Doob's Upcrossing Inequality and Martingale Convergence Theorem

Ata Keskin

April 19, 2024

Abstract

In this entry, we formalize Doob's upcrossing inequality and subsequently prove Doob's first martingale convergence theorem. The upcrossing inequality is a fundamental result in the study of martingales. It provides a bound on the expected number of times a submartingale crosses a certain threshold within a given interval. Doob's martingale convergence theorem states that, if we have a submartingale where the supremum over the mean of the positive parts is finite, then the limit process exists almost surely and is integrable. Equivalent statements for martingales and supermartingales are also provided as corollaries.

The proofs provided are based mostly on the formalization done in the Lean mathematical library $[1,2]$.

Contents

1 Introduction 2
2 Stopping Times and Hitting Times 4
2.1 Stopping Time 4
2.2σ-algebra of a Stopping Time 6
2.3 Hitting Time 11
3 Doob's Upcrossing Inequality and Martingale Convergence Theorems 16
3.1 Upcrossings and Downcrossings 17
3.2 Doob's Upcrossing Inequality 27
4 Doob's First Martingale Convergence Theorem 33

1 Introduction

Martingales, in the context of stochastic processes, are encountered in various real-world scenarios where outcomes are influenced by past events but are not entirely predictable due to randomness or uncertainty. A martingale is a stochastic process in which the expected value of the next observation, given all past observations, is equal to the current observation.

One real-world example can be encountered in environmental monitoring, particularly in the study of river flow rates. Consider a hydrologist tasked with monitoring the flow rate of a river to understand its behavior over time. The flow rate of a river is influenced by various factors such as rainfall, snowmelt, groundwater levels, and human activities like dam releases or water diversions. These factors contribute to the variability and unpredictability of the flow rate. In this scenario, the flow rate of the river can be modeled as a martingale. The flow rate at any given time is influenced by past events but is not entirely predictable due to the random nature of rainfall and other factors.

One concept that comes up frequently in the study of martingales are upcrossings and downcrossings. Upcrossings and downcrossings are random variables representing when the value of a stochastic process leaves a fixed interval. Specifically, an upcrossing occurs when the process moves from below the lower bound of the interval to above the upper bound [4], indicating a potential upward trend or positive movement. Conversely, a downcrossing happens when the process crosses below the lower bound of the interval, suggesting a potential downward trend or negative movement. By analyzing the frequency and timing of these crossings, researchers can infer information about the underlying dynamics of the process and detect shifts in its behavior.

For instance, consider tracking the movement of a stock price over time. The process representing the stock's price might cross above a certain threshold (upcrossing) or below it (downcrossing) multiple times during a trading session. The number of such crossings provides insights into the volatility and the trend of the stock.

Doob's upcrossing inequality is a fundamental result in the study of martingales. It provides a bound on the expected number of upcrossings a submartingale undertakes before some point in time.

Let's consider our example concerning river flow rates again. In this context, upcrossings represent instances where the flow rate of the river rises above a certain threshold. For example, the flow rate might cross a threshold indicating flood risk. Downcrossings, on the other hand, represent instances where the flow rate decreases below a certain threshold. This could indicate drought conditions or low-flow periods.

Doob's first martingale convergence theorem gives sufficient conditions for a submartingale to converge to a random variable almost surely. The proof is based on controlling the rate of growth or fluctuations of the submartingale,
which is where the upcrossing inequality comes into play. By bounding these fluctuations, we can ensure that the submartingale does not exhibit wild behavior or grow too quickly, which is essential for proving convergence.

Formally, the convergence theorem states that, if $\left(M_{n}\right)_{n \geq 0}$ is a submartingale with $\sup _{n} \mathbb{E}\left[M_{n}^{+}\right]<\infty$, where M_{n}^{+}denotes the positive part of M_{n}, then the limit process $M_{\infty}:=\lim _{n} M_{n}$ exists almost surely and is integrable. Furthermore, the limit process is measurable with respect to the smallest σ-algebra containing all of the σ-algebras in the filtration. In our formalization, we also show equivalent convergence statements for martingales and supermartingales. The theorem can be used to easily show convergence results for simple scenarios.

Consider the following example: Imagine a casino game where a player bets on the outcome of a random coin toss, where the coin comes up heads with odds $p \in\left[0, \frac{1}{2}\right)$. Assume that the player goes bust when they have no money remaining. The player's wealth over time can be modeled as a supermartingale, where the value of their wealth at each time step depends only on the outcome of the previous coin toss. Doob's martingale convergence theorem assures us that the player will go bankrupt as the number of coin tosses increases.

The theorem that we have described here and formalized in the scope of our project is called Doob's first martingale convergence theorem. It is important to note that the convergence in this theorem is pointwise, not uniform, and is unrelated to convergence in mean square, or indeed in any L^{p} space. In order to obtain convergence in L^{1} (i.e., convergence in mean), one requires uniform integrability of the random variables. In this form, the theorem is called Doob's second martingale convergence theorem. Since uniform integrability is not yet formalized in Isabelle/HOL, we have decided to confine our formalization to the first convergence theorem only.

2 Stopping Times and Hitting Times

In this section we formalize stopping times and hitting times. A stopping time is a random variable that represents the time at which a certain event occurs within a stochastic process. A hitting time, also known as first passage time or first hitting time, is a specific type of stopping time that represents the first time a stochastic process reaches a particular state or crosses a certain threshold.
theory Stopping-Time
imports Martingales.Stochastic-Process
begin

2.1 Stopping Time

The formalization of stopping times here is simply a rewrite of the document HOL-Probability.Stopping-Time [5]. We have adapted the document to use the locales defined in our formalization of filtered measure spaces [6] [7]. This way, we can omit the partial formalization of filtrations in the original document. Furthermore, we can include the initial time index t_{0} that we introduced as well.

```
context linearly-filtered-measure
begin
```

- A stopping time is a measurable function from the measure space (possible events) into the time axis.

```
definition stopping-time :: (' \(a \Rightarrow\) ' \(b\) ) \(\Rightarrow\) bool where
    stopping-time \(T=\left(\left(T \in\right.\right.\) space \(\left.M \rightarrow\left\{t_{0} ..\right\}\right) \wedge\left(\forall t \geq t_{0}\right.\). Measurable.pred \((F t)\)
\((\lambda x . T x \leq t)))\)
lemma stopping-time-cong:
    assumes \(\bigwedge t x . t \geq t_{0} \Longrightarrow x \in \operatorname{space}(F t) \Longrightarrow T x=S x\)
    shows stopping-time \(T=\) stopping-time \(S\)
proof (cases \(T \in\) space \(M \rightarrow\left\{t_{0} ..\right\}\) )
    case True
    hence \(S \in\) space \(M \rightarrow\left\{t_{0} ..\right\}\) using assms space- \(F\) by force
    then show ?thesis unfolding stopping-time-def
            using assms arg-cong[where \(\left.f=\left(\lambda P . \forall t \geq t_{0} . P t\right)\right]\) measurable-cong[where
\(M=F\) - and \(f=\lambda x . T x \leq\) - and \(g=\lambda x . S x \leq-]\) True by metis
next
    case False
    hence \(S \notin\) space \(M \rightarrow\left\{t_{0} ..\right\}\) using assms space- \(F\) by force
    then show ?thesis unfolding stopping-time-def using False by blast
qed
lemma stopping-time-ge-zero:
    assumes stopping-time \(T \omega \in\) space \(M\)
```

```
    shows T\omega\geqt
    using assms unfolding stopping-time-def by auto
lemma stopping-timeD:
    assumes stopping-time Tt\geq\mp@subsup{t}{0}{}
    shows Measurable.pred (F t) ( }\lambdax.T\textrm{T}\leqt
    using assms unfolding stopping-time-def by simp
lemma stopping-timeI[intro?]:
    assumes }\bigwedgex.x\in space M\LongrightarrowTx\geq\mp@subsup{t}{0}{
        (\bigwedget.t\geqto \Longrightarrow Measurable.pred (F t) (\lambdax.T 
    shows stopping-time T
    using assms by (auto simp: stopping-time-def)
lemma stopping-time-measurable:
    assumes stopping-time T
    shows T\in borel-measurable M
proof (rule borel-measurableI-le)
    {
        fix t assume }\negt\geq\mp@subsup{t}{0}{
        hence {x\in space M.Tx\leqt}={} using assms dual-order.trans[of - t to ]
unfolding stopping-time-def by fastforce
    hence {x\in space M.Tx\leqt}\in sets M by (metis sets.empty-sets)
    }
    moreover
    {
    fix t assume asm: t\geq t0
    hence {x\in space M.Tx\leqt}\in sets M using stopping-timeD[OF assms asm]
sets-F-subset unfolding Measurable.pred-def space-F[OF asm] by blast
    }
    ultimately show {x\in space M.Tx\leqt}\in sets M for t by blast
qed
lemma stopping-time-const:
    assumes }t\geq\mp@subsup{t}{0}{
    shows stopping-time ( }\lambdax.t)\mathrm{ using assms by (auto simp: stopping-time-def)
lemma stopping-time-min:
    assumes stopping-time T stopping-time S
    shows stopping-time ( }\lambdax.\operatorname{min}(Tx)(Sx)
    using assms by (auto simp: stopping-time-def min-le-iff-disj intro!: pred-intros-logic)
lemma stopping-time-max:
    assumes stopping-time T stopping-time S
    shows stopping-time ( }\lambdax.\operatorname{max}(Tx)(Sx)
    using assms by (auto simp: stopping-time-def intro!: pred-intros-logic max.coboundedI1)
```


$2.2 \quad \sigma$-algebra of a Stopping Time

Moving on, we define the σ-algebra associated with a stopping time T. It contains all the information up to time T, the same way $F t$ contains all the information up to time t.

```
definition pre-sigma :: (' }a>>'b)=>'a measure where
    pre-sigma T = sigma (space M) {A\in sets M. \forallt\geq\mp@subsup{t}{0}{}.{\omega\inA.T \omega
(Ft)}
```

