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Abstract

In 1999 Alon et. al. introduced the still active research topic of ap-
proximating the frequency moments of a data stream using randomized
algorithms with minimal space usage. This includes the problem of es-
timating the cardinality of the stream elements—the zeroth frequency
moment. But, also higher-order frequency moments that provide in-
formation about the skew of the data stream. (The k-th frequency
moment of a data stream is the sum of the k-th powers of the occur-
rence counts of each element in the stream.) This entry formalizes
three randomized algorithms for the approximation of F0, F2 and Fk

for k ≥ 3 based on [1, 2] and verifies their expected accuracy, success
probability and space usage.
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1 Preliminary Results
theory Frequency-Moments-Preliminary-Results

imports
HOL.Transcendental
HOL−Computational-Algebra.Primes
HOL−Library.Extended-Real
HOL−Library.Multiset
HOL−Library.Sublist
Prefix-Free-Code-Combinators.Prefix-Free-Code-Combinators
Bertrands-Postulate.Bertrand
Expander-Graphs.Expander-Graphs-Multiset-Extras

begin

This section contains various preliminary results.
lemma card-ordered-pairs:

fixes M :: ( ′a ::linorder) set
assumes finite M
shows 2 ∗ card {(x,y) ∈ M × M . x < y} = card M ∗ (card M − 1 )

proof −
have a: finite (M × M ) using assms by simp

have inj-swap: inj (λx. (snd x, fst x))
by (rule inj-onI , simp add: prod-eq-iff )

have 2 ∗ card {(x,y) ∈ M × M . x < y} =
card {(x,y) ∈ M × M . x < y} + card ((λx. (snd x, fst x))‘{(x,y) ∈ M × M . x

< y})
by (simp add: card-image[OF inj-on-subset[OF inj-swap]])

also have ... = card {(x,y) ∈ M × M . x < y} + card {(x,y) ∈ M × M . y < x}
by (auto intro: arg-cong[where f=card] simp add:set-eq-iff image-iff )

also have ... = card ({(x,y) ∈ M × M . x < y} ∪ {(x,y) ∈ M × M . y < x})
by (intro card-Un-disjoint[symmetric] a finite-subset[where B=M × M ] sub-

setI ) auto
also have ... = card ((M × M ) − {(x,y) ∈ M × M . x = y})

by (auto intro: arg-cong[where f=card] simp add:set-eq-iff )
also have ... = card (M × M ) − card {(x,y) ∈ M × M . x = y}

by (intro card-Diff-subset a finite-subset[where B=M × M ] subsetI ) auto
also have ... = card M ^ 2 − card ((λx. (x,x)) ‘ M )

using assms
by (intro arg-cong2 [where f=(−)] arg-cong[where f=card])
(auto simp:power2-eq-square set-eq-iff image-iff )

also have ... = card M ^ 2 − card M
by (intro arg-cong2 [where f=(−)] card-image inj-onI , auto)
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also have ... = card M ∗ (card M − 1 )
by (cases card M ≥ 0 , auto simp:power2-eq-square algebra-simps)

finally show ?thesis by simp
qed

lemma ereal-mono: x ≤ y =⇒ ereal x ≤ ereal y
by simp

lemma log-mono: a > 1 =⇒ x ≤ y =⇒ 0 < x =⇒ log a x ≤ log a y
by (subst log-le-cancel-iff , auto)

lemma abs-ge-iff : ((x::real) ≤ abs y) = (x ≤ y ∨ x ≤ −y)
by linarith

lemma count-list-gr-1 :
(x ∈ set xs) = (count-list xs x ≥ 1 )
by (induction xs, simp, simp)

lemma count-list-append: count-list (xs@ys) v = count-list xs v + count-list ys v
by (induction xs, simp, simp)

lemma count-list-lt-suffix:
assumes suffix a b
assumes x ∈ {b ! i| i. i < length b − length a}
shows count-list a x < count-list b x

proof −
have length a ≤ length b using assms(1 )

by (simp add: suffix-length-le)
hence x ∈ set (nths b {i. i < length b − length a})

using assms diff-commute by (auto simp add:set-nths)
hence a:x ∈ set (take (length b − length a) b)

by (subst (asm) lessThan-def [symmetric], simp)
have b = (take (length b − length a) b)@drop (length b − length a) b

by simp
also have ... = (take (length b − length a) b)@a

using assms(1 ) suffix-take by auto
finally have b:b = (take (length b − length a) b)@a by simp

have count-list a x < 1 + count-list a x by simp
also have ... ≤ count-list (take (length b − length a) b) x + count-list a x

using a count-list-gr-1
by (intro add-mono, fast, simp)

also have ... = count-list b x
using b count-list-append by metis

finally show ?thesis by simp
qed

lemma suffix-drop-drop:
assumes x ≥ y
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shows suffix (drop x a) (drop y a)
proof −

have drop y a = take (x − y) (drop y a)@drop (x− y) (drop y a)
by (subst append-take-drop-id, simp)

also have ... = take (x−y) (drop y a)@drop x a
using assms by simp

finally have drop y a = take (x−y) (drop y a)@drop x a by simp
thus ?thesis

by (auto simp add:suffix-def )
qed

lemma count-list-card: count-list xs x = card {k. k < length xs ∧ xs ! k = x}
proof −

have count-list xs x = length (filter ((=) x) xs)
by (induction xs, simp, simp)

also have ... = card {k. k < length xs ∧ xs ! k = x}
by (subst length-filter-conv-card, metis)

finally show ?thesis by simp
qed

lemma card-gr-1-iff :
assumes finite S x ∈ S y ∈ S x 6= y
shows card S > 1
using assms card-le-Suc0-iff-eq leI by auto

lemma count-list-ge-2-iff :
assumes y < z
assumes z < length xs
assumes xs ! y = xs ! z
shows count-list xs (xs ! y) > 1

proof −
have 1 < card {k. k < length xs ∧ xs ! k = xs ! y}

using assms by (intro card-gr-1-iff [where x=y and y=z], auto)

thus ?thesis
by (simp add: count-list-card)

qed

Results about multisets and sorting
lemmas disj-induct-mset = disj-induct-mset

lemma prod-mset-conv:
fixes f :: ′a ⇒ ′b::{comm-monoid-mult}
shows prod-mset (image-mset f A) = prod (λx. f x^(count A x)) (set-mset A)

proof (induction A rule: disj-induct-mset)
case 1
then show ?case by simp

next
case (2 n M x)
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moreover have count M x = 0 using 2 by (simp add: count-eq-zero-iff )
moreover have

∧
y. y ∈ set-mset M =⇒ y 6= x using 2 by blast

ultimately show ?case by (simp add:algebra-simps)
qed

There is a version sum-list-map-eq-sum-count but it doesn’t work if the
function maps into the reals.
lemma sum-list-eval:

fixes f :: ′a ⇒ ′b::{ring,semiring-1}
shows sum-list (map f xs) = (

∑
x ∈ set xs. of-nat (count-list xs x) ∗ f x)

proof −
define M where M = mset xs
have sum-mset (image-mset f M ) = (

∑
x ∈ set-mset M . of-nat (count M x) ∗ f

x)
proof (induction M rule:disj-induct-mset)

case 1
then show ?case by simp

next
case (2 n M x)
have a:

∧
y. y ∈ set-mset M =⇒ y 6= x using 2 (2 ) by blast

show ?case using 2 by (simp add:a count-eq-zero-iff [symmetric])
qed
moreover have

∧
x. count-list xs x = count (mset xs) x

by (induction xs, simp, simp)
ultimately show ?thesis

by (simp add:M-def sum-mset-sum-list[symmetric])
qed

lemma prod-list-eval:
fixes f :: ′a ⇒ ′b::{ring,semiring-1 ,comm-monoid-mult}
shows prod-list (map f xs) = (

∏
x ∈ set xs. (f x)^(count-list xs x))

proof −
define M where M = mset xs
have prod-mset (image-mset f M ) = (

∏
x ∈ set-mset M . f x ^ (count M x))

proof (induction M rule:disj-induct-mset)
case 1
then show ?case by simp

next
case (2 n M x)
have a:

∧
y. y ∈ set-mset M =⇒ y 6= x using 2 (2 ) by blast

have b:count M x = 0 using 2 by (subst count-eq-zero-iff ) blast
show ?case using 2 by (simp add:a b mult.commute)

qed
moreover have

∧
x. count-list xs x = count (mset xs) x

by (induction xs, simp, simp)
ultimately show ?thesis

by (simp add:M-def prod-mset-prod-list[symmetric])
qed
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lemma sorted-sorted-list-of-multiset: sorted (sorted-list-of-multiset M )
by (induction M , auto simp:sorted-insort)

lemma count-mset: count (mset xs) a = count-list xs a
by (induction xs, auto)

lemma swap-filter-image: filter-mset g (image-mset f A) = image-mset f (filter-mset
(g ◦ f ) A)

by (induction A, auto)

lemma list-eq-iff :
assumes mset xs = mset ys
assumes sorted xs
assumes sorted ys
shows xs = ys
using assms properties-for-sort by blast

lemma sorted-list-of-multiset-image-commute:
assumes mono f
shows sorted-list-of-multiset (image-mset f M ) = map f (sorted-list-of-multiset

M )
proof −

have sorted (sorted-list-of-multiset (image-mset f M ))
by (simp add:sorted-sorted-list-of-multiset)

moreover have sorted-wrt (λx y. f x ≤ f y) (sorted-list-of-multiset M )
by (rule sorted-wrt-mono-rel[where P=λx y. x ≤ y])
(auto intro: monoD[OF assms] sorted-sorted-list-of-multiset)

hence sorted (map f (sorted-list-of-multiset M ))
by (subst sorted-wrt-map)

ultimately show ?thesis
by (intro list-eq-iff , auto)

qed

Results about rounding and floating point numbers
lemma round-down-ge:

x ≤ round-down prec x + 2 powr (−prec)
using round-down-correct by (simp, meson diff-diff-eq diff-eq-diff-less-eq)

lemma truncate-down-ge:
x ≤ truncate-down prec x + abs x ∗ 2 powr (−prec)

proof (cases abs x > 0 )
case True
have x ≤ round-down (int prec − blog 2 |x|c) x + 2 powr (−real-of-int(int prec
− blog 2 |x|c))

by (rule round-down-ge)
also have ... ≤ truncate-down prec x + 2 powr ( blog 2 |x|c) ∗ 2 powr (−real

prec)
by (rule add-mono, simp-all add:powr-add[symmetric] truncate-down-def )

also have ... ≤ truncate-down prec x + |x| ∗ 2 powr (−real prec)
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using True
by (intro add-mono mult-right-mono, simp-all add:le-log-iff [symmetric])

finally show ?thesis by simp
next

case False
then show ?thesis by simp

qed

lemma truncate-down-pos:
assumes x ≥ 0
shows x ∗ (1 − 2 powr (−prec)) ≤ truncate-down prec x
by (simp add:right-diff-distrib diff-le-eq)
(metis truncate-down-ge assms abs-of-nonneg)

lemma truncate-down-eq:
assumes truncate-down r x = truncate-down r y
shows abs (x−y) ≤ max (abs x) (abs y) ∗ 2 powr (−real r)

proof −
have x − y ≤ truncate-down r x + abs x ∗ 2 powr (−real r) − y

by (rule diff-right-mono, rule truncate-down-ge)
also have ... ≤ y + abs x ∗ 2 powr (−real r) − y

using truncate-down-le
by (intro diff-right-mono add-mono, subst assms(1 ), simp-all)

also have ... ≤ abs x ∗ 2 powr (−real r) by simp
also have ... ≤ max (abs x) (abs y) ∗ 2 powr (−real r) by simp
finally have a:x − y ≤ max (abs x) (abs y) ∗ 2 powr (−real r) by simp

have y − x ≤ truncate-down r y + abs y ∗ 2 powr (−real r) − x
by (rule diff-right-mono, rule truncate-down-ge)

also have ... ≤ x + abs y ∗ 2 powr (−real r) − x
using truncate-down-le
by (intro diff-right-mono add-mono, subst assms(1 )[symmetric], auto)

also have ... ≤ abs y ∗ 2 powr (−real r) by simp
also have ... ≤ max (abs x) (abs y) ∗ 2 powr (−real r) by simp
finally have b:y − x ≤ max (abs x) (abs y) ∗ 2 powr (−real r) by simp

show ?thesis
using abs-le-iff a b by linarith

qed

definition rat-of-float :: float ⇒ rat where
rat-of-float f = of-int (mantissa f ) ∗
(if exponent f ≥ 0 then 2 ^ (nat (exponent f )) else 1 / 2 ^ (nat (−exponent

f )))

lemma real-of-rat-of-float: real-of-rat (rat-of-float x) = real-of-float x
proof −

have real-of-rat (rat-of-float x) = mantissa x ∗ (2 powr (exponent x))
by (simp add:rat-of-float-def of-rat-mult of-rat-divide of-rat-power powr-realpow[symmetric]
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powr-minus-divide)
also have ... = real-of-float x

using mantissa-exponent by simp
finally show ?thesis by simp

qed

lemma log-est: log 2 (real n + 1 ) ≤ n
proof −

have 1 + real n = real (n + 1 )
by simp

also have ... ≤ real (2 ^ n)
by (intro of-nat-mono suc-n-le-2-pow-n)

also have ... = 2 powr (real n)
by (simp add:powr-realpow)

finally have 1 + real n ≤ 2 powr (real n)
by simp

thus ?thesis
by (simp add: Transcendental.log-le-iff )

qed

lemma truncate-mantissa-bound:
abs (bx ∗ 2 powr (real r − real-of-int blog 2 |x|c)c) ≤ 2 ^ (r+1 ) (is ?lhs ≤ -)

proof −
define q where q = bx ∗ 2 powr (real r − real-of-int (blog 2 |x|c))c

have abs q ≤ 2 ^ (r + 1 ) if a:x > 0
proof −

have abs q = q
using a by (intro abs-of-nonneg, simp add:q-def )

also have ... ≤ x ∗ 2 powr (real r − real-of-int blog 2 |x|c)
unfolding q-def using of-int-floor-le by blast

also have ... = x ∗ 2 powr real-of-int (int r − blog 2 |x|c)
by auto

also have ... = 2 powr (log 2 x + real-of-int (int r − blog 2 |x|c))
using a by (simp add:powr-add)

also have ... ≤ 2 powr (real r + 1 )
using a by (intro powr-mono, linarith+)

also have ... = 2 ^ (r+1 )
by (subst powr-realpow[symmetric], simp-all add:add.commute)

finally show abs q ≤ 2 ^ (r+1 )
by (metis of-int-le-iff of-int-numeral of-int-power)

qed

moreover have abs q ≤ (2 ^ (r + 1 )) if a: x < 0
proof −

have −(2 ^ (r+1 ) + 1 ) = −(2 powr (real r + 1 )+1 )
by (subst powr-realpow[symmetric], simp-all add: add.commute)

also have ... < −(2 powr (log 2 (− x) + (r − blog 2 |x|c)) + 1 )
using a by (simp, linarith)
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also have ... = x ∗ 2 powr (r − blog 2 |x|c) − 1
using a by (simp add:powr-add)

also have ... ≤ q
by (simp add:q-def )

also have ... = − abs q
using a
by (subst abs-of-neg, simp-all add: mult-pos-neg2 q-def )

finally have −(2 ^ (r+1 )+1 ) < − abs q using of-int-less-iff by fastforce
hence −(2 ^ (r+1 )) ≤ − abs q by linarith
thus abs q ≤ 2^(r+1 ) by linarith

qed

moreover have x = 0 =⇒ abs q ≤ 2^(r+1 )
by (simp add:q-def )

ultimately have abs q ≤ 2^(r+1 )
by fastforce

thus ?thesis using q-def by blast
qed

lemma truncate-float-bit-count:
bit-count (Fe (float-of (truncate-down r x))) ≤ 10 + 4 ∗ real r + 2∗log 2 (2 +
|log 2 |x||)
(is ?lhs ≤ ?rhs)

proof −
define m where m = bx ∗ 2 powr (real r − real-of-int blog 2 |x|c)c
define e where e = blog 2 |x|c − int r

have a: (real-of-int blog 2 |x|c − real r) = e
by (simp add:e-def )

have abs m + 2 ≤ 2 ^ (r + 1 ) + 2^1
using truncate-mantissa-bound
by (intro add-mono, simp-all add:m-def )

also have ... ≤ 2 ^ (r+2 )
by simp

finally have b:abs m + 2 ≤ 2 ^ (r+2 ) by simp
hence real-of-int (|m| + 2 ) ≤ real-of-int (4 ∗ 2 ^ r)

by (subst of-int-le-iff , simp)
hence |real-of-int m| + 2 ≤ 4 ∗ 2 ^ r

by simp
hence c:log 2 (real-of-int (|m| + 2 )) ≤ r+2

by (simp add: Transcendental.log-le-iff powr-add powr-realpow)

have real-of-int (abs e + 1 ) ≤ real-of-int |blog 2 |x|c| + real-of-int r + 1
by (simp add:e-def )

also have ... ≤ 1 + abs (log 2 (abs x)) + real-of-int r + 1
by (simp add:abs-le-iff , linarith)

also have ... ≤ (real-of-int r+ 1 ) ∗ (2 + abs (log 2 (abs x)))
by (simp add:distrib-left distrib-right)

finally have d:real-of-int (abs e + 1 ) ≤ (real-of-int r+ 1 ) ∗ (2 + abs (log 2 (abs
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x))) by simp

have log 2 (real-of-int (abs e + 1 )) ≤ log 2 (real-of-int r + 1 ) + log 2 (2 + abs
(log 2 (abs x)))

using d by (simp add: log-mult[symmetric])
also have ... ≤ r + log 2 (2 + abs (log 2 (abs x)))

using log-est by (intro add-mono, simp-all add:add.commute)
finally have e: log 2 (real-of-int (abs e + 1 )) ≤ r + log 2 (2 + abs (log 2 (abs

x))) by simp

have ?lhs = bit-count (Fe (float-of (real-of-int m ∗ 2 powr real-of-int e)))
by (simp add:truncate-down-def round-down-def m-def [symmetric] a)

also have ... ≤ ereal (6 + (2 ∗ log 2 (real-of-int (|m| + 2 )) + 2 ∗ log 2 (real-of-int
(|e| + 1 ))))

using float-bit-count-2 by simp
also have ... ≤ ereal (6 + (2 ∗ real (r+2 ) + 2 ∗ (r + log 2 (2 + abs (log 2

(abs x))))))
using c e
by (subst ereal-less-eq, intro add-mono mult-left-mono, linarith+)

also have ... = ?rhs by simp
finally show ?thesis by simp

qed

definition prime-above :: nat ⇒ nat
where prime-above n = (SOME x. x ∈ {n..(2∗n+2 )} ∧ prime x)

The term prime-above n returns a prime between n and 2 ∗ n + 2. Because
of Bertrand’s postulate there always is such a value. In a refinement of the
algorithms, it may make sense to replace this with an algorithm, that finds
such a prime exactly or approximately.
The definition is intentionally inexact, to allow refinement with various al-
gorithms, without modifying the high-level mathematical correctness proof.
lemma ex-subset:

assumes ∃ x ∈ A. P x
assumes A ⊆ B
shows ∃ x ∈ B. P x
using assms by auto

lemma
shows prime-above-prime: prime (prime-above n)
and prime-above-range: prime-above n ∈ {n..(2∗n+2 )}

proof −
define r where r = (λx. x ∈ {n..(2∗n+2 )} ∧ prime x)
have ∃ x. r x
proof (cases n>2 )

case True
hence n−1 > 1 by simp
hence ∃ x ∈ {(n−1 )<..<(2∗(n−1 ))}. prime x
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using bertrand by simp
moreover have {n − 1<..<2 ∗ (n − 1 )} ⊆ {n..2 ∗ n + 2}

by (intro subsetI , auto)
ultimately have ∃ x ∈ {n..(2∗n+2 )}. prime x

by (rule ex-subset)
then show ?thesis by (simp add:r-def Bex-def )

next
case False
hence 2 ∈ {n..(2∗n+2 )}

by simp
moreover have prime (2 ::nat)

using two-is-prime-nat by blast
ultimately have r 2

using r-def by simp
then show ?thesis by (rule exI )

qed
moreover have prime-above n = (SOME x. r x)

by (simp add:prime-above-def r-def )
ultimately have a:r (prime-above n)

using someI-ex by metis
show prime (prime-above n)

using a unfolding r-def by blast
show prime-above n ∈ {n..(2∗n+2 )}

using a unfolding r-def by blast
qed

lemma prime-above-min: prime-above n ≥ 2
using prime-above-prime
by (simp add: prime-ge-2-nat)

lemma prime-above-lower-bound: prime-above n ≥ n
using prime-above-range
by simp

lemma prime-above-upper-bound: prime-above n ≤ 2∗n+2
using prime-above-range
by simp

end

2 Frequency Moments
theory Frequency-Moments

imports
Frequency-Moments-Preliminary-Results
Universal-Hash-Families.Universal-Hash-Families-More-Finite-Fields
Interpolation-Polynomials-HOL-Algebra.Interpolation-Polynomial-Cardinalities

begin
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This section contains a definition of the frequency moments of a stream and
a few general results about frequency moments..
definition F where

F k xs = (
∑

x ∈ set xs. (rat-of-nat (count-list xs x)^k))

lemma F-ge-0 : F k as ≥ 0
unfolding F-def by (rule sum-nonneg, simp)

lemma F-gr-0 :
assumes as 6= []
shows F k as > 0

proof −
have rat-of-nat 1 ≤ rat-of-nat (card (set as))

using assms card-0-eq[where A=set as]
by (intro of-nat-mono)
(metis List.finite-set One-nat-def Suc-leI neq0-conv set-empty)

also have ... = (
∑

x∈set as. 1 ) by simp
also have ... ≤ (

∑
x∈set as. rat-of-nat (count-list as x) ^ k)

by (intro sum-mono one-le-power)
(metis count-list-gr-1 of-nat-1 of-nat-le-iff )

also have ... ≤ F k as
by (simp add:F-def )

finally show ?thesis by simp
qed

definition Pe :: nat ⇒ nat ⇒ nat list ⇒ bool list option where
Pe p n f = (if p > 1 ∧ f ∈ bounded-degree-polynomials (mod-ring p) n then
([0 ..<n] →e Nbe p) (λi ∈ {..<n}. ring.coeff (mod-ring p) f i) else None)

lemma poly-encoding:
is-encoding (Pe p n)

proof (cases p > 1 )
case True
interpret cring mod-ring p

using mod-ring-is-cring True by blast
have a:inj-on (λx. (λi ∈ {..<n}. (coeff x i))) (bounded-degree-polynomials (mod-ring

p) n)
proof (rule inj-onI )

fix x y
assume b:x ∈ bounded-degree-polynomials (mod-ring p) n
assume c:y ∈ bounded-degree-polynomials (mod-ring p) n
assume d:restrict (coeff x) {..<n} = restrict (coeff y) {..<n}
have coeff x i = coeff y i for i
proof (cases i < n)

case True
then show ?thesis by (metis lessThan-iff restrict-apply d)

next
case False
hence e: i ≥ n by linarith
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have coeff x i = 0mod-ring p
using b e by (subst coeff-length, auto simp:bounded-degree-polynomials-length)
also have ... = coeff y i
using c e by (subst coeff-length, auto simp:bounded-degree-polynomials-length)
finally show ?thesis by simp

qed
then show x = y

using b c univ-poly-carrier
by (subst coeff-iff-polynomial-cond) (auto simp:bounded-degree-polynomials-length)

qed

have is-encoding (λf . Pe p n f )
unfolding Pe-def using a True

by (intro encoding-compose[where f=([0 ..<n]→e Nbe p)] fun-encoding bounded-nat-encoding)
auto

thus ?thesis by simp
next

case False
hence is-encoding (λf . Pe p n f )

unfolding Pe-def using encoding-triv by simp
then show ?thesis by simp

qed

lemma bounded-degree-polynomial-bit-count:
assumes p > 1
assumes x ∈ bounded-degree-polynomials (mod-ring p) n
shows bit-count (Pe p n x) ≤ ereal (real n ∗ (log 2 p + 1 ))

proof −
interpret cring mod-ring p

using mod-ring-is-cring assms by blast

have a: x ∈ carrier (poly-ring (mod-ring p))
using assms(2 ) by (simp add:bounded-degree-polynomials-def )

have real-of-int blog 2 (p−1 )c+1 ≤ log 2 (p−1 ) + 1
using floor-eq-iff by (intro add-mono, auto)

also have ... ≤ log 2 p + 1
using assms by (intro add-mono, auto)

finally have b: blog 2 (p−1 )c+1 ≤ log 2 p + 1
by simp

have bit-count (Pe p n x) = (
∑

k ← [0 ..<n]. bit-count (Nbe p (coeff x k)))
using assms restrict-extensional

by (auto intro!:arg-cong[where f=sum-list] simp add:Pe-def fun-bit-count lessThan-atLeast0 )
also have ... = (

∑
k ← [0 ..<n]. ereal (floorlog 2 (p−1 )))

using coeff-in-carrier [OF a] mod-ring-carr
by (subst bounded-nat-bit-count-2 , auto)

also have ... = n ∗ ereal (floorlog 2 (p−1 ))
by (simp add: sum-list-triv)
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also have ... = n ∗ real-of-int (blog 2 (p−1 )c+1 )
using assms(1 ) by (simp add:floorlog-def )

also have ... ≤ ereal (real n ∗ (log 2 p + 1 ))
by (subst ereal-less-eq, intro mult-left-mono b, auto)

finally show ?thesis by simp
qed

end

3 Ranks, k smallest element and elements
theory K-Smallest

imports
Frequency-Moments-Preliminary-Results
Interpolation-Polynomials-HOL-Algebra.Interpolation-Polynomial-Cardinalities

begin

This section contains definitions and results for the selection of the k smallest
elements, the k-th smallest element, rank of an element in an ordered set.
definition rank-of :: ′a :: linorder ⇒ ′a set ⇒ nat where rank-of x S = card {y
∈ S . y < x}

The function rank-of returns the rank of an element within a set.
lemma rank-mono:

assumes finite S
shows x ≤ y =⇒ rank-of x S ≤ rank-of y S
unfolding rank-of-def using assms by (intro card-mono, auto)

lemma rank-mono-2 :
assumes finite S
shows S ′ ⊆ S =⇒ rank-of x S ′ ≤ rank-of x S
unfolding rank-of-def using assms by (intro card-mono, auto)

lemma rank-mono-commute:
assumes finite S
assumes S ⊆ T
assumes strict-mono-on T f
assumes x ∈ T
shows rank-of x S = rank-of (f x) (f ‘ S)

proof −
have a: inj-on f T

by (metis assms(3 ) strict-mono-on-imp-inj-on)

have rank-of (f x) (f ‘ S) = card (f ‘ {y ∈ S . f y < f x})
unfolding rank-of-def by (intro arg-cong[where f=card], auto)

also have ... = card (f ‘ {y ∈ S . y < x})
using assms by (intro arg-cong[where f=card] arg-cong[where f=(‘) f ])
(meson in-mono linorder-not-le strict-mono-onD strict-mono-on-leD set-eq-iff )
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also have ... = card {y ∈ S . y < x}
using assms by (intro card-image inj-on-subset[OF a], blast)

also have ... = rank-of x S
by (simp add:rank-of-def )

finally show ?thesis
by simp

qed

definition least where least k S = {y ∈ S . rank-of y S < k}

The function K-Smallest.least returns the k smallest elements of a finite set.
lemma rank-strict-mono:

assumes finite S
shows strict-mono-on S (λx. rank-of x S)

proof −
have

∧
x y. x ∈ S =⇒ y ∈ S =⇒ x < y =⇒ rank-of x S < rank-of y S

unfolding rank-of-def using assms
by (intro psubset-card-mono, auto)

thus ?thesis
by (simp add:rank-of-def strict-mono-on-def )

qed

lemma rank-of-image:
assumes finite S
shows (λx. rank-of x S) ‘ S = {0 ..<card S}

proof (rule card-seteq)
show finite {0 ..<card S} by simp

have
∧

x. x ∈ S =⇒ card {y ∈ S . y < x} < card S
by (rule psubset-card-mono, metis assms, blast)

thus (λx. rank-of x S) ‘ S ⊆ {0 ..<card S}
by (intro image-subsetI , simp add:rank-of-def )

have inj-on (λx. rank-of x S) S
by (metis strict-mono-on-imp-inj-on rank-strict-mono assms)

thus card {0 ..<card S} ≤ card ((λx. rank-of x S) ‘ S)
by (simp add:card-image)

qed

lemma card-least:
assumes finite S
shows card (least k S) = min k (card S)

proof (cases card S < k)
case True
have

∧
t. rank-of t S ≤ card S

unfolding rank-of-def using assms
by (intro card-mono, auto)

hence
∧

t. rank-of t S < k
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by (metis True not-less-iff-gr-or-eq order-less-le-trans)
hence least k S = S

by (simp add:least-def )
then show ?thesis using True by simp

next
case False
hence a:card S ≥ k using leI by blast
hence card ((λx. rank-of x S) −‘ {0 ..<k} ∩ S) = card {0 ..<k}

using assms
by (intro card-vimage-inj-on strict-mono-on-imp-inj-on rank-strict-mono)
(simp-all add: rank-of-image)

hence card (least k S) = k
by (simp add: Collect-conj-eq Int-commute least-def vimage-def )

then show ?thesis using a by linarith
qed

lemma least-subset: least k S ⊆ S
by (simp add:least-def )

lemma least-mono-commute:
assumes finite S
assumes strict-mono-on S f
shows f ‘ least k S = least k (f ‘ S)

proof −
have a:inj-on f S

using strict-mono-on-imp-inj-on[OF assms(2 )] by simp

have card (least k (f ‘ S)) = min k (card (f ‘ S))
by (subst card-least, auto simp add:assms)

also have ... = min k (card S)
by (subst card-image, metis a, auto)

also have ... = card (least k S)
by (subst card-least, auto simp add:assms)

also have ... = card (f ‘ least k S)
by (subst card-image[OF inj-on-subset[OF a]], simp-all add:least-def )

finally have b: card (least k (f ‘ S)) ≤ card (f ‘ least k S) by simp

have c: f ‘ least k S ⊆least k (f ‘ S)
using assms by (intro image-subsetI )
(simp add:least-def rank-mono-commute[symmetric, where T=S ])

show ?thesis
using b c assms by (intro card-seteq, simp-all add:least-def )

qed

lemma least-eq-iff :
assumes finite B
assumes A ⊆ B
assumes

∧
x. x ∈ B =⇒ rank-of x B < k =⇒ x ∈ A
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shows least k A = least k B
proof −

have least k B ⊆ least k A
using assms rank-mono-2 [OF assms(1 ,2 )] order-le-less-trans
by (simp add:least-def , blast)

moreover have card (least k B) ≥ card (least k A)
using assms finite-subset[OF assms(2 ,1 )] card-mono[OF assms(1 ,2 )]
by (simp add: card-least min-le-iff-disj)

moreover have finite (least k A)
using finite-subset least-subset assms(1 ,2 ) by metis

ultimately show ?thesis
by (intro card-seteq[symmetric], simp-all)

qed

lemma least-insert:
assumes finite S
shows least k (insert x (least k S)) = least k (insert x S) (is ?lhs = ?rhs)

proof (rule least-eq-iff )
show finite (insert x S)

using assms(1 ) by simp
show insert x (least k S) ⊆ insert x S

using least-subset by blast
show y ∈ insert x (least k S) if a: y ∈ insert x S and b: rank-of y (insert x S)

