A Verified Efficient Implementation of the Weighted Path Order*

René Thiemann and Elias Wenninger
University of Innsbruck

April 18, 2024

Abstract

The Weighted Path Order (WPO) of Yamada is a powerful technique for proving termination [3, 4, 5]. In a previous AFP entry [2], the WPO was defined and properties of WPO have been formally verified. However, the implementation of WPO was naive, leading to an exponential runtime in the worst case.

Therefore, in this AFP entry we provide a poly-time implementation of WPO. The implementation is based on memoization. Since WPO generalizes the recursive path order (RPO) [1], we also easily derive an efficient implementation of RPO.

Contents

1 Indexed Terms 2
2 Memoized Functions on Lists 5
2.1 Congruence Rules 7
2.2 Connection to Original Functions 9
3 An Approximation of WPO 14
4 A Memoized Implementation of WPO 19
5 An Unbounded Variant of RPO 26
6 A Memoized Implementation of RPO 29

[^0]
1 Indexed Terms

We provide a method to index all subterms of a term by numbers.

```
theory Indexed-Term
    imports
        First-Order-Terms.Subterm-and-Context
begin
type-synonym index = int
type-synonym('f,'v) indexed-term = (('f × ('f,'v)term }\times\mathrm{ index ), ('v }\times('f,'v)term
\times index)) term
fun index-term-aux :: index }=>\mathrm{ ('f,'v) term }=>\mathrm{ index }\times ('f,'v) indexed-term
    and index-term-aux-list :: index }=>('f,'v) term list => index > ('f,'v) in
dexed-term list
    where
        index-term-aux i (Var v)=(i+1, Var (v,Var v,i))
    | index-term-aux i (Funfts)=(case index-term-aux-list its of (j, ss) =>(j+1,
Fun (f,Fun fts,j) ss))
    | index-term-aux-list i [] = (i,[])
    | index-term-aux-list i (t # ts)=(case index-term-aux i t of (j,s) => map-prod
id (Cons s) (index-term-aux-list j ts))
```

definition index-term $::\left({ }^{\prime} f,^{\prime} v\right)$ term $\Rightarrow(' f, ' v)$ indexed-term
where
index-term $t=$ snd (index-term-aux $0 t$)
fun unindex :: ('f, 'v) indexed-term $\Rightarrow\left({ }^{\prime} f,^{\prime} v\right)$ term
where
unindex $(\operatorname{Var}(v,-))=\operatorname{Var} v$
\mid unindex $($ Fun $(f,-)$ ts $)=$ Fun $f($ map unindex ts)
fun stored $::(' f, ' v)$ indexed-term $\Rightarrow\left(' f,^{\prime} v\right)$ term
where
stored $(\operatorname{Var}(v,(s,-)))=s$
$\mid \operatorname{stored}($ Fun $(f,(s,-)) t s)=s$
fun name-of :: $\left({ }^{\prime} a \times{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a$
where
name-of ($a,-$) $=a$
fun index :: ('f, 'v) indexed-term \Rightarrow index
where
index $(\operatorname{Var}(-,(-, i)))=i$
| index (Fun (-,(-,i)) -) $=i$
definition index-term-prop $f s=(\forall u . s \unrhd u \longrightarrow f$ (index $u)=$ Some (unindex u) \wedge stored $u=$ unindex u)

```
lemma index-term-aux: fixes \(t::(' f, ' v)\) term and \(t s::(' f, ' v)\) term list
    shows index-term-aux \(i t=(j, s) \Longrightarrow\) unindex \(s=t \wedge i<j \wedge(\exists f\). dom \(f=\{i\)
\(. .<j\} \wedge\) index-term-prop \(f\) s)
    and index-term-aux-list \(i\) ts \(=(j, s s) \Longrightarrow\) map unindex ss \(=t s \wedge i \leq j \wedge\)
    \((\exists f . \operatorname{dom} f=\{i . .<j\} \wedge\) Ball (set ss) (index-term-prop \(f)\) )
proof (induct it and \(i\) ts arbitrary: \(j\) s and \(j\) ss rule: index-term-aux-index-term-aux-list.induct)
    case (1iv)
    then show ?case by (auto intro!: exI[of - ( \(\lambda-\). None \()(i:=\) Some (Var v) \()]\) split:
if-splits simp: index-term-prop-def supteq-var-imp-eq)
next
    case (2igts js)
    obtain \(k\) ss where rec: index-term-aux-list \(i\) ts \(=(k, s s)\) by force
    from 2(2)[unfolded index-term-aux.simps rec split]
    have \(j: j=k+1\) and \(s: s=\) Fun ( \(g\), Fun \(g t s, k\) ) ss by auto
    from 2(1) \([O F\) rec \(]\) obtain \(f\) where fss: map unindex \(s s=t s\) and
        \(i k: i \leq k\) and \(f: \operatorname{dom} f=\{i . .<k\} \bigwedge s . s \in\) set \(s s \Longrightarrow\) index-term-prop \(f s\)
        by auto
    have set: \(\{i . .<k+1\}=\) insert \(k\{i . .<k\}\) using \(i k\) by auto
    define \(h\) where \(h=f(k:=\) Some (Fun \(g t s)\) )
    show ?case unfolding \(s\) unindex.simps fss \(j\) set index-term-prop-def
    proof (intro conjI exI[of - h] refl allI)
        show \(i<k+1\) using \(i k\) by simp
        show dom \(h=\) insert \(k\{i . .<k\}\) using \(i k f(1)\) unfolding \(h\)-def by auto
        fix \(u\)
        show \(\operatorname{Fun}(g\), Fun \(g t s, k) s s \unrhd u \longrightarrow h(\) index \(u)=\) Some \((u n i n d e x u) \wedge\) stored
\(u=\) unindex \(u\)
    proof (cases \(u=\) Fun ( \(g\), Fun \(g t s, k\) ) ss)
            case True
            thus ?thesis by (auto simp: fss h-def index-term-prop-def)
        next
            case False
            show ?thesis
            proof (intro impI)
                assume Fun ( \(g\), Fun \(g t s, k\) ) ss \(\unrhd u\)
                with False obtain si where si set ss and si \(\unrhd u\)
                    by (metis Fun-supt suptI)
            from \(f(2)[\) unfolded index-term-prop-def, rule-format, OF this] \(f(1) i k\)
            show \(h(\) index \(u)=\) Some (unindex \(u) \wedge\) stored \(u=\) unindex \(u\) unfolding
\(h\)-def by auto
            qed
        qed
    qed
next
    case (4 it ts j sss)
    obtain \(k s\) where rec1: index-term-aux it \(=(k, s)\) by force
    with \(4(3)\) obtain \(s s\) where rec2: index-term-aux-list \(k\) ts \(=(j, s s)\) and sss: sss
\(=s \# s s\)
    by (cases index-term-aux-list \(k\) ts, auto)
```

from $4(1)[O F$ rec 1] obtain f where $f s$: unindex $s=t$ and $i k: i<k$ and $f: d o m$ $f=\{i . .<k\}$
index-term-prop $f s$ by auto
from 4(2)[unfolded rec1, OF refl rec2] obtain g where fss: map unindex ss $=$ $t s$ and $k j: k \leq j$
and $g: \operatorname{dom} g=\{k . .<j\} \bigwedge$ si. si \in set ss \Longrightarrow index-term-prop g si
by auto
define h where $h=(\lambda n$. if $n \in\{i . .<k\}$ then $f n$ else $g n)$
show ? case unfolding sss list.simps $f s f s s$
proof (intro conjI exI[of - h] refl allI ballI)
have $\operatorname{dom} h=\{i . .<k\} \cup\{k . .<j\}$ unfolding h-def using $f(1) g(1)$ by force
also have $\ldots=\{i . .<j\}$ using $i k k j$ by auto
finally show dom $h=\{i . .<j\}$ by auto
show $i \leq j$ using $i k k j$ by auto
fix $s i$
assume si: si \in insert s (set ss)
show index-term-prop h si
proof (cases si $=s$)
case True
from f show ?thesis unfolding True h-def index-term-prop-def by auto
next
case False
with $s i$ have $s i: s i \in$ set $s s$ by auto
have disj: $\{i . .<k\} \cap\{k . .<j\}=\{ \}$ by auto
from $g(1) g(2)[O F s i]$
show ?thesis unfolding index-term-prop-def h-def using disj
by (metis disjoint-iff domI)
qed
qed
qed auto
lemma index-term-index-unindex: $\exists f . \forall t$. index-term $s \unrhd t \longrightarrow f($ index $t)=$ unindex $t \wedge$ stored $t=$ unindex t
proof -
obtain $t i$ where aux: index-term-aux $0 s=(i, t)$ by force
from index-term-aux(1)[OF this] show ?thesis unfolding index-term-def aux index-term-prop-def by force
qed
lemma unindex-index-term $[$ simp $]$: unindex (index-term $s)=s$
proof -
obtain $t i$ where aux: index-term-aux $0 s=(i, t)$ by force
from index-term-aux(1)[OF this] show?thesis unfolding index-term-def aux by force
qed
end

2 Memoized Functions on Lists

We define memoized version of lexicographic comparison of lists, multiset comparison of lists, filter on lists, etc.

theory List-Memo-Functions
imports
Indexed-Term
Knuth-Bendix-Order.Lexicographic-Extension
Weighted-Path-Order.Multiset-Extension2-Impl
HOL-Library.Mapping
begin

