Formal Proof of Dilworth's Theorem

Vivek Soorya Maadoori S. M. Meesum Shiv Pillai T. V. H. Prathamesh Aditya Swami

October 13, 2025

Abstract

A *chain* is defined as a totally ordered subset of a partially ordered set. A *chain cover* refers to a collection of chains of a partially ordered set whose union equals the entire set. A *chain decomposition* is a chain cover consisting of pairwise disjoint sets. An *antichain* is a subset of elements of a partially ordered set in which no two elements are comparable.

In 1950, Dilworth proved that in any finite partially ordered set, the cardinality of a largest antichain equals the cardinality of a smallest chain decomposition. [2]

In this paper, we formalise a proof of the theorem above, also known as *Dilworth's theorem*, based on a proof by Perles (1963) [3]. Our formalisation draws on the formalisation of Dilworth's theorem for chain covers in Coq by Abhishek Kr. Singh [4], and builds on the AFP entry containing formalisation of minimal and maximal elements in a set by Martin Desharnais [1]. Our formalisation extends the prior work in Coq by including a formal proof of Dilworth's theorem for chain decomposition.

Contents

1	Definitions	2
2	Preliminary Lemmas	3
3	Size of an antichain is less than or equal to the size of a chain cover	4
4	Existence of a chain cover whose cardinality is the cardinality of the largest antichain 4.1 Preliminary lemmas	5 5
5	Dilworth's Theorem for Chain Covers: Statement and Proof	8

6 Dilworth's Decomposition Theorem
6.1 Preliminaries
6.2 Statement and Proof
thoony Dilayouth
theory Dilworth imports Main HOL. Complete-Partial-Order HOL. Relation HOL. Order-Relation
Min-Max-Least-Greatest.Min-Max-Least-Greatest-Set
begin
begin
Note: The Dilworth's theorem for chain cover is labelled Dilworth and the
extension to chain decomposition is labelled Dilworth_Decomposition.
context order
begin
1 Definitions
definition chain-on :: - set \Rightarrow - set \Rightarrow bool where
$chain-on\ A\ S \longleftrightarrow ((A\subseteq S) \land (Complete-Partial-Order.chain\ (\leq)\ A))$
definition $antichain :: -set \Rightarrow bool$ where
antichain $S \longleftrightarrow (\forall x \in S. \ \forall y \in S. \ (x \le y \lor y \le x) \longrightarrow x = y)$
$anticidit S \longleftrightarrow (\forall x \in S. \ \forall y \in S. \ (x \leq y \ \forall y \leq x) \longrightarrow x = y)$
definition antichain-on :: - set \Rightarrow - set \Rightarrow bool where
$(antichain-on\ A\ S)\longleftrightarrow$
$(partial\text{-}order\text{-}on\ A\ (relation\text{-}of\ (\leq)\ A)) \land (S\subseteq A) \land (antichain\ S)$
definition $largest$ - $antichain$ - on :: - $set \Rightarrow$ - $set \Rightarrow bool$ where
$largest$ -antichain-on P $lac \longleftrightarrow$
$(antichain-on\ P\ lac\ \land\ (\forall\ ac.\ antichain-on\ P\ ac\longrightarrow card\ ac\le card\ lac))$
definition chain-cover-on:: $- set \Rightarrow - set set \Rightarrow bool$ where
$chain-cover-on \ S \ cv \longleftrightarrow (\bigcup \ cv = S) \land (\forall \ x \in cv \ . \ chain-on \ x \ S)$
definition antichain-cover-on:: - set \Rightarrow - set set \Rightarrow bool where
antichain-cover-on S $cv \longleftrightarrow (\bigcup cv = S) \land (\forall x \in cv \text{ antichain-on } S x)$
and the control of $b \in V$ ($b \in V$) (
definition smallest-chain-cover-on:: - set \Rightarrow - set set \Rightarrow bool where
$smallest$ -chain-cover-on S $cv \equiv$
$(chain-cover-on \ S \ cv \ \land$
$(\forall cv2. (chain-cover-on\ S\ cv2 \land card\ cv2 \leq card\ cv) \longrightarrow card\ cv = card\ cv2))$
definition chain-decomposition where
$chain-decomposition \ S \ cd \equiv ((chain-cover-on \ S \ cd) \ \land$
$(\forall \ x \in cd. \ \forall \ y \in cd. \ x \neq y \longrightarrow (x \cap y = \{\})))$

```
definition smallest-chain-decomposition:: - set \Rightarrow - set set \Rightarrow bool where smallest-chain-decomposition S cd \equiv (chain-decomposition S cd \land (\forall cd2. (chain-decomposition S cd2 \land card cd2 \leq card cd) \longrightarrow card cd = card cd2))
```

