Derandomization with Conditional Expectations

Emin Karayel

May 14, 2024

Abstract

The Method of Conditional Expectations [4] (sometimes also called "Method of Conditional Probabilities") is one of the prominent derandomization techniques. Given a randomized algorithm, it allows the construction of a deterministic algorithm with a result that matches the average-case quality of the randomized algorithm.

Using this technique, this entry starts with a simple example, an algorithm that obtains a cut that crosses at least half of the edges. This is a well-known approximate solution to the Max-Cut problem. It is followed by a more complex and interesting result: an algorithm that returns an independent set matching (or exceeding) the Caro-Wei bound [3]: $\frac{n}{d+1}$ where n is the vertex count and d is the average degree of the graph.

Both algorithms are efficient and deterministic, and follow from the derandomization of a probabilistic existence proof.

\section*{Contents} 1 Some Preliminary Results 2 1.1 On Probability Theory 2 1.2 On Convexity 3 1.3 On subseq and strict-subseq 3 1.4 On Random Permutations 4 1.5 On Finite Simple Graphs 6 2 Method of Conditional Expectations: Large Cuts 7 3 Method of Pessimistic Estimators: Independent Sets 12

1 Some Preliminary Results

theory Derandomization-Conditional-Expectations-Preliminary imports
HOL-Combinatorics.Multiset-Permutations
Universal-Hash-Families.Pseudorandom-Objects
Undirected-Graph-Theory.Undirected-Graphs-Root
begin

1.1 On Probability Theory

lemma map-pmf-of-set-bij-betw-2:
assumes bij-betw $(\lambda x$. $(f x, g x)) A(B \times C) A \neq\{ \}$ finite A
shows map-pmf $f($ pmf-of-set $A)=p m f$-of-set $B($ is $? L=? R)$
proof -
have $B \times C \neq\{ \}$ using $\operatorname{assms}(1,2)$ unfolding bij-betw-def by auto
hence $0: B \neq\{ \} C \neq\{ \}$ by auto
have finite $(B \times C)$
unfolding bij-betw-imp-surj-on[OF assms(1), symmetric] by (intro finite-imageI assms(3))
hence 1: finite B finite C
using 0 finite-cartesian-productD1 finite-cartesian-productD2 by auto
have $? L=$ map-pmf fst $(\operatorname{map-pmf}(\lambda x .(f x, g x))(p m f$-of-set $A))$
unfolding map-pmf-comp by simp
also have $\ldots=$ map-pmf fst (pmf-of-set $(B \times C)$)
by (intro arg-cong2[where $f=$ map-pmf] map-pmf-of-set-bij-betw assms refl)
also have $\ldots=p m f$-of-set B
using 01 by (subst pmf-of-set-prod-eq) (auto simp add:map-fst-pair-pmf)
finally show? ?thesis by simp
qed
lemma integral-bind-pmf:
fixes $f::-\Rightarrow$ real
assumes $\bigwedge x . x \in$ set-pmf (bind-pmf $p q) \Longrightarrow|f x| \leq M$
shows $\left(\int x . f x\right.$ bind-pmf $\left.p q\right)=\left(\int x . \int y . f y \partial q x \partial p\right)($ is $? L=? R)$
proof -
define clamp where clamp $x=($ if $|x|>M$ then 0 else $x)$ for x
obtain x where $x \in$ set-pmf (bind-pmf $p q$) using set-pmf-not-empty by fast
hence M-ge- $0: M \geq 0$ using assms by fastforce
have $a: \bigwedge x y . x \in \operatorname{set}-p m f p \Longrightarrow y \in \operatorname{set}-p m f(q x) \Longrightarrow \neg|f y|>M$ using assms by fastforce
hence $\left(\int x . f x\right.$ dbind-pmf $\left.p q\right)=\left(\int x . \operatorname{clamp}(f x)\right.$ $\left.\partial b i n d-p m f p q\right)$ unfolding clamp-def by (intro integral-cong-AE AE-pmfI) auto
also have $\ldots=\left(\int x . \int y . \operatorname{clamp}(f y) \partial q x \partial p\right)$ unfolding measure-pmf-bind by (subst integral-bind $\left[\right.$ where $K=$ count-space UNIV and $B^{\prime}=1$ and $\left.B=M\right]$) (simp-all add:measure-subprob clamp-def M-ge-0)
also have $\ldots=$? R unfolding clamp-def using a by (intro integral-cong-AE AE-pmfI) simp-all
finally show ?thesis by simp
qed
lemma pmf-of-set-un:
fixes $A B$:: 'x set
assumes $A \cup B \neq\{ \} A \cap B=\{ \}$ finite $(A \cup B)$
defines $p \equiv$ real (card $A) /$ real $($ card $A+$ card $B)$
shows pmf-of-set $(A \cup B)=d o\{c \leftarrow$ bernoulli-pmf p; pmf-of-set (if c then A else B) $\}$
(is ? $L=? R$)

```
proof (rule pmf-eqI)
    fix }x:: '
    have p-range: 0\leqpp\leq1 unfolding p-def by (auto simp: divide-le-eq)
    have card A + card B>0 using assms(1,2,3) by auto
    hence a: 1-p = real (card B)/real (card A + card B)
        unfolding p-def by (auto simp:divide-simps)
    have b: of-bool (x\inT) =pmf (pmf-of-set T) x* real (card T) if finite T for T
        using that by (cases T\not={}) auto
    have pmf ?L x = indicator ( }A\cupB)x/\operatorname{card}(A\cupB)\mathrm{ using assms by simp
    also have ... = (of-bool (x\inA) + of-bool (x\inB))/(card A+card B) using assms(1-3)
    by (intro arg-cong2[where f=(/)] arg-cong[where f=real] card-Un-disjoint) auto
    also have ... = (pmf (pmf-of-set A) x* card A + pmf (pmf-of-set B) x* card B)/ card A+card
B)
            using assms(3) by (intro arg-cong2[where f=(/)] arg-cong2[where f=(+)] refl b) auto
    also have ... = pmf (pmf-of-set A) x*p+pmf (pmf-of-set B) x* (1 - p)
        unfolding a unfolding p-def by (simp add:divide-simps)
    also have ... = pmf ?R x using p-range by (simp add:pmf-bind)
    finally show pmf ?L x = pmf ?R x by simp
qed
```

If the expectation of a discrete random variable is larger or equal to c, there will be at least one point at which the random variable is larger or equal to c.

```
lemma exists-point-above-expectation:
    assumes integrable (measure-pmf M) \(f\)
    assumes measure-pmf.expectation \(M f \geq(c::\) real \()\)
    shows \(\exists x \in\) set-pmf \(M . f x \geq c\)
proof (rule ccontr)
    assume \(\neg(\exists x \in\) set-pmf \(M . c \leq f x)\)
    hence \(A E x\) in \(M . f x<c\) by (intro AE-pmfI) auto
    thus False using measure-pmf.expectation-less[OF assms(1)] assms(2) not-less by auto
qed
```


1.2 On Convexity

A translation rule for convexity.
lemma convex-on-shift:
fixes $f::(' b::$ real-vector) \Rightarrow real
assumes convex-on S convex S
shows convex-on $\{x . x+a \in S\}(\lambda x . f(x+a))$
proof -
have $f\left(\left((1-t) *_{R} x+t *_{R} y\right)+a\right) \leq(1-t) * f(x+a)+t * f(y+a)($ is $? L \leq ? R)$
if $0<t t<1 x \in\{x . x+a \in S\} y \in\{x . x+a \in S\}$ for $x y t$
proof -
have ${ }^{2} L=f\left((1-t) *_{R}(x+a)+t *_{R}(y+a)\right)$ by (simp add:algebra-simps)
also have $\ldots \leq(1-t) * f(x+a)+t * f(y+a)$ using that by (intro convex-onD[OF assms(1)])
auto
finally show ?thesis by auto
qed
moreover have $\{x . x+a \in S\}=(\lambda x . x-a)$ ' S by (auto simp:image-iff algebra-simps)
hence convex $\{x . x+a \in S\}$ using assms(2) by auto
ultimately show ?thesis using assms by (intro convex-onI) auto
qed

