
Doob’s Upcrossing Inequality and Martingale
Convergence Theorem

Ata Keskin

April 19, 2024

Abstract

In this entry, we formalize Doob’s upcrossing inequality and subse-
quently prove Doob’s first martingale convergence theorem. The up-
crossing inequality is a fundamental result in the study of martingales.
It provides a bound on the expected number of times a submartingale
crosses a certain threshold within a given interval. Doob’s martingale
convergence theorem states that, if we have a submartingale where the
supremum over the mean of the positive parts is finite, then the limit
process exists almost surely and is integrable. Equivalent statements
for martingales and supermartingales are also provided as corollaries.

The proofs provided are based mostly on the formalization done in
the Lean mathematical library [1, 2].

Contents
1 Introduction 2

2 Stopping Times and Hitting Times 4
2.1 Stopping Time . 4
2.2 σ-algebra of a Stopping Time 6
2.3 Hitting Time . 11

3 Doob’s Upcrossing Inequality and Martingale Convergence
Theorems 16
3.1 Upcrossings and Downcrossings 17
3.2 Doob’s Upcrossing Inequality 27

4 Doob’s First Martingale Convergence Theorem 33

1

1 Introduction
Martingales, in the context of stochastic processes, are encountered in various
real-world scenarios where outcomes are influenced by past events but are
not entirely predictable due to randomness or uncertainty. A martingale is a
stochastic process in which the expected value of the next observation, given
all past observations, is equal to the current observation.

One real-world example can be encountered in environmental monitoring,
particularly in the study of river flow rates. Consider a hydrologist tasked
with monitoring the flow rate of a river to understand its behavior over
time. The flow rate of a river is influenced by various factors such as rainfall,
snowmelt, groundwater levels, and human activities like dam releases or water
diversions. These factors contribute to the variability and unpredictability of
the flow rate. In this scenario, the flow rate of the river can be modeled as a
martingale. The flow rate at any given time is influenced by past events but
is not entirely predictable due to the random nature of rainfall and other
factors.

One concept that comes up frequently in the study of martingales are
upcrossings and downcrossings. Upcrossings and downcrossings are random
variables representing when the value of a stochastic process leaves a fixed
interval. Specifically, an upcrossing occurs when the process moves from
below the lower bound of the interval to above the upper bound [4], indicating
a potential upward trend or positive movement. Conversely, a downcrossing
happens when the process crosses below the lower bound of the interval,
suggesting a potential downward trend or negative movement. By analyzing
the frequency and timing of these crossings, researchers can infer information
about the underlying dynamics of the process and detect shifts in its behavior.

For instance, consider tracking the movement of a stock price over time.
The process representing the stock’s price might cross above a certain thresh-
old (upcrossing) or below it (downcrossing) multiple times during a trading
session. The number of such crossings provides insights into the volatility
and the trend of the stock.

Doob’s upcrossing inequality is a fundamental result in the study of
martingales. It provides a bound on the expected number of upcrossings a
submartingale undertakes before some point in time.

Let’s consider our example concerning river flow rates again. In this
context, upcrossings represent instances where the flow rate of the river rises
above a certain threshold. For example, the flow rate might cross a threshold
indicating flood risk. Downcrossings, on the other hand, represent instances
where the flow rate decreases below a certain threshold. This could indicate
drought conditions or low-flow periods.

Doob’s first martingale convergence theorem gives sufficient conditions for
a submartingale to converge to a random variable almost surely. The proof is
based on controlling the rate of growth or fluctuations of the submartingale,

2

which is where the upcrossing inequality comes into play. By bounding these
fluctuations, we can ensure that the submartingale does not exhibit wild
behavior or grow too quickly, which is essential for proving convergence.

Formally, the convergence theorem states that, if (Mn)n≥0 is a submartin-
gale with supn E[M+

n] < ∞, where M+
n denotes the positive part of Mn,

then the limit process M∞ := limnMn exists almost surely and is integrable.
Furthermore, the limit process is measurable with respect to the smallest
σ-algebra containing all of the σ-algebras in the filtration. In our formaliza-
tion, we also show equivalent convergence statements for martingales and
supermartingales. The theorem can be used to easily show convergence
results for simple scenarios.

Consider the following example: Imagine a casino game where a player
bets on the outcome of a random coin toss, where the coin comes up heads
with odds p ∈ [0, 12). Assume that the player goes bust when they have
no money remaining. The player’s wealth over time can be modeled as a
supermartingale, where the value of their wealth at each time step depends
only on the outcome of the previous coin toss. Doob’s martingale convergence
theorem assures us that the player will go bankrupt as the number of coin
tosses increases.

The theorem that we have described here and formalized in the scope
of our project is called Doob’s first martingale convergence theorem. It is
important to note that the convergence in this theorem is pointwise, not
uniform, and is unrelated to convergence in mean square, or indeed in any
Lp space. In order to obtain convergence in L1 (i.e., convergence in mean),
one requires uniform integrability of the random variables. In this form,
the theorem is called Doob’s second martingale convergence theorem. Since
uniform integrability is not yet formalized in Isabelle/HOL, we have decided
to confine our formalization to the first convergence theorem only.

3

2 Stopping Times and Hitting Times

In this section we formalize stopping times and hitting times. A stopping
time is a random variable that represents the time at which a certain event
occurs within a stochastic process. A hitting time, also known as first passage
time or first hitting time, is a specific type of stopping time that represents
the first time a stochastic process reaches a particular state or crosses a
certain threshold.
theory Stopping-Time
imports Martingales.Stochastic-Process
begin

2.1 Stopping Time

The formalization of stopping times here is simply a rewrite of the document
HOL−Probability.Stopping-Time [5]. We have adapted the document to use
the locales defined in our formalization of filtered measure spaces [6] [7].
This way, we can omit the partial formalization of filtrations in the original
document. Furthermore, we can include the initial time index t0 that we
introduced as well.
context linearly-filtered-measure
begin

— A stopping time is a measurable function from the measure space (possible events)
into the time axis.

definition stopping-time :: (′a ⇒ ′b) ⇒ bool where
stopping-time T = ((T ∈ space M → {t0..}) ∧ (∀ t≥t0. Measurable.pred (F t)

(λx. T x ≤ t)))

lemma stopping-time-cong:
assumes

∧
t x. t ≥ t0 =⇒ x ∈ space (F t) =⇒ T x = S x

shows stopping-time T = stopping-time S
proof (cases T ∈ space M → {t0..})

case True
hence S ∈ space M → {t0..} using assms space-F by force
then show ?thesis unfolding stopping-time-def

using assms arg-cong[where f=(λP. ∀ t≥t0. P t)] measurable-cong[where
M=F - and f=λx. T x ≤ - and g=λx. S x ≤ -] True by metis
next

case False
hence S /∈ space M → {t0..} using assms space-F by force
then show ?thesis unfolding stopping-time-def using False by blast

qed

lemma stopping-time-ge-zero:
assumes stopping-time T ω ∈ space M

4

shows T ω ≥ t0
using assms unfolding stopping-time-def by auto

lemma stopping-timeD:
assumes stopping-time T t ≥ t0
shows Measurable.pred (F t) (λx. T x ≤ t)
using assms unfolding stopping-time-def by simp

lemma stopping-timeI [intro?]:
assumes

∧
x. x ∈ space M =⇒ T x ≥ t0

(
∧

t. t ≥ t0 =⇒ Measurable.pred (F t) (λx. T x ≤ t))
shows stopping-time T
using assms by (auto simp: stopping-time-def)

lemma stopping-time-measurable:
assumes stopping-time T
shows T ∈ borel-measurable M

proof (rule borel-measurableI-le)
{

fix t assume ¬ t ≥ t0
hence {x ∈ space M . T x ≤ t} = {} using assms dual-order .trans[of - t t0]

unfolding stopping-time-def by fastforce
hence {x ∈ space M . T x ≤ t} ∈ sets M by (metis sets.empty-sets)

}
moreover
{

fix t assume asm: t ≥ t0
hence {x ∈ space M . T x ≤ t} ∈ sets M using stopping-timeD[OF assms asm]

sets-F-subset unfolding Measurable.pred-def space-F [OF asm] by blast
}
ultimately show {x ∈ space M . T x ≤ t} ∈ sets M for t by blast

qed

lemma stopping-time-const:
assumes t ≥ t0
shows stopping-time (λx. t) using assms by (auto simp: stopping-time-def)

lemma stopping-time-min:
assumes stopping-time T stopping-time S
shows stopping-time (λx. min (T x) (S x))
using assms by (auto simp: stopping-time-def min-le-iff-disj intro!: pred-intros-logic)

lemma stopping-time-max:
assumes stopping-time T stopping-time S
shows stopping-time (λx. max (T x) (S x))
using assms by (auto simp: stopping-time-def intro!: pred-intros-logic max.coboundedI1)

5

2.2 σ-algebra of a Stopping Time

Moving on, we define the σ-algebra associated with a stopping time T. It
contains all the information up to time T, the same way F t contains all the
information up to time t.
definition pre-sigma :: (′a ⇒ ′b) ⇒ ′a measure where

pre-sigma T = sigma (space M) {A ∈ sets M . ∀ t≥t0. {ω ∈ A. T ω ≤ t} ∈ sets
(F t)}

lemma measure-pre-sigma[simp]: emeasure (pre-sigma T) = (λ-. 0) by (simp add:
pre-sigma-def emeasure-sigma)

lemma sigma-algebra-pre-sigma:
assumes stopping-time T
shows sigma-algebra (space M) {A ∈ sets M . ∀ t≥t0. {ω∈A. T ω ≤ t} ∈ sets (F

t)}
proof −

let ?Σ = {A ∈ sets M . ∀ t≥t0. {ω∈A. T ω ≤ t} ∈ sets (F t)}
{

fix A assume asm: A ∈ ?Σ
{

fix t assume asm ′: t ≥ t0
hence {ω∈A. T ω ≤ t} ∈ sets (F t) using asm by blast
then have {ω ∈ space (F t). T ω ≤ t} − {ω ∈ A. T ω ≤ t} ∈ sets (F t)

using assms[THEN stopping-timeD, OF asm ′] by auto
also have {ω ∈ space (F t). T ω ≤ t} − {ω ∈ A. T ω ≤ t} = {ω ∈ space M

− A. T ω ≤ t} using space-F [OF asm ′] by blast
finally have {ω ∈ (space M) − A. T ω ≤ t} ∈ sets (F t) .

}
hence space M − A ∈ ?Σ using asm by blast

}
moreover
{

fix A :: nat ⇒ ′a set assume asm: range A ⊆ ?Σ
{

fix t assume t ≥ t0
then have (

⋃
i. {ω ∈ A i. T ω ≤ t}) ∈ sets (F t) using asm by auto

also have (
⋃

i. {ω ∈ A i. T ω ≤ t}) = {ω ∈
⋃
(A ‘ UNIV). T ω ≤ t} by

auto
finally have {ω ∈

⋃
(range A). T ω ≤ t} ∈ sets (F t) .

