Expander Graphs

Emin Karayel

April 20, 2024

Abstract

Expander Graphs are low-degree graphs that are highly connected. They have diverse applications, for example in derandomization and pseudo-randomness, error-correcting codes, as well as pure mathematical subjects such as metric embeddings. This entry formalizes the concept and derives main theorems about them such as Cheeger's inequality or tail bounds on distribution of random walks on them. It includes a strongly explicit construction for every size and spectral gap. The latter is based on the Margulis-Gabber-Galil graphs and several graph operations that preserve spectral properties. The proofs are based on the survey papers/monographs by Hoory et al. [4] and Vadhan [11], as well as results from Impagliazzo and Kabanets [5] and Murtagh et al. [9]

Contents

1 Introduction 2
2 Preliminary Results 2
2.1 Constructive Chernoff Bound 2
2.2 Congruence Method 12
2.3 Multisets 13
3 Definitions 17
4 Setup for Types to Sets 35
5 Algebra-only Theorems 37
6 Spectral Theory 54
7 Cheeger Inequality 80
8 Margulis Gabber Galil Construction 92
9 Random Walks 114
10 Graph Powers 124
11 Strongly Explicit Expander Graphs 134
12 Expander Walks as Pseudorandom Objects 153

1 Introduction

A good introduction into Expander Graphs can be found in the survey article by Hoory et al. [4]: An expander graph is an infinite family of undirected regular graphs ${ }^{1}$ with increasing sizes, but contant degrees, all fulfilling a non-trivial expansion condition consistently. Most common are the following expansion conditions:

- One-sided spectral expansion - an upper-bound on the second largest eigenvalue λ_{2} of the adjacency matrix,
- Two-sided spectral expansion - an upper-bound on the absolute value of both λ_{2} and λ_{n} the smallest eigenvalue,
- Edge expansion - a lower-bound on the relative count of edges between any subset and its complement.

There are various implications between the three types of families, most notably the Cheeger inequality, which relates edge-expansion to (one-sided) spectral expansion. (Section 7)
This entry formalizes

- definitions for the expansion conditions, as well as proofs for the relations between them,
- a construction and proofs of spectral expansion of the Margulis-Gabber-Galil expander (Section 8), and
- proofs of how expansion-properties are affected by graph operations (Sections 10 and 11).

And concludes with a consturction of strongly explicit expanders for every size and spectral gap with asymptotically optimal degree (Section 11).
It also includes a proof of the hitting property, i.e., tail-bounds for the probability that a random walk in an expander graph ramains inside a given subset, as well as Chernoff-type bounds on the number of times a given subset will be hit by a random walk. (Section 9)
The basis for the graph theory relies on the formalization by Lars Noschinski [10]. Most of the algabraic development is carried out in the type-based formalization of linear algebra in "HOLAnalysis". To achieve that I have transferred some results from the set based world into the typebased world - most notably unified diagonalization of commuting hermitian matrices by Echenim [2] (Section 6). The transfer happens using the pre-exisiting framework by Divasón et al. [1].
On the otherhand, results that are obtained using the stochastic matrix, but do not explicitly reference it are transferred back into purely graph-theoretic theorems using the Types-To-Sets mechanism by Kuncăr and Popescu [7] (Section 4), i.e., the stochastic matrix is defined using a local type (isomorphic to the vertex set.)

2 Preliminary Results

2.1 Constructive Chernoff Bound

This section formalizes Theorem 5 by Impagliazzo and Kabanets [5]. It is a general result with which Chernoff-type tail bounds for various kinds of weakly dependent random variables can be obtained. The results here are general and will be applied in Section 9 to random walks in expander graphs.

```
theory Constructive-Chernoff-Bound
    imports
        HOL-Probability.Probability-Measure
        Universal-Hash-Families.Universal-Hash-Families-More-Product-PMF
        Weighted-Arithmetic-Geometric-Mean.Weighted-Arithmetic-Geometric-Mean
begin
lemma powr-mono-rev:
    fixes \(x\) :: real
```

[^0]```
 assumes \(a \leq b\) and \(x>0 x \leq 1\)
 shows \(x\) powr \(b \leq x\) powr \(a\)
proof -
 have \(x\) powr \(b=(1 / x)\) powr \((-b)\)
 using assms by (simp add: powr-divide powr-minus-divide)
 also have \(\ldots \leq(1 / x)\) powr \((-a)\)
 using assms by (intro powr-mono) auto
 also have \(\ldots=x\) powr \(a\)
 using assms by (simp add: powr-divide powr-minus-divide)
 finally show ?thesis by simp
qed
lemma exp-powr: \((\exp x)\) powr \(y=\exp (x * y)\) for \(x::\) real
 unfolding powr-def by simp
lemma integrable-pmf-iff-bounded:
 fixes \(f::^{\prime} a \Rightarrow\) real
 assumes \(\wedge x . x \in\) set-pmf \(p \Longrightarrow a b s(f x) \leq C\)
 shows integrable (measure-pmf p) \(f\)
proof -
 obtain \(x\) where \(x \in\) set-pmf \(p\)
 using set-pmf-not-empty by fast
 hence \(C \geq 0\) using \(\operatorname{assms}(1)\) by fastforce
 hence \(\left(\int{ }^{+}\right.\)x. ennreal \((\)abs \((f x))\) dmeasure-pmf \(\left.p\right) \leq\left(\int{ }^{+}\right.\)x. \(C\) дmeasure-pmf \(\left.p\right)\)
 using assms ennreal-le-iff
 by (intro nn-integral-mono-AE AE-pmfI) auto
 also have \(\ldots=C\)
 by \(\operatorname{simp}\)
 also have ... \(<\) Orderings.top
 by \(\operatorname{simp}\)
 finally have \(\left(\int^{+}\right.\)x. ennreal (abs \(\left.(f x)\right)\) dmeasure-pmf \(\left.p\right)<\) Orderings.top by simp
 thus ?thesis
 by (intro iffD2[OF integrable-iff-bounded]) auto
qed
lemma split-pair-pmf
 measure-pmf.prob (pair-pmf AB)S integral \(^{L} A(\lambda a\). measure-pmf.prob \(B\{b .(a, b) \in S\})\)
 (is ? \(L=? R\))
proof -
 have a:integrable (measure-pmf \(A\)) (\(\lambda\) x. measure-pmf.prob \(B\{b .(x, b) \in S\})\)
 by (intro integrable-pmf-iff-bounded[where \(C=1]\)) simp
 have \(? L=\left(\int{ }^{+} x\right.\). indicator \(S\) x \(\partial(\) measure-pmf \((\) pair-pmf \(\left.A B))\right)\)
 by (simp add: measure-pmf.emeasure-eq-measure)
 also have \(\ldots=\left(\int{ }^{+} x .\left(\int^{+} y\right.\right.\). indicator \(\left.\left.S(x, y) \partial B\right) \partial A\right)\)
 by (simp add: nn-integral-pair-pmf')
 also have \(\ldots=\left(\int^{+} x .\left(\int^{+} y\right.\right.\). indicator \(\{b .(x, b) \in S\}\) y \(\left.\left.\partial B\right) \partial A\right)\)
 by (simp add:indicator-def)
 also have \(\ldots=\left(\int^{+}{ }^{x}\right.\). (measure-pmf.prob \(\left.\left.B\{b .(x, b) \in S\}\right) \partial A\right)\)
 by (simp add: measure-pmf.emeasure-eq-measure)
 also have...\(=\) ? \(R\)
 using \(a\)
 by (subst nn-integral-eq-integral) auto
 finally show ?thesis by simp
qed
lemma split-pair-pmf-2:
 measure(pair-pmf A B) S \(=\) integral \(^{L} B(\lambda a\). measure-pmf.prob \(A\{b .(b, a) \in S\})\)
```

```
 (is ? \(L=? R\))
proof -
 have \(? L=\) measure \((\) pair-pmf \(B A)\{\omega .(\) snd \(\omega\), fst \(\omega) \in S\}\)
 by (subst pair-commute-pmf) (simp add:vimage-def case-prod-beta)
 also have ... \(=\) ? \(R\)
 unfolding split-pair-pmf by simp
 finally show? ?thesis by simp
qed
definition \(K L\)-div :: real \(\Rightarrow\) real \(\Rightarrow\) real
 where \(K L\)-div \(p q=p * \ln (p / q)+(1-p) * \ln ((1-p) /(1-q))\)
theorem impagliazzo-kabanets-pmf:
 fixes \(Y::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow\) bool
 fixes \(p::\) ' \(a p m f\)
 assumes \(n>0\)
 assumes \(\bigwedge i . i \in\{. .<n\} \Longrightarrow \delta i \in\{0 . .1\}\)
 assumes \(\bigwedge S . S \subseteq\{. .<n\} \Longrightarrow\) measure \(p\{\omega .(\forall i \in S . Y i \omega)\} \leq\left(\prod i \in S . \delta i\right)\)
 defines \(\delta\)-avg \(\equiv\left(\sum i \in\{. .<n\} . \delta i\right) / n\)
 assumes \(\gamma \in\{\delta-a v g . .1\}\)
 assumes \(\delta\)-avg \(>0\)
 shows measure \(p\{\omega\). real (card \(\{i \in\{. .<n\} . Y i \omega\}) \geq \gamma * n\} \leq \exp (-\) real \(n * K L\)-div \(\gamma\)
\(\delta\)-avg)
 (is ? \(L \leq ? R\))
proof -
 let \(? n=\) real \(n\)
 define \(q\) :: real where \(q=(\) if \(\gamma=1\) then 1 else \((\gamma-\delta-\operatorname{avg}) /(\gamma *(1-\delta\)-avg \()))\)
 define \(g\) where \(g \omega=\operatorname{card}\{i . i<n \wedge \neg Y i \omega\}\) for \(\omega\)
 let ? \(E=(\lambda \omega\). real \((\operatorname{card}\{i . i<n \wedge Y i \omega\}) \geq \gamma * n)\)
 let \(? \Xi=\) prod-pmf \(\{. .<n\}(\lambda-\). bernoulli-pmf \(q)\)
 have \(q\)-range: \(q \in\{0 . .1\}\)
 proof (cases \(\gamma<1\))
 case True
 then show ?thesis
 using \(\operatorname{assms}(5,6)\)
 unfolding \(q\)-def by (auto intro!:divide-nonneg-pos simp add:algebra-simps)
 next
 case False
 hence \(\gamma=1\) using \(\operatorname{assms}(5)\) by simp
 then show ?thesis unfolding \(q\)-def by simp
 qed
 have abs-pos-le-1I: abs \(x \leq 1\) if \(x \geq 0 x \leq 1\) for \(x\) :: real
 using that by auto
 have \(\gamma\)-n-nonneg: \(\gamma *\) ? \(n \geq 0\)
 using \(\operatorname{assms}(1,5,6)\) by \(\operatorname{simp}\)
define \(r\) where \(r=n-n a t\lceil\gamma * n\rceil\)
 have 2:(1-q) \(r \leq(1-q)^{\wedge} g \omega\) if ? \(E \omega\) for \(\omega\)
 proof -
 have \(g \omega=\operatorname{card}(\{i . i<n\}-\{i . i<n \wedge Y i \omega\})\)
 unfolding \(g\)-def by (intro arg-cong[where \(f=\lambda x\). card \(x]\)) auto
 also have \(\ldots=\operatorname{card}\{i . i<n\}-\operatorname{card}\{i . i<n \wedge Y i \omega\}\)
 by (subst card-Diff-subset, auto)
 also have \(\ldots \leq\) card \(\{i . i<n\}-n a t\lceil\gamma * n\rceil\)
```

```
 using that \gamma-n-nonneg by (intro diff-le-mono2) simp
 also have ... =r
 unfolding r-def by simp
 finally have g}\omega\leqr\mathrm{ by simp
 thus (1-q)^r\leq(1-q)^(g\omega)
 using q-range by (intro power-decreasing) auto
qed
have }\gamma\mathrm{ -gt-0: }\gamma>
 using assms(5,6) by simp
have q-lt-1:q<1 if \gamma<1
proof -
 have }\delta\mathrm{ -avg < 1 using assms(5) that by simp
 hence (}\gamma-\delta\mathrm{ -avg) / (}\gamma*(1-\delta\mathrm{ -avg)) < 1
 using \gamma-gt-0 assms(6) that
 by (subst pos-divide-less-eq) (auto simp add:algebra-simps)
 thus q<1
 unfolding q-def using that by simp
qed
have 5:(\delta-avg*q+(1-q))/(1-q) powr (1-\gamma) = exp (-KL-div \gamma\delta-avg) (is ?L1 = ?R1)
 if }\gamma<
proof -
 have \delta-avg-range: }\delta\mathrm{ -avg }\in{0<..<1
 using that assms(5,6) by simp
 have ?L1 = (1-(1-\delta-avg)*q)/(1-q) powr (1-\gamma)
 by (simp add:algebra-simps)
 also have ... = (1-(\gamma-\delta-avg) / \gamma) / (1-q) powr (1-\gamma)
 unfolding q-def using that \gamma-gt-0 \delta-avg-range by simp
 also have ... = (\delta-avg / \gamma) / (1-q) powr (1-\gamma)
 using \gamma-gt-0 by (simp add:divide-simps)
 also have ... = (\delta-avg / \gamma)* (1/(1-q)) powr (1-\gamma)
 using q-lt-1[OF that] by (subst powr-divide, simp-all)
 also have \ldots= (\delta-avg / \gamma)*(1/((\gamma*(1-\delta-avg)-(\gamma-\delta-avg))/(\gamma*(1-\delta-avg)))) powr (1-\gamma)
 using \gamma-gt-0 \delta-avg-range unfolding q-def by (simp add:divide-simps)
 also have \ldots= (\delta-avg / \gamma)*((\gamma/\delta-avg)*((1-\delta-avg)/(1-\gamma))) powr (1-\gamma)
 by (simp add:algebra-simps)
 also have ... = (\delta-avg / \gamma)*(\gamma/\delta-avg) powr (1-\gamma)*((1-\delta-avg)/(1-\gamma)) powr (1-\gamma)
 using \gamma-gt-0 \delta-avg-range that by (subst powr-mult, auto)
 also have \ldots=(\delta-avg / \gamma) powr 1 * (\delta-avg / \gamma) powr - (1-\gamma)*((1-\delta-avg)/(1-\gamma)) powr
(1-\gamma)
 using \gamma-gt-0 \delta-avg-range that unfolding powr-minus-divide by (simp add:powr-divide)
 also have ... = (\delta-avg / \gamma) powr \gamma*((1-\delta-avg)/(1-\gamma)) powr (1-\gamma)
 by (subst powr-add[symmetric]) simp
 also have ... = exp (ln ((\delta-avg / \gamma) powr \gamma*((1-\delta-avg)/(1-\gamma)) powr (1-\gamma)))
 using \gamma-gt-0 \delta-avg-range that by (intro exp-ln[symmetric] mult-pos-pos) auto
 also have ... = exp ((ln ((\delta-avg / \gamma) powr \gamma) + ln (((1-\delta-avg) / (1-\gamma)) powr (1-\gamma))))
 using \gamma-gt-0 \delta-avg-range that by (subst ln-mult) auto
 also have ... = exp ((\gamma*\operatorname{ln}(\delta-avg / \gamma) + (1-\gamma)* ln ((1-\delta-avg)/(1-\gamma))))
 using \gamma-gt-0 \delta-avg-range that by (simp add:ln-powr algebra-simps)
 also have ... = exp (- (\gamma*\operatorname{ln}(\gamma/\delta-avg) + (1-\gamma)*\operatorname{ln}((1-\gamma)/(1-\delta-avg))))
 using \gamma-gt-0 \delta-avg-range that by (simp add:ln-div algebra-simps)
 also have ... = ?R1
 unfolding KL-div-def by simp
 finally show ?thesis by simp
```

have 3: $(\delta-\operatorname{avg} * q+(1-q))^{\wedge} n /(1-q) \wedge r \leq \exp (-? n * K L-\operatorname{div} \gamma \delta-a v g)($ is $? L 1 \leq ? R 1)$
proof (cases $\gamma<1$ )
case True
have $\gamma *$ real $n \leq 1 *$ real $n$
using True by (intro mult-right-mono) auto
hence $r=$ real $n-\operatorname{real}(n a t\lceil\gamma *$ real $n\rceil)$ unfolding $r$-def by (subst of-nat-diff) auto
also have $\ldots=$ real $n-\lceil\gamma *$ real $n\rceil$
using $\gamma$-n-nonneg by (subst of-nat-nat, auto)
also have $\ldots \leq ? n-\gamma * ? n$
by (intro diff-mono) auto
also have $\ldots=(1-\gamma) * ? n$ by (simp add:algebra-simps)
finally have $r$-bound: $r \leq(1-\gamma) * n$ by $\operatorname{simp}$
have $? L 1=(\delta-a v g * q+(1-q))^{\wedge} n /(1-q)$ powr $r$
using $q-l t-1[$ OF True $]$ assms(1) by (simp add: powr-realpow)
also have $\ldots=(\delta-\operatorname{avg} * q+(1-q))$ powr $n /(1-q)$ powr $r$
using $q$-lt-1[OF True] assms(6) q-range
by (subst powr-realpow[symmetric], auto intro!:add-nonneg-pos)
also have $\ldots \leq(\delta$-avg $* q+(1-q))$ powr $n /(1-q)$ powr $((1-\gamma) * n)$
using $q$-range $q$-lt-1[OF True] by (intro divide-left-mono powr-mono-rev r-bound) auto
also have $\ldots=(\delta$-avg $* q+(1-q))$ powr $n /((1-q)$ powr $(1-\gamma))$ powr $n$
unfolding powr-powr by simp
also have $\ldots=((\delta$-avg $* q+(1-q)) /(1-q)$ powr $(1-\gamma))$ powr $n$
using assms(6) q-range by (subst powr-divide) auto
also have $\ldots=\exp (-K L$-div $\gamma \delta$-avg $)$ powr real $n$
unfolding $5[$ OF True $]$ by simp
also have $\ldots=$ ? $R 1$
unfolding exp-powr by simp
finally show? ?thesis by simp
next
case False
hence $\gamma$-eq-1: $\gamma=1$ using assms(5) by simp
have ? $L 1=\delta$-avg ^ $n$
using $\gamma$-eq-1 $r$-def $q$-def by simp
also have $\ldots=\exp (-K L$-div $1 \delta$-avg $){ }^{\wedge} n$
unfolding $K L$-div-def using $\operatorname{assms}(6)$ by (simp add:ln-div)
also have ... $=$ ? $R 1$
using $\gamma$-eq-1 by (simp add: powr-realpow[symmetric $]$ exp-powr)
finally show ?thesis by simp
qed
have 4: $(1-q)^{\wedge} r>0$
proof (cases $\gamma<1$ )
case True
then show ?thesis using $q$-lt-1[OF True] by simp
next
case False
hence $\gamma=1$ using assms(5) by simp
hence $r=0$ unfolding $r$-def by simp
then show? ?thesis by simp
qed
have $(1-q) \wedge r * ? L=\left(\int \omega\right.$. indicator $\left.\{\omega . ? E \omega\} \omega *(1-q) \wedge r \partial p\right)$
by $\operatorname{simp}$
also have $\ldots \leq\left(\int \omega\right.$. indicator $\{\omega$. ? $\left.E \omega\} \omega *(1-q) \wedge g \omega \partial p\right)$
using $q$-range 2 by (intro integral-mono-AE integrable-pmf-iff-bounded[where $C=1$ ] abs-pos-le-1I mult-le-one power-le-one AE-pmfI) (simp-all split:split-indicator)
also have $\ldots=\left(\int \omega\right.$. indicator $\{\omega$. ? $\left.E \omega\} \omega *\left(\prod i \in\{i . i<n \wedge \neg Y i \omega\} .(1-q)\right) \partial p\right)$
unfolding $g$-def using $q$-range
by (intro integral-cong-AE AE-pmfI, simp-all add:powr-realpow)
also have $\ldots=\left(\int \omega\right.$. indicator $\{\omega$. ? $E \omega\} \omega *$ measure ? $\Xi(\{j . j<n \wedge \neg Y j \omega\} \rightarrow\{$ False $\})$ $\partial p)$
using $q$-range by (subst prob-prod-pmf ${ }^{\prime}$ ) (auto simp add:measure-pmf-single)
also have $\ldots=\left(\int \omega\right.$. measure ? $\left.\Xi\{\xi . ? E \omega \wedge(\forall i \in\{j . j<n \wedge \neg Y j \omega\} . \neg \xi i)\} \partial p\right)$
by (intro integral-cong-AE AE-pmfI, simp-all add:Pi-def split:split-indicator)
also have $\ldots=\left(\int \omega\right.$. measure ? $\left.\Xi\{\xi . ? E \omega \wedge(\forall i \in\{. .<n\} . \xi i \longrightarrow Y i \omega)\} \partial p\right)$
by (intro integral-cong-AE AE-pmfI measure-eq- $A E$ ) auto
also have $\ldots=$ measure $($ pair-pmf $p$ ? $\Xi)\{\varphi . ? E($ fst $\varphi) \wedge(\forall i \in\{. .<n\}$. snd $\varphi i \longrightarrow Y i($ fst $\varphi))\}$ unfolding split-pair-pmf by simp
also have $\ldots \leq$ measure (pair-pmf $p$ ? $\Xi$ ) $\{\varphi .(\forall i \in\{j . j<n \wedge$ snd $\varphi j\} . Y i(f s t \varphi))\}$
by (intro pmf-mono, auto)
also have $\ldots=\left(\int \xi\right.$. measure $p\{\omega . \forall i \in\{j . j<n \wedge \xi j\} . Y i \omega\} \partial$ ? $\left.\Xi\right)$ unfolding split-pair-pmf-2 by simp
also have $\ldots \leq\left(\int a .\left(\prod i \in\{j . j<n \wedge a j\} . \delta i\right) \partial\right.$ ? $\left.\Xi\right)$
using assms(2) by (intro integral-mono-AE AE-pmfI assms(3) subsetI prod-le-1 prod-nonneg integrable-pmf-iff-bounded $[$ where $C=1]$ abs-pos-le-1I) auto
also have $\ldots=\left(\int a .\left(\prod i \in\{. .<n\} . \delta i^{\wedge} o f-b o o l(a i)\right) \partial ? \Xi\right)$
unfolding of-bool-def by (intro integral-cong-AE AE-pmfI) (auto simp add:if-distrib prod.If-cases Int-def)
also have $\ldots=\left(\prod i<n .\left(\int a .(\delta i \wedge\right.\right.$ of-bool a) $\partial($ bernoulli-pmf $\left.q))\right)$
using assms(2) by (intro expectation-prod-Pi-pmf integrable-pmf-iff-bounded[where $C=1]$ )
auto
also have $\ldots=\left(\prod i<n . \delta i * q+(1-q)\right)$
using $q$-range by simp
also have $\ldots=\left(\operatorname{root}(\operatorname{card}\{. .<n\})\left(\prod i<n . \delta i * q+(1-q)\right)\right)^{\wedge}(\operatorname{card}\{. .<n\})$
using $\operatorname{assms}(1,2) q$-range by (intro real-root-pow-pos2[symmetric] prod-nonneg) auto
also have $\ldots \leq\left(\left(\sum i<n . \delta i * q+(1-q)\right) / \operatorname{card}\{. .<n\}\right)^{\wedge}(\operatorname{card}\{. .<n\})$
using $\operatorname{assms}(1,2) q$-range by (intro power-mono arithmetic-geometric-mean)
(auto intro: prod-nonneg)
also have $\ldots=\left(\left(\sum i<n . \delta i * q\right) / n+(1-q)\right) \uparrow n$
using assms(1) by (simp add:sum.distrib divide-simps mult.commute)
also have $\ldots=(\delta$-avg $* q+(1-q)) \widehat{n}$
unfolding $\delta$-avg-def by (simp add: sum-distrib-right[symmetric])
finally have $(1-q) \wedge r * ? L \leq(\delta-a v g * q+(1-q)) \wedge n$ by simp
hence $? L \leq(\delta-a v g * q+(1-q)) \wedge n /(1-q) \wedge r$
using 4 by (subst pos-le-divide-eq) (auto simp add:algebra-simps)
also have $\ldots \leq$ ? $R$
by (intro 3)
finally show? ?thesis by simp
qed
The distribution of a random variable with a countable range is a discrete probability space, i.e., induces a PMF. Using this it is possible to generalize the previous result to arbitrary probability spaces.
lemma (in prob-space) establish-pmf:
fixes $f::^{\prime} a \Rightarrow{ }^{\prime} b$
assumes rv: random-variable discrete $f$
assumes countable ( $f$ ' space M)
shows distr $M$ discrete $f \in\{M$. prob-space $M \wedge$ sets $M=U N I V \wedge(A E x$ in $M$. measure $M$ $\{x\} \neq 0)\}$
proof -
define $N$ where $N=\{x \in \operatorname{space} M . \neg \operatorname{prob}(f-‘\{f x\} \cap$ space $M) \neq 0\}$
define $I$ where $I=\left\{z \in\left(f^{\prime}\right.\right.$ space $\left.M\right)$. $\operatorname{prob}(f-‘\{z\} \cap$ space $\left.M)=0\right\}$
have countable-I: countable I
unfolding I-def by (intro countable-subset[OF - assms(2)]) auto
have disj: disjoint-family-on $\left(\lambda y . f-^{‘}\{y\} \cap\right.$ space $\left.M\right) I$
unfolding disjoint-family-on-def by auto
have $N$-alt-def: $N=(\bigcup y \in I . f-‘\{y\} \cap$ space $M)$
unfolding $N$-def I-def by (auto simp add:set-eq-iff)
have emeasure $M N=\int+y$. emeasure $M\left(f-{ }^{`}\{y\} \cap\right.$ space $\left.M\right)$ dcount-space $I$ using $r v$ countable- $I$ unfolding $N$-alt-def
by (subst emeasure-UN-countable) (auto simp add:disjoint-family-on-def)
also have $\ldots=\int^{+} y .0$ dcount-space $I$
unfolding $I$-def using emeasure-eq-measure ennreal-0
by (intro nn-integral-cong) auto
also have $\ldots=0$ by simp
finally have 0 :emeasure $M N=0$ by simp
have $1: N \in$ events unfolding $N$-alt-def using $r v$ by (intro sets.countable-UN ${ }^{\prime \prime}$ countable-I) simp
have $A E x$ in $M . \operatorname{prob}(f-‘\{f x\} \cap$ space $M) \neq 0$ using 01 by (subst AE-iff-measurable[OF - N-def[symmetric]])
hence $A E x$ in $M$. measure (distr $M$ discrete $f$ ) $\{f x\} \neq 0$ by (subst measure-distr [OF rv], auto)
hence $A E x$ in distr $M$ discrete $f$. measure (distr $M$ discrete f) $\{x\} \neq 0$
by (subst AE-distr-iff [OF rv], auto)
thus ?thesis
using prob-space-distr rv by auto
qed
lemma singletons-image-eq:
( $\lambda x .\{x\})^{\prime} T \subseteq$ Pow $T$
by auto
theorem (in prob-space) impagliazzo-kabanets:
fixes $Y$ :: nat $\Rightarrow{ }^{\prime} a \Rightarrow$ bool
assumes $n>0$
assumes $\bigwedge i . i \in\{. .<n\} \Longrightarrow$ random-variable discrete $(Y i)$
assumes $\bigwedge i . i \in\{. .<n\} \Longrightarrow \delta i \in\{0 . .1\}$
assumes $\wedge S . S \subseteq\{. .<n\} \Longrightarrow \mathcal{P}(\omega$ in $M .(\forall i \in S . Y i \omega)) \leq\left(\prod i \in S . \delta i\right)$
defines $\delta$-avg $\equiv\left(\sum i \in\{. .<n\} . \delta i\right) / n$
assumes $\gamma \in\{\delta$-avg.. 1$\} \delta$-avg $>0$
shows $\mathcal{P}(\omega$ in $M$. real $($ card $\{i \in\{. .<n\} . Y i \omega\}) \geq \gamma * n) \leq \exp (-r e a l n * K L$-div $\gamma \delta$-avg $)$ (is ? $L \leq ? R$ )
proof -
define $f$ where $f=(\lambda \omega$ i. if $i<n$ then $Y i \omega$ else False $)$
define $g$ where $g=(\lambda \omega$ i. if $i<n$ then $\omega$ i else False $)$
define $T$ where $T=\{\omega .(\forall i . \omega i \longrightarrow i<n)\}$
have $g$-idem: $g \circ f=f$ unfolding $f$-def $g$-def by (simp add:comp-def)
have $f$-range: $f \in$ space $M \rightarrow T$
unfolding $T$-def $f$-def by simp
have $T=$ PiE-dflt $\{. .<n\}$ False $(\lambda-$. UNIV) unfolding T-def PiE-dflt-def by auto
hence finite $T$
using finite-PiE-dflt by auto
hence countable-T: countable $T$ by (intro countable-finite)
moreover have $f$ ' space $M \subseteq T$
using $f$-range by auto
ultimately have countable-f: countable ( $f$ 'space M)
using countable-subset by auto

```
have \(f-{ }^{\prime} y \cap\) space \(M \in\) events if \(t: y \in(\lambda x .\{x\})\) ' \(T\) for \(y\)
proof -
 obtain \(t\) where \(y=\{t\}\) and \(t\)-range: \(t \in T\) using \(t\) by auto
 hence \(f-{ }^{`} y \cap\) space \(M=\{\omega \in\) space \(M . f \omega=t\}\)
 by (auto simp add:vimage-def)
 also have \(\ldots=\{\omega \in \operatorname{space} M .(\forall i<n . Y i \omega=t i)\}\)
 using \(t\)-range unfolding \(f\)-def \(T\)-def by auto
 also have \(\ldots=(\bigcap i \in\{. .<n\}\). \(\{\omega \in\) space \(M . Y i \omega=t i\})\)
 using assms(1) by auto
 also have ... \(\in\) events
 using \(\operatorname{assms}(1,2)\)
 by (intro sets.countable-INT) auto
 finally show? thesis by simp
qed
```

hence random-variable (count-space T) $f$
using sigma-sets-singletons $[O F$ countable-T] singletons-image-eq f-range
by (intro measurable-sigma-sets $[$ where $\Omega=T$ and $A=(\lambda x .\{x\})$ ' $T]$ ) simp-all
moreover have $g \in$ measurable discrete (count-space $T$ )
unfolding $g$-def $T$-def by simp
ultimately have random-variable discrete $(g \circ f)$
by $\operatorname{simp}$
hence rv:random-variable discrete $f$
unfolding $g$-idem by simp
define $M^{\prime}::($ nat $\Rightarrow$ bool $)$ measure
where $M^{\prime}=\operatorname{distr} M$ discrete $f$
define $\Omega$ where $\Omega=A b s$-pmf $M^{\prime}$
have a:measure-pmf (Abs-pmf $\left.M^{\prime}\right)=M^{\prime}$
unfolding $M^{\prime}$-def
by (intro Abs-pmf-inverse[OF establish-pmf] rv countable-f)
have $b:\{i .(i<n \longrightarrow Y i x) \wedge i<n\}=\{i . i<n \wedge Y i x\}$ for $x$
by auto
have $c$ : measure $\Omega\{\omega . \forall i \in S . \omega i\} \leq \operatorname{prod} \delta S$ (is? ? $1 \leq$ ?R1) if $S \subseteq\{. .<n\}$ for $S$
proof -
have $d: i \in S \Longrightarrow i<n$ for $i$
using that by auto
have ? $L 1=$ measure $M^{\prime}\{\omega . \forall i \in S . \omega i\}$
unfolding $\Omega$-def a by simp
also have $\ldots=\mathcal{P}(\omega$ in $M .(\forall i \in S . Y i \omega))$
unfolding $M^{\prime}$-def using that d
by (subst measure-distr[OF rv]) (auto simp add:f-def Int-commute Int-def)
also have ... $\leq$ ? $R 1$
using that assms(4) by simp
finally show? ?thesis by simp
qed

```
 have \(? L=\) measure \(M^{\prime}\{\omega\). real \((\operatorname{card}\{i . i<n \wedge \omega i\}) \geq \gamma * n\}\)
 unfolding \(M^{\prime}\)-def by (subst measure-distr [OF rv])
 (auto simp add:f-def algebra-simps Int-commute Int-def b)
 also have \(\ldots=\) measure-pmf.prob \(\Omega\{\omega\). real (card \(\{i \in\{. .<n\} . \omega i\}) \geq \gamma * n\}\)
 unfolding \(\Omega\)-def a by simp
 also have ... \(\leq\) ? \(R\)
 using \(\operatorname{assms}(1,3,6,7) c\) unfolding \(\delta\)-avg-def
 by (intro impagliazzo-kabanets-pmf) auto
 finally show ?thesis by simp
qed
Bounds and properties of \(K L\)-div
lemma \(K L\)-div-mono-right-aux-1:
 assumes \(0 \leq p p \leq q q \leq q^{\prime} q^{\prime}<1\)
 shows \(K L\)-div \(p \quad q-2 *(p-q) \wedge^{\wedge} 2 \leq K L\)-div \(p q^{\prime}-2 *\left(p-q^{\prime}\right)^{\wedge} 2\)
proof (cases \(p=0\))
 case True
 define \(f^{\prime}::\) real \(\Rightarrow\) real where \(f^{\prime}=(\lambda x .1 /(1-x)-4 * x)\)
 have deriv: \(\left(\left(\lambda q\right.\right.\). \(\left.\ln (1 /(1-q))-2 * q^{\wedge} 2\right)\) has-real-derivative \(\left.\left(f^{\prime} x\right)\right)(\) at \(x)\)
 if \(x \in\left\{q . . q^{\prime}\right\}\) for \(x\)
 proof -
 have \(x \in\{0 . .<1\}\) using assms that by auto
 thus ?thesis unfolding \(f^{\prime}\)-def by (auto intro!: derivative-eq-intros)
 qed
 have deriv-nonneg: \(f^{\prime} x \geq 0\) if \(x \in\left\{q . . q^{\prime}\right\}\) for \(x\)
 proof -
 have \(0: x \in\{0 . .<1\}\) using assms that by auto
 have \(4 * x *(1-x)=1-4 *(x-1 / 2){ }^{2} 2\) by (simp add:power2-eq-square field-simps)
 also have \(\ldots \leq 1\) by \(\operatorname{simp}\)
 finally have \(4 * x *(1-x) \leq 1\) by \(\operatorname{simp}\)
 hence \(1 /(1-x) \geq 4 * x\) using 0 by (simp add: pos-le-divide-eq)
 thus ?thesis unfolding \(f^{\prime}\)-def by auto
 qed
```

    have \(\ln (1 /(1-q))-2 * q^{\wedge} 2 \leq \ln \left(1 /\left(1-q^{\prime}\right)\right)-2 * q^{\prime \wedge} 2\)
        using deriv deriv-nonneg by (intro DERIV-nonneg-imp-nondecreasing[OF assms(3)]) auto
    thus ?thesis using True unfolding KL-div-def by simp
    next
case False
hence $p$-gt-0: $p>0$ using assms by auto
define $f^{\prime}::$ real $\Rightarrow$ real where $f^{\prime}=(\lambda x .(1-p) /(1-x)-p / x+4 *(p-x))$
have deriv: $\left(\left(\lambda q . K L\right.\right.$-div $\left.p q-2 *(p-q)^{\text {² }} 2\right)$ has-real-derivative $\left.\left(f^{\prime} x\right)\right)($ at $x)$ if $x \in\left\{q . . q^{\prime}\right\}$
for $x$
proof -
have $0<p / x \quad 0<(1-p) /(1-x)$ using that assms $p$-gt-0 by auto
thus ?thesis unfolding $K L$-div-def $f^{\prime}$-def by (auto intro!: derivative-eq-intros)
qed
have $f^{\prime}$-part-nonneg: $(1 /(x *(1-x))-4) \geq 0$ if $x \in\{0<. .<1\}$ for $x::$ real
proof -
have $4 * x *(1-x)=1-4 *(x-1 / 2) \subset 2$ by (simp add:power2-eq-square algebra-simps)
also have $\ldots \leq 1$ by $\operatorname{simp}$
finally have $4 * x *(1-x) \leq 1$ by $\operatorname{simp}$
hence $1 /(x *(1-x)) \geq 4$ using that by (subst pos-le-divide-eq) auto
thus ?thesis by simp
qed
have $f^{\prime}$-alt: $f^{\prime} x=(x-p) *(1 /(x *(1-x))-4)$ if $x \in\{0<. .<1\}$ for $x$ proof -
have $f^{\prime} x=(x-p) /(x *(1-x))+4 *(p-x)$ using that unfolding $f^{\prime}$-def by (simp add:field-simps)
also have $\ldots=(x-p) *(1 /(x *(1-x))-4)$ by (simp add:algebra-simps)
finally show? ?thesis by simp
qed
have deriv-nonneg: $f^{\prime} x \geq 0$ if $x \in\left\{q . . q^{\prime}\right\}$ for $x$
proof -
have $x \in\{0<. .<1\}$ using assms that $p$-gt-0 by auto
have $f^{\prime} x=(x-p) *(1 /(x *(1-x))-4)$ using that assms $p$-gt- 0 by (subst $f^{\prime}$-alt) auto also have $\ldots \geq 0$ using that $f^{\prime}$-part-nonneg assms p-gt-0 by (intro mult-nonneg-nonneg) auto finally show? thesis by simp qed
show ?thesis using deriv deriv-nonneg
by (intro DERIV-nonneg-imp-nondecreasing[OF assms(3)]) auto
qed
lemma $K L$-div-swap: $K L$-div $(1-p)(1-q)=K L$-div $p q$ unfolding $K L$-div-def by auto
lemma $K L$-div-mono-right-aux-2:
assumes $0<q^{\prime} q^{\prime} \leq q q \leq p p \leq 1$
shows $K L$-div $p q-2 *(p-q) \wedge^{\wedge} 2 \leq K L$-div $p q^{\prime}-2 *\left(p-q^{\prime}\right)^{\wedge} 2$
proof -
have $K L-\operatorname{div}(1-p)(1-q)-2 *((1-p)-(1-q))^{\wedge} 2 \leq K L-\operatorname{div}(1-p)\left(1-q^{\prime}\right)-2 *\left((1-p)-\left(1-q^{\prime}\right)\right)^{\wedge} 2$
using assms by (intro KL-div-mono-right-aux-1) auto
thus ?thesis unfolding $K L$-div-swap by (auto simp:algebra-simps power2-commute)
qed
lemma $K L$-div-mono-right-aux:
assumes $\left(0 \leq p \wedge p \leq q \wedge q \leq q^{\prime} \wedge q^{\prime}<1\right) \vee\left(0<q^{\prime} \wedge q^{\prime} \leq q \wedge q \leq p \wedge p \leq 1\right)$
shows $K L$-div $p q-2 *(p-q)^{\wedge} 2 \leq K L$-div $p q^{\prime}-2 *\left(p-q^{\prime}\right) \wedge_{2}^{2}$
using KL-div-mono-right-aux-1 KL-div-mono-right-aux-2 assms by auto
lemma $K L$-div-mono-right:
assumes $\left(0 \leq p \wedge p \leq q \wedge q \leq q^{\prime} \wedge q^{\prime}<1\right) \vee\left(0<q^{\prime} \wedge q^{\prime} \leq q \wedge q \leq p \wedge p \leq 1\right)$
shows $K L$-div $p q \leq K L$-div $p q^{\prime}($ is $? L \leq ? R)$
proof -
consider (a) $0 \leq p p \leq q q \leq q^{\prime} q^{\prime}<1 \mid(b) 0<q^{\prime} q^{\prime} \leq q q \leq p p \leq 1$
using assms by auto
hence $0:(p-q)^{2} \leq\left(p-q^{\prime}\right)^{2}$
proof (cases)
case $a$
hence $(q-p)^{\wedge}$ 2 $\leq\left(q^{\prime}-p\right)^{\wedge} 2$ by auto
thus ?thesis by (simp add: power2-commute)
next
case $b$ thus ?thesis by simp
qed
have $? L=\left(K L\right.$-div $\left.p q-2 *(p-q)^{\wedge} 2\right)+2 *(p-q)^{\wedge} 2$ by $\operatorname{simp}$
also have $\ldots \leq\left(K L\right.$-div $\left.p q^{\prime}-2 *\left(p-q^{\prime}\right)^{\wedge} 2\right)+2 *\left(p-q^{\prime}\right)^{\wedge} 2$
by (intro add-mono KL-div-mono-right-aux assms mult-left-mono 0) auto
also have $\ldots=? R$ by simp
finally show ?thesis by simp
qed
lemma $K L$-div-lower-bound:
assumes $p \in\{0 . .1\} q \in\{0<. .<1\}$
shows $2 *(p-q)^{\wedge} \mathcal{Z} \leq K L$-div $p q$
proof -
have $0 \leq K L$-div p $p-2 *(p-p)^{\wedge} 2$ unfolding $K L$-div-def by simp
also have $\ldots \leq K L$-div $p q-2 *(p-q)^{\wedge} 2$ using assms by (intro KL-div-mono-right-aux) auto
finally show ?thesis by simp
qed
end

### 2.2 Congruence Method

The following is a method for proving equalities of large terms by checking the equivalence of subterms. It is possible to precisely control which operators to split by.

```
theory Extra-Congruence-Method
 imports
 Main
 HOL-Eisbach.Eisbach
begin
datatype cong-tag-type \(=\) CongTag
definition cong-tag-1 :: (' \(\left.a \Rightarrow{ }^{\prime} b\right) \Rightarrow\) cong-tag-type
 where cong-tag-1 \(x=\) CongTag
definition cong-tag-2 :: (' \(\left.a \Rightarrow^{\prime} b \Rightarrow^{\prime} c\right) \Rightarrow\) cong-tag-type
 where cong-tag-2 \(x=\) CongTag
definition cong-tag-3 :: \(\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c \Rightarrow{ }^{\prime} d\right) \Rightarrow\) cong-tag-type
 where cong-tag-3 \(x=\) CongTag
lemma arg-cong3:
 assumes \(x 1=x 2 y 1=y 2 z 1=z 2\)
 shows \(f x 1 y 1 z 1=f x 2 y 2 z 2\)
 using assms by auto
method intro-cong for \(A::\) cong-tag-type list uses more \(=\)
 (match (\(A\)) in
 cong-tag-1 \(f \# h\) (multi) for \(f::{ }^{\prime} a \Rightarrow ' b\) and \(h\)
 \(\Rightarrow\langle\) intro-cong \(h\) more:more arg-cong \([\) where \(f=f\rangle\rangle\)
 | cong-tag-2 \(f \# h\) (multi) for \(f::{ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c\) and \(h\)
 \(\Rightarrow\langle\) intro-cong \(h\) more:more arg-cong2 \([\) where \(f=f]\rangle\)
 | cong-tag-3 \(f \# h\) (multi) for \(f::^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c \Rightarrow{ }^{\prime} d\) and \(h\)
 \(\Rightarrow\langle\) intro-cong \(h\) more:more arg-cong \(3[\) where \(f=f]\rangle\)
 \(\mid-\Rightarrow\langle\) intro more refl〉)
bundle intro-cong-syntax
begin
 notation cong-tag-1 \(\left(\sigma_{1}\right)\)
 notation cong-tag-2 \(\left(\sigma_{2}\right)\)
 notation cong-tag-3 \(\left(\sigma_{3}\right)\)
end
bundle no-intro-cong-syntax
begin
```

```
 no-notation cong-tag-1 (}\mp@subsup{\sigma}{1}{}
 no-notation cong-tag-2 (}\mp@subsup{\sigma}{2}{}
 no-notation cong-tag-3 (}\mp@subsup{\sigma}{3}{}
```

end
lemma restr-Collect-cong:
assumes $\bigwedge x . x \in A \Longrightarrow P x=Q x$
shows $\{x \in A . P x\}=\{x \in A . Q x\}$
using assms by auto
end

### 2.3 Multisets

Some preliminary results about multisets.

```
theory Expander-Graphs-Multiset-Extras
 imports
 HOL-Library.Multiset
 Extra-Congruence-Method
begin
```

unbundle intro-cong-syntax

This is an induction scheme over the distinct elements of a multisets: We can represent each multiset as a sum like: replicate-mset $n_{1} x_{1}+$ replicate-mset $n_{2} x_{2}+\ldots+$ replicate-mset $n_{k} x_{k}$ where the $x_{i}$ are distinct.

```
lemma disj-induct-mset:
 assumes P {#}
 assumes \n Mx.PM\Longrightarrow\neg(x\in#M)\Longrightarrown>0\LongrightarrowP(M+replicate-mset n x)
 shows P M
proof (induction size M arbitrary: M rule:nat-less-induct)
 case 1
 show ?case
 proof (cases M={#})
 case True
 then show ?thesis using assms by simp
 next
 case False
 then obtain x where x-def:x }\in#M\mathrm{ using multiset-nonemptyE by auto
 define M1 where M1 = M - replicate-mset (count M x) x
 then have M-def:M=M1 + replicate-mset (count M x) x
 by (metis count-le-replicate-mset-subset-eq dual-order.refl subset-mset.diff-add)
 have size M1 < size M
 by (metis M-def x-def count-greater-zero-iff less-add-same-cancel1 size-replicate-mset size-union)
 hence P M1 using 1 by blast
 then show P M
 apply (subst M-def, rule assms(2), simp)
 by (simp add:M1-def x-def count-eq-zero-iff[symmetric])+
 qed
qed
lemma sum-mset-conv:
 fixes f :: 'a > 'b::{semiring-1}
 shows sum-mset (image-mset fA)=sum (}\lambdax\mathrm{ . of-nat (count A x)*f x) (set-mset A)
proof (induction A rule: disj-induct-mset)
 case 1
 then show ?case by simp
```

```
next
 case (2 n M x)
 moreover have count Mx=0 using 2 by (simp add: count-eq-zero-iff)
 moreover have }\y.y\in\mathrm{ set-mset }M\Longrightarrowy\not=x\mathrm{ using 2 by blast
 ultimately show ?case by (simp add:algebra-simps)
qed
lemma sum-mset-conv-2:
 fixes f ::' 'a = 'b::{semiring-1}
 assumes set-mset }A\subseteqB\mathrm{ finite B
 shows sum-mset (image-mset f A) = sum (\lambdax. of-nat (count A x)*fx)B (is ?L = ?R)
proof -
 have ?L = sum (}\lambdax.\mathrm{ of-nat (count A x)*fx) (set-mset A)
 unfolding sum-mset-conv by simp
 also have ... = ?R
 by (intro sum.mono-neutral-left assms) (simp-all add: iffD2[OF count-eq-zero-iff])
 finally show ?thesis by simp
qed
lemma count-mset-exp: count A x = size (filter-mset (\lambday.y=x) A)
 by (induction A, simp, simp)
lemma mset-repl: mset (replicate kx)=replicate-mset kx
 by (induction k, auto)
lemma count-image-mset-inj:
 assumes injf
 shows count (image-mset fA) (fx)= count A x
proof (cases x set-mset A)
 case True
 hence f-'{f x}\cap set-mset A={x}
 using assms by (auto simp add:vimage-def inj-def)
 then show ?thesis by (simp add:count-image-mset)
next
 case False
 hence f-`{f x}\cap set-mset A={}
 using assms by (auto simp add:vimage-def inj-def)
 thus ?thesis using False by (simp add:count-image-mset count-eq-zero-iff)
qed
lemma count-image-mset-0-triv:
 assumes }x\not\in\mathrm{ range f
 shows count (image-mset f A) }x=
proof -
 have }x\not\in\mathrm{ set-mset (image-mset f A)
 using assms by auto
 thus ?thesis
 by (meson count-inI)
qed
lemma filter-mset-ex-predicates:
 assumes }\x.\negPx\vee\negQ
 shows filter-mset PM+filter-mset Q M = filter-mset (}\lambdax.Px\veeQx)
 using assms by (induction M, auto)
lemma sum-count-2:
 assumes finite F
 shows sum (count M) F = size (filter-mset (\lambdax. x \inF)M)
```

```
 using assms
proof (induction F rule:finite-induct)
 case empty
 then show ?case by simp
next
 case (insert x F)
 have sum (count M) (insert x F) = size ({#y\in# M. y=x#} + {#x\in# M.x\inF#})
 using insert(1,2,3) by (simp add:count-mset-exp)
 also have ... = size ({#y\in# M. y=x\veey\inF#})
 using insert(2)
 by (intro arg-cong[where f=size] filter-mset-ex-predicates) simp
 also have ... = size (filter-mset (}\lambday.y\in\mathrm{ insert x F) M)
 by simp
 finally show ?case by simp
qed
definition concat-mset :: ('a multiset) multiset = ' a multiset
 where concat-mset xss = fold-mset (}\lambdaxs\mathrm{ ys. xs + ys) {#} xss
lemma image-concat-mset:
 image-mset f (concat-mset xss) = concat-mset (image-mset (image-mset f) xss)
 unfolding concat-mset-def by (induction xss, auto)
lemma concat-add-mset:
 concat-mset (image-mset (}\lambdax.fx+gx)xs)=\mathrm{ concat-mset (image-mset fxs) + concat-mset
(image-mset g xs)
 unfolding concat-mset-def by (induction xs) auto
lemma concat-add-mset-2:
 concat-mset (xs + ys) = concat-mset xs + concat-mset ys
 unfolding concat-mset-def by (induction xs, auto)
lemma size-concat-mset:
 size (concat-mset xss) = sum-mset (image-mset size xss)
 unfolding concat-mset-def by (induction xss, auto)
lemma filter-concat-mset:
 filter-mset P (concat-mset xss) = concat-mset (image-mset (filter-mset P) xss)
 unfolding concat-mset-def by (induction xss, auto)
lemma count-concat-mset:
 count (concat-mset xss) xs = sum-mset (image-mset (}\lambdax.count x xs) xss)
 unfolding concat-mset-def by (induction xss, auto)
lemma set-mset-concat-mset:
 set-mset (concat-mset xss)=\bigcup (set-mset'(set-mset xss))
 unfolding concat-mset-def by (induction xss, auto)
lemma concat-mset-empty:concat-mset {#}={#}
 unfolding concat-mset-def by simp
lemma concat-mset-single: concat-mset {#x#} = x
 unfolding concat-mset-def by simp
lemma concat-disjoint-union-mset:
 assumes finite I
 assumes \i. i }\=I\Longrightarrow\mathrm{ finite (A i)
 assumes \ij.i\inI\Longrightarrowj\inI\Longrightarrowi\not=j\LongrightarrowAi\capAj={}
```

```
 shows mset-set \((\bigcup(A \cdot I))=\) concat-mset \((\) image-mset \((\) mset-set \(\circ A)(\) mset-set \(I))\)
 using assms
proof (induction I rule:finite-induct)
 case empty
 then show ?case by (simp add:concat-mset-empty)
next
 case (insert \(x F\))
 have mset-set \((\bigcup(A\) 'insert \(x F))=\operatorname{mset}\)-set \((A x \cup(\bigcup(A ‘ F)))\)
 by \(\operatorname{simp}\)
 also have \(\ldots=\) mset-set \((A x)+\) mset-set \((\bigcup(A ‘ F))\)
 using insert by (intro mset-set-Union) auto
 also have \(\ldots=\) mset-set \((A x)+\) concat-mset \((\) image-mset \((\) mset-set \(\circ A)(\) mset-set \(F))\)
 using insert by (intro arg-cong2 [where \(f=(+)]\) insert(3)) auto
 also have \(\ldots=\) concat-mset (image-mset (mset-set \(\circ A)(\{\# x \#\}+\) mset-set \(F))\)
 by (simp add:concat-mset-def)
 also have \(\ldots=\) concat-mset \((\) image-mset \((\) mset-set \(\circ A)(\) mset-set \((\) insert \(x F)))\)
 using insert by (intro-cong [\(\sigma_{1}\) concat-mset, \(\sigma_{2}\) image-mset \(]\)) auto
 finally show ?case by blast
qed
lemma size-filter-mset-conv:
 size \((\) filter-mset \(f A)=\) sum-mset \((\) image-mset \((\lambda x\). of-bool \((f x)::\) nat) \(A)\)
 by (induction A, auto)
lemma filter-mset-const: filter-mset \((\lambda-. c) x s=(\) if \(c\) then \(x s\) else \(\{\#\})\)
 by \(\operatorname{simp}\)
lemma repeat-image-concat-mset:
 repeat-mset \(n(\) image-mset \(f A)=\) concat-mset \((\) image-mset \((\lambda x\).replicate-mset \(n(f x)) A)\)
 unfolding concat-mset-def by (induction A, auto)
lemma mset-prod-eq:
 assumes finite \(A\) finite \(B\)
 shows
 mset-set \((A \times B)=\) concat-mset \(\{\#\{\#(x, y) . y \in \#\) mset-set \(B \#\} . x \in \#\) mset-set \(A \#\}\)
 using assms(1)
proof (induction rule:finite-induct)
 case empty
 then show? case unfolding concat-mset-def by simp
next
 case (insert \(x\) F)
 have mset-set (insert \(x F \times B)=\operatorname{mset}\)-set \((F \times B \cup(\lambda y .(x, y))\) ' \(B)\)
 by (intro arg-cong[where \(f=\) mset-set \(]\)) auto
 also have \(\ldots=\) mset-set \((F \times B)+\) mset-set \(((\lambda y .(x, y))\) ' \(B)\)
 using insert \((1,2)\) assms(2) by (intro mset-set-Union finite-cartesian-product) auto
 also have \(\ldots=\) mset-set \((F \times B)+\{\#(x, y) . y \in \#\) mset-set \(B \#\}\)
 by (intro arg-cong2[where \(f=(+)]\) image-mset-mset-set[symmetric] inj-onI) auto
 also have \(\ldots=\) concat-mset \(\{\#\) image-mset (Pair \(x)\) (mset-set B). \(x \in \#\{\# x \#\}+\) (mset-set
F) \#\}
 unfolding insert image-mset-union concat-add-mset-2 by (simp add:concat-mset-single)
 also have \(\ldots=\) concat-mset \(\{\#\) image-mset (Pair x) (mset-set B). \(x \in \#\) mset-set (insert x F) \#\}
 using insert (1,2) by (intro-cong \(\left[\sigma_{1}\right.\) concat-mset, \(\sigma_{2}\) image-mset \(]\)) auto
 finally show? case by simp
qed
lemma sum-mset-repeat:
fixes \(f::{ }^{\prime} a \Rightarrow\) ' \(b::\) \{comm-monoid-add,semiring-1 \(\}\)
shows sum-mset (image-mset \(f(\) repeat-mset \(n A))=\) of-nat \(n *\) sum-mset \((\operatorname{image}-m s e t f A)\)
```

by (induction $n$, auto simp add:sum-mset.distrib algebra-simps)
unbundle no-intro-cong-syntax
end

## 3 Definitions

This section introduces regular graphs as a sublocale in the graph theory developed by Lars Noschinski [10] and introduces various expansion coefficients.

```
theory Expander-Graphs-Definition
 imports
 Graph-Theory.Digraph-Isomorphism
 HOL-Analysis.L2-Norm
 Extra-Congruence-Method
 Expander-Graphs-Multiset-Extras
 Jordan-Normal-Form.Conjugate
 Interpolation-Polynomials-HOL-Algebra.Interpolation-Polynomial-Cardinalities
begin
```

unbundle intro-cong-syntax
definition arcs-betw where arcs-betw $G u v=\{a . a \in \operatorname{arcs} G \wedge$ head $G a=v \wedge$ tail $G a=u\}$
The following is a stronger notion than the notion of symmetry defined in Graph-Theory.Digraph, it requires that the number of edges from $v$ to $w$ must be equal to the number of edges from $w$ to $v$ for any pair of vertices $v w \in$ verts $G$.
definition symmetric-multi-graph where symmetric-multi-graph $G=$
(fin-digraph $G \wedge(\forall v w .\{v, w\} \subseteq$ verts $G \longrightarrow$ card (arcs-betw $G w v)=$ card (arcs-betw $G v$ w)))
lemma symmetric-multi-graphI:
assumes fin-digraph $G$
assumes bij-betw $f$ (arcs $G$ ) (arcs $G$ )
assumes $\bigwedge e . e \in \operatorname{arcs} G \Longrightarrow$ head $G(f e)=$ tail $G e \wedge$ tail $G(f e)=$ head $G e$
shows symmetric-multi-graph $G$
proof -
have card (arcs-betw $G w v$ ) $=$ card (arcs-betw $G v w)$
(is ? $L=$ ? $R$ ) if $v \in$ verts $G w \in$ verts $G$ for $v w$
proof -
have $a: f x \in \operatorname{arcs} G$ if $x \in \operatorname{arcs} G$ for $x$
using assms(2) that unfolding bij-betw-def by auto
have $b: \exists y . y \in \operatorname{arcs} G \wedge f y=x$ if $x \in \operatorname{arcs} G$ for $x$
using bij-betw-imp-surj-on[OF assms(2)] that by force
have $\operatorname{inj}$-on $f(\operatorname{arcs} G)$
using assms(2) unfolding bij-betw-def by simp
hence inj-on $f\{e \in \operatorname{arcs} G$. head $G e=v \wedge$ tail $G e=w\}$
by (rule inj-on-subset, auto)
hence $? L=\operatorname{card}(f$ ' $\{e \in \operatorname{arcs} G$. head $G e=v \wedge$ tail $G e=w\})$
unfolding arcs-betw-def
by (intro card-image[symmetric])
also have $\ldots=$ ? $R$
unfolding arcs-betw-def using abassms(3)
by (intro arg-cong[where $f=$ card $]$ order-antisym image-subsetI subsetI) fastforce+
finally show? ?thesis by simp
qed
thus ?thesis
using assms(1) unfolding symmetric-multi-graph-def by simp
qed
lemma symmetric-multi-graphD2:
assumes symmetric-multi-graph $G$
shows fin-digraph $G$
using assms unfolding symmetric-multi-graph-def by simp
lemma symmetric-multi-graphD:
assumes symmetric-multi-graph $G$
shows card $\{e \in \operatorname{arcs} G$. head $G e=v \wedge$ tail $G e=w\}=$ card $\{e \in \operatorname{arcs} G$. head $G e=w \wedge$ tail $G e=v\}$
(is card ? $L=$ card ? $R$ )
proof (cases $v \in$ verts $G \wedge w \in$ verts $G$ )
case True
then show? thesis
using assms unfolding symmetric-multi-graph-def arcs-betw-def by simp
next
case False
interpret fin-digraph $G$
using symmetric-multi-graphD2[OF assms(1)] by simp
have $0: ? L=\{ \} ? R=\{ \}$
using False wellformed by auto
show ?thesis unfolding 0 by simp
qed
lemma symmetric-multi-graphD3:
assumes symmetric-multi-graph $G$
shows
card $\{e \in$ arcs $G$. tail $G e=v \wedge$ head $G e=w\}=$ card $\{e \in$ arcs $G$. tail $G e=w \wedge$ head $G e=v\}$
using symmetric-multi-graph $D[$ OF assms $]$ by (simp add:conj.commute)
lemma symmetric-multi-graphD4:
assumes symmetric-multi-graph $G$
shows card (arcs-betw Gvw) $=$ card (arcs-betw $G w v$ )
using symmetric-multi-graph $D[$ OF assms $]$ unfolding arcs-betw-def by simp
lemma symmetric-degree-eq:
assumes symmetric-multi-graph $G$
assumes $v \in$ verts $G$
shows out-degree $G v=$ in-degree $G v($ is $? L=? R)$
proof -
interpret fin-digraph $G$
using assms(1) symmetric-multi-graph-def by auto
have $? L=\operatorname{card}\{e \in \operatorname{arcs} G$. tail $G e=v\}$
unfolding out-degree-def out-arcs-def by simp
also have $\ldots=\operatorname{card}(\bigcup w \in$ verts $G$. $\{e \in \operatorname{arcs} G$. head $G e=w \wedge$ tail $G e=v\})$
by (intro arg-cong[where $f=$ card] ) (auto simp add:set-eq-iff)
also have $\ldots=\left(\sum w \in\right.$ verts $G$. card $\{e \in$ arcs $G$. head $G e=w \wedge$ tail $\left.G e=v\}\right)$
by (intro card-UN-disjoint) auto
also have $\ldots=\left(\sum w \in\right.$ verts $G$. card $\{e \in \operatorname{arcs} G$. head $G e=v \wedge$ tail $\left.G e=w\}\right)$
by (intro sum.cong refl symmetric-multi-graphD assms)
also have $\ldots=\operatorname{card}(\bigcup w \in$ verts $G .\{e \in \operatorname{arcs} G$. head $G e=v \wedge$ tail $G e=w\})$
by (intro card-UN-disjoint[symmetric]) auto
also have $\ldots=\operatorname{card}($ in-arcs $G v)$
by (intro arg-cong[where $f=$ card $]$ ) (auto simp add:set-eq-iff)
also have $\ldots=$ ? $R$
unfolding in-degree-def by simp
finally show ?thesis by simp
qed
definition edges where edges $G=$ image-mset (arc-to-ends $G$ ) (mset-set (arcs $G$ ))
lemma (in fin-digraph) count-edges:
count $($ edges $G)(u, v)=$ card $($ arcs-betw $G u v)($ is ? $L=? R)$
proof -
have $? L=$ card $\{x \in$ arcs $G$. arc-to-ends $G x=(u, v)\}$
unfolding edges-def count-mset-exp image-mset-filter-mset-swap[symmetric] by simp
also have ... $=$ ? $R$
unfolding arcs-betw-def arc-to-ends-def
by (intro arg-cong[where $f=$ card $]$ ) auto
finally show ?thesis by simp
qed
lemma (in fin-digraph) count-edges-sym:
assumes symmetric-multi-graph $G$
shows count (edges $G)(v, w)=$ count (edges $G)(w, v)$
unfolding count-edges using symmetric-multi-graphD4[OF assms] by simp
lemma (in fin-digraph) edges-sym:
assumes symmetric-multi-graph $G$
shows $\{\#(y, x) .(x, y) \in \#($ edges $G) \#\}=$ edges $G$
proof -
have count $\{\#(y, x) .(x, y) \in \#$ edges $G \#\} x=\operatorname{count}($ edges $G) x($ is $? L=? R)$ for $x$
proof -
have ? $L=$ count $($ edges $G)($ snd $x$, fst $x)$
unfolding count-mset-exp
by (simp add:image-mset-filter-mset-swap[symmetric] case-prod-beta prod-eq-iff ac-simps)
also have $\ldots=$ count (edges $G)(f$ st $x$, snd $x)$
unfolding count-edges-sym [OF assms] by simp
also have $\ldots=$ count (edges $G$ ) $x$ by simp
finally show ?thesis by simp
qed
thus ?thesis
by (intro multiset-eqI) simp
qed
definition vertices-from $G v=\{\#$ snd $e \mid e \in \#$ edges $G$.fst $e=v \#\}$
definition vertices-to $G v=\{\#$ fst $e \mid e \in \#$ edges $G$. snd $e=v \#\}$
context fin-digraph
begin
lemma edge-set:
assumes $x \in \#$ edges $G$
shows $f$ st $x \in$ verts $G$ snd $x \in$ verts $G$
using assms unfolding edges-def arc-to-ends-def by auto
lemma verts-from-alt:
vertices-from $G v=$ image-mset (head $G)($ mset-set (out-arcs $G v)$ )
proof -
have $\{\# x \in \#$ mset-set $(\operatorname{arcs} G)$. tail $G x=v \#\}=$ mset-set $\{a \in \operatorname{arcs} G$. tail $G a=v\}$

```
 by (intro filter-mset-mset-set) simp
 thus ?thesis
 unfolding vertices-from-def out-arcs-def edges-def arc-to-ends-def
 by (simp add:image-mset.compositionality image-mset-filter-mset-swap[symmetric] comp-def)
qed
lemma verts-to-alt:
 vertices-to G v = image-mset (tail G)(mset-set (in-arcs G v))
proof -
```



```
 by (intro filter-mset-mset-set) simp
 thus ?thesis
 unfolding vertices-to-def in-arcs-def edges-def arc-to-ends-def
 by (simp add:image-mset.compositionality image-mset-filter-mset-swap[symmetric] comp-def)
qed
lemma set-mset-vertices-from:
 set-mset (vertices-from G x)\subseteq verts G
 unfolding vertices-from-def using edge-set by auto
lemma set-mset-vertices-to:
 set-mset (vertices-to G x)\subseteq verts G
 unfolding vertices-to-def using edge-set by auto
end
A symmetric multigraph is regular if every node has the same degree. This is the context in which the expansion conditions are introduced.
```

```
locale regular-graph = fin-digraph +
```

locale regular-graph = fin-digraph +
assumes sym: symmetric-multi-graph G
assumes sym: symmetric-multi-graph G
assumes verts-non-empty: verts G\not={}
assumes verts-non-empty: verts G\not={}
assumes arcs-non-empty: arcs }G\not={
assumes arcs-non-empty: arcs }G\not={
assumes reg': \v w.v\in verts G\Longrightarroww\in verts G\Longrightarrowout-degree G v = out-degree Gw
assumes reg': \v w.v\in verts G\Longrightarroww\in verts G\Longrightarrowout-degree G v = out-degree Gw
begin
begin
definition d where d = out-degree G (SOME v.v\in verts G)
definition d where d = out-degree G (SOME v.v\in verts G)
lemmas count-sym = count-edges-sym[OF sym]
lemmas count-sym = count-edges-sym[OF sym]
lemma reg:
lemma reg:
assumes v\in verts G
assumes v\in verts G
shows out-degree G v =d in-degree G v=d
shows out-degree G v =d in-degree G v=d
proof -
proof -
define w}\mathrm{ where }w=(\mathrm{ SOME v. v verts G)
define w}\mathrm{ where }w=(\mathrm{ SOME v. v verts G)
have }w\in\mathrm{ verts }
have }w\in\mathrm{ verts }
unfolding w-def using assms(1) by (rule someI)
unfolding w-def using assms(1) by (rule someI)
hence out-degree G v = out-degree G w
hence out-degree G v = out-degree G w
by (intro reg' assms(1))
by (intro reg' assms(1))
also have ... = d
also have ... = d
unfolding d-def w-def by simp
unfolding d-def w-def by simp
finally show a:out-degree G v=d by simp
finally show a:out-degree G v=d by simp
show in-degree Gv=d
show in-degree Gv=d
using a symmetric-degree-eq[OF sym assms(1)] by simp
using a symmetric-degree-eq[OF sym assms(1)] by simp
qed
qed
definition n where n= card (verts G)

```
definition n where n= card (verts G)
```

lemma $n$-gt- $0: n>0$
unfolding $n$-def using verts-non-empty by auto

```
lemma d-gt-0:d>0
proof -
 obtain a where a:a
 using arcs-non-empty by auto
 hence }a\in\mathrm{ in-arcs G(head Ga)
 unfolding in-arcs-def by simp
 hence 0<in-degree G (head Ga)
 unfolding in-degree-def card-gt-0-iff by blast
 also have ... = d
 using a by (intro reg) simp
 finally show ?thesis by simp
qed
```

definition $g$-inner $::\left({ }^{\prime} a \Rightarrow\left({ }^{\prime} c::\right.\right.$ conjugatable-field $\left.)\right) \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} c\right) \Rightarrow{ }^{\prime} c$
where $g$-inner f $g=\left(\sum x \in\right.$ verts $G .(f x) *$ conjugate $\left.(g x)\right)$
lemma conjugate-divide[simp]:
fixes $x$ y :: 'c :: conjugatable-field
shows conjugate $(x / y)=$ conjugate $x /$ conjugate $y$
proof (cases $y=0$ )
case True
then show? ?thesis by simp
next
case False
have conjugate $(x / y) *$ conjugate $y=$ conjugate $x$
using False by (simp add:conjugate-dist-mul[symmetric])
thus ?thesis
by (simp add:divide-simps)
qed
lemma $g$-inner-simps:
$g$-inner $(\lambda x .0) g=0$
$g$-inner $f(\lambda x .0)=0$
$g$-inner $(\lambda x . c * f x) g=c * g$-inner $f g$
$g$-inner $f(\lambda x . c * g x)=$ conjugate $c * g$-inner $f g$
$g$-inner $(\lambda x . f x-g x) h=g$-inner $f h-g$-inner $g h$
$g$-inner $(\lambda x . f x+g x) h=g$-inner $f h+g$-inner $g h$
$g$-inner $f(\lambda x . g x+h x)=g$-inner $f g+g$-inner $f h$
$g$-inner $f(\lambda x . g x / c)=g$-inner $f g /$ conjugate $c$
$g$-inner $(\lambda x . f x / c) g=g$-inner $f g / c$
unfolding $g$-inner-def
by (auto simp add:sum.distrib algebra-simps sum-distrib-left sum-subtractf sum-divide-distrib
conjugate-dist-mul conjugate-dist-add)
definition $g$-norm $f=\operatorname{sqrt}(g$-inner $f f)$
lemma $g$-norm-eq: $g$-norm $f=L 2$-set $f$ (verts $G$ )
unfolding $g$-norm-def $g$-inner-def L2-set-def
by (intro arg-cong[where $f=$ sqrt] sum.cong refl) (simp add:power2-eq-square)
lemma g-inner-cauchy-schwartz:
fixes $f g::{ }^{\prime} a \Rightarrow$ real
shows $\mid g$-inner $f g \mid \leq g$-norm $f * g$-norm $g$
proof -
have $\mid g$-inner $f g \mid \leq\left(\sum v \in\right.$ verts $\left.G .|f v * g v|\right)$
unfolding $g$-inner-def conjugate-real-def by (intro sum-abs)
also have $\ldots \leq g$-norm $f * g$-norm $g$
unfolding $g$-norm-eq abs-mult by (intro L2-set-mult-ineq)
finally show ?thesis by simp
qed
lemma $g$-inner-cong:
assumes $\bigwedge x . x \in$ verts $G \Longrightarrow f 1 x=f 2 x$
assumes $\bigwedge x . x \in$ verts $G \Longrightarrow g 1 x=g 2 x$
shows $g$-inner f1 g1 $=g$-inner f2 $g 2$
unfolding g-inner-def using assms
by (intro sum.cong refl) auto
lemma g-norm-cong:
assumes $\bigwedge x . x \in$ verts $G \Longrightarrow f x=g x$
shows $g$-norm $f=g$-norm $g$
unfolding $g$-norm-def
by (intro arg-cong[where $f=$ sqrt] $g$-inner-cong assms)
lemma $g$-norm-nonneg: $g$-norm $f \geq 0$
unfolding $g$-norm-def $g$-inner-def
by (intro real-sqrt-ge-zero sum-nonneg) auto
lemma $g$-norm-sq:
$g$-norm $f^{\wedge} 2=g$-inner $f f$
using $g$-norm-nonneg $g$-norm-def by simp
definition $g$-step $::\left({ }^{\prime} a \Rightarrow\right.$ real $) \Rightarrow\left({ }^{\prime} a \Rightarrow\right.$ real $)$
where $g$-step $f v=\left(\sum x \in\right.$ in-arcs $G v . f($ tail $G x) /$ real d $)$
lemma $g$-step-simps:
$g$-step $(\lambda x . f x+g x) y=g$-step $f y+g$-step $g y$
$g$-step $(\lambda x . f x / c) y=g$-step $f y / c$
unfolding $g$-step-def sum-divide-distrib[symmetric] using finite-in-arcs d-gt-0
by (auto intro:sum.cong simp add:sum.distrib field-simps sum-distrib-left sum-subtractf)
lemma $g$-inner-step-eq:
$g$-inner $f(g$-step $f)=\left(\sum a \in \operatorname{arcs} G . f(\right.$ head $G a) * f($ tail $\left.G a)\right) / d($ is $? L=? R)$
proof -
have $? L=\left(\sum v \in\right.$ verts $G . f v *\left(\sum a \in\right.$ in-arcs $G v . f($ tail $\left.\left.G a) / d\right)\right)$
unfolding $g$-inner-def $g$-step-def by simp
also have $\ldots=\left(\sum v \in\right.$ verts $G .\left(\sum a \in\right.$ in-arcs $G v . f v * f($ tail $\left.\left.G a) / d\right)\right)$
by (subst sum-distrib-left) simp
also have $\ldots=\left(\sum v \in \operatorname{verts} G .\left(\sum a \in\right.\right.$ in-arcs $G v . f($ head $G a) * f($ tail $\left.\left.G a) / d\right)\right)$
unfolding in-arcs-def by (intro sum.cong refl) simp
also have $\ldots=\left(\sum a \in(\bigcup(\right.$ in-arcs $G ‘$ verts $G)) . f($ head $G a) * f($ tail Ga) $/ d)$ using finite-verts by (intro sum.UNION-disjoint[symmetric] ballI) (auto simp add:in-arcs-def)
also have $\ldots=\left(\sum a \in \operatorname{arcs} G . f(\right.$ head $G a) * f($ tail $\left.G a) / d\right)$
unfolding in-arcs-def using wellformed by (intro sum.cong) auto
also have $\ldots=$ ? $R$
by (intro sum-divide-distrib[symmetric])
finally show ?thesis by simp
qed
definition $\Lambda$-test
where $\Lambda$-test $=\{f . g$-norm $f \wedge 2 \neq 0 \wedge g$-inner $f(\lambda$-. 1$)=0\}$

```
lemma \Lambda-test-ne:
 assumes n>1
 shows }\Lambda\mathrm{ -test }\not={
proof -
 obtain v}\mathrm{ where v-def:v verts G using verts-non-empty by auto
 have False if }\bigwedgew.w\in\mathrm{ verts }G\Longrightarroww=
 proof -
 have verts }G={v}\mathrm{ using that v-def
 by (intro iffD2[OF set-eq-iff] allI) blast
 thus False
 using assms n-def by simp
 qed
 then obtain w where w-def:w\in verts G v\not=w
 by auto
 define f}\mathrm{ where f x= (if }x=v\mathrm{ then 1 else (if }x=w\mathrm{ then (-1) else (0::real))) for }
 have g-norm f^2 = (\sumx\inverts G. (if x=v then 1 else if x=w then - 1 else 0)}\mp@subsup{)}{}{2}
 unfolding g-norm-sq g-inner-def conjugate-real-def power2-eq-square[symmetric]
 by (simp add:f-def)
 also have ... = (\sumx\in{v,w}. (if }x=v\mathrm{ then 1 else if }x=w\mathrm{ then -1 else 0)}\mp@subsup{)}{}{2}
 using v-def(1) w-def(1) by (intro sum.mono-neutral-cong refl) auto
 also have ... = (\sumx\in{v,w}. (if x=v then 1 else - 1)}\mp@subsup{)}{}{2}
 by (intro sum.cong) auto
 also have ... = 2
 using w-def(2) by (simp add:if-distrib if-distribR sum.If-cases)
 finally have g-norm f^2 = 2 by simp
 hence g-norm f}\not=0\mathrm{ by auto
 moreover have g-inner f (}\lambda\mathrm{ -. 1) = 0
 unfolding g-inner-def f-def using v-def w-def by (simp add:sum.If-cases)
 ultimately have f}\in\Lambda\mathrm{ -test
 unfolding }\Lambda\mathrm{ -test-def by simp
 thus ?thesis by auto
qed
lemma \Lambda-test-empty:
 assumes n=1
 shows \Lambda-test ={}
proof -
 obtain v where v-def: verts }G={v
 using assms card-1-singletonE unfolding n-def by auto
 have False if f}\in\Lambda\mathrm{ -test for f
 proof -
 have 0=(g-inner f (}\lambda\mathrm{ -.1)) `2
 using that }\Lambda\mathrm{ -test-def by simp
 also have ... = (fv)^2
 unfolding g-inner-def v-def by simp
 also have ... = g-norm f^2
 unfolding g-norm-sq g-inner-def v-def
 by (simp add:power2-eq-square)
 also have ... }=
 using that \Lambda-test-def by simp
 finally show False by simp
 qed
 thus ?thesis by auto
qed
```

The following are variational definitions for the maxiumum of the spectrum (resp. maxi-
mum modulus of the spectrum) of the stochastic matrix (excluding the Perron eigenvalue 1). Note that both values can still obtain the value one 1 (if the multiplicity of the eigenvalue 1 is larger than 1 in the stochastic matrix, or in the modulus case if -1 is an eigenvalue).
The definition relies on the supremum of the Rayleigh-Quotient for vectors orthogonal to the stationary distribution). In Section 6, the equivalence of this value with the algebraic definition will be shown. The definition here has the advantage that it is (obviously) independent of the matrix representation (ordering of the vertices) used.