1.3 On subseq and strict-subseq

lemma strict-subseq-imp-shorter: strict-subseq $x y \Longrightarrow$ length $x<$ length y
unfolding strict-subseq-def by (meson linorder-neqE-nat not-subseq-length subseq-same-length)
lemma subseq-distinct: subseq $x y \Longrightarrow$ distinct $y \Longrightarrow$ distinct x
by (metis distinct-nthsI subseq-conv-nths)
lemma strict-subseq-imp-distinct: strict-subseq $x y \Longrightarrow$ distinct $y \Longrightarrow$ distinct x using subseq-distinct unfolding strict-subseq-def by auto
lemma subseq-set: subseq xs ys \Longrightarrow set $x s \subseteq$ set ys
unfolding strict-subseq-def by (metis set-nths-subset subseq-conv-nths)
lemma strict-subseq-set: strict-subseq $x y \Longrightarrow$ set $x \subseteq$ set y
unfolding strict-subseq-def by (intro subseq-set) simp
lemma subseq-induct:
assumes $\bigwedge y s .(\bigwedge z s$. strict-subseq zs ys $\Longrightarrow P z s) \Longrightarrow P$ ys shows P xs
proof (induction length xs arbitrary:xs rule: nat-less-induct)
case 1
have P ys if strict-subseq ys $x s$ for $y s$
proof -
have length ys < length xs using strict-subseq-imp-shorter that by auto
thus P ys using 1 by simp
qed
thus ?case using assms by blast
qed
lemma subseq-induct':
assumes P []
assumes $\bigwedge y y s .(\bigwedge z s$. strict-subseq zs $(y \# y s) \Longrightarrow P z s) \Longrightarrow P(y \# y s)$
shows P xs
proof (induction xs rule: subseq-induct)
case (1 ys)
show ?case
proof (cases ys)
case Nil thus ?thesis using assms(1) by simp
next
case (Cons ysh yst)
show ?thesis using 1 unfolding Cons by (rule assms(2)) auto
qed
qed
lemma strict-subseq-remove1:
assumes $w \in \operatorname{set} x$
shows strict-subseq (remove1 $w x$) x
proof -
have subseq (remove1 $w x$) x by (induction x) auto
moreover have remove1 $w x \neq x$ using assms by (simp add: remove1-split)
ultimately show ?thesis unfolding strict-subseq-def by auto
qed

1.4 On Random Permutations

```
lemma filter-permutations-of-set-pmf:
    assumes finite S
    shows map-pmf (filter P) (pmf-of-set (permutations-of-set S)) =
    pmf-of-set (permutations-of-set {x\inS.P x})(is ?L = ?R)
proof -
```

```
    have ?L = map-pmf fst (map-pmf (partition P) (pmf-of-set (permutations-of-set S)))
    by (simp add:map-pmf-comp)
    also have ... = map-pmf fst (pair-pmf ?R (pmf-of-set (permutations-of-set {x\inS.\negP x})))
    by (simp add:partition-random-permutations[OF assms(1)])
    also have ... = ?R by (simp add:map-fst-pair-pmf)
    finally show?thesis by simp
qed
lemma permutations-of-set-prefix:
    assumes finite Sv\inS
    shows measure (pmf-of-set (permutations-of-set S)) {xs.prefix [v] xs } = 1/real (card S)
        (is ?L = ?R)
proof -
    have S-ne: S = {} using assms(2) by auto
    have ?L = (\int vs. indicator {vs. prefix [v] vs} vs \partialpmf-of-set (permutations-of-set S)) by simp
    also have ... = (\int h.of-bool (v=h) \partialpmf-of-set S)
        unfolding random-permutation-of-set[OF assms(1) S-ne]
        apply (subst integral-bind-pmf[where M=1], simp)
        apply (subst integral-bind-pmf[where M=1], simp)
        by (simp add:indicator-def)
    also have ... = (\int h. indicator {v} h \partialpmf-of-set S) by (simp add:indicator-def eq-commute)
    also have ... = measure (pmf-of-set S) {v} by simp
    also have \ldots. = 1/card S using assms(1,2) S-ne by (subst measure-pmf-of-set) auto
    finally show ?thesis by simp
qed
cond-perm returns all permutations of a set starting with specific prefix.
definition cond-perm where cond-perm \(V p=(@) p\) 'permutations-of-set \((V-\operatorname{set} p)\)
context fin-sgraph
begin
lemma perm-non-empty-finite:
permutations-of-set \(V \neq\{ \}\) finite (permutations-of-set \(V\) )
proof -
have \(0<\) card (permutations-of-set \(V\) ) using finV by (subst card-permutations-of-set) auto
thus permutations-of-set \(V \neq\{ \}\) finite (permutations-of-set \(V\) ) using card-gt-0-iff by blast+ qed
lemma cond-perm-non-empty-finite:
cond-perm \(V p \neq\{ \}\) finite (cond-perm \(V p\) )
proof -
have \(0<\operatorname{card}\) (permutations-of-set \((V-\operatorname{set} p)\) )
using fin \(V\) by (subst card-permutations-of-set) auto
also have \(\ldots=\) card (cond-perm \(V\) p)
unfolding cond-perm-def by (intro card-image[symmetric] inj-onI) auto
finally have card (cond-perm \(V\) p) \(>0\) by simp
thus cond-perm \(V p \neq\{ \}\) finite (cond-perm \(V p\) ) using card-ge-0-finite by auto
qed
lemma cond-perm-alt:
assumes distinct \(p\) set \(p \subseteq V\)
shows cond-perm \(V p=\overline{\{x s} \in\) permutations-of-set \(V\). prefix \(p x s\}\)
proof -
have \(p @ x s \in\) permutations-of-set \(V\) if \(x s \in\) permutations-of-set \((V-s e t p)\) for \(x s\) using permutations-of-setD \([O F\) that \(]\) assms by (intro permutations-of-setI) auto
moreover have \(x s \in\) cond-perm \(V p\) if \(x s \in\) permutations-of-set \(V\) and a:prefix \(p\) xs for \(x s\) proof -
```

```
    obtain ys where xs-def:xs = p@ys using a prefixE by auto
    have 0:distinct (p@ys) set (p@ys) = V
        using permutations-of-setD[OF that(1)] unfolding xs-def by auto
    hence set ys =V - set p by auto
    moreover have distinct ys using 0 by auto
    ultimately have ys \in permutations-of-set (V - set p) by (intro permutations-of-setI)
    thus ?thesis unfolding cond-perm-def xs-def by simp
    qed
    ultimately show ?thesis by (auto simp:cond-perm-def)
qed
lemma cond-permD:
    assumes distinct p set p\subseteqV xs \in cond-perm V p
    shows distinct xs set xs = V
    using assms(3) permutations-of-setD unfolding cond-perm-alt[OF assms(1,2)] by auto
```


1.5 On Finite Simple Graphs

```
lemma degree-sum: (\sumv\inV. degree v)=2* card E (is ?L = ?R)
proof -
    have ?L = (\sumv\inV. (\sume\inE.of-bool (v\ine)))
        using fin-edges finV unfolding alt-degree-def incident-edges-def vincident-def
        by (simp add:of-bool-def sum.If-cases Int-def)
    also have ... = (\sume\inE.card (e\capV))
        using fin-edges finV by (subst sum.swap) (simp add:of-bool-def sum.If-cases Int-commute)
    also have ... = (\sume\inE.card e)
        using wellformed by (intro sum.cong arg-cong[where f=card] Int-absorb2) auto
    also have ... = 2*card E using two-edges by simp
    finally show ?thesis by simp
qed
```

The environment of a set of nodes is the union of it with its neighborhood.
definition environment where environment $S=S \cup\{v . \exists s \in S$. vert-adj $v s\}$
lemma finite-environment:
assumes finite S
shows finite (environment S)
proof -
have environment $S \subseteq S \cup V$ unfolding environment-def using vert-adj-imp-in V by auto
thus ?thesis using assms finite-Un finV finite-subset by auto
qed
lemma environment-mono: $S \subseteq T \Longrightarrow$ environment $S \subseteq$ environment T unfolding environment-def by auto
lemma environment-sym: $x \in$ environment $\{y\} \longleftrightarrow y \in$ environment $\{x\}$
unfolding environment-def vert-adj-def by (auto simp:insert-commute)
lemma environment-self: $S \subseteq$ environment S unfolding environment-def by auto

```
lemma environment-sym-2: \(A \cap\) environment \(B=\{ \} \longleftrightarrow B \cap\) environment \(A=\{ \}\)
proof -
    have False if \(B \cap\) environment \(A=\{ \} x \in A \cap\) environment \(B\) for \(x A B\)
    proof (cases \(x \in B\) )
        case True thus ?thesis using that environment-self by auto
    next
        case False
        hence \(x \in\{x . \exists v \in B\). vert-adj \(x v\}\) using that(2) unfolding environment-def by auto
```

```
    then obtain v}\mathrm{ where v-def:v}\\inBx\in\mathrm{ environment {v} unfolding environment-def by auto
    have}v\in\mathrm{ environment A using environment-mono that(2) environment-sym v-def(2) by blast
    then show ?thesis using v-def(1) that(1) by auto
    qed
    thus ?thesis by auto
qed
lemma environment-range: S\subseteqV\Longrightarrow environment S\subseteqV
    unfolding environment-def using vert-adj-imp-inV by auto
lemma environment-union: environment (S\cupT) = environment S \cup environment T
    unfolding environment-def by auto
lemma card-environment: card (environment {v})=1+ degree v(is ?L = ?R)
proof -
    have ?L = card (insert v {x. {x,v}\inE}) unfolding environment-def vert-adj-def by simp
```



```
        by (intro card-insert-disjoint finite-subset[OF - finV])
            (auto simp:singleton-not-edge wellformed-alt-fst)
    also have ... = Suc (card (neighborhood v)) unfolding neighborhood-def vert-adj-def
        by (intro arg-cong[where f=\lambdax. Suc (card x)])
            (auto simp:wellformed-alt-fst insert-commute)
    also have ... = Suc (degree v)
        unfolding alt-degree-def card-incident-sedges-neighborhood by simp
    finally show?thesis by simp
qed
end
end
```


