
Formalization of Dynamic Pushdown Networks in
Isabelle/HOL

Peter Lammich

January 26, 2026

Abstract

We present a formalization of Dynamic Pushdown Networks (DPNs)
and the automata based algorithm for computing backward reacha-
bility sets using Isabelle/HOL. Dynamic pushdown networks are an
abstract model for multithreaded, interprocedural programs with dy-
namic thread creation that was presented by Bouajjani, Müller-Olm
and Touili in 2005.

We formalize the notion of a DPN in Isabelle and describe the algo-
rithm for computing the pre∗-set from a regular set of configurations,
and prove its correctness. We first give a nondeterministic description
of the algorithm, from that we then infer a deterministic one, from
which we can generate executable code using Isabelle’s code-generation
tool.

Contents
1 String rewrite systems 3

1.1 Definitions . 3
1.2 Induced Labelled Transition System 3
1.3 Properties of the induced LTS 3

2 Finite state machines 4
2.1 Definitions . 4
2.2 Basic properties . 5
2.3 Constructing FSMs . 5
2.4 Reflexive, transitive closure of transition relation 6

2.4.1 Relation of trclAD and trcl 7
2.5 Language of a FSM . 8
2.6 Example: Product automaton 8

1

3 Nondeterministic recursive algorithms 9
3.1 Basic properties . 10
3.2 Refinement . 11
3.3 Extension to reflexive states 13
3.4 Well-foundedness . 14

3.4.1 The relations > and ⊃ on finite domains 15
3.5 Implementation . 16

3.5.1 Graphs of functions 17
3.5.2 Deterministic refinement w.r.t. the identity abstraction 17
3.5.3 Recursive characterization 17

4 Dynamic pushdown networks 18
4.1 Dynamic pushdown networks 19

4.1.1 Definition . 19
4.1.2 Basic properties . 19
4.1.3 Building DPNs . 20

4.2 M-automata . 22
4.2.1 Definition . 22
4.2.2 Basic properties . 23
4.2.3 Some implications of the M-automata conditions . . . 24

4.3 pre∗-sets of regular sets of configurations 26
4.4 Nondeterministic algorithm for pre∗ 27

4.4.1 Termination . 28
4.4.2 Soundness . 31
4.4.3 Precision . 33

5 Non-executable implementation of the DPN pre∗-algorithm 40
5.1 Definitions . 40
5.2 Refining ps-R . 42
5.3 Termination . 42
5.4 Recursive characterization . 43
5.5 Correctness . 44

6 Tools for executable specifications 44
6.1 Searching in Lists . 44

7 Executable algorithms for finite state machines 45
7.1 Word lookup operation . 45
7.2 Reachable states and alphabet inferred from transition relation 47

8 Implementation of DPN pre∗-algorithm 48
8.1 Representation of DPN and M-automata 48
8.2 Next-element selection . 49
8.3 Termination . 50

2

8.3.1 Saturation upper bound 50
8.3.2 Well-foundedness of recursion relation 52
8.3.3 Definition of recursive function 52

8.4 Correctness . 53
8.4.1 seln_R refines ps_R 53
8.4.2 Computing transitions only 56
8.4.3 Correctness . 56

1 String rewrite systems
theory SRS
imports DPN-Setup
begin

This formalizes systems of labelled string rewrite rules and the labelled tran-
sition systems induced by them. DPNs are special string rewrite systems.

1.1 Definitions
type-synonym (′c, ′l) rewrite-rule = ′c list × ′l × ′c list
type-synonym (′c, ′l) SRS = (′c, ′l) rewrite-rule set

syntax
syn-rew-rule :: ′c list ⇒ ′l ⇒ ′c list ⇒ (′c, ′l) rewrite-rule (- ↪→- - [51,51,51] 51)

translations
s ↪→a s ′ => (s,a,s ′)

A (labelled) rewrite rule (s, a, s ′) consists of the left side s, the label a and
the right side s ′. Intuitively, it means that a substring s can be rewritten to
s ′ by an a-step. A string rewrite system is a set of labelled rewrite rules

1.2 Induced Labelled Transition System

A string rewrite systems induces a labelled transition system on strings by
rewriting substrings according to the rules
inductive-set tr :: (′c, ′l) SRS ⇒ (′c list, ′l) LTS for S
where

rewrite: (s ↪→a s ′) ∈ S =⇒ (ep@s@es,a,ep@s ′@es) ∈ tr S

1.3 Properties of the induced LTS

Adding characters at the start or end of a state does not influence the
capability of making a transition
lemma srs-ext-s: (s,a,s ′)∈tr S =⇒ (wp@s@ws,a,wp@s ′@ws)∈tr S proof −

assume (s,a,s ′)∈tr S

3

then obtain ep es r r ′ where s=ep@r@es ∧ s ′=ep@r ′@es ∧ (r ,a,r ′)∈S by (fast
elim: tr .cases)
moreover hence ((wp@ep)@r@(es@ws),a,(wp@ep)@r ′@(es@ws)) ∈ tr S by (fast

intro: tr .rewrite)
ultimately show ?thesis by auto

qed

lemma srs-ext-both: (s,w,s ′)∈trcl (tr S) =⇒ (wp@s@ws,w,wp@s ′@ws)∈trcl (tr S)
apply (induct s w s ′ rule: trcl.induct)
apply (simp)
apply (subgoal-tac wp @ c @ ws ↪→a wp @ c ′ @ ws ∈ tr S)
apply (auto intro: srs-ext-s)
done

corollary srs-ext-cons: (s,w,s ′)∈trcl (tr S) =⇒ (e#s,w,e#s ′)∈trcl (tr S) by (rule
srs-ext-both[where wp=[e] and ws=[], simplified])
corollary srs-ext-pre: (s,w,s ′)∈trcl (tr S) =⇒ (wp@s,w,wp@s ′)∈trcl (tr S) by (rule
srs-ext-both[where ws=[], simplified])
corollary srs-ext-post: (s,w,s ′)∈trcl (tr S) =⇒ (s@ws,w,s ′@ws)∈trcl (tr S) by (rule
srs-ext-both[where wp=[], simplified])

lemmas srs-ext = srs-ext-both srs-ext-pre srs-ext-post

end

2 Finite state machines
theory FSM
imports DPN-Setup
begin

This theory models nondeterministic finite state machines with explicit set
of states and alphabet. ε-transitions are not supported.

2.1 Definitions
record (′s, ′a) FSM-rec =

Q :: ′s set — The set of states
Σ :: ′a set — The alphabet
δ :: (′s, ′a) LTS — The transition relation
s0 :: ′s — The initial state
F :: ′s set — The set of final states

locale FSM =
fixes A
assumes delta-cons: (q,l,q ′)∈δ A =⇒ q∈Q A ∧ l∈Σ A ∧ q ′∈Q A — The transition

relation is consistent with the set of states and the alphabet
assumes s0-cons: s0 A ∈ Q A — The initial state is a state

4

assumes F-cons: F A ⊆ Q A — The final states are states
assumes finite-states: finite (Q A) — The set of states is finite
assumes finite-alphabet: finite (Σ A) — The alphabet is finite

2.2 Basic properties
lemma (in FSM) finite-delta-dom: finite (Q A × Σ A × Q A) proof −

from finite-states finite-alphabet finite-cartesian-product[of Σ A Q A] have finite
(Σ A × Q A) by fast

with finite-states finite-cartesian-product[of Q A Σ A × Q A] show finite (Q A
× Σ A × Q A) by fast
qed

lemma (in FSM) finite-delta: finite (δ A) proof −
have δ A ⊆ Q A × Σ A × Q A by (auto simp add: delta-cons)
with finite-delta-dom show ?thesis by (simp add: finite-subset)

qed

2.3 Constructing FSMs
definition fsm-empty s0 ≡ (| Q={s0}, Σ={}, δ={}, s0=s0, F={} |)
definition fsm-add-F s fsm ≡ fsm(| Q:=insert s (Q fsm), F :=insert s (F fsm) |)
definition fsm-add-tr q a q ′ fsm ≡ fsm(| Q:={q,q ′} ∪ (Q fsm), Σ:=insert a (Σ
fsm), δ := insert (q,a,q ′) (δ fsm) |)

lemma fsm-empty-invar [simp]: FSM (fsm-empty s)
apply unfold-locales unfolding fsm-empty-def by auto

lemma fsm-add-F-invar [simp]: assumes FSM fsm shows FSM (fsm-add-F s fsm)

proof −
interpret FSM fsm by fact
show ?thesis

apply unfold-locales
unfolding fsm-add-F-def
using delta-cons s0-cons F-cons finite-states finite-alphabet
by auto

qed

lemma fsm-add-tr-invar [simp]: assumes FSM fsm shows FSM (fsm-add-tr q a
q ′ fsm)
proof −

interpret FSM fsm by fact
show ?thesis

apply unfold-locales
unfolding fsm-add-tr-def
using delta-cons s0-cons F-cons finite-states finite-alphabet
by auto

qed

5

2.4 Reflexive, transitive closure of transition relation

Reflexive transitive closure on restricted domain
inductive-set trclAD :: (′s, ′a, ′c) FSM-rec-scheme ⇒ (′s, ′a) LTS ⇒ (′s, ′a list)
LTS
for A D
where

empty[simp]: s∈Q A =⇒ (s,[],s)∈trclAD A D |
cons[simp]: [[(s,e,s ′)∈D; s∈Q A; e∈Σ A; (s ′,w,s ′′)∈trclAD A D]] =⇒ (s,e#w,s ′′)∈trclAD

A D

abbreviation trclA A == trclAD A (δ A)

lemma trclAD-empty-cons[simp]: (c,[],c ′)∈trclAD A D =⇒ c=c ′ by (auto elim:
trclAD.cases)
lemma trclAD-single: (c,[a],c ′) ∈ trclAD A D =⇒ (c,a,c ′) ∈ D by (auto elim:
trclAD.cases)
lemma trclAD-elems: (c,w,c ′)∈trclAD A D =⇒ c∈Q A ∧ w∈lists (Σ A) ∧ c ′∈Q
A by (erule trclAD.induct, auto)
lemma trclAD-one-elem: [[c∈Q A; e∈Σ A; c ′∈Q A; (c,e,c ′)∈D]] =⇒ (c,[e],c ′)∈trclAD
A D by auto

lemma trclAD-uncons: (c,a#w,c ′)∈trclAD A D =⇒ ∃ ch . (c,a,ch)∈D ∧ (ch,w,c ′)
∈ trclAD A D ∧ c∈Q A ∧ a∈Σ A

by (auto elim: trclAD.cases)

lemma trclAD-concat: !! c . [[(c,w1,c ′)∈trclAD A D; (c ′,w2,c ′′)∈trclAD A D]] =⇒
(c,w1@w2,c ′′)∈trclAD A D
proof (induct w1)

case Nil thus ?case by (subgoal-tac c=c ′) auto
next

case (Cons a w) thus ?case by (auto dest: trclAD-uncons)
qed

lemma trclAD-unconcat: !! c . (c,w1@w2,c ′)∈trclAD A D =⇒ ∃ ch . (c,w1,ch)∈trclAD
A D ∧ (ch,w2,c ′)∈trclAD A D proof (induct w1)

case Nil hence (c,[],c)∈trclAD A D ∧ (c,w2,c ′)∈trclAD A D by (auto dest:
trclAD-elems)

thus ?case by fast
next

case (Cons a w1) note IHP = this
hence (c,a#(w1@w2),c ′)∈trclAD A D by simp
with trclAD-uncons obtain chh where (c,a,chh)∈D ∧ (chh,w1@w2,c ′)∈trclAD

A D ∧ c∈Q A ∧ a∈Σ A by fast
moreover with IHP obtain ch where (chh,w1,ch)∈trclAD A D ∧ (ch,w2,c ′)∈trclAD

A D by fast
ultimately have (c,a#w1,ch)∈trclAD A D ∧ (ch,w2,c ′)∈trclAD A D by auto

6

thus ?case by fast
qed

lemma trclAD-eq: [[Q A = Q A ′; Σ A = Σ A ′]] =⇒ trclAD A D = trclAD A ′ D
apply (safe)
subgoal by (erule trclAD.induct) auto
subgoal by (erule trclAD.induct) auto
done

lemma trclAD-mono: D⊆D ′ =⇒ trclAD A D ⊆ trclAD A D ′

apply (clarsimp)
apply (erule trclAD.induct)
apply auto
done

lemma trclAD-mono-adv: [[D⊆D ′; Q A = Q A ′; Σ A = Σ A ′]] =⇒ trclAD A D ⊆
trclAD A ′ D ′ by (subgoal-tac trclAD A D = trclAD A ′ D) (auto dest: trclAD-eq
trclAD-mono)

2.4.1 Relation of trclAD and trcl
lemma trclAD-by-trcl1: trclAD A D ⊆ (trcl (D ∩ (Q A × Σ A × Q A)) ∩ (Q A
× lists (Σ A) × Q A))

by (auto 0 3 dest: trclAD-elems elim: trclAD.induct simp: trclAD-elems intro:
trcl.cons)

lemma trclAD-by-trcl2: (trcl (D ∩ (Q A × Σ A × Q A)) ∩ (Q A × lists (Σ A) ×
Q A)) ⊆ trclAD A D proof −

{ fix c
have !! s s ′ . [[(s, c, s ′) ∈ trcl (D ∩ Q A × Σ A × Q A); s∈Q A; s ′∈Q A; c∈lists

(Σ A)]] =⇒ (s,c,s ′)∈trclAD A D proof (induct c)
case Nil thus ?case by (auto dest: trcl-empty-cons)

next
case (Cons e w) note IHP=this

then obtain sh where SPLIT : (s,e,sh)∈(D ∩ Q A × Σ A × Q A) ∧
(sh,w,s ′)∈trcl (D ∩ Q A × Σ A × Q A) by (fast dest: trcl-uncons)

hence (sh,w,s ′)∈trcl (D ∩ Q A × Σ A × Q A) ∩ (Q A × lists (Σ A) × Q A)
by (auto elim!: trcl-structE)

hence (sh,w,s ′)∈trclAD A D by (blast intro: IHP)
with SPLIT show ?case by auto

qed
}
thus ?thesis by (auto)

qed

lemma trclAD-by-trcl: trclAD A D = (trcl (D ∩ (Q A × Σ A × Q A)) ∩ (Q A ×
lists (Σ A) × Q A))

apply (rule equalityI)
apply (rule trclAD-by-trcl1)

7

apply (rule trclAD-by-trcl2)
done

lemma trclAD-by-trcl ′: trclAD A D = (trcl (D ∩ (Q A × Σ A × Q A)) ∩ (Q A
× UNIV × UNIV))

by (auto iff add: trclAD-by-trcl elim!: trcl-structE)

lemma trclAD-by-trcl ′′: [[D⊆Q A × Σ A × Q A]] =⇒ trclAD A D = trcl D ∩ (Q
A × UNIV × UNIV)

using trclAD-by-trcl ′[of A D] by (simp add: Int-absorb2)

lemma trclAD-subset-trcl: trclAD A D ⊆ trcl (D) proof −
have trclAD A D ⊆ (trcl (D ∩ (Q A × Σ A × Q A))) by (auto simp add:

trclAD-by-trcl)
also with trcl-mono[of D ∩ (Q A × Σ A × Q A) D] have . . . ⊆ trcl D by auto
finally show ?thesis .

qed

2.5 Language of a FSM
definition langs A s == { w . (∃ f∈(F A) . (s,w,f) ∈ trclA A) }
definition lang A == langs A (s0 A)

lemma langs-alt-def : (w∈langs A s) == (∃ f . f∈F A & (s,w,f) ∈ trclA A) by
(intro eq-reflection, unfold langs-def , auto)

2.6 Example: Product automaton
definition prod-fsm A1 A2 == (| Q=Q A1 × Q A2, Σ=Σ A1 ∩ Σ A2, δ = {
((s,t),a,(s ′,t ′)) . (s,a,s ′)∈δ A1 ∧ (t,a,t ′)∈δ A2 }, s0=(s0 A1,s0 A2), F = {(s,t) .
s∈F A1 ∧ t∈F A2} |)

lemma prod-inter-1: !! s s ′ f f ′ . ((s,s ′),w,(f ,f ′)) ∈ trclA (prod-fsm A A ′) =⇒
(s,w,f) ∈ trclA A ∧ (s ′,w,f ′) ∈ trclA A ′ proof (induct w)

case Nil note P=this
moreover hence s=f ∧ s ′=f ′ by (fast dest: trclAD-empty-cons)
moreover from P have s∈Q A ∧ s ′∈Q A ′ by (unfold prod-fsm-def , auto dest:

trclAD-elems)
ultimately show ?case by (auto)

next
case (Cons e w)
note IHP=this
then obtain m m ′ where I : ((s,s ′),e,(m,m ′)) ∈ δ (prod-fsm A A ′) ∧ (s,s ′)∈Q

(prod-fsm A A ′) ∧ e∈Σ (prod-fsm A A ′) ∧ ((m,m ′),w,(f ,f ′))∈trclA (prod-fsm A A ′)
by (fast dest: trclAD-uncons)

hence (s,e,m)∈δ A ∧ (s ′,e,m ′)∈δ A ′ ∧ s∈Q A ∧ s ′∈Q A ′ ∧ e∈Σ A ∧ e∈Σ A ′

by (unfold prod-fsm-def , simp)
moreover from I IHP have (m,w,f)∈trclA A ∧ (m ′,w,f ′)∈trclA A ′ by auto
ultimately show ?case by auto

qed

8

lemma prod-inter-2: !! s s ′ f f ′ . (s,w,f) ∈ trclA A ∧ (s ′,w,f ′) ∈ trclA A ′ =⇒
((s,s ′),w,(f ,f ′)) ∈ trclA (prod-fsm A A ′) proof (induct w)

case Nil note P=this
moreover hence s=f ∧ s ′=f ′ by (fast dest: trclAD-empty-cons)
moreover from P have (s,s ′)∈Q (prod-fsm A A ′) by (unfold prod-fsm-def , auto

dest: trclAD-elems)
ultimately show ?case by simp

next
case (Cons e w)
note IHP=this
then obtain m m ′ where I : (s,e,m)∈δ A ∧ (m,w,f)∈trclA A ∧ (s ′,e,m ′)∈δ

A ′ ∧ (m ′,w,f ′)∈trclA A ′ ∧ s∈Q A ∧ s ′∈Q A ′ ∧ e∈Σ A ∧ e∈Σ A ′ by (fast dest:
trclAD-uncons)

hence ((s,s ′),e,(m,m ′)) ∈ δ (prod-fsm A A ′) ∧ (s,s ′)∈Q (prod-fsm A A ′) ∧ e∈Σ
(prod-fsm A A ′) by (unfold prod-fsm-def , simp)

moreover from I IHP have ((m,m ′),w,(f ,f ′)) ∈ trclA (prod-fsm A A ′) by auto
ultimately show ?case by auto

qed

lemma prod-F : (a,b)∈F (prod-fsm A B) = (a∈F A ∧ b∈F B) by (unfold prod-fsm-def ,
auto)
lemma prod-FI : [[a∈F A; b∈F B]] =⇒ (a,b)∈F (prod-fsm A B) by (unfold prod-fsm-def ,
auto)

lemma prod-fsm-langs: langs (prod-fsm A B) (s,t) = langs A s ∩ langs B t
apply (unfold langs-def)
apply (insert prod-inter-1 prod-F)
apply (fast intro: prod-inter-2 prod-FI)

done

lemma prod-FSM-intro: FSM A1 =⇒ FSM A2 =⇒ FSM (prod-fsm A1 A2) by
(rule FSM .intro) (auto simp add: FSM-def prod-fsm-def)

end

3 Nondeterministic recursive algorithms
theory NDET
imports Main
begin

This theory models nondeterministic, recursive algorithms by means of a
step relation.
An algorithm is modelled as follows:

1. Start with some state s

9

2. If there is no s ′ with (s,s ′)∈R, terminate with state s

3. Else set s := s ′ and continue with step 2

Thus, R is the step relation, relating the previous with the next state. If the
state is not in the domain of R, the algorithm terminates.