2 Preliminary Lemmas

The following lemma shows that given a chain and an antichain, if the cardinality of their intersection is equal to 0, then their intersection is empty..

lemma inter-nInf:

```
assumes a1: Complete-Partial-Order.chain (\subseteq) X and a2: antichain Y and asmInf: card (X \cap Y) = 0 shows X \cap Y = \{\}
```

The following lemma shows that given a chain X and an antichain Y that both are subsets of S, their intersection is either empty or has cardinality one..

 $\mathbf{lemma}\ chain\text{-}antichain\text{-}inter:$

```
assumes a1: Complete-Partial-Order.chain (\subseteq) X and a2: antichain Y and a3: X \subseteq S \land Y \subseteq S shows (card\ (X \cap Y) = 1) \lor ((X \cap Y) = \{\}) \langle proof \rangle
```

Following lemmas show that given a finite set S, there exists a chain decomposition of S.

The following lemma shows that a chain decomposition exists for any finite set S.

```
lemma exists-cd: assumes finite S
shows \exists cd. chain-decomposition S cd
\langle proof \rangle
```

lemma part-ord:partial-order-on S (relation-of (\leq) S)

The following lemma shows that the chain decomposition of a set is a chain cover.

```
lemma cd-cv:

assumes chain-decomposition P cd

shows chain-cover-on P cd

⟨proof⟩
```

The following lemma shows that for any finite partially ordered set, there exists a chain cover on that set.

```
\begin{array}{c} \textbf{lemma} \ \ \textit{exists-chain-cover} \colon \textbf{assumes} \ \textit{finite} \ P \\ \textbf{shows} \ \exists \ \textit{cv. chain-cover-on} \ P \ \textit{cv} \\ & \langle \textit{proof} \rangle \\ \\ \textbf{lemma} \ \ \textit{finite-cv-set} \colon \textbf{assumes} \ \textit{finite} \ P \\ \textbf{and} \ \ S = \{x. \ \textit{chain-cover-on} \ P \ x\} \\ \textbf{shows} \ \ \textit{finite} \ S \\ & \langle \textit{proof} \rangle \end{array}
```

The following lemma shows that for every element of an antichain in a set, there exists a chain in the chain cover of that set, such that the element of the antichain belongs to the chain.

```
lemma elem-ac-in-c: assumes a1: antichain-on P ac and chain-cover-on P cv shows \forall a \in ac. \exists c \in cv. a \in c \langle proof \rangle
```

For a function f that maps every element of an antichain to some chain it belongs to in a chain cover, we show that, the co-domain of f is a subset of the chain cover.

```
lemma f-image: fixes f:: -\Rightarrow -set
assumes a1: (antichain-on\ P\ ac)
and a2: (chain-cover-on\ P\ cv)
and a3: \ \forall\ a\in\ ac.\ \exists\ c\in\ cv.\ a\in\ c\land\ f\ a=c
shows (f\ 'ac)\subseteq cv
```

3 Size of an antichain is less than or equal to the size of a chain cover

The following lemma shows that given an antichain ac and chain cover cv on a finite set, the cardinality of ac will be less than or equal to the cardinality of cv.

```
lemma antichain-card-leq:
assumes (antichain-on P ac)
and (chain-cover-on P cv)
```

```
and finite P
shows card\ ac \leq card\ cv
\langle proof \rangle
```

4 Existence of a chain cover whose cardinality is the cardinality of the largest antichain

4.1 Preliminary lemmas

The following lemma shows that the maximal set is an antichain.

```
lemma maxset-ac: antichain (\{x : is-maximal-in-set P x\}) \langle proof \rangle
```