definition valid-memory $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} i \Rightarrow{ }^{\prime} a\right) \Rightarrow\left({ }^{\prime} i,{ }^{\prime} b\right)$ mapping \Rightarrow bool where valid-memory f ind mem $=(\forall i b$. Mapping.lookup mem $i=$ Some $b \longrightarrow f$ (ind $i)=b$)
definition memoize-fun where memoize-fun impl $f g$ ind $A=$ $\left(\left(\forall x m p m^{\prime}\right.\right.$. valid-memory f ind $m \longrightarrow$ impl $m x=\left(p, m^{\prime}\right) \longrightarrow x \in A \longrightarrow$ $p=f(g x) \wedge$ valid-memory f ind $\left.\left.m^{\prime}\right)\right)$
lemma memoize-funD: assumes memoize-fun impl $f g$ ind A shows valid-memory f ind $m \Longrightarrow$ impl $m x=\left(p, m^{\prime}\right) \Longrightarrow x \in A \Longrightarrow p=f(g$
$x) \wedge$ valid-memory f ind m^{\prime}
using assms unfolding memoize-fun-def by auto
lemma memoize-funI: assumes $\wedge m x p m^{\prime}$. valid-memory find $m \Longrightarrow i m p l m x$
$=\left(p, m^{\prime}\right) \Longrightarrow x \in A \Longrightarrow p=f(g x) \wedge$ valid-memory f ind m^{\prime}
shows memoize-fun impl $f g$ ind A
using assms unfolding memoize-fun-def by auto
lemma memoize-fun-pairI: assumes $\Lambda \begin{array}{lll} & x & p m^{\prime} \text {. valid-memory } f \text { ind } m \Longrightarrow\end{array}$ impl $m(x, y)=\left(p, m^{\prime}\right) \Longrightarrow x \in A \Longrightarrow y \in B \Longrightarrow p=f(g x, h y) \wedge$ valid-memory f ind m^{\prime}
shows memoize-fun impl f (map-prod $g h$) ind $(A \times B)$
using assms unfolding memoize-fun-def by auto
lemma memoize-fun-mono: assumes memoize-fun impl $f g$ ind B and $A \subseteq B$
shows memoize-fun impl $f g$ ind A
using assms unfolding memoize-fun-def by blast
fun filter-mem : : $\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} m \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} c \times{ }^{\prime} m\right) \Rightarrow\left({ }^{\prime} c \Rightarrow\right.$ bool $) \Rightarrow{ }^{\prime} m \Rightarrow{ }^{\prime} a$ list $\Rightarrow\left({ }^{\prime}{ }^{\prime}\right.$ list \times ' m)
where
filter-mem pre f post mem []$=([]$, mem $)$
| filter-mem pre f post mem $(x \#$ xs $)=($ case f mem (pre $x)$ of $\left(c, \mathrm{mem}^{\prime}\right) \Rightarrow$ case filter-mem pre f post mem^{\prime} xs of $\left(y s, m e m^{\prime \prime}\right) \Rightarrow\left(\right.$ if post c then $\left(x \# y s, m e m^{\prime \prime}\right)$ else $\left(y s\right.$, mem $\left.\left.\left.^{\prime \prime}\right)\right)\right)$
fun forall-mem $::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} m \Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} c \times{ }^{\prime} m\right) \Rightarrow\left({ }^{\prime} c \Rightarrow b o o l\right) \Rightarrow{ }^{\prime} m \Rightarrow{ }^{\prime} a$ list \Rightarrow bool \times ' m
where
forall-mem pre f post mem []$=($ True, mem $)$
\mid forall-mem pre f post mem $(x \#$ xs $)=($ case f mem (pre x) of $(c$, mem')
\Rightarrow if post c then forall-mem pre f post mem' xs else (False, mem'))
fun exists-mem :: $\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow\left({ }^{\prime} m \Rightarrow{ }^{\prime} b \Rightarrow\left({ }^{\prime} c \times{ }^{\prime} m\right)\right) \Rightarrow\left({ }^{\prime} c \Rightarrow\right.$ bool $) \Rightarrow{ }^{\prime} m \Rightarrow^{\prime} a$ list $\Rightarrow($ bool \times ' m)
where

$$
\text { exists-mem pre } f \text { post mem }[]=(\text { False }, \text { mem })
$$

\mid exists-mem pre f post mem $(x \#$ xs $)=($ case f mem (pre $x)$ of $(c$, mem $)$
\Rightarrow if post c then (True, mem') else exists-mem pre f post mem' x)
type-synonym term-rel-mem $=($ index \times index, bool \times bool $)$ mapping
type-synonym 'a term-rel-mem-type $=$ term-rel-mem $\Rightarrow{ }^{\prime} a \times{ }^{\prime} a \Rightarrow$ (bool \times bool $)$ \times term-rel-mem
fun lex-ext-unbounded-mem :: 'a term-rel-mem-type \Rightarrow term-rel-mem $\Rightarrow{ }^{\prime}$ 'a list \Rightarrow 'a list \Rightarrow (bool \times bool $) \times$ term-rel-mem
where lex-ext-unbounded-mem f mem [][]$=(($ False, True $)$, mem $) \mid$
lex-ext-unbounded-mem f mem (- \# -) [] = ((True, True), mem) | lex-ext-unbounded-mem f mem [] (- \# -) $=(($ False, False $)$, mem $) \mid$ lex-ext-unbounded-mem f mem $(a \# a s)(b \# b s)=$ (let (sns-res, mem-new) $=\mathrm{fmem}(a, b)$ in
(case sns-res of
(True, -$) \Rightarrow(($ True, True $)$, mem-new $)$
| (False, True) \Rightarrow lex-ext-unbounded-mem f mem-new as bs
| (False, False $) \Rightarrow$ ((False, False), mem-new $)$
)
)
lemma filter-mem-len: filter-mem pre f post mem $x s=(y s, m e m ') \Longrightarrow$ length $y s \leq$ length xs
by (induction xs arbitrary: mem ys mem'; force split: prod.splits if-splits)
lemma filter-mem-len2: $\left(y s\right.$, mem $\left.^{\prime}\right)=$ filter-mem mem pre f post $x s \Longrightarrow$ length ys \leq length $x s$
using filter-mem-len[of mem pre f post xs ys mem'] by auto
lemma filter-mem-set: filter-mem pre fost mem $x s=\left(y s\right.$, mem $\left.^{\prime}\right) \Longrightarrow$ set $y s \subseteq$ set xs
by (induction xs arbitrary: mem ys mem', auto split: prod.splits if-splits) blast
function mul-ext-mem $::$ 'a term-rel-mem-type \Rightarrow term-rel-mem \Rightarrow ' a list \Rightarrow ' a

```
list \(\Rightarrow\) (bool \(\times\) bool \() \times\) term-rel-mem
    and mul-ext-dom-mem :: 'a term-rel-mem-type \(\Rightarrow\) term-rel-mem \(\Rightarrow{ }^{\prime} a\) list \(\Rightarrow{ }^{\prime} a\)
list \(\Rightarrow{ }^{\prime} a \Rightarrow\) 'a list \(\Rightarrow\) (bool \(\times\) bool \() \times\) term-rel-mem
    where
            mul-ext-mem \(f\) mem [] [] = ((False, True), mem \()\)
    mul-ext-mem f mem [] (v \# va) \(=((\) False, False \()\), mem \()\)
    mul-ext-mem f mem (v \# va) [] = ((True, True), mem)
    \(\mid\) mul-ext-mem \(f\) mem \((v \# v a)(y \# y s)=\) mul-ext-dom-mem \(f \operatorname{mem}(v \# v a)[]\)
\(y\) ys
    | mul-ext-dom-mem f mem [] xs y ys \(=((\) False, False \()\), mem \()\)
    | mul-ext-dom-mem f mem ( \(x \#\) xsa) xs y ys \(=\)
            (case f mem (x,y) of (sns-res, mem-new-1) \(\Rightarrow\)
                    (case sns-res of
                    (True, -) \(\Rightarrow\) (case
                        (filter-mem (Pair x) \(f(\lambda p . \neg\) fst p) mem-new-1 ys)
                            of (ys-new, mem-new-2) \(\Rightarrow\) case
                            mul-ext-mem f mem-new-2 (xsa @ xs) ys-new of (tmp-res, mem-new-3)
\(\Rightarrow\)
                    if snd tmp-res
                    then ((True, True), mem-new-3)
                            else mul-ext-dom-mem f mem-new-3 xsa ( \(x\) \# xs) y ys)
                \(\mid(\) False, True \() \Rightarrow\) (case mul-ext-mem f mem-new-1 (xsa @ xs) ys of
                    (sns-res-a, mem-new-2) \(\Rightarrow\) case mul-ext-dom-mem f mem-new-2 xsa (x
\# xs) y ys of
                    (sns-res-b, mem-new-3) \(\Rightarrow\)
                    (or2 sns-res-a sns-res-b, mem-new-3))
                \(\mid(\) False, False \() \Rightarrow\) mul-ext-dom-mem f mem-new-1 xsa ( \(x \#\) xs) y ys))
    by pat-completeness auto
termination by (relation measures [
    ( \(\lambda\) input. case input of \(\operatorname{Inl}(-,-, x s, y s) \Rightarrow\) length \(y s \mid \operatorname{Inr}\left(-,-, x s, x s^{\prime}, y, y s\right) \Rightarrow\)
length ys),
    ( \(\lambda\) input. case input of \(\operatorname{Inl}(-,-, x s, y s) \Rightarrow 0 \mid \operatorname{Inr}\left(-,-, x s, x s^{\prime}, y, y s\right) \Rightarrow\) Suc
(length \(x s\) ))
    ])
        (auto dest: filter-mem-len2)
```


