
Enumeration of Equivalence Relations

Emin Karayel

March 11, 2024

Abstract

This entry contains a formalization of an algorithm enumerating
all equivalence relations on an initial segment of the natural numbers.
The approach follows the method described by Stanton and White [5,
§1.5] using restricted growth functions.

The algorithm internally enumerates restricted growth functions (as
lists), whose equivalence kernels then form the equivalence relations.
This has the advantage that the representation is compact and lookup
of the relation reduces to a list lookup operation.

The algorithm can also be used within a proof and an example
application is included, where a sequence of variables is split by the
possible partitions they can form.

1 Introduction
theory Equivalence-Relation-Enumeration

imports HOL−Library.Sublist HOL−Library.Disjoint-Sets
Card-Equiv-Relations.Card-Equiv-Relations

begin

As mentioned in the abstract the enumeration algorithm relies on the bi-
jection between restricted growth functions (RGFs) of length n and the
equivalence relations on {..<n}, where the bijection is the operation that
forms the equivalence kernels of an RGF. The method is being dicussed, for
example, by [3, 4] or [5, §1.5].
An enumeration algorithm for RGFs is less convoluted than one for equiva-
lence relations or partitions and the representation has the advantage that
checking whether a pair of elements are equivalent can be done by perform-
ing two list lookup operations.
After a few preliminary results in the following section, Section 3 introduces
the enumeration algorithm for RGFs and shows that the function enumerates
all of them (for the given length) without repetition. Section 4 shows that
the operation of forming the equivalence kernel is a bijection and concludes
with the correctness of the entire algorithm. In Section 5 an interesting
application is being discussed, where the enumeration of partitions is applied

1

within a proof. Section 6 contains a few additional results, such as the
fact that the length of the enumerated list is a Bell number. The latter
result relies on the formalization of the cardinality of equivalence relations
by Bulwahn [2].

2 Preliminary Results

This section contains a few preliminary results used in the proofs below.
lemma length-filter :length (filter p xs) = sum-list (map (λx. of-bool (p x)) xs)

by (induct xs, simp-all)

lemma count-list-expand:count-list xs x = length (filter ((=) x) xs)
by (induct xs, simp-all)

An induction schema (similar to list-induct2 and rev-induct) for two lists of
equal length, where induction step is shown appending elements at the end.
lemma list-induct-2-rev[consumes 1 , case-names Nil Cons]:

assumes length x = length y
assumes P [] []
assumes

∧
x xs y ys. length xs = length ys =⇒ P xs ys =⇒ P (xs@[x]) (ys@[y])

shows P x y
using assms(1)

proof (induct length x arbitrary: x y)
case 0
then show ?case using assms(2) by simp

next
case (Suc n)
obtain x1 x2 where a:x = x1@[x2] and c:length x1 = n

by (metis Suc(2) append-butlast-last-id length-append-singleton
length-greater-0-conv nat.inject zero-less-Suc)

obtain y1 y2 where b:y = y1@[y2] and d:length y1 = n
by (metis Suc(2 ,3) append-butlast-last-id length-append-singleton

length-greater-0-conv nat.inject zero-less-Suc)

have P x1 y1 using c d Suc by simp
hence P (x1@[x2]) (y1@[y2]) using assms(3) c d by simp
thus ?case using a b by simp

qed

If all but one value of a sum is zero then it can be evaluated on the remaining
point:
lemma sum-collapse:

fixes f :: ′a ⇒ ′b::{comm-monoid-add}
assumes finite A
assumes z ∈ A

2

assumes
∧

y. y ∈ A =⇒ y 6= z =⇒ f y = 0
shows sum f A = f z
using sum.union-disjoint[where A=A−{z} and B={z} and g=f]
by (simp add: assms sum.insert-if)

Number of occurrences of elements in lists is preserved under injective maps.
lemma count-list-inj-map:

assumes inj-on f (set x)
assumes y ∈ set x
shows count-list (map f x) (f y) = count-list x y
using assms by (induction x, simp-all, fastforce)

