Formalization of Dynamic Pushdown Networks in
[sabelle/HOL

Peter Lammich

January 26, 2026

Abstract

We present a formalization of Dynamic Pushdown Networks (DPN5)
and the automata based algorithm for computing backward reacha-
bility sets using Isabelle/HOL. Dynamic pushdown networks are an
abstract model for multithreaded, interprocedural programs with dy-
namic thread creation that was presented by Bouajjani, Miiller-Olm
and Touili in 2005.

We formalize the notion of a DPN in Isabelle and describe the algo-
rithm for computing the pre*-set from a regular set of configurations,
and prove its correctness. We first give a nondeterministic description
of the algorithm, from that we then infer a deterministic one, from
which we can generate executable code using Isabelle’s code-generation
tool.

Contents

1 String rewrite systems
1.1 Definitions
1.2 Induced Labelled Transition System
1.3 Properties of the induced LTS

2 Finite state machines

2.1 Definitionso
2.2 Basicproperties.o Lo oo
2.3 Constructing FSMs L.
2.4 Reflexive, transitive closure of transition relation

2.4.1 Relation of trclAD and trel
2.5 Languageofa FSM.
2.6 Example: Product automaton

w W w W

O 00 ~J O Ut U i i

Nondeterministic recursive algorithms 9

3.1 Basicproperties. oo 10
3.2 Refinement 11
3.3 [Extension to reflexive states 13
3.4 Well-foundedness, 14
3.4.1 The relations > and D on finite domains 15
3.5 Implementationo 16
3.5.1 Graphs of functions 17
3.5.2 Deterministic refinement w.r.t. the identity abstraction 17
3.5.3 Recursive characterization 17
Dynamic pushdown networks 18
4.1 Dynamic pushdown networks 19
4.1.1 Definition L oo 19
4.1.2 Basic properties 19
4.1.3 Building DPNs oo 20
4.2 M-automata 22
4.2.1 Definitiono 22
4.2.2 Basic properties Lo oL 23
4.2.3 Some implications of the M-automata conditions . . . 24
4.3 pre*-sets of regular sets of configurations 26
4.4 Nondeterministic algorithm for pre* 27
4.4.1 Termination 28
4.4.2 Soundness 31
4.4.3 Precision e 33
Non-executable implementation of the DPN pre*-algorithm 40
5.1 Definitions 40
5.2 Refining ps-Ro 42
5.3 Termination 42
5.4 Recursive characterization 43
5.5 Correctnesso 44
Tools for executable specifications 44
6.1 Searching in Lists 44
Executable algorithms for finite state machines 45
7.1 Word lookup operation 45
7.2 Reachable states and alphabet inferred from transition relation 47
Implementation of DPN pre*-algorithm 48
8.1 Representation of DPN and M-automata 48
8.2 Next-element selection 49
8.3 Termination Lo 50

8.3.1 Saturation upper bound 50

8.3.2 Well-foundedness of recursion relation 52
8.3.3 Definition of recursive function 52
8.4 Correctness e 53
84.1 seln_Rrefinesps. R 53
8.4.2 Computing transitionsonly 56
8.4.3 Correctness 56

1 String rewrite systems

theory SRS
imports DPN-Setup
begin

This formalizes systems of labelled string rewrite rules and the labelled tran-
sition systems induced by them. DPNs are special string rewrite systems.

1.1 Definitions

type-synonym (’c,’l) rewrite-rule = 'c list x 'l x 'c list
type-synonym (’c,’l) SRS = ('¢,’l) rewrite-rule set

syntax
syn-rew-rule :: 'c list = 'l = 'c list = ('¢,’l) rewrite-rule (- —. - [51,51,51] 51)

translations
s g 8" => (s,a,8")

A (labelled) rewrite rule (s, a, s’) consists of the left side s, the label a and
the right side s’. Intuitively, it means that a substring s can be rewritten to
s’ by an a-step. A string rewrite system is a set of labelled rewrite rules

1.2 Induced Labelled Transition System

A string rewrite systems induces a labelled transition system on strings by
rewriting substrings according to the rules
inductive-set tr :: (‘c,’l) SRS = (‘c list, ') LTS for S
where
rewrite: (s <q ') € § = (epQ@sQes,a,ep@s'Qes) € tr S

1.3 Properties of the induced LTS

Adding characters at the start or end of a state does not influence the
capability of making a transition

lemma srs-ext-s: (s,a,8")€tr S = (wpQsQus,a,wpQ@s’Quws)etr S proof —
assume (s,a,s’)€tr S

then obtain ep es r r’ where s=epQrQes A\ s'=ep@Qr’Qes A (r,a,r’)€S by (fast
elim: tr.cases)

moreover hence ((wpQ@ep)QrQ(esQus),a,(wpQep)Qr'Q(esQus)) € tr S by (fast
intro: tr.rewrite)

ultimately show ?thesis by auto
qed

lemma srs-ext-both: (s,w,s")€trcl (tr) = (wpQsQuws,w,wpQ@s'Qus)etrel (ir S)
apply (induct s w s’ rule: trel.induct)
apply (simp)
apply (subgoal-tac wp @ ¢ @ ws —g wp Q ¢’ Q ws € tr S)
apply (auto intro: srs-ext-s)
done

corollary srs-ext-cons: (s,w,s’)€trcl (tr S) = (e#s,w,e#s’)etrcl (tr S) by (rule

srs-ext-both[where wp=[e] and ws=][], simplified))
corollary srs-ext-pre: (s,w,s’)€trcl (tr S) = (wpQs,w,wp@s’)etrel (tr S) by (rule
srs-ext-both[where ws=[], simplified])

corollary srs-ext-post: (s,w,s’)€trel (tr §) = (sQus,w,s'Qus)etrel (tr S) by (rule
srs-ext-both|[where wp=]|, simplified])

lemmas srs-ext = srs-ext-both srs-ext-pre srs-ext-post

end

2 Finite state machines

theory FSM
imports DPN-Setup
begin

This theory models nondeterministic finite state machines with explicit set
of states and alphabet. e-transitions are not supported.

2.1 Definitions

record (’s,’a) FSM-rec =
Q :: 's set — The set of states
Y :: 'a set — The alphabet
0 :: ('s, 'a) LTS — The transition relation
s0 :: 's — The initial state
F :: s set — The set of final states

locale FFSM =

fixes A

assumes delta-cons: (q,1,q)€d A= qeQ A NI€X A A ¢'€Q A— The transition
relation is consistent with the set of states and the alphabet

assumes s0-cons: s0 A € Q A — The initial state is a state

assumes F-cons: F A C (Q A — The final states are states
assumes finite-states: finite () A) — The set of states is finite
assumes finite-alphabet: finite (X A) — The alphabet is finite

2.2 Basic properties

lemma (in FSM) finite-delta-dom: finite (Q A x ¥ A x Q A) proof —

from finite-states finite-alphabet finite-cartesian-product[of ¥ A Q A] have finite
(X A x @A) by fast

with finite-states finite-cartesian-product[of @ A X A x @ A] show finite (Q A
x X A x @A) by fast
qed

lemma (in FSM) finite-delta: finite (§ A) proof —
have § A C Q A x ¥ A x Q A by (auto simp add: delta-cons)
with finite-delta-dom show ?thesis by (simp add: finite-subset)
qed

2.3 Constructing FSMs

definition fsm-empty so = (| Q={s0}, ={}, d={}, s0=s9, F={})

definition fsm-add-F s fsm = fsm(Q:=insert s (Q fsm), F:=insert s (F fsm) |
definition fsm-add-tr q a ¢’ fsm = fsm(Q:={q,¢'} U (Q fsm), Z:=insert a (X
fsm), 6 := insert (q,a,q’) (& fsm) |

lemma fsm-empty-invar|simpl: FSM (fsm-empty s)
apply unfold-locales unfolding fsm-empty-def by auto

lemma fsm-add-F-invar[simp|: assumes FSM fsm shows FSM (fsm-add-F s fsm)

proof —
interpret FSM fsm by fact
show ?thesis
apply unfold-locales
unfolding fsm-add-F-def
using delta-cons sO-cons F-cons finite-states finite-alphabet
by auto
qed

lemma fsm-add-tr-invar|[simp|: assumes FSM fsm shows FSM (fsm-add-tr q a
q' fsm)
proof —
interpret FSM fsm by fact
show ?thesis
apply unfold-locales
unfolding fsm-add-tr-def
using delta-cons s0-cons F-cons finite-states finite-alphabet
by auto
qed

2.4 Reflexive, transitive closure of transition relation

Reflexive transitive closure on restricted domain

inductive-set trclAD :: ('s,’a,’c) FSM-rec-scheme = (’s,’a) LTS = ('s,’a list)
LTS
for A D
where

empty[simp]: s€@Q A = (s,[],s)€trclAD A D |

cons[simpl: [(s,e,s")€D; s€Q A; eeX A; (s’ w,s"\e€trclAD A D] = (s,e#tw,s”’)€trclAD
AD

abbreviation trclA A == trclAD A (§ A)

lemma trcld D-empty-cons[simp|: (¢,[],¢')€trclAD A D = c=c’ by (auto elim:

trclAD. cases)

lemma trclAD-single: (c,[a],c’) € trddlAD A D = (c,a,¢’) € D by (auto elim:

trclAD.cases)

lemma trclAD-elems: (c,w,c’)etrclAD A D = ceQ A A welists (X A) A ¢'€Q

A by (erule trclAD.induct, auto)

lemma trclAD-one-elem: [c€Q A; e€X A; '€ Q A; (¢,e,c’)eD] = (¢,[e],¢)etrelAD
A D by auto

lemma trelAD-uncons: (c,a#tw,c’)etrclAD A D = 3 ch . (¢,a,ch)€D A (ch,w,c’)
€ trclAD A DN ce@Q AN aeX A
by (auto elim: trclAD.cases)

lemma trelAD-concat: ! ¢ . [(e,wl,c’)etrclAD A D; (¢’ ,w2,c")etrclAD A D | =
(c,wlQu2,c')etrclAD A D
proof (induct wi)
case Nil thus ?case by (subgoal-tac c=c’) auto
next
case (Cons a w) thus ?case by (auto dest: trclAD-uncons)
qed

lemma trclA D-unconcat: ! ¢ . (¢,wlQuw2,c")€trclAD A D = 3 ch . (¢,wl,ch)€trclAD
A D A (chyw2,c")etrclAD A D proof (induct wl)

case Nil hence (c,[],c)€trclAD A D A (c,w2,c’)etrclAD A D by (auto dest:
trclAD-elems)

thus ?case by fast
next

case (Cons a wl) note IHP = this

hence (c,a#(w1Quw2),c’)etrclAD A D by simp

with trclAD-uncons obtain chh where (c,a,chh)eD A (chh,w1@Qw2,c’)EtrclAD
A DA ceQ AN aeXs A by fast

moreover with IHP obtain ch where (chh,wl,ch)€trclAD A D A (ch,w2,c’)€trclAD
A D by fast

ultimately have (c,a#wl,ch)€trclAD A D A (ch,w2,c’)€trclAD A D by auto

thus ?case by fast
qed

lemma trclAD-eq: [Q A= QA ¥ A=% Al = trcddlAD A D = trclAD A’ D
apply (safe)
subgoal by (erule trclAD.induct) auto
subgoal by (erule trclAD.induct) auto
done

lemma trclAD-mono: DCD' = trclAD A D C trclAD A D’
apply (clarsimp)
apply (erule trclAD.induct)
apply auto
done

lemma trclAD-mono-adv: [DCD; Q A= QA X A=3 A'] = trclAD A D C
trclAD A’ D' by (subgoal-tac trclAD A D = trclAD A’ D) (auto dest: trclAD-eq
trclAD-mono)

2.4.1 Relation of trclAD and trcl

lemma trclAD-by-trell: trelAD A D C (trel (DN (QA XX AXx QA))N(QA
x lists (X A) x @ A))

by (auto 0 3 dest: trclAD-elems elim: trclAD.induct simp: trclAD-elems intro:
trel.cons)

lemma trelAD-by-trel2: (tred (DN (Q A x X Ax QA)N(QA X lists (X A) x
Q A)) C trelAD A D proof —
{ fix c
have !l ss’. [(s, ¢, 8") €trel (DN QA x X A X QA); s€qQ A; s'eQ A; c€lists
(X A)] = (s,¢,8")€trclAD A D proof (induct c)
case Nil thus ?case by (auto dest: trcl-empty-cons)
next
case (Cons e w) note IHP=this
then obtain sh where SPLIT: (s,e,sh)e(D N @ A x ¥ A x Q A) A
(shyw,s"\etrel (DN Q A x ¥ A x Q A) by (fast dest: trcl-uncons)
hence (sh,w,s’)€trel (DN QA XX A x QA)N(QA X lists(XA) x QA)
by (auto elim!: trcl-structE)
hence (sh,w,s’)etrclAD A D by (blast intro: IHP)
with SPLIT show ?Zcase by auto
qed

thus ?thesis by (auto)
qed

lemma trelAD-by-trel: trelAD A D = (trel (DN (QA XX Ax QA)N(QA X
lists (3 A) x Q A))

apply (rule equalityl)

apply (rule trclAD-by-trell)

apply (rule trclAD-by-trel2)
done

lemma trclAD-by-trel’: trelAD A D = (trel (DN (QAXEZ Ax QA)N(QA
x UNIV x UNIV))
by (auto iff add: trclAD-by-trel elim!: trel-structE)

lemma trelAD-by-trel’”: [DCQ A X L A X QA] = trclAD A D =trel DN (Q
A x UNIV x UNIV)
using trclAD-by-trel’[of A D] by (simp add: Int-absorb2)

lemma trclAD-subset-trel: trclAD A D C trel (D) proof —
have trclAD A D C (trel (DN (Q A x ¥ A x @ A))) by (auto simp add:
trclA D-by-trel)
also with trel-monolof DN (Q A x ¥ A x Q A) D] have ... C trcl D by auto
finally show ?thesis .
qed

2.5 Language of a FSM

definition langs A s == { w. (3 fe(F A) . (s,w,f) € trclA A) }
definition lang A == langs A (s0 A)

lemma langs-alt-def: (w€langs A s) == (Af . feF A & (s,w,f) € trclA A) by
(intro eq-reflection, unfold langs-def, auto)

2.6 Example: Product automaton

definition prod-fsm A1 A2 == (| Q=Q Al x Q A2, ¥=% AINX A2 § = {
((s,t),a,(s",t")) . (s,a,8)€5 AL A (t,a,t €S A2 }, sO0=(s0 Al,s0 A2), F = {(s,t) .
sEF A1 N teF A2}

lemma prod-inter-1: 1! s s’ f f' . ((s,8"),w,(f,f") € trcld (prod-fsm A A') =
(s,w,f) € treld A A (s',w,f') € trclA A’ proof (induct w)

case Nil note P=this

moreover hence s=f A s'=f' by (fast dest: trclAD-empty-cons)

moreover from P have s€Q A A s’eQ A’ by (unfold prod-fsm-def, auto dest:
trclAD-elems)

ultimately show ?case by (auto)
next

case (Cons e w)

note [HP=this

then obtain m m’ where I: ((s,s'),e,(m,m’)) € § (prod-fsm A A') A (s,s")€Q
(prod-fsm A A') N e€X (prod-fsm A A') A ((m,m"),w,(f,f"))EtrclA (prod-fsm A A')
by (fast dest: trclAD-uncons)

hence (s,e;m)€d A A (s',e,m)€d A" A s€Q AN s'€Q A" AN e€X A A eeX A’
by (unfold prod-fsm-def, simp)

moreover from [IHP have (m,w,f)€trclA A A (m’,w,f")€trclA A’ by auto

ultimately show ?case by auto
qed

lemma prod-inter-2: ! s s’ f f' . (s,w,f) € trclA A A (s’ w,f') € trcld A =
((s,8"),w,(f.f") € trclA (prod-fsm A A') proof (induct w)

case Nil note P=this

moreover hence s=f A s'=f' by (fast dest: trclAD-empty-cons)

moreover from P have (s,s")€Q (prod-fsm A A’) by (unfold prod-fsm-def, auto
dest: trclAD-elems)

ultimately show ?case by simp
next

case (Cons e w)

note ITHP=this

then obtain m m’ where I: (s,e;m)ed A A (myw,f)etrclA A A (s',e,m”)ES
A" N (mw,f)etrclA A" N s€Q AN s'eQ A’ N\ eeX A N eeX A’ by (fast dest:
trclA D-uncons)

hence ((s,s),e,(m,m")) € ¢ (prod-fsm A A") A (s,5")€Q (prod-fsm A A") N e€X
(prod-fsm A A') by (unfold prod-fsm-def, simp)

moreover from I THP have ((m,m’),w,(f,f") € trclA (prod-fsm A A’) by auto

ultimately show ?case by auto
qed

lemma prod-F: (a,b)€F (prod-fsm A B) = (a€F A A\ beF B) by (unfold prod-fsm-def,
auto)

lemma prod-FI: [a€F A; be F B] = (a,b)€F (prod-fsm A B) by (unfold prod-fsm-def,
auto)

lemma prod-fsm-langs: langs (prod-fsm A B) (s,t) = langs A s N langs B t
apply (unfold langs-def)
apply (insert prod-inter-1 prod-F)
apply (fast intro: prod-inter-2 prod-FI)

done

lemma prod-FSM-intro: FSM Al = FSM A2 = FSM (prod-fsm A1 A2) by
(rule FSM .intro) (auto simp add: FSM-def prod-fsm-def)

end

3 Nondeterministic recursive algorithms

theory NDET
imports Main
begin

This theory models nondeterministic, recursive algorithms by means of a
step relation.

