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Abstract
The Dyck language over a pair of brackets, e.g. ( and ), is the set of

balanced strings/words/lists of brackets. That is, the set of words with
the same number of ( and ), where every prefix of the word contains
no more ) than (. In general, a Dyck language is defined over a whole
set of matching pairs of brackets.
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1 Dyck Languages
theory Dyck_Language
imports Main
begin

Dyck languages are sets of words/lists of balanced brackets. A bracket
is a pair of type bool × ′a where True is an opening and False a closing
bracket. That is, brackets are tagged with elements of type ′a.
type_synonym ′a bracket = bool × ′a

abbreviation Open a ≡ (True,a)
abbreviation Close a ≡ (False,a)

1.1 Balanced, Inductive and Recursive
Definition of what it means to be a balanced list of brackets:
inductive bal :: ′a bracket list ⇒ bool where

bal [] |
bal xs =⇒ bal ys =⇒ bal (xs @ ys) |
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bal xs =⇒ bal (Open a # xs @ [Close a])

declare bal.intros(1 )[iff ] bal.intros(2 )[intro,simp] bal.intros(3 )[intro,simp]

lemma bal2 [iff ]: bal [Open a, Close a]
using bal.intros(3 )[of []] by simp

The inductive definition of balanced is complemented with a functional
version that uses a stack to remember which opening brackets need to be
closed:
fun bal_stk :: ′a list ⇒ ′a bracket list ⇒ ′a list ∗ ′a bracket list where

bal_stk s [] = (s,[]) |
bal_stk s (Open a # bs) = bal_stk (a # s) bs |
bal_stk (a ′ # s) (Close a # bs) =
(if a = a ′ then bal_stk s bs else (a ′ # s, Close a # bs)) |

bal_stk bs stk = (bs,stk)

lemma bal_stk_more_stk: bal_stk s1 xs = (s1 ′,[]) =⇒ bal_stk (s1@s2 ) xs =
(s1 ′@s2 ,[])
by(induction s1 xs arbitrary: s2 rule: bal_stk.induct) (auto split: if_splits)

lemma bal_stk_if_Nils[simp]: ASSUMPTION (bal_stk [] bs = ([], [])) =⇒ bal_stk
s bs = (s, [])
unfolding ASSUMPTION_def using bal_stk_more_stk[of [] _ []] by simp

lemma bal_stk_append:
bal_stk s (xs @ ys)
= (let (s ′,xs ′) = bal_stk s xs in if xs ′ = [] then bal_stk s ′ ys else (s ′, xs ′ @ ys))

by(induction s xs rule:bal_stk.induct) (auto split: if_splits)

lemma bal_stk_append_if :
bal_stk s1 xs = (s2 ,[]) =⇒ bal_stk s1 (xs @ ys) = bal_stk s2 ys

by(simp add: bal_stk_append[of _ xs])

lemma bal_stk_split:
bal_stk s xs = (s ′,xs ′) =⇒ ∃ us. xs = us@xs ′ ∧ bal_stk s us = (s ′,[])

by(induction s xs rule:bal_stk.induct) (auto split: if_splits)

1.2 Equivalence of bal and bal_stk
lemma bal_stk_if_bal: bal xs =⇒ bal_stk s xs = (s,[])
by(induction arbitrary: s rule: bal.induct)(auto simp: bal_stk_append_if split: if_splits)

lemma bal_insert_AB:
bal (v @ w) =⇒ bal (v @ (Open a # Close a # w))

proof(induction v @ w arbitrary: v w rule: bal.induct)
case 1 thus ?case by blast

next
case (3 u b)
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then show ?case
proof (cases v)

case Nil
hence w = Open b # u @ [Close b]

using 3 .hyps(3 ) by fastforce
hence bal w using 3 .hyps

by blast
hence bal ([Open a, Close a] @ w)

by blast
thus ?thesis using Nil by simp

next
case [simp]: (Cons x v ′)
show ?thesis
proof (cases w rule:rev_cases)

case Nil
from 3 .hyps have bal ((Open a # u @ [Close a]) @ [Open a, Close a])