lemma measure-pre-sigma $[$ simp $]$: emeasure $($ pre-sigma $T)=(\lambda-$. 0) by $($ simp add: pre-sigma-def emeasure-sigma)

```
lemma sigma-algebra-pre-sigma:
    assumes stopping-time T
    shows sigma-algebra (space M) {A\in sets M. }\forallt\geq\mp@subsup{t}{0}{}.{\omega\inA.T\omega\leqt}\in sets (
t)}
proof -
    let ?\Sigma = {A\in sets M. }\forallt\geq\mp@subsup{t}{0}{}.{\omega\inA.T\omega\leqt}\in sets (F t)
    {
        fix }A\mathrm{ assume asm: A & ? 
        {
            fix t assume asm':t\geq\mp@subsup{t}{0}{}
            hence {\omega\inA.T \omega\leqt}\in sets (F t) using asm by blast
            then have {\omega\in space (Ft).T \omega\leqt} - {\omega\inA.T\omega\leqt}\in sets (F t)
using assms[THEN stopping-timeD, OF asm] by auto
            also have {\omega\in space (Ft).T\omega\leqt}-{\omega\inA.T\omega\leqt}={\omega\in space M
- A.T T < t} using space-F[OF asm] by blast
            finally have {\omega\in(space M) - A.T\omega\leqt}\in sets (F t).
        }
        hence space M - A\in?\Sigma using asm by blast
    }
    moreover
    {
        fix A :: nat =>' 'a set assume asm: range A\subseteq?\Sigma
        {
            fix t assume }t\geq\mp@subsup{t}{0}{
            then have ( }\cupi.{\omega\inA i.T\omega\leqt})\in sets (Ft) using asm by aut
            also have (\bigcupi.{\omega\inA i.T T < <t}) ={\omega\in\bigcup(A'UNIV).T \omega\leqt} by
auto
            finally have {\omega\in\bigcup(range A).T\omega\leqt}\in\operatorname{sets}(Ft).
        }
        hence}\bigcup\(\mathrm{ range A) }\in\mathrm{ ? }\Sigma\mathrm{ using asm by blast
    }
    ultimately show ?thesis unfolding sigma-algebra-iff2 by (auto intro!: sets.sets-into-space[THEN
PowI, THEN subsetI])
qed
lemma space-pre-sigma[simp]: space (pre-sigma T) = space M unfolding pre-sigma-def
by (intro space-measure-of-conv)
```

```
lemma sets-pre-sigma:
    assumes stopping-time T
    shows sets (pre-sigma T) ={A\in sets M. \forallt\geqt . . {\omega\inA.T \omega\leqt}\inFt}
    unfolding pre-sigma-def using sigma-algebra.sets-measure-of-eq[OF sigma-algebra-pre-sigma,
OF assms] by blast
lemma sets-pre-sigmaI:
    assumes stopping-time T
        and }\t.t\geq\mp@subsup{t}{0}{}\Longrightarrow{\omega\inA.T\omega\leqt}\inF
        shows A pre-sigma T
proof (cases \existst\geq\mp@subsup{t}{0}{}.\forall\mp@subsup{t}{}{\prime}.\mp@subsup{t}{}{\prime}\leqt)
    case True
    then obtain t where t\geq\mp@subsup{t}{0}{}{\omega\inA.T\omega\leqt}=A by blast
    hence }A\inM\mathrm{ using assms(2)[of t] sets-F-subset[of t] by fastforce
    thus ?thesis using assms(2) unfolding sets-pre-sigma[OF assms(1)] by blast
next
    case False
```



```
    obtain D :: 'b set where D: countable D \X. open X\LongrightarrowX\not={}\LongrightarrowD\capX
# {} by (metis countable-dense-setE disjoint-iff)
    have **: D\cap{t<...} = {} if t\geq\mp@subsup{t}{0}{}\mathrm{ for t using * that by (intro D(2)) auto}\mp@code{~}\mathrm{ (2)}
    {
        fix }
        obtain t where t: t\geq\mp@subsup{t}{0}{}T\omega\leqt using linorder-linear by auto
```



```
        moreover have T\omega\leq t' using calculation by fastforce
        ultimately have }\existst.\exists\mp@subsup{t}{}{\prime}\inD\cap{t<..}\cap{\mp@subsup{t}{0}{}..}.T T\omega\leq\mp@subsup{t}{}{\prime}\mathrm{ by blast
    }
    hence ( }\bigcup\mp@subsup{t}{}{\prime}\in(\bigcupt.D\cap{t<..}\cap{\mp@subsup{t}{0}{}..}).{\omega\inA.T T | \leq t'})=A by fas
    moreover have (\bigcup\mp@subsup{t}{}{\prime}\in(\bigcupt.D\cap{t<..} \cap{\mp@subsup{t}{0}{}..}). {\omega\inA.T\omega\leq\mp@subsup{t}{}{\prime}})\inM
using D assms(2) sets-F-subset by (intro sets.countable-UN',}\mathrm{ , fastforce, fast)
    ultimately have }A\inM\mathrm{ by argo
    thus ?thesis using assms(2) unfolding sets-pre-sigma[OF assms(1)] by blast
qed
lemma pred-pre-sigmaI:
    assumes stopping-time T
    shows (\bigwedget. t \geq to \Longrightarrow Measurable.pred (F t) (\lambda\omega. P\omega^T\omega
Measurable.pred (pre-sigma T) P
    unfolding pred-def space-pre-sigma using assms by (auto intro: sets-pre-sigmaI[OF
assms(1)])
lemma sets-pre-sigmaD:
    assumes stopping-time TA\in pre-sigma Tt\geqt0
    shows {\omega\inA.T\omega\leqt}\in sets (F t)
    using assms sets-pre-sigma by auto
lemma borel-measurable-stopping-time-pre-sigma:
```

```
    assumes stopping-time T
    shows T\in borel-measurable (pre-sigma T)
proof (intro borel-measurableI-le sets-pre-sigmaI[OF assms])
    fix t t' assume asm: t\geqto
    {
        assume }\neg\mp@subsup{t}{}{\prime}\geq\mp@subsup{t}{0}{
        hence {\omega\in{x\in space (pre-sigma T).Tx\leqt'}.T }\omega\leqt}={}\mathrm{ using assms
dual-order.trans[of-t't}\mp@subsup{t}{0}{}]\mathrm{ unfolding stopping-time-def by fastforce
    hence {\omega\in{x\in space (pre-sigma T).Tx\leqt'}.T\omega\leqt}\in sets (Ft) by
(metis sets.empty-sets)
    }
    moreover
    {
        assume asm': t'\geqto
        have {\omega\in\operatorname{space}(F(\operatorname{min}\mp@subsup{t}{}{\prime}t)).T\omega\leq\operatorname{min}\mp@subsup{t}{}{\prime}t}\in\operatorname{sets}(F(min t't))
                using assms asm asm' unfolding pred-def[symmetric] by (intro stop-
ping-timeD) auto
    also have ...\subseteq sets (F t)
        using assms asm asm' by (intro sets-F-mono) auto
    finally have {\omega\in{x\in space (pre-sigma T).Tx\leqt'}.T\omega\leqt}\in sets (F t)
        using asm asm' by simp
    }
    ultimately show {\omega\in{x\in space (pre-sigma T).Tx\leqt'}.T\omega\leqt}\in sets
(F t) by blast
qed
lemma mono-pre-sigma:
    assumes stopping-time T stopping-time S
        and \x. x\in space M\LongrightarrowTx\leqSx
    shows pre-sigma T\subseteq pre-sigma S
proof
    fix }A\mathrm{ assume }A\in\mathrm{ pre-sigma T
    hence asm:A \in sets M t\geq\mp@subsup{t}{0}{}\Longrightarrow{\omega\inA.T\omega\leqt}\in sets (F t) for t using
assms sets-pre-sigma by blast+
    {
        fix t assume asm':t\geqto
        then have A\subseteq space M using sets.sets-into-space asm by blast
        have {\omega\inA.T \omega\leqt}\cap{\omega\in\operatorname{space}(Ft).S\omega\leqt}\in sets (Ft)
            using asm asm' stopping-timeD[OF assms(2)] by (auto simp: pred-def)
            also have {\omega\inA.T\omega\leqt}\cap{\omega\inspace (Ft).S\omega\leqt}={\omega\inA.S\omega\leqt}
            using sets.sets-into-space[OF asm(1)] assms(3) order-trans asm' by fastforce
        finally have {\omega\inA.S\omega\leqt}\in sets (Ft) by simp
    }
    thus A \in pre-sigma S by (intro sets-pre-sigmaI assms asm) blast
qed
lemma stopping-time-measurable-le:
    assumes stopping-time Ts \geqto t\geqs
    shows Measurable.pred (Ft) ( }\lambda\omega.T\omega\leqs
```

using assms stopping-time $D[$ of $T]$ sets-F-mono $[o f-t]$ by (auto simp: pred-def)
lemma stopping-time-measurable-less:
assumes stopping-time $T s \geq t_{0} t \geq s$
shows Measurable.pred $(F t)(\lambda \omega . T \omega<s)$
proof -
have Measurable.pred ($F t$) $(\lambda \omega . T \omega<t)$ if asm: stopping-time $T t \geq t_{0}$ for $T t$ proof -
obtain $D::$ 'b set where D : countable $D \bigwedge X$. open $X \Longrightarrow X \neq\{ \} \Longrightarrow D \cap X$
$\neq\{ \}$ by (metis countable-dense-setE disjoint-iff)
show ?thesis
proof cases
assume $*: \forall t^{\prime} \in\left\{t_{0} . .<t\right\} .\left\{t^{\prime}<. .<t\right\} \neq\{ \}$
hence $* *: D \cap\left\{t^{\prime}<. .<t\right\} \neq\{ \}$ if $t^{\prime} \in\left\{t_{0} . .<t\right\}$ for t^{\prime} using that by (intro D(2)) fastforce +
show ?thesis
proof (rule measurable-cong[THEN iffD2])
show $T \omega<t \longleftrightarrow\left(\exists r \in D \cap\left\{t_{0} . .<t\right\}\right.$. $\left.T \omega \leq r\right)$ if $\omega \in$ space $(F t)$ for ω
using $* *[o f T \omega]$ that less-imp-le stopping-time-ge-zero asm by fastforce
show Measurable.pred (Ft) $\left(\lambda w . \exists r \in D \cap\left\{t_{0} . .<t\right\} . T w \leq r\right)$
using stopping-time-measurable-le asm D by (intro measurable-pred-countable)
auto
qed
next
assume $\neg\left(\forall t^{\prime} \in\left\{t_{0} . .<t\right\} .\left\{t^{\prime}<. .<t\right\} \neq\{ \}\right)$
then obtain t^{\prime} where $t^{\prime}: t^{\prime} \in\left\{t_{0} . .<t\right\}\left\{t^{\prime}<. .<t\right\}=\{ \}$ by blast
show ?thesis
proof (rule measurable-cong[THEN iffD2])
show $T \omega<t \longleftrightarrow T \omega \leq t^{\prime}$ for ω using t^{\prime} by (metis atLeastLessThan-iff emptyE greaterThanLessThan-iff linorder-not-less order.strict-trans1)
show Measurable.pred $(F t)\left(\lambda w . T w \leq t^{\prime}\right)$ using t^{\prime} by (intro stop-ping-time-measurable-le[OF asm(1)]) auto
qed
qed
qed
thus ?thesis
using assms sets-F-mono $[o f-t]$ by (auto simp add: pred-def)
qed
lemma stopping-time-measurable-ge:
assumes stopping-time $T s \geq t_{0} t \geq s$
shows Measurable.pred (Ft) $(\lambda \omega . T \omega \geq s)$
by (auto simp: not-less[symmetric] intro: stopping-time-measurable-less[OF assms]
Measurable.pred-intros-logic)
lemma stopping-time-measurable-gr:
assumes stopping-time $T s \geq t_{0} t \geq s$
shows Measurable.pred $(F t)(\lambda x . s<T x)$

```
    by (auto simp add: not-le[symmetric] intro: stopping-time-measurable-le[OF assms]
Measurable.pred-intros-logic)
lemma stopping-time-measurable-eq:
    assumes stopping-time Ts \geqto t \geqs
    shows Measurable.pred (Ft) (\lambda\omega.T\omega=s)
    unfolding eq-iff using stopping-time-measurable-le[OF assms] stopping-time-measurable-ge[OF
assms]
    by (intro pred-intros-logic)
lemma stopping-time-less-stopping-time
    assumes stopping-time T stopping-time S
    shows Measurable.pred (pre-sigma T) (\lambda\omega.T \omega<S \omega)
proof (rule pred-pre-sigmaI)
    fix t assume asm: t\geq\mp@subsup{t}{0}{}
    obtain D :: 'b set where D: countable D and semidense-D: }\xy.x<y
(\existsb\inD. x \leq b ^ b<y)
    using countable-separating-set-linorder2 by auto
    show Measurable.pred (Ft) (\lambda\omega.T \omega<S\omega^T\omega\leqt)
    proof (rule measurable-cong[THEN iffD2])
        let ?f = \lambda\omega. if T \omega= t then }\negS\omega\leqt else \existss\inD\cap{\mp@subsup{t}{0}{}..t}.T T\omega\leqs\wedge\neg(
\omega
    {
            fix }\omega\mathrm{ assume }\omega\in\mathrm{ space (Ft)T 
            hence to \leqT\omegaT\omega< min t (S \omega) using asm stopping-time-ge-zero[OF
assms(1)] by auto
```



```
semidense-D order-trans by blast
            hence }\existss\inD\cap{\mp@subsup{t}{0}{}..t}.T\omega\leqs^s<S\omega\mathrm{ by auto
    }
    thus (T\omega<S\omega^T\omega\leqt)=?f \omega if \omega\in space (Ft) for }\omega\mathrm{ using that by
force
            show Measurable.pred (F t) ?f
            using assms asm D
                by (intro pred-intros-logic measurable-If measurable-pred-countable count-
able-Collect
                    stopping-time-measurable-le predE stopping-time-measurable-eq) auto
    qed
qed (intro assms)
end
lemma (in enat-filtered-measure) stopping-time-SUP-enat:
    fixes T :: nat => ('a m enat)
    shows (\bigwedgei.stopping-time (Ti))\Longrightarrow stopping-time (SUP i. Ti)
    unfolding stopping-time-def SUP-apply SUP-le-iff by (auto intro!: pred-intros-countable)
lemma (in enat-filtered-measure) stopping-time-Inf-enat:
    assumes \i. Measurable.pred (Fi) (P i)
```

```
    shows stopping-time ( \lambda\omega. Inf {i.P i \omega})
proof -
    {
        fix t :: enat assume asm: }t\not=
        moreover
        {
            fix i\omega assume Inf {i.Pi\omega}\leqt
            moreover have }a<eSucb\longleftrightarrow(a\leqb\wedgea\not=\infty) for ab by (cases a) aut
            ultimately have ( }\existsi\leqt.Pi\omega)\mathrm{ using asm unfolding Inf-le-iff by (cases t)
(auto elim!: allE[of - eSuc t])
    }
    ultimately have *: \bigwedge\omega. Inf {i.P i\omega}\leqt\longleftrightarrow(\existsi\in{..t}.P i\omega) by (auto
intro!: Inf-lower2)
            have Measurable.pred (F t) ( }\lambda\omega\mathrm{ . Inf {i. P i w} }\leqt)\mathrm{ unfolding * using
sets-F-mono assms by (intro pred-intros-countable-bounded) (auto simp: pred-def)
    }
    moreover have Measurable.pred (Ft) (\lambda\omega. Inf {i.Pi\omega}\leqt) if t=\infty for t
using that by simp
    ultimately show ?thesis by (blast intro: stopping-timeI[OF iO-lb])
qed
lemma (in nat-filtered-measure) stopping-time-Inf-nat:
    assumes \i. Measurable.pred (Fi) (P i)
            \i\omega.\omega\in space M\Longrightarrow\existsn.P n \omega
    shows stopping-time ( }\lambda\omega\mathrm{ . Inf {i. P i }\omega}
proof (rule stopping-time-cong[THEN iffD2])
    show stopping-time ( }\lambdax.LEAST n. P n x)
    proof
    fix }
    have ((LEAST n. P n \omega) \leqt)=(\existsi\leqt.Pi\omega) if }\omega\in\mathrm{ space M for }\omega\mathrm{ by (rule
LeastI2-wellorder-ex[OF assms(2)[OF that]]) auto
    moreover have Measurable.pred (Ft) ( }\lambdaw.\existsi\in{..t}. Piw) using sets-F-mono[of
- t] assms by (intro pred-intros-countable-bounded) (auto simp: pred-def)
    ultimately show Measurable.pred (F t) (\lambda\omega. (LEAST n.P n \omega) \leqt) by (subst
measurable-cong[of F t]) auto
    qed (simp)
qed (simp add: Inf-nat-def)
definition stopped-value :: (' b > ' }a>\mp@subsup{|}{}{\prime}c)=>('a=>'b)=>('a=>'c) wher
    stopped-value X \tau \omega = X (\tau\omega) \omega
```