2 Method of Conditional Expectations: Large Cuts

The following is an example of the application of the method of conditional expectations [2, 1] to construct an approximation algorithm that finds a cut of an undirected graph cutting at least half of the edges. This is also the example that Vadhan [4, Section 3.4.2] uses to introduce the "Method of Conditional Expectations".

```
theory Derandomization-Conditional-Expectations-Cut
    imports Derandomization-Conditional-Expectations-Preliminary
begin
context fin-sgraph
begin
definition cut-size where cut-size C= card {e\inE.e\capC\not={}\wedgee-C\not={}}
lemma eval-cond-edge:
    assumes L\subseteqU finite U e\inE
    shows (\int C. of-bool (e\capC\not={}^e-C\not={}) \partialpmf-of-set {C.L\subseteqC^C\subseteqU})=
        ((if e\subseteq-U\cupL then of-bool( }e\capL\not={}\wedgee\cap-U\not={})::real else 1/2)
        (is ?L = ?R)
proof -
    obtain e1 e2 where e-def: e={e1,e2} e1 }=e2\mathrm{ using two-edges[OF assms(3)]
        by (meson card-2-iff)
    let ?sing-iff =(\lambdax e. (if x then {e} else {}))
```

define $R 1$ where $R 1=($ if e1 $\in L$ then $\{$ True $\}$ else (if e1 $\in U-L$ then $\{$ False, True $\}$ else \{False\}))
define $R 2$ where $R 2=($ if $e 2 \in L$ then $\{$ True $\}$ else (if e2 $\in U-L$ then $\{$ False, True $\}$ else \{False\}))

```
    have bij: bij-betw (\lambdax. ((e1\inx,e2 \inx),x-{e1,e2})) {C.L\subseteqC^C\subseteqU}
        ((R1 \times R2) ) {C.L-{e1,e\mathcal{Z}}\subseteqC^C\subseteqU-{e1,e2}})
    unfolding R1-def R2-def using e-def(2) assms(1)
    by (intro bij-betwI[where g=(\lambda((a,b),x). x \cup?sing-iff a e1 \cup?sing-iff b e2)])
        (auto split:if-split-asm)
```

have $r: \operatorname{map-pmf}(\lambda x .(e 1 \in x, e 2 \in x))(p m f$-of-set $\{C . L \subseteq C \wedge C \subseteq U\})=p m f$-of-set $(R 1$ \times R2)
using assms $(1,2)$ map-pmf-of-set-bij-betw-2[OF bij] by auto
have $? L=\int C$. of-bool $((e 1 \in C) \neq(e 2 \in C)) \partial($ pmf-of-set $\{C . L \subseteq C \wedge C \subseteq U\})$
unfolding $e-\operatorname{def}(1)$ using $e-\operatorname{def}(2)$ by (intro integral-cong-AE AE-pmfI) auto
also have $\ldots=\int x$. of-bool $(f s t x \neq \operatorname{snd} x) \partial p m f$-of-set $(R 1 \times R 2)$
unfolding r [symmetric] by simp
also have $\ldots=($ if $\{e 1, e 2\} \subseteq-U \cup L$ then of-bool $(\{e 1, e 2\} \cap L \neq\{ \} \wedge\{e 1, e 2\} \cap-U \neq\{ \})$ else 1/2)
unfolding R1-def R2-def e-def(1) using e-def(2) assms(1)
by (auto simp add:integral-pmf-of-set split:if-split-asm)
also have $\ldots=? R$ unfolding $e-d e f$ by simp
finally show ?thesis by simp
qed
If every vertex is selected independently with probability $\frac{1}{2}$ into the cut, it is easy to deduce that an edge will be cut with probability $\frac{1}{2}$ as well. Thus the expected cut size will be real graph-size / 2.
lemma exp-cut-size:
$\left(\int C\right.$. real $($ cut-size $C) \partial p m f-o f$-set $($ Pow $\left.V)\right)=\operatorname{real}(\operatorname{card} E) / 2($ is $? L=? R)$
proof -
have a:False if $x \in E x \subseteq-V$ for x
proof -
have $x=\{ \}$ using wellformed $[$ OF that(1)] that(2) by auto
thus False using two-edges[OF that(1)] by simp
qed
have $? L=\left(\int C .\left(\sum e \in E\right.\right.$. of-bool $\left.(e \cap C \neq\{ \} \wedge e-C \neq\{ \})\right) \partial p m f$-of-set $($ Pow $\left.V)\right)$
using fin-edges by (simp-all add:of-bool-def cut-size-def sum.If-cases Int-def)
also have $\ldots=\left(\sum e \in E .\left(\int C\right.\right.$. of-bool $(e \cap C \neq\{ \} \wedge e-C \neq\{ \})$ dpmf-of-set (Pow $\left.\left.\left.V\right)\right)\right)$
using fin V by (intro Bochner-Integration.integral-sum integrable-measure-pmf-finite)
(simp add: Pow-not-empty)
also have $\ldots=\left(\sum e \in E .\left(\int C\right.\right.$. of-bool $(e \cap C \neq\{ \} \wedge e-C \neq\{ \})$ Dpmf-of-set $\{C .\{ \} \subseteq C \wedge$ $C \subseteq V\})$)
unfolding Pow-def by simp
also have $\ldots=\left(\sum e \in E\right.$. (if $e \subseteq-V \cup\{ \}$ then of-bool $(e \cap\{ \} \neq\{ \} \wedge e \cap-V \neq\{ \})$ else $1 /$ 2))
by (intro sum.cong eval-cond-edge fin V) auto
also have $\ldots=\left(\sum e \in E .1 / 2\right)$ using a by (intro sum.cong) auto
also have $\ldots=$? R by simp
finally show ?thesis by simp
qed
For the above it is easy to show that there exists a cut, cutting at least half of the edges.
lemma exists-cut: $\exists C \subseteq V$. real $($ cut-size $C) \geq \operatorname{card} E / 2$

```
proof -
    have \existsx\inset-pmf (pmf-of-set (Pow V)).card E / 2 \leqcut-size x using finV exp-cut-size[symmetric]
        by (intro exists-point-above-expectation integrable-measure-pmf-finite)(auto simp:Pow-not-empty)
    moreover have set-pmf (pmf-of-set (Pow V)) = Pow V
        using finV Pow-not-empty by (intro set-pmf-of-set) auto
    ultimately show ?thesis by auto
qed
end
```

However the above is just an existence proof, but it doesn't provide a method to construct such a cut efficiently. Here, we can apply the method of conditional expectations.
This works because, we can not only compute the expectation of the number of cut edges, when all vertices are chosen at random, but also conditional expectations, when some of the edges are fixed. The idea of the algorithm, is to choose the assignment of vertices into the cut based on which option maximizes the conditional expectation. The latter can be done incrementally for each vertex.
This results in the following efficient algorithm:

```
fun derandomized-max-cut :: 'a list \(\Rightarrow\) 'a set \(\Rightarrow{ }^{\prime}\) 'a set \(\Rightarrow\) 'a set set \(\Rightarrow\) ' \(a\) set where
    derandomized-max-cut [] \(R-=R\)
    derandomized-max-cut (v\#vs) RBE=
        (if card \(\{e \in E . v \in e \wedge e \cap R \neq\{ \}\} \geq\) card \(\{e \in E . v \in e \wedge e \cap B \neq\{ \}\}\) then
        derandomized-max-cut vs \(R(B \cup\{v\}) E\)
        else
            derandomized-max-cut vs \((R \cup\{v\}) B E\)
        )
```

context fin-sgraph
begin

The term cond-exp is the conditional expectation, when some of the edges are selected into the cut, and some are selected to be outside the cut, while the remaining vertices are chosen randomly.
definition cond-exp where cond-exp $R B=\left(\int C\right.$. real (cut-size $\left.C\right) \partial p m f$-of-set $\{C . R \subseteq C \wedge C$ $\subseteq V-B\}$)