The relation A-rel R describes the non-reflexive part of the algorithm, that is
all possible mappings for non-terminating initial states. We will first explore
properties of this non-reflexive part, and then transfer them to the whole
algorithm, that also specifies how terminating initial states are treated.
inductive-set A-rel :: (′s× ′s) set ⇒ (′s× ′s) set for R
where

A-rel-base: [[(s,s ′)∈R; s ′/∈Domain R]] =⇒ (s,s ′)∈A-rel R |
A-rel-step: [[(s,sh)∈R; (sh,s ′)∈A-rel R]] =⇒ (s,s ′)∈A-rel R

3.1 Basic properties

The algorithm just terminates at terminating states
lemma termstate: (s,s ′)∈A-rel R =⇒ s ′/∈Domain R by (induct rule: A-rel.induct,
auto)

lemma dom-subset: Domain (A-rel R) ⊆ Domain R by (unfold Domain-def) (auto
elim: A-rel.induct)

We can use invariants to reason over properties of the algorithm
definition is-inv R s0 P == P s0 ∧ (∀ s s ′. (s,s ′)∈R ∧ P s −→ P s ′)

lemma inv: [[(s0,sf)∈A-rel R; is-inv R s0 P]] =⇒ P sf by (unfold is-inv-def , induct
rule: A-rel.induct) blast+
lemma invI : [[P s0; !! s s ′. [[(s,s ′)∈R; P s]] =⇒ P s ′]] =⇒ is-inv R s0 P by (unfold
is-inv-def , blast)
lemma inv2: [[(s0,sf)∈A-rel R; P s0; !! s s ′. [[(s,s ′)∈R; P s]] =⇒ P s ′]] =⇒ P sf

apply (subgoal-tac is-inv R s0 P)
apply (blast intro: inv)
apply (blast intro: invI)

done

To establish new invariants, we can use already existing invariants
lemma inv-useI : [[P s0; !! s s ′. [[(s,s ′)∈R; P s; !!P ′. is-inv R s0 P ′ =⇒ P ′ s]] =⇒
P s ′]] =⇒ is-inv R s0 (λs. P s ∧ (∀P ′. is-inv R s0 P ′ −→ P ′ s))

apply (rule invI)
apply (simp (no-asm) only: is-inv-def , blast)
apply safe
apply blast
apply (subgoal-tac P ′ s)
apply (simp (no-asm-use) only: is-inv-def , blast)
apply fast

10

done

If the inverse step relation is well-founded, the algorithm will terminate for
every state in Domain R (⊆-direction). The ⊇-direction is from dom-subset
lemma wf-dom-eq: wf (R−1) =⇒ Domain R = Domain (A-rel R) proof −

assume WF : wf (R−1)
hence (∃ sf . (s,sf) ∈ A-rel R) if (s,s ′)∈R for s s ′ using that
proof (induction arbitrary: s ′)

case (less x)

{
assume s ′/∈Domain R
with less.prems have (x,s ′)∈A-rel R by (blast intro: A-rel-base)

} moreover {
assume s ′∈Domain R
then obtain st where (s ′,st)∈R by (unfold Domain-def , auto)
with less.prems less.IH obtain sf where (s ′,sf)∈A-rel R by blast
with less.prems have (x,sf)∈A-rel R by (blast intro: A-rel-step)
hence ∃ sf . (x,sf)∈A-rel R by blast

} ultimately show ∃ sf . (x,sf)∈A-rel R by blast
qed
hence Domain R ⊆ Domain (A-rel R) by (unfold Domain-def , auto)
with dom-subset show ?thesis by force

qed

3.2 Refinement

Refinement is a simulation property between step relations.
We define refinement w.r.t. an abstraction relation α, that relates abstract
to concrete states. The refining step-relation is called more concrete than
the refined one.
definition refines :: (′s∗ ′s) set ⇒ (′r∗ ′s) set ⇒ (′r∗ ′r) set ⇒ bool (-≤-- [50,50,50]
50) where

R ≤α S == α O R ⊆ S O α ∧ α ‘‘ Domain S ⊆ Domain R

lemma refinesI : [[α O R ⊆ S O α; α ‘‘ Domain S ⊆ Domain R]] =⇒ R≤αS by
(unfold refines-def , auto)
lemma refinesE : R≤αS =⇒ α O R ⊆ S O α

R≤αS =⇒ α ‘‘ Domain S ⊆ Domain R
by (unfold refines-def , auto)

Intuitively, the first condition for refinement means, that for each concrete
step (c,c ′)∈S where the start state c has an abstract counterpart (a,c)∈α,
there is also an abstract counterpart of the end state (a ′,c ′)∈α and the step
can also be done on the abstract counterparts (a,a ′)∈R.
lemma refines-compI :

assumes A: !! a c c ′. [[(a,c)∈α; (c,c ′)∈S]] =⇒ ∃ a ′. (a,a ′)∈R ∧ (a ′,c ′)∈α

11

shows α O S ⊆ R O α using A by blast

lemma refines-compE : [[α O S ⊆ R O α; (a,c)∈α; (c,c ′)∈S]] =⇒ ∃ a ′. (a,a ′)∈R ∧
(a ′,c ′)∈α by (auto)

Intuitively, the second condition for refinement means, that if there is an
abstract step (a,a ′)∈R, where the start state has a concrete counterpart c,
then there must also be a concrete step from c. Note that this concrete
step is not required to lead to the concrete counterpart of a ′. In fact, it is
only important that there is such a concrete step, ensuring that the con-
crete algorithm will not terminate on states on that the abstract algorithm
continues execution.
lemma refines-domI :

assumes A: !! a a ′ c. [[(a,c)∈α; (a,a ′)∈R]] =⇒ c∈Domain S
shows α ‘‘ Domain R ⊆ Domain S using A by auto

lemma refines-domE : [[α ‘‘ Domain R ⊆ Domain S ; (a,c)∈α; (a,a ′)∈R]] =⇒
c∈Domain S by auto

lemma refinesI2:
assumes A: !! a c c ′. [[(a,c)∈α; (c,c ′)∈S]] =⇒ ∃ a ′. (a,a ′)∈R ∧ (a ′,c ′)∈α
assumes B: !! a a ′ c. [[(a,c)∈α; (a,a ′)∈R]] =⇒ c∈Domain S
shows S≤αR by (simp only: refinesI A refines-compI B refines-domI)

lemma refinesE2:
[[S≤αR; (a,c)∈α; (c,c ′)∈S]] =⇒ ∃ a ′. (a,a ′)∈R ∧ (a ′,c ′)∈α
[[S≤αR; (a,c)∈α; (a,a ′)∈R]] =⇒ c∈Domain S
by (blast dest: refinesE refines-compE refines-domE)+

Reflexivity of identity refinement
lemma refines-id-refl[intro!, simp]: R≤IdR by (auto intro: refinesI)

Transitivity of refinement
lemma refines-trans: assumes R: R ≤α S S ≤β T shows R≤β O αT
proof (rule refinesI)

{
fix s s ′ t ′
assume A: (s,s ′)∈β O α (s ′,t ′)∈R
then obtain sh where (s,sh)∈β ∧ (sh,s ′)∈α by (blast)
with A R obtain t th where (sh,th)∈S ∧ (th,t ′)∈α ∧ (s,t)∈T ∧ (t,th)∈β by

(blast dest: refinesE)
hence (s,t ′)∈T O (β O α) by blast

} thus (β O α) O R ⊆ T O (β O α) by blast
next

{
fix s s ′

assume A: s∈Domain T (s,s ′)∈β O α
then obtain sh where (s,sh)∈β ∧ (sh,s ′)∈α by blast

12

with R A have s ′∈Domain R by (blast dest!: refinesE)
} thus (β O α) ‘‘ Domain T ⊆ Domain R by (unfold Domain-def , blast)

qed

Property transfer lemma
lemma refines-A-rel[rule-format]:

assumes R: R≤αS and A: (r ,r ′)∈A-rel R (s,r)∈α
shows (∃ s ′. (s ′,r ′)∈α ∧ (s,s ′)∈A-rel S)
using A

proof (induction arbitrary: s)
case 1: (A-rel-base r r ′ s)
assume C : (r ,r ′)∈R r ′/∈Domain R (s,r)∈α
with R obtain s ′ where (s,s ′)∈S ∧ (s ′,r ′)∈α ∧ s ′/∈Domain S by (blast dest:

refinesE)
hence (s ′,r ′)∈α ∧ (s,s ′)∈A-rel S by (blast intro: A-rel-base)
thus ∃ s ′. (s ′,r ′)∈α ∧ (s,s ′)∈A-rel S by (blast)

next
case C : (A-rel-step r rh r ′)
assume A: (r ,rh)∈R (rh,r ′)∈A-rel R (s,r)∈α
with R obtain sh where STEP: (sh,rh)∈α ∧ (s,sh)∈S by (blast dest: refinesE)
with C .IH obtain s ′ where (s ′,r ′)∈α ∧ (sh,s ′)∈A-rel S by blast
with STEP have (s ′, r ′) ∈ α ∧ (s, s ′) ∈ A-rel S by (blast intro: A-rel-step)
thus ∃ s ′. (s ′, r ′) ∈ α ∧ (s, s ′) ∈ A-rel S by (blast)

qed

Property transfer lemma for single-valued abstractions (i.e. abstraction
functions)
lemma refines-A-rel-sv: [[R≤αS ; (r ,r ′)∈A-rel R; single-valued (α−1); (s,r)∈α; (s ′,r ′)∈α]]
=⇒ (s,s ′)∈A-rel S by (blast dest: single-valuedD refines-A-rel)

3.3 Extension to reflexive states

Up to now we only defined how to relate initial states to terminating states
if the algorithm makes at least one step. In this section, we also add the
reflexive part: Initial states for that no steps can be made are mapped to
themselves.
definition

ndet-algo R == (A-rel R) ∪ {(s,s) | s. s/∈Domain R}

lemma ndet-algo-A-rel: [[x∈Domain R; (x,y)∈ndet-algo R]] =⇒ (x,y)∈A-rel R by
(unfold ndet-algo-def) auto

lemma ndet-algoE : [[(s,s ′)∈ndet-algo R; [[(s,s ′)∈A-rel R]] =⇒ P; [[s=s ′; s/∈Domain
R]] =⇒ P]] =⇒ P by (unfold ndet-algo-def , auto)
lemma ndet-algoE ′: [[(s,s ′)∈ndet-algo R; [[(s,s ′)∈A-rel R; s∈Domain R; s ′/∈Domain
R]] =⇒ P; [[s=s ′; s/∈Domain R]] =⇒ P]] =⇒ P

using dom-subset[of R] termstate[of s s ′ R]

13

by (auto elim!: ndet-algoE)

ndet-algo is total (i.e. the algorithm is defined for every initial state), if R−1

is well founded
lemma ndet-algo-total: wf (R−1) =⇒ Domain (ndet-algo R) = UNIV

by (unfold ndet-algo-def) (auto simp add: wf-dom-eq)

The result of the algorithm is always a terminating state
lemma termstate-ndet-algo: (s,s ′)∈ndet-algo R =⇒ s ′/∈Domain R by (unfold ndet-algo-def ,
auto dest: termstate)

Property transfer lemma for ndet-algo
lemma refines-ndet-algo[rule-format]:

assumes R: S≤αR and A: (c,c ′)∈ndet-algo S
shows ∀ a. (a,c)∈α −→ (∃ a ′. (a ′,c ′)∈α ∧ (a,a ′)∈ndet-algo R)

proof (intro allI impI)
fix a assume B: (a,c)∈α
{ assume CASE : c∈Domain S

with A have (c,c ′)∈A-rel S by (blast elim: ndet-algoE)
with R B obtain a ′ where (a ′,c ′)∈α ∧ (a,a ′)∈A-rel R by (blast dest: re-

fines-A-rel)
moreover hence (a,a ′)∈ndet-algo R by (unfold ndet-algo-def , simp)
ultimately have ∃ a ′. (a ′, c ′) ∈ α ∧ (a, a ′) ∈ ndet-algo R by blast

} moreover {
assume CASE : c/∈Domain S
with A have c=c ′ by (blast elim: ndet-algoE ′)
moreover have a/∈Domain R proof

assume a∈Domain R
with B R have c∈Domain S by (auto elim: refinesE2)
with CASE show False ..

qed
ultimately have ∃ a ′. (a ′, c ′) ∈ α ∧ (a, a ′) ∈ ndet-algo R using B by (unfold

ndet-algo-def , blast)
} ultimately show ∃ a ′. (a ′, c ′) ∈ α ∧ (a, a ′) ∈ ndet-algo R by blast

qed

Property transfer lemma for single-valued abstractions (i.e. Abstraction
functions)
lemma refines-ndet-algo-sv: [[S≤αR; (c,c ′)∈ndet-algo S ; single-valued (α−1); (a,c)∈α;
(a ′,c ′)∈α]] =⇒ (a,a ′)∈ndet-algo R by (blast dest: single-valuedD refines-ndet-algo)

3.4 Well-foundedness
lemma wf-imp-minimal: [[wf S ; x∈Q]] =⇒ ∃ z∈Q. (∀ x. (x,z)∈S −→ x /∈Q) by (auto
iff add: wf-eq-minimal)

This lemma allows to show well-foundedness of a refining relation by pro-
viding a well-founded refined relation for each element in the domain of the
refining relation.

14

lemma refines-wf :
assumes A: !!r . [[r∈Domain R]] =⇒ (s r ,r)∈α r ∧ R≤α r S r ∧ wf ((S r)−1)
shows wf (R−1)

proof (rule wfI-min)
fix Q and e :: ′a
assume NOTEMPTY : e∈Q
moreover {

assume e/∈Domain R
hence ∀ y. (e,y)∈R −→ y /∈Q by blast

} moreover {
assume C : e∈Domain R
with A have MAP: (s e,e)∈α e and REF : R≤α e S e and WF : wf ((S e)−1)

by (auto)
let ?aQ = ((α e)−1) ‘‘ Q
from MAP NOTEMPTY have s e∈?aQ by auto
with WF wf-imp-minimal[of (S e)−1, simplified] have ∃ z∈?aQ. (∀ x. (z,x)∈S

e −→ x /∈?aQ) by auto
then obtain z where ZMIN : z∈?aQ ∧ (∀ x. (z,x)∈S e −→ x /∈?aQ) by blast
then obtain q where QP: (z,q)∈α e ∧ q∈Q by blast
have ∀ x. (q,x)∈R −→ x /∈Q proof (intro allI impI)

fix x
assume (q,x)∈R
with REF QP obtain xt where ZREF : (z,xt)∈S e ∧ (xt,x)∈α e by (blast

dest: refinesE)
with ZMIN have xt /∈?aQ by simp
moreover from ZREF have x∈Q =⇒ xt∈?aQ by blast
ultimately show x /∈Q by blast

qed
with QP have ∃ q∈Q. ∀ y. (q,y)∈R −→ y /∈Q by blast

} ultimately show ∃ z∈Q. ∀ y. (y,z)∈R−1 −→ y /∈Q by blast
qed

3.4.1 The relations > and ⊃ on finite domains
definition greaterN N == {(i,j) . j<i & i≤(N ::nat)}
definition greaterS S == {(a,b) . b⊂a & a⊆(S :: ′a set)}

> on initial segment of nat is well founded
lemma wf-greaterN : wf (greaterN N)

apply (unfold greaterN-def)
apply (rule wf-subset[of measure (λk. (N−k))], blast)
apply (clarify, simp add: measure-def inv-image-def)

done

Strict version of card-mono
lemma card-mono-strict: [[finite B; A⊂B]] =⇒ card A < card B proof −

assume F : finite B and S : A⊂B
hence FA: finite A by (auto intro: finite-subset)
from S obtain x where P: x∈B ∧ x /∈A ∧ A−{x}=A ∧ insert x A ⊆ B by auto

15

with FA have card (insert x A) = Suc (card A) by (simp)
moreover from F P have card (insert x A) ≤ card B by (fast intro: card-mono)
ultimately show ?thesis by simp

qed

⊃ on finite sets is well founded

This is shown here by embedding the ⊃ relation into the > relation, using
cardinality
lemma wf-greaterS : finite S =⇒ wf (greaterS S) proof −

assume FS : finite S — For this purpose, we show that we can embed greaterS
into the greaterN by the inverse image of cardinality

have {(a,b) . b⊂a ∧ a ⊆ S} ⊆ inv-image (greaterN (card S)) card proof −
{

fix a b
assume A: b⊂a a⊆S
with FS have Fab: finite a finite b by (auto simp add: finite-subset)
with A FS have card b < card a & card a ≤ card S by (fast intro: card-mono

card-mono-strict)
} note R=this
thus ?thesis by (auto simp add: inv-image-def greaterN-def)

qed
thus ?thesis by (unfold greaterS-def , blast intro: wf-greaterN wf-subset)

qed

This lemma shows well-foundedness of saturation algorithms, where in each
step some set is increased, and this set remains below some finite upper
bound
lemma sat-wf :

assumes subset: !!r r ′. (r ,r ′)∈R =⇒ α r ⊂ α r ′ ∧ α r ′ ⊆ U
assumes finite: finite U
shows wf (R−1)

proof −
have R−1 ⊆ inv-image (greaterS U) α by (auto simp add: inv-image-def greaterS-def

dest: subset)
moreover have wf (inv-image (greaterS U) α) using finite by (blast intro:

wf-greaterS)
ultimately show ?thesis by (blast intro: wf-subset)

qed

3.5 Implementation

The first step to implement a nondeterministic algorithm specified by a rela-
tion R is to provide a deterministic refinement w.r.t. the identity abstraction
Id. We can describe such a deterministic refinement as the graph of a partial
function sel. We call this function a selector function, because it selects the
next state from the possible states specified by R.

