Euler's Polyhedron Formula

Lawrence C. Paulson

April 18, 2024

Abstract

Euler stated in 1752 that every convex polyhedron satisfied the formula $V-E+F=2$ where V, E and F are the numbers of its vertices, edges, and faces. For three dimensions, the well-known proof involves removing one face and then flattening the remainder to form a planar graph, which then is iteratively transformed to leave a single triangle. The history of that proof is extensively discussed and elaborated by Imre Lakatos [1], leaving one finally wondering whether the theorem even holds. The formal proof provided here has been ported from HOL Light, where it is credited to Lawrence [2]. The proof generalises Euler's observation from solid polyhedra to convex polytopes of arbitrary dimension.

Contents

1 Euler's Polyhedron Formula 3
1.1 Cells of a hyperplane arrangement 3
1.2 A cell complex is considered to be a union of such cells 7
1.3 Euler characteristic 10
1.4 Show that the characteristic is invariant w.r.t. hyperplane arrangement. 12
1.5 Euler-type relation for full-dimensional proper polyhedral cones 17
1.6 Euler-Poincare relation for special $(n-1)$-dimensional polytope 29
1.7 Now Euler-Poincare for a general full-dimensional polytope 38
Acknowledgements The author was supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council.

1 Euler's Polyhedron Formula

One of the Famous 100 Theorems, ported from HOL Light
Cited source: Lawrence, J. (1997). A Short Proof of Euler's Relation for Convex Polytopes. Canadian Mathematical Bulletin, 40(4), 471-474.
theory Euler-Formula imports HOL-Analysis.Analysis
begin
Interpret which "side" of a hyperplane a point is on.
definition hyperplane-side
where hyperplane-side $\equiv \lambda(a, b) . \lambda x . \operatorname{sgn}(a \cdot x-b)$
Equivalence relation imposed by a hyperplane arrangement.
definition hyperplane-equiv
where hyperplane-equiv $\equiv \lambda A x y . \forall h \in A$. hyperplane-side $h x=$ hyperplane-side $h y$
lemma hyperplane-equiv-refl [iff]: hyperplane-equiv $A x x$
by (simp add: hyperplane-equiv-def)
lemma hyperplane-equiv-sym:
hyperplane-equiv $A x y \longleftrightarrow$ hyperplane-equiv A y x
by (auto simp: hyperplane-equiv-def)
lemma hyperplane-equiv-trans:
$\llbracket h y p e r p l a n e-e q u i v ~ A x y$; hyperplane-equiv $A y z \rrbracket \Longrightarrow$ hyperplane-equiv $A x z$
by (auto simp: hyperplane-equiv-def)
lemma hyperplane-equiv-Un:
hyperplane-equiv $(A \cup B) x y \longleftrightarrow$ hyperplane-equiv $A x y \wedge$ hyperplane-equiv B $x y$
by (meson Un-iff hyperplane-equiv-def)

1.1 Cells of a hyperplane arrangement

definition hyperplane-cell :: ('a::real-inner \times real) set \Rightarrow 'a set \Rightarrow bool where hyperplane-cell $\equiv \lambda A C . \exists x . C=$ Collect (hyperplane-equiv $A x)$
lemma hyperplane-cell: hyperplane-cell $A C \longleftrightarrow(\exists x . C=\{y$. hyperplane-equiv A $x y\}$)
by (simp add: hyperplane-cell-def)
lemma not-hyperplane-cell-empty [simp]: \neg hyperplane-cell $A\}$
using hyperplane-cell by auto
lemma nonempty-hyperplane-cell: hyperplane-cell $A C \Longrightarrow(C \neq\{ \})$

```
    by auto
lemma Union-hyperplane-cells: \bigcup {C. hyperplane-cell A C } = UNIV
    using hyperplane-cell by blast
lemma disjoint-hyperplane-cells:
    \llbrackethyperplane-cell A C1; hyperplane-cell A C2; C1 # C2\rrbracket \Longrightarrow disjnt C1 C2
    by (force simp: hyperplane-cell-def disjnt-iff hyperplane-equiv-def)
lemma disjoint-hyperplane-cells-eq:
    \llbrackethyperplane-cell A C1; hyperplane-cell A C2\rrbracket \Longrightarrow (disjnt C1 C2 \longleftrightarrow(C1 f
C2))
    using disjoint-hyperplane-cells by auto
lemma hyperplane-cell-empty [iff]: hyperplane-cell {} C }\longleftrightarrowC=UNI
    by (simp add: hyperplane-cell hyperplane-equiv-def)
lemma hyperplane-cell-singleton-cases:
    assumes hyperplane-cell {(a,b)} C
    shows }C={x.a\cdotx=b}\veeC={x.a\cdotx<b}\veeC={x.a\cdotx>b
proof -
    obtain x where x:C={y. hyperplane-side (a,b) x = hyperplane-side (a,b) y}
        using assms by (auto simp: hyperplane-equiv-def hyperplane-cell)
    then show ?thesis
        by (auto simp: hyperplane-side-def sgn-if split: if-split-asm)
qed
lemma hyperplane-cell-singleton:
    hyperplane-cell {(a,b)} C\longleftrightarrow
        (if }a=0\mathrm{ then C=UNIV else C={x.a 和=b}}\veeC={x.a\cdotx<b}\vee
= {x.a\cdotx>b})
    apply (simp add: hyperplane-cell-def hyperplane-equiv-def hyperplane-side-def
sgn-if split: if-split-asm)
    by (smt (verit) Collect-cong gt-ex hyperplane-eq-Ex lt-ex)
lemma hyperplane-cell-Un:
    hyperplane-cell }(A\cupB)C
        C\not={}^
        (\existsC1 C2. hyperplane-cell A C1 ^ hyperplane-cell B C2 ^ C=C1 \cap C2)
    by (auto simp: hyperplane-cell hyperplane-equiv-def)
lemma finite-hyperplane-cells:
    finite A\Longrightarrow finite {C. hyperplane-cell A C}
proof (induction rule: finite-induct)
    case (insert p A)
    obtain a b where peq: p=(a,b)
    by fastforce
    have Collect (hyperplane-cell {p})\subseteq{{x.a\cdotx=b},{x.a\cdotx<b},{x.a\cdotx>
b}}
```

```
    using hyperplane-cell-singleton-cases
    by (auto simp: peq)
    then have *: finite (Collect (hyperplane-cell {p}))
    by (simp add: finite-subset)
    define \mathcal{C}\mathrm{ where }\mathcal{C}\equiv(\bigcupC1\in{C. hyperplane-cell A C}. \C2 \in{C. hyper-
plane-cell {p} C}.{C1\capC2})
    have {a. hyperplane-cell (insert pA)a}\subseteq\mathcal{C}
        using hyperplane-cell-Un [of {p} A] by (auto simp: \mathcal{C-def)}
    moreover have finite }\mathcal{C
        using *\mathcal{C}\mathrm{ -def insert.IH by blast}
    ultimately show ?case
        using finite-subset by blast
qed auto
lemma finite-restrict-hyperplane-cells:
    finite }A\Longrightarrow\mathrm{ finite {C. hyperplane-cell A C ^PC}
    by (simp add: finite-hyperplane-cells)
lemma finite-set-of-hyperplane-cells:
    \llbracket f i n i t e ~ A ; ~ \ C . ~ C ~ \in \mathcal { C ~ C ~ h y p e r p l a n e - c e l l ~ A ~ C \rrbracket \Longrightarrow ~ f i n i t e ~ \mathcal { C } }
    by (metis finite-hyperplane-cells finite-subset mem-Collect-eq subsetI)
lemma pairwise-disjoint-hyperplane-cells:
```



```
    by (metis disjoint-hyperplane-cells pairwiseI)
lemma hyperplane-cell-Int-open-affine:
    assumes finite A hyperplane-cell A C
    obtains ST where open S affine TC=S\capT
    using assms
proof (induction arbitrary: thesis C rule: finite-induct)
    case empty
    then show ?case
        by auto
next
    case (insert p A thesis C')
    obtain a b where peq: p= (a,b)
        by fastforce
    obtain C C1 where C1: hyperplane-cell {(a,b)} C1 and C: hyperplane-cell A
C
            and }\mp@subsup{C}{}{\prime}\not={}\mathrm{ and }\mp@subsup{C}{}{\prime}:\mp@subsup{C}{}{\prime}=C1\cap
    by (metis hyperplane-cell-Un insert.prems(2) insert-is-Un peq)
    then obtain ST where ST: open S affine T C=S\capT
    by (meson insert.IH)
show ?case
proof (cases a=0)
    case True
    with insert.prems show ?thesis
        by (metis C1 Int-commute ST <C' = C1 \capC` hyperplane-cell-singleton
```

```
inf-top.right-neutral)
    next
    case False
    then consider C1 ={x.a\cdotx=b}|C1={x.a\cdotx<b}|C1={x.b<a
- x}
            by (metis C1 hyperplane-cell-singleton)
    then show ?thesis
    proof cases
            case 1
            then show thesis
            by (metis C'ST affine-Int affine-hyperplane inf-left-commute insert.prems(1))
    next
            case 2
            with ST show thesis
                by (metis Int-assoc C' insert.prems(1) open-Int open-halfspace-lt)
    next
            case 3
            with ST show thesis
                by (metis Int-assoc C' insert.prems(1) open-Int open-halfspace-gt)
    qed
    qed
qed
lemma hyperplane-cell-relatively-open:
    assumes finite A hyperplane-cell A C
    shows openin (subtopology euclidean (affine hull C)) C
proof -
    obtain S T where open S affine T C=S\cap T
        by (meson assms hyperplane-cell-Int-open-affine)
    show ?thesis
    proof (cases S\capT={})
        case True
        then show ?thesis
            by (simp add: <C =S\cap T〉)
    next
        case False
        then have affine hull (S\capT)=T
        by (metis «affine T〉<open S` affine-hull-affine-Int-open hull-same inf-commute)
    then show ?thesis
            using \langleC=S\capT\rangle\langleopen S` openin-subtopology by fastforce
    qed
qed
lemma hyperplane-cell-relative-interior:
    |inite A; hyperplane-cell A C\rrbracket\Longrightarrow rel-interior C=C
    by (simp add: hyperplane-cell-relatively-open rel-interior-openin)
lemma hyperplane-cell-convex:
    assumes hyperplane-cell A C
```

```
    shows convex C
proof -
    obtain c where c:C={y. hyperplane-equiv A c y}
    by (meson assms hyperplane-cell)
    have convex ( }\bigcaph\inA.{y. hyperplane-side h c=hyperplane-side h y}
    proof (rule convex-INT)
    fix h::'a < real
    assume }h\in
    obtain ab where heq:}h=(a,b
            by fastforce
    have [simp]: {y.\nega\cdotc<a 友^a\cdoty=a\cdotc}={y.a\cdoty=a\cdotc}
                {y.\negb<a\cdoty^a\cdoty\not=b}={y.b>a\cdoty}
            by auto
    then show convex {y. hyperplane-side h c= hyperplane-side h y}
            by (fastforce simp: heq hyperplane-side-def sgn-if convex-halfspace-gt con-
vex-halfspace-lt convex-hyperplane cong:conj-cong)
    qed
    with c show ?thesis
        by (simp add: hyperplane-equiv-def INTER-eq)
qed
lemma hyperplane-cell-Inter:
    assumes }\C.C\in\mathcal{C}\Longrightarrow\mathrm{ hyperplane-cell A C
        and}\mathcal{C}\not={}\mathrm{ and INT: }\mathcal{C}\not={
    shows hyperplane-cell }A(\cap\mathcal{C}
proof -
    have }\cap\mathcal{C}={y.\mathrm{ hyperplane-equiv A zy}
            if z\in\bigcap\mathcal{C for z}
            using assms that by (force simp: hyperplane-cell hyperplane-equiv-def)
    with INT hyperplane-cell show ?thesis
            by fastforce
qed
lemma hyperplane-cell-Int:
    \llbrackethyperplane-cell A S; hyperplane-cell A T;S\capT\not={}\rrbracket\Longrightarrow hyperplane-cell A
(S\capT)
    by (metis hyperplane-cell-Un sup.idem)
```