The following is the crucial property of conditional expectations, the average of choosing a vertex in/out is the same as not fixing that vertex. This means that at least one choice will not decrease the conditional expectation.

```
lemma cond-exp-split:
    assumes \(R \subseteq V B \subseteq V R \cap B=\{ \} v \in V-R-B\)
    shows cond-exp \(R B=(\operatorname{cond}-\exp (R \cup\{v\}) B+\operatorname{cond-exp} R(B \cup\{v\})) / 2(\) is \(? L=? R)\)
proof -
    let ? \(A=\{C . R \cup\{v\} \subseteq C \wedge C \subseteq V-B\}\)
    let ? \(B=\{C . R \subseteq C \wedge C \subseteq V-(B \cup\{v\})\}\)
    define \(p\) where \(p=\) real (card ? \(A\) ) \(/(\) card ? \(A+\operatorname{card} ? B)\)
    have \(a:\{C . R \subseteq C \wedge C \subseteq V-B\}=? A \cup ? B\) using assms by auto
    have \(b: ? A \cap ? B=\{ \}\) using assms by auto
    have \(c\) : finite \((? A \cup ? B)\) using fin \(V\) by auto
    have \(R \cup\{v\} \subseteq V-B\) using assms by auto
    hence \(g: ? A \neq\{ \}\) by auto
    hence \(d: ? A \cup ? B \neq\{ \}\) by simp
    have \(e\) : real (cut-size \(x) \leq\) real (card \(E\) ) for \(x\)
        unfolding cut-size-def by (intro of-nat-mono card-mono fin-edges) auto
```

```
    have card ?A = card ?B using assms(1-4)
    by (intro bij-betw-same-card[where f=\lambdax.x-{v}] bij-betwI[where g=insert v]) auto
    moreover have card ?A > 0 using g c card-gt-0-iff by auto
    ultimately have p-val: p=1/2 unfolding p-def by auto
    have ?L = (\int b.(\int C. real (cut-size C) \partialpmf-of-set (if b then ?A else ?B)) \partialbernoulli-pmf p)
    using e unfolding cond-exp-def a pmf-of-set-un[OF d b c] p-def
    by (subst integral-bind-pmf[where M=card E]) auto
    also have ... = ((\int C.real(cut-size C) \partialpmf-of-set ?A)+(\int C.real(cut-size C) \partialpmf-of-set
?B))/2
    unfolding p-val by (subst integral-bernoulli-pmf) simp-all
    also have ... =?R unfolding cond-exp-def by simp
    finally show ?thesis by simp
qed
lemma cond-exp-cut-size:
    assumes }R\subseteqVB\subseteqVR\capB={
```



```
/ 2
    (is ?L = ?R)
proof -
    have a:finite {C. R\subseteqC^C\subseteqV-B} {C. R\subseteqC^C\subseteqV-B}\not={} using finV assms
by auto
    have b:e\subseteq-V\cupB\cupR if cthat: }e\inE\mathrm{ E }\capR\not={}e\capB\not={}\mathrm{ for }
    proof -
    obtain e1 where e1: e1 \ine\cap R using cthat(2) by auto
    obtain e2 where e2: e2 \ine \cap B using cthat(3) by auto
    have e1 # e2 using e1 e2 assms(3) by auto
    hence card {e1,e2} =2 by auto
    hence e={e1,e2} using two-edges[OF cthat(1)] e1 e2
        by (intro card-seteq[symmetric]) (auto intro!:card-ge-0-finite)
    thus?thesis using e1 e2 by simp
    qed
    have ?L = (\intC.(\sume E E. of-bool (e\capC\not={}\wedgee-C\not={})) \partialpmf-of-set {C.R\subseteqC\wedgeC
\subseteq V - B \} )
    unfolding cond-exp-def using fin-edges
    by (simp-all add:of-bool-def cut-size-def sum.If-cases Int-def)
    also have ... = (\sume\inE.(\intC. of-bool (e\capC\not={}\wedgee-C\not={}) \partialpmf-of-set {C.R\subseteqC\wedge
C\subseteqV-B}))
    using a by (intro Bochner-Integration.integral-sum integrable-measure-pmf-finite) auto
    also have ... = (\sume\inE. (( if e\subseteq-(V-B)\cupR then of-bool (e\capR\not={}\wedgee\cap-(V-B)\not={})::real
else 1/2)))
    using finV assms(1,3) by (intro sum.cong eval-cond-edge) auto
    also have ... = real (card {e\inE. e\subseteq-V\cupB\cupR\wedgee\capR\not={}\wedgee\cap-(V-B)\not={}})+real (card {e\inE.
\neg e\subseteq-V\cupB\cupR}) / 2
    using fin-edges by (simp add: sum.If-cases of-bool-def Int-def)
    also have ... = ?R using wellformed assms b
    by (intro arg-cong[where f=card] arg-cong2[where f=(+)] arg-cong[where f=real]
        arg-cong2[where f=(/)] refl Collect-cong order-antisym) auto
    finally show ?thesis by simp
qed
```

Indeed the algorithm returns a cut with the promised approximation guarantee.

```
theorem derandomized-max-cut:
    assumes vs \in permutations-of-set V
    defines C \equiv derandomized-max-cut vs {} {} E
    shows C\subseteqV2* cut-size C\geq card E
```

proof -
define $R::$ 'a set where $R=\{ \}$
define $B::$ 'a set where $B=\{ \}$
have a:cut-size (derandomized-max-cut vs $R B E$) \geq cond-exp $R B \wedge$
(derandomized-max-cut vs $R B E) \subseteq V$
if distinct vs set vs $\cap R=\{ \}$ set $v s \cap B=\{ \} R \cap B=\{ \} \bigcup\{$ set vs, $R, B\}=V$
using that
proof (induction vs arbitrary: $R B$)
case Nil
have cond-exp R B real (card $\{e \in E . e \cap R \neq\{ \} \wedge e \cap B \neq\{ \}\})+$ real (card $\{e \in E . e \cap V-R-B$ $\neq\{ \}\}) / 2$
using Nil by (intro cond-exp-cut-size) auto
also have $\ldots=$ real $(\operatorname{card}\{e \in E . e \cap R \neq\{ \} \wedge e \cap B \neq\{ \}\})+$ real $\left(\operatorname{card}\left(\left\}::^{\prime} a\right.\right.\right.$ set set $\left.)\right) / 2$ using Nil
by (intro arg-cong[where $f=$ card $]$ arg-cong2 $[$ where $f=(+)]$ arg-cong2 $[$ where $f=(/)]$ arg-cong $[$ where $f=$ real $]$) auto
also have $\ldots=$ real (card $\{e \in E . e \cap R \neq\{ \} \wedge e \cap B \neq\{ \}\}$) by simp
also have $\ldots=$ real (cut-size R) using Nil wellformed unfolding cut-size-def
by (intro arg-cong[where $f=$ card $]$ arg-cong2 [where $f=(+)]$ arg-cong[where $f=$ real $]$) auto
finally have cond-exp $R B=$ real (cut-size R) by simp
thus ?case using Nil by auto

next

case (Cons vh vt)
let $? N B=\{e \in E . v h \in e \wedge e \cap B \neq\{ \}\}$
let $? N R=\{e \in E . v h \in e \wedge e \cap R \neq\{ \}\}$
define t where $t=$ real (card $\{e \in E . e \cap V-R-(B \cup\{v h\}) \neq\{ \}\}) / 2$
have t-alt: $t=$ real (card $\{e \in E . e \cap V-(R \cup\{v h\})-B \neq\{ \}\}) / 2$
unfolding t-def by (intro arg-cong[where $f=\lambda x$. real (card x) /2]) auto
have cond-exp $R(B \cup\{v h\})-$ card $? N R=\operatorname{real}(\operatorname{card}\{e \in E . e \cap R \neq\{ \} \wedge e \cap(B \cup\{v h\}) \neq\{ \}\})-($ card ? $N R$) $+t$
using Cons(2-6) unfolding t-def by (subst cond-exp-cut-size) auto
also have $\ldots=\operatorname{real}(\operatorname{card}\{e \in E . e \cap R \neq\{ \} \wedge e \cap(B \cup\{v h\}) \neq\{ \}\}-\operatorname{card}$? $N R)+t$
using fin-edges by (intro of-nat-diff[symmetric] arg-cong2 [where $f=(+)]$ card-mono) auto
also have $\ldots=\operatorname{real}(\operatorname{card}(\{e \in E . e \cap R \neq\{ \} \wedge e \cap(B \cup\{v h\}) \neq\{ \}\}-$? $N R))+t$
using fin-edges by (intro arg-cong[where $f=(\lambda x$. real $x+t)]$ card-Diff-subset $[$ symmetric $])$ auto
also have $\ldots=\operatorname{real}(\operatorname{card}(\{e \in E . e \cap(R \cup\{v h\}) \neq\{ \} \wedge e \cap B \neq\{ \}\}-$? $N B))+t$
by (intro arg-cong $[$ where $f=(\lambda x$. real $($ card $x)+t)])$ auto
also have $\ldots=\operatorname{real}(\operatorname{card}\{e \in E . e \cap(R \cup\{v h\}) \neq\{ \} \wedge e \cap B \neq\{ \}\}-\operatorname{card}$? $N B)+t$
using fin-edges by (intro arg-cong[where $f=(\lambda x$. real $x+t)]$ card-Diff-subset) auto
also have $\ldots=\operatorname{real}(\operatorname{card}\{e \in E . e \cap(R \cup\{v h\}) \neq\{ \} \wedge e \cap B \neq\{ \}\})-($ card $? N B)+t$
using fin-edges by (intro of-nat-diff arg-cong2[where $f=(+)]$ card-mono) auto
also have $\ldots=$ cond-exp $(R \cup\{v h\}) B-$ card ? $N B$
using $\operatorname{Cons}(2-6)$ unfolding t-alt by (subst cond-exp-cut-size) auto
finally have $d:$ cond-exp $R(B \cup\{v h\})-$ cond-exp $(R \cup\{v h\}) B=$ real (card ?NR) - card ?NB by (simp add:ac-simps)
have split: cond-exp $R B=($ cond-exp $(R \cup\{v h\}) B+\operatorname{cond}-\exp R(B \cup\{v h\})) / 2$ using Cons(2-6) by (intro cond-exp-split) auto
have dvt: distinct vt using Cons(2) by simp
show ?case
proof (cases card ?NR \geq card ?NB)
case True
have 0 : set $v t \cap R=\{ \}$ set $v t \cap(B \cup\{v h\})=\{ \} R \cap(B \cup\{v h\})=\{ \} \bigcup\{$ set $v t, R, B \cup\{v h\}\}=V$
using Cons(2-6) by auto

```
    have cond-exp R B\leqcond-exp R(B\cup{vh}) unfolding split using d True by simp
    thus ?thesis using True Cons(1)[OF dvt 0] by simp
    next
    case False
    have 0:set vt\cap(R\cup{vh})={} set vt\capB={}(R\cup{vh})\capB={} \bigcup{set vt,R\cup{vh},B}=V
        using Cons(2-6) by auto
    have cond-exp R B\leqcond-exp (R\cup{vh}) B unfolding split using d False by simp
    thus ?thesis using False Cons(1)[OF dvt 0] by simp
    qed
qed
moreover have e\capV\not={} if e\inE for e
    using Int-absorb2[OF wellformed [OF that]] two-edges[OF that] by auto
hence {e\inE.e\capV\not={}}=E by auto
hence cond-exp {} {} = graph-size /2 by (subst cond-exp-cut-size) auto
ultimately show C\subseteqV2* cut-size C\geqcard E
    unfolding C-def R-def B-def using permutations-of-setD[OF assms(1)] by auto
qed
end
```

