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Abstract

In this entry, we formalize Doob’s upcrossing inequality and subse-
quently prove Doob’s first martingale convergence theorem. The up-
crossing inequality is a fundamental result in the study of martingales.
It provides a bound on the expected number of times a submartingale
crosses a certain threshold within a given interval. Doob’s martingale
convergence theorem states that, if we have a submartingale where the
supremum over the mean of the positive parts is finite, then the limit
process exists almost surely and is integrable. Equivalent statements
for martingales and supermartingales are also provided as corollaries.

The proofs provided are based mostly on the formalization done in
the Lean mathematical library [1,2].
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1 Introduction

Martingales, in the context of stochastic processes, are encountered in various
real-world scenarios where outcomes are influenced by past events but are
not entirely predictable due to randomness or uncertainty. A martingale is a
stochastic process in which the expected value of the next observation, given
all past observations, is equal to the current observation.

One real-world example can be encountered in environmental monitoring,
particularly in the study of river flow rates. Consider a hydrologist tasked
with monitoring the flow rate of a river to understand its behavior over
time. The flow rate of a river is influenced by various factors such as rainfall,
snowmelt, groundwater levels, and human activities like dam releases or water
diversions. These factors contribute to the variability and unpredictability of
the flow rate. In this scenario, the flow rate of the river can be modeled as a
martingale. The flow rate at any given time is influenced by past events but
is not entirely predictable due to the random nature of rainfall and other
factors.

One concept that comes up frequently in the study of martingales are
upcrossings and downcrossings. Upcrossings and downcrossings are random
variables representing when the value of a stochastic process leaves a fixed
interval. Specifically, an upcrossing occurs when the process moves from
below the lower bound of the interval to above the upper bound [4], indicating
a potential upward trend or positive movement. Conversely, a downcrossing
happens when the process crosses below the lower bound of the interval,
suggesting a potential downward trend or negative movement. By analyzing
the frequency and timing of these crossings, researchers can infer information
about the underlying dynamics of the process and detect shifts in its behavior.

For instance, consider tracking the movement of a stock price over time.
The process representing the stock’s price might cross above a certain thresh-
old (upcrossing) or below it (downcrossing) multiple times during a trading
session. The number of such crossings provides insights into the volatility
and the trend of the stock.

Doob’s upcrossing inequality is a fundamental result in the study of
martingales. It provides a bound on the expected number of upcrossings a
submartingale undertakes before some point in time.

Let’s consider our example concerning river flow rates again. In this
context, upcrossings represent instances where the flow rate of the river rises
above a certain threshold. For example, the flow rate might cross a threshold
indicating flood risk. Downcrossings, on the other hand, represent instances
where the flow rate decreases below a certain threshold. This could indicate
drought conditions or low-flow periods.

Doob’s first martingale convergence theorem gives sufficient conditions for
a submartingale to converge to a random variable almost surely. The proof is
based on controlling the rate of growth or fluctuations of the submartingale,



which is where the upcrossing inequality comes into play. By bounding these
fluctuations, we can ensure that the submartingale does not exhibit wild
behavior or grow too quickly, which is essential for proving convergence.

Formally, the convergence theorem states that, if (M, ),>0 is a submartin-
gale with sup,, E[M,"| < oo, where M,I denotes the positive part of M,
then the limit process My, := lim,, M,, exists almost surely and is integrable.
Furthermore, the limit process is measurable with respect to the smallest
o-algebra containing all of the o-algebras in the filtration. In our formaliza-
tion, we also show equivalent convergence statements for martingales and
supermartingales. The theorem can be used to easily show convergence
results for simple scenarios.

Consider the following example: Imagine a casino game where a player
bets on the outcome of a random coin toss, where the coin comes up heads
with odds p € [0, %) Assume that the player goes bust when they have
no money remaining. The player’s wealth over time can be modeled as a
supermartingale, where the value of their wealth at each time step depends
only on the outcome of the previous coin toss. Doob’s martingale convergence
theorem assures us that the player will go bankrupt as the number of coin
tosses increases.