16

In order to get a working implementation, we must prove termination. That
is, we have to show that (graph sel)−1 is well-founded. If we already know
that R−1 is well-founded, this property transfers to (graph sel)−1.
Once obtained well-foundedness, we can use the selector function to imple-
ment the following recursive function:
algo s = case sel s of None ⇒ s | Some s ′⇒ algo s ′

And we can show, that algo is consistent with ndet-algo R, that is (s,algo
s)∈ndet-algo R.

3.5.1 Graphs of functions

The graph of a (partial) function is the relation of arguments and function
values
definition graph f == {(x,x ′) . f x = Some x ′}

lemma graphI [intro]: f x = Some x ′ =⇒ (x,x ′)∈graph f by (unfold graph-def ,
auto)
lemma graphD[dest]: (x,x ′)∈graph f =⇒ f x = Some x ′ by (unfold graph-def , auto)
lemma graph-dom-iff1: (x /∈Domain (graph f)) = (f x = None) by (cases f x) auto
lemma graph-dom-iff2: (x∈Domain (graph f)) = (f x 6= None) by (cases f x) auto

3.5.2 Deterministic refinement w.r.t. the identity abstraction
lemma detRef-eq: (graph sel ≤Id R) = ((∀ s s ′. sel s = Some s ′ −→ (s,s ′)∈R) ∧
(∀ s. sel s = None −→ s/∈Domain R))

by (unfold refines-def) (auto iff add: graph-dom-iff2)

lemma detRef-wf-transfer : [[wf (R−1); graph sel ≤Id R]] =⇒ wf ((graph sel)−1)
by (rule refines-wf [where s=id and α=λx. Id and S=λx. R]) simp

3.5.3 Recursive characterization
locale detRef-impl =

fixes algo and sel and R
assumes detRef : graph sel ≤Id R
assumes algo-rec[simp]: !! s s ′. sel s = Some s ′ =⇒ algo s = algo s ′ and

algo-term[simp]: !! s. sel s = None =⇒ algo s = s
assumes wf : wf ((graph sel)−1)

lemma (in detRef-impl) sel-cons:
sel s = Some s ′ =⇒ (s,s ′)∈R
sel s = None =⇒ s/∈Domain R
s∈Domain R =⇒ ∃ s ′. sel s = Some s ′

s/∈Domain R =⇒ sel s = None
using detRef
by (simp-all only: detRef-eq) (cases sel s, blast, blast)+

17

lemma (in detRef-impl) algo-correct: (s,algo s)∈ndet-algo R proof −
{

assume C : s∈Domain R
have !!s. s∈Domain R −→ (s,algo s)∈A-rel R
proof (rule wf-induct[OF wf , of λs. s∈Domain R −→ (s,algo s)∈A-rel R]; intro

impI)
fix s

assume A: s ∈ Domain R and IH : ∀ y. (y, s) ∈ (graph sel)−1 −→ y ∈ Domain
R −→ (y, algo y) ∈ A-rel R

then obtain sh where SH : sel s = Some sh ∧ (s,sh)∈R using sel-cons by
blast

hence AS : algo s = algo sh by auto
{

assume C : sh /∈Domain R
hence sel sh=None by (auto dest: sel-cons)
hence algo sh=sh by (auto)
moreover from SH C have (s,sh)∈A-rel R by (blast intro: A-rel-base)
ultimately have (s,algo s)∈A-rel R using AS by simp

} moreover {
assume C : sh∈Domain R
with SH IH AS A have (sh,algo s)∈A-rel R by auto
with SH have (s,algo s)∈A-rel R by (blast intro: A-rel-step)

} ultimately show (s,algo s)∈A-rel R by blast
qed
with C have (s,algo s)∈A-rel R by simp
hence ?thesis by (unfold ndet-algo-def , auto)

} moreover {
assume C : s/∈Domain R
hence s=algo s by (auto dest: sel-cons)
with C have ?thesis by (unfold ndet-algo-def , auto)

} ultimately show ?thesis by blast
qed

end

4 Dynamic pushdown networks
theory DPN
imports DPN-Setup SRS FSM NDET
begin

Dynamic pushdown networks (DPNs) are a model for parallel, context free
processes where processes can create new processes.
They have been introduced in [1]. In this theory we formalize DPNs and
the automata based algorithm for calculating a representation of the (reg-
ular) set of backward reachable configurations, starting at a regular set of
configurations.

18

We describe the algorithm nondeterministically, and prove its termination
and correctness.

4.1 Dynamic pushdown networks
4.1.1 Definition
record (′c, ′l) DPN-rec =

csyms :: ′c set
ssyms :: ′c set
sep :: ′c
labels :: ′l set
rules :: (′c, ′l) SRS

A dynamic pushdown network consists of a finite set of control symbols, a
finite set of stack symbols, a separator symbol1, a finite set of labels and a
finite set of labelled string rewrite rules.
The set of control and stack symbols are disjoint, and both do not contain
the separator. A string rewrite rule is either of the form [p,γ] ↪→a p1#w1 or
[p,γ] ↪→a p1#w1@]#p2#w2 where p,p1,p2 are control symbols, w1,w2 are
sequences of stack symbols, a is a label and] is the separator.
locale DPN =

fixes M
fixes separator (])
defines sep-def :] == sep M
assumes sym-finite: finite (csyms M) finite (ssyms M)
assumes sym-disjoint: csyms M ∩ ssyms M = {}] /∈ csyms M ∪ ssyms M
assumes lab-finite: finite (labels M)
assumes rules-finite: finite (rules M)
assumes rule-fmt: r ∈ rules M =⇒

(∃ p γ a p ′ w. p∈csyms M ∧ γ∈ssyms M ∧ p ′∈csyms M ∧ w∈lists (ssyms M)
∧ a∈labels M ∧ r=p#[γ] ↪→a p ′#w)
∨ (∃ p γ a p1 w1 p2 w2. p∈csyms M ∧ γ∈ssyms M ∧ p1∈csyms M ∧ w1∈lists

(ssyms M) ∧ p2∈csyms M ∧ w2∈lists (ssyms M) ∧ a∈labels M ∧ r=p#[γ] ↪→a
p1#w1@]#p2#w2)

lemma (in DPN) sep-fold: sep M ==] by (simp add: sep-def)

lemma (in DPN) sym-disjoint ′: sep M /∈ csyms M ∪ ssyms M using sym-disjoint
by (simp add: sep-def)

4.1.2 Basic properties
lemma (in DPN) syms-part: x∈csyms M =⇒ x /∈ssyms M x∈ssyms M =⇒ x /∈csyms
M using sym-disjoint by auto
lemma (in DPN) syms-sep:]/∈csyms M]/∈ssyms M using sym-disjoint by auto

1In the final version of [1], no separator symbols are used. We use them here because
we think it simplifies formalization of the proofs.

19

lemma (in DPN) syms-sep ′: sep M /∈csyms M sep M /∈ssyms M using syms-sep
by (auto simp add: sep-def)

lemma (in DPN) rule-cases[consumes 1, case-names no-spawn spawn]:
assumes A: r∈rules M
assumes NOSPAWN : !! p γ a p ′ w. [[p∈csyms M ; γ∈ssyms M ; p ′∈csyms M ;

w∈lists (ssyms M); a∈labels M ; r=p#[γ] ↪→a p ′#w]] =⇒ P
assumes SPAWN : !! p γ a p1 w1 p2 w2. [[p∈csyms M ; γ∈ssyms M ; p1∈csyms

M ; w1∈lists (ssyms M); p2∈csyms M ; w2∈lists (ssyms M); a∈labels M ; r=p#[γ]
↪→a p1#w1@]#p2#w2]] =⇒ P

shows P
using A NOSPAWN SPAWN
by (blast dest!: rule-fmt)

lemma (in DPN) rule-cases ′:
[[r∈rules M ;

!! p γ a p ′ w. [[p∈csyms M ; γ∈ssyms M ; p ′∈csyms M ; w∈lists (ssyms M);
a∈labels M ; r=p#[γ] ↪→a p ′#w]] =⇒ P;

!! p γ a p1 w1 p2 w2. [[p∈csyms M ; γ∈ssyms M ; p1∈csyms M ; w1∈lists (ssyms
M); p2∈csyms M ; w2∈lists (ssyms M); a∈labels M ; r=p#[γ] ↪→a p1#w1@(sep
M)#p2#w2]] =⇒ P]]
=⇒ P by (unfold sep-fold) (blast elim!: rule-cases)

lemma (in DPN) rule-prem-fmt: r∈rules M =⇒ ∃ p γ a c ′. p∈csyms M ∧ γ∈ssyms
M ∧ a∈labels M ∧ set c ′ ⊆ csyms M ∪ ssyms M ∪ {]} ∧ r=(p#[γ] ↪→a c ′)

apply (erule rule-cases)
by (auto)

lemma (in DPN) rule-prem-fmt ′: r∈rules M =⇒ ∃ p γ a c ′. p∈csyms M ∧
γ∈ssyms M ∧ a∈labels M ∧ set c ′ ⊆ csyms M ∪ ssyms M ∪ {sep M} ∧ r=(p#[γ]
↪→a c ′) by (unfold sep-fold, rule rule-prem-fmt)

lemma (in DPN) rule-prem-fmt2: [p,γ]↪→a c ′ ∈ rules M =⇒ p∈csyms M ∧
γ∈ssyms M ∧ a∈labels M ∧ set c ′ ⊆ csyms M ∪ ssyms M ∪ {]} by (fast dest:
rule-prem-fmt)
lemma (in DPN) rule-prem-fmt2 ′: [p,γ]↪→a c ′ ∈ rules M =⇒ p∈csyms M ∧
γ∈ssyms M ∧ a∈labels M ∧ set c ′ ⊆ csyms M ∪ ssyms M ∪ {sep M} by (unfold
sep-fold, rule rule-prem-fmt2)

lemma (in DPN) rule-fmt-fs: [p,γ]↪→a p ′#c ′∈ rules M =⇒ p∈csyms M ∧ γ∈ssyms
M ∧ a∈labels M ∧ p ′∈csyms M ∧ set c ′ ⊆ csyms M ∪ ssyms M ∪ {]}

apply (erule rule-cases)
by (auto)

4.1.3 Building DPNs

Sanity check: we can create valid DPNs by adding rules to an empty DPN
definition dpn-empty C S s ≡ (|

csyms = C ,

20

ssyms = S ,
sep = s,
labels = {},
rules = {}
|)

definition dpn-add-local-rule p γ a p1 w1 D ≡ D(| labels := insert a (labels D),
rules := insert ([p,γ],a,p1#w1) (rules D) |)
definition dpn-add-spawn-rule p γ a p1 w1 p2 w2 D ≡ D(| labels := insert a (labels
D), rules := insert ([p,γ],a,p1#w1@sep D#p2#w2) (rules D) |)

lemma dpn-empty-invar [simp]: [[finite C ; finite S ; C∩S={}; s/∈C∪S]] =⇒ DPN
(dpn-empty C S s)

apply unfold-locales unfolding dpn-empty-def by auto

lemma dpn-add-local-rule-invar [simp]:
assumes A: {p,p1} ⊆ csyms D insert γ (set w1) ⊆ ssyms D and DPN D
shows DPN (dpn-add-local-rule p γ a p1 w1 D)

proof −
interpret DPN D sep D by fact
show ?thesis

unfolding dpn-add-local-rule-def
apply unfold-locales
using sym-finite sym-disjoint lab-finite rules-finite
apply simp-all
apply (erule disjE)
subgoal for r using A by auto
subgoal for r using rule-fmt[of r] by metis
done

qed

lemma dpn-add-spawn-rule-invar [simp]:
assumes A: {p,p1,p2} ⊆ csyms D insert γ (set w1 ∪ set w2) ⊆ ssyms D and

DPN D
shows DPN (dpn-add-spawn-rule p γ a p1 w1 p2 w2 D)

proof −
interpret DPN D sep D by fact
show ?thesis

unfolding dpn-add-spawn-rule-def
apply unfold-locales
using sym-finite sym-disjoint lab-finite rules-finite
apply (simp-all)
apply (erule disjE)
subgoal for r apply (rule disjI2) using A apply clarsimp by (metis in-listsI

subset-eq)
subgoal for r using rule-fmt[of r] by metis
done

qed

21

4.2 M-automata

We are interested in calculating the predecessor sets of regular sets of config-
urations. For this purpose, the regular sets of configurations are represented
as finite state machines, that conform to certain constraints, depending on
the underlying DPN. These FSMs are called M-automata.

4.2.1 Definition
record (′s, ′c) MFSM-rec = (′s, ′c) FSM-rec +

sstates :: ′s set
cstates :: ′s set
sp :: ′s ⇒ ′c ⇒ ′s

M-automata are FSMs whose states are partioned into control and stack
states. For each control state s and control symbol p, there is a unique
and distinguished stack state sp A s p, and a transition (s,p,sp A s p)∈δ.
The initial state is a control state, and the final states are all stack states.
Moreover, the transitions are restricted: The only incoming transitions of
control states are separator transitions from stack states. The only outgoing
transitions are the (s,p,sp A s p)∈δ transitions mentioned above. The sp A
s p-states have no other incoming transitions.
locale MFSM = DPN M + FSM A

for M A +

assumes alpha-cons: Σ A = csyms M ∪ ssyms M ∪ {]}
assumes states-part: sstates A ∩ cstates A = {} Q A = sstates A ∪ cstates A
assumes uniqueSp: [[s∈cstates A; p∈csyms M]] =⇒ sp A s p ∈ sstates A [[p∈csyms

M ; p ′∈csyms M ; s∈cstates A; s ′∈cstates A; sp A s p = sp A s ′ p ′]] =⇒ s=s ′ ∧
p=p ′

assumes delta-fmt: δ A ⊆ (sstates A × ssyms M × (sstates A − {sp A s p | s p
. s∈cstates A ∧ p∈csyms M})) ∪ (sstates A × {]} × cstates A) ∪ {(s,p,sp A s p)
| s p . s∈cstates A ∧ p∈csyms M}

δ A ⊇ {(s,p,sp A s p) | s p . s∈cstates A ∧ p∈csyms M}
assumes s0-fmt: s0 A ∈ cstates A
assumes F-fmt: F A⊆sstates A — This deviates slightly from [1], as we cannot

represent the empty configuration here. However, this restriction is harmless, since
the only predecessor of the empty configuration is the empty configuration itself.

constrains M ::(′c, ′l, ′e1) DPN-rec-scheme
constrains A::(′s, ′c, ′e2) MFSM-rec-scheme

lemma (in MFSM) alpha-cons ′: Σ A = csyms M ∪ ssyms M ∪ {sep M} by
(unfold sep-fold, rule alpha-cons)
lemma (in MFSM) delta-fmt ′: δ A ⊆ (sstates A × ssyms M × (sstates A − {sp
A s p | s p . s∈cstates A ∧ p∈csyms M})) ∪ (sstates A × {sep M} × cstates A)

22

∪ {(s,p,sp A s p) | s p . s∈cstates A ∧ p∈csyms M}
δ A ⊇ {(s,p,sp A s p) | s p . s∈cstates A ∧ p∈csyms M} by

(unfold sep-fold, (rule delta-fmt)+)

4.2.2 Basic properties
lemma (in MFSM) finite-cs-states: finite (sstates A) finite (cstates A)
proof −

have sstates A ⊆ Q A ∧ cstates A ⊆ Q A by (auto simp add: states-part)
then show finite (sstates A) finite (cstates A) by (auto dest: finite-subset intro:

finite-states)
qed

lemma (in MFSM) sep-out-syms: x∈csyms M =⇒ x 6=] x∈ssyms M =⇒ x 6=]
by (auto iff add: syms-sep)
lemma (in MFSM) sepI : [[x∈Σ A;x /∈csyms M ; x /∈ssyms M]] =⇒ x=] using al-
pha-cons by auto
lemma (in MFSM) sep-out-syms ′: x∈csyms M =⇒ x 6= sep M x∈ssyms M =⇒ x
6= sep M by (unfold sep-fold, (fast dest: sep-out-syms) +)
lemma (in MFSM) sepI ′: [[x∈Σ A;x /∈csyms M ; x /∈ssyms M]] =⇒ x=sep M using
alpha-cons ′ by auto

lemma (in MFSM) states-partI1: x∈sstates A =⇒ ¬x∈cstates A using states-part
by (auto)
lemma (in MFSM) states-partI2: x∈cstates A =⇒ ¬x∈sstates A using states-part
by (auto)
lemma (in MFSM) states-part-elim[elim]: [[q∈Q A; q∈sstates A =⇒ P; q∈cstates
A =⇒ P]] =⇒ P using states-part by (auto)

lemmas (in MFSM) mfsm-cons = sep-out-syms sepI sep-out-syms ′ sepI ′ states-partI1
states-partI2 syms-part syms-sep uniqueSp
lemmas (in MFSM) mfsm-cons ′= sep-out-syms sepI sep-out-syms ′ sepI ′ states-partI1
states-partI2 syms-part uniqueSp

lemma (in MFSM) delta-cases: [[(q,p,q ′)∈δ A; q∈sstates A ∧ p∈ssyms M ∧
q ′∈sstates A ∧ q ′/∈{sp A s p | s p . s∈cstates A ∧ p∈csyms M} =⇒ P;

q∈sstates A ∧ p=] ∧ q ′∈cstates A =⇒ P;
q∈cstates A ∧ p∈csyms M ∧ q ′=sp A q p =⇒

P]] =⇒ P
using delta-fmt by auto

lemma (in MFSM) delta-elems: (q,p,q ′)∈δ A =⇒ q∈sstates A ∧ ((p∈ssyms M
∧ q ′∈sstates A ∧ (q ′/∈{sp A s p | s p . s∈cstates A ∧ p∈csyms M})) ∨ (p=] ∧
q ′∈cstates A)) ∨ (q∈cstates A ∧ p∈csyms M ∧ q ′=sp A q p)

using delta-fmt by auto

lemma (in MFSM) delta-cases ′: [[(q,p,q ′)∈δ A; q∈sstates A ∧ p∈ssyms M ∧
q ′∈sstates A ∧ q ′/∈{sp A s p | s p . s∈cstates A ∧ p∈csyms M} =⇒ P;

q∈sstates A ∧ p=sep M ∧ q ′∈cstates A =⇒ P;

23

q∈cstates A ∧ p∈csyms M ∧ q ′=sp A q p =⇒
P]] =⇒ P

using delta-fmt ′ by auto

lemma (in MFSM) delta-elems ′: (q,p,q ′)∈δ A =⇒ q∈sstates A ∧ ((p∈ssyms M ∧
q ′∈sstates A ∧ (q ′/∈{sp A s p | s p . s∈cstates A ∧ p∈csyms M})) ∨ (p=sep M ∧
q ′∈cstates A)) ∨ (q∈cstates A ∧ p∈csyms M ∧ q ′=sp A q p)

using delta-fmt ′ by auto

4.2.3 Some implications of the M-automata conditions

This list of properties is taken almost literally from [1].

