Distributed Distinct Elements

Emin Karayel

April 20, 2024

Abstract

This entry formalizes a randomized cardinality estimation data structure with asymptotically optimal space usage. It is inspired by the streaming algorithm presented by Błasiok [3] in 2018. His work closed the gap between the best-known lower bound and upper bound after a long line of research started by Flajolet and Martin [4] in 1984 and was to first to apply expander graphs (in addition to hash families) to the problem. The formalized algorithm has two improvements compared to the algorithm by Błasiok. It supports operation in parallel mode, and it relies on a simpler pseudo-random construction avoiding the use of code based extractors.

\section*{Contents} 1 Introduction 2 2 Preliminary Results 2 3 Blind 8 4 Balls and Bins 8 5 Tail Bounds for Expander Walks 41 6 Inner Algorithm 52 7 Accuracy without cutoff 71 8 Cutoff Level 89 9 Accuracy with cutoff 97 10 Outer Algorithm 102

1 Introduction

The algorithm is described as functional data strucutures, given a seed which needs to be choosen uniformly from a initial segment of the natural numbers and globally, there are three functions:

- single - given the seed and an element from the universe computes a sketch for that singleton set
- merge - computes a sketch based on two input sketches and returns a sketch representing the union set
- estimate - computes an estimate for the cardinality of the set represented by a sketch

The main point is that a sketch requires $\mathcal{O}\left(\delta^{-2} \ln \left(\varepsilon^{-1}\right)+\ln n\right)$ space where n is the universe size, δ is the desired relative accuracy and ε is the desired failure probability. Note that it is easy to see that an exact solution would necessarily require $\mathcal{O}(n)$ bits.
The algorithm is split into two parts an inner algorithm, described in Section 6, which itself is already a full cardinality estimation algorithm, however its space usage is below optimal. The outer algorithm is introduced in Section 10, which runs mutiple copies of the inner algorithm with carefully chosen inner parameters.
As mentioned in the abstract the algorithm is inspired by the solution to the streaming version of the problem by Błasiok [3] in 2020. His work builds on a long line of reasarch starting in $1985[4,1,2,7,11,5]$.
In an earlier AFP entry [9] I have formalized an earlier cardinality estimation algorithm based on the work by Bar-Yossef et al. [2] in 2002. Since then I have addressed the existence of finite fields for higher prime powers and expander graphs $[8,10]$. Building on these results, the formalization of this more advanced solution presented here became possible.
The solution described here improves on the algorithms described by Błasiok in two ways (without comprising its optimal space usage). It can be used in a parallel mode of operation. Moreover the pseudo-random construction used is simpler than the solution described by Błasiok - who uses an extractor based on Parvaresh-Vardy codes [6] to sample random walks in an expander graph, which are then sub-sampled and then the walks are used to sample seeds for hash functions. In the solution presented here neither the sub-sampling step nor the extractor is needed, instead a two-stage expander construction is used, this means that the nodes of the first expander correspond to the walks in a second expander graph. The latters nodes correspond to seeds of hash functions (as in Błasiok's solution).
The modification needed to support a parallel mode of operation is a change in the failure strategy of the solution presented in Kane et al., which is the event when the data in the sketch reequires too much space. The main issue is that in the parallel case the number of states the algorithm might reach is not bounded by the universe size and thus an estimate they make for the probability of the failure event does not transfer to the parallel case. To solve that the algorithm in this work is more conservative. Instead of failing out-right it instead increases a cutoff threshold. For which it is then possible to show an upper estimate independent of the number of reached states.

2 Preliminary Results

This section contains various short preliminary results used in the sections below.

theory Distributed-Distinct-Elements-Preliminary imports
Frequency-Moments.Frequency-Moments-Preliminary-Results Universal-Hash-Families.Universal-Hash-Families-More-Product-PMF Median-Method.Median
Expander-Graphs.Extra-Congruence-Method
Expander-Graphs.Constructive-Chernoff-Bound
Frequency-Moments.Landau-Ext
Stirling-Formula.Stirling-Formula
begin

unbundle intro-cong-syntax

```
lemma pmf-rev-mono:
    assumes \(\bigwedge x . x \in\) set-pmf \(p \Longrightarrow x \notin Q \Longrightarrow x \notin P\)
    shows measure \(p P \leq\) measure \(p Q\)
    using assms by (intro pmf-mono) blast
lemma pmf-exp-mono:
    fixes \(f g\) :: ' \(a \Rightarrow\) real
    assumes integrable (measure-pmf p) fintegrable (measure-pmf p) g
    assumes \(\backslash x . x \in\) set-pmf \(p \Longrightarrow f x \leq g x\)
    shows integral \({ }^{L}\) (measure-pmf \(p\) ) \(f \leq\) integral \(^{L}\) (measure-pmf p) \(g\)
    using assms by (intro integral-mono-AE AE-pmfI) auto
lemma pmf-markov:
    assumes integrable (measure-pmf p) fc>0
    assumes \(\bigwedge x . x \in\) set-pmf \(p \Longrightarrow f x \geq 0\)
    shows measure \(p\{\omega . f \omega \geq c\} \leq\left(\int \omega . f \omega \partial p\right) / c\) (is ? \(\left.L \leq ? R\right)\)
proof -
    have \(a: A E \omega\) in (measure-pmf \(p\) ). \(0 \leq f \omega\)
        by (intro AE-pmfI assms(3))
    have \(b:\{ \} \in\) measure-pmf.events \(p\)
        unfolding \(\operatorname{assms}(1)\) by simp
    have \(? L=\mathcal{P}(\omega\) in (measure-pmf \(p) . f \omega \geq c)\)
        using assms(1) by simp
    also have \(\ldots \leq\) ? \(R\)
        by (intro integral-Markov-inequality-measure \([O F-b]\) assms a)
    finally show ?thesis by simp
qed
lemma pair-pmf-prob-left:
    measure-pmf.prob \((\) pair-pmf \(A B)\{\omega . P(f s t \omega)\}=\) measure-pmf.prob \(A\{\omega . P \omega\}(\) is \(? L=? R)\)
proof -
    have \(? L=\) measure-pmf.prob \((\) map-pmf fst \((\) pair-pmf A B) \()\{\omega . P \omega\}\)
        by (subst measure-map-pmf) simp
    also have ... \(=\) ? \(R\)
        by (subst map-fst-pair-pmf) simp
    finally show? ?thesis by simp
qed
lemma \(p m f\)-exp-of-fin-function:
    assumes finite \(A g\) 'set-pmf \(p \subseteq A\)
    shows \(\left(\int \omega . f(g \omega) \partial p\right)=\left(\sum y \in A . f y *\right.\) measure \(\left.p\{\omega . g \omega=y\}\right)\)
        (is ? \(L=? R\) )
proof -
    have ? \(L=\) integral \(^{L}(\) map-pmf \(g\) p) \(f\)
        using integral-map-pmf assms by simp
    also have \(\ldots=\left(\sum a \in A . f a * p m f(\operatorname{map-pmf} g p) a\right)\)
        using assms
        by (intro integral-measure-pmf-real) auto
    also have \(\ldots=\left(\sum y \in A . f y *\right.\) measure \(\left.p(g-‘\{y\})\right)\)
        unfolding assms(1) by (intro-cong \(\left[\sigma_{2}(*)\right]\) more:sum.cong pmf-map)
    also have...\(=? R\)
        by (intro sum.cong) (auto simp add: vimage-def)
    finally show ?thesis by simp
qed
```

Cardinality rules for distinct/ordered pairs of a set without the finiteness constraint - to use in simplification:

```
lemma card-distinct-pairs:
    card \(\{x \in B \times B\). fst \(x \neq\) snd \(x\}=\operatorname{card} B^{\wedge} 2-\operatorname{card} B(\) is \(\operatorname{card} ? L=? R)\)
proof (cases finite \(B\) )
    case True
    include intro-cong-syntax
    have card ? \(L=\operatorname{card}(B \times B-(\lambda x .(x, x))\) ' \(B)\)
        by (intro arg-cong[where \(f=\) card \(]\) ) auto
    also have \(\ldots=\operatorname{card}(B \times B)-\operatorname{card}((\lambda x .(x, x))\) ' \(B)\)
        by (intro card-Diff-subset finite-imageI True image-subsetI) auto
    also have \(\ldots=? R\)
        using True by (intro-cong \(\left[\sigma_{2}(-)\right]\) more: card-image)
            (auto simp add:power2-eq-square inj-on-def)
    finally show ?thesis by simp
next
    case False
    then obtain \(p\) where \(p\)-in: \(p \in B\) by fastforce
    have False if finite? \(L\)
    proof -
        have \((\lambda x .(p, x))\) ' \((B-\{p\}) \subseteq ? L\)
            using \(p\)-in by (intro image-subsetI) auto
        hence finite \(((\lambda x .(p, x))\) ' \((B-\{p\}))\)
            using finite-subset that by auto
        hence finite ( \(B-\{p\}\) )
                by (rule finite-imageD) (simp add:inj-on-def)
        hence finite \(B\)
            by simp
        thus False using False by simp
    qed
    hence infinite ?L by auto
    hence card ? \(L=0\) by simp
    also have \(\ldots=\) ? \(R\)
        using False by simp
    finally show ?thesis by simp
qed
lemma card-ordered-pairs':
    fixes \(M\) :: ('a ::linorder) set
    shows card \(\{(x, y) \in M \times M . x<y\}=\operatorname{card} M *(\operatorname{card} M-1) / 2\)
proof (cases finite M)
    case True
    show ?thesis using card-ordered-pairs[OF True] by linarith
next
    case False
    then obtain \(p\) where \(p\)-in: \(p \in M\) by fastforce
    let \(? f=(\lambda x\). if \(x<p\) then \((x, p)\) else \((p, x))\)
    have False if finite \(\{(x, y) \in M \times M . x<y\}\) (is finite ? \(X\) )
    proof -
        have ?f ' \((M-\{p\}) \subseteq\) ? \(X\)
            using \(p\)-in by (intro image-subsetI) auto
        hence finite (?f ' \((M-\{p\})\) ) using that finite-subset by auto
        moreover have inj-on ?f ( \(M-\{p\}\) )
            by (intro inj-onI) (metis Pair-inject)
        ultimately have finite ( \(M-\{p\}\) )
            using finite-imageD by blast
        hence finite \(M\)
```

using finite-insert [where $a=p$ and $A=M-\{p\}]$ by simp
thus False using False by simp
qed
hence infinite ? X by auto
then show? ?thesis using False by simp
qed
The following are versions of the mean value theorem, where the interval endpoints may be reversed.
lemma MVT-symmetric:
assumes $\bigwedge x$. $\llbracket \min a b \leq x ; x \leq \max a b \rrbracket \Longrightarrow D E R I V f x:>f^{\prime} x$
shows $\exists z::$ real. min $a b \leq z \wedge z \leq \max a b \wedge\left(f b-f a=(b-a) * f^{\prime} z\right)$
proof -
consider (a) $a<b|(b) a=b|(c) a>b$
by argo
then show?thesis
proof (cases)
case a
then obtain $z:$ real where $r: a<z z<b f b-f a=(b-a) * f^{\prime} z$
using assms MVT2 [where $a=a$ and $b=b$ and $f=f$ and $\left.f^{\prime}=f^{\prime}\right]$ by auto
have $a \leq z z \leq b$ using $r(1,2)$ by auto
thus ?thesis using ar(3) by auto
next
case b
then show ?thesis by auto
next
case c
then obtain $z::$ real where $r: b<z z<a f a-f b=(a-b) * f^{\prime} z$ using assms MVT2[where $a=b$ and $b=a$ and $f=f$ and $\left.f^{\prime}=f^{\prime}\right]$ by auto
have $f b-f a=(b-a) * f^{\prime} z$ using r by argo
moreover have $b \leq z z \leq a$ using $r(1,2)$ by auto
ultimately show ?thesis using c by auto
qed
qed
lemma $M V T$-interval:
fixes I :: real set
assumes interval $I a \in I b \in I$
assumes $\bigwedge x . x \in I \Longrightarrow D E R I V f x:>f^{\prime} x$
shows $\exists z . z \in I \wedge\left(f b-f a=(b-a) * f^{\prime} z\right)$
proof -
have a: min $a b \in I$
using $\operatorname{assms}(2,3)$ by (cases $a<b$) auto
have $b: \max a b \in I$
using $\operatorname{assms}(2,3)$ by (cases $a<b$) auto
have $c: x \in\{\min a b . . \max a b\} \Longrightarrow x \in I$ for x
using interval-def assms(1) a b by auto
have $\llbracket \min a b \leq x ; x \leq \max a b \rrbracket \Longrightarrow D E R I V f x:>f^{\prime} x$ for x
using c assms(4) by auto
then obtain z where $z: z \geq \min a b z \leq \max a b f b-f a=(b-a) * f^{\prime} z$
using MVT-symmetric by blast
have $z \in I$
using $c z(1,2)$ by auto
thus ?thesis using $z(3)$ by auto
qed
Ln is monotone on the positive numbers and thus commutes with min and max:
lemma $1 n$-min-swap:
$x>(0::$ real $) \Longrightarrow(y>0) \Longrightarrow \ln (\min x y)=\min (\ln x)(\ln y)$
using ln-less-cancel-iff by fastforce
lemma ln-max-swap:

```
x>(0::real) \Longrightarrow(y>0)\Longrightarrowln}(\operatorname{max}xy)=\operatorname{max}(\operatorname{ln}x)(\operatorname{ln}y
using ln-le-cancel-iff by fastforce
```

Loose lower bounds for the factorial fuction:

```
lemma fact-lower-bound:
    sqrt(2*pi*n)*(n/exp(1))`n}\leq\mathrm{ fact n (is ?L }\leq\mathrm{ ? R)
proof (cases n>0)
    case True
    have ln ?L L ln (2*pi*n)/2 + n*ln n - n
    using True by (simp add: ln-mult ln-sqrt ln-realpow ln-div algebra-simps)
    also have ... \leqln ?R
        by (intro Stirling-Formula.ln-fact-bounds True)
    finally show ?thesis
        using iffD1[OF ln-le-cancel-iff] True by simp
next
    case False
    then show ?thesis by simp
qed
lemma fact-lower-bound-1:
    assumes n>0
    shows (n/exp 1)`n}\leq\mathrm{ fact n (is ?L}\leq?R
proof -
    have 2 * pi\geq1 using pi-ge-two by auto
    moreover have n\geq1 using assms by simp
    ultimately have 2*pi*n\geq1*1
        by (intro mult-mono) auto
    hence a:2 * pi*n\geq1 by simp
    have ?L = 1* ?L by simp
    also have ... \leqsqrt(2 * pi*n)*?L
        using a by (intro mult-right-mono) auto
    also have ... \leq?R
        using fact-lower-bound by simp
    finally show ?thesis by simp
qed
```

Rules to handle O-notation with multiple variables, where some filters may be towards zero:
lemma real-inv-at-right-0-inf:
$\forall_{F} x$ in at-right $(0:: r e a l) . c \leq 1 / x$
proof -
have $c \leq 1 / x$ if $b: x \in\{0<. .<1 /(\max c 1)\}$ for x
proof -
have $c * x \leq(\max c 1) * x$
using b by (intro mult-right-mono, linarith, auto)
also have $\ldots \leq(\max c 1) *(1 /(\max c 1))$
using b by (intro mult-left-mono) auto
also have ... ≤ 1
by (simp add:of-rat-divide)
finally have $c * x \leq 1$ by simp
moreover have $0<x$
using b by simp
ultimately show ?thesis by (subst pos-le-divide-eq, auto)
qed
thus ?thesis
by (intro eventually-at-rightI $[$ where $b=1 /(\max c 1)]$, simp-all)
qed
lemma bigo-prod-1:
assumes $(\lambda x . f x) \in O[F](\lambda x . g x) G \neq b o t$
shows $(\lambda x . f($ fst $x)) \in O\left[F \times{ }_{F} G\right](\lambda x . g($ fst $x))$
proof -
obtain c where $a: \forall_{F} x$ in F. norm $(f x) \leq c * \operatorname{norm}(g x)$ and c-gt- $0: c>0$
using assms unfolding bigo-def by auto
have $\exists c>0 . \forall_{F} x$ in $F \times_{F} G$. $\operatorname{norm}(f(f s t x)) \leq c * \operatorname{norm}(g(f s t x))$
by (intro exI[where $x=c]$ conjI c-gt-0 eventually-prod1' $a \operatorname{assms}(2))$
thus ?thesis
unfolding bigo-def by simp
qed
lemma bigo-prod-2:
assumes $(\lambda x . f x) \in O[G](\lambda x . g x) F \neq b o t$
shows $(\lambda x . f($ snd $x)) \in O\left[F \times{ }_{F} G\right](\lambda x . g($ snd $x))$
proof -
obtain c where $a: \forall_{F} x$ in G. norm $(f x) \leq c * \operatorname{norm}(g x)$ and c-gt- $0: c>0$
using assms unfolding bigo-def by auto
have $\exists c>0 . \forall_{F} x$ in $F \times_{F} G . \operatorname{norm}(f(\operatorname{snd} x)) \leq c * \operatorname{norm}(g($ snd $x))$
by (intro exI $[$ where $x=c]$ conjI c-gt-0 eventually-prod2' a assms(2))
thus ?thesis
unfolding bigo-def by simp
qed
lemma eventually-inv:
fixes P :: real \Rightarrow bool
assumes eventually $(\lambda x . P(1 / x))$ at-top
shows eventually $(\lambda x . P x)$ (at-right 0$)$
proof -
obtain N where $c: n \geq N \Longrightarrow P(1 / n)$ for n
using assms unfolding eventually-at-top-linorder by auto
define q where $q=\max 1 N$
have $d: 0<1 / q q>0$
unfolding q-def by auto
have $P x$ if $x \in\{0<. .<1 / q\}$ for x
proof -
define n where $n=1 / x$
have x-eq: $x=1 / n$
unfolding n-def using that by simp
have $N \leq q$ unfolding q-def by simp
also have ... $\leq n$
unfolding n-def using that d by (simp add:divide-simps ac-simps)
finally have $N \leq n$ by simp
thus ?thesis
unfolding $x-e q$ by (intro c)
qed
thus ?thesis

```
    by (intro eventually-at-rightI[where b=1/q]d)
qed
lemma bigo-inv:
    fixes f g :: real => real
    assumes (\lambdax.f(1/x)) \inO(\lambdax.g(1/x))
    shows }f\inO[\mathrm{ at-right 0](g)
    using assms eventually-inv unfolding bigo-def by auto
```

unbundle no-intro-cong-syntax

3 Blind

Blind section added to preserve section numbers
end

4 Balls and Bins

The balls and bins model describes the probability space of throwing r balls into b bins. This section derives the expected number of bins hit by at least one ball, as well as the variance in the case that each ball is thrown independently. Further, using an approximation argument it is then possible to derive bounds for the same measures in the case when the balls are being thrown only k-wise independently. The proofs follow the reasoning described in [7, §A.1] but improve on the constants, as well as constraints.

```
theory Distributed-Distinct-Elements-Balls-and-Bins
    imports
        Distributed-Distinct-Elements-Preliminary
        Discrete-Summation.Factorials
        HOL-Combinatorics.Stirling
        HOL-Computational-Algebra.Polynomial
        HOL-Decision-Procs.Approximation
begin
hide-fact Henstock-Kurzweil-Integration.integral-sum
hide-fact Henstock-Kurzweil-Integration.integral-mult-right
hide-fact Henstock-Kurzweil-Integration.integral-nonneg
hide-fact Henstock-Kurzweil-Integration.integral-cong
unbundle intro-cong-syntax
lemma sum-power-distrib:
    fixes f :: 'a }a\mathrm{ real
    assumes finite R
    shows (\sumi\inR.fi)^s = (\sumxs| set xs\subseteqR^ length xs = s. (\prodx\leftarrowxs.fx))
proof (induction s)
    case 0
    have {xs. xs = []^ set xs\subseteqR}={[]}
        by (auto simp add:set-eq-iff)
    then show ?case by simp
next
    case (Suc s)
    have a:
        (\bigcupi\inR.(#) i'{xs. set xs\subseteqR\wedge length xs = s})={xs. set xs\subseteqR^ length xs = Suc s}
        by (subst lists-length-Suc-eq) auto
    have sumfR` Suc s=(sumfR)*(sumfR)^s
        by simp
```

```
    also have \(\ldots=(\operatorname{sum} f R) *\left(\sum x s \mid\right.\) set \(x s \subseteq R \wedge\) length \(\left.x s=s .\left(\prod x \leftarrow x s . f x\right)\right)\)
    using Suc by simp
    also have \(\ldots=\left(\sum i \in R .\left(\sum x s \mid\right.\right.\) set \(x s \subseteq R \wedge\) length \(\left.\left.x s=s .\left(\prod x \leftarrow i \# x s . f x\right)\right)\right)\)
    by (subst sum-product) simp
    also have ... \(=\)
        \(\left(\sum i \in R .\left(\sum x s \in(\lambda x s . i \# x s)\right.\right.\) ' \(\{x s\). set \(x s \subseteq R \wedge\) length \(\left.\left.x s=s\} .\left(\prod x \leftarrow x s . f x\right)\right)\right)\)
        by (subst sum.reindex) (auto)
    also have \(\ldots=\left(\sum x s \in(\bigcup i \in R .(\#) i\right.\) ' \(\{x s\). set \(x s \subseteq R \wedge\) length \(x s=s\})\). \(\left(\prod x \leftarrow x s\right.\). \(\left.\left.f x\right)\right)\)
        by (intro sum.UNION-disjoint[symmetric] assms ballI finite-imageI finite-lists-length-eq)
        auto
    also have \(\ldots=\left(\sum x s \mid\right.\) set \(x s \subseteq R \wedge\) length \(x s=\) Suc \(\left.s . ~\left(\prod x \leftarrow x s . f x\right)\right)\)
        by (intro sum.cong a) auto
    finally show ?case by simp
qed
lemma sum-telescope-eq:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) comm-ring-1 \(\}\)
    shows \(\left(\sum k \in\{\right.\) Suc m..n \(\left.\} . f k-f(k-1)\right)=o f-\operatorname{bool}(m \leq n) *(f n-f m)\)
    by (cases \(m \leq n\), subst sum-telescope \({ }^{\prime \prime}\), auto)
An improved version of diff-power-eq-sum.
lemma power-diff-sum:
    fixes \(a b::\) ' \(a\) :: \{comm-ring-1, power \(\}\)
    shows \(a \wedge k-b \bumpeq k=(a-b) *\left(\sum i=0 . .<k . a \wedge i * b \wedge(k-1-i)\right)\)
proof (cases \(k\) )
    case 0
    then show?thesis by simp
next
    case (Suc nat)
    then show ?thesis
        unfolding Suc diff-power-eq-sum
        using atLeastOLessThan diff-Suc-1 by presburger
qed
lemma power-diff-est:
    assumes \((a::\) real \() \geq b\)
    assumes \(b \geq 0\)
    shows \(a \wedge k-b \uparrow k \leq(a-b) * k * a^{\wedge}(k-1)\)
proof -
    have \(a \wedge k-b^{\wedge} k=(a-b) *\left(\sum i=0 . .<k . a \wedge i * b へ(k-1-i)\right)\)
        by (rule power-diff-sum)
    also have \(\ldots \leq(a-b) *\left(\sum i=0 . .<k . a \widehat{i} * a \wedge(k-1-i)\right)\)
        using assms by (intro mult-left-mono sum-mono mult-right-mono power-mono, auto)
    also have \(\ldots=(a-b) *\left(k * a^{\wedge}(k-1)\right)\)
        by (simp add:power-add[symmetric])
    finally show ?thesis by simp
qed
lemma power-diff-est-2:
    assumes \((a::\) real \() \geq b\)
    assumes \(b \geq 0\)
    shows \(a \wedge k-b^{\wedge} k \geq(a-b) * k * b^{\wedge}(k-1)\)
proof -
    have \((a-b) * k * b^{\wedge}(k-1)=(a-b) *\left(\sum i=0 . .<k . b^{\wedge} i * b^{\wedge}(k-1-i)\right)\)
        by (simp add:power-add[symmetric])
    also have \(\ldots \leq(a-b) *\left(\sum i=0 . .<k . a \wedge i * b \uparrow(k-1-i)\right)\)
        using assms
        by (intro mult-left-mono sum-mono mult-right-mono power-mono) auto
```

```
    also have \(\ldots=a^{\wedge} k-b^{\wedge} k\)
    by (rule power-diff-sum[symmetric])
    finally show? ?thesis by simp
qed
lemma of-bool-prod:
    assumes finite \(R\)
    shows \(\left(\prod j \in R\right.\). of-bool \(\left.(f j)\right)=(\) of-bool \((\forall j \in R . f j)::\) real \()\)
    using assms by (induction \(R\) rule:finite-induct) auto
```

Additional results about falling factorials:

```
lemma ffact-nonneg:
    fixes \(x\) :: real
    assumes \(k-1 \leq x\)
    shows ffact \(k x \geq 0\)
    using assms unfolding prod-ffact[symmetric]
    by (intro prod-nonneg ballI) simp
lemma ffact-pos:
    fixes \(x\) :: real
    assumes \(k-1<x\)
    shows ffact \(k x>0\)
    using assms unfolding prod-ffact[symmetric]
    by (intro prod-pos ballI) simp
lemma ffact-mono:
    fixes \(x\) y :: real
    assumes \(k-1 \leq x x \leq y\)
    shows ffact \(k x \leq\) ffact \(k y\)
    using assms
    unfolding prod-ffact[symmetric]
    by (intro prod-mono) auto
lemma ffact-of-nat-nonneg:
    fixes \(x\) :: ' \(a\) :: \{comm-ring-1, linordered-nonzero-semiring\}
    assumes \(x \in \mathbb{N}\)
    shows ffact \(k x \geq 0\)
proof -
    obtain \(y\) where \(y\)-def: \(x=\) of-nat \(y\)
        using assms(1) Nats-cases by auto
    have ( \(0::^{\prime} a\) ) \(\leq\) of-nat (ffact \(k y\) )
        by \(\operatorname{simp}\)
    also have \(\ldots=\) ffact \(k x\)
        by (simp add:of-nat-ffact y-def)
    finally show ?thesis by simp
qed
lemma ffact-suc-diff:
    fixes \(x::\left(\begin{array}{c} \\ \\ a\end{array}::\right.\) comm-ring-1)
    shows ffact \(k x-\) ffact \(k(x-1)=\) of-nat \(k * f f a c t(k-1)(x-1)(\) is \(? L=? R)\)
proof (cases \(k\) )
    case 0
    then show? ?thesis by simp
next
    case (Suc n)
    hence \(? L=f f a c t(S u c ~ n) x-f f a c t(S u c ~ n)(x-1)\) by simp
    also have \(\ldots=x *\) ffact \(n(x-1)-((x-1)-\) of-nat \(n) *\) ffact \(n(x-1)\)
        by (subst (1) ffact-Suc, simp add: ffact-Suc-rev)
```

```
    also have \(\ldots=\) of-nat (Suc \(n\) ) * ffact \(n(x-1)\)
    by (simp add:algebra-simps)
    also have \(\ldots=\) of-nat \(k *\) ffact \((k-1)(x-1)\) using Suc by simp
    finally show? ?thesis by simp
qed
lemma ffact-bound:
    ffact \(k(n:: n a t) \leq n \uparrow k\)
proof -
    have ffact \(k n=\left(\prod i=0 . .<k .(n-i)\right)\)
        unfolding prod-ffact-nat[symmetric]
        by \(\operatorname{simp}\)
    also have \(\ldots \leq\left(\prod i=0 . .<k . n\right)\)
        by (intro prod-mono) auto
    also have \(\ldots=n^{\wedge} k\)
        by simp
    finally show? ?thesis by simp
qed
lemma fact-moment-binomial:
    fixes \(n\) :: nat and \(\alpha\) :: real
    assumes \(\alpha \in\{0 . .1\}\)
    defines \(p \equiv\) binomial-pmf \(n \alpha\)
    shows \(\left(\int \omega\right.\). ffact s (real \(\left.\left.\omega\right) \partial p\right)=\) ffact \(s(\) real \(n) * \alpha \widehat{s}(\) is \(? L=? R)\)
proof (cases \(s \leq n\) )
    case True
    have \(? L=\left(\sum k \leq n .\left(\right.\right.\) real \((n\) choose \(\left.k) * \alpha^{\wedge} k *(1-\alpha) \wedge(n-k)\right) *\) real (ffact sk))
    unfolding \(p\)-def using assms by (subst expectation-binomial-pmf') (auto simp add:of-nat-ffact)
    also have \(\ldots=\left(\sum k \in\{0+s . .(n-s)+s\}\right.\). (real (n choose \(\left.\left.k\right) * \alpha^{\wedge} k *(1-\alpha) \wedge(n-k)\right) *\)
ffact \(s k\) )
    using True ffact-nat-triv by (intro sum.mono-neutral-cong-right) auto
    also have \(\ldots=\left(\sum k=0 . . n-s . \alpha \widehat{s} *\right.\) real \((n\) choose \((k+s)) * \alpha^{\wedge} k *(1-\alpha) \uparrow(n-(k+s)) *\) ffact s
\((k+s))\)
    by (subst sum.atLeastAtMost-shift-bounds, simp add:algebra-simps power-add)
    also have \(\ldots=\alpha^{\wedge} s *\left(\sum k \leq n-s\right.\). real ( \(n\) choose \(\left.(k+s)\right) *\) ffact \(\left.s(k+s) * \alpha^{\wedge} k *(1-\alpha) \uparrow((n-s)-k)\right)\)
    using atMost-atLeast0 by (simp add: sum-distrib-left algebra-simps cong:sum.cong)
also have \(\ldots=\alpha^{\wedge} s *\left(\sum k \leq n-s\right.\). real ( \(n\) choose \(\left.(k+s)\right) * f a c t(k+s) /\) fact \(\left.k * \alpha^{\wedge} k *(1-\alpha) `((n-s)-k)\right)\)
    using real-of-nat-div[OF fact-dvd[OF le-add1]]
    by (subst fact-div-fact-ffact-nat[symmetric], auto)
    also have \(\ldots=\alpha \widehat{s} *\left(\sum k \leq n-s\right.\).
    \((\) fact \(n / f a c t(n-s)) *\) fact \((n-s) /(f a c t((n-s)-k) *\) fact \(\left.k) * \alpha^{\wedge} k *(1-\alpha) \uparrow((n-s)-k)\right)\)
    using True by (intro arg-cong2[where \(f=(*)\) ] sum.cong)
    (auto simp add: binomial-fact algebra-simps)
    also have \(\ldots=\alpha \widehat{\alpha} *(\) fact \(n / \operatorname{fact}(n-s)) *\)
    \(\left(\sum k \leq n-s\right.\). fact \((n-s) /(\) fact \(((n-s)-k) *\) fact \(\left.k) * \alpha^{\wedge} k *(1-\alpha) \uparrow((n-s)-k)\right)\)
    by (simp add:sum-distrib-left algebra-simps)
also have \(\ldots=\alpha \widehat{s} *(\) fact \(n / f a c t(n-s)) *\left(\sum k \leq n-s .((n-s)\right.\) choose \(\left.k) * \alpha^{\wedge} k *(1-\alpha) \uparrow((n-s)-k)\right)\)
    using True by (intro-cong \(\left[\sigma_{2}(*)\right]\) more: sum.cong) (auto simp add: binomial-fact)
    also have \(\ldots=\alpha \widehat{s} *\) real (fact \(n\) div fact \((n-s)) *(\alpha+(1-\alpha)) \uparrow(n-s)\)
    using True real-of-nat-div[OF fact-dvd] by (subst binomial-ring, simp)
    also have \(\ldots=\alpha \widehat{\alpha} *\) real (ffact s n)
    by (subst fact-div-fact-ffact-nat[OF True], simp)
    also have \(\ldots=\) ? \(R\)
    by (subst of-nat-ffact, simp)
    finally show? ?thesis by simp
next
    case False
    have \(? L=\left(\sum k \leq n .\left(\right.\right.\) real \((n\) choose \(\left.k) * \alpha^{\wedge} k *(1-\alpha) \wedge(n-k)\right) *\) real \((\) ffact \(\left.s k)\right)\)
```

```
    unfolding p-def using assms by (subst expectation-binomial-pmf') (auto simp add:of-nat-ffact)
    also have ... = (\sumk\leqn. (real (n choose k)* 人^ k*(1-\alpha)^ (n-k))* real 0)
        using False
        by (intro-cong [ }\mp@subsup{\sigma}{2}{(*),\mp@subsup{\sigma}{1}{}\mathrm{ of-nat] more: sum.cong ffact-nat-triv) auto}
    also have ... = 0 by simp
    also have ... = real (ffact s n)* 人\widehat{s}
    using False by (subst ffact-nat-triv, auto)
    also have ... = ?R
    by (subst of-nat-ffact, simp)
    finally show ?thesis by simp
qed
The following describes polynomials of a given maximal degree as a subset of the functions, similar to the subsets \(\mathbb{Z}\) or \(\mathbb{Q}\) as subsets of larger number classes.
```

```
definition Polynomials \((\mathbb{P})\)
```

definition Polynomials (\mathbb{P})
where Polynomials $k=\{f . \exists p . f=$ poly $p \wedge$ degree $p \leq k\}$
where Polynomials $k=\{f . \exists p . f=$ poly $p \wedge$ degree $p \leq k\}$
lemma Polynomials-mono:
lemma Polynomials-mono:
assumes $s \leq t$
assumes $s \leq t$
shows $\mathbb{P} s \subseteq \mathbb{P} t$
shows $\mathbb{P} s \subseteq \mathbb{P} t$
using assms unfolding Polynomials-def by auto
using assms unfolding Polynomials-def by auto
lemma Polynomials-addI:
lemma Polynomials-addI:
assumes $f \in \mathbb{P} k g \in \mathbb{P} k$
assumes $f \in \mathbb{P} k g \in \mathbb{P} k$
shows $(\lambda \omega . f \omega+g \omega) \in \mathbb{P} k$
shows $(\lambda \omega . f \omega+g \omega) \in \mathbb{P} k$
proof -
proof -
obtain $p f$ pg where $f g$-def: $f=$ poly $p f$ degree $p f \leq k g=$ poly $p g$ degree $p g \leq k$
obtain $p f$ pg where $f g$-def: $f=$ poly $p f$ degree $p f \leq k g=$ poly $p g$ degree $p g \leq k$
using assms unfolding Polynomials-def by blast
using assms unfolding Polynomials-def by blast
hence degree $(p f+p g) \leq k(\lambda x . f x+g x)=$ poly $(p f+p g)$
hence degree $(p f+p g) \leq k(\lambda x . f x+g x)=$ poly $(p f+p g)$
using degree-add-le by auto
using degree-add-le by auto
thus ?thesis unfolding Polynomials-def by auto
thus ?thesis unfolding Polynomials-def by auto
qed
qed
lemma Polynomials-diffI:
lemma Polynomials-diffI:
fixes $f g$:: ' a :: comm-ring $\Rightarrow{ }^{\prime} a$
fixes $f g$:: ' a :: comm-ring $\Rightarrow{ }^{\prime} a$
assumes $f \in \mathbb{P} k g \in \mathbb{P} k$
assumes $f \in \mathbb{P} k g \in \mathbb{P} k$
shows $(\lambda x . f x-g x) \in \mathbb{P} k$
shows $(\lambda x . f x-g x) \in \mathbb{P} k$
proof -
proof -
obtain pf pg where fg-def: $f=$ poly $p f$ degree $p f \leq k g=$ poly $p g$ degree $p g \leq k$
obtain pf pg where fg-def: $f=$ poly $p f$ degree $p f \leq k g=$ poly $p g$ degree $p g \leq k$
using assms unfolding Polynomials-def by blast
using assms unfolding Polynomials-def by blast
hence degree $(p f-p g) \leq k(\lambda x . f x-g x)=\operatorname{poly}(p f-p g)$
hence degree $(p f-p g) \leq k(\lambda x . f x-g x)=\operatorname{poly}(p f-p g)$
using degree-diff-le by auto
using degree-diff-le by auto
thus ?thesis unfolding Polynomials-def by auto
thus ?thesis unfolding Polynomials-def by auto
qed
qed
lemma Polynomials-idI:
lemma Polynomials-idI:
$(\lambda x . x) \in\left(\mathbb{P} 1::\left({ }^{\prime} a:: c o m m-r i n g-1 \Rightarrow{ }^{\prime} a\right)\right.$ set $)$
$(\lambda x . x) \in\left(\mathbb{P} 1::\left({ }^{\prime} a:: c o m m-r i n g-1 \Rightarrow{ }^{\prime} a\right)\right.$ set $)$
proof -
proof -
have $(\lambda x . x)=$ poly $\left[: 0,\left(1::^{\prime} a\right):\right]$
have $(\lambda x . x)=$ poly $\left[: 0,\left(1::^{\prime} a\right):\right]$
by (intro ext, auto)
by (intro ext, auto)
also have $\ldots \in \mathbb{P} 1$
also have $\ldots \in \mathbb{P} 1$
unfolding Polynomials-def by auto
unfolding Polynomials-def by auto
finally show ?thesis by simp
finally show ?thesis by simp
qed
qed
lemma Polynomials-constI:
lemma Polynomials-constI:
$(\lambda x . c) \in \mathbb{P} k$
$(\lambda x . c) \in \mathbb{P} k$
proof -

```
proof -
```

```
    have ( }\lambdax.c)=\mathrm{ poly [:c :]
    by (intro ext, simp)
    also have ... \in\mathbb{P}k
    unfolding Polynomials-def by auto
    finally show ?thesis by simp
qed
lemma Polynomials-multI:
    fixes f g :: ' }a::{\mathrm{ {comm-ring} 知'a
    assumes f\in\mathbb{P}sg\in\mathbb{P}t
    shows}(\lambdax.fx*gx)\in\mathbb{P}(s+t
proof -
    obtain pf pg where xy-def: f= poly pf degree pf \leqs g= poly pg degree pg \leqt
        using assms unfolding Polynomials-def by blast
    have degree (pf*pg)\leqdegree pf + degree pg
        by (intro degree-mult-le)
    also have ... }\leqs+
        using xy-def by (intro add-mono) auto
    finally have degree ( }pf*pg)\leqs+t\mathrm{ by simp
    moreover have ( }\lambdax.fx*gx)=poly(pf*pg
        using xy-def by auto
    ultimately show ?thesis unfolding Polynomials-def by auto
qed
lemma Polynomials-composeI:
```



```
    assumes f\in\mathbb{P}sg\in\mathbb{P}t
    shows}(\lambdax.f(gx))\in\mathbb{P}(s*t
proof -
    obtain pf pg where xy-def: f= poly pf degree pf \leqs g= poly pg degree pg \leqt
        using assms unfolding Polynomials-def by blast
    have degree ( }pf\mp@subsup{\circ}{p}{
        by (intro degree-pcompose)
    also have ... \leqs*t
        using xy-def by (intro mult-mono) auto
    finally have degree (pf 趹pg)\leqs*t
        by simp
    moreover have ( }\lambdax.f(gx))=\operatorname{poly (pf\circ
        unfolding xy-def
        by (intro ext poly-pcompose[symmetric])
    ultimately show ?thesis unfolding Polynomials-def by auto
qed
lemma Polynomials-const-left-multI:
    fixes c::' ' a :: {comm-ring}
    assumes f}\in\mathbb{P}
    shows (\lambdax.c*fx)\in\mathbb{P}k
proof -
    have }(\lambdax.c*fx)\in\mathbb{P}(0+k
        by (intro Polynomials-multI Polynomials-constI assms)
    thus ?thesis by simp
qed
lemma Polynomials-const-right-multI:
    fixes c:: ' }a::{\mathrm{ {comm-ring}
    assumes f}\in\mathbb{P}
    shows (\lambdax.fx*c)\in\mathbb{P}k
```

```
proof -
    have (\lambdax.fx*c) \in\mathbb{P}(k+0)
        by (intro Polynomials-multI Polynomials-constI assms)
    thus ?thesis by simp
qed
lemma Polynomials-const-divI:
    fixes c :: ' }a::{{\mathrm{ field }
    assumes f}\in\mathbb{P}
    shows (\lambdax.fx/c)\in\mathbb{P}k
proof -
    have }(\lambdax.fx*(1/c))\in\mathbb{P}(k+0
        by (intro Polynomials-multI Polynomials-constI assms)
    thus ?thesis by simp
qed
lemma Polynomials-ffact: (\lambdax.ffact s (x-y)) \in(\mathbb{P}s::('a :: comm-ring-1 m'a) set)
proof (induction s arbitrary: y)
    case 0
    then show ?case
        using Polynomials-constI[where c=1] by simp
next
    case (Suc s)
    have (\lambda(x :: 'a). ffact (Suc s) (x-y)) = (\lambdax. (x-y) * ffact s (x-(y+1)))
        by (simp add: ffact-Suc algebra-simps)
    also have ... \in\mathbb{P}(1+s)
        by (intro Polynomials-multI Suc Polynomials-diffI Polynomials-idI Polynomials-constI)
    finally show ?case by simp
qed
lemmas Polynomials-intros =
    Polynomials-const-divI
    Polynomials-composeI
    Polynomials-const-left-multI
    Polynomials-const-right-multI
    Polynomials-multI
    Polynomials-addI
    Polynomials-diffI
    Polynomials-idI
    Polynomials-constI
    Polynomials-ffact
definition C}\mp@subsup{C}{2}{}:: real where C C = 7.5
definition }\mp@subsup{C}{3}{}::\mathrm{ real where }\mp@subsup{C}{3}{}=1
A locale fixing the sets of balls and bins
locale balls-and-bins-abs=
    fixes }R\mathrm{ :: 'a set and }B::'b se
    assumes fin-B: finite }B\mathrm{ and }B\mathrm{ -ne: }B\not={
    assumes fin-R: finite R
begin
Independent balls and bins space:
```


definition Ω

```
    where }\Omega=\mathrm{ prod-pmf R ( }\lambda\mathrm{ -. pmf-of-set B)
lemma set-pmf-\Omega: set-pmf \Omega=R 䖝 B
    unfolding }\Omega\mathrm{ -def set-prod-pmf[OF fin-R]
```

by (simp add:comp-def set-pmf-of-set[OF B-ne fin-B])
lemma card-B-gt-0: card $B>0$
using B-ne fin- B by auto
lemma card-B-ge-1: card $B \geq 1$
using card- $B-g t-0$ by simp
definition $Z j \omega=$ real $(\operatorname{card}\{i . i \in R \wedge \omega i=(j:: ' b)\})$
definition $Y \omega=\operatorname{real}(\operatorname{card}(\omega$ ' $R))$
definition $\mu=\operatorname{real}(\operatorname{card} B) *(1-(1-1 /$ real $(\operatorname{card} B)) \subset \operatorname{card} R)$
Factorial moments for the random variable describing the number of times a bin will be hit:
lemma fact-moment-balls-and-bins:
assumes $J \subseteq B J \neq\{ \}$
shows $\left(\int \omega\right.$.ffact $\left.s\left(\sum j \in J . Z j \omega\right) \partial \Omega\right)=$
ffact s $($ real $(\operatorname{card} R)) *($ real $($ card $J) /$ real $($ card $B)) \uparrow s$
(is ? $L=? R$)
proof -
let ? $\alpha=$ real $($ card $J) /$ real $($ card B)
let $? q=$ binomial-pmf $($ card $R)$? α
let ? $Y=(\lambda \omega$. card $\{r \in R . \omega r \in J\})$
have fin-J: finite J
using finite-subset assms(1) fin- B by auto
have Z-sum-eq: $\left(\sum j \in J . Z j \omega\right)=\operatorname{real}(? Y \omega)$ for ω
proof -
have ? $Y \omega=\operatorname{card}(\bigcup j \in J .\{r \in R . \omega r=j\})$
by (intro arg-cong $[$ where $f=$ card $]$) auto
also have $\ldots=\left(\sum i \in J\right.$. card $\left.\{r \in R . \omega r=i\}\right)$
using fin- R fin- J by (intro card-UN-disjoint) auto
finally have ? $Y \omega=\left(\sum j \in J\right.$. card $\left.\{r \in R . \omega r=j\}\right)$ by simp
thus ?thesis
unfolding Z-def of-nat-sum[symmetric] by simp
qed
have card-J: card $J \leq$ card B
using assms(1) fin-B card-mono by auto
have α-range: ? $\alpha \geq 0$? $\alpha \leq 1$
using card-J card-B-gt-0 by auto
have $p m f($ map-pmf $(\lambda \omega . \omega \in J)(p m f$-of-set $B)) x=p m f($ bernoulli-pmf ? $\alpha) x$
(is ? $L 1=$? R1) for x
proof -
have $? L 1=\operatorname{real}(\operatorname{card}(B \cap\{\omega .(\omega \in J)=x\})) / \operatorname{real}(\operatorname{card} B)$ using B-ne fin- B
by (simp add:pmf-map measure-pmf-of-set vimage-def)
also have $\ldots=($ if x then $($ card $J)$ else $(\operatorname{card}(B-J))) /$ real $($ card $B)$
using Int-absorb1[OF assms(1)] by (auto simp add:Diff-eq Int-def)
also have $\ldots=($ if x then $($ card $J) /$ card B else $($ real $($ card B) - card J) $/ \operatorname{real}($ card B) $)$
using card-J fin-J assms(1) by (simp add: of-nat-diff card-Diff-subset)
also have $\ldots=($ if x then ? α else $(1-$? $\alpha))$
using card-B-gt-0 by (simp add:divide-simps)
also have $\ldots=$? R1
using α-range by auto
finally show? ?thesis by simp

qed

hence $c: m a p-p m f(\lambda \omega . \omega \in J)($ pmf-of-set $B)=$ bernoulli-pmf ? α
by (intro pmf-eqI) simp
have map-pmf $(\lambda \omega . \lambda r \in R . \omega r \in J) \Omega=\operatorname{prod}-p m f R(\lambda$ - $($ map-pmf $(\lambda \omega . \omega \in J)(p m f$-of-set B)))
unfolding map-pmf-def Ω-def restrict-def using fin- R
by (subst Pi-pmf-bind $\left[\right.$ where $d^{\prime}=$ undefined $]$) auto
also have $\ldots=$ prod-pmf $R(\lambda$-. bernoulli-pmf ? α)
unfolding c by simp
finally have b:map-pmf $(\lambda \omega . \lambda r \in R . \omega r \in J) \Omega=$ prod-pmf R (λ-. bernoulli-pmf ? α) by simp
have map-pmf ?Y $\Omega=$ map-pmf $((\lambda \omega$. card $\{r \in R . \omega r\}) \circ(\lambda \omega . \lambda r \in R . \omega r \in J)) \Omega$ unfolding comp-def
by (intro map-pmf-cong arg-cong[where $f=$ card $]$) (auto simp add:comp-def)
also have $\ldots=(\operatorname{map}-p m f(\lambda \omega$. card $\{r \in R . \omega r\}) \circ \operatorname{map-pmf}(\lambda \omega . \lambda r \in R . \omega r \in J)) \Omega$ by (subst map-pmf-compose[symmetric]) auto
also have $\ldots=\operatorname{map}-p m f(\lambda \omega . \operatorname{card}\{r \in R . \omega r\})($ prod-pmf $R(\lambda-.($ bernoulli-pmf $? \alpha)))$
unfolding comp-def b by simp
also have...$=$? q
using α-range by (intro binomial-pmf-altdef' $[$ symmetric $]$ fin- R) auto
finally have a:map-pmf ? $Y \Omega=? q$
by simp
have ? $L=\left(\int \omega\right.$.ffact $s($ real $\left.(? Y \omega)) \partial \Omega\right)$
unfolding Z-sum-eq by simp
also have $\ldots=\left(\int \omega\right.$. ffact $s($ real $\omega) \partial($ map-pmf ? Y $\left.\Omega)\right)$
by simp
also have $\ldots=\left(\int \omega\right.$. ffact $s($ real $\omega) \partial$? $\left.q\right)$
unfolding a by simp
also have ... $=$? R
using α-range by (subst fact-moment-binomial, auto)
finally show ?thesis by simp
qed
Expectation and variance for the number of distinct bins that are hit by at least one ball in the fully independent model. The result for the variance is improved by a factor of 4 w.r.t. the paper.

lemma

shows exp-balls-and-bins: measure-pmf.expectation $\Omega Y=\mu$ (is ? $A L=$?AR)
and var-balls-and-bins: measure-pmf.variance $\Omega Y \leq \operatorname{card} R *(\operatorname{real}(\operatorname{card} R)-1) / \operatorname{card} B$ (is ? $B L \leq ? B R$)
proof -
let $? b=\operatorname{real}(\operatorname{card} B)$
let ? $r=\operatorname{card} R$
define $Z::{ }^{\prime} b \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ real
where $Z=(\lambda i \omega$. of-bool $(i \notin \omega$ ' $R))$
define α where $\alpha=(1-1 / ? b)^{\wedge} ? r$
define β where $\beta=(1-2 / ? b)^{\wedge} ? r$
have card $(B \times B \cap\{x$. fst $x=$ snd $x\})=\operatorname{card}((\lambda x .(x, x)) \cdot B)$
by (intro arg-cong $[$ where $f=$ card $]$) auto
also have $\ldots=\operatorname{card} B$
by (intro card-image, simp add:inj-on-def)
finally have $d: \operatorname{card}(B \times B \cap\{x . f s t x=\operatorname{snd} x\})=\operatorname{card} B$
by simp
hence count-1: real $(\operatorname{card}(B \times B \cap\{x$. fst $x=\operatorname{snd} x\}))=\operatorname{card} B$
by simp
have $\operatorname{card} B+\operatorname{card}(B \times B \cap-\{x$. fst $x=$ snd $x\})=$
card $(B \times B \cap\{x . f s t x=\operatorname{snd} x\})+\operatorname{card}(B \times B \cap-\{x . f s t x=$ snd $x\})$
by (subst d) simp
also have $\ldots=\operatorname{card}((B \times B \cap\{x . f s t x=\operatorname{snd} x\}) \cup(B \times B \cap-\{x$. fst $x=$ snd $x\}))$
using finite-subset[OF - finite-cartesian-product[OF fin-B fin-B]]
by (intro card-Un-disjoint[symmetric]) auto
also have $\ldots=\operatorname{card}(B \times B)$
by (intro arg-cong[where $f=$ card $]$) auto
also have $\ldots=\operatorname{card} B^{\wedge}$ 2
unfolding card-cartesian-product by (simp add:power2-eq-square)
finally have card $B+\operatorname{card}(B \times B \cap-\{x . f s t x=\operatorname{snd} x\})=\operatorname{card} B \wedge 2$ by simp
hence count-2: real $(\operatorname{card}(B \times B \cap-\{x . f s t x=\operatorname{snd} x\}))=\operatorname{real}(\operatorname{card} B) \wedge 2-\operatorname{card} B$ by (simp add:algebra-simps flip: of-nat-add of-nat-power)
hence finite (set-pmf Ω)
unfolding set-pmf- Ω
using fin- R fin- B by (auto intro!:finite-PiE)
hence int: integrable (measure-pmf Ω) f
for $f::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ real
by (intro integrable-measure-pmf-finite) simp
have a:prob-space.indep-vars (measure-pmf Ω) (λ i. discrete) $(\lambda x \omega . \omega x) R$
unfolding Ω-def using indep-vars-Pi-pmf $[O F$ fin- R] by metis
have $b:\left(\int \omega\right.$. of-bool $\left.(\omega ' R \subseteq A) \partial \Omega\right)=($ real $(\operatorname{card}(B \cap A)) / \operatorname{real}(\operatorname{card} B)){ }^{\prime}$ card R
(is ? $L=$? R) for A
proof -
have $? L=\left(\int \omega .\left(\prod j \in R\right.\right.$. of-bool $\left.\left.(\omega j \in A)\right) \partial \Omega\right)$
by (intro Bochner-Integration.integral-cong ext)
(auto simp add: of-bool-prod $[O F$ fin- $R]$)
also have $\ldots=\left(\Pi j \in R .\left(\int \omega\right.\right.$. of-bool $\left.\left.(\omega j \in A) \partial \Omega\right)\right)$
using fin-R
by (intro prob-space.indep-vars-lebesgue-integral[OF prob-space-measure-pmf] int prob-space.indep-vars-compose2 [OF prob-space-measure-pmf a]) auto
also have $\ldots=\left(\Pi j \in R .\left(\int \omega\right.\right.$. of-bool $\left.\left.(\omega \in A) \partial(\operatorname{map-pmf}(\lambda \omega . \omega j) \Omega)\right)\right)$
by simp
also have $\ldots=\left(\prod j \in R .\left(\int \omega\right.\right.$. of-bool $(\omega \in A) \partial($ pmf-of-set $\left.\left.B)\right)\right)$
unfolding Ω-def by (subst Pi-pmf-component $[O F$ fin- R]) simp
also have $\ldots=\left(\left(\sum \omega \in B \text {. of-bool }(\omega \in A)\right) / \text { real }(\operatorname{card} B)\right)^{\wedge}$ card R
by (simp add: integral-pmf-of-set $[O F B$-ne fin-B])
also have $\ldots=$? R
unfolding of-bool-def sum.If-cases $[O F$ fin- $B]$ by simp
finally show? thesis by simp
qed
have Z-exp: $\left(\int \omega . Z i \omega \partial \Omega\right)=\alpha$ if $i \in B$ for i
proof -
have $\operatorname{real}(\operatorname{card}(B \cap-\{i\}))=\operatorname{real}(\operatorname{card}(B-\{i\}))$
by (intro-cong $\left[\sigma_{1}\right.$ card, σ_{1} of-nat $]$) auto
also have $\ldots=\operatorname{real}(\operatorname{card} B-\operatorname{card}\{i\})$
using that by (subst card-Diff-subset) auto
also have $\ldots=$ real $($ card $B)-\operatorname{real}($ card $\{i\})$ using fin-B that by (intro of-nat-diff card-mono) auto
finally have c : real $(\operatorname{card}(B \cap-\{i\}))=\operatorname{real}(\operatorname{card} B)-1$
by simp

```
    have \(\left(\int \omega . Z i \omega \partial \Omega\right)=\left(\int \omega . \operatorname{of-bool}(\omega ' R \subseteq-\{i\}) \partial \Omega\right)\)
    unfolding \(Z\)-def by simp
    also have \(\ldots=(\) real \((\operatorname{card}(B \cap-\{i\})) / \operatorname{real}(\operatorname{card} B)) \uparrow \operatorname{card} R\)
    by (intro b)
    also have \(\ldots=((\) real \((\operatorname{card} B)-1) / \operatorname{real}(\operatorname{card} B)) \wedge \operatorname{card} R\)
    by (subst c) simp
    also have ... \(=\alpha\)
    unfolding \(\alpha\)-def using card-B-gt-0
    by (simp add:divide-eq-eq diff-divide-distrib)
    finally show ?thesis
        by \(\operatorname{simp}\)
qed
```