An algorithm is modelled as follows:

1. Start with some state s

2. If there is no s’ with (s,s’)€R, terminate with state s
3. Else set s := s’ and continue with step 2

Thus, R is the step relation, relating the previous with the next state. If the
state is not in the domain of R, the algorithm terminates.

The relation A-rel R describes the non-reflexive part of the algorithm, that is
all possible mappings for non-terminating initial states. We will first explore
properties of this non-reflexive part, and then transfer them to the whole
algorithm, that also specifies how terminating initial states are treated.

inductive-set A-rel :: ('sx’s) set = ('sx’s) set for R
where
A-rel-base: [(s,s")€R; s'¢ Domain R] = (s,s")€A-rel R |
A-rel-step: [(s,sh)ER; (sh,s"\€A-rel R] = (s,s")€A-rel R

3.1 Basic properties

The algorithm just terminates at terminating states

lemma termstate: (s,s")€A-rel R => s'¢ Domain R by (induct rule: A-rel.induct,
auto)

lemma dom-subset: Domain (A-rel R) C Domain R by (unfold Domain-def) (auto
elim: A-rel.induct)

We can use invariants to reason over properties of the algorithm

definition is-inv R s0 P == P sO N\ (Vs s’ (s,s)ER NP s — P’

lemma inv: [(s0,sf)€A-rel R; is-inv R s0 P] => P sf by (unfold is-inv-def, induct
rule: A-rel.induct) blast+
lemma invl: [P s0; ! s s’ [(s,8")€R; P s] = P s'] = is-inv R s0 P by (unfold
is-inv-def, blast)
lemma inv2: [(s0,sf)€A-rel R; P s0; ! s s'. [(s,s")€R; P s] = P s']| = P sf
apply (subgoal-tac is-inv R s0 P)
apply (blast intro: inv)
apply (blast intro: invl)
done

To establish new invariants, we can use already existing invariants

lemma inv-usel: [P s0; ! s s’. [(s,s")€R; P s; P’ is-inv R s0 P' = P's]| =
Ps']| = is-inv R sO (As. P s N (VP is-inv R s0 P — P's))

apply (rule invl)

apply (simp (no-asm) only: is-inv-def, blast)

apply safe

apply blast

apply (subgoal-tac P’ s)

apply (simp (no-asm-use) only: is-inv-def, blast)

apply fast

10

done

If the inverse step relation is well-founded, the algorithm will terminate for
every state in Domain R (C-direction). The D-direction is from dom-subset

lemma wf-dom-eq: wf (R~') = Domain R = Domain (A-rel R) proof —
assume WF: wf (R71)
hence (3sf. (s,sf) € A-rel R) if (s,s’)€R for s s’ using that
proof (induction arbitrary: s’)
case (less x)

{

assume s'¢ Domain R
with less.prems have (z,s")€ A-rel R by (blast intro: A-rel-base)
} moreover {
assume s’€ Domain R
then obtain st where (s’,st)€R by (unfold Domain-def, auto)
with less.prems less.IH obtain sf where (s’,sf)€A-rel R by blast
with less.prems have (x,sf)€A-rel R by (blast intro: A-rel-step)
hence 3 sf. (z,sf)€A-rel R by blast
} ultimately show 3 sf. (z,sf)€A-rel R by blast
qed
hence Domain R C Domain (A-rel R) by (unfold Domain-def, auto)
with dom-subset show ?thesis by force
qed

3.2 Refinement

Refinement is a simulation property between step relations.

We define refinement w.r.t. an abstraction relation «, that relates abstract
to concrete states. The refining step-relation is called more concrete than
the refined one.
definition refines :: (“sx’s) set = ('r*’s) set = ('rx'r) set = bool (-<.- [50,50,50]
50) where

R<qa S==a ORCSOaAa«a “Domain S C Domain R

lemma refinesl: [« O R C S O a; a ““ Domain S C Domain R] = R<qS by
(unfold refines-def, auto)
lemma refinesk: R<qS = a O RC S O «

R<yS = o “ Domain S C Domain R

by (unfold refines-def, auto)

Intuitively, the first condition for refinement means, that for each concrete
step (¢,¢’)€S where the start state ¢ has an abstract counterpart (a,c)€a,
there is also an abstract counterpart of the end state (a’,¢’)€a and the step
can also be done on the abstract counterparts (a,a’)€R.

lemma refines-compl:
assumes A: !l a ¢ ¢/. [(a,0)€q; (¢,¢")€S | = Fa'. (a,a')ER A (a',c))ea

11

shows a O S C R O « using A by blast

lemma refines-compE: [aa O S C R O «; (a,c)€q; (¢,¢')€S] = Fa'. (a,a)€R A
(a’,c’)ea by (auto)

Intuitively, the second condition for refinement means, that if there is an
abstract step (a,a’)€R, where the start state has a concrete counterpart c,
then there must also be a concrete step from c¢. Note that this concrete
step is not required to lead to the concrete counterpart of a’. In fact, it is
only important that there is such a concrete step, ensuring that the con-
crete algorithm will not terminate on states on that the abstract algorithm
continues execution.

lemma refines-doml:
assumes A: !l a o’ ¢. [(a,¢)€e; (a,a")€R | = c€Domain S
shows a ‘“ Domain R C Domain S using A by auto

lemma refines-domFE: [a ‘“ Domain R C Domain S; (a,c)€c; (a,0’)€R] =
ce€Domain S by auto

lemma refinesl2:
assumes A: !l a ¢ ¢’. [(a,¢)€q; (¢,c)eS | = Fa’ (a,a’)eR A (a',c')e
assumes B: !l a a’ ¢. [(a,¢)€q; (a,a")€ER | = c€Domain S
shows S<qR by (simp only: refines] A refines-compl B refines-domI)

lemma refinesF2:
[S<aR; (a,c)€a; (¢,c)eS] = Fa’. (a,a")eR A (a’,c))ea
[S<aR; (a,c)€a; (a,a")€R] = c€Domain S
by (blast dest: refinesE refines-compE refines-domE)+

Reflexivity of identity refinement

lemma refines-id-refl[intro!, simp]: R<j;R by (auto intro: refinesI)

Transitivity of refinement

lemma refines-trans: assumes R: R <o S S Sﬂ T shows Rgﬁ 0al
proof (rule refinesI)
{
fix s s’ t’
assume A: (s,s)ef O «a (s';t")eR
then obtain sh where (s,sh)€f8 A (sh,s’)€a by (blast)
with A R obtain ¢ th where (sh,th)eS A (th,tY\ea A (s,t)eT A (t,th)€S by
(blast dest: refinesE)
hence (s,t")eT O (8 O «) by blast
} thus (8 Oa) ORC T O (B8 O «) by blast
next
{
fix s s’
assume A: s€ Domain T (s,5")€f O «
then obtain sh where (s,sh)€f A (sh,s’)ea by blast

12

with R A have s'€ Domain R by (blast dest!: refinesE)
} thus (8 O «) “ Domain T C Domain R by (unfold Domain-def, blast)
qed

Property transfer lemma

lemma refines-A-rel[rule-format]:
assumes R: R<,S and A: (r,r')€A-rel R (s,r)ea
shows (3s'. (s',r")ea A (s,s")€A-rel S)
using A
proof (induction arbitrary: s)
case I: (A-rel-base r 1’)
assume C: (r,r')éR r'¢ Domain R (s,r)€x
with R obtain s’ where (s,s)€S A (s',;r')ea A s'¢ Domain S by (blast dest:
refineskE)
hence (s’,r')ea A (s,s")€A-rel S by (blast intro: A-rel-base)
thus 35’ (s';r)ea A (s,s)€A-rel S by (blast)
next
case C: (A-rel-step r rh ')
assume A: (r,rh)€R (rh,r’)€A-rel R (s,r)€a
with R obtain sh where STEP: (sh,rh)ca A (s,sh)€S by (blast dest: refinesE)
with C.IH obtain s’ where (s';r')ea A (sh,s’)€A-rel S by blast
with STEP have (s/, ') € a A (s, s') € A-rel S by (blast intro: A-rel-step)
thus 3s’. (s, r') € a A (s, 8’) € A-rel S by (blast)
qed

Property transfer lemma for single-valued abstractions (i.e. abstraction
functions)

lemma refines-A-rel-sv: [R<qS; (r,r")€A-rel R; single-valued (a=1); (s,r)€q; (s',r')€q]
= (s,8")€A-rel S by (blast dest: single-valuedD refines-A-rel)

3.3 Extension to reflexive states

Up to now we only defined how to relate initial states to terminating states
if the algorithm makes at least one step. In this section, we also add the
reflexive part: Initial states for that no steps can be made are mapped to
themselves.

definition
ndet-algo R == (A-rel R) U {(s,s) | s. s¢ Domain R}

lemma ndet-algo-A-rel: [z€ Domain R; (x,y)Endet-algo R] = (z,y)€A-rel R by
(unfold ndet-algo-def) auto

lemma ndet-algoE: [(s,s’)€ndet-algo R; [(s,s")€A-rel R] = P; [s=s; s¢ Domain
R] = P] = P by (unfold ndet-algo-def, auto)
lemma ndet-algoE" [(s,s’)Endet-algo R; [(s,s")€A-rel R; s€ Domain R; s'¢ Domain
R] = P; [s=s'; s¢ Domain R] = P] = P

using dom-subset[of R| termstate[of s s’ R]

13

by (auto elim!: ndet-algoE)

ndet-algo is total (i.e. the algorithm is defined for every initial state), if R~}
is well founded

lemma ndet-algo-total: wf (R~') = Domain (ndet-algo R) = UNIV
by (unfold ndet-algo-def) (auto simp add: wf-dom-eq)

The result of the algorithm is always a terminating state

lemma termstate-ndet-algo: (s,s’)Endet-algo R = s’¢ Domain R by (unfold ndet-algo-def,
auto dest: termstate)

Property transfer lemma for ndet-algo

lemma refines-ndet-algo|rule-format]:
assumes R: S<qR and A: (¢,¢’)endet-algo S
shows Va. (a,c)ea — (Fa’. (a',c)ea A (a,a")endet-algo R)
proof (intro alll impI)
fix a assume B: (a,c)€x
{ assume CASE: c€ Domain S
with 4 have (c¢,c’)eA-rel S by (blast elim: ndet-algoE)
with R B obtain a’ where (a’,c)ea A (a,a")€A-rel R by (blast dest: re-
fines-A-rel)
moreover hence (a,a’)€ndet-algo R by (unfold ndet-algo-def, simp)
ultimately have 3a’. (a’, ¢/) € a A (a, a’) € ndet-algo R by blast
} moreover {
assume CASE: c¢¢ Domain S
with A have c=c’ by (blast elim: ndet-algoE")
moreover have a¢ Domain R proof
assume a€Domain R
with B R have c€Domain S by (auto elim: refinesE2)
with CASE show Fulse ..
qed
ultimately have Ja’. (a’, ¢/) € a A (a, a’) € ndet-algo R using B by (unfold
ndet-algo-def, blast)
} ultimately show 3a’. (a’, ¢') € a A (a, a’) € ndet-algo R by blast
qed

Property transfer lemma for single-valued abstractions (i.e. Abstraction
functions)

lemma refines-ndet-algo-sv: [S<qR; (c,c’)€ndet-algo S; single-valued (a~1); (a,c)€q;
(a’,c)ea] = (a,a’)endet-algo R by (blast dest: single-valuedD refines-ndet-algo)
3.4 Well-foundedness

lemma wf-imp-minimal: [wf S; 2€Q] = F2€Q. (Vz. (z,2)€S — z¢ Q) by (auto
iff add: wf-eg-minimal)

This lemma allows to show well-foundedness of a refining relation by pro-
viding a well-founded refined relation for each element in the domain of the
refining relation.

14

lemma refines-wf:
assumes A: !lr. [reDomain R = (s r,r)€ar A R<q » S A wf ((S7)71)
shows wf (R71)
proof (rule wfl-min)
fix Qand e :: 'a
assume NOTEMPTY: ec@Q
moreover {
assume e¢ Domain R
hence Vy. (e,y)eR — y¢Q by blast
} moreover {
assume C: e€Domain R
with A have MAP: (s e,e)€a e and REF: R<q ¢ S eand WF: wf ((Se)™t)
by (auto)
let 2aQ = ((a €)™ 1) “Q
from MAP NOTEMPTY have s e€?a() by auto
with WF wf-imp-minimal[of (S €)~t, simplified] have 3 2€?aQ. (Vz. (2,2)€S
e — x¢ %aQ) by auto
then obtain z where ZMIN: z€%aQ N (Vz. (2,2)€S e — x¢ ?aQ) by blast
then obtain ¢ where QP: (z,q)€a e A g€ @ by blast
have V1. (¢,2)eR — z¢Q proof (intro alll impl)
fix z
assume (q,z)€R
with REF QP obtain zt where ZREF: (z,at)€S e A (zt,z)€a e by (blast
dest: refinesE)
with ZMIN have 1t¢ ?aQ) by simp
moreover from ZREF have z€(@Q = zt€ ?a() by blast
ultimately show z¢ (@ by blast
qed
with QP have 3¢€Q. Vy. (¢,y)€R — y¢Q by blast
} ultimately show 32€Q. Vy. (y,2)ER™' — y¢Q by blast
qed

3.4.1 The relations > and D on finite domains

definition greaterN N == {(i,j) . j<i & i<(N:unat)}
definition greaterS S == {(a,b) . bCa & aC(S::'a set)}

> on initial segment of nat is well founded

lemma wf-greaterN: wf (greaterN N)
apply (unfold greaterN-def)
apply (rule wf-subset[of measure (A\k. (N—F))], blast)
apply (clarify, simp add: measure-def inv-image-def)
done

Strict version of card-mono

lemma card-mono-strict: [finite B; ACB] = card A < card B proof —
assume F: finite B and S: ACB
hence FA: finite A by (auto intro: finite-subset)
from S obtain z where P: z€B A a¢ A N A—{z}=A A insert x A C B by auto

15

with FA have card (insert x A) = Suc (card A) by (simp)
moreover from F P have card (insert © A) < card B by (fast intro: card-mono)
ultimately show ?thesis by simp

qed

D on finite sets is well founded

This is shown here by embedding the D relation into the > relation, using
cardinality

lemma wf-greaterS: finite S = wf (greaterS S) proof —

assume FS: finite S — For this purpose, we show that we can embed greaterS
into the greaterN by the inverse image of cardinality

have {(a,b) . bCa A a C S} C inv-image (greaterN (card S)) card proof —

fix a b
assume A: bCa aCS
with FS have Fab: finite a finite b by (auto simp add: finite-subset)
with A F'S have card b < card a & card a < card S by (fast intro: card-mono
card-mono-strict)
} note R=this
thus %thesis by (auto simp add: inv-image-def greaterN-def)
qed
thus ?thesis by (unfold greaterS-def, blast intro: wf-greaterN wf-subset)
qed

This lemma shows well-foundedness of saturation algorithms, where in each
step some set is increased, and this set remains below some finite upper

bound

lemma sat-wf:

assumes subset: lr r’. (r;r) éeR = arCar’'Aar’' CU

assumes finite: finite U

shows wf (R71)
proof —

have R~! C inv-image (greaterS U) a by (auto simp add: inv-image-def greaterS-def
dest: subset)

moreover have wf (inv-image (greaterS U) «) using finite by (blast intro:
wf-greatersS)

ultimately show ?thesis by (blast intro: wf-subset)
qed

3.5 Implementation

The first step to implement a nondeterministic algorithm specified by a rela-
tion R is to provide a deterministic refinement w.r.t. the identity abstraction
Id. We can describe such a deterministic refinement as the graph of a partial
function sel. We call this function a selector function, because it selects the
next state from the possible states specified by R.