The theorem that we have described here and formalized in the scope
of our project is called Doob’s first martingale convergence theorem. It is
important to note that the convergence in this theorem is pointwise, not
uniform, and is unrelated to convergence in mean square, or indeed in any
L? space. In order to obtain convergence in L' (i.e., convergence in mean),
one requires uniform integrability of the random variables. In this form,
the theorem is called Doob’s second martingale convergence theorem. Since
uniform integrability is not yet formalized in Isabelle/HOL, we have decided
to confine our formalization to the first convergence theorem only.



2 Stopping Times and Hitting Times

In this section we formalize stopping times and hitting times. A stopping
time is a random variable that represents the time at which a certain event
occurs within a stochastic process. A hitting time, also known as first passage
time or first hitting time, is a specific type of stopping time that represents
the first time a stochastic process reaches a particular state or crosses a
certain threshold.

theory Stopping-Time

imports Martingales.Stochastic- Process

begin

2.1 Stopping Time

The formalization of stopping times here is simply a rewrite of the document
HOL— Probability.Stopping-Time [5]. We have adapted the document to use
the locales defined in our formalization of filtered measure spaces [6] [7].
This way, we can omit the partial formalization of filtrations in the original
document. Furthermore, we can include the initial time index £y that we
introduced as well.

context linearly-filtered-measure
begin

— A stopping time is a measurable function from the measure space (possible events)
into the time axis.

definition stopping-time :: ('a = 'b) = bool where
stopping-time T = ((T € space M — {t9..}) N (Vt>tyg. Measurable.pred (F t)
(Az. Tz < t)))

lemma stopping-time-cong:
assumes At z. t > to = z € space (Ft) = Tz =Sz
shows stopping-time T = stopping-time S

(proof)

lemma stopping-time-ge-zero:
assumes stopping-time T w € space M
shows T w > tg

{proof)

lemma stopping-timeD:
assumes stopping-time T t > tg
shows Measurable.pred (F t) (Ax. Tx < t)

{proof)

lemma stopping-timel [intro?):
assumes A\z. x € space M = Tz >ty



(At. t > to = Measurable.pred (F t) (Az. T z < t))
shows stopping-time T

{proof)

lemma stopping-time-measurable:
assumes stopping-time T
shows T € borel-measurable M

(proof)

lemma stopping-time-const:
assumes t > i
shows stopping-time (Ax. t) (proof)

lemma stopping-time-min:
assumes stopping-time T stopping-time S
shows stopping-time (Ax. min (T z) (S x))
(proof)

lemma stopping-time-mazx:
assumes stopping-time T stopping-time S
shows stopping-time (Az. maz (T z) (S z))

{proof)

2.2 o-algebra of a Stopping Time

Moving on, we define the o-algebra associated with a stopping time 7. It
contains all the information up to time 7T, the same way F' ¢ contains all the
information up to time t.
definition pre-sigma :: (a = 'b) = 'a measure where

pre-sigma T = sigma (space M) {A € sets M. Vt>tg. {w € A. T w < t} € sets

(F 1)}
lemma measure-pre-sigmalsimp|: emeasure (pre-sigma T) = (A-. 0) {proof)

lemma sigma-algebra-pre-sigma:

assumes stopping-time T

shows sigma-algebra (space M) {A € sets M. Vt>ty. {weA. T w < t} € sets (F
t)}
(proof )

lemma space-pre-sigma[simp): space (pre-sigma T) = space M (proof)

lemma sets-pre-sigma:
assumes stopping-time T
shows sets (pre-sigma T) = {A € sets M. Vt>ty. {wed. Tw < t} € F t}
(proof )

lemma sets-pre-sigmal:
assumes stopping-time T



and A\t. t > g ={we A Tw<t}ecFt
shows A € pre-sigma T
(proof)

lemma pred-pre-sigmal:

assumes stopping-time T

shows (At. t > to = Measurable.pred (F t) (Aw. Pw A T w < t)) =
Measurable.pred (pre-sigma T) P