A relation cannot be an equivalence relation on two distinct sets.
lemma equiv-on-unique:

assumes equiv A p
assumes equiv B p
shows A = B
by (meson assms equalityI equiv-class-eq-iff subsetI)

The restriction of an equivalence relation is itself an equivalence relation.
lemma equiv-subset:

assumes B ⊆ A
assumes equiv A p
shows equiv B (Restr p B)

proof −
have refl-on B (Restr p B) using assms by (simp add:refl-on-def equiv-def , blast)
moreover have sym (Restr p B) using assms by (simp add:sym-def equiv-def)
moreover have trans (Restr p B)

using assms by (simp add:trans-def equiv-def , blast)
ultimately show ?thesis by (simp add:equiv-def)

qed

3 Enumerating Restricted Growth Functions
fun rgf-limit :: nat list ⇒ nat

where
rgf-limit [] = 0 |
rgf-limit (x#xs) = max (x+1) (rgf-limit xs)

lemma rgf-limit-snoc: rgf-limit (x@[y]) = max (y+1) (rgf-limit x)
by (induction x, simp-all)

lemma rgf-limit-ge: y ∈ set xs =⇒ y < rgf-limit xs
by (induction xs, simp-all, metis lessI max-less-iff-conj not-less-eq)

definition rgf :: nat list ⇒ bool
where rgf x = (∀ ys y. prefix (ys@[y]) x −→ y ≤ rgf-limit ys)

3

The function rgf-limit returns the smallest natural number larger than all
list elements, it is the largest allowed value following xs for restricted growth
functions. The definition rgf is the predicate capturing the notion.
fun enum-rgfs :: nat ⇒ (nat list) list

where
enum-rgfs 0 = [[]] |
enum-rgfs (Suc n) = [(x@[y]). x ← enum-rgfs n, y ← [0 ..<rgf-limit x+1]]

The function enum-rgfs n returns all RGFs of length n without repetition.
The fact is verified in the three lemmas at the end of this section.
lemma rgf-snoc:

rgf (xs@[x]) ←→ rgf xs ∧ x < rgf-limit xs + 1
unfolding rgf-def by (rule order-antisym, (simp add:less-Suc-eq-le)+)

lemma rgf-imp-initial-segment:
rgf xs =⇒ set xs = {..<rgf-limit xs}

proof (induction xs rule:rev-induct)
case Nil
then show ?case by simp

next
case (snoc x xs)
have c:rgf xs using snoc(2) rgf-snoc by simp
hence a:set xs = {..<rgf-limit xs} using snoc(1) by simp
have b: x ≤ rgf-limit xs using snoc(2) rgf-snoc c by simp
have set (xs@[x]) = insert x {..<rgf-limit xs}

using a by simp
also have ... = {..<max (x+1) (rgf-limit xs)} using b

by (cases x < rgf-limit xs, simp add:insert-absorb, simp add:lessThan-Suc)
also have ... = {..<rgf-limit (xs@[x])}

using rgf-limit-snoc by simp
finally show ?case by simp

qed

lemma enum-rgfs-returns-rgfs:
assumes x ∈ set (enum-rgfs n)
shows rgf x
using assms

proof (induction n arbitrary: x)
case 0
then show ?case by (simp add:rgf-def)

next
case (Suc n)
obtain x1 x2 where

x-def :x = x1@[x2] x2 < rgf-limit x1 + 1 x1 ∈ set (enum-rgfs n)
using Suc by (simp add:image-iff , force)

have a:rgf x1 using Suc x-def by blast
thus ?case using x-def by (simp add:rgf-snoc)

qed

4

lemma enum-rgfs-len:
assumes x ∈ set (enum-rgfs n)
shows length x = n
using assms by (induction n arbitrary: x, simp-all, fastforce)

lemma equiv-rels-enum:
assumes rgf x
shows count-list (enum-rgfs (length x)) x = 1
using assms

proof (induction x rule:rev-induct)
case Nil
then show ?case by simp

next
case (snoc x xs)
have b:rgf xs using snoc(2) rgf-def by simp
hence x < rgf-limit xs + 1 using rgf-snoc snoc by blast
hence a:card ({0 ..<rgf-limit xs + 1} ∩ {x}) = 1 by force
have 1 = count-list (enum-rgfs (length xs)) xs using snoc b by simp
also have ... = (