16

In order to get a working implementation, we must prove termination. That
is, we have to show that (graph sel)~! is well-founded. If we already know
that R~! is well-founded, this property transfers to (graph sel)~.

Once obtained well-foundedness, we can use the selector function to imple-
ment the following recursive function:

algo s = case sel s of None = s | Some s’ = algo s’

And we can show, that algo is consistent with ndet-algo R, that is (s,algo
s)endet-algo R.

3.5.1 Graphs of functions

The graph of a (partial) function is the relation of arguments and function
values

definition graph f == {(z,z’) . f x = Some z'}

lemma graphl[intro|: f x = Some z' = (z,z")Egraph f by (unfold graph-def,
auto)

lemma graphD|dest]: (z,z")Egraph f => fx = Some z’' by (unfold graph-def, auto)
lemma graph-dom-iff1: (x¢ Domain (graph f)) = (f x = None) by (cases f z) auto
lemma graph-dom-iff2: (z€ Domain (graph f)) = (f © # None) by (cases f z) auto

3.5.2 Deterministic refinement w.r.t. the identity abstraction

lemma detRef-eq: (graph sel <5 R) = ((Vs s". sel s = Some s’ — (s,s")ER) A
(Vs. sel s = None — s¢ Domain R))
by (unfold refines-def) (auto iff add: graph-dom-iff2)

lemma detRef-wf-transfer: [wf (R™'); graph sel <;53 R] = wf ((graph sel)™!)
by (rule refines-wf[where s=id and a=Az. Id and S=M\z. R]) simp

3.5.3 Recursive characterization

locale detRef-impl =

fixes algo and sel and R

assumes detRef: graph sel <;; R

assumes algo-rec[simp]: !l s s'. sel s = Some s’ = algo s = algo s’ and
algo-term[simp]: I s. sel s = None = algo s = s

assumes wf: wf ((graph sel)™!)

lemma (in detRef-impl) sel-cons:
sel s = Some s’ = (s,s")€R
sel s = None = s¢ Domain R
s€ Domain R = 3s’. sel s = Some s’
s¢ Domain R = sel s = None
using detRef
by (simp-all only: detRef-eq) (cases sel s, blast, blast)+

17

lemma (in detRef-impl) algo-correct: (s,algo s)Endet-algo R proof —
{
assume C: s€ Domain R
have !ls. s€ Domain R — (s,algo s)€A-rel R
proof (rule wf-induct|OF wf, of As. s€ Domain R — (s,algo s)€A-rel R]; intro
impl)
fix s
assume A: s € Domain R and IH: YV y. (y, s) € (graph sel)™' — y € Domain
R — (y, algo y) € A-rel R
then obtain sh where SH: sel s = Some sh A (s,sh)ER using sel-cons by
blast
hence AS: algo s = algo sh by auto
{
assume C: sh¢ Domain R
hence sel sh=None by (auto dest: sel-cons)
hence algo sh=sh by (auto)
moreover from SH C have (s,sh)€A-rel R by (blast intro: A-rel-base)
ultimately have (s,algo s)€A-rel R using AS by simp
} moreover {
assume C: sh€ Domain R
with SH IH AS A have (sh,algo s)€A-rel R by auto
with SH have (s,algo s)€A-rel R by (blast intro: A-rel-step)
} ultimately show (s,algo s)€A-rel R by blast
qed
with C have (s,algo s)€A-rel R by simp
hence ?thesis by (unfold ndet-algo-def, auto)
} moreover {
assume C: s¢ Domain R
hence s=algo s by (auto dest: sel-cons)
with C have %thesis by (unfold ndet-algo-def, auto)
} ultimately show ?thesis by blast
qed

end

4 Dynamic pushdown networks

theory DPN
imports DPN-Setup SRS FSM NDET
begin

Dynamic pushdown networks (DPNs) are a model for parallel, context free
processes where processes can create new processes.

They have been introduced in [1]. In this theory we formalize DPNs and
the automata based algorithm for calculating a representation of the (reg-
ular) set of backward reachable configurations, starting at a regular set of
configurations.

18

We describe the algorithm nondeterministically, and prove its termination
and correctness.

4.1 Dynamic pushdown networks

4.1.1 Definition

record ('c,’l) DPN-rec =
csyms :: 'c set
ssyms :: 'c set
sep e
labels :: 'l set
rules :: ('¢,’l) SRS

A dynamic pushdown network consists of a finite set of control symbols, a
finite set of stack symbols, a separator symbol!, a finite set of labels and a
finite set of labelled string rewrite rules.

The set of control and stack symbols are disjoint, and both do not contain
the separator. A string rewrite rule is either of the form [p,y] <, pI#wI or
[p,Y] —a pIHWIQEHp2# w2 where p,p1,p2 are control symbols, wi,w2 are
sequences of stack symbols, a is a label and { is the separator.

locale DPN =

fixes M

fixes separator (1)

defines sep-def: § == sep M

assumes sym-finite: finite (csyms M) finite (ssyms M)

assumes sym-disjoint: csyms M N ssyms M = {} § ¢ csyms M U ssyms M

assumes lab-finite: finite (labels M)

assumes rules-finite: finite (rules M)

assumes rule-fmt: r € rules M =

(3p v ap w. pccsyms M N yEssyms M A p'Ecsyms M A welists (ssyms M)

A a€labels M N r=p#[y] —q p'#w)

V (3p vy apl wlp2w2 pEcsyms M A yEssyms M A pl€csyms M N wi€lists
(ssyms M) A p2ccsyms M N w2€lists (ssyms M) A a€labels M N r=p#[y] —q
pl#w1Q# p24fw2)

lemma (in DPN) sep-fold: sep M == § by (simp add: sep-def)

lemma (in DPN) sym-disjoint’: sep M ¢ csyms M U ssyms M using sym-disjoint
by (simp add: sep-def)

4.1.2 Basic properties

lemma (in DPN) syms-part: x€csyms M —> z¢ ssyms M x€ssyms M —> x¢ csyms
M using sym-disjoint by auto
lemma (in DPN) syms-sep: ¢ csyms M f¢ssyms M using sym-disjoint by auto

n the final version of [1], no separator symbols are used. We use them here because
we think it simplifies formalization of the proofs.

19

lemma (in DPN) syms-sep”: sep M¢csyms M sep M¢ssyms M using syms-sep
by (auto simp add: sep-def)

lemma (in DPN) rule-cases[consumes 1, case-names no-spawn spawn):

assumes A: r€rules M

assumes NOSPAWN: Il p v a p’ w. [pEcsyms M; yEssyms M; p'€csyms M;
welists (ssyms M); a€labels M; r=p#[y] <4 p'#w] = P

assumes SPAWN: !l p v a pl wl p2 w2. [pEcsyms M; vEssyms M; pl€csyms
M; wi€lists (ssyms M); p2€csyms M; w2€lists (ssyms M); a€labels M; r=p#[7]
g plHWIAQH#p2# w2 — P

shows P

using A NOSPAWN SPAWN

by (blast dest!: rule-fmit)

lemma (in DPN) rule-cases'”:
[rerules M;
Wp vy ap w [pccsyms M; yEssyms M; p'€csyms M; welists (ssyms M);
a€labels M; r=p#[y] —q p'#v] = P;

'p~vapl wlp2wl. [pEcsyms M; yEssyms M; pl€csyms M; wi€lists (ssyms
M); p2€csyms M; w2€lists (ssyms M); a€labels M; r=p#[y] —q pI#wIQ(sep
M)#p2#w2] = PJ

= P by (unfold sep-fold) (blast elim!: rule-cases)

lemma (in DPN) rule-prem-fmt: rérules M = 3 p~y a ¢’. pEcsyms M A yEssyms
M A a€labels M A set ¢’ C csyms M U ssyms M U {8} A r=(p#[] —a ¢
apply (erule rule-cases)
by (auto)

lemma (in DPN) rule-prem-fmt". rérules M = 3 p v a ¢'. p€csyms M A
~v€Essyms M A a€labels M A set ¢’ C csyms M U ssyms M U {sep M} A r=(p#[7]
—q ') by (unfold sep-fold, rule rule-prem-fmt)

lemma (in DPN) rule-prem-fmt2: [p,y]—aq ¢’ € rules M = pccsyms M A
~v€Essyms M A a€labels M N set ¢’ C csyms M U ssyms M U {#} by (fast dest:
rule-prem-fmt)

lemma (in DPN) rule-prem-fmt2": [p,y]—q ¢’ € rules M = pEcsyms M A
~v€ssyms M A a€labels M A set ¢’ C csyms M U ssyms M U {sep M} by (unfold
sep-fold, rule rule-prem-fmt2)

lemma (in DPN) rule-fmit-fs: [p,y]|—q p'#c’ € rules M = pEcsyms M A yEssyms
M A a€labels M A p'€csyms M A set ¢’ C esyms M U ssyms M U {}

apply (erule rule-cases)

by (auto)

4.1.3 Building DPNs

Sanity check: we can create valid DPNs by adding rules to an empty DPN

definition dpn-empty C S s = ||
csyms = C,

20

ssyms = S,

sep = s,
labels = {},
rules = {}

)

definition dpn-add-local-rule p v a p1 w1 D = D(labels := insert a (labels D),
rules := insert ([p,y],a,p1#w1) (rules D) |

definition dpn-add-spawn-rule p v a py w1 p2 we D = D(labels := insert a (labels
D), rules := insert ([p,y],a,p1F#w1Qsep D#paftws) (rules D) |

lemma dpn-empty-invar[simp: [finite C; finite S; CNS={}; s¢ CUS] = DPN
(dpn-empty C' S s)
apply unfold-locales unfolding dpn-empty-def by auto

lemma dpn-add-local-rule-invar([simp):
assumes A: {p,p1} C csyms D insert v (set wy) C ssyms D and DPN D
shows DPN (dpn-add-local-rule p v a p1 w1 D)
proof —
interpret DPN D sep D by fact
show ?thesis
unfolding dpn-add-local-rule-def
apply unfold-locales
using sym-finite sym-disjoint lab-finite rules-finite
apply simp-all
apply (erule disjE)
subgoal for r using A by auto
subgoal for r using rule-fmt[of r] by metis
done
qed

lemma dpn-add-spawn-rule-invar|simp):
assumes A: {p,p1,p2} C csyms D insert v (set wy U set we) C ssyms D and
DPN D
shows DPN (dpn-add-spawn-rule p v a p1 wy p2 wa D)
proof —
interpret DPN D sep D by fact
show ?thesis
unfolding dpn-add-spawn-rule-def
apply unfold-locales
using sym-finite sym-disjoint lab-finite rules-finite
apply (simp-all)
apply (erule disjE)
subgoal for r apply (rule disjI2) using A apply clarsimp by (metis in-lists]
subset-eq)
subgoal for r using rule-fmt[of r] by metis
done
qed

21

4.2 M-automata

We are interested in calculating the predecessor sets of regular sets of config-
urations. For this purpose, the regular sets of configurations are represented
as finite state machines, that conform to certain constraints, depending on
the underlying DPN. These FSMs are called M-automata.

4.2.1 Definition

record (’s,’¢c) MFSM-rec = ('s,’¢) FSM-rec +
sstates :: s set
cstates :: 's set
spis='c="s

M-automata are FSMs whose states are partioned into control and stack
states. For each control state s and control symbol p, there is a unique
and distinguished stack state sp A s p, and a transition (s,p,sp A s p)€J.
The initial state is a control state, and the final states are all stack states.
Moreover, the transitions are restricted: The only incoming transitions of
control states are separator transitions from stack states. The only outgoing
transitions are the (s,p,sp A s p)€d transitions mentioned above. The sp A
s p-states have no other incoming transitions.

locale MFSM = DPN M + FSM A
for M A +

assumes alpha-cons: ¥ A = csyms M U ssyms M U {}

assumes states-part: sstates A N cstates A = {} Q A = sstates A U cstates A

assumes uniqueSp: [s€cstates A; pEcsyms M| = sp A s p € sstates A [pEcsyms
M; p'ecsyms M; s€cstates A; s'€cstates A; sp A sp=sp A s’ p] = s=s" A
p=p’

assumes delta-fmt: 6 A C (sstates A x ssyms M x (sstates A — {sp A sp|sp
. s€cstates A N\ pEcsyms M})) U (sstates A x {#} x cstates A) U {(s,p,sp A s p)
| s p. s€cstates A A pEcsyms M}

§ AD{(s,p,sp A sp)|sp. s€cstates A N p€csyms M}

assumes s0-fmt: s0 A € cstates A

assumes F-fmt: F ACsstates A — This deviates slightly from [1], as we cannot
represent the empty configuration here. However, this restriction is harmless, since
the only predecessor of the empty configuration is the empty configuration itself.

constrains M::(’c,’l,’el) DPN-rec-scheme

constrains A::(’s,’c,’e2) MFSM-rec-scheme

lemma (in MFSM) alpha-cons” ¥ A = csyms M U ssyms M U {sep M} by
(unfold sep-fold, rule alpha-cons)

lemma (in MFSM) delta-fmt’: § A C (sstates A x ssyms M x (sstates A — {sp
Asp|sp. sccstates A N pecsyms M})) U (sstates A x {sep M} X cstates A)

22

U {(s,p,sp A s p)| sp.s€cstates A N pEcsyms M}
0 A D {(s;psp A sp)|sp. sEcstates A N pEcsyms M} by
(unfold sep-fold, (rule delta-fmt)+)

4.2.2 Basic properties

lemma (in MFSM) finite-cs-states: finite (sstates A) finite (cstates A)
proof —
have sstates A C Q A A cstates A C Q A by (auto simp add: states-part)
then show finite (sstates A) finite (cstates A) by (auto dest: finite-subset intro:
finite-states)
qed

lemma (in MFSM) sep-out-syms: x€csyms M = x # § z€ssyms M — x # {
by (auto iff add: syms-sep)

lemma (in MFSM) sepl: [z€X A;x¢csyms M; x¢ssyms M| — z={ using al-
pha-cons by auto

lemma (in MFSM) sep-out-syms” z€csyms M =—> x # sep M z€ssyms M = x
sep M by (unfold sep-fold, (fast dest: sep-out-syms) +)

lemma (in MFSM) sepl’. [z€X A;xécsyms M; x¢ssyms M| = x=sep M using
alpha-cons’ by auto

lemma (in MFSM) states-partll: z€sstates A = —x€cstates A using states-part
by (auto)

lemma (in MFSM) states-partl2: z€ cstates A => —xEsstates A using states-part
by (auto)

lemma (in MFSM) states-part-elim[elim]: [¢€Q A; qEsstates A = P; qEcstates
A = P] = P using states-part by (auto)

lemmas (in MFSM) mfsm-cons = sep-out-syms sepl sep-out-syms’ sepl’ states-partl1
states-partl2 syms-part syms-sep uniqueSp

lemmas (in MFSM) mfsm-cons’ = sep-out-syms sepl sep-out-syms’ sepl’ states-partl1
states-partI2 syms-part uniqueSp

lemma (in MFSM) delta-cases: [(q,p,q')€5 A; qEsstates A N pEssyms M A
q’esstates A N q'¢{sp A sp | sp.sEcstates A \ pEcsyms M} = P;
gEsstates A N\ p=f N\ q'Ecstates A = P;
gEcstates A N pEcsyms M N ¢'=sp A ¢ p —
Pl= P
using delta-fmt by auto

lemma (in MFSM) delta-elems: (q,p,q')€d A —> q€Esstates A N ((p€ssyms M
A q'esstates A N (¢'¢{sp A s p | s p . s€cstates A N pccsyms M})) V (p=f A
q'Ecstates A)) V (gEcstates A N\ pEcsyms M N q'=sp A q p)

using delta-fmt by auto

lemma (in MFSM) delta-cases”: [(q,p,q")€6 A; qE€sstates A N pEssyms M A

q’esstates A N ¢'¢{sp A sp | sp.sEcstates A N\ pEcsyms M} = P;
gEsstates A N p=sep M A q'Ccstates A —> P;

