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Abstract
This project formally verifies the Upper Confidence Bound (UCB)

algorithm in Isabelle/Higher-order Logic (HOL), focusing on its proba-
bilistic guarantees and regret bounds. The work extends Isabelle/HOLs
probabilistic framework and explores verification of discrete-time ban-
dit models following [1]. This research advances the formal verification
of probabilistic algorithms in reinforcement learning.

theory MSc-Project-Discrete-Prop15-1
imports

HOL−Probability.Probability

begin

locale bandit-problem =
fixes A :: ′a set

and µ :: ′a ⇒ real
and a-star :: ′a

assumes finite-arms: finite A
and a-star-in-A: a-star ∈ A
and optimal-arm: ∀ a ∈ A. µ a-star ≥ µ a

begin

definition ∆ :: ′a ⇒ real where
∆ a = µ a-star − µ a

end

locale bandit-policy = bandit-problem + prob-space +
fixes Ω :: ′b set

and F :: ′b set set
and π :: nat ⇒ ′b ⇒ ′a
and N-n :: nat ⇒ ′a ⇒ ′b ⇒ nat

assumes measurable-policy: ∀ t. π t ∈ measurable M (count-space A)
and N-n-def : ∀n a ω. N-n n a ω = card {t ∈ {0 ..<n}. π (t+1 ) ω = a}
and count-assm-pointwise: ∀n ω. (

∑
a ∈ A. real (N-n n a ω)) = real n
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begin

definition R-n :: nat ⇒ ′b ⇒ real where
R-n n ω = n ∗ µ a-star − (

∑
a ∈ A. µ a ∗ real (N-n n a ω))

lemma regret-decomposition-pointwise:
fixes n :: nat and ω :: ′b
assumes n-count-assm-pointwise: (

∑
a∈A. real (N-n n a ω)) = real n

shows R-n n ω = (
∑

a ∈ A. ∆ a ∗ real (N-n n a ω))
proof −

have sum-Nn: (
∑

a ∈ A. real (N-n n a ω)) = real n
using n-count-assm-pointwise by simp

have sum-const: (
∑

a ∈ A. µ a-star ∗ real (N-n n a ω)) = µ a-star ∗ (
∑

a ∈
A. real (N-n n a ω))

by (simp add: Cartesian-Space.vector-space-over-itself .scale-sum-right)

have eq1 : R-n n ω = real n ∗ µ a-star − (
∑

a ∈ A. µ a ∗ real (N-n n a ω))
by (simp add: R-n-def )

also have eq2 : ... = (
∑

a ∈ A. µ a-star ∗ real (N-n n a ω)) − (
∑

a ∈ A. µ a ∗
real (N-n n a ω))

using sum-const sum-Nn
by (subst sum-Nn[symmetric], subst sum-const) simp

also have eq3 : ... = (
∑

a ∈ A. (µ a-star ∗ real (N-n n a ω) − µ a ∗ real (N-n
n a ω)))

by (rule sum-subtractf [symmetric])

also have eq4 : ... = (
∑

a ∈ A. (µ a-star − µ a) ∗ real (N-n n a ω))
by (simp add: algebra-simps)

also have ... = (
∑

a ∈ A. ∆ a ∗ real (N-n n a ω))
by (simp add: ∆-def )

finally show ?thesis .
qed

lemma integrable-const-fun:
assumes finite-measure M
shows integrable M (λx. c)
using assms by (simp add: Bochner-Integration.finite-measure.integrable-const)

lemma expected-regret:
assumes finite A
and ∀ a ∈ A. integrable M (λω. real (N-n n a ω))
shows expectation (λω. R-n n ω) = (

∑
a∈A. ∆ a ∗ expectation (λω. real (N-n

n a ω)))
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proof −

have integrable-sum: integrable M (λω.
∑

a ∈ A. µ a ∗ real (N-n n a ω))
proof −

have ∀ a ∈ A. integrable M (λω. µ a ∗ real (N-n n a ω))
using assms integrable-mult-right by blast

then show ?thesis
by (simp add: integrable-sum)

qed

have pointwise: ∀ω. R-n n ω = (
∑

a∈A. ∆ a ∗ real (N-n n a ω))
using regret-decomposition-pointwise count-assm-pointwise by blast

hence rewrite: expectation (λω. R-n n ω) = expectation (λω.
∑

a∈A. ∆ a ∗ real
(N-n n a ω))

by simp

also have expectation (λω. R-n n ω) = (
∑

a∈A. ∆ a ∗ expectation (λω. real
(N-n n a ω)))

proof −

have ∀ a ∈ A. integrable M (λω. ∆ a ∗ real (N-n n a ω))
using assms integrable-mult-right by blast
hence integrable M (λω.

∑
a ∈ A. ∆ a ∗ real (N-n n a ω))

using integrable-sum by simp

have res-1 : expectation (λω.
∑

a∈A. ∆ a ∗ real (N-n n a ω)) = integralL M
(λω.

∑
a∈A. ∆ a ∗ real (N-n n a ω))

by simp

also have res-2 : ... = (
∑

a∈A. integralL M (λω. ∆ a ∗ real (N-n n a ω)))
using ‹finite A› assms
by (simp add: integral-sum integrable-sum)

have res-3 : expectation (λω. R-n n ω) = (
∑

a∈A. ∆ a ∗ expectation (λω. real
(N-n n a ω)))

using assms rewrite
by simp

then show ?thesis using assms res-3 by auto
qed

then show ?thesis .
qed

end
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end
theory Discrete-UCB-Step1

imports MSc-Project-Discrete-Prop15-1

begin

locale bandit-policy = bandit-problem + prob-space +
fixes Ω :: ′b set

and F :: ′b set set
and ω :: ′b
and π :: nat ⇒ ′b ⇒ ′a
and N-n :: nat ⇒ ′a ⇒ ′b ⇒ nat

assumes measurable-policy: ∀ t. π t ∈ measurable M (count-space A)
and N-n-def : ∀n a ω. N-n n a ω = card {t ∈ {0 ..<n}. π (t+1 ) ω = a}
and count-assm-pointwise: ∀n ω. (

∑
a ∈ A. real (N-n n a ω)) = real n

begin

lemma union-eq:
fixes a :: ′a and n k :: nat
assumes k ≤ n
shows {t. t < n ∧ π (t+1 ) ω = a} = {t. t < k ∧ π (t+1 ) ω = a} ∪ {t. k ≤ t
∧ t < n ∧ π (t+1 ) ω = a}
proof

show {t. t < n ∧ π (t+1 ) ω = a} ⊆ {t. t < k ∧ π (t+1 ) ω = a} ∪ {t. k ≤ t ∧
t < n ∧ π (t+1 ) ω = a}

proof
fix x assume x ∈ {t. t < n ∧ π (t+1 ) ω = a}
then have x < n and π (x+1 ) ω = a by auto
then have x < k ∨ k ≤ x by auto
thus x ∈ {t. t < k ∧ π (t+1 ) ω = a} ∪ {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a}

using ‹x < n› ‹π (x+1 ) ω = a› by auto
qed

next
show {t. t < k ∧ π (t+1 ) ω = a} ∪ {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a} ⊆ {t.

t < n ∧ π (t+1 ) ω = a}
proof

fix x assume x ∈ {t. t < k ∧ π (t+1 ) ω = a} ∪ {t. k ≤ t ∧ t < n ∧ π (t+1 )
ω = a}

then have x < k ∧ π (x+1 ) ω = a ∨ (k ≤ x ∧ x < n ∧ π (x+1 ) ω = a) by
auto

hence x < n ∧ π (x+1 ) ω = a using assms by auto
thus x ∈ {t. t < n ∧ π (t+1 ) ω = a} by auto

qed
qed

lemma cardinality-indic-eq:
fixes I :: nat ⇒ bool
assumes finite {t. k ≤ t ∧ t < n}
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shows card {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ I t} = (
∑

t = k..<n. if π
(t+1 ) ω = a ∧ I t then 1 else 0 )
proof −

have fin: finite {t. k ≤ t ∧ t < n} using assms by simp
have sum-eq:

sum (indicator {t. π (t+1 ) ω = a ∧ I t}) {t. k ≤ t ∧ t < n} = card ({t. k ≤
t ∧ t < n} ∩ {t. π (t+1 ) ω = a ∧ I t})

by (rule sum-indicator-eq-card[OF fin])
have sets-eq:
{t. k ≤ t ∧ t < n} ∩ {t. π (t+1 ) ω = a ∧ I t} = {t. k ≤ t ∧ t < n ∧ π (t+1 )

ω = a ∧ I t}
by auto

hence card-eq:
card ({t. k ≤ t ∧ t < n} ∩ {t. π (t+1 ) ω = a ∧ I t}) = card {t. k ≤ t ∧ t <

n ∧ π(t+1 ) ω = a ∧ I t}
by simp

have card-sum-eq:
sum (indicator {t. π (t+1 ) ω = a ∧ I t}) {t. k ≤ t ∧ t < n} = card {t. k ≤ t

∧ t < n ∧ π (t+1 ) ω = a ∧ I t}
using sum-eq sets-eq by simp

have ind-eq:
sum (indicator {t. π (t+1 ) ω = a ∧ I t}) {t. k ≤ t ∧ t < n} = sum (λt. of-bool

(π (t+1 ) ω = a ∧ I t)) {t. k ≤ t ∧ t < n}
by (simp add: indicator-def )

have bool-if-eq:
sum (λt. of-bool (π (t+1 ) ω = a ∧ I t)) {t. k ≤ t ∧ t < n} = sum (λt. if π

(t+1 ) ω = a ∧ I t then 1 else 0 ) {t. k ≤ t ∧ t < n}
by (simp add: of-bool-def )

have set-eq: {t. k ≤ t ∧ t < n} = {k..} ∩ {..<n} by auto
have sum-set-eq:

sum (λt. if π (t+1 ) ω = a ∧ I t then 1 else 0 ) {t. k ≤ t ∧ t < n} = sum (λt.
if π (t+1 ) ω = a ∧ I t then 1 else 0 ) ({k..} ∩ {..<n})

by (simp add: set-eq)
have atLeastLessThan-eq:

sum (λt. if π (t+1 ) ω = a ∧ I t then 1 else 0 ) ({k..} ∩ {..<n}) = sum (λt. if
π (t+1 ) ω = a ∧ I t then 1 else 0 ) (atLeastLessThan k n)

by (simp add: atLeastLessThan-def )
have final-sum-eq:

sum (λt. if π (t+1 ) ω = a ∧ I t then 1 else 0 ) (atLeastLessThan k n) = (
∑

t
= k..<n. if π (t+1 ) ω = a ∧ I t then 1 else 0 )

by simp
show ?thesis

apply (subst card-sum-eq[symmetric])
apply (subst ind-eq)
apply (subst bool-if-eq)
apply (subst sum-set-eq)
apply (subst atLeastLessThan-eq)
apply (simp add: final-sum-eq)
done
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qed

lemma ge-rewrite: (x::real) ≥ y =⇒ y ≤ x by simp

lemma Nn-expression:
fixes a :: ′a and s :: nat ⇒ real

and k :: nat and n :: nat
assumes a ∈ A

and k ≤ n
and 0 < n
and ∀ t ∈ {0 ..n}. 0 < s t
and ∀ t < n − 1 . s t ≤ s (t + 1 )
and init-play-once: ∀ω. a ∈ A −→ N-n k a ω = 1
and finite-played-sets:
finite {t. t < n ∧ π (t+1 ) ω = a}
finite {t. t < k ∧ π (t+1 ) ω = a}
finite {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a}

shows
(N-n n a ω) = 1 + (

∑
t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t

then 1 else 0 ) +
(
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t then 1
else 0 )
proof −

have Nn-def : (N-n n a ω) = card {t. t < n ∧ π (t+1 ) ω = a}
by (simp add: N-n-def )

have init-count: 1 ≤ card {t. t < k ∧ π (t+1 ) ω = a}
proof −

have eq-card: N-n k a ω = card {t. t < k ∧ π (t+1 ) ω = a}
by (simp add: N-n-def )

moreover from init-play-once and ‹a ∈ A› have 1 ≤ N-n k a ω
by simp

ultimately show ?thesis by simp
qed

have disj: {t. t < k ∧ π (t+1 ) ω = a} ∩ {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a}
= {}

by auto

have union-eq-set:
{t. t < n ∧ π (t+1 ) ω = a} = {t. t < k ∧ π (t+1 ) ω = a} ∪ {t. k ≤ t ∧ t <

n ∧ π (t+1 ) ω = a}
using union-eq assms by blast

have finite1 : finite {t. t < k ∧ π (t+1 ) ω = a} and finite2 : finite {t. k ≤ t ∧ t
< n ∧ π (t+1 ) ω = a}

using finite-played-sets by auto

have card-eq:
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card {t. t < n ∧ π (t+1 ) ω = a} = card {t. t < k ∧ π (t+1 ) ω = a} + card
{t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a}

using card-Un-disjoint[OF finite1 finite2 disj] union-eq-set by simp

have eq-card-k: card {t. t < k ∧ π (t+1 ) ω = a} = N-n k a ω
by (simp add: N-n-def )

have card-k-eq-1 : card {t. t < k ∧ π (t+1 ) ω = a} = 1
using init-play-once assms eq-card-k by simp

have card-eq-1 :
card {t. t < n ∧ π (t+1 ) ω = a} = 1 + card {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω

= a}
using card-eq eq-card-k card-k-eq-1 by simp

have finite-lt: finite {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ real (N-n t a ω) < s
t}

using finite2 finite-subset by simp

have finite-ge: finite {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s
t}

using finite2 finite-subset by simp

have card-eq-partition:
card {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a} =
card {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ real (N-n t a ω) < s t} +
card {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t}

proof −
have union-eq-partition:
{t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a} =
{t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ real (N-n t a ω) < s t} ∪
{t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t} by auto

have disj-partition:
{t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ real (N-n t a ω) < s t} ∩
{t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t} = {}

by auto

show ?thesis
using card-Un-disjoint[OF finite-lt finite-ge disj-partition] union-eq-partition

by simp
qed

have card-eq-sum-lt:
card {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ real (N-n t a ω) < s t} =
(
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t then 1 else 0 )
using cardinality-indic-eq by simp

have card-eq-sum-ge:
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card {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t} =
(
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t then 1 else 0 )
using cardinality-indic-eq by simp

have (N-n n a ω) = card {t. t < n ∧ π (t+1 ) ω = a}
using N-n-def by simp

also have ... = 1 +
(
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t then 1 else 0 ) +
(
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t then 1 else 0 )
using card-eq-partition card-eq-1 card-eq-sum-lt card-eq-sum-ge by simp

also have ... = 1 +
(
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t then 1 else 0 ) +
(
∑

t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 )
using ge-rewrite by simp

have rewrite-eq: (
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t then
1 else 0 ) =

(
∑

t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 )
using sum.cong by simp

ultimately have final-eq: (N-n n a ω) = 1 + (
∑

t = k..<n. if π (t+1 ) ω = a
∧ real (N-n t a ω) < s t then 1 else 0 ) +

(
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t then 1
else 0 )

by simp

show (N-n n a ω) = 1 + (
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω)
< s t then 1 else 0 ) +

(
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) ≥ s t then 1
else 0 )

apply (subst rewrite-eq)
apply (subst final-eq)
apply simp
done

qed

lemma upper-bound-expression-contradiction:
fixes a :: ′a and s :: nat ⇒ real

and k :: nat and n :: nat
and s-n-nat :: nat

assumes a ∈ A
and k ≤ n
and 0 < n
and non-neg-s: ∀ t ∈ {0 ..n}. 0 < s t
and base-le: s 0 ≤ s 1
and non-dec: ∀ t < n − 1 . s t ≤ s (t + 1 )
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and s-mono:
∧

t. k ≤ t ∧ t ≤ n =⇒ s t ≤ s n
and init-play-once: ∀ω. a ∈ A −→ N-n k a ω = 1
and finite-played-sets:
finite {t. t < n ∧ π (t+1 ) ω = a}
finite {t. t < k ∧ π (t+1 ) ω = a}
finite {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a}
and xs-sorted-def : xs = sorted-list-of-set {t ∈ {k..<n}. π (t+1 ) ω = a ∧ real

(N-n t a ω) < s t}
and s-nat-def : s-n-nat = nat (bs nc)
and len-bound-def : s-n-nat < length xs
and distinct-xs: distinct xs
and gt-ineq: length xs + 1 > bs nc
and N-n-increasing-with-plays:
∀ t t ′. k ≤ t ∧ t < t ′ ∧ π (t+1 ) ω = a ∧ π (t ′+1 ) ω = a −→ N-n t ′ a ω ≥

N-n t a ω + 1
and neg: 1 + real (

∑
t=k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t

then 1 else 0 ) > s n
and t-hat ∈ set xs
and t-hat = xs ! s-n-nat
and real (N-n t-hat a ω) ≥ real s-n-nat + 1

shows (real (N-n t-hat a ω) ≥ bs nc + 1 ) ∧ (π (t-hat+1 ) ω = a ∧ (real (N-n
t-hat a ω) < s t-hat))

proof −
have sn-nat-def :s-n-nat = nat (bs nc) by fact

let ?I = {t ∈ {k..<n}. π (t+1 ) ω = a ∧ real (N-n t a ω) < s t}
have sum-eq-card: real (

∑
t=k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t

then 1 else 0 ) = real (card ?I )
using cardinality-indic-eq by simp

have finI : finite {t ∈ {k..<n}. π (t+1 ) ω = a ∧ real (N-n t a ω) < s t}
proof −

have subset: {t ∈ {k..<n}. π (t+1 ) ω = a ∧ real (N-n t a ω) < s t} ⊆ {t. k
≤ t ∧ t < n ∧ π (t+1 ) ω = a}

by auto
moreover have finite {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a}

using finite-played-sets(3 ) .
ultimately show ?thesis

using finite-subset by blast
qed

have xs-props: sorted xs distinct xs set xs = {t ∈ {k..<n}. π (t+1 ) ω = a ∧ real
(N-n t a ω) < s t}

using List.linorder-class.set-sorted-list-of-set
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using finite-played-sets
unfolding xs-sorted-def
by auto

have sum-eq-length:
(
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t then 1 else 0 ) =
length xs

proof −
let ?P = λt. π (t+1 ) ω = a ∧ real (N-n t a ω) < s t
let ?I = {t ∈ {k..<n}. ?P t}

have sum-card: (
∑

t = k..<n. if ?P t then 1 else 0 ) = card ?I
using cardinality-indic-eq by simp

also have ... = card (set xs)
using xs-props(3 ) by simp

also have ... = length xs
using xs-props(2 ) distinct-card by auto

finally show ?thesis .
qed

have gt-ineq: 1 + real(length xs) > s n
proof −

have eq1 :1 + (
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t then
1 else 0 ) = 1 + length xs

using sum-eq-length by simp

then have eq2 : real (1 + (
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω)
< s t then 1 else 0 )) = 1 + real ( length xs)

by simp

from neg have ¬ (1 + real (
∑

t=k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω)
< s t then 1 else 0 ) ≤ s n)

by simp

hence gt: 1 + real (
∑

t=k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t
then 1 else 0 ) > s n

by simp

then show ?thesis
using eq1 eq2 neg gt by simp

qed
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then have len-bound-assm: s-n-nat < length xs
using len-bound-def assms
by auto

then have distinct-xs: distinct xs
using assms by simp

then have gt-ineq: length xs + 1 > bs nc
using assms by simp

have part-1-glob: π (t-hat +1 ) ω = a ∧ real (N-n t-hat a ω) < s t-hat
proof −

have floor-le-sn: bs nc ≤ s n
using Archimedean-Field.of-int-floor-le by simp

from gt-ineq have len-bound: length xs + 1 > bs nc
using len-bound-assm by simp

have nat-expression-sn: length xs ≥ nat (bs nc)
proof −

from len-bound have length xs ≥ nat (bs nc)
by (simp add: nat-less-iff )

then show ?thesis .
qed

have sn-lt-len-plus-1 : bs nc < 1 + real (length xs)
using gt-ineq by simp

then have final-eq-glob:π (t-hat+1 ) ω = a ∧ real (N-n t-hat a ω) < s t-hat
proof −

have π-eq: π (t-hat+1 ) ω = a
using assms xs-sorted-def by simp

then have π (t-hat +1 ) ω = a using π-eq by simp

then have intermid-eq: k ≤ t-hat ∧ t-hat < n ∧ π (t-hat +1 ) ω = a ∧ real
(N-n t-hat a ω) < s t-hat

using xs-sorted-def ‹t-hat ∈ set xs› by auto

have fin-eq:π (t-hat + 1 ) ω = a ∧ real (N-n t-hat a ω) < s t-hat
using intermid-eq
by simp

then show ?thesis by simp
qed

show ?thesis using final-eq-glob by simp
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qed

have floor-le-sn: bs nc ≤ s n
using Archimedean-Field.of-int-floor-le by simp

have one-plus-length-gt-floor : 1 + real (length xs) > s n
using ‹1 + real (length xs) > s n› .

have floor-less-length-plus-one: real (nat (bs nc)) < 1 + real (length xs)
using one-plus-length-gt-floor floor-le-sn
by linarith

from gt-ineq have len-result: length xs > bs nc − 1 by simp
then have length xs ≥ nat (bs nc) by (simp add: nat-less-iff )
hence t-hat-in-set:t-hat ∈ set xs

using assms distinct-xs len-bound-assm by auto

have t-hat-le-n: t-hat + 1 ≤ n
using xs-sorted-def t-hat-in-set by auto

have k-le-t-hat: k ≤ t-hat
using xs-sorted-def t-hat-in-set by auto

have s-t-hat-le-s-n: s t-hat ≤ s n
using s-mono[of t-hat]
using xs-sorted-def t-hat-in-set by auto

have real (N-n t-hat a ω) ≥ real s-n-nat + 1
using assms by simp

have final-result: real (N-n t-hat a ω) ≥ bs nc + 1
using ‹real (N-n t-hat a ω) ≥ real (s-n-nat) + 1 ›
by (simp add: sn-nat-def )

show ?thesis using final-result and part-1-glob by auto

qed
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lemma Nn-upper-bound:
fixes a :: ′a and s :: nat ⇒ real

and k :: nat and n :: nat
assumes asm: real(1 + (

∑
t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) <

s t then 1 else 0 )) ≤ s n
and a-in-A: a ∈ A
and k-le-n: k ≤ n
and n-pos: 0 < n
and s-pos: ∀ t ∈ {0 ..n}. 0 < s t
and s-nondec: ∀ t < n − 1 . s t ≤ s (t + 1 )
and init-play-once: ∀ω. a ∈ A −→ N-n k a ω = 1
and finite-played-sets-1 : finite {t. t < n ∧ π (t+1 ) ω = a}
and finite-played-sets-2 : finite {t. t < k ∧ π (t+1 ) ω = a}
and finite-played-sets-3 : finite {t. k ≤ t ∧ t < n ∧ π (t+1 ) ω = a}

shows real(N-n n a ω) ≤ s n + real((
∑

t = k..<n. if π (t+1 ) ω = a ∧ s t ≤
real (N-n t a ω) then 1 else 0 ))
proof −

have expr-nat: N-n n a ω =
1 + (

∑
t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t a ω) < s t then 1 else 0 ) +

(
∑

t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 )
using Nn-expression[OF a-in-A k-le-n n-pos s-pos s-nondec init-play-once

finite-played-sets-1 finite-played-sets-2 finite-played-sets-3 ]
by simp

from asm have bound:real(1 + (
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n t
a ω) < s t then 1 else 0 )) ≤ s n by simp

have real (N-n n a ω) = real ( 1 + (
∑

t = k..<n. if π (t+1 ) ω = a ∧ real (N-n
t a ω) < s t then 1 else 0 ) +

(
∑

t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 ))
using expr-nat by simp

also have ... ≤ s n + real ( (
∑

t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n
t a ω) then 1 else 0 ))

using assms
by simp

then show ?thesis
using expr-nat asm
by simp

qed

theorem ENn-upper-bound:
assumes

a-in-A: a ∈ A
and k-le-n: k ≤ n
and n-pos: 0 < n
and s-pos: ∀ t ∈ {0 ..n}. 0 < s t
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and s-nondec: ∀ t < n. s t ≤ s (t + 1 )
and init-play-once: ∀ω. a ∈ A −→ N-n k a ω = 1
and integrable-Nn: integrable M (λω. real (N-n n a ω))
and integrable-rhs-sum: integrable M (λω. s n + (

∑
t = k..<n. if π (t+1 ) ω

= a ∧ s t ≤ real (N-n t a ω) then 1 else 0 ))
and integrable-s: integrable M (λω. s n)
and integrable-indicator-sum: integrable M (λω.