< k for y
proof −

have rank-of y S ≤ rank-of y (insert x S)
using assms by (intro rank-mono-2 , auto)

also have ... < k using b by simp
finally have rank-of y S < k by simp
hence y = x ∨ (y ∈ S ∧ rank-of y S < k)

using a by simp
thus ?thesis by (simp add:least-def )

qed
qed

definition count-le where count-le x M = size {#y ∈# M . y ≤ x#}
definition count-less where count-less x M = size {#y ∈# M . y < x#}

definition nth-mset :: nat ⇒ ( ′a :: linorder) multiset ⇒ ′a where
nth-mset k M = sorted-list-of-multiset M ! k

lemma nth-mset-bound-left:
assumes k < size M
assumes count-less x M ≤ k
shows x ≤ nth-mset k M

proof (rule ccontr)
define xs where xs = sorted-list-of-multiset M
have s-xs: sorted xs by (simp add:xs-def sorted-sorted-list-of-multiset)
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have l-xs: k < length xs
using assms(1 ) by (simp add:xs-def size-mset[symmetric])

have M-xs: M = mset xs by (simp add:xs-def )
hence a:

∧
i. i ≤ k =⇒ xs ! i ≤ xs ! k

using s-xs l-xs sorted-iff-nth-mono by blast

assume ¬(x ≤ nth-mset k M )
hence x > nth-mset k M by simp
hence b:x > xs ! k by (simp add:nth-mset-def xs-def [symmetric])

have k < card {0 ..k} by simp
also have ... ≤ card {i. i < length xs ∧ xs ! i < x}

using a b l-xs order-le-less-trans
by (intro card-mono subsetI ) auto

also have ... = length (filter (λy. y < x) xs)
by (subst length-filter-conv-card, simp)

also have ... = size (mset (filter (λy. y < x) xs))
by (subst size-mset, simp)

also have ... = count-less x M
by (simp add:count-less-def M-xs)

also have ... ≤ k
using assms by simp

finally show False by simp
qed

lemma nth-mset-bound-left-excl:
assumes k < size M
assumes count-le x M ≤ k
shows x < nth-mset k M

proof (rule ccontr)
define xs where xs = sorted-list-of-multiset M
have s-xs: sorted xs by (simp add:xs-def sorted-sorted-list-of-multiset)
have l-xs: k < length xs

using assms(1 ) by (simp add:xs-def size-mset[symmetric])
have M-xs: M = mset xs by (simp add:xs-def )
hence a:

∧
i. i ≤ k =⇒ xs ! i ≤ xs ! k

using s-xs l-xs sorted-iff-nth-mono by blast

assume ¬(x < nth-mset k M )
hence x ≥ nth-mset k M by simp
hence b:x ≥ xs ! k by (simp add:nth-mset-def xs-def [symmetric])

have k+1 ≤ card {0 ..k} by simp
also have ... ≤ card {i. i < length xs ∧ xs ! i ≤ xs ! k}

using a b l-xs order-le-less-trans
by (intro card-mono subsetI , auto)

also have ... ≤ card {i. i < length xs ∧ xs ! i ≤ x}
using b by (intro card-mono subsetI , auto)

also have ... = length (filter (λy. y ≤ x) xs)
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by (subst length-filter-conv-card, simp)
also have ... = size (mset (filter (λy. y ≤ x) xs))

by (subst size-mset, simp)
also have ... = count-le x M

by (simp add:count-le-def M-xs)
also have ... ≤ k

using assms by simp
finally show False by simp

qed

lemma nth-mset-bound-right:
assumes k < size M
assumes count-le x M > k
shows nth-mset k M ≤ x

proof (rule ccontr)
define xs where xs = sorted-list-of-multiset M
have s-xs: sorted xs by (simp add:xs-def sorted-sorted-list-of-multiset)
have l-xs: k < length xs

using assms(1 ) by (simp add:xs-def size-mset[symmetric])
have M-xs: M = mset xs by (simp add:xs-def )

assume ¬(nth-mset k M ≤ x)
hence x < nth-mset k M by simp
hence x < xs ! k

by (simp add:nth-mset-def xs-def [symmetric])
hence a:

∧
i. i < length xs ∧ xs ! i ≤ x =⇒ i < k

using s-xs l-xs sorted-iff-nth-mono leI by fastforce
have count-le x M = size (mset (filter (λy. y ≤ x) xs))

by (simp add:count-le-def M-xs)
also have ... = length (filter (λy. y ≤ x) xs)

by (subst size-mset, simp)
also have ... = card {i. i < length xs ∧ xs ! i ≤ x}

by (subst length-filter-conv-card, simp)
also have ... ≤ card {i. i < k}

using a by (intro card-mono subsetI , auto)
also have ... = k by simp
finally have count-le x M ≤ k by simp
thus False using assms by simp

qed

lemma nth-mset-commute-mono:
assumes mono f
assumes k < size M
shows f (nth-mset k M ) = nth-mset k (image-mset f M )

proof −
have a:k < length (sorted-list-of-multiset M )

by (metis assms(2 ) mset-sorted-list-of-multiset size-mset)
show ?thesis

using a by (simp add:nth-mset-def sorted-list-of-multiset-image-commute[OF
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assms(1 )])
qed

lemma nth-mset-max:
assumes size A > k
assumes

∧
x. x ≤ nth-mset k A =⇒ count A x ≤ 1

shows nth-mset k A = Max (least (k+1 ) (set-mset A)) and card (least (k+1 )
(set-mset A)) = k+1
proof −

define xs where xs = sorted-list-of-multiset A
have k-bound: k < length xs unfolding xs-def

by (metis size-mset mset-sorted-list-of-multiset assms(1 ))

have A-def : A = mset xs by (simp add:xs-def )
have s-xs: sorted xs by (simp add:xs-def sorted-sorted-list-of-multiset)
have

∧
x. x ≤ xs ! k =⇒ count A x ≤ Suc 0

using assms(2 ) by (simp add:xs-def [symmetric] nth-mset-def )
hence no-col:

∧
x. x ≤ xs ! k =⇒ count-list xs x ≤ 1

by (simp add:A-def count-mset)

have inj-xs: inj-on (λk. xs ! k) {0 ..k}
by (rule inj-onI , simp) (metis (full-types) count-list-ge-2-iff k-bound no-col

le-neq-implies-less linorder-not-le order-le-less-trans s-xs sorted-iff-nth-mono)

have
∧

y. y < length xs =⇒ rank-of (xs ! y) (set xs) < k+1 =⇒ y < k+1
proof (rule ccontr)

fix y
assume b:y < length xs
assume ¬y < k +1
hence a:k + 1 ≤ y by simp

have d:Suc k < length xs using a b by simp

have k+1 = card ((!) xs ‘ {0 ..k})
by (subst card-image[OF inj-xs], simp)

also have ... ≤ rank-of (xs ! (k+1 )) (set xs)
unfolding rank-of-def using k-bound
by (intro card-mono image-subsetI conjI , simp-all) (metis count-list-ge-2-iff

no-col not-le le-imp-less-Suc s-xs
sorted-iff-nth-mono d order-less-le)

also have ... ≤ rank-of (xs ! y) (set xs)
unfolding rank-of-def
by (intro card-mono subsetI , simp-all)
(metis Suc-eq-plus1 a b s-xs order-less-le-trans sorted-iff-nth-mono)

also assume ... < k+1
finally show False by force

qed

moreover have rank-of (xs ! y) (set xs) < k+1 if a:y < k + 1 for y
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proof −
have rank-of (xs ! y) (set xs) ≤ card ((λk. xs ! k) ‘ {k. k < length xs ∧ xs ! k

< xs ! y})
unfolding rank-of-def
by (intro card-mono subsetI , simp)
(metis (no-types, lifting) imageI in-set-conv-nth mem-Collect-eq)

also have ... ≤ card {k. k < length xs ∧ xs ! k < xs ! y}
by (rule card-image-le, simp)

also have ... ≤ card {k. k < y}
by (intro card-mono subsetI , simp-all add:not-less)
(metis sorted-iff-nth-mono s-xs linorder-not-less)

also have ... = y by simp
also have ... < k + 1 using a by simp
finally show rank-of (xs ! y) (set xs) < k+1 by simp

qed

ultimately have rank-conv:
∧

y. y < length xs =⇒ rank-of (xs ! y) (set xs) <
k+1 ←→ y < k+1

by blast

have y ≤ xs ! k if a:y ∈ least (k+1 ) (set xs) for y
proof −

have y ∈ set xs using a least-subset by blast
then obtain i where i-bound: i < length xs and y-def : y = xs ! i using

in-set-conv-nth by metis
hence rank-of (xs ! i) (set xs) < k+1

using a y-def i-bound by (simp add: least-def )
hence i < k+1

using rank-conv i-bound by blast
hence i ≤ k by linarith
hence xs ! i ≤ xs ! k

using s-xs i-bound k-bound sorted-nth-mono by blast
thus y ≤ xs ! k using y-def by simp

qed

moreover have xs ! k ∈ least (k+1 ) (set xs)
using k-bound rank-conv by (simp add:least-def )

ultimately have Max (least (k+1 ) (set xs)) = xs ! k
by (intro Max-eqI finite-subset[OF least-subset], auto)

hence nth-mset k A = Max (K-Smallest.least (Suc k) (set xs))
by (simp add:nth-mset-def xs-def [symmetric])

also have ... = Max (least (k+1 ) (set-mset A))
by (simp add:A-def )

finally show nth-mset k A = Max (least (k+1 ) (set-mset A)) by simp

have k + 1 = card ((λi. xs ! i) ‘ {0 ..k})
by (subst card-image[OF inj-xs], simp)
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also have ... ≤ card (least (k+1 ) (set xs))
using rank-conv k-bound

by (intro card-mono image-subsetI finite-subset[OF least-subset], simp-all add:least-def )
finally have card (least (k+1 ) (set xs)) ≥ k+1 by simp
moreover have card (least (k+1 ) (set xs)) ≤ k+1

by (subst card-least, simp, simp)
ultimately have card (least (k+1 ) (set xs)) = k+1 by simp
thus card (least (k+1 ) (set-mset A)) = k+1 by (simp add:A-def )

qed

end

4 Landau Symbols
theory Landau-Ext

imports
HOL−Library.Landau-Symbols
HOL.Topological-Spaces

begin

This section contains results about Landau Symbols in addition to "HOL-
Library.Landau".
lemma landau-sum:

assumes eventually (λx. g1 x ≥ (0 ::real)) F
assumes eventually (λx. g2 x ≥ 0 ) F
assumes f1 ∈ O[F ](g1 )
assumes f2 ∈ O[F ](g2 )
shows (λx. f1 x + f2 x) ∈ O[F ](λx. g1 x + g2 x)

proof −
obtain c1 where a1 : c1 > 0 and b1 : eventually (λx. abs (f1 x) ≤ c1 ∗ abs (g1

x)) F
using assms(3 ) by (simp add:bigo-def , blast)

obtain c2 where a2 : c2 > 0 and b2 : eventually (λx. abs (f2 x) ≤ c2 ∗ abs (g2
x)) F

using assms(4 ) by (simp add:bigo-def , blast)
have eventually (λx. abs (f1 x + f2 x) ≤ (max c1 c2 ) ∗ abs (g1 x + g2 x)) F
proof (rule eventually-mono[OF eventually-conj[OF b1 eventually-conj[OF b2

eventually-conj[OF assms(1 ,2 )]]]])
fix x
assume a: |f1 x| ≤ c1 ∗ |g1 x| ∧ |f2 x| ≤ c2 ∗ |g2 x| ∧ 0 ≤ g1 x ∧ 0 ≤ g2 x
have |f1 x + f2 x| ≤ |f1 x | + |f2 x| using abs-triangle-ineq by blast
also have ... ≤ c1 ∗ |g1 x| + c2 ∗ |g2 x| using a add-mono by blast
also have ... ≤ max c1 c2 ∗ |g1 x| + max c1 c2 ∗ |g2 x|

by (intro add-mono mult-right-mono) auto
also have ... = max c1 c2 ∗ (|g1 x| + |g2 x|)

by (simp add:algebra-simps)
also have ... ≤ max c1 c2 ∗ (|g1 x + g2 x|)

using a a1 a2 by (intro mult-left-mono) auto
finally show |f1 x + f2 x| ≤ max c1 c2 ∗ |g1 x + g2 x|
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by (simp add:algebra-simps)
qed
hence 0 < max c1 c2 ∧ (∀ F x in F . |f1 x + f2 x| ≤ max c1 c2 ∗ |g1 x + g2 x|)

using a1 a2 by linarith
thus ?thesis

by (simp add: bigo-def , blast)
qed

lemma landau-sum-1 :
assumes eventually (λx. g1 x ≥ (0 ::real)) F
assumes eventually (λx. g2 x ≥ 0 ) F
assumes f ∈ O[F ](g1 )
shows f ∈ O[F ](λx. g1 x + g2 x)

proof −
have f = (λx. f x + 0 ) by simp
also have ... ∈ O[F ](λx. g1 x + g2 x)

using assms zero-in-bigo by (intro landau-sum)
finally show ?thesis by simp

qed

lemma landau-sum-2 :
assumes eventually (λx. g1 x ≥ (0 ::real)) F
assumes eventually (λx. g2 x ≥ 0 ) F
assumes f ∈ O[F ](g2 )
shows f ∈ O[F ](λx. g1 x + g2 x)

proof −
have f = (λx. 0 + f x) by simp
also have ... ∈ O[F ](λx. g1 x + g2 x)

using assms zero-in-bigo by (intro landau-sum)
finally show ?thesis by simp

qed

lemma landau-ln-3 :
assumes eventually (λx. (1 ::real) ≤ f x) F
assumes f ∈ O[F ](g)
shows (λx. ln (f x)) ∈ O[F ](g)

proof −
have 1 ≤ x =⇒ |ln x| ≤ |x| for x :: real

using ln-bound by auto
hence (λx. ln (f x)) ∈ O[F ](f )

by (intro landau-o.big-mono eventually-mono[OF assms(1 )]) simp
thus ?thesis

using assms(2 ) landau-o.big-trans by blast
qed

lemma landau-ln-2 :
assumes a > (1 ::real)
assumes eventually (λx. 1 ≤ f x) F
assumes eventually (λx. a ≤ g x) F
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assumes f ∈ O[F ](g)
shows (λx. ln (f x)) ∈ O[F ](λx. ln (g x))

proof −
obtain c where a: c > 0 and b: eventually (λx. abs (f x) ≤ c ∗ abs (g x)) F

using assms(4 ) by (simp add:bigo-def , blast)
define d where d = 1 + (max 0 (ln c)) / ln a
have d:eventually (λx. abs (ln (f x)) ≤ d ∗ abs (ln (g x))) F
proof (rule eventually-mono[OF eventually-conj[OF b eventually-conj[OF assms(3 ,2 )]]])

fix x
assume c:|f x| ≤ c ∗ |g x| ∧ a ≤ g x ∧ 1 ≤ f x
have abs (ln (f x)) = ln (f x)

by (subst abs-of-nonneg, rule ln-ge-zero, metis c, simp)
also have ... ≤ ln (c ∗ abs (g x))

using c assms(1 ) mult-pos-pos[OF a] by auto
also have ... ≤ ln c + ln (abs (g x))

using c assms(1 )
by (simp add: ln-mult[OF a])

also have ... ≤ (d−1 )∗ln a + ln (g x)
using assms(1 ) c
by (intro add-mono iffD2 [OF ln-le-cancel-iff ], simp-all add:d-def )

also have ... ≤ (d−1 )∗ ln (g x) + ln (g x)
using assms(1 ) c

by (intro add-mono mult-left-mono iffD2 [OF ln-le-cancel-iff ], simp-all add:d-def )
also have ... = d ∗ ln (g x) by (simp add:algebra-simps)
also have ... = d ∗ abs (ln (g x))

using c assms(1 ) by auto
finally show abs (ln (f x)) ≤ d ∗ abs (ln (g x)) by simp

qed
hence ∀ F x in F . |ln (f x)| ≤ d ∗ |ln (g x)|

by simp
moreover have 0 < d

unfolding d-def using assms(1 )
by (intro add-pos-nonneg divide-nonneg-pos, auto)

ultimately show ?thesis
by (auto simp:bigo-def )

qed

lemma landau-real-nat:
fixes f :: ′a ⇒ int
assumes (λx. of-int (f x)) ∈ O[F ](g)
shows (λx. real (nat (f x))) ∈ O[F ](g)

proof −
obtain c where a: c > 0 and b: eventually (λx. abs (of-int (f x)) ≤ c ∗ abs (g

x)) F
using assms(1 ) by (simp add:bigo-def , blast)

have ∀ F x in F . real (nat (f x)) ≤ c ∗ |g x|
by (rule eventually-mono[OF b], simp)

thus ?thesis using a
by (auto simp:bigo-def )
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qed

lemma landau-ceil:
assumes (λ-. 1 ) ∈ O[F ′](g)
assumes f ∈ O[F ′](g)
shows (λx. real-of-int df xe) ∈ O[F ′](g)

proof −
have (λx. real-of-int df xe) ∈ O[F ′](λx. 1 + abs (f x))

by (intro landau-o.big-mono always-eventually allI , simp, linarith)
also have (λx. 1 + abs(f x)) ∈ O[F ′](g)

using assms(2 ) by (intro sum-in-bigo assms(1 ), auto)
finally show ?thesis by simp

qed

lemma landau-rat-ceil:
assumes (λ-. 1 ) ∈ O[F ′](g)
assumes (λx. real-of-rat (f x)) ∈ O[F ′](g)
shows (λx. real-of-int df xe) ∈ O[F ′](g)

proof −
have a:|real-of-int dxe| ≤ 1 + real-of-rat |x| for x :: rat
proof (cases x ≥ 0 )

case True
then show ?thesis

by (simp, metis add.commute of-int-ceiling-le-add-one of-rat-ceiling)
next

case False
have real-of-rat x − 1 ≤ real-of-rat x

by simp
also have ... ≤ real-of-int dxe

by (metis ceiling-correct of-rat-ceiling)
finally have real-of-rat (x)−1 ≤ real-of-int dxe by simp

hence − real-of-int dxe ≤ 1 + real-of-rat (− x)
by (simp add: of-rat-minus)

then show ?thesis using False by simp
qed
have (λx. real-of-int df xe) ∈ O[F ′](λx. 1 + abs (real-of-rat (f x)))

using a
by (intro landau-o.big-mono always-eventually allI , simp)

also have (λx. 1 + abs (real-of-rat (f x))) ∈ O[F ′](g)
using assms
by (intro sum-in-bigo assms(1 ), subst landau-o.big.abs-in-iff , simp)

finally show ?thesis by simp
qed

lemma landau-nat-ceil:
assumes (λ-. 1 ) ∈ O[F ′](g)
assumes f ∈ O[F ′](g)
shows (λx. real (nat df xe)) ∈ O[F ′](g)
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using assms
by (intro landau-real-nat landau-ceil, auto)

lemma eventually-prod1 ′:
assumes B 6= bot
assumes (∀ F x in A. P x)
shows (∀ F x in A ×F B. P (fst x))

proof −
have (∀ F x in A ×F B. P (fst x)) = (∀ F (x,y) in A ×F B. P x)

by (simp add:case-prod-beta ′)
also have ... = (∀ F x in A. P x)

by (subst eventually-prod1 [OF assms(1 )], simp)
finally show ?thesis using assms(2 ) by simp

qed

lemma eventually-prod2 ′:
assumes A 6= bot
assumes (∀ F x in B. P x)
shows (∀ F x in A ×F B. P (snd x))

proof −
have (∀ F x in A ×F B. P (snd x)) = (∀ F (x,y) in A ×F B. P y)

by (simp add:case-prod-beta ′)
also have ... = (∀ F x in B. P x)

by (subst eventually-prod2 [OF assms(1 )], simp)
finally show ?thesis using assms(2 ) by simp

qed

lemma sequentially-inf : ∀ F x in sequentially. n ≤ real x
by (meson eventually-at-top-linorder nat-ceiling-le-eq)

instantiation rat :: linorder-topology
begin

definition open-rat :: rat set ⇒ bool
where open-rat = generate-topology (range (λa. {..< a}) ∪ range (λa. {a <..}))

instance
by standard (rule open-rat-def )

end

lemma inv-at-right-0-inf :
∀ F x in at-right 0 . c ≤ 1 / real-of-rat x

proof −
have a: c ≤ 1 / real-of-rat x if b: x ∈ {0<..<1 / rat-of-int (max dce 1 )} for x
proof −

have c ∗ real-of-rat x ≤ real-of-int (max dce 1 ) ∗ real-of-rat x
using b by (intro mult-right-mono, linarith, auto)

also have ... < real-of-int (max dce 1 ) ∗ real-of-rat (1/rat-of-int (max dce
1 ) )
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using b by (intro mult-strict-left-mono iffD2 [OF of-rat-less], auto)
also have ... ≤ 1

by (simp add:of-rat-divide)
finally have c ∗ real-of-rat x ≤ 1 by simp
moreover have 0 < real-of-rat x

using b by simp
ultimately show ?thesis by (subst pos-le-divide-eq, auto)

qed

show ?thesis
using a
by (intro eventually-at-rightI [where b=1/rat-of-int (max dce 1 )], simp-all)

qed

end

5 Probability Spaces

Some additional results about probability spaces in addition to "HOL-Probability".
theory Probability-Ext

imports
HOL−Probability.Stream-Space
Concentration-Inequalities.Bienaymes-Identity
Universal-Hash-Families.Carter-Wegman-Hash-Family
Frequency-Moments-Preliminary-Results

begin

The following aliases are here to prevent possible merge-conflicts. The
lemmas have been moved to Concentration-Inequalities.Bienaymes-Identity
and/or Concentration-Inequalities.Concentration-Inequalities-Preliminary.
lemmas make-ext = forall-Pi-to-PiE
lemmas PiE-reindex = PiE-reindex

context prob-space
begin

lemmas indep-sets-reindex = indep-sets-reindex
lemmas indep-vars-cong-AE = indep-vars-cong-AE
lemmas indep-vars-reindex = indep-vars-reindex
lemmas variance-divide = variance-divide
lemmas covariance-def = covariance-def
lemmas real-prod-integrable = cauchy-schwartz(1 )
lemmas covariance-eq = covariance-eq
lemmas covar-integrable = covar-integrable
lemmas sum-square-int = sum-square-int
lemmas var-sum-1 = bienaymes-identity
lemmas covar-self-eq = covar-self-eq
lemmas covar-indep-eq-zero = covar-indep-eq-zero
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lemmas var-sum-2 = bienaymes-identity-2
lemmas var-sum-pairwise-indep = bienaymes-identity-pairwise-indep
lemmas indep-var-from-indep-vars = indep-var-from-indep-vars
lemmas var-sum-pairwise-indep-2 = bienaymes-identity-pairwise-indep-2
lemmas var-sum-all-indep = bienaymes-identity-full-indep

lemma pmf-mono:
assumes M = measure-pmf p
assumes

∧
x. x ∈ P =⇒ x ∈ set-pmf p =⇒ x ∈ Q

shows prob P ≤ prob Q
proof −

have prob P = prob (P ∩ (set-pmf p))
by (rule measure-pmf-eq[OF assms(1 )], blast)

also have ... ≤ prob Q
using assms by (intro finite-measure.finite-measure-mono, auto)

finally show ?thesis by simp
qed

lemma pmf-add:
assumes M = measure-pmf p
assumes

∧
x. x ∈ P =⇒ x ∈ set-pmf p =⇒ x ∈ Q ∨ x ∈ R

shows prob P ≤ prob Q + prob R
proof −

have [simp]:events = UNIV by (subst assms(1 ), simp)
have prob P ≤ prob (Q ∪ R)

using assms by (intro pmf-mono[OF assms(1 )], blast)
also have ... ≤ prob Q + prob R

by (rule measure-subadditive, auto)
finally show ?thesis by simp

qed

lemma pmf-add-2 :
assumes M = measure-pmf p
assumes prob {ω. P ω} ≤ r1
assumes prob {ω. Q ω} ≤ r2
shows prob {ω. P ω ∨ Q ω} ≤ r1 + r2 (is ?lhs ≤ ?rhs)

proof −
have ?lhs ≤ prob {ω. P ω} + prob {ω. Q ω}

by (intro pmf-add[OF assms(1 )], auto)
also have ... ≤ ?rhs

by (intro add-mono assms(2−3 ))
finally show ?thesis

by simp
qed

end

end
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6 Indexed Products of Probability Mass Functions
theory Product-PMF-Ext

imports
Probability-Ext
Universal-Hash-Families.Universal-Hash-Families-More-Product-PMF

begin

The following aliases are here to prevent possible merge-conflicts. The lem-
mas have been moved to Universal-Hash-Families.Universal-Hash-Families-More-Product-PMF.
abbreviation prod-pmf where prod-pmf ≡ Universal-Hash-Families-More-Product-PMF .prod-pmf
abbreviation restrict-dfl where restrict-dfl ≡ Universal-Hash-Families-More-Product-PMF .restrict-dfl

lemmas pmf-prod-pmf = pmf-prod-pmf
lemmas PiE-defaut-undefined-eq = PiE-defaut-undefined-eq
lemmas set-prod-pmf = set-prod-pmf
lemmas prob-prod-pmf ′ = prob-prod-pmf ′

lemmas prob-prod-pmf-slice = prob-prod-pmf-slice
lemmas pi-pmf-decompose = pi-pmf-decompose
lemmas restrict-dfl-iter = restrict-dfl-iter
lemmas indep-vars-restrict ′ = indep-vars-restrict ′

lemmas indep-vars-restrict-intro ′ = indep-vars-restrict-intro ′

lemmas integrable-Pi-pmf-slice = integrable-Pi-pmf-slice
lemmas expectation-Pi-pmf-slice = expectation-Pi-pmf-slice
lemmas expectation-prod-Pi-pmf = expectation-prod-Pi-pmf
lemmas variance-prod-pmf-slice = variance-prod-pmf-slice
lemmas Pi-pmf-bind-return = Pi-pmf-bind-return

end

7 Frequency Moment 0

theory Frequency-Moment-0
imports

Frequency-Moments-Preliminary-Results
Median-Method.Median
K-Smallest
Universal-Hash-Families.Carter-Wegman-Hash-Family
Frequency-Moments
Landau-Ext
Probability-Ext
Product-PMF-Ext
Universal-Hash-Families.Universal-Hash-Families-More-Finite-Fields

begin

This section contains a formalization of a new algorithm for the zero-th
frequency moment inspired by ideas described in [2]. It is a KMV-type (k-
minimum value) algorithm with a rounding method and matches the space
complexity of the best algorithm described in [2].
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In addition to the Isabelle proof here, there is also an informal hand-written
proof in Appendix A.
type-synonym f0-state = nat × nat × nat × nat × (nat ⇒ nat list) × (nat ⇒
float set)

definition hash where hash p = ring.hash (mod-ring p)

fun f0-init :: rat ⇒ rat ⇒ nat ⇒ f0-state pmf where
f0-init δ ε n =

do {
let s = nat d−18 ∗ ln (real-of-rat ε)e;
let t = nat d80 / (real-of-rat δ)2e;
let p = prime-above (max n 19 );
let r = nat (4 ∗ dlog 2 (1 / real-of-rat δ)e + 23 );
h ← prod-pmf {..<s} (λ-. pmf-of-set (bounded-degree-polynomials (mod-ring

p) 2 ));
return-pmf (s, t, p, r , h, (λ- ∈ {0 ..<s}. {}))
}

fun f0-update :: nat ⇒ f0-state ⇒ f0-state pmf where
f0-update x (s, t, p, r , h, sketch) =

return-pmf (s, t, p, r , h, λi ∈ {..<s}.
least t (insert (float-of (truncate-down r (hash p x (h i)))) (sketch i)))

fun f0-result :: f0-state ⇒ rat pmf where
f0-result (s, t, p, r , h, sketch) = return-pmf (median s (λi ∈ {..<s}.

