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Abstract

This project formally verifies the Upper Confidence Bound (UCB)
algorithm in Isabelle/Higher-order Logic (HOL), focusing on its proba-
bilistic guarantees and regret bounds. The work extends Isabelle/HOLs
probabilistic framework and explores verification of discrete-time ban-
dit models following [1]. This research advances the formal verification
of probabilistic algorithms in reinforcement learning.

theory MSc-Project-Discrete-Prop15-1
imports
HOL— Probability. Probability

begin

locale bandit-problem =
fixes A :: ‘a set
and p :: 'a = real
and a-star :: 'a
assumes finite-arms: finite A
and a-star-in-A: a-star € A
and optimal-arm: Ya € A. p a-star > p a
begin

definition A :: ‘a = real where
Aa=pa-star — i a
end

locale bandit-policy = bandit-problem + prob-space +

fixes Q :: b set
and F :: b set set
and 7 :: nat = 'b = 'a
and N-n :: nat = 'a = 'b = nat

assumes measurable-policy: V't. m t € measurable M (count-space A)
and N-n-def: Vn aw. N-nnaw = card {t € {0..<n}. 7 (+1) w = a}
and count-assm-pointwise: Vn w. (3. a € A. real (N-nn a w)) = real n



begin

definition R-n :: nat = 'b = real where
Rnnw=mnsx*puastar — (D a € A paxreal (N-nnauw))

lemma regret-decomposition-pointwise:
fixes n :: nat and w = b
assumes n-count-assm-pointwise: (Y a€A. real (N-n n a w)) = real n
shows R-nnw = (>_a € A A ax* real (N-nn aw))

{(proof)

lemma integrable-const-fun:
assumes finite-measure M
shows integrable M (Az. c)

(proof)

lemma expected-regret:

assumes finite A

and Va € A. integrable M (Aw. real (N-n n a w))

shows ezpectation (Aw. R-n n w) = (3 a€A. A a x expectation (Aw. real (N-n
naw)))
(proof)

end

end
theory Discrete-UCB-Step1
imports MSc-Project-Discrete-Prop15-1

begin

locale bandit-policy = bandit-problem + prob-space +
fixes Q :: b set
and F :: b set set
and w :: b
and 7 :: nat = 'b = a
and N-n :: nat = 'a = 'b = nat
assumes measurable-policy: Vt. m t € measurable M (count-space A)
and N-n-def: Vnaw. Nnnaw = card {t € {0..<n}. 7 (t+1) w = a}
and count-assm-pointwise: ¥n w. (3. a € A. real (N-n n a w)) = real n
begin

lemma union-eq:
fixes a :: ‘a and n k :: nat
assumes k£ < n
shows {t. t<n A7 (t+)w=0a}={t.t<kAT(t+])w=0a}U{t. k<t



ANt<nAT(t+1)w = a}
(proof)

lemma cardinality-indic-eq:

fixes I :: nat = bool

assumes finite {t. k < t At < n}

shows card {t. k < tANt<nAT(+l)w=aANIty=0O t=k.<n ifrw
(t+1) w = a A It then 1 else 0)

(proof)
lemma ge-rewrite: (z::real) > y = y < z (proof)

lemma Nn-expression:
fixes a :: ‘a and s :: nat = real
and £ :: nat and n :: nat
assumes g € A
and k£ < n
and 0 < n
andV ¢t € {0..n}. 0 < st
andVi<n—1. st<s(t+ 1)
and init-play-once: Vw. a € A — N-nkaw =1
and finite-played-sets:
finite {t. t < n A7 (t+1) w = a}
finite {t. t < kA7 (I+1) w = a}
finite {t. k<tAt<nAw(+1)w=a}
shows
(Nnnaw)=1+ O, t=k.<n.if 7 ({+1) w=a A real (N-ntaw)<st
then 1 else 0) +
O t=k.<n. if v (t+1) w=a A real (N-ntaw)> st then I
else 0)
(proof)

lemma upper-bound-expression-contradiction:

fixes a :: ‘a and s :: nat = real
and £ :: nat and n :: nat
and s-n-nat :: nat

assumes a € A
and k£ < n
and 0 < n
and non-neg-s: ¥ ¢t € {0..n}. 0 < st
and base-le: s 0 < s 1
and non-dec: Vt <n — 1.5t <s(t+ 1)
and s-mono: Nt. k<tANt<n= st<sn
and init-play-once: Vw. a € A — N-nkaw =1
and finite-played-sets:
finite {t. t < n A7 (t+1) w = a}
finite {t. t <k Aw (t+1) w = a}
finite {t. k<tAt<nAT(+1)w=a}
and xs-sorted-def: xs = sorted-list-of-set {t € {k..<n}. 7w (t+1) w = a A real



(N-ntaw)<st}

and s-nat-def: s-n-nat = nat (| s n|)

and len-bound-def: s-n-nat < length xs

and distinct-zs: distinct xs

and gt-ineq: length xs + 1 > |s n]

and N-n-increasing-with-plays:

Vithk<tAnt<t/'An(t+l)w=aA7m(t'+])w=a— Nnt'aw?>
Nntaw—+ 1

and neg: 1 + real (3. t=k.<n.if 7 (t+1) w =a A real (N-ntaw) < st
then 1 else 0) > sn

and t-hat € set xs

and t-hat = zs ! s-n-nat

and real (N-n t-hat a w) > real s-n-nat + 1

shows (real (N-n t-hat a w) > |[sn] + 1) A (7 (t-hat+1) w = a A (real (N-n
t-hat a w) < s t-hat))

(proof)

lemma Nn-upper-bound:
fixes a :: ‘a and s :: nat = real
and % :: nat and n :: nat
assumes asm: real(1 + Ot =k.<n. if 7 (t+1) w = a A real (N-nt a w) <
stthen 1 else 0)) < sn
and a-in-A: a € A
and k-le-n: k< n
and n-pos: 0 < n
and s-pos:V t € {0.n}. 0 < st
and s-nondec: ¥V t <n —1.st<s(t+ 1)
and init-play-once: Vw. a € A — N-nkaw =1
and finite-played-sets-1: finite {t. t < n A7 (t+1) w = a}
and finite-played-sets-2: finite {t. t < k A7 (1+1) w = a}
and finite-played-sets-3: finite {t. k <t ANt <n A7 (t+1) w = a}
shows real(N-nn a w) < sn+ real(Ot =k.<n. if 7 t+1)w=a A st <
real (N-n t a w) then 1 else 0))
(proof)

theorem ENn-upper-bound:
assumes
a-in-A: a € A
and k-le-n: k< n
and n-pos: 0 < n



and s-pos: V¢t € {0.n}. 0 < st
and s-nondec: YVt < n. st <s(t+ 1)
and init-play-once: Vw. a € A — N-nkaw =1
and integrable-Nn: integrable M (Aw. real (N-n n a w))
and integrable-rhs-sum: integrable M (Aw. sn + (3t = k.<n. if 7 (t++1) w
=aA st <real (N-ntaw) then I else 0))
and integrable-s: integrable M (Aw. s n)
and integrable-indicator-sum: integrable M (Aw. >t = k.<n. if ® (t+1) w =
a N st<real (N-ntaw)then I else 0)
and linearity: integral® M (Aw. sn + Ot =k.<n. if 7 (t+1) w =a A st
< real (N-n t a w) then 1 else 0)) =
integral® M (Aw. s n) + integral® M (\w. >_t = k.<n. if © (t+1)
w=aAst<rel (N-ntaw) then 1 else 0)
and pointwise-bound: real (N-nnaw) <sn+ QO t=k.<n. if 7 (t+1) w =
a N st<real (N-ntaw)then I else 0)
and mono-intgrl: integral® M (Mw. real (N-n n a w)) < integral® M (Aw. s n
+ Ot =k.<n.
ifm(t+1)w=1aA st <real (N-ntauw)then I else 0))
shows
expectation (Aw. real (N-n n a w)) <
sn + expectation (Aw. (3t =k.<n. if 7 (t+1) w=a A st < real (N-nt
a w) then 1 else 0))
(proof)