using bal.intros(2 ) by blast
thus ?thesis using Nil Cons 3

by (metis append_Nil append_Nil2 bal.simps)
next

case (snoc w ′ y)
thus ?thesis

using 3 .hyps(2 ,3 ) bal.intros(3 ) by force
qed

qed
next

case (2 v ′ w ′)
then obtain r where v ′=v@r ∧ r@w ′=w ∨ v ′@r=v ∧ w ′=r@w

by (meson append_eq_append_conv2 )
thus ?case

using 2 .hyps bal.intros(2 ) by force
qed

lemma bal_if_bal_stk: bal_stk s w = ([],[]) =⇒ bal (rev(map (λx. Open x) s) @
w)
proof(induction s w rule: bal_stk.induct)

case 2
then show ?case by simp

next
case 3
then show ?case by (auto simp add: bal_insert_AB split: if_splits)

qed (auto)

corollary bal_iff_bal_stk: bal w ←→ bal_stk [] w = ([],[])
using bal_if_bal_stk[of []] bal_stk_if_bal by auto

1.3 More properties of bal, using bal_stk
theorem bal_append_inv: bal (u @ v) =⇒ bal u =⇒ bal v
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using bal_stk_append_if bal_iff_bal_stk by metis

lemma bal_insert_bal_iff [simp]:
bal b =⇒ bal (v @ b @ w) = bal (v@w)

unfolding bal_iff_bal_stk by(auto simp add: bal_stk_append split: prod.splits
if_splits)

lemma bal_start_Open: ‹bal (x#xs) =⇒∃ a. x = Open a›
using bal_stk.elims bal_iff_bal_stk by blast

lemma bal_Open_split: assumes ‹bal (x # xs)›
shows ‹∃ y r a. bal y ∧ bal r ∧ x = Open a ∧ xs = y @ Close a # r›

proof−
from assms obtain a where ‹x = Open a›

using bal_start_Open by blast
have ‹bal (Open a # xs) =⇒ ∃ y r . bal y ∧ bal r ∧ xs = y @ Close a # r›
proof(induction ‹length xs› arbitrary: xs rule: less_induct)

case less
have IH : ‹

∧
w. [[length w < length xs; bal (Open a # w)]] =⇒ ∃ y r . bal y ∧ bal

r ∧ w = y @ Close a # r›
using less by blast

have ‹bal (Open a # xs)›
using less by blast

from less(2 ) show ?case
proof(induction ‹Open a # xs› rule: bal.induct)

case (2 as bs)
consider (as_empty) ‹as = []› | (bs_empty) ‹bs = []› | (both_not_empty)

‹as 6= [] ∧ bs 6= []› by blast
then show ?case
proof(cases)

case as_empty
then show ?thesis using 2 by (metis append_Nil)

next
case bs_empty
then show ?thesis using 2 by (metis append_self_conv)

next
case both_not_empty
then obtain as ′ where as ′_def : ‹Open a # as ′ = as›

using 2 by (metis append_eq_Cons_conv)
then have ‹length as ′ < length xs›

using 2 .hyps(5 ) both_not_empty by fastforce
with IH ‹bal as› obtain y r where yr : ‹bal y ∧ bal r ∧ as ′ = y @ Close a

# r›
using as ′_def by meson

then have ‹xs = y @ Close a # r @ bs›
using 2 .hyps(5 ) as ′_def by fastforce

moreover have ‹bal y›
using yr by blast

moreover have ‹bal (r@bs)›
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using yr by (simp add: 2 .hyps(3 ))
ultimately show ?thesis by blast

qed
next

case (3 xs)
then show ?case by blast

qed
qed
then show ?thesis using assms ‹x = _› by blast

qed

1.4 Dyck Language over an Alphabet
The Dyck/bracket language over a set Γ is the set of balanced words over
Γ:
definition Dyck_lang :: ′a set ⇒ ′a bracket list set where
Dyck_lang Γ = {w. bal w ∧ snd ‘ (set w) ⊆ Γ}

lemma Dyck_langI [intro]:
assumes ‹bal w›

and ‹snd ‘ (set w) ⊆ Γ›
shows ‹w ∈ Dyck_lang Γ›
using assms unfolding Dyck_lang_def by blast

lemma Dyck_langD[dest]:
assumes ‹w ∈ Dyck_lang Γ›
shows ‹bal w›

and ‹snd ‘ (set w) ⊆ Γ›
using assms unfolding Dyck_lang_def by auto

Balanced subwords are again in the Dyck Language.
lemma Dyck_lang_substring:

‹bal w =⇒ u @ w @ v ∈ Dyck_lang Γ =⇒ w ∈ Dyck_lang Γ›
unfolding Dyck_lang_def by auto

end
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