(if card (sketch i) < t then of-nat (card (sketch i)) else
rat-of-nat t∗ rat-of-nat p / rat-of-float (Max (sketch i)))

))

fun f0-space-usage :: (nat × rat × rat) ⇒ real where
f0-space-usage (n, ε, δ) = (

let s = nat d−18 ∗ ln (real-of-rat ε)e in
let r = nat (4 ∗ dlog 2 (1 / real-of-rat δ)e + 23 ) in
let t = nat d80 / (real-of-rat δ)2 e in
6 +
2 ∗ log 2 (real s + 1 ) +
2 ∗ log 2 (real t + 1 ) +
2 ∗ log 2 (real n + 21 ) +
2 ∗ log 2 (real r + 1 ) +
real s ∗ (5 + 2 ∗ log 2 (21 + real n) +
real t ∗ (13 + 4 ∗ r + 2 ∗ log 2 (log 2 (real n + 13 )))))

definition encode-f0-state :: f0-state ⇒ bool list option where
encode-f0-state =

N e one (λs.
N e ×e (
N e one (λp.
N e ×e (

30



([0 ..<s] →e (Pe p 2 )) ×e

([0 ..<s] →e (Se Fe))))))

lemma inj-on encode-f0-state (dom encode-f0-state)
proof −

have is-encoding encode-f0-state
unfolding encode-f0-state-def
by (intro dependent-encoding exp-golomb-encoding poly-encoding fun-encoding

set-encoding float-encoding)
thus ?thesis by (rule encoding-imp-inj)

qed

context
fixes ε δ :: rat
fixes n :: nat
fixes as :: nat list
fixes result
assumes ε-range: ε ∈ {0<..<1}
assumes δ-range: δ ∈ {0<..<1}
assumes as-range: set as ⊆ {..<n}
defines result ≡ fold (λa state. state >>= f0-update a) as (f0-init δ ε n) >>=

f0-result
begin

private definition t where t = nat d80 / (real-of-rat δ)2e
private lemma t-gt-0 : t > 0 using δ-range by (simp add:t-def )

private definition s where s = nat d−(18 ∗ ln (real-of-rat ε))e
private lemma s-gt-0 : s > 0 using ε-range by (simp add:s-def )

private definition p where p = prime-above (max n 19 )

private lemma p-prime:Factorial-Ring.prime p
using p-def prime-above-prime by presburger

private lemma p-ge-18 : p ≥ 18
proof −

have p ≥ 19
by (metis p-def prime-above-lower-bound max.bounded-iff )

thus ?thesis by simp
qed

private lemma p-gt-0 : p > 0 using p-ge-18 by simp
private lemma p-gt-1 : p > 1 using p-ge-18 by simp

private lemma n-le-p: n ≤ p
proof −

have n ≤ max n 19 by simp
also have ... ≤ p
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unfolding p-def by (rule prime-above-lower-bound)
finally show ?thesis by simp

qed

private lemma p-le-n: p ≤ 2∗n + 40
proof −

have p ≤ 2 ∗ (max n 19 ) + 2
by (subst p-def , rule prime-above-upper-bound)

also have ... ≤ 2 ∗ n + 40
by (cases n ≥ 19 , auto)

finally show ?thesis by simp
qed

private lemma as-lt-p:
∧

x. x ∈ set as =⇒ x < p
using as-range atLeastLessThan-iff
by (intro order-less-le-trans[OF - n-le-p]) blast

private lemma as-subset-p: set as ⊆ {..<p}
using as-lt-p by (simp add: subset-iff )

private definition r where r = nat (4 ∗ dlog 2 (1 / real-of-rat δ)e + 23 )

private lemma r-bound: 4 ∗ log 2 (1 / real-of-rat δ) + 23 ≤ r
proof −

have 0 ≤ log 2 (1 / real-of-rat δ) using δ-range by simp
hence 0 ≤ dlog 2 (1 / real-of-rat δ)e by simp
hence 0 ≤ 4 ∗ dlog 2 (1 / real-of-rat δ)e + 23

by (intro add-nonneg-nonneg mult-nonneg-nonneg, auto)
thus ?thesis by (simp add:r-def )

qed

private lemma r-ge-23 : r ≥ 23
proof −

have (23 ::real) = 0 + 23 by simp
also have ... ≤ 4 ∗ log 2 (1 / real-of-rat δ) + 23

using δ-range by (intro add-mono mult-nonneg-nonneg, auto)
also have ... ≤ r using r-bound by simp
finally show 23 ≤ r by simp

qed

private lemma two-pow-r-le-1 : 0 < 1 − 2 powr − real r
proof −

have a: 2 powr (0 ::real) = 1
by simp

show ?thesis using r-ge-23
by (simp, subst a[symmetric], intro powr-less-mono, auto)

qed

interpretation carter-wegman-hash-family mod-ring p 2
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rewrites ring.hash (mod-ring p) = Frequency-Moment-0 .hash p
using carter-wegman-hash-familyI [OF mod-ring-is-field mod-ring-finite]
using hash-def p-prime by auto

private definition tr-hash where tr-hash x ω = truncate-down r (hash x ω)

private definition sketch-rv where
sketch-rv ω = least t ((λx. float-of (tr-hash x ω)) ‘ set as)

private definition estimate
where estimate S = (if card S < t then of-nat (card S) else of-nat t ∗ of-nat p

/ rat-of-float (Max S))

private definition sketch-rv ′ where sketch-rv ′ ω = least t ((λx. tr-hash x ω) ‘
set as)
private definition estimate ′ where estimate ′ S = (if card S < t then real (card
S) else real t ∗ real p / Max S)

private definition Ω0 where Ω0 = prod-pmf {..<s} (λ-. pmf-of-set space)

private lemma f0-alg-sketch:
defines sketch ≡ fold (λa state. state >>= f0-update a) as (f0-init δ ε n)
shows sketch = map-pmf (λx. (s,t,p,r , x, λi ∈ {..<s}. sketch-rv (x i))) Ω0

unfolding sketch-rv-def
proof (subst sketch-def , induction as rule:rev-induct)

case Nil
then show ?case

by (simp add:s-def p-def [symmetric] map-pmf-def t-def r-def Let-def least-def
restrict-def space-def Ω0-def )
next

case (snoc x xs)
let ?sketch = λω xs. least t ((λa. float-of (tr-hash a ω)) ‘ set xs)
have fold (λa state. state >>= f0-update a) (xs @ [x]) (f0-init δ ε n) =
(map-pmf (λω. (s, t, p, r , ω, λi ∈ {..<s}. ?sketch (ω i) xs)) Ω0) >>= f0-update

x
by (simp add: restrict-def snoc del:f0-init.simps)

also have ... = Ω0 >>= (λω. f0-update x (s, t, p, r , ω, λi∈{..<s}. ?sketch (ω i)
xs))

by (simp add:map-pmf-def bind-assoc-pmf bind-return-pmf del:f0-update.simps)
also have ... = map-pmf (λω. (s, t, p, r , ω, λi∈{..<s}. ?sketch (ω i) (xs@[x])))

Ω0

by (simp add:least-insert map-pmf-def tr-hash-def cong:restrict-cong)
finally show ?case by blast

qed

private lemma card-nat-in-ball:
fixes x :: nat
fixes q :: real
assumes q ≥ 0
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defines A ≡ {k. abs (real x − real k) ≤ q ∧ k 6= x}
shows real (card A) ≤ 2 ∗ q and finite A

proof −
have a: of-nat x ∈ {dreal x−qe..breal x+qc}

using assms
by (simp add: ceiling-le-iff )

have card A = card (int ‘ A)
by (rule card-image[symmetric], simp)

also have ... ≤ card ({dreal x−qe..breal x+qc} − {of-nat x})
by (intro card-mono image-subsetI , simp-all add:A-def abs-le-iff , linarith)

also have ... = card {dreal x−qe..breal x+qc} − 1
by (rule card-Diff-singleton, rule a)

also have ... = int (card {dreal x−qe..breal x+qc}) − int 1
by (intro of-nat-diff )
(metis a card-0-eq empty-iff finite-atLeastAtMost-int less-one linorder-not-le)

also have ... ≤ bq+real xc+1 −dreal x−qe − 1
using assms by (simp, linarith)

also have ... ≤ 2∗q
by linarith

finally show card A ≤ 2 ∗ q
by simp

have A ⊆ {..x + nat dqe}
by (rule subsetI , simp add:A-def abs-le-iff , linarith)

thus finite A
by (rule finite-subset, simp)

qed

private lemma prob-degree-lt-1 :
prob {ω. degree ω < 1} ≤ 1/real p

proof −
have space ∩ {ω. length ω ≤ Suc 0} = bounded-degree-polynomials (mod-ring p)

1
by (auto simp:set-eq-iff bounded-degree-polynomials-def space-def )

moreover have field-size = p by (simp add:mod-ring-def )
hence real (card (bounded-degree-polynomials (mod-ring p) (Suc 0 ))) / real (card

space) = 1 / real p
by (simp add:space-def bounded-degree-polynomials-card power2-eq-square)

ultimately show ?thesis
by (simp add:M-def measure-pmf-of-set)

qed

private lemma collision-prob:
assumes c ≥ 1
shows prob {ω. ∃ x ∈ set as. ∃ y ∈ set as. x 6= y ∧ tr-hash x ω ≤ c ∧ tr-hash x

ω = tr-hash y ω} ≤
(5/2 ) ∗ (real (card (set as)))2 ∗ c2 ∗ 2 powr −(real r) / (real p)2 + 1/real p

(is prob {ω. ?l ω} ≤ ?r1 + ?r2 )
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proof −
define % :: real where % = 9/8

have rho-c-ge-0 : % ∗ c ≥ 0 unfolding %-def using assms by simp

have c-ge-0 : c≥0 using assms by simp

have degree ω ≥ 1 =⇒ ω ∈ space =⇒ degree ω = 1 for ω
by (simp add:bounded-degree-polynomials-def space-def )
(metis One-nat-def Suc-1 le-less-Suc-eq less-imp-diff-less list.size(3 ) pos2 )

hence a:
∧
ω x y. x < p =⇒ y < p =⇒ x 6= y =⇒ degree ω ≥ 1 =⇒ ω ∈ space

=⇒ hash x ω 6= hash y ω
using inj-onD[OF inj-if-degree-1 ] mod-ring-carr by blast

have b: prob {ω. degree ω ≥ 1 ∧ tr-hash x ω ≤ c ∧ tr-hash x ω = tr-hash y ω}
≤ 5 ∗ c2 ∗ 2 powr (−real r) /(real p)2

if b-assms: x ∈ set as y ∈ set as x < y for x y
proof −

have c: real u ≤ % ∗ c ∧ |real u − real v| ≤ % ∗ c ∗ 2 powr (−real r)
if c-assms:truncate-down r (real u) ≤ c truncate-down r (real u) = trun-

cate-down r (real v) for u v
proof −

have 9 ∗ 2 powr − real r ≤ 9 ∗ 2 powr (− real 23 )
using r-ge-23 by (intro mult-left-mono powr-mono, auto)

also have ... ≤ 1 by simp

finally have 9 ∗ 2 powr − real r ≤ 1 by simp

hence 1 ≤ % ∗ (1 − 2 powr (− real r))
by (simp add:%-def )

hence d: (c∗1 ) / (1 − 2 powr (−real r)) ≤ c ∗ %
using assms two-pow-r-le-1 by (simp add: pos-divide-le-eq)

have
∧

x. truncate-down r (real x) ≤ c =⇒ real x ∗ (1 − 2 powr − real r) ≤
c ∗ 1

using truncate-down-pos[OF of-nat-0-le-iff ] order-trans by (simp, blast)

hence
∧

x. truncate-down r (real x) ≤ c =⇒ real x ≤ c ∗ %
using two-pow-r-le-1 by (intro order-trans[OF - d], simp add: pos-le-divide-eq)

hence e: real u ≤ c ∗ % real v ≤ c ∗ %
using c-assms by auto

have |real u − real v| ≤ (max |real u| |real v|) ∗ 2 powr (−real r)
using c-assms by (intro truncate-down-eq, simp)
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also have ... ≤ (c ∗ %) ∗ 2 powr (−real r)
using e by (intro mult-right-mono, auto)

finally have |real u − real v| ≤ % ∗ c ∗ 2 powr (−real r)
by (simp add:algebra-simps)

thus ?thesis using e by (simp add:algebra-simps)
qed

have prob {ω. degree ω ≥ 1 ∧ tr-hash x ω ≤ c ∧ tr-hash x ω = tr-hash y ω} ≤
prob (

⋃
i ∈ {(u,v) ∈ {..<p} × {..<p}. u 6= v ∧ truncate-down r u ≤ c ∧

truncate-down r u = truncate-down r v}.
{ω. hash x ω = fst i ∧ hash y ω = snd i})
using a by (intro pmf-mono[OF M-def ], simp add:tr-hash-def )
(metis hash-range mod-ring-carr b-assms as-subset-p lessThan-iff nat-neq-iff

subset-eq)

also have ... ≤ (
∑

i∈ {(u,v) ∈ {..<p} × {..<p}. u 6= v ∧
truncate-down r u ≤ c ∧ truncate-down r u = truncate-down r v}.
prob {ω. hash x ω = fst i ∧ hash y ω = snd i})

by (intro measure-UNION-le finite-cartesian-product finite-subset[where
B={0 ..<p} × {0 ..<p}])

(auto simp add:M-def )

also have ... ≤ (
∑

i∈ {(u,v) ∈ {..<p} × {..<p}. u 6= v ∧
truncate-down r u ≤ c ∧ truncate-down r u = truncate-down r v}.
prob {ω. (∀ u ∈ {x,y}. hash u ω = (if u = x then (fst i) else (snd i)))})
by (intro sum-mono pmf-mono[OF M-def ]) force

also have ... ≤ (
∑

i∈ {(u,v) ∈ {..<p} × {..<p}. u 6= v ∧
truncate-down r u ≤ c ∧ truncate-down r u = truncate-down r v}. 1/(real

p)2)
using assms as-subset-p b-assms

by (intro sum-mono, subst hash-prob) (auto simp add: mod-ring-def power2-eq-square)

also have ... = 1/(real p)2 ∗
card {(u,v) ∈ {0 ..<p} × {0 ..<p}. u 6= v ∧ truncate-down r u ≤ c ∧ trun-

cate-down r u = truncate-down r v}
by simp

also have ... ≤ 1/(real p)2 ∗
card {(u,v) ∈ {..<p} × {..<p}. u 6= v ∧ real u ≤ % ∗ c ∧ abs (real u − real

v) ≤ % ∗ c ∗ 2 powr (−real r)}
using c

by (intro mult-mono of-nat-mono card-mono finite-cartesian-product finite-subset[where
B={..<p}×{..<p}])

auto

also have ... ≤ 1/(real p)2 ∗ card (
⋃

u ′ ∈ {u. u < p ∧ real u ≤ % ∗ c}.
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{(u::nat,v::nat). u = u ′ ∧ abs (real u − real v) ≤ % ∗ c ∗ 2 powr (−real r)
∧ v < p ∧ v 6= u ′})

by (intro mult-left-mono of-nat-mono card-mono finite-cartesian-product fi-
nite-subset[where B={..<p}×{..<p}])

auto

also have ... ≤ 1/(real p)2 ∗ (
∑

u ′ ∈ {u. u < p ∧ real u ≤ % ∗ c}.
card {(u,v). u = u ′ ∧ abs (real u − real v) ≤ % ∗ c ∗ 2 powr (−real r) ∧ v

< p ∧ v 6= u ′})
by (intro mult-left-mono of-nat-mono card-UN-le, auto)

also have ... = 1/(real p)2 ∗ (
∑

u ′ ∈ {u. u < p ∧ real u ≤ % ∗ c}.
card ((λx. (u ′ ,x)) ‘ {v. abs (real u ′ − real v) ≤ % ∗ c ∗ 2 powr (−real r) ∧ v

< p ∧ v 6= u ′}))
by (intro arg-cong2 [where f=(∗)] arg-cong[where f=real] sum.cong arg-cong[where

f=card])
(auto simp add:set-eq-iff )

also have ... ≤ 1/(real p)2 ∗ (
∑

u ′ ∈ {u. u < p ∧ real u ≤ % ∗ c}.
card {v. abs (real u ′ − real v) ≤ % ∗ c ∗ 2 powr (−real r) ∧ v < p ∧ v 6= u ′})
by (intro mult-left-mono of-nat-mono sum-mono card-image-le, auto)

also have ... ≤ 1/(real p)2 ∗ (
∑

u ′ ∈ {u. u < p ∧ real u ≤ % ∗ c}.
card {v. abs (real u ′ − real v) ≤ % ∗ c ∗ 2 powr (−real r) ∧ v 6= u ′})
by (intro mult-left-mono sum-mono of-nat-mono card-mono card-nat-in-ball

subsetI ) auto

also have ... ≤ 1/(real p)2 ∗ (
∑

u ′ ∈ {u. u < p ∧ real u ≤ % ∗ c}.
real (card {v. abs (real u ′ − real v) ≤ % ∗ c ∗ 2 powr (−real r) ∧ v 6= u ′}))
by simp

also have ... ≤ 1/(real p)2 ∗ (
∑

u ′ ∈ {u. u < p ∧ real u ≤ % ∗ c}. 2 ∗ (% ∗ c
∗ 2 powr (−real r)))

by (intro mult-left-mono sum-mono card-nat-in-ball(1 ), auto)

also have ... = 1/(real p)2 ∗ (real (card {u. u < p ∧ real u ≤ % ∗ c}) ∗ (2 ∗
(% ∗ c ∗ 2 powr (−real r))))

by simp

also have ... ≤ 1/(real p)2 ∗ (real (card {u. u ≤ nat (b% ∗ c c)}) ∗ (2 ∗ (% ∗
c ∗ 2 powr (−real r))))

using rho-c-ge-0 le-nat-floor
by (intro mult-left-mono mult-right-mono of-nat-mono card-mono subsetI )

auto

also have ... ≤ 1/(real p)2 ∗ ((1+% ∗ c) ∗ (2 ∗ (% ∗ c ∗ 2 powr (−real r))))
using rho-c-ge-0 by (intro mult-left-mono mult-right-mono, auto)

also have ... ≤ 1/(real p)2 ∗ (((1+%) ∗ c) ∗ (2 ∗ (% ∗ c ∗ 2 powr (−real r))))
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using assms by (intro mult-mono, auto simp add:distrib-left distrib-right
%-def )

also have ... = (% ∗ (2 + % ∗ 2 )) ∗ c2 ∗ 2 powr (−real r) /(real p)2
by (simp add:ac-simps power2-eq-square)

also have ... ≤ 5 ∗ c2 ∗ 2 powr (−real r) /(real p)2
by (intro divide-right-mono mult-right-mono) (auto simp add:%-def )

finally show ?thesis by simp
qed

have prob {ω. ?l ω ∧ degree ω ≥ 1} ≤
prob (

⋃
i ∈ {(x,y) ∈ (set as) × (set as). x < y}. {ω. degree ω ≥ 1 ∧ tr-hash

(fst i) ω ≤ c ∧
tr-hash (fst i) ω = tr-hash (snd i) ω})
by (rule pmf-mono[OF M-def ], simp, metis linorder-neqE-nat)

also have ... ≤ (
∑

i ∈ {(x,y) ∈ (set as) × (set as). x < y}. prob
{ω. degree ω ≥ 1 ∧ tr-hash (fst i) ω ≤ c ∧ tr-hash (fst i) ω = tr-hash (snd i)

ω})
unfolding M-def

by (intro measure-UNION-le finite-cartesian-product finite-subset[where B=(set
as) × (set as)])

auto

also have ... ≤ (
∑

i ∈ {(x,y) ∈ (set as) × (set as). x < y}. 5 ∗ c2 ∗ 2 powr
(−real r) /(real p)2)

using b by (intro sum-mono, simp add:case-prod-beta)

also have ... = ((5/2 ) ∗ c2 ∗ 2 powr (−real r) /(real p)2) ∗ (2 ∗ card {(x,y)
∈ (set as) × (set as). x < y})

by simp

also have ... = ((5/2 ) ∗ c2 ∗ 2 powr (−real r) /(real p)2) ∗ (card (set as) ∗
(card (set as) − 1 ))

by (subst card-ordered-pairs, auto)

also have ... ≤ ((5/2 ) ∗ c2 ∗ 2 powr (−real r) /(real p)2) ∗ (real (card (set
as)))2

by (intro mult-left-mono) (auto simp add:power2-eq-square mult-left-mono)

also have ... = (5/2 ) ∗ (real (card (set as)))2 ∗ c2 ∗ 2 powr (−real r) /(real p)2
by (simp add:algebra-simps)

finally have f :prob {ω. ?l ω ∧ degree ω ≥ 1} ≤ ?r1 by simp

have prob {ω. ?l ω} ≤ prob {ω. ?l ω ∧ degree ω ≥ 1} + prob {ω. degree ω < 1}
by (rule pmf-add[OF M-def ], auto)
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also have ... ≤ ?r1 + ?r2
by (intro add-mono f prob-degree-lt-1 )

finally show ?thesis by simp
qed

private lemma of-bool-square: (of-bool x)2 = ((of-bool x)::real)
by (cases x, auto)

private definition Q where Q y ω = card {x ∈ set as. int (hash x ω) < y}

private definition m where m = card (set as)

private lemma
assumes a ≥ 0
assumes a ≤ int p
shows exp-Q: expectation (λω. real (Q a ω)) = real m ∗ (of-int a) / p
and var-Q: variance (λω. real (Q a ω)) ≤ real m ∗ (of-int a) / p

proof −
have exp-single: expectation (λω. of-bool (int (hash x ω) < a)) = real-of-int a

/real p
if a:x ∈ set as for x

proof −
have x-le-p: x < p using a as-lt-p by simp
have expectation (λω. of-bool (int (hash x ω) < a)) = expectation (indicat-real

{ω. int (Frequency-Moment-0 .hash p x ω) < a})
by (intro arg-cong2 [where f=integralL] ext, simp-all)

also have ... = prob {ω. hash x ω ∈ {k. int k < a}}
by (simp add:M-def )

also have ... = card ({k. int k < a} ∩ {..<p}) / real p
by (subst prob-range, simp-all add: x-le-p mod-ring-def )

also have ... = card {..<nat a} / real p
using assms by (intro arg-cong2 [where f=(/)] arg-cong[where f=real]

arg-cong[where f=card])
(auto simp add:set-eq-iff )

also have ... = real-of-int a/real p
using assms by simp

finally show expectation (λω. of-bool (int (hash x ω) < a)) = real-of-int a /real
p

by simp
qed

have expectation(λω. real (Q a ω)) = expectation (λω. (
∑

x ∈ set as. of-bool (int
(hash x ω) < a)))

by (simp add:Q-def Int-def )
also have ... = (

∑
x ∈ set as. expectation (λω. of-bool (int (hash x ω) < a)))

by (rule Bochner-Integration.integral-sum, simp)
also have ... = (

∑
x ∈ set as. a /real p)

by (rule sum.cong, simp, subst exp-single, simp, simp)
also have ... = real m ∗ real-of-int a / real p
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by (simp add:m-def )
finally show expectation (λω. real (Q a ω)) = real m ∗ real-of-int a / p by simp

have indep: J ⊆ set as =⇒ card J = 2 =⇒ indep-vars (λ-. borel) (λi x. of-bool
(int (hash i x) < a)) J for J

using as-subset-p mod-ring-carr
by (intro indep-vars-compose2 [where Y=λi x . of-bool (int x < a) and M ′=λ-.

discrete]
k-wise-indep-vars-subset[OF k-wise-indep] finite-subset[OF - finite-set]) auto

have rv:
∧

x. x ∈ set as =⇒ random-variable borel (λω. of-bool (int (hash x ω)
< a))

by (simp add:M-def )

have variance (λω. real (Q a ω)) = variance (λω. (
∑

x ∈ set as. of-bool (int
(hash x ω) < a)))

by (simp add:Q-def Int-def )
also have ... = (

∑
x ∈ set as. variance (λω. of-bool (int (hash x ω) < a)))

by (intro bienaymes-identity-pairwise-indep-2 indep rv) auto
also have ... ≤ (

∑
x ∈ set as. a / real p)

by (rule sum-mono, simp add: variance-eq of-bool-square, simp add: exp-single)
also have ... = real m ∗ real-of-int a /real p

by (simp add:m-def )
finally show variance (λω. real (Q a ω)) ≤ real m ∗ real-of-int a / p

by simp
qed

private lemma t-bound: t ≤ 81 / (real-of-rat δ)2

proof −
have t ≤ 80 / (real-of-rat δ)2 + 1 using t-def t-gt-0 by linarith
also have ... ≤ 80 / (real-of-rat δ)2 + 1 / (real-of-rat δ)2

using δ-range by (intro add-mono, simp, simp add:power-le-one)
also have ... = 81 / (real-of-rat δ)2 by simp
finally show ?thesis by simp

qed

private lemma t-r-bound:
18 ∗ 40 ∗ (real t)2 ∗ 2 powr (−real r) ≤ 1

proof −
have 720 ∗ (real t)2 ∗ 2 powr (−real r) ≤ 720 ∗ (81 / (real-of-rat δ)2)2 ∗ 2 powr

(−4 ∗ log 2 (1 / real-of-rat δ) − 23 )
using r-bound t-bound by (intro mult-left-mono mult-mono power-mono powr-mono,

auto)

also have ... ≤ 720 ∗ (81 / (real-of-rat δ)2)2 ∗ (2 powr (−4 ∗ log 2 (1 /
real-of-rat δ)) ∗ 2 powr (−23 ))

using δ-range by (intro mult-left-mono mult-mono power-mono add-mono)
(simp-all add:power-le-one powr-diff )
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also have ... = 720 ∗ (81 2 / (real-of-rat δ)^4 ) ∗ (2 powr (log 2 ((real-of-rat
δ)^4 )) ∗ 2 powr (−23 ))

using δ-range by (intro arg-cong2 [where f=(∗)])
(simp-all add:power2-eq-square power4-eq-xxxx log-divide log-powr [symmetric])

also have ... = 720 ∗ 81 2 ∗ 2 powr (−23 ) using δ-range by simp

also have ... ≤ 1 by simp

finally show ?thesis by simp
qed

private lemma m-eq-F-0 : real m = of-rat (F 0 as)
by (simp add:m-def F-def )

private lemma estimate ′-bounds:
prob {ω. of-rat δ ∗ real-of-rat (F 0 as) < |estimate ′ (sketch-rv ′ ω) − of-rat (F 0

as)|} ≤ 1/3
proof (cases card (set as) ≥ t)

case True
define δ ′ where δ ′ = 3 ∗ real-of-rat δ / 4
define u where u = dreal t ∗ p / (m ∗ (1+δ ′))e
define v where v = breal t ∗ p / (m ∗ (1−δ ′))c

define has-no-collision where
has-no-collision = (λω. ∀ x∈ set as. ∀ y ∈ set as. (tr-hash x ω = tr-hash y ω

−→ x = y) ∨ tr-hash x ω > v)

have 2 powr (−real r) ≤ 2 powr (−(4 ∗ log 2 (1 / real-of-rat δ) + 23 ))
using r-bound by (intro powr-mono, linarith, simp)

also have ... = 2 powr (−4 ∗ log 2 (1 /real-of-rat δ) −23 )
by (rule arg-cong2 [where f=(powr)], auto simp add:algebra-simps)

also have ... ≤ 2 powr ( −1 ∗ log 2 (1 /real-of-rat δ) −4 )
using δ-range by (intro powr-mono diff-mono, auto)

also have ... = 2 powr ( −1 ∗ log 2 (1 /real-of-rat δ)) / 16
by (simp add: powr-diff )

also have ... = real-of-rat δ / 16
using δ-range by (simp add:log-divide)

also have ... < real-of-rat δ / 8
using δ-range by (subst pos-divide-less-eq, auto)

finally have r-le-δ: 2 powr (−real r) < real-of-rat δ / 8
by simp

have δ ′-gt-0 : δ ′ > 0 using δ-range by (simp add:δ ′-def )
have δ ′ < 3/4 using δ-range by (simp add:δ ′-def )+
also have ... < 1 by simp
finally have δ ′-lt-1 : δ ′ < 1 by simp

have t ≤ 81 / (real-of-rat δ)2

41



using t-bound by simp
also have ... = (81∗9/16 ) / (δ ′)2

by (simp add:δ ′-def power2-eq-square)
also have ... ≤ 46 / δ ′2

by (intro divide-right-mono, simp, simp)
finally have t-le-δ ′: t ≤ 46/ δ ′2 by simp

have 80 ≤ (real-of-rat δ)2 ∗ (80 / (real-of-rat δ)2) using δ-range by simp
also have ... ≤ (real-of-rat δ)2 ∗ t

by (intro mult-left-mono, simp add:t-def of-nat-ceiling, simp)
finally have 80 ≤ (real-of-rat δ)2 ∗ t by simp
hence t-ge-δ ′: 45 ≤ t ∗ δ ′ ∗ δ ′ by (simp add:δ ′-def power2-eq-square)

have m ≤ card {..<n} unfolding m-def using as-range by (intro card-mono,
auto)

also have ... ≤ p using n-le-p by simp
finally have m-le-p: m ≤ p by simp

hence t-le-m: t ≤ card (set as) using True by simp
have m-ge-0 : real m > 0 using m-def True t-gt-0 by simp

have v ≤ real t ∗ real p / (real m ∗ (1 − δ ′)) by (simp add:v-def )

also have ... ≤ real t ∗ real p / (real m ∗ (1/4 ))
using δ ′-lt-1 m-ge-0 δ-range
by (intro divide-left-mono mult-left-mono mult-nonneg-nonneg mult-pos-pos,

simp-all add:δ ′-def )

finally have v-ubound: v ≤ 4 ∗ real t ∗ real p / real m by (simp add:algebra-simps)

have a-ge-1 : u ≥ 1 using δ ′-gt-0 p-gt-0 m-ge-0 t-gt-0
by (auto intro!:mult-pos-pos divide-pos-pos simp add:u-def )

hence a-ge-0 : u ≥ 0 by simp
have real m ∗ (1 − δ ′) < real m using δ ′-gt-0 m-ge-0 by simp
also have ... ≤ 1 ∗ real p using m-le-p by simp
also have ... ≤ real t ∗ real p using t-gt-0 by (intro mult-right-mono, auto)
finally have real m ∗ (1 − δ ′) < real t ∗ real p by simp
hence v-gt-0 : v > 0 using mult-pos-pos m-ge-0 δ ′-lt-1 by (simp add:v-def )
hence v-ge-1 : real-of-int v ≥ 1 by linarith

have real t ≤ real m using True m-def by linarith
also have ... < (1 + δ ′) ∗ real m using δ ′-gt-0 m-ge-0 by force
finally have a-le-p-aux: real t < (1 + δ ′) ∗ real m by simp

have u ≤ real t ∗ real p / (real m ∗ (1 + δ ′))+1 by (simp add:u-def )
also have ... < real p + 1

using m-ge-0 δ ′-gt-0 a-le-p-aux a-le-p-aux p-gt-0
by (simp add: pos-divide-less-eq ac-simps)

finally have u ≤ real p
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by (metis int-less-real-le not-less of-int-le-iff of-int-of-nat-eq)
hence u-le-p: u ≤ int p by linarith

have prob {ω. Q u ω ≥ t} ≤ prob {ω ∈ Sigma-Algebra.space M . abs (real (Q u
ω) −

expectation (λω. real (Q u ω))) ≥ 3 ∗ sqrt (m ∗ real-of-int u / p)}
proof (rule pmf-mono[OF M-def ])

fix ω
assume ω ∈ {ω. t ≤ Q u ω}
hence t-le: t ≤ Q u ω by simp
have real m ∗ real-of-int u / real p ≤ real m ∗ (real t ∗ real p / (real m ∗ (1 +

δ ′))+1 ) / real p
using m-ge-0 p-gt-0 by (intro divide-right-mono mult-left-mono, simp-all add:

u-def )
also have ... = real m ∗ real t ∗ real p / (real m ∗ (1+δ ′) ∗ real p) + real m /

real p
by (simp add:distrib-left add-divide-distrib)

also have ... = real t / (1+δ ′) + real m / real p
using p-gt-0 m-ge-0 by simp

also have ... ≤ real t / (1+δ ′) + 1
using m-le-p p-gt-0 by (intro add-mono, auto)

finally have real m ∗ real-of-int u / real p ≤ real t / (1 + δ ′) + 1
by simp

hence 3 ∗ sqrt (real m ∗ of-int u / real p) + real m ∗ of-int u / real p ≤
3 ∗ sqrt (t / (1+δ ′)+1 )+(t/(1+δ ′)+1 )
by (intro add-mono mult-left-mono real-sqrt-le-mono, auto)

also have ... ≤ 3 ∗ sqrt (real t+1 ) + ((t ∗ (1 − δ ′ / (1+δ ′))) + 1 )
using δ ′-gt-0 t-gt-0 by (intro add-mono mult-left-mono real-sqrt-le-mono)
(simp-all add: pos-divide-le-eq left-diff-distrib)

also have ... = 3 ∗ sqrt (real t+1 ) + (t − δ ′ ∗ t / (1+δ ′)) + 1 by (simp
add:algebra-simps)

also have ... ≤ 3 ∗ sqrt (46 / δ ′2 + 1 / δ ′2) + (t − δ ′ ∗ t/2 ) + 1 / δ ′

using δ ′-gt-0 t-gt-0 δ ′-lt-1 add-pos-pos t-le-δ ′

by (intro add-mono mult-left-mono real-sqrt-le-mono add-mono)
(simp-all add: power-le-one pos-le-divide-eq)

also have ... ≤ (21 / δ ′ + (t − 45 / (2∗δ ′))) + 1 / δ ′

using δ ′-gt-0 t-ge-δ ′ by (intro add-mono)
(simp-all add:real-sqrt-divide divide-le-cancel real-le-lsqrt pos-divide-le-eq

ac-simps)
also have ... ≤ t using δ ′-gt-0 by simp
also have ... ≤ Q u ω using t-le by simp
finally have 3 ∗ sqrt (real m ∗ of-int u / real p) + real m ∗ of-int u / real p

≤ Q u ω
by simp

hence 3 ∗ sqrt (real m ∗ real-of-int u / real p) ≤ |real (Q u ω) − expectation
(λω. real (Q u ω))|

using a-ge-0 u-le-p True by (simp add:exp-Q abs-ge-iff )

43



thus ω ∈ {ω ∈ Sigma-Algebra.space M . 3 ∗ sqrt (real m ∗ real-of-int u / real
p) ≤

|real (Q u ω) − expectation (λω. real (Q u ω))|}
by (simp add: M-def )

qed
also have ... ≤ variance (λω. real (Q u ω)) / (3 ∗ sqrt (real m ∗ of-int u / real

p))2
using a-ge-1 p-gt-0 m-ge-0
by (intro Chebyshev-inequality, simp add:M-def , auto)

also have ... ≤ (real m ∗ real-of-int u / real p) / (3 ∗ sqrt (real m ∗ of-int u /
real p))2

using a-ge-0 u-le-p by (intro divide-right-mono var-Q, auto)

also have ... ≤ 1/9 using a-ge-0 by simp

finally have case-1 : prob {ω. Q u ω ≥ t} ≤ 1/9 by simp

have case-2 : prob {ω. Q v ω < t} ≤ 1/9
proof (cases v ≤ p)

case True
have prob {ω. Q v ω < t} ≤ prob {ω ∈ Sigma-Algebra.space M . abs (real (Q v

ω) − expectation (λω. real (Q v ω)))
≥ 3 ∗ sqrt (m ∗ real-of-int v / p)}

proof (rule pmf-mono[OF M-def ])
fix ω
assume ω ∈ set-pmf (pmf-of-set space)
have (real t + 3 ∗ sqrt (real t / (1 − δ ′) )) ∗ (1 − δ ′) = real t − δ ′ ∗ t + 3

∗ ((1−δ ′) ∗ sqrt( real t / (1−δ ′) ))
by (simp add:algebra-simps)

also have ... = real t − δ ′ ∗ t + 3 ∗ sqrt ( (1−δ ′)2 ∗ (real t / (1−δ ′)))
using δ ′-lt-1 by (subst real-sqrt-mult, simp)

also have ... = real t − δ ′ ∗ t + 3 ∗ sqrt ( real t ∗ (1− δ ′))
by (simp add:power2-eq-square distrib-left)

also have ... ≤ real t − 45/ δ ′ + 3 ∗ sqrt ( real t )
using δ ′-gt-0 t-ge-δ ′ δ ′-lt-1 by (intro add-mono mult-left-mono real-sqrt-le-mono)

