Nil-setinterleavingpiick-ev b v)
from Nil-setinterleavingpic,-ev.prems obtain t’
where b ¢ A «t = ev (fb) # t «t' setinterleaves s yicf._join ((#map [|, Ymap
v), f A
by (auto split: if-split-asm)
from Nil-setinterleavingpici-ev.hyps[OF this(1, 3)]
obtain ¢’ where <t' = ?map t'"» ..
hence <t = %map (ev b # t'")) by (simp add: <t = ev (f b) # t")
thus ?case ..
next
case (Nil-setinterleavingpi;ck-tick s v)
from Nil-setinterleavingpic,-tick.prems have False by simp
thus ?case ..
next
case (ev-setinterleavingpticr-ev a v b v)
from ev-setinterleavingpyticr-ev.prems
consider (mu-left) t' where <a ¢ Ay <t = ev (f a) # th
«t! setinterleaves s yick_join ((?map u, ?map (ev b # v)), f
| (mu-right) t" where <b ¢ Ay <t = ev (f b) # t"
«t! setinterleaves s yick_join ((?map (ev a # w), ?map v), f * A)
| (mv-both) t’ where <a € A> <b € A <a = by <t =ev (fb) # th
«t' setinterleaves s yick_join ((¥map u, fmap v), f * A)
by (auto simp add: image-iff split: if-split-asm dest!: injD[OF <inj f>])
thus ?case
proof cases
case mu-left
from ev-setinterleavingpicr-ev.hyps(3, 4)[OF mu-left(1) - mu-left(3)]
obtain t'’ where «t' = ?map t""» by blast
hence ¢t = ?map (ev a # t"')) by (simp add: mv-left(2))
thus ?thesis ..
next
case mu-right
from ev-setinterleavingpicr-ev.hyps(2, 5)[OF - mu-right(1, 3)]
obtain ¢’ where <t' = ?map t'"» by blast
hence ¢t = ?map (ev b # t'')» by (simp add: mv-right(2))
thus ?thesis ..

“A)
)

75

next
case mu-both
from ev-setinterleavingp;ck-ev.hyps(1)[OF mv-both(1—38, 5)]
obtain ¢’ where <t' = ?map t'"» ..
hence «t = ?map (ev b # t'')» by (simp add: mv-both(4))
thus “thesis ..
qed
next
case (ev-setinterleavingpiick-tick a u s v)
from ev-setinterleavingpi;c,-tick.prems obtain t’
where <a & A «t = ev (fa) # t" <t setinterleaves ek join ((Ymap u, ?map
(V' (s) # v), f“Ap
by (auto split: if-split-asm)
from ev-setinterleavingpc,-tick.hyps|OF this(1, 3)]
obtain t’ where «t' = ?map t'"» ..
hence <t = ?map (ev a # t'")) by (simp add: <t = ev (f a) # t")
thus ?case ..
next
case (tick-setinterleavingpicr-ev r u b v)
from tick-setinterleavingy;cr-ev.prems obtain t’
where b ¢ Ay <t = ev (fb) # t" «t' setinterleavesy ek join ((Ymap (V/(r)
u), fmap v), f* A)
by (auto split: if-split-asm)
from tick-setinterleavingy;cr-ev.hyps|OF this(1, 3)]
obtain t"’ where <t' = ?map t'» ..
hence <t = ?map (ev b # t'")) by (simp add: <t = ev (f b) # t")
thus ?case ..
next
case (tick-setinterleavingpicr-tick r u s v)
from tick-setinterleavingy ;. -tick.prems obtain r-s ¢’
where <tick-join r s = |r-s]y <t = /(r-s) # t)
«t’ setinterleaves s yick_join ((fmap u, fmap v), f < A)»
by (auto split: option.split-asm)
from tick-setinterleavingpcr-tick.hyps|OF this(1, 3)]
obtain t"’ where <t' = ?map t'» ..
hence <t = ?map (V' (r-s) # t"')» by (simp add: <t = /(r-s) # t")
thus ?case ..
qed
with setinterleavespt;c,-inj-map-map-eventy ;. -iff-weak[OF <inj f>]
show ?thesis by blast
qed

lemma setinterleavesy ;i -append-setinterleavesyicr
(t1 @ 12 setinterleavesy yickjoin ((ul @ u2, v1 @ v2), A)
if «t1 setinterleaves s yick_join ((ul, v1), A)
and <t2 setinterleaves s yic_join ((u2, v2), A)

76

using that(1) proof (induct «(tick-join, ul, A, v1)s arbitrary: t1 ul vl)
case Nil-setinterleavingp;cr-Nil
from Nil-setinterleavingpiick-Nil.prems(1) have <t1 = [by simp
with that(2) show Zcase by simp
next
case (ev-setinterleavingpiick-Nil a ul)
from ev-setinterleaving,i;cr-Nil.prems(1) obtain t1’ where <a ¢ Ay <t1 = ev
a # t1'
(1" setinterleaves s yick_join ((ul, []), A)» by (auto split: if-split-asm)
from ev-setinterleavingpic,-Nil.hyps[OF this(1, 3)]
show ?Zcase

by (cases v2)
(auto simp add: <a ¢ A» <t1 = ev a # t1" setinterleavingpi;ck-simps
split: eventpick.split)
next
case (tick-setinterleavingptici-Nil v ul)

from tick-setinterleavingpiicr-Nil.prems(1) have Fulse by simp
thus “case ..

next
case (Nil-setinterleavingpi;ck-€v b v1)
from Nil-setinterleaving,i;cr-ev.prems(1) obtain 1’ where <b ¢ A) <t1 = ev b

#t1h
«t1' setinterleaves s yick_join (([I, v1), A)» by (auto split: if-split-asm)

from Nil-setinterleavingpi;ci-ev.hyps[OF this(1, 3)]
show “case

by (cases u2)
(auto simp add: <b ¢ A> <tl = ev b # t1") setinterleavingpi;ck-simps
split: eventpi,ck.split)
next
case (Nil-setinterleavingpiick-tick s v1)

from Nil-setinterleavingp;ck-tick.prems(1) have False by simp
thus “Zcase ..

next
case (ev-setinterleavingpicr-ev a ul b vl)
from ev-setinterleavingpi;cr-ev.prems
consider (muv-both) t' where <a € Ay <b € A <a = b «tl = eva # th
«t’ setinterleaves s yick_join ((ul, v1), A)
| (mul) t’ where <a ¢ A) <t1 = eva # t)
«t’ setinterleaves s yick_join ((ul, ev b # vl), A)
| (mvR) t’ where b ¢ A> «t1 = ev b # t"
«t’ setinterleaves s yick_join ((ev a # ul, vl), A)
by (auto split: if-split-asm)
thus Zcase
proof cases
case muv-both
from ev-setinterleavingp;ck-ev.hyps(1)[OF mv-both(1—38, 5)]

show ?thesis by (simp add: mv-both(2—4))
next

case mulL

7

from ev-setinterleavingpicr-ev.hyps(3, 4)[OF mvL(1) - mvL(3)]
show ?thesis by (simp add: mvL(1, 2))
next
case muR
from ev-setinterleavingpicr-ev.hyps(2, 5)[OF - mvR(1, 3)]
show ?thesis by (simp add: moR(1, 2))
qed
next
case (ev-setinterleavingpiick-tick a ul s vl)
from ev-setinterleavingpicr-tick.prems(1)
obtain ¢1’ where <a ¢ A <tl = eva # t1"
«t1” setinterleaves s yick_join ((ul, V' (s) # v1), A)» by (auto split: if-split-asm)
from ev-setinterleavingpici-tick.hyps|OF this(1, 3)]
show ?Zcase
by (cases v2)
(auto simp add: <a ¢ A <t1 = ev a # t1'y setinterleavingpi;cr-simps
split: eventpiick.split)
next
case (tick-setinterleavingpicr-ev r ul b vl)
from tick-setinterleaving,i;cx-ev.prems(1) obtain t1’ where <b ¢ A» «t1 = ev
b# t1h
«t1' setinterleaves s yicpjoin ((V(r) # ul, v1), A)» by (auto split: if-split-asm)
from tick-setinterleaving,y;ci-ev.hyps|OF this(1, 3)]
show ?case
by (cases u2)
(auto simp add: <b ¢ Ay «t1 = ev b # t1" setinterleavingpicr-simps
split: eventyy;cr.split)
next
case (tick-setinterleavingy;cr-tick r ul s vl)
from tick-setinterleaving,;cr-tick.prems(1) obtain r-s ¢t1’
where <tick-join r s = |r-s|» «t1 = /(r-s) # t1"
«t1' setinterleaves s yic_join ((ul, v1), A)
by (auto split: option.split-asm)
from tick-setinterleavingpici-tick.hyps|OF this(1, 3)]
show ?case by (simp add: <tick-join r s = |r-s|» <t1 = /(r-s) # t1")
qged

lemma setinterleaves, i -set-subsetL :
«t setinterleaves s yick_join (4, v), A) =
{a. ev a € set (drop n u)} C {a. ev a € set (drop n t)}»
proof (induct t arbitrary: n u v)
case Nil
thus “case by (auto dest: Nil-setinterleavesyi;ct)
next
case (Cons e t)
from Cons.prems consider (mv-left) a v’ where (a ¢ A» <e = ev a) <u = ev a

78

uh
<t setinterleaves s yick_join ((u', v), A)
| (mu-right) a v/ where (a ¢ Ay <e = ev a» (v = ev a # v)
<t setinterleaves s yick_join ((u, v'), A)>
| (mw-both-ev) a u’ v’ where <a € Ay <e = ev @ <u = eva # u) <vw=-cva#
v’y
(t setinterleaves s yicf._join ((u', V'), A)
| (mv-both-tick) r s r-s u' v’ where <tick-join r s = |r-s]) <e = /(r-s)»
w=V(r) # uh «w=V(s) # v’ & setinterleaves s yicf_joim ((u', v'), A
by (cases e) (auto elim: Cons-ev-setinterleavesyiicr E Cons-tick-setinterleavespticr F)
thus Zcase
proof cases
case mu-left
from Cons.hyps|OF mu-left(4)] show ?Zthesis
by (cases n, simp-all add: mv-left(2, 3) subset-iff) (metis drop0)
next
case mu-right
from Cons.hyps|OF muv-right(4)] show ?thesis
by (cases n, simp-all add: subset-iff)
(metis drop0, meson Suc-n-not-le-n in-mono nle-le set-drop-subset-set-drop)
next
case muv-both-ev
from Cons.hyps|OF muv-both-ev(5)] show ?thesis
by (cases n, simp-all add: mv-both-ev(2, 3) subset-iff) (metis drop0)
next
case mu-both-tick
from Cons.hyps|OF muv-both-tick(5)] show ?thesis
by (cases n, simp-all add: muv-both-tick(3) subset-iff) (metis drop0)
qed
qed

lemma setinterleavesy;cr-set-subsetR :
«t setinterleaves s yick_join (4, v), A) =
{a. ev a € set (drop n v)} C {a. eva € set (drop n t)}p
by (rule setinterleaves,; i -set-subsetL)
(fact setinterleavesptick-sym|THEN iffD2])

4.2 Synchronization Product

4.2.1 Definition

definition super-ref-Syncpiicr
d'r = 's = 't option, ("a, 'r) refusalpiick, ‘a set, ('a, 's) refusalyiick] = (‘a, 't)
refusalpyicr)
where <super-ref-Syncpiicr tick-join X-P A X-Q =
{evala. eva € X-PANeva€ X-QV (a€ AN(ewa € X-PV evac€
X-Q))} U
{V/(r-8) |r s r-s. tick-join r s = |r-s| A (/(r) € X-PV /(s) € X-Q)} U
— This is the last addition: since we generalize with the parameter tick-join,

79

we must add the following term to refuse the unreachable ticks.
{V/(r-5) |r-s. Br s. tick-join r s = |r-s] b

For proving that the invariant is-process is preserved, we will need a kind of
injectivity for the parameter tick-join. We implement this through a locale.

locale Syncptic-locale =
fixes tick-join :: <'r = 's = 't option) (infixl «xv"» 100)
assumes inj-tick-join :
rev s=lrs| =r'e/s=|rsl=r'=rAs’' =9
begin

sublocale Syncpi;cr-locale-sym : Syncptici-locale <As r. r @V s
by unfold-locales (simp add: inj-tick-join)

lift-definition Syncpiicr
(("a, 'r) processpiick, 'a set, ('a, 's) processprick] = ('a, 't) processpiick>
(«(- [y - [70, 0, 71] 70)
is <AP A Q.
({(¢t, X). 3¢+-P t-Q X-P X-Q.
(t-P, X-P) e F P A (+-Q, X-Q) € F Q A
t setinterleaves‘/(@/) ((t-P, t-Q), A) A
X C super-ref-Syncppicr, (@) X-P A X-Q} U
{(t @ u, X) |t utPtQX.
fiFEu N (tFtV u=1])A tsetz'nterleaves/(@/) ((t-P, t-Q), A) A
(tPeDPAE+QeT QVE-PeTPAtQeDQ)},
{t Q@ ultutPt-Q.
fiFu N (tFtV u=1])A tsetinterleaves/(®/) ((t-P, t-Q), A) A
(t-PeDPAtQeT QVE+PeT PAt-QeDQ)})
proof —
show «?thesis P A Q>
(is <is-process(?f, ?2d)) for P and @ :: «(‘a, 's) processpiicr> and A
proof (unfold is-process-def FAILURES-def DIVERGENCES-def fst-conv snd-conv,
intro congl impl alll)
have «([], {}) € F P> and «([], {}) € F @ by (simp-all add: is-processT1)
with Nil-setinterleavingpiick-Nil show «([], {}) € 7> by fast
next
show «(t, X) € ?f = ftF't» for t X
by simp (metis (no-types, opaque-lifting) D-T F-imp-front-tickFree T-imp-front-tickEFree
append.right-neutral front-tickFree-append front-tickFree-setinterleavesy;ci-iff)
next
fix ¢t u assume «(t @ u, {}) € 2>
then consider (fail) t-P t-Q X-P X-Q) where
«(t-P, X-P) € F Py «((t-Q, X-Q) € F @ <t Q u setz’nterleaves/(@/) ((t-P,
-Q), A
| (div) ' ' t-P t-Q where
tQu=1t"Qu" ftFu’ <tFt'V u' =[]y <t setinterleaves s (g, ((t-P, t-Q),

80

A)»
t-PeDPALQeT QVEtPeT PALQEeDQ by simp blast
thus «(¢, {}) € 7
proof cases
case fail
from fail(3) obtain ¢’ u’
where * : ¢/ < t-Py «u’ < t-Q» «¢ setinterleaves/(®/) ((t', u'), A
by (auto dest!: append-setinterleavesyy;ck intro: prefixl)
from fail(1, 2) x(1, 2) F-T is-processT3-TR have «t' € T P> «u' € T @
by blast+
thus «(t, {}) € ?/> by simp (metis T-F-spec *(3))
next
case div
show «(t, {}) € 2>
proof (cases «length t' < length t»)
assume <length t' < length t»
with div(1—3) have ftF (take (length t — length t’) u’) A
(tF t' V take (length t — length t') u' = []) A
t = t' Q take (length t — length t') u”
by (simp add: append-eq-conv-cony)
(metis append-take-drop-id front-tickFree-dw-closed)
with div(4, 5) show «(t, {}) € ?f> by blast
next
assume < length t' < length t»
with div obtain r’ where <t =t @ r/
by (metis append-eq-append-conv-if append-take-drop-id)
with div(/) obtain ¢t "’
where * : <t/ < t-Py «u” < t-Q) <& setinterleaves s (/) ((t", u', A
by (auto dest!: append-setinterleavespyicy intro: prefizl)
from *(1, 2) have <t/ €¢ T P AN u” € T @ by (meson D-T div(5)
is-processT3-TR)
hence $: «(¢t", {}) € F P «(u”, {}) € F @ by (simp-all add: T-F)
have $$: ({eva|la. evae {} Newae{} V(aec AN(ewvae{}Vevac

{1} u
{V(rev s)| rs./(r)e{}VvV(s) e {}} ={}p by simp
show «(t, {}) € ?f> by (auto intro!: § x(3))
qed
qed
next
{fixtXY
assume «(t, Y) € 2 A X C V)
then consider <t € ?d»
| (fail) t-P t-Q X-P X-@Q) where
«(t-P, X-P) € F P> «(+-Q, X-Q) € F O
«t setinterleaves/(®/) ((t-P, t-Q), A)»
Y C super-ref-Syncptick (@) X-P A X-Q)» by blast
thus (¢, X) € 2/
proof cases
show <t € 2d = (t, X) € ?f> by blast

81

next
case fail
define X-P’ where «<X-P'= X-PN ({eva| a. eva € X} U
V()| rsrsre/ s=|rs| AN/(rs) e X}
define X-Q’ where (X-Q'= X-Q N ({ev a| a. eva € X} U
{V(s)|rsrs.raf s=|rs| ANV/(rs) € X}
have «(t-P, X-P’) € F P) unfolding X-P’-def by (meson fail(1) inf-lel
process-charn)
moreover have «((t-Q, X-Q') € F Q> unfolding X-Q’-def by (meson
fail(2) inf-lel process-charn)
moreover have <X C super-ref-Syncpicr (V) X-P' A X-Q"
by (subst «(t, Y) € 2f AN X C Y»[THEN conjunct2, THEN Int-absorbl,
symmetric])
(use fail(4) in <fastforce simp add: X-P'-def X-Q'-def subset-iff su-
per-ref-Syncptici-def>)
ultimately show «(t, X) € ?f» using fail(3) by simp blast
ged } note processT/ = this

fixtXY
assume (¢, X) € %f AN (Ve.e€ Y — (1 Q [e], {}) ¢)
then consider <t € ?dy | «(¢t, X) € 2f At ¢ ?d> by linarith
thus «(¢t, X U Y) € 2f»
proof cases
show «t € ?d = (t, X U Y) € ?f» by blast
next
assume <(t, X) € of ANt ¢ ?d>
then obtain ¢-P X-P t-Q X-Q
where assms : «(t-P, X-P) € F Py «(t-Q, X-Q) € F
<t setinterleaves‘/(@/) ((t-P, t-Q), A)
<X C super-ref-Syncprick (V) X-P A X-Q» by blast
have assms5 : e € Y =t Q [¢] setinterleaves .z ((t, u, A) =
(¢, {}) e FP—(u{})&F QA
(v, {}) e FQ— (t',{}) ¢ F P)» for et’ v’
using «((t, X) € 2f A Ve.e€ Y — (t Q [e], {}) ¢ ?f)» by auto

define Y-ev-inside and Y-ev-notin and Y-tick
where * : <Y-ev-inside = {a. eva € Y ANa € A}
«Y-ev-notin = {a. eva€ Y ANa¢ A}
«Y-tick ={rs|rsrsr@/ s=|rs| AN(r-s) € Yh

define Y-ev-inside-P and Y-ev-inside-@Q) and Y-ev-notin-P

and Y-ev-notin-QQ and Y-tick-P and Y-tick-Q

where xx : «Y-ev-inside-P = {a€ Y-ev-inside. (t-P Q [ev a], {}) ¢ F P}
«Y-ev-inside-Q = {a€ Y-ev-inside. (t-Q Q [ev a], {}) ¢ F @}
«Y-ev-notin-P = {a€ Y-ev-notin. (t-P Q [ev a], {}) ¢ F P}
«Y-ev-notin-Q = {a€Y-ev-notin. (¢+-Q Q [ev a], {}) ¢ F Qp
<Y-tick-P = {r-seY-tick. I3rs.r @/ s= |r-s] A (t-P Q [V (1)], {}) ¢

F Ph

«Y-tick-Q = {r-seY-tick. Ar s. r @/ s = |r-s| A (+-Q @ [V (9)], {})

82

¢ F Qb

have € : Va€ Y-ev-inside. (t-P Q [ev a], {}) ¢ F PV (+-Q Q [ev a], {}) ¢
F @
proof (rule ccontr)
assume <~ (V a€ Y-ev-inside. (t-P Q [ev a], {}) ¢ F PV (¢+-Q Q [ev al, {})
¢ F Q)
then obtain a where facts : <a € Ay <eva € Y «((t-P Q [ev a], {}) € F
P
(t-Q @ [eval], {}) e F
unfolding * by blast
have «t Q [ev d] setinterleaves,/ gz ((t-P Q [ev a], t-Q Q [ev a]), A)
by (simp add: facts(1) assms(3) setinterleavesyi;cr-snoc-inside)
with facts(2—4) assms5 show False by blast
qed
hence ££ : «Y-ev-inside-P U Y-ev-inside-Q = Y-ev-inside> by (auto simp
add: *x)

have €€ : «VaeY-ev-notin. (t-P Q [ev a], {}) ¢ F PV (t-Q Q [ev a], {}) ¢
F @
proof (rule ccontr)
assume < (Y a€ Y-ev-notin. (--P Q [ev a], {}) ¢ F P V (+-Q Q [ev a], {})
¢ F Q)
then obtain « where facts : <a ¢ A <ceva € Y» «(+-P @Q [ev a], {}) € F
P
(t-Q Q [ev al, {}) € F @ unfolding * by blast
have ¢t @ [ev a] setinterleaves/(®/) ((t-P, t-Q Q [ev a]), A) V
t Q [ev a setinterleaves/ .z ((t-P Q@ [ev a], t-Q), A)
by (simp add: facts(1) assms(3) setinterleavesyi;cr-snoc-notinlL)
with facts assms(1—3) assms5 show False by (metis is-processT4-empty)
qed
hence £££ : (Y-ev-notin-P U Y-ev-notin-Q = Y-ev-notin> by (auto simp
add: *x)

have €€€ : Vr-seY-tick. Ars. r @/ s = |r-s| A ((t-P Q [V ()], {}) ¢ F
Pv(t-Qav(s), {}) ¢ F Qp
proof (rule ccontr)
assume <~ (Vr-s€ Y-tick. Ar s. r @/ s = |r-s] A
(tPa(r),{H¢FPVv(EQal(s)){}H)¢r Q)
then obtain r-s r s where facts : </ (r-s) € Y <r @/ s = |r-s]»
(t-P @ [V(r)],{}) e FPr«(t-QQ@[V/(s)],{}) e F
unfolding * by blast
have <t Q [V (r-s)] setinterleaves/(®/) ((t-P @ [V ()], t-Q @ [V(s)]), A)»
by (simp add: facts(2) assms(3) setinterleavesyy; r-snoc-tick)
with facts assms5 show Fulse by blast
qed
hence £LLL : «Y-tick-P U Y-tick-Q = Y-ticky unfolding xx by blast

define X-P’ and X-Q’

83

where sxx : «(X-P' = X-P U ev ¢ Y-ev-inside-P U ev * Y-ev-notin-P U
{V(r)|rsrs.r@/ s=|rs| Arsée Y-tick-P}
«X-Q'= X-Q U ev ‘ Y-ev-inside-Q U ev * Y-ev-notin-Q U
{V(s)|rsrs.rev/ s=|rs| Arse Y-tick-Qp

have $: «(t-P, X-P") € F P) «(t+-Q, X-Q") € F »
by (auto simp add: *x xxx introl: is-processT5 assms dest: inj-tick-join)

have <Y C super-ref-Syncpiicr (®v) X-P" A X-Q"
proof (rule subsetl)
show <e € super-ref-Syncppick (@) X-P' A X-Q" if <e € V) for e
proof (cases ¢€)
from <e € Y)» show <e = ev a = e € super-ref-Syncpiick (V) X-P' A
X-Q" for a
by (cases <a € A», simp-all add: * sx xxx image-iff super-ref-Syncpyicr-def)
(use *(1) € in blast,
meson $(2) assms(1, 3) assms5 is-processT4-empty
setinterleavesy;cy-snoc-notinL setinterleavesptick—snoc—notinR)
next
show <e € super-ref-Syncpiicr (@) X-P' A X-Q" if <e = /(r-s) for r-s
proof (cases <Irs. r @/ s = |r-s|»)
assume 37 s. r QY s = |[r-s|
then obtain r s where «r @/ s = |r-s|» by blast
with (e € Y» <e = /(r-s)» have «r-s € Y-tick»
by (auto simp add: x)
thus <e € super-ref-Syncpiicr (2v) X-P' A X-Q"
by (simp add: * super-ref-Syncyiicx-def)
(metis (mono-tags, lifting) *(3) *xx(1,2) £L£LLL
Un-iff mem-Collect-eq <e = /(1-5)))
next
show Brs. rev s=|rs| =
e € super-ref-Syncpricr (@) X-P' A X-Q"
by (simp add: <e = V/(r-3)> super-ref-Syncpick-def)
qed
qed
qed
moreover from assms(4) have «X C super-ref-Syncpiicr (@) X-P' A X-Q"
by (fastforce simp add: xx subset-iff super-ref-Syncyi;cx-def)
ultimately show «(t, X U Y) € ?2f) using $ assms(3) by auto
qed
next
show processT9: <t € ?dy if <t Q [/ (r-s)] € ?d» for ¢ r-s
proof —
from <t Q [V (r-s)] € ?d> obtain v v t-P t-Q
where assms : (ftF v» <tF u V v = []»
tQ [V (r-s)] = u Qv
U setinterleaves/(®/) ((t-P, t-Q), Ap
(t-PeDPAt-QeT QVitPeTPAt-QeD Q) by blast
from assms(2) show «t € 2d»

84

proof (elim disjE)
assume <tF' w»
with assms(3) obtain v’ where (v = v’ Q [V (r-s)]» <t = u Q@ v)
by (cases v rule: rev-cases) auto
from v = v’ Q [V (r-3)]> assms(1) front-tickFree-dw-closed
have «ftF' v by blast
with <t = u @ vy <tF w assms(1, 4, 5) show <t € ?d> by blast
next
assume v = [»
with assms(3) obtain u’ where <u = v’ Q [V (r-s)] <t = u)» by auto
from snoc-tick-setinterleavesy,;c, E|OF assms(4)[unfolded this(1)]]
obtain r s t-P’ t-Q’ where <r @/ s = [r-s|»
u' setinterleaves‘/(@/) ((t-P', t-Q), A)»
(t-P = t-P' Q [V (r)] «t-Q = t-Q’ @ [/ (s)]» by metis
with assms(5) «t = u» show ¢ € ?d>
by simp (metis append.right-neutral front-tickFree-Nil
is-process T3-TR-append is-processT9)
qed
qed

fix t X r-s
assume «(t Q [V (r-s)], {}) € 2
then consider (div) <t Q [/ (r-s)] € ?d»
| (fail) t-P +-Q X-P X-Q
where ((t-P, X-P) € F P> «((t-Q, X-Q) € F @
«(t @ [V(r-s)]) setinterleaves/(®/) ((t-P, t-Q), A)> by auto
thus «(t, X — {V/(rs)}) € 7>
proof cases
show «t Q [/(r-s)] € 2d = (t, X — {V/(r-5)}) € ?f» by (drule processT9)
simp
next
case fail
from fail(3)[THEN snoc-tick-setinterleaves,i;ci E]
obtain r s t-P' t-Q’ where * : <r @/ s = [r-s]»
<t setinterleaves‘/(@/) ((t-P', t-Q7), A)»
t-P = t-P'Q [V (r)] «t-Q = t-Q’ @ [/(s)]» by metis
from fail(1, 2) have <t-P' Q [/ (r)] € T P» «t-Q' Q [/ (s)] € T @
by (simp-all add: (3, 4) F-T)
hence «(t-P', UNIV — {/(r)}) € F P»
«(t-Q', UNIV — {/(s)}) € F @ by (meson is-processT6-TR)+
moreover have (X — {V(r-s)} C super-ref-Syncptick (@) (UNIV —{/(r)})
A (UNIV — {/(s)})»
by (simp add: subset-iff super-ref-Syncyiick-def)
(metis %(1) eventyy;ck.exhaust option.inject)
ultimately show «(t, X — {V/(r-5)}) € ?f» using *(2) by fast
qed
next
show (s € 2Zd NtF s A ftFt = s Q t € ?d) for st
using front-tickFree-append by fastforce

85

next
show «s € 2d = (s, X) € ?f» for s X by blast
qed
qed

Here X C super-ref-Syncpiicr, (V) X-P A X-@Q may seem surprising (in-
stead of for example X = super-ref-Syncptick, (®v) X-P A X-@), closer to the
specification of Sync). Actually, edge cases in the behaviour of tick ensure
that a definition with the latter would violate the invariant.

end

abbreviation (in Syncp;ck-locale) Interpiicy
{("a, 'r) processpiick, ('a, 's) processpiick] =
(‘a, 't) processpricky (<(- ||l -)» [72, 73] 72)
where P |||, Q=P [{}], @

abbreviation (in Syncpiick-locale) Parpiicr
(("a, 'r) processpiick, ('a, 's) processpiick] =
('a, 't) processprickr (<(- Iy -)» [74, 75] 14)
where <P ||, Q=P [UNIV], @

notation (in Syncpyicx-locale) Syncpick-locale-sym.Syncpiick
(- [vsym -» [70, 0, 71] 70)

notation (in Syncpick-locale) Syncpiick-locale-sym.Interpicr
(- Mlysym =) [72, 73] 72)

notation (in Syncyyicx-locale) Syncpiick-locale-sym.Parpiick
(-l sym =) [74, 75] 74)

4.2.2 Projections

context Syncpi;ck-locale begin

lemma D-Syncpiicr’ :
D (P [A], Q) =
{t Q@ u |t utP Q.
fAEu AN (FtV u=1])A tsetz'nterleaves/(®/) ((t-P, t-Q), A) A
(t-PeDPAtQeT QVEPeT PAL-QeD Q)P
by (simp add: Divergences.rep-eq Syncpiick.rep-eq DIVERGENCES-def)

corollary D-Syncpiick :
— This version is easier to use.
D (P [Al, Q) =
{t Q@ u |t utP Q.
tFt A ftFu A tsetinterleaves/(®/) ((t-P, t-Q), A) A
(t-PeDPAt-QeT QViEPeTPALtQeDQh
(is - = 2rhs)
proof (intro subset-antisym subsetl)

86

show «d € %rhs = d € D (P [A], Q) for d
by (auto simp add: D-Syncpiick”)
next
fix d assume «d € D (P [A], Q)
then obtain t u ¢-P t-Q
where « : «d =1t Q w) «(ftF w «tFtV u = [}
<t setinterleavesl(®/) ((t-P, t-Q), A)»
(t-PeDPAt-QeT QVIEPeT PAt-QeD @
unfolding D-Syncyi;cr’ by blast
show «d € ?rhs»
proof (cases <tF t)
from * show (tF' t = d € ?rhs» by blast
next
assume (- tF' t)
with x(1, 3) have <u = [» <d = t» by simp-all
from D-imp-front-tickFree <d = t» «d € D (P [4], Q)
have (ftF' t» by blast
with - tF ¢» obtain r-s t’ where <t = t' Q [V (r-s)]
by (meson nonTickFree-n-frontTickFree)
with x(4) obtain r t-P' 5 +-Q’
where *x : <r @/ s = |r-s|»
(t-P = t-P' @ [V (r)]p «-Q = t-Q’ @ [V (s)]
«t’ setinterleaves/(®/) ((t-P', t-Q"), A)»
by (auto simp add: <t = t' Q [/ (r-s)]>
elim: snoc-tick-setinterleavesyici E)
have (-P'€ DPAt-Q' € T QV t-P' € TP A t-Q' € D O
by (metis x(5) xx(2, &) is-processT3-TR-append is-processT9)
with xx(4) «d = (ftF t» «t = ¢’ Q [/ (r-s)]»
front-tickFree-nonempty-append-imp show <d € ?rhs» by blast
qed
qed

lemma F-Syncpiicr’ :
F (P [A], Q) =
{(t, X). It-P t-Q X-P X-Q.
(t-P, X-P) e F PN (+-Q, X-Q) € F Q A
tsetinterleaves/(®/) ((t-P, t-Q), A) A
X C super-ref-Syncpiick (V) X-P A X-Q} U
{(t @ u, X) |t ut-PtQX.
fiEu N (IFtV u=1])A tsetinterleaves/(®/) ((t-P, t-Q), A) A
(t-PeDPAt+QeT QVE+PeT PALQeD Q)P
by (simp add: Failures.rep-eq Syncpiick.rep-eq FAILURES-def)

lemma F-Syncpiick :
F (P [Al, Q) =
{(t, X). ItP +-Q X-P X-Q.
(t-P, X-P) € F P A (+-Q, X-Q) € F Q A
t setinterleaves s (g) ((t-P, t-Q), A) A

87

X C super-ref-Syncprick (V) X-P A X-Q} U
{(t Q@ u, X) [t ut-Pt-Q X.
tFt A ftFu A tsetinterleaves/(®/) ((t-P, t-Q), A) A
(t-PeDPAtQeT QVEPET PALQeD Q)
unfolding F-Syncyi;cr’ using D-Syncpiick[of P A Q, unfolded D-Syncpiick]
by (intro arg-cong2|where f = «(U)>], simp)
(simp add: set-eq-iff, blast)

lemma T-Syncpiicr’
T (P [Al, Q) -
{t. It-Pt-Q. P T PAtQ T Q A t setinterleaves s () ((t-P, t-Q), A)}
U
{t Q@ ul|tut-PtQ.
fifEu N (tFtV u=1])A
tsetinterleaves/(®/) ((t-P, t-Q), A) A
(t-PeDPAt+QeT QVEPeTPALQeED QD
by (simp add: Traces.rep-eq TRACES-def Failures.rep-eq[symmetric] F-Syncpiick”)
blast

lemma T-Syncpiick
T (P Al Q) —
{t. 3t-Pt-Q. t-P € T PAt-Q €T Q A tsetz'nterleaves/(@/) ((+-P, t-Q), A)}
U
{t Q@ u |t utPt-Q.
tFt A ftFu A tsetinterleaves/(®/) ((t-P, t-Q), A) A
(tPeDPALQeT QVE+PeTPALQeDQ)}p
unfolding T-Syncpticr’ using D-Syncpiick[of P A Q, unfolded D-Syncpiici’]
by (intro arg-cong2|where f = «(U)]) (simp-all add: set-eq-iff)

ca / !/ /
lemmas Syncpiick-projs’ = F-Syncpiick’ D-Syncprick’ T-Syncptick
— Classical versions, but the ones below are often more convenient to use.

lemmas Syncpiick-projs = F-Syncptick D-Syncprick T-Syncptick

lemma (in Syncpiick-locale) Syncyiscr-same-tick-join-on-strict-ticks-of :
Syncptick-locale.Syncyiicy tick-join’ P.S Q@ = P [S], @
if «(Syncpiick-locale tick-join"s and <A\rs. r € /'s(P) = s € /'s(Q) = tick-join’
rs=r Qv s
proof —
interpret tjoin-interpreted : Syncpiicx-locale tick-join’
by (fact «Syncpiick-locale tick-join'y)
show «Syncpiicr-locale.Syncpiicr tick-join’ P .S Q = P [S], @
proof (rule Process-eq-optimizedl)
show «t € D (tjoin-interpreted.Syncyiic P S Q) =t € D (P [S], Q) for t
by (simp add: D-Syncyiicr tjoin-interpreted. D-Syncpiick)
(metis tickFree-setinterleaves,; x-any-tick-join)

88

next
show «t € D (P [S], Q) = t € D (tjoin-interpreted.Syncpiicr, P S Q) for ¢
by (simp add: D-Syncpiicx tjoin-interpreted. D-Syncpiick)
(metis tickFree-setinterleaves,; x-any-tick-join)
next
fix t X assume (¢, X) € F (tjoin-interpreted.Syncpiick P S Q)
<t ¢ D (tjoin-interpreted.Syncprick P S Q)
then obtain t-P X-P -Q X-Q where x : «((t-P, X-P) € F P» «(t-Q, X-Q) €
F
<t setinterleaves/tick_jomx ((t-P, t-Q), S)
<X C super-ref-Syncpiick tick-join’ X-P S X-Q»
unfolding tjoin-interpreted.Syncptick-projs by blast
define X-P-plus where «X-P-plus = X-P U {V/(r) |[r. -P Q [/ (r)] ¢ T P —
D P}
define X-Q-plus where (X-Q-plus = X-Q U {V(s) |s. t-Q Q [V (s)] ¢ T Q —
D Qp
have <t setinterleaves s (g ((t-P, t-Q), S)»
proof (cases «tF t))
show (tFt =t setz’nterleaves/(®/) ((t-P, t-Q), S)»
using *(3) tickFree-setinterleaves,; i -any-tick-join by blast
next
assume <~ tF t
then obtain ¢’ r-s where «tF t'» <t = t' Q [V (r-s)]»
by (metis F-imp-front-tickFree «(t, X) € F (tjoin-interpreted.Syncpick P S
Q)
front-tickFree-append-iff nonTickFree-n-front TickFree not-Cons-self2)
with *(3) obtain -P’ r -Q' s where xx : <tick-join’ r s = |r-s|»
«t’ setinterleavesy op o' ((+-P’, t-Q"), S)»
«t-P = t-P'Q [V(r)] «t-Q = t-Q’ @ [V (s)]
by (auto elim: snoc-tick-setinterleavesytici E)
have «r € /s(P) A s € V/s(Q)»
proof (rule ccontr)
assume - (r € /s(P) A s € /s(Q))
hence «t-P' Q [/(r)] e D PV -Q'Q [/(s)] € D
by (metis (1, 2) %x(3, 4) F-T strict-ticks-of-memlI)
with <t ¢ D (tjoin-interpreted.Syncpiick P S Q) show False
by (simp add: tjoin-interpreted.D-Syncpicr’)
(metis x(1—3) *x(3, 4) F-T append.right-neutral front-tickFree-Nil)
qed
moreover from *x(2) have «t’ setinterleaves/ () ((&-P’, t-Q%), S)»
using «tF' t') tickFree-setinterleavesp;c,-any-tick-join by blast
ultimately show <t setinterleaves/(®/) ((t-P, t-Q), Sy
by (subst rev-setinterleavesyi.r-rev-rev-iff [symmetric],
subst (asm) rev-setinterleavesy;cx-rev-rev-iff [symmetric|)
(use xx(1) that(2) in <auto simp add: <t = t' Q [V (r-s)]» **x(3, 4))
qed
moreover from (1) is-processT5-S7’ is-processT8 is-processT9
have «(t-P, X-P-plus) € F P) by (fastforce simp add: X-P-plus-def)

89

moreover from x(2) is-processT5-S7’ is-processT8 is-processT9
have ((t-Q, X-Q-plus) € F @ by (fastforce simp add: X-Q-plus-def)
moreover have (e € X = e € super-ref-Syncptick (V') X-P-plus S X-Q-plus
for e
using x(4)[THEN set-mp, of €]
by (cases e, simp-all add: X-P-plus-def X-Q-plus-def super-ref-Syncpiici-def
subset-iff)
(metis strict-ticks-of-meml that(2) tjoin-interpreted.inj-tick-join)
ultimately show (¢, X) € F (P [S], Q) by (simp add: F-Syncpiicr) blast
next
fix t X assume «(t, X) € F (P [S], Q) <t ¢ D (P [S], Q)
then obtain ¢-P X-P ¢-Q X-Q where * : ((t-P, X-P) € F P> «(t-Q, X-Q) €
F
<t setinterleaves/(®/) ((t-P, t-Q), S)»
«X C super-ref-Syncprick, (V) X-P S X-Q»
unfolding Syncpiicr-projs by blast
define X-P-plus where <X-P-plus = X-P U {/(r) |r. -P Q [/ (r)] ¢ T P —
D Ph
define X-Q-plus where (X-Q-plus = X-Q U {V/(s) |s. t-Q @ [V(s)] ¢ T Q —
D Qp
have <t setinterleaves/tick_jomz ((t-P, t-Q), S)
proof (cases <tF t)
show (tF t = tsetinterleaves/tick_jom/ ((t+-P, t-Q), Sy
using #(3) tickFree-setinterleavesy;cr-any-tick-join by blast
next
assume <~ tF' ¢
then obtain ¢’ r-s where «tF t"» <t = t' Q [V (r-s)]>
by (metis F-imp-front-tickFree «(t, X) € F (P [S], Q)
front-tickFree-append-iff nonTickFree-n-frontTickFree not-Cons-self2)
with *(8) obtain P’ r t-Q’ s where xx : <r @/ s = |[r-s]>
«t’ setinterleaves/ () ((+-P’, t-Q7), S)
(-P = t-P'Q [V (r)] «¢-Q = t-Q' @ [V (s)]
by (auto elim: snoc-tick-setinterleavespici E)
have (r € /s(P) A s € /s(Q)
proof (rule ccontr)
assume - (r € Vs(P) A s € /s(Q))
hence «t-P'Q [/ (r)] e D PV -Q' Q [V (s)] € D @
by (metis x(1, 2) *xx(8, 4) F-T strict-ticks-of-memlI)
with «t ¢ D (P [S], Q) show False
by (simp add: D-Syncpiick’)
(metis (1 —23) *x(3, 4) F-T append.right-neutral front-tickFree-Nil)
qed
moreover from *x(2) have «t’ setinterleaves/tick_jom/ ((t-P’, t-Q7), S)»
using «tF' ty tickFree-setinterleavesycy-any-tick-join by blast
ultimately show <t setinterleaves/tick_jomx ((t-P, t-Q), S)
by (subst rev-setinterleavesyy;cr,-rev-rev-iff [symmetric|,
subst (asm) rev-setinterleavesy;ci-rev-rev-iff [symmetric|)
(use #x(1) that(2) in <auto simp add: «t = t' Q [V (r-s)]» *x(3, 4)>)

90

qged
moreover from (1) is-processT5-S7’ is-processT8 is-processT9
have «(t-P, X-P-plus) € F P) by (fastforce simp add: X-P-plus-def)
moreover from x(2) is-processT5-S7’ is-processT8 is-processT9
have «(t-Q, X-Q-plus) € F @ by (fastforce simp add: X-Q-plus-def)
moreover have (¢ € X = e € super-ref-Syncpiick tick-join’ X-P-plus S
X-Q-plusy for e
using (4)[THEN set-mp, of €]
by (cases e, simp-all add: X-P-plus-def X-Q-plus-def super-ref-Syncpiicr-def
subset-iff)
(metis strict-ticks-of-meml that(2) inj-tick-join)
ultimately show «(t, X) € F (tjoin-interpreted.Syncpiick P S Q)
by (simp add: tjoin-interpreted. F-Syncpiick) blast
qed
qed

4.2.3 First Properties

abbreviation range-tick-join :: <'t set»
where <range-tick-join = {r-s |r-s rs. r @/ s = |r-s|}»

lemma setinterleavesy;c,-imp-set-range-tick-join :
«t setinterleaves s () ((u, v), A) =
{r-s. /(r-s) € set t} C range-tick-join>
by (induct «(®V), u, A, v)» arbitrary: t u v)
(auto simp add: subset-iff split: if-split-asm option.split-asm)+

end

lemma
— Of course not suitable for simplifier.
«t setinterleavessxs r. tick-join r s (v, u), A) —
t setinterleavess \y . tick-join r s ((u, v), A
by (fact setinterleavesyc,-sym)

lemma super-ref-Syncpiicr-sym :
— Of course not suitable for simplifier.
super-ref-Syncprick (As r. tick-join v s) X-Q S X-P =
super-ref-Syncppick (Ar s. tick-join r s) X-P S X-Q»
by (auto simp add: super-ref-Syncpi;ck-def)

lemma super-ref-Syncpiick-mono :
(AC A — X-PC X-P'— X-QC X-Q' —
super-ref-Syncptick, tick-join X-P A X-Q C
super-ref-Syncpiick tick-join X-P" A’ X-Q"
by (auto simp add: super-ref-Syncpi;ck-def)

91

context Syncpiicx-locale begin

lemma Syncpiick-sym : <Q [A]ysym P = P [4], @
proof (rule Process-eq-optimizedI)
show ¢t € D (Q [A] ysym P) = t € D (P [A], Q) for t
by (simp add: Syncpiick-locale-sym.D-Syncpiicr D-Syncpiick)
(subst setinterleavesptici-sym, blast)
next
show ¢t € D (P [A], Q) = t € D (Q [A] ysym P)» for t
by (simp add: Syncpiick-locale-sym.D-Syncpiick D-Syncpiick)
(subst setinterleavespyick-sym, blast)
next
show «(t, X) € F (Q [A]/sym P) = (t, X) € F (P [A], Q) for t X
by (simp add: Syncpiick-locale-sym.F-Syncppicr F-Syncpiick)
(subst (1 2) setinterleavesyi;ck-sym,
subst super-ref-Syncpiick-sym, blast)
next
show «(t, X) € F (P [4], Q) = (t, X) € F (Q [A]l/sym P)» for t X
by (simp add: Syncpiick-locale-sym.F-Syncppicr F-Syncpiick)
(subst (1 2) setinterleavesyi;ck-sym,
subst super-ref-Syncpiick-sym, blast)
qed

lemma interpretable-inj-on-range-tick-join :
<inj-on g range-tick-join —
Syncpiick-locale (Ar s. case v @V s of |r-s| = [gr-s] | O = O]
by (unfold-locales, simp split: option.split-asm)
(metis (mono-tags, lifting) inj-onD inj-tick-join mem-Collect-eq)

lemma inj-on-map-map-eventys;cr-setinterleavesyticy, :
<t setinterleaves/(®/) ((u, v), A) =
map (map-eventpick id g) t
setinterleavesy x5 case r @v s of |r-s] = grs] |0O=0 ((u, v), A)
(is <- = - setinterleaves Ptick-join’ ((u, v), A))
if inj-on-g : <inj-on g range-tick-join»
proof (induct «((&V), u, A, v)» arbitrary: t u v)
case (tick-setinterleavingpicy-tick r u s v)
from tick-setinterleaving,y;ck-tick.prems [simplified)
obtain r-s t' where * : <r @V s = [r-s]» <t = /(r-5) # t)
«t’ setinterleaves/(®/) ((u, v), A
by (auto split: option.split-asm)
from tick-setinterleaving,y;ck-tick.-hyps[OF *(1, 3)]
have <map (map-eventpick id g) t’
setinterleaves y Ptick-join’ ((u, v), A) .

92

thus ?case by (simp add: x(1, 2))
qed auto

lemma vimage-inj-on-subset-super-ref-Syncpiick-iff :
«map-eventpricr 1d g — X C
super-ref-Syncprick (V) X-P A X-Q +—
X C super-ref-Syncpiick (A1 s. case r @/ s of |r-s| = [grs| | 0= 0) X-PA
X-0»
(is «Zlhsl C ?lhs2 +— X C %rhsy)
if inj-on-g : <inj-on g range-tick-join>
proof —
let Ztick-join’ = <A\rs. case v @V s of |r-s] = [gr-s] | O = O
interpret Syncpiick’ : Syncpiick-locale ?tick-join’
by (intro interpretable-inj-on-range-tick-join inj-on-g)
from inv-into-f-f inj-on-g have expanded-tick-join :
tick-join =
(Ar s. case ?tick-join’ r s of O = O | |r-s| = |inv-into range-tick-join g r-s|)»
by (fastforce split: split: option.split)
let 2f1 = (map-eventyiicr id g
let 2f2 = «<map-eventyiick id (inv-into range-tick-join g)»
show <?lhs1 C ?2lhs2 +— X C ?2rhs)
proof (intro iffT subsetl)
show <e € ?rhsy if «(?lhs1 C ?lhs2) <e € X for e
proof (cases e)
fix a assume <e = ev a»
with (e € X») have <?f2 e € 2f1 — X» by simp
with «?lhs! C ?lhs2> have «?f2 e € ?lhs2) by blast
with (¢ = ev > show <e € ?rhs»
by (auto simp add: super-ref-Syncpt;ci-def)
next
show <e € ?rhsy if <e = /(r-s)» for r-s
proof (cases <Ir s. 2ick-join’ r s = |r-s|»)
from <e = v/ (r-5)) show A7 s. 2tick-join’ r s = |r-s] = e € ?rhs
by (simp add: super-ref-Syncpyicr-def)
next
assume <37 s. Ztick-join’ r s = |[r-s|»
with (e = V/(r-s)» e € X>
have <?f2 e € 2f1 —° X»
by (auto split: option.split-asm)
(metis (no-types, lifting) expanded-tick-join option.simps(5))
with <?lhs1 C ?lhs2> have «?f2 e € ?lhs2> by blast
with <e = /(r-s)) show <e € Zrhs
by (simp add: super-ref-Syncpiicr-def)
(metis (no-types, lifting) expanded-tick-join option.simps(5))
qed
qed
next

93

show <e € ?2lhs2y if <X C ?rhsy and <e € ?lhsl) for e
proof (cases e)
fix a assume <e = ev @)
with (e € ?lhsl» have <ev a € X» by simp
with <X C ?rhs) have (ev a € ?rhsy by blast
thus <e € ?lhs2y by (auto simp add: <e = ev a> super-ref-Syncyiick-def)
next
show <e € ?lhs2» if <e = V/(s-r) for s-r
proof (cases <3 s r. tick-join s r = |s-r|»)
from (e = /(s-r)) show Js r. tick-join s 1 = |s-r| = e € ?lhs2>
by (simp add: super-ref-Syncpyicr-def)
next
assume <3 s r. tick-join s v = |s-r]>
with <e = v/ (s-1)» <e € ?lhsl)
have /(g s-r) € X» by simp
with <X C %rhs) have «/(g s-r) € ?rhs> by blast
with (e = V/(s-r)) show <e € ?lhs2»
by (simp add: super-ref-Syncpiicr-def)
(metis Syncpiick ' inj-tick-join option.simps(5))
qed
qed
qed
qed

The two following lemmas are necessary for the proof of continuity.

lemma finite-setinterleavesyic-tick-join :
finite {(u, v). t setinterleaves, () ((u, v), A)p
(is <finite {(u, v). 2f t u v}»)
proof (induct t)
have «{(u, v). ?f [] w v} = {([], [)}> by (auto simp add: Nil-setinterleaves,;ck)
thus «finite {(u, v). ?f [v v}> by simp
next
fix e t assume «finite {(u, v). ?f t u v}
have x : <{(z # u, v) | v v. 2ftu v} = (M(u, v). (x # u, v)) “{(u, v). ?ftuvh
(u, y # v) | wo ftuov} = Ay, v). (v, y # v)) “{(u, v). oftuovh
} xz#u,y#v)|uvv ftuvy =Ny, v). (# u, y#0v) ‘{(u,v). 2ftu
v
for z y by auto
show «finite {(u, v). ?f (e # t) v v}
proof (cases e)
fix a assume <e = ev
hence <?f (e # t) v v =
uFE[|ANhdu=ecva A ?ft(tlu)vV
vE[JAhMMv=eva A ?ftu(tlv)V
uFE[JAhdu=evaANv#[ANhdv=-cvaA 2ft(tu) (tv) for uv

by (cases e) (auto elim: Cons-ev-setinterleaves,,; ., E Cons-tick-setinterleaves,yici F)

hence {(u, v). ?f (e # t) u v} C
{(eva# u, v) | wuv. 2ftuv} U
{(u, eva#v)|vv. 2ftuv} U

94

{(eva# u, eva##v)|uwvv ?9ftuvh
by (simp add: subset-iff) (metis list.collapse)
moreover have <finite {(ev a # u, v) | wv. o tuvp
by (simp add: #(1) <finite {(u, v). ?f t u v})
moreover have «(finite {(u, ev a # v) | uwv. 2ft uop
by (simp add: *(2) «finite {(u, v). 2f t u v}))
moreover have «(finite {(ev a # u, eva # v) | wv. ot uovh
by (simp add: x(3) <finite {(u, v). 2f t u v}>)
ultimately show «finite {(u, v). 2f (e # t) u v}
by (simp add: finite-subset)
next
show <finite {(u, v). ?f (e # t) u v} if <e = /(r-s)» for r-s
proof (cases (r-s € range-tick-joiny)
assume <(r-s € range-tick-join»
then obtain r s where «r ®/ s = |r-s|» by blast
hence (?f (e # t) uv =
uFE[ARu=v(r)Nv£[ANhdv=V(s) Nt (tlu) (¢t v) for uv
by (cases u; cases v)
(auto simp add: <e = /(r-s)» setinterleavingpicy-simps inj-tick-join
split: eventyiscr.splits option.split-asm if-split-asm)
hence ({(u, v). ?f (e # t) uv} C{(V(r) # u, /(s) # v) |[uv. Zf t uovp
by (simp add: subset-iff) (metis list.collapse)
moreover have <finite {(vV'(r) # u, V(s) # v) luv. ?ft uwop
by (simp add: x(3) <finite {(u, v). 2f t v v}>)
ultimately show «finite {(u, v). ?f (e # t) u v}
by (simp add: finite-subset)
next
assume <7r-s ¢ range-tick-join»
hence (- ?f (e # t) u v» for u v
by (cases u; cases v)
(auto simp add: <e = V/(r-s)) setinterleavingpyicr-simps
split: eventyi;ck-splits option.split-asm)
thus «finite {(u, v). ?f (e # t) u v} by simp
qged
qed
qed

lemma finite-setinterleavesyt;cr-tick-join-Syncptick:
findte {(t-P, t-Q, u). u setinterleaves/(®/) ((t-P, t-Q), A) A
Guvt=u@QuAfiFvA(tFuVov=I[))p
(is <finite {(t-P, t-Q, u). /f u t-P t-Q A ?g t u}>)
proof —
have «{(t-P, t-Q, u) |[t-P t-Q. ?f u t-P t-Q} C
(A(t-P, t-Q). (t-P, t-Q, w)) ‘{(t-P, t-Q). ?f u t-P t-Q}» for u by auto
hence «finite {(t-P, t-Q, u) |t-P t-Q. ?f u t-P t-Q}> for u
by (rule finite-subset) (simp add: finite-setinterleaves,; x-tick-join)
moreover have ({(t-P, t-Q, u). ?fu t-P t-Q N ?g t u} C
Uu € {u. v < t}. {(t+-P, t-Q, u) |t-P t-Q. ?f u t-P t-Q})»

95

unfolding less-eq-list-def prefix-def by blast
moreover have (finite {u. u < t}» by (prove-finite-subset-of-prefizes t)
ultimately show ?thesis by (simp add: finite-subset)
qed

end

96

Chapter 5

Some Work on Renaming

unbundle option-type-syntax

This chapter contains several developments related to the Renaming oper-
ator. Some are not directly related to this session and may be moved to
HOL-CSP or HOL-CSPM in the future, while others specifically concern the
operator Syncpiick-locale.Syncpiick.-

5.1 Tick Swap Operator

We want to define an operator for swapping the values inside termination.
Intuitively, we want TickSwap (SKIP (r, s)) = SKIP (s, r).

5.1.1 Preliminaries

Swapping an Event

We start by defining tick-swap, which is swapping the values inside termina-
tion but only for an event. Then this will be generalized to a trace, a refusal
and a failure.
fun tick-swap :: <('a, 'r x 's) eventprick = (‘a, 's X 1) eventpiick
where <tick-swap (ev a) = ev ay
| <tick-swap v ((r, s)) = V/((s, 1))

lemma tick-swap-tick : <tick-swap v (r-s) = (case r-s of (r, s) = /((s, 7))
by (cases r-s) simp

lemma tick-swap-tick-swap [simp] : <tick-swap (tick-swap e) = e
proof (cases e)
show <e = ev a = tick-swap (tick-swap e¢) = e» for a by simp

97

next
show (e = v/ (r-s) = tick-swap (tick-swap e) = e> for r-s
by (cases r-s) simp-all
qed

lemma tick-swap-comp-tick-swap [simp] : <tick-swap o tick-swap = id>
by (rule ext) simp

lemma inj-tick-swap [simp] : <inj tick-swap»
by (metis injl tick-swap-tick-swap)

lemma surj-tick-swap [simp)] : <surj tick-swap>
by (metis surjl tick-swap-tick-swap)

lemma bij-tick-swap [simp)] : <bij tick-swap>
by (simp add: bij-betw-def)

lemma bij-betw-tick-swap :
<bij-betw tick-swap (range ev) (range ev)»
<bij-betw tick-swap (range tick) (range tick)»
by (auto simp add: bij-betw-def inj-on-def set-eq-iff image-iff)

lemma ev-eg-tick-swap-iff [simp] : <ev a = tick-swap e +— ¢ = ev @
and tick-swap-eq-ev-iff [simp] : <tick-swap e = ev a +— e = ev @)
and tick-eq-tick-swap-iff [simp] : </ ((r, 8)) = tick-swap e «+— e =/ ((s, 7))
and tick-swap-eq-tick-iff [simp] : <tick-swap e = /((r, 8)) «+— e =V ((s, 7))
by (cases e, auto)+

Swapping a Trace

fun trace-tick-swap :: «('a, ('r x 's)) traceprick = (‘a, ('s x 1)) tracepiick>
where <trace-tick-swap [| = []»
| <trace-tick-swap (ev a # t) = ev a # trace-tick-swap t
| <trace-tick-swap (V((r, 8)) # t) = V/((s, 1)) # trace-tick-swap t»

lemma trace-tick-swap-tick-Cons :

<trace-tick-swap (V' (r-s) # t) = (case r-s of (r, s) = V/((s, 1)) # trace-tick-swap
i)

by (cases r-s) simp

lemma trace-tick-swap-def : <trace-tick-swap = map tick-swap>
proof (rule ext)
show <trace-tick-swap t = map tick-swap t» for t :: «("a, ('r x 's)) tracepiick>
by (induct t rule: trace-tick-swap.induct) simp-all
qed

98

lemma trace-tick-swap-append : <trace-tick-swap (t @ u) = trace-tick-swap t Q
trace-tick-swap u»
by (simp add: trace-tick-swap-def)

lemma trace-tick-swap-singl [simp)] : <trace-tick-swap [€] = [tick-swap e])
by (cases e) auto

lemma trace-tick-swap-comp-trace-tick-swap [simp] : <trace-tick-swap o trace-tick-swap
= id>
by (simp add: trace-tick-swap-def)

lemma trace-tick-swap-trace-tick-swap [simp] : <trace-tick-swap (trace-tick-swap t)
=1
by (metis comp-def id-apply trace-tick-swap-comp-trace-tick-swap)

lemma inj-trace-tick-swap [simp] : <inj trace-tick-swap>
by (metis injl trace-tick-swap-trace-tick-swap)

lemma surj-trace-tick-swap [simp] : <surj trace-tick-swap)
by (metis surjl trace-tick-swap-trace-tick-swap)

lemma bij-trace-tick-swap [simp] : <bij trace-tick-swap)
by (simp add: bij-betw-def)

lemma strict-mono-trace-tick-swap : <strict-mono trace-tick-swap»
by (unfold trace-tick-swap-def)
(rule strict-mono-map, simp add: strict-monol)

lemma image-trace-tick-swap-min-elems :
trace-tick-swap ¢ (min-elems T) = min-elems (trace-tick-swap * T)»
proof (intro subset-antisym subsetl)
show <t € trace-tick-swap ‘ min-elems T —> t € min-elems (trace-tick-swap
T)) for ¢
by (auto simp add: min-elems-def less-list-def less-eq-list-def prefiz-def)
(metis Prefiz-Order.prefix] Prefiz-Order.same-prefiz-nil
trace-tick-swap-append trace-tick-swap-trace-tick-swap)
next
show <t € min-elems (trace-tick-swap * T) = t € trace-tick-swap ‘ min-elems
T) for t
by (auto simp add: min-elems-def less-list-def less-eq-list-def prefiz-def image-iff)
(metis trace-tick-swap-append trace-tick-swap-trace-tick-swap)
qed

lemma Nil-eq-trace-tick-swap-iff [iff] : <[] = trace-tick-swap t +— t =[]
and trace-tick-swap-eq-Nil-iff [iff] : <trace-tick-swap t = [| +— t =[]
by (metis trace-tick-swap.simps(1) trace-tick-swap-trace-tick-swap)+

99

lemma ev-Cons-eg-trace-tick-swap-iff [iff] :
<ev a # t = trace-tick-swap u <— u = ev a F# trace-tick-swap t»
and trace-tick-swap-eq-ev-Cons-iff [iff] :
<trace-tick-swap u = ev a # t <— u = ev a F# trace-tick-swap t»
by (metis trace-tick-swap.simps(2) trace-tick-swap-trace-tick-swap)+

lemma tick-Cons-eq-trace-tick-swap-iff [iff] :
W ((r, 5)) # t = trace-tick-swap u +— u = /((s, 1)) # trace-tick-swap t»
and trace-tick-swap-eq-tick-Cons-iff [iff] :
<trace-tick-swap uw = V((r, 8)) # t +— uw =V ((s, 7)) # trace-tick-swap t»
by (metis trace-tick-swap.simps(3) trace-tick-swap-trace-tick-swap)+

lemma snoc-ev-eg-trace-tick-swap-iff [iff] :
«t Q [ev a] = trace-tick-swap u +— u = trace-tick-swap t Q [ev a]>
and trace-tick-swap-eq-snoc-ev-iff [iff] :
trace-tick-swap u = t Q [ev a] «— u = trace-tick-swap t Q [ev a]»
by (metis trace-tick-swap-append trace-tick-swap.simps(1, 2) trace-tick-swap-trace-tick-swap)+

lemma snoc-tick-eq-trace-tick-swap-iff [iff] :

t Q [V ((r, 8))] = trace-tick-swap u +— u = trace-tick-swap t Q [V'((s, r))]>

and trace-tick-swap-eq-snoc-tick-iff [iff] :

trace-tick-swap w = t Q [V ((r, s))] +— u = trace-tick-swap t Q [V ((s, r))]>

by (metis trace-tick-swap-append trace-tick-swap.simps(1, 3) trace-tick-swap-trace-tick-swap)+

lemma trace-tick-swap-eq-ev-ConsE :

<trace-tick-swap v = ev a # t = (Au'. u = ev a # u' = t = trace-tick-swap
u' = thesis) = thesis)

and trace-tick-swap-eq-tick-ConsE :

trace-tick-swap uw = /((r, s)) # t = (Nu”. v =V((s, 1)) # v = ¢t =
trace-tick-swap u' = thesis) = thesis»

and trace-tick-swap-eq-snoc-evE :

trace-tick-swap v =t Q [ev a] = (Au'. v = v’ Q [ev a] = t = trace-tick-swap
u' = thesis) = thesis»

and trace-tick-swap-eq-snoc-tickE :

<trace-tick-swap uw = t Q [V((r, 8))] = (Av'. v =" Q [V((s,)] = t =
trace-tick-swap u' = thesis) = thesis

by (simp, metis trace-tick-swap-trace-tick-swap)+

lemma trace-tick-swap-tickFree :

(tF t = trace-tick-swap t = map (ev o of-ev) t» for ¢ :: «(a, ('r x 's)) tracepiick’
proof (induct t)

show «<trace-tick-swap [| = map (ev o of-ev) [> by simp
next

fix e and ¢ :: «(‘a, ('r x 's)) tracepiick>

assume <(tF (e # t)» and <tF t = trace-tick-swap t = map (ev o of-ev) t»

100

moreover from (tF (e # t)> obtain a where <e = ev a» (tF &
by (meson is-ev-def tickFree-Cons-iff)
ultimately show «<trace-tick-swap (e # t) = map (ev o of-ev) (e # t)) by simp
qed

lemma trace-tick-swap-front-tickFree :
<trace-tick-swap t = (if tF t then map (ev o of-ev) ¢
else map (ev o of-ev) (butlast t) Q [case last t of V((r, s)) = V((s,
r)])»

if ftF ¢ for t :: «("a, ('r X 's)) tracepiick>
proof —
show ?thesis
proof (split if-split, intro conjl impl)
show (tF t = trace-tick-swap t = map (ev o of-ev) t»
by (simp add: trace-tick-swap-tickFree)
next
assume <~ tF §»
with (ftF' ¢t» obtain t’ r s where <t = ¢’ Q [V ((r, 3))]» <tF t"
by (metis front-tickFree-append-iff nonTickFree-n-front TickFree not-Cons-self2
surj-pair)
hence <trace-tick-swap t = trace-tick-swap t' Q [V ((s, r))]»
by (metis trace-tick-swap-append trace-tick-swap.simps(1, 3))
also from <tF t" «t = t' @ [V((r, s))p
have (trace-tick-swap t' = map (ev o of-ev) (butlast t)» by (simp add: trace-tick-swap-tickFree)
also from <t = t’' @ [V((r, s))]
have <[V ((s, 7))] = [case last t of /((r, 8)) = /((s, r))]» by simp
finally show <trace-tick-swap t = map (ev o of-ev) (butlast t) Q
[case last t of /((r, s)) = V/((s, 7))]> -
qed
qed

lemma tickFree-trace-tick-swap-iff [simp] : <tF (trace-tick-swap t) +— tF t»
by (metis tickFree-map-ev-comp trace-tick-swap-tickFree trace-tick-swap-trace-tick-swap)

lemma front-tickFree-trace-tick-swap-iff [simp] : <ftF (trace-tick-swap t) <— ftF
t»
by (metis (no-types, lifting) front-tickFree-iff-tickFree-butlast map-butlast
tickFree-trace-tick-swap-iff trace-tick-swap-def)

Swapping a Refusal

definition refusal-tick-swap :: <(‘a, ('r x 's)) refusalyiick = (‘a, (s x 'r)) re-
fusalptick>
where <refusal-tick-swap X = tick-swap ¢ X»

lemma refusal-tick-swap-empty [simp] : <refusal-tick-swap {} = {}p
by (simp add: refusal-tick-swap-def)

101

lemma refusal-tick-swap-insert [simp] :
<refusal-tick-swap (insert © X) = insert (tick-swap) (refusal-tick-swap X)»
by (simp add: refusal-tick-swap-def)

lemma refusal-tick-swap-union :
<refusal-tick-swap (X U Y) = refusal-tick-swap X U refusal-tick-swap V>
by (simp add: refusal-tick-swap-def image-Un)

lemma refusal-tick-swap-diff :
<refusal-tick-swap (X — Y) = refusal-tick-swap X — refusal-tick-swap Y»
by (simp add: refusal-tick-swap-def image-set-diff)

lemma refusal-tick-swap-inter :
<refusal-tick-swap (X N'Y) = refusal-tick-swap X N refusal-tick-swap Y»
by (simp add: refusal-tick-swap-def image-Int)

lemma refusal-tick-swap-singl : <refusal-tick-swap {e} = {tick-swap e}» by simp

lemma refusal-tick-swap-comp-refusal-tick-swap [simp)] :
<refusal-tick-swap o refusal-tick-swap = id>
by (auto simp add: refusal-tick-swap-def image-iff)

lemma refusal-tick-swap-refusal-tick-swap [simp] :
<refusal-tick-swap (refusal-tick-swap X) = X»
by (simp add: comp-eq-dest-lhs)

lemma inj-refusal-tick-swap [simp)] : <inj refusal-tick-swap>
by (metis injl refusal-tick-swap-refusal-tick-swap)

lemma surj-refusal-tick-swap [simp] : <surj refusal-tick-swap>
by (metis surjl refusal-tick-swap-refusal-tick-swap)

lemma bij-refusal-tick-swap [simp)] : <bij refusal-tick-swap»
by (simp add: bij-betw-def)

lemma strict-mono-refusal-tick-swap : <strict-mono refusal-tick-swap>
by (rule strict-monol)
(metis refusal-tick-swap-refusal-tick-swap sup.strict-order-iff refusal-tick-swap-union)

lemma empty-eq-refusal-tick-swap-iff [iff] : «{} = refusal-tick-swap X +— X =
b
and refusal-tick-swap-eq-empty-iff [iff] : <refusal-tick-swap X = {} +— X ={}b
by (simp-all add: refusal-tick-swap-def)

lemma insert-ev-eq-refusal-tick-swap-iff [iff] :

cinsert (ev a) X = refusal-tick-swap Y +— Y = insert (ev a) (refusal-tick-swap
X)

102

and refusal-tick-swap-eq-insert-ev-iff [iff] :
<refusal-tick-swap Y =insert (ev a) X +— Y = insert (ev a) (refusal-tick-swap
X)»
by (metis refusal-tick-swap-insert refusal-tick-swap-refusal-tick-swap tick-swap.simps(1))+

lemma insert-tick-eq-refusal-tick-swap-iff [iff] :
<insert v ((r, 8)) X = refusal-tick-swap Y +— Y = insert /' ((s,) (refusal-tick-swap
X))
and refusal-tick-swap-eq-insert-tick-iff [iff] :
<refusal-tick-swap Y = insert /' ((r, 5)) X «— Y = insert /((s,) (refusal-tick-swap
X)»
by (metis refusal-tick-swap-insert refusal-tick-swap-refusal-tick-swap tick-swap.simps(2))+

lemma refusal-tick-swap-eq-insert-evE :

<refusal-tick-swap Y = insert (ev a) X = (AY'" Y = insert (eva) Y/ = X
= refusal-tick-swap Y' = thesis) => thesis

and refusal-tick-swap-eq-insert-tickE :

<refusal-tick-swap 'Y = insert /((r, s)) X = (AY". Y = insert /((s, r)) Y’
= X = refusal-tick-swap Y' = thesis) = thesis»

by (simp, metis refusal-tick-swap-refusal-tick-swap)+

lemma refusal-tick-swap-tickFree :
«X C range ev = refusal-tick-swap X = (ev o of-ev) ‘ X
by (force simp add: refusal-tick-swap-def)

lemma tickFree-refusal-tick-swap-iff :
<refusal-tick-swap X C range ev +— X C range ev»
by (simp add: refusal-tick-swap-def subset-iff image-def)
(metis tick-swap.simps(1) tick-swap-tick-swap)

The old version of interleaving of traces is not affected.

lemma setinterleaves-imp-setinterleaves-trace-tick-swap :

«t setinterleaves ((u, v), S) =

trace-tick-swap t setinterleaves ((trace-tick-swap u, trace-tick-swap v), refusal-tick-swap
S
proof (induct <(u, S, v)» arbitrary: t u v rule: setinterleaving.induct)

case I thus ?case by simp
next

case (2 y v)

from 2.prems obtain t’ where <y ¢ S» «t = y # t' «t’ setinterleaves (([], v),
S)»

by (auto split: if-split-asm)

from 2.hyps|OF <y ¢ S» «t’ setinterleaves (([], v), S)]

have «(trace-tick-swap t’ setinterleaves (([], trace-tick-swap v), refusal-tick-swap
S)» by simp

with <y ¢ S» show ?case by (cases y) (auto simp add: <t = y # t"» re-
fusal-tick-swap-def split: prod.split)
next

103

case (3 z u)
from 3.prems obtain t’ where «x ¢ S) <t = x # t"» <t setinterleaves ((u, []),
S
by (auto split: if-split-asm)
from 3.hyps|OF «x ¢ S» «t' setinterleaves ((u, []), 9))
have <trace-tick-swap t' setinterleaves ((trace-tick-swap w, []), refusal-tick-swap
S)» by simp
with <z ¢ S» show Zcase by (cases z) (auto simp add: <t = x # t"» re-
fusal-tick-swap-def split: prod.split)
next
case (4 z u y v)
from 4.prems
consider (both-in) t'where <z € S» <y € Sy <z =y <t = x # t ¢t setinter-
leaves ((u, v), S)H
| (inR-muL) t' where <z ¢ S) <y € S» <t = x # t/» <t setinterleaves ((u,
y # v), SH
| (inL-muR) t' where <x € S) <y & S) <t = y # t» «t’ setinterleaves ((z
u, v), S)H
| (notin-muL) t’' where <z ¢ S» <y ¢ S» <t = x # t"» <t setinterleaves ((u,
y #v),)
| (notin-muR) t' where «x ¢ S» <y & Sy <t = y # t"» «t' setinterleaves ((x
u, v), S)
by (auto split: if-split-asm)
thus Zcase
proof cases
case both-in
from /4 .hyps(1)[OF both-in(1—3, 5)] both-in(1—3)
show ?thesis by (cases y, auto simp add: both-in(4) refusal-tick-swap-def split:
prod.split)
next
case inR-mvL
have (= y ¢ S) by (simp add: inR-muvL(2))
from 4.hyps(5)[OF inR-muL(1) <=y ¢ S» inR-muL(4)] inR-muL(1, 2)
show ?thesis by (cases x, auto simp add: inR-muvL(3) refusal-tick-swap-def
SyncSingleHeadAdd image-iff split: prod.split)
next
case inL-mvR
have x : (a setinterleaves ((t, u), tick-swap *S) = h ¢ tick-swap * S =
(h # a) setinterleaves ((t, b # w), tick-swap S)) for a t h u
by (cases t, auto split: if-split-asm)
from 4.hyps(2)[OF inL-mvR(1, 2, 4)] inL-mvR(1, 2)
show ?thesis by (cases y, auto simp add: inL-mvR(3) refusal-tick-swap-def
image-iff * split: prod.split)
next
case notin-mvL
from 4.hyps(3)[OF notin-mvL(1, 2, 4)] notin-mvL(1, 2)
show ?Zthesis by (cases y, auto simp add: notin-mvL(8) refusal-tick-swap-def
split: prod.split)
(simp-all add: inj-image-mem-iff trace-tick-swap-def)

104

next
case notin-mvR
from 4.hyps(4)[OF notin-mvR(1, 2, 4)] notin-mvR(1, 2)
show ?thesis by (cases z, auto simp add: notin-mvR(3) refusal-tick-swap-def
split: prod.split)
(simp-all add: inj-image-mem-iff trace-tick-swap-def)
qed
qed

lemma trace-tick-swap-setinterleaves-iff :
trace-tick-swap t setinterleaves ((u, v), S) +—
t setinterleaves ((trace-tick-swap u, trace-tick-swap v), refusal-tick-swap S)»
by (metis refusal-tick-swap-refusal-tick-swap trace-tick-swap-trace-tick-swap
setinterleaves-imp-setinterleaves-trace-tick-swap)

Swapping a Failure

definition failure-tick-swap :: <('a, ('r x 's)) failureppick = ('a, ('s x 'r)) fail-
UTEptick’

where <failure-tick-swap F = case F of (t, X) = (trace-tick-swap t, refusal-tick-swap
X)»

lemma failure-tick-swap-empty [simp] : «failure-tick-swap ([J, {}) = ([], {})
by (simp add: failure-tick-swap-def)

lemma failure-tick-swap-comp-failure-tick-swap [simp] :
failure-tick-swap o failure-tick-swap = id»
by (auto simp add: failure-tick-swap-def)

lemma failure-tick-swap-failure-tick-swap [simp] :
failure-tick-swap (failure-tick-swap F) = F)
by (simp add: comp-eq-dest-lhs)

lemma inj-failure-tick-swap [simp)] : <inj failure-tick-swap>
by (metis injl failure-tick-swap-failure-tick-swap)

lemma surj-failure-tick-swap [simp)] : <surj failure-tick-swap»
by (metis surjl failure-tick-swap-failure-tick-swap)

lemma bij-failure-tick-swap [simp)] : «bij failure-tick-swap»

by (simp add: bij-betw-def)

lemma empty-eq-failure-tick-swap-iff [iff] : <([], {}) = failure-tick-swap F «— F

=, {3

and failure-tick-swap-eq-empty-iff [iff] : <failure-tick-swap F = ([], {}) +— F =

105

{0, 4

by (auto simp add: failure-tick-swap-def split: prod.split)

5.1.2 The Operator

Definition

lift-definition TickSwap :: <('a, 'r x 's) processyiick = ('a, 's x ') processpiick>
is AP. ({(¢, X). failure-tick-swap (t, X) € F P}, {t. trace-tick-swap t € D P})»
— One might expect AP. (failure-tick-swap F P, trace-tick-swap ‘D P) instead.
This is equivalent, see the projections below, but easier for the following proof
obligation.
proof —
show «%thesis Py (is <is-process (?f, ?d)») for P
proof (unfold is-process-def FAILURES-def DIVERGENCES-def fst-conv snd-conv,
intro congl impI alll)
show «([], {}) € ?f» by (simp add: is-processT1)
next
show «(t, X) € ?9f = ftF't» for t X
by (simp add: failure-tick-swap-def)
(use is-processT2 front-tickFree-trace-tick-swap-iff in blast)
next
show «(t Q u, {}) € of = (¢, {}) € 7> for t u
by (simp add: failure-tick-swap-def) (metis trace-tick-swap-append is-processT3)
next
show «((t, V) e f NXCY = (t, X) € rfor t X YV
by (simp add: failure-tick-swap-def)
(metis is-processT4 le-iff-sup refusal-tick-swap-union)
next
fix t X YV assume «(¢t, X) € of A Ve.e€ Y — (¢t Q [e], {}) & 2D
hence «(trace-tick-swap t, refusal-tick-swap X) € F P A
(Ve. e € refusal-tick-swap Y — (trace-tick-swap t Q [e], {}) ¢ F P)»
by (auto simp add: failure-tick-swap-def refusal-tick-swap-def trace-tick-swap-append)
thus «((t, X U Y) € 2/
by (simp add: failure-tick-swap-def is-processT5 refusal-tick-swap-union)
next
show «(t Q [V (s-r)], {}) € f = (¢, X — {/(s-1)}) € ?f» for t X s-r
by (cases s-r) (simp add: failure-tick-swap-def trace-tick-swap-append
is-processT6 refusal-tick-swap-diff)
next
show <t € 2d NtFt AN ftF u — t Q u € ?d> for t u
by (simp add: trace-tick-swap-append is-processT7)
next
show «t € ?d = (t, X) € ?f» for t X
by (simp add: failure-tick-swap-def is-processT8)
next
show «t Q [V (s-r)] € 9d = t € ?d» for t s-r
by (cases s-r) (auto simp add: trace-tick-swap-append intro: is-processT9)
qed
qed

106

Projections

lemma F-TickSwap' : «F (TickSwap P) = {(t, X). failure-tick-swap (t, X) € F
P}
by (simp add: Failures.rep-eq TickSwap.rep-eq FAILURES-def)

lemma D-TickSwap’: <D (TickSwap P) = {t. trace-tick-swap t € D P}
by (simp add: Divergences.rep-eq TickSwap.rep-eq DIVERGENCES-def)

lemma T-TickSwap’ : «T (TickSwap P) = {t. trace-tick-swap t € T P}
by (simp add: set-eq-iff F-TickSwap’ failure-tick-swap-def flip: T-F-spec)

lemmas TickSwap-projs’ = F-TickSwap’ D-TickSwap’ T-TickSwap’

This is not very intuitive. The following lemmas are more intuitive.

lemma F-TickSwap : «F (TickSwap P) = failure-tick-swap * F P»
by (simp add: set-eq-iff F-TickSwap’)
(metis (no-types, lifting) failure-tick-swap-failure-tick-swap imageE image-eql)

lemma D-TickSwap : <D (TickSwap P) = trace-tick-swap ‘D P»
by (simp add: set-eq-iff D-TickSwap’)
(metis (no-types, lifting) trace-tick-swap-trace-tick-swap imageE image-eql)

lemma T-TickSwap : <T (TickSwap P) = trace-tick-swap ‘T P>
by (simp add: set-eq-iff T-TickSwap')
(metis (no-types, lifting) trace-tick-swap-trace-tick-swap imagell image-eql)

lemmas TickSwap-projs = F-TickSwap D-TickSwap T-TickSwap

We finally give the following versions, sometimes more convenient to use.

lemma F-TickSwap' : «F (TickSwap P) = {(trace-tick-swap t, refusal-tick-swap
X)) tX. (t, X) e FPh
by (auto simp add: F-TickSwap failure-tick-swap-def)

lemma D-TickSwap' : <D (TickSwap P) = {trace-tick-swap t| t. t € D P}
by (auto simp add: D-TickSwap)

lemma T-TickSwap’ : «T (TickSwap P) = {trace-tick-swap t| t. t € T P}h
by (auto simp add: T-TickSwap)

lemmas TickSwap-projs’’ = F-TickSwap'' D-TickSwap' T-TickSwap'

Properties

lemma events-TickSwap [simp] : <events-of (TickSwap P) = events-of P»
by (auto simp add: events-of-def T-TickSwap trace-tick-swap-def)

lemma ticks-TickSwap [simp] : <ticks-of (TickSwap P) = {(s, r). (r, s) € ticks-of
PhH
by (auto simp add: ticks-of-def T-TickSwap’ trace-tick-swap-append)

107

(metis trace-tick-swap-trace-tick-swap)

lemma strict-ticks- TickSwap [simp]
«strict-ticks-of (TickSwap P) = {(s, r). (r, s) € strict-ticks-of P}»
by (auto simp add: strict-ticks-of-def TickSwap-projs’ trace-tick-swap-append)
(metis trace-tick-swap-trace-tick-swap)

lemma trace-tick-swap-image-setinterleavingp gy :
<trace-tick-swap ‘ setinterleavingpiicr (Ars. [(r, s)], u, 4, v) =
setinterleavingptick (Ars. |(r, s)], v, 4, u)
for u :: «('a, 'r) tracepick> and vz «(Ya, 's) tracepiick>
by (rule sym, induct <(Ar :: 'r. Xs s, [(r, 8)], u, A, v)
arbitrary: u v) (simp-all, safe, auto)

lemma trace-tick-swap-setinterleavespqr-iff |iff] :
(trace-tick-swap t setinterleavesy y,. L(r, 5)] ((u, v), A) +—

t setinterleaves s y,. ¢ L(r, 8)] ((v, u), A)»
by (metis (mono-tags, lifting) image-eql trace-tick-swap-image-setinterleavingpq i,
trace-tick-swap-trace-tick-swap)

The following theorem is a bridge with the existing operators: TickSwap can
be expressed via the Renaming operator.

lemma tick-swap-is-map-eventpiicy, : (tick-swap = map-eventpy;cr, id prod.swap>
proof (rule ext)

show «(tick-swap e = map-event,icr, id prod.swap e for e :: <('a, 'r x 's)
eventytick)

by (cases e) (auto split: eventp;c.splits prod.splits)
qed

lemma trace-tick-swap-is-map-map-eventpiick
<trace-tick-swap = map (map-event,yicr id prod.swap))
by (simp add: tick-swap-is-map-event,cx trace-tick-swap-def)

lemma refusal-tick-swap-is-image-map-eventpicy
<refusal-tick-swap = () (map-eventyyicr, id prod.swap)»
by (rule ext) (simp add: refusal-tick-swap-def tick-swap-is-map-event,i;ck)

theorem TickSwap-is-Renaming :
<TickSwap P = Renaming P id prod.swap) (is «?lhs = %rhs))
proof (subst Process-eq-spec-optimized, safe)
fix ¢t assume <t € D ?lhs)
with D-imp-front-tickFree have <ftF' t» by blast
define t! where <t1 = trace-tick-swap (if tF t then t else butlast t)»
define t2 where (t2 = if tF t then [] else [last]
have <t = map (map-event,icr, id prod.swap) t1 Q t2)
by (simp add: t1-def t2-def flip: trace-tick-swap-is-map-map-eventyick)
(metis append-butlast-last-id tickFree-Nil)
moreover from <ftF' t) front-tickFree-iff-tickFree-butlast t1-def have <tF t1) by

108

auto
moreover have <(ftF t2) by (simp add: t2-def)
moreover from t1-def D-TickSwap’ <ftF t» <t € D ?lhs»
div-butlast-when-non-tickFree-iff have <t1 € D P» by blast
ultimately show <t € D %rhs) unfolding D-Renaming by blast
next
fix ¢t assume <t € D ?rhs»
then obtain t1 t2
where <t = map (map-eventpiick id prod.swap) t1 Q t2) «tF t1» <ftF t2» «t1
eD P
unfolding D-Renaming by blast
thus «t € D ?lhs) by (simp add: D-TickSwap’ trace-tick-swap-append is-processT7
flip: trace-tick-swap-is-map-map-eventyicr)
next
fix t X assume «(t, X) € F ?lhs
then obtain ¢’ X’ where <t = trace-tick-swap t"» <X = refusal-tick-swap X'
(t, X" e F P
unfolding F-TickSwap failure-tick-swap-def by auto
moreover have «map-eventyicr id prod.swap —* refusal-tick-swap X' = X"
by (simp add: set-eq-iff) (metis inj-image-mem-iff inj-tick-swap
refusal-tick-swap-def tick-swap-is-map-eventyiick)
ultimately show «(t, X) € F ?rhs)
by (auto simp add: F-Renaming simp flip: trace-tick-swap-is-map-map-event,;ck)
next
fix ¢ X assume same-div : <D ?lhs = D ?rhs)
assume «(t, X) € F ?rhs
then consider <t € D ?rhs)
| ¢/ where <t = map (map-eventyiick id prod.swap) t" «(t', map-eventyiicx id
prod.swap —‘ X) € F P)
unfolding Renaming-projs by blast
thus «(¢, X) € F ?lhs
proof cases
from same-div D-F show <t € D %rhs = (¢, X) € F ?lhs» by blast
next
fix t/ assume * : <t = map (map-eventpiick id prod.swap) t'
«(t', map-eventyiicr id prod.swap —° X) € F P»
from (1) have «(t, X) = failure-tick-swap (t', map-eventyi;cr, id prod.swap
—X)
by (simp add: failure-tick-swap-def refusal-tick-swap-def trace-tick-swap-def
flip: tick-swap-is-map-eventptick)
with %(2) show «(¢, X) € F ?lhs» by (simp add: F-TickSwap)
qed
qed

lemma TickSwap-TickSwap [simp)] : « TickSwap (TickSwap P) = P»
by (simp add: Process-eq-spec TickSwap-projs’)

109

lemma TickSwap-comp-TickSwap [simp)] : < TickSwap o TickSwap = id>
by (rule ext) simp

lemma TickSwap-eq-iff-eq-TickSwap : «TickSwap P = @ +— P = TickSwap Q>
by auto

lemma inj- TickSwap [simp] : <inj TickSwap>
by (metis injl TickSwap-TickSwap)

lemma surj-TickSwap [simp] : <surj TickSwap»
by (metis suril TickSwap-TickSwap)

lemma bij- TickSwap [simp] : <bij TickSwap>
by (simp add: bij-betw-def)

lemma strict-mono-TickSwap : <strict-mono TickSwap>
by (rule strict-monol)
(metis D-TickSwap F-TickSwap failure-refine-def image-mono injD inj- TickSwap
nless-le failure-divergence-refine-def divergence-refine-def)

Monotonicity Properties

lemma mono-TickSwap : <P T @) = TickSwap P T TickSwap Q>
by (simp add: TickSwap-is-Renaming mono-Renaming)

lemma mono-TickSwap-FD : <P Cpp @ = TickSwap P Cpp TickSwap @
and mono-TickSwap-DT : <P Epr @Q = TickSwap P Cpr TickSwap Q>
and mono-TickSwap-F : <P Cp Q = TickSwap P Cgr TickSwap Q>
and mono-TickSwap-D : <P Ep Q = TickSwap P Ep TickSwap Q>
and mono-TickSwap-T : <P Cp Q = TickSwap P Cp TickSwap Q>
by (simp-all add: TickSwap-projs refine-defs image-mono)

lemmas monos-TickSwap = mono-TickSwap mono-TickSwap-FD mono-TickSwap-DT
mono-TickSwap-F mono-TickSwap-D mono-TickSwap-T

lemma le-approx-TickSwap-iff : < TickSwap P T TickSwap Q +— P C Q»

and FD-TickSwap-iff : «TickSwap P Epp TickSwap Q «— P Cpp @
and DT-TickSwap-iff : <TickSwap P Cpr TickSwap Q <— P Cpr @
and F-TickSwap-iff : «TickSwap P Cp TickSwap @Q <— P Cp @
and D-TickSwap-iff : «TickSwap P Cp TickSwap Q <— P Cp @
and T-TickSwap-iff : «TickSwap P Ty TickSwap Q <— P Cp @

by (rule iffI; drule monos-TickSwap, simp add: monos-TickSwap)+

lemmas le- TickSwap-iff = le-approz- TickSwap-iff FD- TickSwap-iff DT-TickSwap-iff
F-TickSwap-iff D-TickSwap-iff T-TickSwap-iff

110

Continuity

Continuity is a direct corollary of the continuity of Renaming.

lemma TickSwap-cont[simp] : <cont P = cont (Az. TickSwap (P z))»
by (simp add: TickSwap-is-Renaming)

Algebraic Laws

Constant Processes lemma TickSwap-STOP [simp] : < TickSwap STOP =
STOP)
by (simp add: STOP-iff-T T-TickSwap T-STOP)

lemma TickSwap-is-STOP-iff [simp] : < TickSwap P = STOP <— P = STOP:
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-BOT [simp] : <TickSwap L = L)
by (simp add: BOT-iff-Nil-D D-TickSwap D-BOT)

lemma TickSwap-is-BOT-iff [simp] : «TickSwap P = 1L +— P = 1)
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-SKIP [simp] : < TickSwap (SKIP (r, s)) = SKIP (s, r)
by (simp add: TickSwap-is-Renaming)

lemma TickSwap-is-SKIP-iff [simp] : « TickSwap P = SKIP (r, s) «— P = SKIP
(s,)

by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-SKIPS [simp] : « TickSwap (SKIPS R-S) = SKIPS {(s, r). (r,
s) € R-SH
by (auto simp add: Process-eq-spec TickSwap-projs’ SKIPS-projs)
(auto simp add: failure-tick-swap-def refusal-tick-swap-def)

lemma TickSwap-is-SKIPS-iff [simp] :
«TickSwap P = SKIPS R-S +— P = SKIPS {(s, r). (r, s) € R-S}
by (simp add: TickSwap-eq-iff-eq- TickSwap)

Binary (or less) Operators lemma TickSwap-Ndet [simp] : « TickSwap (P
N Q) = TickSwap P M TickSwap Q>
by (simp add: Process-eq-spec TickSwap-projs Ndet-projs image-Un)

lemma TickSwap-is-Ndet-iff [simp] : <TickSwap P = Q M R +— P = TickSwap

Q M TickSwap R»
by (simp add: TickSwap-eq-iff-eq- TickSwap)

111

lemma TickSwap-Det [simp)] :
<TickSwap (P O Q) = TickSwap P O TickSwap @
by (simp add: TickSwap-is-Renaming Renaming-Det)

lemma TickSwap-is-Det-iff [simp] : < TickSwap P = Q O R +— P = TickSwap
Q O TickSwap R»
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-Sliding [simp] : « TickSwap (P > Q) = TickSwap P 1> TickSwap
Q>
by (simp add: Sliding-def)

lemma TickSwap-is-Sliding-iff [simp] : « TickSwap P = Q > R +— P = TickSwap
Q > TickSwap R»
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-Sync [simp] :
«TickSwap (P [S] Q) = TickSwap P [S] TickSwap Q>
by (simp add: TickSwap-is-Renaming bij-Renaming-Sync)

lemma TickSwap-is-Sync-iff [simp] :
«TickSwap P = Q [S] R <+— P = TickSwap Q [S] TickSwap R»
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Seq [simp] :
<TickSwap (P 3 Q) = TickSwap P 5 TickSwap Q>
by (simp add: Renaming-Seq TickSwap-is-Renaming)

lemma TickSwap-is-Seq-iff [simp] :
<TickSwap P = @Q 3 R «<— P = TickSwap Q ; TickSwap R»
by (simp add: TickSwap-eqg-iff-eq-TickSwap)

lemma TickSwap-Renaming [simp] :
«TickSwap (Renaming P f g) =
Renaming (TickSwap P) f (prod.swap o g o prod.swap)»
by (simp add: TickSwap-is-Renaming flip: Renaming-comp)
(metis comp-apply swap-swap)

lemma TickSwap-Renaming’ :
«TickSwap (Renaming P f g) = Renaming P f (prod.swap o g)»
by (simp add: TickSwap-is-Renaming flip: Renaming-comp)

lemma TickSwap-is-Renaming-iff [simp] :

«TickSwap P = Renaming Q f g «— P = Renaming (TickSwap Q) f (prod.swap
o g o prod.swap)»

112

by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Hiding [simp] : < TickSwap (P \ S) = TickSwap P \ S»
by (simp add: TickSwap-is-Renaming bij-Renaming-Hiding)

lemma TickSwap-is-Hiding-iff [simp] : « TickSwap P = Q \ S +— P = TickSwap

Q\ S
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-Interrupt [simp] :
<TickSwap (P A Q) = TickSwap P A\ TickSwap Q>
by (simp add: TickSwap-is-Renaming Renaming-Interrupt)

lemma TickSwap-is-Interrupt-iff [simp] :
<TickSwap P = Q A R «— P = TickSwap Q A TickSwap R)
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-Throw [simp] :
«TickSwap (P © a € A. Q a) = TickSwap P © a € A. TickSwap (Q a)»
by (simp add: TickSwap-is-Renaming ing-on-Renaming-Throw)
(rule mono-Throw-eq, metis id-apply inj-on-id inv-into-f-f)

lemma TickSwap-is- Throw-iff [simp] :

«TickSwap P = Q © a € A. R a +— P = TickSwap Q © a € A. TickSwap (R
a)

by (simp add: TickSwap-eq-iff-eq- TickSwap)

Architectural Operators lemma TickSwap-GlobalNdet [simp] :
<TickSwap (Ma € A. P a) = MNa € A. TickSwap (P a)
by (simp add: TickSwap-is-Renaming Renaming-distrib-GlobalNdet)

lemma TickSwap-is-GlobalNdet-iff [simp] :
«TickSwap P =Na € A. Q a +— P =TNa € A. TickSwap (Q a)>
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-GlobalDet [simp] :
«TickSwap (Oa € A. P a) = 0Oa € A. TickSwap (P a)»
by (simp add: TickSwap-is-Renaming Renaming-distrib-GlobalDet)

lemma TickSwap-is-GlobalDet-iff [simp] :

<TickSwap P =0a € A. Q a +— P =0a € A. TickSwap (Q a)>
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-MultiSync [simp)] :

113

«TickSwap ([S] m €# M. P m) = [S] m €# M. TickSwap (P m)»
by (induct M rule: induct-subset-mset-empty-single) simp-all

lemma TickSwap-is- TickSwap-MultiSync-iff [simp] :
«TickSwap P = [S] m €# M. Q@ m <— P = [S] m €# M. TickSwap (Q m)>
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-MultiSeq [simp] :
(L # [] = TickSwap (SEQ 1 €@ L. P1l) = SEQ 1 €Q L. TickSwap (P 1)
by (induct L rule: rev-induct, simp-all)
(metis MultiSeq-Nil SKIP-Seq TickSwap-Seq)

lemma TickSwap-is-MultiSeq-iff [simp] :

<L £ [] = TickSwap P = SEQ 1 €Q L. Ql+— P = SEQ ! €Q L. TickSwap
Q1)

by (metis TickSwap-MultiSeq TickSwap- TickSwap)

Communications lemma TickSwap-write0 [simp] : < TickSwap (e — P) = e
— TickSwap P>
by (simp add: TickSwap-is-Renaming Renaming-writeQ)

lemma TickSwap-is-write0-iff [simp] : <TickSwap P = ¢ - Q «<— P = ¢ —
TickSwap Q>
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-write [simp)] : «TickSwap (cle — P) = cle — TickSwap P»
by (simp add: TickSwap-is-Renaming Renaming-write)

lemma TickSwap-is-write-iff [simp] : «TickSwap P = cle - Q +— P = cle —
TickSwap Q>
by (simp add: TickSwap-eq-iff-eq-TickSwap)

lemma TickSwap-Mprefix [simp)] :
<TickSwap (Oa € A — P a) =0a € A — TickSwap (P a))
by (simp add: Mprefiz-GlobalDet)

lemma TickSwap-is-Mprefiz-iff [simp] :

«TickSwap P = (Oa € A — Q a) +— P =0a € A — TickSwap (Q a)
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-read [simp) : « TickSwap (c?a€A — P a) = c?a€A — TickSwap
(P a)
by (simp add: read-def comp-def)

lemma TickSwap-is-read-iff [simp)] :

114

«TickSwap P = c?a€A — Q a +— P = c?a€A — TickSwap (Q a)»
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-Mndetprefiz [simp] :
«TickSwap (Ma € A — P a) =MNa € A — TickSwap (P a)»
by (simp add: Mndetprefiz-GlobalNdet)

lemma TickSwap-is-Mndetprefiz-iff [simp) :
<TickSwap P = (Ma € A = Q a) «— P =Ta € A — TickSwap (Q a)
by (simp add: TickSwap-eq-iff-eq- TickSwap)

lemma TickSwap-ndet-write [simp] : «TickSwap (MNa€A — P a) = cllacAd —
TickSwap (P a)»
by (simp add: ndet-write-def comp-def)

lemma TickSwap-is-ndet-write-iff [simp] :
<TickSwap P = MacA — Q a «— P = cacA — TickSwap (Q a)»
by (simp add: TickSwap-eq-iff-eq- TickSwap)

5.2 Splitting the Renaming Operator

We split the Renaming operator in two: the first one only renames the
“regular” events, the second one only the ticks.