end

end

theory Discrete-UCB-Step2
imports Discrete-UCB-Stepl

begin

locale bandit-policy = bandit-problem + prob-space +

fixes Q0 :: 'b set
and F :: b set set
and w :: b

fixes 7 : nat = b= 'a
and N-n :: nat = 'a = 'b = nat
and 7 :: nat = 'a = 'b = real
and 6 :: real
and q :: real

assumes finite-A: finite A
and a-in-A: a € A
and measurable-policy: Vt. m t € measurable M (count-space A)
and N-n-def: Vnab. N-nnab=card {t € {0..<n}. 7w (t+1) b = a}
and J-pos: 0 < 0
and 6-lessl: § < 1
and g¢-pos: ¢ > 0

begin



definition sample-mean-Z :: nat = 'a = 'b = real where
sample-mean-Z n a b = (1 /[ real n) * (3 i<n. Zia b)

definition M-val :: nat = 'a = 'b = real where
M-wvalt a b = (if N-n (t+1) a b = 0 then 0
else (3, s<t.if msb=athenZsabelsel)/ real (N-ntab))

definition U :: nat = 'a = 'b = real where
Utab= Mwaltab-+ qgx*sqrt (In (1 /6)/ (2 * real (max 1 (N-nt abd))))

definition A-t-plus-1 :: nat = 'b = ’'a where
A-t-plus-1t b= (SOME a.a € AN(NVNa.a'€ A— Utab>Uta'd))

lemma (in finite-measure) finite-measure-mono:
assumes A C B B €sets M shows measure M A < measure M B

{proof)

theorem union-bound:
fixes E F G :: 'b set
assumes F C FU G
and E € events F € events G € events
shows prob E < prob F + prob G

(proof)

theorem hoeffding-iid-bound-ge-general:
fixes a :: ‘a and n :: nat and ¢ :: real and p-hat :: real and [ u :: real
assumes a-in: ¢ € A
and eps-pos: € > 0
and bounds: Vi <n.Vw e QIl<ZiawANZiaw<u
and mu-def: p-hat = (3 @ < n. expectation (. Z i a w))
and u — [ # 0
and n-pos: n > 0
and space-M: space M = Q)
and sets-M: sets M = F
and indep: indep-vars (A-. borel) (Ai. (A\w. Z i a w)) {i. i < n}
and rv: Vi<n. random-variable borel (Aw. Z i a w)

shows prob {w € Q. (3 i< n. Ziaw) > p-hat + €}
<exp(—2x*e 2/ (realn* (u —1)72))
(proof )

theorem hoeffding-iid-bound-le-general:
fixes a :: ‘a and n :: nat and ¢ :: real and p-hat :: real and | u :: real
assumes a-in: a € A
and eps-pos: € > 0



and bounds: Vi <n.Vw e QIl< ZiawANZiaw<u
and mu-def: p-hat = (3 @ < n. expectation (. Z i a w))
and u — [ # 0
and n-pos: n > 0
and space-M: space M =
and sets-M: sets M = F
and indep: indep-vars (A-. borel) (Ai. (M\w. Z i a w)) {i. i < n}
and rv: Vi<n. random-variable borel (Aw. Z i a w)
shows prob {w € Q. (3 i < n. Ziaw) < p-hat — €}
<erp(—2xe 2/ (realn x (u—1)72))
(proof)