Each control state s has sp A s p as its unique p-successor
lemma (in MFSM) cstate-succ-ex: [[p∈csyms M ; s∈cstates A]] =⇒ (s,p,sp A s p)
∈ δ A

using delta-fmt by (auto)

lemma (in MFSM) cstate-succ-ex ′: [[p∈csyms M ; s∈cstates A; δ A ⊆ D]] =⇒
(s,p,sp A s p) ∈ D using cstate-succ-ex by auto

lemma (in MFSM) cstate-succ-unique: [[s∈cstates A; (s,p,x)∈δ A]] =⇒ p∈csyms
M ∧ x=sp A s p by (auto elim: delta-cases dest: mfsm-cons ′)

Transitions labeled with control symbols only leave from control states
lemma (in MFSM) csym-from-cstate: [[(s,p,s ′)∈δ A; p∈csyms M]] =⇒ s∈cstates
A by (auto elim: delta-cases dest: mfsm-cons ′)

s is the only predecessor of sp A s p
lemma (in MFSM) sp-pred-ex: [[s∈cstates A; p∈csyms M]] =⇒ (s,p,sp A s p)∈δ
A using delta-fmt by auto
lemma (in MFSM) sp-pred-unique: [[s∈cstates A; p∈csyms M ; (s ′,p ′,sp A s p)∈δ
A]] =⇒ s ′=s ∧ p ′=p ∧ s ′∈cstates A ∧ p ′∈csyms M by (erule delta-cases) (auto
dest: mfsm-cons ′)

Only separators lead from stack states to control states
lemma (in MFSM) sep-in-between: [[s∈sstates A; s ′∈cstates A; (s,p,s ′)∈δ A]] =⇒
p=] by (auto elim: delta-cases dest: mfsm-cons ′)
lemma (in MFSM) sep-to-cstate: [[(s,],s ′)∈δ A]] =⇒ s∈sstates A ∧ s ′∈cstates A
by (auto elim: delta-cases dest: mfsm-cons ′)

Stack states do not have successors labelled with control symbols
lemma (in MFSM) sstate-succ: [[s∈sstates A; (s,γ,s ′)∈δ A]] =⇒ γ /∈ csyms M by
(auto elim: delta-cases dest: mfsm-cons ′)
lemma (in MFSM) sstate-succ2: [[s∈sstates A; (s,γ,s ′)∈δ A; γ 6=]]] =⇒ γ∈ssyms
M ∧ s ′∈sstates A by (auto elim: delta-cases dest: mfsm-cons ′)

M-automata do not accept the empty word

24

lemma (in MFSM) not-empty[iff]: []/∈lang A
apply (unfold lang-def langs-def)
apply (clarsimp)
apply (insert s0-fmt F-fmt)
apply (subgoal-tac s0 A = f)
apply (auto dest: mfsm-cons ′)

done

The paths through an M-automata have a very special form: Paths starting
at a stack state are either labelled entirely with stack symbols, or have a
prefix labelled with stack symbols followed by a separator
lemma (in MFSM) path-from-sstate: !!s . [[s∈sstates A; (s,w,f)∈trclA A]] =⇒
(f∈sstates A ∧ w∈lists (ssyms M)) ∨ (∃w1 w2 t. w=w1@]#w2 ∧ w1∈lists (ssyms
M) ∧ t∈sstates A ∧ (s,w1,t)∈trclA A ∧ (t,]#w2,f)∈trclA A)
proof (induct w)

case Nil thus ?case by (subgoal-tac s=f) auto
next

case (Cons e w)
note IHP[rule-format]=this
then obtain s ′ where STEP: (s,e,s ′)∈(δ A) ∧ s∈Q A ∧ e∈Σ A ∧ (s ′,w,f)∈trclA

A by (fast dest: trclAD-uncons)
show ?case proof (cases e=])

assume e=]
with IHP have e#w=[]@]#w ∧ []∈lists (ssyms M) ∧ s∈sstates A ∧ (s,[],s)∈trclA

A ∧ (s,e#w,f)∈trclA A using states-part by (auto)
thus ?case by force

next
assume e 6=]
with IHP STEP sstate-succ2 have EC : e∈ssyms M ∧ s ′∈sstates A by blast
with IHP STEP have (f ∈ sstates A ∧ w ∈ lists (ssyms M)) ∨ (∃w1 w2 t.

w = w1 @] # w2 ∧ w1 ∈ lists (ssyms M) ∧ t∈sstates A ∧ (s ′,w1,t)∈trclA A ∧
(t,]#w2,f)∈trclA A) (is ?C1∨?C2) by auto

moreover {
assume ?C1
with EC have f∈sstates A ∧ e#w ∈ lists (ssyms M) by auto

} moreover {
assume ?C2
then obtain w1 w2 t where CASE : w = w1 @] # w2 ∧ w1 ∈ lists (ssyms

M) ∧ t∈sstates A ∧ (s ′,w1,t)∈trclA A ∧ (t,]#w2,f)∈trclA A by (fast)
with EC have e#w = (e#w1) @] # w2 ∧ e#w1 ∈ lists (ssyms M) by auto

moreover from CASE STEP IHP have (s,e#w1,t)∈trclA A using states-part
by auto

moreover note CASE
ultimately have ∃w1 w2 t. e#w = w1 @] # w2 ∧ w1 ∈ lists (ssyms M) ∧

t∈sstates A ∧ (s,w1,t)∈trclA A ∧ (t,]#w2,f)∈trclA A by fast
} ultimately show ?case by blast

qed
qed

25

Using MFSM .path-from-sstate, we can describe the format of paths from
control states, too. A path from a control state s to some final state starts
with a transition (s, p, sp A s p) for some control symbol p. It then continues
with a sequence of transitions labelled by stack symbols. It then either ends
or continues with a separator transition, bringing it to a control state again,
and some further transitions from there on.
lemma (in MFSM) path-from-cstate:

assumes A: s∈cstates A (s,c,f)∈trclA A f∈sstates A
assumes SINGLE : !! p w . [[c=p#w; p∈csyms M ; w∈lists (ssyms M); (s,p,sp A

s p)∈δ A; (sp A s p,w,f)∈trclA A]] =⇒ P
assumes CONC : !! p w cr t s ′ . [[c=p#w@]#cr ; p∈csyms M ; w∈lists (ssyms M);

t∈sstates A; s ′∈cstates A; (s,p,sp A s p)∈δ A; (sp A s p,w,t)∈trclA A; (t,],s ′)∈δ
A; (s ′,cr ,f)∈trclA A]] =⇒ P

shows P
proof (cases c)

case Nil thus P using A by (subgoal-tac s=f , auto dest: mfsm-cons ′)
next

case (Cons p w) note CFMT=this
with cstate-succ-unique A have SPLIT : p∈csyms M ∧ (s,p,sp A s p)∈δ A ∧ (sp

A s p,w,f)∈trclA A by (blast dest: trclAD-uncons)
with path-from-sstate A CFMT uniqueSp have CASES : (f∈sstates A ∧ w∈lists

(ssyms M)) ∨ (∃w1 w2 t. w=w1@]#w2 ∧ w1∈lists (ssyms M) ∧ t∈sstates A ∧ (sp
A s p,w1,t)∈trclA A ∧ (t,]#w2,f)∈trclA A) (is ?C1 ∨ ?C2) by blast

moreover {
assume CASE : ?C1
with SPLIT SINGLE A CFMT have P by fast

} moreover {
assume CASE : ?C2
then obtain w1 w2 t where WFMT : w=w1@]#w2 ∧ w1∈lists (ssyms M) ∧

t∈sstates A ∧ (sp A s p,w1,t)∈trclA A ∧ (t,]#w2,f)∈trclA A by fast
with sep-to-cstate obtain s ′ where s ′∈cstates A ∧ (t,],s ′)∈δ A ∧ (s ′,w2,f)∈trclA

A by (fast dest: trclAD-uncons)
with SPLIT CASE WFMT have p#w=p#w1@]#w2 ∧ p∈csyms M ∧ w1∈lists

(ssyms M) ∧ t∈sstates A ∧ s ′∈cstates A ∧ (s,p,sp A s p)∈δ A ∧ (sp A s p,w1,t)∈trclA
A ∧ (t,],s ′)∈δ A ∧ (s ′,w2,f)∈trclA A by auto

with CFMT CONC have P by (fast)
} ultimately show P by blast

qed

4.3 pre∗-sets of regular sets of configurations

Given a regular set L of configurations and a set ∆ of string rewrite rules,
pre∗ ∆ L is the set of configurations that can be rewritten to some configu-
ration in L, using rules from ∆ arbitrarily often.
We first define this set inductively based on rewrite steps, and then provide
the characterization described above as a lemma.
inductive-set pre-star :: (′c, ′l) SRS ⇒ (′s, ′c, ′e) FSM-rec-scheme ⇒ ′c list set

26

(pre∗)
for ∆ L

where
pre-refl: c∈lang L =⇒ c∈pre∗ ∆ L |
pre-step: [[c ′∈pre∗ ∆ L; (c,a,c ′)∈tr ∆]] =⇒ c∈pre∗ ∆ L

Alternative characterization of pre∗ ∆ L
lemma pre-star-alt: pre∗ ∆ L = {c . ∃ c ′∈lang L . ∃ as . (c,as,c ′)∈trcl (tr ∆)}
proof −

{
fix x c ′ as
have [[x ↪→as c ′ ∈ trcl (tr ∆); c ′ ∈ lang L]] =⇒ x ∈ pre∗ ∆ L

by (induct rule: trcl.induct) (auto intro: pre-step pre-refl)
}
then show ?thesis

by (auto elim!: pre-star .induct intro: trcl.intros)

qed

lemma pre-star-altI : [[c ′∈lang L; c↪→as c ′∈trcl (tr ∆)]] =⇒ c∈pre∗ ∆ L by (unfold
pre-star-alt, auto)
lemma pre-star-altE : [[c∈pre∗ ∆ L; !!c ′ as. [[c ′∈lang L; c↪→as c ′∈trcl (tr ∆)]] =⇒
P]] =⇒ P by (unfold pre-star-alt, auto)

4.4 Nondeterministic algorithm for pre∗

In this section, we formalize the saturation algorithm for computing pre∗ ∆
L from [1]. Roughly, the algorithm works as follows:

1. Set D = δ A

2. Choose a rule ([p, γ], a, c ′) ∈ rules M and states q,q ′∈Q A, such that
D can read the configuration c ′ from state q and end in state q ′ (i.e.
(q, c ′, q ′) ∈ trclAD A D) and such that (sp A q p, γ, q ′) /∈ D. If this
is not possible, terminate.

3. Add the transition (sp A q p, γ, q ′) /∈ D to D and continue with step
2

Intuitively, the behaviour of this algorithm can be explained as follows: If
there is a configuration c1 @ c ′ @ c2 ∈ pre∗ ∆ L, and a rule (p # γ, a, c ′)
∈ ∆, then we also have c1 @ p # γ @ c2 ∈ pre∗ ∆ L. The effect of step 3
is exactly adding these configurations c1 @ p # γ @ c22 to the regular set
of configurations.
We describe the algorithm nondeterministically by its step relation ps-R.
Each step describes the addition of one transition.

In this approach, we directly restrict the domain of the step-relation to
transition relations below some upper bound ps-upper. We will later show,

27

that the initial transition relation of an M-automata is below this upper
bound, and that the step-relation preserves the property of being below this
upper bound.
We define ps-upper M A as a finite set, and show that the initial transition
relation δ A of an M-automata is below ps-upper M A, and that ps-R M
A preserves the property of being below the finite set ps-upper M A. Note
that we use the more fine-grained ps-upper M A as upper bound for the
termination proof rather than Q A × Σ A × Q A, as sp A q p is only
specified for control states q and control symbols p. Hence we need the finer
structure of ps-upper M A to guarantee that sp is only applied to arguments
it is specified for. Anyway, the fine-grained ps-upper M A bound is also
needed for the correctness proof.
definition ps-upper :: (′c, ′l, ′e1) DPN-rec-scheme ⇒ (′s, ′c, ′e2) MFSM-rec-scheme
⇒ (′s, ′c) LTS where

ps-upper M A == (sstates A × ssyms M × sstates A) ∪ (sstates A × {sep M}
× cstates A) ∪ {(s,p,sp A s p) | s p . s∈cstates A ∧ p∈csyms M}

inductive-set ps-R :: (′c, ′l, ′e1) DPN-rec-scheme ⇒ (′s, ′c, ′e2) MFSM-rec-scheme
⇒ ((′s, ′c) LTS ∗ (′s, ′c) LTS) set for M A
where
[[[p,γ]↪→a c ′ ∈ rules M ; (q,c ′,q ′)∈trclAD A D; (sp A q p,γ,q ′)/∈D; D⊆ps-upper M

A]] =⇒ (D,insert (sp A q p,γ,q ′) D)∈ps-R M A

lemma ps-R-dom-below: (D,D ′)∈ps-R M A =⇒ D⊆ps-upper M A by (auto elim:
ps-R.cases)

4.4.1 Termination

Termination of our algorithm is equivalent to well-foundedness of its (con-
verse) step relation, that is, we have to show wf ((ps-R M A)−1).
In the following, we also establich some properties of transition relations
below ps-upper M A, that will be used later in the correctness proof.
lemma (in MFSM) ps-upper-cases: [[(s,e,s ′)∈ps-upper M A;
[[s∈sstates A; e∈ssyms M ; s ′∈sstates A]] =⇒ P;
[[s∈sstates A; e=]; s ′∈cstates A]] =⇒ P;
[[s∈cstates A; e∈csyms M ; s ′=sp A s e]] =⇒ P

]] =⇒ P
by (unfold ps-upper-def sep-def , auto)

lemma (in MFSM) ps-upper-cases ′: [[(s,e,s ′)∈ps-upper M A;
[[s∈sstates A; e∈ssyms M ; s ′∈sstates A]] =⇒ P;
[[s∈sstates A; e=sep M ; s ′∈cstates A]] =⇒ P;
[[s∈cstates A; e∈csyms M ; s ′=sp A s e]] =⇒ P

]] =⇒ P
apply (rule ps-upper-cases)
by (unfold sep-def) auto

28

lemma (in MFSM) ps-upper-below-trivial: ps-upper M A ⊆ Q A × Σ A × Q A
by (unfold ps-upper-def , auto simp add: states-part alpha-cons uniqueSp sep-def)

lemma (in MFSM) ps-upper-finite: finite (ps-upper M A) using ps-upper-below-trivial
finite-delta-dom by (auto simp add: finite-subset)

The initial transition relation of the M-automaton is below ps-upper M A
lemma (in MFSM) initial-delta-below: δ A ⊆ ps-upper M A using delta-fmt by
(unfold ps-upper-def sep-def) auto

Some lemmas about structure of transition relations below ps-upper M A
lemma (in MFSM) cstate-succ-unique ′: [[s∈cstates A; (s,p,x)∈D; D⊆ps-upper M
A]] =⇒ p∈csyms M ∧ x=sp A s p by (auto elim: ps-upper-cases dest: mfsm-cons ′)
lemma (in MFSM) csym-from-cstate ′: [[(s,p,s ′)∈D; D⊆ps-upper M A; p∈csyms
M]] =⇒ s∈cstates A by (auto elim: ps-upper-cases dest: mfsm-cons ′)

The only way to end up in a control state is after executing a separator.
lemma (in MFSM) ctrl-after-sep: assumes BELOW : D ⊆ ps-upper M A

assumes A: (q,c ′,q ′)∈trclAD A D c ′6=[]
shows q ′∈cstates A = (last c ′ =])

proof −
from A have (q,butlast c ′ @ [last c ′],q ′)∈trclAD A D by auto
with A obtain qh where (qh,[last c ′],q ′)∈trclAD A D by (blast dest: tr-

clAD-unconcat)
hence (qh,last c ′,q ′)∈ D by (fast dest: trclAD-single)
with BELOW have IS : (qh,last c ′,q ′)∈ps-upper M A by fast
thus ?thesis by (erule-tac ps-upper-cases) (auto dest: mfsm-cons ′ simp add:

sep-out-syms)
qed

When applying a rules right hand side to a control state, we will get to a
stack state
lemma (in MFSM) ctrl-rule: assumes BELOW : D ⊆ ps-upper M A

assumes A: ([p,γ],a,c ′)∈rules M and B: q∈cstates A (q,c ′,q ′)∈trclAD A D
shows q ′∈sstates A

proof −
from A show ?thesis
proof (cases rule: rule-cases)

case (no-spawn p γ a p ′ w)
hence C : q ↪→p ′ # w q ′ ∈ trclAD A D ∀ x∈set w. x ∈ ssyms M p ′ ∈ csyms M

using B by auto
hence last (p ′#w) 6=] ∧ q ′∈Q A by (unfold sep-def) (auto dest: mfsm-cons ′

trclAD-elems)
with C BELOW ctrl-after-sep[of D q p ′#w q ′] show (q ′ ∈ sstates A) by (fast

dest: mfsm-cons ′)
next

case (spawn p γ a p1 w1 p2 w2)