The following lemma shows that the minimal set is an antichain.

```
lemma minset-ac: antichain (\{x : is\text{-minimal-in-set } P x\}) \langle proof \rangle
```

The following lemma shows that the null set is both an antichain and a chain cover.

```
 \begin{array}{l} \textbf{lemma} \ antichain\text{-}null: \ antichain \ \{\} \\ \langle proof \rangle \end{array}
```

```
lemma chain-cover-null: assumes P = \{\} shows chain-cover-on P \{\} \langle proof \rangle
```

The following lemma shows that for any arbitrary x that does not belong to the largest antichain of a set, there exists an element y in the antichain such that x is related to y or y is related to x.

```
lemma x-not-in-ac-rel: assumes largest-antichain-on P ac and x \in P and x \notin ac and finite P shows \exists y \in ac. (x \le y) \lor (y \le x) \langle proof \rangle
```

The following lemma shows that for any subset Q of the partially ordered P, if the minimal set of P is a subset of Q, then it is a subset of the minimal set of Q as well.

lemma *minset-subset-minset*:

```
assumes finite P
and Q \subseteq P
and \forall x. (is-minimal-in-set P x \longrightarrow x \in Q)
shows \{x : \text{is-minimal-in-set } P x\} \subseteq \{x : \text{is-minimal-in-set } Q x\}
\langle proof \rangle
```

The following lemma show that if P is not empty, the minimal set of P is not empty.

The following lemma shows that for all elements m of the minimal set, there exists a chain c in the chain cover such that m belongs to c.

```
lemma elem-minset-in-chain: assumes finite P and chain-cover-on P cv shows is-minimal-in-set P a \longrightarrow (\exists \ c \in cv. \ a \in c) \langle proof \rangle
```

The following lemma shows that for all elements m of the maximal set, there exists a chain c in the chain cover such that m belongs to c.

```
lemma elem-maxset-in-chain: assumes finite P and chain-cover-on P cv shows is-maximal-in-set P a \longrightarrow (\exists \ c \in cv. \ a \in c) \langle proof \rangle
```

The following lemma shows that for a given chain cover and antichain on P, if the cardinality of the chain cover is equal to the cardinality of the antichain then for all chains c of the chain cover, there exists an element a of the antichain such that a belongs to c.

```
lemma card-ac-cv-eq: assumes finite P and chain-cover-on P cv and antichain-on P ac and card cv = card ac shows \forall \ c \in cv. \ \exists \ a \in ac. \ a \in c \ \langle proof \rangle
```

The following lemma shows that if an element m from the minimal set is in a chain, it is less than or equal to all elements in the chain.

```
 \begin{array}{c} \textbf{lemma} \ e\text{-}minset\text{-}lesseq\text{-}e\text{-}chain\text{: assumes } chain\text{-}on \ c \ P \\ \textbf{and} \ is\text{-}minimal\text{-}in\text{-}set \ P \ m \\ \textbf{and} \ m \in \ c \\ \textbf{shows} \ \forall \ a \in \ c. \ m \leq \ a \\ \langle proof \rangle \\ \end{array}
```

The following lemma shows that if an element m from the maximal set is in a chain, it is greater than or equal to all elements in the chain.

The following lemma shows that for any two elements of an antichain, if

they both belong to the same chain in the chain cover, they must be the same element.

```
lemma ac\text{-}to\text{-}c: assumes finite P and chain\text{-}cover\text{-}on\ P\ cv and antichain\text{-}on\ P\ ac shows \forall\ a\in ac.\ \forall\ b\in ac.\ \exists\ c\in cv.\ a\in c\ \land\ b\in c\longrightarrow a=b \langle proof \rangle
```

The following lemma shows that for two finite sets, if their cardinalities are equal, then their cardinalities would remain equal after removing a single element from both sets.

```
lemma card-Diff1-eq: assumes finite A and finite B and card A = card \ B shows \forall \ a \in A. \ \forall \ b \in B. \ card \ (A - \{a\}) = card \ (B - \{b\}) \ \langle proof \rangle
```

