Formalization of Randomized Approximation Algorithms for Frequency Moments

Emin Karayel

March 11, 2024

Abstract

In 1999 Alon et. al. introduced the still active research topic of approximating the frequency moments of a data stream using randomized algorithms with minimal space usage. This includes the problem of estimating the cardinality of the stream elements - the zeroth frequency moment. But, also higher-order frequency moments that provide information about the skew of the data stream. (The k-th frequency moment of a data stream is the sum of the k-th powers of the occurrence counts of each element in the stream.) This entry formalizes three randomized algorithms for the approximation of F_{0}, F_{2} and F_{k} for $k \geq 3$ based on $[1,2]$ and verifies their expected accuracy, success probability and space usage.

Contents

1 Preliminary Results 2
2 Frequency Moments 11
3 Ranks, k smallest element and elements 14
4 Landau Symbols 22
5 Probability Spaces 27
6 Indexed Products of Probability Mass Functions 29
7 Frequency Moment 0 29
8 Frequency Moment 2 59
9 Frequency Moment k 76

1 Preliminary Results

```
theory Frequency-Moments-Preliminary-Results
    imports
        HOL.Transcendental
        HOL-Computational-Algebra.Primes
        HOL-Library.Extended-Real
        HOL-Library.Multiset
        HOL-Library.Sublist
        Prefix-Free-Code-Combinators.Prefix-Free-Code-Combinators
        Bertrands-Postulate.Bertrand
        Expander-Graphs.Expander-Graphs-Multiset-Extras
begin
```

This section contains various preliminary results.

```
lemma card-ordered-pairs:
    fixes M :: ('a ::linorder) set
    assumes finite M
    shows 2 * card {(x,y)\inM\timesM.x<y} = card M*(card M - 1)
proof -
    have a: finite ( }M\timesM)\mathrm{ using assms by simp
    have inj-swap: inj ( }\lambdax\mathrm{ . (snd x, fst x))
        by (rule inj-onI, simp add: prod-eq-iff)
    have 2 * card {(x,y) \inM\timesM.x<y}=
        card {(x,y)\inM\timesM.x<y}+\operatorname{card}((\lambdax.(snd x, fst x))}{{(x,y)\inM\timesM.
< y})
    by (simp add: card-image[OF inj-on-subset[OF inj-swap]])
```



```
        by (auto intro: arg-cong[where f=card] simp add:set-eq-iff image-iff)
    also have ... = card ({(x,y)\inM\timesM.x<y}\cup{(x,y)\inM\timesM.y<x})
        by (intro card-Un-disjoint[symmetric] a finite-subset[where B=M }\timesM]\mathrm{ sub-
setI) auto
    also have ... = card ((M\timesM)-{(x,y) \inM\timesM.x=y})
        by (auto intro: arg-cong[where f=card] simp add:set-eq-iff)
    also have ... = card (M\timesM) - card {(x,y) \inM\timesM.x=y}
        by (intro card-Diff-subset a finite-subset[where B=M }\timesM]\mathrm{ subsetI) auto
    also have ... = \operatorname{card M ^2 - card ((\lambdax. (x,x))' M)}
        using assms
        by (intro arg-cong2[where f=(-)] arg-cong[where f=card])
            (auto simp:power2-eq-square set-eq-iff image-iff)
    also have ... = card M^2 - card M
        by (intro arg-cong2[where f=(-)] card-image inj-onI, auto)
```

```
    also have ... = card M* (card M - 1)
    by (cases card M\geq0, auto simp:power2-eq-square algebra-simps)
    finally show ?thesis by simp
qed
lemma ereal-mono: }x\leqy\Longrightarrow\mathrm{ ereal }x\leq\mathrm{ ereal }
    by simp
lemma log-mono: a>1\Longrightarrowx\leqy\Longrightarrow0<x\Longrightarrowlog a x \leqloga y
    by (subst log-le-cancel-iff, auto)
lemma abs-ge-iff: ((x::real) \leqabs y) =(x\leqy\veex\leq-y)
    by linarith
lemma count-list-gr-1:
    (x\in set xs ) = (count-list xs x \geq1)
    by (induction xs, simp, simp)
lemma count-list-append: count-list (xs@ys) v = count-list xs v + count-list ys v
    by (induction xs, simp, simp)
lemma count-list-lt-suffix:
    assumes suffix a b
    assumes }x\in{b!i|i.i< length b - length a
    shows count-list a x < count-list b }
proof -
    have length a < length b using assms(1)
        by (simp add: suffix-length-le)
    hence }x\in\mathrm{ set (nths b {i.i< length b - length a})
    using assms diff-commute by (auto simp add:set-nths)
    hence a:x set (take (length b - length a) b)
        by (subst (asm) lessThan-def[symmetric], simp)
    have b=(take (length b - length a) b)@drop (length b - length a) b
    by simp
    also have ... =(take (length b - length a) b)@a
    using assms(1) suffix-take by auto
    finally have b:b=(take (length b - length a) b)@a by simp
    have count-list a x<1 + count-list a x by simp
    also have ... \leq count-list (take (length b - length a) b) x + count-list a x
        using a count-list-gr-1
        by (intro add-mono, fast, simp)
    also have ... = count-list b x
        using b count-list-append by metis
    finally show ?thesis by simp
qed
lemma suffix-drop-drop:
    assumes }x\geq
```

```
    shows suffix (drop x a)(drop y a)
proof -
    have drop y a = take (x-y)(drop y a)@drop (x-y)(drop y a)
    by (subst append-take-drop-id, simp)
    also have ... = take (x-y)(drop y a)@drop x a
    using assms by simp
    finally have drop y a = take (x-y) (drop y a)@drop x a by simp
    thus ?thesis
    by (auto simp add:suffix-def)
qed
lemma count-list-card: count-list xs x = card {k.k<length xs ^xs!k=x}
proof -
    have count-list xs x = length (filter ((=) x) xs)
        by (induction xs, simp, simp)
    also have ... = card {k. k< length xs ^xs!k=x}
        by (subst length-filter-conv-card, metis)
    finally show ?thesis by simp
qed
lemma card-gr-1-iff:
    assumes finite S x G S y G S x\not=y
    shows card S>1
    using assms card-le-Suc0-iff-eq leI by auto
lemma count-list-ge-2-iff:
    assumes }y<
    assumes z< length xs
    assumes xs!y=xs!z
    shows count-list xs (xs!y)>1
proof -
    have 1< card {k.k< length xs ^ xs ! k=xs!y}
    using assms by (intro card-gr-1-iff[where }x=y\mathrm{ and }y=z]\mathrm{ , auto)
    thus ?thesis
    by (simp add: count-list-card)
qed
Results about multisets and sorting
lemmas disj-induct-mset \(=\) disj-induct-mset
lemma prod-mset-conv:
    fixes f::' }a>>'\mp@code{' ::{comm-monoid-mult}
    shows prod-mset (image-mset fA)=prod (\lambdax.f f` (count A x)) (set-mset A)
proof (induction A rule: disj-induct-mset)
    case 1
    then show ?case by simp
next
    case (2 n M x)
```

```
    moreover have count Mx=0 using 2 by (simp add: count-eq-zero-iff)
    moreover have }\bigwedgey.y\in\mathrm{ set-mset }M\Longrightarrowy\not=x\mathrm{ using 2 by blast
    ultimately show ?case by (simp add:algebra-simps)
qed
```

There is a version sum-list-map-eq-sum-count but it doesn't work if the function maps into the reals.

```
lemma sum-list-eval:
    fixes \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b::\{\) ring,semiring-1 \(\}\)
    shows sum-list (map \(f x s)=\left(\sum x \in\right.\) set xs. of-nat (count-list xs \(\left.\left.x\right) * f x\right)\)
proof -
    define \(M\) where \(M=\) mset \(x s\)
    have sum-mset (image-mset \(f M)=\left(\sum x \in\right.\) set-mset \(M\). of-nat (count \(\left.M x\right) * f\)
x)
    proof (induction M rule:disj-induct-mset)
    case 1
    then show?case by simp
    next
        case (2nMx)
        have \(a: \ y . y \in\) set-mset \(M \Longrightarrow y \neq x\) using 2(2) by blast
        show ?case using 2 by (simp add:a count-eq-zero-iff[symmetric])
    qed
    moreover have \(\bigwedge x\). count-list xs \(x=\) count (mset xs) \(x\)
    by (induction xs, simp, simp)
    ultimately show ?thesis
    by (simp add:M-def sum-mset-sum-list[symmetric])
qed
lemma prod-list-eval:
    fixes \(f:: ' a \Rightarrow{ }^{\prime} b::\{\) ring,semiring-1,comm-monoid-mult \(\}\)
    shows prod-list (map fxs) \(=\left(\prod x \in\right.\) set \(x s .(f x)^{\wedge}(\) count-list xs \(\left.x)\right)\)
proof -
    define \(M\) where \(M=\) mset \(x s\)
    have prod-mset (image-mset \(f M)=\left(\prod x \in\right.\) set-mset \(M . f x^{\wedge}(\) count \(\left.M x)\right)\)
    proof (induction M rule:disj-induct-mset)
        case 1
        then show? case by simp
    next
        case (2 \(n M x\) )
    have \(a: \bigwedge y . y \in\) set-mset \(M \Longrightarrow y \neq x\) using 2(2) by blast
    have b:count \(M x=0\) using 2 by (subst count-eq-zero-iff) blast
    show ?case using 2 by (simp add:a b mult.commute)
    qed
    moreover have \(\bigwedge x\). count-list xs \(x=\) count (mset xs) \(x\)
    by (induction xs, simp, simp)
    ultimately show ?thesis
    by (simp add:M-def prod-mset-prod-list[symmetric])
qed
```

lemma sorted-sorted-list-of-multiset: sorted (sorted-list-of-multiset M) by (induction M, auto simp:sorted-insort)
lemma count-mset: count (mset xs) $a=$ count-list xs a by (induction xs, auto)
lemma swap-filter-image: filter-mset $g($ image-mset $f A)=$ image-mset $f($ filter-mset $(g \circ f) A$) by (induction A, auto)
lemma list-eq-iff:
assumes mset $x s=$ mset ys
assumes sorted $x s$
assumes sorted ys
shows $x s=y s$
using assms properties-for-sort by blast
lemma sorted-list-of-multiset-image-commute: assumes mono f
shows sorted-list-of-multiset (image-mset $f M$) $=\operatorname{map} f$ (sorted-list-of-multiset
M)
proof -
have sorted (sorted-list-of-multiset (image-mset f M))
by (simp add:sorted-sorted-list-of-multiset)
moreover have sorted-wrt ($\lambda x y . f x \leq f y$) (sorted-list-of-multiset M)
by (rule sorted-wrt-mono-rel[where $P=\lambda x y . x \leq y]$)
(auto intro: monoD[OF assms] sorted-sorted-list-of-multiset)
hence sorted (map f (sorted-list-of-multiset M))
by (subst sorted-wrt-map)
ultimately show ?thesis
by (intro list-eq-iff, auto)
qed
Results about rounding and floating point numbers
lemma round-down-ge:
$x \leq$ round-down prec $x+2$ powr (-prec)
using round-down-correct by (simp, meson diff-diff-eq diff-eq-diff-less-eq)
lemma truncate-down-ge:
$x \leq$ truncate-down prec $x+$ abs $x * 2$ powr (- prec)
proof (cases abs $x>0$)
case True
have $x \leq$ round-down (int prec $-\lfloor\log 2|x|\rfloor) x+2$ powr (-real-of-int(int prec
$-\lfloor\log 2|x|\rfloor))$
by (rule round-down-ge)
also have $\ldots \leq$ truncate-down prec $x+2$ powr $(\lfloor\log 2|x|\rfloor)$ * 2 powr $(-$ real
prec)
by (rule add-mono, simp-all add:powr-add[symmetric] truncate-down-def)
also have $\ldots \leq$ truncate-down prec $x+|x| * 2$ powr (-real prec)
using True
by (intro add-mono mult-right-mono, simp-all add:le-log-iff[symmetric])
finally show?thesis by simp

next

case False
then show ?thesis by simp
qed
lemma truncate-down-pos:
assumes $x \geq 0$
shows $x *(1-2$ powr $(-$ prec $)) \leq$ truncate-down prec x
by (simp add:right-diff-distrib diff-le-eq)
(metis truncate-down-ge assms abs-of-nonneg)
lemma truncate-down-eq:
assumes truncate-down rx=truncate-down r y
shows abs $(x-y) \leq \max (a b s x)(a b s y) * 2 \operatorname{powr}(-r e a l r)$
proof -
have $x-y \leq$ truncate-down $r x+$ abs $x * 2$ powr $(-$ real $r)-y$
by (rule diff-right-mono, rule truncate-down-ge)
also have $\ldots \leq y+a b s x * 2$ powr $(-$ real $r)-y$
using truncate-down-le
by (intro diff-right-mono add-mono, subst assms(1), simp-all)
also have $\ldots \leq$ abs $x * 2$ powr (- real r) by simp
also have $\ldots \leq \max ($ abs $x)($ abs $y) * 2$ powr (-real r) by simp
finally have $a: x-y \leq \max (a b s x)(a b s y) * 2 \operatorname{powr}(-$ real $r)$ by simp
have $y-x \leq$ truncate-down ry+abs $y * 2$ powr $(-$ real $r)-x$
by (rule diff-right-mono, rule truncate-down-ge)
also have $\ldots \leq x+a b s y * 2$ powr $(-$ real $r)-x$
using truncate-down-le
by (intro diff-right-mono add-mono, subst assms(1)[symmetric], auto)
also have $\ldots \leq a b s y * 2$ powr (-real r) by simp
also have $\ldots \leq \max ($ abs $x)($ abs $y) * 2$ powr (-real r) by simp
finally have $b: y-x \leq \max ($ abs $x)($ abs $y) * 2$ powr (-real r) by simp
show ?thesis
using $a b s$-le-iff $a b$ by linarith
qed
definition rat-of-float $::$ float \Rightarrow rat where
rat-of-float $f=o f$-int $($ mantissa $f) *$
(if exponent $f \geq 0$ then $\boldsymbol{2}^{\wedge}$ (nat (exponent $\left.f\right)$) else $1 /$ 2 $^{\wedge}$ (nat (-exponent
f)))
lemma real-of-rat-of-float: real-of-rat (rat-of-float $x)=$ real-of-float x proof -
have real-of-rat (rat-of-float $x)=$ mantissa $x *(2$ powr (exponent $x))$
by (simp add:rat-of-float-def of-rat-mult of-rat-divide of-rat-power powr-realpow[symmetric]

```
powr-minus-divide)
    also have ... = real-of-float }
        using mantissa-exponent by simp
    finally show ?thesis by simp
qed
lemma log-est: log 2 (real n + 1)\leqn
proof -
    have 1 +real n= real (n+1)
        by simp
    also have ... \leqreal (2 ^ n)
        by (intro of-nat-mono suc-n-le-2-pow-n)
    also have ... = 2 powr (real n)
        by (simp add:powr-realpow)
    finally have 1 + real n\leq2 powr (real n)
        by simp
    thus ?thesis
        by (simp add: Transcendental.log-le-iff)
qed
lemma truncate-mantissa-bound:
    abs (\lfloorx* 2 powr (real r - real-of-int \lfloorlog 2 |x|\rfloor)\rfloor) \leq 2^(r+1) (is ?lhs \leq -)
proof -
    define q}\mathrm{ where }q=\lfloorx*2 powr (real r - real-of-int (\lfloorlog 2 |x|\rfloor))\rfloor
    have abs q\leq 2^ (r+1) if a:x>0
    proof -
        have abs q=q
            using a by (intro abs-of-nonneg, simp add:q-def)
    also have .. \leqx*2 powr (real r - real-of-int \lfloorlog 2 |x|\rfloor)
            unfolding }q\mathrm{ -def using of-int-floor-le by blast
        also have }\ldots=x*2 powr real-of-int (int r - \lfloorlog 2 |x|\rfloor) 
            by auto
    also have ... = 2 powr (log 2 x + real-of-int (int r - \lfloorlog 2 |x|\rfloor))
            using a by (simp add:powr-add)
    also have ... \leq2 powr (real r + 1)
            using a by (intro powr-mono, linarith+)
    also have ... = 2 ^ (r+1)
        by (subst powr-realpow[symmetric], simp-all add:add.commute)
    finally show abs q\leq2 ^
        by (metis of-int-le-iff of-int-numeral of-int-power)
    qed
    moreover have abs q\leq(2` (r+1)) if a: x<0
    proof -
    have -(2^ (r+1) + 1) = -(2 powr (real r + 1)+1)
        by (subst powr-realpow[symmetric], simp-all add: add.commute)
    also have }\ldots<<-(2 powr (log 2 ( - x ) + (r - \lfloorlog 2 |x| \)) + 1) 
        using a by (simp, linarith)
```

```
    also have ... =x*2 powr (r - \lfloorlog 2 |x|\rfloor) - 1
    using a by (simp add:powr-add)
    also have ... }\leq
    by (simp add:q-def)
    also have ... = - abs q
    using a
    by (subst abs-of-neg, simp-all add: mult-pos-neg2 q-def)
    finally have - (2^ (r+1)+1)<- abs q using of-int-less-iff by fastforce
    hence - (2 ^ (r+1)) \leq - abs q by linarith
    thus abs q}\leq\mp@subsup{\mathcal{Z}}{}{`}(r+1) by linarith
qed
moreover have }x=0\Longrightarrow\mathrm{ abs q}\leq\mp@subsup{2}{}{2`}(r+1
    by (simp add:q-def)
ultimately have abs q}\leq2`(r+1
    by fastforce
    thus ?thesis using q-def by blast
qed
lemma truncate-float-bit-count:
    bit-count }(\mp@subsup{F}{e}{}(\mathrm{ float-of (truncate-down r x ) ) ) < 10 + 4* real r + 2*log 2 (2 +
|log 2 |x||)
    (is ?lhs \leq?rhs)
proof -
    define m}\mathrm{ where }m=\lfloorx*2 powr (real r - real-of-int \lfloorlog 2 |x|\rfloor)\rfloor
    define e where e=\lfloorlog 2 |x|\rfloor- int r
    have a:(real-of-int \lfloorlog 2 |x|\rfloor- real r)=e
        by (simp add:e-def)
    have abs m+2 \leq2^ (r+1) + 2^1
        using truncate-mantissa-bound
        by (intro add-mono, simp-all add:m-def)
    also have .. \leq 2 ^ (r+2)
    by simp
finally have b:abs m+2\leq 2 ^}(r+2) by simp
    hence real-of-int ( }|m|+2)\leq\mathrm{ real-of-int (4*2^r)
    by (subst of-int-le-iff, simp)
    hence |real-of-int m| +2\leq4*2`r
    by simp
    hence c:log 2 (real-of-int ( }|m|+2))\leqr+
    by (simp add: Transcendental.log-le-iff powr-add powr-realpow)
    have real-of-int (abs e + 1) \leq real-of-int |\log 2 |x||| + real-of-int r + 1
    by (simp add:e-def)
    also have ... \leq1 +abs (log 2 (abs x)) + real-of-int r + 1
    by (simp add:abs-le-iff, linarith)
    also have .. \leq (real-of-int r+1)*(2 + abs (log 2 (abs x)))
    by (simp add:distrib-left distrib-right)
finally have d:real-of-int (abse + 1) \leq (real-of-int r+1)*(2 +abs (log 2 (abs
```

$x)$)) by $\operatorname{sim} p$
have $\log 2($ real-of-int $(a b s e+1)) \leq \log 2($ real-of-int $r+1)+\log 2(2+a b s$ ($\log 2($ abs $x)$))
using d by (simp add: log-mult[symmetric])
also have $\ldots \leq r+\log 2(2+a b s(\log 2(a b s x)))$
using log-est by (intro add-mono, simp-all add:add.commute)
finally have $e: \log 2($ real-of-int $(a b s e+1)) \leq r+\log 2(2+a b s(\log 2(a b s$ $x)$)) by $\operatorname{sim} p$
have ?lhs $=$ bit-count $\left(F_{e}(\right.$ float-of $($ real-of-int $m * 2$ powr real-of-int e $\left.))\right)$
by (simp add:truncate-down-def round-down-def m-def[symmetric] a)
also have $\ldots \leq \operatorname{ereal}(6+(2 * \log 2($ real-of-int $(|m|+2))+2 * \log 2($ real-of-int $(|e|+1))))$ using float-bit-count-2 by simp
also have $\ldots \leq \operatorname{ereal}(6+(2 *$ real $(r+2)+2 *(r+\log 2(2+a b s(\log 2$ $(a b s x))))$))
using $c e$
by (subst ereal-less-eq, intro add-mono mult-left-mono, linarith +)
also have $\ldots=$? rhs by simp
finally show? thesis by simp
qed
definition prime-above :: nat \Rightarrow nat
where prime-above $n=($ SOME $x . x \in\{n . .(2 * n+2)\} \wedge$ prime $x)$
The term prime-above n returns a prime between n and $2 * n+2$. Because of Bertrand's postulate there always is such a value. In a refinement of the algorithms, it may make sense to replace this with an algorithm, that finds such a prime exactly or approximately.
The definition is intentionally inexact, to allow refinement with various algorithms, without modifying the high-level mathematical correctness proof.

```
lemma ex-subset:
    assumes }\existsx\inA.P
    assumes }A\subseteq
    shows }\existsx\inB.P
    using assms by auto
lemma
    shows prime-above-prime: prime (prime-above n)
    and prime-above-range: prime-above }n\in{n..(2*n+2)
proof -
    define r where r = (\lambdax. x f {n..(2*n+2)} ^ prime x)
    have }\existsx.r
    proof (cases n>2)
        case True
        hence }n-1>1\mathrm{ by simp
        hence }\existsx\in{(n-1)<..<(2*(n-1))}. prime x
```

using bertrand by simp
moreover have $\{n-1<. .<2 *(n-1)\} \subseteq\{n . .2 * n+2\}$
by (intro subsetI, auto)
ultimately have $\exists x \in\{n . .(2 * n+2)\}$. prime x
by (rule ex-subset)
then show ?thesis by (simp add:r-def Bex-def)

next

case False
hence $2 \in\{n . .(2 * n+2)\}$
by simp
moreover have prime (2::nat)
using two-is-prime-nat by blast
ultimately have $r 2$
using r-def by simp
then show ?thesis by (rule exI)
qed
moreover have prime-above $n=(S O M E$ x. r x)
by (simp add:prime-above-def r-def)
ultimately have a:r (prime-above n)
using someI-ex by metis
show prime (prime-above n)
using a unfolding r-def by blast
show prime-above $n \in\{n . .(2 * n+2)\}$
using a unfolding r-def by blast
qed
lemma prime-above-min: prime-above $n \geq 2$
using prime-above-prime
by (simp add: prime-ge-2-nat)
lemma prime-above-lower-bound: prime-above $n \geq n$
using prime-above-range
by simp
lemma prime-above-upper-bound: prime-above $n \leq 2 * n+2$
using prime-above-range
by simp
end

2 Frequency Moments

theory Frequency-Moments
imports
Frequency-Moments-Preliminary-Results
Universal-Hash-Families.Universal-Hash-Families-More-Finite-Fields Interpolation-Polynomials-HOL-Algebra.Interpolation-Polynomial-Cardinalities
begin

This section contains a definition of the frequency moments of a stream and a few general results about frequency moments..

```
definition \(F\) where
    \(\left.\left.F k x s=\left(\sum x \in \text { set xs. (rat-of-nat (count-list xs } x\right)^{\wedge} k\right)\right)\)
lemma \(F\)-ge-0: \(F k\) as \(\geq 0\)
    unfolding \(F\)-def by (rule sum-nonneg, simp)
lemma \(F\)-gr-0:
    assumes as \(\neq[]\)
    shows \(F k\) as \(>0\)
proof -
    have rat-of-nat \(1 \leq\) rat-of-nat (card (set as))
        using assms card- 0 -eq[where \(A=\) set as]
        by (intro of-nat-mono)
        (metis List.finite-set One-nat-def Suc-leI neq0-conv set-empty)
    also have \(\ldots=\left(\sum x \in\right.\) set as. 1) by simp
    also have \(\ldots \leq\left(\sum x \in\right.\) set as. rat-of-nat (count-list as \(\left.x\right) \wedge\) )
        by (intro sum-mono one-le-power)
            (metis count-list-gr-1 of-nat-1 of-nat-le-iff)
    also have \(\ldots \leq F k\) as
        by (simp add:F-def)
    finally show ?thesis by simp
qed
definition \(P_{e}::\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat list \(\Rightarrow\) bool list option where
    \(P_{e} p n f=(\) if \(p>1 \wedge f \in\) bounded-degree-polynomials (mod-ring \(p\) ) \(n\) then
        \(\left([0 . .<n] \rightarrow_{e} N b_{e} p\right)(\lambda i \in\{. .<n\}\). ring.coeff \((\bmod -\) ring \(p) f i)\) else None \()\)
lemma poly-encoding:
    is-encoding \(\left(P_{e} \quad p \quad n\right)\)
proof (cases \(p>1\) )
    case True
    interpret cring mod-ring \(p\)
        using mod-ring-is-cring True by blast
    have a:inj-on \((\lambda x .(\lambda i \in\{. .<n\} .(\) coeff \(x i))\) ) (bounded-degree-polynomials (mod-ring
p) \(n\) )
    proof (rule inj-onI)
        fix \(x y\)
        assume \(b: x \in\) bounded-degree-polynomials (mod-ring \(p\) ) \(n\)
        assume \(c: y \in\) bounded-degree-polynomials (mod-ring \(p\) ) \(n\)
        assume d:restrict (coeff \(x)\{. .<n\}=\) restrict (coeff \(y\) ) \(\{. .<n\}\)
        have coeff \(x i=\) coeff \(y i\) for \(i\)
        proof (cases \(i<n\) )
            case True
            then show ?thesis by (metis lessThan-iff restrict-apply d)
        next
            case False
            hence \(e: i \geq n\) by linarith
```

```
    have coeff xi= 0}\mp@subsup{\mathbf{0}}{\mathrm{ mod-ring p}}{
    using b e by (subst coeff-length, auto simp:bounded-degree-polynomials-length)
    also have ... = coeff y i
    using ce by (subst coeff-length, auto simp:bounded-degree-polynomials-length)
    finally show ?thesis by simp
    qed
    then show }x=
    using b c univ-poly-carrier
    by (subst coeff-iff-polynomial-cond) (auto simp:bounded-degree-polynomials-length)
qed
    have is-encoding ( }\lambdaf.\mp@subsup{P}{e}{
    unfolding }\mp@subsup{P}{e}{}\mathrm{ -def using a True
    by (intro encoding-compose[where f=([0..<n] ->e Nb e p)] fun-encoding bounded-nat-encoding)
    auto
    thus ?thesis by simp
next
    case False
    hence is-encoding ( }\lambdaf.\mp@subsup{P}{e}{
    unfolding }\mp@subsup{P}{e}{}\mathrm{ -def using encoding-triv by simp
    then show ?thesis by simp
qed
lemma bounded-degree-polynomial-bit-count:
    assumes p>1
    assumes }x\in\mathrm{ bounded-degree-polynomials (mod-ring p) n
    shows bit-count ( }\mp@subsup{P}{e}{
proof -
    interpret cring mod-ring p
    using mod-ring-is-cring assms by blast
    have a: x carrier (poly-ring (mod-ring p))
    using assms(2) by (simp add:bounded-degree-polynomials-def)
    have real-of-int \lfloorlog 2 (p-1)\rfloor+1\leq log 2 (p-1)+1
    using floor-eq-iff by (intro add-mono, auto)
    also have ... }\leq\operatorname{log}2p+
    using assms by (intro add-mono, auto)
finally have b: \lfloorlog 2 (p-1)\rfloor+1 \leq log 2 p + 1
    by simp
    have bit-count (Pe p n x) =( \sumk\leftarrow[0..<n].bit-count (N\mp@subsup{b}{e}{}p(coeff x k)))
    using assms restrict-extensional
    by (auto intro!:arg-cong[where f=sum-list] simp add: P}\mp@subsup{P}{e}{}\mathrm{ -def fun-bit-count lessThan-atLeast0)
also have ... = (\sumk\leftarrow[0..<n]. ereal (floorlog 2 ( }p-1)\mathrm{ ))
    using coeff-in-carrier[OF a] mod-ring-carr
    by (subst bounded-nat-bit-count-2, auto)
also have ... = n* ereal (floorlog 2 (p-1))
    by (simp add: sum-list-triv)
```

```
    also have ... = n* real-of-int (\lfloorlog 2 (p-1)\rfloor+1)
    using assms(1) by (simp add:floorlog-def)
    also have ... \leq ereal (real n * (log 2 p+1))
    by (subst ereal-less-eq, intro mult-left-mono b, auto)
    finally show ?thesis by simp
qed
```

end

3 Ranks, k smallest element and elements

theory K-Smallest imports

Frequency-Moments-Preliminary-Results
Interpolation-Polynomials-HOL-Algebra.Interpolation-Polynomial-Cardinalities
begin
This section contains definitions and results for the selection of the k smallest elements, the k-th smallest element, rank of an element in an ordered set.
definition rank-of $::$ ' a :: linorder \Rightarrow 'a set \Rightarrow nat where rank-of $x S=$ card $\{y$ $\in S . y<x\}$

The function rank-of returns the rank of an element within a set.

```
lemma rank-mono:
    assumes finite S
    shows }x\leqy\Longrightarrow\mathrm{ rank-of x S sank-of y S
    unfolding rank-of-def using assms by (intro card-mono, auto)
lemma rank-mono-2:
    assumes finite S
    shows }\mp@subsup{S}{}{\prime}\subseteqS\Longrightarrow\mathrm{ rank-of x }\mp@subsup{S}{}{\prime}\leqrank-of x S
    unfolding rank-of-def using assms by (intro card-mono, auto)
lemma rank-mono-commute:
    assumes finite S
    assumes S\subseteqT
    assumes strict-mono-on Tf
    assumes }x\in
    shows rank-of x S = rank-of (fx) (f'S)
proof -
    have a: inj-on f T
        by (metis assms(3) strict-mono-on-imp-inj-on)
    have rank-of (fx) (f`S) = card ( f'{y f S.fy<fx})
        unfolding rank-of-def by (intro arg-cong[where f=card], auto)
    also have ... = \operatorname{card}(f'{y\inS.y<x})
        using assms by (intro arg-cong[where f=card] arg-cong[where f=(') f])
        (meson in-mono linorder-not-le strict-mono-onD strict-mono-on-leD set-eq-iff)
```

```
    also have ... = card {y\inS.y<x}
    using assms by (intro card-image inj-on-subset[OF a], blast)
    also have ... = rank-of x S
    by (simp add:rank-of-def)
    finally show ?thesis
    by simp
qed
```

definition least where least $k S=\{y \in S$. rank-of y $S<k\}$

The function K-Smallest.least returns the k smallest elements of a finite set.

```
lemma rank-strict-mono:
    assumes finite S
    shows strict-mono-on S ( }\lambdax\mathrm{ . rank-of x S)
proof -
    have }\xy.x\inS\Longrightarrowy\inS\Longrightarrowx<y\Longrightarrowrank-of x S < rank-of y S
        unfolding rank-of-def using assms
        by (intro psubset-card-mono, auto)
    thus ?thesis
        by (simp add:rank-of-def strict-mono-on-def)
qed
lemma rank-of-image:
    assumes finite S
    shows (\lambdax.rank-of x S)'S={0..<card S}
proof (rule card-seteq)
    show finite {0..<card S} by simp
    have }\x.x\inS\Longrightarrow\operatorname{card}{y\inS.y<x}<\operatorname{card}
        by (rule psubset-card-mono, metis assms, blast)
    thus (\lambdax. rank-of x S)'S\subseteq{0..<card S}
        by (intro image-subsetI, simp add:rank-of-def)
    have inj-on ( }\lambda\mathrm{ x. rank-of x S)S
        by (metis strict-mono-on-imp-inj-on rank-strict-mono assms)
    thus card {0..<card S}\leqcard ((\lambdax.rank-of x S)'S)
        by (simp add:card-image)
qed
lemma card-least:
    assumes finite S
    shows card (least kS)=min k (card S)
proof (cases card S<k)
    case True
    have \t. rank-of tS card S
        unfolding rank-of-def using assms
    by (intro card-mono, auto)
    hence \t. rank-of t S<k
```

```
    by (metis True not-less-iff-gr-or-eq order-less-le-trans)
    hence least kS=S
    by (simp add:least-def)
    then show ?thesis using True by simp
next
    case False
    hence a:card S\geqk using leI by blast
```



```
    using assms
    by (intro card-vimage-inj-on strict-mono-on-imp-inj-on rank-strict-mono)
        (simp-all add: rank-of-image)
    hence card (least kS)=k
    by (simp add: Collect-conj-eq Int-commute least-def vimage-def)
    then show ?thesis using a by linarith
qed
lemma least-subset:least kS\subseteqS
    by (simp add:least-def)
lemma least-mono-commute:
    assumes finite S
    assumes strict-mono-on S f
    shows f`least kS = least k (f`S)
proof -
    have a:inj-on f S
        using strict-mono-on-imp-inj-on[OF assms(2)] by simp
    have card (least k (f`S))=mink (card (f`S))
    by (subst card-least, auto simp add:assms)
    also have ... = min k (card S)
    by (subst card-image, metis a, auto)
    also have ... = card (least kS)
    by (subst card-least, auto simp add:assms)
    also have ... = card (f'least kS)
    by (subst card-image[OF inj-on-subset[OF a]], simp-all add:least-def)
    finally have b: card (least k (f'S)) \leq card (f'least kS) by simp
    have c: f'least kS\subseteqleast k (f'S)
    using assms by (intro image-subsetI)
        (simp add:least-def rank-mono-commute[symmetric, where T=S])
    show ?thesis
    using b c assms by (intro card-seteq, simp-all add:least-def)
qed
lemma least-eq-iff:
    assumes finite B
    assumes }A\subseteq
    assumes }\bigwedgex.x\inB\Longrightarrow rank-of x B<k\Longrightarrowx\in
```

```
    shows least k A = least k B
proof -
    have least k B\subseteq least k A
        using assms rank-mono-2[OF assms(1,2)] order-le-less-trans
        by (simp add:least-def, blast)
    moreover have card (least k B)\geq card (least k A)
        using assms finite-subset[OF assms(2,1)] card-mono[OF assms(1,2)]
        by (simp add: card-least min-le-iff-disj)
    moreover have finite (least k A)
        using finite-subset least-subset assms(1,2) by metis
    ultimately show ?thesis
        by (intro card-seteq[symmetric], simp-all)
qed
lemma least-insert:
    assumes finite S
    shows least k (insert x (least kS)) = least k (insert x S) (is ?lhs = ?rhs)
proof (rule least-eq-iff)
    show finite (insert x S)
            using assms(1) by simp
    show insert x (least kS)\subseteqinsert x S
        using least-subset by blast
    show y insert x (least kS) if a: y f insert x S and b:rank-of y (insert x S)
< for y
    proof -
        have rank-of y S \leq rank-of y (insert x S)
            using assms by (intro rank-mono-2, auto)
            also have ...<k using b by simp
            finally have rank-of yS<k by simp
            hence y=x\vee(y\inS\wedge rank-of y S<k)
            using a by simp
            thus ?thesis by (simp add:least-def)
    qed
qed
definition count-le where count-le x M = size {#y \in# M. y \leqx#}
definition count-less where count-less x M size {#y\in# M. y<x#}
definition nth-mset :: nat => ('a :: linorder) multiset }=>\mp@subsup{}{}{\prime}'a\mathrm{ where
    nth-mset kM = sorted-list-of-multiset M!k
lemma nth-mset-bound-left:
    assumes k< size M
    assumes count-less x M\leqk
    shows x\leqnth-mset k M
proof (rule ccontr)
    define xs where xs = sorted-list-of-multiset M
    have s-xs: sorted xs by (simp add:xs-def sorted-sorted-list-of-multiset)
```

```
    have l-xs: k< length xs
    using assms(1) by (simp add:xs-def size-mset[symmetric])
    have M-xs: M = mset xs by (simp add:xs-def)
    hence a:\i. i\leqk\Longrightarrowxs!i\leqxs!k
    using s-xs l-xs sorted-iff-nth-mono by blast
assume }\neg(x\leqnth-mset kM
hence }x>\mathrm{ nth-mset }kM\mathrm{ by simp
hence b:x>xs!k by (simp add:nth-mset-def xs-def[symmetric])
have k< card {0..k} by simp
also have ... \leq card {i. i< length xs ^ xs ! i<x}
    using a b l-xs order-le-less-trans
    by (intro card-mono subsetI) auto
also have ... = length (filter ( }\lambday.y<x)xs
    by (subst length-filter-conv-card, simp)
also have ... = size (mset (filter ( }\lambday.y<x)xs)
    by (subst size-mset, simp)
also have ... = count-less x M
    by (simp add:count-less-def M-xs)
also have ... \leqk
    using assms by simp
finally show False by simp
qed
lemma nth-mset-bound-left-excl:
    assumes k< size M
    assumes count-le x M \leqk
    shows }x<nth-mset k
proof (rule ccontr)
    define xs where xs = sorted-list-of-multiset M
    have s-xs: sorted xs by (simp add:xs-def sorted-sorted-list-of-multiset)
    have l-xs: k< length xs
    using assms(1) by (simp add:xs-def size-mset[symmetric])
have M-xs:M = mset xs by (simp add:xs-def)
hence a:\i. i\leqk\Longrightarrowxs!i\leqxs!k
    using s-xs l-xs sorted-iff-nth-mono by blast
assume}\neg(x<nth-mset kM
hence }x\geq\mathrm{ nth-mset }kM\mathrm{ by simp
hence b:x\geqxs!k by (simp add:nth-mset-def xs-def[symmetric])
have k+1\leqcard {0..k} by simp
also have ... \leqcard {i.i< length xs ^xs!i\leqxs!k}
    using a b l-xs order-le-less-trans
    by (intro card-mono subsetI, auto)
also have ... \leq card {i. i< length xs ^ xs ! i\leqx}
    using b by (intro card-mono subsetI, auto)
also have ... = length (filter ( }\lambday.y\leqx)xs
```

```
    by (subst length-filter-conv-card, simp)
    also have ... = size (mset (filter ( }\lambday.y\leqx)xs)
    by (subst size-mset, simp)
    also have ... = count-le x M
    by (simp add:count-le-def M-xs)
    also have ... \leqk
    using assms by simp
    finally show False by simp
qed
lemma nth-mset-bound-right:
    assumes k< size M
    assumes count-le x M>k
    shows nth-mset k M\leqx
proof (rule ccontr)
    define xs where xs = sorted-list-of-multiset M
    have s-xs: sorted xs by (simp add:xs-def sorted-sorted-list-of-multiset)
    have l-xs: k< length xs
        using assms(1) by (simp add:xs-def size-mset[symmetric])
    have M-xs: M = mset xs by (simp add:xs-def)
    assume }\neg(nth-mset kM\leqx
    hence }x<n\mathrm{ nth-mset kM by simp
    hence }x<xs!
    by (simp add:nth-mset-def xs-def[symmetric])
    hence a:\i. i< length xs ^ xs ! i\leqx\Longrightarrow < i<k
    using s-xs l-xs sorted-iff-nth-mono leI by fastforce
    have count-le xM=size (mset (filter (\lambday.y\leqx) xs))
    by (simp add:count-le-def M-xs)
    also have ... = length (filter ( }\lambday.y\leqx)xs
    by (subst size-mset, simp)
    also have ... = card {i. i< length xs ^xs!i\leqx}
        by (subst length-filter-conv-card, simp)
    also have .. \leq card {i.i<k}
        using a by (intro card-mono subsetI, auto)
    also have ... = k by simp
    finally have count-le x M\leqk by simp
    thus False using assms by simp
qed
lemma nth-mset-commute-mono:
    assumes mono f
    assumes k< size M
    shows f(nth-mset k M)=nth-mset k (image-mset f M)
proof -
    have a:k< length (sorted-list-of-multiset M)
        by (metis assms(2) mset-sorted-list-of-multiset size-mset)
    show ?thesis
        using a by (simp add:nth-mset-def sorted-list-of-multiset-image-commute[OF
```

```
assms(1)])
qed
lemma nth-mset-max:
    assumes size A>k
    assumes }\x.x\leqnth-mset kA\Longrightarrow count A x \leq 1
    shows nth-mset k A = Max (least (k+1) (set-mset A)) and card (least (k+1)
(set-mset A)) =k+1
proof -
    define xs where xs = sorted-list-of-multiset A
    have k-bound: k< length xs unfolding xs-def
    by (metis size-mset mset-sorted-list-of-multiset assms(1))
    have }A\mathrm{ -def:A=mset xs by (simp add:xs-def)
    have s-xs: sorted xs by (simp add:xs-def sorted-sorted-list-of-multiset)
    have }\x.x\leqxs!k\Longrightarrow count A x \leq Suc 0
    using assms(2) by (simp add:xs-def[symmetric] nth-mset-def)
hence no-col: \x. x \leq xs! k\Longrightarrow count-list xs x\leq1
    by (simp add:A-def count-mset)
have inj-xs: inj-on ( }\lambdak.xs!k){0..k
    by (rule inj-onI, simp) (metis (full-types) count-list-ge-2-iff k-bound no-col
                le-neq-implies-less linorder-not-le order-le-less-trans s-xs sorted-iff-nth-mono)
    have }\bigwedgey.y<length xs \Longrightarrowrank-of (xs!y)(set xs)<k+1\Longrightarrowy<k+
    proof (rule ccontr)
    fix }
    assume b:y < length xs
    assume }\negy<k+
    hence a:k+1\leqy by simp
    have d:Suc k< length xs using a b by simp
    have k+1 = card ((!) xs ' {0..k})
        by (subst card-image[OF inj-xs], simp)
    also have ... \leqrank-of (xs! (k+1)) (set xs)
        unfolding rank-of-def using k-bound
        by (intro card-mono image-subsetI conjI, simp-all) (metis count-list-ge-2-iff
no-col not-le le-imp-less-Suc s-xs
                sorted-iff-nth-mono d order-less-le)
    also have ... \leqrank-of (xs!y) (set xs)
        unfolding rank-of-def
        by (intro card-mono subsetI, simp-all)
            (metis Suc-eq-plus1 a b s-xs order-less-le-trans sorted-iff-nth-mono)
    also assume ...<k+1
    finally show False by force
qed
```