5.2.1 Renaming only Events

abbreviation RenamingEv :: <[('a, 'r) processpiick, 'a = b = ('b, 'r) pro-
CESSptick?
where (RenamingEv P f = Renaming P f id>

lemma RenamingEv-id-unfolded [iff] :
«Renaming P f (Ar. r) = RenamingEv P f» by (simp add: id-def)

lemmas strict-ticks-of-RenamingFEv-subset = strict-ticks-of-Renaming-subset [where
g = id, simplified)
and strict-ticks-of-inj-on-RenamingFEv = strict-ticks-of-inj-on-Renaming [where
g = id, simplified)
lemmas monos-RenamingEv = monos-Renaming[where g = id]

lemma RenamingEv-SKIP : <RenamingEv (SKIP r) f = SKIP r» by simp

lemma RenamingEv-cont :
<cont P = finitary f = cont (Az. RenamingEv (P z) f)» by simp

115

lemma RenamingEv-Seq :
<RenamingEv (P ; Q) f = RenamingEv P f; RenamingEv Q f»
by (simp add: Renaming-Seq)

declare Renaming-id [simp]

lemmas RenamingFEv-id = Renaming-id
and RenamingEv-STOP = Renaming-STOP [where g = id]
and RenamingEv-BOT = Renaming-BOT [where g = id]

and RenamingFv-is-STOP-iff = Renaming-is-STOP-iff [where g = id]
and RenamingFv-is-BOT-iff = Renaming-is-BOT-iff [where g = id]

lemmas RenamingEv-Det = Renaming-Det [where g = id]
and RenamingEv-Ndet = Renaming-Ndet [where g = id]
and RenamingEv-Sliding = Renaming-Sliding [where g = id|
and RenamingFEv-Interrupt = Renaming-Interrupt [where g = id)

and RenamingFv-write0) = Renaming-write0 [where g = id)

and RenamingEv-write = Renaming-write [where g = id]

and RenamingEv-comp = Renaming-comp [of - - - id id, simplified]

and RenamingEv-inv = Renaming-inv [where g = id, simplified]

and inv-RenamingFv = inv-Renaming [where g = id, simplified]
lemmas bij-RenamingEv-Sync = bij-Renaming-Sync [where g = id, sim-
plified)

and bij-RenamingEv-Hiding = bij-Renaming-Hiding [where g = id, simplified)
and inj-on-RenamingEv-Throw = inj-on-Renaming- Throw [where g = id]
and RenamingFEv-fix = Renaming-fix [where g = id, simplified)

lemmas RenamingEv-distrib-GlobalDet = Renaming-distrib-GlobalDet [where g

= id|
and RenamingEv-distrib-GlobalNDet = Renaming-distrib-GlobalNdet [where g
= id|
and RenamingEv-Mprefix = Renaming-Mprefiz [where g = id|
and RenamingEv-Mndetprefix = Renaming-Mndetprefix [where g =
id]
and RenamingEv-read = Renaming-read [where g = id]
and RenamingEv-ndet-write = Renaming-ndet-write [where g = id]

5.2.2 Renaming only Ticks

!

abbreviation RenamingTick :: <[('a, 'r) processpiick, '™ = 's] = (‘a, 's) pro-

CeSSptick’

116

where «RenamingTick P g = Renaming P id g

lemma RenamingTick-id-unfolded [iff] :
<Renaming P (M\a. a) g = RenamingTick P ¢» by (simp add: id-def)

lemmas strict-ticks-of-Renaming Tick-subset = strict-ticks-of- Renaming-subset [where

f=id

and strict-ticks-of-inj-on-Renaming Tick = strict-ticks-of-inj-on-Renaming [where

f = id, simplified]
lemmas monos-RenamingTick =

lemma RenamingTick-cont :

monos-Renaming[where f = id]

<cont P = finitary g = cont (Az. RenamingTick (P x) g)» by simp

lemmas RenamingTick-id Renaming-id

and RenamingTick-STOP = Renaming-STOP [where [= id|
and RenamingTick-SKIP = Renaming-SKIP [where f = id]
and RenamingTick-BOT = Renaming-BOT [where f = id]

and RenamingTick-is-STOP-iff = Renaming-is-STOP-iff [where f = id]
and RenamingTick-is-BOT-iff = Renaming-is-BOT-iff [where f = id]

lemmas RenamingTick-Seq = Renaming-Seqwhere [= id]

and RenamingTick-Det = Renaming-Det [where f = id]
and RenamingTick-Ndet = Renaming-Ndet [where f = id)
and RenamingTick-Sliding = Renaming-Sliding [where f = id]

and RenamingTick-Interrupt = Renaming-Interrupt [where f = id]

and RenamingTick-write0
and RenamingTick-write
and RenamingTick-comp
and RenamingTick-inv
and inv-RenamingTick

lemmas bij-Renaming Tick-Sync
simplified)

and RenamingTick-fix

= Renaming-write0
= Renaming-write
= Renaming-comp
Renaming-inv
inv-Renaming

= Renaming-fix

[where [= id, simplified)
[where [= id, simplified)
[of - id id , simplified]
[where f = id, simplified]
[where f = id, simplified]

[where f = id,

= bij-Renaming-Sync

[where [= id, simplified]

— The assumption b7 g is actually not necessary for RenamingTick and (\), see

below.

lemma RenamingTick-Throw :

<RenamingTick (P © a€A. Q a) g = RenamingTick P g © a€A. RenamingTick

(Qa) g

proof (subst inj-on-Renaming-Throw)
show <inj-on id (events-of P U A)» by simp

117

next
show <RenamingTick P g © beid * A. RenamingTick (Q (inv-into A id b)) g =
RenamingTick P g © a€A. RenamingTick (Q a) ¢
by (simp, rule mono-Throw-eq)
(metis f-inv-into-f id-apply image-id)
qed

lemmas RenamingTick-distrib-GlobalDet = Renaming-distrib-GlobalDet [where
f=id]

and RenamingTick-distrib-GlobalNDet = Renaming-distrib-GlobalNdet [where f
= id|

and RenamingTick-Mprefiz = Renaming-Mprefiz-image-inj [where f
= id, simplified)

and RenamingTick-Mndetprefix = Renaming-Mndetprefiz-inj [where f
= id, simplified]

and RenamingTick-read = Renaming-read [where f = id,
simplified]

and RenamingTick-ndet-write = Renaming-ndet-write [where [=

id, simplified)

lemma RenamingEv-RenamingTick-is-Renaming :
<RenamingFEv (RenamingTick P g) f = Renaming P f ¢
and RenamingTick-RenamingFEv-is- Renaming :
<RenamingTick (RenamingEv P f) g = Renaming P f ¢
by (metis Renaming-comp comp-id fun.map-id)+

5.2.3 Properties

lemma isInfHidden-seqRun-imp-tickFree-seqRun :
<isInfHidden-seqRun © P A t = tF (seqRun t x 7))
by (metis eventpe;cr-disc(1) image-iff isInfHidden-seqRun-imp-tickFree tickFree-seqRun-iff)

lemma tickFree-map-map-eventyticr-is
(tF't => map (map-eventpiicr fg) t = map (ev o f o of-ev) &
by (induct t) (auto simp add: is-ev-def)

lemma RenamingTick-Hiding :
<RenamingTick (P \ A) g = RenamingTick P g \ A
(is <?lhs = %rhs)) for P :: «((‘a, 'r) processpiick>
proof —
let ?RT = <AP. RenamingTick P ¢
let ?th-A = (At. trace-hide t (ev ‘ A)»
let ?map = «<map (map-eventyyick id g)»
have § : «?th-A (Ymap t) = ?map (?th-A t)» for ¢
by (induct t) (simp-all add: image-iff map-eventy;cx-eq-ev-iff)

118

have $$: «map-eventyick id g — X Uev ‘A =
map-eventyiicr 1d g —° X U map-eventpiicr id g —‘ev © A for X
by (auto simp add: map-event,;cx-eq-ev-iff)
show «?lhs = ?rhs»
proof (rule Process-eq-optimizedl)
fix ¢t assume <t € D ?lhs»
then obtain ¢/ t2 where * : <t = ?map t1 Q t2)
tF 1y (ftF t2> <t1 € D (P \ A)» unfolding D-Renaming by blast
from *(4) obtain u v where xx : <ftF vy (tF wy «t1 = ?th-A v Q v
<u € D PV (Fz. isInfHidden-seqRun-strong © P A u)»
by (blast elim: D-Hiding-seqRunkE)
from sx(4) show <t € D ?rhs
proof (elim disjE exE)
assume (v € D P»
with *x(2) have ¢ %map u € D (?RT P)»
by (auto simp add: D-Renaming intro: front-tickFree-Nil)
thus <t € D ?rhs
by (simp add: D-Hiding x(1) *x(3) flip: §)
(metis x(2, 3) #x(2, 3) front-tickFree-append
map-eventyy; ok -tickFree tickFree-append-iff)
next
fix z assume *xx : <isInfHidden-seqRun-strong x P A u»
have <isInfHidden-seqRun (ev o of-ev o x) (?RT P) A (?map u)>
proof (intro alll conjl)
fix ¢
have (seqRun (?map u) (ev o of-ev o x) ¢ = ?map (seqRun u x i)
by (simp add: seqRun-def image-iff ev-eg-map-event,y;x-iff)
(metis sxx eventyyick.sel(1) imageF)
also have «?map (seqRun v z i) € T (YRT P)»
unfolding T-Renaming using *xx Un-iff by blast
finally show <seqRun (?map u) (ev o of-ev o x) i € T (YRT P)»> .
next
show «(ev o of-ev o z) i € ev * A for i
by (metis sk« comp-apply eventyi;cx.sel(1) image-iff)
qed
thus <t € D ?rhs
by (simp (no-asm) add: D-Hiding-seqRun (1) *x(3) flip: $)
(metis %(2, 8) xx(2, 3) front-tickFree-append
map-event,; .k -tickFree tickFree-append-iff)
qged
next
fix ¢t assume <t € D ?rhs»
then obtain u v where * : <ftF vy <tF w» <t = ?th-A u @ v
«<u € D (?RT P) Vv (3z. isInfHidden-seqRun-strong = (YRT P) A u)»
by (blast elim: D-Hiding-seqRunkE)
from x(4) show <t € D ?lhs
proof (elim disjE exE)
assume <u € D (?RT P))
then obtain ul u2 where *x : <u = ?map ul Q u2»

119

tF uly «ftF u2»> <ul € D P> unfolding D-Renaming by blast
from mem-D-imp-mem-D-Hiding +x(4) have «?th-A ul € D (P \ A) .
thus ¢t € D ?lhs»
by (simp add: D-Renaming =(3) *x(1) $)
(metis (1, 2) *x(1, 2) Hiding-tickFree
front-tickFree-append tickFree-append-iff)
next
fix x assume *x : <isInfHidden-seqRun-strong x (?RT P) A u»
hence «Vi. 3v. seqRun wz i = map v AN v €T P>
unfolding Renaming-projs by blast
then obtain f where #xx : <seqRun u x i = ?map (fi)> <«fi € T P» for i
by metis
have «tF (f i) for {
by (metis isInfHidden-seqRun-imp-tickFree-seqRun
sk kwk(1) map-eventpycr-tickFree)
hence «?map (f i) = map (ev o of-ev) (f ¢)» for ¢
by (simp add: tickFree-map-map-eventyy;ci-1s)
from xx(1)[unfolded this]
have «map (ev o of-ev) (seqRun u x i) =
(map (ev o of-ev) (map (ev o of-ev) (f17)) :: (‘a, 'r) tracepiicr)> for i by
stmp
also have (map (ev o of-ev) (map (ev o of-ev) (fi)) = fi» for ¢
using «A\i. tF (f i) [of 1]
by (auto simp add: tickFree-iff-is-map-ev)
finally have «f i = map (ev o of-ev) (seqRun u z i)» for i by (rule sym)
hence *xxx : (f i = seqRun (f 0) (ev o of-ev o z) > for ¢
by (simp add: seqRun-def #xx(1))
have <isInfHidden-seqRun (ev o of-ev o) P A (f 0)
proof (intro alll conjI)
show (seqRun (f 0) (ev o of-ev o x) i € T P> for i by (metis s*x(2) sxxx)
next
show «(ev o of-ev o) i € ev * A» for i
using xx[THEN spec, of i] by auto
qged
with (Ai. tF (f i) have <?th-A (f0) € D (P \ A)
by (simp add: D-Hiding-seqRun)
(metis append.right-neutral comp-apply front-tickFree-Nil)
moreover have «?th-A u = ?map (?th-A (f 0))»
by (metis $ *xx(1) seqRun-0)
ultimately show <t € D ?lhs)
by (simp add: D-Renaming *(3))
(use *(1) Hiding-tickFree <\i. tF (f 7)> in blast)
qed
next
fix t X assume «(¢t, X) € F %lhs) <t ¢ D ?lhs
then obtain t’ where * : <t = ?map t
«(t', map-eventppicy id g —* X) € F (P \ A)»
unfolding Renaming-projs by blast
from *(2) consider <¢t' € D (P \ A)»

120

| (xx) t"” where <t/ = ?th-A t')
«(t", map-eventypicr idg —X Uev ‘A) € F P
unfolding F-Hiding D-Hiding by blast
thus «(¢t, X) € F ?rhs
proof cases
assume <t' € D (P \ A)
hence «tF't'Vv (3t" r.t' =t" Q [V (r)] A tF ")
by (metis D-imp-front-tickFree front-tickFree-append-iff
nonTickFree-n-front TickFree not-Cons-self2)
with <t/ € D (P \ A)) <t ¢ D ?lhs) have False
by (elim disjE exE conjE, simp-all add: D-Renaming (1))
(use front-tickFree-Nil in blast, metis front-tickFree-single is-processT9)
thus «(t, X) € F ?rhs) ..
next
case
from *x(2) have «(9map t", X U ev ‘ A) € F (?RT P)»
by (auto simp add: F-Renaming $$)
thus «(t, X) € F ?rhs> by (simp add: F-Hiding (1) xx(1)) (metis $)
qed
next
fix t X assume (¢, X) € F ?rhs» <t ¢ D ?rhs
then obtain ¢’ where x : «t = 7th-A t)» «(t/, X U ev * A) € F (?RT P)»
unfolding F-Hiding D-Hiding by blast
from %(2) consider <t' € D (RT P)»
| (xx) t" where <t' = ?map t'"
«(t", map-eventpick id g —° X U map-eventpiicy id g —‘ev “ A) € F P»
by (auto simp add: Renaming-projs)
thus «(t, X) € F ?lhs
proof cases
assume <t’' € D (?RT P))
hence «tF t'Vv (3t" r. t' =t"Q [V (r)] A tF ")
by (metis D-imp-front-tickFree front-tickFree-append-iff
non TickFree-n-front TickFree not-Cons-self2)
with «t’ € D (?RT P)) <t ¢ D ?rhs» have False
by (elim disjE exE, auto simp add: D-Hiding-seqRun (1) image-iff
intro: front-tickFree-single is-processT9)
thus «(t, X) € F ?lhs» .
next
case #x
from *x(2) have «(?th-A t"', map-eventpiicy id g — X) € F (P \ A)»
by (auto simp add: F-Hiding 9)
thus «(¢t, X) € F ?lhs
by (auto simp add: F-Renaming x(1) xx(1) $)
ged
qed
qed

corollary bij-Renaming-Hiding :

121

<Renaming (P \ S) fg = Renaming P fg\ f*S (is <%lhs = %rhsy) if <bij >
— We already have [bij fa; bij ga] = Renaming (Pa \ Sa) fa ga = Renaming
Pa fa ga \ fa ¢ Sa, but he assumption bij g is actually not necessary.
proof —
have <?%lhs = RenamingTick (RenamingEv (P \ S) f) ¢
by (simp only: RenamingTick-RenamingFEv-is- Renaming)

also have «... = RenamingTick (RenamingEv P f\ fS) ¢
by (simp only: bij-RenamingEv-Hiding[OF <bij f>])

also have «... = RenamingTick (RenamingEv P f) g \ f ‘S
by (simp only: RenamingTick-Hiding)

also have «... = %rhs)

by (simp only: RenamingTick-RenamingEv-is-Renaming)
finally show «?lhs = ?rhs» .
qed

lemma Renaming-is-restrictable-on-events-of-strict-ticks-of :
<Renaming P f ¢ = Renaming P [’ ¢
if fun-hyps : <N\a. a € a(P) = fa=f"w
ANr.revs(P)=gr=g¢'m
for ff':<a="band g g’ :: <r="b
— probably also possible to strengthen with strict-events-of
proof —
have * : <Renaming P f g Crp Renaming P [g
if fun-hyps-bis : <Na. a € a(P) = fa=f"a> <Ar.r € Vs(P) = gr=g'm
for ff'::<a= "bband g g’ :: <r= "D
proof —
have $: «<map (map-event,iicr fg) v = map (map-eventpiick f' g’) w
if «u € T Py and <tF w» for u
proof —
from <u € T P> have <ev a € set u = a € a(P)» for a
by (meson events-of-meml)
with «tF' w» show «<map (map-eventpiick fg) v = map (map-eventyiick f' g’)
u
by (induct u, simp-all)
(metis eventppick.collapse(1) eventyiick.simps(9) fun-hyps-bis(1))
qed
have «((Vt. t € D (Renaming P f' ¢') — t € D (Renaming P f g)) A
(Vt X. (t, X) € F (Renaming P f’' ¢') — t ¢ D (Renaming P f' ¢") —
(t, X) € F (Renaming P f g))»
proof (intro congl alll impl)
fix ¢t assume <t € D (Renaming P f' g')»
then obtain u! u2 where * : <t = map (map-eventpiick f' g’) ul Q u2»
AF uly «ftF u2y <ul € D P> unfolding D-Renaming by blast
have (map (map-eventpiick f' g’) ul = map (map-eventpiicr fg) ul>
by (simp add: <tF ul) $ x(4) D-T)
with x show <t € D (Renaming P f g)»
by (auto simp add: D-Renaming)

122

next
fix t X assume «(t, X) € F (Renaming P f' ¢')» <t ¢ D (Renaming P ' g')»
then obtain u where * : (¢ = map (map-event,icr, [’ g') w
(u, map-eventppicr f' 9" —* X) € F P»
unfolding Renaming-projs by blast
show «(t, X) € F (Renaming P f g)»
proof (cases <tF w))
assume <tF w
have «(u, map-eventpiick f' ¢’ — X U {evala. a ¢ o(P)} U
{V(r)|r.r ¢ /s(P)}) € F P (is «(u, 2Y) € F P»)
by (intro is-processT5, simp-all add: *(2))
(meson T-F-spec events-of-meml in-set-conv-decomp,
metis (mono-tags, lifting) (1) D-Renaming F-imp-front-tickFree T-F-spec
<t ¢ D (Renaming P f’ g')» append-Nil2 append-T-imp-tickFree
1s-processT1
is-processT9 list.simps(3) mem-Collect-eq strict-ticks-of-meml)
moreover from fun-hyps-bis
have (e € map-eventyick fg —X = e € ?Y) for e
by (cases e) auto
ultimately have «(u, map-eventyiicr fg — X) € F P»
by (meson is-processT4 subset-eq)
moreover have ¢ = map (map-eventyiicr fg) w
by (metis § * F-T «tF w)
ultimately show «(t, X) € F (Renaming P f g)»
by (auto simp add: F-Renaming)
next
assume — tF w
then obtain «’ r where «(tF v’y <u = v’ @ [V ()]
by (metis x(2) F-imp-front-tickFree front-tickFree-append-iff
nonTickFree-n-frontTickFree not-Cons-self2)
from x(2) F-T <u = v’ Q [V (r)]> have <u’ Q [V (r)] € T P> by blast
have $$: «map (map-eventyiick f' g') ' = map (map-eventprick fg) v’
by (metis $ %(2) F-T <tF v <u = v’ Q [V (r)]> is-processT3-TR-append)
have <map (map-eventpiick f' g’) v’ Q [V (g’ r)] € T (Renaming P f g)»
proof (cases <r € V/s(P)»)
assume <1 € V/s(P)
hence g’ r = g m by (simp add: fun-hyps-bis(2))
with $$ show <map (map-eventyiick f' g') v’ Q [V (g’)] € T (Renaming
Pfag)
by (simp add: T-Renaming) (use <u’ Q [V (r)] € T P> in auto)
next
assume <r ¢ /s(P)»
hence v’ € D P
by (metis <u’ Q [/ (r)] € T P» is-processT9 strict-ticks-of-memlI)
hence «map (map-eventyiicr, fg) v’ € D (Renaming P f g)»
using D-Renaming F-imp-front-tickFree <tF u'y is-processT1 by blast
with $$ have <map (map-eventyiicr f' g') v’ € D (Renaming P f g)» by
presburger
hence «map (map-eventyiicr, f' ¢') v’ @ [V (g’ r)] € D (Renaming P f g)»

123

by (simp add: <tF u's is-processT7 map-eventyck-tickFree)
thus <map (map-eventpiick f' g’) v’ Q [V (g’ r)] € T (Renaming P f g)»
by (simp add: D-T)
qed
hence «(map (map-eventyiicr, f' ¢') v’ Q [V (¢’ r)], X) € F (Renaming P f
g9)
by (simp add: tick-T-F)
also have (map (map-eventyiicr f' ¢') v/ Q [V(g' 7)] =
by (simp add: x(1) <u = u’ Q [V (r)])
finally show «(¢, X) € F (Renaming P f g)» .
qed
qed
thus «Renaming P f ¢ Crp Renaming P f' g”
by (auto simp add: refine-defs intro: is-processT8)
qed
show <Renaming P f g = Renaming P [’ g
proof (rule FD-antisym)
show (Renaming P f g Crp Renaming P f' g» <Renaming P [’ ¢’ Crp
Renaming P f ¢»
by (simp-all add: * fun-hyps)
qed
qed

corollary Renaming-is-restrictable-on-events-of-ticks-of :
qAa. a € a(P) = fa=f"a; \r.r € /s(P) = gr =g’ 1]
= Renaming P f ¢ = Renaming P [’ g’
by (rule Renaming-is-restrictable-on-events-of-strict-ticks-of)
(simp-all add: ticks-of-is-strict-ticks-of-or-UNIV)

corollary RenamingEv-is-restrictable-on-events-of :
«(A\a. a € a(P) = fa = f"a) = RenamingEv P f = RenamingEv P f"
by (fact Renaming-is-restrictable-on-events-of-ticks-of
[of P ff'idid, simplified])

corollary RenamingTick-is-restrictable-on-strict-ticks-of :
(Ar.res(P) = gr =g’ r) = RenamingTick P ¢ = RenamingTick P ¢g"
by (fact Renaming-is-restrictable-on-events-of-strict-ticks-of
[of Pidid g g', simplified])

corollary RenamingTick-is-restrictable-on-ticks-of :
(Ar.r e s(P)= gr =g’ r) = RenamingTick P g = RenamingTick P g’
by (fact Renaming-is-restrictable-on-events-of-ticks-of

[of P id id g g’, simplified])

124

5.3 Renaming and Generalized Synchronization Prod-
uct

lemma (in Syncpiick-locale) ing-on-Renaming Tick-Syncptick
(RenamingTick (P [S], Q) g =
Syncptick-locale.Syncprick (Ars. case r @V s of [r-s| = |grs| | O =0)PS
o
(is «?lhs = %rhs))
if inj-on-g : <inj-on g range-tick-join>
proof —
let ?map-evt = <\g. map (map-eventyyick id g)»
let Ztick-join’ = <A\rs. case v @V s of |r-s] = [gr-s] | O = O
interpret Syncpiick’ @ Syncprick-locale ?tick-join’
by (intro interpretable-inj-on-range-tick-join inj-on-g)
— Thus Syncpiick-Syncprick P S Q is well defined.
have inj-on-inv-into-g :
(ng-on (inv-into range-tick-join g) Syncpiicx'.range-tick-join)
by (rule inj-onl, simp split: option.split-asm)
(metis (mono-tags, lifting) f-inv-into-f image-eql mem-Collect-eq)
from inv-into-f-f inj-on-g have expanded-tick-join :
(@) = (Ars. case Ptick-join’ r s of O = O | |r-s] = |inv-into range-tick-join
gr-sl)
by (fastforce split: split: option.split)
show «?lhs = ?rhs»
proof (rule Process-eq-optimizedl)
fix t assume <t € D ?lhs»
then obtain u! u2 where * : <t = map (map-eventpyick id g) ul Q u2»
tF uly <ftF u2) <ul € D (P [S], Q)
unfolding D-Renaming by blast
from *(4) obtain v! w! t-P {-Q
where xx : <ul = vl Q wi» «¢tF vl ftF wi>»
w1 setinterleaves s yjcpjoin ((-P, t-Q), S)
t-PeDPAtQeT QVIEPeT PANtL-QeD @
unfolding D-Syncp¢icr by blast
from inj-on-map-map-eventys;c,-setinterleavespicr| OF inj-on-g +x(4)]
have «?map-euvt g vl setinterleaves Ptick-join’ ((+-P, t-Q), S) .
moreover from x(1—23) xx(1, 2)
have «t = ?map-evt g v1 Q (?map-evt g wl Q u2) A
tF (?map-evt g v1) A ftF (¢map-evt g wl Q u2)»
by (simp add: front-tickFree-append-iff map-eventy;.y-tickFree)
ultimately show «t € D ?rhs»
using #x(5) by (simp (no-asm) add: Syncpeicr’-D-Syncpiick) blast
next
fix ¢t assume <t € D ?rhs»
then obtain u v t-P t-Q)
where * : <t = u Q@ vy (tF w <ftF v
<u setinterleaves s Ptick-join’ ((t-P, t-Q), S)»
t-PeDPAt-QeT QVIEPeT PAt-QeD @
unfolding Syncpiick . D-Syncpiicr by blast

125

from (tF u» have <e € set u => map-eventy;ck id (g o inv-into range-tick-join
g) e = e for e

by (cases e) (simp-all add: tickFree-def disjoint-iff)
hence <t = ?map-evt g (map-evt (inv-into range-tick-join g) u) Q v»

by (simp add: x(1) flip: map-eventpicy-comp)

(induct u, simp-all)

moreover have (tF (?map-evt (inv-into range-tick-join g) u))

by (simp add: %(2) map-eventy;cx-tickFree)
moreover
{

have «?map-evt (inv-into range-tick-join g) u =

?map-evt (inv-into range-tick-join g) v Q []> by simp
moreover have «tF ((map (map-event,i;cr id (inv-into range-tick-join g)))

by (simp add: *(2) map-eventy;ci-tickFree)

moreover have (ftF [|> by simp

moreover from Syncptick'. inj-on-map-map-eventy;c,-setinterleavesy, ik
[OF inj-on-inv-into-g *(4), folded expanded-tick-join)

have < ?map-evt (inv-into range-tick-join g) u

setinterleaves s yick_join ((¢-P, t-Q), S)» .

ultimately have < ?map-euvt (inv-into range-tick-join g) v € D (P [S], Q)

unfolding D-Syncpiicr, using %(5) by blast
}

ultimately show <t € D ?lhs)
unfolding D-Renaming using *(3) by blast
next
fix t X assume «(t, X) € F %lhs) <t ¢ D ?lhs
then obtain u
where * : (t = ?map-evt g u» (u, map-eventpicr, id g — X) € F (P [S],

Q)
unfolding Renaming-projs by blast
with <t ¢ D ?lhs) obtain t-P ¢-Q X-P X-Q)
where *x : «(t-P, X-P) € F P» «(t-Q, X-Q) € F
<u setinterleaves s yick_join ((¢-P, +-Q), S)
«map-eventpyick td g —° X C super-ref-Syncpiick, (V) X-P S X-Q»
by (auto simp add: D-Renaming Syncpick-projs)
(metis append.right-neutral front-tickFree-Nil map-eventyck-front-tickFree)+
have <t setinterleaves Ptick-join’ ((t-P, t-Q), S)
using *(1) *x(3) inj-on-map-map-eventp;c,-setinterleavesyiicr inj-on-g by
blast
moreover from vimage-inj-on-subset-super-ref-Syncpiick-iff [OF inj-on-g, THEN
iffD1, OF xx(4)]
have <X C super-ref-Syncptick tick-join’ X-P S X-Q» .
ultimately show «(¢, X) € F ?rhs
unfolding Syncyiick . F-Syncprick using *x(1, 2) by fast
next
fix t X assume (¢, X) € F ?rhs) <t ¢ D ?rhs
then obtain ¢-P t-Q X-P X-Q
where * : «(t-P, X-P) € F P» «(1-Q, X-Q) € F @

126

(t setinterleaves y Ptick-join’ ((+-P, t-Q), Sy
«X C super-ref-Syncpiicr, tick-join’ X-P S X-@Q»
unfolding Syncyiick - Syncpiick-projs by blast
from Syncpiicr - setinterleavesyycr-imp-set-range-tick-join[OF *(3)]
have «{r-s. /(r-s) € set t} C Syncpiick ' range-tick-join» .
hence (e € set t = map-eventpiick id (g o inv-into range-tick-join g) e = e
for e
by (cases e, auto simp add: subset-iff split: option.split-asm)
(metis (mono-tags, lifting) inv-into-f-f mem-Collect-eq inj-on-g)
hence <t = ?map-evt g (fmap-evt (inv-into range-tick-join g) t)»
by (simp add: *(1) flip: map-eventps;cr-comp)
(induct t, simp-all)
moreover
{ from Syncptick ’.inj—on—map—map—eventptick—setz’nterleavesptick
[OF inj-on-inv-into-g *(3), folded expanded-tick-join]
have «?map-evt (inv-into range-tick-join g) t
setinterleaves s gk join (&P, +-Q), S)» .
moreover from vimage-inj-on-subset-super-ref-Syncptick-iff
[OF inj-on-g, THEN iffD2, OF x(4)]
have (map-eventpiicr id g —* X C
super-ref-Syncpiick (@) X-P S X-Q .
ultimately have ¢(?map-evt (inv-into range-tick-join g) t,
map-eventyiicr id g — X) € F (P [S], Q)
by (auto simp add: F-Syncpiick *(1, 2))
}
ultimately show «(¢, X) € F ?lhs» unfolding F-Renaming by blast
qed
qed

lemma (in Syncptick-locale) inj-Renaming Tick-Syncpt,cx-ing- Renaming Tick
(RenamingTick P g [S], RenamingTick Q h =
Syncpiick-locale.Syncprick (Ars. gr @ hs) PS @y (is «?lhs = ?rhsy)
if «<inj ¢> and <inj by

for P :: «("a, ') processpiick> and Q :: «(“a, 's’) processpiick
proof —

interpret tjoin-interpreted : Syncptici-locale <Ars. gr @/ h s
by unfold-locales (meson ingD inj-tick-join <inj g» <inj h»)

let ?map-evt = <\g. map (map-eventpiick id g)»

let ?map-ev = <A\t. map ev (map of-ev t)»

let ?RT = RenamingTick

have x: (tF t = ?map-evt g t = ?map-ev t> for ¢ :: <('a, 'r') tracepick>
by (induct t) (auto simp add: is-ev-def)

have sx : (tF t => ?map-evt h t = ?map-ev t» for t :: <('a, 's’) tracepiick>
by (induct t) (auto simp add: is-ev-def)

have sxx @ <t setinterleaves/(®/) ((¢map-evt g u, ?map-evt h v), S)

< t setinterleavesy \p s g @v/ b s ((u, v), S)) for tu v

127

by (induct <(Ars. gr @/ h s, u, S, v)» arbitrary: t u v) (auto split: option.split)
have xxxx : <?map-evt g t = ?map-evt g t' +— t = t"» for t t' = «('a, 1)
traceptick’
by (rule iffI, induct t arbitrary: t', auto)
(metis eventptick-inj-map id-apply injg-def <inj g»)
have sxxxxx @ <Zmap-evt b t = ?map-evt h t' «— t = t) for ¢ t' :: «(‘a, 's’)
tracepiick®
by (rule iffI, induct t arbitrary: t', auto)
(metis eventpiick.inj-map id-apply inj-def <inj hy)
show «?lhs = ?rhs»
proof (rule Process-eq-optimizedI)
fix ¢t assume <t € D ?lhs>
then obtain u v t-P’ t-Q' where $: <t = u Q v) <tF w <ftF v
<u setinterleaves/(®/) ((t-P’, t-Q"), S)»
«t-P' € D (PRTPg) ANt-Q' €T (RT Qh) Nt-Q" ¢ D (YRT Q h) V
t-P'e T (PRTPg)At-P' ¢ D(?RT P g) A t-Q" € D (?RT Q h) V
t-P'€ D (?RT P g) A t-Q' € D (?RT Q h)»
unfolding D-Syncpiicr by blast
from $(5) show <t € D ?rhs
proof (elim disjE conjE)
assume -P' € D (?RT P g)) «t-Q’' € T (?RT Q h)» <t-Q’ ¢ D (?RT Q h)»
then obtain ¢-P; t-Ps t-Q)
where $$: «t-P’ = ?map-evt g t-P1 Q t-Py» «tF t-P1» (ftF t-Poy <t-P1 € D
P»
(t-Q' = ?map-evt h t-Q> <t-Q € T Q> unfolding Renaming-projs by blast
from $(4)[unfolded $$(1), THEN setinterleavesy;cr-appendL]
obtain u; us t-Q’1 t-Q’s where 3 : (v = u; Q uyp +-Q' = t-Q’1 Q t-Q'y>
Uy setinterleaves/(®/) ((¢map-evt g t-P1, t-Q"1), S)» by blast
obtain t-Q; t-Q> where <t-Q = t-Q @ t-Q2> <t-Q'1 = ?map-evt h t-Q1>
by (metis $$(5) $$$(2) map-eq-append-conv)
from $33(3)[unfolded this(2), THEN xxx|THEN iffD1]]
have <uy setinterleavesy \. 5 g r @ h s ((£P1, -Q1), S)>
moreover from -Q = -Q @ ¢-Qa» is-processT3-TR-append $$(6)
have «t-Q1 € T Q> by blast
ultimately show <t € D ?rhs)
using $(1—3) $3(4) $$%(1) front-tickFree-append
by (auto simp add: tjoin-interpreted. D-Syncptick)
next
assume ¢-Q' € D (?RT Q h)» <t-P' € T (?RT P g)» <t-P' ¢ D (?RT P g)»
then obtain t-Q; t-Q2 t-P
where $$: «t-Q’' = ?map-evt h t-Q1 Q t-Qo (tF t-Q> (ftF t-Qq> <t-Q; €
D
«t-P’ = ?map-evt g t-P> «t-P € T P» unfolding Renaming-projs by blast
from $(4)[unfolded $$(1), THEN setinterleavesy;ck-appendR)
obtain u; uy t-P’; t-P’y where $$$: v = vy Q uy) <t-P' = ¢t-P'; @Q t-P'y»
<ug setinterleav65/(®/) ((t-P'y, ?map-evt h t-Q1), S)> by blast
obtain t-P; t-P, where t-P = t-P; Q t-Py) <t-P'y = ?map-evt g t-P1>»
by (metis $$(5) $$$(2) map-eq-append-conv)
from $33(3)[unfolded this(2), THEN xxx|THEN iffD1]]

128

have (uy setinterleavesy . 5 g @ h s (&P1, -Q1), S)
moreover from ¢t-P = {-P; @ ¢-Pa» is-processT3-TR-append $3(6)
have «t-P1 € T P> by blast
ultimately show <t € D ?rhs)
using $(1—-3) $$(4) $$3(1) front-tickFree-append
by (auto simp add: tjoin-interpreted. D-Syncpiick)
next
assume <t-P' € D (YRT P g)» <t-Q’' € D (RT Q h)»
then obtain ¢-P; t-Py t-Q)q t-Qo
where $$: (t-P’' = ?map-evt g t-P; Q t-Poy> (tF t-Py> (ftF t-Pyy <t-P1 € D
P»
(t-Q' = ?map-evt h t-Q1 Q t-Qq> (tF t-Q1> (ftF t-Q2> <t-Q1 € D Q>
unfolding D-Renaming by blast
from $(4)[unfolded $$(1, 5), THEN setinterleavespcr-appendL]
obtain wu; uy t-Q1-bis t-Qo-bis
where $$$: (v = u; @ uy> (Pmap-evt h t-Q1 Q t-Qo = t-Q1-bis Q t-Qo-bis»
CUuq setinterleaves/(®/) ((#map-evt g t-P1, t-Q1-bis), S)» by blast
from $$$(2) have «t-Q1-bis = ?map-evt h (take (length t-Q1-bis) t-Q1) V
t-Q1-bis = ?map-evt h t-Q1 Q take (length t-Q1-bis — length t-Q1) Q2>
by (cases <length t-Q1-bis < length t-Q1»)
(simp-all add: append-eq-append-conv-if take-map split: if-split-asm)
thus <t € D ?rhs
proof (elim disjE)
assume <t-Qq-bis = ?map-evt h (take (length t-Q-bis) t-Q1)»
hence <u; setinterleavesyy, s gr@v hs ((t-P1, take (length t-Q1-bis) t-Q1),
S
by (metis $$$(3) #xx)
moreover have <take (length t-Q1-bis) t-Q1 € T @
by (metis $$(8) D-T append-take-drop-id is-processT3-TR-append)
ultimately show <t € D ?rhs»
using $(1—23) $3(4) $33(1) front-tickFree-append
by (auto simp add: tjoin-interpreted. D-Syncptick)
next
assume (t-Q1-bis = ?map-evt h t-Q, Q take (length t-Q1-bis — length t-Q1)
t-Qg)
with $$$(3)
have (u; setinterleaves/(®/) ((#map-evt g t-P1,
?map-evt h t-Q1 Q take (length t-Q1-bis — length t-Q1) t-Q2), S)
by simp
from setinterleavesptici-appendR[OF this| obtain w11 u12 t-P11 t-Pig
where $$$$: <u; = u11 @ uyo> «?map-evt g t-P1 = t-P11 Q t-P1o»
(Upq setinterleaves/(®/) ((t-P11, ?map-evt h t-Q1), S)» by blast
have (t-P11 = ?map-evt g (take (length t-P11) t-P1)»
by (metis $$$$(2) append-eq-conv-conj take-map)
hence <u;; setinterleaves sy, o grev h s((take (length t-P11) t-P1, t-Q1),

by (metis $$$$(3) skx)
moreover have <take (length t-P11) t-P1 € T P»

129

by (metis $$(4) D-T append-take-drop-id is-processT3-TR-append)
ultimately show <t € D ?rhs»
by (simp add: tjoin-interpreted. D-Syncpiick)
(metis (no-types, lifting) $(1,2,3) $3(8) $$$(1) $333(1)
append.assoc front-tickFree-append tickFree-append-iff)
qed
qed
next
fix t assume <t € D ?rhs»
then obtain u v t-P t-Q where $: <t = u @Q vy (tF w (ftF v
(u setinterleavesy \r 5 g r @ h s (EP, 1-Q), S)
t-PeDPAtQeT QVIEPeTPAt-QeDQ
unfolding tjoin-interpreted. D-Syncpiicr by blast
from tickFree-setinterleavesyck-iff[THEN iffD1, OF $(4, 2)]
have <tF t-P) «tF t-Q» by simp-all

with $(5) have <?map-evt g t-P € D (?RT P g) A ?map-evt h t-Q € T (?RT
Qh)V
fmap-evt g t-P € T (¢RT P g) A ?map-evt h t-Q € D (?RT Q h)»
by (simp add: Renaming-projs) (metis append.right-neutral front-tickEFree-Nil)
moreover from sxx[THEN iffD2, OF $(4)]
have (u setinterleaves/(®/) ((?map-evt g t-P, ?map-evt h t-Q), S)» .
ultimately show <t € D ?lhs)
using $(1—38) by (auto simp add: D-Syncpiick)
next
fix t X assume «(t, X) € F %lhs) «t ¢ D ?lhs
then obtain t-P’ X-P’ t-Q' X-Q’
where $: «(t-P', X-P') € F (?RT P g)» «(+-Q’, X-Q") € F (?RT Q h)»
«t setinterleaves, (g ((t-P', t-Q"), S)» <X C super-ref-Syncprick, (V') X-P’
S X-Q"
unfolding Syncpiici-projs by blast
from <t ¢ D ?lhs) $(1, 2)[THEN F-T] $(3)
have «t-P' ¢ D (?RT P g) A +-Q' ¢ D (?RT Q h)»
by (simp add: D-Syncpiick’) (metis append-self-conv front-tickFree-Nil)
with $(1, 2) obtain ¢-P t-Q
where $$: <t-P’ = ?map-evt g t-P» «(t-P, map-eventyicr, id g —° X-P') € F
P
t-Q' = ?map-evt b t-Q» «(1-Q, map-event,ick 1d h — X-Q') € F @
unfolding Renaming-projs by blast
from $(3)[unfolded $$(1, 3), THEN x| THEN iffD1]]
have <t setinterleavesy . 5 g 1 @u hs (&P, -Q), S) .
moreover from $(4) inj-tick-join
have <X C super-ref-Syncpiick (AT s. g1 @V h)
(map-eventpick id g —° X-P') S (map-eventpiick id h —° X-Q')
by (simp add: super-ref-Syncpicr-def, safe) blast
ultimately show (¢, X) € F ?rhs
using $$(2, 4) by (auto simp add: tjoin-interpreted. F-Syncpi;cr)
next
fix t X assume (¢, X) € F ?rhs) <t ¢ D ?rhs

130

then obtain t-P t-Q X-P X-Q
where $: «(t-P, X-P) € F Py «(t-Q, X-Q) € F @
<t setinterleavesy . 5 g r @ h s (&P, 1-Q), S)
«X C super-ref-Syncprick (Ars. gr @/ hs) X-P S X-Q»
unfolding tjoin-interpreted.Syncptick-projs by blast
from <t ¢ D ?rhs» have <t-P ¢ D P AN t-Q ¢ D O
by (simp add: tjoin-interpreted. D-Syncpiicr’)
(metis $(1—3) F-T append.right-neutral front-tickFree-Nil)
hence $$: <t-P Q [V (r)] € T P = r € /s(P)
t-QQ[/(s)] €T Q= s e /s(Q) for rs
by (meson is-processT9 strict-ticks-of-meml)+
have $3$$: <?map-evt g t-P Q [/ (g-r)] € T (RT P g) «— (3r. gr =gr A
t-P @ [/(r)] € T P)» for g-r
proof (rule iffI)
from «t-P ¢ D P A t-Q ¢ D Q> have «?map-evt g t-P ¢ D (?RT P g)»
by (simp add: D-Renaming map-eq-append-conv #xxx)
(use is-processT7 map-eventyick-front-tickFree in blast)
hence «?map-evt g t-P Q [V (g-r)] ¢ D (?RT P g)» by (meson is-processT9)
moreover assume < ?map-evt g t-P Q [/ (g-r)] € T (?RT P g)
ultimately show < ?map-evt g t-P Q [/ (g-r)] € T (RT P g) = Ir. g-r =
grANtPQ[/(r)eT P
by (auto simp add: Renaming-projs append-eg-map-conv tick-eqg-map-eventy ;i -iff
Kook)
next
show «3r. g-r = gr A t-P Q [/(r)] € T P = ?map-evt g t-P Q [V/(g-)]
€T (?RT P g)
by (auto simp add: T-Renaming)
ged
have $333 : «?map-evt h t-Q Q [V (h-s)] € T (?RT Q h) <— (Is. h-s =h s A
t-Q Q[(s)] € T Q) for h-s
proof (rule iffI)
from «t-P ¢ D P A t-Q ¢ D Q> have «?map-evt h t-Q ¢ D (?RT Q h)»
by (simp add: D-Renaming map-eq-append-conu sskskxx)
(use is-processT7 map-eventyiick-front-tickFree in blast)
hence < ?map-evt h t-Q Q [V (h-5)] ¢ D (?RT Q h)» by (meson is-processT9)
moreover assume < ?map-evt h t-Q Q [/ (h-s)] € T (?RT Q h)»
ultimately show < ?map-evt h t-Q Q [/ (h-$)] € T (?RT Q h) = Is. h-s =
hsNt-QQ/(s)] €T @
by (auto simp add: Renaming-projs append-eg-map-conv tick-eg-map-eventy;ci-iff
ook)
next
show «3s. h-s = h s A t-Q Q [/ (s)] € T Q = ?map-evt h t-Q Q [/ (h-s)]
€T (RT Q h)»
by (auto simp add: T-Renaming)
qed

define X-P’ where «X-P' = map-eventp;cr id g X-P U {/(g-r) |g-r. ?map-evt

gt-PQ[/(g-r)] ¢ T (?RTPg)p
define X-@Q' where «X-Q' = map-event,yicr, id h ‘ X-Q U {V/(h-s) |h-s. ?map-evt

131

ht-Q Q [V (h-s) ¢ T (?RT Q h)}»

have <map-eventyiicr id g —* (map-eventpiick td g ¢ X-P) = X-P»
«map-eventpiick id b —¢ (map-eventpiicr id b © X-Q) = X-@Q»
by (simp-all add: set-eq-iff image-iff)
(metis eventpick-inj-map ingD inj-on-id <inj ¢,
metis eventyick.inj-map injD inj-on-id <inj hy)
with $(1, 2) have «(?map-evt g t-P, map-eventpick, id g * X-P) € F (?RT P
g9)
«(?map-evt h t-Q, map-eventyiick td h C X-Q) € F (?RT Q h)
by (auto simp add: F-Renaming)
hence «(?map-evt g t-P, X-P") € F (?RT P g)»
«(Pmap-evt h t-Q, X-Q") € F (?RT Q h)»
by (auto simp add: X-P'-def X-Q’-def intro: is-processT5 F-T)
moreover have (t setinterleaves/(®/) ((?map-evt g t-P, ?map-evt h t-Q), S)»
by (simp add: $(3) **x*)
moreover have (e € X = e € super-ref-Syncpiicr (@) X-P' S X-Q" for e
using $(4)[THEN set-mp, of €]
by (cases e,
simp-all add: X-P'-def X-Q'-def super-ref-Syncpicr-def image-iff
ev-eg-map-event,; ok -iff tick-eg-map-event, . -iff $$% $$$9)
metis
ultimately show «(t, X) € F ?lhs) by (simp add: F-Syncptick) blast
qed
qed

132

Chapter 6

Commutativity and
Associativity of
Synchronization

6.1 Commutativity
6.1.1 Motivation

The classical synchronization product is commutative: P [A] @ = Q [4]
P but in our generalization such a law cannot be obtained in all generality.
Imagine for example that the (®v') parameter is actually Ar s. [(r, s)]: we
easily figure out that in this case the corresponding law should be something
like P [A]/pair @ = TickSwap (Q [A]ypair P). More generally, in the
locale, when writing P [A], @, P is of type (‘a, 'r) processpticr while Q) is
of type (‘a, 's) processpiick so we want to find an abstract setup in which we
can establish a quasi-commutativity. This is done in the next subsection.

6.1.2 Formalization

locale Syncpticr-comm-locale =
Syncpiick-locale «(@V')y for tick-join :: <'r = 's = 't option> (infixl «@v"» 100)
+
fixes tick-join-rev i ¢'s = 'r = u optiony (Infix]l «@v e, 100)
and tick-join-conv <t = 'uy (V=R pey?)
and tick-join-rev-conv :: <'u = 't ((\QV yer=QV)
assumes tick-join-None-iff :
(r QR 8§ =0+ S pep 7 =
and tick-join-Some-imp :
(r @/ s = |18 = $ @ ey ' = |QV =RV ey T-8])
and tick-join-rev-Some-imp :
(§ A peo T = |81 = 17 5§ = |QV per=>V s-1]>
begin

133

There is an obvious symmetry over the variables.

sublocale Syncp;cr-comm-locale-sym :
Syncptick-comm-locale (@ rey)? (V) (RV ey =RV (V' =RV pey?
proof unfold-locales
Show (8 @V ey T = |57 = 8/ @V ey 7/ = |5-7]
= s'=sAr'=r forsrsrs'r’
using inj-tick-join tick-join-rev-Some-imp by blast
next
show (s Qe T = O +— 17 Q¥ s = O for s r
by (simp add: tick-join-None-iff)
next
Show <8 @V ey T = |5-7] = T @V § = | @V e =RV s-r|s for s r s-r
by (simp add: tick-join-rev-Some-imp)
next
show (r @/ s = |1-8] = s @V ey 7 = |V =RV ey 1-5|» fOr 1 5 7-58
by (simp add: tick-join-Some-imp)
qed

notation Syncyicr-comm-locale-sym.Syncpiick (<(- [-]freo -)> [70, 0, 71] 70)
notation Syncpicr-comm-locale-sym.Interpiicr (<(- ||| /rew =) [72, 73] 72)
notation Syncpyicr-comm-locale-sym.Parpsick (<(- ||/rev =) [74, 75] 74)

6.1.3 First Properties

lemma tick-join-conv-image-range-tick-join :
(R =@V rey * Tange-tick-join = Syncptick-comm-locale-sym.range-tick-join)
by (simp add: set-eq-iff flip: setcompr-eq-image)
(metis option.inject tick-join-Some-imp tick-join-rev-Some-imp)

lemma tick-join-rev-conv-comp-tick-join-conv [simp] :
<r-s € range-tick-join => Qv ey =V (V' =RV ey T-8) = 78
using tick-join-Some-imp tick-join-rev-Some-imp by fastforce

lemma inj-on-tick-join-conv : <inj-on Q' =Qv ¢, range-tick-join)
by (rule inj-onl, simp)
(metis option.inject tick-join-Some-imp tick-join-rev-Some-imp)

lemma bij-betw-tick-join-conv :
<bij-betw V' =RV yeq range-tick-join Syncpyi;cr-comm-locale-sym.range-tick-join)
proof (rule bij-betw-imagel)
show (inj-on Qv =Qv ¢, range-tick-join>
by (fact inj-on-tick-join-conv)
next
show «QvV'=Q®v ey ‘ range-tick-join = Syncp;cr-comm-locale-sym.range-tick-join
using tick-join-conv-image-range-tick-join by blast
qed

134

lemma map-tick-join-rev-conv-map-tick-join-conv :
{r-s. /(r-s) € set t} C range-tick-join =
map (map-eventpick id QV rey=QV") (map (map-eventpiick td QV=>v rcy) t)
=1b
proof (induct t)
case Nil show ?case by simp
next
let 2f1 = (map-eventpiick id QV =RV pey?
let 22 = (map-eventpiick id @V rey=>RV)
case (Cons e t)
have <map 212 (map ?f1 (e # t)) = 22 (2f1 e) # map ?f2 (map ?f1 t)> by simp
also have «2f2 (?f1 e) = e
proof (cases e)
show (e = ev a = ?f2 (?f1 ¢) = e for a by simp
next
fix r-s assume <e = V' (r-s)»
with Cons.prems have «r-s € range-tick-join> by auto
with (e = V(r-s)» inj-on-tick-join-conv
show «?2f2 (?f1 e¢) = e» by simp
qed
also have «map 2f2 (map ?f1t) =t
by (rule Cons.hyps) (use Cons.prems in auto)
finally show «map 22 (map 2f1 (e # t)) = e # &> .
qed

end

6.1.4 Commutativity

context Syncpiicr-comm-locale begin

lemma setinterleavesy;cr-imp-setinterleaves,icr-rev :
«t setinterleaves s (q) ((u, v), A) =
map (map-eventpiicy id V=0V rey) t
setinterleaves, (g,) (v, u), A
— Finally not used, and probably obtainable as a corollary of ¢ setinterleaves / (@V)
((u, v), A) = map (map-eventyiicr id Q' =RV rey) t setinterleaves sy, o case r Q& s0f O = 0| rs] = |oV=ev
((u, v), A)
proof (induct <((®V), u, A, v)> arbitrary: t u v)
case (tick-setinterleavingpiicx-tick v u s v)
from tick-setinterleavingpticr-tick.prems
obtain r-s t’
where * : <r @/ s = |[r-s] «t = /(r-s) # t)
<t setinterleaves/(®/) ((u, v), A
by (auto split: option.split-asm)
from tick-setinterleavingy;cr-tick.hyps|OF (1), OF %(8)]
have <map (map-eventpiick id V=V rey) t’
setinterleaves/((&/rw) ((v, u), A) .

135

moreover from tick-join-Some-imp[OF *(1)]
have (s @V ey T = |V =@V ey T-5)) .«
ultimately show <map (map-eventyiicr id V=RV rey) t
setinterleaves/((@/rev) ((V(s) # v, /(r) # u), A
by (simp add: x(1, 2))
qed auto

lemma vimage-tick-join-rev-conv-subset-super-ref-Syncpiicr-iff
(map-eventyick 1d OV rey=>0v — X C super-ref-Syncpiick (@ rev) X-Q A X-P
> X C super-ref-Syncpiick, (V') X-P A X-Q»
(is «<?lhsl C ?lhs2 <— X C %rhsy)
— Same: finally not used, and probably obtainable as a corollary of (map-eventpt;ck
id QV rev =0V —* 2X C super-ref-Syncptick (@ rev) ?X-P 24 2X-Q) = (2X C
super-ref-Syncprick (AT s. case 1 @V rey s 0f O = O | [1-8] = @V rer=QV 1-5])
?X-P ?A ?X-Q).
proof —
have * : (Ar s. case 7 @V rey s 0f O = O | [1-5] = |@V yer=@V 1r-5]) =
(Asr. r @/ s)
by (intro ext, simp split: option.split)
(metis tick-join-None-iff tick-join-rev-Some-imp)
show ?thesis
proof (subst Syncptici-comm-locale-sym.vimage-ing-on-subset-super-ref-Syncpick-iff)
show <inj-on @V yev=QV Syncpiick-comm-locale-sym.range-tick-joiny
by (fact Syncpticr-comm-locale-sym.ing-on-tick-join-conv)
next
show (X C super-ref-Syncptick
(AT s. case T @V pey S Of O = O | 18] = | @V o=@V 1-5]) X-Q A
X-P
—— X C super-ref-Syncptict (') X-P A X-Q»
using super-ref-Syncpick-sym by (simp add: x) blast
qed
qed

In the end, the proof is quite simple: mainly a corollary of inj-on g range-tick-join
= RenamingTick (P [S], Q) g = Syncpiick-locale.Syncpticr (A1 s. case r
Qv sof O =0 | |rs| = |grs|]) PSQ.

theorem Syncpi;cr-commute :
(RenamingTick (P [A], Q) @/ =&V reo = Q [A]lyrev P>
proof —
from inj-on-Renaming Tick-Syncpiick|OF ing-on-tick-join-conv
have «RenamingTick (P [A]l, Q) @/ =V rey =
Syncptick-locale.Syncptick
(Ars. caser @V sof O = O | [r-s] = |V =@V yew 7-5]) P A QD
(is <- = Syncpiick-locale.Syncpiick ?tick-join” P A Q) .
also have «?tick-join’ = (Ar 5. 8 @V pey)
by (intro ext)
(simp add: Syncpiick-comm-locale-sym.tick-join-rev-Some-imp
tick-join-None-iff split: option.split)
finally show «RenamingTick (P [A], Q) @/ =&V rev = Q [A]/rev P

136

by (metis Syncyiick-comm-locale-sym.Syncyiick-sym)
qed

end

6.2 Associativity

6.2.1 Motivation

The classical synchronization product is associative: P [A] (Q [A] R) = P
[A] @ [A] R but in our generalization such a law cannot be obtained in all
generality. We already encountered a similar issue for the commutativity:
we have to find a setup in which the different combinations of the ticks that
we need make sense, and prove the quasi-associativity.

6.2.2 Formalization

locale Syncptici-assoc-locale =
Syncptick1 : Syncprick-locale «(@v'1)r +
Syncpticka : Syncprick-locale «((@v'2)r +
Syncpticks : Syncprick-locale «(@v' 3)r +
Syncpticka : SYncprick-locale (v 4)>
for tick-joinl :: <'r = 's = 't option) (infixl «@v 1+ 100)
and tick-join2 :: <'t = 'u = 'v options (infix]l «@V 2> 100)
and tick-join3 :: <'r = 'w = 'z option> (infixl «@v' 3> 100)
and tick-joind :: <'s = 'u = 'w optiony (infixl «®v 4> 100) +
fixes tick-assoc-ren 2= D (@Y 2=RVSY)
and tick-assoc-ren-conv :: ('t = vy K\ ISRV 2))
assumes None-assms-tick-join :
r@1s=0= s 4{u=0Vre/s[savju =®»
rW1sZO = [revi1s]v2u=0=sQLu=0Vre/3 s/}
u] = O,
sWiu=0=re/1s=0V [ra/ls]2u=~0
S 4uAO=r 3 [s/ju]=0=r/1s=0V [ravls| /2
u= <
and tick-assoc-ren-hyp :
rfls=t =t2u=|v] = [r/3 [s@4u]l] =2=>/3 v
and tick-assoc-ren-conv-hyp :
s4u=|w = rev3w=z] = [[revls] 2u] = I3=xv2
T
begin

There is a symmetry over the variables.

sublocale Syncy;cr-assoc-locale-sym :
Syncptick-assoc-locale <Au s. s @4 w Awr. r Q3w Aut. t @2 w

137

As 1. T Q1 5 (QY I=RV 2 (R 2=RV 3>
by unfold-locales
(fact None-assms-tick-join tick-assoc-ren-hyp tick-assoc-ren-conv-hyp)+

end

6.2.3 First Properties

lemma (in Syncyyicr-assoc-locale) tick-assoc-ren-tick-assoc-ren-conv :
Arsuvw sV 4ju=|w ANre/3w=|z] =
RV 2=Rv 3 (Y 3=V 2 1) =
by (metis None-assms-tick-join(1,2) option.collapse option.distinct(1)
option.sel tick-assoc-ren-hyp tick-assoc-ren-conv-hyp)

lemma (in Syncpy;cr-assoc-locale) tick-assoc-ren-conv-tick-assoc-ren :
Arstu.r@ls=[t] ANt 2u=|v] = QI3=/2 (/' 2=RV 3 v) =
)
by (metis Syncpiick-assoc-locale-sym.tick-assoc-ren-tick-assoc-ren-conv)

lemma (in Syncye;ci-assoc-locale) ing-on-tick-assoc-ren :
<ng-on 2=V 3 {v.Irstu.r@1s=[t] Nt 2u=|v]|p
by (rule inj-onl, simp) (metis tick-assoc-ren-conv-tick-assoc-ren)

lemma (in Syncpiicr-assoc-locale) inj-on-tick-assoc-ren-conv :
<ng-on 3=V 2 {x. Irsuvw. s 4 u=|w| Ar3w=|z|b
by (rule inj-onl, simp) (metis tick-assoc-ren-tick-assoc-ren-conv)

6.2.4 Associativity for the Traces

lemma (in Syncy;ck-assoc-locale) setinterleaves,; x-assoc-left :
ts setinterleaves/(®/1) ((tr, ts), A);
ty setinterleavesy g 2) ((te, ty), A)] =
Ity,. map (map-eventyiicr id V' 2=V 3) t, setinterleaves/(®/3) ((tr, tw),
A) A
b setinterleaves/(®/4) ((ts, tu), A
proof —
let ?map = <At. map ev (map of-ev t)»
let ?map-event = «At. map (map-eventpiicy id V' 2=/ 3) t
show «[[t; setinterleaves/(®/]) ((tr, ts), A);
ty setinterleaves/(®/2) ((te, ty), A)] = ?thesis
proof (induct <((&V'2), ti, A, tu)> arbitrary: t, ts t; t, ty)
case Nil-setinterleavingp;cr-Nil
thus Zcase
by (cases t,; cases ts)
(auto intro: Nil-setinterleavespiicr simp add: setinterleavingpyicr-simps
split: if-split-asm eventyy;ck.split-asm option.split-asm)
next
case (ev-setinterleavingpick-Nil a t;)
from ev-setinterleavingpci-Nil.prems(2)

138

have (a ¢ Ay «(tF tp) <setty Nev ‘A ={} «t, = ?map (ev a # t;)»
and $: <%map t; setinterleaves/(®/2) ((te, [])y A
by (auto simp add: setinterleavesyy;c,-NilR-iff split: if-split-asm)
from ev-setinterleavingy;cr-Nil.prems(1)
consider (muv-left) ¢’ where «t,. = ev a # . ¢t setinterleaves/(®/1) ((t,",
ts), A
| (mu-right) ts' where «ts = ev a # t3" <ty setinterleaves/(®/1) ((tr, ts"),
A)»
by (auto simp add: <a ¢ A» elim: Cons-ev-setinterleaves,y;ckF)
thus Zcase
proof cases
case muv-left
from ev-setinterleavingpicr-Nil.hyps|OF <a ¢ A> mu-left(2) $]
obtain t¢,, where x : (?map-event (¢map t;) setinterleaves'/(@)/g)((tT " tw),
A)»
<ty setinterleaves (g) ((ts, []), A)» by blast
from (1) have (?map-event t, setinterleaves (&v'3) ((try tw), Ap

by (cases ty,, auto simp add: mv-left(1) <a ¢ A> (ty = ?map (ev a # t)
setinterleavingpiick-simps split: eventyycy.split)
with %(2) show ?thesis by blast
next
case mu-right
from ev-setinterleavingptic,-Nil.hyps|OF <a ¢ Ay mu-right(2) $]
obtain ¢, where * : <?map-event (?map t;) setznterleaves/(®/3) ((try tw),
A)»
<ty setinterleaves (g) ((ts'), A) by blast
from %(2) have (ev a # i, setinterleaves/(®/4) ((ts, 1), Ay
by (simp add: <a ¢ As «t, = ?map (ev a # t)> mu-right(1))
moreover from (1)
have < ?map-event t, setinterleaves (@v'3) ((tr, ev a # ty), A
by (cases t,, auto simp add: <a ¢ A> (ty = map (ev a # t;)» setinterleav-
Z'ngptzck szmps
split: eventpy;cr.split)
ultimately show ?thesis by blast
ged
next
case (tick-setinterleavingpicr-Nil T t;)
from tick-setinterleavingpi;cr-Nil.prems(2) have False by simp
thus ?case ..
next
case (Nil-setinterleavingpiick-€v b t,)
from Nil-setinterleavingpic,-ev.prems(1)[THEN setinterleaves,;cr-imp-lengthL R-le]
have <t = [<ts = [by simp-all
from Nil-setinterleavingp;cr-ev.prems(2)
have b ¢ Ay <tF t,» «set t, Nev “ A= {}» <t, = ?map (ev b # t,)»
and $: <%map t, setinterleaves/(®/2) (), tw), Ay
by (auto simp add: setinterleavespycr-NilL-iff split: if-split-asm)

139

from Nil-setinterleavingpiick-ev.hyps[OF <b ¢ Ay Nil-setinterleavingpyic-ev.prems(1)
3]
obtain ¢, where < ?map-event (fmap t,) setinterleavesl(®/3) ((tr, tw), A
o setinterleaves/(®/4) ((ts, tu), A)» by blast
hence < ?map-event t, setinterleaves/(®/3) ((tr, ev b # ty), A) A
ev b # ty, setinterleavesl(®/4) ((ts, ev b # t,), A
by (simp add: <t, = map (ev b # t,)» <t, = [«ts = [b & A)
thus ?case ..
next
case (Nil-setinterleavingpiscx-tick o, ty)
from Nil-setinterleavingpy;ci-tick.prems(2) have False by simp
thus “case ..
next
case (ev-setinterleavingpick-ev a ty b ty,)
from ev-setinterleavingpicr-ev.prems(2)
consider (muv-both) t,” where <a € Ay <b € A <a = b <t, = ev b # t,"r <&’
setinterleaves, g/ 9) ((te, tw), A)
| (mvR-inL) t,” where <a € Ay <b ¢ A <t, = ev b # t,» <&, setinter-
leaves/(®/2) ((ev a # ty, ty), A
| (mvL-inR) t,’ where <a ¢ Ay <b € A <t, = ev a # t, (t,’ setinter-
leaves/(®/2) ((t, ev b #), A)
| (muR-notin) t,” where <a ¢ Ay <b ¢ Ay <t, = ev b # t,» «t,’
setinterleaves/(®/2) ((ev a # ty, ty,), A)
| (mvL-notin) t,” where <a ¢ Ay <b & Ay <t, = ev a # t,» «¢t,’
setinterleaves, g/ 9) ((t, ev b # ty), Ap
by (auto split: if-split-asm)
thus “case
proof cases
case mu-both
from ev-setinterleavingp;cr-ev.prems(1)
obtain t,.’ t,’ where <t, = eva # t,.» «t, = ev a # t."
<ty setinterleaves, (g) ((t:7, ts), A)»
by (auto simp add: <a € A» elim: Cons-ev-setinterleaves,i;crF)
from ev-setinterleavingpicr-ev.hyps(1)[OF mv-both(1—3) <t setinterleaves/(®/1)
((t', ts"), A)> mu-both(5)]
obtain t,, where «?map-event t,’ setinterleaves/(®/3) ((t') tw), A)
<ty setinterleavess (g) ((ts', tu), A)» by blast
hence ¢ ?map-event t, setmterleaves/(®/3) ((tr, ev a # ty), A) A
ev a # ty setinterleaves/(®/4) ((ts, ev b # ty), A)
by (simp add: mv-both(2—4) <ts = ev a # ts"» <t = ev a # ¢.7)
thus “thesis ..
next
case muR-inL
from ev-setinterleavingp;cr-ev.prems(1)
obtain t,.’ t,’ where <t, = eva # t,.» <t, = eva # t;"
<ty setinterleaves, (g 1) ((t:7, ts), A

140

by (auto simp add: <a € A> elim: Cons-ev-setinterleaves,yciF)
from ev-setinterleavingp;ck-ev.hyps(2)[OF muR-inL(1, 2) ev-setinterleavingpi;ck-€ev.prems(1)
muR-inL(4)]
obtain ¢, where < ?map-event t,’ setmterleaves/(®/3) ((tr, tw), A
oy setinterleaves/(®/4) ((ts, tu), A) by blast
hence «?map-event t,, setinterleaves ./ 3) ((tr, e b # ty), A) A
ev b # ty setmterleaves/(®/4) ((ts, ev b # tu), A)
by (simp add: <t, = ev a # t.)» <t; = ev a # ts» muR-inL(1-23))
thus ?thesis ..
next
case muL-inR
from ev—setinterleavingptick-ev.prems(])
consider (mv-left) t.’ where <t,. = eva # t." setinterleaves/(@)/l) (",
ts), A
| (mv-right) ts’ where <t; = ev a # ts'» <t setinterleaves/(®/1) ((tr, ts"),
A)»
by (auto simp add: <a ¢ A> elim: Cons-ev-setinterleavespiicr E)
thus ?thesis
proof cases
case mu-left
from ev-setinterleavingpiick-ev.hyps(3)[OF muL-inR(1, 2) mu-left(2)
muL-inR(4)]
obtain t,, where < ?map-event t,’ setinterleaves ./ 3) ((t:', tw), A
oy setinterleaves/(®/4) ((ts, ev b # t,), A)» by blast
hence (?map-event t, setinterleaves/(@)/g) ((tr, tw), 4A) A
tw setinterleaves/ gy) ((ts, ev b # t,), A)
by (cases t,) (auto simp add: mvL-inR(1—3) muv-left(1)
setinterleavingptick-stmps split: eventpi;cr.split)
thus %thesis ..
next
case mu-right
from ev-setinterleaving,iicr-ev.hyps(3)[OF muL-inR(1, 2) muv-right(2)
muL-inR(4)]
obtain t,, where < ?map-event t,’ setinterleaves g/ 3) ((tr, tw), A
oy setinterleaves/(®/4) ((ts', ev b # t,), A)> by blast
hence (?map-event t, setinterleaves/(®/3) ((tr, ev a # ty), A) A
ev a # ty setinterleaves/(®/4) ((ts, ev b # ty), A)
by (cases t,) (auto simp add: mvL-inR(1—3) muv-right(1)
setinterleavingptick-stmps split: eventyy;cr.split)
thus %thesis ..
qed
next
case mvR-notin
from ev-setinterleavingpicr-ev.prems(1)
consider (mv-left) t.’ where <t,. = ev a # t.)) 1, setinterleaves/(®/1) (e
ts), A
| (mu-right) ts’ where <ty = ev a # ts) setinterleaves/(®/1) ((tr, ts),

141

A)»
by (auto simp add: <a ¢ A» elim: Cons-ev-setinterleaves,iicrF)
thus ?thesis
proof cases
case mu-left
from mo-left(2) have <ev a # t; setz’nterleaves/(@/J) ((tr, ts), A
by (cases ts) (auto simp add: mv-left(1) mvR-notin(1)
setinterleavingpyicy-simps split: eventpy;cr.split)
from ev-setinterleavingyicr-ev.hyps(5)[OF muR-notin(1, 2) this mvR-notin(4)]
obtain t,, where <?map-event t,’ setinterleaves/(®/3) ((tr, tw), A
<ty setinterleaves (g) ((ts, tu), A)» by blast
hence < ?map-event t, setinterleaves/(®/3) ((tr, e b # ty), A) A
ev b # ty setinterleaves/(®/4) ((ts, ev b # t,), A
by (cases ts) (auto simp add: mvR-notin(1—38) mu-left(1)
setinterleavingpiick-simps split: eventyycr.split)
thus Zthesis ..
next
case mu-right
from mo-right(2) have <ev a # t; setinterleavesy (g 1) ((tr, ts), A
by (cases t,) (auto simp add: mv-right(1) mvR-notin(1)
setinterleavingpi;ck-simps split: eventpyicr.split)
from ev-setinterleavingyicr-ev.hyps(5)OF muR-notin(1, 2) this mvR-notin(4)]
obtain ¢, where < ?map-event t,’ setinterleaves, g/ 3) ((tr, tw), A
oy setmterleaves/(®/4) ((ts, tu), A)> by blast
hence < ?map-event t, setinterleaves/(®/3) ((tr, 0 b # ty), A) A
ev b # ty setinterleavesy gy) ((ts, ev b # t,), A
by (cases t,) (auto simp add: mvR-notin(1—3) muv-right(1)
setinterleavingpyicy-simps split: eventyy;ck.split)
thus ?thesis ..
qed
next
case muvL-notin
from ev-setinterleavingp;cr-ev.prems(1)
consider (mv-left) t.’ where <t,. = ev a # t.") <t setinterleaves/(@)/]) (",
ts), A
| (mv-right) ts’ where <t; = ev a # ts/» <t setinterleaves /(g 1) ((tr, ts"),
A)»
by (auto simp add: <a ¢ A elim: Cons-ev-setinterleaves,i;cr F)
thus %thesis
proof cases
case mu-left
from ev-setinterleaving,i;cr-ev.hyps(4)[OF muL-notin(1, 2) muv-left(2)
muL-notin(4)]
obtain ¢, where < ?map-event t,’ setinterleaves s (g 3) ((ts', tw), A)

oy setinterleaves/(®/4) ((ts, ev b # t,), A)» by blast
hence «?map-event t,, setinterleaves, ./ 3) ((try tw), 4) A
[setinterleav65/(®/4) ((ts, ev b # ty), A)

142

by (cases ty,) (auto simp add: mv-left(1) muvL-notin(1, 3)
setinterleavingpiick-stmps split: eventy,y;cr.split)
thus ?thesis ..
next
case mu-right
from ev-setinterleavingpiick-ev.hyps(4)[OF muL-notin(1, 2) mu-right(2)
muL-notin(4)]
obtain ¢, where <?map-event t,’ setinterleaves/(®/3) ((tr, tw), A
(ty setinterleaves (g 1) ((ts', ev b # t,), A)» by blast
hence < ?map-event t, setinterleaves/(®/3) ((tr, ev a # ty), A) A
ev a # ty setinterleaves/(®/4) ((ts, ev b # t,), A
by (cases t,) (auto simp add: mu-right(1) muL-notin(1,)
setinterleavingpick-stmps split: eventy,y;cr.split)
thus %thesis ..
qed
qed
next
case (ev-setinterleavingpici-tick a t; s t,)
from ev-setinterleavingyic-tick.prems(2) obtain t,’
where <a ¢ A <t, = ev a # t,)
and $: <t,’ setinterleavess ./ 5) ((tg, V(8) # tu), A
by (auto split: if-split-asm)
from ev-setinterleavingp;cr-tick.prems(1)
have «t, #[| A hd t, = eva A 1 setinterleaves/(®/1) ((t tr, ts), A) V
ts Z[|ANhdts=eva Aty setinterleaves/(®/1) ((tr, tl ts), A)
by (auto simp add: <a ¢ A» elim: Cons-ev-setinterleaves,y;cxF)
thus “case
proof (elim disjE conjF)
assume <t #£ [|» <hd t, = ev a> <ty setinterleaves/(®/1) ((t t,, ts), A)
from ev-setinterleavingpticr-tick-hyps|OF <a ¢ Ay this(3) §]
obtain t,, where * : <?map-cvent t,’ setinterleaves/(®/3)((tl try tw), A)
<ty setinterleaves (g) ((ts, V(8) # tu), A) by blast
from (1) have < %map-event t, setinterleaves/(®/3) ((tr, tw), Ap
by (subst list.collapse[OF <t # []», symmetric])
(cases ty, auto simp add: <a ¢ A <hd t,. = ev @ <t, = ev a # t,)
setinterleavingptick-simps split: eventpyicr.split)
with %(2) show ?case by blast
next
assume <t; # [» <hd ty = ev ar <t setinterleaves/(®/1) ((t, tl ts), A)»
from ev-setinterleavingpiick-tick.hyps|OF <a ¢ A> this(3) 9
obtain ¢, where * : <?map-event t,’ setinterleaves, ./ 3) ((tr, tw), A
<ty setinterleaves gy ;) ((t ts, V(5) # tu), A)> by blast
from *(2) have <ev a # t,, setinterleavesl(®/4) ((ts, V(s) # tu), A
by (subst list.collapse[OF <ts # []», symmetric])
(simp add: <a ¢ A> <t, = eva # t,» <hd ts = ev)
moreover from (1)
have < ?map-event t, setmterleaves/(®/3) ((tr, eva # ty,), A

143

by (cases t., auto simp add: <a ¢ Ay <t, = ev a # t,"» setinterleav-
Z.ngptick‘sz.mps
split: eventpy;ck.split)
ultimately show ?case by blast
qed
next
case (tick-setinterleavingpick-ev T ty b ty)
from tick-setinterleavingp;cr-ev.prems(1)
obtain r,. rg t.' ty’ where «(r, /1 ry) = ||y <t = /(1) # 8. b5 =
V(rs) # tsh
by (auto elim: Cons-tick-setinterleavesyiciE)
from tick-setinterleavingy;cr-ev.prems(2) obtain t,’
where b ¢ A <t, = ev b # t,)
and $: «t,’ setinterleaves/(®/2) ((V(re) # by, tu), A
by (auto split: if-split-asm)
from tick-setinterleavingy;cr-ev.hyps|OF <b ¢ A» tick-setinterleavingpicr-ev.prems(1)
$]
obtain t,, where < ?map-event t,’ setinterleaves/(®/3) ((tr, tw), A
. setinterleaves/(®/4) ((ts, tu), A)» by blast
hence (?map-event t, setinterleaves/(®/3) ((tr, ev b # ty), A) A
ev b # ty setinterleaves/(®/4) ((ts, ev b # ty), A)
by (simp add: <b ¢ A> <t, = ev b # t,)» <t = V() # .0 <ts = /(1) #
tsh)
thus “case ..
next
case (tick-setinterleavingyicr-tick ry t, r. ty)
from tick-setinterleavingy ;. -tick.prems(1)
obtain r,. r t,./ ts' where r,. /1 rs = |1) <t = (1) #) <ts = /(15)
tsh
<ty setinterleavesy gy 1) (', ts), A»
by (auto elim: Cons-tick-setinterleavespickE)
from tick-setinterleavingpy;cr-tick.prems(2)
obtain 7, t,’ where «ry @/ 2 1, = |r,|» <ty = L (ry) # t,)
<ty setinterleaves, g/ 9) ((te, tu), A)
by (auto split: option.split-asm)
from «r. /1 rs = |r¢]y <ry @21y = |7,]> obtain r,, where «r; @/ 4
= |rw)
by (metis None-assms-tick-join(8) not-None-eq option.sel)
from <rg QY 1y = [T) rr L1y = |1y 1 QS 21y = |10]
obtain r, where «r, /8 r,, = |1,
by (metis None-assms-tick-join(4) option.distinct(1) option.exhaust-sel op-
tion.sel)
have (V' 2=Qv 3 ry, = 1)
by (metis <r, @/ 115 = [1t]y <rp @3 1y = |12]> 75 QL4 Ty = |[Tw]?
(ry @21y, = |1ry]» tick-assoc-ren-hyp option.sel)
from tick-setinterleavingpsicr -tick.hyps
[OF <ry @/ 21y = |10 <t setinterleaves, (g 1) ((t,', ts"), A)»
<ty setinterleav65/(®/2) ((te, t), A)]

144

obtain t,, where «?map-event t,’ setinterleaves/(®/3) ((t', tw), A)
oy setinterleaves/(®/4) ((ts', tu), A)» by blast
hence «?map-event t, setinterleaves/(®/3) ((tr, /(1) # tw), A) A
V(rw) # tw setinterleaves/(®/4) ((tsy, V(1) # tu), A)
by (simp add: <t. = /(ry) # t.) <ts = L (rs) # ts" <ty = /(1) # tu)
(Ts QL4 1y = |Tw|> (1 QL8 1y = |T2]) (R 2=RV 3 1, = 1))
thus ?Zcase ..
qed
qed

lemma (in Syncpeick-assoc-locale) setinterleavesyy;ck-assoc-right :
oy setinterleaves/(®/4) ((ts, tu), A) =
t. setinterleaves, g/ 3y ((try tw), 4) =
Iti. map (map-eventyiick 1d V' 3=V 2) t, setinterleaves/(®/2) ((te, tu), A)
AN
ty setinterleavesy (g) ((tr, ts), Ap
by (subst (1 2) setinterleavespiick-sym, subst (asm) (1 2) setinterleavespi;ck-sym)
(fact Syncpiick-assoc-locale-sym.setinterleavesy;qx-assoc-left)

6.2.5 Associativity

context Syncpiicr-assoc-locale

begin

notation Syncpiick1-Syncptick (<(- [-]1 -)» [70, 0, 71] 70)
notation Syncpiicka-Syncprick (<(- [-]y2 -)» [70, 0, 71] 70)
notation Syncpiicks.Syncpeick (<(- [-]3 -)» [70, 0, 71] 70)
notation Syncpiicka.Syncprick (<(- [-]ya -)» [70, 0, 71] 70)

lemma Syncpcr-assoc-oneside :
(P [S]y3 (Q [S]ya R) Erp RenamingTick (P [S]/1 @ [S]y2 R) @/ 2=V 3>
(is «?lhs Cpp ?rhs)
proof —
let ?map-event = «At. map (map-eventyyicr id V2=V 3) t)
let ?map-event-conv = <At. map (map-eventyiicr, id Q' 3=V 2) b
show <?lhs Cpp ?rhs
proof (rule failure-divergence-refine-optimizedl)
fix ¢t assume <t € D ?rhs)
then obtain t; t; where <t = ?map-event t; Q to»
<tF t (ftF toy <t1 € D (P [[S]]/l Q [[S]]/Q R))
unfolding D-Renaming by blast
from <t; € D (P [[S]]/l Q HSII/Q R)) obtain t11 t12 t—P—Q t-R
where x* : 1 = t11 @ t12) (tF t11> <ﬁF t12>
<ty setinterleaves, g/ 9) ((t-P-Q, t-R), S)
t-P-Qe D (P[S]ly1 Q Nt-ReT RV

145

t-P-Q € T (P [S]/1 Q) Nt-P-Q ¢ D (P [S]y1 Q) ANt-Re D R
unfolding Syncptick2.D-Syncpiick using D-T by blast
from *(5) show <t € D ?lhs
proof (elim disjE conjE)
assume (¢-P-Q € D (P [S]/1 Q) <t-R €T R»
from («t-P-Q € D (P [S],1 Q) obtain t-P-Q, t-P-Q2 t-P 1-Q
where *x : <t-P-QQ = t-P-Q1 Q t-P-Qo» <tF t-P-Q1> (ftF t-P-Q2»
t-P-Q1 setinterleaves/(®/1) ((t-P, t-Q), S)
(t-PE€DPAtQeT QVIEPeT PAt-QeDQ
unfolding Syncpiici1.D-Syncpiicr by blast
from *(4)[unfolded **(1), THEN setinterleavesy; i -appendL]
obtain t111 t112 t-Rl t-RQ
where *xx : <t11 = t111 @ t112) t-R = t—Rl @ t-Rg)
111 setinterleaves/(®/2) ((t-P-Q1, t-R1), S)
119 setinterleaves/(®/2) ((t-P-Q2, t-R2), S)» by blast
from setinterleavesyyicr-assoc-left{OF sx(4) s*x(8)]
obtain t-Q-R where *xxx : (?map-event ti11 setinterl@aves/(®/3) ((¢-P,
t-Q-R), S)
t-Q-R setinterleaves/(®/4) ((t-Q, t-Ry1), S)» by blast
have (tF' (?map-event t1)»
by (simp add: <tF t1) map-eventpyc-tickFree)
moreover have (ftF (?map-event (t112 @ t12) Q t3)»
by (metis x(1) sxx(1) <ftF to> <tF t1» front-tickFree-append
map-event,;cx-tickFree tickFree-append-iff)
moreover from xx(5)
have t-P € D P A t-Q-R € T (Q [S]ya R) V t-P € T P A t-Q-R € D (Q
[S]ya R)
proof (elim disjE conjE)
assume t-P € D Py <t-Q € T
hence (t-P € D P AN t-Q-R € T (Q [S]/4 R)
by (simp add: Syncpiicka. T-Syncptick)
(metis sxkx(2) skx(2) t-R € T R» is-processT3-TR-append)
thus %thesis ..
next
assume <t-P € T Py «t-Q € D @
from *x(2, /) have «tF t-Q» by (simp add: tickFree-setinterleavesy;cx-iff)
with sxx(2) setinterleavespyic,-tickFree-imp have «tF t-Q-R> by blast
moreover from xxx(2) <t-R € T R» is-processT3-TR-append have <(t-R;
€ T R> by blast
ultimately have «t-P € T P A t-Q-R € D (Q [S] 4 R)
unfolding Syncpticra.D-Syncpiick
using sxxx(2) <t-P € T Py <t-Q € D @ front-tickFree-Nil by blast
thus ?thesis ..
qed
ultimately show <t € D ?lhs»
using sxkx(1) by (auto simp add: <t = ?map-event t; Q to)
#(1) #xx(1) Syncpricks-D-Syncptick)
next

146

assume (t-P-Q € T (P [S] /1 Q) «t-P-Q ¢ D (P [S]/1 Q) <t-R€ D R»
from this(1, 2) obtain t-P t-Q
where *x : «t-P € T Py «t-Q € T @ «t-P-Q setinterleaves/(®/1) ((¢-P,
t-Q), S)
unfolding Syncpiicki1-Syncprick-projs by blast
from setinterleavesp;ck-assoc-left{OF #x(8) *(4)] obtain t-Q’
where sk : ¢ Ymap-event t11 setinterleaves/(®/3) ((t-P, t-Q"), S)
t-Q’ setinterleaves/(®/4) ((t-Q, t-R), S)» by blast
from (2) «x(2) *xx <t-R € D R» have <¢-Q’' € D (Q [S] /4 R)
by (simp add: Syncpiicka.D-Syncpiick)
(metis append.right-neutral front-tickFree-Nil
map-eventy,;r-tickFree tickFree-setinterleavesy;cx-iff)
moreover have <t = ?map-event t11 Q (¢map-event t1o2 Q t3))
by (simp add: (1) <t = ?map-event t; Q t9))
moreover have «tF (?map-event t11)>
by (simp add: *(2) map-eventy;ck-tickFree)
moreover from (1) (ftF to) <tF t1> have ftF (?map-event t12 Q t9)»
using front-tickFree-append map-event,iicr -tickFree tickFree-append-iff by
blast
ultimately show <t € D ?lhs)
unfolding Syncyiicks.D-Syncpiick using *x(1) *xx(1) by blast
qged
next
fix t X assume «(t, X) € F 2rhs» <D %rhs C D ?lhs
then consider <t € D %rhs)
| t1 where <t = ?map-event t1» <t ¢ D ?rhs
((t1, map-eventpiicr, id /' 2=v/3 - X) € F (P [S],1 Q [S]y2 R)
unfolding Renaming-projs by blast
thus «(¢, X) € F ?lhs
proof cases
assume <t € D ?rhs»
with <D %rhs C D ?lhs) have <t € D ?lhs) by blast
thus «(t, X) € F ?lhsy by (fact is-processT8)
next
fix t; assume * : <t = ?map-event t1> <t ¢ D rhs)
(t1, map-eventpiicr, id /2= 3 —X) e F (P [S],1 Q [S]y2 R)
from x(1) <t ¢ D ?rhs) have «t; ¢ D (P [S],1 Q [S]/2 R)»
by (cases <tF t1», simp-all add: D-Renaming)
(use front-tickFree-Nil in blast,
metis D-imp-front-tickFree front-tickFree-append-iff is-processT9
map-append map-eventy;ci-front-tickFree
non TickFree-n-front TickFree non-tickFree-tick tickFree-Nil)
with %(%) obtain ¢-P-Q X-P-Q t-R X-R
where *x : ((t-P-Q, X-P-Q) € F (P [S]/1 @) <«(t-R, X-R) € F R»
<ty setinterleaves/(®/2) ((t-P-Q, t-R), S)
«map-eventyyick td V2=V 3 —° X C super-ref-Syncpiick (v 2) X-P-Q
S X-R»
unfolding Syncpiick2.Syncpiick-projs by blast
from xx(1) consider <¢-P-Q € D (P [S] /1 Q)

147

| (fail) t-P X-P t-Q X-Q where «(t-P, X-P) € F P> «(t-Q, X-Q) € F
«t-P-Q setinterleaves/(®/1) ((t-P, t-Q), S)»
«(X-P-Q C super-ref-Syncpiicr (/1) X-P S X-Q»
unfolding Syncpiicki1.-Syncprick-projs by blast
thus «(t, X) € F ?lhs
proof cases
assume (-P-Q € D (P [S] /1 Q)
have «t; € D (P [S]/1 @ [S]/2 R)
proof (cases «tF t-P-Q»)
assume <tF t-P-(Q)»
with sx(3)[THEN setinterleaves,; i -tickFree-imp[rotated]] have (tF t;»
by simp
with #x(3) #+(2)[THEN F-T] <t-P-Q € D (P [S]/1 Q)
show «t; € D (P [[S]]/l Q [[S]]/Q R))
by (simp add: Syncpiicka-D-Syncpiick)
(meson front-tickFree-Nil self-append-conv)
next
assume <~ tF t-P-Q»
then obtain ¢-P-Q’ r where «tF t-P-Q" «t-P-Q = t-P-Q’ @ [/ (r)]»
by (metis D-imp-front-tickFree <t-P-Q € D (P [S] /1 Q)» butlast-snoc
front-tickFree-iff-tickFree-butlast nonTickFree-n-front TickFree)
moreover from xx(2,3) - tF ¢-P-Q)> obtain ¢-R’ s
where «tF t-R" «(t-R = t-R’ Q [/ (s)]»
by (metis F-imp-front-tickFree butlast-snoc front-tickFree-iff-tickFree-butlast
nonTickFree-n-frontTickFree setinterleavesyt;cr-tickFree-imp)
ultimately obtain r-s ¢,' where <t; = t;’ Q [V (r-s)]>
ty’ setinterleaves/(®/2) ((t-P-Q’, t-R"), S)»
using *x(3) by (auto elim!: setinterleavesy;cy-snoc-tick-snoc-tickE)
moreover have «t-P-Q' € D (P [S] /1 Q)
by (metis D-imp-front-tickFree <— tF t-P-Q» «t-P-Q = t-P-Q' Q [V (r)]»
t-P-Q € D (P [S]/1 Q) butlast-snoc div-butlast-when-non-tickFree-iff)
moreover have (t-R' € T R»
using #x(2) F-T «t-R = t-R’ Q [V (s)]> is-processT3-TR-append by blast
ultimately have <t,' € D (P [S]/1 Q [S]/2 R)»
by (simp add: Syncpiicka-D-Syncpiick)
(metis xx(8) D-imp-front-tickFree «tF t-R"» «t-P-Q € D (P [S]/1 Q)
(t-R=t-R’'Q [V/(3)]» append.right-neutral butlast-snoc front-tickFree-charn
front-tickFree-setinterleaves,y;ck-iff tickFree-Nil tickFree-append-iff)
thus «¢t; € D (P [[Sﬂ‘/l Q [[S]]/g R))
by (simp add: <t; = 1/ Q [V (r-9)]»)
(metis *(3) F-imp-front-tickFree <t; = t1’ @Q [/ (r-s)]» butlast-snoc
div-butlast-when-non-tickFree-iff non-tickFree-tick tickFree-append-iff)
qed
with <ty ¢ D (P [S]/1 @ [S]y2 R)> show «(t, X) € F ?lhs) ..
next
case fail
from setinterleavesyci-assoc-left|OF fail(3) =(3)] obtain t-Q’
where sk : < Ymap-event t1 setinterleaves/(®/3) ((t-P, +-Q"), S)

t-Q’ setinterleaves/(®/4) ((t-Q, t-R), S)» by blast

148

from *x(2) *xx(2) fail(2)
have ((t-Q’, super-ref-Syncpiicr (v 4) X-Q S X-R) € F (Q [S]/4 R)»
by (auto simp add: Syncpticka.F-Syncprick)
moreover have <t setinterleaves/(®/3) ((t-P, +-Q"), S)»
by (simp add: *(1) *xx(1))
have <X C super-ref-Syncpiick (v 8) X-P S (super-ref-Syncprick (v 4)
X-Q S X-R)»
proof (rule subsetl)
fix e assume <e € X»
show <e € super-ref-Syncpiicr (V' 3) X-P S (super-ref-Syncpiick (Qv'4)
X-Q S X-R)»
proof (cases e)
fix a assume <e = ev a»
obtain a’ where <map-eventyicr id @/ 2=/ 3 (ev a’) = ev a» by
simp
with <e € X) have (ev a’ € map-eventpiick id @V 2=V 8 —° X
by (simp add: <e = ev @)
with sx(4)[THEN set-mp, OF this| fail(4)
«map-eventpick td V2=V 8 (ev a’) = ev a
show <e € super-ref-Syncpiick (V' 8) X-P S (super-ref-Syncpiicr (v 4)
X-Q S X-R)»
by (auto simp add: <e = ev a> subset-iff super-ref-Syncptick-def)
next
fix r-s-t assume <e = /(r-s-t))
show <e € super-ref-Syncpiick (V' 8) X-P S (super-ref-Syncpricr (v 4)
X-Q S X-R)»
proof (cases <Ir st s-t. s 4t = |st] ANr Q3 st =|rst])
assume 37 st st. s @4t = |s-t] ANr Q3 st =|rst]
then obtain r s ¢ s-t
where $: <s @/ 4 t = |s-t]) «r @/ 8 s-t = |r-s-t|» by blast
then obtain r’ s’ ¢t/ r-s’
where 33 : <7/ @1 5" = [r-s']) (r-s' @2t = | Q' 3=V 2 r-s-t]»
by (metis None-assms-tick-join(1,2) option.collapse option.discl
option.sel tick-assoc-ren-conv-hyp)
have /(v 3=QV 2 r-s-t) € map-eventyiick 1d 2=/ 3 —*X>
by (metis <e = V/(r-s-t)) <e € X» § eventpick.simps(10)
tick-assoc-ren-tick-assoc-ren-conv vimage-eq)
from xx(4)[THEN set-mp, OF this| fail(4)[THEN set-mp, of «/(r-s')]
show <e € super-ref-Syncptick (V' 8) X-P S (super-ref-Syncpiicr (v 4)
X-Q S X-R)>
by (simp add: <e = v/ (r-s-t)» subset-iff super-ref-Syncpicr-def)
(metis (no-types, lifting) $$ None-assms-tick-join(3,4)
Syncptick2-inj-tick-join option.collapse option.discl
option.sel tick-assoc-ren-hyp tick-assoc-ren-tick-assoc-ren-conv)
next
assume fArstst. s@/ft=|st] A\r@SFst=|r-st]
thus <e € super-ref-Syncppick, (V' 3) X-P S (super-ref-Syncpiick (v 4)
X-Q S X-R)»
by (simp add: <e = V/(r-s-t)» super-ref-Syncpiick-def) blast