2.1 Congruence Rules

lemma filter-mem-cong[fundef-cong]:
assumes $\bigwedge m x . x \in$ set $x s \Longrightarrow f m($ pre $x)=g m($ pre $x)$
shows filter-mem pre f post mem xs $=$ filter-mem pre g post mem xs
using assms by (induct xs arbitrary: mem, auto split: prod.splits)
lemma forall-mem-cong[fundef-cong]:
assumes $\bigwedge m x . x \in$ set $x s \Longrightarrow f m($ pre $x)=g m($ pre $x)$
shows forall-mem pre f post mem xs forall-mem pre g post mem xs
using assms by (induct xs arbitrary: mem, auto split: prod.splits)
lemma exists-mem-cong[fundef-cong]:
assumes $\bigwedge m x . x \in$ set $x s \Longrightarrow f m($ pre $x)=g m($ pre $x)$
shows exists-mem pre f post mem xs $=$ exists-mem pre g post mem xs
using assms by (induct xs arbitrary: mem, auto split: prod.splits)
lemma lex-ext-unbounded-mem-cong[fundef-cong]:
assumes $\bigwedge x y m . x \in$ set $x s \Longrightarrow y \in$ set $y s \Longrightarrow f m(x, y)=g m(x, y)$
shows lex-ext-unbounded-mem fmxs ys $=$ lex-ext-unbounded-mem g mas ys
using assms
by (induct $f m$ xs ys rule: lex-ext-unbounded-mem.induct, auto split: prod.splits bool.splits)
lemma mul-ext-mem-cong[fundef-cong]:
assumes $\bigwedge x y m . x \in$ set $x s \Longrightarrow y \in$ set $y s \Longrightarrow f m(x, y)=g m(x, y)$
shows mul-ext-mem f mxs ys $=$ mul-ext-mem $g m$ xs ys
proof -
have $\left(\bigwedge x^{\prime} y^{\prime} m . x^{\prime} \in\right.$ set $x s \Longrightarrow y^{\prime} \in$ set $\left.y s \Longrightarrow f m\left(x^{\prime}, y^{\prime}\right)=g m\left(x^{\prime}, y^{\prime}\right)\right) \Longrightarrow$ mul-ext-mem $f m$ xs ys $=$ mul-ext-mem $g m$ xs ys
$\left(\bigwedge x^{\prime} y^{\prime} m \cdot x^{\prime} \in \operatorname{set}\left(x s @ x s^{\prime}\right) \Longrightarrow y^{\prime} \in \operatorname{set}(y \# y s) \Longrightarrow f m\left(x^{\prime}, y^{\prime}\right)=g m\right.$ $\left.\left(x^{\prime}, y^{\prime}\right)\right) \Longrightarrow$
mul-ext-dom-mem f m xs $x s^{\prime} y$ ys $=$ mul-ext-dom-mem $g m x s x s^{\prime} y$ ys for $x s^{\prime} y$
proof (induct $g m x s$ ys and $g m x s x s^{\prime} y$ ys rule: mul-ext-mem-mul-ext-dom-mem.induct)
case ($6 \mathrm{~g} m \mathrm{x} x \mathrm{~s} x s^{\prime} y \mathrm{ys}$)
note $I H s=6(1-5)$
note $f g=6(6)$
note $[$ simp del $]=$ mul-ext-mem.simps mul-ext-dom-mem.simps
note $[$ simp $]=$ mul-ext-dom-mem.simps(2)[of-mxxs xs ${ }^{\prime} y$ ys]
from $f g$ have $f g x[$ simp $]: f m(x, y)=g m(x, y)$ by simp
obtain a1 b1 m1 where $r 1[\operatorname{simp}]: g m(x, y)=((a 1, b 1), m 1)$ by (cases $g m$ (x, y), auto)
note $I H s=\operatorname{IHs}(1-5)[$ OF r1[symmetric $]$ refl $]$
show ? case
proof (cases a1)
case True
hence $a 1=$ True by auto
note $I H s=\operatorname{IHs}(1-2)[$ OF this $]$
let ? $\mathrm{rec}=$ filter-mem $($ Pair $x) g(\lambda p . \neg f s t p) m 1$ ys
let ? recf $=$ filter-mem $($ Pair $x) f(\lambda p . \neg f s t p) m 1$ ys have [simp]: ? recf = ? rec
by (rule filter-mem-cong, insert fg, auto)
obtain zs m2 where rec: ?rec $=(z s, m 2)$ by fastforce
from filter-mem-set $[O F$ rec $]$ have sub: set $z s \subseteq$ set ys by auto
note $I H s=I H s(1-2)[$ OF rec[symmetric $]]$
have $\operatorname{IH1}[\operatorname{simp}]$: mul-ext-mem fm2 (xs @ $\left.x s^{\prime}\right)$ zs $=$ mul-ext-mem g m2 $(x s$ @ $\left.x s^{\prime}\right) z s$
by (rule $\operatorname{IHs}(1)$, rule fg) (insert sub, auto)
obtain $p 3 m 3$ where rec2[simp]: mul-ext-mem g m2 (xs @ $\left.x s^{\prime}\right) z s=(p 3, m 3)$

```
by fastforce
```



```
    thus ?thesis using True by (simp add: rec)
    next
    case False
    hence a1 = False by simp
    note IHs=IHs(3-)[OF this]
    show ?thesis
    proof (cases b1)
        case True
        hence b1 = True by simp
        note IHs=IHs(1-2)[OF this]
        have [simp]:mul-ext-mem fm1 (xs @ xs') ys = mul-ext-mem gm1 (xs @
xs') ys
            by (rule IHs(1)[OF fg], auto)
        obtain p2 m2 where rec1[simp]: mul-ext-mem g m1 (xs @ xs') ys = (p2,m2)
by fastforce
    have [simp]: mul-ext-dom-mem f m2 xs (x # xs') y ys = mul-ext-dom-mem
g m2 xs (x # xs') y ys
            by (rule IHs(2)[OF rec1[symmetric] fg],auto)
            show ?thesis using False True by simp
    next
        case b1: False
        hence b1 = False by simp
        note IHs=IHs(3)[OF this fg]
        have [simp]: mul-ext-dom-mem f m1 xs (x # xs') y ys = mul-ext-dom-mem
g m1 xs (x # xs') y ys
            by (rule IHs,auto)
        show ?thesis using False b1 by auto
        qed
    qed
    qed auto
    with assms show ?thesis by auto
qed
```


2.2 Connection to Original Functions

lemma filter-mem: assumes valid-memory fun ind mem1
filter-mem f fun-mem h mem1 $x s=$ (ys, mem2)
memoize-fun fun-mem fun g ind $(f$ ' set $x s)$
shows $y s=$ filter $(\lambda y . h(f u n(g(f y)))) x s \wedge$ valid-memory fun ind mem2
using assms
proof (induct xs arbitrary: mem1 ys mem2)
case (Cons x xs mem1 ys mem')
note res $=\operatorname{Cons}(3)$
note mem1 $=\operatorname{Cons}(2)$
note fun-mems $=\operatorname{Cons(4)}$
obtain p mem2 where $f m$: fun-mem mem1 $(f x)=(p$, mem2) by force
from memoize-funD[OF fun-mems mem1 fm]

```
    have p: p= fun (g(fx)) and mem2: valid-memory fun ind mem2 by auto
    note res = res[unfolded filter-mem.simps fm split]
    obtain zs mem3 where rec: filter-mem f fun-mem h mem2 xs = (zs,mem3) by
force
    note res = res[unfolded rec split]
    from Cons(1)[OF mem2 rec memoize-fun-mono[OF fun-mems]]
    have mem3: valid-memory fun ind mem3 and zs:zs = filter ( }\lambday.h(fun (g)
y)))) xs by auto
    from mem3 res
    show ?case unfolding zs p by auto
qed auto
lemma forall-mem: assumes valid-memory fun ind m
    and forall-mem f fun-mem h m xs = (b, m')
    and memoize-fun fun-mem fun g ind (f' set xs)
shows b = Ball (set xs) (\lambdas.h (fun (g(fs)))) ^ valid-memory fun ind m'
    using assms
proof (induct xs arbitrary:m b m')
    case (Cons x xs m b m')
    obtain b1 m1 where x: fun-mem m (f x) = (b1,m1) by force
    note res = Cons(3)[unfolded forall-mem.simps x map-prod-simp split]
    note mem = Cons(2)
    from memoize-funD[OF Cons(4) mem x]
    have b1: b1 = fun (g (fx)) and m1: valid-memory fun ind m1 by auto
    obtain b2 m2 where rec: forall-mem f fun-mem h m1 xs = (b2,m2) by fastforce
    from Cons(1)[OF m1 rec memoize-fun-mono[OF Cons(4)]]
    have IH:b2 = Ball (set xs) (\lambdas.h(fun (g(fs)))) and m2: valid-memory fun
ind m2 by auto
    show ?case using res rec IH m2 b1 m1 by (auto split: if-splits)
qed auto
lemma exists-mem: assumes valid-memory fun ind m
    and exists-mem f fun-mem h m xs = (b, m')
    and memoize-fun fun-mem fun g}\mathrm{ ind (f'set xs)
shows b = Bex (set xs) (\lambdas.h (fun (g(fs)))) ^ valid-memory fun ind m'
    using assms
proof (induct xs arbitrary: m b m')
    case (Cons x xs m b m')
    obtain b1 m1 where x: fun-mem m (f x)=(b1,m1) by force
    note res = Cons(3)[unfolded exists-mem.simps x map-prod-simp split]
    note mem = Cons(2)
    from memoize-funD[OF Cons(4) mem x]
    have b1: b1 = fun (g (f x)) and m1: valid-memory fun ind m1 by auto
    obtain b2 m2 where rec: exists-mem f fun-mem h m1 xs = (b2,m2) by fastforce
    from Cons(1)[OF m1 rec memoize-fun-mono[OF Cons(4)]]
    have IH:b2 = Bex (set xs) (\lambdas.h (fun (g(fs)))) and m2: valid-memory fun
ind m2 by auto
    show ?case using res rec IH m2 b1 m1 by (auto split: if-splits)
qed auto
```

lemma lex-ext-unbounded-mem: assumes rel-pair $=(\lambda(s, t)$. rel st)
shows valid-memory rel-pair ind mem \Longrightarrow lex-ext-unbounded-mem rel-mem mem xs ys $=\left(p\right.$, mem $\left.^{\prime}\right)$
\Longrightarrow memoize-fun rel-mem rel-pair (map-prod $g h$) ind (set $x s \times$ set ys)
$\Longrightarrow p=$ lex-ext-unbounded rel $(\operatorname{map} g x s)($ map $h y s) \wedge$ valid-memory rel-pair ind mem^{\prime}
proof (induct rel-mem mem xs ys arbitrary: p mem' $^{\prime}$ rule: lex-ext-unbounded-mem.induct)
case (4 rel-mem mem x xs y ys)
note lex-ext-unbounded.simps[simp]
note $I H=4(1)[$ OF refl - refl $]$
obtain s ns mem1 where impl: rel-mem mem $(x, y)=((s, n s)$, mem1) by (cases rel-mem mem (x, y), auto)
have rel: rel $(g x)(h y)=(s, n s)$ and mem1: valid-memory rel-pair ind mem1
using memoize-funD $[$ OF $4(4,2) \mathrm{impl}]$ assms impl unfolding assms o-def by auto
note res $=4(3)$ [unfolded lex-ext-unbounded-mem.simps Let-def impl split]
have rel-pair: lex-ext-unbounded rel $(\operatorname{map} g(x \# x s))(\operatorname{map} h(y \# y s))=($
if s then (True, True) else if $n s$ then lex-ext-unbounded rel (map g xs) (map
h ys) else (False, False))
unfolding lex-ext-unbounded.simps list.simps Let-def split rel by simp
show ?case
proof (cases $s \vee \neg n s$)
case True
thus ?thesis using res rel-pair mem1 by auto
next