moreover have rank-of $(x s!y)($ set $x s)<k+1$ if $a: y<k+1$ for y

```
proof -
    have rank-of (xs!y) (set xs) \leq card ((\lambdak.xs!k)'{k.k< length xs ^ xs ! k
< xs!y})
            unfolding rank-of-def
            by (intro card-mono subsetI, simp)
            (metis (no-types, lifting) imageI in-set-conv-nth mem-Collect-eq)
    also have ... \leqcard {k.k<length xs ^ xs !k<xs!y}
        by (rule card-image-le, simp)
    also have ... \leq card {k.k<y}
        by (intro card-mono subsetI, simp-all add:not-less)
            (metis sorted-iff-nth-mono s-xs linorder-not-less)
    also have ... = y by simp
    also have ...<k+1 using a by simp
    finally show rank-of (xs!y) (set xs) < k+1 by simp
qed
ultimately have rank-conv: \y. y< length xs \Longrightarrow rank-of (xs!y) (set xs)<
k+1 \longleftrightarrowy<k+1
    by blast
have }y\leqxs!k\mathrm{ if a:y least (k+1) (set xs) for y
proof -
    have y \in set xs using a least-subset by blast
    then obtain i where i-bound: i< length xs and y-def:y=xs!i using
in-set-conv-nth by metis
    hence rank-of (xs!i) (set xs)<k+1
        using a y-def i-bound by (simp add: least-def)
    hence }i<k+
            using rank-conv i-bound by blast
    hence i\leqk by linarith
    hence xs!i\leqxs!k
        using s-xs i-bound k-bound sorted-nth-mono by blast
    thus }y\leqxs!k\mathrm{ using }y\mathrm{ -def by simp
qed
moreover have xs ! k\in least (k+1) (set xs)
    using k-bound rank-conv by (simp add:least-def)
ultimately have Max (least (k+1) (set xs)) = xs ! k
    by (intro Max-eqI finite-subset[OF least-subset],auto)
hence nth-mset k A = Max (K-Smallest.least (Suc k) (set xs))
    by (simp add:nth-mset-def xs-def[symmetric])
also have ... = Max (least (k+1) (set-mset A))
    by (simp add:A-def)
finally show nth-mset k A = Max (least (k+1) (set-mset A)) by simp
have k+1 = card ((\lambdai.xs!i)'{0..k})
    by (subst card-image[OF inj-xs], simp)
```

```
    also have \(\ldots \leq \operatorname{card}(\) least \((k+1)(\) set \(x s))\)
        using rank-conv \(k\)-bound
    by (intro card-mono image-subsetI finite-subset[OF least-subset], simp-all add:least-def)
    finally have card \((\) least \((k+1)(\) set \(x s)) \geq k+1\) by simp
    moreover have card (least \((k+1)(\) set xs \()) \leq k+1\)
    by (subst card-least, simp, simp)
    ultimately have \(\operatorname{card}(\) least \((k+1)(\) set \(x s))=k+1\) by simp
    thus card \((\) least \((k+1)(\) set-mset \(A))=k+1\) by (simp add:A-def)
qed
end
```


4 Landau Symbols

```
theory Landau-Ext
    imports
        HOL-Library.Landau-Symbols
        HOL.Topological-Spaces
begin
```

This section contains results about Landau Symbols in addition to "HOLLibrary.Landau".
lemma landau-sum:
assumes eventually $(\lambda x . g 1 x \geq(0::$ real $)) F$
assumes eventually $(\lambda x . g 2 x \geq 0) F$
assumes $f 1 \in O[F](g 1)$
assumes $f 2 \in O[F](g 2)$
shows $(\lambda x . f 1 x+f 2 x) \in O[F](\lambda x . g 1 x+g 2 x)$
proof -
obtain $c 1$ where a1:c1>0 and b1: eventually $(\lambda x$.abs $(f 1 x) \leq c 1 * a b s(g 1$
x)) F
using $\operatorname{assms}(3)$ by (simp add:bigo-def, blast)
obtain c2 where a2: c2 >0 and b2: eventually $(\lambda x$ abs $(f 2 x) \leq c 2 * a b s(g 2$
x)) F
using assms(4) by (simp add:bigo-def, blast)
have eventually $(\lambda x$. abs $(f 1 x+f 2 x) \leq(\max c 1 c 2) * a b s(g 1 x+g 2 x)) F$
proof (rule eventually-mono $[O F$ eventually-conj $[O F$ b1 eventually-conj $[O F$ b2 eventually-conj $[$ OF $\operatorname{assms}(1,2)]]]])$
fix x
assume $a:|f 1 x| \leq c 1 *|g 1 x| \wedge|f 2 x| \leq c 2 *|g 2 x| \wedge 0 \leq g 1 x \wedge 0 \leq g 2 x$
have $\mid f 1 x+$ f2 $x|\leq|f 1 x|+|f 2 x|$ using abs-triangle-ineq by blast
also have $\ldots \leq c 1 *|g 1 x|+c 2 *|g 2 x|$ using a add-mono by blast
also have $\ldots \leq \max c 1 c 2 *|g 1 x|+\max c 1 c 2 *|g 2 x|$
by (intro add-mono mult-right-mono) auto
also have $\ldots=\max c 1 c 2 *(|g 1 x|+|g 2 x|)$
by (simp add:algebra-simps)
also have $\ldots \leq \max c 1 c 2 *(|g 1 x+g 2 x|)$
using a a1 a2 by (intro mult-left-mono) auto
finally show $|f 1 x+f 2 x| \leq \max c 1 c 2 *|g 1 x+g 2 x|$

```
        by (simp add:algebra-simps)
    qed
    hence 0<max c1 c2 ^( ( }\mp@subsup{F}{F}{}x\mathrm{ in F. |f1 x + f2 x | m max c1 c2 * |g1 x + g2 x |)
        using a1 a2 by linarith
    thus ?thesis
        by (simp add: bigo-def, blast)
qed
lemma landau-sum-1:
    assumes eventually ( }\lambdax.g1 x\geq(0::real))
    assumes eventually ( }\lambdax.g2 x\geq0)
    assumes }f\inO[F](g1
    shows }f\inO[F](\lambdax.g1x+g2 x
proof -
    have f}=(\lambdax.fx+0) by sim
    also have ... \inO[F](\lambdax.g1 x + g2 x)
        using assms zero-in-bigo by (intro landau-sum)
    finally show ?thesis by simp
qed
lemma landau-sum-2:
    assumes eventually (\lambdax.g1 x \geq (0::real))F
    assumes eventually ( }\lambdax.g2 x\geq0)
    assumes f\inO[F](g2)
    shows }f\inO[F](\lambdax.g1x+g2 x
proof -
    have f}=(\lambdax.0+fx) by sim
    also have ... \inO[F](\lambdax.g1 x + g2 x)
        using assms zero-in-bigo by (intro landau-sum)
    finally show ?thesis by simp
qed
lemma landau-ln-3:
    assumes eventually ( }\lambdax.(1::real)\leqfx)
    assumes f}\inO[F](g
    shows}(\lambdax.\operatorname{ln}(fx))\inO[F](g
proof -
    have 1\leqx\Longrightarrow | ln x }\leq|x|\mathrm{ for }x:: real
        using ln-bound by auto
    hence ( }\lambdax.\operatorname{ln}(fx))\inO[F](f
    by (intro landau-o.big-mono eventually-mono[OF assms(1)]) simp
    thus ?thesis
        using assms(2) landau-o.big-trans by blast
qed
lemma landau-ln-2:
    assumes }a>(1::\mathrm{ real )
    assumes eventually ( }\lambda\mathrm{ x. 1 <fx) F
    assumes eventually ( }\lambdax.a\leqgx)
```

```
    assumes f}\inO[F](g
    shows (\lambdax.ln}(fx))\inO[F](\lambdax.\operatorname{ln}(gx)
proof -
    obtain c where a:c>0 and b: eventually ( }\lambdax.abs(fx)\leqc*abs(gx))
    using assms(4) by (simp add:bigo-def, blast)
    define d}\mathrm{ where d=1 +(max 0(lnc)) / ln a
    have d:eventually (\lambdax.abs (ln (fx)) \leqd*abs (ln (gx))) F
    proof (rule eventually-mono[OF eventually-conj[OF b eventually-conj[OF assms(3,2)]]])
    fix }
    assume c:|fx|\leqc* |gx|^a\leqgx^1\leqfx
    have abs (ln (f x)) = ln (fx)
        by (subst abs-of-nonneg, rule ln-ge-zero, metis c, simp)
    also have ... \leqln (c*abs (gx))
        using c assms(1) mult-pos-pos[OF a] by auto
    also have ... \leqln c+ln}(abs(gx)
        using c assms(1)
        by (simp add: ln-mult[OF a])
    also have ... \leq (d-1)*\operatorname{ln}a+\operatorname{ln}(gx)
        using assms(1) c
        by (intro add-mono iffD2[OF ln-le-cancel-iff], simp-all add:d-def)
    also have ... \leq (d-1)* ln (gx) + ln (g x)
        using assms(1) c
        by (intro add-mono mult-left-mono iffD2[OF ln-le-cancel-iff], simp-all add:d-def)
    also have ... = d* ln (gx) by (simp add:algebra-simps)
    also have \ldots. =d*abs (ln (gx))
        using c assms(1) by auto
    finally show abs (ln (fx))\leqd*abs (ln (gx)) by simp
    qed
    hence }\mp@subsup{\forall}{F}{}x\mathrm{ in F. |ln (fx)| sd* |ln (gx)|
    by simp
    moreover have 0<d
        unfolding d-def using assms(1)
        by (intro add-pos-nonneg divide-nonneg-pos, auto)
    ultimately show ?thesis
        by (auto simp:bigo-def)
qed
lemma landau-real-nat:
    fixes f :: '}a=>\mathrm{ int
    assumes (\lambdax. of-int (fx)) \inO[F](g)
    shows}(\lambdax\mathrm{ . real (nat (fx))) }\inO[F](g
proof -
    obtain c where a:c>0 and b: eventually ( }\lambdax.abs(of-int (fx))\leqc*abs(
x)) F
    using assms(1) by (simp add:bigo-def, blast)
    have }\mp@subsup{\forall}{F}{}x\mathrm{ in F.real (nat (fx)) sc*|gx|
    by (rule eventually-mono[OF b], simp)
    thus ?thesis using a
    by (auto simp:bigo-def)
```


qed

lemma landau-ceil:

```
    assumes (\lambda-. 1) \inO[F\}\(g
```

 assumes \(f \in O\left[F^{\prime}\right](g)\)
 shows \((\lambda x\). real-of-int \(\lceil f x\rceil) \in O\left[F^{\prime}\right](g)\)
 proof -
have $(\lambda x$. real-of-int $\lceil f x\rceil) \in O\left[F^{\prime}\right](\lambda x .1+a b s(f x))$
by (intro landau-o.big-mono always-eventually allI, simp, linarith)
also have $(\lambda x .1+a b s(f x)) \in O\left[F^{\prime}\right](g)$
using assms(2) by (intro sum-in-bigo assms(1), auto)
finally show? ?thesis by simp
qed
lemma landau-rat-ceil:
assumes $(\lambda-.1) \in O\left[F^{\prime}\right](g)$
assumes $(\lambda x$. real-of-rat $(f x)) \in O\left[F^{\prime}\right](g)$
shows $(\lambda x$. real-of-int $\lceil f x\rceil) \in O\left[F^{\prime}\right](g)$
proof -
have a:|real-of-int $\lceil x\rceil \mid \leq 1+$ real-of-rat $|x|$ for $x::$ rat
proof (cases $x \geq 0$)
case True
then show ?thesis
by (simp, metis add.commute of-int-ceiling-le-add-one of-rat-ceiling)
next
case False
have real-of-rat $x-1 \leq$ real-of-rat x
by simp
also have $\ldots \leq$ real-of-int $\lceil x\rceil$
by (metis ceiling-correct of-rat-ceiling)
finally have real-of-rat $(x)-1 \leq$ real-of-int $\lceil x\rceil$ by simp
hence - real-of-int $\lceil x\rceil \leq 1+$ real-of-rat $(-x)$
by (simp add: of-rat-minus)
then show ?thesis using False by simp
qed
have $(\lambda x$. real-of-int $\lceil f x\rceil) \in O\left[F^{\dagger}\right](\lambda x .1+a b s($ real-of-rat $(f x)))$
using a
by (intro landau-o.big-mono always-eventually allI, simp)
also have $(\lambda x .1+$ abs (real-of-rat $(f x))) \in O\left[F^{\prime}\right](g)$
using assms
by (intro sum-in-bigo assms(1), subst landau-o.big.abs-in-iff, simp)
finally show? ?thesis by simp
qed
lemma landau-nat-ceil:
assumes $(\lambda-.1) \in O\left[F^{\dagger}\right](g)$
assumes $f \in O[F](g)$
shows $(\lambda x$. real $($ nat $\lceil f x\rceil)) \in O[F\rceil(g)$

```
    using assms
    by (intro landau-real-nat landau-ceil, auto)
lemma eventually-prod1':
    assumes B}\not=b\mathrm{ bot
    assumes ( }\mp@subsup{\forall}{F}{}x\mathrm{ in A. P x)
    shows (\forall\mp@subsup{F}{F}{}x\mathrm{ in }A\mp@subsup{\times}{F}{}B.P(fstx))
proof -
    have}(\mp@subsup{\forall}{F}{}x\mathrm{ in }A\mp@subsup{\times}{F}{}B.P(fst x))=(\mp@subsup{\forall}{F}{}(x,y)\mathrm{ in }A\mp@subsup{\times}{F}{}B.Px
        by (simp add:case-prod-beta')
    also have ... = (\mp@subsup{\forall}{F}{}x\mathrm{ in A. P x )}
        by (subst eventually-prod1[OF assms(1)], simp)
    finally show ?thesis using assms(2) by simp
qed
lemma eventually-prod2':
    assumes A\not=bot
    assumes ( }\mp@subsup{\forall}{F}{}x\mathrm{ in B. P x)
    shows}(\mp@subsup{\forall}{F}{}x\mathrm{ in }A\mp@subsup{\times}{F}{}B.P(sndx)
proof -
    have }(\mp@subsup{\forall}{F}{}x\mathrm{ in }A\mp@subsup{\times}{F}{}B.P(\operatorname{snd}x))=(\mp@subsup{\forall}{F}{}(x,y)\mathrm{ in }A\mp@subsup{\times}{F}{}B.Py
    by (simp add:case-prod-beta')
    also have ... = (\mp@subsup{\forall}{F}{}x}\mathrm{ x in B. P x)
    by (subst eventually-prod2[OF assms(1)], simp)
    finally show ?thesis using assms(2) by simp
qed
lemma sequentially-inf: }\mp@subsup{\forall}{F}{}x\mathrm{ in sequentially. n < real x
    by (meson eventually-at-top-linorder nat-ceiling-le-eq)
instantiation rat :: linorder-topology
begin
definition open-rat :: rat set => bool
    where open-rat = generate-topology (range }(\lambdaa.{..<a})\cup range (\lambdaa. {a<..}))
instance
    by standard (rule open-rat-def)
end
lemma inv-at-right-0-inf:
    \forall
proof -
    have a:c\leq1 / real-of-rat x if b: x { {0<..<1 / rat-of-int (max\lceilc\rceil 1)} for x
    proof -
        have c*real-of-rat x\leq real-of-int (max [c\rceil 1) * real-of-rat x
            using b by (intro mult-right-mono, linarith, auto)
            also have ... < real-of-int (max \lceilc\rceil 1) * real-of-rat (1/rat-of-int (max \lceilc\rceil
1))
```

```
        using b by (intro mult-strict-left-mono iffD2[OF of-rat-less], auto)
    also have ... \leq1
        by (simp add:of-rat-divide)
    finally have c* real-of-rat x\leq1 by simp
    moreover have 0< real-of-rat x
            using b by simp
    ultimately show ?thesis by (subst pos-le-divide-eq, auto)
qed
show ?thesis
    using a
    by (intro eventually-at-rightI[where b=1/rat-of-int ( }\operatorname{max}\lceilc\rceil1)], simp-all
qed
end
```


5 Probability Spaces

Some additional results about probability spaces in addition to "HOL-Probability".

```
theory Probability-Ext
    imports
        HOL-Probability.Stream-Space
        Concentration-Inequalities.Bienaymes-Identity
        Universal-Hash-Families.Carter-Wegman-Hash-Family
        Frequency-Moments-Preliminary-Results
begin
```

The following aliases are here to prevent possible merge-conflicts. The lemmas have been moved to Concentration-Inequalities.Bienaymes-Identity and/or Concentration-Inequalities.Concentration-Inequalities-Preliminary.
lemmas make-ext $=$ forall-Pi-to-PiE
lemmas PiE-reindex $=$ PiE-reindex
context prob-space
begin
lemmas indep-sets-reindex $=$ indep-sets-reindex
lemmas indep-vars-cong-AE = indep-vars-cong-AE
lemmas indep-vars-reindex $=$ indep-vars-reindex
lemmas variance-divide $=$ variance-divide
lemmas covariance-def $=$ covariance-def
lemmas real-prod-integrable $=$ cauchy-schwartz(1)
lemmas covariance-eq $=$ covariance-eq
lemmas covar-integrable $=$ covar-integrable
lemmas sum-square-int $=$ sum-square-int
lemmas var-sum-1 = bienaymes-identity
lemmas covar-self-eq $=$ covar-self-eq
lemmas covar-indep-eq-zero $=$ covar-indep-eq-zero

```
lemmas var-sum-2 = bienaymes-identity-2
lemmas var-sum-pairwise-indep = bienaymes-identity-pairwise-indep
lemmas indep-var-from-indep-vars = indep-var-from-indep-vars
lemmas var-sum-pairwise-indep-2 = bienaymes-identity-pairwise-indep-2
lemmas var-sum-all-indep = bienaymes-identity-full-indep
lemma pmf-mono:
    assumes M= measure-pmf p
    assumes \x. x }\P\Longrightarrowx\in\mathrm{ set-pmf p >x}\in
    shows prob P}\leq\mathrm{ prob Q
proof -
    have prob P = prob (P\cap (set-pmf p))
        by (rule measure-pmf-eq[OF assms(1)], blast)
    also have ... \leq prob Q
        using assms by (intro finite-measure.finite-measure-mono, auto)
    finally show ?thesis by simp
qed
lemma pmf-add:
    assumes M = measure-pmf p
    assumes }\x.x\inP\Longrightarrowx\in\operatorname{set-pmf p\Longrightarrowx\inQ\veex\inR
    shows prob P}\leq\mathrm{ prob }Q+\mathrm{ prob }
proof -
    have [simp]:events = UNIV by (subst assms(1), simp)
    have prob P}\leq\operatorname{prob}(Q\cupR
        using assms by (intro pmf-mono[OF assms(1)], blast)
    also have ... \leq prob Q + prob R
        by (rule measure-subadditive, auto)
    finally show ?thesis by simp
qed
lemma pmf-add-2:
    assumes M= measure-pmf p
    assumes prob {\omega. P\omega}}\leqr
    assumes prob {\omega.Q\omega}\leqr2
    shows prob {\omega. P\omega\veeQ\omega}\leqr1 +r\mathcal{N}(is??lhs\leq?rhs)
proof -
    have ?lhs \leq prob {\omega.P\omega}+\operatorname{prob}{\omega.Q\omega}
        by (intro pmf-add[OF assms(1)], auto)
    also have ... \leq?rhs
        by (intro add-mono assms(2-3))
    finally show ?thesis
        by simp
qed
end
end
```


6 Indexed Products of Probability Mass Functions

theory Product-PMF-Ext
imports
Probability-Ext
Universal-Hash-Families.Universal-Hash-Families-More-Product-PMF
begin

The following aliases are here to prevent possible merge-conflicts. The lemmas have been moved to Universal-Hash-Families.Universal-Hash-Families-More-Product-PMF.
abbreviation prod-pmf where prod-pmf \equiv Universal-Hash-Families-More-Product-PMF.prod-pmf abbreviation restrict- $d f l$ where restrict- $d f l \equiv$ Universal-Hash-Families-More-Product-PMF.restrict-dfl

```
lemmas pmf-prod-pmf = pmf-prod-pmf
lemmas PiE-defaut-undefined-eq = PiE-defaut-undefined-eq
lemmas set-prod-pmf = set-prod-pmf
lemmas prob-prod-pmf' = prob-prod-pmf'
lemmas prob-prod-pmf-slice = prob-prod-pmf-slice
lemmas pi-pmf-decompose = pi-pmf-decompose
lemmas restrict-dfl-iter = restrict-dfl-iter
lemmas indep-vars-restrict' = indep-vars-restrict'
lemmas indep-vars-restrict-intro' = indep-vars-restrict-intro'
lemmas integrable-Pi-pmf-slice = integrable-Pi-pmf-slice
lemmas expectation-Pi-pmf-slice = expectation-Pi-pmf-slice
lemmas expectation-prod-Pi-pmf = expectation-prod-Pi-pmf
lemmas variance-prod-pmf-slice = variance-prod-pmf-slice
lemmas Pi-pmf-bind-return = Pi-pmf-bind-return
```

end

7 Frequency Moment 0

```
theory Frequency-Moment-0
    imports
        Frequency-Moments-Preliminary-Results
        Median-Method.Median
        K-Smallest
        Universal-Hash-Families.Carter-Wegman-Hash-Family
        Frequency-Moments
        Landau-Ext
        Probability-Ext
        Product-PMF-Ext
        Universal-Hash-Families.Universal-Hash-Families-More-Finite-Fields
```

begin

This section contains a formalization of a new algorithm for the zero-th frequency moment inspired by ideas described in [2]. It is a KMV-type (k minimum value) algorithm with a rounding method and matches the space complexity of the best algorithm described in [2].

In addition to the Isabelle proof here, there is also an informal hand-written proof in Appendix A.

```
type-synonym 00 -state \(=\) nat \(\times\) nat \(\times\) nat \(\times\) nat \(\times(\) nat \(\Rightarrow\) nat list \() \times(\) nat \(\Rightarrow\)
float set)
definition hash where hash \(p=\) ring.hash (mod-ring \(p\) )
fun \(f 0\)-init :: rat \(\Rightarrow\) rat \(\Rightarrow\) nat \(\Rightarrow\) f0-state pmf where
    fo-init \(\delta\) \& \(n=\)
        do \{
            let \(s=n a t\lceil-18 * \ln (\) real-of-rat \(\varepsilon)\rceil\);
            let \(t=\) nat \(\left\lceil 80 /(\text { real-of-rat } \delta)^{2}\right\rceil\);
            let \(p=\) prime-above \((\max n 19)\);
            let \(r=\) nat \((4 *\lceil\log 2(1 /\) real-of-rat \(\delta)\rceil+23)\);
            \(h \leftarrow\) prod-pmf \(\{. .<s\}(\lambda\)-. pmf-of-set (bounded-degree-polynomials (mod-ring
p) 2));
            return-pmf \((s, t, p, r, h,(\lambda-\in\{0 . .<s\} .\{ \}))\)
        \}
```

fun $f 0$-update :: nat $\Rightarrow f 0$-state \Rightarrow f0-state $p m f$ where
f0-update $x(s, t, p, r, h$, sketch $)=$
return-pmf $(s, t, p, r, h, \lambda i \in\{. .<s\}$.
least t (insert (float-of (truncate-down r (hash px(hi)))) (sketch i)))
fun $f 0$-result :: f0-state \Rightarrow rat pmf where
$f 0$-result $(s, t, p, r, h$, sketch $)=$ return-pmf (median $s(\lambda i \in\{. .<s\}$.
(if card (sketch i) $<t$ then of-nat (card (sketch i)) else
rat-of-nat t* rat-of-nat p / rat-of-float (Max (sketch i)))
))
fun $f 0$-space-usage $::($ nat \times rat \times rat $) \Rightarrow$ real where
f0-space-usage $(n, \varepsilon, \delta)=($
let $s=$ nat $\lceil-18 * \ln ($ real-of-rat $\varepsilon)\rceil$ in
let $r=$ nat $(4 *\lceil\log 2(1 /$ real-of-rat $\delta)\rceil+23)$ in
let $t=$ nat $\left\lceil 80 /(\text { real-of-rat } \delta)^{2}\right\rceil$ in
$6+$
$2 * \log 2($ real $s+1)+$
$2 * \log 2($ real $t+1)+$
$2 * \log 2($ real $n+21)+$
$2 * \log 2($ real $r+1)+$
real $s *(5+2 * \log 2(21+$ real $n)+$
real $t *(13+4 * r+2 * \log 2(\log 2($ real $n+13)))))$
definition encode-f0-state :: f0-state \Rightarrow bool list option where

$$
\begin{gathered}
\text { encode-f0-state }= \\
N_{e} \bowtie_{e}(\lambda s \text {. } \\
N_{e} \times_{e}(\\
N_{e} \bowtie_{e}(\lambda p . \\
N_{e} \times_{e}(
\end{gathered}
$$

```
    ([0..<s] }\mp@subsup{->}{e}{}(\mp@subsup{P}{e}{
    ([0..<s] -> }\mp@subsup{e}{e}{(S}\mp@subsup{S}{e}{}\mp@subsup{F}{e}{\prime})))))
lemma inj-on encode-f0-state (dom encode-f0-state)
proof -
    have is-encoding encode-f0-state
        unfolding encode-f0-state-def
        by (intro dependent-encoding exp-golomb-encoding poly-encoding fun-encoding
set-encoding float-encoding)
    thus ?thesis by (rule encoding-imp-inj)
qed
context
    fixes \varepsilon \delta :: rat
    fixes n :: nat
    fixes as :: nat list
    fixes result
    assumes }\varepsilon\mathrm{ -range: }\varepsilon\in{0<..<1
    assumes \delta-range: }\delta\in{0<..<1
    assumes as-range: set as \subseteq{..<n}
    defines result }\equiv\mathrm{ fold ( }\lambdaa\mathrm{ state. state >> f0-update a) as (f0-init }\delta \varepsilon n)>
f0-result
begin
private definition t where t=nat \lceil80 / (real-of-rat \delta)}\mp@subsup{)}{}{2}
private lemma t-gt-0:t>0 using \delta-range by (simp add:t-def)
private definition s where s=nat \lceil-(18*\operatorname{ln}(\mathrm{ real-of-rat }\varepsilon))\rceil
private lemma s-gt-0:s>0 using \varepsilon-range by (simp add:s-def)
private definition p}\mathrm{ where p=prime-above (max n 19)
private lemma p-prime:Factorial-Ring.prime p
    using p-def prime-above-prime by presburger
private lemma p-ge-18: p\geq18
proof -
    have p\geq19
        by (metis p-def prime-above-lower-bound max.bounded-iff)
    thus ?thesis by simp
qed
private lemma p-gt-0: p>0 using p-ge-18 by simp
private lemma p-gt-1: p>1 using p-ge-18 by simp
private lemma n-le-p: n \leq p
proof -
    have n\leqmax n 19 by simp
    also have ... }\leq
```

unfolding p-def by (rule prime-above-lower-bound) finally show ?thesis by simp qed
private lemma p-le-n: $p \leq 2 * n+40$
proof -
have $p \leq 2 *(\max n 19)+2$
by (subst p-def, rule prime-above-upper-bound)
also have $\ldots \leq 2 * n+40$
by (cases $n \geq 19$, auto)
finally show? ?thesis by simp
qed
private lemma as-lt-p: $\bigwedge x . x \in$ set $a s \Longrightarrow x<p$
using as-range atLeastLessThan-iff
by (intro order-less-le-trans $[O F-n$-le-p]) blast
private lemma as-subset-p: set as $\subseteq\{. .<p\}$
using as-lt-p by (simp add: subset-iff)
private definition r where $r=$ nat $(4 *\lceil\log 2(1 /$ real-of-rat $\delta)\rceil+23)$
private lemma r-bound: $4 * \log 2(1 /$ real-of-rat $\delta)+23 \leq r$
proof -
have $0 \leq \log 2(1 /$ real-of-rat $\delta)$ using δ-range by simp
hence $0 \leq\lceil\log 2(1 /$ real-of-rat $\delta)\rceil$ by simp
hence $0 \leq 4 *\lceil\log 2(1 /$ real-of-rat $\delta)\rceil+23$
by (intro add-nonneg-nonneg mult-nonneg-nonneg, auto)
thus ?thesis by (simp add:r-def)
qed
private lemma r-ge-23: $r \geq 23$
proof -
have $(23::$ real $)=0+23$ by simp
also have $\ldots \leq 4 * \log 2(1 /$ real-of-rat $\delta)+23$
using δ-range by (intro add-mono mult-nonneg-nonneg, auto)
also have $\ldots \leq r$ using r-bound by simp
finally show $23 \leq r$ by simp
qed
private lemma two-pow-r-le-1: $0<1$ - 2 powr - real r
proof -
have a : 2 powr $(0::$ real $)=1$
by simp
show ?thesis using r-ge-23
by (simp, subst a [symmetric], intro powr-less-mono, auto)
qed
interpretation carter-wegman-hash-family mod-ring p 2

```
rewrites ring.hash (mod-ring p)= Frequency-Moment-0.hash p
using carter-wegman-hash-familyI[OF mod-ring-is-field mod-ring-finite]
using hash-def p-prime by auto
private definition tr-hash where tr-hash x \omega = truncate-down r (hash x \omega)
private definition sketch-rv where
    sketch-rv \omega = least t ((\lambdax. float-of (tr-hash x \omega))'set as)
private definition estimate
    where estimate S = (if card S<t then of-nat (card S) else of-nat t * of-nat p
/ rat-of-float (Max S))
private definition sketch-rv' where sketch-rv' \omega = least t ((\lambdax.tr-hash x \omega)'
set as)
private definition estimate' where estimate' S = (if card S<t then real (card
S) else real t * real p / Max S)
private definition }\mp@subsup{\Omega}{0}{}\mathrm{ where }\mp@subsup{\Omega}{0}{}=\operatorname{prod-pmf {..<s} (\lambda-. pmf-of-set space)
private lemma f0-alg-sketch:
    defines sketch \equiv fold ( }\lambda\mathrm{ a state. state >> f0-update a) as (f0-init }\delta\mathrm{ & n)
    shows sketch = map-pmf (\lambdax. (s,t,p,r, x, \lambdai 
    unfolding sketch-rv-def
proof (subst sketch-def, induction as rule:rev-induct)
    case Nil
    then show ?case
        by (simp add:s-def p-def[symmetric] map-pmf-def t-def r-def Let-def least-def
restrict-def space-def \Omega}\mp@subsup{\Omega}{0}{}-def
next
    case (snoc x xs)
    let ?sketch = \lambda\omega xs. least t ((\lambdaa.float-of (tr-hash a \omega))' set xs)
    have fold ( }\lambdaa\mathrm{ state. state >> f0-update a) (xs @ [x]) (f0-init }\delta \varepsilon n)
        (map-pmf (\lambda\omega. (s,t,p,r,\omega,\lambdai\in{..<s}. ?sketch (\omegai) xs)) \Omega0)>> f0-update
x
        by (simp add: restrict-def snoc del:f0-init.simps)
```



```
xs))
    by (simp add:map-pmf-def bind-assoc-pmf bind-return-pmf del:f0-update.simps)
    also have ... = map-pmf (\lambda\omega. (s,t,p,r,\omega,\lambdai\in{..<s}. ?sketch (\omegai) (xs@[x])))
\Omega
    by (simp add:least-insert map-pmf-def tr-hash-def cong:restrict-cong)
    finally show ?case by blast
qed
private lemma card-nat-in-ball:
    fixes }x:: na
    fixes q :: real
    assumes q\geq0
```

defines $A \equiv\{k$. abs $($ real $x-$ real $k) \leq q \wedge k \neq x\}$
shows real $($ card $A) \leq 2 * q$ and finite A
proof -
have a : of-nat $x \in\{\lceil$ real $x-q\rceil . .\lfloor$ real $x+q\rfloor\}$
using assms
by (simp add: ceiling-le-iff)
have $\operatorname{card} A=\operatorname{card}($ int ' A)
by (rule card-image[symmetric], simp)
also have $\ldots \leq \operatorname{card}(\{\lceil$ real $x-q\rceil . .\lfloor$ real $x+q\rfloor\}-\{$ of-nat $x\})$
by (intro card-mono image-subsetI, simp-all add:A-def abs-le-iff, linarith)
also have $\ldots=$ card $\{\lceil$ real $x-q\rceil . .\lfloor$ real $x+q\rfloor\}-1$
by (rule card-Diff-singleton, rule a)
also have $\ldots=\operatorname{int}($ card $\{\lceil$ real $x-q\rceil . .\lfloor$ real $x+q\rfloor\})-\operatorname{int} 1$
by (intro of-nat-diff)
(metis a card-0-eq empty-iff finite-atLeastAtMost-int less-one linorder-not-le)
also have $\ldots \leq\lfloor q+$ real $x\rfloor+1-\lceil$ real $x-q\rceil-1$
using assms by (simp, linarith)
also have $\ldots \leq 2 * q$
by linarith
finally show card $A \leq 2 * q$
by simp
have $A \subseteq\{. . x+n a t\lceil q\rceil\}$
by (rule subsetI, simp add:A-def abs-le-iff, linarith)
thus finite A
by (rule finite-subset, simp)
qed
private lemma prob-degree-lt-1:
prob $\{\omega$. degree $\omega<1\} \leq 1 /$ real p
proof -
have space $\cap\{\omega$. length $\omega \leq$ Suc 0$\}=$ bounded-degree-polynomials (mod-ring p) 1
by (auto simp:set-eq-iff bounded-degree-polynomials-def space-def)
moreover have field-size $=p$ by (simp add:mod-ring-def)
hence real (card (bounded-degree-polynomials (mod-ring p) (Suc 0))) / real (card space $)=1 /$ real p
by (simp add:space-def bounded-degree-polynomials-card power2-eq-square)
ultimately show ?thesis
by (simp add:M-def measure-pmf-of-set)
qed
private lemma collision-prob:
assumes $c \geq 1$
shows prob $\{\omega . \exists x \in$ set as. $\exists y \in$ set as. $x \neq y \wedge \operatorname{tr-hash} x \omega \leq c \wedge$ tr-hash x $\omega=$ tr-hash y $\omega\} \leq$
$(5 / 2) *(\text { real }(\operatorname{card}(\text { set as })))^{2} * c^{2} * 2$ powr $-($ real $r) /(\text { real } p)^{2}+1 /$ real p (is $\operatorname{prob}\{\omega$. ?l $\omega\} \leq$? $r 1+$? r) $)$

```
proof -
    define \varrho :: real where }\varrho=9/
    have rho-c-ge-0:\varrho*c\geq0 unfolding \varrho-def using assms by simp
    have c-ge-0: c\geq0 using assms by simp
    have degree }\omega\geq1\Longrightarrow\omega\in\mathrm{ space }\Longrightarrow\mathrm{ degree }\omega=1\mathrm{ for }
        by (simp add:bounded-degree-polynomials-def space-def)
        (metis One-nat-def Suc-1 le-less-Suc-eq less-imp-diff-less list.size(3) pos2)
    hence a: \\omega x y. x<p\Longrightarrowy<p\Longrightarrow x = y\Longrightarrow degree }\omega\geq1\Longrightarrow\omega\in\mathrm{ space
\Longrightarrow ~ h a s h ~ x ~ \omega ~ = ~ h a s h ~ y ~ \omega ~
    using inj-onD[OF inj-if-degree-1] mod-ring-carr by blast
    have b: prob {\omega. degree }\omega\geq1\wedge\mathrm{ tr-hash x }\omega\leqc\wedge\mathrm{ tr-hash x }\omega=\mathrm{ tr-hash y }\omega
\leq5* c
    if b-assms: }x\in\mathrm{ set as }y\in\mathrm{ set as }x<y\mathrm{ for x y
    proof -
    have c: real }u\leq\varrho*c\wedge|\mathrm{ real }u-\mathrm{ real v| 
            if c-assms:truncate-down r (real u)\leqc truncate-down r (real u)=trun-
cate-down r (real v) for uv
    proof -
        have 9*2 powr - real r\leq9*2 powr (- real 23)
            using r-ge-23 by (intro mult-left-mono powr-mono, auto)
        also have ... }\leq1\mathrm{ by simp
        finally have 9*2 powr - real r\leq1 by simp
        hence 1\leq\varrho*(1-2 powr (- real r))
            by (simp add:\varrho-def)
        hence d:(c*1) / (1 - 2 powr (-real r)) \leqc*\varrho
            using assms two-pow-r-le-1 by (simp add: pos-divide-le-eq)
        have \x.truncate-down r (real }x)\leqc\Longrightarrow\mathrm{ real }x*(1-2 powr - real r)\leq
c* 1
            using truncate-down-pos[OF of-nat-0-le-iff] order-trans by (simp, blast)
            hence \x. truncate-down r (real x) \leqc\Longrightarrow real x\leqc*\varrho
            using two-pow-r-le-1 by (intro order-trans[OF - d], simp add: pos-le-divide-eq)
            hence e: real u\leqc*@ real v\leqc*\varrho
            using c-assms by auto
            have |real u - real v| \leq(max |real u| |real v|) * 2 powr (-real r)
                using c-assms by (intro truncate-down-eq, simp)
```

```
also have \(\ldots \leq(c * \varrho) * 2\) powr \((-\) real \(r)\)
```