```
definition \(\Lambda_{2}\) :: real
 where \(\Lambda_{2}=(\) if \(n>1\) then \((S U P f \in \Lambda\)-test. \(g\)-inner \(f(g\)-step \(f) / g\)-inner \(f f)\) else 0\()\)
definition \(\Lambda_{a}::\) real
 where \(\Lambda_{a}=(\) if \(n>1\) then \((S U P f \in \Lambda\)-test. \(\mid g\)-inner \(f(g\)-step \(f) \mid / g\)-inner \(f f)\) else 0\()\)
lemma sum-arcs-tail:
 fixes \(f::{ }^{\prime} a \Rightarrow\left({ }^{\prime} c::\right.\) semiring-1 \()\)
 shows \(\left(\sum a \in \operatorname{arcs} G . f(\right.\) tail \(\left.G a)\right)=\) of-nat \(d *\left(\sum v \in\right.\) verts \(\left.G . f v\right)(\) is \(? L=? R)\)
proof -
 have \(? L=\left(\sum a \in(\bigcup(\right.\) out-arcs \(G\) 'verts \(G)) . f(\) tail Ga) \()\)
 by (intro sum.cong) auto
 also have \(\ldots=\left(\sum v \in\right.\) verts \(G .\left(\sum a \in\right.\) out-arcs \(G v . f(\) tail \(\left.\left.G a)\right)\right)\)
 by (intro sum.UNION-disjoint) auto
 also have \(\ldots=\left(\sum v \in\right.\) verts \(G\). of-nat (out-degree \(\left.\left.G v\right) * f v\right)\)
 unfolding out-degree-def by simp
 also have \(\ldots=\left(\sum v \in\right.\) verts \(G\). of-nat \(\left.d * f v\right)\)
 by (intro sum.cong arg-cong2[where \(f=(*)]\) arg-cong \([\) where \(f=o f-n a t]\) reg) auto
 also have \(\ldots=\) ? \(R\) by (simp add:sum-distrib-left)
 finally show?thesis by simp
qed
lemma sum-arcs-head:
 fixes \(f::{ }^{\prime} a \Rightarrow\left({ }^{\prime} c::\right.\) semiring-1)
 shows \(\left(\sum a \in \operatorname{arcs} G . f(\right.\) head \(\left.G a)\right)=\) of-nat \(d *\left(\sum v \in\right.\) verts \(\left.G . f v\right)(\) is ? \(L=? R)\)
proof -
 have \(? L=\left(\sum a \in(\bigcup(\right.\) in-arcs \(G\) 'verts \(G)) . f(\) head \(\left.G a)\right)\)
 by (intro sum.cong) auto
 also have \(\ldots=\left(\sum v \in\right.\) verts \(G .\left(\sum a \in\right.\) in-arcs \(G v . f(\) head \(\left.\left.G a)\right)\right)\)
 by (intro sum.UNION-disjoint) auto
 also have \(\ldots=\left(\sum v \in\right.\) verts \(G\). of-nat (in-degree \(\left.\left.G v\right) * f v\right)\)
 unfolding in-degree-def by simp
 also have \(\ldots=\left(\sum v \in\right.\) verts \(G\). of-nat \(\left.d * f v\right)\)
 by (intro sum.cong arg-cong2[where \(f=(*)]\) arg-cong[where \(f=o f-n a t]\) reg) auto
 also have \(\ldots=? R\) by (simp add:sum-distrib-left)
 finally show ?thesis by simp
qed
lemma bdd-above-aux:
 \(\mid \sum a \in \operatorname{arcs} G\). \(f(\) head \(G a) * f(\) tail \(G a) \mid \leq d * g\)-norm f~2 \((\) is ? \(L \leq ? R)\)
proof -
 have \(\left(\sum a \in \operatorname{arcs} G . f(\text { head } G a)^{\wedge} \mathcal{Z}\right)=d * g\)-norm \(f^{\wedge}\) 2
 unfolding sum-arcs-head[where \(f=\lambda x\). \(f x^{\wedge}\) 2] \(g\)-norm-sq \(g\)-inner-def
 by (simp add:power2-eq-square)
 hence 0:L2-set \((\lambda a . f(\) head \(G a))(\operatorname{arcs} G) \leq \operatorname{sqrt}(d * g\)-norm f \(\mathcal{Z}\)) \()\)
 using g-norm-nonneg unfolding L2-set-def by simp
```

    have \(\left(\sum a \in \operatorname{arcs} G . f(\text { tail } G a)^{\wedge} 2\right)=d * g\)-norm \(f^{\wedge} 2\)
        unfolding sum-arcs-tail[where \(f=\lambda x\). \(f\) x 2 2] sum-distrib-left[symmetric] \(g\)-norm-sq g-inner-def
    ```
 by (simp add:power2-eq-square)
 hence 1:L2-set (\lambdaa.f (tail Ga)) (arcs G) \leq sqrt (d*g-norm f^2)
 unfolding L2-set-def by simp
 have ?L}\leq(\suma\in\operatorname{arcs}G.|f(\mathrm{ head Ga)|* |f(tail G a)|)
 unfolding abs-mult[symmetric] by (intro divide-right-mono sum-abs)
 also have ... \leq (L2-set (\lambdaa.f (head Ga)) (arcs G) * L2-set (\lambdaa.f (tail Ga)) (arcs G))
 by (intro L2-set-mult-ineq)
 also have ... \leq(sqrt (d*g-norm f^2) * sqrt (d*g-norm f^2))
 by (intro mult-mono 0 1) auto
 also have ... = d*g-norm f^2
 using d-gt-0 g-norm-nonneg by simp
 finally show ?thesis by simp
qed
lemma bdd-above-aux-2:
 assumes }f\in\Lambda\mathrm{ -test
 shows |g-inner f (g-step f)| / g-inner ff \leq 1
proof -
 have 0:g-inner ff>0
 using assms unfolding \Lambda-test-def g-norm-sq[symmetric] by auto
 have |g-inner f(g-step f)| = |\suma\inarcs G.f(head Ga)*f(tail Ga)| / real d
 unfolding g-inner-step-eq by simp
 also have ... \leqd*g-norm f^2 / d
 by (intro divide-right-mono bdd-above-aux assms) auto
 also have ... = g-inner ff
 using d-gt-0 unfolding g-norm-sq by simp
 finally have }|g\mathrm{ -inner f(g-step f)|
 by simp
 thus ?thesis
 using 0 by simp
qed
lemma bdd-above-aux-3:
 assumes f}\in\Lambda\mathrm{ -test
 shows g-inner f (g-step f)/g-inner ff}\leq1(\mathrm{ is ?L }\leq\mathrm{ ?R)
proof -
 have ?L}\leq|g\mathrm{ -inner f (g-step f)| / g-inner ff
 unfolding g-norm-sq[symmetric]
 by (intro divide-right-mono) auto
 also have ... }\leq
 using bdd-above-aux-2[OF assms] by simp
 finally show ?thesis by simp
qed
lemma bdd-above-\Lambda: bdd-above ((\lambdaf. |g-inner f (g-step f)| / g-inner ff)' }\Lambda\mathrm{ -test)
 using bdd-above-aux-2
 by (intro bdd-aboveI[where M=1]) auto
lemma bdd-above- }\mp@subsup{\Lambda}{2}{}\mathrm{ : bdd-above ((}\lambdaf.g\mathrm{ -inner f (g-step f) / g-inner ff)' }\Lambda\mathrm{ -test)
 using bdd-above-aux-3
 by (intro bdd-aboveI[where M=1]) auto
lemma \Lambda-le-1: }\mp@subsup{\Lambda}{a}{}\leq
proof (cases n>1)
 case True
```

```
 have (SUP f\in\Lambda-test. }|\mathrm{ g-inner f (g-step f)| / g-inner f f)
 using bdd-above-aux-2 \Lambda-test-ne[OF True] by (intro cSup-least) auto
 thus }\mp@subsup{\Lambda}{a}{}\leq
 unfolding }\mp@subsup{\Lambda}{a}{}\mathrm{ -def using True by simp
next
 case False
 thus ?thesis unfolding }\mp@subsup{\Lambda}{a}{}\mathrm{ -def by simp
qed
lemma }\mp@subsup{\Lambda}{2}{}-le-1:\mp@subsup{\Lambda}{2}{}\leq
proof (cases n>1)
 case True
 have (SUP f\in\Lambda-test. g-inner f (g-step f) / g-inner f f) \leq 1
 using bdd-above-aux-3 \Lambda-test-ne[OF True] by (intro cSup-least) auto
 thus }\mp@subsup{\Lambda}{2}{}\leq
 unfolding }\mp@subsup{\Lambda}{2}{}\mathrm{ -def using True by simp
next
 case False
 thus ?thesis unfolding }\mp@subsup{\Lambda}{2}{}\mathrm{ -def by simp
qed
lemma \Lambda-ge-0: }\mp@subsup{\Lambda}{a}{}\geq
proof (cases n>1)
 case True
 obtain f}\mathrm{ where f-def: f}\in\Lambda\mathrm{ -test
 using \Lambda-test-ne[OF True] by auto
 have 0\leq |g-inner f (g-step f)| / g-inner f f
 unfolding g-norm-sq[symmetric] by (intro divide-nonneg-nonneg) auto
 also have \ldots}\leq(SUP f\in\Lambda\mathrm{ -test. |g-inner f (g-step f)| / g-inner ff)
 using f-def by (intro cSup-upper bdd-above-\Lambda) auto
 finally have (SUP f\in\Lambda-test. |g-inner f (g-step f)| / g-inner f f)\geq0
 by simp
 thus ?thesis
 unfolding }\mp@subsup{\Lambda}{a}{}\mathrm{ -def using True by simp
next
 case False
 thus ?thesis unfolding }\mp@subsup{\Lambda}{a}{}\mathrm{ -def by simp
qed
lemma os-expanderI:
 assumes n>1
 assumes \f.g-inner f(\lambda-. 1)=0\Longrightarrowg-inner f (g-step f)\leqC*g-norm f^2
 shows }\mp@subsup{\Lambda}{2}{}\leq
proof -
 have g-inner f(g-step f)/g-inner ff\leqC if f\in\Lambda-test for f
 proof -
 have g-inner f(g-step f)\leqC*g-inner ff
 using that \Lambda-test-def assms(2) unfolding g-norm-sq by auto
 moreover have g-inner ff>0
 using that unfolding }\Lambda\mathrm{ -test-def g-norm-sq[symmetric] by auto
 ultimately show ?thesis
 by (simp add:divide-simps)
 qed
 hence (SUP f\in\Lambda-test. g-inner f (g-step f) / g-inner f f) \leqC
 using \Lambda-test-ne[OF assms(1)] by (intro cSup-least) auto
 thus ?thesis
 unfolding }\mp@subsup{\Lambda}{2}{}\mathrm{ -def using assms by simp
qed
```

```
lemma os-expanderD:
 assumes g-inner f (}\lambda\mathrm{ -. 1) = 0
 shows g-inner f (g-step f)\leq \Lambda \ * g-norm f^2 (is ?L L ?R)
proof (cases g-norm f}\not=0\mathrm{)
 case True
 have 0:f }\in\Lambda\mathrm{ -test
 unfolding \Lambda-test-def using assms True by auto
 hence 1:n> 1
 using }\Lambda\mathrm{ -test-empty n-gt-0 by fastforce
 have g-inner f (g-step f)/g-norm f^2 = g-inner f (g-step f)/g-inner ff
 unfolding g-norm-sq by simp
 also have ... \leq(SUP f\in\Lambda-test. g-inner f (g-step f)/g-inner ff)
 by (intro cSup-upper bdd-above-}\mp@subsup{\Lambda}{2}{}\mathrm{ imageI 0)
 also have ... = \Lambda \
 using 1 unfolding }\mp@subsup{\Lambda}{2}{}\mathrm{ -def by simp
 finally have g-inner f (g-step f)/ g-norm f^2 }\leq\mp@subsup{\Lambda}{2}{}\mathrm{ by simp
 thus ?thesis
 using True by (simp add:divide-simps)
next
 case False
 hence g-inner ff=0
 unfolding g-norm-sq[symmetric] by simp
 hence 0:\v.v\in verts G\Longrightarrowfv=0
 unfolding g-inner-def by (subst (asm) sum-nonneg-eq-0-iff) auto
 hence ? L = 0
 unfolding g-step-def g-inner-def by simp
 also have ... \leq , \Lambda2*g-norm f~2
 using False by simp
 finally show ?thesis by simp
qed
lemma expander-intro-1:
 assumes C\geq0
 assumes }\f.g\mathrm{ -inner f (}\lambda\mathrm{ -. 1)=0 \ |g-inner f (g-step f)|
 shows }\mp@subsup{\Lambda}{a}{}\leq
proof (cases n>1)
 case True
 have }|g\mathrm{ -inner f (g-step f)| / g-inner ff {C if f}\in\Lambda\mathrm{ -test for f
 proof -
 have }|g\mathrm{ -inner f (g-step f)|
 using that }\Lambda\mathrm{ -test-def assms(2) unfolding g-norm-sq by auto
 moreover have g-inner ff>0
 using that unfolding }\Lambda\mathrm{ -test-def g-norm-sq[symmetric] by auto
 ultimately show ?thesis
 by (simp add:divide-simps)
 qed
 hence (SUP f\in\Lambda-test. |g-inner f (g-step f)| / g-inner ff) \leqC
 using \Lambda-test-ne[OF True] by (intro cSup-least) auto
 thus ?thesis using True unfolding }\mp@subsup{\Lambda}{a}{}\mathrm{ -def by auto
next
 case False
 then show ?thesis using assms unfolding }\mp@subsup{\Lambda}{a}{}\mathrm{ -def by simp
qed
```

```
lemma expander-intro:
 assumes C\geq0
 assumes }\f.g\mathrm{ g-inner f (}\lambda\mathrm{ -. 1)=0 ב | |a| arcs G.f(head Ga)*f(tail Ga)|
f^2
 shows }\mp@subsup{\Lambda}{a}{}\leqC/
proof -
 have }|g\mathrm{ -inner f (g-step f)|
 if g-inner f (}\lambda\mathrm{ -. 1) = 0 for f
 proof -
 have ?L L | | a\inarcs G.f(head Ga)*f(tail Ga)|/ real d
 unfolding g-inner-step-eq by simp
 also have ... \leqC*g-norm f^2 / real d
 by (intro divide-right-mono assms(2)[OF that]) auto
 also have ... = ?R by simp
 finally show ?thesis by simp
 qed
 thus ?thesis
 by (intro expander-intro-1 divide-nonneg-nonneg assms) auto
qed
lemma expansionD1:
 assumes g-inner f (}\lambda\mathrm{ -. 1) = 0
 shows }|g\mathrm{ -inner f (g-step f)| }\leq\mp@subsup{\Lambda}{a}{*}*g\mathrm{ -norm f^2 (is ?L }\leq\mathrm{ ? R)
proof (cases g-norm f}\not=0\mathrm{)
 case True
 have }0:f\in\Lambda\mathrm{ -test
 unfolding }\Lambda\mathrm{ -test-def using assms True by auto
 hence 1:n> 1
 using }\Lambda\mathrm{ -test-empty n-gt-0 by fastforce
 have |g-inner f(g-step f)|/g-norm f^2 = |g-innerf (g-step f)|/g-inner ff
 unfolding g-norm-sq by simp
 also have .. \leq (SUP f\in\Lambda-test. |g-inner f (g-step f)| / g-inner f f)
 by (intro cSup-upper bdd-above-\Lambda imageI 0)
 also have ... = \Lambda \Lambdaa
 using 1 unfolding }\mp@subsup{\Lambda}{a}{}\mathrm{ -def by simp
 finally have }|g\mathrm{ -inner f (g-step f)|/g-norm f^2 }\leq\mp@subsup{\Lambda}{a}{}\mathrm{ by simp
 thus ?thesis
 using True by (simp add:divide-simps)
next
 case False
 hence g-inner ff=0
 unfolding g-norm-sq[symmetric] by simp
 hence 0:\v.v\in verts G\Longrightarrowfv=0
 unfolding g-inner-def by (subst (asm) sum-nonneg-eq-0-iff) auto
 hence ? L = 0
 unfolding g-step-def g-inner-def by simp
 also have ... \leq \Lambda \a*g-norm f^2
 using False by simp
 finally show ?thesis by simp
qed
lemma expansionD:
 assumes g-inner f (}\lambda\mathrm{ -. 1) = 0
```



```
proof -
 have ?L}=|g\mathrm{ -inner f(g-step f)*d|
 unfolding g-inner-step-eq using d-gt-0 by simp
 also have ...\leq|g-inner f (g-step f)|*d
 by (simp add:abs-mult)
 also have ... \leq((\Lambdaa*g-norm f^2) *d
 by (intro expansionD1 mult-right-mono assms(1)) auto
 also have ... = ?R by simp
 finally show ?thesis by simp
qed
```

definition edges-betw where edges-betw $S T=\{a \in \operatorname{arcs} G$. tail $G a \in S \wedge$ head $G a \in T\}$
This parameter is the edge expansion. It is usually denoted by the symbol $h$ or $h(G)$ in text books. Contrary to the previous definitions it doesn't have a spectral theoretic counter part.
definition $\Lambda_{e}$ where $\Lambda_{e}=($ if $n>1$ then
(MIN $S \in\{S . S \subseteq$ verts $G \wedge 2 *$ card $S \leq n \wedge S \neq\{ \}\}$. real (card (edges-betw $S(-S))) /$ card $S$ ) else 0)

```
lemma edge-expansionD:
 assumes \(S \subseteq\) verts \(G 2 *\) card \(S \leq n\)
 shows \(\Lambda_{e} *\) card \(S \leq\) real (card (edges-betw \(\left.S(-S)\right)\))
proof (cases \(S \neq\{ \}\))
 case True
 moreover have finite \(S\)
 using finite-subset[OF assms(1)] by simp
 ultimately have card \(S>0\) by auto
 hence 1: real \((\operatorname{card} S)>0\) by \(\operatorname{simp}\)
 hence 2: \(n>1\) using assms(2) by \(\operatorname{simp}\)
 let ? \(S t=\{S . S \subseteq\) verts \(G \wedge 2 * \operatorname{card} S \leq n \wedge S \neq\{ \}\}\)
 have 0 : finite? St
 by (rule finite-subset[where \(B=\) Pow (verts \(G\))]) auto
 have \(\Lambda_{e}=(\) MIN \(S \in\) ?St. real (card (edges-betw \(\left.S(-S))\right) /\) card \(\left.S\right)\)
 using 2 unfolding \(\Lambda_{e}\)-def by simp
 also have \(\ldots \leq\) real (card (edges-betw \(S(-S))) /\) card \(S\)
 using assms True by (intro Min-le finite-imageI imageI) auto
 finally have \(\Lambda_{e} \leq\) real (card (edges-betw \(\left.S(-S)\right)\)) / card \(S\) by simp
 thus ?thesis using 1 by (simp add:divide-simps)
next
 case False
 hence card \(S=0\) by simp
 thus ?thesis by simp
qed
lemma edge-expansionI:
 fixes \(\alpha\) :: real
 assumes \(n>1\)
 assumes \(\bigwedge S . S \subseteq\) verts \(G \Longrightarrow 2 *\) card \(S \leq n \Longrightarrow S \neq\{ \} \Longrightarrow\) card \((\) edges-betw \(S(-S)) \geq \alpha *\)
card \(S\)
 shows \(\Lambda_{e} \geq \alpha\)
proof -
 define \(S t\) where \(S t=\{S . S \subseteq\) verts \(G \wedge 2 * \operatorname{card} S \leq n \wedge S \neq\{ \}\}\)
 have 0: finite \(S t\)
 unfolding \(S t\)-def
 by (rule finite-subset \([\) where \(B=\) Pow (verts \(G)]\)) auto
```

obtain $v$ where $v$-def: $v \in$ verts $G$ using verts-non-empty by auto

```
 have \(\{v\} \in S t\)
 using assms \(v\)-def unfolding \(S t\)-def \(n\)-def by auto
 hence 1 : St \(\neq\{ \}\) by auto
 have 2: \(\alpha \leq\) real (card (edges-betw \(S(-S))\)) / real (card \(S\)) if \(S \in S t\) for \(S\)
 proof -
 have real (card (edges-betw \(S(-S))\)) \(\geq \alpha *\) card \(S\)
 using assms(2) that unfolding St-def by simp
 moreover have finite \(S\)
 using that unfolding \(S t\)-def
 by (intro finite-subset[OF - finite-verts]) auto
 hence card \(S>0\)
 using that unfolding St-def by auto
 ultimately show ?thesis
 by (simp add:divide-simps)
 qed
 have \(\alpha \leq(M I N S \in S t\). real \((\) card \((\) edges-betw \(S(-S))) / \operatorname{real}(\operatorname{card} S))\)
 using 012
 by (intro Min.boundedI finite-imageI) auto
thus ?thesis
 unfolding \(\Lambda_{e}\)-def St-def[symmetric] using assms by auto
qed
end
lemma regular-graphI:
 assumes symmetric-multi-graph \(G\)
 assumes verts \(G \neq\{ \} d>0\)
 assumes \(\Lambda v . v \in\) verts \(G \Longrightarrow\) out-degree \(G v=d\)
 shows regular-graph \(G\)
proof -
 obtain \(v\) where \(v\)-def: \(v \in\) verts \(G\)
 using assms(2) by auto
 have arcs \(G \neq\{ \}\)
 proof (rule ccontr)
 assume \(\neg \operatorname{arcs} G \neq\{ \}\)
 hence arcs \(G=\{ \}\) by simp
 hence out-degree \(G v=0\)
 unfolding out-degree-def out-arcs-def by simp
 hence \(d=0\)
 using \(v\)-def \(\operatorname{assms}(4)\) by \(\operatorname{simp}\)
 thus False
 using assms(3) by simp
 qed
 thus ?thesis
 using assms symmetric-multi-graphD2[OF assms(1)]
 unfolding regular-graph-def regular-graph-axioms-def
 by \(\operatorname{simp}\)
qed
```

The following theorems verify that a graph isomorphisms preserve symmetry, regularity and all the expansion coefficients.
lemma (in fin-digraph) symmetric-graph-iso:
assumes digraph-iso G H
assumes symmetric-multi-graph $G$
shows symmetric-multi-graph $H$
proof -
obtain $h$ where hom-iso: digraph-isomorphism $h$ and $H$-alt: $H=$ app-iso $h G$ using assms unfolding digraph-iso-def by auto
have 0:fin-digraph $H$
unfolding $H$-alt
by (intro fin-digraphI-app-iso hom-iso)
interpret $H$ :fin-digraph $H$
using 0 by auto
have 1:arcs-betw $H$ (iso-verts $h v$ ) (iso-verts $h w)=$ iso-arcs $h$ ' arcs-betw $G v w$
(is ? $L=? R$ ) if $v \in$ verts $G w \in$ verts $G$ for $v w$
proof -
have $? L=\{a \in$ iso-arcs $h$ 'arcs $G$. iso-head $h a=$ iso-verts $h w \wedge$ iso-tail $h a=$ iso-verts $h v\}$ unfolding arcs-betw-def H-alt arcs-app-iso head-app-iso tail-app-iso by simp
also have $\ldots=\{a .(\exists b \in$ arcs $G . a=$ iso-arcs $h b \wedge$ iso-verts $h$ (head $G b)=$ iso-verts $h w \wedge$ iso-verts $h($ tail $G b)=$ iso-verts $h v)\}$
using iso-verts-head[OF hom-iso] iso-verts-tail[OF hom-iso] by auto
also have $\ldots=\{a .(\exists b \in \operatorname{arcs} G . a=$ iso-arcs $h b \wedge$ head $G b=w \wedge$ tail $G b=v)\}$
using that iso-verts-eq-iff [OF hom-iso] by auto
also have..$=$ ? $R$
unfolding arcs-betw-def by (auto simp add:image-iff set-eq-iff)
finally show? thesis by simp
qed
have card (arcs-betw Hwv)=card (arcs-betw Hvw) (is ?L=?R)
if $v$-range: $v \in$ verts $H$ and $w$-range: $w \in$ verts $H$ for $v w$
proof -
obtain $v^{\prime}$ where $v^{\prime}: v=$ iso-verts $h v^{\prime} v^{\prime} \in$ verts $G$
using that $v$-range verts-app-iso unfolding $H$-alt by auto
obtain $w^{\prime}$ where $w^{\prime}: w=$ iso-verts $h w^{\prime} w^{\prime} \in$ verts $G$ using that $w$-range verts-app-iso unfolding $H$-alt by auto
have ? $L=$ card (arcs-betw $H$ (iso-verts $\left.h w^{\prime}\right)\left(\right.$ iso-verts $\left.h v^{\prime}\right)$ ) unfolding $v^{\prime} w^{\prime}$ by simp
also have $\ldots=$ card (iso-arcs $h$ ' arcs-betw $G w^{\prime} v^{\prime}$ ) by (intro arg-cong[where $f=$ card $\left.] 1 v^{\prime} w^{\prime}\right)$
also have $\ldots=\operatorname{card}$ (arcs-betw $G w^{\prime} v^{\prime}$ )
using iso-arcs-eq-iff[OF hom-iso] unfolding arcs-betw-def
by (intro card-image inj-onI) auto
also have $\ldots=\operatorname{card}\left(\right.$ arcs-betw $\left.G v^{\prime} w^{\prime}\right)$
by (intro symmetric-multi-graphD4 $\operatorname{assms}(2)$ )
also have $\ldots=$ card (iso-arcs $h$ ' arcs-betw $G v^{\prime} w^{\prime}$ )
using iso-arcs-eq-iff[OF hom-iso] unfolding arcs-betw-def by (intro card-image[symmetric] inj-onI) auto
also have $\ldots=$ card (arcs-betw $H$ (iso-verts $h v^{\prime}$ ) (iso-verts $\left.h w^{\prime}\right)$ )
by (intro arg-cong[where $f=$ card $] 1$ [symmetric] $v^{\prime} w^{\prime}$ )
also have $\ldots=$ ? $R$
unfolding $v^{\prime} w^{\prime}$ by simp
finally show ?thesis by simp
qed
thus ?thesis
using 0 unfolding symmetric-multi-graph-def by auto
qed

```
lemma (in regular-graph)
 assumes digraph-iso G H
 shows regular-graph-iso: regular-graph H
 and regular-graph-iso-size: regular-graph.n H}=
 and regular-graph-iso-degree: regular-graph.d H=d
 and regular-graph-iso-expansion-le: regular-graph.\Lambda }\mp@subsup{\Lambda}{a}{}H\leq\mp@subsup{\Lambda}{a}{
 and regular-graph-iso-os-expansion-le: regular-graph.\Lambda }\mp@subsup{\Lambda}{2}{}H\leq\mp@subsup{\Lambda}{2}{
 and regular-graph-iso-edge-expansion-ge: regular-graph.}\mp@subsup{\Lambda}{e}{}H\geq\mp@subsup{\Lambda}{e}{
proof -
 obtain h where hom-iso: digraph-isomorphism h and H-alt: H=app-iso h G
 using assms unfolding digraph-iso-def by auto
 have 0:symmetric-multi-graph H
 by (intro symmetric-graph-iso[OF assms(1)] sym)
 have 1:verts H}={
 unfolding H-alt verts-app-iso using verts-non-empty by simp
 then obtain h-wit where h-wit: h-wit \in verts H
 by auto
 have 3:out-degree Hv=d if v-range: v\inverts H for v
 proof -
 obtain v}\mp@subsup{v}{}{\prime}\mathrm{ where }\mp@subsup{v}{}{\prime}:v=\mathrm{ iso-verts h v}\mp@subsup{v}{}{\prime}\mp@subsup{v}{}{\prime}\in\mathrm{ verts }
 using that v-range verts-app-iso unfolding }H\mathrm{ -alt by auto
 have out-degree Hv=out-degree G v'
 unfolding v' H-alt by (intro out-degree-app-iso-eq[OF hom-iso] v')
 also have ... = d
 by (intro reg v')
 finally show ?thesis by simp
qed
thus 2:regular-graph H
 by (intro regular-graphI[where d=d] 0 d-gt-0 1) auto
interpret H:regular-graph H
 using 2 by auto
have H.n = card (iso-verts h'verts G)
 unfolding H.n-def unfolding H-alt verts-app-iso by simp
also have ... = card (verts G)
 by (intro card-image digraph-isomorphism-inj-on-verts hom-iso)
also have ... = n
 unfolding n-def by simp
finally show n-eq: H.n = n by simp
have H.d = out-degree H h-wit
 by (intro H.reg[symmetric] h-wit)
also have ... = d
 by (intro 3 h-wit)
finally show 4:H.d = d by simp
have bij-betw (iso-verts h) (verts G) (verts H)
 unfolding H-alt using hom-iso
 by (simp add: bij-betw-def digraph-isomorphism-inj-on-verts)
hence g-inner-conv:
```

$H . g$-inner $f g=g$-inner $(\lambda x . f($ iso-verts $h x))(\lambda x . g($ iso-verts $h x))$
for $f g::{ }^{\prime} c \Rightarrow$ real
unfolding $g$-inner-def H.g-inner-def by (intro sum.reindex-bij-betw[symmetric])
have $g$-step-conv:
$H$.g-step $f($ iso-verts $h x)=g$-step $(\lambda x . f($ iso-verts $h x)) x$ if $x \in$ verts $G$
for $f::^{\prime} c \Rightarrow$ real and $x$
proof -
have inj-on (iso-arcs h) (in-arcs $G x$ )
using inj-on-subset[OF digraph-isomorphism-inj-on-arcs[OF hom-iso]]
by (simp add:in-arcs-def)
moreover have in-arcs $H$ (iso-verts $h x$ ) $=$ iso-arcs $h$ ' in-arcs $G x$
unfolding $H$-alt by (intro in-arcs-app-iso-eq[OF hom-iso] that)
moreover have tail $H$ (iso-arcs $h a)=$ iso-verts $h(t a i l G a)$ if $a \in \operatorname{in-arcs~} G x$ for $a$
unfolding $H$-alt using that by (simp add: hom-iso iso-verts-tail)
ultimately show ?thesis
unfolding $g$-step-def $H$.g-step-def
by (intro-cong $\left[\sigma_{2}(/), \sigma_{1} f, \sigma_{1}\right.$ of-nat $]$ more: 4 sum.reindex-cong $[$ where $l=$ iso-arcs $h]$ )
qed
show $H . \Lambda_{a} \leq \Lambda_{a}$
using expansionD1 by (intro H.expander-intro-1 $\Lambda$-ge-0)
(simp add:g-inner-conv g-step-conv H.g-norm-sq g-norm-sq cong:g-inner-cong)
show $H . \Lambda_{2} \leq \Lambda_{2}$
proof (cases $n>1$ )
case True
hence $H . n>1$
by (simp add:n-eq)
thus ?thesis
using os-expanderD by (intro H.os-expanderI)
(simp-all add:g-inner-conv g-step-conv H.g-norm-sq g-norm-sq cong:g-inner-cong)
next
case False
thus ?thesis
unfolding $H . \Lambda_{2}$-def $\Lambda_{2}$-def by (simp add:n-eq)
qed
show $H . \Lambda_{e} \geq \Lambda_{e}$
proof (cases $n>1$ )
case True
hence $n$-gt-1: H.n $>1$
by (simp add:n-eq)
have $\Lambda_{e} *$ real $($ card $S) \leq$ real $($ card $(H . e d g e s-b e t w ~ S(-S)))$
if $S \subseteq$ verts $H 2 * \operatorname{card} S \leq H . n S \neq\{ \}$ for $S$
proof -
define $T$ where $T=$ iso-verts $h-{ }^{'} S \cap$ verts $G$
have 4 :card $T=$ card $S$
using that(1) unfolding $T$-def $H$-alt verts-app-iso
by (intro card-vimage-inj-on digraph-isomorphism-inj-on-verts[OF hom-iso]) auto
have card (H.edges-betw $S(-S))=$ card $\{a \in$ iso-arcs h'arcs $G$. iso-tail $h a \in S \wedge$ iso-head $h a \in$ $-S\}$
unfolding H.edges-betw-def unfolding $H$-alt tail-app-iso head-app-iso arcs-app-iso by $\operatorname{simp}$
also have ... $=$
$\operatorname{card}\left(\right.$ iso-arcs $h^{‘}\{a \in \operatorname{arcs} G$. iso-tail $h($ iso-arcs $h a) \in S \wedge$ iso-head $h($ iso-arcs $\left.h a) \in-S\}\right)$
by (intro arg-cong[where $f=$ card $]$ ) auto

```
 also have ... = card {a\in arcs G. iso-tail h (iso-arcs h a)\inS^ iso-head h (iso-arcs h a)\in-S}
 by (intro card-image inj-on-subset[OF digraph-isomorphism-inj-on-arcs[OF hom-iso]]) auto
 also have ... = card {a\in arcs G. iso-verts h (tail Ga) \inS^ iso-verts h (head Ga) \in -S}
 by (intro restr-Collect-cong arg-cong[where f=card])
 (simp add: iso-verts-tail[OF hom-iso] iso-verts-head[OF hom-iso])
```



```
 unfolding T-def by (intro-cong [}\mp@subsup{\sigma}{1}{(}(\mathrm{ card), 没 (}\wedge)] more: restr-Collect-cong) aut
 also have ... = card (edges-betw T (-T))
 unfolding edges-betw-def by simp
 finally have 5:card (edges-betw T (-T)) = card (H.edges-betw S (-S))
 by simp
 have 6:T\subseteq verts G unfolding T-def by simp
 have }\mp@subsup{\Lambda}{e}{*}*\mathrm{ real (card S)= 恠* real (card T)
 unfolding 4 by simp
 also have ... \leq real (card (edges-betw T (-T)))
 using that(2) by (intro edge-expansionD 6) (simp add:4 n-eq)
 also have ... = real (card (H.edges-betw S (-S)))
 unfolding 5 by simp
 finally show ?thesis by simp
qed
 thus ?thesis
 by (intro H.edge-expansionI n-gt-1) auto
next
 case False
 thus ?thesis
 unfolding H. }\mp@subsup{\Lambda}{e}{}\mathrm{ -def }\mp@subsup{\Lambda}{e}{-def by (simp add:n-eq)
qed
qed
lemma (in regular-graph)
assumes digraph-iso G H
shows regular-graph-iso-expansion: regular-graph. \(\Lambda_{a} H=\Lambda_{a}\)
 and regular-graph-iso-os-expansion: regular-graph.\Lambda }\mp@subsup{\Lambda}{2}{}H=\mp@subsup{\Lambda}{2}{
 and regular-graph-iso-edge-expansion: regular-graph.\Lambda }\mp@subsup{\Lambda}{e}{}H=\mp@subsup{\Lambda}{e}{
proof -
 interpret H:regular-graph H
 by (intro regular-graph-iso assms)
have iso:digraph-iso \(H G\)
using digraph-iso-swap assms wf-digraph-axioms by blast
hence \(\Lambda_{a} \leq H . \Lambda_{a}\)
by (intro H.regular-graph-iso-expansion-le)
moreover have \(H . \Lambda_{a} \leq \Lambda_{a}\)
using regular-graph-iso-expansion-le[OF assms] by auto
ultimately show \(H . \Lambda_{a}=\Lambda_{a}\)
by auto
have \(\Lambda_{2} \leq H . \Lambda_{2}\) using iso
by (intro H.regular-graph-iso-os-expansion-le)
moreover have \(H . \Lambda_{2} \leq \Lambda_{2}\)
using regular-graph-iso-os-expansion-le[OF assms] by auto
ultimately show \(H . \Lambda_{2}=\Lambda_{2}\)
by auto
```

```
 have }\mp@subsup{\Lambda}{e}{}\geqH.\mp@subsup{\Lambda}{e}{}\mathrm{ using iso
 by (intro H.regular-graph-iso-edge-expansion-ge)
 moreover have H. \Lambda e \geq \Lambda e
 using regular-graph-iso-edge-expansion-ge[OF assms] by auto
 ultimately show H.\Lambdae}=\mp@subsup{\Lambda}{e}{
 by auto
qed
```

unbundle no-intro-cong-syntax
end

## 4 Setup for Types to Sets

```
theory Expander-Graphs-TTS
 imports
 Expander-Graphs-Definition
 HOL-Analysis.Cartesian-Space
 HOL-Types-To-Sets.Types-To-Sets
begin
```

This section sets up a sublocale with the assumption that there is a finite type with the same cardinality as the vertex set of a regular graph. This allows defining the adjacency matrix for the graph using type-based linear algebra.
Theorems shown in the sublocale that do not refer to the local type are then lifted to the regular-graph locale using the Types-To-Sets mechanism.

```
locale regular-graph-tts \(=\) regular-graph +
 fixes \(n\)-itself :: (' \(n\) :: finite) itself
 assumes \(t d: \exists\left(f::\left({ }^{\prime} n \Rightarrow^{\prime} a\right)\right) g\). type-definition \(f g\) (verts \(\left.G\right)\)
begin
definition \(t d\)-components :: \(\left({ }^{\prime} n \Rightarrow{ }^{\prime} a\right) \times\left({ }^{\prime} a \Rightarrow{ }^{\prime} n\right)\)
 where \(t d\)-components \(=(S O M E q\). type-definition \((f s t q)(\) snd \(q)(\) verts \(G))\)
definition enum-verts where enum-verts \(=f s t t d\)-components
definition enum-verts-inv where enum-verts-inv \(=\) snd \(t d\)-components
sublocale type-definition enum-verts enum-verts-inv verts \(G\)
proof -
 have \(0: \exists\). type-definition \(\left((\right.\) fst \(\left.q)::\left({ }^{\prime} n \Rightarrow{ }^{\prime} a\right)\right)(\) snd \(q)(\) verts \(G)\)
 using \(t d\) by simp
 show type-definition enum-verts enum-verts-inv (verts \(G\))
 unfolding td-components-def enum-verts-def enum-verts-inv-def using someI-ex[OF 0\(]\) by
simp
qed
lemma enum-verts: bij-betw enum-verts UNIV (verts \(G\))
 unfolding bij-betw-def by (simp add: Rep-inject Rep-range inj-on-def)
```

The stochastic matrix associated to the graph.

```
definition \(\left.A::\left({ }^{\prime} c:: f i e l d\right)\right)^{\wedge} n^{\wedge} n\) where
 \(A=(\chi\) i j. of-nat \((\) count \((\) edges \(G)(\) enum-verts \(j\), enum-verts \(i)) /\) of-nat d)
```

lemma card- $n$ : $\operatorname{CARD}\left({ }^{\prime} n\right)=n$
unfolding $n$-def card by simp

```
lemma symmetric-A: transpose }A=
proof -
 have A$ i$j=A$j$i for ij
 unfolding A-def count-edges arcs-betw-def using symmetric-multi-graphD[OF sym]
 by auto
 thus ?thesis
 unfolding transpose-def
 by (intro iffD2[OF vec-eq-iff] allI) auto
qed
lemma g-step-conv:
 (\chi i.g-step f(enum-verts i))}=A*v(\chi i.f(\mathrm{ enum-verts i))
proof -
 have g-step f(enum-verts i)=(\sumj\inUNIV.A ij*f(enum-verts j)) (is ?L = ?R) for i
 proof -
 have ?L = (\sumx\inin-arcs G (enum-verts i). f(tail Gx)/d)
 unfolding g-step-def by simp
 also have ... =(\sumx\in#vertices-to G (enum-verts i). fx/d)
 unfolding verts-to-alt sum-unfold-sum-mset by (simp add:image-mset.compositionality
comp-def)
 also have ... = (\sumj\inverts G. (count (vertices-to G (enum-verts i)) j)*(fj / real d))
 by (intro sum-mset-conv-2 set-mset-vertices-to) auto
 also have ... = (\sumj\inverts G. (count (edges G)(j,enum-verts i))*(fj / real d))
 unfolding vertices-to-def count-mset-exp
 by (intro sum.cong arg-cong[where f=real] arg-cong2[where f=(*)])
 (auto simp add:filter-filter-mset image-mset-filter-mset-swap[symmetric] prod-eq-iff ac-simps)
 also have ...=(\sumj\inUNIV.(count(edges G)(enum-verts j,enum-verts i))*(f(enum-verts j)/real
d))
 by (intro sum.reindex-bij-betw[symmetric] enum-verts)
 also have ... = ?R
 unfolding }A\mathrm{ -def by simp
 finally show ?thesis by simp
 qed
 thus ?thesis
 unfolding matrix-vector-mult-def by (intro iffD2[OF vec-eq-iff] allI) simp
qed
lemma \(g\)-inner-conv:
 g-inner f g = (\chi i.f(enum-verts i))}\cdot(\chi \chi.g(enum-verts i))
 unfolding inner-vec-def g-inner-def vec-lambda-beta inner-real-def conjugate-real-def
 by (intro sum.reindex-bij-betw[symmetric] enum-verts)
lemma g-norm-conv:
 g-norm f = norm (\chi i.f(enum-verts i))
proof -
 have g-norm f^2 = norm (\chi i.f(enum-verts i))}\mp@subsup{)}{}{`2
 unfolding g-norm-sq power2-norm-eq-inner g-inner-conv by simp
 thus ?thesis
 using g-norm-nonneg norm-ge-zero by simp
qed
end
lemma eg-tts-1:
assumes regular-graph \(G\)
assumes \(\exists\left(f::(' n:: f i n i t e) \Rightarrow{ }^{\prime} a\right) g\). type-definition \(f g\) (verts \(\left.G\right)\)
shows regular-graph-tts TYPE (' \(n\)) G
```

```
 using assms
 unfolding regular-graph-tts-def regular-graph-tts-axioms-def by auto
context regular-graph
begin
lemma remove-finite-premise-aux:
 assumes }\exists(\mathrm{ Rep :: 'n m'a) Abs. type-definition Rep Abs (verts G)
 shows class.finite TYPE('n)
proof -
 obtain Rep :: ' }n=\mp@subsup{|}{}{\prime}a\mathrm{ and Abs where d:type-definition Rep Abs (verts G)
 using assms by auto
 interpret type-definition Rep Abs verts G
 using d by simp
 have finite (verts G) by simp
 thus ?thesis
 unfolding class.finite-def univ by auto
qed
lemma remove-finite-premise:
 (class.finite TYPE ('n)\Longrightarrow\exists(Rep :: 'n " 'a) Abs. type-definition Rep Abs (verts G)\LongrightarrowPROP
Q)
 \equiv(\exists(Rep :: 'n > 'a) Abs. type-definition Rep Abs (verts G)\Longrightarrow PROP Q)
 (is ?L \equiv?R)
proof (intro Pure.equal-intr-rule)
 assume e:\exists(Rep :: 'n m 'a) Abs. type-definition Rep Abs (verts G) and l:PROP ?L
 hence f: class.finite TYPE('n)
 using remove-finite-premise-aux[OF e] by simp
 show PROP ?R
 using l[OF f] by auto
next
 assume }\exists(Rep :: 'n = 'a) Abs.type-definition Rep Abs (verts G) and l:PROP ?R
 show PROP ?L
 usingl by auto
qed
end
end
```


## 5 Algebra-only Theorems

This section verifies the linear algebraic counter-parts of the graph-theoretic theorems about Random walks. The graph-theoretic results are then derived in Section 9.

```
theory Expander-Graphs-Algebra
 imports
 HOL-Library.Monad-Syntax
 Expander-Graphs-TTS
begin
lemma pythagoras:
 fixes v w :: 'a::real-inner
 assumes v
 shows norm (v+w)^2 = norm v^2 + norm w`2
 using assms by (simp add:power2-norm-eq-inner algebra-simps inner-commute)
```

```
definition diag :: ('a :: zero) ^' }n=>\mp@subsup{|}{}{\prime}\mp@subsup{a}{}{\wedge\prime}\mp@subsup{n}{}{\wedge`}
 where diag v = (\chiij. if i=j then (v$ i) else 0)
definition ind-vec :: 'n set => real^'n
 where ind-vec S = (\chi i. of-bool(i\inS))
lemma diag-mult-eq: diag x ** diag y = diag (x*y)
 unfolding diag-def
 by (vector matrix-matrix-mult-def)
 (auto simp add:if-distrib if-distribR sum.If-cases)
lemma diag-vec-mult-eq: diag x*v y=x*y
 unfolding diag-def matrix-vector-mult-def
 by (simp add:if-distrib if-distribR sum.If-cases times-vec-def)
definition matrix-norm-bound :: real^' }n\mp@subsup{}{}{\wedge\prime}m=>\mathrm{ real }=>\mathrm{ bool
 where matrix-norm-bound A l=(}\forallx.\operatorname{norm}(A*vx)\leql*norm x
lemma matrix-norm-boundI:
 assumes \x. norm (A*vx)\leql* norm x
 shows matrix-norm-bound A l
 using assms unfolding matrix-norm-bound-def by simp
lemma matrix-norm-boundD:
 assumes matrix-norm-bound A l
 shows norm (A*v x)\leql* norm x
 using assms unfolding matrix-norm-bound-def by simp
lemma matrix-norm-bound-nonneg:
 fixes }A\mathrm{ :: real^' }n\mp@subsup{}{}{\wedge\prime}
 assumes matrix-norm-bound A l
 shows l\geq0
proof -
 have 0\leqnorm (A*v 1) by simp
 also have ... \leql* norm (}1::\mp@subsup{\mathrm{ real }}{}{\wedge\prime}n
 using assms(1) unfolding matrix-norm-bound-def by simp
 finally have 0\leql* norm (1::real^'}n
 by simp
 moreover have norm (1::\mp@subsup{\mathrm{ ral ^' }}{}{\wedge})>0
 by simp
 ultimately show ?thesis
 by (simp add: zero-le-mult-iff)
qed
lemma matrix-norm-bound-0:
 assumes matrix-norm-bound A 0
 shows A= (0::real^' n`'m)
proof (intro iffD2[OF matrix-eq] allI)
 fix }x\mathrm{ :: real^'n
 have norm (A*vx)=0
 using assms unfolding matrix-norm-bound-def by simp
 thus A*vx=0*vx
 by simp
qed
lemma matrix-norm-bound-diag:
 fixes }x:: real^'
```

```
 assumes }\bigwedgei.|x$i|\leq
 shows matrix-norm-bound (diag x) l
proof (rule matrix-norm-boundI)
 fix }y\mathrm{ :: real^'n
 have l-ge-0: l\geq0 using assms by fastforce
 have a: }|x$i*v|\leq|l*v| for v
 using l-ge-0 assms by (simp add:abs-mult mult-right-mono)
 have norm (diag x*v y) = sqrt (\sumi\inUNIV. (x$i*y$i)^2)
 unfolding matrix-vector-mult-def diag-def norm-vec-def L2-set-def
 by (auto simp add:if-distrib if-distribR sum.If-cases)
 also have ... \leq sqrt (\sumi\inUNIV. (l*y$i)^2)
 by (intro real-sqrt-le-mono sum-mono iffD1[OF abs-le-square-iff]a)
 also have ... = l* norm y
 using l-ge-0 by (simp add:norm-vec-def L2-set-def algebra-simps
 sum-distrib-left[symmetric] real-sqrt-mult)
 finally show norm (diag x*v y)\leql* norm y by simp
qed
lemma vector-scaleR-matrix-ac-2: b *R (A::real ^' }n\mp@subsup{^}{}{\wedge\prime}m)*vx=b\mp@subsup{*}{R}{}(A*vx
 unfolding vector-transpose-matrix[symmetric] transpose-scalar
 by (intro vector-scaleR-matrix-ac)
lemma matrix-norm-bound-scale:
assumes matrix-norm-bound A \(l\)
 shows matrix-norm-bound (}b\mp@subsup{*}{R}{}A)(|b|*l
proof (intro matrix-norm-boundI)
 fix }
 have norm (b*R A *v x) = norm (b*R (A*vx))
 by (metis transpose-scalar vector-scaleR-matrix-ac vector-transpose-matrix)
 also have ... = |b| * norm (A*vx)
 by simp
 also have ...\leq |b|*(l* norm x)
 using assms matrix-norm-bound-def by (intro mult-left-mono) auto
 also have ... \leq (|b|*l)* norm x by simp
 finally show norm (b*R A *v x)\leq(|b|*l)* norm x by simp
qed
definition nonneg-mat :: real^' n`'m m bool
 where nonneg-mat A}=(\forallij.Aij\geq0
lemma nonneg-mat-1:
 shows nonneg-mat (mat 1)
 unfolding nonneg-mat-def mat-def by auto
lemma nonneg-mat-prod:
 assumes nonneg-mat A nonneg-mat B
 shows nonneg-mat (A** B)
 using assms unfolding nonneg-mat-def matrix-matrix-mult-def
 by (auto intro:sum-nonneg)
lemma nonneg-mat-transpose:
 nonneg-mat (transpose A) = nonneg-mat }
 unfolding nonneg-mat-def transpose-def
 by auto
```

definition spec-bound $::$ real ${ }^{\wedge} 1 n^{\wedge \prime} n \Rightarrow$ real $\Rightarrow$ bool
where spec-bound $M l=(l \geq 0 \wedge(\forall v . v \cdot 1=0 \longrightarrow \operatorname{norm}(M * v v) \leq l *$ norm $v))$
lemma spec-boundD1:
assumes spec-bound Ml
shows $0 \leq l$
using assms unfolding spec-bound-def by simp
lemma spec-boundD2:
assumes spec-bound Ml
assumes $v \cdot 1=0$
shows norm $(M * v v) \leq l *$ norm $v$
using assms unfolding spec-bound-def by simp
lemma spec-bound-mono:
assumes spec-bound $M \alpha \alpha \leq \beta$
shows spec-bound $M \beta$
proof -
have norm $(M * v v) \leq \beta *$ norm $v$ if inner $v 1=0$ for $v$
proof -
have norm $(M * v v) \leq \alpha *$ norm $v$
by (intro spec-boundD2[OF assms(1)] that)
also have $\ldots \leq \beta *$ norm $v$
by (intro mult-right-mono assms(2)) auto
finally show?thesis by simp
qed
moreover have $\beta \geq 0$
using assms(2) spec-boundD1[OF assms(1)] by simp
ultimately show ?thesis
unfolding spec-bound-def by simp
qed
definition markov :: real ${ }^{\wedge} n^{\wedge \prime} n \Rightarrow$ bool
where markov $M=($ nonneg-mat $M \wedge M * v 1=1 \wedge 1 v * M=1)$
lemma markov-symI:
assumes nonneg-mat $A$ transpose $A=A A * v 1=1$
shows markov $A$
proof -
have $1 v * A=$ transpose $A * v 1$
unfolding vector-transpose-matrix[symmetric] by simp
also have $\ldots=1$ unfolding $\operatorname{assms}(2,3)$ by $\operatorname{simp}$
finally have 1 v* $A=1$ by $\operatorname{simp}$
thus ?thesis
unfolding markov-def using assms by auto
qed
lemma markov-apply:
assumes markov $M$
shows $M * v 1=11 v * M=1$
using assms unfolding markov-def by auto
lemma markov-transpose:
markov $A=$ markov (transpose $A$ )
unfolding markov-def nonneg-mat-transpose by auto
fun matrix-pow where
matrix-pow M $0=$ mat $1 \mid$
matrix-pow $M($ Suc $n)=M * *($ matrix-pow $M n)$

```
lemma markov-orth-inv:
 assumes markov A
 shows inner (}A*vx)1=\mathrm{ inner x 1
proof -
 have inner (A*vx) 1= inner x (1v*A)
 using dot-lmul-matrix inner-commute by metis
 also have ... = inner x 1
 using markov-apply[OF assms(1)] by simp
 finally show ?thesis by simp
qed
lemma markov-id:
 markov (mat 1)
 unfolding markov-def using nonneg-mat-1 by simp
lemma markov-mult:
 assumes markov A markov B
 shows markov (A ** B)
proof -
 have nonneg-mat (A** B)
 using assms unfolding markov-def by (intro nonneg-mat-prod) auto
 moreover have (A** B) *v 1 = 1
 using assms unfolding markov-def
 unfolding matrix-vector-mul-assoc[symmetric] by simp
 moreover have 1v* (A** B)=1
 using assms unfolding markov-def
 unfolding vector-matrix-mul-assoc[symmetric] by simp
 ultimately show ?thesis
 unfolding markov-def by simp
qed
lemma markov-matrix-pow:
 assumes markov A
 shows markov (matrix-pow A k)
 using markov-id assms markov-mult
 by (induction k, auto)
lemma spec-bound-prod:
 assumes markov A markov B
 assumes spec-bound A la spec-bound B lb
 shows spec-bound (A** B) (la*lb)
proof -
 have la-ge-0: la \geq0 using spec-boundD1[OF assms(3)] by simp
 have norm ((A**B)*vx)\leq(la*lb)* norm x if inner x 1 = 0 for x
 proof -
 have norm ((A** B)*vx)=norm (A*v(B*v x))
 by (simp add:matrix-vector-mul-assoc)
 also have ... \leqla*norm (B*vx)
 by (intro spec-boundD2[OF assms(3)]) (simp add:markov-orth-inv that assms(2))
 also have ... \leqla* (lb * norm x)
 by (intro spec-boundD2[OF assms(4)] mult-left-mono that la-ge-0)
 finally show ?thesis by simp
 qed
 moreover have la*lb \geq0
 using la-ge-0 spec-boundD1[OF assms(4)] by simp
 ultimately show ?thesis
```

using spec-bound-def by auto

## qed

lemma spec-bound-pow:
assumes markov $A$
assumes spec-bound $A l$
shows spec-bound (matrix-pow A $k$ ) ( $\left.l^{\wedge} k\right)$
proof (induction $k$ )
case 0
then show ?case unfolding spec-bound-def by simp
next
case (Suc k)
have spec-bound ( $A * *$ matrix-pow $A k)(l * l \wedge k)$
by (intro spec-bound-prod assms Suc markov-matrix-pow)
thus? case by simp
qed
fun intersperse :: ' $a \Rightarrow$ 'a list $\Rightarrow$ 'a list
where
intersperse $x[]=[] \mid$
intersperse $x(y \#[])=y \#[] \mid$
intersperse $x(y \# z \# z s)=y \# x \#$ intersperse $x(z \# z s)$
lemma intersperse-snoc:
assumes $x s \neq[]$
shows intersperse $z(x s @[y])=$ intersperse $z x s @[z, y]$
using assms
proof (induction xs rule:list-nonempty-induct)
case (single $x$ )
then show ?case by simp
next
case (cons $x x s$ )
then obtain xsh xst where $t: x s=x s h \# x s t$ by (metis neq-Nil-conv)
have intersperse $z((x \# x s) @[y])=x \# z \#$ intersperse $z(x s @[y])$ unfolding $t$ by simp
also have $\ldots=x \# z \#$ intersperse $z x s @[z, y]$
using cons by simp
also have $\ldots=$ intersperse $z(x \# x s) @[z, y]$
unfolding $t$ by simp
finally show? case by simp
qed
lemma foldl-intersperse:
assumes $x s \neq[]$
shows foldl fa((intersperse $x x s) @[x])=$ foldl $(\lambda y z . f(f y z) x) a x s$
using assms by (induction xs rule:rev-nonempty-induct) (auto simp add:intersperse-snoc)
lemma foldl-intersperse-2:
shows foldl fa(intersperse $y(x \# x s))=$ foldl $(\lambda x z . f(f x y) z)(f a x) x s$
proof (induction xs rule:rev-induct)
case Nil
then show? case by simp
next
case (snoc xst xs)
have foldl fa(intersperse y $((x \# x s) @[x s t]))=$ foldl $(\lambda x . f(f x y))(f a x)(x s @[x s t])$ by (subst intersperse-snoc, auto simp add:snoc)
then show? case by simp

```
context regular-graph-tts
begin
definition stat :: real }\mp@subsup{}{}{\wedge}
 where stat =(1/real CARD('n)) * *R 1
definition }J::('c :: field) ^' n^'
 where }J=(\chi\mathrm{ i j. of-nat 1 / of-nat CARD('n))
lemma inner-1-1: 1 • (1::real^' }n)=CARD('n
 unfolding inner-vec-def by simp
definition proj-unit :: real`'}n=>\mp@subsup{r\mp@code{eal`'}}{}{\wedge}
 where proj-unit v}=(1\cdotv)*R\mathrm{ stat
definition proj-rem :: real^'}n=>\mp@subsup{\mathrm{ real }}{}{\wedge\prime}
 where proj-rem v}=v-\mathrm{ proj-unit v
lemma proj-rem-orth: 1 • (proj-rem v)=0
 unfolding proj-rem-def proj-unit-def inner-diff-right stat-def
 by (simp add:inner-1-1)
lemma split-vec: v = proj-unit v + proj-rem v
 unfolding proj-rem-def by simp
lemma apply-J: J*vx = proj-unit x
proof (intro iffD2[OF vec-eq-iff] allI)
 fix }
 have (J*v x)$ i= inner (}\chij.1/\mathrm{ real CARD('n)) x
 unfolding matrix-vector-mul-component J-def by simp
 also have ... = inner stat x
 unfolding stat-def scaleR-vec-def by auto
 also have ... = (proj-unit x) $i
 unfolding proj-unit-def stat-def by simp
 finally show (J*v x) $i=(proj-unit x) $ i by simp
qed
lemma spec-bound-J: spec-bound (}J\mathrm{ :: real^' }n\mp@subsup{\wedge}{}{\wedge\prime}n)
proof -
 have norm (}J*vv)=0\mathrm{ if inner v 1 = 0 for v :: real^^n
 proof -
 have inner (proj-unit v + proj-rem v) 1 = 0
 using that by (subst (asm) split-vec[of v], simp)
 hence inner (proj-unit v) 1=0
 using proj-rem-orth inner-commute unfolding inner-add-left
 by (metis add-cancel-left-right)
 hence proj-unit v = 0
 unfolding proj-unit-def stat-def by simp
 hence }J*vv=
 unfolding apply-J by simp
 thus ?thesis by simp
 qed
 thus ?thesis
 unfolding spec-bound-def by simp
qed
```

```
lemma matrix-decomposition-lemma-aux:
 fixes \(A\) :: real \({ }^{\wedge} n^{\wedge \prime} n\)
 assumes markov \(A\)
 shows spec-bound \(A l \longleftrightarrow\) matrix-norm-bound \(\left(A-(1-l) *_{R} J\right) l\) (is ? \(L \longleftrightarrow\) ? \(R\))
proof
 assume \(a: ? L\)
 hence \(l\)-ge- \(0: l \geq 0\) using spec-boundD1 by auto
 show ?R
 proof (rule matrix-norm-boundI)
 fix \(x\) :: real \({ }^{\wedge} n\)
 have \(\left(A-(1-l) *_{R} J\right) * v x=A * v x-(1-l) *_{R}\) (proj-unit \(\left.x\right)\)
 by (simp add:algebra-simps vector-scaleR-matrix-ac-2 apply-J)
 also have \(\ldots=A * v\) proj-unit \(x+A * v\) proj-rem \(x-(1-l) *_{R}(\) proj-unit \(x)\)
 by (subst split-vec[of x], simp add:algebra-simps)
 also have \(\ldots=\) proj-unit \(x+A * v\) proj-rem \(x-(1-l) *_{R}\) (proj-unit \(\left.x\right)\)
 using markov-apply[OF assms(1)]
 unfolding proj-unit-def stat-def by (simp add:algebra-simps)
 also have \(\ldots=A * v\) proj-rem \(x+l *_{R}\) proj-unit \(x\) (is \(-=? R 1\))
 by (simp add:algebra-simps)
 finally have \(d:\left(A-(1-l) *_{R} J\right) * v x=\) ? R1 by simp
 have inner \(\left(l *_{R}\right.\) proj-unit \(\left.x\right)(A * v\) proj-rem \(x)=\)
 inner \(\left(\left(l *\right.\right.\) inner \(1 x /\) real \(\left.\left.\operatorname{CARD}\left({ }^{\prime} n\right)\right) *_{R} 1 v * A\right)(p r o j-r e m x)\)
 by (subst dot-lmul-matrix[symmetric]) (simp add:proj-unit-def stat-def)
 also have \(\ldots=(l *\) inner \(1 x /\) real \(C A R D(' n)) *\) inner 1 (\(\operatorname{proj-rem~} x)\)
 unfolding scale \(R\)-vector-matrix-assoc markov-apply[OF assms] by simp
 also have ... \(=0\)
 unfolding proj-rem-orth by simp
 finally have b:inner \(\left(l *_{R}\right.\) proj-unit \(\left.x\right)(A * v\) proj-rem \(x)=0\) by simp
 have \(c:\) inner \((\) proj-rem \(x)(\) proj-unit \(x)=0\)
 using proj-rem-orth[of \(x]\)
 unfolding proj-unit-def stat-def by (simp add:inner-commute)
 have norm \((? R 1) \wedge_{2}=\operatorname{norm}(A * v \operatorname{proj-rem} x)^{\wedge} 2+\operatorname{norm}\left(l *_{R}\right.\) proj-unit \(\left.x\right){ }^{\text {^2 }}\)
 using \(b\) by (intro pythagoras) (simp add:inner-commute)
 also have \(\ldots \leq(l * \operatorname{norm}(\operatorname{proj}-r e m x))^{\wedge} 2+\operatorname{norm}\left(l *_{R} \text { proj-unit } x\right)^{\wedge} \mathcal{Z}\)
 using proj-rem-orth [of \(x]\)
 by (intro add-mono power-mono spec-boundD2 a) (auto simp add:inner-commute)
```



```
 by (simp add:algebra-simps)
 also have \(\ldots=l \sim 2 *(\) norm \((\) proj-rem \(x+\) proj-unit \(x) \wedge 2)\)
 using \(c\) by (subst pythagoras) auto
 also have \(\ldots=\) l^2 \(*\) norm x \({ }^{\text {-2 }}\)
 by (subst (3) split-vec[of x]) (simp add:algebra-simps)
 also have \(\left.\ldots=(l * \text { norm } x)^{\wedge}\right)^{2}\)
 by (simp add:algebra-simps)
 finally have norm \((? R 1)^{\wedge} \mathcal{Z} \leq(l * \text { norm } x)^{\wedge} 2\) by simp
 hence norm \((? R 1) \leq l *\) norm \(x\)
 using l-ge-0 by (subst (asm) power-mono-iff) auto
 thus norm \(\left(\left(A-(1-l) *_{R} J\right) * v x\right) \leq l * \operatorname{norm} x\)
 unfolding \(d\) by simp
 qed
next
 assume \(a: ? R\)
 have norm \((A * v x) \leq l *\) norm \(x\) if inner \(x 1=0\) for \(x\)
```

```
 proof -
 have \((1-l) *_{R} J * v x=(1-l) *_{R}(\) proj-unit \(x)\)
 by (simp add:vector-scaleR-matrix-ac-2 apply-J)
 also have \(\ldots=0\)
 unfolding proj-unit-def using that by (simp add:inner-commute)
 finally have \(b:(1-l) *_{R} J * v x=0\) by \(\operatorname{simp}\)
 have norm \((A * v x)=\operatorname{norm}\left(\left(A-(1-l) *_{R} J\right) * v x+\left((1-l) *_{R} J\right) * v x\right)\)
 by (simp add:algebra-simps)
 also have \(\ldots \leq \operatorname{norm}\left(\left(A-(1-l) *_{R} J\right) * v x\right)+\operatorname{norm}\left(\left((1-l) *_{R} J\right) * v x\right)\)
 by (intro norm-triangle-ineq)
 also have \(\ldots \leq l *\) norm \(x+0\)
 using \(a b\) unfolding matrix-norm-bound-def by (intro add-mono, auto)
 also have \(\ldots=l *\) norm \(x\)
 by \(\operatorname{simp}\)
 finally show?thesis by simp
qed
moreover have \(l \geq 0\)
 using a matrix-norm-bound-nonneg by blast
ultimately show ? \(L\)
 unfolding spec-bound-def by simp
qed
lemma matrix-decomposition-lemma:
 fixes \(A\) :: real \({ }^{\wedge \prime} n^{\wedge \prime} n\)
 assumes markov \(A\)
 shows spec-bound \(A l \longleftrightarrow\left(\exists E . A=(1-l) *_{R} J+l *_{R} E \wedge\right.\) matrix-norm-bound \(\left.E 1 \wedge l \geq 0\right)\)
 (is ? \(L \longleftrightarrow ? R\))
proof -
 have \(? L \longleftrightarrow\) matrix-norm-bound \(\left(A-(1-l) *_{R} J\right) l\)
 using matrix-decomposition-lemma-aux[OF assms] by simp
also have \(\ldots \longleftrightarrow\) ? \(R\)
proof
 assume a:matrix-norm-bound \(\left(A-(1-l) *_{R} J\right) l\)
 hence \(l\)-ge- \(0: l \geq 0\) using matrix-norm-bound-nonneg by auto
 define \(E\) where \(E=(1 / l) *_{R}\left(A-(1-l) *_{R} J\right)\)
 have \(A=J\) if \(l=0\)
 proof -
 have matrix-norm-bound \((A-J) 0\)
 using a that by simp
 hence \(A-J=0\) using matrix-norm-bound-0 by blast
 thus \(A=J\) by \(\operatorname{simp}\)
 qed
 hence \(A=(1-l) *_{R} J+l *_{R} E\)
 unfolding \(E-d e f\) by simp
 moreover have matrix-norm-bound E 1
 proof (cases \(l=0\))
 case True
 hence \(E=0\) if \(l=0\)
 unfolding \(E\)-def by simp
 thus matrix-norm-bound \(E 1\) if \(l=0\)
 using that unfolding matrix-norm-bound-def by auto
 next
 case False
 hence \(l>0\) using \(l\)-ge- 0 by simp
 moreover have matrix-norm-bound \(E(|1 / l| * l)\)
```

```
 unfolding E-def
 by (intro matrix-norm-bound-scale a)
 ultimately show ?thesis by auto
 qed
 ultimately show ?R using l-ge-0 by auto
 next
 assume a:?R
 then obtain E where E-def:A=(1-l)*R}J+l*\mp@subsup{*}{R}{}E\mathrm{ matrix-norm-bound E 1 l 又 0
 by auto
 have matrix-norm-bound (l* *R E) (abs l*1)
 by (intro matrix-norm-bound-scale E-def(2))
 moreover have l\geq0 using E-def by simp
 moreover have l * *}E=(A-(1-l)\mp@subsup{*}{R}{}J
 using E-def(1) by simp
 ultimately show matrix-norm-bound (A-(1-l)*R J)l
 by simp
 qed
 finally show ?thesis by simp
qed
lemma hitting-property-alg:
 fixes }S::('n :: finite) se
 assumes l-range:l }\in{0..1
 defines }P\equiv\operatorname{diag}(\mathrm{ ind-vec S)
 defines }\mu\equiv\operatorname{card}S/CARD('n
 assumes }\M.M\in\mathrm{ set Ms < spec-bound M l ^ markov M
 shows foldl (\lambdax M. P*v (M*vx)) (P*v stat)Ms • 1 \leq (}\mu+l*(1-\mu))^(length Ms+1)
proof -
 define t:: real^'}n\mathrm{ where t=(}\chi\mathrm{ i. of-bool (i S S))
 define r where r= foldl (}\lambdaxM.P*v(M*vx))(P*v stat)M
 have P-proj: P ** P = P
 unfolding P-def diag-mult-eq ind-vec-def by (intro arg-cong[where f=diag]) (vector)
 have P-1-left: 1 v* P=t
 unfolding P-def diag-def ind-vec-def vector-matrix-mult-def t-def by simp
 have P-1-right: P*v 1 = t
 unfolding P-def diag-def ind-vec-def matrix-vector-mult-def t-def by simp
 have P-norm :matrix-norm-bound P 1
 unfolding P-def ind-vec-def by (intro matrix-norm-bound-diag) simp
 have norm-t: norm t = sqrt (real (card S))
 unfolding t-def norm-vec-def L2-set-def of-bool-def
 by (simp add:sum.If-cases if-distrib if-distribR)
 have }\mu\mathrm{ -range: }\mu\geq0\mu\leq
 unfolding }\mu\mathrm{ -def by (auto simp add:card-mono)
 define condition :: real^'}n=>\mathrm{ nat }=>\mathrm{ bool
 where condition = (\lambdax n. norm x \leq (}\mu+l*(1-\mu))\widehat{n}*\operatorname{sqrt}(\mathrm{ card S)/CARD('n)^P*vx
=x)
```