∑
t = k..<n. if π (t+1 ) ω =

a ∧ s t ≤ real (N-n t a ω) then 1 else 0 )
and linearity: integralL M (λω. s n + (

∑
t = k..<n. if π (t+1 ) ω = a ∧ s t

≤ real (N-n t a ω) then 1 else 0 )) =
integralL M (λω. s n) + integralL M (λω.

∑
t = k..<n. if π (t+1 )

ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 )
and pointwise-bound: real (N-n n a ω) ≤ s n + (

∑
t = k..<n. if π (t+1 ) ω =

a ∧ s t ≤ real (N-n t a ω) then 1 else 0 )
and mono-intgrl: integralL M (λω. real (N-n n a ω)) ≤ integralL M (λω. s n

+ (
∑

t = k..<n.
if π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 ))

shows
expectation (λω. real (N-n n a ω)) ≤
s n + expectation (λω. (

∑
t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t

a ω) then 1 else 0 ))
proof −

let ?f = λω. real (N-n n a ω)
let ?g = λω. s n + (

∑
t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω)

then 1 else 0 )
let ?g1 = λω. s n
let ?g2 = λω. (

∑
t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω) then 1

else 0 )
have pointwise-le: ?f ω ≤ ?g ω

using pointwise-bound .

have intg-f : integrable M ?f using integrable-Nn .
have intg-g: integrable M ?g using integrable-rhs-sum .
then have eq-f :integralL M ?f = expectation (?f )

using prob-space by simp
then have eq-g: integralL M ?g = expectation (?g)

by simp

then have sub-eqg1 :integralL M ?g1 = expectation (λω. s n)
by simp

then have sub-eqg2 :integralL M ?g2 = expectation(λω. (
∑

t = k..<n. if π (t+1 )
ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 ))

by simp

have real (N-n n a ω) ≤ s n + (
∑

t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real
(N-n t a ω) then 1 else 0 )

using assms by simp
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have const-measure: Sigma-Algebra.measure M (space M ) = 1
using prob-space Probability-Measure.prob-space.prob-space by blast

have exp-sn: expectation (λω. s n) = s n
proof −

have expectation (λω. s n) = integralL M (λω. s n)
by simp

also have ... = s n
using prob-space by (simp add: prob-space.prob-space)

then show ?thesis .
qed

have rhs-expr :
integralL M ?g = integralL M (λω. s n) + integralL M (λω.

∑
t = k..<n. if

π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 )
using linearity by auto

then have rhs-expr :
expectation (?g) = expectation (λω. s n) + expectation (λω. (

∑
t = k..<n. if

π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 ))
by simp

also have final-eq: expectation (?g) = s n + expectation (λω. (
∑

t = k..<n. if
π (t+1 ) ω = a ∧ s t ≤ real (N-n t a ω) then 1 else 0 ))

using rhs-expr exp-sn
by simp

have glob-final-eq:expectation (?f ) ≤ expectation (?g)
using assms intg-f intg-g pointwise-le mono-intgrl
by auto

thus ?thesis
using glob-final-eq final-eq by simp

qed

end
end
theory Discrete-UCB-Step2

imports Discrete-UCB-Step1

begin

locale bandit-policy = bandit-problem + prob-space +
fixes Ω :: ′b set

and F :: ′b set set
and ω :: ′b

fixes π :: nat ⇒ ′b ⇒ ′a
and N-n :: nat ⇒ ′a ⇒ ′b ⇒ nat
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and Z :: nat ⇒ ′a ⇒ ′b ⇒ real
and δ :: real
and q :: real

assumes finite-A: finite A
and a-in-A: a ∈ A
and measurable-policy: ∀ t. π t ∈ measurable M (count-space A)
and N-n-def : ∀n a b. N-n n a b = card {t ∈ {0 ..<n}. π (t+1 ) b = a}
and δ-pos: 0 < δ
and δ-less1 : δ < 1
and q-pos: q > 0

begin

definition sample-mean-Z :: nat ⇒ ′a ⇒ ′b ⇒ real where
sample-mean-Z n a b ≡ (1 / real n) ∗ (

∑
i<n. Z i a b)

definition M-val :: nat ⇒ ′a ⇒ ′b ⇒ real where
M-val t a b ≡ (if N-n (t+1 ) a b = 0 then 0

else (
∑

s < t. if π s b = a then Z s a b else 0 ) / real (N-n t a b))

definition U :: nat ⇒ ′a ⇒ ′b ⇒ real where
U t a b ≡ M-val t a b + q ∗ sqrt (ln (1 / δ) / (2 ∗ real (max 1 (N-n t a b))))

definition A-t-plus-1 :: nat ⇒ ′b ⇒ ′a where
A-t-plus-1 t b ≡ (SOME a. a ∈ A ∧ (∀ a ′. a ′ ∈ A −→ U t a b ≥ U t a ′ b))

lemma (in finite-measure) finite-measure-mono:
assumes A ⊆ B B ∈sets M shows measure M A ≤ measure M B
using emeasure-mono[OF assms] emeasure-real[of A] emeasure-real[of B] by

(auto simp: measure-def )

theorem union-bound:
fixes E F G :: ′b set
assumes E ⊆ F ∪ G

and E ∈ events F ∈ events G ∈ events
shows prob E ≤ prob F + prob G

proof −
have F ∪ G ∈ events

using assms(3 ,4 ) sets.Un by blast
have prob E ≤ prob (F ∪ G)

using assms local.finite-measure-mono by auto
also have prob (F ∪ G) ≤ prob F + prob G

using assms measure-Un-le by blast
finally show ?thesis .

qed
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theorem hoeffding-iid-bound-ge-general:
fixes a :: ′a and n :: nat and ε :: real and µ-hat :: real and l u :: real
assumes a-in: a ∈ A

and eps-pos: ε ≥ 0
and bounds: ∀ i < n. ∀ω ∈ Ω. l ≤ Z i a ω ∧ Z i a ω ≤ u
and mu-def : µ-hat = (

∑
i < n. expectation (λω. Z i a ω))

and u − l 6= 0
and n-pos: n > 0
and space-M : space M = Ω
and sets-M : sets M = F
and indep: indep-vars (λ-. borel) (λi. (λω. Z i a ω)) {i. i < n}
and rv: ∀ i<n. random-variable borel (λω. Z i a ω)

shows prob {ω ∈ Ω. (
∑

i < n. Z i a ω) ≥ µ-hat + ε}
≤ exp (− 2 ∗ ε^2 / (real n ∗ (u − l)^2 ))

proof −
let ?I = {i. i < n}
let ?X = λi. (λω. Z i a ω)
let ?a = λi. l
let ?b = λi. u

have finite-I : finite ?I by simp

have AE-bounds: ∀ i∈?I . AE ω in M . ?a i ≤ ?X i ω ∧ ?X i ω ≤ ?b i
proof

fix i assume iI : i ∈ ?I
have ∀ω∈Ω. l ≤ Z i a ω ∧ Z i a ω ≤ u using bounds iI by simp
thus AE ω in M . ?a i ≤ ?X i ω ∧ ?X i ω ≤ ?b i

using assms by auto
qed

have indep-loc: indep-interval-bounded-random-variables M ?I ?X ?a ?b
by (standard; use finite-I indep AE-bounds in auto)

from indep-loc
have H : Hoeffding-ineq M ?I ?X ?a ?b

by (rule Hoeffding-ineq.intro)

have widths: (
∑

i ∈ ?I . (?b i − ?a i)^2 ) = real n ∗ (u − l)^2
by simp

have widths-pos: 0 < (
∑

i ∈ ?I . (?b i − ?a i)^2 )
using ‹u − l 6= 0 › n-pos by simp

have sum-expectations-eq-integrals:
(
∑

i < n. expectation (λω. Z i a ω)) = (
∑

i∈?I . integralL M (?X i))
proof −

have eq1 : ∀ i<n. expectation (λω. Z i a ω) = integralL M (?X i)
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using rv space-M sets-M by simp
moreover have sum-eq: (

∑
i<n. integralL M (?X i)) = (

∑
i∈?I . integralL

M (?X i))
by (simp add: lessThan-def )

ultimately show ?thesis
by simp

qed

have sum-integrals-eq: (
∑

i∈?I . integralL M (?X i)) = µ-hat
using mu-def by (simp add: sum-expectations-eq-integrals)

have tail:
prob {ω ∈ Ω. (

∑
i∈?I . ?X i ω) − (

∑
i∈?I . integralL M (?X i)) ≥ ε}

≤ exp (− 2 ∗ ε^2 / (
∑

i∈?I . (?b i − ?a i)^2 ))
using Hoeffding-ineq.Hoeffding-ineq-ge[OF H eps-pos widths-pos]
by (smt (verit, best) Collect-cong assms(7 ))

have lhs-rewrite: {ω ∈ Ω. (
∑

i < n. Z i a ω) ≥ µ-hat + ε}
= {ω ∈ Ω. (

∑
i∈?I . ?X i ω) − (

∑
i∈?I . integralL M (?X i))

≥ ε}
by (simp add: add.commute le-diff-eq lessThan-def sum-integrals-eq)

have rhs-rewrite: exp (− 2 ∗ ε^2 / (
∑

i∈?I . (?b i − ?a i)^2 ))
= exp (− 2 ∗ ε^2 / (real n ∗ (u − l)^2 ))

using widths by simp

show ?thesis
using tail lhs-rewrite rhs-rewrite by simp

qed

theorem hoeffding-iid-bound-le-general:
fixes a :: ′a and n :: nat and ε :: real and µ-hat :: real and l u :: real
assumes a-in: a ∈ A

and eps-pos: ε ≥ 0
and bounds: ∀ i < n. ∀ω ∈ Ω. l ≤ Z i a ω ∧ Z i a ω ≤ u
and mu-def : µ-hat = (

∑
i < n. expectation (λω. Z i a ω))

and u − l 6= 0
and n-pos: n > 0
and space-M : space M = Ω
and sets-M : sets M = F
and indep: indep-vars (λ-. borel) (λi. (λω. Z i a ω)) {i. i < n}
and rv: ∀ i<n. random-variable borel (λω. Z i a ω)

shows prob {ω ∈ Ω. (
∑

i < n. Z i a ω) ≤ µ-hat − ε}
≤ exp (− 2 ∗ ε^2 / (real n ∗ (u − l)^2 ))

proof −
let ?I = {i. i < n}
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let ?X = λi. (λω. Z i a ω)
let ?a = λi. l
let ?b = λi. u

have finite-I : finite ?I by simp

have AE-bounds: ∀ i∈?I . AE ω in M . ?a i ≤ ?X i ω ∧ ?X i ω ≤ ?b i
proof

fix i assume iI : i ∈ ?I
have ∀ω∈Ω. l ≤ Z i a ω ∧ Z i a ω ≤ u using bounds iI by simp
thus AE ω in M . ?a i ≤ ?X i ω ∧ ?X i ω ≤ ?b i

using assms by auto
qed

have indep-loc: indep-interval-bounded-random-variables M ?I ?X ?a ?b
by (standard; use finite-I indep AE-bounds in auto)

from indep-loc
have H : Hoeffding-ineq M ?I ?X ?a ?b

by (rule Hoeffding-ineq.intro)

have widths: (
∑

i ∈ ?I . (?b i − ?a i)^2 ) = real n ∗ (u − l)^2 by simp
have widths-pos: 0 < (

∑
i ∈ ?I . (?b i − ?a i)^2 ) using ‹u − l 6= 0 › n-pos by

simp

have sum-expectations-eq-integrals:
(
∑

i < n. expectation (λω. Z i a ω)) = (
∑

i∈?I . integralL M (?X i))
proof −

have eq1 : ∀ i<n. expectation (λω. Z i a ω) = integralL M (?X i) using rv
space-M sets-M by simp

moreover have sum-eq: (
∑

i<n. integralL M (?X i)) = (
∑

i∈?I . integralL
M (?X i)) by (simp add: lessThan-def )

ultimately show ?thesis by simp
qed

have sum-integrals-eq: (
∑

i∈?I . integralL M (?X i)) = µ-hat
using mu-def by (simp add: sum-expectations-eq-integrals)

have tail:
prob {ω ∈ Ω. (

∑
i∈?I . ?X i ω) − (

∑
i∈?I . integralL M (?X i)) ≤ − ε}

≤ exp (− 2 ∗ ε^2 / (
∑

i∈?I . (?b i − ?a i)^2 ))
using Hoeffding-ineq.Hoeffding-ineq-le[OF H eps-pos widths-pos]
by (smt (verit, best) Collect-cong assms(7 ))
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have lhs-rewrite: {ω ∈ Ω. (
∑

i < n. Z i a ω) ≤ µ-hat − ε}
= {ω ∈ Ω. (

∑
i∈?I . ?X i ω) − (

∑
i∈?I . integralL M (?X i))