∑
r1←enum-rgfs (length xs). of-bool (xs = r1) ∗

card ({0 ..<rgf-limit xs + 1} ∩ {x}))
using a by (simp add:length-concat filter-concat count-list-expand length-filter)

also have ... = (
∑

r1←enum-rgfs (length xs). of-bool (xs = r1) ∗
card ({0 ..<rgf-limit r1 + 1} ∩ {x}))

by (metis (mono-tags, opaque-lifting) mult-eq-0-iff of-bool-eq-0-iff)
also have ... = (

∑
r1←enum-rgfs (length xs). of-bool (xs = r1) ∗

(
∑

r2←[0 ..<rgf-limit r1 + 1]. of-bool (x = r2)))
by (simp add:interv-sum-list-conv-sum-set-nat del:One-nat-def)

also have ... = length (filter ((=) (xs@[x])) (enum-rgfs (length (xs@[x]))))
by (simp add:length-concat filter-concat length-filter comp-def

of-bool-conj sum-list-const-mult del:upt-Suc)
also have ... = count-list (enum-rgfs (length (xs@[x]))) (xs@[x])

by (simp add:count-list-expand length-filter del:enum-rgfs.simps)
finally show ?case by presburger

qed

4 Enumerating Equivalence Relations

The following definition returns the equivalence relation induced by a list,
for example, by a restricted growth function.
definition kernel-of :: ′a list ⇒ nat rel

where kernel-of xs = {(i,j). i < length xs ∧ j < length xs ∧ xs ! i = xs ! j}

Using that the enumeration function for equivalence relations on {..<n} is
straight-forward to define:
definition equiv-rels where equiv-rels n = map kernel-of (enum-rgfs n)

The following lemma shows that the image of kernel-of is indeed an equiv-
alence relation:

5

lemma kernel-of-equiv: equiv {..<length xs} (kernel-of xs)
proof −

have kernel-of xs ⊆ {..<length xs} × {..<length xs}
by (rule subsetI , simp add:kernel-of-def mem-Times-iff case-prod-beta)

thus ?thesis by (simp add:equiv-def refl-on-def sym-def trans-def kernel-of-def)
qed

lemma kernel-of-eq-len:
assumes kernel-of x = kernel-of y
shows length x = length y

proof −
have {..<length x} = {..<length y}

by (metis kernel-of-equiv equiv-on-unique assms)
thus ?thesis by simp

qed

lemma kernel-of-eq:
(kernel-of x = kernel-of y) ←→
(length x = length y ∧ (∀ j < length x. ∀ i < j. (x ! i = x ! j) = (y ! i = y ! j)))

proof (cases length x = length y)
case True
have (kernel-of x = kernel-of y) ←→
(∀ j < length x. ∀ i < length x. (x ! i = x ! j) = (y ! i = y ! j))
unfolding set-eq-iff kernel-of-def using True by (simp, blast)

also have ... ←→ (∀ j < length x. ∀ i < j. (x ! i = x ! j) = (y ! i = y ! j))
by (metis (no-types, lifting) linorder-cases order .strict-trans)

finally show ?thesis using True by simp
next

case False
then show ?thesis using kernel-of-eq-len by blast

qed

lemma kernel-of-snoc:
kernel-of (xs) = Restr (kernel-of (xs@[x])) {..<length xs}
by (simp add:kernel-of-def nth-append set-eq-iff)

lemma kernel-of-inj-on-rgfs-aux:
assumes length x = length y
assumes rgf x
assumes rgf y
assumes kernel-of x = kernel-of y
shows x = y
using assms

proof (induct x y rule: list-induct-2-rev)
case Nil
then show ?case by simp

next
case (Cons x xs y ys)
have a:kernel-of xs = kernel-of ys

6

using Cons(1 ,5) kernel-of-snoc by metis
have d:rgf xs rgf ys using Cons rgf-def by auto
hence b:xs = ys using Cons(2) a by auto
have