2.3 Hitting Time

Given a stochastic process X and a borel set A, hitting-time $X A s t$ is the first time X is in A after time s and before time t. If X does not hit A after time s and before t then the hitting time is simply t. The definition presented here coincides with the definition of hitting times in mathlib [1].

```
context linearly-filtered-measure
```


begin

definition hitting-time :: $\left(' b \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} c\right) \Rightarrow{ }^{\prime} c$ set $\Rightarrow{ }^{\prime} b \Rightarrow{ }^{\prime} b \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)$ where hitting-time $X A$ st $=\left(\lambda \omega\right.$. if $\exists i \in\{s . . t\} \cap\left\{t_{0} ..\right\} . X i \omega \in A$ then Inf $(\{s . . t\} \cap$ $\left.\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}\right)$ else $\max t_{0} t$)
lemma hitting-time-def ${ }^{\prime}$:
hitting-time X A st $=\left(\lambda \omega\right.$. Inf (insert $\left(\max _{0} t\right)\left(\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in\right.$ A\})))
proof cases
assume asm: $t_{0} \leq s \wedge s \leq t$
hence $\{s . . t\} \cap\left\{t_{0} ..\right\}=\{s . . t\}$ by simp
\{
fix ω
assume $*:\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\} \neq\{ \}$
then obtain i where $i \in\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}$ by blast
hence $\operatorname{Inf}\left(\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}\right) \leq t$ by (intro cInf-lower $[$ of i, THEN order-trans]) auto
hence Inf (insert $\left.\left(\max _{t_{0}} t\right)\left(\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}\right)\right)=\operatorname{Inf}(\{s . . t\} \cap$ $\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}$) using asm $*$ inf-absorb2 by (subst cInf-insert-If) force+ also have $\ldots=$ hitting-time X A st ω using $*$ unfolding hitting-time-def by auto
finally have hitting-time X A st $\omega=\operatorname{Inf}\left(\right.$ insert $\left(\max t_{0} t\right)\left(\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\right.$ $\{i . X i \omega \in A\})$) by argo
\}
moreover
\{
fix ω
assume $\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}=\{ \}$
hence hitting-time X A st $\omega=\operatorname{Inf}\left(\right.$ insert $\left(\max t_{0} t\right)\left(\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X\right.$ $i \omega \in A\})$) unfolding hitting-time-def by auto
\}
ultimately show ?thesis by fast
next
assume $\neg\left(t_{0} \leq s \wedge s \leq t\right)$
moreover
\{
assume asm: $s<t_{0} t \geq t_{0}$
hence $\{s . . t\} \cap\left\{t_{0} ..\right\}=\left\{t_{0} . . t\right\}$ by simp \{
fix ω
assume $*:\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\} \neq\{ \}$
then obtain i where $i \in\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}$ by blast
hence Inf $\left(\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}\right) \leq t$ by (intro cInf-lower[of i,
THEN order-trans]) auto
hence $\operatorname{Inf}\left(\right.$ insert $\left.\left(\max t_{0} t\right)\left(\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}\right)\right)=\operatorname{Inf}(\{s . . t\}$ $\cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}$) using asm * inf-absorb2 by (subst cInf-insert-If) force +
also have $\ldots=$ hitting-time $X A$ st ω using * unfolding hitting-time-def
by auto
finally have hitting-time X A st $\omega=\operatorname{Inf}\left(\right.$ insert $\left(\max t_{0} t\right)\left(\{s . . t\} \cap\left\{t_{0} ..\right\}\right.$
$\cap\{i . X i \omega \in A\}))$ by argo
\}
moreover
\{
fix ω
assume $\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}=\{ \}$
hence hitting-time X A st $\omega=\operatorname{Inf}\left(\right.$ insert $\left(\max t_{0} t\right)\left(\{s . . t\} \cap\left\{t_{0} ..\right\} \cap\{i\right.$.
$X i \omega \in A\})$) unfolding hitting-time-def by auto
\}
ultimately have ?thesis by fast
\}
moreover have ?thesis if $s<t_{0} t<t_{0}$ using that unfolding hitting-time-def by auto
moreover have ?thesis if $s>t$ using that unfolding hitting-time-def by auto ultimately show ?thesis by fastforce
qed

- The following lemma provides a sufficient condition for an injective function to preserve a hitting time.
lemma hitting-time-inj-on:
assumes inj-on $f S \bigwedge \omega t . t \geq t_{0} \Longrightarrow X t \omega \in S A \subseteq S$
shows hitting-time $X A=$ hitting-time $(\lambda t \omega . f(X t \omega))\left(f^{\prime} A\right)$
proof -
have $X t \omega \in A \longleftrightarrow f(X t \omega) \in f^{\prime} A$ if $t \geq t_{0}$ for $t \omega$ using assms that inj-on-image-mem-iff by meson
hence $\left\{t_{0} ..\right\} \cap\{i . X i \omega \in A\}=\left\{t_{0} ..\right\} \cap\left\{i . f(X i \omega) \in f^{\prime} A\right\}$ for ω by blast thus ?thesis unfolding hitting-time-def' Int-assoc by presburger
qed
lemma hitting-time-translate:
fixes $c::$ - :: ab-group-add
shows hitting-time $X A=$ hitting-time ($\lambda n \omega$. $X n \omega+c)(((+) c)$ ' $A)$
by (subst hitting-time-inj-on[OF inj-on-add, of - UNIV]) (simp add: add.commute)+
lemma hitting-time-le:
assumes $t \geq t_{0}$
shows hitting-time X A s $t \omega \leq t$
unfolding hitting-time-def' using assms
by (intro cInf-lower[of max $t_{0} t$, THEN order-trans]) auto
lemma hitting-time-ge:
assumes $t \geq t_{0} s \leq t$
shows $s \leq$ hitting-time $X A$ s $t \omega$
unfolding hitting-time-def' using assms
by (intro le-cInf-iff[THEN iffD2]) auto

```
lemma hitting-time-mono:
    assumes }t\geq\mp@subsup{t}{0}{}s\leq\mp@subsup{s}{}{\prime}t\leq\mp@subsup{t}{}{\prime
    shows hitting-time X A st \omega\leqhitting-time X A s' t' \omega
    unfolding hitting-time-def' using assms by (fastforce intro!: cInf-mono)
```

end
context nat-filtered-measure
begin

- Hitting times are stopping times for adapted processes.

```
lemma stopping-time-hitting-time:
    assumes adapted-process M F O X A \in borel
    shows stopping-time (hitting-time X A st)
proof -
    interpret adapted-process M F 0 X by (rule assms)
    have insert t ({s..t}\cap{i.Xi\omega\inA})={i.i=t\veei\in({s..t}\cap{i.Xi\omega
A})} for }\omega\mathrm{ by blast
    hence hitting-time X A st=(\lambda\omega. Inf {i.i=t\veei\in({s..t}\cap{i.Xi\omega\inA})})
unfolding hitting-time-def' by simp
    thus ?thesis using assms by (auto intro: stopping-time-Inf-nat)
qed
```

lemma stopping-time-hitting-time':
assumes adapted-process MF0XAGborel stopping-time s $\wedge \omega$. s $\omega \leq t$
shows stopping-time ($\lambda \omega$. hitting-time $X A(s \omega) t \omega)$
proof -
interpret adapted-process M F 0 X by (rule assms)
\{
fix n
have $s \omega \leq$ hitting-time $X A(s \omega) t \omega$ if $s \omega>n$ for ω using hitting-time-ge $[O F$

- $\operatorname{assms}(4)]$ by simp
hence $(\bigcup i \in\{n<..\} .\{\omega . s \omega=i\} \cap\{\omega$. hitting-time X A it $\omega \leq n\})=\{ \}$ by
fastforce
hence $*$: $(\lambda \omega$. hitting-time $X A(s \omega) t \omega \leq n)=(\lambda \omega . \exists i \leq n . s \omega=i \wedge$
hitting-time $X A$ it $\omega \leq n$) by force
have Measurable.pred $(F n)(\lambda \omega . s \omega=i \wedge$ hitting-time $X A i t \omega \leq n)$ if $i \leq$
n for i
proof -
have Measurable.pred ($F i$) ($\lambda \omega . s \omega=i$) using stopping-time-measurable-eq
assms by blast
hence Measurable.pred $(F n)(\lambda \omega . s \omega=i)$ by (meson less-eq-nat.simps
measurable-from-subalg subalgebra-F that)
moreover have Measurable.pred $(F n)(\lambda \omega$. hitting-time X A it $\omega \leq n)$
using stopping-time $D[$ OF stopping-time-hitting-time, OF $\operatorname{assms}(1,2)]$ by blast
ultimately show ?thesis by auto
qed
hence Measurable.pred $(F n)(\lambda \omega . \exists i \leq n . s \omega=i \wedge$ hitting-time X A it $\omega \leq$ $n)$ by (intro pred-intros-countable) auto
hence Measurable.pred (Fn) ($\lambda \omega$. hitting-time $X A(s \omega) t \omega \leq n)$ using $*$ by argo \}
thus ?thesis by (intro stopping-timeI) auto
qed
- If X hits A at time $j \in\{s . . t\}$, then the stopped value of X at the hitting time of A in the interval $\{s . . t\}$ is an element of A.
lemma stopped-value-hitting-time-mem:
assumes $j \in\{s . . t\} X j \omega \in A$
shows stopped-value X (hitting-time $X A s t) \omega \in A$
proof -
have $\exists i \in\{s . . t\} \cap\{0 .$.$\} . X i \omega \in A$ using assms by blast
moreover have $\operatorname{Inf}(\{s . . t\} \cap\{i . X i \omega \in A\}) \in\{s . . t\} \cap\{i . X i \omega \in A\}$ using assms by (blast intro!: Inf-nat-def1)
ultimately show ?thesis unfolding hitting-time-def stopped-value-def by simp qed
lemma hitting-time-le-iff:
assumes $i<t$
shows hitting-time $X A$ st $\omega \leq i \longleftrightarrow(\exists j \in\{s . . i\} . X j \omega \in A)$ (is ?lhs =?rhs) proof
assume ?lhs
moreover have hitting-time $X A s t \omega \in$ insert $t(\{s . . t\} \cap\{i . X i \omega \in A\})$
by (metis hitting-time-def' Int-atLeastAtMostR2 inf-sup-aci(1) insertI1 max-0L wellorder-InfI)
ultimately have hitting-time $X A s t \omega \in\{s . . i\} \cap\{i . X i \omega \in A\}$ using assms by force
thus ?rhs by blast
next
assume ?rhs
then obtain j where $j: j \in\{s . . i\} X j \omega \in A$ by blast
hence hitting-time X A s $t \omega \leq j$ unfolding hitting-time-def' using assms by (auto intro: cInf-lower)
thus? ?lhs using j by simp
qed
lemma hitting-time-less-iff:
assumes $i \leq t$
shows hitting-time $X A s t \omega<i \longleftrightarrow(\exists j \in\{s . .<i\} . X j \omega \in A)$ (is ?lhs $=$?rhs)
proof
assume ?lhs
moreover have hitting-time $X A s t \omega \in$ insert $t(\{s . . t\} \cap\{i . X i \omega \in A\})$ by (metis hitting-time-def' Int-atLeastAtMostR2 inf-sup-aci(1) insertI1 max-0L wellorder-InfI)
ultimately have hitting-time X A st $\omega \in\{s . .<i\} \cap\{i . X i \omega \in A\}$ using assms by force
thus ?rhs by blast
next
assume ?rhs
then obtain j where $j: j \in\{s . .<i\} X j \omega \in A$ by blast
hence hitting-time $X A$ st $\omega \leq j$ unfolding hitting-time-def' using assms by (auto intro: cInf-lower)
thus ?lhs using j by simp
qed
— If X already hits A in the interval $\{s . . t\}$, then hitting-time $X A s t=$ hitting-time $X A s t^{\prime}$ for $t \leq t^{\prime}$.
lemma hitting-time-eq-hitting-time:
assumes $t \leq t^{\prime} j \in\{s . . t\} X j \omega \in A$
shows hitting-time $X A s t \omega=$ hitting-time $X A s t^{\prime} \omega$ (is?lhs $=$? rhs)
proof -
have hitting-time X A st $\omega \in\{$ s..t' $\}$ using hitting-time-le[THEN order-trans, of $\left.t t^{\prime} X A s\right]$ hitting-time-ge $[$ of $t s X A]$ assms by auto
moreover have stopped-value X (hitting-time $X A s t$) $\omega \in A$ by (blast intro: stopped-value-hitting-time-mem assms)
ultimately have hitting-time $X A s t^{\prime} \omega \leq$ hitting-time X A st ω by (fastforce simp add: hitting-time-def'[where $\left.t=t^{\prime}\right]$ stopped-value-def intro!: cInf-lower)
thus ?thesis by (blast intro: le-antisym hitting-time-mono[OF - order-refl assms(1)]) qed
end
end

3 Doob's Upcrossing Inequality and Martingale Convergence Theorems

In this section we formalize upcrossings and downcrossings. Following this, we prove Doob's upcrossing inequality and first martingale convergence theorem.
theory Upcrossing
imports Martingales.Martingale Stopping-Time
begin
lemma real-embedding-borel-measurable: real \in borel-measurable borel by (auto intro: borel-measurable-continuous-onI)
lemma limsup-lower-bound:

```
    fixes \(u\) :: nat \(\Rightarrow\) ereal
    assumes limsup \(u>l\)
    shows \(\exists N>k\). \(u N>l\)
proof -
    have limsup \(u=-\liminf (\lambda n .-u n)\) using liminf-ereal-cminus \([\) of \(0 u]\) by simp
    hence \(\liminf (\lambda n .-u n)<-l\) using assms ereal-less-uminus-reorder by
presburger
    hence \(\exists N>k\). \(-u N<-l\) using liminf-upper-bound by blast
    thus ?thesis using ereal-less-uminus-reorder by simp
qed
lemma ereal-abs-max-min: \(|c|=\max 0 c-\min 0 c\) for \(c::\) ereal
    by (cases \(c \geq 0\) ) auto
```


3.1 Upcrossings and Downcrossings

Given a stochastic process X, real values a and b, and some point in time N, we would like to define a notion of "upcrossings" of X across the band $\{a . . b\}$ which counts the number of times any realization of X crosses from below a to above b before time N. To make this heuristic rigorous, we inductively define the following hitting times.

```
context nat-filtered-measure
begin
context
    fixes }X:: nat => 'a m real
    and a b :: real
    and N :: nat
begin
```

primrec upcrossing :: nat $\Rightarrow{ }^{\prime} a \Rightarrow$ nat where
upcrossing $0=(\lambda \omega .0) \mid$
upcrossing (Suc n) $=(\lambda \omega$. hitting-time $X\{b .$.$\} (hitting-time X\{. . a\}$ (upcrossing
$n \omega) N \omega) N \omega)$
definition downcrossing :: nat $\Rightarrow{ }^{\prime} a \Rightarrow$ nat where
downcrossing $n=(\lambda \omega$. hitting-time $X\{. . a\}($ upcrossing $n \omega) N \omega)$
lemma upcrossing-simps:
upcrossing $0=(\lambda \omega .0)$
upcrossing $($ Suc $n)=(\lambda \omega$. hitting-time $X\{b .\}.($ downcrossing $n \omega) N \omega)$
by (auto simp add: downcrossing-def)
lemma downcrossing-simps:
downcrossing $0=$ hitting-time $X\{$..a\} $0 N$
downcrossing $n=(\lambda \omega$. hitting-time $X\{. . a\}$ (upcrossing $n \omega) N \omega$)
by (auto simp add: downcrossing-def)
declare upcrossing.simps[simp del]
lemma upcrossing-le: upcrossing $n \omega \leq N$
by (cases n) (auto simp add: upcrossing-simps hitting-time-le)
lemma downcrossing-le: downcrossing $n \omega \leq N$
by (cases n) (auto simp add: downcrossing-simps hitting-time-le)
lemma upcrossing-le-downcrossing: upcrossing $n \omega \leq$ downcrossing $n \omega$
unfolding downcrossing-simps by (auto intro: hitting-time-ge upcrossing-le)
lemma downcrossing-le-upcrossing-Suc: downcrossing $n \omega \leq$ upcrossing (Suc n) ω unfolding upcrossing-simps by (auto intro: hitting-time-ge downcrossing-le)
lemma upcrossing-mono:
assumes $n \leq m$
shows upcrossing $n \omega \leq$ upcrossing $m \omega$
using order-trans[OF upcrossing-le-downcrossing downcrossing-le-upcrossing-Suc] assms
by (rule lift-Suc-mono-le)
lemma downcrossing-mono:
assumes $n \leq m$
shows downcrossing $n \omega \leq$ downcrossing $m \omega$
using order-trans[OF downcrossing-le-upcrossing-Suc upcrossing-le-downcrossing] assms
by (rule lift-Suc-mono-le)