23

gEcstates A N pEcsyms M N ¢'=sp A ¢ p —
Pl= P
using delta-fmt’ by auto

lemma (in MFSM) delta-elems”: (q,p,q")€6 A = q€sstates A N ((p€ssyms M A
q’esstates A N (¢'¢{sp A sp | sp . sccstates A N pEcsyms M})) V (p=sep M A
q'Ecstates A)) V (gE€cstates A N\ pEcsyms M N q'=sp A q p)

using delta-fmt’ by auto

4.2.3 Some implications of the M-automata conditions
This list of properties is taken almost literally from [1].

Each control state s has sp A s p as its unique p-successor

lemma (in MFSM) cstate-succ-ex: [pEcsyms M; s€cstates A] = (s,p,sp A s p)
€d A
using delta-fmt by (auto)

lemma (in MFSM) cstate-succ-ex”: [pEcsyms M; sc€cstates A; 6 A C D] =
(s,p,sp A s p) € D using cstate-succ-ex by auto

lemma (in MFSM) cstate-succ-unique: [s€cstates A; (s,p,x)€6 A] = pEcsyms
M A z=sp A s p by (auto elim: delta-cases dest: mfsm-cons’)

Transitions labeled with control symbols only leave from control states

lemma (in MFSM) csym-from-cstate: [(s,p,s")€0 A; pEcsyms M| = s€cstates
A by (auto elim: delta-cases dest: mfsm-cons’)

s is the only predecessor of sp A s p

lemma (in MFSM) sp-pred-ex: [s€cstates A; pEcsyms M] = (s,p,sp A s p)€S
A using delta-fmt by auto

lemma (in MFSM) sp-pred-unique: [s€cstates A; pEcsyms M; (s',p’,sp A s p)€d
Al = s'=s A p'=p A s’Ecstates A N\ p'€csyms M by (erule delta-cases) (auto
dest: mfsm-cons’)

Only separators lead from stack states to control states

lemma (in MFSM) sep-in-between: [s€sstates A; s'€cstates A; (s,p,s")€d A] =
p=f by (auto elim: delta-cases dest: mfsm-cons’)

lemma (in MFSM) sep-to-cstate: [(sf,s")€d A] = s€sstates A N s'€cstates A
by (auto elim: delta-cases dest: mfsm-cons’)

Stack states do not have successors labelled with control symbols

lemma (in MFSM) sstate-succ: [sEsstates A; (s,7,s)€0 A] = v ¢ csyms M by
(auto elim: delta-cases dest: mfsm-cons’)

lemma (in MFSM) sstate-succ2: [s€sstates A; (s,y,s")€0 A; v#4] = ~yE€ssyms
M A s’esstates A by (auto elim: delta-cases dest: mfsm-cons’)

M-automata do not accept the empty word

24

lemma (in MFSM) not-empty[iff]: [|¢lang A
apply (unfold lang-def langs-def)
apply (clarsimp)
apply (insert sO-fmt F-fmt)
apply (subgoal-tac s0 A = f)
apply (auto dest: mfsm-cons’)
done

The paths through an M-automata have a very special form: Paths starting
at a stack state are either labelled entirely with stack symbols, or have a
prefix labelled with stack symbols followed by a separator

lemma (in MFSM) path-from-sstate: ls . [s€sstates A; (s,w,f)€trclA A] =
(fesstates A N welists (ssyms M)) V (Fwl w2 t. w=wlQf#w2 N\ wiElists (ssyms
M) A tesstates A A (s,wlit)€trclA A A (ti#Hw2,f)etrclA A)
proof (induct w)
case Nil thus ?case by (subgoal-tac s=f) auto
next
case (Cons e w)
note IHP[rule-format]=this
then obtain s’ where STEP: (s,e,s")€(d A) N s€Q A N eeX A A (s, w,f)etrclA
A by (fast dest: trclAD-uncons)
show ?case proof (cases e=f)
assume e=f
with JHP have e#w=[|Qf#w A [|€lists (ssyms M) A s€sstates A A (s,]],s)EtrclA
A N (s,e#w,f)etrclA A using states-part by (auto)
thus ?case by force
next
assume e#f
with IHP STEP sstate-succ2 have EC: ecssyms M A s'€sstates A by blast
with IHP STEP have (f € sstates A N w € lists (ssyms M)) V (wl w2 t.
w=wl QYf # w2 A wl € lists (ssyms M) A t€sstates A N\ (s',wl,t)EtrclA A A
(t8#w2,f)etrclA A) (is ?C1V?C2) by auto
moreover {
assume ?C1
with EC have fesstates A N e#tw € lists (ssyms M) by auto
} moreover {
assume ?C2
then obtain w! w2t where CASE: w = w1 Q § # w2 A wl € lists (ssyms
M) A tesstates A N (s wilt)etrclA A A (LE#Hw2,f)EtrclA A by (fast)
with EC have e#w = (e#wl) Q § # w2 A e#wl € lists (ssyms M) by auto
moreover from CASE STEP IHP have (s,e#wl,t)€trclA A using states-part
by auto
moreover note CASE
ultimately have Jwl w2 t. e#w = wl Q § # w2 A wl € lists (ssyms M) A
t€sstates A A (s,wlt)€trclA A A (t5#w2,f)EtrclA A by fast
} ultimately show ?case by blast
qed
qed

25

Using MFSM .path-from-sstate, we can describe the format of paths from
control states, too. A path from a control state s to some final state starts
with a transition (s, p, sp A s p) for some control symbol p. It then continues
with a sequence of transitions labelled by stack symbols. It then either ends
or continues with a separator transition, bringing it to a control state again,
and some further transitions from there on.

lemma (in MFSM) path-from-cstate:
assumes A: s€cstates A (s,c,f)EtrclA A fEsstates A
assumes SINGLE: !! p w . [e=p#w; pEcsyms M; welists (ssyms M); (s,p,sp A
sp)ed A; (sp A s p,w,f)etrclA A] = P
assumes CONC: ! pw ert s’ . [e=pH#wQitcr; p€csyms M; welists (ssyms M);
tesstates A; s'Ecstates A; (s,p,sp A s p)€S A; (sp A s pw,t)EtrclA A; (t,4,s)€6
A; (s er,f)etrclA A] = P
shows P
proof (cases c)
case Nil thus P using A by (subgoal-tac s=f, auto dest: mfsm-cons’)
next
case (Cons p w) note CFMT=this
with cstate-succ-unique A have SPLIT: pccsyms M A (s,p,sp A s p)€d A A (sp
A s p,w,f)etrclA A by (blast dest: trclAD-uncons)
with path-from-sstate A CFMT uniqueSp have CASES: (fesstates A N\ welists
(ssyms M) V (3wl w2 t. w=wlQf#w2 N\ wi€lists (ssyms M) N t€sstates A A (sp
A s pwlt)etrclA A N (ti#Hw2,f)etrelA A) (is 2C1 VvV 2C2) by blast
moreover {
assume CASE: 7C1
with SPLIT SINGLE A CFMT have P by fast
} moreover {
assume CASE: ?C2
then obtain w! w2 t where WEMT: w=wlQf#w2 N wiclists (ssyms M) A
tesstates A N (sp A s p,wlt)etrclA A A (tLiH#w2,f)ElrclA A by fast
with sep-to-cstate obtain s’ where s'€cstates A A (1,8,s")€d A A (s, w2,f)etrclA
A by (fast dest: trclAD-uncons)
with SPLIT CASE WEMT have p#w=p#HwlQi#w2 A pEcsyms M N wi€Elists
(ssyms M) A t€sstates A N s’Ecstates AN (s,p,sp A sp)€d AN (sp A s pwl t)EtrelA
AN (ti,s)€d AN (s w2, f)etrclA A by auto
with CFMT CONC have P by (fast)
} ultimately show P by blast
qed

4.3 pre*-sets of regular sets of configurations

Given a regular set L of configurations and a set A of string rewrite rules,
pre® A L is the set of configurations that can be rewritten to some configu-
ration in L, using rules from A arbitrarily often.

We first define this set inductively based on rewrite steps, and then provide
the characterization described above as a lemma.

inductive-set pre-star :: (‘c,’l) SRS = ('s,’c,’e) FSM-rec-scheme = 'c list set

26

(pre*)
for A L
where
pre-refl: c€lang L = c€pre* A L |
pre-step: [c'€pre* A L; (c,a,c’)etr A] = c€pre* AL

Alternative characterization of pre* A L

lemma pre-star-alt: pre* A L = {c.3c'€lang L . Jas . (c,as,c’)etrel (tr A)}
proof —

{

fix z ¢’ as
have [z <gs ¢’ € trel (tr A); ¢’ € lang L] = z € pre* A L
by (induct rule: trel.induct) (auto intro: pre-step pre-refl)
}

then show ?thesis
by (auto elim!: pre-star.induct intro: trcl.intros)

qged

lemma pre-star-altl: [c’'€lang L; c— g5 c'€trel (tr A)] = cepre* A L by (unfold
pre-star-alt, auto)

lemma pre-star-altE: [c€pre* A L; ¢/ as. [¢’€lang L; ¢ qs c'Etrel (tr A)] =
P] = P by (unfold pre-star-alt, auto)

4.4 Nondeterministic algorithm for pre*

In this section, we formalize the saturation algorithm for computing pre* A
L from [1]. Roughly, the algorithm works as follows:

1. Set D=0 A

2. Choose a rule ([p, 7], a, ¢) € rules M and states ¢,¢’€Q A, such that
D can read the configuration ¢’ from state ¢ and end in state ¢’ (i.e.

(g, ¢’ ¢") € trclAD A D) and such that (sp A q p, v, ¢) ¢ D. If this
is not possible, terminate.

3. Add the transition (sp A ¢ p, 7, ¢') ¢ D to D and continue with step
2

Intuitively, the behaviour of this algorithm can be explained as follows: If
there is a configuration ¢; @ ¢’ @ ¢y € pre* A L, and a rule (p # v, a, ¢)
€ A, then we also have ¢; @ p # v @Q ¢y € pre* A L. The effect of step 3
is exactly adding these configurations ¢; @ p # ~v @Q ¢22 to the regular set
of configurations.

We describe the algorithm nondeterministically by its step relation ps-R.
Each step describes the addition of one transition.

In this approach, we directly restrict the domain of the step-relation to
transition relations below some upper bound ps-upper. We will later show,

27

that the initial transition relation of an M-automata is below this upper
bound, and that the step-relation preserves the property of being below this
upper bound.

We define ps-upper M A as a finite set, and show that the initial transition
relation 6 A of an M-automata is below ps-upper M A, and that ps-R M
A preserves the property of being below the finite set ps-upper M A. Note
that we use the more fine-grained ps-upper M A as upper bound for the
termination proof rather than Q A x ¥ A x @ A, as sp A ¢ p is only
specified for control states ¢ and control symbols p. Hence we need the finer
structure of ps-upper M A to guarantee that sp is only applied to arguments
it is specified for. Anyway, the fine-grained ps-upper M A bound is also
needed for the correctness proof.
definition ps-upper :: (‘c,'l,’el) DPN-rec-scheme = (’s,’c,’e2) MFSM-rec-scheme
= (’s,’¢) LTS where

ps-upper M A == (sstates A x ssyms M X sstates A) U (sstates A x {sep M}
x cstates A) U {(s,p,sp A s p) | s p. s€cstates A N pEcsyms M}

inductive-set ps-R :: ('c,’l,'el) DPN-rec-scheme = (’s,’c,’e2) MFSM-rec-scheme
= (('s,’c) LTS = ('s,’c) LTS) set for M A
where

lp,y]—=a ¢’ € rules M; (g,c’,q")etrclAD A D; (sp A q p,y,q")¢D; DCTps-upper M
A) = (D,insert (sp A q p,y,q") D)€ps-R M A

lemma ps-R-dom-below: (D,D")eéps-R M A = DCps-upper M A by (auto elim:
ps-R.cases)

4.4.1 Termination

Termination of our algorithm is equivalent to well-foundedness of its (con-
verse) step relation, that is, we have to show wf ((ps-R M A)~1).

In the following, we also establich some properties of transition relations
below ps-upper M A, that will be used later in the correctness proof.

lemma (in MFSM) ps-upper-cases: [(s,e,s’)Eps-upper M A;
[s€sstates A; e€ssyms M; s'€sstates A] = P;
[s€sstates A; e=t; s'Ecstates A] = P;
[s€cstates A; eecsyms M; s'=sp A s e] = P
]=P
by (unfold ps-upper-def sep-def, auto)

lemma (in MFSM) ps-upper-cases’: [(s,e,s’)Eps-upper M A;
[s€sstates A; ecssyms M; s'€sstates A] = P;
[s€sstates A; e=sep M; s'€cstates A] = P;
[s€cstates A; eccsyms M; s'=sp A s e] = P
]=P
apply (rule ps-upper-cases)
by (unfold sep-def) auto

28

lemma (in MFSM) ps-upper-below-trivial: ps-upper M A C Q@ A X ¥ A x Q A
by (unfold ps-upper-def, auto simp add: states-part alpha-cons uniqueSp sep-def)

lemma (in MFSM) ps-upper-finite: finite (ps-upper M A) using ps-upper-below-trivial
finite-delta-dom by (auto simp add: finite-subset)

The initial transition relation of the M-automaton is below ps-upper M A

lemma (in MFSM) initial-delta-below: 6 A C ps-upper M A using delta-fmt by
(unfold ps-upper-def sep-def) auto

Some lemmas about structure of transition relations below ps-upper M A

lemma (in MFSM) cstate-succ-unique’: [s€cstates A; (s,p,x)€D; DCps-upper M
A = pecsyms M N x=sp A s p by (auto elim: ps-upper-cases dest: mfsm-cons’)
lemma (in MFSM) csym-from-cstate”: [(s,p,s"Y€D; DCTps-upper M A; pEcsyms
M| = secstates A by (auto elim: ps-upper-cases dest: mfsm-cons’)

The only way to end up in a control state is after executing a separator.

lemma (in MFSM) ctri-after-sep: assumes BELOW: D C ps-upper M A
assumes A: (q,¢’,q")€trclAD A D c¢'#]|
shows ¢'ccstates A = (last ¢’ = 1)
proof —
from A have (g¢,butlast ¢’ Q [last ¢'],q")etrclAD A D by auto
with A obtain ¢h where (gh,[last ¢'],q")€trclAD A D by (blast dest: tr-
clAD-unconcat)
hence (gh,last ¢’,q")€ D by (fast dest: trclAD-single)
with BELOW have IS: (qh,last ¢’,q")€ps-upper M A by fast
thus %thesis by (erule-tac ps-upper-cases) (auto dest: mfsm-cons’ simp add:
sep-out-syms)
qed

When applying a rules right hand side to a control state, we will get to a
stack state

lemma (in MFSM) ctrl-rule: assumes BELOW: D C ps-upper M A
assumes A: ([p,y],a,c’)€rules M and B: g€cstates A (q,c’,q")etrclAD A D
shows ¢’csstates A
proof —
from A show ?thesis
proof (cases rule: rule-cases)
case (no-spawn p v a p’ w)
hence C: ¢ p o w q' € trclAD A D Vz€set w. x € ssyms M p’' € csyms M
using B by auto
hence last (p'#w) # £ A ¢'€Q A by (unfold sep-def) (auto dest: mfsm-cons’
trclAD-elems)
with C BELOW ctri-after-seplof D q p'#w q'| show (q’ € sstates A) by (fast
dest: mfsm-cons’)
next
case (spawn p v a pl wl p2 w2)

29

hence C: ¢ Dl H# wl Qf # p2 # w2 q' € trclAD A D Y z€set w2. x € ssyms
M p2 € csyms M using B by auto

hence last (p1 # wl Q § # p2 # w2) # sep M A ¢’€Q A by (auto dest:
mfsm-cons’ trclAD-elems)

with C BELOW ctri-after-seplof D q p1 # w1 Q § # p2 # w2 ¢'] show (¢’ €
sstates A) by (unfold sep-def, fast dest: mfsm-cons’)

qed

qed

ps-R M A preserves the property of being below ps-upper M A, and the
transition relation becomes strictly greater in each step
lemma (in MFSM) ps-R-below: assumes E: (D,D')eps-R M A

shows DCD’ A D’ C ps-upper M A

proof —
from E have BELOW: DCps-upper M A by (simp add: ps-R-dom-below)

{
fixpyacqq
assume A: [p, 7] —q ¢’ € rules M q — 1 q' € trclAD A D
obtain p’ cr’ where CSPLIT: pecsyms M A p'€csyms M A c'=p'#cr’ A
~v€ssyms M by (insert A) (erule rule-cases, fast+)
with BELOW A obtain gh where SPLIT: (q,p’,qh)€D (q,p’,qh)Eps-upper M
A by (fast dest: trclAD-uncons)
with CSPLIT have QC': q€cstates A A\ gh=sp A q p’ by (auto elim: ps-upper-cases
dest: syms-part iff add: syms-sep)
with BELOW A ctri-rule[of D p v a ¢’ q ¢] have Q'S: q¢'Esstates A by simp
from QC CSPLIT have sp A q p € sstates A by (simp add: uniqueSp)
with Q'S CSPLIT have sp A qp —~ q' € ps-upper M A by (unfold ps-upper-def,
stmp)

with F show ?thesis by (auto elim!: ps-R.cases)
qed

As a result of this section, we get the well-foundedness of ps-R M A, and
that the transition relations that occur during the saturation algorithm stay
above the initial transition relation 6 A and below ps-upper M A

theorem (in MFSM) ps-R-wf: wf ((ps-R M A)~') using ps-upper-finite sat-wf[where
a=id, simplified] ps-R-below by (blast)

theorem (in MFSM) ps-R-above-inv: is-inv (ps-R M A) (§ A) (AD.§ A C D) by
(auto intro: invl elim: ps-R.cases)

theorem (in MFSM) ps-R-below-inv: is-inv (ps-R M A) (6 A) (AD. DCps-upper
M A) by (rule invl) (auto simp add: initial-delta-below ps-R-below)

We can also show that the algorithm is defined for every possible initial
automata

theorem (in MFSM) total: 3D. (6 A, D)endet-algo(ps-R M A) using ps-R-wf
ndet-algo-total by blast

30

4.4.2 Soundness

The soundness (over-approximation) proof works by induction over the def-
inition of pre*.