∧
i. i < length xs =⇒ (xs ! i = x) = (ys ! i = y)

proof −
fix i
assume i-l:i < length xs
have (xs ! i = x) ←→ (i,length xs) ∈ kernel-of (xs@[x]) using i-l

by (simp add:kernel-of-def less-Suc-eq nth-append)
also have ... ←→ (i,length xs) ∈ kernel-of (ys@[y])

using Cons(5) by simp
also have ... ←→ (ys ! i= y) using i-l Cons(1)

by (simp add:kernel-of-def less-Suc-eq nth-append)
finally show (xs ! i = x) = (ys ! i = y) by simp

qed
hence c:(x ∈ set xs −→ x = y) ∧ (x /∈ set xs −→ y /∈ set ys)

by (metis b in-set-conv-nth)
have x-bound:x < rgf-limit xs + 1

using Cons(3) rgf-snoc d by simp
have y-bound:y < rgf-limit ys + 1

using Cons(4) rgf-snoc d by simp
have x = y using b c d rgf-imp-initial-segment Cons x-bound y-bound

apply (cases x < rgf-limit xs, simp)
by (cases y < rgf-limit ys, simp+)

then show ?case using b by simp
qed

lemma kernel-of-inj-on-rgfs:
inj-on kernel-of {x. rgf x}
by (rule inj-onI , simp, metis kernel-of-eq-len kernel-of-inj-on-rgfs-aux)

Applying an injective map to a list preserves the induced relation:
lemma kernel-of-under-inj-map:

assumes inj-on f (set x)
shows kernel-of x = kernel-of (map f x)

proof −
have

∧
i j. i < length x =⇒ j < length x

=⇒ (map f x) ! i = (map f x) ! j =⇒ x ! i = x ! j
using assms by (simp add: inj-on-eq-iff)

thus ?thesis unfolding kernel-of-def by fastforce
qed

lemma all-rels-are-kernels:
assumes equiv {..<n} p
shows ∃ (x :: nat set list). kernel-of x = p ∧ length x = n

proof −
define r where r = map (λk. p‘‘{k}) [0 ..<n]

have
∧

u v. (u,v) ∈ kernel-of r ←→ (u,v) ∈ p

7

proof −
fix u v :: nat
have (u,v) ∈ kernel-of r ←→ ((u,v) ∈ {..<n}×{..<n} ∧ p‘‘{u} = p‘‘{v})

unfolding kernel-of-def r-def by auto
also have ... ←→ (u,v) ∈ p by (metis assms equiv-class-eq-iff mem-Sigma-iff)
finally show (u,v) ∈ kernel-of r ←→ (u,v) ∈ p by simp

qed
hence kernel-of r = p by auto
moreover have length r = n using r-def by simp
ultimately show ?thesis by auto

qed

For any list there is always an injective map on its set, such that its image
is an RGF.
lemma map-list-to-rgf :
∃ f . inj-on f (set x) ∧ rgf (map f x)

proof (induction length x arbitrary: x)
case 0
then show ?case by (simp add:rgf-def)

next
case (Suc n)
obtain x1 x2 where x-def : x = x1@[x2] and l-x1 : length x1 = n

by (metis append-butlast-last-id length-append-singleton Suc(2)
length-greater-0-conv nat.inject zero-less-Suc)

obtain f where inj-f : inj-on f (set x1) and pc-f : rgf (map f x1)
using Suc(1) l-x1 by blast

show ?case
proof (cases x2 ∈ set x1)

case True
have a:set x = set x1 using x-def True by auto
hence b:inj-on f (set x) using inj-f by auto