149

qged

qed

qed

ultimately show (¢, X) € F ?lhs
using *(1) **x(1) fail(1) by (auto simp add: Syncpicks-F-Syncprick)

qed
qed
qed
qed

end

lemma (in Syncptick-locale) strict-ticks-of-Syncpiicr-subset :
Ws(P[Sly Q) C{rs|rsrs r®/ s=|rs| A
revs(P)Asevs(Q)}p (is «<- C 25))
proof (rule subsetl, elim strict-ticks-of-memF)
fix t r-s assume <t Q [/(r-s)] € T (P [S], @) <t ¢ D (P [S], Q)
from ¢ ¢ D (P [S], Q)> have <t Q [/(r-s)] ¢ D (P [S], @) by (meson
is-processT9)
with <t Q [/(r-s)] € T (P [S], Q)> obtain t-P ¢-Q
where «t-P € T Py <t-Q € T @Q» <t Q [V (r-3)] setinterleaves/(®/) ((t+-P, t-Q),
S)
unfolding Syncpiicr-projs by blast
from this(3) show «r-s € 25»
proof (elim snoc-tick-setinterleavesptici E)
fix t-P' t-Q' r s
assume x* : (r @/ s = Some r-$) t-P = t-P' Q [/ (1)) <-Q = t-Q' Q [/ (s)]
<t setinterleaves s (q) ((t-P’, t-Q"), S)»
have «t-P' ¢ D P AN t-Q' ¢ D
proof (rule ccontr)
assume <~ (t-P' ¢ D P A t-Q' ¢ D Q)
with «t-P € T P «t-Q € T @ have <t € D (P [S], Q)
by (simp add: D-Syncpiick *(2,3,4))
(metis %(4) append.right-neutral append-T-imp-tickFree front-tickFree-Nil
is-processT3-TR-append not-Cons-self2 setinterleavesy;cx-tickFree-imp)
with «t ¢ D (P [S], Q) show False ..
qed
with (2, 3) «(t-P € T P» <t-Q € T Q> have «r € /s(P)) <s € /s(Q)
by (metis is-processT9 strict-ticks-of-memlI)+
with (1) show «r-s € 25> by blast
qed
qed

theorem (in Syncpiicr-assoc-locale) Syncpiick-assoc :
«P [S]y3 (Q [S]ya R) = RenamingTick (P [S],/1 Q [S]/2 R) @/ 2=&V 3 (is
<?lhs = ?rhs»)

150

proof (rule FD-antisym)
show «?lhs Crpp ?rhs) by (fact Syncyiick-assoc-oneside)
next
from Syncpiicx-assoc-locale-sym.Syncyiicr-assoc-oneside[of R S Q P]
have (Syncpiicka.Syncprick-locale-sym.Syncprick R S
(Syncptick1-Syncpticr-locale-sym.Syncpiicr @ S P) Epp
RenamingTick (Syncpiicks-SYncptick-locale-sym.Syncpiick
(Syncpricka.Syncpick-locale-sym.Syncprick R S Q) S P) @/ 3=V 2> .
also have «Syncpiick1-Syncptick-locale-sym.Syncpric @ S P = P [S] /1 @
by (simp add: Syncptick1-SYncptick-sym)
also have «Syncpiicr2.Syncptick-locale-sym.Syncpiick R S P-Q = P-Q [S] /2 R
for P-Q
by (simp add: Syncpiicka-SYncprick-sym)
also have (Syncpiicka-Syncprick-locale-sym.Syncprick R S Q = Q [S]ya B>
by (simp add: Syncpticka.SYncptick-sym)
also have «Syncpiicks-Syncptick-locale-sym.Syncpiick Q-R S P = P [S] /3 Q-R»
for Q-R
by (simp add: Syncpiicks-SYncprick-sym)
finally have <P [S]/1 Q [Sl 2 R Crp RenamingTick ?lhs @/ 3=V 2) .
hence < ?rhs Cpp RenamingTick (RenamingTick ?lhs @/ 3=Qv 2) Qv 2=Qv 3»
by (fact mono-Renaming-FD)

also have «... = RenamingTick ?lhs (V' 2=QV 8 o Q/ 3=QV 2))
by (simp add: RenamingTick-comp)
also have (... = RenamingTick ?lhs id>

proof (rule RenamingTick-is-restrictable-on-strict-ticks-of)
fix r-s-t assume «r-s-t € /s(P [S] 3 (Q [S]/4 R))
with Syncpiicks.strict-ticks-of-Syncpiicr-subset obtain r s-t
where «r @/ 8 s-t = |r-s-t]» «r € /s(P) <s-t € /s(Q [S]4 R)> by blast
from this(8) Syncpiicka.strict-ticks-of-Syncpicr-subset obtain s t
where (s @/ 4 t = |s-t]) «<s € /s(Q)» <t € /s(R)» by blast
from r @/ 3 s-t = [r-s-t]) <s @4 t = |s-t]»
show (®v 2=Qv 3 o QY 3=QV 2) r-s-t = id r-s-t»
by (auto intro!: tick-assoc-ren-tick-assoc-ren-conv)

qed

also have «... = ?lhs» by simp

finally show «?%rhs Crp ?lhs) .
qed

151

152

Chapter 7

First Laws

unbundle option-type-syntax

7.1 Behaviour with Constant Processes

By “basic” laws we mean the behaviour of 1, STOP and SKIP, plus the
associativity of some concerned operators.
lemma Seqypicr-const [simp] : <P, (Ar. Q) = P @

— Very basic law.

by (simp add: Process-eq-spec Seqpiick-same-type-projs Seq-projs)

7.1.1 The Laws of L

lemma Seqpicr-is-BOT-iff : <P3, Q=1L<+—P=1LV @3r.[V(r)]eTPAQ
r= 1)
by (simp add: BOT-iff-Nil-D Seqpicr-projs)

lemma BOT-Seqpiick [simp] : <L 5, P = L) by (simp add: Seqpici-is-BOT-iff)

lemma (in Syncyiicr-locale) Syncpiicr-is-BOT-iff : <P [S], @ = L +— P =1
vV Q=_1
by (simp add: BOT-iff-Nil-D D-Syncptick)
(metis Nil-setinterleavespyicr Nil-setinterleavingp;cr-Nil insertCI is-processT1-TR)

lemma (in Syncyiicr-locale) Syncptick-BOT [simp] : <P [S], L = L» and BOT-Syncptick
[stimp] : <L [S], @ = L»
by (simp-all add: Syncptick-is-BOT-iff)
7.1.2 The Laws of STOP
lemma Seqypi;cr-i5-STOP-iff :
(P3y Q= STOP <— T P C insert || {[V(r)]| r. True} A

153

(Vr. [V(r)] € T P— Qr = STOP)) (is «?lhs +— ?rhs))
proof (intro iffI conjl subsetl alll impl)
show «?lhs = t € T P = t € insert || {[V(7)] |r. True}> for t
by (simp add: STOP-iff-T Seqptick-projs set-eg-iff)
(metis Prefiz-Order.prefix] T-nonTickFree-imp-decomp append-Nil
append-T-imp-tickFree is-processT3-TR length-0-conv length-map list. distinct(1))
next
show «?lhs = [/ (r)] € T P = Q r = STOP» for r
by (force simp add: STOP-iff-T Seqpiicr-projs set-eq-iff)
next
show «%rhs = P ;, Q@ = STOP»
by (auto simp add: STOP-iff-T Seqpiick-projs subset-iff)
(metis D-T non-tickFree-tick,
metis BOT-iff-Nil-D D-T D-BOT append-Nil eventp;ci.distinct(1) mem-Collect-eq
front-tickFree-single is-processT9 list.distinct(1) list.inject)
qed

lemma Seqypt;cr-15-STOP-iff-bis :
(P3y Q= STOP <— SKIPS {r. [/(r)] € T P} Cpr PN (Vr. [V(r)| € T P
— Qr = STOP)»
(is < ?lhs «— ?rhsy)
proof (rule iffI)
assume ?lhs
from this[THEN arg-cong, where f = D]
have <D P = {}
by (simp add: Seqpiick-projs D-STOP)
(metis front-tickFree-Nil nonempty-divE|of P))
with «?lhsy show ?rhs
by (subst (asm) Seqpiick-is-STOP-iff)
(auto simp add: refine-defs SKIPS-projs)
next
show «?rhs = ?lhs»
unfolding Seqy ;i -is-STOP-iff by (auto simp add: refine-defs SKIPS-projs)
qed

corollary STOP-Seqptick [simp] : «STOP ;, P = STOP»
by (simp add: Seqpiick-is-STOP-iff T-STOP)

lemma (in Syncp¢ick-locale) STOP-Syncyiicr-STOP [simp) : «<STOP [S], STOP
= STOP»
by (simp add: STOP-iff-T T-Syncpiick STOP-projs)

More powerful Laws lemma (in Syncpi;cx-locale) Interyi;cr-STOP :
— Here, g is a free parameter.
P |||y STOP = RenamingTick (P ; STOP)
(Ar. the (tick-join v (g 7)) (is «?lhs = 9rhsy)
proof —

154

let ?f = «\r. the (tick-join r (g 1))
have * : (tF' t = map (map-eventyicy id 7f) t
= map ev (map of-ev t)» for t :: «(“a, 'r) tracepiick’
by (induct t, simp-all)
(metis (no-types, lifting) eventyyicr.collapse(1) eventpiick.simps(9) id-apply)
show < %lhs = ?rhs»
proof (rule Process-eq-optimizedl)
fix ¢ assume «t € D ?lhs»
then obtain u v t-P
where <t =« Q@ vy (ftF v» <tFu V v = [
(u setinterleaves yicpjoin (&P, 1), {})) «&-P € D P
unfolding D-Syncpticr, STOP-projs by blast
from this(4) setinterleavespcr-NilR-iff
have (tF t-P) <u = map ev (map of-ev t-P)» by auto

from x (tF t-P»> have (u @ v = map (map-eventyiick id ?f) t-P Q v»
by (simp add: <u = map ev (map of-ev t-P)»)
moreover have (t-P € D (P ; STOP)» by (simp add: D-Seq <t-P € D P»)
ultimately show <t € D ?rhs)
using «ftF' v» «tF t-P» by (auto simp add: D-Renaming <t = u Q v)
next
fix t assume <t € D ?rhs
then obtain v v
where $: <t = map (map-event,iicr id ?f) u @ vy
and «tF w (ftF v» <u € D P» unfolding D-Renaming D-Seq D-STOP by
blast
have <tF (map (map-eventyiicr id 2f) u)
by (simp add: <tF u» map-eventy;ck-tickFree)
moreover from <«tF w)
have <map (map-eventyiicr id 2f) u
setinterleaves s tickjoin (4 []), {})
proof (induct u)
case Nil show ?case by simp
next
case (Cons e u)
obtain « where (¢ = ev ay <tF u» by (meson Cons.prems is-ev-def tick-
Free-Cons-iff)
from Cons.hyps|OF «tF uy] show ?case by (simp add: <e = ev a)
qed
ultimately show <t € D (P |||, STOP)»
using «ftF' v» <u € D Py by (auto simp add: D-Syncpic STOP-projs $)
next
fix t X assume «(t, X) € F %lhs) <t ¢ D ?lhs
then obtain ¢t-P X-P X-Q)
where «(t-P, X-P) € F P» <t setinterleaves jcpjoin (-, [1), {})
«X C super-ref-Syncpiick, tick-join X-P {} X-@Q»
unfolding Syncy,iicr-projs F-STOP by blast

from <X C super-ref-Syncptick tick-join X-P {} X-Q»

155

have $: (e € map-eventyyicr id ?f —° X U range tick
= e € X-P U range tick> for e
by (cases e) (auto simp add: super-ref-Syncpiicr-def)
from setinterleavesyycr-NilR-iff
[THEN iffD1, OF <t setinterleavesy yick join ((¢-P, [1), {})]
have (tF' t-P> <t = map ev (map of-ev t-P)» by simp-all
have $$: «t = map (map-eventypicr id ?2f) P>
by (simp add: x <t = map ev (map of-ev t-P)» <tF t-P»)
show «(t, X) € F %rhs)
proof (cases Ar. t-P Q [V (r)] € T P»)
show «(3Ir. t-P Q [/ (r)] € T P = (¢, X) € F ?rhs»
by (auto simp add: F-Renaming F-Seq F-STOP $3)
next
assume fr. t-P Q [/(r)] € T P»
hence «(t-P, X-P U range tick) € F P»
by (auto intro!: is-processT5 «(t-P, X-P) € F P» F-T)
with $ have «(t-P, map-event,iicr id ?f —° X U range tick) € F P»
by (meson is-processT/ subsetl)
with «tF t-P> show (¢, X) € F ?rhsy by (auto simp add: F-Renaming F-Seq
$$)
qed
next
fix t X assume (¢, X) € F ?rhs) <t ¢ D ?rhs
then obtain v where $: <t = map (map-event,iicr id ?f) w
((u, map-eventyicr, id of —X) € F (P 5 STOP)»
unfolding Renaming-projs by blast
from $(2) consider <u € D Ps | r where «u Q [/(r)] € T P»
| <(u, map-eventpick id 2f — X U range tick) € F P> «tF w
by (auto simp add: Seq-projs F-STOP)
thus (¢, X) € F ?lhs)
proof cases
let 2u’ = (if tF u then u else butlast w
let 20’ = «if tF u then [| else [V (?f (of-tick (last w)))]»
assume (v € D P»
hence <?u’ € D P» by (simp add: D-imp-front-tickFree div-butlast-when-non-tickFree-iff)
moreover from D-imp-front-tickFree <u € D P» front-tickFree-iff-tickFree-butlast
have <tF' ?u’y by auto
moreover have (ftF' ?v"y by simp
moreover from <tF ?u’y have «t = map (map-eventyicx id 2f) 2u’ Q@ 20"
by (cases u rule: rev-cases, auto simp add: $(1) split: if-split-asm)
(metis eventpiick.collapse(2) eventyy;cr.simps(10))
ultimately have <t € D ?rhs) unfolding D-Renaming D-Seq by blast
with <t ¢ D %rhs) show «(t, X) € F ?lhs ..
next
fix r assume <u Q [V (r)] € T P>
hence «(u, UNIV — {/(r)}) € F P> by (simp add: is-processT6-TR)
moreover from $(1) x <u Q [V (r)] € T P> append-T-imp-tickFree
have <t setinterleaves s yictjoin ((u, [1), {})
by (auto simp add: setinterleavespycr-NilR-iff)

156

moreover have <X C super-ref-Syncpiicr, tick-join (UNIV — {/(r)}) {}
UNIV»
by (simp add: subset-iff super-ref-Syncyiicr-def) (metis eventyy;cr. exhaust)
ultimately show «(t, X) € F ?lhsy unfolding F-Syncpiic F-STOP by
clarify blast
next
assume <(u, map-eventyyick id ?f —° X U range tick) € F Py <tF w
moreover from $(1) * «tF w» have «¢ setinterleaves s yick_join (v [1), {})
by (auto simp add: setinterleavespicy-NilR-iff)
moreover have <X C super-ref-Syncpiicr tick-join (map-eventpiicr id 7f —
X U range tick) {} UNIV»
by (simp add: subset-iff super-ref-Syncyiick-def) (metis eventyy;cr.exhaust)
ultimately show «(¢t, X) € F ?lhsy unfolding F-Syncpiic F-STOP by
clarify blast
qged
qed
qed

3

lemma (in Syncpiick-locale) STOP-Interpiick
«(STOP |||, @ = RenamingTick (Q ; STOP)
(As. the (tick-join (g s) s))»
by (metis Syncpiick-locale-sym.Inter,;c,-STOP Syncpiick-sym)

lemma (in Syncpiicr-locale) Parpiicr-STOP [simp] : <P ||, STOP = (if P = L
then L else STOP)»
proof (split if-split, intro conjl impl)

show (P = 1L = P ||, STOP = 1) by simp
next

show (P # 1L = P ||, STOP = STOP:»

by (auto simp add: STOP-iff-T T-Syncpiick STOP-projs set-eg-iff
BOT-iff-Nil-D setinterleaves,;cx-NilR-iff image-iff)
(metis eventpi;ck.collapse(1) last-in-set tickFree-butlast)—+

qed

lemma (in Syncpiick-locale) STOP-Parpgick [simp] : <STOP ||, P = (if P = L
then L else STOP)»
proof (split if-split, intro conjl impl)

show (P = 1 = STOP ||, P = L) by simp
next

show (P # 1 = STOP ||, P = STOP»

by (auto simp add: STOP-iff-T T-Syncpiick STOP-projs set-eg-iff
BOT-iff-Nil-D setinterleaves,;cr-NilL-iff image-iff)
(metis eventpiick.collapse(1) last-in-set tickFree-butlast)—+

qed

157

7.1.3 The Laws of SKIP

Sequential Composition

SKIP is neutral for Seqp;ct!

lemma SKIP-Seqyicr [simp) : <SKIP r;, P = P 1)
by (simp add: Process-eq-spec Seqpiick-projs ref-Seqpiicr-def SKIP-projs)

lemma Seqpticr-SKIP [simp] : <P, SKIP = P)
proof (subst Process-eq-spec-optimized, safe)
show (s € D (P;, SKIP) = s € D P
and (s € D P = s € D (P;, SKIP)) for s
by (simp-all add: D-Seqpticr-same-type D-SKIP)
next
show «((s, X) € F (P;, SKIP) = (s, X) € F P) for s X
by (auto simp add : F-Seqp;cr-same-type F-SKIP is-processT6- TR-notin tick-T-F
intro : is-processT/ is-processT8)
next
show «(s, X) € F P = (s, X) € F (P;, SKIP)) for s X
by (simp add : F-Seqpicr-same-type F-SKIP)
(metis (mono-tags, opaque-lifting) F-T T-nonTickFree-imp-decomp
append.right-neutral f-inv-into-f is-processT5-S7")
qed

lemma SKIPS-Seqptick [simp] : <SKIPS R ;, P =MNr € R. Pr
by (auto simp add: Process-eq-spec GlobalNdet-projs Seqptick-projs
STOP-projs SKIPS-projs ref-Seqptick-def)

lemma finite-ticks-Seqptick [finite-ticks-simps] : <F /(P 3, Q)
if <F,(P)» and «((A\r. r € V/s(P) = F,(Q r))
proof (rule finite-ticksI)
fix t assume <t € T (P35, Q) <t ¢ D (P, Q)
have ({r’. t @ [/(r")] € T (P;, Q)} C
(Uuv e {uv.Jvr.t = map (evo of-ev) u@QuAu@I[/(r)] €T PANug¢D
P A tF u A ftF v},
Ure{r.u@[/(r)] €T P}.{s. drop (length u) t Q@ [V (s)] € T (Q r)})
(is <?lhs C %rhsy)
proof (rule subsetl)
fix r’ assume <’ € ?lhs
hence <t @ [/ (r')] € T (P, Q) by simp
with <t ¢ D (P, Q) obtain t' ru’
where <t Q [/ (r')] = map (ev o of-ev) t' Q u’ ' Q [V (r)] € T P> <t' ¢ D
Py tF th «u' €T (Qr)
by (auto simp add: Seqpiick-projs)
(metis non-tickFree-tick tickFree-append-iff tickFree-map-ev-comp,
metis (no-types, opaque-lifting) T-imp-front-tickFree butlast-append but-
last-snoc
front-tickFree-iff-tickFree-butlast non-tickFree-tick tickFree-append-iff

158

tickFree-imp-front-tickFree tickFree-map-ev-comp,
metis (no-types, opaque-lifting) append.assoc butlast-snoc front-tickFree-charn
non-tickFree-tick
tickFree-Nil tickFree-append-iff tickFree-imp-front-tickFree tick-
Free-map-ev-comp)

thus «r’ € ?rhs
apply auto
by (smt (verit, ccfv-SIG) Prefiz-Order.same-prefix-nil T-imp-front-tickFree
append-eq-append-conv? append-eq-append-conv-if append-eq-conv-conj
append-eq-first-pref-spec append-same-eq eventpy;cr.disc(2) front-tickFree-dw-closed
length-map tickFree-Cons-iff tickFree-append-iff
tickFree-map-ev-comp)
qed
moreover have (finite ...
proof (rule finite-UN-I)
show «finite {u. Jvr. t = map (evo of-ev) uQuAuw @ [/(r)] €T PAu ¢
D P AtFuA ftF o
by (rule finite-subset[of - «{u. u < map (ev o of-ev) (if tF t then t else butlast
Hh))
(auto simp add: append-T-imp-tickFree tickFree-map-ev-of-ev-same-type-is
prefixes-fin,
metis prefizl append-T-imp-tickFree butlast-append map-append
not-Cons-self2 tickFree-Nil tickFree-map-ev-of-ev-eq-iff)
next
fix u assume <u € {u. Jvr. t = map (ev o of-ev) u@ v A u @ [/(r)] €T P
ANugDPALtFuA ftFop
then obtain r v where «t = map (ev o of-ev) u @ vy <u Q [V (r)] € T P> <u
¢ D P> «tF u «ftF v» by blast
show «finite (Jre{r. v @ [V (r)] € T P}. {s. drop (length u) t Q [V (s)] € T
(@)}
proof (rule finite-UN-I)
show «finite {r. v @Q [/ (r)] € T P}h
by (simp add: <F,(P)) <u ¢ D P» finite-ticksD)
next
fix r assume «r € {r. v Q [V (r)] € T Ph
hence (v Q [V (r)] € T P> ..
with <t ¢ D (P, Q) <uQ [/(r)] € T P> <tF u» have <v ¢ D (Q r)»
by (auto simp add: <t = map (ev o of-ev) u Q vy Seqpick-projs)
show «finite {s. drop (length u) t Q@ [V (s)] € T (Q)}
by (simp add: <t = map (ev o of-ev) u Q v»)
(metis «u Q [V(r)] € T P> «ué D P> «w ¢ D (Qr) finite-ticksD
is-processT9 strict-ticks-of-memI «(A\r. r € /s(P) = F,(Q))»)
ged
qed
ultimately show «finite {r. t @ [/ (r)] € T (P, Q)}> by (fact finite-subset)
qed

159

lemma finite-ticks-fun-Seqpi;cr-bis

Fyo(f) = (Nzr.revs(fz) =F, (z) = F, (gar) = F,o(\z. fr;,
gz)

by (simp add: finite-ticks-fun-def finite-ticks-Seqptick)

lemma finite-ticks-fun-Seqpiick [finite-ticks-fun-simps] :
— Big approximation.
Fyo(f) = (Ar.-re (Uz. V/s(fz)) = F,yo(Az. gar)) = Fo(Az. fz 5,
gz
by (rule finite-ticks-fun-Seqpi;ci-bis)
(auto simp add: finite-ticks-fun-def)

Synchronization Product

The generalization of the synchronization product was essentially motivated
by the following theorem (in comparison to SKIP r [A] SKIP s = (if r =
s then SKIP r else STOP)).

theorem (in Syncyiicr-locale) SKIP-Syncyiicr-SKIP [simp] :
«(SKIP r [A] , SKIP s = (case tick-join r s of |r-s| = SKIP r-s | O = STOP))
proof (split option.split, intro conjl impl alll)
show «(tick-join r s = O = SKIP r [A] , SKIP s = STOP)»
unfolding STOP-iff-T T-Syncpiick SKIP-projs set-eq-iff
by (safe, simp-all, metis Nil-setinterleavingpycr-Nil insertCI)
next
show (SKIP r [A], SKIP s = SKIP r-s) if <tick-join r s = |r-s|» for r-s
proof (rule Process-eq-optimizedl)
show <t € D (SKIP r [A], SKIP s) =t € D (SKIP r-s) for ¢
by (simp add: D-Syncpiick, SKIP-projs)
next
show «t € D (SKIP r-s) =t € D (SKIP r [A], SKIP s)) for t
by (simp add: D-Syncpiick, SKIP-projs)
next
fix t X assume «(t, X) € F (SKIP r [A], SKIP s)) <t ¢ D (SKIP r [A],
SKIP s)»
then obtain t-P t-QQ X-P X-Q
where fail: «(t-P, X-P) € F (SKIP r)) «(t-Q, X-Q) € F (SKIP s)»
«t setinterleaves s yick_join ((¢-P, +-Q), A)
<X C super-ref-Syncpiick tick-join X-P A X-Q»
unfolding Syncyticr-projs by blast
from fail(1—3) consider <t = [|» «/(r) ¢ X-P> «/(s) ¢ X-Q» | <t = [V (r-s)]»
by (cases t-P; cases t-Q) (simp-all add: F-SKIP <tick-join r s = |r-s|»)
thus «(t, X) € F (SKIP r-s)»
proof cases
assume <t = [«/(r) ¢ X-P) «/(s) ¢ X-Q»
from «/(r) ¢ X-P> «/(s) ¢ X-Q fail(4) <tick-join r s = |r-s]>
have «/(r-s) ¢ X»
by (simp add: super-ref-Syncpicr-def subset-iff)
(metis eventpiick.distinct(1) eventpick.inject(2) inj-tick-join)

160

with «t = []» show «(t, X) € F (SKIP r-s)» by (simp add: F-SKIP)
next
show «t = [V/(r-s)] = (t, X) € F (SKIP r-s)» by (simp add: F-SKIP)
qged
next
fix t :: «(‘a, -) tracepiick> and X assume «(t, X) € F (SKIP r-s))
then consider <t = [|» «/(r-s) ¢ X» | <t = [V (r-s)]
unfolding F-SKIP by blast
thus «(t, X) € F (SKIP r [A] , SKIP s)»
proof cases
assume <t = [p «/(r-s) ¢ X>
have «([], — {V(r)}) € F (SKIP r)»
by (simp add: F-SKIP)
moreover have «([], — {V(s)}) € F (SKIP s)»
by (simp add: F-SKIP)
moreover have <t setinterleaves s ek jom ([, [1), A)
by (simp add: <t = []»)
moreover have <X C super-ref-Syncpiick tick-join (— {V/(r)}) A (= {V/(s)})»
using «/(r-s) ¢ X» <tick-join r s = |r-s]»
by (simp add: super-ref-Syncpiicr-def subset-iff)
(metis eventpiick.exhaust option.inject)
ultimately show «(t, X) € F (SKIP r [A] , SKIP s)»
by (simp (no-asm) add: F-Syncpiicr) blast
next
assume <t = [V (r-s)]»
have «([v(r)], UNIV) € F (SKIP r)»
by (simp add: F-SKIP)
moreover have «([V(s)], UNIV) € F (SKIP s)»
by (simp add: F-SKIP)
moreover have <t setinterleaves s ickjoin (([V(r)], [V (5)]), A)
by (simp add: <t = [V (r-s)] <tick-join r s = |r-s]»)
moreover have (X C super-ref-Syncpicr tick-join UNIV A UNIV)»
by (simp add: super-ref-Syncpiicr-def subset-iff)
(metis eventyt;cr.exhaust)
ultimately show «(t, X) € F (SKIP r [A] , SKIP s)»
by (simp (no-asm) add: F-Syncpiick) blast
qed
qed
qed

lemma (in Syncpiicr-locale) STOP-Syncpiick-SKIP [simp] : «STOP [A], SKIP
s = STOP>»

and SKIP-Syncptick-STOP [simp) : <SKIP r [A] , STOP = STOP»

by (force simp add: STOP-iff-T T-Syncpiick STOP-projs SKIP-projs)+

lemma (in Syncpticr-locale) Mprefiz-Syncpicr-SKIP :

161

Oae€ A— PalS], SKIPr =
Oae (A—S) = (Pal[S], SKIP) (is «?lhs = ?rhs)
proof (rule Process-eq-optimizedI)
fix t assume <t € D ?lhs
then obtain u v t-P a t-Q
where * : <t = u Q@ vy ¢F w <ftF vy <a € A <t-P € D (P a)
<u setinterleaves/(®/) ((eva # t-P, t-Q), S «t-Q =[] V t-Q = [V (r))
unfolding D-Syncpticr SKIP-projs Mprefiz-projs by blast
from (6, 7) obtain u’
where <a ¢ S) <u = eva # u’ «u’ setinterleaves/(®/) ((t-P, t-Q), S
by (auto split: if-split-asm)
from this(2, 3) (2, 5, 7) front-tickFree-charn have <u’ € D (P a [S], SKIP
)
by (auto simp add: D-Syncpiicr SKIP-projs)
with x(1—4) <a ¢ S) <u = ev a # u» is-processT7 show <t € D ?rhs)
by (auto simp add: D-Mprefiz)
next
fix t assume <t € D ?rhs)
then obtain o t’ where <t = eva # t" <a € A <a ¢ S <t' € D (P a[S],
SKIP 1))
unfolding D-Mprefix by blast
then obtain u v t-P t-Q)
where * : <t/ = u @ v» <tF w ftF v» <t-P € D (P a)»
u setinterleaves'/(@)/) ((t-P, t-Q), S «t+-Q =[] V t-Q = [V (1))
unfolding D-Syncptick SKIP-projs by blast
have «t = (ev a # u) Q v» by (simp add: *(1) <t = ev a # t")
moreover from *(2) have «tF (ev a # u)» by simp
moreover from x(5, 6) have <ev a # u setinterleaves/(®/) ((ev a # t-P, t-Q),
S)
by (cases t-Q) (simp-all add: <a ¢ S» Cons-setinterleavingpicr-Cons)
moreover have <eva # t-P € D (Oa € A — P a)
by (simp add: x(4) D-Mprefiz <a € A»)
ultimately show <t € D ?lhs
unfolding D-Syncpiicr SKIP-projs using (3, 6) by blast
next
fix t X assume «(t, X) € F ?lhs) <t ¢ D ?lhs
then obtain ¢-P t-Q X-P X-Q
where * : «(t-P, X-P) € F (Ha € A — P a) «(t-Q, X-Q) € F (SKIP r)»
«t setinterleaves/(®/) ((t-P, t-Q), S)
«X C super-ref-Syncpiick (V) X-P S X-Q»
unfolding Syncpiicr-projs by blast
from (1) consider <¢-P = [< X-PNev ‘A ={}h
| a t-P’ where <t-P = ev a # t-P <«a € A «(i-P', X-P) € F (P a)»
unfolding F-Mprefix by blast
thus (¢, X) € F rhs
proof cases
assume ¢-P =[p «<X-Pnev‘A={p
from «t-P = [%(2, 3) have <t = [|» <t-Q = [«/(r) ¢ X-Q

162

by (auto simp add: F-SKIP)
with *(4) show <t-P =[] = X-Pnev ‘A ={} = (¢, X) € F ?rhs
by (auto simp add: F-Mprefiz super-ref-Syncpick-def)
next
fix a t-P’ assume <t-P = ev a # t-P"» <a € A> «(t-P’, X-P) € F (P a)
from %(2, 3) obtain t’
where <t = eva # t" <a ¢ S» «t’ setinterleaves/(®/) ((t-P', t-Q), S)
by (auto simp add: <t-P = ev a # t-P’y F-SKIP split: if-split-asm)
from %(2, 4) «(t-P', X-P) € F (P a)» this(3)
have «(t/, X) € F (P a [S], SKIP r)) by (auto simp add: F-Syncptick)
thus (¢, X) € F ?rhsy by (simp add: <t = ev a # t'» F-Mprefix <a € A> <a ¢
Sh)

qed
next
fix t X assume (¢, X) € F ?rhs) <t ¢ D ?rhs
from «(t, X) € F %rhs) consider <t = [p <X Nev ‘(A —-5)={p

| at’ where <t =cva#th e A ag «(th X)e F (PalS], SKIP)
unfolding F-Mprefix by blast
thus (¢, X) € F ?lhs
proof cases
assume <t = [p X Nev‘(4A—-295)={p
from X Nev‘(4-25)={p
have «([], range tick U {evala. eva € X Na¢ S}) € F (Ha€ A — Pa)
by (auto simp add: F-Mprefix)
moreover have «([], UNIV — {/(r)}) € F (SKIP r)) by (simp add: F-SKIP)
moreover have <X C super-ref-Syncpiick (V)
(range tick U {evala. eva€e X Na ¢ S}) S (UNIV — {/(r)})
by (simp add: subset-iff super-ref-Syncpiicr-def) (metis eventyy;cr.exhaust)
moreover have <] setinterleaves s () (0, M, 8)» by simp
ultimately show «(t, X) € F ?lhs) by (simp (no-asm) add: <t = [|» F-Syncpiick)
blast
next
fix a t'assume <t = eva # th «a€ A <a ¢ S «(t', X)e F (PalS], SKIP
)
from this(1, 4) <t ¢ D ?rhsy <a € A <a ¢ S
obtain t-P -Q X-P X-Q
where * : «(t-P, X-P) € F (P a)» «(1-Q, X-Q) € F (SKIP r)»
«t’ setinterleaves, () ((+-P, t-Q), S
«X C super-ref-Syncpiick (V) X-P S X-@»
unfolding D-Mprefix Syncpiicr-projs by force
have «(ev a # t-P, X-P) ¢ F (a € A — P a)
by (simp add: (1) F-Mprefiz <a € A»)
moreover from *(2, 3) have «¢ setinterleaves/(®/) ((ev a # t-P, t-Q), S)»
by (auto simp add: <t = ev a # t"» F-SKIP <a ¢ S»)
ultimately show (¢, X) € F ?lhs) unfolding F-Sync,.;. using *(2, 4) by
auto
qed
qed

163

corollary (in Syncpiick-locale) SKIP-Syncpiick-Mprefiz :
«(SKIPr [S],0be B— Qb=0be (B—S)— (SKIPr [S], Q b) (is «?lhs
= 9rhs))
by (subst (1 2) Syncpiick-locale-sym.Syncpiick-sym mono-Mprefiz-eq)
(fact Syncpiick-locale-sym. Mprefiz-Syncyi;cr,-SKIP)

lemma (in Syncpiick-locale) finite-ticks-Syncpiick [finite-ticks-simps) :
(P [S], Q) if <F/(P)> and <F/(Q)
proof (rule finite-ticksI)
fix ¢t assume <t ¢ D (P [S], Q)
have ({r-s. t @ [/ (r-s)] € T (P [S], @)} €
(U (t-P, t-Q)e{(t-P, t-Q). t setinterleaves (g ((t-P, t-Q), S)}.
{r-s. 3rs. r v/ s=|r-s] A
t-PQ[/(r) €T PANt-P¢DPA
LQ@ V()] €T QALQED Q)
(is <- C %rhs))
proof (rule subsetl)
fix r-s assume «r-s € {r-s. t Q [/ (r-s)] € T (P [S], @}
hence <t @ [/ (r-s)] € T (P [S], Q) -
moreover from ¢t ¢ D (P [S], @) have <t Q [/ (r-s)] ¢ D (P [S], Q)
by (meson is-processT?9)
ultimately obtain ¢-P ¢-Q where <t-P € T Py <t-Q € T @ «t-P ¢ D P»
t-Q ¢ D Q)
<t Q [V (r-3)] setinterleaves‘/((g/) ((t-P, t-Q), S
by (simp add: T-Syncpiick D-Syncpiick’) (use front-tickFree-Nil in blast)
from this(5) show «r-s € ?rhs)
proof (elim snoc-tick-setinterleavesytick E)
fix rst-P't-Q’'
assume assms : <t setinterleaves/(®/) ((t-P7, t-Q7), S
r @ s = |r-s] «t-P = t-P'Q [V(r)p «t-Q = t-Q' Q [V (s)]
from «t-P €T P> «t-Q € T @ <t-P ¢ D P <t-Q ¢ D @ assms(3, 4)
have «(t-P' ¢ D Py <t-Q" ¢ D @
by (meson T-imp-front-tickFree front-tickFree-append-iff is-processT7 not-Cons-self2)+
with <t-P € T Py «t-Q € T @ assms show <r-s € ?rhsy by auto
qed
qed
moreover have «finite ...
proof (rule finite-UN-I, safe)
show «finite {(t-P, t-Q). t setinterleaves s (g) ((t-P, t-Q), S)}»
by (fact finite-setinterleavesyicr-tick-join)
next
fix t-P t-Q
let 25 = ({r-s. drs. r @/ s = [r-s] A
t-PQ[/(r))]eT PANt-P¢DPA
-QQAQV(s) eT QAt-Q ¢ D Qh
have (Some ‘ 25 C (A(r, s). r @/ s) *
{r.t-PQ[V(r)) €T P AP ¢ D P} x

164

{s.-:QQ [V(s)] €T Q Nt-Q ¢ D Q})> by force
moreover have «(finite ...» by (simp add: finite-ticksD <F ,(P)> <F,(Q)»)
ultimately have <finite (Some ¢ 25)» by (fact finite-subset)
thus «finite 25> by (simp add: finite-image-iff)
qed
ultimately show «finite {r-s. t @ [/(r-s)] € T (P [S], @)} by (fact fi-
nite-subset)
qed

lemma (in Syncyiicr-locale) finite-ticks-fun-Syncpiicr [finite-ticks-fun-simps|

Fyo(f) = F =(9) = Fyo(Az. fz [S], g)
by (simp add: finite-ticks-fun-def finite-ticks-Syncpiick)

7.2 Associativity of Sequential Composition

lemma Seqp¢ick-assoc : <P s, (Ar. Qriy R)=Ps, Qsy R
for P :: «('a, 'r) processpiick’
and Q :: <'r = (‘a, 's) processpiick>
and R :: /s = (‘a, 't) processpiick>
proof (rule Process-eq-optimizedI)
fix t assume <t € D (P, (Ar. Q v, R))
then consider (D-P) t' uw where <t = map (ev o of-ev) t' Q uw) <t' € D Py «tF
th ftF w
| (D-Q-R) t’ r u where <t = map (ev o of-ev) t' Q@ wy <’ Q [V (r)] € T P> <u
€D (Qr;s Ry
unfolding Seqy;ci-projs[of P] by fast
thus <t € D (P, Qs R)
proof cases
case D-P
define t"" :: «('a, 's) tracepiicr> where <t'' = map (ev o of-ev) t"
from D-P have <t € D (P;/, Q)
by (auto simp add: t"'-def Seqpiick-projs intro: front-tickFree-Nil)
moreover have «tF t'"y by (simp add: t"'-def)
ultimately have <map (ev o of-ev) t"" € D (P, Q ;s R)
by (simp add: Seqptick-projsjof <P 3, Q])
(metis append.right-neutral front-tickFree-Nil)
also have (map (ev o of-ev) t"" = map (ev o of-ev) t
by (simp add: t""-def)
finally have (map (ev o of-ev) t' € D (P, Qs R) .
with D-P(1, 3, 4) show <t € D (P, Q ;s R)> by (simp add: is-processT7)
next
case D-Q-R
from D-Q-R(3) consider (D-Q) u’ v where <u = map (ev o of-ev) u’ Q v»
w' € D (Qr) «tF u' (ftF v
| (D-R) u’ s v where <u = map (ev o of-ev) v’ @ vy <u’ Q [V(s)] € T (Q r)
tF u'» <«v € D (R s)
unfolding Seqypi;cr-projs by blast
thus <t € D (P;/ Q;/ R))
proof cases

165

case D-(Q)
define t"" :: <('a, 's) tracepiick> where <t'' = map (ev o of-ev) t' Q map (ev
o of-ev) uh
have «t" € D (P, Q)
by (simp add: t""-def Seqpiick-projs)
(metis D-Q(2,3) D-Q-R(2) append-T-imp-tickFree list.distinct(1)
tickFree-map-ev-of-ev-same-type-is)
moreover have («tF t'» by (simp add: t'-def)
ultimately have <map (ev o of-ev) t'"" € D (P, Q 3, R)
by (simp add: Seqpiick-projsjof <P, Q])
(metis append.right-neutral front-tickFree-Nil)
also have <map (ev o of-ev) t"' = map (ev o of-ev) t' @ map (ev o of-ev) u’
by (simp add: t""-def)
finally have (map (ev o of-ev) t' @ map (ev o of-ev) u' € D (P, Qs R)

with D-Q(1,4) D-Q-R(1) is-processT7 show <t € D (P, Q 3, R)> by
fastforce
next
case D-R
define t" :: «('a, 's) tracepiicr> where «t” = map (ev o of-ev) (map (ev o
of-ev) t' @Q u’)
have «t"” @ [/(s)] € T (P, Q)
by (simp add: t""-def Seqpiick-projs|of P| del: map-map)
(metis D-Q-R(2) D-R(2) append-T-imp-tickFree not-Cons-self2
tickFree-map-ev-of-ev-same-type-is)
moreover have (tF t'"y unfolding t"’-def by (blast intro: tickFree-map-ev-comp)

ultimately have (map (ev o of-ev) t"" Qv e D (P;, Qs R)
unfolding Seqyici-projsjof <P 3, @] using D-R(4) by blast
also have (map (ev o of-ev) t" Qv =1t
by (simp add: D-Q-R(1) D-R(1) t"-def)
finally show <t € D (P, @3/ R)» .
qed
qed
next

fix t assume <t € D (P;, Qs R)
then consider (D-P-Q) t’' u where <t = map (ev o of-ev) t' @ wy <t' € D (P
s Q) <tF th (ftF w
| (D-R) t" s u where <t = map (ev o of-ev) t' Q@ w) «t'Q [V (s)] € T (P3/ Q)
«u € D (R s)
unfolding Seqpick-projsjof <P, Q] by blast
thus <t € D (P, (Ar. Qriy R))
proof cases
case D-P-(Q)
from D-P-Q(2) consider (D-P) t" v’ where «t' = map (ev o of-ev) t" Q u”»
«t"" € D Py «tF t'"y «ftF u”
| (D-Q) t"" r u’ where <t' = map (ev o of-ev) t"" Q u’» <t Q [V (r)] € T P>
tFt" «w' € D(Qr)

166

unfolding Seqypi;ck-projs by blast
thus <t € D (P35, (Ar. Qr3y R))
proof cases
case D-P
from D-P(2, 3) have <map (ev o of-ev) t"" € D (P, (Ar. Q r;, R))»
by (auto simp add: Seqpiick-projslof P| intro: front-tickFree-Nil)
thus <t € D (P, (Ar. Qr3y R))
by (simp add: D-P-Q(1) D-P(1))
(metis (mono-tags, lifting) D-P-Q(4) front-tickFree-append
is-processT7 tickFree-map-ev-comp)
next
case D-(Q)
from D-P-Q(8) D-Q(1, 4) have <map (ev o of-ev) v’ € D (Q 3, R)»
by (simp add: Seqptick-projs) (metis append.right-neutral front-tickFree-Nil)
with D-Q(2, 3) have (map (ev o of-ev) (map (ev o of-ev) t"' @ v') € D (P
v (Ar. Qs R))
by (auto simp add: Seqyiicx-projs[of P)
with D-P-Q(4) is-processT7 show <t € D (P, (Ar. Q 3, R))
by (fastforce simp add: D-P-Q(1) D-Q(1))
qed
next
case D-R
then consider (T-P) t”’ r v’ where «t' = map (ev o of-ev) t"" Q u’
a"@(r))eT P «Ft"y «w' Q[/(s)] €T (Qr)
| (D-P) t" u' where «t' = map (ev o of-ev) t" Q u’s «t" € D Py «tF t'» «tF

u’y

by (auto simp add: Seqpticr-projs append-eq-append-conv? append-eg-map-conv
Cons-eq-append-conv front-tickFree-append-iff intro: D-P T-P)
thus <t € D (P35, (Ar. Qr3y R))
proof cases
case T-P
from D-R(3) T-P(4) have <map (ev o of-ev) v’ Q u € D (Q r3, R)
by (simp add: Seqpiicr-projs) (metis append-T-imp-tickFree not-Cons-self2)
with T-P(2, 3) have <map (ev o of-ev) t" @ map (ev o of-ev) u' @ u €
D(P;y (Ar. Qrsys R)
by (auto simp add: Seqpi;cr-projs|of P))
also have (map (ev o of-ev) t”’ Q map (ev o of-ev) v’ Q u =t
by (simp add: D-R(1) T-P(1))
finally show ¢t € D (P, (Ar. Q 3/ R)) .
next
case D-P
from D-P(2, 3) have <map (ev o of-ev) t"" € D (P, (Ar. Q r;, R))
by (auto simp add: Seqyi;ck-projslof P| intro: front-tickFree-Nil)
with D-R(3) show <t € D (P, (Ar. Q 3/ R))
by (simp add: D-R(1) D-P(1))
(metis (mono-tags, lifting) D-imp-front-tickFree
front-tickFree-append is-processT7 tickFree-map-ev-comp)
qed
qed

167

next

fix t X assume (¢, X) € F (P35, (Ar. Qrss R))» <t ¢ D (P35, (Ar. Qrisy
R))
then consider (F-P) t' where <t = map (ev o of-ev) t'y «(t', ref-Seqprick X) €
F Py <tF t"
| (F-Q-R) t' r u where <t = map (ev o of-ev) t' @ wy <t' @ [V/(r)] € T P»
aFth «(u, X) € F(Qrsy R)
unfolding Segyi;cr-projs[of P] by fast
thus «(t, X) € F (P, Qs R)
proof cases
case F-P
from F-P(2) have «(t/, ref-Seqpiick (ref-Seqprick X)) € F P>
by (simp add: ref-Seqpiicr-idem)
with F-P(3) have «(map (ev o of-ev) t', ref-Seqpiick X) € F (P, Q)
by (auto simp add: Seqpiick-projs)
thus «(¢t, X) € F (P35, Qs R)
by (simp add: Seqpiick-projsjof <P 3, @] F-P(1))
(metis map-ev-of-ev-map-ev-of-ev tickFree-map-ev-comp)
next
case F-Q-R
from F-Q-R(4)
consider (F-Q) u’ where (u = map (ev o of-ev) u’
«(u', ref-Segprick X) € F (Q r) «tF u’
| (F-R) u’ s v’ where <u = map (ev o of-ev) v’ Q@ u'» «u' Q [V (s)] € T (Q
) <tF u) «(u”, X) € F (R s)»
| (D-Q) u' u” where <u = map (ev o of-ev) u’ Q v «u’ € D (Q r)» «tF u’
StF u'’
unfolding Seqpticr-projs by blast
thus (¢, X) € F (P35, Qs R)
proof cases
case F-Q)
from F-Q(2) F-Q-R(2, 3)
have «(map (ev o of-ev) t' Q u',ref-Seqprick X) € F (P35, Q)
by (auto simp add: Seqpiick-projs)
with F-Q(1,8) F-Q-R(1) show «(t, X) € F (P, Q3 R)
by (simp add: Seqpiick-projsjof <P 3, Q])
(metis map-append map-ev-of-ev-map-ev-of-ev tickFree-append-iff tick-
Free-map-ev-comp)
next
case F-R
from F-Q-R(2, 3) F-R(2) have $: <map (ev o of-ev) t' @ v’ @Q [/ (s)] € T
P35/ Q)
by (auto simp add: Seqpiick-projs)
have $$: «tF (map (ev o of-ev) t' Q u')y by (simp add: F-R(3))
show «(t, X) € F (P35, Qs R)
by (simp add: Seqpiici-projslof <P, @])
(metis map-append[of <ev o of-ev> <map (ev o of-ev) t"r u]
F-Q-R(1) F-R(1, 4) $ 3 append-eq-appendI map-ev-of-ev-map-ev-of-ev)

168

next
case D-(Q)
from D-Q(2) F-Q-R(2, 3) have $: «<map (ev o of-ev) t' Qu' € D (P, Q)
by (auto simp add: Seqpi;ck-projs)
have 33 : «tF' (map (ev o of-ev) t' Q u’)y by (simp add: D-Q(3))
have <t € D (P, Q 3, R)
by (simp add: Seqptick-projsiof <P, Q])
(metis D-Q(1, 4) F-Q-R(1) $ $$ append-assoc map-append map-ev-of-ev-map-ev-of-ev)
thus (¢, X) € F (P, Q ;s R)» by (fact is-processTS)
qed
qed
next
fix t X assume «(t, X) € F (P;, Qs R) <t ¢ D (Ps, Qs R)
then consider (F-P-Q) t' where «t = map (ev o of-ev) t"
«(t', ref-Seqprick X) € F (P35 Q) <tF th
| (F-R) t’ s u where <t = map (ev o of-ev) t' @ w»
'@ [V(s) €T (Psy Q) «tF th «(u, X) € F (R s)»
unfolding Seqp¢ick-projsjof <P, Q] by fast
thus (¢, X) € F (P3y (Ar. Qr3y R))
proof cases
case F-P-Q)
from F-P-Q(1, 3) <t ¢ D (P, Qs R) have <t' ¢ D (P;, Q)
by (simp add: Seqpiick-projs) (metis front-tickFree-Nil self-append-conv)
with F-P-Q(2) consider (F-P) t" where <t' = map (ev o of-ev) t'
«(t", ref-Seqprick (ref-Seqprick X = ('a, 's) refusalpiick)) € F Py <tF t"
| (F-Q) t" r u where «t' = map (ev o of-ev) t” Q@ w «t" Q [V (r)] € T Py (tF
t'
(u, ref-Seqprick X) € F (Q)
unfolding Seqypi;cr-projs by fast
thus «((t, X) € F (P3y (Ar. Qr3y R))
proof cases
case F-P
from F-P(2, 8) have «(t",ref-Seqprick X) € F P»
by (simp add: ref-Seqpiicr-idem)
moreover have <t = map (ev o of-ev) t'"
by (simp add: F-P-Q(1) F-P(1))
ultimately show «(t, X) € F (P, (Ar. Q v/ R))
by (auto simp add: Seqpiick-projslof P| F-P(3))
next
case F-(Q)
from F-P-Q(3) F-Q(1, 4) have «(map (ev o of-ev) u, X) € F (Q r;, R)»
by (auto simp add: Seqpiick-projs)
with F-Q(2, 3) show «(t, X) € F (P35, (Ar. Qr3y R))
by (auto simp add: Seqpiick-projslof P] F-P-Q(1) F-Q(1))
qged
next
case F-R
from F-R(2) consider (T-P) t" r u’ where <t' = map (ev o of-ev) t"" @ u”y
a"@Q(r))eT P «Ft'"y «w' Q@ [/(s)] €T (Qr)

169

| (D-P) t" u' where «t' = map (ev o of-ev) t"” Q u’s «t" € D Py <tF t' «tF
u’
by (auto simp add: Seqpi;cx-projs append-eg-append-conv2 Cons-eg-append-conv)
(auto simp add: append-eq-map-conv front-tickFree-append-iff intro: D-P
T-P)
thus (¢, X) € F (P3y (Ar. Qr3y R))
proof cases
case T-P
with F-R(3, 4) T-P(1, 4) have «(map (ev o of-ev) v’ Q u, X) € F (Q 1,/
R)»
by (auto simp add: Seqptick-projs)
with T-P(2, 3) show «(t, X) € F (P, (Ar. Q r;s R))
by (auto simp add: Seqpiick-projsjof P] F-R(1) T-P(1))
next
case D-P
with D-P(2,3) F-R(4) have <t € D (P;, (A\r. Q r;, R))
by (simp add: Seqpiick-projs F-R(1) D-P(1))
(metis F-imp-front-tickFree front-tickFree-append tickFree-map-ev-comp)
thus «(t, X) € F (P, (Ar. Q 73, R))» by (fact is-processT8)
qed
qed
qed

7.3 Distributivity of Non-Determinism

7.3.1 Sequential Composition

lemma Seqyicr-distrib-GlobalNdet-left

Py (Ar.MacA. Qar) = (if A= {} then P, (Ar. STOP) else M acA. (P
v @ a))

by simp (auto simp add: Process-eg-spec GlobalNdet-projs STOP-projs Seqpiick-projs)

lemma Seqp;ci-distrib-GlobalNdet-right : «(M a€A. Pa) 35, Q@ =M acA. (Pasy
Q)
by (simp add: Process-eq-spec GlobalNdet-projs STOP-projs Seqpiick-projs)
(safe; simp; blast) — quicker than auto proof

lemma Seqp;cx-distrib-Ndet-left : <P, (Ar. @ r M Rr)=(P;, Q) N (P;,s R
by (fact Seqpiick-distrib-GlobalNdet-left[of P {0 :: nat, 1}
An. if n = 0 then Q else if n = 1 then R else undefined),
simplified GlobalNdet-distrib-unit-bis, simplified])

170

lemma Seqp;ck-distrib-Ndet-right : <P 1 Q 3, R= (P, R) M (Q 3, R)
by (fact Seqpiick-distrib-GlobalNdet-right[of {0 :: nat, 1}»
An. if n = 0 then P else if n = 1 then @ else undefined) R,
simplified GlobalNdet-distrib-unit-bis, simplified])

7.3.2 Synchronization Product

context Syncpiici-locale begin

lemma Syncyi;cr-distrib-GlobalNdet-left :
P [S]y MacA. Qa= (if A= {} then P [S], STOP else 1 acA. (P [S], @
a))
(is <%lhs = (if A = {} then P [S], STOP else ?rhs)»)
proof (split if-split, intro conjl impl)
show (A = {} = ?lhs = P [S], STOP»
by (simp add: GlobalNdet.abs-eq STOP.abs-eq)
next
show «?lhs = ?rhs) if <A £ {p
proof (subst Process-eq-spec-optimized, safe)
show «t € D ?lhs = t € D %rhs» for t
by (simp add: D-Syncyiicr, GlobalNdet-projs)
(metis <A # {}> ex-in-conv is-processT1-TR)
next
show «t € D %rhs = t € D ?lhs) for t
by (simp add: GlobalNdet-projs D-Syncpiick) blast
next
assume same-div : <D ?lhs = D ?rhs»
fix t X assume «(¢t, X) € F ?lhs)
with <A # {}> consider <t € D ?lhs)
| (fail) t-P t-Q X-P X-Q a where
«(t-P, X-P) € F Py ca € A «(1-Q, X-Q) € F (Q a)»
«t setinterleaves s yick_join ((¢-P, +-Q), S)
«X C super-ref-Syncpiicr tick-join X-P S X-Q»
unfolding Syncpiici-projs F-GlobalNdet by force
thus «(t, X) € F %rhs
proof cases
from same-div D-F show «t € D ?lhs = (t, X) € F %rhs» by blast
next
case fail
thus «(t, X) € F ?rhs> by (simp add: F-GlobalNdet F-Syncpiicr) blast
qed
next
show «(t, X) € F ?rhs = (t, X) € F ?lhs» for t X
by (simp add: GlobalNdet-projs F-Syncpiick <A # {}>) blast
qed
qed

lemma Syncy;cr-distrib-GlobalNdet-right :
M acA. Pal[S), Q= (if A= {} then STOP [S], Q else M acA. (P a [S],

171

Q)
(is «%lhs = (if A = {} then STOP [S], Q else ?rhs)))
proof (split if-split, intro conjl impl)
show <4 = {} = ?lhs = STOP [S], @
by (simp add: GlobalNdet.abs-eq STOP.abs-eq)
next
show «?%lhs = ?rhsy if <A # {}
proof (subst Process-eq-spec-optimized, safe)
show «t € D ?lhs = t € D ?rhs) for ¢
by (simp add: D-Syncpiick GlobalNdet-projs)
(metis <A # {}> ex-in-conv is-processT1-TR)
next
show <t € D ?rhs =t € D ?lhs) for t
by (simp add: GlobalNdet-projs D-Syncpiick) blast
next
assume same-div : <D ?lhs = D ?rhs)
fix t X assume «(¢t, X) € F ?2lhs»
with A # {}» consider <t € D ?lhs)
| (fail) t-P t-Q X-P X-@Q a where
«(t-P, X-P) € F (P a)) <a € A «(t-Q, X-Q) € F
«t setinterleaves s yick_join ((t-P, t-Q),)
<X C super-ref-Syncpiick tick-join X-P S X-Q»
unfolding Syncptici-projs F-GlobalNdet by force
thus «(t, X) € F ?rhs
proof cases
from same-div D-F show <t € D %lhs = (t, X) € F ?rhs> by blast
next
case fail
thus «(t, X) € F %rhs> by (simp add: F-GlobalNdet F-Syncpiicr) blast
qed
next
show «(t, X) € F ?rhs = (¢, X) € F ?lhs) for t X
by (simp add: GlobalNdet-projs F-Syncpiick <A # {}») blast
qed
qed

lemma (in Syncpyick-locale) Syncpiicr-GlobalNdet-cartprod:
«(M(a,b) e Ax B.(Pa[S], QD) =
(if A={} vV B={} then STOP else (Ma € A. P a) [S], (Mb € B. Qb))
by (simp add: GlobalNdet-cartprod Syncpi;ck-distrib-GlobalNdet-left
Syncpiicr-distrib-GlobalNdet-right GlobalNdet-sets-commute[of Al)

lemma Syncpiicr-distrib-Ndet-left :
P [sl, QN R = (P[], @ (PISl, R)
by (rule trans[OF trans[OF - Syncpiick-distrib-GlobalNdet-left
[of P S «{True, False}> «\b. if b then Q else R»]]])
(simp-all add: GlobalNdet-distrib-unit)

172

corollary Syncpiicr-distrib-Ndet-right :
P11 QI[S]l, R=(P[S], R) 1 (Q [S], R)
by (rule trans[OF trans[OF - Syncpiick-distrib-GlobalNdet-right
[of «{True, False}> <\b. if b then P else @» S R]]])
(simp-all add: GlobalNdet-distrib-unit)

end

173

174

Chapter 8

Communications

8.1 Step Laws

8.1.1 Sequential Composition

lemma Mprefiz-Seqpticr: <Ja € A - Pas, Q=0a€ A — (Pas, Q) (is
<?lhs = ?rhs»)
proof (rule Process-eq-optimizedl)
show «t € D ?lhs = t € D ?rhs) for t
by (cases t, auto simp add: Seqpticr-projs Mprefiz-projs image-iff Cons-eq-append-conv)
blast
next
show «t € D ?rhs = t € D ?lhs) for t
by (cases t, auto simp add: Seqptick-projs Mprefiz-projs image-iff Cons-eg-map-conv
Cons-eg-append-conv)
(metis eventpick.-disc(1) eventpiick-sel(1) tickFree-Cons-iff,
metis append-Cons eventpicy.discI(1) eventpiick.-sel(1) tickFree-Cons-iff)
next
fix t X assume «(t, X) € F %lhs) «t ¢ D ?lhs
then consider (F-P) t’ where <t = map (ev o of-ev) t»
«(t', ref-Seqprick X) € F (Ha € A — P a) <tF t)
| (F-Q) t’' r v where «t = map (ev o of-ev) t' Q@ wy «t' Q [V/(r)] € T (La € A
— Pa) <tFth «(u, X) € F (Q r)
unfolding Seqp;cx-projs by fast
thus «(t, X) € F ?rhs
proof cases
case F-P thus «(t, X) € F ?rhs
by (cases t'; simp add: Seqpiick-projs ref-Seqpiick-def Mprefiz-projs disjoint-iff
image-iff)
(metis Intl eventpicx.sel(1) rangel, metis eventpicr.sel(1))
next
case F-Q thus «(t, X) € F ?rhs»
by (cases t) (auto simp add: Seqpiick-projs Mprefiz-projs Cons-eg-append-conv)+
qed
next

175

fix ¢t X assume (¢, X) € F %rhs) <t ¢ D ?rhs)
from «(t, X) € F %rhs) consider <t = [p <X Nev ‘A= {}h
| at’ where <t = eva # th cac A «(t', X)e F(Pas, Q)
unfolding F-Mprefix by blast
thus (¢, X) € F ?%lhs
proof cases
show it =[]= XNev ‘A={} = (¢, X) € F ?%hs
by (auto simp add: Seqpiick-projs ref-Seqpiick-def F-Mprefiz)
next
fix a t’ assume <t = eva # th <a € b «(t/, X) e F(Pas, Q)
from «(t/, X) e F (Pasy Q) <t ¢ D ?rhsy <a € A <t = eva # t)
consider (F-P) t” where «t' = map (ev o of-ev) t"» «(t", ref-Seqprick X) €
F (P a) <tFt'
| (F-Q) t” r u where <t' = map (ev o of-ev) t"’ @ wy <t Q [V (r)] € T (P
a) tFt" «(u, X) € F(Qr)
by (auto simp add: Seqpticr-projs D-Mprefiz)
thus (¢, X) € F ?lhs
proof cases
case F-P thus «(t, X) € F ?lhs
by (simp add: Mprefiz-projs Seqpiicr-projs <t = ev a # t’» Cons-eg-map-conv)
(metis <a € A> eventppick-disc(1) eventpiick.sel(1) tickFree-Cons-iff)
next
case F-Q thus «(t, X) € F ?lhs)
by (simp add: Mprefiz-projs Seqpiicr-projs <t = ev a # t’» Cons-eg-map-conv
append-eq-Cons-conv)
(metis (no-types, lifting) <a € A» append-Cons comp-apply eventptcr.disc(1)
eventpick-sel(1) list.simps(9) tickFree-Cons-iff)
qed
qed
qed

8.1.2 Synchronization Product

lemma (in Syncpiicr-locale) Mprefiz-Syncpicr-Mprefiz-bis :
{Da€(AU A = Pa[S], Obe(BUB) — Qb=
(OacA — (Pa[S], Obe(BUB') — Qb)) O
(ObeB — (Hac(AU A') - Pa[S], Qb)) O
(Oze(A'N B") = (Pz [S], Q)
(is «%lhs1 [S], ?lhs2 = 2rhsl O 2rhs2 O ?rhs3»)
if sets-assms: <AN S ={h A’ CSHBNS={hH«B'CS
proof (rule Process-eg-optimizedI)
fix ¢t assume <t € D (?lhsl [S], ?lhs2)>
then obtain u v t-P t-Q
where x : <t = u Q v) (tF w «ftF v
(u setinterleaves s yick_join ((¢-P, +-Q), S)
«t-P € D ?lhsl N t-Q € T ?lhs2 V
t-P € T ?2lhsl N t-Q € D ?lhs2»
unfolding D-Syncpiicr by blast
from x(5) show «t € D (?rhsi O ?rhs2 O 9rhs3)»

176

proof (elim disjE conjE)
assume <t-P € D ?lhsly «t-Q € T ?2lhs2»
from <t-P € D ?lhsl) obtain a ¢-P’
where xx : <a € AV a€ A «(t-P = eva# t-Ph «-P' € D (P a)
unfolding D-Mprefiz by blast
from «t-Q € T ?lhs2> consider (t-Q = [|»
| bt-Q' where <b€ BV be B) «t-Q=-evb# t-Q» «t-Q' €T (Q b)
unfolding T-Mprefix by blast
thus «¢t € D (?rhst O ?rhs2 O ?rhs3)»
proof cases
assume <¢-Q = [
with x(4) obtain v’ where <a ¢ S» <u = ev a # u’
w' setinterleavesy yickjoin ((&-P', +-Q), S)
by (auto simp add: xx(2) split: if-split-asm)
moreover from <u = ev a # u’» *(2) have «tF u’y by simp
ultimately have <t € D ?rhsi»
using *(1, 3) #x(1, 8) «t-Q € T ?lhs2» <A’ C S»
by (auto simp add: simp add: D-Mprefix D-Syncpiick)
thus <t € D (?rhs1 O 2rhs2 O ?rhs3)> by (simp add: D-Det)
next
fix b 1-Q' assume **xx : (b € BV b€ B «t-Q=ev b # t-Q"» «t-Q"' € T (Q
b))
from %(2) have $: «u = ev z # u' = tF u"» for x u’ by simp
from *(4) sets-assms #x(1) #xx(1)
consider (muv-both) u’ where <a € S» <b = a)<a € A <a € Bh «<u=eva
uh
' setinterleavesy yick_join ((¢-P', +-Q), S)
| (mu-left) u’ where <a ¢ S) <a € A <u = eva # uh
w' setinterleavesy yick join ((¢-P', +-Q), S)
| (mu-right) v’ where <b ¢ S» <b € By <u = ev b # u)
' setinterleavesy ickjoin ((+-P, -Q), S)
by (auto simp add: xx(2) **x(2) disjoint-iff
split: if-split-asm)
thus <t € D (?rhs1 O 2rhs2 O 2rhs3)
proof cases
case mu-both
have <tF vy by (simp add: $ muv-both(5))
with *(3) %#(3) »xx(3) mv-both(2, 6)
have (v' @ v € D (P a [S], @ a) by (auto simp add: D-Syncpiick)
hence <t € D ?rhs3) by (simp add: D-Mprefiz *(1) muv-both(3—5))
thus «¢t € D (?rhs1 O ?rhs2 O ?rhs3)» by (simp add: D-Det)
next
case mu-left
have <tF u"» by (simp add: $ mv-left(3))
with %(3) *x(3) <t-Q € T ?lhs2> muv-left(4)
have «uv' @ v € D (P a [S], Obe(B U B') = Q b)» by (auto simp add:
D'Syncptick)
hence <t € D ?rhsi» by (simp add: D-Mprefix (1) mu-left(2, 8))
thus <t € D (%rhs1 O 2rhs2 O ?rhs3)» by (simp add: D-Det)

177

next
case mu-right
have «tF u”» by (simp add: $ mv-right(3))
with %(8) xxx(3) mu-right(4) <t-P € D ?lhs1»
have (v’ @ v € D (Hac(AU A') = Pa [S], Q b)
by (auto simp add: D-Syncpiick)
hence <t € D 9rhs2) by (simp add: D-Mprefiz *(1) mu-right(2, 3))
thus <t € D (?rhs1 O ?rhs2 O ?rhs3)> by (simp add: D-Det)
qged
qed
next
assume <t-P € T ?lhsly <t-Q € D ?2lhs2»
from «t-Q € D ?lhs2> obtain b ¢-Q’
where #x : <b € BV b€ B «t-Q =evb # t-Q" <t-Q' € D (Q b)»
unfolding D-Mprefiz by blast
from «t-P € T ?lhsl» consider «t-P = [
| a t-P’ where <a € AV a € A <t-P = eva # t-P) «t-P' € T (P a)
unfolding T-Mprefix by blast
thus «¢t € D (?rhst O ?rhs2 O ?rhs3)»
proof cases
assume <¢-P = [
with x(4) obtain u’ where <b ¢ S) <u = ev b # u’
' setinterleaves s yickjoin ((¢-P, -Q), S)
by (auto simp add: *x(2) split: if-split-asm)
moreover from «u = ev b # u’y <tF w» have «tF v’ by simp
ultimately have <t € D ?rhs2»
using *(1, 3) »x(1, 8) <t-P € T ?2lhsl» <B' C S»
by (auto simp add: simp add: D-Mprefiz D-Syncptick)
thus <t € D (?rhsl O ?rhs2 O ?rhs3)y by (simp add: D-Det)
next
fix a t-P’ assume xxx : <a € AV a € A <t-P = eva # t-P) «t-P' €T (P
a)
from (tF u» have $: «u = evz # u' = tF u"» for z u’ by simp
from *(/) sets-assms #x(1) %xx(1)
consider (muv-both) u’ where <a € S» <b = a> <a € A" <a € B
(w=eva# uh w setinterleaves yicp_join ((¢-P', t-Q"), S)
| (mov-left) u’ where <a ¢ S» <a € Ay «u = eva # uh
w' setinterleavesy yick join ((¢-P', +-Q), S)
| (muv-right) uw’ where <b ¢ S» <b € By <u = ev b # u’
w' setinterleavesy yick join ((¢-P, t-Q'),)
by (auto simp add: x(2) *xx(2) disjoint-iff split: if-split-asm)
thus <t € D (9rhs1 O ?rhs2 O ?rhs3)»
proof cases
case muv-both
have «tF u"» by (simp add: $ muv-both(5))
with #(8) #x(3) *xx(3) mv-both(2, 6)
have (v’ @ v € D (P a [S], Q a) by (auto simp add: D-Syncyiicr)
hence «t € D ?rhs3» by (simp add: D-Mprefiz (1) mv-both(3—5))
thus <t € D (?rhs1 O 2rhs2 O 9rhs3)> by (simp add: D-Det)

178

next
case mu-left
have «tF vy by (simp add: $ mv-left(3))
with %(3) sxx(3) mu-left(4) «t-Q € D ?lhs2»
have «uv' @ v € D (P a [S], Obe(B U B') = Q b)» by (auto simp add:

D'Syncptick)

hence «t € D ?rhsl» by (simp add: D-Mprefiz *(1) muv-left(2, 3))
thus «¢t € D (?rhs1 O ?rhs2 O ?rhs3)» by (simp add: D-Det)

next
case mu-right
have «tF vy by (simp add: $ mov-right(3))
with *(8) «x(3) «t-P € T ?lhsl> mu-right(4)
have (v’ @ v € D (Hac(AU A') = Pa [S], Qb))

by (auto simp add: D-Syncpiick)

hence <t € D ?rhs2) by (simp add: D-Mprefix (1) mu-right(2, 3))
thus <t € D (?rhs1 O ?rhs2 O ?rhs3)» by (simp add: D-Det)

ged

ged
qed
next

fix ¢t assume <t € D (?rhs! O ?rhs2 O 2rhs3)»
consider ¢t = []» | r-s t’ where «t = V/(r-s) # t"» | z t' where <t = ev z # t"
by (metis eventp;ck.exhaust neg-Nil-conv)
thus <t € D (%lhst [S], ?lhs2)»
proof cases
assume <t = [»
with «t € D (?rhst O ?rhs2 O ?rhs3)» have False
by (simp add: D-Det D-Mprefiz)
thus <t € D (?lhsl [S], 7Ihs2)) ..
next
fix r-s t’ assume <t = /(r-s) # t)
with «t € D (?rhst O ?rhs2 O ?rhs3)» have False
by (simp add: D-Det D-Mprefiz)
thus <t € D (?lhsl [S], 7Ihs2)) ..
next
fix z t' assume <t = ev z # t’
with <t € D (?rhst O ?rhs2 O %rhs3)> consider
(mu-left) «x € Ay <t' € D (P x [S], ?lhs2)>
| (mv-right) <z € By <t' € D (?lhsl [S], Q z)»
| (mv-both) <x € A" «x e B «t' € D (Pz[S], Qx)
by (auto simp add: D-Det D-Mprefiz)
thus <t € D (%lhs1 [S], ?lhs2)>
proof cases
case mu-left
from <z € A» <AN S ={} have «z ¢ S by blast
from mu-left(2) obtain v v t-P t-Q
where * : <t/ = u @ vy tF wy ftF v
u setinterleaves s yick_join ((¢-P, -Q), S)

179

«t-PeD (Px)ANt-Q €T ?hs2 Vv
t-P €T (Pz)At-Q € D ?lhs2»
unfolding D-Syncp¢icr by blast
have ¢ = (ev z # u) Q v) by (simp add: (1) <t = evz # t")

moreover have «tF (ev z # u)) by (simp add: x(2))
moreover from x(4) have <ev z # u setinterleaves yjcpjoin ((ev T # t-P,

t'Q)7 S)>
by (cases t-Q) (auto simp add: <z ¢ S» setinterleavingpici-simps split:

eventptck.split)
moreover from *(5) mu-left(1)
have <ev z # t-P € D ?lhsi1 N t-Q € T ?lhs2 V
eva # t-P €T ?lhsl N t-Q € D ?lhs2y by (simp add: Mprefiz-projs)

ultimately show <t € D (?lhs1 [S], ?lhs2)
using *(8) by (simp (no-asm) add: D-Syncpiick) blast

next
case mu-right
from «x € B> «<BN S = {}> have <z ¢ S» by blast
from mo-right(2) obtain u v t-P t-Q
where * : <t/ = u @ vy (tF w (ftF v
(u setinterleaves s yick_join (&P, -Q), S)
«t-P €D ?lhsl1 N t-Q €T (Qz)V
t-P €T ?lhsl N t-Q € D (Q z)»
unfolding D-Syncpticr by blast
have «t = (ev z # u) Q v» by (simp add: *(1) <t = evx # t")

moreover have (tF (ev z # u)» by (simp add: *(2))
moreover from x(4) have <ev x # u setinterleaves s ok join ((t-P, ev z #

t'Q)7 S>>
by (cases t-P) (auto simp add: <x ¢ S» setinterleavingpi;cx-simps split:

eventpt;ck-split)
moreover from *(5) mu-right(1)

have «(t-P € D ?lhsl N evz # t-Q € T ?lhs2 V
t-P €T ?lhsl A evz # t-Q € D ?2lhs2) by (simp add: Mprefiz-projs)

ultimately show <t € D (?lhs1 [S], ?lhs2)
using #(3) by (simp (no-asm) add: D-Syncpiick) blast

next

case mu-both
from <z € A <A’ C S) have (z € S by blast

from mv-both(3) obtain v v t-P t-Q
where * : <t' = 4 Q vy (tF w (ftF v
(u setinterleaves yick_join (&P, -Q), S)
#-PeDPzx)ANt-QeT (Qzx)V
tPeT (Pa)AtQeD(Qa)

unfolding D-Syncpticr by blast
have «t = (ev z # u) @ v» by (simp add: *(1) <t = evz # t")

moreover have «tF (ev z # u)) by (simp add: x(2))
moreover from x(4) have <ev © # u setinterleavesy ok join ((ev z # t-P,

evz # -Q),)
by (auto simp add: <x € S»)

moreover from *(5) mv-both(1, 2)

180

have <evz # t-P € D ?lhsl Nevz # t-Q € T ?lhs2 V
evr # t-P €T ?lhsl A evz # t-Q € D ?lhs2y by (simp add: Mprefix-projs)
ultimately show <t € D (?lhst [S], ?Ihs2)
using *(3) by (simp (no-asm) add: D-Syncpticr) blast
qed
qed
next

fix t X assume «(t, X) € F (%hsl [S], ?hs2)> <t ¢ D (?lhs1 [S], ?lhs2)
then obtain t-P t-QQ X-P X-Q
where fail : «(t-P, X-P) € F ?lhsl» «(t-Q, X-Q) € F ?lhs2)
«t setinterleaves s yick-join ((t-P, +-Q), S)
«X C super-ref-Syncpiick tick-join X-P S X-Q»
unfolding Syncpi;cr-projs by blast
consider «t = [» | s t' where «t = V/(r-s) # t» | a t’ where <t = ev a # t)
by (metis eventy;ci.ezhaust neg-Nil-conv)
thus «(t, X) € F (?rhst O ?rhs2 O ?rhs3)»
proof cases
assume <t = [
with Nil-setinterleavespicr fail(8) have «t-P = [y <¢t-Q = []> by blast+
with fail(1, 2) have «<X-PNev ‘(AU A) ={h «X-Qnev‘(BUB)={p
by (simp-all add: F-Mprefix)
with fail(4) <AN S ={}h BN S ={}p show «(t, X) € F (?rhs1 O ?rhs2 O
?rhs3)»
by (simp add: <t = []» Det-projs Mprefiz-projs super-ref-Syncpi;ck-def)
(use eventptick.distinct(1) in blast)
next
fix r-s t’ assume <t = /(1-s) # t)
hence <t = [V (r-s)]»
by (metis F-imp-front-tickFree «(t, X) € F (?lhsl [S], ?Ihs2)>
eventpiick-disc(2) front-tickFree- Cons-iff)
with fail(3) obtain r s where <tick-join r s = Some r-s
by (auto elim: Cons-tick-setinterleavesyiciE)
from <t = [V (r-s)]> fail(8) <tick-join r s = Some r-s
have «t-P = [/ (r)]»
by (auto dest: inj-tick-join Nil-setinterleavespyicy
elim: Cons-tick-setinterleavesytick E)
with fail(1) <t = [V (r-s)]> have Fualse by (simp add: F-Mprefiz)
thus (¢, X) € F (9rhs1 O 2rhs2 O 2rhs3)s ..
next
fix a t’ assume <t = ev a # t
from fail(1—3) sets-assms consider
(muv-left) t-P’ where
<a ¢ Sy <a€ A t-P=eva# t-Ph«(t-P', X-P) € F (P a)
«t! setinterleaves s yick_join ((¢-P', 1-Q), S)
| (mv-right) t-Q’ where
<a ¢ S)<a€ B t-Q=eva#t-Q" «(t-Q', X-Q) € F (Q a)
«t’ setinterleaves s yick_join (P, +-Q), S)
| (mu-both) t-P' t-Q' where

181

ca € Sy<a€ A <a € By (t-P = eva # t-P) <t-Q = ev a # t-Q"
(t-P', X-P) € F (P a) «(+-Q', X-Q) € F (Q a)» <t’ setinterleaves yickjoin
(&P, +-Q), S)
by (unfold <t = ev a # t’, elim Cons-ev-setinterleavespickE)
(simp-all add: F-Mprefiz subset-iff disjoint-iff, blast+)
thus «(t, X) € F (%rhst O 9rhs2 O ?rhs3)»
proof cases
case mu-left
with fail(2, /) have «(t, X) € F 2rhsl)
by (subst F-Mprefiz) (auto simp add: F-Syncpiick <t = ev a # t")
thus «(t, X) € F (?rhst O 9rhs2 O ?rhs3)»
by (simp add: F-Det <t = ev a # t")
next
case mu-right
with fail(1, /) have «(t, X) € F ?rhs2)
by (subst F-Mprefiz) (auto simp add: F-Syncpiicr <t = ev a # t)
thus «(t, X) € F (%rhst O 9rhs2 O ?rhs3)»
by (simp add: F-Det <t = ev a # t")
next
case mu-both
with fail(4) have «(t, X) € F ?rhs3»
by (auto simp add: F-Mprefix F-Syncpiicr <t = ev a # t)
thus «(t, X) € F (?rhs1 O ?rhs2 O ?rhs8)»
by (simp add: F-Det <t = ev a # t")
qed
qed
next

fix ¢ X assume «(¢, X) € F (?rhs1 O ?rhs2 O 2rhs3)»
<t ¢ D (2rhs1 O ?rhs2 O ?rhs3)»
consider <t = [| r-s t' where «t = V/(r-s) # t"» | a t’ where <t = ev a # t)
by (metis eventptck.exhaust neg-Nil-conv)
thus «(¢t, X) € F (%lhs1 [S], ?lhs2)
proof cases
define X-P where <X-P = {evala. evace X Na€ — (AU A)} U
{V/(r) |r-s r s. tick-join r s = Some -8 A V/(1-s) € X}
define X-Q where «<X-Q = {evb |b.evbe X Nbe — (BUB)} U
{V/(s) |r-s T s. tick-join r s = Some r-s A\ /(r-s) € X}
assume (¢ = []»
with «(¢t, X) € F (9rhst O ?rhs2 O 2rhs3)»
have (X Nev‘A={}AXnNnev ‘B={}AXnNev ‘(A NB)={p
unfolding Det-projs F-Mprefix by auto
with sets-assms(2, 4) have <X C super-ref-Syncptick tick-join X-P S X-Q»
by (sitmp add: super-ref-Syncpticr-def X-P-def X-Q-def
subset-iff disjoint-iff image-iff)
(metis Intl eventpick.ezhaust)
moreover have «([|, X-P) € F ?lhs1» by (auto simp add: F-Mprefiz X-P-def)
moreover have (([], X-Q) € F ?lhs2) by (auto simp add: F-Mprefiz X-Q-def)
ultimately show «(t, X) € F (?lhs1 [S], ?Ihs2)>

182

by (simp add: <t = [|» F-Syncpiick) (use Nil-setinterleavingy;c,-Nil in blast)
next
fix r-s t’ assume <t = /(1-s) # t)
with «(¢, X) € F (9rhst O %rhs2 O 2rhs3)»
have Fualse by (simp add: F-Det F-Mprefiz)
thus (¢, X) € F (%lhst [S], ?lhs2)> ..
next
fix z t’ assume ¢t = evz # t)
with «(¢t, X) € F (?rhst O ?rhs2 O 2rhs3)»
consider (muv-left) <z € A «(t', X) € F (P z [S], ?hs2)
| (mu-right) <z € By «(t', X) € F (?lhsl [S], Q z)»
| (mw-both) <z € A" «x € B «(t', X) e F (Pz[S], Q)
unfolding F-Det F-Mprefix by auto
thus (¢, X) € F (%lhs1 [S], ?lhs2)
proof cases
case mu-left
from muv-left(2) consider <t € D (P z [S], ?lhs2)
| (fail) t-P t-Q X-P X-@ where
«(t-P, X-P) € F (P) «(+-Q, X-Q) € F ?lhs2»
«t’ setinterleaves s yickjoin (P, +-Q), S)
«X C super-ref-Syncpick, tick-join X-P S X-@Q»
unfolding Syncpticr-projs by blast
thus «(¢t, X) € F (%lhs1 [S], ?lhs2)
proof cases
assume <t’' € D (P z [S], ?lhs2)>
hence «t € D (?rhst O ?rhs2 O 2rhs3)»
by (simp add: D-Det D-Mprefix <t = ev x # t"» mu-left(1))
with <¢ ¢ D (9rhsl O ?rhs2 O ?rhs8)> have Fulse ..
thus «(¢t, X) € F (%lhs1 [S], ?lhs2)> ..
next
case fail
have «(ev z # t-P, X-P) € F ?lhsl»
by (simp add: F-Mprefiz fail(1) mov-left(1))
moreover from <t = ev z # t" fail(3) mu-left(1) <AN S ={p
have «t setinterleaves s yick_join ((ev @ # t-P, +-Q), S)
by (cases t-Q) (auto simp add: setinterleavingp;cr-simps split: eventyi;cx.split)
ultimately show «(t, X) € F (?lhsl [S], ?Ihs2)>
using fail(2, 4) by (auto simp add: F-Syncptick)
qed
next
case mu-right
from mo-right(2) consider <t’ € D (?lhsl [S], @ z)
| (fail) t-P t-Q X-P X-@Q where
«(t-P, X-P) € F ?lhsl) «(t-Q, X-Q) € F (Q z)»
«t’ setinterleaves s yick_join ((¢-P, +-Q), S)
«X C super-ref-Syncpick tick-join X-P S X-@Q»
unfolding Syncytcr-projs by blast
thus «(¢, X) € F (%lhs1 [S], ?lhs2)»
proof cases

183

assume <t’' € D (?lhst [S], Q z)»
hence <t € D (?rhst O %rhs2 O 2rhs3)»
by (simp add: D-Det D-Mprefiz <t = ev x # t'» mu-right(1))
with «t ¢ D (?rhs1 O ?rhs2 O %rhs3)» have Fualse ..
thus «(¢t, X) € F (%lhs1 [S], ?lhs2)> ..
next
case fail
have ((ev z # t-Q, X-Q) € F ?lhs2»
by (simp add: F-Mprefiz fail(2) mv-right(1))
moreover from <t = ev z # t fail(3) mv-right(1) «<BN S = {}p
have <t setinterleaves yicp_join ((t-P, ev z # t-Q), S)
by (cases t-P) (auto simp add: setinterleavingpi;ck-simps split: eventyy;cr.split)
ultimately show «(¢, X) € F (%lhst [S], ?lhs2)»
using fail(1, 4) by (auto simp add: F-Syncptick)
qed
next
case mv-both
from muv-both(3) consider <t € D (P z [S], Q z)
| (fail) t-P t-Q X-P X-@Q where
«(t-P, X-P) € F (P x)» «(t+-Q, X-Q) € F (Q z)»
«t’ setinterleaves s ick_join ((t-P, 1-Q), S)» <X C super-ref-Syncpick tick-join
X-P S X-Q»
unfolding Syncyticr-projs by blast
thus (¢, X) € F (%lhs1 [S], ?lhs2)
proof cases
assume «t' € D (P z [S], Q z)
hence «t € D (?rhst O ?rhs2 O 2rhs3)»
by (simp add: D-Det D-Mprefiz <t = ev x # t'» mv-both(1, 2))
with <¢ ¢ D (?rhsl O ?rhs2 O ?rhs8)> have Fualse ..
thus (¢, X) € F (%lhs1 [S], ?lhs2)) ..
next
case fail
have «(ev z # t-P, X-P) € F ?lhs1»
by (simp add: F-Mprefix fail(1) mv-both(1))
moreover have ((ev z # t-Q, X-Q) € F ?2lhs2»
by (simp add: F-Mprefix fail(2) mv-both(2))
moreover from <t = ev z # t" fail(3) mv-both(1) <A’ C S»
have < setinterleaves s jckjoin ((ev @ # -P, ev z # t-Q), §)» by auto
ultimately show «(t, X) € F (?lhs1 [S], ?Ihs2)»
using fail(4) by (simp (no-asm) add: F-Syncpick) blast
qged
qed
qed
qed

corollary (in Syncpiicr-locale) Mprefiz-Syncyiicr-Mprefiz:
— This version is easier to use.
(OacA — Pa [S], 0ObeB - Qb=

184

(Bac(A4 - S) = (Pa[S], ObeB - Qb)) O
(Obe(B — S) — (HacA - Pa [S], Qb)) O
(Oze(ANBNS)—= (Pz[Sly Q)
by (subst Mprefiz-Syncpicr-Mprefiz-bis
[of <A — 8y S AN S «B— 5 «BN S, simplified Un-Diff-Int])
(simp-all add: Int-commute inf-left-commute)

corollary (in Syncpiick-locale) Mprefix-Syncyi;cr-Mprefiz-for-procomata:
— Specialized version for Proc-Omata.
(OacA — Pa [S], 0beB - Qb=
(Oac(A — S — B) = (Pa[S], ObeB — Q)
(Obe(B -8 — A) = (HacA — Pa [S], QD)
(Bze(ANB—-85) = (Pz[S],0ObeB — Qb)
(Oze(ANBNS) = (Pz[S], Q)
proof —
have x:<«{dJac(A — S) = (P a [S], ObeB — Q b) =
(Oac(A - S — B) = (Pa[S], 0ObeB — Qb)) O
(Oac(AN B —-8) = (Pal[S],0beB - Qb))
by (metis Diff-Int2 Diff-Int-distrib2 Mprefiz-Un-distrib Un-Diff-Int)
have xx : <0be(B — S) — (Oacd - Pa [S], Qb) =
(Obe(B—- S — A) - (HacA — Pa [S], QD)) O
(Obe(ANB—-8) = (HacA = Pa[S], QD))
by (metis (no-types) Int-Diff Int-commute Mprefiz-Un-distrib Un-Diff-Int)
have «JacA — Pa [S], ObeB — Qb =
(Oac(A — S — B) = (P a[S], ObeB — QD))
(Obe(B— S — A) = (HacAd — Pa [S], QD))
(Oae(ANB—-S) = (PalS],0beB = QD))
(Obe(ANB - 8) = (HacA = Pa[S], QD))
(Oze(ANBNS) = (Pz[S], Q)
unfolding Mprefiz-Syncpiici-Mprefix
by (auto simp add: xx Det-assoc intro!: arg-cong[where f = <AP. P O -3])
(subst (8) Det-commute, subst Det-assoc,
auto simp add: * Det-commute intro: arg-cong[where f = «(A\P. P O -])
also have ((Hdac(AN B - S) = (Pa[S], ObeB = Qb)) 0O
(Obe(ANB—-8)— (OacAd - Pa[S], Qb)) =
Oze(ANB—-S8) = (Pz[S],0beB — Qb)) N (OacA — Pa[S],

) O
) O
N (Oecd - Pa[S], Q) O

(]
t
|
O

Q x)»
by (simp add: Mprefiz-Det-Mprefix, rule mono-Mprefiz-eq, simp)

finally show ?thesis .
qed

unbundle option-type-syntax

185

8.2 Extended step Laws

8.2.1 Sequential Composition

lemma Mndetprefiz-Seqptick: <la € A = Pas, Q=MNa € A— (Paj, Q)
by (auto simp add: Mndetprefiz-GlobalNdet Seqpy;cr-distrib-GlobalNdet-right
write0-def Mprefiz-Seqpiick intro: mono-GlobalNdet-eq)

8.2.2 Synchronization Product

Behaviour of SKIPS

lemma (in Syncyiick-locale) SKIPS-Syncpyicr-SKIPS :
«(SKIPS R [A] , SKIPS S = N(r, s) € R x S. (case 7 @V s of |r-s| = SKIP
r-s | O = STOP)»
by (simp add: SKIPS-def Syncpyicr-distrib-GlobalNdet-left Syncpyicr-distrib-GlobalNdet-right)
(simp add: GlobalNdet-cartprod[of R S <Ars. case v @V s of & = STOP | |r-s]
= SKIP r-s]
GlobalNdet-sets-commute[of R S <Ar s. case r @/ s of O = STOP | |r-s| =
SKIP r-])

In order for the right-hand side to be rewritten as a SKIPS, an assumption
is required: the ticks involved must be able to be combined.

lemma GlobalNdet-prod-SKIP-is-SKIPS :
(r, s) € R x §. SKIP [tick-join r s] =
SKIPS ((the o (A(r, s). tick-join r s)) ‘(R x S))
by (simp add: SKIPS-def mono-GlobalNdet-eq2 split-def)

lemma GlobalNdet-prod-case-SKIP-STOP-is-GlobalNdet-prod-SKIP-iff :
(r, s) € R x S. (case tick-join r s of O = STOP | |r-s| = SKIP r-s) =
M(r, s) € R x S. SKIP [tick-join r s]
«— (Vrs.re R— s€ S — tick-joinr s # O)»
(is < %lhsl = ?lhs2 <— ?rhs»)
proof (rule iffT)
show «?rhs = %lhsl = ?lhs2»
by (force intro: mono-GlobalNdet-eq)
next
have (UNIV € R ?lhs2 +— R={}Vv S ={}
by (simp add: Refusals-iff F-GlobalNdet F-SKIP)
moreover have <UNIV € R ?lhsl «+— R={}v S={} Vv (3rs.re RAs
€ S A tick-join r s = Q)
by (auto simp add: Refusals-iff F-GlobalNdet F-SKIP F-STOP split: option.split)
ultimately show < %lhsl = ?lhs2 = ?rhs» by (metis empty-iff)
qed

lemma (in Syncyicr-locale) SKIPS-Syncpyicr-SKIPS-bis :
«(SKIPS R [A], SKIPS S = SKIPS ((the o (A(r, s). 7 @/ s)) ‘(R x S))
if (A\rs.Tr€e R=s€S=rav s#®»
by (unfold SKIPS-Syncpiicr-SKIPS, fold GlobalNdet-prod-SKIP-is-SKIPS)

186

(simp add: SKIPS-Syncpyicr-SKIPS GlobalNdet-prod-case-SKIP-STOP-is-GlobalNdet-prod-SKIP-iff
that)

lemma (in Syncpiicr-locale)
SKIPS-Syncptick-STOP [simp] : <SKIPS R [A] , STOP = STOP»
and STOP-Syncpick-SKIPS [simp] : «STOP [A] , SKIPS S = STOP»
by (fact SKIPS-Syncpiicr-SKIPS[where S = «({}>, simplified]
SKIPS-Syncpiicr-SKIPS[where R = «({}», simplified])+

Derived step Laws with Non-Determinism

context Syncpiici-locale begin

lemma Mprefiz-Interps;cr-Mprefiz :
(OacAd = Palll, 0beB = Qb=
(Oacd — (P alll, ObeB — Qb)) O (0beB — (Hac A— Palll, Qb))
by (fact Mprefiz-Syncpicr-Mpreficr[where S = «({}», simplified])

lemma Mprefiz-Parpicr,-Mprefiz : «<OacA — Pa ||, ObeB — Q b = Oze(4A N
B) = (Pzll, Q)
by (fact Mprefiz-Syncpiicr-Mprefixjwhere S = «UNIV», simplified))

lemma Mprefiz-Syncpyiicr-Mprefiz-subset :

(AC S; BC S| = 0acAd - Pa[S], 0B —- Qb =0ze(AN B) — (P
z [S], Qx)

by (fact Mprefiz-Syncpiicr-Mprefiz-bis[of «{}» S A «{}» B, simplified])

lemma Mprefiz-Syncyiicr-Mprefiz-indep :
AN S={s5BnS={}]] =
OacA — Pa [S], ObeB — Q b=
(BacA — (P a [S], ObeB — Qb)) O (beB — (HacA — Pa [S], Q b))
by (fact Mprefiz-Syncpiicr-Mprefiz-bisjof A S «({}> B {}», simplified])

lemma Mprefiz-Syncpyiicr-Mprefiz-left

AN S={}; BCS] = 0UacAd - Pa[S],0beB - Qb=0acA = (Pa
[S], ObeB — Q b)»

by (fact Mprefiz-Syncpiicr-Mprefiz-bisjof A S «({}> «{}» B, simplified])

lemma Mprefiz-Syncpiicr-Mprefiz-right

JAC S; BN S ={}] = 0acAd - Pa[S],0beB— Qb=0beB — (HacA
— Pal[S], Qb))

by (fact Mprefiz-Syncpiicr-Mprefiz-bis[of «({}» S A B ({}», simplified])

lemma Mprefiz-Syncptick-STOP : <Oa € A — P a [S], STOP = Oa € (A - S)
— (P a[S], STOP),
by (subst Mprefiz-empty[symmetric], subst Mprefiz-Syncpicr-Mprefic, simp)

187

lemma STOP-Syncpicr-Mprefiz : <STOP [S],0be B— Qb=0be (B - 5)
— (STOP [S], @Q b)

by (subst Mprefiz-empty[symmetric|, subst Mprefiz-Syncpt;cr-Mprefiz, simp)

Mixing deterministic and non deterministic prefix choices lemma
Mndetprefiz-Syncpticr-Mprefix
(Ma€ A— Pa)[S], (Obe B— Qb) =
(if A={} then STOP [S], (Bbe€ B — Qb)
else MacA. (if a € S then STOP else (a — (P a [S], (Obe B — Qb)) O
(Obe(B—-8S) = ((a— Pa)[S]l, Qb)) O
(ifa € BN Sthen (a = (P a [S], Q a)) else STOP))»
unfolding Mndetprefiz-GlobalNdet Syncpy;cr-distrib-GlobalNdet-right
write0-def Mprefiz-Syncpiicr-Mprefiz
by (auto simp add: Mprefiz-singl insert-Diff-if Int-insert-left
intro: mono-GlobalNdet-eq arg-cong2[where f = «(O)»])

lemma Mprefiz-Syncyticr-Mndetprefiz
(OacA— Pa)[S], Mbe B—= Qb) =
(if B={} then (Oa € A — P a) [S], STOP
else MbeB. (if b € S then STOP else (b — (Ha € A — Pa) [S], QD)) O
(Oac(A - S) = (Pa[S], (b= QV)) O
(ifbe AN Sthen (b — (Pb[S], QD)) else STOP))»
unfolding Mndetprefiz-GlobalNdet Syncpy;ck-distrib-GlobalNdet-left
write0-def Mprefiz-Syncpiicr-Mprefiz
by (subst Det-commute)
(auto simp add: Diff-triv Mprefiz-singl Mprefiz-is-STOP-iff disjoint-iff
introl: mono-GlobalNdet-eq arg-cong2[where f = «(O)] split: if-split-asm)

In particular, we can obtain the theorem for Mndetprefir synchronized with
STOP.

lemma Mndetprefiz-Syncpiicr-STOP :
«(MNa € A — Pa)lS], STOP =
(ifAnS={}thenTaec A— (Pal[S], STOP)
else (MNa € (A —S) = (Pa[S], STOP)) 1 STOP),
(is <?lhs = (if AN S = {} then ?rhsl else ?rhs2 M STOP)»)
proof —
have ((Ma € A — P a) [S], STOP =
Na€A. (if a € S then STOP else (a — (P a [S], STOP)))> (is «?lhs =
2rhs’y)
by (subst Mndetprefiz-Syncpiick-Mprefiz[where B = «({}», simplified])
(auto intro: mono-GlobalNdet-eq)
also have «?rhs’ = (if AN S = {} then ?rhsl else ?rhs2 M STOP))
proof (split if-split, intro conjl impl)
show <A N S = {} = %rhs’ = ?rhsl»

by (auto simp add: Mndetprefiz-GlobalNdet intro!: mono-GlobalNdet-eq)
next

show «?rhs’ = ?rhs2 M STOP» if <AN S # {b
proof (cases <A — S = {})
show «%rhs’ = 2rhs2 1 STOP» if <A — S = {}