case False

obtain p2 mem2 where rec: lex-ext-unbounded-mem rel-mem mem1 xs ys $=$ ($p 2$, mem2) by fastforce
from False have $s=$ False $n s=$ True by auto
from $I H$ [unfolded impl, OF refl this mem1 rec memoize-fun-mono[OF 4(4)]]
have mem2: valid-memory rel-pair ind mem2 and p2: p2 $=$ lex-ext-unbounded rel (map g xs) (map hys) by auto
show ?thesis unfolding rel-pair using res rec False mem2 p2 by (auto split: if-splits)
qed
qed (auto simp: lex-ext-unbounded.simps)
lemma mul-ext-mem: assumes rel-pair $=(\lambda(s, t)$. rel st)
shows valid-memory rel-pair ind mem \Longrightarrow mul-ext-mem rel-mem mem xs ys $=$ (p, mem^{\prime})
\Longrightarrow memoize-fun rel-mem rel-pair (map-prod $g h$) ind (set $x s \times$ set ys)
$\Longrightarrow p=$ mul-ext-impl rel (map g xs) (map h ys) \wedge valid-memory rel-pair ind
$\mathrm{mem}^{\prime}($ is ? $A \Longrightarrow ? B \Longrightarrow$? $C \Longrightarrow$? $D)$
proof -
have ? $A \Longrightarrow ? B \Longrightarrow$? $C \Longrightarrow$? D
valid-memory rel-pair ind mem \Longrightarrow mul-ext-dom-mem rel-mem mem xs xs' y ys $=\left(p, \mathrm{mem}^{\prime}\right)$
\Longrightarrow memoize-fun rel-mem rel-pair (map-prod gh) ind (set (xs@ xs') $\times \operatorname{set}(y \#$
ys))
$\Longrightarrow p=$ mul-ex-dom rel (map gxs) (map gxs$)(h y)($ map $h y s) \wedge$ valid-memory rel-pair ind mem ${ }^{\prime}$
for $x s^{\prime} y$
proof (induct rel-mem mem xs ys and rel-mem mem xs xs' y ys arbitrary: p
mem^{\prime} and p mem' rule: mul-ext-mem-mul-ext-dom-mem.induct)
case (6 sns mem x xs ys d zs pair mem')
note $I H s=6(1-5)$
note mem $=6(6)$
note res $=6(7)$
note memo $=6(8)$
let ? Sns $=\lambda x$. rel-pair $($ map-prod $g h x)$
let $? x d=$ rel-pair $(g x, h d)$
obtain $p 1$ mem1 where sns: sns mem $(x, d)=(p 1$, mem1) by fastforce
note $I H s=I H s[$ OF sns $[$ symmetric $]]$
from memoize-funD[OF memo mem sns]
have p1: p1 = ?xd and mem1: valid-memory rel-pair ind mem1 by auto
note $s n s=$ sns[unfolded $p 1]$
note res $=$ res[unfolded mul-ext-dom-mem.simps sns split]
have rel: rel $(g x)(h d)=$?xd unfolding assms by auto
define $w p$ where $w p=$ mul-ex-dom rel $(\operatorname{map} g(x \# x s))(\operatorname{map} g y s)(h d)$ (map $h z s$)
note $w p=w p-d e f[$ unfolded list.simps, unfolded mul-ex-dom.simps rel]
consider (1) b where ? $x d=($ True, $b) \mid(2) ? x d=($ False,True $) \mid(3) ? x d=$ (False,False)
by (cases ? xd, auto)
hence valid-memory rel-pair ind mem' \wedge pair $=w p$
proof cases
case (1 b)
let ?pre $=$ Pair x
let ?post $=(\lambda p . \neg f s t p)$
from 1 p1 have $(T r u e, b)=p 1$ by auto
note $I H s=I H s(1-2)[O F$ this, OF refl $]$
obtain p2 mem2 where filter: filter-mem ?pre sns ?post mem1 zs $=(p 2$, mem2) by force
obtain p3 mem3 where rec1: mul-ext-mem sns mem2 (xs @ ys) p2 = ($p 3$, mem3) by fastforce
obtain $p 4$ mem4 where rec2: mul-ext-dom-mem sns mem3 xs $(x \# y s) d z s$ $=(p 4$, mem4 $)$ by fastforce
note res $=$ res[unfolded 1 split[of - mem1], unfolded Let-def split, simplified, unfolded filter rec1 split rec2]
note $w p=w p[u n f o l d e d 1$ split bool.simps]
\{
fix z
assume $z \in$ set $z s$
hence $(x, z) \in \operatorname{set}((x \# x s) @ y s) \times \operatorname{set}(d \# z s)$ by auto
from memoize-funD[OF memo - this]
have valid-memory rel-pair ind $m \Longrightarrow$ sns $m(x, z)=\left(p, m^{\prime}\right) \Longrightarrow p=$ rel-pair (map-prod $g h(x, z)) \wedge$ valid-memory rel-pair ind m^{\prime}
for $m p m^{\prime}$ by auto
\}
hence memoize-fun sns rel-pair (map-prod $g h$) ind (Pair x 'set zs)
by (intro memoize-funI, blast)
from filter-mem[OF mem1 filter, of map-prod $g h$,
OF this]
have mem2: valid-memory rel-pair ind mem2 and p2: $2 \mathcal{Z}=$ filter $(\lambda y . \neg f s t$ $($ rel-pair $(g x, h y))) z s$
by auto
have filter $(\lambda y . \neg$ fst $(\operatorname{rel}(g x) y))(\operatorname{map} h z s)=\operatorname{map} h p 2$ unfolding $p 2$
assms split
by (induct zs, auto)
note $w p=w p[$ unfolded this]
note $I H s=I H s[O F$ filter $[$ symmetric $]]$
from $\operatorname{IHs}(1)[$ OF mem2 rec1 memoize-fun-mono[OF memo]] p2
have mem3: valid-memory rel-pair ind mem3
and p3: p3 $=$ mul-ext-impl rel $($ map g xs @ map g ys) (maphp2)
by auto
note $w p=w p[$ folded $p 3]$
show ?thesis
proof (cases snd p3)
case True
thus ?thesis using res wp mem3 by auto
next
case False
with $\operatorname{IHs}(2)[O F$ rec1[symmetric] False mem3 rec2 memoize-fun-mono[OF memo]] wp res
show ?thesis by auto
qed
next
case 2
note $w p=w p[u n f o l d e d 2$ split bool.simps]
obtain p2 mem2 where rec2: mul-ext-mem sns mem1 (xs @ ys) zs = $(p 2$, mem2) by fastforce
obtain p3 mem3 where rec3: mul-ext-dom-mem sns mem2 xs $(x \# y s) d z s$ $=(p 3$, mem3 $)$ by fastforce
from 2 p1 have (False, True) $=p 1$ by auto
note $I H s=I H s(3-4)[$ OF this refl refl, unfolded rec2 $]$
from $\operatorname{IHs}(1)$ [OF mem1 refl memoize-fun-mono[OF memo]]
have mem2: valid-memory rel-pair ind mem2 and p2: p2 $=$ mul-ext-impl rel (map g (xs @ ys)) (maphzs)
by auto
from $I H s(2)[O F$ refl mem2 rec3 memoize-fun-mono[OF memo]]
have mem3: valid-memory rel-pair ind mem3 and p3: p3 = mul-ex-dom rel (map g xs) (map g (x\#ys)) (hd) (maphzs) by auto
from wp res[unfolded Let-def split 2 bool.simps rec2 rec3]
show ?thesis using mem3 p2 p3 by auto
next
case 3
obtain p2 mem2 where rec2: mul-ext-dom-mem sns mem1 xs (x \# ys) dzs $=(p 2$, mem2 $)$ by fastforce
from $3 p 1$ have (False, False) $=p 1$ by auto
from $\operatorname{IHs}(5)$ [OF this refl refl mem1 rec2 memoize-fun-mono[OF memo]]
have mem2: valid-memory rel-pair ind mem2 and p2: p2 $=$ mul-ex-dom rel (map g xs) (mapg (x \# ys)) (hd) (map hzs)
by auto
have $w p=p 2$ unfolding $w p 3$ using $p 2$ by simp
with mem2 show ?thesis using p2 res 3 rec2 by auto
qed
thus ?case unfolding wp-def by blast
qed auto
thus ? $A \Longrightarrow ? B \Longrightarrow$? $C \Longrightarrow$? D by blast
qed
end

3 An Approximation of WPO

We define an approximation of WPO.
It replaces the bounded lexicographic comparison by an unbounded one. Hence, no runtime check on lenghts are required anymore, but instead the arities of the inputs have to be bounded via an assumption.

Moreover, instead of checking that terms are strictly or non-strictly decreasing w.r.t. the algebra (i.e., the input reduction pair), we just demand that there are sufficient criteria to ensure a strict- or non-strict decrease.

```
theory WPO-Approx
imports
    Weighted-Path-Order.WPO
begin
definition compare-bools :: bool \(\times\) bool \(\Rightarrow\) bool \(\times\) bool \(\Rightarrow\) bool
    where
        compare-bools p1 p2 \(\longleftrightarrow(f s t p 1 \longrightarrow f s t ~ p 2) \wedge(\) snd p1 \(\longrightarrow\) snd \(p 2)\)
notation compare-bools \(\left(\left(-/ \leq_{c b}-\right)[51,51] 50\right)\)
lemma lex-ext-unbounded-cb:
    assumes \(\wedge i . i<\) length \(x s \Longrightarrow i<\) length \(y s \Longrightarrow f(x s!i)(y s!i) \leq_{c b} g(x s!\)
i) \((y s!i)\)
    shows lex-ext-unbounded \(f\) xs ys \(\leq_{c b}\) lex-ext-unbounded \(g\) xs ys
    unfolding compare-bools-def
    by (rule lex-ext-unbounded-mono,
    insert assms[unfolded compare-bools-def], auto)
lemma mul-ext-cb:
    assumes \(\bigwedge x y . x \in \operatorname{set} x s \Longrightarrow y \in\) set \(y s \Longrightarrow f x y \leq_{c b} g x y\)
```

```
shows mul-ext f xs ys \(\leq_{c b}\) mul-ext \(g\) xs ys
unfolding compare-bools-def
by (intro conjI impI; rule mul-ext-mono) (insert assms, auto simp: compare-bools-def)
context
    fixes \(p r::(' f \times n a t \Rightarrow ' f \times n a t \Rightarrow\) bool \(\times\) bool \()\)
    and prl :: ' \(f \times\) nat \(\Rightarrow\) bool
    and ssimple :: bool
    and large :: ' \(f \times\) nat \(\Rightarrow\) bool
    and \(c S c N S::(' f, ' v)\) term \(\Rightarrow\left({ }^{\prime} f,^{\prime} v\right)\) term \(\Rightarrow\) bool - sufficient criteria
    and \(\sigma::\) 'f status
    and \(c::\) ' \(f \times\) nat \(\Rightarrow\) order-tag
begin
fun wpo-ub :: ('f,'v) term \(\Rightarrow(' f, ' v)\) term \(\Rightarrow\) bool \(\times\) bool
    where
    wpo-ub \(s t=(\) if \(c S s t\) then (True, True) else if \(c N S\) st then (case \(s\) of
        Var \(x \Rightarrow\) (False,
            (case \(t\) of
                Var \(y \Rightarrow x=y\)
                \(\mid\) Fun \(g\) ts \(\Rightarrow\) status \(\sigma(g\), length \(t s)=[] \wedge \operatorname{prl}(g\), length \(t s)))\)
    | Fun f ss \(\Rightarrow\)
                let \(f f=(f\), length ss \() ;\) sf \(=\) status \(\sigma f f\) in
                if \((\exists i \in\) set sf. snd (wpo-ub (ss!i)t)) then (True, True)
                else
                    (case t of
                        Var \(-\Rightarrow(\) False, ssimple \(\wedge\) large ff \()\)
                        | Fung \(\mathrm{ts} \Rightarrow\)
                        let \(g g=(g\), length \(t s) ; s g=\) status \(\sigma g g\) in
                        (case pr ff gg of (prs, prns) \(\Rightarrow\)
                        if prns \(\wedge(\forall j \in\) set sg. fst \((w p o-u b s(t s!j)))\) then
                            if prs then (True, True)
                        else
                        let \(s s^{\prime}=\operatorname{map}(\lambda i . s s!i) s f\);
                            \(t s^{\prime}=\operatorname{map}(\lambda i . t s!i) s g ;\)
                            \(c f=c f f ;\)
                            \(c g=c g g\) in
                            if \(c f=L e x \wedge c g=\) Lex then lex-ext-unbounded wpo-ub ss'ts'
                            else if \(c f=M u l \wedge c g=\) Mul then mul-ext wpo-ub ss \({ }^{\prime}\) ts \(s^{\prime}\)
                            else if \(t s^{\prime}=[]\) then \(\left(s s^{\prime} \neq[]\right.\), True) else (False, False)
                    else (False, False)))
        ) else (False, False))
```