1.2 A cell complex is considered to be a union of such cells

```
definition hyperplane-cellcomplex
```

definition hyperplane-cellcomplex
where hyperplane-cellcomplex $A S \equiv$
where hyperplane-cellcomplex $A S \equiv$
$\exists \mathcal{T} .(\forall C \in \mathcal{T}$. hyperplane-cell $A C) \wedge S=\bigcup \mathcal{T}$
$\exists \mathcal{T} .(\forall C \in \mathcal{T}$. hyperplane-cell $A C) \wedge S=\bigcup \mathcal{T}$
lemma hyperplane-cellcomplex-empty [simp]: hyperplane-cellcomplex A \{\}
lemma hyperplane-cellcomplex-empty [simp]: hyperplane-cellcomplex A \{\}
using hyperplane-cellcomplex-def by auto
using hyperplane-cellcomplex-def by auto
lemma hyperplane-cell-cellcomplex:

```
lemma hyperplane-cell-cellcomplex:
```

```
    hyperplane-cell A C\Longrightarrow hyperplane-cellcomplex A C
    by (auto simp: hyperplane-cellcomplex-def)
lemma hyperplane-cellcomplex-Union:
    assumes }\S.S\in\mathcal{C}\Longrightarrow\mathrm{ hyperplane-cellcomplex A S
    shows hyperplane-cellcomplex A(\bigcup\mathcal{C})
proof -
    obtain \mathcal{F}\mathrm{ where }\mathcal{F}:\S.S\in\mathcal{C}\Longrightarrow(\forallC\in\mathcal{F}S. hyperplane-cell A C) ^S=
U(\mathcal{F}S
    by (metis assms hyperplane-cellcomplex-def)
    show ?thesis
        unfolding hyperplane-cellcomplex-def
        using \mathcal{F by (fastforce intro: exI [where }x=\bigcup(\mathcal{F}`\mathcal{C})])
qed
lemma hyperplane-cellcomplex-Un:
    \llbrackethyperplane-cellcomplex A S; hyperplane-cellcomplex A T\rrbracket
        hyperplane-cellcomplex A (S\cupT)
    by (smt (verit) Un-iff Union-Un-distrib hyperplane-cellcomplex-def)
lemma hyperplane-cellcomplex-UNIV [simp]: hyperplane-cellcomplex A UNIV
    by (metis Union-hyperplane-cells hyperplane-cellcomplex-def mem-Collect-eq)
lemma hyperplane-cellcomplex-Inter:
    assumes }\bigwedgeS.S\in\mathcal{C}\Longrightarrow\mathrm{ hyperplane-cellcomplex A S
    shows hyperplane-cellcomplex A (\bigcap\mathcal{C})
proof (cases \mathcal{C }={})
    case True
    then show ?thesis
        by simp
next
    case False
    obtain \mathcal{F}\mathrm{ where }\mathcal{F}:\wedgeS.S\in\mathcal{C}\Longrightarrow(\forallC\in\mathcal{F}S.hyperplane-cell A C)}\wedgeS
U(\mathcal{F}S)
    by (metis assms hyperplane-cellcomplex-def)
    have *:\mathcal{C}=(\lambdaS.\bigcup(\mathcal{F}S))'\mathcal{C}
        using \mathcal{F}}\mathrm{ by force
    define U where U\equiv\bigcup{T\in{\bigcap(g'\mathcal{C})|g.\forallS\in\mathcal{C}.gS\in\mathcal{F}S}.T\not={}}
    have \bigcap\mathcal{C}=\bigcup{\bigcap(g'\mathcal{C})|g.\forallS\in\mathcal{C}.gS\in\mathcal{F}S}
        using False \mathcal{F unfolding Inter-over-Union [symmetric]}
        by blast
    also have ...=U
        unfolding U-def
        by blast
    finally have }\bigcap\mathcal{C}=U
    have hyperplane-cellcomplex A U
        using False \mathcal{F}}\mathrm{ unfolding }U\mathrm{ -def
        apply (intro hyperplane-cellcomplex-Union hyperplane-cell-cellcomplex)
    by (auto intro!: hyperplane-cell-Inter)
```

```
    then show ?thesis
    by (simp add: <\bigcap\mathcal{C}=U\rangle)
qed
lemma hyperplane-cellcomplex-Int:
    \llbrackethyperplane-cellcomplex A S; hyperplane-cellcomplex A T\rrbracket
        hyperplane-cellcomplex A(S\capT)
    using hyperplane-cellcomplex-Inter [of {S,T}] by force
lemma hyperplane-cellcomplex-Compl:
    assumes hyperplane-cellcomplex A S
    shows hyperplane-cellcomplex A (-S)
proof -
    obtain }\mathcal{C}\mathrm{ where }\mathcal{C}:\C.C\in\mathcal{C}\Longrightarrow\mathrm{ hyperplane-cell }AC\mathrm{ and }S=\bigcup\mathcal{C
    by (meson assms hyperplane-cellcomplex-def)
    have hyperplane-cellcomplex A (\bigcapT\in\mathcal{C}.-T)
    proof (intro hyperplane-cellcomplex-Inter)
    fix C0
    assume C0 \inuminus '\mathcal{C}
    then obtain C where C:C0}=-CC\in\mathcal{C
        by auto
    have *: -C=\bigcup{D. hyperplane-cell A D\wedgeD\not=C} (is - = ?rhs)
    proof
        show - C\subseteq?rhs
            using hyperplane-cell by blast
        show ?rhs \subseteq-C
                by clarify (meson <C \in\mathcal{C}>\mathcal{C}\mathrm{ disjnt-iff disjoint-hyperplane-cells)}
    qed
    then show hyperplane-cellcomplex A C0
    by (metis (no-types, lifting) C(1) hyperplane-cell-cellcomplex hyperplane-cellcomplex-Union
mem-Collect-eq)
    qed
    then show ?thesis
    by (simp add: <S = \\mathcal{C}\rangleuminus-Sup)
qed
lemma hyperplane-cellcomplex-diff:
    \llbrackethyperplane-cellcomplex A S; hyperplane-cellcomplex A T\rrbracket
            \Longrightarrow ~ h y p e r p l a n e - c e l l c o m p l e x ~ A ~ ( S ~ - T ) ~
    using hyperplane-cellcomplex-Inter [of {S,-T}]
    by (force simp: Diff-eq hyperplane-cellcomplex-Compl)
lemma hyperplane-cellcomplex-mono:
    assumes hyperplane-cellcomplex A S A\subseteqB
    shows hyperplane-cellcomplex B S
proof -
    obtain \mathcal{C where }\mathcal{C}:\C.C\in\mathcal{C}\Longrightarrow hyperplane-cell A C and eq:S=\bigcup\mathcal{C}
    by (meson assms hyperplane-cellcomplex-def)
    show ?thesis
```

unfolding $e q$
proof (intro hyperplane-cellcomplex-Union)
fix C
assume $C \in \mathcal{C}$
have $\wedge x . x \in C \Longrightarrow \exists D^{\prime} .\left(\exists D . D^{\prime}=D \cap C \wedge\right.$ hyperplane-cell $(B-A) D \wedge$
$D \cap C \neq\{ \}) \wedge x \in D^{\prime}$
unfolding hyperplane-cell-def by blast
then
have hyperplane-cellcomplex $(A \cup(B-A)) C$
unfolding hyperplane-cellcomplex-def hyperplane-cell-Un
using $\mathcal{C}\langle C \in \mathcal{C}\rangle$ by (fastforce intro!: exI [where $x=\{D \cap C \mid D$. hyper-
plane-cell $(B-A) D \wedge D \cap C \neq\{ \}\}])$
moreover have $B=A \cup(B-A)$
using $\langle A \subseteq B\rangle$ by auto
ultimately show hyperplane-cellcomplex $B C$ by simp qed
qed
lemma finite-hyperplane-cellcomplexes:
assumes finite A
shows finite $\{C$. hyperplane-cellcomplex $A C\}$
proof -
have $\{C$. hyperplane-cellcomplex $A C\} \subseteq$ image $\bigcup\{T . T \subseteq\{C$. hyperplane-cell
A $C\}\}$
by (force simp: hyperplane-cellcomplex-def subset-eq)
with finite-hyperplane-cells show ?thesis
by (metis assms finite-Collect-subsets finite-surj)
qed
lemma finite-restrict-hyperplane-cellcomplexes:
finite $A \Longrightarrow$ finite $\{C$. hyperplane-cellcomplex $A C \wedge P C\}$
by (simp add: finite-hyperplane-cellcomplexes)
lemma finite-set-of-hyperplane-cellcomplex:
assumes finite $A \bigwedge C . C \in \mathcal{C} \Longrightarrow$ hyperplane-cellcomplex $A C$
shows finite \mathcal{C}
by (metis assms finite-hyperplane-cellcomplexes mem-Collect-eq rev-finite-subset subsetI)
lemma cell-subset-cellcomplex:
$\llbracket h y p e r p l a n e-c e l l ~ A C$; hyperplane-cellcomplex $A S \rrbracket \Longrightarrow C \subseteq S \longleftrightarrow \sim$ disjnt $C S$ by (smt (verit) Union-iff disjnt-iff disjnt-subset1 disjoint-hyperplane-cells-eq hy-perplane-cellcomplex-def subsetI)

1.3 Euler characteristic

definition Euler-characteristic :: ('a::euclidean-space \times real) set \Rightarrow 'a set \Rightarrow int where Euler-characteristic $A S \equiv$
$\left(\sum C \mid\right.$ hyperplane-cell $A C \wedge C \subseteq S .(-1) \wedge$ nat $\left.(\operatorname{aff}-\operatorname{dim} C)\right)$

```
lemma Euler-characteristic-empty [simp]: Euler-characteristic A {} = 0
    by (simp add: sum.neutral Euler-characteristic-def)
lemma Euler-characteristic-cell-Union:
    assumes \C.C \in\mathcal{C}\Longrightarrow hyperplane-cell A C
    shows Euler-characteristic A (\bigcup\mathcal{C})=(\sumC\in\mathcal{C}.(-1)^ nat (aff-dim C))
proof -
    have \x.\llbrackethyperplane-cell A x; x\subseteq\bigcup\mathcal{C}\rrbracket\Longrightarrowx\in\mathcal{C}
        by (metis assms disjnt-Union1 disjnt-subset1 disjoint-hyperplane-cells-eq)
    then have {C. hyperplane-cell A C\wedgeC\subseteq\bigcup\mathcal{C}}=\mathcal{C}
        by (auto simp: assms)
    then show ?thesis
        by (auto simp: Euler-characteristic-def)
qed
lemma Euler-characteristic-cell:
    hyperplane-cell A C\Longrightarrow Euler-characteristic A C=(-1)^(nat(aff-dim C))
    using Euler-characteristic-cell-Union [of {C}] by force
lemma Euler-characteristic-cellcomplex-Un:
    assumes finite A hyperplane-cellcomplex A S
    and AT: hyperplane-cellcomplex A T and disjnt S T
    shows Euler-characteristic A (S\cupT) =
            Euler-characteristic A S + Euler-characteristic A T
proof -
    have *: {C. hyperplane-cell A C^C\subseteqS\cupT}=
            {C. hyperplane-cell A C^C\subseteqS}\cup{C. hyperplane-cell A C\wedgeC\subseteqT}
        using cell-subset-cellcomplex [OF - AT] by (auto simp: disjnt-iff)
    have **: {C. hyperplane-cell A C^C\subseteqS}\cap{C. hyperplane-cell A C^C\subseteq
T} = {}
    using assms cell-subset-cellcomplex disjnt-subset1 by fastforce
    show ?thesis
    unfolding Euler-characteristic-def
    by (simp add: finite-restrict-hyperplane-cells assms * ** flip: sum.union-disjoint)
qed
lemma Euler-characteristic-cellcomplex-Union:
    assumes finite A
    and \mathcal{C}:\bigwedgeC.C\in\mathcal{C}\Longrightarrow hyperplane-cellcomplex A C pairwise disjnt }\mathcal{C
    shows Euler-characteristic A (\bigcup\mathcal{C})=sum(Euler-characteristic A)\mathcal{C}
proof -
    have finite }\mathcal{C
    using assms finite-set-of-hyperplane-cellcomplex by blast
    then show ?thesis
        using}\mathcal{C
    proof (induction rule: finite-induct)
    case empty
    then show ?case
```

```
    by auto
    next
    case (insert C \mathcal{C}
    then obtain disjoint }\mathcal{C}\mathrm{ disjnt C ( }\bigcup\mathcal{C}
            by (metis disjnt-Union2 pairwise-insert)
    with insert show ?case
    by (simp add: Euler-characteristic-cellcomplex-Un hyperplane-cellcomplex-Union
<finite A>)
    qed
qed
lemma Euler-characteristic:
    fixes A :: ('n::euclidean-space * real) set
    assumes finite A
    shows Euler-characteristic A S=
        (\sumd=0..DIM('n). (-1) ^d* int (card {C. hyperplane-cell A C ^C\subseteq
S ^aff-dim C= int d}))
        (is - = ?rhs)
proof -
    have }\T.\llbrackethyperplane-cell A T;T\subseteqS\rrbracket\Longrightarrowaff-dim T\in{0..DIM('n)
        by (metis atLeastAtMost-iff nle-le order.strict-iff-not aff-dim-negative-iff
                nonempty-hyperplane-cell aff-dim-le-DIM)
    then have *: aff-dim ' {C. hyperplane-cell A C^C\subseteqS}\subseteq int '{0..DIM('n)}
    by (auto simp: image-int-atLeastAtMost)
    have Euler-characteristic A S = (\sumy\inint'{0..DIM('n)}.
        \sumC\in{x. hyperplane-cell A x ^ x\subseteqS^aff-dim x=y}.(- 1) ^nat y)
            using sum.group [of {C. hyperplane-cell A C^C\subseteqS} int '{0..DIM('n)}
aff-dim \lambdaC. (-1::int) ^nat(aff-dim C), symmetric]
    by (simp add: assms Euler-characteristic-def finite-restrict-hyperplane-cells *)
    also have ... = ?rhs
    by (simp add: sum.reindex mult-of-nat-commute)
    finally show ?thesis .
qed
```