- The following lemmas help us make statements about when an upcrossing (resp. downcrossing) occurs, and the value that the process takes at that instant.

```
lemma stopped-value-upcrossing:
    assumes upcrossing (Suc n) \omega\not=N
    shows stopped-value X (upcrossing (Suc n)) \omega\geqb
proof -
by presburger
    have }\existsj\in{downcrossing n \omega..upcrossing (Suc n) \omega}. X j\omega\in{b..
(meson atLeastatMost-subset-iff le-refl subsetD upcrossing-le)
ing-simps stopped-value-def by blast
qed
lemma stopped-value-downcrossing:
    assumes downcrossing n \omega\not=N
    shows stopped-value X (downcrossing n) }\omega\leq
proof -
```

 have \(*\) : upcrossing (Suc n) \(\omega<N\) using le-neq-implies-less upcrossing-le assms
 using hitting-time-le-iff[THEN iffD1, OF *] upcrossing-simps by fastforce
 then obtain \(j\) where \(j: j \in\{\) downcrossing \(n \omega . . N\} X j \omega \in\{b .\).\(\} using *\) by
 thus ? thesis using stopped-value-hitting-time-mem \([\) of \(j-X]\) unfolding upcross-
 have $*$: downcrossing $n \omega<N$ using le-neq-implies-less downcrossing-le assms by presburger
have $\exists j \in\{$ upcrossing $n \omega$..downcrossing $n \omega\} . X j \omega \in\{. . a\}$
using hitting-time-le-iff[THEN iffD1, OF *] downcrossing-simps by fastforce
then obtain j where $j: j \in\{u p c r o s s i n g ~ n \omega . . N\} X j \omega \in\{. . a\}$ using $*$ by (meson atLeastatMost-subset-iff le-refl subsetD downcrossing-le)
thus ?thesis using stopped-value-hitting-time-mem[of $j--X]$ unfolding down-crossing-simps stopped-value-def by blast
qed
lemma upcrossing-less-downcrossing:
assumes $a<b$ downcrossing (Suc n) $\omega \neq N$
shows upcrossing (Suc n) $\omega<$ downcrossing (Suc n) ω
proof -
have upcrossing (Suc n) $\omega \neq N$ using assms by (metis le-antisym downcrossing-le upcrossing-le-downcrossing)
hence stopped-value X (downcrossing (Suc n)) $\omega<$ stopped-value X (upcrossing (Suc n)) ω
using assms stopped-value-downcrossing stopped-value-upcrossing by force
hence downcrossing (Suc n) $\omega \neq$ upcrossing (Suc n) ω unfolding stopped-value-def by force
thus ?thesis using upcrossing-le-downcrossing by (simp add: le-neq-implies-less) qed
lemma downcrossing-less-upcrossing:
assumes $a<b$ upcrossing (Suc n) $\omega \neq N$
shows downcrossing $n \omega<$ upcrossing (Suc n) ω
proof -
have downcrossing $n \omega \neq N$ using assms by (metis le-antisym upcrossing-le downcrossing-le-upcrossing-Suc)
hence stopped-value X (downcrossing n) $\omega<$ stopped-value X (upcrossing (Suc n)) ω
using assms stopped-value-downcrossing stopped-value-upcrossing by force
hence downcrossing $n \omega \neq$ upcrossing (Suc n) ω unfolding stopped-value-def by force
thus ?thesis using downcrossing-le-upcrossing-Suc by (simp add: le-neq-implies-less) qed
lemma upcrossing-less-Suc:
assumes $a<b$ upcrossing $n \omega \neq N$
shows upcrossing $n \omega<$ upcrossing (Suc n) ω
by (metis assms upcrossing-le-downcrossing downcrossing-less-upcrossing or-der-le-less-trans le-neq-implies-less upcrossing-le)
lemma upcrossing-eq-bound:
assumes $a<b n \geq N$
shows upcrossing $n \omega=N$

```
proof -
    have *: upcrossing N\omega=N
    proof -
        {
            assume *: upcrossing N \omega}=
            hence asm: upcrossing n \omega<N if n\leqN for n using upcrossing-mono
upcrossing-le that by (metis le-antisym le-neq-implies-less)
            {
            fix ij
            assume i\leqNi<j
            hence upcrossing i }\omega\not=u\mathrm{ upcrossing j }\omega\mathrm{ by (metis Suc-leI asm assms(1) leD
upcrossing-less-Suc upcrossing-mono)
            }
            moreover
            {
            fix }
            assume j \leq N
            hence upcrossing j \omega \leq upcrossing N \omega using upcrossing-mono by blast
            hence upcrossing (SucN) \omega\not= upcrossing j \omega using upcrossing-less-Suc[OF
assms(1) *] by simp
            }
            ultimately have inj-on ( }\lambdan\mathrm{ . upcrossing n }\omega\mathrm{ ) {..Suc N} unfolding inj-on-def
by (metis atMost-iff le-SucE linorder-less-linear)
            hence card ((\lambdan. upcrossing n \omega)'{..Suc N})=Suc (Suc N) by (simp add:
inj-on-iff-eq-card[THEN iffD1])
                            moreover have (\lambdan. upcrossing n \omega)'{..Suc N}\subseteq{..N} using upcrossing-le
by blast
            moreover have card ((\lambdan. upcrossing n \omega)'{..Suc N})\leqSuc N using
card-mono[OF - calculation(2)] by simp
            ultimately have False by linarith
        }
        thus ?thesis by blast
    qed
    thus ?thesis using upcrossing-mono[OF assms(2), of \omega] upcrossing-le[of n \omega] by
simp
qed
lemma downcrossing-eq-bound:
    assumes }a<bn\geq
    shows downcrossing n \omega}=
    using upcrossing-le-downcrossing[of n \omega] downcrossing-le[of n \omega] upcrossing-eq-bound [OF
assms] by simp
lemma stopping-time-crossings:
    assumes adapted-process M F O X
    shows stopping-time (upcrossing n) stopping-time (downcrossing n)
proof -
    have stopping-time (upcrossing n) ^ stopping-time (downcrossing n)
    proof (induction n)
```

```
    case 0
    then show ?case unfolding upcrossing-simps downcrossing-simps
        using stopping-time-const stopping-time-hitting-time[OF assms] by simp
    next
    case (Suc n)
    have stopping-time (upcrossing (Suc n)) unfolding upcrossing-simps
        using assms Suc downcrossing-le by (intro stopping-time-hitting-time) auto
    moreover have stopping-time (downcrossing (Suc n)) unfolding downcross-
ing-simps
        using assms calculation upcrossing-le by (intro stopping-time-hitting-time')
auto
    ultimately show ?case by blast
    qed
    thus stopping-time (upcrossing n) stopping-time (downcrossing n) by blast+
qed
lemmas stopping-time-upcrossing = stopping-time-crossings(1)
lemmas stopping-time-downcrossing = stopping-time-crossings(2)
- We define upcrossings-before as the number of upcrossings which take place strictly before time \(N\).
definition upcrossings-before \(::\) ' \(a \Rightarrow\) nat where
\[
\text { upcrossings-before }=(\lambda \omega . \text { Sup }\{n . \text { upcrossing } n \omega<N\})
\]
lemma upcrossings-before-bdd-above:
assumes \(a<b\)
shows bdd-above \(\{n\). upcrossing \(n \omega<N\}\)
proof -
have \(\{n\). upcrossing \(n \omega<N\} \subseteq\{. .<N\}\) unfolding lessThan-def Collect-mono-iff using upcrossing-eq-bound[OF assms] linorder-not-less order-less-irrefl by metis
thus ?thesis by (meson bdd-above-Iio bdd-above-mono)
qed
lemma upcrossings-before-less:
assumes \(a<b 0<N\)
shows upcrossings-before \(\omega<N\)
proof -
have \(*:\{n\). upcrossing \(n \omega<N\} \subseteq\{. .<N\}\) unfolding lessThan-def Col-lect-mono-iff
using upcrossing-eq-bound[OF assms(1)] linorder-not-less order-less-irrefl by metis
have upcrossing \(0 \omega<N\) unfolding upcrossing-simps by (rule assms)
moreover have Sup \(\{. .<N\}<N\) unfolding Sup-nat-def using assms by simp
ultimately show ?thesis unfolding upcrossings-before-def using cSup-subset-mono[OF
- - *] by force
qed
lemma upcrossings-before-less-implies-crossing-eq-bound:
```

```
    assumes a<b upcrossings-before }\omega<
    shows upcrossing n \omega}=
            downcrossing n \omega}=
proof -
    have ᄀ upcrossing n \omega < N using assms upcrossings-before-bdd-above[of \omega]
upcrossings-before-def bdd-above-nat finite-Sup-less-iff by fastforce
    thus upcrossing n \omega =N using upcrossing-le[of n \omega] by simp
    thus downcrossing n \omega =N using upcrossing-le-downcrossing[of n \omega] downcross-
ing-le[of n \omega] by simp
qed
lemma upcrossings-before-le:
    assumes a<b
    shows upcrossings-before }\omega\leq
    using upcrossings-before-less assms less-le-not-le upcrossings-before-def
    by (cases N) auto
lemma upcrossings-before-mem:
    assumes a<b 0<N
    shows upcrossings-before }\omega\in{n.\mathrm{ upcrossing n }\omega<N}\cap{..<N
proof -
    have upcrossing 0 \omega < N using assms unfolding upcrossing-simps by simp
    hence {n. upcrossing n }\omega<N}\not={}\mathrm{ by blast
    moreover have finite {n. upcrossing n \omega<N} using upcrossings-before-bdd-above[OF
assms(1)] by (simp add: bdd-above-nat)
    ultimately show ?thesis using Max-in upcrossings-before-less[OF assms(1,2)]
Sup-nat-def upcrossings-before-def by auto
qed
lemma upcrossing-less-of-le-upcrossings-before:
    assumes a<b 0<Nn\leq upcrossings-before \omega
    shows upcrossing n \omega<N
    using upcrossings-before-mem[OF assms(1,2), of \omega] upcrossing-mono[OF assms(3),
of }\omega]\mathrm{ by simp
lemma upcrossings-before-sum-def:
    assumes a<b
    shows upcrossings-before }\omega=(\sumk\in{1..N}.indicator {n. upcrossing n \omega<N
k)
proof (cases N)
    case 0
    then show ?thesis unfolding upcrossings-before-def by simp
next
    case (Suc N')
    have upcrossing 0 \omega < N using assms Suc unfolding upcrossing-simps by simp
    hence {n. upcrossing n }\omega<N}\not={}\mathrm{ by blast
    hence *: \neg upcrossing n \omega<N if n\in{upcrossings-before }\omega<..N}\mathrm{ for n
        using finite-Sup-less-iff[THEN iffD1, OF bdd-above-nat[THEN iffD1,OF
upcrossings-before-bdd-above], of \omega n]
```

