Verification of Discrete Upper Confidence Bound
algorithm in Isabelle/HOL

Arjan Faber
December 26, 2025

Abstract

This project formally verifies the Upper Confidence Bound (UCB)
algorithm in Isabelle/Higher-order Logic (HOL), focusing on its proba-
bilistic guarantees and regret bounds. The work extends Isabelle/HOLs
probabilistic framework and explores verification of discrete-time ban-
dit models following [1]. This research advances the formal verification
of probabilistic algorithms in reinforcement learning.

theory MSc-Project-Discrete-Prop15-1
imports
HOL— Probability. Probability

begin

locale bandit-problem =
fixes A :: ‘a set
and p :: 'a = real
and a-star :: 'a
assumes finite-arms: finite A
and a-star-in-A: a-star € A
and optimal-arm: Ya € A. p a-star > p a
begin

definition A :: ‘a = real where
Aa=pa-star — i a
end

locale bandit-policy = bandit-problem + prob-space +

fixes Q :: b set
and F :: b set set
and 7 :: nat = 'b = 'a
and N-n :: nat = 'a = 'b = nat

assumes measurable-policy: V't. m t € measurable M (count-space A)
and N-n-def: Vn aw. N-nnaw = card {t € {0..<n}. 7 (+1) w = a}
and count-assm-pointwise: Vn w. (3. a € A. real (N-nn a w)) = real n

begin

definition R-n :: nat = 'b = real where
Rnnw=mnsx*puastar — (D a € A paxreal (N-nnauw))

lemma regret-decomposition-pointwise:
fixes n :: nat and w = b
assumes n-count-assm-pointwise: (Y a€A. real (N-n n a w)) = real n
shows R-nnw = (>_a € A A ax* real (N-nn aw))
proof —
have sum-Nn: (> a € A. real (N-nn a w)) = real n
using n-count-assm-pointwise by simp

have sum-const: (> a € A. p a-star * real (N-n n a w)) = p a-star x (> a €
A. real (N-nn a w))
by (simp add: Cartesian-Space.vector-space-over-itself .scale-sum-right)

have eql: R-nnw = realn x p a-star — (> a € A. p a *x real (N-n n a w))
by (simp add: R-n-def)

also have eq2: ... = (D a € A. i a-star x real (N-nnaw)) — (D a € A. pua *
real (N-n n a w))
using sum-const sum-Nn
by (subst sum-Nn[symmetric|, subst sum-const) simp

also have eq3: ... = (D" a € A. (u a-star = real (N-nn a w) — p a * real (N-n
naw)))
by (rule sum-subtractf[symmetric])

also have e¢f: ... = (3 a € A. (1 a-star — p a) * real (N-n n a w))
by (simp add: algebra-simps)

also have ... = (D" a € A. A a x real (N-n n a w))
by (simp add: A-def)

finally show ?thesis .
qed

lemma integrable-const-fun:
assumes finite-measure M
shows integrable M (Az. c)
using assms by (simp add: Bochner-Integration.finite-measure.integrable-const)

lemma expected-regret:

assumes finite A

and Va € A. integrable M (Aw. real (N-n n a w))

shows ezpectation (Aw. R-n n w) = (3 a€A. A a x expectation (Aw. real (N-n
naw)))

proof —

have integrable-sum: integrable M (Aw. > a € A. u a * real (N-n n a w))
proof —
have Va € A. integrable M (Aw. p1 a % real (N-n n a w))
using assms integrable-mult-right by blast
then show ?thesis
by (simp add: integrable-sum)
qed

have pointwise: Vw. R-nn w = (> a€A. A a x real (N-n n a w))
using regret-decomposition-pointwise count-assm-pointwise by blast

hence rewrite: expectation (Aw. R-n n w) = expectation (Aw. Y a€A. A a * real
(N-nn aw))
by simp

also have expectation (Aw. R-n n w) = (> a€A. A a * expectation (Aw. real
(N-n n a w)))
proof —

have Va € A. integrable M (Aw. A a x real (N-nn a w))
using assms integrable-mult-right by blast

hence integrable M (Aw. > a € A. A a * real (N-n n a w))
using integrable-sum by simp

have res-1: expectation (A\w. > a€A. A a * real (N-n n a w)) = integral® M
(Aw. >-acA. A a x real (N-n n a w))
by simp

also have res-2: ... = (Y. a€A. integrall M (Dw. A a x real (N-n n a w)))
using <finite A> assms
by (simp add: integral-sum integrable-sum)

have res-3: expectation (Aw. R-n n w) = (>, a€A. A a * expectation (Aw. real
(N-nn aw)))
using assms rewrite
by simp

then show ?%thesis using assms res-3 by auto
qed

then show “thesis .
qed

end

end
theory Discrete-UCB-Step1
imports MSc-Project-Discrete-Prop15-1

begin

locale bandit-policy = bandit-problem + prob-space +
fixes Q :: b set
and F :: b set set
and w :: b
and 7 :: nat = 'b = 'a
and N-n :: nat = 'a = 'b = nat
assumes measurable-policy: ¥t. m t € measurable M (count-space A)
and N-n-def: Vnaw. Nnnaw = card {t € {0..<n}. 7 (t+1) w = a}
and count-assm-pointwise: ¥ n w. (3. a € A. real (N-n n a w)) = real n
begin

lemma union-eq:
fixes a :: ‘a and n k :: nat
assumes k£ < n
shows {t. t <n AT (t+l)w=at={t. t<kAT(+1)w=0a} U{t. k<t
ANt<nAT(t+1)w = a}
proof
show {t. t<n AT (t+l)w=a} C{t.t<kAT(+1)w=0a}U{t.E<tA
t<nAwm(t+1) w=a}
proof
fix v assume z € {t. t < n A7 (t+1) w = a}
then have z < n and 7 (z+1) w = a by auto
then have z < k V k < z by auto
thusz e {t.t<kAT(t+)w=alU{t. k<tAt<nA7(t+])w = a}
using <z < ny 7 (z+1) w = @ by auto
qed
next
show {¢t. t < kAT (t+1)w=a} U{t. k<tAt<nA7(t+1)w=a} C{t
t<nAm(t+1) w=a}
proof
fixvassumez € {t. t <kAT (t+)w=a}lU{t. kE<tANt<nAT(t+1)
w = a}
then have s < kA7 (z+])w=aV (k<zAz<nAx(z+1)w = a) by
auto
hence z < n A 7w (z+1) w = a using assms by auto
thus z € {t. t < n A7 (t+1) w = a} by auto
qed
qed

lemma cardinality-indic-eq:
fixes I :: nat = bool
assumes finite {t. k < t At < n}

shows card {t. k< tANt<nAT(+l)w=aANlty =0 t=k.<n ifrw
(t+1) w = a A It then 1 else 0)
proof —
have fin: finite {t. k < t A t < n} using assms by simp
have sum-eq:
sum (indicator {t. m# (t+1) w =a AN Tt}) {t. k <t At <n}=card ({t. k <
tAt<n}Nn{t.nm (t+1)w=aANIlt})
by (rule sum-indicator-eq-card[OF fin])
have sets-eq:
{t.k<tAnt<nin{t.n(+l)w=anit}={t.k<tANt<nAT(+1)
w=aANIlt}
by auto
hence card-eq:
card ({t. k<tAnt<ninN{t.7(t+l)w=aANlt}) =cad {t. k<tAt<
nAw(t+l)w=aANIlt}
by simp
have card-sum-eq:
sum (indicator {t. # (t+1)w=a ANTt}) {t. k<tANt<n}=card {t. k<t
ANt<nAz(t+l)w=aAlt}
using sum-eq sets-eq by simp
have ind-eq:
sum (indicator {t. m (t+1) w =a AN Tt}) {t. k < t At < n} = sum (\t. of-bool
(mr(+l)w=anNIt){t. k<tAt<n}
by (simp add: indicator-def)
have bool-if-eq:
sum (At. of-bool (m (t+1) w =a AN Tt) {t. k<tAt<n}=sum (M. if 7
(t+1)w =a N ITtthen 1 else 0) {t. k<t ANt <n}
by (simp add: of-bool-def)
have set-eq: {t. k <t At < n} ={k..} N {..<n} by auto
have sum-set-eq:
sum (At. if m (t+1) w = a A ITtthen 1 else 0) {t. k <t At < n} = sum (At
if m(t+1) w = a A Itthen I else 0) ({k..} N {..<n})
by (simp add: set-eq)
have atLeastLessThan-eq:
sum (At if m (t+1) w = a A It then I else 0) ({k..} N {..<n}) = sum (At. if
7w (t+1) w = a A It then 1 else 0) (atLeastLessThan k n)
by (simp add: atLeastLess Than-def)
have final-sum-eq:
sum (At. if m (t+1) w = a A It then 1 else 0) (atLeastLessThan kn) = (3 t
=k.<n.if m (t+1) w = a A It then 1 else 0)
by simp
show ?thesis
apply (subst card-sum-eq[symmetric])
apply (subst ind-eq)
apply (subst bool-if-eq)
apply (subst sum-set-eq)
apply (subst atLeastLessThan-eq)
apply (simp add: final-sum-eq)
done

qed
lemma ge-rewrite: (z::real) > y = y < = by simp

lemma Nn-expression:
fixes a :: ‘a and s :: nat = real
and k£ :: nat and n :: nat
assumes a € A
and k£ < n
and 0 < n
andV t € {0.n}. 0 < st
andVi<n—1. st<s(t+ 1)
and init-play-once: Vw. a € A — N-nkaw =1
and finite-played-sets:
finite {t. t < n A 7w (t+1) w = a}
finite {t. t <k AT (t+1) w = a}
finite {t. k< tANt<nA7T(t+1)w=a}
shows
(Nnnaw)=1+ O, t=k.<n.if 7 (t+1) w=a A real (N-ntaw) <st
then 1 else 0) +
S t=k.<n. if 7 (t+1) w=a A real (N-ntaw) > stthen I
else 0)
proof —
have Nn-def: (N-nnaw) = card {t. t <n Aw (t+1) w = a}
by (simp add: N-n-def)

have init-count: 1 < card {t. t < k A7 (t+1) w = a}
proof —
have eq-card: N-nkaw = card {t. t <k A7 (t+1) w = a}
by (simp add: N-n-def)
moreover from init-play-once and <a € Ay have I < N-nka w
by simp
ultimately show ¢thesis by simp
qed

have disj: {t. t <k A7 (t+1)w=a} N{t. k<tAt<nA7T(+])w=a}

={}

by auto

have union-eq-set:
{ttt<nAm(@+)w=at={t.t<kAm(t+l)w=a}U{t. k<tALt<
nAw(t+1) w= a}
using union-eq assms by blast

have finite!: finite {t. t < k A w (t+1) w = a} and finite2: finite {t. k < t A ¢
<nA7w(t+1) w= a}
using finite-played-sets by auto

have card-eq:

card {t. t <nAm(t+1)w=a}=card {t. t <k A7 (t+1) w = a} + card
{t. k<tAnt<nAw(t+l)w=a}
using card-Un-disjoint|OF finitel finite2 disj] union-eg-set by simp

have eg-card-k: card {t. t <k A7 (t+1) w=a} =N-nkaw
by (simp add: N-n-def)

have card-k-eq-1: card {t. t <k A7 (t+1) w=a} =1
using nit-play-once assms eq-card-k by simp

have card-eq-1:
card {t. t<n AT (+l)w=a}=1+card {t. k<tANt<nAT(+1)w
:a}

using card-eq eq-card-k card-k-eq-1 by simp

have finite-lt: finite {t. k <t ANt <n A7 (t+1)w=a A real (N-ntaw)<s

t}

using finite2 finite-subset by simp

have finite-ge: finite {t. k <t ANt <n A7 (t+1)w=a A real (N-ntaw)>s

t}

using finite2 finite-subset by simp

have card-eq-partition:
card {t. k<tANt<nAw(+])w=a}=
card {t. k<tANt<nA7T(t+l)w=aAreal (Nntaw)<st}+
card {t. k<tANt<nAw(t+1l)w=aAreal (N-ntaw)> st}
proof —
have union-eq-partition:
{t.k<tAnt<nA7T(t+])w=a}=
{t.k<tAnt<nAxT(t+l)w=aAreal (Nntaw)<st}U
{t. k<tAnt<nA7(t+l)w=aA real (N-ntaw)> st} by auto

have disj-partition:

{t.k<tAnt<nAzT(t+l)w=aAreal (N-ntaw)<st}nN
{t.k<tAnt<nA7(t+l)w=aAreal (Nntaw)>st}={}
by auto

show ?thesis
using card-Un-disjoint[OF finite-It finite-ge disj-partition] union-eg-partition
by simp
qed

have card-eq-sum-It:
card {t. k<tANt<nA7T(t+l)w=aAreal (Nntaw)<st}=
S t=k.<n. if 7 (t+1)w =a A real (N-ntaw) < stthen I else 0)
using cardinality-indic-eq by simp

have card-eq-sum-ge:

card {t. k<tANt<nA7T(t+1)w=aAreal (N-ntaw)>st}=
O t=k.<n.if v (t+1) w=a A real (N-nt aw) > stthen I else 0)
using cardinality-indic-eq by simp

have (N-nnaw) =card {t. t <n A 7w (t+1) w = a}
using N-n-def by simp

also have ... = 1 +
O t=k.<n.if m (t+1) w=a A real (N-ntaw) < stthen I else 0) +
O- t=k.<n.if 7 (t+1) w=a A real (N-ntaw) > stthen I else 0)
using card-eg-partition card-eq-1 card-eq-sum-lt card-eq-sum-ge by simp

also have ... = 1 +
S t=k.<nif T (t+1)w
S t=k.<nif T (t+1)w
using ge-rewrite by simp

a A real (N-ntaw) < stthen I else 0) +
aAst<real (N-ntaw) then I else 0)

have rewrite-eq: (> t = k.<n.if m (t+1) w = a A real (N-nt aw) > st then
1 else 0) =
S t=k.<n.if v (t+1) w=a A st < real (N-ntaw) then 1 else 0)
using sum.cong by simp

ultimately have final-eq: (N-nnaw)=14+ O t=k.<n. if 7 (t+1) w =a
A real (N-ntaw) < stthen I else 0) +
O t=k.<n. if 7 (t+1)w=a A real (N-ntaw) > stthen I
else 0)
by simp

show (N-nnaw)=1+ (O, t=k.<n.if 7 (1+1) w=a A real (N-nta w)
< st then 1 else 0) +
S t=k.<n.if 7 (t+1) w =a A real (N-ntaw) > stthen I
else 0)
apply (subst rewrite-eq)
apply (subst final-eq)
apply simp
done

qged

lemma upper-bound-expression-contradiction:
fixes a :: ‘a and s :: nat = real
and k :: nat and n :: nat
and s-n-nat :: nat
assumes a € A
and k£ < n
and 0 < n
and non-neg-s: V t € {0..n}. 0 < st
and base-le: s 0 < s 1
and non-dec: Vt <n — 1.st<s(t+ 1)

and s-mono: A\t. k<t ANt<n=st<sn

and init-play-once: Vw. a € A — N-nkaw =1

and finite-played-sets:

finite {t. t < m A 7w (t+1) w = a}

finite {t. t <k AT (t+1) w = a}

finite {t. k< tANt<nAT(+1)w=a}

and xs-sorted-def: xs = sorted-list-of-set {t € {k..<n}. 7w (t+1) w = a A real
(N-ntaw)<st}

and s-nat-def: s-n-nat = nat (|s n))

and len-bound-def: s-n-nat < length xs

and distinct-zs: distinct xs

and gt-ineq: length xs + 1 > |s n]

and N-n-increasing-with-plays:

Vithk<tANt<t'Am(t+l)w=aAnm(t+1)w=a— Nnt'aw>
Nntaw+ 1

and neg: 1 + real (3 t=k.<n.if 7 (t+1) w = a A real (N-ntaw) < st
then 1 else 0) > sn

and t-hat € set zs

and t-hat = xs ! s-n-nat

and real (N-n t-hat @ w) > real s-n-nat + 1

shows (real (N-n t-hat a w) > |[sn] + 1) A (7 (t-hat+1) w = a A (real (N-n
t-hat a w) < s t-hat))

proof —
have sn-nat-def:s-n-nat = nat (|s n]) by fact

let 21 = {t € {k.<n}. 7 (t+1) w = a A real (N-ntaw) < st}
have sum-eq-card: real (> t=k..<n.if 7 (t+1) w = a A real (N-ntaw) < st
then 1 else 0) = real (card 2I)
using cardinality-indic-eq by simp

have finl: finite {t € {k..<n}. 7 (t+1) w = a A real (N-n t a w) < s t}
proof —
have subset: {t € {k.<n}. 7 (t+1) w = a A real (N-ntaw) < st} C {t. k
<tAt<nAT(t+1) w=a}
by auto
moreover have finite {t. k <t ANt <n A7 (t+1) w=a}
using finite-played-sets(3) .
ultimately show ?thesis
using finite-subset by blast
qed

have zs-props: sorted xs distinct zs set xs = {t € {k..<n}. 7 (t+1) w = a A real
(N-ntaw)<st}
using List.linorder-class.set-sorted-list-of-set

using finite-played-sets
unfolding xzs-sorted-def
by auto

have sum-eq-length:
S t=k.<n if T (I+1) w=a A real (N-ntaw)<stthen I else 0) =
length xs
proof —
let P = At. 7w (t+1) w=a A real (N-ntaw) < st
let 71 = {t € {k.<n}. 7P t}

have sum-card: (> t = k..<n. if ?P t then 1 else 0) = card ¢I
using cardinality-indic-eq by simp

also have ... = card (set xs)
using zs-props(3) by simp

also have ... = length xs
using zs-props(2) distinct-card by auto

finally show ?%thesis .
qed

have gt-ineq: 1 + real(length zs) > s n
proof —

have eql:1 + (> t=k.<n. if 7 (t+1) w = a A real (N-nt a w) < st then
1 else 0) = 1 + length xs
using sum-eq-length by simp

then have eq2: real (1 + (3 t=k.<n.if 7 (t+1) w = a A real (N-nt a w)
< stthen 1 else 0)) = 1 + real (length zs)
by simp

from neg have = (1 + real (O t=k.<n. if 7 (t+1) w = a A real (N-n t a w)
< s tthen 1 else 0) < sn)
by simp

hence gt: 1 + real (3. t=k.<n.if 7 (t+1) w=a A real (N-ntaw) < st
then 1 else 0) > sn
by simp

then show ?thesis
using eql eq2 neg gt by simp
qged

10

then have len-bound-assm: s-n-nat < length xs
using len-bound-def assms
by auto

then have distinct-zs: distinct xs
using assms by simp

then have gt-ineq: length zs + 1 > |s n|
using assms by simp

have part-1-glob: 7 (t-hat +1) w = a A real (N-n t-hat a w) < s t-hat
proof —
have floor-le-sn: [sn] < sn
using Archimedean-Field.of-int-floor-le by simp

from gt-ineq have len-bound: length xs + 1 > |s n]
using len-bound-assm by simp

have nat-expression-sn: length zs > nat (|s n])
proof —
from len-bound have length xs > nat (|s n])
by (simp add: nat-less-iff)
then show ?thesis .
qed

have sn-lt-len-plus-1: |s n] < 1 + real (length xs)
using gt-ineq by simp

then have final-eq-glob:m (t-hat+1) w = a A real (N-n t-hat ¢ w) < s t-hat
proof —

have 7-eq: 7 (t-hat+1) w = a
using assms xs-sorted-def by simp

then have 7 (t-hat +1) w = a using w-eq by simp

then have intermid-eq: k < t-hat A t-hat < n A 7 (t-hat +1) w = a A real
(N-n t-hat a w) < s t-hat
using zs-sorted-def <t-hat € set xs» by auto

have fin-eq:w (t-hat + 1) w = a A real (N-n t-hat a w) < s t-hat
using intermid-eq
by simp
then show ?thesis by simp
qed

show ?thesis using final-eq-glob by simp

11

qed

have floor-le-sn: [s n| < sn
using Archimedean-Field.of-int-floor-le by simp

have one-plus-length-gt-floor: 1 + real (length xs) > s n
using <1 + real (length xs) > s n» .

have floor-less-length-plus-one: real (nat (|s n|)) < 1 + real (length zs)
using one-plus-length-gt-floor floor-le-sn
by linarith

from gt-ineq have len-result: length zs > |s n] — 1 by simp
then have length s > nat (|s n|) by (simp add: nat-less-iff)
hence t-hat-in-set:t-hat € set s

using assms distinct-zs len-bound-assm by auto

have t-hat-le-n: t-hat + 1 < n
using zs-sorted-def t-hat-in-set by auto

have k-le-t-hat: k < t-hat
using wzs-sorted-def t-hat-in-set by auto
have s-t-hat-le-s-n: s t-hat < s n

using s-monolof t-hat)
using zs-sorted-def t-hat-in-set by auto

have real (N-n t-hat a w) > real s-n-nat + 1
using assms by simp

have final-result: real (N-n t-hat a w) > |sn| + 1
using <real (N-n t-hat a w) > real (s-n-nat) + 1>
by (simp add: sn-nat-def)

show ?thesis using final-result and part-1-glob by auto

qed

12

lemma Nn-upper-bound:
fixes a :: ‘a and s :: nat = real
and % :: nat and n :: nat
assumes asm: real(1 + (Ot = k.<n. if 7 (t+1) w = a A real (N-n t a w) <
stthen 1 else 0)) < sn
and a-in-A: a € A
and k-le-n: k< n
and n-pos: 0 < n
and s-pos:V t € {0.n}. 0 < st
and s-nondec: V.t <n —1.st<s(t+ 1)
and init-play-once: Vw. a € A — N-nkaw =1
and finite-played-sets-1: finite {t. t < n A7 (t+1) w = a}
and finite-played-sets-2: finite {t. t < k A7 (t+1) w = a}
and finite-played-sets-3: finite {t. k <t ANt <n A7 (t+1) w = a}
shows real(N-nnaw) < sn+ real(Ot=k.<n.if 7 (t+1)w=a A st <
real (N-n t a w) then 1 else 0))
proof —
have expr-nat: N-nnaw =
I+ t=k<n ifm(t+1)w=aA real (N-ntaw)<stthen I else 0) +
Sot=k.<n.if 7 (t+1) w=a A st < real (N-ntaw) then 1 else 0)
using Nn-expression|OF a-in-A k-le-n n-pos s-pos s-nondec init-play-once
finite-played-sets-1 finite-played-sets-2 finite-played-sets-3]
by simp

from asm have bound:real(1 + (>t = k.<n. if 7 (t+1) w = a A real (N-n t
a w) < stthen 1 else 0)) < s n by simp

have real (N-nnaw) =real (1 + Ot =k.<n.if 7 (t+1) w = a A real (N-n
taw)<stthen 1 else 0) +
Oot=k.<n.if 7 (t+1) w=a A st < real (N-n t a w) then 1 else 0))
using ezxpr-nat by simp

also have ... < sn+ real (Ot =k.<n. if 7 (t+1) w=a A st < real (N-n
t a w) then 1 else 0))
using assms
by simp

then show ?thesis
using expr-nat asm
by simp
qed

theorem ENn-upper-bound:
assumes
a-in-A: a € A
and k-le-n: kK < n
and n-pos: 0 < n
and s-pos: V¢t € {0.n}. 0 < st