have Z-prod-exp: $\left(\int \omega . Z i \omega * Z j \omega \partial \Omega\right)=($ if $i=j$ then α else $\beta)$
if $i \in B j \in B$ for $i j$
proof -
have $\operatorname{real}(\operatorname{card}(B \cap-\{i, j\}))=\operatorname{real}(\operatorname{card}(B-\{i, j\}))$
by (intro-cong $\left[\sigma_{1}\right.$ card, σ_{1} of-nat $]$) auto
also have $\ldots=$ real (card $B-\operatorname{card}\{i, j\})$
using that by (subst card-Diff-subset) auto
also have $\ldots=\operatorname{real}(\operatorname{card} B)-\operatorname{real}(\operatorname{card}\{i, j\})$
using fin- B that by (intro of-nat-diff card-mono) auto
finally have c : real $(\operatorname{card}(B \cap-\{i, j\}))=\operatorname{real}(\operatorname{card} B)-\operatorname{card}\{i, j\}$
by simp
have $\left(\int \omega . Z i \omega * Z j \omega \partial \Omega\right)=\left(\int \omega\right.$. of-bool $(\omega$ ' $\left.R \subseteq-\{i, j\}) \partial \Omega\right)$
unfolding Z-def of-bool-conj[symmetric]
by (intro integral-cong ext) auto
also have $\ldots=($ real $(\operatorname{card}(B \cap-\{i, j\})) / \operatorname{real}(\operatorname{card} B)) \uparrow \operatorname{card} R$
by (intro b)
also have $\ldots=(($ real $(\operatorname{card} B)-\operatorname{card}\{i, j\}) / \operatorname{real}(\operatorname{card} B))$ ^card R
by (subst c) simp
also have $\ldots=($ if $i=j$ then α else $\beta)$
unfolding α-def β-def using card- B-gt- 0
by (simp add:divide-eq-eq diff-divide-distrib)
finally show? ?thesis by simp
qed
have Y-eq: $Y \omega=\left(\sum i \in B .1-Z i \omega\right)$ if $\omega \in$ set-pmf Ω for ω
proof -
have set-pmf $\Omega \subseteq \operatorname{Pi} R(\lambda$-. B)
using set-pmf- Ω by (simp add:PiE-def)
hence ω ' $R \subseteq B$
using that by auto
hence $Y \omega=\operatorname{card}(B \cap \omega$ ' $R)$
unfolding Y-def using Int-absorb1 by metis
also have $\ldots=\left(\sum i \in B\right.$. of-bool $(i \in \omega$ ' $\left.R)\right)$
unfolding of-bool-def sum.If-cases $[O F$ fin-B] by (simp)
also have $\ldots=\left(\sum i \in B .1-Z i \omega\right)$
unfolding Z-def by (intro sum.cong) (auto simp add:of-bool-def)
finally show $Y \omega=\left(\sum i \in B .1-Z i \omega\right)$ by simp
qed
have Y-sq-eq: $(Y \omega)^{2}=\left(\sum(i, j) \in B \times B .1-Z i \omega-Z j \omega+Z i \omega * Z j \omega\right)$
if $\omega \in$ set-pmf Ω for ω
unfolding Y-eq $[O F$ that $]$ power2-eq-square sum-product sum.cartesian-product
by (intro sum.cong) (auto simp add:algebra-simps)
have measure－pmf．expectation $\Omega Y=\left(\int \omega .\left(\sum i \in B .1-Z i \omega\right) \partial \Omega\right)$
using Y－eq by（intro integral－cong－AE AE－pmfI）auto
also have $\ldots=\left(\sum i \in B .1-\left(\int \omega . Z i \omega \partial \Omega\right)\right)$
using int by simp
also have $\ldots=? b *(1-\alpha)$
using Z－exp by simp
also have $\ldots=$ ？$A R$
unfolding α－def μ－def by simp
finally show ？$A L=$ ？$A R$ by simp
have measure－pmf．variance $\Omega Y=\left(\int \omega . Y \omega{ }^{\wedge} 2 \partial \Omega\right)-\left(\int \omega . Y \omega \partial \Omega\right)^{\wedge} 2$
using int by（subst measure－pmf．variance－eq）auto
also have ．．．$=$
$\left(\int \omega .\left(\sum i \in B \times B .1-Z(\right.\right.$ fst $i) \omega-Z($ snd $i) \omega+Z($ fst $i) \omega * Z($ snd $\left.\left.i) \omega\right) \partial \Omega\right)-$
$\left(\int \omega \cdot\left(\sum i \in B .1-Z i \omega\right) \partial \Omega\right)^{\wedge} 2$
using Y－eq Y－sq－eq
by（intro－cong $\left[\sigma_{2}(-), \sigma_{2}\right.$ power $]$ more：integral－cong－AE AE－pmfI）（auto simp add：case－prod－beta）
also have.. ＝
$\left(\sum i \in B \times B .\left(\int \omega .(1-Z(\right.\right.$ fst $i) \omega-Z($ snd $i) \omega+Z($ fst $i) \omega * Z($ snd $\left.\left.i) \omega) \partial \Omega\right)\right)-$
$\left(\sum i \in B .\left(\int \omega .(1-Z i \omega) \partial \Omega\right)\right)^{\wedge} 2$
by（intro－cong $\left[\sigma_{2}(-), \sigma_{2}\right.$ power］more：integral－sum int）
also have $\ldots=$
$\left(\sum i \in B \times B .\left(\int \omega .(1-Z(\right.\right.$ fst $i) \omega-Z($ snd $i) \omega+Z(f s t i) \omega * Z($ snd $\left.\left.i) \omega) \partial \Omega\right)\right)-$
$\left(\sum i \in B \times B .\left(\int \omega .(1-Z(f s t i) \omega) \partial \Omega\right) *\left(\int \omega .(1-Z(\right.\right.$ snd $\left.\left.i) \omega) \partial \Omega\right)\right)$
unfolding power2－eq－square sum－product sum．cartesian－product
by（simp add：case－prod－beta）
also have $\ldots=\left(\sum(i, j) \in B \times B .\left(\int \omega .(1-Z i \omega-Z j \omega+Z i \omega * Z j \omega) \partial \Omega\right)-\right.$ $\left.\left(\int \omega \cdot(1-Z i \omega) \partial \Omega\right) *\left(\int \omega .(1-Z j \omega) \partial \Omega\right)\right)$
by（subst sum－subtractf［symmetric］，simp add：case－prod－beta）
also have $\ldots=\left(\sum(i, j) \in B \times B .\left(\int \omega . Z i \omega * Z j \omega \partial \Omega\right)-\left(\int \omega . Z i \omega \partial \Omega\right) *\left(\int \omega . Z j \omega\right.\right.$ $\partial \Omega)$ ）
using int by（intro sum．cong refl）（simp add：algebra－simps case－prod－beta）
also have $\ldots=\left(\sum i \in B \times B\right.$ ．（if fst $i=$ snd i then $\alpha-\alpha^{\wedge} 2$ else $\left.\left.\beta-\alpha^{\wedge} 2\right)\right)$
by（intro sum．cong refl）
（simp add：Z－exp Z－prod－exp mem－Times－iff case－prod－beta power2－eq－square）
also have $\ldots=? b *\left(\alpha-\alpha^{2}\right)+\left(? b^{\wedge} 2-\operatorname{card} B\right) *\left(\beta-\alpha^{2}\right)$
using count－1 count－2 finite－cartesian－product fin－B by（subst sum．If－cases）auto
also have $\ldots=? b^{\wedge} 2 *\left(\beta-\alpha^{2}\right)+? b *(\alpha-\beta)$
by（simp add：algebra－simps）
also have $\ldots=? b *\left((1-1 / ? b)^{\wedge} ? r-(1-2 / ? b)^{\wedge} ? r\right)-? b b^{\wedge} 2 *(((1-1 / ? b) \wedge 2) \wedge ? r-(1-2 / ? b)$＾？$r)$ unfolding β－def α－def
by（simp add：power－mult［symmetric］algebra－simps）
also have $\ldots \leq \operatorname{card} R *(\operatorname{real}(\operatorname{card} R)-1) / \operatorname{card} B($ is $? L \leq ? R)$
proof（cases ？$b \geq 2$ ）
case True
have ？$L \leq$
$? b *(((1-1 / ? b)-(1-2 / ? b)) * ? r *(1-1 / ? b) \uparrow(? r-1))-$
？b^{\wedge} 2 $*((((1-1 / ? b)$ へ2 $)-((1-2 / ? b))) * ? r *((1-2 / ? b)) \uparrow(? r-1))$
using True
by（intro diff－mono mult－left－mono power－diff－est－2 power－diff－est divide－right－mono）
（auto simp add：power2－eq－square algebra－simps）
also have $\ldots=? b *((1 / ? b) * ? r *(1-1 / ? b) \uparrow(? r-1))-? b$ へ $2 *((1 / ? b$ へ2 $) * ? r *((1-2 / ? b)) \uparrow(? r-1))$
by（intro arg－cong2［where $f=(-)]$ arg－cong2［where $f=(*)]$ refl）
（auto simp add：algebra－simps power2－eq－square）
also have $\ldots=? r *((1-1 / ? b) \wedge(? r-1)-((1-2 / ? b)) \mathcal{(? r}-1))$
by（simp add：algebra－simps）
also have $\ldots \leq ? r *(((1-1 / ? b)-(1-2 / ? b)) *(? r-1) *(1-1 / ? b) \mathcal{C}(? r-1-1))$
using True by（intro mult－left－mono power－diff－est）（auto simp add：algebra－simps）

```
    also have ...\leq?r*((1/?b)*(?r - 1)* 1^(?r - 1-1))
        using True by (intro mult-left-mono mult-mono power-mono) auto
        also have ... = ?R
        using card-B-gt-0 by auto
        finally show ?L L
        next
        case False
        hence ?b = 1 using card-B-ge-1 by simp
        thus ?L}\leq?
        by (cases card R=0) auto
    qed
    finally show measure-pmf.variance \Omega Y\leqcard R*(real (card R) - 1)/ card B
        by simp
qed
definition lim-balls-and-bins k p =(
    prob-space.k-wise-indep-vars (measure-pmf p)k(\lambda-. discrete) (\lambdax \omega.\omega |) R^
    (}\forallx.x\inR\longrightarrow\operatorname{map-pmf}(\lambda\omega.\omegax)p=pmf-of-set B)
lemma indep:
    assumes lim-balls-and-bins k p
    shows prob-space.k-wise-indep-vars (measure-pmf p)k(\lambda-. discrete) (\lambdax \omega.\omegax)R
    using assms lim-balls-and-bins-def by simp
lemma ran:
    assumes lim-balls-and-bins k px\inR
    shows map-pmf (\lambda\omega.\omegax) p=pmf-of-set B
    using assms lim-balls-and-bins-def by simp
lemma Z-integrable:
    fixes f :: real = real
    assumes lim-balls-and-bins kp
    shows integrable p ( }\lambda\omega.f(Zi\omega)
    unfolding Z-def using fin-R card-mono
    by (intro integrable-pmf-iff-bounded[where C=Max (abs 'f 'real '{..card R})])
    fastforce+
lemma Z-any-integrable-2:
    fixes f:: real }=>\mathrm{ real
    assumes lim-balls-and-bins kp
    shows integrable p (\lambda\omega.f(Zi\omega+Zj\omega))
proof -
    have q:real (card A) + real (card B)\in real' {..2 * card R} if A\subseteqRB\subseteqR for A B
    proof -
        have card A + card B \leq card R + card R
        by (intro add-mono card-mono fin-R that)
        also have ... =2* card R by simp
        finally show ?thesis by force
    qed
    thus ?thesis
        unfolding Z-def using fin-R card-mono abs-triangle-ineq
        by (intro integrable-pmf-iff-bounded[where C=Max (abs 'f'real ' {..2*card R})] Max-ge
            finite-imageI imageI) auto
qed
lemma hit-count-prod-exp:
    assumes j1 \inB j2 \inB s+t \leqk
```

assumes lim-balls-and-bins $k p$
defines $L \equiv\{(x s, y s)$. set $x s \subseteq R \wedge$ set $y s \subseteq R \wedge$
$($ set $x s \cap$ set $y s=\{ \} \vee j 1=j 2) \wedge$ length $x s=s \wedge$ length $y s=t\}$
shows $\left(\int \omega . Z j 1 \omega^{\wedge} s * Z j 2 \omega \uparrow t \partial p\right)=$
$\left(\sum(x s, y s) \in L .(1 /\right.$ real $(\operatorname{card} B)) \wedge(\operatorname{card}($ set $x s \cup$ set $\left.y s))\right)$ $($ is ? $L=? R)$
proof -
define $W 1::{ }^{\prime} a \Rightarrow\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ real where $W 1=(\lambda i \omega$. of-bool $(\omega i=j 1)::$ real $)$
define $W 2:: ' a \Rightarrow\left(' a \Rightarrow{ }^{\prime} b\right) \Rightarrow$ real where $W 2=(\lambda i \omega$. of-bool $(\omega i=j 2)::$ real $)$
define $\tau::$ 'a list \times 'a list $\Rightarrow{ }^{\prime} a \Rightarrow$ ' b where $\tau=(\lambda l x$. if $x \in \operatorname{set}(f s t l)$ then j1 else $j 2)$
have τ-check-1: $\tau l x=j 1$ if $x \in \operatorname{set}($ fst $l)$ and $l \in L$ for $x l$ using that unfolding τ-def L-def by auto
have τ-check-2: $\tau l x=j 2$ if $x \in \operatorname{set}($ snd $l)$ and $l \in L$ for $x l$ using that unfolding τ-def L-def by auto
have τ-check-3: $\tau l x \in B$ for $x l$ using $\operatorname{assms}(1,2)$ unfolding τ-def by simp
have Z1-eq: Z j1 $\omega=\left(\sum i \in R\right.$. W1 $i \omega$) for ω using fin- R unfolding Z-def W1-def by (simp add:of-bool-def sum.If-cases Int-def)
have Z2-eq: $Z j 2 \omega=\left(\sum i \in R\right.$. W2 $\left.i \omega\right)$ for ω using fin- R unfolding Z-def W2-def by (simp add:of-bool-def sum.If-cases Int-def)
define α where $\alpha=1 / \operatorname{real}(\operatorname{card} B)$

```
have \(a:\left(\int \omega .\left(\prod x \leftarrow a\right.\right.\). W1 \(\left.x \omega\right) *\left(\prod y \leftarrow b\right.\). W2 \(\left.\left.y \omega\right) \partial p\right)=0(\) is ? \(L 1=0)\)
    if \(x \in\) set \(a \cap\) set \(b j 1 \neq j 2\) length \(a=s\) length \(b=t\) for \(x a b\)
proof -
    have \(\left(\prod x \leftarrow a\right.\). W1 \(\left.x \omega\right) *\left(\prod y \leftarrow b\right.\). W2 \(\left.y \omega\right)=0\) for \(\omega\)
    proof -
        have \(W 1 x \omega=0 \vee W 2 x \omega=0\)
            unfolding W1-def W2-def using that by simp
        hence \(\left(\prod x \leftarrow a\right.\). W1 \(\left.x \omega\right)=0 \vee\left(\prod y \leftarrow b\right.\). W2 \(\left.y \omega\right)=0\)
            unfolding prod-list-zero-iff using that(1) by auto
        thus ?thesis by simp
    qed
    hence ? \(L 1=\left(\int \omega .0 \partial p\right)\)
        by (intro arg-cong2[where \(f=\) measure-pmf.expectation]) auto
    also have \(\ldots=0\)
        by simp
    finally show?thesis by simp
qed
have b: prob-space.indep-vars \(p(\lambda\)-. discrete \()(\lambda i \omega . \omega i)(\) set \((f s t x) \cup\) set \((\) snd \(x))\)
    if \(x \in L\) for \(x\)
proof -
    have card \((\) set \((f s t x) \cup \operatorname{set}(\operatorname{snd} x)) \leq \operatorname{card}(\operatorname{set}(f s t x))+\operatorname{card}(\operatorname{set}(\operatorname{snd} x))\)
        by (intro card-Un-le)
    also have \(\ldots \leq\) length \((f s t x)+\) length \((\) snd \(x)\)
        by (intro add-mono card-length)
    also have \(\ldots=s+t\)
        using that L-def by auto
```

also have $\ldots \leq k$ using $\operatorname{assms}(3)$ by simp
finally have card $($ set $(f s t x) \cup$ set $($ snd $x)) \leq k$ by simp
moreover have set $(f$ st $x) \cup$ set $($ snd $x) \subseteq R$
using that L-def by auto
ultimately show ?thesis
by (intro prob-space.k-wise-indep-vars-subset[OF prob-space-measure-pmf indep[OF assms(4)]]) auto
qed
have $c:\left(\int \omega\right.$. of-bool $\left.(\omega x=z) \partial p\right)=\alpha($ is ? $L 1=-)$
if $z \in B x \in R$ for $x z$
proof -
have ? $L 1=\left(\int \omega\right.$. indicator $\left.\{\omega \cdot \omega x=z\} \omega \partial p\right)$ unfolding indicator-def by simp
also have $\ldots=$ measure $p\{\omega . \omega x=z\}$
by simp
also have $\ldots=$ measure $(\operatorname{map}-p m f(\lambda \omega \cdot \omega x) p)\{z\}$
by (subst measure-map-pmf) (simp add:vimage-def)
also have $\ldots=$ measure ($p m f$-of-set B) $\{z\}$
using that by (subst ran[OF assms(4)]) auto
also have $\ldots=1 / \operatorname{card} B$
using fin-B that by (subst measure-pmf-of-set) auto
also have $\ldots=\alpha$
unfolding α-def by simp
finally show?thesis by simp
qed
have $d:$ abs $x \leq 1 \Longrightarrow a b s y \leq 1 \Longrightarrow a b s(x * y) \leq 1$ for $x y::$ real by (simp add:abs-mult mult-le-one)
have $e:(\bigwedge x . x \in$ set $x s \Longrightarrow a b s x \leq 1) \Longrightarrow a b s(p r o d-l i s t x s) \leq 1$ for $x s::$ real list using d by (induction xs, simp, simp)
have $? L=\left(\int \omega .\left(\sum j \in R . W 1 j \omega\right) \widehat{s} *\left(\sum j \in R . W 2 j \omega\right)\right.$ 个 t dp)
unfolding Z1-eq Z2-eq by simp
also have $\ldots=\left(\int \omega .\left(\sum x s \mid\right.\right.$ set $x s \subseteq R \wedge$ length $\left.x s=s .\left(\prod x \leftarrow x s . W 1 x \omega\right)\right) *$
$\left(\sum y s \mid\right.$ set $y s \subseteq R \wedge$ length $\left.\left.y s=t .\left(\prod y \leftarrow y s . W 2 y \omega\right)\right) \partial p\right)$
unfolding sum-power-distrib $[O F$ fin- R] by simp
also have $\ldots=\left(\int \omega\right.$.
($\sum l \in\{x s$. set $x s \subseteq R \wedge$ length $x s=s\} \times\{y s$. set $y s \subseteq R \wedge$ length $y s=t\}$.
$\left(\prod x \leftarrow f s t l\right.$. W1 $\left.x \omega\right) *\left(\prod y \leftarrow\right.$ snd l. W2 y $\left.\left.\left.\omega\right)\right) \partial p\right)$
by (intro arg-cong $\left[\right.$ where $f=$ integral $\left.^{L} p\right]$)
(simp add: sum-product sum.cartesian-product case-prod-beta)
also have $\ldots=\left(\sum l \in\{x s\right.$. set $x s \subseteq R \wedge$ length $x s=s\} \times\{y s$. set $y s \subseteq R \wedge$ length $y s=t\}$.
$\left(\int \omega .\left(\prod x \leftarrow f s t l . W 1 x \omega\right) *\left(\prod y \leftarrow\right.\right.$ snd l. W2 $\left.\left.\left.y \omega\right) \partial p\right)\right)$
unfolding W1-def W2-def
by (intro integral-sum integrable-pmf-iff-bounded[where $C=1] d$ e) auto
also have $\ldots=\left(\sum l \in L .\left(\int \omega .\left(\prod x \leftarrow f s t l\right.\right.\right.$. W1 $\left.x \omega\right) *\left(\prod y \leftarrow\right.$ snd l. W2 y $\left.\left.\left.\omega\right) \partial p\right)\right)$
unfolding L-def using a by (intro sum.mono-neutral-right finite-cartesian-product
finite-lists-length-eq fin-R) auto
also have $\ldots=\left(\sum l \in L .\left(\int \omega .\left(\prod x \leftarrow f s t l\right.\right.\right.$.
of-bool $(\omega x=\tau l x)) *\left(\prod y \leftarrow\right.$ snd l. of-bool $\left.\left.\left.(\omega y=\tau l y)\right) \partial p\right)\right)$
unfolding W1-def W2-def using τ-check-1 τ-check-2
by (intro sum.cong arg-cong[where $f=$ integral $\left.^{L} p\right]$ ext arg-cong2 [where $f=(*)$]
arg-cong[where $f=$ prod-list $])$ auto
also have $\ldots=\left(\sum l \in L .\left(\int \omega .\left(\prod x \leftarrow(f s t l @ s n d l)\right.\right.\right.$. of-bool $\left.\left.\left.(\omega x=\tau l x)\right) \partial p\right)\right)$
by simp
also have $\ldots=\left(\sum l \in L .\left(\int \omega .\left(\prod x \in \operatorname{set}(f s t l @ s n d l)\right.\right.\right.$.
of-bool $(\omega x=\tau l x)$ ^count-list $(f s t l @ s n d l) x) \partial p)$)
unfolding prod-list-eval by simp
also have $\ldots=\left(\sum l \in L .\left(\int \omega .\left(\prod x \in \operatorname{set}(f s t l) \cup\right.\right.\right.$ set $($ snd $l)$.
of-bool $(\omega x=\tau l x)$ ccount-list $(f s t l @ s n d l) x) \partial p))$
by simp
also have $\ldots=\left(\sum l \in L .\left(\int \omega .\left(\prod x \in \operatorname{set}(f s t l) \cup \operatorname{set}(\operatorname{snd} l)\right.\right.\right.$. of-bool $\left.\left.\left.(\omega x=\tau l x)\right) \partial p\right)\right)$
using count-list-gr-1
by (intro sum.cong arg-cong $\left[\right.$ where $f=$ integral $\left.^{L} p\right]$ ext prod.cong) force+
also have $\ldots=\left(\sum l \in L .\left(\prod x \in \operatorname{set}(f s t l) \cup \operatorname{set}(\operatorname{snd} l) .\left(\int \omega\right.\right.\right.$. of-bool $\left.\left.\left.(\omega x=\tau l x) \partial p\right)\right)\right)$
by (intro sum.cong prob-space.indep-vars-lebesgue-integral[OF prob-space-measure-pmf] integrable-pmf-iff-bounded[where $C=1]$ prob-space.indep-vars-compose2 [OF prob-space-measure-pmf b]) auto
also have $\ldots=\left(\sum l \in L .\left(\prod x \in \operatorname{set}(f s t l) \cup \operatorname{set}(\right.\right.$ snd $\left.\left.l) . \alpha\right)\right)$
using τ-check-3 unfolding L-def by (intro sum.cong prod.cong c) auto
also have $\ldots=\left(\sum l \in L . \alpha \mathcal{C}(\operatorname{card}(\right.$ set $(f s t l) \cup$ set $($ snd $\left.l)))\right)$
by simp
also have $\ldots=$? R
unfolding L-def α-def by (simp add:case-prod-beta)
finally show? ?thesis by simp
qed
lemma hit-count-prod-pow-eq:
assumes $i \in B j \in B$
assumes lim-balls-and-bins $k p$
assumes lim-balls-and-bins $k q$
assumes $s+t \leq k$
shows $\left(\int \omega \cdot(Z i \omega) \wedge s *(Z j \omega) \curlywedge t \partial p\right)=\left(\int \omega \cdot(Z i \omega) \wedge s *(Z j \omega) \curlywedge \partial q\right)$
unfolding hit-count-prod-exp $[O F \operatorname{assms}(1,2,5,3)]$
unfolding hit-count-prod-exp[OF $\operatorname{assms}(1,2,5,4)]$
by simp
lemma hit-count-sum-pow-eq:
assumes $i \in B j \in B$
assumes lim-balls-and-bins $k p$
assumes lim-balls-and-bins $k q$
assumes $s \leq k$
shows $\left(\int \omega \cdot(Z i \omega+Z j \omega)\right.$ 个s $\left.\partial p\right)=\left(\int \omega \cdot(Z i \omega+Z j \omega) \widehat{s} \partial q\right)$
(is ? $L=? R$)
proof -
have q 2: $|Z i x \wedge l * Z j x \wedge(s-l)| \leq \operatorname{real}(\operatorname{card} R \wedge s)$
if $l \in\{. . s\}$ for $s i j l x$
proof -
have $\left|Z i x^{\wedge} l * Z j x^{\wedge}(s-l)\right| \leq Z i x \wedge l * Z j x^{\wedge}(s-l)$
unfolding Z-def by auto
also have $\ldots \leq$ real $(\operatorname{card} R)^{\wedge} l *$ real $(\operatorname{card} R) \wedge(s-l)$
unfolding Z-def
by (intro mult-mono power-mono of-nat-mono card-mono fin-R) auto
also have $\ldots=$ real $(\operatorname{card} R)$ s using that
by (subst power-add $[$ symmetric $])$ simp
also have $\ldots=\operatorname{real}($ card $R \widehat{\wedge})$
by simp
finally show ?thesis by simp
qed
have $? L=\left(\int \omega .\left(\sum l \leq s\right.\right.$. real $(s$ choose $\left.\left.l) *\left(Z i \omega^{\wedge} l * Z j \omega \wedge(s-l)\right)\right) \partial p\right)$
by (subst binomial-ring) (simp add:algebra-simps)
also have $\ldots=\left(\sum l \leq s .\left(\int \omega\right.\right.$. real $(s$ choose $\left.\left.\left.l) *(Z i \omega \wedge l * Z j \omega\urcorner(s-l)\right) \partial p\right)\right)$
by (intro integral-sum integrable-mult-right
integrable-pmf-iff-bounded $[$ where $C=$ card R ^s] q2) auto

```
    also have \(\ldots=\left(\sum l \leq s\right.\). real \((s\) choose \(\left.l) *\left(\int \omega .(Z i \omega \uparrow l * Z j \omega \uparrow(s-l)) \partial p\right)\right)\)
    by (intro sum.cong integral-mult-right
        integrable-pmf-iff-bounded \([\) where \(C=\operatorname{card} R \wedge\) ] q2) auto
    also have \(\ldots=\left(\sum l \leq s\right.\). real \((s\) choose \(\left.l) *\left(\int \omega .\left(Z i \omega \uparrow l * Z j \omega^{\wedge}(s-l)\right) \partial q\right)\right)\)
    using assms(5)
    by (intro-cong \(\left[\sigma_{2}(*)\right]\) more: sum.cong hit-count-prod-pow-eq \(\left.[\operatorname{OF} \operatorname{assms}(1-4)]\right)\)
        auto
    also have \(\ldots=\left(\sum l \leq s .\left(\int \omega\right.\right.\). real \((s\) choose \(\left.\left.l) *(Z i \omega \uparrow l * Z j \omega \uparrow(s-l)) \partial q\right)\right)\)
    by (intro sum.cong integral-mult-right[symmetric]
        integrable-pmf-iff-bounded[where \(C=\) card \(R\) ^s] q2) auto
    also have \(\ldots=\left(\int \omega .\left(\sum l \leq s\right.\right.\). real \((s\) choose \(\left.\left.\left.l) *(Z i \omega \wedge l * Z j \omega\urcorner(s-l)\right)\right) \partial q\right)\)
    by (intro integral-sum [symmetric] integrable-mult-right
        integrable-pmf-iff-bounded[where \(C=\) card \(R\) 个s] q2) auto
    also have ... \(=\) ? \(R\)
    by (subst binomial-ring) (simp add:algebra-simps)
    finally show ?thesis by simp
qed
lemma hit-count-sum-poly-eq:
    assumes \(i \in B j \in B\)
    assumes lim-balls-and-bins \(k p\)
    assumes lim-balls-and-bins \(k q\)
    assumes \(f \in \mathbb{P} k\)
    shows \(\left(\int \omega . f(Z i \omega+Z j \omega) \partial p\right)=\left(\int \omega . f(Z i \omega+Z j \omega) \partial q\right)\)
        (is ? \(L=? R\) )
proof -
    obtain \(f p\) where \(f\)-def: \(f=\) poly fp degree \(f p \leq k\)
    using assms(5) unfolding Polynomials-def by auto
    have \(? L=\left(\sum d \leq\right.\) degree fp. \(\left(\int \omega\right.\). poly.coeff fp \(\left.\left.d *(Z i \omega+Z j \omega) \wedge d \partial p\right)\right)\)
    unfolding \(f\)-def poly-altdef
    by (intro integral-sum integrable-mult-right Z-any-integrable-2[OF assms(3)])
    also have \(\ldots=\left(\sum d \leq\right.\) degree fp. poly.coeff fp \(\left.d *\left(\int \omega .(Z i \omega+Z j \omega) \wedge d \partial p\right)\right)\)
    by (intro sum.cong integral-mult-right Z-any-integrable-2[OF assms(3)])
        simp
    also have \(\ldots=\left(\sum d \leq\right.\) degree fp. poly.coeff fp \(\left.d *\left(\int \omega .(Z i \omega+Z j \omega) \wedge d \partial q\right)\right)\)
    using \(f\)-def
    by (intro sum.cong arg-cong2[where \(f=(*)]\) hit-count-sum-pow-eq \([O F \operatorname{assms}(1-4)]\) ) auto
    also have \(\ldots=\left(\sum d \leq\right.\) degree \(f p\). \(\left(\int \omega\right.\). poly.coeff fp \(\left.\left.d *(Z i \omega+Z j \omega) \wedge d \partial q\right)\right)\)
    by (intro sum.cong) auto
    also have...\(=\) ? \(R\)
    unfolding \(f\)-def poly-altdef by (intro integral-sum[symmetric]
        integrable-mult-right Z-any-integrable-2[OF assms(4)])
    finally show?thesis by simp
qed
lemma hit-count-poly-eq:
    assumes \(b \in B\)
    assumes lim-balls-and-bins \(k p\)
    assumes lim-balls-and-bins \(k q\)
    assumes \(f \in \mathbb{P} k\)
    shows \(\left(\int \omega \cdot f(Z b \omega) \partial p\right)=\left(\int \omega \cdot f(Z b \omega) \partial q\right)(\) is \(? L=? R)\)
proof -
    have \(a:(\lambda a . f(a / 2)) \in \mathbb{P}(k * 1)\)
    by (intro Polynomials-composeI \([\) OF assms(4)] Polynomials-intros)
    have \(? L=\int \omega . f((Z b \omega+Z b \omega) / \mathcal{Z}) \partial p\)
    by \(\operatorname{simp}\)
    also have \(\ldots=\int \omega \cdot f((Z b \omega+Z b \omega) / \mathscr{D}) \partial q\)
```

using a by (intro hit-count-sum-poly-eq[OF $\operatorname{assms}(1,1,2,3)]$) simp
also have $\ldots=$? R by simp
finally show? ?thesis by simp
qed
lemma lim-balls-and-bins-from-ind-balls-and-bins:
lim-balls-and-bins $k \Omega$
proof -
have prob-space.indep-vars (measure-pmf Ω) (λ-. discrete) $(\lambda x \omega . \omega x) R$ unfolding Ω-def using indep-vars-Pi-pmf $[O F$ fin- R] by metis
hence prob-space.indep-vars (measure-pmf Ω) (λ-. discrete) $(\lambda x \omega . \omega x) J$ if $J \subseteq R$ for J using prob-space.indep-vars-subset[OF prob-space-measure-pmf - that] by auto
hence a:prob-space.k-wise-indep-vars (measure-pmf Ω) k (λ-. discrete) $(\lambda x \omega . \omega x) R$ by (simp add:prob-space.k-wise-indep-vars-def[OF prob-space-measure-pmf])
have b: map-pmf $(\lambda \omega . \omega x) \Omega=p m f$-of-set B if $x \in R$ for x
using that unfolding Ω-def Pi-pmf-component $[O F$ fin- R] by simp
show ?thesis
using $a b$ fin- R fin- B unfolding lim-balls-and-bins-def by auto
qed
lemma hit-count-factorial-moments:
assumes $a: j \in B$
assumes $s \leq k$
assumes lim-balls-and-bins $k p$
shows $\left(\int \omega\right.$.ffact $\left.s(Z j \omega) \partial p\right)=$ ffact $s($ real $(\operatorname{card} R)) *(1 / \operatorname{real}(\operatorname{card} B))$ s
(is ? $L=? R$)
proof -
have $(\lambda x$. ffact $s(x-0::$ real $)) \in \mathbb{P} s$
by (intro Polynomials-intros)
hence $b:$ ffact $s \in(\mathbb{P} k::($ real \Rightarrow real $)$ set $)$
using Polynomials-mono[OF assms(2)] by auto
have $? L=\left(\int \omega\right.$. ffact $\left.s(Z j \omega) \partial \Omega\right)$
by (intro hit-count-poly-eq[OF a assms(3) lim-balls-and-bins-from-ind-balls-and-bins] b)
also have $\ldots=\left(\int \omega\right.$. ffact $\left.s\left(\sum i \in\{j\} . Z i \omega\right) \partial \Omega\right)$
by simp
also have $\ldots=$ ffact $s($ real $(\operatorname{card} R)) *($ real $(\operatorname{card}\{j\}) / \operatorname{real}(\operatorname{card} B)){ }^{\wedge} s$ using assms(1)
by (intro fact-moment-balls-and-bins fin-R fin-B) auto
also have $\ldots=$? R
by simp
finally show? ?thesis by simp
qed
lemma hit-count-factorial-moments-2:
assumes $a: i \in B j \in B$
assumes $i \neq j s \leq k$ card $R \leq \operatorname{card} B$
assumes lim-balls-and-bins $k p$
shows $\left(\int \omega\right.$. ffact s $\left.(Z i \omega+Z j \omega) \partial p\right) \leq 2 \uparrow s$
(is ? $L \leq ? R$)
proof -
have $(\lambda x$.ffact $s(x-0::$ real $)) \in \mathbb{P} s$
by (intro Polynomials-intros)
hence b : ffact $s \in(\mathbb{P} k::($ real \Rightarrow real $)$ set $)$
using Polynomials-mono[OF assms(4)] by auto
have or-distrib: $(a \wedge b) \vee(a \wedge c) \longleftrightarrow a \wedge(b \vee c)$ for $a b c$
by auto
have $? L=\left(\int \omega\right.$. ffact s $\left.(Z i \omega+Z j \omega) \partial \Omega\right)$
by (intro hit-count-sum-poly-eq[OF a assms(6) lim-balls-and-bins-from-ind-balls-and-bins] b)
also have $\ldots=\left(\int \omega\right.$. ffact $\left.s\left(\left(\sum t \in\{i, j\} . Z t \omega\right)\right) \partial \Omega\right)$
using assms(3) by simp
also have $\ldots=$ ffact $s($ real $($ card $R)) *($ real $($ card $\{i, j\}) /$ real $($ card $B)) ~ \wedge s$ using $\operatorname{assms}(1,2)$
by (intro fact-moment-balls-and-bins fin-R fin-B) auto
also have $\ldots=$ real $($ ffact $s(\operatorname{card} R)) *($ real $(\operatorname{card}\{i, j\}) / \operatorname{real}(\operatorname{card} B)) \wedge s$
by (simp add:of-nat-ffact)
also have $\ldots \leq(\operatorname{card} R) \uparrow s *($ real $(\operatorname{card}\{i, j\}) / \operatorname{real}(\operatorname{card} B)){ }^{\wedge} s$
by (intro mult-mono of-nat-mono ffact-bound, simp-all)
also have $\ldots \leq(\operatorname{card} B) \uparrow s *($ real (2) / real $($ card B) $) \wedge s$
using assms(3)
by (intro mult-mono of-nat-mono power-mono assms(5), simp-all)
also have $\ldots=$? R
using card-B-gt-0 by (simp add:divide-simps)
finally show ?thesis by simp
qed
lemma balls-and-bins-approx-helper:
fixes x :: real
assumes $x \geq 2$
assumes real $k \geq 5 * x / \ln x$
shows $k \geq 2$
and $2 \wedge(k+3) /$ fact $k \leq(1 / \exp x)^{\wedge} 2$
and $2 /$ fact $k \leq 1 /(\exp 1 * \exp x)$
proof -
have \ln-inv: $\ln x=-\ln (1 / x)$ if $x>0$ for $x::$ real using that by (subst ln-div, auto)
have apx:
$\exp 1 \leq(5:$:real $)$
$4 * \ln 4 \leq(2-2 * \exp 1 / 5) * \ln (450::$ real $)$
$\ln 8 * 2 \leq(450::$ real $)$
$4 / 5 * 2 * \exp 1+\ln (5 / 4) * \exp 1 \leq(5::$ real $)$
$\exp 1 \leq(2::$ real $) \wedge_{4}$
by (approximation 10)+
have $2 \leq 5 *(x /(x-1))$
using $\operatorname{assms}(1)$ by (simp add:divide-simps)
also have $\ldots \leq 5 *(x / \ln x)$
using assms(1)
by (intro mult-left-mono divide-left-mono ln-le-minus-one mult-pos-pos) auto
also have $\ldots \leq k$ using assms(2) by simp
finally show k-ge-2: $k \geq 2$ by simp
have $\ln x *(2 * \exp 1)=\ln (((4 / 5) * x) *(5 / 4)) *(2 * \exp 1)$
by simp
also have $\ldots=\ln ((4 / 5) * x) *(2 * \exp 1)+\ln ((5 / 4)) *(2 * \exp 1)$
using assms(1) by (subst ln-mult, simp-all add:algebra-simps)
also have $\ldots<(4 / 5) * x *(2 * \exp 1)+\ln (5 / 4) *(x * \exp 1)$
using assms(1) by (intro add-less-le-mono mult-strict-right-mono ln-less-self mult-left-mono mult-right-mono) (auto simp add:algebra-simps)
also have $\ldots=((4 / 5) * 2 * \exp 1+\ln (5 / 4) * \exp 1) * x$
by (simp add:algebra-simps)
also have $\ldots \leq 5 * x$
using assms(1) apx(4) by (intro mult-right-mono, simp-all)
finally have $1: \ln x *(2 * \exp 1) \leq 5 * x$ by simp
have $\ln 8 \leq 3 * x-5 * x * \ln (2 * \exp 1 / 5 * \ln x) / \ln x$
proof (cases $x \in\{2 . .450\}$)
case True
then show ?thesis by (approximation 10 splitting: $x=10$)
next
case False
hence $x-g e-450: x \geq 450$ using assms(1) by simp
have $4 * \ln 4 \leq(2-2 * \exp 1 / 5) * \ln (450::$ real $)$
using $a p x$ (2) by (simp)
also have $\ldots \leq(2-2 * \exp 1 / 5) * \ln x$
using x-ge-450 apx(1)
by (intro mult-left-mono iffD2[OF ln-le-cancel-iff], simp-all)
finally have $(2-2 * \exp 1 / 5) * \ln x \geq 4 * \ln 4$ by simp
hence $2 * \exp 1 / 5 * \ln x+0 \leq 2 * \exp 1 / 5 * \ln x+((2-2 * \exp 1 / 5) * \ln x-4 * \ln 4)$
by (intro add-mono) auto
also have $\ldots=4 *(1 / 2) * \ln x-4 * \ln 4$
by (simp add:algebra-simps)
also have $\ldots=4 *(\ln (x$ powr $(1 / 2))-\ln 4)$
using x-ge- 450 by (subst ln-powr, auto)
also have $\ldots=4 *(\ln (x$ powr $(1 / 2) / 4))$
using x-ge- 450 by (subst ln-div) auto
also have $\ldots<4 *(x$ powr $(1 / 2) / 4)$
using x-ge- 450 by (intro mult-strict-left-mono ln-less-self) auto
also have $\ldots=x$ powr (1/2) by simp
finally have $2 * \exp 1 / 5 * \ln x \leq x$ powr (1/2) by simp
hence $\ln (2 * \exp 1 / 5 * \ln x) \leq \ln (x$ powr (1/2)) using x-ge-450 ln-le-cancel-iff by simp
hence $0: \ln (2 * \exp 1 / 5 * \ln x) / \ln x \leq 1 / 2$
using x-ge-450 by (subst (asm) ln-powr, auto)
have $\ln 8 \leq 3 * x-5 * x *(1 / 2)$
using $x-g e-450$ apx(3) by simp
also have $\ldots \leq 3 * x-5 * x *(\ln (2 * \exp 1 / 5 * \ln x) / \ln x)$ using x-ge-450 by (intro diff-left-mono mult-left-mono 0) auto
finally show? ?thesis by simp
qed
hence $2 * x+\ln 8 \leq 2 * x+(3 * x-5 * x * \ln (2 * \exp 1 / 5 * \ln x) / \ln x)$
by (intro add-mono, auto)
also have $\ldots=5 * x+5 * x * \ln (5 /(2 * \exp 1 * \ln x)) / \ln x$
using assms(1) by (subst ln-inv) (auto simp add:algebra-simps)
also have $\ldots=5 * x *(\ln x+\ln (5 /(2 * \exp 1 * \ln x))) / \ln x$
using assms(1) by (simp add:algebra-simps add-divide-distrib)
also have $\ldots=5 * x *(\ln (5 * x /(2 * \exp 1 * \ln x))) / \ln x$
using assms(1) by (subst ln-mult[symmetric], auto)
also have $\ldots=(5 * x / \ln x) * \ln ((5 * x / \ln x) /(2 * \exp 1))$
by (simp add:algebra-simps)
also have $\ldots \leq k * \ln (k /(2 * \exp 1))$
using $\operatorname{assms}(1,2) 1 k$-ge-2
by (intro mult-mono iffD2[OF ln-le-cancel-iff] divide-right-mono) auto
finally have $k * \ln (k /(2 * \exp 1)) \geq 2 * x+\ln 8$ by simp
hence $k * \ln (2 * \exp 1 / k) \leq-2 * x-\ln 8$
using k-ge-2 by (subst ln-inv, auto)
hence $\ln ((2 * \exp 1 / k)$ powr $k) \leq \ln (\exp (-2 * x))-\ln 8$

```
    using k-ge-2 by (subst ln-powr, auto)
    also have ... = ln(exp(-2*x)/8)
    by (simp add:ln-div)
    finally have ln ((2*exp 1/k) powr k)\leqln (exp(-2*x)/8) by simp
    hence 1:(2*exp 1/k) powr k\leq exp (-2*x)/8
    using k-ge-2 assms(1) by (subst (asm) ln-le-cancel-iff) auto
    have 2` (k+3)/fact k\leq 2` (k+3)/(k/\operatorname{exp 1)`k}
    using k-ge-2 by (intro divide-left-mono fact-lower-bound-1) auto
    also have ... = 8*2^k* (exp 1/k)^k
    by (simp add:power-add algebra-simps power-divide)
    also have ... = 8*(2*exp 1/k) powr k
    using k-ge-2 powr-realpow
    by (simp add:power-mult-distrib[symmetric])
    also have .. \leq8*(exp(-2*x)/8)
    by (intro mult-left-mono 1) auto
    also have ... = exp ((-x)*\mathcal{Z})
    by simp
    also have ... = exp (-x)^2
    by (subst exp-powr[symmetric], simp)
    also have ... = (1/\operatorname{exp x )^2}
    by (simp add: exp-minus inverse-eq-divide)
    finally show 2:2^(k+3)/fact k\leq(1/\operatorname{exp x)`2 by simp}
    have (2::real)/fact k=(2`(k+3)/fact k)/(2`(k+2))
    by (simp add:divide-simps power-add)
    also have ... \leq(1/ exp x)`2/(2`(k+2))
    by (intro divide-right-mono 2, simp)
    also have ... \leq (1/ exp x)^1/(2^(k+2))
        using assms(1) by (intro divide-right-mono power-decreasing) auto
    also have .. \leq (1/ exp x)^1/(2^4)
        using k-ge-2 by (intro divide-left-mono power-increasing) auto
    also have .. \leq (1/ exp x)^1/\operatorname{exp}(1)
    using k-ge-2 apx(5) by (intro divide-left-mono) auto
    also have ... = 1/(exp 1* exp x) by simp
    finally show (2::real)/fact k\leq1/(exp 1* exp x) by simp
qed
```

Bounds on the expectation and variance in the k -wise independent case. Here the indepedence assumption is improved by a factor of two compared to the result in the paper.

```
lemma
    assumes card R\leq card B
    assumes \bigwedgec. lim-balls-and-bins (k+1) (p c)
    assumes }\varepsilon\in{0<..1/\operatorname{exp}(2)
    assumes }k\geq5*\operatorname{ln}(\operatorname{card}B/\varepsilon)/\operatorname{ln}(\operatorname{ln}(\operatorname{card}B/\varepsilon)
    shows
        exp-approx: |measure-pmf.expectation (p True) Y - measure-pmf.expectation (p False) Y|\leq
        \varepsilon* real (card R) (is ?A) and
    var-approx: |measure-pmf.variance (p True) Y - measure-pmf.variance (p False) Y| \leq & 2
        (is ? B)
proof -
    let ?p1 = p False
    let ?p2 = p True
    have exp (2::real) = 1/(1/exp 2) by simp
    also have ... \leq1/ \varepsilon
    using assms(3) by (intro divide-left-mono) auto
    also have ... \leqreal (card B)/ \varepsilon
    using assms(3) card-B-gt-0 by (intro divide-right-mono) auto
```

finally have $\exp 2 \leq$ real $(\operatorname{card} B) / \varepsilon$ by simp
hence k-condition-h: $2 \leq \ln (\operatorname{card} B / \varepsilon)$
using assms(3) card-B-gt-0 by (subst ln-ge-iff) auto
have k-condition- h-2: $0<$ real $($ card $B) / \varepsilon$
using assms(3) card-B-gt-0 by (intro divide-pos-pos) auto
note k-condition $=$ balls-and-bins-approx-helper $[$ OF k-condition-h assms(4)]
define $\varphi::$ real \Rightarrow real where $\varphi=(\lambda x \cdot \min x 1)$
define f where $f=\left(\lambda x\right.$. $1-(-1)^{\wedge} k /$ real $($ fact $\left.k) * f f a c t k(x-1)\right)$
define g where $g=(\lambda x . \varphi x-f x)$
have φ-exp: $\varphi x=f x+g x$ for x
unfolding g-def by simp
have k-ge-2: $k \geq 2$
using k-condition(1) by simp
define γ where $\gamma=1 /$ real (fact $k)$
have γ-nonneg: $\gamma \geq 0$
unfolding γ-def by simp
have k-le-k-plus-1: $k \leq k+1$
by simp
have $f \in \mathbb{P} k$
unfolding f-def by (intro Polynomials-intros)
hence f-poly: $f \in \mathbb{P}(k+1)$
using Polynomials-mono[OF k-le-k-plus-1] by auto
have g-diff: $|g x-g(x-1)|=$ ffact $(k-1)(x-2) /$ fact $(k-1)$
if $x \geq k$ for $x::$ real
proof -
have $x \geq 2$ using k-ge-2 that by simp
hence $\varphi x=\varphi(x-1)$
unfolding φ-def by simp
hence $|g x-g(x-1)|=|f(x-1)-f x|$
unfolding g-def by (simp add:algebra-simps)
also have $\ldots=\mid(-1)^{\wedge} k /$ real $($ fact $k) *($ ffact $k(x-2)-$ ffact $k(x-1)) \mid$ unfolding f-def by (simp add:algebra-simps)
also have $\ldots=1 /$ real $($ fact $k) * \mid$ ffact $k(x-1)-$ ffact $k((x-1)-1) \mid$ by (simp add:abs-mult)
also have $\ldots=1 /$ real $($ fact $k) *$ real $k * \mid$ ffact $(k-1)(x-2) \mid$ by (subst ffact-suc-diff, simp add:abs-mult)
also have $\ldots=\mid$ ffact $(k-1)(x-2) \mid / \operatorname{fact}(k-1)$
using k-ge-2 by (subst fact-reduce) auto
also have $\ldots=$ ffact $(k-1)(x-2) /$ fact $(k-1)$
unfolding ffact-eq-fact-mult-binomial using that k-ge-2
by (intro arg-cong2[where $f=(/)]$ abs-of-nonneg ffact-nonneg) auto
finally show?thesis by simp
qed

```
have \(f\)-approx- \(\varphi: f x=\varphi x\) if \(f\)-approx- \(\varphi-1: x \in\) real' \(\{0 . . k\}\) for \(x\)
proof (cases \(x=0\) )
    case True
    hence \(f x=1-(-1)^{\wedge} k / \operatorname{real}(\) fact \(k) *\left(\prod i=0 . .<k .-(\right.\) real \(\left.i+1)\right)\)
        unfolding \(f\)-def prod-ffact[symmetric] by (simp add:algebra-simps)
```

also have $\ldots=1-(-1)^{\wedge} k /$ real $($ fact $k) *\left(\left(\prod i=0 . .<k .(-1)::\right.\right.$ real $) *\left(\prod i=0 . .<k\right.$. real $i+1)$)
by (subst prod.distrib[symmetric]) simp
also have $\ldots=1-(-1)^{\wedge} k / \operatorname{real}($ fact $k) *\left((-1)^{\wedge} k *\left(\prod i \in(\lambda x . x+1)\right.\right.$ ' $\{0 . .<k\}$. real $\left.\left.i\right)\right)$
by (subst prod.reindex, auto simp add:inj-on-def comp-def algebra-simps)
also have $\ldots=1-(-1)^{\wedge} k /$ real $($ fact $k) *\left((-1)^{\wedge} k *\left(\prod i \in\{1 . . k\}\right.\right.$. real $\left.\left.i\right)\right)$
by (intro arg-cong2[where $f=(-)$] arg-cong2[where $f=(*)]$ prod.cong refl) auto
also have $\ldots=0$
unfolding fact-prod by simp
also have $\ldots=\varphi x$
using True φ-def by simp
finally show? ?thesis by simp
next
case False
hence a : $x \geq 1$ using that by auto
obtain x^{\prime} where x^{\prime}-def: $x^{\prime} \in\{0 . . k\} x=$ real x^{\prime} using f-approx- $\varphi-1$ by auto
hence $x^{\prime}-1 \in\{0 . .<k\}$ using k-ge-2 by simp
moreover have $x-$ real $1=\operatorname{real}\left(x^{\prime}-1\right)$ using False $x^{\prime}-\operatorname{def}(2)$ by simp
ultimately have $b: x-1=\operatorname{real}\left(x^{\prime}-1\right) x^{\prime}-1<k$ by auto
have $f x=1-(-1)^{\wedge} k / \operatorname{real}($ fact $k) *$ real $\left(f f a c t ~ k\left(x^{\prime}-1\right)\right)$ unfolding f-def b of-nat-ffact by simp
also have $\ldots=1$
using b by (subst ffact-nat-triv, auto)
also have $\ldots=\varphi x$
unfolding φ-def using a by auto
finally show ?thesis by simp
qed
have q 2: $\left|Z i x^{\wedge} l * Z j x^{\wedge}(s-l)\right| \leq \operatorname{real}\left(\operatorname{card} R^{\wedge} s\right)$ if $l \in\{. . s\}$ for $s i j l x$
proof -
have $|Z i x \wedge l * Z j x \wedge(s-l)| \leq Z i x \wedge l * Z j x \wedge(s-l)$
unfolding Z-def by auto
also have $\ldots \leq$ real $(\operatorname{card} R)^{\wedge} l *$ real $(\operatorname{card} R) \wedge(s-l)$
unfolding Z-def
by (intro mult-mono power-mono of-nat-mono card-mono fin-R) auto
also have $\ldots=$ real $(\operatorname{card} R) \uparrow s$ using that
by (subst power-add $[$ symmetric $])$ simp
also have $\ldots=\operatorname{real}(\operatorname{card} R \uparrow s)$
by simp
finally show?thesis by simp
qed
have $q: \operatorname{real}(\operatorname{card} A)+\operatorname{real}(\operatorname{card} B) \in \operatorname{real}$ ' $\{. .2 * \operatorname{card} R\}$ if $A \subseteq R B \subseteq R$ for $A B$
proof -
have card $A+\operatorname{card} B \leq \operatorname{card} R+\operatorname{card} R$
by (intro add-mono card-mono fin- R that)
also have $\ldots=2 *$ card R by simp
finally show ?thesis by force
qed
have g-eq-0-iff-2: abs $(g x) * y=0$ if $x \in \mathbb{Z} x \geq 0 x \leq k$ for $x y$:: real
proof -
have $\exists x^{\prime} . x=$ real-of-int $x^{\prime} \wedge x^{\prime} \leq k \wedge x^{\prime} \geq 0$
using that Ints-def by fastforce
hence $\exists x^{\prime} . x=$ real $x^{\prime} \wedge x^{\prime} \leq k$
by (metis nat-le-iff of-nat-nat)
hence $x \in$ real ' $\{0 . . k\}$
by auto
hence $g x=0$
unfolding g-def using f-approx- φ by simp
thus ?thesis by simp
qed
have g-bound-abs: $\left|\int \omega \cdot g(f \omega) \partial p\right| \leq\left(\int \omega . f f a c t(k+1)(f \omega) \partial p\right) * \gamma$
(is ? $L \leq ? R$)
if range $f \subseteq$ real ' $\{. . m\}$ for m and $p::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right)$ pmf and $f::\left({ }^{\prime} a \Rightarrow^{\prime} b\right) \Rightarrow$ real
proof -
have f-any-integrable:
integrable $p(\lambda \omega . h(f \omega))$ for $h::$ real \Rightarrow real
using that
by (intro integrable-pmf-iff-bounded[where $C=\operatorname{Max}($ abs ' h ' real ' $\{. . m\})]$
Max-ge finite-imageI imageI) auto
have f-val: $f \omega \in$ real' $\{. . m\}$ for ω using that by auto
hence f-nat: $f \omega \in \mathbb{N}$ for ω
unfolding Nats-def by auto
have f-int: $f \omega \geq$ real $y+1$ if $f \omega>$ real y for $y \omega$
proof -
obtain x where x-def: $f \omega=$ real $x x \leq m$ using f-val by auto
hence $y<x$ using that by simp
hence $y+1 \leq x$ by simp
then show ?thesis using x-def by simp
qed
have f-nonneg: $f \omega \geq 0$ for ω
proof -
obtain x where x-def: $f \omega=$ real $x x \leq m$ using f-val by auto
hence $x \geq 0$ by simp
then show ?thesis using x-def by simp
qed
have $\neg($ real $x \leq f \omega)$ if $x>m$ for $x \omega$
proof -
obtain x where x-def: $f \omega=$ real $x \leq m$ using f-val by auto
then show ?thesis using x-def that by simp
qed
hence max-Z1: measure $p\{\omega$. real $x \leq f \omega\}=0$ if $x>m$ for x using that by auto
have $? L \leq\left(\int \omega \cdot|g(f \omega)| \partial p\right)$
by (intro integral-abs-bound)
also have $\ldots=\left(\sum y \in\right.$ real' $\{. . m\} .|g y| *$ measure $\left.p\{\omega . f \omega=y\}\right)$
using that by (intro pmf-exp-of-fin-function) auto
also have $\ldots=\left(\sum y \in\{. . m\} . \mid g(\right.$ real $y) \mid *$ measure $p\{\omega . f \omega=$ real $\left.y\}\right)$
by (subst sum.reindex) (auto simp add:comp-def)
also have $\ldots=\left(\sum y \in\{. . m\} . \mid g(\right.$ real $y) \mid *$
(measure $p(\{\omega . f \omega=$ real $y\} \cup\{\omega . f \omega>y\})$ - measure $p\{\omega . f \omega>y\})$)
by (subst measure-Union) auto
also have $\ldots=\left(\sum y \in\{. . m\} . \mid g(\right.$ real $y) \mid *($ measure $p\{\omega . f \omega \geq y\}-$ measure $p\{\omega . f \omega>$
y\}))
by (intro sum.cong arg-cong2[where $f=(*)]$ arg-cong2[where $f=(-)]$ arg-cong[where $f=$ measure $p]$) auto
also have $\ldots=\left(\sum y \in\{. . m\} . \mid g(\right.$ real $y) \mid *$ measure $\left.p\{\omega . f \omega \geq y\}\right)-$
$\left(\sum y \in\{. . m\} . \mid g(\right.$ real $y) \mid *$ measure $\left.p\{\omega . f \omega>y\}\right)$
by (simp add:algebra-simps sum-subtractf)
also have $\ldots=\left(\sum y \in\{. . m\} . \mid g(\right.$ real $y) \mid *$ measure $\left.p\{\omega . f \omega \geq y\}\right)-$

$$
\left(\sum y \in\{. . m\} . \mid g(\text { real } y) \mid * \text { measure } p\{\omega . f \omega \geq \operatorname{real}(y+1)\}\right)
$$