by (metis that assms greaterThanAtMost-iff less-not-refl mem-Collect-eq upcross-ings-before-def)
have $* *$: upcrossing $n \omega<N$ if $n \in\{1$..upcrossings-before $\omega\}$ for n
using assms that Suc by (intro upcrossing-less-of-le-upcrossings-before) auto
have upcrossings-before $\omega<N$ using upcrossings-before-less Suc assms by simp
hence $\{1 . . N\}-\{1$..upcrossings-before $\omega\}=\{$ upcrossings-before $\omega<. . N\}$
$\{1 . . N\} \cap\{1$..upcrossings-before $\omega\}=\{1$..upcrossings-before $\omega\}$ by force +
hence $\left(\sum k \in\{1 . . N\}\right.$. indicator $\{n$. upcrossing $\left.n \omega<N\} k\right)=$
($\sum k \in\{1$..upcrossings-before $\omega\}$. indicator $\{n$. upcrossing $\left.n \omega<N\} k\right)+$ ($\sum k \in\{$ upcrossings-before $\omega<. . N\}$. indicator $\{n$. upcrossing $n \omega<N\} k$)
using sum.Int-Diff[OF finite-atLeastAtMost, of - $1 N\{1$..upcrossings-before $\omega\}$] by metis
also have $\ldots=$ upcrossings-before ω using $* * *$ by simp
finally show ?thesis by argo
qed
lemma upcrossings-before-measurable:
assumes adapted-process MF0Xa<b
shows upcrossings-before \in borel-measurable M
unfolding upcrossings-before-sum-def[OF assms(2)]
using stopping-time-measurable[OF stopping-time-crossings(1), OF assms(1)] by simp
lemma upcrossings-before-measurable':
assumes adapted-process MFOXa<b
shows $(\lambda \omega$. real (upcrossings-before $\omega)$) \in borel-measurable M
using real-embedding-borel-measurable upcrossings-before-measurable[OF assms]
by simp
end
lemma crossing-eq-crossing:
assumes $N \leq N^{\prime}$
and downcrossing X ab $N n \omega<N$
shows upcrossing X ab \quad N $n \omega=$ upcrossing $X a b N^{\prime} n \omega$ downcrossing $X a b N n \omega=$ downcrossing $X a b N^{\prime} n \omega$
proof -
have upcrossing $X a b N n \omega=$ upcrossing $X a b N^{\prime} n \omega \wedge$ downcrossing $X a b$
$N n \omega=$ downcrossing $X a b N^{\prime} n \omega \mathbf{u s i n g} \operatorname{assms}(2)$
proof (induction n)
case 0
show ?case by (metis (no-types, lifting) upcrossing-simps(1) assms atLeast-0 bot-nat-0.extremum hitting-time-def hitting-time-eq-hitting-time inf-top.right-neutral
leD downcrossing-mono downcrossing-simps(1) max-nat.left-neutral)
next
case (Suc n)
hence upper-less: upcrossing X ab N (Suc $n) \omega<N$ using upcrossing-le-downcrossing Suc order.strict-trans1 by blast
hence lower-less: downcrossing X ab $N n \omega<N$ using downcrossing-le-upcrossing-Suc
order.strict-trans1 by blast
obtain j where $j \in\{$ downcrossing $X a b N n \omega . .<N\} X j \omega \in\{b .$.
using hitting-time-less-iff[THEN iffD1, OF order-refl] upper-less by (force simp add: upcrossing-simps)
hence upper-eq: upcrossing $X a b N($ Suc $n) \omega=$ upcrossing $X a b N^{\prime}(S u c n) \omega$ using Suc (1)[OF lower-less] assms(1)
by (auto simp add: upcrossing-simps intro!: hitting-time-eq-hitting-time)
obtain j where $j: j \in\{$ upcrossing X a $b N(S u c n) \omega . .<N\} X j \omega \in\{. . a\}$
using Suc(2) hitting-time-less-iff[THEN iffD1, OF order-refl] by (force simp add:
downcrossing-simps)
thus ?case unfolding downcrossing-simps upper-eq by (force intro: hitting-time-eq-hitting-time assms)
qed
thus upcrossing X ab $N n \omega=$ upcrossing $X a b N^{\prime} n \omega$ downcrossing $X a b N n$ $\omega=$ downcrossing $X a b N^{\prime} n \omega$ by auto
qed
lemma crossing-eq-crossing':
assumes $N \leq N^{\prime}$
and upcrossing X abN (Suc n) $\omega<N$
shows upcrossing X ab \quad (Suc n) $\omega=$ upcrossing $X a b N^{\prime}(S u c n) \omega$ downcrossing X abNn ω downcrossing $X a b N^{\prime} n \omega$
proof -
show lower-eq: downcrossing $X a b N n \omega=$ downcrossing $X a b N^{\prime} n \omega$
using downcrossing-le-upcrossing-Suc[THEN order.strict-trans1] crossing-eq-crossing assms by fast
have $\exists j \in\{$ downcrossing X a $b N n \omega . .<N\}$. $X j \omega \in\{b .$.$\} using \operatorname{assms(2)by}$ (intro hitting-time-less-iff [OF order-refl, THEN iffD1]) (simp add: upcrossing-simps lower-eq)
then obtain j where $j \in\{$ downcrossing $X a b N n \omega . . N\} X j \omega \in\{b .$.$\} by$ fastforce
thus upcrossing X abs (Suc n) $\omega=$ upcrossing X ab $N^{\prime}($ Suc n) ω
unfolding upcrossing-simps stopped-value-def using hitting-time-eq-hitting-time[OF $\operatorname{assms}(1)]$ lower-eq by metis
qed
lemma upcrossing-eq-upcrossing:
assumes $N \leq N^{\prime}$
and upcrossing X ab $N n \omega<N$
shows upcrossing $X a b N n \omega=$ upcrossing $X a b N^{\prime} n \omega$
using crossing-eq-crossing ${ }^{\prime}[$ OF assms(1)] assms(2) upcrossing-simps
by (cases n) (presburger, fast)
lemma upcrossings-before-zero: upcrossings-before X ab $0 \omega=0$ unfolding upcrossings-before-def by simp
lemma upcrossings-before-less-exists-upcrossing:
assumes $a<b$
and upcrossing: $N \leq L X L \omega<a L \leq U b<X U \omega$
shows upcrossings-before X abN ω <upcrossings-before X ab (Suc U) ω proof -
have upcrossing $X a b$ (Suc U) (upcrossings-before $X a b N \omega) \omega \leq L$
using assms upcrossing-le[THEN order-trans, OF upcrossing(1)]
by (cases $0<N$, subst upcrossing-eq-upcrossing[of N Suc U, symmetric, OF -upcrossing-less-of-le-upcrossings-before])
(auto simp add: upcrossings-before-zero upcrossing-simps)
hence downcrossing X ab (Suc U) (upcrossings-before X ab $N \omega$) $\omega \leq U$
unfolding downcrossing-simps using upcrossing by (force intro: hitting-time-le-iff [THEN iffD2])
hence upcrossing $X a b$ (Suc U) (Suc (upcrossings-before X absw)) $\omega<$ Suc U
unfolding upcrossing-simps using upcrossing by (force intro: hitting-time-less-iff[THEN iffD2])
thus ?thesis using cSup-upper[OF - upcrossings-before-bdd-above[OF assms(1)]] upcrossings-before-def by fastforce
qed
lemma crossings-translate:
upcrossing X abN $=$ upcrossing $(\lambda n \omega .(X n \omega+c))(a+c)(b+c) N$
downcrossing X a $b N=$ downcrossing $(\lambda n \omega \cdot(X n \omega+c))(a+c)(b+c) N$
proof -
have upper: upcrossing X abNn=upcrossing $(\lambda n \omega \cdot(X n \omega+c))(a+c)(b$ $+c) N n$ for n
proof (induction n)
case 0
then show ?case by (simp only: upcrossing.simps)
next
case (Suc n)
have $((+) c \cdot\{. . a\})=\{. . a+c\}$ by simp
moreover have $((+) c$ ' $\{b .\})=.\{b+c .$.$\} by \operatorname{simp}$
ultimately show ?case unfolding upcrossing.simps using hitting-time-translate[of $X\{b .\} c$.$] hitting-time-translate [$ of $X\{. . a\} c]$ Suc by presburger qed
thus upcrossing $X a b N=$ upcrossing $(\lambda n \omega \cdot(X n \omega+c))(a+c)(b+c) N$ by blast
have $((+) c$ ' $\{. . a\})=\{. . a+c\}$ by simp
thus downcrossing $X a b N=$ downcrossing $(\lambda n \omega \cdot(X n \omega+c))(a+c)(b$
$+c) N$ using upper downcrossing-simps hitting-time-translate $[o f X\{. . a\} c]$ by presburger
qed
lemma upcrossings-before-translate:
upcrossings-before X ab $N=$ upcrossings-before $(\lambda n \omega \cdot(X n \omega+c))(a+c)(b$
+c) N
using upcrossings-before-def crossings-translate by simp
lemma crossings-pos-eq:
assumes $a<b$
shows upcrossing X a $b N=$ upcrossing $(\lambda n \omega$. $\max 0(X n \omega-a)) 0(b-a) N$ downcrossing $X a b N=$ downcrossing $(\lambda n \omega \cdot \max 0(X n \omega-a)) 0(b-$ a) N proof -
have $*: \max 0(x-a) \in\{. .0\} \longleftrightarrow x-a \in\{. .0\} \max 0(x-a) \in\{b-a .$. $\longleftrightarrow x-a \in\{b-a .$.$\} for x$ using assms by auto
have upcrossing X a $b N=$ upcrossing $(\lambda n \omega$. $X n \omega-a) 0(b-a) N$ using crossings-translate $[$ of X a $b N-a]$ by simp
thus upper: upcrossing X a $b N=$ upcrossing $(\lambda n \omega$. $\max 0(X n \omega-a)) 0(b$
$-a) N$ unfolding upcrossing-def hitting-time-def' using $*$ by presburger
thus downcrossing X a $b N=$ downcrossing $(\lambda n \omega \cdot \max 0(X n \omega-a)) 0(b-$ a) N
unfolding downcrossing-simps hitting-time-def' using upper $*$ by simp qed
lemma upcrossings-before-mono:
assumes $a<b N \leq N^{\prime}$
shows upcrossings-before X a $b N \omega \leq$ upcrossings-before X a $b N^{\prime} \omega$
proof (cases N)
case 0
then show ?thesis unfolding upcrossings-before-def by simp
next
case (Suc N^{\prime})
hence upcrossing X a $b N 0 \omega<N$ unfolding upcrossing-simps by simp
thus ? thesis unfolding upcrossings-before-def using upcrossings-before-bdd-above upcrossing-eq-upcrossing assms by (intro cSup-subset-mono) auto
qed
lemma upcrossings-before-pos-eq:
assumes $a<b$
shows upcrossings-before X ab $N=$ upcrossings-before $(\lambda n \omega$. $\max 0$ ($X n \omega-$ a)) $0(b-a) N$
using upcrossings-before-def crossings-pos-eq[OF assms] by simp

- We define upcrossings to be the total number of upcrossings a stochastic process completes as $N \longrightarrow \infty$.
definition upcrossings $::\left(\right.$ nat $\Rightarrow{ }^{\prime} a \Rightarrow$ real $) \Rightarrow$ real \Rightarrow real $\Rightarrow{ }^{\prime} a \Rightarrow$ ennreal where upcrossings X ab $=(\lambda \omega$. (SUP N. ennreal (upcrossings-before X ab $N \omega)$)
lemma upcrossings-measurable:
assumes adapted-process M F $0 X a<b$
shows upcrossings $X a b \in$ borel-measurable M
unfolding upcrossings-def
using upcrossings-before-measurable' $[$ OF assms $]$ by (auto intro!: borel-measurable-SUP)
end

```
lemma (in nat-finite-filtered-measure) integrable-upcrossings-before:
    assumes adapted-process M F 0 X a<b
    shows integrable M ( }\lambda\omega\mathrm{ . real (upcrossings-before X a b N w))
proof -
    have ( ( + x. ennreal (norm (real (upcrossings-before X a b N x))) \partialM) \leq (\int + x.
ennreal N\partialM) using upcrossings-before-le[OF assms(2)] by (intro nn-integral-mono)
simp
    also have ... = ennreal N* emeasure M (space M) by simp
    also have ...<\infty by (metis emeasure-real ennreal-less-top ennreal-mult-less-top
infinity-ennreal-def)
    finally show ?thesis by (intro integrableI-bounded upcrossings-before-measurable'
assms)
qed
```


3.2 Doob's Upcrossing Inequality

Doob's upcrossing inequality provides a bound on the expected number of upcrossings a submartingale completes before some point in time. The proof follows the proof presented in the paper A Formalization of Doob's Martingale Convergence Theorems in mathlib [1] [2].

```
context nat-finite-filtered-measure
```

begin
theorem upcrossing-inequality:
fixes $a b$:: real and N :: nat
assumes submartingale M F 0 X
shows $(b-a) *\left(\int \omega\right.$. real (upcrossings-before X ab $\left.\left.N \omega\right) \partial M\right) \leq\left(\int \omega\right.$. max 0
$(X N \omega-a) \partial M)$
proof -
interpret submartingale-linorder M F 0 X unfolding submartingale-linorder-def
by (intro assms)
show ?thesis
proof (cases $a<b$)
case True
- We show the statement first for $X 0$ non-negative and $X N$ greater than or
equal to a.
have $*:(b-a) *\left(\int \omega\right.$. real (upcrossings-before X ab $\left.\left.N \omega\right) \partial M\right) \leq\left(\int \omega . X N\right.$
$\omega \partial M)$
if asm: submartingale MF0Xa<b^ Co. $0 \omega \geq 0 \wedge \omega . X N \omega \geq a$
for $a b X$
proof -
interpret subm: submartingale MF $0 X$ by (intro asm)
define $C::$ nat $\Rightarrow{ }^{\prime} a \Rightarrow$ real where $C=\left(\lambda n \omega\right.$. $\sum k<N$. indicator
$\{$ downcrossing X abNk ω.. $<u p c r o s s i n g ~ X ~ a b N(S u c k) \omega\} n)$
have C-values: $C n \omega \in\{0,1\}$ for $n \omega$
proof (cases $\exists j<N . n \in\{$ downcrossing X abNj ω.. $<$ upcrossing X ab N
(Suc j) $\omega\}$)
case True
then obtain j where $j: j \in\{. .<N\} n \in\{$ downcrossing X ab $N j$ $\omega . .<u p c r o s s i n g X a b N(S u c j) \omega\}$ by blast
\{
fix $k l::$ nat assume k-less-l: $k<l$
hence Suc-k-le-l: Suc $k \leq l$ by simp
have $\{$ downcrossing $X a b N k \omega . .<u p c r o s s i n g X a b N(S u c k) \omega\} \cap$ $\{$ downcrossing X abNl $\omega . .<$ upcrossing $X a b N($ Suc $l) \omega\}=$ $\{$ downcrossing X abNl $\omega . .<$ upcrossing $X a b N($ Suc k) $\omega\}$
using k-less-l upcrossing-mono downcrossing-mono by simp
moreover have upcrossing X abN (Suck) $\omega \leq$ downcrossing X absl ω using upcrossing-le-downcrossing downcrossing-mono[OF Suc-k-le-l] order-trans by blast
ultimately have \{downcrossing $X a b N k \omega . .<u p c r o s s i n g X a b N$ (Suc k) $\omega\} \cap\{$ downcrossing X abN $l \omega . .<u p c r o s s i n g X a b N(S u c l) \omega\}=\{ \}$ by simp \}
hence disjoint-family-on (λk. \{downcrossing X abNk ω..<upcrossing X a $b N($ Suc $k) \omega\})\{. .<N\}$
unfolding disjoint-family-on-def
by (metis Int-commute linorder-less-linear)
hence $C n \omega=1$ unfolding C-def using sum-indicator-disjoint-family[where $? f=\lambda-.1] j$ by fastforce
thus ?thesis by blast
next
case False
hence $C n \omega=0$ unfolding C-def by simp
thus?thesis by simp
qed
hence C-interval: $C n \omega \in\{0 . .1\}$ for $n \omega$ by (metis atLeastAtMost-iff empty-iff insert-iff order.refl zero-less-one-class.zero-le-one)
— We consider the discrete stochastic integral of C and $\lambda n \omega .1-C n \omega$.
define C^{\prime} where $C^{\prime}=\left(\lambda n \omega . \sum k<n . C k \omega *_{R}(X(S u c k) \omega-X k \omega)\right)$
define one-minus- C^{\prime} where one-minus- $C^{\prime}=\left(\lambda n \omega . \sum k<n .(1-C k \omega)\right.$ $\left.*_{R}(X(S u c k) \omega-X k \omega)\right)$