13

and s-nondec: Vit < n. st < s (t + 1)

and init-play-once: Vw. a € A — N-nkaw =1

and integrable-Nn: integrable M (Aw. real (N-n n a w))

and integrable-rhs-sum: integrable M (Dw. sn + (3t = k.<n. if 7 (t++1) w
=aAst<real (N-ntaw) then 1 else 0))

and integrable-s: integrable M (Aw. s n)

and integrable-indicator-sum: integrable M (Aw. >t = k.<n. if m (t+1) w =
aNst<real (N-ntaw)then I else 0)

and linearity: integral® M Mw. sn + Ot =k.<n.if 7 (t+1) w =a A st
< real (N-n t a w) then 1 else 0)) =

integral® M (Aw. s n) + integral® M (\w. >_t = k.<n. if © (t+1)

w=aAst<rel (N-ntaw) then 1 else 0)

and pointwise-bound: real (N-nnaw) <sn+ O t=k.<n. if 7 (t+1) w =
a A st<real (N-ntauw) then I else 0)

and mono-intgrl: integral’ M (A\w. real (N-n n a w)) < integrall M (M\w. s n

+ (>t =k.<n.
if m(t+1)w=aA st <real (N-ntauw)then I else 0))
shows

expectation (Aw. real (N-n n a w)) <
sn + expectation (Aw. (3t =k.<n. if 7 (t+1) w=a A st < real (N-nt
a w) then 1 else 0))
proof —
let 9f = Mw. real (N-n n a w)
let %9 =dw.sn+ O t=k.<n. if 7 (t+1) w=a A st < real (N-ntaw)
then 1 else 0)
let g1 = Aw. sn
let 292 = M. Ot =k.<n.if 7 (t+1) w = a A st < real (N-n t a w) then 1
else 0)
have pointwise-le: ?f w < %9 w
using pointwise-bound .

have intg-f: integrable M ?f using integrable-Nn .
have intg-g: integrable M ?g using integrable-rhs-sum .
then have eq-f:integral® M ?f = expectation (?f)
using prob-space by simp
then have eg-g: integral® M ?g = expectation (?g)
by simp

then have sub-eqq1:integral” M 291 = expectation (Aw. s n)
by simp
then have sub-eqg2:integral® M 292 = expectation(Mw. (3.t = k..<n.if w (t+1)
w=uaA st<real (N-ntaw) then I else 0))
by simp

have real (N-nnaw) <sn+ O t=k.<n. if 7 (t+1) w =a A st < real
(N-n t a w) then 1 else 0)
using assms by simp

14

have const-measure: Sigma-Algebra.measure M (space M) = 1
using prob-space Probability-Measure.prob-space.prob-space by blast

have exp-sn: expectation (Aw. s n) = sn

proof —
have expectation (M\w. s n) = integral® M (Aw. s n)
by simp
also have ... = s n

using prob-space by (simp add: prob-space.prob-space)
then show ?thesis .
qed

have rhs-expr:
integrall M ?g = integral® M (\w. s n) + integral® M (Dw. Y.t = k..<n. if
T (t+1) w=aAst<real (N-ntauw) then I else 0)
using linearity by auto

then have rhs-expr:
expectation (29) = expectation (Aw. s n) + expectation (Aw. (Dt = k.<n. if
7 (t+1)w=aA st <real (N-ntaw)then I else 0))
by simp

also have final-eq: expectation (?g) = s n + expectation (Mw. (Dt = k..<n. if
m(t+1)w=aA st <real (N-ntaw)then I else 0))
using rhs-expr exp-sn
by simp

have glob-final-eq: expectation (2f) < expectation (?g)
using assms intg-f intg-g pointwise-le mono-intgrl
by auto

thus ?thesis
using glob-final-eq final-eq by simp
qed

end

end

theory Discrete-UCB-Step2
imports Discrete-UCB-Step1

begin

locale bandit-policy = bandit-problem + prob-space +
fixes Q0 :: 'b set
and F :: b set set
and w :: b
fixes 7 : nat= 'b="a
and N-n :: nat = 'a = 'b = nat

15

and 7 :: nat = 'a = 'b = real
and ¢ :: real
and q :: real
assumes finite-A: finite A
and a-in-A: a € A
and measurable-policy: Vt. m t € measurable M (count-space A)
and N-n-def: Vnab. N-nnab=card {t € {0.<n}. 7m (t+1) b = a}
and J-pos: 0 < 0
and d-lessl: § < 1
and ¢-pos: ¢ > 0

begin

definition sample-mean-Z :: nat = 'a = 'b = real where
sample-mean-Z n a b = (1 [/ real n) * (3 i<n. Zia b)

definition M-val :: nat = 'a = 'b = real where
M-val t a b = (if N-n (¢+1) a b = 0 then 0
else (D) s<t.if msb=athen Zsabelse 0) [real (N-nt a b))

definition U :: nat = 'a = 'b = real where
Utab= Mwaltab-+ qgx*sqrt (In (1 /6)/ (2 * real (max 1 (N-nt ab))))

definition A-t-plus-1 :: nat = 'b = 'a where
A-t-plus-1t b= (SOME a.a € AN(Na.a' € A— Utab>Uta'd))

lemma (in finite-measure) finite-measure-mono:

assumes A C B B €sets M shows measure M A < measure M B

using emeasure-mono[OF assms] emeasure-real[of A] emeasure-reallof B] by
(auto simp: measure-def)

theorem union-bound:
fixes EF G :: b set
assumes F C FFU @G
and F € events F € events G € events
shows prob E < prob F + prob G
proof —
have F' U G € events
using assms(3,4) sets.Un by blast
have prob E < prob (F U G)
using assms local.finite-measure-mono by auto
also have prob (F U G) < prob F + prob G
using assms measure-Un-le by blast
finally show ?thesis .
qed

16

theorem hoeffding-iid-bound-ge-general:
fixes a :: ‘a and n :: nat and ¢ :: real and p-hat :: real and [u :: real
assumes a-in: g € A
and eps-pos: € > 0
and bounds: Vi < nVw e QI< ZiawANZiaw<u
and mu-def: p-hat = (3. i < n. expectation (A\w. Z i a w))
and u — [# 0
and n-pos: n > 0
and space-M: space M = Q
and sets-M: sets M = F
and indep: indep-vars (A-. borel) (Ni. (A\w. Z i a w)) {i. i < n}
and rv: Vi<n. random-variable borel (Aw. Z i a w)

shows prob {w € Q. (3 i < n. Ziaw) > p-hat + €}
<erp(—2xe7 2/ (realn x (u—1)72))
proof —
let 91 = {i. i < n}
let X = X\i. Qw. Ziaw)
let %a = Xi. |
let 20 = Ai. u

have finite-1: finite ?I by simp

have AFE-bounds: Vic?l. AE win M. 2a1< ?XiwA?Xiw< 21
proof
fix ¢ assume il: i € ¢]
have VweQ. [< Ziaw A Z1ia w < u using bounds il by simp
thus AFwin M. 2ai < ?XiwAN?Xiw< 21
using assms by auto
qed

have indep-loc: indep-interval-bounded-random-variables M 21 ?X %a %b
by (standard; use finite-I indep AE-bounds in auto)

from indep-loc
have H: Hoeffding-ineq M ?1 ?X ?a 7b
by (rule Hoeffding-ineq.intro)

have widths: (> i€ 2I. (?bi — %ai)"2) =realn x (u —)72
by simp
have widths-pos: 0 < (> i€ ?1. (¢b i — %a i) 2)
using (u — [# 0> n-pos by simp
have sum-expectations-eq-integrals:
(3> i < n. expectation (Mw. Z i a w)) = (3. i€?l. integral® M (?X 7))
proof —
have eql: Vi<n. expectation (\w. Z i a w) = integrall M (2X 1)

17

using rv space-M sets-M by simp
moreover have sum-eq: (3. i<n. integrall M (?X 7)) = (3 i€?l. integral®
M (7X 7))
by (simp add: lessThan-def)
ultimately show ?thesis
by simp
qed

have sum-integrals-eq: (3. i€?l. integral® M (?X i)) = p-hat
using mu-def by (simp add: sum-ezxpectations-eg-integrals)

have tail:
prob {w € Q. (3 i€?l. ?X i w) — (3 i€?l. integral® M (?X i)) > ¢}
<erp(—2xe 2/ (> i€?l. (?bi— %ai)"2))
using Hoeffding-ineq. Hoeffding-ineq-ge] OF H eps-pos widths-pos]
by (smt (verit, best) Collect-cong assms(7))

have lhs-rewrite: {w € Q. (3. i < n. Ziaw) > p-hat + €}
={we O (3 ie?l. ?Xiw) — (3 i€?l. integrall M (?X 7))
> ¢}
by (simp add: add.commute le-diff-eq lessThan-def sum-integrals-eq)

have rhs-rewrite: exp (— 2 x 72 / (3. i€?I. (?bi — 2ai)72))
=exp (— 2% 2/ (real n x (u — 1)72))
using widths by simp

show ?thesis
using tail lhs-rewrite rhs-rewrite by simp
qed

theorem hoeffding-iid-bound-le-general:
fixes a :: ‘a and n :: nat and ¢ :: real and p-hat :: real and [u :: real
assumes a-in: a € A
and eps-pos: € > 0
and bounds: Vi < nVw e QI< ZiawANZiaw<u
and mu-def: p-hat = (3 ¢ < n. expectation (Aw. Z i a w))
and u — [# 0
and n-pos: n > 0
and space-M: space M =
and sets-M: sets M = F
and indep: indep-vars (A-. borel) (Mi. (Aw. Ziaw)) {i. i < n}
and rv: Vi<n. random-variable borel (Aw. Z i a w)
shows prob {w € Q. (3 i < n. Ziaw) < p-hat — €}
<erp(—2xe7 2/ (realn x (u—1)72))
proof —
let 91 = {i. i < n}