}
hence

⋃
(range A) ∈ ?Σ using asm by blast

}
ultimately show ?thesis unfolding sigma-algebra-iff2 by (auto intro!: sets.sets-into-space[THEN

PowI , THEN subsetI])
qed

lemma space-pre-sigma[simp]: space (pre-sigma T) = space M unfolding pre-sigma-def
by (intro space-measure-of-conv)

6

lemma sets-pre-sigma:
assumes stopping-time T
shows sets (pre-sigma T) = {A ∈ sets M . ∀ t≥t0. {ω∈A. T ω ≤ t} ∈ F t}
unfolding pre-sigma-def using sigma-algebra.sets-measure-of-eq[OF sigma-algebra-pre-sigma,

OF assms] by blast

lemma sets-pre-sigmaI :
assumes stopping-time T

and
∧

t. t ≥ t0 =⇒ {ω ∈ A. T ω ≤ t} ∈ F t
shows A ∈ pre-sigma T

proof (cases ∃ t≥t0. ∀ t ′. t ′ ≤ t)
case True
then obtain t where t ≥ t0 {ω ∈ A. T ω ≤ t} = A by blast
hence A ∈ M using assms(2)[of t] sets-F-subset[of t] by fastforce
thus ?thesis using assms(2) unfolding sets-pre-sigma[OF assms(1)] by blast

next
case False
hence ∗: {t<..} 6= {} if t ≥ t0 for t by (metis not-le empty-iff greaterThan-iff)
obtain D :: ′b set where D: countable D

∧
X . open X =⇒ X 6= {} =⇒ D ∩ X

6= {} by (metis countable-dense-setE disjoint-iff)
have ∗∗: D ∩ {t<..} 6= {} if t ≥ t0 for t using ∗ that by (intro D(2)) auto
{

fix ω
obtain t where t: t ≥ t0 T ω ≤ t using linorder-linear by auto
moreover obtain t ′ where t ′ ∈ D ∩ {t<..} ∩ {t0..} using ∗∗ t by fastforce
moreover have T ω ≤ t ′ using calculation by fastforce
ultimately have ∃ t. ∃ t ′ ∈ D ∩ {t<..} ∩ {t0..}. T ω ≤ t ′ by blast

}
hence (

⋃
t ′∈(

⋃
t. D ∩ {t<..} ∩ {t0..}). {ω ∈ A. T ω ≤ t ′}) = A by fast

moreover have (
⋃

t ′∈(
⋃

t. D ∩ {t<..} ∩ {t0..}). {ω ∈ A. T ω ≤ t ′}) ∈ M
using D assms(2) sets-F-subset by (intro sets.countable-UN ′′, fastforce, fast)

ultimately have A ∈ M by argo
thus ?thesis using assms(2) unfolding sets-pre-sigma[OF assms(1)] by blast

qed

lemma pred-pre-sigmaI :
assumes stopping-time T
shows (

∧
t. t ≥ t0 =⇒ Measurable.pred (F t) (λω. P ω ∧ T ω ≤ t)) =⇒

Measurable.pred (pre-sigma T) P
unfolding pred-def space-pre-sigma using assms by (auto intro: sets-pre-sigmaI [OF

assms(1)])

lemma sets-pre-sigmaD:
assumes stopping-time T A ∈ pre-sigma T t ≥ t0
shows {ω ∈ A. T ω ≤ t} ∈ sets (F t)
using assms sets-pre-sigma by auto

lemma borel-measurable-stopping-time-pre-sigma:

7

assumes stopping-time T
shows T ∈ borel-measurable (pre-sigma T)

proof (intro borel-measurableI-le sets-pre-sigmaI [OF assms])
fix t t ′ assume asm: t ≥ t0
{

assume ¬ t ′ ≥ t0
hence {ω ∈ {x ∈ space (pre-sigma T). T x ≤ t ′}. T ω ≤ t} = {} using assms

dual-order .trans[of - t ′ t0] unfolding stopping-time-def by fastforce
hence {ω ∈ {x ∈ space (pre-sigma T). T x ≤ t ′}. T ω ≤ t} ∈ sets (F t) by

(metis sets.empty-sets)
}
moreover
{

assume asm ′: t ′ ≥ t0
have {ω ∈ space (F (min t ′ t)). T ω ≤ min t ′ t} ∈ sets (F (min t ′ t))

using assms asm asm ′ unfolding pred-def [symmetric] by (intro stop-
ping-timeD) auto

also have . . . ⊆ sets (F t)
using assms asm asm ′ by (intro sets-F-mono) auto

finally have {ω ∈ {x ∈ space (pre-sigma T). T x ≤ t ′}. T ω ≤ t} ∈ sets (F t)
using asm asm ′ by simp

}
ultimately show {ω ∈ {x ∈ space (pre-sigma T). T x ≤ t ′}. T ω ≤ t} ∈ sets

(F t) by blast
qed

lemma mono-pre-sigma:
assumes stopping-time T stopping-time S

and
∧

x. x ∈ space M =⇒ T x ≤ S x
shows pre-sigma T ⊆ pre-sigma S

proof
fix A assume A ∈ pre-sigma T
hence asm: A ∈ sets M t ≥ t0 =⇒ {ω ∈ A. T ω ≤ t} ∈ sets (F t) for t using

assms sets-pre-sigma by blast+
{

fix t assume asm ′: t ≥ t0
then have A ⊆ space M using sets.sets-into-space asm by blast
have {ω∈A. T ω ≤ t} ∩ {ω∈space (F t). S ω ≤ t} ∈ sets (F t)

using asm asm ′ stopping-timeD[OF assms(2)] by (auto simp: pred-def)
also have {ω∈A. T ω ≤ t} ∩ {ω∈space (F t). S ω ≤ t} = {ω∈A. S ω ≤ t}

using sets.sets-into-space[OF asm(1)] assms(3) order-trans asm ′ by fastforce
finally have {ω∈A. S ω ≤ t} ∈ sets (F t) by simp

}
thus A ∈ pre-sigma S by (intro sets-pre-sigmaI assms asm) blast

qed

lemma stopping-time-measurable-le:
assumes stopping-time T s ≥ t0 t ≥ s
shows Measurable.pred (F t) (λω. T ω ≤ s)

8

using assms stopping-timeD[of T] sets-F-mono[of - t] by (auto simp: pred-def)

lemma stopping-time-measurable-less:
assumes stopping-time T s ≥ t0 t ≥ s
shows Measurable.pred (F t) (λω. T ω < s)

proof −
have Measurable.pred (F t) (λω. T ω < t) if asm: stopping-time T t ≥ t0 for T t
proof −

obtain D :: ′b set where D: countable D
∧

X . open X =⇒ X 6= {} =⇒ D ∩ X
6= {} by (metis countable-dense-setE disjoint-iff)

show ?thesis
proof cases

assume ∗: ∀ t ′∈{t0..<t}. {t ′<..<t} 6= {}
hence ∗∗: D ∩ {t ′<..< t} 6= {} if t ′ ∈ {t0..<t} for t ′ using that by (intro

D(2)) fastforce+

show ?thesis
proof (rule measurable-cong[THEN iffD2])

show T ω < t ←→ (∃ r∈D ∩ {t0..<t}. T ω ≤ r) if ω ∈ space (F t) for ω
using ∗∗[of T ω] that less-imp-le stopping-time-ge-zero asm by fastforce

show Measurable.pred (F t) (λw. ∃ r∈D ∩ {t0..<t}. T w ≤ r)
using stopping-time-measurable-le asm D by (intro measurable-pred-countable)

auto
qed

next
assume ¬ (∀ t ′∈{t0..<t}. {t ′<..<t} 6= {})
then obtain t ′ where t ′: t ′ ∈ {t0..<t} {t ′<..<t} = {} by blast
show ?thesis
proof (rule measurable-cong[THEN iffD2])

show T ω < t ←→ T ω ≤ t ′ for ω using t ′ by (metis atLeastLessThan-iff
emptyE greaterThanLessThan-iff linorder-not-less order .strict-trans1)

show Measurable.pred (F t) (λw. T w ≤ t ′) using t ′ by (intro stop-
ping-time-measurable-le[OF asm(1)]) auto

qed
qed

qed
thus ?thesis
using assms sets-F-mono[of - t] by (auto simp add: pred-def)

qed

lemma stopping-time-measurable-ge:
assumes stopping-time T s ≥ t0 t ≥ s
shows Measurable.pred (F t) (λω. T ω ≥ s)
by (auto simp: not-less[symmetric] intro: stopping-time-measurable-less[OF assms]

Measurable.pred-intros-logic)

lemma stopping-time-measurable-gr :
assumes stopping-time T s ≥ t0 t ≥ s
shows Measurable.pred (F t) (λx. s < T x)

9

by (auto simp add: not-le[symmetric] intro: stopping-time-measurable-le[OF assms]
Measurable.pred-intros-logic)

lemma stopping-time-measurable-eq:
assumes stopping-time T s ≥ t0 t ≥ s
shows Measurable.pred (F t) (λω. T ω = s)
unfolding eq-iff using stopping-time-measurable-le[OF assms] stopping-time-measurable-ge[OF

assms]
by (intro pred-intros-logic)

lemma stopping-time-less-stopping-time:
assumes stopping-time T stopping-time S
shows Measurable.pred (pre-sigma T) (λω. T ω < S ω)

proof (rule pred-pre-sigmaI)
fix t assume asm: t ≥ t0
obtain D :: ′b set where D: countable D and semidense-D:

∧
x y. x < y =⇒

(∃ b∈D. x ≤ b ∧ b < y)
using countable-separating-set-linorder2 by auto

show Measurable.pred (F t) (λω. T ω < S ω ∧ T ω ≤ t)
proof (rule measurable-cong[THEN iffD2])

let ?f = λω. if T ω = t then ¬ S ω ≤ t else ∃ s∈D ∩ {t0..t}. T ω ≤ s ∧ ¬ (S
ω ≤ s)

{
fix ω assume ω ∈ space (F t) T ω ≤ t T ω 6= t T ω < S ω
hence t0 ≤ T ω T ω < min t (S ω) using asm stopping-time-ge-zero[OF

assms(1)] by auto
then obtain r where r ∈ D t0 ≤ r T ω ≤ r r < min t (S ω) using

semidense-D order-trans by blast
hence ∃ s∈D ∩ {t0..t}. T ω ≤ s ∧ s < S ω by auto

}
thus (T ω < S ω ∧ T ω ≤ t) = ?f ω if ω ∈ space (F t) for ω using that by

force
show Measurable.pred (F t) ?f

using assms asm D
by (intro pred-intros-logic measurable-If measurable-pred-countable count-

able-Collect
stopping-time-measurable-le predE stopping-time-measurable-eq) auto

qed
qed (intro assms)

end

lemma (in enat-filtered-measure) stopping-time-SUP-enat:
fixes T :: nat ⇒ (′a ⇒ enat)
shows (

∧
i. stopping-time (T i)) =⇒ stopping-time (SUP i. T i)

unfolding stopping-time-def SUP-apply SUP-le-iff by (auto intro!: pred-intros-countable)

lemma (in enat-filtered-measure) stopping-time-Inf-enat:
assumes

∧
i. Measurable.pred (F i) (P i)

10

shows stopping-time (λω. Inf {i. P i ω})
proof −

{
fix t :: enat assume asm: t 6= ∞
moreover
{

fix i ω assume Inf {i. P i ω} ≤ t
moreover have a < eSuc b ←→ (a ≤ b ∧ a 6= ∞) for a b by (cases a) auto
ultimately have (∃ i≤t. P i ω) using asm unfolding Inf-le-iff by (cases t)

(auto elim!: allE [of - eSuc t])
}
ultimately have ∗:

∧
ω. Inf {i. P i ω} ≤ t ←→ (∃ i∈{..t}. P i ω) by (auto

intro!: Inf-lower2)
have Measurable.pred (F t) (λω. Inf {i. P i ω} ≤ t) unfolding ∗ using

sets-F-mono assms by (intro pred-intros-countable-bounded) (auto simp: pred-def)
}
moreover have Measurable.pred (F t) (λω. Inf {i. P i ω} ≤ t) if t = ∞ for t

using that by simp
ultimately show ?thesis by (blast intro: stopping-timeI [OF i0-lb])

qed

lemma (in nat-filtered-measure) stopping-time-Inf-nat:
assumes

∧
i. Measurable.pred (F i) (P i)∧

i ω. ω ∈ space M =⇒ ∃n. P n ω
shows stopping-time (λω. Inf {i. P i ω})

proof (rule stopping-time-cong[THEN iffD2])
show stopping-time (λx. LEAST n. P n x)
proof

fix t
have ((LEAST n. P n ω) ≤ t) = (∃ i≤t. P i ω) if ω ∈ space M for ω by (rule

LeastI2-wellorder-ex[OF assms(2)[OF that]]) auto
moreover have Measurable.pred (F t) (λw. ∃ i∈{..t}. P i w) using sets-F-mono[of

- t] assms by (intro pred-intros-countable-bounded) (auto simp: pred-def)
ultimately show Measurable.pred (F t) (λω. (LEAST n. P n ω) ≤ t) by (subst

measurable-cong[of F t]) auto
qed (simp)

qed (simp add: Inf-nat-def)

definition stopped-value :: (′b ⇒ ′a ⇒ ′c) ⇒ (′a ⇒ ′b) ⇒ (′a ⇒ ′c) where
stopped-value X τ ω = X (τ ω) ω

2.3 Hitting Time

Given a stochastic process X and a borel set A, hitting-time X A s t is the
first time X is in A after time s and before time t. If X does not hit A
after time s and before t then the hitting time is simply t. The definition
presented here coincides with the definition of hitting times in mathlib [1].
context linearly-filtered-measure