using f-int
by (intro sum.cong arg-cong2 [where $f=(-)]$ arg-cong2 $[$ where $f=(*)]$ $\arg -c o n g[$ where $f=$ measure $p]$) fastforce +
also have $\ldots=\left(\sum y \in\{. . m\} . \mid g(\right.$ real $y) \quad \mid *$ measure $p\{\omega . f \omega \geq$ real $\left.y\}\right)-$ $\left(\sum y \in\right.$ Suc ' $\{. . m\} . \mid g($ real $y-1) \mid *$ measure $p\{\omega . f \omega \geq$ real $\left.y\}\right)$
by (subst sum.reindex) (auto simp add:comp-def)
also have $\ldots=\left(\sum y \in\{. . m\} . \mid g(\right.$ real $y) \quad \mid *$ measure $p\{\omega . f \omega \geq$ real $\left.y\}\right)-$
$\left(\sum y \in\{1 . . m\} . \mid g(\right.$ real $y-1) \mid *$ measure $p\{\omega . f \omega \geq$ real $\left.y\}\right)$
using max-Z1 image-Suc-atMost
by (intro arg-cong2[where $f=(-)]$ sum.mono-neutral-cong) auto
also have $\ldots=\left(\sum y \in\{k+1 . . m\} . \mid g(\right.$ real $y) \quad \mid *$ measure $\left.p\{\omega . f \omega \geq y\}\right)-$ $\left(\sum y \in\{k+1 . . m\} . \mid g(\right.$ real $y-1) \mid *$ measure $\left.p\{\omega . f \omega \geq y\}\right)$
using k-ge-2
by (intro arg-cong2[where $f=(-)]$ sum.mono-neutral-cong-right ballI g-eq-0-iff-2) auto
also have $\ldots=\left(\sum y \in\{k+1 . . m\} .(\mid g(\right.$ real $y)|-| g($ real $y-1) \mid) *$ measure $\left.p\{\omega . f \omega \geq y\}\right)$ by (simp add:algebra-simps sum-subtractf)
also have $\ldots \leq\left(\sum y \in\{k+1 . . m\} . \mid g(\right.$ real $y)-g($ real $y-1) \mid *$
measure $p\{\omega$. ffact $(k+1)(f \omega) \geq$ ffact $(k+1)($ real $y)\})$
using ffact-mono by (intro sum-mono mult-mono pmf-mono) auto
also have $\ldots=\left(\sum y \in\{k+1 . . m\}\right.$. (ffact $(k-1)($ real $y-2) /$ fact $\left.(k-1)\right) *$
measure $p\{\omega$. ffact $(k+1)(f \omega) \geq$ ffact $(k+1)($ real $y)\})$
by (intro sum.cong, simp-all add: g-diff)
also have $\ldots \leq\left(\sum y \in\{k+1 . . m\}\right.$. (ffact $(k-1)($ real $y-2) /$ fact $\left.(k-1)\right) *$
$\left(\left(\int \omega\right.\right.$. ffact $\left.(k+1)(f \omega) \partial p\right) /$ ffact $(k+1)($ real $\left.\left.y)\right)\right)$
using k-ge-2 f-nat
by (intro sum-mono mult-left-mono pmf-markov f-any-integrable
divide-nonneg-pos ffact-of-nat-nonneg ffact-pos) auto
also have $\ldots=\left(\int \omega\right.$. ffact $\left.(k+1)(f \omega) \partial p\right) /$ fact $(k-1) *\left(\sum y \in\{k+1 . . m\}\right.$.
ffact $(k-1)($ real $y-2) /$ ffact (Suc (Suc ($k-1$))) (real y))
using k-ge-2 by (simp add:algebra-simps sum-distrib-left)
also have $\ldots=\left(\int \omega\right.$. ffact $\left.(k+1)(f \omega) \partial p\right) /$ fact $(k-1) *\left(\sum y \in\{k+1 . . m\}\right.$.
ffact $(k-1)($ real $y-2) /($ real $y *($ real $y-1) *$ ffact $(k-1)($ real $y-2)))$
by (subst ffact-Suc, subst ffact-Suc, simp)
also have $\ldots=\left(\int \omega\right.$. ffact $\left.(k+1)(f \omega) \partial p\right) /$ fact $(k-1) *$
$\left(\sum y \in\{k+1 . . m\} .1 /(\right.$ real $y *($ real $\left.y-1))\right)$
using order.strict-implies-not-eq[OF ffact-pos] k-ge-2
by (intro arg-cong2[where $f=(*)$] sum.cong) auto
also have $\ldots=\left(\int \omega\right.$. ffact $\left.(k+1)(f \omega) \partial p\right) /$ fact $(k-1) *$
$\left(\sum y \in\{\right.$ Suc $k . . m\} .1 /($ real $y-1)-1 /($ real $\left.y)\right)$
using k-ge-2 by (intro arg-cong2 [where $f=(*)$] sum.cong) (auto simp add: divide-simps)
also have $\ldots=\left(\int \omega\right.$. ffact $\left.(k+1)(f \omega) \partial p\right) /$ fact $(k-1) *$
$\left(\sum y \in\{\right.$ Suc $k . . m\} .(-1 /($ real $y))-(-1 /($ real $\left.(y-1)))\right)$
using k-ge-2 by (intro arg-cong2[where $f=(*)]$ sum.cong) (auto)
also have $\ldots=\left(\int \omega . f f a c t(k+1)(f \omega) \partial p\right) /$ fact $(k-1) *$
(of-bool $(k \leq m) *(1 /$ real $k-1 /$ real $m))$
by (subst sum-telescope-eq, auto)
also have $\ldots \leq\left(\int \omega\right.$. ffact $\left.(k+1)(f \omega) \partial p\right) /$ fact $(k-1) *(1 /$ real $k)$
using k-ge-2 f-nat
by (intro mult-left-mono divide-nonneg-nonneg integral-nonneg
also have $\ldots=$? R
using k-ge-2 unfolding γ-def by (cases k) (auto simp add:algebra-simps)
finally show ?thesis by simp qed
have z1-g-bound: $\left|\int \omega \cdot g(Z i \omega) \partial p c\right| \leq($ real $(\operatorname{card} R) / \operatorname{real}(\operatorname{card} B)) * \gamma$
(is ? $L 1 \leq ? R 1$) if $i \in B$ for $i c$
proof -
have $? L 1 \leq\left(\int \omega\right.$. ffact $\left.(k+1)(Z i \omega) \partial p c\right) * \gamma$
unfolding Z-def using fin- R
by (intro g-bound-abs[where $m 1=$ card $R]$) (auto intro!:imageI card-mono)
also have $\ldots=$ ffact $(k+1)($ real $($ card $R)) *(1 / \operatorname{real}(\operatorname{card} B))^{\wedge}(k+1) * \gamma$
using that by (subst hit-count-factorial-moments[OF - assms(2)], simp-all)
also have $\ldots=\operatorname{real}(\operatorname{ffact}(k+1)(\operatorname{card} R)) *(1 / \operatorname{real}(\operatorname{card} B)) \uparrow(k+1) * \gamma$
by (simp add:of-nat-ffact)
also have $\ldots \leq \operatorname{real}\left(\operatorname{card} R^{\wedge}(k+1)\right) *(1 / \operatorname{real}(\operatorname{card} B)) \uparrow(k+1) * \gamma$
using γ-nonneg
by (intro mult-right-mono of-nat-mono ffact-bound, simp-all)
also have $\ldots \leq($ real $(\operatorname{card} R) /$ real $(\operatorname{card} B)) \wedge(k+1) * \gamma$ by (simp add:divide-simps)
also have $\ldots \leq(\operatorname{real}(\operatorname{card} R) / \operatorname{real}(\operatorname{card} B)) \wedge 1 * \gamma$
using assms(1) card-B-gt-0 γ-nonneg by (intro mult-right-mono power-decreasing) auto
also have $\ldots=$? $R 1$ by simp
finally show? ?thesis by simp
qed
have g-add-bound: $\left|\int \omega . g(Z i \omega+Z j \omega) \partial p c\right| \leq \mathcal{2}^{\wedge}(k+1) * \gamma$
(is ? L1 \leq ? R1) if $i j$-in- $B: i \in B j \in B i \neq j$ for $i j c$
proof -
have ? $L 1 \leq\left(\int \omega\right.$. ffact $\left.(k+1)(Z i \omega+Z j \omega) \partial p c\right) * \gamma$
unfolding Z-def using assms(1)
by (intro g-bound-abs[where $m 1=2 *$ card $R]$) (auto intro!:imageI q)
also have $\ldots \leq \mathcal{2}^{\wedge}(k+1) * \gamma$
by (intro γ-nonneg mult-right-mono hit-count-factorial-moments-2[OF that(1,2,3) - assms(1,2)]) auto
finally show?thesis by simp
qed
have Z-poly-diff:
$\left|\left(\int \omega \cdot \varphi(Z i \omega) \partial ? p 1\right)-\left(\int \omega \cdot \varphi(Z i \omega) \partial ? p 2\right)\right| \leq 2 *((\operatorname{real}(\operatorname{card} R) / \operatorname{card} B) * \gamma)$
(is ? $L \leq 2 * ? R$) if $i \in B$ for i
proof -
note Z-poly-eq $=$
hit-count-poly-eq[OF that assms(2)[of True] assms(2)[of False] f-poly]
have $? L=\mid\left(\int \omega \cdot f(Z i \omega) \partial ? p 1\right)+\left(\int \omega \cdot g(Z i \omega) \partial ? p 1\right)-$
$\left(\int \omega \cdot f(Z i \omega) \partial ? p 2\right)-\left(\int \omega \cdot g(Z i \omega) \partial ? p 2\right) \mid$
using Z-integrable[OF assms(2)] unfolding φ-exp by simp
also have $\ldots=\mid\left(\int \omega \cdot g(Z i \omega) \partial ? p 1\right)+\left(-\left(\int \omega \cdot g(Z i \omega) \partial\right.\right.$? p 2 $\left.)\right) \mid$
by (subst Z-poly-eq) auto
also have $\ldots \leq\left|\left(\int \omega \cdot g(Z i \omega) \partial ? p 1\right)\right|+\left|\left(\int \omega \cdot g(Z i \omega) \partial ? p 2\right)\right|$
by simp
also have $\ldots \leq ? R+? R$
by (intro add-mono z1-g-bound that)
also have $\ldots=2 *$? R
by (simp add:algebra-simps)

```
    finally show ?thesis by simp
qed
```

```
have Z-poly-diff-2: \(\left|\left(\int \omega \cdot \varphi(Z i \omega) \partial ? p 1\right)-\left(\int \omega \cdot \varphi(Z i \omega) \partial ? p 2\right)\right| \leq 2 * \gamma\)
    (is ? \(L \leq\) ? \(R\) ) if \(i \in B\) for \(i\)
proof -
    have \(? L \leq 2 *((\) real \((\) card \(R) / \operatorname{real}(\operatorname{card} B)) * \gamma)\)
        by (intro Z-poly-diff that)
    also have \(\ldots \leq 2 *(1 * \gamma)\)
        using assms fin-B that \(\gamma\)-nonneg card-gt- 0 -iff
        by (intro mult-mono that iffD2[OF pos-divide-le-eq]) auto
    also have \(\ldots=\) ? \(R\) by simp
    finally show? thesis by simp
qed
    have Z-poly-diff-3: \(\left|\left(\int \omega \cdot \varphi(Z i \omega+Z j \omega) \partial ? p 2\right)-\left(\int \omega \cdot \varphi(Z i \omega+Z j \omega) \partial ? p 1\right)\right| \leq\)
\({ }^{2}\) ~ \((k+2) * \gamma\)
    (is ? \(L \leq ? R\) ) if \(i \in B j \in B i \neq j\) for \(i j\)
proof -
    note \(Z\)-poly-eq-2 =
    hit-count-sum-poly-eq[OF that(1,2) assms(2)[of True] assms(2)[of False] f-poly]
    have \(? L=\mid\left(\int \omega \cdot f(Z i \omega+Z j \omega) \partial ? p 2\right)+\left(\int \omega \cdot g(Z i \omega+Z j \omega) \partial ? p 2\right)-\)
    \(\left(\int \omega \cdot f(Z i \omega+Z j \omega) \partial ? p 1\right)-\left(\int \omega \cdot g(Z i \omega+Z j \omega) \partial ? p 1\right) \mid\)
    using Z-any-integrable-2[OF assms(2)] unfolding \(\varphi\)-exp by simp
    also have \(\ldots=\left|\left(\int \omega \cdot g(Z i \omega+Z j \omega) \partial ? p 2\right)+\left(-\left(\int \omega \cdot g(Z i \omega+Z j \omega) \partial ? p 1\right)\right)\right|\)
        by (subst Z-poly-eq-2) auto
    also have \(\ldots \leq\left|\left(\int \omega \cdot g(Z i \omega+Z j \omega) \partial ? p 1\right)\right|+\mid\left(\int \omega \cdot g(Z i \omega+Z j \omega) \partial ? p\right.\) 2 \() \mid\)
        by simp
    also have \(\ldots \leq\) 2^ \(^{\wedge}(k+1) * \gamma+\) 2^ \(^{\wedge}(k+1) * \gamma\)
        by (intro add-mono g-add-bound that)
    also have \(\ldots=\) ? \(R\)
        by (simp add:algebra-simps)
    finally show? ?thesis by simp
qed
```

have Y-eq: $Y \omega=\left(\sum i \in B . \varphi(Z i \omega)\right)$ if $\omega \in \operatorname{set}-p m f(p c)$ for $c \omega$
proof -
have ω ' $R \subseteq B$
proof (rule image-subsetI)
fix x assume $a: x \in R$
have $\omega x \in$ set-pmf (map-pmf $(\lambda \omega . \omega x)(p c))$
using that by (subst set-map-pmf) simp
also have $\ldots=$ set-pmf (pmf-of-set B)
by (intro arg-cong $[$ where $f=$ set-pmf $]$ assms ran $[O F \operatorname{assms}(2)] a)$
also have $\ldots=B$
by (intro set-pmf-of-set fin-B B-ne)
finally show $\omega x \in B$ by simp
qed
hence $(\omega$ ' $R)=B \cap \omega$ ' R
by auto
hence $Y \omega=\operatorname{card}(B \cap \omega ' R)$
unfolding Y-def by auto
also have $\ldots=\left(\sum i \in B\right.$. of-bool $\left.(i \in \omega ' R)\right)$
unfolding of-bool-def using fin-B by (subst sum.If-cases) auto
also have $\ldots=\left(\sum i \in B\right.$. of-bool $\left.(\operatorname{card}\{r \in R . \omega r=i\}>0)\right)$
using fin- R by (intro sum.cong arg-cong[where $f=o f$-bool $]$)
(auto simp add:card-gt-0-iff)
also have $\ldots=\left(\sum i \in B . \varphi(Z i \omega)\right)$
unfolding φ-def Z-def by (intro sum.cong) (auto simp add:of-bool-def)
finally show? ?thesis by simp

qed

let ? $\varphi 2=(\lambda x y . \varphi x+\varphi y-\varphi(x+y))$
let $? B d=\{x \in B \times B$. fst $x \neq$ snd $x\}$
have Y-sq-eq': $Y \omega^{\wedge} 2=\left(\sum i \in\right.$? Bd. ? $\varphi 2(Z($ fst $i) \omega)(Z($ snd $\left.i) \omega)\right)+Y \omega$
(is ? $L=? R$) if $\omega \in \operatorname{set}-p m f(p c)$ for $c \omega$
proof -
have $a: \varphi(Z x \omega)=o f$-bool (card $\{r \in R . \omega r=x\}>0)$ for x unfolding φ-def Z-def by auto
have $b: \varphi(Z x \omega+Z y \omega)=$ of-bool(card $\{r \in R . \omega r=x\}>0 \vee \operatorname{card}\{r \in R . \omega r=y\}>0$) for $x y$
unfolding φ-def Z-def by auto
have $c: \varphi(Z x \omega) * \varphi(Z y \omega)=? \varphi \mathcal{Z}(Z x \omega)(Z y \omega)$ for $x y$ unfolding $a b$ of-bool-def by auto
have $d: \varphi(Z x \omega) * \varphi(Z x \omega)=\varphi(Z x \omega)$ for x unfolding a of-bool-def by auto
have $? L=\left(\sum i \in B \times B . \varphi(Z(\right.$ fst $i) \omega) * \varphi(Z($ snd $\left.i) \omega)\right)$
unfolding Y-eq[OF that] power2-eq-square sum-product sum.cartesian-product by (simp add:case-prod-beta)
also have $\ldots=\left(\sum i \in ? B d \cup\{x \in B \times B . f s t x=\operatorname{snd} x\} . \varphi(Z(\right.$ fst $i) \omega) * \varphi(Z($ snd $\left.i) \omega)\right)$
by (intro sum.cong refl) auto
also have $\ldots=\left(\sum i \in ? B d . \varphi(Z(\right.$ fst $i) \omega) * \varphi(Z($ snd $\left.i) \omega)\right)+$ $\left(\sum i \in\{x \in B \times B\right.$. fst $x=\operatorname{snd} x\} . \varphi(Z($ fst $i) \omega) * \varphi(Z($ snd $\left.i) \omega)\right)$
using assms fin- B by (intro sum.union-disjoint, auto)
also have $\ldots=\left(\sum i \in ? B d\right.$. ? φ 2 $(Z($ fst $i) \omega)(Z($ snd $\left.i) \omega)\right)+$

$$
\left(\sum i \in\{x \in B \times B . \text { fst } x=\text { snd } x\} . \varphi(Z(\text { fst } i) \omega) * \varphi(Z(\text { fst } i) \omega)\right)
$$

unfolding c by (intro arg-cong2[where $f=(+)]$ sum.cong) auto
also have $\ldots=\left(\sum i \in ? B d\right.$. ? φ 2 $(Z($ fst $i) \omega)(Z($ snd $\left.i) \omega)\right)+$
$\left(\sum i \in f s t '\{x \in B \times B\right.$. fst $x=$ snd $\left.x\} . \varphi(Z i \omega) * \varphi(Z i \omega)\right)$
by (subst sum.reindex, auto simp add:inj-on-def)
also have $\ldots=\left(\sum i \in ? B d\right.$. ? $\varphi 2(Z($ fst $i) \omega)(Z($ snd $\left.i) \omega)\right)+\left(\sum i \in B . \varphi(Z i \omega)\right)$
using d by (intro arg-cong2[where $f=(+)]$ sum.cong refl d) (auto simp add:image-iff)
also have $\ldots=$? R
unfolding Y-eq[OF that $]$ by simp
finally show? ?thesis by simp
qed
have \mid integral L ?p1 Y - integral ${ }^{L}$?p2 $Y \mid=$
$\left|\left(\int \omega .\left(\sum i \in B . \varphi(Z i \omega)\right) \partial ? p 1\right)-\left(\int \omega .\left(\sum i \in B \cdot \varphi(Z i \omega)\right) \partial ? p 2\right)\right|$
by (intro arg-cong[where $f=a b s]$ arg-cong2 [where $f=(-)]$ integral-cong-AE AE-pmfI Y-eq) auto
also have ... $=$
$\left|\left(\sum i \in B .\left(\int \omega \cdot \varphi(Z i \omega) \partial ? p 1\right)\right)-\left(\sum i \in B .\left(\int \omega \cdot \varphi(Z i \omega) \partial ? p 2\right)\right)\right|$
by (intro arg-cong[where $f=a b s]$ arg-cong2 [where $f=(-)]$
integral-sum Z-integrable[OF assms(2)])
also have $\ldots=\left|\left(\sum i \in B .\left(\int \omega \cdot \varphi(Z i \omega) \partial ? p 1\right)-\left(\int \omega \cdot \varphi(Z i \omega) \partial ? p 2\right)\right)\right|$
by (subst sum-subtractf) simp
also have $\ldots \leq\left(\sum i \in B .\left|\left(\int \omega \cdot \varphi(Z i \omega) \partial ? p 1\right)-\left(\int \omega \cdot \varphi(Z i \omega) \partial ? p 2\right)\right|\right)$
by simp
also have $\ldots \leq\left(\sum i \in B .2 *((\operatorname{real}(\operatorname{card} R) / \operatorname{real}(\operatorname{card} B)) * \gamma)\right)$
by (intro sum-mono Z-poly-diff)
also have $\ldots \leq 2 *$ real $(\operatorname{card} R) * \gamma$
using γ-nonneg by (simp)
finally have Y-exp-diff-1: \mid integral L ?p1 $Y-$ integral L ?p2 $Y \mid \leq 2 * \operatorname{real}(\operatorname{card} R) * \gamma$ by simp
have \mid integral L ?p1 $Y-$ integral L ?p2 $Y \mid \leq(2 /$ fact $k) * \operatorname{real}(\operatorname{card} R)$
using Y-exp-diff-1 by (simp add:algebra-simps γ-def)
also have $\ldots \leq 1 /(\exp 1 *(\operatorname{real}(\operatorname{card} B) / \varepsilon)) * \operatorname{card} R$
using k-condition(3) k-condition- h-2 by (intro mult-right-mono) auto
also have $\ldots=\varepsilon /(\exp 1 * \operatorname{real}(\operatorname{card} B)) * \operatorname{card} R$
by simp
also have $\ldots \leq \varepsilon /(1 * 1) * \operatorname{card} R$
using $\operatorname{assms}(3)$ card-B-gt-0
by (intro mult-right-mono divide-left-mono mult-mono) auto
also have $\ldots=\varepsilon * \operatorname{card} R$
by simp
finally show ?A
by simp
have \mid integral L ?p1 $Y-$ integral L ?p2 $Y \mid \leq 2 * \operatorname{real}(\operatorname{card} R) * \gamma$
using Y-exp-diff-1 by simp
also have $\ldots \leq 2 *$ real $(\operatorname{card} B) * \gamma$
by (intro mult-mono of-nat-mono assms γ-nonneg) auto
finally have Y-exp-diff-2:
\mid integral L ?p1 $Y-$ integral L ?p2 $Y \mid \leq 2 * \gamma * \operatorname{real}($ card $B)$
by (simp add:algebra-simps)
have int- Y : integrable (measure-pmf $\left.\binom{p}{c}\right) Y$ for c
using fin-R card-image-le unfolding Y-def
by (intro integrable-pmf-iff-bounded $[$ where $C=$ card $R]$) auto
have int- Y-sq: integrable (measure-pmf $(p c))(\lambda \omega$. Y ω へ2) for c
using fin- R card-image-le unfolding Y-def
by (intro integrable-pmf-iff-bounded $[$ where $C=$ real $(\operatorname{card} R) \wedge 2])$ auto
have $\mid\left(\int \omega .\left(\sum i \in ? B d\right.\right.$? φ 2 $\left.\left.(Z(f s t i) \omega)(Z(s n d i) \omega)\right) \partial ? p 1\right)-$ $\left(\int \omega .\left(\sum i \in ? B d . ? \varphi 2(Z(f s t i) \omega)(Z(s n d i) \omega)\right) \partial ? p 2\right) \mid$
$\leq \mid\left(\sum i \in ? B d\right.$.
$\left(\int \omega \cdot \varphi(Z(f s t i) \omega) \partial ? p 1\right)+\left(\int \omega \cdot \varphi(Z(s n d i) \omega) \partial ? p 1\right)-$
$\left(\int \omega \cdot \varphi(Z(\right.$ fst $i) \omega+Z($ snd $\left.i) \omega) \partial ? p 1\right)-\left(\left(\int \omega \cdot \varphi(Z(f s t i) \omega) \partial ? p 2\right)+\right.$
$\left(\int \omega \cdot \varphi(Z(s n d i) \omega) \partial ? p 2\right)-\left(\int \omega \cdot \varphi(Z(f s t i) \omega+Z(\right.$ snd $\left.\left.\left.i) \omega) \partial ? p 2\right)\right)\right) \mid($ is ? $R 3 \leq-)$
using Z-integrable[OF assms(2)] Z-any-integrable-2[OF assms(2)]
by (simp add:integral-sum sum-subtractf)
also have $\ldots=\mid\left(\sum i \in ? B d\right.$.
$\left(\left(\int \omega \cdot \varphi(Z(f s t i) \omega) \partial ? p 1\right)-\left(\int \omega \cdot \varphi(Z(f s t i) \omega) \partial ? p 2\right)\right)+$
$\left(\left(\int \omega \cdot \varphi(Z(\right.\right.$ snd $\left.i) \omega) \partial ? p 1\right)-\left(\int \omega \cdot \varphi(Z(\right.$ snd i) $\left.\omega) \partial ? p 2)\right)+$
$\left(\left(\int \omega \cdot \varphi(Z(\right.\right.$ fst $i) \omega+Z($ snd $\left.i) \omega) \partial ? p 2\right)-\left(\int \omega \cdot \varphi(Z(f s t i) \omega+Z(\right.$ snd $\left.\left.\left.i) \omega) \partial ? p 1\right)\right)\right) \mid$
by (intro arg-cong[where $f=a b s]$ sum.cong) auto
also have $\ldots \leq\left(\sum i \in ? B d\right.$.
$\left(\left(\int \omega \cdot \varphi\left(Z\left(f_{s t} i\right) \omega\right) \partial ? p 1\right)-\left(\int \omega \cdot \varphi\left(Z\left(f_{s t} i\right) \omega\right) \partial ? p 2\right)\right)+$
$\left(\left(\int \omega \cdot \varphi(Z\right.\right.$ (snd $\left.\left.i) \omega\right) \partial ? p 1\right)-\left(\int \omega \cdot \varphi(Z(\right.$ snd $\left.\left.i) \omega) \partial ? p 2\right)\right)+$
$\left(\left(\int \omega \cdot \varphi(Z(f s t i) \omega+Z(\right.\right.$ snd $\left.i) \omega) \partial ? p 2\right)-\left(\int \omega \cdot \varphi(Z(f s t i) \omega+Z(\right.$ snd $\left.\left.\left.i) \omega) \partial ? p 1\right)\right) \mid\right)$
by (intro sum-abs)
also have $\ldots \leq\left(\sum i \in ? B d\right.$.
$\left|\left(\int \omega \cdot \varphi\left(Z\left(f_{s t} i\right) \omega\right) \partial ? p 1\right)-\left(\int \omega \cdot \varphi(Z(f s t i) \omega) \partial ? p 2\right)\right|+$
$\mid\left(\int \omega \cdot \varphi(Z(s n d i) \omega) \partial ? p 1\right)-\left(\int \omega \cdot \varphi(Z(\right.$ snd $\left.i) \omega) \partial ? p 2\right) \mid+$
$\mid\left(\int \omega \cdot \varphi(Z(f s t i) \omega+Z(\right.$ snd $\left.i) \omega) \partial ? p 2\right)-\left(\int \omega \cdot \varphi(Z(\right.$ fst $i) \omega+Z($ snd $\left.\left.i) \omega) \partial ? p 1\right) \mid\right)$
by (intro sum-mono) auto
also have $\ldots \leq\left(\sum i \in\right.$? Bd. $\left.2 * \gamma+2 * \gamma+2 \wedge(k+2) * \gamma\right)$
by (intro sum-mono add-mono Z-poly-diff-2 Z-poly-diff-3) auto
also have $\ldots=(2 \mathcal{}(k+2)+4) * \gamma *$ real $($ card ? Bd $)$
by (simp add:algebra-simps)
finally have Y-sq-exp-diff-1:?R3 $\leq(2 \wedge(k+2)+4) * \gamma *$ real $($ card ? Bd $)$
by simp
have $\mid\left(\int \omega . Y \omega\right.$ ^2 2 ? p1 $)-\left(\int \omega . Y \omega \omega^{\wedge} 2 \partial\right.$? p 2 $) \mid=$
$\mid\left(\int \omega .\left(\sum i \in\right.\right.$?Bd. ? φ 2 $(Z($ fst $i) \omega)(Z($ snd $\left.\left.i) \omega)\right)+Y \omega \partial ? p 1\right)-$
$\left(\int \omega .\left(\sum i \in ? B d . ? \varphi \mathcal{Z}(Z(f s t i) \omega)(Z(\right.\right.$ snd $\left.\left.i) \omega)\right)+Y \omega \partial ? p 2\right) \mid$
by (intro-cong $\left[\sigma_{2}(-), \sigma_{1}\right.$ abs] more: integral-cong-AE AE-pmfI Y-sq-eq') auto
also have $\ldots \leq \mid\left(\int \omega . Y \omega \partial\right.$? $\left.p 1\right)-\left(\int \omega . Y \omega \partial ? p 2\right) \mid+$
$\mid\left(\int \omega .\left(\sum i \in ? B d . ? \varphi \mathcal{Z}(Z(\right.\right.$ fst $i) \omega)(Z($ snd $\left.\left.i) \omega)\right) \partial ? p 1\right)-$
$\left(\int \omega .\left(\sum i \in ? B d . ? \varphi \mathcal{Z}(Z(f s t i) \omega)(Z(s n d i) \omega)\right) \partial ? p 2\right) \mid$
using Z-integrable $[O F$ assms(2)] Z-any-integrable-2[OF assms(2)] int- Y by simp
also have $\ldots \leq 2 * \gamma *$ real $($ card $B)+$? R3
by (intro add-mono Y-exp-diff-2, simp)
also have $\ldots \leq\left(\mathcal{D}^{\wedge}(k+2)+4\right) * \gamma *$ real $($ card $B)+\left(\mathcal{D}^{\wedge}(k+2)+4\right) * \gamma *$ real $($ card ? $B d)$
using γ-nonneg by (intro add-mono Y-sq-exp-diff-1 mult-right-mono) auto
also have $\ldots=\left(2^{\wedge}(k+2)+4\right) * \gamma *($ real $($ card B $)+$ real $($ card ?Bd $))$
by (simp add:algebra-simps)
also have $\ldots=\left(2^{\wedge}(k+2)+4\right) * \gamma * \operatorname{real}(\operatorname{card} B)^{\wedge}{ }^{\text {2 }}$
using power2-nat-le-imp-le
by (simp add:card-distinct-pairs of-nat-diff)
finally have Y-sq-exp-diff:

have Y-exp-rough-bound: \mid integral $\left.^{L}\left(\begin{array}{ll}p & c\end{array}\right) Y \right\rvert\, \leq \operatorname{card} B($ is $? L \leq ? R)$ for c
proof -
have $? L \leq\left(\int \omega .|Y \omega| \partial(p c)\right)$
by (intro integral-abs-bound)
also have $\ldots \leq\left(\int \omega\right.$. real $\left.(\operatorname{card} R) \partial(p c)\right)$
unfolding Y-def using card-image-le[OF fin- R]
by (intro integral-mono integrable-pmf-iff-bounded $[$ where $C=$ card $R]$)
auto
also have $\ldots=\operatorname{card} R$ by simp
also have $\ldots \leq$ card B using assms by simp
finally show? ?thesis by simp
qed
have \mid measure-pmf.variance ?p1 Y - measure-pmf.variance ?p2 $Y \mid=$

by (intro-cong $\left[\sigma_{2}(-), \sigma_{1} a b s\right]$ more: measure-pmf.variance-eq int- Y int- Y-sq)
 ว ? $p 2)^{2} \mid$
by simp
also have $\ldots=\mid\left(\int \omega . Y \omega \omega^{\wedge} 2 \partial ? p 1\right)-\left(\int \omega . Y \omega \wedge 2 \partial\right.$? 2 2 $) \mid+$ $\mid\left(\int \omega . Y \omega \partial\right.$? $\left.p 1\right)-\left(\int \omega . Y \omega \partial\right.$?p2 $)|*|\left(\int \omega . Y \omega \partial\right.$? $\left.p 1\right)+\left(\int \omega . Y \omega \partial\right.$? p 2 $) \mid$
by (simp add:power2-eq-square algebra-simps abs-mult[symmetric])
also have $\ldots \leq(2 `(k+2)+4) * \gamma *$ real $(\text { card B) })^{2}+(2 * \gamma *$ real $($ card B) $) *$ $\left(\left|\int \omega . Y \omega \partial ? p 1\right|+\left|\int \omega . Y \omega \partial ? p 2\right|\right)$
using γ-nonneg
by (intro add-mono mult-mono divide-left-mono Y-sq-exp-diff Y-exp-diff-2) auto
also have $\ldots \leq\left(\mathfrak{2}^{\wedge}(k+2)+4\right) * \gamma *$ real $($ card B)^2 $+(2 * \gamma * \operatorname{real}(\operatorname{card} B)) *$
$($ real $($ card $B)+$ real $($ card $B))$
using γ-nonneg by (intro add-mono mult-left-mono Y-exp-rough-bound) auto
also have $\ldots=\left(\mathcal{Z}^{\wedge}(k+2)+\mathcal{Z}^{\wedge} 3\right) * \gamma * \operatorname{real}(\operatorname{card} B)^{\wedge} \mathcal{Z}_{2}$
by (simp add:algebra-simps power2-eq-square)
also have $\ldots \leq\left(2^{\wedge}(k+2)+2^{\wedge}(k+2)\right) * \gamma * \operatorname{real}(\operatorname{card} B)^{\wedge} 2$
using k-ge-2 γ-nonneg
by (intro mult-right-mono add-mono power-increasing, simp-all)
also have $\ldots=\left(2^{\wedge}(k+3) /\right.$ fact $\left.k\right) *$ card B^{\wedge} 2
by (simp add:power-add γ-def)
also have $\ldots \leq(1 /(\operatorname{real}(\operatorname{card} B) / \varepsilon)) \wedge_{2} * \operatorname{card} B \wedge_{2}$
using k-condition(2) k-condition-h-2
by (intro mult-right-mono) auto
also have $\ldots=\varepsilon^{\wedge} 2$
using card-B-gt-0 by (simp add:divide-simps)
finally show ? B
by simp
qed

lemma

assumes card $R \leq \operatorname{card} B$
assumes lim-balls-and-bins $(k+1) p$
assumes $k \geq 7.5 *(\ln (\operatorname{card} B)+2)$
shows exp-approx-2: \mid measure-pmf.expectation $p Y-\mu \mid \leq \operatorname{card} R / \operatorname{sqrt}(\operatorname{card} B)$ (is ? $A L \leq ? A R$)
and var-approx-2: measure-pmf.variance p $Y \leq \operatorname{real}($ card $R){ }^{\text {^2 }} /$ card B
(is ? $B L \leq ? B R$)
proof -
define q where $q=(\lambda c$. if c then Ω else $p)$
have q-altdef: q True $=\Omega q$ False $=p$
unfolding q-def by auto
have a:lim-balls-and-bins $(k+1)(q c)$ for c
unfolding q-def using assms lim-balls-and-bins-from-ind-balls-and-bins by auto
define $\varepsilon::$ real where $\varepsilon=\min (\operatorname{sqrt}(1 / \operatorname{card} B))(1 / \exp 2)$
have $c: \varepsilon \in\{0<. .1 / \exp 2\}$
using card-B-gt-0 unfolding ε-def by auto
have b: $5 * \ln (\operatorname{card} B / \varepsilon) / \ln (\ln (\operatorname{card} B / \varepsilon)) \leq \operatorname{real} k$
proof (cases card $B \geq \exp 4$)
case True
hence $\operatorname{sqrt}(1 / \operatorname{card} B) \leq \operatorname{sqrt}(1 / \exp 4)$
using card-B-gt-0 by (intro real-sqrt-le-mono divide-left-mono) auto
also have $\ldots=(1 / \exp 2)$
by (subst powr-half-sqrt[symmetric]) (auto simp add:powr-divide exp-powr)
finally have $\operatorname{sqrt}(1 / \operatorname{card} B) \leq(1 / \exp 2)$ by simp
hence $\varepsilon-e q: \varepsilon=\operatorname{sqrt}(1 / \operatorname{card} B)$
unfolding ε-def by simp
have $\exp (6::$ real $)=(\exp 4)$ powr (3/2)
by (simp add:exp-powr)
also have $\ldots \leq$ card B powr (3/2)
by (intro powr-mono2 True) auto
finally have $q 4: \exp 6 \leq \operatorname{card} B$ powr (3/2) by simp
have $(2::$ real $) \leq \exp 6$
by (approximation 5)
hence q1: 2 \leq real (card B) powr (3 / 2)
using $q 4$ by argo
have $(1::$ real $)<\ln (\exp 6)$
by (approximation 5)
also have $\ldots \leq \ln ($ card B powr $(3 / 2))$
using card-B-gt-0 by (intro iffD2[OF ln-le-cancel-iff] q4) auto
finally have $q 2: 1<\ln (\operatorname{card} B \operatorname{powr}(3 / 2))$ by simp
have $\exp (\exp (1::$ real $)) \leq \exp 6$
by (approximation 5)
also have $\ldots \leq$ card B powr (3/2) using $q 4$ by simp
finally have $\exp (\exp 1) \leq$ card B powr (3/2)
by simp
hence q3: $1 \leq \ln (\ln ($ card B powr (3/2)))
using card-B-gt-0 q1 by (intro iffD2[OF ln-ge-iff] ln-gt-zero, auto)
have $5 * \ln (\operatorname{card} B / \varepsilon) / \ln (\ln (\operatorname{card} B / \varepsilon))=$ $5 * \ln (\operatorname{card} B$ powr $(1+1 / 2)) / \ln (\ln (\operatorname{card} B \operatorname{powr}(1+1 / 2)))$
unfolding powr-add by (simp add:real-sqrt-divide powr-half-sqrt[symmetric] ε-eq)
also have $\ldots \leq 5 * \ln ($ card B powr $(1+1 / 2)) / 1$
using True q1 q2 q3 by (intro divide-left-mono mult-nonneg-nonneg mult-pos-pos ln-ge-zero ln-gt-zero) auto
also have $\ldots=5 *(1+1 / 2) * \ln (\operatorname{card} B)$
using card-B-gt-0 by (subst ln-powr) auto
also have $\ldots=7.5 * \ln ($ card $B)$ by simp
also have $\ldots \leq k$ using $\operatorname{assms}(3)$ by simp
finally show? thesis by simp
next
case False
have (1::real) / exp $2 \leq \operatorname{sqrt}(1 / \exp 4)$
by (simp add:real-sqrt-divide powr-half-sqrt[symmetric] exp-powr)
also have $\ldots \leq \operatorname{sqrt}(1 / \operatorname{card} B)$
using False card-B-gt-0
by (intro real-sqrt-le-mono divide-left-mono mult-pos-pos) auto
finally have $1 / \exp 2 \leq \operatorname{sqrt}(1 / \operatorname{card} B)$
by simp
hence ε-eq: $\varepsilon=1 / \exp 2$
unfolding ε-def by simp
have $q 2: 5 *(\ln x+2) / \ln (\ln x+2) \leq 7.5 *(\ln x+2)$
if $x \in\{1 . . \exp 4\}$ for $x:$: real
using that by (approximation 10 splitting: $x=10$)
have $5 * \ln (\operatorname{card} B / \varepsilon) / \ln (\ln (\operatorname{card} B / \varepsilon))=$ $5 *(\ln (\operatorname{card} B)+2) / \ln (\ln (\operatorname{card} B)+2)$ using card-B-gt-0 unfolding ε-eq by (simp add:ln-mult)
also have $\ldots \leq 7.5 *(\ln ($ card $B)+2)$
using False card-B-gt-0 by (intro q2) auto
also have $\ldots \leq k$ using $\operatorname{assms}(3)$ by simp
finally show? thesis by simp
qed
have $? A L=\mid\left(\int \omega . Y \omega \partial(q\right.$ True $\left.)\right)-\left(\int \omega . Y \omega \partial(q\right.$ False $\left.)\right) \mid$
using exp-balls-and-bins unfolding q-def by simp
also have $\ldots \leq \varepsilon * \operatorname{card} R$
by (intro exp-approx[OF assms(1) a c b])
also have $\ldots \leq \operatorname{sqrt}(1 / \operatorname{card} B) * \operatorname{card} R$
unfolding ε-def by (intro mult-right-mono) auto
also have $\ldots=$? AR using real-sqrt-divide by simp
finally show ? $A L \leq$? $A R$ by simp
show ? $B L \leq$? $B R$
proof (cases $R=\{ \}$)

```
    case True
    then show ?thesis unfolding Y-def by simp
    next
    case False
    hence card R>0 using fin-R by auto
    hence card-R-ge-1: real (card R)\geq1 by simp
    have ?BL \leq measure-pmf.variance (q True) Y +
        |measure-pmf.variance (q True) Y - measure-pmf.variance (q False) Y|
        unfolding }q\mathrm{ -def by auto
    also have ... \leqmeasure-pmf.variance ( }q\mathrm{ True) Y + &^2
        by (intro add-mono var-approx[OF assms(1) a c b]) auto
    also have ... \leq measure-pmf.variance (q True) Y + sqrt(1 / card B)^2
        unfolding }\varepsilon\mathrm{ -def by (intro add-mono power-mono) auto
    also have .. \leq card R*(real (card R) - 1) / card B + sqrt(1 / card B)^2
        unfolding q-altdef by (intro add-mono var-balls-and-bins) auto
    also have ... = card R*(real (card R) - 1)/ card B + 1/ card B
        by (auto simp add:power-divide real-sqrt-divide)
    also have ... \leq card R * (real (card R) - 1) / card B + card R / card B
        by (intro add-mono divide-right-mono card-R-ge-1) auto
    also have \ldots. = (card R*(real (card R) - 1) + card R) / card B
        by argo
    also have ... = ?BR
        by (simp add:algebra-simps power2-eq-square)
    finally show ?BL}\leq?BR by sim
qed
qed
lemma devitation-bound:
    assumes card R\leq card B
    assumes lim-balls-and-bins k p
    assumes real k\geq\mp@subsup{C}{2}{*}\operatorname{ln}(\mathrm{ real (card B)) + C C }
    shows measure p}{\omega.|Y\omega-\mu|>9* real (card R)/ sqrt (real (card B))}\leq1/ 2^6
        (is ?L\leq?R)
proof (cases card R>0)
    case True
    define k' :: nat where }\mp@subsup{k}{}{\prime}=k-
    have (1::real)\leq7.5*0+16 by simp
    also have ... }57.5*\operatorname{ln}(\mathrm{ real }(\operatorname{card B}))+1
    using card-B-ge-1 by (intro add-mono mult-left-mono ln-ge-zero) auto
    also have ... \leqk using assms(3) unfolding C C2-def C C - def by simp
    finally have k-ge-1:k\geq1 by simp
    have lim: lim-balls-and-bins (k'+1) p
    using k-ge-1 assms(2) unfolding k'-def by simp
    have k'-min: real k'\geq7.5*(ln (real (card B)) + 2)
    using k-ge-1 assms(3) unfolding C C2-def C C -def k'-def by simp
    let ?r = real (card R)
    let ?b = real (card B)
    have a: integrable p (\lambda\omega.(Y\omega)
    unfolding Y-def
    by (intro integrable-pmf-iff-bounded[where C=real (card R)^2])
    (auto intro!: card-image-le[OF fin-R])
```

 have \(? L \leq \mathcal{P}\left(\omega\right.\) in measure-pmf \(p .\left|Y \omega-\left(\int \omega . Y \omega \partial p\right)\right| \geq 8 * ? r /\) sqrt ?b \()\)
 proof (rule pmf-mono)
    ```
    fix }\omega\mathrm{ assume }\omega\in\mathrm{ set-pmf p
    assume a:\omega\in{\omega. 9* real (card R) / sqrt (real (card B))< |Y\omega-\mu|}
    have 8*?r / sqrt ?b = 9 * ?r / sqrt ?b - ?r / sqrt ?b
        by simp
    also have ... \leq |Y\omega-\mu|-| (\int\omega.Y\omega\partialp)-\mu|
        using a by (intro diff-mono exp-approx-2[OF assms(1) lim k'-min]) simp
    also have ... \leq|Y\omega-(\int\omega. Y\omega\partialp)|
    by simp
    finally have 8*?r / sqrt ?b}\leq|Y\omega-(\int\omega.Y\omega\partialp)| by sim
    thus }\omega\in{\omega\in\mathrm{ space (measure-pmf p). 8* ?r / sqrt ?b b |Y }|-(\int\omega.Y\omega\partialp)|
        by simp
qed
also have ... \leqmeasure-pmf.variance p Y / (8*?r / sqrt ?b)^2
    using True card-B-gt-0 a
    by (intro measure-pmf.Chebyshev-inequality) auto
also have ...\leq(?r`2 / ?b) / (8*?r / sqrt ?b)^2
    by (intro divide-right-mono var-approx-2[OF assms(1) lim k'-min]) simp
    also have ... = 1/2`6
    using card-B-gt-0 True
    by (simp add:power2-eq-square)
    finally show?thesis by simp
next
    case False
    hence R={} card R=0 using fin-R by auto
    thus ?thesis
        unfolding Y-def }\mu\mathrm{ -def by simp
qed
end
unbundle no-intro-cong-syntax
end
```


5 Tail Bounds for Expander Walks

```
theory Distributed-Distinct-Elements-Tail-Bounds
    imports
        Distributed-Distinct-Elements-Preliminary
        Expander-Graphs.Pseudorandom-Objects-Expander-Walks
        HOL-Decision-Procs.Approximation
```

begin

This section introduces tail estimates for random walks in expander graphs, specific to the verification of this algorithm (in particular to two-stage expander graph sampling and obtained tail bounds for subgaussian random variables). They follow from the more fundamental results regular-graph.kl-chernoff-property and regular-graph.uniform-property which are verified in the AFP entry for expander graphs [10].
hide-fact Henstock-Kurzweil-Integration.integral-sum
unbundle intro-cong-syntax
lemma x - $l n$ - x-min:
assumes $x \geq(0::$ real $)$
shows $x * \ln x \geq-\exp (-1)$
proof -
define f where $f x=x * \ln x$ for $x::$ real
define f^{\prime} where $f^{\prime} x=\ln x+1$ for $x::$ real
have $0:\left(f\right.$ has-real-derivative $\left.\left(f^{\prime} x\right)\right)($ at $x)$ if $x>0$ for x
unfolding f-def f^{\prime}-def using that
by (auto intro!: derivative-eq-intros)
have $f^{\prime} x \geq 0$ if $\exp (-1) \leq x$ for $x::$ real
proof -
have $\ln x \geq-1$
using that order-less-le-trans[OF exp-gt-zero]
by (intro iffD2[OF ln-ge-iff]) auto
thus ?thesis
unfolding f^{\prime}-def by (simp)
qed
hence $\exists y$. (f has-real-derivative y) (at $x) \wedge 0 \leq y$ if $x \geq \exp (-1)$ for $x::$ real using that order-less-le-trans[OF exp-gt-zero]
by (intro exI $\left[\right.$ where $\left.x=f^{\prime} x\right]$ conjI 0) auto
hence $f(\exp (-1)) \leq f x$ if $\exp (-1) \leq x$
by (intro DERIV-nonneg-imp-nondecreasing[OF that $]$) auto
hence 2:?thesis if $\exp (-1) \leq x$
unfolding f-def using that by simp
have $f^{\prime} x \leq 0$ if $x>0 x \leq \exp (-1)$ for $x::$ real
proof -
have $\ln x \leq \ln (\exp (-1))$
by (intro iffD2[OF ln-le-cancel-iff $]$ that exp-gt-zero)
also have $\ldots=-1$ by simp
finally have $\ln x \leq-1$ by simp
thus ?thesis unfolding f^{\prime}-def by simp
qed
hence $\exists y$. (f has-real-derivative y) (at $x) \wedge y \leq 0$ if $x>0 x \leq \exp (-1)$ for $x::$ real using that by (intro exI $\left[\right.$ where $\left.x=f^{\prime} x\right]$ conjI 0) auto
hence $f(\exp (-1)) \leq f x$ if $x>0 x \leq \exp (-1)$
using that(1) by (intro DERIV-nonpos-imp-nonincreasing[OF that(2)]) auto
hence 3:?thesis if $x>0 x \leq \exp (-1)$
unfolding f-def using that by simp
have ?thesis if $x=0$
using that by simp
thus ?thesis
using 23 assms by fastforce
qed
theorem (in regular-graph) walk-tail-bound:
assumes $l>0$
assumes $S \subseteq$ verts G
defines $\mu \equiv$ real $($ card $S) /$ card (verts G)
assumes $\gamma<1 \mu+\Lambda_{a} \leq \gamma$
shows measure (pmf-of-multiset (walks Gl)) \{w.real (card $\{i \in\{. .<l\} . w!i \in S\}) \geq \gamma * l\}$
$\leq \exp \left(-\operatorname{reall} l *\left(\gamma * \ln \left(1 /\left(\mu+\Lambda_{a}\right)\right)-2 * \exp (-1)\right)\right)($ is $? L \leq ? R)$
proof (cases $\mu>0$)
case True
have $0<\mu+\Lambda_{a}$
by (intro add-pos-nonneg Λ-ge-0 True)
also have $\ldots \leq \gamma$
using assms(5) by simp
finally have $\gamma-g t-0: 0<\gamma$ by simp
hence γ-ge- $0: 0 \leq \gamma$
by simp
have card $S \leq \operatorname{card}$ (verts G)
by (intro card-mono assms(2)) auto
hence μ-le-1: $\mu \leq 1$
unfolding μ-def by (simp add:divide-simps)
have 2: $0<\mu+\Lambda_{a} *(1-\mu)$
using μ-le-1 by (intro add-pos-nonneg True mult-nonneg-nonneg Λ-ge-0) auto
have $\mu+\Lambda_{a} *(1-\mu) \leq \mu+\Lambda_{a} * 1$
using Λ-ge-0 True by (intro add-mono mult-left-mono) auto
also have $\ldots \leq \gamma$
using assms(5) by simp
also have ... <1
using assms(4) by simp
finally have $4: \mu+\Lambda_{a} *(1-\mu)<1$ by simp
hence 3: $1 \leq 1 /\left(1-\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)$
using 2 by (subst pos-le-divide-eq) simp-all
have card $S \leq n$
unfolding n-def by (intro card-mono assms(2)) auto
hence $0: \mu \leq 1$
unfolding μ-def n-def[symmetric] using n-gt-0 by simp
have $\gamma * \ln \left(1 /\left(\mu+\Lambda_{a}\right)\right)-2 * \exp (-1)=\gamma * \ln \left(1 /\left(\mu+\Lambda_{a} * 1\right)\right)+0-2 * \exp (-1)$
by simp
also have $\ldots \leq \gamma * \ln \left(1 /\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)+0-2 * \exp (-1)$
using True γ-ge-0 Λ-ge-0 02
by (intro diff-right-mono mult-left-mono iffD2[OF ln-le-cancel-iff] divide-pos-pos divide-left-mono add-mono) auto
also have $\ldots \leq \gamma * \ln \left(1 /\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)+(1-\gamma) * \ln \left(1 /\left(1-\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)\right)-2 * \exp (-1)$
using assms(4) 3 by (intro add-mono diff-mono mult-nonneg-nonneg ln-ge-zero) auto
also have $\ldots=(-\exp (-1))+\gamma * \ln \left(1 /\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)+(-\exp (-1))+(1-\gamma) * \ln \left(1 /\left(1-\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)\right)$ by simp
also have $\ldots \leq \gamma * \ln \gamma+\gamma * \ln \left(1 /\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)+(1-\gamma) * \ln (1-\gamma)+(1-\gamma) * \ln \left(1 /\left(1-\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)\right)$
using assms(4) γ-ge-0 by (intro add-mono x-ln-x-min) auto
also have $\ldots=\gamma *\left(\ln \gamma+\ln \left(1 /\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)\right)+(1-\gamma) *\left(\ln (1-\gamma)+\ln \left(1 /\left(1-\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)\right)\right)$
by (simp add:algebra-simps)
also have $\ldots=\gamma * \ln \left(\gamma *\left(1 /\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)\right)+(1-\gamma) * \ln \left((1-\gamma) *\left(1 /\left(1-\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)\right)\right)$
using $24 \operatorname{assms}(4) \gamma-g t-0$
by (intro-cong $\left[\sigma_{2}(+), \sigma_{2}(*)\right]$ more:ln-mult[symmetric] divide-pos-pos) auto
also have $\ldots=K L$-div $\gamma\left(\mu+\Lambda_{a} *(1-\mu)\right)$
unfolding $K L$-div-def by simp
finally have 1: $\gamma * \ln \left(1 /\left(\mu+\Lambda_{a}\right)\right)-2 * \exp (-1) \leq K L$ - div $\gamma\left(\mu+\Lambda_{a} *(1-\mu)\right)$ by simp
have $\mu+\Lambda_{a} *(1-\mu) \leq \mu+\Lambda_{a} * 1$
using True
by (intro add-mono mult-left-mono Λ-ge-0) auto
also have $\ldots \leq \gamma$
using assms(5) by simp
finally have $\mu+\Lambda_{a} *(1-\mu) \leq \gamma$ by simp

```
    moreover have \(\mu+\Lambda_{a} *(1-\mu)>0\)
    using 0 by (intro add-pos-nonneg True mult-nonneg-nonneg \(\Lambda\)-ge-0) auto
    ultimately have \(\mu+\Lambda_{a} *(1-\mu) \in\{0<. . \gamma\}\) by simp
    hence \(? L \leq \exp \left(-\right.\) real \(l * K L\)-div \(\left.\gamma\left(\mu+\Lambda_{a} *(1-\mu)\right)\right)\)
    using assms(4) unfolding \(\mu\)-def by (intro kl-chernoff-property assms(1,2)) auto
    also have \(\ldots \leq\) ? \(R\)
    using \(\operatorname{assms}(1) 1\) by \(\operatorname{simp}\)
    finally show ?thesis by simp
next
    case False
    hence \(\mu \leq 0\) by \(\operatorname{simp}\)
    hence card \(S=0\)
    unfolding \(\mu\)-def \(n\)-def[symmetric] using \(n\)-gt- 0 by (simp add:divide-simps)
    moreover have finite \(S\)
    using finite-subset[OF assms(2) finite-verts] by auto
    ultimately have \(0: S=\{ \}\) by auto
    have \(\mu=0\)
    unfolding \(\mu\)-def 0 by simp
    hence \(\mu+\Lambda_{a} \geq 0\)
    using \(\Lambda\)-ge- 0 by simp
    hence \(\gamma \geq 0\)
        using assms(5) by simp
    hence \(\gamma *\) real \(l \geq 0\)
    by (intro mult-nonneg-nonneg) auto
    thus ?thesis using 0 by simp
qed
theorem (in regular-graph) walk-tail-bound-2:
    assumes \(l>0 \quad \Lambda_{a} \leq \Lambda \Lambda>0\)
    assumes \(S \subseteq\) verts \(G\)
    defines \(\mu \equiv\) real (card \(S\) ) / card (verts \(G\) )
    assumes \(\gamma<1 \mu+\Lambda \leq \gamma\)
    shows measure (pmf-of-multiset (walks \(G l))\{\).real (card \(\{i \in\{. .<l\} . w!i \in S\}) \geq \gamma * l\}\)
        \(\leq \exp (-\operatorname{reall} l *(\gamma * \ln (1 /(\mu+\Lambda))-2 * \exp (-1)))(\) is \(? L \leq ? R)\)
proof (cases \(\mu>0\) )
    case True
    have \(0: 0<\mu+\Lambda_{a}\)
    by (intro add-pos-nonneg \(\Lambda\)-ge-0 True)
hence \(0<\mu+\Lambda\)
    using assms(2) by simp
    hence 1: \(0<(\mu+\Lambda) *\left(\mu+\Lambda_{a}\right)\)
    using 0 by simp
    have \(3: \mu+\Lambda_{a} \leq \gamma\)
    using \(\operatorname{assms}(2,7)\) by \(\operatorname{simp}\)
    have 2: \(0 \leq \gamma\)
    using 3 True \(\Lambda\)-ge-0 by simp
have \(? L \leq \exp \left(-\operatorname{real} l *\left(\gamma * \ln \left(1 /\left(\mu+\Lambda_{a}\right)\right)-2 * \exp (-1)\right)\right)\)
    using 3 unfolding \(\mu\)-def by (intro walk-tail-bound \(\operatorname{assms}(1,4,6)\) )
also have \(\ldots=\exp \left(-\left(\right.\right.\) real \(\left.\left.l *\left(\gamma * \ln \left(1 /\left(\mu+\Lambda_{a}\right)\right)-2 * \exp (-1)\right)\right)\right)\)
    by \(\operatorname{simp}\)
also have \(\ldots \leq \exp (-(\operatorname{real} l *(\gamma * \ln (1 /(\mu+\Lambda))-2 * \exp (-1))))\)
    using True \(\operatorname{assms}(2,3)\) using 012
    by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono diff-mono iffD2 [OF ln-le-cancel-iff]
    divide-left-mono le-imp-neg-le) simp-all
also have \(\ldots=\) ? \(R\)
```

by simp
finally show ?thesis by simp
next
case False
hence $\mu \leq 0$ by simp
hence card $S=0$
unfolding μ-def n-def [symmetric] using n-gt- 0 by (simp add:divide-simps)
moreover have finite S
using finite-subset[OF assms(4) finite-verts] by auto
ultimately have $0: S=\{ \}$ by auto
have $\mu=0$
unfolding μ-def 0 by simp
hence $\mu+\Lambda_{a} \geq 0$
using Λ-ge- 0 by simp
hence $\gamma \geq 0$
using assms by simp
hence $\gamma *$ real $l \geq 0$
by (intro mult-nonneg-nonneg) auto
thus ?thesis using 0 by simp
qed
lemma disjI-safe: $(\neg x \Longrightarrow y) \Longrightarrow x \vee y$ by auto
lemma walk-tail-bound:
fixes T
assumes $l>0 \Lambda>0$
assumes measure (sample-pro S) $\{w . T w\} \leq \mu$
assumes $\gamma \leq 1 \mu+\Lambda \leq \gamma \mu \leq 1$
shows measure (sample-pro $(\mathcal{E} l \Lambda S))\{w$. real (card $\{i \in\{. .<l\} . T(w i)\}) \geq \gamma * l\}$
$\leq \exp (-\operatorname{real} l *(\gamma * \ln (1 /(\mu+\Lambda))-2 * \exp (-1)))($ is $? L \leq ? R)$
proof -
have μ-ge- $0: \mu \geq 0$ using assms(3) measure-nonneg order.trans by metis
hence γ-gt-0: $\gamma>0$ using assms $(2,5)$ by auto
hence γ-ge- $0: \gamma \geq 0$ by simp
have $\mu+\Lambda *(1-\mu) \leq \mu+\Lambda * 1$ using assms $(2,6) \mu$-ge- 0 by auto
also have $\ldots \leq \gamma$ using $\operatorname{assms}(5)$ by simp
finally have $\overline{1}: \mu+\Lambda *(1-\mu) \leq \gamma$ by simp
have 2: $0<\mu+\Lambda *(1-\mu)$
proof (cases $\mu=1$)
case True then show? ?thesis by simp
next
case False
then show ?thesis using $\operatorname{assms}(2,6)$
by (intro add-nonneg-pos μ-ge-0 linordered-semiring-strict-class.mult-pos-pos) auto
qed
have 3: $0<\mu+\Lambda$ using μ-ge-0 assms(2) by simp
have $\gamma * \ln (1 /(\mu+\Lambda))-2 * \exp (-1)=\gamma * \ln (1 /(\mu+\Lambda * 1))+0-2 * \exp (-1)$ by simp also have $\ldots \leq \gamma * \ln (1 /(\mu+\Lambda *(1-\mu)))+0-2 * \exp (-1)$
using 23γ-ge-0 μ-ge-0 assms(2) by (intro diff-right-mono add-mono mult-left-mono
iffD2[OF ln-le-cancel-iff] divide-left-mono divide-pos-pos) simp-all
also have $\ldots \leq \gamma * \ln (1 /(\mu+\Lambda *(1-\mu)))+(1-\gamma) * \ln (1 /(1-(\mu+\Lambda *(1-\mu))))-2 * \exp (-1)$
proof (cases $\gamma<1$)
case True
hence $\mu+\Lambda *(1-\mu)<1$ using 1 by simp

```
    thus ?thesis using assms(4) 2
        by (intro diff-right-mono add-mono mult-nonneg-nonneg order.refl ln-ge-zero) auto
    next
    case False
    hence }\gamma=1\mathrm{ using assms(4) by simp
    thus ?thesis by simp
    qed
    also have ... = (-exp(-1))+\gamma*\operatorname{ln}(1/(\mu+\Lambda*(1-\mu)))+(-\operatorname{exp}(-1))+(1-\gamma)*\operatorname{ln}(1/(1-(\mu+\Lambda*(1-\mu))))
    by simp
    also have ... \leq \gamma*\operatorname{ln}\gamma+\gamma*\operatorname{ln}(1/(\mu+\Lambda*(1-\mu)))+(1-\gamma)*\operatorname{ln}(1-\gamma)+(1-\gamma)*\operatorname{ln}(1/(1-(\mu+\Lambda*(1-\mu))))
    using assms(4) \gamma-ge-0 by (intro add-mono x-ln-x-min) auto
    also have ... = \gamma*(ln \gamma+ln(1/(\mu+\Lambda*(1-\mu))))+(1-\gamma)*(\operatorname{ln}(1-\gamma)+\operatorname{ln}(1/(1-(\mu+\Lambda*(1-\mu)))))
    by (simp add:algebra-simps)
    also have ... = \gamma* ln (\gamma*(1/(\mu+\Lambda*(1-\mu))))+(1-\gamma)*\operatorname{ln}((1-\gamma)*(1/(1-(\mu+\Lambda*(1-\mu)))))
    using 2 1 assms(4) \gamma-gt-0 by (intro arg-cong2[where f=(+)] iffD2[OF mult-cancel-left]
        disjI-safe ln-mult[symmetric] divide-pos-pos) auto
    also have ... = KL-div \gamma ( }\mu+\Lambda*(1-\mu))\mathrm{ unfolding KL-div-def by simp
    finally have 4: \gamma* ln (1/ (\mu+\Lambda))-2 * exp (-1)\leqKL-div \gamma (\mu+\Lambda* (1-\mu))
        by simp
    have ?L}\leq\operatorname{exp}(-\mathrm{ real l*KL-div }\gamma(\mu+\Lambda*(1-\mu))
    using 1 by (intro expander-kl-chernoff-bound assms)
    also have ... \leqexp (- real l* (\gamma*\operatorname{ln}(1/(\mu+\Lambda))-2*\operatorname{exp}(-1)))
    by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono-neg 4) auto
    finally show ?thesis by simp
qed
definition C}\mp@subsup{C}{1}{}:: real where C C = exp 2 + exp 3+(exp 1-1)
lemma deviation-bound:
    fixes f :: 'a m real
    assumes l>0
    assumes }\Lambda\in{0<..\operatorname{exp}(-\mathrm{ real l * ln (real l)^3) }
    assumes \x. x \geq20\Longrightarrow measure (sample-pro S) {v.fv\geqx}\leqexp (-x* ln x^3)
    shows measure (sample-pro (\mathcal{E}l\LambdaS)) {\omega. (\sumi<l.f(\omegai))\geq\mp@subsup{C}{1}{*}*l}\leq\operatorname{exp}(-real l) (is ?L
s ?R)
proof -
    let ?w = sample-pro (\mathcal{E l \Lambda S)}
    let ?p = sample-pro S
    let ?a = real l*(exp 2 + exp 3)
    define b :: real where b=exp 1-1
    have b-gt-0:b>0 unfolding b-def by (approximation 5)
    define L where
    Lk=measure ?w {w. exp (real k)*card{i\in{..<l}.f(wi)\geqexp(real k)}\geq real l/real k \ 2 } for k
    define k-max where k-max = max 4 (MAX v\in pro-set S. nat \lfloorln (fv)\rfloor+1)
have \(k\)-max-ge-4: \(k\)-max \(\geq 4\) unfolding \(k\)-max-def by simp
have \(k\)-max-ge-3: \(k\)-max \(\geq 3\) unfolding \(k\)-max-def by simp
have 1:of-bool \((\lfloor\ln (\max x(\exp 1))\rfloor+1=\) int \(k)=(o f-\operatorname{bool}(x \geq \exp (\) real \(k-1))-o f-\operatorname{bool}(x \geq \exp\) \(k):\) :real)
\((\) is ? \(L 1=? R 1)\) if \(k \geq 3\) for \(k x\)
proof -
have a1: real \(k-1 \leq k\) by \(\operatorname{simp}\)
have ? \(L 1=\) of-bool \((\lfloor\ln (\max x(\exp 1))\rfloor=\) int \(k-1)\) by \(\operatorname{simp}\)
```