18

let X = Xi. (M\w. Zia w)
let 2a = \i. 1
let 20 = \i. u

have finite-I: finite ?I by simp

have AFE-bounds: Vic?l. AE win M. ?a1< ?XiwA ?Xiw< %1
proof
fix ¢ assume il: i € ?]
have VweQ. [< Ziaw A Z1ia w < u using bounds il by simp
thus AF win M. 2ai < ?XiwA?2Xiw< 2?1
using assms by auto
qed

have indep-loc: indep-interval-bounded-random-variables M 21 ?X %a ?b
by (standard; use finite-I indep AE-bounds in auto)

from indep-loc
have H: Hoeffding-ineq M ?I ?X ?a 7b
by (rule Hoeffding-ineq.intro)

have widths: (> i € 2I. (?bi — %ai)"2) = real n x (u —)72 by simp
have widths-pos: 0 < (>_ i € ?I1. (?bi — %a i)"2) using <u — [# 0> n-pos by
stmp

have sum-expectations-eq-integrals:
(3> i < n. expectation (Mw. Z i a w)) = (3. i€?l. integral® M (?X 7))
proof —
have eql: Vi<n. expectation (\w. Z i a w) = integrall’ M (?X i) using rv
space-M sets-M by simp
moreover have sum-eq: (Y i<n. integrall M (?X i)) = (3. i€?l. integral”
M (2X i)) by (simp add: lessThan-def)
ultimately show ?thesis by simp
qed

have sum-integrals-eq: (3. i€?I. integrall M (?X i)) = p-hat
using mu-def by (simp add: sum-expectations-eq-integrals)

have tail:
prob {w € Q. (3 i€?l. ?X i w) — (3. i€?l. integral® M (?X i)) < — ¢}
<ewp(—2xe2 /(> i€?l. (2bi— %a1i)"2))
using Hoeffding-ineq. Hoeffding-ineq-le] OF H eps-pos widths-pos]
by (smt (verit, best) Collect-cong assms(7))

19

have lhs-rewrite: {w € Q. (3. i < n. Ziaw) < p-hat — €}
={w e (3 ie?l. ?2Xiw) — (3 i€?l. integral® M (2X 7))
< —¢}
using add.inverse-inverse[of €] add.inverse-inverse[of u-hat] assms(4)
cancel-ab-semigroup-add-class. diff-right-commute[of p-hat p-hat > uue<n. Z
wuc a -|
cancel-ab-semigroup-add-class. diff-right-commute[of — p-hat — p-hat € —
w-hat]
cancel-ab-semigroup-add-class. diff-right-commute[of € — p-hat € — p-hat €]
cancel-ab-semigroup-add-class.diff-right-commute[of € e p-hat]
cancel-ab-semigroup-add-class. diff-right-commute[of 0 — p-hat €]
cancel-ab-semigroup-add-class. diff-right-commute|of u-hat p-hat €
cancel-ab-semigroup-add-class. diff-right-commute|of — p-hat — p-hat (3 uuc<n.
Z uuc a -) — p-hat]
cancel-ab-semigroup-add-class. diff-right-commutelof (> uuc<n. Z uuc a -) —
p-hat (3" uue<n. Z uuc a -) — p-hat
> uuc<n. Z uuc a -|
cancel-ab-semigroup-add-class. diff-right-commutelof Y uue<n. Z wuc a -
> uue<n. Z uuc a - p-hat]
cancel-ab-semigroup-add-class. diff-right-commutelof 0 — p-hat > uuc<n. Z
wuc a -|
cancel-comm-monoid-add-class. diff-cancel|of € — p-hat] cancel-comm-monoid-add-class.diff-cancel[of
]
cancel-comm-monoid-add-class. diff-cancel|of p-hat] cancel-comm-monoid-add-class. diff-cancel[of
— p-hat]
cancel-comm-monoid-add-class. diff-cancel[of (3 uuc<n. Z wuc a -) — p-hat]
cancel-comm-monoid-add-class.diff-cancel[of > uuc<n. Z uuc a -| diff-0
diff-right-mono[of € p-hat — (3 uuc<n. Z uuc a -) p-hat] diff-right-mono[of
S uue<n. Z uuc a - p-hat — € p-hat]
lessThan-def[of n] more-arith-simps(1)[of — e (3 uue<n. Z uuc a -) — p-hat]
by force

have rhs-rewrite: exp (— 2 x €72 / (O] i€?l. (?bi — %ai)"2)) = exp (— 2 *
€2/ (real n * (u — 1)72))
using widths by simp

show ?thesis using tail lhs-rewrite rhs-rewrite by simp
qed

theorem hoeffding-iid-ge-delta-bound:
fixes a :: ‘a and n :: nat and §-hat :: real and p-hat :: real and | u :: real
assumes a-in: a € A
and delta-bound: 0 < 6-hat 6-hat < 1
and bounds: Vi<n.VweQ. I < Ziaw AN Ziaw < u
and mu-def: p-hat = (3 i<n. expectation (A\w. Z i a w))
and n-pos: n > 0
and eps-pos: € > 0
and u-minus-l-nonzero: u — | # 0

20

and space-M: space M =)
and sets-M: sets M = F
and indep: indep-vars (A-. borel) (Mi. (Aw. Zia w)) {i. i < n}
and rv: Vi<n. random-variable borel (Aw. Z i a w)
and eps-expression: € = sqrt ((real n x (v —)72 = In (1 / 0-hat)) / 2)
shows prob {w € Q. 3 i<n. Zia w) > p-hat + €} < §-hat A
prob {w € Q. (3 i<n. Ziaw) < p-hat — €} < d-hat
proof —
have eps-pos: € > 0
using assms(7) by auto
have eps-squared: €72 = (real n x (v —)72 % In (1 / §-hat)) / 2
using eps-expression by (simp add: assms(3) delta-bound(1))

have exp-eq: exp (— 2 x €72 / (real n x (u — 1)72)) = §-hat
proof —
have — 2 x 72 / (real n x (v — 1)72) = — In (1 / 0-hat)
proof —
have €72 /(realn * (u —)72)= (In (1 / 0-hat)) / 2
using assms(6,8) eps-squared by fastforce
then show ?%thesis by linarith
qed
also have ... = In §-hat
using delta-bound(1) by (simp add: In-div)
finally show ?thesis
using delta-bound(1) by simp
qged

have ge-bound:
prob {w € Q. (3> i<n. Ziaw) > p-hat + €} < 6-hat
using hoeffding-iid-bound-ge-general|OF a-in eps-pos bounds mu-def u-minus-l-nonzero

n-pos space-M sets-M indep rv] exp-eq by simp

have le-bound:
prob {w € Q. (> i<n. Ziaw) < p-hat — e} < §-hat
using hoeffding-iid-bound-le-general[OF a-in eps-pos bounds mu-def u-minus-l-nonzero

n-pos space-M sets-M indep rv] exp-eq by simp

show ?thesis
using ge-bound le-bound by simp
qged

lemma add-le-iff:
fixes x y z :: real
shows s <y —z2¢— 1z —y < —2
by auto
lemma maz-Suc-0-eq-1: maz (Suc 0) © = maz 1
by simp

21

theorem ucbh-suboptimal-bound-set:
fixes t :: nat
and a :: 'a
and A :: ‘a = real
assumes finite-A: finite A
and a-in-A: a € A
and a-star-in-A: a-star € A
and argmaz-exists: A # {}
and subopt-gap: A a > 0
and a-not-opt: 3a’. a’' € ANAa>0
and delta-a: A a = p a-star — p a
and w-in-Q: w € QN
and asm: w € {w € N. A-t-plus-1t w = a}
and setopt: Vw € Q. Ja-mar € A.Vbe A. Utbw < Ut a-maxr w
and A-t-plus-1-mazximizes:
Ntwa Atplus-1tw=a=a€c ANNVMbe A Utaw>Utbuw)
shows {w € Q. A-t-plus-1 t w = a} C
{weQ Utastar w<p astary U{w € Q. pa-star < Utaw}
proof —
have set-result-1:
{weQ Atplus-1tw=0a} C{weQVbe A Utaw>Utbw}
proof
fix w
assume w € {w € Q. A-t-plus-1t w = a}
hence A-t-plus-1t w = a by simp

from setopt obtain a-max where
a-mar € AN (Vbe A Utbw < Utamaz w)
using w € {w € Q. A-t-plus-1 t w = a}> by auto

henceVbe A. Utaw>Utbw
using «A-t-plus-1t w = a> A-t-plus-1-maximizes by auto

thusw e {we Q. Vbe A Utaw>Utbuw}
using «w € {w € Q. A-t-plus-1t w = a}> by blast
qed

have set-result-2: {w € Q.Vbe A. Utaw > Utbw} C{we Q. Ut a-star w
< Utaw}
proof
fix w assume asm: w € {w € Q. Vbe A Utaw>Utbw}
hence w € Qand ub: Vb€ A. Ut aw > Ut b w by simp-all
from a-star-in-A have Ut a w > Ut a-star w using ub by simp

22

thus w € {w € Q. Ut a-star w < Ut a w} using w € O by simp
qed

have set-result-3: {w € Q. Ut a-star w < Ut a w} C
{weQ Utastar w<pa-star} U{w e Q. pastar < Utaw}
proof
fix w assume asm: w € {w € Q. Uta-star w < Utaw}
hence w € Q and le: Ut a-star w < Ut a w by simp-all
show w € {w € Q. Ut a-star w < p a-star} U {w € Q. p a-star < Ut a w}
proof (cases U t a-star w < p a-star)
case True
then show ?thesis using «w € Q) by simp
next
case Fulse
hence p a-star < U t a-star w by simp
with le have u a-star < U t a w by (simp add: less-le-trans)
then show ?thesis using «w € Q) by simp
qed
qed

from set-result-1 set-result-2 set-result-3 show ?thesis by auto
qged

theorem ucbh-suboptimal-bound-prob-statement:
fixes t :: nat and a :: ‘a and A :: 'a = real
assumes finite-A: finite A
and a-star-in-A: a-star € A
and argmaz-exists: A # {}
and subopt-gap: A a > 0
and a-not-opt: 3a’. a’ € ANAa>0
and w-in-Q:w € N
and asm: w € {w € Q. A-t-plus-1t w = a}
and setopt: Vw € Q. Ja-max € A.Vbe A. Utbw < Ut a-mar w
and A-t-plus-1-maximizes:
Ntwa Atplus-itw=a=a€ ANNbeEA Utaw>Utbuw)
and a-in-A: a € A
and omega-in: w € <)
and subopt-gap: A a > 0
and delta-a: A a = p a-star — p a
and H-def: H=(2x*1In(1/96)) /(A a)"2
and E-def: F = {w € Q. A-t-plus-1 t w=a} N{w € Q. H < real (N-ntaw)}
and F-def: F = {w € Q. Ut a-star w < p a-star} N {w € Q. H < real (N-n t
o w)}
and G-def: G ={w e Q pastar < UtawtN{we D H<real (Nnta
w)}
and meas-sets: E € sets M F € sets M G € sets M
and prob-inter: prob (F N G) = enn2real (emeasure M (F N G))

23

shows prob ({w € Q. A-t-plus-1 t w=a} N{w € Q. H < real (N-ntaw)}) <
prob ({w € Q. Ut a-star w < p a-star} N {w € Q. H < real (N-ntaw)})
l’
prob {w e Q. Utaw > pa-star} N{we Q. H < real (N-ntaw)})
proof —

have subset-result:E C FF'U G
proof —
have step!: {w € Q. A-t-plus-1t w = a} C
{weQ Utastar w<pastary U{w e Q. pa-star < Utaw}
using ucb-suboptimal-bound-set assms by blast

then have step2:
{weQ Atplus-1tw=0a}tN{weQ H<real (N-ntaw)} C
{weQ Utastar w < pastary U{w € Q. pastar < Utaw})N{we
Q. H<real (N-ntaw)}
by auto

then have step3:

{we Q. At-plus-1tw=a}N{w e H<real (N-ntaw)} C

{w e Q. Uta-star w < p a-star} N{w € Q. H < real (N-ntaw)})U
{weQ pastar<Utaw}nN{weQ H<real (N-ntaw)})

by (auto simp add: set-eq-iff)

then have step4:
E C F U @ using assms by simp
then show ?thesis
by (simp add: E-def F-def G-def)
qed

have bound: prob E < prob F + prob G
proof (rule union-bound)
show £ C F U G by (simp add: subset-result)
show E € sets M using meas-sets by simp
show F' € sets M using meas-sets by simp
show G € sets M using meas-sets by simp
have prob (F N G) = enn2real (emeasure M (F N G)) using prob-inter by
stmp
have prob E < prob (F U G)
using assms(18,19,20) increasingD measure-increasing subset-result by blast
have prob (F U G) = prob F + prob G — prob (F N G)
by (simp add: Int-commute assms(19,20) finite-measure-Diff ' finite-measure-Union’)
qed

hence union-bound:
prob ({w € Q. A-t-plus-1 t w=a} N{w € Q. H < real (N-ntaw)}) <
prob ({w € Q. Ut a-star w < p a-star} N{w € Q. H < real (N-ntaw)}) +
prob {w € Q. Utaw > pa-stary N{w € Q. H < real (N-ntaw)})

24

using bound assms by simp

show ?thesis
using union-bound by simp
qed

lemma U-le-p-pointwise:
Uta-star w < p a-star <—
M-val t a-star w — p a-star <
—qx*sqrt (In (1 /0) /(2 * real (max 1 (N-n t a-star w))))
unfolding U-def
using add-le-iff max-Suc-0-eq-1
by auto

lemma U-ge-p-pointwise:
assumes delta-a: A a = p a-star — p a
shows
Utaw > p a-star +—
Mwaltaw —pa>Aa—qx*sqt(In(l/6) /(2% real (max 1 (N-nta
w))))
proof —
have delta-plus-mu-eq:
Aa+ pa=p a-star
proof —
have A a = p a-star — p a
using delta-a by simp

hence A a + ppa = (p a-star — pa) + p a
by simp

also have ... = u a-star
by simp

finally show ?thesis .
qed
have U-ge-p-rewrite:
Utaw?> pa-star «<— Mwvaltaw —pa>Aa — qgxsqt(ln(1/9)/
(2 * real (maz 1 (N-nta w))))
unfolding U-def using add-le-iff maz-Suc-0-eq-1 delta-plus-mu-eq by auto
then show ?thesis by simp
qged

theorem hoeffding-iid--bound-le:
fixes a :: ‘a and n :: nat and ¢ :: real and p-hat :: real and l-hat u-hat :: real
and [:: nat set
and X-new :: nat = 'b = real
and a-bound b-bound :: nat = real
assumes a-in: a € A

25

and b € Q)
and eps-pos: € > 0
and eps: ¢ = abs (u-hat — l-hat) * sqrt (((real n) / 2) = In (1 / 3))
and 0 > 0N6< 1
and t-eq-n: t = n
and ¢ > 0
and bounds: Vj < t. Vw € Q. V a €A. I-hat < Z-hat j a w N Z-hat j a w <
u-hat
and mu-def: p-hat = (Y. j < t. expectation (Aw. Z-hat j a w))
and u-hat — l-hat # 0
and t-pos: t > 0
and Vit<n. N-nta-star b > 0
and n-pos: n > 0
and M-val t a-star b = (> s < t. if m s b = a-star then Z s a-star b else 0) /
real (N-n t a-star b)
and widths: (> ¢ € I. (b-bound i — a-bound ©)"2) = (real n) * (u-hat —
L-hat) "2
and space-M: space M = Q
and sets-M: sets M = F
and indep: indep-vars (A-. borel) (Aj. (A\w. Z j a w)) {j. j < t}
and rv: Vj<t. random-variable borel (Aw. Z j a w)
and Vj<t. Z-hatj a-star w = ¢ x (if © j b = a-star then Z j a-star b else 0)
and indep-interval-bounded-random-variables M I X-new a-bound b-bound
and indep-loc: indep-interval-bounded-random-variables M {j. j < t}
(M. (Aw. Z-hat j a-star w))
(M\j. l-hat) (Aj. u-hat)
and H: Hoeffding-ineq M {j. j < t}
(M. (A\w. Z-hat j a-star w))
(Nj. l-hat) (Aj. u-hat)
and sum-integrals-eq: (Y j € {j. j < t}. integral® M (Mw. Z-hat j a-star w))
= p-hat
and rewriting: prob {w € Q. (3 j < t. Z-hat j a-star w) — (D> j < t. expectation
(Z-hat j a-star)) < — e} =
prob {x € space M. (3 j < t. Z-hat j a-star) < (> j < t. expectation
(Z-hat j a-star)) — €}
shows prob {w € Q. (3 7 < n. Z-hat j a-star w) < p-hat — ¢}
<4
proof —

let 21 = {j. j < t}

let ?X-new = A\j. (A\w. Z-hat j a-star w)
let Za-bound = Nj. l-hat

let ?b-bound = Aj. u-hat

have
M-val t a-star b = (> s < t. if m s b = a-star then Z s a-star b else 0) / real
(N-n t a-star b)
using assms by simp

26

have finite-I: finite ?I by simp

have AFE-bounds: Vj € ?1. AE w in M. ?a-bound j < ?X-new j w N\ ?X-new j w
< ?b-bound j
proof
fix j assume j € ¢1
then have j < t by simp

then have bound-j: Vw € Q. l-hat < Z-hat j a-star w N Z-hat j a-star w <
u-hat
using bounds by (simp add: a-in-A)
then show AE w in M. ?a-bound j < ?X-new j w A ?X-new j w < ?b-bound j
using space-M sets-M by force
qged

have indep-loc: indep-interval-bounded-random-variables M ?I ?X-new ?a-bound
?b-bound
using assms by simp
have H: Hoeffding-ineq M ?I ?X-new ?a-bound ?b-bound
using assms by simp

have sum-integrals-eq: (3. j€?I. integral® M (?X-new j)) = p-hat
using assms by simp

have widths:
(5> je ?1. (2b-bound j — ?a-bound j)"2) = (real n) * (u-hat — l-hat) "2
proof —
have (> j € ?I. (?b-bound j — %a-bound j) "2) =
(>° j € ?1. (u-hat — l-hat)"2)

by simp

also have ... = card ?I * (u-hat — l-hat) "2
by simp

also have card 21 =t
by simp

also have ... = n

using <t = n» assms by blast
finally show ?thesis
using assms by fastforce
qed

have widths-pos: 0 < (> j € 2I. (?b-bound j — ?a-bound j)"2)
using <u-hat — I-hat # 0) widths n-pos by auto

have res: prob {w € Q. (3 j < t. Z-hat j a-star w) < (> j < t. expectation

27

(Z-hat j a-star)) — e} =
prob {x € space M. (3. j < t. Z-hat j a-star) < (> j < t. expectation
(Z-hat j a-star)) — €}
using assms by simp

then have tail: prob {w € Q. (3 je?I. ?X-new j w) < (3. je€?I. integral® M
(?X-new j)) — €}
<erp (—2xe72 /(> je?l. (?b-bound j — ?a-bound j)"2))
using Hoeffding-ineq. Hoeffding-ineq-le] OF H eps-pos widths-pos]
by (smt (verit, best) Collect-cong assms)

have lhs-rewrite: {w € Q. (3 j < n. Z-hat j a-star w) < p-hat — &}
={w e Q. (X je?l. ?X-new j w) — (3. j€?I. integral® M
(?X-new j)) < —e}
by (metis (mono-tags, lifting) add-le-iff assms(24,6) lessThan-def)
have rhs-rewrite: exp (— 2 x €72 / (D> je?I. (?b-bound j — Za-bound j)2)) =
exp (— 2 x 72 / (real n % (u-hat — l-hat)"2))
using widths by simp

have lhs-prob:prob {w € Q. (3 j < n. Z-hat j a-star w) < p-hat — €}
= prob {w € Q. (3 je?I. ?X-new j w) — (> je?I. integral® M (?X-new
M) < —¢}
using lhs-rewrite by simp

then have prob {w € Q. (3. j < n. Z-hat j a-star w) < p-hat — e} <
exp (— 2 x 72 /] (O je?I. (?b-bound j — Za-bound j) 2))
using lhs-rewrite tail lhs-prob by (smt (verit, ccfv-threshold) Collect-cong)
then have prob {w € Q. (3. j < n. Z-hat j a-star w) < p-hat — e} < exp (— 2
x 72 / (real n * (u-hat — l-hat)"2))
using rhs-rewrite by linarith

then have prob {w € Q. (3. j < n. Z-hat j a-star w) — p-hat< — e} =
prob {w € Q. (3 j < n. Z-hat j a-star w) — p-hat< — abs (u-hat — l-hat) * sqrt
(((realn) / 2) = In (1 / 0))}

using eps by simp

have resi: exp (— 2 x €72 / (real n * (u-hat — I-hat) "2)) =
exp (— 2 * (abs (u-hat — l-hat) % sqrt ((realn / 2) xIn (1 / 0)))"2 /
(real n (u-hat — I-hat)"2))
using eps by simp

have exp (— 2 * (abs (u-hat — l-hat) * sqrt ((realn / 2) xIn (1 / 8)))72 /
(real n x (u-hat — l-hat)"2)) =
exp (— 2 * (abs (u-hat — l-hat) * sqrt ((real n / 2) x In (1 / 6)))"2 / (real n *
(u-hat — l-hat)"2))
using eps eps-pos by blast

28

then have ... =
exp (— 2 * ((abs (u-hat — l-hat)) "2 / (real n * (u-hat — l-hat) "2)) * sqrt (((real
n/2)xin(1/8)2)
by (metis (no-types, opaque-lifting) more-arith-simps(11) power-mult-distrib
times-divide-eq-left
times-divide-eq-right)

have ... =
exp (— 2 = ((abs (u-hat — l-hat)) "2 / (real n x abs ((u-hat — l-hat)) "2)) * sqrt
(((realn / 2) % In (1 /6)))"2)
by simp
have ... = exp (— 2 x (1/ ((real n))) * sqrt (((realn / 2) xIn (1 / 5)))"2)
using assms by simp

then have ... = exp (=2 = (1/ ((real n))) * (((realn / 2) x In (1 / 0))))
using power2-eq-square by (smt (verit, best)
arithmetic-simps(51) assms(10) eps eps-pos real-sqri-ge-0-iff real-sqrt-pow2
zero-le-mult-iff)

then have ... = exp (—1x In (1 / 9))
using assms by (simp add: field-simps)
then have fin: exp (— 2 * €72 / (real n * (u-hat — l-hat)"2)) = 6
using J-pos assms
by (metis (lifting)
cexp (— 2 % (1 / real) * (sqrt (realn / 2 % In (1 / §)))?) = exp (— 2 =
(1 /realn) * (realn / 2 xIn (1 / 0)))»
cexp (— 2 * (Ju-hat — I-hat| * sqrt (realn / 2 % In (1 / 6)))? / (real n *
(u-hat — l-hat)?)) = exp (— 2 * (|u-hat — I-hat|* / (real n * (u-hat — I-hat)?)) *
(sqrt (realn / 2 % In (1 / §)))*)
cexp (— 2 * (Ju-hat — I-hat|* / (real n * (u-hat — I-hat)?)) * (sqrt (real n /
2% In(1/96))?) = exp (— 2 * (Ju-hat — I-hat|? / (real n * |u-hat — I-hat|?)) *
(sqrt (realn / 2 % In (1 / §)))*)
cexp (— 2 * (|u-hat — I-hat|? / (real n * |u-hat — I-hat|?)) * (sqrt (real n /
2% In(1/6))%) =exp(— 2% (1] realn) x (sqrt (realn / 2 = In (1 / 5)))*)
arith-simps(56) exp-In In-divide-pos In-one more-arith-simps(10) mult-minus!
of-nat-zero-less-power-iff power-0)