theorem hoeffding-iid-ge-delta-bound:
fixes a :: ‘a and n :: nat and §-hat :: real and p-hat :: real and [ u :: real
assumes a-in: ¢ € A
and delta-bound: 0 < §-hat d-hat < 1
and bounds: Vi<n. VweQ. I < Ziaw AN Ziaw < u
and mu-def: p-hat = (3 i<n. expectation (A\w. Z i a w))
and n-pos: n > 0
and eps-pos: € > 0
and u-minus-l-nonzero: u — [ # 0
and space-M: space M = )
and sets-M: sets M = F
and indep: indep-vars (A-. borel) (Ni. (M\w. Z i a w)) {i. ¢ < n}
and rv: Vi<n. random-variable borel (Aw. Z i a w)
and eps-expression: € = sqrt ((real n x (v — )72 = In (1 / 0-hat)) / 2)
shows prob {w € Q. (> i<n. Zia w) > p-hat + €} < §-hat A
prob {w € Q. (3 i<n. Ziaw) < p-hat — €} < d-hat
(proof)

lemma add-le-iff:
fixes = y z :: real
shows z <y —z¢— 2 —y < —2
(proof)
lemma maz-Suc-0-eg-1: maz (Suc 0) © = max 1 x

{proof)

theorem ucbh-suboptimal-bound-set:
fixes t :: nat
and a :: 'a
and A :: ‘a = real
assumes finite-A: finite A
and a-in-A: a € A
and a-star-in-A: a-star € A
and argmaz-exists: A # {}
and subopt-gap: A a > 0
and a-not-opt: 3a’. a’ € ANA a>0
and delta-a: A a = p a-star — p a



and w-in-Q: w € N
and asm: w € {w € Q. A-t-plus-1tw = a}
and setopt: Vw € Q. Ja-max € A.Vbe A. Utbw < Ut a-mar w
and A-t-plus-1-mazximizes:
Ntwa Atplus-litw=a=a€ ANNbeA Utaw>Utbuw)
shows {w € Q. A-t-plus-1t w = a} C
{w e N Uta-star w < p a-star} U{w € Q. pa-star < Ut aw}
(proof)

theorem ucbh-suboptimal-bound-prob-statement:
fixes ¢t :: nat and a :: ‘a and A :: 'a = real
assumes finite-A: finite A
and a-star-in-A: a-star € A
and argmaz-exists: A # {}
and subopt-gap: A a > 0
and a-not-opt: 3a’. a’ € ANAa >0
and w-in-Q: w €
and asm: w € {w € Q. A-t-plus-1t w = a}
and setopt: Vw € Q. Ja-max € A.Vbe A. Utbw < Ut a-max w
and A-t-plus-1-mazximizes:
Ntwa. Atplus-1tw=a=a€c ANNVMbe A Utaw>Utbuw)
and a-in-A: a € A
and omega-in: w € €
and subopt-gap: A a > 0
and delta-a: A a = p a-star — u a
and H-def: H=(2*In(1/96))/(Aa)"2
and E-def: F = {w € Q. A-t-plus-1t w=a} N{w e Q. H <real (N-ntaw)}
and F-def: F = {w € Q. Ut a-star w < p a-star} N {w € Q. H < real (N-nt
aw)}
and G-def: G ={w € Q. pastar <Utaw}lN{weN H<real (N-nta
@)}
and meas-sets: E € sets M F € sets M G € sets M
and prob-inter: prob (F N G) = enn2real (emeasure M (F N G))

shows prob ({w € Q. A-t-plus-1 t w=a} N{w € Q. H < real (N-ntaw)}) <
prob ({w € Q. Uta-star w < p a-star} N {w € Q. H < real (N-ntaw)})
Jr
prob {w e Q. Utaw > pa-star} N{w € Q. H < real (N-ntaw)})
(proof )

lemma U-le-p-pointwise:
Ut a-star w < p a-star <—
M-val t a-star w — p a-star <
—qx*sqrt (In (1 /0) /(2 * real (maz 1 (N-n t a-star w))))
(proof )



lemma U-ge-p-pointwise:
assumes delta-a: A a = p a-star — p a
shows
Utaw > pu a-star «—
Mwaltaw —pa>Aa—qx*sqrt(In(1/6)/ (2% real (max 1 (N-nta
w))))
(proof )

