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Abstract
This project formally verifies the Upper Confidence Bound (UCB)

algorithm in Isabelle/Higher-order Logic (HOL), focusing on its proba-
bilistic guarantees and regret bounds. The work extends Isabelle/HOLs
probabilistic framework and explores verification of discrete-time ban-
dit models following [1]. This research advances the formal verification
of probabilistic algorithms in reinforcement learning.

theory MSc-Project-Discrete-Prop15-1
imports

HOL−Probability.Probability

begin

locale bandit-problem =
fixes A :: ′a set

and µ :: ′a ⇒ real
and a-star :: ′a

assumes finite-arms: finite A
and a-star-in-A: a-star ∈ A
and optimal-arm: ∀ a ∈ A. µ a-star ≥ µ a

begin

definition ∆ :: ′a ⇒ real where
∆ a = µ a-star − µ a

end

locale bandit-policy = bandit-problem + prob-space +
fixes Ω :: ′b set

and F :: ′b set set
and π :: nat ⇒ ′b ⇒ ′a
and N-n :: nat ⇒ ′a ⇒ ′b ⇒ nat

assumes measurable-policy: ∀ t. π t ∈ measurable M (count-space A)
and N-n-def : ∀n a ω. N-n n a ω = card {t ∈ {0 ..<n}. π (t+1 ) ω = a}
and count-assm-pointwise: ∀n ω. (

∑
a ∈ A. real (N-n n a ω)) = real n
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begin

definition R-n :: nat ⇒ ′b ⇒ real where
R-n n ω = n ∗ µ a-star − (

∑
a ∈ A. µ a ∗ real (N-n n a ω))

lemma regret-decomposition-pointwise:
fixes n :: nat and ω :: ′b
assumes n-count-assm-pointwise: (

∑
a∈A. real (N-n n a ω)) = real n

shows R-n n ω = (
∑

a ∈ A. ∆ a ∗ real (N-n n a ω))
〈proof 〉

lemma integrable-const-fun:
assumes finite-measure M
shows integrable M (λx. c)
〈proof 〉

lemma expected-regret:
assumes finite A
and ∀ a ∈ A. integrable M (λω. real (N-n n a ω))
shows expectation (λω. R-n n ω) = (

∑
a∈A. ∆ a ∗ expectation (λω. real (N-n

n a ω)))
〈proof 〉

end

end
theory Discrete-UCB-Step1

imports MSc-Project-Discrete-Prop15-1

begin

locale bandit-policy = bandit-problem + prob-space +
fixes Ω :: ′b set

and F :: ′b set set
and ω :: ′b
and π :: nat ⇒ ′b ⇒ ′a
and N-n :: nat ⇒ ′a ⇒ ′b ⇒ nat

assumes measurable-policy: ∀ t. π t ∈ measurable M (count-space A)
and N-n-def : ∀n a ω. N-n n a ω = card {t ∈ {0 ..<n}. π (t+1 ) ω = a}
and count-assm-pointwise: ∀n ω. (

∑
a ∈ A. real (N-n n a ω)) = real n

begin

lemma union-eq:
fixes a :: ′a and n k :: nat
assumes k ≤ n
shows {t. t < n ∧ π (t+1 ) ω = a} = {t. t < k ∧ π (t+1 ) ω = a} ∪ {t. k ≤ t
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∧ t < n ∧ π (t+1 ) ω = a}
〈proof 〉

lemma cardinality-indic-eq:
fixes I :: nat ⇒ bool
assumes finite {t. k ≤ t ∧ t < n}
shows card {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ I t} = (