 using \(e\) by (intro mult-right-mono, auto)
 finally have \(\mid\) real \(u-\) real \(v \mid \leq \varrho * c * 2\) powr (-real \(r\))
 by (simp add:algebra-simps)
 thus ?thesis using \(e\) by (simp add:algebra-simps)
 qed
have $\operatorname{prob}\{\omega$. degree $\omega \geq 1 \wedge$ tr-hash $x \omega \leq c \wedge$ tr-hash $x \omega=\operatorname{tr}$-hash y $\omega\} \leq$ prob $(\bigcup i \in\{(u, v) \in\{. .<p\} \times\{. .<p\} . u \neq v \wedge$ truncate-down $r u \leq c \wedge$ truncate-down $r u=$ truncate-down $r v\}$.
$\{\omega$. hash $x \omega=$ fst $i \wedge$ hash $y \omega=$ snd $i\})$
using a by (intro pmf-mono[OF M-def], simp add:tr-hash-def)
(metis hash-range mod-ring-carr b-assms as-subset-p lessThan-iff nat-neq-iff subset-eq)
also have $\ldots \leq\left(\sum i \in\{(u, v) \in\{. .<p\} \times\{. .<p\} . u \neq v \wedge\right.$
truncate-down $r u \leq c \wedge$ truncate-down $r u=$ truncate-down $r v\}$.
prob $\{\omega$. hash $x \omega=$ fst $i \wedge$ hash y $\omega=$ snd $i\}$)
by (intro measure-UNION-le finite-cartesian-product finite-subset[where $B=\{0 . .<p\} \times\{0 . .<p\}])$
(auto simp add:M-def)
also have $\ldots \leq\left(\sum i \in\{(u, v) \in\{. .<p\} \times\{. .<p\} . u \neq v \wedge\right.$
truncate-down $r u \leq c \wedge$ truncate-down $r u=$ truncate-down $r v\}$.
prob $\{\omega$. $(\forall u \in\{x, y\}$. hash $u \omega=($ if $u=x$ then $($ fst $i)$ else (snd $i)))\})$
by (intro sum-mono pmf-mono[OF M-def]) force
also have $\ldots \leq\left(\sum i \in\{(u, v) \in\{. .<p\} \times\{. .<p\} . u \neq v \wedge\right.$
truncate-down $r u \leq c \wedge$ truncate-down $r u=$ truncate-down $r v\}$. $1 /($ real
$p)^{2}$)
using assms as-subset-p b-assms
by (intro sum-mono, subst hash-prob) (auto simp add: mod-ring-def power2-eq-square)
also have $\ldots=1 /(\text { real } p)^{2} *$
card $\{(u, v) \in\{0 . .<p\} \times\{0 . .<p\} . u \neq v \wedge$ truncate-down $r u \leq c \wedge$ trun-
cate-down $r u=$ truncate-down $r v\}$
by simp
also have $\ldots \leq 1 /(\text { real } p)^{2} *$
card $\{(u, v) \in\{. .<p\} \times\{. .<p\} . u \neq v \wedge$ real $u \leq \varrho * c \wedge$ abs (real $u-r e a l$ $v) \leq \varrho * c * 2$ powr $(-$ real $r)\}$
using c
by (intro mult-mono of-nat-mono card-mono finite-cartesian-product finite-subset[where $B=\{. .<p\} \times\{. .<p\}])$
also have $\ldots \leq 1 /(\text { real } p)^{2} * \operatorname{card}\left(\bigcup u^{\prime} \in\{u . u<p \wedge\right.$ real $u \leq \varrho * c\}$.
$\left\{(u:: n a t, v:: n a t) . u=u^{\prime} \wedge\right.$ abs $($ real $u-$ real $v) \leq \varrho * c * 2 \operatorname{powr}(-r e a l r)$ $\left.\left.\wedge v<p \wedge v \neq u^{\prime}\right\}\right)$
by (intro mult-left-mono of-nat-mono card-mono finite-cartesian-product fi-nite-subset $[$ where $B=\{. .<p\} \times\{. .<p\}])$
auto
also have $\ldots \leq 1 /(\text { real } p)^{2} *\left(\sum u^{\prime} \in\{u . u<p \wedge\right.$ real $u \leq \varrho * c\}$.
card $\left\{(u, v) . u=u^{\prime} \wedge\right.$ abs $($ real $u-$ real $v) \leq \varrho * c * 2$ powr $(-$ real $r) \wedge v$ $\left.\left.<p \wedge v \neq u^{\prime}\right\}\right)$
by (intro mult-left-mono of-nat-mono card-UN-le, auto)
also have $\ldots=1 /(\text { real } p)^{2} *\left(\sum u^{\prime} \in\{u . u<p \wedge\right.$ real $u \leq \varrho * c\}$.
card $\left(\left(\lambda x .\left(u^{\prime}, x\right)\right) \cdot\left\{v\right.\right.$. abs $\left(\right.$ real $u^{\prime}-$ real $\left.v\right) \leq \varrho * c * 2$ powr $(-$ real $r) \wedge v$ $\left.\left.\left.<p \wedge v \neq u^{\prime}\right\}\right)\right)$
by (intro arg-cong2[where $f=(*)]$ arg-cong $[$ where $f=$ real $]$ sum.cong arg-cong $[$ where $f=c a r d]$) (auto simp add:set-eq-iff)
also have $\ldots \leq 1 /(\text { real } p)^{2} *\left(\sum u^{\prime} \in\{u . u<p \wedge\right.$ real $u \leq \varrho * c\}$.
card $\left\{v\right.$.abs $\left(\right.$ real $u^{\prime}-$ real $\left.v\right) \leq \varrho * c * 2 \operatorname{powr}(-$ real $\left.\left.r) \wedge v<p \wedge v \neq u^{\prime}\right\}\right)$
by (intro mult-left-mono of-nat-mono sum-mono card-image-le, auto)
also have $\ldots \leq 1 /(\text { real } p)^{2} *\left(\sum u^{\prime} \in\{u . u<p \wedge\right.$ real $u \leq \varrho * c\}$.
card $\left\{v\right.$. abs $\left(\right.$ real $u^{\prime}-$ real $\left.v\right) \leq \varrho * c * 2$ powr $(-$ real $\left.\left.r) \wedge v \neq u^{\prime}\right\}\right)$
by (intro mult-left-mono sum-mono of-nat-mono card-mono card-nat-in-ball subsetI) auto
also have $\ldots \leq 1 /(\text { real } p)^{2} *\left(\sum u^{\prime} \in\{u . u<p \wedge\right.$ real $u \leq \varrho * c\}$.
real $\left(\right.$ card $\left\{v\right.$. abs $\left(\right.$ real $u^{\prime}-$ real $\left.v\right) \leq \varrho * c * 2 \operatorname{powr}(-$ real $\left.\left.\left.r) \wedge v \neq u^{\prime}\right\}\right)\right)$
by simp
also have $\ldots \leq 1 /(\text { real } p)^{2} *\left(\sum u^{\prime} \in\{u . u<p \wedge\right.$ real $u \leq \varrho * c\}$. $2 *(\varrho * c$ * $2 \operatorname{powr}(-$ real $r))$)
by (intro mult-left-mono sum-mono card-nat-in-ball(1), auto)
also have $\ldots=1 /(\text { real } p)^{2} *($ real $($ card $\{u . u<p \wedge$ real $u \leq \varrho * c\}) *(2 *$ $(\varrho * c * 2 \operatorname{powr}(-$ real $r))))$
by simp
also have $\ldots \leq 1 /(\text { real } p)^{2} *($ real $(\operatorname{card}\{u . u \leq n a t(\lfloor\varrho * c\rfloor)\}) *(2 *(\varrho *$ $c * 2$ powr $(-$ real $r)))$)
using rho-c-ge-0 le-nat-floor
by (intro mult-left-mono mult-right-mono of-nat-mono card-mono subsetI) auto
also have $\ldots \leq 1 /(\text { real } p)^{2} *((1+\varrho * c) *(2 *(\varrho * c * 2$ powr $(-$ real $r))))$ using rho-c-ge-0 by (intro mult-left-mono mult-right-mono, auto)
also have $\ldots \leq 1 /(\text { real } p)^{2} *(((1+\varrho) * c) *(2 *(\varrho * c * 2 \operatorname{powr}(-$ real $r))))$
using assms by (intro mult-mono, auto simp add:distrib-left distrib-right $\varrho-d e f)$

```
    also have ... =(\varrho*(2 + \varrho* 2)) * c' * 2 powr (-real r) / (real p)}\mp@subsup{)}{}{2
        by (simp add:ac-simps power2-eq-square)
    also have ... \leq5* c'* 2 powr (-real r)/(real p)2
        by (intro divide-right-mono mult-right-mono) (auto simp add:\varrho-def)
    finally show ?thesis by simp
qed
    have prob {\omega. ?l }\omega\wedge\mathrm{ degree }\omega\geq1}
    prob (\bigcup i\in{(x,y)\in(set as) }\times\mathrm{ (set as). x<y}. { |. degree }\omega\geq1\wedgetr-hash
(fst i) \omega}\leqc
    tr-hash (fst i) \omega = tr-hash (snd i) \omega})
    by (rule pmf-mono[OF M-def], simp, metis linorder-neqE-nat)
    also have ... \leq(\sumi\in{(x,y)\in(set as) }\times\mathrm{ (set as). x < y}. prob
    {\omega. degree }\omega\geq1\wedgetr-hash (fst i)\omega\leqc^tr-hash (fst i) \omega=tr-hash (snd i
\omega})
    unfolding M-def
    by (intro measure-UNION-le finite-cartesian-product finite-subset[where B=(set
as) }\times(\mathrm{ set as)])
        auto
```

also have $\ldots \leq\left(\sum i \in\{(x, y) \in(\right.$ set as $) \times($ set as $) . x<y\} .5 * c^{2} * 2$ powr $(-$ real $\left.r) /(\text { real } p)^{2}\right)$
using b by (intro sum-mono, simp add:case-prod-beta)
also have $\ldots=\left((5 / \mathcal{Z}) * c^{2} * 2 \operatorname{powr}(-\right.$ real $\left.r) /(\text { real } p)^{2}\right) *(2 *$ card $\{(x, y)$ $\in($ set as $) \times($ set as $) . x<y\})$
by simp
also have $\ldots=\left((5 / 2) * c^{2} * 2 \operatorname{powr}(-\right.$ real $\left.r) /(\text { real p })^{2}\right) *($ card $($ set as $) *$ (card (set as) -1$)$)
by (subst card-ordered-pairs, auto)
also have $\ldots \leq\left((5 / 2) * c^{2} * 2\right.$ powr $(-$ real $\left.r) /(\text { real } p)^{2}\right) *($ real $($ card $($ set as)) $)^{2}$
by (intro mult-left-mono) (auto simp add:power2-eq-square mult-left-mono)
also have $\ldots=(5 / 2) *(\text { real }(\text { card }(\text { set as })))^{2} * c^{2} * 2$ powr $(-$ real r) $) /(\text { real p })^{2}$ by (simp add:algebra-simps)
finally have $f: \operatorname{prob}\{\omega$. ?l $\omega \wedge$ degree $\omega \geq 1\} \leq$?r1 by simp
have $\operatorname{prob}\{\omega$. ?l $\omega\} \leq \operatorname{prob}\{\omega$. ?l $\omega \wedge$ degree $\omega \geq 1\}+\operatorname{prob}\{\omega$. degree $\omega<1\}$ by (rule pmf-add[OF M-def], auto)

```
    also have ... \leq ? r1 + ?r2
    by (intro add-mono f prob-degree-lt-1)
    finally show ?thesis by simp
qed
private lemma of-bool-square: (of-bool x )}\mp@subsup{)}{}{2}=((\mathrm{ of-bool x)::real)
    by (cases x, auto)
private definition Q where Q y \omega = card {x\in set as. int (hash x \omega)<y}
private definition m where m=card (set as)
private lemma
    assumes a\geq0
    assumes a\leqint p
    shows exp-Q: expectation ( }\lambda\omega\mathrm{ . real (Q a }\omega\mathrm{ )) = real m*(of-int a) / p
    and var-Q: variance (\lambda\omega. real (Q a \omega)) \leq real m * (of-int a) / p
proof -
    have exp-single: expectation ( }\lambda\omega\mathrm{ . of-bool (int (hash x }\omega\mathrm{ )<a)) = real-of-int a
/real p
    if a:x\in set as for x
    proof -
        have x-le-p: x < p using a as-lt-p by simp
    have expectation ( }\lambda\omega\mathrm{ . of-bool (int (hash x }\omega\mathrm{ ) <a)) = expectation (indicat-real
{\omega. int (Frequency-Moment-0.hash p x \omega)<a})
```



```
    also have ... = prob {\omega. hash x }\omega\in{k.\mathrm{ int k<a}}
                by (simp add:M-def)
    also have ... = \operatorname{card}({k. int k<a}\cap{..<p}) / real p
                by (subst prob-range, simp-all add: x-le-p mod-ring-def)
    also have ... = card {..<nat a} / real p
                using assms by (intro arg-cong2[where f=(/)] arg-cong[where f=real]
arg-cong[where f=card])
            (auto simp add:set-eq-iff)
    also have ... = real-of-int a/real p
        using assms by simp
    finally show expectation (\lambda\omega. of-bool (int (hash x \omega)<a)) = real-of-int a /real
p
        by simp
    qed
have expectation \((\lambda \omega\). real \((Q a \omega))=\) expectation \(\left(\lambda \omega\right.\). \(\left(\sum x \in\right.\) set as. of-bool (int (hash \(x \omega)<a)\) ))
by (simp add:Q-def Int-def)
also have \(\ldots=\left(\sum x \in\right.\) set as. expectation \((\lambda \omega\). of-bool \((\) int \((\) hash \(\left.x \omega)<a))\right)\)
by (rule Bochner-Integration.integral-sum, simp)
also have \(\ldots=\left(\sum x \in\right.\) set as. a \(/\) real \(\left.p\right)\)
by (rule sum.cong, simp, subst exp-single, simp, simp)
also have \(\ldots=\) real \(m *\) real-of-int a / real \(p\)
```

> by $(\operatorname{simp}$ add:m-def)
> finally show expectation $(\lambda \omega$. real $(Q a \omega))=$ real $m *$ real-of-int a $/ p$ by simp
have indep: $J \subseteq$ set as \Longrightarrow card $J=2 \Longrightarrow$ indep-vars $(\lambda$-. borel) ($\lambda i x$. of-bool (int (hash ix)<a)) J for J
using as-subset-p mod-ring-carr
by (intro indep-vars-compose2[where $Y=\lambda i x$. of-bool (int $x<a$) and $M^{\prime}=\lambda$-. discrete]
k-wise-indep-vars-subset[OF k-wise-indep] finite-subset $[O F$ - finite-set $]$) auto
have $r v: \bigwedge x . x \in$ set as \Longrightarrow random-variable borel ($\lambda \omega$. of-bool (int (hash $x \omega$) $<a)$)
by (simp add:M-def)
have variance $(\lambda \omega$. real $(Q a \omega))=$ variance $\left(\lambda \omega .\left(\sum x \in\right.\right.$ set as. of-bool (int $($ hash $x \omega)<a)$)
by (simp add:Q-def Int-def)
also have $\ldots=\left(\sum x \in\right.$ set as. variance $(\lambda \omega$. of-bool (int $($ hash $\left.\left.x \omega)<a)\right)\right)$
by (intro bienaymes-identity-pairwise-indep-2 indep rv) auto
also have $\ldots \leq\left(\sum x \in\right.$ set as. a / real $\left.p\right)$
by (rule sum-mono, simp add: variance-eq of-bool-square, simp add: exp-single)
also have $\ldots=$ real $m *$ real-of-int a /real p
by (simp add:m-def)
finally show variance $(\lambda \omega$. real $(Q a \omega)) \leq$ real $m *$ real-of-int a / p
by simp
qed
private lemma t-bound: $t \leq 81 /(\text { real-of-rat } \delta)^{2}$
proof -
have $t \leq 80 /(\text { real-of-rat } \delta)^{2}+1$ using t-def t-gt- 0 by linarith
also have $\ldots \leq 80 /(\text { real-of-rat } \delta)^{2}+1 /(\text { real-of-rat } \delta)^{2}$
using δ-range by (intro add-mono, simp, simp add:power-le-one)
also have $\ldots=81 /(\text { real-of-rat } \delta)^{2}$ by simp
finally show ?thesis by simp
qed
private lemma t - r-bound:
$18 * 40 *(\text { real } t)^{2} * 2$ powr $(-$ real $r) \leq 1$
proof -
have 720 $*(\text { real })^{2} * 2$ powr $\left(-\right.$ real r) $5720 *\left(81 /(\text { real-of-rat } \delta)^{2}\right)^{2} * 2$ powr $(-4 * \log 2(1 /$ real-of-rat $\delta)-23)$
using r-bound t-bound by (intro mult-left-mono mult-mono power-mono powr-mono, auto)
also have $\ldots \leq 720 *\left(81 /(\text { real-of-rat } \delta)^{2}\right)^{2} *(2 \operatorname{powr}(-4 * \log 2(1 /$ real-of-rat $\delta)$) * 2 powr (-23))
using δ-range by (intro mult-left-mono mult-mono power-mono add-mono)
(simp-all add:power-le-one powr-diff)
also have $\ldots=720 *\left(81^{2} /(\text { real-of-rat } \delta)^{\wedge} 4\right) *(2$ powr $(\log 2(($ real-of-rat 8) ^4)) * 2 powr (-23))
using δ-range by (intro arg-cong2 $[$ where $f=(*)]$)
(simp-all add:power2-eq-square power4-eq-xxxx log-divide log-powr[symmetric])
also have $\ldots=720 * 81^{2} * 2$ powr (-23) using δ-range by simp
also have $\ldots \leq 1$ by simp
finally show ?thesis by simp
qed
private lemma m-eq-F-0: real $m=o f$-rat ($F 0$ as)
by (simp add:m-def F-def)
private lemma estimate'-bounds:
prob $\left\{\omega\right.$. of-rat $\delta *$ real-of-rat $(F 0$ as $)<\mid$ estimate $^{\prime}\left(\right.$ sketch-rv $\left.^{\prime} \omega\right)-$ of-rat (F 0 $a s) \mid\} \leq 1 / 3$
proof (cases card (set as) $\geq t$)
case True
define δ^{\prime} where $\delta^{\prime}=3 *$ real-of-rat $\delta / 4$
define u where $u=\left\lceil\right.$ real $\left.t * p /\left(m *\left(1+\delta^{\prime}\right)\right)\right\rceil$
define v where $v=\left\lfloor\right.$ real $\left.t * p /\left(m *\left(1-\delta^{\prime}\right)\right)\right\rfloor$
define has-no-collision where
has-no-collision $=(\lambda \omega . \forall x \in$ set as. $\forall y \in$ set as. (tr-hash $x \omega=$ tr-hash y ω $\longrightarrow x=y) \vee$ tr-hash $x \omega>v$)
have $2 \operatorname{powr}(-$ real $r) \leq 2 \operatorname{powr}(-(4 * \log 2(1 /$ real-of-rat $\delta)+23))$
using r-bound by (intro powr-mono, linarith, simp)
also have $\ldots=2$ powr $(-4 * \log 2(1 /$ real-of-rat $\delta)-23)$
by (rule arg-cong2 [where $f=($ powr $)$], auto simp add:algebra-simps)
also have $\ldots \leq 2$ powr $(-1 * \log 2(1 /$ real-of-rat $\delta)-4)$
using δ-range by (intro powr-mono diff-mono, auto)
also have $\ldots=2 \operatorname{powr}(-1 * \log 2(1 /$ real-of-rat $\delta)) / 16$
by (simp add: powr-diff)
also have $\ldots=$ real-of-rat $\delta / 16$
using δ-range by (simp add:log-divide)
also have $\ldots<$ real-of-rat $\delta / 8$
using δ-range by (subst pos-divide-less-eq, auto)
finally have r-le- δ : 2 powr $(-$ real $r)<$ real-of-rat $\delta / 8$
by simp
have δ^{\prime}-gt- $0: \delta^{\prime}>0$ using δ-range by (simp add: δ^{\prime}-def)
have $\delta^{\prime}<3 / 4$ using δ-range by (simp add: δ^{\prime}-def) +
also have $\ldots<1$ by simp
finally have $\delta^{\prime}-l t-1: \delta^{\prime}<1$ by simp
have $t \leq 81 /(\text { real-of-rat } \delta)^{2}$
using t-bound by simp
also have $\ldots=(81 * 9 / 16) /\left(\delta^{\prime}\right)^{2}$
by (simp add: δ^{\prime}-def power2-eq-square)
also have $\ldots \leq 46 / \delta^{\prime 2}$
by (intro divide-right-mono, simp, simp)
finally have $t-l e-\delta^{\prime}: t \leq 46 / \delta^{\prime 2}$ by simp
have $80 \leq(\text { real-of-rat } \delta)^{2} *\left(80 /(\text { real-of-rat } \delta)^{2}\right)$ using δ-range by simp
also have $\ldots \leq(\text { real-of-rat } \delta)^{2} * t$
by (intro mult-left-mono, simp add:t-def of-nat-ceiling, simp)
finally have $80 \leq(\text { real-of-rat } \delta)^{2} * t$ by simp
hence t-ge- $\delta^{\prime}: 45 \leq t * \delta^{\prime} * \delta^{\prime}$ by (simp add: δ^{\prime}-def power2-eq-square)
have $m \leq$ card $\{. .<n\}$ unfolding m-def using as-range by (intro card-mono, auto)
also have $\ldots \leq p$ using n-le- p by simp
finally have $m-l e-p: m \leq p$ by simp
hence t-le-m: $t \leq$ card (set as) using True by simp
have m-ge- 0 : real $m>0$ using m-def True t-gt- 0 by simp
have $v \leq$ real $t *$ real $p /\left(\right.$ real $\left.m *\left(1-\delta^{\prime}\right)\right)$ by (simp add:v-def)
also have $\ldots \leq$ real $t *$ real $p /($ real $m *(1 / 4))$
using δ^{\prime}-lt-1 m-ge-0 δ-range
by (intro divide-left-mono mult-left-mono mult-nonneg-nonneg mult-pos-pos, simp-all add: $\delta^{\prime}-d e f$)
finally have v-ubound: $v \leq 4 *$ real $t *$ real $p /$ real m by (simp add:algebra-simps)
have a-ge-1: $u \geq 1$ using δ^{\prime}-gt-0 p-gt-0 m-ge-0 t-gt-0
by (auto intro!:mult-pos-pos divide-pos-pos simp add:u-def)
hence $a-g e-0: u \geq 0$ by simp
have real $m *\left(1-\delta^{\prime}\right)<$ real m using δ^{\prime}-gt- 0 m-ge- 0 by simp
also have $\ldots \leq 1 *$ real p using m-le- p by simp
also have $\ldots \leq$ real $t *$ real p using t-gt- 0 by (intro mult-right-mono, auto)
finally have real $m *\left(1-\delta^{\prime}\right)<$ real $t *$ real p by simp
hence v-gt- $0: v>0$ using mult-pos-pos m-ge-0 $\delta^{\prime}-l t-1$ by (simp add:v-def)
hence v-ge-1: real-of-int $v \geq 1$ by linarith
have real $t \leq$ real m using True m-def by linarith
also have $\ldots<\left(1+\delta^{\prime}\right) *$ real m using δ^{\prime}-gt-0 m-ge-0 by force
finally have a-le-p-aux: real $t<\left(1+\delta^{\prime}\right) *$ real m by simp
have $u \leq$ real $t *$ real $p /\left(\right.$ real $\left.m *\left(1+\delta^{\prime}\right)\right)+1$ by (simp add: u-def)
also have $\ldots<$ real $p+1$
using m-ge-0 δ^{\prime}-gt-0 a-le-p-aux a-le-p-aux p-gt-0
by (simp add: pos-divide-less-eq ac-simps)
finally have $u \leq$ real p
by (metis int-less-real-le not-less of-int-le-iff of-int-of-nat-eq)
hence u-le-p: $u \leq$ int p by linarith
have $\operatorname{prob}\{\omega . Q u \omega \geq t\} \leq \operatorname{prob}\{\omega \in$ Sigma-Algebra.space M. abs (real $(Q u$ $\omega)$ -
expectation $(\lambda \omega$. real $(Q u \omega))) \geq 3 * \operatorname{sqrt}(m *$ real-of-int $u / p)\}$
proof (rule pmf-mono[OF M-def])
fix ω
assume $\omega \in\{\omega . t \leq Q u \omega\}$
hence t-le: $t \leq Q u \omega$ by simp
have real $m *$ real-of-int $u /$ real $p \leq$ real $m *($ real $t *$ real $p /($ real $m *(1+$ $\left.\left.\delta^{\prime}\right)\right)+1$) / real p
using m-ge-0 p-gt-0 by (intro divide-right-mono mult-left-mono, simp-all add: u-def)
also have $\ldots=$ real $m *$ real $t *$ real $p /\left(\right.$ real $m *\left(1+\delta^{\prime}\right) *$ real $\left.p\right)+$ real $m /$ real p
by (simp add:distrib-left add-divide-distrib)
also have $\ldots=$ real $t /\left(1+\delta^{\prime}\right)+$ real $m /$ real p
using p-gt- $0 m-g e-0$ by simp
also have $\ldots \leq$ real $t /\left(1+\delta^{\prime}\right)+1$
using m-le-p p-gt-0 by (intro add-mono, auto)
finally have real $m *$ real-of-int $u /$ real $p \leq$ real $t /\left(1+\delta^{\prime}\right)+1$ by simp
hence $3 *$ sqrt $($ real $m *$ of-int $u /$ real $p)+$ real $m * o f$-int $u /$ real $p \leq$
$3 * \operatorname{sqrt}\left(t /\left(1+\delta^{\prime}\right)+1\right)+\left(t /\left(1+\delta^{\prime}\right)+1\right)$
by (intro add-mono mult-left-mono real-sqrt-le-mono, auto)
also have $\ldots \leq 3 * \operatorname{sqrt}($ real $t+1)+\left(\left(t *\left(1-\delta^{\prime} /\left(1+\delta^{\prime}\right)\right)\right)+1\right)$
using δ^{\prime}-gt-0 t-gt-0 by (intro add-mono mult-left-mono real-sqrt-le-mono)
(simp-all add: pos-divide-le-eq left-diff-distrib)
also have $\ldots=3 *$ sqrt $($ real $t+1)+\left(t-\delta^{\prime} * t /\left(1+\delta^{\prime}\right)\right)+1$ by $(\operatorname{simp}$ add:algebra-simps)
also have $\ldots \leq 3 * \operatorname{sqrt}\left(46 / \delta^{\prime 2}+1 / \delta^{\prime 2}\right)+\left(t-\delta^{\prime} * t / 2\right)+1 / \delta^{\prime}$
using δ^{\prime}-gt-0 t-gt-0 δ^{\prime}-lt-1 add-pos-pos t-le- δ^{\prime}
by (intro add-mono mult-left-mono real-sqrt-le-mono add-mono)
(simp-all add: power-le-one pos-le-divide-eq)
also have $\ldots \leq\left(21 / \delta^{\prime}+\left(t-45 /\left(2 * \delta^{\prime}\right)\right)\right)+1 / \delta^{\prime}$
using δ^{\prime}-gt-0 t-ge- δ^{\prime} by (intro add-mono)
(simp-all add:real-sqrt-divide divide-le-cancel real-le-lsqrt pos-divide-le-eq ac-simps)
also have $\ldots \leq t$ using δ^{\prime}-gt-0 by simp
also have $\ldots \leq Q u \omega$ using t-le by simp
finally have $3 *$ sqrt (real $m *$ of-int $u /$ real $p)+$ real $m *$ of-int $u /$ real p $\leq Q u \omega$
by simp
hence $3 *$ sqrt (real $m *$ real-of-int $u /$ real $p) \leq \mid$ real $(Q u \omega)$ - expectation $(\lambda \omega$. real $(Q u \omega)) \mid$
using a-ge-0 u-le-p True by (simp add:exp-Q abs-ge-iff)
thus $\omega \in\{\omega \in$ Sigma-Algebra.space M. $3 *$ sqrt (real $m *$ real-of-int $u /$ real p) \leq
\mid real $(Q u \omega)-$ expectation $(\lambda \omega$. real $(Q u \omega)) \mid\}$
by (simp add: M-def)
qed
also have $\ldots \leq$ variance $(\lambda \omega$. real $(Q u \omega)) /(3 *$ sqrt (real $m *$ of-int $u /$ real p) $)^{2}$
using a-ge-1 p-gt-0 m-ge-0
by (intro Chebyshev-inequality, simp add:M-def, auto)
also have $\ldots \leq($ real $m *$ real-of-int $u /$ real $p) /(3 *$ sqrt (real $m *$ of-int $u /$ real $p))^{2}$
using a-ge-0 u-le-p by (intro divide-right-mono var-Q, auto)
also have $\ldots \leq 1 / 9$ using $a-g e-0$ by simp
finally have case-1: $\operatorname{prob}\{\omega . Q u \omega \geq t\} \leq 1 / 9$ by simp
have case-2: prob $\{\omega . Q v \omega<t\} \leq 1 / 9$
proof (cases $v \leq p$)
case True
have prob $\{\omega . Q v \omega<t\} \leq \operatorname{prob}\{\omega \in$ Sigma-Algebra.space M. abs (real ($Q v$
$\omega)-\operatorname{expectation}(\lambda \omega$. real $(Q v \omega)))$
$\geq 3 * \operatorname{sqrt}(m *$ real-of-int $v / p)\}$
proof (rule pmf-mono[OF M-def])
fix ω
assume $\omega \in$ set-pmf (pmf-of-set space)
have $\left(\right.$ real $t+3 *$ sqrt $\left(\right.$ real $\left.\left.t /\left(1-\delta^{\prime}\right)\right)\right) *\left(1-\delta^{\prime}\right)=$ real $t-\delta^{\prime} * t+3$

* $\left(\left(1-\delta^{\prime}\right) * \operatorname{sqrt}\left(\right.\right.$ real $\left.\left.t /\left(1-\delta^{\prime}\right)\right)\right)$
by (simp add:algebra-simps)
also have $\ldots=$ real $t-\delta^{\prime} * t+3 * \operatorname{sqrt}\left(\left(1-\delta^{\prime}\right)^{2} *\left(\right.\right.$ real $\left.\left.t /\left(1-\delta^{\prime}\right)\right)\right)$
using $\delta^{\prime}-l t-1$ by (subst real-sqrt-mult, simp)
also have $\ldots=$ real $t-\delta^{\prime} * t+3 * \operatorname{sqrt}\left(\operatorname{real} t *\left(1-\delta^{\prime}\right)\right)$
by (simp add:power2-eq-square distrib-left)
also have $\ldots \leq$ real $t-45 / \delta^{\prime}+3 *$ sqrt (real t)
using δ^{\prime}-gt-0 t-ge- $\delta^{\prime} \delta^{\prime}-l t-1$ by (intro add-mono mult-left-mono real-sqrt-le-mono) (simp-all add:pos-divide-le-eq ac-simps left-diff-distrib power-le-one)
also have $\ldots \leq$ real $t-45 / \delta^{\prime}+3 * \operatorname{sqrt}\left(46 / \delta^{\prime 2}\right)$
using $t-l e-\delta^{\prime} \delta^{\prime}-l t-1 \quad \delta^{\prime}-g t-0$
by (intro add-mono mult-left-mono real-sqrt-le-mono, simp-all add:pos-divide-le-eq power-le-one)
also have $\ldots=$ real $t+(3 * \operatorname{sqrt}(46)-45) / \delta^{\prime}$
using δ^{\prime}-gt-0 by (simp add:real-sqrt-divide diff-divide-distrib)

```
also have \(\ldots \leq t\)
    using \(\delta^{\prime}\)-gt- 0 by (simp add:pos-divide-le-eq real-le-lsqrt)
```

 finally have aux: \(\left(\right.\) real \(t+3 * \operatorname{sqrt}\left(\right.\) real \(\left.\left.t /\left(1-\delta^{\prime}\right)\right)\right) *\left(1-\delta^{\prime}\right) \leq\) real \(t\)
 by \(\operatorname{simp}\)
 assume $\omega \in\{\omega . Q v \omega<t\}$
hence $Q v \omega<t$ by simp
hence real $(Q v \omega)+3 *$ sqrt (real $m *$ real-of-int $v /$ real $p)$
\leq real $t-1+3 *$ sqrt (real $m *$ real-of-int $v /$ real p)
using m-le-p p-gt-0 by (intro add-mono, auto simp add: algebra-simps
add-divide-distrib)
also have $\ldots \leq($ real $t-1)+3 * \operatorname{sqrt}($ real $m *($ real $t *$ real $p /($ real $m *$ $\left.\left.\left(1-\delta^{\prime}\right)\right)\right) /$ real $\left.p\right)$ by (intro add-mono mult-left-mono real-sqrt-le-mono divide-right-mono) (auto simp add:v-def)

```
    also have \(\ldots \leq\) real \(t+3 * \operatorname{sqrt}\left(\right.\) real \(\left.t /\left(1-\delta^{\prime}\right)\right)-1\)
```

 using \(m\)-ge-0 p-gt-0 by simp
 also have \(\ldots \leq\) real \(t /\left(1-\delta^{\prime}\right)-1\)
 using \(\delta^{\prime}-l t-1\) aux by (simp add: pos-le-divide-eq)
 also have \(\ldots \leq\) real \(m *\left(\right.\) real \(t *\) real \(p /\left(\right.\) real \(\left.\left.m *\left(1-\delta^{\prime}\right)\right)\right) /\) real \(p-1\)
 using \(p\)-gt- 0 m-ge-0 by simp
 also have \(\ldots \leq\) real \(m *\left(\right.\) real \(t *\) real \(p /\left(\right.\) real \(\left.\left.m *\left(1-\delta^{\prime}\right)\right)\right) /\) real \(p-\) real
 $m /$ real p
using m-le-p p-gt-0
by (intro diff-mono, auto)
also have $\ldots=$ real $m *\left(\right.$ real $t *$ real $p /\left(\right.$ real $\left.\left.m *\left(1-\delta^{\prime}\right)\right)-1\right) /$ real p
by (simp add: left-diff-distrib right-diff-distrib diff-divide-distrib)
also have $\ldots \leq$ real $m *$ real-of-int $v /$ real p
by (intro divide-right-mono mult-left-mono, simp-all add:v-def)
finally have real $(Q v \omega)+3 *$ sqrt (real $m *$ real-of-int $v /$ real $p)$
\leq real $m *$ real-of-int $v /$ real p by simp
hence $3 *$ sqrt (real $m *$ real-of-int $v /$ real $p) \leq \mid$ real $(Q v \omega)$-expectation $(\lambda \omega$. real $(Q v \omega)) \mid$
using v-gt- 0 True by (simp add: exp- Q abs-ge-iff)
thus $\omega \in\{\omega \in$ Sigma-Algebra.space $M .3 *$ sqrt (real $m *$ real-of-int $v /$ real
$p) \leq$
\mid real $(Q v \omega)-$ expectation $(\lambda \omega$. real $(Q v \omega)) \mid\}$
by (simp add: M-def)
qed
also have $\ldots \leq$ variance $(\lambda \omega$. real $(Q v \omega)) /(3 *$ sqrt (real $m *$ real-of-int v
$(\operatorname{real} p))^{2}$
using v-gt-0 p-gt-0 m-ge-0
by (intro Chebyshev-inequality, simp add:M-def, auto)

```
    also have \(\ldots \leq(\) real \(m *\) real-of-int \(v /\) real \(p) /(3 *\) sqrt (real \(m *\) real-of-int
\(v(\) real \(p))^{2}\)
    using v-gt-0 True by (intro divide-right-mono var- \(Q\), auto)
    also have \(\ldots=1 / 9\)
    using \(p\)-gt-0 v-gt-0 m-ge-0 by (simp add:power2-eq-square)
    finally show ?thesis by simp
next
    case False
    have \(\operatorname{prob}\{\omega . Q v \omega<t\} \leq \operatorname{prob}\{\omega\). False \(\}\)
    proof (rule pmf-mono[OF M-def])
        fix \(\omega\)
        assume \(a: \omega \in\{\omega . Q v \omega<t\}\)
        assume \(\omega \in\) set-pmf (pmf-of-set space)
        hence \(b: \bigwedge x . x<p \Longrightarrow\) hash \(x \omega<p\)
            using hash-range mod-ring-carr by (simp add:M-def measure-pmf-inverse)
    have \(t \leq\) card (set as) using True by simp
    also have \(\ldots \leq Q v \omega\)
            unfolding \(Q\)-def using \(b\) False as-lt-p by (intro card-mono subsetI, simp,
force)
        also have \(\ldots<t\) using \(a\) by simp
        finally have False by auto
        thus \(\omega \in\{\omega\). False \(\}\) by simp
    qed
    also have \(\ldots=0\) by auto
    finally show? ?thesis by simp
qed
```

have $\operatorname{prob}\{\omega$. \neg has-no-collision $\omega\} \leq$
prob $\{\omega . \exists x \in$ set as. $\exists y \in$ set as. $x \neq y \wedge$ tr-hash $x \omega \leq$ real-of-int $v \wedge$ tr-hash
$x \omega=t r-h a s h y \omega\}$
by (rule pmf-mono[OF M-def]) (simp add:has-no-collision-def M-def, force)
also have $\ldots \leq(5 / 2) *(\text { real }(\text { card }(\text { set as })))^{2} *(\text { real-of-int } v)^{2} * 2$ powr - real
$r /(\text { real } p)^{2}+1 /$ real p
using collision-prob v-ge-1 by blast
also have $\ldots \leq(5 / 2) *(\text { real } m)^{2} *(\text { real-of-int } v)^{2} * 2$ powr - real $r /(\text { real } p)^{2}$