- We use the fact that the crossing times are stopping times to show that C is predictable.
have adapted-C: adapted-process M F $0 C$
proof
fix i
have ($\lambda \omega$. indicat-real \{downcrossing X abN $k \omega . .<u p c r o s s i n g ~ X a b N$ $($ Suc $k) \omega\} i) \in$ borel-measurable $(F i)$ for k
unfolding indicator-def
using stopping-time-upcrossing[OF subm.adapted-process-axioms, THEN stopping-time-measurable-gr]
stopping-time-downcrossing[OF subm.adapted-process-axioms, THEN stopping-time-measurable-le]
by force
thus $C i \in$ borel-measurable ($F i$) unfolding C-def by simp qed
hence adapted-process MF0 ($\lambda n \omega .1-C n \omega$) by (intro adapted-process.diff-adapted adapted-process-const)
hence submartingale-one-minus- C^{\prime} : submartingale M F 0 one-minus- C^{\prime} unfolding one-minus- C^{\prime}-def using C-interval
by (intro submartingale-partial-sum-scaleR[of - - 1] submartingale-linorder.intro asm) auto
have $C n \in$ borel-measurable M for n
using adapted-C adapted-process.adapted measurable-from-subalg subalg by blast
have integrable- C^{\prime} : integrable $M\left(C^{\prime} n\right)$ for n unfolding C^{\prime}-def using C-interval
by (intro submartingale-partial-sum-scaleR[THEN submartingale.integrable] submartingale-linorder.intro adapted-C asm) auto
- We show the following inequality, by using the fact that one-minus- C^{\prime} is a submartingale.
have integral ${ }^{L} M\left(C^{\prime} n\right) \leq$ integral $^{L} M(X n)$ for n
proof -
interpret subm': submartingale-linorder M F 0 one-minus- C^{\prime} unfolding submartingale-linorder-def by (rule submartingale-one-minus- C^{\prime})
have $0 \leq$ integral $^{L} M$ (one-minus- $C^{\prime} n$)
using subm'.set-integral-le[OF sets.top, where $i=0$ and $j=n]$ space- F subm'.integrable by (fastforce simp add: set-integral-space one-minus- C^{\prime}-def)
moreover have one-minus- $C^{\prime} n \omega=\left(\sum k<n . X(S u c k) \omega-X k \omega\right)-$ $C^{\prime} n \omega$ for ω
unfolding one-minus- C^{\prime}-def C^{\prime}-def by (simp only: scaleR-diff-left sum-subtractf scale-one)
ultimately have $0 \leq\left(\operatorname{LINT} \omega \mid M .\left(\sum k<n . X(S u c k) \omega-X k \omega\right)\right)-$ integral $^{L} M\left(C^{\prime} n\right)$
using subm.integrable integrable- C^{\prime}
by (subst Bochner-Integration.integral-diff [symmetric]) (auto simp add: one-minus- C^{\prime}-def)
moreover have $\left(\operatorname{LINT} \omega \mid M .\left(\sum k<n . X(S u c k) \omega-X k \omega\right)\right) \leq(L I N T$ $\omega \mid M$. X $n \omega$) using asm sum-lessThan-telescope[of λi. $X i-n]$ subm.integrable
by (intro integral-mono) auto
ultimately show ?thesis by linarith
qed
moreover have $(b-a) *\left(\int \omega\right.$. real (upcrossings-before X a b N ω) $\left.\partial M\right) \leq$ integral ${ }^{L} M\left(C^{\prime} N\right)$
proof (cases N)
case 0
then show ?thesis using C^{\prime}-def upcrossings-before-zero by simp
next
case (Suc N^{\prime})
\{
fix ω
have dc-not- N : downcrossing X abN $k \omega \neq N$ if $k<$ upcrossings-before $X a b N \omega$ for k
by (metis Suc Suc-leI asm(2) downcrossing-le-upcrossing-Suc leD that upcrossing-less-of-le-upcrossings-before zero-less-Suc)
have uc-not- N :upcrossing X ab $N($ Suc $k) \omega \neq N$ if $k<$ upcrossings-before $X a b N \omega$ for k
by (metis Suc Suc-leI asm(2) order-less-irrefl that upcrossing-less-of-le-upcrossings-before zero-less-Suc)
have subset-lessThan- N : $\{$ downcrossing X ab $N i \omega . .<u p c r o s s i n g ~ X ~ a b N$ (Suc i) $\omega\} \subseteq\{. .<N\}$ if $i<N$ for i using that by (simp add: lessThan-atLeast0 upcrossing-le)
- First we rewrite the sum as follows:
have $C^{\prime} N \omega=\left(\sum k<N . \sum i<N\right.$. indicator $\{$ downcrossing X ab \quad. i $\omega . .<u p c r o s s i n g X \operatorname{abN}($ Suc i) $\omega\} k *(X($ Suc $k) \omega-X k \omega))$
unfolding C^{\prime}-def C-def by (simp add: sum-distrib-right)
also have $\ldots=\left(\sum i<N . \sum k<N\right.$. indicator $\{$ downcrossing X ab \quad. $N i$ $\omega . .<u p c r o s s i n g X \operatorname{ab} N($ Suc $i) \omega\} k *(X($ Suc $k) \omega-X k \omega))$
using sum.swap by fast
also have $\ldots=\left(\sum i<N . \sum k \in\{. .<N\} \cap\{\right.$ downcrossing X ab $N i$ $\omega . .<u p c r o s s i n g X$ ab $N($ Suc $i) \omega\} . X($ Suc $k) \omega-X k \omega)$
by (subst Indicator-Function.sum-indicator-mult) simp+
also have $\ldots=\left(\sum i<N . \sum k \in\{\right.$ downcrossing X ab $N i \omega . .<$ upcrossing X abN(Suc i) $\omega\} . X($ Suc $k) \omega-X k \omega)$
using subset-lessThan-N[THEN Int-absorb1] by simp
also have $\ldots=\left(\sum i<N . X\right.$ (upcrossing X abN $($ Suc i) $\omega) \omega-X$ (downcrossing X abNi ω) ω)
by (subst sum-Suc-diff '[OF downcrossing-le-upcrossing-Suc]) blast
finally have $*: C^{\prime} N \omega=\left(\sum i<N . X\right.$ (upcrossing XabN(Suci) ω) ω $-X($ downcrossing X abNi $\omega) \omega$.
- For $k \leq N$, we consider three cases:
- 1. If $k<$ upcrossings-before X ab $N \omega$, then X (upcrossing X ab N (Suc k) ω) $\omega-X$ (downcrossing $X a b N k \omega) \omega \geq b-a$
- 2. If upcrossings-before X abN $\omega<k$, then X (upcrossing X abN (Suc k) ω) $\omega=X$ (downcrossing $X a b N k \omega) \omega$
- 3. If $k=$ upcrossings-before X ab $N \omega$, then X (upcrossing X abN (Suc k) ω) $\omega-X$ (downcrossing X abNk ω) $\omega \geq 0$
have summand-zero-if: X (upcrossing $X a b N(S u c k) \omega) \omega-X$ (downcrossing X abNk ω) $\omega=0$ if $k>$ upcrossings-before $X a b N \omega$ for k
using that upcrossings-before-less-implies-crossing-eq-bound[OF asm(2)] by simp
have summand-nonneg-if: X (upcrossing X a $b N$ (Suc (upcrossings-before $X a b N \omega) \omega) \omega-X($ downcrossing $X a b N(u p c r o s s i n g s-b e f o r e X a b N \omega) \omega$)
using upcrossings-before-less-implies-crossing-eq-bound(1)[OF asm(2)
lessI]
stopped-value-downcrossing[of X a b N- ω, THEN order-trans, OF $\operatorname{asm}(4)[$ of $\omega]]$
by (cases downcrossing X abs (upcrossings-before X abN ω) $\omega \neq N$) (simp add: stopped-value-def)+
have interval: $\{$ upcrossings-before X ab \quad N $\omega . .<N\}-\{$ upcrossings-before $X a b N \omega\}=\{u p c r o s s i n g s-b e f o r e X$ a $b N \omega<. .<N\}$
using Diff-insert atLeastSucLessThan-greaterThanLessThan lessThan-Suc lessThan-minus-lessThan by metis
have $(b-a) *$ real (upcrossings-before X ab $N \omega)=\left(\sum-<\right.$ upcrossings-before $X a b N \omega . b-a)$ by simp
also have $\ldots \leq$ ($\sum k<$ upcrossings-before X ab $N \omega$. stopped-value X (upcrossing X abN (Suc k)) ω - stopped-value X (downcrossing X abNk) ω)
using stopped-value-downcrossing $[O F$ dc-not-N] stopped-value-upcrossing $[O F$ $u c-n o t-N]$ by (force intro!: sum-mono)
also have $\ldots=\left(\sum k<\right.$ upcrossings-before X a $b N \omega$. X (upcrossing $X a b$ $N($ Suc $k) \omega) \omega-X$ (downcrossing $X a b N k \omega) \omega$) unfolding stopped-value-def by blast
also have $\ldots \leq\left(\sum k<\right.$ upcrossings-before X a $b N \omega$. X (upcrossing X a b $N($ Suc $k) \omega) \omega-X($ downcrossing $X a b N k \omega) \omega)$
$+\left(\sum k \in\{\right.$ upcrossings-before X a $b N \omega\}$. X (upcrossing X ab
$N($ Suc $k) \omega) \omega-X($ downcrossing $X a b N k \omega) \omega)$
$+\left(\sum k \in\{\right.$ upcrossings-before X a $b N \omega<. .<N\} . X$ (upcrossing
$X a b N(S u c k) \omega) \omega-X($ downcrossing $X a b N k \omega) \omega)$
using summand-zero-if summand-nonneg-if by auto
also have $\ldots=\left(\sum k<N . X\right.$ (upcrossing X abN (Suc k) ω) $\omega-X$ (downcrossing $X a b N k \omega$) ω)
using upcrossings-before-le[OF asm(2)]
by (subst sum.subset-diff $[$ where $A=\{. .<N\}$ and $B=\{. .<$ upcrossings-before X ab $N \omega\}$], simp, simp,
subst sum.subset-diff $[$ where $A=\{. .<N\}-\{. .<$ upcrossings-before X a $b N \omega\}$ and $B=\{$ upcrossings-before $X a b N \omega\}]$)
(simp add: Suc asm(2) upcrossings-before-less, simp, simp add: interval)
finally have $(b-a) *$ real (upcrossings-before X ab $N \omega$) $\leq C^{\prime} N \omega$ using * by presburger
\}
thus ?thesis using integrable-upcrossings-before subm.adapted-process-axioms asm integrable- C^{\prime}
by (subst integral-mult-right-zero[symmetric], intro integral-mono) auto
qed
ultimately show ?thesis using order-trans by blast
qed
have $(b-a) *\left(\int \omega\right.$. real (upcrossings-before X abN ω) $\left.\partial M\right)=(b-a) *$ $\left(\int \omega\right.$. real (upcrossings-before $(\lambda n \omega$. max $\left.\left.0(X n \omega-a)) 0(b-a) N \omega\right) \partial M\right)$
using upcrossings-before-pos-eq[OF True] by simp
also have $\ldots \leq\left(\int \omega \cdot \max 0(X N \omega-a) \partial M\right)$
using $*[O F$ submartingale-linorder.max- $0[O F$ submartingale-linorder.intro, OF submartingale.diff, OF assms supermartingale-const], of $0 b-a a]$ True by simp
finally show ?thesis.

next

case False
have $0 \leq\left(\int \omega \cdot \max 0(X N \omega-a) \partial M\right)$ by simp
moreover have $0 \leq\left(\int \omega\right.$. real (upcrossings-before X ab $N \omega$) ∂M) by simp
moreover have $b-a \leq 0$ using False by simp
ultimately show ?thesis using mult-nonpos-nonneg order-trans by meson qed
qed
theorem upcrossing-inequality-Sup:
fixes $a b$:: real
assumes submartingale MFOX
shows $(b-a) *\left(\int^{+} \omega\right.$. upcrossings X ab $\left.\omega \partial M\right) \leq\left(S U P N .\left(\int{ }^{+} \omega\right.\right.$. max $0(X$
$N \omega-a) \partial M)$)
proof -
interpret submartingale MFOX by (intro assms)
show ?thesis
proof (cases $a<b$)
case True
have $\left(\int{ }^{+} \omega\right.$. upcrossings X a $\left.b \omega \partial M\right)=\left(S U P N .\left(\int{ }^{+} \omega\right.\right.$. real (upcrossings-before XabN ω) $\partial M)$)
unfolding upcrossings-def
using upcrossings-before-mono True upcrossings-before-measurable'[OF adapted-process-axioms]
by (auto intro: nn-integral-monotone-convergence-SUP simp add: mono-def le-funI)
hence $(b-a) *\left(\int{ }^{+} \omega\right.$. upcrossings X a $\left.b \omega \partial M\right)=\left(S U P N .(b-a) *\left(\int{ }^{+} \omega\right.\right.$. real (upcrossings-before X abll $\quad \mathrm{N} \omega$) ∂M))
by (simp add: SUP-mult-left-ennreal)
moreover
\{
fix N
have $\left(\int{ }^{+} \omega\right.$. real (upcrossings-before X ab $\left.\left.N \omega\right) \partial M\right)=\left(\int \omega\right.$. real (upcrossings-before $X a b N \omega) \partial M)$
by (force intro!: nn-integral-eq-integral integrable-upcrossings-before True adapted-process-axioms)
moreover have $\left(\int^{+} \omega \cdot \max 0(X N \omega-a) \partial M\right)=\left(\int \omega \cdot \max 0(X N \omega-\right.$ a) $\partial M)$
using Bochner-Integration.integrable-diff[OF integrable integrable-const] by (force intro!: nn-integral-eq-integral)
ultimately have $(b-a) *\left(\int{ }^{+} \omega\right.$. real (upcrossings-before X a $\left.b N \omega\right) \partial M$) $\leq\left(\int{ }^{+} \omega \cdot \max 0(X N \omega-a) \partial M\right)$
using upcrossing-inequality[OF assms, of b a N] True ennreal-mult'[symmetric] by simp

```
    }
    ultimately show ?thesis by (force intro!: Sup-mono)
    qed (simp add: ennreal-neg)
qed
end
end
```