end

3 Method of Pessimistic Estimators: Independent Sets

A generalization of the the method of conditional expectations is the method of pessimistic estimators. Where the conditional expectations are conservatively approximated. The following example is such a case.
Starting with a probabilistic proof of Caro-Wei's theorem [1, Section: The Probabilistic Lens: Turán's theorem], this section constructs a deterministic algorithm that finds such a set.
theory Derandomization-Conditional-Expectations-Independent-Set
imports Derandomization-Conditional-Expectations-Cut
begin
hide-fact (open) Henstock-Kurzweil-Integration.integral-sum
The following represents a greedy algorithm that walks through the vertices in a given order and adds it to a result set, if and only if it preserves independence of the set.

```
fun indep-set :: 'a list \(\Rightarrow\) ' \(a\) set set \(\Rightarrow\) ' \(a\) list
    where
        indep-set [] \(E=[] \mid\)
        indep-set \((v \# v t) E=v \#\) indep-set \((\) filter \((\lambda w .\{v, w\} \notin E) v t) E\)
context fin-sgraph
begin
lemma indep-set-range: subseq (indep-set p E) p
proof (induction p rule:subseq-induct')
    case 1 thus ?case by simp
next
    case (2 ph pt)
    have subseq (filter \((\lambda w .\{p h, w\} \notin E) p t) p t\) by simp
    also have strict-subseq ... (ph\#pt) unfolding strict-subseq-def by auto
    finally have strict-subseq (filter \((\lambda w .\{p h, w\} \notin E) p t)(p h \# p t)\) by simp
    hence subseq (indep-set (ph \# pt) E) (ph\#filter \((\lambda w .\{p h, w\} \notin E) p t)\)
        unfolding indep-set.simps by (intro 2 subseq-Cons2)
```

```
    also have subseq ... (ph#pt) by simp
    finally show ?case by simp
qed
lemma is-independent-set-insert:
    assumes is-independent-set A x G V - environment A
    shows is-independent-set (insert x A)
    using assms unfolding is-independent-alt vert-adj-def environment-def
    by (simp add:insert-commute singleton-not-edge)
```

Correctness properties of indep-set:

```
theorem indep-set-correct:
    assumes distinct \(p\) set \(p \subseteq V\)
    shows distinct (indep-set p \(E\) ) set (indep-set p \(E\) ) \(\subseteq V\) is-independent-set ( \(\operatorname{set}\) (indep-set p \(E\) ))
proof -
    show distinct (indep-set p E) using indep-set-range assms(1) subseq-distinct by auto
    show set (indep-set p \(E\) ) \(\subseteq V\) using indep-set-range assms(2)
        by (metis (full-types) list-emb-set subset-code(1))
    show is-independent-set (set (indep-set pE))
        using \(\operatorname{assms}(1,2)\)
    proof (induction p rule:subseq-induct')
        case 1
        then show ?case by (auto simp add:is-independent-set-def all-edges-def)
    next
        case (2 y ys)
        have subseq ( filter \((\lambda w .\{y, w\} \notin E)\) ys) ys by simp
        also have strict-subseq ... (y\#ys) by (simp add: list-emb-Cons strict-subseq-def)
        finally have strict-subseq (filter \((\lambda w .\{y, w\} \notin E) y s)(y \# y s)\) by simp
        moreover have False if \(y \in\) environment (set (indep-set (filter \((\lambda w .\{y, w\} \notin E) y s) E)\) )
        proof -
            have \(y \in\) environment (set (filter \((\lambda w .\{y, w\} \notin E) y s))\)
                using that environment-mono subseq-set [OF indep-set-range] by blast
            hence \(\exists z \in(\) set \((\) filter \((\lambda w .\{y, w\} \notin E) y s)) .\{z, y\} \in E\)
            using 2(2) unfolding environment-def vert-adj-def by simp
            then show ?thesis by (simp add:insert-commute)
        qed
        ultimately have is-independent-set (insert \(y\) (set (indep-set (filter \((\lambda w .\{y, w\} \notin E) y s) E))\) )
            using 2(2,3) by (intro is-independent-set-insert 2) auto
        thus ?case by simp
    qed
qed
```

While for an individual call of indep-set it is not possible to derive a non-trivial bound on the size of the resulting independent set, it is possible to estimate its performance on average, i.e., with respect to a random choice on the order it visits the vertices. This will be derived in the following:

```
definition is-first where
    is-first \(v p=\) prefix \([v](\) filter \((\lambda y . y \in\) environment \(\{v\}) p)\)
```

lemma is-first-subseq:
assumes is-first $v p$ distinct p subseq $q p v \in \operatorname{set} q$
shows is-first $v q$
proof -
let ?f $=(\lambda y . y \in$ environment $\{v\})$
obtain q1 q2 where q-def: $q=q 1 @ v \# q 2$ using $\operatorname{assms}(4)$ by (meson split-list)
obtain p1 p2 where p-def: $p=p 1 @ p 2$ subseq q1 p1 subseq ($v \# q 2$) p2
using assms(3) list-emb-appendD unfolding q-def by blast

```
    have \(v \in\) set \(p^{2}\) using \(p\)-def(3) list-emb-set by force
    hence \(0: v \notin\) set \(p 1\) using \(\operatorname{assms}(2)\) unfolding \(p\) - \(\operatorname{def}(1)\) by auto
    have filter ?f \(p 1=[]\)
    proof (cases filter ?f p1)
    case Nil thus ?thesis by simp
    next
        case (Cons p1h p2h)
        hence \(p 1 h=v\) using \(\operatorname{assms}(1)\) unfolding is-first-def \(p-\operatorname{def}(1)\) by simp
        hence False using 0 Cons by (metis filter-eq-ConsD in-set-conv-decomp)
        then show ?thesis by simp
    qed
    hence filter ?f q1 = [] using p-def(2) by (metis (full-types) filter-empty-conv list-emb-set)
    moreover have \(v \in\) environment \(\{v\}\) unfolding environment-def by simp
    ultimately show ?thesis unfolding \(q\)-def is-first-def by simp
qed
lemma is-first-imp-in-set:
    assumes is-first vp
    shows \(v \in\) set \(p\)
proof -
    have \(v \in \operatorname{set}(\) filter \((\lambda y . y \in\) environment \(\{v\}) p)\)
        using assms unfolding is-first-def by (meson prefix-imp-subseq subseq-singleton-left)
    thus ?thesis by simp
qed
```

