Gray Codes for Arbitrary Numeral Systems

Maximilian Spitz

April 18, 2024

Abstract

The original Gray code after Frank Gray, also known as reflected binary code (RBC), is an ordering of the binary numeral system such that two successive values differ only in one bit. We provide a theory for Gray codes of arbitrary numeral systems, which is a generalisation of the original idea to an arbitrary base as presented by Sankar et al. [1]. Contained is the necessary theoretical environment to express and reason about the respective properties.

Contents

1 An Encoding for Natural Numbers 1
1.1 Validity and Valuation 2
1.2 Encoding Numbers as Words 2
1.3 Correctness 3
1.4 Circular Increment Operation 5
2 A Generalised Distance Measure 6
2.1 Distance of Digits 7
2.2 (Hamming-) Distance between Words 8
3 A non-Boolean Gray code 9
3.1 The Correctness Proof 9

1 An Encoding for Natural Numbers

```
theory Encoding-Nat
    imports Main
begin
```

At first, an encoding of naturals as lists of digits with respect to an arbitrary base $b \geq 2$ is introduced because the presented Gray code and its properties are reasonably expressed in terms of a word representation of numbers.

1.1 Validity and Valuation

In the context of a given base, not all possible code words are valid number representations. A validity predicate is defined, that checks if a code word is valid and a valuation to obtain the number represented by a valid word.

```
type-synonym base \(=\) nat
type-synonym word \(=\) nat list
fun val \(::\) base \(\Rightarrow\) word \(\Rightarrow\) nat where
    val \(b\) [] = 0
\(\mid\) val \(b(a \# w)=a+b * v a l b w\)
fun valid \(::\) base \(\Rightarrow\) word \(\Rightarrow\) bool where
    valid \(b[] \longleftrightarrow 2 \leq b\)
\(\mid\) valid \(b(a \# w) \longleftrightarrow a<b \wedge\) valid \(b w\)
```

Given a base, the value of a valid word is bound by its length.

```
lemma val-bound:
    valid b w\Longrightarrow val b w< b^length( }w
proof (induction w)
    case Nil thus ?case by simp
next
    case (Cons a w)
    hence IH: 1+val b w\leq b`length( }w)\mathrm{ by simp
    have val b (a#w)<b*(1+val b w) using Cons.prems by auto
    also have ... \leqb*b`length(w) using IH mult-le-mono2 by blast
    also have ... = b length (a#w) by simp
    finally show ?case by blast
qed
lemma valid-base:
    valid b w\Longrightarrow2\leqb
    by (induction w) auto
```


1.2 Encoding Numbers as Words

It was stated that not all code words are valid. Similarly, numbers do not have a unique word representation in general. Therefore, it is reasonable to normalise representations with respect to either value or word length. A normal representation w.r.t. value is without leading zeroes. However, if the word length is fixed, numbers can be represented only up to an upper bound. Note that this bound is stated above.

```
fun enc :: base \(\Rightarrow\) nat \(\Rightarrow\) word where
    enc-0 \(=[]\)
\(\mid\) enc \(b n=(\) if \(2 \leq b\) then \(n \bmod b \# e n c b(n\) div \(b)\) else undefined \()\)
```

fun enc-len :: base \Rightarrow nat \Rightarrow nat where

$$
\text { enc-len }-0=0
$$

| enc-len $b n=($ if $2 \leq b$ then $\operatorname{Suc}(e n c-l e n b(n$ div $b))$ else undefined $)$
fun lenc :: nat \Rightarrow base \Rightarrow nat \Rightarrow word where
lenc $0-$ - = []
\mid lenc (Suc k) bn=n mod b\#lenc $k b(n$ div $b)$
definition normal $::$ base \Rightarrow word \Rightarrow bool where normal $b w \equiv$ enc-len $b($ val $b w)=$ length w