have a:condition $r$ (length $M s$ )
unfolding r-def using assms(4)
proof (induction Ms rule:rev-induct)
case Nil
have norm $(P * v$ stat $)=\left(1 /\right.$ real $\left.\operatorname{CARD}\left({ }^{\prime} n\right)\right) *$ norm $t$
unfolding stat-def matrix-vector-mult-scaleR $P$-1-right by simp
also have $\ldots \leq(1 / \operatorname{real} \operatorname{CARD}(\mathrm{I} n)) * \operatorname{sqrt}($ real $(\operatorname{card} S))$
using norm-t by (intro mult-left-mono) auto
also have $\ldots=\operatorname{sqrt}(\operatorname{card} S) / C A R D\left({ }^{\prime} n\right)$ by simp
finally have norm $(P * v$ stat $) \leq$ sqrt (card $S) / C A R D\left({ }^{\prime} n\right)$ by simp
moreover have $P * v(P * v$ stat $)=P * v$ stat
unfolding matrix-vector-mul-assoc $P$-proj by simp
ultimately show ?case unfolding condition-def by simp
next
case (snoc $M x s$ )
hence spec-bound $M l \wedge$ markov $M$ using $\operatorname{snoc}(2)$ by $\operatorname{simp}$
then obtain $E$ where $E$-def: $M=(1-l) *_{R} J+l *_{R}$ E matrix-norm-bound $E 1$
using iffD 1 [OF matrix-decomposition-lemma] by auto
define $y$ where $y=$ foldl $(\lambda x M . P * v(M * v x))(P * v$ stat $) x s$
have b:condition $y$ (length $x s$ )
using snoc unfolding $y$-def by simp
hence $a: P * v y=y$ using condition-def by simp
have $\operatorname{norm}(P * v(M * v y))=\operatorname{norm}\left(P * v\left((1-l) *_{R} J * v y\right)+P * v\left(l *_{R} E * v y\right)\right)$
by (simp add:E-def algebra-simps)
also have $\ldots \leq \operatorname{norm}\left(P * v\left((1-l) *_{R} J * v y\right)\right)+\operatorname{norm}\left(P * v\left(l *_{R} E * v y\right)\right)$
by (intro norm-triangle-ineq)
also have $\ldots=(1-l) * \operatorname{norm}(P * v(J * v y))+l * \operatorname{norm}(P * v(E * v y))$
using l-range
by (simp add:vector-scaleR-matrix-ac-2 matrix-vector-mult-scaleR)
also have $\ldots=(1-l) *\left|1 \cdot(P * v y) / \operatorname{real} \operatorname{CARD}\left({ }^{\prime} n\right)\right| * \operatorname{norm} t+l * \operatorname{norm}(P * v(E * v y))$ by (subst a[symmetric])
(simp add:apply-J proj-unit-def stat-def $P$-1-right matrix-vector-mult-scaleR)
also have $\ldots=(1-l) *|t \cdot y| /$ real CARD $\left({ }^{\prime} n\right) * \operatorname{norm} t+l * \operatorname{norm}(P * v(E * v y))$
by (subst dot-lmul-matrix[symmetric]) (simp add:P-1-left)
also have $\ldots \leq(1-l) *($ norm $t *$ norm $y) / \operatorname{real} \operatorname{CARD}\left({ }^{\prime} n\right) *$ norm $t+l *(1 *$ norm $(E * v$ y))
using P-norm Cauchy-Schwarz-ineq2 l-range
by (intro add-mono mult-right-mono mult-left-mono divide-right-mono matrix-norm-boundD)
auto
also have $\ldots=(1-l) * \mu *$ norm $y+l * \operatorname{norm}(E * v y)$
unfolding $\mu$-def norm- $t$ by simp
also have $\ldots \leq(1-l) * \mu *$ norm $y+l *(1 *$ norm $y)$
using $\mu$-range l-range
by (intro add-mono matrix-norm-boundD mult-left-mono E-def) auto
also have $\ldots=(\mu+l *(1-\mu)) *$ norm $y$
by (simp add:algebra-simps)
also have $\ldots \leq(\mu+l *(1-\mu)) *((\mu+l *(1-\mu))$ length xs * sqrt (card $\left.S) / \operatorname{CARD}\left({ }^{\prime} n\right)\right)$
using $b \mu$-range $l$-range unfolding condition-def
by (intro mult-left-mono) auto
also have $\ldots=(\mu+l *(1-\mu)) \uparrow($ length $x s+1) * \operatorname{sqrt}($ card $S) / C A R D\left({ }^{\prime} n\right)$
by simp
finally have norm $(P * v(M * v y)) \leq(\mu+l *(1-\mu)) \uparrow($ length xs +1$) *$ sqrt (card S)/CARD (' $n$ )
by simp
moreover have $P * v(P * v(M * v y))=P * v(M * v y)$
unfolding matrix-vector-mul-assoc matrix-mul-assoc P-proj
by $\operatorname{simp}$
ultimately have condition $(P * v(M * v y))($ length $(x s @[M]))$
unfolding condition-def by simp
then show ?case
unfolding $y$-def by simp
qed
have inner r $1=\operatorname{inner}(P * v r) 1$
using a condition-def by simp
also have $\ldots=\operatorname{inner}(1 v * P) r$
unfolding dot-lmul-matrix by (simp add:inner-commute)
also have $\ldots=$ inner $t r$
unfolding $P$-1-left by simp
also have ... $\leq$ norm $t *$ norm $r$
by (intro norm-cauchy-schwarz)
also have $\ldots \leq \operatorname{sqrt}(\operatorname{card} S) *\left((\mu+l *(1-\mu)) \wedge(l e n g t h M s) * \operatorname{sqrt}(\operatorname{card} S) / C A R D\left({ }^{\prime} n\right)\right)$
using a unfolding condition-def norm- $t$
by (intro mult-mono) auto
also have $\ldots=(\mu+0) *((\mu+l *(1-\mu))$ ^(length $M s))$
by ( simp add: $\mu-d e f$ )
also have $\ldots \leq(\mu+l *(1-\mu)) *(\mu+l *(1-\mu)) \uparrow($ length $M s)$
using $\mu$-range l-range
by (intro mult-right-mono zero-le-power add-mono) auto
also have $\ldots=(\mu+l *(1-\mu))$ ( length $M s+1)$ by simp
finally show ?thesis unfolding $r$-def by simp
qed
lemma upto-append:
assumes $i \leq j j \leq k$
shows $[i . .<j] @[j . .<k]=[i . .<k]$
using assms by (metis less-eqE upt-add-eq-append)
definition bool-list-split :: bool list $\Rightarrow$ (nat list $\times$ nat $)$
where bool-list-split $x s=$ foldl $(\lambda(y s, z) x$. (if $x$ then $(y s @[z], 0)$ else $(y s, z+1)))([], 0)$ xs
lemma bool-list-split:
assumes bool-list-split $x s=(y s, z)$
shows $x s=$ concat $($ map $(\lambda k$. replicate $k$ False@ $[$ True $])$ ys) @replicate z False
using assms
proof (induction xs arbitrary: ys z rule:rev-induct)
case Nil
then show ?case unfolding bool-list-split-def by simp
next
case (snoc $x x s$ )
obtain $u v$ where $u v$-def: bool-list-split $x s=(u, v)$
by (metis surj-pair)
show ?case
proof (cases $x$ )
case True
have a:ys $=u @[v] z=0$
using $\operatorname{snoc}(2)$ True uv-def unfolding bool-list-split-def by auto
have $x s @[x]=$ concat (map ( $\lambda k$. replicate $k$ False@ $[$ True $]$ ) $u$ )@replicate v False@[True] using $\operatorname{snoc}(1)[O F$ uv-def] True by simp
also have $\ldots=$ concat $($ map $(\lambda k$. replicate $k$ False@ $[$ True $])(u @[v])$ @replicate 0 False by simp
also have $\ldots=$ concat $(\operatorname{map}(\lambda k$. replicate $k$ False@[True]) (ys))@replicate z False using $a$ by $\operatorname{simp}$

```
 finally show ?thesis by simp
 next
 case False
 have a:ys = uz=v+1
 using snoc(2) False uv-def unfolding bool-list-split-def by auto
 have xs@[x]= concat (map (\lambdak. replicate k False@[True]) u)@replicate (v+1) False
 using snoc(1)[OF uv-def] False unfolding replicate-add by simp
 also have ... = concat (map (}\lambdak\mathrm{ . replicate k False@[True]) (ys))@replicate z False
 using a by simp
 finally show ?thesis by simp
 qed
qed
lemma bool-list-split-count:
 assumes bool-list-split xs = (ys,z)
 shows length (filter id xs) = length ys
 unfolding bool-list-split[OF assms(1)] by (simp add:filter-concat comp-def)
lemma foldl-concat:
 foldl f a (concat xss) = foldl (}\lambday\mathrm{ xs. foldl f y xs) a xss
 by (induction xss rule:rev-induct, auto)
lemma hitting-property-alg-2:
 fixes }S::('n :: finite) set and l :: na
 fixes M :: real`'}n\mp@subsup{n}{}{\wedge\prime}
 assumes \alpha-range: \alpha\in{0..1}
 assumes I\subseteq{..<l}
 defines Pi\equiv(if i\inI then diag (ind-vec S) else mat 1)
 defines }\mu\equiv\operatorname{real (card S) / real (CARD('}n)
 assumes spec-bound M \alpha markov M
 shows
 foldl (\lambdax M. M *v x) stat (intersperse M (map P [0..<l])) • 1 \leq (}\mu+\alpha*(1-\mu))^card I
 (is ?L}\leq?R
proof (cases I\not={})
 case True
 define xs where xs = map (\lambdai. i\inI) [0..<l]
 define Q where Q = diag (ind-vec S)
 define }\mp@subsup{P}{}{\prime}\mathrm{ where }\mp@subsup{P}{}{\prime}=(\lambdax\mathrm{ . if }x\mathrm{ then }Q\mathrm{ else mat 1)
 let ?rep = (\lambdax. replicate x (mat 1))
 have P-eq: P i= P'(i\inI) for i
 unfolding P-def P'-def Q-def by simp
 have l>0
 using True assms(2) by auto
 hence xs-ne: xs \not= []
 unfolding xs-def by simp
 obtain ys z where ys-z: bool-list-split xs = (ys,z)
 by (metis surj-pair)
 have length ys = length (filter id xs)
 using bool-list-split-count[OF ys-z] by simp
 also have ... = card (I\cap{0..<l})
 unfolding xs-def filter-map by (simp add:comp-def distinct-length-filter)
also have ... = card I
```

using Int-absorb2[OF assms(2)] unfolding atLeast0LessThan by simp
finally have len-ys: length ys $=$ card I by $\operatorname{simp}$
hence length ys $>0$
using True assms(2) by (metis card-gt-O-iff finite-nat-iff-bounded)
then obtain yh yt where ys-split: ys $=y h \# y t$
by (metis length-greater-0-conv neq-Nil-conv)
have a:foldl $(\lambda x N . M * v(N * v x)) x(? r e p z) \cdot 1=x \cdot 1$ for $x$
proof (induction $z$ )
case 0
then show? case by simp
next
case (Suc z)
have foldl $(\lambda x N . M * v(N * v x)) x(? r e p(z+1)) \cdot 1=x \cdot 1$
unfolding replicate-add using Suc
by (simp add:markov-orth-inv[OF assms(6)])
then show? case by simp
qed
have $M * v$ stat $=$ stat
using assms(6) unfolding stat-def matrix-vector-mult-scaleR markov-def by simp
hence $b$ : foldl $(\lambda x N . M * v(N * v x))$ stat (?rep yh) $=$ stat
by (induction yh, auto)
have foldl $(\lambda x N . N * v(M * v x)) a($ ?rep $x)=$ matrix-pow $M x * v a$ for $x a$
proof (induction $x$ )
case 0
then show? case by simp
next
case (Suc x)
have foldl $(\lambda x N . N * v(M * v x)) a(? r e p(x+1))=$ matrix-pow $M(x+1) * v a$
unfolding replicate-add using Suc by (simp add: matrix-vector-mul-assoc)
then show ?case by simp
qed
hence $c$ : foldl $(\lambda x N . N * v(M * v x)) a(? r e p x @[Q])=Q * v($ matrix-pow $M(x+1) * v a)$
for $x a$
by (simp add:matrix-vector-mul-assoc matrix-mul-assoc)
have $d$ : spec-bound $N \alpha \wedge$ markov $N$ if $t 1: N \in \operatorname{set}(\operatorname{map}(\lambda x$. matrix-pow $M(x+1)) y t)$ for $N$
proof -
obtain $y$ where $N$-def: $N=$ matrix-pow $M(y+1)$
using t1 by auto
hence d1: spec-bound $N\left(\alpha^{\wedge}(y+1)\right)$
unfolding $N$-def using spec-bound-pow assms $(5,6)$ by blast
have spec-bound $N\left(\alpha^{\wedge} 1\right)$
using $\alpha$-range by (intro spec-bound-mono[OF d1] power-decreasing) auto
moreover have markov $N$
unfolding $N$-def by (intro markov-matrix-pow assms( 6 ) )
ultimately show ?thesis by simp
qed
have ? $L=$ foldl $(\lambda x M . M * v x)$ stat $\left(\right.$ intersperse $M\left(\right.$ map $\left.\left.P^{\prime} x s\right)\right) \cdot 1$
unfolding $P$-eq xs-def map-map by (simp add:comp-def)
also have $\ldots=$ foldl $(\lambda x M . M * v x)$ stat (intersperse $M\left(\right.$ map $\left.\left.P^{\prime} x s\right) @[M]\right) \cdot 1$
by (simp add:markov-orth-inv[OF assms(6)])
also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x))$ stat $\left(\right.$ map $\left.P^{\prime} x s\right) \cdot 1$
using $x s$-ne by (subst foldl-intersperse) auto
also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x))$ stat $((y s \gg=(\lambda x$. ?rep $x @[Q])) @$ ?rep $z) \cdot 1$ unfolding bool-list-split[OF ys-z] $P^{\prime}$-def List.bind-def by (simp add: comp-def map-concat) also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x))$ stat $(y s \gg(\lambda x$. ?rep $x @[Q])) \cdot 1$ by ( $\operatorname{simp}$ add: a)
also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x))$ stat $($ ?rep $y h @[Q] @(y t \gg=(\lambda x$. ?rep $x @[Q])) \cdot 1$ unfolding ys-split by simp
also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x))$ stat $([Q] @(y t \gg(\lambda x$. ?rep $x @[Q]))) \cdot 1$
by ( simp add:b)
also have $\ldots=$ foldl $(\lambda x N . N * v x)$ stat (intersperse $M(Q \#(y t \gg(\lambda x . ? r e p x @[Q])) @[M]) \cdot 1$
by (subst foldl-intersperse, auto)
also have $\ldots=$ foldl $(\lambda x N . N * v x)$ stat (intersperse $M(Q \#(y t \gg(\lambda x$.?rep $x @[Q]))) \cdot 1$ by (simp add:markov-orth-inv[OF assms(6)])
also have $\ldots=$ foldl $(\lambda x N . N * v(M * v x))(Q * v$ stat $)(y t \gg(\lambda x$. ? rep $x @[Q])) \cdot 1$ by (subst foldl-intersperse-2, simp)
also have $\ldots=$ foldl $(\lambda a x$. foldl $(\lambda x N . N * v(M * v x)) a(? r e p x @[Q]))(Q * v$ stat) $y t \cdot 1$ unfolding List.bind-def foldl-concat foldl-map by simp
also have $\ldots=$ foldl $(\lambda a x . Q * v($ matrix-pow $M(x+1) * v a))(Q * v$ stat $) y t \cdot 1$ unfolding $c$ by simp
also have $\ldots=$ foldl $(\lambda a N . Q * v(N * v a))(Q * v \operatorname{stat})(\operatorname{map}(\lambda x$. matrix-pow $M(x+1)) y t) \cdot$ 1
by (simp add:foldl-map)
also have $\ldots \leq(\mu+\alpha *(1-\mu)) \uparrow($ length $(\operatorname{map}(\lambda x$. matrix-pow $M(x+1)) y t)+1)$
unfolding $\mu$-def $Q$-def by (intro hitting-property-alg $\alpha$-range d) simp
also have $\ldots=(\mu+\alpha *(1-\mu)) \mathcal{( l e n g t h ~ y s )}$
unfolding ys-split by simp
also have $\ldots=$ ? $R$ unfolding len-ys by simp
finally show?thesis by simp
next
case False
hence I-empty: $I=\{ \}$ by simp
have ? $L=$ stat • ( 1 :: real^" $n$ )
proof (cases $l>0$ )
case True
have $? L=$ foldl $(\lambda x M . M * v x)$ stat $(($ intersperse $M(\operatorname{map} P[0 . .<l])) @[M]) \cdot 1$ by (simp add:markov-orth-inv[OF assms(6)])
also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x))$ stat (map $P[0 . .<l]) \cdot 1$
using True by (subst foldl-intersperse, auto)
also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x))$ stat $(\operatorname{map}(\lambda-$ mat 1$)[0 . .<l]) \cdot 1$
unfolding $P$-def using $I$-empty by simp
also have $\ldots=$ foldl $(\lambda x-. M * v x)$ stat $[0 . .<l] \cdot 1$
unfolding foldl-map by simp
also have $\ldots=$ stat $\cdot\left(1::\right.$ real $\left.^{\text {人 }} n\right)$
by (induction l, auto simp add:markov-orth-inv[OF assms(6)])
finally show? ?thesis by simp
next
case False
then show ?thesis by simp
qed
also have ... = 1
unfolding stat-def by (simp add:inner-vec-def)
also have $\ldots \leq$ ? $R$ unfolding I-empty by simp
finally show? ?thesis by simp
qed
lemma uniform-property-alg:
fixes $x::(' n::$ finite) and $l::$ nat
assumes $i<l$
defines $P j \equiv($ if $j=i$ then diag (ind-vec $\{x\})$ else mat 1 )
assumes markov $M$
shows foldl $(\lambda x M . M * v x)$ stat $($ intersperse $M(\operatorname{map} P[0 . .<l])) \cdot 1=1 / \operatorname{CARD}\left({ }^{\prime} n\right)$
(is ? $L=? R$ )
proof -
have $a: l>0$ using $\operatorname{assms}(1)$ by $\operatorname{simp}$
have $0:$ foldl $(\lambda x N . M * v(N * v x)) y(x s) \cdot 1=y \cdot 1$ if set $x s \subseteq\{$ mat 1$\}$ for $x s y$ using that
proof (induction xs rule:rev-induct)
case Nil
then show ?case by simp
next
case (snoc $x$ xs)
have $x=$ mat 1
using snoc(2) by simp
hence foldl $(\lambda x N . M * v(N * v x)) y(x s @[x]) \cdot 1=$ foldl $(\lambda x N . M * v(N * v x)) y x s \cdot 1$ by (simp add:markov-orth-inv[OF assms(3)])
also have $\ldots=y \cdot 1$
using snoc(2) by (intro snoc(1)) auto
finally show? case by simp
qed
have $M$-stat: $M$ *v stat $=$ stat
using assms(3) unfolding stat-def matrix-vector-mult-scaleR markov-def by simp
hence 1: $($ foldl $(\lambda x N . M * v(N * v x))$ stat $x s)=$ stat if set $x s \subseteq\{$ mat 1$\}$ for $x s$ using that by (induction xs, auto)
have $? L=$ foldl $(\lambda x M . M * v x)$ stat $(($ intersperse $M(\operatorname{map} P[0 . .<l])) @[M]) \cdot 1$ by (simp add:markov-orth-inv[OF assms(3)])
also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x))$ stat $($ map $P[0 . .<l]) \cdot 1$
using $a$ by (subst foldl-intersperse) auto
also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x)) \operatorname{stat}(\operatorname{map} P([0 . .<i+1] @[i+1 . .<l])) \cdot 1$ using assms(1) by (subst upto-append) auto
also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x))$ stat $(\operatorname{map} P[0 . .<i+1]) \cdot 1$
unfolding map-append foldl-append $P$-def by (subst 0 ) auto
also have $\ldots=$ foldl $(\lambda x N . M * v(N * v x))$ stat $(\operatorname{map} P([0 . .<i] @[i])) \cdot 1$
by $\operatorname{simp}$
also have $\ldots=(M * v(\operatorname{diag}($ ind-vec $\{x\}) * v$ stat $)) \cdot 1$
unfolding map-append foldl-append $P$-def by (subst 1) auto
also have $\ldots=(\operatorname{diag}($ ind-vec $\{x\}) * v$ stat $) \cdot 1$
by (simp add:markov-orth-inv[OF assms(3)])
also have $\ldots=\left(\left(1 / \operatorname{CARD}\left({ }^{\prime} n\right)\right) *_{R}\right.$ ind-vec $\left.\{x\}\right) \cdot 1$
unfolding diag-def ind-vec-def stat-def matrix-vector-mult-def
by (intro arg-cong2[where $f=(\cdot)]$ refl)
(vector of-bool-def sum.If-cases if-distrib if-distribR)
also have $\ldots=\left(1 / \operatorname{CARD}\left({ }^{\prime} n\right)\right) *($ ind-vec $\{x\} \cdot 1)$
by $\operatorname{simp}$
also have $\ldots=\left(1 / \operatorname{CARD}\left({ }^{\prime} n\right)\right) * 1$
unfolding inner-vec-def ind-vec-def of-bool-def
by (intro arg-cong2 [where $f=(*)$ ] refl) (simp)
finally show ?thesis by simp
qed
end
lemma foldl-matrix-mult-expand:
fixes Ms :: (('r::\{semiring-1, comm-monoid-mult $\left.\})^{\wedge^{\wedge}} a^{\wedge 1} a\right)$ list
shows $($ foldl $(\lambda x M . M * v x) a M s) \$ k=\left(\sum x \mid\right.$ length $x=$ length $M s+1 \wedge x$ length $M s=k$.
$\left(\prod i<\right.$ length $\left.\left.M s .(M s!i) \$(x!(i+1)) \$(x!i)\right) * a \$(x!0)\right)$
proof (induction Ms arbitrary: $k$ rule:rev-induct)
case Nil
have length $x=$ Suc $0 \Longrightarrow x=[x!0]$ for $x::$ 'a list by (cases $x$, auto)
hence $\{x$. length $x=$ Suc $0 \wedge x!0=k\}=\{[k]\}$ by auto
thus ?case by auto
next
case (snoc MMs)
let $? l=$ length $M s$
have 0: finite $\{w$. length $w=$ Suc (length $M s) \wedge w!$ length $M s=i\}$ for $i::{ }^{\prime} a$
using finite-lists-length-eq[where $A=U N I V::^{\prime} a$ set and $\left.n=? l+1\right]$ by simp
have take $(? l+1) x @[x!(? l+1)]=x$ if length $x=? l+2$ for $x::$ ' $a$ list
proof -
have take (?l+1) $x$ @ $[x!(? l+1)]=$ take $(S u c(? l+1)) x$
using that by (intro take-Suc-conv-app-nth[symmetric], simp)
also have $\ldots=x$
using that by simp
finally show? ?thesis by simp
qed
hence 1: bij-betw $($ take $(? l+1))\{w$. length $w=? l+2 \wedge w!(? l+1)=k\}\{w$. length $w=? l+1\}$ by (intro bij-betwI[where $g=\lambda x$. $x @[k]]$ ) (auto simp add:nth-append)
have foldl $(\lambda x M . M * v x) a(M s @[M]) \$ k=\left(\sum j \in U N I V . M \$ k \$ j *(f o l d l(\lambda x M . M * v x) a\right.$ Ms \$ j) )
by (simp add:matrix-vector-mult-def)
also have ... =
( $\sum j \in$ UNIV. $M \$ k \$ j *\left(\sum w \mid l e n g t h ~ w=? l+1 \wedge w!? l=j .\left(\prod i<? l . M s!i \$ w!(i+1) \$ w!i\right) * a \$\right.$ $w!0)$ )
unfolding snoc by simp
also have ... $=$
$\left(\sum j \in U N I V .\left(\sum w \mid l e n g t h w=? l+1 \wedge w!? l=j . M \$ k \$ w!? l *\left(\prod i<? l . M s!i \$ w!(i+1) \$ w!i\right) * a\right.\right.$ \$ $w!0)$ )
by (intro sum.cong refl) (simp add: sum-distrib-left algebra-simps)
also have $\ldots=\left(\sum w \in(\bigcup j \in U N I V .\{w\right.$. length $w=? l+1 \wedge w!? l=j\})$. $\left.M \$ k \$ w!? l *\left(\prod i<? l . M s!i \$ w!(i+1) \$ w!i\right) * a \$ w!0\right)$
using 0 by (subst sum.UNION-disjoint, simp, simp) auto
also have $\ldots=\left(\sum w \mid\right.$ length $\left.w=? l+1 . M \$ k \$(w!? l) *\left(\prod i<? l . M s!i \$ w!(i+1) \$ w!i\right) * a \$ w!0\right)$ by (intro sum.cong arg-cong2[where $f=(*)]$ refl) auto
also have $\ldots=\left(\sum w \in\right.$ take $(? l+1)^{\prime}\{w$. length $w=? l+2 \wedge w!(? l+1)=k\}$.
$\left.M \$ k \$ w!? l *\left(\prod i<? l . M s!i \$ w!(i+1) \$ w!i\right) * a \$ w!0\right)$
using 1 unfolding bij-betw-def by (intro sum.cong refl, auto)
also have $\ldots=\left(\sum w \mid l e n g t h ~ w=? l+2 \wedge w!(? l+1)=k . M \$ k \$ w!? l *\left(\prod i<? l . M s!i \$ w!(i+1) \$ w!i\right) *\right.$ $a \$ w!0)$
using 1 unfolding bij-betw-def by (subst sum.reindex, auto)
also have $\ldots=\left(\sum w \mid\right.$ length $w=? l+2 \wedge w!(? l+1)=k$.
$\left.(M s @[M])!? 1 \$ k \$ w!? l *\left(\prod i<? l .(M s @[M])!i \$ w!(i+1) \$ w!i\right) * a \$ w!0\right)$
by (intro sum.cong arg-cong2[where $f=(*)]$ prod.cong refl) (auto simp add:nth-append)
also have $\ldots=\left(\sum w \mid\right.$ length $w=? l+2 \wedge w!(? l+1)=k .\left(\prod i<(? l+1) .(M s @[M])!i \$ w!(i+1) \$ w!i\right) *$ $a \$ w!0)$
by (intro sum.cong, auto simp add:algebra-simps)
finally have foldl $(\lambda x M . M * v x) a(M s @[M]) \$ k=$

```
 \(\left(\sum w \mid\right.\) length \(w=? l+2 \wedge w!(? l+1)=k .\left(\prod i<(? l+1) .(M s @[M])!i \$ w!(i+1) \$ w!i\right) *\)
\(a \$ w!0)\)
 by \(\operatorname{simp}\)
 then show? case by simp
qed
lemma foldl-matrix-mult-expand-2:
 fixes \(M s::\left(\right.\) real \(\left.^{\wedge \prime} a^{\wedge} a\right)\) list
 shows (foldl \((\lambda x M . M * v x) a M s) \cdot 1=\left(\sum x \mid\right.\) length \(x=\) length \(M s+1\).
 \(\left(\prod i<\right.\) length Ms. \(\left.\left.(M s!i) \$(x!(i+1)) \$(x!i)\right) * a \$(x!0)\right)\)
 (is ? \(L=? R\))
proof -
 let \(? l=\) length \(M s\)
 have \(? L=\left(\sum j \in U N I V\right.\). (foldl \(\left.\left.(\lambda x M . M * v x) a M s\right) \$ j\right)\)
 by (simp add:inner-vec-def)
 also have \(\ldots=\left(\sum j \in U N I V . \sum x \mid\right.\) length \(x=? l+1 \wedge x!? l=j .\left(\prod i<? l . \operatorname{Ms}!i \$ x!(i+1) \$ x!i\right) * a\)
\(\$ x!0)\)
 unfolding foldl-matrix-mult-expand by simp
 also have \(\ldots=\left(\sum x \in(\bigcup j \in U N I V .\{w\right.\). length \(w=\) length \(M s+1 \wedge w!\) length \(M s=j\})\).
 \(\left(\prod i<\right.\) length Ms. \(\left.\left.(M s!i) \$(x!(i+1)) \$(x!i)\right) * a \$(x!0)\right)\)
 using finite-lists-length-eq[where \(A=U N I V::^{\prime} a\) set and \(\left.n=? l+1\right]\)
 by (intro sum.UNION-disjoint \([\) symmetric \(]\)) auto
 also have \(\ldots=\) ? \(R\)
 by (intro sum.cong, auto)
 finally show ?thesis by simp
qed
end
```


## 6 Spectral Theory

This section establishes the correspondence of the variationally defined expansion paramters with the definitions using the spectrum of the stochastic matrix. Additionally stronger results for the expansion parameters are derived.
theory Expander-Graphs-Eigenvalues imports

Expander-Graphs-Algebra
Expander-Graphs-TTS
Perron-Frobenius.HMA-Connect
Commuting-Hermitian.Commuting-Hermitian
begin
unbundle intro-cong-syntax
hide-const Matrix-Legacy.transpose
hide-const Matrix-Legacy.row
hide-const Matrix-Legacy.mat
hide-const Matrix.mat
hide-const Matrix.row
hide-fact Matrix-Legacy.row-def
hide-fact Matrix-Legacy.mat-def
hide-fact Matrix.vec-eq-iff
hide-fact Matrix.mat-def
hide-fact Matrix.row-def
no-notation Matrix.scalar-prod (infix • 70)
no-notation Ordered-Semiring.max (Maxı)

```
lemma mult-right-mono': \(y \geq(0::\) real \() \Longrightarrow x \leq z \vee y=0 \Longrightarrow x * y \leq z * y\)
 by (metis mult-cancel-right mult-right-mono)
lemma poly-prod-zero:
 fixes \(x::{ }^{\prime} a\) :: idom
 assumes poly (\(\prod a \in \# x s\). [:- \(\left.\left.a, 1:\right]\right) x=0\)
 shows \(x \in \#\) xs
 using assms by (induction xs, auto)
lemma poly-prod-inj-aux-1:
 fixes xs ys :: ('a :: idom) multiset
 assumes \(x \in \#\) xs
 assumes \(\left(\prod a \in \# x s\right.\). [:- \(\left.\left.a, 1:\right]\right)=\left(\prod a \in \# y s .[:-a, 1:]\right)\)
 shows \(x \in \# y s\)
proof -
 have poly \(\left(\prod a \in \# y s .[:-a, 1:]\right) x=\operatorname{poly}\left(\prod a \in \# x s\right.\). [:- \(\left.\left.a, 1:\right]\right) x\) using assms(2) by simp
 also have \(\ldots=\) poly \(\left(\prod a \in \# x s-\{\# x \#\}+\{\# x \#\}\right.\). \(\left.[:-a, 1:]\right) x\)
 using \(\operatorname{assms}(1)\) by \(\operatorname{simp}\)
 also have \(\ldots=0\)
 by \(\operatorname{simp}\)
 finally have poly (\(\lfloor a \in \# y s\). [:-a, 1:]) \(x=0\) by simp
 thus \(x \in \#\) ys using poly-prod-zero by blast
qed
lemma poly-prod-inj-aux-2:
 fixes xs ys :: ('a :: idom) multiset
 assumes \(x \in \# x s \cup \# y s\)
 assumes \(\left(\prod a \in \# x s .[:-a, 1:]\right)=\left(\prod a \in \# y s .[:-a, 1:]\right)\)
 shows \(x \in \#\) xs \(\cap \# y s\)
proof (cases \(x \in \# x s\))
 case True
 then show ?thesis using poly-prod-inj-aux-1 [OF True assms(2)] by simp
next
 case False
 hence \(a: x \in \#\) ys
 using assms(1) by simp
 then show?thesis
 using poly-prod-inj-aux-1[OF a assms(2)[symmetric]] by simp
qed
lemma poly-prod-inj:
 fixes xs ys :: ('a :: idom) multiset
 assumes \(\left(\prod a \in \# x s\right.\). [:- \(\left.\left.a, 1:\right]\right)=\left(\prod a \in \# y s .[:-a, 1:]\right)\)
 shows \(x s=y s\)
 using assms
proof (induction size xs + size ys arbitrary: xs ys rule:nat-less-induct)
 case 1
 show ?case
 proof (cases xs \(\cup \# y s=\{\#\})\)
 case True
 then show ?thesis by simp
 next
 case False
 then obtain \(x\) where \(x \in \# x s \cup \# y s\) by auto
 hence \(a: x \in \# x s \cap \# y s\)
 by (intro poly-prod-inj-aux-2[OF - 1(2)])
 have \(b:[:-x, 1:] \neq 0\)
 by \(\operatorname{simp}\)
```

have $c$ : size $(x s-\{\# x \#\})+$ size $(y s-\{\# x \#\})<$ size $x s+$ size ys
using a by (simp add: add-less-le-mono size-Diff1-le size-Diff1-less)
have $[:-x, 1:] *\left(\prod a \in \# x s-\{\# x \#\} .[:-a, 1:]\right)=\left(\prod a \in \# x s .[:-a, 1:]\right)$
using $a$ by (subst prod-mset.insert[symmetric]) simp
also have $\ldots=\left(\prod a \in \# y s .[:-a, 1:]\right)$ using 1 by simp
also have $\ldots=[:-x, 1:] *\left(\prod a \in \# y s-\{\# x \#\} .[:-a, 1:]\right)$
using $a$ by (subst prod-mset.insert[symmetric]) simp
finally have $[:-x, 1:] *\left(\prod a \in \# x s-\{\# x \#\} .[:-a, 1:]\right)=[:-x, 1:] *\left(\prod a \in \# y s-\{\# x \#\} .[:-a\right.$, 1:])
by simp
hence $\left(\prod a \in \# x s-\{\# x \#\} .[:-a, 1:]\right)=\left(\prod a \in \# y s-\{\# x \#\} .[:-a, 1:]\right)$
using mult-left-cancel[OF b] by simp
hence $d: x s-\{\# x \#\}=y s-\{\# x \#\}$
using 1 c by $\operatorname{simp}$
have $x s=x s-\{\# x \#\}+\{\# x \#\}$
using $a$ by $\operatorname{simp}$
also have $\ldots=y s-\{\# x \#\}+\{\# x \#\}$
unfolding $d$ by simp
also have ... = ys
using $a$ by $\operatorname{simp}$
finally show? thesis by simp
qed
qed
definition eigenvalues $::(\text { ' } a:: \text { comm-ring-1 })^{\wedge \prime} n{ }^{\wedge} \prime n \Rightarrow$ ' $a$ multiset
where
eigenvalues $A=\left(S O M E\right.$ as. charpoly $A=\left(\prod a \in \#\right.$ as. $\left.[:-a, 1:]\right) \wedge$ size as $\left.=C A R D\left({ }^{\prime} n\right)\right)$
lemma char-poly-factorized-hma:
fixes $A::$ complex ${ }^{\wedge} n n^{\wedge \prime} n$
shows $\exists$ as. charpoly $A=\left(\prod a \leftarrow a s .[:-a, 1:]\right) \wedge$ length as $=C A R D(' n)$
by (transfer-hma rule:char-poly-factorized)
lemma eigvals-poly-length:
fixes $A$ :: complex ^' $n{ }^{\wedge 1} n$
shows
charpoly $A=\left(\prod a \in \#\right.$ eigenvalues $\left.A .[:-a, 1:]\right)($ is ? $A)$
size $($ eigenvalues $A)=C A R D\left({ }^{\prime} n\right)($ is ? $B)$
proof -
define $f$ where $f$ as $=\left(\right.$ charpoly $A=\left(\prod a \in \# a s .[:-a, 1:]\right) \wedge$ size as $\left.=C A R D\left({ }^{\prime} n\right)\right)$ for as
obtain as where as-def: charpoly $A=\left(\prod a \leftarrow a s\right.$. [:-a, 1:]) length as $=\operatorname{CARD}\left({ }^{\prime} n\right)$
using char-poly-factorized-hma by auto
have charpoly $A=\left(\prod a \leftarrow a s .[:-a, 1:]\right)$
unfolding as-def by simp
also have $\ldots=\left(\prod a \in \#\right.$ mset as. $\left.[:-a, 1:]\right)$
unfolding prod-mset-prod-list[symmetric] mset-map by simp
finally have charpoly $A=\left(\prod a \in \#\right.$ mset as. $\left.[:-a, 1:]\right)$ by simp
moreover have size (mset as) $=C A R D(' n)$
using as-def by simp
ultimately have $f$ (mset as)
unfolding $f$-def by auto
hence $f$ (eigenvalues $A$ )
unfolding eigenvalues-def $f$-def[symmetric] using some $I[$ where $x=m s e t$ as $P=f]$ by auto
thus ? $A$ ? $B$
unfolding $f$-def by auto

## qed

lemma similar-matrix-eigvals:
fixes $A B$ :: complex ${ }^{\wedge} n n^{\wedge} n$
assumes similar-matrix $A B$
shows eigenvalues $A=$ eigenvalues $B$
proof -
have $\left(\prod a \in \#\right.$ eigenvalues $\left.A .[:-a, 1:]\right)=\left(\prod a \in \#\right.$ eigenvalues $\left.B .[:-a, 1:]\right)$
using similar-matrix-charpoly[OF assms] unfolding eigvals-poly-length(1) by simp
thus ?thesis
by (intro poly-prod-inj) simp
qed
definition upper-triangular-hma :: 'a::zero ^' $n{ }^{\wedge} n \Rightarrow$ bool where upper-triangular-hma $A \equiv$

$$
\forall i . \forall j \text {. (to-nat } j<\text { Bij-Nat.to-nat } i \longrightarrow A \$ h i \$ h j=0)
$$

lemma for-all-reindex2:
assumes range $f=A$
shows $(\forall x \in A . \forall y \in A . P x y) \longleftrightarrow(\forall x y . P(f x)(f y))$
using assms by auto
lemma upper-triangular-hma:
fixes $A::\left({ }^{\prime} a:: z e r o\right)^{\wedge \prime} n{ }^{\wedge} n$
shows upper-triangular $\left(\right.$ from-hma $\left.a_{m} A\right)=$ upper-triangular-hma $A($ is $? L=? R)$
proof -
have $? L \longleftrightarrow\left(\forall i \in\left\{0 . .<C A R D\left({ }^{\prime} n\right)\right\} . \forall j \in\left\{0 . .<C A R D\left({ }^{\prime} n\right)\right\} . j<i \longrightarrow A\right.$ \$h from-nat $i \$ h$ from-nat $j=0$ )
unfolding upper-triangular-def from-hma $a_{m}$-def by auto
also have $\ldots \longleftrightarrow(\forall(i:: ' n)(j:: ' n)$. to-nat $j<$ to-nat $i \longrightarrow A \$ h$ from-nat (to-nat $i) \$ h$ from-nat $($ to-nat j $)=0$ )
by (intro for-all-reindex2 range-to-nat $\left[\right.$ where $\left.{ }^{\prime} a=' n\right]$ )
also have $\ldots \longleftrightarrow$ ? $R$
unfolding upper-triangular-hma-def by auto
finally show ?thesis by simp
qed
lemma from-hma-carrier:
fixes $A::{ }^{\prime} a^{\wedge}(' n:: \text { finite) })^{( }{ }^{\prime} m::$ finite)
shows from-hma $a_{m} A \in$ carrier-mat (CARD ('m)) (CARD ('n))
unfolding from-hma $a_{m}$-def by simp
definition diag-mat-hma $::{ }^{\prime} a^{\wedge} 1{ }^{\wedge}{ }^{\prime} n \Rightarrow$ 'a multiset
where diag-mat-hma $A=$ image-mset ( $\lambda i . A \$ h i \$ h i)$ (mset-set UNIV)
lemma diag-mat-hma:
fixes $A::{ }^{\prime} a^{\wedge \prime} n^{\wedge \prime} n$
shows mset $\left(\right.$ diag-mat $\left(\right.$ from-hma $\left.\left.a_{m} A\right)\right)=$ diag-mat-hma $A($ is $? L=? R)$
proof -
have $? L=\left\{\#\right.$ from- $h m a_{m} A \$ \$(i, i) . i \in \#$ mset $\left.[0 . .<C A R D(' n)] \#\right\}$
using from-hma-carrier [where $A=A$ ] unfolding diag-mat-def mset-map by simp
also have $\ldots=\{\#$ from-hma $A \$ \$(i, i) . i \in \#$ image-mset to-nat (mset-set (UNIV :: 'n set)) \#\} using range-to-nat[where ' $a=$ ' $n$ ]
by (intro arg-cong2 [where $f=$ image-mset $]$ refl) (simp add:image-mset-mset-set [OF inj-to-nat])
also have $\ldots=\left\{\#\right.$ from-hma $m_{m} A \$($ to-nat $i$, to-nat $i) . i \in \#($ mset-set (UNIV :: 'n set)) \#\}
by (simp add:image-mset.compositionality comp-def)
also have..$=$ ? $R$
unfolding diag-mat-hma-def from-hma ${ }_{m}$-def using to-nat-less-card[where ' $a=$ ' $n$ ]

```
 by (intro image-mset-cong) auto
 finally show ?thesis by simp
qed
definition adjoint-hma :: complex }\mp@subsup{}{}{\wedge\prime}\mp@subsup{m}{}{\wedge\prime}n=>\mathrm{ complex^' }n\mp@subsup{}{}{\wedge\prime}m\mathrm{ where
 adjoint-hma A = map-matrix cnj (transpose A)
lemma adjoint-hma-eq: adjoint-hma A $h i $hj = cnj (A $h j $h i)
 unfolding adjoint-hma-def map-matrix-def map-vector-def transpose-def by auto
lemma adjoint-hma:
 fixes A :: complex`(' }n::finite)^('m::finite
 shows mat-adjoint (from-hma m A) = from-hma m
proof -
 have mat-adjoint (from-hma m A) $$ (i,j) = from-hma m (adjoint-hma A)$$ (i,j)
 if i<CARD(' }n)j<CARD('m) for ij
 using from-hma-carrier that unfolding mat-adjoint-def from-hmam-def adjoint-hma-def
 Matrix.mat-of-rows-def map-matrix-def map-vector-def transpose-def by auto
 thus ?thesis
 using from-hma-carrier
 by (intro eq-matI) auto
qed
definition cinner where cinner v w = scalar-product v (map-vector cnj w)
context
 includes lifting-syntax
begin
lemma cinner-hma:
 fixes }x\mathrm{ y :: complex^`}
 shows cinner x y = (from-hmavv x) c (from-hmavv y)(is ?L = ?R)
proof -
 have ?L = (\sumi\inUNIV.x $hi*cnj (y$hi))
 unfolding cinner-def map-vector-def scalar-product-def by simp
 also have ... = (\sumi=0..<CARD('n).x $h from-nat i* cnj (y $h from-nat i))
 using to-nat-less-card to-nat-from-nat-id
 by (intro sum.reindex-bij-betw[symmetric] bij-betwI[where g=to-nat]) auto
 also have ... = ?R
 unfolding Matrix.scalar-prod-def from-hmav-def
 by simp
 finally show ?thesis by simp
qed
lemma cinner-hma-transfer[transfer-rule]:
 (HMA-V ===> HMA-V ===> (=)) (}\cdotc)\mathrm{ cinner
 unfolding HMA-V-def cinner-hma
 by (auto simp:rel-fun-def)
lemma adjoint-hma-transfer[transfer-rule]:
 (HMA-M ===> HMA-M) (mat-adjoint) adjoint-hma
 unfolding HMA-M-def rel-fun-def by (auto simp add:adjoint-hma)
end
lemma adjoint-adjoint-id[simp]: adjoint-hma (adjoint-hma A) = A
 by (transfer) (simp add:adjoint-adjoint)
```

```
lemma adjoint-def-alter-hma:
 cinner (A*v v) w = cinner v (adjoint-hma A*v w)
 by (transfer-hma rule:adjoint-def-alter)
lemma cinner-0: cinner 0 0 = 0
 by (transfer-hma)
lemma cinner-scale-left: cinner (a*s v)w=a* cinner v w
 by transfer-hma
lemma cinner-scale-right: cinner v (a*s w)= cnj a* cinner v w
 by transfer (simp add: inner-prod-smult-right)
lemma norm-of-real:
 shows norm (map-vector complex-of-real v) = norm v
 unfolding norm-vec-def map-vector-def
 by (intro L2-set-cong) auto
definition unitary-hma :: complex ^' }n\mathrm{ 人' }n=>\mathrm{ bool
 where unitary-hma }A\longleftrightarrowA** adjoint-hma A = Finite-Cartesian-Product.mat 1
definition unitarily-equiv-hma where
 unitarily-equiv-hma A B U \equiv(unitary-hma U ^ similar-matrix-wit A B U (adjoint-hma U))
definition diagonal-mat :: ('a::zero)^('n::finite)^'}n=>\mathrm{ bool where
 diagonal-mat A \equiv(\foralli.\forallj.i\not=j\longrightarrowAhihj=0)
lemma diagonal-mat-ex:
 assumes diagonal-mat A
 shows }A=\operatorname{diag}(\chii.Ahihi
 using assms unfolding diagonal-mat-def diag-def
 by (intro iffD2[OF vec-eq-iff] allI) auto
lemma diag-diagonal-mat[simp]:diagonal-mat (diag x)
 unfolding diag-def diagonal-mat-def by auto
lemma diag-imp-upper-tri: diagonal-mat }A\Longrightarrow\mathrm{ upper-triangular-hma A
 unfolding diagonal-mat-def upper-triangular-hma-def
 by (metis nat-neq-iff)
definition unitary-diag where
 unitary-diag A b U 三unitarily-equiv-hma A (diag b) U
definition real-diag-decomp-hma where
 real-diag-decomp-hma A d U \equivunitary-diag A d U ^
 (\foralli.d $hi\in Reals)
definition hermitian-hma :: complex^' }n>>1n=>\mathrm{ bool where
 hermitian-hma }A=(\mathrm{ adjoint-hma }A=A
lemma from-hma-one:
 from-hmam (mat 1 :: (('a::{one,zero}) ^' n^'n)) = 1m
 unfolding Finite-Cartesian-Product.mat-def from-hmam-def using from-nat-inj
 by (intro eq-matI) auto
lemma from-hma-mult:
 fixes }A::('a :: semiring-1)^`'m^'
 fixes B :: ' }\mp@subsup{a}{}{\wedge\prime}\mp@subsup{k}{}{\wedge\prime}m::{init
```

```
 shows from-hma m}A*\mathrm{ from-hma m B from-hma m}(A** B
 using HMA-M-mult unfolding rel-fun-def HMA-M-def by auto
lemma hermitian-hma:
 hermitian-hma A = hermitian (from-hmam A)
 unfolding hermitian-def adjoint-hma hermitian-hma-def by auto
lemma unitary-hma:
 fixes A :: complex^'n^'}
 shows unitary-hma A = unitary (from-hmam A) (is ?L = ?R)
proof -
 have ?R \longleftrightarrow from-hmam A* mat-adjoint (from-hmam A)=1m
 using from-hma-carrier
 unfolding unitary-def inverts-mat-def by simp
 also have ... \longleftrightarrow from-hmam (A** adjoint-hma A) = from-hma m (mat 1::complex\mp@subsup{^}{}{\prime}n}\mp@subsup{n}{}{\wedge\prime}n
 unfolding adjoint-hma from-hma-mult from-hma-one by simp
 also have ... \longleftrightarrowA** adjoint-hma A = Finite-Cartesian-Product.mat 1
 unfolding from-hmam
 also have ... \longleftrightarrow ?L unfolding unitary-hma-def by simp
 finally show ?thesis by simp
qed
lemma unitary-hmaD:
 fixes }A\mathrm{ :: complex^' }n\mathrm{ ^' }
 assumes unitary-hma A
 shows adjoint-hma A ** A = mat 1 (is ?A) A ** adjoint-hma A = mat 1 (is ?B)
proof -
 have mat-adjoint (from-hma m}A)* from-hma m A = 1m CARD('n
 using assms unitary-hma by (intro unitary-simps from-hma-carrier) auto
 thus ?A
 unfolding adjoint-hma from-hma-mult from-hma-one[symmetric] from-hmam-inj
 by simp
 show ?B
 using assms unfolding unitary-hma-def by simp
qed
lemma unitary-hma-adjoint:
 assumes unitary-hma A
 shows unitary-hma (adjoint-hma A)
 unfolding unitary-hma-def adjoint-adjoint-id unitary-hmaD[OF assms] by simp
lemma unitarily-equiv-hma:
 fixes A :: complex^}n\mp@subsup{n}{}{\wedge\prime}
 shows unitarily-equiv-hma A B U =
 unitarily-equiv (from-hma m A) (from-hma m B) (from-hma m U)
 (is ?L = ?R)
proof -
 have ?R}\longleftrightarrow(unitary-hma U ^ similar-mat-wit (from-hma m A) (from-hma m B) (from-hmam
 U) (from-hma m}(\mathrm{ adjoint-hma U)))
 unfolding Spectral-Theory-Complements.unitarily-equiv-def unitary-hma [symmetric] adjoint-hma
 by simp
 also have ... \longleftrightarrowunitary-hma U ^ similar-matrix-wit A B U (adjoint-hma U)
 using HMA-similar-mat-wit unfolding rel-fun-def HMA-M-def
 by (intro arg-cong2[where f=(^)] refl) force
 also have ... \longleftrightarrow?L
 unfolding unitarily-equiv-hma-def by auto
 finally show ?thesis by simp
qed
```

```
lemma Matrix-diagonal-matD:
 assumes Matrix.diagonal-mat A
 assumes i<dim-row A j<dim-col A
 assumes i\not=j
 shows A $$ (i,j)=0
 using assms unfolding Matrix.diagonal-mat-def by auto
lemma diagonal-mat-hma:
 fixes }A::('a :: zero)^(' n :: finite)^'
 shows diagonal-mat A = Matrix.diagonal-mat (from-hmam A) (is ?L =?R)
proof
 show ?L \Longrightarrow?R
 unfolding diagonal-mat-def Matrix.diagonal-mat-def from-hmam-def
 using from-nat-inj by auto
next
 assume a:?R
 have A $h i $hj=0 if i\not=j for ij
 proof -
 have A $hi $hj=(from-hmam A) $$ (to-nat i,to-nat j)
 unfolding from-hmam
 also have ... = 0
 using to-nat-less-card[where ' }a='n] to-nat-inj that
 by (intro Matrix-diagonal-matD[OF a]) auto
 finally show ?thesis by simp
 qed
 thus ?L
 unfolding diagonal-mat-def by auto
qed
lemma unitary-diag-hma:
 fixes }A\mathrm{ :: complex^' }n\mp@subsup{}{}{\wedge\prime}
 shows unitary-diag A d U =
 Spectral-Theory-Complements.unitary-diag (from-hma m A) (from-hmam (diag d)) (from-hma m
U)
proof -
 have Matrix.diagonal-mat (from-hmam (diag d))
 unfolding diagonal-mat-hma[symmetric] by simp
 thus ?thesis
 unfolding unitary-diag-def Spectral-Theory-Complements.unitary-diag-def unitarily-equiv-hma
 by auto
qed
lemma real-diag-decomp-hma:
 fixes }A\mathrm{ :: complex^' }n\mp@subsup{}{}{\wedge\prime}
 shows real-diag-decomp-hma A d U =
 real-diag-decomp (from-hmam A) (from-hma m
proof -
 have 0:(\foralli.d $h i\in\mathbb{R})\longleftrightarrow \longleftrightarrow(\foralli<CARD('n).from-hmam}(\operatorname{diag}d)$$(i,i)\in\mathbb{R}
 unfolding from-hmam-def diag-def using to-nat-less-card by fastforce
 show ?thesis
 unfolding real-diag-decomp-hma-def real-diag-decomp-def unitary-diag-hma 0
 by auto
qed
lemma diagonal-mat-diag-ex-hma:
 assumes Matrix.diagonal-mat A A carrier-mat CARD('n) CARD (' }n\mathrm{ :: finite)
```

shows from-hma $\left(\operatorname{diag}\left(\chi\left(i::^{\prime} n\right) . A \$ \$(\right.\right.$ to-nat $\left.\left.i, t o-n a t i)\right)\right)=A$
using assms from-nat-inj unfolding from-hma ${ }_{m}$-def diag-def Matrix.diagonal-mat-def
by (intro eq-matI) (auto simp add:to-nat-from-nat-id)
theorem commuting-hermitian-family-diag-hma:
fixes $A f::\left(\right.$ complex $\left.{ }^{\wedge} n^{\wedge \prime} n\right)$ set
assumes finite $A f$
and $A f \neq\{ \}$
and $\bigwedge A . A \in A f \Longrightarrow$ hermitian-hma $A$
and $\bigwedge A B . A \in A f \Longrightarrow B \in A f \Longrightarrow A * * B=B * * A$
shows $\exists U . \forall A \in A f . \exists B$. real-diag-decomp-hma $A B U$
proof -
have $0:$ finite (from-hma ${ }_{m}$ ' $A f$ ) using assms(1)by (intro finite-imageI)
have 1: from-hma ${ }_{m}$ ' $A f \neq\{ \}$ using assms(2) by simp
have 2: $A \in$ carrier-mat $\left(C A R D\left(^{\prime} n\right)\right)\left(C A R D\left(^{\prime} n\right)\right)$ if $A \in$ from- $h m a_{m}$ ' $A f$ for $A$
using that unfolding from-hma $a_{m}$-def by (auto simp add:image-iff)
have 3: $0<C A R D\left({ }^{\prime} n\right)$ by $\operatorname{simp}$
have 4: hermitian $A$ if $A \in$ from- $h m a_{m}$ ' $A f$ for $A$ using hermitian-hma assms(3) that by auto
have $5: A * B=B * A$ if $A \in$ from-hma ${ }_{m}$ ' $A f B \in$ from-hma ${ }_{m}$ 'Af for $A B$
using that assms(4) by (auto simp add:image-iff from-hma-mult)
have $\exists U . \forall A \in$ from-hma ${ }_{m}{ }^{\prime} A f . \exists B$. real-diag-decomp A B U using commuting-hermitian-family-diag[OF 01234 5] by auto
then obtain $U$ Bmap where $U$-def: $\bigwedge A . A \in$ from-hma ${ }_{m}$ ' $A f \Longrightarrow$ real-diag-decomp $A$ (Bmap A) $U$
by metis
define $U^{\prime}::$ complex ${ }^{\prime} n^{\wedge} n$ where $U^{\prime}=$ to-hma $a_{m} U$
define Bmap' $::$ complex ${ }^{\wedge \prime} n{ }^{\wedge \prime} n \Rightarrow$ complex ${ }^{\wedge \prime} n$
where Bmap $^{\prime}=\left(\lambda M .\left(\chi\right.\right.$ i. $\left(\right.$ Bmap $\left(\right.$ from-hma $\left.\left.m_{m} M\right)\right) \$($ to-nat i,to-nat $\left.\left.i)\right)\right)$
have real-diag-decomp-hma $A\left(B m a p^{\prime} A\right) U^{\prime}$ if $A \in A f$ for $A$
proof -
have rdd: real-diag-decomp $\left(\right.$ from-hma $\left._{m} A\right)\left(\right.$ Bmap $\left(\right.$ from-hma $\left.\left._{m} A\right)\right) U$ using $U$-def that by simp
have $U \in$ carrier-mat $C A R D\left({ }^{\prime} n\right) C A R D\left({ }^{\prime} n\right)$ Bmap $\left(f r o m-h m a_{m} A\right) \in$ carrier-mat $C A R D\left({ }^{\prime} n\right)$ CARD (' $n$ ) Matrix.diagonal-mat (Bmap (from-hma ${ }_{m} A$ ) $)$
using rdd unfolding real-diag-decomp-def Spectral-Theory-Complements.unitary-diag-def
Spectral-Theory-Complements.unitarily-equiv-def similar-mat-wit-def by (auto simp add:Let-def)
hence $\left(\right.$ from-hma $a_{m}\left(\operatorname{diag}\left(\right.\right.$ Bmap $\left.\left.\left.^{\prime} A\right)\right)\right)=\operatorname{Bmap}($ from-hma $A)\left(\right.$ from-hma $\left._{m} U^{\prime}\right)=U$ unfolding Bmap'-def $U^{\prime}$-def by (auto simp add:diagonal-mat-diag-ex-hma)
hence real-diag-decomp (from-hma $\left.a_{m} A\right)\left(\right.$ from-hma $_{m}\left(\operatorname{diag}\left(\right.\right.$ Bmap' $\left.\left.\left.^{\prime} A\right)\right)\right)\left(\right.$ from-hma $\left._{m} U^{\prime}\right)$ using rdd by auto
thus ?thesis
unfolding real-diag-decomp-hma by simp
qed
thus ?thesis
by (intro exI [where $\left.x=U^{\prime}\right]$ ) auto
qed
lemma char-poly-upper-triangular:
fixes $A::$ complex ${ }^{\wedge} n^{\wedge 1} n$
assumes upper-triangular-hma $A$
shows charpoly $A=\left(\prod a \in \#\right.$ diag-mat-hma $A$. [:- $\left.\left.a, 1:\right]\right)$
proof -
have charpoly $A=$ char-poly (from-hma $A$ )
using HMA-char-poly unfolding rel-fun-def HMA-M-def
by (auto simp add:eq-commute)
also have $\ldots=\left(\prod a \leftarrow\right.$ diag-mat $\left(\right.$ from-hma $\left.\left._{m} A\right) .[:-a, 1:]\right)$
using assms unfolding upper-triangular-hma[symmetric]
by (intro char-poly-upper-triangular[where $n=C A R D(' n)]$ from-hma-carrier) auto
also have $\ldots=\left(\prod a \in \# \operatorname{mset}\left(\operatorname{diag}-m a t\left(f r o m-h m a_{m} A\right)\right) .[:-a, 1:]\right)$
unfolding prod-mset-prod-list[symmetric] mset-map by simp
also have $\ldots=\left(\prod a \in \#\right.$ diag-mat-hma $\left.A .[:-a, 1:]\right)$
unfolding diag-mat-hma by simp
finally show charpoly $A=\left(\prod a \in \#\right.$ diag-mat-hma $\left.A .[:-a, 1:]\right)$ by simp
qed
lemma upper-tri-eigvals:
fixes $A$ :: complex ${ }^{\wedge 1} n^{\wedge} n$
assumes upper-triangular-hma $A$
shows eigenvalues $A=\operatorname{diag}-m a t-h m a ~ A$
proof -
have $\left(\prod a \in \#\right.$ eigenvalues $\left.A .[:-a, 1:]\right)=$ charpoly $A$
unfolding eigvals-poly-length [symmetric] by simp
also have $\ldots=\left(\prod a \in \#\right.$ diag-mat-hma $\left.A .[:-a, 1:]\right)$
by (intro char-poly-upper-triangular assms)
finally have $\left(\prod a \in \#\right.$ eigenvalues $\left.A .[:-a, 1:]\right)=\left(\prod a \in \#\right.$ diag-mat-hma $\left.A .[:-a, 1:]\right)$ by $\operatorname{simp}$
thus ?thesis
by (intro poly-prod-inj) simp
qed
lemma cinner-self:
fixes $v::$ complex ${ }^{\wedge} n$
shows cinner $v v=$ norm $v^{\wedge}$ 2
proof -
have $0: x * \operatorname{cnj} x=$ complex-of-real $(x \cdot x)$ for $x::$ complex
unfolding inner-complex-def complex-mult-cnj by (simp add:power2-eq-square)
thus ?thesis
unfolding cinner-def power2-norm-eq-inner scalar-product-def inner-vec-def
map-vector-def by simp
qed
lemma unitary-iso:
assumes unitary-hma $U$
shows norm $(U * v v)=$ norm $v$
proof -
have norm $(U * v v)^{\wedge} 2=\operatorname{cinner}(U * v v)(U * v v)$
unfolding cinner-self by simp
also have $\ldots=$ cinner $v v$
unfolding adjoint-def-alter-hma matrix-vector-mul-assoc unitary-hmaD[OF assms] by simp
also have $\ldots=$ norm $v^{\wedge}$ 2
unfolding cinner-self by simp
finally have complex-of-real (norm $\left.(U * v v)^{\text {^2 }}\right)=$ norm $v^{\wedge}$ 2 by simp
thus ?thesis
by (meson norm-ge-zero of-real-hom.injectivity power2-eq-iff-nonneg)
qed
lemma (in semiring-hom) mult-mat-vec-hma:
map-vector hom $(A * v v)=$ map-matrix hom $A * v$ map-vector hom $v$ using mult-mat-vec-hom by transfer auto
lemma (in semiring-hom) mat-hom-mult-hma:
map-matrix hom $(A * * B)=$ map-matrix hom $A * *$ map-matrix hom $B$ using mat-hom-mult by transfer auto
context regular-graph-tts
begin
lemma to-nat-less-n: to-nat $\left(x::^{\prime} n\right)<n$
using to-nat-less-card card-n by metis
lemma to-nat-from-nat: $x<n \Longrightarrow$ to-nat (from-nat $x:: ' n$ ) $=x$
using to-nat-from-nat-id card-n by metis
lemma hermitian-A: hermitian-hma $A$
using count-sym unfolding hermitian-hma-def adjoint-hma-def $A$-def map-matrix-def map-vector-def transpose-def by simp
lemma nonneg-A: nonneg-mat $A$ unfolding nonneg-mat-def $A$-def by auto
lemma $g$-step-1:
assumes $v \in$ verts $G$
shows $g$-step $(\lambda-.1) v=1($ is ? $L=? R)$
proof -
have $? L=$ in-degree $G v / d$
unfolding $g$-step-def in-degree-def by simp
also have ... $=1$ unfolding $\operatorname{reg}(2)[O F$ assms $]$ using $d$-gt-0 by $\operatorname{simp}$
finally show ?thesis by simp
qed
lemma markov: markov ( $A$ :: real ${ }^{\wedge \prime} n^{\wedge} n$ )
proof -
have $A * v 1=\left(1::\right.$ real $\left.^{\wedge} n\right)($ is $? L=? R)$
proof have $A * v 1=(\chi i . g$-step $(\lambda$-. 1$)($ enum-verts $i))$
unfolding $g$-step-conv one-vec-def by simp also have $\ldots=\binom{\chi}{i .1}$
using bij-betw-apply[OF enum-verts] by (subst g-step-1) auto
also have $\ldots=1$ unfolding one-vec-def by simp
finally show? ?thesis by simp
qed
thus ?thesis by (intro markov-symI nonneg- $A$ symmetric- $A$ )
qed
lemma nonneg- $J:$ nonneg-mat $J$
unfolding nonneg-mat-def $J$-def by auto
lemma $J$-eigvals: eigenvalues $J=\{\# 1::$ complex $\#\}+$ replicate-mset $(n-1) 0$
proof -
define $\alpha:$ nat $\Rightarrow$ real where $\alpha i=\operatorname{sqrt}\left(i^{\wedge} 2+i\right)$ for $i::$ nat
define $q::$ nat $\Rightarrow$ nat $\Rightarrow$ real where $q i j=($

```
if i=0 then (1/sqrt n) else(
if j<i then ((-1) / \alpha i) else (
if j=i then (}i/\alpha i) else 0))) for i j
```

define $Q::$ complex ${ }^{\wedge} n n^{\wedge \prime} n$ where $Q=(\chi i j$. complex-of-real $(q$ (to-nat $i)($ to-nat $\left.j))\right)$
define $D$ :: complex ${ }^{\wedge \prime} n{ }^{\wedge \prime} n$ where
$D=(\chi i j$. if to-nat $i=0 \wedge$ to-nat $j=0$ then 1 else 0$)$
have 2: $[0 . .<n]=0 \#[1 . .<n]$
using $n$-gt-0 upt-conv-Cons by auto

```
have aux0: \(\left(\sum k=0 . .<n . q j k * q i k\right)=o f\)-bool \((i=j)\) if \(1: i \leq j j<n\) for \(i j\)
proof -
 consider \((a) i=j \wedge j=0|(b) i=0 \wedge i<j|(c) \quad 0<i \wedge i<j \mid(d) 0<i \wedge i=j\)
 using 1 by linarith
 thus ?thesis
 proof (cases)
 case \(a\)
 then show ?thesis using n-gt-0 by (simp add:q-def)
 next
 case \(b\)
 have \(\left(\sum k=0 . .<n . q j k * q i k\right)=\left(\sum k \in\right.\) insert \(\left.j(\{0 . .<j\} \cup\{j+1 . .<n\}) . q j k * q i k\right)\)
 using that(2) by (intro sum.cong) auto
 also have...\(=q j j * q i j+\left(\sum k=0 . .<j . q j k * q i k\right)+\left(\sum k=j+1 . .<n . q j k * q i k\right)\)
 by (subst sum.insert) (auto simp add: sum.union-disjoint)
 also have \(\ldots=0\) using \(b\) unfolding \(q\)-def by simp
 finally show ?thesis using \(b\) by simp
 next
 case \(c\)
 have \(\left(\sum k=0 . .<n . q j k * q i k\right)=\left(\sum k \in\right.\) insert \(\left.i(\{0 . .<i\} \cup\{i+1 . .<n\}) . q j k * q i k\right)\)
 using that(2) \(c\) by (intro sum.cong) auto
 also have \(\ldots=q j i * q i i+\left(\sum k=0 . .<i . q j k * q i k\right)+\left(\sum k=i+1 . .<n . q j k * q i k\right)\)
 by (subst sum.insert) (auto simp add: sum.union-disjoint)
 also have \(\ldots=(-1) / \alpha j * i / \alpha i+i *((-1) / \alpha j *(-1) / \alpha i)\)
 using \(c\) unfolding \(q\)-def by simp
 also have \(\ldots=0\)
 by (simp add:algebra-simps)
 finally show ?thesis using \(c\) by simp
 next
 case \(d\)
 have real \(i+\) real \(i^{\wedge} 2=\operatorname{real}\left(i+i^{\text {®2 }}\right)\) by \(\operatorname{simp}\)
 also have \(\ldots \neq\) real 0
 unfolding of-nat-eq-iff using \(d\) by simp
 finally have \(d-1\) : real \(i+\) real \(i^{\wedge} 2 \neq 0\) by simp
 have \(\left(\sum k=0 . .<n . q j k * q i k\right)=\left(\sum k \in\right.\) insert \(\left.i(\{0 . .<i\} \cup\{i+1 . .<n\}) . q j k * q i k\right)\)
 using that(2) \(d\) by (intro sum.cong) auto
 also have...\(=q j i * q i i+\left(\sum k=0 . .<i . q j k * q i k\right)+\left(\sum k=i+1 . .<n . q j k * q i k\right)\)
 by (subst sum.insert) (auto simp add: sum.union-disjoint)
 also have \(\ldots=i / \alpha i * i / \alpha i+i *((-1) / \alpha i *(-1) / \alpha i)\)
 using \(d\) that unfolding \(q\)-def by simp
 also have \(\ldots=\left(i^{\wedge} 2+i\right) /(\alpha i)^{\wedge} 2\)
 by (simp add: power2-eq-square divide-simps)
 also have \(\ldots=1\)
 using \(d\) - 1 unfolding \(\alpha\)-def by (simp add:algebra-simps)
 finally show ?thesis using \(d\) by simp
 qed
qed
```

```
have 0:(\sumk=0..<n.qjk*qik)=of-bool (i=j)(is ?L=?R) if i<nj<n for ij
proof -
 have ?L = (\sumk=0..<n.q(max ij)k*q(min ij)k)
 by (cases i\leqj)(simp-all add:ac-simps cong:sum.cong)
 also have .. =of-bool (min ij = max ij)
 using that by (intro aux0) auto
 also have ... = ?R
 by (cases i\leqj) auto
 finally show ?thesis by simp
qed
have (\sumk\inUNIV.Q hjhk*cnj (Q hihk)) =of-bool (i=j) (is ?L=?R) for ij
proof -
 have ?L = complex-of-real (\sumk (UNIV::'n set). q (to-nat j) (to-nat k)*q(to-nat i) (to-nat
k))
 unfolding Q-def
 by (simp add:case-prod-beta scalar-prod-def map-vector-def inner-vec-def row-def inner-complex-def)
 also have ... = complex-of-real (}\sumk=0..<n.q(to-nat j) k*q(to-nat i)k
 using to-nat-less-n to-nat-from-nat
 by (intro arg-cong[where f=of-real] sum.reindex-bij-betw bij-betwI[where g=from-nat])
(auto)
 also have ... = complex-of-real (of-bool(to-nat i = to-nat j))
 using to-nat-less-n by (intro arg-cong[where f=of-real] 0) auto
 also have ... = ?R
 using to-nat-inj by auto
 finally show ?thesis by simp
qed
hence Q** adjoint-hma Q = mat 1
 by (intro iffD2[OF vec-eq-iff]) (auto simp add:matrix-matrix-mult-def mat-def adjoint-hma-eq)
hence unit-Q: unitary-hma Q
 unfolding unitary-hma-def by simp
have card {(k::'n). to-nat k=0} = card {from-nat 0 :: 'n}
 using to-nat-from-nat[where x=0] n-gt-0
 by (intro arg-cong[where f=card] iffD2[OF set-eq-iff]) auto
hence 5:card {(k::'n). to-nat k=0}=1 by simp
hence 1:adjoint-hma Q ** D = (\chi i j. (if to-nat j=0 then complex-of-real (1/sqrt n) else 0))
 unfolding Q-def D-def by (intro iffD2[OF vec-eq-iff] allI)
 (auto simp add:adjoint-hma-eq matrix-matrix-mult-def q-def if-distrib if-distribR sum.If-cases)
```

```
have (adjoint-hma \(Q\) ** \(D * * Q) \$ h i \$ h j=J \$ h i \$ h j\) (is ? \(L 1=? R 1\)) for \(i j\)
```