11

begin

definition hitting-time :: (′b ⇒ ′a ⇒ ′c) ⇒ ′c set ⇒ ′b ⇒ ′b ⇒ (′a ⇒ ′b) where
hitting-time X A s t = (λω. if ∃ i∈{s..t} ∩ {t0..}. X i ω ∈ A then Inf ({s..t} ∩
{t0..} ∩ {i. X i ω ∈ A}) else max t0 t)

lemma hitting-time-def ′:
hitting-time X A s t = (λω. Inf (insert (max t0 t) ({s..t} ∩ {t0..} ∩ {i. X i ω ∈

A})))
proof cases

assume asm: t0 ≤ s ∧ s ≤ t
hence {s..t} ∩ {t0..} = {s..t} by simp
{

fix ω
assume ∗: {s..t} ∩ {t0..} ∩ {i. X i ω ∈ A} 6= {}
then obtain i where i ∈ {s..t} ∩ {t0..} ∩ {i. X i ω ∈ A} by blast
hence Inf ({s..t} ∩ {t0..} ∩ {i. X i ω ∈ A}) ≤ t by (intro cInf-lower [of i,

THEN order-trans]) auto
hence Inf (insert (max t0 t) ({s..t} ∩ {t0..} ∩ {i. X i ω ∈ A})) = Inf ({s..t} ∩

{t0..} ∩ {i. X i ω ∈ A}) using asm ∗ inf-absorb2 by (subst cInf-insert-If) force+
also have ... = hitting-time X A s t ω using ∗ unfolding hitting-time-def by

auto
finally have hitting-time X A s t ω = Inf (insert (max t0 t) ({s..t} ∩ {t0..} ∩

{i. X i ω ∈ A})) by argo
}
moreover
{

fix ω
assume {s..t} ∩ {t0..} ∩ {i. X i ω ∈ A} = {}
hence hitting-time X A s t ω = Inf (insert (max t0 t) ({s..t} ∩ {t0..} ∩ {i. X

i ω ∈ A})) unfolding hitting-time-def by auto
}
ultimately show ?thesis by fast

next
assume ¬ (t0 ≤ s ∧ s ≤ t)
moreover
{

assume asm: s < t0 t ≥ t0
hence {s..t} ∩ {t0..} = {t0..t} by simp
{

fix ω
assume ∗: {s..t} ∩ {t0..} ∩ {i. X i ω ∈ A} 6= {}
then obtain i where i ∈ {s..t} ∩ {t0..} ∩ {i. X i ω ∈ A} by blast
hence Inf ({s..t} ∩ {t0..} ∩ {i. X i ω ∈ A}) ≤ t by (intro cInf-lower [of i,

THEN order-trans]) auto
hence Inf (insert (max t0 t) ({s..t} ∩ {t0..} ∩ {i. X i ω ∈ A})) = Inf ({s..t}

∩ {t0..} ∩ {i. X i ω ∈ A}) using asm ∗ inf-absorb2 by (subst cInf-insert-If) force+

also have ... = hitting-time X A s t ω using ∗ unfolding hitting-time-def

12

by auto
finally have hitting-time X A s t ω = Inf (insert (max t0 t) ({s..t} ∩ {t0..}

∩ {i. X i ω ∈ A})) by argo
}
moreover
{

fix ω
assume {s..t} ∩ {t0..} ∩ {i. X i ω ∈ A} = {}
hence hitting-time X A s t ω = Inf (insert (max t0 t) ({s..t} ∩ {t0..} ∩ {i.

X i ω ∈ A})) unfolding hitting-time-def by auto
}
ultimately have ?thesis by fast

}
moreover have ?thesis if s < t0 t < t0 using that unfolding hitting-time-def

by auto
moreover have ?thesis if s > t using that unfolding hitting-time-def by auto
ultimately show ?thesis by fastforce

qed

— The following lemma provides a sufficient condition for an injective function to
preserve a hitting time.

lemma hitting-time-inj-on:
assumes inj-on f S

∧
ω t. t ≥ t0 =⇒ X t ω ∈ S A ⊆ S

shows hitting-time X A = hitting-time (λt ω. f (X t ω)) (f ‘ A)
proof −

have X t ω ∈ A ←→ f (X t ω) ∈ f ‘ A if t ≥ t0 for t ω using assms that
inj-on-image-mem-iff by meson

hence {t0..} ∩ {i. X i ω ∈ A} = {t0..} ∩ {i. f (X i ω) ∈ f ‘ A} for ω by blast
thus ?thesis unfolding hitting-time-def ′ Int-assoc by presburger

qed

lemma hitting-time-translate:
fixes c :: - :: ab-group-add
shows hitting-time X A = hitting-time (λn ω. X n ω + c) (((+) c) ‘ A)
by (subst hitting-time-inj-on[OF inj-on-add, of - UNIV]) (simp add: add.commute)+

lemma hitting-time-le:
assumes t ≥ t0
shows hitting-time X A s t ω ≤ t
unfolding hitting-time-def ′ using assms
by (intro cInf-lower [of max t0 t, THEN order-trans]) auto

lemma hitting-time-ge:
assumes t ≥ t0 s ≤ t
shows s ≤ hitting-time X A s t ω
unfolding hitting-time-def ′ using assms
by (intro le-cInf-iff [THEN iffD2]) auto

13

lemma hitting-time-mono:
assumes t ≥ t0 s ≤ s ′ t ≤ t ′

shows hitting-time X A s t ω ≤ hitting-time X A s ′ t ′ ω
unfolding hitting-time-def ′ using assms by (fastforce intro!: cInf-mono)

end

context nat-filtered-measure
begin

— Hitting times are stopping times for adapted processes.

lemma stopping-time-hitting-time:
assumes adapted-process M F 0 X A ∈ borel
shows stopping-time (hitting-time X A s t)

proof −
interpret adapted-process M F 0 X by (rule assms)
have insert t ({s..t} ∩ {i. X i ω ∈ A}) = {i. i = t ∨ i ∈ ({s..t} ∩ {i. X i ω ∈

A})} for ω by blast
hence hitting-time X A s t = (λω. Inf {i. i = t ∨ i ∈ ({s..t} ∩ {i. X i ω ∈ A})})

unfolding hitting-time-def ′ by simp
thus ?thesis using assms by (auto intro: stopping-time-Inf-nat)

qed

lemma stopping-time-hitting-time ′:
assumes adapted-process M F 0 X A ∈ borel stopping-time s

∧
ω. s ω ≤ t

shows stopping-time (λω. hitting-time X A (s ω) t ω)
proof −

interpret adapted-process M F 0 X by (rule assms)
{

fix n
have s ω ≤ hitting-time X A (s ω) t ω if s ω > n for ω using hitting-time-ge[OF

- assms(4)] by simp
hence (

⋃
i∈{n<..}. {ω. s ω = i} ∩ {ω. hitting-time X A i t ω ≤ n}) = {} by

fastforce
hence ∗: (λω. hitting-time X A (s ω) t ω ≤ n) = (λω. ∃ i≤n. s ω = i ∧

hitting-time X A i t ω ≤ n) by force

have Measurable.pred (F n) (λω. s ω = i ∧ hitting-time X A i t ω ≤ n) if i ≤
n for i

proof −
have Measurable.pred (F i) (λω. s ω = i) using stopping-time-measurable-eq

assms by blast
hence Measurable.pred (F n) (λω. s ω = i) by (meson less-eq-nat.simps

measurable-from-subalg subalgebra-F that)
moreover have Measurable.pred (F n) (λω. hitting-time X A i t ω ≤ n)

using stopping-timeD[OF stopping-time-hitting-time, OF assms(1 ,2)] by blast
ultimately show ?thesis by auto

qed

14

hence Measurable.pred (F n) (λω. ∃ i≤n. s ω = i ∧ hitting-time X A i t ω ≤
n) by (intro pred-intros-countable) auto

hence Measurable.pred (F n) (λω. hitting-time X A (s ω) t ω ≤ n) using ∗ by
argo

}
thus ?thesis by (intro stopping-timeI) auto

qed

— If X hits A at time j ∈ {s..t}, then the stopped value of X at the hitting time of
A in the interval {s..t} is an element of A.

lemma stopped-value-hitting-time-mem:
assumes j ∈ {s..t} X j ω ∈ A
shows stopped-value X (hitting-time X A s t) ω ∈ A

proof −
have ∃ i∈{s..t} ∩ {0 ..}. X i ω ∈ A using assms by blast
moreover have Inf ({s..t} ∩ {i. X i ω ∈ A}) ∈ {s..t} ∩ {i. X i ω ∈ A} using

assms by (blast intro!: Inf-nat-def1)
ultimately show ?thesis unfolding hitting-time-def stopped-value-def by simp

qed

lemma hitting-time-le-iff :
assumes i < t
shows hitting-time X A s t ω ≤ i ←→ (∃ j ∈ {s..i}. X j ω ∈ A) (is ?lhs = ?rhs)

proof
assume ?lhs
moreover have hitting-time X A s t ω ∈ insert t ({s..t} ∩ {i. X i ω ∈ A})

by (metis hitting-time-def ′ Int-atLeastAtMostR2 inf-sup-aci(1) insertI1 max-0L
wellorder-InfI)

ultimately have hitting-time X A s t ω ∈ {s..i} ∩ {i. X i ω ∈ A} using assms
by force

thus ?rhs by blast
next

assume ?rhs
then obtain j where j: j ∈ {s..i} X j ω ∈ A by blast
hence hitting-time X A s t ω ≤ j unfolding hitting-time-def ′ using assms by

(auto intro: cInf-lower)
thus ?lhs using j by simp

qed

lemma hitting-time-less-iff :
assumes i ≤ t
shows hitting-time X A s t ω < i ←→ (∃ j ∈ {s..<i}. X j ω ∈ A) (is ?lhs =

?rhs)
proof

assume ?lhs
moreover have hitting-time X A s t ω ∈ insert t ({s..t} ∩ {i. X i ω ∈ A})

by (metis hitting-time-def ′ Int-atLeastAtMostR2 inf-sup-aci(1) insertI1 max-0L
wellorder-InfI)

15

ultimately have hitting-time X A s t ω ∈ {s..<i} ∩ {i. X i ω ∈ A} using assms
by force

thus ?rhs by blast
next

assume ?rhs
then obtain j where j: j ∈ {s..<i} X j ω ∈ A by blast
hence hitting-time X A s t ω ≤ j unfolding hitting-time-def ′ using assms by

(auto intro: cInf-lower)
thus ?lhs using j by simp

qed

— If X already hits A in the interval {s..t}, then hitting-time X A s t = hitting-time
X A s t ′ for t ≤ t ′.

lemma hitting-time-eq-hitting-time:
assumes t ≤ t ′ j ∈ {s..t} X j ω ∈ A
shows hitting-time X A s t ω = hitting-time X A s t ′ ω (is ?lhs = ?rhs)

proof −
have hitting-time X A s t ω ∈ {s..t ′} using hitting-time-le[THEN order-trans,

of t t ′ X A s] hitting-time-ge[of t s X A] assms by auto
moreover have stopped-value X (hitting-time X A s t) ω ∈ A by (blast intro:

stopped-value-hitting-time-mem assms)
ultimately have hitting-time X A s t ′ ω ≤ hitting-time X A s t ω by (fastforce

simp add: hitting-time-def ′[where t=t ′] stopped-value-def intro!: cInf-lower)
thus ?thesis by (blast intro: le-antisym hitting-time-mono[OF - order-refl assms(1)])

qed

end

end

3 Doob’s Upcrossing Inequality and Martingale
Convergence Theorems

In this section we formalize upcrossings and downcrossings. Following this,
we prove Doob’s upcrossing inequality and first martingale convergence
theorem.
theory Upcrossing

imports Martingales.Martingale Stopping-Time
begin

lemma real-embedding-borel-measurable: real ∈ borel-measurable borel by (auto
intro: borel-measurable-continuous-onI)

lemma limsup-lower-bound:

16

fixes u:: nat ⇒ ereal
assumes limsup u > l
shows ∃N>k. u N > l

proof −
have limsup u = − liminf (λn. − u n) using liminf-ereal-cminus[of 0 u] by simp
hence liminf (λn. − u n) < − l using assms ereal-less-uminus-reorder by

presburger
hence ∃N>k. − u N < − l using liminf-upper-bound by blast
thus ?thesis using ereal-less-uminus-reorder by simp

qed

lemma ereal-abs-max-min: |c| = max 0 c − min 0 c for c :: ereal
by (cases c ≥ 0) auto