1.3 Correctness

Now, the expected properties of above definitions are proven as well as that they interact correctly.

```
lemma length-enc:
    \(2 \leq b \Longrightarrow\) length (enc \(b n)=\) enc-len \(b n\)
    by (induction \(b n\) rule: enc-len.induct) auto
lemma length-lenc:
    length (lenc \(k\) b \(n\) ) \(=k\)
    by (induction \(k\) arbitrary: n) auto
lemma val-correct:
    valid \(b w \Longrightarrow\) lenc (length \(w) b(\operatorname{val} b w)=w\)
    by (induction \(w\) ) auto
lemma val-enc:
    \(2 \leq b \Longrightarrow \operatorname{val} b(\) enc \(b n)=n\)
    by (induction \(b\) n rule: enc.induct) auto
lemma val-lenc:
    val \(b(\) lenc \(k b n)=n \bmod b \uparrow k\)
    apply (induction \(k\) arbitrary: n)
    by (auto simp add: mod-mult2-eq)
lemma valid-enc:
    \(2 \leq b \Longrightarrow\) valid \(b\) (enc \(b n\) )
    by (induction \(b\) n rule: enc.induct) auto
lemma valid-lenc:
    \(2 \leq b \Longrightarrow\) valid \(b\) (lenc \(k b n\) )
    by (induction \(k\) arbitrary: \(n\) ) auto
lemma encodings-agree:
    \(2 \leq b \Longrightarrow\) lenc \((e n c\)-len \(b n) b n=e n c b n\)
    by (metis length-enc val-correct val-enc valid-enc)
lemma inj-enc:
```

```
    2\leqb\Longrightarrowinj (enc b)
    by (metis val-enc injI)
lemma inj-lenc:
    inj-on (lenc k b) {..<b^k}
proof (rule inj-on-inverseI)
    fix n :: nat
    assume n \in{..<b^k}
    thus val b (lenc k b n) = n by (simp add: val-lenc)
qed
lemma normal-enc:
    2\leqb\Longrightarrow normal b (enc b n)
    by (simp add: length-enc normal-def val-enc)
lemma normal-eq:
    \llbracketvalid b v; valid b w; normal b v; normal b w; val b v=val b w\rrbracket\Longrightarrowv=w
    by (metis normal-def val-correct)
lemma inj-val:
    inj-on (val b) {w. valid b w^ normal b w}
proof (rule inj-onI)
    fix u v :: word
    assume 1: val b u=val b v
    assume }u\in{w.valid b w^ normal b w
        and}v\in{w.valid b w^ normal b w
    hence valid b u ^ normal b u ^ valid b v ^ normal b v by blast
    with 1 show }u=v\mathrm{ using normal-eq by blast
qed
lemma enc-val:
    \llbracketvalid b w; normal b w\rrbracket\Longrightarrow enc b (val b w)=w
    by (metis encodings-agree normal-def val-correct valid-base)
lemma range-enc:
    2\leqb\Longrightarrowrange (enc b)={w.valid b w^ normal b w}
proof
    show 2\leqb\Longrightarrow range (enc b)\subseteq{w. valid b w^ normal b w}
        by (simp add: image-subsetI normal-enc valid-enc)
next
    assume 2\leqb
    show {w.valid b w^ normal b w}\subseteq range (enc b)
    proof
    fix v :: word
    assume v}\in{w.valid b w^ normal b w
    hence valid b v\wedge normal b v by blast
    hence enc b (val b v)=v by (simp add: enc-val)
    thus v\in range (enc b) by (metis rangeI)
    qed
```