188

by (simp add: <A — S = {}» GlobalNdet-is-STOP-iff)
(use <A — S ={} in blast)
next
show < 2rhs’ = 2rhs2 M STOP» if <A — S # {}
proof (subst Int-Diff-Un[symmetric],
subst GlobalNdet-factorization-union
[OF < AN S #{} <A =S #{}, symmetric])
have ((Mac(A N S). (if a € S then STOP else (a — (P a [S], STOP))))
= STOP> (is «?factl = STOP»)
by (simp add: GlobalNdet-is-STOP-iff)
moreover have «(Mac(A — S5). (if a € S then STOP else (a — (P a [S],
STOP)))
= 2rhs2> (is < ?fact?2 = ?rhs2»)
by (auto simp add: Mndetprefiz-GlobalNdet intro: mono-GlobalNdet-eq)
ultimately show < ?fact! M ?fact2 = ?rhs2 N STOP> by (metis Ndet-commute)
qed
ged
qed
finally show <?lhs = (if AN S = {} then ?rhsl else ?rhs2 M STOP)» .
qed

lemma STOP-Syncptick-Mndetprefix
«(STOP [S], (Mbe B— Qb) =
(ifBNS={}thenib e B— (STOP [S], Q)
else (Mb € (B — S) — (STOP [S], Q b)) M STOP)>
(is «?lhs = (if BN S = {} then ?rhsl else ?rhs2 1 STOP)»)
proof —
have «(STOP [S], (Mbe B — Q b) =
nveB. (if b € S then STOP else (b — (STOP [S], @ b)) (is <?lhs =
?rhs’y)
by (subst Mprefiz-Syncpiicr-Mndetprefic[where A = «{}», simplified])
(auto intro: mono-GlobalNdet-eq)
also have «?rhs’ = (if BN S = {} then ?rhsl else ?rhs2 M STOP)»
proof (split if-split, intro conjl impl)
show «B N S = {} = ?rhs’ = rhsl»
by (auto simp add: Mndetprefiz-GlobalNdet intro!: mono-GlobalNdet-eq)
next
show «?rhs’ = 2rhs2 M STOP» if <BN S # {}
proof (cases <B — S = {})
show «?rhs’ = %rhs2 M STOP» if «B — S = {}
by (simp add: <B — S = {}» GlobalNdet-is-STOP-iff)
(use «<B — S = {}» in blast)
next
show «?rhs’ = ?rhs2 M STOP» if «<B — S # {}
proof (subst Int-Diff-Un[symmetric],
subst GlobalNdet-factorization-union
[OF <BN S #{}h «B — 8§ # {}, symmetric])
have «(Mbe(B N S). (if b € S then STOP else (b — (STOP [S], Q b))))
= STOP> (is «?factl = STOP»)

189

by (simp add: GlobalNdet-is-STOP-iff)
moreover have «(Mbe(B — 5). (if b € S then STOP else (b — (STOP

181, Qb))
= %rhs2» (is < %fact2 = ?rhs2»)
by (auto simp add: Mndetprefiz-GlobalNdet intro: mono-GlobalNdet-eq)
ultimately show « ?fact! M ?fact2 = ?rhs2 M STOP» by (metis Ndet-commute)
qged
qed
qed
finally show <?2lhs = (if BN S = {} then ?rhsl else ?rhs2 1 STOP) .
qed

corollary Mndetprefiz-Syncyiicr-Mprefiz-subset :
(Ma€e A— Pa)[S], (Obe B— Qb) =
(ifAC BthenNae A— (Pal[S], Qa)
else (Ma € (AN B) = (PalS], Qa)) 1 STOP),
(is «?lhs = (if A C B then ?rhsi else ?rhs2)y) if <A C $H» «B C S
proof (cases <A = {})
show A = {} = ?%lhs = (if A C B then ?rhsl else ?rhs2)»
by (simp add: Mprefiz-is-STOP-iff STOP-Syncyiici-Mprefiz «<B C S)
next
from <A C Sy have *:¢a € A = a € S for a by blast
from <BC S have xx : «<B— S={ph be BAbe S+« bec B for b by
auto
assume <4 # {}p
have «?lhs = Ma€A. (if a € B then (a — (P a [S], Q a)) else STOP) (is «?lhs
= %rhs’)
by (auto simp add: Mndetprefiz-Syncpiicr-Mprefic * xx <A # {}» intro: mono-GlobalNdet-eq)
also have «?rhs’ = (if A C B then ?rhsl else ?rhs2)»
proof (split if-split, intro conjl impl)
show (A C B = ?rhs’ = NacAd — (P a [S], Q a)
by (auto simp add: Mndetprefiz-GlobalNdet intro!: mono-GlobalNdet-eq)
next
show «?rhs’ = (Mac(A N B) = (P a [S], Q a)) N STOP» if <= A C B
proof (cases <A N B = {})
show (AN B = {} = %hs’' = (Mac(AN B) = (Pal[S], Qa)) 1 STOP»
by (auto simp add: GlobalNdet-is-STOP-iff)
next
assume <A N B # {}p
from (= A C B> have <A — B # {}> by blast
show «?rhs’ = (Ma€(A N B) = (P a [S], Q a)) N STOP»
by (auto simp add: Mndetprefiz-GlobalNdet GlobalNdet-is-STOP-iff
simp flip: GlobalNdet-factorization-union
[OF <AnN B # {}» <A — B # {}», unfolded Int-Diff-Un)]
intro!: arg-cong2[where f = «(M)>] mono-GlobalNdet-eq)
qed
qed
finally show < ?lhs = (if A C B then ?rhsl else ?rhs2)» by simp

190

qged

corollary Mprefiz-Syncpicr-Mndetprefiz-subset :
OaecA—PalS]yMbeB— Qb=
(ifBC Athenibe B— (Pb[S], Q)
else (Mbe (AN B) — (Pb[S], Qb)) N STOP)
(is «<%lhs = (if B C A then ?rhsl else ?rhs2)) if <A C S» «<BC S
proof (cases «<B = {}»)
show «B = {} = %lhs = (if B C A then ?rhsl else ?rhs2))
by (simp add: Mprefiz-is-STOP-iff Mprefiz-Syncpiick-STOP <A C)
next
from <B C S have x:<b € B=—= b e §S» for b by blast
from <A C S> have xx : <A — S={p € ANac S+ ac A for a by
auto
assume B # {}
have (?lhs = MbeB. (if b € A then (b — (P b [S], Q b)) else STOP)) (is «?lhs
= ?rhs")
by (auto simp add: Mprefiz-Syncpicr-Mndetprefiz * xx «B # {}> intro: mono-GlobalNdet-eq)
also have «?rhs’ = (if B C A then ?rhsl else ?rhs2))
proof (split if-split, intro conjl impl)
show (B C A = ?rhs’ =nbeB — (P b [S], Q b)»
by (auto simp add: Mndetprefiz-GlobalNdet intro!: mono-GlobalNdet-eq)
next
show «?rhs’ = (Mac(A N B) = (P a [S], Q a)) N STOP) if <-= B C A»
proof (cases <A N B = {})
show (AN B ={} = %hs’' = (Mac(AN B) = (Pal[S], Qa)) 1 STOP»
by (auto simp add: GlobalNdet-is-STOP-iff)
next
assume <A N B # {}p
hence <B N A # {}» by blast
from «— B C A) have <B — A # {}» by blast
show «?rhs’ = (Mac(A N B) = (P a [S], Q a)) N STOP»
by (auto simp add: Mndetprefiz-GlobalNdet GlobalNdet-is-STOP-iff
simp flip: Int-commute GlobalNdet-factorization-union
[OF <BN A # {} «B — A#{}, unfolded Int-Diff-Un|
introl: arg-cong2|[where f = «(M)»] mono-GlobalNdet-eq)
qed
qed
finally show «?lhs = (if B C A then ?rhsl else ?rhs2)y by simp
qed

corollary Mndetprefiz-Syncyticr-Mprefiz-indep :
(Ma€ A— Pa)[S], (Obe B— Qb) =
(if A={} then ObeB — (STOP [S], Q b)
else Ma€A. (a = (Pa [S], (Obe B— Qb)) O
(8beB — ((a — P a) [S], Q1))

191

ifiAnS={pand BN S ={p
proof (cases <A = {}»)
show <A = {} = ?Zthesis»
by (simp add: Diff-triv STOP-Syncpicr-Mprefic <B N S = {})
next
from that(1) have x: < € A = a ¢ S for a by blast
from that(2) have ** : <B — S = B) by blast
show %thesis if <A # {}
by (simp add: Mndetprefiz-Syncpiicr-Mprefic <A # {})
(rule mono-GlobalNdet-eq, simp add: x %x)
qed

corollary Mprefiz-Syncpyiicr-Mndetprefiz-indep :
(OacA— Pa)[S], Mbe B—= Qb) =
(ifB={}thenOac A — (Pal[S], STOP)
else MbeB. (b - ((Hae€ A — Pa) [S], Qb)) O
(OacA — (Pa[S], (b— Qb))
if<AnS={pBnS={p
proof (cases «<B = {}»)
show (B = {} = %thesis
by (simp add: Diff-triv Mprefiz-Syncprick-STOP <A NS = {})
next
from that(2) have x:<b € B= b ¢ S» for b by blast
from that(1) have #x : <A — § = A by blast
show %thesis if «<B # {}»
by (simp add: Mprefiz-Syncpiicr.-Mndetprefiz <B # {}»)
(rule mono-GlobalNdet-eq, simp add: x *x)
qed

corollary Mndetprefiz-Syncpticr-Mprefiz-left :
(Mae A— Pa)[S], (Obe B— Qb) =
(if A= {} then STOP [S], (Ob e B — Qb)
else MacA — (P a [S], (Obe B— Qb))
if<AnS={pand «BC S
proof (cases <A = {})
show <A = {} = ?thesis) by simp
next
from that(1) have *:<a € A = a ¢ S) for a by blast
from that(2) have xx:<«B — S = {}» by blast
show %thesis if <A # {}
by (simp add: Mndetprefiz-Syncyiicr-Mprefic <A # {}», unfold Mndetpre-
fiz-GlobalNdet)
(rule mono-GlobalNdet-eq, simp add: x *x)
qed

corollary Mndetprefiz-Syncpeici-Mprefiz-right :

(Mae A— Pa)[S], (Obe B— Qb) =
(if A= {} then STOP [S], (Ob e B— Qb)

192

else JbeB — ((MacA — P a) [S], Q b))
if <AC S»and BN S ={p
proof (cases <A = {})
show (A = {} = ?%thesis» by simp
next
from that(1) have *:<a € A= a € S) for a by blast
from that(2) have xx:<(B — S = B by blast
show %thesis if <A # {}
by (simp add: Mndetprefiz-Syncpiicr-Mprefiz <A # {},
simp add: Mndetprefiz-GlobalNdet Syncpyicr-distrib-GlobalNdet-right <A #
i

flip: GlobalNdet-Mprefiz-distr)
(rule mono-GlobalNdet-eq, use * ** in auto)
qed

corollary Mprefiz-Syncpyiicr-Mndetprefiz-left :
(Jae€A— Pa)[S], (Mbe B— Qb) =
(if B=1{} then (Ha € A — Pa)[S], STOP
else JacA — (P a [S], (Mbe B — Qb))
if<AnS={p«BCS
proof (cases <B = {}»)
show (B = {} = ?%thesis» by simp
next
from that(2) have x*:<b€ B = b e S for b by blast
from that(1) have *x: (A — S = A by blast
show ?thesis if <B # {}»
by (simp add: Mprefiz-Syncpicr-Mndetprefiz «<B # {}»,
simp add: Mndetprefiz-GlobalNdet Syncyi;ck-distrib-GlobalNdet-left «B # {}»
flip: GlobalNdet-Mprefiz-distr)
(rule mono-GlobalNdet-eq, use * *x in auto)
qed

corollary Mprefiz-Syncpyticr-Mndetprefiz-right :
(Jae€A— Pa)[S]y, (Mbe B— Qb) =
(if B=1{} then (Ha € A — Pa) [S], STOP
else MbeB — ((Oa € A — Pa) [S], Qb))
if<AC S <BNS={h
proof (cases <B = {}»)
show «B = {} = %thesis) by simp
next
from that(2) have x*:<b€ B= b ¢ S for b by blast
from that(1) have x*x:<A — S = {}» by blast
show ?Zthesis if «(B # {}
by (simp add: Mprefiz-Syncpicr-Mndetprefiz «<B # {}»,
unfold Mndetprefix-GlobalNdet)
(rule mono-GlobalNdet-eq, simp add: * *x)
qed

193

corollary Mndetprefiz-Paryi;cr-Mprefiz :

Mac€cA—=Pall,0beB— Qb=

(f AC BthenNae A— (Pally Qa)else(Mae (AN B) = (Pally Q a))
N STOP))

by (simp add: Mndetprefiz-Syncyicr-Mprefiz-subset)

corollary Mprefiz-Paryi;cr-Mndetprefiz :

OaecA—=PallynbeB— Qb=

(if BC Athenribe B— (Pbll, Qb) else (Mbe (AN B) = (Pbll, Qb))
N STOP)»

by (simp add: Mprefiz-Syncpicr-Mndetprefiz-subset)

corollary Mndetprefiz-Interps;ci-Mprefiz :

Ma€A—Palll,ObeB— Qb=

(if A={} then Ob € B — RenamingTick (Q b; STOP) (As. the (tick-join (g
s) 5))

else MacA. (a = (Palll,0be B— Qb)) O
(0beB — (a — Pallly QD))
by (simp add: Mndetprefiz-Syncpicr-Mprefiz-indep
Mprefiz-Seq STOP-Interyyici|of - g])

corollary Mprefiz-Interp:;cr,-Mndetprefiz :

DaecA—=PalllyTbe B— Qb=

(if B={} then Oa € A — RenamingTick (P a ; STOP) (Ar. the (tick-join r
(97)))

else MbeB. (b - (Ha€ A — Pualll, Qb)) O
(OacA = (Pallly b= Qb))
by (simp add: Mprefiz-Syncpiici-Mndetprefiz-indep
Mprefiz-Seq Interpicr-STOP|of - g])

Mixing two non deterministic prefix choices lemma Mndetprefiz-Syncyiicr-Mndetprefiz

(Ma€A — Pa [S], MbeB — Q b =
(if A={}then if BN S ={} then NbeB — (STOP [S], Q b)
else (Nz € (B — 8) = (STOP [S], Q z)) N STOP
else if B={} then if AN S = {} then NacA — (P a [S], STOP)
else (MNz €(A — S) = (Pz [S], STOP)) n STOP
else MbeB. MacA.
(if a € S then STOP else a — (P a [S], b— Qb)) O
(if b € S then STOP else b — (a — P a [S], Q b)) O
(ifa=0bAN0be Sthenb— (Pal[S], Qb) else STOP)),
(is «?lhs = (if A = {} then if BN S = {} then ?mu-right else ?mu-right’ N
STOP
else if B={} then if AN S = {} then ?mv-left else ?mu-left’ M
STOP
else Zhuge-mess)»)
proof (split if-split, intro conjl impl)
show (A = {} = ¥%lhs = (if BN S = {} then ?muv-right else ?muv-right’ M

194

STOP)»
by (auto simp add: STOP-Syncpiick-Mndetprefic intro: mono-Mndetprefiz-eq)
next
show «?lhs = (if B = {} then if AN S = {} then ?mu-left else ?mu-left’ 1 STOP
else ?huge-mess)y if <A # {}p
proof (split if-split, intro congl impl)
show «B = {} = %lhs = (if AN S = {} then ?muv-left else ?mu-left’ 1 STOP))
by (auto simp add: Mndetprefiz-Syncpiick-STOP intro: mono-Mndetprefiz-eq)
next
assume <B # {}
have «?lhs = MbeB. MacA. (a = P a [S], (b = Qb))
by (simp add: Mndetprefiz-GlobalNdet <A # {}» <B # {}
Syncpiick-distrib-GlobalNdet-left Syncpiick-distrib-GlobalNdet-right)
also have «<... = Zhuge-mess»
by (auto simp add: write0-def Mprefix-Syncpiicr-Mprefic Diff-triv Mpre-
fix-is-STOP-iff
introl: mono-GlobalNdet-eq arg-cong2[where f = «(0O)])
finally show «?lhs = ?huge-mess .
qed
qed

lemma Mndetprefiz-Syncpiicr-Mndetprefiz-subset :
(Ma€A — Pa [S], MbeB — Qb =
(if 3b. A={b} A B={b}
then (THE b. B = {b}) — (P (THE a. A = {a}) [S], @ (THE b. B = {b}))
else (Mz € (AN B) = (Pz[S], Qz)) N STOP),
(is «<?lhs = (if ?cond then ?rhsl else ?rhs2)y) if <A C S» «<B C S
proof (split if-split, intro conjl impl)
show «?cond = ?lhs = ?rhsl>
by (elim exE, simp add: write0-def)
(subst Mprefix-Syncpiick-Mprefiz-subset, use <A C Sy in simp-all)
next
assume <~ Zcond>
let ?term = Aa b. (b — (P a [S], Qb))
have (?lhs = MbeB. MacA. (if a = b then ?term a b else STOP))
(is «?lhs = MbeB. MacA. ?rhs’ b w)
proof (cases <A ={} vV B={}h)
from <4 C S» «<B C S show <A = {} V B = {} = %lhs = (MbeB. MacA.
?rhs’ b a)»
by (elim disjE) (simp-all add: Mndetprefiz-Syncpiicr-STOP STOP-Syncptick-Mndetprefic
Int-absorb2 Mndetprefiz-is-STOP-iff Ndet-is-STOP-iff)
next
show = (A = {} V B ={}) = ?lhs = (NbeB. MacA. ?rhs’ b a)»
by (simp add: Mndetprefiz-Syncpi;cr-Mndetprefiz)
(intro mono-GlobalNdet-eq, use <A C S» «<B C S in auto)
qed

also have «(MbeB. MacA. ?rhs’ b a) = ?rhs2»

195

proof (cases <BN A ={})
assume <BN A = {}
hence <A N B = {}» by blast
hence («(MbeB. MacA. 2rhs’ b a) = STOP» by (auto simp add: Global-
Ndet-is-STOP-iff)
thus «((MbeB. MacA. ?rhs’ b a) = ?rhs2) by (auto simp add: <A N B = {})
next
show «(MbeB. MacA. ?rhs’ b a) = ?rhs2y if <BN A # {}
proof (cases <B — A = {})
assume <B — A = {}
hence (A N B = B) by blast
have («(MacA. ?rhs’ b a) = (if A = {b} then ?term b b else ?term b b I
STOP)»
(is «(Ma€A. 2rhs’ b a) = ?rhs’’ by) if <b € By for b
proof (cases <A N {b} = {})
from «(B—A={p e B
show <A N {b} = {} = (Ma€A. ?rhs’ b a) = ?rhs” b by auto
next
show «(Ma€A. ?rhs’ b a) = ?rhs’ by if <A N {b} # {b
proof (cases <A — {b} = {})
show <4 — {b} = {} = (NacA. ?rhs’ b a) = ?rhs’" b
using A N {b} # {}» by auto
next
show «Ma€A. ?rhs’ b a = ?rhs’ by if <A — {b} #{D
using <A — {b} #{p An{b} #{p
by (auto simp add: GlobalNdet-is-STOP-iff
simp flip: GlobalNdet-factorization-union
[OF <An{b} # {}b A — {b} # {}, unfolded Int-Diff-Un]
intro: arg-cong2|where f = «(M)])
qed
qed
hence «(Mb € B.Ma € A. ?rhs’ b a) = Nb € B. ?rhs’ b
by (fact mono-GlobalNdet-eq)
also have «(Mb € B. ?rhs” b) = ?rhs2»
proof —
from (= ?cond) have «(Mb € B. ?rhs’' b) = Mb € B. ?term b b M STOP)
by (metis Diff-eq-empty-iff Int-commute <A N B = B
«B — A = {}» subset-singleton-iff <B N A # {})
also have «... = (Mb € B. ?term b b) M STOP)
by (simp add: Process-eq-spec Ndet-projs GlobalNdet-projs STOP-projs)
finally show «(Mb € B. ?rhs'’ b) = ?rhs2)
by (simp add: Mndetprefiz-GlobalNdet <A N B = B)»)
qed
finally show «(Mb € B. Ma € A. ?rhs’ b a) = ?rhs2» .
next
assume (B — A # {}
have «Ta€A. (if a = b then ?term a b else STOP) =
(if b € A then if A = {b} then ?term b b else (?term b b) M STOP else
STOP)»

196

if <b € B> for b
proof (split if-split, intro conjl impl)
show <Ma€A. (if a = b then ?term a b else STOP) =
(if A = {b} then ?term b b else (Yterm b b) M STOP)) if <b € A>
proof (split if-split, intro conjl impl)
show <A = {b} = Ma € A. (if a = b then ?term a b else STOP) = ?term
b b by simp
next
assume <A # {b}
with «b € A have <insert b A = A <A — {b} # {}> by auto
show (A # {b} = Ma€A. (if a = b then ?term a b else STOP) = ?term
bbn STOP»
by (auto simp add: GlobalNdet-is-STOP-iff intro!: arg-cong2[where f =
()]

simp flip: GlobalNdet-factorization-union
[of «{b}», OF - <A — {b} # {}>, simplified, unfolded <insert b A =
)
qed
next
show «b ¢ A = MacA. (if a = b then ?term a b else STOP) = STOP)
by (auto simp add: GlobalNdet-is-STOP-iff)
qed

hence Mb € B. Ma€A. ?rhs’ b a =
Mb e B. (if b € A then if A = {b} then Zterm b b else (?term b b) M
STOP else STOP)»
by (fact mono-GlobalNdet-eq)
also from <B — A # {}» have <... = (Mb € B. (if b € A then ?term b b else
STOP)) N STOP:»
by (simp add: Process-eq-spec GlobalNdet-projs, safe)
(simp-all add: GlobalNdet-projs STOP-projs Ndet-projs split: if-split-asm,
auto)
also have «... = ?rhs2»
proof (fold GlobalNdet-factorization-union
[OF <BN A # {}» «<B — A # {}», unfolded Int-Diff-Un])
have «Tbe(B N A). (if b € A then ?term b b else STOP) =
nbe(B N A). ?term b b> by (auto intro: mono-GlobalNdet-eq)
moreover have «be(B — A). (if b € A then ?term b b else STOP) =
STOP)
by (simp add: GlobalNdet-is-STOP-iff)
ultimately show «(Mbe(B N A). (if b € A then ?term b b else STOP)) N
(Mbe(B — A). (if b € A then ?term b b else STOP)) M STOP

= ?rhs2»
by (metis Mndetprefiz-GlobalNdet Int-commute Ndet-assoc Ndet-id)
qed
finally show «(Mb € B. Ma € A. ?rhs’ b a) = ?rhs2» .
qed
qed

finally show «%lhs = ?rhs2» .

197

qed

lemma Mndetprefiz-Syncpeicr-Mndetprefiz-indep :
ANS={}=BnS={} =
MNa€A — Pa [S], MbeB = Q b =
(if A= {} thenbeB — (STOP [S], Q b)
else if B = {} then MacA — (P a [S], STOP)
else MbEB. Ma€eA.
((a— (PalSly b= Q1) O
((b—=(a—=PalS], QP))))
by (simp add: Mndetprefiz-Syncpiick-STOP STOP-Syncyiicr-Mndetprefiz)
(auto simp add: Mndetprefiz-GlobalNdet Syncp;cr-distrib-GlobalNdet-left
Syncpticr-distrib-GlobalNdet-right disjoint-iff write0-def
Mprefiz-Syncpiicr-Mprefiz Int-assoc insert-Diff-if
intro!: mono-GlobalNdet-eq)

lemma Mndetprefiz-Syncyiicr-Mndetprefiz-left
(Ma€A — P a [S], MbeB — Q b =TacA — (P a[S], MbeB — Q b)
(is <?lhs = ?rhsy) if <AN S ={pHp «BC S
proof —
let ?rhs’ = «beB. MacA. a — (P a [S], b — Q b)»
have «?lhs = (if A= {} then if BN S = {} then MbeB — (STOP [S], Q b)
else (Mze(B — S) — (STOP [S], Q z)) N STOP
else if B={} then if AN S ={} then NacA — (P a [S], STOP)
else (Mze(A — S) — (P z [S], STOP)) N STOP
else MbeB. MacA.
(if a € S then STOP else (a — (P a [S], b— Qb)) O
(if b € S then STOP else (b — (a — P a [S], Q b)) O
(ifa=bAbe Sthenb— (Pal[S], Qb) else STOP)))
(is «?lhs = (if A = {} then ?rhsl else if B = {} then ?rhs2 else ?rhs3)»)
by (fact Mndetprefiz-Syncyiick-Mndetprefiz)
also from «B C S» have <?rhsl = STOP)
by (auto simp add: Ndet-is-STOP-iff Mndetprefiz-GlobalNdet GlobalNdet-is-STOP-iff)
also from <A N S = {}» have (?rhs2 = MacA — (P a [S], STOP)) by
presburger
also from <A NS ={hBCSH
have (?rhs3 = MbeB. NacA. a — (P a [S], b — Q b)
by (intro mono-GlobalNdet-eq) auto
finally have <?lhs = (if A = {} then STOP
else if B = {} then Ma€A — (P a [S], STOP)
else ?rhs’)y .
moreover have (B # {} = ?rhs’ = NacA. a — (P a [S], NbeB. b = Q b)
by (subst GlobalNdet-sets-commute)
(simp add: Syncpi;cx-distrib-GlobalNdet-left write0-GlobalNdet)
moreover have (... = Ma€A — (P a [S], MbeB — Q b)»
by (simp add: Mndetprefiz-GlobalNdet)
ultimately show «?lhs = ?rhs) by simp

198

qged

end

corollary (in Syncpiici-locale) Mndetprefiz-Syncyiic,-Mndetprefiz-right
(Ma€A — P a [S], MbeB — Q b =1beB — (MacA — Pa [S], Q b)
(is <%lhs = ?rhsy) if (A C) «BN S ={p
by (subst (1 2) Syncpiick-locale-sym.Syncpiscr-sym)
(simp add: Syncpiscx-locale-sym. Mndetprefiz-Syncpiicr,-Mndetprefiz-left that)

8.3 Read and Write Laws

8.3.1 Sequential Composition

lemma read-Seqpiick : <c?a€A — Pas, Q = clacA = (Pas, Q)
by (simp add: read-def Mprefiz-Seqpiicr comp-def)

lemma write0-Seqptick : <a = P35, Q@ =a— (P, Q)
by (simp add: write0-def Mprefiz-Seqpiick)

lemma ndet-write-Seqpiick : <cMa€Ad = Pas, Q = ctacAd = (Pas, Q)
by (simp add: ndet-write-is-GlobalNdet-write0 Seqpi;cy-distrib-GlobalNdet-right
write0-Seqptick)

lemma write-Seqptick : <cta = P35, Q = cla — (P, Q)
by (simp add: write0-Seqpiicr write-is-write0)

8.3.2 Synchronization Product
General Laws

context Syncpici-locale begin

read lemma read-Syncpiick-read :

— This is the general case.

«c?acA — Pa [S], d?beB — Qb =

(c?ac(A — ¢ — §) = (P a [S], d?beB — Q b)) O

(d7be(B — d —*8) — (c?acA — P a [S], Qb)) O

(Oze(c “And BN S)— (P (inv-into A ¢ z) [S], Q (inv-into B d z)))

(is «?lhs = ?rhs1 O 2rhs2 O 2rhs3»)

if<«c‘ANS={}Vve ACSVinj-onch
d“BNS={}Vd BCSV injondB

199

— Assumptions may seem strange, but the motivation is that when A \ ¢ —* S
{} (which is equivalent to = ¢ * A C 5), we need to ensure that inv-into (A \ ¢
—8) cis equal to inv-into A c. This requires A \ ¢ —‘S = A (which is equivalent
toc ‘ANS={}) orinj-on ¢c A. We need obviously a similar assumption for B.
proof —
have x : (Ae X. e “ (X —e—“5) =€ ‘X — S by auto
have «?lhs = (Oac(c ‘A — 8) — (P (inv-into A ¢ a) [S], (Ozed ‘B — Q
(inv-into B d z)))) O
(Obe(d ‘B — 8) — ((dzec “ A — P (inv-into A ¢ z)) [S], @Q (inv-into
B db))) O
(Oze(c “ANnd < BNS)— (P (inv-into A c z) [S], Q (inv-into B d
)

(is <%lhs = ?rhs1’ O 2rhs2’ O ?rhs3»)
by (simp add: read-def Mprefiz-Syncpicr-Mprefic comp-def)
also from that(1) have «?rhsl’ = ?rhsl»
proof (elim disjE)
assume ¢ ‘AN S ={p
hence <A —c—“S=AANc‘A—-85=c‘A by fast
thus < %rhs1’ = ?rhsl» by (simp add: read-def comp-def)
next
assume (¢ ‘A C S
hence <A —c—“‘S={}Ac‘A—-S5={} by fast
show (?rhs1’ = 2rhsly by (simp add: <?this))
next
assume <inj-on ¢ A»
hence <inj-on ¢ (A — ¢ —¢8)» by (simp add: inj-on-diff)
with «inj-on ¢ Ay show «?rhsl’ = ?rhsl»
by (auto simp add: read-def comp-def % intro: mono-Mprefiz-eq)
qed
also from that(2) have «?rhs2’ = ?rhs2»
proof (elim disjE)
assume <d ‘BN S ={p
hence <B—d—-‘S=BAd‘B—-S=4d°‘B) by fast
thus < ?rhs2’ = 2rhs2» by (simp add: read-def comp-def)
next
assume «d ‘B C S
hence «B—d —‘S={} Ad ‘B - S={} by fast
show «?rhs2’ = ?rhs2» by (simp add: < 7this))
next
assume <inj-on d B>
hence <inj-on d (B — d —“S)» by (simp add: inj-on-diff)
with «inj-on d B> show (?rhs2’' = ?rhs2»
by (auto simp add: read-def comp-def * intro: mono-Mprefiz-eq)
qed
finally show < ?lhs = ?rhs1 O 2rhs2 O 9rhs8) .
qed

Enforce read lemma read-Syncyi;cr-read-forced-read-left :
(c?a€A — P a [S], d?beB — Qb =

200

(c?ac(A —c—*S) = (Pa[S], d?beB — Qb)) O
(d?be(B—d —*8S) — (c?acA - Pa [S], Qb)) O
(c?ze(AnNc—(d*BnS)) = (Pz[S], Q)
(is <%lhs = ?rhsl O 2rhs2 O 2rhs3»)
if «¢c AN S ={}VinjoncA
«d BN S={}VinjondB
Nab.aceA=beB=ca=db=dbeS=a=b
proof —
let ?rhs3’ = «(dze(c “ANd ‘BNS)— (P (inv-into A ¢ z) [S], @ (inv-into
Bdux))
have x:<« ‘(ANec—“(d*BnNS)=c‘And‘BnS by blast
have xx : «¢ “(ANc—‘d‘B)=c‘ANd ‘B by blast
from that(1, 2) consider <¢c ‘AN S={}Vvd‘BnS={p
| <inj-on ¢ Ay <inj-on d B> by blast
hence «?rhs3’ = 2rhs3»
proof cases
assume <c ‘AN S={}vd‘BnS={h
hence «¢c ‘ANd‘BNS={}AANnc—(d*BnS)={} by blast
thus «?rhs3’ = ?rhs8» by simp
next
assume <inj-on ¢ A> <inj-on d B>
show «?rhs3’ = 7rhs3»
proof (unfold read-def x comp-def,
intro mono-Mprefiz-eq arg-cong2[where f = AP Q. P [S], @])
fix rassume «<x € ¢c “ANd‘BNS
moreover from <inj-on ¢ Ay inj-on-Int
have «inj-on ¢ A A inj-on c (AN c—°(d BN S)) by blast
ultimately show (P (inv-into A ¢) = P (inv-into (AN c—‘(d ‘B NSY))
¢)
by (simp add: image-iff, elim conjE bexE, simp)
next
fix xassume $:«x €c “ANd*‘BNS
then obtain a b where $$: <z = c @) <a € A> <z = d b> <b € B> by blast
from <inj-on ¢ Ay inj-on-Int have $$$: <inj-on ¢ (AN c —*“(d *BNS))
by blast
have <inv-into B d x = b> by (simp add: $3(3, 4) <inj-on d B»)
also have <b = a» by (metis $ $$ Int-iff that(3))
also have <a = inv-into (ANc—(d “BNS)) cw
by (metis $ $8(1, 2) $$$ = Int-lowerl
<ing-on ¢ Ay inj-on-image-mem-iff inv-into-f-eq)
finally have <inv-into B d x = inv-into (AN c —“(d *BNS)) ca> .
thus «Q (inv-into B d) = Q (inv-into (AN c—‘(d *BNS)) cz)» by simp
qed
qed
moreover have <?lhs = ?rhsi O ?rhs2 O 9rhs3”
using that(1, 2) by (subst read-Syncptick-read) auto
ultimately show «?lhs = 9rhs! O ?rhs2 O ?rhs3> by argo
qed

201

corollary (in Syncpi;ck-locale) read-Syncyyicr-read-forced-read-right:
«c?acA — Pa [S], d?beB — Qb =
(c?ac(A — ¢ —*S) = (Pa[S], d?beB — Qb)) O
(d?be(B —d —*S) — (c?acA - Pa [S], Qb)) O
(dfze(BNd—‘(c “ANS)) = (Pz[S], Qx))
(is < ?lhs = %rhsl O 2rhs2 O 2rhs3»)
if <¢c “ANS={}VinjoncA
«d*BnNnS={}VinjondB
(Nab.aeA=beB=ca=db=dbe S = a=b
unfolding Syncp;cr-locale-sym.Syncptick-sym
by (subst Syncpiick-locale-sym.read-Syncyyick -read-forced-read-left[OF that(2, 1)],
metis that(3))
(auto simp add: Det-commute intro: arg-cong2[where f = «(O)])

Special Cases lemma read-Syncpiick-read-subset :
(cta€A — P a [S], d?b€B — Qb =
Oze(c “ANd ‘B) — (P (inv-into A ¢ z) [S], Q (inv-into B d x))
if<c‘AC S «d*“BCS»

proof —
from that have * : <A — ¢ —*S={p «(B—d —*S ={} by auto
from that(1) have xx : <c “ANd‘BNS=c‘ AnNd°‘B by blast
show ?thesis by (subst read-Syncpiicr-read)

(use that in <simp-all add: % *x»)
qed

lemma read-Syncpicr-read-subset-forced-read-left :
«c?a€A — Pa[S], d?beB — Qb= c?zc(ANc—‘d‘B)— (Pz[S], Q)
if <¢c “AC S»«<«d ‘B CS) <inj-on ¢ Ay <inj-on d B>
Nab.aeA=beB=ca=db=dbeS=a=b
proof —
from that have x : <A — ¢ =S ={ph «B—d—*S ={} by auto
from that(1) have *x : <AN(¢c—‘d ‘BNec—S)=ANc—‘d ‘B by blast
show ?thesis by (subst read-Syncptic,-read-forced-read-left)
(use that(3, 4, 5) in <simp-all add: * *x»)
qged

lemma read-Syncyi;cr-read-subset-forced-read-right :
«c?a€A — Pa[S), d?beB - Qb=d?ze(BNd—‘c‘A) = (Pz[S], Q)
if <¢c “AC S «d*BCS <inj-on ¢ Ay <inj-on d B>
Nab.aeA=beB=ca=db=dbeS=a=b
proof —
from that have * : «<B —d —*S ={p <A — ¢ —*S ={} by auto
from that(1) have xx : <kBN(d —‘¢c‘ANd—-*S)=BnNd—-*‘c*‘A by blast
show ?thesis by (subst read-Syncpici-read-forced-read-right)
(use that(3, 4, 5) in <simp-all add: * *x»)
qed

202

lemma read-Syncyi;cr-read-indep :

«c?ac€A — Pa [S], d?beB — Qb =

(c?acA — (Pa [S], (d?beB — Qb)) O (d?beB — ((c?acA — Pa) [S], @
b))

if<«c‘AnNS={b«d‘BnS={p
proof —

from that have x : <A — ¢ —*S = A «B—d —*S = B) by auto

from that(1) have *x : <¢c “ANd‘BnNS={} by blast

show ?thesis by (subst read-Syncpiick-read) (use that in «simp-all add: * %))
qed

lemma read-Syncyicr-read-left :
«c?ac€A — Pa [S], d?beB — Q b= c?acA — (P a [S], (d?7beB — Q b))
if<c‘AnNS={hp«d*BCS
proof —
from that(1) have x : <A — ¢ —*S=Ar<c“ANnd‘BnNS={}p by auto
from that(2) have ** : (B — d —* S = {}» by blast
show ?thesis by (subst read-Syncpyicr-read)
(use that in <simp-all add: * *x»)
qed

lemma read-Syncpticr-read-right :
«c?a€A — Pa [S], d?beB — Q b = d?beB — ((c?acA — P a) [S], Q D)
if<«c‘ACS«d*BnS={h
proof —
from that(2) have x : <B —d —‘S =By« ‘And*‘BnS={}p by auto
from that(1) have ** : <A — ¢ —* S = {}» by blast
show ?thesis by (subst read-Syncpyicr-read)
(use that in <simp-all add: * **>)
qed

corollary read-Parpi;cr-read :
«c?a€A - Pal|l, d?beB — Qb =
Oze(c “ANd‘B) — (P (inv-into A ¢) ||, Q (inv-into B d z))»
by (simp add: read-Syncpiicr-read-subset)

corollary read-Paryt;c-read-forced-read-left :
[inj-on ¢ A; injron d B; N\ab.a € A—beB=ca=db= a=0 =
c?acA = Pally d?beB — Qb= c?lzc(ANc—-‘d ‘B)—= (Pzll, Q)
by (subst read-Syncpiick-read-forced-read-left) simp-all

corollary read-Pary;c-read-forced-read-right :
[inj-on ¢ A; injron d B; N\ab.a € A—beEB=ca=db=—= a=0 =

c?acA = Pally d?beB - Qb=dlze(BNd—-‘c‘A) = (Pzll, Q)
by (subst read-Syncpi;cx-read-forced-read-right) simp-all

corollary read-Interps;ci-read :

203

([inj-on ¢ A; injr-on d B; N\ab.a € A—beEB=ca=db—=— a=10 =
c?acA — Palll, d?beB = Qb =

(c?acA — (P allly d?beB — Q b)) O (d?beB — (¢?acA — Palll, Q D))
by (simp add: read-Syncpi;cx-read)

Same channel Some results can be rewritten when we have the same
channel.

lemma read-Syncyt;cr-read-forced-read-same-chan :
«c?acA — Pa [S], c?beB — Qb=
(c?ac(A —c—°S) = (Pa[S], c?beB — Qb)) O
(c?0e(B — ¢ —‘S) = (c?acA = Pa [S], Qb)) O
(c?ze(ANBNc—°8) = (Pz[S], Q)
(is < ?lhs = %rhsl O ?rhs2 O 2rhs3»)
if«c“AnS={}VvinjoncA «c BnNS={}Vinjonch
Nab.ae A= beB=ca=cb=cbeS = a=Mb
proof —
— Actually, the third assumption is equivalent to the following (we of course do
not use that(3) in the proof of equivalence).
from that(1, 2)
have <inj-on ¢ (AU B)N ¢ —°8) +—
Mab.ae A—beB—ca=cb—cbe S —a=0bp
by (elim disjE, simp-all add: inj-on-def)
((auto)[3], metis Int-iff Un-iff vimageE vimagel)

from that(3) have * : <AN(c—=‘¢c‘BNc—S)=AnNnBnNc—*S by auto
blast

show ?thesis by (simp add: read-Syncpi;ci,-read-forced-read-left that)
qed

lemma read-Syncyt;cr-read-forced-read-same-chan-weaker :
— Easier with a stronger assumption.
<ing-on ¢ (AU B) =
c?acA — Pa [S], c?beB — Qb =
(c?ac(A — ¢ —‘S) = (Pa[S], c?beB — Qb)) O
(c?be(B—c—‘8) = (c?acA = Pa[S], Qb)) O
(c?lze(ANBNc—°8) = (Pz[S], Q)
by (rule read-Syncp;ck-read-forced-read-same-chan)

(simp-all add: inj-on-Un, metis Un-iff inj-onD inj-on-Un)

lemma read-Syncyt;cr-read-subset-forced-read-same-chan :
— In the subset case, the assumption inj-on ¢ (A U B) is equivalent. The result
is not weaker anymore.
«c?a€A — Pa [S], c?beB = Qb= c?zec(AN B) = (Pz [S], Q x)
if <«¢c “AC S <c*BCS <inj-onc (AU B)
proof —
from that(3) have <A N c¢ —‘c ‘B = AN B by (auto simp add: inj-on-def)
with that(3) show ?thesis

204

by (subst read-Syncpiicr,-read-subset-forced-read-left)
(simp-all add: that(1, 2) inj-on-Un, meson Un-iff inj-on-contraD that(3))
qed

read and ndet-write. lemma ndet-write-Syncyi;cx-read :
«NacA — Pa[S], d?beB - Qb =
(if A= {} then STOP [S], d?beB — Qb
else Macc “ A. (if a € S then STOP else a — (P (inv-into A ¢ a) [S], d?beB
— Qb)) O

b)) O
(ifa€d*Bn Sthen a — (P (inv-into A ¢ a) [S], @ (inv-into B
d a)) else STOP))»
by (auto simp add: ndet-write-def read-def Mndetprefiz-Syncpyicr-Mprefic
intro: mono-GlobalNdet-eq arg-cong2[where f = «(O))])

(Obe(d B — S) = (a — P (inv-into A ¢ a) [S], Q (inv-into B d

lemma read-Syncyi;cr-ndet-write :
«c?a€A — Pa [S], d'beB — Qb =
(if B={} then c?acA — P a [S], STOP
else Mbed “ B. (if b € S then STOP else b — (c?acA — P a [S], Q (inv-into
B db))) O

b)) O
(ifbec AN Sthen b — (P (inv-into A ¢ b) [S], Q (inv-into B
d b)) else STOP))»
by (auto simp add: ndet-write-def read-def Mprefiz-Syncpticr-Mndetprefic
intro: mono-GlobalNdet-eq arg-cong2[where f = «(O))])

(Oac(c “A = 8) = (P (inv-into A c a) [S], b — Q (inv-into B d

lemma ndet-write-Syncpticr-read-subset :

«c‘ACS=d‘BCS=

ctlacA — Pa [S], d?beB — Qb =

(ifc“ACd"Bthen Nacc ‘A — (P (inv-into A ¢ a) [S], Q (inv-into B d
a))

else (Mac(c “ANd‘B) — (P (inv-into A ¢ a) [S], Q (inv-into B d a))) N

STOP)»

by (simp add: read-def ndet-write-def Mndetprefiz-Syncp;c,-Mprefiz-subset)

lemma read-Syncpsicr-ndet-write-subset :

«c‘ACS=d‘BCS=

c?acA — Pa [S], d'beB — Qb =

(ifd BCc‘Athennbed ‘B — (P (inv-into A ¢ b) [S], @ (inv-into B d
)

else (Mbe(c “AnNd ‘B) — (P (inv-into A ¢ b) [S], @Q (inv-into B d b))) M

STOP)»

by (simp add: read-def ndet-write-def Mprefiz-Syncpiic,-Mndetprefiz-subset)

— If we have the same injective channel, it’s better.

205

lemma ndet-write-Syncpt;ci-read-subset-same-chan:
«MacA — Pa[S], c?beB = Qb=
(if A C B then ctlacA — (P a [S], Q a) else (cMtac(A N B) = (Pa[S], @

a)) M STOP)»
if <¢c “AC S <c“BCS <inj-onc (AU B)
proof —
from <inj-on ¢ (A U B)> have x :
by (auto simp add: inj-on-eq-iff)
from <inj-on ¢ (A U B)» have xx :
by (auto simp add: inj-on-Un)
from <inj-on ¢ (A U B)> show ?2thesis
by (unfold ndet-write-Syncpicr-read-subset|OF <c ‘A C Sy <c * B C Sy] * *x)
(auto simp add: ndet-write-def inj-on-Un inj-on-Int
intro!: mono-Mndetprefiz-eq arg-cong2[where f = «(M)])

«ic‘ACc‘B+— ACB

«c‘ANc‘B=c‘ (AN B)

qed

corollary (in Syncyy;cx-locale) read-Syncyy;cr-ndet-write-subset-same-chan:

«c?ac€A — Pa [S], MNbeB = Qb=
(if B C A then c!'beB — (P b [S], Q b) else (c!tbe(A N B) — (P b [S], @
b)) M STOP))
if <¢c “AC S <c“BCS <inj-onc (AU B)
by (subst (1 2 8) Syncpiick-locale-sym.Syncyicr-sym)
(simp add: Syncpiick-locale-sym.ndet-write-Syncpick-read-subset-same-chan
[OF that(2, 1)] Un-commute Int-commute that(3))

lemma ndet-write-Syncpticr-read-indep :
c‘AnNS={}=d‘BnS={} =
cMacA — Pa[S], d?beB — Qb =
(if A= {} then d?beB — (STOP [S], Q b)
else Macc “ A. (a — (P (inv-into A ¢ a) [S], d?beB — Qb)) O
(d?beB — (a — P (inv-into A c a) [S], Q D)))»
by (auto simp add: ndet-write-def read-def Mndetprefiz-Syncptici-Mprefiz-indep

comp-def
intro: mono-GlobalNdet-eq arg-cong2[where f = «(O))])

lemma read-Syncyi;cr-ndet-write-indep :
c‘AnNS={}=d‘BnS={} =
c?acA — Pa [S], d'beB — Qb =
(if B={} then c?acA — (P a [S], STOP)
else Mbed “ B. (b — (c?ac€A — P a [S], Q (inv-into B d b))) O
(c?a€A — (P a [S], b — Q (inv-into B d b))))»
by (auto simp add: ndet-write-def read-def Mprefiz-Syncyi;cr-Mndetprefiz-indep

comp-def
intro: mono-GlobalNdet-eq arg-cong2[where f = «(O))])

lemma ndet-write-Syncp;ci-read-left :
«MacA — Pa[S], d?beB — Q b= cllacA — (P a [S], d?beB — Q b)»

206

(is «?lhs = ?rhey) if «¢c “ANS={}p «d“ BCS
proof —
from that have «?lhs = (if A = {} then STOP [S], d?beB — Q b else ?rhs),
by (auto simp add: ndet-write-def read-def
Mndetprefiz-Syncpticr-Mprefiz-left comp-def
intro: mono-GlobalNdet-eq arg-cong2[where f = «(0O)])
also have «... = %rhs
by (simp add: read-def ndet-write-def Mprefiz-is-STOP-iff
STOP-Syncptick-Mprefix that(2))
finally show «?lhs = ?rhs) .
qed

lemma read-Syncyicr-ndet-write-left :
«c?acA = Pa [S], d'beB — Q b= c?acA — (P a [S], d''beB — Q b)
(is <%lhs = ?rhsy) if «¢c ‘AN S={hpb«d‘BCS
proof —
from that have «?lhs = (if B = {} then (c?acA — P a) [S], STOP else ?rhs),
by (auto simp add: ndet-write-def read-def
Mprefiz-Syncpiick-Mndetprefiz-left comp-def
intro: mono-GlobalNdet-eq arg-cong2[where f = «(0O)])
also have «... = rhs»
by (simp add: read-def comp-def)
(use Mprefiz-Syncpicr-Mprefiz-left that(1) in force)
finally show «?lhs = ?rhs» .
qed

corollary (in Syncpiick-locale) ndet-write-Syncyicx-read-right :
(cMa€d — Pa[S], d?beB — Qb = d?beB — (cMlacA — P a [S], Q b)
if (¢ AC S «d‘BnS=1{b
by (subst (1 2) Syncpiick-locale-sym.Syncptici-sym)
(simp add: Syncpiick-locale-sym.read-Syncyiicr-ndet-write-left[OF that(2, 1)])

corollary (in Syncpiick-locale) read-Syncyyicr-ndet-write-right :
«c?ac€A = Pa [S], d'beB — Q b= d''beB — (c?acA — Pa [S], Q b)
if<«c‘AC S «d“BnS={p
by (subst (1 2) Syncpiick-locale-sym.Syncptick-sym)
(simp add: Syncpiick-locale-sym.ndet-write-Syncpyick-read-left| OF that(2, 1)])

read and write. lemma write-Syncyicr-read :
(cta — P [S], d?b€B — Q b =
(if ¢ a € S then STOP else cla — (P [S], d?beB — Q b)) O
(Bbe(d B — S) = (cla = P [S], @ (inv-into B d b))) O
(ifcaedBn Sthen cla — (P [S], Q (inv-into B d (c a))) else STOP)»
by (subst ndet-write-Syncpicr-read(where A = {a}>, simplified])
(simp add: write-is-write0 image-iff)

lemma read-Syncpyicr-write :
«c?acA = Pa [S], dib — Q =

207

(ifd b E S then STOP else d'b — (c?acA — P a [S], Q)) O
(Oae(c — 8) = (P (inv-into A c a) [S], d'b — @Q)) O
(ifdbec ‘A N S then d'b — (P (inv-into A ¢ (d b)) [S], Q) else STOP))
by (subst read-Syncpiicr-ndet-writelwhere B = «{b}», simplified])
(simp add: write-is-write0 image-iff)

lemma write-Syncpyt;cr-read-subset :
icaeS—d‘BCS—
cla — P [S], d?beB — Q b =
(if ca € d “ B then cla — (P [S], Q (inv-into B d (c a))) else STOP))
by (simp add: write-Syncyi;cx-read)
(metis Det-STOP Det-commute Diff-eq-empty-iff Mprefiz-empty)

lemma read-Syncpeicr-write-subset :
c‘'ACS=dbe S =
c?acA — Pa [S], d'b — Q=
(ifdb e c ‘A then d'b — (P (inv-into A ¢ (d b)) [S], Q) else STOP))
by (simp add: read-Syncpi;cx-write)
(metis Diff-eq-empty-iff Mprefiz-empty STOP-Det)

— If we have the same injective channel, it’s better.
lemma write-Syncpi;cr-read-subset-same-chan:
<ca€ S = c‘BCS = inj-onc (insert a B) =
cla — P [S], ¢?beB — Q b = (if a € B then cta — (P [S], Q a) else STOP)»
by (subst ndet-write-Syncyi;ck-read-subset-same-chan[where A = {a}>, simpli-
fied]) simp-all

lemma read-Syncyi;cr-write-subset-same-chan:
c‘ACS = cbe S = inj-onc (insert b A) =
c?acA — Pa[S), b — Q= (ifb € Athen clb — (Pb[S], Q) else STOP)»
by (subst read-Syncpiicr-ndet-write-subset-same-chan[where B = «{b}>, simpli-
fied]) simp-all

lemma write-Syncpiicr-read-indep :
«cag¢ S=d‘BnS={} =
cla - P [S], d?beB — Q b =
(cta = (P [S], d?beB — Q b)) O (d?beB — (cta — P [S], Q b))
by (subst ndet-write-Syncpick-read-indeplwhere A = {a}>, simplified))
(simp-all add: write-is-write0)

lemma read-Syncpt;cr-write-indep :
ic‘ANS={}=4db¢ S =
c?acA — Pa [S], d'b — Q=
(d'd — (c?a€A — P a [S], Q) O (c?acA — (P a [S], d'b — Q)
by (subst read-Syncpi;cr-ndet-write-indeplwhere B = «{b}», simplified])
(simp-all add: write-is-write0)

208

lemma write-Syncpiicr-read-left
«ca¢S=—d‘BCS—=
cla = P [S], d?beB — Q b = cta — (P [S], d?beB — Q b)
by (subst ndet-write-Syncyiick-read-leftiwhere A = «{a}>, simplified]) simp-all

lemma read-Syncpyicr-write-left
c‘AnS={}=dbe S=
c?a€A = Pa[S], d'b — Q = c?acA — (P a [S], d'b — Q)
by (subst read-Syncpiici-ndet-write-leftjwhere B = «{b}», simplified]) simp-all

lemma write-Syncpi;cr-read-right :
«caeS=d‘BnsS={ =
cta = P [S], d?beB — Q b = d?beB — (cla — P [S], Q b)
by (subst ndet-write-Syncpici-read-rightiwhere A = «{a}>, simplified]) simp-all

lemma read-Syncyi;cr-write-right :
(c‘ACS=4db¢ S =
c?acA — Pa[S], d'b — Q= d'b — (c?acA — Pa [S], Q)
by (subst read-Syncpiicr-ndet-write-rightjwhere B = «{b}», simplified]) simp-all

ndet-write and ndet-write lemma ndet-write-Syncy;cr-ndet-write :
«MNacA — Pa[S], d'beB = Qb=
(if A={}then ifd‘ BnS=/{}then dbeB — (STOP [S], Q b)
else (Nzed (B —d —*8) — (STOP [S], Q (inv-into B d x)))
n sSTopP
else if B={}then ifc‘ANS=/{} then clacA — (P a [S], STOP)
else (Mzec ‘(A — ¢ = 8) — (P (inv-into A ¢ z) [S],
STOP)) M STOP
else Mbed ‘ B. Macc ‘ A.
(if a € S then STOP else a — (P (inv-into A ¢ a) [S], b — @Q (inv-into
Bdb)) O
(if b € S then STOP else b — (a — P (inv-into A ¢ a) [S], Q (inv-into
Bdb)) O
(ifa=bAbe Sthen b = (P (inv-into A c a) [S], Q (inv-into B d
b)) else STOP))»
proof —
have«d ‘(B—-d—-‘S)=d‘B—-S <« ‘(A—c—=‘8)=c‘A— S by auto
thus ?thesis
by (auto simp add: ndet-write-def Mndetprefiz-Syncyiic,-Mndetprefix comp-def
introl: mono-GlobalNdet-eq split: if-split-asm)
qed

lemma ndet-write-Syncpt;ck-ndet-write-subset :
«ic‘ACS=d‘BCS—
ctlacA = Pa [S], d'beB — Qb =

209

(if 3b.c A={b} Nd‘B={b}
then (THE b. d * B = {b}) — (P (inv-into A ¢ (THE a. ¢ ‘ A = {a})) [S], @
(inv-into B d (THE b. d * B = {b})))
else (Mze(c AN d‘B) — (P (inv-into A ¢ z) [S], Q (inv-into B d x))) N
STOP)»
by (auto simp add: ndet-write-def Mndetprefiz-Syncyiic,-Mndetprefiz-subset)

corollary inj-on-ndet-write-Syncpy;cr-ndet-write-subset :
«MacA — Pal[S], dbeB = Qb=
(if3b.c A={b}Ad‘B={b
then d (THE b. B = {b}) — (P (THE a. A = {a}) [S], Q@ (THE b. B = {b}))
else (Mze(c “ANd‘B) — (P (inv-into A ¢ z) [S], Q (inv-into B d x))) N
STOP);
if <inj-on ¢ A> <inj-on d B> <«¢ “A C Sy <«d *B C S
proof —
from that(1) have <¢ ‘A = {a’} = Tla. A = {a} AN o’ = c @) for a’
by (fastforce elim!: inj-img-insertE)
moreover from that(2) have <d ‘ B = {b'} = 3!b. B = {b} A b’ = d b» for
b/
by (fastforce elim!: inj-img-insertE)
ultimately show ¢thesis
by (auto simp add: ndet-write-Syncyy;cr-ndet-write-subset| OF that(8, 4)] inv-into-f-eq
intro: arg-cong2[where f = «(—=)] arg-cong2[where f = AP Q. P [S],
o))
qed

lemma ndet-write-Syncp;cr-ndet-write-indep :
«c‘AnNS={}=d‘BnsS={} =
MacAd — Pa[S], d'beB - Qb=
(if A= {} then d"'beB — (STOP [S], Q b)
else if B = {} then cMacA — (P a [S], STOP)
else Mbed ‘ B. MNaec “ A.
((a = (P (inv-into A c a) [S], b — Q (inv-into B d b)))) O
(b = (a — P (inv-into A c a) [S], Q (inv-into B d b)))))»
by (auto simp add: ndet-write-Syncpiic,-ndet-write disjoint-iff introl: mono-GlobalNdet-eq)

lemma ndet-write-Syncpicr-ndet-write-left
«c‘ANS={}=d‘BCS=
MacAd — Pa[S], dbeB — Qb= ctlacA — (P a[S], d'beB — Q b)
by (simp add: ndet-write-def Mndetprefiz-Syncpiici-Mndetprefiz-left comp-def)

lemma ndet-write-Syncpicr-ndet-write-right :
«c‘ACS=d‘BnS={} =
MacAd — Pa[S], dbeB — Qb= d'beB — (cMacA — Pa [S], Q D)
by (simp add: ndet-write-def Mndetprefiz-Syncyiic,-Mndetprefiz-right comp-def)

210

ndet-write and write lemma write-Syncyy;cr-ndet-write :
«cla - P [S], d"'beB - Qb =
(if B={} then cta — P [S], STOP
else Mbed “ B. (if b € S then STOP else b — (cla — P [S], Q (inv-into B d

(if ¢ a € S then STOP else cta — (P [S], b — Q (inv-into B d

(ifb=—ca N cac Sthen cla — (P [S], Q (inv-into B d (c a)))
else STOP))»
by (subst read-Syncpiicr-ndet-writeflwhere A = {a}>, simplified],
auto simp add: write-def Mprefix-singl split: if-split-asm
introl: mono-GlobalNdet-eq arg-cong2[where f = «(O))] mono-Mprefiz-eq)
(simp add: insert-Diff-if write0-def)

lemma ndet-write-Syncpiick-write :
(MNacA = Pal[S], d'b— Q=
(if A= {} then STOP [S], d'b — Q
else Macc “ A. (if a € S then STOP else a — (P (inv-into A ¢ a) [S], d'b —

(if d b € S then STOP else d'b — (a — P (inv-into A ¢ a) [S],

(ifa=dbA dbe Sthen db — (P (inv-into A ¢ a) [S], Q) else
STOP))»
by (subst ndet-write-Syncpiicr-read[where B = «{b}», simplified],
auto simp add: write-def Mprefix-singl split: if-split-asm
introl: mono-GlobalNdet-eq arg-cong2[where f = «(0O))] mono-Mprefiz-eq)
(simp add: insert-Diff-if write0-def)

lemma write-Syncyi;cr-ndet-write-subset :
«cla — P [S], d'beB - Qb=
(ifcad¢ d Bthen STOP elseif d ‘B = {c a} then cta — (P [S], @ (inv-into
B d (¢ a)))
else (cla — (P [S], Q (inv-into B d (¢ a)))) M STOP) if <ca € S) «d ‘B C
S»
proof (subst read-Syncpi;cr-ndet-write-subset{where A = {a}>, simplified))
from «c a €) show <ca € 5> .
next
from «d ‘B C S) show «d ‘B C S» .
next
show «(ifd ‘B C {c a} then Nbed ‘B — (P [S], @Q (inv-into B d b))
else (Mbe(c ‘{a} N d *B) = (P [S], @ (inv-into B d b))) N STOP) =
(ifcad¢d’Bthen STOP else if d * B = {c a} then cta — (P [S], @
(inv-into B d (c a)))
else (cla — (P [S], Q (inv-into B d (c a)))) M STOP)»
(is <?lhs = (if c a ¢ d * B then STOP else if d * B = {c a} then ?rhs else ?rhs
N STOP)»)
proof (split if-split, intro conjl impl)
show «ca ¢ d ‘ B = ?lhs = STOP»

211

by (auto simp add: GlobalNdet-is-STOP-iff image-subset-iff image-iff)
next
show <—ca ¢ d ‘B = ?lhs = (if d * B = {c a} then ?rhs else ?rhs M STOP)»
by (auto simp add: image-subset-iff Ndet-is-STOP-iff write-is-write0)
qed
qed

corollary (in Syncpiick-locale) ndet-write-Syncyi;cx-write-subset :
(cMacA — Pa) [S], (d'b — Q) =
(ifdbé c ‘A then STOP else if ¢ * A = {d b} then d'b — (P (inv-into A ¢
(d b)) [, @)
else (d'b — (P (inv-into A ¢ (d b)) [S], @)) M STOP)) if «¢ ‘A C Sy «dbe
S»
by (subst (1 2 8) Syncpiick-locale-sym.Syncpicr-sym)
(simp add: Syncpiick-locale-sym.write-Syncpyicr-ndet-write-subset that)

lemma write-Syncpi;cr-ndet-write-indep :
«cag¢ S=d‘BnS={ =
cla - P [S], d'beB — Qb=
(if B={} then cla — (P [S], STOP)
else Mbed ‘ B. (cta — (P [S], b = @Q (inv-into B d b))) O
(b= (cla — P [S], Q (inv-into B d b))))
by (subst ndet-write-Syncp;cr-ndet-write-indep[where A = {a}>, simplified])
(auto simp add: write-is-write0 intro: mono-GlobalNdet-eq)

lemma ndet-write-Syncpicr-write-indep :
c‘ANS={}=4db¢ S =
MacA — Pa[S], dib— Q=
(if A= {} then d'b — (STOP [S], Q)
else Macc “ A. (a — (P (inv-into A ¢ a) [S], d'b — Q)) O
(d'b — (a — P (inv-into A ¢ a) [S], Q)))
by (subst ndet-write-Syncyy;cr-ndet-write-indep[where B = «{b}>, simplified))
(auto simp add: write-is-write0 intro: mono-GlobalNdet-eq)

lemma write-Syncpticr-ndet-write-left :
«ca¢S=d BCS= cla— P[S], dbeB = Qb= cla— (P[S],

al'beB — Q b)»

by (subst ndet-write-Syncpy;cr-ndet-write-left[where A = «{a}>, simplified]) simp-all

lemma ndet-write-Syncpiicr-write-left

c AnNS={}=dbe S= ctacA = Pa[S], db— Q= ctacA — (P
a[S], d'bo — Q)

by (subst ndet-write-Syncyy;cr-ndet-write-left[where B = «{b}», simplified]) simp-all

lemma write-Syncp;cr-ndet-write-right :
caeS=d‘BnNS={} = ca— P[S], dWeB - Qb= d'beB —

212

(cta = P [S], Qb)
by (subst ndet-write-Syncpiick-ndet-write-right[where A = {a}», simplified))
simp-all

lemma ndet-write-Syncpticr-write-right :

(c ACS=db¢ S = ctlacA - Pa[S], d'b— Q= db— (cacA —
PalS], @)

by (subst ndet-write-Syncpi;ci-ndet-write-right[where B = «{b}», simplified))
simp-all

write and write lemma write-Syncpicp-write :
«cla = P [S), d'b— Q=
(if d b € S then STOP else d'b — (cla — P [S], Q)) O
(if ¢ a € S then STOP else cla — (P [S], d'b — @Q)) O
(ifca=dbAdbe Sthen cta — (P [S], Q) else STOP)»
by (subst read-Syncpiici-read[where A = ({a}» and B = «{b}», simplified])
(simp add: write-def insert-Diff-if Det-commute Int-insert-right)

lemma write-Interpe;cr-write :
«cla = Pllly db— Q= (cla — (P |||, d'b— Q) O (d'b — (cta — P |||,
Q)

by (simp add: write-Syncpi,cx-write Det-commute)

lemma write-Pary;cr-write :
«cla = Pllydb— Q= (ifca=dbthen cla = (P ||, Q) else STOP))
by (simp add: write-Syncpi;ck-write)

lemma write-Syncpt;cr-write-subset :
ica €S =—=dbe S —=
cla = P [S], d'b — Q = (ifca = dbthen cla — (P [S], Q) else STOP))
by (simp add: write-Syncpiick-write)

lemma write-Syncyt;cr-write-indep :

cag¢S=db¢ S =

cla - P [S], d'b — Q= (cta = (P [S], d'b — Q)) O (d'b — (cta — P [S],
Q)

by (simp add: Det-commute write-Syncp;cx-write)

lemma write-Syncpy;cr-write-left :
ca¢S=dbe S = cla— P[S], db— Q= cla— (P[S], db— Q)
by (auto simp add: write-Syncpi;cx-write)

lemma write-Syncpt;cr-write-right :
caeS=db¢ S = cla— P[S], db— Q=db— (cla— P[S], Q)
by (auto simp add: write-Syncp;cx-write)

213

read and (—). lemma write0-Syncyick-read :
<a — P [S], d?beB — Qb =
(if a € S then STOP else a — (P [S], d?beB — Qb)) O
(Obe(d ‘B - S) = (a — P [S], Q (inv-into B d b))) O
(ifaed BN Sthen a — (P [S], Q (inv-into B d a)) else STOP)»
by (simp add: write-Syncyiick-read[where ¢ = id, unfolded write-is-write0, sim-

plified))

lemma read-Syncyiicr-writed :

«c?a€A - PalS], b— Q=

(if b € S then STOP else b — (c?acA — P a [S], Q)) O

(Bag(c “A - S) — (P (inv-into A ca) [S], b— Q) O

(ifbec AN Sthen b — (P (inv-into A ¢ b) [S], Q) else STOP))

by (simp add: read-Syncpiick-writelwhere d = id, unfolded write-is-write0, sim-
plified])

lemma write0-Syncpticr-read-subset :
«aeS=d‘'BCS=
a— P[S], d?beB — Qb=
(if a € d * B then a — (P [S], @Q (inv-into B d a)) else STOP)»
by (simp add: write-Syncyi;c,-read-subset[where ¢ = id, unfolded write-is-write0,
simplified])

lemma read-Syncyi;cr-write0-subset :
c‘ACS—=be S =
c?acA —- Pa[S], b— Q=
(if b € ¢ “ A then b — (P (inv-into A ¢ b) [S], Q) else STOP)»
by (simp add: read-Syncp;ci-write-subset[where d = <A\z. z, unfolded write-is-write0])

lemma write0-Syncpiicr-read-subset-same-chan:
<ca€ S= BCS—=
a— P [S], id?beB — Qb= (ifa € Bthen a — (P [S], Q a) else STOP)»
by (simp add: write-Syncyy;ck-read-subset-same-chan
[where ¢ = id, unfolded write-is-write0, simplified])

lemma read-Syncpeicr-write0-subset-same-chan:
(ACS=be S =
id?acA - Pa[S]y b— Q= (ifbe Athenb— (Pb[S], Q) else STOP),
by (simp add: read-Syncpick-write-subset-same-chan
[where ¢ = id, unfolded write-is-write0, simplified])

lemma write0-Syncpiicr-read-indep :
¢ S=d‘Bns={ =
a— P[S], d?beB - Qb=
(a = (P [S], d?beB — Qb)) O (d?beB — (a — P [S], Q b))
by (simp add: write-Syncpiicr-read-indep[where ¢ = id, unfolded write-is-write0,
simplified)])

lemma read-Syncpticr-write0-indep :

214

c‘AnNS={}=bv¢ 5=

c?acA - PalS]y,b— Q=

(b= (c?acA = Pa [S], Q) O (c?acA = (Pa [S], b— Q)

by (simp add: read-Syncpy;cr-write-indepwhere d = id, unfolded write-is-write0,
simplified])

lemma write0-Syncpticr-read-left :

¢ S=d BCS=a— P[S], d?heB = Qb=a— (P[S], d?beB
- Qb

by (simp add: write-Syncptick-read-leftfwhere ¢ = id, unfolded write-is-write0,
simplified])

lemma read-Syncyi;cr-write0-left :
w‘AnS={}=beS= ctacA - Pa[S]yb— Q= clacA - (Pa
[S]y b — Q)
by (simp add: read-Syncyy;cr-write-left[where d = id, unfolded write-is-write0,
simplified])

lemma write0-Syncyticr-read-right :
weS=d‘BNS={}=a— P[S], d?eB - Qb= d?beB — (a —
P [Sl, @by
by (simp add: write-Syncpyick-read-right|where ¢ = id, unfolded write-is-write0,
simplified])

lemma read-Syncyi;cr-write0-right :

(c ACS=b¢ S= ctacA - Pa[S]yb— Q=0— (c?a€A — Pa
[5], @)

by (simp add: read-Syncyyicr-write-right{where d = id, unfolded write-is-write0,
simplified])

ndet-write and (—) lemma write0-Syncyt;cr-ndet-write :
a — P [S], d'beB — Qb=
(if B={} thena — P [S], STOP
else Mbed ‘ B. (if b € S then STOP else b — (a — P [S], @Q (inv-into B d
b))) O
(if a € S then STOP else a — (P [S], b — Q (inv-into B d b))) O
(if b =a N a € Sthen a — (P [S], Q (inv-into B d a)) else
STOP))»
by (simp add: write-Syncpi;c-ndet-write[where ¢ = \z. x>, unfolded write-is-write0,
simplified])

lemma ndet-write-Syncpeicr-writel :
«MacA - PalS]y,b— Q=
(if A={} then STOP [S], b — @
else Nacc “ A. (if a € S then STOP else a — (P (inv-into A ¢ a) [S], b —
Q)0
(if b € S then STOP else b — (a — P (inv-into A c a) [S], Q)) O
(ifa = b A be Sthen b — (P (inv-into A c a) [S], Q) else

215

by (simp add: ndet-write-Syncpy;cr-writelwhere d = <\z. x>, unfolded write-is-write0,
simplified])

lemma write0-Syncpticr-ndet-write-subset :
ia€eS=—d‘BCS—=
a— P[S], d'beB = Qb=
(ifa¢ d‘Bthen STOP elseif d * B = {a} then a — (P [S], @Q (inv-into B
d a))
else (a — (P [S], @ (inv-into B d a))) M STOP))
by (simp add: write-Syncyi;cr-ndet-write-subset[where ¢ = id, unfolded write-is-write0,
simplified])

lemma ndet-write-Syncpicr-write0-subset :
c‘ACS—=be S =
MacAd - PalS],b— Q=
(ifb¢ cAthen STOP elseif c * A= {b} then b — (P (inv-into A ¢ b) [S],
Q)
else (b — (P (inv-into A ¢ b) [S], @)) M STOP))
by (simp add: ndet-write-Syncpy;cr-write-subset[where d = id, unfolded write-is-write0,
simplified])

lemma write0-Syncpticr-ndet-write-indep :
¢ S=d‘BnsS={ =
a— P[S], d'beB = Qb=
(if B={} then a — (P [S], STOP)
else Mbed ‘ B. (a — (P [S], b — Q (inv-into B d b))) O
(b = (a = P [S], @Q (inv-into B d b))))
by (simp add: write-Syncyic,-ndet-write-indep[where ¢ = id, unfolded write-is-write0,
simplified])

lemma ndet-write-Syncpeicr-write0-indep :

‘' AnS={=0¢5 =

MacA = PaS],b— Q=

(if A={} thenb — (STOP [S], Q)

else Macc “ A. (a — (P (inv-into A c a) [S], b — Q)) O
(b = (a = P (inv-into A c a) [S], Q)))

by (simp add: ndet-write-Syncpi;cr-write-indep|where d = id, unfolded write-is-write0,

simplified])

lemma write0-Syncpiicr-ndet-write-left :

¢ S=d BCS=a— P[S], d'beB - Qb=a— (P[S], dbeB
— Qb

by (simp add: write-Syncpi;c,-ndet-write-left[where ¢ = id, unfolded write-is-write0,
simplified])

lemma ndet-write-Syncp;cr-write0-left :

' AnS={}=beS= ctMacd - Pa[S],b— Q= cllacA — (Pa
[S]y b — Q)

by (simp add: ndet-write-Syncyyicr-write-left[where d = id, unfolded write-is-write0,

216

simplified])

lemma write-Syncyi;cr-ndet-write0-right :
weS=d‘BNS={}=a— P[S], d'eB — Qb= d'"beB — (a —

P s, Qb

by (simp add: write-Syncyi;c,-ndet-write-right[where ¢ = id, unfolded write-is-write0,

simplified])

lemma ndet-write-Syncp;ci-write0-right :
(c‘ACS=0b0¢S= acA - PalS]yb— Q=0b— (cMacA - Pa

[51, @)

by (simp add: ndet-write-Syncy;ck-write-right/where d = id, unfolded write-is-write0,

simplified)])

(=) and (—) lemma write0-Syncpt;cr-write0 :

a—P[S]y,b— Q=

(if b € S then STOP else b — (a — P [S], Q)) O

(if a € S then STOP else a — (P [S], b — Q)) O

(ifa=bA0be Sthen a — (P [S], Q) else STOP)»

by (simp add: write-Syncyiic,-writefwhere ¢ = id and d = id, unfolded write-is-write0,
simplified])

lemma write0-Syncpgicr-write0-bis :
(a— P)[Sl, (b= Q) =
(ifaes
then ifbe S
then ifa =15
then a — (P [S], Q)
else STOP
else (b — ((a — P) [S], Q))
else ifbe S
then a — (P [S], (b — Q))
else (a— (P [S], (b~ @) 0 (b= ((a = P) [SI, Q)
by (cases <a € S»; cases <b € S») (auto simp add: write0-Syncpiicr-write0
Det-commute)

lemma write0-Intery;c,-writel :
a = Plllyb=>Q@=(a—=>(Pllly,b— Q)0 k= (a— Pl Q)
by (simp add: write0-Syncpi,cr-write0 Det-commute)

lemma write0-Parycr-write0 :
aa—=Pllyb— Q= /(ifa="0bthena— (P||, Q) else STOP))
by (simp add: write0-Syncpicr,-writel)

lemma write0-Syncpt;cr-write0-subset :
weS=beS=a—->P[S]yb—= Q= (ifa=0bthena— (P[S], Q)
else STOP)»

217

by (simp add: write-Syncp;ci-write-subset[where ¢ = id and d = id, unfolded
write-is-write0, simplified))

lemma write0-Syncpiicr-write0-indep :
ww¢S=>0¢S=a—-P[S]lyb=>Q=(a— (P[S]y,b— Q) O (b—
(a = P[5l Q)
by (simp add: write-Syncyi;cx-write-indeplwhere ¢ = id and d = id, unfolded
write-is-write0, simplified])

lemma write0-Syncpiicr-write0-left
w¢gS=beS=a—-P[S]lyb—-Q=0a— (P[], b— Q)
by (simp add: write-Syncpiick-write-leftiwhere ¢ = id and d = id, unfolded
write-is-write0, simplified])

lemma write0-Syncpiick-write0-right :
weS=b¢S=a—-P[S]yb—-Q=0b0—(a— P[S], Q)
by (simp add: write-Syncpicr-write-right{where ¢ = id and d = id, unfolded
write-is-write0, simplified))

write and (—) lemma write0-Syncyiicr-write :
a — P [S], db— Q=
(if d b € S then STOP else d'b — (a — P [S], @)) O
(if a € S then STOP else a — (P [S], d'b — Q)) O
(ifa=dbAdbe Sthena— (P [S], Q) else STOP)»
by (simp add: write0-Syncyi;cx-writel write-is-write))

lemma write-Syncpt;cr-writel :
«cla—=P[S]lyb— Q=
(if b € S then STOP else b — (cta — P [S], Q)) O
(if ¢ a € S then STOP else cta — (P [S], b — Q)) O
(ifca=0bNA0be Sthen cla — (P [S], Q) else STOP))
by (simp add: write0-Syncyi;cx-writeQ write-is-write0)

lemma write0-Syncpticr-write-subset :
e S=dbe S =
a— P[S], d'b— Q= (ifa=dbthena — (P [S], Q) else STOP))
by (simp add: write0-Syncpy;cr-write)

lemma write-Syncp;cr-write0-subset :
«caeS=be S =
cla - P[S], b— Q= (if ca=bthen cla — (P [S], Q) else STOP))
by (simp add: write-Syncyyicr-writed)

lemma write0-Syncpt;cr-write-indep :
g S=db¢ S =
a—P[S], db— Q= (a— (P[S], d'b— Q) O(ddb— (a — P[S], Q)
by (simp add: Det-commute write0-Syncpy;cr-write)

218

lemma write-Syncpi;cr-write0-indep :
cagd S=b¢ S =
da—P[S]lyb— Q= (dla— (P[S]ly,b— Q) DO (b— (cta— P[S], Q)
by (simp add: Det-commute write-Syncpy;ci,-write0)

lemma write0-Syncpticr -write-left :
g S=dbeS=a— P[S],db— Q=a— (P[S], db— Q)
by (simp add: write0-Syncpi;cx-write0-left write-is-write0)

lemma write-Syncpt;cr-write0-left :
cagS=beS=cla—=P[S],b— Q=cla— (P[S],b— Q)
by (simp add: write0-Syncyi;cx-write0-left write-is-write0)

lemma write0-Syncpyt;cr-write-right :
weS=db¢S=a— P[S],db— Q=db— (¢« = P[S], Q)
by (simp add: write0-Syncyi;cx-write0-right write-is-write0)

lemma write-Syncpi;cr-write0-right :
caeS=0¢S=cla—=P[S],b—=Q=0b— (ca— P[S], Q)
by (simp add: write0-Syncpi;cx-write0-right write-is-write0)

Synchronization with SKIP and STOP

SKIP Without injectivity, the result is a trivial corollary of read ¢ A P =
Mprefiz (¢ © A) (P o inv-into A c¢) and Mprefiz A P [S], SKIP r = Oac(A
\ S) = (PalS], SKIP r).

lemma read-Syncpyticr-SKIP :
«c?a€A — P a [S], SKIP r = c?ac(A — ¢ = S) — (P a [S], SKIP r)) if
<ing-on ¢ Ay
proof —
have (¢ ‘(A —c—‘S)=c ‘A — 5 by blast
show <c?acA — P a [S], SKIP r = c?ac(A — ¢ —‘S) = (P a [S], SKIP 1))
by (auto simp add: read-def Mprefiz-Syncpiick-SKIP < ?this) inj-on-diff <inj-on
c A
intro: mono-Mprefix-eq)
qed

lemma SKIP-Syncpiicr-read :
(SKIP r [S], d?beB — Q b = d?be(B — d —°S) — (SKIP r [S], Q b)» if
<inj-on d B»
proof —
have «d ‘(B —d —*S)=d ‘B — S» by blast
show (SKIP r [S], d?beB — Q b= d?be(B — d —*S) — (SKIP r [S], Q b)
by (auto simp add: read-def SKIP-Syncpiick-Mprefix « ?this) inj-on-diff <inj-on
d B
intro: mono-Mprefix-eq)

219

qed

corollary write-Syncpiick-SKIP :
«cta — P [S], SKIP s = (if ¢ a € S then STOP else cta — (P [S], SKIP s))»
and SKIP-Syncptick-write :
(SKIP r [S], d'b — Q = (if d b € S then STOP else d'b — (SKIP r [S], Q))
by (simp-all add: write-def Mprefiz-Syncpicr-SKIP SKIP-Syncpyc,-Mprefix Diff-triv)

corollary write0-Syncpiicr-SKIP :

<a — P [S], SKIP s = (if a € S then STOP else a — (P [S], SKIP s))»

and SKIP-Syncptici-writel :

SKIP r [S], b — Q = (if b € S then STOP else b — (SKIP r [S], Q))»

by (simp-all add: write0-def Mprefix-Syncpiick-SKIP SKIP-Syncpiick-Mprefix
Diff-triv)

lemma ndet-write-Syncpicr-SKIP :
«cMacA — Pa[S], SKIP r =
(ifc AN S ={} then NacA — (P a [S], SKIP r)
else (Mac(A — ¢ —°8) = (P a [S], SKIP r)) M STOP)»
(is «?lhs = (if - then ?rhsl else ?rhs2 M STOP)») if <inj-on ¢ A»
proof (split if-split, intro conjl impl)
assume ¢ ‘AN S ={}p
hence <4 — ¢ —“ S = A by blast
from <¢ ‘AN S = {}» show «?lhs = ?rhsi»
by (auto simp add: < ?thisy ndet-write-is-GlobalNdet-write0 disjoint-iff
Syncptick-distrib-GlobalNdet-right write0-Syncpticr-SKIP
intro!: mono-GlobalNdet-eq split: if-split-asm,)
next
show «?%lhs = ?rhs2 M STOP» if <¢c “AN S # {h
proof (cases <¢c ‘A — S ={})
assume ¢ ‘A — S ={}p
hence <A — ¢ —“ S = {}» by blast
from «¢ * A — S = {}» show «?lhs = ?rhs2 M STOP»
by (auto simp add: ndet-write-is-GlobalNdet-write0 GlobalNdet-is-STOP-iff
<Zthisy Syncpicr-distrib-GlobalNdet-right write0-Syncpiicr,-SKIP)
next
have ¢ “ (A —c—=‘S)=c ‘A — 5 by blast
show (?lhs = %rhs2 M STOP» if <¢ * A — S # {}
by (subst Ndet-commute, unfold ndet-write-is- GlobalNdet-write0 Syncpy;cr-distrib-GlobalNdet-right)
(auto simp add: GlobalNdet-is-STOP-iff write0-Syncpticr-SKIP
<?thisy <inj-on ¢ A inj-on-diff
simp flip: GlobalNdet-factorization-union
[OF <¢ “AN S #{}p «c“A—8S#{}, unfolded Int-Diff-Un]
introl: arg-cong2[where f = «(M)»] mono-GlobalNdet-eq)
qed
qed

220

corollary (in Syncpiick-locale) SKIP-Syncpiick-ndet-write :
unj-on d B = SKIP r [S], d'beB — Q b =
(ifd BN S={} then dbeB — (SKIP r [S], Q b)
else (dNMbe(B — d —* §) — (SKIP r [S], @ b)) N STOP)»
by (subst (1 2 8) Syncptick-locale-sym.Syncyiick-sym)
(simp add: Syncyi;cx-locale-sym.ndet-write-Syncy; e, -SKIP)

corollary (in Syncpiick-locale) Mndetprefiz-Syncyiicr-SKIP :
(Ma € A — PalS], SKIPr =
(if AN S ={} then Na € A — (P a[S], SKIP r)
else (Ma € (A — S) = (Pa [S], SKIP r)) 1 STOP),
using ndet-write-Syncpi;cr-SKIP[of id A P S r]
by (simp add: ndet-write-id-is-Mndetprefiz)

corollary (in Syncpiick-locale) Syncpiicr-SKIP-Mndetprefiz :
(SKIPr [S],Mbe B — Qb=
(ifBNS=1{}thennbe B— (SKIPr [S], Qb)
else (Mb e (B —S) — (SKIP r [S], Q b)) N STOP)»
by (subst (1 2 8) Syncpiick-locale-sym.Syncyiick-sym)
(simp add: Syncpiick-locale-sym. Mndetprefiz-Syncpticr-SKIP)

STOP Without injectivity, the result is a trivial corollary of read ¢ A P =
Mprefiz (¢ ¢ A) (P o inv-into A c¢) and Mprefiz A P [S], SKIP r = Oac(A
\ S) = (PalS], SKIP r).

lemma read-Syncpiicr-STOP :
«c?a€A — Pa[S], STOP = c?ac(A — c —*S) = (P a [S], STOP), if <inj-on
c A
proof —
have ¢ ‘(A —c—‘S)=c ‘A — 5 by blast
show «c¢?acA — P a [S], STOP = c?ac(A — ¢ —°S) — (P a [S], STOP)»
by (auto simp add: < 7thisy read-def Mprefiz-Syncptick-STOP inj-on-diff <inj-on
c A
intro: mono-Mprefix-eq)
qed

lemma STOP-Syncptick-read :
«STOP [S], d?beB — Q b = d?be(B — d —* S) — (STOP [S], Q b) if
<inj-on d B»
proof —
have «d ‘(B —d —*S)=d ‘B — S» by blast
show «STOP [S], d?beB — Q b = d?be(B — d —°S) — (STOP [S], Q b)»
by (auto simp add: « ?thisy read-def STOP-Syncyicr-Mprefiz inj-on-diff <inj-on
d B
intro: mono-Mprefix-eq)
qed

221

corollary write-Syncpticr-STOP :
«cta — P [S]), STOP = (if ¢ a € S then STOP else cta — (P [S], STOP))
and STOP-Syncpici-write :
«(STOP [S], d'b — Q = (if d b € S then STOP else d'b — (STOP [S], Q))
by (simp-all add: write-def Mprefiz-Syncpiick-STOP STOP-Syncyicr-Mprefic
Diff-triv)

corollary write0-Syncpiick-STOP :

<a — P [S], STOP = (if a € S then STOP else a — (P [S], STOP))»

and STOP-Syncpick-write0 :

«(STOP [S], b — Q = (if b € S then STOP else b — (STOP [S], Q))

by (simp-all add: write0-def Mprefiz-Syncpiick,-STOP STOP-Syncyiicr-Mprefiz
Diff-triv)

lemma ndet-write-Syncpiicr-STOP :
«cMacA — Pa[S], STOP =
(ifec AN S ={} then MNacA — (P a [S], STOP)
else (MNac(A — ¢ —°8S) = (P a [S], STOP)) N STOP),
(is «?lhs = (if - then ?rhsl else ?rhs2 M STOP)») if <inj-on ¢ A»
proof (split if-split, intro conjl impl)
assume ¢ ‘AN S ={}p
hence <4 — ¢ —“ S = A by blast
from <¢ ‘AN S = {}» show «?lhs = ?rhsi»
by (auto simp add: < ?thisy ndet-write-is-GlobalNdet-write0 disjoint-iff
Syncptick-distrib-GlobalNdet-right write0-Syncpticr-STOP
intro!: mono-GlobalNdet-eq split: if-split-asm,)
next
show «?%lhs = ?rhs2 M STOP» if <¢c “AN S # {h
proof (cases <¢c ‘A — S ={})
assume ¢ ‘A — S ={}p
hence <A — ¢ —“ S = {}» by blast
from «¢ * A — S = {}» show «?lhs = ?rhs2 M STOP»
by (auto simp add: ndet-write-is-GlobalNdet-write0 GlobalNdet-is-STOP-iff
«Zthisy Syncpicr-distrib-GlobalNdet-right write0-Syncpiicr-STOP)
next
have ¢ “ (A —c—=‘S)=c ‘A — 5 by blast
show (?lhs = %rhs2 M STOP» if <¢ * A — S # {}
by (subst Ndet-commute, unfold ndet-write-is- GlobalNdet-write0 Syncpy;cr-distrib-GlobalNdet-right)
(auto simp add: GlobalNdet-is-STOP-iff write0-Syncpticr-STOP
<?thisy <inj-on ¢ A inj-on-diff
simp flip: GlobalNdet-factorization-union
[OF <¢ “AN S #{}p «c“A—8S#{}, unfolded Int-Diff-Un]
introl: arg-cong2[where f = «(M)»] mono-GlobalNdet-eq)
qed
qed

222

corollary (in Syncpiick-locale) STOP-Syncyicr-ndet-write :
tnj-on d B = STOP [S], d"'beB — Q b =
(ifd BN S={} then dibeB — (STOP [S], Q b)
else (dMbe(B — d —“S) — (STOP [S], Q b)) N STOP)»
by (subst (1 2 8) Syncptick-locale-sym.Syncyiick-sym)
(simp add: Syncpicx-locale-sym.ndet-write-Syncyick-STOP)

end

223

224

Chapter 9

Operational Semantics Laws

9.1 Behaviour of initials

9.1.1 TickSwap

lemma initials- TickSwap :
((TickSwap P)° = (if P = L then UNIV
else {ev a |a. eva € P°} U {V/((s, 7)) |rs. /((r, s)) € P°})»
by (auto simp add: TickSwap-is-Renaming initials-Renaming image-iff
map-eventy;c-eq-tick-iff map-eventy;c-eq-ev-iff
tick-eq-map-eventy;cr-iff ev-eqg-map-eventyic,-iff)
(metis tick-swap.elims)

9.1.2 Sequential Composition

lemma initials-Seqptick
«(Ps3y Q)° = (if P= L then UNIV
else {ev a|a. eva € P} U (Ure{r. /(r) € P°}. (Q r))))»
(is <- = (if - then - else ?rhs)y)
proof (split if-split, intro conjl impl)
show «P = L = (P3;, Q)° = UNIV)» by simp
next
show (P, Q) = {evala. eva e P’} U (Jre{r. /(r) € P°}. (Q r)°) if <P
#* 1
proof (intro subset-antisym subsetl)
fix e assume (e € (P;, Q)%
from eventpyicr.evhaust consider ¢ where <e = ev @> | r where (e = V(1))
by blast
thus <e € 7rhs
proof cases
from e € (P;, Q)% <P # L) show e = eva => e € ?rhs) for a
by (auto simp add: image-iff initials-def Seqpticr-projs Cons-eq-append-conv
BOT-iff-Nil-D intro: D-T dest: initials-memD)
(use initials-memlI in <blast dest: initials-memD))
next
from e € (P;, Q)% <P # L) show <e = /(r) => e € ?rhs) for r

225

by (auto simp add: image-iff initials-def Seqpiicr-projs BOT-iff-Nil-D
Cons-eq-append-conv)
qed
next
show <e € ?rhs = e € (P, Q)% for e
by (simp add: initials-def Seqpiick-projs, elim disjE exE conjE)
(fastforce, metis list.simps(8) self-append-conv?2 tickFree-Nil)
qed
qed

9.1.3 Synchronization Product

lemma (in Syncpiick-locale) initials-Syncppick
(P [S], Q)F° =
(if P= 1LV Q = L then UNIV else
{evala.a€ SAewac€ PPAhevac Q®Vag SA(ewaec PPVevac Q)}
U
{V(r-8) |r-s r s. tick-join r s = Some r-s A /' (r) € P° A /(s) € Q°})»
(is (P [S]y Q) = (if P =LV Q = L then UNIV else ?rhs-ev U ?rhs-tick)»)
proof (split if-split, intro conjl impl)
show «P =1V Q=1= (P[S], Q°= UNIV,
by (metis Syncpiick-is-BOT-iff initials-BOT)
next
show «(P [S], Q)° = #rhs-ev U rhs-ticks if non-BOT : <= (P =1V Q = L)
proof (intro subset-antisym subsetl)
show (e € ?rhs-ev U ?rhs-tick = e € (P [S], Q)" for e
proof (elim UnE)
assume <e € ?rhs-ev)
then consider a where <e = ev a» <a € S) <eva € P% <eva € Q%
| a where <e = eva> <a ¢ S) <eva € POV evae Q% by blast
thus <e € (P [S], @)
proof cases
fix a assume ¢ = ev a» <a € S» <ev a € P* <eva € Q%
have x : ([ev a setinterleaves yick_join (([ev al, [ev a]), S)
by (simp add: <a € S»)
from <ev a € P% <eva € Q% show e € (P [S], Q)
by (simp add: <e = ev a» initials-def T-Syncpiicr) (use * in blast)
next
fix a assume ¢ = ev a» <a ¢ S <eva € P°V eva € Q%
from <eva € P'V eva € Q) show <e € (P [S], Q)%
proof (elim disjE)
assume ¢ev a € P%)
have x : «[ev a] setinterleaves yick_join (([ev al, []), S)
by (simp add: <a ¢ S»)
from <ev a € P% show <e € (P [S], Q)%
by (simp add: <e = ev @ initials-def T-Syncpiick) (meson * is-processT1-TR)
next
assume <ev a € Q%)
have x : «[ev a] setinterleaves yick_join (([J, [ev al), S)

226

by (simp add: <a ¢ S»)
from <ev a € Q°» show <e € (P [S], Q)%
by (simp add: <e = ev @ initials-def T-Syncpiicr) (meson * is-processT1-TR)
qed
qed
next
assume <e € ?rhs-tick»
then obtain r-s r s where «<tick-join r s = Some r-$
e = /(r-s)» «/(r) € P% «/(s) € Q% by blast
have « : «([/(r-s)] setinterleaves yick_join (([V (1)), V(s)]),)
by (simp add: <tick-join v s = Some 7-5)
from «/(r) € P% «/(s) € Q°» show <e € (P [S], Q)%
by (simp add: <e = V/(r-s)» initials-def T-Syncpiick) (use * in blast)
qed
next
fix e assume e € (P [S], Q)"
then consider t-P t-QQ where <t-P € T Py <t-Q € T
[e] setinterleaves s ick-join ((t-P, t-Q), S)
| (div) t u t-P t-Q
where (e =t Q w (ftF w <tFt VvV u = [
«t setinterleaves s yick_ioin ((t-P, t-Q), S)
t-PeDPANt-QeT QViEPeT PAt-QeD @
unfolding initials-def T-Syncpiicr by blast
thus (e € ?rhs-ev U ?rhs-tick>
proof cases
show «(t--P € T P = t-Qc T Q =
le] setinterleaves s yick_join ((¢-P, +-Q), §) =
e € ?rhs-ev U ?rhs-tick> for t-P t-Q
by (cases e; cases t-P; cases t-Q)
(auto simp add: initials-def setinterleavingyy;cr-simps
split: if-split-asm option.split-asm eventp,i;cr.splits
dest!: Nil-setinterleavesp;cr)

next
case div

have <t # [» by (metis BOT-iff-Nil-D Nil-setinterleavespick div(4,5) non-BOT)
hence ¢t = [e] A u =[]

by (metis append-Cons append-Nil div(1) list.inject neq-Nil-conv)
with div(4, 5) non-BOT show <e € ?rhs-ev U ?rhs-tick>
by (cases e; cases t-P; cases t-Q)
(auto simp add: initials-def setinterleavingpticr-simps BOT-iff-Nil-D
split: if-split-asm eventpticy.splits option.split-asm
dest!: Nil-setinterleavespy;cr, intro: D-T)
qed
qed
qed

227

9.2 Laws of After

9.2.1 Sequential Composition

locale AfterDuplicated-same-events = AfterDuplicated ¥, g
for ¥, :: «("a, 'r) processprick = 'a = (‘a, 'r) processpiick’
and Ug = «(‘a, 's) processpiick = 'a = ('a, 's) processpiick?
begin

notation After,.After (infixl <aftery,> 86)
notation Afterg.After (infixl <afterg> 86)

lemma not-skippable-or-not-initialR-After-Seqptick:
«(P3y Q) afterg a = (if ev a € P° then P aftery a3, Q else g (P35, Q) a)
if <range tick N P° = {} v (V7. /(r) € P* — eva ¢ (Q r)°)
proof (cases <P = 1)
show (P = 1L = (P, Q) afterg a =
(if ev a € P° then P after, a3, Q else Vg (P35, Q) a)
by (simp add: After.After-BOT)
next
note denot-projs = After. After-projs Seqptici-projs
assume non-BOT: <P # 1
with that have $: <eva € (P35, Q)° «— eva € P%
by (auto simp add: initials-Seqpiick)
show «(P;, Q) afterg a = (if ev a € P° then P aftery, a3, Q else Vg (P,
Q) a)
proof (split if-split, intro conjl impl)
from $ show <eva ¢ P* = (P, Q) afterg a = Vg (P35, Q)
by (simp add: Afterg.not-initial-After)
next
assume initial-P : <ev a € P%)
show (P, Q) afterg a = P afterq a5, @
proof (rule Process-eg-optimizedI)
fix t assume <t € D ((P;, Q) afterg a)
then consider (D-P) t’ u where <ev a # t = map (ev o of-ev) t' Q uy <t’
€ D Py «tF th «ftF w
| (D-Q) t' r uw where <ev a # t = map (ev o of-ev) t' Q wy «t' Q [/ (r)] €
T Py <tFth «ue D (Qr)
by (auto simp add: denot-projs $ initial-P)
thus <t € D (P afterq a3, Q)
proof cases
case D-P with non-BOT initial-P show <t € D (P aftery a3, Q)
by (cases t') (auto simp add: BOT-iff-Nil-D denot-projs)
next
case D-@Q with initial-P show <t € D (P after, a;, Q)
by (cases t', simp-all add: BOT-iff-Nil-D denot-projs)
(metis D-T disjoint-iff initials-memlI rangel that, blast)
qed
next