show ?thesis using assms fin
(prob {w € Q. (3. j<n. Z-hat j a-star w) < p-hat — e} < exp (— 2 * &2/
(real n x (u-hat — I-hat)?))»
by presburger

qed
theorem hoeffding-iid--bound-ge:
fixes a :: ‘a and n :: nat and ¢ :: real and p-hat :: real and I-hat u-hat :: real

and [:: nat set
and X-new :: nat = 'b = real

29

and a-bound b-bound :: nat = real
assumes a-in: a € A
and b € Q)
and eps-pos: € > 0
and eps: ¢ = abs (u-hat — l-hat) * sqrt (((real n) / 2) = In (1 / 0))
and § > 0 N6 < I
and t-eq-n: t = n
and ¢ > 0
and bounds: Vj < t. Vw € Q. V a €A. l-hat < Z-hat j a w A Z-hat j a w <
u-hat
and mu-def: p-hat = (3. j < t. expectation (Aw. Z-hat j a w))
and u-hat — l-hat # 0
and t-pos: t > 0
and Vi<n. N-nta-star b > 0
and n-pos: n > 0
and M-walta b= (. s<t.if msb=athen Zsabelsel)/
real (N-nt a b)
and widths: (> i € I. (b-bound i — a-bound 7)"2) = (real n) * (u-hat —
l-hat) "2
and space-M: space M = Q)
and sets-M: sets M = F
and indep: indep-vars (A-. borel) (A\j. Mw. Zjaw)) {j. j < t}
and rv: Vj<t. random-variable borel (Aw. Z j a w)
and Vj<t. Z-hatjaw = cx* (if 7 j b = a then Z j a-star b else 0)
and indep-interval-bounded-random-variables M I X-new a-bound b-bound
and indep-loc: indep-interval-bounded-random-variables M {j. j < t}
(M. (A\w. Z-hat j a w))
(N\j. l-hat) (Aj. u-hat)
and H: Hoeffding-ineq M {j. j < t}
(M. (Aw. Z-hat j a w))
(M\j. l-hat) (Nj. u-hat)
and sum-integrals-eq: (Y. j € {j. j < t}. integral®* M (Mw. Z-hat j a w)) =
w-hat
and rewriting: prob {w € Q. (3. j < t. Z-hat j a w) — (D j < t. expectation
(Z-hat j a)) > e} =
prob {z € space M. (> j < t. Z-hat ja z) > (>, j < t. expectation (Z-hat j
@) + e}
shows prob {w € Q. (3 j < n. Z-hat j a w) > p-hat + e} < 9§
proof —

let 2 = {j. j < t}

let ?X-new = Aj. (A\w. Z-hat j a w)
let ?a-bound = Aj. l-hat

let ?b-bound = A\j. u-hat

have

Mwaltab= (>, s<t. if msb=athen Zsabelse0)/ real (N-ntab)
using assms by simp

30

have finite-I: finite ?I by simp

have AFE-bounds: Vj € ?1. AE w in M. ?a-bound j < ?X-new j w N\ ?X-new j w
< ?b-bound j
proof
fix j assume j € ¢1
then have j < t by simp

then have bound-j: Vw € Q. l-hat < Z-hat j a w N Z-hat j a w < u-hat
using bounds by (simp add: a-in-A)
then show AF w in M. ?a-bound j < ?X-new j w A ?X-new j w < ?b-bound j
using space-M sets-M by force
qed

have indep-loc: indep-interval-bounded-random-variables M ?I ?X-new ?a-bound
?b-bound

using assms by simp
have H: Hoeffding-ineq M ?I ?X-new ?a-bound ?b-bound
using assms by simp

have sum-integrals-eq: (3. j€?I. integral® M (?X-new 7)) = p-hat
using assms by simp

have widths:
(5> je ?1. (2b-bound j — ?a-bound j)"2) = (real n) * (u-hat — l-hat) "2
proof —
have (> j € ?I. (?b-bound j — %a-bound j)"2) =
(3> je ?I. (u-hat — l-hat) "2)

by simp

also have ... = card ?I * (u-hat — l-hat) "2
by simp

also have card ?I =t
by simp

also have ... = n

using <t = n» assms by blast
finally show ?thesis
using assms by fastforce
qed

have widths-pos: 0 < (> j € ?1. (¢b-bound j — %a-bound j) 2)
using <u-hat — l-hat # 0 widths n-pos by auto

have res: prob {w € Q. (3. j < t. Z-hat jaw) — (3. j < t. expectation (Z-hat
ja)) > e} =

31

prob {z € space M. (> j < t. Z-hatjaz) > (3. j < t. expectation (Z-hat j
a)) + €}
using assms by simp

then have tail: prob {w € Q. (3. j€?I. ?X-new j w) > (3. je?I. integral® M
(?X-new j)) + €}
<exp(— 2xe72 /(> je?l. (2b-bound j — a-bound j)"2))
using Hoeffding-ineq. Hoeffding-ineq-ge[OF H eps-pos widths-pos]
by (smt (verit, best) Collect-cong assms)

have lhs-rewrite: {w € Q. (> j < n. Z-hat j a w) > p-hat + €}
={w e Q0 (X je?l. ?X-new j w) — (3. je?I. integrall M
(?X-new j)) > ¢}
using assms by (metis (lifting) ext add.commute le-diff-eq lessThan-def)
have rhs-rewrite: exp (— 2 x €72 / (D je?I. (?b-bound j — Za-bound j) " 2)) =
exp (— 2 x €72 / (real n * (u-hat — l-hat)"2))
using widths by simp

have lhs-prob:prob {w € Q. (3_ j < n. Z-hat j a w) > p-hat + €}
= prob{w € Q. (3 j€?I. ?X-new j w) — (> je?I. integral” M
(PX-new) > <}
using assms lhs-rewrite by presburger

then have prob {w € Q. (3. j < n. Z-hat j a w) > p-hat + €} <
exp (— 2 xe72 /] (O je?l. (?b-bound j — Za-bound j) " 2))
using lhs-rewrite tail lhs-prob by (smt (verit, ccfv-threshold) Collect-cong)
then have prob {w € Q. (3 j < n. Z-hat j a w) > p-hat + €} < exp (— 2 =
€72 / (real n * (u-hat — l-hat) "2))
using rhs-rewrite by linarith

then have prob {w € Q. (3 j < n. Z-hat j a w) — p-hat > €} =
prob {w € Q. (3] j < n. Z-hat j a w) — p-hat > abs (u-hat — I-hat) * sqrt (((real
n) /[2)xn(1/9))}

using eps by simp

have resi: exp (— 2 x €72 / (real n * (u-hat — I-hat) "2)) =
exp (— 2 * (abs (u-hat — l-hat) % sqrt ((realn / 2) xIn (1 / 0)))"2 /
(real n * (u-hat — l-hat)"2))
using eps by simp

have exp (— 2 * (abs (u-hat — l-hat) * sqrt ((realn / 2) xIn (1 / 8)))72 /
(real n x (u-hat — l-hat)"2)) =
exp (— 2 * (abs (u-hat — l-hat) * sqrt ((real n / 2) x In (1 / 6)))"2 / (real n *
(u-hat — I-hat) "2))
using eps eps-pos by blast
then have ... = exp (— 2 * ((abs (u-hat — l-hat)) "2 / (real n x (u-hat — l-hat) "2

32

) * sqrt (((realm / 2) xIn (1 /9)))72)
by (metis (no-types, opaque-lifting) more-arith-simps(11) power-mult-distrib
times-divide-eq-left
times-divide-eq-right)

also have ... = exp (— 2 * ((abs (u-hat — l-hat)) "2 / (real n x abs ((u-hat —
l-hat)) "2) * sqrt (((real n / 2) = In (1 / 0)))"2)
by simp
have ... = exp (— 2 x (1/ ((real n))) * sqrt (((realn / 2) xIn (1]/ §)))"2)
using assms by simp

then have ... = exp (—2 % (1/ ((real n))) * (((realn / 2) xIn (1 / 9))))
using power2-eq-square by (smt (verit, best)
arithmetic-simps(51) assms(10) eps eps-pos real-sqrt-ge-0-iff real-sqrt-pow2
zero-le-mult-iff)

then have ... = exp (—1x In (1 / 0))
using assms by (simp add: field-simps)
then have fin: exp (— 2 x € 2 / (real n % (u-hat — l-hat) "2)) = §
using §-pos assms
by (metis (lifting)
cexp (— 2 x (1 / real n) * (sqrt (realn / 2 * In (1 / 6)))?) = exp (— 2 *
(1) realn) * (realn / 2 xIn (1 /)y
cexp (— 2 * (|u-hat — I-hat| * sqrt (real n / 2 * In (1 / 6)))? / (real n *
(u-hat — I-hat)?)) = exp (— 2 * (|u-hat — I-hat|* / (real n * (u-hat — I-hat)?)) *
(sqrt (realn / 2 % In (1 / §)))*)
cexp (— 2 x (|u-hat — l-hat|? / (real n * (u-hat — I-hat)?)) * (sqrt (real n /
2 x1In (1/6))?) = exp (— 2 * (|u-hat — I-hat|® / (real n x |u-hat — I-hat|?)) *
(sqrt (realn / 2 % In (1 / §)))*)
cexp (— 2 * (|u-hat — I-hat|? / (real n * |u-hat — I-hat|?)) * (sqrt (real n /
2x1In(1/96))?) =exp(— 2% (1 /realn)* (sqrt (realn / 2 x In (1 / 5)))*)»
diff-0 exp-ln In-divide-pos In-one more-arith-simps(10) mult-minus! of-nat-zero-less-power-iff
power-0)

show ?thesis using assms fin
using (prob {w € Q. p-hat + & < (3 j<n. Z-hat ja w)} < exp (— 2 x &2 /
(real n x (u-hat — I-hat)?))»
by presburger

qed

end

end

theory Discrete-UCB-Step3
imports Discrete-UCB-Step2

begin

33

locale bandit-policy = bandit-problem + prob-space +

fixes
Qb set
and F :: b set set
and 7 :: nat = 'b = a
and N-n :: nat = 'a = 'b = nat
and 7 :: nat = 'a = 'b = real
and 9 :: real
and q :: real

assumes fin-A: finite A
and w € Q)
and a-in-A: a € A
and measurable-policy: V't. m t € measurable M (count-space A)
and N-n-def: Ynaw. N-nnaw=card {t € {0..<n}. 7 (t+1) w = a}
and count-assm-pointwise: ¥n w. (3. a € A. real (N-n n a w)) = real n
and delta-pos: 0 < §
and delta-less1: 6 < 1
and ¢-pos: ¢ > 0

begin

definition sample-mean-Z :: nat = ’‘a = 'b = real where
sample-mean-Z n a w = (1 / real n) * (3 i<n. Z i a w)

definition M-fun :: nat = ‘a = 'b = real where
M-fun t a w = (if N-n (t+1) a w = 0 then 0
else (D s<t. (if msw=athen Zsaw else 0)) / real (N-nt a w))

definition U :: nat = 'a = 'b = real where
Utaw= M-funtaw+ qx*sqrt (In (1 /9)/ (2 x* real (max 1 (N-ntaw))))

definition A-t-plus-1 :: nat = 'b = 'a where
A-t-plus-1t w = (SOME a. a € AN(NVa. o' € A— Utaw> Uta w))

definition prob-eq-Ex :: 'b set = bool where
prob-eq-Ex E = prob E = expectation (Aw. indicator E w)

theorem proposition-15-7:
assumes

a-in-A: a € A
and w € ()
and subopt-gap: A a > 0
and a-not-opt: 3 a’ € A. A a’' > 0
and delta-a: ¥V a € A. A a = p a-star — i a
and £ < n
and from-UCB-step1: ¥V a € A. expectation (Aw. real (N-n n a w)) <