```
    also have \(\ldots=o f-\operatorname{bool}(\ln (\max x(\exp 1)) \in\{\) real \(k-1 . .<\) real \(k\})\) unfolding floor-eq-iff by simp
    also have \(\ldots=o f-\operatorname{bool}(\exp (\ln (\max x(\exp 1))) \in\{\exp (\) real \(k-1) . .<\exp (\) real \(k)\})\) by simp
    also have..\(=\) of-bool \((\max x(\exp 1) \in\{\exp (\) real \(k-1) . .<\exp (\) real k) \(\})\)
        by (subst exp-ln) (auto intro!:max.strict-coboundedI2)
    also have \(\ldots=\operatorname{of-bool}(x \in\{\exp (\) real \(k-1) . .<\exp (\) real \(k)\})\)
    proof (cases \(x \geq \exp 1\) )
        case True
        then show?thesis by simp
    next
        case False
        have \(\{\exp (\) real \(k-1) . .<\exp (\) real \(k)\} \subseteq\{\exp (\) real \(k-1) .\).\(\} by auto\)
        also have \(\ldots \subseteq\{\exp 1 .\).\(\} using that by simp\)
        finally have \(\{\exp (\) real \(k-1) . .<\exp (\) real \(k)\} \subseteq\{\exp 1 .\).\(\} by \operatorname{simp}\)
        moreover have \(x \notin\{\exp 1 .\).\(\} using False by simp\)
        ultimately have \(x \notin\{\exp (\) real \(k-1) . .<\exp (\) real \(k)\}\) by blast
        hence of-bool \((x \in\{\exp (\) real \(k-1) . .<\exp (\) real \(k)\})=0\) by simp
        also have \(\ldots=\operatorname{of}\) - bool \((\max x(\exp 1) \in\{\exp (\) real \(k-1) . .<\exp (\) real k) \(\})\)
        using False that by simp
    finally show ?thesis by metis
qed
also have \(\ldots=\) ? R1 using order-trans[OF iffD2[OF exp-le-cancel-iff a1]] by auto
finally show? thesis by simp
qed
have 0: \(\{\operatorname{nat}\lfloor\ln (\max (f x)(\exp 1))\rfloor+1\} \subseteq\{2 . . k-\max \}(\) is \(\{? L 1\} \subseteq ? R 2)\)
    if \(x \in\) pro-set \(S\) for \(x\)
proof (cases f \(x \geq \exp 1\) )
    case True
    hence ? \(L 1=\) nat \(\lfloor\ln (f x)\rfloor+1\) by simp
    also have \(\ldots \leq(\) MAX \(v \in\) pro-set \(S\). nat \(\lfloor\ln (f v)\rfloor+1)\)
        by (intro Max-ge finite-imageI imageI that finite-pro-set)
    also have \(\ldots \leq k\)-max unfolding \(k\)-max-def by simp
    finally have le-0: ? L1 \(\leq k\)-max by simp
    have \((1::\) nat \() \leq\) nat \(\lfloor\ln (\exp (1::\) real \())\rfloor\) by \(\operatorname{simp}\)
    also have..\(\leq\) nat \(\lfloor\ln (f x)\rfloor\)
        using True order-less-le-trans[OF exp-gt-zero]
        by (intro nat-mono floor-mono iffD2[OF ln-le-cancel-iff]) auto
    finally have \(1 \leq\) nat \(\lfloor\ln (f x)\rfloor\) by \(\operatorname{simp}\)
    hence ? \(L 1 \geq 2\) using True by simp
    hence ? L1 \(\in\) ? R2 using le-0 by simp
    then show? ?thesis by simp
next
    case False
    hence \(\{? L 1\}=\{2\}\) by \(\operatorname{simp}\)
    also have \(\ldots \subseteq\) ? R2 using \(k\)-max-ge-3 by simp
    finally show? thesis by simp
qed
have 2: \(\left(\sum i<l . f(w i)\right) \leq ? a+b *\left(\sum k=3 . .<k\right.\)-max. \(\exp k *\) card \(\left.\{i \in\{. .<l\} . f(w i) \geq \exp k\}\right)\)
    (is ? \(L 1 \leq\) ? R1) if \(w \in \operatorname{pro-set}(\mathcal{E} l \Lambda S)\) for \(w\)
proof -
    have s-w: \(w i \in\) pro-set \(S\) for \(i\)
        using that expander-pro-range \([O F \operatorname{assms}(1)] \operatorname{assms(2)}\)
        unfolding set-sample-pro[where \(S=\mathcal{E} l \Lambda S]\) by auto
    have \(? L 1 \leq\left(\sum i<l . \exp (\ln (\max (f(w i))(\exp 1)))\right)\)
        by (intro sum-mono) (simp add:less-max-iff-disj)
    also have \(\ldots \leq\left(\sum i<l\right.\). \(\left.\exp (o f-n a t(n a t\lfloor\ln (\max (f(w i))(\exp 1))\rfloor+1))\right)\)
```

by (intro sum-mono iffD2[OF exp-le-cancel-iff]) linarith
also have $\ldots=\left(\sum i<l\right.$. $\left(\sum k=2 . . k\right.$-max. $\exp k *$ of-bool $(k=n a t\lfloor\ln (\max (f(w i))(\exp$ 1)) $\rfloor+1))$)
using Int-absorb1[OF 0] s-w by (intro sum.cong map-cong refl)
(simp add:of-bool-def if-distrib if-distribR sum.If-cases)
also have ... $=$
($\sum i<l .\left(\sum k \in(\right.$ insert 2 2 3..k-max\} $) . \exp k *$ of-bool $\left.\left.(k=\operatorname{nat}\lfloor\ln (\max (f(w i))(\exp 1))\rfloor+1)\right)\right)$
using k-max-ge-3 by (intro-cong [σ_{1} sum-list] more:map-cong sum.cong) auto
also have $\ldots=\left(\sum i<l\right.$. exp 2* of-bool $(2=n a t\lfloor\ln (\max (f(w i))(\exp 1))\rfloor+1)+$
($\sum k=3 . . k$-max. $\exp k *$ of-bool $\left.\left.(k=n a t\lfloor\ln (\max (f(w i))(\exp 1))\rfloor+1)\right)\right)$
by (subst sum.insert) auto
also have $\ldots \leq\left(\sum i<l\right.$. exp $2 * 1+\left(\sum k=3 . . k-\max\right.$. exp $k *$ of-bool $(k=n a t\lfloor\ln (\max (f(w i))(\exp$ 1)) $\rfloor+1))$)
by (intro sum-mono add-mono mult-left-mono) auto
also have $\ldots=\left(\sum i<l . \exp 2+\left(\sum k=3 . . k\right.\right.$-max. exp $k *$ of-bool $(\lfloor\ln (\max (f(w i))(\exp 1))\rfloor+1=$ int $k)$)
by (intro-cong $\left[\sigma_{1}\right.$ sum-list, σ_{1} of-bool, $\left.\sigma_{2}(+), \sigma_{2}(*)\right]$ more:map-cong sum.cong) auto also have ... $=$
($\sum i<l$. exp $2+\left(\sum k=3 . . k-m a x . \exp k *(o f-\operatorname{bool}(f(w i) \geq \exp (\right.$ real $k-1))-o f-b o o l(f(w i) \geq \exp$ k))))
by (intro-cong $\left[\sigma_{1}\right.$ sum-list, σ_{1} of-bool, $\left.\sigma_{2}(+), \sigma_{2}(*)\right]$ more:map-cong sum.cong 1) auto also have $\ldots=\left(\sum i<l\right.$.
$\exp 2+\left(\sum k=2+1 . .<k-m a x+1 . \exp k *(\operatorname{of}-\operatorname{bool}(f(w i) \geq \exp (\right.$ real $k-1))-o f-b o o l(f(w i) \geq \exp$ k))))
by (intro-cong $\left[\sigma_{2}(+)\right]$ more:map-cong sum.cong) auto
also have $\ldots=\left(\sum i<l\right.$.
$\left.\exp 2+\left(\sum k=2 . .<k-m a x . \exp (k+1) *(\operatorname{of-bool}(f(w i) \geq \exp k)-\operatorname{of-bool}(f(w i) \geq \exp (S u c k)))\right)\right)$
by (subst sum.shift-bounds-nat-ivl) simp
also have $\ldots=\left(\sum i<l\right.$. exp 2 $+\left(\sum k=2 . .<k\right.$-max. $\left.\exp (k+1) * \operatorname{of-bool}(f(w i) \geq \exp k)\right)-$
($\sum k=2 . .<k-m a x . \exp (k+1) *$ of-bool $\left.\left.(f(w i) \geq \exp (k+1))\right)\right)$
by (simp add:sum-subtractf algebra-simps)
also have $\ldots=\left(\sum i<l . \exp 2+\left(\sum k=2 . .<k-\max . \exp (k+1) * \operatorname{of-bool}(f(w i) \geq \exp k)\right)-\right.$
$\left.\left(\sum k=3 . .<k-\max +1 . \exp k * \operatorname{of-bool}(f(w i) \geq \exp k)\right)\right)$
by (subst sum.shift-bounds-nat-ivl[symmetric]) (simp cong:sum.cong)
also have $\ldots=\left(\sum i<l . \exp 2+\left(\sum k \in \operatorname{insert} 2\{3 . .<k-\max \} . \exp (k+1) * \operatorname{of-bool}(f(w i) \geq \exp \right.\right.$ k)) -
($\sum k=3 . .<k-\max +1 . \exp k *$ of-bool $\left.\left.(f(w i) \geq \exp k)\right)\right)$
using k-max-ge-3 by (intro-cong $\left[\sigma_{2}(+), \sigma_{2}(-)\right]$ more: map-cong sum.cong) auto
also have $\ldots=\left(\sum i<l\right.$. $\exp 2+\exp 3 *$ of-bool $(f(w i) \geq \exp 2)+$
$\left(\sum k=3 . .<k-m a x . \exp (k+1) *\right.$ of-bool $\left.(f(w i) \geq \exp k)\right)-$
($\left.\left.\sum k=3 . .<k-m a x+1 . \exp k * \operatorname{of-bool}(f(w i) \geq \exp k)\right)\right)$
by (subst sum.insert) (simp-all add:algebra-simps)
also have $\ldots \leq\left(\sum i<l\right.$. $\exp 2+\exp 3+\left(\sum k=3 . .<k-\max . \exp (k+1) * \operatorname{of-bool}(f(w i) \geq \exp k)\right)-$
$\left.\left(\sum k=3 . .<k-\max +1 . \exp k * \operatorname{of-bool}(f(w i) \geq \exp k)\right)\right)$
by (intro sum-mono add-mono diff-mono) auto
also have $\ldots=\left(\sum i<l\right.$. $\exp 2+\exp 3+\left(\sum k=3 . .<k-\max . \exp (k+1) * \operatorname{of-bool}(f(w i) \geq \exp k)\right)-$ ($\sum k \in$ insert k-max $\{3 . .<k-\max \}$. exp $\left.\left.k * \operatorname{of-bool}(f(w i) \geq \exp k)\right)\right)$
using k-max-ge-3 by (intro-cong $\left[\sigma_{2}(+), \sigma_{2}(-)\right]$ more: map-cong sum.cong) auto
also have $\ldots=\left(\sum i<l . \exp 2+\exp 3+\left(\sum k=3 . .<k-\max .(\exp (k+1)-\exp k) * \operatorname{of}-\operatorname{bool}(f(w\right.\right.$ $i) \geq \exp k)$)-
(exp k-max $*$ of-bool $(f(w i) \geq \exp k$-max $)))$
by (subst sum.insert) (auto simp add:sum-subtractf algebra-simps)
also have $\ldots \leq\left(\sum i<l\right.$. exp $2+\exp 3+\left(\sum k=3 . .<k-\max .(\exp (k+1)-\exp k) * o f-\operatorname{bool}(f(w i) \geq \exp \right.$ $k)-0$)
by (intro sum-mono add-mono diff-mono) auto
also have $\ldots \leq\left(\sum i<l . \exp 2+\exp 3+\left(\sum k=3 . .<k-\max .(\exp (k+1)-\exp k) *\right.\right.$ of-bool $(f(w$ $i) \geq \exp k)$))
by auto

```
    also have ... = (\sumi<l. exp 2 +exp 3+(\sumk=3..<k-max.(exp 1-1)*(exp k* of-bool(f (wi)\geqexp
k)))
    by (simp add:exp-add algebra-simps)
    also have ... = (\sumi<l. exp 2 +exp 3+b*(\sumk=3..<k-max. exp k* of-bool(f (wi)\geqexp k)))
    unfolding b-def by (subst sum-distrib-left) simp
    also have ... =?a+b*(\sumi<l. (\sumk=3..<k-max. exp k*of-bool(f(wi)\geqexp k)))
        by (simp add: sum-distrib-left[symmetric])
    also have ... = ?R1
        by (subst sum.swap) (simp add:ac-simps Int-def)
    finally show ?thesis by simp
qed
```

have 3: $\exists k \in\{3 . .<k$-max $\} . g k \geq l /$ real $k \wedge 2$ if $\left(\sum k=3 . .<k\right.$-max. $\left.g k\right) \geq$ real l for g
proof (rule ccontr)
assume $a 3: \neg(\exists k \in\{3 . .<k$-max $\} . g k \geq l /$ real $k \wedge$ 2)
hence $g k<l /$ real $k \wedge 2$ if $k \in\{3 . .<k$-max $\}$ for k using that by force
hence $\left(\sum k=3 . .<k\right.$-max. $\left.g k\right)<\left(\sum k=3 . .<k\right.$-max. $l /$ real $\left.k \wedge 2\right)$
using k-max-ge-4 by (intro sum-strict-mono) auto
also have $\ldots \leq\left(\sum k=3 . .<k\right.$-max. l/ (real $k *($ real $\left.\left.k-1)\right)\right)$
by (intro sum-mono divide-left-mono) (auto simp:power2-eq-square)
also have $\ldots=l *\left(\sum k=3 . .<k\right.$-max. $1 /($ real $\left.k-1)-1 / k\right)$
by (simp add:sum-distrib-left field-simps)
also have $\ldots=l *\left(\sum k=2+1 . .<(k-\max -1)+1 .(-1) / k-(-1) /(\right.$ real $\left.k-1)\right)$
by (intro sum.cong arg-cong2[where $f=(*)]$) auto
also have $\ldots=l *\left(\sum k=2 . .<(k-\max -1) .(-1) /(\operatorname{Suc} k)-(-1) / k\right)$
by (subst sum.shift-bounds-nat-ivl) auto
also have $\ldots=l *(1 / 2-1 /$ real $(k$-max -1$))$
using k-max-ge-3 by (subst sum-Suc-diff') auto
also have $\ldots \leq$ real $l *(1-0)$ by (intro mult-left-mono diff-mono) auto
also have $\ldots=l$ by simp
finally have ($\sum k=3 . .<k$-max. $\left.g k\right)<l$ by simp
thus False using that by simp
qed
have 4: $L k \leq \exp (-$ real $l-k+2)$ if $k \geq 3$ for k
proof (cases $k \leq \ln l$)
case True
define γ where $\gamma=1 /(\text { real } k)^{2} / \exp ($ real $k)$
define μ where $\mu=\exp \left(-\exp (\right.$ real $k) *$ real $\left.k^{\wedge} 3\right)$
have exp-k-ubound: exp (real $k) \leq$ real l using True assms(1) by (simp add: ln-ge-iff)
have $20 \leq \exp (3::$ real) by (approximation 10)
also have $\ldots \leq \exp$ (real k) using that by simp
finally have exp-k-lbound: $20 \leq \exp ($ real k) by simp
have measure (sample-pro $S)\{v . f v \geq \exp ($ real $k)\} \leq \exp (-\exp ($ real $k) * \ln (\exp ($ real $k)) ~ へ ~ 3)$
by (intro assms(3) exp-k-lbound)
also have $\ldots=\exp \left(-\left(\exp (\right.\right.$ real $k) *$ real $\left.\left.k^{\wedge} 3\right)\right)$ by simp
finally have μ-bound: measure (sample-pro S) $\{v$.f $v \geq \exp ($ real $k)\} \leq \mu$ by (simp add: μ-def)
have $\mu+\Lambda \leq \exp (-\exp ($ real $k) *$ real $k \wedge 3)+\exp (-$ real $l * \ln ($ real $l)$ ^ 3$)$
unfolding μ-def using assms by (intro add-mono) auto
also have $\ldots=\exp \left(-\left(\exp (\right.\right.$ real $k) *$ real $\left.\left.k^{\wedge} 3\right)\right)+\exp \left(-\left(\right.\right.$ real $l * \ln ($ real l $\left.\left.){ }^{\wedge} 3\right)\right)$ by simp
also have $\ldots \leq \exp (-(\exp ($ real $k) *$ real $k \wedge 3))+\exp \left(-\left(\exp (\right.\right.$ real $k) * \ln (\exp ($ real $\left.\left.k)) \wedge^{\wedge}\right)\right)$
using assms(1) exp-k-ubound by (intro add-mono iffD2[OF exp-le-cancel-iff] le-imp-neg-le
mult-mono power-mono iffD2[OF ln-le-cancel-iff]) simp-all
also have $\ldots=2 * \exp \left(-\exp (\right.$ real $k) *$ real $\left.k^{\wedge} 3\right)$ by simp
finally have $\mu-\Lambda$-bound: $\mu+\Lambda \leq 2 * \exp (-\exp ($ real $k) *$ real $k \wedge 3)$ by simp

```
have \(\mu+\Lambda \leq 2 * \exp (-\exp (\) real \(k) *\) real \(k \wedge 3)\) by (intro \(\mu-\Lambda\)-bound \()\)
also have \(\ldots=\exp (-\exp (\) real \(k) *\) real \(k \curvearrowright 3+\ln 2)\) unfolding exp-add by \(\operatorname{simp}\)
also have \(\ldots=\exp (-(\exp (\) real \(k) *\) real \(k \wedge 3-\ln 2))\) by \(\operatorname{simp}\)
also have \(\ldots \leq \exp (-((1+\) real \(k) *\) real \(k \sim 3-\ln 2))\)
    using that by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le diff-mono mult-right-mono
        exp-ge-add-one-self-aux) auto
also have \(\ldots=\exp (-(\) real \(k \wedge 4+(\) real \(k \wedge 3-\ln 2)))\)
    by (simp add:power4-eq-xxxx power3-eq-cube algebra-simps)
also have \(\ldots \leq \exp (-(\) real \(k \wedge 4+(2 \wedge 3-\ln 2)))\) using that
    by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le add-mono diff-mono power-mono) auto
also have \(\ldots \leq \exp \left(-\left(\right.\right.\) real \(\left.\left.k^{\wedge} 4+0\right)\right)\)
    by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le add-mono order.refl) (approximation 5)
also have \(\ldots \leq \exp (-(\) real \(k \checkmark 3 *\) real \(k))\)
    by (simp add:power4-eq-xxxx power3-eq-cube algebra-simps)
also have \(\ldots \leq \exp \left(-\left(2^{\wedge} 3 *\right.\right.\) real \(\left.\left.k\right)\right)\) using that
    by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le mult-right-mono power-mono) auto
also have \(\ldots \leq \exp (-3 *\) real \(k)\) by (intro iffD2[OF exp-le-cancel-iff]) auto
also have \(\ldots=\exp (-(\) real \(k+2 *\) real \(k))\) by \(\operatorname{simp}\)
also have \(\ldots \leq \exp (-(\) real \(k+2 * \ln k))\)
    using that
    by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le add-mono mult-left-mono ln-bound) auto
also have \(\ldots=\exp \left(-\left(\right.\right.\) real \(\left.\left.k+\ln \left(k^{\wedge} 2\right)\right)\right)\) using that by (subst ln-powr[symmetric]) auto
also have \(\ldots=\gamma\)
    using that unfolding \(\gamma\)-def exp-minus exp-add inverse-eq-divide by (simp add:algebra-simps)
finally have \(\mu-\Lambda-l e-\gamma: \mu+\Lambda \leq \gamma\) by simp
```

have $\mu \geq 0$ unfolding μ-def by simp
hence $\mu-\Lambda$-gt- 0 : $\mu+\Lambda>0$ using assms(2) by auto
have $\gamma=1 /\left((\text { real } k)^{2} * \exp (\right.$ real $\left.k)\right)$ unfolding $\gamma-\operatorname{def}$ by simp
also have $\ldots \leq 1 /\left(\right.$ 2^2 $^{2} * \exp$ 2)
using that by (intro divide-left-mono mult-mono power-mono) (auto)
finally have γ-ubound: $\gamma \leq 1 /(4 * \exp 2)$ by simp
have $\gamma \leq 1 /(4 * \exp 2)$ by (intro γ-ubound)
also have $\ldots<1$ by (approximation 5)
finally have $\gamma-l t-1: \gamma<1$ by simp
have γ-ge-0: $\gamma \geq 0$ using that unfolding γ-def by (intro divide-nonneg-pos) auto
have μ-le-1: $\mu \leq 1$ unfolding μ-def by simp
have $L k=$ measure ? $w\{w . \gamma * l \leq$ real $(\operatorname{card}\{i \in\{. .<l\}$. exp $($ real $k) \leq f(w i)\})\}$ unfolding L-def γ-def using that
by (intro-cong $\left[\sigma_{2}\right.$ measure $]$ more:Collect-cong) (simp add:field-simps)
also have $\ldots \leq \exp (-\operatorname{real} l *(\gamma * \ln (1 /(\mu+\Lambda))-2 * \exp (-1)))$
using γ-lt-1 assms(2) by (intro walk-tail-bound μ-bound assms(1) μ - Λ-le- $\gamma \mu$-le-1) auto
also have $\ldots=\exp ($ real $l *(\gamma * \ln (\mu+\Lambda)+2 * \exp (-1)))$
using $\mu-\Lambda$-gt- 0 by (simp-all add:ln-div algebra-simps)
also have $\ldots \leq \exp (\operatorname{real} l *(\gamma * \ln (2 * \exp (-\exp ($ real $k) *$ real k - 3$))+2 * \exp (-1)))$
using μ - Λ-gt-0 $\mu-\Lambda$-bound γ-ge-0
by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono add-mono iffD2[OF ln-le-cancel-iff]) simp-all
also have $\ldots=\exp ($ real $l *(\gamma *(\ln 2-\exp ($ real $k) *$ real k - 3$)+2 * \exp (-1)))$
by (simp add:ln-mult)
also have $\ldots=\exp ($ real $l *(\gamma * \ln 2-\operatorname{real} k+2 * \exp (-1)))$
using that unfolding γ-def by (simp add:field-simps power2-eq-square power3-eq-cube)
also have $\ldots \leq \exp ($ real $l *(\ln 2 /(4 * \exp 2)-\operatorname{real} k+2 * \exp (-1)))$
using γ-ubound by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono add-mono diff-mono) (auto simp:divide-simps)
also have $\ldots=\exp (\operatorname{real} l *(\ln 2 /(4 * \exp 2)+2 * \exp (-1)-\operatorname{real} k))$
by simp
also have $\ldots \leq \exp ($ real $l *(1-$ real $k))$
by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono diff-mono order.refl of-nat-O-le-iff)
(approximation 12)
also have $\ldots \leq \exp (-$ real $l-$ real $k+2)$
proof (intro iffD2[OF exp-le-cancel-iff])
have $1 *($ real $k-2) \leq$ real $l *($ real $k-2)$
using assms(1) that by (intro mult-right-mono) auto
thus real $l *(1-$ real $k) \leq-$ real $l-$ real $k+2$ by argo
qed
finally show ?thesis by simp
next
case False
hence k-gt-l: $k \geq \ln l$ by simp
define γ where $\gamma=1 /(\text { real } k)^{2} / \exp ($ real $k)$
have $20 \leq \exp (3::$ real $)$ by (approximation 10)
also have $\ldots \leq \exp ($ real k) using that by simp
finally have exp-k-lbound: $20 \leq \exp ($ real k) by simp
have γ-gt-0: $0<\gamma$ using that unfolding γ-def by (intro divide-pos-pos) auto
hence $\gamma-l-g t-0: 0<\gamma *$ real l using assms(1) by auto
have $L k=$ measure ? $w\{w . \gamma * l \leq$ real $(\operatorname{card}\{i \in\{. .<l\} . \exp ($ real $k) \leq f(w i)\})\}$
unfolding L-def γ-def using that
by (intro-cong [σ_{2} measure] more:Collect-cong) (simp add:field-simps)
also have $\ldots \leq\left(\int w\right.$. real $(\operatorname{card}\{i \in\{. .<l\} . \exp ($ real $\left.k) \leq f(w i)\}) \partial ? w\right) /(\gamma * l)$
by (intro pmf-markov γ-l-gt-0) simp-all
also have $\ldots=\left(\int w .\left(\sum i<l\right.\right.$. of-bool $(\exp ($ real $\left.k) \leq f(w i))\right) \partial$? $\left.w\right) /(\gamma * l)$
by (intro-cong $\left[\sigma_{2}(/)\right]$ more:integral-cong-AE AE-pmfI) (auto simp add:Int-def)
also have $\ldots=\left(\sum i<l\right.$. $\left(\int w\right.$. of-bool $(\exp ($ real $\left.\left.k) \leq f(w i)) \partial ? w\right)\right) /(\gamma * l)$
by (intro-cong $\left[\sigma_{2}(/)\right]$ more:integral-sum integrable-measure-pmf-finite finite-pro-set)
also have $\ldots=\left(\sum i<l\right.$. $\left(\int v\right.$. of-bool $(\exp ($ real $k) \leq f v) \partial($ map-pmf $(\lambda w . w i)$? $\left.\left.w)\right)\right) /(\gamma * l)$ by simp
also have $\ldots=\left(\sum i<l\right.$. $\left(\int v\right.$. of-bool $(\exp ($ real $\left.\left.k) \leq f v) \partial ? p\right)\right) /(\gamma * l)$ using $\operatorname{assms}(1,2)$
by (intro-cong $\left[\sigma_{2}(/), \sigma_{2}\left(\right.\right.$ integral $\left.^{L}\right), \sigma_{1}$ measure-pmf] more:sum.cong expander-uniform-property) simp-all
also have $\ldots=\left(\sum i<l .\left(\int v\right.\right.$. indicat-real $\{v .(\exp ($ real $\left.\left.k) \leq f v)\} v \partial ? p\right)\right) /(\gamma * l)$
by (intro-cong $\left[\sigma_{2}(/), \sigma_{2}\left(\right.\right.$ integral $\left.\left.^{L}\right)\right]$ more:sum.cong) auto
also have $\ldots=\left(\sum i<l\right.$. (measure ? $p\{v . f v \geq \exp ($ real $\left.\left.k)\}\right)\right) /(\gamma * l)$ by simp
also have $\ldots \leq\left(\sum i<l\right.$. $\exp (-\exp ($ real $k) * \ln (\exp ($ real k) $) \uparrow 3)) /(\gamma * l)$ using γ-l-gt-0 by (intro divide-right-mono sum-mono assms(3) exp-k-lbound) auto
also have $\ldots=\exp \left(-\exp (\right.$ real $k) *$ real $\left.k^{\wedge} 3\right) / \gamma$ using $\operatorname{assms}(1)$ by simp
also have $\ldots=\exp \left(\right.$ real $k+\ln \left(k^{\wedge} 2\right)-\exp ($ real $k) *$ real $\left.k \wedge 3\right)$ using that unfolding γ-def
by (simp add:exp-add exp-diff exp-minus algebra-simps inverse-eq-divide)
also have $\ldots=\exp ($ real $k+2 * \ln k-\exp ($ real $k) *$ real $k へ 3)$
using that by (subst ln-powr[symmetric]) auto
also have $\ldots \leq \exp ($ real $k+2 *$ real $k-\exp (\ln l) *$ real $k \wedge 3)$
using that k-gt-l ln-bound by (intro iffD2[OF exp-le-cancel-iff] add-mono diff-mono mult-left-mono mult-right-mono) auto
also have $\ldots=\exp \left(3 *\right.$ real $k-l *\left(\right.$ real $\left.\left.k^{\wedge} 3-1\right)-l\right)$
using assms(1) by (subst exp-ln) (auto simp add:algebra-simps)
also have $\ldots \leq \exp (3 *$ real $k-1 *($ real $k \wedge 3-1)-l)$
using assms(1) that by (intro iffD2[OF exp-le-cancel-iff] diff-mono mult-right-mono) auto
also have $\ldots=\exp (3 *$ real $k-$ real $k *$ real $k \wedge 2-1-l+2)$
by (simp add:power2-eq-square power3-eq-cube)
also have $\ldots \leq \exp (3 *$ real $k-$ real $k *$ 2ヘ2-0 $-l+2)$ using assms(1) that
by (intro iffD2[OF exp-le-cancel-iff] add-mono diff-mono mult-left-mono power-mono) auto also have $\ldots=\exp (-$ real $l-$ real $k+2)$ by simp
finally show? ?thesis by simp
qed
have ? $L \leq$ measure ? w
$\left\{w . ? a+b *\left(\sum k=3 . .<k-m a x . \exp (\right.\right.$ real $k) * \operatorname{card}\{i \in\{. .<l\} . f(w i) \geq \exp ($ real $\left.\left.k)\}\right) \geq C_{1} * l\right\}$
using order-trans[OF - 2] by (intro pmf-mono) simp
also have $\ldots=$ measure ? w
$\left\{w .\left(\sum k=3 . .<k-\right.\right.$ max. $\exp ($ real $k) * \operatorname{card}\{i \in\{. .<l\} . f(w i) \geq \exp ($ real $\left.\left.k)\}\right) \geq l\right\}$
unfolding C_{1}-def b-def[symmetric] using b-gt-0
by (intro-cong [σ_{2} measure] more:Collect-cong) (simp add:algebra-simps)
also have $\ldots \leq$ measure ?w
$\left\{w .\left(\exists k \in\{3 . .<k-\max \} . \exp (\right.\right.$ real $k) * \operatorname{card}\{i \in\{. .<l\} . f(w i) \geq \exp ($ real $k)\} \geq$ real $l /$ real k^{\wedge} 2 $\left.) ~\right\}$
using 3 by (intro pmf-mono) simp
also have $\ldots=$ measure ? w
$\left(\bigcup k \in\{3 . .<k-\max \} .\left\{w . \exp (\right.\right.$ real $k) * \operatorname{card}\{i \in\{. .<l\} . f(w i) \geq \exp ($ real $k)\} \geq$ real l/real $\left.\left.k^{\wedge} 2\right\}\right)$
by (intro-cong [σ_{2} measure]) auto
also have $\ldots \leq\left(\sum k=3 . .<k\right.$-max. $\left.L k\right)$
unfolding L-def by (intro finite-measure.finite-measure-subadditive-finite) auto
also have $\ldots \leq\left(\sum k=3 . .<k\right.$-max. $\exp (-$ real $l-$ real $k+2)$) by (intro sum-mono 4) auto
also have $\ldots=\left(\sum k=0+3 . .<(k-\max -3)+3 . \exp (-\right.$ real $l-$ real $\left.k+2)\right)$
using k-max-ge-3 by (intro sum.cong) auto
also have $\ldots=\left(\sum k=0 . .<k-\max -3 . \exp (-1-\right.$ real $l-$ real $\left.k)\right)$
by (subst sum.shift-bounds-nat-ivl) (simp add:algebra-simps)
also have $\ldots=\exp (-1-$ real $l) *\left(\sum k<k-\max -3\right.$. $\exp ($ real $\left.k *(-1))\right)$
using atLeast0LessThan
by (simp add:exp-diff exp-add sum-distrib-left exp-minus inverse-eq-divide)
also have $\ldots=\exp (-1-\operatorname{real} l) *((\exp (-1) \wedge(k-\max -3)-1) /(\exp (-1)-1))$
unfolding exp-of-nat-mult by (subst geometric-sum) auto
also have $\ldots=\exp (-1-$ real $l) *\left(1-\exp (-1)^{\wedge}(k-\max -3)\right) /(1-\exp (-1))$
by (simp add:field-simps)
also have $\ldots \leq \exp (-1-$ real $l) *(1-0) /(1-\exp (-1))$
using k-max-ge-3 by (intro mult-left-mono divide-right-mono diff-mono) auto
also have $\ldots=\exp (-$ real $l) *(\exp (-1) /(1-\exp (-1)))$
by (simp add:exp-diff exp-minus inverse-eq-divide)
also have $\ldots \leq \exp (-$ real $l) * 1$
by (intro mult-left-mono exp-ge-zero) (approximation 10)
finally show ?thesis by simp
qed
unbundle no-intro-cong-syntax
end

6 Inner Algorithm

This section introduces the inner algorithm (as mentioned it is already a solution to the cardinality estimation with the caveat that, if ε is too small it requires to much space. The outer algorithm in Section 10 resolved this problem.

The algorithm makes use of the balls and bins model, more precisely, the fact that the number of hit bins can be used to estimate the number of balls thrown (even if there are collusions). I.e. it assigns each universe element to a bin using a k-wise independent hash function. Then it counts the number of bins hit.
This strategy however would only work if the number of balls is roughly equal to the number of bins, to remedy that the algorithm performs an adaptive sub-sampling strategy. This works by assigning each universe element a level (using a second hash function) with a geometric distribution. The algorithm then selects a level that is appropriate based on a rough estimate obtained using the maximum level in the bins.
To save space the algorithm drops information about small levels, whenever the space usage would be too high otherwise. This level will be called the cutoff-level. This is okey as long as the cutoff level is not larger than the sub-sampling threshold. A lot of the complexity in the proof is devoted to verifying that the cutoff-level will not cross it, it works by defining a third value s_{M} that is both an upper bound for the cutoff level and a lower bound for the subsampling threshold simultaneously with high probability.

```
theory Distributed-Distinct-Elements-Inner-Algorithm
    imports
        Universal-Hash-Families.Pseudorandom-Objects-Hash-Families
        Distributed-Distinct-Elements-Preliminary
        Distributed-Distinct-Elements-Balls-and-Bins
        Distributed-Distinct-Elements-Tail-Bounds
        Prefix-Free-Code-Combinators.Prefix-Free-Code-Combinators
begin
unbundle intro-cong-syntax
hide-const Abstract-Rewriting.restrict
definition \(C_{4}::\) real where \(C_{4}=3\) へ \(2 * 2\) 2^23
definition \(C_{5}::\) int where \(C_{5}=33\)
definition \(C_{6}::\) real where \(C_{6}=4\)
definition \(C_{7}\) :: nat where \(C_{7}=2 \wedge 5\)
locale inner-algorithm \(=\)
    fixes \(n::\) nat
    fixes \(\delta::\) real
    fixes \(\varepsilon::\) real
    assumes \(n\)-gt-0: \(n>0\)
    assumes \(\delta\)-gt- \(0: \delta>0\) and \(\delta-l t-1: \delta<1\)
    assumes \(\varepsilon\)-gt- \(0: \varepsilon>0\) and \(\varepsilon-l t-1: \varepsilon<1\)
begin
definition \(b\)-exp where \(b\)-exp \(=\) nat \(\left\lceil\log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)\right\rceil\)
definition \(b::\) nat where \(b=2 \wedge b-\exp\)
definition \(l\) where \(l=n a t\left\lceil C_{6} * \ln (2 / \delta)\right\rceil\)
definition \(k\) where \(k=n a t\left\lceil C_{2} * \ln b+C_{3}\right\rceil\)
definition \(\Lambda::\) real where \(\Lambda=\min (1 / 16)(\exp (-l * \ln l \wedge 3))\)
definition \(\varrho::\) real \(\Rightarrow\) real where \(\varrho x=b *(1-(1-1 / b)\) powr \(x)\)
definition \(\varrho\)-inv :: real \(\Rightarrow\) real where \(\varrho\)-inv \(x=\ln (1-x / b) / \ln (1-1 / b)\)
lemma l-lbound: \(C_{6} * \ln (2 / \delta) \leq l\)
    unfolding \(l\)-def by linarith
lemma \(k\)-min: \(C_{2} * \ln \left(\right.\) real b) \(+C_{3} \leq\) real \(k\)
    unfolding \(k\)-def by linarith
```

```
lemma \Lambda-gt-0: \Lambda>0
    unfolding }\Lambda\mathrm{ -def min-less-iff-conj by auto
lemma \Lambda-le-1:\Lambda\leq1
    unfolding \Lambda-def by auto
lemma l-gt-0: l>0
proof -
    have 0< C6 * ln (2 / \delta)
        unfolding C6}\mp@subsup{C}{6}{}\mathrm{ -def using }\delta\mathrm{ -gt-0 }\delta\mathrm{ -lt-1
        by (intro Rings.mult-pos-pos ln-gt-zero) auto
    also have ... }\leq
        by (intro l-lbound)
    finally show ?thesis
        by simp
qed
lemma l-ubound: l\leq C6 * ln(1/\delta)+C}\mp@subsup{C}{6}{}*\operatorname{ln}2+
proof -
    have l=of-int \lceilC C * ln (2/ \delta)\rceil
        using l-gt-0 unfolding l-def
        by (intro of-nat-nat) simp
    also have ... \leq C 6 * ln (1/ \delta*2)+1
        by simp
    also have ... = C C * ln (1/\delta)+C}\mp@subsup{C}{6}{*}\operatorname{ln}2+
        using \delta-gt-0 \delta-lt-1
        by (subst ln-mult) (auto simp add:algebra-simps)
    finally show ?thesis by simp
qed
lemma b-exp-ge-26:b-exp \geq26
proof -
    have 2 powr 25 < C C / 1 unfolding C C - def by simp
    also have ... \leq C C / &^2
        using \varepsilon-gt-0 \varepsilon-lt-1 unfolding }\mp@subsup{C}{4}{}\mathrm{ -def
        by (intro divide-left-mono power-le-one) auto
    finally have 2 powr 25 < C C / &`2 by simp
    hence log 2 ( }\mp@subsup{C}{4}{}/\mp@subsup{\varepsilon}{}{\wedge}2)>2
        using \varepsilon-gt-0 unfolding C C -def
        by (intro iffD2[OF less-log-iff] divide-pos-pos zero-less-power) auto
    hence \lceillog2 ( }\mp@subsup{C}{4}{}/\mp@subsup{\varepsilon}{}{\wedge}2)\rceil\geq26 by sim
    thus ?thesis
        unfolding b-exp-def by linarith
qed
lemma b-min: b \geq2^26
    unfolding b-def
    by (meson b-exp-ge-26 nat-power-less-imp-less not-less power-eq-0-iff power-zero-numeral)
lemma k-gt-0: k>0
proof -
    have (0::real)<7.5*0+16 by simp
    also have ... }\leq7.5*\operatorname{ln}(\mathrm{ real b) + 16
        using b-min
        by (intro add-mono mult-left-mono ln-ge-zero) auto
    finally have 0< real k
    using k-min unfolding C}\mp@subsup{C}{2}{}\mathrm{ -def }\mp@subsup{C}{3}{}\mathrm{ -def by simp
    thus ?thesis by simp
```

qed

```
lemma b-ne: {..<b}\not={}
proof -
    have 0}\in{0..<b
        using b-min by simp
    thus ?thesis
        by auto
qed
lemma b-lower-bound: C4/ 没2 \leq real b
proof -
```



```
        using \varepsilon-gt-0 unfolding C C4-def by (intro powr-log-cancel[symmetric] divide-pos-pos) auto
    also have .. \leq2 powr (nat \lceillog 2 ( }\mp@subsup{C}{4}{}/\mp@subsup{\varepsilon}{}{\wedge}2)\rceil
        by (intro powr-mono of-nat-ceiling) simp
    also have ... = real b
        unfolding b-def b-exp-def by (simp add:powr-realpow)
    finally show ?thesis by simp
qed
definition n-exp where n-exp = max (nat \lceillog 2 n\rceil) 1
lemma n-exp-gt-0: n-exp >0
    unfolding n-exp-def by simp
abbreviation }\mp@subsup{\Psi}{1}{}\mathrm{ where }\mp@subsup{\Psi}{1}{}\equiv\mathcal{H}2n(\mathcal{G}n\mathrm{ -exp)
abbreviation }\mp@subsup{\Psi}{2}{}\mathrm{ where }\mp@subsup{\Psi}{2}{}\equiv\mathcal{H}2n(\mathcal{N}(\mp@subsup{C}{7}{**b}\mp@subsup{b}{}{2})
abbreviation }\mp@subsup{\Psi}{3}{}\mathrm{ where }\mp@subsup{\Psi}{3}{}\equiv\mathcal{H}k(\mp@subsup{C}{7}{}*\mp@subsup{b}{}{2})(\mathcal{N}b
definition }\Psi\mathrm{ where }\Psi=\mp@subsup{\Psi}{1}{}\mp@subsup{\times}{P}{}\mp@subsup{\Psi}{2}{}\mp@subsup{\times}{P}{}\mp@subsup{\Psi}{3}{
abbreviation }\Omega\mathrm{ where }\Omega\equiv\mathcal{E}l\Lambda
type-synonym state =(nat => nat => int) }\times(nat
fun is-too-large :: (nat => nat => int) => bool where
    is-too-large B = ((\sum(i,j) \in{..<l} ×{..<b}. \lfloorlog 2 (max (Bij)(-1)+2)\rfloor)> C ( 
fun compress-step :: state }=>\mathrm{ state where
    compress-step (B,q)}=(\lambdaij.\operatorname{max}(Bij-1)(-1),q+1
function compress :: state }=>\mathrm{ state where
    compress (B,q)=(
        if is-too-large B
        then (compress (compress-step (B,q)))
        else (B,q))
    by auto
```

fun compress-termination :: state \Rightarrow nat where
compress-termination $(B, q)=\left(\sum(i, j) \in\{. .<l\} \times\{. .<b\}\right.$.nat $\left.(B i j+1)\right)$
lemma compress-termination:
assumes is-too-large B
shows compress-termination (compress-step $(B, q))<$ compress-termination (B, q)
proof (rule ccontr)
let $? I=\{. .<l\} \times\{. .<b\}$
have a: nat $(\max (B i j-1)(-1)+1) \leq \operatorname{nat}(B i j+1)$ for $i j$

```
        by simp
    assume ᄀ compress-termination (compress-step (B,q)) < compress-termination ( }B,q
    hence (\sum(i,j)\in?I.nat (Bij+1))\leq(\sum(i,j)\in?I.nat (max (Bij - 1) (-1) + 1))
        by simp
    moreover have (\sum(i,j)\in?I. nat (Bij+1))\geq(\sum(i,j)\in?I.nat (max (Bij - 1) (-1)
+ 1))
        by (intro sum-mono) auto
    ultimately have b
        (\sum(i,j) \in?I.nat (max (Bij - 1) (-1) + 1)) = (\sum (i,j) \in?I.nat (Bij + 1))
        using order-antisym by simp
    have nat (Bij+1) = nat (max (Bij-1) (-1) + 1) if (i,j) \in?I for ij
        using sum-mono-inv[OF b] that a by auto
    hence max (Bij) (-1) = - 1 if (i,j) \in?I for ij
        using that by fastforce
    hence }(\sum(i,j)\in?I.\lfloorlog 2 (max (Bij) (-1) + 2) \rfloor) = (\sum(i,j) \in?I. 0)
        by (intro sum.cong, auto)
    also have ... = 0 by simp
    also have ...\leq C 5 * b*l unfolding C C -def by simp
    finally have }\neg\mathrm{ is-too-large B by simp
    thus False using assms by simp
qed
termination compress
    using measure-def compress-termination
    by (relation Wellfounded.measure (compress-termination), auto)
fun merge1 :: state }=>\mathrm{ state }=>\mathrm{ state where
    merge1 (B1, q})(B2,\mp@subsup{q}{2}{})=
        let q=max q}\mp@subsup{q}{1}{}\mp@subsup{q}{2}{}\mathrm{ in ( }\lambdaij.\operatorname{max}(B1ij+\mp@subsup{q}{1}{}-q)(B2ij+q\mp@subsup{q}{2}{}-q),q)
fun merge :: state }=>\mathrm{ state }=>\mathrm{ state where
    merge x y = compress (merge1 x y)
type-synonym seed = nat =>(nat =>nat) }\times(nat=>nat)\times(nat=>nat
fun single1 :: seed }=>\mathrm{ nat }=>\mathrm{ state where
    single1 \omegax}=(\lambdaij
        let (f,g,h)=\omega i in (
        if h(gx)=j^i<l then int (fx) else (-1)),0)
fun single :: seed }=>\mathrm{ nat }=>\mathrm{ state where
    single \omegax= compress (single1 }\omegax
```

fun estimate1 $::$ state \Rightarrow nat \Rightarrow real where
estimate1 $(B, q) i=($
let $s=\max 0(\operatorname{Max}((B i) \cdot\{. .<b\})+q-\lfloor\log 2 b\rfloor+9)$;
$p=\operatorname{card}\{j . j \in\{. .<b\} \wedge B i j+q \geq s\}$ in
2 powr $s * \ln (1-p / b) / \ln (1-1 / b))$
fun estimate $::$ state \Rightarrow real where
estimate $x=$ median $l($ estimate $1 x)$

6.1 History Independence

fun $\tau_{0}::(($ nat \Rightarrow nat $) \times($ nat \Rightarrow nat $) \times($ nat \Rightarrow nat $)) \Rightarrow$ nat set \Rightarrow nat \Rightarrow int
where $\tau_{0}(f, g, h) A j=\operatorname{Max}(\{\operatorname{int}(f a) \mid a . a \in A \wedge h(g a)=j\} \cup\{-1\})$
definition $\tau_{1}::((n a t \Rightarrow n a t) \times(n a t \Rightarrow n a t) \times(n a t \Rightarrow$ nat $)) \Rightarrow$ nat set \Rightarrow nat \Rightarrow nat \Rightarrow int

```
    where }\mp@subsup{\tau}{1}{}\psiAqj=\operatorname{max}(\mp@subsup{\tau}{0}{}\psiAj-q)(-1
definition }\mp@subsup{\tau}{2}{}::\mathrm{ seed }=>\mathrm{ nat set }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ nat }=>\mathrm{ int
    where }\mp@subsup{\tau}{2}{}\omegaAq|ij=(ifi<l then \mp@subsup{\tau}{1}{}(\omegai)Aqj else (-1)
definition }\mp@subsup{\tau}{3}{}:: seed => nat set => nat => stat
    where }\mp@subsup{\tau}{3}{}\omegaAq=(\mp@subsup{\tau}{2}{}\omegaAq,q
definition q :: seed }=>\mathrm{ nat set }=>\mathrm{ nat
    where q\omegaA=(LEAST q. \neg(is-too-large ( }\mp@subsup{\tau}{2}{}\omegaAq))
definition }\tau::\mathrm{ seed }=>\mathrm{ nat set }=>\mathrm{ state
    where }\tau\omegaA=\mp@subsup{\tau}{3}{}\omegaA(q\omegaA
lemma }\mp@subsup{\tau}{2}{\prime-step: }\mp@subsup{\tau}{2}{}\omegaA(x+y)=(\lambdaij.max (\tau2\omegaAxij - y)(- 1)
    by (intro ext) (auto simp add:}\mp@subsup{\tau}{2}{}-def \mp@subsup{\tau}{1}{}-def
lemma }\mp@subsup{\tau}{3}{}\mathrm{ -step: compress-step ( }\mp@subsup{\tau}{3}{}\omegaAx)=\mp@subsup{\tau}{3}{}\omegaA(x+1
    unfolding }\mp@subsup{\tau}{3}{}\mathrm{ -def using }\mp@subsup{\tau}{2}{}\mathrm{ -step[where y=1] by simp
lemma }\mp@subsup{\Psi}{1}{}\mathrm{ : is-prime-power (pro-size (G n-exp))
    unfolding geom-pro-size by (intro is-prime-powerI n-exp-gt-0) auto
lemma }\mp@subsup{\Psi}{2}{}:\mathrm{ : is-prime-power (pro-size (N}(\mp@subsup{\mathcal{N}}{7}{*}*\mp@subsup{b}{}{`}2))
proof -
    have 0:pro-size (\mathcal{N}(\mp@subsup{C}{7}{}* b`2)) = 2 ` (5 + 2 * b-exp)
        unfolding C}\mp@subsup{C}{7}{}\mathrm{ -def b-def by (subst nat-pro-size) (auto simp add: power-add power-even-eq)
    thus ?thesis unfolding 0 by (intro is-prime-powerI) auto
qed
lemma }\mp@subsup{\Psi}{3}{}\mathrm{ : is-prime-power (pro-size (N b ))
proof -
    have 0:pro-size (\mathcal{N b})=\mp@subsup{2}{}{`}\mathrm{ b-exp unfolding b-def by (subst nat-pro-size) auto}
    thus ?thesis using b-exp-ge-26 unfolding 0 by (intro is-prime-powerI) auto
qed
lemma sample-pro-\Psi:
    sample-pro }\Psi=\mathrm{ pair-pmf (sample-pro }\mp@subsup{\Psi}{1}{})(\mathrm{ pair-pmf (sample-pro }\mp@subsup{\Psi}{2}{})(\mathrm{ sample-pro }\mp@subsup{\Psi}{3}{})
    unfolding \Psi-def by (simp add:prod-pro)
lemma sample-set-\Psi: pro-set }\Psi=\mathrm{ pro-set }\mp@subsup{\Psi}{1}{}\times\mathrm{ pro-set }\mp@subsup{\Psi}{2}{}\times\mathrm{ pro-set }\mp@subsup{\Psi}{3}{
    unfolding \Psi-def by (simp add:prod-pro-set)
lemma f-range:
    assumes (f,g,h)\in pro-set \Psi
    shows fx}\leqn\mathrm{ -exp
proof -
    have f}\in\mathrm{ pro-set }\mp@subsup{\Psi}{1}{}\mathrm{ using sample-set- }\Psi\mathrm{ assms by auto
    hence f\inpro-select }\mp@subsup{\Psi}{1}{\prime}`{..<\mathrm{ pro-size }\mp@subsup{\Psi}{1}{}}\mathrm{ unfolding set-sample-pro by auto
    hence fx pro-set (\mathcal{G n-exp) using hash-pro-range[OF \Psi \Psi }\mp@subsup{|}{1}{}]\mathrm{ by auto}
    thus ?thesis using geom-pro-range by auto
qed
lemma g-range-1:
    assumes g}\in\mathrm{ pro-set }\mp@subsup{\Psi}{2}{
    shows g x< C C * * '^2
proof -
```


hence $g x \in \operatorname{pro-set}\left(\mathcal{N}\left(C_{7} *\right.\right.$ b $\left.\left.^{\text {® }}\right)\right)$ using hash-pro-range $\left[O F \Psi_{2}\right]$ by auto moreover have $C_{7} * b^{\wedge} 2>0$ unfolding C_{7}-def b-def by simp ultimately show ?thesis using nat-pro-set by auto

qed

lemma h-range-1:
assumes $h \in$ pro-set Ψ_{3}
shows $h x<b$
proof -
have $h \in$ pro-select Ψ_{3} ' $\left\{. .<\right.$ pro-size $\left.\Psi_{3}\right\}$ using assms unfolding set-sample-pro by auto
hence $h x \in \operatorname{pro-set}(\mathcal{N} b)$ using hash-pro-range $\left[O F \Psi_{3}\right]$ by auto
moreover have $b>0$ unfolding b-def by simp
ultimately show ?thesis using nat-pro-set by auto
qed
lemma g-range:
assumes $(f, g, h) \in$ pro-set Ψ
shows $g x<C_{7} * b^{\wedge} 2$
using g-range- 1 sample-set- Ψ assms by simp
lemma h-range:
assumes $(f, g, h) \in$ pro-set Ψ
shows $h x<b$
using h-range- 1 sample-set- Ψ assms by simp
lemma $f i n-f$:
assumes $(f, g, h) \in$ pro-set Ψ
shows finite $\{\operatorname{int}(f a) \mid a . P a\}$ (is finite ?M)
proof -
have finite (range f)
using f-range[OF assms] finite-nat-set-iff-bounded-le by auto
hence finite (range (int $\circ f)$)
by (simp add:image-image[symmetric])
moreover have ? $M \subseteq($ range $($ int $\circ f))$
using image-mono by (auto simp add: setcompr-eq-image)
ultimately show ?thesis
using finite-subset by auto
qed
lemma Max-int-range: $x \leq(y::$ int $) \Longrightarrow \operatorname{Max}\{x . . y\}=y$
by auto
lemma $\Omega: l>0 \Lambda>0$ using $l-g t-0 \Lambda-g t-0$ by auto
lemma ω-range:
assumes $\omega \in$ pro-set Ω
shows $\omega i \in$ pro-set Ψ
proof -
have $\omega \in$ pro-select Ω ' $\{. .<$ pro-size $\Omega\}$ using assms unfolding set-sample-pro by auto
thus $\omega i \in$ pro-set Ψ using expander-pro-range $[O F \Omega]$ assms by auto
qed
lemma max- $q-1$:
assumes $\omega \in$ pro-set Ω
shows $\tau_{2} \omega A($ nat $\lceil\log 2 n\rceil+2) i j=(-1)$
proof (cases $i<l$)
case True
obtain $f g h$ where w - i : $\omega i=(f, g, h)$ by (metis prod-cases3)

```
    let ? max-q = max \lceillog 2 (real n)\rceil1
    have c:(f,g,h)\in pro-set \Psi using \omega-range[OF assms] w-i[symmetric] by auto
    have a:int (fx)\leq? max-q for x
    proof -
    have int (f x) \leq int n-exp
        using f-range[OF c] by auto
    also have ... = ?max-q unfolding n-exp-def by simp
    finally show ?thesis by simp
    qed
    have }\mp@subsup{\tau}{0}{}(\omegai)Aj\leqMax{(-1)..?max-q
    unfolding w-i }\mp@subsup{\tau}{0}{}.\mathrm{ simps using a by (intro Max-mono) auto
    also have ... = ?max-q
    by (intro Max-int-range) auto
    finally have }\mp@subsup{\tau}{0}{}(\omegai)Aj\leq? ?max-q by sim
    hence max ( }\mp@subsup{\tau}{0}{}(\omegai)Aj-int (nat\lceillog 2 (real n)\rceil + 2)) (-1) = (-1
    by (intro max-absorb2) linarith
    thus ?thesis
    unfolding }\mp@subsup{\tau}{2}{}\mathrm{ -def }\mp@subsup{\tau}{1}{}\mathrm{ -def using True by auto
next
    case False
    thus ?thesis unfolding }\mp@subsup{\tau}{2}{}\mathrm{ -def }\mp@subsup{\tau}{1}{}\mathrm{ -def by simp
qed
lemma max-q-2:
    assumes }\omega\in\mathrm{ pro-set }
    shows }\neg(\mathrm{ is-too-large ( }\mp@subsup{\tau}{2}{}\omegaA(nat\lceillog 2 n\rceil+2)))
    using max-q-1[OF assms] by (simp add:C5-def case-prod-beta mult-less-O-iff)
lemma max-s-3:
    assumes }\omega\in\mathrm{ pro-set }
    shows q\omegaA\leq(nat \lceillog 2 n\rceil+2)
    unfolding q-def by (intro wellorder-Least-lemma(2) max-q-2 assms)
lemma max-mono: x \leq (y::'a::linorder ) \Longrightarrowmax x z \leq max y z
    using max.coboundedI1 by auto
lemma max-mono-2: y \leq (z::'a::linorder ) \Longrightarrow max x y \leqmax x z
    using max.coboundedI2 by auto
lemma }\mp@subsup{\tau}{0}{}\mathrm{ -mono:
    assumes \psi\in pro-set \Psi
    assumes }A\subseteq
    shows }\mp@subsup{\tau}{0}{}\psiAj\leq\mp@subsup{\tau}{0}{}\psiB
proof -
    obtain fgh where w-i:\psi}=(f,g,h
    by (metis prod-cases3)
    show ?thesis
    using assms fin-f unfolding }\mp@subsup{\tau}{0}{}.\mathrm{ simps w-i
    by (intro Max-mono) auto
qed
lemma }\mp@subsup{\tau}{2}{\prime-mono:
    assumes }\omega\in\mathrm{ pro-set }
    assumes A\subseteqB
    shows }\mp@subsup{\tau}{2}{}\omegaAxij\leq\mp@subsup{\tau}{2}{}\omegaBxi
proof -
```

have $\max \left(\tau_{0}(\omega i) A j-\operatorname{int} x\right)(-1) \leq \max \left(\tau_{0}(\omega i) B j-\operatorname{int} x\right)(-1)$ if $i<l$ using that ω-range $\left[O F\right.$ assms(1)] by (intro max-mono diff-mono τ_{0}-mono assms(2) order.refl)
thus ?thesis by (cases $i<l$) (auto simp add: τ_{2}-def τ_{1}-def)
qed
lemma is-too-large-antimono:
assumes $\omega \in$ pro-set Ω
assumes $A \subseteq B$
assumes is-too-large ($\left.\tau_{2} \omega A x\right)$
shows is-too-large ($\left.\tau_{2} \omega B x\right)$
proof -
have $C_{5} * b * l<\left(\sum(i, j) \in\{. .<l\} \times\{. .<b\} .\left\lfloor\log 2\left(\max \left(\tau_{2} \omega A x i j\right)(-1)+2\right)\right\rfloor\right)$ using $\operatorname{assms}(3)$ by simp
also have $\ldots=\left(\sum y \in\{. .<l\} \times\{. .<b\} .\left\lfloor\log 2\left(\max \left(\tau_{2} \omega A x(\right.\right.\right.\right.$ fst $y)($ snd $\left.\left.\left.\left.y)\right)(-1)+2\right)\right\rfloor\right)$ by (simp add:case-prod-beta)
also have $\ldots \leq\left(\sum y \in\{. .<l\} \times\{. .<b\} .\left\lfloor\log 2\left(\max \left(\tau_{2} \omega B x(\right.\right.\right.\right.$ fst $y)($ snd $\left.\left.\left.\left.y)\right)(-1)+2\right)\right\rfloor\right)$
by (intro sum-mono floor-mono iffD2[OF log-le-cancel-iff] iffD2[OF of-int-le-iff] add-mono max-mono τ_{2}-mono $\left.[O F \operatorname{assms}(1,2)]\right)$ auto
also have $\ldots=\left(\sum(i, j) \in\{. .<l\} \times\{. .<b\} .\left\lfloor\log 2\left(\max \left(\tau_{2} \omega B x i j\right)(-1)+\right.\right.\right.$ 2) $\left.\rfloor\right)$ by (simp add:case-prod-beta)
finally have $\left(\sum(i, j) \in\{. .<l\} \times\{. .<b\} .\left\lfloor\log 2\left(\max \left(\tau_{2} \omega B x i j\right)(-1)+2\right)\right\rfloor\right)>C_{5} * b * l$ by simp
thus ?thesis by simp
qed
lemma q-compact:
assumes $\omega \in$ pro-set Ω
shows $\neg\left(\right.$ is-too-large $\left.\left(\tau_{2} \omega A(q \omega A)\right)\right)$
unfolding q-def using max-q-2[OF assms]
by (intro wellorder-Least-lemma(1)) blast
lemma q-mono:
assumes $\omega \in$ pro-set Ω
assumes $A \subseteq B$
shows $q \omega A \leq q \omega B$
proof -
have $\neg\left(\right.$ is-too-large $\left.\left(\tau_{2} \omega A(q \omega B)\right)\right)$
using is-too-large-antimono[OF assms] q-compact $[$ OF assms(1)] by blast
hence $\left(L E A S T q . \neg\left(\right.\right.$ is-too-large $\left.\left.\left(\tau_{2} \omega A q\right)\right)\right) \leq q \omega B$
by (intro Least-le) blast
thus ?thesis
by (simp add: q-def)
qed
lemma lt-s-too-large: $x<q \omega A \Longrightarrow$ is-too-large ($\tau_{2} \omega A x$)
using not-less-Least unfolding q-def by auto
lemma compress-result-1:
assumes $\omega \in$ pro-set Ω
shows compress $\left(\tau_{3} \omega A(q \omega A-i)\right)=\tau \omega A$
proof (induction i)
case 0
then show ?case using q-compact[OF assms] by (simp add: τ_{3}-def τ-def)
next
case (Suc i)
show ? case
proof (cases $i<q \omega A$)
case True