theorem hoeffding-iid--bound-le:
fixes a :: ‘a and n :: nat and ¢ :: real and p-hat :: real and I-hat u-hat :: real
and I :: nat set
and X-new :: nat = 'b = real
and a-bound b-bound :: nat = real
assumes a-in: ¢ € A
and b € Q)
and eps-pos: € > 0
and eps: ¢ = abs (u-hat — l-hat) * sqrt (((real n) / 2) = In (1 / 0))
and § > 0 A6 < I
and t-eq-n: t = n
and ¢ > 0
and bounds: Vj < t.Vw € Q. V a €A. l-hat < Z-hat j a w A Z-hat j a w <
u-hat
and mu-def: p-hat = (3 j < t. expectation (Aw. Z-hat j a w))
and u-hat — l-hat # 0
and t-pos: t > 0
and Vit<n. N-nt a-star b > 0
and n-pos: n > 0
and M-val t a-star b = (> s < t. if ™ s b = a-star then Z s a-star b else 0) /
real (N-n t a-star b)
and widths: (3. ¢ € I. (b-bound i — a-bound 7)"2) = (real n) * (u-hat —
l-hat) "2
and space-M: space M =
and sets-M: sets M = F
and indep: indep-vars (A-. borel) (Nj. (Mw. Z ja w)) {j. j < t}
and rv: Vj<t. random-variable borel (Aw. Z j a w)
and Vj<t. Z-hat j a-star w = ¢ * (if © j b = a-star then Z j a-star b else 0)
and indep-interval-bounded-random-variables M I X-new a-bound b-bound
and indep-loc: indep-interval-bounded-random-variables M {j. j < t}
(M. (Aw. Z-hat j a-star w))
(Nj. l-hat) (Aj. u-hat)
and H: Hoeffding-ineq M {j. j < t}
(M. (Aw. Z-hat j a-star w))
(N\j. l-hat) (Aj. u-hat)
and sum-integrals-eq: (Y. j € {j. j < t}. integral®* M (M\w. Z-hat j a-star w))
= p-hat
and rewriting: prob {w € Q. (3. j < t. Z-hat j a-star w) — (> j < t. expectation
(Z-hat j a-star)) < — e} =
prob {z € space M. (3" j < t. Z-hat j a-star ) < (> j < t. expectation
(Z-hat j a-star)) — €}



shows prob {w € Q. (3 j < n. Z-hat j a-star w) < p-hat — €}
<6

(proof)

theorem hoeffding-iid--bound-ge:
fixes a :: ‘a and n :: nat and ¢ :: real and p-hat :: real and I-hat u-hat :: real
and [ :: nat set
and X-new :: nat = ‘b = real
and a-bound b-bound :: nat = real
assumes a-in: g € A
and b € Q)
and eps-pos: € > 0
and eps: ¢ = abs (u-hat — l-hat) * sqrt (((real n) / 2) * In (1 / 0))
and 0 > 0AN6< 1
and t-eqg-n: t = n
and ¢ > 0
and bounds: Vj < t. Vw € Q. V a €A. l-hat < Z-hat j a w N Z-hat j a w <
u-hat
and mu-def: p-hat = (3. j < t. expectation (Aw. Z-hat j a w))
and u-hat — I-hat # 0
and t-pos: t > 0
and Vi<n. N-nta-star b > 0
and n-pos: n > 0
and Mwalta b= (Y. s<t.if mrsb=athen Zsabelse )/
real (N-n t a b)
and widths: (3. ¢ € I. (b-bound i — a-bound 7)72) = (real n) * (u-hat —
l-hat) "2
and space-M: space M = )
and sets-M: sets M = F
and indep: indep-vars (A-. borel) (Nj. Aw. Z ja w)) {j. j < t}
and rv: Vj<t. random-variable borel (Aw. Z j a w)
and Vj<t. Z-hatjaw = c¢x* (if 7 j b = a then Z j a-star b else 0)
and indep-interval-bounded-random-variables M I X-new a-bound b-bound
and indep-loc: indep-interval-bounded-random-variables M {j. j < t}
(M. (Aw. Z-hat j a w))
(M\j. l-hat) (Aj. u-hat)
and H: Hoeffding-ineq M {j. j < t}
(MN. (Aw. Z-hat j a w))
(N\j. l-hat) (Aj. u-hat)
and sum-integrals-eq: (3 j € {j. j < t}. integral®* M (Aw. Z-hat j a w)) =
p-hat
and rewriting: prob {w € Q. (3. j < t. Z-hat j a w) — (> j < t. expectation
(Z-hat j a)) > €} =
prob {z € space M. (> j < t. Z-hatjaz) > (3. j < t. expectation (Z-hat j
@) + e}
shows prob {w € Q. (3 j < n. Z-hat j a w) > p-hat + e} <3¢
(proof)