∑
t = k..<n. if π

(t+1 ) ω = a ∧ I t then 1 else 0 )
〈proof 〉

lemma ge-rewrite: (x::real) ≥ y =⇒ y ≤ x 〈proof 〉

lemma Nn-expression:
fixes a :: ′a and s :: nat ⇒ real

and k :: nat and n :: nat
assumes a ∈ A

and k ≤ n
and 0 < n
and ∀ t ∈ {0 ..n}. 0 < s t
and ∀ t < n − 1 . s t ≤ s (t + 1 )
and init-play-once: ∀ω. a ∈ A −→ N-n k a ω = 1
and finite-played-sets:
finite {t. t < n ∧ π (t+1 ) ω = a}
finite {t. t < k ∧ π (t+1 ) ω = a}
finite {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a}

shows
(N-n n a ω) = 1 + (

∑
t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t

then 1 else 0 ) +
(
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t then 1
else 0 )
〈proof 〉

lemma upper-bound-expression-contradiction:
fixes a :: ′a and s :: nat ⇒ real

and k :: nat and n :: nat
and s-n-nat :: nat

assumes a ∈ A
and k ≤ n
and 0 < n
and non-neg-s: ∀ t ∈ {0 ..n}. 0 < s t
and base-le: s 0 ≤ s 1
and non-dec: ∀ t < n − 1 . s t ≤ s (t + 1 )
and s-mono:

∧
t. k ≤ t ∧ t ≤ n =⇒ s t ≤ s n

and init-play-once: ∀ω. a ∈ A −→ N-n k a ω = 1
and finite-played-sets:
finite {t. t < n ∧ π (t+1 ) ω = a}
finite {t. t < k ∧ π (t+1 ) ω = a}
finite {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a}
and xs-sorted-def : xs = sorted-list-of-set {t ∈ {k..<n}. π (t+1 ) ω = a ∧ real
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(N-n t a ω) < s t}
and s-nat-def : s-n-nat = nat (bs nc)
and len-bound-def : s-n-nat < length xs
and distinct-xs: distinct xs
and gt-ineq: length xs + 1 > bs nc
and N-n-increasing-with-plays:
∀ t t ′. k ≤ t ∧ t < t ′ ∧ π (t+1 ) ω = a ∧ π (t ′+1 ) ω = a −→ N-n t ′ a ω ≥

N-n t a ω + 1
and neg: 1 + real (

∑
t=k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t

then 1 else 0 ) > s n
and t-hat ∈ set xs
and t-hat = xs ! s-n-nat
and real (N-n t-hat a ω) ≥ real s-n-nat + 1

shows (real (N-n t-hat a ω) ≥ bs nc + 1 ) ∧ (π (t-hat+1 ) ω = a ∧ (real (N-n
t-hat a ω) < s t-hat))

〈proof 〉

lemma Nn-upper-bound:
fixes a :: ′a and s :: nat ⇒ real

and k :: nat and n :: nat
assumes asm: real(1 + (

∑
t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) <

s t then 1 else 0 )) ≤ s n
and a-in-A: a ∈ A
and k-le-n: k ≤ n
and n-pos: 0 < n
and s-pos: ∀ t ∈ {0 ..n}. 0 < s t
and s-nondec: ∀ t < n − 1 . s t ≤ s (t + 1 )
and init-play-once: ∀ω. a ∈ A −→ N-n k a ω = 1
and finite-played-sets-1 : finite {t. t < n ∧ π (t+1 ) ω = a}
and finite-played-sets-2 : finite {t. t < k ∧ π (t+1 ) ω = a}
and finite-played-sets-3 : finite {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a}

shows real(N-n n a ω) ≤ s n + real((
∑

t = k..<n. if π (t+1 ) ω = a ∧ s t ≤
real (N-n t a ω) then 1 else 0 ))
〈proof 〉

theorem ENn-upper-bound:
assumes

a-in-A: a ∈ A
and k-le-n: k ≤ n
and n-pos: 0 < n
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and s-pos: ∀ t ∈ {0 ..n}. 0 < s t
and s-nondec: ∀ t < n. s t ≤ s (t + 1 )
and init-play-once: ∀ω. a ∈ A −→ N-n k a ω = 1
and integrable-Nn: integrable M (λω. real (N-n n a ω))
and integrable-rhs-sum: integrable M (λω. s n + (

∑
t = k..<n. if π (t+1 ) ω

= a ∧ s t ≤ real (N-n t a ω) then 1 else 0 ))
and integrable-s: integrable M (λω. s n)
and integrable-indicator-sum: integrable M (λω.