qed

```
lemma range-lenc:
    \(2 \leq b \Longrightarrow\) lenc \(k b^{\prime}\left\{. .<b^{\wedge} k\right\}=\{w\). valid \(b w \wedge\) length \(w=k\}\)
proof
    show \(2 \leq b \Longrightarrow\) lenc \(k b\) ' \(\left\{. .<b^{\wedge} k\right\} \subseteq\{w\). valid \(b w \wedge\) length \(w=k\}\)
        by (simp add: image-subsetI length-lenc valid-lenc)
next
    assume \(2 \leq b\)
    show \(\{w\). valid \(b w \wedge\) length \(w=k\} \subseteq\) lenc \(k b{ }^{\prime}\left\{. .<b^{\wedge} k\right\}\)
    proof
        fix \(v::\) word
        let \(? v=\) val \(b v\)
        assume \(v \in\{w\). valid \(b w \wedge\) length \(w=k\}\)
        hence 1 : valid \(b v \wedge\) length \(v=k\) by blast
        hence ?v<b^k using val-bound by blast
        hence \(? v \in\left\{. .<b^{\wedge} k\right\}\) by blast
        from 1 have lenc \(k b ? v=v\) using val-correct by blast
        thus \(v \in\) lenc \(k b ‘\left\{. .<b^{\wedge} k\right\}\) by (metis \(\left\langle ? v \in\left\{. .<b^{\wedge} k\right\}\right\rangle\) image-eqI)
    qed
qed
```

theorem enc-correct:
$2 \leq b \Longrightarrow$ bij-betw (enc b) UNIV \{ w. valid $b w \wedge$ normal $b w\}$
by (simp add: bij-betw-def inj-enc range-enc)

Given a valid base b and length k, we encode exactly the first b^{k} numbers.

```
theorem lenc-correct:
```

 \(2 \leq b \Longrightarrow b i j\)-betw (lenc \(k b)\left\{. .<b^{\wedge} k\right\}\{w\). valid \(b w \wedge\) length \(w=k\}\)
 by (simp add: bij-betw-def inj-lenc range-lenc)

1.4 Circular Increment Operation

It is beneficial for our purpose to have an increment operation on words of fixed length that wraps around. Mathematically, this corresponds to adding 1 in the additive group of the factor ring of the integers modulo $\left(b^{k}\right)$. Correctness is proven in terms of previously verified operations.

```
fun inc \(::\) nat \(\Rightarrow\) word \(\Rightarrow\) word where
    inc - [] = []
\(\mid\) inc \(b(a \# w)=\) Suc a mod \(b \#(\) if Suc \(a \neq b\) then \(w\) else inc \(b w)\)
lemma length-inc:
    length (inc \(b w)=\) length \(w\)
    by (induction w) auto
lemma valid-inc:
    valid \(b w \Longrightarrow\) valid \(b\) (inc \(b w)\)
    by (induction \(w\) ) auto
```

Note that the following fact shows that we do not only have an encoding in the sense that it is a bijection but we also preserve a certain structure, that is necessary for the purpose of reasoning about Gray codes.

```
theorem val-inc:
    valid \(b w \Longrightarrow \operatorname{val} b(\) inc \(b w)=S u c(v a l b w) \bmod b ` l e n g t h(w)\)
proof (induction w)
    case Nil thus ?case by simp
next
    case (Cons a w)
    hence \(I H\) : val \(b(\) inc \(b w)=S u c(v a l b w) \bmod b \uparrow l e n g t h(w)\) by \(\operatorname{simp}\)
    show ?case
    proof cases
        assume 1: Suc \(a=b\)
        hence val \(b(\) inc \(b(a \# w))=b *\) val \(b(\) inc \(b w)\) by simp
        also have \(\ldots=b *(S u c(\) val \(b w) \bmod b \wedge\) length \(w)\) using \(I H\) by simp
        also have \(\ldots=b * S u c(v a l b w) \bmod (b * b\) `length \(w\) ) using mult-mod-right by
blast
        also have \(\ldots=(\) Suc \(a+b * v a l b w) \bmod (b \uparrow l e n g t h(a \# w))\) by \((\operatorname{simp}\) add: 1\()\)
        also have \(\ldots=\operatorname{Suc}(\operatorname{val} b(a \# w)) \bmod \left(b^{\wedge} \operatorname{length}(a \# w)\right)\) by \(\operatorname{simp}\)
        finally show? ?hesis by blast
    next
        let \(? v=S u c a+b * v a l b w\)
        assume 2: Suc \(a \neq b\)
        with Cons.prems have valid \(b\) (inc \(b(a \# w)\) ) by simp
        hence val \(b(\) inc \(b(a \# w))<b^{\wedge}\) length(inc \(\left.b(a \# w)\right)\) using val-bound by blast
    hence val \(b\) (inc \(b(a \# w))<b\) length \((a \# w)\) using length-inc by metis
    hence ? \(v<b\) length \((a \# w)\) using 2 Cons.prems by simp
    hence \(? v=\) ?v mod \(b^{\wedge}\) length \((a \# w)\) by simp
    thus ?thesis using 2 Cons.prems by auto
    qed
qed
lemma inc-correct:
    inc \(b\) (lenc \(k b n)=\) lenc \(k b(\) Suc \(n)\)
    apply (induction \(k\) arbitrary: \(n\) )
    by (auto simp add: div-Suc mod-Suc)
lemma inc-not-eq: valid b \(w \Longrightarrow(\) inc \(b w=w)=(w=[])\)
    by (induction \(w\) ) auto
end
```