10



end

end

theory Discrete-UCB-Step3
imports Discrete-UCB-Step2

begin

locale bandit-policy = bandit-problem + prob-space +

fixes
Qb set
and F :: b set set
and 7 :: nat = b= 'a
and N-n :: nat = ‘a = 'b = nat
and 7 :: nat = 'a = 'b = real
and § :: real
and q :: real

assumes fin-A: finite A
and w € )
and a-in-A: a € A
and measurable-policy: Vt. © t € measurable M (count-space A)
and N-n-def: Vn aw. N-nnaw = card {t € {0..<n}. 7 (+1) w = a}
and count-assm-pointwise: Vn w. (3. a € A. real (N-nn a w)) = real n
and delta-pos: 0 < §
and delta-less1: 6 < 1
and g¢-pos: ¢ > 0

begin

definition sample-mean-Z :: nat = 'a = 'b = real where
sample-mean-Z n a w = (1 [ real n) * (> i<n. Z i a w)

definition M-fun :: nat = ‘a = 'b = real where
M-fun t a w = (if N-n (t+1) a w = 0 then 0
else (D) s<t. (if msw=athen Zsaw else 0)) / real (N-ntaw))

definition U :: nat = 'a = 'b = real where
Utaw=M-funtaw+ q=sqrt (In (1 /9) /(2 x real (maz 1 (N-nta w))))

definition A-t-plus-1 :: nat = 'b = 'a where
A-t-plus-1t w = (SOME a. a € AN(NVa. o' € A— Utaw> Uta w))

definition prob-eq-Ex :: 'b set = bool where
prob-eq-Ex E = prob E = expectation (Aw. indicator E w)

theorem proposition-15-7:
assumes

11



a-in-A: a € A
and w € Q
and subopt-gap: A a > 0
and a-not-opt: 3 a’ € A. A a’ > 0
and delta-a:V a € A. A a = p a-star — p a
and k£ < n
and from-UCB-step1: ¥ a € A. expectation (Aw. real (N-n n a w)) <
s n + expectation (Aw. (O t=k.<n.if 7 (t+1)w=a A st < real (N-nt
a w) then 1 else 0))
and from-UCB-step2: ¥ a € A. V t € {k.<n}. prob ({w € Q. A-t-plus-1 t w
=a}n
{weQ. Nntaw>(2xln(1/0)/(Aa)2})<2x%x§
and eps-pos: € > 0
and t-gt0: ¥V t € {k.<n}. t > 0
and choice-delta: ¥V ¢ € {k..<n}. § = 1 / (real t powr ¢)
and s-form:V a € A.V u. su= (2 %€ x In (real u)) / (A a)72)
and subset-meas:V a € AVt e {k.<n}.Vw e Q {w.m (l+1)w=aA2xe¢
* In (real t)/(A a) "2 < N-ntaw}y CQ
and prob-eq-E-assm: ¥ a € A. Vit € {k..<n}. prob {w. 7 (Suct) w =a A 2 *
ex*in (real t) / (A a)"2 < real (N-ntaw)} =
prob ({w. m (Suct) w =a A 2 x¢e xIn (real t) / (A a)"2 < real
(N-ntaw)} N space M)
and finiteness: Vte{k..<n}.VacA. emeasure M {w. w (t+1) w = a A 2xexin(real
t)/(A a)2 < real (N-ntaw)} < oo
and measurable-set: Vte{k..<n}. Va€A. {w. 7 (t+1) w = a N 2xexin(real
t)/(A a)"2 < real (N-ntaw)} € sets M

and eg-sets-optimum:
Vae AV te{k.<n} {w 7 (t+1)w=a A 2 xexlin (real t) /] (A
a) 2 <real (N-ntaw)}=
{weQ Atplus-1t w=a}N{weQ Nntaw>(2*e=x*lIn
(real t)) / (A a) "2}

shows
V a € A. expectation (Aw. real (N-nnaw)) <sn+ (O ¢t =k.<n. 2/ (real
t powr €))

