
Gray Codes for Arbitrary Numeral Systems

Maximilian Spitz

April 18, 2024

Abstract

The original Gray code after Frank Gray, also known as reflected
binary code (RBC), is an ordering of the binary numeral system such
that two successive values differ only in one bit. We provide a theory
for Gray codes of arbitrary numeral systems, which is a generalisation
of the original idea to an arbitrary base as presented by Sankar et
al. [1]. Contained is the necessary theoretical environment to express
and reason about the respective properties.

Contents
1 An Encoding for Natural Numbers 1

1.1 Validity and Valuation . 2
1.2 Encoding Numbers as Words 2
1.3 Correctness . 3
1.4 Circular Increment Operation 5

2 A Generalised Distance Measure 6
2.1 Distance of Digits . 7
2.2 (Hamming-) Distance between Words 8

3 A non-Boolean Gray code 9
3.1 The Correctness Proof . 9

1 An Encoding for Natural Numbers
theory Encoding-Nat

imports Main
begin

At first, an encoding of naturals as lists of digits with respect to an arbitrary
base b ≥ 2 is introduced because the presented Gray code and its properties
are reasonably expressed in terms of a word representation of numbers.

1

1.1 Validity and Valuation

In the context of a given base, not all possible code words are valid number
representations. A validity predicate is defined, that checks if a code word
is valid and a valuation to obtain the number represented by a valid word.
type-synonym base = nat

type-synonym word = nat list

fun val :: base ⇒ word ⇒ nat where
val b [] = 0
| val b (a#w) = a + b∗val b w

fun valid :: base ⇒ word ⇒ bool where
valid b [] ←→ 2≤b
| valid b (a#w) ←→ a<b ∧ valid b w

Given a base, the value of a valid word is bound by its length.
lemma val-bound:

valid b w =⇒ val b w < b^length(w)
proof (induction w)

case Nil thus ?case by simp
next

case (Cons a w)
hence IH : 1+val b w ≤ b^length(w) by simp
have val b (a#w) < b∗(1+val b w) using Cons.prems by auto
also have ... ≤ b∗b^length(w) using IH mult-le-mono2 by blast
also have ... = b^length(a#w) by simp
finally show ?case by blast

qed

lemma valid-base:
valid b w =⇒ 2≤b
by (induction w) auto

1.2 Encoding Numbers as Words

It was stated that not all code words are valid. Similarly, numbers do not
have a unique word representation in general. Therefore, it is reasonable
to normalise representations with respect to either value or word length. A
normal representation w.r.t. value is without leading zeroes. However, if
the word length is fixed, numbers can be represented only up to an upper
bound. Note that this bound is stated above.
fun enc :: base ⇒ nat ⇒ word where

enc - 0 = []
| enc b n = (if 2≤b then n mod b#enc b (n div b) else undefined)

2

fun enc-len :: base ⇒ nat ⇒ nat where
enc-len - 0 = 0
| enc-len b n = (if 2≤b then Suc(enc-len b (n div b)) else undefined)

fun lenc :: nat ⇒ base ⇒ nat ⇒ word where
lenc 0 - - = []
| lenc (Suc k) b n = n mod b#lenc k b (n div b)

definition normal :: base ⇒ word ⇒ bool where
normal b w ≡ enc-len b (val b w) = length w

1.3 Correctness

Now, the expected properties of above definitions are proven as well as that
they interact correctly.
lemma length-enc:

2≤b =⇒ length (enc b n) = enc-len b n
by (induction b n rule: enc-len.induct) auto

lemma length-lenc:
length (lenc k b n) = k
by (induction k arbitrary: n) auto

lemma val-correct:
valid b w =⇒ lenc (length w) b (val b w) = w
by (induction w) auto

lemma val-enc:
2≤b =⇒ val b (enc b n) = n
by (induction b n rule: enc.induct) auto

lemma val-lenc:
val b (lenc k b n) = n mod b^k
apply (induction k arbitrary: n)
by (auto simp add: mod-mult2-eq)

lemma valid-enc:
2≤b =⇒ valid b (enc b n)
by (induction b n rule: enc.induct) auto

lemma valid-lenc:
2≤b =⇒ valid b (lenc k b n)
by (induction k arbitrary: n) auto

lemma encodings-agree:
2≤b =⇒ lenc (enc-len b n) b n = enc b n
by (metis length-enc val-correct val-enc valid-enc)

lemma inj-enc:

3

2≤b =⇒ inj (enc b)
by (metis val-enc injI)

lemma inj-lenc:
inj-on (lenc k b) {..<b^k}

proof (rule inj-on-inverseI)
fix n :: nat
assume n ∈ {..<b^k}
thus val b (lenc k b n) = n by (simp add: val-lenc)

qed

lemma normal-enc:
2≤b =⇒ normal b (enc b n)
by (simp add: length-enc normal-def val-enc)

lemma normal-eq:
[[valid b v; valid b w; normal b v; normal b w; val b v = val b w]] =⇒ v = w
by (metis normal-def val-correct)

lemma inj-val:
inj-on (val b) {w. valid b w ∧ normal b w}

proof (rule inj-onI)
fix u v :: word
assume 1 : val b u = val b v
assume u ∈ {w. valid b w ∧ normal b w}

and v ∈ {w. valid b w ∧ normal b w}
hence valid b u ∧ normal b u ∧ valid b v ∧ normal b v by blast
with 1 show u = v using normal-eq by blast

qed

lemma enc-val:
[[valid b w; normal b w]] =⇒ enc b (val b w) = w
by (metis encodings-agree normal-def val-correct valid-base)

lemma range-enc:
2≤b =⇒ range (enc b) = {w. valid b w ∧ normal b w}

proof
show 2≤b =⇒ range (enc b) ⊆ {w. valid b w ∧ normal b w}

by (simp add: image-subsetI normal-enc valid-enc)
next

assume 2≤b
show {w. valid b w ∧ normal b w} ⊆ range (enc b)
proof

fix v :: word
assume v ∈ {w. valid b w ∧ normal b w}
hence valid b v ∧ normal b v by blast
hence enc b (val b v) = v by (simp add: enc-val)
thus v ∈ range (enc b) by (metis rangeI)

qed

4

qed

lemma range-lenc:
2≤b =⇒ lenc k b ‘ {..<b ^ k} = {w. valid b w ∧ length w = k}

proof
show 2 ≤ b =⇒ lenc k b ‘ {..<b ^ k} ⊆ {w. valid b w ∧ length w = k}

by (simp add: image-subsetI length-lenc valid-lenc)
next

assume 2≤b
show {w. valid b w ∧ length w = k} ⊆ lenc k b ‘ {..<b ^ k}
proof

fix v :: word
let ?v = val b v
assume v ∈ {w. valid b w ∧ length w = k}
hence 1 : valid b v ∧ length v = k by blast
hence ?v < b^k using val-bound by blast
hence ?v ∈ {..<b^k} by blast
from 1 have lenc k b ?v = v using val-correct by blast
thus v ∈ lenc k b ‘ {..<b ^ k} by (metis ‹?v ∈ {..<b^k}› image-eqI)

qed
qed

theorem enc-correct:
2≤b =⇒ bij-betw (enc b) UNIV {w. valid b w ∧ normal b w}
by (simp add: bij-betw-def inj-enc range-enc)

Given a valid base b and length k, we encode exactly the first bk numbers.
theorem lenc-correct:

2≤b =⇒ bij-betw (lenc k b) {..<b^k} {w. valid b w ∧ length w = k}
by (simp add: bij-betw-def inj-lenc range-lenc)

1.4 Circular Increment Operation

It is beneficial for our purpose to have an increment operation on words
of fixed length that wraps around. Mathematically, this corresponds to
adding 1 in the additive group of the factor ring of the integers modulo (bk).
Correctness is proven in terms of previously verified operations.
fun inc :: nat ⇒ word ⇒ word where

inc - [] = []
| inc b (a#w) = Suc a mod b#(if Suc a 6= b then w else inc b w)

lemma length-inc:
length (inc b w) = length w
by (induction w) auto

lemma valid-inc:
valid b w =⇒ valid b (inc b w)
by (induction w) auto

5

Note that the following fact shows that we do not only have an encoding in
the sense that it is a bijection but we also preserve a certain structure, that
is necessary for the purpose of reasoning about Gray codes.
theorem val-inc:

valid b w =⇒ val b (inc b w) = Suc (val b w) mod b^length(w)
proof (induction w)

case Nil thus ?case by simp
next

case (Cons a w)
hence IH : val b (inc b w) = Suc(val b w) mod b^length(w) by simp
show ?case
proof cases

assume 1 : Suc a = b
hence val b (inc b (a#w)) = b∗val b (inc b w) by simp
also have ... = b∗(Suc(val b w) mod b^length w) using IH by simp
also have ... = b∗Suc(val b w) mod (b∗b^length w) using mult-mod-right by

blast
also have ... = (Suc a + b∗val b w) mod (b^length(a#w)) by (simp add: 1)
also have ... = Suc(val b (a # w)) mod (b^length(a#w)) by simp
finally show ?thesis by blast