2 A Generalised Distance Measure

theory Code-Word-Dist
imports Encoding-Nat
begin

In the case of the reflected binary code (RBC) it is sufficient to use the Hamming distance to express the property, because there are only two distinct digits so that one bitflip naturally always corresponds to a distance of 1 .

2.1 Distance of Digits

We can interpret a bitflip as an increment modulo 2 , which is why for the distance of digits it appears as a natural generalisation to choose the amount of required increments. Mathematically, the distance $d(x, y)$ should be $y-x$ $(\bmod b)$. For example we have $d(0,1)=d(1,0)=1$ in the binary numeral system.
definition dist1 $::$ base \Rightarrow nat \Rightarrow nat \Rightarrow nat where
dist1 $b x y \equiv$ if $x \leq y$ then $y-x$ else $b+y-x$
Note that the distance of digits is in general asymmetric, so that it is in paticular not a metric. However, this is not an issue and in fact the most appropriate generalisation, partly due to the next lemma:

```
lemma dist1-eq:
    \(\llbracket x<b ; y<b ;\) dist1 \(b x y=0 \rrbracket \Longrightarrow x=y\)
    by (auto simp add: dist1-def split: if-splits)
lemma dist1-0:
    dist1 \(b x x=0\)
    by (auto simp add: dist1-def)
lemma dist1-ge1:
    \(\llbracket x<b ; y<b ; x \neq y \rrbracket \Longrightarrow\) dist1 \(b x y \geq 1\)
    using dist1-eq by fastforce
lemma dist1-elim-1:
    \(\llbracket x<b ; y<b \rrbracket \Longrightarrow(\) dist1 \(b x y+x) \bmod b=y\)
    by (auto simp add: dist1-def)
lemma dist1-elim-2:
    \(\llbracket x<b ; y<b \rrbracket \Longrightarrow\) dist1 \(b x(x+y)=y\)
    by (auto simp add: dist1-def)
lemma dist1-mod-Suc:
    \(\llbracket x<b ; y<b \rrbracket \Longrightarrow\) dist1 \(b x(\) Suc \(y \bmod b)=S u c(d i s t 1 b x y) \bmod b\)
    by (auto simp add: dist1-def mod-Suc)
lemma dist1-Suc
    \(\llbracket 2 \leq b ; x<b \rrbracket \Longrightarrow\) dist1 \(b x(\) Suc \(x \bmod b)=1\)
    by (simp add: dist1-0 dist1-mod-Suc)
lemma dist1-asym:
    \(\llbracket x<b ; y<b \rrbracket \Longrightarrow(\) dist1 \(b x y+d i s t 1 b y x) \bmod b=0\)
```

by (auto simp add: dist1-def)
lemma dist1-valid:
$\llbracket x<b ; y<b \rrbracket \Longrightarrow$ dist1 $b x y<b$
by (auto simp add: dist1-def)
lemma dist1-distr:
$\llbracket x<b ; y<b ; z<b \rrbracket \Longrightarrow$ dist1 $b($ dist1 $b x y)($ dist1 $b x z)=$ dist1 $b y z$
by (auto simp add: dist1-def)
lemma dist1-distr2:
$\llbracket x<b ; y<b ; z<b \rrbracket \Longrightarrow$ dist1 $b($ dist1 $b x z)($ dist1 $b y z)=\operatorname{dist1} b y x$
by (auto simp add: dist1-def)