3.1 Upcrossings and Downcrossings

Given a stochastic process X, real values a and b, and some point in time N,
we would like to define a notion of "upcrossings" of X across the band {a..b}
which counts the number of times any realization of X crosses from below
a to above b before time N. To make this heuristic rigorous, we inductively
define the following hitting times.
context nat-filtered-measure
begin

context
fixes X :: nat ⇒ ′a ⇒ real

and a b :: real
and N :: nat

begin

primrec upcrossing :: nat ⇒ ′a ⇒ nat where
upcrossing 0 = (λω. 0) |
upcrossing (Suc n) = (λω. hitting-time X {b..} (hitting-time X {..a} (upcrossing

n ω) N ω) N ω)

definition downcrossing :: nat ⇒ ′a ⇒ nat where
downcrossing n = (λω. hitting-time X {..a} (upcrossing n ω) N ω)

lemma upcrossing-simps:
upcrossing 0 = (λω. 0)
upcrossing (Suc n) = (λω. hitting-time X {b..} (downcrossing n ω) N ω)
by (auto simp add: downcrossing-def)

lemma downcrossing-simps:
downcrossing 0 = hitting-time X {..a} 0 N
downcrossing n = (λω. hitting-time X {..a} (upcrossing n ω) N ω)
by (auto simp add: downcrossing-def)

17

declare upcrossing.simps[simp del]

lemma upcrossing-le: upcrossing n ω ≤ N
by (cases n) (auto simp add: upcrossing-simps hitting-time-le)

lemma downcrossing-le: downcrossing n ω ≤ N
by (cases n) (auto simp add: downcrossing-simps hitting-time-le)

lemma upcrossing-le-downcrossing: upcrossing n ω ≤ downcrossing n ω
unfolding downcrossing-simps by (auto intro: hitting-time-ge upcrossing-le)

lemma downcrossing-le-upcrossing-Suc: downcrossing n ω ≤ upcrossing (Suc n) ω
unfolding upcrossing-simps by (auto intro: hitting-time-ge downcrossing-le)

lemma upcrossing-mono:
assumes n ≤ m
shows upcrossing n ω ≤ upcrossing m ω
using order-trans[OF upcrossing-le-downcrossing downcrossing-le-upcrossing-Suc]

assms
by (rule lift-Suc-mono-le)

lemma downcrossing-mono:
assumes n ≤ m
shows downcrossing n ω ≤ downcrossing m ω
using order-trans[OF downcrossing-le-upcrossing-Suc upcrossing-le-downcrossing]

assms
by (rule lift-Suc-mono-le)

— The following lemmas help us make statements about when an upcrossing (resp.
downcrossing) occurs, and the value that the process takes at that instant.

lemma stopped-value-upcrossing:
assumes upcrossing (Suc n) ω 6= N
shows stopped-value X (upcrossing (Suc n)) ω ≥ b

proof −
have ∗: upcrossing (Suc n) ω < N using le-neq-implies-less upcrossing-le assms

by presburger
have ∃ j ∈ {downcrossing n ω..upcrossing (Suc n) ω}. X j ω ∈ {b..}

using hitting-time-le-iff [THEN iffD1 , OF ∗] upcrossing-simps by fastforce
then obtain j where j: j ∈ {downcrossing n ω..N} X j ω ∈ {b..} using ∗ by

(meson atLeastatMost-subset-iff le-refl subsetD upcrossing-le)
thus ?thesis using stopped-value-hitting-time-mem[of j - - X] unfolding upcross-

ing-simps stopped-value-def by blast
qed

lemma stopped-value-downcrossing:
assumes downcrossing n ω 6= N
shows stopped-value X (downcrossing n) ω ≤ a

proof −

18

have ∗: downcrossing n ω < N using le-neq-implies-less downcrossing-le assms
by presburger

have ∃ j ∈ {upcrossing n ω..downcrossing n ω}. X j ω ∈ {..a}
using hitting-time-le-iff [THEN iffD1 , OF ∗] downcrossing-simps by fastforce

then obtain j where j: j ∈ {upcrossing n ω..N} X j ω ∈ {..a} using ∗ by
(meson atLeastatMost-subset-iff le-refl subsetD downcrossing-le)

thus ?thesis using stopped-value-hitting-time-mem[of j - - X] unfolding down-
crossing-simps stopped-value-def by blast
qed

lemma upcrossing-less-downcrossing:
assumes a < b downcrossing (Suc n) ω 6= N
shows upcrossing (Suc n) ω < downcrossing (Suc n) ω

proof −
have upcrossing (Suc n) ω 6= N using assms by (metis le-antisym downcrossing-le

upcrossing-le-downcrossing)
hence stopped-value X (downcrossing (Suc n)) ω < stopped-value X (upcrossing

(Suc n)) ω
using assms stopped-value-downcrossing stopped-value-upcrossing by force

hence downcrossing (Suc n) ω 6= upcrossing (Suc n) ω unfolding stopped-value-def
by force

thus ?thesis using upcrossing-le-downcrossing by (simp add: le-neq-implies-less)
qed

lemma downcrossing-less-upcrossing:
assumes a < b upcrossing (Suc n) ω 6= N
shows downcrossing n ω < upcrossing (Suc n) ω

proof −
have downcrossing n ω 6= N using assms by (metis le-antisym upcrossing-le

downcrossing-le-upcrossing-Suc)
hence stopped-value X (downcrossing n) ω < stopped-value X (upcrossing (Suc

n)) ω
using assms stopped-value-downcrossing stopped-value-upcrossing by force

hence downcrossing n ω 6= upcrossing (Suc n) ω unfolding stopped-value-def
by force
thus ?thesis using downcrossing-le-upcrossing-Suc by (simp add: le-neq-implies-less)

qed

lemma upcrossing-less-Suc:
assumes a < b upcrossing n ω 6= N
shows upcrossing n ω < upcrossing (Suc n) ω
by (metis assms upcrossing-le-downcrossing downcrossing-less-upcrossing or-

der-le-less-trans le-neq-implies-less upcrossing-le)

lemma upcrossing-eq-bound:
assumes a < b n ≥ N
shows upcrossing n ω = N

19

proof −
have ∗: upcrossing N ω = N
proof −

{
assume ∗: upcrossing N ω 6= N
hence asm: upcrossing n ω < N if n ≤ N for n using upcrossing-mono

upcrossing-le that by (metis le-antisym le-neq-implies-less)
{

fix i j
assume i ≤ N i < j
hence upcrossing i ω 6= upcrossing j ω by (metis Suc-leI asm assms(1) leD

upcrossing-less-Suc upcrossing-mono)
}
moreover
{

fix j
assume j ≤ N
hence upcrossing j ω ≤ upcrossing N ω using upcrossing-mono by blast
hence upcrossing (Suc N) ω 6= upcrossing j ω using upcrossing-less-Suc[OF

assms(1) ∗] by simp
}
ultimately have inj-on (λn. upcrossing n ω) {..Suc N} unfolding inj-on-def

by (metis atMost-iff le-SucE linorder-less-linear)
hence card ((λn. upcrossing n ω) ‘ {..Suc N}) = Suc (Suc N) by (simp add:

inj-on-iff-eq-card[THEN iffD1])
moreover have (λn. upcrossing n ω) ‘ {..Suc N} ⊆ {..N} using upcrossing-le

by blast
moreover have card ((λn. upcrossing n ω) ‘ {..Suc N}) ≤ Suc N using

card-mono[OF - calculation(2)] by simp
ultimately have False by linarith

}
thus ?thesis by blast

qed
thus ?thesis using upcrossing-mono[OF assms(2), of ω] upcrossing-le[of n ω] by

simp
qed

lemma downcrossing-eq-bound:
assumes a < b n ≥ N
shows downcrossing n ω = N
using upcrossing-le-downcrossing[of n ω] downcrossing-le[of n ω] upcrossing-eq-bound[OF

assms] by simp

lemma stopping-time-crossings:
assumes adapted-process M F 0 X
shows stopping-time (upcrossing n) stopping-time (downcrossing n)

proof −
have stopping-time (upcrossing n) ∧ stopping-time (downcrossing n)
proof (induction n)

20

case 0
then show ?case unfolding upcrossing-simps downcrossing-simps

using stopping-time-const stopping-time-hitting-time[OF assms] by simp
next

case (Suc n)
have stopping-time (upcrossing (Suc n)) unfolding upcrossing-simps

using assms Suc downcrossing-le by (intro stopping-time-hitting-time ′) auto
moreover have stopping-time (downcrossing (Suc n)) unfolding downcross-

ing-simps
using assms calculation upcrossing-le by (intro stopping-time-hitting-time ′)

auto
ultimately show ?case by blast

qed
thus stopping-time (upcrossing n) stopping-time (downcrossing n) by blast+

qed

lemmas stopping-time-upcrossing = stopping-time-crossings(1)
lemmas stopping-time-downcrossing = stopping-time-crossings(2)

— We define upcrossings-before as the number of upcrossings which take place strictly
before time N.

definition upcrossings-before :: ′a ⇒ nat where
upcrossings-before = (λω. Sup {n. upcrossing n ω < N})

lemma upcrossings-before-bdd-above:
assumes a < b
shows bdd-above {n. upcrossing n ω < N}

proof −
have {n. upcrossing n ω < N} ⊆ {..<N} unfolding lessThan-def Collect-mono-iff

using upcrossing-eq-bound[OF assms] linorder-not-less order-less-irrefl by metis
thus ?thesis by (meson bdd-above-Iio bdd-above-mono)

qed

lemma upcrossings-before-less:
assumes a < b 0 < N
shows upcrossings-before ω < N

proof −
have ∗: {n. upcrossing n ω < N} ⊆ {..<N} unfolding lessThan-def Col-

lect-mono-iff
using upcrossing-eq-bound[OF assms(1)] linorder-not-less order-less-irrefl by

metis
have upcrossing 0 ω < N unfolding upcrossing-simps by (rule assms)
moreover have Sup {..<N} < N unfolding Sup-nat-def using assms by simp
ultimately show ?thesis unfolding upcrossings-before-def using cSup-subset-mono[OF

- - ∗] by force
qed

lemma upcrossings-before-less-implies-crossing-eq-bound:

21

assumes a < b upcrossings-before ω < n
shows upcrossing n ω = N

downcrossing n ω = N
proof −

have ¬ upcrossing n ω < N using assms upcrossings-before-bdd-above[of ω]
upcrossings-before-def bdd-above-nat finite-Sup-less-iff by fastforce

thus upcrossing n ω = N using upcrossing-le[of n ω] by simp
thus downcrossing n ω = N using upcrossing-le-downcrossing[of n ω] downcross-

ing-le[of n ω] by simp
qed

lemma upcrossings-before-le:
assumes a < b
shows upcrossings-before ω ≤ N
using upcrossings-before-less assms less-le-not-le upcrossings-before-def
by (cases N) auto

lemma upcrossings-before-mem:
assumes a < b 0 < N
shows upcrossings-before ω ∈ {n. upcrossing n ω < N} ∩ {..<N}

proof −
have upcrossing 0 ω < N using assms unfolding upcrossing-simps by simp
hence {n. upcrossing n ω < N} 6= {} by blast
moreover have finite {n. upcrossing n ω < N} using upcrossings-before-bdd-above[OF

assms(1)] by (simp add: bdd-above-nat)
ultimately show ?thesis using Max-in upcrossings-before-less[OF assms(1 ,2)]

Sup-nat-def upcrossings-before-def by auto
qed

lemma upcrossing-less-of-le-upcrossings-before:
assumes a < b 0 < N n ≤ upcrossings-before ω
shows upcrossing n ω < N
using upcrossings-before-mem[OF assms(1 ,2), of ω] upcrossing-mono[OF assms(3),

of ω] by simp

lemma upcrossings-before-sum-def :
assumes a < b
shows upcrossings-before ω = (

∑
k∈{1 ..N}. indicator {n. upcrossing n ω < N}

k)
proof (cases N)

case 0
then show ?thesis unfolding upcrossings-before-def by simp

next
case (Suc N ′)
have upcrossing 0 ω < N using assms Suc unfolding upcrossing-simps by simp
hence {n. upcrossing n ω < N} 6= {} by blast
hence ∗: ¬ upcrossing n ω < N if n ∈ {upcrossings-before ω <..N} for n

using finite-Sup-less-iff [THEN iffD1 , OF bdd-above-nat[THEN iffD1 , OF
upcrossings-before-bdd-above], of ω n]