1.4 Show that the characteristic is invariant w.r.t. hyperplane arrangement.

lemma hyperplane-cells-distinct-lemma:

$$
\{x . a \cdot x=b\} \cap\{x . a \cdot x<b\}=\{ \} \wedge
$$

$$
\{x . a \cdot x=b\} \cap\{x . a \cdot x>b\}=\{ \} \wedge
$$

$$
\{x . a \cdot x<b\} \cap\{x . a \cdot x=b\}=\{ \} \wedge
$$

$$
\{x . a \cdot x<b\} \cap\{x . a \cdot x>b\}=\{ \} \wedge
$$

$$
\{x . a \cdot x>b\} \cap\{x . a \cdot x=b\}=\{ \} \wedge
$$

$$
\{x . a \cdot x>b\} \cap\{x . a \cdot x<b\}=\{ \}
$$

by auto
proposition Euler-characterstic-lemma:
assumes finite A and hyperplane-cellcomplex $A S$
shows Euler-characteristic (insert h A) S Euler-characteristic A S

```
proof -
    obtain }\mathcal{C}\mathrm{ where }\mathcal{C}:\C.C\in\mathcal{C}\Longrightarrow\mathrm{ hyperplane-cell A C and S=\C
                    and pairwise disjnt }\mathcal{C
    by (meson assms hyperplane-cellcomplex-def pairwise-disjoint-hyperplane-cells)
    obtain ab where h=(a,b)
        by fastforce
    have }\C.C\in\mathcal{C}\Longrightarrow\mathrm{ hyperplane-cellcomplex A C ^ hyperplane-cellcomplex
(insert (a,b)A)C
            by (meson \mathcal{C hyperplane-cell-cellcomplex hyperplane-cellcomplex-mono sub-}
set-insertI)
    moreover
```



```
A)\mathcal{C}
    proof (rule sum.cong [OF refl])
        fix C
        assume C\in\mathcal{C}
        have Euler-characteristic (insert (a,b) A) C= (-1) ^nat(aff-dim C)
        proof (cases hyperplane-cell (insert (a,b) A)C)
            case True
            then show ?thesis
                using Euler-characteristic-cell by blast
    next
            case False
            with \mathcal{C}[OF}\langleC\in\mathcal{C}\rangle] have a\not=
                by (smt (verit, ccfv-threshold) hyperplane-cell-Un hyperplane-cell-empty
hyperplane-cell-singleton insert-is-Un sup-bot-left)
            have convex C
                using <hyperplane-cell A C> hyperplane-cell-convex by blast
            define r where r\equiv(\sumD\in{\mp@subsup{C}{}{\prime}\capC|\mp@subsup{C}{}{\prime}.\mathrm{ .hyperplane-cell {(a,b)} C'^}\wedge\mp@subsup{C}{}{\prime}\cap
C\not={}}. (-1::int) ^ nat (aff-dim D))
    have Euler-characteristic (insert (a,b) A) C
                =(\sumD|(D\not={}^
                    (\existsC1 C2. hyperplane-cell {(a,b)} C1 ^ hyperplane-cell A C2 ^
D=C1\capC2)) ^D\subseteqC.
                        (- 1) ^ nat (aff-dim D))
    unfolding r-def Euler-characteristic-def insert-is-Un [of-A] hyperplane-cell-Un
..
            also have ... = r
            unfolding r-def
            apply (rule sum.cong [OF - refl])
            using <hyperplane-cell A C` disjoint-hyperplane-cells disjnt-iff
            by (smt (verit, ccfv-SIG) Collect-cong Int-iff disjoint-iff subsetD subsetI)
    also have ... = (-1) ^nat(aff-dim C)
    proof -
        have C\not={}
            using <hyperplane-cell A C` by auto
        show ?thesis
        proof (cases C\subseteq{x.a\cdotx<b}\veeC\subseteq{x.a\cdotx>b}\veeC\subseteq{x.a\cdotx=
b})
```

```
case Csub: True
with \(\langle C \neq\{ \}\rangle\) have \(r=\operatorname{sum}\left(\lambda c .(-1)^{\wedge} \operatorname{nat}(\operatorname{aff}-\operatorname{dim} c)\right)\{C\}\)
    unfolding \(r\)-def
    apply (intro sum.cong [OF - refl])
    by (auto simp: \(\langle a \neq 0\rangle\) hyperplane-cell-singleton)
also have \(\ldots=(-1)\) へ nat \((\operatorname{aff}-\operatorname{dim} C)\)
    by simp
    finally show ?thesis.
next
    case False
    then obtain \(u v\) where \(u v: u \in C \neg a \cdot u<b v \in C \neg a \cdot v>b\)
        by blast
    have CInt-ne: \(C \cap\{x . a \cdot x=b\} \neq\{ \}\)
    proof (cases \(a \cdot u=b \vee a \cdot v=b\) )
        case True
        with uv show ?thesis
        by blast
    next
        case False
        have \(a \cdot v<a \cdot u\)
        using False uv by auto
    define \(w\) where \(w \equiv v+((b-a \cdot v) /(a \cdot u-a \cdot v)) *_{R}(u-v)\)
    have \(* *: v+a *_{R}(u-v)=(1-a) *_{R} v+a *_{R} u\) for \(a\)
        by (simp add: algebra-simps)
    have \(w \in C\)
        unfolding \(w\)-def \(* *\)
    proof (intro convexD-alt)
    qed (use \(\langle a \cdot v<a \cdot u\rangle\langle c o n v e x C\rangle u v\) in auto)
    moreover have \(w \in\{x . a \cdot x=b\}\)
    using \(\langle a \cdot v<a \cdot u\rangle\) by (simp add: w-def inner-add-right inner-diff-right)
    ultimately show ?thesis
        by blast
    qed
    have \(C a b: C \cap\{x . a \cdot x<b\} \neq\{ \} \wedge C \cap\{x . b<a \cdot x\} \neq\{ \}\)
    proof -
        obtain \(u v\) where \(u \in C a \cdot u=b v \in C a \cdot v \neq b u \neq v\)
            using False \(\langle C \cap\{x . a \cdot x=b\} \neq\{ \}>\) by blast
    have openin (subtopology euclidean (affine hull C)) C
            using 〈hyperplane-cell \(A C\) 〉〈finite \(A\rangle\) hyperplane-cell-relatively-open
by blast
    then obtain \(\varepsilon\) where \(0<\varepsilon\)
                and \(\varepsilon: \bigwedge x^{\prime} . \llbracket x^{\prime} \in\) affine hull \(C\); dist \(x^{\prime} u<\varepsilon \rrbracket \Longrightarrow x^{\prime} \in C\)
    by (meson \(\langle u \in C\rangle\) openin-euclidean-subtopology-iff)
    define \(\xi\) where \(\xi \equiv u-(\varepsilon / 2 / \operatorname{norm}(v-u)) *_{R}(v-u)\)
    have \(\xi \in C\)
    proof (rule \(\varepsilon\) )
        show \(\xi \in\) affine hull \(C\)
            by (simp add: \(\xi\)-def \(\langle u \in C\rangle\langle v \in C\rangle\) hull-inc mem-affine-3-minus2)
    qed (use \(\xi\)-def \(\langle 0<\varepsilon\rangle\) in force)
```

```
    consider \(a \cdot v<b \mid a \cdot v>b\)
    using \(\langle a \cdot v \neq b\rangle\) by linarith
    then show ?thesis
    proof cases
    case 1
    moreover have \(\xi \in\{x . b<a \cdot x\}\)
        using \(1\langle 0<\varepsilon\rangle\langle a \cdot u=b\rangle\) divide-less-cancel
        by (fastforce simp: \(\xi\)-def algebra-simps)
        ultimately show ?thesis
            using \(\langle v \in C\rangle\langle\xi \in C\rangle\) by blast
        next
        case 2
        moreover have \(\xi \in\{x . b>a \cdot x\}\)
            using \(2\langle 0<\varepsilon\rangle\langle a \cdot u=b\rangle\) divide-less-cancel
            by (fastforce simp: \(\xi\)-def algebra-simps)
            ultimately show ?thesis
            using \(\langle v \in C\rangle\langle\xi \in C\rangle\) by blast
        qed
    qed
    have \(r=\left(\sum C \in\{\{x . a \cdot x=b\} \cap C,\{x . b<a \cdot x\} \cap C,\{x . a \cdot x<b\}\right.\)
\(\cap C\}\).
                    \((-1) \wedge n a t(\operatorname{aff}-\operatorname{dim} C))\)
    unfolding \(r\)-def
    proof (intro sum.cong \([O F-r e f l]\) equalityI)
    show \(\{\{x . a \cdot x=b\} \cap C,\{x . b<a \cdot x\} \cap C,\{x . a \cdot x<b\} \cap C\}\)
        \(\subseteq\left\{C^{\prime} \cap C \mid C^{\prime}\right.\). hyperplane-cell \(\left.\{(a, b)\} C^{\prime} \wedge C^{\prime} \cap C \neq\{ \}\right\}\)
        apply clarsimp
            using Cab Int-commute \(\langle C \cap\{x . a \cdot x=b\} \neq\{ \}\rangle\) hyper-
plane-cell-singleton \(\langle a \neq 0\) 〉
            by metis
            qed (auto simp: \(\langle a \neq 0\rangle\) hyperplane-cell-singleton)
            also have \(\ldots=(-1)^{\wedge} \operatorname{nat}(\operatorname{aff}-\operatorname{dim}(C \cap\{x . a \cdot x=b\}))\)
                        \(+(-1)\) ~nat \((\operatorname{aff}-\operatorname{dim}(C \cap\{x . b<a \cdot x\}))\)
                        \(+(-1){ }^{\wedge} \operatorname{nat}(\operatorname{aff}-\operatorname{dim}(C \cap\{x . a \cdot x<b\}))\)
            using hyperplane-cells-distinct-lemma [of a b] Cab
            by (auto simp: sum.insert-if Int-commute Int-left-commute)
            also have \(\ldots=(-1){ }^{\wedge}\) nat (aff-dim C)
            proof -
            have \(*: \operatorname{aff}-\operatorname{dim}(C \cap\{x . a \cdot x<b\})=\operatorname{aff}-\operatorname{dim} C \wedge \operatorname{aff}-\operatorname{dim}(C \cap\{x . a\)
- \(x>b\})=\) aff-dim \(C\)
            by (metis Cab open-halfspace-lt open-halfspace-gt aff-dim-affine-hull
                affine-hull-convex-Int-open \([\) OF 〈convex C〉])
            obtain \(S T\) where open \(S\) affine \(T\) and Ceq: \(C=S \cap T\)
            by (meson 〈hyperplane-cell \(A C\) 〉〈finite \(A\) 〉 hyperplane-cell-Int-open-affine)
            have affine hull \(C=\) affine hull \(T\)
            by (metis Ceq \(\langle C \neq\{ \}\rangle\langle a f f i n e ~ T\rangle\langle o p e n ~ S\rangle\) affine-hull-affine-Int-open
inf-commute)
    moreover
    have \(T \cap(\{x . a \cdot x=b\} \cap S) \neq\{ \}\)
```

```
            using Ceq <C\cap {x.a\cdotx=b} \not={}> by blast
            then have affine hull (C\cap{x.a\cdotx=b})=\operatorname{affine hull (T\cap{x.a\cdotx}
= b})
            using affine-hull-affine-Int-open[of T\cap{x.a\cdotx=b} S]
            by (simp add:Ceq Int-ac <affine T〉 <open S〉 affine-Int affine-hyperplane)
            ultimately have aff-dim (affine hull C) = aff-dim(affine hull ( }C\cap{x\mathrm{ .
a}\cdotx=b}))+
            using CInt-ne False Ceq
            by (auto simp: aff-dim-affine-Int-hyperplane <affine T〉)
            moreover have 0\leqaff-dim (C\cap{x.a\cdotx=b})
                by (metis CInt-ne aff-dim-negative-iff linorder-not-le)
            ultimately show ?thesis
                    by (simp add: * nat-add-distrib)
            qed
            finally show ?thesis.
            qed
        qed
        finally show Euler-characteristic (insert (a,b) A) C=(-1) ^nat(aff-dim
C) .
    qed
    then show Euler-characteristic (insert (a,b) A) C = (Euler-characteristic A
C)
    by (simp add: Euler-characteristic-cell \mathcal{C}\langleC\in\mathcal{C}\rangle)
    qed
    ultimately show ?thesis
    by (simp add: Euler-characteristic-cellcomplex-Union <S = \bigcup\mathcal{C}\rangle\langledisjoint \mathcal{C}\rangle
<h = (a,b)> assms(1))
qed
lemma Euler-characterstic-invariant-aux:
    assumes finite B finite A hyperplane-cellcomplex A S
    shows Euler-characteristic (A\cupB)S=Euler-characteristic A S
    using assms
    by (induction rule: finite-induct) (auto simp: Euler-characterstic-lemma hyper-
plane-cellcomplex-mono)
lemma Euler-characterstic-invariant:
    assumes finite A finite B hyperplane-cellcomplex A S hyperplane-cellcomplex B
S
    shows Euler-characteristic A S=Euler-characteristic B S
    by (metis Euler-characterstic-invariant-aux assms sup-commute)
lemma Euler-characteristic-inclusion-exclusion:
    assumes finite A finite S }\K.K\in\mathcal{S \Longrightarrow hyperplane-cellcomplex A K
    shows Euler-characteristic A (\bigcup\mathcal{S})=(\sum\mathcal{T}|\mathcal{T}\subseteq\mathcal{S}\wedge\mathcal{T}\not={}.(- 1)^ (card
T}+1)*\mathrm{ Euler-characteristic A (\}\mathcal{T})
proof -
    interpret Incl-Excl hyperplane-cellcomplex A Euler-characteristic A
```

proof
show Euler－characteristic $A(S \cup T)=$ Euler－characteristic $A S+$ Euler－characteristic
A T
if hyperplane－cellcomplex $A S$ and hyperplane－cellcomplex $A T$ and disjnt $S T$
for $S T$
using that Euler－characteristic－cellcomplex－Un assms（1）by blast
qed（use hyperplane－cellcomplex－Int hyperplane－cellcomplex－Un hyperplane－cellcomplex－diff in auto）
show ？thesis
using restricted assms by blast
qed