(proof)

theorem theorem-15-4:
assumes

a-in-A: a € A
and finite A and Va € A. integrable M (Aw. real (N-n n a w))
and w-in-Q: w € Q)
and subopt-gap: ¥V a € A. A a > 0
and a-not-opt: 3 a’ € A. A a’' > 0
and delta-a: ¥V a € A. A a = p a-star — i a
and £ < n
and n-count-assm-pointwise: (> a€A. real (N-n n a w)) = real n

12



and expected-regret-prop-15-1: expectation (Aw. R-n n w) = (D a€A. A a *
expectation (Aw. real (N-n n a w)))
and from-UCB-step1:V a € A. expectation (Aw. real (N-n n a w)) <
s n + expectation (Aw. (> t=k.<n.if 7 (t+1) w=a A st < real (N-nt
a w) then 1 else 0))
and from-UCB-step2: ¥ a € A. V t € {k..<n}. prob ({w € Q. A-t-plus-1 t w
=a}Nn
{weQ Nntaw>(2xIn(1/5)/(Aa)2})<2x§
and eps-pos: € > 0
and t-gt0: ¥V t € {k.<n}. t > 0
and choice-delta: ¥ t € {k..<n}. d = 1 / (real t powr €)
and s-form:V a € A.V u. su= (2 € x In (real v)) / (A a)72)
and subset-meas:V a € AVt e {k.<n}.Vw e Q {w.m({+l)w=0aAN2xe¢
x In (real t)/(A a) 2 < Nntaw} CQ
and prob-eq-E-assm: ¥V a € A. Vit € {k..<n}. prob {w. 7 (Suct) w =a A 2 *
exin (real t) / (A a)"2 < real (N-ntaw)} =
prob ({w. m (Suct) w=a AN 2 xe x In (real t) / (A a)"2 < real
(N-ntaw)} N space M)
and finiteness: Vte{k..<n}.VacA. emeasure M {w. 7 (t+1) w = a A 2xexin(real
t)/(A a)"2 < real (N-ntaw)} < oo
and measurable-set: ¥Vte{k..<n}. Va€A. {w. 7 (t+1) w = a N 2xexin(real
t)/(A a) 2 < real (N-ntaw)} € sets M

and eq-sets-optimum:
VaeAVY tel{k<n}b {wnm(@+l)w=an2xecxlin(realt)/ (Aa)2 <
real (N-ntaw)} =
{weQ Atplus-ltw=afN{we QA Nntaw>(2x*e=xlin
(real t)) / (A a) "2}
and assms-lin-expect: ¥ a € A. expectation (Aw. > t = k..<n.
(if m(t+1)w=aA2xexln(realt) / (A a)"2 < real (N-ntaw) then
1 else 0)) =
(3" t = k..<n. expectation (A\w. indicat-real {w. 7 (t+1) w =a A 2 x € x In
(real t) / (A a)"2 < real (N-nt aw)} w))
and mono-sum-sets:
(Va € A. A a x expectation (Aw. real (N-nnaw)) <Aax(sn+ (3 t=k.<n.
2 / (real t powr ¢))))
= (D a € A. A a * expectation (Aw. real (N-n n a w))) <
OCac A Aax(sn+ (O t=k.<n 2/ (real t powr €))))

shows ezpectation (Aw. R-nnw) < (D ac€A. A a* ((2 x & = In (real n)) /

(A a)2)+ (O t =k.<n. 2 / (real t powr €))))
(proof)

end
end
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