In the reflexive case, a configuration from the original language is also in
the saturated language, because no transitions are killed during saturation.

In the step case, we assume that a configuration ¢’ is in the saturated lan-
guage, and show for a rewriting step c—,c’ that also c is in the saturated
language.

theorem (in MFSM) sound: [cEpre-star (rules M) A; (6 A,s’)endet-algo (ps-R
M A)] = celang (A(6:=s"))
proof —

let A" = A(6:=s5")

assume A:(§ A,s’)endet-algo (ps-R M A)

— Some little helpers

from A ps-R-above-inv have SUBSET: § A C s’ by (unfold ndet-algo-def) (auto
dest: inv)

have TREQ: !'D . trclAD A D = trclAD ?A’ D by (rule trclAD-eq, simp-all)

from A ps-R-below-inv have SATSETU: § ?A’ C ps-upper M A by (erule-tac
ndet-algoE) (auto dest: inv iff add: initial-delta-below)

assume cepre-star (rules M) A
— Make an induction over the definition of pre*
thus ?thesis proof (induct ¢ rule: pre-star.induct)
fix ¢ assume celang A — Reflexive case: The configuration comes from the
original regular language
then obtain f where F: feF A A (s0 A,c,f)€trclA A by (unfold lang-def
langs-def, fast) — That is, ¢ can bring the initial automata from its start state to
some final state f
with SUBSET trclAD-mono-adv|of § A s’ A ?A’] have (s0 A,c,f)etrclA ?A’ by
(auto) — Because the original transition relation § A is a subset of the saturated
one s’ (SUBSET) and the transitive closure is monotonous, (s0 4, ¢, f) is also in
the transitive closure of the saturated transition relation
with F show c€lang ?A’ by (unfold lang-def langs-def) auto — and thus in
the language of the saturated automaton
next
— Step case:
fix a cc’
assume JHP: ¢’ € pre* (rules M) A (¢, a, ¢’) € tr (rules M) — We take some
configurations ¢ and ¢’ € pre* (rules M) A and assume that ¢ can be rewritten to
¢’ in one step
¢’ € lang ?A’ — We further assume that ¢’ is in the saturated language, and
we have to show that also ¢ is in that language

from IHP obtain f where F: feF ?A’ A (s0 ?A’,c¢'\f) € trclA ?A' by (unfold
lang-def langs-def, fast) — Unfolding the definition of lang

from THP obtain w! w2 r r’ where CREW: c=wl1Q(rQuw2) A ¢'=wiQ(r'Qw2)
A (r,a,r")erules M by (auto elim!: tr.cases) — Get the rewrite rule that rewrites

31

¢ to ¢
then obtain p v p’ w’ where RFMT: pccsyms M A p’€csyms M A yEssyms
M A r=[py] A r'=p'#w’ by (auto elim!: rule-cases) — This rewrite rule rewrites
some control symbol p followed by a stack symbol v to another control symbol p’
and a sequence of further symbols w’
with FF CREW obtain ¢q gh ¢’ where SPLIT: (s0 ?A’wl,q)€trclA ?A" A
(g, p"#w’,q")etrclA ?A" N (¢',w2,f)etrclA ?A’ A (q,p’,gh)€d ?A’
by (blast dest: trclAD-unconcat trclAD-uncons) — Get the states in the
transition relation generated by the algorithm, that correspond to the splitting of
¢’ as established in CREW

have SHORTCUT: (q,[p,7],q")EtrclA ?A’ — In the transition relation generated
by our algorithm, we can get from ¢ to ¢’ also by [p, 7]
proof —
have SI: (¢,p,sp A q p)ed ?A" and QINC: g€ cstates A — The first transition,
from ¢ with p to sp A ¢ p is already contained in the initial M-automata. We also
need to know for further proofs, that ¢ is a control state.
proof —
from SPLIT SATSETU have (q,p’,qh)Eps-upper M A by auto
with RFMT show q¢€cstates A by (auto elim!: ps-upper-cases dest:
mfsm-cons’ simp add: sep-def)
with RFMT have (q,p,sp A q p)€d A by (fast intro: cstate-succ-ex)
with SUBSET show (q,p,sp A q p)€d ?A’ by auto
qed
moreover
have S2: (sp A q p,y,q")€6 ?A’ — The second transition, from sp A ¢ p with
~ to ¢’ has been added during the algorithm’s execution
proof —
from A have s’¢ Domain (ps-R M A) by (blast dest: termstate-ndet-algo)
moreover from CREW RFMT SPLIT TREQ SATSETU have (sp
A q py,q¢s’ = (s'insert (sp A q p,y,q") s') € (ps-R M A) by (auto intro:
ps-R.intros)
ultimately show ?thesis by auto
qed
moreover
have sp A qp € Q ?A' A ¢’'eQ ?A' N qeQ ?A’ N peX A’ N yeX 74" —
The intermediate states and labels have also the correct types
proof —
from S2 SATSETU have (sp A ¢ p,v,q")Eps-upper M A by auto
with QINC RFMT show ?thesis by (auto elim: ps-upper-cases dest:
mfsm-cons’ simp add: states-part alpha-cons)
qed
ultimately show ?thesis by simp
qed

have (s0 ?A",w1Q(([p,])Qw2),f)etrclA ?A’ — Now we put the pieces together

and construct a path from s0 A with w1 to ¢, from there with [p, 7] to ¢’ and then
with w2 to the final state f

32

proof —
from SHORTCUT SPLIT have (g¢,([p,7])Quw2,f)etrclA ?A’ by (fast dest:
trclAD-concat)
with SPLIT show ?thesis by (fast dest: trclAD-concat)
qed
with CREW RFMT have (s0 ?A’,c,f)€trclA ?A’ by auto — this is because ¢
=wl Q [p,] @ w2
with F show c€lang ?A’ by (unfold lang-def langs-def, fast) — And thus c is
in the language of the saturated automaton
qged
qged

4.4.3 Precision

In this section we show the precision of the algorithm, that is we show that
the saturated language is below the backwards reachable set.

The following induction scheme makes an induction over the number of
occurences of a certain transition in words accepted by a FSM:

To prove a proposition for all words from state gs to state ¢f in FSM A that
has a transition rule (s, a, s’) € § A, we have to show the following:

e Show, that the proposition is valid for words that do not use the tran-
sition rule (s, a, s’) € § A at all

e Assuming that there is a prefix wp from ¢s to s and a suffix ws from
s"to qf, and that wp does not use the new rule, and further assuming
that for all prefixes wh from g¢s to s/, the proposition holds for wh @
ws, show that the proposition also holds for wp @ a # ws.

We actually do use D here instead of § A, for use with trclAD.

lemma ins-trans-induct[consumes 1, case-names base step|:
fixes ¢gs and ¢f
assumes A: (gs,w,qf)€trclAD A (insert (s,a,s") D)
assumes BASE-CASE: ! w . (gs,w,qf)€trclAD A D = P w
assumes STEP-CASE: ! wp ws . [(gs,wp,s)€trclAD A D; (s',ws,qf)EtrclAD
A (insert (s,a,s’) D); !l wh . (gs,wh,s")€trclAD A D = P (whQus)] = P
(wpQa#ws)
shows P w
proof —
— Essentially, the proof works by induction over the suffix ws
{
fix ws
have !lgh wp. [(gs,wp,qh)€trclAD A D; (qh,ws,qf)€trclAD A (insert (s,a,s") D)]
= P (wpQus) proof (induct ws)
case (Nil gh wp) with BASE-CASE show ?case by (subgoal-tac gh=qf, auto)
next
case (Cons e w gh wp) note IHP=this

33

then obtain ¢hh where SPLIT: (gh,e,qhh)E(insert (s <4 s’) D) A
(qghh,w,qf)etrclAD A (insert (s <—q s') D) A gh€@Q A N e€X A by (fast dest:
trclA D-uncons)

show ?case proof (cases (qh,e,qghh) = (s,a,s’))
case False
with SPLIT have (qh,[e],qhh)€trclAD A D by (auto intro: trclAD-one-elem
dest: trclAD-elems)
with IHP have (gs,wpQ[e],ghh)€trclAD A D by (fast intro: trclAD-concat)
with THP SPLIT have P ((wpQe])Qw) by fast
thus ?thesis by simp
next
case True note CASE=this
with SPLIT IHP have (gs,wp,s) € trclAD A D N s’ <y qf € trclAD A
(insert (s <>q s') D) Nwh. (gs,wh,s’)€trclAD A D = P (whQuw) by simp-all
with STEP-CASE CASE show ?thesis by simp
qed
qed
} note C=this
from A Clof || ¢s w| show ?thesis by (auto dest: trclAD-elems)
qed

The following lemma is a stronger elimination rule than ps-R.cases. It makes
a more fine-grained distinction. In words: A step of the algorithm adds a
transition (sp A ¢ p, v, s'), if there is a rule ([p, 7], a, p’ # ¢’), and a
transition sequence (¢, p’ # ¢’, s’) € trclAD A D. That is, if we have (sp A
qp’, ¢, s’) € trclAD A D.

lemma (in MFSM) ps-R-elims-adv:
assumes (D,D’)eps-R M A
obtains v s’ a p’ ¢/ p ¢ where
D’=insert (sp A q p,y,8") D (sp A q p,7,8")¢D [py]—a p'#c’ € rules M
(q,p'#c’,s")etrclAD A D
pEcsyms M ~vEssyms M qEcstates A p'Ecsyms M a€labels M (q,p’,sp A q p")€D
(sp A qp',c ;s\ etrcdlAD A D
using assms
proof (cases rule: ps-R.cases)
case A: (Ipvyac' qq))
then obtain p’ cc’ where RFMT: pccsyms M A c'=p'#cc’ N\ p'€csyms M A
~vEssyms M A a€labels M by (auto elim!: rule-cases)
with A obtain ¢h where SPLIT: (q,p’,qh)eD A (gh,cc’,q")€ trclAD A D by
(fast dest: trclAD-uncons)
with A RFMT have g€cstates A A\ gh=sp A q p’ by (subgoal-tac (q,p’,qh)Eps-upper
M A) (auto elim!: ps-upper-cases dest: syms-part sep-out-syms)
then show ?thesis using A RFMT SPLIT that by blast
qed

Now follows a helper lemma to establish the precision result. In the original
paper [1] it is called the crucial point of the precision proof.

It states that for transition relations that occur during the execution of the

34

algorithm, for each word w that leads from the start state to a state sp A ¢
p, there is a word ws @ [p] that leads to sp A ¢ p in the initial automaton
and w can be rewritten to ws @ [p].

In the initial transition relation, a state of the form sp A ¢ p has only
one incoming edge labelled p (MFSM.sp-pred-ex MFSM.sp-pred-unique).
Intuitively, this lemma explains why it is correct to add further incoming
edges to sp A ¢ p: All words using such edges can be rewritten to a word
using the original edge.

lemma (in MFSM) sp-property:
shows is-inv (ps-R M A) (6 A) (AD.
(V w.VpeEcsyms M.V qcstates A. (s0 A,w,sp A q p)EtrclAD A D — (Jws
as. (s0 A,ws,q)etrcld A N (w,as,wsQp])etrcl (tr (rules M)))) A
(VP is-inv (ps-R M A) (§ A) P — P’ D))
— We show the thesis by proving that it is an invariant of the saturation procedure
proof (rule inv-usel; intro alll balll impl conjl)
— Base case, show the thesis for the initial automata
fix wpgq
assume A: p € csyms M q € cstates A sO0 A < sp A qp € trclA A
show Jws as. s0 A —qys q € trclA A A (w,as,wsQ[p])etrel (tr (rules M))
proof (cases w rule: rev-cases) — Make a case distinction wether w is empty
case Nil — w cannot be empty, because s0 is a control state, and sp is a stack
state, and by definition of M-automata, these cannot be equal
with A have s0 A = sp A q p by (auto)
with A s0-fmt uniqueSp have False by (auto dest: mfsm-cons’)
thus ?thesis ..
next
case (snoc ws p’) note CASE=this
with A obtain ¢h where (s0 A,ws,qh)€trclA A N (gh,[p'],sp A q p)EtrclA A
A (gh,p';sp A q p)€d A by (fast dest: trclAD-unconcat trclAD-single) — Get the
last state gh and symbol p’ before reaching sp
moreover with A have p=p’ A ¢h=q by (blast dest: sp-pred-unique) — This
symbol is p, because the p-edge from ¢ is the only edge to sp A ¢ p in an M-automata
moreover with CASE have (w,[],wsQ[p]) € trcl (tr (rules M)) by (fast intro:
trcl.empty)
ultimately show ?thesis by (blast)
qed
next
— Step case
fix DI D2wpq
assume
IH: Y w. ¥V pecsyms M. N q€cstates A. s0 A < sp A g p € trclAD A D1
— (ws as. sO0 A —ys q¢ € trelAD A (§ A) N (w —qs ws @ [p] € trel (tr
(rules M)))) — By induction hypothesis, our proposition is valid for D1
and SUCC: (D1,D2)eps-R M A — We have to show the proposition for some
D2, that is a successor state of DI w.r.t. ps-R M A
and PI: p € csyms M q € cstates A and P2: sO0 A < sp A qp € trclAD A
D2 — Premise of our proposition: We reach some state sp A q p
and USE-INV: AP’ is-inv (ps-R M A) (6 A) P’ = P’ DI — We can use

35

known invariants

from SUCC have SS: DI C ps-upper M A by (blast dest: ps-R-dom-below)
from USE-INV have A2: § A C D1 by (blast intro: ps-R-above-inv)

from SUCC obtain v s’ pp aa cc’ gq¢ where ADD: insert (sp A qq pp,y,s’) D1
= D2 A (sp A qq pp,y,s')¢ D1 and
RCONS: ([pp,y],aa,cc’)erules M A (qq,cc’,s’)EtrclAD
A D1 N qq€cstates A N\ ppecsyms M N aa€labels M
by (blast elim!: ps-R-elims-adv) — Because of SUCC, we obtain D2 by adding
a (new) transition (sp A qq pp, v, s’) to D1, such that there is a rule ([pp, 7], aa,
cc’) € rules M and the former transition relation can do (qq, cc’, s') € trclAD A
D1
from P2 ADD have P2" s0 A <y sp A qp € trclAD A (insert (sp A qq pp —~
s") DI1) by simp

show Jws as. s0 A —ys q € trelA A N w —qs5 ws Q [p] € trel (tr (rules M))
using P2’

— We show the proposition by induction on how often the new rule was used.
For this, we regard a prefix until the first usage of the added rule, and a suffix that
may use the added rule arbitrarily often

proof (induction rule: ins-trans-induct)
case (base) — Base case, the added rule is not used at all. The proof is
straighforward using the induction hypothesis of the outer (invariant) induction
thus ?case using IH P1 by simp
next

fix wpre wsfr — Step case: We have a prefix that does not use the added rule,
then a usage of the added rule and a suffix. We know that our proposition holds
for all prefixes that do not use the added rule.