29

hence C : q ↪→p1 # w1 @] # p2 # w2 q ′ ∈ trclAD A D ∀ x∈set w2. x ∈ ssyms
M p2 ∈ csyms M using B by auto

hence last (p1 # w1 @] # p2 # w2) 6= sep M ∧ q ′∈Q A by (auto dest:
mfsm-cons ′ trclAD-elems)

with C BELOW ctrl-after-sep[of D q p1 # w1 @] # p2 # w2 q ′] show (q ′ ∈
sstates A) by (unfold sep-def , fast dest: mfsm-cons ′)

qed
qed

ps-R M A preserves the property of being below ps-upper M A, and the
transition relation becomes strictly greater in each step
lemma (in MFSM) ps-R-below: assumes E : (D,D ′)∈ps-R M A

shows D⊂D ′ ∧ D ′ ⊆ ps-upper M A
proof −

from E have BELOW : D⊆ps-upper M A by (simp add: ps-R-dom-below)

{
fix p γ a c ′ q q ′

assume A: [p, γ] ↪→a c ′ ∈ rules M q ↪→c ′ q ′ ∈ trclAD A D
obtain p ′ cr ′ where CSPLIT : p∈csyms M ∧ p ′∈csyms M ∧ c ′=p ′#cr ′ ∧

γ∈ssyms M by (insert A) (erule rule-cases, fast+)
with BELOW A obtain qh where SPLIT : (q,p ′,qh)∈D (q,p ′,qh)∈ps-upper M

A by (fast dest: trclAD-uncons)
with CSPLIT have QC : q∈cstates A ∧ qh=sp A q p ′ by (auto elim: ps-upper-cases

dest: syms-part iff add: syms-sep)
with BELOW A ctrl-rule[of D p γ a c ′ q q ′] have Q ′S : q ′∈sstates A by simp
from QC CSPLIT have sp A q p ∈ sstates A by (simp add: uniqueSp)

with Q ′S CSPLIT have sp A q p ↪→γ q ′∈ ps-upper M A by (unfold ps-upper-def ,
simp)

}
with E show ?thesis by (auto elim!: ps-R.cases)

qed

As a result of this section, we get the well-foundedness of ps-R M A, and
that the transition relations that occur during the saturation algorithm stay
above the initial transition relation δ A and below ps-upper M A
theorem (in MFSM) ps-R-wf : wf ((ps-R M A)−1) using ps-upper-finite sat-wf [where
α=id, simplified] ps-R-below by (blast)

theorem (in MFSM) ps-R-above-inv: is-inv (ps-R M A) (δ A) (λD. δ A ⊆ D) by
(auto intro: invI elim: ps-R.cases)

theorem (in MFSM) ps-R-below-inv: is-inv (ps-R M A) (δ A) (λD. D⊆ps-upper
M A) by (rule invI) (auto simp add: initial-delta-below ps-R-below)

We can also show that the algorithm is defined for every possible initial
automata
theorem (in MFSM) total: ∃D. (δ A, D)∈ndet-algo(ps-R M A) using ps-R-wf
ndet-algo-total by blast

30

4.4.2 Soundness

The soundness (over-approximation) proof works by induction over the def-
inition of pre∗.
In the reflexive case, a configuration from the original language is also in
the saturated language, because no transitions are killed during saturation.
In the step case, we assume that a configuration c ′ is in the saturated lan-
guage, and show for a rewriting step c↪→ac ′ that also c is in the saturated
language.
theorem (in MFSM) sound: [[c∈pre-star (rules M) A; (δ A,s ′)∈ndet-algo (ps-R
M A)]] =⇒ c∈lang (A(| δ:=s ′ |))
proof −

let ?A ′ = A(| δ:=s ′ |)
assume A:(δ A,s ′)∈ndet-algo (ps-R M A)
— Some little helpers
from A ps-R-above-inv have SUBSET : δ A ⊆ s ′ by (unfold ndet-algo-def) (auto

dest: inv)
have TREQ: !!D . trclAD A D = trclAD ?A ′ D by (rule trclAD-eq, simp-all)
from A ps-R-below-inv have SATSETU : δ ?A ′ ⊆ ps-upper M A by (erule-tac

ndet-algoE) (auto dest: inv iff add: initial-delta-below)

assume c∈pre-star (rules M) A
— Make an induction over the definition of pre∗
thus ?thesis proof (induct c rule: pre-star .induct)

fix c assume c∈lang A — Reflexive case: The configuration comes from the
original regular language

then obtain f where F : f∈F A ∧ (s0 A,c,f)∈trclA A by (unfold lang-def
langs-def , fast) — That is, c can bring the initial automata from its start state to
some final state f

with SUBSET trclAD-mono-adv[of δ A s ′ A ?A ′] have (s0 A,c,f)∈trclA ?A ′ by
(auto) — Because the original transition relation δ A is a subset of the saturated
one s ′ (SUBSET) and the transitive closure is monotonous, (s0 A, c, f) is also in
the transitive closure of the saturated transition relation

with F show c∈lang ?A ′ by (unfold lang-def langs-def) auto — and thus in
the language of the saturated automaton

next
— Step case:
fix a c c ′

assume IHP: c ′ ∈ pre∗ (rules M) A (c, a, c ′) ∈ tr (rules M) — We take some
configurations c and c ′ ∈ pre∗ (rules M) A and assume that c can be rewritten to
c ′ in one step

c ′ ∈ lang ?A ′ — We further assume that c ′ is in the saturated language, and
we have to show that also c is in that language

from IHP obtain f where F : f∈F ?A ′ ∧ (s0 ?A ′,c ′,f) ∈ trclA ?A ′ by (unfold
lang-def langs-def , fast) — Unfolding the definition of lang

from IHP obtain w1 w2 r r ′ where CREW : c=w1@(r@w2) ∧ c ′=w1@(r ′@w2)
∧ (r ,a,r ′)∈rules M by (auto elim!: tr .cases) — Get the rewrite rule that rewrites

31

c to c ′

then obtain p γ p ′ w ′ where RFMT : p∈csyms M ∧ p ′∈csyms M ∧ γ∈ssyms
M ∧ r=[p,γ] ∧ r ′=p ′#w ′ by (auto elim!: rule-cases) — This rewrite rule rewrites
some control symbol p followed by a stack symbol γ to another control symbol p ′

and a sequence of further symbols w ′

with F CREW obtain q qh q ′ where SPLIT : (s0 ?A ′,w1,q)∈trclA ?A ′ ∧
(q,p ′#w ′,q ′)∈trclA ?A ′ ∧ (q ′,w2,f)∈trclA ?A ′ ∧ (q,p ′,qh)∈δ ?A ′

by (blast dest: trclAD-unconcat trclAD-uncons) — Get the states in the
transition relation generated by the algorithm, that correspond to the splitting of
c ′ as established in CREW

have SHORTCUT : (q,[p,γ],q ′)∈trclA ?A ′ — In the transition relation generated
by our algorithm, we can get from q to q ′ also by [p, γ]

proof −
have S1: (q,p,sp A q p)∈δ ?A ′ and QINC : q∈cstates A — The first transition,

from q with p to sp A q p is already contained in the initial M-automata. We also
need to know for further proofs, that q is a control state.

proof −
from SPLIT SATSETU have (q,p ′,qh)∈ps-upper M A by auto

with RFMT show q∈cstates A by (auto elim!: ps-upper-cases dest:
mfsm-cons ′ simp add: sep-def)

with RFMT have (q,p,sp A q p)∈δ A by (fast intro: cstate-succ-ex)
with SUBSET show (q,p,sp A q p)∈δ ?A ′ by auto

qed
moreover
have S2: (sp A q p,γ,q ′)∈δ ?A ′ — The second transition, from sp A q p with

γ to q ′ has been added during the algorithm’s execution
proof −

from A have s ′/∈Domain (ps-R M A) by (blast dest: termstate-ndet-algo)
moreover from CREW RFMT SPLIT TREQ SATSETU have (sp

A q p,γ,q ′)/∈s ′ =⇒ (s ′,insert (sp A q p,γ,q ′) s ′) ∈ (ps-R M A) by (auto intro:
ps-R.intros)

ultimately show ?thesis by auto
qed
moreover
have sp A q p ∈ Q ?A ′ ∧ q ′∈Q ?A ′ ∧ q∈Q ?A ′ ∧ p∈Σ ?A ′ ∧ γ∈Σ ?A ′ —

The intermediate states and labels have also the correct types
proof −

from S2 SATSETU have (sp A q p,γ,q ′)∈ps-upper M A by auto
with QINC RFMT show ?thesis by (auto elim: ps-upper-cases dest:

mfsm-cons ′ simp add: states-part alpha-cons)
qed
ultimately show ?thesis by simp

qed

have (s0 ?A ′,w1@(([p,γ])@w2),f)∈trclA ?A ′ — Now we put the pieces together
and construct a path from s0 A with w1 to q, from there with [p, γ] to q ′ and then
with w2 to the final state f

32

proof −
from SHORTCUT SPLIT have (q,([p,γ])@w2,f)∈trclA ?A ′ by (fast dest:

trclAD-concat)
with SPLIT show ?thesis by (fast dest: trclAD-concat)

qed
with CREW RFMT have (s0 ?A ′,c,f)∈trclA ?A ′ by auto — this is because c

= w1 @ [p, γ] @ w2
with F show c∈lang ?A ′ by (unfold lang-def langs-def , fast) — And thus c is

in the language of the saturated automaton
qed

qed

4.4.3 Precision

In this section we show the precision of the algorithm, that is we show that
the saturated language is below the backwards reachable set.

The following induction scheme makes an induction over the number of
occurences of a certain transition in words accepted by a FSM:
To prove a proposition for all words from state qs to state qf in FSM A that
has a transition rule (s, a, s ′) ∈ δ A, we have to show the following:

• Show, that the proposition is valid for words that do not use the tran-
sition rule (s, a, s ′) ∈ δ A at all

• Assuming that there is a prefix wp from qs to s and a suffix ws from
s ′ to qf, and that wp does not use the new rule, and further assuming
that for all prefixes wh from qs to s ′, the proposition holds for wh @
ws, show that the proposition also holds for wp @ a # ws.

We actually do use D here instead of δ A, for use with trclAD.
lemma ins-trans-induct[consumes 1, case-names base step]:

fixes qs and qf
assumes A: (qs,w,qf)∈trclAD A (insert (s,a,s ′) D)
assumes BASE-CASE : !! w . (qs,w,qf)∈trclAD A D =⇒ P w
assumes STEP-CASE : !! wp ws . [[(qs,wp,s)∈trclAD A D; (s ′,ws,qf)∈trclAD

A (insert (s,a,s ′) D); !! wh . (qs,wh,s ′)∈trclAD A D =⇒ P (wh@ws)]] =⇒ P
(wp@a#ws)

shows P w
proof −

— Essentially, the proof works by induction over the suffix ws
{

fix ws
have !!qh wp. [[(qs,wp,qh)∈trclAD A D; (qh,ws,qf)∈trclAD A (insert (s,a,s ′) D)]]

=⇒ P (wp@ws) proof (induct ws)
case (Nil qh wp) with BASE-CASE show ?case by (subgoal-tac qh=qf , auto)

next
case (Cons e w qh wp) note IHP=this

33

then obtain qhh where SPLIT : (qh,e,qhh)∈(insert (s ↪→a s ′) D) ∧
(qhh,w,qf)∈trclAD A (insert (s ↪→a s ′) D) ∧ qh∈Q A ∧ e∈Σ A by (fast dest:
trclAD-uncons)

show ?case proof (cases (qh,e,qhh) = (s,a,s ′))
case False

with SPLIT have (qh,[e],qhh)∈trclAD A D by (auto intro: trclAD-one-elem
dest: trclAD-elems)

with IHP have (qs,wp@[e],qhh)∈trclAD A D by (fast intro: trclAD-concat)
with IHP SPLIT have P ((wp@[e])@w) by fast
thus ?thesis by simp

next
case True note CASE=this
with SPLIT IHP have (qs,wp,s) ∈ trclAD A D ∧ s ′ ↪→w qf ∈ trclAD A

(insert (s ↪→a s ′) D) !!wh. (qs,wh,s ′)∈trclAD A D =⇒ P (wh@w) by simp-all
with STEP-CASE CASE show ?thesis by simp

qed
qed

} note C=this
from A C [of [] qs w] show ?thesis by (auto dest: trclAD-elems)

qed

The following lemma is a stronger elimination rule than ps-R.cases. It makes
a more fine-grained distinction. In words: A step of the algorithm adds a
transition (sp A q p, γ, s ′), if there is a rule ([p, γ], a, p ′ # c ′), and a
transition sequence (q, p ′ # c ′, s ′) ∈ trclAD A D. That is, if we have (sp A
q p ′, c ′, s ′) ∈ trclAD A D.
lemma (in MFSM) ps-R-elims-adv:

assumes (D,D ′)∈ps-R M A
obtains γ s ′ a p ′ c ′ p q where

D ′=insert (sp A q p,γ,s ′) D (sp A q p,γ,s ′)/∈D [p,γ]↪→a p ′#c ′ ∈ rules M
(q,p ′#c ′,s ′)∈trclAD A D

p∈csyms M γ∈ssyms M q∈cstates A p ′∈csyms M a∈labels M (q,p ′,sp A q p ′)∈D
(sp A q p ′,c ′,s ′)∈trclAD A D

using assms
proof (cases rule: ps-R.cases)

case A: (1 p γ a c ′ q q ′)
then obtain p ′ cc ′ where RFMT : p∈csyms M ∧ c ′=p ′#cc ′ ∧ p ′∈csyms M ∧

γ∈ssyms M ∧ a∈labels M by (auto elim!: rule-cases)
with A obtain qh where SPLIT : (q,p ′,qh)∈D ∧ (qh,cc ′,q ′)∈ trclAD A D by

(fast dest: trclAD-uncons)
with A RFMT have q∈cstates A ∧ qh=sp A q p ′ by (subgoal-tac (q,p ′,qh)∈ps-upper

M A) (auto elim!: ps-upper-cases dest: syms-part sep-out-syms)
then show ?thesis using A RFMT SPLIT that by blast

qed

Now follows a helper lemma to establish the precision result. In the original
paper [1] it is called the crucial point of the precision proof.
It states that for transition relations that occur during the execution of the

34

algorithm, for each word w that leads from the start state to a state sp A q
p, there is a word ws @ [p] that leads to sp A q p in the initial automaton
and w can be rewritten to ws @ [p].
In the initial transition relation, a state of the form sp A q p has only
one incoming edge labelled p (MFSM .sp-pred-ex MFSM .sp-pred-unique).
Intuitively, this lemma explains why it is correct to add further incoming
edges to sp A q p: All words using such edges can be rewritten to a word
using the original edge.
lemma (in MFSM) sp-property:

shows is-inv (ps-R M A) (δ A) (λD.
(∀ w . ∀ p∈csyms M . ∀ q∈cstates A. (s0 A,w,sp A q p)∈trclAD A D −→ (∃ws

as. (s0 A,ws,q)∈trclA A ∧ (w,as,ws@[p])∈trcl (tr (rules M)))) ∧
(∀P ′. is-inv (ps-R M A) (δ A) P ′ −→ P ′ D))

— We show the thesis by proving that it is an invariant of the saturation procedure
proof (rule inv-useI ; intro allI ballI impI conjI)

— Base case, show the thesis for the initial automata
fix w p q
assume A: p ∈ csyms M q ∈ cstates A s0 A ↪→w sp A q p ∈ trclA A
show ∃ws as. s0 A ↪→ws q ∈ trclA A ∧ (w,as,ws@[p])∈trcl (tr (rules M))
proof (cases w rule: rev-cases) — Make a case distinction wether w is empty

case Nil — w cannot be empty, because s0 is a control state, and sp is a stack
state, and by definition of M-automata, these cannot be equal

with A have s0 A = sp A q p by (auto)
with A s0-fmt uniqueSp have False by (auto dest: mfsm-cons ′)
thus ?thesis ..

next
case (snoc ws p ′) note CASE=this
with A obtain qh where (s0 A,ws,qh)∈trclA A ∧ (qh,[p ′],sp A q p)∈trclA A

∧ (qh,p ′,sp A q p)∈δ A by (fast dest: trclAD-unconcat trclAD-single) — Get the
last state qh and symbol p ′ before reaching sp

moreover with A have p=p ′ ∧ qh=q by (blast dest: sp-pred-unique) — This
symbol is p, because the p-edge from q is the only edge to sp A q p in an M-automata

moreover with CASE have (w,[],ws@[p]) ∈ trcl (tr (rules M)) by (fast intro:
trcl.empty)

ultimately show ?thesis by (blast)
qed

next
— Step case
fix D1 D2 w p q
assume

IH : ∀w. ∀ p∈csyms M . ∀ q∈cstates A. s0 A ↪→w sp A q p ∈ trclAD A D1
−→ (∃ws as. s0 A ↪→ws q ∈ trclAD A (δ A) ∧ (w ↪→as ws @ [p] ∈ trcl (tr

(rules M)))) — By induction hypothesis, our proposition is valid for D1
and SUCC : (D1,D2)∈ps-R M A — We have to show the proposition for some

D2, that is a successor state of D1 w.r.t. ps-R M A
and P1: p ∈ csyms M q ∈ cstates A and P2: s0 A ↪→w sp A q p ∈ trclAD A

D2 — Premise of our proposition: We reach some state sp A q p
and USE-INV :

∧
P ′. is-inv (ps-R M A) (δ A) P ′ =⇒ P ′ D1 — We can use

35

known invariants

from SUCC have SS : D1 ⊆ ps-upper M A by (blast dest: ps-R-dom-below)
from USE-INV have A2: δ A ⊆ D1 by (blast intro: ps-R-above-inv)

from SUCC obtain γ s ′ pp aa cc ′ qq where ADD: insert (sp A qq pp,γ,s ′) D1
= D2 ∧ (sp A qq pp,γ,s ′)/∈D1 and