1．5 Euler－type relation for full－dimensional proper polyhe－ dral cones

lemma Euler－polyhedral－cone：
fixes $S::$＇$n::$ euclidean－space set
assumes polyhedron S conic S and intS：interior $S \neq\{ \}$ and $S \neq U N I V$
shows $\left(\sum d=0 . . D I M(' n) .(-1)^{\wedge} d * \operatorname{int}(\operatorname{card}\{f . f\right.$ face－of $S \wedge \operatorname{aff}-\operatorname{dim} f=$ int $d\}))=0 \quad($ is ？lhs $=0)$
proof－
have［simp］：affine hull $S=$ UNIV
by（simp add：affine－hull－nonempty－interior intS）
with 〈polyhedron S 〉
obtain H where finite H
and Seq：$S=\bigcap H$
and Hex：$\wedge h . h \in H \Longrightarrow \exists a b . a \neq 0 \wedge h=\{x . a \cdot x \leq b\}$
and Hsub：$\wedge \mathcal{G} . \mathcal{G} \subset H \Longrightarrow S \subset \bigcap \mathcal{G}$
by（fastforce simp：polyhedron－Int－affine－minimal）
have $0 \in S$
using assms（2）conic－contains－0 intS interior－empty by blast
have $*: \exists a . a \neq 0 \wedge h=\{x . a \cdot x \leq 0\}$ if $h \in H$ for h
proof－
obtain $a b$ where $a \neq 0$ and $a b: h=\{x . a \cdot x \leq b\}$
using Hex $[O F\langle h \in H\rangle]$ by blast
have $0 \in \bigcap H$
using $S e q<0 \in S 〉$ by force
then have $0 \in h$
using that by blast
consider $b=0|b<0| b>0$
by linarith
then
show ？thesis
proof cases
case 1
then show ？thesis using $\langle a \neq 0\rangle a b$ by blast
next
case 2
then show ?thesis
using $\langle 0 \in h\rangle a b$ by auto
next
case 3
have $S \subset \bigcap(H-\{h\})$
using Hsub [of $H-\{h\}$] that by auto
then obtain x where $x: x \in \bigcap(H-\{h\})$ and $x \notin S$
by auto
define ε where $\varepsilon \equiv \min (1 / 2)(b /(a \cdot x))$
have $b<a \cdot x$
using $\langle x \notin S\rangle a b x$ by (fastforce simp: $\langle S=\bigcap H\rangle$)
with 3 have $0<a \cdot x$
by auto
with 3 have $0<\varepsilon$
by (simp add: ε-def)
have $\varepsilon<1$
using ε-def by linarith
have $\varepsilon *(a \cdot x) \leq b$
unfolding ε-def using $\langle 0<a \cdot x\rangle$ pos-le-divide-eq by fastforce
have $x=$ inverse $\varepsilon *_{R} \varepsilon *_{R} x$
using $\langle 0<\varepsilon\rangle$ by force
moreover
have $\varepsilon *_{R} x \in S$
proof -
have $\varepsilon *_{R} x \in h$
by $(\operatorname{simp} a d d:\langle\varepsilon *(a \cdot x) \leq b\rangle a b)$
moreover have $\varepsilon *_{R} x \in \bigcap(H-\{h\})$
proof -
have $\varepsilon *_{R} x \in k$ if $x \in k k \in H k \neq h$ for k
proof -
obtain $a^{\prime} b^{\prime}$ where $a^{\prime} \neq 0 k=\left\{x . a^{\prime} \cdot x \leq b^{\prime}\right\}$
using Hex $\langle k \in H\rangle$ by blast
have $\left(0 \leq a^{\prime} \cdot x \Longrightarrow a^{\prime} \cdot \varepsilon *_{R} x \leq a^{\prime} \cdot x\right)$
by (metis $\langle\varepsilon<1\rangle$ inner-scale R-right order-less-le pth-1 real-scale R-def
scaleR-right-mono)
moreover have $\left(0 \leq-\left(a^{\prime} \cdot x\right) \Longrightarrow 0 \leq-\left(a^{\prime} \cdot \varepsilon *_{R} x\right)\right)$
using $\langle 0<\varepsilon\rangle$ mult-le-0-iff order-less-imp-le by auto
ultimately
have $a^{\prime} \cdot x \leq b^{\prime} \Longrightarrow a^{\prime} \cdot \varepsilon *_{R} x \leq b^{\prime}$
by (smt (verit) Inter $D\langle 0 \in \bigcap H\rangle\left\langle k=\left\{x . a^{\prime} \cdot x \leq b^{\prime}\right\}\right\rangle$ inner-zero-right
mem-Collect-eq that(2))
then show ?thesis
using $\left\langle k=\left\{x . a^{\prime} \cdot x \leq b^{\prime}\right\}\right\rangle\langle x \in k\rangle$ by fastforce
qed
with x show ?thesis
by blast
qed
ultimately show ?thesis
using Seq by blast

qed

with 〈conic S 〉 have inverse $\varepsilon *_{R} \varepsilon *_{R} x \in S$
by（meson $\langle 0<\varepsilon\rangle$ conic－def inverse－nonnegative－iff－nonnegative order－less－le）
ultimately show ？thesis
using $\langle x \notin S\rangle$ by presburger
qed
qed
then obtain $f a$ where $f a: \wedge h . h \in H \Longrightarrow f a h \neq 0 \wedge h=\{x . f a h \cdot x \leq 0\}$
by metis
define fa－le－0 where fa－le－0 $\equiv \lambda h .\{x . f a h \cdot x \leq 0\}$
have $f a^{\prime}: \wedge h . h \in H \Longrightarrow f a-l e-0 h=h$
using fa fa－le－0－def by blast
define A where $A \equiv(\lambda h$ ．（fa h， $0::$ real $)$ ）＇H
have finite A
using 〈finite H 〉 by（simp add：A－def）
then have ？lhs $=$ Euler－characteristic A S
proof－
have［simp］：card $\{f$ ．f face－of $S \wedge$ aff－ $\operatorname{dim} f=$ int $d\}=$ card $\{C$ ．hyperplane－cell
$A C \wedge C \subseteq S \wedge$ aff－dim $C=$ int $d\}$
if finite A and $d \leq$ card（Basis：：＇n set）
for d ：：nat
proof（rule bij－betw－same－card）
have hyper1：hyperplane－cell A（rel－interior $f) \wedge$ rel－interior $f \subseteq S$
$\wedge \operatorname{aff}$－dim $($ rel－interior $f)=d \wedge$ closure $($ rel－interior $f)=f$
if f face－of S aff－dim $f=d$ for f
proof－
have 1：closure（rel－interior $f)=f$
proof－
have closure（rel－interior $f)=$ closure f
by（meson convex－closure－rel－interior face－of－imp－convex that（1））
also have $\ldots=f$
by（meson assms（1）closure－closed face－of－polyhedron－polyhedron polyhe－
dron－imp－closed that（1））
finally show ？thesis．
qed
then have 2：aff－dim（rel－interior $f)=d$
by（metis closure－aff－dim that（2））
have $f \neq\{ \}$
using aff－dim－negative－iff［of f］by（simp add：that（2））
obtain $J 0$ where $J 0 \subseteq H$ and $J 0: f=\bigcap\left(f a-l e-0{ }^{‘} H\right) \cap(\bigcap h \in J 0 .\{x$ ．
$f a h \cdot x=0\}$ ）
proof（cases $f=S$ ）
case True
have $S=\bigcap(f a-l e-0$＇$H)$
using $S e q$ fa by（auto simp：fa－le－O－def）
then show ？thesis
using True that by blast
next
case False
have fexp: $f=\bigcap\{S \cap\{x . f a h \cdot x=0\} \mid h . h \in H \wedge f \subseteq S \cap\{x . f a h \cdot$ $x=0\}\}$
proof (rule face-of-polyhedron-explicit)
show $S=$ affine hull $S \cap \bigcap H$
by (simp add: Seq hull-subset inf.absorb2)
qed (auto simp: False $\langle f \neq\{ \}\rangle\langle f$ face-of $S\rangle\langle$ finite $H\rangle$ Hsub fa)
show ?thesis
proof
have $*: \bigwedge x h . \llbracket x \in f ; h \in H \rrbracket \Longrightarrow f a h \cdot x \leq 0$
using Seq fa face-of-imp-subset $\langle f$ face-of $S\rangle$ by fastforce
show $f=\bigcap(f a-l e-0 ' H) \cap(\bigcap h \in\{h \in H . f \subseteq S \cap\{x . f a h \cdot x=$ $0\}\} \cdot\{x . f a h \cdot x=0\}$)

