Formalization of Dynamic Pushdown Networks in
[sabelle/HOL

Peter Lammich

January 26, 2026

Abstract

We present a formalization of Dynamic Pushdown Networks (DPN5)
and the automata based algorithm for computing backward reacha-
bility sets using Isabelle/HOL. Dynamic pushdown networks are an
abstract model for multithreaded, interprocedural programs with dy-
namic thread creation that was presented by Bouajjani, Miiller-Olm
and Touili in 2005.

We formalize the notion of a DPN in Isabelle and describe the algo-
rithm for computing the pre*-set from a regular set of configurations,
and prove its correctness. We first give a nondeterministic description
of the algorithm, from that we then infer a deterministic one, from
which we can generate executable code using Isabelle’s code-generation
tool.

Contents

1 String rewrite systems
1.1 Definitions
1.2 Induced Labelled Transition System
1.3 Properties of the induced LTS

2 Finite state machines

2.1 Definitionso
2.2 Basicproperties.o Lo oo
2.3 Constructing FSMs L.
2.4 Reflexive, transitive closure of transition relation

2.4.1 Relation of trclAD and trel
2.5 Languageofa FSM.
2.6 Example: Product automaton

w W w W

SO O UL R

Nondeterministic recursive algorithms 7

3.1 Basicproperties. oo 7
3.2 Refinement 8
3.3 Extension to reflexive states 9
3.4 Well-foundedness, 10
3.4.1 The relations > and D on finite domains 10
3.5 Implementationo 11
3.5.1 Graphs of functions 11
3.5.2 Deterministic refinement w.r.t. the identity abstraction 12
3.5.3 Recursive characterization 12
Dynamic pushdown networks 12
4.1 Dynamic pushdown networks 13
4.1.1 Definition oo 13
4.1.2 Basic properties 13
4.1.3 Building DPNs 14
4.2 M-automata 15
4.2.1 Definitiono 15
4.2.2 Basic properties Lo oL 16
4.2.3 Some implications of the M-automata conditions . . . 17
4.3 pre*-sets of regular sets of configurations 18
4.4 Nondeterministic algorithm for pre* 19
4.4.1 Termination 20
4.4.2 Soundness 21
4.4.3 Precision e 22

Non-executable implementation of the DPN pre*-algorithm 24

5.1 Definitions. 24
5.2 Refining ps-Ro 25
5.3 Termination 26
5.4 Recursive characterization 26
5.5 Correctness e 26
Tools for executable specifications 27
6.1 Searching in Lists 27
Executable algorithms for finite state machines 27
7.1 Word lookup operation 28
7.2 Reachable states and alphabet inferred from transition relation 29
Implementation of DPN pre*-algorithm 29
8.1 Representation of DPN and M-automata 29
8.2 Next-element selection 30
8.3 Termination Lo 31

8.3.1 Saturation upper bound 31

8.3.2 Well-foundedness of recursion relation 32
8.3.3 Definition of recursive function 32
8.4 Correctness e 33
84.1 seln_Rrefinesps. R 33
8.4.2 Computing transitionsonly 34
8.4.3 Correctness 34

1 String rewrite systems

theory SRS
imports DPN-Setup
begin

This formalizes systems of labelled string rewrite rules and the labelled tran-
sition systems induced by them. DPNs are special string rewrite systems.

1.1 Definitions

type-synonym (’c,’l) rewrite-rule = 'c list x 'l x 'c list
type-synonym (’c,’l) SRS = ('¢,’l) rewrite-rule set

syntax
syn-rew-rule :: 'c list = 'l = 'c list = ('¢,’l) rewrite-rule (- —. - [51,51,51] 51)

translations
s g 8" => (s,a,8")

A (labelled) rewrite rule (s, a, s’) consists of the left side s, the label a and
the right side s’. Intuitively, it means that a substring s can be rewritten to
s’ by an a-step. A string rewrite system is a set of labelled rewrite rules

1.2 Induced Labelled Transition System
A string rewrite systems induces a labelled transition system on strings by
rewriting substrings according to the rules

inductive-set tr :: (‘c,’l) SRS = (‘c list, ') LTS for S
where
rewrite: (s <q ') € § = (epQ@sQes,a,ep@s'Qes) € tr S

1.3 Properties of the induced LTS

Adding characters at the start or end of a state does not influence the
capability of making a transition

lemma srs-ext-s: (s,a,8")€tr S = (wpQsQus,a,wpQs’Quws)etr S (proof)

lemma srs-ext-both: (s,w,s")etrel (tr) = (wpQsQuws,w,wpQs@Quws)etrel (tr S)
{proof)

corollary srs-ext-cons: (s,w,s’)€trcl (tr S) = (e#s,w,e#s")etrcl (tr S) (proof)
corollary srs-ext-pre: (s,w,s")€trel (tr §) = (wpQs,w,wpQ@s’)trel (tr S) (proof)
corollary srs-ext-post: (s,w,s’)€trel (tr S) = (sQuws,w,s’Qus)etrel (tr S) {proof)

lemmas srs-ext = srs-ext-both srs-ext-pre srs-ext-post

end

2 Finite state machines

theory FSM
imports DPN-Setup
begin

This theory models nondeterministic finite state machines with explicit set
of states and alphabet. e-transitions are not supported.

2.1 Definitions

record (’s,’a) FSM-rec =
Q :: 's set — The set of states
Y :: 'a set — The alphabet
0 :: ('s, 'a) LTS — The transition relation
s0 :: 's — The initial state
F :: 's set — The set of final states

locale FSM =

fixes A

assumes delta-cons: (¢,l,q)€d A= qeQ A NI€EX A A q¢'€Q A — The transition
relation is consistent with the set of states and the alphabet

assumes s0-cons: s0 A € () A — The initial state is a state

assumes F-cons: F A C () A — The final states are states

assumes finite-states: finite () A) — The set of states is finite

assumes finite-alphabet: finite (X A) — The alphabet is finite

2.2 Basic properties
lemma (in FSM) finite-delta-dom: finite (Q A x ¥ A x Q A) (proof)

lemma (in FSM) finite-delta: finite (6 A) (proof)

2.3 Constructing FSMs

definition fsm-empty so = (| Q={so}, ={}, d={}, s0=s9, F={})
definition fsm-add-F s fsm = fsm(Q:=insert s (Q fsm), F:=insert s (F fsm) |

definition fsm-add-tr q a ¢’ fsm = fsm(Q:={q¢,q¢'} U (Q fsm), X:=insert a (X
fsm), § := insert (q,a,q") (6 fsm) |

lemma fsm-empty-invar|simpl: FSM (fsm-empty s)
(proof)

lemma fsm-add-F-invar[simp]: assumes FSM fsm shows FSM (fsm-add-F s fsm)

(proof)

lemma fsm-add-tr-invar[simp|: assumes FSM fsm shows FSM (fsm-add-tr q a
q' fsm)
(proof)

2.4 Reflexive, transitive closure of transition relation

Reflexive transitive closure on restricted domain

inductive-set trclAD :: ('s,’a,’c) FSM-rec-scheme = (’s,’a) LTS = ('s,’a list)
LTS
for A D
where

empty[simp]: s€@Q A = (s,[],s)€trclAD A D |

cons[simpl: [(s,e,s")€D; s€Q A; eeX A; (s’ w,s"\e€trclAD A D] = (s,e#tw,s”’)€trclAD
AD

abbreviation trclA A == trclAD A (§ A)

lemma trclA D-empty-cons[simp|: (¢,[],¢’)€trclAD A D = c¢=c’ (proof)

lemma trclAD-single: (¢,al,c¢’) € trelAD A D = (¢,a,¢) € D (proof)

lemma trclAD-elems: (c,w,c’)€trclAD A D = ceQ A N welists (X A) A ¢’€Q
A (proof)

lemma trclAD-one-elem: [c€Q A; e€X A; '€ Q A; (¢,e,c’)eD] = (¢,[e],¢')etrclAD
A D (proof)

lemma trelA D-uncons: (c,a#tw,c")etrcldAD A D = Jch . (¢,a,ch)€D A (ch,w,c’)
€ trclAD ADANceQQ AN acl A

{proof)

lemma trelAD-concat: ! ¢ . [(c,wl,c’)etrclAD A D; (¢’ ,w2,c¢")etrclAD A D | =
(c,wlQuw2,c’")etrclAD A D

(proof)

lemma trclA D-unconcat: ! ¢ . (c,wlQuw2,c")€trclAD A D = 3 ch . (¢,wl,ch)€trclAD
A D A (chyw2,c’)etrclAD A D (proof)

lemma trclAD-eq: [Q A= QA ¥ A=% A'] = trcddlAD A D = trclAD A’ D
(proof)

lemma trclAD-mono: DCD' = trclAD A D C trclAD A D’
(proof)

lemma trclAD-mono-adv: [DCD; Q A= QA X A=3 A] = trclAD A D C
trclAD A" D' {proof)