assume IP1: (s0 A,wpre, sp A qq pp) € trclAD A D1 and IP2: (s, wsfr, sp A
qp) € trclAD A (insert (sp A qq pp, v, s') DI)

assume IIH: Nwh. (s0 A, wh, s’) € trclAD A D1 = Jws as. (s0 A, ws, q) €
trclAD A (6§ A) A ((wh Q wsfz, as, ws Q [p]) € trel (tr (rules M)))

from IP1 IH RCONS obtain wps aps where CI: (s0 A,wps,qq) € trclAD A
(0 A) N wpre = qps wps Q [pp] € trel (tr (rules M)) by fast — This is an instance
of a configuration reaching a sp-state, thus by induction hypothesis of the outer
(invariant) induction, we find a successor configuration wps @ [pp| that reaches this
state using pp as last edge in § A

with A2 have (s0 A,wps,qq) € trclAD A D1 by (blast dest: trclAD-mono) —
And because 6 A C D1, we can do the transitions also in D1

with RCONS have (s0 A,wpsQcc’, s’) € trclAD A D1 by (blast intro: tr-
clAD-concat) — From above (RCONS) we know (qq, cc', s) € trclAD A D1, and
we can concatenate these transition sequences

then obtain ws as where C2: (s0 A,ws,q) € trclAD A (§ A) A (wpsQcc’) @
wsfr —qs ws Q [p] € trel (tr (rules M)) by (fast dest: IIH) — This concatenation
is a prefix to a usage of the added transition, that does not use the added transition
itself. (The whole configuration bringing us to sp A ¢ p is wps @ cc’ @ wsfzr). For
those prefixes, we can apply the induction hypothesis of the inner induction and
obtain a configuration ws @ [p] that is a successor configuration of wps @ cc’ @

36

wsfr, and with which we can reach sp A ¢ p using p as last edge

have Jas. wpre @ v # wsfr —qs ws @ [p] € trel (¢r (rules M)) — Now we
obtained some configuration ws @ [p], that reaches sp A ¢ p using p as last edge
in 0 A. Now we show that this is indeed a successor configuration of wpre Q ~ #
wsfz.
proof —
— This is done by putting together the transitions and using the extensibility
of string rewrite systems, i.e. that we can still do a rewrite step if we add context
from C1 have wpreQ(y#wsfr) — aps (wpsQ[pp])Q(y#wsfx) € trel (tr (rules
M)) by (fast intro: srs-ext)
hence wpreQy#wsfr — qps wpsQ([pp,y])Qusfr € trel (tr (rules M)) by simp
moreover from RCONS have wpsQ([pp,y])Quwsfz “lad] wpsQcc'Qusfr €
trel (tr (rules M)) by (fast intro: tr.rewrite trcl-one-elem)
hence wpsQ([pp,y])Quwsfz “[aq] (wpsQecQusfr € trcl (tr (rules M)) by
stmp
moreover note C2

ultimately have wpreQy#wsfr — wsQ[p] € trel (tr (rules M))

apsQ[aa]@Qas
by (fast intro: trcl-concat)
thus ?thesis by fast
qed
with C2 show Jws as. sO0 A —ys q € trclA A N wpre Q v # wsfr —>gs
ws @ [p] € trcl (tr (rules M)) by fast — Finally, we have the proposition for the
configuration wpre @ v # wsfr, that contains the added rule (s, v, s’) one time
more
qed
qed

Helper lemma to clarify some subgoal in the precision proof:

lemma trclA D-delta-update-inv: trclAD (A(6:=X|) D = trclAD A D by (simp
add: trclAD-by-trel’)

The precision is proved as an invariant of the saturation algorithm:

theorem (in MFSM) precise-inv:

shows is-inv (ps-R M A) (6 A) (AD. (lang (A(0:=D)) C pre* (rules M) A) A
(VP is-inv (ps-R M A) (§ A) P’ — P' D))
proof —

{
fix DI D2 w f

assume JH: {w. AfeF A. s0 A < f € trclAD A D1} C pre* (rules M) A —
By induction hypothesis, we know lang (A(d := DI1)) C pre* (rules M) A

assume SUCC: (D1,D2)eps-R M A — We regard a successor D2 of DI w.r.t.
ps-R M A

assume PI: feF A and P2: s0 A —y f € trclAD A D2 — And a word w €
lang (A(6 := D2))

assume USE-INV: AP’ is-inv (ps-R M A) (6 A) P’ = P’ D1 — For the
proof, we can use any known invariants

37

from SUCC obtain v s’ p a ¢’ ¢ where ADD: insert (sp A q p,y,s’) D1 = D2
A (sp A q pyy,s")¢D1 and
RCONS: ([p,y],a,c"yerules M A (q,c’,s")€trelAD
A D1 N g€cstates A N\ pEcsyms M N a€labels M N yEssyms M
by (blast elim!: ps-R-elims-adv) — Because of (D1, D2) € ps-R M A, we
obtain D2 by adding a (new) transition (sp A ¢ p, 7, s) to D1, such that there is
a rule ([p, 7], a, ¢') and we have (q, ¢/, s) € trclAD A D1
from P2 ADD have P2": s0 A <y f € trclAD A (insert (sp A q p —~ s’) DI)
by simp
from SUCC have SS: DI C ps-upper M A by (blast dest: ps-R-dom-below) —
We know, that the intermediate value is below the upper saturation bound
from USE-INV have A2: § A C D1 by (blast intro: ps-R-above-inv) — ... and
above the start value
from SS USE-INV sp-property have SP-PROP: (Y w .V pEcsyms M.V g€ cstates
A. (s0 Ayw,sp A qp)etrclAD A D1 — (3 ws as. (s0 A,ws,q)EtrclA A A (w,as,wsQ[p])Etrel
(tr (rules M))))
by blast — And we have just shown sp-property, that tells us that each
configuration w that leads to a state sp A ¢ p, can be rewritten to a configuration
in the initial automaton, that uses p as its last transition

have w € pre* (rules M) A using P2’ — We have to show that the word w
from the new automaton is also in pre* (rules M) A. We show this by induction on
how often the new transition is used by w

proof (rule ins-trans-induct)

fix wa assume (s0 A, wa, f) € trclAD A DI — Base case: w does not use the
new transition at all

with TH P1 show wa € pre* (rules M) A by (fast) — The proposition follows
directly from the outer (invariant) induction and can be solved automatically

next

fix wpre wsfr — Step case

assume IP1: (s0 A, wpre, sp A q p) € trclAD A D1 — We assume that we
have a prefix wpre leading to the start state s of the new transition and not using
the new transition

assume IP2: (s', wsfz, f) € trclAD A (insert (sp A q p, vy, s') D1) — We also
have a suffix from the end state s’ to f

assume IIH: lwh. (s0 A, wh, s’) € trclAD A DI = wh Q wsfr € pre* (rules
M) A — And we assume that our proposition is valid for prefixes wh that do not
use the new transition

— We have to show that the proposition is valid for wpre Q@ v # wsfz

from IP1 SP-PROP RCONS obtain wpres apres where SPP: (s0 A,wpres,q)€EtrclA
A N wpre —qpres wpresQlp] € trcl (tr (rules M)) by (blast) — We can apply
SP-PROP, to find a successor wpres @ [p] of wpre in the initial automata

with A2 have s0 A —ypres q € trclAD A D1 by (blast dest: trclAD-mono)
— wpres can also be read by D1 because of § A C DI
with RCONS have s0 A = wpresQc’ s’ € trclAD A D1 by (fast intro:
trclAD-concat) — Altogether we get a prefix wpres @ ¢’ that leads to s’, without
using the added transition
with IIH have (wpresQc’)Qusfr €pre-star (rules M) A by fast — We can
apply the induction hypothesis

38

then obtain as wo where CI: wpresQc'Qusfr < g5 wo € trcl (tr (rules M))
A wo€lang A by (auto elim!: pre-star-altE) — And find that there is a wo in the
original automata, that is a successor of wpres @ ¢’ @ wsfx
moreover have Jas. wpreQy#wsfr —qs wo € trel (tr (rules M)) — Next
we show that wo is a successor of wpre @ ~ # wsfx
proof —
from SPP have wpreQy#wsfr — apres (wpresQ[p|)Qy#wsfx € trel (tr (rules
M)) by (fast intro: srs-ext)
hence wpreQy#wsfr — qpres wpresQ([p,y])Qusfr € trel (tr (rules M)) by
simp
moreover from RCONS have wpresQ([p,y])Qusfr 4] wpresQc'Qusfr €
trel (tr (rules M)) by (fast intro: tr.rewrite trcl-one-elem)
moreover note (1
ultimately show ?thesis by (fast intro: trcl-concat)
qed
ultimately show wpre @ v # wsfr € pre* (rules M) A by (fast intro:
pre-star-altl) — And altogether we have wpre @ v # wsfr € pre* (rules M) A
qed
} note A=this

show ?thesis
apply (rule inv-usel)
subgoal by (auto intro: pre-refl) — The base case is solved automatically, it
follows from the reflexivity of pre*.
subgoal for D s’
unfolding lang-def langs-def
using A by (fastforce simp add: trclAD-delta-update-inv)
done
qged

As precision is an invariant of the saturation algorithm, and is trivial for the
case of an already saturated initial automata, the result of the saturation
algorithm is precise

corollary (in MFSM) precise: [(6 A,D)Endet-algo (ps-R M A); z€lang (A(§:=D

D] = zepre-star (rules M) A
by (auto elim!: ndet-algoE dest: inv intro: precise-inv pre-refl)

And finally we get correctness of the algorithm, with no restrictions on valid
states

theorem (in MESM) correct: [(§ A,D)endet-algo (ps-R M A)] = lang (A(6:=D
D)) = pre-star (rules M) A by (auto intro: precise sound)

So the main results of this theory are, that the algorithm is defined for every
possible initial automata

MFSM ?M ?A = 3 D. (6 A, D) € ndet-algo (ps-R ?M ?A)

and returns the correct result

[MFESM ?2M ?A; (6 ?A, ?D) € ndet-algo (ps-R ?M ?A)] = lang (?A(6 =
?D)) = pre* (rules M) 7A

39

We could also prove determination, i.e. the terminating state is uniquely
determined by the initial state (though there may be many ways to get
there). This is not really needed here, because for correctness, we do not
look at the structure of the final automaton, but just at its language. The
language of the final automaton is determined, as implied by MFSM.correct.

end

5 Non-executable implementation of the DPN pre*-
algorithm

theory DPN-impl
imports DPN
begin

This theory is to explore how to prove the correctness of straightforward im-
plementations of the DPN pre* algorithm. It does not provide an executable
specification, but uses set-datatype and the SOME-operator to describe a
deterministic refinement of the nondeterministic pre*-algorithm. This re-
finement is then characterized as a recursive function, using recdef.

This proof uses the same techniques to get the recursive function and prove
its correctness as are used for the straightforward executable implementation
in DPN__implEx. Differences from the executable specification are:

o The state of the algorithm contains the transition relation that is sat-
urated, thus making the refinement abstraction just a projection onto
this component. The executable specification, however, uses list rep-
resentation of sets, thus making the refinement abstraction more com-
plex.

e The termination proof is easier: In this approach, we only do recursion
if our state contains a valid M-automata and a consistent transition
relation. Using this property, we can infer termination easily from the
termination of ps-R. The executable implementation does not check
wether the state is valid, and thus may also do recursion for invalid
states. Thus, the termination argument must also regard those invalid
states, and hence must be more general.

5.1 Definitions

type-synonym ('c,’l,’s,'m1,'m2) pss-state = ((('c,’l,’m1) DPN-rec-scheme * ('s,’c,'m2)
MFSM-rec-scheme) * (’s,’c) LTS)

Function to select next transition to be added

definition pss-isNext :: ('c,’l,'m1) DPN-rec-scheme = ('s,’c,'m2) MFSM-rec-scheme
= (’s,’c) LTS = ('sx’cx’'s) = bool where

40

pss-isNext M A Dt== t¢D A (Jqgpvyq ac. t=(spAqpyq) A [py]—ac
€ rules M A (gq,¢’,q")€trclAD A D)
definition pss-next M A D == if (3 t. pss-isNext M A D t) then Some (SOME
t. pss-isNext M A D t) else None

Next state selector function

definition

pss-next-state S == case S of ((M,A),D) = if MFSM M A N DCps-upper M A
then (case pss-next M A D of None = None | Some t = Some ((M,A),insert t D)
) else None

Relation describing the deterministic algorithm

definition
pss-R == graph pss-next-state

lemma pss-nextE1: pss-next M A D = Somet = t¢D A (3 qgpy q ac’. t=(sp
A qp,q") N pAl—a ¢’ € rules M A (q,¢’,q")€trcelAD A D)
proof —
assume pss-next M A D = Some t
hence pss-isNext M A D t
apply (unfold pss-next-def)
apply (cases 3t. pss-isNext M A D t)
by (auto intro: somel)
thus ?thesis by (unfold pss-isNext-def)
qed

lemma pss-nextE2: pss-next M A D = None = —(3 qgp~y q' ac’'t. t¢D A t=(sp
A qp7,q) N [py]—=a ¢’ € Tules M A (q,¢’,q")EtrclAD A D)
proof —
assume pss-next M A D = None
hence —(3t. pss-isNext M A D t)
apply (unfold pss-next-def)
apply (cases 3 t. pss-isNext M A D t)
by auto
thus ?thesis by (unfold pss-isNext-def) blast
qged

lemmas (in MFSM) pss-nextE = pss-nextEl1 pss-nextE2

The relation of the deterministic algorithm is also the recursion relation of
the recursive characterization of the algorithm
lemma pss-R-alt[termination-simp]: pss-R == {(((M,A),D),((M,A),insert t D)) |
MA D¢t MFSM M A N DCps-upper M A A pss-next M A D = Some t}

by (rule eg-reflection, unfold pss-R-def graph-def pss-next-state-def) (auto split:
option.split-asm if-splits)

41

5.2 Refining ps-R

We first show that the next-step relation refines ps-R M A. From this, we
will get both termination and correctness

Abstraction relation to project on the second component of a tuple, with
fixed first component

definition asnd f == { (s,(f,s)) | s. True }
lemma asnd-comp-simp: R O asnd f = {(s,(f,s")] s s’ (s,s")€R} by (unfold
asnd-def, blast)

lemma asndI[simp]: (s,(f,s))€asnd f by (unfold asnd-def, auto)
lemma asndE: (s,(f,s"))€asnd f' = f=f" N s=s’ by (unfold asnd-def, auto)

Relation of pss-next and ps-R M A

lemma (in MFSM) pss-consi: [pss-next M A D = Some t; DCps-upper M A] =
(Dyinsert t D)eps-R M A by (auto dest: pss-nextE intro: ps-R.intros)

lemma (in MFSM) pss-cons2: pss-next M A D = None => D¢ Domain (ps-R M
A) by (blast dest: pss-nextE elim: ps-R.cases)

lemma (in MFSM) pss-consl-rev: [DCps-upper M A; D¢ Domain (ps-R M A)]
= pss-next M A D = None by (cases pss-next M A D) (auto iff add: pss-consl
pss-consg)
lemma (in MFSM) pss-cons2-rev: [D€ Domain (ps-R M A)] = 3 t. pss-next M
A D = Some t A (D,insert t D)eps-R M A

by (cases pss-next M A D) (auto iff add: pss-consl pss-cons2 ps-R-dom-below)

The refinement result

theorem (in MFSM) pss-refines: pss-R <, .1 (M,A) (ps-R M A) proof (rule
refinesl)
show asnd (M, A) O pss-R C ps-R M A O asnd (M, A) by (rule refines-compl,
unfold asnd-def pss-R-alt) (blast intro: pss-consl)
next
show asnd (M, A) “ Domain (ps-R M A) C Domain pss-R
apply (rule refines-domlI)
unfolding asnd-def pss-R-alt Domain-iff
apply (clarsimp, safe)
subgoal by unfold-locales
subgoal by (blast dest: ps-R-dom-below)
subgoal by (insert pss-cons2-rev, fast)
done
qed

5.3 Termination

We can infer termination directly from the well-foundedness of ps-R and
MFSM .pss-refines

theorem pss-R-wf: wf (pss-R~1)