$$
\text { (is } f=? I)
$$

proof
show $f \subseteq$? I
using $\langle f$ face-of $S\rangle$ fa face-of-imp-subset by (force simp: * fa-le-O-def)
show ?I $\subseteq f$
apply (subst (2) fexp)
apply (clarsimp simp: * fa-le-0-def)
by (metis Inter-iff Seq fa mem-Collect-eq)
qed
qed blast
qed
define H^{\prime} where $H^{\prime}=(\lambda h .\{x .-(f a h) \cdot x \leq 0\})$ ' H
have $\exists J$. finite $J \wedge J \subseteq H \cup H^{\prime} \wedge f=$ affine hull $f \cap \bigcap J$
proof (intro exI conjI)
let ? $J=H \cup$ image $(\lambda h .\{x .-(f a h) \cdot x \leq 0\}) J 0$
show finite (?J::'n set set)
using $\langle J 0 \subseteq H\rangle\langle$ finite H 〉 finite-subset by fastforce
show ? $J \subseteq H \cup H^{\prime}$
using $\langle J 0 \subseteq H\rangle$ by (auto simp: H^{\prime}-def)
have $f=\bigcap$? J
proof
show $f \subseteq \bigcap$? J
unfolding $J 0$ by (auto simp: fa')
have $\bigwedge x j . \llbracket j \in J 0 ; \forall h \in H . x \in h ; \forall j \in J 0.0 \leq f a j \cdot x \rrbracket \Longrightarrow f a j \cdot x=0$ by (metis $\langle J 0 \subseteq H\rangle$ fa in-mono inf.absorb2 inf.orderE mem-Collect-eq) then show \bigcap ? $J \subseteq f$
unfolding $J 0$ by (auto simp: $f a^{\prime}$)
qed
then show $f=$ affine hull $f \cap \bigcap$? J
by (simp add: Int-absorb1 hull-subset)
qed
then have $* *: \exists n J$. finite $J \wedge$ card $J=n \wedge J \subseteq H \cup H^{\prime} \wedge f=$ affine hull $f \cap \bigcap J$
by blast
obtain $J n J$ where J : finite J card $J=n J J \subseteq H \cup H^{\prime}$ and feq: $f=$ affine hull $f \cap \bigcap J$
and $\min J: \bigwedge m J^{\prime} . \llbracket$ finite $J^{\prime} ; m<n J ;$ card $J^{\prime}=m ; J^{\prime} \subseteq H \cup H^{\dagger} \rrbracket \Longrightarrow f$

```
F affine hull f \cap\bigcap }\mp@subsup{J}{}{\prime
        using exists-least-iff [THEN iffD1,OF **] by metis
        have FF:f\subset(affine hull }f\cap\bigcap\mp@subsup{J}{}{\prime})\mathrm{ if }\mp@subsup{J}{}{\prime}\subsetJ\mathrm{ for }\mp@subsup{J}{}{\prime
        proof -
        have f}\not=\mathrm{ affine hull }f\cap\bigcap\mp@subsup{J}{}{\prime
            using minJ
                by (metis J finite-subset psubset-card-mono psubset-imp-subset psub-
set-subset-trans that)
        then show ?thesis
            by (metis Int-subset-iff Inter-Un-distrib feq hull-subset inf-sup-ord(2)
psubsetI sup.absorb4 that)
    qed
    have }\existsa.{x.a\cdotx\leq0}=h\wedge(h\inH\wedgea=fah\vee(\exists\mp@subsup{h}{}{\prime}.\mp@subsup{h}{}{\prime}\inH\wedgea
-(fa h}\mp@subsup{h}{}{\prime}))
            if h\inJ for h
    proof -
        have }h\inH\cup\mp@subsup{H}{}{\prime
                using <J\subseteqH\cupH'> that by blast
        then show ?thesis
        proof
            show ?thesis if h\inH
            using that fa by blast
        next
            assume h\in H'
            then obtain }\mp@subsup{h}{}{\prime}\mathrm{ where }\mp@subsup{h}{}{\prime}\inHh={x.0\leqfa h' \cdot x
            by (auto simp: H'-def)
                then show ?thesis
                    by (force simp: intro!: exI[where x=- (fa h}\mp@subsup{h}{}{\prime})]
        qed
    qed
    then obtain ga
        where ga-h: \bigwedgeh. h\inJ\Longrightarrowh={x.ga h • x \leq 0 }
            and ga-fa: \bigwedgeh. h\inJ\Longrightarrowh\inH\wedgegah=fah\vee(\exists\mp@subsup{h}{}{\prime}.\mp@subsup{h}{}{\prime}\inH\wedgegah
= -(fa h}\mp@subsup{h}{}{\prime}
        by metis
    have 3: hyperplane-cell A (rel-interior f)
    proof -
        have D: rel-interior f = {x\inf.\forallh\inJ.ga h . x<0}
        proof (rule rel-interior-polyhedron-explicit [OF〈finite J〉 feq])
            show ga h\not=0^h={x.ga h \cdotx\leq0} if h\inJ for h
            using that fa ga-fa ga-h by force
        qed (auto simp: FF)
        have H:h\inH\wedge ga h=fah if h\inJ for h
        proof -
            obtain z where z:z\in rel-interior f
            using 1〈f}\not={}\rangle\mathrm{ by force
        then have z\inf\wedgez\inS
            using D<f face-of S〉 face-of-imp-subset by blast
        then show ?thesis
```

```
        using ga-fa [OF that]
    by (smt (verit, del-insts) D InterE Seq fa inner-minus-left mem-Collect-eq
that z)
    qed
    then obtain K where K\subseteqH
            and K:f=\bigcap (fa-le-0'H)\cap(\bigcaph\inK.{x.fa h •x=0})
            using J0 <JO \subseteqH〉 by blast
                            have E: rel-interior f ={x. (\forallh\inH.fah\cdotx\leq0)\wedge(\forallh\inK.fah\cdotx
=0)}\wedge(\forallh\inJ.gah\cdotx<0)
            unfolding D by (simp add: K fa-le-0-def)
    have relif: rel-interior f}\not={
            using 1<f \not={}` by force
    with E have disjnt J K
        using H disjnt-iff by fastforce
    define IFJK where IFJK \equiv\lambdah. if h}\inJ\mathrm{ then {x.fah•x<0}
            else if h\inK then {x. fa h•x=0}
            else if rel-interior f\subseteq{x.fa h•x=0}
            then {x.fah . x=0}
            else {x.fah | x < 0}
    have relint-f: rel-interior f}=\bigcap(IFJK'H
    proof
        have A: False
            if x:x\in rel-interior f and y:y\in rel-interior f and less0: fa h •y<0
                and fa0: fa h • x=0 and h\inHh\not\inJh\not\inK for xhy
    proof -
        obtain \varepsilon where x\inf \varepsilon>0
            and \varepsilon: \t.\llbracketdist x t\leq\varepsilon; t\in affine hull f\rrbracket\Longrightarrowt\inf
            using }x\mathrm{ by (force simp: mem-rel-interior-cball)
            then have }y\not=
            using fa0 less0 by force
        define }\mp@subsup{x}{}{\prime}\mathrm{ where }\mp@subsup{x}{}{\prime}\equivx+(\varepsilon/\operatorname{norm}(y-x))*R(x-y
        have }x\in\mathrm{ affine hull }f\wedgey\in\mathrm{ affine hull }
                by (metis }\langlex\inf\rangle\mathrm{ hull-inc mem-rel-interior-cball y)
            moreover have dist x x'}\leq
                using }\langle0<\varepsilon\rangle\langley\not=x\rangle\mathrm{ by (simp add: x'-def divide-simps dist-norm
norm-minus-commute)
            ultimately have }\mp@subsup{x}{}{\prime}\in
                by (simp add: \varepsilon mem-affine-3-minus x'-def)
            have }\mp@subsup{x}{}{\prime}\in
            using <f face-of S\rangle\langle\mp@subsup{x}{}{\prime}\inf\rangle face-of-imp-subset by auto
            then have }\mp@subsup{x}{}{\prime}\in
            using Seq that(5) by blast
            then have }\mp@subsup{x}{}{\prime}\in{x.fah\cdotx\leq0
            using fa that(5) by blast
            moreover have \varepsilon/ norm (y-x)*-(fah | y)>0
            using <0 < <>\langley\not=x\rangle less0 by (simp add: field-split-simps)
            ultimately show ?thesis
            by (simp add: x'-def fa0 inner-diff-right inner-right-distrib)
    qed
```

```
            show rel-interior f}\subseteq\bigcap(IFJK'H
                            unfolding IFJK-def by (smt (verit, ccfv-SIG) A E H INT-I in-mono
mem-Collect-eq subsetI)
    show \bigcap(IFJK'H)\subseteqrel-interior f
                            using <K\subseteqH\rangle\langledisjnt J K>
                            apply (clarsimp simp add: ball-Un E H disjnt-iff IFJK-def)
        apply (smt (verit, del-insts) IntI Int-Collect subsetD)
        done
    qed
    obtain z}\mathrm{ where zrelf:z f rel-interior f
        using relif by blast
    moreover
    have H:z\inIFJK h\Longrightarrow(x\inIFJK h)=(hyperplane-side (fa h,0)z=
hyperplane-side (fa h, 0) x) for hx
            using zrelf by (auto simp: IFJK-def hyperplane-side-def sgn-if split:
if-split-asm)
    then have z \\bigcap(IFJK'H)\Longrightarrow(x\in\bigcap(IFJK'H))=hyperplane-equiv
Azx for x
                    unfolding A-def Inter-iff hyperplane-equiv-def ball-simps using H by
blast
            then have }x\in\mathrm{ rel-interior f}\longleftrightarrow\mathrm{ hyperplane-equiv Azx for x
                using relint-f zrelf by presburger
            ultimately show ?thesis
                by (metis equalityI hyperplane-cell mem-Collect-eq subset-iff)
            qed
            have 4: rel-interior f}\subseteq
            by (meson face-of-imp-subset order-trans rel-interior-subset that(1))
            show ?thesis
            using 12 34 by blast
    qed
    have hyper2: (closure c face-of S ^ aff-dim (closure c) =d) ^ rel-interior
(closure c) =c
    if c: hyperplane-cell A c and c\subseteqS aff-dim c = d for c
    proof (intro conjI)
        obtain J where J\subseteqH and J:c=(\bigcaph\inJ.{x.(fah)\cdotx<0})\cap(\bigcaph
\epsilon(H-J).{x.(fah)\cdotx=0})
    proof -
```



```
                using c by (force simp: hyperplane-cell A-def hyperplane-equiv-def
hyperplane-side-def)
    show thesis
    proof
        let ?J = {h\inH.\operatorname{sgn}(fah\cdotz)=-1}
        have 1: fa h • x<0
            if }\forallh\inH.\operatorname{sgn}(fah\cdotx)=\operatorname{sgn}(fah\cdotz)\mathrm{ and }h\inH\mathrm{ and sgn (fah .
z)=-1 for xh
            using that by (metis sgn-1-neg)
        have 2: sgn (fah\cdotz)=-1
            if \forallh\inH.\operatorname{sgn}(fah\cdotx)=\operatorname{sgn}(fah\cdotz) and h\inH and fah\cdotx\not=0
```

```
for }x
    proof -
        have \llbracket0<fah \cdotx; 0< fa h\cdotz\rrbracket\Longrightarrow False
                            using that fa by (smt (verit, del-insts) Inter-iff Seq<c\subseteqS`
mem-Collect-eq subset-iff z)
            then show ?thesis
                by (metis that sgn-if sgn-zero-iff)
            qed
            have 3: sgn (fah \cdot x)=sgn (fah | z)
                if h\inH and \forallh. h\inH^\operatorname{sgn}(fah\cdotz)=-1\longrightarrowfah\cdotx<0
                and \forallh\inH-{h\inH.sgn (fah\cdotz)=-1}.fah h x = 0
                for x }
                using that 2 by (metis (mono-tags, lifting) Diff-iff mem-Collect-eq
sgn-neg)
            show c=(\bigcaph\in?J. {x.fah \cdotx<0}) \cap(\bigcaph\inH - ?J. {x. fa h •x=
0})
            unfolding z by (auto intro:12 3)
        qed auto
            qed
            have finite J
                using <J\subseteqH\rangle\langlefinite H> finite-subset by blast
            show closure c face-of S
            proof -
            have cc: closure c = closure (\bigcaph\inJ. {x.fah•x<0}) \cap closure (\bigcaph\inH
- J. {x. fa h • x = 0})
            unfolding J
            proof (rule closure-Int-convex)
            show convex (\bigcaph\inJ. {x.fa h • x<0})
                by (simp add: convex-INT convex-halfspace-lt)
            show convex ( }\bigcaph\inH-J.{x.fah\cdotx=0}
                by (simp add: convex-INT convex-hyperplane)
            have o1: open (\bigcaph\inJ. {x.fa h | x < 0})
                by (metis open-INT[OF<finite J〉] open-halfspace-lt)
                    have o2: openin (top-of-set (affine hull ( }\caph\inH-J.{x.fah 和
0})))}(\bigcaph\inH-J.{x.fah\cdotx=0}
            proof -
            have affine (\bigcaph\inH - J. {n. fa h • n=0})
                using affine-hyperplane by auto
                    then show ?thesis
                    by (metis (no-types) affine-hull-eq openin-subtopology-self)
            qed
            show rel-interior (\bigcaph\inJ. {x.fah •x<0}) \cap rel-interior }(\bigcaph\inH
J. {x. fa h •x=0})\not={}
    by (metis nonempty-hyperplane-cell c rel-interior-open o1 rel-interior-openin
o2 J)
    qed
    have clo-im-J: closure'((\lambdah. {x.fah •x<0})'J) = (\lambdah. {x.fah | x
s 0})'J
    using <J\subseteqH\rangle by (force simp: image-comp fa)
```

```
    have cleq: closure (\bigcaph\inH-J. {x.fah . x=0}) = (\bigcaph\inH - J. {x.fa
h. x=0})
    by (intro closure-closed) (blast intro: closed-hyperplane)
    have **:(\bigcaph\inJ.{x.fah | x \leq 0 }) \cap (\bigcaph\inH-J.{x.fah | x = 0})
face-of S
    if (\bigcaph\inJ. {x.fah 和<0}) f={}
    proof (cases }J=H\mathrm{ )
        case True
        have [simp]:(\bigcapx\inH.{xa.fa x • xa \leq 0}) =\bigcapH
            using fa by auto
        show ?thesis
            using <polyhedron S` by (simp add: Seq True polyhedron-imp-convex
face-of-refl)
    next
        case False
        have **:(\bigcaph\inJ. {n.fa h \cdot n\leq0}) \cap(\bigcaph\inH - J. {x.fah • x=0})
=
        proof
        show ?L\subseteq?R
            by clarsimp (smt (verit) DiffI InterI Seq fa mem-Collect-eq)
        show ?R \subseteq?L
            using False Seq <J\subseteqH〉fa by blast
    qed
    show ?thesis
        unfolding **
    proof (rule face-of-Inter)
        show (\lambdah. S\cap{x.fa h • x=0})'(H-J) = {}
            using False <J\subseteqH> by blast
        show T face-of S
            if T:T\in(\lambdah.S\cap{x.fah\cdotx=0})'(H-J) for T
        proof -
            obtain h where h:T=S\cap{x.fah\cdotx=0} and h\inHh\not\inJ
                using T by auto
            have S\cap{x.fah•x=0} face-of S
            proof (rule face-of-Int-supporting-hyperplane-le)
                        show convex S
                        by (simp add: assms(1) polyhedron-imp-convex)
                    show fah h x \leq 0 if x\inS for x
                    using that Seq fa< }h\inH\rangle\mathrm{ by auto
            qed
            then show ?thesis
                using h by blast
        qed
    qed
    qed
    have *: \bigwedgeS. S \in (\lambdah. {x.fa h \cdot x<0})' J\Longrightarrow convex S ^ open S
        using convex-halfspace-lt open-halfspace-lt by fastforce
    show ?thesis
```

```
            unfolding }c
            apply (simp add:* closure-Inter-convex-open)
            by (metis ** cleq clo-im-J image-image)
        qed
        show aff-dim (closure c) = int d
            by (simp add: that)
            show rel-interior (closure c)=c
            by (metis〈finite A〉c convex-rel-interior-closure hyperplane-cell-convex
hyperplane-cell-relative-interior)
    qed
    have rel-interior ' {f.f face-of S ^ aff-dim f=int d}
            ={C. hyperplane-cell A C^C\subseteqS\wedge aff-dim C= int d}
            using hyper1 hyper2 by fastforce
            then show bij-betw (rel-interior) {f.f face-of S ^aff-dim f=int d}{C.
hyperplane-cell A C^C\subseteqS ^aff-dim C=int d}
    unfolding bij-betw-def inj-on-def by (metis (mono-tags) hyper1 mem-Collect-eq)
    qed
    show ?thesis
        by (simp add: Euler-characteristic <finite A>)
    qed
    also have ... = 0
    proof -
    have A: hyperplane-cellcomplex A (-h) if h\inH for h
    proof (rule hyperplane-cellcomplex-mono [OF hyperplane-cell-cellcomplex])
        have -h={x.fah•x=0}\vee - h={x.fah•x<0}\vee - h={x.0<
fa h • x}
            by (smt (verit, ccfv-SIG) Collect-cong Collect-neg-eq fa that)
        then show hyperplane-cell {(fa h,0)} (-h)
            by (simp add: hyperplane-cell-singleton fa that)
        show {(fa h,0)}\subseteqA
            by (simp add: A-def that)
    qed
    then have \}\.h\inH\Longrightarrow\mathrm{ hyperplane-cellcomplex A h
        using hyperplane-cellcomplex-Compl by fastforce
    then have hyperplane-cellcomplex A S
        by (simp add: Seq hyperplane-cellcomplex-Inter)
    then have D: Euler-characteristic A (UNIV ::'n set) =
                    Euler-characteristic A (\bigcapH) + Euler-characteristic A (- \bigcapH)
        using Euler-characteristic-cellcomplex-Un
        by (metis Compl-partition Diff-cancel Diff-eq Seq〈finite A〉 disjnt-def hyper-
plane-cellcomplex-Compl)
    have Euler-characteristic A UNIV = Euler-characteristic {} (UNIV::'n set)
    by (simp add: Euler-characterstic-invariant <finite A〉)
    then have E: Euler-characteristic A UNIV = (-1)^ (DIM('n))
        by (simp add: Euler-characteristic-cell)
    have DD: Euler-characteristic A (\bigcap(uminus` J)) = (- 1) ^ DIM ('n)
        if J\not={} J\subseteqH for }
    proof -
```