2.4.1 Relation of trclAD and trcl

lemma trclAD-by-trell: trelAD A D C (trel (DN (QAXx T AXx QA))N(QA
x lists (X A) x Q A))
{proof)

lemma trelAD-by-trel2: (tred (DN (Q A x X Ax QA)N(QA X lists (X A) x
Q A)) C trclAD A D (proof)

lemma ¢relAD-by-trel: trelAD A D = (trel (DN (QA XX Ax QA))N(QA X
lists (X A) x Q A))
{proof)

lemma trclAD-by-trel”: trelAD A D = (trel (DN (QA XX Ax QA)N(QA
x UNIV x UNIV))

{proof)

lemma trelAD-by-trel’”: [DCQA XL A X QA] = trclAD A D =trel DN (Q
A x UNIV x UNIV)

{proof)

lemma trclAD-subset-trel: trclAD A D C trel (D) (proof)

2.5 Language of a FSM
definition langs A s == { w. (3 fe(F A) . (s,w,f) € trclA A) }
definition lang A == langs A (s0 A)

lemma langs-alt-def: (w€langs A s) == (3f . feF A & (s,w,f) € trclA A) {proof)

2.6 Example: Product automaton

definition prod-fsm A1 A2 == (| Q=Q Al x @Q A2, X=X A1 NX A2 § = {
((s,t),a,(s",t") . (s,a,8)€8 A1 A (t,a,t")€F A2 }, s0=(s0 A1,50 A2), F = {(s,t) .
SEF A1 N teF A2})

lemma prod-inter-1: 1! s s’ f f' . ((s,8"),w,(f,f") € trclA (prod-fsm A A') =
(s,w,f) € trclA A A (s",w,f') € trclA A’ (proof)

lemma prod-inter-2: ! s s’ f f' . (s,w,f) € trclA A A (s’ w,f') € trcld A =
((s,8"),w,(f.f") € trelA (prod-fsm A A') (proof)

lemma prod-F: (a,b)€F (prod-fsm A B) = (aeF A N beF B) (proof)

lemma prod-FI: JacF A; beF B] = (a,b)€F (prod-fsm A B) (proof)

lemma prod-fsm-langs: langs (prod-fsm A B) (s,t) = langs A s N langs B t
(proof)

lemma prod-FSM-intro: FSM A1 = FSM A2 = FSM (prod-fsm A1 A2) {proof)

end

3 Nondeterministic recursive algorithms

theory NDET
imports Main
begin

This theory models nondeterministic, recursive algorithms by means of a
step relation.

An algorithm is modelled as follows:

1. Start with some state s
2. If there is no s’ with (s,s")€R, terminate with state s

3. Else set s := s’ and continue with step 2

Thus, R is the step relation, relating the previous with the next state. If the
state is not in the domain of R, the algorithm terminates.

The relation A-rel R describes the non-reflexive part of the algorithm, that is
all possible mappings for non-terminating initial states. We will first explore
properties of this non-reflexive part, and then transfer them to the whole
algorithm, that also specifies how terminating initial states are treated.

inductive-set A-rel :: ('sx’s) set = ('sx’s) set for R
where
A-rel-base: [(s,s)€R; s'¢ Domain R] = (s,s")€A-rel R |
A-rel-step: [(s,sh)€R; (sh,s")€A-rel R] = (s,s")€A-rel R

3.1 Basic properties

The algorithm just terminates at terminating states
lemma termstate: (s,s")€A-rel R = s'¢ Domain R (proof)
lemma dom-subset: Domain (A-rel R) C Domain R (proof)

We can use invariants to reason over properties of the algorithm

definition is-inv R s0 P == P sO A (Vs s'. (s,s)eR AN P s — Ps’)

lemma inv: [(s0,sf)€A-rel R; is-inv R sO P] = P sf (proof)

lemma invl: [P s0; !! s s’ [(s,s)€éR; P s] = P s'| = is-inv R sO P (proof)

lemma inv2: [(s0,sf)€A-rel R; P s0; ! s s'. [(s,8")€ER; P s] = P s']| = P sf
(proof)

To establish new invariants, we can use already existing invariants
lemma inv-usel: [P s0; ! s s’. [(s,s")€R; P s; P’ is-inv R s0 P’ — P's]| =
Ps']| = is-inv R sO (As. P s N (VP is-inv R s0 P — P's))

{proof)

If the inverse step relation is well-founded, the algorithm will terminate for
every state in Domain R (C-direction). The D-direction is from dom-subset

lemma wf-dom-eq: wf (R™') = Domain R = Domain (A-rel R) (proof)

3.2 Refinement

Refinement is a simulation property between step relations.

We define refinement w.r.t. an abstraction relation «, that relates abstract
to concrete states. The refining step-relation is called more concrete than
the refined one.
definition refines :: (“sx’s) set = ('r+'s) set = ('rx'r) set = bool (-<.-[50,50,50]
50) where

R<qg S==a ORCS0aAa“Domain S C Domain R

lemma refinesI: [O R C S O a; @ ““ Domain S C Domain R] = R<yS (proof)
lemma refinesk: R<qS = a ORC SO «
R<aS = « ““ Domain S C Domain R

{proof)

Intuitively, the first condition for refinement means, that for each concrete
step (¢,c’)€S where the start state ¢ has an abstract counterpart (a,c)€a,
there is also an abstract counterpart of the end state (a’,¢’)€a and the step
can also be done on the abstract counterparts (a,a’)€R.

lemma refines-compl:
assumes A: !l a ¢ ¢’. [(a,¢)€q; (¢,c)eS | = Fa’ (a,a’)eR A (a',c)e
shows a O S C R O « (proof)

lemma refines-compE: [a O S C R O «; (a,c)€q; (¢,c)eS] = Fa’. (a,a")ER A
(a’,c)ea (proof)

Intuitively, the second condition for refinement means, that if there is an
abstract step (a,a’)€R, where the start state has a concrete counterpart c,
then there must also be a concrete step from c¢. Note that this concrete
step is not required to lead to the concrete counterpart of a’. In fact, it is

only important that there is such a concrete step, ensuring that the con-
crete algorithm will not terminate on states on that the abstract algorithm
continues execution.

lemma refines-domlI:
assumes A: !l a o’ ¢. [(a,¢)€q; (a,a")€R | = c€Domain S
shows a ““ Domain R C Domain S {proof)

lemma refines-domE: [a * Domain R C Domain S; (a,c)€q; (a,a")€R] =
ceDomain S (proof)

lemma refinesl2:
assumes A: !l a ¢ ¢’. [(a,¢)€q; (¢,c)eS | = Fa’ (a,a’)eR A (a’,c)e
assumes B: !l a a’ c. [(a,¢)€a; (a,a")€ER | = c€Domain S
shows S<qR (proof)

lemma refinesFE2:
[S<aR; (a,c)€a; (¢,c)eS] = TFa’. (a,a")eR A (a’,c))ea
[S<aR; (a,c)€a; (a,a")R] = c€Domain S
(proof)

Reflexivity of identity refinement

lemma refines-id-refl[intro!, simp|: R<p;R (proof)

Transitivity of refinement

lemma refines-trans: assumes R: R <o S S <3 T shows Rgﬁ oal

(proof)

Property transfer lemma

lemma refines-A-rel[rule-format]:
assumes R: R<,S and A: (r,r')€A-rel R (s,r)€x
shows (3s'. (s';r))ea A (s,8)€A-rel S)
{proof)

Property transfer lemma for single-valued abstractions (i.e. abstraction
functions)

lemma refines-A-rel-sv: [R<qS; (r,r")€ A-rel R; single-valued (a™1); (s,r)€q; (s',r))€q]
= (s,s")€A-rel S (proof)

3.3 Extension to reflexive states

Up to now we only defined how to relate initial states to terminating states
if the algorithm makes at least one step. In this section, we also add the
reflexive part: Initial states for that no steps can be made are mapped to
themselves.

definition
ndet-algo R == (A-rel R) U {(s,s) | s. s¢ Domain R}

lemma ndet-algo-A-rel: [x€Domain R; (z,y)€ndet-algo R] — (x,y)€A-rel R
(proof)

lemma ndet-algoE: [(s,s’)€ndet-algo R; [(s,s)€A-rel R] = P; [s=s'; s¢ Domain
R] = P] = P (proof)
lemma ndet-algoE": [(s,s")€ndet-algo R; [(s,s")€ A-rel R; s€ Domain R; s'¢ Domain
R] = P; [s=s'; s¢ Domain R] = P] = P

(proof)
ndet-algo is total (i.e. the algorithm is defined for every initial state), if R~}
is well founded
lemma ndet-algo-total: wf (R™') = Domain (ndet-algo R) = UNIV