(simp-all add:pos-divide-le-eq ac-simps left-diff-distrib power-le-one)

also have ... ≤ real t − 45/ δ ′ + 3 ∗ sqrt ( 46 / δ ′2)
using t-le-δ ′ δ ′-lt-1 δ ′-gt-0

by (intro add-mono mult-left-mono real-sqrt-le-mono, simp-all add:pos-divide-le-eq
power-le-one)

also have ... = real t + (3 ∗ sqrt(46 ) − 45 )/ δ ′

using δ ′-gt-0 by (simp add:real-sqrt-divide diff-divide-distrib)
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also have ... ≤ t
using δ ′-gt-0 by (simp add:pos-divide-le-eq real-le-lsqrt)

finally have aux: (real t + 3 ∗ sqrt (real t / (1 − δ ′))) ∗ (1 − δ ′) ≤ real t
by simp

assume ω ∈ {ω. Q v ω < t}
hence Q v ω < t by simp

hence real (Q v ω) + 3 ∗ sqrt (real m ∗ real-of-int v / real p)
≤ real t − 1 + 3 ∗ sqrt (real m ∗ real-of-int v / real p)

using m-le-p p-gt-0 by (intro add-mono, auto simp add: algebra-simps
add-divide-distrib)

also have ... ≤ (real t−1 ) + 3 ∗ sqrt (real m ∗ (real t ∗ real p / (real m ∗
(1− δ ′))) / real p)

by (intro add-mono mult-left-mono real-sqrt-le-mono divide-right-mono)
(auto simp add:v-def )

also have ... ≤ real t + 3 ∗ sqrt(real t / (1−δ ′)) − 1
using m-ge-0 p-gt-0 by simp

also have ... ≤ real t / (1−δ ′)−1
using δ ′-lt-1 aux by (simp add: pos-le-divide-eq)

also have ... ≤ real m ∗ (real t ∗ real p / (real m ∗ (1−δ ′))) / real p − 1
using p-gt-0 m-ge-0 by simp

also have ... ≤ real m ∗ (real t ∗ real p / (real m ∗ (1−δ ′))) / real p − real
m / real p

using m-le-p p-gt-0
by (intro diff-mono, auto)

also have ... = real m ∗ (real t ∗ real p / (real m ∗ (1−δ ′))−1 ) / real p
by (simp add: left-diff-distrib right-diff-distrib diff-divide-distrib)

also have ... ≤ real m ∗ real-of-int v / real p
by (intro divide-right-mono mult-left-mono, simp-all add:v-def )

finally have real (Q v ω) + 3 ∗ sqrt (real m ∗ real-of-int v / real p)
≤ real m ∗ real-of-int v / real p by simp

hence 3 ∗ sqrt (real m ∗ real-of-int v / real p) ≤ |real (Q v ω) −expectation
(λω. real (Q v ω))|

using v-gt-0 True by (simp add: exp-Q abs-ge-iff )

thus ω ∈ {ω∈ Sigma-Algebra.space M . 3 ∗ sqrt (real m ∗ real-of-int v / real
p) ≤

|real (Q v ω) − expectation (λω. real (Q v ω))|}
by (simp add:M-def )

qed
also have ... ≤ variance (λω. real (Q v ω)) / (3 ∗ sqrt (real m ∗ real-of-int v

/ real p))2
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using v-gt-0 p-gt-0 m-ge-0
by (intro Chebyshev-inequality, simp add:M-def , auto)

also have ... ≤ (real m ∗ real-of-int v / real p) / (3 ∗ sqrt (real m ∗ real-of-int
v / real p))2

using v-gt-0 True by (intro divide-right-mono var-Q, auto)

also have ... = 1/9
using p-gt-0 v-gt-0 m-ge-0 by (simp add:power2-eq-square)

finally show ?thesis by simp
next

case False
have prob {ω. Q v ω < t} ≤ prob {ω. False}
proof (rule pmf-mono[OF M-def ])

fix ω
assume a:ω ∈ {ω. Q v ω < t}
assume ω ∈ set-pmf (pmf-of-set space)
hence b:

∧
x. x < p =⇒ hash x ω < p

using hash-range mod-ring-carr by (simp add:M-def measure-pmf-inverse)
have t ≤ card (set as) using True by simp
also have ... ≤ Q v ω

unfolding Q-def using b False as-lt-p by (intro card-mono subsetI , simp,
force)

also have ... < t using a by simp
finally have False by auto
thus ω ∈ {ω. False} by simp

qed
also have ... = 0 by auto
finally show ?thesis by simp

qed

have prob {ω. ¬has-no-collision ω} ≤
prob {ω. ∃ x ∈ set as. ∃ y ∈ set as. x 6= y ∧ tr-hash x ω ≤ real-of-int v ∧ tr-hash

x ω = tr-hash y ω}
by (rule pmf-mono[OF M-def ]) (simp add:has-no-collision-def M-def , force)

also have ... ≤ (5/2 ) ∗ (real (card (set as)))2 ∗ (real-of-int v)2 ∗ 2 powr − real
r / (real p)2 + 1 / real p

using collision-prob v-ge-1 by blast

also have ... ≤ (5/2 ) ∗ (real m)2 ∗ (real-of-int v)2 ∗ 2 powr − real r / (real p)2
+ 1 / real p

by (intro divide-right-mono add-mono mult-right-mono mult-mono power-mono,
simp-all add:m-def )

also have ... ≤ (5/2 ) ∗ (real m)2 ∗ (4 ∗ real t ∗ real p / real m)2 ∗ (2 powr −
real r) / (real p)2 + 1 / real p

using v-def v-ge-1 v-ubound
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by (intro add-mono divide-right-mono mult-right-mono mult-left-mono, auto)

also have ... = 40 ∗ (real t)2 ∗ (2 powr −real r) + 1 / real p
using p-gt-0 m-ge-0 t-gt-0 by (simp add:algebra-simps power2-eq-square)

also have ... ≤ 1/18 + 1/18
using t-r-bound p-ge-18 by (intro add-mono, simp-all add: pos-le-divide-eq)

also have ... = 1/9 by simp

finally have case-3 : prob {ω. ¬has-no-collision ω} ≤ 1/9 by simp

have prob {ω. real-of-rat δ ∗ of-rat (F 0 as) < |estimate ′ (sketch-rv ′ ω) − of-rat
(F 0 as)|} ≤

prob {ω. Q u ω ≥ t ∨ Q v ω < t ∨ ¬(has-no-collision ω)}
proof (rule pmf-mono[OF M-def ], rule ccontr)

fix ω
assume ω ∈ set-pmf (pmf-of-set space)
assume ω ∈ {ω. real-of-rat δ ∗ real-of-rat (F 0 as) < |estimate ′ (sketch-rv ′ ω)

− real-of-rat (F 0 as)|}
hence est: real-of-rat δ ∗ real-of-rat (F 0 as) < |estimate ′ (sketch-rv ′ ω) −

real-of-rat (F 0 as)| by simp
assume ω /∈ {ω. t ≤ Q u ω ∨ Q v ω < t ∨ ¬ has-no-collision ω}
hence ¬( t ≤ Q u ω ∨ Q v ω < t ∨ ¬ has-no-collision ω) by simp
hence lb: Q u ω < t and ub: Q v ω ≥ t and no-col: has-no-collision ω by

simp+

define y where y = nth-mset (t−1 ) {#int (hash x ω). x ∈# mset-set (set
as)#}

define y ′ where y ′ = nth-mset (t−1 ) {#tr-hash x ω. x ∈# mset-set (set as)#}

have rank-t-lb: u ≤ y
unfolding y-def using True t-gt-0 lb
by (intro nth-mset-bound-left, simp-all add:count-less-def swap-filter-image

Q-def )

have rank-t-ub: y ≤ v − 1
unfolding y-def using True t-gt-0 ub

by (intro nth-mset-bound-right, simp-all add:Q-def swap-filter-image count-le-def )

have y-ge-0 : real-of-int y ≥ 0 using rank-t-lb a-ge-0 by linarith

have mono (λx. truncate-down r (real-of-int x))
by (metis truncate-down-mono mono-def of-int-le-iff )

hence y ′-eq: y ′ = truncate-down r y
unfolding y-def y ′-def using True t-gt-0

by (subst nth-mset-commute-mono[where f=(λx. truncate-down r (of-int
x))])

(simp-all add: multiset.map-comp comp-def tr-hash-def )
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have real-of-int u ∗ (1 − 2 powr −real r) ≤ real-of-int y ∗ (1 − 2 powr (−real
r))

using rank-t-lb of-int-le-iff two-pow-r-le-1
by (intro mult-right-mono, auto)

also have ... ≤ y ′

using y ′-eq truncate-down-pos[OF y-ge-0 ] by simp
finally have rank-t-lb ′: u ∗ (1 − 2 powr −real r) ≤ y ′ by simp

have y ′ ≤ real-of-int y
by (subst y ′-eq, rule truncate-down-le, simp)

also have ... ≤ real-of-int (v−1 )
using rank-t-ub of-int-le-iff by blast

finally have rank-t-ub ′: y ′ ≤ v−1
by simp

have 0 < u ∗ (1−2 powr −real r)
using a-ge-1 two-pow-r-le-1 by (intro mult-pos-pos, auto)

hence y ′-pos: y ′ > 0 using rank-t-lb ′ by linarith

have no-col ′:
∧

x. x ≤ y ′ =⇒ count {#tr-hash x ω. x ∈# mset-set (set as)#}
x ≤ 1

using rank-t-ub ′ no-col
by (simp add:vimage-def card-le-Suc0-iff-eq count-image-mset has-no-collision-def )

force

have h-1 : Max (sketch-rv ′ ω) = y ′

using True t-gt-0 no-col ′
by (simp add:sketch-rv ′-def y ′-def nth-mset-max)

have card (sketch-rv ′ ω) = card (least ((t−1 )+1 ) (set-mset {#tr-hash x ω. x
∈# mset-set (set as)#}))

using t-gt-0 by (simp add:sketch-rv ′-def )
also have ... = (t−1 ) +1

using True t-gt-0 no-col ′ by (intro nth-mset-max(2 ), simp-all add:y ′-def )
also have ... = t using t-gt-0 by simp
finally have card (sketch-rv ′ ω) = t by simp
hence h-3 : estimate ′ (sketch-rv ′ ω) = real t ∗ real p / y ′

using h-1 by (simp add:estimate ′-def )

have (real t) ∗ real p ≤ (1 + δ ′) ∗ real m ∗ ((real t) ∗ real p / (real m ∗ (1 +
δ ′)))

using δ ′-lt-1 m-def True t-gt-0 δ ′-gt-0 by auto
also have ... ≤ (1+δ ′) ∗ m ∗ u

using δ ′-gt-0 by (intro mult-left-mono, simp-all add:u-def )
also have ... < ((1 + real-of-rat δ)∗(1−real-of-rat δ/8 )) ∗ m ∗ u

using True m-def t-gt-0 a-ge-1 δ-range
by (intro mult-strict-right-mono, auto simp add:δ ′-def right-diff-distrib)

also have ... ≤ ((1 + real-of-rat δ)∗(1−2 powr (−r))) ∗ m ∗ u

48



using r-le-δ δ-range a-ge-0 by (intro mult-right-mono mult-left-mono, auto)
also have ... = (1 + real-of-rat δ) ∗ m ∗ (u ∗ (1−2 powr −real r))

by simp
also have ... ≤ (1 + real-of-rat δ) ∗ m ∗ y ′

using δ-range by (intro mult-left-mono rank-t-lb ′, simp)
finally have real t ∗ real p < (1 + real-of-rat δ) ∗ m ∗ y ′ by simp
hence f-1 : estimate ′ (sketch-rv ′ ω) < (1 + real-of-rat δ) ∗ m

using y ′-pos by (simp add: h-3 pos-divide-less-eq)

have (1 − real-of-rat δ) ∗ m ∗ y ′ ≤ (1 − real-of-rat δ) ∗ m ∗ v
using δ-range rank-t-ub ′ y ′-pos by (intro mult-mono rank-t-ub ′, simp-all)

also have ... = (1−real-of-rat δ) ∗ (real m ∗ v)
by simp

also have ... < (1−δ ′) ∗ (real m ∗ v)
using δ-range m-ge-0 v-ge-1
by (intro mult-strict-right-mono mult-pos-pos, simp-all add:δ ′-def )

also have ... ≤ (1−δ ′) ∗ (real m ∗ (real t ∗ real p / (real m ∗ (1−δ ′))))
using δ ′-gt-0 δ ′-lt-1 by (intro mult-left-mono, auto simp add:v-def )

also have ... = real t ∗ real p
using δ ′-gt-0 δ ′-lt-1 t-gt-0 p-gt-0 m-ge-0 by auto

finally have (1 − real-of-rat δ) ∗ m ∗ y ′ < real t ∗ real p by simp
hence f-2 : estimate ′ (sketch-rv ′ ω) > (1 − real-of-rat δ) ∗ m

using y ′-pos by (simp add: h-3 pos-less-divide-eq)

have abs (estimate ′ (sketch-rv ′ ω) − real-of-rat (F 0 as)) < real-of-rat δ ∗
(real-of-rat (F 0 as))

using f-1 f-2 by (simp add:abs-less-iff algebra-simps m-eq-F-0 )
thus False using est by linarith

qed
also have ... ≤ 1/9 + (1/9 + 1/9 )

by (intro pmf-add-2 [OF M-def ] case-1 case-2 case-3 )
also have ... = 1/3 by simp
finally show ?thesis by simp

next
case False
have prob {ω. real-of-rat δ ∗ of-rat (F 0 as) < |estimate ′ (sketch-rv ′ ω) − of-rat

(F 0 as)|} ≤
prob {ω. ∃ x ∈ set as. ∃ y ∈ set as. x 6= y ∧ tr-hash x ω ≤ real p ∧ tr-hash x ω

= tr-hash y ω}
proof (rule pmf-mono[OF M-def ])

fix ω
assume a:ω ∈ {ω. real-of-rat δ ∗ real-of-rat (F 0 as) < |estimate ′ (sketch-rv ′

ω) − real-of-rat (F 0 as)|}
assume b:ω ∈ set-pmf (pmf-of-set space)
have c: card (set as) < t using False by auto
hence card ((λx. tr-hash x ω) ‘ set as) < t

using card-image-le order-le-less-trans by blast
hence d:card (sketch-rv ′ ω) = card ((λx. tr-hash x ω) ‘ (set as))

by (simp add:sketch-rv ′-def card-least)
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have card (sketch-rv ′ ω) < t
by (metis List.finite-set c d card-image-le order-le-less-trans)

hence estimate ′ (sketch-rv ′ ω) = card (sketch-rv ′ ω) by (simp add:estimate ′-def )
hence card (sketch-rv ′ ω) 6= real-of-rat (F 0 as)

using a δ-range by simp
(metis abs-zero cancel-comm-monoid-add-class.diff-cancel of-nat-less-0-iff

pos-prod-lt zero-less-of-rat-iff )
hence card (sketch-rv ′ ω) 6= card (set as)

using m-def m-eq-F-0 by linarith
hence ¬inj-on (λx. tr-hash x ω) (set as)

using card-image d by auto
moreover have tr-hash x ω ≤ real p if a:x ∈ set as for x
proof −

have hash x ω < p
using hash-range as-lt-p a b by (simp add:mod-ring-carr M-def )

thus tr-hash x ω ≤ real p using truncate-down-le by (simp add:tr-hash-def )
qed
ultimately show ω ∈ {ω. ∃ x ∈ set as. ∃ y ∈ set as. x 6= y ∧ tr-hash x ω ≤

real p ∧ tr-hash x ω = tr-hash y ω}
by (simp add:inj-on-def , blast)

qed
also have ... ≤ (5/2 ) ∗ (real (card (set as)))2 ∗ (real p)2 ∗ 2 powr − real r /

(real p)2 + 1 / real p
using p-gt-0 by (intro collision-prob, auto)

also have ... = (5/2 ) ∗ (real (card (set as)))2 ∗ 2 powr (− real r) + 1 / real p
using p-gt-0 by (simp add:ac-simps power2-eq-square)

also have ... ≤ (5/2 ) ∗ (real t)2 ∗ 2 powr (−real r) + 1 / real p
using False by (intro add-mono mult-right-mono mult-left-mono power-mono,

auto)
also have ... ≤ 1/6 + 1/6

using t-r-bound p-ge-18 by (intro add-mono, simp-all)
also have ... ≤ 1/3 by simp
finally show ?thesis by simp

qed

private lemma median-bounds:
P(ω in measure-pmf Ω0. |median s (λi. estimate (sketch-rv (ω i))) − F 0 as| ≤

δ ∗ F 0 as) ≥ 1 − real-of-rat ε
proof −
have strict-mono-on A real-of-float for A by (meson less-float.rep-eq strict-mono-onI )
hence real-g-2 :

∧
ω. sketch-rv ′ ω = real-of-float ‘ sketch-rv ω

by (simp add: sketch-rv ′-def sketch-rv-def tr-hash-def least-mono-commute im-
age-comp)

moreover have inj-on real-of-float A for A
using real-of-float-inject by (simp add:inj-on-def )

ultimately have card-eq:
∧
ω. card (sketch-rv ω) = card (sketch-rv ′ ω)

using real-g-2 by (auto intro!: card-image[symmetric])
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have Max (sketch-rv ′ ω) = real-of-float (Max (sketch-rv ω)) if a:card (sketch-rv ′

ω) ≥ t for ω
proof −

have mono real-of-float
using less-eq-float.rep-eq mono-def by blast

moreover have finite (sketch-rv ω)
by (simp add:sketch-rv-def least-def )

moreover have sketch-rv ω 6= {}
using card-eq[symmetric] card-gt-0-iff t-gt-0 a by (simp, force)

ultimately show ?thesis
by (subst mono-Max-commute[where f=real-of-float], simp-all add:real-g-2 )

qed
hence real-g:

∧
ω. estimate ′ (sketch-rv ′ ω) = real-of-rat (estimate (sketch-rv ω))

by (simp add:estimate-def estimate ′-def card-eq of-rat-divide of-rat-mult of-rat-add
real-of-rat-of-float)

have indep: prob-space.indep-vars (measure-pmf Ω0) (λ-. borel) (λi ω. estimate ′

(sketch-rv ′ (ω i))) {0 ..<s}
unfolding Ω0-def

by (rule indep-vars-restrict-intro ′, auto simp add:restrict-dfl-def lessThan-atLeast0 )

moreover have − (18 ∗ ln (real-of-rat ε)) ≤ real s
using of-nat-ceiling by (simp add:s-def ) blast

moreover have i < s =⇒ measure Ω0 {ω. of-rat δ ∗ of-rat (F 0 as) < |estimate ′

(sketch-rv ′ (ω i)) − of-rat (F 0 as)|} ≤ 1/3
for i
using estimate ′-bounds unfolding Ω0-def M-def
by (subst prob-prod-pmf-slice, simp-all)

ultimately have 1−real-of-rat ε ≤ P(ω in measure-pmf Ω0.
|median s (λi. estimate ′ (sketch-rv ′ (ω i))) − real-of-rat (F 0 as)| ≤ real-of-rat

δ ∗ real-of-rat (F 0 as))
using ε-range prob-space-measure-pmf
by (intro prob-space.median-bound-2 ) auto

also have ... = P(ω in measure-pmf Ω0.
|median s (λi. estimate (sketch-rv (ω i))) − F 0 as| ≤ δ ∗ F 0 as)

using s-gt-0 median-rat[symmetric] real-g by (intro arg-cong2 [where f=measure])
(simp-all add:of-rat-diff [symmetric] of-rat-mult[symmetric] of-rat-less-eq)

finally show P(ω in measure-pmf Ω0. |median s (λi. estimate (sketch-rv (ω i)))
− F 0 as| ≤ δ ∗ F 0 as) ≥ 1−real-of-rat ε

by blast
qed

lemma f0-alg-correct ′:
P(ω in measure-pmf result. |ω − F 0 as| ≤ δ ∗ F 0 as) ≥ 1 − of-rat ε

proof −
have f0-result-elim:

∧
x. f0-result (s, t, p, r , x, λi∈{..<s}. sketch-rv (x i)) =

return-pmf (median s (λi. estimate (sketch-rv (x i))))
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by (simp add:estimate-def , rule median-cong, simp)

have result = map-pmf (λx. (s, t, p, r , x, λi∈{..<s}. sketch-rv (x i))) Ω0 >>=
f0-result

by (subst result-def , subst f0-alg-sketch, simp)
also have ... = Ω0 >>= (λx. return-pmf (s, t, p, r , x, λi∈{..<s}. sketch-rv (x i)))

>>= f0-result
by (simp add:t-def p-def r-def s-def map-pmf-def )

also have ... = Ω0 >>= (λx. return-pmf (median s (λi. estimate (sketch-rv (x
i)))))

by (subst bind-assoc-pmf , subst bind-return-pmf , subst f0-result-elim) simp
finally have a:result = Ω0 >>= (λx. return-pmf (median s (λi. estimate (sketch-rv

(x i)))))
by simp

show ?thesis
using median-bounds by (simp add: a map-pmf-def [symmetric])

qed

private lemma f-subset:
assumes g ‘ A ⊆ h ‘ B
shows (λx. f (g x)) ‘ A ⊆ (λx. f (h x)) ‘ B
using assms by auto

lemma f0-exact-space-usage ′:
defines Ω ≡ fold (λa state. state >>= f0-update a) as (f0-init δ ε n)
shows AE ω in Ω. bit-count (encode-f0-state ω) ≤ f0-space-usage (n, ε, δ)

proof −

have log-2-4 : log 2 4 = 2
by (metis log2-of-power-eq mult-2 numeral-Bit0 of-nat-numeral power2-eq-square)

have a: bit-count (Fe (float-of (truncate-down r y))) ≤
ereal (12 + 4 ∗ real r + 2 ∗ log 2 (log 2 (n+13 ))) if a-1 :y ∈ {..<p} for y

proof (cases y ≥ 1 )
case True

have aux-1 : 0 < 2 + log 2 (real y)
using True by (intro add-pos-nonneg, auto)

have aux-2 : 0 < 2 + log 2 (real p)
using p-gt-1 by (intro add-pos-nonneg, auto)

have bit-count (Fe (float-of (truncate-down r y))) ≤
ereal (10 + 4 ∗ real r + 2 ∗ log 2 (2 + |log 2 |real y||))
by (rule truncate-float-bit-count)

also have ... = ereal (10 + 4 ∗ real r + 2 ∗ log 2 (2 + (log 2 (real y))))
using True by simp

also have ... ≤ ereal (10 + 4 ∗ real r + 2 ∗ log 2 (2 + log 2 p))
using aux-1 aux-2 True p-gt-0 a-1 by simp
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also have ... ≤ ereal (10 + 4 ∗ real r + 2 ∗ log 2 (log 2 4 + log 2 (2 ∗ n +
40 )))

using log-2-4 p-le-n p-gt-0
by (intro ereal-mono add-mono mult-left-mono log-mono of-nat-mono add-pos-nonneg,

auto)
also have ... = ereal (10 + 4 ∗ real r + 2 ∗ log 2 (log 2 (8 ∗ n + 160 )))

by (simp add:log-mult[symmetric])
also have ... ≤ ereal (10 + 4 ∗ real r + 2 ∗ log 2 (log 2 ((n+13 ) powr 2 )))
by (intro ereal-mono add-mono mult-left-mono log-mono of-nat-mono add-pos-nonneg)
(auto simp add:power2-eq-square algebra-simps)

also have ... = ereal (10 + 4 ∗ real r + 2 ∗ log 2 (log 2 4 ∗ log 2 (n + 13 )))
by (subst log-powr , simp-all add:log-2-4 )

also have ... = ereal (12 + 4 ∗ real r + 2 ∗ log 2 (log 2 (n + 13 )))
by (subst log-mult, simp-all add:log-2-4 )

finally show ?thesis by simp
next

case False
hence y = 0 using a-1 by simp
then show ?thesis by (simp add:float-bit-count-zero)

qed

have bit-count (encode-f0-state (s, t, p, r , x, λi∈{..<s}. sketch-rv (x i))) ≤
f0-space-usage (n, ε, δ) if b: x ∈ {..<s} →E space for x

proof −
have c: x ∈ extensional {..<s} using b by (simp add:PiE-def )

have d: sketch-rv (x y) ⊆ (λk. float-of (truncate-down r k)) ‘ {..<p}
if d-1 : y < s for y

proof −
have sketch-rv (x y) ⊆ (λxa. float-of (truncate-down r (hash xa (x y)))) ‘ set

as
using least-subset by (auto simp add:sketch-rv-def tr-hash-def )

also have ... ⊆ (λk. float-of (truncate-down r (real k))) ‘ {..<p}
using b hash-range as-lt-p d-1

by (intro f-subset[where f=λx. float-of (truncate-down r (real x))] im-
age-subsetI )

(simp add: PiE-iff mod-ring-carr)
finally show ?thesis

by simp
qed

have
∧

y. y < s =⇒ finite (sketch-rv (x y))
unfolding sketch-rv-def by (rule finite-subset[OF least-subset], simp)

moreover have card-sketch:
∧

y. y < s =⇒ card (sketch-rv (x y)) ≤ t
by (simp add:sketch-rv-def card-least)

moreover have
∧

y z . y < s =⇒ z ∈ sketch-rv (x y) =⇒
bit-count (Fe z) ≤ ereal (12 + 4 ∗ real r + 2 ∗ log 2 (log 2 (real n + 13 )))
using a d by auto

ultimately have e:
∧

y. y < s =⇒ bit-count (Se Fe (sketch-rv (x y)))
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≤ ereal (real t) ∗ (ereal (12 + 4 ∗ real r + 2 ∗ log 2 (log 2 (real (n + 13 ))))
+ 1 ) + 1

using float-encoding by (intro set-bit-count-est, auto)

have f :
∧

y. y < s =⇒ bit-count (Pe p 2 (x y)) ≤ ereal (real 2 ∗ (log 2 (real
p) + 1 ))

using p-gt-1 b
by (intro bounded-degree-polynomial-bit-count) (simp-all add:space-def PiE-def

Pi-def )

have bit-count (encode-f0-state (s, t, p, r , x, λi∈{..<s}. sketch-rv (x i))) =
bit-count (N e s) + bit-count (N e t) + bit-count (N e p) + bit-count (N e r) +
bit-count (([0 ..<s] →e Pe p 2 ) x) +
bit-count (([0 ..<s] →e Se Fe) (λi∈{..<s}. sketch-rv (x i)))
by (simp add:encode-f0-state-def dependent-bit-count lessThan-atLeast0
s-def [symmetric] t-def [symmetric] p-def [symmetric] r-def [symmetric] ac-simps)

also have ... ≤ ereal (2∗ log 2 (real s + 1 ) + 1 ) + ereal (2∗ log 2 (real t +
1 ) + 1 )

+ ereal (2∗ log 2 (real p + 1 ) + 1 ) + ereal (2 ∗ log 2 (real r + 1 ) + 1 )
+ (ereal (real s) ∗ (ereal (real 2 ∗ (log 2 (real p) + 1 ))))
+ (ereal (real s) ∗ ((ereal (real t) ∗

(ereal (12 + 4 ∗ real r + 2 ∗ log 2 (log 2 (real (n + 13 )))) + 1 ) + 1 )))
using c e f
by (intro add-mono exp-golomb-bit-count fun-bit-count-est[where xs=[0 ..<s],

simplified])
(simp-all add:lessThan-atLeast0 )

also have ... = ereal ( 4 + 2 ∗ log 2 (real s + 1 ) + 2 ∗ log 2 (real t + 1 ) +
2 ∗ log 2 (real p + 1 ) + 2 ∗ log 2 (real r + 1 ) + real s ∗ (3 + 2 ∗ log 2

(real p) +
real t ∗ (13 + (4 ∗ real r + 2 ∗ log 2 (log 2 (real n + 13 ))))))
by (simp add:algebra-simps)

also have ... ≤ ereal ( 4 + 2 ∗ log 2 (real s + 1 ) + 2 ∗ log 2 (real t + 1 ) +
2 ∗ log 2 (2 ∗ (21 + real n)) + 2 ∗ log 2 (real r + 1 ) + real s ∗ (3 + 2 ∗

log 2 (2 ∗ (21 + real n)) +
real t ∗ (13 + (4 ∗ real r + 2 ∗ log 2 (log 2 (real n + 13 ))))))
using p-le-n p-gt-0
by (intro ereal-mono add-mono mult-left-mono, auto)

also have ... = ereal (6 + 2 ∗ log 2 (real s + 1 ) + 2 ∗ log 2 (real t + 1 ) +
2 ∗ log 2 (21 + real n) + 2 ∗ log 2 (real r + 1 ) + real s ∗ (5 + 2 ∗ log 2

(21 + real n) +
real t ∗ (13 + (4 ∗ real r + 2 ∗ log 2 (log 2 (real n + 13 ))))))
by (subst (1 2 ) log-mult, auto)

also have ... ≤ f0-space-usage (n, ε, δ)
by (simp add:s-def [symmetric] r-def [symmetric] t-def [symmetric] Let-def )
(simp add:algebra-simps)

finally show bit-count (encode-f0-state (s, t, p, r , x, λi∈{..<s}. sketch-rv (x
i))) ≤

f0-space-usage (n, ε, δ) by simp
qed
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hence
∧

x. x ∈ set-pmf Ω0 =⇒
bit-count (encode-f0-state (s, t, p, r , x, λi∈{..<s}. sketch-rv (x i))) ≤ ereal

(f0-space-usage (n, ε, δ))
by (simp add:Ω0-def set-prod-pmf del:f0-space-usage.simps)

hence
∧

y. y ∈ set-pmf Ω =⇒ bit-count (encode-f0-state y) ≤ ereal (f0-space-usage
(n, ε, δ))

by (simp add: Ω-def f0-alg-sketch del:f0-space-usage.simps f0-init.simps)
(metis (no-types, lifting) image-iff pmf .set-map)

thus ?thesis
by (simp add: AE-measure-pmf-iff del:f0-space-usage.simps)

qed

end

Main results of this section:
theorem f0-alg-correct:

assumes ε ∈ {0<..<1}
assumes δ ∈ {0<..<1}
assumes set as ⊆ {..<n}
defines Ω ≡ fold (λa state. state >>= f0-update a) as (f0-init δ ε n) >>= f0-result
shows P(ω in measure-pmf Ω. |ω − F 0 as| ≤ δ ∗ F 0 as) ≥ 1 − of-rat ε
using f0-alg-correct ′[OF assms(1−3 )] unfolding Ω-def by blast

theorem f0-exact-space-usage:
assumes ε ∈ {0<..<1}
assumes δ ∈ {0<..<1}
assumes set as ⊆ {..<n}
defines Ω ≡ fold (λa state. state >>= f0-update a) as (f0-init δ ε n)
shows AE ω in Ω. bit-count (encode-f0-state ω) ≤ f0-space-usage (n, ε, δ)
using f0-exact-space-usage ′[OF assms(1−3 )] unfolding Ω-def by blast

theorem f0-asymptotic-space-complexity:
f0-space-usage ∈ O[at-top ×F at-right 0 ×F at-right 0 ](λ(n, ε, δ). ln (1 / of-rat