4 Doob's First Martingale Convergence Theorem

theory Doob-Convergence
imports Upcrossing
begin

```
context nat-finite-filtered-measure
begin
```

Doob's martingale convergence theorem states that, if we have a submartingale where the supremum over the mean of the positive parts is finite, then the limit process exists almost surely and is integrable. Furthermore, the limit process is measurable with respect to the smallest σ-algebra containing all of the σ-algebras in the filtration. The argumentation below is taken mostly from [3].

```
theorem submartingale-convergence-AE:
    fixes \(X::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow\) real
    assumes submartingale M F 0 X
        and \(\bigwedge n .\left(\int \omega \cdot \max 0(X n \omega) \partial M\right) \leq C\)
        obtains \(X_{\text {lim }}\) where \(A E \omega\) in \(M .(\lambda n . X n \omega) \longrightarrow X_{\text {lim }} \omega\)
                                    integrable \(M X_{\text {lim }}\)
                                    \(X_{l i m} \in\) borel-measurable \(\left(F_{\infty}\right)\)
proof -
    interpret submartingale-linorder M F 0 X unfolding submartingale-linorder-def
by (rule assms)
```

- We first show that the number of upcrossings has to be finite using the upcrossing inequality we proved above.
have finite-upcrossings: $A E \omega$ in M. upcrossings $X a b \omega \neq \infty$ if $a<b$ for $a b$ proof -
have C-nonneg: $C \geq 0$ using assms(2) by (meson Bochner-Integration.integral-nonneg
linorder-not-less max.cobounded1 order-less-le-trans)
\{
fix n
have $\left(\int^{+} \omega \cdot \max 0(X n \omega-a) \partial M\right) \leq\left(\int^{+} \omega \cdot \max 0(X n \omega)+|a| \partial M\right)$
by (fastforce intro: nn-integral-mono ennreal-leI)
also have $\ldots=\left(\int^{+} \omega\right.$. max $\left.0(X n \omega) \partial M\right)+|a| *$ emeasure $M($ space $M)$
by (simp add: nn-integral-add)
also have $\ldots=\left(\int \omega \cdot \max 0(X n \omega) \partial M\right)+|a| *$ emeasure $M($ space $M)$ using integrable by (simp add: nn-integral-eq-integral)
also have $\ldots \leq C+|a| *$ emeasure M (space M) using assms(2) ennreal-leI by simp
finally have $\left(\int^{+} \omega\right.$. max $\left.0(X n \omega-a) \partial M\right) \leq C+|a| *$ enn2real (emeasure M (space M)) using finite-emeasure-space C-nonneg by (simp add: ennreal-enn2real-if ennreal-mult)
\}
hence $\left(S U P N . \int^{+} x\right.$. ennreal $\left.(\max 0(X N x-a)) \partial M\right) /(b-a) \leq$ ennreal $(C+|a| *$ enn2real (emeasure $M($ space $M))) /(b-a)$ by (fast intro: divide-right-mono-ennreal Sup-least)
moreover have ennreal $(C+|a| *$ enn2real (emeasure $M($ space $M))) /(b-$ $a)<\infty$ using that C-nonneg by (subst divide-ennreal) auto
moreover have integral ${ }^{N} M$ (upcrossings $\left.X a b\right) \leq\left(S U P N . \int+x\right.$. ennreal $(\max 0(X N x-a)) \partial M) /(b-a)$
using upcrossing-inequality-Sup[OF assms(1), of b a, THEN divide-right-mono-ennreal, of $b-a]$
ennreal-mult-divide-eq mult.commute[of ennreal $(b-a)]$ that by simp
ultimately show ?thesis using upcrossings-measurable adapted-process-axioms that by (intro nn-integral-noteq-infinite) auto
qed
- Since the number of upcrossings are finite, limsup and liminf have to agree almost everywhere. To show this we consider the following countable set, which has zero measure.

```
    define \(S\) where \(S=((\lambda(a::\) real, \(b) .\{\omega \in\) space \(M . \liminf (\lambda n\). ereal \((X n \omega))\)
\(<\operatorname{ereal} a \wedge \operatorname{ereal} b<\limsup (\lambda n . \operatorname{ereal}(X n \omega))\})\) ' \(\{(a, b) \in \mathbb{Q} \times \mathbb{Q} . a<b\})\)
    have \((0,1) \in\{(a::\) real, \(b) .(a, b) \in \mathbb{Q} \times \mathbb{Q} \wedge a<b\}\) unfolding Rats-def by
simp
    moreover have countable \(\{(a, b) .(a, b) \in \mathbb{Q} \times \mathbb{Q} \wedge a<b\}\) by (blast intro:
countable-subset[OF - countable-SIGMA[OF countable-rat countable-rat]])
    ultimately have from-nat-into-S: range (from-nat-into \(S\) ) \(=S\) from-nat-into \(S\)
\(n \in S\) for \(n\)
            unfolding \(S\)-def
            by (auto intro!: range-from-nat-into from-nat-into simp only: Rats-def)
    \{
        fix \(a b\) :: real
            assume \(a\)-less- \(b: a<b\)
            then obtain \(N\) where \(N: x \in\) space \(M-N \Longrightarrow\) upcrossings \(X\) ab \(x \neq \infty N\)
                \(\in\) null-sets \(M\) for \(x\) using \(A E-E 3[O F\) finite-upcrossings] by blast
            \{
                fix \(\omega\)
                assume liminf-limsup: liminf \((\lambda n . X n \omega)<a b<\limsup (\lambda n . X n \omega)\)
            have upcrossings \(X\) ab \(\omega=\infty\)
            proof -
                    fix \(n\)
```

have $\exists m$. upcrossings-before X abm $\omega \geq n$
proof (induction n)
case 0
have Sup $\{n$. upcrossing X ab $0 n \omega<0\}=0$ by simp
then show ?case unfolding upcrossings-before-def by blast
next
case (Suc n)
then obtain m where m : $n \leq$ upcrossings-before $X a b m \omega$ by blast obtain l where $l: l \geq m \times l \omega<a$ using liminf-upper-bound $[O F$ liminf-limsup(1), of m] nless-le by auto obtain u where $u: u \geq l X u \omega>b$ using limsup-lower-bound $[O F$ liminf-limsup(2), of l] nless-le by auto
show ?case using upcrossings-before-less-exists-upcrossing[OF a-less-b, where ? $X=X$, OF $l u] m$ by (metis Suc-leI le-neq-implies-less)
qed
\}
thus ?thesis unfolding upcrossings-def by (simp add: ennreal-SUP-eq-top)
qed
\}
hence $\{\omega \in$ space $M . \liminf (\lambda n$. ereal $(X n \omega))<$ ereal $a \wedge$ ereal $b<l i m s u p$ $(\lambda n$. ereal $(X n \omega))\} \subseteq N$ using N by blast
moreover have $\{\omega \in$ space M. liminf $(\lambda n$. ereal $(X n \omega))<$ ereal $a \wedge$ ereal b $<\limsup (\lambda n$. ereal $(X n \omega))\} \cap N \in$ null-sets M by (force intro: null-set-Int1[OF $N(2)]$)
ultimately have emeasure $M\{\omega \in$ space $M . \liminf (\lambda n$. ereal $(X n \omega))<a$ $\wedge b<\limsup (\lambda n$. ereal $(X n \omega))\}=0$ by (simp add: Int-absorb1 Int-commute null-setsD1)
\}
hence emeasure M (from-nat-into $S n$) $=0$ for n using from-nat-into- $S(2)[o f$ $n]$ unfolding S-def by force
moreover have $S \subseteq M$ unfolding S-def by force
ultimately have emeasure $M(\bigcup$ (range (from-nat-into $S))$) $=0$ using from-nat-into-S
by (intro emeasure-UN-eq-0) auto
moreover have $(\bigcup S)=\{\omega \in$ space M. $\liminf (\lambda n$. ereal $(X n \omega)) \neq$ limsup $(\lambda n$. ereal $(X n \omega))\}($ is ? $L=? R)$
proof -
\{
fix ω
assume asm: $\omega \in ? L$
then obtain $a b$:: real where $a<b \liminf (\lambda n$. ereal $(X n \omega))<$ ereal $a \wedge$ ereal $b<\limsup (\lambda n$. ereal $(X n \omega))$ unfolding S-def by blast
hence $\liminf (\lambda n$. ereal $(X n \omega)) \neq \limsup (\lambda n$. ereal $(X n \omega))$ using ereal-less-le order.asym by fastforce
hence $\omega \in ? R$ using asm unfolding S-def by blast
\}
moreover
\{
fix ω
assume asm: $\omega \in$? R
hence $\liminf (\lambda n$. ereal $(X n \omega))<\limsup (\lambda n$. ereal $(X n \omega))$ using Liminf-le-Limsup[of sequentially] less-eq-ereal-def by auto
then obtain a^{\prime} where $a^{\prime}: \liminf (\lambda n$. ereal $(X n \omega))<$ ereal a^{\prime} ereal $a^{\prime}<$ limsup $(\lambda n$. ereal $(X n \omega))$ using ereal-dense2 by blast
then obtain b^{\prime} where b^{\prime} : ereal $a^{\prime}<$ ereal b^{\prime} ereal $b^{\prime}<\limsup (\lambda n$. ereal $(X$ $n \omega)$) using ereal-dense2 by blast
hence $a^{\prime}<b^{\prime}$ by simp
then obtain a where $a: a \in \mathbb{Q} a^{\prime}<a a<b^{\prime}$ using Rats-dense-in-real by blast
then obtain b where $b: b \in \mathbb{Q} a<b b<b^{\prime}$ using Rats-dense-in-real by blast
have liminf $\left(\lambda n\right.$. ereal $\left.\left(\begin{array}{lll}X & n & \omega\end{array}\right)\right)<$ ereal a using $a a^{\prime}$ le-ereal-less or-der-less-imp-le by meson
moreover have ereal $b<\limsup \left(\lambda n\right.$. ereal $\left(\begin{array}{ll}X & n\end{array}\right)$) using $b b^{\prime}$ or-der-less-imp-le ereal-less-le by meson
ultimately have $\omega \in$? L unfolding S-def using $a b$ asm by blast
\}
ultimately show ?thesis by blast
qed
ultimately have emeasure $M\{\omega \in$ space $M . \liminf (\lambda n$. ereal $(X n \omega)) \neq \limsup$ $(\lambda n$. ereal $(X n \omega))\}=0$ using from-nat-into- S by argo
hence liminf-limsup-AE: AE ω in $M . \liminf (\lambda n . X n \omega)=\limsup (\lambda n . X n \omega)$ by (intro AE-iff-measurable[THEN iffD2, OF - refl]) auto
hence convergent- $A E$: $A E \omega$ in M. convergent (λn. ereal ($X n \omega)$) using con-vergent-ereal by fastforce