(proof)
The result of the algorithm is always a terminating state

lemma termstate-ndet-algo: (s,s")endet-algo R = s'¢ Domain R (proof)

Property transfer lemma for ndet-algo

lemma refines-ndet-algo[rule-format]:
assumes R: S<,R and A: (¢,c’)endet-algo S
shows Va. (a,c)ea — (a’. (a',c")ea A (a,a")Endet-algo R)

(proof)

Property transfer lemma for single-valued abstractions (i.e. Abstraction
functions)

lemma refines-ndet-algo-sv: [S<q R; (c,c’)E€ndet-algo S; single-valued (a™1); (a,c)€q;
(a',¢")ea] = (a,a’)endet-algo R (proof)

3.4 Well-foundedness
lemma wf-imp-minimal: [wf S; 2€Q] = F2€Q. (Vz. (2,2)€S — 2¢ Q) (proof)
This lemma allows to show well-foundedness of a refining relation by pro-

viding a well-founded refined relation for each element in the domain of the
refining relation.

lemma refines-wf:
assumes A: llr. [reDomain R = (s r,r)€ar A R<q r S A wf ((S7)71)
shows wf (R71)

(proof)

3.4.1 The relations > and D on finite domains

definition greaterN N == {(i,j) . j<i & i<(N:unat)}
definition greaterS S == {(a,b) . bCa & aC(S::'a set)}

> on initial segment of nat is well founded

lemma wf-greaterN: wf (greaterN N)

10

{proof)

Strict version of card-mono

lemma card-mono-strict: [finite B; ACB] = card A < card B (proof)
D on finite sets is well founded

This is shown here by embedding the D relation into the > relation, using
cardinality

lemma wf-greaterS: finite S = wf (greaterS S) {(proof)

This lemma shows well-foundedness of saturation algorithms, where in each
step some set is increased, and this set remains below some finite upper
bound

lemma sat-wf:
assumes subset: lr r’. (r;rYéeR = arCar’'Aar’' CU
assumes finite: finite U
shows wf (R™1)

(proof)

3.5 Implementation

The first step to implement a nondeterministic algorithm specified by a rela-
tion R is to provide a deterministic refinement w.r.t. the identity abstraction
Id. We can describe such a deterministic refinement as the graph of a partial
function sel. We call this function a selector function, because it selects the
next state from the possible states specified by R.

In order to get a working implementation, we must prove termination. That
is, we have to show that (graph sel)~! is well-founded. If we already know
that R~! is well-founded, this property transfers to (graph sel)~.

Once obtained well-foundedness, we can use the selector function to imple-
ment the following recursive function:

algo s = case sel s of None = s | Some s’ = algo s’

And we can show, that algo is consistent with ndet-algo R, that is (s,algo
s)endet-algo R.

3.5.1 Graphs of functions

The graph of a (partial) function is the relation of arguments and function
values

definition graph f == {(z,2') . f x = Some z'}
lemma graphl[intro]: f x = Some x' = (x,x’)€graph f (proof)
lemma graphDldest]: (z,z")Egraph f = fx = Some x’ (proof)

lemma graph-dom-iff1: (z¢ Domain (graph f)) = (f x = None) (proof)
lemma graph-dom-iff2: (z€Domain (graph f)) = (f x # None) (proof)

11

3.5.2 Deterministic refinement w.r.t. the identity abstraction
lemma detRef-eq: (graph sel <5 R) = ((Vs s". sel s = Some s’ — (s,s")€R) A
(Vs. sel s = None — s¢ Domain R))

(proof)

lemma detRef-wf-transfer: [wf (R™1); graph sel <;4 R] = wf ((graph sel)™!)
(proof)

3.5.3 Recursive characterization

locale detRef-impl =

fixes algo and sel and R

assumes detRef: graph sel <p; R

assumes algo-rec[simp]: !l s s'. sel s = Some s’ = algo s = algo s’ and
algo-term[simp]: I s. sel s = None = algo s = s

assumes wf: wf ((graph sel)™')

lemma (in detRef-impl) sel-cons:
sel s = Some s’ = (s,s")€R
sel s = None = s¢ Domain R
s€Domain R = 3. sel s = Some s’
s¢ Domain R = sel s = None

{proof)

lemma (in detRef-impl) algo-correct: (s,algo s)Endet-algo R (proof)

end

4 Dynamic pushdown networks

theory DPN
imports DPN-Setup SRS FSM NDET
begin

Dynamic pushdown networks (DPNs) are a model for parallel, context free
processes where processes can create new processes.

They have been introduced in [1]. In this theory we formalize DPNs and
the automata based algorithm for calculating a representation of the (reg-
ular) set of backward reachable configurations, starting at a regular set of
configurations.

We describe the algorithm nondeterministically, and prove its termination
and correctness.

12

4.1 Dynamic pushdown networks

4.1.1 Definition

record (’c,’l) DPN-rec =
csyms :: 'c set
ssyms :: 'c set
sep e
labels :: 'l set
rules :: ("¢,’l) SRS

A dynamic pushdown network consists of a finite set of control symbols, a
finite set of stack symbols, a separator symbol!, a finite set of labels and a
finite set of labelled string rewrite rules.

The set of control and stack symbols are disjoint, and both do not contain
the separator. A string rewrite rule is either of the form [p,y] <, pI#wI or
[p,Y] —a pIHWIQEHp2# w2 where p,p1,p2 are control symbols, w1,w2 are
sequences of stack symbols, a is a label and { is the separator.

locale DPN =

fixes M

fixes separator ()

defines sep-def: § == sep M

assumes sym-finite: finite (csyms M) finite (ssyms M)

assumes sym-disjoint: csyms M N ssyms M = {} § ¢ csyms M U ssyms M

assumes lab-finite: finite (labels M)

assumes rules-finite: finite (rules M)

assumes rule-fmt: r € rules M —>

(3p v ap’ w. pcsyms M N yEssyms M A p'Ecsyms M A welists (ssyms M)

A a€labels M N r=p#[y] —q p'#w)

V (3p vy apl wlp2w2 pEcsyms M A yEssyms M A pl€csyms M N wi€lists
(ssyms M) N p2€csyms M A w2€lists (ssyms M) A a€labels M N r=p#[y] —q
pl#wiQ# p24fw2)

lemma (in DPN) sep-fold: sep M == 4 (proof)

lemma (in DPN) sym-disjoint’: sep M ¢ csyms M U ssyms M (proof)

4.1.2 Basic properties

lemma (in DPN) syms-part: x€csyms M = x¢ ssyms M x€ssyms M = x¢ csyms
M (proof)

lemma (in DPN) syms-sep: ¢ csyms M ¢ ssyms M {proof)

lemma (in DPN) syms-sep”: sep M¢csyms M sep M¢ssyms M (proof)

lemma (in DPN) rule-cases[consumes 1, case-names no-spawn spawn):
assumes A: rerules M

n the final version of [1], no separator symbols are used. We use them here because
we think it simplifies formalization of the proofs.

13

assumes NOSPAWN: Il p v a p’ w. [pEcsyms M; yEssyms M; p'€csyms M;
welists (ssyms M); a€labels M; r=p#[y] —q p'#uw] = P

assumes SPAWN: !l p v a pI wl p2 w2. [pEcsyms M; vEssyms M; pl€csyms
M; wi€lists (ssyms M); p2€csyms M; w2€lists (ssyms M); a€labels M; r=p#[y]
g plHWIAQH#p2# w2 — P

shows P

(proof)

lemma (in DPN) rule-cases'”:
[rerules M;
Wp vy ap w [pccsyms M; yEssyms M; p'€csyms M; welists (ssyms M);
a€labels M; r=p#[vy] —q p'#w] = P;

'p~vapl wlp2wl. [pEcsyms M; yEssyms M; pl€csyms M; wi€lists (ssyms
M); p2€csyms M; w2€lists (ssyms M); a€labels M; r=p#[y] —q pl#wIQ(sep
M)#p2#w2] = PJ

= P (proof)

lemma (in DPN) rule-prem-fmt: rérules M => 3 p~y a ¢’. pEcsyms M N yEssyms
M A a€labels M A set ¢’ C csyms M U ssyms M U {8} A r=(p#[] —a ¢

{proof)

lemma (in DPN) rule-prem-fmt": r€rules M = 3 p v a ¢’ p€csyms M A
vyEssyms M N a€labels M A set ¢’ C csyms M U ssyms M U {sep M} N r=(p#[v]
—q c¢’) (proof)

lemma (in DPN) rule-prem-fmt2: [p,y]—q ¢’ € rules M — pEcsyms M A
~vEssyms M A a€labels M N set ¢’ C csyms M U ssyms M U {#} (proof)

lemma (in DPN) rule-prem-fmt2” [p,y]—a ¢’ € rules M = pEcsyms M A
~v€ssyms M A a€labels M N set ¢’ C csyms M U ssyms M U {sep M} (proof)

lemma (in DPN) rule-fmt-fs: [p,y]|—q p'#c’ € rules M = pEcsyms M A yEssyms
M A a€labels M A p'€csyms M A set ¢’ C csyms M U ssyms M U {}