ε) ∗
(ln (real n) + 1 / (of-rat δ)2 ∗ (ln (ln (real n)) + ln (1 / of-rat δ))))
(is - ∈ O[?F ](?rhs))

proof −
define n-of :: nat × rat × rat ⇒ nat where n-of = (λ(n, ε, δ). n)
define ε-of :: nat × rat × rat ⇒ rat where ε-of = (λ(n, ε, δ). ε)
define δ-of :: nat × rat × rat ⇒ rat where δ-of = (λ(n, ε, δ). δ)
define t-of where t-of = (λx. nat d80 / (real-of-rat (δ-of x))2e)
define s-of where s-of = (λx. nat d−(18 ∗ ln (real-of-rat (ε-of x)))e)
define r-of where r-of = (λx. nat (4 ∗ dlog 2 (1 / real-of-rat (δ-of x))e + 23 ))

define g where g = (λx. ln (1 / of-rat (ε-of x)) ∗ (ln (real (n-of x)) +
1 / (of-rat (δ-of x))2 ∗ (ln (ln (real (n-of x))) + ln (1 / of-rat (δ-of x)))))

have evt: (
∧

x.
0 < real-of-rat (δ-of x) ∧ 0 < real-of-rat (ε-of x) ∧
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1/real-of-rat (δ-of x) ≥ δ ∧ 1/real-of-rat (ε-of x) ≥ ε ∧
real (n-of x) ≥ n =⇒ P x) =⇒ eventually P ?F (is (

∧
x. ?prem x =⇒ -) =⇒

-)
for δ ε n P
apply (rule eventually-mono[where P=?prem and Q=P])
apply (simp add:ε-of-def case-prod-beta ′ δ-of-def n-of-def )
apply (intro eventually-conj eventually-prod1 ′ eventually-prod2 ′

sequentially-inf eventually-at-right-less inv-at-right-0-inf )
by (auto simp add:prod-filter-eq-bot)

have exp-pos: exp k ≤ real x =⇒ x > 0 for k x
using exp-gt-zero gr0I by force

have exp-gt-1 : exp 1 ≥ (1 ::real)
by simp

have 1 : (λ-. 1 ) ∈ O[?F ](λx. ln (1 / real-of-rat (ε-of x)))
by (auto intro!:landau-o.big-mono evt[where ε=exp 1 ] iffD2 [OF ln-ge-iff ] simp

add:abs-ge-iff )

have 2 : (λ-. 1 ) ∈ O[?F ](λx. ln (1 / real-of-rat (δ-of x)))
by (auto intro!:landau-o.big-mono evt[where δ=exp 1 ] iffD2 [OF ln-ge-iff ] simp

add:abs-ge-iff )

have 3 : (λx. 1 ) ∈ O[?F ](λx. ln (ln (real (n-of x))) + ln (1 / real-of-rat (δ-of
x)))

using exp-pos
by (intro landau-sum-2 2 evt[where n=exp 1 and δ=1 ] ln-ge-zero iffD2 [OF

ln-ge-iff ], auto)
have 4 : (λ-. 1 ) ∈ O[?F ](λx. 1 / (real-of-rat (δ-of x))2)

using one-le-power
by (intro landau-o.big-mono evt[where δ=1 ], auto simp add:power-one-over [symmetric])

have (λx. 80 ∗ (1 / (real-of-rat (δ-of x))2)) ∈ O[?F ](λx. 1 / (real-of-rat (δ-of
x))2)

by (subst landau-o.big.cmult-in-iff , auto)
hence 5 : (λx. real (t-of x)) ∈ O[?F ](λx. 1 / (real-of-rat (δ-of x))2)

unfolding t-of-def
by (intro landau-real-nat landau-ceil 4 , auto)

have (λx. ln (real-of-rat (ε-of x))) ∈ O[?F ](λx. ln (1 / real-of-rat (ε-of x)))
by (intro landau-o.big-mono evt[where ε=1 ], auto simp add:ln-div)

hence 6 : (λx. real (s-of x)) ∈ O[?F ](λx. ln (1 / real-of-rat (ε-of x)))
unfolding s-of-def by (intro landau-nat-ceil 1 , simp)

have 7 : (λx. 1 ) ∈ O[?F ](λx. ln (real (n-of x)))
using exp-pos by (auto intro!: landau-o.big-mono evt[where n=exp 1 ] iffD2 [OF

ln-ge-iff ] simp: abs-ge-iff )
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have 8 : (λ-. 1 ) ∈
O[?F ](λx. ln (real (n-of x)) + 1 / (real-of-rat (δ-of x))2 ∗ (ln (ln (real (n-of

x))) + ln (1 / real-of-rat (δ-of x))))
using order-trans[OF exp-gt-1 ] exp-pos
by (intro landau-sum-1 7 evt[where n=exp 1 and δ=1 ] ln-ge-zero iffD2 [OF

ln-ge-iff ]
mult-nonneg-nonneg add-nonneg-nonneg) auto

have (λx. ln (real (s-of x) + 1 )) ∈ O[?F ](λx. ln (1 / real-of-rat (ε-of x)))
by (intro landau-ln-3 sum-in-bigo 6 1 , simp)

hence 9 : (λx. log 2 (real (s-of x) + 1 )) ∈ O[?F ](g)
unfolding g-def by (intro landau-o.big-mult-1 8 , auto simp:log-def )

have 10 : (λx. 1 ) ∈ O[?F ](g)
unfolding g-def by (intro landau-o.big-mult-1 8 1 )

have (λx. ln (real (t-of x) + 1 )) ∈
O[?F ](λx. 1 / (real-of-rat (δ-of x))2 ∗ (ln (ln (real (n-of x))) + ln (1 / real-of-rat

(δ-of x))))
using 5 by (intro landau-o.big-mult-1 3 landau-ln-3 sum-in-bigo 4 , simp-all)

hence (λx. log 2 (real (t-of x) + 1 )) ∈
O[?F ](λx. ln (real (n-of x)) + 1 / (real-of-rat (δ-of x))2 ∗ (ln (ln (real (n-of x)))

+ ln (1 / real-of-rat (δ-of x))))
using order-trans[OF exp-gt-1 ] exp-pos
by (intro landau-sum-2 evt[where n=exp 1 and δ=1 ] ln-ge-zero iffD2 [OF

ln-ge-iff ]
mult-nonneg-nonneg add-nonneg-nonneg) (auto simp add:log-def )

hence 11 : (λx. log 2 (real (t-of x) + 1 )) ∈ O[?F ](g)
unfolding g-def by (intro landau-o.big-mult-1 ′ 1 , auto)

have (λx. 1 ) ∈ O[?F ](λx. real (n-of x))
by (intro landau-o.big-mono evt[where n=1 ], auto)

hence (λx. ln (real (n-of x) + 21 )) ∈ O[?F ](λx. ln (real (n-of x)))
by (intro landau-ln-2 [where a=2 ] evt[where n=2 ] sum-in-bigo, auto)

hence 12 : (λx. log 2 (real (n-of x) + 21 )) ∈ O[?F ](g)
unfolding g-def using exp-pos order-trans[OF exp-gt-1 ]
by (intro landau-o.big-mult-1 ′ 1 landau-sum-1 evt[where n=exp 1 and δ=1 ]

ln-ge-zero iffD2 [OF ln-ge-iff ] mult-nonneg-nonneg add-nonneg-nonneg)
(auto simp add:log-def )

have (λx. ln (1 / real-of-rat (δ-of x))) ∈ O[?F ](λx. 1 / (real-of-rat (δ-of x))2)
by (intro landau-ln-3 evt[where δ=1 ] landau-o.big-mono)
(auto simp add:power-one-over [symmetric] self-le-power)

hence (λx. real (nat (4∗dlog 2 (1 / real-of-rat (δ-of x))e+23 ))) ∈ O[?F ](λx. 1
/ (real-of-rat (δ-of x))2)

using 4 by (auto intro!: landau-real-nat sum-in-bigo landau-ceil simp:log-def )
hence (λx. ln (real (r-of x) + 1 )) ∈ O[?F ](λx. 1 / (real-of-rat (δ-of x))2)

unfolding r-of-def
by (intro landau-ln-3 sum-in-bigo 4 , auto)
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hence (λx. log 2 (real (r-of x) + 1 )) ∈
O[?F ](λx. (1 / (real-of-rat (δ-of x))2) ∗ (ln (ln (real (n-of x))) + ln (1 /

real-of-rat (δ-of x))))
by (intro landau-o.big-mult-1 3 , simp add:log-def )

hence (λx. log 2 (real (r-of x) + 1 )) ∈
O[?F ](λx. ln (real (n-of x)) + 1 / (real-of-rat (δ-of x))2 ∗ (ln (ln (real (n-of

x))) + ln (1 / real-of-rat (δ-of x))))
using exp-pos order-trans[OF exp-gt-1 ]
by (intro landau-sum-2 evt[where n=exp 1 and δ=1 ] ln-ge-zero

iffD2 [OF ln-ge-iff ] add-nonneg-nonneg mult-nonneg-nonneg) (auto)
hence 13 : (λx. log 2 (real (r-of x) + 1 )) ∈ O[?F ](g)

unfolding g-def by (intro landau-o.big-mult-1 ′ 1 , auto)
have 14 : (λx. 1 ) ∈ O[?F ](λx. real (n-of x))

by (intro landau-o.big-mono evt[where n=1 ], auto)

have (λx. ln (real (n-of x) + 13 )) ∈ O[?F ](λx. ln (real (n-of x)))
using 14 by (intro landau-ln-2 [where a=2 ] evt[where n=2 ] sum-in-bigo,

auto)

hence (λx. ln (log 2 (real (n-of x) + 13 ))) ∈ O[?F ](λx. ln (ln (real (n-of x))))
using exp-pos by (intro landau-ln-2 [where a=2 ] iffD2 [OF ln-ge-iff ] evt[where

n=exp 2 ])
(auto simp add:log-def )

hence (λx. log 2 (log 2 (real (n-of x) + 13 ))) ∈ O[?F ](λx. ln (ln (real (n-of x)))
+ ln (1 / real-of-rat (δ-of x)))

using exp-pos by (intro landau-sum-1 evt[where n=exp 1 and δ=1 ] ln-ge-zero
iffD2 [OF ln-ge-iff ])

(auto simp add:log-def )

moreover have (λx. real (r-of x)) ∈ O[?F ](λx. ln (1 / real-of-rat (δ-of x)))
unfolding r-of-def using 2
by (auto intro!: landau-real-nat sum-in-bigo landau-ceil simp:log-def )

hence (λx. real (r-of x)) ∈ O[?F ](λx. ln (ln (real (n-of x))) + ln (1 / real-of-rat
(δ-of x)))

using exp-pos
by (intro landau-sum-2 evt[where n=exp 1 and δ=1 ] ln-ge-zero iffD2 [OF

ln-ge-iff ], auto)

ultimately have 15 : (λx. real (t-of x) ∗ (13 + 4 ∗ real (r-of x) + 2 ∗ log 2 (log
2 (real (n-of x) + 13 ))))

∈ O[?F ](λx. 1 / (real-of-rat (δ-of x))2 ∗ (ln (ln (real (n-of x))) + ln (1 /
real-of-rat (δ-of x))))

using 5 3
by (intro landau-o.mult sum-in-bigo, auto)

have (λx. 5 + 2 ∗ log 2 (21 + real (n-of x)) + real (t-of x) ∗ (13 + 4 ∗ real
(r-of x) + 2 ∗ log 2 (log 2 (real (n-of x) + 13 ))))
∈ O[?F ](λx. ln (real (n-of x)) + 1 / (real-of-rat (δ-of x))2 ∗ (ln (ln (real (n-of
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x))) + ln (1 / real-of-rat (δ-of x))))
proof −

have ∀ F x in ?F . 0 ≤ ln (real (n-of x))
by (intro evt[where n=1 ] ln-ge-zero, auto)

moreover have ∀ F x in ?F . 0 ≤ 1 / (real-of-rat (δ-of x))2 ∗ (ln (ln (real (n-of
x))) + ln (1 / real-of-rat (δ-of x)))

using exp-pos
by (intro evt[where n=exp 1 and δ=1 ] mult-nonneg-nonneg add-nonneg-nonneg

ln-ge-zero iffD2 [OF ln-ge-iff ]) auto
moreover have (λx. ln (21 + real (n-of x))) ∈ O[?F ](λx. ln (real (n-of x)))

using 14 by (intro landau-ln-2 [where a=2 ] sum-in-bigo evt[where n=2 ],
auto)

hence (λx. 5 + 2 ∗ log 2 (21 + real (n-of x))) ∈ O[?F ](λx. ln (real (n-of x)))
using 7 by (intro sum-in-bigo, auto simp add:log-def )

ultimately show ?thesis
using 15 by (rule landau-sum)

qed

hence 16 : (λx. real (s-of x) ∗ (5 + 2 ∗ log 2 (21 + real (n-of x)) + real (t-of
x) ∗

(13 + 4 ∗ real (r-of x) + 2 ∗ log 2 (log 2 (real (n-of x) + 13 ))))) ∈ O[?F ](g)
unfolding g-def
by (intro landau-o.mult 6 , auto)

have f0-space-usage = (λx. f0-space-usage (n-of x, ε-of x, δ-of x))
by (simp add:case-prod-beta ′ n-of-def ε-of-def δ-of-def )

also have ... ∈ O[?F ](g)
using 9 10 11 12 13 16

by (simp add:fun-cong[OF s-of-def [symmetric]] fun-cong[OF t-of-def [symmetric]]
fun-cong[OF r-of-def [symmetric]] Let-def ) (intro sum-in-bigo, auto)

also have ... = O[?F ](?rhs)
by (simp add:case-prod-beta ′ g-def n-of-def ε-of-def δ-of-def )

finally show ?thesis
by simp

qed

end

8 Frequency Moment 2

theory Frequency-Moment-2
imports

Universal-Hash-Families.Carter-Wegman-Hash-Family
Universal-Hash-Families.Universal-Hash-Families-More-Finite-Fields
Equivalence-Relation-Enumeration.Equivalence-Relation-Enumeration
Landau-Ext
Median-Method.Median
Probability-Ext
Product-PMF-Ext
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Frequency-Moments
begin

hide-const (open) Discrete-Topology.discrete
hide-const (open) Isolated.discrete

This section contains a formalization of the algorithm for the second fre-
quency moment. It is based on the algorithm described in [1, §2.2]. The
only difference is that the algorithm is adapted to work with prime field of
odd order, which greatly reduces the implementation complexity.
fun f2-hash where

f2-hash p h k = (if even (ring.hash (mod-ring p) k h) then int p − 1 else − int
p − 1 )

type-synonym f2-state = nat × nat × nat × (nat × nat ⇒ nat list) × (nat ×
nat ⇒ int)

fun f2-init :: rat ⇒ rat ⇒ nat ⇒ f2-state pmf where
f2-init δ ε n =

do {
let s1 = nat d6 / δ2e;
let s2 = nat d−(18 ∗ ln (real-of-rat ε))e;
let p = prime-above (max n 3 );

h ← prod-pmf ({..<s1} × {..<s2}) (λ-. pmf-of-set (bounded-degree-polynomials
(mod-ring p) 4 ));

return-pmf (s1, s2, p, h, (λ- ∈ {..<s1} × {..<s2}. (0 :: int)))
}

fun f2-update :: nat ⇒ f2-state ⇒ f2-state pmf where
f2-update x (s1, s2, p, h, sketch) =

return-pmf (s1, s2, p, h, λi ∈ {..<s1} × {..<s2}. f2-hash p (h i) x + sketch i)

fun f2-result :: f2-state ⇒ rat pmf where
f2-result (s1, s2, p, h, sketch) =

return-pmf (median s2 (λi2 ∈ {..<s2}.
(
∑

i1∈{..<s1} . (rat-of-int (sketch (i1, i2)))2) / (((rat-of-nat p)2−1 ) ∗
rat-of-nat s1)))

fun f2-space-usage :: (nat × nat × rat × rat) ⇒ real where
f2-space-usage (n, m, ε, δ) = (

let s1 = nat d6 / δ2 e in
let s2 = nat d−(18 ∗ ln (real-of-rat ε))e in
3 +
2 ∗ log 2 (s1 + 1 ) +
2 ∗ log 2 (s2 + 1 ) +
2 ∗ log 2 (9 + 2 ∗ real n) +
s1 ∗ s2 ∗ (5 + 4∗log 2 (8 + 2 ∗ real n) + 2 ∗ log 2 (real m ∗ (18 + 4 ∗ real

n) + 1 )))
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definition encode-f2-state :: f2-state ⇒ bool list option where
encode-f2-state =

N e one (λs1.
N e one (λs2.
N e one (λp.
(List.product [0 ..<s1] [0 ..<s2] →e Pe p 4 ) ×e

(List.product [0 ..<s1] [0 ..<s2] →e I e))))

lemma inj-on encode-f2-state (dom encode-f2-state)
proof −

have is-encoding encode-f2-state
unfolding encode-f2-state-def
by (intro dependent-encoding exp-golomb-encoding fun-encoding list-encoding

int-encoding poly-encoding)

thus ?thesis
by (rule encoding-imp-inj)

qed

context
fixes ε δ :: rat
fixes n :: nat
fixes as :: nat list
fixes result
assumes ε-range: ε ∈ {0<..<1}
assumes δ-range: δ > 0
assumes as-range: set as ⊆ {..<n}
defines result ≡ fold (λa state. state >>= f2-update a) as (f2-init δ ε n) >>=

f2-result
begin

private definition s1 where s1 = nat d6 / δ2e

lemma s1-gt-0 : s1 > 0
using δ-range by (simp add:s1-def )

private definition s2 where s2 = nat d−(18∗ ln (real-of-rat ε))e

lemma s2-gt-0 : s2 > 0
using ε-range by (simp add:s2-def )

private definition p where p = prime-above (max n 3 )

lemma p-prime: Factorial-Ring.prime p
unfolding p-def using prime-above-prime by blast

lemma p-ge-3 : p ≥ 3
unfolding p-def by (meson max .boundedE prime-above-lower-bound)
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lemma p-gt-0 : p > 0 using p-ge-3 by linarith

lemma p-gt-1 : p > 1 using p-ge-3 by simp

lemma p-ge-n: p ≥ n unfolding p-def
by (meson max.boundedE prime-above-lower-bound )

interpretation carter-wegman-hash-family mod-ring p 4
using carter-wegman-hash-familyI [OF mod-ring-is-field mod-ring-finite]
using p-prime by auto

definition sketch where sketch = fold (λa state. state >>= f2-update a) as (f2-init
δ ε n)
private definition Ω whereΩ = prod-pmf ({..<s1} × {..<s2}) (λ-. pmf-of-set
space)
private definition Ωp whereΩp = measure-pmf Ω
private definition sketch-rv where sketch-rv ω = of-int (sum-list (map (f2-hash
p ω) as))^2
private definition mean-rv where mean-rv ω = (λi2. (

∑
i1 = 0 ..<s1. sketch-rv

(ω (i1, i2))) / (((of-nat p)2 − 1 ) ∗ of-nat s1))
private definition result-rv where result-rv ω = median s2 (λi2∈{..<s2}. mean-rv
ω i2)

lemma mean-rv-alg-sketch:
sketch = Ω >>= (λω. return-pmf (s1, s2, p, ω, λi ∈ {..<s1} × {..<s2}. sum-list

(map (f2-hash p (ω i)) as)))
proof −

have sketch = fold (λa state. state >>= f2-update a) as (f2-init δ ε n)
by (simp add:sketch-def )

also have ... = Ω >>= (λω. return-pmf (s1, s2, p, ω,
λi ∈ {..<s1} × {..<s2}. sum-list (map (f2-hash p (ω i)) as)))

proof (induction as rule:rev-induct)
case Nil
then show ?case

by (simp add:s1-def s2-def space-def p-def [symmetric] Ω-def restrict-def
Let-def )

next
case (snoc a as)
have fold (λa state. state >>= f2-update a) (as @ [a]) (f2-init δ ε n) = Ω >>=
(λω. return-pmf (s1, s2, p, ω, λs ∈ {..<s1} × {..<s2}. (

∑
x ← as. f2-hash p

(ω s) x)) >>= f2-update a)
using snoc by (simp add: bind-assoc-pmf restrict-def del:f2-hash.simps f2-init.simps)
also have ... = Ω >>= (λω. return-pmf (s1, s2, p, ω, λi ∈ {..<s1} × {..<s2}.

(
∑

x ← as@[a]. f2-hash p (ω i) x)))
by (subst bind-return-pmf ) (simp add: add.commute del:f2-hash.simps cong:restrict-cong)
finally show ?case by blast

qed
finally show ?thesis by auto

qed
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lemma distr : result = map-pmf result-rv Ω
proof −

have result = sketch >>= f2-result
by (simp add:result-def sketch-def )

also have ... = Ω >>= (λx. f2-result (s1, s2, p, x, λi∈{..<s1} × {..<s2}. sum-list
(map (f2-hash p (x i)) as)))

by (simp add: mean-rv-alg-sketch bind-assoc-pmf bind-return-pmf )
also have ... = map-pmf result-rv Ω
by (simp add:map-pmf-def result-rv-def mean-rv-def sketch-rv-def lessThan-atLeast0

cong:restrict-cong)
finally show ?thesis by simp

qed

private lemma f2-hash-pow-exp:
assumes k < p
shows

expectation (λω. real-of-int (f2-hash p ω k) ^m) =
((real p − 1 ) ^ m ∗ (real p + 1 ) + (− real p − 1 ) ^ m ∗ (real p − 1 )) / (2 ∗

real p)
proof −

have odd p using p-prime p-ge-3 prime-odd-nat assms by simp
then obtain t where t-def : p=2∗t+1

using oddE by blast

have Collect even ∩ {..<2 ∗ t + 1} ⊆ (∗) 2 ‘ {..<t + 1}
by (rule in-image-by-witness[where g=λx. x div 2 ], simp, linarith)

moreover have (∗) 2 ‘ {..<t + 1} ⊆ Collect even ∩ {..<2 ∗ t + 1}
by (rule image-subsetI , simp)

ultimately have card ({k. even k} ∩ {..<p}) = card ((λx. 2∗x) ‘ {..<t+1})
unfolding t-def using order-antisym by metis

also have ... = card {..<t+1}
by (rule card-image, simp add: inj-on-mult)

also have ... = t+1 by simp
finally have card-even: card ({k. even k} ∩ {..<p}) = t+1 by simp
hence card ({k. even k} ∩ {..<p}) ∗ 2 = (p+1 ) by (simp add:t-def )
hence prob-even: prob {ω. hash k ω ∈ Collect even} = (real p + 1 )/(2∗real p)

using assms by (subst prob-range, auto simp:frac-eq-eq p-gt-0 mod-ring-def )

have p = card {..<p} by simp
also have ... = card (({k. odd k} ∩ {..<p}) ∪ ({k. even k} ∩ {..<p}))

by (rule arg-cong[where f=card], auto)
also have ... = card ({k. odd k} ∩ {..<p}) + card ({k. even k} ∩ {..<p})

by (rule card-Un-disjoint, simp, simp, blast)
also have ... = card ({k. odd k} ∩ {..<p}) + t+1

by (simp add:card-even)
finally have p = card ({k. odd k} ∩ {..<p}) + t+1

by simp
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hence card ({k. odd k} ∩ {..<p}) ∗ 2 = (p−1 )
by (simp add:t-def )

hence prob-odd: prob {ω. hash k ω ∈ Collect odd} = (real p − 1 )/(2∗real p)
using assms by (subst prob-range, auto simp add: frac-eq-eq mod-ring-def )

have expectation (λx. real-of-int (f2-hash p x k) ^ m) =
expectation (λω. indicator {ω. even (hash k ω)} ω ∗ (real p − 1 )^m +

indicator {ω. odd (hash k ω)} ω ∗ (−real p − 1 )^m)
by (rule Bochner-Integration.integral-cong, simp, simp)

also have ... =
prob {ω. hash k ω ∈ Collect even} ∗ (real p − 1 ) ^ m +
prob {ω. hash k ω ∈ Collect odd} ∗ (−real p − 1 ) ^ m

by (simp, simp add:M-def )
also have ... = (real p + 1 ) ∗ (real p − 1 ) ^ m / (2 ∗ real p) + (real p − 1 ) ∗

(− real p − 1 ) ^ m / (2 ∗ real p)
by (subst prob-even, subst prob-odd, simp)

also have ... =
((real p − 1 ) ^ m ∗ (real p + 1 ) + (− real p − 1 ) ^ m ∗ (real p − 1 )) / (2 ∗

real p)
by (simp add:add-divide-distrib ac-simps)

finally show expectation (λx. real-of-int (f2-hash p x k) ^ m) =
((real p − 1 ) ^ m ∗ (real p + 1 ) + (− real p − 1 ) ^ m ∗ (real p − 1 )) / (2 ∗

real p) by simp
qed

lemma
shows var-sketch-rv:variance sketch-rv ≤ 2∗(real-of-rat (F 2 as)^2 ) ∗ ((real

p)2−1 )2 (is ?A)
and exp-sketch-rv:expectation sketch-rv = real-of-rat (F 2 as) ∗ ((real p)2−1 ) (is

?B)
proof −

define h where h = (λω x. real-of-int (f2-hash p ω x))
define c where c = (λx. real (count-list as x))
define r where r = (λ(m::nat). ((real p − 1 ) ^ m ∗ (real p + 1 ) + (− real p
− 1 ) ^ m ∗ (real p − 1 )) / (2 ∗ real p))

define h-prod where h-prod = (λas ω. prod-list (map (h ω) as))

define exp-h-prod :: nat list ⇒ real where exp-h-prod = (λas. (
∏

i ∈ set as. r
(count-list as i)))

have f-eq: sketch-rv = (λω. (
∑

x ∈ set as. c x ∗ h ω x)^2 )
by (rule ext, simp add:sketch-rv-def c-def h-def sum-list-eval del:f2-hash.simps)

have r-one: r (Suc 0 ) = 0
by (simp add:r-def algebra-simps)

have r-two: r 2 = (real p^2−1 )
using p-gt-0 unfolding r-def power2-eq-square
by (simp add:nonzero-divide-eq-eq, simp add:algebra-simps)
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have(real p)^2 ≥ 2^2
by (rule power-mono, use p-gt-1 in linarith, simp)

hence p-square-ge-4 : (real p)2 ≥ 4 by simp

have r 4 = (real p)^4+2∗(real p)2 − 3
using p-gt-0 unfolding r-def
by (subst nonzero-divide-eq-eq, auto simp:power4-eq-xxxx power2-eq-square al-

gebra-simps)
also have ... ≤ (real p)^4+2∗(real p)2 + 3

by simp
also have ... ≤ 3 ∗ r 2 ∗ r 2

using p-square-ge-4
by (simp add:r-two power4-eq-xxxx power2-eq-square algebra-simps mult-left-mono)

finally have r-four-est: r 4 ≤ 3 ∗ r 2 ∗ r 2 by simp

have exp-h-prod-elim: exp-h-prod = (λas. prod-list (map (r ◦ count-list as)
(remdups as)))

by (simp add:exp-h-prod-def prod.set-conv-list[symmetric])

have exp-h-prod:
∧

x. set x ⊆ set as =⇒ length x ≤ 4 =⇒ expectation (h-prod
x) = exp-h-prod x

proof −
fix x
assume set x ⊆ set as
hence x-sub-p: set x ⊆ {..<p} using as-range p-ge-n by auto
hence x-le-p:

∧
k. k ∈ set x =⇒ k < p by auto

assume length x ≤ 4
hence card-x: card (set x) ≤ 4 using card-length dual-order .trans by blast

have set x ⊆ carrier (mod-ring p)
using x-sub-p by (simp add:mod-ring-def )

hence h-indep: indep-vars (λ-. borel) (λi ω. h ω i ^ count-list x i) (set x)
using k-wise-indep-vars-subset[OF k-wise-indep] card-x as-range h-def
by (auto intro:indep-vars-compose2 [where X=hash and M ′= (λ-. discrete)])

have expectation (h-prod x) = expectation (λω.
∏

i ∈ set x. h ω i^(count-list
x i))

by (simp add:h-prod-def prod-list-eval)
also have ... = (

∏
i ∈ set x. expectation (λω. h ω i^(count-list x i)))

by (simp add: indep-vars-lebesgue-integral[OF - h-indep])
also have ... = (

∏
i ∈ set x. r (count-list x i))

using f2-hash-pow-exp x-le-p
by (simp add:h-def r-def M-def [symmetric] del:f2-hash.simps)

also have ... = exp-h-prod x
by (simp add:exp-h-prod-def )

finally show expectation (h-prod x) = exp-h-prod x by simp
qed
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have
∧

x y. kernel-of x = kernel-of y =⇒ exp-h-prod x = exp-h-prod y
proof −

fix x y :: nat list
assume a:kernel-of x = kernel-of y
then obtain f where b:bij-betw f (set x) (set y) and c:

∧
z. z ∈ set x =⇒

count-list x z = count-list y (f z)
using kernel-of-eq-imp-bij by blast

have exp-h-prod x = prod ( (λi. r(count-list y i)) ◦ f ) (set x)
by (simp add:exp-h-prod-def c)

also have ... = (
∏

i ∈ f ‘ (set x). r(count-list y i))
by (metis b bij-betw-def prod.reindex)

also have ... = exp-h-prod y
unfolding exp-h-prod-def
by (rule prod.cong, metis b bij-betw-def ) simp

finally show exp-h-prod x = exp-h-prod y by simp
qed

hence exp-h-prod-cong:
∧

p x. of-bool (kernel-of x = kernel-of p) ∗ exp-h-prod p
=

of-bool (kernel-of x = kernel-of p) ∗ exp-h-prod x
by (metis (full-types) of-bool-eq-0-iff vector-space-over-itself .scale-zero-left)

have c:(
∑

p←enum-rgfs n. of-bool (kernel-of xs = kernel-of p) ∗ r) = r
if a:length xs = n for xs :: nat list and n and r :: real

proof −
have (

∑
p←enum-rgfs n. of-bool (kernel-of xs = kernel-of p) ∗ 1 ) = (1 ::real)

using equiv-rels-2 [OF a[symmetric]] by (simp add:equiv-rels-def comp-def )
thus (

∑
p←enum-rgfs n. of-bool (kernel-of xs = kernel-of p) ∗ r) = (r ::real)

by (simp add:sum-list-mult-const)
qed

have expectation sketch-rv = (
∑

i∈set as. (
∑

j∈set as. c i ∗ c j ∗ expectation
(h-prod [i,j])))

by (simp add:f-eq h-prod-def power2-eq-square sum-distrib-left sum-distrib-right
Bochner-Integration.integral-sum algebra-simps)

also have ... = (
∑

i∈set as. (
∑

j∈set as. c i ∗ c j ∗ exp-h-prod [i,j]))
by (simp add:exp-h-prod)

also have ... = (
∑

i ∈ set as. (
∑

j ∈ set as.
c i ∗ c j ∗ (sum-list (map (λp. of-bool (kernel-of [i,j] = kernel-of p) ∗ exp-h-prod

p) (enum-rgfs 2 )))))
by (subst exp-h-prod-cong, simp add:c)

also have ... = (
∑

i∈set as. c i ∗ c i ∗ r 2 )
by (simp add: numeral-eq-Suc kernel-of-eq All-less-Suc exp-h-prod-elim r-one

distrib-left sum.distrib sum-collapse)
also have ... = real-of-rat (F 2 as) ∗ ((real p)^2−1 )
by (simp add: sum-distrib-right[symmetric] c-def F-def power2-eq-square of-rat-sum

of-rat-mult r-two)
finally show b:?B by simp
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have expectation (λx. (sketch-rv x)2) = (
∑

i1 ∈ set as. (
∑

i2 ∈ set as. (
∑

i3 ∈
set as. (

∑
i4 ∈ set as.

c i1 ∗ c i2 ∗ c i3 ∗ c i4 ∗ expectation (h-prod [i1 , i2 , i3 , i4 ])))))
by (simp add:f-eq h-prod-def power4-eq-xxxx sum-distrib-left sum-distrib-right

Bochner-Integration.integral-sum algebra-simps)
also have ... = (

∑
i1 ∈ set as. (

∑
i2 ∈ set as. (

∑
i3 ∈ set as. (

∑
i4 ∈ set as.