22

by (metis that assms greaterThanAtMost-iff less-not-refl mem-Collect-eq upcross-
ings-before-def)

have ∗∗: upcrossing n ω < N if n ∈ {1 ..upcrossings-before ω} for n
using assms that Suc by (intro upcrossing-less-of-le-upcrossings-before) auto

have upcrossings-before ω < N using upcrossings-before-less Suc assms by simp
hence {1 ..N} − {1 ..upcrossings-before ω} = {upcrossings-before ω<..N}

{1 ..N} ∩ {1 ..upcrossings-before ω} = {1 ..upcrossings-before ω} by force+
hence (

∑
k∈{1 ..N}. indicator {n. upcrossing n ω < N} k) =

(
∑

k∈{1 ..upcrossings-before ω}. indicator {n. upcrossing n ω < N} k) +
(
∑

k∈{upcrossings-before ω <..N}. indicator {n. upcrossing n ω < N} k)
using sum.Int-Diff [OF finite-atLeastAtMost, of - 1 N {1 ..upcrossings-before

ω}] by metis
also have ... = upcrossings-before ω using ∗ ∗∗ by simp
finally show ?thesis by argo

qed

lemma upcrossings-before-measurable:
assumes adapted-process M F 0 X a < b
shows upcrossings-before ∈ borel-measurable M
unfolding upcrossings-before-sum-def [OF assms(2)]
using stopping-time-measurable[OF stopping-time-crossings(1), OF assms(1)] by

simp

lemma upcrossings-before-measurable ′:
assumes adapted-process M F 0 X a < b
shows (λω. real (upcrossings-before ω)) ∈ borel-measurable M
using real-embedding-borel-measurable upcrossings-before-measurable[OF assms]

by simp

end

lemma crossing-eq-crossing:
assumes N ≤ N ′

and downcrossing X a b N n ω < N
shows upcrossing X a b N n ω = upcrossing X a b N ′ n ω

downcrossing X a b N n ω = downcrossing X a b N ′ n ω
proof −

have upcrossing X a b N n ω = upcrossing X a b N ′ n ω ∧ downcrossing X a b
N n ω = downcrossing X a b N ′ n ω using assms(2)

proof (induction n)
case 0
show ?case by (metis (no-types, lifting) upcrossing-simps(1) assms atLeast-0

bot-nat-0 .extremum hitting-time-def hitting-time-eq-hitting-time inf-top.right-neutral
leD downcrossing-mono downcrossing-simps(1) max-nat.left-neutral)

next
case (Suc n)

hence upper-less: upcrossing X a b N (Suc n) ω < N using upcrossing-le-downcrossing
Suc order .strict-trans1 by blast

hence lower-less: downcrossing X a b N n ω < N using downcrossing-le-upcrossing-Suc

23

order .strict-trans1 by blast

obtain j where j ∈ {downcrossing X a b N n ω..<N} X j ω ∈ {b..}
using hitting-time-less-iff [THEN iffD1 , OF order-refl] upper-less by (force

simp add: upcrossing-simps)
hence upper-eq: upcrossing X a b N (Suc n) ω = upcrossing X a b N ′ (Suc n) ω

using Suc(1)[OF lower-less] assms(1)
by (auto simp add: upcrossing-simps intro!: hitting-time-eq-hitting-time)

obtain j where j: j ∈ {upcrossing X a b N (Suc n) ω..<N} X j ω ∈ {..a}
using Suc(2) hitting-time-less-iff [THEN iffD1 , OF order-refl] by (force simp add:
downcrossing-simps)

thus ?case unfolding downcrossing-simps upper-eq by (force intro: hitting-time-eq-hitting-time
assms)

qed
thus upcrossing X a b N n ω = upcrossing X a b N ′ n ω downcrossing X a b N n

ω = downcrossing X a b N ′ n ω by auto
qed

lemma crossing-eq-crossing ′:
assumes N ≤ N ′

and upcrossing X a b N (Suc n) ω < N
shows upcrossing X a b N (Suc n) ω = upcrossing X a b N ′ (Suc n) ω

downcrossing X a b N n ω = downcrossing X a b N ′ n ω
proof −

show lower-eq: downcrossing X a b N n ω = downcrossing X a b N ′ n ω
using downcrossing-le-upcrossing-Suc[THEN order .strict-trans1] crossing-eq-crossing

assms by fast
have ∃ j∈{downcrossing X a b N n ω..<N}. X j ω ∈ {b..} using assms(2) by

(intro hitting-time-less-iff [OF order-refl, THEN iffD1]) (simp add: upcrossing-simps
lower-eq)

then obtain j where j∈{downcrossing X a b N n ω..N} X j ω ∈ {b..} by
fastforce

thus upcrossing X a b N (Suc n) ω = upcrossing X a b N ′ (Suc n) ω
unfolding upcrossing-simps stopped-value-def using hitting-time-eq-hitting-time[OF

assms(1)] lower-eq by metis
qed

lemma upcrossing-eq-upcrossing:
assumes N ≤ N ′

and upcrossing X a b N n ω < N
shows upcrossing X a b N n ω = upcrossing X a b N ′ n ω

using crossing-eq-crossing ′[OF assms(1)] assms(2) upcrossing-simps
by (cases n) (presburger , fast)

lemma upcrossings-before-zero: upcrossings-before X a b 0 ω = 0
unfolding upcrossings-before-def by simp

lemma upcrossings-before-less-exists-upcrossing:
assumes a < b

24

and upcrossing: N ≤ L X L ω < a L ≤ U b < X U ω
shows upcrossings-before X a b N ω < upcrossings-before X a b (Suc U) ω

proof −
have upcrossing X a b (Suc U) (upcrossings-before X a b N ω) ω ≤ L

using assms upcrossing-le[THEN order-trans, OF upcrossing(1)]
by (cases 0 < N , subst upcrossing-eq-upcrossing[of N Suc U , symmetric, OF -

upcrossing-less-of-le-upcrossings-before])
(auto simp add: upcrossings-before-zero upcrossing-simps)

hence downcrossing X a b (Suc U) (upcrossings-before X a b N ω) ω ≤ U
unfolding downcrossing-simps using upcrossing by (force intro: hitting-time-le-iff [THEN

iffD2])
hence upcrossing X a b (Suc U) (Suc (upcrossings-before X a b N ω)) ω < Suc

U
unfolding upcrossing-simps using upcrossing by (force intro: hitting-time-less-iff [THEN

iffD2])
thus ?thesis using cSup-upper [OF - upcrossings-before-bdd-above[OF assms(1)]]

upcrossings-before-def by fastforce
qed

lemma crossings-translate:
upcrossing X a b N = upcrossing (λn ω. (X n ω + c)) (a + c) (b + c) N
downcrossing X a b N = downcrossing (λn ω. (X n ω + c)) (a + c) (b + c) N

proof −
have upper : upcrossing X a b N n = upcrossing (λn ω. (X n ω + c)) (a + c) (b

+ c) N n for n
proof (induction n)

case 0
then show ?case by (simp only: upcrossing.simps)

next
case (Suc n)
have ((+) c ‘ {..a}) = {..a + c} by simp
moreover have ((+) c ‘ {b..}) = {b + c..} by simp

ultimately show ?case unfolding upcrossing.simps using hitting-time-translate[of
X {b..} c] hitting-time-translate[of X {..a} c] Suc by presburger

qed
thus upcrossing X a b N = upcrossing (λn ω. (X n ω + c)) (a + c) (b + c) N

by blast
have ((+) c ‘ {..a}) = {..a + c} by simp
thus downcrossing X a b N = downcrossing (λn ω. (X n ω + c)) (a + c) (b

+ c) N using upper downcrossing-simps hitting-time-translate[of X {..a} c] by
presburger
qed

lemma upcrossings-before-translate:
upcrossings-before X a b N = upcrossings-before (λn ω. (X n ω + c)) (a + c) (b

+ c) N
using upcrossings-before-def crossings-translate by simp

lemma crossings-pos-eq:

25

assumes a < b
shows upcrossing X a b N = upcrossing (λn ω. max 0 (X n ω − a)) 0 (b − a) N

downcrossing X a b N = downcrossing (λn ω. max 0 (X n ω − a)) 0 (b −
a) N
proof −

have ∗: max 0 (x − a) ∈ {..0} ←→ x − a ∈ {..0} max 0 (x − a) ∈ {b − a..}
←→ x − a ∈ {b − a..} for x using assms by auto

have upcrossing X a b N = upcrossing (λn ω. X n ω − a) 0 (b − a) N using
crossings-translate[of X a b N − a] by simp

thus upper : upcrossing X a b N = upcrossing (λn ω. max 0 (X n ω − a)) 0 (b
− a) N unfolding upcrossing-def hitting-time-def ′ using ∗ by presburger

thus downcrossing X a b N = downcrossing (λn ω. max 0 (X n ω − a)) 0 (b −
a) N

unfolding downcrossing-simps hitting-time-def ′ using upper ∗ by simp
qed

lemma upcrossings-before-mono:
assumes a < b N ≤ N ′

shows upcrossings-before X a b N ω ≤ upcrossings-before X a b N ′ ω
proof (cases N)

case 0
then show ?thesis unfolding upcrossings-before-def by simp

next
case (Suc N ′)
hence upcrossing X a b N 0 ω < N unfolding upcrossing-simps by simp
thus ?thesis unfolding upcrossings-before-def using upcrossings-before-bdd-above

upcrossing-eq-upcrossing assms by (intro cSup-subset-mono) auto
qed

lemma upcrossings-before-pos-eq:
assumes a < b
shows upcrossings-before X a b N = upcrossings-before (λn ω. max 0 (X n ω −

a)) 0 (b − a) N
using upcrossings-before-def crossings-pos-eq[OF assms] by simp

— We define upcrossings to be the total number of upcrossings a stochastic process
completes as N −−−−→ ∞.

definition upcrossings :: (nat ⇒ ′a ⇒ real) ⇒ real ⇒ real ⇒ ′a ⇒ ennreal where
upcrossings X a b = (λω. (SUP N . ennreal (upcrossings-before X a b N ω)))

lemma upcrossings-measurable:
assumes adapted-process M F 0 X a < b
shows upcrossings X a b ∈ borel-measurable M
unfolding upcrossings-def
using upcrossings-before-measurable ′[OF assms] by (auto intro!: borel-measurable-SUP)

end

26

lemma (in nat-finite-filtered-measure) integrable-upcrossings-before:
assumes adapted-process M F 0 X a < b
shows integrable M (λω. real (upcrossings-before X a b N ω))

proof −
have (

∫
+ x. ennreal (norm (real (upcrossings-before X a b N x))) ∂M) ≤ (

∫
+ x.

ennreal N ∂M) using upcrossings-before-le[OF assms(2)] by (intro nn-integral-mono)
simp

also have ... = ennreal N ∗ emeasure M (space M) by simp
also have ... < ∞ by (metis emeasure-real ennreal-less-top ennreal-mult-less-top

infinity-ennreal-def)
finally show ?thesis by (intro integrableI-bounded upcrossings-before-measurable ′

assms)
qed

3.2 Doob’s Upcrossing Inequality

Doob’s upcrossing inequality provides a bound on the expected number
of upcrossings a submartingale completes before some point in time. The
proof follows the proof presented in the paper A Formalization of Doob ′s
Martingale Convergence Theorems in mathlib [1] [2].
context nat-finite-filtered-measure
begin

theorem upcrossing-inequality:
fixes a b :: real and N :: nat
assumes submartingale M F 0 X
shows (b − a) ∗ (

∫
ω. real (upcrossings-before X a b N ω) ∂M) ≤ (

∫
ω. max 0

(X N ω − a) ∂M)
proof −

interpret submartingale-linorder M F 0 X unfolding submartingale-linorder-def
by (intro assms)

show ?thesis
proof (cases a < b)

case True
— We show the statement first for X 0 non-negative and X N greater than or

equal to a.
have ∗: (b − a) ∗ (

∫
ω. real (upcrossings-before X a b N ω) ∂M) ≤ (

∫
ω. X N

ω ∂M)
if asm: submartingale M F 0 X a < b

∧
ω. X 0 ω ≥ 0

∧
ω. X N ω ≥ a

for a b X
proof −

interpret subm: submartingale M F 0 X by (intro asm)
define C :: nat ⇒ ′a ⇒ real where C = (λn ω.