42

proof —
{
fix MADM' A" D’
assume A: ((M,A),D),((M',A"),D"))e€pss-R
then interpret MFSM sep M M A
apply (unfold pss-R-alt MFSM-def)
apply blast
apply simp
done
from pss-refines ps-R-wf have pss-R<, ¢4 (M, A)ps-R M AN wf ((ps-R M
A)~Y) by simp
} note A=this
show ?thesis
apply (rule refines-wf| of pss-R snd Ar. asnd (fst r) Ar. let (M,A)=fst r in
ps-R M A])
using A
by fastforce

qed

5.4 Recursive characterization

Having proved termination, we can characterize our algorithm as a recursive
function

function pss-algo-rec :: (('c,’l,’s,'m1,'m2) pss-state) = (('c,’l,’s,’m1,'m2) pss-state)
where

pss-algo-rec ((M,A),D) (if (MFSM M A A DCps-upper M A) then (case
(pss-next M A D) of None = ((M,A),D) | (Some t) = pss-algo-rec ((M,A),insert
t D)) else ((M,A),D))

by pat-completeness auto

termination
apply (relation pss-R™1)
apply (simp add: pss-R-wf)
using pss-R-alt by fastforce

lemma pss-algo-rec-newsimps|simp):

[MFSM M A; DCps-upper M A; pss-next M A D = None] = pss-algo-rec
((M,4),D) = (M,4),D)

[MESM M A; DCps-upper M A; pss-next M A D = Some t] = pss-algo-rec
((M,A),D) = pss-algo-rec ((M,A),insert t D)

~MFSM M A = pss-algo-rec ((M,A),D) = ((M,A),D)

=(D C ps-upper M A) = pss-algo-rec ((M,A),D) = ((M,A),D)
by auto

declare pss-algo-rec.simps[simp del]

43

5.5 Correctness

The correctness of the recursive version of our algorithm can be inferred
using the results from the locale detRef-impl

interpretation det-impl: detRef-impl pss-algo-rec pss-next-state pss-R
apply (rule detRef-impl.intro)
apply (simp-all add: detRef-wf-transfer|OF pss-R-wf] pss-R-def)
subgoal for s s’
unfolding pss-next-state-def
by (auto split: if-splits prod.splits option.splits)
subgoal for s
apply (unfold pss-next-state-def)
apply (clarsimp split: prod.splits if-splits option.splits)
using pss-algo-rec-newsimps(3,4) by blast
done

theorem (in MFSM) pss-correct: lang (A(d:=snd (pss-algo-rec ((M,A),(§ A)))
D)) = pre-star (rules M) A
proof —
have (((M,A),5 A), pss-algo-rec (M,A),§ A))Endet-algo pss-R by (rule det-impl.algo-correct)
moreover have (0 4, ((M,A),0 A))€asnd (M,A) by simp
ultimately obtain D’ where I: (D', pss-algo-rec ((M,A),d A)) € asnd (M,A)
and (6 A,D")endet-algo (ps-R M A) using pss-refines by (blast dest: refines-ndet-algo)
with correct have lang (A(6 := D’)) = pre* (rules M) A by auto
moreover from ! have snd (pss-algo-rec ((M,A),d A)) = D’ by (unfold
asnd-def, auto)
ultimately show %thesis by auto
qed

end

6 Tools for executable specifications

theory ImplHelper
imports Main
begin

6.1 Searching in Lists

Given a function f and a list I, return the result of the first element e € set
[with f e # None. The functional code snippet first-that f [corresponds to
the imperative code snippet: for e in [do { if f e # None then return Some
(f e) }; return None
primrec first-that :: ('s = ’a option) = 's list = 'a option where

first-that f [] = None
| first-that f (e#w) = (case f e of None = first-that f w | Some a = Some a)

44

lemma first-thatE1: first-that f | = Some a = Jecset . f e = Some a
apply (induct 1)
subgoal by simp
subgoal for aa [by (cases f aa) auto
done

lemma first-thatE2: first-that f| = None = Ve€set l. f e = None
apply (induct 1)
subgoal by simp
subgoal for aa [by (cases f aa) auto
done

lemmas first-thatE = first-thatE1 first-thatE2

lemma first-thatll: e€set | A fe = Some a => Fa’. first-that f | = Some a’
by (cases first-that f 1) (auto dest: first-thatE2)

lemma first-thatl2: ¥V ecset . f e = None = first-that f | = None
by (cases first-that f 1) (auto dest: first-thatE1)

lemmas first-thatl = first-thatl1 first-thatl2

end

7 Executable algorithms for finite state machines

theory FSM-ex
imports FSM ImplHelper
begin

The transition relation of a finite state machine is represented as a list of
labeled edges

type-synonym (’s,’a) delta = ('s x 'a x 's) list

7.1 Word lookup operation

Operation that finds some state ¢’ that is reachable from state ¢ with word
w and has additional property P.

primrec lookup :: ('s = bool) = (’s,’a) delta = 's = 'a list = 's option where
lookup P d q [] = (if P q then Some q else None)

| lookup P d q (e#w) = first-that (A\t. let (gs,es,q")=t in if g=qs N e=es then lookup

P d q' w else None) d

lemma lookupE1: 1q. lookup P d q w = Some ¢' = P ¢’ A (q,w,q’) € trcl (set d)
proof (induct w)

case Nil thus ?case by (cases P q) simp-all
next

case (Cons e w) note IHP=this

45

hence first-that (\t. let (gs,es,qgh)=t in if g=qs N e=es then lookup P d qh w else
None) d = Some q' by simp

then obtain ¢t where t€set d A ((let (gs,es,qgh)=t in if g=qs N e=es then lookup
P d gh w else None) = Some q') by (blast dest: first-thatE1)

then obtain ¢gh where I: (q,e,qh)€set d A lookup P d ¢h w = Some ¢’

by (auto split: prod.splits if-splits)

moreover from 1 IHP have P ¢’ A (gh,w,q")€trcl (set d) by auto

ultimately show ?case by auto
qed

lemma lookupE2: q. lookup P d ¢ w = None = —(3¢". (P ¢') A (q,w,q") € trcl
(set d)) proof (induct w)
case Nil thus ?case by (cases P q) (auto dest: trcl-empty-cons)
next
case (Cons e w) note IHP=this
hence first-that (\t. let (gs,es,qgh)=t in if g=qs N\ e=es then lookup P d qh w else
None) d = None by simp
hence Viteset d. (let (gs,es,qgh)=t in if g=qs N e=es then lookup P d qh w else
None) = None by (blast dest: first-thatE2)
hence 1: !! ¢gs es qh. (gs,es,gh)Eset d = q#qs V ees V lookup P d qh w =
Nomne by auto
show ?case proof (rule notl, elim exE conjE)
fix ¢’
assume C: P q’ (q,eftw,q’)Etrel (set d)
then obtain ¢h where 2: (g,e,qh)€set d A (gh,w,q’)Etrcl (set d) by (blast
dest: trcl-uncons)
with 1 have lookup P d gh w = None by auto
with C 2 IHP show Fualse by auto
qed
qed

lemma lookupll: [P ¢’ (q,w,q")€trcl (set d)] = I ¢q’. lookup P d ¢ w = Some ¢’
by (cases lookup P d q w) (auto dest: lookupE2)

lemma lookupI2: =(3q". P q¢' A (q,w,q’)€trel (set d)) = lookup P d ¢ w = None
by (cases lookup P d q w) (auto dest: lookupE1)

lemmas lookupE = lookupFE1 lookupE2
lemmas lookupl = lookupll lookupI2

lemma lookup-trclAD-FE1:
assumes map: set d = D and start: ¢¢Q Aand cons: D C QA x X Ax QA
assumes A: lookup P d ¢ w = Some ¢’
shows P ¢’ A (q,w,q")€trclAD A D
proof —
from A map have 1: P ¢’ A\ (q,w,q")€trcl D by (blast dest: lookupE1l)
hence (q,w,q")€trel (DN (Q A x X A x Q A) N (Q A x UNIV x UNIV)
using cons start by (subgoal-tac D = DN (Q A x ¥ A x Q A), auto)

46

with 1 trclAD-by-trcl’ show ?thesis by auto
qed

lemma lookup-trclAD-E2:
assumes map: set d = D
assumes A: lookup P d ¢ w = None
shows — (3¢". P ¢’ A (q,w,q")ElrclAD A D)
proof —
from map A have - (3¢’. P ¢’ A (g, w, q¢’) € trcl D) by (blast dest: lookupE2)
with trclAD-subset-trcl show ?thesis by auto
qed

lemma lookup-trclAD-I1: [set d = D; (q,w,q")€trclAD A D; P q']| = 3 q’. lookup
Pdqgw= Some q’

apply (cases lookup P d q w)

apply (subgoal-tac =(3q". P ¢’ N (q,w,q")EtrclAD A D))

apply simp

apply (rule lookup-trclAD-E2)

apply auto

done

lemma lookup-trclAD-12: [set d = D; ge@Q A; D C QA x 3 Ax QA;~(3q". P
q' A (qyw,g"etrcddAD A D)] = lookup P d ¢ w = None

apply (cases lookup P d q w, auto)

apply (subgoal-tac P a A (g,w,a)€trclAD A (set d))

apply blast

apply (rule lookup-trclAD-ET)

apply auto

done

lemmas lookup-trclAD-E = lookup-trclAD-E1 lookup-trclAD-E2
lemmas lookup-trclAD-I = lookup-trclAD-I1 lookup-trclAD-I2

7.2 Reachable states and alphabet inferred from transition
relation

definition states d == fst ‘ (set d) U (sndosnd) * (set d)
definition alpha d == (fstosnd) * (set d)

lemma statesAlphal: (q,a,q")Eset d = qEstates d N\ q’Estates d N\ a€alpha d by
(unfold states-def alpha-def, force)

lemma statesE: q€states d = Ja q'. ((¢,a,q")Eset d V (q’,a,q)E€set d) by (unfold
states-def alpha-def, force)

lemma alphaE: a€alpha d = 3 q q'. (q,a,q")Eset d by (unfold states-def alpha-def,
force)

lemma states-finite: finite (states d) by (unfold states-def, auto)
lemma alpha-finite: finite (alpha d) by (unfold alpha-def, auto)

47

lemma statesAlpha-subset: set d C states d X alpha d X states d by (auto dest:
statesAlphal)

lemma states-mono: set d C set d' = states d C states d’ by (unfold states-def,
auto)
lemma alpha-mono: set d C set d' = alpha d C alpha d’ by (unfold alpha-def,
auto)

lemma statesAlpha-insert: set d' = insert (q,a,q") (set d) = states d’ = states d
U {q,q'} A alpha d' = insert a (alpha d)
by (unfold states-def alpha-def) (simp, blast)

lemma statesAlpha-inv: [gE€states d; a€alpha d; q'Estates d; set d’=insert (q,a,q")
(set d)] = states d = states d’ A alpha d = alpha d’
by (unfold states-def alpha-def) (simp, blast)

export-code lookup checking SML

end

8 Implementation of DPN pre*-algorithm

theory DPN-implEx
imports DPN FSM-ex
begin

In this section, we provide a straightforward executable specification of the
DPN-algorithm. It has a polynomial complexity, but is far from having
optimal complexity.

8.1 Representation of DPN and M-automata

type-synonym ’c rule-ex = ‘cx’cx’cx’'c list
type-synonym ‘¢ DPN-ex = 'c rule-ex list

definition rule-repr == { ((p:7.p',¢), (Pl ap' %)) | p v p' ¢’ a . True }
definition rules-repr == { (I,I") . rule-repr ““ set | =1’ }

lemma rules-repr-cons: [(R,S)€rules-repr | = ((p,y,p’,¢’)€set R) = (3 a. (p#[7]
—q p#c) € 5)
by (unfold rules-repr-def rule-repr-def) blast

We define the mapping to sp-states explicitely, well-knowing that it makes
the algorithm even more inefficient

definition find-sp d s p == first-that (At. let (sh,ph,qh)=t in if s=sh N\ p=ph then
Some gh else None) d

48

This locale describes an M-automata together with its representation used
in the implementation

locale MFSM-ex = MFSM +
fixes R and D
assumes rules-repr: (R,rules M)Erules-repr
assumes D-above: § A C set D and D-below: set D C ps-upper M A

This lemma exports the additional conditions of locale MFSM_ ex to locale
MFSM

lemma (in MFSM) MFSM-ez-alt: MFSM-ex M A R D <— (R,rules M)€Erules-repr
ANd ACset DA set DC ps-upper M A

using MFSM-azioms by (unfold MESM-def MESM-ex-def MFSM-ex-azioms-def)
(auto)

lemmas (in MFSM-ex) D-between = D-above D-below

The representation of the sp-states behaves as expected

lemma (in MFSM-ex) find-sp-cons:
assumes A: s€cstates A pecsyms M
shows find-sp D s p = Some (sp A s p)
proof —
let 2f = (\t. let (sh,ph,qh)=t in if s=sh A\ p=ph then Some gh else None)
from A have (s,p,sp A s p)Eset D using cstate-succ-ex’ D-between by simp
moreover have ?f (s,p,sp A s p) = Some (sp A s p) by auto
ultimately obtain sp’ where G: find-sp D s p = Some sp’
using first-thatl1[of (s,p,sp A s p) D ?f sp A s p] by (unfold find-sp-def, blast)
with first-thatE1[of ?f D sp’] obtain ¢ where t€set D A ?f t=Some sp’ by
(unfold find-sp-def, blast)
hence (s,p,sp’)€set D by (cases t, auto split: if-splits)
with A D-between have sp’=sp A s p using cstate-succ-unique’ by simp
with G show ?thesis by simp
qed

8.2 Next-element selection

The implementation goes straightforward by implementing a function to
return the next transition to be added to the transition relation of the au-
tomata being saturated

definition sel-next:: 'c DPN-ex = (’s,’c) delta = ('s x 'c¢ x 's) option where
sel-next R D ==
first-that (Ar. let (p,y,p’,¢) = rin
first-that (\t. let (q,pp’,sp’) = t in
if pp’=p’ then
case find-sp D q p of
Some spt = (case lookup (\q'. (spt,y,q") ¢ set D) D sp’ ¢’ of

Some q' = Some (spt,y,q") |
None = None

49

) | - = None
else None
) D
) R

The state of our algorithm consists of a representation of the DPN-rules and
a representation of the transition relations of the automata being saturated

type-synonym (’c,’s) seln-state = 'c DPN-ex x (’s,’c) delta

As long as the next-element function returns elements, these are added to
the transition relation and the algorithm is applied recursively. sel-next-state
describes the next-state selector function, and seln-R describes the corre-
sponding recursion relation.

definition

sel-next-state S == let (R,D)=S in case sel-next R D of None = None | Some t
= Some (R,t#D)

definition
seln-R == graph sel-next-state
lemma seln-R-alt: seln-R == {((R,D),(R,t#D)) | R D t. sel-next R D = Some t}

by (rule eq-reflection, unfold seln-R-def graph-def sel-next-state-def) (auto split:
option.split-asm)
8.3 Termination

8.3.1 Saturation upper bound

Before we can define the algorithm as recursive function, we have to prove
termination, that is well-foundedness of the corresponding recursion relation
seln-R

We start by defining a trivial finite upper bound for the saturation, simply
as the set of all possible transitions in the automata. Intuitively, this bound
is valid because the saturation algorithm only adds transitions, but never
states to the automata

definition
seln-triv-upper R D == states D x ((fstosnd) ‘ (set R) U alpha D) x states D

lemma seln-triv-upper-finite: finite (seln-triv-upper R D) by (unfold seln-triv-upper-def)
(auto simp add: states-finite alpha-finite)

lemma D-below-triv-upper: set D C seln-triv-upper R D using statesAlpha-subset
by (unfold seln-triv-upper-def) auto

lemma seln-triv-upper-subset-preserve: set D C seln-triv-upper A D' = seln-triv-upper
A D C seln-triv-upper A D’

50

by (unfold seln-triv-upper-def) (blast intro: statesAlphal dest: statesE alphaE)

lemma seln-triv-upper-mono: set D C set D' = seln-triv-upper R D C seln-triv-upper
R D'
by (unfold seln-triv-upper-def) (auto dest: states-mono alpha-mono)

lemma seln-triv-upper-mono-list: seln-triv-upper R D C seln-triv-upper R (t#D)
by (auto introl: seln-triv-upper-mono)

lemma seln-triv-upper-mono-list”. z€seln-triv-upper R D = z€seln-triv-upper R
(t#D) using seln-triv-upper-mono-list by (fast)