c i1 ∗ c i2 ∗ c i3 ∗ c i4 ∗ exp-h-prod [i1 ,i2 ,i3 ,i4 ]))))
by (simp add:exp-h-prod)

also have ... = (
∑

i1 ∈ set as. (
∑

i2 ∈ set as. (
∑

i3 ∈ set as. (
∑

i4 ∈ set as.
c i1 ∗ c i2 ∗ c i3 ∗ c i4 ∗
(sum-list (map (λp. of-bool (kernel-of [i1 ,i2 ,i3 ,i4 ] = kernel-of p) ∗ exp-h-prod

p) (enum-rgfs 4 )))))))
by (subst exp-h-prod-cong, simp add:c)

also have ... =
3 ∗ (

∑
i ∈ set as. (

∑
j ∈ set as. c i^2 ∗ c j^2 ∗ r 2 ∗ r 2 )) + ((

∑
i ∈ set as.

c i^4 ∗ r 4 ) − 3 ∗ (
∑

i ∈ set as. c i ^ 4 ∗ r 2 ∗ r 2 ))
apply (simp add: numeral-eq-Suc exp-h-prod-elim r-one)

apply (simp add: kernel-of-eq All-less-Suc numeral-eq-Suc distrib-left sum.distrib
sum-collapse neq-commute of-bool-not-iff )

apply (simp add: algebra-simps sum-subtractf sum-collapse)
apply (simp add: sum-distrib-left algebra-simps)
done

also have ... = 3 ∗ (
∑

i ∈ set as. c i^2 ∗ r 2 )^2 + (
∑

i ∈ set as. c i ^ 4 ∗ (r
4 − 3 ∗ r 2 ∗ r 2 ))

by (simp add:power2-eq-square sum-distrib-left algebra-simps sum-subtractf )
also have ... = 3 ∗ (

∑
i ∈ set as. c i^2 )^2 ∗ (r 2 )^2 + (

∑
i ∈ set as. c i ^ 4

∗ (r 4 − 3 ∗ r 2 ∗ r 2 ))
by (simp add:power-mult-distrib sum-distrib-right[symmetric])

also have ... ≤ 3 ∗ (
∑

i ∈ set as. c i^2 )^2 ∗ (r 2 )^2 + (
∑

i ∈ set as. c i ^ 4
∗ 0 )

using r-four-est
by (auto intro!: sum-nonpos simp add:mult-nonneg-nonpos)

also have ... = 3 ∗ (real-of-rat (F 2 as)^2 ) ∗ ((real p)2−1 )2
by (simp add:c-def r-two F-def of-rat-sum of-rat-power)

finally have expectation (λx. (sketch-rv x)2) ≤ 3 ∗ (real-of-rat (F 2 as)^2 ) ∗
((real p)2−1 )2

by simp

thus variance sketch-rv ≤ 2∗(real-of-rat (F 2 as)^2 ) ∗ ((real p)2−1 )2
by (simp add: variance-eq, simp add:power-mult-distrib b)

qed

lemma space-omega-1 [simp]: Sigma-Algebra.space Ωp = UNIV
by (simp add:Ωp-def )

interpretation Ω: prob-space Ωp

by (simp add:Ωp-def prob-space-measure-pmf )
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lemma integrable-Ω:
fixes f :: ((nat × nat) ⇒ (nat list)) ⇒ real
shows integrable Ωp f
unfolding Ωp-def Ω-def
by (rule integrable-measure-pmf-finite, auto intro:finite-PiE simp:set-prod-pmf )

lemma sketch-rv-exp:
assumes i2 < s2
assumes i1 ∈ {0 ..<s1}
shows Ω.expectation (λω. sketch-rv (ω (i1, i2))) = real-of-rat (F 2 as) ∗ ((real

p)2 − 1 )
proof −

have Ω.expectation (λω. (sketch-rv (ω (i1, i2))) :: real) = expectation sketch-rv
using integrable-Ω integrable-M assms
unfolding Ω-def Ωp-def M-def
by (subst expectation-Pi-pmf-slice, auto)

also have ... = (real-of-rat (F 2 as)) ∗ ((real p)2 − 1 )
using exp-sketch-rv by simp

finally show ?thesis by simp
qed

lemma sketch-rv-var :
assumes i2 < s2
assumes i1 ∈ {0 ..<s1}
shows Ω.variance (λω. sketch-rv (ω (i1, i2))) ≤ 2 ∗ (real-of-rat (F 2 as))2 ∗

((real p)2 − 1 )2
proof −

have Ω.variance (λω. (sketch-rv (ω (i1, i2)) :: real)) = variance sketch-rv
using integrable-Ω integrable-M assms
unfolding Ω-def Ωp-def M-def
by (subst variance-prod-pmf-slice, auto)

also have ... ≤ 2 ∗ (real-of-rat (F 2 as))2 ∗ ((real p)2 − 1 )2
using var-sketch-rv by simp

finally show ?thesis by simp
qed

lemma mean-rv-exp:
assumes i < s2
shows Ω.expectation (λω. mean-rv ω i) = real-of-rat (F 2 as)

proof −
have a:(real p)2 > 1 using p-gt-1 by simp

have Ω.expectation (λω. mean-rv ω i) = (
∑

i1 = 0 ..<s1. Ω.expectation (λω.
sketch-rv (ω (i1, i)))) / (((real p)2 − 1 ) ∗ real s1)

using assms integrable-Ω by (simp add:mean-rv-def )
also have ... = (

∑
i1 = 0 ..<s1. real-of-rat (F 2 as) ∗ ((real p)2 − 1 )) / (((real

p)2 − 1 ) ∗ real s1)
using sketch-rv-exp[OF assms] by simp

also have ... = real-of-rat (F 2 as)
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using s1-gt-0 a by simp
finally show ?thesis by simp

qed

lemma mean-rv-var :
assumes i < s2
shows Ω.variance (λω. mean-rv ω i) ≤ (real-of-rat (δ ∗ F 2 as))2 / 3

proof −
have a: Ω.indep-vars (λ-. borel) (λi1 x. sketch-rv (x (i1, i))) {0 ..<s1}

using assms
unfolding Ωp-def Ω-def
by (intro indep-vars-restrict-intro ′[where f=fst])
(auto simp add: restrict-dfl-def case-prod-beta lessThan-atLeast0 )

have p-sq-ne-1 : (real p)^2 6= 1
by (metis p-gt-1 less-numeral-extra(4 ) of-nat-power one-less-power pos2 semir-

ing-char-0-class.of-nat-eq-1-iff )

have s1-bound: 6 / (real-of-rat δ)2 ≤ real s1
unfolding s1-def

by (metis (mono-tags, opaque-lifting) of-rat-ceiling of-rat-divide of-rat-numeral-eq
of-rat-power real-nat-ceiling-ge)

have Ω.variance (λω. mean-rv ω i) = Ω.variance (λω.
∑

i1 = 0 ..<s1. sketch-rv
(ω (i1, i))) / (((real p)2 − 1 ) ∗ real s1)2

unfolding mean-rv-def by (subst Ω.variance-divide[OF integrable-Ω], simp)
also have ... = (

∑
i1 = 0 ..<s1. Ω.variance (λω. sketch-rv (ω (i1, i)))) / (((real

p)2 − 1 ) ∗ real s1)2
by (subst Ω.bienaymes-identity-full-indep[OF - - integrable-Ω a]) (auto simp:

Ω-def Ωp-def )
also have ... ≤ (

∑
i1 = 0 ..<s1. 2∗(real-of-rat (F 2 as)^2 ) ∗ ((real p)2−1 )2) /

(((real p)2 − 1 ) ∗ real s1)2
by (rule divide-right-mono, rule sum-mono[OF sketch-rv-var [OF assms]], auto)

also have ... = 2 ∗ (real-of-rat (F 2 as)^2 ) / real s1
using p-sq-ne-1 s1-gt-0 by (subst frac-eq-eq, auto simp:power2-eq-square)

also have ... ≤ 2 ∗ (real-of-rat (F 2 as)^2 ) / (6 / (real-of-rat δ)2)
using s1-gt-0 δ-range by (intro divide-left-mono mult-pos-pos s1-bound) auto

also have ... = (real-of-rat (δ ∗ F 2 as))2 / 3
by (simp add:of-rat-mult algebra-simps)

finally show ?thesis by simp
qed

lemma mean-rv-bounds:
assumes i < s2
shows Ω.prob {ω. real-of-rat δ ∗ real-of-rat (F 2 as) < |mean-rv ω i − real-of-rat

(F 2 as)|} ≤ 1/3
proof (cases as = [])

case True
then show ?thesis
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using assms by (subst mean-rv-def , subst sketch-rv-def , simp add:F-def )
next

case False
hence F 2 as > 0 using F-gr-0 by auto

hence a: 0 < real-of-rat (δ ∗ F 2 as)
using δ-range by simp

have [simp]: (λω. mean-rv ω i) ∈ borel-measurable Ωp

by (simp add:Ω-def Ωp-def )
have Ω.prob {ω. real-of-rat δ ∗ real-of-rat (F 2 as) < |mean-rv ω i − real-of-rat

(F 2 as)|} ≤
Ω.prob {ω. real-of-rat (δ ∗ F 2 as) ≤ |mean-rv ω i − real-of-rat (F 2 as)|}

by (rule Ω.pmf-mono[OF Ωp-def ], simp add:of-rat-mult)
also have ... ≤ Ω.variance (λω. mean-rv ω i) / (real-of-rat (δ ∗ F 2 as))2

using Ω.Chebyshev-inequality[where a=real-of-rat (δ ∗ F 2 as) and f=λω.
mean-rv ω i,simplified]

a prob-space-measure-pmf [where p=Ω] mean-rv-exp[OF assms] integrable-Ω
by simp

also have ... ≤ ((real-of-rat (δ ∗ F 2 as))2/3 ) / (real-of-rat (δ ∗ F 2 as))2
by (rule divide-right-mono, rule mean-rv-var [OF assms], simp)

also have ... = 1/3 using a by force
finally show ?thesis by blast

qed

lemma f2-alg-correct ′:
P(ω in measure-pmf result. |ω − F 2 as| ≤ δ ∗ F 2 as) ≥ 1−of-rat ε

proof −
have a: Ω.indep-vars (λ-. borel) (λi ω. mean-rv ω i) {0 ..<s2}

using s1-gt-0 unfolding Ωp-def Ω-def
by (intro indep-vars-restrict-intro ′[where f=snd])
(auto simp: Ωp-def Ω-def mean-rv-def restrict-dfl-def )

have b: − 18 ∗ ln (real-of-rat ε) ≤ real s2
unfolding s2-def using of-nat-ceiling by auto

have 1 − of-rat ε ≤ Ω.prob {ω. |median s2 (mean-rv ω) − real-of-rat (F 2 as)
| ≤ of-rat δ ∗ of-rat (F 2 as)}

using ε-range Ω.median-bound-2 [OF - a b, where δ=real-of-rat δ ∗ real-of-rat
(F 2 as)

and µ=real-of-rat (F 2 as)] mean-rv-bounds
by simp

also have ... = Ω.prob {ω. |real-of-rat (result-rv ω) − of-rat (F 2 as) | ≤ of-rat
δ ∗ of-rat (F 2 as)}

by (simp add:result-rv-def median-restrict lessThan-atLeast0 median-rat[OF
s2-gt-0 ]

mean-rv-def sketch-rv-def of-rat-divide of-rat-sum of-rat-mult of-rat-diff
of-rat-power)

also have ... = Ω.prob {ω. |result-rv ω − F 2 as| ≤ δ ∗ F 2 as}
by (simp add:of-rat-less-eq of-rat-mult[symmetric] of-rat-diff [symmetric] set-eq-iff )
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finally have Ω.prob {y. |result-rv y − F 2 as| ≤ δ ∗ F 2 as} ≥ 1−of-rat ε by
simp

thus ?thesis by (simp add: distr Ωp-def )
qed

lemma f2-exact-space-usage ′:
AE ω in sketch . bit-count (encode-f2-state ω) ≤ f2-space-usage (n, length as, ε,

δ)
proof −

have p ≤ 2 ∗ max n 3 + 2
by (subst p-def , rule prime-above-upper-bound)

also have ... ≤ 2 ∗ n + 8
by (cases n ≤ 2 , simp-all)

finally have p-bound: p ≤ 2 ∗ n + 8
by simp

have bit-count (N e p) ≤ ereal (2 ∗ log 2 (real p + 1 ) + 1 )
by (rule exp-golomb-bit-count)

also have ... ≤ ereal (2 ∗ log 2 (2 ∗ real n + 9 ) + 1 )
using p-bound by simp

finally have p-bit-count: bit-count (N e p) ≤ ereal (2 ∗ log 2 (2 ∗ real n + 9 )
+ 1 )

by simp

have a: bit-count (encode-f2-state (s1, s2, p, y, λi∈{..<s1} × {..<s2}.
sum-list (map (f2-hash p (y i)) as))) ≤ ereal (f2-space-usage (n, length as, ε,

δ))
if a:y∈{..<s1} × {..<s2} →E bounded-degree-polynomials (mod-ring p) 4 for y

proof −
have y ∈ extensional ({..<s1} × {..<s2}) using a PiE-iff by blast
hence y-ext: y ∈ extensional (set (List.product [0 ..<s1] [0 ..<s2]))

by (simp add:lessThan-atLeast0 )

have h-bit-count-aux: bit-count (Pe p 4 (y x)) ≤ ereal (4 + 4 ∗ log 2 (8 + 2
∗ real n))

if b:x ∈ set (List.product [0 ..<s1] [0 ..<s2]) for x
proof −

have y x ∈ bounded-degree-polynomials (mod-ring p) 4
using b a by force

hence bit-count (Pe p 4 (y x)) ≤ ereal (real 4 ∗ (log 2 (real p) + 1 ))
by (rule bounded-degree-polynomial-bit-count[OF p-gt-1 ] )

also have ... ≤ ereal (real 4 ∗ (log 2 (8 + 2 ∗ real n) + 1 ) )
using p-gt-0 p-bound by simp

also have ... ≤ ereal (4 + 4 ∗ log 2 (8 + 2 ∗ real n))
by simp

finally show ?thesis
by blast

qed

have h-bit-count:

71



bit-count ((List.product [0 ..<s1] [0 ..<s2] →e Pe p 4 ) y) ≤ ereal (real s1 ∗ real
s2 ∗ (4 + 4 ∗ log 2 (8 + 2 ∗ real n)))

using fun-bit-count-est[where e=Pe p 4 , OF y-ext h-bit-count-aux]
by simp

have sketch-bit-count-aux:
bit-count (I e (sum-list (map (f2-hash p (y x)) as))) ≤ ereal (1 + 2 ∗ log 2

(real (length as) ∗ (18 + 4 ∗ real n) + 1 )) (is ?lhs ≤ ?rhs)
if x ∈ {0 ..<s1} × {0 ..<s2} for x

proof −
have |sum-list (map (f2-hash p (y x)) as)| ≤ sum-list (map (abs ◦ (f2-hash p

(y x))) as)
by (subst map-map[symmetric]) (rule sum-list-abs)

also have ... ≤ sum-list (map (λ-. (int p+1 )) as)
by (rule sum-list-mono) (simp add:p-gt-0 )

also have ... = int (length as) ∗ (int p+1 )
by (simp add: sum-list-triv)

also have ... ≤ int (length as) ∗ (9+2∗(int n))
using p-bound by (intro mult-mono, auto)

finally have |sum-list (map (f2-hash p (y x)) as)| ≤ int (length as) ∗ (9 +
2 ∗ int n) by simp

hence ?lhs ≤ ereal (2 ∗ log 2 (real-of-int (2∗ (int (length as) ∗ (9 + 2 ∗ int
n)) + 1 )) + 1 )

by (rule int-bit-count-est)
also have ... = ?rhs by (simp add:algebra-simps)
finally show ?thesis by simp

qed

have
bit-count ((List.product [0 ..<s1] [0 ..<s2] →e I e) (λi∈{..<s1} × {..<s2}.

sum-list (map (f2-hash p (y i)) as)))
≤ ereal (real (length (List.product [0 ..<s1] [0 ..<s2]))) ∗ (ereal (1 + 2 ∗ log 2

(real (length as) ∗ (18 + 4 ∗ real n) + 1 )))
by (intro fun-bit-count-est)
(simp-all add:extensional-def lessThan-atLeast0 sketch-bit-count-aux del:f2-hash.simps)

also have ... = ereal (real s1 ∗ real s2 ∗ (1 + 2 ∗ log 2 (real (length as) ∗ (18
+ 4 ∗ real n) + 1 )))

by simp
finally have sketch-bit-count:

bit-count ((List.product [0 ..<s1] [0 ..<s2] →e I e) (λi∈{..<s1} × {..<s2}.
sum-list (map (f2-hash p (y i)) as))) ≤

ereal (real s1 ∗ real s2 ∗ (1 + 2 ∗ log 2 (real (length as) ∗ (18 + 4 ∗ real n)
+ 1 ))) by simp

have bit-count (encode-f2-state (s1, s2, p, y, λi∈{..<s1} × {..<s2}. sum-list
(map (f2-hash p (y i)) as))) ≤

bit-count (N e s1) + bit-count (N e s2) +bit-count (N e p) +
bit-count ((List.product [0 ..<s1] [0 ..<s2] →e Pe p 4 ) y) +

bit-count ((List.product [0 ..<s1] [0 ..<s2] →e I e) (λi∈{..<s1} × {..<s2}.
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sum-list (map (f2-hash p (y i)) as)))
by (simp add:Let-def s1-def s2-def encode-f2-state-def dependent-bit-count

add.assoc)
also have ... ≤ ereal (2 ∗ log 2 (real s1 + 1 ) + 1 ) + ereal (2 ∗ log 2 (real s2

+ 1 ) + 1 ) + ereal (2 ∗ log 2 (2 ∗ real n + 9 ) + 1 ) +
(ereal (real s1 ∗ real s2) ∗ (4 + 4 ∗ log 2 (8 + 2 ∗ real n))) +
(ereal (real s1 ∗ real s2) ∗ (1 + 2 ∗ log 2 (real (length as) ∗ (18 + 4 ∗ real

n) + 1 ) ))
by (intro add-mono exp-golomb-bit-count p-bit-count, auto intro: h-bit-count

sketch-bit-count)
also have ... = ereal (f2-space-usage (n, length as, ε, δ))

by (simp add:distrib-left add.commute s1-def [symmetric] s2-def [symmetric]
Let-def )

finally show bit-count (encode-f2-state (s1, s2, p, y, λi∈{..<s1} × {..<s2}.
sum-list (map (f2-hash p (y i)) as))) ≤

ereal (f2-space-usage (n, length as, ε, δ))
by simp

qed

have set-pmf Ω = {..<s1} × {..<s2} →E bounded-degree-polynomials (mod-ring
p) 4

by (simp add: Ω-def set-prod-pmf ) (simp add: space-def )
thus ?thesis

by (simp add:mean-rv-alg-sketch AE-measure-pmf-iff del:f2-space-usage.simps,
metis a)
qed

end

Main results of this section:
theorem f2-alg-correct:

assumes ε ∈ {0<..<1}
assumes δ > 0
assumes set as ⊆ {..<n}
defines Ω ≡ fold (λa state. state >>= f2-update a) as (f2-init δ ε n) >>= f2-result
shows P(ω in measure-pmf Ω. |ω − F 2 as| ≤ δ ∗ F 2 as) ≥ 1−of-rat ε
using f2-alg-correct ′[OF assms(1 ,2 ,3 )] Ω-def by auto

theorem f2-exact-space-usage:
assumes ε ∈ {0<..<1}
assumes δ > 0
assumes set as ⊆ {..<n}
defines M ≡ fold (λa state. state >>= f2-update a) as (f2-init δ ε n)
shows AE ω in M . bit-count (encode-f2-state ω) ≤ f2-space-usage (n, length as,

ε, δ)
using f2-exact-space-usage ′[OF assms(1 ,2 ,3 )]
by (subst (asm) sketch-def [OF assms(1 ,2 ,3 )], subst M-def , simp)

theorem f2-asymptotic-space-complexity:
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f2-space-usage ∈ O[at-top ×F at-top ×F at-right 0 ×F at-right 0 ](λ (n, m, ε, δ).
(ln (1 / of-rat ε)) / (of-rat δ)2 ∗ (ln (real n) + ln (real m)))
(is - ∈ O[?F ](?rhs))

proof −
define n-of :: nat × nat × rat × rat ⇒ nat where n-of = (λ(n, m, ε, δ). n)
define m-of :: nat × nat × rat × rat ⇒ nat where m-of = (λ(n, m, ε, δ). m)
define ε-of :: nat × nat × rat × rat ⇒ rat where ε-of = (λ(n, m, ε, δ). ε)
define δ-of :: nat × nat × rat × rat ⇒ rat where δ-of = (λ(n, m, ε, δ). δ)

define g where g = (λx. (1/ (of-rat (δ-of x))2) ∗ (ln (1 / of-rat (ε-of x))) ∗ (ln
(real (n-of x)) + ln (real (m-of x))))

have evt: (
∧

x.
0 < real-of-rat (δ-of x) ∧ 0 < real-of-rat (ε-of x) ∧
1/real-of-rat (δ-of x) ≥ δ ∧ 1/real-of-rat (ε-of x) ≥ ε ∧
real (n-of x) ≥ n ∧ real (m-of x) ≥ m=⇒ P x)
=⇒ eventually P ?F (is (

∧
x. ?prem x =⇒ -) =⇒ -)

for δ ε n m P
apply (rule eventually-mono[where P=?prem and Q=P])
apply (simp add:ε-of-def case-prod-beta ′ δ-of-def n-of-def m-of-def )
apply (intro eventually-conj eventually-prod1 ′ eventually-prod2 ′

sequentially-inf eventually-at-right-less inv-at-right-0-inf )
by (auto simp add:prod-filter-eq-bot)

have unit-1 : (λ-. 1 ) ∈ O[?F ](λx. 1 / (real-of-rat (δ-of x))2)
using one-le-power

by (intro landau-o.big-mono evt[where δ=1 ], auto simp add:power-one-over [symmetric])

have unit-2 : (λ-. 1 ) ∈ O[?F ](λx. ln (1 / real-of-rat (ε-of x)))
by (intro landau-o.big-mono evt[where ε=exp 1 ])
(auto intro!:iffD2 [OF ln-ge-iff ] simp add:abs-ge-iff )

have unit-3 : (λ-. 1 ) ∈ O[?F ](λx. real (n-of x))
by (intro landau-o.big-mono evt, auto)

have unit-4 : (λ-. 1 ) ∈ O[?F ](λx. real (m-of x))
by (intro landau-o.big-mono evt, auto)

have unit-5 : (λ-. 1 ) ∈ O[?F ](λx. ln (real (n-of x)))
by (auto intro!: landau-o.big-mono evt[where n=exp 1 ])
(metis abs-ge-self linorder-not-le ln-ge-iff not-exp-le-zero order .trans)

have unit-6 : (λ-. 1 ) ∈ O[?F ](λx. ln (real (n-of x)) + ln (real (m-of x)))
by (intro landau-sum-1 evt unit-5 iffD2 [OF ln-ge-iff ], auto)

have unit-7 : (λ-. 1 ) ∈ O[?F ](λx. 1 / real-of-rat (ε-of x))
by (intro landau-o.big-mono evt[where ε=1 ], auto)

have unit-8 : (λ-. 1 ) ∈ O[?F ](g)
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unfolding g-def by (intro landau-o.big-mult-1 unit-1 unit-2 unit-6 )

have unit-9 : (λ-. 1 ) ∈ O[?F ](λx. real (n-of x) ∗ real (m-of x))
by (intro landau-o.big-mult-1 unit-3 unit-4 )

have (λx. 6 ∗ (1 / (real-of-rat (δ-of x))2)) ∈ O[?F ](λx. 1 / (real-of-rat (δ-of
x))2)

by (subst landau-o.big.cmult-in-iff , simp-all)
hence l1 : (λx. real (nat d6 / (δ-of x)2e)) ∈ O[?F ](λx. 1 / (real-of-rat (δ-of x))2)

by (intro landau-real-nat landau-rat-ceil[OF unit-1 ]) (simp-all add:of-rat-divide
of-rat-power)

have (λx. − ( ln (real-of-rat (ε-of x)))) ∈ O[?F ](λx. ln (1 / real-of-rat (ε-of x)))
by (intro landau-o.big-mono evt) (subst ln-div, auto)

hence l2 : (λx. real (nat d− (18 ∗ ln (real-of-rat (ε-of x)))e)) ∈ O[?F ](λx. ln (1
/ real-of-rat (ε-of x)))

by (intro landau-real-nat landau-ceil[OF unit-2 ], simp)

have l3-aux: (λx. real (m-of x) ∗ (18 + 4 ∗ real (n-of x)) + 1 ) ∈ O[?F ](λx.
real (n-of x) ∗ real (m-of x))

by (rule sum-in-bigo[OF -unit-9 ], subst mult.commute)
(intro landau-o.mult sum-in-bigo, auto simp:unit-3 )

have (λx. ln (real (m-of x) ∗ (18 + 4 ∗ real (n-of x)) + 1 )) ∈ O[?F ](λx. ln (real
(n-of x) ∗ real (m-of x)))

apply (rule landau-ln-2 [where a=2 ], simp, simp)
apply (rule evt[where m=2 and n=1 ])

apply (metis dual-order .trans mult-left-mono mult-of-nat-commute of-nat-0-le-iff
verit-prod-simplify(1 ))

using l3-aux by simp
also have (λx. ln (real (n-of x) ∗ real (m-of x))) ∈ O[?F ](λx. ln (real (n-of x))

+ ln(real (m-of x)))
by (intro landau-o.big-mono evt[where m=1 and n=1 ], auto simp add:ln-mult)
finally have l3 : (λx. ln (real (m-of x) ∗ (18 + 4 ∗ real (n-of x)) + 1 )) ∈

O[?F ](λx. ln (real (n-of x)) + ln (real (m-of x)))
using landau-o.big-trans by simp

have l4 : (λx. ln (8 + 2 ∗ real (n-of x))) ∈ O[?F ](λx. ln (real (n-of x)) + ln
(real (m-of x)))

by (intro landau-sum-1 evt[where n=2 ] landau-ln-2 [where a=2 ] iffD2 [OF
ln-ge-iff ])

(auto intro!: sum-in-bigo simp add:unit-3 )

have l5 : (λx. ln (9 + 2 ∗ real (n-of x))) ∈ O[?F ](λx. ln (real (n-of x)) + ln
(real (m-of x)))

by (intro landau-sum-1 evt[where n=2 ] landau-ln-2 [where a=2 ] iffD2 [OF
ln-ge-iff ])

(auto intro!: sum-in-bigo simp add:unit-3 )
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have l6 : (λx. ln (real (nat d6 / (δ-of x)2e) + 1 )) ∈ O[?F ](g)
unfolding g-def
by (intro landau-o.big-mult-1 landau-ln-3 sum-in-bigo unit-6 unit-2 l1 unit-1 ,

simp)

have l7 : (λx. ln (9 + 2 ∗ real (n-of x))) ∈ O[?F ](g)
unfolding g-def
by (intro landau-o.big-mult-1 ′ unit-1 unit-2 l5 )

have l8 : (λx. ln (real (nat d− (18 ∗ ln (real-of-rat (ε-of x)))e) + 1 ) ) ∈ O[?F ](g)
unfolding g-def
by (intro landau-o.big-mult-1 unit-6 landau-o.big-mult-1 ′ unit-1 landau-ln-3

sum-in-bigo l2 unit-2 ) simp

have l9 : (λx. 5 + 4 ∗ ln (8 + 2 ∗ real (n-of x)) / ln 2 + 2 ∗ ln (real (m-of x)
∗ (18 + 4 ∗ real (n-of x)) + 1 ) / ln 2 )

∈ O[?F ](λx. ln (real (n-of x)) + ln (real (m-of x)))
by (intro sum-in-bigo, auto simp: l3 l4 unit-6 )

have l10 : (λx. real (nat d6 / (δ-of x)2e) ∗ real (nat d− (18 ∗ ln (real-of-rat (ε-of
x)))e) ∗

(5 + 4 ∗ ln (8 + 2 ∗ real (n-of x)) / ln 2 + 2 ∗ ln(real (m-of x) ∗ (18 + 4
∗ real (n-of x)) + 1 ) / ln 2 ))

∈ O[?F ](g)
unfolding g-def by (intro landau-o.mult, auto simp: l1 l2 l9 )

have f2-space-usage = (λx. f2-space-usage (n-of x, m-of x, ε-of x, δ-of x))
by (simp add:case-prod-beta ′ n-of-def ε-of-def δ-of-def m-of-def )

also have ... ∈ O[?F ](g)
by (auto intro!:sum-in-bigo simp:Let-def log-def l6 l7 l8 l10 unit-8 )

also have ... = O[?F ](?rhs)
by (simp add:case-prod-beta ′ g-def n-of-def ε-of-def δ-of-def m-of-def )

finally show ?thesis by simp
qed

end

9 Frequency Moment k

theory Frequency-Moment-k
imports

Frequency-Moments
Landau-Ext
Lp.Lp
Median-Method.Median
Probability-Ext
Product-PMF-Ext

begin
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This section contains a formalization of the algorithm for the k-th frequency
moment. It is based on the algorithm described in [1, §2.1].
type-synonym fk-state = nat × nat × nat × nat × (nat × nat ⇒ (nat × nat))

fun fk-init :: nat ⇒ rat ⇒ rat ⇒ nat ⇒ fk-state pmf where
fk-init k δ ε n =

do {
let s1 = nat d3 ∗ real k ∗ n powr (1−1/real k) / (real-of-rat δ)2e;
let s2 = nat d−18 ∗ ln (real-of-rat ε)e;
return-pmf (s1, s2, k, 0 , (λ- ∈ {0 ..<s1} × {0 ..<s2}. (0 ,0 )))
}

fun fk-update :: nat ⇒ fk-state ⇒ fk-state pmf where
fk-update a (s1, s2, k, m, r) =

do {
coins ← prod-pmf ({0 ..<s1} × {0 ..<s2}) (λ-. bernoulli-pmf (1/(real m+1 )));
return-pmf (s1, s2, k, m+1 , λi ∈ {0 ..<s1} × {0 ..<s2}.

if coins i then
(a,0 )

else (
let (x,l) = r i in (x, l + of-bool (x=a))

)
)
}

fun fk-result :: fk-state ⇒ rat pmf where
fk-result (s1, s2, k, m, r) =

return-pmf (median s2 (λi2 ∈ {0 ..<s2}.
(
∑

i1∈{0 ..<s1}. rat-of-nat (let t = snd (r (i1, i2)) + 1 in m ∗ (t^k − (t −
1 )^k))) / (rat-of-nat s1))

)

lemma bernoulli-pmf-1 : bernoulli-pmf 1 = return-pmf True
by (rule pmf-eqI , simp add:indicator-def )

fun fk-space-usage :: (nat × nat × nat × rat × rat) ⇒ real where
fk-space-usage (k, n, m, ε, δ) = (

let s1 = nat d3∗real k∗ (real n) powr (1−1/ real k) / (real-of-rat δ)2 e in
let s2 = nat d−(18 ∗ ln (real-of-rat ε))e in
4 +
2 ∗ log 2 (s1 + 1 ) +
2 ∗ log 2 (s2 + 1 ) +
2 ∗ log 2 (real k + 1 ) +
2 ∗ log 2 (real m + 1 ) +
s1 ∗ s2 ∗ (2 + 2 ∗ log 2 (real n+1 ) + 2 ∗ log 2 (real m+1 )))

definition encode-fk-state :: fk-state ⇒ bool list option where
encode-fk-state =

N e one (λs1.
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N e one (λs2.
N e ×e