{proof)

lemma sets-pre-sigmaD:
assumes stopping-time T A € pre-sigma T t > tg
shows {w € A. T w < t} € sets (F 1)

{proof)

lemma borel-measurable-stopping-time-pre-sigma:
assumes stopping-time T
shows T € borel-measurable (pre-sigma T)

(proof)

lemma mono-pre-sigma:
assumes stopping-time T stopping-time S
and Az. x € space M = Tz < Sz
shows pre-sigma T C pre-sigma S
(proof)

lemma stopping-time-measurable-le:
assumes stopping-time T s > tg t > s
shows Measurable.pred (F t) (M. T w <

{proof)
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lemma stopping-time-measurable-less:
assumes stopping-time T s > tog t > s
shows Measurable.pred (F't) (Aw. T w < s)

(proof)

lemma stopping-time-measurable-ge:
assumes stopping-time T s > tog t > s
shows Measurable.pred (F t) (Aw. T w >
(proof)

Vv
N

lemma stopping-time-measurable-gr:
assumes stopping-time T s > tg t > s
shows Measurable.pred (F' t) (Azx. s < T x)
(proof)

lemma stopping-time-measurable-eq:
assumes stopping-time T s > tog t > s
shows Measurable.pred (F' t) (Aw. T w = s)



{proof)

lemma stopping-time-less-stopping-time:
assumes stopping-time T stopping-time S
shows Measurable.pred (pre-sigma T) (Aw. T w < S w)

(proof)

end

lemma (in enat-filtered-measure) stopping-time-SUP-enat:
fixes T :: nat = ('a = enat)
shows (Ai. stopping-time (T 7)) = stopping-time (SUP i. T i)
{proof )

lemma (in enat-filtered-measure) stopping-time-Inf-enat:
assumes Ai. Measurable.pred (F i) (P 1)
shows stopping-time (Aw. Inf {i. P i w})

(proof)

lemma (in nat-filtered-measure) stopping-time-Inf-nat:
assumes Ai. Measurable.pred (F i) (P 1)
Niw. w e space M = In. Pnw
shows stopping-time (Aw. Inf {i. P i w})
(proof)

definition stopped-value :: ('b = 'a = '¢) = (Yfa = 'b) = (‘a = 'c¢) where
stopped-value X 7w = X (7 w) w

2.3 Hitting Time

Given a stochastic process X and a borel set A, hitting-time X A s t is the
first time X is in A after time s and before time ¢. If X does not hit A
after time s and before t then the hitting time is simply ¢. The definition
presented here coincides with the definition of hitting times in mathlib [1].

context linearly-filtered-measure
begin

definition hitting-time :: ('b = 'a = '¢) = 'c set = 'b = 'b = (‘a = 'b) where
hitting-time X A s t = (Aw. if Fic{s..t} N {to..}. X i w € A then Inf ({s..t} N
{to..} N {i. X iw € A}) else maz ty t)

lemma hitting-time-def":

hitting-time X A s t = (Aw. Inf (insert (maz to t) ({s..t} N {to.} N {i. X iw €
4})))
(proof )

lemma hitting-time-inj-on:
assumes inj-on fS N\wt. t > tg = Xtwe SACS



shows hitting-time X A = hitting-time (At w. f (X t w)) (f © 4)
(proof)

lemma hitting-time-translate:
fixes c :: - :: ab-group-add
shows hitting-time X A = hitting-time (An w. X nw + ¢) (((+) ¢) * 4)
(proof)

lemma hitting-time-le:
assumes t > i
shows hitting-time X A stw < t

{proof)

lemma hitting-time-ge:
assumes t > tg s < t
shows s < hitting-time X A s t w
(proof)

lemma hitting-time-mono:
assumes t >ty s < s't <t/
shows hitting-time X A s t w < hitting-time X A s’ t' w
(proof )

end

context nat-filtered-measure
begin

— Hitting times are stopping times for adapted processes.