declare wpo-ub.simps [simp del]
abbreviation wpo-orig $n S N S \equiv$ wpo.wpo $n S N S$ pr prl σ c ssimple large
soundness of approximation: local.wpo-ub can be simulated by local.wpo-orig if the arities are small (usually the length of the status of f is smaller than the arity of f).
lemma wpo-ub:
assumes \bigwedge si $t j . s \unrhd s i \Longrightarrow t \unrhd t j \Longrightarrow(c S$ si $t j, c N S$ si $t j) \leq_{c b}((s i, t j) \in S$, $(s i, t j) \in N S)$
and $\bigwedge f . f \in$ funas-term $t \Longrightarrow$ length $($ status $\sigma f) \leq n$
shows wpo-ub st $\leq_{c b}$ wpo-orig $n S N S$ s t
using assms
proof (induct st rule: wpo.wpo.induct [of S NS σ - n pr prl c ssimple large])
case ($1 \mathrm{~s} t$)
note $I H=1(1-4)$
note $c b=1(5)$
note $n=1(6)$
note $c b d=$ compare-bools-def
note simps $=$ wpo-ub.simps[of st] wpo.wpo.simps[of $n S$ NS pr prl σ c ssimple large $s t$]
let ?wpo $=$ wpo-orig $n S N S$
let ? $c b=\lambda s t .(c S s t, c N S s t) \leq_{c b}((s, t) \in S,(s, t) \in N S)$
let ?goal $=\lambda s t$. wpo-ub $s t \leq_{c b}$?wpo $s t$
from $c b[o f s t]$ have $c b-s t$: ?cb $s t$ by auto
show ?case
proof (cases $(s, t) \in S \vee \neg c N S s t)$
case True
with $c b$-st show ?thesis unfolding simps unfolding $c b d$ by auto
next
case False
with $c b$-st have $*:(s, t) \notin S(s, t) \in N S((s, t) \notin S)=\operatorname{True}((s, t) \in S)=$ False

```
            ((s,t) \in NS) = True cS s t= False cNS s t = True
            unfolding cbd by auto
    note simps = simps[unfolded * if-False if-True]
    note IH = IH[OF *(1-2)]
    show ?thesis
    proof (cases s)
            case (Var x) note s= this
            show ?thesis
            proof (cases t)
                    case (Var y) note t= this
                show ?thesis unfolding simps unfolding s t cbd by simp
            next
                case (Fun g ts) note t= this
                    show ?thesis unfolding simps unfolding st cbd by auto
                qed
    next
                case s: (Fun f ss)
            let ?f = (f,length ss)
            let ?sf = status \sigma ?f
            let ?s = Fun f ss
            note IH=IH[OF s]
            show ?thesis
            proof (cases (\exists i fet ?sf. snd (?wpo (ss!i)t)))
```

```
    case True
    then show ?thesis unfolding simps using True * unfolding s cbd by auto
next
    case False
    {
        fix }
        assume i:i\in set ?sf
        from status-aux[OF i]
        have ?goal (ss!i)t
        by (intro IH(1)[OF i cb n], auto simp: s)
    }
        with False have sub: (\exists i\in set ?sf. snd (wpo-ub (ss ! i) t)) = False
unfolding cbd by auto
    note IH=IH(2-4)[OF False]
    show ?thesis
    proof (cases wpo-ub s t=(False,False))
        case True
        then show ?thesis unfolding cbd by auto
    next
    case False note noFF = this
    note False = False[unfolded simps * Let-def, unfolded s term.simps sub,
simplified]
        show ?thesis
        proof (cases t)
        case t: (Var y)
        from False[unfolded t, simplified]
        show ?thesis unfolding st unfolding cbd
            using * s simps sub t by auto
    next
        case t:(Fungts)
        let ?g = (g,length ts)
        let ?sg= status \sigma ?g
        let ?t = Fun g ts
        obtain ps pns where p: pr ?f ?g= (ps, pns) by force
        note IH=IH[OF t p[symmetric]]
        note False = False[unfolded t p split term.simps]
        from False have pns: pns = True by (cases pns,auto)
        {
            fix }
            assume j: j\in set ?sg
            from status-aux[OF j]
            have cb:?goal s (ts! j)
                by (intro IH(1)[OF j cb n], auto simp: t)
            from j False have fst (wpo-ub s (ts!j)) unfolding s by (auto split:
if-splits)
            with cb have fst (?wpo s (ts!j)) unfolding cbd by auto
    }
    then have cond: pns ^(\forallj\in set ?sg.fst (?wpo s (ts!j))) using pns
by auto
```

note $I H=I H(2-3)[O F$ cond $]$
from cond have cond: $($ pns $\wedge(\forall j \in$ set ?sg. fst $($?wpo ?s $(t s!j))))=$ True unfolding s by simp
note simps $=\operatorname{simps}[$ unfolded $*$ Let-def, unfolded st term.simps if-False if-True sub[unfolded t] p split cond]
show ?thesis
proof (cases ps)
case True
then show ?thesis unfolding $s t$ unfolding simps cbd by auto
next
case False
note $I H=I H[O F$ this refl refl refl refl $]$
let ? $m s f=$ map ((!) ss) ?sf
let ? $\mathrm{msg}=\mathrm{map}((!) t s)$? $s g$
have set-msf: set ?msf \subseteq set ss using status[of σ f length ss] unfolding set-conv-nth by force
have set-msg: set ? $\mathrm{msg} \subseteq$ set ts using status[of $\sigma \mathrm{g}$ length ts] unfolding set-conv-nth by force
\{
fix i
assume $i<$ length ?msf
then have ?msf $!i \in$ set ?msf unfolding set-conv-nth by blast
with set-msf have ?msf ! i \in set ss by auto
\} note $m s f=t h i s$
\{
fix i
assume $i<$ length ?msg
then have ?msg ! $i \in$ set ? msg unfolding set-conv-nth by blast
with set-msg have ? $\mathrm{msg}!i \in$ set t s by auto
\} note $m s g=t h i s$
show ?thesis
proof (cases c ?f $=$ Lex $\wedge c ? g=$ Lex $)$
case Lex: True
note $I H=I H(1)[O F$ Lex - $c b n$, unfolded $s t$ length-map $]$
from $n[$ of ? g, unfolded $t]$ have length (? msg) $\leq n$ by auto
then have ub: lex-ext-unbounded ?wpo ? msf ? $\mathrm{msg}=$
lex-ext ?wpo n ?msf ?msg
unfolding lex-ext-unbounded-iff lex-ext-iff by auto
from Lex False simps noFF
have wpo-ub: wpo-ub st=lex-ext-unbounded wpo-ub ? msf ? msg
unfolding $s t$ using False by (auto split: if-splits)
also have $\ldots \leq_{c b}$ lex-ext-unbounded ?wpo ?msf ?msg
by (rule lex-ext-unbounded-cb, rule IH) (insert msf msg, auto)
finally show ?thesis unfolding $u b s t \operatorname{simps}(2) c b d$ using Lex by

next

case nLex: False
show ?thesis
proof $($ cases c ? $f=M u l \wedge c ? g=M u l)$

```
                    case Mul: True
                    note IH=IH(2)[OF nLex Mul --cb n, unfolded s t]
                    from Mul nLex False simps noFF
                    have wpo-ub: wpo-ub s t= mul-ext wpo-ub ?msf ?msg
                            unfolding st using False by (auto split: if-splits)
                    also have ... \leqcb mul-ext ?wpo ?msf ?msg
                            by (rule mul-ext-cb, rule IH) (insert set-msf set-msg, auto)
                    finally show ?thesis unfolding st simps(2) cbd using nLex Mul
by auto
                    next
                        case nMul: False
                    thus ?thesis unfolding st simps cbd using nLex nMul noFF False
                    by auto
                    qed
                    qed
                qed
            qed
            qed
        qed
    qed
    qed
qed
end
end
```


4 A Memoized Implementation of WPO

```
theory WPO-Mem-Impl
    imports
        WPO-Approx
        Indexed-Term
        List-Memo-Functions
begin
context
    fixes pr :: ('f }\times\mathrm{ nat }=>\mathrm{ 'f }\times\mathrm{ nat }=>\mathrm{ bool }\times\mathrm{ bool)
        and prl :: 'f }\times\mathrm{ nat }=>\mathrm{ bool
        and ssimple :: bool
        and large :: 'f }\times\mathrm{ nat }=>\mathrm{ bool
        and cS cNS :: ('f,'v)term }=>('f,'v)term mboo
        and }\sigma:::'f statu
        and c:: 'f }\times\mathrm{ nat }=>\mathrm{ order-tag
begin
The main implementation working on indexed terms
```


fun

```
wpo-mem :: (('f, 'v) indexed-term) term-rel-mem-type and
wpo-main :: (('f, 'v) indexed-term) term-rel-mem-type
```


where

$$
\text { wpo-mem mem }(s, t)=
$$ (let

$$
i=i n d e x s
$$

$$
j=i n d e x t
$$

in
(case Mapping.lookup mem (i, j) of
Some res \Rightarrow (res, mem)
\mid None \Rightarrow case wpo-main mem (s, t)
of (res, mem-new) \Rightarrow (res, Mapping.update (i, j) res mem-new $))$)
\mid wpo-main mem $(s, t)=($ let $f s=$ stored $s ; f t=$ stored t in
if $c S$ fs ft then ((True, True), mem)
else if cNS fs ft then (
case s of
Var $x \Rightarrow$ ((False,
(case t of
Var $y \Rightarrow$ name-of $x=$ name-of y
\mid Fun g ts \Rightarrow status σ (name-of g, length $t s)=[] \wedge \operatorname{prl}$ (name-of g, length $t s))$), mem)
| Fun f ss \Rightarrow
let $f f=\left(\right.$ name-of f, length ss); sf $=$ status $\sigma f f ; s^{\prime}=\operatorname{map}(\lambda i . s s!i)$ sf in (case exists-mem (λs^{\prime}. $\left(s^{\prime}, t\right)$) wpo-mem snd mem ss' of (wpo-result, mem-out-1) \Rightarrow
if wpo-result then ((True, True), mem-out-1)
else
(case t of
Var $-\Rightarrow(($ False, ssimple \wedge large ff $)$, mem-out-1)
| Fung ts \Rightarrow let $g g=\left(\right.$ name-of g, length ts); sg=status $\sigma g g ; t s^{\prime}=\operatorname{map}(\lambda i . t s!$
i) $s g$ in

$$
\text { (case pr ff gg of }(\text { prs, prns }) \Rightarrow
$$ if prns then (case forall-mem $\left(\lambda t^{\prime} .\left(s, t^{\prime}\right)\right)$ wpo-mem fst mem-out-1 ts ${ }^{\prime}$ of (wpo-result, mem-out-2) \Rightarrow if wpo-result then if prs then ((True, True), mem-out-2) else

let $c f=c f f ; c g=c$ gg in
if $c f=L e x \wedge c g=$ Lex then lex-ext-unbounded-mem wpo-mem
mem-out-2 $s s^{\prime} t s^{\prime}$
else if $c f=M u l \wedge c g=$ Mul then mul-ext-mem wpo-mem
mem-out-2 $s s^{\prime} t s^{\prime}$
else if $t s^{\prime}=[]$ then $\left(\left(s s^{\prime} \neq[]\right.\right.$, True $)$, mem-out-2)
else ((False, False), mem-out-2)
else ((False, False), mem-out-2)) else ((False,False), mem-out-1)))
)
) else ((False, False), mem))
declare wpo-mem.simps[simp del] declare wpo-main.simps[simp del]