+ 1 / real p
by (intro divide-right-mono add-mono mult-right-mono mult-mono power-mono,
simp-all add:m-def)
also have $\ldots \leq(5 / 2) *(\text { real } m)^{2} *(4 * \text { real } t * \text { real } p / \text { real } m)^{2} *(2$ powr -
real $r) /(\text { real } p)^{2}+1 /$ real p
using v-def v-ge- 1 v-ubound
by (intro add-mono divide-right-mono mult-right-mono mult-left-mono, auto)
also have $\ldots=40 *(\text { real } t)^{2} *(2$ powr - real $r)+1 /$ real p
using p-gt-0 m-ge-0 t-gt-0 by (simp add:algebra-simps power2-eq-square)
also have $\ldots \leq 1 / 18+1 / 18$
using t-r-bound p-ge-18 by (intro add-mono, simp-all add: pos-le-divide-eq)
also have $\ldots=1 / 9$ by simp
finally have case-3: prob $\{\omega$. \neg has-no-collision $\omega\} \leq 1 / 9$ by simp
have prob $\left\{\omega\right.$. real-of-rat $\delta *$ of-rat $(F 0$ as $)<\mid$ estimate $^{\prime}\left(\right.$ sketch-rv $\left.^{\prime} \omega\right)-$ of-rat (Fllas) $\begin{array}{ll}F & 0\end{array} \leq$
$\operatorname{prob}\{\omega . Q u \omega \geq t \vee Q v \omega<t \vee \neg($ has-no-collision $\omega)\}$
proof (rule pmf-mono[OF M-def], rule ccontr)
fix ω
assume $\omega \in$ set-pmf (pmf-of-set space)
assume $\omega \in\{\omega$. real-of-rat $\delta *$ real-of-rat ($F 0$ as $)<\mid$ estimate $^{\prime}\left(\right.$ sketch-rv $\left.^{\prime} \omega\right)$ - real-of-rat ($\begin{array}{l}F\end{array} 0$ as $\left.) \mid\right\}$
hence est: real-of-rat $\delta *$ real-of-rat $\left(\begin{array}{ll}F & 0 \\ \text { as })\end{array}<\mid\right.$ estimate $^{\prime}\left(\right.$ sketch-rv' $\left.^{\prime} \omega\right)-$ real-of-rat ($\begin{aligned} & F \\ & 0\end{aligned}$ as) | by simp
assume $\omega \notin\{\omega . t \leq Q u \omega \vee Q v \omega<t \vee \neg$ has-no-collision $\omega\}$
hence $\neg(t \leq Q u \omega \vee Q v \omega<t \vee \neg$ has-no-collision $\omega)$ by simp
hence $l b: Q u<t$ and $u b: Q v \omega \geq t$ and no-col: has-no-collision ω by simp +
define y where $y=n$ th-mset $(t-1)\{\#$ int (hash $x \omega$). $x \in \#$ mset-set (set as) \#\}
define y^{\prime} where $y^{\prime}=$ nth-mset $(t-1)\{\#$ tr-hash $x \omega$. $x \in \#$ mset-set (set as) \#\}
have rank-t-lb: $u \leq y$
unfolding y-def using True t-gt-0 lb
by (intro nth-mset-bound-left, simp-all add:count-less-def swap-filter-image $Q-d e f)$
have rank-t-ub: $y \leq v-1$
unfolding y-def using True t-gt-0 ub
by (intro nth-mset-bound-right, simp-all add:Q-def swap-filter-image count-le-def)
have y-ge- 0 : real-of-int $y \geq 0$ using rank-t-lb a-ge-0 by linarith
have mono (λx. truncate-down r (real-of-int $x)$)
by (metis truncate-down-mono mono-def of-int-le-iff)
hence y^{\prime}-eq: $y^{\prime}=$ truncate-down $r y$
unfolding y-def y^{\prime}-def using True t-gt- 0
by (subst nth-mset-commute-mono[where $f=(\lambda x$. truncate-down r (of-int x))])
(simp-all add: multiset.map-comp comp-def tr-hash-def)

```
    have real-of-int \(u *(1-2\) powr -real \(r) \leq\) real-of-int \(y *(1-2\) powr \((-r e a l\)
\(r)\) )
        using rank-t-lb of-int-le-iff two-pow-r-le-1
        by (intro mult-right-mono, auto)
    also have \(\ldots \leq y^{\prime}\)
        using \(y^{\prime}\)-eq truncate-down-pos \([O F \quad y\)-ge- \(O]\) by simp
    finally have rank-t-lb': \(u *(1-2\) powr -real \(r) \leq y^{\prime}\) by simp
    have \(y^{\prime} \leq\) real-of-int \(y\)
    by (subst \(y^{\prime}\)-eq, rule truncate-down-le, simp)
    also have \(\ldots \leq\) real-of-int ( \(v-1\) )
        using rank-t-ub of-int-le-iff by blast
    finally have \(r a n k-t-u b^{\prime}: y^{\prime} \leq v-1\)
        by \(\operatorname{simp}\)
    have \(0<u *\) (1-2 powr - real r)
        using a-ge-1 two-pow-r-le-1 by (intro mult-pos-pos, auto)
    hence \(y^{\prime}\)-pos: \(y^{\prime}>0\) using rank-t-lb' by linarith
    have no-col': \(\bigwedge x . x \leq y^{\prime} \Longrightarrow\) count \(\{\#\) tr-hash \(x \omega . x \in \#\) mset-set (set as) \(\#\}\)
\(x \leq 1\)
    using rank-t-ub' no-col
    by (simp add:vimage-def card-le-Suc0-iff-eq count-image-mset has-no-collision-def)
force
    have \(h\)-1: \(\operatorname{Max}(\) sketch-rv \(\omega)=y^{\prime}\)
    using True t-gt-0 no-col'
    by (simp add:sketch-rv'-def \(y^{\prime}\)-def nth-mset-max)
    have card \((\) sketch-rv \(\omega)=\) card \((\) least \(((t-1)+1)(\) set-mset \(\{\# t r-h a s h ~ x \omega . x\)
\(\in \#\) mset-set (set as)\#\}))
    using \(t\)-gt-0 by (simp add:sketch-rv'-def)
    also have \(\ldots=(t-1)+1\)
        using True t-gt-0 no-col' by (intro nth-mset-max(2), simp-all add: \(y^{\prime}\)-def)
    also have \(\ldots=t\) using \(t-g t-0\) by simp
    finally have card (sketch-rv' \(\omega\) ) \(=t\) by simp
    hence \(h\)-3: estimate \({ }^{\prime}(\) sketch-rv' \(\omega)=\) real \(t *\) real \(p / y^{\prime}\)
        using \(h-1\) by (simp add:estimate'-def)
    have \((\) real \(t) *\) real \(p \leq\left(1+\delta^{\prime}\right) *\) real \(m *((\) real \(t) *\) real \(p /(\) real \(m *(1+\)
\(\left.\delta^{\prime}\right)\) ))
            using \(\delta^{\prime}-l t-1\) m-def True \(t-g t-0 \delta^{\prime}-g t-0\) by auto
    also have \(\ldots \leq\left(1+\delta^{\prime}\right) * m * u\)
        using \(\delta^{\prime}\)-gt- 0 by (intro mult-left-mono, simp-all add:u-def)
    also have \(\ldots<((1+\) real-of-rat \(\delta) *(1\)-real-of-rat \(\delta / 8)) * m * u\)
        using True m-def t-gt-0 a-ge-1 \(\delta\)-range
        by (intro mult-strict-right-mono, auto simp add: \(\delta^{\prime}\)-def right-diff-distrib)
    also have \(\ldots \leq((1+\) real-of-rat \(\delta) *(1-2\) powr \((-r))) * m * u\)
```

using r-le- $\delta \delta$-range a-ge-0 by (intro mult-right-mono mult-left-mono, auto)
also have $\ldots=(1+$ real-of-rat $\delta) * m *(u *(1-2$ powr - real $r))$
by simp
also have $\ldots \leq(1+$ real-of-rat $\delta) * m * y^{\prime}$
using δ-range by (intro mult-left-mono rank-t-lb', simp)
finally have real $t *$ real $p<(1+$ real-of-rat $\delta) * m * y^{\prime}$ by simp
hence f-1: estimate $\left(\right.$ sketch-rv $\left.{ }^{\prime} \omega\right)<(1+$ real-of-rat $\delta) * m$
using y^{\prime}-pos by (simp add: h-3 pos-divide-less-eq)
have $(1-$ real-of-rat $\delta) * m * y^{\prime} \leq(1-r e a l-o f-r a t ~ \delta) * m * v$
using δ-range rank-t-ub' y^{\prime}-pos by (intro mult-mono rank-t-ub', simp-all)
also have $\ldots=(1$ real-of-rat $\delta) *($ real $m * v)$
by simp
also have $\ldots<\left(1-\delta^{\prime}\right) *($ real $m * v)$
using δ-range m-ge-0 v-ge-1
by (intro mult-strict-right-mono mult-pos-pos, simp-all add: δ^{\prime}-def)
also have $\ldots \leq\left(1-\delta^{\prime}\right) *\left(\right.$ real $m *\left(\right.$ real $t *$ real $p /\left(\right.$ real $\left.\left.\left.m *\left(1-\delta^{\prime}\right)\right)\right)\right)$
using $\delta^{\prime}-g t-0 \delta^{\prime}-l t-1$ by (intro mult-left-mono, auto simp add:v-def)
also have $\ldots=$ real $t *$ real p
using $\delta^{\prime}-g t-0 \quad \delta^{\prime}-l t-1$ t-gt-0 p-gt-0 m-ge-0 by auto
finally have $(1-$ real-of-rat $\delta) * m * y^{\prime}<$ real $t *$ real p by simp
hence f-2: estimate ${ }^{\prime}($ sketch-rv' $\omega)>(1$ - real-of-rat $\delta) * m$
using y^{\prime}-pos by (simp add: h-3 pos-less-divide-eq)
have abs (estimate ${ }^{\prime}\left(s k e t c h-r v^{\prime} \omega\right)-$ real-of-rat $\left.\left(\begin{array}{ll}F & 0 \\ a s\end{array}\right)\right)<$ real-of-rat $\delta *$ (real-of-rat (F 0 as))
using f-1 f-2 by (simp add:abs-less-iff algebra-simps m-eq-F-0)
thus False using est by linarith
qed
also have $\ldots \leq 1 / 9+(1 / 9+1 / 9)$
by (intro pmf-add-2[OF M-def] case-1 case-2 case-3)
also have $\ldots=1 / 3$ by simp
finally show ?thesis by simp

next

case False
have prob $\left\{\omega\right.$. real-of-rat $\delta *$ of-rat $\left(\begin{array}{ll}F & 0 \\ \text { as })\end{array}<\mid\right.$ estimate $^{\prime}\left(\right.$ sketch-rv $\left.^{\prime} \omega\right)-$ of-rat (Fllas) |\} \leq
prob $\{\omega . \exists x \in$ set as. $\exists y \in$ set as. $x \neq y \wedge \operatorname{tr-hash} x \omega \leq$ real $p \wedge \operatorname{tr-hash} x \omega$ $=\operatorname{tr}-h a s h \quad y \omega\}$
proof (rule pmf-mono[OF M-def])
fix ω
assume $a: \omega \in\left\{\omega\right.$. real-of-rat $\delta *$ real-of-rat (F 0 as) $<\mid$ estimate ${ }^{\prime}$ (sketch-rv'
$\omega)$ - real-of-rat ($\left.\left.\begin{array}{lll}F & 0 & a s\end{array}\right) \mid\right\}$
assume $b: \omega \in$ set-pmf (pmf-of-set space)
have c : card (set as) $<t$ using False by auto
hence card $((\lambda x$. tr-hash $x \omega)$ ' set as $)<t$
using card-image-le order-le-less-trans by blast
hence d:card (sketch-rv' $\omega)=\operatorname{card}((\lambda x$. tr-hash $x \omega)$ '(set as $))$
by (simp add:sketch-rv'-def card-least)
have card (sketch-rv' ω) $<t$
by (metis List.finite-set cd card-image-le order-le-less-trans)
hence estimate ${ }^{\prime}($ sketch-rv' $\omega)=$ card $\left(\right.$ sketch-rv' $\left.^{\prime} \omega\right)$ by (simp add:estimate' $\left.-d e f\right)$
hence card (sketch-rv' ω) \neq real-of-rat ($F 0$ as)
using $a \delta$-range by simp
(metis abs-zero cancel-comm-monoid-add-class.diff-cancel of-nat-less-0-iff
pos-prod-lt zero-less-of-rat-iff)
hence card (sketch-rv' ω) \neq card (set as)
using m-def m-eq-F-0 by linarith
hence $\neg i n j$-on $(\lambda x$. tr-hash $x \omega)($ set as)
using card-image d by auto
moreover have $\operatorname{tr-hash} x \omega \leq$ real p if $a: x \in$ set as for x
proof -
have hash $x \omega<p$
using hash-range as-lt-p a by (simp add:mod-ring-carr M-def)
thus $\operatorname{tr-hash} x \omega \leq$ real p using truncate-down-le by (simp add:tr-hash-def)
qed
ultimately show $\omega \in\{\omega . \exists x \in$ set as. $\exists y \in$ set as. $x \neq y \wedge$ tr-hash $x \omega \leq$ real $p \wedge$ tr-hash $x \omega=$ tr-hash $y \omega\}$
by (simp add:inj-on-def, blast)
qed
also have $\ldots \leq(5 / 2) *(\text { real }(\text { card }(\text { set as })))^{2} *(\text { real } p)^{2} * 2$ powr - real $r /$ $(\text { real } p)^{2}+1 /$ real p
using p-gt- 0 by (intro collision-prob, auto)
also have $\ldots=(5 / 2) *(\text { real }(\text { card }(\text { set as })))^{2} * 2$ powr $(-$ real $r)+1 /$ real p
using p-gt-0 by (simp add:ac-simps power2-eq-square)
also have $\ldots \leq(5 / 2) *(\text { real } t)^{2} * 2$ powr $(-$ real $r)+1 /$ real p
using False by (intro add-mono mult-right-mono mult-left-mono power-mono, auto)
also have $\ldots \leq 1 / 6+1 / 6$
using t - r-bound p-ge-18 by (intro add-mono, simp-all)
also have $\ldots \leq 1 / 3$ by simp
finally show? thesis by simp

qed

private lemma median-bounds:
$\mathcal{P}\left(\omega\right.$ in measure-pmf $\Omega_{0} . \mid$ median $s(\lambda i$. estimate $($ sketch-rv $(\omega i)))-F 0$ as $\mid \leq$ $\delta * F(0$ as $) \geq 1$ - real-of-rat ε
proof -
have strict-mono-on A real-of-float for A by (meson less-float.rep-eq strict-mono-onI)
hence real-g-2: $\Lambda \omega$. sketch-rv' $\omega=$ real-of-float'sketch-rv ω
by (simp add: sketch-rv'-def sketch-rv-def tr-hash-def least-mono-commute im-age-comp)
moreover have inj-on real-of-float A for A
using real-of-float-inject by (simp add:inj-on-def)
ultimately have card-eq: $\Lambda \omega$. card $($ sketch-rv $\omega)=\operatorname{card}\left(\right.$ sketch-rv' $\left.^{\prime} \omega\right)$
using real-g-2 by (auto intro!: card-image[symmetric])

```
    have Max \((\) sketch-rv' \(\omega)=\) real-of-float \((\) Max \((\) sketch-rv \(\omega)\) ) if a:card (sketch-rv'
\(\omega) \geq t\) for \(\omega\)
    proof -
    have mono real-of-float
        using less-eq-float.rep-eq mono-def by blast
    moreover have finite (sketch-rv \(\omega\) )
        by (simp add:sketch-rv-def least-def)
    moreover have sketch-rv \(\omega \neq\{ \}\)
        using card-eq[symmetric] card-gt-0-iff t-gt-0 a by (simp, force)
    ultimately show ?thesis
        by (subst mono-Max-commute[where \(f=\) real-of-float], simp-all add:real-g-2)
qed
hence real- \(g\) : \(\Lambda \omega\). estimate \({ }^{\prime}(\) sketch-rv' \(\omega)=\) real-of-rat (estimate (sketch-rv \(\omega\) ))
    by (simp add:estimate-def estimate'-def card-eq of-rat-divide of-rat-mult of-rat-add
real-of-rat-of-float)
    have indep: prob-space.indep-vars (measure-pmf \(\Omega_{0}\) ) ( \(\lambda\)-. borel) ( \(\lambda i \omega\). estimate \({ }^{\prime}\)
\(\left.\left(s k e t c h-r v^{\prime}(\omega i)\right)\right)\{0 . .<s\}\)
    unfolding \(\Omega_{0}\)-def
    by (rule indep-vars-restrict-intro' \({ }^{\prime}\), auto simp add:restrict-dfl-def lessThan-atLeast0)
    moreover have \(-(18 * \ln (\) real-of-rat \(\varepsilon)) \leq\) real s
    using of-nat-ceiling by (simp add:s-def) blast
    moreover have \(i<s \Longrightarrow\) measure \(\Omega_{0}\left\{\omega\right.\). of-rat \(\delta *\) of-rat (F 0 as) \(<\mid\) estimate \({ }^{\prime}\)
(sketch-rv' \((\omega\) i \()\) ) - of-rat (F 0 as) \()\} \leq 1 / 3\)
    for \(i\)
    using estimate'-bounds unfolding \(\Omega_{0}\)-def \(M\)-def
    by (subst prob-prod-pmf-slice, simp-all)
ultimately have 1 -real-of-rat \(\varepsilon \leq \mathcal{P}\left(\omega\right.\) in measure-pmf \(\Omega_{0}\).
        \(\mid\) median \(s\left(\lambda i\right.\). estimate \({ }^{\prime}\left(\right.\) sketch-rv \(\left.\left.{ }^{\prime}(\omega i)\right)\right)-\) real-of-rat (F 0 as \() \mid \leq\) real-of-rat
\(\delta *\) real-of-rat ( \(\left.\begin{array}{lll}F & 0 & a s\end{array}\right)\) )
    using \(\varepsilon\)-range prob-space-measure-pmf
    by (intro prob-space.median-bound-2) auto
    also have \(\ldots=\mathcal{P}\left(\omega\right.\) in measure-pmf \(\Omega_{0}\).
        \(\mid\) median \(s(\lambda i\). estimate (sketch-rv \((\omega i)))-F 0\) as \(\mid \leq \delta * F 0\) as)
    using s-gt-0 median-rat[symmetric] real-g by (intro arg-cong2 [where \(f=\) measure])
        (simp-all add:of-rat-diff[symmetric] of-rat-mult[symmetric] of-rat-less-eq)
    finally show \(\mathcal{P}\left(\omega\right.\) in measure-pmf \(\Omega_{0} . \mid\) median s ( \(\lambda i\). estimate (sketch-rv \(\left.(\omega i)\right)\) )
\(-F 0 a s \mid \leq \delta * F(0 a s) \geq 1\)-real-of-rat \(\varepsilon\)
    by blast
qed
lemma f0-alg-correct':
\(\mathcal{P}(\omega\) in measure-pmf result. \(\mid \omega-F 0\) as \(\mid \leq \delta * F 0\) as \() \geq 1\) - of-rat \(\varepsilon\)
proof -
    have f0-result-elim: \(\bigwedge x\).f0-result \((s, t, p, r, x, \lambda i \in\{. .<s\}\). sketch-rv \((x i))=\)
        return-pmf (median \(s\) ( \(\lambda i\). estimate (sketch-rv \((x i))\) ))
```

```
    by (simp add:estimate-def, rule median-cong, simp)
    have result = map-pmf (\lambdax. (s,t,p,r,x, \lambdai\in{..<s}. sketch-rv (x i))) \Omega}\mp@subsup{\Omega}{0}{}>
f0-result
    by (subst result-def, subst f0-alg-sketch, simp)
```



```
$ f0-result
    by (simp add:t-def p-def r-def s-def map-pmf-def)
    also have ... = 徐>> ( }\lambdax\mathrm{ . return-pmf (median s ( \i. estimate (sketch-rv ( }
i)))))
    by (subst bind-assoc-pmf, subst bind-return-pmf, subst f0-result-elim) simp
    finally have a:result = \Omega0>> ( \lambdax.return-pmf (median s (\lambdai. estimate (sketch-rv
(x i )))))
    by simp
    show ?thesis
    using median-bounds by (simp add: a map-pmf-def[symmetric])
qed
private lemma f-subset:
    assumes g' }A\subseteqh`'
    shows (\lambdax.f(gx))'A\subseteq(\lambdax.f(hx))'B
    using assms by auto
lemma f0-exact-space-usage':
    defines }\Omega\equiv\mathrm{ fold ( }\lambda\mathrm{ a state. state > f0-update a) as (f0-init }\delta\mathrm{ & n)
    shows AE \omega in \Omega. bit-count (encode-f0-state \omega)\leqf0-space-usage ( }n,\varepsilon,\delta
proof -
```



```
    by (metis log2-of-power-eq mult-2 numeral-Bit0 of-nat-numeral power2-eq-square)
    have a: bit-count (F Fe (float-of (truncate-down r y)))}
        ereal (12+4* real r +2* log 2 ( log 2 (n+13))) if a-1:y f{..<p} for y
proof (cases y \geq1)
    case True
    have aux-1: 0<2 + log 2 (real y)
        using True by (intro add-pos-nonneg, auto)
    have aux-2:0<2 + log 2 (real p)
        using p-gt-1 by (intro add-pos-nonneg, auto)
    have bit-count (Fe (float-of (truncate-down r y))) \leq
            ereal (10+4* real r +2* log 2 (2 + | log 2 |real y | ) )
            by (rule truncate-float-bit-count)
        also have ... = ereal (10+4* real r + 2 * log 2 (2 + (log 2 (real y))))
            using True by simp
        also have ... \leqereal (10+4* real r + 2* log 2 (2 + log 2 p))
            using aux-1 aux-2 True p-gt-0 a-1 by simp
```

```
    also have \(\ldots \leq \operatorname{ereal}(10+4 *\) real \(r+2 * \log 2(\log 24+\log 2(2 * n+\)
40)))
    using log-2-4 p-le-n p-gt-0
    by (intro ereal-mono add-mono mult-left-mono log-mono of-nat-mono add-pos-nonneg,
auto)
    also have \(\ldots=\operatorname{ereal}(10+4 * \operatorname{real} r+2 * \log 2(\log 2(8 * n+160)))\)
    by (simp add:log-mult[symmetric])
    also have \(\ldots \leq \operatorname{ereal}(10+4 *\) real \(r+2 * \log 2(\log 2((n+13)\) powr 2 \()))\)
    by (intro ereal-mono add-mono mult-left-mono log-mono of-nat-mono add-pos-nonneg)
        (auto simp add:power2-eq-square algebra-simps)
    also have \(\ldots=\operatorname{ereal}(10+4 *\) real \(r+2 * \log 2(\log 24 * \log 2(n+13)))\)
        by (subst log-powr, simp-all add:log-2-4)
    also have \(\ldots=\operatorname{ereal}(12+4 *\) real \(r+2 * \log 2(\log 2(n+13)))\)
    by (subst log-mult, simp-all add:log-2-4)
    finally show? ?thesis by simp
next
    case False
    hence \(y=0\) using \(a-1\) by simp
    then show?thesis by (simp add:float-bit-count-zero)
qed
have bit-count (encode-f0-state \((s, t, p, r, x, \lambda i \in\{. .<s\}\). sketch-rv \((x i))) \leq\)
        f0-space-usage \((n, \varepsilon, \delta)\) if \(b: x \in\{. .<s\} \rightarrow_{E}\) space for \(x\)
    proof -
    have \(c: x \in\) extensional \(\{. .<s\}\) using \(b\) by (simp add:PiE-def)
    have d: sketch-rv \((x y) \subseteq(\lambda k\). float-of (truncate-down \(r k)\) )' \(\{. .<p\}\)
    if \(d-1: y<s\) for \(y\)
    proof -
        have sketch-rv \((x y) \subseteq(\lambda x a\). float-of (truncate-down r (hash xa \((x y))))\) ' set
as
                using least-subset by (auto simp add:sketch-rv-def tr-hash-def)
    also have \(\ldots \subseteq(\lambda k\). float-of (truncate-down \(r(\) real \(k)))\) ' \(\{. .<p\}\)
                using \(b\) hash-range as-lt-p \(d-1\)
            by (intro \(f\)-subset \([\) where \(f=\lambda x\). float-of (truncate-down \(r\) (real x))] im-
age-subsetI)
                (simp add: PiE-iff mod-ring-carr)
    finally show ?thesis
        by \(\operatorname{simp}\)
    qed
    have \(\bigwedge y . y<s \Longrightarrow\) finite (sketch-rv \((x y)\) )
        unfolding sketch-rv-def by (rule finite-subset[OF least-subset], simp)
    moreover have card-sketch: \(\bigwedge y . y<s \Longrightarrow\) card (sketch-rv \((x y)) \leq t\)
        by (simp add:sketch-rv-def card-least)
    moreover have \(\bigwedge y z . y<s \Longrightarrow z \in\) sketch-rv \((x y) \Longrightarrow\)
        bit-count \(\left(F_{e} z\right) \leq \operatorname{ereal}(12+4 *\) real \(r+2 * \log 2(\log 2(\) real \(n+13)))\)
        using a d by auto
    ultimately have \(e: \bigwedge y . y<s \Longrightarrow\) bit-count \(\left(S_{e} F_{e}(\operatorname{sketch}-r v(x y))\right)\)
```

$\leq \operatorname{ereal}($ real $t) *(\operatorname{ereal}(12+4 *$ real $r+2 * \log 2(\log 2(\operatorname{real}(n+13))))$ $+1)+1$
using float-encoding by (intro set-bit-count-est, auto)
have $f: \bigwedge y . y<s \Longrightarrow$ bit-count $\left(P_{e} p 2(x y)\right) \leq$ ereal $($ real 2 $*(\log 2($ real $p)+1)$)
using p-gt-1 b
by (intro bounded-degree-polynomial-bit-count) (simp-all add:space-def PiE-def Pi-def)
have bit-count (encode-f0-state ($s, t, p, r, x, \lambda i \in\{. .<s\}$. sketch-rv $(x i)))=$
bit-count $\left(N_{e} s\right)+$ bit-count $\left(N_{e} t\right)+$ bit-count $\left(N_{e} p\right)+$ bit-count $\left(N_{e} r\right)+$ bit-count $\left(\left([0 . .<s] \rightarrow_{e} P_{e} p\right.\right.$ 2) $\left.x\right)+$
bit-count $\left(\left([0 . .<s] \rightarrow_{e} S_{e} F_{e}\right)(\lambda i \in\{. .<s\}\right.$. sketch-rv $\left.(x i))\right)$
by (simp add:encode-f0-state-def dependent-bit-count lessThan-atLeast0
s-def[symmetric] t-def[symmetric] p-def[symmetric] r-def[symmetric] ac-simps)
also have $\ldots \leq \operatorname{ereal}(2 * \log 2($ real $s+1)+1)+\operatorname{ereal}(2 * \log 2($ real $t+$ 1) +1$)$
$+\operatorname{ereal}(2 * \log 2($ real $p+1)+1)+\operatorname{ereal}(2 * \log 2($ real $r+1)+1)$
$+($ ereal $($ real s $) *($ ereal $($ real $2 *(\log 2($ real $p)+1))))$
$+($ ereal $($ real $s) *(($ ereal $($ real $) *$
$(\operatorname{ereal}(12+4 *$ real $r+2 * \log 2(\log 2(\operatorname{real}(n+13))))+1)+1)))$
using $c e f$
by (intro add-mono exp-golomb-bit-count fun-bit-count-est $[$ where $x s=[0 . .<s]$, simplified])
(simp-all add:lessThan-atLeast0)
also have $\ldots=\operatorname{ereal}(4+2 * \log 2($ real $s+1)+2 * \log 2($ real $t+1)+$ $2 * \log 2($ real $p+1)+2 * \log 2($ real $r+1)+\operatorname{real} s *(3+2 * \log 2$ $($ real $p)+$
real $t *(13+(4 *$ real $r+2 * \log 2(\log 2($ real $n+13))))))$
by (simp add:algebra-simps)
also have $\ldots \leq \operatorname{ereal}(4+2 * \log 2($ real $s+1)+2 * \log 2($ real $t+1)+$ $2 * \log 2(2 *(21+$ real $n))+2 * \log 2($ real $r+1)+$ real $s *(3+2 *$ $\log 2(2 *(21+$ real $n))+$
real $t *(13+(4 *$ real $r+2 * \log 2(\log 2($ real $n+13))))))$
using p-le-n p-gt-0
by (intro ereal-mono add-mono mult-left-mono, auto)
also have $\ldots=\operatorname{ereal}(6+2 * \log 2($ real $s+1)+2 * \log 2($ real $t+1)+$ $2 * \log 2(21+\operatorname{real} n)+2 * \log 2($ real $r+1)+\operatorname{real} s *(5+2 * \log 2$ $(21+$ real $n)+$
real $t *(13+(4 *$ real $r+2 * \log 2(\log 2($ real $n+13))))))$
by (subst (1 2) log-mult, auto)
also have $\ldots \leq f 0$-space-usage (n, ε, δ)
by (simp add:s-def[symmetric] r-def[symmetric] t-def[symmetric] Let-def)
(simp add:algebra-simps)
finally show bit-count (encode-f0-state ($s, t, p, r, x, \lambda i \in\{. .<s\}$. sketch-rv (x i))) \leq
f0-space-usage (n, ε, δ) by simp
qed

```
    hence }\x.x\in\mathrm{ set-pmf }\mp@subsup{\Omega}{0}{}
            bit-count (encode-f0-state (s,t, p,r, x, \lambdai\in{..<s}. sketch-rv (x i))) \leq ereal
(f0-space-usage (n, \varepsilon, \delta))
    by (simp add:\Omega0-def set-prod-pmf del:f0-space-usage.simps)
    hence }\y.y\in\mathrm{ set-pmf }\Omega\Longrightarrow\mathrm{ bit-count (encode-f0-state y) 
(n, \varepsilon, \delta))
    by (simp add: \Omega-def f0-alg-sketch del:f0-space-usage.simps f0-init.simps)
    (metis (no-types, lifting) image-iff pmf.set-map)
    thus ?thesis
    by (simp add: AE-measure-pmf-iff del:f0-space-usage.simps)
qed
end
Main results of this section:
theorem f0-alg-correct:
assumes \(\varepsilon \in\{0<. .<1\}\)
assumes \(\delta \in\{0<. .<1\}\)
assumes set as \(\subseteq\{. .<n\}\)
defines \(\Omega \equiv\) fold ( \(\lambda\) a state. state \(\gg\) f0-update a) as (f0-init \(\delta \varepsilon n\) ) > f0-result shows \(\mathcal{P}(\omega\) in measure-pmf \(\Omega\). \(\mid \omega-F 0\) as \(\mid \leq \delta * F 0\) as \() \geq 1\) - of-rat \(\varepsilon\) using f0-alg-correct \({ }^{\prime}[\) OF assms \((1-3)]\) unfolding \(\Omega\)-def by blast
theorem f0-exact-space-usage:
assumes \(\varepsilon \in\{0<. .<1\}\)
assumes \(\delta \in\{0<. .<1\}\)
assumes set as \(\subseteq\{. .<n\}\)
defines \(\Omega \equiv\) fold ( \(\lambda\) a state. state \(\gg\) f0-update a) as (f0-init \(\delta\) ع \(n\) )
shows \(A E \omega\) in \(\Omega\). bit-count (encode-f0-state \(\omega\) ) \(\leq\) f0-space-usage \((n, \varepsilon, \delta)\)
using f0-exact-space-usage '[OF assms(1-3)] unfolding \(\Omega\)-def by blast
theorem f0-asymptotic-space-complexity:
f0-space-usage \(\in O\left[\right.\) at-top \(\times_{F}\) at-right \(0 \times_{F}\) at-right 0\(](\lambda(n, \varepsilon, \delta)\). \(\ln (1 /\) of-rat ع) *
\(\left(\ln (\right.\) real \(n)+1 /(\text { of-rat } \delta)^{2} *(\ln (\ln (\) real \(n))+\ln (1 /\) of-rat \(\left.\left.\delta))\right)\right)\)
(is \(-\in O[? F](? r h s))\)
proof -
define \(n\)-of \(::\) nat \(\times\) rat \(\times\) rat \(\Rightarrow\) nat where \(n\)-of \(=(\lambda(n, \varepsilon, \delta) . n)\)
define \(\varepsilon\)-of :: nat \(\times\) rat \(\times\) rat \(\Rightarrow\) rat where \(\varepsilon\)-of \(=(\lambda(n, \varepsilon, \delta) . \varepsilon)\)
define \(\delta\)-of :: nat \(\times\) rat \(\times\) rat \(\Rightarrow\) rat where \(\delta\)-of \(=(\lambda(n, \varepsilon, \delta) . \delta)\)
define \(t\)-of where \(t\)-of \(=\left(\lambda x\right.\). nat \(\left.\left\lceil 80 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right\rceil\right)\)
define \(s\)-of where \(s\)-of \(=(\lambda x\). nat \(\lceil-(18 * \ln (\) real-of-rat \((\varepsilon\)-of \(x)))\rceil)\)
define \(r\)-of where \(r\)-of \(=(\lambda x\).nat \((4 *\lceil\log 2(1 /\) real-of-rat \((\delta\)-of \(x))\rceil+23))\)
define \(g\) where \(g=(\lambda x\). ln \((1 /\) of-rat \((\varepsilon\)-of \(x)) *(\ln (\) real \((n\)-of \(x))+\) \(1 /(\text { of-rat }(\delta \text {-of } x))^{2} *(\ln (\ln (\operatorname{real}(n-o f x)))+\ln (1 / \operatorname{of-rat}(\delta\)-of \(\left.\left.x)))\right)\right)\)
have evt: ( \(\bigwedge x\).
\(0<\) real-of-rat \((\delta\)-of \(x) \wedge 0<\) real-of-rat \((\varepsilon\)-of \(x) \wedge\)
```