have f x2 < rgf-limit (map f x1) using rgf-limit-ge True by auto
hence rgf (map f x)

by (simp add:x-def rgf-snoc pc-f)
then show ?thesis using b by blast

next
case False
define f ′ where f ′ = (λy. if y ∈ set x1 then f y else rgf-limit (map f x1))
have inj-on f ′ (set x1) using f ′-def inj-f by (simp add: inj-on-def)
moreover have rgf-limit (map f x1) /∈ set (map f x1)

using rgf-limit-ge by blast
hence f ′ x2 /∈ f ′ ‘ set x1 using False by (simp add:f ′-def)
ultimately have inj-on f ′ (insert x2 (set x1)) using False by simp
hence a:inj-on f ′ (set x) using False x-def by simp

have b:map f x1 = map f ′ x1 using f ′-def by simp

have c:f ′ x2 < Suc (rgf-limit (map f x1)) by (simp add:f ′-def False)

8

have rgf (map f ′ x) by (simp add:x-def b[symmetric] rgf-snoc pc-f c)
then show ?thesis using a by blast

qed
qed

For any relation there is a corresponding RGF:
lemma rgf-exists:

assumes equiv {..<n} r
shows ∃ x. rgf x ∧ length x = n ∧ kernel-of x = r

proof −
obtain y :: nat set list where a:kernel-of y = r length y = n

using all-rels-are-kernels assms by blast
then obtain f where b:inj-on f (set y) rgf (map f y)

using map-list-to-rgf by blast
have kernel-of (map f y) = r

using kernel-of-under-inj-map a b by blast
moreover have length (map f y) = n using a by simp
ultimately show ?thesis

using b by blast
qed

These are the main result of this entry: The function equiv-rels n enumerates
the equivalence relations on {..<n} without repetition.
theorem equiv-rels-set:

assumes x ∈ set (equiv-rels n)
shows equiv {..<n} x
using assms equiv-rels-def kernel-of-equiv enum-rgfs-len by auto

theorem equiv-rels:
assumes equiv {..<n} r
shows count-list (equiv-rels n) r = 1

proof −
obtain y where y-def : rgf y length y = n kernel-of y = r

using rgf-exists assms by blast

have a:
∧

x. x ∈ set (enum-rgfs n) =⇒ (kernel-of y = kernel-of x) = (y=x)
using enum-rgfs-returns-rgfs y-def (1 ,2) enum-rgfs-len inj-onD[OF kernel-of-inj-on-rgfs]
by auto

have count-list (equiv-rels n) r =
length (filter (λx. r = kernel-of x) (enum-rgfs n))
by (simp add:equiv-rels-def count-list-expand length-filter comp-def)

also have ... = length (filter (λx. kernel-of y = kernel-of x) (enum-rgfs n))
using y-def (3) by simp

also have ... = length (filter (λx. y = x) (enum-rgfs n))
using a by (simp cong:filter-cong)

also have ... = count-list (enum-rgfs n) y
by (simp add:count-list-expand length-filter)

also have ... = 1

9

using equiv-rels-enum y-def (1 ,2) by auto
finally show ?thesis by simp

qed

A corollary of the previous theorem is that the sum of the indicator function
for a relation over equiv-rels n is always one.
corollary equiv-rels-2 :

assumes n = length xs
shows (

∑
x←equiv-rels n. of-bool (kernel-of xs = x)) = (1 :: ′a :: {semiring-1})

proof −
have length (filter (λx. kernel-of xs = x) (equiv-rels (length xs))) = 1
using equiv-rels[OF kernel-of-equiv[where xs=xs]] assms by (simp add:count-list-expand)

thus ?thesis
using assms by (simp add:of-bool-def sum-list-map-filter ′[symmetric] sum-list-triv)

qed

5 Example Application

In this section, I wanted to discuss an interesting application within the
context of a proof in Isabelle. This is motivated by a real-world example
[1, §2.2], where a function in a 4-times iterated sum could only be reduced
by splitting it according to the equivalence relation formed by the indices.
The notepad below illustrates how this can be done (in the case of 3 index
variables).
notepad
begin

fix f :: nat × nat × nat ⇒ nat
fix I :: nat set
assume a:finite I

To be able to break down such a sum by partitions let us introduce the
function P which is defined to be sum of an indicator function over all
possible equivalence relations its argument can form:

define P :: nat list ⇒ nat
where P = (λxs. (

∑
x ← equiv-rels (length xs). of-bool (kernel-of xs = x)))