228

fix ¢t assume <t € D (P after, a3, Q)
then consider (D-P) t’ u where «t = map (ev o of-ev) t' Q w) <ev a # t’
€D Py «(tF t) ftF w
| (D-Q) t' r u where <t = map (ev o of-ev) t' Q wy <eva # t' Q [/ (r)] €
T Py <tFth «ueD(Qr)
by (auto simp add: denot-projs initial-P)
thus «t € D ((P 3, Q) afters a)
proof cases
case D-P thus <t € D ((P 3, Q) afterg a)»
by (simp add: denot-projs $ initial-P Cons-eg-append-conv Cons-eq-map-conv)
(metis eventpick.disc(1) eventpiick.-sel(1) tickFree-Cons-iff)
next
case D-Q thus <t € D ((P;, Q) afterg a)
by (simp add: denot-projs $ initial-P Cons-eq-append-conv Cons-eq-map-conuv)
(metis append-Cons eventyi;ci.sel(1) is-ev-def tickFree- Cons-iff)
qed
next
fix t X assume (¢, X) € F ((P;, Q) afterg a) <t ¢ D ((P 3, Q) afters
a)
then consider (F-P) t’ where <ev a # t = map (ev o of-ev) t"
«(t', ref-Seqprick, X) € F Py «tF t
| (F-Q) t' r uw where <ev a # t = map (ev o of-ev) t' Q@ uwy <t' Q [V(r)] € T

AF th (u, X) € F(Qr)
by (auto simp add: denot-projs $ initial-P)
(metis (mono-tags, lifting) comp-apply list.simps(9) tickFree-Cons-iff)
thus (¢, X) € F (P afterq a5, Q)
proof cases
case F-P thus «(t, X) € F (P afterq a;, Q)
by (auto simp add: denot-projs initial-P)
next
case F-Q thus «(t, X) € F (P afterq a3, Q)
by (cases t', auto simp add:denot-projs initial-P intro: initials-meml)
(metis F-T Int-iff empty-iff initials-memI rangel that)
qed
next
fix t X assume «(t, X) € F (P afterq a5, Q) <t € D (P afterq a5, Q)
then consider (F-P) t’ where <t = map (ev o of-ev) t"
(eva # t', ref-Seqprick X) € F Py «tF th
| (F-Q) t' r u where <t = map (ev o of-ev) t' Q wy <eva # t'Q [V (r)] € T
P
GF th (u, X) € F(Qr)
by (auto simp add: denot-projs initial-P)
thus (¢, X) € F (P, Q) afters a)»
proof cases
case F-P thus «(t, X) € F ((P;, Q) afterg a)»
by (simp add: denot-projs $ initial-P Cons-eq-map-conv)
(metis eventpick.disc(1) eventpiick.sel(1) tickFree-Cons-iff)
next

229

case F-Q thus «(t, X) € F ((P;, Q) afterg a)
by (simp add: denot-projs $ initial-P Cons-eq-append-conv Cons-eq-map-conv)
(metis append-Cons eventpiick.disc(1) eventpyick.sel(1) tickFree-Cons-iff)
qed
qed
qed
qed

lemma skippable-not-initialL-After-Seqpiicr:
(Psy Q) aftersga=(if 3r./(r) e PP Nevae (Qr))
then Mre{r. /(r) € P° N eva € (Qr)°}. Qrafters a
else Wg (P35, Q) a)
(is «(Ps, Q) afterg a = (if ?prem then ?rhs else -)») if <ev a ¢ PY)
proof —
note denot-projs = After. After-projs Seqptick-projs GlobalNdet-projs
from initials-BOT <ev a ¢ P° have non-BOT : <P # 1) by blast
with <ev a ¢ P have $: <eva € (P, Q)° +— Zprem»
by (auto simp add: initials-Seqpiick)
show «(P;, Q) afterg a = (if ?prem then ?rhs else U5 (P, Q) a)
proof (split if-split, intro conjl impl)
show - %prem = (P, Q) afterg a = Vg (P, Q) @
by (rule Afterg.not-initial-After, use $ in blast)
next
show (P, Q) afterg a = ?rhs) if Zprem
proof (rule Process-eq-optimizedI)
fix ¢t assume <t € D ((P;, Q) afterg a)
then consider (D-P) t’ u where <ev a # t = map (ev o of-ev) t' Q uy <t’
€ D Py «tF th «ftF w
| (D-Q) t' r w where <ev a # t = map (ev o of-ev) t' Q wy «t' Q [/ (7)] €
T Py <tFth «ue D (Qr)
by (auto simp add: denot-projs «?prem> $ <ev a ¢ P%))
thus ¢t € D ?rhs
proof cases
case D-P with non-BOT <ev a ¢ P% show <t € D ?rhs)
by (simp add: denot-projs Cons-eq-append-conv Cons-eq-map-conv BOT-iff-Nil-D)
(metis D-T eventpiick.collapse(1) initials-meml tickFree-Cons-iff)
next
case D-Q with <ev a ¢ P* show «t € D ?rhs)
by (simp add: denot-projs Cons-eq-append-conv Cons-eq-map-conv)
(metis D-T append-Nil eventyi;ck.collapse(1) initials-memlI
is-process T3-TR-append tickFree-Cons-iff)
qed
next
from «?prem) show «t € D ?rhs = t € D ((P;, Q) afterg a)) for t
by (simp add: denot-projs $ Cons-eq-append-conv)
(metis append-Nil initials-memD tickFree-Nil)
next
fix ¢t X assume (¢, X) € F ((P 3/ Q) afterg a)» <t ¢ D ((P 3, Q) afters

230

"

then consider (F-P) t’ where <ev a # t = map (ev o of-ev) t
«(t', ref-Seqprick X) € F Py «tF th
| (F-Q) t' r u where <ev a # t = map (ev o of-ev) t' Q w
Q(r)eT P «Fth «(u, X) € F(Qr)
by (simp add: denot-projs $ «Zprem») metis
thus (¢, X) € F rhs
proof cases
case F-P with <ev a ¢ P% show «(t, X) € F ?rhs
by (cases t', simp-all add: denot-projs < ?premy)
(use F-T initials-memlI in blast)
next
case F-Q with <ev a ¢ P% «?prem) show «(t, X) € F ?rhs
by (cases t', auto simp add: denot-projs intro: initials-memlI)
(metis F-T initials-memlI)
qed
next
from «?prem) show «(t, X) € F %rhs = t ¢ D ?rhs =
(t, X) € F (P, Q) afterg a)) for t X
by (simp add: denot-projs $ Cons-eq-append-conv Cons-eg-map-conv split:
if-split-asm,)
(metis initials-memD self-append-conv2 tickFree-Nil)
ged
qed
qed

lemma skippable-initialL-initialR-After-Seqpticr:
(P35, Q) afterg a = (P aftery a5, Q)1 (Mre{r. /(r) € PP Aeva € (Q r)°}.
Q r afterg a)
(is «(P 3/ Q) afterg a = (P afterq a3, Q) N ?rhsy)
if assms: Ar. /(r) € PP ANeva € (Q 1)’ <evae P
proof (cases <P = 1)
show (P = 1L = (P, Q) afterg a = (P aftery a5, Q) M Zrhs
by (simp add: After.After-BOT)
next
note denot-projs = After.After-projs Seqpticr-projs GlobalNdet-projs Ndet-projs
show (P, Q) afterg a = (P aftery a3, Q) M ?rhsy if (P # 1)
proof (rule Process-eq-optimizedl)
fix t assume <t € D ((P;, Q) afterg a)
then consider (D-P) t' u where <ev a # ¢t = map (ev o of-ev) t' Q uy <t' €
D Py «tF ty «ftF w
| (D-Q) t' r v where <ev a # ¢t = map (ev o of-ev) t' Q@ wy <’ Q [V (r)] € T
Py <tFth <u € D (Q 1)
by (auto simp add: denot-projs initials-Seqpiicr assms split: if-split-asm)
thus <t € D ((P aftery a s, Q) M 2rhs)
proof cases
case D-P with <P # 1) show «t € D ((P afterq a;, Q) M 2rhs)

231

by (auto simp add: denot-projs assms Cons-eq-append-conv BOT-iff-Nil-D)
next
case D-Q thus <t € D ((P aftery a3, Q) M ?rhs)
by (auto simp add: denot-projs assms Cons-eq-append-conv)
(meson D-T initials-meml, blast)
qed
next
from <P # 1) show <t € D ((P afterq a;, Q) M ?rhs) =t € D ((P 3, Q)
afterg a)> for t
by (auto simp add: denot-projs assms initials-Seqpiicr Cons-eq-append-conv
Cons-eg-map-conv)
(metis eventpyick-disc(1) eventpiick.sel(1) tickFree-Cons-iff,
metis Cons-eg-appendl append-T-imp-tickFree eventy;cr.sel(1) list.distinct(1),
metis append-Nil initials-memD tickFree-Nil)
next
fix t X assume «(t, X) € F ((P;, Q) afterg a)) <t ¢ D ((P3;, Q) aftersg a)
then consider (F-P) t’ where <ev a # t = map (ev o of-ev) t"»
«(t', ref-Seqprick X) € F P> <tF th
| (F-Q) t' r uw where <ev a # t = map (ev o of-ev) t' Q w)
Q[(r) eT P <«tFth «(u, X) € F(Qr)
by (simp add: denot-projs assms initials-Seqpiick split: if-split-asm) meson+
thus «(t, X) € F ((P afterq a5, Q) M ?rhs)>
proof cases
case F-P thus «(t, X) € F ((P afterq a;, Q) M Zrhs)
by (auto simp add: denot-projs assms)
next
case F-Q with assms show «(t, X) € F ((P afterq a;, Q) M 2rhs)
by (cases t’, simp-all add: denot-projs)
(meson F-T initials-meml, blast)
qed
next
fix t X assume «(t, X) € F ((P aftero a3, Q) N ?rhs)y <t ¢ D ((P aftery a
s Q) M 7rhs)
hence «(t, X) € F (P afterq a3y, Q) Nt ¢ D (P afterq a5, Q) V
(t, X) € F %rhs A t ¢ D ?rhs» by (simp add: Ndet-projs)
thus «(t, X) € F (P, Q) afterg a)
proof (elim disjE conjE)
show «(t, X) € F (P afterq a3, Q) = t ¢ D (P aftery a3, Q) =
(t, X) € F (P, Q) afterg a)
by (simp add: denot-projs assms initials-Seqpiick <P # L» Cons-eg-append-conv
Cons-eg-map-conv)
(metis (no-types, lifting) Cons-eq-appendl eventpi;cr.sel(1) is-ev-def tick-
Free-Cons-iff)
next
from assms show «(t, X) € F ?rhs = t ¢ D ?rhs = (t, X) € F ((P 3/
Q) afterg a)»
by (simp add: denot-projs initials-Seqpiicr <P # L»
Cons-eg-append-conv Cons-eq-map-conv split: if-split-asm)
(metis append-Nil initials-memD tickFree-Nil)

232

qged
qed
qed

lemma not-initialL-not-initialR-After-Seqpiick:
eva¢g PP = (Ar./(r) e PP = eva ¢ (Qr)) =
(Ps/ Q) afterg a = Vg (P35, Q) a
by (meson skippable-not-initialL-After-Seqpiick)

lemma After-Seqptick:
(P3y Q) afterg a =
(ifVr./(r)e P’ — evadg (Qr)
then if eva € P° then P after, a3, Q else Vg (P35, Q) a
else if eva € PY
then (P after a3, Q) N (Mre{r. /(r) € PP A eva € (Q r)°}. Q rafterp
a)
else Mre{r. /(r) € P° N eva € (Qr)°}. Qr afterg a)
by (simp add: not-skippable-or-not-initialR-After-Seqpick
skippable-initial L-initialR-After-Seqpticr skippable-not-initialL-After-Seqpiick)

end

9.2.2 Synchronization Product

Because of the types, we have to extend the locale.

locale After-Syncpiick-locale = Syncpicr-locale tick-join +
Aﬁerlhs : After \Ijlhs + After'rhs : Aﬂer \Ilrhs + Aﬁerptick : Aﬁer \I/ptick
for tick-join :: <'r = 's = 't option)
and Uy, = <[(a, ') processpiick, 'al a, 'r) processpiick>
and U, 2 <[("a, 's) processpiick, 'a] a, 's) processpick’
and Wppek 0 ¢ ‘al = ('a, 't) processpiick>
begin

9
[("a, 't) processpiick,

notation After;,s. After (infixl <after;ps» 86)
notation After, . After (infixl <after,s> 86)
notation Afterpicr. After (infixl <afterpiicr> 86)

sublocale After-Syncytick-locale-sym :
After-Syncpiick-locale <As r. tick-join v 8» Wrns Vins Yprick
by unfold-locales

lemma initialL-not-initialR-not-in-After-Syncpici:
(P [Sly Q) afterpiick a = P afterips a [S], @ (is <Zlhs = Zrhs»)
if initial-hyps: <ev a € P% <ev a ¢ Q°» and notin: <a ¢ S>

proof (cases <P = LV Q = 1»)

233

show (P =1V Q = 1 = %lhs = ?rhs»
by (elim disjE) (simp-all add: Afterpiic.After-BOT Afteryy,s. After-BOT)
next
from initial-hyps and notin have init : <ev a € (P [S], Q)%
by (simp add: initials-Syncpiick)
show «?lhs = ?rhs) if non-BOT : <= (P =1V Q= 1)
proof (rule Process-eq-optimizedl)
fix ¢ assume <t € D ?lhs)
with init have <eva # t € D (P [S], Q) by (simp add: Afterpicr.D-After)
then obtain u v t-P ¢-Q
where % : <eva # t = u Q v (tF w <ftF v
(u setinterleaves s yick_join ((¢-P, +-Q), S)
t-PeDPAtLQeT QVEPeT PALQeDQ
unfolding D-Syncpticr, by blast
from *(4, 5) non-BOT have <u # [
by (auto simp add: BOT-iff-Nil-D dest: Nil-setinterleavesyiici)
with x(7) obtain v’ where <u = ev a # v’ «t = v’ Q v
by (cases u) simp-all
from (4, 5) indtial-hyps(2) obtain ¢-P’
where «(t-P = ev a # t-P' «u’ setinterleaves s ek _joim ((+-P', 1-Q), S)
by (cases t-P; cases t-Q)
(auto simp add: setinterleavingpiick-simps <u = ev a # u
split: eventpticr.splits if-split-asm option.split-asm
intro: D-T initials-memlI)
moreover from «t-P = ev a # t-P" %(2, 5)
have «t-P’' € D (P afterijps a) Nt-Q €T QV
t-P' € T (P afterips a) A t-Q € D
by (simp add: After;ns.After-projs initial-hyps(1))
moreover from x(2) have «tF u’y by (simp add: <u = ev a # u)
ultimately show <t € D ?rhs»
using *(8) by (auto simp add: <t = u’ Q v» D-Syncpiick)
next
fix ¢t assume <t € D ?rhs»
then obtain u v t-P t-Q)
where x : <t = u Q v» (tF w (ftF v
(u setinterleaves s yick_join ((¢-P, +-Q), S)
«t-P € D (P afterjps a) Nt-Q € T QV
t-P € T (P after;ps a) A t-Q € D @
unfolding D-Syncpticr, by blast
have (ev a # t = (ev a # u) Q v) by (simp add: x(1))
moreover from x(2) have (tF (ev a # u)> by simp
moreover from *(4)
have (ev a # u setinterleaves s y;ck_join ((ev a # t-P, t-Q), S)»
by (metis notin rev.simps(2) rev-setinterleavespy;cr-rev-rev-iff
setinterleavespyc-snoc-notinL)
moreover from x(5) have <eva # t-P € DPAt-Q €T QV
eva# t-PeT PANt-Qe D @
by (simp add: After;s.After-projs initial-hyps(1))
ultimately have <eva # t € D (P [S], Q)

234

using *(&) unfolding D-Syncy;cr by blast
thus <t € D ?lhs»
by (simp add: Afterpiicr.D-After init)
next
fix t X assume «(t, X) € F ?lhs)
<t ¢ D ?lhs
hence «(eva # t, X) € F (P [S], Q) <eva# t ¢ D (P [S], Q)
by (simp-all add: After,;cr.After-projs init)
then obtain ¢-P t-QQ X-P X-Q
where * : «(t-P, X-P) € F Py «(t-Q, X-Q) € F @
cev a # t setinterleavesy ick_join (P, t-Q), S)
«X C super-ref-Syncpiick tick-join X-P S X-Q»
unfolding Syncyiicr-projs by blast
from (2, 3) initial-hyps(2) obtain ¢-P’
where «(t-P = ev a # t-P" <t setinterleaves yjcpjoin ((¢-P', +-Q), S)
by (metis Cons-ev-setinterleavespiicn B F-T initials-meml)
moreover from (1) have ((t-P’, X-P) € F (P after;ps a)>
by (simp add: <t-P = ev a # t-P"y After;ps. F-After initial-hyps(1))
ultimately show (¢, X) € F ?rhs
using *(2, 4) by (auto simp add: Syncpi;ck-projs)
next
fix t X assume «(t, X) € F ?rhs
<t ¢ D ?rhs
then obtain ¢-P t-Q X-P X-Q
where * : «(t-P, X-P) € F (P after;ps a) «(t-Q, X-Q) € F
«t setinterleaves s yick_join ((¢-P, +-Q), S)
«X C super-ref-Syncpiick tick-join X-P S X-Q»
unfolding Syncyticr-projs by blast
from *(1) have «(ev a # t-P, X-P) € F P)
by (simp add: After;,s.F-After initial-hyps(1))
moreover from *(3)
have <ev a # t setinterleaves s yck_join ((ev a # t-P, t-Q), S)»
by (metis notin rev.simps(2) rev-setinterleavespy;cr-rev-rev-iff
setinterleavespt;ci-snoc-notinL)
ultimately have <(eva # t, X) € F (P [S], Q)
using *(2, 4) by (auto simp add: F-Syncyiick)
thus «(t, X) € F %lhsy by (simp add: Afterpiic. F-After init)
qed
qed

lemma (in After-Syncyiicr-locale) not-initialL-initialR-not-in-After-Syncpiick:
(P [S], Q) afterprick a = P [S], Q after,ns a> (is <Zlhs = ?rhs)
if initial-hyps: <ev a ¢ P% <eva € Q° and notin: <a ¢ S»
using After-Syncptick-locale-sym.initialL-not-initial R-not-in-After-Syncptick
[OF <eva € Q% <eva ¢ P «a ¢ S
by (simp add: Syncpiick-sym)

235

lemma not-initialL-in-After-Syncpicr:
evad¢ PP= ac S =
(P [S], Q) afterprick a = (if @ = L then L else Vyicr (P [S], Q) a)
by (simp add: Afterpiicr.-After-BOT, rule impl)
(subst Afterpiick.-not-initial-After, auto simp add: initials-Syncptick)

lemma not-initialR-in-After-Syncptick:
evag QP = aec S =
(P [S], Q) afterpiick a = (if P = L then L else Wpicr (P [S]y Q) a)
by (simp add: Afterpiicr.-After-BOT, rule impl)
(subst Afteryiick.-not-initial-After, auto simp add: initials-Syncpiick)

lemma initialL-initialR-in-After-Syncptick:
(P [Sly Q) afterpiick a = P afterins a [S], Q afteryns a> (is «?lhs = ?rhsy)
if initial-hyps: <ev a € P% <ev a € Q% and inside: <a € S»
proof (cases <P = 1LV Q = 1»)
show (P = 1V Q = 1 = %lhs = ?rhs»
by (elim disjE) (simp-all add: After.After-BOT)
next
from initial-hyps inside have init : <ev a € (P [S], Q)%
by (simp add: initials-Syncpiick)
show «?lhs = ?rhs) if non-BOT : <= (P =1V Q= 1)
proof (rule Process-eq-optimizedl)
fix t assume <t € D ((P [S], Q) afterpiick a)»
hence <eva # t € D (P [S], Q) by (simp add: Afterpiicr.D-After init)
then obtain u v t-P ¢-Q
where x : <eva # t = u Q vy <tF w <ftF v
(u setinterleaves s yick_join ((¢-P, +-Q), S)
t-PeDPAt-QeT QVIEPeT PANt-QeD @
unfolding D-Syncpicr by blast
from *(4, 5) non-BOT have <u # [
by (auto simp add: BOT-iff-Nil-D dest: Nil-setinterleavesyiick)
with x(1) obtain v’ where <u = ev a # u’ ¢t = v’ Q v
by (cases u) simp-all
from x(4) inside initial-hyps(1, 2) <u = ev a # uh
obtain t-P’ t-Q’ where (t-P = ev a # t-P"» (t-Q = ev a # t-Q"
w' setinterleaves yickjoin ((¢-P', +-Q), S)
by (metis (no-types, opaque-lifting) Cons-ev-setinterleavesy;ckE)
moreover from x(2) have «tF u’y by (simp add: <u = ev a # u)
moreover from x(5)
have «t-P’ € D (P after;ps a) A t-Q' € T (Q after,ps a) V
t-P' € T (P afterips a) A t-Q' € D (Q afteryps a)
by (simp add: <t-P = ev a # t-P" <t-Q = ev a # t-Q"
After. After-projs initial-hyps)
ultimately show <t € D ?rhs»
using *(8) by (auto simp add: <t = u’ Q v» D-Syncpiick)
next
fix ¢t assume <t € D ?rhs»

236

then obtain u v t-P t-Q)
where x : <t = u Q v» (tF w <ftF v
(u setinterleaves s yick_join (&P, -Q), S)
«t-P € D (P afterjps a) AN t-Q € T (Q afteryps a) V
t-P € T (P after;ps a) A t-Q € D (Q after,ps a)
unfolding D-Syncpticr, by blast
from x(1) have <ev a # t = (ev a # u) @ v> by simp
moreover from (2) have («tF (ev a # u)» by simp
moreover from *(4) have <ev a # u setinterleaves s ickjoin
((ev a # t-P, eva # t-Q), S)
by (simp add: inside)
moreover from x(5) have ceva # ttP e D PANeva# t-Q €T QV
eva# t-P€T PANevaF# t-Q € D @
by (simp add: After.After-projs initial-hyps)
ultimately have <eva # t € D (P [S], Q)
unfolding D-Syncpiicr, using =(3) by blast
thus <t € D ?lhs) by (simp add: Afterpiicr.D-After init)
next
fix t X assume (¢, X) € F ?lhsy <t ¢ D ?lhs
hence <(eva # t, X) € F (P [S], Q) <eva# t ¢ D (P [S], Q)
by (simp-all add: After.After-projs init)
then obtain t-P t-Q X-P X-Q
where * : «((t-P, X-P) € F P> «((t-Q, X-Q) € F @
cev a # t setinterleaves s yick_join ((¢-P, +-Q), S)
«X C super-ref-Syncpiick tick-join X-P S X-@Q»
unfolding Syncyticr-projs by blast
from *(3) obtain ¢t-P’ ¢-Q’
where «t-P = ev a # t-Py «t-Q = ev a # t-Q"
«t setinterleaves s yick_join (P, t-Q'), S)
by (metis (no-types) Cons-ev-setinterleavesyiciE inside)
moreover from *(1, 2) have «(¢t-P’, X-P) € F (P after;ps a)
(t-Q', X-Q) € F (Q afterpps a)
by (simp-all add: t-P = ev a # t-P) <t-Q = ev a # t-Q"
After.F-After initial-hyps)
ultimately show (¢, X) € F %rhs»
by (auto simp add: F-Syncpiick introl: (4))
next
fix t X assume «(t, X) € F %rhs) <t ¢ D ?rhs
then obtain t-P t-Q X-P X-Q
where * : «(t-P, X-P) € F (P after;ps a)
(t-Q, X-Q) € F (Q after,ns a)
«t setinterleaves s yick_join ((¢-P, +-Q), S)
«X C super-ref-Syncpiicr tick-join X-P S X-Q»
unfolding Syncpticr-projs by blast
from (1, 2) have ¢(ev a # t-P, X-P) € F P
(eva# t-Q, X-Q) € F @
by (simp-all add: After.F-After initial-hyps)
moreover from x(3) have <ev a # (¢ setinterleaves s ick_join

((ev a # t-P, eva # t-Q), S)

237

by (simp add: inside)
ultimately have <(ev a # t, X) € F (P [S], Q)
using *(4) by (simp (no-asm) add: F-Syncpiick) blast
thus «(t, X) € F ?%lhs» by (simp add: Afterpiick.F-After init)
qed
qed

lemma initialL-initialR-not-in-After-Syncpiick:
(P [S], Q) afterpiick a = (P afterins o [S], Q) M (P [S], Q afteryhs a)
(is «<?lhs = %rhsl M 2rhs2»)
if initial-hyps: <ev a € P% <ev a € Q> and notin: <a ¢ S
proof (cases <P = 1LV Q = 1»)
show (P = 1 vV Q = 1 = %lhs = %rhsl T ?rhs2»
by (elim disjE) (simp-all add: After.After-BOT)
next
from initial-hyps(1) notin have init : <eva € (P [S], Q)%
by (simp add: initials-Syncpiick)
show «?lhs = ?rhsi M ?rhs2y if non-BOT : <= (P =1LV Q= L)
proof (rule Process-eq-optimizedl)
fix t assume <t € D ?lhs
hence <eva # t € D (P [S], Q)
by (simp add: Afterpiicr.D-After init)
then obtain u v t-P t-Q)
where *x : <eva # t = u Q vy <tF w <ftF v
(u setinterleaves yick-join ((t-P, -Q), S)
t-PeDPAtQeT QVEtPeT PAt-QeD @
unfolding D-Syncpticr by blast
from (4, 5) non-BOT have «u # [|»
by (auto simp add: BOT-iff-Nil-D dest: Nil-setinterleavespi;cr)
with x(1) obtain v’ where <u = ev a # v’ ¢t = v’ Q@ v
by (cases u) simp-all
from x(2) have «tF u”y by (simp add: <u = ev a # u)
from *(4) notin <u = ev a # u’
consider t-P’ where «t-P = ev a # t-P’
' setinterleaves yicpjoin ((¢-P', t-Q), S)
| t-Q’ where «+-Q = ev a # t-Q%
' setinterleaves yickjoin ((¢-P, 1-Q'), S)»
by (metis (no-types) Cons-ev-setinterleavesyiciE)
thus <t € D (?rhsl M 2rhs2)»
proof cases
fix t-P’ assume $: (t-P = ev a # t-P)
w' setinterleavesy yick join ((¢-P', +-Q), S)
from *(5) have <-P’' € D (P afterips a) AN +-Q € T Q V
t-P' € T (P afterips a) A t-Q € D
by (simp add: $(1) After;ns.After-projs initial-hyps(1))
with $(2) %(3) «tF u’» have <t € D ?rhsl»
by (auto simp add: <t = v’ Q v> D-Syncpiick)

238

thus <t € D (?rhsl N ?rhs2)) by (simp add: D-Ndet)
next
fix t-Q' assume $: <t-Q = ev a # t-Q"
w' setinterleavesy yick join ((¢-P, t-Q"), S)
from x(5) have «--P € D P A t-Q' € T (Q after,ps a) V
t-P €T PAt-Q €D (Q afteryps a)
by (simp add: $(1) After,pns.After-projs initial-hyps(2))
with $(2) x(3) «tF u”» have <t € D ?rhs2»
by (auto simp add: <t = v’ Q v» D-Syncpiick)
thus <t € D (?rhsl N ?rhs2)y by (simp add: D-Ndet)
qed
next
fix t assume <t € D (?rhsl M 2rhs2)
then consider <t € D ?rhsly | <t € D rhs2)
by (auto simp add: D-Ndet)
hence <eva # t € D (P [S], Q)
proof cases
assume <t € D ?rhsi)
then obtain u v t-P t-Q
where x : <t = u Q vy (tF w «ftF v
< setinterleaves s yick_join ((¢-P, -Q), S)
«t-P € D (P afterips a) Nt-Q €T QV
t-P € T (P after;ps a) A t-Q € D @
unfolding D-Syncpticr by blast
from (1) have <eva # t = (ev a # u) @ v) by simp
moreover from *(2) have «tF (ev a # u)» by simp
moreover from *(4)
have <ev a # u setinterleaves s ickjoin ((ev a # t-P, t-Q), S)»
by (metis notin rev.simps(2) rev-setinterleavesyy;cr-rev-rev-iff
setinterleavesp;ck-snoc-notinL)
moreover from x(5) have <eva # -P € DPAt-Q €T QV
eva# t-PeT PANt-QeD @
by (simp add: After;,s.After-projs initial-hyps(1))
ultimately show <eva # t € D (P [S], Q)
using *(%) unfolding D-Syncy;cr by blast
next
assume <t € D 7rhs2»
then obtain u v t-P t-Q
where x : <t = u Q v» (tF w ftF v
u setinterleaves yick_join (&P, t-Q), S)
«(t-P € DPAtQ€eT(Q after.ps a) V
t-P €T P At-Q€D(Q afteryps a)
unfolding D-Syncpticr by blast
from (1) have <eva # t = (ev a # u) @ v) by simp
moreover from *(2) have «tF (ev a # u)» by simp
moreover from x(4) have <ev a # u setinterleaves s ickjoin ((t-P, ev a #
-Q), S)
by (metis notin rev.simps(2) rev-setinterleavesyy; i -rev-rev-iff
setz’nterleavesptick-snoc-notinR)

239

moreover from x(5) have «(t:P € D PANeva # t-Q €T QV
t-PeT PANeva# t-QeD Q
by (simp add: After,ps.After-projs initial-hyps(2))
ultimately show <eva # t € D (P [S], Q)
using *(3) unfolding D-Syncyiicr by blast
qed
thus <t € D ?lhs) by (simp add: Afterpiicr.D-After init)
next
fix t X assume «(t, X) € F %lhs) <t ¢ D ?lhs
hence «(eva # t, X) € F (P [S], Q) <eva# t ¢ D (P [S], Q)
by (simp-all add: Afteryi;cx.After-projs init)
then obtain t-P t-QQ X-P X-Q
where * : <(t-P, X-P) € F P» «(t-Q, X-Q) € F
cev a # t setinterleaves s yick_join ((t-P, +-Q), S)
«X C super-ref-Syncpiick tick-join X-P S X-Q»
unfolding Syncytick-projs by blast
from x(3) notin
consider t-P’ where «t-P = ev a # t-P’
«t setinterleaves s yick_join ((¢-P', 1-Q), S)
| t-Q' where <-Q = ev a # -Q"
«t setinterleaves s yick_join (P, +-Q), S)
by (metis (no-types) Cons-ev-setinterleavespiciE)
thus «(t, X) € F (?rhsl M ?rhs2)»
proof cases
fix t-P’ assume $: (t-P = ev a # t-P"
«t setinterleaves s yick_join ((¢-P7, t-Q), S)
from (1) have «(t-P’, X-P) € F (P after;ps a)
by (simp add: $(1) Afterins.F-After initial-hyps(1))
with $(2) %(2, 4) have «(t, X) € F 2rhsl»
by (auto simp add: F-Syncptick)
thus «(t, X) € F (?rhsl T ?rhs2)» by (simp add: F-Ndet)
next
fix t-Q' assume $: <t-Q = ev a # t-Q"
«t setinterleaves s yickjoin (P, +-Q), S)
from %(2) have «(t-Q’, X-Q) € F (Q after,ns a)
by (simp add: $(1) After,ps.F-After initial-hyps(2))
with $(2) %(1, 4) have «(t, X) € F 2rhs2»
by (auto simp add: F-Syncpiick)
thus «(t, X) € F (9rhsl T ?rhs2)» by (simp add: F-Ndet)
qed
next
fix t X assume «(¢, X) € F (%rhsl N ?rhs2)y <t ¢ D (rhsl T 2rhs2)
then consider «(t, X) € F ?rhsi» <t ¢ D ?rhsi»
| <(t, X) € F 2rhs2» <t ¢ D ?rhs2)
by (auto simp add: Ndet-projs)
hence «(eva # t, X) € F (P [S], Q)
proof cases
assume <(¢, X) € F ?rhsi> <t ¢ D ?rhsl»
then obtain ¢-P t-Q X-P X-Q

240

where * : «(t-P, X-P) € F (P after;ps a) «(t-Q, X-Q) € F
«t setinterleaves s yick_join ((¢-P, +-Q), S)
«X C super-ref-Syncpick tick-join X-P S X-Q»
unfolding Syncp¢icr-projs by blast
from (1) have «(ev a # t-P, X-P) € F P»
by (simp add: After;ns.F-After initial-hyps(1))
moreover from x(3)
have <ev a # t setinterleaves s jckjoin ((ev a # t-P, t-Q), S)»
by (metis notin rev.simps(2) rev-setinterleavesy;cr-rev-rev-iff
setinterleavesp e, -snoc-notinl)
ultimately show «(eva # t, X) € F (P [S], Q)
by (auto simp add: F-Syncpiicr introl: (2, 4))
next
assume «(t, X) € F ?rhs2> <t ¢ D ?rhs2)
then obtain ¢-P t-Q) X-P X-Q
where * : «(t-P, X-P) € F P> «(t-Q, X-Q) € F (Q after,ps a)
<t setinterleaves s yick_join ((¢-P, +-Q), S)
«X C super-ref-Syncptick, tick-join X-P S X-@Q»
unfolding Syncyiicr-projs by blast
from *(2) have «(ev a # t-Q, X-Q) € F @»
by (simp add: After,ys. F-After initial-hyps(2))
moreover from x(3)
have <ev a # t setinterleaves s ick join ((t-P, ev a # t-Q), S)
by (metis notin rev.simps(2) rev-setinterleavesy;ci-rev-rev-iff
setz’nterleavesptick—snoc—notinR)
ultimately show «(ev a # t, X) € F (P [S], Q)
by (auto simp add: F-Syncpiicr introl: (1, 4))
qed
thus «(t, X) € F ?2lhs» by (simp add: Afterpiick.F-After init)
qed
qed

lemma not-initialL-not-initialR-After-Syncptick :
eva ¢ PP = eva¢ Q" = (P [S], Q) afterprick a = Yppick (P [S]y Q) @
by (subst Afterpiicr.not-initial-After) (auto simp add: initials-Syncptick)

Finally, the monster theorem !

theorem After-Syncptick:
(P [Sly Q) afterpiick a =
(ifP=1V Q=1 then L
else ifevac PONevac Q°
then if a € S then P after;ns a [S], Q afteryns a
else (P afteryns a [S], Q) M (P [S], Q afteryns a)
else ifeva € P A a ¢ S then P afterips a [S], Q
else ifeva€ Q°Na¢ Sthen P[S], Q after,ns a
else Ypiicr (P [S]y Q) a)
by (auto simp add: Afterpicr. After-BOT initialL-not-initialR-not-in-After-Syncpi;ck

241

initialL-initial R-in- After-Syncpiicr nitialL-initialR-not-in-After-Syncpeick
not-initialL-initial R-not-in-After-Syncpiicr, not-initialL-not-indtialR-After-Syncpiick
not-initialR-in-After-Syncpiicr not-initialL-in-After-Syncpiick)

end

9.3 Small Steps Transitions

9.3.1 Extension of the After Operator

9.3.2 Sequential Composition

locale AfterExtDuplicated-same-events = AfterExtDuplicated ¥, Qo Y5 Qg
for . = <[('a, 'r) processpiick, ‘a] = ('a, ') processpiick>
and Q, :: <[('a, 'r) processptick, 'T] = (‘a, 'r) processpiick>
and Vg = [(‘a, 's) processprick, 'a] = ('a, 's) processpiick?

and Qg =z <[('a, 's) processpiick, 's] = (‘a, 's) processpiick>

sublocale AfterExtDuplicated-same-events C AfterDuplicated-same-events .
— Recovering AfterDuplicated-same-events. After-Seqpeick

context AfterExtDuplicated-same-events
begin

notation After;;crq.After (infixl <after,’ 86)
notation After;;cip.After (infixl <afterg> 86)
notation Afteriicipa.Aftersicr (infixl <after o> 86)
notation After;icip.Aftersick (infixl <after s3> 86)

lemma Aftersicn-Seqprick :
«(Psy Q) afteryp e =
(case e of /(1) = Qp (P3y Q) T
| eva=
if Vr./(r) e PP — eva ¢ (Qr)°
then ifeva € P°
then P after yo ev a s, Q else U5 (P, Q) a
else if eva € PY
then (P after o evai, Q)N
(Mre{r. /(r) e PP Neva € (Qr)'}. Qrafteryp eva)
else ire{r. /(r) € P° A eva € (Q r)°}. Q rafter 5 ev a)

242

by (auto simp add: After,;ckp.Afteryicr-def Afteryicra.Afteryicr-def After-Seqpiick
split: eventpick.split)

end

Synchronization Product

locale AfterExt-Syncpiick-locale = Syncpeick-locale tick-join +
AﬂeT’El’tlhs : AfterExt Winse Qns +
AfterExt,ps : AfterExt U,.ps Qrps +
AfterExtpiicr + AfterExt Vyiick Qptick
for tick-join :: <'r = 's = 't option)

and Uy, = <[(‘a, 1) processpiick, 'a] = ('a, 'r) processpiick?

and Qs 2 <[(“a, 'r) processpiick, 'r] = (‘a, ') processpiici?

and V¥, 2 <[(a, 's) processpiick, 'a] = (a, 's) processpiici?

and Q.5 :x <[("a, 's) processprick, 's] = (‘a, 's) processpiick>

and U,k 2 <[('a, ’t) processpiick, 'a] = (‘a, 't) processpiick>

and Qpick = <[("a, 't) processprick, 't] = (‘a, 't) processpiick’
begin

sublocale After-Syncpiick-locale tick-join Wips Wyps Ypiickr by unfold-locales

sublocale AfterExt-Syncptick-locale-sym :
AfterExt-Syncpicr-locale <As 1. tick-join v s» Wrns Qprns Yine QUns Yprick Uptick
by unfold-locales

notation AfterExt;y . Afteryicr (infixl <after sins> 86)
notation AfterExt, . Afteryicr, (infixl <after s.ps> 86)
notation AfterEut, ;i Aftersicr (infixl <after spiicr> 86)

theorem Aftery;ci-Syncptick:
(P [Sly Q) afteryprion € =
(case e of V(r-5) = Qprick (P [S], Q) r-s
| eva=
ifP=1V Q= 1 then L
else ifevac PONevac Q°
then if a € S then P after sins ev a [S], Q after srns ev a
else (P after sins ev a [S], Q) N (P [S], @ after srns ev a)
else ifeva € PO A a¢ Sthen P after sins eva [S], Q
else ifeva€ Q° N a¢ Sthen P[S], Q aftersrns €v a
else Ypiick (P [S]y Q) a)
by (cases e) (simp-all add: AfterExt. Aftery;c,-def After-Syncpiick)

end

243

9.3.3 Generic Operational Semantics as Locales

Sequential Composition

locale OpSemTransitionsDuplicated-same-events =
OpSemTransitionsDuplicated W, o T-trans, Vg g T-transg
for ¥, :: <[(a, ') processpiick, ‘a] = ('a, ') processpiici>
and Q, = <[(‘a, 'r) processpiick, '] = ('a, 'r) processptick>
and 7-trans, :: «[(‘a, 'r) processpiick, ('a, 'r) processpiick] = booly (infixl
Ca~rr 50)
and Ug = <[(‘a, 's) processpiick, 'a] = ('a, 's) processpiick?
and Qg :: <[(‘a, 's) processpiick, 's) = (‘a, 's) processpici>
and 7-transg = <[(a, 's) processpiick, (a, 's) processpiick] = booly (infixl <g~-,»
50)

sublocale OpSem TransitionsDuplicated-same-events C After ExtDuplicated-same-events
by unfold-locales

context OpSemTransitionsDuplicated-same-events begin

notation OpSemTransitions,.ev-trans (<- o~- - [50, 8, 51] 50)
notation OpSemTransitions,.tick-trans (- o~ /- - [50, 3, 51] 50)
notation OpSemTransitionsg.ev-trans (<- g~- -» [50, 3, 51] 50)
notation OpSemTransitionsg.tick-trans (- g~ - - [50, 8, 51] 50)

lemma 7-trans-SeqpiickR: <P 35/ Q g~r Q) if <P o~ P and <Q r g~ Q)
proof —

from that(1) have <P Cpp SKIP

by (meson OpSemTransitions,,.exists-tick-trans-is-initial-tick initial-tick-iff-F'D-SKIP)

with FD-iff-eq-Ndet have <P = P M SKIP r» ..

hence <P;, Q = (P;, Q) N (SKIP r;, Q)

by (metis Seqpiick-distrib-Ndet-right)

also have ... = (P;, Q) M Q r by simp

also have «... g~ Q ™ by (simp add: OpSemTransitionsg.T-trans-NdetR)

finally show <P, Q g~- Q" by (rule OpSemTransitionsg.T-trans-transitivity)
(fact that(2))
qged

lemma «/(r) € P = Q 1 g~e Q' = P, Q pwe Q) for P :: <(‘a, 'r)
PrOCESSpiick?

by (meson OpSemTransitionsg.T-trans-eq OpSem Transitionsg.T-trans-ev-trans
T-trans-Seqpiick R OpSemTransitions,.exists-tick-trans-is-initial-tick)

end

locale OpSemTransitionsSeqpiick =
OpSemTransitionsDuplicated-same-events W, Q. T-trans, Wg Qg T-transg

244

for W, :: <[('a, 'r) processpiick, 'al = (a, 'r) processpiick?
and Q, :: «[('a, 'r) processpiick, 'T] = ('a, 'T) processpiick>
and 7-trans, :: <[(‘a, 'r) processpiick, ('a, 'r) processpiick] = booly (infixl
(oot 50)
and Vg == <[(a, 's) processprick, 'al = ('a, 's) processpiick?
and Qg :: [('a, 's) processpiick, 's] = (‘a, 's) processpiick?
and 7-transg :: <[('a, 's) processpiick, ('a, 's) processpiick] = booly (infixl <g~-r»
50) +
assumes 7T-trans-Seqptick L 1 (P o~ P'=— P s @ por P’ s @
begin

lemma ev-trans-SeqpiickL: <P o~ve P'= P/ Q g~e P53/ @
by (cases <P = L, solves <simp add: OpSemTransitionsg. BOT-ev-trans-anything)
(auto simp add: OpSemTransitionsg.ev-trans-def After;ck-Seqptick initials-Seqpiick
OpSemTransitions,,.ev-trans-def
intro: OpSemTransitionsg.T-trans-NdetL OpSemTransitionsg.T-trans-transitivity
T-trans-Seqpiick L)

lemmas Seqptick-OpSem-rules = T-trans-Seqpiick L ev-trans-Seqpiicr L T-trans-Seqpiicr R
end

Synchronization Product

locale OpSemTransitions-Syncyiick-locale = Syncpiick-locale (QV)y +
OpSemTransitions;ps : OpSemTransitions Vins Qns <(hs™r) +
OpSemTransitions,ps : OpSemTransitions V,.ps Qpps ((rhs~r)r +
OpSemTransitionsyiicr, : OpSemTransitions Ypiick Qptick (ptick~>r)
for tick-join :: <'r = 's = 't option> (infix]l «@v» 100)

and Uy, = <[(a, 1) processpiick, ‘a] = (‘a, ') processpiick?

and Qs 2 <[(“a, 'r) processpiick, 'r] = (‘a, 'T) processpiick?

and T-trans;ps 2 <[('a, 'r) processpiick, ('@, 'T) processpiick] = boolr (infixl
{Ihs™~r? 50)

and U, 2 <[("a, 's) processpiick, 'a] = (‘a, 's) processpiick?

and Q.5 :: <[(‘a, 's) processpiick, 's] = (‘a, 's) processpiick>

and T-trans,ns = [(‘a, 's) processpiick, ('a, 's) processpiick] = boolr (infixl
{rhs™~r) 50)

and Vpicr 2 <[(‘a, 't) processprick, 'al = ('a, 't) processpiick>

and Qpicr = <[("a, 't) processprick, 't] = (‘a, 't) processpiick)

and 7-transpiick : <[(‘a, 't) processpiick, ('a, 't) processpiick] = booly (infixl

<ptick“’">7'> 50) +
assumes 7-trans-SyncpiickL 1 <P psvsr P'= P [A]/ Q ptick~~+ P'[A]l, @

and 7-trans-Syncpiick R : <Q rhs~r @ = P [Al, Q ptick~- P [A], Q"
begin

sublocale AfterExt-Syncptick-locale by unfold-locales

245

sublocale OpSemTransitions-Syncpyt;cr-locale-sym :
OpSemTransitions-Syncpiscr-locale
AsT. 7RV 8 Vips Qrps <(rhsw7')> Wins Qns <(lhsw‘r)> \I/ptick thick <(ptickwﬂr)>
proof unfold-locales
show (P ,ps~r P'= P [A] ssym Q ptick~>+ P' [Alysym @ for P P" A Q
by (simp add: Syncpiick-sym T-trans-SyncpiickR)
next
show <Q Lhs™T Q/ =P [[A]]/sym Q ptick™T P [[A]]/sym Q/> for Q Q/ AP
by (simp add: Syncpiick-sym T-trans-Syncpiicr L)
qed

notation OpSemTransitions;ys.ev-trans (- jps~- - [50, 3, 51] 50)
notation OpSemTransitionsys.tick-trans (<- 1ps~ - - [50, 8, 51] 50)
notation OpSemTransitions,ps.ev-trans (- rps~- - [50, 3, 51] 50)
notation OpSemTransitions,s.tick-trans (¢- pps~ - - [50, 3, 51] 50)
notation OpSemTransitionspick-ev-trans (- prick~- - [50, 3, 51] 50)
notation OpSemTransitions,;cy.tick-trans (- ptick~>y- - (60, 8, 51] 50)

We do not need the assumptions 7-trans-Syncpiicr L 7-trans-Syncpiicr R for
the three following lemmas.

lemma 7-trans-SKIP-Syncpticr L :
<P HA]]/ Q ptick™~T SKIP r [[A]]/ Q) if <P Ihs™~ /T P’
proof —
from that have <P Crp SKIP 1)
by (simp add: OpSemTransitionss.tick-trans-def initial-tick-iff-FD-SKIP)
with FD-iff-eq-Ndet have <P = P 1 SKIP r» ..
hence <P [A], Q = (P [A]l, Q) N (SKIP r [A], Q)
by (metis Syncpiicr-distrib-Ndet-right)
also have «... picx~r SKIP r [A] , O
by (fact OpSemTransitionsptck.T-trans-NdetR)
finally show P [A], Q ptick~+ SKIP r [A], @ .
qed

lemma 7-trans-SKIP-Syncptick R :
(P [Aly Q ptick~+ P [A], SKIP s if <Q rphs~ys Q)
proof —
from that have «Q Crp SKIP s»
by (simp add: OpSemTransitions,s.tick-trans-def initial-tick-iff-FD-SKIP)
with FD-iff-eq-Ndet have «Q = Q 1 SKIP s) ..
hence <P [4] , Q = (P [A], Q) 1 (P [A], SKIP s)»
by (metis Syncpiick-distrib-Ndet-left)
also have «... piicx~r P [A], SKIP s
by (fact OpSemTransitionsptck.T-trans-NdetR)
finally show <P [A], @ ptick~+ P [A], SKIP s> .
qed

lemma tick-trans-SKIP-Syncpticr-SKIP:

246

«r @ s = Some r-s => SKIP r [A], SKIP s ptick~>ysr-s Qptick (SKIP r-5)
r-8)
by (simp add: OpSemTransitionspyick.SKIP-trans-tick-Q-SKIP)

lemma ev-trans-Syncpiicr L :
<a§é A= P hs~a P'—P [[A]]/ thick“’"’a p’ [[A]]/ Q)
by (auto simp add: OpSemTransitionspyicy.ev-trans-def After;ck-Syncprick
ingtials-Syncpric OpSemTransitions;ps.ev-trans-def
intro: OpSemTransitionspticr. BOT-T-trans-anything OpSem Transi-
tionsptick-T-trans-NdetL
OpSemTransitions,;ck.T-trans-transitivity T-trans-Syncpyicr L)

lemma ev-trans-Syncpick R :
<a ¢ A= Q rhs™a Q/ = P [[A]],/ Q ptick™a p [[A]]/ Q,>
by (auto simp add: OpSemTransitionspicy.ev-trans-def After;ck-Syncprick
initials-Syncpticr OpSemTransitions,y,s.ev-trans-def
intro: OpSemTransitionsys;cr. BOT-T-trans-anything OpSemTransi-
tionspiick-T-trans-NdetR
OpSemTransitionspyick.T-trans-transitivity T-trans-Syncpiicr R)

lemma ev-trans-Syncpiicr LR :
@€ A= P ps~a P'= Q rhs~a Q"= P [A], Q ptick~a P'[A], Q"
by (auto simp add: OpSemTransitionspt;ck.ev-trans-def OpSem Transitions;, s. ev-trans-def
OpSemTransitions,s.ev-trans-def Afteryick-Syncpricr ini-
tials-Syncptick
intro: OpSemTransitionsyi;cr. BOT-T-trans-anything
OpSemTransitionsyt;cr.T-trans-transitivity
T-trans-Syncpiick L T-trans-Syncpiick R)

lemmas Syncpiici-OpSem-rules = T-trans-Syncprick L T-trans-Syncptick R
ev-trans-Syncpiick L ev-trans-Syncpiicr R
ev-trans-Syncpiick LR
T-trans-SKIP-Syncpiick L T-trans-SKIP-Syncpicr R
tick-trans-SKIP-Syncpticr-SKIP

end

247

248

Chapter 10

Declensions of the
Generalized Synchronization
Product

unbundle option-type-syntax

10.1 Interpretations

For practical reasons, we directly interpret Syncpiicr-comm-locale. Then,
the laws of associativity will be derived manually (instead of globally inter-
preting the locale Syncptick-assoc-locale).

10.1.1 Classical Version

The following interpretation is initially the reason we wanted the parame-
ter (®v) to be of type 'r = 's = 't option instead of just r = ‘s = 't
(we wanted the operator Sync already defined in HOL-CSP to indeed be a
particular case of the new one).

interpretation Syncciqssic @ SYncptick-comm-locale
AT s. if r = s then |r]| else O»
As r.if s = r then |s]| else Oy id id
by unfold-locales (auto split: if-split-asm)

notation Syncciassic-Syncprick (((- [-l/classic -)» [70, 0, 71] 70)

notation SynCClassioInte"'ptick‘ (<(_ |H/Classic _)> [727 73} 72)
notation SyncClassic'Pantick (<(‘ ||/Classic ')> [747 75] 74)

10.1.2 Product Type

interpretation Syncpair : Syncpiick-comme-locale

249

Ars. | (ry, 8)]> <Asr. (s, 7)]» prod.swap prod.swap
by unfold-locales (auto split: if-split-asm)

notation Syncpair.Syncprick (<(- [-]/pair -)» [70, 0, 71] 70)
notation Syncpqir.Interpiick (<(- |||/ Pair -)» [72, 73] 72)
notation Syncpair.-Parpiick (<(- ||/ Pair -)> [74, 75] 74)

10.1.3 List Type
Pair

interpretation Syncpairiist : SYncpiick-comm-locale
Ar s |[r, s]]y As . |[s, 7]
Ars. [rs ! Suc 0, rs ! 0] <Ars. [rs ! Suc 0, rs ! 0]
by unfold-locales (auto intro: inj-onl)

notation SynCPairlist~Syncptick (<(_ [[‘]]/Pairlist _)} [707 0’ 71] 70)
notation Syncpairiist.-Interprick (<(- |||/ Pairtist) [72, 73] 72)
notation SyncPairlist-Pa'rptick (<(' H/Pairlist ')> [747 75] 74)

Right List

Here, we want to have one process of type (‘a, 'r) processpticr on the left
hand side, and one of type (‘a, 'r list) processptick on the right hand side.

interpretation Syncriist @ Syncpiicr-comm-locale
AT s, |7 # s As o | s @ [r]]»
<rotately «Ars. if rs =[] then [] else last rs # butlast rs»
— Ars. last rs # butlast rs is not injective.
by unfold-locales (auto intro: inj-onl)

notation Syncriist-Syncprick (((- [-1y riist -)» [70, 0, 71] 70)
notation Syncgiise-Interpiick (<(- |||/ riise =) [72, 78] 72)
notation Syncriise.Parprick (<(- ||/ riist -)> 74, 75] 74)

Left List

Here, we want to have one process of type (‘a, 'r list) processpticr on the
left hand side, and one of type (‘a, 'r) processpiicr, on the right hand side.
There is no need to do a new interpretation, the operator we are looking for
is actually the symmetric of the one we defined just above.

notation Syncriist.Syncpiick-comm-locale-sym.Syncpric (<(- [-]/Liise -)» [70,
0, 71] 70)

notation Syncri;s¢.Syncptick-comm-locale-sym.Interpiicr (<(- |||/ Liist -)> [72, 73]
72)

notation Syncriise.Syncprick-comm-locale-sym.Parpiict (((- ||/riist =) [74,
75) 74)

250

Arbitrary Lists

We believed for a long time that it was not possible to handle the case where
both processes have their ticks of type r list. Indeed the concatenation
on the lists is not injective, resulting in the impossibility of interpreting
Syncpiick-locale. But it turns out that by adding some control on the length
of the lists, we actually can!

Control on one side context fixes lenL :: nat begin

global-interpretation Syncristsienr @ SYncptick-comm-locale
AT s. if length r = lenL then |r @ s| else O»
<As . if length v = lenL then |s Q r] else {»
<Ars. drop lenL rs Q take lenL rs»
Ars. rev (take lenL (rev rs)) @ rev (drop lenL (rev rs))»
by unfold-locales (auto split: if-split-asm,)

end

abbreviation Syncr;stsienr-syntazx :
(("a, 'r list) processpiick, nat, ‘a set, ('a, 'r list) processpiick]
= (‘a, 'r list) processprick> (<(- -([-]/Liststenr) -)» [70, 0, 0, 71] 70)
where <P lenL[[A]]/ListslenL Q = SynCListslenL~SynCptick lenL, P A Q>

abbreviation Interp;stsienr-syntax ::
(("a, 'r list) processpiick, nat, ('a, 'r list) processpiick)
= (‘a, 'r list) processptick> (<(- -(|||/Listsiens) -)> [72, 0, 73] 72)
where <P l@nL|||/ListslenL Q = SyncListslenL~Interptick lenL P Q>

abbreviation Pary;stsienr-syntax :
(("a, 'r list) processpiick, nat, ('a, 'r list) processpiick)
= (‘a, 'r list) processprick> ((- -(||/Listsient) -)> [74, 0, 75] 75)
where (P l@nL”/ListslenL Q= SynCListslenL-Parptick lenL. P (>

The control is done on the left process, so with the symmetric version of this
operator we control the ticks length of the right one.

abbreviation Syncyp;s;sienr-syntax ::
(("a, 'r list) processpiick, nat, 'a set, ('a, 'r list) processyiick]
= ('a, 'r list) processpiick> (<(- -([-]/Liststenr) -)> [70, 0, 0, 71] 70)
where (P 1,1 [Al s Listsienr Q@ = SYncristsienr-SYncptick-comm-locale-sym.Syncpt;ci
lenL P A @Q»

abbreviation Interr;sisienr-Syntazx :
(('a, 'r list) processpiick, nat, (‘a, 'r list) processpiick)
= (‘a, 'r list) processptick> (((- -(|||/Listsienr) -) [72, 0, 73] 72)
where (P 11|/ Listsienr @ = Syncristsienr-SYncptick-comm-locale-sym.Intery;cr,
lenL P @Q»

251

abbreviation Pary;stsienr-syntax :

(("a, 'r list) processpiick, nat, (‘a, 'r list) processyiick)

= ('a, 'r list) processpiick> (<(- -(||/Listsienr) -)> [74, 0, 75] 15)

where <P le’rLLH./ListslenR Q = SynCListslenL~Syncptick‘locale'sym'Parptick
lenL P @Q»

Control on both sides context fixes lenL :: nat and lenR :: nat begin

global-interpretation Syncriss @ Syncptick-comm-locale
A1 s. if length v = lenL A length s = lenR then |r Q s| else O
As 1. if length s = lenR A length r = lenL then |s @ r| else O»
<Ars. drop lenL rs Q take lenL rs»
<Ars. drop lenR rs @Q take lenR rs)
by unfold-locales (auto split: if-split-asm)

end

abbreviation Syncy;s;s-syntax :
('@, 'r list) processpiick, nat, 'a set, nat, ("a, 'r list) processpiick)
= ('a, 'r list) processpiick> (<(- -([-])- -)» [70, 0, 0, 0, 71] 70)
where <P ., 1.[Al/1enk @ = Syncrists-Syncptick lenl lenR P A @Q»

abbreviation Intery;:s-syntax ::
('@, 'r list) processpiick, nat, nat, ('a, 'r list) processyi;ck]
= ('a, 'r list) processpiick> (<(- -(|/l/)- -)» [72, 0, 0, 73] 72)
where P j,.1lll/ienk @ = Syncrists- Interpiic lenL lenR P Q>

abbreviation Pary;s;s-syntazx ::
(("a, 'r list) processpiick, nat, nat, ('a, 'r list) processpiick)
= ('a, 'r list) processpiick> (<(- -(|ly)- - [74, 0, 0, 75] 75)
where <P .1l /1enk @ = Syncrists.Parpiick lenL lenR P @)

10.2 Associativities

10.2.1 Classical Version

lemma Syncciassic-assoc :

«P [[S]]/Classic (Q [[S]]/Classic R) =P [[S]]/Classic Q [[S]]/Classic Ry
proof —
let 7f = Ars.if r = s then |r] else O
interpret x : Syncpiick-assoc-locale 2f 2f 2f 2f id id
by (unfold-locales) (auto split: if-split-asm)
show ?thesis by (fact *.Syncpiicr-assoc[simplified Renaming-id])
qed

10.2.2 Product Type

lemma Syncpg;--assoc :

252

P [S]l/Pair (Q [SlyPair R) = RenamingTick (P [S]/pPair Q [SlyPair R)
(A(r, 8), t). (r, s, t))
proof —
interpret * : Syncpiicr-assoc-locale <Ar s. [(r, s)|» <Ars. [(r, 8)]» <Ars. |(r,
DIE
Ar s |(ry 9)]y <A((ry 8), t). (1, s, t)y <A(r, s, t). ((r,), t)»
by unfold-locales auto
show ?%thesis by (fact *.Syncpiick-assoc)
qed

10.2.3 List Type

lemma Syncriist-SYncpqiriist-assoc :
(P [S]/ Riist (Q [S]y pairtist R) = (P [S]yPairtist Q) [S]yriise B>
proof —
interpret x : Syncyicx-assoc-locale <Ar s. |[r, s]]» <Ars. [r @ [s]]»
AT s. | r # sp Ars. |[r, §]]» id id
by unfold-locales auto
show ?Zthesis by (fact *.Syncpiick-assoc[unfolded Renaming-id])
qed

lemma Syncpryisi-Syncr;s¢-assoc :
(P [Sly/riist (Q [Slyriist R) = (P [S]yriist Q) [S]yriist R
proof —
interpret x : Syncpiick-assoc-locale <Ars. |r # sp Ars. [rQ [s]]
Ars. |r# sy Ars. |rQ[s]]) id id
by unfold-locales auto
show ?thesis by (fact *.Syncpiick-assoclunfolded Renaming-id))
qed

lemma Syncri;si-SYncristsienr -asSoC :

P [[S]]/Rlist (Q lenQﬂS]]/ListslenL R) = (P HSH/Rlist Q) Suc ZenQ[[S]]/ListslenL
R

proof —
interpret * : Syncpi;cr-assoc-locale
Ars. |r # s

AT s. if length r = Suc len@ then |r @ s| else O»
AT s | # s
A s, if length v = len@ then |r Q s| else Oy id id
by unfold-locales (auto split: if-split-asm,)
show ?%thesis by (fact *.Syncpiick-assoc[unfolded Renaming-id])
qed

lemma Syncristsienr-SYNCriist-assoc :

<P Suc lenQ[[S]]/ListslenR (Q [[S]]/Llist R) = (P lenQHS]/ListslenR Q) [[S]]/Llist
R

proof —

253

interpret * : Syncpiicr-assoc-locale
A7 s. if length s = len@ then |r Q s| else O»
Ar s, [r @ [s]]»
AT s. if length s = Suc len@ then |r @ s| else O»
Ar s |rQ[s])» id id
by unfold-locales (auto split: if-split-asm)
show ?thesis by (fact *.Syncyiick-assoc[unfolded Renaming-id))
qed

lemma Syncy,;sts-assoc :

P lenP[[S]]/lenQ + lenR (@ lenQ[[S]]/lenR R) =

P lenP[[S]]/lenQ @ lenp + lenQ[[S]]/lenR R
proof —

interpret x : Syncpiicr-assoc-locale
AT s. if length r = lenP A length s = lenQ) then |r Q s]| else O»
Ar s. if length v = lenP + len@Q A length s = lenR then |r @ s else O»
Ar s, if length v = lenP A length s = lenQ + lenR then |r @ s else O»
Ar s, if length 7 = len@Q A length s = lenR then |r @Q s| else {» id id
by unfold-locales (auto split: if-split-asm,)

show ?thesis by (fact *.Syncpiick-assocunfolded Renaming-id])

qed

lemma Syncpryist-Syncryist-assoc :

P [Slyriist (Q [Slyriist R) = (P [S]ypairtist Q) gue (Suc 0)[SlvListsient
R»

proof —
interpret * : Syncpiicr-assoc-locale
Ar s |[r, s|)
Ar s. if length v = Suc (Suc 0) then |r Q s| else O
AT s. |7 # s

Ars. | r# s8]y idid
by unfold-locales (auto split: if-split-asm)
show ?thesis by (fact *.Syncpiick-assoc[unfolded Renaming-id])
qed

lemma SynCListslenR'SynCPairlist'assoc :
P sue (Suc 0)[SsListsienr (Q [S]ypPairiist R) = (P [SlyLiise @) [S]yLiise
R»
proof —
interpret * : Syncpiicr-assoc-locale
Ars. |rQ [s])»
Ars. |r Q@ [s])»
(Ar s. if length s = Suc (Suc 0) then |r Q s else O»
Ar s |[r, s]]» id id
by unfold-locales (auto split: if-split-asm)
show ?thesis by (fact *.Syncpiick-assoc[unfolded Renaming-id))
qed

254

10.3 Properties
10.3.1 Actual Generalization

We can actually recover the classical synchronization product defined in
session HOL-CSP as a particular case of our generalization.

theorem Syncciassic-is-Sync : <P [A] yciassic @ = P [A] @
proof (rule Process-eq-optimizedl)
show ¢t € D (P [A] Q) = t € D (P [A] sciassic Q) for t
by (simp add: D-Sync Syncciassic-D-Syncprick’
flip: setinterleaves-is-setinterleavesyt;ck)
(metis setinterleaving-sym)
next
show «t € D (P [A]sciassic @) = t € D (P [A] Q)> for ¢
by (simp add: D-Sync Syncciassic-D-Syncpiick
flip: setinterleaves-is-setinterleavesyi;ck)
(metis setinterleaving-sym)
next
fix t X assume «(¢, X) € F (P [A] Q) <t ¢ D (P [4] Q)
then obtain ¢-P t-Q X-P X-Q
where * : «(t-P, X-P) € F P» «(1-Q, X-Q) € F @
<t setinterleaves ((t-P, t-Q), range tick U ev © A)»
«X = (X-P U X-Q) N (range tick U ev * A) U X-P N X-Q»
unfolding Sync-projs by blast
from *(4) have <X C super-ref-Syncpiick (Ar s. if r = s then |r] else {) X-P
A X-Q
by (auto simp add: super-ref-Syncpyicr-def subset-iff)
(metis eventyyicr.exhaust)
with «(1—3) show «(t, X) € F (P [A]/ciassic Q)
by (auto simp add: Synccigssic-F-Syncprick setinterleaves-is-setinterleaves,;cr)
next
fix ¢t X assume «(t, X) € F (P [A] sciassic Q) <t ¢ D (P [A]sciassic Q)
then obtain t-P t-QQ X-P X-Q
where * : «(t-P, X-P) € F P» <(-Q, X-Q) € F @
<t setinterleaves, y, s ifr — s then L] else O ((t-P, t-Q), A)»
«X C super-ref-Syncptick (A s. if r = s then |r] else O) X-P A X-Q»
unfolding Synccigssic-SYncptick-projs by blast
from x(1—3) have «(t, (X-P U X-Q) N (range tick U ev * A) U X-P N X-Q) €
F (P 4] Q)
by (simp add: F-Sync setinterleaves-is-setinterleavespyicy) blast
moreover from x(4) have <X C (X-P U X-Q) N (range tick U ev * A) U X-P
N X-@»
by (auto simp add: super-ref-Syncpicr-def subset-iff split: if-split-asm)
ultimately show «(¢, X) € F (P [4] Q)» by (meson is-processT4)
qed

255

10.3.2 Other Properties

lemma <Syncrsis.Syncprick-locale-sym.Syncpgicr lenL lenR Q A P = P 1,1 [A]l /1enR
Q

by (simp add: Syncr;sis-Syncptick-locale-sym.Syncpiick-sym)

corollary TickSwap-Syncpair [simp] : «TickSwap (P [S]/pair Q) = Q [S]y/Pair
P
by (simp add: Syncpgir.Syncpick-commute TickSwap-is-Renaming)

lemma TickSwap-is-Syncpqir-iff [simp] :
«TickSwap P = Q [S]/Pair R <— P = R [S]/pair @
by (simp add: TickSwap-eq-iff-eq-TickSwap)

corollary Syncciassic-commute : <P [S] sciassic @ = Q [S]y/ciassic P
by (fact Syncciassic-SYncptick-commute|simplified])

lemma «RenamingTick (P 1,151/ 1enr @) (Ar-s. drop lenL r-s Q take lenL r-s)

Q 1enrSv ient P
by (fact Syncpisis.Syncptick-commute)

10.4 Ticks Length and Conversions

Through RenamingTick, conversions can be established between the inter-
pretations. For this, we sometimes need an assumption about the length of
the ticks.

10.4.1 Ticks Length

Definition and first Properties

definition is-ticks-length ::
(nat = ('a, 'r list) processpiici = booly (<(length,)-('(-")))
where <length /n(P) = Vrs € /s(P). length rs = n»

We might imagine V rs€v s(P). length rs = n instead. But when the process
P has divergences, the predicate would not hold. Additionally, we only need
the control about traces that are not divergences.

lemma is-ticks-lengthl : «(\rs. rs € /'s(P) = length rs = n) = length s n(P)
by (simp add: is-ticks-length-def)

lemma is-ticks-lengthD : <length yn(P) = rs € /'s(P) = length rs = n»
by (simp add: is-ticks-length-def)

256

lemma is-ticks-length-unique :
— Not suitable for simplifier.
dength yn(P) «— V/s(P) = {} V (Ym. lengthsm(P) <— m = n)
by (auto simp add: is-ticks-length-def)

lemma empty-strict-ticks-of-imp-is-ticks-length :
W's(P) = {} = length sn(P)
using is-ticks-length-unique by blast

lemma nonempty-strict-ticks-of-imp-is-ticks-length-unique :
W's(P) # {} = lengthyn(P) = lengthym(P) = m = n
using is-ticks-length-unique by blast

Behaviour

named-theorems is-ticks-length-simp
named-theorems is-ticks-length-intro

Constant Processes lemma is-ticks-length-STOP [is-ticks-length-simp] :
dength yn(STOP)) by (simp add: empty-strict-ticks-of-imp-is-ticks-length)

lemma is-ticks-length-BOT [is-ticks-length-simp) :
dength yn(L)» by (simp add: empty-strict-ticks-of-imp-is-ticks-length)

lemma is-ticks-length-SKIP-iff [is-ticks-length-simp) :
dength s n(SKIP rs) <— length rs = n»
by (simp add: is-ticks-length-def)

lemma is-ticks-length-SKIPS-iff [is-ticks-length-simp] :
dength yn(SKIPS R) <— (Vrs € R. length rs = n)»
by (simp add: is-ticks-length-def strict-ticks-of-def SKIPS-projs)

Binary (or less) Operators lemma is-ticks-length-Ndet [is-ticks-length-intro]

dength yn(P) = length yn(Q) = length n(P M Q)
by (simp add: is-ticks-length-def)
(meson Un-iff strict-ticks-of-Ndet-subset subset-iff)

lemma is-ticks-length-Det [is-ticks-length-intro] :
dength yn(P) = length yn(Q) = length »n(P O Q)
by (simp add: is-ticks-length-def)
(meson Un-iff strict-ticks-of-Det-subset subset-iff)

lemma is-ticks-length-Sliding [is-ticks-length-intro] :
dength yn(P) = length yn(Q) = length sn(P > Q)
by (simp add: is-ticks-length-def)
(meson Un-iff strict-ticks-of-Sliding-subset subset-iff)

257

lemma is-ticks-length-Sync [is-ticks-length-intro] :
dength yn(P) = length yn(Q) = length n(P [S] Q)
by (simp add: is-ticks-length-def)
(meson Int-iff strict-ticks-of-Sync-subset subset-iff)

lemma is-ticks-length-Seq [is-ticks-length-intro] :
(non-terminating PV length yn(Q) = lengthn(P 5 Q)
proof (elim disjE)
show <non-terminating P = length sn(P ; Q)
by (metis is-ticks-length-def non-terminating-Seq non-terminating-is-right
non-tickFree-tick strict-ticks-of-memkE tickFree-append-iff)
next
from strict-ticks-of-Seg-subset[of P Q)]
show <length ,n(Q) = length n(P ; Q)
by (auto simp add: is-ticks-length-def split: if-split-asm)
ged

lemma is-ticks-length-Hiding [is-ticks-length-intro] :
dength yn(P \ S) if <length /n(P)
proof (rule is-ticks-lengthl)
fix rs assume <rs € /s(P \ S)
then obtain ¢ ¢’ where <t = t' Q [V (rs)p <t € T (P\ S <t ¢ D (P \ S)»
by (metis is-processT9 strict-ticks-of-memE)
from this(2, 3) obtain u where <t = trace-hide u (ev * S)» <u € T P»
unfolding T-Hiding D-Hiding using F-T by fast
from this(1) this(2)[THEN T-imp-front-tickFree] obtain v’ where (v = u’ @
[V (rs)]
by (cases u rule: rev-cases, simp-all add: <t = t' @ [/ (rs)]» split: if-split-asm)
(metis Hiding-tickFree front-tickFree-nonempty-append-imp list.distinct(1)
non-tickFree-tick tickFree-append-iff)
from <t ¢ D (P \ S)» mem-D-imp-mem-D-Hiding[of u P S|
have «(u ¢ D P> unfolding <t = trace-hide u (ev * S)» by blast
with «u € T P> <u = v’ @ [/(rs)]> have «rs € /s(P)»
by (simp add: strict-ticks-of-memlI)
with that show <length rs = n> by (simp add: is-ticks-lengthD)
qed

lemma is-ticks-length-Interrupt [is-ticks-length-intro] :
ength yn(P) = length n(Q) = length n(P A Q)
by (simp add: is-ticks-length-def)
(meson Un-iff strict-ticks-of-Interrupt-subset subsetD)

— Missing lemma from HOL-CSPM
lemma strict-ticks- Throw-subset :
«W's(P O acA. Qa) CVs(P)U (JacA N a(P). /s(Q a))

258

proof (rule subsetl)
fix r assume «r € /s(P © acA. Q a)»
then obtain ¢ where «t Q [V (r)] € T (P © acA. Q a)» <t Q [V (1) ¢ D (P O
acA. Q a)
by (meson is-processT9 strict-ticks-of-memkE)
then consider <t Q [V (r)] € T Py <t Q [V (r)] ¢ D P»
| t1 a t2 where <t Q [/ (r)] =t1 Q eva # t2> <t1 Q [eva] € T P»
a € A t2 €T (Qa) «t2 ¢ D(Q a)
by (simp add: Throw-projs)
(metis (no-types, lifting) append-T-imp-tickFree
front-tickFree-single is-processT9 not-Cons-self2)
thus <r € vs(P) U (Jacd N a(P). Vs(Q a))
proof cases
show <t Q [V(r)] e TP = tQ [V(r)]¢ DP = revs(P)U(Jacd N
a(P). /s(Q a))
by (simp add: strict-ticks-of-meml)
next
show ([t Q@ [V(r)] =t Qeva# t2;t] Qleval €T Pyac A; 12 € T (Q
a); 12 ¢ D (Q a)]
= r e v/s(P)U (UacA N a(P). /s(Q a))> for t1 a t2
by (cases t2 rule: rev-cases, simp-all)
(meson Intl events-of-meml in-set-conv-decomp strict-ticks-of-meml)
qed
qed

lemma is-ticks-length- Throw [is-ticks-length-intro] :
dengthyn(P © a € A. Q a)
if «lengthsn(P)> <\a. a € a(P) = length n(Q a)>
proof —
from that have Vrsev/s(P) U (JacA N a(P). /s(Q a)). length rs = n»
by (auto simp add: is-ticks-length-def)
with strict-ticks- Throw-subset show <lengthsn(P © a € A. Q a)»
unfolding is-ticks-length-def by fast
qed

lemma is-ticks-length-Renaming [is-ticks-length-intro] :
dength s n(Renaming P f g) » if <A\r. r € /s(P) = length (g r) =
proof (rule is-ticks-lengthl)
fix rs assume «<rs € v's(Renaming P f g)»
then obtain ¢ where <t @ [/ (rs)] € T (Renaming P f g)»
<t Q@ [V (rs)] ¢ D (Renaming P f g)»
by (meson is-processT9 strict-ticks-of-memE)
then obtain u where * : <t @ [V (rs)] = map (map-eventyiicr fg) w and (u €
T P>
by (auto simp add: Renaming-projs)
from this(1) <u € T P> append-T-imp-tickFree obtain v’ r
where <rs = g «u=u' Q [V (r)) «tF u)
by (cases u rule: rev-cases) (auto simp add: tick-eq-map-eventy;ci-iff)
from x <t @ [/ (rs)] ¢ D (Renaming P f g)» this(2, 8) front-tickFree-Cons-iff

259

have «u’ ¢ D P» by (auto simp add: D-Renaming)
moreover from «u € 7 P» have v’ Q [V (r)] € T P»
by (simp add: <u = v’ Q [V (1)]»)
ultimately have «r € v/'s(P)» by (meson is-processT9 strict-ticks-of-meml)
with that have <length (g r) = n) by blast
thus «length s = ny by (simp add: <rs = g)
qed

Architectural Operators lemma is-ticks-length-GlobalNdet [is-ticks-length-intro]

«(Na. a € A = lengthyn(P a)) = lengthn(Ma € A. P a)
by (simp add: is-ticks-length-def)
(metis (no-types, lifting) UN-E strict-ticks-of-GlobalNdet-subset subsetD)

lemma is-ticks-length-GlobalDet [is-ticks-length-intro] :
«(Na. a € A = lengthyn(P a)) = lengthn(0a € A. P a)
by (simp add: is-ticks-length-def)
(metis (no-types, lifting) UN-E strict-ticks-of-GlobalDet-subset subsetD)

lemma is-ticks-length-MultiSync [is-ticks-length-intro] :
(Am. m € set-mset M = length sn(P m)) = length n([S] m €# M. P m)»
by (induct M rule: induct-subset-mset-empty-single)
(simp-all add: is-ticks-length-STOP is-ticks-length-Sync)

lemma is-ticks-length-MultiSeq [is-ticks-length-intro] :
(L # || = lengthsn(P (last L)) = lengthn(SEQ | €@ L. P 1))
by (induct L rule: rev-induct)
(simp-all add: is-ticks-length-Seq)

Communications lemma is-ticks-length-write0-iff [is-ticks-length-simp] :
dengthyn(e = P) «— length s n(P)
by (simp add: is-ticks-length-def strict-ticks-of-write0)

lemma is-ticks-length-write-iff [is-ticks-length-simp] :
dength yn(cte = P) <— length s n(P)>
by (simp add: is-ticks-length-def strict-ticks-of-write)

lemma is-ticks-length-Mprefiz-iff [is-ticks-length-simp] :
engthyp(0a € A — Pa) = (Va € A. length/n(P a))
by (auto simp add: is-ticks-length-def strict-ticks-of-Mprefix)
lemma is-ticks-length-read-iff [is-ticks-length-simp] :
dengthyn(c?acA — Pa) = (Vb e ¢ * A. lengthsn(P (inv-into A ¢ b)))»
by (simp add: read-def is-ticks-length-Mprefiz-iff)

corollary <inj-on ¢ A = lengthsn(c?a€A — P a) = (Va € A. length/n(P a))
by (simp add: is-ticks-length-read-iff)

lemma is-ticks-length-Mndetprefiz-iff [is-ticks-length-simp] :

260

dengthyn(Ma € A — Pa) = (Ya € A. lengthyn(P a))
by (auto simp add: is-ticks-length-def strict-ticks-of-Mndetprefix)

lemma is-ticks-length-ndet-write-iff [is-ticks-length-simp)] :
dengthyn(cttacA — Pa) = (Vb € ¢ * A. lengthyn(P (inv-into A ¢ b)))»
by (simp add: ndet-write-def is-ticks-length-Mndetprefiz-iff)

corollary <inj-on ¢ A = length sn(c!ta€cA — P a) = (Va € A. lengthsn(P a))
by (simp add: is-ticks-length-ndet-write-iff)

Generalizations lemma strict-ticks-of-Seqptick-subset : «/s(P 5, Q) € |
{Vs(Qr)|r.re/s(P)p
by (auto simp add: Seqptick-projs append-eq-map-conv elim!: strict-ticks-of-memE)
(metis tickFree-Nil non-tickFree-tick tickFree-map-ev-comp
front-tickFree-charn tickFree-append-iff tickFree-append-iff
last-snoclof <map (ev o of-ev) - @ -] last-snoc[of - </ (-)]
butlast-snoclof «map (ev o of-ev) - Q -] butlast-snoclof - </ (-))]
append.assoc[of «<map (ev o of-ev) -» - <[-]] tickFree-imp-front-tickFree
T-imp-front-tickFree is-processT9 strict-ticks-of-meml,
metis butlast-append butlast-snoc front-tickFree-iff-tickFree-butlast non-tickFree-tick
tickFree-append-iff tickFree-imp-front-tickFree tickFree-map-ev-comp)

lemma non-terminating-Seqptick :
<P 3/ Q = RenamingTick P g» if (non-terminating P>
proof —
from <non-terminating Py have £ : <D P ={h <« Q [V (r)] ¢ T P> for t r
by (force simp add: non-terminating-is-right nonterminating-implies-div-free)+
show <P ;, @ = RenamingTick P ¢
proof (rule Process-eq-optimizedl)
show «t € D (P, Q) = t € D (RenamingTick P g)»
and (¢ € D (RenamingTick P g) = t € D (P ;, Q) for t
by (simp-all add: Seqptick-projs Renaming-projs £)
next
fix t X assume «(t, X) € F (P;, Q)
then obtain ¢’ where x : <t = map (ev o of-ev) t)
«(t', ref-Seqprick X) € F Py «tF th
by (auto simp add: Seqpiick-projs Renaming-projs £)
have $: <t = map (map-eventpiicy id g) t"
by (simp add: x(1, 3) tickFree-map-map-eventyi;ck-is)
have $3 : «map-eventyick id g — X C ref-Seqppick X
by (simp add: subset-iff ref-Seqpiick-def image-iff)
(metis Int-iff eventpi;cx. exhaust eventyy;cr.sel(1) eventpyick.simps(9) id-apply
rangel)
show «(t, X) € F (RenamingTick P g)»
by (simp add: Renaming-projs) (metis $ $$ *(2) is-processT4)
next
fix ¢t X assume «((t, X) € F (RenamingTick P g)»
then obtain ¢’ where * : <t = map (map-event,icr id g) th

261

«(t', map-eventyick id g — X) € F P»
by (auto simp add: Renaming-projs £)
from x(2) F-T non-terminating-is-right <non-terminating P> have «tF t» by
blast
have «(t', map-eventy;cr id g —° X U range tick) € F P»
by (rule is-processT5[OF %(2)]) (use £(2) F-T in blast)
moreover have <ref-Seqpiicr X C map-eventpiicr td g —° X U range tick»
by (auto simp add: ref-Seqpiick-def)
ultimately have «(t/, ref-Seqpiict, X) € F P>
by (metis is-processT4)
moreover have ¢t = map (ev o of-ev) t’
by (simp add: %(1) <tF t'y tickFree-map-map-event,;cx-is)
ultimately show «(t, X) € F (P;, Q)
by (auto simp add: Seqpiick-projs <tF t'y)
qed
qed

lemma is-ticks-length-Seqpiici [is-ticks-length-intro] :
(non-terminating PV (Vres/s(P). length,n(Q r)) = lengthn(P 5, Q)
proof (elim disjE)
assume <non-terminating P>
hence «/s(P) = {}p
by (metis (full-types) non-terminating-Seq strict-ticks-of-BOT
strict-ticks-of-Seq-subset subset-empty)
show (non-terminating P = length sn(P 5, Q)>
by (subst non-terminating-Seqpiick, assumption)
(rule is-ticks-length-Renaming, simp add: is-ticks-length-Renaming «/s(P) =
)

next
from strict-ticks-of-Seqpiick-subset[of P Q)]
show «Vrev/s(P). lengthyn(Q 1) = lengthn(P 5, Q)
by (auto simp add: is-ticks-length-def)
qed

lemma is-ticks-length-Syncpiick :
dength s n(Syncptick-locale.Syncpiicr tick-join P A Q)
— We cannot work directly inside the locale since in this context the types of
ticks 't cannot be set to 'r list.
if «Syncptick-locale tick-join»
and (Ars. r € /s(P) = s € V/s(Q) =
case tick-join r s of O = True | |r-s| = length r-s = n»
proof —
interpret Syncpiicr-locale tick-join
by (fact «Syncpiicr-locale tick-joiny)
show <length ,n(P [A], Q)

262

proof (rule is-ticks-lengthl)
fix rs assume (rs € V/'s(P [A], Q)
then obtain ¢t where <t Q [/ (rs)] € T (P [A], Q) <t Q [/ (rs)] ¢ D (P [A],
Q)
by (meson is-processT9 strict-ticks-of-memE)
then obtain ¢-P t-Q where (t-P € T Py <t-Q € T @
and * : «t @Q [/ (rs)] setinterleaves s yick_join ((t-P, t-Q), A)
unfolding Syncyiicr-projs by blast
with <t Q [/(rs)] ¢ D (P [A], Q)> have «t-P ¢ D P <t-Q ¢ D)
by (simp add: D-Syncpiicr’, use front-tickFree-Nil in blast)+
from * obtain r s t-P' t-Q’
where <tick-join r s = |[rs|» «t-P = t-P’ Q [/ (r)]» <t-Q = t-Q' Q [V (s)]»
by (blast elim: snoc-tick-setinterleavesyi;ck E)
from this(2, 8) «t-P ¢ D Py «t-Q ¢ D Q> <t-P € T P> «t-Q € T
have «r € /s(P)) <s € /s(Q)» by (metis strict-ticks-of-memlI)+
from that(2)[OF this, unfolded <tick-join r s = |rs]»] show <length rs = n» by
simp
qed
qed

lemma is-ticks-length-One-Renaming Tick-singl [is-ticks-length-simp] :
dength s gyc o(RenamingTick P (Ar. [r]))»
by (simp add: is-ticks-length-Renaming)

lemma is-ticks-length-Two-Syncpairiist [is-ticks-length-simp) :
dengthy gyc (Suc 0)(P [Sly Pairiist Q)
by (simp add: is—ticks—length—Syncptick[OF SyncPaiT”St.Syncptick-locale—a:m’oms])

lemma is-ticks-length-Suc-Syncry;se [is-ticks-length-intro| :
dength yn(Q) = length s gye n(P [Sly/ Rriist Q)
by (rule is-ticks-length-Syncyiicx| OF Syncriise-Syncptick-locale-axioms])
(simp add: is-ticks-lengthD)

The equivalence is false.

lemma False if <AP Q n. length s gy n(P [S]/Rriist @) = length s n(Q)
using that[of 0 STOP <SKIP [undefined))]
by (simp add: is-ticks-length-STOP is-ticks-length-SKIP-iff)

lemma is-ticks-length-Suc-Syncyp st [is-ticks-length-intro] :
dength yn(P) = length s gye n(P [S]/Liist @)
by (rule is-ticks-length-Syncpick
[OF Syncriist-Syncpiick-comm-locale-sym.Syncpy;ci-locale-axioms))
(simp add: is-ticks-lengthD)

lemma is-ticks-length-sum-Syncristsiens [is-ticks-length-intro] :

263

<l€n9th/m(Q) - length/n + m(P n[[S]]/ListslenL Q))
by (rule is-ticks-length-Syncpiick| OF Syncrisisient-SYncpiick-locale-azioms])
(simp add: is-ticks-lengthD)

lemma is-ticks-length-sum-Syncristsienr [is-ticks-length-intro] :
dength sn(P) = lengthyspn + m(P ml[Sl/Listsienr Q)
by (rule is-ticks-length-Syncptick
[OF SyncristsienL-SYncptick-comm-locale-sym.Syncp;ck-locale-axioms])
(simp add: is-ticks-lengthD)

lemma is-ticks-length-sum-Syncr;sts [is-ticks-length-intro] :

dengthyn + m(P u[S]lym Q)
by (rule is-ticks-length-Syncpiick| OF Syncrisis-Syncptick-locale-axioms]) simp

10.4.2 Conversions

lemma SynCPairlist‘tO'Synchist :
(P [S]/pairtist @ = P [S]yriist RenamingTick @ (Xs. [s])»
by (rule Syncgi;st.ing-Renaming Tick-Syncpic,-inj-Renaming Tick
[of id «As. [s], simplified, symmetric])
(auto intro: inj-onl)

lemma SyncPairlist'to'syncLlist :
(P [S]/Pairiist @ = RenamingTick P (Ar. [r]) [S]/Liist @
by (rule Syncriist-Syncptick-comm-locale-sym.inj-Renaming Tick-Syncpticrk-inj-Renaming Tick
[of <Ar. [r]y id, simplified, symmetric])
(auto intro: inj-onl)

lemma Synchist'to'SyncListslenL :
P [Slyriist Q = RenamingTick P (Ar. [r]) gyc olSl/Listsient @
by (rule Syncristsienr-inj-Renaming Tick-Syncyi;cx -inj-Renaming Tick
[of <Ar. [r]y id <Suc 0>, simplified, symmetric])
(auto intro: inj-onl)

lemma SyncLlist'tO'SynCListslenR :
P [[S]]/Llist Q =P Suc OHS]]/ListslenR RenamingTZ’Ck Q ()\8 [S])>
by (rule Syncristsienr-SYncptick-comme-locale-sym.inj- Renaming Tick-Syncptick-inj-Renaming Tick
[of id <As. [s]> «Suc 05, simplified, symmetric])
(auto intro: inj-onI)

lemma SynCListslenL'tO'SynCLists :
dengthym(Q) => P n[S]/Listsien @ = P n[S]ym @
by (auto introl: Syncr;sis-Syncptick-same-tick-join-on-strict-ticks-of
Syncristsienr -SYNCptick-locale-axioms
dest: is-ticks-lengthD)

lemma SyncListslenR'tO’SynCLists :

264

<l€”9th/n(P) = P m[[S]]/ListslenR Q =P n[[S]],/m Q>

by (auto introl: Syncrisis.-SYncpick-same-tick-join-on-strict-ticks-of
Syncristsienr-SYNCptick-comm-locale-sym.Syncy; e -locale-axioms
dest: is-ticks-lengthD)

corollary SynCListslenL'Z'S'SyncListslenR :
<l€n9th/n(P) - length/m(Q) = P n[[S]]/ListslenL Q =P m[[S]]/ListslenR
Q>

by (Slmp add: SynCListslenL'tO'SynCLists SynCListslenR'to'SynCLists)

corollary SynCPairlist'to'syncListslenL :

<P [Sl/Pairiist @ = RenamingTick P (Ar. [r]) gyue olS1/Listsienr Renam-
ingTick Q (Xs. [s])»

by (szmp add: SynCPairlist'tO'Synchist Synchist'tO'SyncListslenL)

COI'OHaI'y SyncPairlist'tO'SynCListslenR .