```
    have is-too-large ( }\tau2\omegaA(q\omegaA-Suci)
        using True by (intro lt-s-too-large) simp
    hence compress ( }\mp@subsup{\tau}{3}{}\omegaA(q\omegaA-Suc i))= compress (compress-step ( \tau \tau | \omega A (q\omegaA - Su
i)))
        unfolding }\mp@subsup{\tau}{3}{}\mathrm{ -def compress.simps
        by (simp del: compress.simps compress-step.simps)
    also have ... = compress ( }\mp@subsup{\tau}{3}{}\omegaA((q\omegaA-Suci)+1)
        by (subst }\mp@subsup{\tau}{3}{}\mathrm{ -step) blast
    also have ... = compress ( }\tau3\omegaA(q\omegaA-i)
        using True by (metis Suc-diff-Suc Suc-eq-plus1)
    also have ... = \tau\omegaA using Suc by auto
    finally show?thesis by simp
    next
    case False
    then show ?thesis using Suc by simp
    qed
qed
lemma compress-result:
    assumes }\omega\in\mathrm{ pro-set }
    assumes x}\leqq\omega
    shows compress ( }\mp@subsup{\tau}{3}{}\omegaAx)=\tau\omega
proof -
    obtain i where i-def:x = q\omegaA-i using assms by (metis diff-diff-cancel)
    have compress ( }\mp@subsup{\tau}{3}{}\omegaAx)=\mathrm{ compress ( }\mp@subsup{\tau}{3}{}\omegaA(q\omegaA-i)
        by (subst i-def) blast
    also have ... = \tau\omegaA
        using compress-result-1[OF assms(1)] by blast
    finally show ?thesis by simp
qed
lemma }\mp@subsup{\tau}{0}{}\mathrm{ -merge:
    assumes (f,g,h)\in pro-set \Psi
    shows}\mp@subsup{\tau}{0}{(f,g,h) (A\cupB)j=\operatorname{max}(\mp@subsup{\tau}{0}{}(f,g,h)Aj)(\mp@subsup{\tau}{0}{}(f,g,h)Bj)(is ?L=?R)
proof-
    let ?f = \lambdaa. int (f a)
    have ?L = Max (({int (fa)| a.a\inA\wedgeh(ga)=j}\cup{-1})\cup
                        ({\operatorname{int}(fa)|a.a\inB\wedgeh(ga)=j}\cup{-1}))
        unfolding }\mp@subsup{\tau}{0}{}.\mathrm{ simps
        by (intro arg-cong[where f=Max]) auto
    also have ... = max (Max ({\operatorname{int (fa)|a.a\inA^h(ga)=j}\cup{-1}))}
                            (Max ({\operatorname{int (fa)|a.a\inB^h(ga)=j}\cup{-1}))}
        by (intro Max-Un finite-UnI fin-f[OF assms]) auto
    also have ... = ?R
        by (simp)
    finally show ?thesis by simp
qed
lemma }\mp@subsup{\tau}{2}{}\mathrm{ -merge:
    assumes }\omega\in\mathrm{ pro-set }
    shows}\mp@subsup{\tau}{2}{}\omega(A\cupB)xij=max( (\tau2\omegaAxij)(\mp@subsup{\tau}{2}{}\omegaBxij
proof (cases i<l)
    case True
    obtain fgh where w-i:\omega i=(f,g,h) by (metis prod-cases3)
    have a: (f,g,h)\in pro-set \Psi using w-i[symmetric] \omega-range[OF assms(1)] by auto
    show ?thesis
```

```
    unfolding }\mp@subsup{\tau}{2}{}\mathrm{ -def }\mp@subsup{\tau}{1}{}\mathrm{ -def
    using True by (simp add:w-i }\mp@subsup{\tau}{0}{}\mathrm{ -merge[OF a] del:}\mp@subsup{\tau}{0}{}.\operatorname{simps)
next
    case False
    thus ?thesis by (simp add:\tau}\mp@subsup{\tau}{2}{}-def
qed
lemma merge1-result:
    assumes }\omega\in\mathrm{ pro-set }
    shows merge1 (\tau\omegaA) (\tau\omegaB) = 䄱\omega(A\cupB)(max (q\omegaA) (q\omegaB))
proof -
    let ?qmax = max (q\omegaA) (q\omegaB)
    obtain }u\mathrm{ where u-def:q }\omegaA+u=\mathrm{ ?qmax
        by (metis add.commute max.commute nat-minus-add-max)
    obtain v}\mathrm{ where v-def:q }\omegaB+v=\mathrm{ ?qmax
        by (metis add.commute nat-minus-add-max)
    have }u=0\veev=0\mathrm{ using u-def v-def by linarith
    moreover have }\mp@subsup{\tau}{2}{}\omegaA(q\omegaA)ij-u\geq(-1) if u=0 for i
        using that by (simp add:\mp@subsup{\tau}{2}{}-def \mp@subsup{\tau}{1}{}-def)
    moreover have }\mp@subsup{\tau}{2}{}\omegaB(q\omegaB)ij-v\geq(-1) if v=0 for i
        using that by (simp add:\tau }\mp@subsup{\tau}{2}{}\mathrm{ -def }\mp@subsup{\tau}{1}{}\mathrm{ -def)
    ultimately have a:max ( 
        unfolding le-max-iff-disj by blast
```



```
        using }\mp@subsup{\tau}{2}{}\mathrm{ -merge[OF assms] by blast
    also have ... = (\lambdaij. max ( }\mp@subsup{\tau}{2}{}\omegaA(q\omegaA+u)ij)(\mp@subsup{\tau}{2}{}\omegaB(q\omegaB+v)ij)
        unfolding u-def v-def by blast
```



```
v) (-1)))
    by (simp only: }\mp@subsup{\tau}{2}{}\mathrm{ -step)
```



```
        by (metis (no-types, opaque-lifting) max.commute max.left-commute max.left-idem)
```



```
        using a by simp
    also have \ldots = (\lambdaij. max ( }\mp@subsup{\tau}{2}{}\omegaA(q\omegaA)ij+\operatorname{int}(q\omegaA)-?qmax
        (\tau2\omegaB(q\omegaB)ij+int (q\omegaB) - ?qmax )
        by (subst u-def[symmetric], subst v-def[symmetric]) simp
    finally have }\mp@subsup{\tau}{2}{}\omega(A\cupB)(\operatorname{max}(q\omegaA)(q\omegaB))
        (\lambdaij. max ( \tau < \omegaA (q\omegaA) ij+int (q\omegaA) - int (?qmax))
            (\tau2\omegaB(q\omegaB)ij+int (q\omegaB) - int (?qmax))) by simp
    thus ?thesis
        by (simp add:Let-def \tau-def }\mp@subsup{\tau}{3}{}\mathrm{ -def)
qed
lemma merge-result:
    assumes }\omega\in\mathrm{ pro-set }
    shows merge (\tau\omegaA) (\tau\omegaB) =\tau\omega(A\cupB)(is ?L = ?R)
proof -
    have a:max (q\omegaA) (q\omegaB)\leqq\omega(A\cupB)
        using q-mono[OF assms] by simp
    have ?L = compress (merge1 (\tau\omegaA) (\tau\omegaB))
        by simp
    also have ... = compress ( }\mp@subsup{\tau}{3}{}\omega(A\cupB)(\operatorname{max}(q\omegaA)(q\omegaB))
        by (subst merge1-result[OF assms]) blast
    also have ... = ?R
```

```
    by (intro compress-result[OF assms] a Un-least)
    finally show ?thesis by blast
qed
lemma single1-result: single1 \omegax= 程\omega{x} 0
proof -
```



```
        for ij
    proof -
        obtain fgh where w-i:\omega i=(f,g,h) by (metis prod-cases3)
        show ?thesis
            by (simp add:w-i }\mp@subsup{\tau}{2}{}\mathrm{ -def }\mp@subsup{\tau}{1}{}\mathrm{ -def)
    qed
    thus ?thesis
        unfolding }\mp@subsup{\tau}{3}{}\mathrm{ -def by fastforce
qed
lemma single-result:
    assumes }\omega\in\mathrm{ pro-set }
    shows single \omega}x=\tau\omega{x}(is ?L = ?R
proof -
    have ?L = compress (single1 \omegax)
        by (simp)
    also have ... = compress ( }\mp@subsup{\tau}{3}{}\omega{x}0
        by (subst single1-result) blast
    also have ... = ?R
        by (intro compress-result[OF assms]) auto
    finally show ?thesis by blast
qed
```


6.2 Encoding states of the inner algorithm

definition is-state-table :: (nat \times nat \Rightarrow int $) \Rightarrow$ bool where

```
    is-state-table g=(range g\subseteq{-1..} ^g'(-({..<l} > {..<b}))\subseteq{-1})
```

Encoding for state table values:

```
definition \(V_{e}\) :: int encoding
    where \(V_{e} x=\left(\right.\) if \(x \geq-1\) then \(N_{e}(\) nat \((x+1))\) else None \()\)
```

Encoding for state table:
definition $T_{e}{ }^{\prime}::($ nat \times nat \Rightarrow int $)$ encoding where $T_{e}{ }^{\prime} g=($ if is-state-table g
then $\left(\right.$ List.product $\left.[0 . .<l][0 . .<b] \rightarrow_{e} V_{e}\right)($ restrict $g(\{. .<l\} \times\{. .<b\}))$
else None)
definition $T_{e}::($ nat \Rightarrow nat \Rightarrow int $)$ encoding
where $T_{e} f=T_{e}{ }^{\prime}($ case-prod $f)$
definition encode-state :: state encoding where encode-state $=T_{e} \times{ }_{e} N b_{e}(n a t\lceil\log 2 n\rceil+3)$
lemma inj-on-restrict:
assumes $B \subseteq\left\{f . f^{\prime}(-A) \subseteq\{c\}\right\}$
shows inj-on $(\lambda x$. restrict $x A) B$
proof (rule inj-onI)
fix $f g$ assume $a: f \in B g \in B$ restrict $f A=$ restrict $g A$

```
    have fx=gx if }x\inA\mathrm{ for }
    by (intro restrict-eq-imp[OF a(3) that])
    moreover have fx=gx if x\not\inA for x
    proof -
    have fx=c g x=c
        using that a(1,2) assms(1) by auto
    thus ?thesis by simp
    qed
    ultimately show f}=
    by (intro ext) auto
qed
lemma encode-state: is-encoding encode-state
proof -
    have is-encoding Ve
        unfolding }\mp@subsup{V}{e}{}\mathrm{ -def
        by (intro encoding-compose[OF exp-golomb-encoding] inj-onI) auto
    hence 0:is-encoding (List.product [0..<l] [0..<b] ->e V V )
    by (intro fun-encoding)
    have is-encoding T}\mp@subsup{T}{e}{}\mp@subsup{}{}{\prime
        unfolding }\mp@subsup{T}{e}{}\mp@subsup{}{}{\prime}\mathrm{ -def is-state-table-def
        by (intro encoding-compose[OF 0] inj-on-restrict[where c=-1]) auto
    moreover have inj case-prod
    by (intro injI) (metis curry-case-prod)
    ultimately have is-encoding Te
    unfolding }\mp@subsup{T}{e}{--def}\mathrm{ by (rule encoding-compose-2)
    thus ?thesis
        unfolding encode-state-def
        by (intro dependent-encoding bounded-nat-encoding)
qed
lemma state-bit-count:
    assumes }\omega\in\mathrm{ pro-set }
    shows bit-count (encode-state (\tau\omegaA))\leq2^36*(ln(1/\delta)+1)/ &^2 + log 2 (log 2 n + 3)
        (is ?L}\leq?R
proof -
    define t where t}=\mp@subsup{\tau}{2}{}\omegaA(q\omegaA
    have log 2 (real n) \geq0
    using n-gt-0 by simp
    hence 0:-1<log 2 (real n)
    by simp
    have txy=-1 if x<ly\geqb for x y
    proof -
    obtain fgh where }\omega\mathrm{ -def: }\omegax=(f,g,h
        by (metis prod-cases3)
    have (f,g,h) \in pro-set \Psi
        using \omega-range[OF assms] unfolding Pi-def \omega-def[symmetric] by auto
    hence h(ga)<b for a
        using h-range by auto
    hence y}\not=h(ga)\mathrm{ for a
        using that(2) not-less by blast
    hence aux-4:{int (fa)|a.a\inA\wedgeh(ga)=y}={}
        by auto
    hence max (Max (insert (- 1) {int (fa)|a.a\inA^h(ga)=y})-\operatorname{int}(q\omegaA))(-1)=
- 1
```

unfolding aux-4 by simp
thus ?thesis
unfolding t-def τ_{2}-def τ_{1}-def by (simp add: ω-def)
qed
moreover have $t x y=-1$ if $x \geq l$ for $x y$
using that unfolding t-def τ_{2}-def τ_{1}-def by simp
ultimately have $1: t x y=-1$ if $x \geq l \vee y \geq b$ for $x y$
using that by (meson not-less)
have 2: $t x y \geq-1$ for $x y$
unfolding t-def τ_{2}-def τ_{1}-def by simp
hence 3: $t x y+1 \geq 0$ for $x y$
by (metis add.commute le-add-same-cancel1 minus-add-cancel)
have 4:is-state-table (case-prod t)
using 21 unfolding is-state-table-def by auto
have $\operatorname{bit}-\operatorname{count}\left(T_{e}\left(\tau_{2} \omega A(q \omega A)\right)\right)=\operatorname{bit-count}\left(T_{e} t\right)$
unfolding t-def by simp
also have $\ldots=$ bit-count $\left(\left(\right.\right.$ List.product $\left.\left.[0 . .<l][0 . .<b] \rightarrow_{e} V_{e}\right)(\lambda(x, y) \in\{. .<l\} \times\{. .<b\} . t x y)\right)$
using 4 unfolding T_{e}-def $T_{e}{ }^{\prime}$-def by simp
also have ... =
$\left(\sum x \leftarrow\right.$ List.product $[0 . .<l][0 . .<b]$. bit-count $\left.\left(V_{e}((\lambda(x, y) \in\{. .<l\} \times\{. .<b\} . t x y) x)\right)\right)$
using restrict-extensional atLeast0LessThan by (simp add:fun-bit-count)
also have $\ldots=\left(\sum(x, y) \leftarrow\right.$ List.product $[0 . .<l][0 . .<b]$. bit-count $\left.\left(V_{e}(t x y)\right)\right)$
by (intro arg-cong[where $f=$ sum-list $]$ map-cong refl)
(simp add:atLeast0LessThan case-prod-beta)
also have $\ldots=\left(\sum x \in\{0 . .<l\} \times\{0 . .<b\}\right.$. bit-count $\left(V_{e}(t(\right.$ fst $x)($ snd $\left.\left.x))\right)\right)$
by (subst sum-list-distinct-conv-sum-set)
(auto intro:distinct-product simp add:case-prod-beta)
also have $\ldots=\left(\sum x \in\{. .<l\} \times\{. .<b\}\right.$. bit-count $\left.\left(N_{e}(\operatorname{nat}(t(f s t x)(\operatorname{snd} x)+1))\right)\right)$
using 2 unfolding V_{e}-def not-less[symmetric]
by (intro sum.cong refl arg-cong $[$ where $f=b i t$-count $]$) auto
also have $\ldots=\left(\sum x \in\{. .<l\} \times\{. .<b\} .1+2 *\right.$ of-int $\lfloor\log 2(1+\operatorname{real}(\operatorname{nat}(t(f$ st $x)($ snd $\left.x)+1)))\rfloor\right)$
unfolding exp-golomb-bit-count-exact is-too-large.simps not-less by simp
also have $\ldots=\left(\sum x \in\{. .<l\} \times\{. .<b\} .1+2 *\right.$ of-int $\lfloor\log 2(2+o f-i n t(t(f s t x)($ snd $\left.x)))\rfloor\right)$
using 3 by (subst of-nat-nat) (auto simp add:ac-simps)
also have $\ldots=b * l+2 *$ of-int $\left(\sum(i, j) \in\{. .<l\} \times\{. .<b\} .\lfloor\log 2(2+o f-i n t(\max (t i j)(-1)))\rfloor\right)$
using 2 by (subst max-absorb1) (auto simp add:case-prod-beta sum.distrib sum-distrib-left)
also have $\ldots \leq b * l+2 *$ of-int $\left(C_{5} *\right.$ int $b *$ int $\left.l\right)$
using q-compact[OF assms, where $A=A$] unfolding is-too-large.simps not-less t-def [symmetric]
by (intro add-mono ereal-mono iffD2[OF of-int-le-iff] mult-left-mono order.refl)
(simp-all add:ac-simps)
also have $\ldots=\left(2 * C_{5}+1\right) * b * l$
by (simp add:algebra-simps)
finally have 5:bit-count $\left(T_{e}\left(\tau_{2} \omega A(q \omega A)\right)\right) \leq\left(2 * C_{5}+1\right) * b * l$
by simp
have $C_{4} \geq 1$
unfolding C_{4}-def by simp
moreover have $\varepsilon^{2} \leq 1$
using ε-lt-1 ε-gt-0
by (intro power-le-one) auto
ultimately have $0 \leq \log 2\left(C_{4} / \varepsilon^{2}\right)$
using ε-gt- 0 e-lt-1
by (intro iffD2[OF zero-le-log-cancel-iff] divide-pos-pos)auto
hence 6:-1<log $2\left(C_{4} / \varepsilon^{2}\right)$
by simp

```
have \(b=2\) powr (real (nat \(\left.\left\lceil\log 2\left(C_{4} / \varepsilon^{2}\right)\right\rceil\right)\) )
    unfolding \(b\)-def \(b\)-exp-def by (simp add:powr-realpow)
also have \(\ldots=2 \operatorname{powr}\left(\left\lceil\log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)\right\rceil\right)\)
    using 6 by (intro arg-cong2[where \(f=(\) powr \()]\) of-nat-nat refl) simp
also have \(\ldots \leq 2\) powr \(\left(\log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)+1\right)\)
    by (intro powr-mono) auto
also have \(\ldots=2 * C_{4} / \varepsilon^{\wedge} 2\)
    using \(\varepsilon\)-gt-0 unfolding powr-add \(C_{4}\)-def
    by (subst powr-log-cancel) (auto intro:divide-pos-pos)
finally have \(7: b \leq 2 * C_{4} / \varepsilon^{\wedge} 2\) by \(\operatorname{simp}\)
have \(l \leq C_{6} * \ln (1 / \delta)+C_{6} * \ln 2+1\)
    by (intro l-ubound)
also have \(\ldots \leq 4 * \ln (1 / \delta)+3+1\)
    unfolding \(C_{6}\)-def by (intro add-mono order.refl) (approximation 5)
also have \(\ldots=4 *(\ln (1 / \delta)+1)\)
    by simp
finally have \(8: l \leq 4 *(\ln (1 / \delta)+1)\)
    by \(\operatorname{simp}\)
have \(\varepsilon^{2}=0+\varepsilon^{2}\)
    by \(\operatorname{simp}\)
also have \(\ldots \leq \ln (1 / \delta)+1\)
    using \(\delta\)-gt-0 \(\delta\)-lt-1 \(\varepsilon\)-gt-0 \(\quad\)-lt-1
    by (intro add-mono power-le-one) auto
finally have \(9: \varepsilon^{2} \leq \ln (1 / \delta)+1\)
    by \(\operatorname{simp}\)
have 10: \(0 \leq \ln (1 / \delta)+1\)
    using \(\delta\)-gt-0 \(\delta\)-lt-1 by (intro add-nonneg-nonneg) auto
have \(? L=\) bit-count \(\left(T_{e}\left(\tau_{2} \omega A(q \omega A)\right)\right)+\) bit-count \(\left(N b_{e}(\right.\) nat \(\lceil\log 2(\) real \(\left.n)\rceil+3)(q \omega A)\right)\)
    unfolding encode-state-def \(\tau\)-def \(\tau_{3}\)-def by (simp add:dependent-bit-count)
also have \(\ldots=\operatorname{bit}-\operatorname{count}\left(T_{e}\left(\tau_{2} \omega A(q \omega A)\right)\right)+\operatorname{ereal}(1+o f-\operatorname{int}\lfloor\log 2(2+\operatorname{real}(n a t\lceil\log 2 n\rceil))\rfloor)\)
    using max-s-3[OF assms] by (subst bounded-nat-bit-count-2)
        (simp-all add:numeral-eq-Suc le-imp-less-Suc floorlog-def)
also have \(\ldots=\operatorname{bit}-\operatorname{count}\left(T_{e}\left(\tau_{2} \omega A(q \omega A)\right)\right)+\operatorname{ereal}(1+o f-\operatorname{int}\lfloor\log 2(2+o f-i n t\lceil\log 2 n\rceil)\rfloor)\)
    using 0 by \(\operatorname{simp}\)
also have \(\ldots \leq \operatorname{bit}-\operatorname{count}\left(T_{e}\left(\tau_{2} \omega A(q \omega A)\right)\right)+\operatorname{ereal}(1+\log 2(2+o f-i n t\lceil\log 2 n\rceil))\)
    by (intro add-mono ereal-mono) simp-all
also have \(\ldots \leq \operatorname{bit}-\operatorname{count}\left(T_{e}\left(\tau_{2} \omega A(q \omega A)\right)\right)+\operatorname{ereal}(1+\log 2(2+(\log 2 n+1)))\)
    using 0 n-gt- 0 by (intro add-mono ereal-mono iffD2[OF log-le-cancel-iff] add-pos-nonneg) auto
also have \(\ldots=\operatorname{bit}-\operatorname{count}\left(T_{e}\left(\tau_{2} \omega A(q \omega A)\right)\right)+\operatorname{ereal}(1+\log 2(\log 2 n+3))\)
    by (simp add:ac-simps)
also have \(\ldots \leq \operatorname{ereal}\left(\left(2 * C_{5}+1\right) * b * l\right)+\operatorname{ereal}(1+\log 2(\log 2 n+3))\)
    by (intro add-mono 5) auto
also have \(\ldots=\left(2 * C_{5}+1\right) *\) real \(b *\) real \(l+\log 2(\log 2 n+3)+1\)
    by simp
also have \(\ldots \leq\left(2 * C_{5}+1\right) *\left(2 * C_{4} / \varepsilon^{\wedge} 2\right) *\) real \(l+\log 2(\log 2 n+3)+1\)
    unfolding \(C_{5}\)-def
    by (intro ereal-mono mult-right-mono mult-left-mono add-mono 7) auto
also have \(\ldots=\left(4 *\right.\) of-int \(\left.C_{5}+2\right) * C_{4} *\) real \(l / \varepsilon^{\wedge} 2+\log 2(\log 2 n+3)+1\)
    by \(\operatorname{simp}\)
also have \(\ldots \leq\left(4 *\right.\) of-int \(\left.C_{5}+2\right) * C_{4} *(4 *(\ln (1 / \delta)+1)) / \varepsilon^{\wedge} 2+\log 2(\log 2 n+3)+1\)
    using \(\varepsilon\)-gt- 0 unfolding \(C_{5}\)-def \(C_{4}\)-def
    by (intro ereal-mono add-mono order.refl divide-right-mono mult-left-mono 8) auto
also have \(\ldots=\left((2 * 33+1) * 9 * \mathcal{Z}^{\wedge} 26\right) *(\ln (1 / \delta)+1) / \varepsilon \wedge 2+\log 2(\log 2 n+3)+1\)
```

unfolding C_{5}-def C_{4}-def by simp
also have $\ldots \leq\left(2^{\wedge} 36-1\right) *(\ln (1 / \delta)+1) / \varepsilon^{\wedge} 2+\log 2(\log 2 n+3)+(\ln (1 / \delta)+1) / \varepsilon^{\wedge} 2$ using ε-gt-0 δ-gt-0 \quad-lt-1 910
by (intro add-mono ereal-mono divide-right-mono mult-right-mono mult-left-mono) simp-all
also have $\ldots=2 \bumpeq 36 *(\ln (1 / \delta)+1) / \varepsilon^{\wedge} 2+\log 2(\log 2 n+3)$
by (simp add:divide-simps)
finally show ?thesis
by simp
qed
lemma random-bit-count:
pro-size $\Omega \leq 2 \operatorname{powr}\left(4 * \log 2 n+48 *(\log 2(1 / \varepsilon)+16)^{\wedge} 2+(55+60 * \ln (1 / \delta))^{\wedge} 3\right)$
(is ? $L \leq ? R$)
proof -
have 1: log $2($ real $n) \geq 0$
using n-gt- 0 by simp
hence $0:-1<\log 2($ real $n)$
by simp
have 10: $\log 2 C_{4} \leq 27$
unfolding C_{4}-def by (approximation 10)
have $\varepsilon^{2} \leq 1$
using ε-gt- 0 ह-lt-1 by (intro power-le-one) auto
also have ... $\leq C_{4}$
unfolding C_{4}-def by simp
finally have $\varepsilon^{2} \leq C_{4}$ by simp
hence 9: $0 \leq \log 2\left(C_{4} / \varepsilon^{2}\right)$
using ε-gt-0 unfolding C_{4}-def
by (intro iffD2[OF zero-le-log-cancel-iff]) simp-all
hence 2: - $1<\log 2\left(C_{4} / \varepsilon^{2}\right)$
by simp
have 3: $0<C_{7} * b^{2}$ unfolding C_{7}-def using b-min by (intro Rings.mult-pos-pos) auto
have $0 \leq \log 2\left(\right.$ real $\left.C_{7}\right)+\operatorname{real}(b-\exp * 2)$
unfolding C_{7}-def by (intro add-nonneg-nonneg) auto
hence 4: -1 < log $2\left(\right.$ real $\left.C_{7}\right)+$ real $(b-\exp * 2)$ by simp
have $(2, n$-exp $)=$ split-power $($ pro-size $(\mathcal{G} n$-exp $))$
unfolding geom-pro-size by (intro split-power-prime $[s y m m e t r i c] n$-exp-gt-0) auto
hence real $\left(\right.$ pro-size $\left.\Psi_{1}\right)=\operatorname{real}(2 \wedge(2 * \max n$-exp $($ nat $\lceil\log ($ real 2 $)($ real $n)\rceil)))$
by (intro arg-cong $[$ where $f=$ real $]$ hash-pro-size $\left[\right.$ [OF Ψ_{1} n-gt-0])
also have $\ldots=2^{\wedge}(2 * \max n$-exp $($ nat $\lceil\log 2($ real $n)\rceil))$ by simp
also have $\ldots=2 \wedge(2 * \max 1($ nat $\lceil\log 2($ real $n)\rceil))$ unfolding n-exp-def by simp
also have $\ldots \leq 2 \operatorname{powr}(2 * \max ($ nat $\lceil\log 2($ real $n)\rceil) 1)$
by (subst powr-realpow) auto
also have $\ldots=2 \operatorname{powr}(2 * \max ($ real $($ nat $\lceil\log 2($ real $n)\rceil)) 1)$
using n-gt-0 unfolding of-nat-mult of-nat-max by simp
also have $\ldots=2 \operatorname{powr}(2 * \max ($ of-int $\lceil\log 2($ real $n)\rceil) 1)$
using 0 by (subst of-nat-nat) simp-all
also have $\ldots \leq 2$ powr $(2 * \max (\log 2($ real $n)+1) 1)$
by (intro powr-mono mult-left-mono max-mono) auto
also have $\ldots=2 \operatorname{powr}(2 *(\log 2($ real $n)+1))$
using 1 by (subst max-absorb1) auto
finally have 5:real $\left(\right.$ pro-size $\left.\Psi_{1}\right) \leq 2 \operatorname{powr}(2 * \log 2 n+2)$
by simp
have $(2,5+b-\exp *$ 2 $)=\operatorname{split}-$ power $\left(\mathcal{Z}^{\wedge}(5+b-\exp * 2)\right)$
by (intro split-power-prime [symmetric]) auto
also have $\ldots=$ split-power $\left(C_{7} * b^{2}\right)$
unfolding C_{7}-def b-def power-mult[symmetric] power-add by simp
also have $\ldots=$ split-power (pro-size $\left(\mathcal{N}\left(C_{7} * b^{2}\right)\right)$)
unfolding C_{7}-def b-def by (subst nat-pro-size) auto
finally have $(2,5+b-\exp * 2)=\operatorname{split}$-power $\left(\right.$ pro-size $\left.\left(\mathcal{N}\left(C_{7} * b^{2}\right)\right)\right)$ by simp
hence real $\left(\right.$ pro-size $\left.\Psi_{2}\right)=\operatorname{real}\left(\mathcal{2}^{\wedge}(2 * \max (5+b-\exp * 2)(n a t\lceil\log (\right.$ real 2 $)($ real $\left.n)\rceil))\right)$
by (intro arg-cong[where $f=$ real $]$ hash-pro-size ${ }^{\prime}\left[O F \Psi_{2} n\right.$-gt-0])
also have $\ldots=2{ }^{\wedge}(\max (5+b-\exp * 2)(\operatorname{nat}\lceil\log 2($ real $n)\rceil) * 2)$ by simp
also have $\ldots \leq$ 2 ^ $^{\wedge}(((5+b-\exp * 2)+($ nat 「log 2 $($ real $\left.n)\rceil)) * 2\right)$
by (intro power-increasing mult-right-mono) auto
also have $\ldots=2$ powr $((5+b-\exp * 2+\operatorname{real}($ nat $\lceil\log 2($ real $n)\rceil)) * 2)$
by (subst powr-realpow [symmetric]) auto
also have $\ldots=2$ powr $((5+o f-i n t b-\exp * 2+o f-i n t\lceil\log 2($ real $n)\rceil) * 2)$
using 0 by (subst of-nat-nat) auto
also have $\ldots \leq 2$ powr $((5+$ of-int $b-\exp * 2+(\log 2(\operatorname{real} n)+1)) * 2)$
by (intro powr-mono mult-right-mono add-mono) simp-all
also have $\ldots=2 \operatorname{powr}\left(12+4 * \operatorname{real}\left(\right.\right.$ nat $\left.\left\lceil\log 2\left(C_{4} / \varepsilon^{2}\right)\right\rceil\right)+\log 2($ real n $\left.) * 2\right)$
unfolding b-exp-def by (simp add:ac-simps)
also have $\ldots=2$ powr $\left(12+4 *\right.$ real-of-int $\left\lceil\log 2\left(C_{4} / \varepsilon^{2}\right)\right\rceil+\log 2($ real $\left.n) * 2\right)$
using 2 by (subst of-nat-nat) simp-all
also have $\ldots \leq 2$ powr $\left(12+4 *\left(\log 2\left(C_{4} / \varepsilon^{2}\right)+1\right)+\log 2(\right.$ real $\left.n) * 2\right)$
by (intro powr-mono add-mono order.refl mult-left-mono) simp-all
also have $\ldots=2 \operatorname{powr}\left(2 * \log 2 n+4 * \log 2\left(C_{4} / \varepsilon^{2}\right)+16\right)$
by (simp add:ac-simps)
finally have 6:real $\left(\right.$ pro-size $\left.\Psi_{2}\right) \leq 2 \operatorname{powr}\left(2 * \log 2 n+4 * \log 2\left(C_{4} / \varepsilon^{2}\right)+16\right)$ by simp
have $(2, b-\exp)=$ split-power $\left(2^{\wedge} b\right.$-exp $)$
using b-exp-ge-26 by (intro split-power-prime $[$ symmetric $]$) auto
also have $\ldots=$ split-power (pro-size (\mathcal{N} b))
unfolding b-def by (subst nat-pro-size) auto
finally have $(2, b-e x p)=$ split-power $($ pro-size $(\mathcal{N}$ b)) by simp
hence real $\left(\right.$ pro-size $\left.\Psi_{3}\right)=\operatorname{real}\left(\right.$ 2 $^{\wedge}\left(k * \max b-\exp \left(\right.\right.$ nat 「log $($ real 2 $)\left(\right.$ real $\left(C_{7} * b^{\wedge}\right.$ 2 $\left.\left.\left.\left.\left.)\right)\right\rceil\right)\right)\right)$
by (intro arg-cong[where $f=$ real $]$ hash-pro-size $\left[\begin{array}{lll}{[O F} & \Psi_{3}\end{array}\right]$) (simp-all add: C_{7}-def b-def)
also have $\ldots=\mathcal{2}^{\wedge}\left(k * \max b-\exp \left(\right.\right.$ nat $\left\lceil\log 2\left(\right.\right.$ real $\left.\left.\left.\left.C_{7} *\left(\mathcal{Z}^{\wedge}(b-\exp * \mathcal{Z})\right)\right)\right\rceil\right)\right)$
unfolding b-def power-mult by simp
also have $\ldots=$ 2 $^{\wedge}\left(\max b-\exp \left(n a t\left\lceil\log 2 C_{7}+\log 2\left(\right.\right.\right.\right.$ 2 $\left.\left.\left.\left.^{\wedge}(b-\exp * 2)\right)\right\rceil\right) * k\right)$
unfolding C_{7}-def by (subst log-mult) simp-all
also have $\ldots=2 \wedge\left(\max b-\exp \left(\right.\right.$ nat $\left.\left.\left\lceil\log 2 C_{7}+(b-\exp * 2)\right\rceil\right) * k\right)$
by (subst log-nat-power) simp-all
also have $\ldots=2 \operatorname{powr}\left(\max (\right.$ real b-exp) $)\left(\right.$ real $\left(\right.$ nat $\left.\left.\left\lceil\log 2 C_{7}+(b-\exp * \mathcal{Z})\right\rceil\right)\right) *$ real $\left.k\right)$
by (subst powr-realpow[symmetric]) simp-all
also have $\ldots=2 \operatorname{powr}\left(\max (\right.$ real b-exp $)\left(\right.$ of-int $\left.\left\lceil\log 2 C_{7}+(b-\exp * 2)\right\rceil\right) *$ real $\left.k\right)$
using 4 by (subst of-nat-nat) simp-all
also have $\ldots \leq 2$ powr $\left(\max \left(\right.\right.$ real b-exp) $\left(\log 2 C_{7}+\right.$ real b-exp $\left.* 2+1\right) *$ real $\left.k\right)$
by (intro powr-mono mult-right-mono max-mono-2) simp-all
also have $\ldots=2$ powr $((\log 2(2 \uparrow 5)+$ real $b-\exp * 2+1) *$ real $k)$
unfolding C_{7}-def by (subst max-absorb2) simp-all
also have $\ldots=2$ powr $(($ real $b-\exp * 2+6) *$ real $k)$
unfolding C_{7}-def by (subst log-nat-power) (simp-all add:ac-simps)
also have $\ldots=2$ powr $\left(\left(\right.\right.$ of-int $\left.\left\lceil\log 2\left(C_{4} / \varepsilon^{2}\right)\right\rceil * 2+6\right) *$ real $\left.k\right)$
using 2 unfolding b-exp-def by (subst of-nat-nat) simp-all
also have $\ldots \leq 2$ powr $\left(\left(\left(\log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)+1\right) * 2+6\right) *\right.$ real $\left.k\right)$
by (intro powr-mono mult-right-mono add-mono) simp-all
also have $\ldots=2$ powr $\left(\left(\log 2\left(C_{4} / \varepsilon^{2}\right) * 2+8\right) *\right.$ real $\left.k\right)$
by (simp add:ac-simps)
finally have 7:real $\left(\right.$ pro-size $\left.\Psi_{3}\right) \leq 2$ powr $\left(\left(\log 2\left(C_{4} / \varepsilon^{2}\right) * 2+8\right) *\right.$ real $\left.k\right)$
by simp
have $\ln ($ real $b) \geq 0$
using b-min by simp
hence real $k=$ of-int $\lceil 7.5 * \ln ($ real $b)+16\rceil$
unfolding k-def C_{2}-def C_{3}-def by (subst of-nat-nat) simp-all
also have $\ldots \leq(7.5 * \ln ($ real $b)+16)+1$
unfolding b-def by (intro of-int-ceiling-le-add-one)
also have $\ldots=7.5 * \ln (2$ powr $b-\exp)+17$
unfolding b-def using powr-realpow by simp
also have $\ldots=$ real $b-\exp *(7.5 * \ln 2)+17$
unfolding powr-def by simp
also have...\leq real b-exp $* 6+17$
by (intro add-mono mult-left-mono order.refl of-nat-0-le-iff) (approximation 5)
also have $\ldots=$ of-int $\left\lceil\log 2\left(C_{4} / \varepsilon^{2}\right)\right\rceil * 6+17$
using 2 unfolding b-exp-def by (subst of-nat-nat) simp-all
also have $\ldots \leq\left(\log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)+1\right) * 6+17$
by (intro add-mono mult-right-mono) simp-all
also have $\ldots=6 * \log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)+23$
by simp
finally have 8: real $k \leq 6 * \log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)+23$
by simp
have real $($ pro-size $\Psi)=$ real $\left(\right.$ pro-size $\left.\Psi_{1}\right) *$ real $\left(\right.$ pro-size $\left.\Psi_{2}\right) *$ real $\left(\right.$ pro-size $\left.\Psi_{3}\right)$
unfolding Ψ-def prod-pro-size by simp
also have ... \leq
$2 \operatorname{powr}(2 * \log 2 n+2) * 2 \operatorname{powr}\left(2 * \log 2 n+4 * \log 2\left(C_{4} / \varepsilon^{2}\right)+16\right) * 2 \operatorname{powr}\left(\left(\log 2\left(C_{4} / \varepsilon^{2}\right) * 2+8\right) *\right.$ real
k)
by (intro mult-mono 567 mult-nonneg-nonneg) simp-all
also have $\ldots=2$ powr $\left(2 * \log 2 n+2+2 * \log 2 n+4 * \log 2\left(C_{4} / \varepsilon^{2}\right)+16+\left(\log 2\left(C_{4} / \varepsilon^{2}\right) * 2+8\right) * r e a l\right.$
k)
unfolding powr-add by simp
also have $\ldots=2$ powr $\left(4 * \log 2 n+4 * \log 2\left(C_{4} / \varepsilon^{2}\right)+18+\left(2 * \log 2\left(C_{4} / \varepsilon^{2}\right)+8\right) *\right.$ real $\left.k\right)$
by (simp add:ac-simps)
also have ... \leq
$2 \operatorname{powr}\left(4 * \log 2 n+4 * \log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)+18+\left(2 * \log 2\left(C_{4} / \varepsilon^{2}\right)+8\right) *\left(6 * \log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)\right.\right.$

+ 23))
using 9 by (intro powr-mono add-mono order.refl mult-left-mono 8 add-nonneg-nonneg)
simp-all
also have $\ldots=2 \operatorname{powr}\left(4 * \log 2 n+12 * \log 2\left(C_{4} / \varepsilon^{\wedge} 2\right) \wedge 2+98 * \log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)+202\right)$ by (simp add:algebra-simps power2-eq-square)
also have $\ldots \leq 2 \operatorname{powr}\left(4 * \log 2 n+12 * \log 2\left(C_{4} / \varepsilon^{\wedge} 2\right) \wedge_{2}+120 * \log 2\left(C_{4} / \varepsilon^{\wedge} 2\right)+300\right)$ using 9 by (intro powr-mono add-mono order.refl mult-right-mono) simp-all
also have $\ldots=2$ powr $\left(4 * \log 2 n+12 *\left(\log 2\left(C_{4} *(1 / \varepsilon) \uparrow 2\right)+5\right)^{\wedge} 2\right)$
by (simp add:power2-eq-square algebra-simps)
also have $\ldots=2 \operatorname{powr}\left(4 * \log 2 n+12 *\left(\log 2 C_{4}+\log 2((1 / \varepsilon) \uparrow 2)+5\right) \uparrow 2\right)$
unfolding C_{4}-def using ε-gt-0 by (subst log-mult) auto
also have $\ldots \leq 2$ powr $\left(4 * \log 2 n+12 *\left(27+\log 2\left((1 / \varepsilon)^{\wedge} 2\right)+5\right)^{\wedge} 2\right)$
using ε-gt-0 \quad-lt-1
by (intro powr-mono add-mono order.refl mult-left-mono power-mono add-nonneg-nonneg 10) (simp-all add: C_{4}-def)
also have $\ldots=2 \operatorname{powr}(4 * \log 2 n+12 *(2 *(\log 2(1 / \varepsilon)+16))$ ©2 $)$
using ε-gt- 0 by (subst log-nat-power) (simp-all add:ac-simps)
also have $\ldots=2 \operatorname{powr}\left(4 * \log 2 n+48 *(\log 2(1 / \varepsilon)+16)^{\wedge} 2\right)$
unfolding power-mult-distrib by simp
finally have 19:real $($ pro-size $\Psi) \leq 2 \operatorname{powr}(4 * \log 2 n+48 *(\log 2(1 / \varepsilon)+16)$-2 $)$ by simp
have $0 \leq \ln \Lambda / \ln (19 / 20)$
using Λ-gt-0 Λ-le-1 by (intro divide-nonpos-neg) simp-all
hence 11: $-1<\ln \Lambda / \ln (19 / 20)$ by simp
have 12: $\ln (19 / 20) \leq-(0.05::$ real $)-\ln (1 / 16) \leq(2.8::$ real $)$ by (approximation 10$)+$
have 13: $\ln l \geq 0$ using l-gt- 0 by auto
have $\ln l \wedge 3=27 *(0+\ln l / 3) \wedge 3$ by (simp add:power3-eq-cube)
also have $\ldots \leq 27 *(1+\ln l / \text { real } 3)^{\wedge} 3$
using l-gt-0 by (intro mult-left-mono add-mono power-mono) auto
also have $\ldots \leq 27 *(\exp (\ln l))$
using l-gt-0 13 by (intro mult-left-mono exp-ge-one-plus-x-over-n-power-n) linarith+
also have $\ldots=27 *$ real l using l-gt- 0 by (subst exp-ln) auto
finally have $14: \ln l$ 人 $3 \leq 27 *$ real l by simp
have $15: C_{6} * \ln (2 / \delta)>0$
using δ-lt-1 δ-gt- 0 unfolding C_{6}-def
by (intro Rings.mult-pos-pos ln-gt-zero) auto
hence $1 \leq$ real-of-int $\left\lceil C_{6} * \ln (2 / \delta)\right\rceil$ by simp
hence 16: $1 \leq 3 *$ real-of-int $\left\lceil C_{6} * \ln (2 / \delta)\right\rceil$ by argo
have 17: $12 * \ln 2 \leq(9::$ real $)$ by (approximation 5$)$
have $16^{\wedge}((l-1) * \operatorname{nat}\lceil\ln \Lambda / \ln 0.95\rceil)=16$ powr $($ real $(l-1) * \operatorname{real}(\operatorname{nat}\lceil\ln \Lambda / \ln (19 /$ 20)7))
by (subst powr-realpow[symmetric]) auto
also have $\ldots=16$ powr (real $(l-1) *$ of-int $\lceil\ln \Lambda / \ln (19 / 20)\rceil)$
using 11 by (subst of-nat-nat) simp-all
also have $\ldots \leq 16$ powr $($ real $(l-1) *(\ln \Lambda / \ln (19 / 20)+1))$
by (intro powr-mono mult-left-mono) auto
also have $\ldots=16$ powr $(($ real $l-1) *(\ln \Lambda / \ln (19 / 20)+1))$
using l-gt-0 by (subst of-nat-diff) auto
also have $\ldots \leq 16$ powr $(($ real $l-1) *(\ln \Lambda /(-0.05)+1))$
using l-gt-0 Λ-gt-0 Λ-le-1
by (intro powr-mono mult-left-mono add-mono divide-left-mono-neg 12) auto
also have $\ldots=16$ powr $(($ real $l-1) *(20 *(-\ln \Lambda)+1))$
by (simp add:algebra-simps)
also have $\ldots=16$ powr $(($ real $l-1) *(20 *-(\min (\ln (1 / 16))(-l * \ln l$ - 3$))+1))$
unfolding Λ-def by (subst ln-min-swap) auto
also have $\ldots=16$ powr $(($ real $l-1) *(20 * \max (-\ln (1 / 16))(l * \ln l \wedge 3)+1))$
by (intro-cong $\left[\sigma_{2}\right.$ (powr), $\left.\sigma_{2}(+), \sigma_{2}(*)\right]$) simp
also have $\ldots \leq 16$ powr $(($ real $l-1) *(20 * \max (2.8)(l * \ln l$ l^3) +1$))$
using l-gt-0 by (intro powr-mono mult-left-mono add-mono max-mono 12) auto
also have $\ldots \leq 16$ powr $(($ real $l-1) *(20 *(2.8+l * \ln l \wedge 3)+1))$
using l-gt-0 by (intro powr-mono mult-left-mono add-mono) auto
also have $\ldots=16$ powr $\left((\right.$ real $\left.l-1) *\left(20 *\left(l * \ln l^{\wedge} 3\right)+57\right)\right)$
by (simp add:algebra-simps)
also have $\ldots \leq 16$ powr $(($ real $l-1) *(20 *($ real $l *(27 *$ real $l))+57))$
using l-gt-0 by (intro powr-mono mult-left-mono add-mono 14) auto
also have $\ldots=16$ powr $(540 *$ real l`3 $-540 *$ real l-2 $+57 *$ real $l-57)$
by (simp add:algebra-simps numeral-eq-Suc)
also have $\ldots \leq 16$ powr $(540 *$ real l^3-540*real l^2 $+180 *$ real $l-20)$
by (intro powr-mono add-mono diff-mono order.refl mult-right-mono) auto
also have $\ldots=16$ powr $(20 *(3 *$ real $l-1) \wedge 3)$
by (simp add: algebra-simps power3-eq-cube power2-eq-square)
also have $\ldots=16$ powr $\left(20 *\left(3 *\right.\right.$ of-int $\left.\left.\left\lceil C_{6} * \ln (2 / \delta)\right\rceil-1\right) \wedge 3\right)$
using 15 unfolding l-def by (subst of-nat-nat) auto
also have $\ldots \leq 16$ powr $\left(20 *\left(3 *\left(C_{6} * \ln (2 / \delta)+1\right)-1\right)^{\wedge} 3\right)$
using 16 by (intro powr-mono mult-left-mono power-mono diff-mono) auto

```
also have \(\ldots=16 \operatorname{powr}\left(20 *(2+12 * \ln (2 *(1 / \delta)))^{\wedge} 3\right)\)
    by (simp add:algebra-simps \(C_{6}\)-def)
also have \(\ldots=\left(2\right.\) powr 4) powr \(\left(20 *(2+12 *(\ln 2+\ln (1 / \delta)))^{\wedge} 3\right)\)
    using \(\delta\)-gt- 0 by (subst ln-mult) auto
also have \(\ldots=2 \operatorname{powr}\left(80 *(2+12 * \ln 2+12 * \ln (1 / \delta))^{\wedge} 3\right)\)
    unfolding powr-powr by (simp add:ac-simps)
    also have \(\ldots \leq 2\) powr \(\left(80 *(2+9+12 * \ln (1 / \delta))^{\wedge} 3\right)\)
    using \(\delta\)-gt-0 \(\delta\)-lt-1
    by (intro powr-mono mult-left-mono power-mono add-mono 17 add-nonneg-nonneg) auto
    also have \(\ldots=2 \operatorname{powr}(80 *(11+12 * \ln (1 / \delta))\) ^ 3\()\) by \(\operatorname{simp}\)
    also have \(\ldots \leq 2\) powr \(\left(5^{\wedge} 3 *(11+12 * \ln (1 / \delta))^{\wedge} 3\right)\)
    using \(\delta\)-gt-0 \(\delta\)-lt-1 by (intro powr-mono mult-right-mono) (auto intro!:add-nonneg-nonneg)
    also have \(\ldots=2\) powr \(\left((55+60 * \ln (1 / \delta))^{\wedge} 3\right)\)
    unfolding power-mult-distrib[symmetric] by simp
    finally have \(18: 16^{\wedge}((l-1) * \operatorname{nat}\lceil\ln \Lambda / \ln (19 / 20)\rceil) \leq 2 \operatorname{powr}\left((55+60 * \ln (1 / \delta))^{\wedge} 3\right)\)
        by \(\operatorname{simp}\)
    have \(? L=\) real \((\) pro-size \(\Psi) * 16{ }^{\wedge}((l-1) *\) nat \(\lceil\ln \Lambda / \ln (19 / 20)\rceil)\)
        unfolding expander-pro-size \([O F \Omega]\) by simp
    also have \(\ldots \leq 2\) powr \((4 * \log 2 n+48 *(\log 2(1 / \varepsilon)+16) \uparrow 2) * 2\) powr \(((55+60 * \ln (1 / \delta))\) © 3\()\)
        by (intro mult-mono 18 19) simp-all
    also have \(\ldots=2\) powr \((4 * \log 2 n+48 *(\log 2(1 / \varepsilon)+16) \uparrow 2+(55+60 * \ln (1 / \delta))\) 3\()\)
        unfolding powr-add[symmetric] by simp
    finally show? ?thesis by simp
qed
end
unbundle no-intro-cong-syntax
end
```


7 Accuracy without cutoff

This section verifies that each of the l estimate have the required accuracy with high probability assuming that there was no cut-off, i.e., that $s=0$. Section 9 will then show that this remains true as long as the cut-off is below $t f$ the subsampling threshold.

```
theory Distributed-Distinct-Elements-Accuracy-Without-Cutoff
    imports
        Concentration-Inequalities.Bienaymes-Identity
    Distributed-Distinct-Elements-Inner-Algorithm
    Distributed-Distinct-Elements-Balls-and-Bins
begin
hide-fact (open) Discrete.log-mono
no-notation Polynomials.var ( \(X_{1}\) )
locale inner-algorithm-fix- \(A=\) inner-algorithm +
    fixes \(A\)
    assumes \(A\)-range: \(A \subseteq\{. .<n\}\)
    assumes \(A\)-nonempty: \(\} \neq A\)
begin
definition \(X\) :: nat where \(X=\operatorname{card} A\)
definition \(q\)-max where \(q\)-max \(=\) nat \((\lceil\log 2 X\rceil-b\)-exp \()\)
```

```
definition \(t::(n a t \Rightarrow n a t) \Rightarrow\) int
    where \(t f=\operatorname{int}\left(\operatorname{Max}\left(f^{\prime} A\right)\right)-b-\exp +9\)
definition \(s::(n a t \Rightarrow n a t) \Rightarrow\) nat
    where \(s f=\) nat \((t f)\)
definition \(R::(\) nat \(\Rightarrow\) nat \() \Rightarrow\) nat set
    where \(R f=\{a . a \in A \wedge f a \geq s f\}\)
definition \(r::\) nat \(\Rightarrow(\) nat \(\Rightarrow\) nat \() \Rightarrow\) nat
    where \(r x f=\operatorname{card}\{a . a \in A \wedge f a \geq x\}\)
definition \(p\) where \(p=\left(\lambda(f, g, h) . \operatorname{card}\left\{j \in\{. .<b\} . \tau_{1}(f, g, h) A 0 j \geq s f\right\}\right)\)
definition \(Y\) where \(Y=(\lambda(f, g, h)\). 2 ^s \(f * \varrho-i n v(p(f, g, h)))\)
lemma fin-A: finite \(A\)
    using \(A\)-range finite-nat-iff-bounded by auto
lemma \(X\)-le-n: \(X \leq n\)
proof -
    have card \(A \leq \operatorname{card}\{. .<n\}\)
    by (intro card-mono \(A\)-range) simp
    thus ?thesis
        unfolding \(X\)-def by simp
qed
lemma \(X\)-ge-1: \(X \geq 1\)
    unfolding \(X\)-def
    using fin- \(A\) A-nonempty by (simp add: leI)
lemma of-bool-square: \((\text { of-bool } x)^{2}=((\) of-bool \(x)::\) real \()\)
    by (cases \(x\), auto)
lemma \(r\)-eq: \(r x f=\left(\sum a \in A .(\right.\) of-bool \((x \leq f a)\) :: real \(\left.)\right)\)
    unfolding \(r\)-def of-bool-def sum.If-cases \([\) OF fin-A]
    by (simp add: Collect-conj-eq)
lemma
    shows
        \(r-\exp :\left(\int \omega\right.\). real \(\left.(r x \omega) \partial \Psi_{1}\right)=\) real \(X *\left(o f-b o o l(x \leq \max (n a t\lceil\log 2 n\rceil) 1) / 2{ }^{2} x\right)\) and
        \(r\)-var: measure-pmf.variance \(\Psi_{1}(\lambda \omega\). real \((r x \omega)) \leq\left(\int \omega\right.\). real \(\left.(r x \omega) \partial \Psi_{1}\right)\)
proof -
    define \(V::\) nat \(\Rightarrow(n a t \Rightarrow n a t) \Rightarrow\) real where \(V=(\lambda a f\). of-bool \((x \leq f a))\)
    have V-exp: \(\left(\int \omega . V\right.\) a \(\left.\omega \partial \Psi_{1}\right)=\) of-bool \((x \leq \max (n a t\lceil\log 2 n\rceil) 1) / 2 \widehat{2} x\)
        (is ? \(L=? R\) ) if \(a \in A\) for \(a\)
    proof -
        have \(a\)-le-n: \(a<n\)
            using that \(A\)-range by auto
    have \(? L=\left(\int \omega\right.\). indicator \(\left.\{f . x \leq f a\} \omega \partial \Psi_{1}\right)\)
            unfolding \(V\)-def by (intro integral-cong-AE) auto
    also have \(\ldots=\) measure \(\left(\right.\) map-pmf \(\left(\lambda \omega . \omega\right.\) a) (sample-pro \(\left.\left.\Psi_{1}\right)\right)\{f . x \leq f\}\)
                by \(\operatorname{simp}\)
            also have \(\ldots=\) measure \((\mathcal{G}\) n-exp \()\{f . x \leq f\}\)
            by (subst hash-pro-component \(\left[O F \Psi_{1}\right.\) a-le-n]) auto
    also have \(\ldots=\) of-bool \((x \leq \max (n a t\lceil\log 2 n\rceil) 1) / 2 \wedge x\)
```

```
        unfolding geom-pro-prob n-exp-def by simp
    finally show ?thesis by simp
qed
have b:(\int\omega. real (rx\omega)\partial \Psi I})=(\suma\inA.(\int\omega.V a\omega\partial\mp@subsup{\Psi}{1}{})
    unfolding r-eq V-def by (intro Bochner-Integration.integral-sum) auto
also have ... = (\suma\inA. of-bool (x\leqmax (nat\lceillog 2 n\rceil) 1)/2^x}
    using V-exp by (intro sum.cong) auto
also have ... = X*(of-bool (x\leqmax (nat\lceillog 2 n\rceil) 1) / 2`x)
    using X-def by simp
```