{proof)

4.1.3 Building DPNs

Sanity check: we can create valid DPNs by adding rules to an empty DPN

definition dpn-empty C S s = ||
csyms = C,

ssyms = S,

sep = s,

labels = {},

rules = {}
)

definition dpn-add-local-rule p v a p1 wi D = D(labels := insert a (labels D),
rules := insert ([p,y],a,p1#w1) (rules D) |

definition dpn-add-spawn-rule p v a py wy pa we D = D(labels := insert a (labels
D), rules := insert ([p,y],a,p1F#w1Qsep D#pattws) (rules D) |

14

lemma dpn-empty-invar(simp|: [finite C; finite S; CNS={}; s¢ CUS] = DPN
(dpn-empty C S s)
(proof)

lemma dpn-add-local-rule-invar[simpl:
assumes A: {p,p1} C csyms D insert v (set wy) C ssyms D and DPN D
shows DPN (dpn-add-local-rule p v a p1 w1 D)

(proof)

lemma dpn-add-spawn-rule-invar|simp):

assumes A: {p,p1,p2} C csyms D insert v (set w; U set we) C ssyms D and
DPN D

shows DPN (dpn-add-spawn-rule p v a p1 w1 p2 wa D)
{proof)

4.2 M-automata

We are interested in calculating the predecessor sets of regular sets of config-
urations. For this purpose, the regular sets of configurations are represented
as finite state machines, that conform to certain constraints, depending on
the underlying DPN. These FSMs are called M-automata.

4.2.1 Definition

record (’s,’c) MFSM-rec = ('s,’c) FSM-rec +
sstates :: 's set
cstates :: 's set
spils='c='s

M-automata are FSMs whose states are partioned into control and stack
states. For each control state s and control symbol p, there is a unique
and distinguished stack state sp A s p, and a transition (s,p,sp A s p)€J.
The initial state is a control state, and the final states are all stack states.
Moreover, the transitions are restricted: The only incoming transitions of
control states are separator transitions from stack states. The only outgoing
transitions are the (s,p,sp A s p)€J transitions mentioned above. The sp A
s p-states have no other incoming transitions.

locale MFSM = DPN M + FSM A
for M A +

assumes alpha-cons: ¥ A = csyms M U ssyms M U {#}

assumes states-part: sstates A N cstates A = {} Q A = sstates A U cstates A

assumes uniqueSp: [s€cstates A; pEcsyms M| = sp A s p € sstates A [pEcsyms
M; p'€csyms M; s€cstates A; s'€cstates A; sp A s p =sp A s’ p'] = s=s' A
p=p’

15

assumes delta-fmt: 6 A C (sstates A x ssyms M x (sstates A — {sp A sp|sp
. s€cstates A N\ pEcsyms M})) U (sstates A x {#} x cstates A) U {(s,p,sp A s p)
| s p. s€cstates A N\ pEcsyms M}

5 AD{(s,p,sp A sp)|sp. s€cstates A N pcsyms M}

assumes s0-fmt: s0 A € cstates A

assumes F-fmt: F ACsstates A — This deviates slightly from [1], as we cannot
represent the empty configuration here. However, this restriction is harmless, since
the only predecessor of the empty configuration is the empty configuration itself.

constrains M::(’c,’l,’el) DPN-rec-scheme

constrains A:(’s,’c,’e2) MFSM-rec-scheme

lemma (in MFSM) alpha-cons” ¥ A = csyms M U ssyms M U {sep M} (proof)
lemma (in MFSM) delta-fmt". 6 A C (sstates A x ssyms M x (sstates A — {sp
Asp|sp. s€estates A N pcesyms M})) U (sstates A x {sep M} x cstates A)
U {(s,p,sp A s p)| sp.s€cstates A N pEcsyms M}

6 AD{(s,p,sp A sp)| sp. s€cstates A N pEcsyms M} (proof)

4.2.2 Basic properties

lemma (in MFSM) finite-cs-states: finite (sstates A) finite (cstates A)
(proof)

lemma (in MFSM) sep-out-syms: x€csyms M —> x # § z€ssyms M — z # 4§
(proof)

lemma (in MFSM) sepl: [z€X A;xé¢csyms M; z¢ssyms M| = z=4 (proof)
lemma (in MFSM) sep-out-syms” z€csyms M = x # sep M z€ssyms M = x
£ sep M {proof)

lemma (in MFSM) sepl”: [z€X A;x¢ csyms M; x¢ssyms M| = z=sep M (proof)

lemma (in MFSM) states-partll: z€sstates A = —x€cstates A (proof)

lemma (in MFSM) states-partI2: z€cstates A = —x€sstates A (proof)

lemma (in MFSM) states-part-elim[elim]: [¢€Q A; gEsstates A = P; g€ cstates
A = P] = P (proof)

lemmas (in MFSM) mfsm-cons = sep-out-syms sepl sep-out-syms’ sepl’ states-partll
states-partI2 syms-part syms-sep uniqueSp

lemmas (in MFSM) mfsm-cons’ = sep-out-syms sepl sep-out-syms’ sepl’ states-partl1
states-partI2 syms-part uniqueSp

lemma (in MFSM) delta-cases: [(¢,p,q")€6 A; qEsstates A N pEssyms M A
q'esstates A N q¢'¢{sp A sp| sp.sEcstates A N pEcsyms M} = P;
gEsstates A N p=f N\ q'€cstates A = P;
gEcstates A N\ pecsyms M N q'=sp A q p =
Pl= P
(proof)

16

lemma (in MFSM) delta-elems: (q,p,q")€6 A = qEsstates A N ((pEssyms M
A q'Esstates A N (¢'¢{sp A s p| sp . s€cstates A N pEcsyms M})) V (p=§ A
q’Ecstates A)) V (qEcstates A N\ pEcsyms M N q¢'=sp A q p)

(proof)

lemma (in MFSM) delta-cases”: [(q,p,q")€6 A; qE€sstates A N pEssyms M A
g'esstates A N q'¢{sp A sp| sp.sEcstates A N pEcsyms M} = P;
gEsstates A N p=sep M A q'€cstates A = P;
gEcstates A N\ pecsyms M N q'=sp A q p =
Pl= P
(proof)
lemma (in MFSM) delta-elems”: (q,p,q")€6 A = q€sstates A N ((p€ssyms M A

q’esstates A A (q¢'¢{sp A sp | sp . sE€cstates A N pEcsyms M})) V (p=sep M A
q’€cstates A)) V (qEcstates A N\ pEcsyms M N ¢'=sp A q p)

(proof)

4.2.3 Some implications of the M-automata conditions
This list of properties is taken almost literally from [1].

Each control state s has sp A s p as its unique p-successor

lemma (in MFSM) cstate-succ-ex: [pEcsyms M; s€cstates A] = (s,p,sp A s p)
c€d A

{proof)

lemma (in MFSM) cstate-succ-ex”: [pEcsyms M; s€cstates A; 6 A C D] =
(s,p,sp A s p) € D (proof)

lemma (in MFSM) cstate-succ-unique: [s€cstates A; (s,p,x)€6 A] = pEcsyms
M N z=sp A s p (proof)

Transitions labeled with control symbols only leave from control states
lemma (in MFSM) csym-from-cstate: [(s,p,s")€0 A; pecsyms M| = s€cstates
A (proof)

s is the only predecessor of sp A s p

lemma (in MFSM) sp-pred-ex: [sE€cstates A; pEcsyms M| = (s,p,sp A s p)€S

A {proof)
lemma (in MFSM) sp-pred-unique: [s€cstates A; pEcsyms M; (s',p',sp A s p)€S
A] = s'=s A p’=p A s'Ecstates A N p'€csyms M (proof)

Only separators lead from stack states to control states

lemma (in MFSM) sep-in-between: [s€sstates A; s'Ecstates A; (s,p,s")€d A] =

p=t (proof)
lemma (in MFSM) sep-to-cstate: [(sf,s) €6 A] = s€sstates A N s'€cstates A

(proof)

Stack states do not have successors labelled with control symbols

17

lemma (in MFSM) sstate-succ: [s€sstates A; (s,y,s)€d A] = v ¢ csyms M

(proof)
lemma (in MFSM) sstate-succ2: [s€sstates A; (s,y,8")€0 A; v£8] = yEssyms

M A s'esstates A (proof)

M-automata do not accept the empty word

lemma (in MFSM) not-empty[iff]: [|¢lang A
{proof)