have (adjoint-hma $Q$ ** $D * * Q) \$ h i \$ h j=J \$ h i \$ h j$ (is ? $L 1=? R 1$ ) for $i j$
proof -
proof -
have ?L1 $=1 /(($ sqrt $($ real $n)) *$ complex-of-real $(\operatorname{sqrt}($ real $n)))$
have ?L1 $=1 /(($ sqrt $($ real $n)) *$ complex-of-real $(\operatorname{sqrt}($ real $n)))$
unfolding 1 unfolding $Q$-def using n-gt-0 5
unfolding 1 unfolding $Q$-def using n-gt-0 5
by (auto simp add:matrix-matrix-mult-def $q$-def if-distrib if-distribR sum.If-cases)
by (auto simp add:matrix-matrix-mult-def $q$-def if-distrib if-distribR sum.If-cases)
also have $\ldots=1 /$ sqrt $(\text { real } n)^{\wedge}$ ~2
also have $\ldots=1 /$ sqrt $(\text { real } n)^{\wedge}$ ~2
unfolding of-real-divide of-real-mult power2-eq-square
unfolding of-real-divide of-real-mult power2-eq-square
by $\operatorname{simp}$
by $\operatorname{simp}$
also have $\ldots=J \$ h i \$ h j$
also have $\ldots=J \$ h i \$ h j$
unfolding $J$-def card-n using $n$-gt-0 by simp
unfolding $J$-def card-n using $n$-gt-0 by simp
finally show ?thesis by simp
finally show ?thesis by simp
qed
qed
hence adjoint-hma $Q$ ** $D * * Q=J$
hence adjoint-hma $Q$ ** $D * * Q=J$
by (intro iffD2[OF vec-eq-iff] allI) auto
by (intro iffD2[OF vec-eq-iff] allI) auto
hence similar-matrix-wit J D(adjoint-hma Q) Q

```
```

    unfolding similar-matrix-wit-def unitary-hmaD[OF unit-Q] by auto
    hence similar-matrix J D
    unfolding similar-matrix-def by auto
    hence eigenvalues }J=\mathrm{ eigenvalues D
    by (intro similar-matrix-eigvals)
    also have ... = diag-mat-hma D
    by (intro upper-tri-eigvals diag-imp-upper-tri) (simp add:D-def diagonal-mat-def)
    also have ... = {# of-bool (to-nat i=0). i\in# mset-set (UNIV :: 'n set)#}
    unfolding diag-mat-hma-def D-def of-bool-def by simp
    also have ... = {# of-bool (i=0). i\in# mset-set (to-nat '(UNIV :: 'n set))#}
    unfolding image-mset-mset-set[OF inj-to-nat, symmetric]
    by (simp add:image-mset.compositionality comp-def)
    also have ... = mset (map (\lambdai. of-bool (i=0)) [0..<n])
    unfolding range-to-nat card-n mset-map by simp
    also have ... = mset (1 # map (\lambdai.0) [1..<n])
    unfolding 2 by (intro arg-cong[where f=mset]) simp
    also have ... ={#1#} + replicate-mset (n-1)0
    using n-gt-0 by (simp add:map-replicate-const mset-repl)
    finally show ?thesis by simp
    qed
lemma J-markov: markov J
proof -
have nonneg-mat J
unfolding J-def nonneg-mat-def by auto
moreover have transpose }J=
unfolding J-def transpose-def by auto
moreover have J*v 1=(1 :: real^'n)
unfolding J-def by (simp add:matrix-vector-mult-def one-vec-def)
ultimately show ?thesis
by (intro markov-symI) auto
qed
lemma markov-complex-apply:
assumes markov M
shows (map-matrix complex-of-real M)*v (1 :: complex }\mp@subsup{}{}{\wedge}n)=1(\mathrm{ is ? L = ?R)
proof -
have ?L = (map-matrix complex-of-real M)*v (map-vector complex-of-real 1)
by (intro arg-cong2[where f=(*v)] refl) (simp add: map-vector-def one-vec-def)
also have ... = map-vector (complex-of-real) 1
unfolding of-real-hom.mult-mat-vec-hma[symmetric] markov-apply[OF assms] by simp
also have ... = ?R
by (simp add: map-vector-def one-vec-def)
finally show ?thesis by simp
qed
lemma }J\mathrm{ -A-comm-real: }J** A=A** (J :: real```^' n
proof -
have 0:(\sumk\inUNIV.A$hk$h i/real CARD('n))=1/real CARD('n)(is ?L = ?R) for i
proof -
have ?L = (1 v* A) $h i / real CARD('n)
        unfolding vector-matrix-mult-def by (simp add:sum-divide-distrib)
    also have ... = ?R
            unfolding markov-apply[OF markov] by simp
    finally show ?thesis by simp
    qed
    have 1:(\sumk\inUNIV.A$hi\$hk/real CARD('n))=1/real CARD('n) (is ?L = ?R) for i
proof -

```
```

    have ?L = (A*v 1) $h i/real CARD('n)
        unfolding matrix-vector-mult-def by (simp add:sum-divide-distrib)
    also have ... = ?R
        unfolding markov-apply[OF markov] by simp
    finally show ?thesis by simp
    qed
    show ?thesis
    unfolding J-def using 0 1
    by (intro iffD2[OF vec-eq-iff] allI) (simp add:matrix-matrix-mult-def)
    qed
lemma }J\mathrm{ - A-comm: }J**A=A** (J :: complex^' n^'n) (is ?L = ?R
proof -
have }J**A=\mathrm{ map-matrix complex-of-real ( }J**A
unfolding of-real-hom.mat-hom-mult-hma J-def A-def
by (auto simp add:map-matrix-def map-vector-def)
also have ... = map-matrix complex-of-real (A** J)
unfolding J-A-comm-real by simp
also have ... = map-matrix complex-of-real A ** map-matrix complex-of-real J
unfolding of-real-hom.mat-hom-mult-hma by simp
also have ... = ?R
unfolding }A\mathrm{ -def J-def
by (auto simp add:map-matrix-def map-vector-def)
finally show ?thesis by simp
qed

```
definition \(\gamma_{a}::\) ' \(n\) itself \(\Rightarrow\) real where
 \(\gamma_{a}-=(\) if \(n>1\) then Max-mset (image-mset cmod (eigenvalues \(A-\{\# 1 \#\})\)) else 0)
definition \(\gamma_{2}::\) ' \(n\) itself \(\Rightarrow\) real where
 \(\gamma_{2}-=(\) if \(n>1\) then Max-mset \(\{\#\) Re \(x . x \in \#(\) eigenvalues \(A-\{\# 1 \#\}) \#\}\) else 0\()\)
lemma J-sym: hermitian-hma \(J\)
 unfolding J-def hermitian-hma-def
 by (intro iffD2[OF vec-eq-iff] allI) (simp add: adjoint-hma-eq)
lemma
 shows evs-real: set-mset (eigenvalues \(A::\) complex multiset) \(\subseteq \mathbb{R}(\) is ? R1)
 and ev-1: \((1::\) complex \() \in \#\) eigenvalues \(A\)
 and \(\gamma_{a}-g e-0: \gamma_{a}\) TYPE \(\left({ }^{\prime} n\right) \geq 0\)
 and find-any-ev:
 \(\forall \alpha \in \#\) eigenvalues \(A-\{\# 1 \#\} . \exists v\). cinner \(v 1=0 \wedge v \neq 0 \wedge A * v v=\alpha * s v\)
 and \(\gamma_{a}\)-bound: \(\forall v\). cinner \(v 1=0 \longrightarrow \operatorname{norm}(A * v v) \leq \gamma_{a}\) TYPE \(\left({ }^{\prime} n\right) * \operatorname{norm} v\)
 and \(\gamma_{2}\)-bound: \(\forall\left(v::\right.\) real \(\left.{ }^{\wedge \prime} n\right) . v \cdot 1=0 \longrightarrow v \cdot(A * v v) \leq \gamma_{2}\) TYPE \(\left(^{\prime} n\right) *\) norm \(v^{\wedge} 2\)
proof -
 have \(\exists U . \forall A \in\{J, A\} . \exists B\). real-diag-decomp-hma \(A B U\)
 using \(J\)-sym hermitian-A \(J\) - \(A\)-comm
 by (intro commuting-hermitian-family-diag-hma) auto
 then obtain \(U A d J d\)
 where \(A\)-decomp: real-diag-decomp-hma \(A A d U\) and \(K\)-decomp: real-diag-decomp-hma J Jd
\(U\)
 by auto
 have \(J\)-sim: similar-matrix-wit \(J\) (diag \(J d) U\) (adjoint-hma \(U\)) and
 unit- \(U\) : unitary-hma \(U\)
 using \(K\)-decomp unfolding real-diag-decomp-hma-def unitary-diag-def unitarily-equiv-hma-def
 by auto
have diag-mat-hma \((\operatorname{diag} J d)=\) eigenvalues \((\operatorname{diag} J d)\)
by (intro upper-tri-eigvals[symmetric] diag-imp-upper-tri J-sim) auto
also have \(\ldots=\) eigenvalues \(J\)
using \(J\)-sim by (intro similar-matrix-eigvals[symmetric]) (auto simp add:similar-matrix-def)
also have \(\ldots=\{\# 1::\) complex \(\#\}+\) replicate-mset \((n-1) 0\)
unfolding J-eigvals by simp
finally have 0 :diag-mat-hma \((\operatorname{diag} J d)=\{\# 1::\) complex \(\#\}+\) replicate-mset \((n-1) 0\) by simp hence \(1 \in \#\) diag-mat-hma (diag Jd) by simp
then obtain \(i\) where \(i\)-def:Jd \(\$ h i=1\)
unfolding diag-mat-hma-def diag-def by auto
have \(\{\# J d \$ h j . j \in \#\) mset-set \((U N I V-\{i\}) \#\}=\{\# J d\) \$h \(j . j \in \#\) mset-set UNIV -mset-set \(\{i\} \#\}\)
unfolding diag-mat-hma-def by (intro arg-cong2[where \(f=\) image-mset] mset-set-Diff) auto
also have \(\ldots=\) diag-mat-hma \((\operatorname{diag} J d)-\{\# 1 \#\}\)
unfolding diag-mat-hma-def diag-def by (subst image-mset-Diff) (auto simp add:i-def)
also have \(\ldots=\) replicate-mset \((n-1) 0\)
unfolding 0 by simp
finally have \(\{\# J d \$ h j . j \in \#\) mset-set \((U N I V-\{i\}) \#\}=\) replicate-mset \((n-1) 0\) by simp
hence set-mset \(\{\# J d \$ h j . j \in \#\) mset-set \((U N I V-\{i\}) \#\} \subseteq\{0\}\)
by \(\operatorname{simp}\)
hence \(1: J d \$ h j=0\) if \(j \neq i\) for \(j\)
using that by auto
define \(u\) where \(u=\) adjoint-hma \(U * v 1\)
define \(\alpha\) where \(\alpha=u \$ h i\)
have \(U * v u=(U * *\) adjoint-hma \(U) * v 1\)
unfolding \(u\)-def by (simp add:matrix-vector-mul-assoc)
also have...\(=1\)
unfolding unitary-hmaD \(D[O F\) unit- \(U]\) by simp
also have ... \(\neq 0\)
by \(\operatorname{simp}\)
finally have \(U * v u \neq 0\) by simp
hence \(u\)-nz: \(u \neq 0\)
by (cases \(u=0\)) auto
have diag \(J d * v u=\) adjoint-hma \(U * * U * * \operatorname{diag} J d * *\) adjoint-hma \(U * v 1\)
unfolding unitary-hma \(D[O F\) unit- \(U] u\)-def by (auto simp add:matrix-vector-mul-assoc)
also have \(\ldots=\) adjoint-hma \(U * *(U * * \operatorname{diag} J d * *\) adjoint-hma \(U) * v 1\)
by (simp add:matrix-mul-assoc)
also have \(\ldots=\) adjoint-hma \(U * * J * v 1\)
using J-sim unfolding similar-matrix-wit-def by simp
also have \(\ldots=\) adjoint-hma \(U * v\) (map-matrix complex-of-real \(J * v 1\))
by (simp add:map-matrix-def map-vector-def J-def matrix-vector-mul-assoc)
also have...\(=u\)
unfolding \(u\)-def markov-complex-apply[OF J-markov] by simp
finally have \(u\)-ev: \(\operatorname{diag} J d * v u=u\) by \(\operatorname{simp}\)
hence \(J d * u=u\)
unfolding diag-vec-mult-eq by simp
hence \(u \$ h j=0\) if \(j \neq i\) for \(j\)
using 1 that unfolding times-vec-def vec-eq-iff by auto
hence \(u\)-alt: \(u=\) axis \(i \alpha\)
unfolding \(\alpha\)-def axis-def vec-eq-iff by auto
hence \(\alpha-n z\) : \(\alpha \neq 0\)
using \(u\)-nz by (cases \(\alpha=0\)) auto
have \(A\)-sim: similar-matrix-wit \(A(\operatorname{diag} A d) U(\) adjoint-hma \(U)\) and \(A d\)-real: \(\forall i\). \(A d \$ h i \in \mathbb{R}\)
using \(A\)-decomp unfolding real-diag-decomp-hma-def unitary-diag-def unitarily-equiv-hma-def by auto
have diag-mat-hma \((\operatorname{diag} A d)=\) eigenvalues \((\operatorname{diag} A d)\)
by (intro upper-tri-eigvals[symmetric] diag-imp-upper-tri A-sim) auto
also have \(\ldots=\) eigenvalues \(A\)
using \(A\)-sim by (intro similar-matrix-eigvals[symmetric]) (auto simp add:similar-matrix-def)
finally have 3:diag-mat-hma \((\operatorname{diag} A d)=\) eigenvalues \(A\) by \(\operatorname{simp}\)
show ?R1
unfolding 3 [symmetric] diag-mat-hma-def diag-def using Ad-real by auto
have \(\operatorname{diag} A d * v u=\) adjoint-hma \(U * * U * * \operatorname{diag} A d * *\) adjoint-hma \(U * v 1\)
unfolding unitary-hmaD[OF unit-U] u-def by (auto simp add:matrix-vector-mul-assoc)
also have \(\ldots=\) adjoint-hma \(U\) ** \((U * * \operatorname{diag} A d * *\) adjoint-hma \(U) * v 1\)
by (simp add:matrix-mul-assoc)
also have \(\ldots=\) adjoint-hma \(U * * A * v 1\)
using \(A\)-sim unfolding similar-matrix-wit-def by simp
also have \(\ldots=\) adjoint-hma \(U * v\) (map-matrix complex-of-real \(A * v 1)\)
by (simp add:map-matrix-def map-vector-def \(A\)-def matrix-vector-mul-assoc)
also have \(\ldots=u\)
unfolding \(u\)-def markov-complex-apply[OF markov] by simp
finally have \(u\)-ev-A: \(\operatorname{diag} A d * v u=u\) by \(\operatorname{simp}\)
hence \(A d * u=u\)
unfolding diag-vec-mult-eq by simp
hence 5:Ad \(\$ h i=1\)
using \(\alpha\)-nz unfolding \(u\)-alt times-vec-def vec-eq-iff axis-def by force
thus ev-1: \((1::\) complex \() \in \#\) eigenvalues \(A\)
unfolding 3[symmetric] diag-mat-hma-def diag-def by auto
have eigenvalues \(A-\{\# 1 \#\}=\) diag-mat-hma \((\operatorname{diag} A d)-\{\# 1 \#\}\)
unfolding 3 by simp
also have \(\ldots=\{\# A d \$ h j . j \in \#\) mset-set UNIV\#\} \(-\{\#\) Ad \(\$ h i \#\}\)
unfolding 5 diag-mat-hma-def diag-def by simp
also have \(\ldots=\{\# A d \$ h j . j \in \#\) mset-set UNIV - mset-set \(\{i\} \#\}\)
by (subst image-mset-Diff) auto
also have \(\ldots=\{\# A d \$ h j . j \in \#\) mset-set \((U N I V-\{i\}) \#\}\)
by (intro arg-cong2[where \(f=\) image-mset] mset-set-Diff [symmetric]) auto
finally have 4 :eigenvalues \(A-\{\# 1 \#\}=\{\# A d \$ h j . j \in \#\) mset-set \((U N I V-\{i\}) \#\}\) by simp
have \(\operatorname{cmod}(A d \$ h k) \leq \gamma_{a}\) TYPE (' \(n\)) if \(n>1 k \neq i\) for \(k\)
unfolding \(\gamma_{a}\)-def 4 using that Max-ge by auto
moreover have \(k=i\) if \(n=1\) for \(k\)
using that to-nat-less-n by simp
ultimately have norm-Ad: norm \((A d \$ h k) \leq \gamma_{a} T Y P E(' n) \vee k=i\) for \(k\)
using \(n\)-gt- 0 by (cases \(n=1\), auto)
have \(\operatorname{Re}(A d \$ h k) \leq \gamma_{2} T Y P E\left({ }^{\prime} n\right)\) if \(n>1 k \neq i\) for \(k\)
unfolding \(\gamma_{2}\)-def 4 using that Max-ge by auto
moreover have \(k=i\) if \(n=1\) for \(k\)
using that to-nat-less-n by simp
ultimately have \(\operatorname{Re}-A d: \operatorname{Re}(A d \$ h k) \leq \gamma_{2} \operatorname{TYPE}\left({ }^{\prime} n\right) \vee k=i\) for \(k\) using \(n\)-gt- 0 by (cases \(n=1\), auto)
show \(\Lambda_{e}\)-ge-0: \(\gamma_{a}\) TYPE \(\left({ }^{\prime} n\right) \geq 0\)
proof (cases \(n>1\))
```

    case True
    then obtain k where k-def: k\not=i
        by (metis (full-types) card-n from-nat-inj n-gt-0 one-neq-zero)
    have 0\leqcmod (Ad$hk)
        by simp
    also have ... \leq \gamma a TYPE ('n)
        using norm-Ad k-def by auto
    finally show ?thesis by auto
    next
case False
thus ?thesis unfolding }\mp@subsup{\gamma}{a}{}\mathrm{ -def by simp
qed
have \existsv. cinner v 1 = 0^v\not=0\wedgeA*vv=\beta*sv if \beta-ran: \beta\in\# eigenvalues A - {\#1\#}
for }
proof -
obtain j where j-def: }\beta=Ad\$hjj\not=
using }\beta\mathrm{ -ran unfolding 4 by auto
define v}\mathrm{ where v=U*v axis j 1
have }A*vv=A** U*v axis j 1
unfolding v-def by (simp add:matrix-vector-mul-assoc)
also have ... = ((U** diag Ad ** adjoint-hma U) ** U) *v axis j 1
using A-sim unfolding similar-matrix-wit-def by simp
also have ... = U** diag Ad ** (adjoint-hma U ** U) *v axis j 1
by (simp add:matrix-mul-assoc)
also have ... = U** diag Ad *v axis j 1
using unitary-hmaD[OF unit-U] by simp
also have ... = U*v (Ad* axis j 1)
by (simp add:matrix-vector-mul-assoc[symmetric] diag-vec-mult-eq)
also have ... = U*v ( }\beta*\mathrm{ s axis j 1)
by (intro arg-cong2[where f=(*v)] iffD2[OF vec-eq-iff]) (auto simp:j-def axis-def)
also have ... = \beta*sv
unfolding v-def by (simp add:vector-scalar-commute)
finally have 5:A*vv=\beta*sv by simp
have cinner v 1 = cinner (axis j 1)(adjoint-hma U*v 1)
unfolding v-def adjoint-def-alter-hma by simp
also have ... = cinner (axis j 1) (axis i \alpha)
unfolding u-def[symmetric] u-alt by simp
also have ... = 0
using j-def(2) unfolding cinner-def axis-def scalar-product-def map-vector-def
by (auto simp:if-distrib if-distribR sum.If-cases)
finally have 6:cinner v 1 = 0
by simp
have cinner v v = cinner (axis j 1) (adjoint-hma U*v(U*v(axis j 1)))
unfolding v-def adjoint-def-alter-hma by simp
also have ... = cinner (axis j 1) (axis j 1)
unfolding matrix-vector-mul-assoc unitary-hmaD[OF unit-U] by simp
also have ... = 1
unfolding cinner-def axis-def scalar-product-def map-vector-def
by (auto simp:if-distrib if-distribR sum.If-cases)
finally have cinner v v=1
by simp
hence 7:v}\not=
by (cases v=0) (auto simp add:cinner-0)

```
```

    show ?thesis
    by (intro exI[where \(x=v]\) conjI 675 )
    qed
thus $\forall \alpha \in \#$ eigenvalues $A-\{\# 1 \#\} . \exists v$. cinner $v 1=0 \wedge v \neq 0 \wedge A * v v=\alpha * s v$
by $\operatorname{simp}$
have norm $(A * v v) \leq \gamma_{a} T Y P E\left({ }^{\prime} n\right) * \operatorname{norm} v$ if cinner $v 1=0$ for $v$
proof -
define $w$ where $w=$ adjoint-hma $U * v v$
have $w \$ h i=$ cinner $w($ axis $i 1)$
unfolding cinner-def axis-def scalar-product-def map-vector-def
by (auto simp:if-distrib if-distribR sum.If-cases)
also have $\ldots=$ cinner $v(U * v$ axis i 1$)$
unfolding $w$-def adjoint-def-alter-hma by simp
also have $\ldots=$ cinner $v((1 / \alpha) * s(U * v u))$
unfolding vector-scalar-commute[symmetric] u-alt using $\alpha$-nz
by (intro-cong $\left[\sigma_{2}\right.$ cinner, $\left.\sigma_{2}(* v)\right]$ ) (auto simp add:axis-def vec-eq-iff)
also have $\ldots=$ cinner $v((1 / \alpha) * s 1)$
unfolding $u$-def matrix-vector-mul-assoc unitary-hmaD[OF unit-U] by simp
also have ... = 0
unfolding cinner-scale-right that by simp
finally have $w$-orth: $w \$ h i=0$ by simp
have $\operatorname{norm}(A * v v)=\operatorname{norm}(U * v(\operatorname{diag} A d * v w))$
using $A$-sim unfolding matrix-vector-mul-assoc similar-matrix-wit-def w-def
by (simp add:matrix-mul-assoc)
also have $\ldots=\operatorname{norm}(\operatorname{diag} A d * v w)$
unfolding unitary-iso $[O F$ unit- $U]$ by simp
also have $\ldots=\operatorname{norm}(A d * w)$
unfolding diag-vec-mult-eq by simp
also have $\ldots=\operatorname{sqrt}\left(\sum i \in U N I V .(\operatorname{cmod}(A d \$ h i) * \operatorname{cmod}(w \$ h i))^{2}\right)$
unfolding norm-vec-def L2-set-def times-vec-def by (simp add:norm-mult)
also have $\ldots \leq \operatorname{sqrt}\left(\sum i \in U N I V .\left(\left(\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right)\right) * \operatorname{cmod}(w \$ h i)\right)^{\wedge} 2\right)$
using w-orth norm-Ad
by (intro iffD2[OF real-sqrt-le-iff] sum-mono power-mono mult-right-mono') auto
also have $\ldots=\left|\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right)\right| * \operatorname{sqrt}\left(\sum i \in \operatorname{UNIV} .(\operatorname{cmod}(w \$ h i))^{2}\right)$
by (simp add:power-mult-distrib sum-distrib-left[symmetric] real-sqrt-mult)
also have $\ldots=\left|\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right)\right| *$ norm $w$
unfolding norm-vec-def L2-set-def by simp
also have $\ldots=\gamma_{a} \operatorname{TYPE}($ ' $n$ ) * norm $w$
using $\Lambda_{e}-g e-0$ by simp
also have $\ldots=\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right) *$ norm $v$
unfolding $w$-def unitary-iso[OF unitary-hma-adjoint [OF unit-U]] by simp
finally show norm $(A * v v) \leq \gamma_{a} T Y P E(' n) *$ norm $v$
by $\operatorname{simp}$
qed
thus $\forall v$. cinner $v 1=0 \longrightarrow \operatorname{norm}(A * v v) \leq \gamma_{a} T Y P E(' n) *$ norm $v$ by auto
have $v \cdot(A * v v) \leq \gamma_{2}$ TYPE (' $n$ ) * norm $v^{\wedge} 2$ if $v \cdot 1=0$ for $v::$ real $^{\wedge \prime} n$
proof -
define $v^{\prime}$ where $v^{\prime}=$ map-vector complex-of-real $v$
define $w$ where $w=$ adjoint-hma $U * v v^{\prime}$
have $w \$ h i=$ cinner $w($ axis $i 1)$
unfolding cinner-def axis-def scalar-product-def map-vector-def

```
by (auto simp:if-distrib if-distribR sum.If-cases)
also have \(\ldots=\operatorname{cinner} v^{\prime}(U * v\) axis i 1\()\)
unfolding \(w\)-def adjoint-def-alter-hma by simp
also have \(\ldots=\) cinner \(v^{\prime}((1 / \alpha) * s(U * v u))\)
unfolding vector-scalar-commute[symmetric] u-alt using \(\alpha\)-nz
by (intro-cong \(\left[\sigma_{2}\right.\) cinner, \(\left.\sigma_{2}(* v)\right]\)) (auto simp add:axis-def vec-eq-iff)
also have \(\ldots=\) cinner \(v^{\prime}((1 / \alpha) * s 1)\)
unfolding \(u\)-def matrix-vector-mul-assoc unitary-hmaD \([O F\) unit- \(U\)] by simp
also have \(\ldots=\operatorname{cnj}(1 / \alpha) *\) cinner \(v^{\prime} 1\)
unfolding cinner-scale-right by simp
also have \(\ldots=\operatorname{cnj}(1 / \alpha) *\) complex-of-real \((v \cdot 1)\)
unfolding cinner-def scalar-product-def map-vector-def inner-vec-def \(v^{\prime}\)-def
by (intro arg-cong2[where \(f=(*)]\) refl) (simp)
also have \(\ldots=0\)
unfolding that by simp
finally have \(w\)-orth: \(w \$ i=0\) by simp
have complex-of-real (norm v^2) \(=\) complex-of-real \((v \cdot v)\)
by (simp add: power2-norm-eq-inner)
also have \(\ldots=\operatorname{cinner} v^{\prime} v^{\prime}\)
unfolding \(v^{\prime}\)-def cinner-def scalar-product-def inner-vec-def map-vector-def by simp
also have \(\ldots=\) norm \(v^{\prime \wedge 2}\)
unfolding cinner-self by simp
also have \(\ldots=\) norm \(w^{\wedge}\) ~
unfolding \(w\)-def unitary-iso[OF unitary-hma-adjoint \([O F\) unit- \(U]]\) by simp
also have \(\ldots=\) cinner \(w w\)
unfolding cinner-self by simp
also have \(\ldots=\left(\sum j \in U N I V\right.\). complex-of-real \(\left.(\operatorname{cmod}(w \$ h j) \wedge Z)\right)\)
unfolding cinner-def scalar-product-def map-vector-def
cmod-power2 complex-mult-cnj[symmetric] by simp
also have \(\ldots=\) complex-of-real \(\left(\sum j \in U N I V .\left(\operatorname{cmod}(w \$ h j)^{\wedge} 2\right)\right)\)
by \(\operatorname{simp}\)
finally have complex-of-real \(\left(\right.\) norm \(\left.v^{\wedge} 2\right)=\) complex-of-real \(\left(\sum j \in U N I V .\left(\operatorname{cmod}(w \$ h j){ }^{\text {® }} 2\right)\right)\) by simp
hence norm-v: norm \(v \wedge^{\wedge} 2=\left(\sum j \in U N I V .\left(\operatorname{cmod}(w \$ h j)^{\wedge} 2\right)\right)\)
using of-real-hom.injectivity by blast
have complex-of-real \((v \cdot(A * v v))=\) cinner \(v^{\prime}(\) map-vector of-real \((A * v v))\) unfolding \(v^{\prime}\)-def cinner-def scalar-product-def inner-vec-def map-vector-def by \(\operatorname{simp}\)
also have \(\ldots=\) cinner \(v^{\prime}\) (map-matrix of-real \(A * v v^{\prime}\))
unfolding \(v^{\prime}\)-def of-real-hom.mult-mat-vec-hma by simp
also have \(\ldots=\operatorname{cinner} v^{\prime}\left(A * v v^{\prime}\right)\)
unfolding map-matrix-def map-vector-def \(A\)-def by auto
also have \(\ldots=\) cinner \(v^{\prime}\left(U * *\right.\) diag Ad ** adjoint-hma \(\left.U * v v^{\prime}\right)\)
using \(A\)-sim unfolding similar-matrix-wit-def by simp
also have \(\ldots=\) cinner (adjoint-hma \(\left.U * v v^{\prime}\right)\left(\operatorname{diag} A d * *\right.\) adjoint-hma \(\left.U * v v^{\prime}\right)\)
unfolding adjoint-def-alter-hma adjoint-adjoint adjoint-adjoint-id
by (simp add:matrix-vector-mul-assoc matrix-mul-assoc)
also have \(\ldots=\operatorname{cinner} w(\operatorname{diag} A d * v w)\)
unfolding \(w\)-def by (simp add:matrix-vector-mul-assoc)
also have \(\ldots=\) cinner \(w(A d * w)\)
unfolding diag-vec-mult-eq by \(\operatorname{simp}\)
also have \(\ldots=\left(\sum j \in U N I V . c n j(A d \$ h j) * \operatorname{cmod}(w \$ h j)^{\wedge} 2\right)\)
unfolding cinner-def map-vector-def scalar-product-def cmod-power2 complex-mult-cnj[symmetric] by (simp add:algebra-simps)
also have \(\ldots=\left(\sum j \in U N I V . A d \$ h j * \operatorname{cmod}(w \$ h j)^{\text {^2 }} 2\right)\)
using Ad-real by (intro sum.cong refl arg-cong2[where \(f=(*)]\) iffD1[OF Reals-cnj-iff]) auto
```

    also have ... = (\sumj\inUNIV. complex-of-real (Re (Ad $hj)*\operatorname{cmod}(w$hj)^2))
        using Ad-real by (intro sum.cong refl) simp
    also have ... = complex-of-real ( \sumj\inUNIV. Re (Ad $h j)* cmod (w $h j)`2)
        by simp
    finally have complex-of-real (v\cdot(A*vv)) =of-real(\sumj\inUNIV.Re (Ad $hj)* cmod (w $h
    j)^2)
by simp
hence v\cdot(A*vv)=(\sumj\inUNIV.Re(Ad $hj)*\operatorname{cmod}(w$hj)`2)         using of-real-hom.injectivity by blast     also have ... \leq (\sumj\inUNIV. \gamma T TYPE ('n)*\operatorname{cmod}(w$hj)^2)         using w-orth Re-Ad by (intro sum-mono mult-right-mono') auto     also have ... = \gamma T TYPE (' n)*(\sumj\inUNIV. cmod (w$hj)^2)         by (simp add:sum-distrib-left)     also have ... = र T TYPE (' n)* norm v^2         unfolding norm-v by simp     finally show ?thesis by simp qed thus \forall(v::real^'n).v•1=0\longrightarrowv•(A*vv)\leq र TYPE (' n)* norm v`2
by auto
qed
lemma find-any-real-ev:
assumes complex-of-real \alpha \in\# eigenvalues A - {\#1\#}
shows \existsv.v•1=0^v\not=0\wedgeA*v v=\alpha*sv
proof -
obtain w where w-def: cinner w 1=0w\not=0A*vw=\alpha*sw
using find-any-ev assms by auto
have w=0 if map-vector Re (1*s w)=0 map-vector Re (i *s w)=0
using that by (simp add:vec-eq-iff map-vector-def complex-eq-iff)
then obtain c where c-def:map-vector Re (c*s w)}\not=
using w-def(2) by blast
define }u\mathrm{ where }u=c*s
define v}\mathrm{ where v= map-vector Re u
hence v}\cdot1=\operatorname{Re}(\mathrm{ cinner u 1)
unfolding cinner-def inner-vec-def scalar-product-def map-vector-def by simp
also have ... = 0
unfolding u-def cinner-scale-left w-def(1) by simp
finally have 1:v • 1 = 0 by simp
have A*vv = (\chi i. \sumj\inUNIV.A $hi$hj*Re (u\$hj))
unfolding matrix-vector-mult-def v-def map-vector-def by simp
also have ... = (\chi i. \sumj\inUNIV. Re (of-real (A $hi$h j)*u\$hj))
by simp
also have ... =( \chi i. Re (\sumj\inUNIV. A $hi$hj*u\$hj))
unfolding A-def by simp
also have ... = map-vector Re (A*vu)
unfolding map-vector-def matrix-vector-mult-def by simp
also have ... = map-vector Re (of-real \alpha*s u)
unfolding u-def vector-scalar-commute w-def(3)
by (simp add:ac-simps)
also have ... = \alpha*s v
unfolding v-def by (simp add:vec-eq-iff map-vector-def)
finally have 2: A*v v=\alpha*sv by simp

```

\section*{have \(3: v \neq 0\)}
unfolding \(v\)-def \(u\)-def using \(c\)-def by simp
```

    show ?thesis
    by (intro exI[where x=v] conjI 1 2 3)
    qed
lemma size-evs:
size (eigenvalues A - {\#1::complex\#})=n-1
proof -
have size (eigenvalues A :: complex multiset) = n
using eigvals-poly-length card-n[symmetric] by auto
thus size (eigenvalues A - {\#(1::complex)\#}) = n-1
using ev-1 by (simp add: size-Diff-singleton)
qed
lemma find- }\mp@subsup{\gamma}{2}{}\mathrm{ :
assumes n>1
shows }\mp@subsup{\gamma}{a}{}\mathrm{ TYPE('n) Є\# image-mset cmod (eigenvalues A - {\#1::complex\#})
proof -
have set-mset (eigenvalues A - {\#(1::complex) \#}) ={{}
using assms size-evs by auto
hence 2: cmod'set-mset (eigenvalues A - {\#1\#}) \#={}
by simp
have }\mp@subsup{\gamma}{a}{}TYPE('n)\in\mathrm{ set-mset (image-mset cmod (eigenvalues A - {\#1\#}))
unfolding }\mp@subsup{\gamma}{a}{}\mathrm{ -def using assms 2 Max-in by auto
thus }\mp@subsup{\gamma}{a}{}\mathrm{ TYPE('n) Є\# image-mset cmod (eigenvalues A - {\#1\#})
by simp
qed
lemma }\mp@subsup{\gamma}{2}{}\mathrm{ -real-ev:
assumes n>1
shows \existsv. (\exists\alpha. abs \alpha=\mp@subsup{\gamma}{a}{}TYPE('n)\wedgev\cdot1=0\wedgev\not=0^A*vv=\alpha*sv)
proof -
obtain \alpha where \alpha-def: cmod \alpha = \gamma a TYPE('n) \alpha \in\# eigenvalues A - {\#1\#}
using find-\mp@subsup{\gamma}{2}{}[OF assms] by auto
have }\alpha\in\mathbb{R
using in-diffD[OF \alpha-def(2)] evs-real by auto
then obtain }\beta\mathrm{ where }\beta\mathrm{ -def: }\alpha=of\mathrm{ -real }
using Reals-cases by auto
have 0:complex-of-real }\beta\in\#\mathrm{ eigenvalues A-{\#1\#}
using }\alpha\mathrm{ -def unfolding }\beta\mathrm{ -def by auto
have 1: }|\beta|=\mp@subsup{\gamma}{a}{}\mathrm{ TYPE('n)
using }\alpha\mathrm{ -def unfolding }\beta\mathrm{ -def by simp
show ?thesis
using find-any-real-ev[OF 0] 1 by auto
qed
lemma }\mp@subsup{\gamma}{a}{}\mathrm{ -real-bound:
fixes v :: real`'}
assumes v•1=0
shows norm (A*vv)\leq \gammaa TYPE(' }n)*\mathrm{ norm v
proof -
define w}\mathrm{ where w= map-vector complex-of-real v

```
have cinner w \(1=v \cdot 1\)
unfolding \(w\)-def cinner-def map-vector-def scalar-product-def inner-vec-def
by \(\operatorname{simp}\)
also have \(\ldots=0\) using assms by simp
finally have 0 : cinner \(w 1=0\) by simp
have norm \((A * v v)=\) norm (map-matrix complex-of-real \(A * v\) (map-vector complex-of-real \(v)\))
unfolding norm-of-real of-real-hom.mult-mat-vec-hma[symmetric] by simp
also have \(\ldots=\operatorname{norm}(A * v w)\)
unfolding \(w\)-def \(A\)-def map-matrix-def map-vector-def by simp
also have \(\ldots \leq \gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right) *\) norm \(w\) using \(\gamma_{a}\)-bound 0 by auto
also have \(\ldots=\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right) *\) norm \(v\)
unfolding \(w\)-def norm-of-real by simp
finally show ?thesis by simp
qed
lemma \(\Lambda_{e}-e q-\Lambda: \Lambda_{a}=\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right)\)
proof -
have \(\mid g\)-inner \(f(g\)-step \(f) \mid \leq \gamma_{a} T Y P E(' n) *(g \text {-norm } f)^{2}\) (is ? \(L \leq ? R\)) if \(g\)-inner \(f(\lambda\)-. 1\()=0\) for \(f\)
proof -
define \(v\) where \(v=(\chi\) i.f (enum-verts \(i)\))
have \(0: v \cdot 1=0\)
using that unfolding \(g\)-inner-conv one-vec-def \(v\)-def by auto
have ? \(L=|v \cdot(A * v v)|\)
unfolding \(g\)-inner-conv \(g\)-step-conv \(v\)-def by simp
also have \(\ldots \leq(\operatorname{norm} v * \operatorname{norm}(A * v v))\)
by (intro Cauchy-Schwarz-ineq2)
also have \(\ldots \leq\left(\right.\) norm \(v *\left(\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right) *\right.\) norm \(\left.\left.v\right)\right)\)
by (intro mult-left-mono \(\gamma_{a}\)-real-bound 0) auto
also have \(\ldots=\) ? \(R\)
unfolding \(g\)-norm-conv \(v\)-def by (simp add:algebra-simps power2-eq-square)
finally show? thesis by simp
qed
hence \(\Lambda_{a} \leq \gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right)\)
using \(\gamma_{a}-g e-0\) by (intro expander-intro-1) auto
moreover have \(\Lambda_{a} \geq \gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right)\)
proof (cases \(n>1\))
case True
then obtain \(v \alpha\) where \(v\)-def: abs \(\alpha=\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right) A * v v=\alpha * s v v \neq 0 v \cdot 1=0\)
using \(\gamma_{2}\)-real-ev by auto
define \(f\) where \(f x=v\) \$h enum-verts-inv \(x\) for \(x\)
have \(v\)-alt: \(v=(\chi i . f\) (enum-verts \(i))\)
unfolding \(f\)-def Rep-inverse by simp
have \(g\)-inner \(f(\lambda-.1)=v \cdot 1\)
unfolding \(g\)-inner-conv \(v\)-alt one-vec-def by simp
also have \(\ldots=0\) using \(v\)-def by simp
finally have 2:g-inner \(f(\lambda-.1)=0\) by \(\operatorname{simp}\)
have \(\gamma_{a} T Y P E\left({ }^{\prime} n\right) * g\)-norm f \({ }^{\wedge} 2=\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right) * \operatorname{norm} v^{\wedge} 2\)
unfolding \(g\)-norm-conv v-alt by simp
also have \(\ldots=\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right) *|v \cdot v|\) by (simp add: power2-norm-eq-inner)
also have \(\ldots=|v \cdot(\alpha * s v)|\)
unfolding \(v\)-def(1)[symmetric] scalar-mult-eq-scaleR
by (simp add:abs-mult)
also have \(\ldots=|v \cdot(A * v v)|\)
unfolding \(v\)-def by simp
also have \(\ldots=\mid g\)-inner \(f(g\)-step \(f) \mid\)
unfolding \(g\)-inner-conv \(g\)-step-conv \(v\)-alt by simp
also have \(\ldots \leq \Lambda_{a} * g\)-norm f \({ }^{\sim} 2\)
by (intro expansionD1 2)
finally have \(\gamma_{a} T Y P E\left({ }^{\prime} n\right) * g\)-norm \(f^{\wedge} 2 \leq \Lambda_{a} * g\)-norm \(f^{\wedge} 2\) by simp
moreover have norm \(v^{\wedge} 2>0\)
using \(v\)-def(3) by simp
hence \(g\)-norm f ~ \(2>0>0\)
unfolding \(g\)-norm-conv v-alt by simp
ultimately show ?thesis by simp
next
case False
hence \(n=1\) using \(n\)-gt- 0 by simp
hence \(\gamma_{a} \operatorname{TYPE}\left({ }^{\prime} n\right)=0\)
unfolding \(\gamma_{a}\)-def by simp
then show ?thesis using \(\Lambda\)-ge-0 by simp
qed
ultimately show ?thesis by simp
qed
lemma \(\gamma_{2}-e v\) :
assumes \(n>1\)
shows \(\exists v \cdot v \cdot 1=0 \wedge v \neq 0 \wedge A * v v=\gamma_{2} \operatorname{TYPE}\left({ }^{\prime} n\right) * s v\)
proof -
have set-mset (eigenvalues \(A-\{\# 1::\) complex \(\#\}) \neq\{ \}\)
using size-evs assms by auto
hence \(\operatorname{Max}(\) Re'set-mset (eigenvalues \(A-\{\# 1 \#\})) \in R e\) 'set-mset (eigenvalues \(A-\{\# 1 \#\})\) by (intro Max-in) auto
hence \(\gamma_{2}\) TYPE \(\left({ }^{\prime} n\right) \in R e\) 'set-mset (eigenvalues \(\left.A-\{\# 1 \#\}\right)\)
unfolding \(\gamma_{2}\)-def using assms by simp
then obtain \(\alpha\) where \(\alpha\)-def: \(\alpha \in\) set-mset (eigenvalues \(A-\{\# 1 \#\}\)) \(\gamma_{2}\) TYPE (' \(n\)) \(=\operatorname{Re} \alpha\) by auto
have \(\alpha\)-real: \(\alpha \in \mathbb{R}\)
using evs-real in-diffD \([O F \alpha-\operatorname{def}(1)]\) by auto
have complex-of-real (\(\gamma_{2}\) TYPE (' \(n\))) \(=\) of-real (Re \(\alpha\))
unfolding \(\alpha\)-def by simp
also have ... \(=\alpha\) using \(\alpha\)-real by simp
also have \(\ldots \in \#\) eigenvalues \(A-\{\# 1 \#\}\) using \(\alpha\)-def(1) by simp
finally have 0 :complex-of-real \(\left(\gamma_{2}\right.\) TYPE \(\left.(' n)\right) \in \#\) eigenvalues \(A-\{\# 1 \#\}\) by simp
thus ?thesis
using find-any-real-ev[OF 0] by auto
qed
lemma \(\Lambda_{2}-e q-\gamma_{2}: \Lambda_{2}=\gamma_{2} \operatorname{TYPE}\left({ }^{\prime} n\right)\)
proof (cases \(n>1\))
case True
obtain \(v\) where \(v\)-def: \(v \cdot 1=0 v \neq 0 A * v v=\gamma_{2} T Y P E\left({ }^{\prime} n\right) * s v\)
using \(\gamma_{2}-e v[O F\) True \(]\) by auto
define \(f\) where \(f x=v\) \$h enum-verts-inv \(x\) for \(x\)
have \(v\)-alt: \(v=(\chi\) i. \(f\) (enum-verts \(i)\))
unfolding \(f\)-def Rep-inverse by simp
```

    have \(g\)-inner \(f(\lambda-.1)=v \cdot 1\)
        unfolding \(g\)-inner-conv \(v\)-alt one-vec-def by simp
    also have \(\ldots=0\) unfolding \(v-\operatorname{def}(1)\) by \(\operatorname{simp}\)
    finally have \(f\)-orth: \(g\)-inner \(f(\lambda\)-. 1\()=0\) by simp
    have \(\gamma_{2} \operatorname{TYPE}\left({ }^{\prime} n\right) * \operatorname{norm} v \wedge^{\wedge} 2=v \cdot\left(\gamma_{2} \operatorname{TYPE}\left({ }^{\prime} n\right) * s v\right)\)
        unfolding power2-norm-eq-inner by (simp add:algebra-simps scalar-mult-eq-scaleR)
    also have \(\ldots=v \cdot(A * v v)\)
    unfolding \(v\)-def by simp
    also have \(\ldots=g\)-inner \(f(g\)-step \(f)\)
    unfolding \(v\)-alt g-inner-conv \(g\)-step-conv by simp
    also have \(\ldots \leq \Lambda_{2} * g\)-norm \(f\) ~2
        by (intro os-expanderD \(f\)-orth)
    also have \(\ldots=\Lambda_{2} *\) norm \(v^{\wedge} 2\)
    unfolding \(v\)-alt g-norm-conv by simp
    finally have \(\gamma_{2} \operatorname{TYPE}\left({ }^{\prime} n\right) *\) norm v \(\boldsymbol{V}^{2} \leq \Lambda_{2} *\) norm v^2 by simp
    hence \(\gamma_{2} \operatorname{TYPE}(' n) \leq \Lambda_{2}\)
    using \(v\) - \(d e f(2)\) by \(\operatorname{simp}\)
    moreover have \(\Lambda_{2} \leq \gamma_{2}\) TYPE (' \(n\) )
        using \(\gamma_{2}\)-bound
        by (intro os-expanderI[OF True])
            (simp add: g-inner-conv g-step-conv g-norm-conv one-vec-def)
    ultimately show ?thesis by simp
    next
case False
then show ?thesis
unfolding $\Lambda_{2}$-def $\gamma_{2}$-def by simp
qed
lemma expansionD2:
assumes $g$-inner $f(\lambda$-. 1$)=0$
shows $g$-norm $(g$-step $f) \leq \Lambda_{a} * g$-norm $f($ is ? $L \leq ? R)$
proof -
define $v$ where $v=(\chi i . f$ (enum-verts $i))$
have $v \cdot 1=g$-inner $f(\lambda$-. 1$)$
unfolding $g$-inner-conv $v$-def one-vec-def by simp
also have $\ldots=0$ using assms by simp
finally have $0: v \cdot 1=0$ by $\operatorname{simp}$
have $g$-norm $(g$-step $f)=\operatorname{norm}(A * v v)$
unfolding $g$-norm-conv $g$-step-conv $v$-def by auto
also have $\ldots \leq \Lambda_{a} *$ norm $v$
unfolding $\Lambda_{e}-e q-\Lambda$ by (intro $\gamma_{a}$-real-bound 0)
also have $\ldots=\Lambda_{a} * g$-norm $f$
unfolding $g$-norm-conv $v$-def by simp
finally show?thesis by simp
qed
lemma rayleigh-bound:
fixes $v::$ real ${ }^{\text {人' }} n$
shows $|v \cdot(A * v v)| \leq$ norm $v^{\wedge} 2$
proof -
define $f$ where $f x=v$ \$h enum-verts-inv $x$ for $x$
have $v$-alt: $v=(\chi i . f$ (enum-verts $i))$
unfolding $f$-def Rep-inverse by simp
have $|v \cdot(A * v v)|=\mid g$-inner $f(g$-step $f) \mid$
unfolding $v$-alt $g$-inner-conv $g$-step-conv by simp

```
```

    also have \(\ldots=\mid\left(\sum a \in \operatorname{arcs} G . f(\right.\) head \(G a) * f(\) tail \(\left.G a)\right) \mid / d\)
    unfolding \(g\)-inner-step-eq by simp
    also have \(\ldots \leq\left(d *(g \text {-norm } f)^{2}\right) / d\)
    by (intro divide-right-mono bdd-above-aux) auto
    also have ... $=$ g-norm f $\uparrow 2$
using $d$-gt- 0 by simp
also have $\ldots=$ norm $v^{\wedge} 2$
unfolding $g$-norm-conv $v$-alt by simp
finally show ?thesis by simp
qed

```

The following implies that two-sided expanders are also one-sided expanders.
```

lemma }\mp@subsup{\Lambda}{2}{2-range: }|\mp@subsup{\Lambda}{2}{}|\leq\mp@subsup{\Lambda}{a}{
proof (cases n>1)
case True
hence 0:set-mset (eigenvalues A - {\#1::complex\#}) \not={}
using size-evs by auto
have }\mp@subsup{\gamma}{2}{}\mathrm{ TYPE ('n) = Max (Re'set-mset (eigenvalues A - {\#1::complex\#}))
unfolding }\mp@subsup{\gamma}{2}{}\mathrm{ -def using True by simp
also have ... \inRe'set-mset (eigenvalues A - {\#1::complex\#})
using Max-in 0 by simp
finally have }\mp@subsup{\gamma}{2}{}\mathrm{ TYPE (' }n)\inRe'set-mset (eigenvalues A - {\#1::complex\#}
by simp
then obtain \alpha where \alpha-def: \alpha set-mset (eigenvalues A - {\#1::complex\#}) \gamma र TYPE (' }n\mathrm{ )
= Re \alpha
by auto
have }|\mp@subsup{\Lambda}{2}{}|=|\mp@subsup{\gamma}{2}{}\mathrm{ TYPE ('n)|
using }\mp@subsup{\Lambda}{2}{}-eq-\mp@subsup{\gamma}{2}{}\mathrm{ by simp
also have ... = | Re \alpha|
using }\alpha\mathrm{ -def by simp
also have ... \leq cmod \alpha
using abs-Re-le-cmod by simp
also have ...\leqMax (cmod'set-mset (eigenvalues A - {\#1\#}))
using \alpha-def(1) by (intro Max-ge) auto
also have ... \leq \gamma _ TYPE(' n)
unfolding }\mp@subsup{\gamma}{a}{}\mathrm{ -def using True by simp
also have ... = \Lambda \a
using }\mp@subsup{\Lambda}{e}{}-eq-\Lambda by sim
finally show ?thesis by simp
next
case False
thus ?thesis
unfolding }\mp@subsup{\Lambda}{2}{}\mathrm{ -def }\mp@subsup{\Lambda}{a}{}\mathrm{ -def by simp
qed
end
lemmas (in regular-graph) expansionD2 =
regular-graph-tts.expansionD2[OF eg-tts-1,
internalize-sort ' }n\mathrm{ :: finite, OF - regular-graph-axioms,
unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]
lemmas (in regular-graph) }\mp@subsup{\Lambda}{2}{}\mathrm{ -range }
regular-graph-tts.\Lambda }\mp@subsup{\Lambda}{2}{-range[OF eg-tts-1,
internalize-sort ' }n\mathrm{ :: finite, OF - regular-graph-axioms,
unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]

```
unbundle no-intro-cong-syntax
end

\section*{7 Cheeger Inequality}

The Cheeger inequality relates edge expansion (a combinatorial property) with the second largest eigenvalue.
theory Expander-Graphs-Cheeger-Inequality
imports Expander-Graphs-Eigenvalues
begin
unbundle intro-cong-syntax
hide-const Quantum.T
context regular-graph
begin
lemma edge-expansionD2:
assumes \(m=\operatorname{card}(S \cap\) verts \(G) 2 * m \leq n\)
shows \(\Lambda_{e} * m \leq\) real (card (edges-betw \(\left.S(-S)\right)\))
proof -
define \(S^{\prime}\) where \(S^{\prime}=S \cap\) verts \(G\)
have \(\Lambda_{e} * m=\Lambda_{e} *\) card \(S^{\prime}\)
using assms (1) \(S^{\prime}\)-def by simp
also have \(\ldots \leq\) real (card (edges-betw \(\left.S^{\prime}\left(-S^{\prime}\right)\right)\))
using assms unfolding \(S^{\prime}\)-def by (intro edge-expansionD) auto
also have \(\ldots=\) real (card (edges-betw \(S(-S))\))
unfolding \(S^{\prime}\)-def edges-betw-def
by (intro arg-cong[where \(f=\) real \(]\) arg-cong \([\) where \(f=\) card \(]\)) auto
finally show? ?thesis by simp
qed
lemma edges-betw-sym:
card \((\) edges-betw \(S T)=\) card \((\) edges-betw \(T S)(\) is \(? L=? R)\)
proof -
have \(? L=\left(\sum a \in \operatorname{arcs} G\right.\). of-bool (tail \(G a \in S \wedge\) head \(\left.\left.G a \in T\right)\right)\) unfolding edges-betw-def of-bool-def by (simp add:sum.If-cases Int-def)
also have \(\ldots=\left(\sum e \in \#\right.\) edges \(G\). of-bool \((f s t e \in S \wedge\) snd \(\left.e \in T)\right)\)
unfolding sum-unfold-sum-mset edges-def arc-to-ends-def
by (simp add:image-mset.compositionality comp-def)
also have \(\ldots=\left(\sum e \in \#\right.\) edges \(G\). of-bool (snd \(\left.\left.e \in S \wedge f s t e \in T\right)\right)\)
by (subst edges-sym[OF sym, symmetric])
(simp add:image-mset.compositionality comp-def case-prod-beta)
also have \(\ldots=\left(\sum a \in \operatorname{arcs} G\right.\). of-bool (tail \(G a \in T \wedge\) head \(\left.\left.G a \in S\right)\right)\)
unfolding sum-unfold-sum-mset edges-def arc-to-ends-def
by (simp add:image-mset.compositionality comp-def conj.commute)
also have ... \(=\) ? \(R\)
unfolding edges-betw-def of-bool-def by (simp add:sum.If-cases Int-def)
finally show ?thesis by simp
qed
lemma edges-betw-reg:
assumes \(S \subseteq\) verts \(G\)
shows card (edges-betw \(S\) UNIV) \(=\) card \(S * d(\) is \(? L=? R)\)
proof -
have ? \(L=\) card \((\bigcup(\) out-arcs \(G \cdot S))\)
unfolding edges-betw-def out-arcs-def by (intro arg-cong[where \(f=\) card]) auto
also have \(\ldots=\left(\sum i \in S\right.\). card (out-arcs \(\left.G i\right)\))
using finite-subset[OF assms] unfolding out-arcs-def
by (intro card-UN-disjoint) auto
also have \(\ldots=\left(\sum i \in S\right.\). out-degree \(\left.G i\right)\)
unfolding out-degree-def by simp
also have \(\ldots=\left(\sum i \in S . d\right)\)
using assms by (intro sum.cong reg) auto
also have ... \(=\) ? \(R\)
by \(\operatorname{simp}\)
finally show?thesis by simp
qed
The following proof follows Hoory et al. [4, §4.5.1].
lemma cheeger-aux-2:
assumes \(n>1\)
shows \(\Lambda_{e} \geq d *\left(1-\Lambda_{2}\right) / 2\)
proof -
have real \((\) card \((\) edges-betw \(S(-S))) \geq\left(d *\left(1-\Lambda_{2}\right) / 2\right) *\) real \((\) card \(S)\)
if \(S \subseteq\) verts \(G 2 *\) card \(S \leq n\) for \(S\)
proof -
let ?ct \(=\) real \((\) card \((\) verts \(G-S))\)
let ?cs \(=\) real \((\operatorname{card} S)\)
have card (edges-betw \(S S)+\) card (edges-betw \(S(-S))=\operatorname{card}(\) edges-betw \(S S \cup\) edges-betw \(S(-S))\)
unfolding edges-betw-def by (intro card-Un-disjoint[symmetric]) auto
also have ... = card (edges-betw S UNIV)
unfolding edges-betw-def by (intro arg-cong[where \(f=\) card \(]\)) auto
also have \(\ldots=d *\) ? cs
using edges-betw-reg[OF that(1)] by simp
finally have card (edges-betw \(S S\)) + card (edges-betw \(S(-S))=d *\) ?cs by simp
hence 4: card (edges-betw \(S S\)) \(=d *\) ?cs - card (edges-betw \(S(-S)\)) by \(\operatorname{simp}\)
have \(\operatorname{card}(\) edges-betw \(S(-S))+\operatorname{card}(\) edges-betw \((-S)(-S))=\operatorname{card}(\) edges-betw \(S(-S) \cup e d g e s-b e t w(-S)(-S))\) unfolding edges-betw-def by (intro card-Un-disjoint[symmetric]) auto
also have \(\ldots=\) card (edges-betw UNIV (verts \(G-S\)))
unfolding edges-betw-def by (intro arg-cong[where \(f=\) card \(]\)) auto
also have \(\ldots=\) card (edges-betw (verts \(G-S)\) UNIV) by (intro edges-betw-sym)
also have \(\ldots=d *\) ? \(c t\)
using edges-betw-reg by auto
finally have card (edges-betw \(S(-S))+\) card (edges-betw \((-S)(-S))=d *\) ? ct by simp
hence 5: card (edges-betw \((-S)(-S))=d *\) ?ct - card (edges-betw \(S(-S)\)) by \(\operatorname{simp}\)
have 6: card (edges-betw \((-S) S)=\) card (edges-betw \(S(-S))\)
by (intro edges-betw-sym)
have ?cs + ? ct \(=\operatorname{real}(\operatorname{card}(S \cup(\) verts \(G-S)))\)
unfolding of-nat-add[symmetric] using finite-subset[OF that(1)]
by (intro-cong [\(\sigma_{1}\) of-nat, \(\sigma_{1}\) card] more:card-Un-disjoint[symmetric]) auto
also have \(\ldots=\) real \(n\)
unfolding \(n\)-def using that(1) by (intro-cong [\(\sigma_{1}\) of-nat, \(\sigma_{1}\) card \(]\)) auto
finally have 7: ? cs + ? \(c t=n\) by \(\operatorname{simp}\)
define \(f\) where
\(f x=\operatorname{real}(\) card \((v e r t s G-S)) *\) of-bool \((x \in S)-\operatorname{card} S *\) of-bool \((x \notin S)\) for \(x\)
have \(g\)-inner \(f(\lambda-.1)=\) ?cs * ?ct - real \((\) card \((v e r t s ~ G \cap\{x . x \notin S\})) *\) ?cs unfolding \(g\)-inner-def f-def using Int-absorb1[OF that(1)] by (simp add:sum-subtractf)
also have \(\ldots=\) ? \(c s *\) ? \(c t-\) ? \(c t *\) ? \(c s\)
by (intro-cong \(\left[\sigma_{2}(-), \sigma_{2}(*), \sigma_{1}\right.\) of-nat, \(\sigma_{1}\) card \(]\)) auto
also have \(\ldots=0\) by \(\operatorname{simp}\)
finally have 11: g-inner \(f(\lambda-.1)=0\) by simp
have \(g\)-norm \(f^{\wedge} 2=\left(\sum v \in\right.\) verts G. f \(\left.v^{\wedge} 2\right)\)
unfolding \(g\)-norm-sq \(g\)-inner-def conjugate-real-def by (simp add:power2-eq-square)
also have \(\ldots=\left(\sum v \in\right.\) verts \(G\). ?ct \(\left.\uparrow 2 *(\text { of-bool }(v \in S))^{2}\right)+\left(\sum v \in v e r t s G\right.\). ?cs \({ }^{\wedge} 2 *(o f\)-bool \((v \notin\) \(S))^{2}\))
unfolding \(f\)-def power2-diff by (simp add:sum.distrib sum-subtractf power-mult-distrib)
also have \(\ldots=\) real \((\) card \((\) verts \(G \cap S)) * ? c t{ }^{\text {^2 }}+\operatorname{real}(\operatorname{card}(v e r t s G \cap\{v . v \notin S\})) *\) ?cs^2 unfolding of-bool-def by (simp add:if-distrib if-distribR sum.If-cases)
also have \(\ldots=\operatorname{real}(\operatorname{card} S) *(\operatorname{real}(\operatorname{card}(v e r t s G-S)))^{2}+\operatorname{real}(\operatorname{card}(\operatorname{verts} G-S)) *(\operatorname{real}(\operatorname{card} S))^{2}\)
using that (1) by (intro-cong \(\left[\sigma_{2}(+), \sigma_{2}(*), \sigma_{2}\right.\) power, \(\sigma_{1}\) of-nat, \(\sigma_{1}\) card \(]\)) auto
also have \(\ldots=\operatorname{real}(\operatorname{card} S) * \operatorname{real}(\) card \((\) verts \(G-S)) *(? c s+\) ?ct)
by (simp add:power2-eq-square algebra-simps)
also have \(\ldots=\operatorname{real}(\operatorname{card} S) * \operatorname{real}(\) card \((\) verts \(G-S)) * n\)
unfolding 7 by simp
finally have 9:g-norm \(f \wedge 2=\operatorname{real}(\operatorname{card} S) *\) real \((\operatorname{card}(\) verts \(G-S)) *\) real \(n\) by simp
have \(\left(\sum a \in \operatorname{arcs} G . f(\right.\) head \(G a) * f(\) tail \(\left.G a)\right)=\)
(card (edges-betw \(S S) *\) ?ct*? \(c t)+(\) card \((\) edges-betw \((-S)(-S)) * ? c s * ? c s)-\)
(card (edges-betw \(S(-S)) * ? c t * ? c s)-(\) card \((\) edges-betw \((-S) S) * ? c s * ? c t)\)
unfolding \(f\)-def by (simp add:of-bool-def algebra-simps Int-def if-distrib if-distribR edges-betw-def sum.If-cases)
also have \(\ldots=d * ? c s *\) ? \(. . c t *(? c s+? c t)-\) card \((\) edges-betw \(S(-S)) *(? c t * ? c t+2 * ? c t * ? c s+? c s * ? c s)\) unfolding 456 by (simp add:algebra-simps)
also have \(\ldots=d * ? c s * ? c t * n-(? c t+? c s)^{\wedge} \sim *\) card (edges-betw \(\left.S(-S)\right)\)
unfolding power2-diff 7 power2-sum by (simp add:ac-simps power2-eq-square)
also have \(\ldots=d * ? c s * ? c t * n-n \wedge 2 *\) card (edges-betw \(S(-S)\))
using 7 by (simp add:algebra-simps)
finally have \(8:\left(\sum a \in \operatorname{arcs} G . f(\right.\) head \(G a) * f(\) tail \(\left.G a)\right)=d * ? c s * ? c t * n-n \wedge 2 * \operatorname{card}(\) edges-betw \(S(-S))\)
by simp
have \(d *\) ?cs*? \(c t * n-n^{\wedge} 2 * \operatorname{card}(\) edges-betw \(S(-S))=\left(\sum a \in \operatorname{arcs} G . f(\right.\) head \(G a) * f(\) tail \(G\) a))
unfolding 8 by simp
also have \(\ldots \leq d *(g\)-inner \(f(g\)-step \(f))\)
unfolding \(g\)-inner-step-eq using \(d\)-gt- 0
by simp
also have \(\ldots \leq d *\left(\Lambda_{2} * g\right.\)-norm \(f\) ^2 \()\)
by (intro mult-left-mono os-expanderD 11) auto
also have \(\ldots=d * \Lambda_{2} *\) ? \(c s *\) ? \(c t * n\)
unfolding 9 by simp
finally have \(d * ? c s * ? c t * n-n \wedge 2 * \operatorname{card}(\) edges-betw \(S(-S)) \leq d * \Lambda_{2} * ? c s * ? c t * n\)
by simp
hence \(n * n *\) card (edges-betw \(S(-S)) \geq n *\left(d *\right.\) ?cs \(*\) ?ct \(\left.*\left(1-\Lambda_{2}\right)\right)\)
by (simp add:power2-eq-square algebra-simps)
hence 10:n * card (edges-betw \(S(-S)) \geq d *\) ?cs \(*\) ?ct \(*\left(1-\Lambda_{2}\right)\)
using \(n\)-gt- 0 by simp
have \(\left(d *\left(1-\Lambda_{2}\right) / 2\right) *\) ? \(c s=\left(d *\left(1-\Lambda_{2}\right) *(1-1 / 2)\right) *\) ? \(c s\)
by \(\operatorname{simp}\)
also have \(\ldots \leq d *\left(1-\Lambda_{2}\right) *((n-? c s) / n) * ? c s\)
using that n-gt-0 \(\Lambda_{2}\)-le-1
by (intro mult-left-mono mult-right-mono mult-nonneg-nonneg) auto
also have \(\ldots=\left(d *\left(1-\Lambda_{2}\right) *\right.\) ?ct / \(\left.n\right) *\) ?cs
using 7 by \(\operatorname{simp}\)
also have \(\ldots=d *\) ? cs \(*\) ? ct \(*\left(1-\Lambda_{2}\right) / n\)
by \(\operatorname{simp}\)
also have \(\ldots \leq n *\) card (edges-betw \(S(-S)\)) / n
by (intro divide-right-mono 10) auto
also have \(\ldots=\) card (edges-betw \(S(-S)\))
using \(n\)-gt- 0 by \(\operatorname{simp}\)
finally show?thesis by simp
qed
thus ?thesis
by (intro edge-expansionI assms) auto
qed
end
lemma surj-onI:
assumes \(\wedge x . x \in B \Longrightarrow g x \in A \wedge f(g x)=x\)
shows \(B \subseteq f^{\prime} A\)
using assms by force
lemma find-sorted-bij-1:
fixes \(g:: ' a \Rightarrow(' b::\) linorder \()\)
assumes finite \(S\)
shows \(\exists f\). bij-betw \(f\{. .<\operatorname{card} S\} S \wedge\) mono-on \(\{. .<\operatorname{card} S\}(g \circ f)\)
proof -
define \(h\) where \(h x=\) from-nat-into \(S x\) for \(x\)
have \(h\)-bij:bij-betw \(h\{. .<\) card \(S\} S\)
unfolding \(h\)-def using bij-betw-from-nat-into-finite[OF assms] by simp
define \(x s\) where \(x s=\) sort-key \((g \circ h)[0 . .<\operatorname{card} S]\)
define \(f\) where \(f i=h(x s!i)\) for \(i\)
have l-xs: length \(x s=\) card \(S\)
unfolding \(x s\)-def by auto
have set-xs: set xs \(=\{. .<\) card \(S\}\)
unfolding xs-def by auto
have dist-xs: distinct xs
using l-xs set-xs by (intro card-distinct) simp
have sorted-xs: sorted (map (\(g \circ h\)) xs)
unfolding \(x s\)-def using sorted-sort-key by simp
have \((\lambda i . x s!i)\) ' \(\{. .<\) card \(S\}=\) set \(x s\)
using \(l\)-xs by (auto simp:in-set-conv-nth)
also have \(\ldots=\{. .<\) card \(S\}\)
unfolding set-xs by simp
finally have set-xs':
(\(\lambda i\). xs ! i) ' \(\{. .<\) card \(S\}=\{. .<\) card \(S\}\) by \(\operatorname{simp}\)
have \(f\) ' \(\{. .<\) card \(S\}=h^{\prime}((\lambda i . x s!i) ’\{. .<\) card \(S\})\)
unfolding \(f\)-def image-image by simp
also have \(\ldots=h '\{. .<\operatorname{card} S\}\)
unfolding set-xs' by simp
also have \(\ldots=S\)
using bij-betw-imp-surj-on[OF h-bij] by simp
finally have \(0: f\) ' \(\{. .<\) card \(S\}=S\) by simp
have inj-on ((!) xs) \(\{. .<\operatorname{card} S\}\)
using dist-xs l-xs unfolding distinct-conv-nth
by (intro inj-onI) auto
hence inj-on \((h \circ(\lambda i . x s!i))\{. .<\operatorname{card} S\}\)
using set-xs \({ }^{\prime}\) bij-betw-imp-inj-on[OF h-bij]
by (intro comp-inj-on) auto
hence 1: inj-on \(f\{. .<\) card \(S\}\)
unfolding \(f\)-def comp-def by simp
have 2: mono-on \(\{. .<\) card \(S\}(g \circ f)\)
using sorted-nth-mono[OF sorted-xs] l-xs unfolding \(f\)-def
by (intro mono-onI) simp
thus ?thesis
using 012 unfolding bij-betw-def by auto
qed
lemma find-sorted-bij-2:
fixes \(g:: ' a \Rightarrow\) (' \(b::\) linorder)
assumes finite \(S\)
shows \(\exists f\). bij-betw \(f S\{. .<\operatorname{card} S\} \wedge(\forall x y . x \in S \wedge y \in S \wedge f x<f y \longrightarrow g x \leq g y)\)
proof -
obtain \(f\) where \(f\)-def: bij-betw \(f\{. .<\) card \(S\} S\) mono-on \(\{. .<\) card \(S\}(g \circ f)\)
using find-sorted-bij-1 [OF assms] by auto
define \(h\) where \(h=\) the-inv-into \(\{. .<\) card \(S\} f\)
have bij-h: bij-betw \(h S\{. .<\) card \(S\}\)
unfolding \(h\)-def by (intro bij-betw-the-inv-into \(f\)-def)
moreover have \(g x \leq g y\) if \(h x<h y x \in S y \in S\) for \(x y\)
proof -
have \(h y<\operatorname{card} S h x<\operatorname{card} S h x \leq h y\)
using bij-betw-apply[OF bij-h] that by auto
hence \(g(f(h x)) \leq g(f(h y))\)
using \(f\)-def(2) unfolding mono-on-def by simp
moreover have \(f\) ' \(\{. .<\) card \(S\}=S\)
using bij-betw-imp-surj-on[OF f-def(1)] by simp
ultimately show \(g x \leq g y\)
unfolding \(h\)-def using that \(f\)-the-inv-into-f[OF bij-betw-imp-inj-on[OF f-def(1)]] by auto
qed
ultimately show ?thesis by auto
qed
context regular-graph-tts
begin
Normalized Laplacian of the graph
definition \(L\) where \(L=\) mat \(1-A\)
lemma L-pos-semidefinite:
fixes \(v::\) real \({ }^{\wedge} n\)
shows \(v \cdot(L * v v) \geq 0\)
proof -
have \(0=v \cdot v\) - norm \(v\) ^2 unfolding power2-norm-eq-inner by simp
also have \(\ldots \leq v \cdot v-a b s(v \cdot(A * v v))\)
by (intro diff-mono rayleigh-bound) auto
also have \(\ldots \leq v \cdot v-v \cdot(A * v v)\)
```