≤ −ε}
using add.inverse-inverse[of ε] add.inverse-inverse[of µ-hat] assms(4 )

cancel-ab-semigroup-add-class.diff-right-commute[of µ-hat µ-hat
∑

uuc<n. Z
uuc a -]

cancel-ab-semigroup-add-class.diff-right-commute[of − µ-hat − µ-hat ε −
µ-hat]

cancel-ab-semigroup-add-class.diff-right-commute[of ε − µ-hat ε − µ-hat ε]
cancel-ab-semigroup-add-class.diff-right-commute[of ε ε µ-hat]
cancel-ab-semigroup-add-class.diff-right-commute[of 0 − µ-hat ε]
cancel-ab-semigroup-add-class.diff-right-commute[of µ-hat µ-hat ε]

cancel-ab-semigroup-add-class.diff-right-commute[of − µ-hat − µ-hat (
∑

uuc<n.
Z uuc a -) − µ-hat]

cancel-ab-semigroup-add-class.diff-right-commute[of (
∑

uuc<n. Z uuc a -) −
µ-hat (

∑
uuc<n. Z uuc a -) − µ-hat∑
uuc<n. Z uuc a -]

cancel-ab-semigroup-add-class.diff-right-commute[of
∑

uuc<n. Z uuc a -∑
uuc<n. Z uuc a - µ-hat]

cancel-ab-semigroup-add-class.diff-right-commute[of 0 − µ-hat
∑

uuc<n. Z
uuc a -]

cancel-comm-monoid-add-class.diff-cancel[of ε − µ-hat] cancel-comm-monoid-add-class.diff-cancel[of
ε]

cancel-comm-monoid-add-class.diff-cancel[of µ-hat] cancel-comm-monoid-add-class.diff-cancel[of
− µ-hat]

cancel-comm-monoid-add-class.diff-cancel[of (
∑

uuc<n. Z uuc a -) − µ-hat]
cancel-comm-monoid-add-class.diff-cancel[of

∑
uuc<n. Z uuc a -] diff-0

diff-right-mono[of ε µ-hat − (
∑

uuc<n. Z uuc a -) µ-hat] diff-right-mono[of∑
uuc<n. Z uuc a - µ-hat − ε µ-hat]

lessThan-def [of n] more-arith-simps(1 )[of − ε (
∑

uuc<n. Z uuc a -) − µ-hat]
by force

have rhs-rewrite: exp (− 2 ∗ ε^2 / (
∑

i∈?I . (?b i − ?a i)^2 )) = exp (− 2 ∗
ε^2 / (real n ∗ (u − l)^2 ))

using widths by simp

show ?thesis using tail lhs-rewrite rhs-rewrite by simp
qed

theorem hoeffding-iid-ge-delta-bound:
fixes a :: ′a and n :: nat and δ-hat :: real and µ-hat :: real and l u :: real
assumes a-in: a ∈ A

and delta-bound: 0 < δ-hat δ-hat ≤ 1
and bounds: ∀ i<n. ∀ω∈Ω. l ≤ Z i a ω ∧ Z i a ω ≤ u
and mu-def : µ-hat = (

∑
i<n. expectation (λω. Z i a ω))

and n-pos: n > 0
and eps-pos: ε ≥ 0
and u-minus-l-nonzero: u − l 6= 0
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and space-M : space M = Ω
and sets-M : sets M = F
and indep: indep-vars (λ-. borel) (λi. (λω. Z i a ω)) {i. i < n}
and rv: ∀ i<n. random-variable borel (λω. Z i a ω)
and eps-expression: ε = sqrt ((real n ∗ (u − l)^2 ∗ ln (1 / δ-hat)) / 2 )

shows prob {ω ∈ Ω. (
∑

i<n. Z i a ω) ≥ µ-hat + ε} ≤ δ-hat ∧
prob {ω ∈ Ω. (

∑
i<n. Z i a ω) ≤ µ-hat − ε} ≤ δ-hat

proof −
have eps-pos: ε ≥ 0

using assms(7 ) by auto
have eps-squared: ε^2 = (real n ∗ (u − l)^2 ∗ ln (1 / δ-hat)) / 2

using eps-expression by (simp add: assms(3 ) delta-bound(1 ))

have exp-eq: exp (− 2 ∗ ε^2 / (real n ∗ (u − l)^2 )) = δ-hat
proof −

have − 2 ∗ ε^2 / (real n ∗ (u − l)^2 ) = − ln (1 / δ-hat)
proof −

have ε^2 /( real n ∗ (u − l)^2 ) = ( ln (1 / δ-hat)) / 2
using assms(6 ,8 ) eps-squared by fastforce

then show ?thesis by linarith
qed
also have ... = ln δ-hat

using delta-bound(1 ) by (simp add: ln-div)
finally show ?thesis

using delta-bound(1 ) by simp
qed

have ge-bound:
prob {ω ∈ Ω. (

∑
i<n. Z i a ω) ≥ µ-hat + ε} ≤ δ-hat

using hoeffding-iid-bound-ge-general[OF a-in eps-pos bounds mu-def u-minus-l-nonzero

n-pos space-M sets-M indep rv] exp-eq by simp

have le-bound:
prob {ω ∈ Ω. (

∑
i<n. Z i a ω) ≤ µ-hat − ε} ≤ δ-hat

using hoeffding-iid-bound-le-general[OF a-in eps-pos bounds mu-def u-minus-l-nonzero

n-pos space-M sets-M indep rv] exp-eq by simp

show ?thesis
using ge-bound le-bound by simp

qed

lemma add-le-iff :
fixes x y z :: real
shows x ≤ y − z ←→ x − y ≤ −z
by auto

lemma max-Suc-0-eq-1 : max (Suc 0 ) x = max 1 x
by simp
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theorem ucb-suboptimal-bound-set:
fixes t :: nat

and a :: ′a
and ∆ :: ′a ⇒ real

assumes finite-A: finite A
and a-in-A: a ∈ A
and a-star-in-A: a-star ∈ A
and argmax-exists: A 6= {}
and subopt-gap: ∆ a > 0
and a-not-opt: ∃ a ′. a ′ ∈ A ∧ ∆ a > 0
and delta-a: ∆ a = µ a-star − µ a
and ω-in-Ω: ω ∈ Ω
and asm: ω ∈ {ω ∈ Ω. A-t-plus-1 t ω = a}
and setopt: ∀ω ∈ Ω. ∃ a-max ∈ A. ∀ b ∈ A. U t b ω ≤ U t a-max ω
and A-t-plus-1-maximizes:∧

t ω a. A-t-plus-1 t ω = a =⇒ a ∈ A ∧ (∀ b ∈ A. U t a ω ≥ U t b ω)
shows {ω ∈ Ω. A-t-plus-1 t ω = a} ⊆

{ω ∈ Ω. U t a-star ω ≤ µ a-star} ∪ {ω ∈ Ω. µ a-star ≤ U t a ω}
proof −

have set-result-1 :
{ω ∈ Ω. A-t-plus-1 t ω = a} ⊆ {ω ∈ Ω. ∀ b ∈ A. U t a ω ≥ U t b ω}

proof
fix ω
assume ω ∈ {ω ∈ Ω. A-t-plus-1 t ω = a}
hence A-t-plus-1 t ω = a by simp

from setopt obtain a-max where
a-max ∈ A ∧ (∀ b ∈ A. U t b ω ≤ U t a-max ω)
using ‹ω ∈ {ω ∈ Ω. A-t-plus-1 t ω = a}› by auto

hence ∀ b ∈ A. U t a ω ≥ U t b ω
using ‹A-t-plus-1 t ω = a› A-t-plus-1-maximizes by auto

thus ω ∈ {ω ∈ Ω. ∀ b ∈ A. U t a ω ≥ U t b ω}
using ‹ω ∈ {ω ∈ Ω. A-t-plus-1 t ω = a}› by blast

qed

have set-result-2 : {ω ∈ Ω. ∀ b ∈ A. U t a ω ≥ U t b ω} ⊆ {ω ∈ Ω. U t a-star ω
≤ U t a ω}

proof
fix ω assume asm: ω ∈ {ω ∈ Ω. ∀ b ∈ A. U t a ω ≥ U t b ω}
hence ω ∈ Ω and ub: ∀ b ∈ A. U t a ω ≥ U t b ω by simp-all
from a-star-in-A have U t a ω ≥ U t a-star ω using ub by simp
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thus ω ∈ {ω ∈ Ω. U t a-star ω ≤ U t a ω} using ‹ω ∈ Ω› by simp
qed

have set-result-3 : {ω ∈ Ω. U t a-star ω ≤ U t a ω} ⊆
{ω ∈ Ω. U t a-star ω ≤ µ a-star} ∪ {ω ∈ Ω. µ a-star ≤ U t a ω}

proof
fix ω assume asm: ω ∈ {ω ∈ Ω. U t a-star ω ≤ U t a ω}
hence ω ∈ Ω and le: U t a-star ω ≤ U t a ω by simp-all
show ω ∈ {ω ∈ Ω. U t a-star ω ≤ µ a-star} ∪ {ω ∈ Ω. µ a-star ≤ U t a ω}
proof (cases U t a-star ω ≤ µ a-star)

case True
then show ?thesis using ‹ω ∈ Ω› by simp

next
case False
hence µ a-star < U t a-star ω by simp
with le have µ a-star < U t a ω by (simp add: less-le-trans)
then show ?thesis using ‹ω ∈ Ω› by simp

qed
qed

from set-result-1 set-result-2 set-result-3 show ?thesis by auto
qed

theorem ucb-suboptimal-bound-prob-statement:
fixes t :: nat and a :: ′a and ∆ :: ′a ⇒ real
assumes finite-A: finite A

and a-star-in-A: a-star ∈ A
and argmax-exists: A 6= {}
and subopt-gap: ∆ a > 0
and a-not-opt: ∃ a ′. a ′ ∈ A ∧ ∆ a > 0
and ω-in-Ω: ω ∈ Ω
and asm: ω ∈ {ω ∈ Ω. A-t-plus-1 t ω = a}
and setopt: ∀ω ∈ Ω. ∃ a-max ∈ A. ∀ b ∈ A. U t b ω ≤ U t a-max ω
and A-t-plus-1-maximizes:∧

t ω a. A-t-plus-1 t ω = a =⇒ a ∈ A ∧ (∀ b ∈ A. U t a ω ≥ U t b ω)
and a-in-A: a ∈ A
and omega-in: ω ∈ Ω
and subopt-gap: ∆ a > 0
and delta-a: ∆ a = µ a-star − µ a
and H-def : H = (2 ∗ ln (1 / δ)) / (∆ a)^2
and E-def : E = {ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)}
and F-def : F = {ω ∈ Ω. U t a-star ω ≤ µ a-star} ∩ {ω ∈ Ω. H ≤ real (N-n t

a ω)}
and G-def : G = {ω ∈ Ω. µ a-star ≤ U t a ω} ∩ {ω ∈ Ω. H ≤ real (N-n t a

ω)}
and meas-sets: E ∈ sets M F ∈ sets M G ∈ sets M
and prob-inter : prob (F ∩ G) ≡ enn2real (emeasure M (F ∩ G))
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shows prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)}) ≤
prob ({ω ∈ Ω. U t a-star ω ≤ µ a-star} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)})