define B where $B \equiv(\lambda h$ ．$($ fa $h, 0::$ real $))$＇J
then have $B \subseteq A$
by（simp add：A－def image－mono that）
have $\exists x . y=-x$ if $y \in \bigcap$（uminus＇H ）for $y:: ' n$ — Weirdly，the assumption is not used
by（metis add．inverse－inverse）
moreover have $-x \in \bigcap$（uminus＇$H) \longleftrightarrow x \in$ interior S for x
proof－
have 1：interior $S=\{x \in S . \forall h \in H . f a h \cdot x<0\}$
using rel－interior－polyhedron－explicit［OF 〈finite H〉－fa］
by（metis（no－types，lifting）inf－top－left Hsub Seq 〈affine hull $S=$ UNIV〉
rel－interior－interior）
have 2：$\bigwedge x y . \llbracket y \in H ; \forall h \in H . f a h \cdot x<0 ;-x \in y \rrbracket \Longrightarrow$ False
by（smt（verit，best）fa inner－minus－right mem－Collect－eq）
show ？thesis
apply（simp add：1）
by（smt（verit） $2 *$ fa Inter－iff Seq inner－minus－right mem－Collect－eq）

qed

ultimately have INT－Compl－H：$\bigcap(u m i n u s ' H)=$ uminus＇interior S by blast
obtain z where $z: z \in \bigcap$（uminus＇J ）
using $\langle J \subseteq H\rangle\langle\bigcap(u m i n u s ~ ' ~ H)=$ uminus＇interior S 〉intS by fastforce
have \bigcap（uminus＇J ）$=$ Collect（hyperplane－equiv $B z$ ）（is ？$L=? R$ ）
proof
show ？$L \subseteq ? R$
using $f a\langle J \subseteq H\rangle z$
by（fastforce simp：hyperplane－equiv－def hyperplane－side－def B－def set－eq－iff
）
show ？$R \subseteq$ ？L
using $z\langle J \subseteq H\rangle$ apply（clarsimp simp add：hyperplane－equiv－def hyper－ plane－side－def B－def）
by（metis fa in－mono mem－Collect－eq sgn－le－0－iff）
qed
then have hyper－B：hyperplane－cell $B(\bigcap$（uminus＇$J))$
by（metis hyperplane－cell）
have Euler－characteristic $A(\bigcap($ uminus＇$J))=$ Euler－characteristic $B(\bigcap$ （uminus＇J ））
proof（rule Euler－characterstic－invariant［OF〈finite A〉］）
show finite B
using $\langle B \subseteq A\rangle\langle$ finite $A\rangle$ finite－subset by blast
show hyperplane－cellcomplex $A(\bigcap$（uminus＇$J)$ ）
by（meson $\langle B \subseteq A\rangle$ hyper－B hyperplane－cell－cellcomplex hyperplane－cellcomplex－mono）
show hyperplane－cellcomplex $B(\bigcap$（uminus＇$J))$
by（simp add：hyper－B hyperplane－cell－cellcomplex）
qed
also have $\ldots=(-1)^{\wedge}$ nat $\left(\operatorname{aff}-\operatorname{dim}\left(\bigcap\left(u m i n u s{ }^{\prime} J\right)\right)\right)$
using Euler－characteristic－cell hyper－B by blast
also have $\ldots=(-1)^{\wedge} \operatorname{DIM}\left({ }^{\prime} n\right)$
proof－
have affine hull \bigcap（uminus＇H ）$=$ UNIV
by（simp add：INT－Compl－H affine－hull－nonempty－interior intS inte－ rior－negations）
then have affine hull \bigcap（uminus＇J ）$=$ UNIV
by（metis Inf－superset－mono hull－mono subset－UNIV subset－antisym sub－ set－image－iff that（2））
with aff－dim－eq－full show ？thesis
by（metis nat－int）
qed
finally show？？thesis ．
qed
have $E E:\left(\sum \mathcal{T} \mid \mathcal{T} \subseteq\right.$ uminus ${ }^{\prime} H \wedge \mathcal{T} \neq\{ \} .(-1) \wedge(\operatorname{card} \mathcal{T}+1) * E u$－ ler－characteristic $A(\bigcap \mathcal{T}))$
$=\left(\sum \mathcal{T} \mid \mathcal{T} \subseteq\right.$ uminus ${ }^{\prime} H \wedge \mathcal{T} \neq\{ \} .(-1)^{\wedge}($ card $\mathcal{T}+1) *(-1)^{\wedge}$ DIM（＇n ））
by（intro sum．cong［OF refl］）（fastforce simp：subset－image－iff intro！：DD）
also have $\ldots=(-1)^{\wedge} \operatorname{DIM}(' n)$
proof－
have $A:\left(\sum y=1\right.$ ．．card $H . \sum t \in\left\{x \in\left\{\mathcal{T} . \mathcal{T} \subseteq\right.\right.$ uminus $\left.{ }^{\prime} H \wedge \mathcal{T} \neq\{ \}\right\}$ ．card $x=y\} .(-1) \wedge(\operatorname{card} t+1))$
$=\left(\sum \mathcal{T} \in\left\{\mathcal{T} . \mathcal{T} \subseteq\right.\right.$ uminus $\left.\left.{ }^{\prime} H \wedge \mathcal{T} \neq\{ \}\right\} .(-1)^{\wedge}(\operatorname{card} \mathcal{T}+1)\right)$
proof（rule sum．group）
have $\wedge C . \llbracket C \subseteq$ uminus＇$H ; C \neq\{ \} \rrbracket \Longrightarrow$ Suc $0 \leq \operatorname{card} C \wedge \operatorname{card} C \leq$ card H
by（meson〈finite H 〉card－eq－0－iff finite－surj le－zero－eq not－less－eq－eq surj－card－le）
then show card＇$\{\mathcal{T} . \mathcal{T} \subseteq$ uminus＇$H \wedge \mathcal{T} \neq\{ \}\} \subseteq\{1$ ．．card $H\}$
by force
qed（auto simp：〈finite H 〉）
have $\left(\sum n=\right.$ Suc 0．．card H．$-($ int（card $\{x . x \subseteq$ uminus＇$H \wedge x \neq\{ \} \wedge$ card $\left.\left.x=n\}) *(-1)^{\wedge} n\right)\right)$

$$
=\left(\sum n=\text { Suc 0..card H. }(-1)^{\wedge}(\text { Suc } n) *(\text { card H choose } n)\right)
$$

proof（rule sum．cong［OF refl］）
fix n
assume $n \in\{$ Suc 0．．card H\}
then have $\{\mathcal{T} . \mathcal{T} \subseteq$ uminus＇$H \wedge \mathcal{T} \neq\{ \} \wedge \operatorname{card} \mathcal{T}=n\}=\{\mathcal{T} . \mathcal{T} \subseteq$ uminus＇$H \wedge$ card $\mathcal{T}=n\}$
by auto
then have $\operatorname{card}\{\mathcal{T} . \mathcal{T} \subseteq$ uminus＇$H \wedge \mathcal{T} \neq\{ \} \wedge \operatorname{card} \mathcal{T}=n\}=\operatorname{card}$ （uminus＇H ）choose n
by（simp add：＜finite H 〉 n－subsets）
also have $\ldots=$ card H choose n
by（metis card－image double－complement inj－on－inverseI）
finally
show $-\left(\operatorname{int}\left(\operatorname{card}\left\{\mathcal{T} . \mathcal{T} \subseteq\right.\right.\right.$ uminus $\left.\left.^{\prime} H \wedge \mathcal{T} \neq\{ \} \wedge \operatorname{card} \mathcal{T}=n\right\}\right) *(-1)$ $\left.{ }^{\wedge} n\right)=(-1)$＾Suc $n * \operatorname{int}$（card H choose n ） by simp
qed

```
    also have ... = - (\sumk= Suc 0..card H. (-1)^k* (card H choose k))
        by (simp add: sum-negf)
    also have ... = 1 - (\sumk=0..card H. (-1)^k *(card H choose k))
    using atLeastSucAtMost-greaterThanAtMost by (simp add: sum.head [of 0])
    also have ... = 1 - 0 ^ card H
        using binomial-ring [of -1 1::int card H] by (simp add: mult.commute
atLeast0AtMost)
    also have ... = 1
            using Seq \finite H\rangle\langleS\not=UNIV` card-0-eq by auto
    finally have C: (\sumn=Suc 0..card H. - (int (card {x. x\subseteq uminus' }H
x\not={}^\operatorname{card}x=n})*(-1)^n))=(1::int).
    have }(\sum\mathcal{T}|\mathcal{T}\subseteq\mathrm{ uminus ' }H\wedge\mathcal{T}\not={}.(-1)^(card \mathcal{T}+1))=(1::int
        unfolding }A\mathrm{ [symmetric] by (simp add: C)
    then show ?thesis
        by (simp flip: sum-distrib-right power-Suc)
    qed
    finally have (\sum\mathcal{T}|\mathcal{T}\subseteq\mathrm{ uminus' }H\wedge\mathcal{T}\not={}.(-1)^(card \mathcal{T}+1)*
Euler-characteristic A (\cap\mathcal{T))}
                = (-1) ^ DIM ('n).
    then have Euler-characteristic A (U (uminus` 'H))=(-1) ^(DIM('n))
    using Euler-characteristic-inclusion-exclusion [OF〈finite A〉]
    by (smt (verit) A Collect-cong〈finite H〉 finite-imageI image-iff sum.cong)
    then show ?thesis
    using D E by (simp add: uminus-Inf Seq)
    qed
    finally show?thesis
qed
```