next
let ?v = Suc a + b∗val b w
assume 2 : Suc a 6= b
with Cons.prems have valid b (inc b (a#w)) by simp
hence val b (inc b (a#w)) < b^length(inc b (a#w)) using val-bound by blast
hence val b (inc b (a#w)) < b^length(a#w) using length-inc by metis
hence ?v < b^length(a#w) using 2 Cons.prems by simp
hence ?v = ?v mod b^length(a#w) by simp
thus ?thesis using 2 Cons.prems by auto

qed
qed

lemma inc-correct:
inc b (lenc k b n) = lenc k b (Suc n)
apply (induction k arbitrary: n)
by (auto simp add: div-Suc mod-Suc)

lemma inc-not-eq: valid b w =⇒ (inc b w = w) = (w = [])
by (induction w) auto

end

2 A Generalised Distance Measure
theory Code-Word-Dist

imports Encoding-Nat
begin

6

In the case of the reflected binary code (RBC) it is sufficient to use the Ham-
ming distance to express the property, because there are only two distinct
digits so that one bitflip naturally always corresponds to a distance of 1.

2.1 Distance of Digits

We can interpret a bitflip as an increment modulo 2, which is why for the
distance of digits it appears as a natural generalisation to choose the amount
of required increments. Mathematically, the distance d(x, y) should be y−x
(mod b). For example we have d(0, 1) = d(1, 0) = 1 in the binary numeral
system.
definition dist1 :: base ⇒ nat ⇒ nat ⇒ nat where

dist1 b x y ≡ if x≤y then y−x else b+y−x

Note that the distance of digits is in general asymmetric, so that it is in
paticular not a metric. However, this is not an issue and in fact the most
appropriate generalisation, partly due to the next lemma:
lemma dist1-eq:
[[x < b; y < b; dist1 b x y = 0]] =⇒ x = y
by (auto simp add: dist1-def split: if-splits)

lemma dist1-0 :
dist1 b x x = 0
by (auto simp add: dist1-def)

lemma dist1-ge1 :
[[x < b; y < b; x 6=y]] =⇒ dist1 b x y ≥ 1
using dist1-eq by fastforce

lemma dist1-elim-1 :
[[x < b; y < b]] =⇒ (dist1 b x y + x) mod b = y
by (auto simp add: dist1-def)

lemma dist1-elim-2 :
[[x < b; y < b]] =⇒ dist1 b x (x+y) = y
by (auto simp add: dist1-def)

lemma dist1-mod-Suc:
[[x < b; y < b]] =⇒ dist1 b x (Suc y mod b) = Suc (dist1 b x y) mod b
by (auto simp add: dist1-def mod-Suc)

lemma dist1-Suc:
[[2 ≤ b; x < b]] =⇒ dist1 b x (Suc x mod b) = 1
by (simp add: dist1-0 dist1-mod-Suc)

lemma dist1-asym:
[[x < b; y < b]] =⇒ (dist1 b x y + dist1 b y x) mod b = 0

7

by (auto simp add: dist1-def)

lemma dist1-valid:
[[x < b; y < b]] =⇒ dist1 b x y < b
by (auto simp add: dist1-def)

lemma dist1-distr :
[[x < b; y < b; z < b]] =⇒ dist1 b (dist1 b x y) (dist1 b x z) = dist1 b y z
by (auto simp add: dist1-def)

lemma dist1-distr2 :
[[x < b; y < b; z < b]] =⇒ dist1 b (dist1 b x z) (dist1 b y z) = dist1 b y x
by (auto simp add: dist1-def)

2.2 (Hamming-) Distance between Words

The total distance between two words of equal length is then defined as
the sum of component-wise distances. Note that the Hamming distance is
equivalent to this definition for b = 2 and is in general a lower bound.
fun hamming :: word ⇒ word ⇒ nat where

hamming [] [] = 0
| hamming (a#v) (b#w) = (if a 6=b then 1 else 0) + hamming v w

The Hamming distance is only defined in the case of equal word length. In
the following definition of a distance we assume leading zeroes if the word
length is not equal:
fun dist :: base ⇒ word ⇒ word ⇒ nat where

dist - [] [] = 0
| dist b (x#xs) [] = dist1 b x 0 + dist b xs []
| dist b [] (y#ys) = dist1 b 0 y + dist b [] ys
| dist b (x#xs) (y#ys) = dist1 b x y + dist b xs ys

lemma dist-0 :
dist b w w = 0
apply (induction w)
by (auto simp add: dist1-0)

lemma dist-eq:
[[valid b v; valid b w; length v=length w; dist b v w = 0]] =⇒ v = w
apply (induction b v w rule: dist.induct)
by (auto simp add: dist1-eq)

lemma dist-posd:
[[valid b v; valid b w; length v=length w]] =⇒ (dist b v w = 0) = (v = w)
using dist-0 dist-eq by auto

lemma hamming-posd:

8

length v=length w =⇒ (hamming v w = 0) = (v = w)
by (induction v w rule: hamming.induct) auto

lemma hamming-symm:
length v=length w =⇒ hamming v w = hamming w v
by (induction v w rule: hamming.induct) auto

theorem hamming-dist:
[[valid b v; valid b w; length v=length w]] =⇒ hamming v w ≤ dist b v w
apply (induction b v w rule: dist.induct)

apply auto
using dist1-ge1 by fastforce

end

3 A non-Boolean Gray code
theory Non-Boolean-Gray

imports Code-Word-Dist
begin

The function presented below transforms a code word into a gray code and
the corresponding decode function is exactly its inverse. The key idea is to
shift down a digit by the prefix sum of gray digits. A crucial property is the
behavior of this prefix sum under increment as stated below.
fun to-gray :: base ⇒ word ⇒ word where

to-gray - [] = []
| to-gray b (a#v) = (let g=to-gray b v in dist1 b (sum-list g mod b) a#g)

fun decode :: base ⇒ word ⇒ word where
decode - [] = []
| decode b (g#c) = (g+sum-list c mod b) mod b#decode b c

3.1 The Correctness Proof

The proof of all properties that are necessary for a gray code is presented
below. Also, some auxiliary lemmas are required:
lemma length-gray:

length (to-gray b w) = length w
apply (induction w)
by (auto simp add: Let-def)

lemma valid-gray:
valid b w =⇒ valid b (to-gray b w)
apply (induction w)
by (auto simp add: dist1-valid Let-def)

The sum of grays is congruent to the value (mod b):

9

lemma prefix-sum:
valid b w =⇒ sum-list (to-gray b w) mod b = val b w mod b

proof (induction w)
case Nil thus ?case by simp

next
case (Cons a w)
hence IH : sum-list (to-gray b w) mod b = val b w mod b by simp
let ?s = sum-list (to-gray b w)
let ?v = val b w mod b
have (dist1 b ?v a + ?s) mod b = (dist1 b ?v a + ?s mod b) mod b by presburger
also have ... = (dist1 b ?v a + ?v) mod b using IH by argo
also have ... = a using Cons.prems dist1-elim-1 by simp
finally show ?case using Cons by auto

qed

lemma decode-correct:
valid b w =⇒ decode b (to-gray b w) = w
apply (induction w)
by (auto simp add: Let-def dist1-elim-1)

The following theorem states that the transformation to gray is an encoding
of the valid code words:
theorem gray-encoding:

inj-on (to-gray b) {w. valid b w}
proof (rule inj-on-inverseI)

fix w :: word
assume w ∈ {w. valid b w}
hence valid b w by blast
thus decode b (to-gray b w) = w using decode-correct by simp

qed

lemma mod-mod-aux: 1 ≤ k =⇒ (a::nat) mod b^k mod b = a mod b
by (simp add: mod-mod-cancel)

lemma gray-dist:
valid b w =⇒ dist b (to-gray b w) (to-gray b (inc b w)) ≤ 1

proof (induction w)
case Nil thus ?case by simp

next
case (Cons a w)
have valid b w using Cons.prems by simp
hence 2 ≤ b using valid-base by auto
hence 0 < b by simp
have IH : dist b (to-gray b w) (to-gray b (inc b w)) ≤ 1

using ‹valid b w› Cons.IH by blast
have a < b using Cons.prems by simp
show ?case
proof (cases w)

case Nil thus ?thesis

10

using dist1-distr dist1-Suc ‹a < b› ‹2 ≤ b› by simp
next

case (Cons a ′ ds ′)
hence 1≤length(w) by simp
let ?a = if Suc a 6=b then w else inc b w
let ?g = sum-list (to-gray b w) mod b
let ?h = sum-list (to-gray b ?a) mod b
let ?v = val b w mod b
let ?u = val b ?a mod b
let ?l = dist b (to-gray b (a#w)) (to-gray b (inc b (a#w)))
have valid b ?a using ‹valid b w› valid-inc by simp
have ?l = dist1 b (dist1 b ?g a) (dist1 b ?h (Suc a mod b))