RCONS : ([pp,γ],aa,cc ′)∈rules M ∧ (qq,cc ′,s ′)∈trclAD
A D1 ∧ qq∈cstates A ∧ pp∈csyms M ∧ aa∈labels M

by (blast elim!: ps-R-elims-adv) — Because of SUCC, we obtain D2 by adding
a (new) transition (sp A qq pp, γ, s ′) to D1, such that there is a rule ([pp, γ], aa,
cc ′) ∈ rules M and the former transition relation can do (qq, cc ′, s ′) ∈ trclAD A
D1

from P2 ADD have P2 ′: s0 A ↪→w sp A q p ∈ trclAD A (insert (sp A qq pp ↪→γ
s ′) D1) by simp

show ∃ws as. s0 A ↪→ws q ∈ trclA A ∧ w ↪→as ws @ [p] ∈ trcl (tr (rules M))
using P2 ′

— We show the proposition by induction on how often the new rule was used.
For this, we regard a prefix until the first usage of the added rule, and a suffix that
may use the added rule arbitrarily often

proof (induction rule: ins-trans-induct)
case (base) — Base case, the added rule is not used at all. The proof is

straighforward using the induction hypothesis of the outer (invariant) induction
thus ?case using IH P1 by simp

next
fix wpre wsfx — Step case: We have a prefix that does not use the added rule,

then a usage of the added rule and a suffix. We know that our proposition holds
for all prefixes that do not use the added rule.

assume IP1: (s0 A,wpre, sp A qq pp) ∈ trclAD A D1 and IP2: (s ′, wsfx, sp A
q p) ∈ trclAD A (insert (sp A qq pp, γ, s ′) D1)

assume IIH : !!wh. (s0 A, wh, s ′) ∈ trclAD A D1 =⇒ ∃ws as. (s0 A, ws, q) ∈
trclAD A (δ A) ∧ ((wh @ wsfx, as, ws @ [p]) ∈ trcl (tr (rules M)))

from IP1 IH RCONS obtain wps aps where C1: (s0 A,wps,qq) ∈ trclAD A
(δ A) ∧ wpre ↪→aps wps @ [pp] ∈ trcl (tr (rules M)) by fast — This is an instance
of a configuration reaching a sp-state, thus by induction hypothesis of the outer
(invariant) induction, we find a successor configuration wps @ [pp] that reaches this
state using pp as last edge in δ A

with A2 have (s0 A,wps,qq) ∈ trclAD A D1 by (blast dest: trclAD-mono) —
And because δ A ⊆ D1, we can do the transitions also in D1

with RCONS have (s0 A,wps@cc ′, s ′) ∈ trclAD A D1 by (blast intro: tr-
clAD-concat) — From above (RCONS) we know (qq, cc ′, s ′) ∈ trclAD A D1, and
we can concatenate these transition sequences

then obtain ws as where C2: (s0 A,ws,q) ∈ trclAD A (δ A) ∧ (wps@cc ′) @
wsfx ↪→as ws @ [p] ∈ trcl (tr (rules M)) by (fast dest: IIH) — This concatenation
is a prefix to a usage of the added transition, that does not use the added transition
itself. (The whole configuration bringing us to sp A q p is wps @ cc ′ @ wsfx). For
those prefixes, we can apply the induction hypothesis of the inner induction and
obtain a configuration ws @ [p] that is a successor configuration of wps @ cc ′ @

36

wsfx, and with which we can reach sp A q p using p as last edge

have ∃ as. wpre @ γ # wsfx ↪→as ws @ [p] ∈ trcl (tr (rules M)) — Now we
obtained some configuration ws @ [p], that reaches sp A q p using p as last edge
in δ A. Now we show that this is indeed a successor configuration of wpre @ γ #
wsfx.

proof −
— This is done by putting together the transitions and using the extensibility

of string rewrite systems, i.e. that we can still do a rewrite step if we add context
from C1 have wpre@(γ#wsfx) ↪→aps (wps@[pp])@(γ#wsfx) ∈ trcl (tr (rules

M)) by (fast intro: srs-ext)
hence wpre@γ#wsfx ↪→aps wps@([pp,γ])@wsfx ∈ trcl (tr (rules M)) by simp
moreover from RCONS have wps@([pp,γ])@wsfx ↪→[aa] wps@cc ′@wsfx ∈

trcl (tr (rules M)) by (fast intro: tr .rewrite trcl-one-elem)
hence wps@([pp,γ])@wsfx ↪→[aa] (wps@cc ′)@wsfx ∈ trcl (tr (rules M)) by

simp
moreover note C2
ultimately have wpre@γ#wsfx ↪→aps@[aa]@as ws@[p] ∈ trcl (tr (rules M))

by (fast intro: trcl-concat)
thus ?thesis by fast

qed
with C2 show ∃ws as. s0 A ↪→ws q ∈ trclA A ∧ wpre @ γ # wsfx ↪→as

ws @ [p] ∈ trcl (tr (rules M)) by fast — Finally, we have the proposition for the
configuration wpre @ γ # wsfx, that contains the added rule (s, γ, s ′) one time
more

qed
qed

Helper lemma to clarify some subgoal in the precision proof:
lemma trclAD-delta-update-inv: trclAD (A(|δ:=X |)) D = trclAD A D by (simp
add: trclAD-by-trcl ′)

The precision is proved as an invariant of the saturation algorithm:
theorem (in MFSM) precise-inv:

shows is-inv (ps-R M A) (δ A) (λD. (lang (A(|δ:=D|)) ⊆ pre∗ (rules M) A) ∧
(∀P ′. is-inv (ps-R M A) (δ A) P ′ −→ P ′ D))
proof −

{
fix D1 D2 w f
assume IH : {w. ∃ f∈F A. s0 A ↪→w f ∈ trclAD A D1} ⊆ pre∗ (rules M) A —

By induction hypothesis, we know lang (A(|δ := D1|)) ⊆ pre∗ (rules M) A
assume SUCC : (D1,D2)∈ps-R M A — We regard a successor D2 of D1 w.r.t.

ps-R M A
assume P1: f∈F A and P2: s0 A ↪→w f ∈ trclAD A D2 — And a word w ∈

lang (A(|δ := D2|))
assume USE-INV :

∧
P ′. is-inv (ps-R M A) (δ A) P ′ =⇒ P ′ D1 — For the

proof, we can use any known invariants

37

from SUCC obtain γ s ′ p a c ′ q where ADD: insert (sp A q p,γ,s ′) D1 = D2
∧ (sp A q p,γ,s ′)/∈D1 and

RCONS : ([p,γ],a,c ′)∈rules M ∧ (q,c ′,s ′)∈trclAD
A D1 ∧ q∈cstates A ∧ p∈csyms M ∧ a∈labels M ∧ γ∈ssyms M

by (blast elim!: ps-R-elims-adv) — Because of (D1, D2) ∈ ps-R M A, we
obtain D2 by adding a (new) transition (sp A q p, γ, s ′) to D1, such that there is
a rule ([p, γ], a, c ′) and we have (q, c ′, s ′) ∈ trclAD A D1

from P2 ADD have P2 ′: s0 A ↪→w f ∈ trclAD A (insert (sp A q p ↪→γ s ′) D1)
by simp

from SUCC have SS : D1 ⊆ ps-upper M A by (blast dest: ps-R-dom-below) —
We know, that the intermediate value is below the upper saturation bound

from USE-INV have A2: δ A ⊆ D1 by (blast intro: ps-R-above-inv) — ... and
above the start value

from SS USE-INV sp-property have SP-PROP: (∀ w . ∀ p∈csyms M . ∀ q∈cstates
A. (s0 A,w,sp A q p)∈trclAD A D1 −→ (∃ws as. (s0 A,ws,q)∈trclA A ∧ (w,as,ws@[p])∈trcl
(tr (rules M))))

by blast — And we have just shown sp-property, that tells us that each
configuration w that leads to a state sp A q p, can be rewritten to a configuration
in the initial automaton, that uses p as its last transition

have w ∈ pre∗ (rules M) A using P2 ′ — We have to show that the word w
from the new automaton is also in pre∗ (rules M) A. We show this by induction on
how often the new transition is used by w

proof (rule ins-trans-induct)
fix wa assume (s0 A, wa, f) ∈ trclAD A D1 — Base case: w does not use the

new transition at all
with IH P1 show wa ∈ pre∗ (rules M) A by (fast) — The proposition follows

directly from the outer (invariant) induction and can be solved automatically
next

fix wpre wsfx — Step case
assume IP1: (s0 A, wpre, sp A q p) ∈ trclAD A D1 — We assume that we

have a prefix wpre leading to the start state s of the new transition and not using
the new transition

assume IP2: (s ′, wsfx, f) ∈ trclAD A (insert (sp A q p, γ, s ′) D1) — We also
have a suffix from the end state s ′ to f

assume IIH : !!wh. (s0 A, wh, s ′) ∈ trclAD A D1 =⇒ wh @ wsfx ∈ pre∗ (rules
M) A — And we assume that our proposition is valid for prefixes wh that do not
use the new transition

— We have to show that the proposition is valid for wpre @ γ # wsfx
from IP1 SP-PROP RCONS obtain wpres apres where SPP: (s0 A,wpres,q)∈trclA

A ∧ wpre ↪→apres wpres@[p] ∈ trcl (tr (rules M)) by (blast) — We can apply
SP-PROP, to find a successor wpres @ [p] of wpre in the initial automata

with A2 have s0 A ↪→wpres q ∈ trclAD A D1 by (blast dest: trclAD-mono)
— wpres can also be read by D1 because of δ A ⊆ D1

with RCONS have s0 A ↪→wpres@c ′ s ′ ∈ trclAD A D1 by (fast intro:
trclAD-concat) — Altogether we get a prefix wpres @ c ′ that leads to s ′, without
using the added transition

with IIH have (wpres@c ′)@wsfx ∈pre-star (rules M) A by fast — We can
apply the induction hypothesis

38

then obtain as wo where C1: wpres@c ′@wsfx ↪→as wo ∈ trcl (tr (rules M))
∧ wo∈lang A by (auto elim!: pre-star-altE) — And find that there is a wo in the
original automata, that is a successor of wpres @ c ′ @ wsfx

moreover have ∃ as. wpre@γ#wsfx ↪→as wo ∈ trcl (tr (rules M)) — Next
we show that wo is a successor of wpre @ γ # wsfx

proof −
from SPP have wpre@γ#wsfx ↪→apres (wpres@[p])@γ#wsfx ∈ trcl (tr (rules

M)) by (fast intro: srs-ext)
hence wpre@γ#wsfx ↪→apres wpres@([p,γ])@wsfx ∈ trcl (tr (rules M)) by

simp
moreover from RCONS have wpres@([p,γ])@wsfx ↪→[a] wpres@c ′@wsfx ∈

trcl (tr (rules M)) by (fast intro: tr .rewrite trcl-one-elem)
moreover note C1
ultimately show ?thesis by (fast intro: trcl-concat)

qed
ultimately show wpre @ γ # wsfx ∈ pre∗ (rules M) A by (fast intro:

pre-star-altI) — And altogether we have wpre @ γ # wsfx ∈ pre∗ (rules M) A
qed

} note A=this

show ?thesis
apply (rule inv-useI)
subgoal by (auto intro: pre-refl) — The base case is solved automatically, it

follows from the reflexivity of pre∗.
subgoal for D s ′

unfolding lang-def langs-def
using A by (fastforce simp add: trclAD-delta-update-inv)

done
qed

As precision is an invariant of the saturation algorithm, and is trivial for the
case of an already saturated initial automata, the result of the saturation
algorithm is precise
corollary (in MFSM) precise: [[(δ A,D)∈ndet-algo (ps-R M A); x∈lang (A(| δ:=D
|))]] =⇒ x∈pre-star (rules M) A

by (auto elim!: ndet-algoE dest: inv intro: precise-inv pre-refl)

And finally we get correctness of the algorithm, with no restrictions on valid
states
theorem (in MFSM) correct: [[(δ A,D)∈ndet-algo (ps-R M A)]] =⇒ lang (A(| δ:=D
|)) = pre-star (rules M) A by (auto intro: precise sound)

So the main results of this theory are, that the algorithm is defined for every
possible initial automata
MFSM ?M ?A =⇒ ∃D. (δ ?A, D) ∈ ndet-algo (ps-R ?M ?A)

and returns the correct result
[[MFSM ?M ?A; (δ ?A, ?D) ∈ ndet-algo (ps-R ?M ?A)]] =⇒ lang (?A(|δ :=
?D|)) = pre∗ (rules ?M) ?A

39

We could also prove determination, i.e. the terminating state is uniquely
determined by the initial state (though there may be many ways to get
there). This is not really needed here, because for correctness, we do not
look at the structure of the final automaton, but just at its language. The
language of the final automaton is determined, as implied by MFSM .correct.
end

5 Non-executable implementation of the DPN pre∗-
algorithm

theory DPN-impl
imports DPN
begin

This theory is to explore how to prove the correctness of straightforward im-
plementations of the DPN pre∗ algorithm. It does not provide an executable
specification, but uses set-datatype and the SOME-operator to describe a
deterministic refinement of the nondeterministic pre∗-algorithm. This re-
finement is then characterized as a recursive function, using recdef.
This proof uses the same techniques to get the recursive function and prove
its correctness as are used for the straightforward executable implementation
in DPN_implEx. Differences from the executable specification are:

• The state of the algorithm contains the transition relation that is sat-
urated, thus making the refinement abstraction just a projection onto
this component. The executable specification, however, uses list rep-
resentation of sets, thus making the refinement abstraction more com-
plex.

• The termination proof is easier: In this approach, we only do recursion
if our state contains a valid M-automata and a consistent transition
relation. Using this property, we can infer termination easily from the
termination of ps-R. The executable implementation does not check
wether the state is valid, and thus may also do recursion for invalid
states. Thus, the termination argument must also regard those invalid
states, and hence must be more general.

5.1 Definitions
type-synonym (′c, ′l, ′s, ′m1, ′m2) pss-state = (((′c, ′l, ′m1) DPN-rec-scheme ∗ (′s, ′c, ′m2)
MFSM-rec-scheme) ∗ (′s, ′c) LTS)

Function to select next transition to be added
definition pss-isNext :: (′c, ′l, ′m1) DPN-rec-scheme⇒ (′s, ′c, ′m2) MFSM-rec-scheme
⇒ (′s, ′c) LTS ⇒ (′s∗ ′c∗ ′s) ⇒ bool where

40

pss-isNext M A D t == t /∈D ∧ (∃ q p γ q ′ a c ′. t=(sp A q p,γ,q ′) ∧ [p,γ]↪→a c ′

∈ rules M ∧ (q,c ′,q ′)∈trclAD A D)
definition pss-next M A D == if (∃ t. pss-isNext M A D t) then Some (SOME
t. pss-isNext M A D t) else None

Next state selector function
definition

pss-next-state S == case S of ((M ,A),D) ⇒ if MFSM M A ∧ D⊆ps-upper M A
then (case pss-next M A D of None ⇒ None | Some t ⇒ Some ((M ,A),insert t D)
) else None

Relation describing the deterministic algorithm
definition

pss-R == graph pss-next-state

lemma pss-nextE1: pss-next M A D = Some t =⇒ t /∈D ∧ (∃ q p γ q ′ a c ′. t=(sp
A q p,γ,q ′) ∧ [p,γ]↪→a c ′ ∈ rules M ∧ (q,c ′,q ′)∈trclAD A D)
proof −

assume pss-next M A D = Some t
hence pss-isNext M A D t

apply (unfold pss-next-def)
apply (cases ∃ t. pss-isNext M A D t)
by (auto intro: someI)

thus ?thesis by (unfold pss-isNext-def)
qed

lemma pss-nextE2: pss-next M A D = None =⇒ ¬(∃ q p γ q ′ a c ′ t. t /∈D ∧ t=(sp
A q p,γ,q ′) ∧ [p,γ]↪→a c ′ ∈ rules M ∧ (q,c ′,q ′)∈trclAD A D)
proof −

assume pss-next M A D = None
hence ¬(∃ t. pss-isNext M A D t)

apply (unfold pss-next-def)
apply (cases ∃ t. pss-isNext M A D t)
by auto

thus ?thesis by (unfold pss-isNext-def) blast
qed

lemmas (in MFSM) pss-nextE = pss-nextE1 pss-nextE2

The relation of the deterministic algorithm is also the recursion relation of
the recursive characterization of the algorithm
lemma pss-R-alt[termination-simp]: pss-R == {(((M ,A),D),((M ,A),insert t D)) |
M A D t. MFSM M A ∧ D⊆ps-upper M A ∧ pss-next M A D = Some t}

by (rule eq-reflection, unfold pss-R-def graph-def pss-next-state-def) (auto split:
option.split-asm if-splits)

41

5.2 Refining ps-R

We first show that the next-step relation refines ps-R M A. From this, we
will get both termination and correctness

Abstraction relation to project on the second component of a tuple, with
fixed first component
definition αsnd f == { (s,(f ,s)) | s. True }
lemma αsnd-comp-simp: R O αsnd f = {(s,(f ,s ′))| s s ′. (s,s ′)∈R} by (unfold
αsnd-def , blast)

lemma αsndI [simp]: (s,(f ,s))∈αsnd f by (unfold αsnd-def , auto)
lemma αsndE : (s,(f ,s ′))∈αsnd f ′ =⇒ f=f ′ ∧ s=s ′ by (unfold αsnd-def , auto)

Relation of pss-next and ps-R M A
lemma (in MFSM) pss-cons1: [[pss-next M A D = Some t; D⊆ps-upper M A]] =⇒
(D,insert t D)∈ps-R M A by (auto dest: pss-nextE intro: ps-R.intros)
lemma (in MFSM) pss-cons2: pss-next M A D = None =⇒ D /∈Domain (ps-R M
A) by (blast dest: pss-nextE elim: ps-R.cases)

lemma (in MFSM) pss-cons1-rev: [[D⊆ps-upper M A; D /∈Domain (ps-R M A)]]
=⇒ pss-next M A D = None by (cases pss-next M A D) (auto iff add: pss-cons1
pss-cons2)
lemma (in MFSM) pss-cons2-rev: [[D∈Domain (ps-R M A)]] =⇒ ∃ t. pss-next M
A D = Some t ∧ (D,insert t D)∈ps-R M A

by (cases pss-next M A D) (auto iff add: pss-cons1 pss-cons2 ps-R-dom-below)