lemma stopping-time-hitting-time:
assumes adapted-process M F 0 X A € borel
shows stopping-time (hitting-time X A s t)
(proof)

lemma stopping-time-hitting-time':
assumes adapted-process M F 0 X A € borel stopping-time s A\w. s w < t
shows stopping-time (Aw. hitting-time X A (s w) t w)

(proof)

lemma stopped-value-hitting-time-mem:

assumes j € {s.t} Xjwe A

shows stopped-value X (hitting-time X A s t) w € A
(proof)

lemma hitting-time-le-iff:

assumes { <

shows hitting-time X A st w < i +— (35 € {s..i}. Xjw € A) (is ?lhs = ?rhs)
(proof)



lemma hitting-time-less-iff:

assumes 7 < ¢

shows hitting-time X A st w < i +— (3j € {s.<i}. X jw € A) (is ?lhs =
2rhs)
(proof)

lemma hitting-time-eq-hitting-time:

assumes t < t'j e {s.t} Xjwe A

shows hitting-time X A s t w = hitting-time X A s t' w (is ?lhs = ?rhs)
(proof )

end

end

3 Doob’s Upcrossing Inequality and Martingale
Convergence Theorems

In this section we formalize upcrossings and downcrossings. Following this,
we prove Doob’s upcrossing inequality and first martingale convergence
theorem.

theory Upcrossing
imports Martingales. Martingale Stopping-Time
begin

lemma real-embedding-borel-measurable: real € borel-measurable borel (proof)

lemma limsup-lower-bound:
fixes u:: nat = ereal
assumes limsup u > [
shows IN>k. u N > |

(proof)

lemma ereal-abs-maz-min: |¢| = maz 0 ¢ — min 0 ¢ for c :: ereal
{proof)

3.1 Upcrossings and Downcrossings

Given a stochastic process X, real values a and b, and some point in time N,
we would like to define a notion of "upcrossings" of X across the band {a..b}
which counts the number of times any realization of X crosses from below
a to above b before time N. To make this heuristic rigorous, we inductively
define the following hitting times.



context nat-filtered-measure
begin

context
fixes X :: nat = 'a = real
and a b :: real
and N :: nat
begin

primrec upcrossing :: nat = 'a = nat where

upcrossing 0 = (Aw. 0) |

upcrossing (Suc n) = (Aw. hitting-time X {b..} (hitting-time X {..a} (upcrossing
nw) N w) N w)

definition downcrossing :: nat = ’'a = nat where
downcrossing n = (Aw. hitting-time X {..a} (upcrossing n w) N w)

lemma upcrossing-simps:
upcrossing 0 = (Aw. 0)
upcrossing (Suc n) = (Aw. hitting-time X {b..} (downcrossing n w) N w)
(proof )

lemma downcrossing-simps:
downcrossing 0 = hitting-time X {..a} O N
downcrossing n = (Aw. hitting-time X {..a} (upcrossing n w) N w)
(proof)

declare upcrossing.simps[simp del]

lemma upcrossing-le: upcrossing n w < N

(proof)

lemma downcrossing-le: downcrossing n w < N
{proof )

lemma upcrossing-le-downcrossing: upcrossing n w < downcrossing n w
(proof )

lemma downcrossing-le-upcrossing-Suc: downcrossing n w < upcrossing (Suc n) w
(proof)

lemma upcrossing-mono:
assumes n < m
shows upcrossing n w < upcrossing m w

(proof)
lemma downcrossing-mono:

assumes n < m
shows downcrossing n w < downcrossing m w

10



{proof)

lemma stopped-value-upcrossing:
assumes upcrossing (Suc n) w # N
shows stopped-value X (upcrossing (Suc n)) w > b

(proof)

lemma stopped-value-downcrossing:
assumes downcrossing n w # N
shows stopped-value X (downcrossing n) w < a