Let us observe that a node, which comes first in the ordering of the vertices with respect to its neighbors, will definitely be in the independent set. (This is only a sufficient condition, but not a necessary condition.)
lemma set-indep-set:
assumes distinct p set $p \subseteq V$ is-first $v p$
shows $v \in \operatorname{set}($ indep-set $p E)$
using assms
proof (induction p rule:subseq-induct)
case (1 ys)
hence $i: v \in$ set (indep-set zs E) if is-first v zs strict-subseq zs ys for zs using strict-subseq-imp-distinct strict-subseq-set that by (intro 1(1)) blast+
define $y s h$ yst where $y s h t-d e f: y s h=h d$ ys yst $=t l$ ys
have split-ys: ys $=y s h \# y s t$ if $y s \neq[]$ using that unfolding ysht-def by auto
consider (a) ys $=[]|(b) y s \neq[] h d y s=v|(c) y s \neq[] h d y s \neq v$ by auto
then show? case
proof (cases)
case a then show ?thesis using 1 (4) by (simp add:is-first-def)
next
case b then show ?thesis unfolding split-ys[OF $b(1)]$ by simp
next
case c
have 0:subseq (filter $(\lambda w .\{y s h, w\} \notin E)$ yst) ys unfolding split-ys $[O F c(1)]$ by auto
have $v \in$ set ys using 1 (4) is-first-imp-in-set by auto
hence $v \in$ set yst using c unfolding split-ys[OF $c(1)]$ by simp
moreover have ysh $\neq v$ using c (2) split-ys $[O F c(1)]$ by simp
hence $y s h \notin$ environment $\{v\}$ using 1 (4) unfolding is-first-def split-ys[OF $c(1)]$ by auto
hence $\{y s h, v\} \notin E$ unfolding environment-def vert-adj-def by auto

```
    ultimately have v\in set (filter (\lambdaw. {ysh,w}\not\inE) yst) by simp
    hence is-first v(filter ( }\lambdaw.{ysh,w}\not\inE) yst) by (intro is-first-subseq[OF 1(4)] 0 1(2)
    moreover have length yst < length ys using split-ys[OF c(1)] by auto
    hence length (filter (\lambdaw. {ysh,w}\not\inE) yst) < length ys
        using length-filter-le dual-order.strict-trans2 by blast
    hence filter ( }\lambdaw.{ysh,w}\not\inE) yst \not= ys by aut
    hence strict-subseq (filter ( }\lambdaw.{ysh,w}\not\inE) yst) y
        using 0 unfolding strict-subseq-def by auto
    ultimately have v\inset (indep-set (filter (\lambdaw. {ysh,w}&E) yst) E) by (intro i)
    then show ?thesis unfolding split-ys[OF c(1)] by simp
    qed
qed
```

Using the above we can establish the following lower-bound on the expected size of an independent set obtained by indep-set:

```
theorem exp-indep-set:
    defines \(\Omega \equiv\) pmf-of-set (permutations-of-set \(V\) )
    shows \(\left(\int\right.\) vs. real (length (indep-set vs \(\left.\left.\left.E\right)\right) \partial \Omega\right) \geq\left(\sum v \in V .1 /(\right.\) degree \(v+1::\) real \(\left.)\right)\)
        (is \(? L \geq ? R\) )
proof -
    let ? \(\mathrm{perm}=(\lambda x\). pmf-of-set \((\) permutations-of-set \(x))\)
    have \(a\) :finite (set-pmf \(\Omega\) ) unfolding \(\Omega\)-def using perm-non-empty-finite by simp
    have b:distinct \(y\) set \(y \subseteq V\) if \(y \in \operatorname{set-pmf} \Omega\) for \(y\)
        using that perm-non-empty-finite permutations-of-setD unfolding \(\Omega\)-def by auto
```

 have \(? R=\left(\sum v \in V .1 /\right.\) real (card (environment \(\left.\left.\{v\}\right)\right)\)) unfolding card-environment by simp
 also have \(\ldots=\left(\sum v \in V\right.\). measure (?perm (environment \(\left.\left.\{v\}\right)\right)\{v s\). prefix \([v] v s\}\))
 using finite-environment environment-self by (intro sum.cong permutations-of-set-prefix[symmetric])
 auto
also have $\ldots=\left(\sum v \in V .(\oint\right.$ vs. indicator $\{v s$. prefix $[v]$ vs\} vs ∂ ? perm (environment $\left.\{v\} \cap V))\right)$
using Int-absorb2 [OF environment-range] by (intro sum.cong reft) simp
also have $\ldots=\left(\sum v \in V\right.$. ($\int v$ v. of-bool $($ prefix $[v] v s)$ Dmap-pmf (filter ($\lambda x . x \in$ environment $\left.\{v\}\right)$)
Ω)
unfolding Ω-def filter-permutations-of-set-pmf[OF finV]
by (intro sum.cong arg-cong2[where $f=$ measure-pmf.expectation])
(simp-all add:Int-def conj-commute of-bool-def indicator-def)
also have $\ldots=\left(\sum v \in V\right.$. (\int vs. of-bool $(i s-$-first v vs) $\left.\partial \Omega)\right)$
unfolding is-first-def by (intro sum.cong) simp-all
also have $\ldots=\left(\int v s .\left(\sum v \in V\right.\right.$. of-bool $\left.\left.(i s-f i r s t v v s)\right) \partial \Omega\right)$
by (intro integral-sum [symmetric] integrable-measure-pmf-finite[OF a])
also have $\ldots \leq\left(\int\right.$ vs. real (card (set (indep-set vs $\left.\left.\left.\left.E\right)\right)\right) \partial \Omega\right)$
using fin V b by (intro integral-mono-AE AE-pmfI integrable-measure-pmf-finite $[O F a]$)
(auto intro!: card-mono set-indep-set)
also have...\leq ? L
by (intro integral-mono-AE AE-pmfI integrable-measure-pmf-finite[OF a] of-nat-mono card-length)
finally show? ?thesis by simp
qed
The function λx. $1 /(x+1)$ is convex.
lemma inverse- x-plus-1-convex: convex-on $\{-1<.$.$\} (\lambda$ x. $1 /(x+1$::real $))$
proof -
have convex-on $\{x . x+1 \in\{0<.\}$.$\} (\lambda x$. inverse $(x+1:$:real $)$)
by (intro convex-on-shift [OF convex-on-inverse]) auto
moreover have $\{x .(0:$:real $)<x+1\}=\{-1<.$.$\} by (auto simp:algebra-simps)$
ultimately show ?thesis by (simp add:inverse-eq-divide)
qed
lemma caro-wei-aux: card $V /(2 *$ card $E / \operatorname{card} V+1) \leq\left(\sum v \in V .1 /(\right.$ degree $\left.v+1)\right)$

```
proof -
    have card V / (2*card E / card V + 1) = card V* (1 / (((2*card E)::real) / card V + 1))
by simp
    also have ... = card V* (1/ /(\sumv\inV. (1/ real (card V )) *R degree v) + 1))
        unfolding degree-sum[symmetric] by (simp add:sum-divide-distrib)
    also have .. \leq card V*(\sumv\inV.(1/ card V)*(1/ (degree v+(1::real))))
    proof (cases V = {})
        case True thus?thesis by simp
    next
        case False thus ?thesis
            using finV by (intro mult-left-mono convex-on-sum[OF - - inverse-x-plus-1-convex] finV)
auto
    qed
    also have ... = (\sumv\inV. 1/ (degree v+1))
        using finV unfolding sum-distrib-left by (intro sum.cong refl) auto
    finally show ?thesis by simp
qed
```

A corollary of the exp-indep-set is Caro-Wei's theorem:
corollary caro-wei:
$\exists S \subseteq V$. is-independent-set $S \wedge$ card $S \geq$ card $V /(2 * \operatorname{card} E / \operatorname{card} V+1)$
proof -
let $? \Omega=$ pmf-of-set (permutations-of-set V)
let ? $w=$ real $($ card $V) /($ real $(2 *$ card $E) / \operatorname{card} V+1)$
have a:finite (set-pmf ? Ω) using perm-non-empty-finite by simp
have (\int vs. real (length (indep-set vs $\left.\left.\left.E\right)\right) \partial ? \Omega\right) \geq$? w
using exp-indep-set caro-wei-aux by simp
then obtain vs where vs-def: vs \in set-pmf ? Ω real (length (indep-set vs $E)$) \geq ? w
using exists-point-above-expectation integrable-measure-pmf-finite $[O F$ a] by blast
define S where $S=$ set (indep-set vs E)
have vs-range: distinct vs set vs $\subseteq V$
using vs-def(1) perm-non-empty-finite permutations-of-setD by auto
have $b: S \subseteq V$ is-independent-set S and c : distinct (indep-set vs E)
unfolding S-def using indep-set-correct [OF vs-range] by auto
have real (card S) $=$ length (indep-set vs E) using c distinct-card unfolding S-def by auto
also have $\ldots \geq$? w using $v s-d e f(2)$ by auto
finally have real (card S) \geq ? w by simp
thus ?thesis using $b c$ by auto
qed
end

After establishing the above result, we may ask the question, whether there is a practical algorithm to find such a set. This is where the method of conditional expectations comes to stage.