∑
t = k..<n. if π (t+1 ) ω =

a ∧ s t ≤ real (N-n t a ω) then 1 else 0 )
and linearity: integralL M (λω. s n + (

∑
t = k..<n. if π (t+1 ) ω = a ∧ s t

≤ real (N-n t a ω) then 1 else 0 )) =
integralL M (λω. s n) + integralL M (λω.

∑
t = k..<n. if π (t+1 )

ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 )
and pointwise-bound: real (N-n n a ω) ≤ s n + (

∑
t = k..<n. if π (t+1 ) ω =

a ∧ s t ≤ real (N-n t a ω) then 1 else 0 )
and mono-intgrl: integralL M (λω. real (N-n n a ω)) ≤ integralL M (λω. s n

+ (
∑

t = k..<n.
if π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 ))

shows
expectation (λω. real (N-n n a ω)) ≤
s n + expectation (λω. (

∑
t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t

a ω) then 1 else 0 ))
〈proof 〉

end
end
theory Discrete-UCB-Step2

imports Discrete-UCB-Step1

begin

locale bandit-policy = bandit-problem + prob-space +
fixes Ω :: ′b set

and F :: ′b set set
and ω :: ′b

fixes π :: nat ⇒ ′b ⇒ ′a
and N-n :: nat ⇒ ′a ⇒ ′b ⇒ nat
and Z :: nat ⇒ ′a ⇒ ′b ⇒ real
and δ :: real
and q :: real

assumes finite-A: finite A
and a-in-A: a ∈ A
and measurable-policy: ∀ t. π t ∈ measurable M (count-space A)
and N-n-def : ∀n a b. N-n n a b = card {t ∈ {0 ..<n}. π (t+1 ) b = a}
and δ-pos: 0 < δ
and δ-less1 : δ < 1
and q-pos: q > 0

begin
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definition sample-mean-Z :: nat ⇒ ′a ⇒ ′b ⇒ real where
sample-mean-Z n a b ≡ (1 / real n) ∗ (

∑
i<n. Z i a b)

definition M-val :: nat ⇒ ′a ⇒ ′b ⇒ real where
M-val t a b ≡ (if N-n (t+1 ) a b = 0 then 0

else (
∑

s < t. if π s b = a then Z s a b else 0 ) / real (N-n t a b))

definition U :: nat ⇒ ′a ⇒ ′b ⇒ real where
U t a b ≡ M-val t a b + q ∗ sqrt (ln (1 / δ) / (2 ∗ real (max 1 (N-n t a b))))

definition A-t-plus-1 :: nat ⇒ ′b ⇒ ′a where
A-t-plus-1 t b ≡ (SOME a. a ∈ A ∧ (∀ a ′. a ′ ∈ A −→ U t a b ≥ U t a ′ b))

lemma (in finite-measure) finite-measure-mono:
assumes A ⊆ B B ∈sets M shows measure M A ≤ measure M B
〈proof 〉

theorem union-bound:
fixes E F G :: ′b set
assumes E ⊆ F ∪ G

and E ∈ events F ∈ events G ∈ events
shows prob E ≤ prob F + prob G
〈proof 〉

theorem hoeffding-iid-bound-ge-general:
fixes a :: ′a and n :: nat and ε :: real and µ-hat :: real and l u :: real
assumes a-in: a ∈ A

and eps-pos: ε ≥ 0
and bounds: ∀ i < n. ∀ω ∈ Ω. l ≤ Z i a ω ∧ Z i a ω ≤ u
and mu-def : µ-hat = (

∑
i < n. expectation (λω. Z i a ω))

and u − l 6= 0
and n-pos: n > 0
and space-M : space M = Ω
and sets-M : sets M = F
and indep: indep-vars (λ-. borel) (λi. (λω. Z i a ω)) {i. i < n}
and rv: ∀ i<n. random-variable borel (λω. Z i a ω)

shows prob {ω ∈ Ω. (
∑

i < n. Z i a ω) ≥ µ-hat + ε}
≤ exp (− 2 ∗ ε^2 / (real n ∗ (u − l)^2 ))