(proof)

lemma upcrossing-less-downcrossing:
assumes a < b downcrossing (Suc n) w # N
shows upcrossing (Suc n) w < downcrossing (Suc n) w

(proof)

lemma downcrossing-less-upcrossing:
assumes ¢ < b upcrossing (Suc n) w # N
shows downcrossing n w < upcrossing (Suc n) w

(proof)

lemma upcrossing-less-Suc:
assumes a < b upcrossing n w # N
shows upcrossing n w < upcrossing (Suc n) w
(proof )

lemma upcrossing-eq-bound:
assumes a < bn > N
shows upcrossing n w = N

(proof)

lemma downcrossing-eq-bound:
assumes a < bn > N
shows downcrossing n w = N

{proof)

lemma stopping-time-crossings:
assumes adapted-process M F 0 X
shows stopping-time (upcrossing n) stopping-time (downcrossing n)

(proof)

lemmas stopping-time-upcrossing = stopping-time-crossings(1)
lemmas stopping-time-downcrossing = stopping-time-crossings(2)

— We define upcrossings-before as the number of upcrossings which take place strictly
before time N.
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definition upcrossings-before :: 'a = nat where
upcrossings-before = (Aw. Sup {n. upcrossing n w < N})

lemma upcrossings-before-bdd-above:
assumes a < b
shows bdd-above {n. upcrossing n w < N}

(proof)

lemma upcrossings-before-less:
assumes a < b 0 < N
shows upcrossings-before w < N

(proof)

lemma upcrossings-before-less-implies-crossing-eq-bound:
assumes a < b upcrossings-before w < n
shows upcrossing n w = N
downcrossing n w = N

(proof)

lemma upcrossings-before-le:
assumes a < b
shows upcrossings-before w < N

{proof)

lemma upcrossings-before-mem:
assumes a < b 0 < N
shows upcrossings-before w € {n. upcrossing n w < N} N {.<N}

(proof)

lemma upcrossing-less-of-le-upcrossings-before:
assumes a < b 0 < N n < upcrossings-before w
shows upcrossing n w < N

{proof)

lemma upcrossings-before-sum-def:

assumes a < b

shows upcrossings-before w = (3~ k€{1..N}. indicator {n. upcrossing n w < N}
k)
(proof)

lemma upcrossings-before-measurable:
assumes adapted-process M F 0 X a < b
shows upcrossings-before € borel-measurable M

(proof)
lemma upcrossings-before-measurable’:

assumes adapted-process M F 0 X a < b
shows (Aw. real (upcrossings-before w)) € borel-measurable M

12



{proof)

end

lemma crossing-eq-crossing:
assumes N < N’
and downcrossing X a b Nnw < N
shows upcrossing X a b N n w = upcrossing X a b N' n w
downcrossing X a b N n w = downcrossing X a b N' n w

{(proof)

lemma crossing-eq-crossing’:
assumes N < N’
and upcrossing X a b N (Suc n) w < N
shows upcrossing X a b N (Suc n) w = upcrossing X a b N’ (Suc n) w
downcrossing X a b N n w = downcrossing X a b N' n w

(proof)

lemma upcrossing-eq-upcrossing:
assumes N < N’
and upcrossing X a b Nnw < N
shows upcrossing X a b N n w = upcrossing X a b N' n w
(proof)

lemma upcrossings-before-zero: upcrossings-before X a b 0 w = 0
(proof )

lemma upcrossings-before-less-exists-upcrossing:
assumes a < b
and upcrossing: N < LXLw<alL < Ub< XUw
shows upcrossings-before X a b N w < upcrossings-before X a b (Suc U) w

(proof)

lemma crossings-translate:
upcrossing X a b N = upcrossing (Anw. (X nw+ ¢)) (a+¢) (b+¢) N
downcrossing X a b N = downcrossing (An w. (X nw + ¢)) (a+¢) (b+¢) N
(proof)

lemma upcrossings-before-translate:

upcrossings-before X a b N = upcrossings-before (An w. (X nw + ¢)) (a + ¢) (b
+c¢) N