We are tasked with finding an ordering of the vertices, for which the above algorithm would return an above-average independent set. This is possible, because we can compute the conditional expectation of
measure-pmf.expectation (pmf-of-set (permutations-of-set V)) $\left(\lambda v s . \sum v \in V\right.$. of-bool (is-first v vs))
when we restrict to permutations starting with a given prefix. The latter term is a pessimistic estimator for the size of the independent set for the given ordering (as discussed
above.)
It then is possible to obtain a deterministic algorithm that obtains an ordering by incrementally choosing vertices, that maximize the conditional expectation.
The resulting algorithm looks as follows:

```
function derandomized-indep-set :: 'a list }=>\mathrm{ ' 'a list }=>\mp@subsup{|}{}{\prime}a\mathrm{ set set }=>\mathrm{ ' 'a list
    where
        derandomized-indep-set [] pE= indep-set p E|
        derandomized-indep-set (vh#vt) p E = (
            let node-deg = (\lambdav. real (card {e\inE.v\ine}));
                is-indep = (\lambdav. list-all (\lambdaw. {v,w} \not\inE) p);
                env = (\lambdav. filter is-indep (v#filter (\lambdaw. {v,w}\inE) (vh#vt)));
                    cost = (\lambdav. (\sumw\leftarrowenvv.1 /(node-deg w+1)) -of-bool(is-indep v));
                    w= arg-min-list cost (vh#vt)
        in derandomized-indep-set (remove1 w (vh#vt)) (p@[w]) E)
    by pat-completeness auto
```


termination

proof (relation Wellfounded.measure (λx. length $(f s t x)$)
fix cost $::{ }^{\prime} a \Rightarrow$ real and $w v h::{ }^{\prime} a$ and $p v t::$ ' a list and $E::$ ' a set set
define v where $v=v h \# v t$
assume $w=\arg$-min-list cost (vh \# vt)
hence $w \in$ set v unfolding v-def using arg-min-list-in by blast
thus ((remove1 wv, $@[w], E), v, p, E) \in$ Wellfounded.measure $(\lambda x$. length $(f s t x))$
unfolding in-measure by (simp add:length-remove1) (simp add: v-def)
qed auto
context fin-sgraph
begin
lemma is-first-append-1:
assumes $v \notin$ environment (set p)
shows is-first $v(p @ q)=i s$-first $v q$
proof -
have environment $\{v\} \cap$ set $p=\{ \}$ using environment-sym-2 assms by auto
hence filter ($\lambda y . y \in$ environment $\{v\}) p=[]$ unfolding filter-empty-conv by auto
thus ?thesis unfolding is-first-def by simp
qed
lemma is-first-append-2:
assumes $v \in$ environment (set p)
shows is-first v(p@q)=is-first vp
proof -
obtain u where $u \in \operatorname{set} p v \in$ environment $\{u\}$
using assms unfolding environment-def by auto
hence filter ($\lambda y . y \in$ environment $\{v\}$) $p \neq[]$
using environment-sym unfolding filter-empty-conv by meson
thus ?thesis unfolding is-first-def by (cases filter ($\lambda y . y \in$ environment $\{v\})$ p) auto
qed

The conditional expectation of the pessimistic estimator for a given prefix of the ordering of the vertices.

definition p-estimator where

```
    p-estimator p = (\intvs. ( \sumv\inV.of-bool(is-first v vs)) \partialpmf-of-set (cond-perm V p))
```

lemma p-estimator-split:
assumes $V-$ set $p \neq\{ \}$
shows p-estimator $p=\left(\sum v \in V-\right.$ set p. p-estimator $\left.(p @[v])\right) /$ real $(\operatorname{card}(V-$ set $p))($ is $? L=$
?R)
proof -
let $? q=\lambda x$. pmf-of-set (permutations-of-set $(V-$ set $p-\{x\}))$
have 0:finite $(V-$ set $p) V-$ set $p \neq\{ \}$ using fin V assms by auto
have ? $L=\left(\int v s .\left(\sum v \in V\right.\right.$. of-bool (is-first $\left.\left.v(p @ v s)\right)\right)$ dpmf-of-set (permutations-of-set (V-set p)))
using fin V unfolding p-estimator-def cond-perm-def
by (subst map-pmf-of-set-inj[symmetric]) (auto intro:inj-onI)
also have $\ldots=\left(\sum x \in V-\operatorname{set} p .\left(\int v s .\left(\sum v \in V\right.\right.\right.$.of-bool $\left.\left.\left.(i s-\operatorname{first} v(p @ x \# v s))\right) \partial ? q x\right)\right) / \operatorname{real}(\operatorname{card}(V-$ set p))
using 0 unfolding random-permutation-of-set $[O F 0]$ by (subst pmf-expectation-bind-pmf-of-set) (simp-all add:map-pmf-def[symmetric] inverse-eq-divide sum-divide-distrib)
also have $\ldots=\left(\sum x \in V-\right.$ set p. p-estimator $\left.(p @[x])\right) / \operatorname{real}(\operatorname{card}(V-$ set $p))$
using finV Diff-insert unfolding p-estimator-def cond-perm-def
by (subst map-pmf-of-set-inj[symmetric]) (auto intro:inj-onI simp flip:Diff-insert)
finally show ?thesis by simp
qed
The fact that the pessimistic estimator can be computed efficiently is the reason we can apply this method:

```
lemma \(p\)-estimator:
    assumes distinct \(p\) set \(p \subseteq V\)
    defines \(P \equiv\{v\). is-first vp\}
    defines \(R \equiv V-\) environment (set \(p\) )
    shows \(p\)-estimator \(p=\) card \(P+\left(\sum v \in R .1 /(\right.\) degree \(v+1::\) real \(\left.)\right)\)
        (is ? \(L=? R\) )
proof -
    let \(? p=p m f\)-of-set (cond-perm \(V\) p)
    let \(? q=p m f\)-of-set \((\) permutations-of-set \((V-s e t ~ p))\)
    define \(Q\) where \(Q=\) environment \((\) set \(p)-P\)
```