(P [Sl/pPairtist @ = RenamingTick P (Ar. [r]) gyc 0lSly/ Listsienr Renam-
ingTick Q (Xs. [s])»

by (Slmp add: SyncLlist'to'SyncListslenR SynCPairlist‘to'synCLlist)

corollary Syncpri;st-to-Syncrists :
dengthym(Q) = P [S]/riist @ = RenamingTick P (Ar. [r]) gye olS]ym @
by (simp add: SyncListslenL‘tO'SyncLists SynCRlist‘to'synCListslenL)

corollary Syncpjisi-to-Syncrises :
dengthyn(P) = P [S]/riist @ = P 0[S/ suc 9 RenamingTick Q (Xs. [s])»
by (szmp add: SynCListslenR'tO'Sg/ncLists SyncLlist'to'syncListslenR)

corollary Syncpgiriist-t0-Syncrises :
P [S)/Pairiist @ = RenamingTick P (Ar. [1]) gue 0181y suc 0 RenamingTick
Q (As. [s])
by (simp add: Syncpiist-to-Syncrists SYncpairiist-to-Syncriise
is-ticks-length- One-Renaming Tick-singl)

lemma Syncpgir-to-Syncpairiist :
(RenamingTick (P [S]/pair Q) (A(r,). [r, s]) = P [S]ypPairiist @
by (rule Syncpqir.inj-on-Renaming Tick-Syncpiick
[of <\(r, s). [r, s]>, simplified))
(auto intro: inj-onl)

lemma Syncpgiriist-to-Syncpqir :
(RenamingTick (P [S]/pairiist @) (Ars. (rs! 0, rs! Suc 0)) = P [S]/pair @
by (rule Syncpairiist.inj-on-Renaming Tick-Syncpiick
[of <Ars. (rs! 0, rs ! Suc 0), simplified])
(auto intro: inj-onl)

265

lemma Syncpgir-to-Syncriist :
(RenamingTick (P [S]/pair Q) (A(r, 8). v # s) = P [S]/Riist @
by (rule Syncpqir.inj-on-Renaming Tick-Syncpiick
[of <\(r, 8). r # s, simplified])
(auto intro: inj-onI)

lemma Syncpgir-to-Syncpiist :
(RenamingTick (P [S]/pair @) (N(r, s). 7 Q [s]) = P [S]/Liist @
by (rule Syncpaqir.inj-on-Renaming Tick-Syncpiick
[of <A(r, 8). r Q [s]y, simplified])
(auto intro: inj-onI)

lemma SyncPair‘to'SyncListslenL :
(RenamingTick (P [S]/pair Q) (A(r, s). 7 Q@ s) = P n[S]/Listsienr @
(is «?lhs = ?rhs») if <length s n(P)>
proof —
let ?g = <Ars. (take n rs, drop n rs))
let 29’ = \(r, s). 7 Q s
let YRT = RenamingTick
have «?RT ?lhs ?g = ?RT ?rhs ?¢»
proof (subst Syncrstsienr-inj-on-Renaming Tick-Syncpiick)
show <inj-on 29 (Syncristsienr-range-tick-join n)»
by (rule inj-onl) (auto split: if-split-asm)
next
have «?RT (?RT (P [[Sﬂ,/Pair Q) ?g/) '?g =P [[S]]/Pair Q)
proof (fold RenamingTick-comp, subst (2) RenamingTick-id[of <P [S]/Pair
@Q>, symmetric])
show «?RT (P [S]/pair Q) (%9 0 %9") = ?RT (P [S]/Pair Q) id>
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of)
from that show «rs € V/s(P [S]/pair Q) = (%9 0 (M(z, y). z Q y)) rs =
id rs» for rs
by (auto dest!: set-mp[OF Syncpgir.strict-ticks-of-Syncyi;cx-subset]
is-ticks-lengthD)
qed
qed
also have <P [S]/pair Q =
Syncptick-locale.Syncptick
(Ar s. case if length r = n then |r @ s| else O
of O =0 | |rs] = |%9rs]) PS Q@ (is <- = rhsh)
by (rule Syncpqir.Syncpick-same-tick-join-on-strict-ticks-of [symmetric], un-
fold-locales)
(use <length yn(P)> in <auto split: if-split-asm dest: is-ticks-lengthD))
finally show <?RT ?lhs ?g = ?rhs’y .
qed
hence «?RT (?RT ?lhs ?g9) %9’ = ?RT (¢RT ?rhs ?g) ?g9"» by simp
also from «<length s n(P)> have <?RT (?RT ?lhs ?g) %9’ = ?lhs>
by (auto simp flip: RenamingTick-comp intro!: RenamingTick-is-restrictable-on-strict-ticks-of

266

dest!: set-mp[OF Syncpq;r.strict-ticks-of-Syncpyicr-subset] is-ticks-lengthD)
also from «length sn(P)> have <?RT (?RT ?rhs ?g) %9’ = ?rhs
by (fold RenamingTick-comp, subst (2) RenamingTick-id[of ?rhs, symmetric])
(auto simp del: RenamingTick-id intro!: Renaming Tick-is-restrictable-on-strict-ticks-of
dest!: set-mp[OF Syncpqir.strict-ticks-of-Syncpicr-subset] is-ticks-lengthD)
finally show «%lhs = ?rhs» .
qed

corollary Syncpgir--to-Syncristsienr :
(RenamingTick (P [S]/pair Q) (A(r, s). 7 Q@ s) = P p[S]/Listsienr @
(is «%lhs = ?rhsy) if <length s n(Q)>
proof —
let YRT = RenamingTick
have (?RT (P [S]/pair Q) (A (z, y). 2 Q y) =
RT (Q [Sl/Pair P) (Mz, y). z @ y) o prod.swap)»
by (simp add: RenamingTick-comp subst Syncpqir.SYncpiick-commute)
also from «length s n(Q)
have (... = ?RT (Q [S]/pair P) ((Ars. drop n rs Q take n rs) o (A(z, y). z Q
y))»
by (auto introl: Renaming Tick-is-restrictable-on-strict-ticks-of
dest!: set-mp[OF Syncpqir.strict-ticks-of-Syncpiicr-subset] is-ticks-lengthD)

also have (... = ?RT (Q n[S)/Listsient. P) (Ars. drop n rs Q take n rs)»
by (simp add: RenamingTick-comp Syncpair-to-Syncristsienr|OF <length sn(Q)>])
also have (... = P 3[S]/Listsienr @

by (fact Syncristsienr-SYncptick-commute)
finally show «%lhs = ?rhs) .
qed

corollary Syncpg--to-Syncr;ses :
(RenamingTick (P [S]/pair Q) (A(r, s). 7 @ s) = P n[S]/m @
(is «%lhs = ?rhsy) if <length sn(P)» and <length ,m(Q)>
by (subst Syncpqir-to-Syncristsienr.[OF <length sn(P)>])
(rule Syncristsienr,-to-Syncr;ses|OF <length sm(Q)>])

10.5 First Laws

corollary Interciqssic-STOP [simp] :
P |||/Classic STOP = P; STOP»
by (simp add: Syncciassic-Interpick-STOP[of P id])

corollary Interpg;--STOP :
(P |||/ Pair STOP = RenamingTick (P ; STOP) (Ar. (r, g r))
by (simp add: Syncpgir.Interyicr-STOP[of P g])

corollary Interpg;riist-STOP :

(P |||/ Pairiist STOP = RenamingTick (P 5 STOP) (Ar. [r, g r])
by (simp add: Syncpairiisi-Interpiick-STOP[of P g])

267

corollary Intergy;s:-STOP :
(P |||/ riist STOP = RenamingTick (P 5 STOP) (Ar. v # gr)
by (simp add: Syncriist. Interpici-STOP[of P g])

corollary Intery;s:.-STOP :
(P ||| sriist STOP = RenamingTick (P ; STOP) (Ar. r @ [g r])»
by (simp add: Syncriisi-Syncpiick-comm-locale-sym.Intery;c,-STOP[of P g])

corollary Interrp;sisienr,-STOP :
«P n|||/ListslenL STOP =
RenamingTick (P 5 STOP) (Ar. if length r = n then r @ g r else undefined)»
by (auto simp add: Syncprisisienr-Interpic-STOP[of n P g] option.the-def
intro!: arg-conglwhere f = (RenamingTick (P ; STOP))])

corollary Interp;sisienr-STOP :
<P TL|||,/ListslenR STOP =
RenamingTick (P 5 STOP) (Ar. if length (g r) = n then r Q g r else undefined)»
by (auto simp add: Syncr;sisienr-SYncpiick-comm-locale-sym.Interp;c,-STOP|of
n P g| option.the-def
introl: arg-conglwhere f = <RenamingTick (P ; STOP))])

corollary Interp;s:5-STOP :
(P lllym STOP =
RenamingTick (P 5 STOP) (Ar. if length v = n A length (g r) = m then r Q ¢
r else undefined)»
by (auto simp add: Syncrises. Interpiic-STOPof n m P g] option.the-def
introl: arg-cong[where f = «RenamingTick (P ; STOP))])

corollary STOP-Interciassic [simp)] :
(STOP ||| sciassic @ = Q 3 STOP»
by (simp add: Syncciassic-STOP-Interyy;crlof Q id))

corollary STOP-Interpg;, :
«(STOP |||/ Pair @ = RenamingTick (Q ; STOP) (Xs. (g s, s))»
by (simp add: Syncpgir.STOP-Inter,icx[of @ g])

corollary STOP-Interpgiriist -
(STOP ||| s Pairtist @ = RenamingTick (Q ; STOP) (Xs. [g s, s])»
by (simp add: Syncpairiist.STOP-Interpi;cr[of @ g])

corollary STOP-Intergyist :
(STOP ||| s riist @ = RenamingTick (Q ; STOP) (Xs. g s # s)»
by (simp add: Syncriist.STOP-Interpick[of Q g])

corollary STOP-Intery;ss :

(STOP ||| sri1ist Q = RenamingTick (Q ;5 STOP) (Xs. g s @ [s])»
by (simp add: Syncriist-Syncpiicr-comm-locale-sym.STOP-Inter,;cx[of Q g])

268

corollary STOP-Intery;sisienl :
«STOP 7’L|||/ListslenL Q =
RenamingTick (Q ;3 STOP) (Ar. if length (g r) = n then g r @ r else undefined)>
by (auto simp add: Syncristsienr-STOP-Interpiick[of n Q g] option.the-def
introl: arg-conglwhere f = «RenamingTick (Q ; STOP))])

corollary STOP-Intery;stsienR :
«STOP n|||/ListslenR Q =
RenamingTick (Q ;3 STOP) (Ar. if length r = n then g v Q r else undefined)»
by (auto simp add: Syncr;sisienr-SYncprick-comm-locale-sym.STOP-Inter ;e[of
n Q g] option.the-def
intro!: arg-conglwhere f = (RenamingTick (Q ; STOP))])

corollary STOP-Intery;s;s :
(STOP yl||ym Q =
RenamingTick (Q 5 STOP) (Ar. if length (g r) = n A length r = m then g r Q
r else undefined)»
by (auto simp add: Syncr;sis.STOP-Inter,icx[of n m Q g] option.the-def
intro!: arg-conglwhere f = (RenamingTick (Q ; STOP))])

corollary SKIP-Synccigssic-SKIP :
(SKIP r [A] yciassic SKIP s =
(if = s then SKIP r else STOP)> by simp

corollary SKIP-Syncpg;r-SKIP :
(SKIP r [A] s pair SKIP s = SKIP (r, s)» by simp

corollary SKIP-Syncpgairiist-SKIP :
(SKIP r [A] s Pairtist SKIP s = SKIP [r, s]» by simp

corollary SKIP-Syncg;st-SKIP :
(SKIP r [A] s riist SKIP s = SKIP (r # s)» by simp

corollary SKIP-Syncy;si-SKIP :
(SKIP r [A] s L1ist SKIP s = SKIP (r Q [s])) by simp

corollary SKIP-Syncp;stsienr-SKIP :
<SKIP r n[[A]]/ListslenL SKIP s =
(if length v = n then SKIP (r Q s) else STOP)) by simp

corollary SKIP-Syncp;stsienr-SKIP :

«<SKIP r n[[A]]/ListslenR SKIP s =

(if length s = n then SKIP (r Q s) else STOP)> by simp
corollary SKIP-Syncy;sts-SKIP :

(SKIP 1 p[A] ym SKIP s =

269

(if length r = n A length s = m then SKIP (r Q s) else STOP)) by simp

10.6 Operational Laws

10.6.1 Classical Version

locale After-Syncciassic-locale = After-Syncpiicr-locale <Ar s. if r = s then |r]
else O»
begin

— Just checking...
lemma <Syncyiick P S Q = P [S]/ciassic @ by (fact refl)

end

locale AfterExt-Syncoiqssic-locale =
AfterExt-Syncpiick-locale <Ar s. if r = s then |r] else O»

sublocale AfterEzt-Syncciassic-locale C After-Syncoiassic-locale
by unfold-locales

locale OpSemTransitions-Syncciassic-locale =
OpSemTransitions-Syncpyicr-locale <A1 s. if 1 = s then |r] else O

sublocale OpSemTransitions-Syncciassic-locale C AfterExt-Syncciqssic-locale
by unfold-locales

10.6.2 Product Type

locale After-Syncpgir-locale = After-Syncyiicr-locale <Ars. [(r, s)]»
begin

— Just checking...
lemma <Syncptick P S Q = P [S]/pair @ by (fact refl)

end

locale AfterExt-Syncp,;r-locale =
AfterExt-Syncpgicr-locale <r s. [(r, s)]»

sublocale AfterExt-Syncpgi-locale C After-Syncpqqr-locale
by unfold-locales

locale OpSemTransitions-Syncpqqr-locale =
OpSemTransitions-Syncpyicr-locale <Ar s. |(r, s)|»

sublocale OpSem Transitions-Syncpq;r-locale C AfterExt-Syncpq;r-locale
by unfold-locales

270

10.6.3 List Type
Pair

locale After-Syncpairiisi-locale = After-Syncpiick-locale <Ars. |[r, s||»
begin

— Just checking...
lemma <Syncptick P S Q = P [S]/pairiist @ by (fact refl)

end

locale AfterExt-Syncpgiriist-locale =
AfterExt-Syncpiici-locale <Ar s. |[r, s]]»

sublocale AfterExt-Syncpqiriisi-locale C After-Syncpgiriist-locale
by unfold-locales

locale OpSemTransitions-Syncpqiriist-locale =
OpSemTransitions-Syncpicr-locale <A\r s. |[r, s]]»

sublocale OpSem Transitions-Syncpqiriist-locale C AfterExt-Syncpqiriisi-locale
by unfold-locales

Right List

locale After-Syncriisi-locale = After-Syncpiick-locale <Ar s. v # s|»
begin

— Just checking...
lemma <Syncyeick P S Q = P [S]yriist @ by (fact refl)

end

locale AfterExt-Syncpryisi-locale =
AfterExt-Syncpiick-locale <Ars. [r # s]»

sublocale AfterExt-Syncgyisi-locale C After-Syncgyisi-locale
by unfold-locales

locale OpSemTransitions-Syncri;st-locale =
OpSemTransitions-Syncpicr-locale <Ars. |r # s

sublocale OpSemTransitions-Syncri;s¢-locale C AfterExt-Syncgy;si-locale
by unfold-locales

Left List

locale After-Syncriisi-locale = After-Syncpiicr-locale <Ars. [r Q@ [s]]»
begin

271

— Just checking...
lemma <Syncpiick P S Q = P [S]/riist @ by (fact refl)

end

locale AfterExt-Syncyisi-locale =
AfterExt-Syncpiick-locale <Ar s. |r @ [s]]»

sublocale AfterExt-Syncy;s¢-locale C After-Syncyriise-locale
by unfold-locales

locale OpSemTransitions-Syncy;st-locale =
OpSemTransitions-Syncpick-locale <Ars. |r @ [s]]»

sublocale OpSemTransitions-Syncy,;si-locale C AfterExt-Syncyi;s¢-locale
by unfold-locales

Arbitrary Lists

Control on left side locale After-Syncr;stsienr-locale =
After-Syncpiick-locale <Ar s. if length r = lenL then [r Q s] else O»
for lenL :: nat

begin

— Just checking...
lemma <Syncptick P S Q = P 1o [S]y/ Listsienr @ by (fact refl)

end

locale AfterExt-Syncristsienr-locale =
AfterExt-Syncpiick-locale <\r s. if length v = lenL then |r Q s| else O
for lenL :: nat

sublocale AfterEzt-Syncyristsienr-locale C After-Syncy;stsienrs-locale
by unfold-locales

locale OpSemTransitions-Syncy;stsienr-locale =
OpSemTransitions-Syncpiick-locale <Ar s. if length v = lenL then |r Q s| else O»
for lenL :: nat

sublocale OpSem Transitions-Syncr;stsienr-locale C AfterExt-Syncyristsien s -locale
by unfold-locales

Control on right side locale After-Syncrisisienr-locale =
After-Syncpiick-locale <Ar s. if length s = lenR then |r Q s]| else O»
for lenR :: nat

begin

272

— Just checking...
lemma <Syncptick P S Q = P jonr[Sly/Listsienr @ by (fact refl)

end

locale AfterExt-Syncrstsienr-locale =
AfterExt-Syncpyick-locale <\r s. if length s = lenR then |r Q s| else O»
for lenR :: nat

sublocale AfterEzt-Syncyrisisienr-locale C After-Syncrisisienr-locale
by unfold-locales

locale OpSemTransitions-Syncristsienr-locale =
OpSemTransitions-Syncpiick-locale <Ar s. if length r = lenL then |r Q s| else O»
for lenL :: nat

sublocale OpSemTransitions-Syncr;stsien r-locale C AfterExt-Syncr;stsien r-locale
by unfold-locales

Control on both sides locale After-Syncy;sis-locale =
After-Syncpiicx-locale
(AT s. if length r = lenL A length s = lenR then |r @ s| else {»
for lenL lenR :: nat

begin

— Just checking...
lemma <Syncpiick P S Q = P oS/ ienr @ by (fact refl)

end

locale AfterExt-Syncy;sis-locale =
AfterExt-Syncpyicr-locale
(AT s. if length r = lenL A length s = lenR then |r @ s| else {»
for lenL lenR :: nat

sublocale AfterExt-Syncys;s-locale C After-Syncy;sis-locale
by unfold-locales

locale OpSemTransitions-Syncy;sts-locale =
OpSemTransitions-Syncpi;ck-locale
(Ar s, if length v = lenL A length s = lenR then |r Q s| else O»
for lenL lenR :: nat

sublocale OpSemTransitions-Syncy,;sts-locale C AfterExt-Syncy;sis-locale
by unfold-locales

273

274

Chapter 11

Architectural Versions

11.1 Sequential Composition

11.1.1 Definition

fun MultiSeqptick = <['b list, 'b = ' = (‘a, 'r) processpiick, '] = (‘a, 'r) pro-
cessptick>
where MultiSeqpick-Nil : «MultiSeqpricr, [| P = SKIP»

| MultiSeqpticr-Cons : <MultiSeqpiicr (I # L) P = (Ar. P13, MultiSeqptick
L P)

syntax -MultiSeqptick
(pttrn, 'b list, 'b = 'r = ('a, 'r) processpiick, 'r] = (‘a, ') processpiici>
((3SEQ, - €@ -/) [78,78,77) 77)

syntax-consts -MultiSeqpiicr = MultiSeqptick

translations SEQ, p €@ L. P = CONST MultiSeqpiick L (Ap. P)

11.1.2 First Properties

lemma «SEQ, p €Q [|. P p = SKIP»
and «(SEQ/ p €Q [a]. Pp = (Ar. Pa 1)
and «(SEQ/ p €Q [a, b]. Pp= (Ar. Par;, Pb)
and «(SEQ/ p €Q [a, b, c]. Pp=(Ar.Parsi, Pbs, Pc)
by (simp-all add: Seqpt;ick-assoc)

lemma «SEQ/, p €Q [1zint .. 3]. Pp=(Ar. P11, P23, P 3)
by (simp add: upto.simps Seqpi;ck-assoc)

lemma «(SEQ, p €Q [|. P p) = SKIP» by (fact MultiSeqp¢;ci-Nil)

lemma ((SEQ, | €Q (a # L). Pl) = (A\r. Par;, SEQ, | €Q L. P 1)) by (fact
MultiSeqypiicr-Cons)

275

lemma MultiSeqpick-singl [simp] : <SEQ, | €Q [a]. Pl = P a) by simp

lemma MultiSeqpicr-snoc : <SEQ, | €Q (L Q [a]). Pl = (Ar. (SEQ, | €Q L.
Pl)yr;, Pa)
by (induct L) (simp-all add: Seqpi;ci-assoc)

lemma mono-MultiSeqpticr-eq:
(Nl.leset L= Pl=QIl)= SEQ, 1l €Q L. Pl=SEQ,1€QL. QU
by (induct L) fastforce+

lemma MultiSeqptick-const [simp] :
(SEQ, 1 €@ L. (Ar. P 1)) =
(if L =[] then SKIP else (A\r. SEQ 1 €@ L. P I))
by (induct L rule: rev-induct) (auto simp add: MultiSeqp;cr-snoc)

11.1.3 Behaviour with binary version

lemma MultiSeqp;ci-append:

(SEQ, l €@ (L1 @QL2). Pl= (Ar. (SEQ, €@ L1. Pl)r;, SEQ, | €Q L2.
P)

by (induct L1 rule: list.induct, simp-all, metis Seqpi;ck-assoc)

11.1.4 Other Properties

lemma MultiSeqpi;cr-SKIP-neutral:

(Pa=SKIP = SEQ, | €@ (L1 @[] @ L2). Pl = SEQ, | €@ (L1 @ L2).
Pl

by (simp add: MultiSeq,;cr-append)

lemma MultiSeqp;c.-BOT-absorb:

(Pa=1 = SEQ, | €a (L1 @ [a] @ L2). Pl = (\r. (SEQ, | €@ L1. P)
Ty L)

by (simp add: MultiSeq,;cr-append lambda-strict)

lemma MultiSeqp;cr-STOP-absorb:
(P a=(Ar. STOP) = SEQ, | €@ (L1 @ [a] @ L2). P | =
(Ar. (SEQy l €@ L1. P1l) r; STOP)
by (simp add: MultiSeq,i;cr-append)

lemma is-ticks-length-MultiSeqpiick [is-ticks-length-intro]
dength s n((SEQ, 1 €Q L. P 1) r)
if <L # [» and <A\r’. v’ € /s((SEQ, | €Q (butlast L). P 1) r) = lengthsn(P
(last L) r')»
proof —
from that(1) obtain [L’ where <L = L’ @ [I]»
by (cases L rule: rev-cases) auto

276

with that(2) have «r’ € V/s((SEQ, | €Q L. P 1) r) = lengthn(P l r')) for
r’ by simp

thus ?thesis

by (auto simp add: <L = L’ Q [I]> MultiSeqy;cr-snoc intro: is-ticks-length-Seqpiicr)
qed

11.1.5 Behaviour with injectivity

lemma inj-on-mapping-over-MultiSeqps;cr:
ang-on f (set L) =
SEQy l€Q L. Pl= SEQ, | €Q map f L. P (inv-into (set L) f 1)
proof (induct L)
show <inj-on f (set [|) = MultiSeqpiick [| P =
SEQ, z€Qmap f [|. P (inv-into (set []) fx)» by simp
next
case (Cons a L)
show ?Zcase
proof (rule ext)
fix r
have «(SEQ, | €Q (¢ # L). Pl) r=Par;, SEQ, 1l €Q L. P> by simp
also have «<SEQ, 1 €Q L. Pl = SEQ, | €Q map f L. P (inv-into (set L) f 1)
using Cons.hyps Cons.prems by auto
also have (... = SEQ, | €Q map f L. P (inv-into (set (a # L)) f1)
using Cons.prems by (auto intro!: mono-MultiSeqpick-eq)
finally show «(SEQ, | €Q (a # L). Pl) r =
(SEQ/ 1 €@ map f (a # L). P (inv-into (set (a # L)) f1)) m
using Cons.prems by auto
qed
qed

unbundle no funcset-syntax
— Inherited from HOL— Combinatorics.List-Permutation.

11.2 Synchronization Product
11.2.1 Definition

The generalized synchronization product is not really commutative (see Re-
namingTick (P [A]ly Q) &/ =&V rer = Q [A]/rev P). We therefore define
the architectural version on a list.

fun MultiSyncpiick

(’a set, 'b list, 'b = ('a, 'r) processpiick] = (‘a, 'r list) processpiick>
where «MultiSyncpiick, S [| P = STOP)

277

| «MultiSyncpiick S [I] P = RenamingTick (P 1) (Ar. [r])»
| (MultiSyncpiick, S (I # m # L) P = P 1 [S]/Rriist MultiSyncyiicr S (m #
L) P

syntax -MultiSyncptick
pttrn, 'a set, 'b list, ("a, 'r) processprick) = ('a, 'T) processpiick?
(311, - €@ -/) [78,78,78,77) 77)

syntax-consts -MultiSyncpiicr, = MultiSyncpeick

translations [S], | €@ L. P = CONST MultiSyncpiicr S L (Al. P)

Special case of MultiSyncpiick, S P when S = {}.

abbreviation Multilnterpiicr
' list, 'b = ('a, 'r) processprick] = (‘a, 'r list) processpiick>
where «Multilnterpiicr, L P = MultiSyncpiick {} L P>

syntax -Multilnter piicr
pttrn, 'b list, (a, 'r) processprick] = ('a, 'r) processpiick’
3|y -€Q-./ =) [78,78,77) 77)

syntax-consts -Multilnterpsicr. = Multilnterpyicr

translations |||, [€@ L. P = CONST Multilnterpiicr L (M. P)

Special case of MultiSyncyiicr, S P when S = UNIV.

abbreviation MultiParpi;ck
(' list, 'b = (a, ') processpiick] = (‘a, 'r list) processpiick>
where <MultiParpiicr, L P = MultiSyncpiic UNIV L P»

syntax -MultiParyicr
pttrn, 'b list, (‘a, 'r) processprick] = ('a, 'r) processpiick>
(3l -€Q-./ -)» [78,78,77] 77)

syntax-consts -MultiParyiicr, = MultiParpticr

translations ||, [€@ L. P = CONST MultiParyiici L (M. P)

11.2.2 First properties

lemma is-ticks-length-MultiSyncpiick [is-ticks-length-intro]
(lengthy jength L8l 1@ L. Pl
by (induct L rule: induct-list012)
(simp-all add: is-ticks-length-STOP is-ticks-length-Renaming
is-ticks-length-Suc-Syncriist)

lemma MultiSyncpiicr-Cons :
{[Sly meQ (I # L). Pm =
(4f L =[] then RenamingTick (P 1) (Ar. [r])
else Pl [[S]]/Rlist [[S]]/ m €@ L. P m)>
by (cases L) simp-all

278

lemma mono-MultiSyncpiicr-eq :
(Nl.leset L= Pl=QIl)=[S],1c@L Pl=[S],1l€QL QD
by (induct L rule: induct-list012) simp-all

lemma mono-MultiSyncp;cr-eq2:
(ANl.leset L= P (fl)=Q1l) = [Sl, 1 €@ map fL. Pl =[S], ! QL.

QDb
by (induct L rule: induct-list012) simp-all

— Some tests
lemma «([S], | €Q [|. P) = STOP»
and «([S]/ | €Q [a]. P l) = RenamingTick (P a) (Ar. [r])»
and «([S]/ | €Q [a, b]. P) = P a [S]/Riist RenamingTick (P b) (Ar. [r])
and «([S], ! €Q [a, b, ¢|. P 1) = P a [S]/riist (P b [S]/Rriist RenamingTick
(P o) (r. [1)

by simp-all

11.2.3 Properties

lemma MultiSyncp;cr-is-BOT-iff:
Slyle@L.Pl=1+— (3lesetL. Pl=1)
by (induct L rule: induct-list012)
(simp-all add: Renaming-is-BOT-iff Syncriist-Syncpiick-is-BOT-iff)

lemma MultiSyncp;cr,-BOT-absorb:
deset L=Pl=1=[S],1€QL Pl=1
using MultiSyncpicr-is-BOT-iff by blast

lemma MultiSyncp;cr-SKIP-id :
(Sl r €@ L. SKIP r = (if L = || then STOP else SKIP L))
by (induct L rule: induct-list012) simp-all

11.2.4 Behaviour with binary version

lemma MultiSyncp;ci-append :

L1 #[| = L2 #[| =

[Sly l€@ (L1 @ L2). Pl =

[Sl, le@ L1 Pl length Ll[[S]]/length r2 81, 1@ L2. P
proof (induct L1 rule: list-nonempty-induct)

case (single) thus Zcase

by (simp add: is-ticks-length-MultiSyncpticr, MultiSyncpicr-Cons flip: Syncriist-to-Syncrists)
next

let YRT = «<AP. RenamingTick P (Ar. [r])»

case (cons [L1)

279

have <|IS]]‘/ le@Q((I# L1)QL2). Pl=PI [[S]]/Rlist [[5]]‘/ le@ (L1 @ L2).
P
by (simp add: MultiSyncyiicr-Cons <L1 # []»)

also have «... = ?RT (P 1) guc olS)v iengtn (11 @ 12) [5]y 1 €@ (L1 @ L2).
P
by (intro Syncriisi-to-Syncrises is-ticks-length-MultiSyncpick)
also have «... = 7RT (P) g, OHSH/length L1 + length L2

([Sly 1 €@ L1. Pl yepgin 11[S]v tengtn 2 [Sly 1 €@ L2. P 1)
using cons.hyps(2) cons.prems by simp

also have «... = ?RT (P 1) gy¢ lS)viength 1 [Sly 1 €@ L1. P 1

Suc 0 + length LZ[[S]]/length L2 IISJ]/ le@L2. P
by (simp add: Syncy;sis-assoc)
also have (?RT (P 1) gy g[S]y iength 01 181y 1 €Q L1. Pl =
Pl [[S]]/Rlist [[S]]/ le@QLl1.PD
by (intro Syncriist-to-Syncrises[symmetric] is-ticks-length-MultiSyncpick)
also have «... = [S], l €@ (I # L1). P
by (simp add: MultiSyncyiick-Cons <L1 # []»)
finally show ?case by simp
qed

11.2.5 Behaviour with injectivity

lemma inj-on-mapping-over-MultiSyncpicr:
<ng-on f (set L) =
Sy le@ L. Pl=[S], ! €Q map f L. P (inv-into (set L) f 1)
proof (induct L rule: induct-list012)
case (31'1" L)
have <[S], | €@ (I' # 1" # L). Pl =
P U [Sl/riist [Sly 1 €Q (1" # L). P by simp
also have ([S], | €@ (I" # L). Pl =
[Sl, 1 €@ map f (I"" # L). P (inv-into (set (I" # L)) f1)
by (metis 3.hyps(2) 3.prems inj-on-insert list.simps(15))
also have «... = [S]/ | €Q map f (I"” # L). P (inv-into (set (I' # 1" # L)) f
1)
using 8.prems by (auto introl: mono-MultiSyncyiicx-€q)
also have (P I’ = P (inv-into (set (I’ # 1" # L)) f (f1))
using 3.prems by auto
finally show ?case by simp
qed simp-all

11.2.6 Permuting the Sequence

A particular Case

lemma MultiSyncyiick-snoc :
{[Sly m €@ (L Q]l]). Pm=
(if L =] then RenamingTick (P 1) (Ar. [r])
else [S], m €Q L. P m [S]/riist P 1)
by (simp add: MultiSyncyiicr-append)

280

(metis (lifting) ext Syncriisi-to-Syncrises is-ticks-length-MultiSyncpicr)

At the beginning, we wanted to prove the following property.

theorem MultiSyncpeici-rev :
([Sly ! €@ (rev L). Pl = RenamingTick ([S], | €Q L. P 1) rev)
proof (induct L)
case Nil show ?case by simp
next
let YRT = <RenamingTick>
case (Cons | L)
show ?case
proof (cases <L = []»)
show <L = [| = ?casey by (simp add: comp-def flip: Renaming-comp id-def)
next
assume <L # [
have ([S], m €Q (rev (I # L)). P m = [S], m €Q (rev L). P m [S]/Liist
P
by (simp add: MultiSyncyyicx-snoc <L # []»)

also have «... = ?RT ([S], m €@ L. P m) rev [S]/riist P D
by (simp only: Cons.hyps)
also have «... = ?RT ([S], m €Q L. P m) rev [S]/riist RT (P 1) id> by
simp
also have «... = Syncpiick-locale.Syncpick (AT s. Some (rev r @ [s]))

(ISl me@ L. Pm) S (P 1)
by (subst Syncriist-Syncptick -comm-locale-sym.inj-Renaming Tick-Syncyi; cx -inj-Renaming Tick)
stmp-all

also have «... = ?RT (P 1 [S]/riist [S]ly m €Q L. P m) rev
proof (subst Syncry;s¢-inj-on-Renaming Tick-Syncpiick)

show <nj-on rev Syncpry;st.-range-tick-joiny by simp
next

show «Syncyi;cr-locale.Syncpiicr (Ars. Some (rev r @ [s])) ([S], m €@ L.

Pm)S(Pl) =
Syncptick-locale. Syncptick
(Ar s. case Some (r # s) of None = None | Some r-s = Some (rev r-s))
(P1) S (MultiSyncpiick, S L P)»
by (subst Syncpiicx-locale.Syncpiick-sym, simp-all)
(unfold-locales, blast)

qed
also have <P [[S] /riist [S]y m €@ L. Pm = [S], m €Q (I # L). P m)

by (simp add: MultiSyncyiicr-Cons <L # []))
finally show ?Zcase .

qed
qed

This has just been established for rev L, which is a particular permutation
of the list L. It turns out that it actually holds for any permutation. The
rest of this file constitutes the proof.

281

Arbitrary Permutation

Some preliminary results lemma permute-list-transpose-eq-list-update :
i < length xs = j < length xs =
permute-list (Transposition.transpose i j) xs = xs[i := xslj, j := xsli]
by (auto simp add: permute-list-def transpose-def intro: nth-equalityl)

lemma inj-on-permute-list-transpose :
i < n = j < n = inj-on (permute-list (Transposition.transpose i j)) {xs. n
< length xs}»
by (auto introl: inj-onl simp add: permute-list-transpose-eq-list-update)
(metis length-list-update nth-equalityl nth-list-update-eq nth-list-update-neq or-
der-less-le-trans)

lemma rev-permute-list-transpose :

i < length L = j < length L =

rev (permute-list (Transposition.transpose i j) L) =

permute-list (Transposition.transpose (length L — Suc) (length L — Suc j)) (rev
L)

by (simp add: permute-list-transpose-eq-list-update rev-nth rev-update)

lemma permute-list-transpose-rev :

i < length L = j < length L —>

permute-list (Transposition.transpose i j) (rev L) =

rev (permute-list (Transposition.transpose (length L — Suc i) (length L — Suc
7)) L)

by (simp add: permute-list-transpose-eq-list-update rev-nth rev-update)

lemma tickFree-map-map-eventyici-id-eq :
tF t => map (map-eventyyick id g) t = b
and tickFree-mem-T-Renaming Tick-iff-mem-T :
«(tFt =t € T (RenamingTick P g) «— t €T P
and tickFree-mem-D-Renaming Tick-iff-mem-D :
«(tF t =t € D (RenamingTick P g) <— t € D P
for P :: «('a, 'r) processprick) and g <'r = '
— Necessarily here, antecedents and images for g share the same type.
proof —
show = : <tF' t => map (map-eventpicr id g) t = t» for t 2 «('a, ') tracepiick?
by (induct t) (auto simp add: is-ev-def)
show «tF t = t € T (RenamingTick P g) «— t € T P>
by (auto simp add: T-Renaming * map-eventy;cr-tickFree D-T is-processT7)
show (tF t = t € D (RenamingTick P g) «+— t € D P)
by (auto simp add: D-Renaming x is-processT7)
(metis x front-tickFree-Nil self-append-conv)
qed

The proof We start by proving that the RenamingTick of the right-hand
side process () by a transposition can be “taken to the outside” of the syn-

282

chronization P [S]/riist Q-

lemma Syncpry;si-Renaming Tick-permute-list-transpose :
(P [S]/ Rriist RenamingTick Q (permute-list (Transposition.transpose i j)) =
RenamingTick (P [S]/riist Q) (permute-list (Transposition.transpose (Suc i)
(Suc 1))
(is «?lhs = %rhsy) if <i < ny j < m» <Ars. rs € V/s(Q) = n < length rs»
proof —
let 7 = Transposition.transpose
let ?pl-T = «\i j. permute-list (91 i j)»
let 2fun-evt = <\i j. map-eventyiicr td (7pl-T @ j)
let ?map-evt = <Ai j. map (?fun-evt i j)»
let YRT = <\i j P. RenamingTick P (?pl-T i j)»
let 2tj = Ars. |r # sp
note map-eventy;ck-eq-iffs [simp] =
ev-eq-map-eventptick -iff tick-eqg-map-eventyy;cr-iff
map-eventyt;cr-eq-ev-iff map-event,i;cr-eq-tick-iff
have length-ge-eq-pl-T-imp-eq : <r = 1’
if «<n < length r» and «?pl-r i jr = ?pl-r i jr’ for r v’ v lists
proof —
from «n < length r» have «n < length (?pl-T i j r)) by simp
with «?pl-t i jr = 2pl-t i j v’y have <n < length r’> by simp
have <inj-on (?pl-r i j) {r. n < length r}>
by (simp add: <i < ny j < ny inj-on-permute-list-transpose)
with «n < length > <n < length r’s «?pl-t i jr = ?pl-T ij1"
show «r = r’ by (auto dest: inj-onD)
qed
have pl-t-pl-T : «n < length r = ?pl-t i j (?pl-r ijr) = for r 2 r lists
by (subst permute-list-compose|symmetric])
(metis lessThan-iff order-less-le-trans permutes-swap-id i < n) <j < ny, simp)
have fun-evt-fun-evt :
«(case e of ev a = True | /(r) = n < length r) = ?fun-evt i j (fun-evt i j
e) = e
for e :: «(a, 'r list) eventpiicr>
by (cases e) (simp-all add: pl-T-pl-T)
have map-evt-map-evt :
(Ne. e € set t = case e of ev a = True | /(r) = n < length r)
= ?map-evt i j (Ymap-evt { jt) =t for ¢t = «(‘a, 'r list) tracepiick
by (induct t) (simp-all add: fun-evt-fun-evt)
from i < n» <j < n» have pl-7-Cons :
«n < length s = ?pl-m (Suc i) (Suc j) (r # s) = r # ?pl-t i j & for r and s
2 listy
by (simp add: list-update-appendl nth-append-left permute-list-transpose-eq-list-update)
show «?lhs = ?rhs»
proof (rule Process-eg-optimizedI)
fix t assume <t € D ?lhs
then obtain u v t-P t-Q) where * : <t = u Q v tF uy «ftF v
(u setinterleaves s g4 ((1-P, 1-Q), S)
@PEDPALQET (PRTijQ)VtPET PAtQeD(?RTijQ)
unfolding Syncriise.D-Syncpiicr by blast

283

from tickFree-setinterleavesy;ck-iff [THEN iffD1, OF x(4, 2)] have (tF t-(Q»

with x(5) have <t-P e DPAtQ €T QV +-P €T PAt-Q €D @
by (simp add: tickFree-mem-T-Renaming Tick-iff-mem-T tickFree-mem-D-Renaming Tick-iff-mem-D)
with x(1—4) have <t € D (P [S]/riist Q)
by (auto simp add: Syncriisi-D-Syncpiick)
thus <t € D ?rhs
by (meson D-imp-front-tickFree div-butlast-when-non-tickFree-iff
front-tickFree-iff-tickFree-butlast tickFree-mem-D-Renaming Tick-iff-mem-D)
next
fix t assume <t € D ?rhs»
then obtain t1 t2
where x : (¢t = ?map-evt (Suc ©) (Suc j) t1 @Q 2y <tF t1> ftF t2) <t1 € D
(P [S]y Ruist @)
by (auto simp add: D-Renaming)
from (1, 2) have <t = t1 @ t2)
by (simp add: tickFree-map-map-event,; x-id-eq)
from *(4) obtain ul u2 t-P t-Q where *x* : <t1 = ul Q u2) «(tF ul» ftF u2>
(ul setinterleaves s g1 ((t-P, t-Q), S)
(t-PeDPANtQeT QViEtPeT PAt-QeD @
unfolding Syncriist.D-Syncpiick by blast
from tickFree-setinterleavesyyicr-iff[THEN iffD1, OF xx(4, 2)] have «tF t-@»

with #x(5) have «(t-P e D PAt-Q €T (RTijQ)Vt+PeT PANt-QeD
(?RT i 7 Q)
by (simp-all add: tickFree-mem-T-Renaming Tick-iff-mem-T tickFree-mem-D-Renaming Tick-iff-mem-
with «x(1—4) %(2, 3) <t = t1 Q t2»> show «t € D ?lhs»
by (auto simp add: Syncriisi-D-Syncpick intro: front-tickFree-append)
next
fix t X assume «(t, X) € F 2rhs) <t ¢ D ?rhsy <t ¢ D ?lhs
then obtain ¢’ where * : (¢t = ?map-evt (Suc i) (Suc j) t"
«(t', Zfun-evt (Suc i) (Suc j) —“X) € F (P [S]/riist Q)
unfolding Renaming-projs by blast
from «(2) <t ¢ D ?rhs) have «t' ¢ D (P [S]/riist Q)
by (metis (no-types, lifting) *(1) D-imp-front-tickFree div-butlast-when-non-tickFree-iff
front-tickFree-iff-tickFree-butlast map-butlast map-event,i;c,-tickFree
tickFree-map-map-event,;c-id-eq tickFree-mem-D-Renaming Tick-iff-mem-D)
with x(2) obtain t-P t-Q X-P X-Q
where *x : «(t-P, X-P) € F P» «(t-Q, X-Q) € F @
«t! setinterleaves s o4 ((1-P, 1-Q), S)»
«Zfun-evt (Suc ©) (Suc j) —° X C super-ref-Syncprick 7tj X-P S X-Q>
unfolding Syncriise.Syncpick-projs by force
from x(2) consider <¢tF t» | t'' rs where «(tF t'"y <t/ = t" @ [/ (rs)]
by (metis (lifting) F-T F-imp-front-tickFree T-nonTickFree-imp-decomp
butlast-snoc front-tickFree-iff-tickFree-butlast)
thus (¢, X) € F ?lhs)
proof cases
assume <tF t’
have «?map-evt (Suc i) (Suc j) t' =t

284

by (simp add: <tF t» tickFree-map-map-eventy;.-id-eq)
have «?map-evt i j t-Q = t-Q>
using *x(3) <tF t"» tickFree-map-map-eventy,.-id-eq tickFree-setinterleaves,;cr -iff
by blast
define X-Q’ where (X-Q' = X-Q N (range ev U {V/(r) |r. n < length r})»
define X’ where <X’ = X N (range ev U {V(rs) |rs. Suc n < length rs})
have <X-Q' C X-Q» unfolding X-Q’-def by blast
with #x(2) is-processT4 have «(t-Q, X-Q') € F Q> by blast
moreover have «?fun-evt i j —* (?fun-evt i j * X-Q') = X-Q"
by (auto simp add: X-Q'-def)

(use length-ge-eq-pl-T-imp-eq in blast)+
moreover have «?map-evt i j t-Q = t-Q> by fact
ultimately have ((t-Q, fun-evt i j * X-Q') € F (?RT i j Q)

by (auto simp add: F-Renaming)
moreover have (e € X' = e € super-ref-Syncpricr ?tj X-P S (Zfun-evt i j

“X-Q") for e

using xx(4)[THEN set-mp, of «?fun-evt (Suc i) (Suc j) e)]

unfolding X'-def X-Q’-def super-ref-Syncpi;cr-def

by (auto simp add: image-iff pl-t-Cons) (use pl-T-pl-T in force)
ultimately have «(t, X') € F ?lhs

by (simp add: Syncriist-F-Syncptick)

(metis %(1) *x(1, 8) <?map-evt (Suc i) (Suc j) t' = t'> subsetl)
moreover have «Suc n < length (rs)» if <t Q [V (rs)] € T ?lhs) for rs
proof —

from <t ¢ D ?lhs> have «t Q [/ (rs)] ¢ D ?lhs
by (meson is-processT9)
with «t @Q [V (rs)] € T ?lhs
obtain t-P" t-Q" where £ : «t-P" € T P> «t-Q"" € T (?RT i j Q)
(t @ [/ (rs)] setinterleavesy y,. o Ir # s ((t-P", t-Q"), S)»
unfolding Syncriist.Syncptick-projs by blast
from £ obtain t-P' +-Q"' r s
where ££ : (rs = 1 # s (-P" = t-P"" Q [/ ()] t-Q" = +-Q"" @ [/ (s)]>
<t setinterleavess yp. s |y 4 s ((&=P", t-Q""), S
by (auto elim: snoc-tick-setinterleavespici E)
have <tF' t-Q""" using £(2) ££(3) append-T-imp-tickFree by blast
from <t ¢ D ?lhs) £(1) ££(2, 4) have t-Q""" ¢ D (?RT i j Q)
by (simp add: Syncriisi-D-Syncpiicr”)
(use front-tickFree-Nil is-processT3-TR-append in blast)
with £(2) obtain t-Q"""

where <?map-evt i j t-Q""' = t-Q"" Q [V (s)]» «t-Q""" € T

by (simp add: Renaming-projs)

(metis ££(3) «t-Q"" ¢ D (?RT i j Q)» is-processT7 is-processT9
tickFree-map-map-eventyy;.-id-eq tickFree-mem-D-Renaming Tick-iff-mem-D)
then obtain s’ where £££ : <s = ?pl-Tr i jsh «t-Q" Q [V(s)] € T @

by (auto simp add: map-eg-append-conv Cons-eq-map-conv

append-T-imp-tickFree tickFree-map-map-eventy;cx-id-eq)
have s’ € /s(Q)

by (meson £££(2) «tF Q" «t-Q"" ¢ D (?RT i j Q) is-processT9

strict-ticks-of-meml tickFree-mem-D-Renaming Tick-iff-mem-D)

285

with «(Ars. rs € Vs(Q) = n < length rs) have «n < length s .
with <s = ?pl-T i j s'» have «n < length s» by simp
with <rs = r # s show «Suc n < length rsy by simp
qed
ultimately have «(t, X' U (X N {V/(rs) |rs. = Suc n < length rs})) € F ?lhs
using is-processT5-S7' by blast
also have <X’ U (X N {V(rs) |rs. = Suc n < length rs}) = X>
by (simp add: set-eq-iff X'-def image-iff) (meson eventpick.ezhaust)
finally show «(¢, X) € F ?lhs> .
next
fix t"' rs assume <tF t') «t' = t” Q [V (rs)]»
from *x(3) obtain ¢-P’' t-Q' r s
where xxx : (r # s = r$)
«t"" setinterleavesy g5 ((¢-P7, t-Q"), S)
«(t-P = t-P'Q [V(r)] «t-Q = t-Q" Q [V (s)]
by (auto elim: snoc-tick-setinterleavespiciy E
simp add: «t' =t Q [V (rs)]» split: if-split-asm)
have «n < length s»
proof —
from xx(1)[THEN F-T] xx(8) «t' ¢ D (P [S]/riist @) have «t-Q ¢ D @Q»
by (simp add: Syncriist.-Syncpiick-projs’)
(use front-tickFree-Nil in blast)
with «(¢-Q, X-Q) € F Q)[THEN F-T] have <s € /s(Q)»
by (simp add: xxx(4) strict-ticks-of-memlI)
with <Ars. rs € Vs(Q) = n < length rs» show «n < length s> .
qed
from <t" setinterleaves s oy; ((t-P', t-Q), S)
have «#map-evt (Suc i) (Suc j) t" setinterleaves s g4 ((t-P', #map-evt i j t-Q),
S)
by (metis (no-types, lifting) <tF t'" tickFree-map-map-eventyy;cr-id-eq
tickFree-setinterleavesyyick-iff)
from setinterleaves,t;cy-snoc-tick
[OF this, of r <?pl-T i j s» <?pl-T (Suc i) (Suc j) r9»] <n < length $
have «?map-evt (Suc i) (Suc j) t' setinterleaves g5 ((¢-P, Pmap-evt i j +-Q),
S)
by (simp add: xxx(1, 3, 4) <t' = t" Q [/ (rs)]») (metis xxx(1) pl-T-Cons)
moreover from xx(2)[THEN F-T] have <(?map-evt i j t-Q, UNIV) € F
(PRT ij Q)
by (simp add: *xx(4), intro tick-T-F) (auto simp add: T-Renaming)
moreover have «(t-P, UNIV) € F P»
by (metis *x(1) xxx(3) F-T tick-T-F)
moreover have <e € X = e € super-ref-Syncpticr, ?tj UNIV S UNIV) for

using xx(4)[THEN set-mp, of «?fun-evt (Suc i) (Suc j) e]
by (cases e) (auto simp add: super-ref-Syncpici-def)
ultimately show «(t, X) € F ?lhs
using x(1) by (simp add: Syncriist-F-Syncpiick) blast
qed
next

286

fix t X assume (¢, X) € F ?lhsy <t ¢ D ?lhs
then obtain ¢-P t-Q X-P X-Q
where * : «(t-P, X-P) € F Py «(t-Q, X-Q) € F (?RT ij Q)
«t setinterleaves s o4 ((t-P, 1-Q), S)»
«X C super-ref-Syncpricr ?tj X-P S X-Q»
unfolding Syncriist.Syncptick-projs by force
from (1, 8) «t ¢ D ?lhsy F-T front-tickFree-Nil
have «¢t-Q ¢ D (?RT i j Q)» unfolding Syncry;si.D-Syncpiick’ by blast
with %(2) obtain ¢-Q’ where *x : <i-Q = ?map-evt i j t-Q" «(t-Q’, ?fun-evt ¢
j- X-Q) e F @
unfolding Renaming-projs by blast
define X-Q’ where (X-Q' = X-Q N (range ev U {/(rs) |rs. n < length rs})»
define X’ where <X’ = X N (range ev U {V/(rs) |rs. Suc n < length rs})»

from (¢, X) € F ?lhs)[THEN F-T| consider <tF t) | t' rs where (tF t» «t
=t'Q [V(rs)p
using T-nonTickFree-imp-decomp append-T-imp-tickFree by blast
thus «(t, X) € F ?rhs
proof cases
assume <tF' t
hence «?map-evt (Suc i) (Suc j) t =t
by (simp add: tickFree-map-map-event, ;. -id-eq)
have < ?map-evt i j t-Q’ = t-Q"
using *(3) *x(1) <tF t» map-eventy,cx-tickFree tickFree-map-map-eventy;c,-id-eq
tickFree-setinterleavesy;cr-iff by blast
have «(t-Q, fun-evtij —‘ X-Q) € F @
by (simp add: xx(1, 2) <?map-evt i j t-Q' = t-Q")
hence «(t-Q, ?fun-evt ij —° X-Q") € F @
by (simp add: X-Q'-def is-processT4)
moreover have «(t-P, X-P) € F P> by (fact (1))
moreover have (¢ setinterleaves s o4 ((t-F, t-Q), S)» by (fact *(3))
moreover have <e € ?fun-evt (Suc i) (Suc j) —* X' =
e € super-ref-Syncptick ?tj X-P S (fun-evt i j —° X-Q)» for e
using set-mp[OF *(4), of «?fun-evt (Suc i) (Suc j) e]
by (auto simp add: super-ref-Syncpiicr-def X'-def pl-T-Cons)
ultimately have «(t, ?fun-evt (Suc i) (Suc j) —‘X') € F (P [S]/riist Q)
by (unfold Syncriise-F-Syncpiick, clarify)
(metis xx(1, 2) «?map-evt i j t-Q' = t-Q" subsetl)
moreover have «Suc n < length (rs)) if <t Q [/(rs)] € T (P [S]y/ riist Q)
for rs
proof —
from <t ¢ D ?lhs) have <t ¢ D (P [S]/riist Q)
by (simp add: Syncriist.D-Syncpiick)
(metis tickFree-mem-D-Renaming Tick-iff-mem-D
tickFree-mem-T-Renaming Tick-iff-mem-T tickFree-setinterleavesy,;ck-iff)
hence <t @ [/ (rs)] ¢ D (P [S]/riist Q)
by (meson is-processT9)
with (¢ @ [/(’I‘S)] eT (P [[S]]/Rlist Q))
obtain #-P'" t-Q" where £ : «t-P" ¢ T P> <t-Q" € T @

287

«t @ [/ (rs)] setinterleavesy y,. o Ir # s ((t-P”, t-Q"), Sy
unfolding Syncriist.Syncptick-projs by blast
from £ obtain t-P'' t-Q""" r s
where L£L£ :<rs =1 # s «t-P" = t-P"" Q [V (r)p «t-Q" = t-Q"" Q [V (s)]
(t setinterleavesy y,. ¢ Ir # s] ((t-P"", t-Q""), S

by (auto elim: snoc-tick-setinterleavesytici E)
from «t ¢ D (P [S]/riist @) have «t-Q"" ¢ D
by (simp add: Syncriist.D-Syncprick’)
(metis £(1) ££(2—4) append.right-neutral
front-tickFree-Nil is-processT3-TR-append is-processT9)
have s € v/s(Q)
by (metis £(2) ££(3) «t-Q" ¢ D @ strict-ticks-of-memlI)
with (Ars. rs € V/s(Q) = n < length rs> have «n < length s> .
thus «Suc n < length rs» by (simp add: <rs = r # s»)
qed
ultimately have «(t, ?fun-evt (Suc i) (Suc j) —* X' U
fun-evt (Suc i) (Suc j) —¢
(X N {V(rs) |rs. = Suc n < length rs})) € F (P [S]y riist

Q)
using is-processT5-S7' by force
also have «?fun-evt (Suc 1) (Suc j) —° X' U
2fun-evt (Suc 7) (Suc j) — (X N {V/(rs) |rs. = Suc n < length rs}) =
fun-evt (Suc i) (Suc j) —° X>
by (auto simp add: X'-def image-iff) (metis eventp;cy.ezhaust)
finally show (¢, X) € F ?rhs
using < ?map-evt (Suc i) (Suc j) t = ¢» by (auto simp add: F-Renaming)
next
fix t’ rs assume <tF t" <t = t' Q [V (rs)]»
from #(3) obtain t-P" t-Q" r s
where xxx : <rs = r # s
«t’ setinterleaves s g4; ((t-P"', t-Q"), S)
t-P = t-P" @ [/ (r)]) «-Q = t-Q"" Q [V (s)]
(tF t-P"y (tF t-Q""
by (auto elim!: snoc-tick-setinterleavesy; .k E
simp add: <t = t' Q [V (rs)]> split: if-split-asm)
(metis (tF' t' tickFree-setinterleavesyy;cr-iff)
have «+-Q"" ¢ D
by (metis x(2) xxx(4) F-imp-front-tickFree <t-Q ¢ D (?RT i j Q)»
front-tickFree-append-iff is-processT7 non-tickFree-tick
tickFree-Nil tickFree-mem-D-Renaming Tick-iff-mem-D)
from *x(1) xxx(4) obtain s’ where <s = ?pl-T i j s
by (auto simp add: xx(2) append-eq-map-conv Cons-eq-map-conv)
with *x(1) %x(2)[THEN F-T] xxx(4) have «{-Q" Q [/ (s")] € T @
by (simp add: *+x(4) append-eg-map-conv Cons-eq-map-conv)
(metis xxx(6) <t-Q"" ¢ D Q> is-processT9 length-permute-list map-event,;cx-tickFree
pl-T-pl-T strict-ticks-of-meml that(8) tickFree-map-map-event,;cr-id-eq)
with «t-Q" ¢ D @) have <s’ € /s(Q)»
by (metis is-processT9 strict-ticks-of-meml)
with (Ars. rs € V/s(Q) = n < length rs» have «n < length s’ .

288

with <s = ?pl-T i j s'» have «n < length sy by simp
hence <Suc n < length rs» by (simp add: <rs = r # s»)

have «?map-evt (Suc i) (Suc j) t setinterleaves g ((&-P, ?map-evt i j ¢-Q),
S
by (simp add: xxx(1—8, 4, 6) <t = t' Q [/ (rs)]> «<n < length $» «tF t"
pl-T-Cons
setinterleavesyyick -snoc-tick tickFree-map-map-event,; x-id-eq)
moreover have «t-P € T P» using x(1) F-T by blast
moreover from x(2)[THEN F-T| «n < length s» have «?map-evt i j t-Q €
T
by (auto simp add: T-Renaming xxx(4, 6) append-eqg-map-conv Cons-eq-map-conv
tickFree-map-map-eventy;cr-id-eq pl-T-pl-7)
(metis append-T-imp-tickFree not-Cons-self2 tickFree-map-map-eventy; ., -id-eq,
metis «t-Q" ¢ D @ is-processT7 is-processT9)
ultimately have < ?map-evt (Suc @) (Suc j) t € T (P [S]/riist Q)
by (auto simp add: Syncriist. T-Syncprick)
with «n < length sy have <t € T ?rhs
by (auto simp add: T-Renaming <t = t' Q [/ (rs)]> append-eqg-map-conv
Cons-eg-map-conv)
(metis xxx(1) <tF t"y length-permute-list pl-t-Cons pl-T-pl-T tickFree-map-map-event,; i -id-eq)
thus «(t, X) € F ?rhs) by (simp add: <t = t' Q [/ (rs)]> tick-T-F)
qed
qed
qed

lemma RenamingTick-permute-list-transpose-Syncristsienl :
(RenamingTick P (permute-list (Transposition.transpose i j)) n[S]/Listsient @

RenamingTick (P n[S]/Listsient Q) (permute-list (Transposition.transpose i
)

(is «?lhs = ?rhe) if <i < ny j < m» for P :: «(‘a, 'r list) processpiick>

proof —
let ?pl = <permute-list (Transposition.transpose i j)»
let 2fun-evt = <map-event,icr id (permute-list (Transposition.transpose i j))»
let ?map-evt = <map ?fun-evt>

and ?RT = «A\P. RenamingTick P (permute-list (Transposition.transpose i j))»
and ?tj = (Ar s. if length r = n then |[r Q 5| else O»
note map-event,;cx-eq-iffs [simp] =
ev-eg-map-eventpticr -iff tick-eq-map-eventy;cr-iff map-eventyscr -eq-ev-iff map-eventyy;cr -eq-tick-iff
have length-eq-pl-imp : «r = r’y if «n < length r» and «?pl r = ?pl r’s for r r’
i listy
proof —
from «n < length r» have «n < length (?pl r)» by simp
with «?pl r = ?pl r’s have «n < length r'» by simp
have <inj-on ?pl {r. n < length r}»
by (simp add: <i < ny j < ny inj-on-permute-list-transpose)

289

with «n < length r <n < length r’s «?plr = ?pl r"
show «r = 1’ by (auto dest: inj-onD)
qed
have pl-pl : <n < length r = ?pl (?pl r) = r for r :: <r lists
by (subst permute-list-compose|symmetric))
(metis lessThan-iff order-less-le-trans permutes-swap-id <i < ny <j < ny, simp)
have fun-evt-fun-evt :
«(case e of ev a = True | /(r) = n < length r) = 2fun-evt (?fun-evt €) = e
for e :: «('a, 'r list) eventpiick>
by (cases e) (simp-all add: pl-pl)
have map-evt-map-evt :
(Ne. e € set t = case e of ev a = True | /(r) = n < length r)
= ?map-evt (Ymap-evt t) = ¢ for t = «(“a, 'r list) tracepiick
by (induct t) (simp-all add: fun-evt-fun-euvt)
from i < n» <j < n» have pl-append :
«n < length r = ?pl (r Q v’y = Zplr Q " for r v’ = 7 listy
by (simp add: list-update-append! nth-append-left permute-list-transpose-eq-list-update)

show «?lhs = 2rhs»
proof (rule Process-eq-optimizedl)
fix ¢t assume <t € D ?lhs)
then obtain u v t-P t-Q) where * : <t = « Q v) (tF uy <ftF v
(u setinterleaves s o4 ((1-P, t-Q), S)»
(t-P €D (RTP)Nt-QeT QV t-PeT (RTP)ANE-QeD
unfolding Syncristsienr-D-Syncprick by blast
from tickFree-setinterleavespi;ck-iff [THEN iffD1, OF (4, 2)] have «tF' t-P»

with x(5) have «t:-P e D PAtQ €T QVt+P €T PAt+Q €D @
by (simp-all add: tickFree-mem-T-Renaming Tick-iff-mem-T tickFree-mem-D-Renaming Tick-iff-mem-
with *(1—4) have <t € D (P ’n,[[S]]/ListslenL Q))
by (auto simp add: Syncr;stsienr-D-Syncprick)
thus ¢t € D ?rhs
by (meson D-imp-front-tickFree div-butlast-when-non-tickFree-iff
front-tickFree-iff-tickFree-butlast tickFree-mem-D-Renaming Tick-iff-mem-D)
next
fix ¢ assume <t € D ?rhs»
then obtain t71 t2
where * : (t = ?map-evt t1 Q 2> tF t1» «ftF t2) <t1 € D (P pn[S]/Listsient
Q)
by (auto simp add: D-Renaming)
from (1, 2) have <t = t1 Q t2)
by (simp add: tickFree-map-map-event,;cr-id-eq)
from *(4) obtain ul u2 t-P t-Q) where *x : <t1 = ul @ u2) «(tF ul» <ftF u2»
(ul setinterleaves s oy; ((t-P, t-Q), S)»
t-PeDPAtQeT QVIELPeTPAt-QeDQ
unfolding Syncristsienr-D-Syncprick by blast
from tickFree-setinterleavesyycr-iff[THEN iffD1, OF %x(4, 2)] have «tF' t-P»

with *x(5) have <t-P € D (RT P) AN t-Q € T QV t-P € T (?RT P) A t-Q

290

eD
by (simp-all add: tickFree-mem-T-Renaming Tick-iff-mem-T tickFree-mem-D-Renaming Tick-iff-mem-D)
with xx(1—4) %(2, 3) <t = t1 @ t2) show «t € D ?lhs)
by (auto simp add: Syncristsient-D-Syncpick intro: front-tickFree-append)
next
fix t X assume (¢, X) € F ?lhsy <t ¢ D ?lhs
then obtain ¢-P t-Q X-P X-Q
where * : «(t-P, X-P) € F (?RT P)» «(t-Q, X-Q) € F
«t setinterleaves s o4 ((t-P, 1-Q), S)
«X C super-ref-Syncpiicr ?tj X-P S X-Q»
unfolding Syncr;stsienr - SYncptick-projs by force
from %(2, 8) <t ¢ D ?lhsy F-T front-tickFree-Nil
have «¢t-P ¢ D (?RT P)» unfolding Syncrsisienr-D-Syncpiick’ by blast
with %(1) obtain ¢-P’ where *x : (t-P = ?map-evt t-P"» «(t-P’, ?fun-evt —°
X-P) e F P»
unfolding Renaming-projs by blast
from «(¢, X) € F ?lhs)|[THEN F-T| consider <tF t) | t' rs where <tF t'y «t
=t'Q [V(rs)p
using T-nonTickFree-imp-decomp append-T-imp-tickFree by blast
thus «(¢t, X) € F ?rhs
proof cases
assume <tF)
hence «?map-evt t =
by (simp add: tickFree-map-map-eventy ;. -id-eq)
have < ?map-evt t-P' = t-P’)
using #(3) #x(1) tF t» map-eventyi,cx-tickFree tickFree-map-map-eventpt;c,-td-eq
tickFree-setinterleavesyiick-iff by blast
have «(t-P, ?fun-evt —‘ X-P) € F P)
by (simp add: *x(1,2) <?map-evt t-P’' = t-P")
moreover have «(t-Q), X-Q) € F @ by (fact %(2))
moreover have (¢ setinterleaves s o4 ((t-F, t-Q), S)» by (fact *(3))
moreover have (e € fun-evt —‘ X = e € super-ref-Syncptick ?tj (Zfun-evt
—“X-P) S X-@ for e
using *(4)[THEN set-mp, of < ?fun-euvt e)]
by (cases e, auto simp add: super-ref-Syncpick-def split: if-split-asm)
(metis append-eq-append-conv dual-order.refl length-permute-list pl-append,
metis append-eq-append-conv dual-order.refl length-permute-list pl-append,
metis dual-order.refl length-permute-list pl-append)
ultimately have (¢, Zfun-evt —° X) € F (P p[S]/Listsient Q)
by (simp add: Syncrisisient-F-Syncpiick) blast
with «?map-evt t = t» show «(¢t, X) € F ?rhs
by (auto simp add: F-Renaming)
next
fix t’ rs assume <tF t"» <t = t' Q [V (rs)]»
from (%) obtain t-P" t-Q" r s
where xxx : <length r = ny <r Q s = s
«t’ setinterleaves s o4 ((t-P", t-Q"'), S)
(t-P = t-P" @ [V(r)) «t-Q = t-Q" @ [/ (s)]»
by (auto elim: snoc-tick-setinterleavesptici B

291

simp add: <t = t' Q [V (rs)]> split: if-split-asm)
have «%pl r @ s = ?pl rs) using *xx(1, 2) pl-append by force
from «t’ setinterleaves s ¢1; ((+-P", 1-Q"), S)
have «?map-evt t' setinterleaves , 24 ((¢map-evt t-P", t-Q"), S)»
by (metis (no-types, lifting) <tF t'» tickFree-map-map-eventy.r-id-eq
tickFree-setinterleavesy ;e -iff)
have <case e of ev a = True | /(r) = n < length r) if <e € set t-P" for e
proof —
have <tF ¢-P')
using *xx(3) «tF t) tickFree-setinterleavespick-iff by blast
hence <e € set t-P'' = is-ev e> for e
by (metis in-set-conv-decomp tickFree-Cons-iff tickFree-append-iff)
moreover from <e € set t-P’y have (?fun-evt e € set t-P»
by (simp add: xx(1))
ultimately show <case ¢ of ev a = True | V/(r) = n < length r
using sxx(1) by (cases e, auto simp add: **x(4)) (metis eventpy;ck.disc(2))
qged
with arg-cong[OF #x(1), where f = ?map-evt] map-evt-map-evt
have <?map-evt t-P = t-P’y by presburger
with *x have «?map-evt t-P € T P» by (simp add: F-T)
moreover have (t-Q € T () using x(2) F-T by blast
moreover from (?map-evt t’ setinterleaves , 24 ((¢map-evt t-P", t-Q"), S)»
have «?map-evt t setinterleaves 2tj ((#map-evt t-P, t-Q), S)»
by (simp add: <t = t' Q [/ (rs)]) *xx(1, 4, 5)
«Zpl T @ s = ?plrs) setinterleavespt;c,-snoc-tick)
ultimately have «?map-evt t € T (P n[S]/ristsient. Q)
unfolding Syncristsienr- T-Syncpticr by blast
hence < ?map-evt (?map-evt t) € T ?rhs
by (auto simp add: T-Renaming)
also have < ?map-evt (?map-evt t) = t»
by (simp add: <t = t' @ [/(rs)])
(metis xxx(1, 2) «tF t"» dual-order.refl length-permute-list
list. map-comp pl-append pl-pl tickFree-map-map-eventy ;. -id-eq)
finally show «(¢, X) € F ?rhsy by (simp add: <t = t' Q [/ (rs)]» tick-T-F)
qed
next
fix t X assume (¢, X) € F rhs» <t ¢ D ?rhsy <t ¢ D ?lhs
then obtain ¢’ where * : <t = ?map-evt t"
(t', 2fun-evt —* X) € F (P p[Sl/ristsient @)
unfolding Renaming-projs by blast
from «(2) <t ¢ D ?rhs) have «t' ¢ D (P n[S]/Listsienr Q)
by (metis (no-types, lifting) (1) D-imp-front-tickFree div-butlast-when-non-tickFree-iff
front-tickFree-iff-tickFree-butlast map-butlast map-eventyi;c-tickFree
tickFree-map-map-eventy ;. -id-eq tickFree-mem-D-Renaming Tick-iff-mem-D)
with %(2) obtain ¢-P t-Q X-P X-Q
where #x : «(t-P, X-P) € F P» «(t-Q, X-Q) € F @
«t’ setinterleaves s gy; ((t-P, t-Q), S)
<Zfun-evt —° X C super-ref-Syncpricr ?tj X-P S X-Q»
unfolding Syncristsienr -SYncptick-projs by force

292

from %(2) consider (tF t"» | t” rs where «tF t"» <t/ = t"" Q [/ (rs)]
by (metis (lifting) F-T F-imp-front-tickFree T-nonTickFree-imp-decomp
butlast-snoc front-tickFree-iff-tickFree-butlast)
thus «(¢, X) € F ?lhs
proof cases
assume (tF t’
have (?map-evt t’ setinterleaves 24 ((¢map-evt t-P, t-Q), S)»
by (metis (lifting) *x(3) «tF t"» tickFree-map-map-eventy ;i -id-eq
tickFree-setinterleavesy;cx-iff)

define X-P’ where <X-P’' = X-P N (range ev U {V/(r) |r. length r = n})
define X’ where <X’ = X N (range ev U {V/(rs) |rs. n < length rs})
have (X-P’ C X-P» unfolding X-P’-def by blast
with *x(1) is-processT4 have «(t-P, X-P') € F P) by blast
moreover have ¢ ?fun-evt —* (fun-evt * X-P') = X-P"
by (auto simp add: X-P’-def) (use length-eg-pl-imp in blast)+
moreover have < ?map-evt t-P = t-P»
using *x(3) <tF t"» tickFree-map-map-eventy;.,-id-eq tickFree-setinterleavesyy;x-iff
by blast
ultimately have «(t-P, ?fun-evt * X-P') € F (?RT P)»
by (auto simp add: F-Renaming)
moreover have (e € X' = e € super-ref-Syncpiicr ?tj (?fun-evt * X-P') S
X-@» if <e € X') for e
using xx(4)[THEN set-mp, of «?fun-euvt es] fun-evt-fun-evt[of €]
unfolding X’-def X-P’-def super-ref-Syncpiick-def
by (auto simp add: image-iff pl-append split: if-split-asm)
(metis (mono-tags, lifting) Int-iff Un-iff length-permute-list mem-Collect-eq,
blast, metis length-permute-list)
ultimately have (¢, X') € F ?lhs
by (Simp add: SynCListslenL~F'Syncptick)
(metis (lifting) (1) *x(2, 3) <tF't"» subsetl tickFree-map-map-eventy;cx-id-eq)
moreover from <t ¢ D ?lhs) have <t Q [/(rs)] € T ?lhs = n < length
(rs)» for rs
by (auto simp add: SyncrisisienL-SYNCprick-PTojs
elim!: snoc-tick-setinterleavesy;ci E split: if-split-asm)
(metis (no-types, lifting) append.assoc butlast-snoc front-tickFree-charn
non-tickFree-tick tickFree-Nil tickFree-append-iff tickFree-imp-front-tickFree)+
ultimately have «(t, X' U (X N {/(rs) |rs. = n < length rs})) € F ?lhs»
using is-processT5-S7' by fastforce
also have <X’ U (X N {V/(rs) |rs. = n < length rs}) = X»
by (simp add: set-eq-iff X'-def image-iff) (meson eventpick.erhaust)
finally show «(¢, X) € F ?lhs> .
next
fix t" rs assume <tF t') «t' =t Q [V (rs)]»
from *x(8) obtain ¢-P' t-Q' r s
where xxx : <length r = ny <r Q s = s
«t"" setinterleaves s g5 ((¢-P', t-Q"), S)
(t-P = t-P'Q [V (r)] «t-Q = t-Q’ @ [/ (s)]»

by (auto elim: snoc-tick-setinterleavesptick B

293

simp add: <t =t Q [V (rs)]»> split: if-split-asm)
have «?plr Q s = pl rs»
using *xx(1, 2) pl-append by force
from <t" setinterleaves s oy; ((t-P', +-Q), S)
have «?map-evt t"’ setinterleaves 24j ((#map-evt t-P’, t-Q"), S)»
by (metis (no-types, lifting) <tF t'"» tickFree-map-map-eventp;c,-id-eq
tickFree-setinterleavesy ;e -iff)
from setinterleavesyycr-snoc-tick|OF this, of <?plry s «?pl rs]
have «?map-evt t’ setinterleaves 24 ((?map-evt t-P, t-Q), S)
by (simp add: xxx(1, 4, 5) «t' =t Q [/ (rs)p «?pl T @ s = ?plrsy)
moreover from xx(1)[THEN F-T] have ¢(?map-evt t-P, UNIV) € F (RT

by (simp add: *xx(4), intro tick-T-F) (auto simp add: T-Renaming)
moreover have «(t-Q, UNIV) € F

by (metis *x(2) xxx(5) F-T tick-T-F)
moreover have (e € X = e € super-ref-Syncpricr #tj UNIV S UNIV)» for

using (4)[THEN set-mp, of <%fun-evt e)]
by (cases e) (auto simp add: super-ref-Syncptici-def)
ultimately show «(t, X) € F ?lhs
using *(1) by (simp add: Syncristsienr-F-Syncprick) blast
qed
qed
qed

Then, we establish the result when the permutation is only a transposition.

lemma MultiSyncyy;cr-permute-list-transpose :
i < length L = j < length L —>
IS, ! €@ permute-list (Transposition.transpose i j) L. Pl =
RenamingTick ([S], | €@ L. P 1) (permute-list (Transposition.transpose i j))»
for L :: <'b lists
proof —
let ?RT = RenamingTick and ?MS = <\L. [S], l €Q L. P I;
let RS = «\L. [S], l€Q L. P
let 27 = < Transposition.transposes
let ?pl-Tr = «\i j. permute-list (27 i j)»
have custom-nat-induct [case-names 0 1 2 Suc] :
(thesis 0 = thesis 1 = thesis 2 —
(An. 2 < n = (Ak. k < n = thesis k) = thesis (Suc n)) = thesis n
for thesis n
by (metis One-nat-def Suc-1 less-2-cases linorder-not-le strong-nat-induct)
have x : (i < j = i < length L = j < length L —
?RS (?pl-tr ij L) = ¢RT (?RS L) (?pl-T i j) for ij
proof (induct <length Ly arbitrary: i j L rule: custom-nat-induct)
case (0 thus ?case by simp
next
case 1 thus ?case by (cases L) simp-all
next
case 2

294

from 2.hyps 2.prems(1, 8) consider i = > | <i = 0> <j = 1» by linarith
thus ?case
proof cases
show (i = j = %case> by simp
next
let %9 = <Ars. if rs =[] then || else last rs # butlast rs»
assume ¢ = 0) <j = D>
moreover obtain 7 [2 where <L = [l1, 2]
by (metis 2.hyps One-nat-def Suc-1 diff-Suc-1' length-tl lessI
list.exhaust-sel nat-less-le order.refl take0 take-all-iff)
ultimately have <?MS (?pl-r i j L) = P 12 [S] s riist RT (P 11) (Ar. [r])
by (simp add: permute-list-transpose-eq-list-update)
also have «... = ?RT (?RT (P 11) (Ar. [r]) [Sl/riist P 12) 29
by (simp add: Syncriist.Syncpiick-comm-locale-sym.Syncpyicr-commaute)
also have «... = YRT (?MS L) ?¢»
by (simp add: <L = [I1, 12]> MultiSyncyiick-snoclof - <[I1]», simplified])
also have «... = ?RT (?MS L) (?pl-t i j)»
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of)
fix rs assume <rs € V's(?MS L)»
from is-ticks-lengthD is-ticks-length-MultiSyncpiick this
have <length rs = length L) .
thus <%g rs = %pl-7 i jro
by (cases rs; cases <tl rs»)
(simp-all add: <L = [I1, 12> <i = 0> j = 1>
permute-list-transpose-eg-list-update)
qed
finally show ?case .
qged
next
case (Suc n)
show ?Zcase
proof (cases i = j»)
show i = j = %case>
by simp (metis RenamingTick-id eq-id-iff permute-list-id)
next
assume (i # j» hence i < j»
by (simp add: Suc.prems(1) nat-less-le)

{fix ij L1011 and L' :: <'b list
assume <i # 0> i < j» <0 < length Ly <j < length Ly <Suc n = length L»
(L =10 #11 # L
with i < length Ly <j < length Ly <i < j» <i # 0>
have x : «<i — 1 <j— 1y <i — 1 <length (I1 # L")
<j — 1 < length (11 # L’)» by auto
have «%pl-t i j L =10 # %pl-7 (i — 1) (j — 1) (I1 # L")
proof (subst (1 2) permute-list-transpose-eq-list-update)
show «i — 1 < length (I1 # L')» <j — 1 < length (11 # L)
<1 < length Ly <j < length L»
by (fact (2, 3) <i < length L) <j < length L»)+

295

next

from x i #£ 0

show <L[i :=L!j, j:=L"!i]=
W#UH#LY)Ni—1:=UH#LN'G—-1),j—1:=1#L)! ({4

-1
by (cases i; cases j) (simp-all add: <L = 10 # 11 # L nat.case-eq-if)
qed
hence «?MS (?pl-t ij L) = P10 [S]/riist ?MS (?pl-T (i — 1) (j — 1) (U
L)

by (simp add: MultiSyncpiicr-Cons)
(metis Zero-not-Suc length-Cons length-permute-list list.size(3))
also have «?MS (?pl-t (i — 1) (j — 1) (1 # L") =
ZRT (?MS (11 # L) (%pl-r (i — 1) (j — 1))
by (subst Suc.hyps)
(use * <Suc n = length Ly <L = 10 # 11 # L’ in simp-all)
also have <P 10 [S]/riist ?RT (?MS (11 # L") (?pl-7 (i — 1) (j — 1)
?RT (P10 [S]/riist ?MS (11 # L") (?pl-t (Suc (i — 1)) (Su
— 1))

by (rule Syncriist-RenamingTick-permute-list-transpose[OF %(2, 3)])
(metis is-ticks-lengthD is-ticks-length- MultiSyncyiicr, order-le-less)
also have «((Suc (¢ — 1)) = 4> using i # 0> by simp
also have «(Suc (j — 1)) = j» using x(1) by linarith
also have <P 10 [S] s riist ?MS (11 # L') = ?MS L»
by (simp add: <L =10 # 11 # L")
finally have <?MS (?pl-r ij L) = ?RT (YMS L) (?pl-T ij)» .
} note £ = this

) =
c(j

consider i £ 0» | <j £ m | <i = 0> <j = n» by argo
thus Zcase
proof cases
assume <i # 0»
from Suc.hyps(1, 8) obtain 10 I1 L' where <L =10 # 11 # L"
by (cases L; cases <tl Ly) simp-all
from £ i # 0> <i < j» Suc.prems(2, 3) Suc.hyps(3) this show Zcase .
next
assume <j # n)
from Suc.hyps(1, 3) obtain [0 1 L' where <L = L' @ [I1] @ [I0]
by (cases L rule: rev-cases; cases <butlast Ly rule: rev-cases) simp-all
hence <rev L = 10 # 11 # rev L’> by simp
have «Suc n = length (rev L) by (simp add: Suc.hyps(3))

have «?MS (?pl-t ij L) = ?MS (rev (?pl-t (length L — Suc i) (length L —
Suc j) (rev L)))»
by (subst rev-rev-ident[of L, symmetric], subst permute-list-transpose-rev)
(simp-all add: Suc.prems(2, 3))
also have «... = ?RT (?MS (?pl- (length L — Suc i) (length L — Suc)
(rev L))) rev
by (fact MultiSyncyi;cr-rev)
also have «?pl-7 (length L — Suc i) (length L — Suc j) =

296

?pl-t (length L — Suc j) (length L — Suc i)
by (simp add: transpose-commute)
also have «?MS (?pl-t (length L — Suc j) (length L — Suc i) (rev L)) =
?RT (?MS (rev L)) (?pl- (length L — Suc j) (length L — Suc 7))»
by (rule £) (use Suc.hyps(3) Suc.prems(3) j # ny i < j»
<rev L =10 # 11 # rev L’ in auto)
also have «?MS (rev L) = ?RT (?MS L) rev»
by (fact MultiSyncpicr-rev)
also have «?RT (?RT (?RT (?MS L) rev) (?pl-t (length L — Suc j) (length
L — Suc 7)) rev =
?RT (?MS L) (rev o (?pl-7 (length L — Suc j) (length L — Suc 7))
o rev))
by (simp add: RenamingTick-comp)
also have «... = ?RT (¢YMS L) (?pl-T j i)
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of)
fix rs assume <rs € /'s(?MS L)
hence <length rs = length L»
using is-ticks-lengthD is-ticks-length-MultiSyncptici, by blast
thus «(rev o (?pl- (length L — Suc j) (length L — Suc 7)) o rev) rs =
pl-T j i re
by (unfold comp-def, subst rev-permute-list-transpose)
(use Suc.prems(2, 8) in auto)
qed
also have «... = ?RT (¢YMS L) (?pl-T i j)»
by (simp add: transpose-commute)
finally show ?Zcase .
next
let 291 = <Ars. if rs =[] then [] else last rs # butlast rs»
let 292 = <\rs. drop (Suc (Suc 0)) rs Q take (Suc (Suc 0)) rs»
let 993 = <Ars. case rs of v # s = r # (if s =[] then [] else last s # butlast
)
let 2t = Ars. [id r # (if s =[] then [] else last s # butlast s)|»
assume ¢ =) j = n»
from Suc.hyps(1, 3) obtain 0 11 L’
where <L =10 # L' Q [l1] <L' # [
by (cases L; cases <tl L) rule: rev-cases; force)
have «?pl-7 i j L =11 # L' Q [I0]»
by (subst permute-list-transpose-eq-list-update)
(use Suc.prems(3) Suc.hyps(3) «L =10 # L' Q [I1]»
in <auto simp add: <i = 0> <j = n»)
hence <?MS (?pl—’]’ Zj L) =PIl [SH/Rlist (?MS L' [[S]]/Llist P lU))
by (simp add: MultiSyncpiicr-Cons MultiSyncpiicr-snoc <L’ # []))
also have «... = ?RT (?MS L' [S]sriist P10 [S]/riist P 11) ?91»
by (simp only: Syncriisi-SYncptick-comme-locale-sym.Syncyick,-commute)
also have «?MS L' [S]/riist P10 [S]/riist P11 =
(?MS L' g, (Suc g)ﬂsﬂ/ListslenR (P10 [SlyPairtist P11))
by (Slmp OTll:lji SynCListslenR'SynCPairlist'G'SSOC)
also have «... = ?RT (P 10 [[S]]/Pairlist Pl Suc (Suc O)HSH/ListslenL
?MS L") 292>

297

by (simp only: Syncristsien-SYnCpiick-commute)
also have <P [0 [[S]]/Pai'r'list Pl1 Suc (Suc O)HSH/ListslenL ?MS L' =
Plo [[S]],/Rlist (P 11 [[S]]/Rlist 2MS L/)>
by (simp only: Syncriist-SYncriist-assoc)

also have ¢... = P 0 [[S]]/Rlist ?RT (?MS L' [[S]]/Llist P l]) ?g])
by (simp only: Syncgrisst.SyYncptick-comme-locale-sym.Syncpi;ck-commute)
also have «... = ?RT (P 10) id [[S]]/Rlist ?RT (?MS L' [S]]/Llist P 11)
291> by simp
also have «... = Syncpiick-locale.Syncpiicr 2tj (P 10) S (?MS L' [S]/riist
Pl1)
proof (rule Syncgi;si.ing-Renaming Tick-Syncpiick-inj-Renaming Tick)
show <inj idy <inj (Ars. if rs = [| then [| else last rs # butlast rs)»

by (auto introl: injI split: if-split-asm)
(metis append-butlast-last-id)
qed
also have «... = 7RT (P o [[S]]/Rlist (?MS L’ [[S]]/Llist P l])) .Qgg>
by (subst Syncriist.inj-on-RenamingTick-Syncpick)
(auto introl: inj-onl split: if-split-asm, metis append-butlast-last-id)
also have <P 10 [S]/riist (?MS L' [S]/riist P 11) = ?MS L»
by (simp add: <L =10 # L' Q [I1]» MultiSyncyi;cx-Cons MultiSyncyiick-snoc
AL # D)
also have <?RT (?RT (?RT (?MS L) %¢93) %92) %91 = ?RT (¢YMS L) (%91
o 292 o 993))
by (simp only: RenamingTick-comp)
also have «... = ?RT (?MS L) (?pl-7 i j)»
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of)
fix rs assume <rs € V's(?MS L)
hence <length rs = length L»
using is-ticks-lengthD is-ticks-length-MultiSyncpicr by blast
obtain n’ where «n = Suc (Suc n')»
by (metis One-nat-def Suc.hyps(1) Suc-1 Suc-n-not-le-n i = 0 <i # j»
<j = m» nat.ezhaust-sel)
with Suc.hyps(1, 3) <length rs = length L»
obtain 70 r1 r2 rs’ where <rs = r0 # r1 # 12 # rs’» «n' = length rs"
by (cases rs; cases <tl rsy; cases <tl (tl rs)») simp-all
show «(?g1 o 292 o 298) rs = ?pl-T i j rs»
proof (subst permute-list-transpose-eg-list-update)
show (i < length rs) <j < length rs»
by (simp-all add: Suc.prems(2, 3) <length rs = length L»)
next
show «(?g1 o 292 o 2g3) rs = rs[i :=rs!j, j:=rs i)
by (simp add: <i = 0> <j = > <rs = r0 # r1 # r2 # s’y <n’ = length
rs’y
«n = Suc (Suc n')y butlast-append nat.case-eq-if)
(metis One-nat-def append-butlast-last-id diff-Suc-1' last-conv-nth
length-0-conv length-butlast list-update-length nat.collapse)
qed
qed
finally show ?case .

298

qged
qged
qed

consider i < j» | j < iy by linarith
thus YRS (?pl-T ij L) = ?RT (?RS L) (?pl-t i j) if <i < length Ly <j < length
Ly
proof cases
from that show i < j = YRS (?pl-t ij L) = ?RT (RS L) (%pl-T ij)> by
(fact *)
next
from that show «j < i = ?RS (#pl-r ij L) = ?RT (YRS L) (?pl-T i j)
by (subst (1 2) transpose-commute) (rule *)
qed
qed

Finally, the proof of the general version relies on the fact that a permutation
can be written as finite product of transpositions.

theorem MultiSyncyticr-permute-list :
(Sl ! €Q permute-list f L. Pl =
RenamingTick ([S], | €@ L. P 1) (permute-list f)>
if f-permutes : <f permutes {..<length L}»
using finite-lessThan f-permutes
proof (induct f rule: permutes-rev-induct)
case id show ?case by (simp flip: id-def)
next
let YRT = RenamingTick and ?pl = permute-list and ?7 = Transposition.transpose
case (swap i j f)
have «?1 i j permutes {..<length L}»
by (meson permutes-swap-id swap.hyps(1, 2))
hence ([S], 1 €@ ?pl (fo ?rij) L. Pl =
[S1, L €@ (2pl (27 ij) (?pl fL)). P D
by (simp add: permute-list-compose)

also have «... = ?RT ([S], l €Q (#pl fL). P 1) (pl (%1 ij))
by (metis MultiSyncyy;cr-permute-list-transpose atLeastOLess Than
atLeastLess Than-iff length-permute-list swap.hyps(1,2))
also have «... = ?RT (?RT ([S], | €Q L. P 1) (¢pl f)) (%pl (21 i j))
unfolding swap.hyps(4) ..
also have «... = ?RT ([S], l €@ L. P 1) (?pl (?1 i j) o ?pl f)
by (simp flip: Renaming-comp)
also have «... = ?RT ([S], [€@ L. P 1) (?pl (f o (21 i j)))
proof (rule RenamingTick-is-restrictable-on-strict-ticks-of)
fix rs assume <rs € V's([S], | €@ L. P I)
from is-ticks-lengthD is-ticks-length-MultiSyncpgicr this
have <length rs = length L) .
with <27 i j permutes {..<length L}»
show «(?pl (1 i j) o ?plf) rs= ?pl (f o o7 i j) rs»
by (simp add: permute-list-compose)

299

qed
finally show Zcase .
qed

300

Chapter 12

Events and Ticks

12.1 Preliminaries

lemma strict-events-of-memE-optimized-tickFree :
(Nt.teTP=1t¢DP = eva € set t => tF t = thesis) = thesis) if
a € aP)
proof —
from (a € a(P)> obtain t where <t € T P»> <t ¢ D P» <ev a € set t»
by (meson strict-events-of-memkFE)
have «(if tF t then t else butlast t) € T P
by simp (metis <t € T P> append-butlast-last-id is-processT3-TR-append tick-
Free-Nil)
moreover have «(if tF t then t else butlast t) ¢ D P»
using T-imp-front-tickFree <t € T P» <t ¢ D P» div-butlast-when-non-tickFree-iff
by blast
moreover from T-nonTickFree-imp-decomp <ev a € set t» <t € T P»
have <ev a € set (if tF t then t else butlast t)» by force
moreover from T-imp-front-tickFree <t € T P» front-tickFree-iff-tickFree-butlast
have <tF' (if tF t then t else butlast t)> by (metis (full-types))
ultimately show «(At. t € T P=t¢ D P = eva € sett = tFt =
thesis) = thesis) by blast
qed

lemma events-of-memE-optimized-tickFree :
(ANt.t €T P = eva € set t = tF t = thesis) = thesis) if «a € a(P)
proof —
from <a € a(P)> obtain ¢ where <t € T P» <ev a € set t)
by (meson events-of-memE)
have «(if tF t then t else butlast t) € T P
by simp (metis <t € T P> append-butlast-last-id is-processT3-TR-append tick-
Free-Nil)
moreover from T-nonTickFree-imp-decomp <ev a € set t» <t € T P»
have <ev a € set (if tF t then t else butlast t)) by force
moreover from T-imp-front-tickFree <t € T P> front-tickFree-iff-tickFree-butlast
have <tF' (if tF t then t else butlast t)> by (metis (full-types))

301

ultimately show ((At. t € T P = ev a € set t = tF t = thesis) = thesis
by blast
qed

12.2 Sequential Composition

12.2.1 Events

lemma events-of-Seqptick : «a(P 3, Q) = a(P) U (Ur € vs(P). a(Q 7))
proof (intro subset-antisym subsetl)
show @ € a(P 3, Q) = a € a(P) U (Ur € v/s(P). a(Q r)) for a
proof (elim events-of-memE)
fix t assume <t € T (P;, Q) <eva € set b
from this(1) consider (T-P) t’' where <t = map (ev o of-ev) t’» «t' € T P»
EF th
| (T-Q) t' r v where ¢ = map (ev o of-ev) t' Q@ wy <t’' Q [V (r)] € T P> <tF
th «weT (Qr)y
| (D-P) t’ u where <t = map (ev o of-ev) t' Q@ wy <t € D Py «tF t" ftF w
unfolding Seqpticr-projs by blast
thus <a € o(P) U (Ur € v/s(P). a(Q 7))
proof cases
case T-P
from T-P(1, 3) <ev a € set t» have <ev a € set t"
by (meson tickFree-map-ev-of-ev-eq-imp-ev-mem-iff)
with T-P(2) have <a € a(P)) by (rule events-of-meml)
thus (¢ € a(P) U (Ur € Vs(P). a(Q r))> by simp
next
case T-Q
have «r € /s(P) VD P # {}
by (metis T-Q(2) empty-iff strict-ticks-of-memI)
thus (¢ € a(P) U (Ur € v/s(P). a(Q 7))
proof (elim disjE)
from T-Q
show «r € Vs(P) = a € a(P) U (Ur € V/s(P). a(Q 7))
by simp (metis Un-iff <ev a € set t» events-of-meml set-append
tickFree-map-ev-of-ev-eq-imp-ev-mem-iff)
next
assume <D P # {}»
hence (a(P) = UNIV» by (simp add: events-of-is-strict-events-of-or-UNIV')
thus <a € o(P) U (Ur € v/s(P). a(Q r))» by simp
qed
next
case D-P
have «a(P) = UNIV)»
by (metis D-P(2) empty-iff events-of-is-strict-events-of-or-UNIV)
thus <a € o(P) U (Jr € v/s(P). a(Q 7)) by simp
qed
qed
next

302

show «a € a(P) U (Jr € V/s(P). a(Q r)) = a € a(P 3, Q) for a
proof (elim UnE UnionE events-of-memE, safe)
fix ¢t assume <t € T P) <ev a € set b
then obtain ¢’ where <t € T P «tF t" <ev a € set t’
by (cases t rule: rev-cases, simp-all)
(metis prefit] <ev a € set t» append-T-imp-tickFree eventyyicy.disc(1)
is-processT3-TR
not-Cons-self2 tickFree-Cons-iff tickFree-Nil tickFree-append-iff)
thus <a € a(P 5, Q) by (auto simp add: Seqyiicr-projs rev-image-eql intro!:
events-of-meml)
next
fix a r assume <a € a(Q 1)) <r € VS(P)
from ¢r € /'s(P)) obtain ¢t where <t Q [/ (r)] € T P» by (meson strict-ticks-of-memD)
moreover from <a € a(Q r)> obtain u
where (v € T (Q r)) <ev a € set w by (meson events-of-memD)
ultimately have <map (ev o of-ev) t Q u e T (P;, Q) <eva € set (map (ev
o of-ev) t Q u))
by (auto simp add: Seqpiick-projs) (metis append- T-imp-tickFree not-Cons-self2)
thus @ € a(P;, Q) by (simp add: events-of-meml)
qed
qed

— Big approximation.
lemma events-of-Seqpiicr-subset : «a(P 3, Q) € a(P) U (Ur. o(Q 7))
by (auto simp add: events-of-Seqptick)

— Big approximation.
corollary events-of-Seq-subset : «a(P ; Q) C a(P) U a(Q)
by (simp add: events-of-Seq)

lemma strict-events-of-Seqpticr-subset : <a(P 3, Q) C a(P) U (Jr € v/s(P).a(Q
)
proof (rule subsetl)
show <a € a(P 3, Q) = a € a(P) U (Ur € vVs(P).a(Q 1)) for a
proof (elim strict-events-of-memkFE)
fix t assume <t € T (P;, Q) <t ¢ D (P, Q) <eva € set t»
from this(1, 2) consider (T-P) t’' where <t = map (ev o of-ev) t» «t' € T
Py «t' ¢ D Py «tF th
| (T-Q) t' r u where <t = map (ev o of-ev) t' @ w» <t' Q [V (r)] € T P> <t
¢DP tFth«weT (Qr) w¢D(Qr)
by (auto simp add: Seqpiick-projs) (metis T-imp-front-tickFree)
thus <a € a(P) U (Jr € vs(P).a(Q r))
proof cases
case T-P
have <ev a € set t’
by (metis T-P(1, 4) <ev a € set t» tickFree-map-ev-of-ev-eq-imp-ev-mem-iff)
have «a € aP)

303

by (meson T-P(2, 8) <ev a € set t’y strict-events-of-meml)
thus (¢ € a(P) U (Ur € vs(P).a(Q r))> by simp
next
case T-Q
have «r € /s(P)» by (meson T-Q(2, 8) is-processT9 strict-ticks-of-meml)
thus <a € a(P) U (Jr € vs(P).a(Q r))
by simp (metis T-Q UnE <ev a € set t» is-processT3-TR-append set-append
strict-events-of-meml tickFree-map-ev-of-ev-eq-imp-ev-mem-iff)
qed
qed
qed

12.2.2 Ticks

lemma ticks-of-Seqptick :
W's(Psy Q)= (if DP ={}then (Ur € /s(P). /s(Qr)) else UNIV)»
proof (split if-split, intro conjl impl)
show (D P # {} = V/s(P;, Q) = UNIV)»
by (simp add: Seqpiick-projs ticks-of-is-strict-ticks-of-or-UNIV)
(metis front-tickFree-Nil nonempty-divE)
next
show (D P = {} = Vs(P;, Q) = (Urev/s(P). /s(Q r)) if <D P ={}
proof (intro subset-antisym subsetl)
from <D P = {}» ticks-of-memlI|[of - - <Q -]
show «s € Vs(P 3, Q) = s € (Jrevs(P). /s(Q r)) for s
by (auto simp add: Seqpticr-projs strict-ticks-of-def append-eg-map-conv
append-eq-append-conv2 Cons-eq-append-conv elim!: ticks-of-memE)
(blast, metis append-Nil)
next
show (s € (Jrev/s(P). /s(Q r)) = s € V/s(P;, Q) for s
by (auto simp add: Seqpticr-projs ticks-of-def elim!: strict-ticks-of-memkFE)
(meson append.assoc append-T-imp-tickFree not-Cons-self2)
qed
qed

lemma «/s(P;, Q) C U {vVs(Qr)|r.r e /s(P)p
— Already proven earlier in the construction.
by (fact strict-ticks-of-Seqp;cr-subset)

12.3 Synchronization Product

12.3.1 Events

lemma (in Syncpi;cr-locale) events-of-Syncpiicr-subset : «a(P [S], Q) € «(P) U

a(Q)
by (subst events-of-def, simp add: T-Syncpiick subset-iff)
(metis UNIV-T empty-iff events-of-is-strict-events-of-or-UNIV
events-of-meml setinterleavesy;ck-preserves-ev-notin-set)

304

lemma (in Syncyiicr-locale) events-of-Interyiicr: «o(P |||, Q) = a(P) U a(Q)>
proof (rule subset-antisym[OF events-of-Syncyiick-subset])
show @(P) U a(@) C a(P [Il, Q)
proof (rule subsetl, elim UnkE)
fix o assume <a € a(P)
then obtain ¢-P where «tF t-P) <ev a € set t-P> <t-P € T P
by (meson events-of-memE-optimized-tickFree)
have (map ev (map of-ev t-P) setinterleaves yjck_join (P, [1), {})
by (simp add: <tF t-P» setinterleavesy;cr-NilR-iff)
hence <map ev (map of-ev t-P) € T (P |||, Q)
by (simp add: T-Syncpiicr) (metis <t-P € T P> is-processT1-TR)
moreover from <ev a € set t-P> have <ev a € set (map ev (map of-ev ¢-P))»
by force
ultimately show <a € a(P |||, Q)> by (metis events-of-meml)
next
fix a assume <a € a(Q)
then obtain ¢-() where (tF t-Q> <ev a € set t-Q) t-Q € T
by (meson events-of-memE-optimized-tickFree)
have (map ev (map of-ev t-Q) setinterleaves s yick join ([, t-Q), {})
by (simp add: <tF t-@Q» setinterleavespy;cy-NilL-iff)
hence <map ev (map of-ev t-Q) € T (P |||, @)
by (simp add: T-Syncpiicr) (metis <t-Q € T Q> is-processT1-TR)
moreover from <ev a € set t-Q» have <ev a € set (map ev (map of-ev t-Q))>
by force
ultimately show <a € a(P |||, Q)> by (metis events-of-meml)
qed
qed

lemma (in Syncpiick-locale) strict-events-of-Syncpiick-subset :
@(P [$], Q) C a(P) U a(Q)
proof (rule subsetl)
fix a assume <a € (P [S], Q)
then obtain ¢ where <t € T (P [S], Q) <eva € set t» «tF t» <t ¢ D (P [S],
Q)
by (blast elim: strict-events-of-memE-optimized-tickFree)
from «t €T (P [S], Q) <t ¢ D (P[S], Q)»
obtain t-P t-Q) where <t-P € T P> «t-Q € T Q>
and setinter : «t setinterleaves s yick_ioin ((t-P, +-Q), S)
unfolding Syncpiick-projs by blast
from this(3) setinterleavespi;ck-preserves-ev-notin-set <ev a € set t»
have <ev a € set t-P V ev a € set t-Q» by metis
moreover have <--P ¢ D P A t-Q ¢ D Q»
proof (rule ccontr)
assume - (-P ¢ D P A t-Q ¢ D Q)
with ¢-P € T Py «t-Q € T @ <tF t» front-tickFree-Nil setinter
have <t € D (P [S], @) unfolding D-Syncpicr by blast
with «¢ ¢ D (P [S], Q) show False ..