〈proof 〉

theorem hoeffding-iid-bound-le-general:
fixes a :: ′a and n :: nat and ε :: real and µ-hat :: real and l u :: real
assumes a-in: a ∈ A

and eps-pos: ε ≥ 0
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and bounds: ∀ i < n. ∀ω ∈ Ω. l ≤ Z i a ω ∧ Z i a ω ≤ u
and mu-def : µ-hat = (

∑
i < n. expectation (λω. Z i a ω))

and u − l 6= 0
and n-pos: n > 0
and space-M : space M = Ω
and sets-M : sets M = F
and indep: indep-vars (λ-. borel) (λi. (λω. Z i a ω)) {i. i < n}
and rv: ∀ i<n. random-variable borel (λω. Z i a ω)

shows prob {ω ∈ Ω. (
∑

i < n. Z i a ω) ≤ µ-hat − ε}
≤ exp (− 2 ∗ ε^2 / (real n ∗ (u − l)^2 ))

〈proof 〉

theorem hoeffding-iid-ge-delta-bound:
fixes a :: ′a and n :: nat and δ-hat :: real and µ-hat :: real and l u :: real
assumes a-in: a ∈ A

and delta-bound: 0 < δ-hat δ-hat ≤ 1
and bounds: ∀ i<n. ∀ω∈Ω. l ≤ Z i a ω ∧ Z i a ω ≤ u
and mu-def : µ-hat = (

∑
i<n. expectation (λω. Z i a ω))

and n-pos: n > 0
and eps-pos: ε ≥ 0
and u-minus-l-nonzero: u − l 6= 0
and space-M : space M = Ω
and sets-M : sets M = F
and indep: indep-vars (λ-. borel) (λi. (λω. Z i a ω)) {i. i < n}
and rv: ∀ i<n. random-variable borel (λω. Z i a ω)
and eps-expression: ε = sqrt ((real n ∗ (u − l)^2 ∗ ln (1 / δ-hat)) / 2 )

shows prob {ω ∈ Ω. (
∑

i<n. Z i a ω) ≥ µ-hat + ε} ≤ δ-hat ∧
prob {ω ∈ Ω. (

∑
i<n. Z i a ω) ≤ µ-hat − ε} ≤ δ-hat

〈proof 〉

lemma add-le-iff :
fixes x y z :: real
shows x ≤ y − z ←→ x − y ≤ −z
〈proof 〉

lemma max-Suc-0-eq-1 : max (Suc 0 ) x = max 1 x
〈proof 〉

theorem ucb-suboptimal-bound-set:
fixes t :: nat

and a :: ′a
and ∆ :: ′a ⇒ real

assumes finite-A: finite A
and a-in-A: a ∈ A
and a-star-in-A: a-star ∈ A
and argmax-exists: A 6= {}
and subopt-gap: ∆ a > 0
and a-not-opt: ∃ a ′. a ′ ∈ A ∧ ∆ a > 0
and delta-a: ∆ a = µ a-star − µ a
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and ω-in-Ω: ω ∈ Ω
and asm: ω ∈ {ω ∈ Ω. A-t-plus-1 t ω = a}
and setopt: ∀ω ∈ Ω. ∃ a-max ∈ A. ∀ b ∈ A. U t b ω ≤ U t a-max ω
and A-t-plus-1-maximizes:∧

t ω a. A-t-plus-1 t ω = a =⇒ a ∈ A ∧ (∀ b ∈ A. U t a ω ≥ U t b ω)
shows {ω ∈ Ω. A-t-plus-1 t ω = a} ⊆