∑
k < N . indicator

{downcrossing X a b N k ω..<upcrossing X a b N (Suc k) ω} n)
have C-values: C n ω ∈ {0 , 1} for n ω
proof (cases ∃ j < N . n ∈ {downcrossing X a b N j ω..<upcrossing X a b N

(Suc j) ω})

27

case True
then obtain j where j: j ∈ {..<N} n ∈ {downcrossing X a b N j

ω..<upcrossing X a b N (Suc j) ω} by blast
{

fix k l :: nat assume k-less-l: k < l
hence Suc-k-le-l: Suc k ≤ l by simp

have {downcrossing X a b N k ω..<upcrossing X a b N (Suc k) ω} ∩
{downcrossing X a b N l ω..<upcrossing X a b N (Suc l) ω} =

{downcrossing X a b N l ω..<upcrossing X a b N (Suc k) ω}
using k-less-l upcrossing-mono downcrossing-mono by simp

moreover have upcrossing X a b N (Suc k) ω ≤ downcrossing X a b N l ω
using upcrossing-le-downcrossing downcrossing-mono[OF Suc-k-le-l]

order-trans by blast
ultimately have {downcrossing X a b N k ω..<upcrossing X a b N (Suc

k) ω} ∩ {downcrossing X a b N l ω..<upcrossing X a b N (Suc l) ω} = {} by simp
}
hence disjoint-family-on (λk. {downcrossing X a b N k ω..<upcrossing X a

b N (Suc k) ω}) {..<N}
unfolding disjoint-family-on-def
by (metis Int-commute linorder-less-linear)

hence C n ω = 1 unfolding C-def using sum-indicator-disjoint-family[where
?f=λ-. 1] j by fastforce

thus ?thesis by blast
next

case False
hence C n ω = 0 unfolding C-def by simp
thus ?thesis by simp

qed
hence C-interval: C n ω ∈ {0 ..1} for n ω by (metis atLeastAtMost-iff

empty-iff insert-iff order .refl zero-less-one-class.zero-le-one)

— We consider the discrete stochastic integral of C and λn ω. 1 − C n ω.
define C ′ where C ′ = (λn ω.

∑
k < n. C k ω ∗R (X (Suc k) ω − X k ω))

define one-minus-C ′ where one-minus-C ′ = (λn ω.
∑

k < n. (1 − C k ω)
∗R (X (Suc k) ω − X k ω))

— We use the fact that the crossing times are stopping times to show that C is
predictable.

have adapted-C : adapted-process M F 0 C
proof

fix i
have (λω. indicat-real {downcrossing X a b N k ω..<upcrossing X a b N

(Suc k) ω} i) ∈ borel-measurable (F i) for k
unfolding indicator-def
using stopping-time-upcrossing[OF subm.adapted-process-axioms, THEN

stopping-time-measurable-gr]
stopping-time-downcrossing[OF subm.adapted-process-axioms, THEN

stopping-time-measurable-le]
by force

28

thus C i ∈ borel-measurable (F i) unfolding C-def by simp
qed

hence adapted-process M F 0 (λn ω. 1 − C n ω) by (intro adapted-process.diff-adapted
adapted-process-const)

hence submartingale-one-minus-C ′: submartingale M F 0 one-minus-C ′

unfolding one-minus-C ′-def using C-interval
by (intro submartingale-partial-sum-scaleR[of - - 1] submartingale-linorder .intro

asm) auto

have C n ∈ borel-measurable M for n
using adapted-C adapted-process.adapted measurable-from-subalg subalg by

blast

have integrable-C ′: integrable M (C ′ n) for n unfolding C ′-def using
C-interval

by (intro submartingale-partial-sum-scaleR[THEN submartingale.integrable]
submartingale-linorder .intro adapted-C asm) auto

— We show the following inequality, by using the fact that one-minus-C ′ is a
submartingale.

have integralL M (C ′ n) ≤ integralL M (X n) for n
proof −

interpret subm ′: submartingale-linorder M F 0 one-minus-C ′ unfolding
submartingale-linorder-def by (rule submartingale-one-minus-C ′)

have 0 ≤ integralL M (one-minus-C ′ n)
using subm ′.set-integral-le[OF sets.top, where i=0 and j=n] space-F

subm ′.integrable by (fastforce simp add: set-integral-space one-minus-C ′-def)
moreover have one-minus-C ′ n ω = (

∑
k < n. X (Suc k) ω − X k ω) −

C ′ n ω for ω
unfolding one-minus-C ′-def C ′-def by (simp only: scaleR-diff-left

sum-subtractf scale-one)
ultimately have 0 ≤ (LINT ω|M . (

∑
k < n. X (Suc k) ω − X k ω)) −

integralL M (C ′ n)
using subm.integrable integrable-C ′

by (subst Bochner-Integration.integral-diff [symmetric]) (auto simp add:
one-minus-C ′-def)

moreover have (LINT ω|M . (
∑

k<n. X (Suc k) ω − X k ω)) ≤ (LINT
ω|M . X n ω) using asm sum-lessThan-telescope[of λi. X i - n] subm.integrable

by (intro integral-mono) auto
ultimately show ?thesis by linarith

qed
moreover have (b − a) ∗ (

∫
ω. real (upcrossings-before X a b N ω) ∂M) ≤

integralL M (C ′ N)
proof (cases N)

case 0
then show ?thesis using C ′-def upcrossings-before-zero by simp

next
case (Suc N ′)
{

29

fix ω
have dc-not-N : downcrossing X a b N k ω 6= N if k < upcrossings-before

X a b N ω for k
by (metis Suc Suc-leI asm(2) downcrossing-le-upcrossing-Suc leD that

upcrossing-less-of-le-upcrossings-before zero-less-Suc)
have uc-not-N :upcrossing X a b N (Suc k) ω 6= N if k < upcrossings-before

X a b N ω for k
by (metis Suc Suc-leI asm(2) order-less-irrefl that upcrossing-less-of-le-upcrossings-before

zero-less-Suc)

have subset-lessThan-N : {downcrossing X a b N i ω..<upcrossing X a b N
(Suc i) ω} ⊆ {..<N} if i < N for i using that

by (simp add: lessThan-atLeast0 upcrossing-le)

— First we rewrite the sum as follows:

have C ′ N ω = (
∑

k<N .
∑

i<N . indicator {downcrossing X a b N i
ω..<upcrossing X a b N (Suc i) ω} k ∗ (X (Suc k) ω − X k ω))

unfolding C ′-def C-def by (simp add: sum-distrib-right)
also have ... = (

∑
i<N .

∑
k<N . indicator {downcrossing X a b N i

ω..<upcrossing X a b N (Suc i) ω} k ∗ (X (Suc k) ω − X k ω))
using sum.swap by fast

also have ... = (
∑

i<N .
∑

k∈{..<N} ∩ {downcrossing X a b N i
ω..<upcrossing X a b N (Suc i) ω}. X (Suc k) ω − X k ω)

by (subst Indicator-Function.sum-indicator-mult) simp+
also have ... = (

∑
i<N .

∑
k∈{downcrossing X a b N i ω..<upcrossing X

a b N (Suc i) ω}. X (Suc k) ω − X k ω)
using subset-lessThan-N [THEN Int-absorb1] by simp
also have ... = (

∑
i<N . X (upcrossing X a b N (Suc i) ω) ω − X

(downcrossing X a b N i ω) ω)
by (subst sum-Suc-diff ′[OF downcrossing-le-upcrossing-Suc]) blast

finally have ∗: C ′ N ω = (
∑

i<N . X (upcrossing X a b N (Suc i) ω) ω
− X (downcrossing X a b N i ω) ω) .

— For k ≤ N, we consider three cases:
— 1. If k < upcrossings-before X a b N ω, then X (upcrossing X a b N

(Suc k) ω) ω − X (downcrossing X a b N k ω) ω ≥ b − a
— 2. If upcrossings-before X a b N ω < k, then X (upcrossing X a b N

(Suc k) ω) ω = X (downcrossing X a b N k ω) ω
— 3. If k = upcrossings-before X a b N ω, then X (upcrossing X a b N

(Suc k) ω) ω − X (downcrossing X a b N k ω) ω ≥ 0

have summand-zero-if : X (upcrossing X a b N (Suc k) ω) ω − X
(downcrossing X a b N k ω) ω = 0 if k > upcrossings-before X a b N ω for k

using that upcrossings-before-less-implies-crossing-eq-bound[OF asm(2)]
by simp

have summand-nonneg-if : X (upcrossing X a b N (Suc (upcrossings-before
X a b N ω)) ω) ω − X (downcrossing X a b N (upcrossings-before X a b N ω) ω)

30

ω ≥ 0
using upcrossings-before-less-implies-crossing-eq-bound(1)[OF asm(2)

lessI]
stopped-value-downcrossing[of X a b N - ω, THEN order-trans, OF -

asm(4)[of ω]]
by (cases downcrossing X a b N (upcrossings-before X a b N ω) ω 6= N)

(simp add: stopped-value-def)+

have interval: {upcrossings-before X a b N ω..<N} − {upcrossings-before
X a b N ω} = {upcrossings-before X a b N ω<..<N}

using Diff-insert atLeastSucLessThan-greaterThanLessThan lessThan-Suc
lessThan-minus-lessThan by metis

have (b − a) ∗ real (upcrossings-before X a b N ω) = (
∑

-<upcrossings-before
X a b N ω. b − a) by simp

also have ... ≤ (
∑

k<upcrossings-before X a b N ω. stopped-value X
(upcrossing X a b N (Suc k)) ω − stopped-value X (downcrossing X a b N k) ω)

using stopped-value-downcrossing[OF dc-not-N] stopped-value-upcrossing[OF
uc-not-N] by (force intro!: sum-mono)

also have ... = (
∑

k<upcrossings-before X a b N ω. X (upcrossing X a b
N (Suc k) ω) ω − X (downcrossing X a b N k ω) ω) unfolding stopped-value-def
by blast

also have ... ≤ (
∑

k<upcrossings-before X a b N ω. X (upcrossing X a b
N (Suc k) ω) ω − X (downcrossing X a b N k ω) ω)

+ (
∑

k∈{upcrossings-before X a b N ω}. X (upcrossing X a b
N (Suc k) ω) ω − X (downcrossing X a b N k ω) ω)

+ (
∑

k∈{upcrossings-before X a b N ω<..<N}. X (upcrossing
X a b N (Suc k) ω) ω − X (downcrossing X a b N k ω) ω)

using summand-zero-if summand-nonneg-if by auto
also have ... = (

∑
k<N . X (upcrossing X a b N (Suc k) ω) ω − X

(downcrossing X a b N k ω) ω)
using upcrossings-before-le[OF asm(2)]

by (subst sum.subset-diff [where A={..<N} and B={..<upcrossings-before
X a b N ω}], simp, simp,

subst sum.subset-diff [where A={..<N} − {..<upcrossings-before X a
b N ω} and B={upcrossings-before X a b N ω}])

(simp add: Suc asm(2) upcrossings-before-less, simp, simp add: interval)
finally have (b − a) ∗ real (upcrossings-before X a b N ω) ≤ C ′ N ω

using ∗ by presburger
}
thus ?thesis using integrable-upcrossings-before subm.adapted-process-axioms

asm integrable-C ′

by (subst integral-mult-right-zero[symmetric], intro integral-mono) auto
qed
ultimately show ?thesis using order-trans by blast

qed

have (b − a) ∗ (
∫
ω. real (upcrossings-before X a b N ω) ∂M) = (b − a) ∗

(
∫
ω. real (upcrossings-before (λn ω. max 0 (X n ω − a)) 0 (b − a) N ω) ∂M)

31

using upcrossings-before-pos-eq[OF True] by simp
also have ... ≤ (

∫
ω. max 0 (X N ω − a) ∂M)

using ∗[OF submartingale-linorder .max-0 [OF submartingale-linorder .intro,
OF submartingale.diff , OF assms supermartingale-const], of 0 b − a a] True by
simp

finally show ?thesis .
next

case False
have 0 ≤ (

∫
ω. max 0 (X N ω − a) ∂M) by simp

moreover have 0 ≤ (
∫
ω. real (upcrossings-before X a b N ω) ∂M) by simp

moreover have b − a ≤ 0 using False by simp
ultimately show ?thesis using mult-nonpos-nonneg order-trans by meson

qed
qed

theorem upcrossing-inequality-Sup:
fixes a b :: real
assumes submartingale M F 0 X
shows (b − a) ∗ (