```
    by simp
```



```
    unfolding V-def of-bool-square by simp
```

 hence a:measure-pmf.variance \(\Psi_{1}(V a) \leq\) measure-pmf.expectation \(\Psi_{1}(V a)\) for \(a\)
 by (subst measure-pmf.variance-eq) auto
 have \(J \subseteq A \Longrightarrow\) card \(J=2 \Longrightarrow\) prob-space.indep-vars \(\Psi_{1}(\lambda\)-. borel) \(V J\) for \(J\)
 unfolding \(V\)-def using \(A\)-range finite-subset \([O F\) - fin- \(A]\)
 by (intro prob-space.indep-vars-compose2[where \(Y=\lambda i y\). of-bool \((x \leq y)\) and \(M^{\prime}=\lambda\)-. discrete]
 hash-pro-indep \(\left[O F \Psi_{1}\right]\)) (auto simp:prob-space-measure-pmf)
 hence measure-pmf.variance \(\Psi_{1}(\lambda \omega\). real \((r x \omega))=\left(\sum a \in A\right.\). measure-pmf.variance \(\Psi_{1}(V\)
 a))
unfolding r-eq V-def by (intro measure-pmf.bienaymes-identity-pairwise-indep-2 fin-A) simp-all
also have $\ldots \leq\left(\sum a \in A .\left(\int \omega . V a \omega \partial \Psi_{1}\right)\right)$
by (intro sum-mono a)
also have $\ldots=\left(\int \omega\right.$. real $\left.(r x \omega) \partial \Psi_{1}\right)$
unfolding b by simp
finally show measure-pmf.variance $\Psi_{1}(\lambda \omega$. real $(r x \omega)) \leq\left(\int \omega\right.$. real $\left.(r x \omega) \partial \Psi_{1}\right)$ by simp
qed
definition E_{1} where $E_{1}=\left(\lambda(f, g, h)\right.$. 2 powr $(-t f) * X \in\left\{b / \mathfrak{Z}^{\wedge} 16 . . b /\right.$ 2 $\left.\}\right)$
lemma t-low:
measure $\Psi_{1}\{f$. of-int $(t f)<\log 2($ real $X)+1-b-\exp \} \leq 1 /$ 2^7 $\left.^{\text {(is }} ? . L \leq ? R\right)$
proof $($ cases $\log 2($ real $X) \geq 8)$
case True
define $Z::($ nat \Rightarrow nat $) \Rightarrow$ real where $Z=r($ nat $\lceil\log 2($ real $X)-8\rceil)$
have $\log 2($ real $X) \leq \log 2($ real $n)$
using X-le-n X-ge- 1 by (intro log-mono) auto
hence nat $\lceil\log 2($ real $X)-8\rceil \leq n a t\lceil\log 2($ real $n)\rceil$
by (intro nat-mono ceiling-mono) simp
hence $a:($ nat $\lceil\log 2($ real $X)-8\rceil \leq \max (n a t\lceil\log 2($ real n) $\rceil) 1)$
by simp
have b:real $($ nat $(\lceil\log 2($ real $X)\rceil-8)) \leq \log 2($ real $X)-7$
using True by linarith
have $2^{\wedge} 7=$ real $X /(2 \operatorname{powr}(\log 2 X) * 2 \operatorname{powr}(-7))$
using $X-g e-1$ by simp
also have $\ldots=$ real $X /(2$ powr $(\log 2 X-7))$
by (subst powr-add[symmetric]) simp
also have $\ldots \leq$ real $X /(2$ powr $($ real $($ nat $\lceil\log 2($ real $X)-8\rceil)))$
using b by (intro divide-left-mono powr-mono) auto
also have $\ldots=$ real $X / 2{ }^{\text {^nat }\lceil\log 2(\text { real } X)-8\rceil}$
by (subst powr-realpow) auto
finally have $2^{\wedge} 7 \leq$ real $X / 2^{\wedge} n a t\lceil\log 2($ real $X)-8\rceil$
by simp
hence exp-Z-gt-2-7: $\left(\int \omega . Z \omega \partial \Psi_{1}\right) \geq 2^{\wedge \gamma}$
using a unfolding Z-def r-exp by simp
have var-Z-le-exp-Z: measure-pmf.variance $\Psi_{1} Z \leq\left(\int \omega . Z \omega \partial \Psi_{1}\right)$
unfolding Z-def by (intro r-var)
have $? L \leq$ measure $\Psi_{1}\left\{f\right.$. of-nat $\left(\operatorname{Max}\left(f^{\prime} A\right)\right)<\log 2($ real $\left.X)-8\right\}$
unfolding t-def by (intro pmf-mono) (auto simp add:int-of-nat-def)
also have $\ldots \leq$ measure $\Psi_{1}\left\{f \in\right.$ space $\left.\Psi_{1} .\left(\int \omega . Z \omega \partial \Psi_{1}\right) \leq\left|Z f-\left(\int \omega . Z \omega \partial \Psi_{1}\right)\right|\right\}$
proof (rule pmf-mono)
fix f assume $f \in$ set-pmf (sample-pro Ψ_{1})
have fin- f-A: finite (f ' A) using fin-A finite-imageI by blast
assume $f \in\left\{f\right.$. real $\left(\operatorname{Max}\left(f^{\prime} A\right)\right)<\log 2($ real $\left.X)-8\right\}$
hence real $\left(\operatorname{Max}\left(f^{\prime} A\right)\right)<\log 2($ real $X)-8$ by auto
hence $\operatorname{real}(f a)<\log 2($ real $X)-8$ if $a \in A$ for a
using Max-ge[OF fin-f-A] imageI[OF that $]$ order-less-le-trans by fastforce
hence of-nat $(f a)<\lceil\log 2($ real $X)-8\rceil$ if $a \in A$ for a
using that by (subst less-ceiling-iff) auto
hence $f a<n a t\lceil\log 2($ real $X)-8\rceil$ if $a \in A$ for a using that True by fastforce
hence $r($ nat $\lceil\log 2($ real $X)-8\rceil) f=0$
unfolding r-def card-eq-0-iff using not-less by auto
hence $Z f=0$
unfolding Z-def by simp
thus $f \in\left\{f \in\right.$ space $\left.\Psi_{1} .\left(\int \omega . Z \omega \partial \Psi_{1}\right) \leq\left|Z f-\left(\int \omega . Z \omega \partial \Psi_{1}\right)\right|\right\}$ by auto
qed
also have $\ldots \leq$ measure-pmf.variance $\Psi_{1} Z /\left(\int \omega . Z \omega \partial \Psi_{1}\right)^{\wedge}$ ~
using exp-Z-gt-2-7 by (intro measure-pmf.second-moment-method) simp-all
also have $\ldots \leq\left(\int \omega . Z \omega \partial \Psi_{1}\right) /\left(\int \omega . Z \omega \partial \Psi_{1}\right)^{\wedge} \mathcal{Z}^{2}$
by (intro divide-right-mono var-Z-le-exp-Z) simp
also have $\ldots=1 /\left(\int \omega . Z \omega \partial \Psi_{1}\right)$
using exp-Z-gt-2-7 by (simp add:power2-eq-square)
also have $\ldots \leq$? R
using exp-Z-gt-2-7 by (intro divide-left-mono) auto
finally show ?thesis by simp
next
case False
have $? L \leq$ measure $\Psi_{1}\left\{f\right.$. of-nat $\left(\operatorname{Max}\left(f^{\prime} A\right)\right)<\log 2($ real $\left.X)-8\right\}$
unfolding t-def by (intro pmf-mono) (auto simp add:int-of-nat-def)
also have $\ldots \leq$ measure $\Psi_{1}\{ \}$
using False by (intro pmf-mono) simp
also have $\ldots=0$
by simp
also have $\ldots \leq ? R$ by simp
finally show ?thesis by simp
qed
lemma t-high:
measure $\Psi_{1}\{f$. of-int $(t f)>\log 2($ real $X)+16-b$-exp $\} \leq 1 / \mathscr{Z}^{\wedge} 7($ is $? L \leq ? R)$
proof -
define $Z::($ nat \Rightarrow nat $) \Rightarrow$ real where $Z=r($ nat $\lfloor\log 2($ real $X)+8\rfloor)$
have Z-nonneg: $Z f \geq 0$ for f unfolding Z-def r-def by simp
have $\left(\int \omega . Z \omega \partial \Psi_{1}\right) \leq$ real $X /\left(2^{\wedge}\right.$ nat $\lfloor\log 2($ real $\left.X)+8\rfloor\right)$ unfolding Z-def r-exp by simp
also have $\ldots \leq \operatorname{real} X /(2 \operatorname{powr}($ real $($ nat $\lfloor\log 2(\operatorname{real} X)+8\rfloor)))$
by (subst powr-realpow) auto
also have $\ldots \leq$ real $X /(2$ powr $\lfloor\log 2($ real $X)+8\rfloor)$
by (intro divide-left-mono powr-mono) auto
also have $\ldots \leq$ real $X /(2$ powr $(\log 2($ real $X)+7))$
by (intro divide-left-mono powr-mono, linarith) auto
also have $\ldots=$ real $X / 2$ powr $(\log 2($ real $X)) / 2$ powr 7
by (subst powr-add) simp
also have $\ldots \leq 1 / 2$ powr 7
using X-ge- 1 by (subst powr-log-cancel) auto
finally have Z-exp: $\left(\int \omega . Z \omega \partial \Psi_{1}\right) \leq 1 / 2^{\wedge 7}$ by simp
have $? L \leq$ measure $\Psi_{1}\left\{f\right.$. of-nat $\left(\operatorname{Max}\left(f{ }^{\prime} A\right)\right)>\log 2($ real $\left.X)+7\right\}$
unfolding t-def by (intro pmf-mono) (auto simp add:int-of-nat-def)
also have $\ldots \leq$ measure $\Psi_{1}\{f . Z f \geq 1\}$
proof (rule pmf-mono)
fix f assume $f \in$ set-pmf (sample-pro Ψ_{1})
assume $f \in\left\{f\right.$. real $\left(\operatorname{Max}\left(f^{\prime} A\right)\right)>\log 2($ real $\left.X)+7\right\}$
hence $\operatorname{real}\left(\operatorname{Max}\left(f^{\prime} A\right)\right)>\log 2($ real $X)+7$ by simp
hence $\operatorname{int}\left(\operatorname{Max}\left(f^{\prime} A\right)\right) \geq\lfloor\log 2($ real $X)+8\rfloor$
by linarith
hence $\operatorname{Max}\left(f^{\prime} A\right) \geq$ nat $\lfloor\log 2($ real $X)+8\rfloor$ by simp
moreover have $f^{\prime} A \neq\{ \}$ finite $\left(f^{\prime} A\right)$ using fin-A finite-imageI A-nonempty by auto
ultimately obtain $f a$ where $f a \in f^{\prime} A \quad f a \geq$ nat $\lfloor\log 2($ real $X)+8\rfloor$ using Max-in by auto
then obtain ae where ae-def: ae $\in A$ nat $\lfloor\log 2($ real $X)+8\rfloor \leq f a e$ by auto
hence $r($ nat $\lfloor\log 2($ real $X)+8\rfloor) f>0$
unfolding r-def card-gt- 0 -iff using fin- A by auto
hence $Z f \geq 1$ unfolding Z-def by simp
thus $f \in\{f .1 \leq Z f\}$ by simp
qed
also have $\ldots \leq\left(\int \omega . Z \omega \partial \Psi_{1}\right) / 1$
using Z-nonneg by (intro pmf-markov) auto
also have $\ldots \leq$? R
using Z-exp by simp
finally show ?thesis by simp
qed
lemma e-1: measure $\Psi\left\{\psi . \neg E_{1} \psi\right\} \leq 1 / 2 \wedge 6$
proof -
have measure $\Psi_{1}\{f$. 2 powr (of-int $(-t f)) *$ real $X \notin\{$ real b/2^16..real b/2 $\left.\}\right\} \leq$
measure $\Psi_{1}\left\{f\right.$. 2 powr $($ of-int $(-t f)) *$ real $X<$ real b/ $\left.\mathfrak{Z}^{\wedge} 16\right\}+$
measure $\Psi_{1}\{f$. 2 powr $($ of-int $(-t f)) *$ real $X>$ real $b / 2\}$
by (intro pmf-add) auto
also have $\ldots \leq$ measure $\Psi_{1}\{f$. of-int $(t f)>\log 2 X+16-b$-exp $\}+$ measure $\Psi_{1}\{f$. of-int $(t f)<\log 2 X+1-b$-exp $\}$
proof (rule add-mono)
show measure $\Psi_{1}\{f$. 2 powr $($ of-int $(-t f)) *$ real $X<$ real b/2^16\} \leq
measure $\Psi_{1}\{f$. of-int $(t f)>\log 2 X+16-b$-exp $\}$
proof (rule pmf-mono)

```
    fix f}\mathrm{ assume f}\in{f.2 powr real-of-int (-tf)* real X < real b / 2^16
    hence 2 powr real-of-int (-tf) * real X < real b / 2^ 16
        by simp
    hence log 2 (2 powr of-int (-tf)* real X)< log 2 (real b / 2^16)
        using b-min X-ge-1 by (intro iffD2[OF log-less-cancel-iff]) auto
    hence of-int (-tf) + log 2 (real X)<log 2 (real b/2`16)
        using X-ge-1 by (subst (asm) log-mult) auto
    also have ... = real b-exp - log 2 (2 powr 16)
        unfolding b-def by (subst log-divide) auto
    also have ... = real b-exp - 16
        by (subst log-powr-cancel) auto
    finally have of-int (-tf)+log 2 (real X) < real b-exp - 16 by simp
    thus f}\in{f\mathrm{ . of-int (tf)> log 2 (real X) + 16-b-exp}
        by simp
    qed
next
    show measure }\mp@subsup{\Psi}{1}{}{f\mathrm{ . 2 powr of-int ( }-tf)*\mathrm{ real }X>\mathrm{ real b/2} }
        measure }\mp@subsup{\Psi}{1}{}{f\mathrm{ .of-int (tf)<log 2 X + 1-b-exp}
    proof (rule pmf-mono)
    fix f}\mathrm{ assume f}\in{f.2 powr real-of-int (-tf)* real X> real b / 2}
    hence 2 powr real-of-int (-tf)* real X > real b / 2
        by simp
    hence log 2 (2 powr of-int (-tf)* real X) > log 2 (real b / 2)
        using b-min X-ge-1 by (intro iffD2[OF log-less-cancel-iff]) auto
    hence of-int (-tf) + log 2 (real X)> log 2 (real b / 2)
        using X-ge-1 by (subst (asm) log-mult) auto
    hence of-int (-tf)+ log 2 (real X) > real b-exp - 1
        unfolding b-def by (subst (asm) log-divide) auto
    hence of-int (tf)<log 2 (real X) + 1-b-exp
        by simp
    thus f}\in{f.of-int (tf)<log 2 (real X) + 1 - b-exp 
        by simp
    qed
qed
also have ... \leq 1/2^7 + 1/2^7
    by (intro add-mono t-low t-high)
also have ... = 1/2^6 by simp
finally have measure }\mp@subsup{\Psi}{1}{}{f\mathrm{ . 2 powr of-int (-tf)* real X &{real b/2^16..real b/2}}}\leq1/2`6
    by simp
thus ?thesis
    unfolding sample-pro-\Psi E E1-def case-prod-beta
    by (subst pair-pmf-prob-left)
qed
definition E2 where E E 
lemma e-2:measure \Psi {\psi. E1 \psi^\negEE2 \psi}\leq1/2^6 (is ?L\leq?R)
proof -
    define }\mp@subsup{t}{m}{}::\mathrm{ int where }\mp@subsup{t}{m}{}=\lfloor\operatorname{log}2(\mathrm{ real }X)\rfloor+16-b-exp
    have t-m-bound: tm}\leq\lfloorlog 2(real X)\rfloor-1
        unfolding }\mp@subsup{t}{m}{}\mathrm{ -def using b-exp-ge-26 by simp
    have real b/ 2^16 = (real X * (1/X))*(real b/ 2`16)
    using X-ge-1 by simp
    also have ... =(real X * 2 powr (-log 2 X))*(real b / 2^16)
    using X-ge-1 by (subst powr-minus-divide) simp
```

```
also have \(\ldots \leq(\) real \(X * 2\) powr \((-\lfloor\log 2(\) real \(X)\rfloor)) *(2\) powr b-exp / 2^16)
    unfolding \(b\)-def using powr-realpow
    by (intro mult-mono powr-mono) auto
also have \(\ldots=\) real \(X *(2 \operatorname{powr}(-\lfloor\log 2(\) real \(X)\rfloor) * 2 \operatorname{powr}(\) real b-exp-16)\()\)
    by (subst powr-diff) simp
also have \(\ldots=\) real \(X * 2\) powr \((-\lfloor\log 2(\) real \(X)\rfloor+(\) int b-exp -16\())\)
    by (subst powr-add[symmetric]) simp
also have \(\ldots=\) real \(X * 2\) powr \(\left(-t_{m}\right)\)
    unfolding \(t_{m}\)-def by (simp add:algebra-simps)
finally have \(c\) :real \(b / 2^{\wedge} 16 \leq\) real \(X * 2\) powr \(\left(-t_{m}\right)\) by simp
define \(T\) :: nat set where \(T=\left\{x .\left(\right.\right.\) real \(X / \mathcal{Z}^{\wedge} x \geq\) real \(\left.\left.b / \mathcal{Z}^{\wedge} 16\right)\right\}\)
have \(x \in T \longleftrightarrow\) int \(x \leq t_{m}\) for \(x\)
proof -
    have \(x \in T \longleftrightarrow 2^{\wedge} x \leq\) real \(X * 2^{\wedge} 16 / b\)
        using \(b\)-min by (simp add: field-simps \(T\)-def)
    also have \(\ldots \longleftrightarrow \log 2(2 \widehat{2}) \leq \log 2\left(\right.\) real \(\left.X * 2^{\wedge} 16 / b\right)\)
        using \(X\)-ge-1 b-min by (intro log-le-cancel-iff [symmetric] divide-pos-pos) auto
    also have \(\ldots \longleftrightarrow x \leq \log 2\left(\right.\) real \(\left.X * 2^{\wedge} 16\right)-\log 2 b\)
        using \(X\)-ge- 1 b-min by (subst log-divide) auto
    also have \(\ldots \longleftrightarrow x \leq \log 2(\) real \(X)+\log 2\) (2 powr 16) - b-exp
        unfolding b-def using X-ge-1 by (subst log-mult) auto
    also have \(\ldots \longleftrightarrow x \leq\lfloor\log 2(\) real \(X)+\log 2(2\) powr 16) \(-b-e x p\rfloor\)
        by linarith
    also have \(\ldots \longleftrightarrow x \leq\lfloor\log 2(\) real \(X)+16\) - real-of-int \((\) int \(b\)-exp \()\rfloor\)
        by (subst log-powr-cancel) auto
    also have \(\ldots \longleftrightarrow x \leq t_{m}\)
        unfolding \(t_{m}\)-def by linarith
    finally show ?thesis by simp
qed
hence \(T\)-eq: \(T=\left\{x\right.\). int \(\left.x \leq t_{m}\right\}\) by auto
have \(T=\left\{x\right.\). int \(\left.x<t_{m}+1\right\}\)
    unfolding \(T-e q\) by simp
also have \(\ldots=\left\{x . x<\operatorname{nat}\left(t_{m}+1\right)\right\}\)
    unfolding zless-nat-eq-int-zless by simp
finally have \(T\)-eq-2: \(T=\left\{x . x<n a t\left(t_{m}+1\right)\right\}\)
    by \(\operatorname{simp}\)
have inj-1: inj-on ((-) (nat \(\left.\left.t_{m}\right)\right) T\)
    unfolding \(T\)-eq by (intro inj-onI) simp
have fin- \(T\) : finite \(T\)
    unfolding \(T-e q-2\) by simp
```

have r-exp: $\left(\int \omega\right.$. real $\left.(r t \omega) \partial \Psi_{1}\right)=\operatorname{real} X / 2 \uparrow t$ if $t \in T$ for t
proof -
have $t \leq t_{m}$
using that unfolding T-eq by simp
also have $\ldots \leq\lfloor\log 2($ real $X)\rfloor-10$
using t - m-bound by simp
also have $\ldots \leq\lfloor\log 2($ real $X)\rfloor$
by simp
also have $\ldots \leq\lfloor\log 2($ real $n)\rfloor$
using X-le-n X-ge-1 by (intro floor-mono log-mono) auto
also have $\ldots \leq\lceil\log 2($ real $n)\rceil$
by simp
finally have $t \leq\lceil\log 2($ real $n)\rceil$ by simp
hence $t \leq \max ($ nat $\lceil\log 2($ real $n)\rceil) 1$ by simp
thus ?thesis
unfolding $r-\exp$ by simp
qed
have r-var: measure-pmf.variance $\Psi_{1}(\lambda \omega$. real $(r t \omega)) \leq \operatorname{real} X / \mathcal{Z}^{\imath} t$ if $t \in T$ for t
using r-exp [OF that] r-var by metis
have $9=C_{4} / \varepsilon^{2} * \varepsilon$ ^2/2^23
using ε-gt-0 by (simp add: C_{4}-def)
also have $\ldots=2$ powr $\left(\log 2\left(C_{4} / \varepsilon^{2}\right)\right) * \varepsilon^{\wedge} 2 / 2 \wedge 23$
using ε-gt-0 C_{4}-def by (subst powr-log-cancel) auto
also have $\ldots \leq 2$ powr $b-\exp * \varepsilon \wedge 2 / 2 \wedge 23$
unfolding b-exp-def
by (intro divide-right-mono mult-right-mono powr-mono, linarith) auto
also have $\ldots=b * \varepsilon^{\wedge}$ 2/2^23
using powr-realpow unfolding b-def by simp
also have $\ldots=\left(b / 2^{\wedge} 16\right) *\left(\varepsilon^{\wedge} 2 / 2^{\wedge} 7\right)$
by simp
also have $\ldots \leq\left(X * 2\right.$ powr $\left.\left(-t_{m}\right)\right) *\left(\varepsilon^{\wedge 2} /\right.$ 2^7 $)$
by (intro mult-mono c) auto
also have $\ldots=X *\left(2\right.$ powr $\left.\left(-t_{m}\right) * 2 \operatorname{powr}(-7)\right) * \varepsilon$ ค2
using powr-realpow by simp
also have $\ldots=2 \operatorname{powr}\left(-t_{m}-7\right) *\left(\varepsilon^{\wedge} 2 * X\right)$
by (subst powr-add[symmetric]) (simp)
finally have $9 \leq 2$ powr $\left(-t_{m}-7\right) *(\varepsilon \wedge 2 * X)$ by simp
hence b : $9 /\left(\varepsilon^{\wedge} 2 * X\right) \leq 2$ powr $\left(-t_{m}-7\right)$
using ε-gt-0 X-ge-1
by (subst pos-divide-le-eq) auto
have a: measure $\Psi_{1}\{f$. \mid real $(r t f)-$ real $X / 2 \uparrow t \mid>\varepsilon / 3 *$ real $X / 2 \uparrow t\} \leq 2$ powr $\left(\right.$ real $\left.t-t_{m}-7\right)$
(is? $L 1 \leq ? R 1$) if $t \in T$ for t
proof -
have ${ }^{2} L 1 \leq \mathcal{P}\left(f\right.$ in Ψ_{1}. \mid real $(r t f)-$ real $\left.X / 2\right\urcorner t \mid \geq \varepsilon / 3 *$ real $\left.X / 2 \uparrow t\right)$
by (intro pmf-mono) auto
also have $\ldots=\mathcal{P}\left(f\right.$ in $\Psi_{1} . \mid$ real $(r t f)-\left(\int \omega\right.$. real $\left.\left.(r t \omega) \partial \Psi_{1}\right) \mid \geq \varepsilon / 3 * \operatorname{real} X / \mathcal{D}^{\wedge} t\right)$
by (simp add: $r-\exp [O F$ that $])$
also have $\ldots \leq$ measure-pmf.variance $\Psi_{1}(\lambda \omega$. real $(r t \omega)) /\left(\varepsilon / 3 * \operatorname{real} X / \mathcal{Z}^{\wedge} t\right)^{\text {^2 }}$ using X-ge-1 ε-gt-0
by (intro measure-pmf.Chebyshev-inequality divide-pos-pos mult-pos-pos) auto
also have $\ldots \leq(X / 2 \uparrow t) /(\varepsilon / 3 * X / 2 ` t){ }^{2} 2$
by (intro divide-right-mono r-var[OF that $]$) simp
also have $\ldots=2 \mathfrak{L}^{2} t\left(9 /\left(\varepsilon^{\wedge} 2 * X\right)\right)$
by (simp add:power2-eq-square algebra-simps)
also have $\ldots \leq 2 \uparrow t *$ (2 powr $\left(-t_{m}-7\right)$)
by (intro mult-left-mono b) simp
also have $\ldots=2$ powr $t * 2$ powr $\left(-t_{m}-7\right)$
by (subst powr-realpow[symmetric]) auto
also have $\ldots=$? $R 1$
by (subst powr-add[symmetric]) (simp add:algebra-simps)
finally show ? L $1 \leq$? R1 by simp
qed
have $\exists y<n a t\left(t_{m}+1\right) . x=$ nat $t_{m}-y$ if $x<n a t\left(t_{m}+1\right)$ for x
using that by (intro exI [where $x=$ nat $\left.t_{m}-x\right]$) simp
hence T-reindex: $(-)\left(\right.$ nat $\left.t_{m}\right) '\left\{x . x<\right.$ nat $\left.\left(t_{m}+1\right)\right\}=\left\{. .<\right.$ nat $\left.\left(t_{m}+1\right)\right\}$
by (auto simp add: set-eq-iff image-iff)
have $? L \leq$ measure $\Psi\{\psi .(\exists t \in T . \mid$ real $(r t(f s t \psi))-r e a l X / 2 \wedge t \mid>\varepsilon / 3 *$ real $X / 2 \wedge t)\}$ proof (rule pmf-mono)
fix ψ
assume $\psi \in$ set-pmf (sample-pro Ψ)
obtain $f g h$ where ψ-def: $\psi=(f, g, h)$ by (metis prod-cases3)
assume $\psi \in\left\{\psi . E_{1} \psi \wedge \neg E_{2} \psi\right\}$
hence a:2 powr (-real-of-int $(t f)) *$ real $X \in\{$ real b/2^16..real b/2\} and
$b: \mid \operatorname{card}(R f)-\operatorname{real} X /$ 2^ $\left.^{\text {(}} \mathrm{f}\right) \mid>\varepsilon / 3 * X /$ 2^ $^{(s f)}$
unfolding E_{1}-def E_{2}-def by (auto simp add: ψ-def)
have $\left|\operatorname{card}(R f)-X /{ }^{2 \wedge}(s f)\right|=0$ if $s f=0$
using that by (simp add:R-def X-def)
moreover have $(\varepsilon / 3) *(X / 2 \wedge s) \geq 0$
using ε-gt-0 X-ge-1 by (intro mult-nonneg-nonneg) auto
ultimately have False if $s f=0$ using b that by simp
hence $s f>0$ by auto
hence $t f=s f$ unfolding s-def by simp
hence 2 powr $(-\operatorname{real}(s f)) * X \geq b /{ }^{2} 16$ using a by simp
hence $X / 2 \operatorname{powr}(\operatorname{real}(s f)) \geq b /$ 2^16 by (simp add: divide-powr-uminus mult.commute)
hence real $X / 2^{\wedge}(s f) \geq b /{ }^{2 `} 16$ by (subst (asm) powr-realpow, auto)
hence $s f \in T$ unfolding T-def by simp
moreover have $\mid r(s f) f-X /$ 2^s $f \mid>\varepsilon / 3 * X / 2 \simeq s f$ using R-def r-def b by simp
ultimately have $\exists t \in T .|r t(f s t \psi)-X / 2 \wedge t|>\varepsilon / 3 * X / 2 \curlywedge t$
using ψ-def by (intro bexI $[$ where $x=s f]$) simp
thus $\psi \in\{\psi .(\exists t \in T . \mid r t(f s t \psi)-X /$ 2^t $\mid>\varepsilon / 3 * X /$ 2`t $)\}$ by simp
qed
also have $\ldots=$ measure $\Psi_{1}\left\{f .\left(\exists t \in T . \mid\right.\right.$ real $(r t f)-$ real $X / \mathcal{D}^{\wedge} t \mid>\varepsilon / 3 *$ real $\left.\left.X / \mathscr{D}^{\wedge} t\right)\right\}$
unfolding sample-pro- Ψ by (intro pair-pmf-prob-left)
also have $\ldots=$ measure $\Psi_{1}(\bigcup t \in T .\{f . \mid$ real $(r t f)-$ real $X / 2 \uparrow t \mid>\varepsilon / 3 *$ real $X / 2 \wedge t\})$
by (intro measure-pmf-cong) auto

by (intro measure-UNION-le fin-T) (simp)
also have $\ldots \leq\left(\sum t \in T\right.$. 2 powr $\left(\right.$ real $t-$ of-int $\left.\left.t_{m}-7\right)\right)$
by (intro sum-mono a)
also have $\ldots=\left(\sum t \in T\right.$. 2 powr $\left(-\operatorname{int}\left(\right.\right.$ nat $\left.\left.\left.t_{m}-t\right)-7\right)\right)$
unfolding $T-e q$
by (intro sum.cong refl arg-cong2 [where $f=($ powr $)]$) simp
also have $\ldots=\left(\sum x \in\left(\lambda x\right.\right.$. nat $\left.t_{m}-x\right)$ 'T. 2 powr $(-$ real $\left.x-7)\right)$
by (subst sum.reindex[OF inj-1]) simp
also have $\ldots=\left(\sum x \in\left(\lambda x\right.\right.$. nat $\left.t_{m}-x\right)$ 'T. 2 powr $(-7) * 2$ powr $(-$ real $\left.x)\right)$
by (subst powr-add[symmetric]) (simp add:algebra-simps)
also have $\ldots=1 / \mathcal{D}^{\wedge \gamma} *\left(\sum x \in\left(\lambda x \text {. nat } t_{m}-x\right)^{‘} T\right.$. 2 powr $(-$ real $\left.x)\right)$
by (subst sum-distrib-left) simp
also have $\ldots=1 / 2^{\wedge \gamma} *\left(\sum x<n a t\left(t_{m}+1\right)\right.$. 2 powr $(-$ real $\left.x)\right)$
unfolding T-eq-2 T-reindex
by (intro arg-cong2 [where $f=(*)]$ sum.cong) auto
also have $\ldots=1 / 2 \wedge 7 *\left(\sum x<\right.$ nat $\left(t_{m}+1\right)$. (2 powr $\left.(-1)\right)$ powr (real $\left.x\right)$)
by (subst powr-powr) simp
also have $\ldots=1 / \mathscr{2}^{\wedge \gamma} *\left(\sum x<n a t\left(t_{m}+1\right) .(1 / 2) \widehat{2}\right)$
using powr-realpow by simp
also have $\ldots \leq 1 /$ 2 $^{\wedge} \wedge 7$ * 2
by(subst geometric-sum) auto
also have $\ldots=1 / 2 \wedge 6$ by simp
finally show ?thesis by simp

qed

definition E_{3} where $E_{3}=(\lambda(f, g, h)$. inj-on $g(R f))$
lemma R-bound:
fixes $f g h$
assumes $E_{1}(f, g, h)$
assumes $E_{2}(f, g, h)$
shows card $(R f) \leq 2 / 3 * b$
proof -
have $\operatorname{real}(\operatorname{card}(R f)) \leq(\varepsilon / 3) *\left(\right.$ real $\left.X / \mathcal{Z}^{\wedge} s f\right)+\operatorname{real} X / \mathcal{Z}^{\wedge} s f$ using $\operatorname{assms}(2)$ unfolding E_{2}-def by simp
also have $\ldots \leq(1 / 3) *\left(\right.$ real $\left.X / 2^{\wedge} s f\right)+$ real $X / 2^{\wedge} s f$ using ε-lt-1 by (intro add-mono mult-right-mono) auto
also have $\ldots=(4 / 3) *($ real $X / 2$ powr $s f)$ using powr-realpow by simp
also have $\ldots \leq(4 / 3) *($ real $X / 2$ powr $t f)$ unfolding s-def
by (intro mult-left-mono divide-left-mono powr-mono) auto
also have $\ldots=(4 / 3) *(2$ powr $(-($ of-int $(t f))) *$ real $X)$ by (subst powr-minus-divide) simp
also have $\ldots=(4 / 3) *(2$ powr $(-t f) *$ real $X)$
by simp
also have $\ldots \leq(4 / 3) *(b / 2)$
using $\operatorname{assms}(1)$ unfolding E_{1}-def
by (intro mult-left-mono) auto
also have $\ldots \leq(2 / 3) * b$ by simp
finally show? thesis by simp
qed
lemma e-3: measure $\Psi\left\{\psi . E_{1} \psi \wedge E_{2} \psi \wedge \neg E_{3} \psi\right\} \leq 1 / 2 \wedge 6$ (is ? $L \leq ? R$)
proof -
let $? \alpha=\left(\lambda(z, x, y) f . z<C_{7} * b^{\wedge} 2 \wedge x \in R f \wedge y \in R f \wedge x<y\right)$
let $? \beta=(\lambda(z, x, y) g . g x=z \wedge g y=z)$

if ? $\alpha \omega f$ for ωf
proof -
obtain $x y z$ where ω-def: $\omega=(z, x, y)$ by (metis prod-cases3)
have a:prob-space.indep-vars Ψ_{2} (λ i. discrete) $(\lambda x \omega . \omega x=z) I$
if $I \subseteq\{. .<n\}$ card $I \leq 2$ for I
by (intro prob-space.indep-vars-compose2[OF - hash-pro-indep $\left[O F \Psi_{2}\right]$ that)
(simp-all add:prob-space-measure-pmf)
have $u \in R f \Longrightarrow u<n$ for u
unfolding R-def using A-range by auto
hence $b: x<n y<n \operatorname{card}\{x, y\}=2$
using that ω-def by auto
have $c: z<C_{7} * b^{2}$ using ω-def that by simp
have measure $\Psi_{2}\{g$. ? $\beta \omega g\}=$ measure $\Psi_{2}\{g .(\forall \xi \in\{x, y\} . g \xi=z)\}$
by (simp add: ω-def)
also have $\ldots=\left(\prod \xi \in\{x, y\}\right.$. measure $\left.\Psi_{2}\{g . g \xi=z\}\right)$
using b by (intro measure-pmf.split-indep-events[OF refl, where $I=\{x, y\}] a$)
(simp-all add:prob-space-measure-pmf)
also have $\ldots=\left(\prod \xi \in\{x, y\}\right.$. measure (map-pmf $(\lambda \omega . \omega \xi)\left(\right.$ sample-pro $\left.\left.\left.\Psi_{2}\right)\right)\{g . g=z\}\right)$
by (simp add:vimage-def)
also have $\ldots=\left(\prod \xi \in\{x, y\}\right.$. measure $\left.\left(\mathcal{N}\left(C_{7} * b^{2}\right)\right)\{g . g=z\}\right)$
using b hash-pro-component $\left[\right.$ OF $\left.\Psi_{2}\right]$ by (intro prod.cong) fastforce+
also have $\ldots=\left(\prod \xi \in\{x, y\}\right.$. measure (pmf-of-set $\left.\left.\left\{. .<C_{7} * b^{2}\right\}\right)\{z\}\right)$
by (subst nat-pro) (simp-all add: C_{7}-def b-def)
also have $\ldots=\left(\right.$ measure $\left(p m f\right.$-of-set $\left.\left.\left\{. .<C_{7} * b^{2}\right\}\right)\{z\}\right){ }^{\wedge} 2$
using b by simp
also have $\ldots \leq\left(1 /\left(C_{7} * b^{2}\right)\right)^{\wedge} 2$
using c by (subst measure-pmf-of-set) auto
also have $\ldots=\left(1 /\left(C_{7} * b^{2}\right)^{\wedge}\right.$ 2) $)$
by (simp add:algebra-simps power2-eq-square)
finally show? ?thesis by simp
qed
have α-card: card $\{\omega$. ? $\alpha \omega f\} \leq\left(C_{7} * b^{\wedge} \mathcal{Z}\right) *(\operatorname{card}(R f) *(\operatorname{card}(R f)-1) / \mathcal{Z})$
(is ?TL \leq ?TR) and fin- α : finite $\{\omega$. ? $\alpha \omega f\}$ (is ?T2) for f
proof -
have t1: $\{\omega$. ? $\alpha \omega f\} \subseteq\left\{. .<C_{7} * b^{\wedge} 2\right\} \times\{(x, y) \in R f \times R f . x<y\}$
by (intro subsetI) auto
moreover have $\operatorname{card}\left(\left\{. .<C_{7} * b^{\wedge} 2\right\} \times\{(x, y) \in R f \times R f . x<y\}\right)=? T R$
using card-ordered-pairs' $[$ where $M=R f]$
by (simp add: card-cartesian-product)
moreover have finite ($R f$)
unfolding R-def using fin-A finite-subset by simp
hence finite $\{(x, y) .(x, y) \in R f \times R f \wedge x<y\}$
by (intro finite-subset[where $B=R f \times R f$, OF - finite-cartesian-product]) auto
hence t2: finite $\left(\left\{. .<C_{7} * b^{\text {^2 }}\right\} \times\{(x, y) \in R f \times R f . x<y\}\right)$
by (intro finite-cartesian-product) auto
ultimately show ? $T L \leq$? $T R$
using card-mono of-nat-le-iff by (metis (no-types, lifting))
show? T2
using finite-subset[OF t1 t2] by simp
qed
have $? L \leq$ measure $\Psi\{(f, g, h)$. card $(R f) \leq b \wedge(\exists x y z . ? \alpha(x, y, z) f \wedge ? \beta(x, y, z) g)\}$
proof (rule pmf-mono)
fix ψ assume $b: \psi \in$ set-pmf (sample-pro Ψ)
obtain $f g h$ where ψ-def: $\psi=(f, g, h)$ by (metis prod-cases3)
have $(f, g, h) \in$ pro-set Ψ using $b \psi$-def by simp
hence $c: g x<C_{7} * b^{\wedge} 2$ for x
using g-range by simp
assume $a: \psi \in\left\{\psi . E_{1} \psi \wedge E_{2} \psi \wedge \neg E_{3} \psi\right\}$
hence card $(R f) \leq 2 / 3 * b$
using R-bound ψ-def by force
moreover have $\exists a b . a \in R f \wedge b \in R f \wedge a \neq b \wedge g a=g b$
using a unfolding ψ-def E_{3}-def inj-on-def by auto
hence $\exists x y . x \in R f \wedge y \in R f \wedge x<y \wedge g x=g y$
by (metis not-less-iff-gr-or-eq)
hence $\exists x y z$. ? $\alpha(x, y, z) f \wedge ? \beta(x, y, z) g$
using c by blast
ultimately show $\psi \in\{(f, g, h)$. card $(R f) \leq b \wedge(\exists x y z . ? \alpha(x, y, z) f \wedge ? \beta(x, y, z) g)\}$ unfolding ψ-def by auto
qed
also have $\ldots=\left(\int f\right.$. measure (pair-pmf $\left.\Psi_{2} \Psi_{3}\right)$
$\left.\{g . \operatorname{card}(R f) \leq b \wedge(\exists x y z . ? \alpha(x, y, z) f \wedge ? \beta(x, y, z)(f s t g))\} \partial \Psi_{1}\right)$
unfolding sample-pro- Ψ split-pair-pmf by (simp add: case-prod-beta)
also have
$\ldots=\left(\int f\right.$. measure $\Psi_{2}\{g$. card $\left.(R f) \leq b \wedge(\exists x y z . ? \alpha(x, y, z) f \wedge ? \beta(x, y, z) g)\} \partial \Psi_{1}\right)$
by (subst pair-pmf-prob-left) simp

```
    also have ... \leq (\intf.1/real (2*C\mp@subsup{C}{7}{})\partial\mp@subsup{\Psi}{1}{})
    proof (rule pmf-exp-mono[OF integrable-sample-pro integrable-sample-pro])
        fix f}\mathrm{ assume f}\in\mathrm{ set-pmf (sample-pro }\mp@subsup{\Psi}{1}{}\mathrm{ )
        show measure }\mp@subsup{\Psi}{2}{}{g.card (Rf)\leqb\wedge(\existsxyz.?\alpha (x,y,z)f\wedge?\beta(x,y,z)g)}\leq1/real(2
* C7)
            (is ?L1 \leq?R1)
    proof (cases card (R f) \leqb)
        case True
        have ?L1 \leq measure }\mp@subsup{\Psi}{2}{}(\bigcup\omega\in{\omega. ?\alpha \omegaf}.{g.?\beta \omega g}
            by (intro pmf-mono) auto
        also have ... \leq(\sum\omega\in{\omega. ?\alpha \omegaf}. measure }\mp@subsup{\Psi}{2}{}{g.?\beta\omegag}
            by (intro measure-UNION-le fin-\alpha) auto
        also have ... \leq(\sum\omega\in{\omega. ?\alpha \omegaf}.(1/real (C ( 
            by (intro sum-mono \beta-prob) auto
        also have ... = card {\omega. ?\alpha \omega f} /( C7*b^2)^2
            by simp
```



```
            by (intro \alpha-card divide-right-mono) simp
        also have ... \leq (C7*b^2)* (b*b / 2) / ( }\mp@subsup{C}{7}{**b^2)^2
            unfolding C}\mp@subsup{C}{7}{}\mathrm{ -def using True
            by (intro divide-right-mono Nat.of-nat-mono mult-mono) auto
        also have ... = 1/(2*C ( )
            using b-min by (simp add:algebra-simps power2-eq-square)
        finally show ?thesis by simp
        next
            case False
            then show ?thesis by simp
        qed
    qed
    also have ... }\leq1/\mp@subsup{|}{}{2`6
        unfolding }\mp@subsup{C}{7}{}\mathrm{ -def by simp
    finally show ?thesis by simp
qed
definition }\mp@subsup{E}{4}{}\mathrm{ where }\mp@subsup{E}{4}{}=(\lambda(f,g,h).|p(f,g,h)-\varrho(card (Rf))|\leq\varepsilon/12*\operatorname{card}(Rf)
lemma e-4-h:9 / sqrt b\leq\varepsilon/ 12
proof -
    have 108 \leq sqrt ( }\mp@subsup{C}{4}{}
        unfolding }\mp@subsup{C}{4}{}\mathrm{ -def by (approximation 5)
    also have ... \leqsqrt( ह^2 * real b)
        using b-lower-bound \varepsilon-gt-0
        by (intro real-sqrt-le-mono) (simp add: pos-divide-le-eq algebra-simps)
    also have ...= &* sqrt b
        using \varepsilon-gt-0 by (simp add:real-sqrt-mult)
    finally have 108\leq\varepsilon* sqrt b by simp
    thus ?thesis
        using b-min by (simp add:pos-divide-le-eq)
qed
lemma e-4:measure }\Psi{\psi.\mp@subsup{E}{1}{}\psi\wedge\mp@subsup{E}{2}{}\psi\wedge\mp@subsup{E}{3}{}\psi\wedge\neg\mp@subsup{E}{4}{}\psi}\leq1/\mp@subsup{Q}{}{`}6(\mathrm{ is ? L }\leq?R
proof -
    have a: measure \Psi 
        (is ?L1 \leq ?R1) if f\in set-pmf (sample-pro }\mp@subsup{\Psi}{1}{})g\in\mathrm{ set-pmf(sample-pro }\mp@subsup{\Psi}{2}{}
        for fg
    proof (cases card (Rf)\leqb\wedgeinj-on g (Rf))
    case True
```

have g-inj: inj-on $g(R f)$
using True by simp
have fin-R: finite $(g$ ' $R f)$
unfolding R-def using fin- A
by (intro finite-imageI) simp
interpret B:balls-and-bins-abs g' $R f\{. .<b\}$
using fin- R b-ne by unfold-locales auto
have range $g \subseteq\left\{. .<C_{7} * b^{2}\right\}$
using g-range-1 that(2) by auto
hence g-ran: $g{ }^{\prime} R f \subseteq\left\{. .<C_{7} * b^{2}\right\}$
by auto
have sample-pro $(\mathcal{N} \quad b)=$ pmf-of-set $\{. .<b\}$
by (intro nat-pro) (simp add:b-def)
hence map-pmf $(\lambda \omega . \omega x)$ (sample-pro $\left.\left(\mathcal{H} k\left(C_{7} * b^{2}\right)(\mathcal{N} b)\right)\right)=p m f$-of-set $\{. .<b\}$
if $x \in g^{\prime} R f$ for x
using g-ran hash-pro-component $\left[O F \Psi_{3}-k\right.$-gt-0] that by auto
moreover have prob-space.k-wise-indep-vars $\Psi_{3} k(\lambda$-. discrete) $(\lambda x \omega . \omega x)(g$ ' $R f)$
by (intro prob-space.k-wise-indep-subset[OF - -hash-pro-k-indep $\left.\left[O F \Psi_{3}\right]\right]$ g-ran prob-space-measure-pmf)
ultimately have lim-balls-and-bins: B.lim-balls-and-bins k (sample-pro ($\mathcal{H} k\left(C_{7} * b^{2}\right)(\mathcal{N}$
b)))
unfolding B.lim-balls-and-bins-def by auto
have $\operatorname{card-g-R:~card~}(g ' R f)=\operatorname{card}(R f)$
using True card-image by auto
hence $b-m u$: $\varrho(\operatorname{card}(R f))=B . \mu$
unfolding B. μ-def ϱ-def using b-min by (simp add:powr-realpow)
have card-g-le-b: card $(g ' R f) \leq \operatorname{card}\{. .<b\}$
unfolding card- g - R using True by simp
have $? L 1 \leq$ measure $\Psi_{3}\{h .|B . Y h-B . \mu|>9 * \operatorname{real}(\operatorname{card}(g ‘ R f)) / \operatorname{sqrt}(\operatorname{card}\{. .<b\})\}$
proof (rule pmf-mono)
fix h assume $h \in\left\{h . E_{1}(f, g, h) \wedge E_{2}(f, g, h) \wedge E_{3}(f, g, h) \wedge \neg E_{4}(f, g, h)\right\}$
hence $b:|p(f, g, h)-\varrho(\operatorname{card}(R f))|>\varepsilon / 12 * \operatorname{card}(R f)$
unfolding E_{4}-def by simp
assume $h \in$ set-pmf (sample-pro Ψ_{3})
hence h-range: $h x<b$ for x using h-range- 1 by simp
have $\left\{j \in\{. .<b\}\right.$.int $\left.(s f) \leq \tau_{1}(f, g, h) A 0 j\right\}=$ $\{j \in\{. .<b\}$. int $(s f) \leq \max (\operatorname{Max}(\{\operatorname{int}(f a) \mid a . a \in A \wedge h(g a)=j\} \cup\{-1\}))(-1)\}$ unfolding τ_{1}-def by simp
also have $\ldots=\{j \in\{. .<b\}$. int $(s f) \leq \operatorname{Max}(\{\operatorname{int}(f a) \mid a . a \in A \wedge h(g a)=j\} \cup\{-1\})\}$ using fin- A by (subst max-absorb1) (auto intro: Max-ge)
also have $\ldots=\{j \in\{. .<b\} .(\exists a \in R f . h(g a)=j)\}$ unfolding R-def using fin- A by (subst Max-ge-iff) auto
also have $\ldots=\{j . \exists a \in R f . h(g a)=j\}$ using h-range by auto
also have $\ldots=(h \circ g)^{\prime}(R f)$ by (auto simp add:set-eq-iff image-iff)
also have $\ldots=h^{\prime}\left(g^{\prime}(R f)\right)$ by (simp add:image-image)
finally have $c:\left\{j \in\{. .<b\}\right.$. int $\left.(s f) \leq \tau_{1}(f, g, h) A 0 j\right\}=h^{\prime}(g ' R f)$ by simp

```
    have 9 * real (card (g'Rf)) / sqrt (card {..<b}) = 9/ sqrt b * real (card (Rf))
        using card-image[OF g-inj] by simp
    also have .. \leq &/12* card (R f)
        by (intro mult-right-mono e-4-h) simp
    also have ... < | B.Yh-B. }\mu
        using b c unfolding B.Y-def p-def b-mu by simp
    finally show h\in{h. |B.Yh-B.\mu|> > * real (card (g'Rf)) / sqrt (card {..<b})}
        by simp
    qed
    also have .. \leq 1/2^6
        using k-min
        by (intro B.devitation-bound[OF card-g-le-b lim-balls-and-bins]) auto
    finally show ?thesis by simp
next
    case False
    have ?L1 \leq measure }\mp@subsup{\Psi}{3}{}{
    proof (rule pmf-mono)
        fix h assume b:h \in{h. E E (f,g,h)\wedge E 2 (f,g,h)\wedge E E (f,g,h)\wedge\neg E E (f,g,h)}
        hence card (Rf)\leq(2/3)*b
            by (auto intro!: R-bound[simplified])
    hence card (R f) \leqb
            by simp
    moreover have inj-on g(Rf)
                using b by (simp add:E3-def)
        ultimately have False using False by simp
        thus h\in{} by simp
    qed
    also have ... = 0 by simp
    finally show ?thesis by simp
qed
have \(? L=\left(\int f .\left(\int g\right.\right.\).
    measure }\mp@subsup{\Psi}{3}{}{h.\mp@subsup{E}{1}{}(f,g,h)\wedge\mp@subsup{E}{2}{}(f,g,h)\wedge\mp@subsup{E}{3}{}(f,g,h)\wedge\neg\mp@subsup{E}{4}{}(f,g,h)}\partial\mp@subsup{\Psi}{2}{})\partial\mp@subsup{\Psi}{1}{}
    unfolding sample-pro-\Psi split-pair-pmf by simp
    also have ... \leq(\intf.(\intg. 1/2^6 \partial\Psi (|) \partial\Psi ()
    using a by (intro integral-mono-AE AE-pmfI) simp-all
    also have ... = 1/2^6
    by simp
    finally show ?thesis by simp
qed
lemma \varrho-inverse: \varrho-inv (\varrho x) =x
proof -
    have }a:1-1/b\not=
    using b-min by simp
    have \varrho }x=b*(1-(1-1/b) powr x
    unfolding \varrho-def by simp
hence \varrho x / real b=1-(1-1/b) powr x by simp
hence ln (1-@x/ real b) = ln ((1-1/b) powr x) by simp
also have ... =x*ln (1-1/b)
    using a by (intro ln-powr)
finally have ln}(1-\varrhox/real b)=x*\operatorname{ln}(1-1/b
    by simp
moreover have ln (1-1/b)<0
    using b-min by (subst ln-less-zero-iff) auto
ultimately show ?thesis
    using \varrho-inv-def by simp
```


qed

```
lemma rho-mono:
    assumes x \leqy
    shows \varrho x \leq \varrho y
proof-
    have (1 - 1 / real b) powr y \leq(1 - 1 / real b) powr x
        using b-min
        by (intro powr-mono-rev assms) auto
    thus ?thesis
        unfolding \varrho-def by (intro mult-left-mono) auto
qed
lemma rho-two-thirds: \varrho(2/3*b)\leq3/5*b
proof -
    have 1/3\leq\operatorname{exp}(-13/12::real )
    by (approximation 8)
    also have ... \leqexp ( - 1 - 2 / real b)
    using b-min by (intro iffD2[OF exp-le-cancel-iff]) (simp add:algebra-simps)
    also have .. \leq exp (b*(-(1/real b)-2*(1/real b)^2))
    using b-min by (simp add:algebra-simps power2-eq-square)
    also have ... \leqexp (b*\operatorname{ln}(1-1/real b))
        using b-min
        by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono ln-one-minus-pos-lower-bound) auto
    also have ... = exp ( ln ( (1-1/real b) powr b))
    using b-min by (subst ln-powr) auto
    also have }\ldots=(1-1/\mathrm{ real b) powr b
    using b-min by (subst exp-ln) auto
    finally have a:1/3\leq(1-1/real b) powr b by simp
    have 2/5 \leq (1/3) powr (2/3::real)
        by (approximation 5)
    also have ...\leq((1-1/real b) powr b) powr (2/3)
        by (intro powr-mono2 a) auto
    also have ... = (1-1/real b) powr (2/3 * real b)
    by (subst powr-powr) (simp add:algebra-simps)
    finally have 2/5 \leq(1-1 / real b) powr (2 / 3 * real b) by simp
    hence 1-(1-1/real b) powr (2 / 3* real b) \leq 3/5
    by simp
    hence \varrho(2/3*b)\leqb*(3/5)
        unfolding \varrho-def by (intro mult-left-mono) auto
    thus ?thesis
        by simp
qed
definition \varrho-inv' :: real # real
    where \varrho-inv' }x=-1/(\mathrm{ real b*(1-x / real b)*ln (1 - 1 / real b))
lemma \varrho-inv'-bound:
    assumes }x\geq
    assumes }x\leq59/90*
    shows |\varrho-inv' }x|\leq
proof -
    have c:ln (1 - 1 / real b)<0
        using b-min
    by (subst ln-less-zero-iff) auto
    hence d:real b*(1-x / real b)*\operatorname{ln}(1-1/real b)<0
        using b-min assms by (intro Rings.mult-pos-neg) auto
```

```
    have \((1::\) real \() \leq 31 / 30\) by simp
    also have \(\ldots \leq(31 / 30) *(b *-(-1 /\) real \(b))\)
    using \(b\)-min by simp
    also have \(\ldots \leq(31 / 30) *(b *-\ln (1+(-1 /\) real \(b)))\)
    using \(b\)-min
    by (intro mult-left-mono le-imp-neg-le ln-add-one-self-le-self2) auto
    also have \(\ldots \leq 3 *(31 / 90) *(-b * \ln (1-1 /\) real \(b))\)
    by \(\operatorname{simp}\)
    also have \(\ldots \leq 3 *(1-x /\) real \(b) *(-b * \ln (1-1 /\) real \(b))\)
    using assms \(b\)-min pos-divide-le-eq[where \(c=b] c\)
    by (intro mult-right-mono mult-left-mono mult-nonpos-nonpos) auto
    also have \(\ldots \leq 3 *(\) real \(b *(1-x /\) real \(b) *(-\ln (1-1 /\) real \(b)))\)
    by (simp add:algebra-simps)
    finally have \(3 *(\) real \(b *(1-x /\) real \(b) *(-\ln (1-1 /\) real \(b))) \geq 1\) by \(\operatorname{simp}\)
    hence \(3 *(\) real \(b *(1-x /\) real \(b) * \ln (1-1 /\) real \(b)) \leq-1\) by simp
    hence \(\varrho-i n v^{\prime} x \leq 3\)
        unfolding \(\varrho\)-inv'-def using \(d\)
        by (subst neg-divide-le-eq) auto
    moreover have \(\varrho\)-inv' \(x>0\)
        unfolding \(\varrho\)-inv'-def using \(d\) by (intro divide-neg-neg) auto
    ultimately show? thesis by simp
qed
lemma \(\varrho\)-inv':
    fixes \(x\) :: real
    assumes \(x<b\)
    shows DERIV @-inv \(x\) :> \(\varrho-i n v \prime x\)
proof -
    have DERIV \((\ln \circ(\lambda x .(1-x /\) real \(b))) x:>1 /(1-x /\) real \(b) *(0-1 / b)\)
        using assms b-min
        by (intro DERIV-chain DERIV-ln-divide DERIV-cdivide derivative-intros) auto
    hence DERIV @-inv \(x:>(1 /(1-x /\) real \(b) *(-1 / b)) / \ln (1-1 /\) real b)
        unfolding comp-def \(\varrho\)-inv-def by (intro DERIV-cdivide) auto
    thus ?thesis
        by (simp add: \(\varrho-i n v^{\prime}\)-def algebra-simps)
qed
lemma accuracy-without-cutoff:
    measure \(\Psi\{(f, g, h) . \mid Y(f, g, h)-\) real \(X \mid>\varepsilon * X \vee s f<q\)-max \(\} \leq 1 / 2\) 24
    (is ? \(L \leq ? R\) )
proof -
    have ? \(L \leq\) measure \(\Psi\left\{\psi . \neg E_{1} \psi \vee \neg E_{2} \psi \vee \neg E_{3} \psi \vee \neg E_{4} \psi\right\}\)
    proof (rule pmf-rev-mono)
        fix \(\psi\) assume \(\psi \in\) set-pmf (sample-pro \(\Psi\) )
        obtain \(f g h\) where \(\psi\)-def: \(\psi=(f, g, h)\) by (metis prod-cases3)
    assume \(\psi \notin\left\{\psi . \neg E_{1} \psi \vee \neg E_{2} \psi \vee \neg E_{3} \psi \vee \neg E_{4} \psi\right\}\)
    hence assms: \(E_{1}(f, g, h) E_{2}(f, g, h) E_{3}(f, g, h) E_{4}(f, g, h)\)
        unfolding \(\psi\)-def by auto
    define \(I::\) real set where \(I=\{0 . .59 / 90 * b\}\)
    have \(p(f, g, h) \leq \varrho(\operatorname{card}(R f))+\varepsilon / 12 * \operatorname{card}(R f)\)
        using assms(4) \(E_{4}\)-def unfolding abs-le-iff by simp
    also have \(\ldots \leq \varrho(2 / 3 * b)+1 / 12 *(2 / 3 * b)\)
        using \(\varepsilon\)-lt-1 R-bound[OF assms(1,2)]
        by (intro add-mono rho-mono mult-mono) auto
```

also have $\ldots \leq 3 / 5 * b+1 / 18 * b$
by (intro add-mono rho-two-thirds) auto
also have $\ldots \leq 59 / 90 * b$
by simp
finally have $p(f, g, h) \leq 59 / 90 * b$ by simp
hence p-in-I: $p(f, g, h) \in I$
unfolding I-def by simp
have $\varrho(\operatorname{card}(R f)) \leq \varrho(2 / 3 * b)$
using R-bound[OF $\operatorname{assms}(1,2)]$
by (intro rho-mono) auto
also have $\ldots \leq 3 / 5 * b$
using rho-two-thirds by simp
also have $\ldots \leq b * 59 / 90$ by simp
finally have $\varrho($ card $(R f)) \leq b * 59 / 90$ by simp
moreover have $(1-1 /$ real b) powr $(\operatorname{real}(\operatorname{card}(R f))) \leq 1$ powr $(\operatorname{real}(\operatorname{card}(R f)))$
using b-min by (intro powr-mono2) auto
hence $\varrho(\operatorname{card}(R f)) \geq 0$
unfolding ϱ-def by (intro mult-nonneg-nonneg) auto
ultimately have $\varrho(\operatorname{card}(R f)) \in I$
unfolding I-def by simp
moreover have interval I
unfolding I-def interval-def by simp
moreover have $59 / 90 * b<b$
using b-min by simp
hence $D E R I V \varrho$-inv x : \bigcirc-inv' x if $x \in I$ for x using that I-def by (intro ϱ-inv') simp
ultimately obtain $\xi::$ real where ξ-def: $\xi \in I$ $\varrho-\operatorname{inv}(p(f, g, h))-\varrho-\operatorname{inv}(\varrho(\operatorname{card}(R f)))=(p(f, g, h)-\varrho(\operatorname{card}(R f))) * \varrho-i n v^{\prime} \xi$ using p-in-I MVT-interval by blast
have $|\varrho-\operatorname{inv}(p(f, g, h))-\operatorname{card}(R f)|=|\varrho-\operatorname{inv}(p(f, g, h))-\varrho-\operatorname{inv}(\varrho(\operatorname{card}(R f)))|$
by (subst ϱ-inverse) simp
also have $\ldots=|(p(f, g, h)-\varrho(\operatorname{card}(R f)))| *\left|\varrho-i n v^{\prime} \xi\right|$
using ξ-def(2) abs-mult by simp
also have $\ldots \leq|p(f, g, h)-\varrho(\operatorname{card}(R f))| * 4$
using ξ-def(1) I-def
by (intro mult-left-mono @-inv'-bound) auto
also have $\ldots \leq(\varepsilon / 12 * \operatorname{card}(R f)) * 4$
using assms(4) E_{4}-def by (intro mult-right-mono) auto
also have $\ldots=\varepsilon / 3 * \operatorname{card}(R f)$ by simp
finally have $b:|\varrho-\operatorname{inv}(p(f, g, h))-\operatorname{card}(R f)| \leq \varepsilon / 3 * \operatorname{card}(R f)$ by simp
have $\left|\varrho-\operatorname{inv}(p(f, g, h))-X / 2^{\wedge}(s f)\right| \leq$
$|\varrho-\operatorname{inv}(p(f, g, h))-\operatorname{card}(R f)|+\left|\operatorname{card}(R f)-X / \mathcal{2}^{へ}(s f)\right|$
by simp
also have $\ldots \leq \varepsilon / 3 * \operatorname{card}(R f)+\left|\operatorname{card}(R f)-X / \mathcal{Z}^{\wedge}(s f)\right|$
by (intro add-mono b) auto
also have $\ldots=\varepsilon / 3 *\left|X / \operatorname{2}^{\wedge}(s f)+\left(\operatorname{card}(R f)-X / 2^{\wedge}(s f)\right)\right|+$ $\left|\operatorname{card}(R f)-X / 2^{\wedge}(s f)\right|$ by simp
also have $\ldots \leq \varepsilon / 3 *\left(\left|X / 2^{\wedge}(s f)\right|+\left|\operatorname{card}(R f)-X / 2^{\wedge}(s f)\right|\right)+$ $\mid \operatorname{card}(R f)-X /$ 2 $^{\wedge}(s f) \mid$
using ε-gt-0 by (intro mult-left-mono add-mono abs-triangle-ineq) auto
also have $\ldots \leq \varepsilon / 3 *\left|X / \mathcal{2}^{\wedge}(s f)\right|+(1+\varepsilon / 3) *\left|\operatorname{card}(R f)-X / 2^{\wedge}(s f)\right|$
using ε-gt-0 ε-lt-1 by (simp add:algebra-simps)
also have $\ldots \leq \varepsilon / 3 *\left|X / 2^{\wedge} s f\right|+(4 / 3) *\left(\varepsilon / 3 *\right.$ real $\left.X / 2{ }^{\text {ºs }} f\right)$
using assms(2) ε-gt-0 ε-lt-1

```
        unfolding \(E_{2}\)-def by (intro add-mono mult-mono) auto
    also have \(\ldots=(7 / 9) * \varepsilon *\) real \(X / 2\) 2 s \(f\)
        using \(X\)-ge-1 by (subst abs-of-nonneg) auto
    also have \(\ldots \leq 1 * \varepsilon *\) real \(X / 2 \wedge s f\)
        using \(\varepsilon\)-gt- 0 by (intro mult-mono divide-right-mono) auto
    also have \(\ldots=\varepsilon *\) real \(X / 2 \widehat{2} f\) by \(\operatorname{simp}\)
    finally have \(a:\left|\varrho-\operatorname{inv}(p(f, g, h))-X / 2^{\wedge}(s f)\right| \leq \varepsilon * X / 2^{\wedge}(s f)\)
    by simp
    have \(|Y(f, g, h)-\operatorname{real} X|=\left|2^{\wedge}(s f)\right| *\left|\varrho-\operatorname{inv}(p(f, g, h))-\operatorname{real} X / 2^{\wedge}(s f)\right|\)
    unfolding \(Y\)-def by (subst abs-mult[symmetric]) (simp add:algebra-simps powr-add[symmetric])
    also have \(\ldots \leq \mathcal{2}^{\wedge}(s f) *\left(\varepsilon * X / \mathcal{2}^{\wedge}(s f)\right)\)
    by (intro mult-mono a) auto
    also have \(\ldots=\varepsilon * X\)
    by (simp add:algebra-simps powr-add[symmetric])
    finally have \(\mid Y(f, g, h)-\) real \(X \mid \leq \varepsilon * X\) by \(\operatorname{simp}\)
    moreover have 2 powr \((\lceil\log 2(\) real \(X)\rceil-t f) \leq 2\) powr b-exp \((\) is ? \(L 1 \leq\) ? \(R 1\) )
    proof -
    have ?L1 \(\leq 2\) powr \((1+\log 2(\) real \(X)-t f)\)
        by (intro powr-mono, linarith) auto
    also have \(\ldots=2\) powr \(1 * 2\) powr \((\log 2(\) real \(X)) * 2 \operatorname{powr}(-t f)\)
        unfolding powr-add[symmetric] by simp
    also have \(\ldots=2 *(2\) powr \((-t f) * X)\)
        using \(X-g e-1\) by \(\operatorname{simp}\)
    also have \(\ldots \leq 2 *(b / 2)\)
        using assms(1) unfolding \(E_{1}\)-def by (intro mult-left-mono) auto
    also have \(\ldots=b\) by \(\operatorname{simp}\)
    also have \(\ldots=\) ? \(R 1\)
        unfolding \(b\)-def by (simp add: powr-realpow)
    finally show ?thesis by simp
    qed
    hence \(\lceil\log 2(\) real \(X)\rceil-t f \leq\) real \(b-\exp\)
        unfolding not-less[symmetric] using powr-less-mono[where \(x=2]\) by simp
    hence \(s f \geq q\)-max unfolding \(s\)-def \(q\)-max-def by (intro nat-mono) auto
    ultimately show \(\psi \notin\{(f, g, h) . \varepsilon * X<\mid Y(f, g, h)-\) real \(X \mid \vee s f<q\)-max \(\}\)
    unfolding \(\psi\)-def by auto
qed
also have ... \(\leq\)
    measure \(\Psi\left\{\psi . \neg E_{1} \psi \vee \neg E_{2} \psi \vee \neg E_{3} \psi\right\}+\) measure \(\Psi\left\{\psi . E_{1} \psi \wedge E_{2} \psi \wedge E_{3} \psi \wedge \neg E_{4} \psi\right\}\)
    by (intro pmf-add) auto
    also have \(\ldots \leq\left(\right.\) measure \(\Psi\left\{\psi . \neg E_{1} \psi \vee \neg E_{2} \psi\right\}+\) measure \(\left.\Psi\left\{\psi . E_{1} \psi \wedge E_{2} \psi \wedge \neg E_{3} \psi\right\}\right)\)
+ 1/2`6
    by (intro add-mono e-4 pmf-add) auto
    also have \(\ldots \leq\left(\left(\right.\right.\) measure \(\Psi\left\{\psi . \neg E_{1} \psi\right\}+\) measure \(\left.\left.\Psi\left\{\psi . E_{1} \psi \wedge \neg E_{2} \psi\right\}\right)+1 / \mathscr{2} \wedge 6\right)+1 /\) 2^6
    by (intro add-mono e-3 pmf-add) auto
    also have \(\ldots \leq\left(\left(1 /\right.\right.\) 2^ \(^{2}+1 /\) 2^ \(\left.^{2} 6\right)+1 /\) 2^ \(\left.^{2} 6\right)+1 /\) 2^ \(^{2} 6\)
    by (intro add-mono e-2 e-1) auto
    also have \(\ldots=? R\) by simp
    finally show? ?hesis by simp
qed
end
end
```


8 Cutoff Level

This section verifies that the cutoff will be below q-max with high probability. The result will be needed in Section 9, where it is shown that the estimates will be accurate for any cutoff below q-max.