{ω ∈ Ω. U t a-star ω ≤ µ a-star} ∪ {ω ∈ Ω. µ a-star ≤ U t a ω}
〈proof 〉

theorem ucb-suboptimal-bound-prob-statement:
fixes t :: nat and a :: ′a and ∆ :: ′a ⇒ real
assumes finite-A: finite A

and a-star-in-A: a-star ∈ A
and argmax-exists: A 6= {}
and subopt-gap: ∆ a > 0
and a-not-opt: ∃ a ′. a ′ ∈ A ∧ ∆ a > 0
and ω-in-Ω: ω ∈ Ω
and asm: ω ∈ {ω ∈ Ω. A-t-plus-1 t ω = a}
and setopt: ∀ω ∈ Ω. ∃ a-max ∈ A. ∀ b ∈ A. U t b ω ≤ U t a-max ω
and A-t-plus-1-maximizes:∧

t ω a. A-t-plus-1 t ω = a =⇒ a ∈ A ∧ (∀ b ∈ A. U t a ω ≥ U t b ω)
and a-in-A: a ∈ A
and omega-in: ω ∈ Ω
and subopt-gap: ∆ a > 0
and delta-a: ∆ a = µ a-star − µ a
and H-def : H = (2 ∗ ln (1 / δ)) / (∆ a)^2
and E-def : E = {ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)}
and F-def : F = {ω ∈ Ω. U t a-star ω ≤ µ a-star} ∩ {ω ∈ Ω. H ≤ real (N-n t

a ω)}
and G-def : G = {ω ∈ Ω. µ a-star ≤ U t a ω} ∩ {ω ∈ Ω. H ≤ real (N-n t a

ω)}
and meas-sets: E ∈ sets M F ∈ sets M G ∈ sets M
and prob-inter : prob (F ∩ G) ≡ enn2real (emeasure M (F ∩ G))

shows prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)}) ≤
prob ({ω ∈ Ω. U t a-star ω ≤ µ a-star} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)})

+
prob ({ω ∈ Ω. U t a ω ≥ µ a-star} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)})

〈proof 〉

lemma U-le-µ-pointwise:
U t a-star ω ≤ µ a-star ←→
M-val t a-star ω − µ a-star ≤
− q ∗ sqrt (ln (1 / δ) / (2 ∗ real (max 1 (N-n t a-star ω))))
〈proof 〉
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lemma U-ge-µ-pointwise:
assumes delta-a: ∆ a = µ a-star − µ a
shows

U t a ω ≥ µ a-star ←→
M-val t a ω − µ a ≥ ∆ a − q ∗ sqrt (ln (1 / δ) / (2 ∗ real (max 1 (N-n t a

ω))))
〈proof 〉

theorem hoeffding-iid--bound-le:
fixes a :: ′a and n :: nat and ε :: real and µ-hat :: real and l-hat u-hat :: real

and I :: nat set
and X-new :: nat ⇒ ′b ⇒ real
and a-bound b-bound :: nat ⇒ real

assumes a-in: a ∈ A
and b ∈ Ω
and eps-pos: ε ≥ 0
and eps: ε = abs (u-hat − l-hat) ∗ sqrt (((real n) / 2 ) ∗ ln (1 / δ))
and δ ≥ 0 ∧ δ ≤ 1
and t-eq-n: t = n
and c > 0
and bounds: ∀ j < t. ∀ω ∈ Ω. ∀ a ∈A. l-hat ≤ Z-hat j a ω ∧ Z-hat j a ω ≤

u-hat
and mu-def : µ-hat = (

∑
j < t. expectation (λω. Z-hat j a ω))

and u-hat − l-hat 6= 0
and t-pos: t > 0
and ∀ t<n. N-n t a-star b > 0
and n-pos: n > 0
and M-val t a-star b ≡ (

∑
s < t. if π s b = a-star then Z s a-star b else 0 ) /

real (N-n t a-star b)
and widths: (

∑
i ∈ I . (b-bound i − a-bound i)^2 ) = (real n) ∗ (u-hat −

l-hat)^2
and space-M : space M = Ω
and sets-M : sets M = F
and indep: indep-vars (λ-. borel) (λj. (λω. Z j a ω)) {j. j < t}
and rv: ∀ j<t. random-variable borel (λω. Z j a ω)
and ∀ j<t. Z-hat j a-star ω = c ∗ (if π j b = a-star then Z j a-star b else 0 )
and indep-interval-bounded-random-variables M I X-new a-bound b-bound
and indep-loc: indep-interval-bounded-random-variables M {j. j < t}