The following lemma shows that for two finite sets A and B of equal cardinality, removing two unique elements from A and one element from B will ensure the cardinality of A is less than B.

```
\begin{array}{l} \textbf{lemma} \ \ card\text{-}Diff2\text{-}1\text{-}less\text{: assumes} \ finite \ A \\ \quad \quad \text{and} \ \ finite \ B \\ \quad \quad \text{and} \ \ card \ A = card \ B \\ \quad \quad \text{and} \ \ a \in A \\ \quad \quad \text{and} \ \ b \in A \\ \quad \quad \text{and} \ \ a \neq b \\ \quad \quad \text{shows} \ \forall \ \ x \in B. \ card \ ((A - \{a\}) - \{b\}) < card \ (B - \{x\}) \\ \langle proof \rangle \end{array}
```

The following lemma shows that for all elements of a partially ordered set, there exists an element in the minimal set that will be less than or equal to it.

```
lemma min-elem-for-P: assumes finite P shows \forall p \in P. \exists m. is-minimal-in-set P m \land m \leq p \langle proof \rangle
```

The following lemma shows that for all elements of a partially ordered set, there exists an element in the maximal set that will be greater than or equal to it.

```
lemma max-elem-for-P: assumes finite P shows \forall p \in P. \exists m. is-maximal-in-set P m \land p \leq m \land proof \land
```

The following lemma shows that if the minimal set is not considered as the largest antichain on a set, then there exists an element a in the minimal set such that a does not belong to the largest antichain.

```
lemma min\text{-}e\text{-}nIn\text{-}lac: assumes largest\text{-}antichain\text{-}on\ P\ ac} and \{x.\ is\text{-}minimal\text{-}in\text{-}set\ P\ x}\} \neq ac and finite\ P shows \exists\ m.\ (is\text{-}minimal\text{-}in\text{-}set\ P\ m)\ \land\ (m\notin ac) (is \exists\ m.\ (?ms\ m)\ \land\ (m\notin ac)) \langle proof \rangle
```

The following lemma shows that if the maximal set is not considered as the largest antichain on a set, then there exists an element a in the maximal set such that a does not belong to the largest antichain.

```
lemma max\text{-}e\text{-}nIn\text{-}lac: assumes largest\text{-}antichain\text{-}on\ P\ ac} and \{x\ .\ is\text{-}maximal\text{-}in\text{-}set\ P\ x}\} \neq ac and finite\ P shows \exists\ m\ .\ is\text{-}maximal\text{-}in\text{-}set\ P\ m\ \land\ m\notin ac} (is \exists\ m\ .\ ?ms\ m\ \land\ m\notin ac) \langle proof \rangle
```

4.2 Statement and Proof

```
Proves theorem for the empty set. 

lemma largest-antichain-card-eq-empty: 

assumes largest-antichain-on P lac 

and P = \{\} 

shows \exists cv. (chain-cover-on P cv) \land (card cv = card lac) 

<math>\langle proof \rangle
```

Proves theorem for the non-empty set.

```
lemma largest-antichard-card-eq:
    assumes asm1: largest-antichain-on P lac
    and asm2: finite P
    and asm3: P \neq \{\}
    shows \exists cv. (chain-cover-on P cv) \land (card cv = card lac) \land proof <math>\rangle
```

5 Dilworth's Theorem for Chain Covers: Statement and Proof

We show that in any partially ordered set, the cardinality of a largest antichain is equal to the cardinality of a smallest chain cover.

```
theorem Dilworth:
assumes largest-antichain-on P lac
and finite P
shows \exists cv. (smallest-chain-cover-on P cv) \land (card cv = card lac) \langle proof \rangle
```

6 Dilworth's Decomposition Theorem

6.1 Preliminaries

Now we will strengthen the result above to prove that the cardinality of a smallest chain decomposition is equal to the cardinality of a largest antichain. In order to prove that, we construct a preliminary result which states that cardinality of smallest chain decomposition is equal to the cardinality of smallest chain cover.