∫
+ω. upcrossings X a b ω ∂M) ≤ (SUP N . (

∫
+ω. max 0 (X

N ω − a) ∂M))
proof −

interpret submartingale M F 0 X by (intro assms)
show ?thesis
proof (cases a < b)

case True
have (

∫
+ω. upcrossings X a b ω ∂M) = (SUP N . (

∫
+ω. real (upcrossings-before

X a b N ω) ∂M))
unfolding upcrossings-def

using upcrossings-before-mono True upcrossings-before-measurable ′[OF adapted-process-axioms]
by (auto intro: nn-integral-monotone-convergence-SUP simp add: mono-def

le-funI)
hence (b − a) ∗ (

∫
+ω. upcrossings X a b ω ∂M) = (SUP N . (b − a) ∗ (

∫
+ω.

real (upcrossings-before X a b N ω) ∂M))
by (simp add: SUP-mult-left-ennreal)

moreover
{

fix N
have (

∫
+ω. real (upcrossings-before X a b N ω) ∂M) = (

∫
ω. real (upcrossings-before

X a b N ω) ∂M)
by (force intro!: nn-integral-eq-integral integrable-upcrossings-before True

adapted-process-axioms)
moreover have (

∫
+ω. max 0 (X N ω − a) ∂M) = (

∫
ω. max 0 (X N ω −

a) ∂M)
using Bochner-Integration.integrable-diff [OF integrable integrable-const]
by (force intro!: nn-integral-eq-integral)

ultimately have (b − a) ∗ (
∫

+ω. real (upcrossings-before X a b N ω) ∂M)
≤ (

∫
+ω. max 0 (X N ω − a) ∂M)
using upcrossing-inequality[OF assms, of b a N] True ennreal-mult ′[symmetric]

by simp

32

}
ultimately show ?thesis by (force intro!: Sup-mono)

qed (simp add: ennreal-neg)
qed

end

end

4 Doob’s First Martingale Convergence Theorem
theory Doob-Convergence

imports Upcrossing
begin

context nat-finite-filtered-measure
begin

Doob’s martingale convergence theorem states that, if we have a submartin-
gale where the supremum over the mean of the positive parts is finite, then
the limit process exists almost surely and is integrable. Furthermore, the
limit process is measurable with respect to the smallest σ-algebra containing
all of the σ-algebras in the filtration. The argumentation below is taken
mostly from [3].
theorem submartingale-convergence-AE :

fixes X :: nat ⇒ ′a ⇒ real
assumes submartingale M F 0 X

and
∧

n. (
∫
ω. max 0 (X n ω) ∂M) ≤ C

obtains X lim where AE ω in M . (λn. X n ω) −−−−→ X lim ω
integrable M X lim

X lim ∈ borel-measurable (F∞)
proof −

interpret submartingale-linorder M F 0 X unfolding submartingale-linorder-def
by (rule assms)

— We first show that the number of upcrossings has to be finite using the upcrossing
inequality we proved above.

have finite-upcrossings: AE ω in M . upcrossings X a b ω 6= ∞ if a < b for a b
proof −
have C-nonneg: C ≥ 0 using assms(2) by (meson Bochner-Integration.integral-nonneg

linorder-not-less max.cobounded1 order-less-le-trans)
{

fix n
have (

∫
+ω. max 0 (X n ω − a) ∂M) ≤ (

∫
+ω. max 0 (X n ω) + |a| ∂M)

by (fastforce intro: nn-integral-mono ennreal-leI)
also have ... = (

∫
+ω. max 0 (X n ω) ∂M) + |a| ∗ emeasure M (space M)

by (simp add: nn-integral-add)

33

also have ... = (
∫
ω. max 0 (X n ω) ∂M) + |a| ∗ emeasure M (space M)

using integrable by (simp add: nn-integral-eq-integral)
also have ... ≤ C + |a| ∗ emeasure M (space M) using assms(2) ennreal-leI

by simp
finally have (

∫
+ω. max 0 (X n ω − a) ∂M) ≤ C + |a| ∗ enn2real (emeasure M

(space M)) using finite-emeasure-space C-nonneg by (simp add: ennreal-enn2real-if
ennreal-mult)

}
hence (SUP N .

∫
+ x. ennreal (max 0 (X N x − a)) ∂M) / (b − a) ≤

ennreal (C + |a| ∗ enn2real (emeasure M (space M))) / (b − a) by (fast intro:
divide-right-mono-ennreal Sup-least)

moreover have ennreal (C + |a| ∗ enn2real (emeasure M (space M))) / (b −
a) < ∞ using that C-nonneg by (subst divide-ennreal) auto

moreover have integralN M (upcrossings X a b) ≤ (SUP N .
∫

+ x. ennreal
(max 0 (X N x − a)) ∂M) / (b − a)

using upcrossing-inequality-Sup[OF assms(1), of b a, THEN divide-right-mono-ennreal,
of b − a]

ennreal-mult-divide-eq mult.commute[of ennreal (b − a)] that by simp
ultimately show ?thesis using upcrossings-measurable adapted-process-axioms

that by (intro nn-integral-noteq-infinite) auto
qed

— Since the number of upcrossings are finite, limsup and liminf have to agree
almost everywhere. To show this we consider the following countable set, which has
zero measure.

define S where S = ((λ(a :: real, b). {ω ∈ space M . liminf (λn. ereal (X n ω))
< ereal a ∧ ereal b < limsup (λn. ereal (X n ω))}) ‘ {(a, b) ∈ � × �. a < b})

have (0 , 1) ∈ {(a :: real, b). (a, b) ∈ � × � ∧ a < b} unfolding Rats-def by
simp

moreover have countable {(a, b). (a, b) ∈ � × � ∧ a < b} by (blast intro:
countable-subset[OF - countable-SIGMA[OF countable-rat countable-rat]])

ultimately have from-nat-into-S : range (from-nat-into S) = S from-nat-into S
n ∈ S for n

unfolding S-def
by (auto intro!: range-from-nat-into from-nat-into simp only: Rats-def)

{
fix a b :: real
assume a-less-b: a < b
then obtain N where N : x ∈ space M − N =⇒ upcrossings X a b x 6= ∞ N

∈ null-sets M for x using AE-E3 [OF finite-upcrossings] by blast
{

fix ω
assume liminf-limsup: liminf (λn. X n ω) < a b < limsup (λn. X n ω)
have upcrossings X a b ω = ∞
proof −

{
fix n

34

have ∃m. upcrossings-before X a b m ω ≥ n
proof (induction n)

case 0
have Sup {n. upcrossing X a b 0 n ω < 0} = 0 by simp
then show ?case unfolding upcrossings-before-def by blast

next
case (Suc n)
then obtain m where m: n ≤ upcrossings-before X a b m ω by blast

obtain l where l: l ≥ m X l ω < a using liminf-upper-bound[OF
liminf-limsup(1), of m] nless-le by auto

obtain u where u: u ≥ l X u ω > b using limsup-lower-bound[OF
liminf-limsup(2), of l] nless-le by auto

show ?case using upcrossings-before-less-exists-upcrossing[OF a-less-b,
where ?X=X , OF l u] m by (metis Suc-leI le-neq-implies-less)

qed
}
thus ?thesis unfolding upcrossings-def by (simp add: ennreal-SUP-eq-top)

qed
}
hence {ω ∈ space M . liminf (λn. ereal (X n ω)) < ereal a ∧ ereal b < limsup

(λn. ereal (X n ω))} ⊆ N using N by blast
moreover have {ω ∈ space M . liminf (λn. ereal (X n ω)) < ereal a ∧ ereal b

< limsup (λn. ereal (X n ω))} ∩ N ∈ null-sets M by (force intro: null-set-Int1 [OF
N (2)])

ultimately have emeasure M {ω ∈ space M . liminf (λn. ereal (X n ω)) < a
∧ b < limsup (λn. ereal (X n ω))} = 0 by (simp add: Int-absorb1 Int-commute
null-setsD1)

}
hence emeasure M (from-nat-into S n) = 0 for n using from-nat-into-S(2)[of

n] unfolding S-def by force
moreover have S ⊆ M unfolding S-def by force
ultimately have emeasure M (

⋃
(range (from-nat-into S))) = 0 using from-nat-into-S

by (intro emeasure-UN-eq-0) auto
moreover have (

⋃
S) = {ω ∈ space M . liminf (λn. ereal (X n ω)) 6= limsup

(λn. ereal (X n ω))} (is ?L = ?R)
proof −

{
fix ω
assume asm: ω ∈ ?L
then obtain a b :: real where a < b liminf (λn. ereal (X n ω)) < ereal a ∧

ereal b < limsup (λn. ereal (X n ω)) unfolding S-def by blast
hence liminf (λn. ereal (X n ω)) 6= limsup (λn. ereal (X n ω)) using

ereal-less-le order .asym by fastforce
hence ω ∈ ?R using asm unfolding S-def by blast

}
moreover
{

fix ω
assume asm: ω ∈ ?R

35

hence liminf (λn. ereal (X n ω)) < limsup (λn. ereal (X n ω)) using
Liminf-le-Limsup[of sequentially] less-eq-ereal-def by auto

then obtain a ′ where a ′: liminf (λn. ereal (X n ω)) < ereal a ′ ereal a ′ <
limsup (λn. ereal (X n ω)) using ereal-dense2 by blast

then obtain b ′ where b ′: ereal a ′ < ereal b ′ ereal b ′ < limsup (λn. ereal (X
n ω)) using ereal-dense2 by blast

hence a ′ < b ′ by simp
then obtain a where a: a ∈ � a ′ < a a < b ′ using Rats-dense-in-real by

blast
then obtain b where b: b ∈ � a < b b < b ′ using Rats-dense-in-real by

blast
have liminf (λn. ereal (X n ω)) < ereal a using a a ′ le-ereal-less or-

der-less-imp-le by meson
moreover have ereal b < limsup (λn. ereal (X n ω)) using b b ′ or-

der-less-imp-le ereal-less-le by meson
ultimately have ω ∈ ?L unfolding S-def using a b asm by blast

}
ultimately show ?thesis by blast

qed
ultimately have emeasure M {ω ∈ space M . liminf (λn. ereal (X n ω)) 6= limsup

(λn. ereal (X n ω))} = 0 using from-nat-into-S by argo
hence liminf-limsup-AE : AE ω in M . liminf (λn. X n ω) = limsup (λn. X n ω)

by (intro AE-iff-measurable[THEN iffD2 , OF - refl]) auto
hence convergent-AE : AE ω in M . convergent (λn. ereal (X n ω)) using con-

vergent-ereal by fastforce

— Hence the limit exists almost everywhere.

have bounded-pos-part: ennreal (
∫
ω. max 0 (X n ω) ∂M) ≤ ennreal C for n

using assms(2) ennreal-leI by blast

— Integral of positive part is < ∞.

{
fix ω
assume asm: convergent (λn. ereal (X n ω))
hence (λn. max 0 (ereal (X n ω))) −−−−→ max 0 (lim (λn. ereal (X n ω)))

using convergent-LIMSEQ-iff isCont-tendsto-compose continuous-max contin-
uous-const continuous-ident continuous-at-e2ennreal

by fast
hence (λn. e2ennreal (max 0 (ereal (X n ω)))) −−−−→ e2ennreal (max 0 (lim

(λn. ereal (X n ω))))
using isCont-tendsto-compose continuous-at-e2ennreal by blast

moreover have lim (λn. e2ennreal (max 0 (ereal (X n ω)))) = e2ennreal (max
0 (lim (λn. ereal (X n ω)))) using limI calculation by blast

ultimately have e2ennreal (max 0 (liminf (λn. ereal (X n ω)))) = liminf
(λn. e2ennreal (max 0 (ereal (X n ω)))) using convergent-liminf-cl by (metis asm
convergent-def limI)

}

36

hence (
∫

+ω. e2ennreal (max 0 (liminf (λn. ereal (X n ω)))) ∂M) = (
∫

+ω.
liminf (λn. e2ennreal (max 0 (ereal (X n ω)))) ∂M) using convergent-AE by (fast
intro: nn-integral-cong-AE)

moreover have (
∫

+ω. liminf (λn. e2ennreal (max 0 (ereal (X n ω)))) ∂M) ≤
liminf (λn. (

∫
+ω. e2ennreal (max 0 (ereal (X n ω))) ∂M))

by (intro nn-integral-liminf) auto
moreover have (

∫
+ω. e2ennreal (max 0 (ereal (X n ω))) ∂M) = ennreal (

∫
ω.

max 0 (X n ω) ∂M) for n
using e2ennreal-ereal ereal-max-0
by (subst nn-integral-eq-integral[symmetric]) (fastforce intro!: nn-integral-cong

integrable | presburger)+
moreover have liminf-pos-part-finite: liminf (λn. ennreal (

∫
ω. max 0 (X n ω)

∂M)) < ∞
unfolding liminf-SUP-INF
using Inf-lower2 [OF - bounded-pos-part]
by (intro order .strict-trans1 [OF Sup-least, of - ennreal C]) (metis (mono-tags,

lifting) atLeast-iff imageE image-eqI order .refl, simp)
ultimately have pos-part-finite: (

∫
+ω. e2ennreal (max 0 (liminf (λn. ereal (X

n ω)))) ∂M) < ∞ by force

— Integral of negative part is < ∞.