And the wrapper that computes the indexed terms and initializes the memory.

```
definition wpo-mem-impl :: ('f, 'v) term \(\Rightarrow(' f, ' v)\) term \(\Rightarrow(b o o l \times\) bool \()\)
    where
        wpo-mem-impl s \(t=\) fst (wpo-mem Mapping.empty (index-term s, index-term
t))
```

Soundness of the implementation
lemma wpo-mem: fixes rli rri :: index $\Rightarrow(' f, ' v)$ term assumes
wpoub: wpoub $=$ wpo-ub pr prl ssimple large $c S c N S \sigma c$
and wpo: wpo $=(\lambda(s, t)$. wpoub st)
and ri: ri $=$ map-prod rli rri
and \bigwedge si. fst st \unrhd si $\Longrightarrow r l i($ index si $)=$ unindex si \wedge stored si $=$ unindex si
and $\bigwedge t i$. snd st $\unrhd t i \Longrightarrow r r i($ index $t i)=$ unindex $t i \wedge$ stored $t i=u n i n d e x t i$ and valid-memory wpo ri m
shows wpo-mem m st $=\left(p, m^{\prime}\right) \Longrightarrow p=w p o($ map-prod unindex unindex st) \wedge valid-memory wpo ri m^{\prime}
wpo-main m st $=\left(p, m^{\prime}\right) \Longrightarrow p=$ wpo (map-prod unindex unindex st) \wedge valid-memory wpo ri m^{\prime}
using assms(4-)
proof (induct m st and m st arbitrary: $p m^{\prime}$ and $p m^{\prime}$ rule: wpo-mem-wpo-main.induct)
case (1 mst)
note $I H=1(1)$
note revi $=1(3,4)$ [unfolded fst-conv snd-conv]
note $\mathrm{mem}=1(5)$
note res $=1$ (2)[unfolded wpo wpo-mem.simps Let-def]
have ri: ri $($ index s, index $t)=($ unindex s, unindex $t)$
unfolding ri using revi(1)[of $s]$ revi(2) $[$ of $t]$ by auto
show ? case
proof (cases Mapping.lookup m (index s, index $t)$)
case (Some q)
note res $=$ res[unfolded Some option.simps]
from res have id: $p=q m^{\prime}=m$ by auto
from mem[unfolded valid-memory-def, rule-format, OF Some]
have wpo $($ ri $($ index s, index $t))=q$ by auto
with $r i$ show ?thesis unfolding id using mem by auto
next
case None
note res $=$ res[unfolded None option.simps]
obtain res2 mem2 where rec: wpo-main $m(s, t)=($ res2, mem2) by fastforce
have res2: res2 $=$ wpo (unindex s, unindex t) and mem: valid-memory wpo ri mem2
using $I H[$ OF refl refl None rec revi mem $]$ by auto
from res[unfolded rec split]
have $p: p=$ res2 and $m^{\prime}: m^{\prime}=$ Mapping.update (index s, index t) res2 mem2 by auto

```
        show ?thesis unfolding p res2 m' using mem ri
        by (auto simp add: valid-memory-def lookup-update')
    qed
next
    case (2mst)
    let ?s = unindex s
    let ?t = unindex }
    note revi = 2(6,7)[unfolded fst-conv snd-conv]
    from revi(1)[of s] revi(2)[of t]
    have stored: stored s= unindex s stored t= unindex t by auto
    note IHs=2(1-4)[OF stored[symmetric]]
    note mem =2(8)
    note res =2(5)[unfolded wpo-main.simps Let-def stored]
    have wpo-st: wpo (unindex s, unindex t)=wpoub (unindex s) (unindex t) for s
t
    unfolding wpo by simp
    note wpo = this[of s t,unfolded wpoub wpo-ub.simps[of - - - - - ?s ?t], folded
wpoub]
    show ?case
    proof (cases s)
        case (Var xi)
        then obtain xi where s: s=\operatorname{Var (x,i) by (cases xi,auto)}
        thus?!hesis using res mem wpo by (cases t, auto)
    next
        case (Fun fi ss)
        then obtain fi}\mathrm{ where s:s=Fun (f,i) ss by (cases fi,auto)
    let ?Sta = status \sigma (f, length ss)
    note res = res[unfolded s term.simps name-of.simps, folded s]
    note wpo = wpo[unfolded s unindex.simps term.simps, folded unindex.simps[of
- i], folded s,
            unfolded length-map Let-def]
    show ?thesis
    proof (rule ccontr)
            assume neg: }\urcorner\mathrm{ ?thesis
            from neg res mem wpo s have ncS:\negcS ?s ?t by auto
            from neg res mem wpo s ncS have cNS: cNSS ?s ?t by (auto split: if-splits)
            have id: map-prod unindex unindex (s,t)=(unindex s, unindex t) for st ::
(' }f,'v)\mathrm{ indexed-term by auto
            define sss where sss = map (!!) ss) ?Sta
            note IHs=IHs[OF ncS cNS s refl refl reff, unfolded name-of.simps, unfolded
id fst-conv snd-conv, folded sss-def]
            from ncS cNS have id: cS ?s ?t = False cNS ?s ?t = True by auto
            note res =res[unfolded id if-True if-False, folded sss-def]
            have sss: (map ((!) (map unindex ss)) ?Sta) = map unindex sss
                unfolding sss-def by (auto dest: set-status-nth[OF refl])
            note wpo = wpo[unfolded id if-True if-False]
    have sss-sub: set sss \subseteq set ss unfolding sss-def by (auto dest: set-status-nth[OF
refl)
    let ?cond1' = Bex (set sss) (\lambdas. snd (wpoub (unindex s) (unindex t)))
```

let ?cond1" $=$ Bex (set ?Sta) (λ i. snd (wpoub (map unindex ss ! $i)($ unindex t)))
have ?cond1' ${ }^{\prime \prime}=$? cond 1^{\prime} unfolding sss-def using set-status-nth[OF refl, of - σ f ss] by simp
note $w p o=w p o[$ unfolded this sss]
let ?cond1 $=$ exists-mem $\left(\lambda s^{\prime} .\left(s^{\prime}, t\right)\right)$ wpo-mem snd m sss
obtain $b 1 m 1$ where cond1: ?cond1 $=(b 1, m 1)$ by fastforce
\{
fix $s i$
assume si: si \in set sss
have wpo-mem $m(s i, t)=\left(p, m^{\prime}\right) \Longrightarrow$ valid-memory wpo ri $m \Longrightarrow p=$ wpo (unindex si, unindex $t) \wedge$ valid-memory wpo ri m^{\prime}
for $m p m^{\prime}$
by (intro IHs(1)[OF si - revi, of m $\left.\mathrm{p} \mathrm{m}^{\prime}\right]$, insert sss-sub s si, auto)
\}
hence memoize-fun wpo-mem wpo (map-prod unindex unindex) ri (($\lambda s^{\prime} .\left(s^{\prime}\right.$, t)) ' set sss)
by (intro memoize-funI, auto)
from exists-mem[OF mem cond1 this]
have cond1': ?cond1' $=b 1$ and mem1: valid-memory wpo ri $m 1$ unfolding wpo-st[symmetric] by auto
note $I H s=I H s(2-)[O F$ cond1 $[$ symmetric $]]$
note res $=$ res[unfolded cond1 split]
note $w p o=w p o[$ unfolded cond1]
from neg res wpo mem1 have b1: $\neg b 1$ by auto
note $I H s=I H s[O F$ this]
from $b 1$ have $b 1: b 1=$ False by simp
note res $=$ res[unfolded b1 if-False]
note $w p o=w p o[u n f o l d e d ~ b 1 ~ i f-F a l s e] ~$
show False
proof (cases t)
case (Var yj)
with neg res wpo mem1 show ?thesis by (cases yj, auto)
next
case (Fun gj ts)
then obtain $g j$ where $t: t=F u n(g, j)$ ts by (cases $g j$, auto)
let ?f $=(f$, length ss) let ? $g=(g$, length $t s)$
obtain prs prns where pr: pr ?f ? $g=($ prs, prns $)$ by force
let ?sta $=($ status $\sigma(g$, length $t s))$
define tss where tss $=\operatorname{map}((!)$ ts) ?sta
have tss: (map ((!) (map unindex ts)) ?sta) = map unindex tss unfolding tss-def by (auto dest: set-status-nth[OF refl])
have tss-sub: set tss \subseteq set ts unfolding tss-def by (auto dest: set-status-nth[OF $r e f l])$
note res $=$ res[unfolded t term.simps name-of.simps pr split, folded tss-def] note $w p o=w p o[u n f o l d e d ~ t ~ u n i n d e x . s i m p s ~ t e r m . s i m p s ~ l e n g t h-m a p ~ p r ~ s p l i t, ~$ folded unindex.simps[of - j], folded t, unfolded tss]
from neg res mem1 wpo have prns: prns by (auto split: if-splits)
note $I H s=I H s[O F t$ refl refl, unfolded name-of.simps, OF refl pr[symmetric], folded tss-def, OF prns]
have prns: $($ prns $\wedge b)=b$ prns $=$ True for b using prns by auto
note res $=$ res[unfolded prns if-True]
note $w p o=w p o[$ unfolded $\operatorname{prns}(1)]$
let ?cond2 $=$ forall-mem $\left(\lambda t^{\prime} .\left(s, t^{\prime}\right)\right)$ wpo-mem fst m1 tss
let ?cond2" $=$ Ball $($ set ?sta $)(\lambda j$.fst $($ wpoub ?s $($ map unindex ts ! $j)))$
let ?cond2' $=$ Ball $($ set tss $)(\lambda t$. fst $($ wpoub ?s $($ unindex $t)))$
have ?cond2" $=$? cond2' unfolding tss-def
using set-status-nth[OF refl, of $-\sigma g t s]$ by simp
note wpo $=$ wpo[unfolded this]
obtain $b 2 \mathrm{m2}$ where cond2: ?cond2 $=(b 2, m 2)$ by force
\{
fix $t i$
assume $t i: t i \in s e t ~ t s s$
have wpo-mem $m(s, t i)=\left(p, m^{\prime}\right) \Longrightarrow$
valid-memory wpo ri $m \Longrightarrow p=$ wpo (unindex s, unindex ti) \wedge valid-memory wpo ri m^{\prime}
for $m p m^{\prime}$
by (intro $\operatorname{IHs}(1)\left[O F\right.$ ti - revi, of $\left.m p m^{\prime}\right]$, insert tss-sub t ti, auto)
\}
hence memoize-fun wpo-mem wpo (map-prod unindex unindex) ri (Pair s' set tss)
by (intro memoize-funI, auto)
from forall-mem[OF mem1 cond2 this]
have cond2': ?cond2' = b2 and mem2: valid-memory wpo ri m2
unfolding wpo-st[symmetric] by auto
note $w p o=w p o[u n f o l d e d$ cond2']
note res $=$ res[unfolded cond2 split]
from neg res wpo mem2 have b2: b2 by (auto split: if-splits)
with neg res wpo mem2 have prs: \neg prs by (auto split: if-splits)
note $I H s=I H s(2-)[O F$ cond2[symmetric] b2 prs refl refl]
from b2 prs have id: b2 = True prs = False by auto
note res $=$ res[unfolded id if-True if-False, folded sss-def tss-def]
note $w p o=w p o[$ unfolded id if-True if-False]
let ?is-lex $=c$? $f=$ Lex $\wedge c ? g=$ Lex
show False
proof (cases?is-lex)
case True
note $I H=I H s(1)[O F$ True $]$
from True have lex: ? is-lex = True by auto
note res $=$ res[unfolded lex if-True]
note $w p o=w p o[$ unfolded lex if-True]
have memo: memoize-fun wpo-mem wpo (map-prod unindex unindex) ri (set sss \times set tss)
apply (rule memoize-fun-pairI)
apply (rule $I H$)
apply force
apply force

```
            apply force
            subgoal by (rule revi, insert sss-sub, auto simp: s)
            subgoal by (rule revi, insert tss-sub, auto simp: t)
            by auto
            have p = lex-ext-unbounded wpoub (map unindex sss) (map unindex tss)
valid-memory wpo ri m'
            by (rule lex-ext-unbounded-mem[OF assms(2) mem2 res memo])
            with res wpo neg
            show ?thesis by auto
            next
            case False
            note IH=IHs(2)[OF False]
            from False have lex: ?is-lex = False by auto
            note res = res[unfolded lex if-False]
            note wpo = wpo[unfolded lex if-False]
            let ?is-mul =c(f, length ss) = Mul ^c(g, length ts ) = Mul
            show False
            proof (cases ?is-mul)
            case True
            note IH = IH[OF True]
            from True have mul: ?is-mul = True by auto
            note res = res[unfolded mul if-True]
            note wpo = wpo[unfolded mul if-True]
            have memo: memoize-fun wpo-mem wpo (map-prod unindex unindex) ri
(set sss }\times\mathrm{ set tss)
            apply (rule memoize-fun-pairI)
            apply (rule IH)
                    apply force
                    apply force
                    apply force
                    subgoal by (rule revi, insert sss-sub, auto simp: s)
                    subgoal by (rule revi, insert tss-sub, auto simp: t)
            by auto
            have p = mul-ext-impl wpoub (map unindex sss) (map unindex tss)^
valid-memory wpo ri m'
                    using mul-ext-mem(1)[OF assms(2) mem2 res memo] by auto
                    with res wpo neg
                    show ?thesis unfolding mul-ext-code by auto
            next
                    case False
                    from False have mul: ?is-mul = False by auto
                    note res = res[unfolded mul if-False]
                    note wpo = wpo[unfolded mul if-False]
                    from res wpo neg mem2 show False by (auto split: if-splits)
                    qed
            qed
        qed
    qed
qed
```