(λj. (λω. Z-hat j a-star ω))
(λj. l-hat) (λj. u-hat)

and H : Hoeffding-ineq M {j. j < t}
(λj. (λω. Z-hat j a-star ω))
(λj. l-hat) (λj. u-hat)

and sum-integrals-eq: (
∑

j ∈ {j. j < t}. integralL M (λω. Z-hat j a-star ω))
= µ-hat

and rewriting: prob {ω ∈ Ω. (
∑

j < t. Z-hat j a-star ω) − (
∑

j < t. expectation
(Z-hat j a-star)) ≤ − ε} =

prob {x ∈ space M . (
∑

j < t. Z-hat j a-star x) ≤ (
∑

j < t. expectation
(Z-hat j a-star)) − ε}
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shows prob {ω ∈ Ω. (
∑

j < n. Z-hat j a-star ω) ≤ µ-hat − ε}
≤ δ

〈proof 〉

theorem hoeffding-iid--bound-ge:
fixes a :: ′a and n :: nat and ε :: real and µ-hat :: real and l-hat u-hat :: real

and I :: nat set
and X-new :: nat ⇒ ′b ⇒ real
and a-bound b-bound :: nat ⇒ real

assumes a-in: a ∈ A
and b ∈ Ω
and eps-pos: ε ≥ 0
and eps: ε = abs (u-hat − l-hat) ∗ sqrt (((real n) / 2 ) ∗ ln (1 / δ))
and δ ≥ 0 ∧ δ ≤ 1
and t-eq-n: t = n
and c > 0
and bounds: ∀ j < t. ∀ω ∈ Ω. ∀ a ∈A. l-hat ≤ Z-hat j a ω ∧ Z-hat j a ω ≤

u-hat
and mu-def : µ-hat = (

∑
j < t. expectation (λω. Z-hat j a ω))

and u-hat − l-hat 6= 0
and t-pos: t > 0
and ∀ t<n. N-n t a-star b > 0
and n-pos: n > 0
and M-val t a b ≡ (

∑
s < t. if π s b = a then Z s a b else 0 ) /

real (N-n t a b)
and widths: (

∑
i ∈ I . (b-bound i − a-bound i)^2 ) = (real n) ∗ (u-hat −

l-hat)^2
and space-M : space M = Ω
and sets-M : sets M = F
and indep: indep-vars (λ-. borel) (λj. (λω. Z j a ω)) {j. j < t}
and rv: ∀ j<t. random-variable borel (λω. Z j a ω)
and ∀ j<t. Z-hat j a ω = c ∗ (if π j b = a then Z j a-star b else 0 )
and indep-interval-bounded-random-variables M I X-new a-bound b-bound
and indep-loc: indep-interval-bounded-random-variables M {j. j < t}

(λj. (λω. Z-hat j a ω))
(λj. l-hat) (λj. u-hat)

and H : Hoeffding-ineq M {j. j < t}
(λj. (λω. Z-hat j a ω))
(λj. l-hat) (λj. u-hat)

and sum-integrals-eq: (
∑

j ∈ {j. j < t}. integralL M (λω. Z-hat j a ω)) =
µ-hat

and rewriting: prob {ω ∈ Ω. (
∑

j < t. Z-hat j a ω) − (
∑

j < t. expectation
(Z-hat j a)) ≥ ε} =

prob {x ∈ space M . (
∑

j < t. Z-hat j a x) ≥ (
∑

j < t. expectation (Z-hat j
a)) + ε}

shows prob {ω ∈ Ω. (
∑

j < n. Z-hat j a ω) ≥ µ-hat + ε} ≤ δ
〈proof 〉
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end
end
theory Discrete-UCB-Step3

imports Discrete-UCB-Step2

begin

locale bandit-policy = bandit-problem + prob-space +
fixes
Ω :: ′b set
and F :: ′b set set
and π :: nat ⇒ ′b ⇒ ′a
and N-n :: nat ⇒ ′a ⇒ ′b ⇒ nat
and Z :: nat ⇒ ′a ⇒ ′b ⇒ real
and δ :: real
and q :: real

assumes fin-A: finite A
and ω ∈ Ω
and a-in-A: a ∈ A
and measurable-policy: ∀ t. π t ∈ measurable M (count-space A)
and N-n-def : ∀n a ω. N-n n a ω = card {t ∈ {0 ..<n}. π (t+1 ) ω = a}
and count-assm-pointwise: ∀n ω. (