$1 /$ real-of-rat $(\delta$-of $x) \geq \delta \wedge 1 /$ real-of-rat $(\varepsilon$-of $x) \geq \varepsilon \wedge$
real $(n$-of $x) \geq n \Longrightarrow P x) \Longrightarrow$ eventually P ?F (is $(\bigwedge x$. ?prem $x \Longrightarrow-) \Longrightarrow$
-)
for $\delta \varepsilon n P$
apply (rule eventually-mono $[$ where $P=$?prem and $Q=P]$)
apply (simp add: ε-of-def case-prod-beta' δ-of-def n-of-def)
apply (intro eventually-conj eventually-prod1' eventually-prod2'
sequentially-inf eventually-at-right-less inv-at-right-0-inf)
by (auto simp add:prod-filter-eq-bot)
have exp-pos: $\exp k \leq$ real $x \Longrightarrow x>0$ for $k x$
using exp-gt-zero gr0I by force
have exp-gt-1: exp $1 \geq(1::$ real $)$
by simp
have 1: $(\lambda-.1) \in O[? F](\lambda x . \ln (1 /$ real-of-rat $(\varepsilon$-of $x)))$
by (auto intro!:landau-o.big-mono evt[where $\varepsilon=\exp 1]$ iffD2[OF ln-ge-iff] simp
add:abs-ge-iff)
have 2: $(\lambda$-. 1) $\in O[? F](\lambda x . \ln (1 /$ real-of-rat $(\delta$-of $x)))$
by (auto intro!:landau-o.big-mono evt[where $\delta=\exp 1]$ iffD2[OF ln-ge-iff] simp
add:abs-ge-iff)
have 3: $(\lambda x .1) \in O[? F](\lambda x$. $\ln (\ln ($ real $(n$-of $x)))+\ln (1 /$ real-of-rat $(\delta$-of $x)$))
using exp-pos
by (intro landau-sum-2 2 evt[where $n=\exp 1$ and $\delta=1]$ ln-ge-zero iffD2[OF \ln-ge-iff], auto)
have $4:(\lambda$-. 1$) \in O[? F]\left(\lambda x .1 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right)$
using one-le-power
by (intro landau-o.big-mono evt[where $\delta=1]$, auto simp add:power-one-over [symmetric])
have $\left(\lambda x .80 *\left(1 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right)\right) \in O[? F](\lambda x$. $1 /($ real-of-rat $(\delta$-of $x))^{2}$)
by (subst landau-o.big.cmult-in-iff, auto)
hence 5: $(\lambda x$. real $(t-o f x)) \in O[? F]\left(\lambda x\right.$. $\left.1 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right)$
unfolding t-of-def
by (intro landau-real-nat landau-ceil 4, auto)
have $(\lambda x$. $\ln ($ real-of-rat $(\varepsilon$-of $x))) \in O[? F](\lambda x$. $\ln (1 /$ real-of-rat $(\varepsilon$-of $x)))$
by (intro landau-o.big-mono evt[where $\varepsilon=1]$, auto simp add:ln-div)
hence $6:(\lambda x$. real $(s$-of $x)) \in O[? F](\lambda x$. ln $(1 /$ real-of-rat $(\varepsilon$-of $x)))$
unfolding s-of-def by (intro landau-nat-ceil 1, simp)
have 7: $(\lambda x .1) \in O[? F](\lambda x . \ln ($ real $(n$-of $x)))$
using exp-pos by (auto intro!: landau-o.big-mono evt[where $n=\exp 1]$ iffD2[OF ln-ge-iff] simp: abs-ge-iff)
have $8:(\lambda-.1) \in$
$O[? F]\left(\lambda x\right.$. ln $($ real $(n$-of $x))+1 /(\text { real-of-rat }(\delta \text {-of } x))^{2} *(\ln (\ln ($ real $(n$-of $x)))+\ln (1 / \operatorname{real-of-rat}(\delta$-of $x))))$
using order-trans[OF exp-gt-1] exp-pos
by (intro landau-sum-1 7 evt[where $n=\exp 1$ and $\delta=1] \ln$-ge-zero iffD2[OF \ln-ge-iff]
mult-nonneg-nonneg add-nonneg-nonneg) auto
have $(\lambda x \cdot \ln ($ real $(s-o f x)+1)) \in O[? F](\lambda x . \ln (1 /$ real-of-rat $(\varepsilon$-of $x)))$
by (intro landau-ln-3 sum-in-bigo 61 , simp)
hence 9: $(\lambda x$. $\log 2($ real $(s-o f x)+1)) \in O[? F](g)$
unfolding g-def by (intro landau-o.big-mult-1 8, auto simp:log-def)
have 10: $(\lambda x .1) \in O[? F](g)$
unfolding g-def by (intro landau-o.big-mult-1 8 1)
have $(\lambda x . \ln ($ real $(t-o f x)+1)) \in$
$O[? F]\left(\lambda x .1 /(\text { real-of-rat }(\delta \text {-of } x))^{2} *(\ln (\ln (\right.$ real $(n$-of $x)))+\ln (1 /$ real-of-rat (δ-of $x)$)))
using 5 by (intro landau-o.big-mult-1 3 landau-ln-3 sum-in-bigo 4, simp-all)
hence $(\lambda x \log 2(\operatorname{real}(t-o f x)+1)) \in$
$O[? F]\left(\lambda x \cdot \ln (\right.$ real $(n$-of $x))+1 /(\text { real-of-rat }(\delta \text {-of } x))^{2} *(\ln (\ln ($ real $(n$-of $x)))$
$+\ln (1 /$ real-of-rat $(\delta$-of $x))))$
using order-trans[OF exp-gt-1] exp-pos
by (intro landau-sum-2 evt[where $n=\exp 1$ and $\delta=1] \ln$-ge-zero iffD2[OF \ln-ge-iff]
mult-nonneg-nonneg add-nonneg-nonneg) (auto simp add:log-def)
hence 11: $(\lambda x \cdot \log 2(\operatorname{real}(t-o f x)+1)) \in O[? F](g)$
unfolding g-def by (intro landau-o.big-mult-1' 1 , auto)
have $(\lambda x .1) \in O[? F](\lambda x$. real $(n$-of $x))$
by (intro landau-o.big-mono evt[where $n=1]$, auto)
hence $(\lambda x$. $\ln ($ real $(n$-of $x)+21)) \in O[? F](\lambda x$. $\ln ($ real $(n$-of $x)))$
by (intro landau-ln-2[where a=2] evt $[$ where $n=2]$ sum-in-bigo, auto)
hence 12: $(\lambda x$. $\log 2($ real $(n-o f x)+21)) \in O[? F](g)$
unfolding g-def using exp-pos order-trans[OF exp-gt-1]
by (intro landau-o.big-mult-1' 1 landau-sum-1 evt[where $n=\exp 1$ and $\delta=1$] ln-ge-zero iffD2[OF ln-ge-iff] mult-nonneg-nonneg add-nonneg-nonneg) (auto simp add:log-def)
have $(\lambda x . \ln (1 /$ real-of-rat $(\delta$-of $x))) \in O[? F]\left(\lambda x .1 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right)$ by (intro landau-ln-3 evt[where $\delta=1$] landau-o.big-mono)
(auto simp add:power-one-over[symmetric] self-le-power)
hence $(\lambda x$. real $($ nat $(4 *\lceil\log 2(1 /$ real-of-rat $(\delta$-of $x))\rceil+23))) \in O[? F](\lambda x .1$ $\left./(\text { real-of-rat }(\delta \text {-of } x))^{2}\right)$
using 4 by (auto intro!: landau-real-nat sum-in-bigo landau-ceil simp:log-def)
hence $(\lambda x$. ln $($ real $(r$-of $x)+1)) \in O[? F]\left(\lambda x .1 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right)$
unfolding r-of-def
by (intro landau-ln-3 sum-in-bigo 4, auto)
hence $(\lambda x \log 2(\operatorname{real}(r$-of $x)+1)) \in$
$O[? F]\left(\lambda x\right.$. $\left(1 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right) *(\ln (\ln ($ real $(n-o f x)))+\ln (1 /$ real-of-rat $(\delta$-of $x)))$)
by (intro landau-o.big-mult-1 3, simp add:log-def)
hence $(\lambda x \cdot \log 2(\operatorname{real}(r-o f x)+1)) \in$
$O[? F]\left(\lambda x\right.$. $\ln ($ real $(n$-of $x))+1 /(\text { real-of-rat }(\delta \text {-of } x))^{2} *(\ln (\ln ($ real $(n$-of $x)))+\ln (1 / \operatorname{real-of-rat}(\delta$-of $x))))$
using exp-pos order-trans[OF exp-gt-1]
by (intro landau-sum-2 evt[where $n=\exp 1$ and $\delta=1]$ ln-ge-zero iffD2[OF ln-ge-iff] add-nonneg-nonneg mult-nonneg-nonneg) (auto)
hence 13: $(\lambda x . \log 2(\operatorname{real}(r-o f x)+1)) \in O[? F](g)$
unfolding g-def by (intro landau-o.big-mult-1' 1 , auto)
have 14: $(\lambda x .1) \in O[? F](\lambda x$. real $(n$-of $x))$
by (intro landau-o.big-mono evt [where $n=1$], auto)
have $(\lambda x \cdot \ln ($ real $(n$-of $x)+13)) \in O[? F](\lambda x \cdot \ln ($ real $(n$-of $x)))$
using 14 by (intro landau-ln-2[where $a=2]$ evt[where $n=2]$ sum-in-bigo, auto)
hence $(\lambda x$. ln $(\log 2(\operatorname{real}(n$-of $x)+13))) \in O[? F](\lambda x$. ln $(\ln ($ real $(n$-of $x))))$
using exp-pos by (intro landau-ln-2 [where $a=2]$ iffD2[OF ln-ge-iff] evt[where $n=\exp$ 2]) (auto simp add:log-def)
hence $(\lambda x \cdot \log 2(\log 2($ real $(n$-of $x)+13))) \in O[? F](\lambda x \cdot \ln (\ln ($ real $(n$-of $x)))$ $+\ln (1 / \operatorname{real-of-rat}(\delta$-of $x)))$
using exp-pos by (intro landau-sum-1 evt[where $n=\exp 1$ and $\delta=1] \ln$-ge-zero iffD2[OF ln-ge-iff]) (auto simp add:log-def)
moreover have $(\lambda x$. real $(r$-of $x)) \in O[? F](\lambda x$. ln ($1 / \operatorname{real-of-rat}(\delta$-of $x)))$ unfolding r-of-def using 2
by (auto intro!: landau-real-nat sum-in-bigo landau-ceil simp:log-def)
hence $(\lambda x$. real $(r$-of $x)) \in O[? F](\lambda x$. $\ln (\ln ($ real $(n$-of $x)))+\ln (1 /$ real-of-rat (δ-of $x)$))
using exp-pos
by (intro landau-sum-2 evt[where $n=\exp 1$ and $\delta=1]$ ln-ge-zero iffD2[OF ln-ge-iff], auto)
ultimately have 15: $(\lambda x$. real $(t-o f x) *(13+4 *$ real $(r-o f x)+2 * \log 2(\log$ $2($ real $(\operatorname{n-of} x)+13))))$
$\in O[? F]\left(\lambda x .1 /(\text { real-of-rat }(\delta \text {-of } x))^{2} *(\ln (\ln (\right.$ real $(n$-of $x)))+\ln (1 /$ real-of-rat $(\delta$-of $x)))$)
using 53
by (intro landau-o.mult sum-in-bigo, auto)
have $(\lambda x .5+2 * \log 2(21+\operatorname{real}(n$-of $x))+$ real $(t-o f x) *(13+4 *$ real $(r$-of $x)+2 * \log 2(\log 2($ real $(n$-of $x)+13))))$
$\in O[? F]\left(\lambda x\right.$. $\ln ($ real $(n$-of $x))+1 /(\text { real-of-rat }(\delta \text {-of } x))^{2} *(\ln (\ln ($ real $(n$-of

```
x)))+ln}(1/\operatorname{real-of-rat ( }\delta\mathrm{ -of }x)))
    proof -
        have }\mp@subsup{\forall}{F}{}x\mathrm{ in ?F. 0 < ln (real (n-of x))
            by (intro evt[where n=1] ln-ge-zero, auto)
    moreover have }\mp@subsup{\forall}{F}{}x\mathrm{ in ?F. 0 < 1 / (real-of-rat ( }\delta\mathrm{ -of x) )}\mp@subsup{)}{}{*}(\operatorname{ln}(\operatorname{ln}(\mathrm{ real (n-of
x))) + ln (1 / real-of-rat (\delta-of x)))
            using exp-pos
            by (intro evt[where n=exp 1 and \delta=1] mult-nonneg-nonneg add-nonneg-nonneg
                ln-ge-zero iffD2[OF ln-ge-iff]) auto
    moreover have ( }\lambdax.\operatorname{ln}(21+\operatorname{real}(n\mathrm{ -of }x)))\inO[?F](\lambdax.ln (real (n-of x))
                using 14 by (intro landau-ln-2[where a=2] sum-in-bigo evt[where n=2],
auto)
    hence }(\lambdax.5+2*\operatorname{log}2(21+real (n-of x)))\inO[?F](\lambdax.ln (real (n-of x))
            using 7 by (intro sum-in-bigo, auto simp add:log-def)
    ultimately show ?thesis
                using 15 by (rule landau-sum)
    qed
    hence 16: (\lambdax. real (s-of x)*(5+2* log 2 (21 + real (n-of x)) + real (t-of
x) *
    (13+4* real (r-of x) +2* log 2 (log 2 (real (n-of x) + 13))))) \inO[?F](g)
    unfolding g-def
    by (intro landau-o.mult 6, auto)
    have f0-space-usage =( }\lambda\mathrm{ x. f0-space-usage ( }n\mathrm{ -of x, ह-of x, }\delta\mathrm{ -of x))
    by (simp add:case-prod-beta' n-of-def \varepsilon-of-def \delta-of-def)
    also have ... \in O[?F](g)
    using 9 10 11 12 13 16
    by (simp add:fun-cong[OF s-of-def[symmetric]] fun-cong[OF t-of-def[symmetric]]
            fun-cong[OF r-of-def[symmetric]] Let-def) (intro sum-in-bigo, auto)
    also have ... =O[?F](?rhs)
    by (simp add:case-prod-beta' g-def n-of-def \varepsilon-of-def \delta-of-def)
    finally show ?thesis
    by simp
qed
end
```


8 Frequency Moment 2

```
theory Frequency-Moment-2
    imports
        Universal-Hash-Families.Carter-Wegman-Hash-Family
        Universal-Hash-Families.Universal-Hash-Families-More-Finite-Fields
        Equivalence-Relation-Enumeration.Equivalence-Relation-Enumeration
        Landau-Ext
        Median-Method.Median
        Probability-Ext
        Product-PMF-Ext
```

Frequency-Moments

begin

hide-const (open) Discrete-Topology.discrete
 hide-const (open) Isolated.discrete

This section contains a formalization of the algorithm for the second frequency moment. It is based on the algorithm described in [1, §2.2]. The only difference is that the algorithm is adapted to work with prime field of odd order, which greatly reduces the implementation complexity.

```
fun f2-hash where
    f2-hash \(p h k=(\) if even (ring.hash (mod-ring \(p) k h)\) then int \(p-1\) else - int
\(p-1\) )
type-synonym f2-state \(=\) nat \(\times\) nat \(\times\) nat \(\times(\) nat \(\times\) nat \(\Rightarrow\) nat list \() \times(\) nat \(\times\)
\(n a t \Rightarrow i n t)\)
fun f2-init : : rat \(\Rightarrow\) rat \(\Rightarrow\) nat \(\Rightarrow\) f2-state pmf where
    f2-init \(\delta \in n=\)
        do \{
        let \(s_{1}=n a t\left\lceil 6 / \delta^{2}\right\rceil\);
        let \(s_{2}=\) nat \(\lceil-(18 * \ln (\) real-of-rat \(\varepsilon))\rceil\);
        let \(p=\) prime-above \((\max n 3)\);
        \(h \leftarrow\) prod-pmf \(\left(\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right)(\lambda\)-. pmf-of-set (bounded-degree-polynomials
(mod-ring p) 4));
        return-pmf \(\left(s_{1}, s_{2}, p, h,\left(\lambda-\in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\} .(0::\right.\right.\) int \(\left.\left.)\right)\right)\)
    \}
fun f2-update :: nat \(\Rightarrow\) f2-state \(\Rightarrow\) f2-state \(p m f\) where
    f2-update \(x\left(s_{1}, s_{2}, p, h\right.\), sketch \()=\)
        return-pmf \(\left(s_{1}, s_{2}, p, h, \lambda i \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right.\). f2-hash \(p(h i) x+\) sketch \(\left.i\right)\)
fun f2-result :: f2-state \(\Rightarrow\) rat pmf where
    f2-result \(\left(s_{1}, s_{2}, p, h\right.\), sketch \()=\)
        return-pmf (median \(s_{2}\left(\lambda i_{2} \in\left\{. .<s_{2}\right\}\right.\).
            \(\left(\sum i_{1} \in\left\{. .<s_{1}\right\} .\left(\text { rat-of-int }\left(\text { sketch }\left(i_{1}, i_{2}\right)\right)\right)^{2}\right) /\left(\left((\text { rat-of-nat } p)^{2}-1\right) *\right.\)
rat-of-nat \(\left.s_{1}\right)\) ))
fun f2-space-usage :: (nat \(\times\) nat \(\times\) rat \(\times\) rat \() \Rightarrow\) real where
    f2-space-usage \((n, m, \varepsilon, \delta)=(\)
        let \(s_{1}=\) nat \(\left\lceil 6 / \delta^{2}\right\rceil\) in
        let \(s_{2}=\operatorname{nat}\lceil-(18 * \ln (\) real-of-rat \(\varepsilon))\rceil\) in
        \(3+\)
        \(2 * \log 2\left(s_{1}+1\right)+\)
        \(2 * \log 2\left(s_{2}+1\right)+\)
        \(2 * \log 2(9+2 *\) real \(n)+\)
        \(s_{1} * s_{2} *(5+4 * \log 2(8+2 *\) real \(n)+2 * \log 2(\) real \(m *(18+4 *\) real
\(n)+1)\) )
```

```
definition encode-f2-state :: f2-state \(\Rightarrow\) bool list option where
    encode-f2-state \(=\)
    \(N_{e} \bowtie_{e}\left(\lambda s_{1}\right.\).
    \(N_{e} \bowtie_{e}\left(\lambda s_{2}\right.\)
    \(N_{e} \bowtie_{e}(\lambda p\).
    (List.product \(\left.\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right] \rightarrow_{e} P_{e} p 4\right) \times{ }_{e}\)
    \(\left(\right.\) List.product \(\left.\left.\left.\left.\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right] \rightarrow_{e} I_{e}\right)\right)\right)\right)\)
lemma inj-on encode-f2-state (dom encode-f2-state)
proof -
    have is-encoding encode-f2-state
        unfolding encode-f2-state-def
        by (intro dependent-encoding exp-golomb-encoding fun-encoding list-encoding
int-encoding poly-encoding)
    thus ?thesis
        by (rule encoding-imp-inj)
qed
context
    fixes \(\varepsilon \delta::\) rat
    fixes \(n\) :: nat
    fixes as :: nat list
    fixes result
    assumes \(\varepsilon\)-range: \(\varepsilon \in\{0<. .<1\}\)
    assumes \(\delta\)-range: \(\delta>0\)
    assumes as-range: set as \(\subseteq\{. .<n\}\)
    defines result \(\equiv\) fold \((\lambda a\) state. state \(\gg\) f2-update a) as \((f 2-i n i t \quad \delta\) \& \(n) \gg\)
f2-result
begin
private definition \(s_{1}\) where \(s_{1}=\) nat \(\left\lceil 6 / \delta^{2}\right\rceil\)
lemma s1-gt-0: \(s_{1}>0\)
    using \(\delta\)-range by (simp add: \(s_{1}\)-def)
private definition \(s_{2}\) where \(s_{2}=\) nat \(\lceil-(18 * \ln (\) real-of-rat \(\varepsilon))\rceil\)
lemma s2-gt-0: \(s_{2}>0\)
    using \(\varepsilon\)-range by (simp add: \(s_{2}\)-def)
private definition \(p\) where \(p=\) prime-above \((\max n 3)\)
lemma p-prime: Factorial-Ring.prime \(p\)
    unfolding \(p\)-def using prime-above-prime by blast
lemma \(p\)-ge-3: \(p \geq 3\)
    unfolding \(p\)-def by (meson max.boundedE prime-above-lower-bound)
```

lemma p-gt-0: $p>0$ using $p-g e-3$ by linarith
lemma p-gt-1: $p>1$ using $p-g e-3$ by simp
lemma p-ge- $n: p \geq n$ unfolding p-def
by (meson max.boundedE prime-above-lower-bound)
interpretation carter-wegman-hash-family mod-ring $p 4$
using carter-wegman-hash-familyI[OF mod-ring-is-field mod-ring-finite]
using p-prime by auto
definition sketch where sketch $=$ fold $(\lambda a$ state. state $\gg f 2-u p d a t e ~ a)$ as $(f 2$-init $\delta \varepsilon n)$
private definition Ω where $\Omega=$ prod-pmf $\left(\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right)(\lambda$-. pmf-of-set space)
private definition Ω_{p} where $\Omega_{p}=$ measure-pmf Ω
private definition sketch-rv where sketch-rv $\omega=$ of-int (sum-list (map (f2-hash $p(\omega) a s))^{\text {~2 }}$
private definition mean-rv where mean-rv $\omega=\left(\lambda i_{2} .\left(\sum i_{1}=0 . .<s_{1}\right.\right.$. sketch-rv $\left.\left(\omega\left(i_{1}, i_{2}\right)\right)\right) /\left(\left((\text { of-nat } p)^{2}-1\right) *\right.$ of-nat $\left.\left.s_{1}\right)\right)$
private definition result-rv where result-rv $\omega=$ median $s_{2}\left(\lambda i_{2} \in\left\{. .<s_{2}\right\}\right.$. mean-rv ωi_{2})
lemma mean-rv-alg-sketch:
sketch $=\Omega \gg\left(\lambda \omega\right.$. return-pmf $\left(s_{1}, s_{2}, p, \omega, \lambda i \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right.$. sum-list $(\operatorname{map}(f 2-h a s h p(\omega i)) a s)))$
proof -
have sketch $=$ fold $(\lambda a$ state. state \gg f2-update a) as $(f 2$-init δ ع $n)$
by (simp add:sketch-def)
also have $\ldots=\Omega \gg=\left(\lambda \omega\right.$. return-pmf $\left(s_{1}, s_{2}, p, \omega\right.$,
$\lambda i \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}$. sum-list (map (f2-hash p(ω i)) as)))
proof (induction as rule:rev-induct)
case Nil
then show? case
by (simp add: s_{1}-def s_{2}-def space-def p-def[symmetric] Ω-def restrict-def Let-def)
next
case (snoc a as)
have fold (λ a state. state \gg f2-update a) (as @ $[a])(f 2$-init $\delta \varepsilon n)=\Omega \gg=$
($\lambda \omega$. return-pmf $\left(s_{1}, s_{2}, p, \omega, \lambda s \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\} .\left(\sum x \leftarrow\right.\right.$ as. f2-hash p $\left.\left(\begin{array}{ll}\omega & s)\end{array}\right)\right) \gg=$ f2-update a)
using snoc by (simp add: bind-assoc-pmf restrict-def del:f2-hash.simps f2-init.simps)
also have $\ldots=\Omega \gg\left(\lambda \omega\right.$. return-pmf $\left(s_{1}, s_{2}, p, \omega, \lambda i \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right.$.
$\left(\sum x \leftarrow a s @[a]\right.$. f2-hash $p(\omega$ i) $\left.\left.x)\right)\right)$
by (subst bind-return-pmf) (simp add: add.commute del:f2-hash.simps cong:restrict-cong)
finally show ?case by blast
qed
finally show ?thesis by auto
qed

```
lemma distr: result = map-pmf result-rv \Omega
proof -
    have result = sketch >> f2-result
        by (simp add:result-def sketch-def)
    also have ... = \Omega>> (\lambdax.f2-result ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},p,x,\lambdai\in{..<\mp@subsup{s}{1}{}}\times{..<\mp@subsup{s}{2}{}}.sum-lis
(map (f2-hash p (xi)) as)))
    by (simp add: mean-rv-alg-sketch bind-assoc-pmf bind-return-pmf)
    also have ... = map-pmf result-rv \Omega
    by (simp add:map-pmf-def result-rv-def mean-rv-def sketch-rv-def lessThan-atLeast0
cong:restrict-cong)
    finally show ?thesis by simp
qed
private lemma f2-hash-pow-exp:
    assumes k<p
    shows
        expectation ( }\lambda\omega\mathrm{ . real-of-int (f2-hash p | k) `m) =
            ((real p-1)^ m*(real p+1) +(- real p-1)^ m*(real p-1))/(2*
real p)
proof -
    have odd p using p-prime p-ge-3 prime-odd-nat assms by simp
    then obtain t where t-def: p=2*t+1
    using oddE by blast
    have Collect even \cap{..<2*t+1}\subseteq(*) 2'{..<t+1}
    by (rule in-image-by-witness[where g=\lambdax. x div 2], simp, linarith)
moreover have (*) 2' '{..<t+1}\subseteqCollect even \cap{..<2*t+1}
    by (rule image-subsetI, simp)
    ultimately have card ({k. even k}\cap{..<p})=\operatorname{card}((\lambdax.2*x)'{..<t+1})
    unfolding t-def using order-antisym by metis
also have ... = card {..<t+1}
    by (rule card-image, simp add: inj-on-mult)
also have ... = t+1 by simp
finally have card-even: card ({k. even k} \cap {..<p})=t+1 by simp
hence card ({k. even k}\cap{..<p})* 2 = (p+1) by (simp add:t-def)
hence prob-even: prob {\omega. hash k\omega\inCollect even} = (real p + 1)/(2*real p)
    using assms by (subst prob-range, auto simp:frac-eq-eq p-gt-0 mod-ring-def)
have p= card {..<p} by simp
also have ... = card (({k. odd k}\cap{..<p})\cup({k. even k}\cap{..<p}))
    by (rule arg-cong[where f=card], auto)
also have ... = card ({k. odd k} \cap{..<p})+\operatorname{card}({k. even k}\cap{..<p})
    by (rule card-Un-disjoint, simp, simp, blast)
also have ... = card ({k. odd k}\cap{..<p})+t+1
    by (simp add:card-even)
finally have p=\operatorname{card}({k. odd k}\cap{..<p})+t+1
    by simp
```

hence $\operatorname{card}(\{k$. odd $k\} \cap\{. .<p\}) * 2=(p-1)$
by (simp add:t-def)
hence prob-odd: prob $\{\omega$. hash $k \omega \in$ Collect odd $\}=($ real $p-1) /(2 *$ real $p)$
using assms by (subst prob-range, auto simp add: frac-eq-eq mod-ring-def)
have expectation $(\lambda x$. real-of-int $(f 2-h a s h \quad p x k) ~ \wedge m)=$
expectation $(\lambda \omega$. indicator $\{\omega$. even (hash $k \omega)\} \omega *($ real $p-1) \hat{} m+$ indicator $\{\omega$. odd (hash $k \omega)\} \omega *(-$ real $p-1)$ 〔m)
by (rule Bochner-Integration.integral-cong, simp, simp)
also have ... $=$
prob $\{\omega$. hash $k \omega \in$ Collect even $\} *(\text { real } p-1)^{\wedge} m+$
prob $\{\omega$. hash $k \omega \in$ Collect odd $\} *(-$ real $p-1) \wedge m$
by ($\operatorname{simp}, \operatorname{simp}$ add:M-def)
also have $\ldots=($ real $p+1) *(\text { real } p-1)^{\wedge} m /(2 *$ real $p)+($ real $p-1) *$ $(-\operatorname{real} p-1) \wedge m /(2 *$ real $p)$
by (subst prob-even, subst prob-odd, simp)
also have ... $=$
$\left((\text { real } p-1)^{\wedge} m *(\right.$ real $p+1)+(- \text { real } p-1)^{\wedge} m *($ real $\left.p-1)\right) /(2 *$ real p)
by (simp add:add-divide-distrib ac-simps)
finally show expectation $(\lambda x$. real-of-int $(f 2-h a s h ~ p x k) ~ へ ~ m) ~=~$
$\left((\text { real } p-1)^{\wedge} m *(\right.$ real $p+1)+(- \text { real } p-1)^{\wedge} m *($ real $\left.p-1)\right) /(2 *$ real p) by simp
qed
lemma
shows var-sketch-rv:variance sketch-rv $\leq 2 *\left(\right.$ real-of-rat $\left(\begin{array}{l}\left.\text { 2 as })^{\wedge} 2\right)\end{array} *((\right.$ real $\left.p)^{2}-1\right)^{2}($ is ? $A)$
and exp-sketch-rv:expectation sketch-rv $=$ real-of-rat $(F 2$ as $) *\left((r e a l ~ p)^{2}-1\right)(i s$?B)
proof -
define h where $h=(\lambda \omega$ x. real-of-int $(f 2-h a s h ~ p \omega x))$
define c where $c=(\lambda x$. real (count-list as $x))$
define r where $r=(\lambda(m:: n a t)$. (real $p-1) \wedge m *($ real $p+1)+(-$ real p $-1)^{\wedge} m *($ real $\left.p-1)\right) /(2 *$ real $\left.p)\right)$
define h-prod where h-prod $=($ (as ω. prod-list $(\operatorname{map}(h \omega)$ as) $)$
define exp-h-prod $::$ nat list \Rightarrow real where exp-h-prod $=\left(\lambda a s . ~\left(\prod i \in\right.\right.$ set as. r (count-list as $i)$))
have f-eq: sketch-rv $=\left(\lambda \omega\right.$. $\left(\sum x \in \text { set as. } c x * h \omega x\right)^{\wedge}$ 2 $)$
by (rule ext, simp add:sketch-rv-def c-def h-def sum-list-eval del:f2-hash.simps)
have r-one: $r($ Suc 0$)=0$
by (simp add:r-def algebra-simps)
have r-two: $r 2=\left(\right.$ real $\left.p^{\wedge} 2-1\right)$
using p-gt-0 unfolding r-def power2-eq-square
by (simp add:nonzero-divide-eq-eq, simp add:algebra-simps)
have $(\text { real } p)^{\wedge} 2 \geq 2$ 2 $_{2}$
by (rule power-mono, use p-gt-1 in linarith, simp)
hence p-square-ge-4: $(\text { real } p)^{2} \geq 4$ by simp
have $r 4=(\text { real } p)^{\wedge} 4+2 *(\text { real } p)^{2}-3$
using p-gt- 0 unfolding r-def
by (subst nonzero-divide-eq-eq, auto simp:power4-eq-xxxx power2-eq-square al-gebra-simps)
also have $\ldots \leq(\text { real } p)^{\wedge} 4+2 *(\text { real } p)^{2}+3$
by simp
also have $\ldots \leq 3 * r 2 * r 2$
using p-square-ge-4
by (simp add:r-two power4-eq-xxxx power2-eq-square algebra-simps mult-left-mono)
finally have r-four-est: $r 4 \leq 3 * r 2 * r 2$ by simp
have exp-h-prod-elim: exp-h-prod $=$ (λ as. prod-list $($ map $(r \circ$ count-list as) (remdups as)))
by (simp add:exp-h-prod-def prod.set-conv-list[symmetric])
have exp-h-prod: $\bigwedge x$. set $x \subseteq$ set as \Longrightarrow length $x \leq 4 \Longrightarrow$ expectation (h-prod $x)=\exp -h-p r o d x$
proof -
fix x
assume set $x \subseteq$ set as
hence x-sub-p: set $x \subseteq\{. .<p\}$ using as-range p-ge-n by auto
hence x-le- $p: \bigwedge k . k \in$ set $x \Longrightarrow k<p$ by auto
assume length $x \leq 4$
hence card-x: card $($ set $x) \leq 4$ using card-length dual-order.trans by blast
have set $x \subseteq$ carrier (mod-ring p) using x-sub-p by (simp add:mod-ring-def)
hence h-indep: indep-vars (λ-. borel) ($\lambda i \omega . h \omega{ }^{\wedge}$ ^count-list $\left.x i\right)($ set $x)$ using k-wise-indep-vars-subset[OF k-wise-indep] card-x as-range h-def by (auto intro:indep-vars-compose2 $\left[\right.$ where $X=$ hash and $M^{\prime}=(\lambda$-. discrete $\left.)\right]$)
have expectation $(h-p r o d x)=\operatorname{expectation}\left(\lambda \omega . \prod i \in \operatorname{set} x . h \omega i^{`}(\right.$ count-list $x i)$)
by (simp add:h-prod-def prod-list-eval)
also have $\ldots=\left(\prod i \in\right.$ set x. expectation $\left(\lambda \omega . h \omega i^{\wedge}(\right.$ count-list $\left.\left.x i)\right)\right)$
by (simp add: indep-vars-lebesgue-integral $[O F-h$-indep $]$)
also have $\ldots=\left(\prod i \in\right.$ set $x . r($ count-list $\left.x i)\right)$
using f2-hash-pow-exp x-le-p
by (simp add:h-def r-def M-def[symmetric] del:f2-hash.simps)
also have...$=\exp -h-p r o d x$
by (simp add:exp-h-prod-def)
finally show expectation (h-prod x) $=$ exp- h-prod x by simp qed

```
have \(\backslash x y\). kernel-of \(x=\) kernel-of \(y \Longrightarrow\) exp-h-prod \(x=\) exp-h-prod \(y\)
proof -
    fix \(x y\) :: nat list
    assume a:kernel-of \(x=\) kernel-of \(y\)
    then obtain \(f\) where b:bij-betw \(f(\) set \(x)(\) set \(y)\) and \(c: \wedge z . z \in\) set \(x \Longrightarrow\)
count-list \(x z=\) count-list \(y(f z)\)
using kernel-of-eq-imp-bij by blast
    have exp-h-prod \(x=\operatorname{prod}((\lambda i . r(\) count-list \(y i)) \circ f)(\) set \(x)\)
        by (simp add:exp-h-prod-def c)
    also have \(\ldots=\left(\prod_{i \in f}\right.\) ' \((\) set \(x) . r(\) count-list \(\left.y i)\right)\)
        by (metis b bij-betw-def prod.reindex)
    also have \(\ldots=\) exp- \(h\)-prod \(y\)
        unfolding exp-h-prod-def
        by (rule prod.cong, metis b bij-betw-def) simp
    finally show exp-h-prod \(x=\) exp-h-prod \(y\) by simp
qed
    hence exp-h-prod-cong: \(\wedge p x\). of-bool (kernel-of \(x=\) kernel-of \(p) * \exp -h\)-prod \(p\)
=
    of-bool (kernel-of \(x=\) kernel-of \(p\) ) * exp-h-prod \(x\)
    by (metis (full-types) of-bool-eq-0-iff vector-space-over-itself.scale-zero-left)
have \(c:\left(\sum p \leftarrow\right.\) enum-rgfs \(n\). of-bool (kernel-of xs \(=\) kernel-of \(\left.\left.p\right) * r\right)=r\)
    if \(a:\) length \(x s=n\) for \(x s::\) nat list and \(n\) and \(r::\) real
proof -
    have \(\left(\sum p \leftarrow\right.\) enum-rgfs \(n\). of-bool \((\) kernel-of \(x s=\) kernel-of \(\left.p) * 1\right)=(1:: r e a l)\)
        using equiv-rels-2 [OF a[symmetric]] by (simp add:equiv-rels-def comp-def)
    thus \(\left(\sum p \leftarrow\right.\) enum-rgfs \(n\). of-bool (kernel-of \(x s=\) kernel-of \(\left.\left.p\right) * r\right)=(r::\) real \()\)
        by (simp add:sum-list-mult-const)
qed
```

have expectation sketch-rv $=\left(\sum i \in\right.$ set as. ($\sum j \in$ set as. c $i * c j *$ expectation (h-prod $[i, j])$)
by (simp add:f-eq h-prod-def power2-eq-square sum-distrib-left sum-distrib-right Bochner-Integration.integral-sum algebra-simps)
also have $\ldots=\left(\sum i \in\right.$ set as. $\left(\sum j \in\right.$ set as. $c i * c j *$ exp-h-prod $\left.\left.[i, j]\right)\right)$
by (simp add: exp-h-prod)
also have $\ldots=\left(\sum i \in\right.$ set as. $\left(\sum j \in\right.$ set as.
$c i * c j *(s u m-l i s t)(m a p(\lambda p$. of-bool (kernel-of $[i, j]=$ kernel-of $p) *$ exp- h-prod p) (enum-rgfs 2)))))
by (subst exp-h-prod-cong, simp add:c)
also have $\ldots=\left(\sum i \in\right.$ set as. $\left.c i * c i * r 2\right)$
by (simp add: numeral-eq-Suc kernel-of-eq All-less-Suc exp-h-prod-elim r-one distrib-left sum.distrib sum-collapse)
also have $\ldots=$ real-of-rat $(F 2$ as $) *(($ real $p) \wedge 2-1)$
by (simp add: sum-distrib-right[symmetric] c-def F-def power2-eq-square of-rat-sum of-rat-mult r-two)
finally show b :?B by simp
have expectation $\left(\lambda x .(\text { sketch-rv } x)^{2}\right)=\left(\sum i 1 \in\right.$ set as. $\left(\sum i 2 \in\right.$ set as. $\left(\sum i 3 \in\right.$ set as. $\left(\sum i_{4} \in\right.$ set as.
$c i 1 * c i 2 * c i 3 * c i 4 * \operatorname{expectation}(h-p r o d[i 1, i 2, i 3, i 4])))))$
by (simp add:f-eq h-prod-def power4-eq-xxxx sum-distrib-left sum-distrib-right Bochner-Integration.integral-sum algebra-simps)
also have $\ldots=\left(\sum i 1 \in\right.$ set as. $\left(\sum i 2 \in\right.$ set as. $\left(\sum i 3 \in\right.$ set as. $\left(\sum i 4 \in\right.$ set as. $c i 1 * c i 2 * c i 3 * c i 4 * \exp -h-\operatorname{prod}[i 1, i 2, i 3, i 4]))))$
by (simp add:exp-h-prod)
also have $\ldots=\left(\sum i 1 \in\right.$ set as. $\left(\sum i 2 \in\right.$ set as. $\left(\sum i 3 \in\right.$ set as. $\left(\sum i 4 \in\right.$ set as. $c i 1 * c i 2 * c i 3 * c i 4 *$
(sum-list (map (λ p. of-bool (kernel-of $\left[\right.$ i1,, i2, $\left., i 3, i_{4}\right]=$ kernel-of $\left.p\right) *$ exp-h-prod p) $($ enum-rgfs 4)))))))
by (subst exp-h-prod-cong, simp add:c)
also have ... $=$
 ci^4*r4)-3* (
apply (simp add: numeral-eq-Suc exp-h-prod-elim r-one)
apply (simp add: kernel-of-eq All-less-Suc numeral-eq-Suc distrib-left sum.distrib sum-collapse neq-commute of-bool-not-iff)
apply (simp add: algebra-simps sum-subtractf sum-collapse)
apply (simp add: sum-distrib-left algebra-simps)
done
also have $\ldots=3 *\left(\sum i \in \text { set as. c i^2 } * \text { r2 2 }\right)^{2} 2+\left(\sum i \in\right.$ set as. $c i^{\wedge} 4 *(r$ $4-3 * r 2 * r 2))$
by (simp add:power2-eq-square sum-distrib-left algebra-simps sum-subtractf)
also have $\ldots=3 *\left(\sum i \in\right.$ set as. c i^2 $)$ へ2 $*(r$ 2 $)$ ^2 $+\left(\sum i \in\right.$ set as. $c i \wedge 4$