qed

```
declare [[code drop: wpo-ub]]
lemma wpo-ub-memoized-code[code]:
    wpo-ub pr prl ssimple large \(c S c N S \sigma\) cst \(t=w p o-m e m-i m p l ~ s t\)
proof -
    let ? \(s=\) index-term \(s\)
    let \(? t=\) index-term \(t\)
    let \(? m=\) Mapping.empty \(::\) term-rel-mem
    have m: valid-memory \((\lambda(s, t)\). wpo-ub pr prl ssimple large \(c S c N S \quad \sigma \quad c \quad s t)\)
( map-prod rl rr) ? \(m\) for \(r l r r\)
    unfolding valid-memory-def by auto
    from index-term-index-unindex[of \(s\) ] obtain \(f\) where \(f: \forall t \unlhd\) index-term s. \(f\)
(index \(t\) ) \(=\) unindex \(t \wedge\) stored \(t=\) unindex \(t\) by auto
    from index-term-index-unindex[of \(t\) ] obtain \(g\) where \(g\) : \(\forall s \unlhd\) index-term \(t . g\)
(index \(s\) ) \(=\) unindex \(s \wedge\) stored \(s=\) unindex \(s\) by auto
    obtain \(p m\) where res: wpo-mem ? \(m\) (?s,?t) \(=(p, m)\) by fastforce
    hence impl: wpo-mem-impl st=punfolding wpo-mem-impl-def by simp
    also have ... \(=\) wpo-ub pr prl ssimple large \(c S c N S \sigma\) (unindex (index-term
s)) (unindex (index-term t))
    by (rule wpo-mem(1)[THEN conjunct1, OF refl refl refl - m res, unfolded
map-prod-simp split fst-conv snd-conv, of \(f\) g])
            (insert fg, auto)
    finally show ?thesis by simp
qed
end
end
```


5 An Unbounded Variant of RPO

We define an unbounded version of RPO in the sense that lexicographic comparisons do not require a length check. This unbounded version of RPO is equivalent to the original RPO provided that the arities of the function symbols are below the bound that is used for lexicographic comparisons.

```
theory RPO-Unbounded
    imports
        Weighted-Path-Order.RPO
begin
fun rpo-unbounded :: ('f \(\times\) nat \(\Rightarrow\) ' \(f \times\) nat \(\Rightarrow\) bool \(\times\) bool \() \times\left({ }^{\prime} f \times\right.\) nat \(\Rightarrow\) bool \()\)
    \(\Rightarrow(' f \times\) nat \(\Rightarrow\) order-tag \() \Rightarrow(' f, ' v)\) term \(\Rightarrow(' f, ' v)\) term \(\Rightarrow\) bool \(\times\) bool where
    rpo-unbounded - \((\) Var \(x)(\) Var \(y)=(\) False, \(x=y)\)
| rpo-unbounded pr-(Var x) \((\) Fun \(g t s)=(\) False, \(t s=[] \wedge\) snd \(p r(g, 0))\)
| rpo-unbounded pr c (Fun f ss) (Var y) \(=\)
    (let con \(=\exists s \in\) set ss. snd (rpo-unbounded prcs(Var y)) in (con,con))
| rpo-unbounded pr c (Funfss) (Fung ts) \(=(\)
    if \(\exists s \in\) set ss. snd (rpo-unbounded pr cs (Fun \(g t s)\) )
```

```
then (True,True)
else (case (fst pr) (f,length ss) (g,length ts) of (prs,prns) \(\Rightarrow\)
    if prns \(\wedge(\forall t \in\) set \(t\). fst (rpo-unbounded pr \(c(F u n f\) ss) \(t))\)
    then if prs
        then (True,True)
        else if \(c(f, l e n g t h ~ s s)=c(g\), length \(t s)\)
            then if \(c(f\), length \(s s)=M u l\)
                then mul-ext (rpo-unbounded pr c) ss ts
                else lex-ext-unbounded (rpo-unbounded pr c) ss ts
            else (length \(s s \neq 0 \wedge\) length \(t s=0\), length \(t s=0\) )
    else (False,False)))
```

lemma rpo-to-rpo-unbounded:
assumes $\forall f i .(f, i) \in$ funas-term $s \cup$ funas-term $t \longrightarrow i \leq n$ (is ?bst)
shows rpo pr prl cnst $=$ rpo-unbounded $(p r, p r l) c s t($ is ?e st)
proof -
let ? $p=\lambda s t . ? b s t \longrightarrow$?e st
let ? $p r=(p r, p r l)$
\{
have ? p st
proof (induct rule: rpo.induct[of - pr prl c n])
case (3fss y)
show ?case
proof (intro impI)
assume ?b (Fun f ss) (Var y)
then have $\bigwedge s . s \in$ set $s s \Longrightarrow$?b $s(\operatorname{Var} y)$ by auto
with 3 show ?e (Fun f ss) (Var y) by simp
qed
next
case (4f ss gts) note $I H=$ this
show ?case
proof (intro impI)
assume ?b (Fun f ss) (Fun gts)
then have bs: $\bigwedge s . s \in$ set $s s \Longrightarrow$?bs $($ Fung $t s)$
and $b t: \bigwedge t . t \in$ set $t s \Longrightarrow ? b($ Fun f ss) t
and $s s$: length $s s \leq n$ and t : length $t s \leq n$ by auto
with $4(1)$ have $s: \bigwedge s . s \in$ set $s s \Longrightarrow$? e s (Fun $g t s)$ by simp
show ?e (Fun fss) (Fun gts)
proof (cases $\exists s \in$ set ss. snd (rpo pr prl c n s (Fun gts)))
case True with s show ?thesis by simp
next
case False note oFalse $=$ this
with s have oFalse2: $\neg(\exists s \in$ set ss. snd (rpo-unbounded ? pr c s (Fun g
$t s))$)
by simp
obtain prns prs where Hsns: pr (f,length ss) (g,length ts) $=($ prs, prns $)$
by force
with bt 4(2)[OF oFalse]
have $t: \bigwedge t . t \in$ set $t s \Longrightarrow$?e (Fun f ss) t by force

```
    show ?thesis
    proof (cases prns ^(\forallt\inset ts.fst (rpo pr prl c n (Funf ss) t)))
    case False
    show ?thesis
    proof (cases prns)
        case False then show ?thesis by (simp add: oFalse oFalse2 Hsns)
    next
        case True
            with False have Hf1: }\neg(\forallt\in\mathrm{ set ts. fst (rpo pr prl c n (Funf ss) t))
by simp
    with t have HfR: }\neg(\forallt\inset ts. fst (rpo-unbounded ?pr c (Fun f ss)t))
by auto
        show ?thesis by (simp add: oFalse oFalse2 Hf1 Hf2)
        qed
        next
        case True
        then have prns: prns and Hts: \forallt\inset ts.fst (rpo pr prl c n (Fun f ss)
t) by auto
    from Hts and t have Hts2: }\forallt\in\mathrm{ set ts. fst (rpo-unbounded ?pr c (Fun f
ss) t) by auto
    show ?thesis
    proof (cases prs)
    case True then show ?thesis by (simp add: oFalse oFalse2 Hsns prns
Hts Hts2)
    next
        case False note prs = this
        show ?thesis
        proof (cases c (f,length ss) =c(g,length ts )}
            case False then show ?thesis
                by (cases c (f,length ss), simp-all add: oFalse oFalse2 Hsns prns Hts
Hts2)
        next
        case True note cfg = this
        show ?thesis
        proof (cases c (f,length ss))
            case Mul note cf = this
            with cfg have cg: c (g,length ts) = Mul by simp
            {
                fix x y
                    assume x-in-ss: x\in set ss and y-in-ts: y fet ts
                    have rpo pr prl c n x y = rpo-unbounded?pr c x y
                    by (rule 4(4)[OF oFalse Hsns[symmetric] refl-prs - conjI[OF cf
cg] x-in-ss y-in-ts, rule-format],
                        insert prns Hts bs[OF x-in-ss] bt[OF y-in-ts] cf cg, auto)
        }
        with mul-ext-cong[of ss ss ts ts]
                        have mul-ext (rpo pr prl c n) ss ts = mul-ext (rpo-unbounded ?pr
c) ssts
                    by metis
```

```
            then show ?thesis
                    by (simp add: oFalse oFalse2 Hsns prns Hts Hts2 cf cg)
                next
                case Lex note cf = this
                then have ncf:c (f,length ss)}\not=Mul by simp
                        from cf cfg have cg:c (g,length ts) = Lex by simp
                {
            fix }
            assume iss: i< length ss and its: i< length ts
            from nth-mem-mset[OF iss] and in-multiset-in-set
            have in-ss: ss ! i\in set ss by force
            from nth-mem-mset[OF its] and in-multiset-in-set
                    have in-ts:ts!i\in set ts by force
                    from 4(3)[OF oFalse Hsns[symmetric] refl-prs conjI[OF cf cg]
iss its]
                    prns Hts bs[OF in-ss] bt[OF in-ts]
                    have rpo pr prl c n (ss!i) (ts!i)=rpo-unbounded ?pr c (ss!i)
(ts!i)
                    by simp
                    }
            with lex-ext-cong[of ss ss n n ts ts]
            have lex-ext (rpo pr prl c n) n ss ts
                    = lex-ext (rpo-unbounded ?pr c) n ss ts by metis
                    then have lex-ext (rpo pr prl c n) n ss ts = lex-ext-unbounded
(rpo-unbounded ?pr c) ss ts
                            by (simp add: lex-ext-to-lex-ext-unbounded[OF ss ts, of rpo-unbounded
?pr c])
                        then show ?thesis
                            by (simp add: oFalse oFalse2 Hsns prns prs Hts Hts2 cf cg)
                    qed
                    qed
                    qed
            qed
            qed
        qed
    qed auto
    }
    then show ?thesis using assms by simp
qed
end
```