    by (intro diff-mono) auto
    also have ... = v • (L*vv)
    unfolding L-def by (simp add:algebra-simps)
    finally show ?thesis by simp
    qed

```

The following proof follows Hoory et al. [4, §4.5.2].
```

lemma cheeger-aux-1:
assumes $n>1$
shows $\Lambda_{e} \leq d * \operatorname{sqrt}\left(2 *\left(1-\Lambda_{2}\right)\right)$
proof -
obtain $v$ where $v$-def: $v \cdot 1=0 v \neq 0 A * v v=\Lambda_{2} * s v$
using $\Lambda_{2}-e q-\gamma_{2} \gamma_{2}-e v[O F$ assms $]$ by auto
have False if $2 * \operatorname{card}\{i .(1 * s v) \$ h i>0\}>n 2 * \operatorname{card}\{i .((-1) * s v) \$ h i>0\}>n$
proof -
have $2 * n=n+n$ by $\operatorname{simp}$
also have $\ldots<2 * \operatorname{card}\{i .(1 * s v) \$ h i>0\}+2 * \operatorname{card}\{i .((-1) * s v) \$ h i>0\}$
by (intro add-strict-mono that)
also have $\ldots=2 *(\operatorname{card}\{i .(1 * s v) \$ h i>0\}+\operatorname{card}\{i .((-1) * s v) \$ h i>0\})$
by $\operatorname{simp}$
also have $\ldots=2 *(\operatorname{card}(\{i .(1 * s v) \$ h i>0\} \cup\{i .((-1) * s v) \$ h i>0\}))$
by (intro arg-cong2[where $f=(*)]$ card-Un-disjoint [symmetric]) auto
also have $\ldots \leq 2 *(\operatorname{card}(U N I V::$ ' $n$ set $)$ )
by (intro mult-left-mono card-mono) auto
finally have $2 * n<2 * n$
unfolding $n$-def card- $n$ by auto
thus ?thesis by simp
qed
then obtain $\beta::$ real where $\beta$-def: $\beta=1 \vee \beta=(-1) 2 * \operatorname{card}\{i .(\beta * s v) \$ h i>0\} \leq n$
unfolding not-le[symmetric] by blast
define $g$ where $g=\beta * s v$
have $g$-orth: $g \cdot 1=0$ unfolding $g$-def using $v$ - $\operatorname{def}(1)$
by (simp add: scalar-mult-eq-scaleR)
have $g-n z: g \neq 0$
unfolding $g$-def using $\beta$-def(1) $v$ - $\operatorname{def}(2)$ by auto
have $g$-ev: $A * v g=\Lambda_{2} * s g$
unfolding $g$-def scalar-mult-eq-scaleR matrix-vector-mult-scaleR $v$-def(3) by auto
have $g$-supp: 2 * card $\{i . g \$ h i>0\} \leq n$
unfolding $g$-def using $\beta$-def(2) by auto
define $f$ where $f=(\chi i . \max (g \$ h i) 0)$
have $(L * v f) \$ h i \leq\left(1-\Lambda_{2}\right) * g \$ h i$ (is ? $\left.L \leq ? R\right)$ if $g \$ h i>0$ for $i$
proof -
have $? L=f \$ h i-(A * v f) \$ h i$
unfolding $L$-def by (simp add:algebra-simps)
also have $\ldots=g \$ h i-\left(\sum j \in U N I V . A \$ h i \$ h j * f \$ h j\right)$
unfolding matrix-vector-mult-def $f$-def using that by auto
also have $\ldots \leq g \$ h i-\left(\sum j \in U N I V . A \$ h i \$ h j * g \$ h j\right)$
unfolding $f$-def $A$-def by (intro diff-mono sum-mono mult-left-mono) auto
also have $\ldots=g \$ h i-(A * v g) \$ h i$
unfolding matrix-vector-mult-def by simp
also have $\ldots=\left(1-\Lambda_{2}\right) * g \$ h i$
unfolding $g$-ev by (simp add:algebra-simps)
finally show? thesis by simp

```
qed
moreover have \(f \$ h i \neq 0 \Longrightarrow g \$ h i>0\) for \(i\)
unfolding \(f\)-def by simp
ultimately have \(0:(L * v f) \$ h i \leq\left(1-\Lambda_{2}\right) * g \$ h i \vee f \$ h i=0\) for \(i\)
by auto
Part (i) in Hoory et al. (§4.5.2) but the operator L here is normalized.
```

have f • (L*vf) = (\sumi\inUNIV. (L*vf)$hi*f$hi)
unfolding inner-vec-def by (simp add:ac-simps)
also have ... \leq (\sumi\inUNIV. ((1-\Lambda ) *g$hi)*f$hi)
by (intro sum-mono mult-right-mono' 0) (simp add:f-def)
also have ... = (\sumi\inUNIV. (1-\mp@subsup{\Lambda}{2}{})*f$hi*f$hi)
unfolding f-def by (intro sum.cong refl) auto
also have ... =(1-\Lambda () * (f | f)
unfolding inner-vec-def by (simp add:sum-distrib-left ac-simps)
also have ... =(1- \Lambda ) * norm f^2
by (simp add: power2-norm-eq-inner)
finally have h-part-i: f\cdot(L*vf)\leq(1- \Lambda2)* norm f^2 by simp
define f' where f'x=f\$h(enum-verts-inv x) for }
have f'-alt: f=(\chi i.f'(enum-verts i))
unfolding f'-def Rep-inverse by simp

```
define \(B_{f}\) where \(B_{f}=\left(\sum a \in \operatorname{arcs} G . \mid f^{\prime}(\text { tail } G a)^{\wedge 2}-f^{\prime}(\text { head } G a)^{\wedge} \mathcal{2} \mid\right)\)
have \((x+y) \wedge 2 \leq 2 *\left(x\right.\) ^2 \(\left.+y^{\wedge} 2\right)\) for \(x y::\) real
proof -
 have \((x+y)^{\wedge} 2=\left(x^{\wedge} 2+y^{\wedge} 2\right)+2 * x * y\)
 unfolding power2-sum by simp
 also have \(\ldots \leq\left(x \wedge 2+y^{\wedge} 2\right)+\left(x^{\wedge} 2+y^{\wedge} 2\right)\)
 by (intro add-mono sum-squares-bound) auto
 finally show? ?thesis by simp
qed
hence \(\left(\sum a \in \operatorname{arcs} G \cdot\left(f^{\prime}(\text { tail } G a)+f^{\prime}(\text { head } G a)\right)^{2}\right) \leq\left(\sum a \in \operatorname{arcs} G\right.\). \(2 *\left(f^{\prime}(\right.\) tail \(G a) \wedge 2+f^{\prime}(\) head \(G\)
a) ^2))
 by (intro sum-mono) auto
also have \(\ldots=2 *\left(\left(\sum a \in \operatorname{arcs} G . f^{\prime}(\text { tail } G a)^{\wedge} \mathcal{Z}\right)+\left(\sum a \in \operatorname{arcs} G . f^{\prime}(\operatorname{head} G a)^{\wedge} \mathcal{Z}\right)\right)\)
 by (simp add:sum-distrib-left)
also have \(\ldots=4 * d * g\)-norm \(f^{\prime \uparrow}{ }^{\prime 2}\)
 unfolding sum-arcs-tail[where \(f=\lambda x . f^{\prime}\) x^2] sum-arcs-head[where \(f=\lambda x . f^{\prime} x^{\wedge}\) Q]
 g-norm-sq g-inner-def by (simp add:power2-eq-square)
also have \(\ldots=4 * d *\) norm \(f\) ~2
 unfolding \(g\)-norm-conv \(f^{\prime}\)-alt by simp
finally have 1: \(\left(\sum i \in \operatorname{arcs} G .\left(f^{\prime}(\text { tail } G i)+f^{\prime}(\text { head } G i)\right)^{2}\right) \leq 4 * d *\) norm f^2
 by \(\operatorname{simp}\)
have \(\left(\sum a \in \operatorname{arcs} G .\left(f^{\prime}(\text { tail } G a)-f^{\prime}(\text { head } G a)\right)^{2}\right)=\left(\sum a \in \operatorname{arcs} G .\left(f^{\prime}(\text { tail } G a)\right)^{2}\right)+\) \(\left(\sum a \in \operatorname{arcs} G .\left(f^{\prime}(\text { head } G a)\right)^{2}\right)-2 *\left(\sum a \in \operatorname{arcs} G . f^{\prime}(\right.\) tail \(G a) * f^{\prime}(\) head \(\left.G a)\right)\)
unfolding power2-diff by (simp add:sum-subtractf sum-distrib-left ac-simps)
also have \(\ldots=2 *\left(d *\left(\sum v \in \operatorname{verts} G .\left(f^{\prime} v\right)^{2}\right)-\left(\sum a \in \operatorname{arcs} G . f^{\prime}(\right.\right.\) tail \(G a) * f^{\prime}(\) head \(\left.\left.G a)\right)\right)\) unfolding sum-arcs-tail[where \(f=\lambda x\). \(f^{\prime}\) x^2] sum-arcs-head[where \(f=\lambda x . f^{\prime} x^{\wedge}\) 2] by simp
also have \(\ldots=2 *\left(d * g\right.\)-inner \(f^{\prime} f^{\prime}-d * g\)-inner \(f^{\prime}\left(g\right.\)-step \(\left.\left.f^{\prime}\right)\right)\)
unfolding \(g\)-inner-step-eq using \(d\)-gt- 0
by (intro-cong \(\left[\sigma_{2}(*), \sigma_{2}(-)\right]\)) (auto simp:power2-eq-square \(g\)-inner-def ac-simps)
also have \(\ldots=2 * d *\left(g\right.\)-inner \(f^{\prime} f^{\prime}-g\)-inner \(f^{\prime}\left(g\right.\)-step \(\left.\left.f^{\prime}\right)\right)\)
by (simp add:algebra-simps)
also have \(\ldots=2 * d *(f \cdot f-f \cdot(A * v f))\)
unfolding \(g\)-inner-conv \(g\)-step-conv \(f^{\prime}\)-alt by simp
```

also have $\ldots=2 * d *(f \cdot(L * v f))$
unfolding $L$-def by (simp add:algebra-simps)
finally have 2: $\left(\sum a \in \operatorname{arcs} G .\left(f^{\prime}(\operatorname{tail} G a)-f^{\prime}(\text { head } G a)\right)^{2}\right)=2 * d *(f \cdot(L * v f))$ by simp
have $B_{f}=\left(\sum a \in \operatorname{arcs} G . \mid f^{\prime}(\right.$ tail $G a)+f^{\prime}($ head $G a)|*| f^{\prime}($ tail $G a)-f^{\prime}($ head $\left.G a) \mid\right)$
unfolding $B_{f}$-def abs-mult[symmetric] by (simp add:algebra-simps power2-eq-square)
also have $\ldots \leq$ L2-set $\left(\lambda a . f^{\prime}\left(\right.\right.$ tail Ga) $+f^{\prime}($ head $\left.G a)\right)(\operatorname{arcs} G) *$
L2-set $\left(\lambda a\right.$. $f^{\prime}($ tail $G a)-f^{\prime}($ head $\left.G a)\right)($ arcs $G)$
by (intro L2-set-mult-ineq)
also have $\ldots \leq \operatorname{sqrt}\left(4 * d * \operatorname{norm} f^{\wedge} 2\right) * \operatorname{sqrt}(2 * d *(f \cdot(L * v f)))$
unfolding L2-set-def 2
by (intro mult-right-mono iffD2[OF real-sqrt-le-iff] 1 real-sqrt-ge-zero
mult-nonneg-nonneg L-pos-semidefinite) auto
also have $\ldots=2 * \operatorname{sqrt} 2 * d * \operatorname{norm} f * \operatorname{sqrt}(f \cdot(L * v f))$
by (simp add:real-sqrt-mult)
finally have hoory-4-12: $B_{f} \leq 2 * \operatorname{sqrt} 2 * d * \operatorname{norm} f * \operatorname{sqrt}(f \cdot(L * v f))$
by $\operatorname{simp}$

```

The last statement corresponds to Lemma 4.12 in Hoory et al.
```

obtain $\varrho::$ ' $a \Rightarrow$ nat where $\varrho$-bij: bij-betw $\varrho($ verts $G)\{. .<n\}$ and
$\varrho$-dec: $\left\lfloor x y . x \in\right.$ verts $G \Longrightarrow y \in$ verts $G \Longrightarrow \varrho x<\varrho y \Longrightarrow f^{\prime} x \geq f^{\prime} y$
unfolding $n$-def
using find-sorted-bij-2[where $S=$ verts $G$ and $\left.g=\left(\lambda x .-f^{\prime} x\right)\right]$ by auto
define $\varphi$ where $\varphi=$ the-inv-into (verts $G$ ) $\varrho$
have $\varphi$-bij: bij-betw $\varphi\{. .<n\}$ (verts $G$ )
unfolding $\varphi$-def by (intro bij-betw-the-inv-into $\varrho$-bij)

```
 have edges \(G=\{\# e \in \#\) edges \(G \cdot \varrho(f\) st \(e) \neq \varrho(\) snd \(e) \vee \varrho(f\) st \(e)=\varrho(\) snd \(e) \#\}\)
 by \(\operatorname{simp}\)
 also have \(\ldots=\{\# e \in \#\) edges \(G . \varrho(f\) st \(e) \neq \varrho(\) snd \(e) \#\}+\{\# e \in \#\) edges \(G . \varrho(f\) st \(e)=\varrho(\) snd
e)\#\}
 by (simp add:filter-mset-ex-predicates)
 also have...\(=\{\#\) eє\#edges \(G\). \(\varrho(\) fst \(e)<\varrho(\) snd \(e) \vee \varrho(f s t e)>\varrho(\) snd \(e) \#\}+\{\# e \in \#\) edges \(G\). fst
\(e=\) snd e\# \(\}\)
 using bij-betw-imp-inj-on[OF \(\varrho\)-bij] edge-set
 by (intro arg-cong2 [where \(f=(+)\)] filter-mset-cong refl inj-on-eq-iff[where \(A=v e r t s ~ G]\))
 auto
also have \(\ldots=\{\# e \in \#\) edges \(G . \varrho(\) fst \(e)<\varrho(\) snd \(e) \#\}+\)
 \(\{\# e \in \#\) edges \(G\). \(\varrho(f\) fst e) \(>\varrho(\) snd e) \(\#\}+\)
 \(\{\# e \in \#\) edges \(G\). fst \(e=\) snd \(e \#\}\)
 by (intro arg-cong2[where \(f=(+)]\) filter-mset-ex-predicates[symmetric]) auto
finally have edges-split: edges \(G=\{\# e \in \#\) edges \(G . \varrho(f\) st \(e)<\varrho(\) snd \(e) \#\}+\)
 \(\{\# e \in \#\) edges \(G . \varrho(f\) fst \(e)>\varrho(\) snd \(e) \#\}+\{\# e \in \#\) edges \(G\). fst \(e=\) snd \(e \#\}\)
 by simp
have \(\varrho-l t-n: \varrho x<n\) if \(x \in\) verts \(G\) for \(x\)
 using bij-betw-apply[OF \(\varrho\)-bij] that by auto
have \(\varphi\) - \(\varrho\)-inv: \(\varphi(\varrho x)=x\) if \(x \in\) verts \(G\) for \(x\)
 unfolding \(\varphi\)-def using bij-betw-imp-inj-on[OF \(\varrho\)-bij]
 by (intro the-inv-into-f-f that) auto
have \(\varrho-\varphi\)-inv: \(\varrho(\varphi x)=x\) if \(x<n\) for \(x\)
 unfolding \(\varphi\)-def using bij-betw-imp-inj-on[OF \(\varrho\)-bij] bij-betw-imp-surj-on \([O F ~ \varrho\)-bij] that
 by (intro f-the-inv-into-f) auto
define \(\tau\) where \(\tau x=\left(\right.\) if \(x<n\) then \(f^{\prime}(\varphi x)\) else 0\()\) for \(x\)
```

have }\tau\mathrm{ -nonneg: }\tauk\geq0\mathrm{ for }
unfolding }\tau\mathrm{ -def f'-def f-def by auto

```
```

have }\tau\mathrm{ -antimono: }\tauk\geq\taul\mathrm{ if }k<l\mathrm{ for }k

```
have }\tau\mathrm{ -antimono: }\tauk\geq\taul\mathrm{ if }k<l\mathrm{ for }k
proof (cases l \geqn)
proof (cases l \geqn)
 case True
 case True
 hence }\taul=0\mathrm{ unfolding }\tau\mathrm{ -def by simp
 hence }\taul=0\mathrm{ unfolding }\tau\mathrm{ -def by simp
 then show ?thesis using \tau-nonneg by simp
 then show ?thesis using \tau-nonneg by simp
next
next
 case False
 case False
 hence }\taul=\mp@subsup{f}{}{\prime}(\varphil
 hence }\taul=\mp@subsup{f}{}{\prime}(\varphil
 unfolding }\tau\mathrm{ -def by simp
 unfolding }\tau\mathrm{ -def by simp
 also have ... \leq f' (\varphik)
 also have ... \leq f' (\varphik)
 using \varrho-\varphi-inv False that
 using \varrho-\varphi-inv False that
 by (intro \varrho-dec bij-betw-apply[OF \varphi-bij]) auto
 by (intro \varrho-dec bij-betw-apply[OF \varphi-bij]) auto
 also have ... = \tauk
 also have ... = \tauk
 unfolding }\tau\mathrm{ -def using False that by simp
 unfolding }\tau\mathrm{ -def using False that by simp
 finally show ?thesis by simp
 finally show ?thesis by simp
qed
qed
define m :: nat where m= Min {i.\taui=0^i\leqn}
have }\taun=
 unfolding }\tau\mathrm{ -def by simp
hence m}\in{i.\taui=0^i\leqn
 unfolding m-def by (intro Min-in) auto
hence m-rel-1:\tau m=0 and m-le-n: m}\leqn\mathrm{ by auto
have }\tauk>0\mathrm{ if }k<m\mathrm{ for }
proof (rule ccontr)
 assume }\neg(\tauk>0
 hence }\tauk=
 by (intro order-antisym }\tau\mathrm{ -nonneg) simp
 hence }k\in{i.\taui=0\wedgei\leqn
 using that m-le-n by simp
 hence m\leqk
 unfolding m-def by (intro Min-le) auto
 thus False using that by simp
qed
hence m-rel-2: f' }x>0\mathrm{ if }x\in\varphi\mathrm{ ' {..<m} for }
 unfolding }\tau\mathrm{ -def using m-le-n that by auto
have 2 * m=2 * card {..<m} by simp
also have ... =2 * card (}\varphi\mathrm{ '{..<m})
 using m-le-n inj-on-subset[OF bij-betw-imp-inj-on[OF \varphi-bij]]
 by (intro-cong [\mp@subsup{\sigma}{2}{}(*)] more:card-image[symmetric]) auto
also have \ldots\leq2 * card {x\in verts G. f' }x>0
 using m-rel-2 bij-betw-apply[OF \varphi-bij] m-le-n
 by (intro mult-left-mono card-mono subsetI) auto
also have ... =2 * card (enum-verts-inv ' {x\inverts G.f$h(enum-verts-inv x)>0})
 unfolding f'-def using Abs-inject
 by (intro arg-cong2[where f=(*)] card-image[symmetric] inj-onI) auto
also have }\ldots=2*\operatorname{card {x.f$hx>0}
 using Rep-inverse Rep-range unfolding f'-def by (intro-cong [}\mp@subsup{\sigma}{2}{(*),\mp@subsup{\sigma}{1}{}\mathrm{ card]}],\mp@code{lor}
 more:subset-antisym image-subsetI surj-onI[where g=enum-verts]) auto
also have ... =2 * card {x.g$hx>0}
```

unfolding $f$-def by (intro-cong $\left[\sigma_{2}(*), \sigma_{1}\right.$ card $]$ ) auto
also have ... $\leq n$
by (intro $g$-supp)
finally have m2-le-n: $2 * m \leq n$ by $\operatorname{simp}$
have $\tau k \leq 0$ if $k>m$ for $k$
using m-rel-1 $\tau$-antimono that by metis
hence $\tau k \leq 0$ if $k \geq m$ for $k$
using $m$-rel- 1 that by (cases $k>m$ ) auto
hence $\tau$-supp: $\tau k=0$ if $k \geq m$ for $k$
using that by (intro order-antisym $\tau$-nonneg) auto
have 4: $\varrho v \leq x \longleftrightarrow v \in \varphi$ ' $\{. . x\}$ if $v \in$ verts $G x<n$ for $v x$
proof -
have $\varrho v \leq x \longleftrightarrow \varrho v \in\{\ldots x\}$
by $\operatorname{simp}$
also have $\ldots \longleftrightarrow \varphi(\varrho v) \in \varphi$ ' $\{. . x\}$
using bij-betw-imp-inj-on[OF $\varphi$-bij] bij-betw-apply[OF @-bij] that
by (intro inj-on-image-mem-iff $[$ where $B=\{. .<n\}$, symmetric]) auto
also have $\ldots \longleftrightarrow v \in \varphi$ ' $\{. . x\}$
unfolding $\varphi-\varrho-i n v[$ OF that(1)] by simp
finally show ?thesis by simp
qed
have $B_{f}=\left(\sum a \in \operatorname{arcs} G . \mid f^{\prime}(\text { tail } G a)^{\wedge} 2-f^{\prime}(\text { head } G a)^{\wedge} 2 \mid\right)$
unfolding $B_{f}$-def by simp
also have $\ldots=\left(\sum e \in \#\right.$ edges $G . \mid f^{\prime}(f s t e) \wedge 2-f^{\prime}($ snd $\left.e) \wedge 2 \mid\right)$
unfolding edges-def arc-to-ends-def sum-unfold-sum-mset
by (simp add:image-mset.compositionality comp-def)
also have...$=$
$\left(\sum e \in \#\{\# e \in \#\right.$ edges $G . \varrho($ fst $e)<\varrho($ snd $\left.e) \#\} . \mid\left(f^{\prime}(f s t e)\right)^{2}-\left(f^{\prime}(\text { snd } e)\right)^{2} \mid\right)+$ $\left(\sum e \in \#\{\# e \in \#\right.$ edges $G . \varrho($ snd $\left.e)<\varrho(f s t e) \#\} . \mid\left(f^{\prime}(f s t e)\right)^{2}-\left(f^{\prime}(\text { snd } e)\right)^{2} \mid\right)+$ $\left(\sum e \in \#\{\# e \in \#\right.$ edges $G$. fst $e=$ snd e $\#\}$. $\left.\mid\left(f^{\prime}(f s t e)\right)^{2}-\left(f^{\prime}(\text { snd } e)\right)^{2} \mid\right)$
by (subst edges-split) simp
also have ... =
$\left(\sum e \in \#\{\# e \in \#\right.$ edges $G . \varrho($ snd $\left.e)<\varrho(f s t e) \#\} . \mid\left(f^{\prime}(f s t e)\right)^{2}-\left(f^{\prime}(\text { snd } e)\right)^{2} \mid\right)+$
$\left(\sum e \in \#\{\# e \in \#\right.$ edges $G . \varrho($ snd $e)<\varrho(f s t e) \#\} . \mid\left(f^{\prime}(\text { snd } e)\right)^{2}-\left(f^{\prime}(f \text { st e e) })^{2} \mid\right)+$
$\left(\sum e \in \#\left\{\# e \in \#\right.\right.$ edges $G . f$ ft $e=$ snd e\#\#\}. $\left.\mid\left(f^{\prime}(f s t e)\right)^{2}-\left(f^{\prime}(\text { snd } e)\right)^{2} \mid\right)$
by (subst edges-sym [OF sym, symmetric]) (simp add:image-mset.compositionality comp-def image-mset-filter-mset-swap[symmetric] case-prod-beta)
also have ... =
$\left(\sum e \in \#\{\# e \in \#\right.$ edges $G . \varrho($ snd $e)<\varrho(f$ st $\left.e) \#\} . \mid\left(f^{\prime}(\text { snd } e)\right)^{2}-\left(f^{\prime}(f \text { fste } e)\right)^{2} \mid\right)+$ $\left(\sum e \in \#\{\# e \in \#\right.$ edges $G . \varrho($ snd $\left.e)<\varrho(f s t e) \#\} . \mid\left(f^{\prime}(\text { snd } e)\right)^{2}-\left(f^{\prime}(\text { fst e })\right)^{2} \mid\right)+$ ( $\sum e \in \#\{\# e \in \#$ edges $G$. fst $e=$ snd $e \#\}$. 0$)$
by (intro-cong $\left[\sigma_{2}(+), \sigma_{1}\right.$ sum-mset $]$ more:image-mset-cong) auto
also have $\ldots=2 *\left(\sum e \in \#\{\# e \in \#\right.$ edges $G . \varrho($ snd $\left.e)<\varrho(f s t e) \#\} . \mid\left(f^{\prime}(\text { snd } e)\right)^{2}-\left(f^{\prime}(f s t e)\right)^{2} \mid\right)$ by $\operatorname{simp}$
also have $\ldots=2 *\left(\sum a \mid a \in \operatorname{arcs} G \wedge \varrho(\right.$ tail $G a)>\varrho($ head $G a) . \mid f^{\prime}($ head $G a) \bumpeq 2-f^{\prime}($ tail $\left.G a) \bumpeq 2 \mid\right)$ unfolding edges-def arc-to-ends-def sum-unfold-sum-mset
by (simp add:image-mset.compositionality comp-def image-mset-filter-mset-swap[symmetric])
also have $\ldots=2 *$
$\left(\sum a \mid a \in \operatorname{arcs} G \wedge \varrho(\right.$ tail $G a)>\varrho($ head $\left.G a) . \mid \tau(\varrho(\text { head } G a))^{\wedge} 2-\tau(\varrho(\text { tail } G a))^{\wedge} 2 \mid\right)$
unfolding $\tau$-def using $\varphi$ - $\varrho$-inv $\varrho$-lt-n
by (intro arg-cong $2[$ where $f=(*)]$ sum.cong refl) auto
also have $\ldots=2 *\left(\sum a \mid a \in \operatorname{arcs} G \wedge \varrho(\right.$ tail $G a)>\varrho($ head $G a) . \tau(\varrho(\text { head } G a))^{\wedge} 2-\tau(\varrho($ tail $G$
a) ^~2)
using $\tau$-antimono power-mono $\tau$-nonneg
by (intro arg-cong2[where $f=(*)]$ sum.cong refl abs-of-nonneg)(auto)
also have $\ldots=2 *$
$\left(\sum a \mid a \in \operatorname{arcs} G \wedge \varrho(\right.$ tail $G a)>\varrho($ head $\left.G a) .\left(-\left(\tau(\varrho(\text { tail } G a))^{\wedge 2}\right)\right)-\left(-\left(\tau(\varrho(\text { head } G a))^{\wedge} 2\right)\right)\right)$
by (simp add:algebra-simps)
also have $\ldots=2 *\left(\sum a \mid a \in \operatorname{arcs} G \wedge \varrho(\right.$ tail $G a)>\varrho($ head $G a)$.
$\left(\sum i=\varrho(\right.$ head $G a) . .<\varrho($ tail $G a) .\left(-\left(\tau(S u c i)^{\wedge} 2\right)\right)-(-(\tau$ i^2 $\left.\left.))\right)\right)$
by (intro arg-cong2[where $f=(*)]$ sum.cong refl sum-Suc-diff ${ }^{\prime}$ [symmetric]) auto
also have $\ldots=2 *\left(\sum(a, i) \in(\right.$ SIGMA $x:\{a \in \operatorname{arcs} G . \varrho($ head $G a)<\varrho($ tail $G a)\}$. $\{\varrho($ head $G x) . .<\varrho($ tail $G x)\}) . \tau$ i^2 $\left.-\tau(\text { Suc } i)^{\wedge} 2\right)$
by (subst sum.Sigma) auto
also have $\ldots=2 *\left(\sum p \in\{(a, i) . a \in \operatorname{arcs} G \wedge \varrho(\right.$ head $G a) \leq i \wedge i<\varrho($ tail $G a)\} . \tau(\text { snd } p)^{\wedge} 2-\tau$ (snd $p+1$ ) 2 )
by (intro arg-cong2[where $f=(*)$ ] sum.cong refl) (auto simp add:Sigma-def)
also have $\ldots=2 *\left(\sum p \in\{(i, a) . a \in \operatorname{arcs} G \wedge \varrho(\right.$ head $G a) \leq i \wedge i<\varrho($ tail $G a)\} . \tau(\text { fst } p)^{\wedge} \mathcal{Z}-\tau($ fst $p+1$ ) ${ }^{2}$ )
by (intro sum.reindex-cong[where $l=$ prod.swap $]$ arg-cong2 $[$ where $f=(*)]$ ) auto
also have $\ldots=2 *$
$\left(\sum(i, a) \in(S I G M A x:\{. .<n\} .\{a \in \operatorname{arcs} G . \varrho(\right.$ head $G a) \leq x \wedge x<\varrho($ tail $G a)\}) . \tau$ i^2 $-\tau$ $(i+1)$ へ 2$)$
using less-trans $[O F-\varrho-l t-n]$ by (intro sum.cong arg-cong2[where $f=(*)]$ ) auto
also have $\ldots=2 *\left(\sum i<n .\left(\sum a \mid a \in \operatorname{arcs} G \wedge \varrho(\right.\right.$ head $\left.\left.G a) \leq i \wedge i<\varrho(t a i l G a) . \tau i \wedge 2-\tau(i+1){ }^{\text {® }} 2\right)\right)$ by (subst sum.Sigma) auto
also have $\ldots=2 *\left(\sum i<n . \operatorname{card}\{a \in \operatorname{arcs} G . \varrho(\right.$ head $G a) \leq i \wedge i<\varrho($ tail $\left.G a)\} *\left(\tau i \wedge 2-\tau(i+1) \wedge_{2}\right)\right)$ by $\operatorname{simp}$
also have $\ldots=2 *\left(\sum i<n\right.$. card $\{a \in \operatorname{arcs} G$. $\varrho($ head $G a) \leq i \wedge \neg(\varrho($ tail $G a) \leq i)\} *(\tau i \wedge 2-\tau$ $\left.(i+1)^{\wedge} 2\right)$ )
by (intro-cong $\left[\sigma_{2}(*), \sigma_{1}\right.$ card, $\sigma_{1}$ of-nat $]$ more:sum.cong Collect-cong) auto
also have $\ldots=2 *\left(\sum i<n\right.$. card $\left\{a \in \operatorname{arcs} G\right.$. head $G a \in \varphi^{`}\{. . i\} \wedge$ tail $\left.G a \notin \varphi^{‘}\{. . i\}\right\} *(\tau$ i^2 $-\tau$ $\left.(i+1){ }^{\text {^2 }}\right)$ )
using 4
by (intro-cong $\left[\sigma_{2}(*), \sigma_{1}\right.$ card, $\sigma_{1}$ of-nat, $\left.\sigma_{2}(\wedge)\right]$ more:sum.cong restr-Collect-cong) auto
also have $\ldots=2 *\left(\sum i<n\right.$. real $\left(\operatorname{card}\left(\operatorname{edges}-\operatorname{betw}\left(-\varphi^{`}\{. . i\}\right)\left(\varphi^{‘}\{. . i\}\right)\right)\right) *\left(\tau i\right.$ $\left.\left.{ }^{\wedge} 2-\tau(i+1)^{\wedge} 2\right)\right)$ unfolding edges-betw-def by (auto simp:conj.commute)
also have $\ldots=2 *\left(\sum i<n\right.$. real $\left.\left(\operatorname{card}\left(\operatorname{edges}-\operatorname{betw}\left(\varphi^{‘}\{. . i\}\right)\left(-\varphi^{‘}\{. . i\}\right)\right)\right) *(\tau i \wedge 2-\tau(i+1) \wedge 2)\right)$ using edges-betw-sym by simp
also have $\ldots=2 *\left(\sum i<m\right.$. real (card (edges-betw $\left.\left.\left(\varphi^{`}\{. . i\}\right)\left(-\varphi^{`}\{. . i\}\right)\right)\right) *\left(\tau i\right.$ 2 $\left.\left.2-\tau(i+1)^{\wedge} 2\right)\right)$ using $\tau$-supp m-le-n by (intro sum.mono-neutral-right arg-cong2[where $f=(*)]$ ) auto
finally have $B f$-eq:
$B_{f}=2 *\left(\sum i<m\right.$. real $\left(\right.$ card $\left(\right.$ edges-betw $\left.\left.\left(\varphi^{\prime}\{. . i\}\right)\left(-\varphi^{\prime}\{. . i\}\right)\right)\right) *\left(\tau i^{\wedge}\right.$ 2 $-\tau(i+1)^{\wedge}$ 2 $\left.)\right)$
by $\operatorname{simp}$
have 3: $\operatorname{card}(\varphi$ ' $\{. . i\} \cap$ verts $G)=i+1$ if $i<m$ for $i$
proof -
have $\operatorname{card}(\varphi$ ' $\{. . i\} \cap$ verts $G)=\operatorname{card}(\varphi$ ' $\{. . i\})$
using m-le-n that by (intro arg-cong[where $f=$ card] Int-absorb2 image-subsetI bij-betw-apply[OF $\varphi$-bij]) auto
also have...$=\operatorname{card}\{. . i\}$
using m-le-n that by (intro card-image
inj-on-subset[OF bij-betw-imp-inj-on[OF $\varphi$-bij]]) auto
also have $\ldots=i+1$ by simp
finally show ?thesis by $\operatorname{simp}$
qed
have $2 * \Lambda_{e} * \operatorname{norm} f^{\wedge} 2=2 * \Lambda_{e} *\left(g\right.$-norm $\left.f^{\prime \times 2}\right)$
unfolding $g$-norm-conv $f^{\prime}$-alt by simp
also have $\ldots \leq 2 * \Lambda_{e} *\left(\sum v \in\right.$ verts $\left.G . f^{\prime} v^{\wedge} 2\right)$
unfolding $g$-norm-sq $g$-inner-def by (simp add:power2-eq-square)
also have $\ldots=2 * \Lambda_{e} *\left(\sum i<n . f^{\prime}(\varphi i)^{\wedge}\right.$ 2 $)$
by (intro arg-cong2[where $f=(*)$ ] refl sum.reindex-bij-betw[symmetric] $\varphi$-bij)
also have $\ldots=2 * \Lambda_{e} *\left(\sum i<n . \tau i\right.$ 亿2 $)$
unfolding $\tau$-def by (intro arg-cong2[where $f=(*)$ ] refl sum.cong) auto
also have $\ldots=2 * \Lambda_{e} *\left(\sum i<m . \tau i \wedge 2\right)$
using $\tau$-supp m-le-n by (intro sum.mono-neutral-cong-right arg-cong2[where $f=(*)]$ refl) auto

using $\tau$-supp [of $m$ ] by simp
also have $\ldots \leq 2 * \Lambda_{e} *\left(\left(\sum i<m . \tau\right.\right.$ i^2 $)+\left(\sum i<m . i * \tau i\right.$ 2- $-(S u c i) * \tau(S u c i)$ へ2 $\left.)\right)$
by (subst sum-lessThan-telescope'[symmetric]) simp
also have $\ldots \leq 2 *\left(\sum i<m .\left(\Lambda_{e} *(i+1)\right) *\left(\tau\right.\right.$ ^2 $\left.\left.2-\tau(i+1)^{\wedge} 2\right)\right)$
by (simp add:sum-distrib-left algebra-simps sum.distrib[symmetric])
also have $\ldots \leq 2 *\left(\sum i<m\right.$. real $\left(\right.$ card $\left(\right.$ edges-betw $\left.\left.\left.\left(\varphi^{`}\{. . i\}\right)\left(-\varphi^{‘}\{. . i\}\right)\right)\right) *\left(\tau i \wedge 2-\tau(i+1)^{\wedge} 2\right)\right)$
using $\tau$-nonneg $\tau$-antimono power-mono 3 m2-le-n
by (intro mult-left-mono sum-mono mult-right-mono edge-expansionD2) auto
also have $\ldots=B_{f}$
unfolding $B f-e q$ by simp
finally have hoory-4-13: 2 $* \Lambda_{e} *$ norm $f^{\wedge} 2 \leq B_{f}$
by $\operatorname{simp}$
Corresponds to Lemma 4.13 in Hoory et al.

```
have f-nz: f\not=0
proof (rule ccontr)
 assume f-nz-assms: }\neg(f\not=0
 have g $hi
 proof -
 have g$hi\leqmax (g$hi) 0
 by simp
 also have ... = 0
 using f-nz-assms unfolding f-def vec-eq-iff by auto
 finally show ?thesis by simp
 qed
 moreover have (\sumi\inUNIV. 0-g $hi)=0
 using g-orth unfolding sum-subtractf inner-vec-def by auto
 ultimately have }\forallx\inUNIV. -(g$hx)=
 by (intro iffD1[OF sum-nonneg-eq-0-iff]) auto
 thus False
 using g-nz unfolding vec-eq-iff by simp
qed
hence norm-f-gt-0: norm f>0
 by simp
 have }\mp@subsup{\Lambda}{e}{}*\operatorname{norm}f*\operatorname{norm}f\leq\operatorname{sqrt 2 * real d * norm f* sqrt (f • (L*vf))
 using order-trans[OF hoory-4-13 hoory-4-12] by (simp add:power2-eq-square)
 hence }\mp@subsup{\Lambda}{e}{}\leq\mathrm{ real d* sqrt 2 * sqrt (f • (L*vf)) / norm f
 using norm-f-gt-0 by (simp add:ac-simps divide-simps)
also have ... \leqreal d * sqrt 2 * sqrt ((1- \Lambda \) * (norm f) 2) / norm f
 by (intro mult-left-mono divide-right-mono real-sqrt-le-mono h-part-i) auto
also have ... = real d * sqrt 2 * sqrt (1- \Lambda \}
 using f-nz by (simp add:real-sqrt-mult)
also have ... =d*\operatorname{sqrt}(2*(1-\mp@subsup{\Lambda}{2}{}))
 by (simp add:real-sqrt-mult[symmetric])
finally show ?thesis
 by simp
qed
end
```

context regular-graph

## begin

```
lemmas (in regular-graph) cheeger-aux-1 =
 regular-graph-tts.cheeger-aux-1 [OF eg-tts-1,
 internalize-sort ' }n\mathrm{ :: finite, OF - regular-graph-axioms,
 unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]
theorem cheeger-inequality:
 assumes n>1
 shows }\mp@subsup{\Lambda}{e}{}\in{d*(1-\mp@subsup{\Lambda}{2}{})/2..d*\operatorname{sqrt}(2*(1-\mp@subsup{\Lambda}{2}{}))
 using cheeger-aux-1 cheeger-aux-2 assms by auto
unbundle no-intro-cong-syntax
end
end
```


## 8 Margulis Gabber Galil Construction

This section formalizes the Margulis-Gabber-Galil expander graph, which is defined on the product space $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$. The construction is an adaptation of graph introduced by Margulis [8], for which he gave a non-constructive proof of its spectral gap. Later Gabber and Galil [3] adapted the graph and derived an explicit spectral gap, i.e., that the second largest eigenvalue is bounded by $\frac{5}{8} \sqrt{2}$. The proof was later improved by Jimbo and Marouka [6] using Fourier Analysis. Hoory et al. [4, §8] present a slight simplification of that proof (due to Boppala) which this formalization is based on.

```
theory Expander-Graphs-MGG
 imports
 HOL-Analysis.Complex-Transcendental
 HOL-Decision-Procs.Approximation
 Expander-Graphs-Definition
begin
```



```
fun \(m g g\)-graph-step \(::\) nat \(\Rightarrow(\) int \(\times\) int \() \Rightarrow(n a t \times i n t) \Rightarrow(\) int \(\times\) int \()\)
 where mgg-graph-step \(n(i, j)(l, \sigma)=\)
 \([((i+\sigma *(2 * j+0))\) mod int \(n, j),(i,(j+\sigma *(2 * i+0))\) mod int \(n)\)
 \(,((i+\sigma *(2 * j+1)) \bmod\) int \(n, j),(i,(j+\sigma *(2 * i+1))\) mod int \(n)]!l\)
definition mgg-graph \(::\) nat \(\Rightarrow(\) int \(\times\) int, \((\) int \(\times\) int, nat \(\times\) int \()\) arc \()\) pre-digraph where
 mgg-graph \(n=\)
 \((0\) verts \(=\{0 . .<n\} \times\{0 . .<n\}\),
 \(\operatorname{arcs}=(\lambda(t, l) .(\) Arc \(t(\) mgg-graph-step \(n t l) l)) \cdot((\{0 . .<\) int \(n\} \times\{0 . .<\) int \(n\}) \times(\{. .<4\} \times\{-1,1\}))\),
 tail \(=\) arc-tail,
 head \(=\) arc-head \(D\)
locale margulis-gaber-galil \(=\)
 fixes \(m\) :: nat
 assumes \(m\)-gt- \(0: m>0\)
begin
abbreviation \(G\) where \(G \equiv\) mgg-graph \(m\)
lemma wf-digraph: wf-digraph (mgg-graph m)
```

```
proof -
 have
 tail (mgg-graph m) e\inverts (mgg-graph m) (is ?A)
 head (mgg-graph m) e\inverts (mgg-graph m) (is ?B)
 if a:e \in arcs (mgg-graph m) for e
 proof -
 obtain tl \sigma where tl-def:
 t\in{0..<int m}\times{0..<int m} l { {..<4} \sigma\in{-1,1}
 e=Arc t (mgg-graph-step m t (l,\sigma)) (l,\sigma)
 using a mgg-graph-def by auto
 thus ?A
 unfolding mgg-graph-def by auto
 have mgg-graph-step m (fst t, snd t) (l,\sigma) \in{0..<int m} }\times{0..<\mathrm{ int m }
 unfolding mgg-graph-step.simps using tl-def(1,2) m-gt-0
 by (intro set-mp[OF - nth-mem]) auto
 hence arc-head e \in{0..<int m} }\times{0..<\mathrm{ int m}
 unfolding tl-def(4) by simp
 thus ?B
 unfolding mgg-graph-def by simp
 qed
 thus ?thesis
 by unfold-locales auto
qed
lemma mgg-finite: fin-digraph (mgg-graph m)
proof -
 have finite (verts (mgg-graph m)) finite (arcs (mgg-graph m))
 unfolding mgg-graph-def by auto
 thus ?thesis
 using wf-digraph
 unfolding fin-digraph-def fin-digraph-axioms-def by auto
qed
interpretation fin-digraph mgg-graph m
 using mgg-finite by simp
definition arcs-pos :: (int }\times\mathrm{ int, nat }\times\mathrm{ int) arc set
 where arcs-pos = (\lambda(t,l).(Arc t (mgg-graph-step mt (l,1)) (l,1)))'(verts G\times{..<4})
definition arcs-neg :: (int }\times\mathrm{ int, nat }\times\mathrm{ int) arc set
 where arcs-neg = (\lambda(h,l).(Arc (mgg-graph-step m h (l,1))h(l,-1)))'(verts G\times{..<4})
lemma arcs-sym:
 arcs G=arcs-pos \cup arcs-neg
proof -
 have 0:x\in\operatorname{arcs}G\mathrm{ if }x\in\operatorname{arcs-pos for }x
 using that unfolding arcs-pos-def mgg-graph-def by auto
 have 1:a\in\operatorname{arcs}G\mathrm{ if t:a}\in\operatorname{arcs-neg for a}
 proof -
 obtain hl where hl-def:h\inverts Gl\in{..<4} a = Arc (mgg-graph-step m h (l,1))h(l,-1)
 using t unfolding arcs-neg-def by auto
 define t where t=mgg-graph-step m h (l,1)
 have h-ran: }h\in{0..<\mathrm{ int m} }\times{0..<\mathrm{ int m}
 using hl-def(1) unfolding mgg-graph-def by simp
 have l-ran: l set [0,1,2,3]
 using hl-def(2) by auto
```

```
 have}t\in{0..<\mathrm{ int m} }\times{0..<\mathrm{ int m}
 using h-ran l-ran
 unfolding t-def by (cases h, auto simp add:mod-simps)
 hence t-ran:t verts G
 unfolding mgg-graph-def by simp
 have h=mgg-graph-step m t (l,-1)
 using h-ran l-ran unfolding t-def by (cases h, auto simp add:mod-simps)
 hence a=Arc t (mgg-graph-step mt (l,-1)) (l,-1)
 unfolding t-def hl-def(3) by simp
 thus ?thesis
 using t-ran hl-def(2) mgg-graph-def by (simp add:image-iff)
qed
have card (arcs-pos \cup arcs-neg) = card arcs-pos + card arcs-neg
 unfolding arcs-pos-def arcs-neg-def by (intro card-Un-disjoint finite-imageI) auto
also have ... = card (verts }G\times{..<4::nat})+\operatorname{card}(verts G\times{..<4::nat }
 unfolding arcs-pos-def arcs-neg-def
 by (intro arg-cong2[where f=(+)] card-image inj-onI) auto
also have ... = card (verts }G\times{..<4::nat }\times{-1,1::int }
 by simp
also have ... = card ((}\lambda(t,l).Arc t (mgg-graph-step m t l) l)'(verts G ⿰{...<4}\times{-1,1}))
 by (intro card-image[symmetric] inj-onI) auto
also have ... = card (arcs G)
 unfolding mgg-graph-def by simp
finally have card (arcs-pos \cup arcs-neg) = card (arcs G)
 by simp
hence arcs-pos \cup arcs-neg = arcs G
 using 0 1 by (intro card-subset-eq, auto)
 thus ?thesis by simp
qed
lemma sym: symmetric-multi-graph (mgg-graph m)
proof -
 define f :: (int }\times\mathrm{ int, nat }\times\mathrm{ int) arc }=>\mathrm{ (int }\times\mathrm{ int, nat }\times\mathrm{ int) arc
 where fa=Arc (arc-head a) (arc-tail a) (apsnd (}\lambdax.(-1)*x)(arc-label a)) for a
 have a: bij-betw f arcs-pos arcs-neg
 by (intro bij-betwI[where g=f])
 (auto simp add:f-def image-iff arcs-pos-def arcs-neg-def)
 have b: bij-betw f arcs-neg arcs-pos
 by (intro bij-betwI[where g=f])
 (auto simp add:f-def image-iff arcs-pos-def arcs-neg-def)
 have c:bij-betw f (arcs-pos \cup arcs-neg) (arcs-neg \cup arcs-pos)
 by (intro bij-betw-combine[OF a bl) (auto simp add:arcs-pos-def arcs-neg-def)
 hence c:bij-betwf (arcs G) (arcs G)
 unfolding arcs-sym by (subst (2) sup-commute, simp)
show ?thesis
 by (intro symmetric-multi-graphI[where f=f] fin-digraph-axioms c)
 (simp add:f-def mgg-graph-def)
qed
lemma out-deg:
assumes \(v \in\) verts \(G\)
shows out-degree \(G v=8\)
```

```
proof -
 have out-degree (mgg-graph m) v = card (out-arcs (mgg-graph m)v)
 unfolding out-degree-def by simp
 also have ... = card {e. (\existsw\inverts (mgg-graph m). \existsl\in{..<4} }\times{-1,1}
 e=Arc w (mgg-graph-step m w l) l^ arc-tail e=v)}
 unfolding mgg-graph-def out-arcs-def by (simp add:image-iff)
 also have ... = card {e. (\existsl\in{..<4} ×{-1,1}.e= Arc v(mgg-graph-step m v l) l)}
 using assms by (intro arg-cong[where f=card] iffD2[OF set-eq-iff] allI) auto
 also have ... = card ((\lambdal. Arc v (mgg-graph-step mvl)l)'({..<4} ×{-1,1}))
 by (intro arg-cong[where f=card]) (auto simp add:image-iff)
 also have ... = card ({..<4::nat } }\times{-1,1::int}
 by (intro card-image inj-onI) simp
 also have }\ldots=8\mathrm{ by simp
 finally show?thesis by simp
qed
lemma verts-ne:
 verts }G\not={
 using m-gt-0 unfolding mgg-graph-def by simp
sublocale regular-graph mgg-graph m
 using out-deg verts-ne
 by (intro regular-graphI[where d=8] sym) auto
lemma d-eq-8:d=8
proof -
 obtain v where v-def:v\in verts }
 using verts-ne by auto
 hence 0:(SOME v.v\in verts G)\in verts G
 by (rule someI[where }x=v]\mathrm{)
 show ?thesis
 using out-deg[OF 0]
 unfolding d-def by simp
qed
```

We start by introducing Fourier Analysis on the torus $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$. The following is too specialized for a general AFP entry.

```
lemma \(g\)-inner-sum-left:
 assumes finite \(I\)
 shows \(g\)-inner \(\left(\lambda x .\left(\sum i \in I . f i x\right)\right) g=\left(\sum i \in I . g\right.\)-inner \(\left.(f i) g\right)\)
 using assms by (induction I rule:finite-induct) (auto simp add:g-inner-simps)
lemma g-inner-sum-right:
 assumes finite I
 shows \(g\)-inner \(f\left(\lambda x .\left(\sum i \in I . g i x\right)\right)=\left(\sum i \in I . g\right.\)-inner \(\left.f(g i)\right)\)
 using assms by (induction I rule:finite-induct) (auto simp add:g-inner-simps)
lemma g-inner-reindex:
 assumes bij-betw \(h\) (verts \(G\)) (verts \(G\))
 shows \(g\)-inner \(f g=g\)-inner \((\lambda x .(f(h x)))(\lambda x .(g(h x)))\)
 unfolding \(g\)-inner-def
 by (subst sum.reindex-bij-betw[OF assms,symmetric]) simp
definition \(\omega_{F}::\) real \(\Rightarrow\) complex where \(\omega_{F} x=\) cis \((2 * p i * x / m)\)
lemma \(\omega_{F}\)-simps:
 \(\omega_{F}(x+y)=\omega_{F} x * \omega_{F} y\)
 \(\omega_{F}(x-y)=\omega_{F} x * \omega_{F}(-y)\)
```

$\operatorname{cnj}\left(\omega_{F} x\right)=\omega_{F}(-x)$
unfolding $\omega_{F}$－def by（auto simp add：algebra－simps diff－divide－distrib add－divide－distrib cis－mult cis－divide cis－cnj）

```
lemma }\mp@subsup{\omega}{F}{}\mathrm{ -cong:
 fixes }xy:: in
 assumes x mod m=y mod m
 shows }\mp@subsup{\omega}{F}{}(\mathrm{ of-int x) = 的 (of-int y)
proof -
 obtain z :: int where }y=x+m*z\mathrm{ using mod-eqE[OF assms] by auto
 hence }\mp@subsup{\omega}{F}{}(of\mathrm{ -int y)}=\mp@subsup{\omega}{F}{}(of-int x + of-int (m*z)
 by simp
 also have ... = 都 (of-int x)* 的 (of-int (m*z))
 by (simp add:\mp@subsup{\omega}{F}{}\mathrm{ -simps)}
 also have ... = 的 (of-int x)* cis (2 * pi* of-int (z))
 unfolding }\mp@subsup{\omega}{F}{}\mathrm{ -def using m-gt-0
 by (intro arg-cong2[where f=(*)] arg-cong[where f=cis]) auto
 also have ... = \omega \omega (of-int x)*1
 by (intro arg-cong2[where f=(*)] cis-multiple-2pi) auto
 finally show ?thesis by simp
qed
lemma cis-eq-1-imp:
 assumes cis (2*pi*x)=1
 shows }x\in\mathbb{Z
proof -
 have cos (2*pi*x)=Re (cis (2*pi*x))
 using cis.simps by simp
 also have ... = 1
 unfolding assms by simp
 finally have cos (2*pi*x)=1 by simp
 then obtain y where 2*pi*x=of-int y*2*pi
 using cos-one-2pi-int by auto
 hence }y=x\mathrm{ by simp
 thus ?thesis by auto
qed
lemma }\mp@subsup{\omega}{F}{}\mathrm{ -eq-1-iff:
 fixes x :: int
 shows }\mp@subsup{\omega}{F}{}x=1\longleftrightarrowx\operatorname{mod}m=
proof
 assume }\mp@subsup{\omega}{F}{}(\mathrm{ real-of-int x) = 1
 hence cis (2*pi* real-of-int x / real m)=1
 unfolding }\mp@subsup{\omega}{F}{}\mathrm{ -def by simp
 hence real-of-int x / real m}\in\mathbb{Z
 using cis-eq-1-imp by simp
 then obtain z :: int where of-int x / real m=z
 using Ints-cases by auto
 hence }x=z*\mathrm{ real m
 using m-gt-0 by (simp add: nonzero-divide-eq-eq)
 hence }x=z*m\mathrm{ using of-int-eq-iff by fastforce
 thus x mod m=0 by simp
next
 assume x mod m=0
 hence }\mp@subsup{\omega}{F}{}x=\mp@subsup{\omega}{F}{}(of-int 0
 by (intro }\mp@subsup{\omega}{F}{}\mathrm{ -cong) auto
 also have ... = 1 unfolding }\mp@subsup{\omega}{F}{}\mathrm{ -def by simp
 finally show }\mp@subsup{\omega}{F}{}x=1\mathrm{ by simp
```


## qed

```
definition FT :: (int }\times\mathrm{ int }=>\mathrm{ complex) }=>\mathrm{ (int }\times\mathrm{ int }=>\mathrm{ complex }
 where FTfv=g-inner f (\lambdax. \omega
```

lemma FT-altdef: $F T f(u, v)=g$-inner $f\left(\lambda x . \omega_{F}(f s t x * u+\operatorname{snd} x * v)\right)$
unfolding FT-def by (simp add:case-prod-beta)
lemma FT-add: FT $(\lambda x . f x+g x) v=F T f v+F T g v$
unfolding $F T$-def by (simp add:g-inner-simps algebra-simps)
lemma FT-zero: $F T(\lambda x .0) v=0$
unfolding $F T$-def $g$-inner-def by simp
lemma FT-sum:
assumes finite $I$
shows $F T\left(\lambda x .\left(\sum i \in I . f i x\right)\right) v=\left(\sum i \in I . F T(f i) v\right)$
using assms by (induction rule: finite-induct, auto simp add:FT-zero FT-add)
lemma FT-scale: $F T(\lambda x . c * f x) v=c * F T f v$
unfolding $F T$-def by (simp add: g-inner-simps)
lemma FT-cong:
assumes $\bigwedge x . x \in$ verts $G \Longrightarrow f x=g x$
shows $F T f=F T g$
unfolding $F T$-def by (intro ext g-inner-cong assms refl)
lemma parseval:
$g$-inner $f g=g$-inner $(F T f)(F T g) / m^{\wedge} 2($ is ? $L=? R)$
proof -
define $\delta::($ int $\times$ int $) \Rightarrow($ int $\times$ int $) \Rightarrow$ complex where $\delta x y=o f-$ bool $(x=y)$ for $x y$
have $F T-\delta: F T(\delta v) x=\omega_{F}(-(f s t v * f s t x+s n d v * \operatorname{snd} x))$ if $v \in v e r t s G$ for $v x$
using that by (simp add:FT-def g-inner-def $\delta$-def $\omega_{F}$-simps)
have 1: $\left(\sum x=0 . .<\right.$ int $\left.m . \omega_{F}(z * x)\right)=m * \operatorname{of-bool}(z \bmod m=0)($ is $? L 1=? R 1)$ for $z::$ int
proof (cases z mod $m=0$ )
case True
have $\left(\sum x=0 . .<\right.$ int $\left.m . \omega_{F}(z * x)\right)=\left(\sum x=0 . .<\right.$ int m. $\left.\omega_{F}(o f-i n t 0)\right)$
using True by (intro sum.cong $\omega_{F}$-cong refl) auto
also have $\ldots=m * o f-\operatorname{bool}(z \bmod m=0)$
unfolding $\omega_{F}$-def True by simp
finally show ?thesis by simp
next
case False
have $\left(1-\omega_{F} \quad z\right) * ? L 1=\left(1-\omega_{F} z\right) *\left(\sum x \in\right.$ int ' $\left.\{. .<m\} . \omega_{F}(z * x)\right)$
by (intro arg-cong2 [where $f=(*)$ ] sum.cong refl)
(simp add: image-atLeastZeroLessThan-int)
also have $\ldots=\left(\sum x<m . \omega_{F}(z *\right.$ real $x)-\omega_{F}(z *($ real $($ Suc $\left.x)))\right)$
by (subst sum.reindex, auto simp add:algebra-simps sum-distrib-left $\omega_{F}$-simps)
also have $\ldots=\omega_{F}(z * 0)-\omega_{F}(z * m)$
by (subst sum-lessThan-telescope') simp
also have $\ldots=\omega_{F}($ of-int 0$)-\omega_{F}($ of-int 0$)$
by (intro arg-cong2[where $f=(-)] \omega_{F}$-cong) auto
also have $\ldots=0$
by simp
finally have $\left(1-\omega_{F} z\right) *$ ? $L 1=0$ by simp
moreover have $\omega_{F} z \neq 1$ using $\omega_{F}$-eq-1-iff False by simp
hence $\left(1-\omega_{F} z\right) \neq 0$ by $\operatorname{simp}$
ultimately have ? $L 1=0$ by simp
then show? ?thesis using False by simp
qed
have $0: g$-inner $(\delta v)(\delta w)=g$-inner $(F T(\delta v))(F T(\delta w)) / m^{\wedge} 2($ is ? $L 1=? R 1 /-)$
if $v \in$ verts $G w \in$ verts $G$ for $v w$
proof -
have ?R1 $=g$-inner $\left(\lambda x . \omega_{F}(-(f s t v * f s t x+s n d v * \operatorname{snd} x))\right)\left(\lambda x . \omega_{F}(-(f s t w * f s t x+s n d w *\right.$ snd $x$ ))
using that by (intro g-inner-cong, auto simp add:FT- $\delta$ )
also have $\ldots=\left(\sum(x, y) \in\{0 . .<\right.$ int $m\} \times\{0 . .<$ int $m\} . \omega_{F}(($ fst $w-f$ st $v) * x) * \omega_{F}(($ snd $w-$ snd $v) *$ y))
unfolding $g$-inner-def by (simp add: $\omega_{F}$-simps algebra-simps case-prod-beta mgg-graph-def)
also have $\ldots=\left(\sum x=0 . .<\right.$ int $m . \sum y=0 . .<$ int $m . \omega_{F}((f s t w-f s t v) * x) * \omega_{F}(($ snd $w-$ snd $v)$ * $y$ ))
by (subst sum.cartesian-product[symmetric]) simp
also have $\ldots=\left(\sum x=0 . .<\right.$ int $\left.m . \omega_{F}((f s t w-f s t v) * x)\right) *\left(\sum y=0 . .<\right.$ int $m . \omega_{F}(($ snd $w-$ snd $v) * y)$ )
by (subst sum.swap) (simp add:sum-distrib-left sum-distrib-right)
also have $\ldots=$ of-nat $(m * \operatorname{of}$-bool $(f s t v \bmod m=f s t w \bmod m)) *$
of-nat $(m *$ of-bool (snd $v \bmod m=\operatorname{snd} w \bmod m)$ )
using $m$-gt-0 unfolding 1
by (intro arg-cong2 [where $f=(*)$ ] arg-cong[where $f=o f$-bool]
arg-cong[where $f=o f-n a t]$ reft) (auto simp add:algebra-simps cong:mod-diff-cong)
also have $\ldots=m^{\wedge} 2 * \operatorname{of-bool}(v=w)$
using that by (auto simp add:prod-eq-iff mgg-graph-def power2-eq-square)
also have $\ldots=m^{\wedge} 2 *$ ? $L 1$
using that unfolding $g$-inner-def $\delta$-def by simp
finally have ? R1 $=m$ ~2 $*$ ? L1 by $\operatorname{simp}$
thus ?thesis using $m$-gt-0 by simp
qed
have $? L=g$-inner $\left(\lambda x .\left(\sum v \in\right.\right.$ verts $\left.\left.G .(f v) * \delta v x\right)\right)\left(\lambda x .\left(\sum v \in\right.\right.$ verts $\left.\left.G .(g v) * \delta v x\right)\right)$ unfolding $\delta$-def by (intro g-inner-cong) auto
also have $\ldots=\left(\sum v \in\right.$ verts $G .(f v) *\left(\sum w \in \operatorname{verts} G . c n j(g w) * g\right.$-inner $\left.\left.(\delta v)(\delta w)\right)\right)$
by (simp add:g-inner-simps g-inner-sum-left g-inner-sum-right)
also have $\ldots=\left(\sum v \in \operatorname{verts} G .(f v) *\left(\sum w \in v e r t s G . c n j(g w) * g-\operatorname{inner}(F T(\delta v))(F T(\delta\right.\right.$ w)) )) / $m^{\wedge}$ 2
by (simp add:0 sum-divide-distrib sum-distrib-left algebra-simps)
also have $\ldots=g$-inner $\left(\lambda x .\left(\sum v \in \operatorname{verts} G .(f v) * F T(\delta v) x\right)\right)\left(\lambda x .\left(\sum v \in v e r t s G .(g v) * F T(\delta v)\right.\right.$
$x)$ ) $/ m^{2}$
by (simp add:g-inner-simps $g$-inner-sum-left $g$-inner-sum-right)
also have $\ldots=g$-inner $\left(F T\left(\lambda x .\left(\sum v \in \operatorname{verts} G .(f v) * \delta v x\right)\right)\right)\left(F T\left(\lambda x .\left(\sum v \in \operatorname{verts} G .(g v) * \delta v x\right)\right)\right) / m^{2}$
by (intro g-inner-cong arg-cong2[where $f=(/)])$ (simp-all add: FT-sum FT-scale)
also have $\ldots=g$-inner $(F T f)(F T g) / m \curvearrowright 2$
unfolding $\delta$-def comp-def
by (intro g-inner-cong arg-cong2[where $f=(/)]$ fun-cong[OF FT-cong]) auto
finally show ?thesis by simp
qed
lemma plancharel:
$\left(\sum v \in\right.$ verts $G . \operatorname{norm}(f v)^{\wedge}$ 2 $)=\left(\sum v \in\right.$ verts $G$. norm $(F T f v)^{\wedge}$ 2 $) / m$ ^2 $($ is $? L=? R)$
proof -
have complex-of-real ? $L=g$-inner $f f$
by (simp fip:of-real-power add:complex-norm-square g-inner-def algebra-simps)
also have $\ldots=g$-inner $(F T f)(F T f) / m^{\wedge} 2$
by (subst parseval) simp

```
 also have ... = complex-of-real ?R
 by (simp flip:of-real-power add:complex-norm-square g-inner-def algebra-simps) simp
 finally have complex-of-real ?L = complex-of-real ?R by simp
 thus ?thesis
 using of-real-eq-iff by blast
qed
lemma FT-swap:
 FT (\lambdax.f(snd x, fst x)) (u,v) = FT f (v,u)
proof -
 have 0:bij-betw (\lambda(x::int > int). (snd x, fst x)) (verts G) (verts G)
 by (intro bij-betwI[where g=(((x::int }\times\mathrm{ int). (snd x, fst x))])
 (auto simp add:mgg-graph-def)
 show ?thesis
 unfolding FT-def
 by (subst g-inner-reindex[OF 0]) (simp add:algebra-simps)
qed
lemma mod-add-mult-eq:
 fixes a x y :: int
 shows }(a+x*(y\operatorname{mod}m)) mod m=(a+x*y) mod
 using mod-add-cong mod-mult-right-eq by blast
definition periodic where periodic f =(\forallxy.f(x,y)=f(x mod int m, y mod int m))
lemma periodicD:
 assumes periodic f
 shows }f(x,y)=f(x\operatorname{mod}m,y\operatorname{mod}m
 using assms unfolding periodic-def by simp
lemma periodic-comp:
 assumes periodic f
 shows periodic (\lambdax.g(fx))
 using assms unfolding periodic-def by simp
lemma periodic-cong:
 fixes x y uv v:: int
 assumes periodic f
 assumes x mod m=u mod m y mod m=v mod m
 shows f(x,y)=f(u,v)
 using periodicD[OF assms(1)] assms(2,3) by metis
lemma periodic-FT: periodic (FT f)
proof -
 have FT f(x,y)=FTf(x mod m,y mod m) for x y
 unfolding FT-altdef by (intro g-inner-cong \omega}\mp@subsup{\omega}{F}{}\mathrm{ -cong ext)
 (auto simp add:mod-simps cong:mod-add-cong)
 thus ?thesis
 unfolding periodic-def by simp
qed
lemma FT-sheer-aux:
 fixes }uvcd::: in
 assumes periodic f
 shows FT (\lambdax.f (fst x,snd x+c*fst x+d)) (u,v)=\mp@subsup{\omega}{F}{}(d*v)*FTf(u-c*v,v)
 (is ?L = ?R)
proof -
 define s where s=(\lambda(x,y). (x,(y-c*x-d) mod m))
```

define $s 0$ where $s 0=(\lambda(x, y) \cdot(x,(y-c * x) \bmod m))$
define $s 1$ where $s 1=(\lambda(x:: i n t, y) .(x,(y-d) \bmod m))$
have 0:bij-betw s0 (verts $G$ ) (verts $G$ )
by $($ intro bij-betwI[where $g=\lambda(x, y) .(x,(y+c * x) \bmod m)])$
(auto simp add:mgg-graph-def s0-def Pi-def mod-simps)
have 1:bij-betw s1 (verts $G$ ) (verts $G$ )
by (intro bij-betwI[where $g=\lambda(x, y) .(x,(y+d) \bmod m)])$
(auto simp add:mgg-graph-def s1-def Pi-def mod-simps)
have 2: $s=(s 1 \circ s 0)$
by (simp add:s1-def s0-def s-def comp-def mod-simps case-prod-beta ext)
have 3:bij-betw $s$ (verts $G$ ) (verts $G$ )
unfolding 2 using bij-betw-trans[ $\left[\begin{array}{lll}O F & 0 & 1\end{array}\right]$ by $\operatorname{simp}$
have $4:(\operatorname{snd}(s x)+c * f s t x+d)$ mod int $m=\operatorname{snd} x \bmod m$ for $x$
unfolding s-def by (simp add:case-prod-beta cong:mod-add-cong) (simp add:algebra-simps)
have 5: fst $(s x)=f s t x$ for $x$
unfolding $s$-def by (cases $x$, simp)
have $? L=g$-inner $(\lambda x . f(f s t x$, snd $x+c * f s t x+d))\left(\lambda x . \omega_{F}(f s t x * u+s n d x * v)\right)$
unfolding FT-altdef by simp
also have $\ldots=g$-inner $\left(\lambda x . f\left(f_{s t} x,(s n d x+c * f s t x+d) \bmod m\right)\right)\left(\lambda x . \omega_{F}(f s t x * u+s n d x *\right.$ v))
by (intro g-inner-cong periodic-cong[OF assms]) (auto simp add:algebra-simps)
also have $\ldots=g$-inner $(\lambda x . f(f s t x$, snd $x \bmod m))\left(\lambda x . \omega_{F}(f s t x * u+\operatorname{snd}(s x) * v)\right)$
by (subst g-inner-reindex[OF 3]) (simp add:4 5)
also have...$=$
$g$-inner $(\lambda x . f(f s t x$, snd $x \bmod m))\left(\lambda x . \omega_{F}(f s t x * u+((s n d x-c * f s t x-d) \bmod m) * v)\right)$
by (simp add:s-def case-prod-beta)
also have $\ldots=g$-inner $f\left(\lambda x . \omega_{F}(f s t x *(u-c * v)+s n d x * v-d * v)\right)$
by (intro $g$-inner-cong $\omega_{F}$-cong) (auto simp add:mgg-graph-def algebra-simps mod-add-mult-eq)
also have $\ldots=g$-inner $f\left(\lambda x . \omega_{F}(-d * v) * \omega_{F}(f s t x *(u-c * v)+s n d x * v)\right)$
by (simp add: $\omega_{F}$-simps algebra-simps)
also have $\ldots=\omega_{F}(d * v) * g$-inner $f\left(\lambda x . \omega_{F}(f s t x *(u-c * v)+s n d x * v)\right)$
by (simp add:g-inner-simps $\omega_{F}$-simps)
also have $\ldots=$ ? $R$
unfolding $F T$-altdef by simp
finally show ?thesis by simp
qed
lemma FT-sheer:
fixes $u v c d::$ int
assumes periodic $f$
shows
$F T(\lambda x . f(f s t x, s n d x+c * f s t x+d))(u, v)=\omega_{F}(d * v) * F T f(u-c * v, v)($ is ? $A)$
$F T(\lambda x . f(f s t x, s n d x+c * f s t x))(u, v)=F T f(u-c * v, v)\left(\right.$ is ? $\left.{ }^{2} B\right)$
$F T(\lambda x . f(f s t x+c *$ snd $x+d, s n d x))(u, v)=\omega_{F}(d * u) * F T f(u, v-c * u)$ (is ?C)
$F T(\lambda x . f(f s t x+c *$ snd $x, s n d x))(u, v)=F T f(u, v-c * u)($ is $? D)$
proof -
have 1: periodic $(\lambda x . f(\operatorname{snd} x$, fst $x))$
using assms unfolding periodic-def by simp
have $0: \omega_{F} 0=1$
unfolding $\omega_{F}$-def by simp
show ? A
using $F T$-sheer-aux[OF assms] by simp
show ? $B$
using 0 FT-sheer-aux[OF assms, where $d=0]$ by simp

```
 show ?C
 using FT-sheer-aux[OF 1] by (subst (1 2) FT-swap[symmetric], simp)
 show ?D
 using 0 FT-sheer-aux[OF 1, where d=0] by (subst (1 2) FT-swap[symmetric], simp)
qed
definition }\mp@subsup{T}{1}{}:: int \times int => int \times int where T T x = ((fst x + 2 * snd x) mod m, snd x)
definition S}\mp@subsup{S}{1}{}:: int \times int => int \times int where S S x = ((fst x-2 * snd x) mod m, snd x)
```



```
definition S S :: int }\times\mathrm{ int }=>\mathrm{ int }\times\mathrm{ int where }\mp@subsup{S}{2}{}x=(fst x,(snd x - 2* fst x) mod m)
definition }\gamma\mathrm{ -aux :: int }\times\mathrm{ int }=>\mathrm{ real }\times\mathrm{ real
 where }\gamma\mathrm{ -aux x =(|fst x/m-1/2|,|snd x/m-1/2|)
definition compare :: real }\times\mathrm{ real }=>\mathrm{ real }\times\mathrm{ real }=>\mathrm{ bool
 where compare x y = (fst x\leqfst y ^ snd x\leq snd y ^x\not=y)
```