1．6 Euler－Poincare relation for special（ $n-1$ ）－dimensional polytope

```
lemma Euler－Poincare－lemma：
fixes \(p::\)＇\(n::\) euclidean－space set
assumes \(\operatorname{DIM}\left({ }^{\prime} n\right) \geq 2\) polytope \(p i \in\) Basis and affp：affine hull \(p=\{x . x \cdot i\)
\(=1\}\)
shows \(\left(\sum d=0 . . D I M\left({ }^{\prime} n\right)-1 .(-1)^{\wedge} d * \operatorname{int}(\operatorname{card}\{f . f\right.\) face－of \(p \wedge \operatorname{aff}-\operatorname{dim} f\)
\(=\) int \(d\}))=1\)
proof－
have \(\operatorname{aff}-\operatorname{dim} p=\operatorname{aff}-\operatorname{dim}\{x . i \cdot x=1\}\)
by（metis（no－types，lifting）Collect－cong aff－dim－affine－hull affp inner－commute）
also have \(\ldots=\operatorname{int}(\operatorname{DIM}(' n)-1)\)
using aff－dim－hyperplane［of i 1］\(\langle i \in\) Basis〉 by fastforce
finally have \(A P: \operatorname{aff}-\operatorname{dim} p=\operatorname{int}(D I M(' n)-1)\) ．
show ？thesis
proof（cases \(p=\{ \}\) ）
case True
with \(A P\) show？thesis by simp
next
```

case False
define S where $S \equiv$ conic hull p
have 1 ：（conic hull $f) \cap\{x . x \cdot i=1\}=f$ if $f \subseteq\{x . x \cdot i=1\}$ for f
using that
by（smt（verit，ccfv－threshold）affp conic－hull－Int－affine－hull hull－hull in－ ner－zero－left mem－Collect－eq）
obtain K where finite K and $K: p=$ convex hull K
by（meson assms（2）polytope－def）
then have convex－cone hull $K=$ conic hull（convex hull K）
using False convex－cone－hull－separate－nonempty by auto
then have polyhedron S
using polyhedron－convex－cone－hull
by（simp add：S－def 〈polytope p〉polyhedron－conic－hull－polytope）
then have convex S
by（simp add：polyhedron－imp－convex）
then have conic S
by（simp add：S－def conic－conic－hull）
then have $0 \in S$
by（simp add：False S－def）
have $S \neq U N I V$
proof
assume $S=U N I V$
then have conic hull $p \cap\{x . x \cdot i=1\}=p$
by（metis 1 affp hull－subset）
then have bounded $\{x . x \cdot i=1\}$
using S－def $\langle S=U N I V\rangle$ assms（2）polytope－imp－bounded by auto
then obtain B where $B>0$ and $B: \bigwedge x . x \in\{x . x \cdot i=1\} \Longrightarrow$ norm $x \leq B$ using bounded－normE by blast
define x where $x \equiv\left(\sum b \in\right.$ Basis．（if $b=i$ then 1 else $\left.B+1\right) *_{R} b$ ）
obtain j where $j: j \in$ Basis $j \neq i$
using $\left\langle D I M\left({ }^{\prime} n\right) \geq 2\right.$ 〉
by（metis DIM－complex DIM－ge－Suc0 card－2－iff＇card－le－Suc0－iff－eq eu－
clidean－space－class．finite－Basis le－antisym）
have $B+1 \leq|x \cdot j|$
using j by（simp add：x－def）
also have $\ldots \leq$ norm x using Basis－le－norm j by blast
finally have norm $x>B$ by simp
moreover have $x \cdot i=1$ by（simp add：x－def $\langle i \in$ Basis \rangle
ultimately show False
using B by force
qed
have $S \neq\{ \}$
by（metis False S－def empty－subsetI equalityI hull－subset）
have $\bigwedge c x . \llbracket 0<c ; x \in p ; x \neq 0 \rrbracket \Longrightarrow 0<\left(c *_{R} x\right) \cdot i$
by（metis（mono－tags）Int－Collect Int－iff affp hull－inc inner－commute in－ ner－scaleR－right mult．right－neutral）
then have doti－gt0： $0<x \cdot i$ if $S: x \in S$ and $x \neq 0$ for x using that by（auto simp：S－def conic－hull－explicit）
have $\bigwedge a$ ．$\{a\}$ face－of $S \Longrightarrow a=0$
using 〈conic S 〉conic－contains－0 face－of－conic by blast
moreover have $\{0\}$ face－of S
proof－
have $\bigwedge a b u . \llbracket a \in S ; b \in S ; a \neq b ; u<1 ; 0<u ;(1-u) *_{R} a+u *_{R} b$ $=0 \rrbracket \Longrightarrow$ False
using conic－def euclidean－all－zero－iff inner－left－distrib scaleR－eq－0－iff by（smt（verit，del－insts）doti－gt0 〈conic $S\rangle\langle i \in$ Basis〉）
then show ？thesis
by（auto simp：in－segment face－of－singleton extreme－point－of－def $\langle 0 \in S\rangle$ ）

qed

ultimately have face－ 0 ：$\{f . f$ face－of $S \wedge(\exists a . f=\{a\})\}=\{\{0\}\}$
by auto
have interior $S \neq\{ \}$
proof
assume interior $S=\{ \}$
then obtain $a b$ where $a \neq 0$ and $a b: S \subseteq\{x . a \cdot x=b\}$
by（metis «convex S 〉empty－interior－subset－hyperplane）
have $\{x . x \cdot i=1\} \subseteq\{x . a \cdot x=b\}$
by（metis S－def ab affine－hyperplane affp hull－inc subset－eq subset－hull）
moreover have $\neg\{x . x \cdot i=1\} \subset\{x . a \cdot x=b\}$
using aff－dim－hyperplane［of a b］
by（metis AP $\langle a \neq 0\rangle$ aff－dim－eq－full－gen affine－hyperplane affp hull－subset less－le－not－le subset－hull）
ultimately have $S \subseteq\{x . x \cdot i=1\}$
using $a b$ by auto
with $\langle S \neq\{ \}\rangle$ show False
using 〈conic S 〉conic－contains－0 by fastforce
qed
then have $\left(\sum d=0 . . D I M(' n) .(-1) \wedge d *\right.$ int（card $\{f . f$ face－of $S \wedge$ aff－dim $f=$ int $d\}))=0$
using Euler－polyhedral－cone $\langle S \neq U N I V\rangle\langle c o n i c ~ S\rangle\langle p o l y h e d r o n ~ S\rangle$ by blast
then have $1+\left(\sum d=1 . . D I M(' n) .(-1)^{\wedge} d *(\right.$ card $\{f . f$ face－of $S \wedge$ aff－dim $f=d\}))=0$
by（simp add：sum．atLeast－Suc－atMost aff－dim－eq－0 face－0）
moreover have $\left(\sum d=1 . . D I M(' n) .(-1) \wedge d *(\right.$ card $\{f . f$ face－of $S \wedge$ aff－dim $f=d\})$ ）

$$
=-\left(\sum d=0 . . D I M\left({ }^{\prime} n\right)-1 .(-1) \wedge d * \operatorname{int}(\operatorname{card}\{f . f \text { face-of } p \wedge\right.
$$

$\operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\}))$
proof－
have $\left(\sum d=1 . . D I M\left({ }^{\prime} n\right) .(-1)^{\wedge} d *(\operatorname{card}\{f . f\right.$ face－of $\left.S \wedge \operatorname{aff}-\operatorname{dim} f=d\})\right)$ $=\left(\sum_{d} d=\right.$ Suc 0．．Suc $\left(\operatorname{DIM}\left({ }^{\prime} n\right)-1\right) .(-1) \wedge d *($ card $\{f . f$ face－of $S \wedge$ $\operatorname{aff}-\operatorname{dim} f=d\})$ ）
by auto
also have $\ldots=-\left(\sum d=0 . . \operatorname{DIM}\left({ }^{\prime} n\right)-1 .(-1)^{\wedge} d *\right.$ card $\{f . f$ face－of S $\wedge \operatorname{aff}-\operatorname{dim} f=1+\operatorname{int} d\})$
unfolding sum．atLeast－Suc－atMost－Suc－shift by（simp add：sum－negf）

```
    also have \(\ldots=-\left(\sum d=0 . . D I M(' n)-1 .(-1) \wedge d *\right.\) card \(\{f . f\) face-of \(p\)
\(\wedge \operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\})\)
    proof -
        \{ fix \(d\)
            assume \(d \leq \operatorname{DIM}\left({ }^{\prime} n\right)-\) Suc 0
            have conic-face-p: (conic hull f) face-of \(S\) if \(f\) face-of \(p\) for \(f\)
            proof (cases \(f=\{ \}\) )
                case False
                have \(\left\{c *_{R} x \mid c x .0 \leq c \wedge x \in f\right\} \subseteq\left\{c *_{R} x \mid c x .0 \leq c \wedge x \in p\right\}\)
                    using face-of-imp-subset that by blast
                    moreover
                    have convex \(\left\{c *_{R} x \mid c x .0 \leq c \wedge x \in f\right\}\)
                    by (metis (no-types) cone-hull-expl convex-cone-hull face-of-imp-convex
that)
            moreover
            have \(\left(\exists c x . c a *_{R} a=c *_{R} x \wedge 0 \leq c \wedge x \in f\right) \wedge\left(\exists c x . c b *_{R} b=c\right.\)
\(\left.*_{R} x \wedge 0 \leq c \wedge x \in f\right)\)
                        if \(\forall a \in p . \forall b \in p .(\exists x \in f . x \in\) open-segment \(a b) \longrightarrow a \in f \wedge b \in f\)
                and \(0 \leq c a a \in p 0 \leq c b b \in p\)
                and \(0 \leq c x x \in f\) and oseg: \(c x *_{R} x \in\) open-segment \(\left(c a *_{R} a\right)(c b\)
\(\left.*_{R} b\right)\)
            for \(c a a c b b c x x\)
            proof -
            have \(a i: a \cdot i=1\) and \(b i: b \cdot i=1\)
                    using affp hull-inc that \((3,5)\) by fastforce+
            have \(x i: x \cdot i=1\)
                    using affp that 〈f face-of p〉 face-of-imp-subset hull-subset by fastforce
                    show ?thesis
                    proof (cases cx \(*_{R} x=0\) )
                    case True
                        then show ?thesis
                            using \(\langle\{0\}\) face-of \(S\rangle\) face-ofD \(\langle\) conic \(S\rangle\) that
                    by (smt (verit, best) S-def conic-def hull-subset insertCI singletonD
subsetD)
            next
                case False
                then have \(c x \neq 0 x \neq 0\)
                    by auto
                            obtain \(u\) where \(0<u u<1\) and \(u: c x *_{R} x=(1-u) *_{R}\left(c a *_{R}\right.\)
\(a)+u *_{R}\left(c b *_{R} b\right)\)
                                    using oseg in-segment(2) by metis
                                    show ?thesis
                                    proof (cases \(x=a\) )
                                    case True
                then have \(u a:(c x-(1-u) * c a) *_{R} a=(u * c b) *_{R} b\)
                    using \(u\) by (simp add: algebra-simps)
                then have \((c x-(1-u) * c a) * 1=u * c b * 1\)
                    by (metis ai bi inner-scaleR-left)
                then have \(a=b \vee c b=0\)
```

```
    using ua<0 < u` by force
    then show ?thesis
    by (metis True scaleR-zero-left that(2) that(4) that(7))
next
    case False
    show ?thesis
    proof (cases x=b)
    case True
    then have ub: (cx-(u*cb)) *R b=((1-u)*ca)*Ra
        using }u\mathrm{ by (simp add: algebra-simps)
    then have }(cx-(u*cb))*1=((1-u)*ca)*
        by (metis ai bi inner-scaleR-left)
    then have }a=b\veeca=
            using <u< 1`ub by auto
    then show ?thesis
            using False True that(4) that(7) by auto
next
    case False
    have cx>0
            using <cx \not=0\rangle\langle0\leqcx\rangle by linarith
    have False if ca=0
    proof -
        have cx =u*cb
    by (metis add-0 bi inner-real-def inner-scaleR-left real-inner-1-right
            then show False
            using <x\not=b\rangle\langlecx\not=0\rangle that u by force
    qed
    with <0 \leq ca> have ca>0
        by force
    have aff: }x\in\mathrm{ affine hull }p\wedgea\in\mathrm{ affine hull p}\wedgeb\in\mathrm{ affine hull }
    using affp xi ai bi by blast
    show ?thesis
    proof (cases cb=0)
        case True
        have }\mp@subsup{u}{}{\prime}:cx\mp@subsup{*}{R}{}x=((1-u)*ca)*R
            using u by (simp add: True)
            then have cx=((1-u)*ca)
            by (metis ai inner-scaleR-left mult.right-neutral xi)
            then show ?thesis
            using True }\mp@subsup{u}{}{\prime}\langlecx\not=0\rangle\langleca\geq0\rangle\langlex\inf\rangle\mathrm{ by auto
        next
        case False
        with <cb \geq0\rangle have cb>0
            by linarith
            { have False if }a=
            proof -
            have *: cx **
                using }u\mathrm{ that by (simp add: algebra-simps)
```