The paths through an M-automata have a very special form: Paths starting
at a stack state are either labelled entirely with stack symbols, or have a
prefix labelled with stack symbols followed by a separator

lemma (in MFSM) path-from-sstate: s . [s€sstates A; (s,w,f)€trclA A] =
(fesstates A N welists (ssyms M)) V (3wl w2 t. w=wlQf#Fw2 N\ wi€lists (ssyms
M) A tesstates A A (s,wlt)etrclA A A (tH#Hw2,f)etrclA A)

{(proof)

Using MFEFSM .path-from-sstate, we can describe the format of paths from
control states, too. A path from a control state s to some final state starts
with a transition (s, p, sp A s p) for some control symbol p. It then continues
with a sequence of transitions labelled by stack symbols. It then either ends
or continues with a separator transition, bringing it to a control state again,
and some further transitions from there on.

lemma (in MFSM) path-from-cstate:

assumes A: s€cstates A (s,c,f)€trclA A fesstates A

assumes SINGLE: !l p w . [e=p#w; pEcsyms M; welists (ssyms M); (s,p,sp A
sp)ed A; (sp A s pw,f)€trclA A] = P

assumes CONC: ! pw ert s’ . [e=p#wQitcr; pecsyms M; welists (ssyms M);
t€sstates A; s'€cstates A; (s,p,sp A s p)€S A; (sp A s p,w,t)EtrclA A; (t,8,5")€6
A; (s’ er,f)etrclA A] = P

shows P

(proof)

4.3 pre*-sets of regular sets of configurations

Given a regular set L of configurations and a set A of string rewrite rules,
pre® A L is the set of configurations that can be rewritten to some configu-
ration in L, using rules from A arbitrarily often.

We first define this set inductively based on rewrite steps, and then provide
the characterization described above as a lemma.

inductive-set pre-star :: ('c,’l) SRS = (’s,’c,’e) FSM-rec-scheme = 'c list set

(pre”)
for A L

where
pre-refl: c€lang L = c€pre* A L |
pre-step: [c¢'€pre* A L; (c,a,c’)etr A] = cepre* A L

18

Alternative characterization of pre* A L

lemma pre-star-alt: pre* A L = {c.3c'€lang L . Fas . (c,as,c’)trel (tr A)}
(proof)

lemma pre-star-altl: [c’€lang L; c—qs c'€trel (tr A)] = ce€pre* A L (proof)
lemma pre-star-altE: [c€pre* A L; ¢/ as. [¢’€lang L; ¢ qs c'Etrel (tr A)] =
P] = P {proof)

4.4 Nondeterministic algorithm for pre*

In this section, we formalize the saturation algorithm for computing pre* A
L from [1]. Roughly, the algorithm works as follows:

1. Set D=6 A

2. Choose a rule ([p, 7], a, ¢') € rules M and states ¢q,q’€@Q A, such that
D can read the configuration ¢’ from state ¢ and end in state ¢’ (i.e.
(g, ¢’, ¢") € trclAD A D) and such that (sp A q p, 7, ¢) ¢ D. If this
is not possible, terminate.

3. Add the transition (sp A ¢ p, 7, ¢') ¢ D to D and continue with step
2

Intuitively, the behaviour of this algorithm can be explained as follows: If
there is a configuration ¢; @ ¢’ @ ¢y € pre* A L, and a rule (p # 7, a, ¢')
€ A, then we also have ¢; @ p # v @Q ¢y € pre® A L. The effect of step 3
is exactly adding these configurations c¢; @ p # v @Q ¢22 to the regular set
of configurations.

We describe the algorithm nondeterministically by its step relation ps-R.
Each step describes the addition of one transition.

In this approach, we directly restrict the domain of the step-relation to
transition relations below some upper bound ps-upper. We will later show,
that the initial transition relation of an M-automata is below this upper
bound, and that the step-relation preserves the property of being below this
upper bound.

We define ps-upper M A as a finite set, and show that the initial transition
relation 4 A of an M-automata is below ps-upper M A, and that ps-R M
A preserves the property of being below the finite set ps-upper M A. Note
that we use the more fine-grained ps-upper M A as upper bound for the
termination proof rather than Q A x ¥ A x @ A, as sp A ¢ p is only
specified for control states ¢ and control symbols p. Hence we need the finer
structure of ps-upper M A to guarantee that sp is only applied to arguments
it is specified for. Anyway, the fine-grained ps-upper M A bound is also
needed for the correctness proof.

19

definition ps-upper :: ('c,’l,’el) DPN-rec-scheme = ('s,’c,’e2) MFSM-rec-scheme
= (’s,’c¢) LTS where

ps-upper M A == (sstates A x ssyms M X sstates A) U (sstates A x {sep M}
x cstates A) U {(s,p,sp A sp) | s p . sEcstates A N\ pEcsyms M}

inductive-set ps-R :: (‘¢c,’l,’el) DPN-rec-scheme = ('s,’c,’e2) MFSM-rec-scheme
= (('s,’c) LTS * ('s,’c) LTS) set for M A
where

lp,y]—=a ¢’ € rules M; (g,c’,q")€trclAD A D; (sp A q p,y,q")¢D; DCTps-upper M
A) = (D,insert (sp A q pyy,q’) D)eps-R M A

lemma ps-R-dom-below: (D,D")eéps-R M A = DCps-upper M A (proof)

4.4.1 Termination

Termination of our algorithm is equivalent to well-foundedness of its (con-
verse) step relation, that is, we have to show wf ((ps-R M A)~1).

In the following, we also establich some properties of transition relations
below ps-upper M A, that will be used later in the correctness proof.
lemma (in MFSM) ps-upper-cases: [(s,e,s’)Eps-upper M A,

[s€sstates A; ecssyms M; s'€sstates A] = P;

[s€sstates A; e=t; s'€cstates A] = P;

[s€cstates A; eccsyms M; s'=sp A s] = P
=P

(proof)

lemma (in MFSM) ps-upper-cases’”: [(s,e,s’)Eps-upper M A;
[s€sstates A; e€ssyms M; s'€sstates A] = P;
[s€sstates A; e=sep M; s’'Ecstates A] = P;
[s€cstates A; e€csyms M; s'=sp A s e] = P

=P

{proof)

lemma (in MFSM) ps-upper-below-trivial: ps-upper M A C Q A x ¥ A x Q A
(proof)

lemma (in MFSM) ps-upper-finite: finite (ps-upper M A) (proof)

The initial transition relation of the M-automaton is below ps-upper M A

lemma (in MFSM) initial-delta-below: 6 A C ps-upper M A (proof)

Some lemmas about structure of transition relations below ps-upper M A

lemma (in MFSM) cstate-succ-unique’: [s€cstates A; (s,p,x)€D; DCps-upper M
A] = pecsyms M N z=sp A s p (proof)

lemma (in MFSM) csym-from-cstate’: [(s,p,s")€D; DCTps-upper M A; pEcsyms
M] = secstates A (proof)

The only way to end up in a control state is after executing a separator.

20

lemma (in MFSM) ctri-after-sep: assumes BELOW: D C ps-upper M A
assumes A: (g,¢',q")etrclAD A D ¢'#[]
shows ¢'ccstates A = (last ¢’ = 1)

(proof)

When applying a rules right hand side to a control state, we will get to a
stack state

lemma (in MFSM) ctril-rule: assumes BELOW: D C ps-upper M A
assumes A: ([p,y],a,c’)erules M and B: q€cstates A (q,c’,q")e€trclAD A D
shows q’esstates A

(proof)

ps-R M A preserves the property of being below ps-upper M A, and the
transition relation becomes strictly greater in each step
lemma (in MFSM) ps-R-below: assumes E: (D,D’')eps-R M A
shows DCD’ A D' C ps-upper M A
(proof)

As a result of this section, we get the well-foundedness of ps-R M A, and
that the transition relations that occur during the saturation algorithm stay
above the initial transition relation § A and below ps-upper M A

theorem (in MFSM) ps-R-wf: wf ((ps-R M A)~') (proof)

theorem (in MFSM) ps-R-above-inv: is-inv (ps-R M A) (6 A) (AD. § A C D)
(proof)

theorem (in MFSM) ps-R-below-inv: is-inv (ps-R M A) (§ A) (AD. DCps-upper
M A) (proof)

We can also show that the algorithm is defined for every possible initial
automata

theorem (in MFSM) total: 3D. (§ A, D)endet-algo(ps-R M A) {proof)

4.4.2 Soundness

The soundness (over-approximation) proof works by induction over the def-
inition of pre*.

In the reflexive case, a configuration from the original language is also in
the saturated language, because no transitions are killed during saturation.
In the step case, we assume that a configuration ¢’ is in the saturated lan-
guage, and show for a rewriting step c<—,c¢’ that also c¢ is in the saturated
language.

theorem (in MFSM) sound: [cEpre-star (rules M) A; (6 A,s’)endet-algo (ps-R
M A)] = c€lang (A(6:=s"))

(proof)

21

4.4.3 Precision

In this section we show the precision of the algorithm, that is we show that
the saturated language is below the backwards reachable set.