34

s n + expectation (Aw. (O t=k.<n.if 7 (t+1) w=a A st < real (N-nt
a w) then 1 else 0))

and from-UCB-step2: ¥ a € A. V t € {k..<n}. prob ({w € Q. A-t-plus-1 t w
=a}Nn
{weQ. Nntaw>(2xn(1/0)/(Aa)2})<2x%x§
and eps-pos: € > 0
and t-gt0: ¥V t € {k.<n}. t > 0
and choice-delta: ¥V t € {k..<n}. § = 1 / (real t powr)
and s-form:V a € A.V u. su= (2 e x In (real u)) / (A a)72)

and subset-meas:™vV a € AVt e {k.<n}.Vwe Q. {w. 7 ({+1)w=0aA 2 x¢
* In (real t)/(A a) "2 < N-ntaw} CQ

and prob-eq-E-assm: ¥ a € A. Vit € {k.<n}. prob {w. 7 (Suc t) w =a A 2 x
exin (realt) / (A a)"2 < real (N-ntaw)} =

prob ({w. m (Suct) w =a A 2 x¢e xIn (real t) / (A a)"2 < real
(N-ntaw)} N space M)

and finiteness: Vte{k..<n}.VacA. emeasure M {w. 7 (t+1) w = a A 2xexin(real
t)/(A a) 2 < real (N-ntaw)} < oo

and measurable-set: ¥Vte{k..<n}. VacA. {w. 7 (t+1) w = a N 2xexin(real
t)/(A a)"2 < real (N-ntaw)} € sets M

and eg-sets-optimum:

VaecAVY te{k.<n} {w.m({+1)w=aA2xexlIn(realt)/ (A
a) 2 <real (Nntaw)}=

{we Atplus-1tw=0a}N{we€Q Nntaw>(2x*e=xlIn

(real t)) / (A a) 72}

shows

YV a € A. expectation (Aw. real (N-nn aw)) <sn+ (O, t=k.<n. 2 / (real
t powr €))

proof —

have def-sn:V a € A. sn = (2 ¢ x In (real n)) / (A a)72)
using s-form by simp

have def-st:V a € A. st = (2 xexIn (real t)) / (A a)72)
using s-form by simp

then have expression: YV a € A. expectation (Aw. real (N-n n a w)) <

(2 xexIn (real n)) / ((A a)72) + expectation (Aw. (3t = k..<n. if © (t+1)
w=aAl

(2 xexln (real t)) / ((A a)72) < real (N-nt a w) then 1 else 0))
using assms def-sn def-st by simp

have eq-if-of-bool:
V a € A. expectation (Aw. Y t = k..<n.

(if m(t+1)w=a AN 2xexln(realt) /] (A a) 2 < real (N-nta w) then 1
else 0))

= expectation (Aw. > t = k..<n.

35

of-bool (m (t+1)w =a A 2 xe xIn (real t) / (A a)"2 < real (N-nt a w)))
by (simp add: of-bool-def)

have eq-indic-bool:
YV a € A. expectation (Aw. > t = k..<n.
of-bool (m (t+1)w =a A 2 xe xIn (real t) / (A a)"2 < real (N-ntaw)))
= expectation (Aw. Y. t = k..<n.
indicat-real {w. m (t+1) w=a A 2 x e x In (real t) / (A a)"2 < real (N-n

taw)}lw)
by (simp add: indicator-def of-bool-def)

have expression-1:
YV a € A. expectation (w. Y t = k..<n.
(f m(t+1)w=a AN 2xexln(realt) /] (A a)"2 < real (N-ntaw) then 1
else 0)) =
expectation (Aw. > t = k..<n.
indicat-real {w. 7™ (t+1) w=a A 2 x € x In (real t) / (A a)"2 < real (N-nt
@ W)} w)
proof
fix a assume a € A
from eg-if-of-bool[rule-format, OF <a € A)]
have eql: expectation (Aw. > t = k..<n.
(fm(t+l)w=aAN2xex*lin(realt) / (A a) 2 < real (N-ntaw) then
1 else 0)) =
expectation (Aw. > t = k..<n.
of-bool (m (t+1)w=a A 2 xexIn (realt) / (A a)"2 < real (N-nt aw)))
by simp

from eg-indic-bool[rule-format, OF (a € A
have eg2: expectation (Aw. > ¢t = k..<n.
of-bool (m (t+1) w =a AN 2 xec xIn (real t) / (A a)"2 < real (N-nta
w))) =
expectation (Aw. > t = k..<n.
indicat-real {w. m (t+1) w=a A 2 x € x In (real t) / (A a) "2 < real (N-n
taw)}lw)
by simp

from eq! eq2 show
expectation (Aw. > t = k..<n.
(f m(t+1)w=aAN2xex*xlin(realt) / (A a) 2 < real (N-nt aw) then
1 else 0)) =
expectation (Aw. > t = k..<n.
indicat-real {w. m (t+1) w=a A 2 x € *x In (real t) / (A a)"2 < real (N-n
taw)}w)
by (rule trans)
qed

have res:V a € A. Vit € {k..<n}. prob-e¢-Ez {w. 7 (t+1) w =a N 2 x € x In
(real t) / (A a)"2 < real (N-n t a w)}

36

using assms prob-eq-Ez-def by auto

have [lin-of-expect-indicators:
Vae A Vte {k.<n} prob{w.m (t+1)w=a AN 2xexln (realt) /] (A
a)2 < real (N-ntaw)}=
expectation (Aw. (indicat-real {w. m (t+1) w =a A 2 x € x In (real t) / (A a) "2
< real (N-ntaw)} w))
using prob-eq-Ex-def res by simp

then have key-result-1: ¥V a € A. (3t = k..<n.
expectation (Aw. (indicat-real {w. m (t+1) w = a A 2 x € % In (real t) / (A a) "2
< real (N-ntaw)}w)))
=0 t=k.<n. prob{w. 7w (t+1) w=a A 2 xexIn (real t) / (A a)"2 < real
(N-ntaw)})
using lin-of-expect-indicators by simp

have expression-follow-up: V a € A.
expectation (Aw. >, t =k.<n. (if 7 (t+1)w=a N 2 x e xIn (real t) / (A a) "2
< real (N-n t a w) then 1 else 0)) =
O t=k.<n prob{w. 7 (t+1) w=a A 2 xex*In (real t) / (A a)"2 < real
(N-ntaw)})
proof —
have res1:V a € A.
expectation (Aw. Y, t =k.<n. (if 7 (t+1)w=a AN 2 x e x In (real t) / (A a)"2
< real (N-n t a w) then 1 else 0)) =
expectation (Aw. > t = k..<n.
of-bool (m (t+1)w =a A 2 xe xIn (real t) / (A a)"2 < real (N-ntaw)))
using eq-if-of-bool by simp

have res2:V a € A.
expectation (Aw. > t =k.<n. (if 7 (t+1)w=a A 2 x e x In (real t) / (A a) "2
< real (N-n t a w) then 1 else 0)) =
expectation (Aw. Y. t = k..<n. indicat-real {w. © (t+1) w = a A 2 x € x In (real
t) /(A a) 2 <real (N-ntaw)}w)
using expression-1 by simp

have res3:V a € A.
expectation (Aw. > t =k.<n. (if 7 (t+1)w=a A 2 xe x In (real t) / (A a) "2
< real (N-n t a w) then 1 else 0)) =
(>° t = k..<n. expectation (A\w. indicat-real {w. 7w (t+1) w = a A 2 * € * In (real
t) /(A a) 2 <real (N-ntaw)}tw))
proof —

have V a € A.
expectation (Aw. >, t =k.<n. (if 7 (t+1)w=a N 2 x e xIn (real t) / (A a) "2
< real (N-n t a w) then 1 else 0)) =
expectation (Aw. > t = k..<n. indicat-real {w. ™ (t+1) w = a A 2 * € * In (real
t)/ (A a)" 2 <real (N-ntaw)}tw)
using res2 by blast

37

then have V a € A. expectation (Aw. > t = k..<n. indicat-real {w. m (t+1)
w=aAN2xecxlIn(realt) /(A a)2 <real (Nntaw)}w)=
integral® M (Aw. > t = k..<n. indicat-real {w. 7 (t+1) w = a A 2 * € * In (real
t) /(A a) 2 <real (N-ntaw)}tw)
by simp
then have result-intermed:Y a € A. expectation (Aw. >, t = k..<n. indi-
cat-real {w. 7 (t+1) w = a A 2 xe % In (real t) / (A a)"2 < real (N-nt a w)}
w) =
(> t = k.<n. integral’ M (Dw. indicat-real {w. © (t+1) w = a A 2 * € * In
(real t) / (A a)"2 < real (N-ntaw)} w))
using assms integral-sum by simp

have result: V a € A. expectation (Aw. Y. t = k..<n. indicat-real {w.
(t+1)w=a A 2 x*ex*
In (real t) / (A a)"2 < real (N-ntaw)}w)=
(> t = k..<n. expectation (Aw. indicat-real {w. 7w (t+1) w = a A 2 *x € * In (real
t) /(A a)"2 <real (N-ntaw)}w))
using result-intermed by auto
have V a € A.
expectation (Aw. >, t =k.<n. (if 7 (t+1)w=a A 2 x e x In (real t) / (A a) "2
< real (N-n t a w) then 1 else 0)) =
expectation (Aw. Y. t = k..<n. indicat-real {w. © (t+1) w = a A 2 x € x In (real
t) /(A a) 2 <real (N-ntaw)}w)
using res2 by simp
then have linearity-expectation: ¥V a € A.
expectation (Aw. > t =k.<n. (if 7 (t+1)w=a A 2 x e x In (real t) / (A a) "2
< real (N-n t a w) then 1 else 0)) =
(> t = k..<n. expectation (Aw. indicat-real {w. m (t+1) w = a A 2 x ¢ x In (real
1)/ (A a)2 <real (N-ntaw)}w))
using result by simp

then show ?thesis using linearity-expectation by simp
qed

have final-linearity:N a € A.
expectation (Aw. >, t =k.<n. (if 7 (t+1)w=a A 2 x e x In (real t) / (A a) "2
< real (N-n t a w) then 1 else 0)) =
Ot =k.<n. prob{w. m (t+1) w=a A 2 *¢exlIn (real t) / (A a) 2 < real
(N-ntaw)})
using res! res2 res3 key-result-1 by simp
then show ?thesis using final-linearity by simp
qed

have intermed-result: ¥ a € A.
expectation (Aw. real (N-n n a w)) <
(2 %¢exln (realn)) / (A a)"2 +
> t=k.<n . prob{w. 7w (t+1)w=a A 2xe xIn (real t) / (A a)"2 < real
(N-ntaw)})
using expression-follow-up expression by simp

38

then have follow-up-result: ¥V a € A.V t € {k..<n}.

prob {w. m (t+1) w=a A 2 xexIn (realt) / (A a) 2 < real (N-ntaw)} =

prob ({w € Q. A-t-plus-1tw=a} N{w e Q. Nntaw > (2 *ex*In (real t))
/(A a)72})

using expression-follow-up expression eq-sets-optimum intermed-result by simp

have next-result-sum-prob: ¥V a € A.