2.2 (Hamming-) Distance between Words

The total distance between two words of equal length is then defined as the sum of component-wise distances. Note that the Hamming distance is equivalent to this definition for $b=2$ and is in general a lower bound.

```
fun hamming \(::\) word \(\Rightarrow\) word \(\Rightarrow\) nat where
    hamming [] [] = 0
\(\mid\) hamming \((a \# v)(b \# w)=(\) if \(a \neq b\) then 1 else 0\()+\) hamming \(v w\)
```

The Hamming distance is only defined in the case of equal word length. In the following definition of a distance we assume leading zeroes if the word length is not equal:

```
fun dist \(::\) base \(\Rightarrow\) word \(\Rightarrow\) word \(\Rightarrow\) nat where
    dist - [] [] = 0
\(\mid\) dist \(b(x \# x s)[]=\) dist1 \(b x 0+\) dist \(b x s[]\)
\(\mid\) dist \(b[](y \# y s)=\operatorname{dist1} b 0 y+\operatorname{dist} b[] y s\)
\(\mid\) dist \(b(x \# x s)(y \# y s)=\) dist1 \(b x y+d i s t b x s y s\)
```

lemma dist-0:
dist $b w w=0$
apply (induction w)
by (auto simp add: dist1-0)

lemma dist-eq:

$\llbracket v a l i d b v ;$ valid $b w$; length $v=$ length w; dist $b v w=0 \rrbracket \Longrightarrow v=w$ apply (induction $b v w$ rule: dist.induct)
by (auto simp add: dist1-eq)
lemma dist-posd:
$\llbracket v a l i d b v ;$ valid $b w$; length $v=$ length $w \rrbracket \Longrightarrow($ dist $b v w=0)=(v=w)$
using dist-0 dist-eq by auto
lemma hamming-posd:

```
    length \(v=\) length \(w \Longrightarrow(\) hamming \(v w=0)=(v=w)\)
    by (induction \(v\) w rule: hamming.induct) auto
lemma hamming-symm:
    length \(v=\) length \(w \Longrightarrow\) hamming \(v w=\) hamming \(w v\)
    by (induction \(v\) w rule: hamming.induct) auto
theorem hamming-dist:
    \(\llbracket v a l i d b v\); valid \(b w\); length \(v=\) length \(w \rrbracket \Longrightarrow\) hamming \(v w \leq\) dist \(b v w\)
    apply (induction \(b v w\) rule: dist.induct)
        apply auto
    using dist1-ge1 by fastforce
end
```


3 A non-Boolean Gray code

theory Non-Boolean-Gray
imports Code-Word-Dist
begin

The function presented below transforms a code word into a gray code and the corresponding decode function is exactly its inverse. The key idea is to shift down a digit by the prefix sum of gray digits. A crucial property is the behavior of this prefix sum under increment as stated below.

```
fun to-gray :: base \(\Rightarrow\) word \(\Rightarrow\) word where
    to-gray - [] = []
\(\mid\) to-gray \(b(a \# v)=(\) let \(g=t o-g r a y b v i n d i s t 1 b(s u m-l i s t ~ g \bmod b) a \# g)\)
fun decode :: base \(\Rightarrow\) word \(\Rightarrow\) word where
    decode - [] = []
\(\mid\) decode \(b(g \# c)=(g+\) sum-list \(c\) mod \(b)\) mod \(b \#\) decode \(b c\)
```


3.1 The Correctness Proof

The proof of all properties that are necessary for a gray code is presented below. Also, some auxiliary lemmas are required:

```
lemma length-gray:
    length (to-gray b w) = length w
    apply (induction w)
    by (auto simp add: Let-def)
lemma valid-gray:
    valid b w\Longrightarrow valid b (to-gray b w)
    apply (induction w)
    by (auto simp add: dist1-valid Let-def)
```