The following induction scheme makes an induction over the number of
occurences of a certain transition in words accepted by a FSM:

To prove a proposition for all words from state gs to state gf in FSM A that
has a transition rule (s, a, s) € § A, we have to show the following:

e Show, that the proposition is valid for words that do not use the tran-
sition rule (s, a, s’) € § A at all

e Assuming that there is a prefix wp from ¢s to s and a suffix ws from
s"to qf, and that wp does not use the new rule, and further assuming
that for all prefixes wh from g¢s to s/, the proposition holds for wh @
ws, show that the proposition also holds for wp @ a # ws.

We actually do use D here instead of 6 A, for use with trclAD.

lemma ins-trans-induct[consumes 1, case-names base stepl:

fixes gs and ¢f

assumes A: (gs,w,qf)€trclAD A (insert (s,a,s") D)

assumes BASE-CASE: ! w . (gs,w,qf)€trclAD A D = P w

assumes STEP-CASE: ! wp ws . [(gs,wp,s)€trclAD A D; (s’ ,ws,qf)€trclAD
A (insert (s,a,s") D); ! wh . (gs,wh,s’)€trclAD A D = P (whQus)] = P
(wpQa#ws)

shows P w
(proof)

The following lemma is a stronger elimination rule than ps-R.cases. It makes
a more fine-grained distinction. In words: A step of the algorithm adds a
transition (sp A ¢ p, v, s'), if there is a rule ([p, 7], a, p’ # ¢’), and a
transition sequence (¢, p’ # ¢’, s’) € trclAD A D. That is, if we have (sp A
qp’, c,s’) € trclAD A D.
lemma (in MFSM) ps-R-elims-adv:

assumes (D,D")eps-R M A

obtains v s’ a p’ ¢/ p ¢ where

D'=insert (sp A q p,y,8") D (sp A q p,y,8")¢D [py]—a p'#c’ € rules M

(q,p'#c's")etrclAD A D

pEcsyms M ~vEssyms M qE€cstates A p'€csyms M a€labels M (q,p’,sp A qp")€D
(sp A qp',c’s"\etrclAD A D

(proof)

Now follows a helper lemma to establish the precision result. In the original
paper [1] it is called the crucial point of the precision proof.

It states that for transition relations that occur during the execution of the
algorithm, for each word w that leads from the start state to a state sp A ¢

22

p, there is a word ws @ [p] that leads to sp A ¢ p in the initial automaton
and w can be rewritten to ws @ [p].
In the initial transition relation, a state of the form sp A ¢ p has only
one incoming edge labelled p (MFSM.sp-pred-ex MFSM.sp-pred-unique).
Intuitively, this lemma explains why it is correct to add further incoming
edges to sp A ¢ p: All words using such edges can be rewritten to a word
using the original edge.
lemma (in MFSM) sp-property:
shows is-inv (ps-R M A) (6 A) (AD.
(V w.Vpecsyms M.V q€cstates A. (s0 Ayw,sp A q p)EtrcddlAD A D — (Jws
as. (s0 Ayws,q)€trclA A A (w,as,wsQ[p])€trel (tr (rules M)))) A
(VP is-inv (ps-R M A) (§ A) P — P’ D))
— We show the thesis by proving that it is an invariant of the saturation procedure

(proof)

Helper lemma to clarify some subgoal in the precision proof:

lemma trclAD-delta-update-inv: trclAD (A(6:=X])) D = trclAD A D (proof)

The precision is proved as an invariant of the saturation algorithm:

theorem (in MFSM) precise-inv:

shows is-inv (ps-R M A) (6 A) (AD. (lang (A(0:=D)) C pre* (rules M) A) A
(VP is-inv (ps-R M A) (6§ A) P’ — P' D))
(proof)

As precision is an invariant of the saturation algorithm, and is trivial for the
case of an already saturated initial automata, the result of the saturation
algorithm is precise
corollary (in MFSM) precise: [(0 A,D)Endet-algo (ps-R M A); z€lang (A(:=D
D] = zepre-star (rules M) A

{proof)

And finally we get correctness of the algorithm, with no restrictions on valid
states

theorem (in MFSM) correct: [(§ A,D)Endet-algo (ps-R M A)] = lang (A(:=D
D)) = pre-star (rules M) A (proof)

So the main results of this theory are, that the algorithm is defined for every
possible initial automata

MFSM ?M ?A = 3 D. (6 A, D) € ndet-algo (ps-R ?M ?A)

and returns the correct result

[MFESM ?M ?A; (6 ?A, ?D) € ndet-algo (ps-R ?M ?A)] = lang (?A(6 :=
?D|)) = pre* (rules ?M) ?A

We could also prove determination, i.e. the terminating state is uniquely
determined by the initial state (though there may be many ways to get

23

there). This is not really needed here, because for correctness, we do not
look at the structure of the final automaton, but just at its language. The
language of the final automaton is determined, as implied by MFSM.correct.

end

5 Non-executable implementation of the DPN pre*-
algorithm

theory DPN-impl
imports DPN
begin

This theory is to explore how to prove the correctness of straightforward im-
plementations of the DPN pre* algorithm. It does not provide an executable
specification, but uses set-datatype and the SOME-operator to describe a
deterministic refinement of the nondeterministic pre*-algorithm. This re-
finement is then characterized as a recursive function, using recdef.

This proof uses the same techniques to get the recursive function and prove
its correctness as are used for the straightforward executable implementation
in DPN__implEx. Differences from the executable specification are:

o The state of the algorithm contains the transition relation that is sat-
urated, thus making the refinement abstraction just a projection onto
this component. The executable specification, however, uses list rep-
resentation of sets, thus making the refinement abstraction more com-
plex.

¢ The termination proof is easier: In this approach, we only do recursion
if our state contains a valid M-automata and a consistent transition
relation. Using this property, we can infer termination easily from the
termination of ps-R. The executable implementation does not check
wether the state is valid, and thus may also do recursion for invalid
states. Thus, the termination argument must also regard those invalid
states, and hence must be more general.

5.1 Definitions

type-synonym (’c,’l,’s,'m1,'m2) pss-state = ((('c,’l,’m1) DPN-rec-scheme * ('s,’c,'m2)
MFSM-rec-scheme) = ('s,’c) LTS)

Function to select next transition to be added

definition pss-isNext :: ('¢,’l,'m1) DPN-rec-scheme = (’s,’c,'m2) MFSM-rec-scheme
= (’s,’c) LTS = ('sx’cx’'s) = bool where

pss-isNext M A Dt== t¢D A (3qgp~y q ac t=(sp A qp,q) A [py]—q ¢
€ rules M A (gq,¢’,q")etrclAD A D)

24

definition pss-next M A D == if (3 t. pss-isNext M A D t) then Some (SOME
t. pss-isNext M A D t) else None

Next state selector function

definition

pss-next-state S == case S of ((M,A),D) = if MFSM M A A DCps-upper M A
then (case pss-next M A D of None = None | Some t = Some ((M,A),insert t D)
) else None

Relation describing the deterministic algorithm

definition
pss-R == graph pss-next-state

lemma pss-nextEl: pss-next M A D = Somet = t¢D A (3 qpvy ¢ ac' t=(sp
A qpry,q) A [py]—a ¢’ € rules M A (q,c’,q")EtrclAD A D)
(proof)

lemma pss-nextE2: pss-next M A D = None = —(3 q¢p~y ¢’ ac’'t. t¢D N t=(sp
A qpy,q) N [py]—=a ¢’ € rules M A (gq,¢’,q")EtrclAD A D)

{(proof)

lemmas (in MFSM) pss-nextE = pss-nextEl pss-nextE2

The relation of the deterministic algorithm is also the recursion relation of
the recursive characterization of the algorithm
lemma pss-R-alt[termination-simp]: pss-R == {(((M,A),D),((M,A),insert t D)) |
MA D¢t MFSM M A N DCps-upper M A A pss-next M A D = Some t}

(proof)

5.2 Refining ps-R

We first show that the next-step relation refines ps-R M A. From this, we
will get both termination and correctness

Abstraction relation to project on the second component of a tuple, with
fixed first component

definition asnd f == { (s,(f,s)) | s. True }
lemma asnd-comp-simp: R O asnd f = {(s,(f,s")| s s’. (s,s")€R} (proof)

lemma asndI[simp]: (s,(f,s))€asnd f (proof)
lemma asndE: (s,(f,s"))€asnd f' = f=f' N s=s' (proof)