The value here is different from the value in the source material. This is because the proof in Hoory $[4, \S 8]$ only establishes the bound $\frac{73}{80}$ while this formalization establishes the improved bound of $\frac{5}{8} \sqrt{2}$.

```
definition \alpha :: real where \alpha = sqrt 2
```

lemma $\alpha$-inv: $1 / \alpha=\alpha / 2$
unfolding $\alpha$-def by (simp add: real-div-sqrt)
definition $\gamma::$ int $\times$ int $\Rightarrow$ int $\times$ int $\Rightarrow$ real
where $\gamma x y=($ if compare $(\gamma$-aux $x)(\gamma$-aux $y)$ then $\alpha$ else (if compare $(\gamma$-aux $y)(\gamma$-aux $x)$
then $(1 / \alpha)$ else 1))
lemma $\gamma$-sym: $\gamma x y * \gamma y x=1$
unfolding $\gamma$-def $\alpha$-def compare-def by (auto simp add:prod-eq-iff)
lemma $\gamma$-nonneg: $\gamma x y \geq 0$
unfolding $\gamma$-def $\alpha$-def by auto
definition $\tau::$ int $\Rightarrow$ real where $\tau x=|\cos (p i * x / m)|$
definition $\gamma^{\prime}:$ : real $\Rightarrow$ real $\Rightarrow$ real
where $\gamma^{\prime} x y=($ if abs $(x-1 / 2)<a b s(y-1 / 2)$ then $\alpha$ else (if abs $(x-1 / 2)>a b s(y-1 / 2)$
then (1/ $\alpha$ ) else 1))
definition $\varphi::$ real $\Rightarrow$ real $\Rightarrow$ real
where $\varphi x y=\gamma^{\prime} y(\operatorname{frac}(y-2 * x))+\gamma^{\prime} y(\operatorname{frac}(y+2 * x))$
lemma $\gamma^{\prime}$-cases:
abs $(x-1 / 2)=a b s(y-1 / 2) \Longrightarrow \gamma^{\prime} x y=1$
abs $(x-1 / 2)>a b s(y-1 / 2) \Longrightarrow \gamma^{\prime} x y=1 / \alpha$
abs $(x-1 / 2)<a b s(y-1 / 2) \Longrightarrow \gamma^{\prime} x y=\alpha$
unfolding $\gamma^{\prime}$-def by auto
lemma if-cong-direct:
assumes $a=b$
assumes $c=d^{\prime}$
assumes $e=f$
shows (if a then c else e) $=\left(\right.$ if $b$ then $d^{\prime}$ else $\left.f\right)$
using assms by (intro if-cong) auto
lemma $\gamma^{\prime}$-cong:

```
 assumes abs (x-1/2) =abs (u-1/2)
 assumes abs (y-1/2) =abs (v-1/2)
 shows }\mp@subsup{\gamma}{}{\prime}xy=\mp@subsup{\gamma}{}{\prime}u
 unfolding }\mp@subsup{\gamma}{}{\prime}\mathrm{ -def
 using assms by (intro if-cong-direct refl) auto
lemma add-swap-cong:
 fixes x y u v :: 'a :: ab-semigroup-add
 assumes }x=yu=
 shows }x+u=v+
 using assms by (simp add:algebra-simps)
lemma frac-cong:
 fixes x y :: real
 assumes }x-y\in\mathbb{Z
 shows frac x = frac y
proof -
 obtain k where x-eq: x = y + of-int k
 using Ints-cases[OF assms] by (metis add-minus-cancel uminus-add-conv-diff)
 thus ?thesis
 unfolding x-eq unfolding frac-def by simp
qed
lemma frac-expand:
 fixes }x\mathrm{ :: real
 shows frac x = (if x< (-1) then (x-\lfloorx\rfloor) else (if x<0 then (x+1) else (if x<1 then x else
(if }x<2\mathrm{ then (x-1) else (}x-\lfloorx\rfloor)))\mathrm{))
proof -
 have real-of-int y=-1\longleftrightarrowy=-1 for }
 by auto
 thus ?thesis
 unfolding frac-def by (auto simp add:not-less floor-eq-iff)
qed
lemma one-minus-frac:
 fixes }x\mathrm{ :: real
 shows 1- frac x = (if }x\in\mathbb{Z}\mathrm{ then 1 else frac (-x))
 unfolding frac-neg by simp
lemma abs-rev-cong:
 fixes }xy\mathrm{ :: real
 assumes }x=-
 shows abs x = abs y
 using assms by simp
lemma cos-pi-ge-0:
 assumes }x\in{-1/2..1/2
 shows cos (pi*x)\geq0
proof -
 have pi*x\in((*)pi'{-1/2..1/2})
 by (intro imageI assms)
 also have ... = {-pi/2..pi/2}
 by (subst image-mult-atLeastAtMost[OF pi-gt-zero]) simp
 finally have pi*x\in{-pi/2..pi/2} by simp
 thus ?thesis
 by (intro cos-ge-zero) auto
qed
```

The following is the first step in establishing Eq. 15 in Hoory et al. [4, §8]. Afterwards using various symmetries (diagonal, x -axis, y -axis) the result will follow for the entire square $[0,1] \times[0,1]$.
lemma fun-bound-real-3:

```
 assumes 0\leqx x \leq y y < 1/2 (x,y) f (0,0)
```

    shows \(|\cos (p i * x)| * \varphi x y+|\cos (p i * y)| * \varphi y x \leq 2.5 * \operatorname{sqrt} 2(\) is \(? L \leq ? R)\)
    proof -
have $a p x: 4 \leq 5 * \operatorname{sqrt}(2::$ real $) 8 * \cos (p i / 4) \leq 5 * \operatorname{sqrt}(2::$ real $)$
by (approximation 5 )+
have $\cos (p i * x) \geq 0$
using $\operatorname{assms}(1,2,3)$ by (intro cos-pi-ge-0) simp
moreover have $\cos (p i * y) \geq 0$
using $\operatorname{assms}(1,2,3)$ by (intro cos-pi-ge-0) simp
ultimately have $0: ? L=\cos (p i * x) * \varphi x y+\cos (p i * y) * \varphi$ y $x \quad($ is $-=? T)$
by $\operatorname{simp}$
consider $(a) x+y<1 / 2|(b) y=1 / 2-x|(c) x+y>1 / 2$ by argo
hence ? $T \leq 2.5 *$ sqrt 2 (is ? $T \leq ? R$ )
proof (cases)
case $a$
consider
(1) $x<y x>0$ |
(2) $x=0 y<1 / 2 \mid$
(3) $y=x x>0$
using $\operatorname{assms}(1,2,3,4)$ a by fastforce
thus ?thesis
proof (cases)
case 1
have $\varphi x y=\alpha+1 / \alpha$
unfolding $\varphi$-def using $1 a$
by (intro arg-cong2[where $f=(+)] \gamma^{\prime}$-cases) (auto simp add:frac-expand)
moreover have $\varphi$ y $x=1 / \alpha+1 / \alpha$
unfolding $\varphi$-def using $1 a$
by (intro arg-cong2[where $f=(+)] \gamma^{\prime}$-cases) (auto simp add:frac-expand)
ultimately have ? $T=\cos (p i * x) *(\alpha+1 / \alpha)+\cos (p i * y) *(1 / \alpha+1 / \alpha)$
by $\operatorname{simp}$
also have $\ldots \leq 1 *(\alpha+1 / \alpha)+1 *(1 / \alpha+1 / \alpha)$
unfolding $\alpha$-def by (intro add-mono mult-right-mono) auto
also have $\ldots=$ ? $R$
unfolding $\alpha$-def by (simp add:divide-simps)
finally show? thesis by simp
next
case 2
have $y$-range: $y \in\{0<. .<1 / 2\}$
using assms 2 by simp
have $\varphi 0 y=1+1$
unfolding $\varphi$-def using $y$-range
by (intro arg-cong2[where $f=(+)] \gamma^{\prime}$-cases) (auto simp add:frac-expand)
moreover
have $|x| * 2<1 \longleftrightarrow x<1 / 2 \wedge-x<1 / 2$ for $x::$ real by auto
hence $\varphi$ y $0=1 / \alpha+1 / \alpha$
unfolding $\varphi$-def using $y$-range
by (intro arg-cong2 [where $f=(+)] \gamma^{\prime}$-cases) (simp-all add:frac-expand)
ultimately have ? $T=2+\cos (p i * y) *(2 / \alpha)$
unfolding 2 by simp
also have $\ldots \leq 2+1 *(2 / \alpha)$

```
 unfolding \alpha-def by (intro add-mono mult-right-mono) auto
 also have ... \leq?R
 unfolding }\alpha\mathrm{ -def by (approximation 10)
 finally show ?thesis by simp
next
 case 3
 have \varphi
 unfolding \varphi-def using 3a
 by (intro arg-cong2[where f=(+)] \gamma'-cases) (auto simp add:frac-expand)
 moreover have \varphi y x=1 +1/\alpha
 unfolding }\varphi\mathrm{ -def using 3a
 by (intro arg-cong2[where f=(+)] \gamma'-cases) (auto simp add:frac-expand)
 ultimately have ?T = cos (pi*x)*(2*(1+1/\alpha))
 unfolding 3 by simp
 also have ... \leq1*(2*(1+1/\alpha))
 unfolding }\alpha\mathrm{ -def by (intro mult-right-mono) auto
 also have ... \leq?R
 unfolding }\alpha\mathrm{ -def by (approximation 10)
 finally show ?thesis by simp
 qed
next
 case b
 have x-range: }x\in{0..1/4
 using assms b by simp
 then consider (1) x=0| (2) x=1/4| (3) x \in{0<..<1/4} by fastforce
 thus ?thesis
 proof (cases)
 case 1
 hence y-eq: y=1/2 using b by simp
 show ?thesis using apx unfolding 1 y-eq \varphi-def by (simp add:\gamma'-def \alpha-def frac-def)
 next
 case 2
 hence y-eq: y=1/4 using b by simp
 show ?thesis using apx unfolding y-eq 2 }\varphi\mathrm{ -def by (simp add: }\mp@subsup{\gamma}{}{\prime}\mathrm{ -def frac-def)
 next
 case 3
 have \varphi x y=\alpha+1
 unfolding \varphi-def b using 3
 by (intro arg-cong2[where f=(+)] \mp@subsup{\gamma}{}{\prime}-cases) (auto simp add:frac-expand)
 moreover have \varphi y x=1/\alpha+1
 unfolding \varphi-def b using 3
 by (intro arg-cong2[where f=(+)] \gamma'-cases) (auto simp add:frac-expand)
 ultimately have ?T = cos (pi*x)*(\alpha+1) + cos (pi*(1/2 - x))*(1/\alpha+1)
 unfolding b by simp
 also have ... \leq? ?R
 unfolding \alpha-def using x-range
 by (approximation 10 splitting: x=10)
 finally show ?thesis by simp
qed
next
case c
consider
 (1) }x<yy<1/2
 (2) }y=1/2x<1/2
 (3) }y=x x<1/2 |
 (4) }x=1/2y=1/
 using assms(2,3) c by fastforce
thus ?thesis
```

```
proof (cases)
 case 1
 define \(\vartheta::\) real where \(\vartheta=\arcsin (6 / 10)\)
 have \(\cos \vartheta=\operatorname{sqrt}\left(1-0.6^{\wedge}\right.\) 2)
 unfolding \(\vartheta\)-def by (intro cos-arcsin) auto
 also have \(\ldots=\operatorname{sqrt}\left(0.8^{\wedge}\right.\) 2 \()\)
 by (intro arg-cong[where \(f=\) sqrt \(]\)) (simp add:power2-eq-square)
 also have \(\ldots=0.8\) by simp
 finally have \(\cos -\vartheta: \cos \vartheta=0.8\) by \(\operatorname{simp}\)
 have \(\sin -\vartheta: \sin \vartheta=0.6\)
 unfolding \(\vartheta\)-def by simp
 have \(\varphi x y=\alpha+\alpha\)
 unfolding \(\varphi\)-def using \(c 1\)
 by (intro arg-cong2[where \(f=(+)] \gamma^{\prime}\)-cases) (auto simp add:frac-expand)
moreover have \(\varphi\) y \(x=1 / \alpha+\alpha\)
 unfolding \(\varphi\)-def using \(c 1\)
 by (intro arg-cong2 [where \(f=(+)] \gamma^{\prime}\)-cases) (auto simp add:frac-expand)
ultimately have ? \(T=\cos (p i * x) *(2 * \alpha)+\cos (p i * y) *(\alpha+1 / \alpha)\)
 by \(\operatorname{simp}\)
 also have \(\ldots \leq \cos (p i *(1 / 2-y)) *(2 * \alpha)+\cos (p i * y) *(\alpha+1 / \alpha)\)
 unfolding \(\alpha\)-def using \(\operatorname{assms}(1,2,3) c\)
 by (intro add-mono mult-right-mono order.refl iffD2[OF cos-mono-le-eq]) auto
 also have \(\ldots=(2.5 * \alpha) *(\sin (p i * y) * 0.8+\cos (p i * y) * 0.6)\)
 unfolding sin-cos-eq \(\alpha\)-inv by (simp add:algebra-simps)
 also have \(\ldots=(2.5 * \alpha) * \sin (p i * y+\vartheta)\)
 unfolding sin-add \(\cos -\vartheta \sin -\vartheta\)
 by (intro arg-cong2 [where \(f=(*)]\) arg-cong2 \([\) where \(f=(+)]\) refl)
also have \(\ldots \leq(? R) * 1\)
 unfolding \(\alpha\)-def by (intro mult-left-mono) auto
 finally show ?thesis by simp
next
 case 2
 have \(x\)-range: \(x>0 x<1 / 2\)
 using \(c 2\) by auto
 have \(\varphi x y=\alpha+\alpha\)
 unfolding \(\varphi\)-def 2 using \(x\)-range
 by (intro arg-cong2[where \(f=(+)] \gamma^{\prime}\)-cases) (auto simp add:frac-expand)
 moreover have \(\varphi\) y \(x=1+1\)
 unfolding \(\varphi\)-def 2 using \(x\)-range
 by (intro arg-cong2 [where \(f=(+)] \gamma^{\prime}\)-cases) (auto simp add:frac-expand)
 ultimately have ? \(T=\cos (p i * x) *(2 * \alpha)\)
 unfolding 2 by simp
also have \(\ldots \leq 1 *(2 *\) sqrt 2)
 unfolding \(\alpha\)-def by (intro mult-right-mono) auto
also have ... \(\leq\) ? \(R\)
 by (approximation 5)
finally show ?thesis by simp
next
 case 3
 have \(x\)-range: \(x \in\{1 / 4 . .1 / 2\}\) using \(3 c\) by simp
 hence cos-bound: \(\cos (p i * x) \leq 0.71\)
 by (approximation 10)
 have \(\varphi x y=1+\alpha\)
 unfolding \(\varphi\)-def 3 using \(3 c\)
 by (intro arg-cong2 \([\) where \(f=(+)] \gamma^{\prime}\)-cases) (auto simp add:frac-expand)
 moreover have \(\varphi\) y \(x=1+\alpha\)
 unfolding \(\varphi\)-def 3 using \(3 c\)
```

```
 by (intro arg-cong2[where f=(+)] \gamma'-cases) (auto simp add:frac-expand)
 ultimately have ?T = 2 * cos (pi*x)* (1+\alpha)
 unfolding 3 by simp
 also have .. \leq2* 0.71*(1+sqrt 2)
 unfolding \alpha-def by (intro mult-right-mono mult-left-mono cos-bound) auto
 also have ... \leq? R
 by (approximation 6)
 finally show ?thesis by simp
 next
 case 4
 show ?thesis unfolding & by simp
 qed
 qed
 thus ?thesis using 0 by simp
qed
```

Extend to square $\left[0, \frac{1}{2}\right] \times\left[0, \frac{1}{2}\right]$ using symmetry around $\mathrm{x}=\mathrm{y}$ axis.

```
lemma fun-bound-real-2:
 assumes \(x \in\{0 . .1 / 2\} y \in\{0 . .1 / 2\}(x, y) \neq(0,0)\)
 shows \(|\cos (p i * x)| * \varphi x y+|\cos (p i * y)| * \varphi\) y \(x \leq 2.5 * \operatorname{sqrt} 2(\) is \(? L \leq ? R)\)
proof (cases \(y<x\))
 case True
 have \(? L=|\cos (p i * y)| * \varphi y x+|\cos (p i * x)| * \varphi x y\)
 by \(\operatorname{simp}\)
 also have ... \(\leq\) ? \(R\)
 using True assms
 by (intro fun-bound-real-3) auto
 finally show ?thesis by simp
next
 case False
 then show ?thesis using assms
 by (intro fun-bound-real-3) auto
qed
Extend to \(x>\frac{1}{2}\) using symmetry around \(x=\frac{1}{2}\) axis.
lemma fun-bound-real-1:
 assumes \(x \in\{0 . .<1\} \quad y \in\{0 . .1 / 2\}(x, y) \neq(0,0)\)
 shows \(|\cos (p i * x)| * \varphi x y+|\cos (p i * y)| * \varphi y x \leq 2.5 *\) sqrt 2 (is ? \(L \leq ? R\))
proof (cases \(x>1 / 2\))
 case True
 define \(x^{\prime}\) where \(x^{\prime}=1-x\)
 have \(\mid\) frac \((x-2 * y)-1 / 2|=|\operatorname{frac}(1-x+2 * y)-1 / 2|\)
 proof (cases \(x-2 * y \in \mathbb{Z}\))
 case True
 then obtain \(k\) where \(x\)-eq: \(x=2 * y+\) of-int \(k\) using Ints-cases[OF True]
 by (metis add-minus-cancel uminus-add-conv-diff)
 show ?thesis unfolding \(x\)-eq frac-def by simp
 next
 case False
 hence \(1-x+2 * y \notin \mathbb{Z}\)
 using Ints-1 Ints-diff by fastforce
 thus ?thesis
 by (intro abs-rev-cong) (auto intro:frac-cong simp:one-minus-frac)
 qed
```

    moreover have \(|\operatorname{frac}(x+2 * y)-1 / 2|=|\operatorname{frac}(1-x-2 * y)-1 / 2|\)
    proof (cases \(x+2 * y \in \mathbb{Z}\) )
    ```
 case True
 then obtain k where x-eq: x = of-int k - 2*y using Ints-cases[OF True]
 by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel)
 show ?thesis unfolding x-eq frac-def by simp
next
 case False
 hence 1-x-2*y\not\in\mathbb{Z}
 using Ints-1 Ints-diff by fastforce
 thus ?thesis
 by (intro abs-rev-cong) (auto intro:frac-cong simp:one-minus-frac)
qed
ultimately have \varphi y x = \varphi y x'
 unfolding \varphi-def x'-def by (intro }\mp@subsup{\gamma}{}{\prime}\mathrm{ -cong add-swap-cong) simp-all
moreover have \varphi x y = \varphi x' y
 unfolding \varphi-def x'-def
 by (intro }\mp@subsup{\gamma}{}{\prime}\mathrm{ -cong add-swap-cong refl arg-cong[where f=(}\lambda\mathrm{ x.abs (x-1/2))] frac-cong)
 (simp-all add:algebra-simps)
moreover have |\operatorname{cos}(pi*x)|=|\operatorname{cos(pi*x')|}
 unfolding x'-def by (intro abs-rev-cong) (simp add:algebra-simps)
 ultimately have ? L = | cos(pi*\mp@subsup{x}{}{\prime})|*\varphi \mp@subsup{x}{}{\prime}y+|\operatorname{cos(pi*y)|*\varphi y x'}
 by simp
 also have ... }\leq\mathrm{ ? R
 using assms True by (intro fun-bound-real-2) (auto simp add:x'-def)
 finally show ?thesis by simp
next
 case False
 thus ?thesis using assms fun-bound-real-2 by simp
qed
Extend to }y>\frac{1}{2}\mathrm{ using symmetry around y= 左 axis.
lemma fun-bound-real:
 assumes }x\in{0..<1} y\in{0..<1} (x,y)\not=(0,0
```



```
proof (cases y>1/2)
 case True
 define }\mp@subsup{y}{}{\prime}\mathrm{ where }\mp@subsup{y}{}{\prime}=1-
have |frac (y-2*x)-1/2 | = |frac (1-y+2*x)-1/2
```



```
 case True
 then obtain k where y-eq: y = 2*x + of-int k using Ints-cases[OF True]
 by (metis add-minus-cancel uminus-add-conv-diff)
 show ?thesis unfolding y-eq frac-def by simp
next
 case False
 hence 1-y+2*x\not\in\mathbb{Z}
 using Ints-1 Ints-diff by fastforce
 thus ?thesis
 by (intro abs-rev-cong) (auto intro:frac-cong simp:one-minus-frac)
qed
moreover have |frac (y+2*x)-1/2|}=|\operatorname{frac}(1-y-2*x)-1/2
proof (cases y+2*x\in\mathbb{Z})
 case True
 then obtain k where y-eq: y=of-int k-2*x using Ints-cases[OF True]
```

by (metis add.right-neutral add-diff-eq cancel-comm-monoid-add-class.diff-cancel)
show ?thesis unfolding $y$-eq frac-def by simp

## next

case False
hence $1-y-2 * x \notin \mathbb{Z}$
using Ints-1 Ints-diff by fastforce
thus ?thesis
by (intro abs-rev-cong) (auto intro:frac-cong simp:one-minus-frac)
qed
ultimately have $\varphi x y=\varphi x y^{\prime}$
unfolding $\varphi$-def $y^{\prime}$-def by (intro $\gamma^{\prime}$-cong add-swap-cong) simp-all
moreover have $\varphi$ y $x=\varphi y^{\prime} x$
unfolding $\varphi$-def $y^{\prime}$-def
by (intro $\gamma^{\prime}$-cong add-swap-cong refl arg-cong $[$ where $f=(\lambda x$.abs (x-1/2))] frac-cong $)$
(simp-all add:algebra-simps)
moreover have $|\cos (p i * y)|=\left|\cos \left(p i * y^{\prime}\right)\right|$
unfolding $y^{\prime}$-def by (intro abs-rev-cong) (simp add:algebra-simps)
ultimately have $? L=|\cos (p i * x)| * \varphi x y^{\prime}+\left|\cos \left(p i * y^{\prime}\right)\right| * \varphi y^{\prime} x$
by $\operatorname{simp}$
also have $\ldots \leq$ ? $R$
using assms True by (intro fun-bound-real-1) (auto simp add:y'-def)
finally show? ?thesis by simp
next
case False
thus ?thesis using assms fun-bound-real-1 by simp
qed
lemma mod-to-frac:
fixes $x$ :: int
shows real-of-int $(x \bmod m)=m * \operatorname{frac}(x / m)($ is $? L=? R)$
proof -
obtain $y$ where $y$-def: $x \bmod m=x+$ int $m * y$
by (metis mod-eqE mod-mod-trivial)
have $0: x$ mod int $m<m x$ mod int $m \geq 0$
using $m$-gt- 0 by auto
have $? L=$ real $m *(o f-i n t(x \bmod m) / m)$
using $m$-gt- 0 by (simp add:algebra-simps)
also have $\ldots=$ real $m *$ frac (of-int $(x \bmod m) / m)$
using 0 by (subst iffD2 [OF frac-eq]) auto
also have $\ldots=$ real $m * \operatorname{frac}(x / m+y)$
unfolding $y$-def using $m$-gt-0 by (simp add:divide-simps mult.commute)
also have ... $=$ ? $R$
unfolding frac-def by simp
finally show ?thesis by simp
qed
lemma fun-bound:
assumes $v \in$ verts $G v \neq(0,0)$
shows $\tau(f$ st $v) *\left(\gamma v\left(S_{2} v\right)+\gamma v\left(T_{2} v\right)\right)+\tau($ snd $v) *\left(\gamma v\left(S_{1} v\right)+\gamma v\left(T_{1} v\right)\right) \leq 2.5 *$ sqrt 2
(is ? $L \leq ? R$ )
proof -
obtain $x y$ where $v$-def: $v=(x, y)$ by (cases $v$ ) auto
define $x^{\prime}$ where $x^{\prime}=x /$ real $m$
define $y^{\prime}$ where $y^{\prime}=y /$ real $m$
have 0: $\gamma v\left(S_{1} v\right)=\gamma^{\prime} x^{\prime}\left(\operatorname{frac}\left(x^{\prime}-2 * y^{\prime}\right)\right)$
unfolding $\gamma$-def $\gamma^{\prime}$-def compare-def $v$-def $\gamma$-aux-def $T_{1}$-def $S_{1}$-def $x^{\prime}$-def $y^{\prime}$-def using m-gt-0
by (intro if-cong-direct refl) (auto simp add:case-prod-beta mod-to-frac divide-simps)
have 1: $\gamma v\left(T_{1} v\right)=\gamma^{\prime} x^{\prime}\left(\operatorname{frac}\left(x^{\prime}+2 * y^{\prime}\right)\right)$
unfolding $\gamma$-def $\gamma^{\prime}$-def compare-def $v$-def $\gamma$-aux-def $T_{1}$-def $x^{\prime}$-def $y^{\prime}$-def using $m$-gt-0
by (intro if-cong-direct refl) (auto simp add:case-prod-beta mod-to-frac divide-simps)
have 2: $\gamma v\left(S_{2} v\right)=\gamma^{\prime} y^{\prime}\left(\operatorname{frac}\left(y^{\prime}-2 * x^{\prime}\right)\right)$
unfolding $\gamma$-def $\gamma^{\prime}$-def compare-def $v$-def $\gamma$-aux-def $S_{2}$-def $x^{\prime}$-def $y^{\prime}$-def using $m$-gt-0
by (intro if-cong-direct refl) (auto simp add:case-prod-beta mod-to-frac divide-simps)
have 3: $\gamma v\left(T_{2} v\right)=\gamma^{\prime} y^{\prime}\left(\operatorname{frac}\left(y^{\prime}+2 * x^{\prime}\right)\right)$
unfolding $\gamma$-def $\gamma^{\prime}$-def compare-def $v$-def $\gamma$-aux-def $T_{2}$-def $x^{\prime}$-def $y^{\prime}$-def using $m$-gt- 0
by (intro if-cong-direct refl) (auto simp add:case-prod-beta mod-to-frac divide-simps)
have 4: $\tau(f s t v)=\left|\cos \left(p i * x^{\prime}\right)\right| \tau(\operatorname{snd} v)=|\cos (p i * y)|$
unfolding $\tau$-def $v$-def $x^{\prime}$-def $y^{\prime}$-def by auto
have $x \in\{0 . .<$ int $m\} y \in\{0 . .<$ int $m\}(x, y) \neq(0,0)$
using assms unfolding $v$-def mgg-graph-def by auto
hence $5: x^{\prime} \in\{0 . .<1\} y^{\prime} \in\{0 . .<1\}\left(x^{\prime}, y^{\prime}\right) \neq(0,0)$
unfolding $x^{\prime}$-def $y^{\prime}$-def by auto
have ? $L=\left|\cos \left(p i * x^{\prime}\right)\right| * \varphi x^{\prime} y^{\prime}+\left|\cos \left(p i * y^{\prime}\right)\right| * \varphi y^{\prime} x^{\prime}$
unfolding $01234 \varphi$-def by simp
also have ... $\leq$ ? $R$
by (intro fun-bound-real 5)
finally show ?thesis by simp
qed
Equation 15 in Proof of Theorem 8.8
lemma hoory-8-8:
fixes $f::$ int $\times$ int $\Rightarrow$ real
assumes $\bigwedge x$. $f x \geq 0$
assumes $f(0,0)=0$
assumes periodic $f$
shows g-inner $f\left(\lambda x . f\left(S_{2} x\right) * \tau(f s t x)+f\left(S_{1} x\right) * \tau(\right.$ snd $\left.x)\right) \leq 1.25 *$ sqrt $2 * g$-norm $f^{\wedge 2}$
(is ? $L \leq ? R$ )
proof -
have 0: 2 $* f x * f y \leq \gamma x y * f x$ ~2 $+\gamma y x * f y$ へ2 (is ? $L$ 1 $\leq$ ?R1) for $x y$
proof -
have $0 \leq((s q r t(\gamma x y) * f x)-(\operatorname{sqrt}(\gamma y x) * f y))^{\wedge} 2$
by simp
also have $\ldots=? R 1-2 *(\operatorname{sqrt}(\gamma x y) * f x) *(\operatorname{sqrt}(\gamma y x) * f y)$
unfolding power2-diff using $\gamma$-nonneg assms(1)
by (intro arg-cong2 [where $f=(-)]$ arg-cong2 $[$ where $f=(+)]$ ) (auto simp add: power2-eq-square)
also have $\ldots=$ ? $R 1-2 * \operatorname{sqrt}(\gamma x y * \gamma y x) * f x * f y$
unfolding real-sqrt-mult by simp
also have $\ldots=$ ? $R 1-$ ? $L 1$
unfolding $\gamma$-sym by simp
finally have $0 \leq ? R 1-$ ?L1 by simp
thus ?thesis by simp
qed
have $\left[\right.$ simp]: $f$ st $\left(S_{2} x\right)=$ fst $x$ snd $\left(S_{1} x\right)=$ snd $x$ for $x$
unfolding $S_{1}$-def $S_{2}$-def by auto
have $S$-2-inv [simp]: $T_{2}\left(S_{2} x\right)=x$ if $x \in$ verts $G$ for $x$ using that unfolding $T_{2}$-def $S_{2}$-def mgg-graph-def
by (cases $x$, simp add:mod-simps)
have $S$-1-inv [simp]: $T_{1}\left(S_{1} x\right)=x$ if $x \in$ verts $G$ for $x$ using that unfolding $T_{1}$-def $S_{1}$-def mgg-graph-def by (cases $x$,simp add:mod-simps)
have S2-inj: inj-on $S_{2}$ (verts $G$ )
using $S$-2-inv by (intro inj-on-inverseI[where $\left.g=T_{2}\right]$ )
have $S 1$-inj: inj-on $S_{1}$ (verts $G$ )
using $S$-1-inv by (intro inj-on-inverseI [where $\left.g=T_{1}\right]$ )
have $S_{2}$ 'verts $G \subseteq$ verts $G$
unfolding mgg-graph-def $S_{2}$-def
by (intro image-subsetI) auto
hence $S 2-r a n: S_{2}$ 'verts $G=$ verts $G$
by (intro card-subset-eq card-image S2-inj) auto
have $S_{1}$ 'verts $G \subseteq$ verts $G$
unfolding mgg-graph-def $S_{1}$-def
by (intro image-subsetI) auto
hence $S 1-$ ran: $S_{1}$ 'verts $G=$ verts $G$
by (intro card-subset-eq card-image S1-inj) auto
have 2: $g v * f v$ ^2 $\leq 2.5 * \operatorname{sqrt2} 2 * f v^{\wedge} 2$ if $g v \leq 2.5 * \operatorname{sqrt} 2 \vee v=(0,0)$ for $v g$
proof (cases $v=(0,0)$ )
case True
then show ?thesis using assms(2) by simp
next
case False
then show ?thesis using that by (intro mult-right-mono) auto
qed
have $2 * ? L=\left(\sum v \in\right.$ verts $\left.G . \tau(f s t v) *\left(2 * f v * f\left(S_{2} v\right)\right)\right)+\left(\sum v \in v e r t s G . \tau(\right.$ snd $v) *(2 * f v * f$ $\left.\left(S_{1} v\right)\right)$ )
unfolding $g$-inner-def by (simp add: algebra-simps sum-distrib-left sum.distrib)
also have ... $\leq$
$\left(\sum v \in\right.$ verts $G \cdot \tau(f$ st $v) *\left(\gamma v\left(S_{2} v\right) * f v^{\wedge 2}+\gamma\left(S_{2} v\right) v * f\left(S_{2} v\right)\right.$ へ2 $\left.)\right)+$
$\left(\sum v \in\right.$ verts $G . \tau(\operatorname{snd} v) *\left(\gamma v\left(S_{1} v\right) * f v^{\wedge} 2+\gamma\left(S_{1} v\right) v * f\left(S_{1} v\right){ }^{\wedge}\right.$ 2 $\left.)\right)$
unfolding $\tau$-def by (intro add-mono sum-mono mult-left-mono 0) auto
also have $\ldots=$
$\left(\sum v \in\right.$ verts $\left.G . \tau(f s t v) * \gamma v\left(S_{2} v\right) * f v^{\wedge 2}\right)+\left(\sum v \in v e r t s G . \tau(f s t v) * \gamma\left(S_{2} v\right) v * f\left(S_{2} v\right) \wedge 2\right)+$
$\left(\sum v \in\right.$ verts $G . \tau($ snd $\left.v) * \gamma v\left(S_{1} v\right) * f v^{\wedge} 2\right)+\left(\sum v \in v e r t s G . \tau(\right.$ snd $v) * \gamma\left(S_{1} v\right) v * f\left(S_{1} v\right) \wedge$ Д)
by (simp add:sum.distrib algebra-simps)
also have $\ldots=$

by (intro arg-cong2[where $f=(+)]$ sum.cong refl) simp-all
also have $\ldots=$

$\left(\sum v \in\right.$ verts $G . \tau($ snd $v) * \gamma v\left(S_{1} v\right) * f v^{\wedge}$ 2 $)+\left(\sum v \in S_{1}\right.$ ‘verts $G . \tau($ snd $v) * \gamma v\left(T_{1} v\right) * f v^{\wedge}$ 2 $)$
using S1-inj S2-inj by (simp add:sum.reindex)
also have $\ldots=$
$\left(\sum v \in \operatorname{verts} G .\left(\tau(f s t v) *\left(\gamma v\left(S_{2} v\right)+\gamma v\left(T_{2} v\right)\right)+\tau(\right.\right.$ snd $\left.\left.v) *\left(\gamma v\left(S_{1} v\right)+\gamma v\left(T_{1} v\right)\right)\right) * f v^{\wedge} 2\right)$
unfolding S1-ran S2-ran by (simp add:algebra-simps sum.distrib)
also have $\ldots \leq\left(\sum v \in v e r t s G\right.$. $2.5 *$ sqrt $\left.2 * f v^{\wedge} 2\right)$
using fun-bound by (intro sum-mono 2) auto
also have $\ldots \leq 2.5 *$ sqrt $2 * g$-norm f $f^{\wedge} 2$
unfolding $g$-norm-sq $g$-inner-def
by (simp add:algebra-simps power2-eq-square sum-distrib-left)
finally have $2 *$ ? $L \leq 2.5 *$ sqrt $2 * g$-norm f $f^{\wedge} 2$ by simp
thus ?thesis by simp
qed
lemma hoory-8-7:
fixes $f::$ int $\times$ int $\Rightarrow$ complex
assumes $f(0,0)=0$
assumes periodic $f$
shows $\operatorname{norm}\left(g\right.$-inner $f\left(\lambda x . f\left(S_{2} x\right) *\left(1+\omega_{F}(f s t x)\right)+f\left(S_{1} x\right) *\left(1+\omega_{F}(\right.\right.$ snd $\left.\left.\left.x)\right)\right)\right)$ $\leq\left(2.5 *\right.$ sqrt 2) $*\left(\sum v \in\right.$ verts $G$. norm $\left.(f v)^{\wedge} 2\right)($ is ? $L \leq ? R)$
proof -
define $g::$ int $\times$ int $\Rightarrow$ real where $g x=\operatorname{norm}(f x)$ for $x$
have $g$-zero: $g(0,0)=0$
using assms(1) unfolding $g$-def by simp
have $g$-nonneg: $g x \geq 0$ for $x$
unfolding $g$-def by simp
have $g$-periodic: periodic $g$
unfolding $g$-def by (intro periodic-comp[OF assms(2)])
have $0: \operatorname{norm}\left(1+\omega_{F} x\right)=2 * \tau x$ for $x::$ int
proof -
have $\operatorname{norm}\left(1+\omega_{F} x\right)=\operatorname{norm}\left(\omega_{F}(-x / 2) *\left(\omega_{F} 0+\omega_{F} x\right)\right)$
unfolding $\omega_{F^{-}}$def norm-mult by simp
also have $\ldots=\operatorname{norm}\left(\omega_{F}(0-x /\right.$ 2 $)+\omega_{F}(x-x /$ 2 $\left.)\right)$
unfolding $\omega_{F}$-simps by (simp add: algebra-simps)
also have $\ldots=\operatorname{norm}\left(\omega_{F}(x / 2)+\operatorname{cnj}\left(\omega_{F}(x / 2)\right)\right)$
unfolding $\omega_{F}-\operatorname{simps}(3)$ by (simp add:algebra-simps)
also have $\ldots=\left|2 * \operatorname{Re}\left(\omega_{F}(x / 2)\right)\right|$
unfolding complex-add-cnj norm-of-real by simp
also have $\ldots=2 *|\cos (p i * x / m)|$
unfolding $\omega_{F}$-def cis.simps by simp
also have $\ldots=2 * \tau x$ unfolding $\tau$-def by simp
finally show? ?thesis by simp
qed
have $? L \leq \operatorname{norm}\left(\sum v \in v e r t s G . f v * \operatorname{cnj}\left(f\left(S_{2} v\right) *\left(1+\omega_{F}(f s t v)\right)+f\left(S_{1} v\right) *\left(1+\omega_{F}(\right.\right.\right.$ snd $\left.\left.\left.v)\right)\right)\right)$ unfolding $g$-inner-def by (simp add:case-prod-beta)
also have $\ldots \leq\left(\sum v \in \operatorname{verts} G . \operatorname{norm}\left(f v * \operatorname{cnj}\left(f\left(S_{2} v\right) *\left(1+\omega_{F}(f s t v)\right)+f\left(S_{1} v\right) *\left(1+\omega_{F}\right.\right.\right.\right.$ (snd
v)))))
by (intro norm-sum)
also have $\ldots=\left(\sum v \in \operatorname{verts} G . g v * \operatorname{norm}\left(f\left(S_{2} v\right) *\left(1+\omega_{F}(f s t v)\right)+f\left(S_{1} v\right) *\left(1+\omega_{F}(\right.\right.\right.$ snd $\left.\left.\left.v)\right)\right)\right)$ unfolding norm-mult $g$-def complex-mod-cnj by simp
also have $\ldots \leq\left(\sum v \in v e r t s G . g v *\left(\operatorname{norm}\left(f\left(S_{2} v\right) *\left(1+\omega_{F}(f s t v)\right)\right)+\operatorname{norm}\left(f\left(S_{1} v\right) *\left(1+\omega_{F}(\right.\right.\right.\right.$ snd
v)))))
by (intro sum-mono norm-triangle-ineq mult-left-mono g-nonneg)
also have $\ldots=2 * g$-inner $g\left(\lambda x . g\left(S_{2} x\right) * \tau(\right.$ fst $x)+g\left(S_{1} x\right) * \tau($ snd $\left.x)\right)$
unfolding $g$-def $g$-inner-def norm-mult 0
by (simp add:sum-distrib-left algebra-simps case-prod-beta)
also have $\ldots \leq 2 *\left(1.25 *\right.$ sqrt $2 * g$-norm $\left.g^{\wedge} 2\right)$
by (intro mult-left-mono hoory-8-8 g-nonneg g-zero g-periodic) auto
also have...$=$ ? $R$
unfolding $g$-norm-sq $g$-def $g$-inner-def by (simp add:power2-eq-square)
finally show ?thesis by simp
qed

## lemma hoory-8-3:

assumes $g$-inner $f(\lambda-.1)=0$
assumes periodic $f$
shows $\mid\left(\sum(x, y) \in\right.$ verts $\left.G . f(x, y) *(f(x+2 * y, y)+f(x+2 * y+1, y)+f(x, y+2 * x)+f(x, y+2 * x+1))\right) \mid$
$\leq\left(2.5 *\right.$ sqrt 2) $* g$-norm f ${ }^{\wedge} 2($ is $|? L| \leq ? R)$
proof -
let ?f $=(\lambda x$. complex-of-real $(f x))$
define Ts :: (int $\times$ int $\Rightarrow$ int $\times$ int $)$ list where $T s=[(\lambda(x, y) \cdot(x+2 * y, y)),(\lambda(x, y) \cdot(x+2 * y+1, y)),(\lambda(x, y) \cdot(x, y+2 * x)),(\lambda(x, y) \cdot(x, y+2 * x+1))]$
have $p$ : periodic ?f
by (intro periodic-comp[OF assms(2)])
have $0:\left(\sum T \leftarrow T s . F T(? f \circ T) v\right)=F T ? f\left(S_{2} v\right) *\left(1+\omega_{F}(f s t v)\right)+F T ? f\left(S_{1} v\right) *\left(1+\omega_{F}(\right.$ snd v))
(is ? $L 1=$ ?R1) for $v::$ int $\times$ int
proof -
obtain $x y$ where $v$-def: $v=(x, y)$ by (cases $v$, auto)
have ? $L 1=\left(\sum T \leftarrow T s . F T(? f \circ T)(x, y)\right)$
unfolding $v$-def by simp
also have $\ldots=F T$ ?f $(x, y-2 * x) *\left(1+\omega_{F} x\right)+F T$ ?f $(x-2 * y, y) *\left(1+\omega_{F} y\right)$
unfolding Ts-def by (simp add:FT-sheer[OF p] case-prod-beta comp-def) (simp add:algebra-simps)
also have $\ldots=$ ? $R 1$
unfolding $v$-def $S_{2}$-def $S_{1}$-def
by (intro arg-cong2[where $f=(+)]$ arg-cong2[where $f=(*)]$ periodic-cong[OF periodic- $F T]$ ) auto
finally show?thesis by simp
qed
have $\operatorname{cmod}(($ of-nat m) ^2 $)=\operatorname{cmod}($ of-real $($ of-nat m~2 $))$ by $\operatorname{simp}$
also have $\ldots=a b s$ (of-nat $m$ ^2) by (intro norm-of-real)
also have $\ldots=$ real $m$ ค2 by $\operatorname{simp}$
finally have $1: \operatorname{cmod}\left((\text { of-nat } m)^{2}\right)=(\text { real } m)^{2}$ by simp
have $F T(\lambda x$. complex-of-real $(f x))(0,0)=$ complex-of-real $(g$-inner $f(\lambda-.1))$ unfolding FT-def $g$-inner-def g-inner-def $\omega_{F}$-def by simp
also have ... $=0$
unfolding assms by simp
finally have 2: $F T(\lambda x$. complex-of-real $(f x))(0,0)=0$ by $\operatorname{simp}$
have abs ? $L=$ norm (complex-of-real ? $L$ )
unfolding norm-of-real by simp
also have $\ldots=$ norm $\left(\sum T \leftarrow T s\right.$. (g-inner ?f $($ ?f $\left.\left.\circ T)\right)\right)$
unfolding Ts-def by (simp add:algebra-simps g-inner-def sum.distrib comp-def case-prod-beta)
also have $\ldots=\operatorname{norm}\left(\sum T \leftarrow T s .(g\right.$-inner $(F T ? f)(F T(? f \circ T))) / m^{\wedge}$ 2 $)$
by (subst parseval) simp
also have $\ldots=\operatorname{norm}\left(g\right.$-inner $(F T$ ?f) $)\left(\lambda x .\left(\sum T \leftarrow T s .(F T(? f \circ T) x)\right)\right) / m$ 凤2) $)$
unfolding Ts-def by (simp add:g-inner-simps case-prod-beta add-divide-distrib)
also have $\ldots=\operatorname{norm}\left(g-\operatorname{inner}(F T ? f)\left(\lambda x .\left(F T ? f\left(S_{2} x\right) *\left(1+\omega_{F}(f s t x)\right)+F T f\left(S_{1} x\right) *\left(1+\omega_{F}\right.\right.\right.\right.$ (snd x))) ))/m $m^{\text {2 }}$
by (subst 0) (simp add:norm-divide 1)
also have $\ldots \leq(2.5 *$ sqrt 2 $) *\left(\sum v \in\right.$ verts $G$. norm $(F T f v)$ ^2 $) / m \curvearrowright 2$
by (intro divide-right-mono hoory-8-7[where $f=F T f] 2$ periodic-FT) auto
also have $\ldots=(2.5 * \operatorname{sqrt} 2) *\left(\sum v \in \operatorname{verts} G . \operatorname{cmod}(f v)^{\wedge} 2\right)$
by (subst (2) plancharel) simp
also have $\ldots=(2.5 *$ sqrt 2 $) *(g$-inner $f f)$
unfolding $g$-inner-def norm-of-real by (simp add: power2-eq-square)
also have $\ldots=? R$
using $g$-norm-sq by auto
finally show? ?thesis by simp
qed
Inequality stated before Theorem 8.3 in Hoory.
lemma mgg-numerical-radius-aux:
assumes $g$-inner $f(\lambda$-. 1$)=0$
shows $\mid\left(\sum a \in \operatorname{arcs} G . f(\right.$ head $G a) * f($ tail $\left.G a)\right) \mid \leq(5 *$ sqrt 2 $) * g$-norm f^2 (is ? $\left.L \leq ? R\right)$
proof -
define $g$ where $g x=f(f s t x \bmod m$, snd $x \bmod m)$ for $x::$ int $\times$ int
have $0: g x=f x$ if $x \in$ verts $G$ for $x$
unfolding $g$-def using that
by (auto simp add:mgg-graph-def mem-Times-iff)
have $g$-mod-simps $[\operatorname{simp}]: g(x, y \bmod m)=g(x, y) g(x \bmod m, y)=g(x, y)$ for $x y::$ int unfolding $g$-def by auto
have periodic-g: periodic $g$ unfolding periodic-def by simp
have $g$-inner $g(\lambda$-. 1$)=g$-inner $f(\lambda-.1)$
by (intro g-inner-cong 0) auto
also have $\ldots=0$
using assms by simp
finally have $1: g$-inner $g(\lambda-.1)=0$ by $\operatorname{simp}$
have 2:g-norm $g=g$-norm $f$
by (intro g-norm-cong 0) (auto)
have $? L=\mid\left(\sum a \in \operatorname{arcs} G \cdot g(\right.$ head $G a) * g($ tail $\left.G a)\right) \mid$
using wellformed
by (intro arg-cong[where $f=a b s]$ sum.cong arg-cong2[where $f=(*)] 0$ [symmetric]) auto

a))|
unfolding arcs-sym arcs-pos-def arcs-neg-def
by (intro arg-cong $[$ where $f=a b s]$ sum.union-disjoint) auto
also have $\ldots=\mid 2 *\left(\sum(v, l) \in\right.$ verts $G \times\{. .<4\} . g v * g($ mgg-graph-step $\left.m v(l, 1))\right) \mid$
unfolding arcs-pos-def arcs-neg-def
by (simp add:inj-on-def sum.reindex case-prod-beta mgg-graph-def algebra-simps)
also have $\ldots=2 * \mid\left(\sum v \in\right.$ verts $G .\left(\sum l \in\{. .<4\} . g v * g(\right.$ mgg-graph-step $\left.\left.m v(l, 1))\right)\right) \mid$
by (subst sum.cartesian-product) (simp add:abs-mult)
also have $\ldots=2 * \mid\left(\sum(x, y) \in\right.$ verts $G .\left(\sum l \leftarrow[0 . .<4] . g(x, y) * g(\operatorname{mgg}\right.$-graph-step $\left.\left.m(x, y)(l, 1))\right)\right) \mid$ by (subst interv-sum-list-conv-sum-set-nat)
(auto simp add:atLeast0LessThan case-prod-beta simp del:mgg-graph-step.simps)
also have $\ldots=2 * \mid \sum(x, y) \in$ verts $G . g(x, y) *(g(x+2 * y, y)+g(x+2 * y+1, y)+g(x, y+2 * x)+g(x, y+2 * x+1)) \mid$
by (simp add:case-prod-beta numeral-eq-Suc algebra-simps)
also have $\ldots \leq 2 *((2.5 *$ sqrt 2) $)$ g-norm g^2)
by (intro mult-left-mono hoory-8-3 1 periodic-g) auto
also have $\ldots \leq$ ? $R$ unfolding 2 by $\operatorname{simp}$
finally show? ?thesis by simp
qed
definition $M G G$-bound :: real
where $M G G$-bound $=5 *$ sqrt $2 / 8$
Main result: Theorem 8.2 in Hoory.
lemma mgg-numerical-radius: $\Lambda_{a} \leq M G G$-bound

```
proof -
 have }\mp@subsup{\Lambda}{a}{}\leq(5*\mathrm{ sqrt 2)/real d
 by (intro expander-intro mgg-numerical-radius-aux) auto
 also have ... = MGG-bound
 unfolding MGG-bound-def d-eq-8 by simp
 finally show ?thesis by simp
qed
end
end
```


## 9 Random Walks

theory Expander-Graphs-Walks imports Expander-Graphs-Algebra Expander-Graphs-Eigenvalues Expander-Graphs-TTS Constructive-Chernoff-Bound<br>begin

unbundle intro-cong-syntax
no-notation Matrix.vec-index (infixl \$ 100)
hide-const Matrix.vec-index
hide-const Matrix.vec
no-notation Matrix.scalar-prod (infix • 70)
fun walks' $::\left({ }^{\prime} a\right.$, 'b) pre-digraph $\Rightarrow$ nat $\Rightarrow$ ('a list) multiset where
walks' $G 0=$ image-mset $(\lambda x .[x])($ mset-set $($ verts $G)) \mid$
walks' $G($ Suc $n)=$
concat-mset $\{\#\{\# w @[z] . z \in \#$ vertices-from $G($ last $w) \#\} . w \in \#$ walks' $G n \#\}$
definition walks $G l=\left(\right.$ case $l$ of $0 \Rightarrow\{\#[] \#\} \mid S u c ~ p l \Rightarrow$ walks' $\left.^{\prime} G p l\right)$
lemma Union-image-mono: $(\bigwedge x . x \in A \Longrightarrow f x \subseteq g x) \Longrightarrow \bigcup\left(f^{\prime} A\right) \subseteq \bigcup\left(g^{\prime} A\right)$ by auto

## context fin-digraph

begin
lemma count-walks':
assumes set $x s \subseteq$ verts $G$
assumes length $x s=l+1$
shows count (walks' Gl)xs $=\left(\prod i \in\{. .<l\}\right.$.count $($ edges $\left.G)(x s!i, x s!(i+1))\right)$
proof -
have $a: x s \neq[]$ using assms(2) by auto
have count (walks' $G$ (length $x s-1)) x s=\left(\prod i<\right.$ length $x s-1$. count (edges $\left.G\right)(x s!i, x s!(i$ + 1)))
using a assms(1)
proof (induction xs rule:rev-nonempty-induct)
case (single $x$ )
hence $x \in$ verts $G$ by simp
hence count $\{\#[x] . x \in \#$ mset-set (verts $G) \#\}[x]=1$

```
 by (subst count-image-mset-inj, auto simp add:inj-def)
 then show ?case by simp
 next
 case (snoc x xs)
 have set-xs: set xs \subseteq verts G using snoc by simp
 define l where l= length xs - 1
 have l-xs: length xs = l + 1 unfolding l-def using snoc by simp
 have count (walks' G (length (xs @ [x]) - 1)) (xs @ [x])=
 (\sumys\in#walks' G l. count {#ys @ [z]. z \in# vertices-from G (last ys)#} (xs@ @ [x]))
 by (simp add:l-xs count-concat-mset image-mset.compositionality comp-def)
 also have ... = (\sumys\in#walks' Gl.
 (if ys = xs then count {#xs@ [z].z\in# vertices-from G (last xs)#} (xs @ [x]) else 0))
 by (intro arg-cong[where f=sum-mset] image-mset-cong) (auto intro!: count-image-mset-0-triv)
 also have ... = (\sumys\in#walks' G l.(if ys=xs then count (vertices-from G (last xs)) x else 0))
 by (subst count-image-mset-inj, auto simp add:inj-def)
 also have ... = count (walks' G l) xs * count (vertices-from G (last xs)) x
 by (subst sum-mset-delta, simp)
 also have ... = count (walks'G l) xs * count (edges G) (last xs, x)
 unfolding vertices-from-def count-mset-exp image-mset-filter-mset-swap[symmetric]
 filter-filter-mset by (simp add:prod-eq-iff)
 also have ... = count (walks' G l) xs * count (edges G) ((xs@[x])!l,(xs@[x])!(l+1))
 using snoc(1) unfolding l-def nth-append last-conv-nth[OF snoc(1)] by simp
 also have ... = (\prodi<l+1.count (edges G) ((xs@[x])!i,(xs@[x])!(i+1)))
 unfolding l-def snoc(2)[OF set-xs] by (simp add:nth-append)
 finally have count (walks' G (length (xs @ [x]) - 1)) (xs @ [x])=
 (\prodi<length (xs@[x]) - 1.count (edges G) ((xs@[x])!i,(xs@[x])!(i+1)))
 unfolding l-def using snoc(1) by simp
 then show ?case by simp
 qed
 moreover have l= length xs - 1 using a assms by simp
 ultimately show ?thesis by simp
qed
lemma count-walks:
 assumes set xs \subseteqverts G
 assumes length xs = l l>0
 shows count (walks G l) xs = (\prodi\in{..<l-1}.count (edges G) (xs!i, xs! ! i+1)))
 using assms unfolding walks-def by (cases l, auto simp add:count-walks')
lemma set-walks':
 set-mset (walks'G l)\subseteq{xs. set xs \subseteq verts G^ length xs = (l+1)}
proof (induction l)
 case 0
 then show ?case by auto
next
 case (Suc l)
 have set-mset (walks' G (Suc l)) =
 (\bigcupx\inset-mset (walks' G l).(\lambdaz.x@ [z])'set-mset (vertices-from G (last x)))
 by (simp add:set-mset-concat-mset)
 also have ...\subseteq(\bigcupx\in{xs. set xs\subseteq verts G^ length xs =l+1}.
 (\lambdaz.x @ [z])' set-mset (vertices-from G (last x)))
 by (intro Union-mono image-mono Suc)
 also have ...\subseteq(\bigcupx\in{xs. set xs\subseteq verts G}\wedge\mathrm{ length xs =l+1}.((zz.x@ [z])'verts G)
 by (intro Union-image-mono image-mono set-mset-vertices-from)
 also have ...\subseteq{xs. set xs\subseteq verts G^ length xs = (Sucl + 1)}
 by (intro subsetI) auto
```

finally show? case by simp
qed
lemma set-walks:
set-mset $($ walks $G l) \subseteq\{x s$. set $x s \subseteq$ verts $G \wedge$ length $x s=l\}$
unfolding walks-def using set-walks' by (cases l, auto)
lemma set-walks-2:
assumes $x s \in \#$ walks' Gl
shows set $x s \subseteq$ verts $G$ xs $\neq[]$
proof -
have $a: x s \in$ set-mset (walks' Gl)
using assms by simp
thus set $x s \subseteq$ verts $G$ using set-walks' by auto
have length $x s \neq 0$
using set-walks' a by fastforce
thus $x s \neq[]$ by $\operatorname{simp}$
qed
lemma set-walks-3:
assumes $x s \in \#$ walks $G l$
shows set $x s \subseteq$ verts $G$ length $x s=l$
using set-walks assms by auto
end
lemma measure-pmf-of-multiset:
assumes $A \neq\{\#\}$
shows measure $(p m f$-of-multiset $A) S=$ real $($ size $($ filter-mset $(\lambda x . x \in S) A)) /$ size $A$
(is ? $L=? R$ )
proof -
have sum $($ count $A)(S \cap$ set-mset $A)=\operatorname{size}($ filter-mset $(\lambda x . x \in S \cap$ set-mset $A) A)$
by (intro sum-count-2) simp
also have $\ldots=\operatorname{size}($ filter-mset $(\lambda x . x \in S) A)$
by (intro arg-cong[where $f=$ size] filter-mset-cong) auto
finally have $a$ : sum (count $A)(S \cap$ set-mset $A)=\operatorname{size}($ filter-mset $(\lambda x . x \in S) A)$ by simp
have $? L=$ measure $(p m f$-of-multiset $A)(S \cap$ set-mset $A)$
using assms by (intro measure-eq-AE AE-pmfI) auto
also have $\ldots=\operatorname{sum}(p m f(p m f$-of-multiset $A))(S \cap$ set-mset $A)$
by (intro measure-measure-pmf-finite) simp
also have $\ldots=\left(\sum x \in S \cap\right.$ set-mset $A$. count $A x /$ size $\left.A\right)$
using assms by (intro sum.cong, auto)
also have $\ldots=\left(\sum x \in S \cap\right.$ set-mset $A$. count $\left.A x\right) /$ size $A$
by (simp add:sum-divide-distrib)
also have $\ldots=$ ? $R$
using $a$ by simp
finally show?thesis
by $\operatorname{simp}$
qed
lemma pmf-of-multiset-image-mset:
assumes $A \neq\{\#\}$
shows pmf-of-multiset (image-mset $f A)=\operatorname{map-pmf} f($ pmf-of-multiset $A)$
using assms by (intro pmf-eqI) (simp add:pmf-map measure-pmf-of-multiset count-mset-exp image-mset-filter-mset-swap[symmetric])

```
context regular-graph
begin
lemma size-walks':
 size (walks' Gl) = card (verts G) *d`l
proof (induction l)
 case 0
 then show ?case by simp
next
 case (Suc l)
 have a:out-degree G (last x)=d if x \in# walks' Gl for }
 proof -
 have last x verts G
 using set-walks-2 that by fastforce
 thus ?thesis
 using reg by simp
 qed
 have size (walks' G (Suc l)) = (\sumx\in#walks' G l. out-degree G (last x))
 by (simp add:size-concat-mset image-mset.compositionality comp-def verts-from-alt out-degree-def)
 also have ... = (\sumx\in#walks' G l. d)
 by (intro arg-cong[where f=sum-mset] image-mset-cong a) simp
 also have ... = size (walks'G l)*d by simp
 also have ... = card (verts G)* d`(Suc l) using Suc by simp
 finally show ?case by simp
qed
lemma size-walks:
 size (walks G l)}=(\mathrm{ if }l>0\mathrm{ then n* d`(l-1) else 1)
 using size-walks' unfolding walks-def n-def by (cases l, auto)
lemma walks-nonempty:
 walks Gl\not={#}
proof -
 have size (walks G l) > 0
 unfolding size-walks using d-gt-0 n-gt-0 by auto
 thus walks Gl\not={#}
 by auto
qed
end
context regular-graph-tts
begin
lemma g-step-remains-orth:
 assumes g-inner f (}\lambda\mathrm{ -. 1) = 0
 shows g-inner (g-step f) (\lambda-. 1)=0(is ?L = ?R)
proof -
 have ?L = (A*v (\chi i.f(enum-verts i)))}\cdot
 unfolding g-inner-conv g-step-conv one-vec-def by simp
 also have ... = (\chi i.f(enum-verts i)) • 1
 by (intro markov-orth-inv markov)
 also have ... =g-inner f (}\lambda\mathrm{ -. 1)
 unfolding g-inner-conv one-vec-def by simp
 also have ... = 0 using assms by simp
 finally show ?thesis by simp
```

qed

```
lemma spec-bound:
 spec-bound \(A \Lambda_{a}\)
proof -
 have norm \((A * v v) \leq \Lambda_{a} *\) norm \(v\) if \(v \cdot 1=(0::\) real \()\) for \(v::\) real \(^{\wedge \prime} n\)
 unfolding \(\Lambda_{e}-e q-\Lambda\)
 by (intro \(\gamma_{a}\)-real-bound that)
 thus ?thesis
 unfolding spec-bound-def using \(\Lambda\)-ge-0 by auto
qed
```

A spectral expansion rule that does not require orthogonality of the vector for the stationary distribution:
lemma expansionD3:
$\mid g$-inner $f(g$-step $f) \mid \leq \Lambda_{a} * g$-norm f^2 $+\left(1-\Lambda_{a}\right) * g$-inner $f\left(\lambda\right.$-. 1) ${ }^{2} 2 / n($ is $? L \leq$ ? $R)$
proof -
define $v$ where $v=(\chi i . f($ enum-verts $i))$
define $v 1::$ real ${ }^{\wedge}$ ' $n$ where $v 1=((v \cdot 1) / n) *_{R} 1$
define $v 2:: r^{2}{ }^{\wedge} ' n$ where $v 2=v-v 1$
have $v$-eq: $v=v 1+v 2$
unfolding $v 2$-def by simp
have 0 : $A * v v 1=v 1$
unfolding v1-def using markov-apply[OF markov]
by (simp add:algebra-simps)
have 1:v1 v* $A=v 1$
unfolding v1-def using markov-apply[OF markov]
by (simp add:algebra-simps scaleR-vector-matrix-assoc)
have $v 2 \cdot 1=v \cdot 1-v 1 \cdot 1$
unfolding $v 2-d e f$ by (simp add:algebra-simps)
also have $\ldots=v \cdot 1-v \cdot 1 *$ real $C A R D\left({ }^{\prime} n\right) /$ real $n$
unfolding v1-def by (simp add:inner-1-1)
also have $\ldots=0$
using verts-non-empty unfolding card $n$-def by simp
finally have $4:$ v2 $\cdot 1=0$ by simp
hence 2: $11 \cdot v 2=0$
unfolding $v 1$-def by (simp add:inner-commute)
define f2 where f2 $i=$ v2 $\$($ enum-verts-inv $i)$ for $i$
have f2-def: v2 $=(\chi$ i.f2 (enum-verts $i))$
unfolding f2-def Rep-inverse by simp
have 6: g-inner f2 $(\lambda$-. 1$)=0$
unfolding $g$-inner-conv f2-def[symmetric] one-vec-def[symmetric] 4 by simp
have $|v 2 \cdot(A * v v 2)|=\mid g$-inner f2 ( $g$-step f2) $\mid$
unfolding f2-def g-inner-conv $g$-step-conv by simp
also have $\ldots \leq \Lambda_{a} *(g \text {-norm f2 })^{2}$
by (intro expansionD1 6)
also have $\ldots=\Lambda_{a} *($ norm v2 $)$ ^2
unfolding $g$-norm-conv f2-def by simp
finally have $5:\left|v^{2} \cdot\left(A * v v_{2}\right)\right| \leq \Lambda_{a} *(\text { norm v2 })^{2}$ by simp
have 3: norm (1 :: real^1 $n)^{\text {^2 }}=n$
unfolding power2-norm-eq-inner inner-1-1 card $n$-def by presburger
have $? L=|v \cdot(A * v v)|$
unfolding $g$-inner-conv $g$-step-conv $v$-def by simp
also have $\ldots=|v 1 \cdot(A * v v 1)+v 2 \cdot(A * v v 1)+v 1 \cdot(A * v v 2)+v 2 \cdot(A * v v 2)|$
unfolding $v$-eq by (simp add:algebra-simps)
also have $\ldots=\left|v 1 \cdot v 1+v 2 \cdot v 1+v 1 \cdot v 2+v_{2} \cdot(A * v 2)\right|$
unfolding dot-lmul-matrix[where $x=v 1$,symmetric] 01 by simp
also have $\ldots=\left|v 1 \cdot v 1+v_{2} \cdot(A * v 2)\right|$
using 2 by (simp add:inner-commute)
also have $\ldots \leq \mid$ norm v1^2 $|+| v 2 \cdot(A * v$ v2 $) \mid$
unfolding power2-norm-eq-inner by (intro abs-triangle-ineq)
also have $\ldots \leq$ norm v1^2 $+\Lambda_{a} *$ norm v2^2
by (intro add-mono 5) auto
also have $\ldots=\Lambda_{a} *\left(\right.$ norm v1 ${ }^{\text {®2 } 2}+$ norm v2^2 $)+\left(1-\Lambda_{a}\right) *$ norm v1^2
by (simp add:algebra-simps)
also have $\ldots=\Lambda_{a} *$ norm $v^{\wedge 2}+\left(1-\Lambda_{a}\right) *$ norm v1^2
unfolding $v$-eq pythagoras [OF 2] by simp
also have $\ldots=\Lambda_{a} *$ norm v^2 $+\left(\left(1-\Lambda_{a}\right)\right) *((v \cdot 1) \wedge 2 * n) / n \wedge 2$
unfolding v1-def by (simp add:power-divide power-mult-distrib 3)
also have $\ldots=\Lambda_{a} *$ norm $v^{\wedge} 2+\left(\left(1-\Lambda_{a}\right) / n\right) *(v \cdot 1)^{\wedge} 2$
by (simp add:power2-eq-square)
also have ... $=$ ? $R$
unfolding $g$-norm-conv $g$-inner-conv $v$-def one-vec-def by (simp add:field-simps)
finally show? ?thesis by simp
qed
definition ind-mat where ind-mat $S=\operatorname{diag}\left(\right.$ ind-vec (enum-verts $\left.-{ }^{\text {' }} S\right)$ )
lemma walk-distr:
measure (pmf-of-multiset (walks Gl)) $\{\omega .(\forall i<l . \omega!i \in S i)\}=$
foldl $(\lambda x M . M * v x)$ stat (intersperse $A(\operatorname{map}(\lambda i$. ind-mat $(S i))[0 . .<l])) \cdot 1$
(is ? $L=? R$ )
proof (cases $l>0$ )
case True
let $? n=$ real $n$
let ? $d=$ real $d$
let ? $W=\left\{\left(w::^{\prime} a\right.\right.$ list $)$. set $w \subseteq$ verts $G \wedge$ length $\left.w=l\right\}$
let ? $V=\{(w:: ' n$ list $)$. length $w=l\}$
have a: set-mset (walks Gl) $\subseteq$ ? W
using set-walks by auto
have $b$ : finite ? W
by (intro finite-lists-length-eq) auto
define $l p$ where $l p=l-1$
define $x s$ where $x s=\operatorname{map}(\lambda i$ ind-mat $(S i))[0 . .<l]$
have $x s \neq[]$ unfolding $x s$-def using True by simp
then obtain $x h x t$ where $x h-x t: x h \# x t=x s$ by (cases $x s$, auto)
have length $x s=l$
unfolding $x s$-def by simp
hence len-xt: length $x t=l p$
using True unfolding $x h$-xt[symmetric] lp-def by simp
have $x h=x s!0$
unfolding $x h-x t[$ symmetric $]$ by simp
also have $\ldots=$ ind-mat ( $\left.\begin{array}{ll}S & 0\end{array}\right)$
using True unfolding $x s$-def by simp
finally have $x h$-eq: $x h=$ ind-mat $\left(\begin{array}{ll}S & 0\end{array}\right)$
by $\operatorname{simp}$
have inj-map-enum-verts: inj-on (map enum-verts) ?V
using bij-betw-imp-inj-on[OF enum-verts] inj-on-subset
by (intro inj-on-mapI) auto
have card ? $W=$ card $($ verts $G) \uparrow l$
by (intro card-lists-length-eq) simp
also have $\ldots=\operatorname{card}\{w$. set $w \subseteq(U N I V:: ' n$ set $) \wedge$ length $w=l\}$
unfolding card[symmetric] by (intro card-lists-length-eq[symmetric]) simp
also have...$=$ card ? $V$
by (intro arg-cong[where $f=$ card $]$ ) auto
also have $\ldots=\operatorname{card}$ (map enum-verts' ?V)
by (intro card-image[symmetric] inj-map-enum-verts)
finally have card ? $W=$ card ( map enum-verts'?V)
by $\operatorname{simp}$
hence map enum-verts '? $V=$ ? $W$
using bij-betw-apply[OF enum-verts]
by (intro card-subset-eq b image-subsetI) auto
hence bij-map-enum-verts: bij-betw (map enum-verts) ?V ?W
using inj-map-enum-verts unfolding bij-betw-def by auto
have $? L=$ size $\{\# w \in \#$ walks $G l . \forall i<l . w!i \in S i \#\} /\left(? n * ? d^{\wedge}(l-1)\right)$
using True unfolding size-walks measure-pmf-of-multiset[OF walks-nonempty] by simp
also have $\ldots=\left(\sum w \in\right.$ ? $W$. real $($ count $($ walks $G l) w) *$ of-bool $\left.(\forall i<l . w!i \in S i)\right) /\left(? n *\right.$ ? $\left.d^{\wedge}(l-1)\right)$
unfolding size-filter-mset-conv sum-mset-conv-2[OF a b] by simp
also have $\ldots=\left(\sum w \in\right.$ ? $W$. $\left(\prod i<l-1\right.$. real (count (edges $\left.\left.\left.G\right)(w!i, w!(i+1))\right)\right)$ *

$$
\left.\left(\prod i<l . \text { of-bool }(w!i \in S i)\right)\right) /(? n * ? d \wedge(l-1))
$$

using True by (intro sum.cong arg-cong2[where $f=(/)]$ ) (auto simp add: count-walks)
also have...$=$
$\left(\sum w \in ? W .\left(\prod i<l-1\right.\right.$. real $($ count $($ edges $\left.G)(w!i, w!(i+1))) / ? d\right) *\left(\prod i<l\right.$. of-bool $(w!i \in S$ i)) )/ ? $n$
using True unfolding prod-dividef by (simp add:sum-divide-distrib algebra-simps)
also have ... $=$
( $\sum w \in$ ? $V .\left(\prod i<l-1\right.$. count (edges $\left.G\right)$ (map enum-verts $w!i, m a p$ enum-verts $\left.w!(i+1)\right) /$ ? $d$ ) * $\left(\prod i<l\right.$. of-bool (map enum-verts $\left.\left.w!i \in S i\right)\right)$ ) ? $n$
by (intro sum.reindex-bij-betw[symmetric] arg-cong2[where $f=(/)]$ refl bij-map-enum-verts)
also have ... =
$\left(\sum w \in ? V .\left(\prod i<l p . A \$ w!(i+1) \$ w!i\right) *\left(\prod i<S u c\right.\right.$ lp. of-bool(enum-verts $\left.\left.\left.(w!i) \in S i\right)\right)\right) / ? n$
unfolding $A$-def lp-def using True by simp
also have $\ldots=\left(\sum w \in ? V .\left(\prod i<l p . A \$ w!(i+1) \$ w!i\right) *\right.$
$\left(\prod i \in\right.$ insert $0(S u c ‘\{. .<l p\})$. of-bool(enum-verts $\left.\left.\left.(w!i) \in S i\right)\right)\right) / ? n$
using lessThan-Suc-eq-insert-0
by (intro sum.cong arg-cong2[where $f=(/)]$ arg-cong2 $[$ where $f=(*)]$ prod.cong) auto
also have $\ldots=\left(\sum w \in\right.$ ? $V .\left(\prod i<l p\right.$. of-bool (enum-verts $\left.\left.(w!(i+1)) \in S(i+1)\right) * A \$ w!(i+1) \$ w!i\right)$

* of-bool(enum-verts(w!0) $\in S$ 0))/?n
by (simp add:prod.reindex algebra-simps prod.distrib)
also have ... =
$\left(\sum w \in ? V .\left(\prod i<l p .(\right.\right.$ ind-mat $\left.(S(i+1)) * * A) \$ w!(i+1) \$ w!i\right) *$ of-bool $($ enum-verts $(w!0) \in S$
0))/ ?n
unfolding diag-def ind-vec-def matrix-matrix-mult-def ind-mat-def
by (intro sum.cong arg-cong2[where $f=(/)]$ arg-cong2[where $f=(*)]$ prod.cong refl)
(simp add:if-distrib if-distribR sum.If-cases)
also have ... $=$
$\left(\sum w \in ? V .\left(\prod i<l p .(x s!(i+1) * * A) \$ w!(i+1) \$ w!i\right) *\right.$ of-bool(enum-verts $\left.\left.(w!0) \in S 0\right)\right) / ? n$
unfolding $x s$-def lp-def True
by (intro sum.cong arg-cong2[where $f=(/)]$ arg-cong2[where $f=(*)]$ prod.cong refl) auto also have ... $=$

$$
\left.\left(\sum w \in ? V .\left(\prod i<l p .(x t!i * * A) \$ w!(i+1) \$ w!i\right) * \text { of-bool(enum-verts }(w!0) \in S 0\right)\right) / ? n
$$

unfolding xh-xt[symmetric $]$ by auto
also have $\ldots=\left(\sum w \in ? V .\left(\prod i<l p .(x t!i * * A) \$ w!(i+1) \$ w!i\right) *\left(\right.\right.$ ind-mat $\left(\begin{array}{ll}S & 0) * v \\ \text { stat })\end{array} \$ w!0\right)$ using $n$-def unfolding matrix-vector-mult-def diag-def stat-def ind-vec-def ind-mat-def card by (simp add:sum.If-cases if-distrib if-distribR sum-divide-distrib)
also have $\ldots=\left(\sum w \in ? V .\left(\prod i<l p .(x t!i * * A) \$ w!(i+1) \$ w!i\right) *(x h * v\right.$ stat $\left.) \$ w!0\right)$ unfolding $x h$-eq by simp
also have $\ldots=$ foldl $(\lambda x M . M * v x)(x h * v \operatorname{stat})(\operatorname{map}(\lambda x . x * * A) x t) \cdot 1$
using True unfolding foldl-matrix-mult-expand-2 by (simp add:len-xt lp-def)
also have $\ldots=$ foldl $(\lambda x M . M * v(A * v x))(x h * v$ stat $) x t \cdot 1$
by (simp add: matrix-vector-mul-assoc foldl-map)
also have $\ldots=$ foldl $(\lambda x M . M * v x)$ stat (intersperse $A(x h \# x t)) \cdot 1$
by (subst foldl-intersperse-2, simp)
also have $\ldots=? R$ unfolding $x h-x t$ xs-def by simp
finally show ?thesis by simp
next
case False
hence $l=0$ by $\operatorname{simp}$
thus ?thesis unfolding stat-def by (simp add: inner-1-1)
qed
lemma hitting-property:
assumes $S \subseteq$ verts $G$
assumes $I \subseteq\{. .<l\}$
defines $\mu \equiv$ real (card $S$ ) / card (verts $G$ )
shows measure (pmf-of-multiset (walks Gl)) \{w. set (nths wI) $\subseteq S\} \leq\left(\mu+\Lambda_{a} *(1-\mu)\right.$ ) card $I$ (is ? $L \leq ? R$ )
proof -
define $T$ where $T=(\lambda i$. if $i \in I$ then $S$ else UNIV $)$
have 0 : ind-mat UNIV $=$ mat 1
unfolding ind-mat-def diag-def ind-vec-def Finite-Cartesian-Product.mat-def by vector
have $\Lambda$-range: $\Lambda_{a} \in\{0 . .1\}$
using $\Lambda$-ge-0 $\Lambda$-le-1 by simp
have $S \subseteq$ range enum-verts
using assms(1) enum-verts unfolding bij-betw-def by simp
moreover have inj enum-verts
using bij-betw-imp-inj-on[OF enum-verts] by simp
ultimately have $\mu$-alt: $\mu=$ real (card (enum-verts -' $S)$ )/CARD ('n)
unfolding $\mu$-def card by (subst card-vimage-inj) auto
have $? L=$ measure $($ pmf-of-multiset (walks $G l))\{w . \forall i<l . w!i \in T i\}$ using walks-nonempty set-walks-3 unfolding $T$-def set-nths
by (intro measure-eq-AE AE-pmfI) auto
also have $\ldots=$ foldl $(\lambda x M . M * v x)$ stat
(intersperse $A(\operatorname{map}(\lambda i$. (if $i \in I$ then ind-mat $S$ else mat 1$))[0 . .<l])) \cdot 1$
unfolding walk-distr $T$-def by (simp add:if-distrib if-distribR 0 cong:if-cong)
also have ... $\leq$ ? $R$
unfolding $\mu$-alt ind-mat-def
by (intro hitting-property-alg-2[OF $\Lambda$-range assms(2) spec-bound markov])
finally show? ?thesis by simp
qed
lemma uniform-property:
assumes $i<l x \in$ verts $G$
shows measure (pmf-of-multiset (walks Gl)) \{w.w!i=x\}=1/real(card (verts $G)$ )
(is ? $L=? R$ )
proof -
obtain $x i$ where $x i$-def: enum-verts $x i=x$
using assms(2) bij-betw-imp-surj-on[OF enum-verts] by force
define $T$ where $T=(\lambda j$. if $j=i$ then $\{x\}$ else UNIV $)$
have $\operatorname{diag}($ ind-vec $U N I V)=$ mat 1
unfolding diag-def ind-vec-def Finite-Cartesian-Product.mat-def by vector
moreover have enum-verts $-‘\{x\}=\{x i\}$
using bij-betw-imp-inj-on[OF enum-verts]
unfolding vimage-def xi-def[symmetric] by (auto simp add:inj-on-def)
ultimately have 0 : ind-mat $(T j)=($ if $j=i$ then diag (ind-vec $\{x i\})$ else mat 1 ) for $j$
unfolding $T$-def ind-mat-def by (cases $j=i$, auto)
have $? L=$ measure $(p m f$-of-multiset (walks $G l))\{w . \forall j<l . w!j \in T j\}$ unfolding $T$-def using assms(1) by simp
also have $\ldots=$ foldl $(\lambda x M . M * v x)$ stat $($ intersperse $A(\operatorname{map}(\lambda j$.ind-mat $(T j))[0 . .<l])) \cdot 1$
unfolding walk-distr by simp
also have $\ldots=1 / C A R D(' n)$
unfolding 0 uniform-property-alg[OF assms(1) markov] by simp
also have..$=$ ? $R$
unfolding card by simp
finally show ?thesis by simp
qed
end
context regular-graph
begin
lemmas expansionD3 $=$
regular-graph-tts.expansionD3[OF eg-tts-1, internalize-sort ' $n$ :: finite, OF - regular-graph-axioms, unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]
lemmas $g$-step-remains-orth $=$
regular-graph-tts.g-step-remains-orth $[$ OF eg-tts-1, internalize-sort ' $n$ :: finite, OF - regular-graph-axioms, unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]
lemmas hitting-property $=$
regular-graph-tts.hitting-property[OF eg-tts-1, internalize-sort ' $n$ :: finite, OF - regular-graph-axioms, unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]
lemmas uniform-property-2 $=$
regular-graph-tts.uniform-property $[O F$ eg-tts-1, internalize-sort ' $n$ :: finite, OF - regular-graph-axioms, unfolded remove-finite-premise, cancel-type-definition, OF verts-non-empty]
theorem uniform-property:
assumes $i<l$
shows map-pmf $(\lambda w . w!i)($ pmf-of-multiset $($ walks $G l))=p m f$-of-set $($ verts $G)($ is ? $L=? R)$ proof (rule pmf-eqI)
fix $x::^{\prime} a$