∑
a ∈ A. real (N-n n a ω)) = real n

and delta-pos: 0 < δ
and delta-less1 : δ < 1
and q-pos: q > 0

begin

definition sample-mean-Z :: nat ⇒ ′a ⇒ ′b ⇒ real where
sample-mean-Z n a ω = (1 / real n) ∗ (

∑
i<n. Z i a ω)

definition M-fun :: nat ⇒ ′a ⇒ ′b ⇒ real where
M-fun t a ω = (if N-n (t+1 ) a ω = 0 then 0

else (
∑

s < t. (if π s ω = a then Z s a ω else 0 )) / real (N-n t a ω))

definition U :: nat ⇒ ′a ⇒ ′b ⇒ real where
U t a ω = M-fun t a ω + q ∗ sqrt (ln (1 / δ) / (2 ∗ real (max 1 (N-n t a ω))))

definition A-t-plus-1 :: nat ⇒ ′b ⇒ ′a where
A-t-plus-1 t ω = (SOME a. a ∈ A ∧ (∀ a ′. a ′ ∈ A −→ U t a ω ≥ U t a ′ ω))

definition prob-eq-Ex :: ′b set ⇒ bool where
prob-eq-Ex E ≡ prob E = expectation (λω. indicator E ω)

theorem proposition-15-7 :
assumes
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a-in-A: a ∈ A
and ω ∈ Ω
and subopt-gap: ∆ a > 0
and a-not-opt: ∃ a ′ ∈ A. ∆ a ′ > 0
and delta-a: ∀ a ∈ A. ∆ a = µ a-star − µ a
and k ≤ n
and from-UCB-step1 : ∀ a ∈ A. expectation (λω. real (N-n n a ω)) ≤

s n + expectation (λω. (
∑

t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t
a ω) then 1 else 0 ))

and from-UCB-step2 : ∀ a ∈ A. ∀ t ∈ {k..<n}. prob ({ω ∈ Ω. A-t-plus-1 t ω
= a} ∩

{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ln (1 / δ)) / (∆ a)^2}) ≤ 2 ∗ δ
and eps-pos: ε > 0
and t-gt0 : ∀ t ∈ {k..<n}. t > 0
and choice-delta: ∀ t ∈ {k..<n}. δ = 1 / (real t powr ε)
and s-form: ∀ a ∈ A. ∀ u. s u = (2 ∗ ε ∗ ln (real u)) / ((∆ a)^2 )
and subset-meas:∀ a ∈ A. ∀ t ∈ {k..<n}. ∀ω ∈ Ω. {ω. π (t+1 ) ω = a ∧ 2 ∗ ε

∗ ln (real t)/(∆ a)^2 ≤ N-n t a ω} ⊆ Ω
and prob-eq-E-assm: ∀ a ∈ A. ∀ t ∈ {k..<n}. prob {ω. π (Suc t) ω = a ∧ 2 ∗

ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)} =
prob ({ω. π (Suc t) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real

(N-n t a ω)} ∩ space M )
and finiteness: ∀ t∈{k..<n}. ∀ a∈A. emeasure M {ω. π (t+1 ) ω = a ∧ 2∗ε∗ln(real

t)/(∆ a)^2 ≤ real (N-n t a ω)} < ∞
and measurable-set: ∀ t∈{k..<n}. ∀ a∈A. {ω. π (t+1 ) ω = a ∧ 2∗ε∗ln(real

t)/(∆ a)^2 ≤ real (N-n t a ω)} ∈ sets M

and eq-sets-optimum:
∀ a ∈ A. ∀ t ∈ {k..<n}. {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆

a)^2 ≤ real (N-n t a ω)} =
{ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln

(real t)) / (∆ a)^2}

shows
∀ a ∈ A. expectation (λω. real (N-n n a ω)) ≤ s n + (

∑
t = k..<n. 2 / (real

t powr ε))

〈proof 〉

theorem theorem-15-4 :
assumes

a-in-A: a ∈ A
and finite A and ∀ a ∈ A. integrable M (λω. real (N-n n a ω))
and ω-in-Ω: ω ∈ Ω
and subopt-gap: ∀ a ∈ A. ∆ a > 0
and a-not-opt: ∃ a ′ ∈ A. ∆ a ′ > 0
and delta-a: ∀ a ∈ A. ∆ a = µ a-star − µ a
and k ≤ n
and n-count-assm-pointwise: (

∑
a∈A. real (N-n n a ω)) = real n
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and expected-regret-prop-15-1 : expectation (λω. R-n n ω) = (
∑

a∈A. ∆ a ∗
expectation (λω. real (N-n n a ω)))

and from-UCB-step1 : ∀ a ∈ A. expectation (λω. real (N-n n a ω)) ≤
s n + expectation (λω. (

∑
t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t

a ω) then 1 else 0 ))
and from-UCB-step2 : ∀ a ∈ A. ∀ t ∈ {k..<n}. prob ({ω ∈ Ω. A-t-plus-1 t ω

= a} ∩
{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ln (1 / δ)) / (∆ a)^2}) ≤ 2 ∗ δ

and eps-pos: ε > 0
and t-gt0 : ∀ t ∈ {k..<n}. t > 0
and choice-delta: ∀ t ∈ {k..<n}. δ = 1 / (real t powr ε)
and s-form: ∀ a ∈ A. ∀ u. s u = (2 ∗ ε ∗ ln (real u)) / ((∆ a)^2 )
and subset-meas:∀ a ∈ A. ∀ t ∈ {k..<n}. ∀ω ∈ Ω. {ω. π (t+1 ) ω = a ∧ 2 ∗ ε

∗ ln (real t)/(∆ a)^2 ≤ N-n t a ω} ⊆ Ω
and prob-eq-E-assm: ∀ a ∈ A. ∀ t ∈ {k..<n}. prob {ω. π (Suc t) ω = a ∧ 2 ∗

ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)} =
prob ({ω. π (Suc t) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real

(N-n t a ω)} ∩ space M )
and finiteness: ∀ t∈{k..<n}. ∀ a∈A. emeasure M {ω. π (t+1 ) ω = a ∧ 2∗ε∗ln(real

t)/(∆ a)^2 ≤ real (N-n t a ω)} < ∞
and measurable-set: ∀ t∈{k..<n}. ∀ a∈A. {ω. π (t+1 ) ω = a ∧ 2∗ε∗ln(real

t)/(∆ a)^2 ≤ real (N-n t a ω)} ∈ sets M

and eq-sets-optimum:
∀ a ∈ A. ∀ t ∈ {k..<n}. {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤
real (N-n t a ω)} =

{ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln
(real t)) / (∆ a)^2}
and assms-lin-expect: ∀ a ∈ A. expectation (λω.

∑
t = k..<n.

(if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω) then
1 else 0 )) =

(
∑

t = k..<n. expectation (λω. indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln
(real t) / (∆ a)^2 ≤ real (N-n t a ω)} ω))
and mono-sum-sets:
(∀ a ∈ A. ∆ a ∗ expectation (λω. real (N-n n a ω)) ≤ ∆ a ∗ (s n + (

∑
t = k..<n.

2 / (real t powr ε))))
=⇒ (

∑
a ∈ A. ∆ a ∗ expectation (λω. real (N-n n a ω))) ≤

(
∑

a ∈ A. ∆ a ∗ (s n + (
∑

t = k..<n. 2 / (real t powr ε))))

shows expectation (λω. R-n n ω) ≤ (
∑

a∈A. ∆ a ∗ ((2 ∗ ε ∗ ln (real n)) /
((∆ a)^2 )+ (

∑
t = k..<n. 2 / (real t powr ε))))

〈proof 〉

end
end
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