The sum of grays is congruent to the value $(\bmod b)$:

```
lemma prefix-sum:
    valid b w\Longrightarrowsum-list (to-gray b w) mod b=val b w mod b
proof (induction w)
    case Nil thus ?case by simp
next
    case (Cons a w)
    hence IH: sum-list (to-gray b w) mod b= val b w mod b by simp
    let ?s = sum-list (to-gray b w)
    let ?v = val b w mod b
    have (dist1 b ?v a + ?s) mod b = (dist1 b ?v a + ?s mod b) mod b by presburger
    also have ... = (dist1 b ?v a + ?v) mod b using IH by argo
    also have ... = a using Cons.prems dist1-elim-1 by simp
    finally show ?case using Cons by auto
qed
lemma decode-correct:
    valid b w\Longrightarrow decode b (to-gray b w)=w
    apply (induction w)
    by (auto simp add: Let-def dist1-elim-1)
The following theorem states that the transformation to gray is an encoding of the valid code words:
theorem gray-encoding:
    inj-on (to-gray b) {w. valid b w}
proof (rule inj-on-inverseI)
    fix w :: word
    assume}w\in{w. valid b w
    hence valid b w by blast
    thus decode b (to-gray b w) =w using decode-correct by simp
qed
lemma mod-mod-aux: 1 \leq k\Longrightarrow (a::nat) mod b^k mod b = a mod b
    by (simp add: mod-mod-cancel)
lemma gray-dist:
    valid b w\Longrightarrow dist b (to-gray b w) (to-gray b (inc b w)) \leq 1
proof (induction w)
    case Nil thus ?case by simp
next
    case (Cons a w)
    have valid b w using Cons.prems by simp
    hence 2 \leq b using valid-base by auto
    hence 0<b by simp
    have}IH: dist b (to-gray b w) (to-gray b (inc b w)) \leq1
        using <valid b w` Cons.IH by blast
    have a<b using Cons.prems by simp
    show ?case
    proof (cases w)
    case Nil thus?thesis
```