(proof)

lemma crossings-pos-eq:
assumes a < b
shows upcrossing X a b N = upcrossing (An w. maz 0 (X nw — a)) 0 (b —a) N
downcrossing X a b N = downcrossing (An w. maz 0 (X nw — a)) 0 (b —
a) N
(proof )

13



lemma upcrossings-before-mono:
assumes a < b N < N’
shows upcrossings-before X a b N w < upcrossings-before X a b N’ w

(proof)

lemma upcrossings-before-pos-eq:

assumes a < b

shows upcrossings-before X a b N = upcrossings-before (An w. maz 0 (X n w —
a)) 0 (b—a) N

(proof)

definition upcrossings :: (nat = 'a = real) = real = real = 'a = ennreal where
upcrossings X a b = (Aw. (SUP N. ennreal (upcrossings-before X a b N w)))

lemma upcrossings-measurable:
assumes adapted-process M F 0 X a < b
shows upcrossings X a b € borel-measurable M

(proof)
end

lemma (in nat-finite-filtered-measure) integrable-upcrossings-before:
assumes adapted-process M F 0 X a < b
shows integrable M (Aw. real (upcrossings-before X a b N w))

(proof)

3.2 Doob’s Upcrossing Inequality

Doob’s upcrossing inequality provides a bound on the expected number
of upcrossings a submartingale completes before some point in time. The
proof follows the proof presented in the paper A Formalization of Doob’s
Martingale Convergence Theorems in mathlib [1] [2].

context nat-finite-filtered-measure
begin

theorem upcrossing-inequality:

fixes a b :: real and N :: nat

assumes submartingale M F 0 X

shows (b — a) * ([ w. real (upcrossings-before X a b N w) OM) < ([ w. maz 0
(X Nw — a) OM)
(proof)

theorem upcrossing-inequality-Sup:

fixes a b :: real

assumes submartingale M F 0 X

shows (b — a) = ([ Tw. upcrossings X a b w OM) < (SUP N. ([ tw. maz 0 (X
N w — a) OM))

14



(proof)

end

end

4 Doob’s First Martingale Convergence Theorem

theory Doob-Convergence
imports Upcrossing
begin

context nat-finite-filtered-measure
begin

Doob’s martingale convergence theorem states that, if we have a submartin-
gale where the supremum over the mean of the positive parts is finite, then
the limit process exists almost surely and is integrable. Furthermore, the
limit process is measurable with respect to the smallest o-algebra containing
all of the g-algebras in the filtration. The argumentation below is taken
mostly from [3].

theorem submartingale-convergence-AE:
fixes X :: nat = 'a = real
assumes submartingale M F 0 X
and An. (fw. maz 0 (X nw) dM) < C
obtains X;;,, where AF w in M. (An. X n w) —— X w
integrable M Xi;m
Xiim € borel-measurable (Fo)

(proof)

corollary supermartingale-convergence-AE:
fixes X :: nat = 'a = real
assumes supermartingale M F 0 X
and An. (fw. maz 0 (— X nw) OM) < C
obtains X;;,, where AF w in M. (An. X n w) —— Xy w
integrable M Xy;pm,
Xiim € borel-measurable (F o)

(proof)

corollary martingale-convergence-AE:
fixes X :: nat = 'a = real
assumes martingale M F 0 X
and A\n. (fw. |[X nw| OM) < C
obtains X;;,, where AF w in M. (An. X n w) —— Xjjm w
integrable M X ;m
Xiim € borel-measurable (F o)

(proof)
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corollary martingale-nonneg-convergence-AE:
fixes X :: nat = 'a = real
assumes martingale M F 0 X An. AEwin M. Xnw > 0
obtains X;;,, where AF w in M. (An. X n w) —— Xjjm w

integrable M Xy;m
Xiim € borel-measurable (F o)

(proof)

end

end
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