We begin by constructing the function make_disjoint which takes a list of sets and returns a list of sets which are mutually disjoint, and leaves the union of the sets in the list invariant. This function when acting on a chain cover returns a chain decomposition.

```
fun make-disjoint::- set \ list \Rightarrow - \ where make-disjoint \ [] = ([]) |make-disjoint \ (s\#ls) = (s - (\bigcup \ (set \ ls)))\#(make-disjoint \ ls) |make-disjoint \ (s\#ls) = (s - (\bigcup \ (set \ ls)))\#(make-disjoint \ ls) |make-list: |m
```

We use the predicate list-all2 (\subseteq), which checks if two lists (of sets) have equal length, and if each element in the first list is a subset of the corresponding element in the second list.

```
 \begin{array}{l} \textbf{lemma} \ subset-make-disjoint: \ list-all2 \ (\subseteq) \ (make-disjoint \ xs) \ xs \\ & \langle proof \rangle \\ \\ \textbf{lemma} \ subslist-union: \\ \textbf{assumes} \ list-all2 \ (\subseteq) \ xs \ ys \\ \textbf{shows} \ \bigcup \ (set \ xs) \ \subseteq \ \bigcup \ (set \ ys) \\ & \langle proof \rangle \\ \\ \textbf{lemma} \ make-disjoint-union: } \bigcup \ (set \ xs) \ = \ \bigcup \ (set \ (make-disjoint \ xs)) \\ & \langle proof \rangle \\ \\ \textbf{lemma} \ make-disjoint-empty-int: \\ \textbf{assumes} \ X \ \in \ set \ (make-disjoint \ xs) \ Y \ \in \ set \ (make-disjoint \ xs) \\ \textbf{and} \ X \ \neq \ Y \\ \textbf{shows} \ X \ \cap \ Y \ = \ \{\} \\ & \langle proof \rangle \\ \end{array}
```

```
lemma chain-subslist:
 assumes \forall i < length \ xs. \ Complete-Partial-Order.chain (<math>\leq) (xs!i)
   and list-all2 (\subseteq) ys xs
 shows \forall i < length \ ys. \ Complete-Partial-Order.chain (<math>\leq) (ys!i)
  \langle proof \rangle
lemma chain-cover-disjoint:
 assumes chain-cover-on P (set C)
 shows chain-cover-on P (set (make-disjoint C))
\langle proof \rangle
lemma make-disjoint-subset-i:
 assumes i < length as
 shows (make-disjoint (as))!i \subseteq (as!i)
  \langle proof \rangle
Following theorem asserts that the corresponding to the smallest chain cover
on a finite set, there exists a corresponding chain decomposition of the same
cardinality.
lemma chain-cover-decompsn-eq:
 assumes finite P
     and smallest-chain-cover-on P A
```

shows \exists B. chain-decomposition $P B \land card B = card A$

```
lemma smallest-cv-cd:

assumes smallest-chain-decomposition P cd

and smallest-chain-cover-on P cv

shows card cv \leq card cd
```

 $\langle proof \rangle$

 $\langle proof \rangle$

lemma smallest-cv-eq-smallest-cd:
assumes finite Pand smallest-chain-decomposition P cd
and smallest-chain-cover-on P cv
shows $card\ cv = card\ cd$ $\langle proof \rangle$

6.2 Statement and Proof

We extend the Dilworth's theorem to chain decomposition. The following theorem asserts that size of a largest antichain is equal to the size of a smallest chain decomposition.

```
theorem Dilworth-Decomposition:

assumes largest-antichain-on P lac

and finite P

shows \exists cd. (smallest-chain-decomposition P cd) \land (card cd = card lac)
```

 $\langle proof \rangle$

 $\quad \mathbf{end} \quad$

end

Acknowledgement

We would like thank Divakaran D. for valuable suggestions.

References

- [1] M. Desharnais. Minimal, maximal, least, and greatest elements w.r.t. restricted ordering. *Archive of Formal Proofs*, October 2024. https://isa-afp.org/entries/Min_Max_Least_Greatest.html, Formal proof development.
- [2] R. P. Dilworth. A decomposition theorem for partially ordered sets. *Annals of Mathematics*, 51(1):161–166, 1950.
- [3] M. A. Perles. A proof of dilworths decomposition theorem for partially ordered sets. *Israel Journal of Mathematics*, 1:105–107, 1963.
- [4] A. K. Singh. Fully mechanized proofs of dilworths theorem and mirskys theorem. arXiv preprint arXiv:1703.06133, 2017.