* $\left.\left(r_{4}-3 * r 2 * r 2\right)\right)$
by (simp add:power-mult-distrib sum-distrib-right[symmetric])
also have $\ldots \leq 3 *\left(\sum i \in \text { set as. c } \boldsymbol{i}^{\wedge} 2\right)^{\wedge} 2 *(r 2) \wedge 2+\left(\sum i \in\right.$ set as. $c i^{\wedge} 4$ * 0)
using r-four-est
by (auto intro!: sum-nonpos simp add:mult-nonneg-nonpos)
also have $\ldots=3 *\left(\right.$ real-of-rat $\left.(F 2 \text { as })^{\wedge} 2\right) *\left((\text { real p })^{2}-1\right)^{2}$
by (simp add:c-def r-two F-def of-rat-sum of-rat-power)
finally have expectation $\left(\lambda x\right.$. $\left.(\text { sketch-rv } x)^{2}\right) \leq 3 *\left(\right.$ real-of-rat $(F$ 2 as $\left.) \wedge_{2}\right) *$ $\left((\text { real } p)^{2}-1\right)^{2}$
by simp
thus variance sketch-rv $\leq 2 *\left(\right.$ real-of-rat $(F$ 2 as $\left.) \wedge_{2}^{2}\right) *\left((\text { real p })^{2}-1\right)^{2}$
by (simp add: variance-eq, simp add:power-mult-distrib b)
qed
lemma space-omega-1 [simp]: Sigma-Algebra.space $\Omega_{p}=$ UNIV
by (simp add: Ω_{p}-def)
interpretation Ω : prob-space Ω_{p}
by (simp add: Ω_{p}-def prob-space-measure-pmf)

```
lemma integrable-\Omega:
    fixes f :: ((nat \times nat) => (nat list)) => real
    shows integrable }\mp@subsup{\Omega}{p}{}
    unfolding }\mp@subsup{\Omega}{p}{}\mathrm{ -def }\Omega\mathrm{ -def
    by (rule integrable-measure-pmf-finite, auto intro:finite-PiE simp:set-prod-pmf)
lemma sketch-rv-exp:
    assumes i2< s,
    assumes }\mp@subsup{i}{1}{}\in{0..<\mp@subsup{s}{1}{}
    shows \Omega.expectation ( }\lambda\omega\mathrm{ . sketch-rv ( }\omega(\mp@subsup{i}{1}{},\mp@subsup{i}{2}{})))=real-of-rat (F 2 as) * ((real
p)}\mp@subsup{}{}{2}-1
proof -
    have \Omega.expectation ( }\lambda\omega\mathrm{ . (sketch-rv ( }\omega(\mp@subsup{i}{1}{},\mp@subsup{i}{2}{}))) :: real) = expectation sketch-rv
        using integrable-\Omega integrable-M assms
        unfolding }\Omega\mathrm{ -def }\mp@subsup{\Omega}{p}{}\mathrm{ -def M-def
        by (subst expectation-Pi-pmf-slice, auto)
    also have ... =(real-of-rat (F 2 as)) * ((real p)}\mp@subsup{)}{}{2}-1
        using exp-sketch-rv by simp
    finally show ?thesis by simp
qed
lemma sketch-rv-var:
    assumes i2 < s2
    assumes i}\mp@subsup{i}{1}{}\in{0..<\mp@subsup{s}{1}{}
    shows \Omega.variance (\lambda\omega. sketch-rv (\omega (i, i, i2)))\leq2 * (real-of-rat (F 2 as))}\mp@subsup{)}{}{2}
((real p) 2 - 1) 2
proof -
    have \Omega.variance ( }\lambda\omega\mathrm{ . (sketch-rv ( }\omega(\mp@subsup{i}{1}{},\mp@subsup{i}{2}{})):: real))= variance sketch-rv
        using integrable-\Omega integrable-M assms
        unfolding }\Omega\mathrm{ -def }\mp@subsup{\Omega}{p}{}\mathrm{ -def M-def
        by (subst variance-prod-pmf-slice, auto)
    also have ... \leq2*(real-of-rat (F 2 as))}\mp@subsup{)}{}{2}*((\mathrm{ real p)2 - 1) 2
        using var-sketch-rv by simp
    finally show ?thesis by simp
qed
lemma mean-rv-exp:
    assumes i< s2
    shows \Omega.expectation ( }\lambda\omega\mathrm{ . mean-rv }\omega\mathrm{ i) = real-of-rat (F 2 as)
proof -
    have a:(real p) '}>1\mathrm{ using p-gt-1 by simp
    have \Omega.expectation ( }\lambda\omega\mathrm{ . mean-rv }\omegai)=(\sum\mp@subsup{i}{1}{}=0..<\mp@subsup{s}{1}{}.\Omega.expectation ( \lambda\omega
sketch-rv (\omega (i,i)))) / (((real p)}\mp@subsup{)}{}{2}-1)*\mathrm{ real s}\mp@subsup{s}{1}{}
    using assms integrable-\Omega by (simp add:mean-rv-def)
    also have ... = (\sum i i = 0..<s1. real-of-rat (F 2 as ) * ((real p) 2 - 1 )) / (((real
p)}\mp@subsup{}{}{2}-1)* real s s )
    using sketch-rv-exp[OF assms] by simp
    also have ... = real-of-rat (F 2 as)
```

using s1-gt-0 a by simp
finally show ?thesis by simp
qed
lemma mean-rv-var:
assumes $i<s_{2}$
shows Ω.variance $(\lambda \omega$. mean-rv $\omega i) \leq(\text { real-of-rat }(\delta * F 2 a s))^{2} / 3$
proof -
have a : Ω.indep-vars (λ-. borel) $\left(\lambda i_{1} x\right.$. sketch-rv $\left.\left(x\left(i_{1}, i\right)\right)\right)\left\{0 . .<s_{1}\right\}$
using assms
unfolding Ω_{p}-def Ω-def
by (intro indep-vars-restrict-intro' $[$ where $f=f s t]$)
(auto simp add: restrict-dfl-def case-prod-beta lessThan-atLeast0)
have p-sq-ne-1: $(\text { real } p)^{\wedge} 2 \neq 1$
by (metis p-gt-1 less-numeral-extra(4) of-nat-power one-less-power pos2 semir-ing-char-0-class.of-nat-eq-1-iff)
have s1-bound: $6 /(\text { real-of-rat } \delta)^{2} \leq$ real s_{1} unfolding s_{1}-def
by (metis (mono-tags, opaque-lifting) of-rat-ceiling of-rat-divide of-rat-numeral-eq of-rat-power real-nat-ceiling-ge)
have Ω.variance $(\lambda \omega$. mean-rv $\omega i)=\Omega$.variance $\left(\lambda \omega . \sum i_{1}=0 . .<s_{1}\right.$. sketch-rv $\left.\left(\omega\left(i_{1}, i\right)\right)\right) /\left(\left((\text { real } p)^{2}-1\right) * \text { real } s_{1}\right)^{2}$
unfolding mean-rv-def by (subst Ω.variance-divide $[$ OF integrable- Ω], simp)
also have $\ldots=\left(\sum i_{1}=0 . .<s_{1}\right.$. S.variance $\left(\lambda \omega\right.$. sketch-rv $\left.\left.\left(\omega\left(i_{1}, i\right)\right)\right)\right) /((($ real $\left.p)^{2}-1\right) *$ real $\left.s_{1}\right)^{2}$
by (subst Ω.bienaymes-identity-full-indep $[O F-$ - integrable- Ω a]) (auto simp: Ω-def Ω_{p}-def)
also have $\ldots \leq\left(\sum i_{1}=0 . .<s_{1} .2 *\left(\right.\right.$ real-of-rat $\left.\left.(\text { F 2 as })^{\wedge} 2\right) *\left((\text { real p })^{2}-1\right)^{2}\right) \quad /$ $\left(\left((\text { real } p)^{2}-1\right) * \text { real } s_{1}\right)^{2}$
by (rule divide-right-mono, rule sum-mono[OF sketch-rv-var[OF assms]], auto)
also have $\ldots=2 *\left(\right.$ real-of-rat $\left.(F 2 \mathrm{as})^{\wedge} 2\right) /$ real s_{1}
using p-sq-ne-1 s1-gt-0 by (subst frac-eq-eq, auto simp:power2-eq-square)
also have $\ldots \leq 2 *\left(\right.$ real-of-rat $\left.(F 2 \text { as })^{\wedge} 2\right) /\left(6 /(\text { real-of-rat } \delta)^{2}\right)$
using s1-gt-0 δ-range by (intro divide-left-mono mult-pos-pos s1-bound) auto
also have $\ldots=(\text { real-of-rat }(\delta * F 2 a s))^{2} / 3$
by (simp add:of-rat-mult algebra-simps)
finally show?thesis by simp
qed
lemma mean-rv-bounds:
assumes $i<s_{2}$
shows Ω.prob $\{\omega$. real-of-rat $\delta *$ real-of-rat (F2as) $<\mid$ mean-rv ωi - real-of-rat (F2as) |\} $\leq 1 / 3$
proof (cases as $=[])$
case True
then show?thesis
using assms by (subst mean-rv-def, subst sketch-rv-def, simp add:F-def) next
case False
hence $F 2$ as >0 using $F-g r-0$ by auto
hence a: $0<$ real-of-rat $(\delta * F 2$ as $)$
using δ-range by simp
have $[$ simp $]:(\lambda \omega$. mean-rv $\omega i) \in$ borel-measurable Ω_{p}
by (simp add: Ω-def Ω_{p}-def)
have Ω.prob $\{\omega$. real-of-rat $\delta *$ real-of-rat $(F 2$ as $)<\mid$ mean-rv ωi - real-of-rat $(F$ 2 as $) \mid\} \leq$ $\Omega . p r o b\{\omega$. real-of-rat $(\delta * F 2$ as $) \leq \mid$ mean-rv $\omega i-$ real-of-rat $(F 2 a s) \mid\}$
by (rule $\Omega . p m f-m o n o\left[O F ~ \Omega_{p}\right.$-def], simp add:of-rat-mult)
also have $\ldots \leq \Omega$.variance $(\lambda \omega$. mean-rv $\omega i) /(\text { real-of-rat }(\delta * F 2 a s))^{2}$
using Ω.Chebyshev-inequality[where $a=$ real-of-rat $(\delta * F 2$ as) and $f=\lambda \omega$. mean-rv ω i,simplified]
a prob-space-measure-pmf[where $p=\Omega]$ mean-rv-exp $[$ OF assms $]$ integrable- Ω
by simp
also have $\ldots \leq\left((\text { real-of-rat }(\delta * F 2 a s))^{2} /\right.$ 3) $/(\text { real-of-rat }(\delta * F \text { 2 as }))^{2}$
by (rule divide-right-mono, rule mean-rv-var[OF assms], simp)
also have $\ldots=1 / 3$ using a by force
finally show ?thesis by blast

qed

lemma fD-alg-correct':
$\mathcal{P}(\omega$ in measure-pmf result. $|\omega-F 2 a s| \leq \delta * F 2 a s) \geq 1-$ of-rat ε
proof -
have a : $\Omega . i n d e p-v a r s(\lambda$-. borel $)(\lambda i \omega$. mean-rv $\omega i)\left\{0 . .<s_{2}\right\}$
using s1-gt-0 unfolding Ω_{p}-def Ω-def
by (intro indep-vars-restrict-intro' $[$ where $f=s n d]$)
(auto simp: Ω_{p}-def Ω-def mean-rv-def restrict-dfl-def)
have $b:-18 * \ln ($ real-of-rat $\varepsilon) \leq$ real s_{2}
unfolding s_{2}-def using of-nat-ceiling by auto
have 1 - of-rat $\varepsilon \leq \Omega$.prob $\left\{\omega\right.$. |median $s_{2}($ mean-rv $\omega)$ - real-of-rat (F 2 as) $\mid \leq$ of-rat $\delta *$ of-rat (F 2 as) $\}$
using ε-range Ω.median-bound-2[OF -ab, where $\delta=$ real-of-rat $\delta *$ real-of-rat (F2as)
and $\mu=$ real-of-rat (F2as)] mean-rv-bounds
by simp
also have $\ldots=\Omega . \operatorname{prob}\{\omega$. |real-of-rat (result-rv ω) - of-rat (F2as) $\mid \leq o f$-rat $\delta *$ of-rat (F 2 as) $\}$
by (simp add:result-rv-def median-restrict lessThan-atLeast0 median-rat[OF s2-gt-0]
mean-rv-def sketch-rv-def of-rat-divide of-rat-sum of-rat-mult of-rat-diff of-rat-power)
also have $\ldots=\Omega$. prob $\{\omega$. \mid result-rv $\omega-F 2 a s \mid \leq \delta * F 2 a s\}$
by (simp add:of-rat-less-eq of-rat-mult[symmetric] of-rat-diff[symmetric] set-eq-iff)

```
    finally have \(\Omega . \operatorname{prob}\{y . \mid\) result-rv \(y-F 2 a s \mid \leq \delta * F 2 a s\} \geq 1\)-of-rat \(\varepsilon\) by
simp
    thus ?thesis by (simp add: distr \(\Omega_{p}\)-def)
qed
lemma f2-exact-space-usage':
    AE \(\omega\) in sketch . bit-count (encode-f2-state \(\omega\) ) \(\leq\) f2-space-usage ( \(n\), length as, \(\varepsilon\),
ס)
proof -
    have \(p \leq 2 * \max n 3+2\)
    by (subst p-def, rule prime-above-upper-bound)
    also have \(\ldots \leq 2 * n+8\)
    by (cases \(n \leq 2\), simp-all)
    finally have \(p\)-bound: \(p \leq 2 * n+8\)
    by simp
    have bit-count \(\left(N_{e} p\right) \leq \operatorname{ereal}(2 * \log 2(\) real \(p+1)+1)\)
    by (rule exp-golomb-bit-count)
    also have \(\ldots \leq \operatorname{ereal}(2 * \log 2(2 *\) real \(n+9)+1)\)
    using \(p\)-bound by simp
    finally have \(p\)-bit-count: bit-count \(\left(N_{e} p\right) \leq \operatorname{ereal}(2 * \log 2(2 *\) real \(n+9)\)
\(+1)\)
    by \(\operatorname{simp}\)
    have \(a\) : bit-count (encode-f2-state \(\left(s_{1}, s_{2}, p, y, \lambda i \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right.\).
        sum-list \((\operatorname{map}(f 2-h a s h p(y i))\) as) \()) \leq\) ereal \((f 2\)-space-usage \((n\), length as, \(\varepsilon\),
\(\delta)\) )
    if \(a: y \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\} \rightarrow_{E}\) bounded-degree-polynomials (mod-ring \(p\) ) 4 for \(y\)
    proof -
    have \(y \in\) extensional \(\left(\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right)\) using a PiE-iff by blast
    hence \(y\)-ext: \(y \in\) extensional (set (List.product \(\left.\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right]\right)\) )
        by (simp add:lessThan-atLeast0)
    have \(h\)-bit-count-aux: bit-count \(\left(P_{e} p 4(y x)\right) \leq \operatorname{ereal}(4+4 * \log 2(8+2\)
* real \(n\) ))
    if \(b: x \in \operatorname{set}\left(\right.\) List.product \(\left.\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right]\right)\) for \(x\)
    proof -
        have \(y x \in\) bounded-degree-polynomials (mod-ring \(p\) ) 4
        using \(b a\) by force
    hence bit-count \(\left(P_{e} p 4(y x)\right) \leq \operatorname{ereal}(\) real \(4 *(\log 2(\) real \(p)+1))\)
        by (rule bounded-degree-polynomial-bit-count[OF p-gt-1] )
    also have \(\ldots \leq \operatorname{ereal}(\operatorname{real} 4 *(\log 2(8+2 * \operatorname{real} n)+1))\)
        using p-gt-0 p-bound by simp
    also have \(\ldots \leq \operatorname{ereal}(4+4 * \log 2(8+2 *\) real \(n))\)
        by \(\operatorname{simp}\)
    finally show ?thesis
        by blast
    qed
have \(h\)-bit-count:
```

bit-count $\left(\left(\right.\right.$ List.product $\left.\left.\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right] \rightarrow_{e} P_{e} p_{4}\right) y\right) \leq$ ereal $\left(\right.$ real $s_{1} *$ real $s_{2} *(4+4 * \log 2(8+2 *$ real $\left.n))\right)$
using fun-bit-count-est[where $e=P_{e} p$ 4, OF y-ext h-bit-count-aux]
by simp
have sketch-bit-count-aux:
bit-count $\left(I_{e}(\right.$ sum-list $\left.(\operatorname{map}(f 2-h a s h p(y x)) a s))\right) \leq \operatorname{ereal}(1+2 * \log 2$ $($ real $($ length as $) *(18+4 *$ real $n)+1))($ is ?lhs \leq ? rhs $)$
if $x \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}$ for x
proof -
have \mid sum-list (map (f2-hash $p(y x))$ as) $\mid \leq$ sum-list (map (abs \circ (f2-hash p $(y x))) a s$)
by (subst map-map $[$ symmetric $]$) (rule sum-list-abs)
also have $\ldots \leq$ sum-list $(\operatorname{map}(\lambda$-. (int $p+1))$ as)
by (rule sum-list-mono) (simp add:p-gt-0)
also have $\ldots=$ int (length as) $*($ int $p+1)$
by (simp add: sum-list-triv)
also have $\ldots \leq$ int $($ length as $) *(9+2 *($ int $n))$
using p-bound by (intro mult-mono, auto)
finally have \mid sum-list (map (f2-hash $p(y x))$ as) $\mid \leq \operatorname{int}$ (length as) * $(9+$ 2 * int n) by simp
hence ?lhs $\leq \operatorname{ereal}(2 * \log 2($ real-of-int $(2 *($ int $($ length as $) *(9+2 *$ int $n)(+1))+1)$
by (rule int-bit-count-est)
also have $\ldots=$?rhs by (simp add:algebra-simps)
finally show ?thesis by simp
qed
have
bit-count ((List.product $\left.\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right] \rightarrow_{e} I_{e}\right)\left(\lambda i \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right.$. sum-list (map (fo-hash p(y i)) as)))
\leq ereal $\left(\right.$ real $\left(\right.$ length $\left(\right.$ List.product $\left.\left.\left.\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right]\right)\right)\right) *($ ereal $(1+2 * \log 2$ $($ real $($ length as $) *(18+4 *$ real $n)+1)))$
by (intro fun-bit-count-est)
(simp-all add:extensional-def lessThan-atLeast0 sketch-bit-count-aux del:f2-hash.simps)
also have $\ldots=\operatorname{ereal}\left(\right.$ real $s_{1} *$ real $s_{2} *(1+2 * \log 2($ real (length as) $*(18$ $+4 *$ real $n)+1))$)
by simp
finally have sketch-bit-count:
bit-count (List.product $\left.\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right] \rightarrow_{e} I_{e}\right)\left(\lambda i \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right.$. sum-list $(\operatorname{map}($ fo-hash $p(y i))$ as) $)) \leq$
ereal $\left(\right.$ real $s_{1} *$ real $s_{2} *(1+2 * \log 2($ real $($ length as $) *(18+4 *$ real $n)$ $+1))$) by simp
have bit-count (encode-f2-state $\left(s_{1}, s_{2}, p, y, \lambda i \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right.$. sum-list $(\operatorname{map}(f 2-h a s h p(y i)) a s))) \leq$
bit-count $\left(N_{e} s_{1}\right)+$ bit-count $\left(N_{e} s_{2}\right)+$ bit-count $\left(N_{e} p\right)+$
bit-count (List.product $\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right] \rightarrow_{e} P_{e} p 4$ 4) y) +
bit-count $\left(\left(\right.\right.$ List.product $\left.\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right] \rightarrow_{e} I_{e}\right)\left(\lambda i \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right.$.

```
sum-list (map (f0-hash p (y i)) as)))
```

by (simp add:Let-def s_{1}-def s_{2}-def encode-f2-state-def dependent-bit-count add.assoc)
also have $\ldots \leq \operatorname{ereal}\left(2 * \log 2\left(\right.\right.$ real $\left.\left.s_{1}+1\right)+1\right)+\operatorname{ereal}\left(2 * \log 2\left(\right.\right.$ real s_{2} $+1)+1)+\operatorname{ereal}(2 * \log 2(2 *$ real $n+9)+1)+$
$\left(\right.$ ereal $\left(\right.$ real $s_{1} *$ real $\left.s_{2}\right) *(4+4 * \log 2(8+2 *$ real $\left.n))\right)+$
$\left(\right.$ ereal $\left(\right.$ real $s_{1} *$ real $\left.s_{2}\right) *(1+2 * \log 2($ real $($ length as $) *(18+4 *$ real $n)+1)$)
by (intro add-mono exp-golomb-bit-count p-bit-count, auto intro: h-bit-count sketch-bit-count)
also have $\ldots=$ ereal (f2-space-usage (n, length as, ε, δ)
by (simp add:distrib-left add.commute s_{1}-def[symmetric] s_{2}-def[symmetric] Let-def)
finally show bit-count (encode-f2-state $\left(s_{1}, s_{2}, p, y, \lambda i \in\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\}\right.$. sum-list $(\operatorname{map}(f 2-h a s h ~ p(y i))$ as $))) \leq$ ereal (f2-space-usage (n, length as, ε, δ)
by simp
qed
have set-pmf $\Omega=\left\{. .<s_{1}\right\} \times\left\{. .<s_{2}\right\} \rightarrow_{E}$ bounded-degree-polynomials (mod-ring p) 4
by (simp add: Ω-def set-prod-pmf) (simp add: space-def)
thus ?thesis
by (simp add:mean-rv-alg-sketch AE-measure-pmf-iff del:f2-space-usage.simps, metis a)
qed
end
Main results of this section:
theorem f2-alg-correct:
assumes $\varepsilon \in\{0<. .<1\}$
assumes $\delta>0$
assumes set as $\subseteq\{. .<n\}$
defines $\Omega \equiv$ fold (λ a state. state \gg f2-update a) as $(f 2-i n i t \quad \delta$ ह $n) \gg$ f2-result shows $\mathcal{P}(\omega$ in measure-pmf Ω. $\mid \omega-F 2$ as $\mid \leq \delta * F 2$ as $) \geq 1$-of-rat ε
using f2-alg-correct ${ }^{[}[\operatorname{OF} \operatorname{assms}(1,2,3)] \Omega$-def by auto
theorem f0-exact-space-usage:
assumes $\varepsilon \in\{0<. .<1\}$
assumes $\delta>0$
assumes set as $\subseteq\{. .<n\}$
defines $M \equiv$ fold (λ a state. state \gg f2-update a) as (f2-init δ ع n)
shows $A E \omega$ in M. bit-count (encode-f2-state ω) \leq f2-space-usage (n, length as,
$\varepsilon, \delta)$
using f2-exact-space-usage'[OF $\operatorname{assms}(1,2,3)]$
by (subst (asm) sketch-def[OF assms(1,2,3)], subst M-def, simp)
theorem f2-asymptotic-space-complexity:
f2-space-usage $\in O\left[\right.$ at-top \times_{F} at-top \times_{F} at-right $0 \times_{F}$ at-right 0$](\lambda(n, m, \varepsilon, \delta)$.
$(\ln (1 /$ of-rat $\varepsilon)) /(\text { of-rat } \delta)^{2} *(\ln ($ real $n)+\ln ($ real m$\left.))\right)$
(is $-\in O[? F]($?rhs $)$)
proof -
define n-of $::$ nat \times nat \times rat \times rat \Rightarrow nat where n-of $=(\lambda(n, m, \varepsilon, \delta) . n)$
define m-of $::$ nat \times nat \times rat $\times r a t \Rightarrow n a t$ where m-of $=(\lambda(n, m, \varepsilon, \delta) . m)$
define ε-of :: nat \times nat \times rat \times rat \Rightarrow rat where ε-of $=(\lambda(n, m, \varepsilon, \delta) . \varepsilon)$
define δ-of :: nat \times nat \times rat \times rat \Rightarrow rat where δ-of $=(\lambda(n, m, \varepsilon, \delta) . \delta)$
define g where $g=\left(\lambda x\right.$. $\left.1 /(\text { of-rat }(\delta \text {-of } x))^{2}\right) *(\ln (1 /$ of-rat $(\varepsilon$-of $x))) *(\ln$ $($ real $(n$-of $x))+\ln ($ real $(m$-of $x))))$
have evt: ($\bigwedge x$.
$0<$ real-of-rat $(\delta$-of $x) \wedge 0<$ real-of-rat $(\varepsilon-o f x) \wedge$
$1 /$ real-of-rat $(\delta$-of $x) \geq \delta \wedge 1 /$ real-of-rat $(\varepsilon$-of $x) \geq \varepsilon \wedge$
real $(n$-of $x) \geq n \wedge$ real $(m$-of $x) \geq m \Longrightarrow P x)$
\Longrightarrow eventually P ? $F($ is $(\bigwedge x$. ?prem $x \Longrightarrow-) \Longrightarrow-)$
for $\delta \varepsilon n m P$
apply (rule eventually-mono[where $P=$?prem and $Q=P]$)
apply (simp add: ε-of-def case-prod-beta' δ-of-def n-of-def m-of-def)
apply (intro eventually-conj eventually-prod1' eventually-prod2'
sequentially-inf eventually-at-right-less inv-at-right-0-inf)
by (auto simp add:prod-filter-eq-bot)
have unit-1: $(\lambda-.1) \in O[? F]\left(\lambda x .1 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right)$
using one-le-power
by (intro landau-o.big-mono evt[where $\delta=1$], auto simp add:power-one-over[symmetric])
have unit-2: $(\lambda-.1) \in O[? F](\lambda x$. ln $(1 /$ real-of-rat $(\varepsilon$-of $x)))$
by (intro landau-o.big-mono evt[where $\varepsilon=\exp 1])$
(auto intro!:iffD2[OF ln-ge-iff] simp add:abs-ge-iff)
have unit-3: $(\lambda-.1) \in O[? F](\lambda x$. real $(n$-of $x))$
by (intro landau-o.big-mono evt, auto)
have unit-4: $(\lambda$-. 1$) \in O[? F](\lambda x$. real $(m-o f x))$
by (intro landau-o.big-mono evt, auto)
have unit-5: $(\lambda-.1) \in O[? F](\lambda x$. $\ln ($ real $(n$-of $x)))$
by (auto intro!: landau-o.big-mono evt[where $n=\exp 1])$
(metis abs-ge-self linorder-not-le ln-ge-iff not-exp-le-zero order.trans)
have unit-6: $(\lambda-.1) \in O[? F](\lambda x . \ln ($ real $(n-o f x))+\ln ($ real $(m-o f x)))$
by (intro landau-sum-1 evt unit-5 iffD2[OF ln-ge-iff $]$, auto)
have unit-7: $(\lambda$-. 1$) \in O[? F](\lambda x .1 /$ real-of-rat $(\varepsilon$-of $x))$
by (intro landau-o.big-mono evt[where $\varepsilon=1]$, auto)
have unit- $8:(\lambda-.1) \in O[? F](g)$
unfolding g-def by (intro landau-o.big-mult-1 unit-1 unit-2 unit-6)
have unit-9: $(\lambda$-. 1$) \in O[? F](\lambda x$. real $(n$-of $x) *$ real $(m$-of $x))$
by (intro landau-o.big-mult-1 unit-3 unit-4)
have $\left(\lambda x .6 *\left(1 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right)\right) \in O[? F](\lambda x .1 /($ real-of-rat $(\delta$-of $x))^{2}$)
by (subst landau-o.big.cmult-in-iff, simp-all)
hence l1: $\left(\lambda x\right.$. real $\left(\right.$ nat $\left.\left.\left\lceil 6 /(\delta \text {-of } x)^{2}\right\rceil\right)\right) \in O[? F]\left(\lambda x .1 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right)$
by (intro landau-real-nat landau-rat-ceil[OF unit-1]) (simp-all add:of-rat-divide of-rat-power)
have $(\lambda x .-(\ln ($ real-of-rat $(\varepsilon$-of $x)))) \in O[? F](\lambda x . \ln (1 / \operatorname{real-of-rat}(\varepsilon$-of $x)))$
by (intro landau-o.big-mono evt) (subst ln-div, auto)
hence l2: $(\lambda x$. real $($ nat $\lceil-(18 * \ln ($ real-of-rat $(\varepsilon-o f x)))\rceil)) \in O[? F](\lambda x \cdot \ln (1$ / real-of-rat (ε-of $x)$))
by (intro landau-real-nat landau-ceil[OF unit-2], simp)
have l3-aux: $(\lambda x$. real $(\operatorname{m-of} x) *(18+4 *$ real $(n-o f x))+1) \in O[? F](\lambda x$. real $(n$-of $x) *$ real $(m$-of $x))$
by (rule sum-in-bigo [OF -unit-9], subst mult.commute)
(intro landau-o.mult sum-in-bigo, auto simp:unit-3)
have $(\lambda x \cdot \ln ($ real $(m-o f x) *(18+4 *$ real $(n$-of $x))+1)) \in O[? F](\lambda x$. $\ln ($ real $(n$-of $x) * \operatorname{real}(m$-of $x)))$
apply (rule landau-ln-2[where $a=2]$, simp, simp)
apply (rule evt $[$ where $m=2$ and $n=1]$)
apply (metis dual-order.trans mult-left-mono mult-of-nat-commute of-nat-0-le-iff verit-prod-simplify(1))
using l3-aux by simp
also have $(\lambda x . \ln ($ real $(n$-of $x) *$ real $(m$-of $x))) \in O[? F](\lambda x$. $\ln ($ real $(n$-of $x))$ $+\ln ($ real $(m$-of $x)))$
by (intro landau-o.big-mono evt [where $m=1$ and $n=1]$, auto simp add:ln-mult)
finally have $13:(\lambda x$. ln $($ real $(m$-of $x) *(18+4 *$ real $(n$-of $x))+1)) \in$ $O[? F](\lambda x \ln ($ real $(n$-of $x))+\ln ($ real $(m$-of $x)))$
using landau-o.big-trans by simp
have $l_{4}:(\lambda x \cdot \ln (8+2 *$ real $(n$-of $x))) \in O[? F](\lambda x . \ln ($ real $(n$-of $x))+\ln$ $($ real $(m$-of $x)))$
by (intro landau-sum-1 evt[where $n=2]$ landau-ln-2[where $a=2]$ iffD2[OF \ln-ge-iff])
(auto intro!: sum-in-bigo simp add:unit-3)
have $15:(\lambda x \cdot \ln (9+2 * \operatorname{real}(n$-of $x))) \in O[? F](\lambda x . \ln ($ real $(n$-of $x))+\ln$ (real $(m$-of $x))$)
by (intro landau-sum-1 evt[where $n=2]$ landau-ln-2 [where $a=2]$ iffD2[OF \ln-ge-iff])
(auto intro!: sum-in-bigo simp add:unit-3)

```
have l6: \(\left(\lambda x\right.\). \(\ln \left(\right.\) real \(\left.\left.\left(n a t\left\lceil 6 /(\delta \text {-of } x)^{2}\right\rceil\right)+1\right)\right) \in O[? F](g)\)
    unfolding \(g\)-def
    by (intro landau-o.big-mult-1 landau-ln-3 sum-in-bigo unit-6 unit-2 l1 unit-1,
simp)
    have \(l 7:(\lambda x \cdot \ln (9+2 * \operatorname{real}(n\)-of \(x))) \in O[? F](g)\)
    unfolding \(g\)-def
    by (intro landau-o.big-mult-1' unit-1 unit-2 15)
    have \(18:(\lambda x\). \(\ln (\) real \((\) nat \(\lceil-(18 * \ln (\) real-of-rat \((\varepsilon\)-of \(x)))\rceil)+1)) \in O[? F](g)\)
    unfolding \(g\)-def
    by (intro landau-o.big-mult-1 unit-6 landau-o.big-mult-1' unit-1 landau-ln-3
sum-in-bigo l2 unit-2) simp
    have l9: \((\lambda x .5+4 * \ln (8+2 * \operatorname{real}(n\)-of \(x)) / \ln 2+2 * \ln (\) real \((m-o f x)\)
* \((18+4 * \operatorname{real}(n\)-of \(x))+1) / \ln 2)\)
    \(\in O[? F](\lambda x\). \(\ln (\) real \((n\)-of \(x))+\ln (\) real \((m\)-of \(x)))\)
    by (intro sum-in-bigo, auto simp: l3 l4 unit-6)
have l10: \(\left(\lambda x\right.\). real (nat \(\left.\left\lceil 6 /(\delta \text {-of } x)^{2}\right\rceil\right) *\) real (nat \(\lceil-(18 * \ln\) (real-of-rat \((\varepsilon\)-of x)) ) 7 ) *
            \((5+4 * \ln (8+2 *\) real \((n\)-of \(x)) / \ln 2+2 * \ln (\) real \((m-o f x) *(18+4\)
* real \((n\)-of \(x))+1) / \ln 2))\)
            \(\in O[? F](g)\)
            unfolding \(g\)-def by (intro landau-o.mult, auto simp: l1 l2 l9)
    have \(f 2\)-space-usage \(=(\lambda x\). f2-space-usage \((n\)-of \(x, m\)-of \(x, \varepsilon\)-of \(x, \delta\)-of \(x))\)
    by (simp add:case-prod-beta' n-of-def \(\varepsilon\)-of-def \(\delta\)-of-def m-of-def)
also have \(\ldots \in O[? F](g)\)
    by (auto intro!:sum-in-bigo simp:Let-def log-def l6 l7 l8 l10 unit-8)
    also have \(\ldots=O[? F]\) (?rhs)
    by (simp add:case-prod-beta' \(g\)-def \(n\)-of-def \(\varepsilon\)-of-def \(\delta\)-of-def m-of-def)
finally show ?thesis by simp
qed
end
```


9 Frequency Moment k

```
theory Frequency-Moment-k
    imports
        Frequency-Moments
        Landau-Ext
        Lp.Lp
        Median-Method.Median
        Probability-Ext
        Product-PMF-Ext
begin
```

This section contains a formalization of the algorithm for the k-th frequency moment. It is based on the algorithm described in $[1, \S 2.1]$.

```
type-synonym \(f k\)-state \(=n a t \times n a t \times n a t \times n a t \times(n a t \times n a t \Rightarrow(n a t \times n a t))\)
fun \(f k\)-init :: nat \(\Rightarrow r a t \Rightarrow r a t \Rightarrow n a t \Rightarrow f k\)-state \(p m f\) where
    \(f k\)-init \(k \delta \varepsilon n=\)
        do \{
            let \(s_{1}=\) nat \(\left\lceil 3 *\right.\) real \(k * n\) powr \((1-1 /\) real \(\left.k) /(\text { real-of-rat } \delta)^{2}\right\rceil\);
            let \(s_{2}=\) nat \(\lceil-18 * \ln (\) real-of-rat \(\varepsilon)\rceil\);
            return-pmf \(\left(s_{1}, s_{2}, k, 0,\left(\lambda-\in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\} .(0,0)\right)\right)\)
    \}
fun \(f k\)-update \(::\) nat \(\Rightarrow f k\)-state \(\Rightarrow f k\)-state \(p m f\) where
    \(f k\)-update \(a\left(s_{1}, s_{2}, k, m, r\right)=\)
        do \{
            coins \(\leftarrow\) prod-pmf \(\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)(\lambda\)-. bernoulli-pmf \((1 /(\) real \(m+1)))\);
            return-pmf \(\left(s_{1}, s_{2}, k, m+1, \lambda i \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right.\).
                if coins \(i\) then
                \((a, 0)\)
                else (
                    let \((x, l)=r i\) in \((x, l+\) of-bool \((x=a))\)
            )
        )
    \}
fun \(f k\)-result :: fk-state \(\Rightarrow\) rat pmf where
    \(f k\)-result \(\left(s_{1}, s_{2}, k, m, r\right)=\)
        return-pmf (median \(s_{2}\left(\lambda i_{2} \in\left\{0 . .<s_{2}\right\}\right.\).
            ( \(\sum i_{1} \in\left\{0 . .<s_{1}\right\}\).rat-of-nat (let \(t=\) snd \(\left(r\left(i_{1}, i_{2}\right)\right)+1\) in \(m *(t \wedge k-(t-\)
1) \(k))) /\left(\right.\) rat-of-nat \(\left.\left.s_{1}\right)\right)\)
    )
lemma bernoulli-pmf-1: bernoulli-pmf \(1=\) return-pmf True
    by (rule pmf-eqI, simp add:indicator-def)
fun \(f k\)-space-usage :: \((\) nat \(\times\) nat \(\times\) nat \(\times\) rat \(\times\) rat \() \Rightarrow\) real where
    \(f k\)-space-usage \((k, n, m, \varepsilon, \delta)=(\)
        let \(s_{1}=\) nat \(\left\lceil 3 *\right.\) real \(k *(\) real \(n)\) powr \((1-1 /\) real \(\left.k) /(\text { real-of-rat } \delta)^{2}\right\rceil\) in
        let \(s_{2}=\) nat \(\lceil-(18 * \ln (\) real-of-rat \(\varepsilon))\rceil\) in
        \(4+\)
        \(2 * \log 2\left(s_{1}+1\right)+\)
        \(2 * \log 2\left(s_{2}+1\right)+\)
        \(2 * \log 2(\) real \(k+1)+\)
        \(2 * \log 2(\) real \(m+1)+\)
        \(s_{1} * s_{2} *(2+2 * \log 2(\) real \(\left.n+1)+2 * \log 2(\operatorname{real} m+1))\right)\)
```

definition encode-fk-state $:: f k$-state \Rightarrow bool list option where
encode-fk-state $=$
$N_{e} \bowtie_{e}\left(\lambda s_{1}\right.$.