Relation of pss-next and ps-R M A

lemma (in MFSM) pss-consi: [pss-next M A D = Some t; DCps-upper M A] =
(D,insert t D)eps-R M A (proof)

lemma (in MFSM) pss-cons2: pss-next M A D = None => D¢ Domain (ps-R M
A) (proof)

25

lemma (in MFSM) pss-consl-rev: [DCps-upper M A; D¢Domain (ps-R M A)]
= pss-next M A D = None (proof)
lemma (in MFSM) pss-cons2-rev: [D€Domain (ps-R M A)] = 3t. pss-next M
A D = Some t A (D,insert t D)eps-R M A

(proof)

The refinement result

theorem (in MFSM) pss-refines: pss-R < ¢4 (M, A) (ps-R M A) (proof)

5.3 Termination

We can infer termination directly from the well-foundedness of ps-R and
MFSM .pss-refines

theorem pss-R-wf: wf (pss-R~1)
(proof)

5.4 Recursive characterization

Having proved termination, we can characterize our algorithm as a recursive
function
function pss-algo-rec :: (('c,'l,’s,'m1,’m2) pss-state) = (('c,’l,’s,’m1,'m2) pss-state)
where

pss-algo-rec ((M,A),D) = (if (MFSM M A A DCps-upper M A) then (case
(pss-next M A D) of None = ((M,A),D) | (Some t) = pss-algo-rec ((M,A),insert
t D)) else ((M,A),D))

(proof)

termination
(proof)

lemma pss-algo-rec-newsimps|simp]:

[MESM M A; DCps-upper M A; pss-next M A D = None] = pss-algo-rec
((M7A)7D) = ((MvA)rD)

[MESM M A; DCps-upper M A; pss-next M A D = Some t] = pss-algo-rec
((M,A),D) = pss-algo-rec ((M,A),insert t D)

~MFSM M A = pss-algo-rec ((M,A),D) = ((M,A),D)

=(D C ps-upper M A) = pss-algo-rec ((M,A),D) = ((M,A),D)
(proof)

declare pss-algo-rec.simps[simp del]

5.5 Correctness

The correctness of the recursive version of our algorithm can be inferred
using the results from the locale detRef-impl

interpretation det-impl: detRef-impl pss-algo-rec pss-next-state pss-R

26

{proof)

theorem (in MFSM) pss-correct: lang (A(d:=snd (pss-algo-rec ((M,A),(§ A)))
D)) = pre-star (rules M) A
(proof)

end

6 Tools for executable specifications

theory ImplHelper
imports Main
begin

6.1 Searching in Lists

Given a function f and a list [, return the result of the first element e € set
[with f e # None. The functional code snippet first-that f [corresponds to
the imperative code snippet: for e in [do { if f e # None then return Some
(f e) }; return None

primrec first-that :: ('s = ’a option) = 's list = 'a option where
first-that f [] = None
| first-that f (e#w) = (case f e of None = first-that f w | Some a = Some a)

lemma first-thatE1: first-that f 1 = Some a = Jec€set . f e = Some a
(proof)

lemma first-thatE2: first-that f| = None =—> Vecset l. f e = None
(proof)

lemmas first-thatE = first-thatE1 first-thatE2

lemma first-thatll: eeset | A f e = Some a = Ta’. first-that f | = Some a’
(proof)

lemma first-thatl2: ¥V ecset l. f e = None = first-that f | = None
(proof)

lemmas first-thatl = first-thatl1 first-thatI2

end

7 Executable algorithms for finite state machines

theory FSM-ex
imports FSM ImplHelper
begin

27

The transition relation of a finite state machine is represented as a list of
labeled edges

type-synonym (’s,’a) delta = ('s x 'a x 's) list

7.1 Word lookup operation

Operation that finds some state ¢’ that is reachable from state ¢ with word

w and has additional property P.

primrec lookup :: ('s = bool) = (’s,’a) delta = 's = 'a list = 's option where
lookup P d q [] = (if P q then Some q else None)

| lookup P d q (e#w) = first-that (\t. let (gs,es,q")=t in if g=qs N e=es then lookup

P d q' w else None) d

lemma lookupE1: 1q. lookup P d q w = Some ¢’ = P q¢' A (q,w,q’) € trcl (set d)
(proof)

lemma lookupE2: q. lookup P d ¢ w = None = —(3¢". (P ¢') A (q,w,q") € trcl
(set d)) (proof)

lemma lookupll: [P ¢’ (q,w,q")€trcl (set d)] = I q’. lookup P d ¢ w = Some q’
(proof)

lemma lookupI2: —=(3q’. P ¢’ A (q,w,q)Etrel (set d)) = lookup P d ¢ w = None
(proof)

lemmas lookupE = lookupFE1 lookupE?2
lemmas lookupl = lookupll lookupI2

lemma lookup-trclAD-E1:
assumes map: set d = D and start: ¢¢Q Aand cons: D C QA x X Ax QA
assumes A: lookup P d g w = Some ¢’
shows P ¢’ A (q,w,q")€trclAD A D

(proof)

lemma lookup-trclAD-E2:
assumes map: set d = D

assumes A: lookup P d ¢ w = None
shows — (3¢". P ¢’ A (q,w,q")EtrclAD A D)

(proof)

lemma lookup-trclAD-I1: [set d = D; (q,w,q")€trclAD A D; P q']| = 3 q’. lookup
Pdqw= Some q'
(proof)

lemma lookup-trclAD-12: [set d = D; g¢@Q A; D C QA x X Ax QA; ~(3q. P

q’' N (qw,q"\etrclAD A D)] = lookup P d ¢ w = None
(proof)

28

lemmas lookup-trclAD-E = lookup-trclAD-E1 lookup-trcIAD-FE2
lemmas lookup-trclAD-I = lookup-trclAD-I11 lookup-trclAD-12

7.2 Reachable states and alphabet inferred from transition
relation

definition states d == fst ‘ (set d) U (sndosnd) * (set d)
definition alpha d == (fstosnd) * (set d)

lemma statesAlphal: (q,a,q")€set d = qEstates d N q'Estates d N acalpha d

(proof)
lemma statesE: q€states d = Ja q’. ((g,a,q9")€set d V (¢',a,q)€set d) (proof)
lemma alphaE: a€alpha d = 3 q ¢'. (q,a,q")Eset d {proof)

lemma states-finite: finite (states d) {proof)
lemma alpha-finite: finite (alpha d) (proof)

lemma statesAlpha-subset: set d C states d x alpha d x states d {proof)

lemma states-mono: set d C set d' = states d C states d’ (proof)
lemma alpha-mono: set d C set d’ = alpha d C alpha d’ (proof)

lemma statesAlpha-insert: set d' = insert (q,a,q") (set d) = states d’ = states d
U {q,¢'} A alpha d’ = insert a (alpha d)
(proof)

lemma statesAlpha-inv: [gEstates d; a€alpha d; q'Estates d; set d'=insert (q,a,q")
(set d)] = states d = states d' A alpha d = alpha d’

(proof)

export-code lookup checking SML

end

8 Implementation of DPN pre*-algorithm

theory DPN-implEx
imports DPN FSM-ex
begin

In this section, we provide a straightforward executable specification of the
DPN-algorithm. It has a polynomial complexity, but is far from having
optimal complexity.

8.1 Representation of DPN and M-automata

type-synonym ’c rule-ex = ‘cx’cx’cx’'c list

29

type-synonym ’‘c DPN-ex = 'c rule-ex list

definition rule-repr == { ((p:7.p',¢), (Pl ap' %)) | p v p' ¢’ a . True }
definition rules-repr == { (I,I) . rule-repr ““ set | =1’ }

lemma rules-repr-cons: [(R,S)€rules-repr | = ((p,y,p’;c’)Eset R) = (3 a. (p#[7]
—q p'#c) €8)
(proof)

We define the mapping to sp-states explicitely, well-knowing that it makes
the algorithm even more inefficient

definition find-sp d s p == first-that (At. let (sh,ph,qh)=t in if s=sh N\ p=ph then
Some gh else None) d

This locale describes an M-automata together with its representation used
in the implementation

locale MFSM-ex = MFSM +
fixes R and D
assumes rules-repr: (R,rules M)Erules-repr
assumes D-above: § A C set D and D-below: set D C ps-upper M A

This lemma exports the additional conditions of locale MFSM_ ex to locale
MFSM

lemma (in MFSM) MFSM-ez-alt: MFSM-ex M A R D <— (R,rules M)€rules-repr
ANd ACset DA set DC ps-upper M A

{proof)
lemmas (in MFSM-ex) D-between = D-above D-below

The representation of the sp-states behaves as expected

lemma (in MFSM-ex) find-sp-cons:
assumes A: s€cstates A pEcsyms M
shows find-sp D s p = Some (sp A s p)
(proof)