```
theory Distributed-Distinct-Elements-Cutoff-Level
    imports
        Distributed-Distinct-Elements-Accuracy-Without-Cutoff
        Distributed-Distinct-Elements-Tail-Bounds
begin
hide-const (open) Quantum.Z
unbundle intro-cong-syntax
lemma mono-real-of-int: mono real-of-int
    unfolding mono-def by auto
lemma Max-le-Sum:
    fixes \(f:{ }^{\prime}{ }^{\prime} a \Rightarrow\) int
    assumes finite \(A\)
    assumes \(\bigwedge a . a \in A \Longrightarrow f a \geq 0\)
    shows Max (insert \(\left.0\left(f^{\prime} A\right)\right) \leq\left(\sum a \in A . f a\right)(\) is ? \(L \leq ? R)\)
proof (cases \(A \neq\{ \}\) )
    case True
    have \(0: f a \leq\left(\sum a \in A . f a\right)\) if \(a \in A\) for \(a\)
        using that assms by (intro member-le-sum) auto
    have \(? L=\max 0\left(\operatorname{Max}\left(f^{\prime} A\right)\right)\)
        using True assms(1) by (subst Max-insert) auto
    also have \(\ldots=\operatorname{Max}(\max 0\) ' \(f\) ' \(A\) )
        using assms True by (intro mono-Max-commute monoI) auto
    also have \(\ldots=\operatorname{Max}\left(f^{\prime} A\right)\)
        unfolding image-image using assms
        by (intro arg-cong [where \(f=\) Max] image-cong) auto
    also have ... \(\leq\) ? \(R\)
        using 0 True assms(1)
        by (intro iffD2[OF Max-le-iff]) auto
    finally show ?thesis by simp
next
    case False
    hence \(A=\{ \}\) by simp
    then show? ?thesis by simp
qed
context inner-algorithm-fix- \(A\)
begin
```

The following inequality is true for base e on the entire domain $(x>0)$. It is shown in $l n$-add-one-self-le-self. In the following it is established for base 2 , where it holds for $x \geq 1$.
lemma log-2-estimate:
assumes $x \geq(1::$ real $)$
shows $\log 2(1+x) \leq x$
proof -
define f where $f x=x-\log 2(1+x)$ for $x::$ real
define f^{\prime} where $f^{\prime} x=1-1 /((x+1) * \ln$ 2) for $x:$ real
have $0:\left(f\right.$ has-real-derivative $\left.\left(f^{\prime} x\right)\right)($ at $x)$ if $x>0$ for x unfolding f-def f^{\prime}-def using that by (auto intro!: derivative-eq-intros)
have $f^{\prime} x \geq 0$ if $1 \leq x$ for $x::$ real
proof -
have $(1::$ real $) \leq 2 * \ln 2$
by (approximation 5)
also have $\ldots \leq(x+1) * \ln 2$
using that by (intro mult-right-mono) auto
finally have $1 \leq(x+1) * \ln 2$ by simp
hence $1 /((x+1) * \ln 2) \leq 1$ by simp
thus ?thesis
unfolding f^{\prime}-def by simp
qed
hence $\exists y$. (f has-real-derivative y) (at $x) \wedge 0 \leq y$ if $x \geq 1$ for $x::$ real using that order-less-le-trans[OF exp-gt-zero] by (intro exI [where $\left.x=f^{\prime} x\right]$ conjI 0) auto
hence $f 1 \leq f x$
by (intro DERIV-nonneg-imp-nondecreasing $[O F$ assms $]$) auto
thus ?thesis
unfolding f-def by simp
qed
lemma cutoff-eq-7:
real $X * 2$ powr (-real q-max) $/ b \leq 1$
proof -
have real $X=2$ powr $(\log 2 X)$
using X-ge- 1 by (intro powr-log-cancel[symmetric]) auto
also have $\ldots \leq 2$ powr (nat $\lceil\log 2 X\rceil$)
by (intro powr-mono) linarith +
also have $\ldots=2^{\wedge}($ nat $\lceil\log 2 X\rceil)$
by (subst powr-realpow) auto
also have $\ldots=\operatorname{real}\left(\right.$ 2 $^{\wedge}($ nat $\left.\lceil\log 2(\operatorname{real} X)\rceil)\right)$
by simp
also have $\ldots \leq \operatorname{real}\left(\mathcal{2}^{\wedge}(b-\exp +\operatorname{nat}(\lceil\log 2(\right.$ real $X)\rceil-$ int b-exp $\left.))\right)$
by (intro Nat.of-nat-mono power-increasing) linarith +
also have $\ldots=b * 2$ 2 q - max
unfolding q-max-def b-def by (simp add: power-add)
finally have real $X \leq b *$ 2 $^{\wedge} q$-max by simp
thus ?thesis
using b-min
unfolding powr-minus inverse-eq-divide
by (simp add:field-simps powr-realpow)
qed
lemma cutoff-eq-6:
fixes k
assumes $a \in A$
shows $\left(\int f\right.$. real-of-int $\left.(\max 0(\operatorname{int}(f a)-i n t k)) \partial \Psi_{1}\right) \leq 2$ powr $(-r e a l k)(i s ? L \leq ? R)$
proof (cases $k \leq n$-exp - 1)
case True
have a-le-n: $a<n$
using assms A-range by auto
have $? L=\left(\int x\right.$. real-of-int $(\max 0($ int $x-k))$ dmap-pmf $\left.(\lambda x . x a) \Psi_{1}\right)$ by simp
also have $\ldots=\left(\int x\right.$. real-of-int $(\max 0($ int $x-k)) \partial(\mathcal{G} n$-exp $\left.)\right)$
by (subst hash-pro-component $\left[O F \Psi_{1}\right.$ a-le-n]) auto
also have $\ldots=\left(\int x\right.$. max $0($ real $x-$ real $k) \partial(\mathcal{G} n$-exp $\left.)\right)$
unfolding max-of-mono[OF mono-real-of-int,symmetric] by simp
also have $\ldots=\left(\sum x \leq n\right.$-exp. max $0($ real $x-$ real $k) * p m f(\mathcal{G} n$-exp $\left.) x\right)$ using geom-pro-range by (intro integral-measure-pmf-real) auto
also have $\ldots=\left(\sum x=k+1 . . n\right.$-exp. $($ real $x-\operatorname{real} k) * \operatorname{pmf}(\mathcal{G} n$-exp $\left.) x\right)$
by (intro sum.mono-neutral-cong-right) auto
also have $\ldots=\left(\sum x=k+1 . . n\right.$-exp. $($ real $x-$ real $k) *$ measure $(\mathcal{G} n$-exp $\left.)\{x\}\right)$
unfolding measure-pmf-single by simp
also have $\ldots=\left(\sum x=k+1 . . n\right.$-exp. $($ real $x-\operatorname{real} k) *($ measure $\left.(\mathcal{G} n-\exp)(\{\omega \cdot \omega \geq x\}-\{\omega \cdot \omega \geq(x+1)\}))\right)$ by (intro sum.cong arg-cong2[where $f=(*)]$ measure-pmf-cong) auto
also have $\ldots=\left(\sum x=k+1 . . n\right.$-exp. $($ real $x-$ real $k) *$
(measure $(\mathcal{G} n$-exp) $\{\omega \cdot \omega \geq x\}-$ measure $(\mathcal{G} n$-exp) $\{\omega \cdot \omega \geq(x+1)\}))$
by (intro sum.cong arg-cong2[where $f=(*)]$ measure-Diff) auto
also have $\ldots=\left(\sum x=k+1\right.$. .n-exp. $($ real $\left.x-r e a l ~ k) *(1 / 2 へ x-o f-b o o l(x+1 \leq n-e x p) / 2 \uparrow(x+1))\right)$
unfolding geom-pro-prob by (intro-cong $\left[\sigma_{2}(*), \sigma_{2}(-), \sigma_{2}(/)\right]$ more:sum.cong) auto
also have ... $=$
$\left(\sum x=k+1 . . n\right.$-exp. $($ real $\left.x-k) / \mathcal{D}^{\wedge} x\right)-\left(\sum x=k+1 . . n\right.$-exp. $($ real $x-k) *$ of-bool $(x+1 \leq n$-exp $\left.) / \mathcal{Z}(x+1)\right)$
by (simp add:algebra-simps sum-subtractf)
also have $\ldots=\left(\sum x=k+1\right.$..n-exp. $($ real $\left.x-k) / 2 \uparrow x\right)-\left(\sum x=k+1 . . n\right.$-exp -1 . (real $\left.\left.x-k\right) / 2 \uparrow(x+1)\right)$ by (intro arg-cong2[where $f=(-)]$ refl sum.mono-neutral-cong-right) auto
also have $\ldots=\left(\sum x=k+1 . .(n-\exp -1)+1 .(\right.$ real $\left.x-k) / \mathcal{D}^{\wedge} x\right)-\left(\sum x=k+1 . . n-\exp -1 .(\right.$ real $\left.x-k) / 2^{\wedge}(x+1)\right)$ using n-exp-gt-0 by (intro arg-cong2[where $f=(-)]$ refl sum.cong) auto
also have $\ldots=\left(\sum x \in\right.$ insert $k\{k+1 . . n-\exp -1\}$. $($ real $\left.(x+1)-k) / \mathcal{N}^{\Upsilon}(x+1)\right)-$ $\left(\sum x=k+1 . . n\right.$-exp-1. $($ real $\left.x-k) /{ }^{2} \uparrow(x+1)\right)$
unfolding sum.shift-bounds-cl-nat-ivl using True
by (intro arg-cong2 [where $f=(-)]$ sum.cong) auto
also have $\ldots=1 / \mathcal{R}^{\wedge}(k+1)+\left(\sum x=k+1\right.$..n-exp-1. $($ real $(x+1)-k) / \mathscr{D}^{\wedge}(x+1)-($ real $\left.x-k) / \mathscr{D}^{\wedge}(x+1)\right)$
by (subst sum.insert) (auto simp add:sum-subtractf)
also have $\ldots=1 / \mathcal{Z}^{\wedge}(k+1)+\left(\sum x=k+1 . . n-\exp -1 .\left(1 / \mathcal{Z}^{\wedge}(x+1)\right)\right)$
by (intro arg-cong2[where $f=(+)]$ sum.cong refl) (simp add:field-simps)
also have $\ldots=\left(\sum x \in\right.$ insert $\left.k\{k+1 . . n-\exp -1\} .\left(1 / \mathcal{D}^{\wedge}(x+1)\right)\right)$
by (subst sum.insert) auto
also have $\ldots=\left(\sum x=0+k . .(n-e x p-1-k)+k .1 / \mathcal{D}^{\wedge}(x+1)\right)$
using True by (intro sum.cong) auto
also have $\ldots=\left(\sum x<n-e x p-k .1 / \mathcal{D}^{\wedge}(x+k+1)\right)$
unfolding sum.shift-bounds-cl-nat-ivl using True n-exp-gt-0 by (intro sum.cong) auto
also have $\ldots=(1 / 2) \uparrow(k+1) *\left(\sum x<n-\exp -k\right.$. (1/2)^x)
unfolding sum-distrib-left power-add[symmetric] by (simp add:power-divide ac-simps)
also have $\ldots=(1 / 2) \uparrow(k+1) * 2 *(1-(1 / 2) \wedge(n-\exp -k))$
by (subst geometric-sum) auto
also have $\ldots \leq(1 / 2) \wedge(k+1) * 2 *(1-0)$
by (intro mult-left-mono diff-mono) auto
also have $\ldots=(1 / 2) \uparrow k$
unfolding power-add by simp
also have...$=$? R
unfolding powr-minus by (simp add:powr-realpow inverse-eq-divide power-divide)
finally show ?thesis
by simp
next
case False
hence k-ge-n-exp: $k \geq n$-exp
by simp
have a-lt-n: $a<n$
using assms A-range by auto
have $? L=\left(\int x\right.$. real-of-int $(\max 0($ int $x-k))$ dmap-pmf $\left.(\lambda x . x a) \Psi_{1}\right)$
by simp
also have $\ldots=\left(\int x\right.$. real-of-int $(\max 0($ int $x-k)) \partial(\mathcal{G}$ n-exp $\left.)\right)$
by (subst hash-pro-component $\left[O F \Psi_{1}\right.$ a-lt-n]) auto
also have $\ldots=\left(\int x\right.$. real-of-int $0 \partial(\mathcal{G}$ n-exp $\left.)\right)$
using geom-pro-range k-ge-n-exp
by (intro integral-cong-AE AE-pmfI iffD2[OF of-int-eq-iff] max-absorb1) force+
also have $\ldots=0$ by simp
finally show ?thesis by simp
qed
lemma cutoff-eq-5:
assumes $x \geq(-1$:: real $)$
shows real-of-int $\lfloor\log 2(x+2)\rfloor \leq($ real $c+2)+\max (x-2 \uparrow c) 0($ is $? L \leq ? R)$
proof -
have $0: 1 \leq 2^{\wedge} 1 * \ln (2::$ real $)$
by (approximation 5)
consider $(a) c=0 \wedge x \geq 2 \wedge c+1|(b) c>0 \wedge x \geq 2 \wedge c+1|(c) x \leq 2 \wedge c+1$
by linarith
hence $\log 2(x+2) \leq ? R$
proof (cases)
case a
have $\log 2(x+2)=\log 2(1+(x+1))$
by (simp add:algebra-simps)
also have $\ldots \leq x+1$
using a by (intro log-2-estimate) auto
also have $\ldots=$? R
using a by auto
finally show? ?thesis by simp
next
case b
have $0<0+(1::$ real $)$
by simp
also have $\ldots \leq$ 2^ $^{\wedge} c+(1:$:real $)$ by (intro add-mono) auto
also have $\ldots \leq x$
using b by simp
finally have $x-g t-0: x>0$ by simp
have $\log 2(x+2)=\log 2((x+2) / 2 \widehat{2} c)+c$ using x-gt- 0 by (subst log-divide) auto
also have $\ldots=\log 2\left(1+(x+2-2 \wedge c) / \mathcal{Z}^{\wedge} c\right)+c$ by (simp add:divide-simps)
also have $\ldots \leq(x+2-2 へ c) / 2 \wedge c / \ln 2+c$
using b unfolding log-def
by (intro add-mono divide-right-mono ln-add-one-self-le-self divide-nonneg-pos) auto
also have $\ldots=(x+2-2 \wedge c) /(2 \uparrow c * \ln 2)+c$
by simp
also have $\ldots \leq(x+2-2 \wedge c) /\left(\mathscr{2}^{\wedge} 1 * \ln\right.$ 2 $)+c$
using b by (intro add-mono divide-left-mono mult-right-mono power-increasing) simp-all
also have $\ldots \leq(x+2-2 \widehat{2}) / 1+c$
using b by (intro add-mono divide-left-mono 0) auto
also have $\ldots \leq(c+2)+\max (x-2 \uparrow c) 0$
using b by simp

```
    finally show? ?thesis by simp
    next
    case \(c\)
    hence \(\log 2(x+2) \leq \log 2((2 ` c+1)+2)\)
        using assms by (intro log-mono add-mono) auto
    also have \(\ldots=\log 2(2 \wedge c *(1+3 / 2 \widehat{2} c))\)
        by (simp add:algebra-simps)
    also have \(\ldots=c+\log 2(1+3 / 2 \uparrow c)\)
        by (subst log-mult) (auto intro:add-pos-nonneg)
    also have \(\ldots \leq c+\log 2(1+3 / 2 \wedge 0)\)
        by (intro add-mono log-mono divide-left-mono power-increasing add-pos-nonneg) auto
    also have \(\ldots=c+\log 2(2 * 2)\)
        by simp
    also have \(\ldots=\) real \(c+2\)
        by (subst log-mult) auto
    also have \(\ldots \leq(c+2)+\max (x-2 \wedge c) 0\)
        by simp
    finally show ?thesis
        by simp
    qed
    moreover have \(\lfloor\log 2(x+2)\rfloor \leq \log 2(x+2)\)
    by simp
    ultimately show ?thesis using order-trans by blast
qed
lemma cutoff-level:
    measure \(\Omega\{\omega . q \omega A>q-\max \} \leq \delta / \mathcal{Z}(\) is \(? L \leq ? R)\)
proof -
    have \(C_{1}\)-est: \(C_{1} * l \leq 30 *\) real \(l\)
        unfolding \(C_{1}\)-def
        by (intro mult-right-mono of-nat-0-le-iff) (approximation 10)
    define \(Z\) where \(Z \omega=\left(\sum j<b\right.\). real-of-int \(\left.\left\lfloor\log 2\left(\operatorname{of-int}\left(\max \left(\tau_{1} \omega A q-\max j\right)(-1)\right)+2\right)\right\rfloor\right)\)
for \(\omega\)
    define \(V\) where \(V \omega=Z \omega /\) real \(b-3\) for \(\omega\)
    have 2:Z \(\psi \leq\) real \(b *(\) real \(c+2)+\) of-int \(\left(\sum a \in A . \max 0(\right.\) int \(\left.(f s t \psi a)-q-m a x-2 \wedge c)\right)\)
    (is ? L1 \(\leq\) ? R1) if \(\psi \in\) sample-pro \(\Psi\) for \(c \psi\)
    proof -
    obtain \(f g h\) where \(\psi\)-def: \(\psi=(f, g, h)\)
        using prod-cases3 by blast
    have \(\psi\)-range: \((f, g, h) \in\) sample-pro \(\Psi\)
            using that unfolding \(\psi\)-def by simp
    have \(-1-2 \widehat{ } c \leq-1-(1::\) real \()\)
        by (intro diff-mono) auto
    also have \(\ldots \leq 0\) by \(\operatorname{simp}\)
    finally have \(-1-2^{\wedge} c \leq(0::\) real \()\) by \(\operatorname{simp}\)
    hence aux3: \(\max (-1-2 \wedge c) 0=(0::\) real \()\)
            by (intro max-absorb2)
    have - 1 - int \(q-\max -\) 2 \(^{\wedge} c \leq-1-0-1\)
            by (intro diff-mono) auto
    also have \(\ldots \leq 0\) by \(\operatorname{simp}\)
    finally have -1 - int \(q-\max -2{ }^{\wedge} c \leq 0\) by simp
    hence aux3-2: max \(0\left(-1\right.\) - int \(q\)-max - \(\left.{ }^{\wedge} c\right)=0\)
            by (intro max-absorb1)
```

have $? L 1 \leq\left(\sum j<b .(\right.$ real $c+2)+\max \left(\right.$ real-of-int $\left.\left.\left(\max \left(\tau_{1} \psi A q-\max j\right)(-1)\right)-2 \uparrow c\right) 0\right)$ unfolding Z-def by (intro sum-mono cutoff-eq-5) auto
also have $\ldots=\left(\sum j<b .(\right.$ real $\left.c+2)+\max \left(\tau_{0} \psi A j-q-\max -2 \wedge c\right) 0\right)$
unfolding τ_{1}-def max-of-mono[OF mono-real-of-int,symmetric]
by (intro-cong $\left[\sigma_{2}(+)\right]$ more:sum.cong) (simp add:max-diff-distrib-left max.assoc aux3)
also have $\ldots=$ real $b *($ real $c+2)+$
of-int $\left(\sum j<b\right.$. (max 0 (Max (insert $\left.(-1)\{\operatorname{int}(f a) \mid a . a \in A \wedge h(g a)=j\}\right)-q-\max -$ 2^c))
unfolding ψ-def by (simp add:max.commute)
also have $\ldots=$ real $b *($ real $c+2)+$
of-int $\left(\sum j<b . \max 0\left(\operatorname{Max}\left(\left(\lambda x . x-q-\max -2^{\wedge} c\right)^{〔}(\right.\right.\right.$ insert $(-1)\{$ int $(f a) \mid a . a \in A \wedge h(g$ $a)=j\}))$)
using fin- A
by (intro-cong $\left[\sigma_{2}(+), \sigma_{1}\right.$ of-int, $\left.\sigma_{2} \max \right]$ more:sum.cong mono-Max-commute) (auto simp:monoI)
also have $\ldots=$ real $b *($ real $c+2)+$
of-int $\left(\sum j<b\right.$. max $0(\operatorname{Max}(\operatorname{insert}(-1-q-\operatorname{max-2\wedge } c)\{\operatorname{int}(f a)-q-m a x-2 \wedge c \mid a . a \in A \wedge h(g$ $a)=j\}))$)
by (intro-cong $\left[\sigma_{2}(+), \sigma_{1}\right.$ of-int, $\left.\sigma_{2} \max , \sigma_{1} M a x\right]$ more:sum.cong) auto
also have $\ldots=$ real $b *($ real $c+2)+$ of-int
($\sum j<b . \operatorname{Max}((\max 0) `$ ‘ $\operatorname{insert}(-1-q-\max -2 \mathcal{} \mathcal{c})\{\operatorname{int}(f a)-q-\max -2 \wedge c \mid a . a \in A \wedge h(g a)$ $=j\}))$)
using fin- A by (intro-cong $\left[\sigma_{2}(+), \sigma_{1}\right.$ of-int $]$ more:sum.cong mono-Max-commute)
(auto simp add:monoI setcompr-eq-image)
also have $\ldots=$ real $b *($ real $c+2)+$
of-int $\left(\sum j<b . M a x(\right.$ insert $\left.0\{\max 0(\operatorname{int}(f a)-q-\operatorname{max-2\wedge } c) \mid a . a \in A \wedge h(g a)=j\})\right)$
using aux3-2 by (intro-cong $\left[\sigma_{2}(+), \sigma_{1}\right.$ of-int, σ_{1} Max] more:sum.cong)
(simp add:setcompr-eq-image image-image)
also have $\ldots \leq b *($ real $c+2)+o f-\operatorname{int}\left(\sum j<b .\left(\sum a \mid a \in A \wedge h(g(a))=j\right.\right.$. $\left.\left.\max 0\left(\operatorname{int}(f a)-q-m a x-\mathcal{Z}^{\wedge} c\right)\right)\right)$
using fin-A Max-le-Sum unfolding setcompr-eq-image
by (intro add-mono iffD2[OF of-int-le-iff] sum-mono Max-le-Sum) (simp-all)
also have $\ldots=$ real $b *($ real $c+2)+$
$\operatorname{of-int}\left(\sum a \in(\bigcup j \in\{. .<b\} .\{a . a \in A \wedge h(g(a))=j\}) . \max 0\left(\operatorname{int}(f a)-q-m a x-\mathcal{Z A}^{\wedge} c\right)\right)$
using fin- A
by (intro-cong $\left[\sigma_{2}(+), \sigma_{1}\right.$ of-int $]$ more:sum.UNION-disjoint $[$ symmetric]) auto
also have $\ldots=$ real $b *($ real $c+2)+o f-i n t\left(\sum a \in A . \max 0(\operatorname{int}(f a)-q-\max -2 \wedge c)\right)$
using h-range $[O F \psi$-range $]$ by (intro-cong $\left[\sigma_{2}(+), \sigma_{1}\right.$ of-int $]$ more:sum.cong) auto
also have $\ldots=$? R1
unfolding ψ-def by simp
finally show ?thesis
by simp
qed
have 1: measure $\Psi\{\psi$. real $c \leq V \psi\} \leq 2 \operatorname{powr}\left(-\left(\mathcal{Z}^{\wedge} c\right)\right)$ (is ?L1 \leq ? 1) for c
proof -
have ? $L 1=$ measure $\Psi\{\psi$. real $b *($ real $c+3) \leq Z \psi\}$
unfolding V-def using b-min by (intro measure-pmf-cong) (simp add:field-simps)
also have $\ldots \leq$ measure Ψ
$\left\{\psi\right.$. real $b *($ real $c+3) \leq$ real $b *($ real $c+2)+$ of-int $\left(\sum a \in A . \max 0(\right.$ int $($ fst $\psi a)-q-m a x$ $-2 へ$ - $)$) $\}$
using 2 order-trans by (intro pmf-mono) blast
also have $\ldots=$ measure $\Psi\left\{\psi\right.$. real $b \leq\left(\sum a \in A\right.$. of-int $(\max 0($ int $($ fst $\left.\left.\psi a)-q-\max -2 \widehat{2}))\right)\right\}$
by (intro measure-pmf-cong) (simp add:algebra-simps)
also have $\ldots \leq\left(\int \psi .\left(\sum a \in A\right.\right.$. of-int $(\max 0($ int $($ fst $\left.\left.\psi a)-q-m a x-2 \widehat{2}))\right) \partial \Psi\right) /$ real b using b-min by (intro pmf-markov sum-nonneg) simp-all
also have $\ldots=\left(\sum a \in A .\left(\int \psi\right.\right.$. of-int $(\max 0($ int $($ fst $\left.\left.\psi a)-q-m a x-2 \mathcal{2} c)) \partial \Psi\right)\right) /$ real b
by (intro-cong $\left[\sigma_{2}(/)\right]$ more:Bochner-Integration.integral-sum) simp

```
    also have \(\ldots=\left(\sum a \in A .\left(\int f\right.\right.\). of-int \(\left.\left.\left(\max 0\left(\operatorname{int}(f a)-q-\max -\mathcal{N A}^{\wedge}\right)\right) \partial(\operatorname{map-pmf} f s t \Psi)\right)\right) /\) real
```

by simp
also have $\ldots=\left(\sum a \in A .\left(\int f\right.\right.$. of-int $\left.\left.\left(\max 0\left(\operatorname{int}(f a)-\left(q-\max +\mathcal{Z}^{\wedge} c\right)\right)\right) \partial \Psi_{1}\right)\right) /$ real b unfolding sample-pro- Ψ map-fst-pair-pmf by (simp add:algebra-simps)
also have $\ldots \leq\left(\sum a \in A\right.$. 2 powr - real $\left.(q-\max +2 \wedge c)\right) /$ real b using b-min by (intro sum-mono divide-right-mono cutoff-eq-6) auto
also have $\ldots=$ real $X * 2$ powr $\left(-\right.$ real q-max $\left.+\left(-\left(2^{\wedge} c\right)\right)\right) /$ real b unfolding X-def by simp
also have $\ldots=($ real $X * 2 \operatorname{powr}(-$ real $q-\max) / b) * 2 \operatorname{powr}\left(-\left(\right.\right.$ 2^c $\left.\left.^{\wedge}\right)\right)$
unfolding powr-add by (simp add:algebra-simps)
also have $\ldots \leq 1 * 2$ powr $\left(-\left(\mathcal{R}^{\wedge}\right)\right)$
using cutoff-eq-7 by (intro mult-right-mono) auto
finally show ?thesis by simp
qed
have 0: measure $\Psi\{\psi \cdot x \leq V \psi\} \leq \exp \left(-x * \ln x^{\wedge} 3\right)($ is ? $L 1 \leq ? R 1)$ if $x \geq 20$ for x proof -
define c where $c=$ nat $\lfloor x\rfloor$
have $x * \ln x \wedge 3 \leq \exp (x * \ln 2) * \ln 2 / 2$ if $x \geq 150$ for $x:$ real
proof -
have aux-aux-0: x 亿 $4 \geq 0$
by simp
have $x * \ln x$ ^ $3 \leq x * x$ - 3
using that by (intro mult-left-mono power-mono ln-bound) auto
also have $\ldots=x^{\wedge} 4 * 1$ by (simp add:numeral-eq-Suc)
also have $\ldots \leq x$ 4 $*((\ln 2 / 10) \uparrow 4 *(150 *(\ln 2 / 10)) \uparrow 6 *(\ln 2 / 2))$
by (intro mult-left-mono aux-aux-0) (approximation 8)
also have $\ldots=(x *(\ln 2 / 10))$ ^4 $*(150 *(\ln 2 / 10)) \uparrow 6 *(\ln 2 / 2)$
unfolding power-mult-distrib by (simp add:algebra-simps)
also have $\ldots \leq(x *(\ln 2 / 10))^{\wedge} 4 *(x *(\ln 2 / 10)) \uparrow 6 *(\ln 2 / 2)$
by (intro mult-right-mono mult-left-mono power-mono that) auto
also have $\ldots=(0+x *(\ln 2 / 10))^{\wedge} 10 *(\ln 2 / 2)$
unfolding power-add[symmetric] by simp
also have $\ldots \leq(1+x * \ln 2 / 10)^{\wedge} 10 *(\ln 2 / 2)$
using that by (intro mult-right-mono power-mono add-mono) auto
also have $\ldots \leq \exp (x * \ln 2 / 10)^{\wedge} 10 *(\ln 2 / 2)$
using that by (intro mult-right-mono power-mono exp-ge-add-one-self) auto
also have $\ldots=\exp (x * \ln 2) *(\ln 2 / 2)$
unfolding exp-of-nat-mult[symmetric] by simp
finally show ?thesis by simp
qed
moreover have $x * \ln x$ З $\leq \exp (x * \ln 2) * \ln 2 / 2$ if $x \in\{20 . .150\}$
using that by (approximation 10 splitting: $x=1$)
ultimately have $x * \ln x \wedge 3 \leq \exp (x * \ln 2) * \ln 2 / 2$
using that by fastforce
also have $\ldots=2$ powr $(x-1) * \ln 2$
unfolding powr-diff unfolding powr-def by simp
also have $\ldots \leq 2$ powr $c * \ln 2$
unfolding c-def using that
by (intro mult-right-mono powr-mono) auto
also have $\ldots=2 \wedge c * \ln 2$
using powr-realpow by simp

```
    finally have aux0: x* ln x^3\leq2^ c*ln 2
        by simp
    have real c\leqx
        using that unfolding c-def by linarith
    hence ?L1 \leq measure \Psi{\psi. real c\leqV 
        by (intro pmf-mono) auto
    also have .. \leq 2 powr (-(2^c))
    by (intro 1)
    also have ... = exp (- (2`c*ln 2))
        by (simp add:powr-def)
    also have ... \leqexp (- (x*\operatorname{ln}\mp@subsup{x}{}{\wedge}3))
        using aux0 by (intro iffD2[OF exp-le-cancel-iff]) auto
    also have ... = ?R1
        by simp
    finally show ?thesis
        by simp
qed
have ?L}\leq\mathrm{ measure }\Omega{\omega\mathrm{ . is-too-large ( }\tau2\omega
    using lt-s-too-large
    by (intro pmf-mono) (simp del:is-too-large.simps)
also have ... = measure }
    {\omega.(\sum(i,j)\in{..<l}\times{..<b}.\lfloorlog 2 (of-int (max (\tau2\omega A q-max ij) (-1)) + 2)\rfloor) > C ( 
*l}
    by simp
    also have ... = measure \Omega {\omega. real-of-int ( }\sum(i,j)\in{..<l}\times{..<b}
        log 2 (of-int (max ( }\tau2\omegaA q-max i j) (-1)) + 2)\rfloor)>of-int (C C * * b*l)
        unfolding of-int-less-iff by simp
    also have ... = measure \Omega{\omega. real-of-int C C * real b * real l < of-int ( }\sumx\in{..<l}\times{..<b}
        log 2 (real-of-int ( }\mp@subsup{\tau}{1}{(\omega(fst x)) A q-max (snd x)) + 2)\rfloor)}
        by (intro-cong [ }\mp@subsup{\sigma}{2}{}\mathrm{ measure, }\mp@subsup{\sigma}{1}{}\mathrm{ Collect, }\mp@subsup{\sigma}{1}{}\mathrm{ of-int, }\mp@subsup{\sigma}{2}{}(<)] more:ext sum.cong
    (auto simp add:case-prod-beta }\mp@subsup{\tau}{2}{}\mathrm{ -def }\mp@subsup{\tau}{1}{}\mathrm{ -def)
    also have ... = measure }\Omega{\omega.(\sumi<l.Z (\omega i))>of-int C C * real b* real l
    unfolding Z-def sum.cartesian-product }\mp@subsup{\tau}{1}{}\mathrm{ -def by (simp add:case-prod-beta)
    also have ... = measure \Omega{\omega. (\sumi<l.V (\omega i)+3)> of-int C C * real l}
    unfolding V-def using b-min
    by (intro measure-pmf-cong) (simp add:sum-divide-distrib[symmetric] field-simps sum.distrib)
    also have ... = measure \Omega{\omega.(\sumi<l.V V }\omega\mathrm{ 泣)>of-int (C}\mp@subsup{C}{5}{}-3)*\mathrm{ real l}
    by (simp add:sum.distrib algebra-simps)
    also have ... \leqmeasure \Omega{\omega. (\sumi<l.V V (\omegai))\geq\mp@subsup{C}{1}{*}* real l}
    unfolding C C -def using C C1-est by (intro pmf-mono) auto
    also have ... \leqexp (- real l)
    by (intro deviation-bound l-gt-0 0) (simp-all add: \Lambda-def)
    also have ... \leqexp (- (C6* ln (2 / \delta)))
    using l-lbound by (intro iffD2[OF exp-le-cancel-iff]) auto
    also have ... \leq exp (- (1*\operatorname{ln}(2 / \delta)))
    unfolding C}\mp@subsup{C}{6}{}\mathrm{ -def using }\delta\mathrm{ -gt-0 }\delta\mathrm{ -lt-1
    by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le mult-right-mono ln-ge-zero) auto
    also have ... = exp ( ln (\delta/2))
    using \delta-gt-0 by (simp add: ln-div)
    also have ... = \delta/2
    using \delta-gt-0 by simp
    finally show ?thesis
    by simp
qed
end
```

unbundle no-intro-cong-syntax
end

9 Accuracy with cutoff

This section verifies that each of the l estimate have the required accuracy with high probability assuming as long as the cutoff is below q-max, generalizing the result from Section 7.

```
theory Distributed-Distinct-Elements-Accuracy
    imports
        Distributed-Distinct-Elements-Accuracy-Without-Cutoff
        Distributed-Distinct-Elements-Cutoff-Level
begin
unbundle intro-cong-syntax
lemma (in semilattice-set) Union:
    assumes finite \(I I \neq\{ \}\)
    assumes \(\bigwedge i . i \in I \Longrightarrow\) finite \((Z i)\)
    assumes \(\bigwedge i . i \in I \Longrightarrow Z i \neq\{ \}\)
    shows \(F\left(\bigcup\left(Z^{\prime} I\right)\right)=F((\lambda i .(F(Z i))) ' I)\)
    using \(\operatorname{assms}(1,2,3,4)\)
proof (induction I rule:finite-ne-induct)
    case (singleton \(x\) )
    then show? case by simp
next
    case (insert \(x I\) )
    have \(F\left(\bigcup\left(Z^{\prime}\right.\right.\) insert \(\left.\left.x I\right)\right)=F\left((Z x) \cup\left(\bigcup\left(Z^{\prime} I\right)\right)\right)\)
        by \(\operatorname{simp}\)
    also have \(\ldots=f(F(Z x))\left(F\left(\bigcup\left(Z^{\prime} I\right)\right)\right)\)
        using insert by (intro union finite-UN-I) auto
    also have \(\ldots=f(F\{F(Z x)\})\left(F\left((\lambda i . F(Z i)){ }^{\prime} I\right)\right)\)
        using insert \((5,6)\) by (subst insert(4)) auto
    also have \(\ldots=F(\{F(Z x)\} \cup(\lambda i . F(Z i)) ‘ I)\)
        using insert (1,2) by (intro union[symmetric] finite-imageI) auto
    also have \(\ldots=F((\lambda i . F(Z i))\) 'insert \(x I)\)
        by \(\operatorname{simp}\)
    finally show ?case by simp
qed
```

This is similar to the existing hom-Max-commute with the crucial difference that it works even if the function is a homomorphism between distinct lattices. An example application is $\operatorname{Max}($ int ' $A)=\operatorname{int}(\operatorname{Max} A)$.
lemma hom-Max-commute':
assumes finite $A A \neq\{ \}$
assumes $\bigwedge x y . x \in A \Longrightarrow y \in A \Longrightarrow \max (f x)(f y)=f(\max x y)$
shows $\operatorname{Max}\left(f^{\prime} A\right)=f($ Max A)
using assms by (induction A rule:finite-ne-induct) auto
context inner-algorithm-fix- A
begin
definition t_{c}
where $t_{c} \psi \sigma=\left(\operatorname{Max}\left(\left(\lambda j . \tau_{1} \psi A \sigma j+\sigma\right) \cdot\{. .<b\}\right)\right)-b-\exp +9$

```
definition }\mp@subsup{s}{c}{
    where }\mp@subsup{s}{c}{}\psi\sigma=nat(tc\psi\sigma
definition }\mp@subsup{p}{c}{
    where pc}\psi\sigma=\operatorname{card}{j\in{..<b}. \tau1 \psiA\sigmaj+\sigma\geq sc\psi\sigma
definition }\mp@subsup{Y}{c}{
    where }\mp@subsup{Y}{c}{}\psi\sigma=2^\mp@subsup{s}{c}{}\psi\sigma*\varrho-inv( (pc\psi\sigma
lemma }\mp@subsup{s}{c}{}-eq-s
    assumes (f,g,h)\in sample-pro \Psi
    assumes }\sigma\leqs
    shows }\mp@subsup{s}{c}{}(f,g,h)\sigma=s
proof -
    have int (Max (f`A)) - int b-exp + 9 \leq int (Max (f`A)) - 26 + 9
        using b-exp-ge-26 by (intro add-mono diff-left-mono) auto
    also have .. \leq int (Max (f'A)) by simp
    finally have 1:int (Max (f`A)) - int b-\operatorname{exp}+9\leq\operatorname{int}(\operatorname{Max}(\mp@subsup{f}{}{\prime}A))
        by simp
    have }\sigma\leqint(sf)\mathrm{ using assms(2) by simp
    also have .. = max 0 (tf)
        unfolding s-def by simp
    also have ... \leq max 0 (int (Max (f'A)))
        unfolding t-def using 1 by simp
    also have ... = int (Max (f'A))
        by simp
    finally have }\sigma\leq\operatorname{int}(\operatorname{Max}(f`A)
        by simp
    hence 0: int \sigma-1\leq\operatorname{int}(Max (f`A))
        by simp
    have c:h\in sample-pro (\mathcal{H k}(\mp@subsup{C}{7}{}*\mp@subsup{b}{}{2})(\mathcal{N}b))
        using assms(1) sample-set-\Psi by auto
    hence h-range: hx<b for x
        using h-range-1 by simp
    have (MAX j\in{..<b}. \tau
        (MAX x\in{..<b}. Max ({int (f a) |a.a\inA\wedgeh(ga)=x}\cup{-1}\cup{int\sigma-1}))
        using fin-f[OF assms(1)] by (simp add:max-add-distrib-left max.commute }\mp@subsup{\tau}{1}{}\mathrm{ -def)
    also have ... = Max ( Ux<b. {int (fa) |a.a\inA\wedgeh(ga)=x}\cup{-1}\cup{int \sigma-1})
        using fin-f[OF assms(1)] b-ne by (intro Max.Union[symmetric]) auto
    also have ... = Max ({int (fa) |a.a\inA}\cup{-1, int \sigma-1})
        using h-range by (intro arg-cong[where f=Max]) auto
    also have ... = max (Max (int'f'A)) (int \sigma-1)
        using A-nonempty fin-A unfolding Setcompr-eq-image image-image
        by (subst Max.union) auto
    also have ... = max (int (Max (f`A))) (int \sigma - 1)
        using fin-A A-nonempty by (subst hom-Max-commute') auto
    also have ... = int (Max (f`A))
        by (intro max-absorb1 0)
    finally have (MAX j\in{..<b}. \tau
    thus ?thesis
        unfolding }\mp@subsup{s}{c}{}\mathrm{ -def t }\mp@subsup{t}{c}{}\mathrm{ -def s-def t-def by simp
qed
lemma }\mp@subsup{p}{c}{}-eq-p
```

```
    assumes (f,g,h)\in sample-pro \Psi
    assumes }\sigma\leqs
    shows p}\mp@subsup{p}{c}{}(f,g,h)\sigma=p(f,g,h
proof -
    have {j\in{..<b}. int (sf)\leqmax (\tau ( 
        {j\in{..<b}. int (sf)\leqmax (\tau ( 
        using assms(2) unfolding le-max-iff-disj by simp
    thus ?thesis
        unfolding }\mp@subsup{p}{c}{}\mathrm{ -def p-def }\mp@subsup{s}{c}{}\mathrm{ -eq-s[OF assms]
        by (simp add:max-add-distrib-left }\mp@subsup{\tau}{1}{}\mathrm{ -def del:}\mp@subsup{\tau}{0}{}.simps
qed
lemma }\mp@subsup{Y}{c}{}-eq-Y\mathrm{ :
    assumes (f,g,h)\in sample-pro \Psi
    assumes \sigma\leqsf
    shows }\mp@subsup{Y}{c}{}(f,g,h)\sigma=Y(f,g,h
    unfolding }\mp@subsup{Y}{c}{}\mathrm{ -def Y-def sce-eq-s[OF assms] }\mp@subsup{p}{c}{}\mathrm{ -eq-p[OF assms] by simp
lemma accuracy-single: measure \Psi {\psi.\exists\sigma\leqq-max. |Y 价 \psi\sigma- real X|>\varepsilon*X}\leq1/2^4
    (is ?L}\leq?R
proof -
    have measure }\Psi{\psi.\exists\sigma\leqq-max. |Y 谅 \psi - real X|>\varepsilon* real X}\leq
        measure \Psi {(f,g,h). |Y(f,g,h) - real X|> \varepsilon* real X\veesf<q-max}
    proof (rule pmf-mono)
        fix }
        assume a:\psi\in{\psi.\exists\sigma\leqq-max. \varepsilon* real X<|Y泣\psi\sigma- real X|}
        assume d:\psi\in set-pmf (sample-pro \Psi)
        obtain }\sigma\mathrm{ where b: }\sigma\leqq\mathrm{ -max and c: }\varepsilon*\mathrm{ real }X<|\mp@subsup{Y}{c}{}\psi\sigma-\operatorname{real}X
            using a by auto
        obtain fgh}\mathrm{ where }\psi\mathrm{ -def: }\psi=(f,g,h) by (metis prod-cases3) 
        hence e:(f,g,h)\in sample-pro \Psi using d by simp
    show }\psi\in{(f,g,h).\varepsilon*\mathrm{ real }X<|Y(f,g,h)-real X|\veesf<q-max
    proof (cases s f \geqq-max)
            case True
            hence f:\sigma}\leqsf\mathrm{ using b by simp
            have \varepsilon* real X < |Y \psi- real X|
                using }\mp@subsup{Y}{c}{-eq-Y[OF}ef]c\mathrm{ unfolding }\psi\mathrm{ -def by simp
            then show ?thesis unfolding }\psi\mathrm{ -def by simp
        next
            case False
            then show ?thesis unfolding \psi-def by simp
        qed
    qed
    also have ... \leq 1/2^4
        using accuracy-without-cutoff by simp
    finally show ?thesis by simp
qed
lemma estimate1-eq:
    assumes j<l
    shows estimate1 ( }\mp@subsup{\tau}{2}{}\omegaA\sigma,\sigma)j=\mp@subsup{Y}{c}{}(\omegaj)\sigma(\mathbf{is ?}L=?R
proof -
    define t where t = max 0 (Max (( }\mp@subsup{\tau}{2}{}\omegaA\sigmaj)`{..<b})+\sigma - \lfloorlog 2 b\rfloor + 9)
    define p}\mathrm{ where p=card {k.k { {..<b}^( 
    have 0: int (nat x)= max 0x for }
        by simp
```

have 1: $\lfloor\log 2 b\rfloor=b-\exp$
unfolding b-def by simp
have $b>0$
using b-min by simp
hence 2: $\{. .<b\} \neq\{ \}$ by auto
have $t=\operatorname{int}\left(\operatorname{nat}\left(\operatorname{Max}\left(\left(\tau_{2} \omega A \sigma j\right) \cdot\{. .<b\}\right)+\sigma-b-\exp +9\right)\right)$
unfolding t-def 01 by (rule refl)
also have $\ldots=\operatorname{int}\left(\operatorname{nat}\left(\operatorname{Max}\left((\lambda x . x+\sigma)^{\prime}\left(\tau_{2} \omega A \sigma j\right) '\{. .<b\}\right)-b-\exp +9\right)\right)$
by (intro-cong $\left[\sigma_{1} \mathrm{int}, \sigma_{1}\right.$ nat, $\left.\sigma_{2}(+), \sigma_{2}(-)\right]$ more:hom-Max-commute) (simp-all add:2)
also have $\ldots=\operatorname{int}\left(s_{c}(\omega j) \sigma\right)$
using assms
unfolding s_{c}-def t_{c}-def τ_{2}-def image-image by simp
finally have 3:t $=\operatorname{int}\left(s_{c}(\omega j) \sigma\right)$
by simp
have 4: $p=p_{c}(\omega j) \sigma$
using assms unfolding p-def p_{c}-def $3 \tau_{2}$-def by simp
have ? $L=2$ powr $t * \ln (1-p / b) / \ln (1-1 / b)$
unfolding estimate1.simps τ-def τ_{3}-def
by (simp only:t-def p-def Let-def)
also have $\ldots=2$ powr $\left(s_{c}(\omega j) \sigma\right) * \varrho-i n v p$
unfolding 3 @-inv-def by (simp)
also have $\ldots=$? R
unfolding Y_{c}-def 34 by (simp add:powr-realpow)
finally show ?thesis by blast
qed
lemma estimate-result-1:
measure $\Omega\left\{\omega .\left(\exists \sigma \leq q\right.\right.$-max. $\varepsilon * X<\mid$ estimate $\left.\left.\left(\tau_{2} \omega A \sigma, \sigma\right)-X \mid\right)\right\} \leq \delta / 2($ is $? L \leq ? R)$
proof -
define $I::$ real set where $I=\{x .|x-\operatorname{real} X| \leq \varepsilon * X\}$
define μ where $\mu=$ measure $\Psi\left\{\psi . \exists \sigma \leq q\right.$-max. $\left.Y_{c} \psi \sigma \notin I\right\}$
have int-I: interval I
unfolding interval-def I-def by auto
have $\mu=$ measure $\Psi\left\{\psi . \exists \sigma \leq q\right.$-max. $\left.\left|Y_{c} \psi \sigma-\operatorname{real} X\right|>\varepsilon * X\right\}$
unfolding μ-def I-def by (simp add:not-le)
also have $\ldots \leq 1 / 2^{\wedge} 4$
by (intro accuracy-single)
also have $\ldots=1 / 16$
by simp
finally have $1: \mu \leq 1 / 16$ by simp
have $(\mu+\Lambda) \leq 1 / 16+1 / 16$
unfolding Λ-def by (intro add-mono 1) auto
also have $\ldots \leq 1 / 8$
by simp
finally have $2:(\mu+\Lambda) \leq 1 / 8$
by simp
hence $0:(\mu+\Lambda) \leq 1 / 2$
by simp
have $\mu \geq 0$
unfolding μ-def by simp
hence $3: \mu+\Lambda>0$
by (intro add-nonneg-pos Λ-gt-0)
have $? L=$ measure $\Omega\left\{\omega .\left(\exists \sigma \leq q\right.\right.$-max. $\varepsilon * X<\mid$ median $l\left(\right.$ estimate1 $\left.\left.\left.\left(\tau_{2} \omega A \sigma, \sigma\right)\right)-X \mid\right)\right\}$ by simp
also have $\ldots=$ measure $\Omega\left\{\omega\right.$. $\left(\exists \sigma \leq q\right.$-max. median $l\left(\right.$ estimate1 $\left.\left.\left.\left(\tau_{2} \omega A \sigma, \sigma\right)\right) \notin I\right)\right\}$
unfolding I-def by (intro measure-pmf-cong) auto
also have $\ldots \leq$ measure $\Omega\left\{\omega\right.$. $\operatorname{real}\left(\operatorname{card}\left\{i \in\{. .<l\} .\left(\exists \sigma \leq q-\max . Y_{c}(\omega i) \sigma \notin I\right)\right\}\right) \geq$ real $\left.l / 2\right\}$
proof (rule pmf-mono)
fix ω
assume $\omega \in$ set-pmf $\Omega \omega \in\left\{\omega\right.$. $\exists \sigma \leq q$-max. median l (estimate1 $\left.\left.\left(\tau_{2} \omega A \sigma, \sigma\right)\right) \notin I\right\}$
then obtain σ where σ-def: median l (estimate1 $\left.\left(\tau_{2} \omega A \sigma, \sigma\right)\right) \notin I \sigma \leq q$-max by auto
hence real $l \leq \operatorname{real}\left(2 * \operatorname{card}\left\{i . i<l \wedge\right.\right.$ estimate1 $\left.\left.\left(\tau_{2} \omega A \sigma, \sigma\right) i \notin I\right\}\right)$
by (intro of-nat-mono median-est-rev $[$ OF int-I])
also have $\ldots=2 * \operatorname{real}\left(\operatorname{card}\left\{i \in\{. .<l\}\right.\right.$. estimate1 $\left.\left.\left(\tau_{2} \omega A \sigma, \sigma\right) i \notin I\right\}\right)$ by simp
also have $\ldots=2 *$ real $\left(\operatorname{card}\left\{i \in\{. .<l\} . Y_{c}(\omega i) \sigma \notin I\right\}\right)$
using estimate1-eq by (intro-cong $\left[\sigma_{2}(*), \sigma_{1}\right.$ of-nat, σ_{1} card $]$ more:restr-Collect-cong) auto
also have $\ldots \leq 2 *$ real (card $\left.\left\{i \in\{. .<l\} .\left(\exists \sigma \leq q-\max . Y_{c}(\omega i) \sigma \notin I\right)\right\}\right)$
using σ-def(2) by (intro mult-left-mono Nat.of-nat-mono card-mono) auto
finally have real $l \leq 2 * \operatorname{real}\left(\operatorname{card}\left\{i \in\{. .<l\} .\left(\exists \sigma \leq q-\max . Y_{c}(\omega i) \sigma \notin I\right)\right\}\right)$ by simp
thus $\omega \in\left\{\omega\right.$. real $\left.l / 2 \leq \operatorname{real}\left(\operatorname{card}\left\{i \in\{. .<l\} . \exists \sigma \leq q-\max . Y_{c}(\omega i) \sigma \notin I\right\}\right)\right\}$ by simp
qed
also have $\ldots=$ measure $\Omega\left\{\omega\right.$. real $\left(\operatorname{card}\left\{i \in\{. .<l\} .\left(\exists \sigma \leq q-\max . Y_{c}(\omega i) \sigma \notin I\right)\right\}\right) \geq(1 / \mathcal{D}) *$ real
l\}
unfolding p-def by simp
also have $\ldots \leq \exp (-\operatorname{real} l *((1 / 2) * \ln (1 /(\mu+\Lambda))-2 * \exp (-1)))$
using 0 unfolding μ-def by (intro walk-tail-bound l-gt-0 Λ-gt-0) auto
also have $\ldots=\exp (-(\operatorname{real} l *((1 / 2) * \ln (1 /(\mu+\Lambda))-2 * \exp (-1))))$
by simp
also have $\ldots \leq \exp (-($ real $l *((1 / 2) * \ln 8-2 * \exp (-1))))$
using 23 l-gt-0 by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le mult-left-mono diff-mono) (auto simp add:divide-simps)
also have $\ldots \leq \exp (-($ real $l *(1 / 4)))$
by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le mult-left-mono of-nat-0-le-iff)
(approximation 5)
also have $\ldots \leq \exp \left(-\left(C_{6} * \ln (2 / \delta) *(1 / 4)\right)\right)$
by (intro iffD2[OF exp-le-cancel-iff] le-imp-neg-le mult-right-mono l-lbound) auto
also have $\ldots=\exp (-\ln (2 / \delta))$
unfolding C_{6}-def by simp
also have $\ldots=$? R
using δ-gt- 0 by (subst ln-inverse[symmetric]) auto
finally show ?thesis
by simp
qed
theorem estimate-result:
measure $\Omega\{\omega$. |estimate $(\tau \omega A)-X \mid>\varepsilon * X\} \leq \delta$
(is ? $L \leq ? R$)
proof -
let $? P=$ measure Ω
have $? L \leq ? P\left\{\omega\right.$. $\left(\exists \sigma \leq q\right.$-max. $\varepsilon *$ real $X<\mid$ estimate $\left(\tau_{2} \omega A \sigma, \sigma\right)-$ real $\left.X \mid\right) \vee q \omega A>q$-max $\}$

```
        unfolding }\tau\mathrm{ -def }\mp@subsup{\tau}{3}{}\mathrm{ -def not-le[symmetric]
        by (intro pmf-mono) auto
    also have ...\leq?P{\omega. (\exists\sigma\leqq-max. \varepsilon*real }X<|\mathrm{ estimate ( }\tau2\omegaA\sigma,\sigma)-X|)}+?P{\omega.q\omegaA
q-max}
    by (intro pmf-add) auto
    also have ...\leq //2+ </2
        by (intro add-mono cutoff-level estimate-result-1)
    also have ... = \delta
        by simp
    finally show ?thesis
        by simp
qed
end
lemma (in inner-algorithm) estimate-result:
    assumes }A\subseteq{..<n}A\not={
    shows measure \Omega{\omega. |estimate (\tau\omegaA)-real (card A)|>\varepsilon* real (card A)}\leq\delta(is ?L\leq?R)
proof -
    interpret inner-algorithm-fix-A
        using assms by unfold-locales auto
    have ?L = measure \Omega{\omega. |estimate (\tau\omegaA)-X|>\varepsilon*X}
        unfolding X-def by simp
    also have ... }\leq?
        by (intro estimate-result)
    finally show ?thesis
        by simp
qed
unbundle no-intro-cong-syntax
```

end

10 Outer Algorithm

This section introduces the final solution with optimal size space usage．Internally it relies on the inner algorithm described in Section 6 ，dependending on the paramaters n, ε and δ it either uses the inner algorithm directly or if ε^{-1} is larger than $\ln n$ it runs $\frac{\varepsilon^{-1}}{\ln \ln n}$ copies of the inner algorithm（with the modified failure probability $\frac{1}{\ln n}$ ）using an expander to select its seeds．The theorems below verify that the probability that the relative accuracy of the median of the copies is too large is below ε ．

```
theory Distributed-Distinct-Elements-Outer-Algorithm
    imports
        Distributed-Distinct-Elements-Accuracy
    Prefix-Free-Code-Combinators.Prefix-Free-Code-Combinators
    Frequency-Moments.Landau-Ext
    Landau-Symbols.Landau-More
begin
```

unbundle intro-cong-syntax

The following are non－asymptotic hard bounds on the space usage for the sketches and seeds repsectively．The end of this section contains a proof that the sum is asymptotically in $\mathcal{O}\left(\ln \left(\varepsilon^{-1}\right) \delta^{-1}+\ln n\right)$ ．
definition state－space－usage $=(\lambda(n, \varepsilon, \delta) \cdot 2 \widehat{2} 0 *(\ln (1 / \delta)+1) / \varepsilon$ 〒2 $+\log 2(\log 2 n+3))$
definition seed－space－usage $=\left(\lambda(n, \varepsilon, \delta)\right.$ ．2ヘ30＋2ヘ23＊ $\left.\ln n+48 *(\log 2(1 / \varepsilon)+16)^{2}+336 * \ln (1 / \delta)\right)$

```
locale outer-algorithm =
    fixes n :: nat
    fixes }\delta::\mathrm{ real
    fixes \varepsilon :: real
    assumes n-gt-0: n>0
    assumes }\delta\mathrm{ -gt-0: }\delta>0\mathrm{ and }\delta\mathrm{ -lt-1: }\delta<
    assumes \varepsilon-gt-0: }\varepsilon>0\mathrm{ and }\varepsilon-lt-1:\varepsilon<
begin
definition }\mp@subsup{n}{0}{}\mathrm{ where }\mp@subsup{n}{0}{}=\operatorname{max}(\mathrm{ real n) (exp (exp 5))
definition stage-two where stage-two = ( }\delta<(1/\operatorname{ln}\mp@subsup{n}{0}{})
definition }\mp@subsup{\delta}{i}{}:: real where \delta \delta = (if stage-two then (1/ln no) else \delta
definition m :: nat where m=(if stage-two then nat \lceil4* ln (1/\delta)/ln (ln no)\rceil else 1)
definition \alpha where \alpha = (if stage-two then (1/ln no) else 1)
lemma m-lbound:
    assumes stage-two
    shows m\geq4* ln (1/ \delta)/ln(ln no)
proof -
    have m= real (nat \lceil4* ln (1/\delta)/ln (ln no)\rceil)
        using assms unfolding m-def by simp
    also have \ldots\geq4*\operatorname{ln}(1/\delta)/\operatorname{ln}(\operatorname{ln}\mp@subsup{n}{0}{})
        by linarith
    finally show ?thesis by simp
qed
lemma n-lbound:
```



```
proof -
    show 0:n n \geq exp (exp 5)
        unfolding }\mp@subsup{n}{0}{}\mathrm{ -def by simp
    have (1::real) \leq exp (exp 5)
        by (approximation 5)
    hence }\mp@subsup{n}{0}{}\geq
        using 0 by argo
    thus 1:ln no \geqexp 5
        using 0 by (intro iffD2[OF ln-ge-iff]) auto
    moreover have 1<exp (5::real)
        by (approximation 5)
    ultimately show 2: ln n}\mp@subsup{n}{0}{}>
        by argo
    show 5\leqln}(\operatorname{ln}\mp@subsup{n}{0}{}
        using 1 2 by (subst ln-ge-iff) simp
    have (1::real) < exp (exp 5)
        by (approximation 5)
    thus no > 1
        using 0 by argo
qed
lemma \delta1-gt-0: 0< < i
    using n-lbound(4) \delta-gt-0 unfolding }\mp@subsup{\delta}{i}{}\mathrm{ -def
    by (cases stage-two) simp-all
lemma \delta1-lt-1: }\mp@subsup{\delta}{i}{}<
    using n-lbound(4) }\delta\mathrm{ -lt-1 unfolding }\mp@subsup{\delta}{i}{}\mathrm{ -def
    by (cases stage-two) simp-all
```

```
lemma m-gt-0-aux:
    assumes stage-two
    shows 1\leqln}(1/\delta)/ln(ln no
proof -
    have ln no \leq 1 / \delta
        using n-lbound(4)
        using assms unfolding pos-le-divide-eq[OF \delta-gt-0] stage-two-def
        by (simp add:divide-simps ac-simps)
    hence ln (ln no) \leq ln (1/\delta)
        using n-lbound(4) \delta-gt-0 by (intro iffD2[OF ln-le-cancel-iff] divide-pos-pos) auto
    thus 1\leqln}(1/\delta)/ln(ln n n )
        using n-lbound(3)
        by (subst pos-le-divide-eq) auto
qed
lemma m-gt-0: m>0
proof (cases stage-two)
    case True
    have 0<4* ln (1/\delta)/ln(ln no)
        using m-gt-0-aux[OF True] by simp
    also have ... }\leq
        using m-lbound[OF True] by simp
    finally have 0<real m
        by simp
    then show ?thesis by simp
next
    case False
    then show ?thesis unfolding m-def by simp
qed
lemma \alpha-gt-0: }\alpha>
    using n-lbound(4) unfolding \alpha-def
    by (cases stage-two) auto
lemma }\alpha\mathrm{ -le-1: }\alpha\leq
    using n-lbound(4) unfolding \alpha-def
    by (cases stage-two) simp-all
sublocale I: inner-algorithm n }\mp@subsup{\delta}{i}{}
    unfolding inner-algorithm-def using n-gt-0 \varepsilon-gt-0 \varepsilon-lt-1 \delta1-gt-0 \delta1-lt-1 by auto
abbreviation \Theta where \Theta \equiv\mathcal{E}m\alphaI.\Omega
lemma \Theta:m>0 \alpha>0 using \alpha-gt-0 m-gt-0 by auto
type-synonym state = inner-algorithm.state list
fun single :: nat }=>\mathrm{ nat }=>\mathrm{ state where
    single \vartheta x = map ( }\lambdaj.I.single (pro-select \Theta \vartheta j) x) [0..<m
fun merge :: state }=>\mathrm{ state }=>\mathrm{ state where
    merge x y = map (\lambda(x,y).I.merge x y) (zip x y)
fun estimate :: state }=>\mathrm{ real where
    estimate x = median m (\lambdai.I.estimate (x!i))
definition \nu :: nat }=>\mathrm{ nat set }=>\mathrm{ state
    where \nu\vartheta A = map (\lambdai.I.\tau (pro-select \Theta \vartheta i) A) [0..<m]
```

The following three theorems verify the correctness of the algorithm. The term τ is a mathematical description of the sketch for a given subset, while local.single, local.merge are the actual functions that compute the sketches.