+
prob ({ω ∈ Ω. U t a ω ≥ µ a-star} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)})

proof −

have subset-result:E ⊆ F ∪ G
proof −

have step1 : {ω ∈ Ω. A-t-plus-1 t ω = a} ⊆
{ω ∈ Ω. U t a-star ω ≤ µ a-star} ∪ {ω ∈ Ω. µ a-star ≤ U t a ω}

using ucb-suboptimal-bound-set assms by blast

then have step2 :
{ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)} ⊆
({ω ∈ Ω. U t a-star ω ≤ µ a-star} ∪ {ω ∈ Ω. µ a-star ≤ U t a ω}) ∩ {ω ∈

Ω. H ≤ real (N-n t a ω)}
by auto

then have step3 :
{ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)} ⊆
({ω ∈ Ω. U t a-star ω ≤ µ a-star} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)}) ∪
({ω ∈ Ω. µ a-star ≤ U t a ω} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)})
by (auto simp add: set-eq-iff )

then have step4 :
E ⊆ F ∪ G using assms by simp

then show ?thesis
by (simp add: E-def F-def G-def )

qed

have bound: prob E ≤ prob F + prob G
proof (rule union-bound)

show E ⊆ F ∪ G by (simp add: subset-result)
show E ∈ sets M using meas-sets by simp
show F ∈ sets M using meas-sets by simp
show G ∈ sets M using meas-sets by simp
have prob (F ∩ G) ≡ enn2real (emeasure M (F ∩ G)) using prob-inter by

simp
have prob E ≤ prob (F ∪ G)

using assms(18 ,19 ,20 ) increasingD measure-increasing subset-result by blast
have prob (F ∪ G) = prob F + prob G − prob (F ∩ G)
by (simp add: Int-commute assms(19 ,20 ) finite-measure-Diff ′ finite-measure-Union ′)

qed

hence union-bound:
prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)}) ≤
prob ({ω ∈ Ω. U t a-star ω ≤ µ a-star} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)}) +
prob ({ω ∈ Ω. U t a ω ≥ µ a-star} ∩ {ω ∈ Ω. H ≤ real (N-n t a ω)})
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using bound assms by simp

show ?thesis
using union-bound by simp

qed

lemma U-le-µ-pointwise:
U t a-star ω ≤ µ a-star ←→
M-val t a-star ω − µ a-star ≤
− q ∗ sqrt (ln (1 / δ) / (2 ∗ real (max 1 (N-n t a-star ω))))

unfolding U-def
using add-le-iff max-Suc-0-eq-1
by auto

lemma U-ge-µ-pointwise:
assumes delta-a: ∆ a = µ a-star − µ a
shows

U t a ω ≥ µ a-star ←→
M-val t a ω − µ a ≥ ∆ a − q ∗ sqrt (ln (1 / δ) / (2 ∗ real (max 1 (N-n t a

ω))))
proof −

have delta-plus-mu-eq:
∆ a + µ a = µ a-star

proof −
have ∆ a = µ a-star − µ a

using delta-a by simp

hence ∆ a + µ a = (µ a-star − µ a) + µ a
by simp

also have ... = µ a-star
by simp

finally show ?thesis .
qed
have U-ge-µ-rewrite:

U t a ω ≥ µ a-star ←→ M-val t a ω − µ a ≥ ∆ a − q ∗ sqrt (ln (1 / δ) /
(2 ∗ real (max 1 (N-n t a ω))))

unfolding U-def using add-le-iff max-Suc-0-eq-1 delta-plus-mu-eq by auto
then show ?thesis by simp

qed

theorem hoeffding-iid--bound-le:
fixes a :: ′a and n :: nat and ε :: real and µ-hat :: real and l-hat u-hat :: real

and I :: nat set
and X-new :: nat ⇒ ′b ⇒ real
and a-bound b-bound :: nat ⇒ real

assumes a-in: a ∈ A
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and b ∈ Ω
and eps-pos: ε ≥ 0
and eps: ε = abs (u-hat − l-hat) ∗ sqrt (((real n) / 2 ) ∗ ln (1 / δ))
and δ ≥ 0 ∧ δ ≤ 1
and t-eq-n: t = n
and c > 0
and bounds: ∀ j < t. ∀ω ∈ Ω. ∀ a ∈A. l-hat ≤ Z-hat j a ω ∧ Z-hat j a ω ≤

u-hat
and mu-def : µ-hat = (

∑
j < t. expectation (λω. Z-hat j a ω))

and u-hat − l-hat 6= 0
and t-pos: t > 0
and ∀ t<n. N-n t a-star b > 0
and n-pos: n > 0
and M-val t a-star b ≡ (

∑
s < t. if π s b = a-star then Z s a-star b else 0 ) /

real (N-n t a-star b)
and widths: (

∑
i ∈ I . (b-bound i − a-bound i)^2 ) = (real n) ∗ (u-hat −

l-hat)^2
and space-M : space M = Ω
and sets-M : sets M = F
and indep: indep-vars (λ-. borel) (λj. (λω. Z j a ω)) {j. j < t}
and rv: ∀ j<t. random-variable borel (λω. Z j a ω)
and ∀ j<t. Z-hat j a-star ω = c ∗ (if π j b = a-star then Z j a-star b else 0 )
and indep-interval-bounded-random-variables M I X-new a-bound b-bound
and indep-loc: indep-interval-bounded-random-variables M {j. j < t}

(λj. (λω. Z-hat j a-star ω))
(λj. l-hat) (λj. u-hat)

and H : Hoeffding-ineq M {j. j < t}
(λj. (λω. Z-hat j a-star ω))
(λj. l-hat) (λj. u-hat)

and sum-integrals-eq: (
∑

j ∈ {j. j < t}. integralL M (λω. Z-hat j a-star ω))
= µ-hat

and rewriting: prob {ω ∈ Ω. (
∑

j < t. Z-hat j a-star ω) − (
∑

j < t. expectation
(Z-hat j a-star)) ≤ − ε} =

prob {x ∈ space M . (
∑

j < t. Z-hat j a-star x) ≤ (
∑

j < t. expectation
(Z-hat j a-star)) − ε}

shows prob {ω ∈ Ω. (
∑

j < n. Z-hat j a-star ω) ≤ µ-hat − ε}
≤ δ

proof −

let ?I = {j. j < t}
let ?X-new = λj. (λω. Z-hat j a-star ω)
let ?a-bound = λj. l-hat
let ?b-bound = λj. u-hat

have
M-val t a-star b ≡ (

∑
s < t. if π s b = a-star then Z s a-star b else 0 ) / real

(N-n t a-star b)
using assms by simp
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have finite-I : finite ?I by simp

have AE-bounds: ∀ j ∈ ?I . AE ω in M . ?a-bound j ≤ ?X-new j ω ∧ ?X-new j ω
≤ ?b-bound j

proof
fix j assume j ∈ ?I
then have j < t by simp

then have bound-j: ∀ω ∈ Ω. l-hat ≤ Z-hat j a-star ω ∧ Z-hat j a-star ω ≤
u-hat

using bounds by (simp add: a-in-A)
then show AE ω in M . ?a-bound j ≤ ?X-new j ω ∧ ?X-new j ω ≤ ?b-bound j

using space-M sets-M by force
qed

have indep-loc: indep-interval-bounded-random-variables M ?I ?X-new ?a-bound
?b-bound

using assms by simp
have H : Hoeffding-ineq M ?I ?X-new ?a-bound ?b-bound

using assms by simp

have sum-integrals-eq: (
∑

j∈?I . integralL M (?X-new j)) = µ-hat
using assms by simp

have widths:
(
∑

j ∈ ?I . (?b-bound j − ?a-bound j)^2 ) = (real n) ∗ (u-hat − l-hat)^2
proof −

have (
∑

j ∈ ?I . (?b-bound j − ?a-bound j)^2 ) =
(
∑

j ∈ ?I . (u-hat − l-hat)^2 )
by simp

also have ... = card ?I ∗ (u-hat − l-hat)^2
by simp

also have card ?I = t
by simp

also have ... = n
using ‹t = n› assms by blast

finally show ?thesis
using assms by fastforce

qed

have widths-pos: 0 < (
∑

j ∈ ?I . (?b-bound j − ?a-bound j )^2 )
using ‹u-hat − l-hat 6= 0 › widths n-pos by auto

have res: prob {ω ∈ Ω. (
∑

j < t. Z-hat j a-star ω) ≤ (
∑

j < t. expectation
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(Z-hat j a-star)) − ε} =
prob {x ∈ space M . (

∑
j < t. Z-hat j a-star x) ≤ (

∑
j < t. expectation

(Z-hat j a-star)) − ε}
using assms by simp

then have tail: prob {ω ∈ Ω. (
∑

j∈?I . ?X-new j ω) ≤ (
∑

j∈?I . integralL M
(?X-new j)) − ε}
≤ exp (− 2 ∗ ε^2 / (

∑
j∈?I . (?b-bound j − ?a-bound j)^2 ))

using Hoeffding-ineq.Hoeffding-ineq-le[OF H eps-pos widths-pos]
by (smt (verit, best) Collect-cong assms)

have lhs-rewrite: {ω ∈ Ω. (
∑

j < n. Z-hat j a-star ω) ≤ µ-hat − ε}
= {ω ∈ Ω. (

∑
j∈?I . ?X-new j ω) − (

∑
j∈?I . integralL M

(?X-new j)) ≤ −ε}
by (metis (mono-tags, lifting) add-le-iff assms(24 ,6 ) lessThan-def )

have rhs-rewrite: exp (− 2 ∗ ε^2 / (
∑

j∈?I . (?b-bound j − ?a-bound j)^2 )) =
exp (− 2 ∗ ε^2 / (real n ∗ (u-hat − l-hat)^2 ))

using widths by simp

have lhs-prob:prob {ω ∈ Ω. (
∑

j < n. Z-hat j a-star ω) ≤ µ-hat − ε}
= prob {ω ∈ Ω. (

∑
j∈?I . ?X-new j ω) − (

∑
j∈?I . integralL M (?X-new

j)) ≤ −ε}
using lhs-rewrite by simp

then have prob {ω ∈ Ω. (
∑

j < n. Z-hat j a-star ω) ≤ µ-hat − ε} ≤
exp (− 2 ∗ ε^2 / (

∑
j∈?I . (?b-bound j − ?a-bound j)^2 ))

using lhs-rewrite tail lhs-prob by (smt (verit, ccfv-threshold) Collect-cong)
then have prob {ω ∈ Ω. (

∑
j < n. Z-hat j a-star ω) ≤ µ-hat − ε} ≤ exp (− 2

∗ ε^2 / (real n ∗ (u-hat − l-hat)^2 ))
using rhs-rewrite by linarith

then have prob {ω ∈ Ω. (
∑

j < n. Z-hat j a-star ω) − µ-hat≤ − ε} =
prob {ω ∈ Ω. (

∑
j < n. Z-hat j a-star ω) − µ-hat≤ − abs (u-hat − l-hat) ∗ sqrt

(((real n) / 2 ) ∗ ln (1 / δ))}
using eps by simp

have res1 : exp (− 2 ∗ ε^2 / (real n ∗ (u-hat − l-hat)^2 )) =
exp (− 2 ∗ (abs (u-hat − l-hat) ∗ sqrt ((real n / 2 ) ∗ ln (1 / δ)))^2 /

(real n ∗ (u-hat − l-hat)^2 ))
using eps by simp

have exp (− 2 ∗ (abs (u-hat − l-hat) ∗ sqrt ((real n / 2 ) ∗ ln (1 / δ)))^2 /
(real n ∗ (u-hat − l-hat)^2 )) =

exp (− 2 ∗ (abs (u-hat − l-hat) ∗ sqrt ((real n / 2 ) ∗ ln (1 / δ)))^2 / (real n ∗
(u-hat − l-hat)^2 ))

using eps eps-pos by blast
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then have ... =
exp (− 2 ∗ ((abs (u-hat − l-hat))^2 / (real n ∗ (u-hat − l-hat)^2 )) ∗ sqrt (((real
n / 2 ) ∗ ln (1 / δ)))^2 )

by (metis (no-types, opaque-lifting) more-arith-simps(11 ) power-mult-distrib
times-divide-eq-left

times-divide-eq-right)

have ... =
exp (− 2 ∗ ((abs (u-hat − l-hat))^2 / (real n ∗ abs ((u-hat − l-hat))^2 )) ∗ sqrt
(((real n / 2 ) ∗ ln (1 / δ)))^2 )

by simp
have ... = exp (− 2 ∗ (1/ ((real n) )) ∗ sqrt (((real n / 2 ) ∗ ln (1 / δ)))^2 )

using assms by simp

then have ... = exp (−2 ∗ (1/ ((real n) )) ∗ (((real n / 2 ) ∗ ln (1 / δ))) )
using power2-eq-square by (smt (verit, best)

arithmetic-simps(51 ) assms(10 ) eps eps-pos real-sqrt-ge-0-iff real-sqrt-pow2
zero-le-mult-iff )

then have ... = exp (−1∗ ln (1 / δ))
using assms by (simp add: field-simps)

then have fin: exp (− 2 ∗ ε^2 / (real n ∗ (u-hat − l-hat)^2 )) = δ
using δ-pos assms
by (metis (lifting)