scale-eq-0-iff that u xi)

```
                        then have cx=((1-u)*ca+u*cb)
                    by (metis xi bi inner-scaleR-left mult.right-neutral)
                                with }\langlex\not=b\rangle\langlecx\not=0\rangle*\mathrm{ show False
                    by force
                    qed
                    }
                    moreover
                    have }cx\mp@subsup{*}{R}{}x/\mp@subsup{/}{R}{}cx=(((1-u)*ca)\mp@subsup{*}{R}{}a+(cb*u)\mp@subsup{*}{R}{}b
/Rcx
                    using u by simp
            then have xeq: x = ((1-u)*ca/cx)*\mp@subsup{R}{R}{}a+(cb*u/cx)**R
        by (simp add: <cx = 0〉divide-inverse-commute scaleR-right-distrib)
            then have proj: 1 = ((1-u)* ca/cx) +(cb*u/cx)
                using ai bi xi by (simp add: inner-left-distrib)
            then have eq: cx + ca*u=ca+cb*u
                using <cx > 0\rangle by (simp add: field-simps)
                    have \existsu>0.u<1^x=(1-u)*Ra+u* 
                    proof (intro exI conjI)
                    show 0 < inverse cx *u*cb
                    by (simp add: <0< cb\rangle\langle0<cx\rangle\langle0<u\rangle)
                    show inverse cx * u*cb<1
                    using proj <0<ca\rangle\langle0<cx\rangle\langleu< 1\rangle by (simp add:
divide-simps)
                    show }x=(1-\mathrm{ inverse cx *u*cb)*R}\mp@subsup{*}{R}{}a+(\mathrm{ inverse cx *u*
cb) **R
                        using eq <cx = 0` by (simp add: xeq field-simps)
                    qed
                    ultimately show ?thesis
                            using that by (metis in-segment(2))
                    qed
                qed
            qed
        qed
    qed
    ultimately show ?thesis
        using that by (auto simp: S-def conic-hull-explicit face-of-def)
    qed auto
    moreover
    have conic-hyperplane-eq: conic hull (f\cap{x.x\cdoti=1})=f
    if f face-of S 0<aff-dim f for f
    proof
    show conic hull }(f\cap{x.x\cdoti=1})\subseteq
        by (metis <conic S` face-of-conic inf-le1 subset-hull that(1))
    have \existsc \mp@subsup{x}{}{\prime}.x=c** \mp@subsup{x}{}{\prime}\wedge0\leqc\wedge \mp@subsup{x}{}{\prime}\inf\wedge \mp@subsup{x}{}{\prime}\cdoti=1 if x\inf for }
    proof (cases x=0)
        case True
        obtain y where }y\infy\not=
            by (metis <0 < aff-dim f` aff-dim-sing aff-dim-subset insertCI
linorder-not-le subset-iff)
```

```
    then have y •i>0
    using <f face-of S〉 doti-gt0 face-of-imp-subset by blast
    then have y/R}(y\cdoti)\inf\wedge(y/R (y\cdoti))\cdoti=
    using 〈conic S\rangle\langlef face-of S\rangle\langley\inf\rangleconic-def face-of-conic by fastforce
    then show ?thesis
        using True by fastforce
    next
    case False
    then have x • i>0
        using <f face-of S〉 doti-gt0 face-of-imp-subset that by blast
```



```
    using <conic S\rangle\langlef face-of S\rangle\langlex\inf\rangle conic-def face-of-conic by fastforce
    then show ?thesis
        by (metis «0 < x • i` divideR-right eucl-less-le-not-le)
    qed
    then show f\subseteq conic hull (f\cap{x.x\cdoti=1})
    by (auto simp: conic-hull-explicit)
qed
have conic-face-S: conic hull f face-of S
    if f face-of S for f
    by (metis 〈conic S` face-of-conic hull-same that)
have aff-1d: aff-dim (conic hull f)=aff-dim f + 1 (is ?lhs = ?rhs)
    if f face-of p and f}\not={}\mathrm{ for }
proof (rule order-antisym)
    have ?lhs \leqaff-dim(affine hull (insert 0 (affine hull f)))
    proof (intro aff-dim-subset hull-minimal)
        show f}\subseteq\mathrm{ affine hull insert 0 (affine hull f)
            by (metis hull-insert hull-subset insert-subset)
        show conic (affine hull insert 0 (affine hull f))
            by (metis affine-hull-span-0 conic-span hull-inc insertI1)
    qed
    also have .. . \leq?rhs
        by (simp add: aff-dim-insert)
    finally show ?lhs \leq? ?rhs .
    have aff-dim f<aff-dim (conic hull f)
    proof (intro aff-dim-psubset psubsetI)
        show affine hull f\subseteqaffine hull (conic hull f)
            by (simp add: hull-mono hull-subset)
        have 0 & affine hull f
            using affp face-of-imp-subset hull-mono that(1) by fastforce
            moreover have 0 affine hull (conic hull f)
            by (simp add: <f \not= {}> hull-inc)
            ultimately show affine hull f}\not=\mathrm{ affine hull (conic hull f)
            by auto
    qed
    then show ?rhs\leq?lhs
        by simp
```

```
    qed
    have face-S-imp-face-p: \f.f face-of S\Longrightarrowf\cap{x.x.i=1} face-of p
        by (metis 1 S-def affp convex-affine-hull face-of-slice hull-subset)
    have conic-eq-f: conic hull f}\cap{x.x\cdoti=1}=
        if f face-of p for f
        by (metis 1 affp face-of-imp-subset hull-subset le-inf-iff that)
    have dim-f-hyperplane:aff-dim}(f\cap{x.x\cdoti=1})=int 
        if f face-of S aff-dim f=1 +int d for f
    proof -
        have conic f
            using <conic S〉 face-of-conic that(1) by blast
    then have 0\inf
        using conic-contains-0 that by force
    moreover have }\negf\subseteq{0
        using subset-singletonD that(2) by fastforce
    ultimately obtain y where y: y\inf y}\not=
        by blast
    then have y \cdot i>0
        using doti-gt0 face-of-imp-subset that(1) by blast
    have aff-dim (conic hull (f\cap{x.x •i=1})) =aff-dim (f\cap{x.x \cdoti
= 1}) +1
    proof (rule aff-1d)
        show }f\cap{x.x\cdoti=1} face-of 
            by (simp add: face-S-imp-face-p that(1))
            have inverse(y • i) *R y\inf
                using <0< y - i〉<conic S〉conic-mul face-of-conic that(1) y(1) by
fastforce
            moreover have inverse(y \cdoti) *R
                using \langley \cdot i>0\rangle by (simp add: field-simps)
            ultimately show }f\cap{x.x\cdoti=1}\not={
                by blast
    qed
    then show ?thesis
        by (simp add: conic-hyperplane-eq that)
    qed
    have card {f.f face-of S ^aff-dim f=1 + int d}
        = card {f.f face-of p\wedge \ff-dim f= int d}
    proof (intro bij-betw-same-card bij-betw-imageI)
    show inj-on (\lambdaf.f\cap{x.x • i=1}){f.fface-of S ^aff-dimf=1+
int d}
    by (smt (verit) conic-hyperplane-eq inj-on-def mem-Collect-eq of-nat-less-0-iff)
    show (\lambdaf.f\cap{x.x •i=1})'{f.f face-of S\wedge aff-dim f=1+int d}
={f.f face-of p\wedge aff-dim f=int d}
    using aff-1d conic-eq-f conic-face-p
    by (fastforce simp: image-iff face-S-imp-face-p dim-f-hyperplane)
```

```
                    qed
            }
            then show ?thesis
            by force
            qed
            finally show ?thesis .
    qed
    ultimately show ?thesis
        by auto
    qed
qed
corollary Euler-poincare-special:
    fixes p :: ' }n::\mathrm{ :euclidean-space set
    assumes 2 \leq DIM('n) polytope p i B Basis and affp: affine hull p ={x.x 位
=0}
    shows (\sumd=0..DIM('n)-1.(-1)^d* card {f.f face-of p ^aff-dim f=
d}) = 1
proof -
    { fix d
    have eq: image ((+) i)'{f.fface-of p} \cap image ((+) i)'{f.aff-dim f=int d}
                = image ((+) i)'{f.f face-of p}\cap{f.aff-dim f=int d}
            by (auto simp: aff-dim-translation-eq)
            have card {f.f face-of p ^aff-dim f= int d} = card (image((+) i)'{f.f
face-of p ^aff-dim f=int d})
            by (simp add: inj-on-image card-image)
```



```
            by (simp add: Collect-conj-eq image-Int inj-on-image eq)
            also have ... = card {f.f face-of (+) i' p\wedge aff-dim f= int d}
            by (simp add: Collect-conj-eq faces-of-translation)
    finally have card {f.fface-of p}\wedge aff-\operatorname{dim}f=\operatorname{int d}=\operatorname{card {f.f face-of (+)}
i'p
    }
    then
    have (\sumd= 0..DIM('n) - 1. (-1)^d * card {f.f face-of p ^aff-dim f=d})
        =(\sumd= 0..DIM ('n)-1. (-1)^d* card {f.fface-of (+) i'p ^aff-dim
f=int d})
            by simp
    also have ... = 1
    proof (rule Euler-Poincare-lemma)
        have }\bigwedgex.\llbracketi\in\mathrm{ Basis; x • i=1】 ב ヨy.y • i=0^x=y+i
            by (metis add-cancel-left-left eq-diff-eq inner-diff-left inner-same-Basis)
            then show affine hull (+) i' p={x.x 隹 = 1}
                    using <i \in Basis` unfolding affine-hull-translation affp by (auto simp:
algebra-simps)
    qed (use assms polytope-translation-eq in auto)
    finally show ?thesis.
qed
```


1．7 Now Euler－Poincare for a general full－dimensional poly－ tope

```
theorem Euler-Poincare-full:
    fixes \(p::\) ' \(n::\) euclidean-space set
    assumes polytope \(p\) aff-dim \(p=\operatorname{DIM}\left({ }^{\prime} n\right)\)
    shows \(\left(\sum d=0 . . D I M(' n) .(-1) \wedge d *(\right.\) card \(\{f . f\) face-of \(\left.p \wedge \operatorname{aff}-\operatorname{dim} f=d\})\right)\)
= 1
proof -
    define augm \(:\) ' \(n \Rightarrow\) ' \(n \times\) real where augm \(\equiv \lambda x\). \((x, 0)\)
    define \(S\) where \(S \equiv\) augm ' \(p\)
    obtain \(i:: ' n\) where \(i: i \in\) Basis
        by (meson SOME-Basis)
    have bounded-linear augm
    by (auto simp: augm-def bounded-linearI')
    then have polytope \(S\)
    unfolding \(S\)-def using polytope-linear-image 〈polytope \(p\rangle\) bounded-linear.linear
by blast
    have face-pS: \(\wedge F\). F face-of \(p \longleftrightarrow\) augm' \(F\) face-of \(S\)
    using \(S\)-def 〈bounded-linear augm〉 augm-def bounded-linear.linear face-of-linear-image
inj-on-def by blast
    have aff-dim-eq[simp]: aff-dim \((\operatorname{augm} ' F)=\operatorname{aff}-\operatorname{dim} F\) for \(F\)
    using 〈bounded-linear augm〉 aff-dim-injective-linear-image bounded-linear.linear
    unfolding augm-def inj-on-def by blast
    have \(*:\{F\). \(F\) face-of \(S \wedge\) aff-dim \(F=\) int \(d\}=(\) image augm \() '\{F\). F face-of \(p\)
\(\wedge\) aff-dim \(F=\) int \(d\}\)
            (is ?lhs \(=\) ? rhs ) for \(d\)
    proof
        have \(\bigwedge G . \llbracket G\) face-of \(S\); aff-dim \(G=\) int \(d \rrbracket\)
                \(\Longrightarrow \exists F\). F face-of \(p \wedge\) aff-dim \(F=\) int \(d \wedge G=\operatorname{augm}{ }^{\prime} F\)
            by (metis face-pS S-def aff-dim-eq face-of-imp-subset subset-imageE)
    then show ?lhs \(\subseteq\) ? \(r h s\)
            by (auto simp: image-iff)
    qed (auto simp: image-iff face-pS
    have ceqc: card \(\{f . f\) face-of \(S \wedge\) aff-dim \(f=\operatorname{int} d\}=\operatorname{card}\{f . f\) face-of \(p \wedge\)
\(\operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\}\) for \(d\)
    unfolding *
    by (rule card-image) (auto simp: inj-on-def augm-def)
    have \(\left(\sum d=0 . . D I M(' n \times\right.\) real \()-1 .(-1) \wedge d * \operatorname{int}(\operatorname{card}\{f . f\) face-of \(S \wedge\)
\(\operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\}))=1\)
    proof (rule Euler-poincare-special)
    show \(2 \leq \operatorname{DIM}\left({ }^{\prime} n \times\right.\) real \()\)
            by auto
    have snd0: \((a, b) \in\) affine hull \(S \Longrightarrow b=0\) for \(a b\)
            using \(S\)-def 〈bounded-linear augm〉 affine-hull-linear-image augm-def by blast
    moreover have \(\bigwedge a\). \((a, 0) \in\) affine hull \(S\)
                using \(S\)-def 〈bounded-linear augm〉 aff-dim-eq-full affine-hull-linear-image
assms(2) augm-def by blast
    ultimately show affine hull \(S=\{x . x \cdot(0:: ' n, 1::\) real \()=0\}\)
```

```
        by auto
    qed (auto simp:〈polytope S`Basis-prod-def)
    then show ?thesis
    by (simp add: ceqc)
qed
```

In particular, the Euler relation in 3 dimensions

corollary Euler-relation:

fixes $p::$ ' $n::$ euclidean-space set
assumes polytope p aff-dim $p=3 \operatorname{DIM}\left({ }^{\prime} n\right)=3$
shows (card $\{v . v$ face-of $p \wedge$ aff-dim $v=0\}+\operatorname{card}\{f$. fface-of $p \wedge$ aff-dim f
$=2\})-$ card $\{e$. e face-of $p \wedge$ aff-dim $e=1\}=2$
proof -
have $\bigwedge x . \llbracket x$ face-of $p ;$ aff- $\operatorname{dim} x=3 \rrbracket \Longrightarrow x=p$
using assms by (metis face-of-aff-dim-lt less-irrefl polytope-imp-convex)
then have 3: $\{f . f$ face-of $p \wedge \operatorname{aff}-\operatorname{dim} f=3\}=\{p\}$
using assms by (auto simp: face-of-refl polytope-imp-convex)
have $\left(\sum d=0 . .3 .(-1)^{\wedge} d * \operatorname{int}(\operatorname{card}\{f . f\right.$ face-of $\left.p \wedge \operatorname{aff}-\operatorname{dim} f=\operatorname{int} d\})\right)=$ 1
using Euler-Poincare-full [of p] assms by simp
then show ?thesis
by (simp add: sum.atLeast0-atMost-Suc-shift numeral-3-eq-3 3)
qed
end

References

[1] I. Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery. 1976.
[2] J. Lawrence. A short proof of Euler's relation for convex polytopes. Canadian Mathematical Bulletin, 40(4):471-474, 1997.