{
fix ω
assume asm: convergent (λn. ereal (X n ω))
hence (λn. − min 0 (ereal (X n ω))) −−−−→ − min 0 (lim (λn. ereal (X n

ω)))
using convergent-LIMSEQ-iff isCont-tendsto-compose continuous-min contin-

uous-const continuous-ident continuous-at-e2ennreal
by fast

hence (λn. e2ennreal (− min 0 (ereal (X n ω)))) −−−−→ e2ennreal (− min 0
(lim (λn. ereal (X n ω))))

using isCont-tendsto-compose continuous-at-e2ennreal by blast
moreover have lim (λn. e2ennreal (− min 0 (ereal (X n ω)))) = e2ennreal

(− min 0 (lim (λn. ereal (X n ω)))) using limI calculation by blast
ultimately have e2ennreal (− min 0 (liminf (λn. ereal (X n ω)))) = liminf

(λn. e2ennreal (− min 0 (ereal (X n ω)))) using convergent-liminf-cl by (metis
asm convergent-def limI)

}
hence (

∫
+ω. e2ennreal (− min 0 (liminf (λn. ereal (X n ω)))) ∂M) = (

∫
+ω.

liminf (λn. e2ennreal (− min 0 (ereal (X n ω)))) ∂M) using convergent-AE by
(fast intro: nn-integral-cong-AE)

moreover have (
∫

+ω. liminf (λn. e2ennreal (− min 0 (ereal (X n ω)))) ∂M)
≤ liminf (λn. (

∫
+ω. e2ennreal (− min 0 (ereal (X n ω))) ∂M))

by (intro nn-integral-liminf) auto
moreover have (

∫
+ω. e2ennreal (− min 0 (ereal (X n ω))) ∂M) = (

∫
ω. max

0 (X n ω) ∂M) − (
∫
ω. X n ω ∂M) for n

proof −
have ∗: (− min 0 c) = max 0 c − c if c 6= ∞ for c :: ereal using that by

37

(cases c ≥ 0) auto
hence (

∫
+ω. e2ennreal (− min 0 (ereal (X n ω))) ∂M) = (

∫
+ω. e2ennreal

(max 0 (ereal (X n ω)) − (ereal (X n ω))) ∂M) by simp
also have ... = (

∫
+ ω. ennreal (max 0 (X n ω) − (X n ω)) ∂M) using

e2ennreal-ereal ereal-max-0 ereal-minus(1) by (intro nn-integral-cong) presburger
also have ... = (

∫
ω. max 0 (X n ω) − (X n ω) ∂M) using integrable by (intro

nn-integral-eq-integral) auto
finally show ?thesis using Bochner-Integration.integral-diff integrable by simp

qed
moreover have liminf (λn. ennreal ((

∫
ω. max 0 (X n ω) ∂M) − (

∫
ω. X n ω

∂M))) < ∞
proof −

{
fix n A
assume asm: ennreal ((

∫
ω. max 0 (X n ω) ∂M) − (

∫
ω. X n ω ∂M)) ∈ A

have (
∫
ω. X 0 ω ∂M) ≤ (

∫
ω. X n ω ∂M) using set-integral-le[OF sets.top

order-refl, of n] space-F by (simp add: integrable set-integral-space)
hence (

∫
ω. max 0 (X n ω) ∂M) − (

∫
ω. X n ω ∂M) ≤ C − (

∫
ω. X 0 ω

∂M) using assms(2)[of n] by argo
hence ennreal ((

∫
ω. max 0 (X n ω) ∂M) − (

∫
ω. X n ω ∂M)) ≤ ennreal (C

− (
∫
ω. X 0 ω ∂M)) using ennreal-leI by blast

hence Inf A ≤ ennreal (C − (
∫
ω. X 0 ω ∂M)) by (rule Inf-lower2 [OF asm])

}
thus ?thesis

unfolding liminf-SUP-INF
by (intro order .strict-trans1 [OF Sup-least, of - ennreal (C − (

∫
ω. X 0 ω

∂M))]) (metis (no-types, lifting) atLeast-iff imageE image-eqI order .refl order-trans,
simp)

qed
ultimately have neg-part-finite: (

∫
+ ω. e2ennreal (− (min 0 (liminf (λn. ereal

(X n ω))))) ∂M) < ∞ by simp

— Putting it all together now to show that the limit is integrable and < ∞ a.e.

have e2ennreal |liminf (λn. ereal (X n ω))| = e2ennreal (max 0 (liminf (λn.
ereal (X n ω)))) + e2ennreal (− (min 0 (liminf (λn. ereal (X n ω))))) for ω

unfolding ereal-abs-max-min
by (simp add: eq-onp-same-args max-def plus-ennreal.abs-eq)

hence (
∫

+ ω. e2ennreal |liminf (λn. ereal (X n ω))| ∂M) = (
∫

+ ω. e2ennreal
(max 0 (liminf (λn. ereal (X n ω)))) ∂M) + (

∫
+ ω. e2ennreal (− (min 0 (liminf

(λn. ereal (X n ω))))) ∂M) by (auto intro: nn-integral-add)
hence nn-integral-finite: (

∫
+ ω. e2ennreal |liminf (λn. ereal (X n ω))| ∂M) 6=

∞ using pos-part-finite neg-part-finite by auto
hence finite-AE : AE ω in M . e2ennreal |liminf (λn. ereal (X n ω))| 6= ∞ by

(intro nn-integral-noteq-infinite) auto
moreover
{

fix ω
assume asm: liminf (λn. X n ω) = limsup (λn. X n ω) |liminf (λn. ereal (X

38

n ω))| 6= ∞
hence (λn. X n ω) −−−−→ real-of-ereal (liminf (λn. X n ω)) using lim-

sup-le-liminf-real ereal-real ′ by simp
}
ultimately have converges: AE ω in M . (λn. X n ω) −−−−→ real-of-ereal (liminf

(λn. X n ω)) using liminf-limsup-AE by fastforce

{
fix ω
assume e2ennreal |liminf (λn. ereal (X n ω))| 6= ∞
hence |liminf (λn. ereal (X n ω))| 6= ∞ by force
hence e2ennreal |liminf (λn. ereal (X n ω))| = ennreal (norm (real-of-ereal

(liminf (λn. ereal (X n ω))))) by fastforce
}
hence (

∫
+ ω. e2ennreal |liminf (λn. ereal (X n ω))| ∂M) = (

∫
+ ω. ennreal

(norm (real-of-ereal (liminf (λn. ereal (X n ω))))) ∂M) using finite-AE by (fast
intro: nn-integral-cong-AE)

hence (
∫

+ ω. ennreal (norm (real-of-ereal (liminf (λn. ereal (X n ω))))) ∂M)
< ∞ using nn-integral-finite by (simp add: order-less-le)

hence integrable M (λω. real-of-ereal (liminf (λn. X n ω))) by (intro inte-
grableI-bounded) auto

moreover have (λω. real-of-ereal (liminf (λn. X n ω))) ∈ borel-measurable F∞
using borel-measurable-liminf [OF F-infinity-measurableI] adapted by measurable

ultimately show ?thesis using that converges by presburger
qed

— We state the theorem again for martingales and supermartingales.

corollary supermartingale-convergence-AE :
fixes X :: nat ⇒ ′a ⇒ real
assumes supermartingale M F 0 X

and
∧

n. (
∫
ω. max 0 (− X n ω) ∂M) ≤ C

obtains X lim where AE ω in M . (λn. X n ω) −−−−→ X lim ω
integrable M X lim

X lim ∈ borel-measurable (F∞)
proof −

obtain Y where ∗: AE ω in M . (λn. − X n ω) −−−−→ Y ω integrable M Y Y
∈ borel-measurable (F∞)

using supermartingale.uminus[OF assms(1), THEN submartingale-convergence-AE]
assms(2) by auto

hence AE ω in M . (λn. X n ω) −−−−→ (− Y) ω integrable M (− Y) − Y ∈
borel-measurable (F∞)

using isCont-tendsto-compose[OF isCont-minus, OF continuous-ident] inte-
grable-minus borel-measurable-uminus unfolding fun-Compl-def by fastforce+

thus ?thesis using that[of − Y] by blast
qed

corollary martingale-convergence-AE :
fixes X :: nat ⇒ ′a ⇒ real

39

assumes martingale M F 0 X
and

∧
n. (

∫
ω. |X n ω| ∂M) ≤ C

obtains X lim where AE ω in M . (λn. X n ω) −−−−→ X lim ω
integrable M X lim

X lim ∈ borel-measurable (F∞)
proof −

interpret martingale-linorder M F 0 X unfolding martingale-linorder-def by
(rule assms)

have max 0 (X n ω) ≤ |X n ω| for n ω by linarith
hence (

∫
ω. max 0 (X n ω) ∂M) ≤ C for n using assms(2)[THEN dual-order .trans,

OF integral-mono, OF integrable-max] integrable by fast
thus ?thesis using that submartingale-convergence-AE [OF submartingale-axioms]

by blast
qed

corollary martingale-nonneg-convergence-AE :
fixes X :: nat ⇒ ′a ⇒ real
assumes martingale M F 0 X

∧
n. AE ω in M . X n ω ≥ 0

obtains X lim where AE ω in M . (λn. X n ω) −−−−→ X lim ω
integrable M X lim

X lim ∈ borel-measurable (F∞)
proof −

interpret martingale-linorder M F 0 X unfolding martingale-linorder-def by
(rule assms)

have AE ω in M . max 0 (− X n ω) = 0 for n using assms(2)[of n] by force
hence (

∫
ω. max 0 (− X n ω) ∂M) ≤ 0 for n by (simp add: integral-eq-zero-AE)

thus ?thesis using that supermartingale-convergence-AE [OF supermartingale-axioms]
by blast
qed

end

end

References

[1] R. Degenne and K. Ying. A Formalization of Doob’s Martingale Con-
vergence Theorems in mathlib. In Proceedings of the 12th ACM SIG-
PLAN International Conference on Certified Programs and Proofs. As-
sociation for Computing Machinery, New York, United States, 2022.
arXiv:2212.05578.

[2] R. Degenne and K. Ying. probability.martingale.basic - math-
lib, 2022. https://leanprover-community.github.io/mathlib_docs/
probability/martingale/basic.html, Last Accessed: 15 Feb 2024.

40

http://arxiv.org/abs/2212.05578
https://leanprover-community.github.io/mathlib_docs/probability/martingale/basic.html
https://leanprover-community.github.io/mathlib_docs/probability/martingale/basic.html

[3] R. Durrett. Probability: Theory and Examples. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press,
2019. URL: https://books.google.de/books?id=b22MDwAAQBAJ.

[4] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford
University Press, 2020.

[5] J. Hölzl and A. Heller. Three Chapters of Measure Theory in Is-
abelle/HOL. In M. C. J. D. van Eekelen, H. Geuvers, J. Schmaltz, and
F. Wiedijk, editors, Interactive Theorem Proving (ITP 2011), volume 6898
of LNCS, pages 135–151, 2011. doi:10.1007/978-3-642-22863-6_12.

[6] A. Keskin. A Formalization of Martingales in Isabelle/HOL. Bachelor’s
thesis, Technical University of Munich, 2023. arXiv:2311.06188.

[7] A. Keskin. Martingales. Archive of Formal Proofs, November 2023.
https://isa-afp.org/entries/Martingales.html, Formal proof development.

41

https://books.google.de/books?id=b22MDwAAQBAJ
https://doi.org/10.1007/978-3-642-22863-6_12
http://arxiv.org/abs/2311.06188
https://isa-afp.org/entries/Martingales.html

	Introduction
	Stopping Times and Hitting Times
	Stopping Time
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -algebra of a Stopping Time
	Hitting Time

	Doob's Upcrossing Inequality and Martingale Convergence Theorems
	Upcrossings and Downcrossings
	Doob's Upcrossing Inequality

	Doob's First Martingale Convergence Theorem