305

qed
ultimately show <« € a(P) U a(Q)»
by (meson UnCI <t-P € T Py «t-Q € T @ strict-events-of-meml)
qed

12.3.2 Ticks

lemma (in Syncptck-locale)
Ws(P[S]y Q) C{rs|rsrs re/ s=SomersA\rev/s(P)ANse/s(Q}
— Already proven earlier in the construction.
by (fact strict-ticks-of-Syncpiicr-subset)

lemma (in Syncpiick-locale) ticks-of-no-div-Syncpiick-subset :

D (P[S]y @ ={} =
s(P [S], Q) C {r-s |r-s r s. tick-join r s = Some r-s A r € /s(P) N s €

vs(Q)p

using strict-ticks-of-Syncpticr-subset
by (simp add: ticks-of-is-strict-ticks-of-or-UNIV subset-iff) blast

12.4 Architectural Operators

12.4.1 Events

lemma events-of-MultiSeq-subset :

«(SEQle@ L. Pl) C (Ul e set L.Ur. a(P 1))
by (induct L rule: rev-induct)
(auto introl: subset-trans|OF events-of-Seg-subset))

lemma events-of-MultiSeqpticr-subset :
«((SEQy le@ L. Pl)r)C (UlesetL.Jr. a(Plr))
by (induct L arbitrary: r)
(auto intro!: subset-trans|OF events-of-Seqptick-subset])

lemma strict-events-of-MultiSeq-subset :

«a(SEQle@ L. Pl) C (UlesetL.Jr. afP 1))
by (induct L rule: rev-induct)
(auto introl: subset-trans|OF strict-events-of-Seq-subseteq|
split: if-split-asm)

lemma strict-events-of-MultiSeqp;cr-subset :
«@((SEQ s le@ L. Pl)yr)C(UlesetL.Ur. a(Plr))

by (induct L arbitrary: r, simp)
(auto intro!: subset-trans|OF strict-events-of-Seqpyici-subset])

lemma events-of-MultiSyncpicr-subset :

306

«@([S]lyle@ L. Pl)C (Jl e setL afPl))
by (induct L rule: induct-list012, simp-all)
(metis eg-id-iff events-of-Renaming order.order-iff-strict
image-id events-of-is-strict-events-of-or-UNIV ,
use SYNCRiist.€vents-of-Syncpiicr-subset in fastforce)

lemma events-of-Multilnter,i;c,
«(|||ly €@ L. Pl)= (! € set L. a(P 1))
by (induct L rule: induct-list012,
simp-all add: Syncry;si.events-of-Interpiick)
(metis events-of-Renaming events-of-is-strict-events-of-or-UNIV id-apply im-
age-id)

lemma strict-events-of-MultiSyncyeicr-subset :
w@([Slyte@ L. Pl)C (Ul € set L. a(P 1)
by (induct L rule: induct-list012, simp-all add: strict-events-of-inj-on-Renaming)
(use Syncriise.strict-events-of-Syncpiick-subset in fastforce)

12.4.2 Ticks

We only look at strict-ticks-of lemmas: ticks-of is harder to deal with be-
cause it requires more control on the divergences.

lemma strict-ticks-of-MultiSeqpy;cr-subset :
Ws((SEQy L €Q L. Pl)r) C (if L =[] then {r} else (Jr. /s(P (last L) r)))>
proof (induct L arbitrary: r)
case Nil show ?case by simp
next
case (Cons | L)
have «(SEQ, m €Q (I # L). Pm) r=Plr;, SEQ, 1l €Q L. P 1) by simp
also have «/s(...) C J {V/s((SEQ, 1 €Q L. Pl)r') |r'. r" e /s(Plr)}
by (fact strict-ticks-of-Seqpiick-subset)
also have «... C | {if L =[] then {r'} else Jr. v/s(P (last L) r) |r'. v’ € /s(P
Irp
using Cons.hyps by (blast intro: Union-subsetl)
also have «... C (if L # L =[] then {r} else Ur. V/s(P (last (I # L)) r))> by
auto
finally show ?case .
qed

lemma strict-ticks-of-MultiSeq-subset :
«W's(SEQ 1 €Q L. PI) C (if L =[] then {undefined} else (|Jr. /s(P (last L))))>
using strict-ticks-of-MultiSeqpicx-subset[of L <\l r. P D]
unfolding MultiSeqpticr-const by auto

lemma strict-ticks-of-MultiSyncyt;cr-subset :
Ws([Sly le@ L. Pl) C
{l. length | = length L N (Vi < length L. 11 i € /s(P (L))}

307

proof (induct L rule: induct-list012)
case 1 show ?case by simp
next
case (2 10) show ?case
by (auto introl: subset-trans|OF strict-ticks-of-Renaming Tick-subset))
next
case (31011 L)
have «[S], 1 €@ (10 # 11 # L). P 1= P10 [S] riist [Sl, | €@ (i # L). P
Iy by simp
also have «/s(...) C{r# s|rs.re /s(Pl0) Nse /s([S], | €Q (i1 # L).
Plp
by (rule subset-trans|OF Syncri;s.strict-ticks-of-Syncpiicr-subset]) blast
also have «... C
{r# sirs. revs(PIl0)A
s € {l. length | = length (11 # L) A
(Vi<length (I1 # L). 11ievs(P ((I1 # L) 9)))}p
using 3.hyps(2) by blast
also have «... = {l. length | = length (10 # 11 # L) A
(Vi<length (10 # 11 # L). 11 i e v/s(P (10 # 11 # L) |)b
(is <251 = 752»)
proof (unfold set-eq-iff, intro alll)
show <[€ 951 +— [€ 252) for [
by (cases 1, auto, metis less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc)
qed
finally show ?Zcase .
qed

308

Chapter 13

Continuity Rules

13.1 Sequential Composition

13.1.1 Monotonicity

lemma tickFree-mem-min-elems-D : <t € min-elems (D P) = tF t»
by (metis D-imp-front-tickFree Prefiz-Order.prefix] append-self-conv elem-min-elems
is-processT9 min-elems-no nonTickFree-n-front TickFree not-Cons-self2)

lemma mono-Seqpiick : P35y RE Q3 S if <PE (and <RC S
for P @ :: <('a, ') processpiickr and R S :: <'r = (‘a, 's) processpiick’
proof —
let 25 = <A\P R. map (ev o of-ev) ‘ min-elems (D P) U
{map (evo of-ev) t Qu| tru. t Q[(r)) €T PANt¢DPA
tF t A u € min-elems (D (R r))}b
{ fix P and R :: <'r = (‘a, 's) processpiick> and ¢
assume <t € min-elems (D (P 3, R))
hence x : <t € D (P3, R)» and #x : (At t'€e D (P3;, R) = —~t' < b
by (simp-all add: min-elems-def)
from x consider (D-P) t' v where «t = map (ev o of-ev) t' Q w) <¢' € D P)
GF th <ftF w
| (D-R) t' r u where «t = map (ev o of-ev) t' @ wy <t' Q [V (r)] € T P> «t’
¢ D P «tFth «ueD(Rr)
by (simp add: Seqpiick-projs) (metis D-imp-front-tickFree)
hence <t € 25 P R»
proof cases
case D-P
from D-P(1—3) xx[of <map (ev o of-ev) t"»] have <u = [
by (simp add: Seqpi;ci-projs)
(metis strict-prefix]’ append.right-neutral front-tickFree-Nil neq-Nil-conv)
have <t’ € min-elems (D P)»
proof (rule ccontr)
assume <t’ ¢ min-elems (D P)»
with D-P(2) obtain ¢” where «t'" € D P> «t" < t'» unfolding min-elems-def

309

by fast
with D-P(1, 3) #x[of <map (ev o of-ev) t'"»] show False
by (auto simp add: Seqpiick-projs <u = [»)
(metis (no-types, lifting) strict-preficE’ strict-prefiz-simps(2) front-tickFree-Nil
less-append list.simps(9) map-append self-append-conv tickFree-append-iff)
qed
thus «t € S P R) by (simp add: D-P(1) «u = []»)
next
case D-R
have «u € min-elems (D (R 7))
proof (rule ccontr)
assume <u ¢ min-elems (D (R 1))
with D-R(5) obtain u’ where <v’ € D (R r)) v’ < w unfolding
min-elems-def by fast
with D-R(1, 2, 4) =x[of <map (ev o of-ev) t' @ u"] show False
by (simp add: Seqpiick-projs) (use less-append in blast)
qged
with D-R(1—4) show <t € 25 P Ry by auto
qed
} note $ = this

show «<P;, RC Q;/ S
proof (rule below-trans)
show «<P;, RC Q;/, I
proof (unfold le-approx-def, safe)
from le-approxz1|OF <P C @] le-approz-lemma-T[OF (P C]
show <t e D (Q 3, R) = t €D (P;, R)» for ¢
unfolding Seqypi;ck-projs by blast
next
from le-approz2[OF <P T @] le-approz2T[OF <P C @]
show <t ¢ D (P;, R) = X e€R,(P;y R)t= X € R, (Q;s R) t for
t X
by (simp add: Seqpiick-projs Refusals-after-def)
(metis F-imp-front-tickFree append.right-neutral front-tickFree-Nil is-processT9)
next
from le-approx2[OF <P T @] le-approx2T[OF <P T @] le-approzl[OF <P
C Q]
show «t ¢ D (P;, R) = X € R, (Q3y R)t = X € R, (P3;s R) t» for
t X
by (simp add: subset-iff Seqpiick-projs Refusals-after-def)
(metis D-T is-processT8)
next

show <t € min-elems (D (P 3, R)) = te T (Q;, R) for t
proof (rule set-mp[OF - $])
from le-approx2T[OF «P C @] le-approz3[OF <P C @] show <25 P R C

T(Qs/ R
by (simp add: subset-iff Seqpiick-projs)
(meson D-T elem-min-elems image-iff is-process T9 tickFree-mem-min-elems-D)

310

qged
qged
next
show «Q;, RC Q;/ S
proof (unfold le-approx-def, safe)
from le-approz1|OF fun-belowD[OF <R C S»]]
show «t € D (Q3, S) =t €D (Q;, R)» for t
unfolding Seqpi;cr-projs by blast
next
from proc-ord2a[OF fun-belowD[OF <R C S5]]
show «t ¢ D (Q3;/ R) = Xe€R, (Q;y R)t = X€R, (Q3/ 5 ¥
«t¢D(Q3y R) = XeR, (Q3y 5 t=XeRs(Qs5/ R) ¥ fort X
by (simp add: Seqpiick-projs Refusals-after-def, metis)+
next
show «t € min-elems (D (Q 3, R)) = te T (Q;, S) for t
proof (rule set-mp[OF - $])
from le-approz3[OF fun-belowD[OF <R T S)]] show <?S Q R C T (Q 5,
S)»
by (simp add: subset-iff Seqpiick-projs)
(meson D-T elem-min-elems image-iff tickFree-mem-min-elems-D)
qed
qed
qed
qed

13.1.2 Preliminaries

context begin

private lemma chain-Seqpt;ci-left: <chain Y = chain (Xi. Y i35, S)
by (simp add: mono-Seqpiick po-class.chain-def)

private lemma chain-Seqp¢icr-right: <chain Y = chain (X\i. S5, Y i)
by (simp add: mono-Seqpiick po-class.chain-def)

private lemma cont-left-prem-Seqptick :
(i Yi)s, S= (i Yisy S (is <?lhs = ?rhsy) if <chain Y
— We have to add this hypothesis in the generalization.
proof (rule Process-eq-optimizedl)
show «t € D ?lhs = t € D %rhs» for t
by (simp add: Seqpiick-projs limproc-is-thelub ch2ch-fun <chain Y» lub-fun
chain-Seqptick-left LUB-projs) blast
next
have «t € D ?lhsy if <t € D ?rhs) and «tF ¢ for ¢
proof (cases <map (ev o of-ev) t € D (| |i. Y i)»)
show <map (ev o of-ev) t € D (| |i. Yi) = t € D ?lhs
by (simp add: Seqpiick-projs)
(metis append.right-neutral front-tickFree-Nil <tF' t) tickFree-map-ev-comp

311

tickFree-map-ev-of-ev-eq-iff)
next
define T1 and T2
where «T1 i = {t1. 3t2. t = map (ev o of-ev) t1 Q t2 AN tl € D (Y i) A tF
t1 A ftF t2}
and <72 i = {t1. 3t2r. t = map (ev o of-ev) t1 Q@ 12 AN tl Q [/ (1) € T
(Yi)ANtFt1 ANt2 €D (Sr)p for i
assume <map (ev o of-ev) t ¢ D (|]i. Vi)
with «t € D ?rhs» have <T1 iU T2 i # {}» for ¢
by (simp add: T1-def T2-def limproc-is-thelub chain-Seqpi;ci-left <chain Y
LUB-projs Seqptick-projs) fast
moreover have «finite (T1 0 U T2 0)»
unfolding T'I-def T2-def
by (rule finite-subset[of - <{u. u < map (ev o of-ev) t}])
(use tickFree-map-ev-of-ev-eq-iff in <force simp add: prefizes-fin))+
moreover have «T1 (Suc i) U T2 (Suc i) C T1 iU T2 for ¢
unfolding T1-def T2-def by (intro alll subsetl; simp)
(metis (no-types, lifting) <chain Y po-class.chainE le-approz-lemma-T
le-approxl
subsetD]of <D (Y (Suc ©))» <D (Y i)»] subsetD[of «T (Y (Suc i))» <T (Y
i) @O
ultimately have «((i. T1¢U T21i) # {}> by (rule Inter-nonempty-finite-chained-sets)
then obtain t1 where % : «Vi. t1 € T1 iU T2 9> by auto
then obtain t2 where *x : <t = map (ev o of-ev) t1 Q t2» «tF t1» «ftF t2»
by (auto simp add: T1-def T2-def dest: D-imp-front-tickFree)
show <t € D ?lhs)
proof (cases <Vi. t1 € D (Y i))
from +x show «Vi. t1 € D (Y i) = t € D ?lhs
by (auto simp add: Seqpiick-projs limproc-is-thelub <chain Y» LUB-projs)
next
assume <~ (Vi. t1 € D (Y i)
then obtain j where #xx : <j < i =t ¢ D (Y i)) for ¢
by (meson <chain Y in-mono le-approz-def po-class.chain-mono)
hence j < i = t1 ¢ T1 i) for i by (simp add: T1-def)
with * have j < i = t1 € T2 i) for i by blast
then obtain r where t1 Q [/(r)] € T (Y j) <t2 € D (S)
unfolding T2-def by (auto simp add: **(1))
from this(1) <chain Y» xxx have <j < i = {1 Q [/(r)] € T (Y i) for i
by (metis eq-imp-le is-processT9 le-approx2T po-class.chain-mono)
hence <t1 @ [V (r)] € T (i Y i)
by (meson xxx (chain Y dual-order.refl is-processT9 is-ub-thelub le-approz2T)
with <t2 € D (S 7)) *x(1, 2) show «t € D ?lhs)
by (auto simp add: Seqptick-projs)
qed
qed
thus <t € D ?rhs = t € D ?lhs) for t
by (meson D-imp-front-tickFree div-butlast-when-non-tickFree-iff front-tickFree-iff-tickFree-butlast)
next
show «(t, X) € F ?lhs = (t, X) € F ?rhs» for t X

312

by (simp add: Seqpiick-projs limproc-is-thelub ch2ch-fun <chain Y» lub-fun
chain-Seqpiick-left LUB-projs) blast
next
fix t X assume «(¢, X) € F %rhs» <t ¢ D ?rhs)
from <t ¢ D ?rhs) obtain j where <t ¢ D (Y j;, S)
by (auto simp add: limproc-is-thelub chain-Seqpiicx-left <chain Y> LUB-projs)
moreover from (¢, X) € F ?rhs) have «(t, X) € F (Yj;, S)
by (simp add: limproc-is-thelub chain-Seqpiick-left <chain Y» F-LUB)
ultimately show (¢, X) € F ?lhs
by (fact le-approz2[OF mono-Seqpi;cr| OF is-ub-thelub[OF <chain Y| below-refl],
THEN iffD2))
qed

lemma «finite R => chain Y = Nr € R. (| |i. Yir)=(]i. NMr e R. Yir)y
by (subst cont2contlubE[of «GlobalNdet R», symmetric])
(simp-all add: lub-fun)

lemma infinite-GlobalNdet-not-cont :

— This is a counter example.

defines Y-def : <Y = Xi r :: nat. if r < i then STOP else L :: (nat, nat)
PTOCeSSptick)

shows <chain Y» «<Mr € UNIV. (| |i. Yir) # (i Mr € UNIV. Yir)
proof —

show * : <chain Y» unfolding Y-def by (auto intro!: chainl fun-belowl)

have xx : (chain (Ai. Y i r)) for r by (simp add: <chain Y ch2ch-fun)

have (| |i. Y i) = (Ar. STOP)»
by (rule ext, simp add: STOP-iff-T lub-fun limproc-is-thelub T-LUB * xx)
(auto simp add: Y-def T-STOP split: if-split-asm)
hence $: «Mr € UNIV. (| |i. Yir) = STOP)
by (simp add: GlobalNdet-is-STOP-iff * lub-fun)

have «1r € UNIV. Yir = 1 for ¢
by (simp add: BOT-iff-Nil-D D-GlobalNdet Y-def D-BOT)
(use Suc-n-not-le-n in blast)
hence $$: <(| |i. Mr € UNIV. Yir) = L) by simp

from § $8 show r € UNIV. (| i. Yir) # (|| Mr € UNIV. Yir) by simp
qed

The same counter-example works for Segpick-

lemma infinite-Seqpiick-not-cont :
— This is a counter example.
defines P-def : <P = SKIPS UNIV :: (nat, nat) processpiick’
and Y-def : <Y = Xir:: nat. if r < i then STOP else L :: (nat, nat) processpiick’
shows «chain Y» <P, (|]i. Yi) # (i P35y Yip

313

proof —
show * : <chain Y» unfolding Y-def by (auto intro!: chainl fun-belowl)
have (P, (|]i. Yi)=Nr e UNIV. (| |i. Yir)
by (simp add: P-def * lub-fun)
also have «... # (| |¢. Mr € UNIV. Y ir)
unfolding P-def Y-def by (fact infinite-GlobalNdet-not-cont(2))
also have «(| |i. Mr € UNIV. Yir) = (4 P, Yi)p
by (simp add: P-def)
finally show <P, (|]i. Y i) # ([Ji. P35y Yi) .
qed

We must therefore find a condition under which Segp;c is continuous.

private lemma cont-right-prem-Seqptick :
S5y (Ue Yi) = (i S5y Yi) (is <?lhs = ?rhsy) if <chain Y> and (F /(S)>
— We have to add this hypothesis in the generalization.
proof (rule Process-eq-optimizedI)
show «t € D ?lhs = t € D ?rhs) for t
by (simp add: Seqpiick-projs limproc-is-thelub ch2ch-fun <chain Y lub-fun
chain-Seqpiicr-right D-LUB) blast
next
have <t € D ?lhs) if <t € D ?rhs) and «tF t» for ¢
proof (cases ¢map (ev o of-ev) t € D S»)
show <map (ev o of-ev) t € D S =t € D %lhs»
by (sitmp add: Seqptick-projs)
(metis append.right-neutral front-tickFree-Nil <tF t» tickFree-map-ev-comp
tickFree-map-ev-of-ev-eq-iff)
next
define T where <T ¢ = {t1. 3t2 r. t = map (ev o of-ev) t1 @ t2 A t1 Q@
V(r)eT SANtFt1 Nt2 €D (Yir)} fori
assume <map (ev o of-ev) t ¢ D S»
with «t € D ?rhs» have <T i # {}> for i
by (fastforce simp add: T-def limproc-is-thelub chain-Seqpicr-right <chain Y
D-LUB Seqpyick-projs is-processT7 tickFree-map-ev-of-ev-same-type-is)
moreover have <finite (T 0)»
unfolding T-def
by (rule finite-subset[of - <{u. u < map (ev o of-ev) t}])
(use tickFree-map-ev-of-ev-eq-iff in <force simp add: prefizes-fin))+
moreover have (T (Suc i) C T i for {
unfolding T-def by (intro alll Un-mono subsetl; simp)
(metis <chain Y fun-below-iff subset-iff [of <D (Y (Suc i) -)» <D (Y i -)]
po-class.chainE le-approxl)
ultimately have (4. Ti) # {}» by (rule Inter-nonempty-finite-chained-sets)
then obtain t1 where Vi. t1 € T iy by auto
then obtain t2 where * : <t = map (ev o of-ev) t1 Q ¢2)
Ft1 Vi.3r.t1 Q [/ (r) e T SAt2eD (Yir)
by (simp add: T-def) blast
have «t1 € T S» by (meson x(3) prefix] is-processT3-TR)
from (1, 2) <map (ev o of-ev) t ¢ D S
have <t1 ¢ D S using is-processT7 tickFree-map-ev-of-ev-eq-iff by fastforce

314

define U where «<Ui={r. t1 Q[/(r)] € T SAt2 €D (Yir)} for i
from %(8) have «U i # {}» for i by (simp add: U-def)
moreover have «finite (U 0)»
proof (rule finite-subset|of - «{r. t1 Q [/ (r)] € T S}])
show «U 0 C {r. t1 @ [/(r)] € T S}> unfolding U-def by blast
next
show «finite {r. t1 Q [/(r)] € T Shp
by (simp add: <F,(S)> «t1 ¢ D S» finite-ticksD)
qged
moreover have U (Suc i) C U o for ¢
by (simp add: U-def subset-iff)
(meson fun-below-iff in-mono le-approxl chainE <chain Y»)
ultimately have (. U1%) # {}» by (rule Inter-nonempty-finite-chained-sets)
then obtain r where *x : <Vi. r € U iy by auto
with * show «t € D ?lhs)
by (simp add: Seqpiici-projs U-def <chain Y> ch2ch-fun limproc-is-thelub
D-LUB lub-fun) blast
qed
thus <t € D %rhs = t € D ?lhs> for t
by (meson D-imp-front-tickFree div-butlast-when-non-tickFree-iff front-tickFree-iff-tickFree-butlast)
next
show «(t, X) € F ?lhs = (t, X) € F ?rhs» for t X
by (simp add: Seqpiick-projs limproc-is-thelub ch2ch-fun <chain Y» lub-fun
chain-Seqpiick-right F-LUB) blast
next
fix t X assume «(t, X) € F rhs» <t ¢ D ?rhs)
from <t ¢ D ?rhs) obtain j where <t ¢ D (S, Y j)
by (auto simp add: limproc-is-thelub chain-Seqpiick-right <chain Y» D-LUB)
moreover from (¢, X) € F ?rhs) have «(t, X) € F (S35, Yj)»
by (simp add: limproc-is-thelub chain-Seqpiick-right <chain Yy F-LUB)
ultimately show «(¢, X) € F ?lhs
by (fact le-approz2[OF mono-Seqpyiici|OF below-refl is-ub-thelub{OF <chain
Y»)), THEN iffD2])
qed

13.1.3 Continuity

We then spent a lot of time trying to prove the continuity under the as-
sumption of finite-ticks-fun.

lemma Seqp¢ici-cont [simp] : <cont (\z. fz 3, gx)

if <cont > and «cont ¢» and <F/_.(f)

for g :: <- = - = (‘a, 's) processpiick?
proof (rule cont-apply[where f = Az y. fz 3,])

show <cont ¢» by (fact <cont g»)
next

show «cont (A\z. fz;, y)» for y 2 <- = (‘a, 's) processpici>

proof (rule contl2)

show «monofun (Az. fx 3, y)» by (simp add: cont2monofunE mono-Seqpick

monofunl <cont f»)

315

next
show «chain Y = f (| |i. Y1), y C (Ui f (Vi) y)p for Y
by (simp add: ch2ch-cont cont2contlubE cont-left-prem-Seqpiick <cont f)
qed
next
show «cont (A\y :: - = (‘a, 's) processpiick- fz 5, y)» for
proof (rule contl2)
show «monofun ((5,) (f z))» by (simp add: mono-Seqyiicr monofunl)
next
show «chain ¥ = fuz;, (i Yi)C (i fzs, YVip
for YV :: <- = - = (‘a, 's) processpiick?
oops
— Unfortunately here, we cannot use cont-right-prem-Seqpi;cr since there is
no reason for FF /() to hold. Actually, we can find a counter example.

We could therefore only prove the weaker following version.

lemma Seqpick-cont [simp] : <cont (A\z. fx 3, gx)
if «cont f> and <cont ¢> and <Az. F/(f z)>
for g :: <- = - = (‘a, 's) processptick?
proof (rule cont-apply[where f = Az y. fz 35, 1))
show <cont ¢» by (fact <cont g»)
next
show «cont (A\z. fz s, y)» for y = <- = (‘a, 's) processpiick>
proof (rule conti?2)
show <monofun (Az. fz;, y)» by (simp add: cont2monofunE mono-Seqptic
monofunl <cont f»)
next
show «chain ¥ = f (| |i. Yi) 35, vy C (Ui f (Vi) 35, y)p for Y
by (simp add: ch2ch-cont cont2contiubE cont-left-prem-Seqptick <cont f)
qed
next
show (cont (A\y :: - = (‘a, 's) processyiick- f x5, y)» for
proof (rule contlI2)
show «monofun ((5,) (fz))» by (simp add: mono-Seqptick monofunl)
next
show «chain ¥ = fax;, (i Yi)C (i fzs, YVip

for YV :: <- = - = (‘a, 's) processpiick>
by (simp add: cont-right-prem-Seqpicr <\z. F/(f x))
qed
qed
end

corollary <cont f = cont ¢ = cont (A\z. fz 3, g z)
for f :: </b:: cpo = (‘a, 'r :: finite) processpiick?
by (simp add: finite-ticks-simps(5))

316

lemma MultiSeqp;ck-cont[simp):
(AL 1 € set L => cont (f1); Nl 7 z. 1€ set (butlast L) = F,(flz)]
= cont (A\z. (SEQ, 1 €Q L. flz) r)
proof (induct L arbitrary: r)
show «Ar. cont (A\z. (SEQ, 1 €Q [|. flz) 1) by simp
next
case (Cons 10 L)
show <cont (Az. (SEQ, 1 €Q (10 # L). flz))
proof (cases <L = []»)
show (L = [| = cont (A\z. (SEQ, 1 €Q (10 # L). flz) r)
by (simp add: Cons.prems(1) cont2cont-fun)
next
show «cont (Az. (SEQ, 1 €Q (10 # L). flz) r)» if <L # [
proof (subst MultiSeqpiici-Cons, intro cont2cont-lambda Seqpiick-cont)
show <cont (Az. f10 x r)» by (simp add: Cons.prems(1) cont2cont-fun)
next
have (cont (Az. (SEQ, | €Q L. flx))
by (rule cont2cont-lambda, rule Cons.hyps)
(simp-all add: Cons.prems(1, 2) <L # []»)
thus «cont (Az. (SEQ, 1 €Q L. flz) y)» for y
by (fact cont2cont-fun)
next
show (F/(f 10 z) for z by (simp add: Cons.prems(2) that)
qed
qed
qed

13.2 Synchronization Product

context Syncpiici-locale begin

13.2.1 Monotonicity

lemma mono-Syncpiick : <P [A], Q C P’ [A], Q" if <P T P’ and <Q C Q"
proof (unfold le-approx-def Refusals-after-def, safe)
from le-approzl[OF <P T P"] le-approz-lemma-T[OF <P C P"]
le-approz1 [OF <Q T Q%] le-approz-lemma-T[OF <Q C Q"]
show «t € D (P'[A], Q) = t € D (P [4], Q) for ¢
by (simp add: D-Syncyiick) fast
next
from le-approx2[OF <P T P'] le-approz2[OF <Q T Q"
show ¢ ¢ D (P [A], Q) = (t, X) € F (P [A], Q) =

317

(t, X) € F (P'[A], Q) for t X
by (simp add: Syncpiick-projs’, elim disjE)
(metis F-T front-tickFree-Nil self-append-conv, metis)
next
from le-approz-lemma-F[OF «P T P"] le-approz-lemma-F[OF «Q T Q"]
le-approx1 [OF <P T P%] le-approz-lemma-T[OF <P C P"]
le-approx1 [OF <Q T Q"] le-approz-lemma-T[OF <Q T Q"]
show «t ¢ D (P [A], Q) = (t, X) € F (P'[A], Q) =
(t, X) e F (P [A], Q) for t X
by (simp add: Syncpiicr-projs subset-iff, elim disjE) metis+
next
fix ¢t assume <t € min-elems (D (P [A], Q))
hence <t € D (P [A], Q) by (fact elem-min-elems)
then obtain u v t-P t-@Q)
where x : <t = u Q vy (tF w «ftF v
(u setinterleaves yicpjoin ((¢-P, 1-Q), A)
t-PeDPAtQeT QVIEtPeTPAt-QeDQ
unfolding D-Syncpiicr by blast
have v = []»
proof (rule ccontr)
assume (v # []»
with x(1) have «(u < ©» by (simp add: dual-order.strict-iff-not)
moreover from x(2,4,5) have <u € D (P [A], Q)
by (simp add: D-Syncpiick) (use front-tickFree-Nil in blast)
ultimately show Fulse
using «t € min-elems (D (P [A], @Q))» min-elems-no order-less-imp-le by
blast
qed

have (t-P € min-elems (D P) if <t-P € D P»
proof (rule ccontr)
assume <t-P ¢ min-elems (D P)»
with «t-P € D P obtain t-P’ where («t-P’ < t-P» <t-P' € D P»
by (metis antisym-conv2 elem-min-elems min-elemss)
from setinterleavesptick-less-prefitL{OF «(4) «t-P' < t-P»]
obtain u’ t-Q’
where $: v’ < w (-Q' < t-@Q»
w' setinterleavesy yick_join ((¢-P', -Q"), A)» by blast
from *(5) D-T have «t-Q € T Q> by blast
with $(2,3) «t-P' € D P> have «v" € D (P [A], Q)
by (simp add: D-Syncpiick’)
(metis append.right-neutral front-tickFree-Nil is-processT3-TR)
moreover from (u’ < u» have (v’ < #
by (simp add: x(1)) (meson Prefix-Order.prefix] dual-order.strict-trans1)
ultimately show Fulse
using <t € min-elems (D (P [A], Q))» min-elems-no nless-le by blast
qed
with x(5) have «t-P € T P/
by (meson in-mono le-approz2T le-approzd <P T P')

318

have <t-Q € min-elems (D Q) if «<t-Q € D @
proof (rule ccontr)
assume <t-Q ¢ min-elems (D Q)»
with (-Q € D Q> obtain t-Q’ where t-Q’ < t-Q) <t-Q' € D @Q»
by (metis antisym-conv2 elem-min-elems min-elems5)
from setinterleavesyick-less-prefixR[OF x(4) «t-Q' < t-(Q]
obtain u’ t-P’
where $: v’ < w <t-P’' < t-P»
' setinterleavesy yick_join ((¢-P', -Q"), A)) by blast
from x(5) D-T have «t-P € T P> by blast
with $(2,3) «t-Q' € D @ have «v" € D (P [A], Q)
by (simp add: D-Syncpiick’)
(metis append.right-neutral front-tickFree-Nil is-processT3-TR)
moreover from «u’ < w have (u’ < &
by (simp add: x(1)) (meson Prefix-Order.prefix] dual-order.strict-transl)
ultimately show Fulse
using <t € min-elems (D (P [A], Q))» min-elems-no nless-le by blast
qed
with x(5) have «t-Q € T Q"
by (meson in-mono le-approz2T le-approzd «Q T Q")

from «t-P € T P «t-Q € T Q" x(4) show «t € T (P'[A], Q')
by (auto simp add: *(1) «v = [> T-Syncprick)
qed

13.2.2 Preliminaries

lemma chain-Syncpiick-left : «chain Y = chain (Xi. Y i [A], Q)
and chain-Syncpiicr-right : <chain Z = chain (Xi. P [A], Z i)
by (simp-all add: chain-def mono-Syncpiick)

lemma cont-left-prem-Syncpiick
(Ui Yo [Al, @ = (e Yi[A]l, Q) if chain: <chain Y
proof (rule Process-eq-optimizedI)
show ¢t € D ((i. Yi) [A], Q) = t €D (Ui Yi[A], Q) for t
by (simp add: limproc-is-thelub chain chain-Syncpicr-left D-Syncpiick D-LUB
T-LUB) blast
next
show «(t, X) € F (e Vi) [4], Q) = (t, X) € F (Ui. Yi[A], Q) for
t X
by (simp add: limproc-is-thelub chain chain-Syncpicx-left F-Syncpiick D-LUB
T-LUB F-LUB) blast
next
fix ¢
assume <t € D (| |i. Yi [A], Q)
define S
where <S¢ = {(t-Y, t-Q, u). Jv. tFu A ftFv ANt =u @ v A

319

u setinterleavesy yickjoin ((+-Y, +-Q), A) A
tYeD(Y)DANELQeT QV Y eT (Yi)A
t-Q € D Q)b for i
from ¢t € D (| |i. Y i [A], @) have <Si # {}> for ¢
by (simp add: S-def limproc-is-thelub chain chain-Syncpiicr-left D-Syncpiick
D-LUB) fast
moreover have (finite (S 0)»
by (rule finite-subset|OF - finite-setinterleavesycr-tick-join-Syncptick])
(auto simp add: S-def)
moreover from le-approz! [OF po-class.chainE[OF chain]] D-T
le-approz2T[OF po-class.chainE[OF chainl]
have «S (Suc i) C S for i by (simp add: S-def) blast
ultimately have «((i. S i) # {} by (rule Inter-nonempty-finite-chained-sets)
then obtain t-Y t-Q u where «(t-Y, t-Q, u) € ([S i) by auto
hence «tF'u A ftF' (drop (length u) t) A
t = u @ drop (length u) t A u setinterleaves yick_join (&Y, t-Q), A) A
(Vi. t-Y eD(YO)O)ANt-QeT QV (Vi. t-Y € T (Yi) ANt-Q € D Q)
by (auto simp add: S-def) (meson chain-lemma le-approzxl le-approz-lemma-T
subsetD chain)
show «t € D ((|]i. Yi) [4], @)
by (simp add: limproc-is-thelub chain D-Syncpiicr, T-LUB D-LUB)
(use < ?thisy in blast)
next
fix t X assume «(t, X) € F (7. Yi[A], Q) <t ¢ D(Us Yi[A]l, Q)
have <Y i C (| |¢. Y i)» for ¢ by (simp add: is-ub-thelub <chain Y)
moreover from <t ¢ D(|]i. Y i [A], @) obtain j where <t ¢ D (Y j [A],
Q)
by (auto simp add: limproc-is-thelub chain-Syncpiici-left <chain Y» D-LUB)
moreover from «(t, X) € F (| |i. Y i [A], Q) have «(t, X) € F (Y j [A],
Q)
by (simp add: limproc-is-thelub chain-Syncpiick-left <chain Y F-LUB)
ultimately show «(t, X) € F ((| . Y1) [A], Q)
by (metis (mono-tags, lifting) below-refl le-approz2 mono-Syncptick)
qed

lemma (in Syncpiick-locale) cont-right-prem-Syncptick
P [Al, (Ui Zi) = (i P[A], Z i) if <chain Z)
by (subst (1 2) Syncpiick-locale-sym.Syncpiick-sym)
(simp add: Syncpiick-locale-sym.cont-left-prem-Syncpick | OF <chain Z)])

13.2.3 Continuity

lemma Syncyiicr-cont[simpl: <cont (A\z. fx [A], g x)» if <cont f> <cont g»
proof (rule cont-apply[where f = Az y. y [A]/ g 3])

from «<cont f» show <cont f» .
next

show (cont (\y. y [A], g z)» for =

proof (rule contlI2)

320

show «monofun (Ay. y [A], g) by (simp add: monofunl mono-Syncpick)
next
show <chain ¥ = (| |i. Yi) [A]l, 92 C (i Yi[A], g 2) for YV
by (simp add: cont-left-prem-Syncpick)
qed
next
show (cont (A\z. y [A], g z)» for y
proof (rule cont-compose[of \z. y [A], =])
show «<cont (A\z. y [A], z)»
proof (rule contl2)
show <monofun (Syncprick y A) by (simp add: monofunl mono-Syncyick)
next
show (chain Z = y [A], (Ui Z14) C (i y [Al, Z i) for Z
by (simp add: cont-right-prem-Syncptick)
qed
next
from <cont ¢» show <cont ¢» .
qed
qed

end

lemma MultiSyncptick-cont [simp] :
(AL 1€ set L => cont (P1)) = cont (Az. [S], | €Q L. Plx)
by (induct L rule: induct-list012)
(auto intro: RenamingTick-cont inj-imp-finitary injl)

321

322

Chapter 14

Monotonicity Properties

14.0.1 Sequential Composition

lemma mono-Seqptick-FD : <P Cpp P' = (A\r. Q " Cpp Q' r) = P,/ Q
Crp P35/ Q)
proof (rule trans-FD[of - <P';, @])
show «<PCpp Plﬁ(/\r. QT’EFD Q/T)ﬁp,/ QEFD Pl,/ Q)
unfolding refine-defs Seqpiicr-projs
by (auto simp add: subset-iff T-F-spec[symmetric])
next
show <P Cpp P'= (A7. Qr Cpp Q' r) = P';, QCrp P';, Q"
unfolding less-eq-processptici-def Seqpticr-projs
by (simp add: subset-iff T-F-spec[symmetric]) metis
qed

lemma mono-Seqptick-DT : <P Cpr P' = (Ar. Q r Cpr Q' r) = P, Q
Cpr P35/ Q)
proof (rule trans-DT[of - <P";, @Q])
show (P;/ Q Cpr P/;/ Q) if <P Cpr P’
proof (rule trace-divergence-refine-optimizedl)
from <P Cpr P show <s € D (P';, Q) = s € D (P;, Q) for s
by (auto simp add: refine-defs Seqptick-projs)
next
from <P Cpr P show s € T (P'5, Q) = s€ T (P, Q) for s
by (auto simp add: Seqpiick-projs refine-defs)
qed
next
show «(Ar. Qr Cpr Q' r) = P';, QCpr P'5, Q)
by (simp add: refine-defs Seqpiick-projs) blast
qed

lemma mono-Seqpiicr-F-right : «(Ar. Q r Cp Q") = P, QCr P, Q)
by (auto simp add: failure-refine-def Seqpiick-projs) blast

lemma mono-Seqpiicr-D-right - «(Ar. @ r Ep Q' r) = P3, QCp P35, Q)

323

by (simp add: divergence-refine-def Seqpiick-projs) blast

lemma mono-Seqpiick-T-right : <«(Ar. Qr Ty Q' r) = P, Q Cr P35/ Q)
by (simp add: trace-refine-def Seqpiicr-projs) blast

Left Sequence monotonicity doesn’t hold for (Cr), (Ep) and (Crp).

lemmas monos-Seqpiick = Mono-Seqpiick Mono-Seqpiick-FD mono-Seqpiicr-DT
mono-Seqpiick-F-right mono-Seqpiicr-D-right mono-Seqpyick-T-right

14.0.2 Multiple Sequential Composition

lemma mono-MultiSeqpiicr,
(Ner.xz€setL=—=PzxrC Quzr) =
(SEQy 1 cQ L. Pl)rC (SEQ, l€QL. Q1) n
by (induct L arbitrary: r, simp-all add: fun-belowl mono-Seqptick)

lemma mono-MultiSeqpiick-FD :
(Nexr.xe€setL=— PxrCpp Qar)—
(SEQy 1 €@ L. Pl)yr Cpp (SEQ, 1 €@ L. Q1) m
and mono-MultiSeqpiicr-DT :
(Nexr.ze€set L= PzrCpr Qur) =
(SEQ, 1€Q L. Pl)r Cpr (SEQ, 1 €& L. Q1) r
by (induct L arbitrary: r, simp-all add: monos-Seqpiick)

lemmas monos-MultiSeqpticr =
mono-MultiSeqpiicr mono-MultiSeqpiicr-FD mono-MultiSeqy;ci-FD

14.0.3 Synchronization Product

context Syncp;ci-locale begin

lemma mono-Syncpticr-DT :
«(PCpr PP= QCpr Q"= P [A], Q Cpr P'[A], Q"
by (simp add: refine-defs T-Syncpiick D-Syncpiick) blast

lemma mono-Syncpiick-FD : <P [A], Q Crp P’ [A], Q"
if <PCpp Phand <Q Crp Q)
proof —
from (P EFD P <Q EFD Q/> have (P EDT P <Q EDT Q/>
by (simp-all add: le-ref2T refine-defs)
with mono-Syncpiicr-DT have <P [A] , Q Cpr P’ [A], Q" by blast
hence « : <P [A], Q Cp P’ [4], Q" by (simp add: leDT-imp-leD)
show «P [[A]]/ Q Crp P’ [[Aﬂ/ Q/>
proof (rule leF-leD-imp-leFD[OF - x|,
unfold failure-refine-def, safe)
fix t X assume «(t, X) € F (P'[4], Q')
then consider <t € D (P’ [4], Q')
| (fail) t-P t-Q X-P X-Q
where «(t-P, X-P) € F P) «(t-Q, X-Q) € F Q"

324

«t setinterleaves s yick_join ((t-P, t-Q), A)
«X C super-ref-Syncpiick tick-join X-P A X-Q»
unfolding Syncyiicr-projs by blast
thus «(¢t, X) € F (P [4], Q)
proof cases
show «t € D (P'[4], Q) = (t, X) € F (P [A], Q)
using x D-F unfolding divergence-refine-def by blast
next
case fail
from faz’l(], 2) <P Cpp P’ (Q Crp Q/>
have ((t-P, X-P) € F Py «(t-Q, X-Q) € F @
unfolding refine-defs by auto
with fail(3, 4) show «(t, X) € F (P [A], Q)
by (auto simp add: F-Syncpiick)
qed
qed
qged

lemmas monos-Syncpiick = Mono-Syncptick Mono-Syncptick-FD mono-Syncyticr-DT
end

14.0.4 Multiple Synchronization Product

lemma mono-MultiSyncpiick :
(ANl.leset L= PIC Q)= [S]lylc@ L. PIC[S],lecQL QD
by (induct L rule: induct-list012)
(simp-all add: Syncriise.mono-Syncyiick mono-Renaming)

lemma mono-MultiSyncpiicr-FD :
(ANl.leset L= PIlCpp Ql) =[Syl €QL.PICpp [S]ylcQL. QUL
by (induct L rule: induct-list012)
(simp-all add: Syncri;ise.-mono-Syncyiick-FD mono-Renaming-FD)

lemma mono-MultiSyncpiicr-DT -
<(/\l.l€$€tL$PlEDT Ql)ﬁ[[S]]/le@LPlEDT ﬂ:S]l‘/lE@L Qb
by (induct L rule: induct-list012)
(simp-all add: Syncriise.-mono-Syncyiick-DT mono-Renaming-DT)

lemmas monos-MultiSyncpiicr, =
mono-MultiSyncpiicr, mono-MultiSyncpticr-FD mono-MultiSyncyiicr-DT

325

326

Chapter 15

Non Destructiveness Rules

15.1 Synchronization Product

15.1.1 Refinement

lemma (in Syncpiick-locale) restriction-processpiick-Syncpiick-FD-div-oneside :
assumes tF w (ftF v» «<t-P € D (P | n) <t-Q € T (Q | n)»
(u setinterleaves s yick_join (&P, -Q), A)»
shows «u @ v e D (P [A], Q| n)
proof (insert assms(3, 4), elim D-restriction-processpiicr E T-restriction-processptickE)
from assms(1, 2, 5) show «-P € DP = t-Q €T Q = uQuv e D (P [4],
Q1 np
by (auto simp add: D-restriction-processpiick D-Syncpiick)
next
fix t-Q' t-Q"
assume * : (-P € D P» <length t-P < ny «t-Q = t-Q’ Q t-Q'"»
t-Q' e T @ <length t-Q' = ny «tF t-Q" ftF t-Q""
from «¢-Q = t-Q’ Q t-Q’» have «t-Q’ < t-Q» by simp
from setinterleavespic,-le-prefixR[OF assms(5) this|
obtain P’ t-P" v’ u"’
where *x : <«u = v’ Q v’ «t-P = t-P’ Q {-P"
' setinterleavesy yickjoin ((t-P', t-Q'), A)
by (meson Prefiz-Order.preficE)
from assms(1) <u = v’ Q u’» have (tF v’ by auto
moreover from x(1,4) *x(2,3) have <u’ € T (P [4], Q)
by (simp add: T-Syncpiicr) (metis D-T is-processT3-TR-append)
moreover have <length t-Q' < length u's
using *x(3) setinterleavesy,;c,-imp-lengthLR-le by blast
ultimately have <u’ € D (P [A], Q | n)
by (metis %(5) D-restriction-processyi;cxI nless-le)
with xx(1) assms(1, 2) show «u @ v € D (P [A], @ | n)»

327

by (metis is-processT7 tickFree-append-iff tickFree-imp-front-tickFree)
next
fix ¢-P’ t-P"
assume * : (t-P = t-P' @Q t-P'y «<t-P' € T P» <length t-P' = n»
(GF t-P «ftF t-P"y <t-Q € T Q> <length t-Q < n»
from «t-P = t-P’ @Q ¢-P"y have «t-P' < t-P» by simp
from setinterleavesyicy-le-prefixL[OF assms(5) this]
obtain t-Q’ t-Q" u’ u”’
where #* : «u = v’ Q@ u') «t-Q = t-Q' @ t-Q""
' setinterleaves yjcpjoin ((¢-P', +-Q'), A)
by (meson Prefiz-Order.prefizE)
from assms(1) <u = v’ @ u'"» have <tF vy by auto
moreover from x(2,6) x+(2,3) have <u’ € T (P [4], Q)
by (simp add: T-Syncpiicr) (metis is-processT3-TR-append)
moreover have <length t-P’ < length u”
using *x(3) setinterleavesyi;c,-imp-lengthLR-le by blast
ultimately have v’ € D (P [A], Q | n)
by (metis x(3) D-restriction-processyiicxI nless-le)
with *x(1) assms(1, 2) show «uv @ v € D (P [4], Q | n)»
by (metis is-processT7 tickFree-append-iff tickFree-imp-front-tickFree)
next
fix t-P’ t-P" +-Q' t-Q"'
assume $: <t-P = {-P' Q ¢-P' «t-P' € T P» <length t-P' = n»
(tF t-P (ftF t-P"y «t-Q = t-Q' Q t-Q'» «t-Q' € T Q>
length t-Q' = ny «(tF t-Q" «ftF t-Q""»
from $(1, 6) have t-P' < t-P» «t-Q' < Q> by simp-all
from setinterleavespyici-le-prefixLR[OF assms(5) this]
show «w @v e D (P [A], Q| n)
proof (elim disjE conjE exE)
fix u’ t-Q""" assume $$: v’ < w «-Q"" < t-Q"
' setinterleaves s yick_join ((&-P', -Q"""), A)
from $(7) $8(2) is-processT3-TR have <t-Q""' € T Q> by blast
with $$(3) «t-P' € T P> have «u’ € T (P [A], Q)
by (auto simp add: T-Syncptick)
moreover have «n < length u’
using $(8) $$(3) setinterleavesyicr-imp-lengthLR-le by blast
ultimately have <u’ € D (P [A], Q | n)
by (metis $$(1) D-restriction-processyiicrI Prefiz-Order.preficE
assms(1) nless-le tickFree-append-iff)
thus «wu @v € D (P [A], Q| n)
by (metis $$(1) Prefiz-Order.preficE assms(1,2) is-processT7
tickFree-append-iff tickFree-imp-front-tickFree)
next
fix v’ t-P'"" assume $$: (v’ < w «t-P""" < t-P’
' setinterleaves yicpjoin (P, +-Q"), A)»
from $(2) $$8(2) is-processTS8-TR have «t-P'"" € T P» by blast
with $$(3) «t-Q' € T @ have «u’ € T (P [A], Q)
by (auto simp add: T-Syncpiick)
moreover have «n < length u’

328

using $(8) $3(3) setinterleaves,y;cr-imp-lengthLR-le by blast
ultimately have <u’ € D (P [A], Q | n)
by (metis $8(1) D-restriction-processyiicrI Prefiz-Order.preficE
assms(1) nless-le tickFree-append-iff)
thus «u @v e D (P [A], Q| n)
by (metis $$(1) Prefiz-Order.prefixE assms(1,2) is-processT7
tickFree-append-iff tickFree-imp-front-tickFree)
qed
qed

lemma (in Syncpi;ck-locale) restriction-processpiick-Syncprick-FD :
(P [A]ly Q@1 nCrp (Pl n)[Al, (Q 1 n) (is <?lhs Crpp ?rhsy)
proof (unfold refine-defs, safe)
show <t € D %rhs — t € D ?lhs) for t
by (unfold D-Syncpiick, safe)
(solves <simp add: restriction-processyi;ck-SYncpiick-FD-div-onesider,
metis Syncpiick-locale-sym.restriction-processptick-SYncpiick-FD-div-oneside
Syncptick—sym setz’nterleavesmick—sym)
thus «(¢t, X) e F (P 1 n) [A]l, (Q L n)) = (¢, X) € F (P [4], Q | n)> for
t X
by (meson is-processT8 le-approx2 mono-Syncyiick, Testriction-processpiicr-approz-self)
qed

The equality does not hold in general, but we can establish it by adding an
assumption over the strict alphabets of the processes.

lemma (in Syncpe;cr-locale) strict-events-of-subset-restriction-processptick-SYncptick

(PJA]l, @l n=(Pln)[A]l, (Q 1 n) (is «?lhs = ?rhs))
if «a(P) C AV a(Q) C A
proof (rule FD-antisym)
show «?lhs Crp ?rhs) by (fact restriction-processpiick-Syncptick-FD)
next
have div : <t € D (P [A], Q) = t € D ?rhs) for ¢
by (auto simp add: D-Syncpiick restriction-processpiick-projs)

{fix t uvassume <t = u Qv <u €T (P [A], Q) <length u = n> <tF w ftF
v
from this(2) consider <u € D (P [A], Q)
| --P t-Q where <t-P € T P <t-Q € T @
(u setinterleaves yick_join ((+-P, t-Q), A)
unfolding Syncyiicr-projs by blast
hence <t € D ?rhs»
proof cases
show (v € D (P [4], Q) = t € D ?rhs
by (simp add: <ftF v» <t = u Q vy <tF u> div is-processT7)
next

fix t-P ¢-Q) assume «t-P € T P> «t-Q € T @

329

and setinter : «u setinterleaves s yick_join ((¢-P, -Q), A)
consider <t-P € D PV t-Q € D @ | <t-P ¢ D P> <t-Q ¢ D @ by blast
thus «t € D ?rhs
proof cases
assume -P € D PV t-Q € D @
with «t-P € T Py <t-Q € T @) setinter <ftF vy <t = v Q v» (tF w»
have «t € D (P [A], Q) by (auto simp add: D-Syncptick)
thus <t € D ?rhs) by (fact div)
next
assume <-P ¢ D Py «t-Q ¢ D @
with «t-P € T P» «+-Q €T @ «a(P) C AV a(Q) C
have «{a. ev a € set t-P} C AV {a. ev a € set t-Q} C
by (auto dest: subsetD intro: strict-events-of-meml)
with setinterleavespicy-subsetL[OF <tF w - setinter]
setinterleavespyicy-subsetR[OF «tF wy - setinter]
have <u = map ev (map of-ev t-P) V u = map ev (map of-ev t-Q)» by blast
with <length v = n> have <length t-P = n V length t-QQ = n> by auto
moreover from <tF uy tickFree-setinterleaves,;cx-iff [OF setinter]
have «tF t-P> <tF t-(Q)> by simp-all
ultimately have <t-P € D (P [n) V t-Q € D (Q | n)»
using «¢-P € T P» <t-Q € T Q> by (metis D-restriction-processpicil)
moreover from «t-P € T Py <t-Q € T Q»
have <t-P € T (P L n) <t-Q € T (Q | n)»
by (simp-all add: T-restriction-processpiickl)
ultimately show <t € D ?rhs)
using (ftF v» <t = v @ vy (tF w» setinter by (auto simp add: D-Syncpiick)
qed
qed
} note x = this

Ay
Ay

show «?rhs Crp ?lhs)
proof (unfold refine-defs, safe)
show «t € D ?lhs = t € D %rhs) for t
proof (elim D-restriction-processpiiciF)
show «t € D (P [A], Q) = t € D ?rhs» by (fact div)
next
show ([t = v @ v; u € T (P [A], Q); length u = n; tF u; ftF v]
=t € D ?rhs> for u v by (fact *)
qed
next
show «(t, X) € F ?lhs = (t, X) € F ?rhs» for t X
proof (elim F-restriction-processyiickE)
assume (¢, X) € F (P [4], Q)
then consider <t € D (P [A], Q)
| (fail) t-P t-Q X-P X-@Q where ((t-P, X-P) € F P> «(t-Q, X-Q) € F
«t setinterleaves s yick_join ((t-P, +-Q), A)
«X C super-ref-Syncpiick tick-join X-P A X-Q»
unfolding Syncpeicr-projs by blast
thus «(t, X) € F ?rhs

330

proof cases
from div D-F show «t € D (P [A], Q) = (t, X) € F ?rhs» by blast
next
case fail
thus (¢, X) € F 2rhs
by (auto simp add: F-Syncyiick F-restriction-processpiick)
qed
next
show ([t = uw Q v; u € T (P [A], Q); length u = n; tF u; ftF]
= (¢, X) € F ?rhs for u v by (simp add: * is-processT8)
qed
qed
qed

corollary restriction-processpticl-MultiSyncpticr-FD :
(Al le@ L. Pl nCpp [A], l€Q L (Pl n)
proof (induct L rule: induct-list012)
show «[A], l€Q [|. PI | nCpp [A]l, 1 €@ [. (P 1] n)> by simp
next
show ([A] , l €@ [l1]. Pl | n Cpp [A], 1 €Q [i1]. (P 1] n)» for 1
by (simp add: restriction-processpi;cr-Renaming)
next
fix 112 L
assume hyp : <[A], 1 €Q (I2 # L). Pl |l nCpp [A], 1 €Q (12 # L). (P 1]
n)»
show ([A] , l €@ (I1 # 12 # L). Pl nCpp [A], 1 €Q (i1 # 12 # L). (P1
Ln)y
by simp
(fact trans-FD[OF Syncryist.restriction-processptick-Syncptick-FD
Syncriist-mono-Syncpiicr-FD]OF idem-FD hypl))
qed

The generalization of the lemma a(P) C AV a(Q) C A = P [4], Q |
n= (Pl n)[A]l, (Q] n) is not straightforward. We can already observe
with only three processes that one can not expect the first synchronization
to have its strict alphabets contained in the synchronization set. Therefore,
we have to assume the condition on at least length L — 1 processes.

corollary strict-events-of-subset-restriction-processyyicik-MultiSyncprick
[Aly le@Q L. Pl] n=(ifn=0then L else [A], 1 €Q L. (P 1] n))
— if n = 0 then L else - is necessary because we can have L = [].
if <Al.1€set(tlL) = a(Pl)C A
proof (split if-split, intro conjl impl)
show <n = 0 = [A], 1 €Q L. Pl | n= 1) by simp
next
from that show (JA], 1 €@Q L. Pl | n=[A],1€Q L. (Pl] n)if < # 0
proof (induct L rule: induct-list012)
case 1 show ?case by (simp add: <n # 0»)
next

331

case (2 [1) show Zcase by (simp add: restriction-processpici-Renaming)
next

case (311121L)
from 3.prems have x : <a(MultiSyncpricr A (12 # L) P) C A

by (intro subset-trans|OF strict-events-of-MultiSyncyi;cx-subset]) auto
have ([A] , l €@ (I1 # 12 # L). Pl n=

P 1 [A]sriist [Al, 1 €@ (12 # L). P 1| n» by simp

also have «... = (P l1 | n) [A] s riist ([A], 1 €@ (12 # L). P 1] n)
by (simp add: Syncriist.strict-events-of-subset-restriction-processyi; ck-SYncptick

also have «... = (P l1 | n) [A]sriist [Aly 1 €Q (12 # L). (P 1] n)»
using 3.hyps(2) 3.prems by auto
also have «... = [A] , 1 €Q (i1 # 12 # L). (P 1| n) by simp
finally show ?case .
qed
qed

corollary (in Syncpiicr-locale) restriction-processyiick-Parpiick :

PllyQ@Ln=(Pln)lly(QLn)

by (simp add: strict-events-of-subset-restriction-processptick-SYnCptick)

corollary restriction-processptick-MultiParpticy,
lyle@L.Pl|ln=(ifn=0then Lelsel||l, 1 €QL. (PIl]n))
by (simp add: strict-events-of-subset-restriction-processpsick-MultiSyncytick)

15.1.2 Non Destructiveness

lemma (in Syncptick-locale) Syncpiick-non-destructive :
(non-destructive (A(P, Q). P [A], Q)
proof (rule order-non-destructivel, clarify)
fix P P':: «('a, 'r) processpiicky and Q Q' :: «('a, 's) processpiick> and n
assume (P, @) |l n = (P, Q) | n»
hence <P |l n=P' | m<«Qln=Q | nm
by (simp-all add: restriction-prod-def)
show <P [A], Q@ L nCprp P'[A], Q"1 m
proof (rule leFD-restriction-processpiickl)
show «t € D (P'[A], Q') = t € D (P [4], Q | n)» for ¢
by (metis (no-types, lifting) <P . n =P’ | n» <Q | n= Q'] n» in-mono
le-refl mono-Syncptick-FD
restriction-processpyick-FD-self restriction-processpiick-Syncprick-FD)
next
show «(t, X) € F (P'[4], Q) = (t, X) € F (P [4], Q | n)» for t X
by (metis (no-types, lifting) <P . n =P’ | n «Q L n= Q" | n» le-ref2
mono-Syncptick-F'D
restriction-processpt;ck-FD-self restriction-processpiick-Syncptick-FD
subsetD)
qed
qed

332

15.1.3 Setup

lemma (in Syncpiick-locale) Syncyiscr-restriction-shift-processptick
[restriction-shift-processpicr-simpset, simp)
(non-destructive f = non-destructive ¢ = non-destructive (Az. fz [S]/ g x)>
(constructive f = constructive g = constructive (A\z. fz [S], g z)>
by (fact non-destructive-comp-non-destructive
[OF Syncpyicr-non-destructive non-destructive-prod-codomain, simplified])
(fact non-destructive-comp-constructive
[OF Syncpi;cr-non-destructive constructive-prod-codomain, simplified))

lemma MultiSyncyy;cr-restriction-shift-processptick
[restriction-shift-processpiicr-simpset, simp)
(Al 1 € set L = non-destructive (f l)) = non-destructive (Az. [S], | €Q L.
flx)
(Al 1 € set L = constructive (f 1)) = constructive (Az. [S], | €Q L. flz),
by (induct L rule: induct-list012; simp)+

corollary MultiSyncyi;cr-non-destructive : <non-destructive (AP. [S], 1 €@ L. P
1)
by (rule MultiSyncyicx-restriction-shift-processpiick(1)[of L <Am z. z m»]) simp

333

334

Chapter 16

Other Laws

declare [[metis-instantiate]]

16.1 Laws of Renaming

16.1.1 Renaming and Sequential Composition

lemma FD-Renaming-Seqptick :
(Renaming P f g5, (Ag-r. Nr € {r € /s(P). g-r = g r}. Renaming (Q r) f g’)
Crp Renaming (P, Q) fg" (is «?lhs Cpp ?rhs)
proof (rule failure-divergence-refine-optimizedI)
fix s assume <s € D ?rhs»
then obtain s! s2 where * : <s = map (map-eventpiick fg') s1 @ s2» «tF sl»
ftF s2) «s1 € D (P, Q)
unfolding D-Renaming by blast
from x(4) consider (D-P) t1 t2 where (s = map (ev o of-ev) t1 Q t2) <t1 €
D P> «tF t1) «ftF t2»
| (D-Q) t1 r t2 where (sI = map (ev o of-ev) t1 @Q t2) <t1 Q [/ (r)] € T P»
«t1 ¢ D Py «tF t1y «t2 € D (Q)
by (simp add: Seqpiick-projs) (metis D-imp-front-tickFree)
thus <s € D ?lhs
proof cases
case D-P
from D-P(2, 3) have <map (map-eventyiicr, fg) t1 € D (Renaming P f g)»
by (auto simp add: D-Renaming intro: front-tickFree-Nil)
hence (map (ev o of-ev) (map (map-eventyiicr, fg) t1) € D ?lhs
unfolding Seqy;cr-projs
by (metis (mono-tags, lifting) front-tickFree-Nil D-P(3)
map-eventyy; ok -tickFree append.right-neutral mem-Collect-eq Un-iff)
also have «map (ev o of-ev) (map (map-eventyyick fg) t1) =
map (map-eventpiick fg') (map (ev o of-ev) 1))
by (simp add: <tF t1) tickFree-map-map-eventycy-is)
finally show <s € D ?lhs»

335

by (auto simp add: *(1) D-P(1) intro!: is-processT7)
(metis list.map-comp map-event,; x-tickFree tickFree-map-ev-comp,
use x(2, 8) D-P(1) front-tickFree-append map-eventy;c,-tickFree tick-
Free-append-iff in blast)
next
case D-(Q)
from *(2) D-Q(1, 5) have <map (map-event,icr, f g') t2 € D (Renaming (Q
r) fg')
by (auto simp add: D-Renaming intro: front-tickEree-Nil)
hence «map (map-eventyiicr fg') 12 € D (Nr' € {r' € /s(P). gr = g r'}.
Renaming (Q r’) f g’)»
by (simp add: D-GlobalNdet)
(metis D-Q(2, 3) is-processT9 strict-ticks-of-meml)
moreover from D-Q(2) have <map (map-eventpiicr fg) t1 Q [V(gr)] €T
(Renaming P f g)»
by (auto simp add: T-Renaming)
moreover have «tF (map (map-eventpiick fg) t1)»
by (simp add: D-Q(4) map-eventyyck-tickFree)
ultimately have <map (ev o of-ev) (map (map-event,icx f g) t1) @
map (map-eventyiicr fg') t2 € D ?lhsy
unfolding Seqpticr-projs by blast
with (2, 3) have (map (ev o of-ev) (map (map-eventyyicr fg) t1) Q
map (map-eventpiick fg') t2 Q s2 € D ?lhsy
by (auto simp add: D-Q(1) comp-assoc map-eventy;cx-tickFree
introl: is-processT7[of «- Q -, simplified])
also from D-Q(4) have <map (ev o of-ev) (map (map-eventpiick fg) t1) Q
map (map-eventpiick fg') t2 Q s2 =
by (simp add: (1) D-Q(1))
(metis eventyi;ck.map-sel(1) in-set-conv-decomp tickFree-Cons-iff tick-
Free-append-iff)
finally show <s € D ?lhs) .
qed
next
assume subset-div : <D ?rhs C D ?lhs»
fix s X assume «(s, X) € F ?rhs
then consider <s € D ?rhs»
| (fail) s1 where <s = map (map-eventyiick [g’) s>
«(s1, map-eventptick fg' —X) € F (P35, Q) <s1 ¢ D (P, Q)
by (simp add: Renaming-projs)
(metis (no-types, opaque-lifting) front-tickFree-Nil front-tickFree-iff-tickFree-butlast
front-tickFree-Cons-iff [of <last s» <[]>] map-butlast[of «map-eventpiick fg"]
map-is-Nil-conv[of <map-eventpiick f9" <[] map-is-Nil-conv|of «map-eventy;cr
f "]
append-self-convlof <map (map-eventyiick fg) - <[])] F-imp-front-tickFree
snoc-eq-iff-butlast[of <butlast s» <last s» §
div-butlast-when-non-tickFree-iff non-tickFree-imp-not-Nil)
thus «(s, X) € F ?lhs
proof cases
from subset-div D-F show <s € D %rhs = (s, X) € F ?lhs) by blast

336

next
case fail
from fail(2, 3)
consider (F-P) t1 where <si = map (ev o of-ev) t1» «(t1, ref-Seqpiick
(map-eventypick fg' —° X)) € F Py <tF t1»
| (F-Q) t1 r t2 where <s1 = map (ev o of-ev) t1 Q t2) <t1 Q [V (r)] €T P>
(tF t1y <t1 ¢ D P> «(t2, map-eventprick fg' —°X) € F (Q r)
by (simp add: Seqpiick-projs) (metis F-imp-front-tickFree)
thus «(s, X) € F %lhs
proof cases
case F-P
have <map-eventyiicr f g —° (ref-Seqprick X) = ref-Seqpiick (map-eventyy;ck
fg' —X) for X
proof (rule set-eql)
show <e € map-eventyiick f g —° (ref-Seqprick X) +—
e € ref-Seqprick (map-eventpiick fg' — X)) for e
by (cases e, auto simp add: ref-Seqpiick-def image-iff)
(metis Int-iff eventpyick.sel(1) eventpyick.simps(9) rangel vimage-eq,
metis Intl UNIV-I eventpyicr.sel(1) image-eql)
qed
with F-P(2) have («(map (map-eventpiick [g) t1, ref-Seqprick X) € F
(Renaming P f g)»
by (auto simp add: F-Renaming)
with F-P(3) have «(map (ev o of-ev) (map (map-eventpiick fg) t1), X) €
F ?lhs
by (fastforce simp add: Seqpiick-projs map-eventyi;cr-tickFree)
also have «map (ev o of-ev) (map (map-eventyiicr fg) t1) = s
by (simp add: fail(1) F-P(1))
(metis F-P(3) eventpi;ck.-map-sel(1) in-set-conv-decomp tickFree-Cons-iff
tickFree-append-iff)
finally show «(s, X) € F ?lhs> .
next
case F-Q)
with F-Q(4) have «(map (map-eventyiicr fg') t2, X) € F (Renaming (Q)
fg'
by (auto simp add: F-Renaming)
hence «(map (map-eventyiicr fg') 12, X) €
F (Nr’ e {r' € /s(P). gr = gr'}. Renaming (Q r') f g’y
by (simp add: F-GlobalNdet)
(metis F-Q(2, 4) is-processT9 strict-ticks-of-meml)
moreover from F-Q(2) have <map (map-eventyicr fg) t1 Q [V(gr)) €T
(Renaming P f g)»
by (auto simp add: T-Renaming)
moreover have <tF (map (map-eventyick fg) t1)>
by (simp add: F-Q(3) map-eventyck-tickFree)
ultimately have «(map (ev o of-ev) (map (map-event,iicr fg) t1) Q
map (map-eventyicr fg') t2, X) € F ?lhs
unfolding Seqp;cr-projs by fast
also have «map (ev o of-ev) (map (map-eventyiick fg) t1) Q map (map-eventyyick

337

fg)t2=s
by (simp add: fail(1) F-Q(1))
(metis F-Q(8) eventpick.map-sel(1) in-set-conv-decomp
tickFree-Cons-iff tickFree-append-iff)
finally show (s, X) € F ?lhs) .
qed
qed
qed

lemma inj-on-Renaming-Seqptick
(Renaming (P 3, Q) fg' =
Renaming P f g5, (Ag-r. Renaming (Q (THE r.r € /'s(P) N g-r=g71)) fg')
(is «?lhs = %rhsy) if <inj-on g /s(P)»
— This assumption is necessary, otherwise we cannot know which tick triggered
Q.
proof (rule FD-antisym,)
show «?lhs Crpp ?rhs)
proof (rule failure-divergence-refine-optimizedI)
fix s assume ¢<s € D ?rhs»
then consider (D-P) sI s2 where s = map (ev o of-ev) s1 @Q s2) <sl € D
(Renaming P f g)) <tF s1y <ftF s2»
| (D-Q) sI g-r s2 where «s = map (ev o of-ev) s1 Q s2) «<s1 Q [/ (g-r)] € T
(Renaming P f g)»
<s1 ¢ D (Renaming P f g)» «tF sl <s2 € D (Renaming (Q (THE r. r €
s(P)ANgr=gr)) fg')
by (simp add: Seqpiick-projs) (use D-imp-front-tickFree in blast)
thus <s € D ?lhs
proof cases
case D-P
from D-P(2) obtain tI t2
where * : <sI = map (map-eventpiicr fg) t1 Q t2y tF t1y <ftF t2) <tl €
D P
unfolding D-Renaming by blast
from *(2, 4) have <map (ev o of-ev) t1 € D (P, Q)
by (auto simp add: Seqpticr-projs intro: front-tickFree-Nil)
hence <map (map-event,ick fg’) (map (ev o of-ev) t1) € D ?lhs
unfolding D-Renaming mem-Collect-eq
by (metis (mono-tags, lifting) front-tickFree-Nil tickFree-map-ev-comp ap-
pend.right-neutral)
also have «map (map-eventyiicr fg') (map (ev o of-ev) t1) =
map (ev o of-ev) (map (map-eventyiick fg) t1)
by simp (metis %(2) eventyy;cr.-map-sel(1) in-set-conv-decomp tickFree-Cons-iff
tickFree-append-iff)
finally show <s € D ?lhs»
by (auto simp add: D-P(1, 4) x(1) front-tickFree-append comp-assoc intro!:
is-processT7)
next

338

case D-(Q)
have ¢s1 @ [V (g-r)] ¢ D (Renaming P f g)» by (meson D-Q(3) is-processT9)
with D-Q(2—4) obtain ¢I r
where * : <g-r = g «r € V/S(P)) <s1 = map (map-eventpick fg) t1» «tl
Q[(r)eT P
by (auto simp add: Renaming-projs append-eg-map-conv tick-eq-map-eventy;cr-iff)
(metis append-Nil2 front-tickFree-Nil is-processT9 map-event,;ck-tickFree
strict-ticks-of-meml)
from (1, 2) <inj-on g v/'s(P)» have «(THE r. r € /s(P) Ngr=gr)=1m
by (auto dest: inj-onD)
with D-Q(5) have «s2 € D (Renaming (Q r) f g’)» by simp
then obtain t2 t3
where *x : (s2 = map (map-eventpiick fg') 12 Q t3) tF t2) <ftF t3» <2
eD(Qr)
unfolding D-Renaming by blast
from (4) *x(4) have <map (ev o of-ev) t1 @ t2 € D (P;, Q)
by (simp add: Seqpiick-projs) (metis append-T-imp-tickFree not-Cons-self)
with *x(2) have (map (map-eventyiick fg’) (map (ev o of-ev) t1 Q t2) € D
2lhs»
unfolding D-Renaming mem-Collect-eq
by (metis append.right-neutral front-tickFree-Nil tickFree-append-iff tick-
Free-map-ev-comp)
moreover have <map (map-event,ick fg’) (map (ev o of-ev) t1 @ ¢2) @ t3
=%
by (simp add: D-Q(1) x(8) xx(1))
(metis %(3) D-Q(4) eventpiick.map-sel(1) in-set-conv-decomp
map-eventy;ck-tickFree tickFree-Cons-iff tickFree-append-iff)
ultimately show «<s € D ?lhs)
by (auto simp add: *x(8) introl: is-processT7[of <- Q -, simplified])
(use *x(1) D-Q(1) in force, use *x(2) map-eventy;ci-tickFree in blast)
qed
next
assume subset-div : <D ?rhs C D ?lhs»
fix s X assume «(s, X) € F ?rhs
then consider <s € D ?rhs»
| (F-P) s1 where ¢s = map (ev o of-ev) sl «(s1, ref-Seqprick X) € F
(Renaming P f g)» <s1 ¢ D (Renaming P f g)» <tF s1»
| (F-Q) sl g-r s2 where <s = map (ev o of-ev) s1 @ s2) <s1 Q [V (g-1)] € T
(Renaming P f g)»
<s1 ¢ D (Renaming P f g)» <tF s1» «(s2, X) € F (Renaming (Q (THE r. r
eEVs(P)Ngr=gr)) fg)
<s2 ¢ D (Renaming (Q (THE r.r € V/s(P)ANgr=gr)) fg')
by (simp add: Seqpiick-projs)
(metis (no-types, lifting) F-imp-front-tickFree front-tickFree-charn self-append-conv)
thus «(s, X) € F ?lhs
proof cases
from subset-div D-F show <s € D %rhs => (s, X) € F ?lhs) by blast
next
case F-P

339

from F-P(2, 3) obtain ¢!
where * : «<s1 = map (map-eventyiicr fg) t1> «(t1, map-eventyick fg —°
ref-Seqprick X) € F P>
unfolding Renaming-projs by blast
have <map-eventyiicr [g —* (ref-Seqptick X) = ref-Seqprick (map-eventyyicr
fg' = X) for X
proof (rule set-eql)
show <e € map-eventpick f g —° (ref-Seqprick X) +—
e € ref-Seqprick (map-eventyicr fg' —* X)» for e
by (cases e, auto simp add: ref-Seqpiicr-def image-iff)
(metis Int-iff eventpyick-sel(1) eventpyick.simps(9) rangel vimage-eq,
metis Intl UNIV-I eventy;c.sel(1) image-eql)
qed
with %(2) have «(t1, ref-Seqpiick (map-eventpiicr fg' —¢ X)) € F Py by
stmp
hence ((map (ev o of-ev) t1, map-eventyiicr f9' —X) € F (P35, Q)
by (simp add: Seqpiick-projs)
(metis x(1) F-P(4) map-eventyck-tickFree)
hence «(map (map-eventyiicr, fg’) (map (ev o of-ev) t1), X) € F ?lhs
unfolding F-Renaming by blast
also have «map (map-eventyiick fg') (map (ev o of-ev) t1) =
by (simp add: F-P(1) %(1))
(metis (1) F-P(4) eventyyick-map-sel(1) in-set-conv-decomp
map-event,; .k -tickFree tickFree-Cons-iff tickFree-append-iff)
finally show «(s, X) € F ?lhs> .
next
case F-Q)
have ¢s1 Q [/ (g-r)] ¢ D (Renaming P f g)» by (meson F-Q(3) is-processT9)
with F-Q(2—/) obtain tI r
where * : <g-r = g «r € /s(P)) <s1 = map (map-eventpiick fg) t1> <tl
O V() eT P
by (auto simp add: Renaming-projs append-eg-map-conv tick-eq-map-event,i;ci-iff)
(metis append-Nil2 front-tickFree-Nil is-processT9 map-event,;cx-tickFree
strict-ticks-of-memlI)
from (1, 2) <inj-on g /s(P)» have «(THEr. r € /s(P) ANgr=gr)=1m
by (auto dest: inj-onD)
with F-Q(5, 6) have «(s2, X) € F (Renaming (Q r) f g')
«s2 ¢ D (Renaming (Q r) f g’)» by simp-all
then obtain t2 where *x : <s2 = map (map-eventyicr fg') t2> (12,
map-eventyicr fg' —X) € F (Qr)
unfolding Renaming-projs by blast
from *(4) *x(2) have <(map (ev o of-ev) t1 Q t2, map-eventpiick fg' —*X)
€EF(Ps5y Q)
by (simp add: Seqpicr-projs) (metis append-T-imp-tickFree not-Cons-self2)
hence «(map (map-eventpiick fg’) (map (ev o of-ev) t1 @ t2), X) € F ?lhs
unfolding F-Renaming by blast
also have (map (map-eventyiicr fg') (map (ev o of-ev) t1 Q t2) = s
by (simp add: F-Q(1) *(3) *x(1))
(metis %(3) F-Q(4) eventpiick.-map-sel(1) in-set-conv-decomp

340

map-eventy,; .k -tickFree tickFree-Cons-iff tickFree-append-iff)
finally show «(s, X) € F ?lhs) .
qed
qed
next

have «?rhs = Renaming P f g5, (Ag-r. Nr € {r € ¥/'s(P). g-r = g r}. Renaming
(@) fg)
proof (rule mono-Seqpiick-€q)
show <Renaming P f g = Renaming P f ¢> ..
next
fix g-r assume <g-r € V's(Renaming P f g)»
then obtain s sI where «s @ [/ (g-1)] = map (map-eventpiick fg) s1> <sl €
T Pyl ¢ DP»

by (simp add: strict-ticks-of-def Renaming-projs)

(metis (no-types, opaque-lifting) T-imp-front-tickFree append-Nil2 butlast-snoc
div-butlast-when-non-tickFree-iff front-tickFree-Nil
front-tickFree-iff-tickFree-butlast front-tickFree-single map-butlast)

from this(1) obtain s1’ r where «g-r = g «s1 = s1’ Q [/ (1)
by (cases s1 rule: rev-cases) (auto simp add: tick-eq-map-event,y;cr-iff)
with «<sf € T Py <s1 ¢ D Py have <s1'Q [/(r)] € T P> «s1’@Q [/(r)] ¢ D
Py by simp-all
hence «r € vVs(P)» unfolding strict-ticks-of-def by blast
have «({r € V/s(P). gqr =g r} = {rp
by (auto simp add: <r € /s(P)) <g-r = g r» intro: inj-onD[OF <inj-on ¢
/s(P)))
moreover have (THE r.r € /S(P) AN g-r=g1) =1
using calculation by blast
ultimately have «Q (THE r. r € /s(P) A gr=gr) =
GlobalNdet {r € /s(P). g-r = g r} @ by simp
thus <Renaming (Q (THE r.r € /s(P) Ngr=gr)) fg' =
(Mr € {r € /s(P). g-r = g r}. Renaming (Q r) fg')»
by (simp flip: Renaming-distrib-GlobalNdet)
qed
thus «%rhs Cpp ?lhs) by (simp add: FD-Renaming-Seqpi;ck)
qed

When r is set on unit, we recover the version that we had before the gen-
eralization.

lemma (Renaming (P, Q) f g = Renaming P f g3, (Ar. Renaming (Q ()) f g)»
by (subst inj-on-Renaming-Seqpiicx[where g = g]) (auto intro: inj-onl)

lemma TickSwap-Seqpiicr [simp] :
«TickSwap (P35, Q) = TickSwap P s, (A(s, r). TickSwap (Q (r, s)))» (is <?lhs
= 9rhsy)

proof —
have «?lhs = Renaming (P;, Q) id prod.swap) by (simp add: TickSwap-is-Renaming)
also have (... = Renaming P id prod.swap ;,

341

(As-r. Renaming (Q (THE r-s. r-s € strict-ticks-of P N\
s-r = prod.swap 1-8)) id prod.swap)>
(is - = -5, ?rhsh) by (simp add: inj-on-Renaming-Seqpiick)
also have «... = ?rhs)
proof (rule mono-Seqyiici-eq, unfold TickSwap-is-Renaming)
show (Renaming P id prod.swap = Renaming P id prod.swap) ..
next
fix s-r assume <s-r € strict-ticks-of (Renaming P id prod.swap)»
then obtain r s where «(r, s) € strict-ticks-of Py <s-r = (s,)
by (auto simp flip: TickSwap-is-Renaming)
hence «((THE r-s. r-s € strict-ticks-of P A\ s-r = prod.swap r-s) = (r, s)» by
auto
thus <Renaming (Q (THE r-s. r-s € strict-ticks-of P A\ s-r = prod.swap 1-$))
id prod.swap =
(case s-1 of (s, r) = Renaming (Q (r, s)) id prod.swap)»
by (simp add: <s-r = (s, 1))
qed
finally show <?lhs = ?rhs) .
qed

lemma TickSwap-is-Seqpicr-iff [simp] :
«TickSwap P = Q 3, R «— P = TickSwap Q 5, (A(r, s). TickSwap (R (s, r)))»
by (simp add: TickSwap-eq-iff-eq- TickSwap)

16.1.2 Renaming and Synchronization Product

theorem (in Syncpticr-locale) inj-RenamingEv-Syncptick
(RenamingEv (P [S], Q) f = RenamingEv P f [f < S], RenamingEv Q f>
(is «?lhs = %rhsy) if <inj f>
proof —
let ?fun = (map-eventpiick fid>
let ?map = <map ?fun>
let YR = <\P. RenamingFEv P f»
show «?lhs = 2rhs»
proof (rule Process-eq-optimizedl)
fix ¢t assume <t € D ?lhs»
then obtain t1 t2 where * : <t = ?map t1 Q t2»
«tF t1y <ftF t2» <t1 € D (P [S], Q) unfolding D-Renaming by blast
from x(4) obtain u v t-P ¢-Q where *x : <t = u Q v (tF w» (ftF v
U setinterleaves/(®/) ((t-P, t-Q), S)
(t-PeDPANtQeT QViEtPeT PAt-QeD @
unfolding D-Syncpiicr by blast
from setinterleavesy . -inj-map-map-event,; .k -iff-weak [THEN iffD2, OF <inj
fr xx(4)]
have (?map u setinterleaves/(®/) ((#map t-P, ?map t-Q), f < S)» .
moreover from *x(5) have «?map t-P € D (?R P) A ?map t-Q € T (?R Q)
V
map t-P € T (?R P) A ?map t-Q € D (?R Q)
by (auto simp add: Renaming-projs dest: D-T')

342

(metis *x(2,4) append-self-conv front-tickFree-map-tick-iff
list. map-disc-iff tickFree-setinterleaves,;cr-iff)+
moreover have ¢t = ?map u @ (?map v Q t2)> by (simp add: *(1) *x(1))
moreover have <tF (?map u)» by (simp add: +x(2) map-eventpcy-tickFree)
moreover from x(2,8) xx(1) have (ftF (?map v Q t2)»
using front-tickFree-append map-eventyyicr-tickFree tickFree-append-iff by
blast
ultimately show «t € D ?rhs) unfolding D-Syncpiicr by blast
next
fix t assume <t € D ?rhs
then obtain u v t-P t-Q) where x : <t = u Q v (tF uy «ftF v
u setz'nterleaves/(@/) ((t-P, t-Q), [<9
t-PeD (RPYANL-QeT (PRQ)VE-PeT (RP)ANL-Q €D (?R Q)
unfolding D-Syncpticr by blast
from *(5) show <t € D ?lhs
proof (elim disjE conjF)
assume <¢-P € D (?R P)» <t-Q € T (R Q)
from «t-P € D (YR P)) obtain ¢-P1 t-P2
where xx : <t-P = ?map t-P1 Q t-P2» <tF t-P1» «ftF t-P2> <t-P1 € D P)
unfolding D-Renaming by blast
from «t-Q € T (YR Q)» consider (T-Q) t-Q1 where t-Q = ?map t-Q1>
t-Q1 € T @
| (D-Q) t-Q1 t-Q2 where t-Q = ?map t-Q1 Q -Q2) «tF t-Q1> «ftF t-Q2>
«t-Q1 € D @
unfolding T-Renaming by blast
thus <t € D ?lhs)
proof cases
case T-Q)
from «(/)[unfolded xx(1) T-Q(1), THEN setinterleavesy;cr-appendL]
obtain ul u2 t-Q11 t-Q12 where *xx : <u = ul Q u2) <?map t-Q1 = t-Q11
Q t-Q12»
<ul setinterleaves/(®/) ((¢map t-P1, t-Q11), f *S)> by blast
obtain t-Q11' where t-Q11’' < t-Q1» <t-Q11 = ?map t-Q11"
by (metis xxx(2) map-eq-append-conv Prefiz-Order.prefix])
from setinterleavesy;cr-inj-map-map-eventy; .k -iff-strong
[THEN iffD1, OF <inj f» sxx(3)[unfolded this]]
obtain ul’ where *xxx : <ul = ?map ul’
ul’ setinterleaves, () ((t-P1, t-Q117), S)» by blast
from *(2) six(1) skiok(1) map-eventpick-tickFree
T-Q(2) «t-Q11' < t-Q1)» is-processT3-TR
have «(ul’ = ul’ Q [|y «tF ul’y «ftF [|» <t-Q11' € T @ by simp-all blast
with sxkx(2) #x(4) have «ul’ € D (P [S], Q)
unfolding D-Syncpiicr by blast
moreover have ¢t = ?map ul’ Q (u2 Q v)> by (simp add: *(1) *xx(1)
skkk(1))
moreover have (ftF' (u2 Q v))
using *(2,3) *xx(1) front-tickFree-append tickFree-append-iff by blast
ultimately show <t € D ?lhs) unfolding D-Renaming using <tF ul’» by
blast

343

next
case D-(Q)
have < ?map t-P1 < t-P) «?map t-Q1 < t-Q»
by (simp-all add: x(1) D-Q(1))
from setinterleavesyyicr-le-prefictLR[OF x(4) this] show <t € D ?2lhs»
proof (elim disjE exE conjE)
fix ul t-Q1’ assume *** : <ul < w -Q1’' < ?map t-Q1>»
ul setinterleaves/(®/) ((Pmap t-P1, t-Q17), f < S)
obtain u2 where (v = ul @ u2) using *xx(1) prefizE by blast
obtain t-Q1'" where «t-Q1' = ?map t-Q1"» «t-Q1" < t-Q1»
by (metis xxx(2) prefizE prefix] map-eq-append-conv)
from setinterleavesmick—z'nj—map—map—eventptick—iﬁ—stmng
[THEN iffD1, OF <inj f» xxx(3)[unfolded «t-Q1' = ?map t-Q1""]]
obtain ul’ where xxxx : <ul = ?map ul’
cul’ setinterleaves/(®/) ((t-P1, t-Q1"), S)» by blast
have «ul’ = ul’ Q [|y «ftF [by simp-all
moreover from sx(2) skxx(2) setinterleavesyy;cr-tickFree-imp
have «tF ul’s by blast
moreover from D-Q(4) D-T «t-Q1" < t-Q1» is-processT3-TR
have «t-Q1" € T @> by blast
ultimately have <ul’ € D (P [S], Q)
unfolding D-Syncpiicr, using «t-P1 € D P) sxxx(2) by blast
moreover from x(1—38) sxxx(1)
have <t = ?map ul’ Q@ (u2 Q v)) ftF (u2 Q v))
by (auto simp add: <u = ul @ u2> front-tickFree-append)
ultimately show <t € D ?lhs)
unfolding D-Renaming using <tF ul’y by blast
next
fix ul t-P1’ assume *** : (ul < w «t-P1’' < ?map t-P1>»
ul setinterleaves/(®/) ((t-P1', ?map t-Q1), f * S)
obtain u2 where (v = ul @ u2» using *xx(1) prefizE by blast
obtain t-P1" where <t-P1' = ?map t-P1' <t-P1" < t-P1»
by (metis xxx(2) prefizE prefix] map-eq-append-conv)
from setinterleavesyi;cr-inj-map-map-eventy;.x-iff-strong
[THEN iffD1, OF <inj f» xxx(3)[unfolded «t-P1' = ?map t-P1"]]
obtain ul’ where *xxx : <ul = ?map ul’
cul’ setinterleaves/(®/) ((t-P1", +-Q1), S)> by blast
have «ul’ = ul’ Q [|y «ftF [} by simp-all
moreover from D-Q(2) sxxx(2) setinterleavespicr-tickFree-imp
have «tF ul’s by blast
moreover from xx(4) D-T «t-P1" < t-P1» is-processT3-TR
have <t-P1" € T P> by blast
ultimately have <u1’ € D (P [S], Q)
unfolding D-Syncpticr, using «¢-Q1 € D @ sxxx(2) by blast
moreover from x(1—238) sxxx(1)
have <t = ?map ul’ @ (u2 @Q v)) ftF (u2 Q v))
by (auto simp add: <u = ul @ u2> front-tickFree-append)
ultimately show <t € D ?lhs)
unfolding D-Renaming using <tF ul’y by blast

344

qed
qed
next
assume <¢-Q € D (YR Q)» <t-P € T (?R P)»
from «t-Q € D (YR Q)» obtain t-Q1 t-Q2
where *x : <t-Q = map t-Q1 Q t-Q2) «tF t-Q1> <ftF t-Q2)> «t-Q1 € D Q>
unfolding D-Renaming by blast
from «t-P € T (?R P)» consider (T-P) t-P1 where <t-P = ?map t-P1>»
«t-P1 € T P»
| (D-P) t-P1 t-P2 where «t-P = ?map t-P1 Q t-P2y «tF t-P1y «ftF t-P2»
<t-P1 € D P»
unfolding T-Renaming by blast
thus <t € D ?lhs)
proof cases
case T-P
from *(4)[unfolded *+(1) T-P(1), THEN setinterleaves,;cx-appendR)
obtain u! u2 t-P11 t-P12 where *xx : <u = ul @Q u2)> <?map t-P1 = t-P11
Q t-P12»
<ul setinterleaves/(®/) ((t-P11, ?map t-Q1), f ©S)> by blast
obtain t-P11’ where (t-P11' < t-P1) «t-P11 = ?map t-P11"
by (metis xxx(2) map-eq-append-conv Prefiz-Order.prefixl)
from setinterleavesyt;cr-inj-map-map-eventy; r-iff-strong
[THEN iffD1, OF <inj f» sxx(3)[unfolded this]]
obtain ul’ where *xxx : <ul = ?map ul’
ul’ setinterleaves,/ () ((t-P11', t-Q1), S)» by blast
from %(2) six(1) skik(1) map-eventyycr-tickFree
T-P(2) «t-P11’ < t-P1» is-processT3-TR
have «ul’ = ul’ Q [|y «tF ul’y «ftF [|» <t-P11’ € T P» by simp-all blast
with xx(2) *x(4) have «ul’ € D (P [S], Q)
unfolding D-Syncpiicr by blast
moreover have ¢t = ?map ul’ Q (u2 Q v)> by (simp add: *(1) *xx(1)
skkk(1))
moreover have (ftF (u2 Q v))
using *(2,3) (1) front-tickFree-append tickFree-append-iff by blast
ultimately show <t € D ?lhs) unfolding D-Renaming using «tF ul’y by
blast
next
case D-P
have <?map t-P1 < t-P)> <?map t-Q1 < t-Q»
by (simp-all add: *x(1) D-P(1))
from setinterleavespt;ci-le-preficLR[OF x(4) this] show <t € D ?lhs»
proof (elim disjE exE conjE)
fix ul t-Q1’ assume *xx : <ul < w <-Q1' < ?map t-Q1>
<ul setinterleaves, (/) ((?map t-P1, t-Q17), f <)
obtain u2 where (v = ul @ u2) using *+x(1) prefizrE by blast
obtain t-Q1' where «t-Q1’' = ?map t-Q1"» «t-Q1" < t-Q1»
by (metis xxx(2) preficE prefix] map-eq-append-conv)
from setinterleavesyt;cr-inj-map-map-eventyy; i -iff-strong
[THEN iffD1, OF <inj > #xx(3)[unfolded <t-Q1' = ?map t-Q1')]]

345

obtain ul’ where xx** : <ul = ?map ul’
cul’ setinterleaves/(®/) ((t-P1, t-Q1"), S)» by blast
have (ul’ = ul’ Q@ [|» «ftF [by simp-all
moreover from D-P(2) sxkx(2) setinterleavesyy;cr-tickFree-imp
have «tF ul’y by blast
moreover from xx(4) D-T «t-Q1" < t-Q1) is-processT3-TR
have «t-Q1"” € T Q> by blast
ultimately have w1’ € D (P [S], Q)
unfolding D-Syncyici using <t-P1 € D P> sxxx(2) by blast
moreover from *(1—3) sxkx(1)
have <t = ?map ul’ @ (u2 @Q v)) (ftF (u2 @ v))
by (auto simp add: <u = ul @ u2> front-tickFree-append)
ultimately show <t € D ?lhs)
unfolding D-Renaming using <tF ul’y by blast
next
fix ul t-P1’ assume *** : <ul < w» <t-P1’' < ?map t-P1>»
<ul setinterleaves/(®/) ((t-P1’, ?map t-Q1), f * S)
obtain u2 where (v = ul @ u2) using *xx(1) prefizE by blast
obtain t-P1" where <t-P1' = ?map t-P1' <t-P1" < t-P1»
by (metis xxx(2) prefizE prefix] map-eq-append-conv)
from setinterleavesmick—inj—map—map—eventptick—z'[f—stmng
[THEN iffD1, OF <inj f» xxx(3)[unfolded «t-P1' = ?map t-P1"]]
obtain ul’ where xxx* : <ul = ?map ul’
cul’ setinterleaves/(®/) ((t-P1", t-Q1), S)» by blast
have (ul’ = ul’ Q [|» «ftF [} by simp-all
moreover from sx(2) skxx(2) setinterleavesyy;cr-tickFree-imp
have «tF ul’> by blast
moreover from D-P(4) D-T «t-P1" < t-P1)» is-processT3-TR
have «t-P1" € T P» by blast
ultimately have w1’ € D (P [S], Q)
unfolding D-Syncpiick using <t-Q1 € D @y «xxx(2) by blast
moreover from *(1—3) sxkx(1)
have <t = ?map ul’ Q@ (u2 Q v)) (ftF (u2 @ v))
by (auto simp add: <u = ul @ u2> front-tickFree-append)
ultimately show <t € D ?lhs)
unfolding D-Renaming using <tF ul’y by blast
qged
qged
qed
next
fix t X assume «(t, X) € F %lhs) <t ¢ D ?lhs
then obtain ¢’ where <t = ?map t"
and * : «(t/, %fun —* X) € F (P [S], Q)
unfolding Renaming-projs by blast
have «t' ¢ D (P [S], Q)
proof (rule notl)
assume <t' € D (P [S], Q)
hence <t € D ?lhs»
by (simp add: <t = ?map t"» D-Syncpiicr D-Renaming)

346

(metis (no-types) append-Nil2 front-tickFree-Nil map-append map-event,; .k -front-tickFree)
with «t ¢ D ?lhsy show Fualse ..
qed
with * obtain ¢-P t-Q X-P X-Q
where *x : «((t-P, X-P) € F P» «((t-Q, X-Q) € F @
«t’! setinterleaves, (g, ((+-P, t-Q), S
fun — X C super-ref-Syncprick (@V) X-P S X-Q»
unfolding Syncyiicr-projs by fast
from xx(2, 3) F-T «t' ¢ D (P [S], Q) append-Nil2 front-tickFree-Nil
have «¢-P ¢ D P> unfolding D-Syncyiicr’ by blast
from xx(1, 3) F-T «t' ¢ D (P [S], Q) append-Nil2 front-tickFree-Nil
have «-Q ¢ D @» unfolding D-Syncpiicr’ by blast
have *xx : <?fun —° ?fun * X-P = X-P> <?fun —* ?fun * X-Q = X-O»
by (simp add: set-eg-iff image-iff,
metis (mono-tags, opaque-lifting) eventyy;ck.inj-map-strong id-apply injD
<ang fr)+
from xx(1) have «(¢map t-P, ?fun ‘ X-P) € F (?R P))
by (subst (asm) #xx(1)[symmetric]) (auto simp add: F-Renaming)
moreover {
fix a assume «?map t-P Q [ev a] € T (R P) <a ¢ range f>
then consider t-P! where <?map t-P Q [ev a] = ?map t-P1» «t-P1 € T P»
| t-P1 t-P2 where <?map t-P Q [ev a] = ?map t-P1 Q t-P2> «tF t-P1»
«t-P1 € D P»
unfolding T-Renaming by blast
hence Fulse
proof cases
from <a ¢ range f» show <?map t-P Q [ev a] = ?map t-P1 = Fulse) for
t-P1
by (auto simp add: append-eq-map-conv ev-eq-map-eventyt;ci-iff)
next
fix t-P1 t-P2 assume <?map t-P Q [ev a] = ?map t-P1 Q t-P2) «tF t-P1»
«t-P1 € D P»
from this(1) <a ¢ range f> have «t-P1 < t-P»
by (cases t-P2 rule: rev-cases, auto simp add: append-eq-map-conv
ev-eq-map-eventpick-iff)
(metis prefiz] eventyycr.inj-map inj-map-eq-mayp inj-on-id map-eq-append-conv
<ing fr)
with «t-P1 € D P> have «t-P € D P»
by (metis xx(1) F-imp-front-tickFree prefizE <tF t-P1» front-tickFree-append-iff
is-processT7 tickFree-Nil tickEFree-imp-front-tickEree)
with «t-P ¢ D P» show Fulse ..
qed
}
ultimately have $: <(?map t-P, %fun * X-P U {ev a | a. a ¢ range f}) € F
(?R P)»
using is-processT5-S7' by blast
from *x(2) have «(?map t-Q, ?fun ‘ X-Q) € F (R Q)»
by (subst (asm) xxx(2)[symmetric]) (auto simp add: F-Renaming)
moreover {

347

fix a assume «?map t-Q Q [ev a] € T (YR Q) <a ¢ range f>
then consider t-Q1 where <?map t-Q Q [ev a] = ?map t-Q1> t+-Q1 € T