Note that its value is always one, hence we can introduce it in an algebraic
equation easily:

have P-one:
∧

xs. P xs = 1
by (simp add: P-def equiv-rels-2)

note unfold-equiv-rels = P-def equiv-rels-def numeral-eq-Suc kernel-of-eq
neq-commute All-less-Suc comp-def

define r where r = (
∑

i ∈ I . (
∑

j ∈ I . (
∑

k ∈ I . f (i,j,k))))

As a first step, we just introduce the factor P [i, j, k].

10

have r = (
∑

i ∈ I . (
∑

j ∈ I . (
∑

k ∈ I . f (i,j,k) ∗ P [i,j,k])))
by (simp add:P-one r-def cong:sum.cong)

By expanding the definition of P and distributing, the sum can be expanded
into 5 sums each representing a distinct equivalence relation formed by the
indices.

also have ... =
(
∑

i∈I . f (i, i, i)) +
(
∑

i∈I .
∑

j∈I . f (i, i, j) ∗ of-bool (i 6= j)) +
(
∑

i∈I .
∑

j∈I . f (i, j, i) ∗ of-bool (i 6= j)) +
(
∑

i∈I .
∑

j∈I . f (i, j, j) ∗ of-bool (i 6= j)) +
(
∑

i∈I .
∑

j∈I .
∑

k∈I . f (i, j, k) ∗ of-bool (j 6= k ∧ i 6= k ∧ i 6= j))
(is - = ?rhs)
by (simp add:unfold-equiv-rels sum.distrib distrib-left sum-collapse[OF a])

finally have r = ?rhs by simp
end

6 Additional Results

If two lists induce the same equivalence relation, then there is a bijection
between the sets that preserves the multiplicities of its elements.
lemma kernel-of-eq-imp-bij:

assumes kernel-of x = kernel-of y
shows ∃ f . bij-betw f (set x) (set y) ∧
(∀ z ∈ set x. count-list x z = count-list y (f z))

proof −
obtain x ′ where x ′-def : inj-on x ′ (set x) rgf (map x ′ x)

using map-list-to-rgf by blast
obtain y ′ where y ′-def : inj-on y ′ (set y) rgf (map y ′ y)

using map-list-to-rgf by blast

have kernel-of (map x ′ x) = kernel-of (map y ′ y)
using assms x ′-def (1) y ′-def (1)
by (simp add: kernel-of-under-inj-map[symmetric])

hence b:map x ′ x = map y ′ y
using inj-onD[OF kernel-of-inj-on-rgfs] x ′-def (2) y ′-def (2) length-map by simp

hence f : x ′ ‘ set x = y ′ ‘ set y
by (metis list.set-map)

define f where f = the-inv-into (set y) y ′ ◦ x ′

have g:
∧

z. z ∈ set x =⇒ count-list x z = count-list y (f z)
proof −

fix z
assume a:z ∈ set x
have e: x ′ z ∈ y ′ ‘ set y

by (metis a b imageI image-set)
have c: the-inv-into (set y) y ′ (x ′ z) ∈ set y

using e the-inv-into-into[OF y ′-def (1)] by simp

11

have d: (y ′ (the-inv-into (set y) y ′ (x ′ z))) = x ′ z
using e f-the-inv-into-f y ′-def (1) by force

have count-list x z = count-list (map x ′ x) (x ′ z)
using a x ′-def by (simp add: count-list-inj-map)