```
theorem merge-result: merge \((\nu \omega A)(\nu \omega B)=\nu \omega(A \cup B)(\) is ? \(L=? R)\)
proof -
    have 0: zip \([0 . .<m][0 . .<m]=\operatorname{map}(\lambda x .(x, x))[0 . .<m]\) for \(m\)
        by (induction \(m\), auto)
    have ? \(L=\operatorname{map}(\lambda x\). I.merge \((I . \tau(\) pro-select \(\Theta \omega x) A)(I . \tau(\) pro-select \(\Theta \omega x) B))[0 . .<m]\)
        unfolding \(\nu\)-def
        by (simp add:zip-map-map 0 comp-def case-prod-beta)
    also have \(\ldots=\operatorname{map}(\lambda x\). I. \(\tau(\) pro-select \(\Theta \omega x)(A \cup B))[0 . .<m]\)
        by (intro map-cong refl I.merge-result expander-pro-range \([\) [OF \(\Theta]\) )
    also have \(\ldots=\) ? \(R\)
        unfolding \(\nu\)-def by simp
    finally show? ?thesis by simp
qed
theorem single-result: single \(\omega x=\nu \omega\{x\}\) (is ? \(L=? R\) )
proof -
    have \(? L=\operatorname{map}(\lambda j\). I.single (pro-select \(\Theta \omega j) x)[0 . .<m]\)
        by (simp del:I.single.simps)
    also have...\(=\) ? \(R\)
        unfolding \(\nu\)-def by (intro map-cong I.single-result expander-pro-range \([O F \Theta]\) ) auto
    finally show? ?thesis by simp
qed
theorem estimate-result:
    assumes \(A \subseteq\{. .<n\} A \neq\{ \}\)
    defines \(p \equiv(\) pmf-of-set \(\{. .<\) pro-size \(\Theta\})\)
    shows measure \(p\{\omega\). |estimate \((\nu \omega A)-\operatorname{real}(\operatorname{card} A) \mid>\varepsilon * \operatorname{real}(\operatorname{card} A)\} \leq \delta(\) is \(? L \leq ? R)\)
proof (cases stage-two)
    case True
    define \(I\) where \(I=\{x .|x-\operatorname{real}(\operatorname{card} A)| \leq \varepsilon * \operatorname{real}(\operatorname{card} A)\}\)
    have int-I: interval I
        unfolding interval-def I-def by auto
    define \(\mu\) where \(\mu=\) measure \(I . \Omega\{\omega\). I.estimate \((I . \tau \omega A) \notin I\}\)
    have \(0: \mu+\alpha>0\)
        unfolding \(\mu\)-def
        by (intro add-nonneg-pos \(\alpha\)-gt-0) auto
    have \(\mu \leq \delta_{i}\)
        unfolding \(\mu\)-def I-def using I.estimate-result[OF \(\operatorname{assms}(1,2)]\)
        by (simp add: not-le del:I.estimate.simps)
    also have \(\ldots=1 / \ln n_{0}\)
        using True unfolding \(\delta_{i}\)-def by simp
    finally have \(\mu \leq 1 / \ln n_{0}\) by \(\operatorname{simp}\)
    hence \(\mu+\alpha \leq 1 / \ln n_{0}+1 / \ln n_{0}\)
        unfolding \(\alpha\)-def using True by (intro add-mono) auto
    also have \(\ldots=2 / \ln n_{0}\)
        by \(\operatorname{simp}\)
    finally have \(1: \mu+\alpha \leq 2 / \ln n_{0}\)
    by \(\operatorname{simp}\)
    hence 2: \(\ln n_{0} \leq 2 /(\mu+\alpha)\)
    using 0 -lbound by (simp add:field-simps)
```

have $\mu+\alpha \leq 2 / \ln n_{0}$
by (intro 1)
also have $\ldots \leq 2 / \exp 5$
using n-lbound by (intro divide-left-mono) simp-all
also have $\ldots \leq 1 / 2$
by (approximation 5)
finally have $3: \mu+\alpha \leq 1 / 2$ by simp
have $4: 2 * \ln 2+8 * \exp (-1) \leq(5::$ real $)$
by (approximation 5)
have $? L=$ measure $p\{\omega$. median $m(\lambda i$. I.estimate $(\nu \omega A!i)) \notin I\}$ unfolding I-def by (simp add:not-le)
also have ... \leq
measure $p\{\bar{\vartheta}$. real (card $\{i \in\{. .<m\}$. I.estimate $(I . \tau($ pro-select $\Theta \vartheta$ i) $A) \notin I\}) \geq$ real $m / 2\}$
proof (rule pmf-mono)
fix ϑ assume $\vartheta \in \operatorname{set}-p m f p$
assume $a: \vartheta \in\{\omega$. median $m(\lambda i$. I.estimate $(\nu \omega A!i)) \notin I\}$
hence real $m \leq \operatorname{real}(2 * \operatorname{card}\{i . i<m \wedge$ I.estimate $(\nu \vartheta A!i) \notin I\})$
by (intro of-nat-mono median-est-rev int-I) auto
also have $\ldots=2 *$ real $(\operatorname{card}\{i \in\{. .<m\}$. I.estimate $(\nu \vartheta A!i) \notin I\})$
by simp
also have $\ldots=2 *$ real $($ card $\{i \in\{. .<m\}$. I.estimate $(I . \tau($ pro-select $\Theta \vartheta i) A) \notin I\})$
unfolding ν-def by (intro-cong $\left[\sigma_{2}(*), \sigma_{1}\right.$ of-nat, σ_{1} card $]$ more:restr-Collect-cong) (simp del:I.estimate.simps)
finally have real $m \leq 2 *$ real $($ card $\{i \in\{. .<m\}$. I.estimate $(I . \tau($ pro-select $\Theta \vartheta i) A) \notin I\})$ by simp
thus $\vartheta \in\{\vartheta$. real $m / 2 \leq$ real (card $\{i \in\{. .<m\}$. I.estimate $($ I. $\tau($ pro-select $\Theta \vartheta i) A) \notin$ $I\})\}$ by simp
qed
also have $\ldots=$ measure $\Theta\{\vartheta$. real (card $\{i \in\{. .<m\}$.I.estimate $(I . \tau(\vartheta i) A) \notin I\}) \geq(1 / 2) *$ real $m\}$
unfolding sample-pro-alt p-def by (simp del:I.estimate.simps)
also have $\ldots \leq \exp (-\operatorname{real} m *((1 / 2) * \ln (1 /(\mu+\alpha))-2 * \exp (-1)))$
using 3 m-gt-0 α-gt-0 unfolding μ-def by (intro walk-tail-bound) force+
also have $\ldots \leq \exp \left(-\operatorname{real} m *\left((1 / 2) * \ln \left(\ln n_{0} / 2\right)-2 * \exp (-1)\right)\right)$
using 023 n-lbound
by (intro iffD2[OF exp-le-cancel-iff] mult-right-mono mult-left-mono-neg[where $c=-$ real m] diff-mono mult-left-mono iffD2[OF ln-le-cancel-iff]) (simp-all)
also have $\ldots=\exp \left(-\operatorname{real} m *\left(\ln \left(\ln n_{0}\right) / 2-(\ln 2 / 2+2 * \exp (-1))\right)\right)$
using n-lbound by (subst ln-div) (simp-all add:algebra-simps)
also have $\ldots \leq \exp \left(-\operatorname{real} m *\left(\ln \left(\ln n_{0}\right) / 2-(\ln (\ln (\exp (\exp 5))) / 4)\right)\right)$
using 4
by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono-neg[where $c=-$ real m] diff-mono) simp-all
also have $\ldots \leq \exp \left(-\operatorname{real} m *\left(\ln \left(\ln n_{0}\right) / 2-\left(\ln \left(\ln n_{0}\right) / 4\right)\right)\right)$
using n-lbound
by (intro iffD2[OF exp-le-cancel-iff] mult-left-mono-neg[where $c=-$ real m] diff-mono) simp-all
also have $\ldots=\exp \left(-\right.$ real $\left.m *\left(\ln \left(\ln n_{0}\right) / 4\right)\right)$
by (simp add:algebra-simps)
also have $\ldots \leq \exp \left(-\left(4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right) *\left(\ln \left(\ln n_{0}\right) / 4\right)\right)$
using m-lbound[OF True] n-lbound
by (intro iffD2[OF exp-le-cancel-iff] mult-right-mono divide-nonneg-pos) simp-all
also have $\ldots=\exp (-\ln (1 / \delta))$
using n-lbound by simp
also have $\ldots=\delta$
using δ-gt-0 by (subst ln-inverse[symmetric]) auto

```
    finally show?thesis by simp
next
    case False
    have \(m\)-eq: \(m=1\)
        unfolding \(m\)-def using False by simp
    hence \(? L=\) measure \(p\{\omega . \varepsilon *\) real \((\) card \(A)<\mid\) I.estimate \((\nu \omega A!0)-\operatorname{real}(\operatorname{card} A) \mid\}\)
        unfolding estimate.simps \(m\)-eq median-def by simp
    also have \(\ldots=\) measure \(p\{\omega . \varepsilon *\) card \(A<\mid\) I.estimate \((I . \tau(\) pro-select \(\Theta \omega 0) A)-\operatorname{real}(\operatorname{card} A) \mid\}\)
        unfolding \(\nu\)-def \(m\)-eq by (simp del: I.estimate.simps)
    also have \(\ldots=\) measure \(\Theta\{\omega . \varepsilon * \operatorname{real}(\operatorname{card} A)<\mid\) I.estimate \((I . \tau(\omega 0) A)-\operatorname{real}(\operatorname{card} A) \mid\}\)
        unfolding sample-pro-alt p-def by (simp del:I.estimate.simps)
    also have ... \(=\)
        measure (map-pmf \((\lambda \vartheta . \vartheta 0) \Theta)\{\omega . \varepsilon * \operatorname{real}(\operatorname{card} A)<|I . e s t i m a t e(I . \tau \omega A)-\operatorname{real}(\operatorname{card} A)|\}\)
        by \(\operatorname{simp}\)
    also have \(\ldots=\) measure \(I . \Omega\{\omega\). \(\varepsilon * \operatorname{real}(\operatorname{card} A)<\mid\) I.estimate \((I . \tau \omega A)-\operatorname{real}(\operatorname{card} A) \mid\}\)
        using m-eq by (subst expander-uniform-property \([O F \Theta]\) ) auto
    also have \(\ldots \leq \delta_{i}\)
        by (intro I.estimate-result[OF \(\operatorname{assms}(1,2)])\)
    also have...\(=\) ? \(R\)
        unfolding \(\delta_{i}\)-def using False by simp
    finally show ?thesis
        by \(\operatorname{simp}\)
qed
```

The function encode-state can represent states as bit strings. This enables verification of the space usage.
definition encode-state
where encode-state $=L f_{e}$ I.encode-state m
lemma encode-state: is-encoding encode-state
unfolding encode-state-def
by (intro fixed-list-encoding I.encode-state)
lemma state-bit-count:
bit-count $($ encode-state $(\nu \omega A)) \leq$ state-space-usage $($ real $n, \varepsilon, \delta)$
(is ? $L \leq ? R$)
proof -
have 0 : length $(\nu \omega A)=m$
unfolding ν-def by simp
have $? L=\left(\sum x \leftarrow \nu \omega\right.$ A. bit-count (I.encode-state $\left.x\right)$)
using 0 unfolding encode-state-def fixed-list-bit-count by simp
also have $\ldots=\left(\sum x \leftarrow[0 . .<m]\right.$. bit-count (I.encode-state (I. $\tau($ pro-select $\left.\left.\left.\Theta \omega x) A\right)\right)\right)$
unfolding ν-def by (simp add:comp-def)
also have $\ldots \leq\left(\sum x \leftarrow[0 . .<m]\right.$. ereal $\left(\mathcal{Z}^{〔} 36 *\left(\ln \left(1 / \delta_{i}\right)+1\right) / \varepsilon^{2}+\log 2(\log 2(\right.$ real $\left.\left.n)+3)\right)\right)$
using I.state-bit-count by (intro sum-list-mono I.state-bit-count expander-pro-range $[O F \Theta]$)
also have $\ldots=\operatorname{ereal}\left(\right.$ real $m *\left(2 \wedge 36 *\left(\ln \left(1 / \delta_{i}\right)+1\right) / \varepsilon^{2}+\log 2(\log 2(\right.$ real $\left.\left.n)+3)\right)\right)$
unfolding sum-list-triv-ereal by simp
also have $\ldots \leq 2$ 2 $40 *(\ln (1 / \delta)+1) / \varepsilon^{\wedge} 2+\log 2(\log 2 n+3)($ is $? L 1 \leq ? R 1)$
proof (cases stage-two)
case True
have $\left\lceil 4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right\rceil \leq 4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)+1$
by simp
also have $\ldots \leq 4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)+\ln (1 / \delta) / \ln \left(\ln n_{0}\right)$
using m-gt- 0 -aux $[O F$ True $]$ by (intro add-mono) auto
also have $\ldots=5 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)$ by simp
finally have 3: $\left\lceil 4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right\rceil \leq 5 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)$
by simp
have $4: 0 \leq \log 2(\log 2($ real $n)+3)$
using n-gt-0
by (intro iffD2[OF zero-le-log-cancel-iff] add-nonneg-pos) auto
have $5: 1 / \ln 2+3 / \exp 5 \leq \exp (1::$ real $) 1.2 / \ln 2 \leq(2::$ real $)$
by (approximation 5) +
have $\log 2(\log 2($ real $n)+3) \leq \log 2\left(\log 2 n_{0}+3\right)$
using n-gt-0 by (intro iffD2[OF log-le-cancel-iff] add-mono add-nonneg-pos
iffD2[OF zero-le-log-cancel-iff]) (simp-all add: n_{0}-def)
also have $\ldots=\ln \left(\ln n_{0} / \ln 2+3\right) / \ln 2$
unfolding log-def by simp
also have $\ldots \leq \ln \left(\ln n_{0} / \ln 2+(3 / \exp 5) * \ln n_{0}\right) / \ln 2$
using n-lbound by (intro divide-right-mono iffD2 [OF ln-le-cancel-iff] add-mono add-nonneg-pos) (simp-all add:divide-simps)
also have $\ldots=\ln \left(\ln n_{0} *(1 / \ln 2+3 / \exp 5)\right) / \ln 2$
by (simp add:algebra-simps)
also have $\ldots \leq \ln \left(\ln n_{0} * \exp 1\right) / \ln 2$
using n-lbound by (intro divide-right-mono iffD2[OF ln-le-cancel-iff] add-mono
mult-left-mono 5 Rings.mult-pos-pos add-pos-nonneg) auto
also have $\ldots=\left(\ln \left(\ln n_{0}\right)+1\right) / \ln 2$
using n-lbound by (subst ln-mult) simp-all
also have $\ldots \leq\left(\ln \left(\ln n_{0}\right)+0.2 * \ln \left(\ln n_{0}\right)\right) / \ln 2$
using n-lbound by (intro divide-right-mono add-mono) auto
also have $\ldots=(1.2 / \ln 2) * \ln \left(\ln n_{0}\right)$
by simp
also have $\ldots \leq 2 * \ln \left(\ln n_{0}\right)$
using n-lbound by (intro mult-right-mono 5) simp
finally have $\log 2(\log 2($ real $n)+3) \leq 2 * \ln \left(\ln n_{0}\right)$ by simp
hence 6: $\log 2(\log 2($ real $n)+3) / \ln \left(\ln n_{0}\right) \leq 2$
using n-lbound by (subst pos-divide-le-eq) simp-all
have $? L 1=\operatorname{real}\left(n a t\left\lceil 4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right\rceil\right) *\left(2 \wedge 36 *\left(\ln \left(\ln n_{0}\right)+1\right) / \varepsilon^{\wedge} 2+\log 2(\log 2(\right.$ real $n)+3)$)
using True unfolding m-def δ_{i}-def by simp
also have $\ldots=\left\lceil 4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right\rceil *\left(2 \wedge 36 *\left(\ln \left(\ln n_{0}\right)+1\right) / \varepsilon \wedge 2+\log 2(\log 2(\right.$ real $\left.n)+3)\right)$
using m-gt-0-aux[OF True] by (subst of-nat-nat) simp-all
also have $\ldots \leq\left(5 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right) *\left(2^{\wedge} 36 *\left(\ln \left(\ln n_{0}\right)+1\right) / \varepsilon^{\wedge} 2+\log 2(\log 2(\right.$ real $\left.n)+3)\right)$
using n-lbound (3) ε-gt-0 4 by (intro ereal-mono mult-right-mono
add-nonneg-nonneg divide-nonneg-pos mult-nonneg-nonneg 3) simp-all
also have $\ldots \leq\left(5 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right) *\left(\left(2^{\wedge} 36+2 \wedge 36\right) * \ln \left(\ln n_{0}\right) / \varepsilon^{\wedge} 2+\log 2(\log 2(\right.$ real $n)+3)$)
using n-lbound δ-gt- $0 \quad \delta$-lt-1
by (intro ereal-mono mult-left-mono add-mono divide-right-mono divide-nonneg-pos) auto
also have $\ldots=5 *\left(\right.$ 2^ $^{\wedge} 7$) $) * \ln (1 / \delta) / \varepsilon^{\wedge} 2+(5 * \ln (1 / \delta)) *\left(\log 2(\log 2(\right.$ real $\left.n)+3) / \ln \left(\ln n_{0}\right)\right)$ using n-lbound by (simp add:algebra-simps)
also have $\ldots \leq 5 *\left(2^{\wedge} 37\right) * \ln (1 / \delta) / \varepsilon \wedge 2+(5 * \ln (1 / \delta)) * 2$
using δ-gt-0 δ-lt-1 by (intro add-mono ereal-mono order.refl mult-left-mono 6) auto
also have $\ldots=5 *(2 \wedge 37) * \ln (1 / \delta) / \varepsilon^{\wedge} 2+5 * 2 * \ln (1 / \delta) / 1$
by simp
also have $\ldots \leq 5 *(2 \sim 37) * \ln (1 / \delta) / \varepsilon^{\wedge} 2+5 * 2 * \ln (1 / \delta) / \varepsilon^{\wedge} 2$
using ε-gt-0 \quad e-lt-1 δ-gt-0 δ-lt-1
by (intro add-mono ereal-mono divide-left-mono Rings.mult-pos-pos power-le-one) auto
also have $\ldots=(5 *(2 \wedge 37+2)) *(\ln (1 / \delta)+0) / \varepsilon^{\wedge} 2+0$
by (simp add:algebra-simps)
also have $\ldots \leq 2 \wedge 40 *(\ln (1 / \delta)+1) / \varepsilon^{\wedge} 2+\log 2(\log 2($ real $n)+3)$
using ε-gt-0 ε-lt-1 δ-gt-0 δ-lt-1 n-gt-0 by (intro add-mono ereal-mono divide-right-mono

```
            mult-right-mono iffD2[OF zero-le-log-cancel-iff] add-nonneg-pos) auto
    finally show ?thesis by simp
    next
    case False
    have ?L1 = 2^36*(ln}(1/\delta)+1)/\mp@subsup{\varepsilon}{}{2}+\operatorname{log}2(\operatorname{log}2(\mathrm{ real n)}+3
        using False unfolding }\mp@subsup{\delta}{i}{}\mathrm{ -def m-def by simp
    also have ... \leq?R1
        using \varepsilon-gt-0 \varepsilon-lt-1 \delta-gt-0 \delta-lt-1
        by (intro ereal-mono add-mono divide-right-mono mult-right-mono add-nonneg-nonneg) auto
    finally show ?thesis by simp
    qed
    finally show ?thesis
    unfolding state-space-usage-def by simp
qed
```

Encoding function for the seeds which are just natural numbers smaller than pro-size Θ.
definition encode-seed
where encode-seed $=N b_{e}($ pro-size $\Theta)$
lemma encode-seed:
is-encoding encode-seed
unfolding encode-seed-def by (intro bounded-nat-encoding)
lemma random-bit-count:
assumes $\omega<$ pro-size Θ
shows bit-count (encode-seed ω) \leq seed-space-usage (real n, ε, δ)
(is ? $L \leq ? R$)
proof -
have 0 : pro-size $\Theta>0$ by (intro pro-size-gt-0)
have 1 : pro-size $I . \Omega>0$ by (intro pro-size-gt- 0)
have $\left(55+60 * \ln \left(\ln n_{0}\right)\right)^{\wedge} 3 \leq\left(180+60 * \ln \left(\ln n_{0}\right)\right)^{\wedge} 3$
using n-lbound by (intro power-mono add-mono) auto
also have $\ldots=180 \wedge 3 *\left(1+\ln \left(\ln n_{0}\right) /\right.$ real 3)^3
unfolding power-mult-distrib[symmetric] by simp
also have $\ldots \leq 180^{\wedge} 3 * \exp \left(\ln \left(\ln n_{0}\right)\right)$
using n-lbound by (intro mult-left-mono exp-ge-one-plus-x-over- n-power- n) auto
also have $\ldots=180^{\wedge} 3 * \ln n_{0}$
using n-lbound by (subst exp-ln) auto
also have $\ldots \leq 180^{\wedge} 3 * \max (\ln n)(\ln (\exp (\exp 5)))$
using n-gt- 0 unfolding n_{0}-def by (subst ln-max-swap) auto
also have $\ldots \leq 180^{\wedge} 3 *(\ln n+\exp 5)$
using n-gt-0 unfolding $l n$-exp by (intro mult-left-mono) auto
finally have $2:\left(55+60 * \ln \left(\ln n_{0}\right)\right)^{\wedge} 3 \leq 180 \wedge 3 * \ln n+180 \wedge 3 * \exp 5$ by simp
have $3:(1::$ real $)+180$ ^3*exp $5 \leq 2 \wedge 30(4::$ real $) / \ln 2+180^{\wedge} 3 \leq 2 へ 23$
by (approximation 10)+
have ${ }^{2} L=\operatorname{ereal}($ real $($ floorlog $2($ pro-size $\Theta-1)))$
using assms unfolding encode-seed-def bounded-nat-bit-count by simp
also have $\ldots \leq \operatorname{ereal}($ real $($ floorlog $2($ pro-size $\Theta))$)
by (intro ereal-mono Nat.of-nat-mono floorlog-mono) auto
also have $\ldots=\operatorname{ereal}(1+$ of-int $\lfloor\log 2($ real $($ pro-size $\Theta))\rfloor)$
using 0 unfolding floorlog-def by simp
also have $\ldots \leq \operatorname{ereal}(1+\log 2(\operatorname{real}($ pro-size $\Theta)))$
by (intro add-mono ereal-mono) auto
also have $\ldots=1+\log 2($ real $($ pro-size $I . \Omega) *(2 \wedge 4) \wedge((m-1) * \operatorname{nat}\lceil\ln \alpha / \ln 0.95\rceil))$
unfolding expander-pro-size $[O F \Theta]$ by simp
also have $\ldots=1+\log 2\left(\right.$ real $($ pro-size $I . \Omega) * \mathbb{Z}^{\wedge}(4 *(m-1) *$ nat $\left.\lceil\ln \alpha / \ln 0.95\rceil)\right)$ unfolding power-mult by simp
also have $\ldots=1+\log 2($ real $($ pro-size $I . \Omega))+(4 *(m-1) *$ nat $\lceil\ln \alpha / \ln 0.95\rceil)$
using 1 by (subst log-mult) simp-all
also have $\ldots \leq 1+\log 2\left(2 \operatorname{powr}\left(4 * \log 2 n+48 *(\log 2(1 / \varepsilon)+16)^{2}+\left(55+60 * \ln \left(1 / \delta_{i}\right)\right)\right.\right.$ 3$\left.)\right)+$ (4*(m-1)* nat $\lceil\ln \alpha / \ln 0.95\rceil)$
using 1 by (intro ereal-mono add-mono iffD2[OF log-le-cancel-iff] I.random-bit-count) auto
also have $\ldots=1+4 * \log 2 n+48 *(\log 2(1 / \varepsilon)+16)^{2}+\left(55+60 * \ln \left(1 / \delta_{i}\right)\right) \wedge 3+(4 *(m-1) * n a t\lceil\ln$
$\alpha / \ln 0.957$)
by (subst log-powr-cancel) auto
also have $\ldots \leq 2^{\wedge} 30+2^{\wedge} 23 * \ln n+48 *(\log 2(1 / \varepsilon)+16)^{2}+336 * \ln (1 / \delta)($ is $? L 1 \leq ? R 1)$
proof (cases stage-two)
case True
have $-1<(0::$ real $)$ by simp
also have $\ldots \leq \ln \alpha / \ln 0.95$
using α-gt-0 α-le-1 by (intro divide-nonpos-neg) auto
finally have $4:-1<\ln \alpha / \ln 0.95$ by simp
have 5:-1/ln $0.95 \leq(20::$ real $)$
by (approximation 10)
have $(4 *(m-1) * n a t\lceil\ln \alpha / \ln 0.95\rceil)=4 *($ real $m-1) *$ of-int $\lceil\ln \alpha / \ln 0.95\rceil$
using 4 m -gt- 0 unfolding of-nat-mult by (subst of-nat-nat) auto
also have $\ldots \leq 4 *($ real $m-1) *(\ln \alpha / \ln 0.95+1)$
using m-gt-0 by (intro mult-left-mono) auto
also have $\ldots=4 *($ real $m-1) *\left(-\ln \left(\ln n_{0}\right) / \ln 0.95+1\right)$
using n-lbound True unfolding α-def
by (subst ln-inverse[symmetric]) (simp-all add:inverse-eq-divide)
also have $\ldots=4 *($ real $m-1) *\left(\ln \left(\ln n_{0}\right) *(-1 / \ln 0.95)+1\right)$
by simp
also have $\ldots \leq 4 *($ real $m-1) *\left(\ln \left(\ln n_{0}\right) * 20+1\right)$
using n-lbound m-gt-0 by (intro mult-left-mono add-mono 5) auto
also have $\ldots=4 *\left(\operatorname{real}\left(\right.\right.$ nat $\left.\left.\left\lceil 4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right\rceil\right)-1\right) *\left(\ln \left(\ln n_{0}\right) * 20+1\right)$
using True unfolding m-def by simp
also have $\ldots=4 *\left(\right.$ real-of-int $\left.\left\lceil 4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right\rceil-1\right) *\left(\ln \left(\ln n_{0}\right) * 20+1\right)$
using m-gt-0-aux[OF True] by (subst of-nat-nat) simp-all
also have $\ldots \leq 4 *\left(4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right) *\left(\ln \left(\ln n_{0}\right) * 20+1\right)$
using n-lbound by (intro mult-left-mono mult-right-mono) auto
also have $\ldots \leq 4 *\left(4 * \ln (1 / \delta) / \ln \left(\ln n_{0}\right)\right) *\left(\ln \left(\ln n_{0}\right) * 20+\ln \left(\ln n_{0}\right)\right)$
using δ-gt-0 δ-lt-1 n-lbound
by (intro mult-left-mono mult-right-mono add-mono divide-nonneg-pos Rings.mult-nonneg-nonneg) simp-all
also have $\ldots=336 * \ln (1 / \delta)$
using n-lbound by simp
finally have $6: 4 *(m-1) *$ nat $\lceil\ln \alpha / \ln 0.95\rceil \leq 336 * \ln (1 / \delta)$ by simp
have $? L 1=1+4 * \log 2 n+48 *(\log 2(1 / \varepsilon)+16)^{2}+\left(55+60 * \ln \left(\ln n_{0}\right)\right) \wedge 3+(4 *(m-1) * n a t\lceil\ln$ $\alpha / \ln 0.957$)
using True unfolding δ_{i}-def by simp
also have $\ldots \leq 1+4 * \log 2 n+48 *(\log 2(1 / \varepsilon)+16)^{2}+(180 \wedge 3 * \ln n+180 \wedge 3 * \exp 5)+336 *$ $\ln (1 / \delta)$
by (intro add-mono 62 ereal-mono order.refl)
also have $\ldots=\left(1+180^{\wedge} 3 * \exp 5\right)+\left(4 / \ln 2+180^{\wedge} 3\right) * \ln n+48 *(\log 2(1 / \varepsilon)+16)^{2}+336 * \ln$ ($1 / \delta$)
by (simp add:log-def algebra-simps)

```
    also have ... \leq2`30 + 2`23* ln n+48*(log 2 (1/\varepsilon)+16)2+ 336* ln (1/\delta)
            using n-gt-0 by (intro add-mono ereal-mono 3 order.refl mult-right-mono) auto
    finally show ?thesis by simp
next
    case False
    hence 1/ \delta\leqln no
        using }\delta\mathrm{ -gt-0 n-lbound
        unfolding stage-two-def not-less by (simp add:divide-simps ac-simps)
    hence 7: ln (1 / \delta) \leq ln (ln no)
        using n-lbound \delta-gt-0 \delta-lt-1
        by (intro iffD2[OF ln-le-cancel-iff]) auto
    have 8:0\leq 336*\operatorname{ln}(1/\delta)
        using \delta-gt-0 \delta-lt-1 by auto
    have ?L1 = 1 + 4* log 2 (real n) + 48*(log 2 (1/\varepsilon) + 16 )}\mp@subsup{)}{}{2}+(55+60*\operatorname{ln}(1/\delta))^
        using False unfolding }\mp@subsup{\delta}{i}{}\mathrm{ -def m-def by simp
    also have ... \leq1+4* log 2 (real n) + 48*(log2 (1/\varepsilon)+16)2 +(55 + 60*ln (ln
no))^3
        using \delta-gt-0 \delta-lt-1
        by (intro add-mono order.refl ereal-mono power-mono mult-left-mono add-nonneg-nonneg 7)
auto
    also have ... \leq 1+4*log 2(real n)+48*(log 2 (1/\varepsilon)+16)2+(180^3*\operatorname{ln}(\mathrm{ real n) + 180^ 3 *}
exp 5)
            by (intro add-mono ereal-mono 2 order.refl)
    also have ... = (1+180^3*\operatorname{exp 5)+(4/ln 2 + 180^3)*ln n+48*(log 2 (1/\varepsilon)+16)2}+0
        by (simp add:log-def algebra-simps)
    also have ... \leq2^30 + 2^23* ln n+48*(log 2 (1/\varepsilon)+16)2 + 336*\operatorname{ln}(1/\delta)
        using n-gt-0 by (intro add-mono ereal-mono 3 order.refl mult-right-mono 8) auto
    finally show ?thesis by simp
qed
also have ... = seed-space-usage (real n, \varepsilon, \delta)
    unfolding seed-space-usage-def by simp
finally show ?thesis by simp
qed
```

The following is an alternative form expressing the correctness and space usage theorems. If x is expression formed by local.single and local.merge operations. Then x requires state-space-usage (real n, ε, δ) bits to encode and estimate x approximates the count of the distinct universe elements in the expression.
For example:
estimate (local.merge (local.single $\omega 1$) (local.merge (local.single ω 5) (local.single $\omega 1$))) approximates the cardinality of $\{1,5,1\}$ i.e. 2.
datatype sketch-tree $=$ Single nat \mid Merge sketch-tree sketch-tree

```
fun eval :: nat \(\Rightarrow\) sketch-tree \(\Rightarrow\) state
    where
        eval \(\omega\) (Single \(x)=\) single \(\omega x\)
    eval \(\omega\) (Merge x \(y\) ) \(=\) merge (eval \(\omega x)(\) eval \(\omega y)\)
```

fun sketch-tree-set :: sketch-tree \Rightarrow nat set
where
sketch-tree-set $($ Single $x)=\{x\} \mid$
sketch-tree-set $($ Merge $x y)=$ sketch-tree-set $x \cup$ sketch-tree-set y
theorem correctness:
fixes X

```
    assumes sketch-tree-set t\subseteq{..<n}
    defines p\equivpmf-of-set {..<pro-size \Theta}
    defines X \equiv real (card (sketch-tree-set t))
    shows measure p {\omega. |estimate (eval \omegat) - X|>\varepsilon*X}\leq\delta(is ?L\leq?R)
proof -
    define }A\mathrm{ where }A=\mathrm{ sketch-tree-set t
    have }X\mathrm{ -eq: }X=\operatorname{real}(\operatorname{card}A
        unfolding }X\mathrm{ -def A-def by simp
    have 0:eval }\omegat=\nu\omegaA\mathrm{ for }
        unfolding A-def using single-result merge-result
        by (induction t) (auto simp del:merge.simps single.simps)
    have 1:A\subseteq{..<n}
        using assms(1) unfolding A-def by blast
    have 2: }A\not={
        unfolding }A\mathrm{ -def by (induction t) auto
    show ?thesis
        unfolding 0 X-eq p-def by (intro estimate-result 1 2)
qed
theorem space-usage:
    assumes }\omega<\mathrm{ pro-size }
    shows
        bit-count (encode-state (eval \omegat))\leq state-space-usage (real n, \varepsilon, \delta) (is ?A)
        bit-count (encode-seed \omega)\leq seed-space-usage (real n, \varepsilon, \delta) (is ?B)
proof
    define }A\mathrm{ where }A=\mathrm{ sketch-tree-set t
    have 0:eval }\omegat=\nu\omegaA\mathrm{ for }
        unfolding A-def using single-result merge-result
        by (induction t) (auto simp del:merge.simps single.simps)
    show ?A
        unfolding 0 by (intro state-bit-count)
    show ?B
        using random-bit-count[OF assms] by simp
qed
end
```

The functions state-space-usage and seed-space-usage are exact bounds on the space usage for the state and the seed. The following establishes asymptotic bounds with respect to the limit $n, \delta^{-1}, \varepsilon^{-1} \rightarrow \infty$.

```
context
```

begin

Some local notation to ease proofs about the asymptotic space usage of the algorithm:
private definition n-of :: real \times real \times real \Rightarrow real where n-of $=(\lambda(n, \varepsilon, \delta) . n)$
private definition δ-of :: real \times real \times real \Rightarrow real where δ-of $=(\lambda(n, \varepsilon, \delta) . \delta)$
private definition ε-of :: real \times real \times real \Rightarrow real where ε-of $=(\lambda(n, \varepsilon, \delta) . \varepsilon)$
private abbreviation $F::($ real \times real \times real $)$ filter
where $F \equiv\left(\right.$ at-top \times_{F} at-right $0 \times_{F}$ at-right 0$)$
private lemma var-simps:
$n-o f=f s t$
$\varepsilon-o f=(\lambda x . f s t(\operatorname{snd} x))$
δ-of $=(\lambda x$. snd $(\operatorname{snd} x))$
unfolding n-of-def ε-of-def δ-of-def by (auto simp add:case-prod-beta)
private lemma evt-n: eventually $(\lambda x . n$-of $x \geq n) F$
unfolding var-simps by (intro eventually-prod1' eventually-prod2' eventually-ge-at-top) (simp add:prod-filter-eq-bot)
private lemma evt-n-1: $\forall_{F} x$ in $F .0 \leq \ln (n$-of $x)$
by (intro eventually-mono[OF evt-n[of 1]] ln-ge-zero) simp
private lemma evt-n-2: $\forall_{F} x$ in $F .0 \leq \ln (\ln (n$-of $x))$
using order-less-le-trans[OF exp-gt-zero]
by (intro eventually-mono[OF evt-n[of exp 1]] ln-ge-zero iffD2[OF ln-ge-iff]) auto
private lemma evt- ε : eventually $(\lambda x .1 / \varepsilon$-of $x \geq \varepsilon \wedge \varepsilon$-of $x>0) F$
unfolding var-simps by (intro eventually-prod1' eventually-prod2' eventually-conj real-inv-at-right-0-inf eventually-at-right-less) (simp-all add:prod-filter-eq-bot)
private lemma evt- δ : eventually $(\lambda x .1 / \delta$-of $x \geq \delta \wedge \delta$-of $x>0) F$
unfolding var-simps by (intro eventually-prod1' eventually-prod2' eventually-conj real-inv-at-right- 0 -inf eventually-at-right-less) (simp-all add:prod-filter-eq-bot)
private lemma evt- $\delta-1: \forall_{F} x$ in $F .0 \leq \ln (1 / \delta$-of $x)$
by (intro eventually-mono[OF evt- $\delta[$ of 1]] ln-ge-zero) simp
theorem asymptotic-state-space-complexity:
state-space-usage $\in O[F]\left(\lambda(n, \varepsilon, \delta) . \ln (1 / \delta) / \varepsilon^{\wedge} 2+\ln (\ln n)\right)$
(is $-\in O[? F](? r h s))$
proof -
have $0:(\lambda x .1) \in O[? F](\lambda x . \ln (1 / \delta$-of $x))$
using order-less-le-trans[OF exp-gt-zero]
by (intro landau-o.big-mono eventually-mono[OF evt- $\delta[$ of exp 1]])
(auto intro!: iffD2[OF ln-ge-iff] simp add:abs-ge-iff)
have $1:(\lambda x .1) \in O[? F](\lambda x . \ln (n$-of $x))$
using order-less-le-trans[OF exp-gt-zero]
by (intro landau-o.big-mono eventually-mono[OF evt-n[of exp 1]])
(auto intro!:iffD2[OF ln-ge-iff] simp add:abs-ge-iff)
have $\left(\lambda x .\left((\ln (1 / \delta\right.\right.$-of $\left.\left.x)+1) *(1 / \varepsilon \text {-of } x)^{2}\right)\right) \in O[? F]\left(\lambda x . \ln (1 / \delta\right.$-of $\left.x) *(1 / \varepsilon \text {-of } x)^{2}\right)$
by (intro landau-o.mult sum-in-bigo 0) simp-all
hence 2: $\left(\lambda x\right.$. 2~40* $\left((\ln (1 / \delta\right.$-of $\left.\left.x)+1) *(1 / \varepsilon \text {-of } x)^{2}\right)\right) \in O[? F]\left(\lambda x \cdot \ln (1 / \delta\right.$-of $\left.x) *(1 / \varepsilon \text {-of } x)^{2}\right)$
unfolding cmult-in-bigo-iff by simp
have 3: $(1::$ real $) \leq \exp 2$
by (approximation 5)
have $(\lambda x$. $\ln (n$-of $x) / \ln 2+3) \in O[? F](\lambda x . \ln (n$-of $x))$
using 1 by (intro sum-in-bigo) simp-all
hence $(\lambda x . \ln (\ln (n$-of $x) / \ln 2+3)) \in O[? F](\lambda x \cdot \ln (\ln (n$-of $x)))$
using order-less-le-trans[OF exp-gt-zero] order-trans[OF 3]
by (intro landau-ln-2[where $a=2]$ eventually-mono[OF evt-n[of exp 2]])
(auto intro!:iffD2[OF ln-ge-iff] add-nonneg-nonneg divide-nonneg-pos)
hence $4:(\lambda x \cdot \log 2(\log 2(n$-of $x)+3)) \in O[? F](\lambda x \cdot \ln (\ln (n$-of $x)))$
unfolding log-def by simp
have 5: $\forall_{F} x$ in ? $F .0 \leq \ln (1 / \delta$-of $x) *(1 / \varepsilon \text {-of } x)^{2}$
by (intro eventually-mono[OF eventually-conj $[$ OF evt- $\delta-1$ evt- $\varepsilon[$ of 1$]]])$ auto
have state-space-usage $=(\lambda x$. state-space-usage $(n$-of x, ε-of x, δ-of $x))$
by (simp add:case-prod-beta' n-of-def δ-of-def ε-of-def)
also have $\ldots=\left(\lambda x\right.$. ${ }^{2}{ }^{\wedge} 40 *\left((\ln (1 /(\delta\right.$-of $\left.x))+1) *(1 / \varepsilon \text {-of } x)^{2}\right)+\log 2(\log 2(n$-of $\left.x)+3)\right)$
unfolding state-space-usage-def by (simp add:divide-simps)
also have $\ldots \in O[? F]\left(\lambda x . \ln (1 / \delta-o f x) *(1 / \varepsilon \text {-of } x)^{2}+\ln (\ln (n\right.$-of $\left.x))\right)$
by (intro landau-sum 245 evt-n-2)
also have $\ldots=O[? F]$ (?rhs)
by (simp add:case-prod-beta' n-of-def δ-of-def ε-of-def divide-simps)
finally show ?thesis by simp
qed
theorem asymptotic-seed-space-complexity:
seed-space-usage $\in O[F]\left(\lambda(n, \varepsilon, \delta) \cdot \ln (1 / \delta)+\ln (1 / \varepsilon)^{\wedge} 2+\ln n\right)$
$($ is $-\in O[? F](? r h s))$
proof -
have $0: \forall_{F} x$ in ? $F .0 \leq(\ln (1 / \varepsilon \text {-of } x))^{2}$
by simp
have 1: $\forall_{F} x$ in ?F. $0 \leq \ln (1 / \delta$-of $x)+(\ln (1 / \varepsilon \text {-of } x))^{2}$
by (intro eventually-mono[OF eventually-conj[OF evt- δ-1 0$]]$ add-nonneg-nonneg) auto
have 2: $(\lambda x .1) \in O[? F](\lambda x . \ln (1 / \varepsilon$-of $x))$
using order-less-le-trans[OF exp-gt-zero]
by (intro landau-o.big-mono eventually-mono[OF evt- $[$ [of exp 1]])
(auto intro!:iffD2[OF ln-ge-iff] simp add:abs-ge-iff)
have $(\lambda x .1) \in O\left[\right.$ at-top \times_{F} at-right $0 \times_{F}$ at-right 0$](\lambda x$. $\ln (n$-of $x))$
using order-less-le-trans[OF exp-gt-zero]
by (intro landau-o.big-mono eventually-mono[OF evt-n[of exp 1]])
(auto intro!:iffD2[OF ln-ge-iff] simp add:abs-ge-iff)
hence 3: $(\lambda x .1) \in O[? F]\left(\lambda x \cdot \ln (1 / \delta\right.$-of $x)+(\ln (1 / \varepsilon-o f x))^{2}+\ln (n$-of $\left.x)\right)$
by (intro landau-sum-2 1 evt-n-1 0 evt- $\delta-1$) simp
have $4:(\lambda x . \ln (n$-of $x)) \in O[? F]\left(\lambda x . \ln (1 / \delta\right.$-of $x)+(\ln (1 / \varepsilon \text {-of } x))^{2}+\ln (n$-of $\left.x)\right)$
by (intro landau-sum-2 1 evt-n-1) simp
have $(\lambda x \cdot \log 2(1 / \varepsilon$-of $x)+16) \in O[? F](\lambda x \cdot \ln (1 / \varepsilon$-of $x))$
using 2 unfolding log-def by (intro sum-in-bigo) simp-all
hence 5: $\left(\lambda x .(\log 2(1 / \varepsilon \text {-of } x)+16)^{2}\right) \in O[? F]\left(\lambda x . \ln (1 / \delta\right.$-of $\left.x)+(\ln (1 / \varepsilon \text {-of } x))^{2}\right)$
using 0 unfolding power2-eq-square by (intro landau-sum-2 landau-o.mult evt- δ-1) simp-all
have $6:\left(\lambda x .(\log 2(1 / \varepsilon-o f x)+16)^{2}\right) \in O[? F]\left(\lambda x \cdot \ln (1 / \delta-o f x)+(\ln (1 / \varepsilon-o f x))^{2}+\ln (n\right.$-of x))
by (intro landau-sum-1[OF - - 5] 1 evt-n-1)
have 7: $(\lambda x \cdot \ln (1 / \delta-o f x)) \in O[? F]\left(\lambda x \cdot \ln (1 / \delta-o f x)+(\ln (1 / \varepsilon-o f x))^{2}+\ln (n\right.$-of $\left.x)\right)$
by (intro landau-sum-1 1 evt- δ-1 0 evt-n-1) simp
have seed-space-usage $=(\lambda x$. seed-space-usage $(n$-of x, ε-of x, δ-of $x))$
by (simp add:case-prod-beta' n-of-def δ-of-def ε-of-def)
also have $\ldots=\left(\lambda x\right.$. 2^30 2 2^23 $* \ln (n$-of $x)+48 *(\log 2(1 /(\varepsilon \text {-of } x))+16)^{2}+336 * \ln (1 / \delta$-of x))
unfolding seed-space-usage-def by (simp add:divide-simps)
also have $\ldots \in O[? F]\left(\lambda x\right.$. $\ln (1 / \delta-o f x)+\ln (1 / \varepsilon \text {-of } x)^{\wedge} 2+\ln (n$-of $\left.x)\right)$
using 3467 by (intro sum-in-bigo) simp-all
also have $\ldots=O[? F]$ (?rhs)
by (simp add:case-prod-beta' n-of-def δ-of-def ε-of-def)
finally show ?thesis by simp
qed
definition space-usage $x=$ state-space-usage $x+$ seed-space-usage x
theorem asymptotic-space-complexity:
space-usage $\in O\left[\right.$ at-top \times_{F} at-right $0 \times_{F}$ at-right 0$]\left(\lambda(n, \varepsilon, \delta) \cdot \ln (1 / \delta) / \varepsilon^{\wedge} 2+\ln n\right)$
proof -
let ? $f 1=\left(\lambda x\right.$. $\left.\ln (1 / \delta-o f x) *\left(1 / \varepsilon-o f x^{\wedge} 2\right)+\ln (\ln (n-o f x))\right)$
let ?f2 $=\left(\lambda x . \ln (1 / \delta-\right.$ of $x)+\ln (1 / \varepsilon \text {-of } x)^{\wedge} 2+\ln (n$-of $\left.x)\right)$
have $0: \forall_{F} x$ in $F .0 \leq\left(1 /(\varepsilon \text {-of } x)^{2}\right)$
unfolding var-simps by (intro eventually-prod1 ' eventually-prod2' eventually-inv) (simp-all add:prod-filter-eq-bot eventually-nonzero-simps)
have 1: $\forall_{F} x$ in $F .0 \leq \ln (1 / \delta$-of $x) *\left(1 /(\varepsilon \text {-of } x)^{2}\right)$
by (intro eventually-mono[OF eventually-conj[OF evt- $\delta-1$ 0]] mult-nonneg-nonneg) auto
have 2: $\forall_{F} x$ in $F .0 \leq \ln (1 / \delta$-of $x) *\left(1 /(\varepsilon \text {-of } x)^{2}\right)+\ln (\ln (n$-of $x))$
by (intro eventually-mono[OF eventually-conj[OF 1 evt-n-2]] add-nonneg-nonneg) auto
have 3: $\forall_{F} x$ in $F .0 \leq \ln \left(1 /(\varepsilon \text {-of } x)^{2}\right)$
unfolding power-one-over[symmetric]
by (intro eventually-mono[OF evt- $[$ [of 1]] \ln-ge-zero) simp
have 4: $\forall_{F} x$ in $F .0 \leq \ln (1 / \delta$-of $x)+(\ln (1 / \varepsilon \text {-of } x))^{2}+\ln (n$-of $x)$
by (intro eventually-mono[OF eventually-conj[OF evt-n-1 eventually-conj[OF evt- $\delta-1$ 3]]]] add-nonneg-nonneg) auto
have $5:(\lambda-.1) \in O[F]\left(\lambda x .1 /(\varepsilon-o f x)^{2}\right)$
unfolding var-simps by (intro bigo-prod-1 bigo-prod-2 bigo-inv)
(simp-all add:power-divide prod-filter-eq-bot)
have $6:(\lambda$-. 1$) \in O[F](\lambda x . \ln (1 / \delta$-of $x))$
unfolding var-simps
by (intro bigo-prod-1 bigo-prod-2 bigo-inv) (simp-all add:prod-filter-eq-bot)
have 7: state-space-usage $\in O[F]\left(\lambda x \cdot \ln (1 / \delta\right.$-of $x) *\left(1 /(\varepsilon \text {-of } x)^{2}\right)+\ln (\ln (n$-of $\left.x))\right)$
using asymptotic-state-space-complexity unfolding δ-of-def ε-of-def n-of-def
by (simp add:case-prod-beta')
have 8: seed-space-usage $\in O[F]\left(\lambda x \cdot \ln (1 / \delta\right.$-of $x)+(\ln (1 / \varepsilon \text {-of } x))^{2}+\ln (n$-of $\left.x)\right)$ using asymptotic-seed-space-complexity unfolding δ-of-def ε-of-def n-of-def
by (simp add:case-prod-beta')
have 9: $(\lambda x \cdot \ln (n$-of $x)) \in O[F]\left(\lambda x \cdot \ln (1 / \delta\right.$-of $x) *\left(1 /(\varepsilon \text {-of } x)^{2}\right)+\ln (n$-of $\left.x)\right)$
by (intro landau-sum-2 evt-n-1 1) simp
have $\left(\lambda x .(\ln (1 / \varepsilon \text {-of } x))^{2}\right) \in O[F](\lambda x .1 / \varepsilon$-of x ^2 $)$
unfolding var-simps
by (intro bigo-prod-1 bigo-prod-2 bigo-inv) (simp-all add:power-divide prod-filter-eq-bot)
hence 10: $\left(\lambda x\right.$. $\left.(\ln (1 / \varepsilon \text {-of } x))^{2}\right) \in O[F]\left(\lambda x . \ln (1 / \delta\right.$-of $x) *\left(1 / \varepsilon\right.$-of $\left.x^{\wedge} 2\right)+\ln (n$-of $\left.x)\right)$
by (intro landau-sum-1 evt-n-1 1 landau-o.big-mult-1' 6)
have 11: $(\lambda x . \ln (1 / \delta$-of $x)) \in O[F](\lambda x \cdot \ln (1 / \delta$-of $x) *(1 / \varepsilon$-of x ^2 $)+\ln (n$-of $x))$
by (intro landau-sum-1 evt-n-1 1 landau-o.big-mult-1 5) simp
have 12: $(\lambda x$. $\ln (1 / \delta$-of $x) *(1 / \varepsilon$-of x ^2 $)) \in O[F](\lambda x . \ln (1 / \delta$-of $x) *(1 / \varepsilon-$ of $x \wedge 2)+\ln (n$-of $x))$
by (intro landau-sum-1 1 evt-n-1) simp
have $(\lambda x \cdot \ln (\ln (n$-of $x))) \in O[F](\lambda x \cdot \ln (n$-of $x))$
unfolding var-simps by (intro bigo-prod-1 bigo-prod-2) (simp-all add:prod-filter-eq-bot)

```
    hence 13: \((\lambda x \cdot \ln (\ln (n\)-of \(x))) \in O[F]\left(\lambda x \cdot \ln (1 / \delta\right.\)-of \(x) *\left(1 / \varepsilon\right.\)-of \(\left.x^{\wedge} 2\right)+\ln (n\)-of \(\left.x)\right)\)
    by (intro landau-sum-2 evt-n-1 1)
    have space-usage \(=(\lambda x\). state-space-usage \(x+\) seed-space-usage \(x)\)
    unfolding space-usage-def by simp
    also have \(\ldots \in O[F](\lambda x\). ?f1 \(x+\) ?f2 \(x)\)
    by (intro landau-sum 2478 )
    also have \(\ldots \subseteq O[F](\lambda x \ln (1 / \delta\)-of \(x) *(1 / \varepsilon\)-of \(x\) へ 2\()+\ln (n\)-of \(x))\)
    by (intro landau-o.big.subsetI sum-in-bigo 91011 12 13)
    also have \(\ldots=O[F]\left(\lambda(n, \varepsilon, \delta) \cdot \ln (1 / \delta) / \varepsilon^{\wedge} 2+\ln n\right)\)
    unfolding \(\delta\)-of-def \(\varepsilon\)-of-def \(n\)-of-def
    by (simp add:case-prod-beta')
    finally show ?thesis by simp
qed
end
unbundle no-intro-cong-syntax
end
```


References

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. Journal of Computer and System Sciences, 58(1):137-147, 1999.
[2] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct elements in a data stream. In Randomization and Approximation Techniques in Computer Science, pages 1-10. Springer Berlin Heidelberg, 2002.
[3] J. Błasiok. Optimal streaming and tracking distinct elements with high probability. ACM Trans. Algorithms, 16(1):3:1-3:28, 2020.
[4] P. Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31(2):182-209, 1985.
[5] P. B. Gibbons and S. Tirthapura. Estimating simple functions on the union of data streams. In Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA '01, pages 281-291, 2001.
[6] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness extractors from parvaresh-vardy codes. J. $A C M, 56(4)$, jul 2009.
[7] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '10, pages 41-52, New York, 2010.
[8] E. Karayel. Finite fields. Archive of Formal Proofs, June 2022. https://isa-afp.org/entries/ Finite_Fields.html, Formal proof development.
[9] E. Karayel. Formalization of randomized approximation algorithms for frequency moments. Archive of Formal Proofs, April 2022. https://isa-afp.org/entries/Frequency_Moments.html, Formal proof development.
[10] E. Karayel. Expander graphs. Archive of Formal Proofs, March 2023. https://isa-afp.org/ entries/Expander_Graphs.html, Formal proof development.
[11] D. Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '04, pages 167-175, USA, 2004. Society for Industrial and Applied Mathematics.