8.2 Next-element selection

The implementation goes straightforward by implementing a function to
return the next transition to be added to the transition relation of the au-
tomata being saturated

definition sel-next:: 'c DPN-ex = ('s,’c) delta = ('s x 'c x 's) option where
sel-next R D ==
first-that (Ar. let (p,y,p’,¢) = rin
first-that (At. let (q,pp’,sp’) = tin
if pp’=p’ then
case find-sp D q p of
Some spt = (case lookup (Aq'. (spt,y,q") ¢ set D) D sp’ ¢’ of

30

Some q' = Some (spt,y,q") |
None = None
) | - = None
else None
) D
) R

The state of our algorithm consists of a representation of the DPN-rules and
a representation of the transition relations of the automata being saturated

type-synonym (’c,’s) seln-state = 'c DPN-ex x ('s,’c) delta

As long as the next-element function returns elements, these are added to
the transition relation and the algorithm is applied recursively. sel-next-state
describes the next-state selector function, and seln-R describes the corre-
sponding recursion relation.

definition

sel-next-state S == let (R,D)=S in case sel-next R D of None = None | Some t
= Some (R,t#D)

definition
seln-R == graph sel-next-state

lemma seln-R-alt: seln-R == {((R,D),(R,t#D)) | R D t. sel-next R D = Some t}
(proof)

8.3 Termination

8.3.1 Saturation upper bound

Before we can define the algorithm as recursive function, we have to prove
termination, that is well-foundedness of the corresponding recursion relation

seln-R

We start by defining a trivial finite upper bound for the saturation, simply
as the set of all possible transitions in the automata. Intuitively, this bound
is valid because the saturation algorithm only adds transitions, but never
states to the automata

definition
seln-triv-upper R D == states D x ((fstosnd) ‘ (set R) U alpha D) x states D

lemma seln-triv-upper-finite: finite (seln-triv-upper R D) (proof)
lemma D-below-triv-upper: set D C seln-triv-upper R D (proof)
lemma seln-triv-upper-subset-preserve: set D C seln-triv-upper A D' = seln-triv-upper

A D C seln-triv-upper A D’
(proof)

31

lemma seln-triv-upper-mono: set D C set D' = seln-triv-upper R D C seln-triv-upper
R D’
(proof)

lemma seln-triv-upper-mono-list: seln-triv-upper R D C seln-triv-upper R (t#D)

(proof)

lemma seln-triv-upper-mono-list”: € seln-triv-upper R D = z€seln-triv-upper R
(t#D) (proof)
The trivial upper bound is not changed by inserting a transition to the
automata that was already below the upper bound
lemma seln-triv-upper-inv: [t€seln-triv-upper R D; set D’ = insert t (set D)] =
seln-triv-upper R D = seln-triv-upper R D’

(proof)
States returned by find-sp are valid states of the underlying automaton
lemma find-sp-in-states: find-sp D s p = Some gh => gh€states D (proof)
The next-element selection function returns a new transition, that is below
the trivial upper bound

lemma sel-next-below:
assumes A: sel-next R D = Some t
shows té¢set D A t€seln-triv-upper R D

(proof)

Hence, it does not change the upper bound

corollary sel-next-upper-preserve: [sel-next R D = Some t] = seln-triv-upper R
D = seln-triv-upper R (t#D) {proof)

8.3.2 Well-foundedness of recursion relation

lemma seln-R-wf: wf (seln-R~1) (proof)

8.3.3 Definition of recursive function
function pss-algo-rec :: ('c,’s) seln-state = (’c,’s) seln-state

where pss-algo-rec (R,D) = (case sel-next R D of Some t = pss-algo-rec (R,t#D)
| None = (R,D))

(proof)

termination
(proof)
lemma pss-algo-rec-newsimps[simp):
[sel-next R D = None] = pss-algo-rec (R,D) = (R,D)
[sel-next R D = Some t] = pss-algo-rec (R,D) = pss-algo-rec (R,t# D)
(proof)

declare pss-algo-rec.simps[simp del]

32

8.4 Correctness

8.4.1 seln_ R refines ps_ R

We show that seln-R refines ps-R, that is that every step made by our
implementation corresponds to a step in the nondeterministic algorithm,
that we already have proved correct in theory DPN.

lemma (in MFSM-ex) sel-nextEl:

assumes A: sel-next R D = Some (s,7,q')

shows (s,7,q¢")¢set D A (3 qgp ac'. s=sp A qp A [py]—a ¢’ € rules M A
(g,¢’,q")€trclAD A (set D))
{proof)

lemma (in MFSM-ez) sel-nextE2:

assumes A: sel-next R D = None

shows =(3 ¢p vy ¢’ ac’t t¢set D A t=(sp A q p,v,q9") N [p,y]—a ¢’ € Tules M
A (g,¢,q")etrclAD A (set D))

(proof)

lemmas (in MFSM-ex) sel-nextE = sel-nextE1 sel-nextE2

lemma (in MFSM-ex) seln-consl: [sel-next R D = Some t] = (set D,insert t
(set D))eps-R M A (proof)

lemma (in MFSM-ex) seln-cons2: sel-next R D = None = set D¢ Domain (ps-R
M A) (proof)

lemma (in MFSM-ex) seln-consi-rev: [set D¢ Domain (ps-R M A)] = sel-next
R D = None {proof)

lemma (in MFSM-ex) seln-cons2-rev: [set D€ Domain (ps-R M A)] = 3It.
sel-next R D = Some t A (set D,insert t (set D))eps-R M A

{proof)

DPN-specific abstraction relation, to associate states of deterministic algo-
rithm with states of ps-R

definition aseln M A == { (set D, (R,D)) | D R. MFSM-ex M A R D}

lemma aselnl: [S=set D; MFSM-ex M A R D] = (S,(R,D))caseln M A
{proof)

lemma aselnD: (S,(R,D))caseln M A = S=set D N MFSM-ex M A R D
{proof)

lemma aselnD’: (S,C)easeln M A = S=set (snd C') N MFSM-ex M A (fst C)
(snd C) (proof)

lemma aseln-single-valued: single-valued ((cseln M A)~™1)
{proof)

33

theorem (in MFSM) seln-refines: seln-R <, so1n M A (pS-R M A) (proof)

8.4.2 Computing transitions only
definition pss-algo :: ‘¢ DPN-ex = (’s,’c) delta = (’s,’c) delta where pss-algo R
D = snd (pss-algo-rec (R,D))

8.4.3 Correctness

We have to show that the next-state selector function’s graph refines seln-R.
This is trivial because we defined seln-R to be that graph

lemma sns-refines: graph sel-next-state < seln-R (proof)

interpretation det-impl: detRef-impl pss-algo-rec sel-next-state seln-R

(proof)

And then infer correctness of the deterministic algorithm

theorem (in MFSM-ex) pss-correct:

assumes D-init: set D = § A

shows lang (A(d:=set (pss-algo R D) |)) = pre-star (rules M) A
(proof)

corollary (in MFSM) pss-correct:

assumes repr: set D = 6 A (R,rules M)Erules-repr

shows lang (A(d:=set (pss-algo R D) |)) = pre-star (rules M) A
(proof)

Generate executable code

export-code pss-algo checking SML

end

References
[1] A. Bouajjani, M. Miiller-Olm, and T. Touili. Regular symbolic analysis

of dynamic networks of pushdown systems. In Proc. of CONCUR’05.
Springer, 2005.

34

	String rewrite systems
	Definitions
	Induced Labelled Transition System
	Properties of the induced LTS

	Finite state machines
	Definitions
	Basic properties
	Constructing FSMs
	Reflexive, transitive closure of transition relation
	Relation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 trclAD and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 trcl

	Language of a FSM
	Example: Product automaton

	Nondeterministic recursive algorithms
	Basic properties
	Refinement
	Extension to reflexive states
	Well-foundedness
	The relations 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 > and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 on finite domains

	Implementation
	Graphs of functions
	Deterministic refinement w.r.t. the identity abstraction
	Recursive characterization

	Dynamic pushdown networks
	Dynamic pushdown networks
	Definition
	Basic properties
	Building DPNs

	M-automata
	Definition
	Basic properties
	Some implications of the M-automata conditions

	pre*-sets of regular sets of configurations
	Nondeterministic algorithm for pre*
	Termination
	Soundness
	Precision

	Non-executable implementation of the DPN pre*-algorithm
	Definitions
	Refining 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ps-R
	Termination
	Recursive characterization
	Correctness

	Tools for executable specifications
	Searching in Lists

	Executable algorithms for finite state machines
	Word lookup operation
	Reachable states and alphabet inferred from transition relation

	Implementation of DPN pre*-algorithm
	Representation of DPN and M-automata
	Next-element selection
	Termination
	Saturation upper bound
	Well-foundedness of recursion relation
	Definition of recursive function

	Correctness
	seln_R refines ps_R
	Computing transitions only
	Correctness