‹exp (− 2 ∗ (1 / real n) ∗ (sqrt (real n / 2 ∗ ln (1 / δ)))2) = exp (− 2 ∗
(1 / real n) ∗ (real n / 2 ∗ ln (1 / δ)))›

‹exp (− 2 ∗ (|u-hat − l-hat| ∗ sqrt (real n / 2 ∗ ln (1 / δ)))2 / (real n ∗
(u-hat − l-hat)2)) = exp (− 2 ∗ (|u-hat − l-hat|2 / (real n ∗ (u-hat − l-hat)2)) ∗
(sqrt (real n / 2 ∗ ln (1 / δ)))2)›

‹exp (− 2 ∗ (|u-hat − l-hat|2 / (real n ∗ (u-hat − l-hat)2)) ∗ (sqrt (real n /
2 ∗ ln (1 / δ)))2) = exp (− 2 ∗ (|u-hat − l-hat|2 / (real n ∗ |u-hat − l-hat|2)) ∗
(sqrt (real n / 2 ∗ ln (1 / δ)))2)›

‹exp (− 2 ∗ (|u-hat − l-hat|2 / (real n ∗ |u-hat − l-hat|2)) ∗ (sqrt (real n /
2 ∗ ln (1 / δ)))2) = exp (− 2 ∗ (1 / real n) ∗ (sqrt (real n / 2 ∗ ln (1 / δ)))2)›

arith-simps(56 ) exp-ln ln-divide-pos ln-one more-arith-simps(10 ) mult-minus1
of-nat-zero-less-power-iff power-0 )

show ?thesis using assms fin
‹prob {ω ∈ Ω. (

∑
j<n. Z-hat j a-star ω) ≤ µ-hat − ε} ≤ exp (− 2 ∗ ε2 /

(real n ∗ (u-hat − l-hat)2))›
by presburger

qed

theorem hoeffding-iid--bound-ge:
fixes a :: ′a and n :: nat and ε :: real and µ-hat :: real and l-hat u-hat :: real

and I :: nat set
and X-new :: nat ⇒ ′b ⇒ real
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and a-bound b-bound :: nat ⇒ real
assumes a-in: a ∈ A

and b ∈ Ω
and eps-pos: ε ≥ 0
and eps: ε = abs (u-hat − l-hat) ∗ sqrt (((real n) / 2 ) ∗ ln (1 / δ))
and δ ≥ 0 ∧ δ ≤ 1
and t-eq-n: t = n
and c > 0
and bounds: ∀ j < t. ∀ω ∈ Ω. ∀ a ∈A. l-hat ≤ Z-hat j a ω ∧ Z-hat j a ω ≤

u-hat
and mu-def : µ-hat = (

∑
j < t. expectation (λω. Z-hat j a ω))

and u-hat − l-hat 6= 0
and t-pos: t > 0
and ∀ t<n. N-n t a-star b > 0
and n-pos: n > 0
and M-val t a b ≡ (

∑
s < t. if π s b = a then Z s a b else 0 ) /

real (N-n t a b)
and widths: (

∑
i ∈ I . (b-bound i − a-bound i)^2 ) = (real n) ∗ (u-hat −

l-hat)^2
and space-M : space M = Ω
and sets-M : sets M = F
and indep: indep-vars (λ-. borel) (λj. (λω. Z j a ω)) {j. j < t}
and rv: ∀ j<t. random-variable borel (λω. Z j a ω)
and ∀ j<t. Z-hat j a ω = c ∗ (if π j b = a then Z j a-star b else 0 )
and indep-interval-bounded-random-variables M I X-new a-bound b-bound
and indep-loc: indep-interval-bounded-random-variables M {j. j < t}

(λj. (λω. Z-hat j a ω))
(λj. l-hat) (λj. u-hat)

and H : Hoeffding-ineq M {j. j < t}
(λj. (λω. Z-hat j a ω))
(λj. l-hat) (λj. u-hat)

and sum-integrals-eq: (
∑

j ∈ {j. j < t}. integralL M (λω. Z-hat j a ω)) =
µ-hat

and rewriting: prob {ω ∈ Ω. (
∑

j < t. Z-hat j a ω) − (
∑

j < t. expectation
(Z-hat j a)) ≥ ε} =

prob {x ∈ space M . (
∑

j < t. Z-hat j a x) ≥ (
∑

j < t. expectation (Z-hat j
a)) + ε}

shows prob {ω ∈ Ω. (
∑

j < n. Z-hat j a ω) ≥ µ-hat + ε} ≤ δ
proof −

let ?I = {j. j < t}
let ?X-new = λj. (λω. Z-hat j a ω)
let ?a-bound = λj. l-hat
let ?b-bound = λj. u-hat

have
M-val t a b ≡ (

∑
s < t. if π s b = a then Z s a b else 0 ) / real (N-n t a b)

using assms by simp
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have finite-I : finite ?I by simp

have AE-bounds: ∀ j ∈ ?I . AE ω in M . ?a-bound j ≤ ?X-new j ω ∧ ?X-new j ω
≤ ?b-bound j

proof
fix j assume j ∈ ?I
then have j < t by simp

then have bound-j: ∀ω ∈ Ω. l-hat ≤ Z-hat j a ω ∧ Z-hat j a ω ≤ u-hat
using bounds by (simp add: a-in-A)

then show AE ω in M . ?a-bound j ≤ ?X-new j ω ∧ ?X-new j ω ≤ ?b-bound j
using space-M sets-M by force

qed

have indep-loc: indep-interval-bounded-random-variables M ?I ?X-new ?a-bound
?b-bound

using assms by simp
have H : Hoeffding-ineq M ?I ?X-new ?a-bound ?b-bound

using assms by simp

have sum-integrals-eq: (
∑

j∈?I . integralL M (?X-new j)) = µ-hat
using assms by simp

have widths:
(
∑

j ∈ ?I . (?b-bound j − ?a-bound j)^2 ) = (real n) ∗ (u-hat − l-hat)^2
proof −

have (
∑

j ∈ ?I . (?b-bound j − ?a-bound j)^2 ) =
(
∑

j ∈ ?I . (u-hat − l-hat)^2 )
by simp

also have ... = card ?I ∗ (u-hat − l-hat)^2
by simp

also have card ?I = t
by simp

also have ... = n
using ‹t = n› assms by blast

finally show ?thesis
using assms by fastforce

qed

have widths-pos: 0 < (
∑

j ∈ ?I . (?b-bound j − ?a-bound j )^2 )
using ‹u-hat − l-hat 6= 0 › widths n-pos by auto

have res: prob {ω ∈ Ω. (
∑

j < t. Z-hat j a ω) − (
∑

j < t. expectation (Z-hat
j a)) ≥ ε} =
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prob {x ∈ space M . (
∑

j < t. Z-hat j a x) ≥ (
∑

j < t. expectation (Z-hat j
a)) + ε}

using assms by simp

then have tail: prob {ω ∈ Ω. (
∑

j∈?I . ?X-new j ω) ≥ (
∑

j∈?I . integralL M
(?X-new j)) + ε}
≤ exp (− 2 ∗ ε^2 / (

∑
j∈?I . (?b-bound j − ?a-bound j)^2 ))

using Hoeffding-ineq.Hoeffding-ineq-ge[OF H eps-pos widths-pos]
by (smt (verit, best) Collect-cong assms)

have lhs-rewrite: {ω ∈ Ω. (
∑

j < n. Z-hat j a ω) ≥ µ-hat + ε}
= {ω ∈ Ω. (

∑
j∈?I . ?X-new j ω) − (

∑
j∈?I . integralL M

(?X-new j)) ≥ ε}
using assms by (metis (lifting) ext add.commute le-diff-eq lessThan-def )

have rhs-rewrite: exp (− 2 ∗ ε^2 / (
∑

j∈?I . (?b-bound j − ?a-bound j)^2 )) =
exp (− 2 ∗ ε^2 / (real n ∗ (u-hat − l-hat)^2 ))

using widths by simp

have lhs-prob:prob {ω ∈ Ω. (
∑

j < n. Z-hat j a ω) ≥ µ-hat + ε}
= prob{ω ∈ Ω. (

∑
j∈?I . ?X-new j ω) − (

∑
j∈?I . integralL M

(?X-new j)) ≥ ε}
using assms lhs-rewrite by presburger

then have prob {ω ∈ Ω. (
∑

j < n. Z-hat j a ω) ≥ µ-hat + ε} ≤
exp (− 2 ∗ ε^2 / (

∑
j∈?I . (?b-bound j − ?a-bound j)^2 ))

using lhs-rewrite tail lhs-prob by (smt (verit, ccfv-threshold) Collect-cong)
then have prob {ω ∈ Ω. (

∑
j < n. Z-hat j a ω) ≥ µ-hat + ε} ≤ exp (− 2 ∗

ε^2 / (real n ∗ (u-hat − l-hat)^2 ))
using rhs-rewrite by linarith

then have prob {ω ∈ Ω. (
∑

j < n. Z-hat j a ω) − µ-hat ≥ ε} =
prob {ω ∈ Ω. (

∑
j < n. Z-hat j a ω) − µ-hat ≥ abs (u-hat − l-hat) ∗ sqrt (((real

n) / 2 ) ∗ ln (1 / δ))}
using eps by simp

have res1 : exp (− 2 ∗ ε^2 / (real n ∗ (u-hat − l-hat)^2 )) =
exp (− 2 ∗ (abs (u-hat − l-hat) ∗ sqrt ((real n / 2 ) ∗ ln (1 / δ)))^2 /

(real n ∗ (u-hat − l-hat)^2 ))
using eps by simp

have exp (− 2 ∗ (abs (u-hat − l-hat) ∗ sqrt ((real n / 2 ) ∗ ln (1 / δ)))^2 /
(real n ∗ (u-hat − l-hat)^2 )) =

exp (− 2 ∗ (abs (u-hat − l-hat) ∗ sqrt ((real n / 2 ) ∗ ln (1 / δ)))^2 / (real n ∗
(u-hat − l-hat)^2 ))

using eps eps-pos by blast
then have ... = exp (− 2 ∗ ((abs (u-hat − l-hat))^2 / (real n ∗ (u-hat − l-hat)^2
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)) ∗ sqrt (((real n / 2 ) ∗ ln (1 / δ)))^2 )
by (metis (no-types, opaque-lifting) more-arith-simps(11 ) power-mult-distrib

times-divide-eq-left
times-divide-eq-right)

also have ... = exp (− 2 ∗ ((abs (u-hat − l-hat))^2 / (real n ∗ abs ((u-hat −
l-hat))^2 )) ∗ sqrt (((real n / 2 ) ∗ ln (1 / δ)))^2 )

by simp
have ... = exp (− 2 ∗ (1/ ((real n) )) ∗ sqrt (((real n / 2 ) ∗ ln (1 / δ)))^2 )

using assms by simp

then have ... = exp (−2 ∗ (1/ ((real n) )) ∗ (((real n / 2 ) ∗ ln (1 / δ))) )
using power2-eq-square by (smt (verit, best)

arithmetic-simps(51 ) assms(10 ) eps eps-pos real-sqrt-ge-0-iff real-sqrt-pow2
zero-le-mult-iff )

then have ... = exp (−1∗ ln (1 / δ))
using assms by (simp add: field-simps)

then have fin: exp (− 2 ∗ ε^2 / (real n ∗ (u-hat − l-hat)^2 )) = δ
using δ-pos assms
by (metis (lifting)

‹exp (− 2 ∗ (1 / real n) ∗ (sqrt (real n / 2 ∗ ln (1 / δ)))2) = exp (− 2 ∗
(1 / real n) ∗ (real n / 2 ∗ ln (1 / δ)))›