```
 have a:measure (pmf-of-multiset (walks G l)) {w.w!i=x}=0 (is ?L1=?R1)
 if }x\not\in\mathrm{ verts }
 proof -
 have ?L1 \leq measure (pmf-of-multiset (walks G l)) {w. set w\subseteqverts G^x\in set w}
 using walks-nonempty set-walks-3 assms(1)
 by (intro pmf-mono) auto
 also have ... \leqmeasure (pmf-of-multiset (walks Gl)) {}
 using that by (intro pmf-mono) auto
 also have ... = 0 by simp
 finally have ?L1 \leq 0 by simp
 thus ?thesis using measure-le-0-iff by blast
 qed
 have pmf ?L x = measure (pmf-of-multiset (walks G l)) {w.w!i=x}
 unfolding pmf-map by (simp add:vimage-def)
 also have ... = indicator (verts G)x/real (card (verts G))
 using uniform-property-2[OF assms(1)] a
 by (cases }x\in\mathrm{ verts G,auto)
 also have ... = pmf ?R x
 using verts-non-empty by (intro pmf-of-set[symmetric]) auto
 finally show pmf ?L x = pmf ?R x by simp
qed
lemma uniform-property-gen:
 fixes S :: 'a set
 assumes S\subseteq verts Gi<l
 defines }\mu\equiv\mathrm{ real (card S)/ card (verts G)
 shows measure (pmf-of-multiset (walks G l)) {w.w!i\inS}=\mu(is ?L=?R)
proof -
 have ?L = measure (map-pmf (\lambdaw.w!i) (pmf-of-multiset (walks G l)))S
 unfolding measure-map-pmf by (simp add:vimage-def)
 also have ... = measure (pmf-of-set (verts G)) S
 unfolding uniform-property[OF assms(2)] by simp
 also have ... = ?R
 using verts-non-empty Int-absorb1 [OF assms(1)]
 unfolding }\mu\mathrm{ -def by (subst measure-pmf-of-set) auto
 finally show ?thesis by simp
qed
theorem kl-chernoff-property:
 assumes l>0
 assumes S\subseteq verts }
 defines }\mu\equiv\mathrm{ real (card S) / card (verts G)
 assumes }\gamma\leq1\mu+\mp@subsup{\Lambda}{a}{}*(1-\mu)\in{0<..\gamma
 shows measure (pmf-of-multiset (walks G l)) {w.real (card {i\in{..<l}.w!i\inS})\geq\gamma*l}
 \leqexp (- real l * KL-div \gamma (}\mu+\mp@subsup{\Lambda}{a}{*}*(1-\mu)))(is?L\leq?R
proof -
 let ?\delta = (\sumi<l. }\mu+\mp@subsup{\Lambda}{a}{*}*(1-\mu))/
```



```
T
 (is ?L1\leq?R1) if T\subseteq{..<l} for T
 proof -
 have ?L1 = measure (pmf-of-multiset (walks G l)) {w. set (nths wT)\subseteqS}
 unfolding set-nths setcompr-eq-image using that set-walks-3 walks-nonempty
 by (intro measure-eq-AE AE-pmfI) (auto simp add:image-subset-iff)
 also have ... \leq?R1
```

```
 unfolding }\mu\mathrm{ -def by (intro hitting-property[OF assms(2) that])
 finally show ?thesis by simp
 qed
```

        have \(? L \leq \exp (-\) real \(l * K L\)-div \(\gamma ? \delta)\)
            using assms \((1,4,5)\) a by (intro impagliazzo-kabanets-pmf) simp-all
    also have \(\ldots=? R\) by simp
    finally show ?thesis by simp
    qed
end
unbundle no-intro-cong-syntax
end

## 10 Graph Powers

```
theory Expander-Graphs-Power-Construction
 imports
 Expander-Graphs-Walks
 Graph-Theory.Arc-Walk
begin
unbundle intro-cong-syntax
```

fun is-arc-walk :: (' $a$, 'b) pre-digraph $\Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} b$ list $\Rightarrow$ bool
where
is-arc-walk $G-[]=$ True |
is-arc-walk $G y(x \# x s)=($ is-arc-walk $G($ head $G x) x s \wedge t a i l G x=y \wedge x \in \operatorname{arcs} G)$
definition arc-walk-head :: ('a, 'b) pre-digraph $\Rightarrow\left({ }^{\prime} a \times\right.$ 'b list $) \Rightarrow{ }^{\prime} a$
where
arc-walk-head $G x=($ if snd $x=[]$ then fst $x$ else head $G($ last $($ snd $x)))$
lemma is-arc-walk-snoc:
is-arc-walk $G y(x s @[x]) \longleftrightarrow$ is-arc-walk $G y$ xs $\wedge x \in$ out-arcs $G$ (arc-walk-head $G(y, x s))$
by (induction xs arbitrary: $y$, simp-all add:ac-simps arc-walk-head-def)
lemma is-arc-walk-set:
assumes is-arc-walk $G u w$
shows set $w \subseteq$ arcs $G$
using assms by (induction $w$ arbitrary: $u$, auto)
lemma (in wf-digraph) awalk-is-arc-walk:
assumes $u \in$ verts $G$
shows is-arc-walk $G u w \longleftrightarrow$ awalk $u w$ (awlast $u w$ )
using assms unfolding awalk-def by (induction warbitrary: u, auto)
definition arc-walks :: ('a, 'b) pre-digraph $\Rightarrow$ nat $\Rightarrow\left({ }^{\prime} a \times\right.$ 'b list) set
where
arc-walks $G l=\{(u, w) . u \in$ verts $G \wedge i s$-arc-walk $G u w \wedge$ length $w=l\}$
lemma arc-walks-len:
assumes $x \in$ arc-walks $G l$
shows length $($ snd $x)=l$
using assms unfolding arc-walks-def by auto

```
lemma (in wf-digraph) awhd-of-arc-walk:
 assumes w\in arc-walks Gl
 shows awhd (fst w) (snd w) = fst w
 using assms unfolding arc-walks-def awalk-verts-def
 by (cases snd w, auto)
lemma (in wf-digraph) awlast-of-arc-walk:
 assumes w\in arc-walks Gl
 shows awlast (fst w) (snd w) = arc-walk-head G w
 unfolding awalk-verts-conv arc-walk-head-def by simp
lemma (in wf-digraph) arc-walk-head-wellformed:
 assumes w\in arc-walks Gl
 shows arc-walk-head G w}\in\mathrm{ verts }
proof (cases snd w= [])
 case True
 then show ?thesis
 using assms unfolding arc-walks-def arc-walk-head-def by auto
next
 case False
 have 0:is-arc-walk G (fst w) (snd w) using assms unfolding arc-walks-def by auto
 have last (snd w) \in set (snd w)
 using False last-in-set by auto
 also have ... \subseteqarcs G
 by (intro is-arc-walk-set[OF 0])
 finally have last (snd w) \in arcs G by simp
 thus ?thesis unfolding arc-walk-head-def using False by simp
qed
lemma (in wf-digraph) arc-walk-tail-wellformed:
 assumes w}\in\mathrm{ arc-walks Gl
 shows fst w\in verts G
 using assms unfolding arc-walks-def by auto
lemma (in fin-digraph) arc-walks-fin:
 finite (arc-walks G l)
proof -
 have 0:finite (verts }G\times{w.\mathrm{ set w}\subseteq\mathrm{ arcs }G\wedge\mathrm{ length w=l})
 by (intro finite-cartesian-product finite-lists-length-eq) auto
 show finite (arc-walks G l)
 unfolding arc-walks-def using is-arc-walk-set[where G=G]
 by (intro finite-subset[OF - 0] subsetI) auto
qed
lemma (in wf-digraph) awalk-verts-unfold:
 assumes w\in arc-walks Gl
 shows awalk-verts (fst w) (snd w) = fst w#map (head G) (snd w) (is ?L = ?R)
proof -
 obtain uv where w-def: w= (u,v) by fastforce
 have awalk u v (awlast uv)
 using assms unfolding w-def arc-walks-def
 by (intro iffD1[OF awalk-is-arc-walk]) auto
 hence cas: cas u v (awlast u v)
 unfolding awalk-def by simp
 have 0: tail G(hd v)=u if v\not=[]
```

using cas that by (cases $v$ ) auto
have $? L=$ awalk-verts $u v$
unfolding $w$-def by simp
also have $\ldots=($ if $v=[]$ then $[u]$ else tail $G(h d v) \#$ map $($ head $G) v)$
by (intro awalk-verts-conv' $[$ OF cas $]$ )
also have $\ldots=u \# \operatorname{map}($ head $G) v$
using 0 by $\operatorname{simp}$
also have $\ldots=$ ? $R$
unfolding $w$-def by simp
finally show ?thesis by simp
qed
lemma (in fin-digraph) arc-walks-map-walks':
walks' Gl=image-mset (case-prod awalk-verts) (mset-set (arc-walks Gl))
proof (induction l)
case 0
let $? g=\lambda x$.fst $x \#$ map $($ head $G)($ snd $x)$
have walks' $G 0=\{\#[x] . x \in \#$ mset-set (verts $G) \#\}$
by $\operatorname{simp}$
also have $\ldots=$ image-mset $? g($ image-mset $(\lambda x .(x,[]))($ mset-set $($ verts $G)))$
unfolding image-mset.compositionality by (simp add:comp-def)
also have $\ldots=$ image-mset ? $g($ mset-set $((\lambda x .(x,[]))$ 'verts $G))$
by (intro arg-cong2[where $f=$ image-mset] image-mset-mset-set inj-onI) auto
also have $\ldots=$ image-mset ? $g($ mset-set $(\{(u, w) . u \in$ verts $G \wedge w=[]\}))$
by (intro-cong $\left[\sigma_{2}\right.$ image-mset $]$ ) auto
also have $\ldots=$ image-mset ?g (mset-set (arc-walks G 0))
unfolding arc-walks-def by (intro-cong [ $\sigma_{2}$ image-mset, $\sigma_{1}$ mset-set $]$ ) auto
also have $\ldots=$ image-mset (case-prod awalk-verts) (mset-set (arc-walks G 0))
using arc-walks-fin by (intro image-mset-cong) (simp add:case-prod-beta awalk-verts-unfold)
finally show? ?case by simp
next
case (Suc l)
let ? $f=\lambda(u, w) a .(u, w @[a])$
let $? g=\lambda x$.fst $x \#$ map $($ head $G)($ snd $x)$
have arc-walks $G(l+1)=$ case-prod ?f ' $\{(x, y)$. ?f $x y \in \operatorname{arc}$-walks $G(l+1)\}$
using arc-walks-len[where $G=G$ and $l=$ Suc $l$, THEN iffD1[OF length-Suc-conv-rev]]
by force
also have $\ldots=$ case-prod ?f ' $\{(x, y) . x \in$ arc-walks $G l \wedge y \in$ out-arcs $G$ (arc-walk-head $G x)\}$
unfolding arc-walks-def using is-arc-walk-snoc[where $G=G]$
by (intro-cong [ $\sigma_{2}$ image]) auto
also have $\ldots=(\bigcup w \in$ arc-walks $G$ l. ?f $w$ 'out-arcs $G$ (arc-walk-head $G w))$
by (auto simp add:image-iff)
finally have 0 :arc-walks $G(l+1)=(\bigcup w \in$ arc-walks $G$ l. ?f $w$ 'out-arcs $G$ (arc-walk-head $G$ w))
by simp
have mset-set (arc-walks $G(l+1))=$ concat-mset (image-mset (mset-set $\circ$
( $\lambda w$. ?f $w$ ' out-arcs $G($ arc-walk-head $G w)))($ mset-set (arc-walks G l)))
unfolding 0 by (intro concat-disjoint-union-mset arc-walks-fin finite-imageI) auto
also have $\ldots=$ concat-mset $\{\#$ mset-set (?f $x$ ‘ out-arcs $G($ arc-walk-head $G x)$ ).
$x \in \#$ mset-set(arc-walks Gl)\#\}
by (simp add:comp-def case-prod-beta)
also have $\ldots=$ concat-mset $\{\#\{\#$ ?f $x y . y \in \#$ mset-set (out-arcs $G($ arc-walk-head $G x)) \#\}$. $x \in \#$ mset-set (arc-walks G l)\#\}
by (intro-cong [ $\sigma_{1}$ concat-mset $]$ more:image-mset-cong image-mset-mset-set $[$ symmetric] inj-onI)
auto
finally have 1 :mset-set (arc-walks $G(l+1))=$ concat-mset $\{\#$ \{\# ?f $x y . y \in \#$ mset-set (out-arcs $G($ arc-walk-head $G x)) \#\} . x \in \#$ mset-set (arc-walks G l) \#\}
by $\operatorname{simp}$
have walks' $G(l+1)=$ concat-mset $\left\{\#\{\# w @[z] . z \in \#\right.$ vertices-from $G($ last $w) \#\} . w \in \#$ walks ${ }^{\prime}$ Gl\#\}
by $\operatorname{simp}$
also have $\ldots=$ concat-mset $\{\#$ $\{\#$ awalk-verts $($ fst $x)($ snd $x) @[z] . z \in \#$ vertices-from $G($ awlast $($ fst $x)($ snd $x)) \#\}$. $x \in \#$ mset-set (arc-walks Gl)\#\}
unfolding Suc by (simp add:image-mset.compositionality comp-def case-prod-beta)
also have $\ldots=$ concat-mset $\{\#$
$\{\# ? g x @[z] . z \in \#$ vertices-from $G($ awlast $(f s t x)($ snd $x)) \#\}$.
$x \in \#$ mset-set (arc-walks G l)\#\}
using arc-walks-fin
by (intro-cong [ $\sigma_{1}$ concat-mset] more:image-mset-cong) (auto simp: awalk-verts-unfold)
also have $\ldots=$ concat-mset $\{\#\{\#$ ? $g x @[z] . z \in \#$ vertices-from $G($ arc-walk-head $G x) \#\}$. $x \in \#$ mset-set (arc-walks Gl)\#\}
using arc-walks-fin awlast-of-arc-walk
by (intro-cong [ $\sigma_{1}$ concat-mset, $\sigma_{2}$ image-mset $]$ more: image-mset-cong) auto
also have $\ldots=$ (concat-mset $\{\#\{\#$ ? $g$ (fst $x$, snd $x @[y]$ ).
$y \in \#$ mset-set (out-arcs G (arc-walk-head G x) ) \#\}. $x \in \#$ mset-set (arc-walks G l)\#\}) unfolding verts-from-alt by (simp add:image-mset.compositionality comp-def)
also have...$=$ image-mset ? $g$ (concat-mset $\{\#\{\#$ ?f $x y$.
$y \in \#$ mset-set (out-arcs $G(\operatorname{arc}-w a l k-h e a d ~ G x)) \#\} . x \in \#$ mset-set (arc-walks $G l) \#\})$
unfolding image-concat-mset
by (auto simp add:comp-def case-prod-beta image-mset.compositionality)
also have $\ldots=$ image-mset ? $g($ mset-set (arc-walks $G(l+1))$ )
unfolding 1 by simp
also have $\ldots=$ image-mset (case-prod awalk-verts) (mset-set (arc-walks $G(l+1))$ )
using arc-walks-fin by (intro image-mset-cong) (simp add:case-prod-beta awalk-verts-unfold)
finally show ?case by simp
qed
lemma (in fin-digraph) arc-walks-map-walks:
walks $G(l+1)=$ image-mset (case-prod awalk-verts) (mset-set (arc-walks Gl))
using arc-walks-map-walks' unfolding walks-def by simp
lemma (in wf-digraph)
assumes awalk u a v length $a=l l>0$
shows awalk-ends: tail $G($ hd $a)=u$ head $G($ last $a)=v$
proof -
have 0:cas uav
using assms unfolding awalk-def by simp
have 1: $a \neq[]$ using $\operatorname{assms}(2,3)$ by auto
show tail $G(h d a)=u$
using 0 unfolding cas-simp[OF 1] by auto
show head $G($ last $a)=v$
using 10 by (induction a arbitrary:u rule:list-nonempty-induct) auto
qed
definition graph-power :: ('a, 'b) pre-digraph $\Rightarrow$ nat $\Rightarrow\left({ }^{\prime} a,\left({ }^{\prime} a \times{ }^{\prime} b\right.\right.$ list $\left.)\right)$ pre-digraph where graph-power $G l=$
$($ verts $=$ verts $G$, arcs $=$ arc-walks $G l$, tail $=f s t$, head $=$ arc-walk-head $G \mid$

```
lemma (in wf-digraph) graph-power-wf:
 wf-digraph (graph-power G l)
proof -
 have tail (graph-power G l) a f verts (graph-power G l)
 head (graph-power G l) a\inverts (graph-power Gl)
 if a\in\operatorname{arcs}(graph-power G l) for a
 using that arc-walk-head-wellformed arc-walk-tail-wellformed
 unfolding graph-power-def by simp-all
 thus ?thesis
 unfolding wf-digraph-def by auto
qed
lemma (in fin-digraph) graph-power-fin:
 fin-digraph (graph-power Gl)
proof -
 interpret H:wf-digraph graph-power G l
 using graph-power-wf by auto
 have finite (arcs (graph-power G l))
 using arc-walks-fin
 unfolding graph-power-def by simp
 moreover have finite (verts (graph-power G l))
 unfolding graph-power-def by simp
 ultimately show ?thesis
 by unfold-locales auto
qed
lemma (in fin-digraph) graph-power-count-edges:
 fixes lvw
 defines S \equiv{x.length }x=l+1\wedge\mathrm{ set }x\subseteq\mathrm{ verts G^hd x=v^last }x=w
 shows count (edges (graph-power Gl))}(v,w)=(\sumx\inS.(\prodi<l.count(edges G)(x!i,x!(i+1)))
 (is ?L = ?R)
proof -
 interpret H:fin-digraph graph-power G l
 using graph-power-fin by auto
 have 0:finite {x. set x}\subseteq\mathrm{ verts }G\wedge\mathrm{ length }x=l+1
 by (intro finite-lists-length-eq) auto
 have fin-S: finite S
 unfolding S-def by (intro finite-subset[OF - 0]) auto
 have ?L = size {#x\in# mset-set (arc-walks G l).fst x = v^ arc-walk-head G x =w#}
 unfolding graph-power-def edges-def arc-to-ends-def
 by (simp add:count-mset-exp image-mset-filter-mset-swap[symmetric])
 also have ... = size
 {#x\in# mset-set (arc-walks G l). awhd (fst x) (snd x)=v^ awlast (fst x) (snd x)=w#}
 using awlast-of-arc-walk awhd-of-arc-walk arc-walks-fin
 by (intro arg-cong[where f=size] filter-mset-cong refl) simp
 also have ... = size {#x\in# walks G (l+1).hd x=v^ last x=w#}
 unfolding arc-walks-map-walks
 by (simp add:image-mset-filter-mset-swap[symmetric] case-prod-beta)
 also have ...=size{#x\in# walks G (l+1).x\inS#}
 unfolding S-def using set-walks-3
 by (intro arg-cong[where f=size] filter-mset-cong refl) auto
 also have ...=sum (count (walks G (l+1)))S
 by (intro sum-count-2[symmetric] fin-S)
```

```
 also have \(\ldots=\left(\sum x \in S .\left(\prod i<l+1-1\right.\right.\). count \((\) edges \(\left.\left.G)(x!i, x!(i+1))\right)\right)\)
 unfolding \(S\)-def
 by (intro sum.cong refl count-walks) auto
 also have ... \(=\) ? \(R\)
 by simp
 finally show? ?thesis by simp
qed
lemma (in fin-digraph) graph-power-sym-aux:
 assumes symmetric-multi-graph \(G\)
 assumes \(v \in\) verts (graph-power \(G l\)) \(w \in\) verts (graph-power \(G l\))
 shows card (arcs-betw (graph-power \(G l) v w)=\) card (arcs-betw (graph-power \(G l) w v\))
 (is ? \(L=? R\))
proof -
 interpret \(H\) :fin-digraph graph-power G l
 using graph-power-fin by auto
 define \(S\) where \(S v w=\{x\). length \(x=l+1 \wedge\) set \(x \subseteq\) verts \(G \wedge h d x=v \wedge\) last \(x=w\}\) for \(v w\)
 have 0: bij-betw rev \((S w v)(S v w)\)
 unfolding \(S\)-def by (intro bij-betwI[where \(g=\) rev]) (auto simp add:hd-rev last-rev)
 have 1: bij-betw \(((-)(l-1))\{. .<l\}\{. .<l\}\)
 by (intro bij-betwI[where \(g=\lambda x\). \((l-1-x)])\) auto
 have \(? L=\) count \((\) edges \((\) graph-power \(G l))(v, w)\)
 unfolding H.count-edges by simp
 also have \(\ldots=\left(\sum x \in S v w\right.\). \(\left(\prod i<l\right.\). count (edges \(\left.\left.\left.G\right)(x!i, x!(i+1))\right)\right)\)
 unfolding \(S\)-def graph-power-count-edges by simp
 also have \(\ldots=\left(\sum x \in S w v .\left(\prod i<l\right.\right.\). count (edges \(\left.G\right)(\) rev \(x!i\), rev \(\left.\left.x!(i+1))\right)\right)\)
 by (intro sum.reindex-bij-betw[symmetric] 0)
 also have \(\ldots=\left(\sum x \in S w v .\left(\prod i<l\right.\right.\). count (edges \(\left.\left.\left.G\right)(x!((l-1-i)+1), x!(l-1-i))\right)\right)\)
 unfolding \(S\)-def by (intro sum.cong refl prod.cong) (simp-all add: rev-nth Suc-diff-Suc)
 also have \(\ldots=\left(\sum x \in S w v .\left(\prod i<l\right.\right.\). count (edges \(\left.\left.\left.G\right)(x!(i+1), x!i)\right)\right)\)
 by (intro sum.cong prod.reindex-bij-betw refl 1)
 also have \(\ldots=\left(\sum x \in S w v .\left(\prod i<l\right.\right.\). count \((\) edges \(\left.\left.G)(x!i, x!(i+1))\right)\right)\)
 by (intro sum.cong prod.cong count-edges-sym[OF assms(1)] refl)
 also have \(\ldots=\) count (edges (graph-power \(G l)\)) \((w, v)\)
 unfolding \(S\)-def graph-power-count-edges by simp
 also have...\(=\) ? \(R\)
 unfolding \(H\).count-edges by simp
 finally show ?thesis by simp
qed
lemma (in fin-digraph) graph-power-sym:
 assumes symmetric-multi-graph \(G\)
 shows symmetric-multi-graph (graph-power G l)
proof -
 interpret \(H\) :fin-digraph graph-power \(G l\)
 using graph-power-fin by auto
 show ?thesis
 using graph-power-sym-aux[OF assms]
 unfolding symmetric-multi-graph-def by auto
qed
lemma (in fin-digraph) graph-power-out-degree':
 assumes reg: \(\bigwedge v . v \in\) verts \(G \Longrightarrow\) out-degree \(G v=d\)
```

assumes $v \in$ verts (graph-power $G l$ )
shows out-degree (graph-power $G l$ ) $v=d^{\wedge} l$ (is $? L=? R$ )
proof -
interpret $H:$ :fin-digraph graph-power G l
using graph-power-fin by auto
have $v$-vert: $v \in$ verts $G$
using assms unfolding graph-power-def by simp
have $? L=$ size (vertices-from (graph-power G l) v)
unfolding out-degree-def H.verts-from-alt by simp
also have $\ldots=$ size $(\{\# e \in \#$ edges (graph-power $G l)$. fst $e=v \#\})$
unfolding vertices-from-def by simp
also have $\ldots=$ size $\{\# w \in \#$ mset-set (arc-walks G l). fst $w=v \#\}$
unfolding graph-power-def edges-def arc-to-ends-def
by (simp add:count-mset-exp image-mset-filter-mset-swap[symmetric])
also have $\ldots=$ size $\{\# w \in \#$ mset-set (arc-walks Gl). awhd (fst w) $($ snd $w)=v \#\}$
using awlast-of-arc-walk awhd-of-arc-walk arc-walks-fin
by (intro arg-cong[where $f=$ size] filter-mset-cong refl) simp
also have $\ldots=$ size $\left\{\# x \in \#\right.$ walks $\left.{ }^{\prime} G l . h d x=v \#\right\}$
unfolding arc-walks-map-walks'
by (simp add:image-mset-filter-mset-swap[symmetric] case-prod-beta)
also have $\ldots=d^{\wedge} l$
proof (induction l)
case 0
have size $\{\# x \in \#$ walks' $G 0 . h d x=v \#\}=\operatorname{card}\{x . x=v \wedge x \in$ verts $G\}$
by (simp add:image-mset-filter-mset-swap[symmetric])
also have $\ldots=\operatorname{card}\{v\}$
using v-vert by (intro arg-cong[where $f=$ card $]$ ) auto
also have $\ldots=d^{\wedge} 0$ by $\operatorname{simp}$
finally show ? case by simp
next
case (Suc l)
have size $\left\{\# x \in \#\right.$ walks $^{\prime} G($ Suc $l)$. hd $\left.x=v \#\right\}=$ $\left(\sum x \in \#\right.$ walks ${ }^{\prime} G l$. size $\{\# y \in \#$ vertices-from $G$ (last $\left.\left.x) . h d(x @[y])=v \#\right\}\right)$
by (simp add:size-concat-mset image-mset-filter-mset-swap[symmetric]
filter-concat-mset image-mset.compositionality comp-def)
also have $\ldots=\left(\sum x \in \#\right.$ walks $^{\prime} G$ l. size $\{\# y \in \#$ vertices-from $G$ (last $x)$. hd $\left.\left.x=v \#\right\}\right)$ using set-walks-2
by (intro-cong $\left[\sigma_{1}\right.$ sum-mset, $\sigma_{1}$ size $]$ more:image-mset-cong filter-mset-cong) auto
also have $\ldots=\left(\sum x \in \#\right.$ walks' $G l$. (if hd $x=v$ then out-degree $G($ last $x)$ else 0$)$ ) unfolding verts-from-alt out-degree-def by (simp add:filter-mset-const if-distribR if-distrib cong:if-cong)
also have $\ldots=\left(\sum x \in \#\right.$ walks ${ }^{\prime}$ G l. $d *$ of-bool $\left.(h d x=v)\right)$
using set-walks-2 [where $l=l]$ last-in-set
by (intro arg-cong[where $f=$ sum-mset $]$ image-mset-cong) (auto intro!:reg)
also have $\ldots=d *\left(\sum x \in \#\right.$ walks' G l. of-bool $\left.(h d x=v)\right)$
by (simp add:sum-mset-distrib-left image-mset.compositionality comp-def)
also have $\ldots=d *($ size $\{\# x \in \#$ walks' $G l . h d x=v \#\})$
by (simp add:size-filter-mset-conv)
also have $\ldots=d * d^{\wedge} l$
using Suc by simp
also have $\ldots=d^{\wedge} S u c l$
by $\operatorname{simp}$
finally show? case by simp
qed
finally show ?thesis by simp

## qed

lemma (in regular-graph) graph-power-out-degree:
assumes $v \in$ verts (graph-power $G l$ )
shows out-degree (graph-power $G l) v=d^{\wedge} l($ is $? L=? R)$
by (intro graph-power-out-degree' assms reg) auto
lemma (in regular-graph) graph-power-regular:
regular-graph (graph-power Gl)
proof -
interpret $H$ :fin-digraph graph-power $G l$
using graph-power-fin by auto
have verts (graph-power $G l) \neq\{ \}$
using verts-non-empty unfolding graph-power-def by simp
moreover have $0<d$ ’
using $d-g t-0$ by simp
ultimately show ?thesis
using graph-power-out-degree
by (intro regular-graphI[where $\left.d=d^{\wedge} l\right]$ graph-power-sym sym)
qed
lemma (in regular-graph) graph-power-degree:
regular-graph.d (graph-power Gl) $=d^{\wedge} l($ is $? L=? R)$
proof -
interpret $H$ :regular-graph graph-power $G l$
using graph-power-regular by auto
obtain $v$ where $v$-set: $v \in$ verts (graph-power $G l$ )
using H.verts-non-empty by auto
hence ? $L=$ out-degree (graph-power Gl) v
using $v$-set $H$.reg by auto
also have $\ldots=$ ? $R$
by (intro graph-power-out-degree[OF v-set])
finally show ?thesis by simp
qed
lemma (in regular-graph) graph-power-step:
assumes $x \in$ verts $G$
shows regular-graph.g-step (graph-power $G l) f x=\left(g\right.$-step $\left.{ }^{\wedge} l\right) f x$
using assms
proof (induction l arbitrary: x)
case 0
let ? $H=$ graph-power $G 0$
interpret $H$ :regular-graph ?H
using graph-power-regular by auto
have regular-graph.g-step (graph-power G 0) $f x=H . g$-step $f x$ by $\operatorname{simp}$
have $H$.g-step $f x=\left(\sum x \in\right.$ in-arcs ? $H x . f($ tail ? $\left.H x)\right)$
unfolding H.g-step-def graph-power-degree by simp
also have $\ldots=\left(\sum v \in\{e \in\right.$ arc-walks G 0. arc-walk-head $\left.G e=x\} . f(f s t v)\right)$
unfolding in-arcs-def graph-power-def by (simp add:case-prod-beta)
also have $\ldots=\left(\sum v \in\{x\} . f v\right)$
unfolding arc-walks-def using 0
by (intro sum.reindex-bij-betw bij-betwI $[$ where $g=(\lambda x .(x,[]))])$
(auto simp add:arc-walk-head-def)
also have $\ldots=f x$
by $\operatorname{simp}$
also have $\ldots=\left(g\right.$-step $\left.{ }^{\sim} 0\right) f x$
by $\operatorname{simp}$
finally show? case by simp

## next

case (Suc l)
let ? $H=$ graph-power $G l$
interpret $H$ :regular-graph ? H using graph-power-regular by auto
let ? $H S=$ graph-power $G(l+1)$
interpret $H S$ :regular-graph ?HS
using graph-power-regular by auto
let ${ }^{2} b i j=(\lambda(x,(y 1, y 2)) .(y 1, y 2 @[x]))$
let ?bijr $=(\lambda(y 1, y 2) .($ last $y 2,(y 1$, butlast $y 2)))$
define $S$ where $S=\{y$.fst $y \in$ in-arcs $G x \wedge$ snd $y \in$ in-arcs ? $H($ tail $G(f s t y))\}$
have $S=\{(u, v) . u \in \operatorname{arcs} G \wedge$ head $G u=x \wedge v \in$ arc-walks $G l \wedge$ arc-walk-head $G v=$ tail Gu\}
unfolding $S$-def graph-power-def in-arcs-def by auto
also have $\ldots=\{(u, v)$. (fst v,snd $v @[u]) \in$ arc-walks $G(l+1) \wedge$ arc-walk-head $G(f s t v$, snd $v @[u])=x\}$
unfolding arc-walks-def by (intro iffD2[OF set-eq-iff] allI)
(auto simp add: is-arc-walk-snoc case-prod-beta arc-walk-head-def)
also have $\ldots=\{(u, v)$. (fst v,snd $v @[u]) \in$ in-arcs? $\left.{ }^{2} S x\right\}$
unfolding in-arcs-def graph-power-def by auto
finally have $S$-alt: $S=\{(u, v)$. (fst v,snd $v @[u]) \in$ in-arcs ? $H S x\}$ by simp
have len-in-arcs: $a \in$ in-arcs ? $H S x \Longrightarrow$ snd $a \neq[]$ for $a$
unfolding in-arcs-def graph-power-def arc-walks-def by auto
have 0:bij-betw ?bij $S$ (in-arcs ?HS $x$ )
unfolding $S$-alt using len-in-arcs
by (intro bij-betwI[where $g=$ ? $b i j r]$ ) auto
have HS.g-step $f x=\left(\sum y \in\right.$ in-arcs ?HS x. $f($ tail ?HS $\left.y) / d^{`}(l+1)\right)$
unfolding HS.g-step-def graph-power-degree by simp
also have $\ldots=\left(\sum y \in\right.$ in-arcs ? $\left.H S x . f(f s t y) / d^{\wedge}(l+1)\right)$
unfolding graph-power-def by simp
also have $\ldots=\left(\sum y \in S . f(f s t(? b i j y)) / d^{\wedge}(l+1)\right)$
by (intro sum.reindex-bij-betw[symmetric] 0)
also have $\ldots=\left(\sum y \in S . f(f s t(\right.$ snd $\left.y)) / d^{\wedge}(l+1)\right)$
by (intro-cong $\left[\sigma_{2}(/), \sigma_{1} f\right]$ more: sum.cong) (simp add:case-prod-beta)
also have $\ldots=\left(\sum y \in(\bigcup a \in\right.$ in-arcs $G x$. (Pair a)'in-arcs ? $H($ tail $G a)) . f(f s t($ snd $\left.y)) / d^{\wedge}(l+1)\right)$
unfolding $S$-def by (intro sum.cong) auto
also have $\ldots=\left(\sum a \in\right.$ in-arcs $G x$. $\left(\sum y \in(\right.$ Pair $a)$ 'in-arcs ? $H\left(\right.$ tail Ga). $f(f s t($ snd $\left.\left.y)) / d^{\wedge}(l+1)\right)\right)$
by (intro sum.UNION-disjoint) auto
also have $\ldots=\left(\sum a \in\right.$ in-arcs $G x .\left(\sum b \in\right.$ in-arcs ? $H$ (tail $\left.\left.\left.G a\right) . f(f s t b) / d^{\wedge}(l+1)\right)\right)$
by (intro sum.cong sum.reindex-bij-betw) (auto simp add:bij-betw-def inj-on-def image-iff)
also have $\ldots=\left(\sum a \in\right.$ in-arcs $G x .\left(\sum b \in\right.$ in-arcs ? $H($ tail Ga). $f($ tail ?H $\left.b) / d \wedge l) / d\right)$
unfolding graph-power-def
by (simp add:sum-divide-distrib algebra-simps)
also have $\ldots=\left(\sum a \in\right.$ in-arcs $G x$. H.g-step $f($ tail $\left.G a) / d\right)$
unfolding $H$.g-step-def graph-power-degree by simp
also have $\ldots=\left(\sum a \in\right.$ in-arcs $G x .\left(g\right.$-step $\left.{ }^{\wedge} l\right) f($ tail $\left.G a) / d\right)$
by (intro sum.cong refl arg-cong2[where $f=(/)]$ Suc) auto
also have $\ldots=g$-step $\left(\left(g\right.\right.$-step $\left.\left.{ }^{\sim} l\right) f\right) x$

```
 unfolding g-step-def by simp
 also have ... =(g-step^(l+1)) fx
 by simp
 finally show ?case by simp
qed
lemma (in regular-graph) graph-power-expansion:
 regular-graph.\Lambda⿱al
proof -
 interpret H:regular-graph graph-power G l
 using graph-power-regular by auto
 have }|H.g-inner f(H.g-step f)|\leq \Lambda a ^ l*(H.g-norm f) ' (is ?L \leq ?R)
 if H.g-inner f (\lambda-. 1)=0 for f
 proof -
 have g-inner f (}\lambda\mathrm{ -. 1) =H.g-inner f (}\lambda\mathrm{ -. 1)
 unfolding g-inner-def H.g-inner-def
 by (intro sum.cong) (auto simp add:graph-power-def)
 also have ... = 0 using that by simp
 finally have 1:g-inner f (}\lambda\mathrm{ -. 1) = 0 by simp
 have 2:g-inner }((g\mathrm{ -step ^^l) f) (}\lambda\mathrm{ -. 1) = 0 for l
 using g-step-remains-orth 1 by (induction l, auto)
 have 0:g-norm ((g-step^l) f)\leq \Lambdaa ^ l*g-norm f
 proof (induction l)
 case 0
 then show ?case by simp
 next
 case (Suc l)
 have g-norm ((g-step ~ Suc l)f)=g-norm (g-step ((g-step ~ ~ l)f))
 by simp
 also have ... \leq \Lambda \a*g-norm (((g-step ~~l)f))
 by (intro expansionD2 2)
 also have .. \leq \Lambda \a*((\Lambdaa`l * g-norm f)
 by (intro mult-left-mono \Lambda-ge-0 Suc)
 also have ... = = \Lambdaa`(l+1)*g-norm f by simp
 finally show ?case by simp
 qed
 have ?L = |g-inner f (H.g-step f)|
 unfolding H.g-inner-def g-inner-def
```



```
 also have ... = |g-inner f ((g-step~l) f)|
```



```
 also have ... \leqg-norm f*g-norm ((g-step^`l)f)
 by (intro g-inner-cauchy-schwartz)
 also have .. \leqg-norm f* (\Lambda, ^` l*g-norm f)
 by (intro mult-left-mono 0 g-norm-nonneg)
```



```
 by (simp add:power2-eq-square)
 also have ... = ?R
 unfolding g-norm-sq H.g-norm-sq g-inner-def H.g-inner-def
 by (intro-cong [}\mp@subsup{\sigma}{2}{(*)] more:sum.cong) (auto simp add:graph-power-def)
 finally show ?thesis by simp
qed
moreover have 0}\leq\mp@subsup{\Lambda}{a}{``}
 using }\Lambda\mathrm{ -ge-0 by simp
```

```
 ultimately show ?thesis
 by (intro H.expander-intro-1) auto
qed
```

unbundle no-intro-cong-syntax
end

## 11 Strongly Explicit Expander Graphs

In some applications, representing an expander graph using a data structure (for example as an adjacency lists) would be prohibitive. For such cases strongly explicit expander graphs (SEE) are relevant. These are expander graphs, which can be represented implicitly using a function that computes for each vertex its neighbors in space and time logarithmic w.r.t. to the size of the graph. An application can for example sample a random walk, from a SEE using such a function efficiently. An example of such a graph is the Margulis construction from Section 8. This section presents the latter as a SEE but also shows that two graph operations that preserve the SEE property, in particular the graph power construction from Section 10 and a compression scheme introduced by Murtagh et al. [9, Theorem 20]. Combining all of the above it is possible to construct strongly explicit expander graphs of every size and spectral gap.
theory Expander-Graphs-Strongly-Explicit
imports Expander-Graphs-Power-Construction Expander-Graphs-MGG
begin

```
unbundle intro-cong-syntax
no-notation Digraph.dominates (\(-\rightarrow \mathbf{1 -}[100,100] 40\))
record strongly-explicit-expander \(=\)
 see-size :: nat
 see-degree :: nat
 see-step \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat
definition graph-of :: strongly-explicit-expander \(\Rightarrow\) (nat, (nat,nat) arc) pre-digraph
 where graph-of \(e=\)
 \(\\) verts \(=\{\).. \(<\) see-size e \(\}\),
 \(\operatorname{arcs}=(\lambda(v, i)\). Arc \(v(\) see-step eiv)i)' \((\{. .<\) see-size e \(\} \times\{. .<\) see-degree e \(\})\),
 tail \(=\) arc-tail,
 head \(=\) arc-head \(D\)
definition is-expander e \(\Lambda_{a} \longleftrightarrow\)
 regular-graph \((\) graph-of \(e) \wedge\) regular-graph. \(\Lambda_{a}(\) graph-of \(e) \leq \Lambda_{a}\)
lemma is-expander-mono:
 assumes is-expander e a \(a \leq b\)
 shows is-expander e b
 using assms unfolding is-expander-def by auto
lemma graph-of-finI:
 assumes see-step \(e \in(\{. .<\) see-degree \(e\} \rightarrow(\{. .<\) see-size \(e\} \rightarrow\{. .<\) see-size \(e\}))\)
 shows fin-digraph (graph-of e)
proof -
 let \(? G=\) graph - of \(e\)
```

have head ? $G a \in$ verts ? $G \wedge$ tail ? $G a \in$ verts ? $G$ if $a \in$ arcs ? $G$ for $a$ using assms that unfolding graph-of-def by (auto simp add:Pi-def)
hence 0 : wf-digraph ? $G$
unfolding wf-digraph-def by auto
have 1: finite (verts?G)
unfolding graph-of-def by simp
have 2: finite (arcs?G)
unfolding graph-of-def by simp
show ?thesis
using 012 unfolding fin-digraph-def fin-digraph-axioms-def by auto
qed
lemma edges-graph-of:
edges $($ graph-of $e)=\{\#(v$, see-step e iv $) .(v, i) \in \#$ mset-set $(\{. .<$ see-size $e\} \times\{. .<$ see-degree $e\}) \#\}$
proof -
have 0 :mset-set $((\lambda(v, i)$. Arc $v($ see-step eiv) $i)$ ' $(\{. .<$ see-size $e\} \times\{. .<$ see-degree e $\}))$
$=\{\#$ Arc $v($ see-step e iv) $i .(v, i) \in \#$ mset-set $(\{. .<$ see-size e $\} \times\{. .<$ see-degree e $\}) \#\}$
by (intro image-mset-mset-set[symmetric] inj-onI) auto
have edges (graph-of e) $=$
$\{\#(f s t p$, see-step e $($ snd $p)(f s t p)) . p \in \# \operatorname{mset}$-set $(\{. .<$ see-size $e\} \times\{. .<$ see-degree $e\}) \#\}$
unfolding edges-def graph-of-def arc-to-ends-def using 0
by (simp add:image-mset.compositionality comp-def case-prod-beta)
also have $\ldots=\{\#(v$, see-step e $i v) .(v, i) \in \#$ mset-set $(\{. .<$ see-size $e\} \times\{. .<$ see-degree $e\}) \#\}$
by (intro image-mset-cong) auto
finally show ?thesis by simp
qed
lemma out-degree-see:
assumes $v \in$ verts (graph-of e)
shows out-degree (graph-of e) $v=$ see-degree $e($ is ? $L=? R)$
proof -
let ? $d=$ see-degree e
let $? n=$ see-size $e$
have $0: v<$ ? $n$
using assms unfolding graph-of-def by simp
have $? L=\operatorname{card}\{a .(\exists x \in\{. .<? n\} . \exists y \in\{. .<? d\} . a=$ Arc $x($ see-step e y $x) y) \wedge$ arc-tail $a=v\}$ unfolding out-degree-def out-arcs-def graph-of-def by (simp add:image-iff)
also have $\ldots=\operatorname{card}\{a .(\exists y \in\{. .<$ ?d $\} . a=\operatorname{Arc} v($ see-step e y v) y) $\}$
using 0 by (intro arg-cong[where $f=c a r d]$ ) auto
also have $\ldots=\operatorname{card}((\lambda y$. Arc $v($ see-step e $y v) y)$ ' $\{. .<? d\})$
by (intro arg-cong[where $f=$ card] iffD2[OF set-eq-iff]) (simp add:image-iff)
also have $\ldots=$ card $\{. .<$ ? d $\}$
by (intro card-image inj-onI) auto
also have $\ldots=$ ? $d$ by simp
finally show ?thesis by simp
qed
lemma card-arc-walks-see:
assumes fin-digraph (graph-of e)
shows card (arc-walks (graph-of e) $n$ ) $=$ see-degree $e \widehat{n} *$ see-size e $($ is $? L=? R)$
proof -
let ? $G=$ graph - of $e$
interpret fin-digraph? $G$
using assms by auto
have ? $L=$ card $(\bigcup v \in$ verts ? $G$. $\{x$. fst $x=v \wedge$ is-arc-walk ? $G v($ snd $x) \wedge$ length $($ snd $x)=$ $n\}$ )
unfolding arc-walks-def by (intro arg-cong[where $f=$ card]) auto
also have $\ldots=\left(\sum v \in\right.$ verts ? $G$. card $\{x$. fst $x=v \wedge i s$-arc-walk ? $G v($ snd $x) \wedge$ length $($ snd $x)=$ $n\}$ )
using is-arc-walk-set[where $G=$ ? $G$ ]
by (intro card-UN-disjoint ballI finite-cartesian-product subsetI finite-lists-length-eq
finite-subset[where $B=$ verts ? $G \times\{x$. set $x \subseteq$ arcs ? $G \wedge$ length $x=n\}]$ ) force +
also have $\ldots=\left(\sum v \in\right.$ verts ? $G$. out-degree (graph-power ?G n) v)
unfolding out-degree-def graph-power-def out-arcs-def arc-walks-def
by (intro sum.cong arg-cong[where $f=$ card $]$ ) auto
also have $\ldots=\left(\sum v \in\right.$ verts ? $G$. see-degree $\left.e \widehat{n}\right)$
by (intro sum.cong graph-power-out-degree' out-degree-see refl) (simp-all add: graph-power-def)
also have ... $=$ ? $R$
by (simp add:graph-of-def)
finally show ?thesis by simp
qed
lemma regular-graph-degree-eq-see-degree:
assumes regular-graph (graph-of e)
shows regular-graph.d (graph-of e) $=$ see-degree e $($ is $? L=? R)$
proof -
interpret regular-graph graph-of e
using assms(1) by simp
obtain $v$ where $v$-set: $v \in$ verts (graph-of e)
using verts-non-empty by auto
hence ?L = out-degree (graph-of e) v
using $v$-set reg by auto
also have $\ldots=$ see-degree e
by (intro out-degree-see v-set)
finally show ?thesis by simp
qed
The following introduces the compression scheme, described in [9, Theorem 20].

```
fun see-compress :: nat \(\Rightarrow\) strongly-explicit-expander \(\Rightarrow\) strongly-explicit-expander
 where see-compress \(m e=\)
 (see-size \(=m\), see-degree \(=\) see-degree \(e * 2\)
 , see-step \(=(\lambda k v\).
 if \(k<\) see-degree \(e\)
 then (see-step e \(k v\)) mod \(m\)
 else (if \(v+m<\) see-size \(e\) then (see-step \(e(k-\) see-degree \(e)(v+m))\) mod \(m\) else \(v)\)) D
lemma edges-of-compress:
 fixes e \(m\)
 assumes \(2 * m \geq\) see-size e \(m \leq\) see-size \(e\)
 defines \(A \equiv\{\#(x \bmod m, y \bmod m) .(x, y) \in \#\) edges \((\) graph-of e) \(\#\}\)
 defines \(B \equiv\) repeat-mset (see-degree e) \(\{\#(x, x) . x \in \#(\) mset-set \(\{\) see-size \(e-m . .<m\}) \#\}\)
 shows edges (graph-of (see-compress \(m e)\)) \(=A+B(\) is \(? L=? R)\)
proof -
 let ?d \(=\) see-degree e
 let \(? c=\) see-step (see-compress \(m e\))
 let \({ }^{2} n=\) see-size \(e\)
 let ? \(s=\) see-step \(e\)
```

    have 7: \(m \leq v \Longrightarrow v<? n \Longrightarrow v-m=v \bmod m\) for \(v\)
    using assms by (simp add: le-mod-geq)
    let $? M=\operatorname{mset}$-set $(\{. .<m\} \times\{. .<2 *$ ? $d\})$
define $M 1$ where $M 1=m s e t-s e t ~(\{. .<m\} \times\{. .<? d\})$
define M2 where M2 $=m \operatorname{set}-$ set $(\{. .<? n-m\} \times\{? d . .<2 * ? d\})$
define $M 3$ where $M 3=\operatorname{mset}-\operatorname{set}(\{? n-m . .<m\} \times\{? d . .<2 * ? d\})$
have M2 $=$ mset-set $((\lambda(x, y) .(x-m, y+? d)) \cdot(\{m . .<? n\} \times\{. .<? d\}))$
using assms(2) unfolding M2-def map-prod-def[symmetric] atLeast0LessThan[symmetric] by (intro arg-cong[where $f=$ mset-set] map-prod-surj-on[symmetric])
(simp-all add: image-minus-const-atLeastLessThan-nat mult-2)
also have $\ldots=$ image-mset $(\lambda(x, y) .(x-m, y+? d))($ mset-set $(\{m . .<? n\} \times\{. .<? d\}))$
by (intro image-mset-mset-set[symmetric] inj-onI) auto
finally have M2-eq: M2 $=$ image-mset $(\lambda(x, y) .(x-m, y+? d))(m s e t-s e t(\{m . .<? n\} \times\{. .<? d\}))$
by $\operatorname{simp}$
have $? M=m$ set-set $(\{. .<m\} \times\{. .<? d\} \cup\{. .<? n-m\} \times\{? d . .<2 * ? d\} \cup\{? n-m . .<m\} \times\{? d . .<2 * ? d\})$
using $\operatorname{assms}(1,2)$ by (intro arg-cong $[$ where $f=m s e t-s e t])$ auto
also have $\ldots=$ mset-set $(\{. .<m\} \times\{. .<? d\} \cup\{. .<? n-m\} \times\{? d . .<2 * ? d\})+M 3$
unfolding M3-def by (intro mset-set-Union) auto
also have $\ldots=M 1+M 2+M 3$
unfolding M1-def M2-def
by (intro arg-cong2[where $f=(+)]$ mset-set-Union) auto
finally have 0 :mset-set $(\{. .<m\} \times\{. .<2 * ? d\})=M 1+M 2+M 3$ by simp
have $1:\{\#(v, ? c$ iv $) .(v, i) \in \# M 1 \#\}=\{\#(v \bmod m$,?s iv mod $m) .(v, i) \in \# m s e t-s e t(\{. .<m\} \times\{. .<? d\}) \#\}$ unfolding M1-def by (intro image-mset-cong) auto
have $\{\#(v, ? c$ i $v) .(v, i) \in \# M 2 \#\}=\{\#(f s t x-m, ? c($ snd $x+? d)($ fst $x-m)) \cdot x \in \# \operatorname{mset}-\operatorname{set}(\{m . .<? n\} \times\{. .<? d\}) \#\}$ unfolding M2-eq
by (simp add:image-mset.compositionality comp-def case-prod-beta del:see-compress.simps)
also have $\ldots=\{\#(v-m$, ?s i $v$ mod $m) .(v, i) \in \#$ mset-set $(\{m . .<? n\} \times\{. .<? d\}) \#\}$
by (intro image-mset-cong) auto
also have $\ldots=\{\#(v \bmod m$, ?s $i v \bmod m) .(v, i) \in \# m s e t-$ set $(\{m . .<? n\} \times\{. .<? d\}) \#\}$
using 7 by (intro image-mset-cong) auto
finally have 2 :
$\{\#(v, ? c i v) .(v, i) \in \# M 2 \#\}=\{\#(v \bmod m, ? s i v \bmod m) .(v, i) \in \# \operatorname{mset}-\operatorname{set}(\{m . .<? n\} \times\{. .<? d\}) \#\}$
by $\operatorname{simp}$
have $\{\#(v, ? c$ iv $) .(v, i) \in \# M 3 \#\}=\{\#(v, v) .(v, i) \in \#$ mset-set $(\{? n-m . .<m\} \times\{? d . .<2 * ? d\}) \#\}$ unfolding M3-def by (intro image-mset-cong) auto
also have $\ldots=$ concat-mset $\{\#\{\#(x, x) . x a \in \#$ mset-set $\{? d . .<2 * ? d\} \#\} . x \in \#$ mset-set $\{$ ? $n$

- m.. $<m\} \#\}$
by (subst mset-prod-eq) (auto simp:image-mset.compositionality image-concat-mset comp-def)
also have $\ldots=$ concat-mset $\{\#$ replicate-mset ? $d(x, x) . x \in \#$ mset-set $\{? n-m . .<m\} \#\}$
unfolding image-mset-const-eq by simp
also have $\ldots=B$
unfolding $B$-def repeat-image-concat-mset by simp
finally have $3:\{\#(v, ? c i v) .(v, i) \in \# M 3 \#\}=B$ by simp
have $A=\{\#($ fst $x \bmod m$, ?s $($ snd $x)($ fst $x) \bmod m) . x \in \#$ mset-set $(\{. .<? n\} \times\{. .<? d\}) \#\}$
unfolding $A$-def edges-graph-of by (simp add:image-mset.compositionality comp-def case-prod-beta)
also have $\ldots=\{\#(v \bmod m$, ?s i $v \bmod m) .(v, i) \in \# \operatorname{mset}-\operatorname{set}(\{. .<? n\} \times\{. .<? d\}) \#\}$
by (intro image-mset-cong) auto
finally have $4: A=\{\#(v \bmod m$ ? ?s iv mod m). $(v, i) \in \#$ mset-set $(\{. .<? n\} \times\{. .<? d\}) \#\}$
by $\operatorname{simp}$
have $? L=\{\#(v$, ?c $i \quad v) .(v, i) \in \#$ ? $M \#\}$
unfolding edges-graph-of by (simp add:ac-simps)
also have $\ldots=\{\#(v, ? c i v) \cdot(v, i) \in \# M 1 \#\}+\{\#(v, ? c i v) \cdot(v, i) \in \# M 2 \#\}+\{\#(v, ? c i v) \cdot(v, i) \in \# M 3 \#\}$
unfolding 0 image-mset-union by simp
also have $\ldots=\{\#(v \bmod m, ? s$ i $v \bmod m) .(v, i) \in \# \operatorname{mset}-\operatorname{set}(\{. .<m\} \times\{. .<? d\} \cup\{m . .<? n\} \times\{. .<? d\}) \#\}+B$ unfolding 123 image-mset-union[symmetric]
by (intro-cong $\left[\sigma_{2}(+), \sigma_{2}\right.$ image-mset $]$ more: mset-set-Union $\left.[s y m m e t r i c]\right)$ auto
also have $\ldots=\{\#(v \bmod m$, ?s i $v \bmod m) .(v, i) \in \# \operatorname{mset}-\operatorname{set}(\{. .<? n\} \times\{. .<? d\}) \#\}+B$
using assms(2) by (intro-cong $\left[\sigma_{2}(+), \sigma_{2}\right.$ image-mset, $\sigma_{1}$ mset-set $]$ ) auto
also have $\ldots=A+B$
unfolding 4 by $\operatorname{simp}$
finally show? ?thesis by simp
qed
lemma see-compress-sym:
assumes $2 * m \geq$ see-size e $m \leq$ see-size e
assumes symmetric-multi-graph (graph-of e)
shows symmetric-multi-graph (graph-of (see-compress me))
proof -
let ?c $=$ see-compress $m e$
let $? d=$ see-degree $e$
let ? $G=$ graph - of $e$
let ? $H=$ graph-of (see-compress me)
interpret $G$ :fin-digraph ? $G$
by (intro symmetric-multi-graphD2[OF assms(3)])
interpret $H$ :fin-digraph ? $H$
by (intro graph-of-finI) simp
have deg-compres: see-degree ?c $=2 *$ see-degree $e$
by $\operatorname{simp}$
have 1: card (arcs-betw ?H $v w)=$ card $($ arcs-betw ?H $w v)($ is ? $L=? R)$
if $v \in$ verts ? $H w \in$ verts ?H for $v w$
proof -
define $b$ where $b=$ count $\{\#(x, x) . x \in \#$ mset-set $\{$ see-size $e-m . .<m\} \#\}(v, w)$
have $b$-alt-def: $b=$ count $\{\#(x, x) . x \in \#$ mset-set $\{$ see-size $e-m . .<m\} \#\}(w, v)$ unfolding $b$-def count-mset-exp
by (simp add:case-prod-beta image-mset-filter-mset-swap[symmetric] ac-simps)
have ? $L=$ count $($ edges ? $H)(v, w)$
unfolding $H$.count-edges by simp
also have $\ldots=$ count $\{\#(x \bmod m, y \bmod m) .(x, y) \in \#$ edges (graph-of $e) \#\}(v, w)+? d * b$ unfolding edges-of-compress[OF assms(1,2)] b-def by simp
also have $\ldots=$ count $\{\#($ snd $e \bmod m$, fst $e \bmod m) . e \in \#$ edges (graph-of $e) \#\}(v, w)+? d$ * $b$
by (subst G.edges-sym[OF assms(3),symmetric])
(simp add:image-mset.compositionality comp-def case-prod-beta)
also have $\ldots=$ count $\{\#(x \bmod m, y \bmod m) .(x, y) \in \#$ edges $($ graph-of $e) \#\}(w, v)+? d * b$ unfolding count-mset-exp
by (simp add:image-mset-filter-mset-swap[symmetric] ac-simps case-prod-beta)
also have $\ldots=$ count (edges ? $H$ ) $(w, v)$
unfolding edges-of-compress[OF assms(1,2)] b-alt-def by simp
also have $\ldots=$ ? $R$
unfolding $H$.count-edges by simp
finally show ?thesis by simp
qed
show ?thesis
using 1 H.fin-digraph-axioms
unfolding symmetric-multi-graph-def by auto
qed
lemma see-compress:
assumes is-expander e $\Lambda_{a}$
assumes $2 * m \geq$ see-size e $m \leq$ see-size $e$
shows is-expander (see-compress me) $\left(\Lambda_{a} / 2+1 / 2\right)$
proof -
let ? $H=$ graph-of (see-compress $m e)$
let ? $G=$ graph-of $e$
let $? d=$ see-degree $e$
let ? $n=$ see-size $e$
interpret $G$ :regular-graph graph-of e
using $\operatorname{assms}(1)$ is-expander-def by simp
have $d$-eq: ? $d=G . d$
using regular-graph-degree-eq-see-degree[OF G.regular-graph-axioms] by simp
have $n$-eq: $G . n=? n$
unfolding G.n-def by (simp add:graph-of-def)
have $n$-gt-1: ? $n>0$
using G.n-gt-0 n-eq by auto
have symmetric-multi-graph (graph-of (see-compress me))
by (intro see-compress-sym assms(2,3) G.sym)
moreover have see-size $e>0$
using G.verts-non-empty unfolding graph-of-def by auto
hence $m>0$ using assms(2) by simp
hence verts (graph-of (see-compress me)) $\neq\{ \}$
unfolding graph-of-def by auto
moreover have 1:0< see-degree $e$
using $d$-eq $G . d-g t-0$ by auto
hence $0<$ see-degree (see-compress $m$ e) by simp
ultimately have 0 :regular-graph ? H
by (intro regular-graphI[where $d=$ see-degree (see-compress me)] out-degree-see) auto
interpret $H$ :regular-graph ? $H$
using 0 by auto
have $\mid \sum a \in \operatorname{arcs}$ ?H. $f($ head ? $H$ a $) * f($ tail ?H $a) \mid \leq\left(\right.$ real G.d $\left.* G . \Lambda_{a}+G . d\right) *(H . g \text {-norm } f)^{2}$ (is ? $L \leq ? R$ ) if $H . g$-inner $f(\lambda-.1)=0$ for $f$
proof -
define $f^{\prime}$ where $f^{\prime} x=f(x \bmod m)$ for $x$
let $? L 1=G . g$-norm $f^{\prime \wedge} 2+\mid \sum x=? n-m . .<m . f x^{\wedge}$ 2 $\mid$
let $? L 2=G . g$-inner $f^{\prime}(\lambda-.1)^{\wedge 2} / G . n+\left|\sum x=? n-m . .<m . f x^{\wedge} 2\right|$
have ? $L 1=\left(\sum x<? n . f(x \bmod m)^{\wedge} 2\right)+\left|\sum x=? n-m . .<m . f x^{\wedge} 2\right|$
unfolding G.g-norm-sq G.g-inner-def $f^{\prime}$-def by (simp add:graph-of-def power2-eq-square)
also have $\ldots=\left(\sum x \in\{0 . .<m\} \cup\{m . .<? n\} . f(x \bmod m){ }^{\wedge} 2\right)+\left(\sum x=? n-m . .<m . f x\right.$ 2 $)$
using assms(3) by (intro-cong $\left[\sigma_{2}(+)\right]$ more:sum.cong abs-of-nonneg sum-nonneg) auto
also have $\ldots=\left(\sum x=0 . .<m . f(x \bmod m)^{\wedge} 2\right)+\left(\sum x=m . .<? n . f(x \bmod m)^{\wedge} 2\right)+\left(\sum x=? n-m . .<m\right.$. $f x^{\wedge}$ 2)
by (intro-cong $\left[\sigma_{2}(+)\right]$ more:sum.union-disjoint) auto
also have $\ldots=\left(\sum x=0 . .<m . f(x \bmod m)^{\wedge} 2\right)+\left(\sum x=0 . .<? n-m . f x^{\wedge} 2\right)+\left(\sum x=? n-m . .<m\right.$.
$f x^{\wedge}$ 2)
using $\operatorname{assms}(2,3)$
by (intro-cong $\left[\sigma_{2}(+)\right]$ more: sum.reindex-bij-betw bij-betwI $[$ where $\left.g=(\lambda x . x+m)]\right)$
（ auto simp add：le－mod－geq）
also have $\ldots=\left(\sum x=0 . .<m . f x^{\wedge}\right.$ Z $)+\left(\sum x=0 . .<? n-m . f x^{\wedge} 2\right)+\left(\sum x=? n-m . .<m . f x^{\wedge}\right.$ Z $)$
by（intro sum．cong arg－cong2［where $f=(+)]$ ）auto
also have $\ldots=\left(\sum x=0 . .<m . f x^{\wedge}\right.$ 2 $)+\left(\left(\sum x=0 . .<? n-m . f x^{\wedge} 2\right)+\left(\sum x=? n-m . .<m . f x^{\wedge}\right.\right.$ 2 $\left.)\right)$
by $\operatorname{simp}$
also have $\ldots=\left(\sum x=0 . .<m . f x^{\wedge}\right.$ 2 $)+\left(\sum x \in\{0 . .<? n-m\} \cup\{? n-m . .<m\} . f x^{\wedge}\right.$ 2 $)$
by（intro sum．union－disjoint［symmetric］arg－cong2 $[$ where $f=(+)]$ ）auto
also have $\ldots=\left(\sum x<m . f x^{\wedge} 2\right)+\left(\sum x<m . f x^{\wedge}\right.$ 2 $)$
using $\operatorname{assms}(2,3)$ by（intro arg－cong2［where $f=(+)]$ sum．cong）auto
also have $\ldots=2 * H . g$－norm f ${ }^{\text {～2 }}$
unfolding mult－2 H．g－norm－sq H．g－inner－def by（simp add：graph－of－def power2－eq－square）
finally have 2：？L1 $=2 * H$ ．g－norm $f \wedge 2$ by simp
have ${ }^{2} L 2=\left(\sum x \in\{. .<m\} \cup\{m . .<? n\} . f(x \bmod m)\right)^{\wedge} 2 / G . n+\left(\sum x=? n-m . .<m . f x^{\wedge}\right.$ 2 $)$ unfolding G．g－inner－def f＇－def using assms（2，3）
by（intro－cong $\left[\sigma_{2}(+), \sigma_{2}(/), \sigma_{2}\right.$（power）］more：sum．cong abs－of－nonneg sum－nonneg）
（auto simp add：graph－of－def）
also have $\ldots=\left(\left(\sum x<m . f(x \bmod m)\right)+\left(\sum x=m . .<? n . f(x \bmod m)\right)\right)^{\wedge} 2 / G . n+\left(\sum x=? n-m . .<m\right.$ ． $f x^{\wedge}$ 2）
by（intro－cong $\left[\sigma_{2}(+), \sigma_{2}(/), \sigma_{2}\right.$（power）］more：sum．union－disjoint）auto
also have $\ldots=\left(\left(\sum x<m . f(x \bmod m)\right)+\left(\sum x=0 . .<? n-m . f x\right)\right)^{\wedge} 2 / G . n+\left(\sum x=? n-m . .<m\right.$ ． $f x^{\wedge}$ 2）
using $\operatorname{assms}(2,3)$ by（intro－cong $\left[\sigma_{2}(+), \sigma_{2}(/), \sigma_{2}\right.$（power）$]$ more：sum．reindex－bij－betw bij－betwI［where $g=(\lambda x . x+m)]$ ）（auto simp add：le－mod－geq）
also have $\ldots=\left(H . g \text {－inner } f(\lambda-.1)+\left(\sum x<? n-m . f x\right)\right)^{\wedge} 2 / G . n+\left(\sum x=? n-m . .<m . f x\right.$ へ2 $)$
unfolding $H . g$－inner－def
by（intro－cong $\left[\sigma_{2}(+), \sigma_{2}(/), \sigma_{2}\right.$（power）］more：sum．cong）（auto simp：graph－of－def）
also have $\ldots=\left(\sum x<? n-m . f x\right)^{\wedge} 2 / G . n+\left(\sum x=? n-m . .<m . f x^{\wedge} 2\right)$
unfolding that by simp
also have $\ldots \leq\left(\sum x<? n-m .|f x| *|1|\right)^{\wedge 2} / G . n+\left(\sum x=? n-m . .<m . f x\right.$ 2 $)$
by（intro add－mono divide－right－mono iffD1［OF abs－le－square－iff］）auto
also have $\ldots \leq(\operatorname{L2-set} f\{. .<? n-m\} * L 2-\operatorname{set}(\lambda-.1)\{. .<? n-m\}) \wedge 2 / G . n+\left(\sum x=? n-m . .<m\right.$ ． $f \times$～2）
by（intro add－mono divide－right－mono power－mono L2－set－mult－ineq sum－nonneg）auto
also have $\ldots=\left(\left(\sum x<? n-m . f x^{\wedge} 2\right) *(? n-m)\right) / G . n+\left(\sum x=? n-m . .<m . f x^{\wedge}\right.$ 2 $)$
unfolding power－mult－distrib L2－set－def real－sqrt－mult
by（intro－cong $\left[\sigma_{2}(+), \sigma_{2}(/), \sigma_{2}(*)\right]$ more：real－sqrt－pow2 sum－nonneg）auto
also have $\ldots=\left(\sum x<? n-m . f x\right.$ 亿 $) *((? n-m) / ? n)+\left(\sum x=? n-m . .<m . f x^{\wedge}\right.$ 2 $)$
unfolding $n$－eq by simp
also have $\ldots \leq\left(\sum x<? n-m . f x\right.$ 亿 2$) * 1+\left(\sum x=? n-m . .<m . f \times\right.$ 亿 $)$
using assms（3）n－gt－1 by（intro mult－left－mono add－mono sum－nonneg）auto
also have $\ldots=\left(\sum x \in\{. .<? n-m\} \cup\{? n-m . .<m\} . f x\right.$～2 $)$
unfolding mult－1－right by（intro sum．union－disjoint［symmetric］）auto
also have $\ldots=H$ ．g－norm $f^{\wedge}$ 2
using $\operatorname{assms}(2,3)$ unfolding $H . g$－norm－sq H．g－inner－def
by（intro sum．cong）（auto simp add：graph－of－def power2－eq－square）
finally have $3: ? L 2 \leq H$ ．g－norm $f^{\wedge} 2$ by $\operatorname{simp}$
have $? L=\mid \sum(u, v) \in \#$ edges ？H．$f v * f u \mid$
unfolding edges－def arc－to－ends－def sum－unfold－sum－mset
by（simp add：image－mset．compositionality comp－def del：see－compress．simps）
also have $\ldots=\mid\left(\sum x \in \#\right.$ edges ？$G . f($ snd $x \bmod m) * f(f$ st $\left.x \bmod m)\right)+\left(\sum x=? n-m . .<m . ? d *(f\right.$ x～2））｜
unfolding edges－of－compress［OF assms（2，3）］sum－unfold－sum－mset
by（simp add：image－mset．compositionality sum－mset－repeat comp－def case－prod－beta power2－eq－square del：see－compress．simps）
also have $\ldots=\mid\left(\sum(u, v) \in \#\right.$ edges ？$\left.G . f(u \bmod m) * f(v \bmod m)\right)+\left(\sum x=? n-m . .<m . ? d *\left(f x^{\wedge}\right.\right.$ 2 $\left.)\right) \mid$ by（intro－cong $\left[\sigma_{1}\right.$ abs，$\sigma_{2}(+), \sigma_{1}$ sum－mset $]$ more：image－mset－cong）
(simp-all add:case-prod-beta)
also have $\ldots \leq \mid \sum(u, v) \in \#$ edges ? $G . f(u \bmod m) * f(v \bmod m)|+| \sum x=? n-m . .<m . ? d *(f x$ 亿 2$) \mid$
by (intro abs-triangle-ineq)
also have $\ldots=? d *\left(\mid \sum(u, v) \in \#\right.$ edges ? $G . f(v \bmod m) * f(u \bmod m)|/ G . d+| \sum x=? n-m . .<m .(f$ $x^{\wedge}$ 2)|)
unfolding $d$-eq using G.d-gt-0
by (simp add:divide-simps ac-simps sum-distrib-left[symmetric] abs-mult)
also have $\ldots=? d *\left(\mid G . g\right.$-inner $f^{\prime}\left(G . g\right.$-step $\left.f^{\prime}\right)|+| \sum x=$ ? $\left.n-m . .<m . f x^{\wedge} 2 \mid\right)$
unfolding G.g-inner-step-eq sum-unfold-sum-mset edges-def arc-to-ends-def f'-def
by (simp add:image-mset.compositionality comp-def del:see-compress.simps)
also have $\ldots \leq$ ? $d *\left(\left(G . \Lambda_{a} * G . g\right.\right.$-norm $f^{\prime \wedge 2}+\left(1-G . \Lambda_{a}\right) * G . g$-inner $f^{\prime}(\lambda-.1){ }^{\prime}$ 2/ G.n $)$ $\left.+\left|\sum x=? n-m . .<m . f x^{\wedge} 2\right|\right)$ by (intro add-mono G.expansionD3 mult-left-mono) auto
also have $\ldots=? d *\left(G \cdot \Lambda_{a} * ? L 1+\left(1-G \cdot \Lambda_{a}\right) * ? L 2\right)$
by (simp add:algebra-simps)
also have $\ldots \leq ? d *\left(G . \Lambda_{a} *(2 * H . g\right.$-norm $f \wedge 2)+\left(1-G . \Lambda_{a}\right) * H . g$-norm f 2$)$
unfolding 2 using G. $\Lambda$-ge-0 G. $\Lambda$-le-1 by (intro mult-left-mono add-mono 3) auto
also have $\ldots=$ ? $R$
unfolding $d$-eq[symmetric] by (simp add:algebra-simps)
finally show? ?thesis by simp
qed
hence $H . \Lambda_{a} \leq\left(G . d * G . \Lambda_{a}+G . d\right) / H . d$
using G.d-gt-0 G. $\Lambda$-ge-0 by (intro H.expander-intro) (auto simp del:see-compress.simps)
also have $\ldots=\left(\right.$ see-degree $e * G . \Lambda_{a}+$ see-degree e $) /(2 *$ see-degree e)
unfolding $d$-eq[symmetric] regular-graph-degree-eq-see-degree[OF H.regular-graph-axioms]
by $\operatorname{simp}$
also have $\ldots=G \cdot \Lambda_{a} / 2+1 / 2$
using 1 by (simp add:field-simps)
also have $\ldots \leq \Lambda_{a} / 2+1 / 2$
using assms(1) unfolding is-expander-def by simp
finally have $H . \Lambda_{a} \leq \Lambda_{a} / 2+1 / 2$ by $\operatorname{simp}$
thus ?thesis unfolding is-expander-def using 0 by simp
qed
The graph power of a strongly explicit expander graph is itself a strongly explicit expander graph.