using dist1－distr dist1－Suc $\langle a<b\rangle\langle 2 \leq b\rangle$ by simp
next
case（Cons $a^{\prime} d s^{\prime}$ ）
hence $1 \leq l e n g t h(w)$ by simp
let ？$a=$ if Suc $a \neq b$ then w else inc $b w$
let ？$g=$ sum－list（to－gray $b w) \bmod b$
let $? h=$ sum－list $($ to－gray $b ? a) \bmod b$
let $? v=\operatorname{val} b w \bmod b$
let ？$u=\operatorname{val} b ? a \bmod b$
let $? l=$ dist $b($ to－gray $b(a \# w))($ to－gray $b($ inc $b(a \# w)))$
have valid b ？a using «valid b 〉 valid－inc by simp
have ？l $=\operatorname{dist1} b($ dist1 $b ? g a)($ dist1 $b ? h($ Suc a $\bmod b))$ + dist b（to－gray $b w)($ to－gray b ？$a)$
by（metis Encoding－Nat．inc．simps（2）dist．simps（4）to－gray．simps（2））
also have $\ldots=S u c($ dist1 $b($ dist1 b ？$g a)($ dist1 $b ? h a)) \bmod b$ + dist $b($ to－gray $b w)($ to－gray b ？$a)$
using $\langle a<b\rangle$ dist1－mod－Suc dist1－valid by simp
also have $\ldots=\operatorname{Suc}($ dist1 $b ? h ? g) \bmod b$ + dist b（to－gray $b w)($ to－gray b ？$a)$
using $\langle a<b\rangle$ dist1－distr2 by simp
also have $\ldots=$ Suc（dist1 b ？h ？$v) \bmod b$ + dist b（to－gray $b w)($ to－gray $b ? a)$
using $\langle v a l i d ~ b w\rangle$ prefix－sum by simp
also have $\ldots=\operatorname{Suc}($ dist1 $b ? u ? v) \bmod b$ + dist $b($ to－gray $b w)($ to－gray b ？$a)$
using 〈valid b ？a 〉 prefix－sum by simp
also have $\ldots=$（
if Suc $a \neq b$ then Suc $0 \bmod b$
else Suc（dist1 $b($ val $b($ inc $b w) \bmod b) ? v) \bmod b$ + dist $b($ to－gray $b w)($ to－gray $b($ inc $b w)))$
using dist－0 dist1－0 by simp
also have $\ldots=$（
if Suc $a \neq b$ then Suc $0 \bmod b$
else Suc（dist1 b（Suc（val bw）mod b｀length $(w) \bmod b)$ ？v）mod b $+\operatorname{dist} b($ to－gray $b w)($ to－gray $b($ inc $b w)))$
using «valid b 〉 valid－inc val－inc by simp
also have $\ldots=$（
if Suc $a \neq b$ then Suc $0 \bmod b$
else Suc（dist1 b（Suc（val bw）mod b）？v）mod b $+\operatorname{dist} b($ to－gray $b w)($ to－gray $b($ inc $b w)))$
using 〈 $1 \leq$ length $(w)\rangle$ mod－mod－aux by simp
also have $\ldots=$（
if Suc $a \neq b$ then Suc $0 \bmod b$
else dist1 $b(S u c(v a l b w) \bmod b)(S u c ? v \bmod b)$ $+\operatorname{dist} b($ to－gray $b w)($ to－gray $b($ inc $b w)))$
using dist1－mod－Suc by auto
also have $\ldots=$（
if Suc $a \neq b$ then Suc $0 \bmod b$
else dist1 $b(S u c$ ？v $\bmod b)(S u c$ ？v $\bmod b)$

```
                + dist b (to-gray b w) (to-gray b (inc b w)))
        using mod-Suc-eq by presburger
    also have ... = (
        if Suc a\not=b then Suc 0 mod b
            else dist b (to-gray b w) (to-gray b (inc b w)))
        using dist1-0 by simp
    also have ... }\leq1\mathrm{ using IH by simp
    finally show ?thesis by blast
    qed
qed
```

lemmas gray-simps $=$ decode-correct dist-posd inc-not-eq length-gray length-inc
valid-gray valid-inc
lemma gray-empty:
valid $b w \Longrightarrow($ dist $b($ to-gray $b w)($ to-gray $b($ inc $b w))=0)=(w=[])$
by (metis gray-simps)

The central theorem states, that it requires exactly one increment operation of one place within the word to go from the gray encoding of a number to the gray encoding of its successor. Note also, that we obtain a cyclic gray code in all cases, because the increment operation wraps the last number around to zero. Only the pathological case of an empty word has to be excluded.

```
theorem gray-correct:
    |valid b w; w = []\rrbracket\Longrightarrow dist b (to-gray b w) (to-gray b (inc b w))=1
proof (rule ccontr)
    assume a: dist b (to-gray b w) (to-gray b (inc b w))}\not=
    assume valid b w and w\not=[]
    hence dist b (to-gray b w) (to-gray b (inc b w)) =0 using gray-empty by blast
    with a have dist b (to-gray b w) (to-gray b (inc b w)) > 1 by simp
    thus False using <valid b w` gray-dist by fastforce
qed
```

lemmas hamming-simps $=$ gray-dist hamming-dist le-trans length-gray length-inc valid-gray valid-inc
theorem gray-hamming: valid $b w \Longrightarrow$ hamming (to-gray $b w$) (to-gray b (inc b w)) ≤ 1
by (metis hamming-simps)
end

References

[1] K. Sankar, V. Pandharipande, and P. Moharir. Generalized gray codes. In Proceedings of 2004 International Symposium on Intelligent Signal

Processing and Communication Systems. ISPACS 2004., pages 654-659, 2004. https://doi.org/10.1109/ISPACS.2004.1439140.