‹exp (− 2 ∗ (|u-hat − l-hat| ∗ sqrt (real n / 2 ∗ ln (1 / δ)))2 / (real n ∗
(u-hat − l-hat)2)) = exp (− 2 ∗ (|u-hat − l-hat|2 / (real n ∗ (u-hat − l-hat)2)) ∗
(sqrt (real n / 2 ∗ ln (1 / δ)))2)›

‹exp (− 2 ∗ (|u-hat − l-hat|2 / (real n ∗ (u-hat − l-hat)2)) ∗ (sqrt (real n /
2 ∗ ln (1 / δ)))2) = exp (− 2 ∗ (|u-hat − l-hat|2 / (real n ∗ |u-hat − l-hat|2)) ∗
(sqrt (real n / 2 ∗ ln (1 / δ)))2)›

‹exp (− 2 ∗ (|u-hat − l-hat|2 / (real n ∗ |u-hat − l-hat|2)) ∗ (sqrt (real n /
2 ∗ ln (1 / δ)))2) = exp (− 2 ∗ (1 / real n) ∗ (sqrt (real n / 2 ∗ ln (1 / δ)))2)›

diff-0 exp-ln ln-divide-pos ln-one more-arith-simps(10 ) mult-minus1 of-nat-zero-less-power-iff
power-0 )

show ?thesis using assms fin
using ‹prob {ω ∈ Ω. µ-hat + ε ≤ (

∑
j<n. Z-hat j a ω)} ≤ exp (− 2 ∗ ε2 /

(real n ∗ (u-hat − l-hat)2))›
by presburger

qed

end
end
theory Discrete-UCB-Step3

imports Discrete-UCB-Step2

begin
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locale bandit-policy = bandit-problem + prob-space +
fixes
Ω :: ′b set
and F :: ′b set set
and π :: nat ⇒ ′b ⇒ ′a
and N-n :: nat ⇒ ′a ⇒ ′b ⇒ nat
and Z :: nat ⇒ ′a ⇒ ′b ⇒ real
and δ :: real
and q :: real

assumes fin-A: finite A
and ω ∈ Ω
and a-in-A: a ∈ A
and measurable-policy: ∀ t. π t ∈ measurable M (count-space A)
and N-n-def : ∀n a ω. N-n n a ω = card {t ∈ {0 ..<n}. π (t+1 ) ω = a}
and count-assm-pointwise: ∀n ω. (

∑
a ∈ A. real (N-n n a ω)) = real n

and delta-pos: 0 < δ
and delta-less1 : δ < 1
and q-pos: q > 0

begin

definition sample-mean-Z :: nat ⇒ ′a ⇒ ′b ⇒ real where
sample-mean-Z n a ω = (1 / real n) ∗ (

∑
i<n. Z i a ω)

definition M-fun :: nat ⇒ ′a ⇒ ′b ⇒ real where
M-fun t a ω = (if N-n (t+1 ) a ω = 0 then 0

else (
∑

s < t. (if π s ω = a then Z s a ω else 0 )) / real (N-n t a ω))

definition U :: nat ⇒ ′a ⇒ ′b ⇒ real where
U t a ω = M-fun t a ω + q ∗ sqrt (ln (1 / δ) / (2 ∗ real (max 1 (N-n t a ω))))

definition A-t-plus-1 :: nat ⇒ ′b ⇒ ′a where
A-t-plus-1 t ω = (SOME a. a ∈ A ∧ (∀ a ′. a ′ ∈ A −→ U t a ω ≥ U t a ′ ω))

definition prob-eq-Ex :: ′b set ⇒ bool where
prob-eq-Ex E ≡ prob E = expectation (λω. indicator E ω)

theorem proposition-15-7 :
assumes

a-in-A: a ∈ A
and ω ∈ Ω
and subopt-gap: ∆ a > 0
and a-not-opt: ∃ a ′ ∈ A. ∆ a ′ > 0
and delta-a: ∀ a ∈ A. ∆ a = µ a-star − µ a
and k ≤ n
and from-UCB-step1 : ∀ a ∈ A. expectation (λω. real (N-n n a ω)) ≤
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s n + expectation (λω. (
∑

t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t
a ω) then 1 else 0 ))

and from-UCB-step2 : ∀ a ∈ A. ∀ t ∈ {k..<n}. prob ({ω ∈ Ω. A-t-plus-1 t ω
= a} ∩

{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ln (1 / δ)) / (∆ a)^2}) ≤ 2 ∗ δ
and eps-pos: ε > 0
and t-gt0 : ∀ t ∈ {k..<n}. t > 0
and choice-delta: ∀ t ∈ {k..<n}. δ = 1 / (real t powr ε)
and s-form: ∀ a ∈ A. ∀ u. s u = (2 ∗ ε ∗ ln (real u)) / ((∆ a)^2 )
and subset-meas:∀ a ∈ A. ∀ t ∈ {k..<n}. ∀ω ∈ Ω. {ω. π (t+1 ) ω = a ∧ 2 ∗ ε

∗ ln (real t)/(∆ a)^2 ≤ N-n t a ω} ⊆ Ω
and prob-eq-E-assm: ∀ a ∈ A. ∀ t ∈ {k..<n}. prob {ω. π (Suc t) ω = a ∧ 2 ∗

ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)} =
prob ({ω. π (Suc t) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real

(N-n t a ω)} ∩ space M )
and finiteness: ∀ t∈{k..<n}. ∀ a∈A. emeasure M {ω. π (t+1 ) ω = a ∧ 2∗ε∗ln(real

t)/(∆ a)^2 ≤ real (N-n t a ω)} < ∞
and measurable-set: ∀ t∈{k..<n}. ∀ a∈A. {ω. π (t+1 ) ω = a ∧ 2∗ε∗ln(real

t)/(∆ a)^2 ≤ real (N-n t a ω)} ∈ sets M

and eq-sets-optimum:
∀ a ∈ A. ∀ t ∈ {k..<n}. {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆

a)^2 ≤ real (N-n t a ω)} =
{ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln

(real t)) / (∆ a)^2}

shows
∀ a ∈ A. expectation (λω. real (N-n n a ω)) ≤ s n + (

∑
t = k..<n. 2 / (real

t powr ε))

proof −

have def-sn: ∀ a ∈ A. s n = (2 ∗ ε ∗ ln (real n)) / ((∆ a)^2 )
using s-form by simp

have def-st: ∀ a ∈ A. s t = (2 ∗ ε ∗ ln (real t)) / ((∆ a)^2 )
using s-form by simp

then have expression: ∀ a ∈ A. expectation (λω. real (N-n n a ω)) ≤
(2 ∗ ε ∗ ln (real n)) / ((∆ a)^2 ) + expectation (λω. (

∑
t = k..<n. if π (t+1 )

ω = a ∧
(2 ∗ ε ∗ ln (real t)) / ((∆ a)^2 ) ≤ real (N-n t a ω) then 1 else 0 ))

using assms def-sn def-st by simp

have eq-if-of-bool:
∀ a ∈ A. expectation (λω.

∑
t = k..<n.

(if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω) then 1
else 0 ))
= expectation (λω.

∑
t = k..<n.
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of-bool (π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)))
by (simp add: of-bool-def )

have eq-indic-bool:
∀ a ∈ A. expectation (λω.

∑
t = k..<n.

of-bool (π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)))
= expectation (λω.

∑
t = k..<n.

indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n
t a ω)} ω)

by (simp add: indicator-def of-bool-def )

have expression-1 :
∀ a ∈ A. expectation (λω.

∑
t = k..<n.

(if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω) then 1
else 0 )) =

expectation (λω.
∑

t = k..<n.
indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t

a ω)} ω)
proof

fix a assume a ∈ A
from eq-if-of-bool[rule-format, OF ‹a ∈ A›]
have eq1 : expectation (λω.

∑
t = k..<n.

(if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω) then
1 else 0 )) =

expectation (λω.
∑

t = k..<n.
of-bool (π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)))

by simp

from eq-indic-bool[rule-format, OF ‹a ∈ A›]
have eq2 : expectation (λω.

∑
t = k..<n.

of-bool (π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a
ω))) =

expectation (λω.
∑

t = k..<n.
indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n

t a ω)} ω)
by simp

from eq1 eq2 show
expectation (λω.

∑
t = k..<n.

(if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω) then
1 else 0 )) =

expectation (λω.
∑

t = k..<n.
indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n

t a ω)} ω)
by (rule trans)

qed

have res:∀ a ∈ A. ∀ t ∈ {k..<n}. prob-eq-Ex {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln
(real t) / (∆ a)^2 ≤ real (N-n t a ω)}
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using assms prob-eq-Ex-def by auto

have lin-of-expect-indicators:
∀ a ∈ A. ∀ t ∈ {k..<n}. prob {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆

a)^2 ≤ real (N-n t a ω)} =
expectation (λω. (indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2
≤ real (N-n t a ω)} ω))

using prob-eq-Ex-def res by simp

then have key-result-1 : ∀ a ∈ A. (
∑

t = k..<n.
expectation (λω. (indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2
≤ real (N-n t a ω)} ω)))
= (

∑
t = k..<n. prob {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real

(N-n t a ω)})
using lin-of-expect-indicators by simp

have expression-follow-up: ∀ a ∈ A.
expectation (λω.

∑
t = k..<n. (if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2

≤ real (N-n t a ω) then 1 else 0 )) =
(
∑

t = k..<n. prob {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real
(N-n t a ω)})

proof −
have res1 : ∀ a ∈ A.

expectation (λω.
∑

t = k..<n. (if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2
≤ real (N-n t a ω) then 1 else 0 )) =
expectation (λω.

∑
t = k..<n.

of-bool (π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)))
using eq-if-of-bool by simp

have res2 :∀ a ∈ A.
expectation (λω.

∑
t = k..<n. (if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2

≤ real (N-n t a ω) then 1 else 0 )) =
expectation (λω.

∑
t = k..<n. indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real

t) / (∆ a)^2 ≤ real (N-n t a ω)} ω)
using expression-1 by simp

have res3 : ∀ a ∈ A.
expectation (λω.

∑
t = k..<n. (if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2

≤ real (N-n t a ω) then 1 else 0 )) =
(
∑

t = k..<n. expectation (λω. indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real
t) / (∆ a)^2 ≤ real (N-n t a ω)} ω))

proof −

have ∀ a ∈ A.
expectation (λω.

∑
t = k..<n. (if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2

≤ real (N-n t a ω) then 1 else 0 )) =
expectation (λω.

∑
t = k..<n. indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real

t) / (∆ a)^2 ≤ real (N-n t a ω)} ω)
using res2 by blast

37



then have ∀ a ∈ A. expectation (λω.
∑

t = k..<n. indicat-real {ω. π (t+1 )
ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)} ω) =
integralL M (λω.

∑
t = k..<n. indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real

t) / (∆ a)^2 ≤ real (N-n t a ω)} ω)
by simp

then have result-intermed:∀ a ∈ A. expectation (λω.
∑

t = k..<n. indi-
cat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)}
ω) =
(
∑

t = k..<n. integralL M (λω. indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln
(real t) / (∆ a)^2 ≤ real (N-n t a ω)} ω))

using assms integral-sum by simp

have result: ∀ a ∈ A. expectation (λω.
∑

t = k..<n. indicat-real {ω. π
(t+1 ) ω = a ∧ 2 ∗ ε ∗
ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)} ω) =
(
∑

t = k..<n. expectation (λω. indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real
t) / (∆ a)^2 ≤ real (N-n t a ω)} ω))

using result-intermed by auto
have ∀ a ∈ A.

expectation (λω.
∑

t = k..<n. (if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2
≤ real (N-n t a ω) then 1 else 0 )) =
expectation (λω.

∑
t = k..<n. indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real

t) / (∆ a)^2 ≤ real (N-n t a ω)} ω)
using res2 by simp

then have linearity-expectation: ∀ a ∈ A.
expectation (λω.

∑
t = k..<n. (if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2

≤ real (N-n t a ω) then 1 else 0 )) =
(
∑

t = k..<n. expectation (λω. indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real
t) / (∆ a)^2 ≤ real (N-n t a ω)} ω))

using result by simp

then show ?thesis using linearity-expectation by simp
qed

have final-linearity:∀ a ∈ A.
expectation (λω.