- Hence the limit exists almost everywhere.
have bounded-pos-part: ennreal $\left(\int \omega . \max 0(X n \omega) \partial M\right) \leq$ ennreal C for n using assms(2) ennreal-leI by blast
- Integral of positive part is $<\infty$.
\{
fix ω
assume asm: convergent $(\lambda n$. ereal $(X n \omega))$
hence $(\lambda n$. max $0(\operatorname{ereal}(X n \omega))) \longrightarrow \max 0(\lim (\lambda n$. ereal $(X n \omega)))$
using convergent-LIMSEQ-iff isCont-tendsto-compose continuous-max contin-uous-const continuous-ident continuous-at-e2ennreal
by fast
hence $(\lambda n$. e2ennreal $(\max 0(\operatorname{ereal}(X n \omega)))) \longrightarrow$ e2ennreal ($\max 0$ (lim $(\lambda n$. ereal $(X n \omega))))$
using isCont-tendsto-compose continuous-at-e2ennreal by blast
moreover have $\lim (\lambda n$. e2ennreal $(\max 0(\operatorname{ereal}(X n \omega))))=$ e2ennreal $(\max$ $0(\lim (\lambda n$. ereal $(X n \omega)))$) using limI calculation by blast
ultimately have e2ennreal $(\max 0(\liminf (\lambda n$. ereal $(X n \omega))))=$ liminf $(\lambda n$. e2ennreal $(\max 0($ ereal $(X n \omega)))$ using convergent-liminf-cl by (metis asm convergent-def limI)
\}
hence $\left(\int^{+} \omega\right.$. e2ennreal $(\max 0(\liminf (\lambda n$. ereal $\left.(X n \omega)))) \partial M\right)=\left(\int^{+} \omega\right.$. $\liminf (\lambda n$. e2ennreal $(\max 0(\operatorname{ereal}(X n \omega)))) \partial M)$ using convergent-AE by (fast intro: nn-integral-cong-AE)
moreover have $\left(\int^{+} \omega\right.$. liminf $(\lambda n$. e2ennreal $\left.(\max 0(\operatorname{ereal}(X n \omega)))) \partial M\right) \leq$ $\liminf \left(\lambda n .\left(\int^{+} \omega\right.\right.$. e2ennreal $\left.\left.(\max 0(\operatorname{ereal}(X n \omega))) \partial M\right)\right)$
by (intro nn-integral-liminf) auto
moreover have $\left(\int^{+} \omega\right.$. e2ennreal $\left.(\max 0(\operatorname{ereal}(X n \omega))) \partial M\right)=\operatorname{ennreal}\left(\int \omega\right.$. $\max 0(X n \omega) \partial M)$ for n
using e2ennreal-ereal ereal-max-0
by (subst nn-integral-eq-integral[symmetric]) (fastforce intro!: nn-integral-cong integrable | presburger)+
moreover have liminf-pos-part-finite: liminf (λ n. ennreal $\left(\int \omega . \max 0(X n \omega)\right.$ $\partial M))<\infty$
unfolding liminf-SUP-INF
using Inf-lower2[OF - bounded-pos-part]
by (intro order.strict-trans1[OF Sup-least, of - ennreal C]) (metis (mono-tags, lifting) atLeast-iff imageE image-eqI order.refl, simp)
ultimately have pos-part-finite: $\left(\int{ }^{+} \omega\right.$. e2ennreal ($\max 0$ (liminf $(\lambda n$. ereal $(X$ $n \omega)$)) $\partial M)<\infty$ by force
- Integral of negative part is $<\infty$.
\{
fix ω
assume asm: convergent $(\lambda n$. ereal $(X n \omega))$
hence $(\lambda n .-\min 0(\operatorname{ereal}(X n \omega))) \longrightarrow-\min 0(\lim (\lambda n$. ereal $(X n$ $\omega)$)
using convergent-LIMSEQ-iff isCont-tendsto-compose continuous-min contin-uous-const continuous-ident continuous-at-e2ennreal
by fast
hence $(\lambda n$. e2ennreal $(-\min 0(\operatorname{ereal}(X n \omega)))) \longrightarrow$ e2ennreal $(-\min 0$ $(\lim (\lambda n$. ereal $(X n \omega))))$
using isCont-tendsto-compose continuous-at-e2ennreal by blast
moreover have $\lim (\lambda n$. e2ennreal $(-\min 0($ ereal $(X n \omega))))=$ e2ennreal $(-\min 0(\lim (\lambda n$. ereal $(X n \omega))))$ using limI calculation by blast
ultimately have e2ennreal $(-\min 0(\liminf (\lambda n$. ereal $(X n \omega))))=\liminf$ $(\lambda n$. e2ennreal $(-\min 0($ ereal $(X n \omega)))$ using convergent-liminf-cl by (metis asm convergent-def limI)
\}
hence $\left(\int^{+} \omega\right.$. e2ennreal $(-\min 0(\liminf (\lambda n$. ereal $\left.(X n \omega)))) \partial M\right)=\left(\int^{+} \omega\right.$. $\liminf (\lambda n$. e2ennreal $(-\min 0($ ereal $(X n \omega)))) \partial M)$ using convergent- $A E$ by (fast intro: nn-integral-cong-AE)
moreover have $\left(\int{ }^{+} \omega\right.$. $\liminf (\lambda n$. e2ennreal $\left.(-\min 0(\operatorname{ereal}(X n \omega)))) \partial M\right)$ $\leq \liminf \left(\lambda n .\left(\int{ }^{+} \omega\right.\right.$. e2ennreal $\left.\left.(-\min 0(\operatorname{ereal}(X n \omega))) \partial M\right)\right)$
by (intro nn-integral-liminf) auto
moreover have $\left(\int^{+} \omega\right.$. e2ennreal $\left.(-\min 0(\operatorname{ereal}(X n \omega))) \partial M\right)=\left(\int \omega\right.$. max $0(X n \omega) \partial M)-\left(\int \omega \cdot X n \omega \partial M\right)$ for n proof -
have $*:(-\min 0 c)=\max 0 c-c$ if $c \neq \infty$ for $c::$ ereal using that by
hence $\left(\int{ }^{+} \omega\right.$. e2ennreal $(-\min 0($ ereal $\left.(X n \omega))) \partial M\right)=\left(\int{ }^{+} \omega\right.$. e2ennreal $(\max 0(\operatorname{ereal}(X n \omega))-(\operatorname{ereal}(X n \omega))) \partial M)$ by simp
also have $\ldots=\left(\int^{+} \omega\right.$. ennreal $\left.(\max 0(X n \omega)-(X n \omega)) \partial M\right)$ using e2ennreal-ereal ereal-max-0 ereal-minus(1) by (intro nn-integral-cong) presburger
also have $\ldots=\left(\int \omega . \max 0(X n \omega)-(X n \omega) \partial M\right)$ using integrable by (intro nn-integral-eq-integral) auto
finally show ?thesis using Bochner-Integration.integral-diff integrable by simp qed
moreover have liminf $\left(\lambda n\right.$. ennreal $\left(\left(\int \omega . \max 0(X n \omega) \partial M\right)-\left(\int \omega . X n \omega\right.\right.$ $\partial M)))<\infty$

proof -

\{
fix $n A$
assume asm: ennreal $\left(\left(\int \omega \cdot \max 0(X n \omega) \partial M\right)-\left(\int \omega . X n \omega \partial M\right)\right) \in A$
have $\left(\int \omega . X 0 \omega \partial M\right) \leq\left(\int \omega . X n \omega \partial M\right)$ using set-integral-le[OF sets.top
order-refl, of n] space- F by (simp add: integrable set-integral-space)
hence $\left(\int \omega \cdot \max 0(X n \omega) \partial M\right)-\left(\int \omega . X n \omega \partial M\right) \leq C-\left(\int \omega . X 0 \omega\right.$ $\partial M)$ using assms(2)[of $n]$ by argo
hence ennreal $\left(\left(\int \omega \cdot \max 0(X n \omega) \partial M\right)-\left(\int \omega \cdot X n \omega \partial M\right)\right) \leq$ ennreal $(C$ - ($\left.\int \omega . X 0 \omega \partial M\right)$) using ennreal-leI by blast
hence Inf $A \leq \operatorname{ennreal}\left(C-\left(\int \omega . X 0 \omega \partial M\right)\right)$ by (rule Inf-lower2[OF asm])

\}

thus ?thesis
unfolding liminf-SUP-INF
by (intro order.strict-trans1[OF Sup-least, of - ennreal ($C-\left(\int \omega . X 0 \omega\right.$ $\partial M)$)]) (metis (no-types, lifting) atLeast-iff imageE image-eqI order.refl order-trans, simp)
qed
ultimately have neg-part-finite: $\left(\int{ }^{+} \omega\right.$. e2ennreal $(-(\min 0)(\liminf (\lambda n$. ereal $(X n \omega))))) \partial M)<\infty$ by simp

- Putting it all together now to show that the limit is integrable and $<\infty$ a.e.
have e2ennreal $\mid \liminf (\lambda n$. ereal $(X n \omega)) \mid=$ e2ennreal (max 0 (liminf $(\lambda n$. ereal $(X n \omega)))+$ e2ennreal $(-(\min 0(\liminf (\lambda n$. ereal $(X n \omega))))$ for ω
unfolding ereal-abs-max-min
by (simp add: eq-onp-same-args max-def plus-ennreal.abs-eq)
hence $\left(\int{ }^{+} \omega\right.$. e2ennreal $\mid \liminf (\lambda n$. ereal $\left.(X n \omega)) \mid \partial M\right)=\left(\int^{+} \omega\right.$. e2ennreal $(\max 0(\liminf (\lambda n$. ereal $(X n \omega))) \partial M)+\left(\int+\omega\right.$. e2ennreal $(-(\min 0$ (liminf $(\lambda n$. ereal $(X n \omega))))$) ∂M) by (auto intro: nn-integral-add)
hence nn-integral-finite: $\left(\int^{+} \omega\right.$. e2ennreal $\mid \liminf (\lambda n$. ereal $\left.(X n \omega)) \mid \partial M\right) \neq$ ∞ using pos-part-finite neg-part-finite by auto
hence finite- $A E: A E \omega$ in M. e2ennreal $\mid \liminf (\lambda n$. ereal $(X n \omega)) \mid \neq \infty$ by (intro nn-integral-noteq-infinite) auto

moreover

\{
fix ω
assume asm: $\liminf (\lambda n . X n \omega)=\limsup (\lambda n . X n \omega) \mid \liminf (\lambda n$. ereal $(X$

$$
n \omega)) \mid \neq \infty
$$

hence $(\lambda n . X n \omega) \longrightarrow$ real-of-ereal $(\liminf (\lambda n . X n \omega))$ using lim-sup-le-liminf-real ereal-real' by simp
\}
ultimately have converges: $A E \omega$ in $M .(\lambda n . X n \omega) \longrightarrow$ real-of-ereal (liminf ($\lambda n . X n \omega)$) using liminf-limsup- $A E$ by fastforce
\{
fix ω
assume e2ennreal $\mid \liminf (\lambda n$. ereal $(X n \omega)) \mid \neq \infty$
hence $\mid \liminf (\lambda n$. ereal $(X n \omega)) \mid \neq \infty$ by force
hence e2ennreal $\mid \liminf (\lambda n$. ereal $(X n \omega)) \mid=$ ennreal (norm (real-of-ereal $(\liminf (\lambda n$. ereal $(X n \omega))))$ by fastforce
\}
hence $\left(\int^{+} \omega\right.$. e2ennreal $\mid \liminf (\lambda$. ereal $\left.(X n \omega)) \mid \partial M\right)=\left(\int^{+} \omega\right.$. ennreal (norm (real-of-ereal $(\liminf (\lambda n$. ereal $(X n \omega)))) \partial M)$ using finite- $A E$ by (fast intro: nn-integral-cong-AE)
hence $\left(\int^{+} \omega\right.$. ennreal (norm (real-of-ereal $(\liminf (\lambda n$. ereal $\left.\left.(X n \omega)))\right) \partial M\right)$ $<\infty$ using $n n$-integral-finite by (simp add: order-less-le)
hence integrable $M(\lambda \omega$. real-of-ereal (liminf $(\lambda n . X n \omega))$) by (intro inte-grableI-bounded) auto
moreover have $(\lambda \omega$. real-of-ereal $(\liminf (\lambda n . X n \omega))) \in$ borel-measurable F_{∞} using borel-measurable-liminf[OF F-infinity-measurableI] adapted by measurable ultimately show ?thesis using that converges by presburger qed

- We state the theorem again for martingales and supermartingales.

```
corollary supermartingale-convergence- \(A E\) :
    fixes \(X::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow\) real
    assumes supermartingale MF0X
            and \(\wedge n .\left(\int \omega \cdot \max 0(-X n \omega) \partial M\right) \leq C\)
            obtains \(X_{\text {lim }}\) where \(A E \omega\) in \(M .(\lambda n . X n \omega) \longrightarrow X_{\text {lim }} \omega\)
                                    integrable \(M X_{\text {lim }}\)
                                    \(X_{l i m} \in\) borel-measurable \(\left(F_{\infty}\right)\)
proof -
    obtain \(Y\) where \(*: A E \omega\) in \(M .(\lambda n .-X n \omega) \longrightarrow Y \omega\) integrable \(M Y Y\)
\(\in\) borel-measurable ( \(F_{\infty}\) )
    using supermartingale.uminus[OF assms(1), THEN submartingale-convergence-AE]
\(\operatorname{assms}(2)\) by auto
    hence \(A E \omega\) in \(M .(\lambda n . X n \omega) \longrightarrow(-Y) \omega\) integrable \(M(-Y)-Y \in\)
borel-measurable ( \(F_{\infty}\) )
            using isCont-tendsto-compose[OF isCont-minus, OF continuous-ident \(]\) inte-
grable-minus borel-measurable-uminus unfolding fun-Compl-def by fastforce+
    thus ?thesis using that \([o f-Y]\) by blast
qed
corollary martingale-convergence- \(A E\) :
    fixes \(X::\) nat \(\Rightarrow{ }^{\prime} a \Rightarrow\) real
```

```
    assumes martingale M F O X
    and }\bigwedgen.(\int\omega.|Xn\omega|\partialM)\leq
    obtains X Xlim}\mathrm{ where AE }\omega\mathrm{ in M. ( \n. X n }\omega)\longrightarrow\mp@subsup{X}{lim}{}
                        integrable M X lim
                Xlim}\in\mathrm{ borel-measurable ( }\mp@subsup{F}{\infty}{}\mathrm{ )
proof -
    interpret martingale-linorder M F O X unfolding martingale-linorder-def by
(rule assms)
    have max 0 (X n \omega) \leq | X n \omega| for n \omega by linarith
    hence (\int\omega. max 0 (X n\omega)\partialM)\leqC for n using assms(2)[THEN dual-order.trans,
OF integral-mono, OF integrable-max] integrable by fast
    thus ?thesis using that submartingale-convergence-AE[OF submartingale-axioms]
by blast
qed
corollary martingale-nonneg-convergence-AE:
    fixes }X\mathrm{ :: nat }=>\mp@subsup{}{}{\prime}a=>\mathrm{ real
    assumes martingale MF X X \n. AE \omega in M. X n\omega\geq0
    obtains X Xim}\mathrm{ where AE }\omega\mathrm{ in M. ( \n. Xn }\omega)\longrightarrow\mp@subsup{X}{lim}{}
                    integrable M X \im
                    Xlim}\in\mathrm{ borel-measurable ( }\mp@subsup{F}{\infty}{}\mathrm{ )
proof -
    interpret martingale-linorder M F O X unfolding martingale-linorder-def by
(rule assms)
    have AE \omega in M. max 0 (-X n\omega)=0 for n using assms(2)[of n] by force
    hence (\int\omega. max 0 (-X n\omega)\partialM)\leq0 for n by (simp add: integral-eq-zero-AE)
    thus ?thesis using that supermartingale-convergence-AE[OF supermartingale-axioms]
by blast
qed
end
end
```


References

[1] R. Degenne and K. Ying. A Formalization of Doob's Martingale Convergence Theorems in mathlib. In Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs. Association for Computing Machinery, New York, United States, 2022. arXiv:2212.05578.
[2] R. Degenne and K. Ying. probability.martingale.basic - mathlib, 2022. https://leanprover-community.github.io/mathlib_docs/ probability/martingale/basic.html, Last Accessed: 15 Feb 2024.
[3] R. Durrett. Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. URL: https://books.google.de/books?id=b22MDwAAQBAJ.
[4] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford University Press, 2020.
[5] J. Hölzl and A. Heller. Three Chapters of Measure Theory in Isabelle/HOL. In M. C. J. D. van Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk, editors, Interactive Theorem Proving (ITP 2011), volume 6898 of $L N C S$, pages 135-151, 2011. doi:10.1007/978-3-642-22863-6_12.
[6] A. Keskin. A Formalization of Martingales in Isabelle/HOL. Bachelor's thesis, Technical University of Munich, 2023. arXiv:2311.06188.
[7] A. Keskin. Martingales. Archive of Formal Proofs, November 2023. https://isa-afp.org/entries/Martingales.html, Formal proof development.