@
| t-Q1 t-Q2 where «?map t-Q Q [ev a] = ?map t-Q1 Q t-Q2) «tF t-Q1>
«t-Q1 € D @
unfolding T-Renaming by blast
hence Fulse
proof cases
from <a ¢ range f> show «?map t-Q Q [ev a] = ?map t-Q1 = False) for
t-Q1
by (auto simp add: append-eq-map-conv ev-eg-map-eventy;ck-iff)
next
fix t-Q1 t-Q2 assume < ?map t-Q @ [ev a] = map t-Q1 Q t-Q2) «tF t-Q1»
«t-Q1 € D @@
from this(1) <a ¢ range f» have «-Q1 < t-Q»
by (cases t-Q2 rule: rev-cases, auto simp add: append-eg-map-conv
ev-eg-map-eventyick-iff)
(metis prefiz] eventy;ck.inj-map inj-map-eg-map inj-on-id map-eq-append-conv
<ing fr)
with <t-Q1 € D @) have <t-Q € D ()
by (metis xx(2) F-imp-front-tickFree prefizE <tF t-Q1» front-tickFree-append-iff
is-processT"7 tickFree-Nil tickFree-imp-front-tickFree)
with «t-Q ¢ D Q> show False ..
qed
}
ultimately have $$: <(?map t-Q, ?fun * X-Q U {ev a | a. a ¢ range f}) € F
(R Q)
using is-processT5-S7’ by blast
from xx(3) have $$$: ¢ setinterleaves/(®/) ((#map t-P, ?map t-Q), f < S)»
by (simp add: <t = ?map t"> setinterleavesy;ck-inj-map-map-event, ;. -iff-weak
<ing fr)
have (e € X = e € super-ref-Syncpiick, (V) (2fun ‘ X-P U {eva| a. a ¢
range 1) (f * 8)
(?fun X-Q U{ev a | a. a ¢ range f})» for e
using #x(4)[THEN set-mp, of <map-eventy;cr (inv f) id es] <inj >
unfolding super-ref-Syncpticr-def
by (cases e, simp-all add: image-iff tick-eq-map-event,;.x-iff) force
hence $$$$: <X C super-ref-Syncprick, (V) (?fun ‘ X-P U {eva | a. a ¢ range

) (fe8)
(Pfun * X-Q U {ev a | a. a ¢ range f})> by blast
from $ $$ 3 $338 show «(¢, X) € F ?rhs» unfolding F-Syncyicr by fast
next
fix t X assume «(¢t, X) € F %rhs» <t ¢ D ?rhs)
then obtain ¢-P t-Q X-P X-Q
where * : «(t-P, X-P) € F (R P)) «(t-Q, X-Q) € F (R Q)»
«t setinterleaves s (g .) ((+-P, t-Q), f < S)
«X C super-ref-Syncprick, (V) X-P (f ©S) X-@Q»
unfolding Syncpiici-projs by blast
have (- (-P € D (?R P) V +-Q € D (7R Q))»

348

proof (rule notl)
assume t-P € D (R P) V t-Q € D (YR Q)»
hence <t € D ?rhs»
by (simp add: D-Syncyiicr”)
(metis x(1—3) F-T append-Nil2 front-tickFree-Nil)
with «t ¢ D ?rhs» show Fulse ..
ged
with x(7, 2) obtain t-P’ t-Q’
where *x : <t-P = ?map t-P"» <(+-P’, %fun —* X-P) € F P)
t-Q = ?map t-Q" «(t+-Q’, fun —* X-Q) € F @
unfolding Renaming-projs by blast
from setinterleavesyt;cr -inj-map-map-eventy;q,-iff-strong
[THEN iffD1, OF <inj f» =(3)[unfolded +x(1, 3)]] obtain ¢’
where xxx : (t = ?map t’» <t’ setinterleaves/(®/) ((t-P', t-Q"), S)» by blast
have <e € ?fun —‘ X = e € super-ref-Syncpiick (V) (?fun —* X-P) S (?fun
—“X-Q) for e
using *(4)[THEN set-mp, of < ?fun e)]
by (cases e) (auto simp add: super-ref-Syncpiick-def dest: injD{OF <inj f»])
hence < ?fun —* X C super-ref-Syncpricr (V) (?fun —* X-P) S (2fun —* X-Q)»
by blast
with xx(2, /) »xx(2) have «(t', ?fun —* X) € F (P [S], Q)
unfolding F-Syncpticr by auto
thus «(t, X) € F ?lhs» by (auto simp add: =xx(1) F-Renaming)
qed
qed

16.2 Laws of Hiding

16.3 Hiding and Sequential Composition

We start by giving a counter example when the assumption F/(P) is not
satisfied.

notepad begin
define Q :: <nat = (‘a, 'r) processpiick’
where «Q r = (((—) undefined) = r) STOP) for r
have «SKIPS UNIV \ {undefined} = (SKIPS UNIV :: ('a, nat) processptick)>
by (simp add: Hiding-SKIPS)
moreover have «Q r \ {undefined} = STOP) for r
by (induct r) (simp-all add: Q-def Hiding-write0-non-disjoint)
ultimately have x : «((SKIPS UNIV \ {undefined}) s, (Ar. @ r \ {undefined})
= STOP»
by (simp only: SKIPS-Seqpiick) simp

have (SKIPS UNIV 5, Q = Nr € UNIV. @ m by simp
moreover have (] € D (... \ {undefined})
proof (rule D-Hiding-seqRunl)
show (ftF [|» «tF [» ([] = trace-hide [] (ev ‘ {undefined}) Q []» by simp-all

349

next
{ fix r
have «replicate r (ev undefined) € T (Q r)»
by (induct r) (simp-all add: Q-def T-write0)
also have «(replicate r (ev undefined) = map (Ai. ev undefined) [0..<r]»
by (simp add: map-replicate-trivial)
finally have <map (\i. ev undefined) [0..<r] € T (Q) .
}
hence 3 r. map (Ai. ev undefined) [0..<i] € T (Q r)» for i by blast
thus <[] € D (Mr € UNIV. Q r) V (3. isInfHidden-seqRun x (Mr € UNIV. Q
r) {undefined} [])»
by (auto simp add: T-GlobalNdet)
qed
ultimately have xx : ((SKIPS UNIV ;, Q) \ {undefined} = L,
by (simp add: BOT-iff-Nil-D)

have «(SKIPS UNIV \ {undefined}) s, (Ar. Q r \ {undefined}) # (SKIPS UNIV

sv @)\ {undefined}>
unfolding * **x by simp

hence (3P (Q :: nat = (‘a, 'r) processpiick) S.
(PN S) sy (Ar.@r\ S) # (Ps3y Q) \ S by blast

end

In general, only one refinement is holding.

theorem Hiding-Seq-FD-Seq-Hiding :
(Ps3y Q) \SCrp (P\S)s5, (Ar. Qr\ S) (is «?lhs Cpp ?rhs»)
proof (rule failure-divergence-refine-optimizedI)
let ?th = <\t. trace-hide t (ev © S)» and ?map = <At. map (ev o of-ev) t»
fix ¢ assume <t € D ?rhs
with D-imp-front-tickFree is-processT9
consider (D-P) u v where <t = %map u Q@ v» <u € D (P \ S)» «tF w <ftF v
| (D-Q) u r v where ¢t = ?map v Q@ v» <u @Q [V(r)] €T (P\ S)
«u @[V (r) ¢ D(P\SH «dFw<weD(Qr\ S
by (fastforce simp add: Seqpi;cx-projs)
thus ¢ € D ?lhs
proof cases
case D-P
from D-P(2) obtain «’ v’ z where * : <u = ?th u’ Q v’y ¢tF u» <ftF v’
<u’ € D PV isInfHidden-seqRun z P S u’
by (blast elim: D-Hiding-seqRunkE)
from x(4) have «?th (?map u’) € D ?lhs
proof (elim disjE)
assume <u' € D P)
with x(2) have «?map v" € D (P;, Q)
by (auto simp add: Seqpiick-projs intro: front-tickFree-Nil)
with mem-D-imp-mem-D-Hiding show <?th (¢map u’) € D ?lhs .
next

350

assume <isInfHidden-seqRun z P S u”
from this isInfHidden-seqRun-imp-tickFree-seqRun[OF this)
have (isInfHidden-seqRun (ev o of-ev o z) (P35, Q) S (?map u')
by (simp add: Seqpiic-projs image-iff)
(metis eventpick.sel(1) list.map-comp map-append seqRun-def)
thus < ?th (?map u’) € D ?lhs
by (simp add: D-Hiding-seqRun)
(metis (no-types) append.right-neutral comp-apply
front-tickFree-Nil tickFree-map-ev-comp)
qed
also have < ?th (?map u’) = ?map (7th u’)
by (fact tickFree-trace-hide-map-ev-comp-of-ev[OF <tF u’)])
finally show <t € D ?lhs»
by (simp add: D-P(1, /) *(1) front-tickFree-append is-processT7)
next
case D-Q)
from D-Q(2, 3) obtain u’ where <u @Q [V (r)] = ?th u”» «(u’, ev *S) € F P»
unfolding T-Hiding D-Hiding by fast
then obtain u’ where (u = 7th v’ (v’ Q [V ()], ev * S) € F P»
by (cases u’ rule: rev-cases, simp-all split: if-split-asm)
(metis F-imp-front-tickFree Hiding-tickFree butlast-snoc
front-tickFree-iff-tickFree-butlast non-tickFree-tick tickFree-append-iff)
from D-Q(5) obtain v’ w' z where x : «v = %th v’ Q w’ «tF vy (ftF w"
«w' € D (Qr) V isInfHidden-seqRun z (Q r) S v’
by (blast elim: D-Hiding-seqRunE)
from *(4) have <?th (?map v’ Q v’) € D ?2lhs)
proof (elim disjE)
assume v’ € D (Q)
hence <?map v’ Q@ v' € D (P, Q)
by (simp add: Seqpic-projs)
(metis F-T «(u’ @ [V (r)], ev ¢ S) € F P> append-T-imp-tickFree
not-Cons-self)
with mem-D-imp-mem-D-Hiding show «?th (?map v’ Q v") € D ?lhs .
next
assume <isInfHidden-seqRun z (Q r) S v/
hence <isInfHidden-seqRun z (P 3, Q) S (?map u’ @ v')
by (simp add: seqRun-def image-iff Seqptick-projs)
(metis F-T <(u’ Q [V (r)], ev * S) € F P» append-T-imp-tickFree list.discI)
thus «?th (?map v’ Q v') € D ?2lhs»
by (simp add: D-Hiding-seqRun)
(metis append.right-neutral filter-append
front-tickFree-Nil isInfHidden-seqRun-imp-tickFree)
qed
also have «?th (?map v’ Q v’) = Zmap (?th u’) Q ?th v
using D-Q(4) Hiding-tickFree <u = ?th u'y tickFree-trace-hide-map-ev-comp-of-ev
by auto
finally have «?map (?th u") @ 2th v’ € D ?lhs» .
moreover have «tF (?map (?th u') @ ?th v'))
by (simp add: x(2) Hiding-tickFree)

351

ultimately show <t € D ?lhs)
unfolding (1) D-Q(1) «u = ?th u’» using ftF' w"
by (metis append.assoc is-processT7)
qed
next

assume subset-div : <D ?rhs C D ?lhs»
let ?th = <At. trace-hide t (ev * S)» and ?map = <At. map (ev o of-ev) t»
fix t X assume «(¢t, X) € F ?rhs
then consider (div) <t € D ?rhs)
| (F-P) u where <t = ?map w «(u, ref-Seqprick X) € F (P \ S) <u ¢ D (P
\ S) <tF w
| (F-Q) u r v where <t = ?map u Q vy <u Q [V(r)] € T (P \ S) «<u Q [V(r)]
¢ D (P\S)
GFw (v, X) e F(Qr\Sh«wé&D(Qr\ SH
by (simp add: Seqptick-projs)
(metis F-T T-imp-front-tickFree front-tickFree-Nil is-processT9 self-append-conv)
thus (¢, X) € F ?lhs)
proof cases
case div with subset-div show «(t, X) € F ?lhs
by (simp add: in-mono is-processT8)
next
case F-P
from F-P(2, 3) obtain u’ where * : <u = ?th u’y «(u’, ref-Seqptick X U ev
S)e F P
unfolding F-Hiding D-Hiding by fast
have (tF u'» using %(1) F-P(4) Hiding-tickFree by blast
have $: «ref-Seqpiick (X U ev ©8) = ref-Seqprick X U ev < S
by (auto simp add: image-iff ref-Seqpiicr-def)
(metis Int-iff Un-iff eventpyicr.sel(1) image-eql rangel)
from «tF u" %(2) have «(map u’, X Uev ‘S) € F (P;, Q)
by (auto simp add: Seqpiick-projs $)
thus (¢, X) € F ?lhs
by (simp add: F-Hiding)
(metis %(1) F-P(1) <tF u”s tickFree-trace-hide-map-ev-comp-of-ev)
next
case F-Q)
from F-Q(2, 3) obtain v’ where <u @ [V (r)] = ?th uy «(u’, ev ¢ S) € F P)
unfolding T-Hiding D-Hiding by fast
then obtain u’ where * : <u = 2th vy «(uv’ @ [V/(7)], ev *S) € F P»
by (cases u’ rule: rev-cases, simp-all split: if-split-asm)
(metis F-imp-front-tickFree Hiding-tickFree butlast-snoc
front-tickFree-iff-tickFree-butlast non-tickFree-tick tickFree-append-iff)
from F-Q(5, 6) obtain v’ where *x : <v = 2th vy «(v/, X U ev ‘' S) € F (Q
)
unfolding F-Hiding D-Hiding by blast
have «(?map v’ @ v/, X Uev ‘S) € F (P;, Q)
by (sitmp add: Seqptick-projs)
(metis x(2) xx(2) F-T append-T-imp-tickFree list.distinct(1))

352

with F-Q(4) show «(t, X) € F ?lhs
by (simp add: F-Hiding F-Q(1) %(1) %x(1))
(metis Hiding-tickFree filter-append tickFree-trace-hide-map-ev-comp-of-ev)
qed
qed

16.4 Hiding and Synchronization Product

lemma setinterleavesy;cr-imp-superset-ev :
«t setinterleaves s yick_join (4, v), A) =
{evala. eva € setu} U{eva |a. eva € set v} C {eva |a. eva € set th
proof (induct t arbitrary: u v)
case Nil thus ?case by (auto dest: Nil-setinterleaves,ick)
next
case (Cons e t)
from Cons.prems consider (mv-left) a v’ where (e = ev a) <u = ev a # u’
«t setinterleaves s yick_join ((u', v), A)>
| (mu-right) a v’/ where (e = ev a> <v = ev a # v)
«t setinterleaves s yick_join ((u, v'), A)
| (mv-both-ev) a u’ v’ where (e = ev a) <u = ev a # u’s v = ev a # v’
«t setinterleaves s yicf._join ((u', '), A)
| (mv-both-tick) r s u’ v’ where «u = V(1) # u’ v =V (s) # v)
«t setinterleaves s yicf._join ((u', '), A)
by (cases e) (auto elim: Cons-ev-setinterleavesy,;c, E Cons-tick-setinterleaves,yc, F)
thus ?case by cases (auto dest!: Cons.hyps)
qed

lemma (in Syncpiick-locale) disjoint-isInfHidden-seqRunL-to-Syncpiicr,
assumes (A N S = {}» and «isInfHidden-seqRun x P A t-P)
and <¢-Q € T @ and <t setinterleaves/(®/) ((t-P, t-Q), S)
shows <isInfHidden-seqRun (ev o of-ev o z) (P [S], Q) At
proof —
have tF-z : «tF (map z [0..<i])> for i
by (metis assms(2) imageE is-ev-def seqRun-def tickFree-append-iff
tickFree-map-tick-comp-iff tickFree-seqRun-iff)
define ¢’ where «t' i =t Q map (ev o of-ev) (map z [0..<i])» for ¢
from assms(1, 2) have {a. ev a € set (map z [0..<i])} N S = {}» for ¢
by (simp add: disjoint-iff image-iff) (metis eventpicy.inject(1))
from tickFree-disjoint-setinterleavesy;cx-append-tailL|OF tF-z this assms(4)]
have <seqRun t (ev o of-ev o z) { setz’nterleaves/(®/) ((seqRun t-P x i, t-Q), S)
for ¢
by (simp add: seqRun-def)
moreover have <of-ev (z i) € A for ¢
by (metis assms(2) eventyiick-sel(1) image-iff)
ultimately show <isInfHidden-seqRun (ev o of-ev o z) (P [S], Q) A t»
using assms(2, 3) by (auto simp add: T-Syncpiick)
qed

353

lemma (in Syncpyick-locale) disjoint-isInfHidden-seqRunR-to-Syncpiick
JA N S = {}; isInfHidden-seqRun z Q A t-Q; t-P € T P;
t setinterleaves s () ((+-P, t-Q), S)] =
isInfHidden-seqRun (ev o of-ev o x) (P [S], Q) A t»
by (fold Syncpiick-sym, rule Syncpiick-locale. disjoint-isInfHidden-seqRunL-to-Syncpiick)
(use setinterleavespticr-sym in <blast intro: Syncpeicr-locale-sym.Syncyy;cr-locale-axziomsy)+

lemma (in Syncpick-locale) disjoint-Hiding-Syncpiicr-FD-Syncpiick-Hiding-auz :
— This lemma avoids duplication of the proof work.
assumes (AN S ={b (F w ftF v «(-P €D (P\ A «+-Q € T (Q \ A)»
and x : u setinterleaves g/ ((+-P, t-Q), S)
shows «u @ v e D (P [S], Q \ A)»
proof —
let ?th-A = (<At. trace-hide t (ev © A)»
from <t-P € D (P \ A)> obtain ¢-PI t-P2
where D-P : «tF t-P1) «ftF t-P2» «t-P = ?th-A t-P1 Q {-P2»
«t-P1 € D P V (3 t-P-z. isInfHidden-seqRun-strong t-P-v P A t-P1))
by (blast elim: D-Hiding-seqRunE)
from setinterleaves,y;cr-appendL[OF x[unfolded D-P(3)]] obtain ul u2 t-QI
t-Q2
where *x : (u = ul Q u2) t-Q = t-Q1 Q t-Q2»
cul setinterleaves/(®/) ((9th-A t-P1, t-Q1), S)»
(w2 setinterleaves s /) ((t-P2, t-Q2), S)» by blast
from <¢-Q € T (Q \ A)> consider ¢-Q1’ where (t-Q = ?th-A t-Q1" «(t-Q1’,
ev ‘A) e F @
| (D-Q) t-Q1' t-Q2' where «(tF t-Q1" <ftF t-Q2" «t-Q = 7th-A t-Q1' Q t-Q2"
«t-Q1’' € D Q V (3t-Q-z. isInfHidden-seqRun-strong t-Q-x @Q A t-Q1"')»
by (elim T-Hiding-seqRunE)
thus «u @uv e D (P [S], Q \ A)»
proof cases
fix t-Q1' assume <t-Q = 7th-A t-Q1" «(t-Q1', ev “ A) € F
from «t-Q = ?th-A t-Q1" xx(2) obtain t-Q1"
where (t-Q1 = ?th-A t-Q1"» «-Q1" < t-Q1)
by (metis Prefiz-Order.prefiz] le-trace-hide)
from F-T «(t-Q1', ev “A) € F @ «-Q1" < t-Q1" is-processT3-TR
have «t-Q1" € T Q> by blast
from xx(3)[unfolded <t-Q1 = ?th-A t-Q1'",
THEN disjoint-trace-hide-setinterleavespick[OF <A N S = {}]]
obtain u!’ where (ul = ?th-A ul’ <ul’ setinterleaves/(®/) ((t-P1, t-Q1"),
S)» by blast
from D-P(4) show «v @ v € D (P [S], Q\ A)
proof (elim disjE exE)
assume <t-P1 € D P
with (ul’ setinterleaves,s () ((t-P1,t-Q1'"), S)» D-P(1) setinterleaves,; k-tickFree-imp
have (ul’ = ul’Q [y <tF ul’y <ftF [

354

ul’ setinterleaves,/ sy ((t-P1, t-Q1'"), S)» <t-P1 € D P>
by simp-all (blast intro: is-processT3-TR)+
with «t-Q1" € T > have «ul’ € D (P [S], Q) unfolding D-Syncpt;ck
by blast
moreover have (v @ v = 2th-A ul’ Q (u2 Q v)»
by (simp add: (1) (1) <ul = ?th-A ul")
ultimately show «v @ v € D (P [S], @ \ A)
unfolding D-Hiding using <tF us <ftF vy (1) <tF ul’
by (auto intro: front-tickFree-append)
next
fix ¢-P-z assume <isInfHidden-seqRun-strong t-P-x P A t-P1»
hence <isInfHidden-seqRun (ev o of-ev o t-P-z) (P [S], Q) A ul’
by (intro disjoint-isInfHidden-seqRunL-to-Syncpt;ck
[OF cAnS={p -«Q1"eT @ <ul’ setinterleaves,s () ((t-P1,
+Q1"), S)]) simp
with #x(1) «ul = ?th-A ul’s assms(2, 3) show «w @ v € D (P [S], @ \
A)»
unfolding D-Hiding-seqRun by clarify
(metis append-eg-append-conv2[of ul u2 Q v> (ul Q u2> v]
isInfHidden-seqRun-imp-tickFree[of ul’ <ev o of-ev o t-P-z» <P [S], @
4]
front-tickFree-append|of u2 v] tickFree-append-iff[of ul u2])
ged
next
case D-(Q)
from setinterleavespyicr-le-prefitLR
[OF *[unfolded D-P(3) D-Q(8)], of «?th-A t-P1) <2th-A t-Q1"]
consider (left) u' t-Q1" where v’ < wy <t-Q1" < t-Q1"
' setinterleaves/(®/) ((2th-A t-P1, ?th-A t-Q1"), S)»
(right) v’ t-P1’ where u’ < wy <¢-P1’ < t-P1»
u’ setinterleaves,s () ((?th-A t-P1', ?th-A t-Q17), S)»
by (auto dest!: le-trace-hide)
thus «u @uv e D (P [S], Q \ A
proof cases
case left
have «t-Q1"” € T @ by (meson D-Q(4) D-T is-processT3-TR left(2)
t-le-seqRun)
from disjoint-trace-hide-setinterleavesy;c,|OF left(3)]
obtain v’ where $: v’ = %th-A u'"»
<u’ setinterleaves/(®/) ((t-P1, t-Q1"), S)» by blast
from D-P(4) show «v @ v e D (P [S], @\ A)
proof (elim disjE exE)
assume <t-P1 € D P»
hence «u"” € D (P [S], Q)
by (simp add: D-Syncpiick)
(metis $(2) D-P(1) «t-Q1" € T @ append.right-neutral
front-tickFree-Nil setinterleaves,;ck-tickFree-imp)
with left(1) show «u @ v e D (P [S], @\ A)

355

by (elim Prefiz-Order.prefizE, simp add: D-Hiding $(1))
(metis Hiding-tickFree assms(2, 8) front-tickFree-append tickFree-append-iff)
next
fix ¢-P-z assume <isInfHidden-seqRun-strong t-P-x P A t-P1»
hence <isInfHidden-seqRun (ev o of-ev o t-P-z) (P [S], Q) A u'"
by (intro disjoint-isInfHidden-seqRunL-to-Syncyi;ck
[OF <ANS={p -«tQ1"eT @ $(2)]) simp
from left(1) show <u @ v € D (P [S], Q@ \ A)
by (elim Prefiz-Order.prefizE, simp add: D-Hiding-seqRun $(1))
(metis «?thisy assms(2, 3) front-tickFree-append
isInfHidden-seqRun-imp-tickFree tickFree-append-iff)
qged
next
case right
have «t-P1’ € T P> by (meson D-P(}) D-T is-processT3-TR right(2)
t-le-seqRun)
from disjoint-trace-hide-setinterleavesyick[OF <A N S = {}» right(3)]
obtain u’’ where $: (v’ = ?th-A u’’
'’ setinterleaves/(®/) ((t-P1', t-Q17), S)» by blast
from D-Q(4) show <u @ v € D (P [S], Q \ A)
proof (elim disjE exE)
assume <t-Q1' € D
hence <uv"” € D (P [S], Q)
by (simp add: D-Syncyiick)
(metis $(2) D-Q(1) «t-P1' € T P> append.right-neutral
front-tickFree-Nil setinterleavesy;ck-tickFree-imp)
with right(1) show <u @ v € D (P [S], Q \ A)»
by (elim Prefiz-Order.prefizE, simp add: D-Hiding $(1))
(metis Hiding-tickFree assms(2, 8) front-tickFree-append tickFree-append-iff)
next
fix t-Q-r assume (isInfHidden-seqRun-strong t-Q-z Q A t-Q1"
hence <isInfHidden-seqRun (ev o of-ev o t-Q-z) (P [S], @) A u')
by (intro disjoint-isInfHidden-seqRunR-to-Syncyi;ck
[OF <AN S ={}p -«P1’'eT P> $(2)]) simp
from right(1) show <u @ v € D (P [S], Q \ A)
by (elim Prefiz-Order.prefizE, simp add: D-Hiding-seqRun $(1))
(metis «?thisy assms(2, 3) front-tickFree-append
isInfHidden-seqRun-imp-tickFree tickFree-append-iff)
qed
qed
qed
qed

theorem (in Syncpticr-locale) disjoint-Hiding-Syncpiicr-FD-Syncptick-Hiding
P [S]ly @\ ACrp (P\ A) [S]y (Q\ Ay if (AN S ={h

proof (rule failure-divergence-refine-optimizedI)
let ?th-A = (At. trace-hide t (ev ‘ A)»

356

fix t assume <t € D (P \ A) [S]/ (Q \ A))
from this obtain u v t-P t-Q
where * : <t = v @Q vy <tF w <ftF v
U setmterleaves/(@/) ((t-P, t-Q), S)»
GPeDP\NAANLQeT (Q\NA)VEPeT (P\AANEQeD(Q\
A)»
unfolding D-Syncpiici by blast
from «(5) show <t € D (P [S], Q \ A)
proof (elim disjE conjE)
show (t-P € D (P\ A) = t-QeT (Q\A) = teD(P[S], Q\ A
by (simp add: %(1—4) disjoint-Hiding-Syncpiick-FD-Syncpiicr-Hiding-aur <A
ns={h)
next
assume (-P € T (P \ Ap «-Q € D (Q \ Ap
have «u setinterleavess g r r gv s ((t-Q, t-P), S)
using *(4) setinterleavespicr-sym by blast
from Syncptick-locale-sym.disjoint-Hiding-Syncptick-FD-Syncpticr-Hiding-aux
[OF <AN S ={}p x(2, 3) «t-Q €D (Q\ Ay «t-P € T (P \ A)» this]
have <u @ v € D (Syncpiick-locale-sym.Syncprick @ S P\ A) .
also have («Syncpiici-locale-sym.Syncpiic @ S P = P [S], @ by (fact
Syncptick-sym)
finally show <t € D (P [S], @ \ A)> unfolding *(1) .
qed
next
fix t X assume «(t, X) € F (P \ A) [S]/ (@ \ A))
and subset-div : <D ((P \ A) [S], (@ \ A)) C D (P [S], @\ A)»
from this(1) consider <t € D ((P \ A) [S], (Q \ A))
| (fail-Sync) t-P +-Q X-P X-@Q where ((t-P, X-P) € F (P \ A) «(+-Q, X-Q)
e F(Q\ A)
t setinterleaves/(®/) ((t-P, t-Q), S)» «X C super-ref-Syncpiicr, (V) X-P S
X-Q»
unfolding Syncpicr-projs by blast
thus «(t, X) e F (P [S], @ \ A
proof cases
from subset-div show <t € D (P \ A) [S], (@ \ A)) = (t, X) € F (P [S],
Q\ 4)
by (simp add: in-mono is-processT8)
next
case fail-Sync
from fail-Sync(1, 2) consider «t-P € D (P \ A) Vt-Q € D (Q \ Ap
| (fail-Hiding) t-P’ t-Q’ where
«t-P = trace-hide t-P’ (ev * A)y «(t-P', X-P U ev ‘ A) € F P»
t-Q = trace-hide t-Q’ (ev * A «(+-Q', X-Q U ev ‘ A) € F
unfolding F-Hiding D-Hiding by blast
thus «(¢t, X) e F (P [S], Q@ \ A)
proof cases
assume <t-P € D (P\ A) Vt-Q €D (Q\ Ap
with fail-Sync(1—3) have <t € D (P \ A) [S]/ (@ \ A))»
by (simp add: D-Syncpiict’)

357

(metis F-T append-self-conv front-tickFree-Nil)
with subset-div show «(t, X) € F (P [S], Q \ A)
by (simp add: in-mono is-processT8)
next
case fail-Hiding
from disjoint-trace-hide-setinterleavesp;cs
[OF (AN S = {}» fail-Sync(3)[unfolded fail-Hiding(1, 3)]]
obtain ¢’ where * : ¢ = trace-hide t’ (ev * A)>
«t’ setinterleaves,/ (g sy ((t+-P', +-Q"), S)> by blast
from fail-Sync(4) have <X U ev * A C super-ref-Syncpiick (@) (X-P U ev
“A) S (X-Q U ev ‘A
by (auto simp add: super-ref-Syncpiicr-def image-iff)
with «(2) fail-Hiding(2, 4) have «(t’, X U ev ‘ A) € F (P [S], Q)
by (auto simp add: F-Syncpiick)
with (1) show «(t, X) € F (P [S], @ \ A)> unfolding F-Hiding by blast
qed
qed
qed

theorem (in Syncpiick-locale) disjoint-finite-Hiding-Syncpiick
P [S]ly, @\ A= (P\A)I[S], (Q\ Ay if <AN S ={}» and «finite A>
— Monster theorem!
proof (rule FD-antisym,)
from disjoint-Hiding-Syncyiick-FD-Syncpiick-Hiding]OF <A N S = {}]
show P [S], Q\ A Crp (P\ A) [S]y (Q\ A) -
next
let ?th-A = (At. trace-hide t (ev © A)»
show «(P\ 4) [S], (@ \ 4) Crp P [Sl, @\ 4
proof (rule failure-divergence-refine-optimizedI)
fix t X assume «(t, X) € F (P [S], Q \ A)
and subset-div : <D (P [S], @\ A) €D ((P\ A) [S], (@ \ 4))
from this(1) consider <t € D (P [S], Q \ A)
| t’ where <t = ?th-A t" «(t/, X Uev ‘A) € F (P [S], Q)
unfolding F-Hiding D-Hiding by blast
thus «(t, X) € F ((P\ 4) [S], (Q \ A))
proof cases
show «t € D (P [S], @\ 4) = (1, X) € F (P 4) [S], (Q\ A))
using subset-div is-processT8 by blast
next
fix t" assume «t = ?th-A t) «(t', X Uev ‘A) € F (P [S], Q)
from this(2) consider <t € D (P [S], Q)
| (fail) -P X-P +-Q X-Q where «(-P, X-P) € F P» «(1-Q, X-Q) € F Q»
«t’! setinterleaves,/ () ((t-P, t-Q), Sy
(X U ev ‘A C super-ref-Syncppicr (@V) X-P S X-(Q»
unfolding Syncpiici-projs by auto
thus «(t, X) € F (P \ 4) [S], (Q\ 4))

proof cases

358

assume <t' € D (P [S], Q)
with <t = ?th-A t» have <t € D (P [S], @ \ A)
by (metis mem-D-imp-mem-D-Hiding)
with subset-div is-processT8 show «(t, X) € F (P \ A) [Sl/ (@ \ A))
by blast
next
case fail
from <A NS = {} fail(4) have < X-P = X-PU ev ‘ A <X-Q = X-QU ev
‘A
—ie. ev ‘AC X-Pand ev ‘A C X-Q
by (auto simp add: super-ref-Syncp;cr-def)
with fail(1, 2) have «(?th-A t-P, X-P) € F (P \ A)
«(?th-A t-Q, X-Q) € F (Q \ A
by (auto simp add: F-Hiding)
moreover from fail(3) have <t setinterleaves/(®/) ((?th-A t-P, 2th-A
-Q), S)
unfolding «t = ?th-A t"» by (fact setinterleavesp;c-trace-hide)
ultimately show «(t, X) € F (P \ A4) [S]/ (@ \ A))»
using fail(4) unfolding F-Syncyticr by fast
qed
qged
next
fix ¢t assume <t € D (P [S], Q \ A)»
then obtain u v where * : <ftF vy <tF w» <t = ?th-A u Q v
«we D (P[S], Q) V (Fz. isInfHidden-seqRun-strong = (P [S], Q) A u)
by (blast elim: D-Hiding-seqRunkE)
from x(4) show ¢t € D ((P \ A) [S], (@ \ 4))
proof (elim disjE exFE)
assume <u € D (P [S], Q)
then obtain ul u2 t-P t-Q where *x : <u = ul Q u2) «(tF ul» <ftF u2»
ul setinterleaves/(®/) ((¢+-P, t-Q), S)
t-PeDPANtQeT QVIELPeT PALQeDQ
unfolding D-Syncpiicr by blast
have «t = ?th-A ul Q (?th-A u2 Q v)»
by (simp add: x(3) *x(1))
moreover from xx(2) have «tF (?th-A ul)» using Hiding-tickFree by blast
moreover have (ftF (?th-A u2 Q v)»
by (metis D-imp-front-tickFree <t € D (P [S], @ \ A)» calculation(1)
front-tickFree-append-iff front-tickFree-charn)
moreover from xx(/) have «?th-A ul setinterleaves s g/ ((?th-A t-P, ?th-A
t_Q)ﬂ S)>
by (fact setinterleavesy;cx-trace-hide)
moreover from xx(5) have <?th-A t-P € D (P \ A) A ?th-A t-Q € T (Q \
A) vV
Zth-A t-P € T (P\ A) A ?th-A t-Q € D (Q \ A)
by (metis mem-D-imp-mem-D-Hiding mem-T-imp-mem-T-Hiding)
ultimately show <t € D ((P \ A4) [S], (@ \ A))»
unfolding D-Syncyiicr by blast
next

359

fix z assume xx : (isInfHidden-seqRun-strong « (P [S], Q) A w

from ** have *xx : (3t-Pt-Q. t-P €T PAt-Q €T Q A
seqRun u x @ setinterleaves'/(@)/) ((t-P, t-Q), S) for i
unfolding Syncyiicr-projs by blast

define t-P-t-Q where (t-P-t-Q i = SOME (+-P, t-Q). ttP €T PAt-Q € T
QA

seqRun u x i setinterleaves (g ((t+-P, t-Q), S)» for i
define ¢-P where <«{-P = fst o t-P-t-(Q)»
define ¢-@Q) where (t-Q = snd o t-P-t-(Q)»
have xxxx : <t-Pi €T Py «t-Q i € T @

<seqRun u x 1 setinterleaves/(®/) ((t-P i, t-Q ©), S)» for ¢

by (use sxx[of i] in «simp add: t-P-def t-Q-def,

cases <t-P-t-Q iy, simp add: t-P-t-Q-def,
metis (mono-tags, lifting) case-prod-conv somel-ex>)+
from %(2) %+ have <set (seqRun u x i) C {ev a |a. ev a € set u} U ev * A
for
by (simp add: seqRun-def subset-iff)
(metis image-iff list.set-map tickFree-iff-is-map-ev)
have sxxxx : ({ev a |a. ev a € set (t-P i)} U {eva |a. ev a € set (t-Q i)} C
{evala. eva € set u} U ev ‘A for {
by (rule subset-trans|OF setinterleavespycr-imp-superset-ev[OF sk (3)]])
(use <set (seqRun u z i) C {ev a |a. ev a € set u} U ev * As in blast)

have sk @ (tF (t-P 1)y «tF (¢-Q ©)» for i

using tickFree-setinterleavesyick-iff [OF sxxx(8)[of i|]

by (metis %(2) *x eventpiick.disc(1) imagek tickFree-seqRun-iff)+

{ fix ¢
have ({w. tF w A {ev a |a. ev a € set w} C set u U ev “ A A length w < i}

N

map (ev o of-ev) ‘ {w. set w C set u U ev * A A length w < i}
(is <251 C map (ev o of-ev) © 252»)
proof (rule subsetl)
fix w assume «w € 251
hence «(map (ev o of-ev) (map (ev o of-ev) w) = w»
by (induct w) (auto simp add: subset-iff)
moreover from (w € 751> have <map (ev o of-ev) w € 252>
by (induct w) (auto simp add: subset-iff)
ultimately show (w € map (ev o of-ev) © 252
by (metis (lifting) image-eql)
qed
moreover have (finite {w. set w C set u U ev * A A length w < i}»
by (rule finite-lists-length-le) (simp add: <finite A»)
ultimately have «finite {w. tF'w A {ev a |a. ev a € set w} C set u U ev
A N length w < i}»
using finite-subset[OF - finite-imagel] by blast
} note £ = this

3

have <inj t-P-t-Q»

360

proof (rule injI)
fix i j assume «t-P-t-Q i = t-P-t-Q j»
with sxx(3) have (seqRun u x @ setinterleaves s yief._join (&P 1, t-Q i), S)

seqRun u z j setinterleaves ok join (&P 1, +-Q i), S)
unfolding t-P-t-Q-def t-P-def t-Q-def by fastforce
with setinterleaves,;cr-eq-length
have length (seqRun u x i) = length (seqRun u z j)» by blast
thus i = j» by simp
qed
hence <infinite (range t-P-t-Q)> using finite-imageD by blast
moreover have (range t-P-t-Q) C range t-P X range t-Q»
by (simp add: t-P-def t-Q-def subset-iff image-iff) (metis fst-conv snd-conv)
ultimately have <infinite (range t-P) V infinite (range t-Q)»
by (meson finite-Sigmal infinite-super)

thus <t € D ((P \ 4) [S]/ (@ \ A))
proof (elim disjE)
assume <infinite (range t-P)»
have «finite {w. It'€range t-P. w = take i t'}» for i
using sk (1) soksotor
by (auto intro!: finite-subset| OF - £[of i]] simp add: image-iff subset-iff)
(metis append-take-drop-id tickFree-append-iff, metis eventpick.inject(1)
in-set-takeD)
with <infinite (range t-P)) obtain t-P’ :: <nat = -
where $: <strict-mono t-P"» <range t-P’ C {w. 3t'€range t-P. w < t'}
using KoenigLemma by blast
from $(2) sxxx(1) is-processT3-TR have <range t-P' C T P» by blast
define t-P’ where «t-P"' i = t-P’ (i + length u)> for i
from <range t-P’' C T P> have <range t-P"" C T P> and <strict-mono t-P'’
by (auto simp add: t-P"-def $(1) strict-monoD strict-monol)
have $$: «?th-A (t-P"' i) = ?th-A (t-P" 0)) for i
proof —
have <length u < length (t-P" 0)»
by (metis $(1) add-0 add-leD1 t-P"'-def length-strict-mono)
obtain ¢’ where «t-P" i = t-P" 0 Q ¢
by (meson preficE «strict-mono t-P'y strict-mono-less-eq zero-order(1))
moreover from $(2) obtain j where <¢-P” i < t-P j» by (auto simp
add: t-P"-def)
ultimately obtain t"’ where «¢t-P j = ¢-P" 0 Q ¢’ Q t"» by (metis prefiztE
append.assoc)

have «tF (¢' @ t")
by (metis sxxxxx(1) <t-P j = t-P” 0 Q t' Q t'y tickFree-append-iff)
with setinterleavesy;cr-set-subsetL
[OF sxxx(3)[of j], where n = <length (t-P" 0), unfolded «t-P j = t-P"
0@t Q¢
have (e € set (' @ t"") = e € {ev a |a. ev a € set (drop (length (t-P"
0)) (seqRun u x j))}> for e

361

N

by (cases e) (auto simp add: tickFree-def)
moreover have {a. ev a € set (drop (length (t-P'"" 0)) (seqRun u x 7))}

{a. ev a € set (drop (length u) (seqRun u x)}
by (simp add: subset-iff)
(meson <length u < length (t-P"" 0)> in-mono set-drop-subset-set-drop)
moreover from *x have (set (drop (length u) (seqRun u x j)) C ev “ A>
by (auto simp add: seqRun-def)
ultimately have (set (' @Q t”') C ev * A> by blast
thus «?th-A (t-P"' i) = ?th-A (t-P"' 0)»
by (simp add: «t-P" i = t-P"” 0 Q t') subset-iff)
qed
from $(2) obtain ¢ where «t-P” 0 < t-P i» by (auto simp add: t-P"'-def)
with prefirE obtain w where <i-P i = t-P' 0 @Q w» by blast
have ftF' vy by (fact %(1))
moreover have «tF (?th-A (seqRun u z ©))»
by (metis x(2) *+x Hiding-tickFree trace-hide-seqRun-eq-iff)
moreover have ¢ = ?th-A (seqRun v z i) @Q v»
by (metis x(3) *x trace-hide-seqRun-eq-iff)
moreover have (?7th-A (seqRun u z 1) setinterleaves/(®/) ((2th-A (t-P 1),

2th-A (1-Q 7)), S)>

metis

by (intro setinterleavesyicp-trace-hide xxxx(8))
moreover have «?th-A (t-P i) € D (P \ A)
proof (unfold D-Hiding, clarify, intro exI conjl)
show «ftF (?th-A w)»
by (metis xxxxxx(1) Hiding-front-tickFree <t-P i = t-P" 0 @ w»
tickFree-append-iff tickFree-imp-front-tickFree)
next
show «tF (¢-P" 0)
by (metis sxxxxx(1) <t-P ¢ = t-P” 0 Q w» tickFree-append-iff)
next
show «?th-A (t-P i) = ?th-A (t-P"' 0) @ 2th-A w»
by (simp add: <t-P i = t-P" 0 Q w»)
next
show «t-P"" 0 € D P Vv (3f. isInfHiddenRun f P A A t-P" 0 € range f)»
using $$ «range t-P" C T P) <strict-mono t-P’y by blast
qed
moreover have «?th-A (t-Q i) € T (Q \ A)»
proof (cases <3t 2th-A t' = 2th-A (+-Q i) A (t, ev “A) € F @)
assume 3 t’. %th-A t' = 2th-A (-Q i) A (t/, ev “A) € F @
then obtain t’ where «?th-A (t-Q i) = ?th-A t) «(t', ev * A) € F @ by

thus «%th-A (t-Q i) € T (Q \ A)» unfolding T-Hiding by blast
next
assume At’. ?th-A t' = ?th-A (t-Q i) A (', ev “ A) € F @
with inf-hidden|OF - xxxx(2)] obtain ¢-Q’ j
where (isInfHiddenRun t-Q’ Q A> «t-Q i = t-Q' j» by blast
thus <%th-A (t-Q i) € T (Q \ A)»
unfolding T-Hiding using sxxxxx(2) front-tickFree-Nil by blast

362

qed
ultimately show <t € D ((P \ 4) [S], (Q \ A))> unfolding D-Syncpick
by blast
next
assume <infinite (range t-Q)»
have «finite {w. t'€range t-Q. w = take i t'}» for i
using sk (2) sokskokok
by (auto intro!: finite-subset|OF - £L[of i]] simp add: image-iff subset-iff)
(metis append-take-drop-id tickFree-append-iff, metis eventpi;ck.inject(1)
in-set-takeD)
with <infinite (range t-Q)» obtain t-Q' :: <nat = -
where §$: <strict-mono t-Q" <range t-Q' C {w. It'€range t-Q. w < t'}»
using KoenigLemma by blast
from $(2) xxxx(2) is-processT3-TR have <range t-Q' C T Q> by blast
define ¢-Q'" where <t-Q" i = t-Q’ (i + length u)» for ¢
from <range t-Q' C T Q> have <range t-Q" C T > and <strict-mono t-Q""
by (auto simp add: t-Q"'-def $(1) strict-monoD strict-monol)
have $$: «?th-A (1-Q" i) = ?th-A (1-Q" 0)> for i
proof —
have (length u < length (t-Q" 0)»
by (metis $(1) add-0 add-leD1 t-Q"'-def length-strict-mono)
obtain t’ where «t-Q" i = t-Q" 0 Q t/
by (meson prefixE <strict-mono t-Q''y strict-mono-less-eq zero-order(1))
moreover from $(2) obtain j where t-Q" i < t-Q j» by (auto simp
add: t-Q"'-def)
ultimately obtain ¢t” where (t-Q j = t-Q” 0 Q t' @ t' by (metis
prefirE append.assoc)
have «tF (¢’ @Q t'")
by (metis xxxxxx(2) <t-Q j = t-Q" 0 Q ¢’ Q t""s tickFree-append-iff)
with setinterleavesy;cr-set-subsetR
[OF sxxx(3)[of j], where n = <length (t-Q" 0), unfolded «t-Q j = t-Q"
0 Q¢ @'
have <e € set (' Q t") = e € {ev a |a. ev a € set (drop (length (¢t-Q"
0)) (seqRun u x j))}> for e
by (cases e) (auto simp add: tickFree-def)
moreover have «{a. ev a € set (drop (length (+-Q" 0)) (seqRun u z 7))}

N

{a. ev a € set (drop (length u) (seqRun u x 7))}
by (simp add: subset-iff)
(meson <length u < length (+-Q' 0)» in-mono set-drop-subset-set-drop)
moreover from xx have (set (drop (length u) (seqRun u x j)) C ev A»
by (auto simp add: seqRun-def)
ultimately have (set (' @Q t"') C ev A» by blast
thus <?th-A (t-Q" 7) = ?th-A (t-Q"' 0)»
by (simp add: <t-Q" i = t-Q"" 0 Q t'y subset-iff)
qed
from $(2) obtain i where (-Q” 0 < ¢-Q 9> by (auto simp add: t-Q"-def)
with prefirE obtain w where «t-Q i = t-Q"' 0 @Q w» by blast
have (ftF v» by (fact (1))

363

moreover have <tF (?th-A (seqRun u x 7))
by (metis x(2) xx Hiding-tickFree trace-hide-seqRun-eq-iff)
moreover have «t = ?th-A (seqRun u z i) Q v)
by (metis x(3) *x trace-hide-seqRun-eq-iff)
moreover have «?th-A (seqRun u z 1) setinterleaves gz ((2th-A (t-P 1),
2th-A (1-Q 7)), S)»
by (intro setinterleavespyyicr-trace-hide xxxx(3))
moreover have «?th-A (t-Q i) € D (Q \ A)»
proof (unfold D-Hiding, clarify, intro exI conjI)
show (ftF (?th-A w)»
by (metis xxxxxx(2) Hiding-front-tickFree <t-Q i = t-Q" 0 Q w»
tickFree-append-iff tickFree-imp-front-tickFree)
next
show «tF (¢t-Q" 0)»
by (metis sxxxxx(2) <t-Q i = t-Q"' 0 Q wy tickFree-append-iff)
next
show «?th-A (t-Q i) = 7th-A (1-Q"" 0) @ ?th-A w»
by (simp add: «t-Q i = t-Q" 0 @ w»)
next
show «t-Q" 0 € D Q VvV (3f. isInfHiddenRun f Q A A t-Q"' 0 € range f)»
using $$ «range t-Q" C T Q> <strict-mono t-Q'""» by blast
qed
moreover have (?th-A (t-P i) € T (P \ A)
proof (cases <It’. ?th-A t' = 7th-A (t-P i) A (¢, ev * A) € F P»)
assume <3 t’. 7th-A t' = 2th-A (P i) A (t/, ev ‘ A) € F P»
then obtain ¢’ where ¢ ?th-A (t-P i) = ?th-A t'y «(t/, ev * A) € F P» by
metis
thus «?th-A (t-P i) € T (P \ A)) unfolding T-Hiding by blast
next
assume At’. ?th-A t' = ?th-A (t-P i) A (t', ev “ A) € F P»
with inf-hidden|OF - xxxx(1)] obtain ¢-P’ j
where <isInfHiddenRun t-P' P Ay <t-P i = t-P' j» by blast
thus «?th-A (t-P i) € T (P \ A)
unfolding T-Hiding using sxxxxx(1) front-tickFree-Nil by blast
qed
ultimately show <t € D ((P \ 4) [S]/ (Q \ A))> unfolding D-Syncpick
by blast
qed
qed
qed
qed

lemma disjoint- Hiding-MultiSyncpeicr-F'D-MultiSyncpiicr-Hiding
qSly €@ L. PI\ACpp [Slyl €@ L. (PL\ Ay if AN S ={p
proof (induct L rule: induct-list012)
case 1 show ?case by simp
next

364

case (210)
show ?case by (simp add: RenamingTick-Hiding)
next
case (31011 L)
have ([S], 1 €@ (10 # 11 # L). P1\ A =
P10 [S]/riist [Sly 1 €@ (11 # L). P 1\ A by simp
also have «... Cpp (P10 \ A) [S]/riist ([Sly 1 €Q (11 # L). P1\ A)
by (simp add: Syncriise.disjoint-Hiding-Syncpiicr-FD-Syncpiick-Hiding <A N
s ={p)
also have «... Cpp (P10 \ A) [S]/riist [Sly 1 €Q (i1 # L). (P1\ A)
by (simp add: 3.hyps(2) Syncriist-mono-Syncpiick-FD)
also have «... = [S], 1 €@ (10 # 11 # L). (P 1\ A)> by simp
finally show ?case .
qed

lemma disjoint-finite- Hiding-MultiSyncpicr, :

(Sly 1@ L. PI\A=[S], €L (Pl\ A if <An S = {} and «(finite
Ay
proof (induct L rule: induct-list012)

case 1 show ?case by simp
next

case (210)

show ?case by (simp add: RenamingTick-Hiding)
next

case (31011 L)

have <[S], | €@ (10 # 11 # L). P1\ A =

P 0 [S]/riist [Sly 1 €@ (11 # L). P11\ A by simp
also have «... = (P10 \ A) [S]/riist ([Sly 1 €Q (i1 # L). P1\ A)
by (simp add: Syncriise.disjoint-finite-Hiding-Syncpick «finite

A»)

also have «... = (P10 \ A) [S]/riist [S]y 1 €Q (I1 # L). (P1\ A)

by (simp add: 3.hyps(2) Syncriist-mono-Syncptick-FD)

also have «... = [S], 1 €@ (l0 # 11 # L). (P 1\ A)> by simp

finally show ?case .
qed

16.5 Other Laws of Synchronization Product

16.5.1 Synchronization Set can be restricted

lemma setinterleavesy; i -is-restrictable-on-superset-events-of :
{a. eva € setuV evac€ setv) CA=
t setinterleaves yickjoin (4, v), §) +—
t setinterleaves yickjoin (4, v), S N A
by (induct ¢(tick-join, u, S, v)» arbitrary: t u v)
(auto simp add: subset-iff split: option.split-asm)

lemma (in Syncpiick-locale) Syncyiick-is-restrictable-on-events-of :

365

@[Sl Q= PSN (alP) Ua(Q)l, @
proof —
have x : «(t:P e DPANt-QeT QViEPeT PANtQeD Q=
{a. eva € set t-P V ev a € set t-Q} C a(P) U a(Q)»
«(t-P, X-P) e F P = (+-Q, X-Q) € F Q =
{a. eva € set t-P V ev a € set t-Q} C a(P) U a(Q)> for t-P t-Q X-P X-Q
by (auto intro: events-of-meml dest: F-T D-T)
show <P [S], Q = P [$ 1 (a(P) U a(Q))], @
proof (rule Process-eq-optimizedl)
show «t e D (P [S], Q) = t€ D (P [SN (a(P) Ua(Q))], Q) for t
using setinterleavesyck-is-restrictable-on-superset-events-of [OF %(1)]
unfolding D-Syncpticr by blast
next
show «t € D (P [SN (a(P) U (Q))], Q) = t €D (P[S], Q) for t
using setinterleavesy;ci-is-restrictable-on-superset-events-of [OF (1))
unfolding D-Syncpticr by blast
next
fix t X assume «(t, X) € F (P [S], Q) <t ¢ D (P [S], Q)
then obtain ¢-P t-Q X-P X-Q
where $: «(t-P, X-P) € F P» «(1-Q, X-Q) € F @
«t setinterleaves s yick_join ((t-P, t-Q),)
<X C super-ref-Syncpiick tick-join X-P S X-Q»
unfolding Syncyticr-projs by blast
from $(1) have «(t-P, X-P U {ev a |a. a ¢ a(P)}) € F P»
by (rule is-processT5) (auto intro: events-of-meml dest!: F-T)
moreover from $(2) have «(t+-Q, X-Q U {eva |a. a ¢ a(Q)}) € F @
by (rule is-processT5) (auto intro: events-of-meml dest!: F-T)
moreover from setinterleavesy;.i-is-restrictable-on-superset-events-of
[OF %(2)[OF $(1, 2)]] $(3)
have «t setinterleaves s ick-join ((¢-P, t-Q), S N (a(P) U (Q)))» by blast
moreover from $(4)
have (X C super-ref-Syncpiick
tick-join (X-P U {ev a |a. a ¢ a(P)})
(SN (a(P) Ua(Q))) (X-QU{evala ad a(Q)})
by (auto simp add: super-ref-Syncpick-def)
ultimately show «(t, X) € F (P [S N (a(P) U a(Q))], Q)
by (auto simp add: F-Syncpiick)
next
fix t X assume «(t, X) € F (P [S N (a(P) U a(Q))], Q)
¢ D (PISN (alP)Ua(Q), Q)
then obtain ¢-P t-Q X-P X-Q
where $: «(t-P, X-P) € F P» «(t-Q, X-Q) € F @
«t setinterleaves s yick_join (P, +-Q), S N (a(P) U a(Q)))»
«X C super-ref-Syncpiick tick-join X-P (S N (a(P) U a(Q))) X-Q»
unfolding Syncytici-projs by blast
from setinterleavesyy;cr-is-restrictable-on-superset-events-of
[OF %(2)[OF $(1, 2)]] $(3)
have «t setinterleaves s yickjoin ((¢-P, t-Q), S)» by blast
moreover from $(4) have <X C super-ref-Syncpiicr tick-join X-P S X-Q>

366

by (meson Int-lowerl in-mono subsetl super-ref-Syncpck-mono)
ultimately show «(t, X) € F (P [S], Q)
using $(1, 2) by (auto simp add: F-Syncpiick)
qed
qed

corollary (in Syncpiici-locale) Syncpiick-is-restrictable-on-superset-events-of :
P [S]y, Q@ =PI[SnA], @ if ««(P) U a(Q) C A
proof (rule trans[OF Syncpy;cr-is-restrictable-on-events-of],
rule trans|OF - Syncyi;cr-is-restrictable-on-events-of [symmetric]])
show <P [1 (a(P) U a(Q)l, @ = P [S N AN (a(P) U a(Q))], @
using ««(P) U a(Q) C A by (auto intro: arg-cong[where f = (\S. P [S],
Q)
qed

lemma (tFt = {a. eva€setu} N S={} = a€e S =
— ¢ setinterleaves s yick_join (4, €v a # v), S)
proof (induct <(tick-join, u, S, v)) arbitrary: t u v)
case (ev-setinterleavingptick-Nil a)
thus ?case by (simp add: disjoint-iff) (meson tickFree-Cons-iff)
next
case (ev-setinterleavingpick-ev a 4 b v)
then show ?case by (simp add: disjoint-iff) (meson tickFree-Cons-iff)
next
case (ev-setinterleavingptick-tick a u s v)
thus ?case
by (simp add: disjoint-iff)
(metis empty-iff list.set-intros(1)
ev-notin-both-sets-imp-empty-setinterleavingpiick)
qed simp-all

16.5.2 Some Refinements

context Syncpiici-locale begin

lemma Mndetprefiz-Syncpiicr-Det-distr-FD :
(MaeA—=(Pa[C],(MbeB— Qb)) O
(MbeB—=((MaeA—Pa)[C], QD))
Crp (Ma€eA—=Pa)[C],(Mbe B— Qb))
(is «?lhs? O ?lhs2 Crp ?rhsy)
ifA#{hp B#E{HpANC={pBNC={p
proof —
have «?lhs] = M beB. M acA. (a = (P a [C], (b= QD)) (is - = ?lhs1h)
by (simp add: <A # {}» «<B # {}» Mndetprefiz-GlobalNdet
Syncptick-distrib-GlobalNdet-left Syncpiicr-distrib-GlobalNdet-right
write0-def GlobalNdet-Mprefiz-distr[OF <B # {}», symmetric])
(subst GlobalNdet-sets-commaute, simp)
moreover have (?lhs2 =M beB. M acA. (b = (a = Pa [C], QD)) (is - =

367

2lhs2"y)
by (simp add: <A # {}» «<B # {}» Mndetprefiz-GlobalNdet
Syncpiick-distrib-GlobalNdet-left Syncpiicr-distrib-GlobalNdet-right
write0-def GlobalNdet-Mprefiz-distr[OF <A # {}>, symmetric])
ultimately have «?lhs! O ?lhs2 = ?lhs1’ O ?lhs2’y by simp
moreover have «?lhs1’ 0 ?lhs2' Cpp M beB. M acA. (a — (Pa [C], (b —

Qb))
O (b= ((a = Pa) [Cly Qb))
by (auto simp add: <A # {}> «B # {}> refine-defs GlobalNdet-projs Det-projs
write0-def)
moreover have (... =M beB. M acA. (e = Pa) [C], (b= Qb))
by (rule mono-GlobalNdet-eq, rule mono-GlobalNdet-eq,
simp add: write0-def, subst Mprefiz-Syncpicr-Mprefiz-indep)
(use <AN C ={p BN C = {} in auto)
moreover have (... = ?rhs»
by (simp add: <A # {}» «B # {}» Mndetprefiz-GlobalNdet
Syncpiick-distrib-GlobalNdet-left Syncpyicr-distrib-GlobalNdet-right)
ultimately show «?lhs1 (O ?lhs2 Crp ?rhsy by argo
qed

lemmas Mndetprefiz-Syncptick-Det-distr-F =
Mndetprefiz-Syncyiicr-Det-distr-FD[THEN leFD-imp-leF]

lemmas Mndetprefiz-Syncpiick-Det-distr-D =
Mndetprefiz-Syncpi;cr-Det-distr-FD[THEN leFD-imp-leD)]

lemmas Mndetprefiz-Syncpicr-Det-distr-T =
Mndetprefiz-Syncyiicr-Det-distr-F[THEN leF-imp-leT)|

lemma Mndetprefiz-Syncpiicr-Det-distr-DT -
qA#{hB#{h AnC={s3BnC={}]]=
(MaecA—=(Pa[C],(MbeB— Q) O
(MbeB—=(MacA—Pa)[C], QD))
EDT(HGEA*)PG)[[C]]/(HIJEB*)Qb))
by (simp add: Mndetprefiz-Syncpicr-Det-distr-D
Mndetprefiz-Syncpticr-Det-distr-T leD-leT-imp-leDT)

end

368

Chapter 17

Deadlock Results

17.1 First Results
17.1.1 Non Terminating

Keep in mind lifelock-freesxrps P = (D P = {}).

Sequential Composition

lemma (non-terminating P = P ;, () = RenamingTick P g
— Already proven earlier.
by (fact non-terminating-Seqptick)

Synchronization Product

lemma (in Syncpiick-locale) non-terminating-Syncpiick
(non-terminating P = lifelock-freesxrps @ == non-terminating (P [A], Q)
lifelock-freesxrps P = non-terminating Q = non-terminating (P [A], Q)
by (simp add: lifelock-frees k 1 ps-iff-div-free T-Syncpiick
non-terminating-is-right nonterminating-implies-div-free,
use setinterleavespyick-tickFree-imp in blast)+

17.1.2 Deadlock Free

Sequential Composition

lemma <deadlock-free P = deadlock-free (P 3, Q)
by (metis deadlock-free-imp-deadlock-free- Renaming deadlock-free-implies-lifelock-free
lifelock-free-is-non-terminating non-terminating-Seqpi;ck)

The next lemma is of course more interesting.

lemma deadlock-frees k1 ps-Seqptick :

(deadlock-freesxrps (P 3y Q)
if df-assms : <deadlock-freesxrps P> <A\r. r € /s(P) = deadlock-freeskps

(@ry

369

proof (unfold deadlock-frees i 1 ps-is-right, intro balll impl)
show «t € T (P3, Q) = tFt = (t, UNIV) ¢ F (P;, Q) for t
proof (induct t rule: rev-induct)
from df-assms show «([], UNIV) ¢ F (P, Q)
by (simp add: Seqpiic-projs deadlock-frees i 1 ps-implies-div-free deadlock-frees i 1 p s-is-right
ref-Seqpiick-UNIV)
(metis F-T append-Nil deadlock-frees i 1 ps-implies-div-free
deadlock-frees i 1 ps-is-right empty-iff strict-ticks-of-memlI tickFree-Nil)
next
from df-assms(1) have <D P = {}
by (simp add: deadlock-frees k1 ps-implies-div-free)
fix t eassume hyp : <t € T (P35, Q) = tF't = (t, UNIV) ¢ F (P;, Q)
assume ¢t Q [e] € T (P, Q) <tF (¢t Q [e])
then consider u v where <t @ [e] = map (ev o of-ev) w» <u € T P> <tF w
| wr v where <t @ [e] = map (ev o of-ev) u @ vy <u Q [V (r)] € T P» <tF w
weT (Qr)
by (auto simp add: Seqpiick-projs <D P = {}»)
thus «(t @ [e], UNIV) & F (P, Q)
by (cases; simp-all add: Seqpiicr-projs ref-Seqpick-UNIV)
(metis (no-types) F-T <D P = {}» «tF (t Q [e])» deadlock-frees i 1 ps-is-Tight
empty-iff strict-ticks-of-meml that tickFree-append-iff)+
qed
qed

corollary deadlock-free-Seqptict
([deadlock-freeskrps P; \r. r € V/'s(P) = deadlock-free (Q r)]
= deadlock-free (P ;, Q)
by (simp add: AfterExt.deadlock-free-iff-empty-ticks-of-and-deadlock-freesk 1ps
ticks-of-Seqptick)
(meson deadlock-freesx1ps-Seqptick deadlock-frees i 1 pg-implies-div-free)

Synchronization Product

context Syncpyi;ci-locale begin

lemma deadlock-free-Det-bis :
<P =8TOP N Q # STOP V deadlock-free P =
Q = STOP N P # STOP V deadlock-free Q = deadlock-free (P O Q)»
using deadlock-free-Det by auto

lemma deadlock-free-Mprefiz-Syncyiicr-Mprefir :

assumes not-all-empty: (= ACSV-BCSVANBNS#{p
and <A\a. a € A — § = deadlock-free (P a [S], ObeB — Q b)»
and (A\b. b € B — S = deadlock-free (DacA — P a [S], Q b)
and <Az. z € AN BN S = deadlock-free (P z [S], Q z)

shows <deadlock-free (DacA — P a [S], Ob € B — Q b)»

unfolding Mprefiz-Syncyiicr-Mprefiz using not-all-empty

by (auto intro!: deadlock-free-Det-bis

370

simp add: Mprefiz-is-STOP-iff Det-is-STOP-iff deadlock-free-Mprefiz-iff assms(2—4))

lemma deadlock-free-Mprefiz-Syncpyicr-Mprefiz-subset :
qAC S;BC S; AnB# {};
Nz.z € AN BN S = deadlock-free (P z [S], Q z)]
= deadlock-free (DacA — P a [S], ObeB — Q b)»
and deadlock-free-Mprefiz-Syncyi;cr-Mprefiz-indep :
[ANS={}BNS={}A%{}VEZ£{:
Na. a € A — S = deadlock-free (P a [S], ObeB — Q b);
Nb. b € B — S = deadlock-free (HacA — P a [S], Q b)]
= deadlock-free (DacA — P a [S], ObeB — Q b)»
and deadlock-free-Mprefiz-Syncy;cr-Mprefiz-right :
qac s Bn S ={} B#{}h
Nb. b € B — S = deadlock-free (HacA — P a [S], Q b)]
= deadlock-free (DacA — P a [S], ObeB — Q b)»
and deadlock-free-Mprefiz-Syncpiicr-Mprefiz-left :
QAN S={)BCS A%y
Na. a € A — § = deadlock-free (P a [S], ObeB — Q b)]
= deadlock-free (DacA — P a [S], ObeB — Q b)»
by (auto introl: deadlock-free-Mprefiz-Syncyiicr-Mprefiz)

end

17.2 Renaming and reference Processes

lemma DF-empty [simp] : <DF {} = STOP»
and DFgxrpg-empty [simp] : <DFskrps {} {} = STOP»
and RUN-empty [simp] : <RUN {} = STOP)

and CHAOS-empty [simp] : <CHAOS {} = STOP>»

and CHAOSskrps-empty [simp] : <CHAOSskrps {} {} = STOP>

by (subst DF-unfold DF s i 1 ps-unfold RUN-unfold CHAOS-unfold CHAOS s k 1 ps-unfold,
sitmp)+

17.2.1 Alternative Definitions with restriction fixed-point Op-
erator

For now, we have lemmas such as DF (f ‘ A) Cpp Renaming (DF A) f g, but
the other refinement is requiring finitary assumptions ([finitary f; finitary
g] = Renaming (DF A) fg Cpp DF (f © A)).

lemma DF-restriction-fiz-def : <DF A = (v X.Ma € A — X)»
unfolding DF-def by (rule restriction-fiz-is-fix[symmetric]) simp-all

lemma DFgkpg-restriction-fiz-def : <DFsgrps A R = (v X. (Ma € A = X)
1 SKIPS R)»
unfolding DF sk ps-def by (rule restriction-fiz-is-fix[symmetric]) simp-all

371

lemma RUN-restriction-fiz-def : <RUN A= (v X.Oa € A = X)»
unfolding RUN-def by (rule restriction-fiz-is-fix[symmetric]) simp-all

lemma CHAOS-restriction-fiz-def : <CHAOS A = (v X. STOP 1N (Ha € A —
X))
unfolding CHAOS-def by (rule restriction-fix-is-fix[symmetric]) simp-all

lemma CHAOSg i ps-restriction-fiz-def : <CHAOSskips A R = (v X. SKIPS
ROSTOPMN (Oa€ A — X))
unfolding CHAOS sk ps-def by (rule restriction-fiz-is-fix[symmetric]) simp-all

17.2.2 Stronger Results

With restriction-fiz induction, removing these assumptions is trivial.

lemma Renaming-DF : «Renaming (DF A) fg = DF (f * A)»

proof (unfold DF-restriction-fiz-def, induct rule: parallel-restriction-fiz-ind)
show «Renaming STOP f g = STOP) by simp

qed (auto simp add: Renaming-Mndetprefiz intro!: mono-Mndetprefiz-eq)

lemma Renaming-DF sirps : <Renaming (DFskxrps A R) fg = DFskrps (f ¢
4) (g * R)
proof (unfold DF s i 1 p s-restriction-fiz-def , induct rule: parallel-restriction-fiz-ind)
show «Renaming STOP f g = STOP) by simp
qed (auto simp add: Renaming-Mndetprefix Renaming-Ndet
introl: mono-Mndetprefiz-eq arg-cong2|where f = «(M))])

lemma Renaming-RUN : <Renaming (RUN A) fg = RUN (f “ A)

proof (unfold RUN-restriction-fiz-def, induct rule: parallel-restriction-fiz-ind)
show <Renaming STOP f g = STOP> by simp

qged (auto simp add: Renaming-Mprefix intro!: mono-Mprefiz-eq)

lemma Renaming-CHAOS : <Renaming (CHAOS A) fg = CHAOS (f * A)»
proof (unfold CHAOS-restriction-fiz-def, induct rule: parallel-restriction-fiz-ind)
show (Renaming STOP f g = STOP) by simp
qged (auto simp add: Renaming-Mprefiz Renaming-Ndet
introl: mono-Mprefiz-eq arg-cong2[where f = «(M)])

lemma Renaming-CHAOS sk ps : <Renaming (CHAOSskips AR) fg= CHAOSsk1ps
(F4) (g R
proof (unfold CHAOS s i 1 ps-restriction-fiz-def, induct rule: parallel-restriction-fiz-ind)
show (Renaming STOP f g = STOP> by simp
qed (auto simp add: Renaming-Mprefiz Renaming-Ndet
introl: mono-Mprefix-eq arg-cong2|where f = «(M)])

17.3 Data Independence

When working with the new interleaving P [{}], @, we intuitively expect
it to be deadlock-free when both P and () are. The purpose of this section

372

is to prove it.

17.3.1 An interesting equivalence

lemma (in Syncpe;cr-locale) deadlock-free-of-Syncpiick-iff-DF-FD-DF-Syncptick-DEF:
(VP Q. deadlock-free P — deadlock-free Q — deadlock-free (P [S], @Q))
«— DF UNIV Cpp (DF UNIV [S], DF UNIV)s (is <Zlhs < rhs))
proof (rule iffT)
assume ?lhs
show ?rhs by (fold deadlock-free-def, rule < ?lhs)[rule-format])
(simp-all add: deadlock-free-def)
next
assume ?rhs
show ?lhs unfolding deadlock-free-def
by (intro alll impI trans-FD[OF «?rhs)]) (rule mono-Syncpiick-FD)
qed

17.3.2 STOP and SKIP synchronized with DF A

The two results below form a stronger (and generalized) version of r = s
— (DF ACpp DF A[S] SKIPr) = (AN S ={}).

context Syncpici-locale begin

lemma (in Syncpiick-locale) DF-FD-DF-Syncyiick-SKIPS-imp-disjoint
(AN S ={} if <DF A Cpp DF A [S], SKIPS R»
proof (rule ccontr)
assume <A N S # {p
then obtain a where (a € A) and <a € S) by blast
have <DF A [S], SKIPS R Cpp DF {a} [S], SKIPS R»
by (intro mono-Syncpiick-FD[OF - idem-FD]) (simp add: DF-subset <a € A»)
also have «... = STOP»
by (subst DF-unfold)
(stmp add: <a € Sy SKIPS-def Syncpiick-distrib-GlobalNdet-left
write0-Syncptick-STOP write0-Syncptick-SKIP)
finally show Fulse
by (metis that <a € Ay DF-Univ-freeness empty-iff non-deadlock-free-STOP
trans-FD)
qed

lemma disjoint-imp-DF-eq-DF-Syncptici-SKIPS :
«(DF A = DF A [S], SKIPS Ry if (AN S ={}h
proof (subst DF-restriction-fiz-def, induct rule: restriction-fiz-ind)
show «X = DF A [S], SKIPS R = MacA — X = DF A [S], SKIPS R> for
X
by (subst DF-unfold)
(auto simp add: SKIPS-def Syncpyicr-distrib-GlobalNdet-left
Mndetprefiz-Syncpiicr-SKIP Mndetprefiz-Syncpiicr,-STOP

373

<A NS ={}p Mndetprefiz-distrib-GlobalNdet)
qed simp-all

corollary DF-FD-DF-Syncpi;cr-STOP-imp-disjoint :

(DF A Cpp DF A[S], STOP = AN S = {}

and DF-FD-DF-Syncp;cr-SKIP-imp-disjoint :

«(DF ACgpp DF A [[S]]/ SK[PT:>AOS:{}>

and disjoint-imp-DF-eq-DF-Syncpici-STOP :

(ANS={} = DF A= DF A[S], STOP)

and disjoint-imp-DF-eq-DF-Syncpicr-SKIP :

(AN S ={} = DF A= DF A[S], SKIP)

by (fact DF-FD-DF-Syncpicr-SKIPS-imp-disjoint(where R = «{}», simplified]
DF-FD-DF-Syncpi;ck-SKIPS-imp-disjoint[where R = «{r}, simplified]
disjoint-imp-DF-eq-DF-Syncpyicr-SKIPS[where R = «({}», simplified]
disjoint-imp-DF-eq-DF-Syncyiici-SKIPS[where R = «{r}», simplified])+

end

corollary (in Syncpicr-locale) DF-FD-SKIPS-Syncpiick-DF-imp-disjoint :
(DF A Cpp SKIPS R [S], DF A= AN S = {}
by (metis Syncpiicx-locale-sym. DF-FD-DF-Syncp e -SKIPS-imp-disjoint Syncptick-sym)

lemma (in Syncpiicr-locale) disjoint-imp-DF-eq-SKIPS-Syncptick-DF -
(AN S ={} = DF A= SKIPSR [S], DF A
by (metis Syncyiicx-locale-sym.disjoint-imp-DF-eq-DF-Syncy ik -SKIPS Syncpiick-sym)

corollary (in Syncpiick-locale) DF-FD-STOP-Syncpiici,-DF-imp-disjoint :

(DF ACpp STOP [S]y DFA= AN S={}H

and DF-FD-SKIP-Syncptick-DF-imp-disjoint :

(DF A Cpp SKIP 7 [S], DF A= AN S = {}

and disjoint-imp-DF-eq-STOP-Syncpiicr-DF -

(AN S ={} = DF A= STOP [S], DF A&

and disjoint-imp-DF-eq-SKIP-Syncptick-DF :

(AN S ={} = DF A= SKIP r [S], DF A

by (fact DF-FD-SKIPS-Syncpiick-DF-imp-disjointjwhere R = «{}», simplified]
DF-FD-SKIPS-Syncpiick-DEF-imp-disjoint[where R = «{r}, simplified]
disjoint-imp-DF-eq-SKIPS-Syncpiick-DF [where R = «{}», simplified)
disjoint-imp-DF-eq-SKIPS-Syncpiici,-DF [where R = «({r}», simplified])+

17.3.3 Finally, deadlock-free (P ||| Q)

theorem (in Syncyiicr-locale) DF-F-DF-Syncyiick-DF-weak : <DF (AU B) Cp
DF A [S], DF B
if nonempty: <A # {p «B # {}P
and intersect-hyp: <BN S ={}v By. BN S={y} AANS C{y})

374

proof —
have «[(u, X) € F (DF A); (v, Y) € F (DF B); tsetinterleaves/(®/) ((u, v),

)]
= (¢, super-ref-Syncpricr (V) XSY)e F(DF (AUB))forvtuXY
proof (induct t arbitrary: u v)
case Nil
from Nil.prems(8) have <u = [<v = []»> by (simp-all add: Nil-setinterleavespt;ck)
from Nil.prems(1) obtain a where <a € 4> <ev a & X»
by (subst (asm) F-DF) (auto simp add: nonempty <u = []»)
moreover from Nil.prems(2) obtain b where <b € By cev b ¢ Y»
by (subst (asm) F-DF) (auto simp add: nonempty <v = []»)
ultimately show ?Zcase
using intersect-hyp
by (subst F-DF, simp add: nonempty super-ref-Syncyi;cx-def subset-iff)
(metis Int-iff empty-iff insert-iff)
next
case (Cons e t)
from Cons.prems(3) consider (muv-left) a v’ where <a ¢ S) <e = ev a» <u =
eva # u'
<t setinterleaves s (g) ((u', v), S
| (mu-right) b v’ where <b ¢ S» e = ev by <v = ev b # v
«t setinterleaves s (g) ((u, v"), S
| (mv-both-ev) a u’ v’ where <a € S» e = ev a» <u = eva # u’ v =eva#
v’
t setinterleaves s (g, ((w', v"), S)
| (mv-both-tick) r s r-s u' v/ where <r @/ s = Some r-s» <e = /(r-s)
u=v(r) # u w=V(s) # vt setinterleaves s (/) ((uw', v"), S)
by (cases e) (auto elim: Cons-ev-setinterleavesy,;cr B Cons-tick-setinterleaves,;ckE)
thus “case
proof cases
case mu-left
from Cons.prems(1) have (a € A»
by (subst (asm) F-DF) (simp add: mv-left(3) split: if-split-asm)
from Cons.prems(1)[unfolded mv-left(8), THEN Cons-F-DF] have «(u', X)
€ F (DF A) .
from Cons.hyps[OF this Cons.prems(2) mv-left(4)] show ?thesis
by (subst F-DF') (simp add: nonempty <e = ev a> <a € A»)
next
case mu-right
from Cons.prems(2) have b € B»
by (subst (asm) F-DF) (simp add: mv-right(3) split: if-split-asm)
from Cons.prems(2)[unfolded mv-right(8), THEN Cons-F-DF] have «(v', Y)
€ F (DF B)) .
from Cons.hyps|OF Cons.prems(1) this mu-right(4)] show ?thesis
by (subst F-DF) (simp add: nonempty <e = ev by <b € B)
next
case muv-both-ev
from Cons.prems(1) have (a € A»

375

by (subst (asm) F-DF) (simp add: mv-both-ev(3) split: if-split-asm)
from Cons.prems(1)[unfolded mv-both-ev(3), THEN Cons-F-DF)
Cons.prems(2)[unfolded mv-both-ev(4), THEN Cons-F-DF]
have ((u’, X) € F (DF A)» «(v', Y) € F (DF B)» .
from Cons.hyps|OF this mu-both-ev(5)] show ?thesis
by (subst F-DF') (simp add: nonempty <e = ev a) <a € A»)
next
case muv-both-tick
from Cons.prems(1) have False
by (subst (asm) F-DF) (simp add: mv-both-tick(3) split: if-split-asm)
thus %thesis ..
qed
qed
thus <DF (A U B) Cp DF A [S], DF B
by (simp add: failure-refine-def F-Syncpiicr div-free-DF)
(use is-processT4 in blast)
ged

theorem (in Syncpyici-locale) DF-F-DF-Syncpicr-DF :
«(DF (AU B) Cp DF A [S], DF B if <A # {} B # {}
and ANS={}v@Ba AnS={a} ABNSC{a})V
BNnS={}v@E@bBNS={b}ANANSC{b})»
proof —
from that(3) consider <AN S ={}Vv (Fa. ANS={a} ABNSC {a})
[«BNS={}Vv(3bBnNnS={b} ANANS C{b}) by metis
thus «DF (AU B) Cp DF A [S], DF B>
proof cases
from that(1, 2) show (BN S={} Vv (3b.BNS={b}ANANSC{b}) =
DF (AU B) Cp DF A [S], DF B»
by (rule DF-F-DF-Syncp;cr-DF-weak)
next
from that(1, 2) show <AN S={}Vv(Fa. ANS={a} ABNSC{a}) =
DF (AU B) Cp DF A [S], DF B
by (fold Syncpiick-sym, subst Un-commute)
(stmp add: Syncpiick-locale-sym.DF-F-DF-Syncpic,-DF-weak)
qed
qed

lemma (in Syncpiick-locale) DF-FD-DF-Syncpiicr-DF :

«(DF (AU B) Cpp DF A [S], DF B if <A # {}» «<B # {}
and ANS={}v@Ba AnS={a} ABNSC{a})V
BNnS={v@E@bBNS={b}ANANSC{b})»

using DF-F-DF-Syncyiic,,-DF[OF that]
by (simp add: refine-defs div-free-DF D-Syncpiick)

theorem (in Syncpyicr-locale) DF-FD-DF-Syncyy;cr-DF-iff:

376

(DF (AU B) Cpp DF A [S], DF B +—
(ifA={}then BN S={}
else if B={} then AN S = {}
else ANS={}VEBaAnS={a} ABNSC{a})V
BNS={}v@bBnNnS={}ANANSC{b}))
(is <?FD-ref +— (if A={} then BN S = {}
else if B={} then AN S = {}
else ?cases)y)
proof —
{ assume <A # {}> and <B # {}» and ?FD-ref and - ?cases
from «— Zcases)[simplified]
obtain ¢ and b where <a € A) <a € §» <b € B> <b € S) <a # b by blast
have «(DF A [[S]]/ DF B Crp (a — DF A) [[S]]/ (b — DF B))
by (intro mono-Syncptick-FD; subst DF-unfold, meson Mndetprefiz-FD-write0
<a € Ay b € By)
also have «... = STOP) by (simp add: <a € S» <a # b> <b € S» write0-Syncyi;c,-write0-subset)
finally have Fulse
by (metis DF-Univ-freeness Un-empty <A # {}
trans-FD[OF «?FD-refy] non-deadlock-free-STOP)
} note x = this
show ?thesis
proof (cases <A = {}; cases «<B = {}»)
show (A = {} = B = {} = ?%thesis» by simp
next
show A = {} = B # {} = ?thesis
by simp (metis DF-FD-STOP-Syncpt;ci-DF-imp-disjoint
disjoint-imp-DF-eq-STOP-Syncyiick-DF order-refl)
next
show (A # {} = B = {} = ?thesis)
by simp (metis DF-FD-DF-Syncp;c,-STOP-imp-disjoint
disjoint-imp-DF-eq-DF-Syncpiick-STOP order-refl)
next
show <A # {} = B # {} = ?thesis
by simp (metis x DF-FD-DF-Syncyicx-DF')
qed
qed

lemma DF-FD-DF-MultiSyncpici-DF :
qALleset L= X1#{};3s. (Uleset L. X)) NS C {s}]
= DF (JlesetL. X1)Cpp [S], 1 €Q L. (DF (X 1) :: (“a, 'r) processpiick)>
proof (induct L rule: induct-list012)
case I show ?case by simp
next
case (2 10) show ?case by (simp add: Renaming-DF')
next
case (81011 L)
have «(DF (| 1 € set (10 # 11 # L). X 1)z ('a, 'r list) processprick) =

377

DF (X10U (U 1€ set (i1 # L). X1)) by simp
also have (... Cpp DF (X 10) [S]/riist DF (J 1 € set (i1 # L). X 1)
by (rule Syncriisi. DF-FD-DF-Syncpicr-DF-iff[THEN iffD2])
(use 3.prems(2) in <simp add: 3.prems(1) subset-singleton-iff
Int-Un-distrib2 Un-singleton-iff, safe, simp-ally)
also have «... Cpp DF (X 10) [S]/riist [S]y l€Q(l1 # L). (DF (X 1))
by (intro Syncgriisi.mono-Syncpiick-FD[OF idem-FD] 8.hyps(2))
(use 3.prems in auto)

also have «... = [S], l€Q(i0 # 11 # L). DF (X l)) by simp
finally show ?Zcase .
qed

lemma (in Syncyiicr-locale) «<DF {a} = DF {a} [S], STOP +— a ¢ S»
by (metis DF-FD-DF-Syncpcr-STOP-imp-disjoint boolean-algebra.conj-zero-left
disjoint-imp-DF-eq-DF-Syncpi;ck,-STOP insert-disjoint(1) order-refl)

lemma (in Syncyiicr-locale) <DF {a} [S], STOP = STOP +— a € S»
by (metis DF-unfold Diff-eq-empty-iff Diff-triv Int-empty-left Int-insert-left
Mndetprefiz-Syncpticr-Mprefiz-right Mndetprefiz-Syncpiick-STOP
Mndetprefiz-is-STOP-iff Mprefiz-empty empty-not-insert insert-Diff1)

corollary (in Syncpiick-locale) DF-FD-DF-Interpi;cr.-DF : <DF ACpp DF All|/
DF A
by (metis DF-FD-DF-Syncp;ck-DF-iff inf-bot-right sup.idem)

corollary (in Syncpiick-locale) DF-UNIV-FD-DF-UNIV-Interpiicr-DF-UNIV:
«(DF UNIV CTgp DF UNIV |||, DF UNIV)
by (fact DF-FD-DF-Inter,;c-DF)

corollary (in Syncpiicr-locale) Inter,,;cx-deadlock-free :

<deadlock-free P = deadlock-free Q = deadlock-free (P |||, @)

using DF-FD-DF-Interyi;ci-DF deadlock-free-of-Syncpiick-iff-DF-FD-DF-Syncpicr-DF
by blast

theorem Multilntery;.,-deadlock-free :
QL # [J; Nl. 1 € set L = deadlock-free (P 1)] =
deadlock-free (|||, 1 €Q L. P 1)
proof (induct L rule: induct-list012)
case I
from 1.prems(1) have False by simp
thus ?case ..
next
case (210)

378

from 2.prems(2) show ?case
by (simp add: deadlock-free-imp-deadlock-free-Renaming)
next
case (31011 L)
have |||, 1 €Q (10 # 11 # L). Pl = PI0 |||/riist ||l 1 €Q (11 # L). P
by simp
moreover have <deadlock-free (P 10) by (simp add: 3.prems(2))
moreover have <deadlock-free (|||, 1 €Q (i1 # L). P 1)
by (rule 3.hyps(2)) (simp-all add: 3.prems(2))
ultimately show Zcase
by (simp add: Syncriisi- Interyiicr-deadlock-free)
qed

379

380

Chapter 18

Conclusion

18.1 Main Entry Point

This is where the session HOL-CSP_PTick should be imported from.

declare finite-ticks-simps [simp]
declare finite-ticks-fun-simps [simp)

unbundle no option-type-syntax

18.2 Conclusion

18.2.1 Summary

In this session, we introduced generalized versions of the sequential compo-
sition and synchronization operators, thus completing the generalization of
HOL-CSP (and its extensions) to support parameterized termination. The
main motivation was to propagate return values across processes, so that
algebraic laws such as those involving SKIP continue to hold in a natural
way. While the sequential composition adapts relatively smoothly, the syn-
chronization product required a more substantial redesign: the interleaving
theory of the classical Sync operator could not be reused, and the failures
specification had to be carefully adjusted.

Overall, the results confirm that the parameterized setting integrates well
with the broader CSP framework. Most classical laws remain valid with
only minor modifications, and the new operators exhibit the algebraic and
operational properties one expects. The formalization is fairly extensive and
provides a solid foundation for further developments of CSP theories with
enriched termination behavior.

381

18.2.2 Sequential Composition

The new version of the sequential composition is of type (‘a, 'r) Processptick
= ('r = ('a, 's) processptick) = ('a, 's) processpiick, so that the process
on the right-hand side is now parameterized with the value returned by the
process on the left-hand side. The main motivation for this generalization
was to have SKIP as neutral element. This is now the case.

P, SKIP = P SKIPri;, Q=Qr
Additionally, with the following associativity property :
Psy(Ar.Qrsys R)=Ps/ Qs/ R
we can conclude that this generalized sequential composition fulfills the

monad laws.

Unsurprisingly, the correspondence with classical version is very intuitive.
Psys(Ar. Q) =P;Q
The expected step law has also been established.
Oewcd - Pas, Q=0acA — (Pas, Q)

Additionally, in the same way as described in [4], operational laws have been
derived.

P o~; P’ a o~p P’
Pis Qpwr Pliy Q asy Qpvwp Py Q
TaW/PP/ QPﬁWT Ql
T3/ QB“"')T Ql

The continuity has only be obtained under a kind of finiteness assumption,
but non-destructiveness holds in general.

Finally, an architectural version is defined. It satisfies the following property.

SEQ, 1 €@ (L1 @ L2). Pl = (Ar. (SEQ, 1 €@ L1. P 1) r3;, SEQ,
€@ L2. P)

382

18.2.3 Synchronization Product

The main motivation for generalizing the synchronization product was to
have a satisfying handling of the synchronization of two terminations. In-
deed, with the Sync operator inherited from HOL-CSP, the returned values
were lost (most of the time).

SKIP r [A] SKIP s = (if r = s then SKIP r else STOP)

With the new definition, this is not the case anymore.

SKIP r [A], SKIP s = (case r @/ s of None = STOP | Some r-s = SKIP r-s)

This law is directly extracted from the core of the construction, which is
done in a very abstract way through a locale specification. The operator is
then declined in several variations, leading to the following rules.

SKIP r [A]ypair SKIP s = SKIP (r, s)
SKIP 1 [A] pairtist SKIP s = SKIP [r,
SKIP r [[A]]/Rlist SKIP s = SKIP (T‘ . 5)
SKIP r [A]yrLiist SKIP s = SKIP (r Q [s])
SKIP r p[A]/Listsienr SKIP s = (if |r| = n then SKIP (r Q s) else

STOP)
SKIP r n[A]/Listsienr SKIP s = (if |s| = n then SKIP (r Q s) else
STOP)
SKIP r y[A]ym SKIP s = (if |r| = n A |s| = m then SKIP (r Q s) else
STOP)

SKIP r [A]sciassic SKIP s = (if r = s then SKIP r else STOP)

Moreover, the last declension is proved to be equal to the old version, en-
suring that this work is actually a generalization.

P [[A]]/Classic Q =P [[A]] Q

We also established commutativity and associativity, modulo renaming the
ticks. The underlying abstract setup is quite obscure, so we will only display
here the pair versions.

RenamingTick (P [A]/pair Q) prod.swap = Q [A]ypair P
P [A]ypair (Q [AlyPair R) =
RenamingTick (P [A]ypair @ [A]lyPair R) (A((r, 5), t). (1, s, 1))

Again, the expected step law has been established.

383

OacA - Pajy Q@ =0acA - (Pajy Q)

In this abstract setup, the operational laws have also been derived.

P ips~r P’ Q rhs™7T QI
P A], @ ptick™T P’ [Al, @ AlPl, Q ptick~>r A [Pls Q'
G¢A Plhs“’"apl G¢A Q rhs~a Ql

P [Aly Q ptick~a P'[A]l, Q P [Aly Q ptick~a P [Al, Q'
a€ A P ips~=a P’ Q rhs~a Q'
P [Aly @ ptick~a P’ [Al, Q'

P ips~yr P’

P [Al, Q ptick~+ SKIP r [A], @Q
Q rhs™/'s Ql

P [Aly Q ptick~+ P [A], SKIP s

r &/ s = Some r-s
SKIP r [A], SKIP s ptick~>yr-s Qptick (SKIP r-s) -5

Continuity and non-destructiveness hold in general, and an architectural
version is defined. It satisfies the following property.

L1 #] L2 #]
[S]]‘/ [€@ (L] Q L,?). Pl= [Sﬂ/ le@ L1. Pl \L1|[[S]]/|L2| |IS]]/ le@ L2. Pl

It is defined on a list (while its counterpart MultiSync based on the Sync
operator is defined on a multiset) because the order of appearance of the
ticks matters. However, as long as we keep track of the positions, we can
permute the list. This is summarized by the following theorem.

[permutes {..<|L|}
[€@ permute-list f L. Pl = RenamingTick le@ L. P1l) (permute-list f
v v

384

Bibliography

[1]

B. Ballenghien, S. Taha, and B. Wolff. Hol-cspm - architectural operators
for hol-csp. Archive of Formal Proofs, December 2023. https://isa-afp.
org/entries/HOL-CSPM.html, Formal proof development.

B. Ballenghien, S. Taha, B. Wolff, and L. Ye. Hol-csp version 2.0. Archive
of Formal Proofs, April 2019. https://isa-afp.org/entries/HOL-CSP.
html, Formal proof development.

B. Ballenghien and B. Wolff. Operational semantics formally proven in
hol-csp. Archive of Formal Proofs, December 2023. https://isa-afp.org/
entries/HOL-CSP__OpSem.html, Formal proof development.

B. Ballenghien and B. Wolff. An Operational Semantics in Isabelle/HOL-
CSP. In Y. Bertot, T. Kutsia, and M. Norrish, editors, 15th Interna-
tional Conference on Interactive Theorem Proving (ITP 2024), volume
309 of Leibniz International Proceedings in Informatics (LIPIcs), pages
7:1-7:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl — Leibniz-Zentrum
fiir Informatik.

B. Ballenghien and B. Wolff. Csp semantics over restriction spaces.
Archive of Formal Proofs, May 2025. https://isa-afp.org/entries/
HOL-CSP__RS.html, Formal proof development.

385

https://isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSPM.html
https://isa-afp.org/entries/HOL-CSP.html
https://isa-afp.org/entries/HOL-CSP.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_OpSem.html
https://isa-afp.org/entries/HOL-CSP_RS.html
https://isa-afp.org/entries/HOL-CSP_RS.html

	Introduction
	Motivations
	The Global Architecture of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOL`CSP`_PTick

	Finite Ticks Predicate
	Definitions
	Properties
	Constant Processes
	Other properties

	Laws
	Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ✓(P)
	Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ✓(f)

	Generalization of the Sequential Composition
	Definition
	Preliminaries
	Formal Definition

	Projections

	Generalization of the Synchronization Product
	Trace Interleaving
	Motivation
	Definition
	First Properties
	Lengths
	Trace Prefix Interleaving
	Hiding Events

	Synchronization Product
	Definition
	Projections
	First Properties

	Some Work on Renaming
	Tick Swap Operator
	Preliminaries
	The Operator

	Splitting the Renaming Operator
	Renaming only Events
	Renaming only Ticks
	Properties

	Renaming and Generalized Synchronization Product

	Commutativity and Associativity of Synchronization
	Commutativity
	Motivation
	Formalization
	First Properties
	Commutativity

	Associativity
	Motivation
	Formalization
	First Properties
	Associativity for the Traces
	Associativity

	First Laws
	Behaviour with Constant Processes
	The Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	The Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 STOP
	The Laws of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SKIP

	Associativity of Sequential Composition
	Distributivity of Non-Determinism
	Sequential Composition
	Synchronization Product

	Communications
	Step Laws
	Sequential Composition
	Synchronization Product

	Extended step Laws
	Sequential Composition
	Synchronization Product

	Read and Write Laws
	Sequential Composition
	Synchronization Product

	Operational Semantics Laws
	Behaviour of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 initials
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 TickSwap
	Sequential Composition
	Synchronization Product

	Laws of After
	Sequential Composition
	Synchronization Product

	Small Steps Transitions
	Extension of the After Operator
	Sequential Composition
	Generic Operational Semantics as Locales

	Declensions of the Generalized Synchronization Product
	Interpretations
	Classical Version
	Product Type
	List Type

	Associativities
	Classical Version
	Product Type
	List Type

	Properties
	Actual Generalization
	Other Properties

	Ticks Length and Conversions
	Ticks Length
	Conversions

	First Laws
	Operational Laws
	Classical Version
	Product Type
	List Type

	Architectural Versions
	Sequential Composition
	Definition
	First Properties
	Behaviour with binary version
	Other Properties
	Behaviour with injectivity

	Synchronization Product
	Definition
	First properties
	Properties
	Behaviour with binary version
	Behaviour with injectivity
	Permuting the Sequence

	Events and Ticks
	Preliminaries
	Sequential Composition
	Events
	Ticks

	Synchronization Product
	Events
	Ticks

	Architectural Operators
	Events
	Ticks

	Continuity Rules
	Sequential Composition
	Monotonicity
	Preliminaries
	Continuity

	Synchronization Product
	Monotonicity
	Preliminaries
	Continuity

	Monotonicity Properties
	Sequential Composition
	Multiple Sequential Composition
	Synchronization Product
	Multiple Synchronization Product

	Non Destructiveness Rules
	Synchronization Product
	Refinement
	Non Destructiveness
	Setup

	Other Laws
	Laws of Renaming
	Renaming and Sequential Composition
	Renaming and Synchronization Product

	Laws of Hiding
	Hiding and Sequential Composition
	Hiding and Synchronization Product
	Other Laws of Synchronization Product
	Synchronization Set can be restricted
	Some Refinements

	Deadlock Results
	First Results
	Non Terminating
	Deadlock Free

	Renaming and reference Processes
	Alternative Definitions with restriction fixed-point Operator
	Stronger Results

	Data Independence
	An interesting equivalence
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 STOP and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 SKIP synchronized with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 DF A
	Finally, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 deadlock-free (P Q)

	Conclusion
	Main Entry Point
	Conclusion
	Summary
	Sequential Composition
	Synchronization Product