N e ×e

(List.product [0 ..<s1] [0 ..<s2] →e (N e ×e N e))))

lemma inj-on encode-fk-state (dom encode-fk-state)
proof −

have is-encoding encode-fk-state
by (simp add:encode-fk-state-def )
(intro dependent-encoding exp-golomb-encoding fun-encoding)

thus ?thesis by (rule encoding-imp-inj)
qed

This is an intermediate non-parallel form fk-update used only in the correct-
ness proof.
fun fk-update-2 :: ′a ⇒ (nat × ′a × nat) ⇒ (nat × ′a × nat) pmf where

fk-update-2 a (m,x,l) =
do {

coin ← bernoulli-pmf (1/(real m+1 ));
return-pmf (m+1 ,if coin then (a,0 ) else (x, l + of-bool (x=a)))
}

definition sketch where sketch as i = (as ! i, count-list (drop (i+1 ) as) (as ! i))

lemma fk-update-2-distr :
assumes as 6= []
shows fold (λx s. s >>= fk-update-2 x) as (return-pmf (0 ,0 ,0 )) =
pmf-of-set {..<length as} >>= (λk. return-pmf (length as, sketch as k))
using assms

proof (induction as rule:rev-nonempty-induct)
case (single x)
show ?case using single

by (simp add:bind-return-pmf pmf-of-set-singleton bernoulli-pmf-1 lessThan-def
sketch-def )
next

case (snoc x xs)
let ?h = (λxs k. count-list (drop (Suc k) xs) (xs ! k))
let ?q = (λxs k. (length xs, sketch xs k))

have non-empty: {..<Suc (length xs)} 6= {} {..<length xs} 6= {} using snoc by
auto

have fk-update-2-eta:fk-update-2 x = (λa. fk-update-2 x (fst a, fst (snd a), snd
(snd a)))

by auto

have pmf-of-set {..<length xs} >>= (λk. bernoulli-pmf (1 / (real (length xs) +
1 )) >>=
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(λcoin. return-pmf (if coin then length xs else k))) =
bernoulli-pmf (1 / (real (length xs) + 1 )) >>= (λy. pmf-of-set {..<length xs}

>>=
(λk. return-pmf (if y then length xs else k)))

by (subst bind-commute-pmf , simp)
also have ... = pmf-of-set {..<length xs + 1}

using snoc(1 ) non-empty
by (intro pmf-eqI , simp add: pmf-bind measure-pmf-of-set)
(simp add:indicator-def algebra-simps frac-eq-eq)

finally have b: pmf-of-set {..<length xs} >>= (λk. bernoulli-pmf (1 / (real (length
xs) + 1 )) >>=

(λcoin. return-pmf (if coin then length xs else k))) = pmf-of-set {..<length xs
+1} by simp

have fold (λx s. (s >>= fk-update-2 x)) (xs@[x]) (return-pmf (0 ,0 ,0 )) =
(pmf-of-set {..<length xs} >>= (λk. return-pmf (length xs, sketch xs k))) >>=

fk-update-2 x
using snoc by (simp add:case-prod-beta ′)

also have ... = (pmf-of-set {..<length xs} >>= (λk. return-pmf (length xs, sketch
xs k))) >>=

(λ(m,a,l). bernoulli-pmf (1 / (real m + 1 )) >>= (λcoin.
return-pmf (m + 1 , if coin then (x, 0 ) else (a, (l + of-bool (a = x))))))
by (subst fk-update-2-eta, subst fk-update-2 .simps, simp add:case-prod-beta ′)

also have ... = pmf-of-set {..<length xs} >>= (λk. bernoulli-pmf (1 / (real (length
xs) + 1 )) >>=

(λcoin. return-pmf (length xs + 1 , if coin then (x, 0 ) else (xs ! k, ?h xs k +
of-bool (xs ! k = x)))))

by (subst bind-assoc-pmf , simp add: bind-return-pmf sketch-def )
also have ... = pmf-of-set {..<length xs} >>= (λk. bernoulli-pmf (1 / (real (length

xs) + 1 )) >>=
(λcoin. return-pmf (if coin then length xs else k) >>= (λk ′. return-pmf (?q

(xs@[x]) k ′))))
using non-empty

by (intro bind-pmf-cong, auto simp add:bind-return-pmf nth-append count-list-append
sketch-def )

also have ... = pmf-of-set {..<length xs} >>= (λk. bernoulli-pmf (1 / (real (length
xs) + 1 )) >>=

(λcoin. return-pmf (if coin then length xs else k))) >>= (λk ′. return-pmf (?q
(xs@[x]) k ′))

by (subst bind-assoc-pmf , subst bind-assoc-pmf , simp)
also have ... = pmf-of-set {..<length (xs@[x])} >>= (λk ′. return-pmf (?q (xs@[x])

k ′))
by (subst b, simp)

finally show ?case by simp
qed

context
fixes ε δ :: rat
fixes n k :: nat
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fixes as
assumes k-ge-1 : k ≥ 1
assumes ε-range: ε ∈ {0<..<1}
assumes δ-range: δ > 0
assumes as-range: set as ⊆ {..<n}

begin

definition s1 where s1 = nat d3 ∗ real k ∗ (real n) powr (1−1/real k) / (real-of-rat
δ)2e
definition s2 where s2 = nat d−(18 ∗ ln (real-of-rat ε))e

definition M 1 = {(u, v). v < count-list as u}
definition Ω1 = measure-pmf (pmf-of-set M 1)

definition M 2 = prod-pmf ({0 ..<s1} × {0 ..<s2}) (λ-. pmf-of-set M 1)
definition Ω2 = measure-pmf M 2

interpretation prob-space Ω1

unfolding Ω1-def by (simp add:prob-space-measure-pmf )

interpretation Ω2:prob-space Ω2

unfolding Ω2-def by (simp add:prob-space-measure-pmf )

lemma split-space: (
∑

a∈M 1. f (snd a)) = (
∑

u ∈ set as. (
∑

v ∈{0 ..<count-list
as u}. f v))
proof −

define A where A = (λu. {u} × {v. v < count-list as u})

have a: inj-on snd (A x) for x
by (simp add:A-def inj-on-def )

have
∧

u v. u < count-list as v =⇒ v ∈ set as
by (subst count-list-gr-1 , force)

hence M 1 =
⋃

(A ‘ set as)
by (auto simp add:set-eq-iff A-def M 1-def )

hence (
∑

a∈M 1. f (snd a)) = sum (f ◦ snd) (
⋃

(A ‘ set as))
by (intro sum.cong, auto)

also have ... = sum (λx. sum (f ◦ snd) (A x)) (set as)
by (rule sum.UNION-disjoint, simp, simp add:A-def , simp add:A-def , blast)

also have ... = sum (λx. sum f (snd ‘ A x)) (set as)
by (intro sum.cong, auto simp add:sum.reindex[OF a])

also have ... = (
∑

u ∈ set as. (
∑

v ∈{0 ..<count-list as u}. f v))
unfolding A-def by (intro sum.cong, auto)

finally show ?thesis by blast
qed

lemma
assumes as 6= []
shows fin-space: finite M 1
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and non-empty-space: M 1 6= {}
and card-space: card M 1 = length as

proof −
have M 1 ⊆ set as × {k. k < length as}
proof (rule subsetI )

fix x
assume a:x ∈ M 1

have fst x ∈ set as
using a by (simp add:case-prod-beta count-list-gr-1 M 1-def )

moreover have snd x < length as
using a count-le-length order-less-le-trans
by (simp add:case-prod-beta M 1-def ) fast

ultimately show x ∈ set as × {k. k < length as}
by (simp add:mem-Times-iff )

qed
thus fin-space: finite M 1

using finite-subset by blast

have (as ! 0 , 0 ) ∈ M 1

using assms(1 ) unfolding M 1-def
by (simp, metis count-list-gr-1 gr0I length-greater-0-conv not-one-le-zero nth-mem)

thus M 1 6= {} by blast

show card M 1 = length as
using fin-space split-space[where f=λ-. (1 ::nat)]
by (simp add:sum-count-set[where X=set as and xs=as, simplified])

qed

lemma
assumes as 6= []
shows integrable-1 : integrable Ω1 (f :: - ⇒ real) and

integrable-2 : integrable Ω2 (g :: - ⇒ real)
proof −

have fin-omega: finite (set-pmf (pmf-of-set M 1))
using fin-space[OF assms] non-empty-space[OF assms] by auto

thus integrable Ω1 f
unfolding Ω1-def
by (rule integrable-measure-pmf-finite)

have finite (set-pmf M 2)
unfolding M 2-def using fin-omega
by (subst set-prod-pmf ) (auto intro:finite-PiE)

thus integrable Ω2 g
unfolding Ω2-def by (intro integrable-measure-pmf-finite)

qed

lemma sketch-distr :
assumes as 6= []
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shows pmf-of-set {..<length as} >>= (λk. return-pmf (sketch as k)) = pmf-of-set
M 1

proof −
have x < y =⇒ y < length as =⇒

count-list (drop (y+1 ) as) (as ! y) < count-list (drop (x+1 ) as) (as ! y) for x y
by (intro count-list-lt-suffix suffix-drop-drop, simp-all)
(metis Suc-diff-Suc diff-Suc-Suc diff-add-inverse lessI less-natE)

hence a1 : inj-on (sketch as) {k. k < length as}
unfolding sketch-def by (intro inj-onI ) (metis Pair-inject mem-Collect-eq

nat-neq-iff )

have x < length as =⇒ count-list (drop (x+1 ) as) (as ! x) < count-list as (as !
x) for x

by (rule count-list-lt-suffix, auto simp add:suffix-drop)
hence sketch as ‘ {k. k < length as} ⊆ M 1

by (intro image-subsetI , simp add:sketch-def M 1-def )
moreover have card M 1 ≤ card (sketch as ‘ {k. k < length as})

by (simp add: card-space[OF assms(1 )] card-image[OF a1 ])
ultimately have sketch as ‘ {k. k < length as} = M 1

using fin-space[OF assms(1 )] by (intro card-seteq, simp-all)
hence bij-betw (sketch as) {k. k < length as} M 1

using a1 by (simp add:bij-betw-def )
hence map-pmf (sketch as) (pmf-of-set {k. k < length as}) = pmf-of-set M 1

using assms by (intro map-pmf-of-set-bij-betw, auto)
thus ?thesis by (simp add: sketch-def map-pmf-def lessThan-def )

qed

lemma fk-update-distr :
fold (λx s. s >>= fk-update x) as (fk-init k δ ε n) =
prod-pmf ({0 ..<s1} × {0 ..<s2}) (λ-. fold (λx s. s >>= fk-update-2 x) as (return-pmf

(0 ,0 ,0 )))
>>= (λx. return-pmf (s1,s2,k, length as, λi∈{0 ..<s1}×{0 ..<s2}. snd (x i)))

proof (induction as rule:rev-induct)
case Nil
then show ?case

by (auto simp:Let-def s1-def [symmetric] s2-def [symmetric] bind-return-pmf )
next

case (snoc x xs)

have fk-update-2-eta:fk-update-2 x = (λa. fk-update-2 x (fst a, fst (snd a), snd
(snd a)))

by auto

have a: fk-update x (s1, s2, k, length xs, λi∈{0 ..<s1} × {0 ..<s2}. snd (f i)) =
prod-pmf ({0 ..<s1} × {0 ..<s2}) (λi. fk-update-2 x (f i)) >>=
(λa. return-pmf (s1,s2, k, Suc (length xs), λi∈{0 ..<s1} × {0 ..<s2}. snd (a i)))
if b: f ∈ set-pmf (prod-pmf ({0 ..<s1} × {0 ..<s2})

(λ-. fold (λa s. s >>= fk-update-2 a) xs (return-pmf (0 , 0 , 0 )))) for f
proof −
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have c:fst (f i) = length xs if d:i ∈ {0 ..<s1} ×{0 ..<s2} for i
proof (cases xs = [])

case True
then show ?thesis using b d by (simp add: set-Pi-pmf )

next
case False
hence {..<length xs} 6= {} by force
thus ?thesis using b d

by (simp add:set-Pi-pmf fk-update-2-distr [OF False] PiE-dflt-def ) force
qed
show ?thesis

apply (subst fk-update-2-eta, subst fk-update-2 .simps, simp)
apply (simp add: Pi-pmf-bind-return[where d ′=undefined] bind-assoc-pmf )
apply (rule bind-pmf-cong, simp add:c cong:Pi-pmf-cong)
by (auto simp add:bind-return-pmf case-prod-beta)

qed

have fold (λx s. s >>= fk-update x) (xs @ [x]) (fk-init k δ ε n) =
prod-pmf ({0 ..<s1} × {0 ..<s2}) (λ-. fold (λx s. s >>= fk-update-2 x) xs

(return-pmf (0 ,0 ,0 )))
>>= (λω. return-pmf (s1,s2,k, length xs, λi∈{0 ..<s1}×{0 ..<s2}. snd (ω i)) >>=

fk-update x)
using snoc
by (simp add:restrict-def bind-assoc-pmf del:fk-init.simps)

also have ... = prod-pmf ({0 ..<s1} × {0 ..<s2})
(λ-. fold (λa s. s >>= fk-update-2 a) xs (return-pmf (0 , 0 , 0 ))) >>=
(λf . prod-pmf ({0 ..<s1} × {0 ..<s2}) (λi. fk-update-2 x (f i)) >>=
(λa. return-pmf (s1, s2, k, Suc (length xs), λi∈{0 ..<s1} × {0 ..<s2}. snd (a

i))))
using a
by (intro bind-pmf-cong, simp-all add:bind-return-pmf del:fk-update.simps)

also have ... = prod-pmf ({0 ..<s1} × {0 ..<s2})
(λ-. fold (λa s. s >>= fk-update-2 a) xs (return-pmf (0 , 0 , 0 ))) >>=
(λf . prod-pmf ({0 ..<s1} × {0 ..<s2}) (λi. fk-update-2 x (f i))) >>=
(λa. return-pmf (s1, s2, k, Suc (length xs), λi∈{0 ..<s1} × {0 ..<s2}. snd (a

i)))
by (simp add:bind-assoc-pmf )

also have ... = (prod-pmf ({0 ..<s1} × {0 ..<s2})
(λ-. fold (λa s. s >>= fk-update-2 a) (xs@[x]) (return-pmf (0 ,0 ,0 )))
>>= (λa. return-pmf (s1,s2,k, length (xs@[x]), λi∈{0 ..<s1}×{0 ..<s2}. snd (a

i))))
by (simp, subst Pi-pmf-bind, auto)

finally show ?case by blast
qed

lemma power-diff-sum:
fixes a b :: ′a :: {comm-ring-1 ,power}
assumes k > 0
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shows a^k − b^k = (a−b) ∗ (
∑

i = 0 ..<k. a ^ i ∗ b ^ (k − 1 − i)) (is ?lhs =
?rhs)
proof −

have insert-lb: m < n =⇒ insert m {Suc m..<n} = {m..<n} for m n :: nat
by auto

have ?rhs = sum (λi. a ∗ (a^i ∗ b^(k−1−i))) {0 ..<k} −
sum (λi. b ∗ (a^i ∗ b^(k−1−i))) {0 ..<k}
by (simp add: sum-distrib-left[symmetric] algebra-simps)

also have ... = sum ((λi. (a^i ∗ b^(k−i))) ◦ (λi. i+1 )) {0 ..<k} −
sum (λi. (a^i ∗ (b^(1+(k−1−i))))) {0 ..<k}
by (simp add:algebra-simps)

also have ... = sum ((λi. (a^i ∗ b^(k−i))) ◦ (λi. i+1 )) {0 ..<k} −
sum (λi. (a^i ∗ b^(k−i))) {0 ..<k}
by (intro arg-cong2 [where f=(−)] sum.cong arg-cong2 [where f=(∗)]

arg-cong2 [where f=(λx y. x ^ y)]) auto
also have ... = sum (λi. (a^i ∗ b^(k−i))) (insert k {1 ..<k}) −

sum (λi. (a^i ∗ b^(k−i))) (insert 0 {Suc 0 ..<k})
using assms
by (subst sum.reindex[symmetric], simp, subst insert-lb, auto)

also have ... = ?lhs
by simp

finally show ?thesis by presburger
qed

lemma power-diff-est:
assumes k > 0
assumes (a :: real) ≥ b
assumes b ≥ 0
shows a^k −b^k ≤ (a−b) ∗ k ∗ a^(k−1 )

proof −
have

∧
i. i < k =⇒ a ^ i ∗ b ^ (k − 1 − i) ≤ a ^ i ∗ a ^ (k−1−i)

using assms by (intro mult-left-mono power-mono) auto
also have

∧
i. i < k =⇒ a ^ i ∗ a ^ (k − 1 − i) = a ^ (k − Suc 0 )

using assms(1 ) by (subst power-add[symmetric], simp)
finally have a:

∧
i. i < k =⇒ a ^ i ∗ b ^ (k − 1 − i) ≤ a ^ (k − Suc 0 )

by blast
have a^k − b^k = (a−b) ∗ (

∑
i = 0 ..<k. a ^ i ∗ b ^ (k − 1 − i))

by (rule power-diff-sum[OF assms(1 )])
also have ... ≤ (a−b) ∗ (

∑
i = 0 ..<k. a^(k−1 ))

using a assms by (intro mult-left-mono sum-mono, auto)
also have ... = (a−b) ∗ (k ∗ a^(k−Suc 0 ))

by simp
finally show ?thesis by simp

qed

Specialization of the Hoelder inquality for sums.
lemma Holder-inequality-sum:

assumes p > (0 ::real) q > 0 1/p + 1/q = 1
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assumes finite A
shows |

∑
x∈A. f x ∗ g x| ≤ (

∑
x∈A. |f x| powr p) powr (1/p) ∗ (

∑
x∈A. |g x|

powr q) powr (1/q)
proof −

have |LINT x|count-space A. f x ∗ g x| ≤
(LINT x|count-space A. |f x| powr p) powr (1 / p) ∗
(LINT x|count-space A. |g x| powr q) powr (1 / q)
using assms integrable-count-space
by (intro Lp.Holder-inequality, auto)

thus ?thesis
using assms by (simp add: lebesgue-integral-count-space-finite[symmetric])

qed

lemma real-count-list-pos:
assumes x ∈ set as
shows real (count-list as x) > 0
using count-list-gr-1 assms by force

lemma fk-estimate:
assumes as 6= []
shows length as ∗ of-rat (F (2∗k−1 ) as) ≤ n powr (1 − 1 / real k) ∗ (of-rat (F

k as))^2
(is ?lhs ≤ ?rhs)

proof (cases k ≥ 2 )
case True
define M where M = Max (count-list as ‘ set as)
have M ∈ count-list as ‘ set as

unfolding M-def using assms by (intro Max-in, auto)
then obtain m where m-in: m ∈ set as and m-def : M = count-list as m

by blast

have a: real M > 0 using m-in count-list-gr-1 by (simp add:m-def , force)
have b: 2∗k−1 = (k−1 ) + k by simp

have 0 < real (count-list as m)
using m-in count-list-gr-1 by force

hence M powr k = real (count-list as m) ^ k
by (simp add: powr-realpow m-def )

also have ... ≤ (
∑

x∈set as. real (count-list as x) ^ k)
using m-in by (intro member-le-sum, simp-all)

also have ... ≤ real-of-rat (F k as)
by (simp add:F-def of-rat-sum of-rat-power)

finally have d: M powr k ≤ real-of-rat (F k as) by simp

have e: 0 ≤ real-of-rat (F k as)
using F-gr-0 [OF assms(1 )] by (simp add: order-le-less)

have real (k − 1 ) / real k + 1 = real (k − 1 ) / real k + real k / real k
using assms True by simp
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also have ... = real (2 ∗ k − 1 ) / real k
using b by (subst add-divide-distrib[symmetric], force)

finally have f : real (k − 1 ) / real k + 1 = real (2 ∗ k − 1 ) / real k
by blast

have real-of-rat (F (2∗k−1 ) as) =
(
∑

x∈set as. real (count-list as x) ^ (k − 1 ) ∗ real (count-list as x) ^ k)
using b by (simp add:F-def of-rat-sum sum-distrib-left of-rat-mult power-add

of-rat-power)
also have ... ≤ (

∑
x∈set as. real M ^ (k − 1 ) ∗ real (count-list as x) ^ k)

by (intro sum-mono mult-right-mono power-mono of-nat-mono) (auto simp:M-def )
also have ... = M powr (k−1 ) ∗ of-rat (F k as) using a
by (simp add:sum-distrib-left F-def of-rat-mult of-rat-sum of-rat-power powr-realpow)

also have ... = (M powr k) powr (real (k − 1 ) / real k) ∗ of-rat (F k as) powr 1
using e by (simp add:powr-powr)

also have ... ≤ (real-of-rat (F k as)) powr ((k−1 )/k) ∗ (real-of-rat (F k as)
powr 1 )

using d by (intro mult-right-mono powr-mono2 , auto)
also have ... = (real-of-rat (F k as)) powr ((2∗k−1 ) / k)

by (subst powr-add[symmetric], subst f , simp)
finally have a: real-of-rat (F (2∗k−1 ) as) ≤ (real-of-rat (F k as)) powr ((2∗k−1 )

/ k)
by blast

have g: card (set as) ≤ n
using card-mono[OF - as-range] by simp

have length as = abs (sum (λx. real (count-list as x)) (set as))
by (subst of-nat-sum[symmetric], simp add: sum-count-set)

also have ... ≤ card (set as) powr ((k−Suc 0 )/k) ∗
(sum (λx. |real (count-list as x)| powr k) (set as)) powr (1/k)
using assms True
by (intro Holder-inequality-sum[where p=k/(k−1 ) and q=k and f=λ-.1 ,

simplified])
(auto simp add:algebra-simps add-divide-distrib[symmetric])

also have ... = (card (set as)) powr ((k−1 ) / real k) ∗ of-rat (F k as) powr (1/
k)

using real-count-list-pos
by (simp add:F-def of-rat-sum of-rat-power powr-realpow)

also have ... = (card (set as)) powr (1 − 1 / real k) ∗ of-rat (F k as) powr (1/
k)

using k-ge-1
by (subst of-nat-diff [OF k-ge-1 ], subst diff-divide-distrib, simp)

also have ... ≤ n powr (1 − 1 / real k) ∗ of-rat (F k as) powr (1/ k)
using k-ge-1 g
by (intro mult-right-mono powr-mono2 , auto)

finally have h: length as ≤ n powr (1 − 1 / real k) ∗ of-rat (F k as) powr
(1/real k)

by blast
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have i:1 / real k + real (2 ∗ k − 1 ) / real k = real 2
using True by (subst add-divide-distrib[symmetric], simp-all add:of-nat-diff )

have ?lhs ≤ n powr (1 − 1/k) ∗ of-rat (F k as) powr (1/k) ∗ (of-rat (F k as))
powr ((2∗k−1 ) / k)

using a h F-ge-0 by (intro mult-mono mult-nonneg-nonneg, auto)
also have ... = ?rhs
using i F-gr-0 [OF assms] by (simp add:powr-add[symmetric] powr-realpow[symmetric])

finally show ?thesis
by blast

next
case False
have n = 0 =⇒ False

using as-range assms by auto
hence n > 0

by auto
moreover have k = 1

using assms k-ge-1 False by linarith
moreover have length as = real-of-rat (F (Suc 0 ) as)

by (simp add:F-def sum-count-set of-nat-sum[symmetric] del:of-nat-sum)
ultimately show ?thesis

by (simp add:power2-eq-square)
qed

definition result
where result a = of-nat (length as) ∗ of-nat (Suc (snd a) ^ k − snd a ^ k)

lemma result-exp-1 :
assumes as 6= []
shows expectation result = real-of-rat (F k as)

proof −
have expectation result = (

∑
a∈M 1. result a ∗ pmf (pmf-of-set M 1) a)

unfolding Ω1-def using non-empty-space assms fin-space
by (subst integral-measure-pmf-real) auto

also have ... = (
∑

a∈M 1. result a / real (length as))
using non-empty-space assms fin-space card-space by simp

also have ... = (
∑

a∈M 1. real (Suc (snd a) ^ k − snd a ^ k))
using assms by (simp add:result-def )

also have ... = (
∑

u∈set as.
∑

v = 0 ..<count-list as u. real (Suc v ^ k) − real
(v ^ k))

using k-ge-1 by (subst split-space, simp add:of-nat-diff )
also have ... = (

∑
u∈set as. real (count-list as u)^k)

using k-ge-1 by (subst sum-Suc-diff ′) (auto simp add:zero-power)
also have ... = of-rat (F k as)

by (simp add:F-def of-rat-sum of-rat-power)
finally show ?thesis by simp

qed
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lemma result-var-1 :
assumes as 6= []
shows variance result ≤ (of-rat (F k as))2 ∗ k ∗ n powr (1 − 1 / real k)

proof −
have k-gt-0 : k > 0 using k-ge-1 by linarith

have c:real (Suc v ^ k) − real (v ^ k) ≤ k ∗ real (count-list as a) ^ (k − Suc 0 )
if c-1 : v < count-list as a for a v

proof −
have real (Suc v ^ k) − real (v ^ k) ≤ (real (v+1 ) − real v) ∗ k ∗ (1 + real

v) ^ (k − Suc 0 )
using k-gt-0 power-diff-est[where a=Suc v and b=v] by simp

moreover have (real (v+1 ) − real v) = 1 by auto
ultimately have real (Suc v ^ k) − real (v ^ k) ≤ k ∗ (1 + real v) ^ (k −

Suc 0 )
by auto

also have ... ≤ k ∗ real (count-list as a) ^ (k− Suc 0 )
using c-1 by (intro mult-left-mono power-mono, auto)

finally show ?thesis by blast
qed

have length as ∗ (
∑

a∈ M 1. (real (Suc (snd a) ^ k − (snd a) ^ k))2) =
length as ∗ (

∑
a∈ set as. (

∑
v ∈ {0 ..<count-list as a}.

real (Suc v ^ k − v ^ k) ∗ real (Suc v ^ k − v^k)))
by (subst split-space, simp add:power2-eq-square)

also have ... ≤ length as ∗ (
∑

a∈ set as. (
∑

v ∈ {0 ..<count-list as a}.
k ∗ real (count-list as a) ^ (k−1 ) ∗ real (Suc v ^ k − v ^ k)))

using c by (intro mult-left-mono sum-mono mult-right-mono) (auto simp:power-mono
of-nat-diff )

also have ... = length as ∗ k ∗ (
∑

a∈ set as. real (count-list as a) ^ (k−1 ) ∗
(
∑

v ∈ {0 ..<count-list as a}. real (Suc v ^ k) − real (v ^ k)))
by (simp add:sum-distrib-left ac-simps of-nat-diff power-mono)

also have ... = length as ∗ k ∗ (
∑

a∈ set as. real (count-list as a ^ (2∗k−1 )))
using assms k-ge-1

by (subst sum-Suc-diff ′, auto simp: zero-power [OF k-gt-0 ] mult-2 power-add[symmetric])
also have ... = k ∗ (length as ∗ of-rat (F (2∗k−1 ) as))

by (simp add:sum-distrib-left[symmetric] F-def of-rat-sum of-rat-power)
also have ... ≤ k ∗ (of-rat (F k as)^2 ∗ n powr (1 − 1 / real k))
using fk-estimate[OF assms] by (intro mult-left-mono) (auto simp: mult.commute)

finally have b: real (length as) ∗ (
∑

a∈ M 1. (real (Suc (snd a) ^ k − (snd a) ^
k))2) ≤

k ∗ ((of-rat (F k as))2 ∗ n powr (1 − 1 / real k))
by blast

have expectation (λω. (result ω :: real)^2 ) − (expectation result)^2 ≤ expectation
(λω. result ω^2 )

by simp
also have ... = (

∑
a∈M 1. (length as ∗ real (Suc (snd a) ^ k − snd a ^ k))2 ∗

pmf (pmf-of-set M 1) a)
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using fin-space non-empty-space assms unfolding Ω1-def result-def
by (subst integral-measure-pmf-real[where A=M 1], auto)

also have ... = (
∑

a∈M 1. length as ∗ (real (Suc (snd a) ^ k − snd a ^ k))2)
using assms non-empty-space fin-space by (subst pmf-of-set)
(simp-all add:card-space power-mult-distrib power2-eq-square ac-simps)

also have ... ≤ k ∗ ((of-rat (F k as))2 ∗ n powr (1 − 1 / real k))
using b by (simp add:sum-distrib-left[symmetric])

also have ... = of-rat (F k as)^2 ∗ k ∗ n powr (1 − 1 / real k)
by (simp add:ac-simps)

finally have expectation (λω. result ω^2 ) − (expectation result)^2 ≤
of-rat (F k as)^2 ∗ k ∗ n powr (1 − 1 / real k)
by blast

thus ?thesis
using integrable-1 [OF assms] by (simp add:variance-eq)

qed

theorem fk-alg-sketch:
assumes as 6= []
shows fold (λa state. state >>= fk-update a) as (fk-init k δ ε n) =

map-pmf (λx. (s1,s2,k,length as, x)) M 2 (is ?lhs = ?rhs)
proof −

have ?lhs = prod-pmf ({0 ..<s1} × {0 ..<s2})
(λ-. fold (λx s. s >>= fk-update-2 x) as (return-pmf (0 , 0 , 0 ))) >>=
(λx. return-pmf (s1, s2, k, length as, λi∈{0 ..<s1} × {0 ..<s2}. snd (x i)))
by (subst fk-update-distr , simp)

also have ... = prod-pmf ({0 ..<s1} × {0 ..<s2}) (λ-. pmf-of-set {..<length as}
>>=

(λk. return-pmf (length as, sketch as k))) >>=
(λx. return-pmf (s1, s2, k, length as, λi∈{0 ..<s1} × {0 ..<s2}. snd (x i)))
by (subst fk-update-2-distr [OF assms], simp)

also have ... = prod-pmf ({0 ..<s1} × {0 ..<s2}) (λ-. pmf-of-set {..<length as}
>>=

(λk. return-pmf (sketch as k)) >>= (λs. return-pmf (length as, s))) >>=
(λx. return-pmf (s1, s2, k, length as, λi∈{0 ..<s1} × {0 ..<s2}. snd (x i)))
by (subst bind-assoc-pmf , subst bind-return-pmf , simp)

also have ... = prod-pmf ({0 ..<s1} × {0 ..<s2}) (λ-. pmf-of-set {..<length as}
>>=

(λk. return-pmf (sketch as k))) >>=
(λx. return-pmf (λi ∈ {0 ..<s1} × {0 ..<s2}. (length as, x i))) >>=
(λx. return-pmf (s1, s2, k, length as, λi∈{0 ..<s1} × {0 ..<s2}. snd (x i)))

by (subst Pi-pmf-bind-return[where d ′=undefined], simp, simp add:restrict-def )
also have ... = prod-pmf ({0 ..<s1} × {0 ..<s2}) (λ-. pmf-of-set {..<length as}

>>=
(λk. return-pmf (sketch as k))) >>=
(λx. return-pmf (s1, s2, k, length as, restrict x ({0 ..<s1} × {0 ..<s2})))
by (subst bind-assoc-pmf , simp add:bind-return-pmf cong:restrict-cong)

also have ... = M 2 >>=
(λx. return-pmf (s1, s2, k, length as, restrict x ({0 ..<s1} × {0 ..<s2})))
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by (subst sketch-distr [OF assms], simp add:M 2-def )
also have ... = M 2 >>= (λx. return-pmf (s1, s2, k, length as, x))

by (rule bind-pmf-cong, auto simp add:PiE-dflt-def M 2-def set-Pi-pmf )
also have ... = ?rhs

by (simp add:map-pmf-def )
finally show ?thesis by simp

qed

definition mean-rv
where mean-rv ω i2 = (

∑
i1 = 0 ..<s1. result (ω (i1, i2))) / of-nat s1

definition median-rv
where median-rv ω = median s2 (λi2. mean-rv ω i2)

lemma fk-alg-correct ′:
defines M ≡ fold (λa state. state >>= fk-update a) as (fk-init k δ ε n) >>= fk-result
shows P(ω in measure-pmf M . |ω − F k as| ≤ δ ∗ F k as) ≥ 1 − of-rat ε

proof (cases as = [])
case True
have a: nat d− (18 ∗ ln (real-of-rat ε))e > 0 using ε-range by simp
show ?thesis using True ε-range

by (simp add:F-def M-def bind-return-pmf median-const[OF a] Let-def )
next

case False

have set as 6= {} using assms False by blast
hence n-nonzero: n > 0 using as-range by fastforce

have fk-nonzero: F k as > 0
using F-gr-0 [OF False] by simp

have s1-nonzero: s1 > 0
using δ-range k-ge-1 n-nonzero by (simp add:s1-def )

have s2-nonzero: s2 > 0
using ε-range by (simp add:s2-def )

have real-of-rat-mean-rv:
∧

x i. mean-rv x = (λi. real-of-rat (mean-rv x i))
by (rule ext, simp add:of-rat-divide of-rat-sum of-rat-mult result-def mean-rv-def )

have real-of-rat-median-rv:
∧

x. median-rv x = real-of-rat (median-rv x)
unfolding median-rv-def using s2-nonzero
by (subst real-of-rat-mean-rv, simp add: median-rat median-restrict)

have space-Ω2: space Ω2 = UNIV by (simp add:Ω2-def )

have fk-result-eta: fk-result = (λ(x,y,z,u,v). fk-result (x,y,z,u,v))
by auto

have a:fold (λx state. state >>= fk-update x) as (fk-init k δ ε n) =
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map-pmf (λx. (s1,s2,k,length as, x)) M 2

by (subst fk-alg-sketch[OF False]) (simp add:s1-def [symmetric] s2-def [symmetric])

have M = map-pmf (λx. (s1, s2, k, length as, x)) M 2 >>= fk-result
by (subst M-def , subst a, simp)

also have ... = M 2 >>= return-pmf ◦ median-rv
by (subst fk-result-eta)

(auto simp add:map-pmf-def bind-assoc-pmf bind-return-pmf median-rv-def
mean-rv-def comp-def

M 1-def result-def median-restrict)
finally have b: M = M 2 >>= return-pmf ◦ median-rv

by simp

have result-exp:
i1 < s1 =⇒ i2 < s2 =⇒ Ω2.expectation (λx. result (x (i1, i2))) = real-of-rat (F

k as)
for i1 i2
unfolding Ω2-def M 2-def
using integrable-1 [OF False] result-exp-1 [OF False]
by (subst expectation-Pi-pmf-slice, auto simp:Ω1-def )

have result-var : Ω2.variance (λω. result (ω (i1, i2))) ≤ of-rat (δ ∗ F k as)^2 ∗
real s1 / 3

if result-var-assms: i1 < s1 i2 < s2 for i1 i2
proof −

have 3 ∗ real k ∗ n powr (1 − 1 / real k) =
(of-rat δ)2 ∗ (3 ∗ real k ∗ n powr (1 − 1 / real k) / (of-rat δ)2)
using δ-range by simp

also have ... ≤ (real-of-rat δ)2 ∗ (real s1)
unfolding s1-def
by (intro mult-mono of-nat-ceiling, simp-all)

finally have f2-var-2 : 3 ∗ real k ∗ n powr (1 − 1 / real k) ≤ (of-rat δ)2 ∗
(real s1)

by blast

have Ω2.variance (λω. result (ω (i1, i2)) :: real) = variance result
using result-var-assms integrable-1 [OF False]
unfolding Ω2-def M 2-def Ω1-def
by (subst variance-prod-pmf-slice, auto)

also have ... ≤ of-rat (F k as)^2 ∗ real k ∗ n powr (1 − 1 / real k)
using assms False result-var-1 Ω1-def by simp

also have ... =
of-rat (F k as)^2 ∗ (real k ∗ n powr (1 − 1 / real k))
by (simp add:ac-simps)

also have ... ≤ of-rat (F k as)^2 ∗ (of-rat δ^2 ∗ (real s1 / 3 ))
using f2-var-2 by (intro mult-left-mono, auto)

also have ... = of-rat (F k as ∗ δ)^2 ∗ (real s1 / 3 )
by (simp add: of-rat-mult power-mult-distrib)
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also have ... = of-rat (δ ∗ F k as)^2 ∗ real s1 / 3
by (simp add:ac-simps)

finally show ?thesis
by simp

qed

have mean-rv-exp: Ω2.expectation (λω. mean-rv ω i) = real-of-rat (F k as)
if mean-rv-exp-assms: i < s2 for i

proof −
have Ω2.expectation (λω. mean-rv ω i) = Ω2.expectation (λω.