```
fun to-digits \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat list
 where
 to-digits - \(0-=[] \mid\)
 to-digits \(b\) (Suc l) \(k=(k \bmod b) \#\) to-digits bl \(l(k\) div \(b)\)
fun from-digits :: nat \(\Rightarrow\) nat list \(\Rightarrow\) nat
 where
 from-digits \(b[]=0 \mid\)
 from-digits \(b(x \# x s)=x+b *\) from-digits \(b x s\)
```

lemma to-from-digits:
assumes length $x s=n$ set $x s \subseteq\{. .<b\}$
shows to-digits b $n$ (from-digits $b x s)=x s$
proof -
have to-digits $b$ (length $x s)$ (from-digits $b x s)=x s$
using assms(2) by (induction xs, auto)
thus ?thesis unfolding assms(1) by auto
qed
lemma from-digits-range:

```
 assumes length \(x s=n\) set \(x s \subseteq\{. .<b\}\)
 shows from-digits \(b\) xs \(<b\) ^n
proof (cases \(b>0\))
 case True
 have from-digits \(b x s \leq b\) length \(x s-1\)
 using assms(2)
 proof (induction \(x s\))
 case Nil
 then show? case by simp
 next
 case (Cons a xs)
 have from-digits \(b(a \# x s)=a+b *\) from-digits \(b x s\)
 by \(\operatorname{simp}\)
 also have \(\ldots \leq(b-1)+b *\) from-digits \(b\) xs
 using Cons by (intro add-mono) auto
 also have \(\ldots \leq(b-1)+b *(b\) length \(x s-1)\)
 using Cons(2) by (intro add-mono mult-left-mono Cons(1)) auto
 also have \(\ldots=b\) length \((a \# x s)-1\)
 using True by (simp add:algebra-simps)
 finally show from-digits \(b(a \# x s) \leq b\) length \((a \# x s)-1\) by simp
 qed
 also have ... \(<b^{\wedge} n\)
 using True assms (1) by simp
 finally show ?thesis by simp
next
 case False
 hence \(b=0\) by simp
 hence \(x s=[]\)
 using assms(2) by simp
 thus ?thesis using assms(1) by simp
qed
lemma from-digits-inj:
 inj-on (from-digits \(b\)) \(\{x s\). set \(x s \subseteq\{. .<b\} \wedge\) length \(x s=n\}\)
 by (intro inj-on-inverseI [where \(g=\) to-digits b \(n\)] to-from-digits) auto
fun see-power :: nat \(\Rightarrow\) strongly-explicit-expander \(\Rightarrow\) strongly-explicit-expander
 where see-power \(l e=\)
 (see-size \(=\) see-size \(e\), see-degree \(=\) see-degree \(e^{\wedge} l\)
 , see-step \(=(\lambda k\) v. foldl \((\lambda y\) x. see-step e x y) \(v(\) to-digits (see-degree e) lk)) D)
lemma graph-power-iso-see-power:
 assumes fin-digraph (graph-of e)
 shows digraph-iso (graph-power (graph-of e) \(n\)) (graph-of (see-power \(n\) e))
proof -
 let \(? G=\) graph - of \(e\)
 let \(? P=\) graph-power (graph-of e) \(n\)
 let \(? H=\) graph-of (see-power \(n\) e)
 let \(? d=\) see-degree \(e\)
 let \(? n=\) see-size \(e\)
 interpret fin-digraph (graph-of e)
 using assms by auto
 interpret \(P\) :fin-digraph ? P
 by (intro graph-power-fin)
 define \(\varphi\) where
```

$$
\varphi=(\lambda(u, v) . \text { Arc } u(\text { arc-walk-head ? } G(u, v))(\text { from-digits ?d }(\text { map arc-label } v)))
$$

define iso where iso $=$
( iso-verts $=i d$, iso-arcs $=\varphi$, iso-head $=$ arc-head, iso-tail $=$ arc-tail $)$
have $x s=y s$ if length $x s=$ length ys map arc-label $x s=$ map arc-label ys is-arc-walk ? $G u$ xs $\wedge$ is-arc-walk ?G u ys $\wedge u \in$ verts ? $G$ for xs ys u using that
proof (induction xs ys arbitrary: u rule:list-induct2)
case Nil
then show? ?ase by simp
next
case (Cons $x$ xs y ys)
have arc-label $x=$ arc-label $y u \in$ verts ? $G x \in$ out-arcs ? $G u y \in$ out-arcs ? $G u$ using Cons by auto
hence $a: x=y$
unfolding graph-of-def by auto
moreover have head ? $G y \in$ verts ? $G$ using Cons by auto
ultimately have $x s=y s$ using Cons (3,4) by (intro Cons(2)[of head ?G y]) auto
thus ?case using $a$ by auto
qed
hence 5:inj-on $(\lambda(u, v)$. (u, map arc-label v)) (arc-walks ? $G n)$
unfolding arc-walks-def by (intro inj-onI) auto
have 3:set (map arc-label (snd xs)) $\subseteq\{. .<? d\}$ length (snd $x s)=n$
if $x s \in$ arc-walks? $G n$ for $x s$
proof -
show length $($ snd $x s)=n$
using subset $D[O F$ is-arc-walk-set $[$ where $G=$ ? $G]]$ that unfolding arc-walks-def by auto
have set (snd xs) $\subseteq$ arcs ? $G$ using subset $D[O F$ is-arc-walk-set $[$ where $G=$ ? $G]]$ that unfolding arc-walks-def by auto
thus set (map arc-label $($ snd $x s)) \subseteq\{. .<? d\}$ unfolding graph-of-def by auto
qed
hence 7:inj-on $(\lambda(u, v)$. (u, from-digits ?d (map arc-label v))) (arc-walks ?G $n$ ) using inj-onD[OF 5] inj-onD[OF from-digits-inj] by (intro inj-onI) auto
hence inj-on $\varphi$ (arc-walks ? $G n$ )
unfolding inj-on-def $\varphi$-def by auto
hence inj-on (iso-arcs iso) (arcs (graph-power (graph-of e) n))
unfolding iso-def graph-power-def by simp
moreover have inj-on (iso-verts iso) (verts (graph-power (graph-of e) n))
unfolding iso-def by simp
moreover have
iso-verts iso (tail ?P a) $=$ iso-tail iso (iso-arcs iso a)
iso-verts iso (head ?P $a$ ) = iso-head iso (iso-arcs iso a) if $a \in \operatorname{arcs}$ ?P for $a$
unfolding $\varphi$-def iso-def graph-power-def by (simp-all add:case-prod-beta)
ultimately have $0: P$.digraph-isomorphism iso
unfolding P.digraph-isomorphism-def by (intro conjI ballI P.wf-digraph-axioms) auto
have $\operatorname{card}((\lambda(u, v) .(u$ from-digits ?d (map arc-label $v)))$ 'arc-walks ?G $n)=\operatorname{card}($ arc-walks ?G $n)$ by (intro card-image 7)
also have $\ldots=$ ? $d^{\wedge} n * ? n$
by (intro card-arc-walks-see fin-digraph-axioms)
 by $\operatorname{simp}$
moreover have fst $v \in\{. .<$ ? $n\}$ if $v \in$ arc-walks ? $G n$ for $v$
using that unfolding arc-walks-def graph-of-def by auto
moreover have from-digits ?d (map arc-label (snd $v$ )) < ? $d^{\wedge} n$ if $v \in \operatorname{arc}-w a l k s$ ? $G n$ for $v$ using $3[O F$ that $]$ by (intro from-digits-range) auto

## ultimately have 2:

$\{. .<? n\} \times\{. .<? d \wedge n\}=(\lambda(u, v) .(u$, from-digits ? d (map arc-label $v)))$ 'arc-walks ? $G n$ by (intro card-subset-eq[symmetric]) auto
have foldl $(\lambda y x$. see-step e $x y) u($ map arc-label $w)=$ arc-walk-head ? $G(u, w)$
if is-arc-walk? $G u w u \in$ verts ? $G$ for $u w$
using that
proof (induction $w$ rule:rev-induct)
case Nil
then show ?case by (simp add:arc-walk-head-def)
next
case (snoc x xs)
hence $x \in$ arcs ? $G$ by (simp add:is-arc-walk-snoc)
hence see-step e (arc-label $x$ ) (tail ? $G x)=($ head ? $G x)$
unfolding graph-of-def by (auto simp add:image-iff)
also have $\ldots=$ arc-walk-head (graph-of e) (u,xs @ $[x])$
unfolding arc-walk-head-def by simp
finally have see-step $e($ arc-label $x)($ tail ? $G x)=\operatorname{arc}$-walk-head (graph-of e) (u,xs @ $[x])$ by simp
thus ?case using snoc by (simp add:is-arc-walk-snoc)
qed
hence 4: foldl $(\lambda y$ x. see-step exy) $($ fst $x)($ map arc-label $($ snd $x))=$ arc-walk-head ? $G x$ if $x \in$ arc-walks (graph-of $e$ ) $n$ for $x$
using that unfolding arc-walks-def by (simp add:case-prod-beta)
have arcs $? H=\left(\lambda(v, i)\right.$. Arc $v\left(\right.$ see-step $\left(\right.$ see-power ne) iv) i)' $\left(\{. .<? n\} \times\left\{. .<? d^{\wedge} n\right\}\right)$
unfolding graph-of-def by simp
also have $\ldots=(\lambda(v, w)$. Arc $v$ (see-step (see-power $n e)($ from-digits ? d (map arc-label $w)) v)$ (from-digits ?d (map arc-label w)))' arc-walks ?G n
unfolding 2 image-image by (simp del:see-power.simps add: case-prod-beta comp-def)
also have $\ldots=(\lambda(v, w)$. Arc $v($ foldl $(\lambda y x$. see-step e $x y) v($ map arc-label $w))$
(from-digits ?d (map arc-label w)))' arc-walks ?G n
using 3 by (intro image-cong refl) (simp add:case-prod-beta to-from-digits)
also have $\ldots=\varphi$ ' arc-walks ? $G n$
unfolding $\varphi$-def using 4 by (simp add:case-prod-beta)
also have $\ldots=$ iso-arcs iso'arcs ?P
unfolding iso-def graph-power-def by simp
finally have arcs ? $H=$ iso-arcs iso ' arcs ? $P$
by $\operatorname{simp}$
moreover have verts ? $H=$ iso-verts iso ' verts ? $P$
unfolding iso-def graph-of-def graph-power-def by simp
moreover have tail ? $H=$ iso-tail iso
unfolding iso-def graph-of-def by simp
moreover have head ? $H=$ iso-head iso
unfolding iso-def graph-of-def by simp
ultimately have $1: ? H=$ app-iso iso ? $P$
unfolding app-iso-def
by (intro pre-digraph.equality) (simp-all del:see-power.simps)
show ?thesis
using 01 unfolding digraph-iso-def by auto
qed

```
lemma see-power:
 assumes is-expander e \Lambda \Lambdaa
 shows is-expander (see-power n e) (}\mp@subsup{\Lambda}{a}{}\widehat{n}
proof -
 interpret G: regular-graph graph-of e
 using assms unfolding is-expander-def by auto
 interpret H:regular-graph graph-power (graph-of e) n
 by (intro G.graph-power-regular)
 have 0:digraph-iso (graph-power (graph-of e) n) (graph-of (see-power n e))
 by (intro graph-power-iso-see-power) auto
 have regular-graph.\Lambda \ (graph-of (see-power n e)) = H. }\mp@subsup{\Lambda}{a}{
 using H.regular-graph-iso-expansion[OF 0] by auto
 also have ... \leqG. \ \ \widehat{n}
 by (intro G.graph-power-expansion)
 also have ... \leq \ \a `n
 using assms(1) unfolding is-expander-def
 by (intro power-mono G.\Lambda-ge-0) auto
 finally have regular-graph. }\mp@subsup{\Lambda}{a}{}(\mathrm{ graph-of (see-power n e))}\leq\mp@subsup{\Lambda}{a}{}\widehat{}
 by simp
 moreover have regular-graph (graph-of (see-power n e))
 using H.regular-graph-iso[OF 0] by auto
 ultimately show ?thesis
 unfolding is-expander-def by auto
qed
```

The Margulis Construction from Section 8 is a strongly explicit expander graph.

```
definition mgg-vert \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\) (int \(\times\) int \()\)
 where \(m g g\)-vert \(n x=(x \bmod n, x\) div \(n)\)
definition mgg-vert-inv :: nat \(\Rightarrow\) (int \(\times\) int \() \Rightarrow\) nat
 where \(m g g\)-vert-inv \(n x=\operatorname{nat}(f s t x)+\operatorname{nat}(\operatorname{snd} x) * n\)
lemma mgg-vert-inv:
 assumes \(n>0 x \in\{0 . .<\) int \(n\} \times\{0 . .<\) int \(n\}\)
 shows mgg-vert \(n\) (mgg-vert-inv \(n x)=x\)
 using assms unfolding mgg-vert-def mgg-vert-inv-def by auto
definition mgg-arc :: nat \(\Rightarrow\) (nat \(\times\) int \()\)
 where \(\operatorname{mgg}\)-arc \(k=(k \bmod 4\), if \(k \geq 4\) then \((-1)\) else 1\()\)
definition mgg-arc-inv :: (nat \(\times\) int \() \Rightarrow\) nat
 where \(\operatorname{mgg}\)-arc-inv \(x=(\) nat \((\) fst \(x)+4 *\) of-bool \((\) snd \(x<0))\)
lemma mgg-arc-inv:
 assumes \(x \in\{. .<4\} \times\{-1,1\}\)
 shows mgg-arc (mgg-arc-inv \(x)=x\)
 using assms unfolding mgg-arc-def mgg-arc-inv-def by auto
definition see-mgg :: nat \(\Rightarrow\) strongly-explicit-expander where
 see-mgg \(n=\left(\right.\) see-size \(=n^{\wedge}\) 2, , see-degree \(=8\),
 see-step \(=(\lambda i\) v. mgg-vert-inv \(n(m g g\)-graph-step \(n(m g g-v e r t ~ n v)(m g g-a r c ~ i))) \mid)\)
lemma mgg-graph-iso:
 assumes \(n>0\)
 shows digraph-iso (mgg-graph \(n\)) (graph-of (see-mgg \(n\)))
```

```
proof -
 let ?v = mgg-vert n let ?vi = mgg-vert-inv n
 let ?a = mgg-arc let ?ai = mgg-arc-inv
 let ?G = graph-of (see-mgg n) let ?s = mgg-graph-step n
 define }\varphi\mathrm{ where }\varphia=\operatorname{Arc}(?vi(\operatorname{arc-tail a)})(?vi(\operatorname{arc-head a)})(?ai(\operatorname{arc-label a)})\mathrm{ for a
 define iso where iso =
 (iso-verts = mgg-vert-inv n, iso-arcs = \varphi, iso-head = arc-head, iso-tail = arc-tail)
 interpret M: margulis-gaber-galil n
 using assms by unfold-locales
 have inj-vi: inj-on ?vi (verts M.G)
 unfolding mgg-graph-def mgg-vert-inv-def
 by (intro inj-on-inverseI[where g=mgg-vert n]) (auto simp:mgg-vert-def)
 have card (?vi' verts M.G) = card (verts M.G)
 by (intro card-image inj-vi)
 moreover have card (verts M.G)= n
 unfolding mgg-graph-def by (auto simp:power2-eq-square)
 moreover have mgg-vert-inv n x f {..<n'2} if x\inverts M.G for x
 proof -
 have mgg-vert-inv n x = nat (fst x) + nat (snd x)*n
 unfolding mgg-vert-inv-def by simp
 also have ... \leq(n-1)+(n-1)*n
 using that unfolding mgg-graph-def
 by (intro add-mono mult-right-mono) auto
 also have ... =n*n-1 using assms by (simp add:algebra-simps)
 also have ...< < 2
 using assms by (simp add: power2-eq-square)
 finally have mgg-vert-inv n x< n^2 by simp
 thus ?thesis by simp
qed
ultimately have 0:{..<n^2} =?vi`verts M.G
 by (intro card-subset-eq[symmetric] image-subsetI) auto
 have inj-ai: inj-on ?ai ({..<4} }\times{-1,1}
 unfolding mgg-arc-inv-def by (intro inj-onI) auto
have card (?ai`({..<4} }\times{-1,1}))=\operatorname{card}({..<4::nat}\times{-1,1:::int}
 by (intro card-image inj-ai)
hence 1:{..<8} = ?ai'(({.< < } > {-1,1})
 by (intro card-subset-eq[symmetric] image-subsetI) (auto simp add:mgg-arc-inv-def)
 have arcs ?G = (\lambda(v,i). Arc v(?vi(?s (?v v) (?a i))) i)'({..<n'\mp@code{} }\times{..<8})
 by (simp add:see-mgg-def graph-of-def)
 also have ... = (\lambda(v,i). Arc (?vi v) (?vi (?s (?v (?vi v)) (?a (?ai i)))) (?ai i))'
 (verts M.G\times({..<4} }\times{-1,1})
 unfolding 0 1 mgg-arc-inv by (auto simp add:image-iff)
 also have ... = (\lambda(v,i). Arc (?vi v) (?vi (?s v i)) (?ai i))'(verts M.G }\times({..<4}\times{-1,1})
 using mgg-vert-inv[OF assms] mgg-arc-inv unfolding mgg-graph-def by (intro image-cong)
auto
 also have ... =(\varphi\circ(\lambda(t,l). Arc t (?s t l) l))'(verts M.G\times({..<4} ×{-1,1}))
 unfolding }\varphi\mathrm{ -def by (intro image-cong refl) (simp add:comp-def case-prod-beta)
 also have ... = \varphi' arcs M.G
 unfolding mgg-graph-def by (simp add:image-image)
 also have ... = iso-arcs iso 'arcs (mgg-graph n)
 unfolding iso-def by simp
 finally have arcs (graph-of (see-mgg n)) = iso-arcs iso' arcs (mgg-graph n)
```

by $\operatorname{simp}$
moreover have verts ? $G=$ iso-verts iso'verts (mgg-graph $n$ )
unfolding iso-def graph-of-def see-mgg-def using 0 by simp
moreover have tail ? $G=$ iso-tail iso
unfolding iso-def graph-of-def by simp
moreover have head ? $G=$ iso-head iso
unfolding iso-def graph-of-def by simp
ultimately have 0:? $G=$ app-iso iso (mgg-graph $n$ )
unfolding app-iso-def by (intro pre-digraph.equality) simp-all
have inj-on $\varphi$ (arcs $M . G$ )
proof (rule inj-onI)
fix $x y$ assume assms $^{\prime}: x \in \operatorname{arcs} M . G y \in \operatorname{arcs} M . G \varphi x=\varphi y$
have ?vi (head M.Gx)=?vi (head M.Gy)
using assms'(3) unfolding $\varphi$-def mgg-graph-def by auto
hence head M.Gx=head M.Gy
using $\operatorname{assms}^{\prime}(1,2)$ by (intro inj-onD $[O F$ inj-vi]) auto
hence arc-head $x=$ arc-head $y$ unfolding mgg-graph-def by simp
moreover have ? vi (tail M.G $x$ ) $=$ ? vi (tail M.G y)
using assms $^{\prime}(3)$ unfolding $\varphi$-def mgg-graph-def by auto
hence tail M.G $x=$ tail M.G y
using $\operatorname{assms}^{\prime}(1,2)$ by (intro inj-onD $[O F$ inj-vi]) auto
hence arc-tail $x=$ arc-tail $y$
unfolding mgg-graph-def by simp
moreover have ?ai (arc-label $x$ ) $=$ ? ai (arc-label $y$ )
using assms' ${ }^{\prime}(3)$ unfolding $\varphi$-def by auto
hence arc-label $x=$ arc-label $y$
using assms $^{\prime}(1,2)$ unfolding mgg-graph-def
by (intro inj-onD[OF inj-ai]) (auto simp del:mgg-graph-step.simps)
ultimately show $x=y$
by (intro arc.expand) auto
qed
hence inj-on (iso-arcs iso) (arcs M.G)
unfolding iso-def by simp
moreover have inj-on (iso-verts iso) (verts M.G)
using inj-vi unfolding iso-def by simp
moreover have
iso-verts iso (tail M.Ga) $=$ iso-tail iso (iso-arcs iso a)
iso-verts iso (head M.Ga) = iso-head iso (iso-arcs iso a) if $a \in \operatorname{arcs} M . G$ for $a$
unfolding iso-def $\varphi$-def mgg-graph-def by auto
ultimately have $1: M$.digraph-isomorphism iso
unfolding M.digraph-isomorphism-def by (intro conjI ballI M.wf-digraph-axioms) auto
show ?thesis unfolding digraph-iso-def using 01 by auto
qed
lemma see-mgg:
assumes $n>0$
shows is-expander (see-mgg n) (5* sqrt 2 / 8)
proof -
interpret $G$ : margulis-gaber-galil $n$
using assms by unfold-locales auto

```
 note 0 = mgg-graph-iso[OF assms]
 have regular-graph.\Lambda }\mp@subsup{\Lambda}{a}{}(\mathrm{ graph-of (see-mgg n)) =G. }\mp@subsup{\Lambda}{a}{
 using G.regular-graph-iso-expansion[OF 0] by auto
also have ... \leq(5* sqrt 2 / 8)
 using G.mgg-numerical-radius unfolding G.MGG-bound-def by simp
 finally have regular-graph. }\mp@subsup{\Lambda}{a}{}(\mathrm{ graph-of (see-mgg n)) }\leq(5* sqrt 2 / 8),
 by simp
 moreover have regular-graph (graph-of (see-mgg n))
 using G.regular-graph-iso[OF 0] by auto
ultimately show ?thesis
 unfolding is-expander-def by auto
qed
```

Using all of the above it is possible to construct strongly explicit expanders of every size and spectral gap with asymptotically optimal degree.

```
definition see-standard-aux
 where see-standard-aux \(n=\) see-compress \(n(\) see-mgg (nat \(\lceil\) sqrt \(n\rceil))\)
lemma see-standard-aux:
 assumes \(n>0\)
 shows
 is-expander (see-standard-aux n) ((8+5* sqrt 2) / 16) (is ?A)
 see-degree (see-standard-aux \(n\)) \(=16\) (is ? \(B\))
 see-size \((\) see-standard-aux \(n)=n\) (is ?C)
proof -
 have 2:sqrt \((\) real \(n)>-1\)
 by (rule less-le-trans \([\) where \(y=0]\)) auto
 have 0:real \(n \leq\) of-int 「sqrt (real n) \(\rceil^{\text {^2 }}\)
 by (simp add:sqrt-le-D)
 consider \((a) n=1|(b) n \geq 2 \wedge n \leq 4|(c) n \geq 5 \wedge n \leq 9 \mid(d) n \geq 10\)
 using assms by linarith
 hence 1:of-int \(\lceil\) sqrt (real n) 〕~2 \(\leq 2 *\) real \(n\)
 proof (cases)
 case \(a\) then show ?thesis by simp
 next
 case \(b\)
```



```
 using 2
 by (intro power-mono iffD2[OF of-int-le-iff] ceiling-mono iffD2[OF real-sqrt-le-iff]) auto
 also have \(\ldots=2 *\) real 2 by simp
 also have \(\ldots \leq 2 *\) real \(n\)
 using \(b\) by (intro mult-left-mono) auto
 finally show ?thesis by simp
 next
 case \(c\)
 hence real-of-int \(\lceil\text { sqrt }(\text { real } n)\rceil^{\sim_{2}^{2}} \leq\) of-int \(\lceil\text { sqrt (real 9) }\rceil^{\wedge_{2}}\)
 using 2
 by (intro power-mono iffD2[OF of-int-le-iff] ceiling-mono iffD2[OF real-sqrt-le-iff]) auto
 also have \(\ldots=9\) by \(\operatorname{simp}\)
 also have \(\ldots \leq 2 *\) real 5 by simp
 also have \(\ldots \leq 2 *\) real \(n\)
 using \(c\) by (intro mult-left-mono) auto
 finally show? ?hesis by simp
next
 case \(d\)
```

```
 have real-of-int [sqrt (real n)\rceil^2\leq(sqrt (real n)+1)^2
 using 2 by (intro power-mono) auto
 also have ... = real n + sqrt (4* real n + 0) + 1
 using real-sqrt-pow2 by (simp add:power2-eq-square algebra-simps real-sqrt-mult)
 also have ...\leqreal n + sqrt (4 * real n + (real n * (real n-6) + 1)) +1
 using d by (intro add-mono iffD2[OF real-sqrt-le-iff]) auto
 also have ... = real n + sqrt ((real n-1)^2) +1
 by (intro-cong [}\mp@subsup{\sigma}{2}{(+),\mp@subsup{\sigma}{1}{}\mathrm{ sqrt]) (auto simp add:power\-eq-square algebra-simps)}
 also have \ldots.=2 * real n
 using d by simp
 finally show ?thesis by simp
qed
have nat \lceilsqrt (real n)\rceil`2 & {n..2*n}
 by (simp add: approximation-preproc-nat(13) sqrt-le-D 1)
hence see-size (see-mgg (nat \lceilsqrt (real n)\rceil)) \in{n..2*n}
 by (simp add:see-mgg-def)
moreover have sqrt (real n)>0 using assms by simp
hence 0<nat \lceilsqrt (real n)\rceil by simp
ultimately have is-expander (see-standard-aux n) ((5* sqrt 2 / 8)/2 + 1/2)
 unfolding see-standard-aux-def by (intro see-compress see-mgg) auto
thus ?A
 by (auto simp add:field-simps)
show ?B
 unfolding see-standard-aux-def by (simp add:see-mgg-def)
show ?C
 unfolding see-standard-aux-def by simp
qed
definition see-standard-power
 where see-standard-power }x=(\mathrm{ if }x\leq(0::real) then 0 else nat \lceilln x / ln 0.95\rceil)
lemma see-standard-power:
 assumes }\mp@subsup{\Lambda}{a}{}>
 shows 0.95^(see-standard-power }\mp@subsup{\Lambda}{a}{})\leq\mp@subsup{\Lambda}{a}{(}(\mathrm{ is ? L }\leq?R
proof (cases }\mp@subsup{\Lambda}{a}{}\leq1
 case True
 hence 0}\leq\operatorname{ln}\mp@subsup{\Lambda}{a}{}/\operatorname{ln}0.9
 using assms by (intro divide-nonpos-neg) auto
 hence 1:0\leq\lceilln \Lambdaa / ln 0.95\rceil
 by simp
 have ?L = 0.95`nat \lceilln \Lambda \Lambda / ln 0.95\rceil
 using assms unfolding see-standard-power-def by simp
 also have ... = 0.95 powr (of-nat (nat (\lceilln \Lambdaa / ln 0.95\rceil)))
 by (subst powr-realpow) auto
 also have ... = 0.95 powr \lceilln \Lambdaa / ln 0.95\rceil
 using 1 by (subst of-nat-nat) auto
 also have ... \leq 0.95 powr (ln \Lambdaa / ln 0.95)
 by (intro powr-mono-rev) auto
 also have ... = ?R
 using assms unfolding powr-def by simp
 finally show ?thesis by simp
next
 case False
 hence ln \Lambdaa / ln 0.95\leq0
 by (subst neg-divide-le-eq) auto
 hence see-standard-power }\mp@subsup{\Lambda}{a}{}=
 unfolding see-standard-power-def by simp
```

```
 then show ?thesis using False by simp
qed
lemma see-standard-power-eval[code]:
 see-standard-power x = (if x \leq 0 \vee x \geq 1 then 0 else (1+see-standard-power (x/0.95)))
proof (cases x\leq0\vee x\geq1)
 case True
 have ln x / ln (19 / 20) \leq 0 if x>0
 proof -
 have }x\geq1\mathrm{ using that True by auto
 thus ?thesis
 by (intro divide-nonneg-neg) auto
 qed
 then show ?thesis using True unfolding see-standard-power-def by simp
next
 case False
 hence x-range: }x>0x<1\mathrm{ by auto
 have ln (x / 0.95) < ln (1/0.95)
 using x-range by (intro iffD2[OF ln-less-cancel-iff]) auto
 also have ... = - ln 0.95
 by (subst ln-div) auto
 finally have }\operatorname{ln}(x/0.95)<-\operatorname{ln}0.95 by sim
 hence 0:-1<ln (x / 0.95) / ln 0.95
 by (subst neg-less-divide-eq) auto
 have see-standard-power x = nat \lceilln x / ln 0.95\rceil
 using x-range unfolding see-standard-power-def by simp
 also have ... = nat \lceilln (x/0.95) / ln 0.95 + 1\rceil
 by (subst ln-div[OF x-range(1)]) (simp-all add:field-simps)
 also have ... = nat (\lceilln (x/0.95) / ln 0.95\rceil+1)
 by (intro arg-cong[where f=nat]) simp
 also have ... = 1 + nat \lceilln (x/0.95) / ln 0.95\rceil
 using 0 by (subst nat-add-distrib) auto
 also have ... = (if x \leq 0 1 \leq x then 0 else 1 + see-standard-power (x/0.95))
 unfolding see-standard-power-def using x-range by auto
 finally show ?thesis by simp
qed
definition see-standard :: nat }=>\mathrm{ real }=>\mathrm{ strongly-explicit-expander
 where see-standard n \Lambda }\mp@subsup{\Lambda}{a}{}=\mathrm{ see-power (see-standard-power }\mp@subsup{\Lambda}{a}{}\mathrm{) (see-standard-aux n)
theorem see-standard:
 assumes n>0 \Lambdaa>0
 shows is-expander (see-standard n \Lambda }\mp@subsup{\Lambda}{a}{}\mathrm{) }\mp@subsup{\Lambda}{a}{
 and see-size (see-standard n \Lambda \a)=n
 and see-degree (see-standard n \Lambdaa})=16^(nat\lceilln \Lambdaa / ln 0.95\rceil) (is ?C)
proof -
 have 0:is-expander (see-standard-aux n) 0.95
 by (intro see-standard-aux(1)[OF assms(1)] is-expander-mono[where a=(8+5* sqrt 2) /
16])
 (approximation 10)
```

    show is-expander (see-standard \(n \Lambda_{a}\) ) \(\Lambda_{a}\)
        unfolding see-standard-def
        by (intro see-power 0 is-expander-mono[where \(a=0.95^{\wedge}\) (see-standard-power \(\left.\Lambda_{a}\right)\) ]
            see-standard-power assms(2))
    show see-size (see-standard \(n \Lambda_{a}\) ) \(=n\)
    unfolding see-standard-def using see-standard-aux[OF assms(1)] by simp
have see-degree (see-standard $\left.n \Lambda_{a}\right)=16{ }^{\wedge}\left(\right.$ see-standard-power $\left.\Lambda_{a}\right)$
unfolding see-standard-def using see-standard-aux[OF assms(1)] by simp
also have $\ldots=16^{\wedge}\left(\right.$ nat $\left.\left\lceil\ln \Lambda_{a} / \ln 0.95\right\rceil\right)$
unfolding see-standard-power-def using assms(2) by simp
finally show ?C by simp
qed
fun see-sample-walk :: strongly-explicit-expander $\Rightarrow$ nat $\Rightarrow$ nat $\Rightarrow$ nat list
where
see-sample-walk e $0 x=[x] \mid$
see-sample-walk e (Suc l) $x=$ (let $w=$ see-sample-walk el(xdiv (see-degree e)) in $w @[$ see-step e $(x \bmod ($ see-degree e)) (last w)])
theorem see-sample-walk:
fixes $e l$
assumes fin-digraph (graph-of e)
defines $r \equiv$ see-size $e *$ see-degree $e{ }^{\wedge} l$
shows $\{\#$ see-sample-walk e $l k . k \in \#$ mset-set $\{. .<r\} \#\}=$ walks $^{\prime}($ graph-of e) $l$
unfolding $r$-def
proof (induction l)
case 0
then show ?case unfolding graph-of-def by simp
next
case (Suc l)
interpret fin-digraph graph-of e using assms(1) by auto
let ?d $=$ see-degree e
let $? n=$ see-size $e$
let $? w=$ see-sample-walk $e$
let ? $G=$ graph - of $e$
define $r$ where $r=? n * ? d \wedge$
have 1: $\{i * ? d . .<(i+1) * ? d\} \cap\{j * ? d . .<(j+1) * ? d\}=\{ \}$ if $i \neq j$ for $i j$
using that index-div-eq by blast
have 2:vertices-from ? $G x=\{\#$ see-step e $i x . i \in \#$ mset-set $\{. .<? d\} \#\}$ (is ? $L=? R$ ) if $x \in$ verts? $G$ for $x$
proof -
have $x<$ ? $n$
using that unfolding graph-of-def by simp
hence 1 :out-arcs ? $G x=(\lambda i$. Arc $x($ see-step eix) $i)$ ' $\{. .<$ ? $d\}$
unfolding out-arcs-def graph-of-def by (auto simp add:image-iff set-eq-iff)
have $? L=\{\#$ arc-head a. a $\in \#$ mset-set (out-arcs ? $G$ x) \# $\}$
unfolding verts-from-alt by (simp add:graph-of-def)
also have $\ldots=\{\#$ arc-head $a . a \in \#\{\#$ Arc $x($ see-step e ix) i. $i \in \#$ mset-set $\{. .<? d\} \#\} \#\}$
unfolding 1
by (intro arg-cong2[where $f=$ image-mset] image-mset-mset-set[symmetric] inj-onI) auto
also have $\ldots=$ ? $R$
by (simp add:image-mset.compositionality comp-def)
finally show? ?thesis by simp
qed
have card $(\bigcup w<r .\{w * ? d . .<(w+1) * ? d\})=\left(\sum w<r . \operatorname{card}\{w * ? d . .<(w+1) * ? d\}\right)$
using 1 by (intro card-UN-disjoint) auto
also have $\ldots=r *$ ? d by $\operatorname{simp}$
finally have card $(\bigcup w<r .\{w * ? d . .<(w+1) * ? d\})=$ card $\{. .<? d * r\}$ by $\operatorname{simp}$
moreover have ? $d+z *$ ? $d \leq$ ? $d * r$ if $z<r$ for $z$
proof -
have $? d+z * ? d=? d *(z+1)$ by $\operatorname{simp}$
also have $\ldots \leq$ ? $d * r$
using that by (intro mult-left-mono) auto
finally show? ?thesis by simp
qed
ultimately have $0:(\bigcup w<r .\{w * ? d . .<(w+1) * ? d\})=\{. .<? d * r\}$
using order-less-le-trans by (intro card-subset-eq subsetI) auto
have $\left\{\#\right.$ ? $w(l+1) k . k \in \#$ mset-set $\left.\left\{. .<? n * ? d^{\wedge}(l+1)\right\} \#\right\}=\{\# ? w(l+1) k . k \in \#$ mset-set $\{. .<? d * r\} \#\}$
unfolding $r$-def by (simp add:ac-simps)
also have $\ldots=\{\#$ ? $w(l+1) x . x \in \#$ mset-set $(\bigcup w<r .\{w * ? d . .<(w+1) * ? d\}) \#\}$ unfolding 0 by simp
also have $\ldots=$ image-mset $(? w(l+1))($ concat-mset
(image-mset (mset-set $\circ(\lambda w .\{w * ? d . .<(w+1) * ? d\}))($ mset-set $\{. .<r\})))$
by (intro arg-cong2[where $f=$ image-mset $]$ concat-disjoint-union-mset refl 1) auto
also have $\ldots=$ concat-mset $\{\#\{\#$ ? $w(l+1) i . i \in \#$ mset-set $\{w * ? d . .<(w+1) * ? d\} \#\} . w \in \#$ mset-set $\{. .<r\} \#\}$
by (simp add:image-concat-mset image-mset.compositionality comp-def del:see-sample-walk.simps)
also have..$=$ concat-mset $\{\#\{\#$ ? $w(l+1) i . i \in \#$ mset-set $((+)(w * ? d)\{. .<? d\}) \#\} . w \in \#$ mset-set $\{. .<r\} \#\}$
by (intro-cong [ $\sigma_{1}$ concat-mset, $\sigma_{2}$ image-mset, $\sigma_{1}$ mset-set $]$ more:ext)
(simp add: atLeast0LessThan[symmetric])
also have $\ldots=$ concat-mset
$\{\#\{\# ? w(l+1)$ i. $i \in \#$ image-mset $((+)(w * ? d))($ mset-set $\{. .<? d\}) \#\} . w \in \#$ met-set $\{. .<r\} \#\}$
by (intro-cong [ $\sigma_{1}$ concat-mset, $\sigma_{2}$ image-mset] more:image-mset-cong image-mset-mset-set[symmetric] inj-onI) auto
also have $\ldots=$ concat-mset $\{\#\{\#$ ? $w(l+1)(w * ? d+i) . i \in \#$ mset-set $\{. .<? d\} \#\} . w \in \#$ mset-set $\{. .<r\} \#\}$
by (simp add:image-mset.compositionality comp-def del:see-sample-walk.simps)
also have ... = concat-mset

```
{#{#?wlw@[see-step e i (last (?w l w))].i\in#mset-set {..<?d}#}.w\in#mset-set {..<r}#}
```

by (intro-cong [ $\sigma_{1}$ concat-mset] more:image-mset-cong) (simp add:Let-def)
also have $\ldots=$ concat-mset $\left\{\#\{\# w @[\right.$ see-step e $i($ last $w)] . i \in \#$ mset-set $\{. .<$ ? $d\} \#\} . w \in \#$ walks $^{\prime}$ ?G l\#\} unfolding $r$-def Suc[symmetric] image-mset.compositionality comp-def by simp
also have...$=$ concat-mset
$\{\#\{\# w @[x] . x \in \#\{\#$ see-step e $i($ last $w) . i \in \#$ mset-set $\{. .<? d\} \#\} \#\} . w \in \#$ walks' ? $G l \#\}$
unfolding image-mset.compositionality comp-def by simp
also have $\ldots=$ concat-mset $\{\#\{\# w @[x] . x \in \#$ vertices-from ? $G$ (last $w) \#\} . w \in \#$ walks' ? $G l \#\}$ using last-in-set set-walks-2(1,2)
by (intro-cong $\left[\sigma_{1}\right.$ concat-mset, $\sigma_{2}$ image-mset $]$ more:image-mset-cong 2[symmetric]) blast
also have $\ldots=$ walks $^{\prime}$ (graph-of e) $(l+1)$
by (simp add:image-mset.compositionality comp-def)
finally show? case by simp
qed
unbundle no-intro-cong-syntax
end

## 12 Expander Walks as Pseudorandom Objects

```
theory Pseudorandom-Objects-Expander-Walks
 imports
 Universal-Hash-Families.Pseudorandom-Objects
 Expander-Graphs.Expander-Graphs-Strongly-Explicit
begin
unbundle intro-cong-syntax
hide-const (open) Quantum.T
hide-fact (open) SN-Orders.of-nat-mono
hide-fact Missing-Ring.mult-pos-pos
definition expander-pro ::
 nat }=>\mathrm{ real }=>('a,'b) pseudorandom-object-scheme => (nat => ''a) pseudorandom-object
 where expander-pro l \Lambda S=(
 let e= see-standard (pro-size S) \Lambda in
 \ pro-last =see-size e * see-degree e^(l-1) - 1,
 pro-select = (\lambdai j. pro-select S (see-sample-walk e (l-1)i!j mod pro-size S)))
)
context
 fixes l:: nat
 fixes }\Lambda::\mathrm{ real
 fixes S:: ('a,'b) pseudorandom-object-scheme
 assumes l-gt-0: l>0
 assumes }\Lambda\mathrm{ -gt-0: }\Lambda>
begin
private definition e where e=see-standard (pro-size S) \Lambda
private lemma expander-pro-alt: expander-pro l \Lambda S = \ pro-last = see-size e * see-degree
e^(l-1)-1,
 pro-select = (\lambdai j. pro-select S (see-sample-walk e (l-1) i!j mod pro-size S)) D
 unfolding expander-pro-def e-def[symmetric] by (auto simp:Let-def)
private lemmas see-standard = see-standard [OF pro-size-gt-0 [where S=S] \Lambda-gt-0]
interpretation E: regular-graph graph-of e
 using see-standard(1) unfolding is-expander-def e-def by auto
private lemma e-deg-gt-0: see-degree e>0
 unfolding e-def see-standard by simp
private lemma e-size-gt-0: see-size e > 0
 unfolding e-def using see-standard pro-size-gt-0 by simp
private lemma expander-sample-size: pro-size (expander-pro l \Lambda S)=see-size e*see-degree
e^(l-1)
 using e-deg-gt-0 e-size-gt-0 unfolding expander-pro-alt pro-size-def by simp
private lemma sample-pro-expander-walks:
 defines }R\equiv\operatorname{map-pmf}(\lambdaxs i.pro-select S (xs!i mod pro-size S))
 (pmf-of-multiset (walks (graph-of e) l))
 shows sample-pro (expander-pro l \Lambda S)=R
proof -
 let ?S = {..<see-size e * see-degree e^(l-1)}
 let ?T = (map-pmf (see-sample-walk e (l-1)) (pmf-of-set ?S))
```

have $0 \in ?$ ?
using e-size-gt-0 e-deg-gt-0 by auto
hence ? $S \neq\{ \}$
by blast
hence ?T = pmf-of-multiset $\{\#$ see-sample-walk $e(l-1) i . i \in \#$ mset-set ?S\#\}
by (subst map-pmf-of-set) simp-all
also have $\ldots=$ pmf-of-multiset $\left(\right.$ walks $^{\prime}($ graph-of $\left.e)(l-1)\right)$
by (subst see-sample-walk) auto
also have $\ldots=$ pmf-of-multiset (walks (graph-of e) l)
unfolding walks-def using l-gt-0 by (cases l, simp-all)
finally have $0: ? T=$ pmf-of-multiset $($ walks $($ graph-of e) $l)$
by $\operatorname{simp}$
have sample-pro (expander-pro $l \Lambda S)=\operatorname{map-pmf}(\lambda x s j$. pro-select $S(x s!j \bmod$ pro-size $S))$ ?T
unfolding expander-sample-size sample-pro-alt unfolding map-pmf-comp expander-pro-alt by simp
also have $\ldots=R$ unfolding $0 R$-def by simp
finally show ?thesis by simp
qed
lemma expander-pro-range: pro-select (expander-pro l $\Lambda S$ ) ij pro-set $S$
unfolding expander-pro-alt by (simp add:pro-select-in-set)
lemma expander-uniform-property:
assumes $i<l$
shows map-pmf $(\lambda w . w i)($ sample-pro (expander-pro $l \Lambda S))=$ sample-pro $S($ is $? L=? R)$
proof -
have $? L=$ map-pmf $(\lambda x$. pro-select $S(x$ mod pro-size $S))($ map-pmf $(\lambda x s .(x s!i))(p m f$-of-multiset
(walks (graph-of e) l)))
unfolding sample-pro-expander-walks by (simp add: map-pmf-comp)
also have $\ldots=\operatorname{map-pmf}(\lambda x$. pro-select $S(x \bmod$ pro-size $S))($ pmf-of-set $(v e r t s(g r a p h-o f ~ e)))$
unfolding E.uniform-property[OF assms] by simp
also have ... $=$ ? $R$
using pro-size-gt-0 unfolding sample-pro-alt
by (intro map-pmf-cong) (simp-all add:e-def graph-of-def see-standard select-def)
finally show ?thesis
by $\operatorname{simp}$
qed
lemma expander-kl-chernoff-bound:
assumes measure (sample-pro $S$ ) $\{w . T w\} \leq \mu$
assumes $\gamma \leq 1 \mu+\Lambda *(1-\mu) \leq \gamma \mu \leq 1$
shows measure (sample-pro (expander-pro $l \Lambda S)$ ) $\{w$. real (card $\{i \in\{. .<l\} . T(w i)\}) \geq \gamma * l\}$
$\leq \exp (-$ real $l * K L$-div $\gamma(\mu+\Lambda *(1-\mu)))($ is ? $L \leq ? R)$
proof (cases measure (sample-pro $S$ ) $\{w . T w\}>0$ )
case True
let ? $w=p m f$-of-multiset (walks (graph-of e) $l$ )
define $V$ where $V=\{v \in$ verts (graph-of e). $T$ (pro-select $S v)\}$
define $\nu$ where $\nu=$ measure (sample-pro $S$ ) $\{w . T w\}$
have $\nu$-gt- $0: \nu>0$ unfolding $\nu$-def using True by simp
have $\nu$-le-1: $\nu \leq 1$ unfolding $\nu$-def by simp
have $\nu$-le- $\mu: \nu \leq \mu$ unfolding $\nu$-def using assms(1) by simp
have 0: card $\{i \in\{. .<l\} . T($ pro-select $S(w!i \bmod$ pro-size $S))\}=\operatorname{card}\{i \in\{. .<l\} . w!i \in$ V\}
if $w \in \operatorname{set}-p m f(p m f$-of-multiset (walks (graph-of e) l)) for $w$
proof -
have a0: w $\in \#$ walks (graph-of e) l using that E.walks-nonempty by simp
have a1:w! $i \in$ verts (graph-of e) if $i<l$ for $i$
using that E.set-walks-3[OF a0] by auto
moreover have $w!i$ mod pro-size $S=w!i$ if $i<l$ for $i$
using a1[OF that] see-standard(2) e-def by (simp add:graph-of-def)
ultimately show ?thesis
unfolding $V$-def
by (intro arg-cong[where $f=$ card $]$ restr-Collect-cong) auto
qed
have 1:E. $\Lambda_{a} \leq \Lambda$
using see-standard(1) unfolding is-expander-def e-def by $\operatorname{simp}$
have 2: $V \subseteq$ verts (graph-of e)
unfolding $V$-def by simp
have $\nu=$ measure $($ pmf-of-set $\{. .<$ pro-size $S\})(\{v . T($ pro-select $S v)\})$
unfolding $\nu$-def sample-pro-alt by simp
also have $\ldots=\operatorname{real}(\operatorname{card}(\{v \in\{. .<$ pro-size $S\} . T($ pro-select $S v)\})) /$ real $($ pro-size $S)$
using pro-size-gt-0 by (subst measure-pmf-of-set) (auto simp add:Int-def)
also have $\ldots=$ real (card $V) /$ card (verts (graph-of e))
unfolding $V$-def graph-of-def e-def using see-standard by (simp add:Int-commute)
finally have $\nu$-eq: $\nu=$ real (card $V$ ) / card (verts (graph-of e))
by $\operatorname{simp}$
have 3: $0<\nu+E . \Lambda_{a} *(1-\nu)$
using $\nu$-le-1 by (intro add-pos-nonneg $\nu$-gt-0 mult-nonneg-nonneg E. $\Lambda$-ge-0) auto
have $\nu+E . \Lambda_{a} *(1-\nu)=\nu *\left(1-E . \Lambda_{a}\right)+E . \Lambda_{a}$ by (simp add:algebra-simps)
also have $\ldots \leq \mu *\left(1-E . \Lambda_{a}\right)+E . \Lambda_{a}$ using E. $\Lambda$-le-1
by (intro add-mono mult-right-mono $\nu$-le- $\mu$ ) auto
also have $\ldots=\mu+E . \Lambda_{a} *(1-\mu)$ by (simp add:algebra-simps)
also have $\ldots \leq \mu+\Lambda *(1-\mu)$ using $\operatorname{assms}(4)$ by (intro add-mono mult-right-mono 1 ) auto
finally have $4: \nu+E . \Lambda_{a} *(1-\nu) \leq \mu+\Lambda *(1-\mu)$ by $\operatorname{simp}$
have 5: $\nu+E . \Lambda_{a} *(1-\nu) \leq \gamma$ using $4 \operatorname{assms}(3)$ by simp
have ? $L=$ measure ? $w\{y . \gamma *$ real $l \leq$ real (card $\{i \in\{. .<l\} . T$ (pro-select $S$ ( $y!i$ mod pro-size S)) $\}$ ) $\}$
unfolding sample-pro-expander-walks by simp
also have $\ldots=$ measure ? $w\{y . \gamma *$ real $l \leq \operatorname{real}(\operatorname{card}\{i \in\{. .<l\} . y!i \in V\})\}$
using 0 by (intro measure-pmf-cong) (simp)
also have $\ldots \leq \exp \left(-\right.$ real $l * K L$-div $\left.\gamma\left(\nu+E . \Lambda_{a} *(1-\nu)\right)\right)$
using assms(2) 35 unfolding $\nu$-eq by (intro E.kl-chernoff-property l-gt-0 2) auto
also have $\ldots \leq \exp (-$ real $l * K L$-div $\gamma(\mu+\Lambda *(1-\mu)))$
using l-gt-0 by (intro iffD2[OF exp-le-cancel-iff] iffD2[OF mult-le-cancel-left-neg] KL-div-mono-right[OF disjI2] conjI $34 \operatorname{assms}(2,3)$ ) auto
finally show?thesis by simp
next
case False
hence 0:measure (sample-pro $S$ ) $\{w . T w\}=0$ using zero-less-measure-iff by blast
hence $1: T w=$ False if $w \in$ pro-set $S$ for $w$ using that measure-pmf-posI by force
have $\mu+\Lambda *(1-\mu)>0$
proof (cases $\mu=0$ )
case True then show ?thesis using $\Lambda$-gt-0 by auto

## next

## case False

then show ?thesis using $\operatorname{assms}(1,4) 0$-gt-0
by (intro add-pos-nonneg mult-nonneg-nonneg) simp-all
qed
hence $\gamma>0$ using assms(3) by auto
hence $2: \gamma *$ real $l>0$ using $l$-gt- 0 by simp
let ? $w=p m f$-of-multiset $($ walks $($ graph-of $e) l)$
have ? $L=$ measure ? $w\{y . \gamma *$ real $l \leq$ card $\{i \in\{. .<l\} . T($ pro-select $S(y!i \bmod$ pro-size $S))\}\}$ unfolding sample-pro-expander-walks by simp
also have $\ldots=0$ using pro-select-in-set 2 by (subst 1) auto
also have $\ldots \leq$ ? $R$ by simp
finally show ?thesis by simp
qed
lemma expander-chernoff-bound-one-sided:
assumes $A E x$ in sample-pro $S . f x \in\{0,1::$ real $\}$
assumes $\left(\int x . f x\right.$ dsample-pro $\left.S\right) \leq \mu l>0 \gamma \geq 0$
shows measure (expander-pro $l \Lambda S)\left\{w .\left(\sum i<l . f(w i)\right) / l-\mu \geq \gamma+\Lambda\right\} \leq \exp (-2 *$ real $l *$ $\gamma^{\wedge}$ 2)
(is ? $L \leq ? R$ )
proof -
let ? $w=$ sample-pro (expander-pro $l \Lambda S$ )
define $T$ where $T x=(f x=1)$ for $x$
have 1: indicator $\{w . T w\} x=f x$ if $x \in$ pro-set $S$ for $x$
proof -
have $f x \in\{0,1\}$ using assms(1) that unfolding AE-measure-pmf-iff by simp
thus ?thesis unfolding $T$-def by auto
qed
have measure $S\{w . T w\}=\left(\int x\right.$. indicator $\left.\{w . T w\} x \partial S\right)$ by simp
also have $\ldots=\left(\int x . f x \partial S\right)$ using 1 by (intro integral-cong-AE AE-pmfI) auto
also have $\ldots \leq \mu$ using assms(2) by simp
finally have 0 : measure $S\{w . T w\} \leq \mu$ by simp
hence $\mu$-ge- $0: \mu \geq 0$ using measure-nonneg order.trans by blast
have cases: $(\gamma=0 \Longrightarrow p) \Longrightarrow(\gamma+\Lambda+\mu>1 \Longrightarrow p) \Longrightarrow(\gamma+\Lambda+\mu \leq 1 \wedge \gamma>0 \Longrightarrow p) \Longrightarrow p$ for $p$
using assms(4) by argo
have $? L=$ measure ? $w\left\{w .(\gamma+\Lambda+\mu) * l \leq\left(\sum i<l . f\left(w^{2}\right)\right)\right\}$
using assms(3) by (intro measure-pmf-cong) (auto simp:field-simps)
also have $\ldots=$ measure ? $w\{w .(\gamma+\Lambda+\mu) * l \leq \operatorname{card}\{i \in\{. .<l\} . T(w i)\}\}$
proof (rule measure-pmf-cong)
fix $\omega$
assume $\omega \in$ pro-set (expander-pro l $\Lambda S$ )
hence $\omega x \in$ pro-set $S$ for $x$ using expander-pro-range set-sample-pro by (metis image-iff) hence $\left(\sum i<l . f(\omega i)\right)=\left(\sum i<l\right.$. indicator $\left.\{w . T w\}(\omega i)\right)$ using 1 by (intro sum.cong) auto
also have $\ldots=\operatorname{card}\{i \in\{. .<l\} . T(\omega i)\}$ unfolding indicator-def by (auto simp:Int-def)
finally have $\left(\sum i<l . f(\omega i)\right)=($ card $\{i \in\{. .<l\} . T(\omega i)\})$ by simp
thus $\left(\omega \in\left\{w .(\gamma+\Lambda+\mu) * l \leq\left(\sum i<l . f(w i)\right)\right\}\right)=(\omega \in\{w .(\gamma+\Lambda+\mu) * l \leq \operatorname{card}\{i \in\{. .<l\} . T$ ( $w i)\}\}$ )
by $\operatorname{simp}$

## qed

also have $\ldots \leq ? R$ (is ? $L 1 \leq$-)
proof (rule cases)
assume $\gamma=0$ thus ?thesis by simp
next
assume $a: \gamma+\Lambda+\mu \leq 1 \wedge 0<\gamma$
hence $\mu$-lt-1: $\mu<1$ using assms(4) $\Lambda$-gt-0 by simp
hence $\mu$-le-1: $\mu \leq 1$ by simp
have $\mu+\Lambda *(1-\mu) \leq \mu+\Lambda * 1$ using $\mu$-ge-0 $\Lambda$-gt-0 by (intro add-mono mult-left-mono)

## auto

also have $\ldots<\gamma+\Lambda+\mu$ using $\operatorname{assms}(4)$ a by simp
finally have $b: \mu+\Lambda *(1-\mu)<\gamma+\Lambda+\mu$ by simp
hence $\mu+\Lambda *(1-\mu)<1$ using $a$ by simp
moreover have $\mu+\Lambda *(1-\mu)>0$ using $\mu$-lt-1
by (intro add-nonneg-pos $\mu$-ge-0 mult-pos-pos $\Lambda$-gt-0) simp
ultimately have $c: \mu+\Lambda *(1-\mu) \in\{0<. .<1\}$ by simp
have $d: \gamma+\Lambda+\mu \in\{0 . .1\}$ using $a b c$ by simp
have ? L1 $\leq \exp (-$ real $l * K L$-div $(\gamma+\Lambda+\mu)(\mu+\Lambda *(1-\mu)))$
using $a b$ by (intro expander-kl-chernoff-bound $\mu$-le-1 0) auto
also have $\ldots \leq \exp (-\operatorname{real} l *(2 *((\gamma+\Lambda+\mu)-(\mu+\Lambda *(1-\mu)))$ ค 2$))$
by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono-neg KL-div-lower-bound c d) simp
also have $\ldots \leq \exp \left(-\operatorname{real} l *\left(2 *\left(\gamma^{\wedge} 2\right)\right)\right)$
using $\operatorname{assms}(4) \mu-l t-1 \quad \Lambda-g t-0 \quad \mu-g e-0$
by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono-neg[where $c=-$ real $l]$ mult-left-mono power-mono) simp-all
also have $\ldots=? R$ by simp
finally show ? $L 1 \leq ? R$ by simp
next
assume $a: 1<\gamma+\Lambda+\mu$
have $(\gamma+\Lambda+\mu) *$ real $l>$ real $($ card $\{i \in\{. .<l\} .(x i)\})$ for $x$
proof -
have real (card $\{i \in\{. .<l\} .(x i)\}) \leq$ card $\{. .<l\}$ by (intro of-nat-mono card-mono) auto
also have $\ldots=$ real $l$ by simp
also have $\ldots<(\gamma+\Lambda+\mu) *$ real $l$ using assms(3) a by simp
finally show? thesis by simp
qed
hence ? $L 1=0$ unfolding not-le[symmetric] by auto
also have $\ldots \leq$ ? $R$ by simp
finally show? $L 1 \leq ? R$ by simp
qed
finally show ?thesis by simp
qed
lemma expander-chernoff-bound:
assumes $A E x$ in sample-pro $S . f x \in\{0,1::$ real $\} l>0 \gamma \geq 0$
defines $\mu \equiv\left(\int x . f x\right.$ dsample-pro $\left.S\right)$
shows measure (expander-pro $l \Lambda S)\left\{w .\left|\left(\sum i<l . f(w i)\right) / l-\mu\right| \geq \gamma+\Lambda\right\} \leq 2 * \exp (-2 *$ real $l$ * $\gamma^{\wedge}$ 2)
(is ? $L \leq ? R$ )
proof -
let $? w=$ sample-pro (expander-pro $l \Lambda S$ )
have ?L $\leq$ measure ? $w\left\{w .\left(\sum i<l . f(w i)\right) / l-\mu \geq \gamma+\Lambda\right\}+$ measure ? $w\left\{w .\left(\sum i<l . f(w\right.\right.$
i)) $/ l-\mu \leq-(\gamma+\Lambda)\}$
by (intro pmf-add) auto
also have $\ldots \leq \exp \left(-2 *\right.$ real $\left.l * \gamma^{\wedge} 2\right)+$ measure ? $w\left\{w .-\left(\left(\sum i<l . f(w i)\right) / l-\mu\right) \geq(\gamma+\Lambda)\right\}$
using assms by (intro add-mono expander-chernoff-bound-one-sided) (auto simp:algebra-simps)
also have $\ldots \leq \exp \left(-2 *\right.$ real $\left.l * \gamma^{\wedge} 2\right)+$ measure ? $w\left\{w .\left(\left(\sum i<l .1-f(w i)\right) / l-(1-\mu)\right) \geq(\gamma+\Lambda)\right\}$ using assms(2) by (auto simp: sum-subtractf field-simps)

```
 also have ...\leqexp (-2*real l* `^2) + exp (-2*real l*\gamma^2)
 using assms by (intro add-mono expander-chernoff-bound-one-sided) auto
 also have ... =?R by simp
 finally show ?thesis by simp
qed
lemma expander-pro-size:
 pro-size (expander-pro l \Lambda S) = pro-size S * (16 ^((l-1) * nat \lceilln \Lambda / ln (19 / 20)\rceil))
 (is ?L = ?R)
proof -
 have ?L}=\mathrm{ see-size e * see-degree e^(l - 1)
 unfolding expander-sample-size by simp
 also have ... = pro-size S * (16 ^ nat \lceilln \Lambda / ln (19 / 20)\) ^(l - 1)
 using see-standard unfolding e-def by simp
 also have ... = pro-size S * (16 ^ ((l-1) * nat \lceilln \Lambda / ln (19 / 20)\rceil))
 unfolding power-mult[symmetric] by (simp add:ac-simps)
 finally show ?thesis
 by simp
qed
end
bundle expander-pseudorandom-object-notation
begin
notation expander-pro (\mathcal{E}
end
bundle no-expander-pseudorandom-object-notation
begin
no-notation expander-pro (\mathcal{E}
end
unbundle expander-pseudorandom-object-notation
unbundle no-intro-cong-syntax
end
```


## References

[1] J. Divasón, O. Kunar, R. Thiemann, and A. Yamada. Perron-frobenius theorem for spectral radius analysis. Archive of Formal Proofs, May 2016. https://isa-afp.org/entries/Perron_ Frobenius.html, Formal proof development.
[2] M. Echenim. Simultaneous diagonalization of pairwise commuting hermitian matrices. Archive of Formal Proofs, July 2022. https://isa-afp.org/entries/Commuting_Hermitian.html, Formal proof development.
[3] O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. Journal of Computer and System Sciences, 22(3):407-420, 1981.
[4] S. Hoory and N. Linial. Expander graphs and their applications. Bulletin of the American Mathematical Society, 43:439-561, 2006.
[5] R. Impagliazzo and V. Kabanets. Constructive proofs of concentration bounds. In M. Serna, R. Shaltiel, K. Jansen, and J. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 617-631, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
[6] S. Jimbo and A. Maruoka. Expanders obtained from affine transformations. Combinatorica, 7(4), 1987.
[7] O. Kuncar and A. Popescu. From types to sets by local type definition in higher-order logic. Journal of Automated Reasoning, 62:237-260, 2016.
[8] G. A. Margulis. Explicit construction of a concentrator. Probl. Peredachi Inf., 9(4):71-80, 1973.
[9] J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan. Deterministic Approximation of Random Walks in Small Space. In D. Achlioptas and L. A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in Informatics (LIPIcs), pages 42:1-42:22, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[10] L. Noschinski. Graph theory. Archive of Formal Proofs, April 2013. https://isa-afp.org/ entries/Graph_Theory.html, Formal proof development.
[11] S. P. Vadhan. Pseudorandomness. Foundations and Trends( $R$ ) in Theoretical Computer Science, 7(13):1-336, 2012.


[^0]:    ${ }^{1} \mathrm{~A}$ graph is regular if every node has the same degree.