also have ... = count-list (map y ′ y) (x ′ z)
by (simp add:b)

also have ... = count-list (map y ′ y) (y ′ (the-inv-into (set y) y ′ (x ′ z)))
by (simp add:d)

also have ... = count-list y (the-inv-into (set y) y ′ (x ′ z))
using c count-list-inj-map[OF y ′-def (1)] by simp

also have ... = count-list y (f z) by (simp add:f-def)
finally show count-list x z = count-list y (f z) by simp

qed

have bij-betw x ′ (set x) (x ′ ‘ set x)
using x ′-def (1) bij-betw-imageI by auto

moreover have bij-betw (the-inv-into (set y) y ′) (y ′ ‘ set y) (set y)
using bij-betw-the-inv-into[OF bij-betw-imageI] y ′-def (1) by auto

hence bij-betw (the-inv-into (set y) y ′) (x ′ ‘ set x) (set y)
using f by simp

ultimately have bij-betw f (set x) (set y)
using bij-betw-trans f-def by blast

thus ?thesis using g by blast
qed

As expected the length of equiv-rels n is the n-th Bell number.
lemma len-equiv-rels: length (equiv-rels n) = Bell n
proof −

have a:finite {p. equiv {..<n} p}
by (simp add: finite-equiv)

have b: set (equiv-rels n) ⊆ {p. equiv {..<n} p}
using equiv-rels-set by blast

have length (equiv-rels n) =
(
∑

x ∈ {p. equiv {..<n} p}. count-list (equiv-rels n) x)
using a b by (simp add:sum-count-set)

also have ... = card {p. equiv {..<n} p}
by (simp add: equiv-rels)

also have ... = Bell (card {..<n})
using card-equiv-rel-eq-Bell by blast

also have ... = Bell n by simp
finally show ?thesis by simp

qed

Instead of forming an equivalence relation from a list, it is also possible to
induce a partition from it:
definition induced-par :: ′a list ⇒ nat set set where

induced-par xs = (λk. {i. i < length xs ∧ xs ! i = k}) ‘ (set xs)

12

The following lemma verifies the commutative diagram, i.e., induced-par xs
is the same partition as the quotient of {..<length xs} over the corresponding
equivalence relation.
lemma quotient-of-kernel-is-induced-par :
{..<length xs} // (kernel-of xs) = (induced-par xs)

proof (rule set-eqI)
fix x
have x ∈ {..<length xs} // (kernel-of xs) ←→
(∃ i < length xs. x = {j. j < length xs ∧ xs ! i = xs ! j})
unfolding quotient-def kernel-of-def by blast

also have ... ←→ (∃ y ∈ set xs. x = {j. j < length xs ∧ y = xs ! j})
unfolding in-set-conv-nth Bex-def by (rule order-antisym, force+)

also have ... ←→ (x ∈ induced-par xs)
unfolding induced-par-def by auto

finally show x ∈ {..<length xs} // (kernel-of xs) ←→ (x ∈ induced-par xs)
by simp

qed

end

References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approx-
imating the frequency moments. Journal of Computer and System Sci-
ences, 58(1):137–147, 1999.

[2] L. Bulwahn. Cardinality of equivalence relations. Archive of Formal
Proofs, May 2016. https://isa-afp.org/entries/Card_Equiv_Relations.
html, Formal proof development.

[3] G. Hutchinson. Partioning algorithms for finite sets. Commun. ACM,
6(10):613–614, Oct. 1963.

[4] S. Milne. Restricted growth functions and incidence relations of the
lattice of partitions of an n-set. Advances in Mathematics, 26(3):290–305,
1977.

[5] D. Stanton and D. White. Constructive Combinatorics. Springer, 1986.

13

https://isa-afp.org/entries/Card_Equiv_Relations.html
https://isa-afp.org/entries/Card_Equiv_Relations.html

	Introduction
	Preliminary Results
	Enumerating Restricted Growth Functions
	Enumerating Equivalence Relations
	Example Application
	Additional Results