6 A Memoized Implementation of RPO

We derive a memoized RPO implementation from the memoized WPO implementation

```
theory RPO-Mem-Impl
    imports
```

```
    RPO-Unbounded
    WPO-Mem-Impl
begin
definition rpo-mem :: ('f }\timesnat => 'f \times nat => bool > bool) > ('f > nat => bool)
    ('f }\times\mathrm{ nat }=>\mathrm{ order-tag) }=>\mathrm{ - where
    [code del]: rpo-mem pr c mem st =
    wpo-mem (fst pr) (snd pr) False ( }\lambda\mathrm{ -. False) ( }\lambda\mathrm{ - -. False) ( }\lambda\mathrm{ - -. True) full-status
c mem st
definition rpo-main :: ('f }\times\mathrm{ nat }=>\mathrm{ 'f }\times\mathrm{ nat }=>\mathrm{ bool }\times\mathrm{ bool ) }\times('f\timesnat = bool)
    ('f }\times\mathrm{ nat }=>\mathrm{ order-tag) }=>\mathrm{ - where
    [code del]: rpo-main pr c mem st =
    wpo-main (fst pr) (snd pr) False ( }\lambda\mathrm{ -. False) ( }\lambda\mathrm{ - -. False) ( }\lambda\mathrm{ - -. True) full-status
c mem st
lemma rpo-mem-code[code]: rpo-mem pr c mem (s,t)=
    (let
        i= index s;
        j= index t
        in
            (case Mapping.lookup mem (i,j) of
                Some res }=>\mathrm{ (res, mem)
            | None }=>\mathrm{ case rpo-main pr c mem (s,t)
        of (res, mem-new)}=>\mathrm{ (res, Mapping.update (i,j) res mem-new)))
    unfolding rpo-mem-def rpo-main-def wpo-mem.simps ..
lemma rpo-main-code[code]: rpo-main pr c mem (s,t)=(case s of
        Var x = ((False,
        (case t of
            Var y }=>\mathrm{ name-of }x=\mathrm{ name-of }
            |Fung ts =>ts=[]^ snd pr (name-of g,0))),mem)
        | Fun f ss }
            let ff = (name-of f, length ss) in
                (case exists-mem ( }\lambda\mp@subsup{s}{}{\prime}.(\mp@subsup{s}{}{\prime},t)) (rpo-mem pr c) snd mem ss of
                (sub-result, mem-out-1) =>
                    if sub-result then ((True, True), mem-out-1)
                    else
                    (case t of
                            Var - = ((False, False), mem-out-1)
                    |Fung ts }
                        let gg=(name-of g, length ts) in
                        (case fst pr ff gg of (prs, prns) =>
                        if prns then
                        (case forall-mem ( }\lambda\mp@subsup{t}{}{\prime}.(s,\mp@subsup{t}{}{\prime}))(rpo-mem pr c) fst mem-out-1 ts of
                        (sub-result, mem-out-2) =>
                        if sub-result then
                        if prs then ((True, True), mem-out-2)
                                else
```

```
    let cf = c ff;cg=c gg in
    if cf =Lex }\wedgecg=Lex then lex-ext-unbounded-mem (rpo-mem
pr c) mem-out-2 ss ts
                    else if cf = Mul ^cg= Mul then mul-ext-mem (rpo-mem pr
c) mem-out-2 ss ts
                else if ts = [] then ((ss \not= [], True), mem-out-2)
                else ((False, False), mem-out-2)
                    else ((False, False), mem-out-2)) else ((False,False), mem-out-1))
            )
        )
    )
    unfolding rpo-main-def rpo-mem-def wpo-main.simps Let-def if-False if-True
    unfolding rpo-main-def[symmetric] rpo-mem-def[symmetric]
    by (cases s; cases t, auto simp: map-nth split: prod.splits)
declare [[code drop: rpo-unbounded]]
lemma rpo-unbounded-memoized-code[code]: rpo-unbounded pr c st=fst(rpo-mem
pr c Mapping.empty (index-term s, index-term t))
    unfolding rpo-mem-def wpo-mem-impl-def[symmetric] wpo-ub-memoized-code[symmetric]
proof (induct pr c s t rule: rpo-unbounded.induct)
    case (1 pr c x y)
    then show ?case unfolding rpo-unbounded.simps wpo-ub.simps[of - . . . -
Var x Var y]
            by simp
next
    case (2 prcxgts)
    then show ?case unfolding rpo-unbounded.simps wpo-ub.simps[of - . . . - 
Var x Fun g ts] term.simps
            by auto
next
    case (3 prcfss y)
    then show ?case unfolding rpo-unbounded.simps wpo-ub.simps[of - . . . - -
Fun f ss Var y] term.simps
        Let-def by (auto simp: set-conv-nth)
next
    case (4 prcfss g ts)
    obtain prs prns where pr: fst pr (f, length ss) (g, length ts) = (prs,prns) by
force
    show ?case unfolding rpo-unbounded.simps wpo-ub.simps[of - - - - Fun f
ss Fun g ts] term.simps
            if-False Let-def if-True pr split
    proof (rule sym, intro if-cong[OF - refl if-cong[OF - if-cong[OF refl refl] refi]],
goal-cases)
            case 1
            show ?case using 4(1) by (auto simp: set-conv-nth)
    next
            case 2
            show ?case using 4(2)[unfolded pr, OF 2 refl] by (auto simp: set-conv-nth)
```

```
next
    case 3
    note IH = 4(3-)[unfolded pr, OF 3(1) refl 3(2-3)]
    let ?cf = c(f, length ss)
    let ? }cg=c(g\mathrm{ , length ts)
    consider (Lex) ?cf = Lex ?cg = Lex | (Mul) ?cf = Mul ?cg = Mul|(Diff)
?cf}\not=\mathrm{ ? cg
            by (cases ?cf; cases ?cg, auto)
    thus ?case
    proof cases
            case Lex
            hence ?cf = ?cg and ?cf }\not=M\mathrm{ Mul by auto
            note IH=IH(2)[OF this]
            from Lex have id: (?cf=Lex ^ ?cg=Lex)=True (?cf=?cg)=True (?cf
= Mul) = False by auto
            show ?thesis unfolding id if-True if-False using IH
                by (intro lex-ext-unbounded-cong, auto intro: nth-equalityI)
    next
            case Mul
            hence ?cf = ?cg and ?cf = Mul by auto
            note IH=IH(1)[OF this]
            from Mul have id: (?cf = Lex ^ ?cg=Lex ) = False (?cf = Mul ^?cg =
Mul) = True
                (?cf = ?cg) = True (?cf = Mul) = True by auto
            show ?thesis unfolding id(1-3) if-True if-False unfolding id(4) if-True
using}I
            by (intro mul-ext-cong[OF arg-cong[of - mset] arg-cong[of - mset]])
                (auto intro: nth-equalityI)
    qed auto
    qed
qed
end
```


References

[1] N. Dershowitz. Termination of rewriting. J. Symb. Comput., 3(1/2):69-116, 1987.
[2] C. Sternagel, R. Thiemann, and A. Yamada. A formalization of weighted path orders and recursive path orders. Archive of Formal Proofs, September 2021. https://isa-afp.org/entries/Weighted_Path_Order.html, Formal proof development.
[3] R. Thiemann, J. Schöpf, C. Sternagel, and A. Yamada. Certifying the weighted path order (invited talk). In Z. M. Ariola, editor, 5th International Conference on Formal Structures for Computation and Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Confer-
ence), volume 167 of LIPIcs, pages 4:1-4:20. Schloss Dagstuhl - LeibnizZentrum für Informatik, 2020.
[4] A. Yamada, K. Kusakari, and T. Sakabe. Unifying the Knuth-Bendix, recursive path and polynomial orders. In R. Peña and T. Schrijvers, editors, 15th International Symposium on Principles and Practice of Declarative Programming, PPDP '13, Madrid, Spain, September 16-18, 2013, pages 181-192. ACM, 2013.
[5] A. Yamada, K. Kusakari, and T. Sakabe. A unified ordering for termination proving. Sci. Comput. Program., 111:110-134, 2015.

[^0]: ${ }^{*}$ This research was supported by the Austrian Science Fund (FWF) project I 5943.