O t=k.<n prob{w. m (t+1) w=0a A 2 xex*in (real t) / (A a)"2 < real
(N-ntaw)}) =

O t=k.<n. prob {w € Q. A-t-plus-1tw=0a} N{w e Q. Nntaw> (2 x
e *In (real t)) / (A a)"2}))

using assms follow-up-result by simp

then have next-result-fin: V a € A.
expectation (Aw. real (N-n n a w)) <
(2 %¢exlin(realn)) / (A a)"2 +
> t=k.<n. prob ({w € Q. A-t-plus-ltw=a} N{w €D Nntaw> (2
x & x In (real t)) / (A a)72}))
using expression-follow-up next-result-sum-prob expression by fastforce

have generalized-bound:
Vaec AV te{k.<n} prob ({w € Q. A-t-plus-1t w = a} N
{weQ Nntaw>(2x*exlin(realt)) /] (Aa)2}) <2/
(real t powr)
proof
fix a
assume a-in: a € A
show V t € {k..<n}. prob ({w € Q. A-t-plus-1tw=0a} N{w € Q. N-ntaw
> (2 xexlIn(realt)) / (A a)"2}) < 2/ (real t powr €)
proof
fix ¢
assume t-in: t € {k..<n}
have Hprob:
prob ({w € Q. A-t-plus-1 t w = a} N
{weD Nntaw>2xIn(1/0)/(Aa)2})<2x%x0
using from-UCB-step2|rule-format, OF a-in t-in] by blast

have In-eq: In (1 / 0) = € * In (real t)
using choice-delta[rule-format, OF t-in] eps-pos by simp

hence threshold-eq:
(2%in(1/6)/(Aa)2=(2xcxlIn(realt)) /(A a)2
by simp

hence set-eq:

{weQ. Nntaw>(2x*In(1/9)/(Aa)2}=
{weD Nntaw> (2 xexlIn(realt)) /] (A a) 2}

39

by auto

from Hprob set-eq have
prob ({w € Q. A-t-plus-1 t w = a} N
{weQ Nntaw>(2xexin(realt)) /] (Aa)2}) <2x§
by simp

moreover from choice-delta[rule-format, OF t-in] have 2 x § = 2 / (real ¢
powr)
by simp

ultimately show
prob ({w € Q. A-t-plus-1tw = a} N
{weQ. Nntaw>(2*exlIn(realt)) /(A a)"2}) <2/ (real t powr
€)
by simp
qed
qed

have sum-mono-expression:

VaecA (O t=k.<n prob ({w e Q. A-t-plus-1tw = a} N

{weQ. Nntaw>(2xexlin(realt)) / (A a)"2}))

< (2 t=k.<n. 2/ (real t powr €))
proof

fix a

assume a-in: a € A

show (>° t = k..<n. prob {w € Q. A-t-plus-1tw=a}N{w e Q. N-ntaw

> (2 xexln(realt)) / (A a)72}))
< (3> t=k.<n. 2/ (real t powr €))
using generalized-bound a-in by (intro sum-mono) auto

qed

have final-result:
YV a € A. expectation (Aw. real (N-n n a w))
< (2xexin(realn)) /(A a)2)+ (O t=k.<n. 2/ (real t powr €))
proof
fix a
assume a-in: a € A
from next-result-fin[rule-format, OF a-in]
have bound1:
expectation (Aw. real (N-n n a w))
< (2 xexin(realn)) / (A a)72)
+ O t=k.<n. prob {w e Q. A-t-plus-1tw = a}
N{weQ Nntaw>(2xexin(realt)) / (A
2)2)})

by simp
moreover from sum-mono-expression|[rule-format, OF a-in]
have bound?2:

- t=k.<n. prob ({w € Q. A-t-plus-1t w = a}

40

N{weQ Nntaw>(2*exln(realt)) / (A a)"2)}))
< (30 t=k.<n. 2/ (real t powr €))
by simp
ultimately show
expectation (Aw. real (N-n n a w))
< (2xexin(realn)) / (Aa)2)+ (O t =k.<n 2/ (real t powr €))
by auto
qed

show ?thesis using assms final-result by simp
qed

theorem theorem-15-4:
assumes
a-in-A: a € A
and finite A and Va € A. integrable M (Aw. real (N-n n a w))
and w-in-Q: w €
and subopt-gap: ¥V a € A. A a > 0
and a-not-opt: 3 a’ € A. A a’ > 0
and delta-a:V a € A. A a = p a-star — p a
and k£ < n
and n-count-assm-pointwise: (> a€A. real (N-n n a w)) = real n
and expected-regret-prop-15-1: expectation (Aw. R-n n w) = (D a€A. A a *
expectation (Aw. real (N-n n a w)))
and from-UCB-step1: ¥V a € A. expectation (Aw. real (N-n n a w)) <
s n + expectation (Aw. (O t=k.<n.if 7 (t+1) w=a A st < real (N-nt
a w) then 1 else 0))
and from-UCB-step2: ¥ a € A. V t € {k.<n}. prob ({w € Q. A-t-plus-1 t w
=a}Nn
{weQ. Nntaw>(2xln(1/0)/(Aa)2})<2x§
and eps-pos: € > 0
and t-gt0: ¥V t € {k.<n}. t > 0
and choice-delta: ¥ t € {k..<n}. d = 1 / (real t powr ¢)
and s-form:V a € A.V u. su= (2 e x In (real u)) / (A a)72)
and subset-meas:™y a € AVt e {k.<n}.Vwe Q {w. 7 (t+1)w=0aAN 2 x¢
x In (real t)/(A a) 2 < N-ntaw} CQ
and prob-eq-E-assm: ¥ a € A.Vt € {k.<n}. prob {w. 7 (Suc t) w =a A 2 %
ex*in (real t) / (A a)"2 < real (N-ntaw)} =
prob ({w. m (Suc t) w=a AN 2 xe * In (real t) / (A a) 2 < real
(N-ntaw)} N space M)
and finiteness: Vte{k..<n}.Va€A. emeasure M {w. 7 (t+1) w = a A 2xexin(real
t)/(A a) 2 < real (N-ntaw)} < oo
and measurable-set: ¥Vte{k..<n}. VacA. {w. 7 (t+1) w = a N 2xexin(real
t)/(A a) 2 < real (N-ntaw)} € sets M

and eq-sets-optimum:

Vae AV telk<np {wnm({+l)w=aAN2x*ecx*lin (realt) / (A a) 2 <
real (N-ntaw)} =

41

{weQ Atplus-1t w=a} N{w € Q Nntaw>(2x*exln
(real t)) / (A a) "2}
and assms-lin-expect: ¥V a € A. expectation (Aw. Y t = k..<n.
(f m(t+1)w=aAN2xexlin(realt) /] (A a) 2 < real (N-nt aw) then
1 else 0)) =
3° t = k..<n. expectation (Mw. indicat-real {w. 7 (t+1)w =a AN 2 x € *x In
(real t) / (A a)"2 < real (N-n t a w)} w))
and mono-sum-sets:
(Va € A. A a x expectation (Mw. real (N-nnaw)) <Aax*x(sn+ () t=k.<n.
2 / (real t powr €))))
= (3. a € A. A a * expectation (Aw. real (N-n n a w))) <
OlaceAd Aax(sn+ O t=k.<n. 2/ (real t powr €))))

shows ezpectation (Aw. R-nnw) < (3 a€A. A a* ((2 x & = In (real n)) /
(A a)2)+ O t=k.<n. 2/ (real t powr €))))
proof —
have exp-regret-eq:
expectation (Aw. R-n n w) = (O a€A. A a * expectation (Aw. real (N-n n a

w)))

using assms by fastforce

have result-2: V a € A. expectation (Aw. real (N-n n a w))
<sn+ (O t=k.<n. 2/ (real t powr €))
using assms proposition-15-7 by (smt (verit, ccfv-threshold) a-star-in-A)

have intermed-step: Va € A. A a % expectation (Aw. real (N-nn a w)) < A a *
(sn+ (O t=k.<n. 2/ (real t powr €)))
proof
fix a assume a € A
then have expectation (Aw. real (N-nnaw)) <sn+ (3 t=k.<n 2/
(real t powr €))
using result-2 by auto
moreover have 0 < A a
using assms subopt-gap <a € A by blast
ultimately show A a * expectation (Aw. real (N-nn a w)) < A ax* (sn +
>° t =k.<n. 2/ (real t powr €)))
using mult-left-mono by simp
qed

have intermed-step-2:(>_ a€A. A a * expectation (Aw. real (N-n n a w))) <
>acA. Aax(sn+ (O t=k.<n. 2/ (real t powr €))))
proof —
have res:Va€A. A a x expectation (Aw. real (N-nnaw)) < Aax (sn+ (O
t =k.<n. 2 / (real t powr €)))
using intermed-step by auto
have res2: (Va € A. A a x expectation (Aw. real (N-nnaw)) < Aax(sn+
O° t=k.<n. 2/ (real t powr €))))
= (D a € A. A a x expectation (Aw. real (N-nnaw))) < (D a€ A Aax (s
n+ (O t=k.<n. 2/ (real t powr €))))

42

using res assms by fastforce
then have intermed-step: (> a€A. A a * expectation (Aw. real (N-n n a w)))
<OacA. Aax(sn+ (O t =k.<n. 2/ (real t powr €))))
using res res2 by auto

then show ?thesis using intermed-step by simp
qed

then have expectation (Aw. R-nn w) < (3 acAd. Aax(sn+ (> t =k.<n.
2 / (real t powr €))))
using assms intermed-step-2 by linarith

have Va € A. sn= (2 xe * In (real n)) / (A a)72)
using s-form by auto

then have ezpectation (Aw. R-nnw) < (O a€A. A ax ((2 xe x In (real n)) /
((Aa)2)+ O t=k.<n. 2/ (real t powr €))))
using assms intermed-step-2 by (metis a-star-in-A less-irrefl verit-minus-simplify(1))
then show ?thesis by simp
qed

end
end

References

[1] R. Rebeschini. Lecture 15: Stochastic multi-armed bandit problem and
algorithms. 2022. Available at https://www.stats.ox.ac.uk/~rebeschi/
teaching/AFoL /22 /material /lecturel5.pdf.

43

https://www.stats.ox.ac.uk/~rebeschi/teaching/AFoL/22/material/lecture15.pdf
https://www.stats.ox.ac.uk/~rebeschi/teaching/AFoL/22/material/lecture15.pdf