The refinement result
theorem (in MFSM) pss-refines: pss-R ≤αsnd (M ,A) (ps-R M A) proof (rule
refinesI)

show αsnd (M , A) O pss-R ⊆ ps-R M A O αsnd (M , A) by (rule refines-compI ,
unfold αsnd-def pss-R-alt) (blast intro: pss-cons1)
next

show αsnd (M , A) ‘‘ Domain (ps-R M A) ⊆ Domain pss-R
apply (rule refines-domI)
unfolding αsnd-def pss-R-alt Domain-iff
apply (clarsimp, safe)
subgoal by unfold-locales
subgoal by (blast dest: ps-R-dom-below)
subgoal by (insert pss-cons2-rev, fast)
done

qed

5.3 Termination

We can infer termination directly from the well-foundedness of ps-R and
MFSM .pss-refines
theorem pss-R-wf : wf (pss-R−1)

42

proof −
{

fix M A D M ′ A ′ D ′

assume A: (((M ,A),D),((M ′,A ′),D ′))∈pss-R
then interpret MFSM sep M M A

apply (unfold pss-R-alt MFSM-def)
apply blast
apply simp
done

from pss-refines ps-R-wf have pss-R≤αsnd (M , A)ps-R M A ∧ wf ((ps-R M
A)−1) by simp

} note A=this
show ?thesis

apply (rule refines-wf [of pss-R snd λr . αsnd (fst r) λr . let (M ,A)=fst r in
ps-R M A])

using A
by fastforce

qed

5.4 Recursive characterization

Having proved termination, we can characterize our algorithm as a recursive
function
function pss-algo-rec :: ((′c, ′l, ′s, ′m1, ′m2) pss-state)⇒ ((′c, ′l, ′s, ′m1, ′m2) pss-state)
where

pss-algo-rec ((M ,A),D) = (if (MFSM M A ∧ D⊆ps-upper M A) then (case
(pss-next M A D) of None ⇒ ((M ,A),D) | (Some t) ⇒ pss-algo-rec ((M ,A),insert
t D)) else ((M ,A),D))

by pat-completeness auto

termination
apply (relation pss-R−1)
apply (simp add: pss-R-wf)
using pss-R-alt by fastforce

lemma pss-algo-rec-newsimps[simp]:
[[MFSM M A; D⊆ps-upper M A; pss-next M A D = None]] =⇒ pss-algo-rec

((M ,A),D) = ((M ,A),D)
[[MFSM M A; D⊆ps-upper M A; pss-next M A D = Some t]] =⇒ pss-algo-rec

((M ,A),D) = pss-algo-rec ((M ,A),insert t D)
¬MFSM M A =⇒ pss-algo-rec ((M ,A),D) = ((M ,A),D)
¬(D ⊆ ps-upper M A) =⇒ pss-algo-rec ((M ,A),D) = ((M ,A),D)

by auto

declare pss-algo-rec.simps[simp del]

43

5.5 Correctness

The correctness of the recursive version of our algorithm can be inferred
using the results from the locale detRef-impl
interpretation det-impl: detRef-impl pss-algo-rec pss-next-state pss-R

apply (rule detRef-impl.intro)
apply (simp-all add: detRef-wf-transfer [OF pss-R-wf] pss-R-def)
subgoal for s s ′

unfolding pss-next-state-def
by (auto split: if-splits prod.splits option.splits)

subgoal for s
apply (unfold pss-next-state-def)
apply (clarsimp split: prod.splits if-splits option.splits)
using pss-algo-rec-newsimps(3,4) by blast

done

theorem (in MFSM) pss-correct: lang (A(| δ:=snd (pss-algo-rec ((M ,A),(δ A)))
|)) = pre-star (rules M) A
proof −
have (((M ,A),δ A), pss-algo-rec ((M ,A),δ A))∈ndet-algo pss-R by (rule det-impl.algo-correct)
moreover have (δ A, ((M ,A),δ A))∈αsnd (M ,A) by simp
ultimately obtain D ′ where 1: (D ′, pss-algo-rec ((M ,A),δ A)) ∈ αsnd (M ,A)

and (δ A,D ′)∈ndet-algo (ps-R M A) using pss-refines by (blast dest: refines-ndet-algo)
with correct have lang (A(|δ := D ′|)) = pre∗ (rules M) A by auto
moreover from 1 have snd (pss-algo-rec ((M ,A),δ A)) = D ′ by (unfold

αsnd-def , auto)
ultimately show ?thesis by auto

qed

end

6 Tools for executable specifications
theory ImplHelper
imports Main
begin

6.1 Searching in Lists

Given a function f and a list l, return the result of the first element e ∈ set
l with f e 6= None. The functional code snippet first-that f l corresponds to
the imperative code snippet: for e in l do { if f e 6= None then return Some
(f e) }; return None
primrec first-that :: (′s ⇒ ′a option) ⇒ ′s list ⇒ ′a option where

first-that f [] = None
| first-that f (e#w) = (case f e of None ⇒ first-that f w | Some a ⇒ Some a)

44

lemma first-thatE1: first-that f l = Some a =⇒ ∃ e∈set l. f e = Some a
apply (induct l)
subgoal by simp
subgoal for aa l by (cases f aa) auto
done

lemma first-thatE2: first-that f l = None =⇒ ∀ e∈set l. f e = None
apply (induct l)
subgoal by simp
subgoal for aa l by (cases f aa) auto
done

lemmas first-thatE = first-thatE1 first-thatE2

lemma first-thatI1: e∈set l ∧ f e = Some a =⇒ ∃ a ′. first-that f l = Some a ′

by (cases first-that f l) (auto dest: first-thatE2)

lemma first-thatI2: ∀ e∈set l. f e = None =⇒ first-that f l = None
by (cases first-that f l) (auto dest: first-thatE1)

lemmas first-thatI = first-thatI1 first-thatI2

end

7 Executable algorithms for finite state machines
theory FSM-ex
imports FSM ImplHelper
begin

The transition relation of a finite state machine is represented as a list of
labeled edges
type-synonym (′s, ′a) delta = (′s × ′a × ′s) list

7.1 Word lookup operation

Operation that finds some state q ′ that is reachable from state q with word
w and has additional property P.
primrec lookup :: (′s ⇒ bool) ⇒ (′s, ′a) delta ⇒ ′s ⇒ ′a list ⇒ ′s option where

lookup P d q [] = (if P q then Some q else None)
| lookup P d q (e#w) = first-that (λt. let (qs,es,q ′)=t in if q=qs ∧ e=es then lookup
P d q ′ w else None) d

lemma lookupE1: !!q. lookup P d q w = Some q ′ =⇒ P q ′ ∧ (q,w,q ′) ∈ trcl (set d)
proof (induct w)

case Nil thus ?case by (cases P q) simp-all
next

case (Cons e w) note IHP=this

45

hence first-that (λt. let (qs,es,qh)=t in if q=qs ∧ e=es then lookup P d qh w else
None) d = Some q ′ by simp

then obtain t where t∈set d ∧ ((let (qs,es,qh)=t in if q=qs ∧ e=es then lookup
P d qh w else None) = Some q ′) by (blast dest: first-thatE1)

then obtain qh where 1: (q,e,qh)∈set d ∧ lookup P d qh w = Some q ′

by (auto split: prod.splits if-splits)
moreover from 1 IHP have P q ′ ∧ (qh,w,q ′)∈trcl (set d) by auto
ultimately show ?case by auto

qed

lemma lookupE2: !!q. lookup P d q w = None =⇒ ¬(∃ q ′. (P q ′) ∧ (q,w,q ′) ∈ trcl
(set d)) proof (induct w)

case Nil thus ?case by (cases P q) (auto dest: trcl-empty-cons)
next

case (Cons e w) note IHP=this
hence first-that (λt. let (qs,es,qh)=t in if q=qs ∧ e=es then lookup P d qh w else

None) d = None by simp
hence ∀ t∈set d. (let (qs,es,qh)=t in if q=qs ∧ e=es then lookup P d qh w else

None) = None by (blast dest: first-thatE2)
hence 1: !! qs es qh. (qs,es,qh)∈set d =⇒ q 6=qs ∨ e 6=es ∨ lookup P d qh w =

None by auto
show ?case proof (rule notI , elim exE conjE)

fix q ′

assume C : P q ′ (q,e#w,q ′)∈trcl (set d)
then obtain qh where 2: (q,e,qh)∈set d ∧ (qh,w,q ′)∈trcl (set d) by (blast

dest: trcl-uncons)
with 1 have lookup P d qh w = None by auto
with C 2 IHP show False by auto

qed
qed

lemma lookupI1: [[P q ′; (q,w,q ′)∈trcl (set d)]] =⇒ ∃ q ′. lookup P d q w = Some q ′

by (cases lookup P d q w) (auto dest: lookupE2)

lemma lookupI2: ¬(∃ q ′. P q ′ ∧ (q,w,q ′)∈trcl (set d)) =⇒ lookup P d q w = None
by (cases lookup P d q w) (auto dest: lookupE1)

lemmas lookupE = lookupE1 lookupE2
lemmas lookupI = lookupI1 lookupI2

lemma lookup-trclAD-E1:
assumes map: set d = D and start: q∈Q A and cons: D ⊆ Q A × Σ A × Q A
assumes A: lookup P d q w = Some q ′

shows P q ′ ∧ (q,w,q ′)∈trclAD A D
proof −

from A map have 1: P q ′ ∧ (q,w,q ′)∈trcl D by (blast dest: lookupE1)
hence (q,w,q ′)∈trcl (D ∩ (Q A × Σ A × Q A)) ∩ (Q A × UNIV × UNIV)

using cons start by (subgoal-tac D = D ∩ (Q A × Σ A × Q A), auto)

46

with 1 trclAD-by-trcl ′ show ?thesis by auto
qed

lemma lookup-trclAD-E2:
assumes map: set d = D
assumes A: lookup P d q w = None
shows ¬ (∃ q ′. P q ′ ∧ (q,w,q ′)∈trclAD A D)

proof −
from map A have ¬ (∃ q ′. P q ′ ∧ (q, w, q ′) ∈ trcl D) by (blast dest: lookupE2)
with trclAD-subset-trcl show ?thesis by auto

qed

lemma lookup-trclAD-I1: [[set d = D; (q,w,q ′)∈trclAD A D; P q ′]] =⇒ ∃ q ′. lookup
P d q w = Some q ′

apply (cases lookup P d q w)
apply (subgoal-tac ¬(∃ q ′. P q ′ ∧ (q,w,q ′)∈trclAD A D))
apply simp
apply (rule lookup-trclAD-E2)
apply auto
done

lemma lookup-trclAD-I2: [[set d = D; q∈Q A; D ⊆ Q A × Σ A × Q A; ¬(∃ q ′. P
q ′ ∧ (q,w,q ′)∈trclAD A D)]] =⇒ lookup P d q w = None

apply (cases lookup P d q w, auto)
apply (subgoal-tac P a ∧ (q,w,a)∈trclAD A (set d))
apply blast
apply (rule lookup-trclAD-E1)
apply auto
done

lemmas lookup-trclAD-E = lookup-trclAD-E1 lookup-trclAD-E2
lemmas lookup-trclAD-I = lookup-trclAD-I1 lookup-trclAD-I2

7.2 Reachable states and alphabet inferred from transition
relation

definition states d == fst ‘ (set d) ∪ (snd◦snd) ‘ (set d)
definition alpha d == (fst◦snd) ‘ (set d)

lemma statesAlphaI : (q,a,q ′)∈set d =⇒ q∈states d ∧ q ′∈states d ∧ a∈alpha d by
(unfold states-def alpha-def , force)
lemma statesE : q∈states d =⇒ ∃ a q ′. ((q,a,q ′)∈set d ∨ (q ′,a,q)∈set d) by (unfold
states-def alpha-def , force)
lemma alphaE : a∈alpha d =⇒ ∃ q q ′. (q,a,q ′)∈set d by (unfold states-def alpha-def ,
force)

lemma states-finite: finite (states d) by (unfold states-def , auto)
lemma alpha-finite: finite (alpha d) by (unfold alpha-def , auto)

47

lemma statesAlpha-subset: set d ⊆ states d × alpha d × states d by (auto dest:
statesAlphaI)

lemma states-mono: set d ⊆ set d ′ =⇒ states d ⊆ states d ′ by (unfold states-def ,
auto)
lemma alpha-mono: set d ⊆ set d ′ =⇒ alpha d ⊆ alpha d ′ by (unfold alpha-def ,
auto)

lemma statesAlpha-insert: set d ′ = insert (q,a,q ′) (set d) =⇒ states d ′ = states d
∪ {q,q ′} ∧ alpha d ′ = insert a (alpha d)

by (unfold states-def alpha-def) (simp, blast)

lemma statesAlpha-inv: [[q∈states d; a∈alpha d; q ′∈states d; set d ′=insert (q,a,q ′)
(set d)]] =⇒ states d = states d ′ ∧ alpha d = alpha d ′

by (unfold states-def alpha-def) (simp, blast)

export-code lookup checking SML

end

8 Implementation of DPN pre∗-algorithm
theory DPN-implEx
imports DPN FSM-ex
begin

In this section, we provide a straightforward executable specification of the
DPN-algorithm. It has a polynomial complexity, but is far from having
optimal complexity.

8.1 Representation of DPN and M-automata
type-synonym ′c rule-ex = ′c× ′c× ′c× ′c list
type-synonym ′c DPN-ex = ′c rule-ex list

definition rule-repr == { ((p,γ,p ′,c ′),(p#[γ],a,p ′#c ′)) | p γ p ′ c ′ a . True }
definition rules-repr == { (l,l ′) . rule-repr ‘‘ set l = l ′ }

lemma rules-repr-cons: [[(R,S)∈rules-repr]] =⇒ ((p,γ,p ′,c ′)∈set R) = (∃ a. (p#[γ]
↪→a p ′#c ′) ∈ S)

by (unfold rules-repr-def rule-repr-def) blast

We define the mapping to sp-states explicitely, well-knowing that it makes
the algorithm even more inefficient
definition find-sp d s p == first-that (λt. let (sh,ph,qh)=t in if s=sh ∧ p=ph then
Some qh else None) d

48

This locale describes an M-automata together with its representation used
in the implementation
locale MFSM-ex = MFSM +

fixes R and D
assumes rules-repr : (R,rules M)∈rules-repr
assumes D-above: δ A ⊆ set D and D-below: set D ⊆ ps-upper M A

This lemma exports the additional conditions of locale MFSM_ex to locale
MFSM
lemma (in MFSM) MFSM-ex-alt: MFSM-ex M A R D←→ (R,rules M)∈rules-repr
∧ δ A ⊆ set D ∧ set D ⊆ ps-upper M A
using MFSM-axioms by (unfold MFSM-def MFSM-ex-def MFSM-ex-axioms-def)

(auto)

lemmas (in MFSM-ex) D-between = D-above D-below

The representation of the sp-states behaves as expected
lemma (in MFSM-ex) find-sp-cons:

assumes A: s∈cstates A p∈csyms M
shows find-sp D s p = Some (sp A s p)

proof −
let ?f = (λt. let (sh,ph,qh)=t in if s=sh ∧ p=ph then Some qh else None)
from A have (s,p,sp A s p)∈set D using cstate-succ-ex ′ D-between by simp
moreover have ?f (s,p,sp A s p) = Some (sp A s p) by auto
ultimately obtain sp ′ where G: find-sp D s p = Some sp ′

using first-thatI1[of (s,p,sp A s p) D ?f sp A s p] by (unfold find-sp-def , blast)
with first-thatE1[of ?f D sp ′] obtain t where t∈set D ∧ ?f t=Some sp ′ by

(unfold find-sp-def , blast)
hence (s,p,sp ′)∈set D by (cases t, auto split: if-splits)
with A D-between have sp ′=sp A s p using cstate-succ-unique ′ by simp
with G show ?thesis by simp

qed

8.2 Next-element selection

The implementation goes straightforward by implementing a function to
return the next transition to be added to the transition relation of the au-
tomata being saturated
definition sel-next:: ′c DPN-ex ⇒ (′s, ′c) delta ⇒ (′s × ′c × ′s) option where

sel-next R D ==
first-that (λr . let (p,γ,p ′,c ′) = r in

first-that (λt. let (q,pp ′,sp ′) = t in
if pp ′=p ′ then

case find-sp D q p of
Some spt ⇒ (case lookup (λq ′. (spt,γ,q ′) /∈ set D) D sp ′ c ′ of

Some q ′⇒ Some (spt,γ,q ′) |
None ⇒ None

49

) | - ⇒ None
else None

) D
) R

The state of our algorithm consists of a representation of the DPN-rules and
a representation of the transition relations of the automata being saturated
type-synonym (′c, ′s) seln-state = ′c DPN-ex × (′s, ′c) delta

As long as the next-element function returns elements, these are added to
the transition relation and the algorithm is applied recursively. sel-next-state
describes the next-state selector function, and seln-R describes the corre-
sponding recursion relation.
definition

sel-next-state S == let (R,D)=S in case sel-next R D of None ⇒ None | Some t
⇒ Some (R,t#D)

definition
seln-R == graph sel-next-state

lemma seln-R-alt: seln-R == {((R,D),(R,t#D)) | R D t. sel-next R D = Some t}
by (rule eq-reflection, unfold seln-R-def graph-def sel-next-state-def) (auto split:

option.split-asm)

8.3 Termination
8.3.1 Saturation upper bound

Before we can define the algorithm as recursive function, we have to prove
termination, that is well-foundedness of the corresponding recursion relation
seln-R

We start by defining a trivial finite upper bound for the saturation, simply
as the set of all possible transitions in the automata. Intuitively, this bound
is valid because the saturation algorithm only adds transitions, but never
states to the automata
definition

seln-triv-upper R D == states D × ((fst◦snd) ‘ (set R) ∪ alpha D) × states D

lemma seln-triv-upper-finite: finite (seln-triv-upper R D) by (unfold seln-triv-upper-def)
(auto simp add: states-finite alpha-finite)

lemma D-below-triv-upper : set D ⊆ seln-triv-upper R D using statesAlpha-subset

by (unfold seln-triv-upper-def) auto

lemma seln-triv-upper-subset-preserve: set D ⊆ seln-triv-upper A D ′=⇒ seln-triv-upper
A D ⊆ seln-triv-upper A D ′