∑
t = k..<n. (if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2

≤ real (N-n t a ω) then 1 else 0 )) =
(
∑

t = k..<n. prob {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real
(N-n t a ω)})

using res1 res2 res3 key-result-1 by simp
then show ?thesis using final-linearity by simp

qed

have intermed-result: ∀ a ∈ A.
expectation (λω. real (N-n n a ω)) ≤
(2 ∗ ε ∗ ln (real n)) / (∆ a)^2 +
(
∑

t = k..<n. prob {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real
(N-n t a ω)})

using expression-follow-up expression by simp
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then have follow-up-result: ∀ a ∈ A. ∀ t ∈ {k..<n}.
prob {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)} =
prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln (real t))

/ (∆ a)^2})
using expression-follow-up expression eq-sets-optimum intermed-result by simp

have next-result-sum-prob: ∀ a ∈ A.
(
∑

t = k..<n. prob {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real
(N-n t a ω)}) =
(
∑

t = k..<n. prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. N-n t a ω ≥ (2 ∗
ε ∗ ln (real t)) / (∆ a)^2}))

using assms follow-up-result by simp

then have next-result-fin: ∀ a ∈ A.
expectation (λω. real (N-n n a ω)) ≤
(2 ∗ ε ∗ ln (real n)) / (∆ a)^2 +
(
∑

t = k..<n. prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. N-n t a ω ≥ (2
∗ ε ∗ ln (real t)) / (∆ a)^2}))

using expression-follow-up next-result-sum-prob expression by fastforce

have generalized-bound:
∀ a ∈ A. ∀ t ∈ {k..<n}. prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩

{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln (real t)) / (∆ a)^2}) ≤ 2 /
(real t powr ε)

proof
fix a
assume a-in: a ∈ A
show ∀ t ∈ {k..<n}. prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. N-n t a ω

≥ (2 ∗ ε ∗ ln (real t)) / (∆ a)^2}) ≤ 2 / (real t powr ε)
proof

fix t
assume t-in: t ∈ {k..<n}
have Hprob:

prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩
{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ln (1 / δ)) / (∆ a)^2}) ≤ 2 ∗ δ

using from-UCB-step2 [rule-format, OF a-in t-in] by blast

have ln-eq: ln (1 / δ) = ε ∗ ln (real t)
using choice-delta[rule-format, OF t-in] eps-pos by simp

hence threshold-eq:
(2 ∗ ln (1 / δ)) / (∆ a)^2 = (2 ∗ ε ∗ ln (real t)) / (∆ a)^2
by simp

hence set-eq:
{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ln (1 / δ)) / (∆ a)^2} =
{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln (real t)) / (∆ a)^2}
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by auto

from Hprob set-eq have
prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩
{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln (real t)) / (∆ a)^2}) ≤ 2 ∗ δ

by simp

moreover from choice-delta[rule-format, OF t-in] have 2 ∗ δ = 2 / (real t
powr ε)

by simp

ultimately show
prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩
{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln (real t)) / (∆ a)^2}) ≤ 2 / (real t powr

ε)
by simp

qed
qed

have sum-mono-expression:
∀ a ∈ A. (

∑
t = k..<n. prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩
{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln (real t)) / (∆ a)^2}))

≤ (
∑

t = k..<n. 2 / (real t powr ε))
proof

fix a
assume a-in: a ∈ A
show (

∑
t = k..<n. prob ({ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. N-n t a ω

≥ (2 ∗ ε ∗ ln (real t)) / (∆ a)^2}))
≤ (

∑
t = k..<n. 2 / (real t powr ε))

using generalized-bound a-in by (intro sum-mono) auto
qed

have final-result:
∀ a ∈ A. expectation (λω. real (N-n n a ω))
≤ (2 ∗ ε ∗ ln (real n)) / ((∆ a)^2 ) + (

∑
t = k..<n. 2 / (real t powr ε))

proof
fix a
assume a-in: a ∈ A
from next-result-fin[rule-format, OF a-in]
have bound1 :

expectation (λω. real (N-n n a ω))
≤ (2 ∗ ε ∗ ln (real n)) / ((∆ a)^2 )

+ (
∑

t = k..<n. prob ({ω ∈ Ω. A-t-plus-1 t ω = a}
∩ {ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln (real t)) / ((∆

a)^2 )}))
by simp

moreover from sum-mono-expression[rule-format, OF a-in]
have bound2 :
(
∑

t = k..<n. prob ({ω ∈ Ω. A-t-plus-1 t ω = a}
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∩ {ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln (real t)) / ((∆ a)^2 )}))
≤ (

∑
t = k..<n. 2 / (real t powr ε))

by simp
ultimately show

expectation (λω. real (N-n n a ω))
≤ (2 ∗ ε ∗ ln (real n)) / ((∆ a)^2 ) + (

∑
t = k..<n. 2 / (real t powr ε))

by auto
qed

show ?thesis using assms final-result by simp

qed

theorem theorem-15-4 :
assumes

a-in-A: a ∈ A
and finite A and ∀ a ∈ A. integrable M (λω. real (N-n n a ω))
and ω-in-Ω: ω ∈ Ω
and subopt-gap: ∀ a ∈ A. ∆ a > 0
and a-not-opt: ∃ a ′ ∈ A. ∆ a ′ > 0
and delta-a: ∀ a ∈ A. ∆ a = µ a-star − µ a
and k ≤ n
and n-count-assm-pointwise: (

∑
a∈A. real (N-n n a ω)) = real n

and expected-regret-prop-15-1 : expectation (λω. R-n n ω) = (
∑

a∈A. ∆ a ∗
expectation (λω. real (N-n n a ω)))

and from-UCB-step1 : ∀ a ∈ A. expectation (λω. real (N-n n a ω)) ≤
s n + expectation (λω. (

∑
t = k..<n. if π (t+1 ) ω = a ∧ s t ≤ real (N-n t

a ω) then 1 else 0 ))
and from-UCB-step2 : ∀ a ∈ A. ∀ t ∈ {k..<n}. prob ({ω ∈ Ω. A-t-plus-1 t ω

= a} ∩
{ω ∈ Ω. N-n t a ω ≥ (2 ∗ ln (1 / δ)) / (∆ a)^2}) ≤ 2 ∗ δ

and eps-pos: ε > 0
and t-gt0 : ∀ t ∈ {k..<n}. t > 0
and choice-delta: ∀ t ∈ {k..<n}. δ = 1 / (real t powr ε)
and s-form: ∀ a ∈ A. ∀ u. s u = (2 ∗ ε ∗ ln (real u)) / ((∆ a)^2 )
and subset-meas:∀ a ∈ A. ∀ t ∈ {k..<n}. ∀ω ∈ Ω. {ω. π (t+1 ) ω = a ∧ 2 ∗ ε

∗ ln (real t)/(∆ a)^2 ≤ N-n t a ω} ⊆ Ω
and prob-eq-E-assm: ∀ a ∈ A. ∀ t ∈ {k..<n}. prob {ω. π (Suc t) ω = a ∧ 2 ∗

ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω)} =
prob ({ω. π (Suc t) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real

(N-n t a ω)} ∩ space M )
and finiteness: ∀ t∈{k..<n}. ∀ a∈A. emeasure M {ω. π (t+1 ) ω = a ∧ 2∗ε∗ln(real

t)/(∆ a)^2 ≤ real (N-n t a ω)} < ∞
and measurable-set: ∀ t∈{k..<n}. ∀ a∈A. {ω. π (t+1 ) ω = a ∧ 2∗ε∗ln(real

t)/(∆ a)^2 ≤ real (N-n t a ω)} ∈ sets M

and eq-sets-optimum:
∀ a ∈ A. ∀ t ∈ {k..<n}. {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤
real (N-n t a ω)} =
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{ω ∈ Ω. A-t-plus-1 t ω = a} ∩ {ω ∈ Ω. N-n t a ω ≥ (2 ∗ ε ∗ ln
(real t)) / (∆ a)^2}
and assms-lin-expect: ∀ a ∈ A. expectation (λω.

∑
t = k..<n.

(if π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln (real t) / (∆ a)^2 ≤ real (N-n t a ω) then
1 else 0 )) =

(
∑

t = k..<n. expectation (λω. indicat-real {ω. π (t+1 ) ω = a ∧ 2 ∗ ε ∗ ln
(real t) / (∆ a)^2 ≤ real (N-n t a ω)} ω))
and mono-sum-sets:
(∀ a ∈ A. ∆ a ∗ expectation (λω. real (N-n n a ω)) ≤ ∆ a ∗ (s n + (

∑
t = k..<n.

2 / (real t powr ε))))
=⇒ (

∑
a ∈ A. ∆ a ∗ expectation (λω. real (N-n n a ω))) ≤

(
∑

a ∈ A. ∆ a ∗ (s n + (
∑

t = k..<n. 2 / (real t powr ε))))

shows expectation (λω. R-n n ω) ≤ (
∑

a∈A. ∆ a ∗ ((2 ∗ ε ∗ ln (real n)) /
((∆ a)^2 )+ (

∑
t = k..<n. 2 / (real t powr ε))))

proof −
have exp-regret-eq:

expectation (λω. R-n n ω) = (
∑

a∈A. ∆ a ∗ expectation (λω. real (N-n n a
ω)))

using assms by fastforce

have result-2 : ∀ a ∈ A. expectation (λω. real (N-n n a ω))
≤ s n + (

∑
t = k..<n. 2 / (real t powr ε))

using assms proposition-15-7 by (smt (verit, ccfv-threshold) a-star-in-A)

have intermed-step: ∀ a ∈ A. ∆ a ∗ expectation (λω. real (N-n n a ω)) ≤ ∆ a ∗
(s n + (

∑
t = k..<n. 2 / (real t powr ε)))

proof
fix a assume a ∈ A
then have expectation (λω. real (N-n n a ω)) ≤ s n + (

∑
t = k..<n. 2 /

(real t powr ε))
using result-2 by auto

moreover have 0 < ∆ a
using assms subopt-gap ‹a ∈ A› by blast

ultimately show ∆ a ∗ expectation (λω. real (N-n n a ω)) ≤ ∆ a ∗ (s n +
(
∑

t = k..<n. 2 / (real t powr ε)))
using mult-left-mono by simp

qed

have intermed-step-2 :(
∑

a∈A. ∆ a ∗ expectation (λω. real (N-n n a ω))) ≤
(
∑

a∈A. ∆ a ∗ (s n + (
∑

t = k..<n. 2 / (real t powr ε))))
proof −

have res:∀ a∈A. ∆ a ∗ expectation (λω. real (N-n n a ω)) ≤ ∆ a ∗ (s n + (
∑

t = k..<n. 2 / (real t powr ε)))
using intermed-step by auto

have res2 : (∀ a ∈ A. ∆ a ∗ expectation (λω. real (N-n n a ω)) ≤ ∆ a ∗ (s n +
(
∑

t = k..<n. 2 / (real t powr ε))))
=⇒ (

∑
a ∈ A. ∆ a ∗ expectation (λω. real (N-n n a ω))) ≤ (

∑
a ∈ A. ∆ a ∗ (s

n + (
∑

t = k..<n. 2 / (real t powr ε))))
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using res assms by fastforce
then have intermed-step: (

∑
a∈A. ∆ a ∗ expectation (λω. real (N-n n a ω)))

≤ (
∑

a∈A. ∆ a ∗ (s n + (
∑

t = k..<n. 2 / (real t powr ε))))
using res res2 by auto

then show ?thesis using intermed-step by simp
qed

then have expectation (λω. R-n n ω) ≤ (
∑

a∈A. ∆ a ∗ (s n + (
∑

t = k..<n.
2 / (real t powr ε))))

using assms intermed-step-2 by linarith

have ∀ a ∈ A. s n = (2 ∗ ε ∗ ln (real n)) / ((∆ a)^2 )
using s-form by auto

then have expectation (λω. R-n n ω) ≤ (
∑

a∈A. ∆ a ∗ ((2 ∗ ε ∗ ln (real n)) /
((∆ a)^2 )+ (

∑
t = k..<n. 2 / (real t powr ε))))

using assms intermed-step-2 by (metis a-star-in-A less-irrefl verit-minus-simplify(1 ))

then show ?thesis by simp

qed

end
end
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