$$
\begin{aligned}
& N_{e} \bowtie_{e}\left(\lambda s_{2} .\right. \\
& N_{e} \times_{e} \\
& N_{e} \times_{e} \\
& \left.\left.\left(\text { List.product }\left[0 . .<s_{1}\right]\left[0 . .<s_{2}\right] \rightarrow_{e}\left(N_{e} \times_{e} N_{e}\right)\right)\right)\right)
\end{aligned}
$$

lemma inj-on encode-fk-state (dom encode-fk-state)
proof -
have is-encoding encode-fk-state
by (simp add:encode-fk-state-def)
(intro dependent-encoding exp-golomb-encoding fun-encoding)
thus ?thesis by (rule encoding-imp-inj)
qed
This is an intermediate non-parallel form $f k$-update used only in the correctness proof.

```
fun fk-update-2 :: 'a m(nat }\times\mp@subsup{}{}{\prime}a\timesnat)=>(nat \times' a > nat) pmf where
    fk-update-2 a (m,x,l)=
        do {
            coin }\leftarrow\mathrm{ bernoulli-pmf (1/(real m+1));
            return-pmf (m+1,if coin then (a,0) else (x,l+of-bool (x=a)))
    }
```

definition sketch where sketch as $i=($ as ! i, count-list $(\operatorname{drop}(i+1)$ as $)(a s!i))$
lemma fk-update-2-distr:
assumes $a s \neq[]$
shows fold $(\lambda x$ s. $s \gg=f k$-update-2 x) as (return-pmf $(0,0,0))=$
pmf-of-set $\{. .<$ length as $\} \gg=(\lambda k$. return-pmf (length as, sketch as $k))$
using assms
proof (induction as rule:rev-nonempty-induct)
case (single x)
show ?case using single
by (simp add:bind-return-pmf pmf-of-set-singleton bernoulli-pmf-1 lessThan-def
sketch-def)
next
case (snoc $x x s$)
let $? h=(\lambda x s k$. count-list $($ drop $($ Suc $k) x s)(x s!k))$
let $? q=(\lambda x s k .($ length $x s$, sketch $x s k))$
have non-empty: $\{. .<$ Suc (length $x s)\} \neq\{ \} \quad\{. .<$ length $x s\} \neq\{ \}$ using snoc by
auto
have fk-update-2-eta:fk-update-2 $x=(\lambda a . f k$-update-2 $x(f s t a, f s t(s n d a)$, snd (snd a)))
by auto
have $p m f$-of-set $\{. .<$ length $x s\} \gg=(\lambda k$. bernoulli-pmf $(1 /($ real (length $x s)+$ 1)) \gg
$(\lambda$ coin. return-pmf $($ if coin then length xs else $k)))=$
bernoulli-pmf $(1 /($ real $($ length $x s)+1)) \gg(\lambda y$.pmf-of-set $\{. .<$ length $x s\}$ $\geqslant=$
(λk. return-pmf (if y then length xs else k)))
by (subst bind-commute-pmf, simp)
also have $\ldots=p m f$-of-set $\{. .<$ length $x s+1\}$
using snoc(1) non-empty
by (intro pmf-eqI, simp add: pmf-bind measure-pmf-of-set)
(simp add:indicator-def algebra-simps frac-eq-eq)
finally have b : pmf-of-set $\{. .<$ length $x s\} \geqslant>(\lambda k$. bernoulli-pmf ($1 /$ (real (length $x s)+1)) \gg$
$(\lambda$ coin. return-pmf $($ if coin then length xs else $k)))=p m f$-of-set $\{. .<$ length $x s$ $+1\}$ by simp
have fold $(\lambda x s .(s \gg f k$-update-2 $x))(x s @[x])($ return-pmf $(0,0,0))=$
$(p m f$-of-set $\{. .<$ length $x s\} \gg=(\lambda k$. return-pmf (length xs, sketch xs $k))) \gg$ fk-update-2 x
using snoc by (simp add:case-prod-beta')
also have $\ldots=($ pmf-of-set $\{. .<$ length $x s\} \gg(\lambda k$. return-pmf (length xs, sketch xs $k)$) $\gg=$
$(\lambda(m, a, l)$. bernoulli-pmf $(1 /($ real $m+1)) \gg(\lambda$ coin.
return-pmf $(m+1$, if coin then $(x, 0)$ else $(a,(l+$ of-bool $(a=x))))))$
by (subst fk-update-2-eta, subst fk-update-2.simps, simp add:case-prod-beta')
also have $\ldots=$ pmf-of-set $\{. .<$ length $x s\} \gg=(\lambda k$. bernoulli-pmf $(1 /$ (real (length $x s)+1)\rangle>$
(λ coin. return-pmf (length $x s+1$, if coin then $(x, 0)$ else $(x s!k$, ?h xs $k+$ of-bool $(x s!k=x))))$)
by (subst bind-assoc-pmf, simp add: bind-return-pmf sketch-def)
also have $\ldots=$ pmf-of-set $\{. .<$ length $x s\} \gg=(\lambda k$. bernoulli-pmf ($1 /$ (real (length $x s)+1)\rangle>$
(λ coin. return-pmf (if coin then length xs else k) > $\left(\lambda k^{\prime}\right.$. return-pmf (?q $\left.\left.\left.\left.(x s @[x]) k^{\prime}\right)\right)\right)\right)$
using non-empty
by (intro bind-pmf-cong, auto simp add:bind-return-pmf nth-append count-list-append sketch-def)
also have $\ldots=$ pmf-of-set $\{. .<$ length $x s\} \gg(\lambda k$. bernoulli-pmf $(1 /$ (real (length $x s)+1)) \gg$
(λ coin. return-pmf $($ if coin then length xs else $k))) \gg\left(\lambda k^{\prime}\right.$.return-pmf $(? q$ $\left.\left.(x s @[x]) k^{\prime}\right)\right)$
by (subst bind-assoc-pmf, subst bind-assoc-pmf, simp)
also have $\ldots=p m f$-of-set $\{. .<$ length $(x s @[x])\} \gg\left(\lambda k^{\prime}\right.$. return-pmf $(? q(x s @[x])$ $\left.k^{\prime}\right)$)
by (subst b, simp)
finally show? case by simp qed
context
fixes $\varepsilon \delta::$ rat
fixes $n k::$ nat

```
    fixes as
    assumes k-ge-1:k\geq1
    assumes \varepsilon-range: }\varepsilon\in{0<..<1
    assumes }\delta\mathrm{ -range: }\delta>
    assumes as-range: set as \subseteq{..<n}
begin
definition }\mp@subsup{s}{1}{}\mathrm{ where }\mp@subsup{s}{1}{}=nat\lceil3*\mathrm{ real }k*(\mathrm{ real n) powr (1-1/real k)/(real-of-rat
\delta)}\mp@subsup{}{}{7
definition }\mp@subsup{s}{2}{}\mathrm{ where }\mp@subsup{s}{2}{}=nat \lceil-(18*\operatorname{ln}(\mathrm{ real-of-rat }\varepsilon))
definition }\mp@subsup{M}{1}{}={(u,v).v<count-list as u
definition }\mp@subsup{\Omega}{1}{}=\mathrm{ measure-pmf (pmf-of-set M M )
definition }\mp@subsup{M}{2}{}=\mathrm{ prod-pmf ({0..< 的} }\times{0..<\mp@subsup{s}{2}{}})(\lambda\mathrm{ -. pmf-of-set M M )
definition }\mp@subsup{\Omega}{2}{}=\mathrm{ measure-pmf M}\mp@subsup{M}{2}{
interpretation prob-space }\mp@subsup{\Omega}{1}{
    unfolding }\mp@subsup{\Omega}{1}{-def by (simp add:prob-space-measure-pmf)
interpretation }\mp@subsup{\Omega}{2}{}\mathrm{ :prob-space }\mp@subsup{\Omega}{2}{
    unfolding }\mp@subsup{\Omega}{2}{}\mathrm{ -def by (simp add:prob-space-measure-pmf)
lemma split-space: (\suma\inM . .f (snd a)) = (\sumu\in set as. (\sumv\in{0..<count-list
as u}.fv))
proof -
    define }A\mathrm{ where }A=(\lambdau.{u}\times{v.v<count-list as u}
    have a: inj-on snd (A x) for x
    by (simp add:A-def inj-on-def)
    have \uv.u< count-list as v\Longrightarrowv\in set as
    by (subst count-list-gr-1, force)
    hence M}\mp@subsup{M}{1}{}=\bigcup(A'set as
    by (auto simp add:set-eq-iff A-def M M-def)
    hence}(\suma\in\mp@subsup{M}{1}{}.f(snd a))=\operatorname{sum}(f\circ\mathrm{ snd ) (U (A'set as))
    by (intro sum.cong, auto)
    also have ... = sum ( }\lambdax.\operatorname{sum}(f\circ\mathrm{ snd ) (Ax)) (set as)
    by (rule sum.UNION-disjoint, simp, simp add:A-def, simp add:A-def, blast)
    also have ... = sum ( }\lambdax.\operatorname{sum}f(\mathrm{ snd' A x)) (set as)
    by (intro sum.cong, auto simp add:sum.reindex[OF a])
    also have ... = (\sumu\in set as. (\sumv\in{0..<count-list as u}.fv))
    unfolding }A\mathrm{ -def by (intro sum.cong, auto)
    finally show ?thesis by blast
qed
lemma
    assumes as \not=[]
    shows fin-space: finite }\mp@subsup{M}{1}{
```

```
    and non-empty-space: }\mp@subsup{M}{1}{}\not={
    and card-space: card }\mp@subsup{M}{1}{}=\mathrm{ length as
proof -
    have }\mp@subsup{M}{1}{}\subseteq\mathrm{ set as }\times{k.k<length as 
    proof (rule subsetI)
    fix }
    assume a:x\in M M
    have fst }x\in\mathrm{ set as
        using a by (simp add:case-prod-beta count-list-gr-1 M M-def)
    moreover have snd x< length as
        using a count-le-length order-less-le-trans
        by (simp add:case-prod-beta M M -def) fast
    ultimately show }x\in\mathrm{ set as }\times{k.k<length as
        by (simp add:mem-Times-iff)
    qed
    thus fin-space: finite }\mp@subsup{M}{1}{
    using finite-subset by blast
    have (as! 0, 0) \in M M
        using assms(1) unfolding M M - def
    by (simp, metis count-list-gr-1 gr0I length-greater-0-conv not-one-le-zero nth-mem)
    thus }\mp@subsup{M}{1}{}\not={}\mathrm{ by blast
    show card M}\mp@subsup{M}{1}{}= length a
        using fin-space split-space[where f=\lambda-. (1::nat)]
        by (simp add:sum-count-set[where X=set as and xs=as, simplified])
qed
lemma
    assumes as \not=[]
    shows integrable-1: integrable \Omega}\mp@subsup{\Omega}{1}{}(f::-=>\mathrm{ real) and
        integrable-2: integrable \Omega}\mp@subsup{\Omega}{2}{(g :: - = real)
proof -
    have fin-omega: finite (set-pmf (pmf-of-set M M )
        using fin-space[OF assms] non-empty-space[OF assms] by auto
    thus integrable \Omega}\mp@subsup{\Omega}{1}{}
        unfolding }\mp@subsup{\Omega}{1}{}\mathrm{ -def
        by (rule integrable-measure-pmf-finite)
    have finite (set-pmf M}\mp@subsup{M}{2}{}\mathrm{ )
        unfolding }\mp@subsup{M}{2}{}\mathrm{ -def using fin-omega
        by (subst set-prod-pmf) (auto intro:finite-PiE)
    thus integrable }\mp@subsup{\Omega}{2}{}
        unfolding }\mp@subsup{\Omega}{2}{}\mathrm{ -def by (intro integrable-measure-pmf-finite)
qed
lemma sketch-distr:
    assumes as \not= []
```

```
    shows pmf-of-set \(\{. .<\) length as \(\} \gg(\lambda k\).return-pmf \((\) sketch as \(k))=p m f\)-of-set
```

M_{1}
proof -
have $x<y \Longrightarrow y<$ length as \Longrightarrow
count-list (drop $(y+1)$ as) $($ as ! y) < count-list $($ drop $(x+1)$ as) (as!y)for $x y$
by (intro count-list-lt-suffix suffix-drop-drop, simp-all)
(metis Suc-diff-Suc diff-Suc-Suc diff-add-inverse lessI less-natE)
hence a1: inj-on (sketch as) $\{k . k<$ length as $\}$
unfolding sketch-def by (intro inj-onI) (metis Pair-inject mem-Collect-eq
nat-neq-iff)
have $x<$ length as \Longrightarrow count-list $($ drop $(x+1)$ as) $($ as $!x)<$ count-list as (as !
x) for x
by (rule count-list-lt-suffix, auto simp add:suffix-drop)
hence sketch as ' $\{k . k<$ length as $\} \subseteq M_{1}$
by (intro image-subsetI, simp add:sketch-def M_{1}-def)
moreover have card $M_{1} \leq$ card (sketch as ' $\{k . k<$ length as $\}$)
by (simp add: card-space[OF assms(1)] card-image[OF a1])
ultimately have sketch as ' $\{k . k<$ length as $\}=M_{1}$
using fin-space[OF assms(1)] by (intro card-seteq, simp-all)
hence bij-betw (sketch as) $\{k . k<$ length as $\} M_{1}$
using a1 by (simp add:bij-betw-def)
hence map-pmf (sketch as) (pmf-of-set $\{k . k<$ length as $\}$) $=p m f$-of-set M_{1}
using assms by (intro map-pmf-of-set-bij-betw, auto)
thus ?thesis by (simp add: sketch-def map-pmf-def lessThan-def)
qed
lemma $f k$-update-distr:
fold $(\lambda x s . s \gg f k$-update $x)$ as $(f k$-init $k \delta \varepsilon n)=$
prod-pmf $\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)(\lambda$-. fold $(\lambda x s . s \gg$ fk-update-2 x) as (return-pmf
$(0,0,0))$)
$\gg\left(\lambda x\right.$. return-pmf $\left(s_{1}, s_{2}, k\right.$, length as, $\lambda i \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}$. snd $\left.\left.(x i)\right)\right)$
proof (induction as rule:rev-induct)
case Nil
then show? case
by (auto simp:Let-def s_{1}-def[symmetric] s_{2}-def[symmetric] bind-return-pmf)
next
case (snoc $x x s$)
have fk-update-2-eta:fk-update-2 $x=(\lambda a . f k$-update-2 $x(f s t ~ a, f s t(s n d a)$, snd
(snd a)))
by auto
have a: fk-update $x\left(s_{1}, s_{2}, k\right.$, length $x s, \lambda i \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}$. snd $\left.(f i)\right)=$
prod-pmf $\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)(\lambda i . f k$-update-2 $x(f i)) \gg$
(λ a. return-pmf $\left(s_{1}, s_{2}, k\right.$, Suc (length $\left.x s\right), \lambda i \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}$. snd $\left.(a i)\right)$)
if $b: f \in \operatorname{set}-p m f\left(\right.$ prod-pmf $\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)$
(λ-. fold $(\lambda a s . s \gg f k$-update-2 a) xs (return-pmf $(0,0,0)))$) for f
proof -

```
    have c:fst (fi)= length xs if d:i\in{0..<s的} }\times{0..<\mp@subsup{s}{2}{}}\mathrm{ for i
    proof (cases xs = [])
        case True
        then show ?thesis using b d by (simp add: set-Pi-pmf)
    next
        case False
        hence {..<length xs }}\not={}\mathrm{ by force
        thus ?thesis using b d
        by (simp add:set-Pi-pmf fk-update-2-distr[OF False] PiE-dflt-def) force
    qed
    show ?thesis
    apply (subst fk-update-2-eta, subst fk-update-2.simps, simp)
    apply (simp add: Pi-pmf-bind-return[where d'=undefined] bind-assoc-pmf)
    apply (rule bind-pmf-cong, simp add:c cong:Pi-pmf-cong)
    by (auto simp add:bind-return-pmf case-prod-beta)
qed
have fold ( }\lambdax\mathrm{ s. s>> fk-update x) (xs @ [x]) (fk-init k }\delta\varepsilonn)
        prod-pmf ({0..<s的} }\times{0..<\mp@subsup{s}{2}{}})(\lambda-.fold (\lambdax s.s>> fk-update-2 x) xs
(return-pmf (0,0,0)))
    \gg = ( \lambda \omega . ~ r e t u r n - p m f ~ ( ~ s ~ s ~ , ~ s 2 , ~ k , ~ l e n g t h ~ x s , ~ \lambda i \in \{ 0 . . < ~ < s 1 \} ~ × \{ 0 . . < s ⿱ \mp@code { 2 } \} . s n d ~ ( \omega ~ i ) ) \gg
fk-update x)
    using snoc
    by (simp add:restrict-def bind-assoc-pmf del:fk-init.simps)
also have ... = prod-pmf ({0..< <s1} }\times{0..<\mp@subsup{s}{2}{}}
    (\lambda-. fold (\lambdaa s. s>> fk-update-2 a) xs (return-pmf (0, 0, O)))>>
    (\lambdaf. prod-pmf ({0..<s的} }\times{0..<\mp@subsup{s}{2}{}})(\lambdai.fk-update-2 x (f i))>
    (\lambdaa. return-pmf (s1, s2,k,Suc (length xs), \lambdai\in{0..< < s } }\times{0..<\mp@subsup{s}{2}{}}.\operatorname{snd}(
i))))
    using a
    by (intro bind-pmf-cong, simp-all add:bind-return-pmf del:fk-update.simps)
also have ... = prod-pmf ({0..< < < } > {0..< <s2})
    (\lambda-. fold (\lambdaa s. s>> fk-update-2 a) xs (return-pmf (0,0,0)))>>
    (\lambdaf.prod-pmf ({0..<s1} }\times{0..<\mp@subsup{s}{2}{}})(\lambdai.fk-update-2 x (f i)))>
    (\lambdaa.return-pmf (s, s, s, k,Suc (length xs), \lambdai\in{0..< < < } < < {0..<s的}.snd (a
i)))
    by (simp add:bind-assoc-pmf)
    also have ... =(prod-pmf ({0..<s的} }\times{0..<\mp@subsup{s}{2}{}}
    (\lambda-. fold (\lambdaa s. s>> fk-update-2 a) (xs@[x]) (return-pmf (0,0,0)))
    \gg = ( \lambda a . r e t u r n - p m f ~ ( s , ~ s , ~ s , ~ k , ~ l e n g t h ~ ( x s @ [ x ] ) , ~ \lambda i \in \{ 0 . . < s _ { 1 } \} \times \{ 0 . . < s _ { 2 } \} . s n d ~ ( a ~
i))))
    by (simp, subst Pi-pmf-bind, auto)
    finally show ?case by blast
qed
lemma power-diff-sum:
    fixes a b :: 'a :: {comm-ring-1,power}
    assumes k>0
```

```
    shows a^k-b^k=(a-b)*(\sumi=0..<k.a^ i* b^(k-1 - i)) (is ?lhs =
?rhs)
proof -
    have insert-lb: m<n\Longrightarrow insert m {Suc m..<n} ={m..<n} for m n :: nat
    by auto
    have ?rhs = sum (\lambdai.a*(a`i * b`(k-1-i))) {0..<k}-
    sum (\lambdai.b* (a`i}*b`(k-1-i))){0..<k
    by (simp add: sum-distrib-left[symmetric] algebra-simps)
    also have ... = sum ((\lambdai. (a^i * b^(k-i)))\circ(\lambdai.i+1)) {0..<k} -
    sum (\lambdai. (a^i* (b^(1+(k-1-i))))) {0..<k}
    by (simp add:algebra-simps)
    also have ... = sum ((\lambdai. (a`i * b^(k-i))) ○ (\lambdai.i+1)) {0..<k} -
    sum (\lambdai. (a^i* b^(k-i))) {0..<k}
    by (intro arg-cong2[where f=(-)] sum.cong arg-cong2[where f=(*)]
            arg-cong2[where f=(\lambdax y. x^ y)]) auto
    also have ... = sum (\lambdai. (a^i* b`(k-i))) (insert k{1..<k})-
    sum (\lambdai. (a`i* b`(k-i))) (insert 0 {Suc 0..<k})
    using assms
    by (subst sum.reindex[symmetric], simp, subst insert-lb, auto)
    also have ... = ?lhs
    by simp
    finally show ?thesis by presburger
qed
lemma power-diff-est:
    assumes k>0
    assumes (a :: real) \geqb
    assumes b\geq0
    shows a^k -b^k\leq (a-b)*k* a^(k-1)
proof -
    have \i. i<k\Longrightarrowa^ i* b^ (k-1 - i) \leqa^ i*a^(k-1-i)
    using assms by (intro mult-left-mono power-mono) auto
    also have \i. i<k\Longrightarrowa^i*a^(k-1-i)= a^(k-Suc 0)
    using assms(1) by (subst power-add[symmetric], simp)
    finally have a: \bigwedgei. i<k\Longrightarrowa`^i*b^(k-1-i)\leqa^(k-Suc 0)
        by blast
    have a^k-b^k=(a-b)*(\sumi=0..<k.a^ i*b^(k-1 - i))
        by (rule power-diff-sum[OF assms(1)])
    also have ... \leq (a-b)*(\sumi=0..<k. a^(k-1))
    using a assms by (intro mult-left-mono sum-mono, auto)
    also have ... = (a-b)*(k*a^(k-Suc 0))
    by simp
    finally show ?thesis by simp
qed
```

Specialization of the Hoelder inquality for sums.

lemma Holder-inequality-sum:

assumes $p>(0::$ real $) q>01 / p+1 / q=1$

```
    assumes finite A
    shows }|\sumx\inA.fx*gx|\leq(\sumx\inA.|fx| powr p) powr (1/p)*(\sumx\inA. |gx
powr q) powr (1/q)
proof -
    have |LINT x|count-space A. f x*gx|}
        (LINT x|count-space A. |f x powr p) powr (1/p)*
        (LINT x|count-space A. |g x powr q) powr (1/q)
    using assms integrable-count-space
    by (intro Lp.Holder-inequality, auto)
    thus ?thesis
    using assms by (simp add: lebesgue-integral-count-space-finite[symmetric])
qed
lemma real-count-list-pos:
    assumes x\in set as
    shows real (count-list as x)}>
    using count-list-gr-1 assms by force
lemma fk-estimate:
    assumes as \not=[]
    shows length as * of-rat (F (2*k-1) as) \leq n powr (1-1 / real k) * (of-rat (F
k as))^2
    (is ?lhs \leq?rhs)
proof (cases k\geq2)
    case True
    define M where M = Max (count-list as' set as)
    have M \in count-list as ' set as
        unfolding M-def using assms by (intro Max-in, auto)
    then obtain m}\mathrm{ where m-in: m}\in\mathrm{ set as and m-def: M = count-list as m
        by blast
    have a: real M>0 using m-in count-list-gr-1 by (simp add:m-def, force)
    have b: 2*k-1 = (k-1)+k by simp
    have 0<real (count-list as m)
        using m-in count-list-gr-1 by force
    hence M powr k= real (count-list as m)^k
    by (simp add: powr-realpow m-def)
    also have ... \leq(\sumx\inset as. real (count-list as x) ^ k)
    using m-in by (intro member-le-sum, simp-all)
    also have ... \leqreal-of-rat (F Fas)
    by (simp add:F-def of-rat-sum of-rat-power)
    finally have d:M powr k\leq real-of-rat (F k as) by simp
    have e:0\leqreal-of-rat (F k as)
    using F-gr-O[OF assms(1)] by (simp add: order-le-less)
    have real (k-1)/real k+1 = real (k-1)/real k + real k/real k
    using assms True by simp
```

```
    also have \(\ldots=\operatorname{real}(2 * k-1) / \operatorname{real} k\)
    using \(b\) by (subst add-divide-distrib[symmetric], force)
    finally have \(f\) : real \((k-1) / \operatorname{real} k+1=\operatorname{real}(2 * k-1) / \operatorname{real} k\)
    by blast
    have real-of-rat \((F(2 * k-1)\) as \()=\)
    \(\left(\sum x \in \text { set as. real (count-list as } x\right)^{\wedge}(k-1) *\) real \((\) count-list as \(\left.x) \wedge k\right)\)
    using \(b\) by (simp add:F-def of-rat-sum sum-distrib-left of-rat-mult power-add
of-rat-power)
    also have \(\ldots \leq\left(\sum x \in\right.\) set as. real \(M \wedge(k-1) *\) real \(\left.(\text { count-list as } x)^{\wedge} k\right)\)
    by (intro sum-mono mult-right-mono power-mono of-nat-mono) (auto simp:M-def)
    also have \(\ldots=M\) powr \((k-1) *\) of-rat ( \(F k\) as) using \(a\)
    by (simp add:sum-distrib-left F-def of-rat-mult of-rat-sum of-rat-power powr-realpow)
    also have \(\ldots=(M\) powr \(k)\) powr \((\) real \((k-1) /\) real \(k) *\) of-rat \((F k\) as \()\) powr 1
    using \(e\) by (simp add:powr-powr)
    also have \(\ldots \leq\) (real-of-rat \((F k\) as \()\) ) powr \(((k-1) / k) *(\) real-of-rat \((F k a s)\)
powr 1)
    using \(d\) by (intro mult-right-mono powr-mono2, auto)
    also have \(\ldots=(\) real-of-rat \((F k\) as \())\) powr \(((2 * k-1) / k)\)
    by (subst powr-add[symmetric], subst \(f\), simp)
    finally have \(a\) : real-of-rat \((F(2 * k-1) a s) \leq(\) real-of-rat \((F k a s))\) powr \(((2 * k-1)\)
/ k)
    by blast
    have \(g\) : card (set as) \(\leq n\)
    using card-mono[OF - as-range] by simp
    have length as \(=a b s(\operatorname{sum}(\lambda x\). real (count-list as \(x))(\) set as) \()\)
    by (subst of-nat-sum[symmetric], simp add: sum-count-set)
    also have \(\ldots \leq\) card (set as) powr \(((k-S u c 0) / k)\) *
        (sum ( \(\lambda\) x. \(\mid\) real (count-list as \(x) \mid\) powr \(k\) ) (set as)) powr ( \(1 / k\) )
    using assms True
            by (intro Holder-inequality-sum[where \(p=k /(k-1)\) and \(q=k\) and \(f=\lambda-.1\),
simplified])
            (auto simp add:algebra-simps add-divide-distrib[symmetric])
    also have \(\ldots=(\operatorname{card}(\) set as \())\) powr \(((k-1) /\) real \(k) *\) of-rat \((F k\) as) powr (1/
k)
    using real-count-list-pos
    by (simp add:F-def of-rat-sum of-rat-power powr-realpow)
    also have \(\ldots=(\operatorname{card}(\) set as \())\) powr \((1-1 /\) real \(k) *\) of-rat \((F k\) as) powr (1/
k)
    using \(k\)-ge-1
    by (subst of-nat-diff[OF k-ge-1], subst diff-divide-distrib, simp)
also have \(\ldots \leq n\) powr \((1-1 /\) real \(k) *\) of-rat ( \(F k\) as) powr \((1 / k)\)
    using \(k\) - \(g e-1 \mathrm{~g}\)
    by (intro mult-right-mono powr-mono2, auto)
    finally have \(h\) : length as \(\leq n\) powr \((1-1 /\) real \(k) *\) of-rat \((F k a s)\) powr
(1/real k)
    by blast
```

have $i: 1 / \operatorname{real} k+\operatorname{real}(2 * k-1) / \operatorname{real} k=$ real 2
using True by (subst add-divide-distrib[symmetric], simp-all add:of-nat-diff)
have ?lhs $\leq n$ powr $(1-1 / k) *$ of-rat $(F k$ as) powr $(1 / k) *(o f-r a t(F k a s))$ powr ((2*k-1) / k)
using a h F-ge-0 by (intro mult-mono mult-nonneg-nonneg, auto)
also have $\ldots=$?rhs
using i F-gr- $0[O F$ assms $]$ by (simp add:powr-add [symmetric] powr-realpow[symmetric])
finally show ?thesis
by blast
next
case False
have $n=0 \Longrightarrow$ False
using as-range assms by auto
hence $n>0$
by auto
moreover have $k=1$
using assms k-ge-1 False by linarith
moreover have length as $=$ real-of-rat $(F(S u c ~ 0) a s)$
by (simp add:F-def sum-count-set of-nat-sum[symmetric] del:of-nat-sum)
ultimately show ?thesis
by (simp add:power2-eq-square)
qed
definition result
where result $a=o f-n a t(l e n g t h ~ a s) * o f-n a t(S u c(s n d a) ~ \wedge k-s n d a \wedge k)$
lemma result-exp-1:
assumes $a s \neq[]$
shows expectation result $=$ real-of-rat $(F k a s)$
proof -
have expectation result $=\left(\sum a \in M_{1}\right.$. result $a * \operatorname{pmf}\left(p m f\right.$-of-set $\left.\left.M_{1}\right) a\right)$
unfolding Ω_{1}-def using non-empty-space assms fin-space
by (subst integral-measure-pmf-real) auto
also have $\ldots=\left(\sum a \in M_{1}\right.$. result a $/$ real (length as $)$)
using non-empty-space assms fin-space card-space by simp
also have $\ldots=\left(\sum a \in M_{1}\right.$. real $($ Suc $($ snd $a) \wedge k-$ snd $\left.a \wedge k)\right)$
using assms by (simp add:result-def)
also have $\ldots=\left(\sum u \in\right.$ set as. $\sum v=0 . .<$ count-list as u. real $\left(S u c v^{\wedge} k\right)-$ real $\left(v^{\wedge} k\right)$)
using k-ge-1 by (subst split-space, simp add:of-nat-diff)
also have $\left.\ldots=\left(\sum u \in \text { set as. real (count-list as } u\right)^{\wedge} k\right)$
using k-ge-1 by (subst sum-Suc-diff') (auto simp add:zero-power)
also have $\ldots=o f-r a t(F k a s)$
by (simp add:F-def of-rat-sum of-rat-power)
finally show ?thesis by simp
qed
lemma result-var-1:
assumes $a s \neq[]$
shows variance result $\leq(\text { of-rat }(F k a s))^{2} * k * n \operatorname{powr}(1-1 /$ real $k)$
proof -
have k-gt-0: $k>0$ using k-ge-1 by linarith
have c :real $\left(\right.$ Suc $\left.v^{\wedge} k\right)-\operatorname{real}\left(v^{\wedge} k\right) \leq k * \operatorname{real}\left(\right.$ count-list as a) ${ }^{\wedge}(k-$ Suc 0)
if $c-1: v<$ count-list as a for $a v$
proof -
have real $\left(S u c v^{\wedge} k\right)-\operatorname{real}\left(v^{\wedge} k\right) \leq(\operatorname{real}(v+1)-$ real $v) * k *(1+$ real
$v)^{\wedge}(k-$ Suc 0)
using k-gt-0 power-diff-est $[$ where $a=S u c v$ and $b=v]$ by simp
moreover have $($ real $(v+1)-$ real $v)=1$ by auto
ultimately have real $\left(S u c v^{\wedge} k\right)-\operatorname{real}\left(v^{\wedge} k\right) \leq k *(1+\operatorname{real} v)^{\wedge}(k-$
Suc 0) by auto
also have $\ldots \leq k *$ real (count-list as a) へ ($k-$ Suc 0)
using c - 1 by (intro mult-left-mono power-mono, auto)
finally show? thesis by blast
qed
have length as * $\left(\sum a \in M_{1} .\left(\text { real }\left(\text { Suc }(\text { snd } a){ }^{\wedge} k-(\text { snd } a)^{\wedge} k\right)\right)^{2}\right)=$ length as $*\left(\sum a \in\right.$ set as. $\left(\sum v \in\{0 . .<\right.$ count-list as $a\}$. $\left.\operatorname{real}\left(S u c v^{\wedge} k-v^{\wedge} k\right) * \operatorname{real}\left(S u c v^{\wedge} k-v^{\wedge} k\right)\right)$)
by (subst split-space, simp add:power2-eq-square)
also have $\ldots \leq$ length as $*\left(\sum a \in\right.$ set as. $\left(\sum v \in\{0 . .<\right.$ count-list as a $\}$.
$k *$ real (count-list as a) ^$(k-1) *$ real (Suc $\left.\left.v{ }^{\wedge} k-v へ k\right)\right)$)
using c by (intro mult-left-mono sum-mono mult-right-mono) (auto simp:power-mono of-nat-diff)
also have $\ldots=$ length as $* k *\left(\sum a \in\right.$ set as. real (count-list as a) ${ }^{\wedge}(k-1) *$
$\left(\sum v \in\{0 . .<\right.$ count-list as a $\}$. real $\left.\left.\left(S u c v^{\wedge} k\right)-\operatorname{real}\left(v^{\wedge} k\right)\right)\right)$
by (simp add:sum-distrib-left ac-simps of-nat-diff power-mono)
also have $\ldots=$ length as $* k *\left(\sum a \in\right.$ set as. real (count-list as a ^$\left.\left.(2 * k-1)\right)\right)$
using assms k-ge-1
by (subst sum-Suc-diff', auto simp: zero-power [OF k-gt-0] mult-2 power-add[symmetric])
also have $\ldots=k *($ length as $*$ of-rat $(F(2 * k-1)$ as $))$
by (simp add:sum-distrib-left[symmetric] F-def of-rat-sum of-rat-power)
also have $\ldots \leq k *($ of-rat $(F k a s) \uparrow 2 * n$ powr $(1-1 /$ real $k))$
using $f k$-estimate $[O F$ assms] by (intro mult-left-mono) (auto simp: mult.commute)
finally have b : real (length as) $*\left(\sum a \in M_{1} .(\right.$ real $(S u c(s n d a) \wedge k-(s n d a)$
$k))^{2}$) \leq
$k *\left((\text { of-rat }(F k a s))^{2} * n\right.$ powr $(1-1 /$ real $\left.k)\right)$
by blast
 ($\lambda \omega$. result $\omega{ }^{\wedge}$ 2)
by simp
also have $\ldots=\left(\sum a \in M_{1} .\left(\text { length as } * \operatorname{real}\left(\operatorname{Suc}(\text { snd } a){ }^{\wedge} k-\operatorname{snd} a^{\wedge} k\right)\right)^{2} *\right.$ $p m f\left(p m f\right.$-of-set $\left.\left.M_{1}\right) a\right)$
using fin-space non-empty-space assms unfolding Ω_{1}-def result-def by (subst integral-measure-pmf-real $\left[\right.$ where $\left.A=M_{1}\right]$, auto)
also have $\ldots=\left(\sum a \in M_{1}\right.$. length as $\left.*\left(\text { real }\left(S u c(\text { snd } a){ }^{\wedge} k-\text { snd } a^{\wedge} k\right)\right)^{2}\right)$ using assms non-empty-space fin-space by (subst pmf-of-set) (simp-all add:card-space power-mult-distrib power2-eq-square ac-simps)
also have $\ldots \leq k *\left((\text { of-rat }(F k a s))^{2} * n\right.$ powr $(1-1 /$ real $\left.k)\right)$
using b by (simp add:sum-distrib-left[symmetric])
also have $\ldots=\operatorname{of}$-rat $(F k a s) \wedge 2 * k * n \operatorname{powr}(1-1 /$ real $k)$
by (simp add:ac-simps)
finally have expectation $\left(\lambda \omega\right.$. result $\left.\omega^{\wedge} 2\right)-($ expectation result $){ }^{\wedge} 2 \leq$ of-rat (Fkas) へ2 $* k * n$ powr (1-1/real k)
by blast
thus ?thesis
using integrable-1 [OF assms] by (simp add:variance-eq)
qed
theorem fk-alg-sketch:
assumes as $\neq[]$
shows fold (λ a state. state $\gg f k$-update a) as $(f k$-init $k \delta \varepsilon n)=$ map-pmf $\left(\lambda x .\left(s_{1}, s_{2}, k\right.\right.$, length as, $\left.\left.x\right)\right) M_{2}$ (is ?lhs $=$? $\left.r h s\right)$
proof -
have ?lhs $=$ prod-pmf $\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)$
$(\lambda$-. fold $(\lambda x$ s. $s \gg$ fk-update-2 $x)$ as $($ return-pmf $(0,0,0))) \gg$
(λ x. return-pmf $\left(s_{1}, s_{2}, k\right.$, length as, $\lambda i \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}$. snd $\left.\left.(x i)\right)\right)$
by (subst fk-update-distr, simp)
also have $\ldots=$ prod-pmf $\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)(\lambda$-. pmf-of-set $\{. .<$ length as $\}$ \gg
$(\lambda k$. return-pmf $($ length as, sketch as $k))) \gg=$
(λ x. return-pmf $\left(s_{1}, s_{2}, k\right.$, length as, $\lambda i \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}$. snd $\left.\left.(x i)\right)\right)$
by (subst fk-update-2-distr[OF assms], simp)
also have $\ldots=\operatorname{prod}$-pmf $\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)(\lambda$-. pmf-of-set $\{. .<$ length as $\}$》
$(\lambda k$. return-pmf $($ sketch as $k)) \gg=(\lambda$ s. return-pmf $($ length as, $s))) \gg=$
(λ x. return-pmf $\left(s_{1}, s_{2}, k\right.$, length as, $\lambda i \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}$. snd $\left.\left.(x i)\right)\right)$
by (subst bind-assoc-pmf, subst bind-return-pmf, simp)
also have $\ldots=\operatorname{prod}$-pmf $\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)(\lambda$-. pmf-of-set $\{. .<$ length as $\}$ \geqslant
$(\lambda k$. return-pmf $($ sketch as $k))) \gg=$
$\left(\lambda x\right.$. return-pmf $\left(\lambda i \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right.$. (length as, $\left.\left.\left.x i\right)\right)\right) \gg$
(λ x. return-pmf $\left(s_{1}, s_{2}, k\right.$, length as, $\lambda i \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}$. snd $\left.\left.(x i)\right)\right)$
by (subst Pi-pmf-bind-return[where $d^{\prime}=$ undefined], simp, simp add:restrict-def)
also have $\ldots=$ prod-pmf $\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)(\lambda$-. pmf-of-set $\{. .<$ length as $\}$ \geqslant
$(\lambda k$. return-pmf $($ sketch as $k))) \gg=$
$\left(\lambda x\right.$. return-pmf $\left(s_{1}, s_{2}, k\right.$, length as, restrict $\left.\left.x\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)\right)\right)$
by (subst bind-assoc-pmf, simp add:bind-return-pmf cong:restrict-cong)
also have $\ldots=M_{2} \gg$
$\left(\lambda x\right.$. return-pmf $\left(s_{1}, s_{2}, k\right.$, length as, restrict $\left.\left.x\left(\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right)\right)\right)$

```
    by (subst sketch-distr[OF assms], simp add:M M-def)
    also have \ldots. = M M > ( }\lambda\mathrm{ x. return-pmf ( s1, s2, k, length as, x))
    by (rule bind-pmf-cong, auto simp add:PiE-dflt-def M M
    also have ... = ?rhs
    by (simp add:map-pmf-def)
    finally show ?thesis by simp
qed
definition mean-rv
    where mean-rv \omega i i = (\sumi i = 0..<s1. result (\omega (i, i, i2)))/ of-nat s s
definition median-rv
    where median-rv \omega median s}\mp@subsup{s}{2}{(}(\lambda\mp@subsup{i}{2}{}.\mathrm{ mean-rv }\omega\mp@subsup{i}{2}{}
lemma fk-alg-correct':
    defines M \equiv fold ( }\lambda\mathrm{ a state. state >> fk-update a) as (fk-init k }\delta\mathrm{ & n) >> fk-result
    shows}\mathcal{P}(\omega\mathrm{ in measure-pmf M. | - Fkas | 
proof (cases as=[])
    case True
    have a: nat }\lceil-(18*\operatorname{ln}(\mathrm{ real-of-rat }\varepsilon))\rceil>0\mathrm{ using }\varepsilon\mathrm{ -range by simp
    show ?thesis using True \varepsilon-range
        by (simp add:F-def M-def bind-return-pmf median-const[OF a] Let-def)
next
    case False
    have set as }\not={}\mathrm{ using assms False by blast
    hence n-nonzero: n>0 using as-range by fastforce
    have fk-nonzero: Fk as>0
    using F-gr-0[OF False] by simp
    have s1-nonzero: }\mp@subsup{s}{1}{}>
    using \delta-range k-ge-1 n-nonzero by (simp add:s1-def)
    have s2-nonzero: }\mp@subsup{s}{2}{}>
    using \varepsilon-range by (simp add:s⿱2-def)
    have real-of-rat-mean-rv: \x i. mean-rv x = (\lambdai. real-of-rat (mean-rv x i))
    by (rule ext, simp add:of-rat-divide of-rat-sum of-rat-mult result-def mean-rv-def)
    have real-of-rat-median-rv: \x. median-rv x = real-of-rat (median-rv x)
    unfolding median-rv-def using s2-nonzero
    by (subst real-of-rat-mean-rv, simp add: median-rat median-restrict)
```

 have space- \(\Omega_{2}\) : space \(\Omega_{2}=\) UNIV by (\(\operatorname{simp}\) add: \(\Omega_{2}\)-def)
 have \(f k\)-result-eta: \(f k\)-result \(=(\lambda(x, y, z, u, v) . f k\)-result \((x, y, z, u, v))\)
 by auto
 have a:fold \((\lambda x\) state. state \(\gg f k\)-update \(x)\) as \((f k\)-init \(k \delta \varepsilon n)=\)


```
    by (subst fk-alg-sketch[OF False]) (simp add:s}\mp@subsup{s}{1}{}\mathrm{ -def[symmetric] s2-def[symmetric])
    have }M=\mathrm{ map-pmf ( }\lambdax.(\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},k,\mathrm{ length as, x)) M M >> fk-result
    by (subst M-def, subst a, simp)
    also have ... = M M >> return-pmf ○ median-rv
    by (subst fk-result-eta)
        (auto simp add:map-pmf-def bind-assoc-pmf bind-return-pmf median-rv-def
mean-rv-def comp-def
        M
    finally have b:M= M2>> return-pmf ○ median-rv
    by simp
    have result-exp:
    i}<<\mp@subsup{s}{1}{}\Longrightarrow\mp@subsup{i}{2}{}<\mp@subsup{s}{2}{}\Longrightarrow\mp@subsup{\Omega}{2}{}.\mathrm{ .expectation }(\lambdax.result (x (i, i, i2)))=real-of-rat (F
k as)
    for }\mp@subsup{i}{1}{}\mp@subsup{i}{2}{
    unfolding }\mp@subsup{\Omega}{2}{}\mathrm{ -def M M -def
    using integrable-1 [OF False] result-exp-1[OF False]
    by (subst expectation-Pi-pmf-slice, auto simp:\Omega
```

 have result-var: \(\Omega_{2}\).variance \(\left(\lambda \omega\right.\). result \(\left.\left(\omega\left(i_{1}, i_{2}\right)\right)\right) \leq\) of-rat \((\delta * F k\) as \() \uparrow 2 *\)
 real $s_{1} / 3$
if result-var-assms: $i_{1}<s_{1} i_{2}<s_{2}$ for $i_{1} i_{2}$
proof -
have $3 *$ real $k * n$ powr $(1-1 /$ real $k)=$
$(\text { of-rat } \delta)^{2} *\left(3 *\right.$ real $k * n$ powr $(1-1 /$ real $\left.k) /(\text { of-rat } \delta)^{2}\right)$
using δ-range by simp
also have $\ldots \leq(\text { real-of-rat } \delta)^{2} *\left(\right.$ real $\left.s_{1}\right)$
unfolding s_{1}-def
by (intro mult-mono of-nat-ceiling, simp-all)
finally have f2-var-2: 3 $*$ real $k * n$ powr $(1-1 /$ real $k) \leq(o f-r a t \delta)^{2} *$
(real s_{1})
by blast
have $\Omega_{2} . v a r i a n c e\left(\lambda \omega\right.$. result $\left(\omega\left(i_{1}, i_{2}\right)\right)::$ real $)=$ variance result
using result-var-assms integrable-1[OF False]
unfolding Ω_{2}-def M_{2}-def Ω_{1}-def
by (subst variance-prod-pmf-slice, auto)
also have $\ldots \leq \operatorname{of}$-rat $(F k a s) \wedge 2 *$ real $k * n$ powr $(1-1 /$ real $k)$
using assms False result-var-1 Ω_{1}-def by simp
also have ... =
of-rat $(F k$ as $)$ ^2 $*($ real $k * n$ powr $(1-1 /$ real $k))$
by (simp add:ac-simps)
also have $\ldots \leq$ of-rat $(F k a s)^{\wedge} 2 *\left(o f\right.$-rat $\delta^{\wedge} 2 *\left(\right.$ real $\left.\left.s_{1} / 3\right)\right)$
using f2-var-2 by (intro mult-left-mono, auto)
also have $\ldots=$ of-rat $(F k a s * \delta) \uparrow 2 *\left(\right.$ real $\left.s_{1} / 3\right)$
by (simp add: of-rat-mult power-mult-distrib)

```
    also have ... =of-rat ( }\delta*Fkas)^2* real s / / 3
    by (simp add:ac-simps)
    finally show ?thesis
    by simp
qed
have mean-rv-exp: }\mp@subsup{\Omega}{2}{2}.expectation ( \lambda\omega. mean-rv \omega i) = real-of-rat (F kas)
    if mean-rv-exp-assms: i< s2 for i
proof -
```



```
result (\omega (n, i)) / real s}\mp@subsup{s}{1}{}
            by (simp add:mean-rv-def sum-divide-distrib)
    also have ... = (\sumn=0..< <s. . \Omega2.expectation ( }\lambda\omega.\operatorname{result}(\omega(n,i)))/real s s
        using integrable-2[OF False]
        by (subst Bochner-Integration.integral-sum, auto)
    also have ... =of-rat (Fkas)
        using s1-nonzero mean-rv-exp-assms
        by (simp add:result-exp)
    finally show ?thesis by simp
qed
have mean-rv-var: 柞.variance ( }\lambda\omega\mathrm{ . mean-rv }\omega\boldsymbol{i})\leq\mathrm{ real-of-rat ( }\delta*Fkas)^2/
    if mean-rv-var-assms:i< s2 for i
proof -
    have a:\Omega2.indep-vars ( }\lambda\mathrm{ -. borel) ( }\lambdanx.result (x (n,i)) / real s s) {0..< < < } }
        unfolding }\mp@subsup{\Omega}{2}{2}\mathrm{ -def M M-def using mean-rv-var-assms
    by (intro indep-vars-restrict-intro'[where f=fst], simp, simp add:restrict-dfl-def,
simp, simp)
    have }\mp@subsup{\Omega}{2}{2.variance ( }\lambda\omega.\mathrm{ mean-rv }\omegai)=\mp@subsup{\Omega}{2}{}.variance ( \lambda\omega. \sumj=0..<\mp@subsup{s}{1}{}.\mathrm{ result
(\omega(j,i))/real s}\mp@subsup{s}{1}{}
    by (simp add:mean-rv-def sum-divide-distrib)
```



```
        using a integrable-2[OF False]
        by (subst }\mp@subsup{\Omega}{2}{}.\mathrm{ .bienaymes-identity-full-indep, auto simp add: }\mp@subsup{\Omega}{2}{}\mathrm{ -def)
```



```
        using integrable-2[OF False]
        by (subst }\mp@subsup{\Omega}{2}{}.variance-divide, auto
    also have ...\leq(\sumj=0..<s.. ((real-of-rat (\delta*Fkas))}\mp@subsup{)}{}{2}*\mathrm{ real s1/ 3) / (real
s_^2))
            using result-var[OF - mean-rv-var-assms]
            by (intro sum-mono divide-right-mono, auto)
    also have ... = real-of-rat ( }\delta*Fk\mathrm{ as)^2/3
        using s1-nonzero
        by (simp add:algebra-simps power2-eq-square)
    finally show ?thesis by simp
qed
    have }\mp@subsup{\Omega}{2}{..prob {y. of-rat (\delta*F kas)< |mean-rv y i - real-of-rat (F kas)|}\leq
1/3
```