50

by (unfold seln-triv-upper-def) (blast intro: statesAlphaI dest: statesE alphaE)

lemma seln-triv-upper-mono: set D ⊆ set D ′=⇒ seln-triv-upper R D ⊆ seln-triv-upper
R D ′

by (unfold seln-triv-upper-def) (auto dest: states-mono alpha-mono)

lemma seln-triv-upper-mono-list: seln-triv-upper R D ⊆ seln-triv-upper R (t#D)
by (auto intro!: seln-triv-upper-mono)
lemma seln-triv-upper-mono-list ′: x∈seln-triv-upper R D =⇒ x∈seln-triv-upper R
(t#D) using seln-triv-upper-mono-list by (fast)

The trivial upper bound is not changed by inserting a transition to the
automata that was already below the upper bound
lemma seln-triv-upper-inv: [[t∈seln-triv-upper R D; set D ′ = insert t (set D)]] =⇒
seln-triv-upper R D = seln-triv-upper R D ′

by (unfold seln-triv-upper-def) (auto dest: statesAlpha-insert)

States returned by find-sp are valid states of the underlying automaton
lemma find-sp-in-states: find-sp D s p = Some qh =⇒ qh∈states D by (unfold
find-sp-def) (auto dest: first-thatE1 split: if-splits simp add: statesAlphaI)

The next-element selection function returns a new transition, that is below
the trivial upper bound
lemma sel-next-below:

assumes A: sel-next R D = Some t
shows t /∈set D ∧ t∈seln-triv-upper R D

proof −
{

fix q a qh b q ′

assume A: (q,a,qh)∈set D and B: (qh,b,q ′)∈trcl (set D)
from B statesAlpha-subset[of D] have q ′∈states D

apply −
apply (erule (1) trcl-structE)
using A by (simp-all add: statesAlphaI)

}
thus ?thesis

using A
apply (unfold sel-next-def seln-triv-upper-def)
apply (clarsimp dest!: first-thatE1 lookupE1 split: if-splits option.split-asm)

apply (force simp add: find-sp-in-states dest!: first-thatE1 lookupE1 split: if-splits
option.split-asm)

done
qed

Hence, it does not change the upper bound
corollary sel-next-upper-preserve: [[sel-next R D = Some t]] =⇒ seln-triv-upper R
D = seln-triv-upper R (t#D) proof −

have set (t#D) = insert t (set D) by auto

51

moreover assume sel-next R D = Some t
with sel-next-below have t∈seln-triv-upper R D by blast
ultimately show ?thesis by (blast dest: seln-triv-upper-inv)

qed

8.3.2 Well-foundedness of recursion relation
lemma seln-R-wf : wf (seln-R−1) proof −

let ?rel={((R,D),(R,D ′)) | R D D ′. set D⊂set D ′ ∧ seln-triv-upper R D =
seln-triv-upper R D ′}

have seln-R−1 ⊆ ?rel−1

apply (unfold seln-R-alt)
apply (clarsimp, safe)
apply (blast dest: sel-next-below)
apply (simp add: seln-triv-upper-mono-list ′)
apply (simp add: sel-next-upper-preserve)
done

also
let ?alpha=λx. let (R,D)=x in seln-triv-upper R D − set D
let ?rel2=finite-psubset−1

have ?rel−1 ⊆ inv-image (?rel2−1) ?alpha using D-below-triv-upper by (unfold
finite-psubset-def , fastforce simp add: inv-image-def seln-triv-upper-finite)

finally have seln-R−1 ⊆ inv-image (?rel2−1) ?alpha .
moreover
have wf (?rel2−1) using wf-finite-psubset by simp
hence wf (inv-image (?rel2−1) ?alpha) by (rule wf-inv-image)
ultimately show ?thesis by (blast intro: wf-subset)

qed

8.3.3 Definition of recursive function
function pss-algo-rec :: (′c, ′s) seln-state ⇒ (′c, ′s) seln-state
where pss-algo-rec (R,D) = (case sel-next R D of Some t ⇒ pss-algo-rec (R,t#D)
| None ⇒ (R,D))

by pat-completeness auto

termination
apply (relation seln-R−1)
apply (simp add: seln-R-wf)
unfolding seln-R-alt by blast

lemma pss-algo-rec-newsimps[simp]:
[[sel-next R D = None]] =⇒ pss-algo-rec (R,D) = (R,D)
[[sel-next R D = Some t]] =⇒ pss-algo-rec (R,D) = pss-algo-rec (R,t#D)
by auto

declare pss-algo-rec.simps[simp del]

52

8.4 Correctness
8.4.1 seln_R refines ps_R

We show that seln-R refines ps-R, that is that every step made by our
implementation corresponds to a step in the nondeterministic algorithm,
that we already have proved correct in theory DPN.
lemma (in MFSM-ex) sel-nextE1:

assumes A: sel-next R D = Some (s,γ,q ′)
shows (s,γ,q ′)/∈set D ∧ (∃ q p a c ′. s=sp A q p ∧ [p,γ]↪→a c ′ ∈ rules M ∧

(q,c ′,q ′)∈trclAD A (set D))
proof −

let ?f = λp γ p ′ c ′ t. let (q,pp ′,sp ′) = t in
if pp ′=p ′ then

case find-sp D q p of
Some s ⇒ (case lookup (λq ′. (s,γ,q ′) /∈ set D) D sp ′ c ′ of

Some q ′⇒ Some (s,γ,q ′) |
None ⇒ None

) | - ⇒ None
else None

let ?f1 = λr . let (p,γ,p ′,c ′) = r in first-that (?f p γ p ′ c ′) D

from A[unfolded sel-next-def] obtain r where 1: r∈set R ∧ ?f1 r = Some
(s,γ,q ′) by (blast dest: first-thatE1)

then obtain p γh p ′ c ′ where 2: r=(p,γh,p ′,c ′) ∧ first-that (?f p γh p ′ c ′) D =
Some (s,γ,q ′) by (cases r) simp

then obtain t where 3: t∈set D ∧ ?f p γh p ′ c ′ t = Some (s,γ,q ′) by (blast
dest: first-thatE1)

then obtain q sp ′ where 4: t=(q,p ′,sp ′) ∧ (case find-sp D q p of
Some s ⇒ (case lookup (λq ′. (s,γh,q ′) /∈ set D) D sp ′ c ′ of

Some q ′⇒ Some (s,γh,q ′) |
None ⇒ None

) | - ⇒ None) = Some (s,γ,q ′)
by (cases t, auto split: if-splits)

hence 5: find-sp D q p = Some s ∧ lookup (λq ′. (s,γh,q ′) /∈ set D) D sp ′ c ′ =
Some q ′ ∧ γ=γh

by (simp split: option.split-asm)
with 1 2 rules-repr obtain a where 6: (p#[γ],a,p ′#c ′)∈rules M by (blast dest:

rules-repr-cons)
hence 7 : p∈csyms M ∧ p ′∈csyms M ∧ γ∈ssyms M by (blast dest: rule-fmt-fs)
with 3 4 D-below have 8: q∈cstates A ∧ sp ′=sp A q p ′ by (blast dest: csym-from-cstate ′

cstate-succ-unique ′)
with 5 7 have 9: s=sp A q p using D-above D-below by (auto simp add:

find-sp-cons)
have 10: (s,γ,q ′)/∈set D ∧ (sp ′,c ′,q ′)∈trclAD A (set D) using 5 8 uniqueSp 7

states-part D-below ps-upper-below-trivial
apply − apply (rule lookup-trclAD-E1)
by auto

53

moreover have (q,p ′#c ′,q ′)∈trclAD A (set D) proof −
from 7 8 sp-pred-ex D-above have (q,p ′,sp ′)∈set D by auto
with 10 trclAD.cons show ?thesis using 7 8 alpha-cons states-part by auto

qed
ultimately show ?thesis using 9 6 by blast

qed

lemma (in MFSM-ex) sel-nextE2:
assumes A: sel-next R D = None
shows ¬(∃ q p γ q ′ a c ′ t. t /∈set D ∧ t=(sp A q p,γ,q ′) ∧ [p,γ]↪→a c ′ ∈ rules M
∧ (q,c ′,q ′)∈trclAD A (set D))
proof (clarify) — Assume we have such a rule and transition, and infer sel-next R
D 6= None

fix q p γ q ′ a pc ′

assume C : (sp A q p, γ, q ′) /∈ set D ([p, γ], a, pc ′) ∈ rules M (q, pc ′, q ′) ∈
trclAD A (set D)

from C obtain p ′ c ′ where SYMS : p∈csyms M ∧ p ′∈csyms M ∧ γ∈ssyms M
∧ pc ′=p ′#c ′ by (blast dest: rule-fmt)

have QCS : q∈cstates A (q,p ′,sp A q p ′)∈set D (sp A q p ′,c ′,q ′)∈trclAD A (set
D) proof −

from C SYMS obtain sp ′ where (q,p ′,sp ′)∈set D ∧ (sp ′,c ′,q ′)∈trclAD A (set
D) by (blast dest: trclAD-uncons)

moreover with D-below SYMS show q∈cstates A by (auto intro: csym-from-cstate ′)
ultimately show (q,p ′,sp A q p ′)∈set D (sp A q p ′,c ′,q ′)∈trclAD A (set D)

using D-below cstate-succ-unique ′ by auto
qed

from C QCS lookup-trclAD-I1[of D set D sp A q p ′ c ′ q ′ A (λq ′′. (sp A q p,γ,q ′′)
/∈ set D)] obtain q ′′ where N1: lookup (λq ′′. (sp A q p,γ,q ′′) /∈ set D) D (sp A q
p ′) c ′ = Some q ′′ by blast

let ?f = λp γ p ′ c ′ q pp ′ sp ′.
if pp ′=p ′ then

case find-sp D q p of
Some s ⇒ (case lookup (λq ′. (s,γ,q ′) /∈ set D) D sp ′ c ′ of

Some q ′⇒ Some (s,γ,q ′) |
None ⇒ None

) | - ⇒ None
else None

from SYMS QCS have FIND-SP: find-sp D q p = Some (sp A q p) using
D-below D-above by (simp add: find-sp-cons)

let ?f1 = (λp γ p ′ c ′. (λt. let (q,pp ′,sp ′)=t in ?f p γ p ′ c ′ q pp ′ sp ′))
from N1 FIND-SP have N2: ?f1 p γ p ′ c ′ (q,p ′,sp A q p ′) = Some (sp A q p, γ,

q ′′) by auto
with QCS first-thatI1[of (q,p ′,sp A q p ′) D ?f1 p γ p ′ c ′] obtain t ′ where N3:

54

first-that (?f1 p γ p ′ c ′) D = Some t ′ by (blast)
let ?f2 = (λr . let (p,γ,p ′,c ′) = r in first-that (?f1 p γ p ′ c ′) D)
from N3 have ?f2 (p,γ,p ′,c ′) = Some t ′ by auto
moreover from SYMS C rules-repr have (p,γ,p ′,c ′)∈set R by (blast dest:

rules-repr-cons)
ultimately obtain t ′′ where first-that ?f2 R = Some t ′′ using first-thatI1[of

(p, γ, p ′, c ′) R ?f2] by (blast)
hence sel-next R D = Some t ′′ by (unfold sel-next-def)
with A show False by simp

qed

lemmas (in MFSM-ex) sel-nextE = sel-nextE1 sel-nextE2

lemma (in MFSM-ex) seln-cons1: [[sel-next R D = Some t]] =⇒ (set D,insert t (set
D))∈ps-R M A using D-below by (cases t, auto dest: sel-nextE intro: ps-R.intros)
lemma (in MFSM-ex) seln-cons2: sel-next R D = None =⇒ set D /∈Domain (ps-R
M A) by (blast dest: sel-nextE elim: ps-R.cases)

lemma (in MFSM-ex) seln-cons1-rev: [[set D /∈Domain (ps-R M A)]] =⇒ sel-next
R D = None by (cases sel-next R D) (auto iff add: seln-cons1 seln-cons2)
lemma (in MFSM-ex) seln-cons2-rev: [[set D∈Domain (ps-R M A)]] =⇒ ∃ t.
sel-next R D = Some t ∧ (set D,insert t (set D))∈ps-R M A

by (cases sel-next R D) (auto iff add: seln-cons1 seln-cons2 ps-R-dom-below)

DPN-specific abstraction relation, to associate states of deterministic algo-
rithm with states of ps-R
definition αseln M A == { (set D, (R,D)) | D R. MFSM-ex M A R D}

lemma αselnI : [[S=set D; MFSM-ex M A R D]] =⇒ (S ,(R,D))∈αseln M A
by (unfold αseln-def) auto

lemma αselnD: (S ,(R,D))∈αseln M A =⇒ S=set D ∧ MFSM-ex M A R D
by (unfold αseln-def) auto

lemma αselnD ′: (S ,C)∈αseln M A =⇒ S=set (snd C) ∧ MFSM-ex M A (fst C)
(snd C) by (cases C , simp add: αselnD)

lemma αseln-single-valued: single-valued ((αseln M A)−1)
by (unfold αseln-def) (auto intro: single-valuedI)

theorem (in MFSM) seln-refines: seln-R ≤αseln M A (ps-R M A) proof (rule
refinesI)

show αseln M A O seln-R ⊆ ps-R M A O αseln M A proof (rule refines-compI)
fix a c c ′

assume ABS : (a,c)∈αseln M A and R: (c,c ′)∈seln-R
then obtain R D t where 1: c=(R,D) ∧ c ′=(R,t#D) ∧ sel-next R D = Some

t by (unfold seln-R-alt, blast)
moreover with ABS have 2: a=set D ∧ MFSM-ex M A R D by (unfold

αseln-def , auto)

55

ultimately have 3: (set D,(set (t#D))) ∈ ps-R M A using MFSM-ex.seln-cons1[of
M A R D] by auto

moreover have (set (t#D), (R,t#D))∈αseln M A
proof −

from 2 have δ A ⊆ set D using MFSM-ex.D-above[of M A R D] by auto
with 3 have δ A ⊆ set (t#D) set (t#D) ⊆ ps-upper M A using ps-R-below

by (fast+)
with 2 have MFSM-ex M A R (t#D) by (unfold MFSM-ex-alt, simp)
thus ?thesis unfolding αseln-def by auto

qed
ultimately show ∃ a ′. (a, a ′) ∈ ps-R M A ∧ (a ′, c ′) ∈ αseln M A using 1 2

by blast
qed

next
show αseln M A ‘‘ Domain (ps-R M A) ⊆ Domain seln-R

apply (rule refines-domI)
apply (unfold αseln-def seln-R-alt)
apply (unfold Domain-iff)
apply (clarsimp)
apply (fast dest: MFSM-ex.seln-cons2-rev)
done

qed

8.4.2 Computing transitions only
definition pss-algo :: ′c DPN-ex ⇒ (′s, ′c) delta ⇒ (′s, ′c) delta where pss-algo R
D ≡ snd (pss-algo-rec (R,D))

8.4.3 Correctness

We have to show that the next-state selector function’s graph refines seln-R.
This is trivial because we defined seln-R to be that graph
lemma sns-refines: graph sel-next-state ≤Id seln-R by (unfold seln-R-def) simp

interpretation det-impl: detRef-impl pss-algo-rec sel-next-state seln-R
apply (rule detRef-impl.intro)
apply (simp-all only: detRef-wf-transfer [OF seln-R-wf] sns-refines)
apply (unfold sel-next-state-def)
apply (auto split: option.splits)
done

And then infer correctness of the deterministic algorithm
theorem (in MFSM-ex) pss-correct:

assumes D-init: set D = δ A
shows lang (A(| δ:=set (pss-algo R D) |)) = pre-star (rules M) A

proof (rule correct)
have (set D, (R,D))∈αseln M A by (intro refl αselnI) unfold-locales
moreover have ((R,D),pss-algo-rec (R,D))∈ndet-algo (seln-R) by (simp add:

det-impl.algo-correct)

56

ultimately obtain d ′ where 1: (d ′,pss-algo-rec (R,D))∈αseln M A ∧ (set
D,d ′)∈ndet-algo (ps-R M A) using refines-ndet-algo[OF seln-refines] by blast

hence d ′=set (snd (pss-algo-rec (R,D))) by (blast dest: αselnD ′)
with 1 show (δ A, set (pss-algo R D)) ∈ ndet-algo (ps-R M A) using D-init

unfolding pss-algo-def by simp
qed

corollary (in MFSM) pss-correct:
assumes repr : set D = δ A (R,rules M)∈rules-repr
shows lang (A(| δ:=set (pss-algo R D) |)) = pre-star (rules M) A

proof −
interpret MFSM-ex sep M M A R D

apply simp-all
apply unfold-locales
apply (simp-all add: repr initial-delta-below)
done

from repr show ?thesis by (simp add: pss-correct)
qed

Generate executable code
export-code pss-algo checking SML

end

References

[1] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis
of dynamic networks of pushdown systems. In Proc. of CONCUR’05.
Springer, 2005.

57

	String rewrite systems
	Definitions
	Induced Labelled Transition System
	Properties of the induced LTS

	Finite state machines
	Definitions
	Basic properties
	Constructing FSMs
	Reflexive, transitive closure of transition relation
	Relation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 trclAD and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 trcl

	Language of a FSM
	Example: Product automaton

	Nondeterministic recursive algorithms
	Basic properties
	Refinement
	Extension to reflexive states
	Well-foundedness
	The relations 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 > and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 on finite domains

	Implementation
	Graphs of functions
	Deterministic refinement w.r.t. the identity abstraction
	Recursive characterization

	Dynamic pushdown networks
	Dynamic pushdown networks
	Definition
	Basic properties
	Building DPNs

	M-automata
	Definition
	Basic properties
	Some implications of the M-automata conditions

	pre*-sets of regular sets of configurations
	Nondeterministic algorithm for pre*
	Termination
	Soundness
	Precision

	Non-executable implementation of the DPN pre*-algorithm
	Definitions
	Refining 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ps-R
	Termination
	Recursive characterization
	Correctness

	Tools for executable specifications
	Searching in Lists

	Executable algorithms for finite state machines
	Word lookup operation
	Reachable states and alphabet inferred from transition relation

	Implementation of DPN pre*-algorithm
	Representation of DPN and M-automata
	Next-element selection
	Termination
	Saturation upper bound
	Well-foundedness of recursion relation
	Definition of recursive function

	Correctness
	seln_R refines ps_R
	Computing transitions only
	Correctness