∑
n = 0 ..<s1.

result (ω (n, i)) / real s1)
by (simp add:mean-rv-def sum-divide-distrib)

also have ... = (
∑

n = 0 ..<s1. Ω2.expectation (λω. result (ω (n, i))) / real s1)
using integrable-2 [OF False]
by (subst Bochner-Integration.integral-sum, auto)

also have ... = of-rat (F k as)
using s1-nonzero mean-rv-exp-assms
by (simp add:result-exp)

finally show ?thesis by simp
qed

have mean-rv-var : Ω2.variance (λω. mean-rv ω i) ≤ real-of-rat (δ ∗ F k as)^2/3
if mean-rv-var-assms: i < s2 for i

proof −
have a:Ω2.indep-vars (λ-. borel) (λn x. result (x (n, i)) / real s1) {0 ..<s1}

unfolding Ω2-def M 2-def using mean-rv-var-assms
by (intro indep-vars-restrict-intro ′[where f=fst], simp, simp add:restrict-dfl-def ,

simp, simp)
have Ω2.variance (λω. mean-rv ω i) = Ω2.variance (λω.

∑
j = 0 ..<s1. result

(ω (j, i)) / real s1)
by (simp add:mean-rv-def sum-divide-distrib)

also have ... = (
∑

j = 0 ..<s1. Ω2.variance (λω. result (ω (j, i)) / real s1))
using a integrable-2 [OF False]
by (subst Ω2.bienaymes-identity-full-indep, auto simp add:Ω2-def )

also have ... = (
∑

j = 0 ..<s1. Ω2.variance (λω. result (ω (j, i))) / real s1^2 )
using integrable-2 [OF False]
by (subst Ω2.variance-divide, auto)

also have ... ≤ (
∑

j = 0 ..<s1. ((real-of-rat (δ ∗ F k as))2 ∗ real s1 / 3 ) / (real
s1^2 ))

using result-var [OF - mean-rv-var-assms]
by (intro sum-mono divide-right-mono, auto)

also have ... = real-of-rat (δ ∗ F k as)^2/3
using s1-nonzero
by (simp add:algebra-simps power2-eq-square)

finally show ?thesis by simp
qed

have Ω2.prob {y. of-rat (δ ∗ F k as) < |mean-rv y i − real-of-rat (F k as)|} ≤
1/3
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(is ?lhs ≤ -) if c-assms: i < s2 for i
proof −

define a where a = real-of-rat (δ ∗ F k as)
have c: 0 < a unfolding a-def

using assms δ-range fk-nonzero
by (metis zero-less-of-rat-iff mult-pos-pos)

have ?lhs ≤ Ω2.prob {y ∈ space Ω2. a ≤ |mean-rv y i − Ω2.expectation (λω.
mean-rv ω i)|}

by (intro Ω2.pmf-mono[OF Ω2-def ], simp add:a-def mean-rv-exp[OF c-assms]
space-Ω2)

also have ... ≤ Ω2.variance (λω. mean-rv ω i)/a^2
by (intro Ω2.Chebyshev-inequality integrable-2 c False) (simp add:Ω2-def )

also have ... ≤ 1/3 using c
using mean-rv-var [OF c-assms]
by (simp add:algebra-simps, simp add:a-def )

finally show ?thesis
by blast

qed

moreover have Ω2.indep-vars (λ-. borel) (λi ω. mean-rv ω i) {0 ..<s2}
using s1-nonzero unfolding Ω2-def M 2-def
by (intro indep-vars-restrict-intro ′[where f=snd] finite-cartesian-product)
(simp-all add:mean-rv-def restrict-dfl-def space-Ω2)

moreover have − (18 ∗ ln (real-of-rat ε)) ≤ real s2
by (simp add:s2-def , linarith)

ultimately have 1 − of-rat ε ≤
Ω2.prob {y ∈ space Ω2. |median s2 (mean-rv y) − real-of-rat (F k as)| ≤ of-rat

(δ ∗ F k as)}
using ε-range
by (intro Ω2.median-bound-2 , simp-all add:space-Ω2)

also have ... = Ω2.prob {y. |median-rv y − real-of-rat (F k as)| ≤ real-of-rat (δ
∗ F k as)}

by (simp add:median-rv-def space-Ω2)
also have ... = Ω2.prob {y. |median-rv y − F k as| ≤ δ ∗ F k as}

by (simp add:real-of-rat-median-rv of-rat-less-eq flip: of-rat-diff )
also have ... = P(ω in measure-pmf M . |ω − F k as| ≤ δ ∗ F k as)

by (simp add: b comp-def map-pmf-def [symmetric] Ω2-def )
finally show ?thesis by simp

qed

lemma fk-exact-space-usage ′:
defines M ≡ fold (λa state. state >>= fk-update a) as (fk-init k δ ε n)
shows AE ω in M . bit-count (encode-fk-state ω) ≤ fk-space-usage (k, n, length

as, ε, δ)
(is AE ω in M . (- ≤ ?rhs))

proof −
define H where H = (if as = [] then return-pmf (λi∈ {0 ..<s1}×{0 ..<s2}.

(0 ,0 )) else M 2)
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have a:M = map-pmf (λx.(s1,s2,k,length as, x)) H
proof (cases as 6= [])

case True
then show ?thesis

unfolding M-def fk-alg-sketch[OF True] H-def
by (simp add:M 2-def )

next
case False
then show ?thesis
by (simp add:H-def M-def s1-def [symmetric] Let-def s2-def [symmetric] map-pmf-def

bind-return-pmf )
qed

have bit-count (encode-fk-state (s1, s2, k, length as, y)) ≤ ?rhs
if b:y ∈ set-pmf H for y

proof −
have b0 : as 6= [] =⇒ y ∈ {0 ..<s1} × {0 ..<s2} →E M 1

using b non-empty-space fin-space by (simp add:H-def M 2-def set-prod-pmf )

have bit-count ((N e ×e N e) (y x)) ≤
ereal (2 ∗ log 2 (real n + 1 ) + 1 ) + ereal (2 ∗ log 2 (real (length as) + 1 )

+ 1 )
(is - ≤ ?rhs1 )
if b1-assms: x ∈ {0 ..<s1}×{0 ..<s2} for x

proof −
have fst (y x) ≤ n
proof (cases as = [])

case True
then show ?thesis using b b1-assms by (simp add:H-def )

next
case False
hence 1 ≤ count-list as (fst (y x))

using b0 b1-assms by (simp add:PiE-iff case-prod-beta M 1-def , fastforce)
hence fst (y x) ∈ set as

using count-list-gr-1 by metis
then show ?thesis

by (meson lessThan-iff less-imp-le-nat subsetD as-range)
qed
moreover have snd (y x) ≤ length as
proof (cases as = [])

case True
then show ?thesis using b b1-assms by (simp add:H-def )

next
case False
hence (y x) ∈ M 1

using b0 b1-assms by auto
hence snd (y x) ≤ count-list as (fst (y x))

by (simp add:M 1-def case-prod-beta)
then show ?thesis using count-le-length by (metis order-trans)
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qed
ultimately have bit-count (N e (fst (y x))) + bit-count (N e (snd (y x))) ≤

?rhs1
using exp-golomb-bit-count-est by (intro add-mono, auto)

thus ?thesis
by (subst dependent-bit-count-2 , simp)

qed

moreover have y ∈ extensional ({0 ..<s1} × {0 ..<s2})
using b0 b PiE-iff by (cases as = [], auto simp:H-def PiE-iff )

ultimately have bit-count ((List.product [0 ..<s1] [0 ..<s2] →e N e ×e N e) y)
≤

ereal (real s1 ∗ real s2) ∗ (ereal (2 ∗ log 2 (real n + 1 ) + 1 ) +
ereal (2 ∗ log 2 (real (length as) + 1 ) + 1 ))
by (intro fun-bit-count-est[where xs=(List.product [0 ..<s1] [0 ..<s2]), simpli-

fied], auto)
hence bit-count (encode-fk-state (s1, s2, k, length as, y)) ≤

ereal (2 ∗ log 2 (real s1 + 1 ) + 1 ) +
(ereal (2 ∗ log 2 (real s2 + 1 ) + 1 ) +
(ereal (2 ∗ log 2 (real k + 1 ) + 1 ) +
(ereal (2 ∗ log 2 (real (length as) + 1 ) + 1 ) +
(ereal (real s1 ∗ real s2) ∗ (ereal (2 ∗ log 2 (real n+1 ) + 1 ) +
ereal (2 ∗ log 2 (real (length as)+1 ) + 1 ))))))

unfolding encode-fk-state-def dependent-bit-count
by (intro add-mono exp-golomb-bit-count, auto)

also have ... ≤ ?rhs
by (simp add: s1-def [symmetric] s2-def [symmetric] Let-def ) (simp add:ac-simps)
finally show bit-count (encode-fk-state (s1, s2, k, length as, y)) ≤ ?rhs

by blast
qed
thus ?thesis

by (simp add: a AE-measure-pmf-iff del:fk-space-usage.simps)
qed

end

Main results of this section:
theorem fk-alg-correct:

assumes k ≥ 1
assumes ε ∈ {0<..<1}
assumes δ > 0
assumes set as ⊆ {..<n}
defines M ≡ fold (λa state. state >>= fk-update a) as (fk-init k δ ε n) >>= fk-result
shows P(ω in measure-pmf M . |ω − F k as| ≤ δ ∗ F k as) ≥ 1 − of-rat ε
unfolding M-def using fk-alg-correct ′[OF assms(1−4 )] by blast

theorem fk-exact-space-usage:
assumes k ≥ 1
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assumes ε ∈ {0<..<1}
assumes δ > 0
assumes set as ⊆ {..<n}
defines M ≡ fold (λa state. state >>= fk-update a) as (fk-init k δ ε n)
shows AE ω in M . bit-count (encode-fk-state ω) ≤ fk-space-usage (k, n, length

as, ε, δ)
unfolding M-def using fk-exact-space-usage ′[OF assms(1−4 )] by blast

theorem fk-asymptotic-space-complexity:
fk-space-usage ∈
O[at-top ×F at-top ×F at-top ×F at-right (0 ::rat) ×F at-right (0 ::rat)](λ (k, n,

m, ε, δ).
real k ∗ real n powr (1−1/ real k) / (of-rat δ)2 ∗ (ln (1 / of-rat ε)) ∗ (ln (real

n) + ln (real m)))
(is - ∈ O[?F ](?rhs))

proof −
define k-of :: nat × nat × nat × rat × rat ⇒ nat where k-of = (λ(k, n, m, ε,

δ). k)
define n-of :: nat × nat × nat × rat × rat ⇒ nat where n-of = (λ(k, n, m, ε,

δ). n)
define m-of :: nat × nat × nat × rat × rat ⇒ nat where m-of = (λ(k, n, m,

ε, δ). m)
define ε-of :: nat × nat × nat × rat × rat ⇒ rat where ε-of = (λ(k, n, m, ε,

δ). ε)
define δ-of :: nat × nat × nat × rat × rat ⇒ rat where δ-of = (λ(k, n, m, ε,

δ). δ)

define g1 where
g1 = (λx. real (k-of x)∗(real (n-of x)) powr (1−1/ real (k-of x)) ∗ (1 / of-rat

(δ-of x)^2 ))

define g where
g = (λx. g1 x ∗ (ln (1 / of-rat (ε-of x))) ∗ (ln (real (n-of x)) + ln (real (m-of

x))))

define s1-of where s1-of = (λx.
nat d3 ∗ real (k-of x) ∗ real (n-of x) powr (1 − 1 / real (k-of x)) / (real-of-rat

(δ-of x))2e)
define s2-of where s2-of = (λx. nat d− (18 ∗ ln (real-of-rat (ε-of x)))e)

have evt: (
∧

x.
0 < real-of-rat (δ-of x) ∧ 0 < real-of-rat (ε-of x) ∧
1/real-of-rat (δ-of x) ≥ δ ∧ 1/real-of-rat (ε-of x) ≥ ε ∧
real (n-of x) ≥ n ∧ real (k-of x) ≥ k ∧ real (m-of x) ≥ m=⇒ P x)
=⇒ eventually P ?F (is (

∧
x. ?prem x =⇒ -) =⇒ -)

for δ ε n k m P
apply (rule eventually-mono[where P=?prem and Q=P])
apply (simp add:ε-of-def case-prod-beta ′ δ-of-def n-of-def k-of-def m-of-def )
apply (intro eventually-conj eventually-prod1 ′ eventually-prod2 ′
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sequentially-inf eventually-at-right-less inv-at-right-0-inf )
by (auto simp add:prod-filter-eq-bot)

have 1 :
(λ-. 1 ) ∈ O[?F ](λx. real (n-of x))
(λ-. 1 ) ∈ O[?F ](λx. real (m-of x))
(λ-. 1 ) ∈ O[?F ](λx. real (k-of x))
by (intro landau-o.big-mono eventually-mono[OF evt], auto)+

have (λx. ln (real (m-of x) + 1 )) ∈ O[?F ](λx. ln (real (m-of x)))
by (intro landau-ln-2 [where a=2 ] evt[where m=2 ] sum-in-bigo 1 , auto)

hence 2 : (λx. log 2 (real (m-of x) + 1 )) ∈ O[?F ](λx. ln (real (n-of x)) + ln
(real (m-of x)))

by (intro landau-sum-2 eventually-mono[OF evt[where n=1 and m=1 ]])
(auto simp add:log-def )

have 3 : (λ-. 1 ) ∈ O[?F ](λx. ln (1 / real-of-rat (ε-of x)))
using order-less-le-trans[OF exp-gt-zero] ln-ge-iff
by (intro landau-o.big-mono evt[where ε=exp 1 ])
(simp add: abs-ge-iff , blast)

have 4 : (λ-. 1 ) ∈ O[?F ](λx. 1 / (real-of-rat (δ-of x))2)
using one-le-power
by (intro landau-o.big-mono evt[where δ=1 ])
(simp add:power-one-over [symmetric], blast)

have (λx. 1 ) ∈ O[?F ](λx. ln (real (n-of x)))
using order-less-le-trans[OF exp-gt-zero] ln-ge-iff
by (intro landau-o.big-mono evt[where n=exp 1 ])
(simp add: abs-ge-iff , blast)

hence 5 : (λx. 1 ) ∈ O[?F ](λx. ln (real (n-of x)) + ln (real (m-of x)))
by (intro landau-sum-1 evt[where n=1 and m=1 ], auto)

have (λx. −ln(of-rat (ε-of x))) ∈ O[?F ](λx. ln (1 / real-of-rat (ε-of x)))
by (intro landau-o.big-mono evt) (auto simp add:ln-div)

hence 6 : (λx. real (s2-of x)) ∈ O[?F ](λx. ln (1 / real-of-rat (ε-of x)))
unfolding s2-of-def
by (intro landau-nat-ceil 3 , simp)

have 7 : (λ-. 1 ) ∈ O[?F ](λx. real (n-of x) powr (1 − 1 / real (k-of x)))
by (intro landau-o.big-mono evt[where n=1 and k=1 ])
(auto simp add: ge-one-powr-ge-zero)

have 8 : (λ-. 1 ) ∈ O[?F ](g1 )
unfolding g1-def by (intro landau-o.big-mult-1 1 7 4 )

have (λx. 3 ∗ (real (k-of x) ∗ (n-of x) powr (1 − 1 / real (k-of x)) / (of-rat
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(δ-of x))2))
∈ O[?F ](g1 )
by (subst landau-o.big.cmult-in-iff , simp, simp add:g1-def )

hence 9 : (λx. real (s1-of x)) ∈ O[?F ](g1 )
unfolding s1-of-def by (intro landau-nat-ceil 8 , auto simp:ac-simps)

have 10 : (λ-. 1 ) ∈ O[?F ](g)
unfolding g-def by (intro landau-o.big-mult-1 8 3 5 )

have (λx. real (s1-of x)) ∈ O[?F ](g)
unfolding g-def by (intro landau-o.big-mult-1 5 3 9 )

hence (λx. ln (real (s1-of x) + 1 )) ∈ O[?F ](g)
using 10 by (intro landau-ln-3 sum-in-bigo, auto)

hence 11 : (λx. log 2 (real (s1-of x) + 1 )) ∈ O[?F ](g)
by (simp add:log-def )

have 12 : (λx. ln (real (s2-of x) + 1 )) ∈ O[?F ](λx. ln (1 / real-of-rat (ε-of x)))
using evt[where ε=2 ] 6 3
by (intro landau-ln-3 sum-in-bigo, auto)

have 13 : (λx. log 2 (real (s2-of x) + 1 )) ∈ O[?F ](g)
unfolding g-def
by (rule landau-o.big-mult-1 , rule landau-o.big-mult-1 ′, auto simp add: 8 5 12

log-def )

have (λx. real (k-of x)) ∈ O[?F ](g1 )
unfolding g1-def using 7 4
by (intro landau-o.big-mult-1 , simp-all)

hence (λx. log 2 (real (k-of x) + 1 )) ∈ O[?F ](g1 )
by (simp add:log-def ) (intro landau-ln-3 sum-in-bigo 8 , auto)

hence 14 : (λx. log 2 (real (k-of x) + 1 )) ∈ O[?F ](g)
unfolding g-def by (intro landau-o.big-mult-1 3 5 )

have 15 : (λx. log 2 (real (m-of x) + 1 )) ∈ O[?F ](g)
unfolding g-def using 2 8 3
by (intro landau-o.big-mult-1 ′, simp-all)

have (λx. ln (real (n-of x) + 1 )) ∈ O[?F ](λx. ln (real (n-of x)))
by (intro landau-ln-2 [where a=2 ] eventually-mono[OF evt[where n=2 ]] sum-in-bigo

1 , auto)
hence (λx. log 2 (real (n-of x) + 1 )) ∈ O[?F ](λx. ln (real (n-of x)) + ln (real

(m-of x)))
by (intro landau-sum-1 evt[where n=1 and m=1 ])
(auto simp add:log-def )

hence 16 : (λx. real (s1-of x) ∗ real (s2-of x) ∗
(2 + 2 ∗ log 2 (real (n-of x) + 1 ) + 2 ∗ log 2 (real (m-of x) + 1 ))) ∈ O[?F ](g)
unfolding g-def using 9 6 5 2
by (intro landau-o.mult sum-in-bigo, auto)
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have fk-space-usage = (λx. fk-space-usage (k-of x, n-of x, m-of x, ε-of x, δ-of x))
by (simp add:case-prod-beta ′ k-of-def n-of-def ε-of-def δ-of-def m-of-def )

also have ... ∈ O[?F ](g)
using 10 11 13 14 15 16

by (simp add:fun-cong[OF s1-of-def [symmetric]] fun-cong[OF s2-of-def [symmetric]]
Let-def )

(intro sum-in-bigo, auto)
also have ... = O[?F ](?rhs)

by (simp add:case-prod-beta ′ g1-def g-def n-of-def ε-of-def δ-of-def m-of-def
k-of-def )

finally show ?thesis by simp
qed

end

A Informal proof of correctness for the F0 algo-
rithm

This appendix contains a detailed informal proof for the new Rounding-
KMV algorithm that approximates F0 introduced in Section 7 for reference.
It follows the same reasoning as the formalized proof.
Because of the amplification result about medians (see for example [1, §2.1])
it is enough to show that each of the estimates the median is taken from is
within the desired interval with success probability 2

3 . To verify the latter,
let a1, . . . , am be the stream elements, where we assume that the elements
are a subset of {0, . . . , n−1} and 0 < δ < 1 be the desired relative accuracy.
Let p be the smallest prime such that p ≥ max(n, 19) and let h be a random
polynomial over GF (p) with degree strictly less than 2. The algoritm also
introduces the internal parameters t, r defined by:

t := d80δ−2e r := 4 log2dδ−1e+ 23

The estimate the algorithm obtains is R, defined using:

H := {bh(a)cr|a ∈ A} R :=

{
tp (mint(H))−1 if |H| ≥ t

|H| othewise,

where A := {a1, . . . , am}, mint(H) denotes the t-th smallest element of H
and bxcr denotes the largest binary floating point number smaller or equal
to x with a mantissa that requires at most r bits to represent.1 With these
definitions, it is possible to state the main theorem as:

P (|R− F0| ≤ δ|F0|) ≥
2

3
.

1This rounding operation is called truncate-down in Isabelle, it is defined in
HOL-Library.Float.
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which is shown separately in the following two subsections for the cases
F0 ≥ t and F0 < t.

A.1 Case F0 ≥ t

Let us introduce:

H∗ := {h(a)|a ∈ A}# R∗ := tp
(
min#t (H

∗)
)−1

These definitions are modified versions of the definitions for H and R: The
set H∗ is a multiset, this means that each element also has a multiplicity,
counting the number of distinct elements of A being mapped by h to the
same value. Note that by definition: |H∗| = |A|. Similarly the operation
min#t obtains the t-th element of the multiset H (taking multiplicities into
account). Note also that there is no rounding operation b·cr in the definition
of H∗. The key reason for the introduction of these alternative versions of
H,R is that it is easier to show probabilistic bounds on the distances |R∗−F0|
and |R∗ − R| as opposed to |R − F0| directly. In particular the plan is to
show:

P
(
|R∗ − F0| > δ′F0

)
≤ 2

9
, and (1)

P

(
|R∗ − F0| ≤ δ′F0 ∧ |R−R∗| > δ

4
F0

)
≤ 1

9
(2)

where δ′ := 3
4δ. I.e. the probability that R∗ has not the relative accuracy

of 3
4δ is less that 2

9 and the probability that assuming R∗ has the relative
accuracy of 3

4δ but that R deviates by more that 1
4δF0 is at most 1

9 . Hence,
the probability that neither of these events happen is at least 2

3 but in that
case:

|R− F0| ≤ |R−R∗|+ |R∗ − F0| ≤
δ

4
F0 +

3δ

4
F0 = δF0. (3)

Thus we only need to show Equation 1 and 2. For the verification of Equa-
tion 1 let

Q(u) = |{h(a) < u | a ∈ A}|

and observe that min#t (H
∗) < u if Q(u) ≥ t and min#t (H

∗) ≥ v if Q(v) ≤
t − 1. To see why this is true note that, if at least t elements of A are
mapped by h below a certain value, then the t-smallest element must also
be within them, and thus also be below that value. And that the opposite
direction of this conclusion is also true. Note that this relies on the fact
that H∗ is a multiset and that multiplicities are being taken into account,
when computing the t-th smallest element. Alternatively, it is also possible
to write Q(u) =

∑
a∈A 1{h(a)<u}

2, i.e., Q is a sum of pairwise independent
2The notation 1A is shorthand for the indicator function of A, i.e., 1A(x) = 1 if x ∈ A

and 0 otherwise.
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{0, 1}-valued random variables, with expectation u
p and variance u

p −
u2

p2
.

3 Using lineariy of expectation and Bienaymé’s identity, it follows that
VarQ(u) ≤ EQ(u) = |A|up−1 = F0up

−1 for u ∈ {0, . . . , p}.
For v =

⌊
tp

(1−δ′)F0

⌋
it is possible to conclude:

t− 1 ≤ 4 t

(1− δ′)
− 3

√
t

(1− δ′)
− 1 ≤ F0v

p
− 3

√
F0v

p
≤ EQ(v)− 3

√
VarQ(v)

and thus using Tchebyshev’s inequality:

P
(
R∗ <

(
1− δ′

)
F0

)
= P

(
rank#t (H

∗) >
tp

(1− δ′)F0

)
≤ P (rank#t (H

∗) ≥ v) = P (Q(v) ≤ t− 1) (4)

≤ P
(
Q(v) ≤ EQ(v)− 3

√
VarQ(v)

)
≤ 1

9
.

Similarly for u =
⌈

tp
(1+δ′)F0

⌉
it is possible to conclude:

t ≥ t

(1 + δ′)
+ 3

√
t

(1 + δ′)
+ 1+ 1 ≥ F0u

p
+ 3

√
F0u

p
≥ EQ(u) + 3

√
VarQ(v)

and thus using Tchebyshev’s inequality:

P
(
R∗ >

(
1 + δ′

)
F0

)
= P

(
rank#t (H

∗) <
tp

(1 + δ′)F0

)
≤ P (rank#t (H

∗) < u) = P (Q(u) ≥ t) (5)

≤ P
(
Q(u) ≥ EQ(u) + 3

√
VarQ(u)

)
≤ 1

9
.

Note that Equation 4 and 5 confirm Equation 1. To verfiy Equation 2, note
that

mint(H) = bmin#t (H
∗)cr (6)

if there are no collisions, induced by the application of bh(·)cr on the ele-
ments of A. Even more carefully, note that the equation would remain true,
as long as there are no collision within the smallest t elements of H∗. Be-
cause Equation 2 needs to be shown only in the case where R∗ ≥ (1− δ′)F0,
i.e., when min#t (H

∗) ≤ v, it is enough to bound the probability of a collision
in the range [0; v]. Moreover Equation 6 implies |mint(H) − min#t (H

∗)| ≤
max(min#t (H

∗),mint(H))2−r from which it is possible to derive |R∗ −R| ≤
3A consequence of h being chosen uniformly from a 2-independent hash family.
4The verification of this inequality is a lengthy but straightforward calculcation using

the definition of δ′ and t.
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δ
4F0. Another important fact is that h is injective with probability 1 − 1

p ,
this is because h is chosen uniformly from the polynomials of degree less
than 2. If it is a degree 1 polynomial it is a linear function on GF (p) and
thus injective. Because p ≥ 18 the probability that h is not injective can be
bounded by 1/18. With these in mind, we can conclude:

P

(
|R∗ − F0| ≤ δ′F0 ∧ |R−R∗| > δ

4
F0

)
≤ P

(
R∗ ≥ (1− δ′)F0 ∧min#t (H

∗) 6= mint(H) ∧ h inj.
)
+ P (¬h inj.)

≤ P (∃a 6= b ∈ A.bh(a)cr = bh(b)cr ≤ v ∧ h(a) 6= h(b)) +
1

18

≤ 1

18
+

∑
a6=b∈A

P (bh(a)cr = bh(b)cr ≤ v ∧ h(a) 6= h(b))

≤ 1

18
+

∑
a6=b∈A

P
(
|h(a)− h(b)| ≤ v2−r ∧ h(a) ≤ v(1 + 2−r) ∧ h(a) 6= h(b)

)
≤ 1

18
+

∑
a6=b∈A

∑
a′,b′∈{0,...,p−1}∧a′ 6=b′

|a′−b′|≤v2−r∧a′≤v(1+2−r)

P (h(a) = a′)P (h(b) = b′)

≤ 1

18
+

5F 2
0 v

2

2p2
2−r ≤ 1

9
.

which shows that Equation 2 is true.

A.2 Case F0 < t

Note that in this case |H| ≤ F0 < t and thus R = |H|, hence the goal is
to show that: P (|H| 6= F0) ≤ 1

3 . The latter can only happen, if there is a
collision induced by the application of bh(·)cr. As before h is not injective
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with probability at most 1
18 , hence:

P (|R− F0| > δF0) ≤ P (R 6= F0)

≤ 1

18
+ P (R 6= F0 ∧ h inj.)

≤ 1

18
+ P (∃a 6= b ∈ A.bh(a)cr = bh(b)cr ∧ h inj.)

≤ 1

18
+

∑
a6=b∈A

P (bh(a)cr = bh(b)cr ∧ h(a) 6= h(b))

≤ 1

18
+

∑
a6=b∈A

P
(
|h(a)− h(b)| ≤ p2−r ∧ h(a) 6= h(b)

)
≤ 1

18
+

∑
a6=b∈A

∑
a′,b′∈{0,...,p−1}

a′ 6=b′∧|a′−b′|≤p2−r

P (h(a) = a′)P (h(b) = b′)

≤ 1

18
+ F 2

0 2
−r+1 ≤ 1

18
+ t22−r+1 ≤ 1

9
.

Which concludes the proof.
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