+ dist b (to-gray b w) (to-gray b ?a)
by (metis Encoding-Nat.inc.simps(2) dist.simps(4) to-gray.simps(2))

also have ... = Suc (dist1 b (dist1 b ?g a) (dist1 b ?h a)) mod b
+ dist b (to-gray b w) (to-gray b ?a)

using ‹a < b› dist1-mod-Suc dist1-valid by simp
also have ... = Suc (dist1 b ?h ?g) mod b

+ dist b (to-gray b w) (to-gray b ?a)
using ‹a < b› dist1-distr2 by simp

also have ... = Suc (dist1 b ?h ?v) mod b
+ dist b (to-gray b w) (to-gray b ?a)

using ‹valid b w› prefix-sum by simp
also have ... = Suc (dist1 b ?u ?v) mod b

+ dist b (to-gray b w) (to-gray b ?a)
using ‹valid b ?a› prefix-sum by simp

also have ... = (
if Suc a 6= b then Suc 0 mod b
else Suc (dist1 b (val b (inc b w) mod b) ?v) mod b

+ dist b (to-gray b w) (to-gray b (inc b w)))
using dist-0 dist1-0 by simp

also have ... = (
if Suc a 6= b then Suc 0 mod b
else Suc (dist1 b (Suc (val b w) mod b^length(w) mod b) ?v) mod b

+ dist b (to-gray b w) (to-gray b (inc b w)))
using ‹valid b w› valid-inc val-inc by simp

also have ... = (
if Suc a 6= b then Suc 0 mod b
else Suc (dist1 b (Suc (val b w) mod b) ?v) mod b

+ dist b (to-gray b w) (to-gray b (inc b w)))
using ‹1≤length(w)› mod-mod-aux by simp

also have ... = (
if Suc a 6= b then Suc 0 mod b
else dist1 b (Suc (val b w) mod b) (Suc ?v mod b)

+ dist b (to-gray b w) (to-gray b (inc b w)))
using dist1-mod-Suc by auto

also have ... = (
if Suc a 6= b then Suc 0 mod b
else dist1 b (Suc ?v mod b) (Suc ?v mod b)

11

+ dist b (to-gray b w) (to-gray b (inc b w)))
using mod-Suc-eq by presburger

also have ... = (
if Suc a 6= b then Suc 0 mod b
else dist b (to-gray b w) (to-gray b (inc b w)))

using dist1-0 by simp
also have ... ≤ 1 using IH by simp
finally show ?thesis by blast

qed
qed

lemmas gray-simps = decode-correct dist-posd inc-not-eq length-gray length-inc
valid-gray valid-inc

lemma gray-empty:
valid b w =⇒ (dist b (to-gray b w) (to-gray b (inc b w)) = 0) = (w = [])
by (metis gray-simps)

The central theorem states, that it requires exactly one increment operation
of one place within the word to go from the gray encoding of a number to the
gray encoding of its successor. Note also, that we obtain a cyclic gray code
in all cases, because the increment operation wraps the last number around
to zero. Only the pathological case of an empty word has to be excluded.
theorem gray-correct:
[[valid b w; w 6= []]] =⇒ dist b (to-gray b w) (to-gray b (inc b w)) = 1

proof (rule ccontr)
assume a: dist b (to-gray b w) (to-gray b (inc b w)) 6= 1
assume valid b w and w 6= []
hence dist b (to-gray b w) (to-gray b (inc b w)) 6= 0 using gray-empty by blast
with a have dist b (to-gray b w) (to-gray b (inc b w)) > 1 by simp
thus False using ‹valid b w› gray-dist by fastforce

qed

lemmas hamming-simps = gray-dist hamming-dist le-trans length-gray length-inc
valid-gray valid-inc

theorem gray-hamming: valid b w =⇒ hamming (to-gray b w) (to-gray b (inc b
w)) ≤ 1

by (metis hamming-simps)

end

References

[1] K. Sankar, V. Pandharipande, and P. Moharir. Generalized gray codes.
In Proceedings of 2004 International Symposium on Intelligent Signal

12

Processing and Communication Systems. ISPACS 2004., pages 654–659,
2004. https://doi.org/10.1109/ISPACS.2004.1439140.

13

https://doi.org/10.1109/ISPACS.2004.1439140

	An Encoding for Natural Numbers
	Validity and Valuation
	Encoding Numbers as Words
	Correctness
	Circular Increment Operation

	A Generalised Distance Measure
	Distance of Digits
	(Hamming-) Distance between Words

	A non-Boolean Gray code
	The Correctness Proof