(is ?lhs $\leq-$) if c-assms: $i<s_{2}$ for i
proof -
define a where $a=$ real-of-rat $(\delta * F k a s)$
have $c: 0<a$ unfolding a-def
using assms δ-range fk-nonzero
by (metis zero-less-of-rat-iff mult-pos-pos)
have ?lhs $\leq \Omega_{2}$.prob $\left\{y \in\right.$ space $\Omega_{2} . a \leq \mid$ mean-rv y $i-\Omega_{2}$.expectation $(\lambda \omega$. mean-rv $\omega i) \mid\}$
by (intro $\Omega_{2} . p m f$-mono[OF Ω_{2}-def], simp add:a-def mean-rv-exp[OF c-assms] space- Ω_{2})
also have $\ldots \leq \Omega_{2}$.variance ($\lambda \omega$. mean-rv ωi)/a^2
by (intro Ω_{2}. Chebyshev-inequality integrable-2 c False) (simp add: Ω_{2}-def)
also have $\ldots \leq 1 / 3$ using c
using mean-rv-var[OF c-assms]
by (simp add:algebra-simps, simp add:a-def)
finally show?thesis
by blast
qed
moreover have Ω_{2}.indep-vars $\left(\lambda\right.$-. borel) $\left(\lambda i \omega\right.$. mean-rv ω i) $\left\{0 . .<s_{2}\right\}$
using s1-nonzero unfolding Ω_{2}-def M_{2}-def
by (intro indep-vars-restrict-intro'[where $f=s n d]$ finite-cartesian-product)
(simp-all add:mean-rv-def restrict-dfl-def space- Ω_{2})
moreover have $-(18 * \ln ($ real-of-rat $\varepsilon)) \leq$ real s_{2}
by (simp add: s_{2}-def, linarith)
ultimately have 1 - of-rat $\varepsilon \leq$
Ω_{2}. prob $\left\{y \in\right.$ space $\Omega_{2} . \mid$ median $s_{2}($ mean-rv $y)-$ real-of-rat $(F k a s) \mid \leq o f$-rat $(\delta * F k a s)\}$
using ε-range
by (intro Ω_{2}.median-bound-2, simp-all add:space- Ω_{2})
also have $\ldots=\Omega_{2} . \operatorname{prob}\{y$. \mid median-rv $y-r e a l-o f-r a t(F k a s) \mid \leq$ real-of-rat $(\delta$ * F k as $)\}$
by (simp add:median-rv-def space- Ω_{2})
also have $\ldots=\Omega_{2}$. prob $\{y$. \mid median-rv $y-F k a s \mid \leq \delta * F k a s\}$
by (simp add:real-of-rat-median-rv of-rat-less-eq fip: of-rat-diff)
also have $\ldots=\mathcal{P}(\omega$ in measure-pmf $M . \mid \omega-F k$ as $\mid \leq \delta * F k a s)$
by (simp add: b comp-def map-pmf-def[symmetric] Ω_{2}-def)
finally show ?thesis by simp
qed
lemma $f k$-exact-space-usage':
defines $M \equiv$ fold (λ a state. state $\gg f k$-update a) as (fk-init $k \delta$ ع n)
shows $A E \omega$ in M. bit-count (encode-fk-state ω) $\leq f k$-space-usage (k, n, length $a s, \varepsilon, \delta)$
(is $A E \omega$ in $M .(-\leq ? r h s))$
proof -
define H where $H=\left(\right.$ if as $=[]$ then return-pmf $\left(\lambda i \in\left\{0 . .<s_{1}\right\} \times\left\{0 . .<s_{2}\right\}\right.$. $(0,0))$ else M_{2})

```
have a:M = map-pmf ( }\lambdax.(\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},k,length as, x)) 
proof (cases as \not= [])
    case True
    then show ?thesis
        unfolding M-def fk-alg-sketch[OF True] H-def
        by (simp add:M}\mp@subsup{M}{2}{}\mathrm{ -def)
next
    case False
    then show ?thesis
    by (simp add:H-def M-def s1-def[symmetric] Let-def s2-def[symmetric] map-pmf-def
bind-return-pmf)
    qed
    have bit-count (encode-fk-state ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},k\mathrm{ , length as, y))}\leq\mathrm{ ?rhs
    if b:y\in set-pmf H for }
proof -
    have b0: as \not=[]\Longrightarrowy\in{0..<\mp@subsup{s}{1}{}}\times{0..<\mp@subsup{s}{2}{}}}\mp@subsup{->}{E}{}\mp@subsup{M}{1}{
        using b non-empty-space fin-space by (simp add:H-def M2-def set-prod-pmf)
    have bit-count ((N}\mp@subsup{N}{e}{}\mp@subsup{\times}{e}{}\mp@subsup{N}{e}{})(yx))
        ereal (2* log 2 (real n + 1) + 1) + ereal (2* log 2 (real (length as) + 1)
+ 1)
            (is - \leq?rhs1)
            if b1-assms: }x\in{0..<\mp@subsup{s}{1}{}}\times{0..<\mp@subsup{s}{2}{}}\mathrm{ for }
    proof -
            have fst (y x) \leqn
            proof (cases as = [])
                case True
                    then show ?thesis using b b1-assms by (simp add:H-def)
                next
                    case False
                            hence 1 \leq count-list as (fst (y x))
                            using b0 b1-assms by (simp add:PiE-iff case-prod-beta M M -def, fastforce)
                    hence fst (y x) \in set as
                using count-list-gr-1 by metis
                    then show ?thesis
                            by (meson lessThan-iff less-imp-le-nat subsetD as-range)
            qed
            moreover have snd (y x) \leq length as
            proof (cases as = [])
                    case True
                    then show ?thesis using b b1-assms by (simp add:H-def)
                    next
                    case False
                            hence (y x) \in M M
                using b0 b1-assms by auto
            hence snd (y x) \leq count-list as (fst (y x))
                by (simp add:M}\mp@subsup{M}{1}{}-def case-prod-beta
            then show ?thesis using count-le-length by (metis order-trans)
```

```
        qed
        ultimately have bit-count (N
?rhs1
            using exp-golomb-bit-count-est by (intro add-mono, auto)
        thus ?thesis
            by (subst dependent-bit-count-2, simp)
    qed
    moreover have y extensional ({0..<s1} }\times{0..<\mp@subsup{s}{2}{}}
        using b0 b PiE-iff by (cases as = [], auto simp:H-def PiE-iff)
    ultimately have bit-count ((List.product [0..<s1] [0..<s的] }\mp@subsup{->}{e}{}\mp@subsup{N}{e}{}\mp@subsup{\times}{e}{}\mp@subsup{N}{e}{})y
\leq
        ereal (real s1* real s2)*(ereal (2 * log 2 (real n + 1) + 1) +
        ereal (2 * log 2 (real (length as) + 1) + 1))
    by (intro fun-bit-count-est[where xs=(List.product [0..< 的] [0..< 的]), simpli-
fied], auto)
    hence bit-count (encode-fk-state ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},k,\mathrm{ length as, y))}
        ereal (2* log 2 (real s
        (ereal (2* log 2 (real s2+1) + 1)+
        (ereal (2 * log 2 (real k + 1) + 1) +
        (ereal (2 * log 2 (real (length as) + 1) + 1) +
        (ereal (real s1* real s2)*(ereal (2*log 2 (real n+1) + 1) +
        ereal (2* log 2 (real (length as)+1) + 1))))))
        unfolding encode-fk-state-def dependent-bit-count
        by (intro add-mono exp-golomb-bit-count, auto)
    also have ... \leq?rhs
    by (simp add: s}\mp@subsup{s}{1}{}-def[symmetric] s2-def[symmetric] Let-def) (simp add:ac-simps)
    finally show bit-count (encode-fk-state ( }\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},k\mathrm{ , length as, y)) }\leq\mathrm{ ?rhs
        by blast
    qed
    thus ?thesis
        by (simp add: a AE-measure-pmf-iff del:fk-space-usage.simps)
qed
end
Main results of this section：
theorem fk－alg－correct：
assumes \(k \geq 1\)
assumes \(\varepsilon \in\{0<. .<1\}\)
assumes \(\delta>0\)
assumes set as \(\subseteq\{. .<n\}\)
defines \(M \equiv\) fold（ \(\lambda\) a state．state \(\gg\) fk－update a）as \((f k\)－init \(k \delta \varepsilon n) \gg f k\)－result shows \(\mathcal{P}(\omega\) in measure－pmf \(M .|\omega-F k a s| \leq \delta * F k a s) \geq 1-\) of－rat \(\varepsilon\)
unfolding \(M\)－def using \(f k\)－alg－correct＇\([\) OF assms（1－4）］by blast
theorem fk－exact－space－usage：
assumes \(k \geq 1\)
```

```
    assumes }\varepsilon\in{0<..<1
```

 assumes \(\delta>0\)
 assumes set as \(\subseteq\{. .<n\}\)
 defines \(M \equiv\) fold (\(\lambda\) a state. state \(\gg f k\)-update a) as (fk-init \(k \delta \varepsilon n\))
 shows \(A E \omega\) in \(M\). bit-count (encode-fk-state \(\omega\)) \(\leq f k\)-space-usage (\(k\), n, length
 $a s, \varepsilon, \delta)$
unfolding M-def using $f k$-exact-space-usage ${ }^{\prime}[$ OF assms $(1-4)]$ by blast
theorem fk-asymptotic-space-complexity:
fk-space-usage \in
$O\left[\right.$ at-top \times_{F} at-top \times_{F} at-top \times_{F} at-right $(0:: r a t) \times_{F}$ at-right $\left.(0:: r a t)\right](\lambda(k, n$, $m, \varepsilon, \delta)$.
real $k *$ real n powr $(1-1 /$ real $k) /(\text { of-rat } \delta)^{2} *(\ln (1 /$ of-rat $\varepsilon)) *(\ln ($ real $n)+\ln ($ real $m)))$
(is $-\in O[? F](? r h s))$

proof -

define k-of $::$ nat \times nat $\times n a t \times r a t \times r a t \Rightarrow n a t$ where k-of $=(\lambda(k, n, m, \varepsilon$,)). k)
define n-of $::$ nat \times nat \times nat \times rat $\times r a t \Rightarrow n a t$ where n-of $=(\lambda(k, n, m, \varepsilon$, ס). n)
define m-of :: nat \times nat \times nat \times rat \times rat \Rightarrow nat where m-of $=(\lambda(k, n, m$, $\varepsilon, \delta) . m)$
define ε-of $::$ nat $\times n a t \times n a t \times r a t \times r a t \Rightarrow r a t$ where ε-of $=(\lambda(k, n, m, \varepsilon$, $\delta) . \varepsilon)$
define δ-of :: nat $\times n a t \times n a t \times r a t \times r a t \Rightarrow r a t$ where δ-of $=(\lambda(k, n, m, \varepsilon$, $\delta) . \delta)$

define $g 1$ where

$g 1=(\lambda x$. real $(k$-of $x) *($ real $(n$-of $x))$ powr $(1-1 /$ real $(k$-of $x)) *(1 /$ of-rat (δ-of $x)^{\text {^2 } 2)) ~}$
define g where

```
    g=(\lambdax.g1 x * (ln (1 / of-rat (\varepsilon-of x))) * (ln (real (n-of x)) + ln (real (m-of
```

(x))))
define s1-of where s1-of $=(\lambda x$.
nat 「3 * real $(k$-of $x) *$ real $(n$-of $x)$ powr ($1-1 /$ real $(k$-of $x)$) / (real-of-rat
$(\delta$-of $\left.x))^{2}\right\rceil$)
define s2-of where s2-of $=(\lambda x$. nat $\lceil-(18 * \ln ($ real-of-rat $(\varepsilon$-of $x)))\rceil)$
have evt: ($\bigwedge x$.
$0<$ real-of-rat $(\delta$-of $x) \wedge 0<$ real-of-rat $(\varepsilon$-of $x) \wedge$
$1 /$ real-of-rat $(\delta$-of $x) \geq \delta \wedge 1 /$ real-of-rat $(\varepsilon$-of $x) \geq \varepsilon \wedge$
real $(n$-of $x) \geq n \wedge$ real $(k$-of $x) \geq k \wedge \operatorname{real}(m$-of $x) \geq m \Longrightarrow P x)$
\Longrightarrow eventually P ? F (is $(\bigwedge x$. ?prem $x \Longrightarrow-) \Longrightarrow-)$
for $\delta \varepsilon n k m P$
apply (rule eventually-mono $[$ where $P=$?prem and $Q=P]$)
apply (simp add: ε-of-def case-prod-beta' δ-of-def n-of-def k-of-def m-of-def)
apply (intro eventually-conj eventually-prod1' eventually-prod2'
sequentially-inf eventually-at-right-less inv-at-right-0-inf)
by (auto simp add:prod-filter-eq-bot)

have 1 :

$(\lambda$-. 1$) \in O[? F](\lambda x$. real $(n$-of $x))$
$(\lambda-.1) \in O[? F](\lambda x$. real $(m$-of $x))$
$(\lambda$-. 1$) \in O[? F](\lambda x$. real $(k$-of $x))$
by (intro landau-o.big-mono eventually-mono[OF evt], auto)+
have $(\lambda x \cdot \ln (\operatorname{real}(m-o f x)+1)) \in O[? F](\lambda x \cdot \ln (\operatorname{real}(m-o f x)))$
by (intro landau-ln-2[where $a=2]$ evt $[$ where $m=2]$ sum-in-bigo 1 , auto)
hence 2: $(\lambda x \cdot \log 2($ real $(m$-of $x)+1)) \in O[? F](\lambda x$. $\ln ($ real $(n$-of $x))+\ln$ $($ real $(m-o f x)))$
by (intro landau-sum-2 eventually-mono[OF evt [where $n=1$ and $m=1]]$) (auto simp add:log-def)
have 3: $(\lambda-.1) \in O[? F](\lambda x$. $\ln (1 /$ real-of-rat $(\varepsilon$-of $x)))$
using order-less-le-trans [OF exp-gt-zero] ln-ge-iff
by (intro landau-o.big-mono evt[where $\varepsilon=\exp 1]$)
(simp add: abs-ge-iff, blast)
have $4:(\lambda$-. 1$) \in O[? F]\left(\lambda x .1 /(\text { real-of-rat }(\delta \text {-of } x))^{2}\right)$
using one-le-power
by (intro landau-o.big-mono evt[where $\delta=1]$)
(simp add:power-one-over[symmetric], blast)
have $(\lambda x .1) \in O[? F](\lambda x . \ln ($ real $(n$-of $x)))$
using order-less-le-trans[OF exp-gt-zero] ln-ge-iff
by (intro landau-o.big-mono evt[where $n=\exp 1]$)
(simp add: abs-ge-iff, blast)
hence $5:(\lambda x .1) \in O[? F](\lambda x$. $\ln ($ real $(n-o f x))+\ln ($ real $(m-o f x)))$
by (intro landau-sum-1 evt [where $n=1$ and $m=1$], auto)
have $(\lambda x .-\ln (o f-r a t(\varepsilon$-of $x))) \in O[? F](\lambda x . \ln (1 /$ real-of-rat $(\varepsilon$-of $x)))$
by (intro landau-o.big-mono evt) (auto simp add:ln-div)
hence $6:(\lambda x$. real $(s 2$-of $x)) \in O[? F](\lambda x$. $\ln (1 /$ real-of-rat $(\varepsilon$-of $x)))$
unfolding s2-of-def
by (intro landau-nat-ceil 3, simp)
have 7: $(\lambda$-. 1$) \in O[? F](\lambda x$. real $(n$-of $x)$ powr $(1-1 / \operatorname{real}(k$-of $x)))$
by (intro landau-o.big-mono evt $[$ where $n=1$ and $k=1]$)
(auto simp add: ge-one-powr-ge-zero)
have $8:(\lambda-.1) \in O[? F](g 1)$
unfolding g1-def by (intro landau-o.big-mult-1 174)
have $(\lambda x .3 *($ real $(k$-of $x) *(n$-of $x)$ powr $(1-1 /$ real $(k$-of $x)) /($ of-rat

```
(\delta-of x)\mp@subsup{)}{}{2}))
    O[?F](g1)
    by (subst landau-o.big.cmult-in-iff, simp, simp add:g1-def)
    hence 9: (\lambdax. real (s1-of x)) \inO[?F](g1)
    unfolding s1-of-def by (intro landau-nat-ceil 8, auto simp:ac-simps)
    have 10:(\lambda-. 1) \inO[?F](g)
    unfolding g-def by (intro landau-o.big-mult-1 8 3 5)
    have (\lambdax.real (s1-of x)) \inO[?F](g)
    unfolding g-def by (intro landau-o.big-mult-1 5 3 9)
hence ( }\lambdax.\operatorname{ln}(\mathrm{ real }(s1-of x)+1))\inO[?F](g
    using 10 by (intro landau-ln-3 sum-in-bigo, auto)
hence 11: ( }\lambdax.\operatorname{log}2(\operatorname{real}(\operatorname{s1-of x})+1))\inO[?F](g
    by (simp add:log-def)
    have 12: }(\lambdax.\operatorname{ln}(\mathrm{ real }(s2-of x) + 1)) \inO[?F](\lambdax. ln (1 / real-of-rat (\varepsilon-of x)))
    using evt[where \varepsilon=2] 6 3
    by (intro landau-ln-3 sum-in-bigo, auto)
have 13: (\lambdax. log 2 (real (s2-of x) + 1)) \inO[?F](g)
    unfolding g-def
    by (rule landau-o.big-mult-1, rule landau-o.big-mult-1', auto simp add: }851
log-def)
    have (\lambdax.real (k-of x)) \inO[?F](g1)
    unfolding g1-def using 74
    by (intro landau-o.big-mult-1, simp-all)
hence ( }\lambdax.\operatorname{log}2(\mathrm{ real (k-of x) + 1)) }\inO[?F](g1
    by (simp add:log-def) (intro landau-ln-3 sum-in-bigo 8, auto)
hence 14: ( }\lambdax.\operatorname{log}2(\mathrm{ real }(k-of x) + 1)) \inO[?F](g
    unfolding g-def by (intro landau-o.big-mult-1 3 5)
    have 15: (\lambdax. log 2 (real (m-of x) + 1)) \inO[?F](g)
    unfolding g-def using 2 8 3
    by (intro landau-o.big-mult-1', simp-all)
    have }(\lambdax.ln(\operatorname{real}(n-of x)+1))\inO[?F](\lambdax.ln(real (n-of x))
    by (intro landau-ln-2[where a=2] eventually-mono[OF evt[where n=2]] sum-in-bigo
1, auto)
    hence }(\lambdax.log2(real (n-of x) + 1)) \inO[?F](\lambdax.ln (real (n-of x)) + ln (real
(m-of x)))
    by (intro landau-sum-1 evt[where n=1 and m=1])
        (auto simp add:log-def)
    hence 16: ( }\lambdax\mathrm{ . real (s1-of x) * real (s2-of x) *
    (2 +2* log 2 (real (n-of x) + 1) +2 * log 2 (real (m-of x) + 1))) \inO[?F](g)
    unfolding g-def using 965 2
    by (intro landau-o.mult sum-in-bigo, auto)
```

```
    have \(f k\)-space-usage \(=(\lambda x\). fk-space-usage \((k\)-of \(x, n\)-of \(x, m\)-of \(x, \varepsilon\)-of \(x, \delta\)-of \(x))\)
    by (simp add:case-prod-beta' \(k\)-of-def \(n\)-of-def \(\varepsilon\)-of-def \(\delta\)-of-def m-of-def)
    also have \(\ldots \in O[? F](g)\)
    using 101113141516
    by (simp add:fun-cong[OF s1-of-def[symmetric]] fun-cong[OF s2-of-def[symmetric]]
Let-def)
        (intro sum-in-bigo, auto)
    also have \(\ldots=O[? F]\) (?rhs)
        by (simp add:case-prod-beta' g1-def \(g\)-def \(n\)-of-def \(\varepsilon\)-of-def \(\delta\)-of-def m-of-def
\(k\)-of-def)
    finally show? ?thesis by simp
qed
end
```


A Informal proof of correctness for the F_{0} algorithm

This appendix contains a detailed informal proof for the new RoundingKMV algorithm that approximates F_{0} introduced in Section 7 for reference. It follows the same reasoning as the formalized proof.
Because of the amplification result about medians (see for example [1, §2.1]) it is enough to show that each of the estimates the median is taken from is within the desired interval with success probability $\frac{2}{3}$. To verify the latter, let a_{1}, \ldots, a_{m} be the stream elements, where we assume that the elements are a subset of $\{0, \ldots, n-1\}$ and $0<\delta<1$ be the desired relative accuracy. Let p be the smallest prime such that $p \geq \max (n, 19)$ and let h be a random polynomial over $G F(p)$ with degree strictly less than 2 . The algoritm also introduces the internal parameters t, r defined by:

$$
t:=\left\lceil 80 \delta^{-2}\right\rceil \quad r:=4 \log _{2}\left\lceil\delta^{-1}\right\rceil+23
$$

The estimate the algorithm obtains is R, defined using:

$$
H:=\left\{\lfloor h(a)\rfloor_{r} \mid a \in A\right\} \quad R:= \begin{cases}\operatorname{tp}\left(\min _{t}(H)\right)^{-1} & \text { if }|H| \geq t \\ |H| & \text { othewise }\end{cases}
$$

where $A:=\left\{a_{1}, \ldots, a_{m}\right\}, \min _{t}(H)$ denotes the t-th smallest element of H and $\lfloor x\rfloor_{r}$ denotes the largest binary floating point number smaller or equal to x with a mantissa that requires at most r bits to represent. ${ }^{1}$ With these definitions, it is possible to state the main theorem as:

$$
P\left(\left|R-F_{0}\right| \leq \delta\left|F_{0}\right|\right) \geq \frac{2}{3} .
$$

[^0]which is shown separately in the following two subsections for the cases $F_{0} \geq t$ and $F_{0}<t$.

A. 1 Case $F_{0} \geq t$

Let us introduce:

$$
H^{*}:=\{h(a) \mid a \in A\}^{\#} \quad R^{*}:=\operatorname{tp}\left(\min _{t}^{\#}\left(H^{*}\right)\right)^{-1}
$$

These definitions are modified versions of the definitions for H and R : The set H^{*} is a multiset, this means that each element also has a multiplicity, counting the number of distinct elements of A being mapped by h to the same value. Note that by definition: $\left|H^{*}\right|=|A|$. Similarly the operation $\min _{t}^{\#}$ obtains the t-th element of the multiset H (taking multiplicities into account). Note also that there is no rounding operation $\lfloor\cdot\rfloor_{r}$ in the definition of H^{*}. The key reason for the introduction of these alternative versions of H, R is that it is easier to show probabilistic bounds on the distances $\left|R^{*}-F_{0}\right|$ and $\left|R^{*}-R\right|$ as opposed to $\left|R-F_{0}\right|$ directly. In particular the plan is to show:

$$
\begin{align*}
P\left(\left|R^{*}-F_{0}\right|>\delta^{\prime} F_{0}\right) & \leq \frac{2}{9}, \text { and } \tag{1}\\
P\left(\left|R^{*}-F_{0}\right| \leq \delta^{\prime} F_{0} \wedge\left|R-R^{*}\right|>\frac{\delta}{4} F_{0}\right) & \leq \frac{1}{9} \tag{2}
\end{align*}
$$

where $\delta^{\prime}:=\frac{3}{4} \delta$. I.e. the probability that R^{*} has not the relative accuracy of $\frac{3}{4} \delta$ is less that $\frac{2}{9}$ and the probability that assuming R^{*} has the relative accuracy of $\frac{3}{4} \delta$ but that R deviates by more that $\frac{1}{4} \delta F_{0}$ is at most $\frac{1}{9}$. Hence, the probability that neither of these events happen is at least $\frac{2}{3}$ but in that case:

$$
\begin{equation*}
\left|R-F_{0}\right| \leq\left|R-R^{*}\right|+\left|R^{*}-F_{0}\right| \leq \frac{\delta}{4} F_{0}+\frac{3 \delta}{4} F_{0}=\delta F_{0} . \tag{3}
\end{equation*}
$$

Thus we only need to show Equation 1 and 2. For the verification of Equation 1 let

$$
Q(u)=|\{h(a)<u \mid a \in A\}|
$$

and observe that $\min _{t}^{\#}\left(H^{*}\right)<u$ if $Q(u) \geq t$ and $\min _{t}^{\#}\left(H^{*}\right) \geq v$ if $Q(v) \leq$ $t-1$. To see why this is true note that, if at least t elements of A are mapped by h below a certain value, then the t-smallest element must also be within them, and thus also be below that value. And that the opposite direction of this conclusion is also true. Note that this relies on the fact that H^{*} is a multiset and that multiplicities are being taken into account, when computing the t-th smallest element. Alternatively, it is also possible to write $Q(u)=\sum_{a \in A} 1_{\{h(a)<u\}}{ }^{2}$, i.e., Q is a sum of pairwise independent

[^1]$\{0,1\}$-valued random variables, with expectation $\frac{u}{p}$ and variance $\frac{u}{p}-\frac{u^{2}}{p^{2}}$. 3 Using lineariy of expectation and Bienaymé's identity, it follows that $\operatorname{Var} Q(u) \leq \mathrm{E} Q(u)=|A| u p^{-1}=F_{0} u p^{-1}$ for $u \in\{0, \ldots, p\}$.
For $v=\left\lfloor\frac{t p}{\left(1-\delta^{\prime}\right) F_{0}}\right\rfloor$ it is possible to conclude:
$t-1 \leq^{4} \frac{t}{\left(1-\delta^{\prime}\right)}-3 \sqrt{\frac{t}{\left(1-\delta^{\prime}\right)}}-1 \leq \frac{F_{0} v}{p}-3 \sqrt{\frac{F_{0} v}{p}} \leq \mathrm{E} Q(v)-3 \sqrt{\operatorname{Var} Q(v)}$
and thus using Tchebyshev's inequality:
\[

$$
\begin{align*}
P\left(R^{*}<\left(1-\delta^{\prime}\right) F_{0}\right) & =P\left(\operatorname{rank}_{t}^{\#}\left(H^{*}\right)>\frac{t p}{\left(1-\delta^{\prime}\right) F_{0}}\right) \\
& \leq P\left(\operatorname{rank}_{t}^{\#}\left(H^{*}\right) \geq v\right)=P(Q(v) \leq t-1) \tag{4}\\
& \leq P(Q(v) \leq \mathrm{E} Q(v)-3 \sqrt{\operatorname{Var} Q(v)}) \leq \frac{1}{9}
\end{align*}
$$
\]

Similarly for $u=\left\lceil\frac{t p}{\left(1+\delta^{\prime}\right) F_{0}}\right\rceil$ it is possible to conclude:
$t \geq \frac{t}{\left(1+\delta^{\prime}\right)}+3 \sqrt{\frac{t}{\left(1+\delta^{\prime}\right)}+1}+1 \geq \frac{F_{0} u}{p}+3 \sqrt{\frac{F_{0} u}{p}} \geq \mathrm{E} Q(u)+3 \sqrt{\operatorname{Var} Q(v)}$
and thus using Tchebyshev's inequality:

$$
\begin{align*}
P\left(R^{*}>\left(1+\delta^{\prime}\right) F_{0}\right) & =P\left(\operatorname{rank}_{t}^{\#}\left(H^{*}\right)<\frac{t p}{\left(1+\delta^{\prime}\right) F_{0}}\right) \\
& \leq P\left(\operatorname{rank}_{t}^{\#}\left(H^{*}\right)<u\right)=P(Q(u) \geq t) \tag{5}\\
& \leq P(Q(u) \geq \mathrm{E} Q(u)+3 \sqrt{\operatorname{Var} Q(u)}) \leq \frac{1}{9}
\end{align*}
$$

Note that Equation 4 and 5 confirm Equation 1. To verfiy Equation 2, note that

$$
\begin{equation*}
\min _{t}(H)=\left\lfloor\min _{t}^{\#}\left(H^{*}\right)\right\rfloor_{r} \tag{6}
\end{equation*}
$$

if there are no collisions, induced by the application of $\lfloor h(\cdot)\rfloor_{r}$ on the elements of A. Even more carefully, note that the equation would remain true, as long as there are no collision within the smallest t elements of H^{*}. Because Equation 2 needs to be shown only in the case where $R^{*} \geq\left(1-\delta^{\prime}\right) F_{0}$, i.e., when $\min _{t}^{\#}\left(H^{*}\right) \leq v$, it is enough to bound the probability of a collision in the range $[0 ; v]$. Moreover Equation 6 implies $\left|\min _{t}(H)-\min _{t}^{\#}\left(H^{*}\right)\right| \leq$ $\max \left(\min _{t}^{\#}\left(H^{*}\right), \min _{t}(H)\right) 2^{-r}$ from which it is possible to derive $\left|R^{*}-R\right| \leq$

[^2]$\frac{\delta}{4} F_{0}$. Another important fact is that h is injective with probability $1-\frac{1}{p}$, this is because h is chosen uniformly from the polynomials of degree less than 2. If it is a degree 1 polynomial it is a linear function on $G F(p)$ and thus injective. Because $p \geq 18$ the probability that h is not injective can be bounded by $1 / 18$. With these in mind, we can conclude:
\[

$$
\begin{aligned}
& P\left(\left|R^{*}-F_{0}\right| \leq \delta^{\prime} F_{0} \wedge\left|R-R^{*}\right|>\frac{\delta}{4} F_{0}\right) \\
\leq & P\left(R^{*} \geq\left(1-\delta^{\prime}\right) F_{0} \wedge \min _{t}^{\#}\left(H^{*}\right) \neq \min _{t}(H) \wedge h \text { inj. }\right)+P(\neg h \text { inj. }) \\
\leq & \left.P(\exists a \neq b \in A . \mid h(a)\rfloor_{r}=\lfloor h(b)\rfloor_{r} \leq v \wedge h(a) \neq h(b)\right)+\frac{1}{18} \\
\leq & \frac{1}{18}+\sum_{a \neq b \in A} P\left(\lfloor h(a)\rfloor_{r}=\lfloor h(b)\rfloor_{r} \leq v \wedge h(a) \neq h(b)\right) \\
\leq & \frac{1}{18}+\sum_{a \neq b \in A} P\left(|h(a)-h(b)| \leq v 2^{-r} \wedge h(a) \leq v\left(1+2^{-r}\right) \wedge h(a) \neq h(b)\right) \\
\leq & \frac{1}{18}+\sum_{a \neq b \in A} \sum_{\substack{a^{\prime}, b^{\prime} \in\{0, \ldots, p-1\} \wedge a^{\prime} \neq b^{\prime} \\
\left|a^{\prime}-b^{\prime}\right| \leq v 2^{-r} \wedge a^{\prime} \leq v\left(1+2^{-r}\right)}} P\left(h(a)=a^{\prime}\right) P\left(h(b)=b^{\prime}\right) \\
\leq & \frac{1}{18}+\frac{5 F_{0}^{2} v^{2}}{2 p^{2}} 2^{-r} \leq \frac{1}{9} .
\end{aligned}
$$
\]

which shows that Equation 2 is true.

A. 2 Case $F_{0}<t$

Note that in this case $|H| \leq F_{0}<t$ and thus $R=|H|$, hence the goal is to show that: $P\left(|H| \neq F_{0}\right) \leq \frac{1}{3}$. The latter can only happen, if there is a collision induced by the application of $\lfloor h(\cdot)\rfloor_{r}$. As before h is not injective
with probability at most $\frac{1}{18}$, hence:

$$
\begin{aligned}
& P\left(\left|R-F_{0}\right|>\delta F_{0}\right) \leq P\left(R \neq F_{0}\right) \\
\leq & \frac{1}{18}+P\left(R \neq F_{0} \wedge h \text { inj. }\right) \\
\leq & \frac{1}{18}+P\left(\exists a \neq b \in A .\lfloor h(a)\rfloor_{r}=\lfloor h(b)\rfloor_{r} \wedge h \text { inj. }\right) \\
\leq & \frac{1}{18}+\sum_{a \neq b \in A} P\left(\lfloor h(a)\rfloor_{r}=\lfloor h(b)\rfloor_{r} \wedge h(a) \neq h(b)\right) \\
\leq & \frac{1}{18}+\sum_{a \neq b \in A} P\left(|h(a)-h(b)| \leq p 2^{-r} \wedge h(a) \neq h(b)\right) \\
\leq & \frac{1}{18}+\sum_{a \neq b \in A} \sum_{\substack{a^{\prime}, b^{\prime} \in\{0, \ldots, p-1\} \\
a^{\prime} \neq b^{\prime} \wedge\left|a^{\prime}-b^{\prime}\right| \leq p 2^{-r}}} P\left(h(a)=a^{\prime}\right) P\left(h(b)=b^{\prime}\right) \\
\leq & \frac{1}{18}+F_{0}^{2} 2^{-r+1} \leq \frac{1}{18}+t^{2} 2^{-r+1} \leq \frac{1}{9} .
\end{aligned}
$$

Which concludes the proof.

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. Journal of Computer and System Sciences, 58(1):137-147, 1999.
[2] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct elements in a data stream. In J. D. P. Rolim and S. Vadhan, editors, Randomization and Approximation Techniques in Computer Science, pages 1-10. Springer Berlin Heidelberg, 2002.

[^0]: ${ }^{1}$ This rounding operation is called truncate-down in Isabelle, it is defined in HOL-Library.Float.

[^1]: ${ }^{2}$ The notation 1_{A} is shorthand for the indicator function of A, i.e., $1_{A}(x)=1$ if $x \in A$ and 0 otherwise.

[^2]: ${ }^{3}$ A consequence of h being chosen uniformly from a 2-independent hash family.
 ${ }^{4}$ The verification of this inequality is a lengthy but straightforward calculcation using the definition of δ^{\prime} and t.