The trivial upper bound is not changed by inserting a transition to the
automata that was already below the upper bound

lemma seln-triv-upper-inv: [t€seln-triv-upper R D; set D' = insert t (set D)] =
seln-triv-upper R D = seln-triv-upper R D’
by (unfold seln-triv-upper-def) (auto dest: statesAlpha-insert)

States returned by find-sp are valid states of the underlying automaton

lemma find-sp-in-states: find-sp D s p = Some gh = gh€states D by (unfold
find-sp-def) (auto dest: first-thatE1 split: if-splits simp add: statesAlphal)

The next-element selection function returns a new transition, that is below
the trivial upper bound

lemma sel-next-below:
assumes A: sel-next R D = Some t
shows t¢set D A t€seln-triv-upper R D
proof —

fix gaghbq’
assume A: (q,a,qh)€set D and B: (gh,b,q")Etrcl (set D)
from B statesAlpha-subset|of D] have q’€states D
apply —
apply (erule (1) trcl-structE)
using A by (simp-all add: statesAlphal)

thus ?thesis
using A
apply (unfold sel-next-def seln-triv-upper-def)
apply (clarsimp dest!: first-thatE1 lookupE1 split: if-splits option.split-asm)
apply (force simp add: find-sp-in-states dest!: first-thatE1 lookupE1 split: if-splits
option.split-asm)
done
qed

Hence, it does not change the upper bound

corollary sel-next-upper-preserve: [sel-next R D = Some t] = seln-triv-upper R
D = seln-triv-upper R (t#D) proof —
have set (t#D) = insert t (set D) by auto

o1

moreover assume sel-next R D = Some t

with sel-nezt-below have teseln-triv-upper R D by blast

ultimately show ?thesis by (blast dest: seln-triv-upper-inv)
qed

8.3.2 Well-foundedness of recursion relation

lemma seln-R-wf: wf (seln-R~1) proof —
let ?rel={((R,D),(R,D")) | R D D’. set DCset D' A seln-triv-upper R D =
seln-triv-upper R D'}
have seln-R~! C ?rel™!
apply (unfold seln-R-alt)
apply (clarsimp, safe)
apply (blast dest: sel-next-below)
apply (simp add: seln-triv-upper-mono-list’)
apply (simp add: sel-next-upper-preserve)
done
also
let Zalpha=M\z. let (R,D)=z in seln-triv-upper R D — set D
let ?rel2=finite-psubset ™
have ?rel=! C inv-image (?rel2=1) Zalpha using D-below-triv-upper by (unfold
finite-psubset-def, fastforce simp add: inv-image-def seln-triv-upper-finite)
finally have seln-R~! C inv-image (?rel2=1) ?alpha .
moreover
have wf (?rel2~!) using wf-finite-psubset by simp
hence wf (inv-image (?rel2=1) Zalpha) by (rule wf-inv-image)
ultimately show ?thesis by (blast intro: wf-subset)
qed

Py

8.3.3 Definition of recursive function

function pss-algo-rec :: ('c,’s) seln-state = ('c,’s) seln-state

where pss-algo-rec (R,D) = (case sel-next R D of Some t = pss-algo-rec (R,t#D)
| None = (R,D))

by pat-completeness auto

termination
apply (relation seln-R~1)
apply (simp add: seln-R-wf)
unfolding seln-R-alt by blast

lemma pss-algo-rec-newsimps[simp):
[sel-next R D = None] = pss-algo-rec (R,D) = (R,D)
[sel-next R D = Some t] = pss-algo-rec (R,D) = pss-algo-rec (R,t# D)
by auto

declare pss-algo-rec.simps[simp del]

52

8.4 Correctness

8.4.1 seln_ R refines ps_ R

We show that seln-R refines ps-R, that is that every step made by our
implementation corresponds to a step in the nondeterministic algorithm,
that we already have proved correct in theory DPN.

lemma (in MFSM-ex) sel-nectEl:
assumes A: sel-next R D = Some (s,7,q")
shows (s,7,q")¢set D A (3 gp ac’ s=sp A qgp A [py]—a ¢’ € rules M A
(g,¢,q")etrclAD A (set D))
proof —
let 2f = Ap vy p’ ¢ t. let (¢,pp’,sp’) = tin
if pp’=p’ then
case find-sp D q p of
Some s = (case lookup (A\q'. (s,v,q") & set D) D sp’ ¢’ of
Some q' = Some (s,7,q) |
None = None
) | - = None
else None

let 2f1 = Ar. let (p,y,p',c’) = rin first-that (?9f p v p’ ¢’) D

from Alunfolded sel-next-def] obtain r where I: réset R A 9f1 r = Some
(s,7,q") by (blast dest: first-thatE1)
then obtain p yh p’ ¢/ where 2: r=(p,yh,p’,c’) A first-that (?fp vh p’ ¢') D =
Some (s,7,q") by (cases r) simp
then obtain ¢ where 3: t€set D A ?f p vh p’ ¢’ t = Some (s,7,q") by (blast
dest: first-thatE1)
then obtain ¢ sp’ where 4: t=(g¢,p’,sp’) A (case find-sp D q p of
Some s = (case lookup (\q'. (s,yh,q") ¢ set D) D sp’ ¢’ of
Some q' = Some (s,vh,q") |
None = None
) | - = None) = Some (s,7,q")
by (cases t, auto split: if-splits)
hence 5: find-sp D q p = Some s A lookup (A\q'. (s,7h,q") ¢ set D) D sp’ ¢’ =
Some q' N y=~h
by (simp split: option.split-asm)
with 1 2 rules-repr obtain a where 6: (p#[v],a,p'#c’)Erules M by (blast dest:
rules-repr-cons)
hence 7: p€csyms M A p’Ecsyms M N vEssyms M by (blast dest: rule-fmt-fs)
with 8/ D-below have 8: g cstates A A sp’=sp A q p’' by (blast dest: csym-from-cstate’
cstate-succ-unique’)
with 5 7 have 9: s=sp A ¢ p using D-above D-below by (auto simp add:
find-sp-cons)
have 10: (s,y,q")¢set D A (sp’,c’,q")etrclAD A (set D) using 5 8 uniqueSp 7
states-part D-below ps-upper-below-trivial
apply — apply (rule lookup-trclAD-E1)
by auto

93

moreover have (¢,p'#c’,q’)€trclAD A (set D) proof —
from 7 8 sp-pred-ex D-above have (q,p’,sp’)Eset D by auto
with 10 trclAD.cons show ?thesis using 7 8 alpha-cons states-part by auto
qed
ultimately show %thesis using 9 6 by blast
qed

lemma (in MFSM-ez) sel-nextE2:

assumes A: sel-next R D = None

shows —(3 ¢p vy ¢’ ac’'t t¢set D A t=(sp A q p,y,q") N [p,y]—a ¢’ € Tules M
A (g,c’,q")etrclAD A (set D))
proof (clarify) — Assume we have such a rule and transition, and infer sel-next R
D # None

fix gp vy q apc

assume C: (sp A ¢ p, v, q¢') & set D ([p, 7], a, pc’) € rules M (q, pc’, ¢') €
trclAD A (set D)

from C obtain p’ ¢’ where SYMS: pccsyms M N p’€csyms M N yEssyms M
A pc'=p'#c’ by (blast dest: rule-fmt)
have QCS: gecstates A (q,p';sp A q p')€set D (sp A q p',c’,q")etrclAD A (set
D) proof —
from C SYMS obtain sp’ where (q,p’,sp")€set D A (sp',c’,q")etrclAD A (set
D) by (blast dest: trclAD-uncons)
moreover with D-below SYMS show g€ cstates A by (auto intro: csym-from-cstate’)
ultimately show (¢,p’,sp A q p')€set D (sp A q p',c’,q")€trclAD A (set D)
using D-below cstate-succ-unique’ by auto
qed

from C QCS lookup-trclAD-I1[of D set D sp A qp’ ¢/ ¢ A (\q". (sp A q p,v,q")
¢ set D)] obtain ¢"" where NI: lookup (\q". (sp A q p,y,q"") ¢ set D) D (sp A q
p’) ¢’ = Some q'' by blast

let 2f = Ap v p' ¢’ qpp’sp.
if pp’=p’ then
case find-sp D q p of
Some s = (case lookup (\q'. (s,v,q") ¢ set D) D sp’ ¢’ of
Some q' = Some (s,7,q") |
None = None
) | - = None
else None

from SYMS QCS have FIND-SP: find-sp D q¢ p = Some (sp A ¢ p) using
D-below D-above by (simp add: find-sp-cons)

let 7f1 = (Ap v p’ ¢’ (At. let (¢,pp’,sp")=t in ?f p v p’ ¢’ q pp’ sp’))

from NI FIND-SP have N2: ?f1 p~ p’ ¢’ (¢,p';sp A q p’) = Some (sp A q p, 7,
q") by auto

with QCS first-thatI1[of (q,p’,sp A ¢ p’) D 2f1 p v p’ ¢/] obtain ¢’ where N3:

54

first-that (21 p v p’ ¢) D = Some t’ by (blast)

let 2f2 = (Ar. let (p,y,p,¢’) = rin first-that (21 p v p’ ¢’) D)

from N3 have ?2f2 (p,y,p’,c’) = Some t’' by auto

moreover from SYMS C rules-repr have (p,y,p’,c’)€set R by (blast dest:
rules-repr-cons)

ultimately obtain ¢’ where first-that ?f2 R = Some t'' using first-thatl1[of
(p, 7, p's ¢') R ?f2] by (blast)

hence sel-next R D = Some t'' by (unfold sel-next-def)

with A show Fulse by simp
qed

lemmas (in MFSM-ex) sel-nextE = sel-nextEl1 sel-nextE2

lemma (in MFSM-ex) seln-consi: [sel-next R D = Some t] = (set D,insert t (set
D))eps-R M A using D-below by (cases t, auto dest: sel-nextE intro: ps-R.intros)
lemma (in MFSM-ex) seln-cons2: sel-next R D = None = set D¢ Domain (ps-R
M A) by (blast dest: sel-nextE elim: ps-R.cases)

lemma (in MFSM-ex) seln-consi-rev: [set D¢ Domain (ps-R M A)] = sel-next
R D = None by (cases sel-next R D) (auto iff add: seln-consl seln-cons2)
lemma (in MFSM-ex) seln-cons2-rev: [set D€ Domain (ps-R M A)] = 3It.
sel-next R D = Some t A (set D,insert t (set D))eps-R M A

by (cases sel-next R D) (auto iff add: seln-consl seln-cons2 ps-R-dom-below)

DPN-specific abstraction relation, to associate states of deterministic algo-
rithm with states of ps-R

definition aseln M A == { (set D, (R,D)) | D R. MFSM-ex M A R D}

lemma aselnl: [S=set D; MFSM-ex M A R D] = (S,(R,D))€aseln M A
by (unfold aseln-def) auto

lemma aselnD: (S,(R,D))€aseln M A — S=set D N MFSM-ex M A R D
by (unfold aseln-def) auto

lemma aselnD’: (S,C)easeln M A = S=set (snd C') N MFSM-ex M A (fst C)
(snd C) by (cases C, simp add: aselnD)

lemma aseln-single-valued: single-valued ((cseln M A)~1)
by (unfold aseln-def) (auto intro: single-valuedl)

theorem (in MFSM) seln-refines: seln-R < goin M A (ps-R M A) proof (rule
refinesI)
show aseln M A O seln-R C ps-R M A O aseln M A proof (rule refines-compl)
fix a ¢ ¢’
assume ABS: (a,c)€aseln M A and R: (c¢,c’)€seln-R
then obtain R D t where 1: ¢c=(R,D) A ¢'=(R,t#D) A sel-next R D = Some
t by (unfold seln-R-alt, blast)
moreover with ABS have 2: a=set D A MFSM-ex M A R D by (unfold
aseln-def, auto)

95

ultimately have 3: (set D,(set (t#D))) € ps-R M A using MFSM-ez.seln-cons1|of
M A R D] by auto
moreover have (set (t#D), (R,t#D))caseln M A
proof —
from 2 have § A C set D using MFSM-ex.D-above[of M A R D] by auto
with 3 have § A C set (t#D) set (t#D) C ps-upper M A using ps-R-below
by (fast+)
with 2 have MFSM-ex M A R (t#D) by (unfold MFSM-ex-alt, simp)
thus ?thesis unfolding aseln-def by auto
qed
ultimately show 3a’. (a, a’) € ps-R M A A (a’, ¢') € aseln M A using 1 2
by blast
qed
next
show aseln M A “* Domain (ps-R M A) C Domain seln-R
apply (rule refines-domlI)
apply (unfold aseln-def seln-R-alt)
apply (unfold Domain-iff)
apply (clarsimp)
apply (fast dest: MFSM-ex.seln-cons2-rev)
done
qed

Py

8.4.2 Computing transitions only

definition pss-algo :: 'c DPN-ex = ('s,’c) delta = ('s,’c) delta where pss-algo R
D = snd (pss-algo-rec (R,D))

8.4.3 Correctness

We have to show that the next-state selector function’s graph refines seln-R.
This is trivial because we defined sein-R to be that graph

lemma sns-refines: graph sel-next-state <z seln-R by (unfold seln-R-def) simp

interpretation det-impl: detRef-impl pss-algo-rec sel-next-state seln-R
apply (rule detRef-impl.intro)
apply (simp-all only: detRef-wf-transfer|OF seln-R-wf] sns-refines)
apply (unfold sel-next-state-def)
apply (auto split: option.splits)
done

And then infer correctness of the deterministic algorithm

theorem (in MFSM-ex) pss-correct:
assumes D-init: set D = § A
shows lang (A(d:=set (pss-algo R D) |)) = pre-star (rules M) A
proof (rule correct)
have (set D, (R,D))caseln M A by (intro refl aselnI) unfold-locales
moreover have ((R,D),pss-algo-rec (R,D))endet-algo (seln-R) by (simp add:
det-impl.algo-correct)

o6

ultimately obtain d’ where I: (d’,pss-algo-rec (R,D))€aseln M A A (set
D,d"\endet-algo (ps-R M A) using refines-ndet-algo[OF seln-refines] by blast

hence d’'=set (snd (pss-algo-rec (R,D))) by (blast dest: aselnD’)

with 7 show (§ A, set (pss-algo R D)) € ndet-algo (ps-R M A) using D-init
unfolding pss-algo-def by simp
qed

corollary (in MFSM) pss-correct:
assumes repr: set D = 6 A (R,rules M)Erules-repr
shows lang (A(d:=set (pss-algo R D) |)) = pre-star (rules M) A
proof —
interpret MFSM-ex sep M M A R D
apply simp-all
apply unfold-locales
apply (simp-all add: repr initial-delta-below)
done
from repr show ?thesis by (simp add: pss-correct)
qed

Generate executable code

export-code pss-algo checking SML

end

References
[1] A. Bouajjani, M. Miiller-Olm, and T. Touili. Regular symbolic analysis

of dynamic networks of pushdown systems. In Proc. of CONCUR’05.
Springer, 2005.

o7

	String rewrite systems
	Definitions
	Induced Labelled Transition System
	Properties of the induced LTS

	Finite state machines
	Definitions
	Basic properties
	Constructing FSMs
	Reflexive, transitive closure of transition relation
	Relation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 trclAD and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 trcl

	Language of a FSM
	Example: Product automaton

	Nondeterministic recursive algorithms
	Basic properties
	Refinement
	Extension to reflexive states
	Well-foundedness
	The relations 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 > and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 on finite domains

	Implementation
	Graphs of functions
	Deterministic refinement w.r.t. the identity abstraction
	Recursive characterization

	Dynamic pushdown networks
	Dynamic pushdown networks
	Definition
	Basic properties
	Building DPNs

	M-automata
	Definition
	Basic properties
	Some implications of the M-automata conditions

	pre*-sets of regular sets of configurations
	Nondeterministic algorithm for pre*
	Termination
	Soundness
	Precision

	Non-executable implementation of the DPN pre*-algorithm
	Definitions
	Refining 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ps-R
	Termination
	Recursive characterization
	Correctness

	Tools for executable specifications
	Searching in Lists

	Executable algorithms for finite state machines
	Word lookup operation
	Reachable states and alphabet inferred from transition relation

	Implementation of DPN pre*-algorithm
	Representation of DPN and M-automata
	Next-element selection
	Termination
	Saturation upper bound
	Well-foundedness of recursion relation
	Definition of recursive function

	Correctness
	seln_R refines ps_R
	Computing transitions only
	Correctness