 have \(P \subseteq V\) using assms(2) is-first-imp-in-set unfolding \(P\)-def by auto
 moreover have environment (set \(p\)) \(\subseteq V\) using environment-range assms(2) by auto
 ultimately have \(V\)-split: \(V=P \cup Q \cup R\) unfolding \(R\)-def \(Q\)-def by auto
 have \(P \subseteq\) environment (set \(p\)) using environment-def \(P\)-def is-first-imp-in-set by auto
 hence \(0:(P \cup Q) \cap R=\{ \} \quad P \cap Q=\{ \}\) unfolding \(R\)-def \(Q\)-def by auto
 have 1: finite \(P\) finite \(R\) finite \((P \cup Q)\) using \(V\)-split fin \(V\) by auto
 have \(a\) : is-first \(v(p @ v s)\) if \(v \in P\) for \(v\) vs
 using that unfolding \(P\)-def is-first-def by auto
 have \(b: \neg i s\)-first \(v(p @ v s)\) if \(v \in Q\) for \(v v s\)
 using that unfolding \(Q\)-def \(P\)-def by (subst is-first-append-2) auto
 have $c:\left(\int\right.$ vs. of-bool (is-first $\left.\left.v(p @ v s)\right) \partial ? q\right)=1 /($ degree $v+1::$ real $)($ is $? L 1=? R 1)$
if v-range $v \in R$ for v
proof -
have set $p \cap$ environment $\{v\}=\{ \}$ using that environment-sym-2 unfolding R-def by auto
moreover have environment $\{v\} \subseteq V$
using v-range unfolding R-def by (intro environment-range) auto
ultimately have $d:\{x \in V$-set p. x environment $\{v\}\}=$ environment $\{v\}$ by auto
have $? L 1=\left(\int\right.$ vs. indicator $\{v s$. is-first $v(p @ v s)\}$ vs $\left.\partial ? q\right)$ by (simp add:indicator-def)
also have $\ldots=$ measure ? q \{vs. is-first $v(p @ v s)\}$ by simp
also have $\ldots=$ measure ? $q\{v s$. is-first $v v s\}$
using that unfolding R-def
by (intro arg-cong2[where $f=$ measure $]$ Collect-cong is-first-append-1) auto
also have $\ldots=$ measure (map-pmf (filter $(\lambda x . x \in$ environment $\{v\})$) ?q) \{vs. prefix $[v]$ vs $\}$
unfolding is-first-def by simp
also have ... =
measure (pmf-of-set (permutations-of-set $\{x \in V$-set p. $x \in$ environment $\{v\}\})$) \{vs. prefix $[v]$
$v s\}$
using fin V by (subst filter-permutations-of-set-pmf) auto
also have $\ldots=1 / \operatorname{real}(\operatorname{card}($ environment $\{v\})$) unfolding d
using finite-environment environment-self by (subst permutations-of-set-prefix) auto
also have $\ldots=$? R1 unfolding card-environment by simp
finally show? thesis by simp
qed
have $? L=\left(\int\right.$ vs. real $\left(\sum v \in V\right.$. of-bool $\left.(i s-f i r s t v v s)\right) \partial$? p)
unfolding p-estimator-def using cond-perm-non-empty-finite cond-permD[OF assms $(1,2)]$
by (intro integral-cong-AE AE-pmfI arg-cong[where $f=$ real $]$) auto
also have $\ldots=\left(\int v s .\left(\sum v \in V\right.\right.$. of-bool (is-first $\left.\left.v v s\right)\right) \partial$? p) by simp
also have $\ldots=\left(\sum v \in V\right.$. (\int vs. of-bool (is-first v vs) ∂ ? p) $)$
by (intro integral-sum finite-measure.integrable-const-bound $[$ where $B=1]$ AE-pmfI) auto
also have $\ldots=\left(\sum v \in V\right.$. (\int vs. of-bool (is-first v vs) $\left.\left.\operatorname{\partial map-pmf}((@) p) ? q\right)\right)$
unfolding cond-perm-def by (subst map-pmf-of-set-inj) (auto intro:inj-onI finV)
also have $\ldots=\left(\sum v \in V\right.$. (\int vs. of-bool (is-first $\left.\left.\left.v(p @ v s)\right) \partial ? q\right)\right)$ by simp
also have $\ldots=$ real $($ card $P)+\left(\sum v \in R .\left(\int v s\right.\right.$. of-bool (is-first v $\left.\left.\left.(p @ v s)\right) \partial ? q\right)\right)$
unfolding V-split using $01 a b$ by (simp add: sum.union-disjoint)
also have $\ldots=$? R by (simp add:c cong:sum.cong)
finally show ?thesis by simp
qed
lemma p-estimator-step:
assumes distinct $(p @[v])$ set $(p @[v]) \subseteq V$
shows p-estimator ($p @[v]$) - p-estimator $p=$ of-bool(environment $\{v\} \cap$ set $p=\{ \}$)
$-\left(\sum w \in\right.$ environment $\{v\}$-environment (set $\left.p\right) .1 /($ degree $w+1:$:real $\left.)\right)$
proof -
let ? $d=\lambda v .1 /($ degree $v+1::$ real $)$
let $? ~ e=\lambda x$. environment x
define $\tau::$ nat where $\tau=$ of-bool(environment $\{v\} \cap$ set $p=\{ \}$)
have real-tau: of-bool(environment $\{v\} \cap$ set $p=\{ \})=$ real τ unfolding τ-def by simp
have v-range: $v \in V$ using $\operatorname{assms}(2)$ by auto
have 3: finite (set $(p @[v]))$ by simp
have 4: is-first $w(p$ @ $[v]) \longleftrightarrow$ is-first $w p$ if $w \neq v$ for w
using that unfolding is-first-def by auto
have 7:v \notin set p using $\operatorname{assms}(1)$ by simp
hence $5: w \neq v$ if is-first $w p$ for w using is-first-imp-in-set[OF that] by auto
have environment $\{v\} \cap$ set $p=\{ \} \longleftrightarrow$ is-first $v(p @[v])($ is ?L1 \longleftrightarrow ?R1)
proof
assume ? L1
hence $x \notin$ environment $\{v\}$ if $x \in$ set p for x using that by auto
moreover have $v \in$ environment $\{v\}$ unfolding environment-def by auto
ultimately show ?R1 unfolding is-first-def by (simp add:filter-empty-conv)
next
assume ? R1
moreover have $v \notin$ set p using $\operatorname{assms}(1)$ by auto
hence \neg prefix $[v]($ filter $(\lambda y . y \in$ environment $\{v\}) p$)
by (meson filter-is-subset prefix-imp-subseq subseq-singleton-left subset-code(1))
ultimately have filter $(\lambda y . y \in$ environment $\{v\}) p=[]$
unfolding is-first-def filter-append by (cases filter ($\lambda y . y \in$ environment $\{v\}$) p) auto thus ?L1 unfolding filter-empty-conv by auto
qed
hence 6: $\tau=$ of-bool (is-first $v(p @[v])$) unfolding τ-def by simp
have card $\{w$. is-first $w(p @[v])\}=$ card $\{w$. is-first $w(p @[v]) \wedge w \neq v\}+\operatorname{card}\{w$. is-first $v(p @[v]) \wedge w=v\}$ using is-first-imp-in-set by (subst card-Un-disjoint[symmetric])
(auto intro:finite-subset[OF - 3] arg-cong[where $f=$ card $]$)
also have $\ldots=$ card $\{w$. is-first w $p \wedge w \neq v\}+$ of-bool (is-first $v(p @[v])$)
using 4 by (intro arg-cong2[where $f=(+)]$ arg-cong[where $f=$ card $]$ Collect-cong) auto
also have $\ldots=\operatorname{card}\{w$. is-first $w p\}+\tau$
using 56 by (intro arg-cong2[where $f=(+)]$ arg-cong $[$ where $f=c a r d]$ Collect-cong) auto
finally have 2:card $\{w$. is-first $w(p @[v])\}=\operatorname{card}\{w$. is-first $w p\}+\tau$ by simp
have $? e\{v\} \subseteq V$ using v-range environment-range by auto
hence $V-$?e $($ set $(p @[v])) \cup(? e\{v\}-$?e $($ set $p))=V-$?e $($ set $p)$
unfolding set-append environment-union by auto
moreover have ? $e\{v\} \subseteq$? $e($ set $(p @[v]))$ unfolding environment-def by auto
hence $(V-? e(\operatorname{set}(p @[v]))) \cap(? e\{v\}-? e($ set $p))=\{ \}$ by blast
moreover have finite (?e $\{v\}$) by (intro finite-environment) auto
ultimately have 3 :
$\left(\sum v \in V-\right.$? $e(s e t(p @[v]))$. ?d $\left.v\right)+\left(\sum v \in ? e\{v\}-\right.$?e (set $\left.p\right)$. ?d $\left.v\right)=\left(\sum v \in V-\right.$?e (set $\left.p\right)$.?d v)
using finV by (subst sum.union-disjoint[symmetric]) auto
show ?thesis
using assms 23 unfolding real-tau by (subst (1 2) p-estimator) auto qed
lemma derandomized-indep-set-correct-aux:
assumes p1@p2 \in permutations-of-set V
shows distinct (derandomized-indep-set p1 p2 E) \wedge
is-independent-set (set (derandomized-indep-set p1 p2 E))
using assms
proof (induction p1 arbitrary: p2 rule:subseq-induct')
case 1
hence distinct (indep-set p2 E) \wedge is-independent-set (set (indep-set p2 E))
using permutations-of-setD by (intro conjI indep-set-correct) auto
thus ?case by simp
next
case (2 p1h p1t)
define $p 1$ where $p 1=p 1 h \# p 1 t$
define node-deg where node-deg $=(\lambda v$. real $(\operatorname{card}\{e \in E . v \in e\}))$
define is-indep where is-indep $=(\lambda v$. list-all $(\lambda w .\{v, w\} \notin E) p 2)$
define $e n v$ where $e n v=(\lambda v$. filter is-indep $(v \#$ filter $(\lambda w .\{v, w\} \in E)(p 1 h \# p 1 t)))$
define cost where cost $=\left(\lambda v .\left(\sum w \leftarrow\right.\right.$ env v. $1 /($ node-deg $\left.w+1)\right)-$ of-bool(is-indep $\left.\left.v\right)\right)$
define w where $w=$ arg-min-list cost $p 1$
have w-set: $w \in \operatorname{set} p 1$ unfolding w-def $p 1$-def using arg-min-list-in by blast
have perm: p1@p2 \in permutations-of-set V using 2(2) p1-def by auto
have dist: distinct $p 1$ distinct $p 2$ set $p 1 \cap$ set $p 2=\{ \}$ set $p 1 \cup$ set $p 2=V$
set $p 1=V-$ set $p 2$ using permutations-of-set $D[O F$ perm $]$ by auto
have a: set (remove1 wp1 @ p2 @ $[w]$) = V using w-set dist(4) by (auto simp:set-remove1-eq[OF $\operatorname{dist}(1)])$
have b: distinct (remove1 wp1 @ p2 @ [w]) using dist(1,2,3) w-set by auto
have c : strict-subseq (remove1 w p1) p1 by (intro strict-subseq-remove1 w-set)
have distinct (derandomized-indep-set (remove1 w (p1h \# p1t)) (p2 @ [w]) E) \wedge
is-independent-set (set (derandomized-indep-set (remove1 $w(p 1 h \# p 1 t))(p 2 @[w]) E))$
using abcunfolding p1-def by (intro 2 permutations-of-setI) simp-all
thus ?case
unfolding p1-def derandomized-indep-set.simps node-deg-def[symmetric] is-indep-def[symmetric]
by (simp del:remove1.simps add:Let-def cost-def p1-def env-def w-def)
qed
lemma derandomized-indep-set-length-aux:
assumes p1@p2 \in permutations-of-set V
shows length (derandomized-indep-set p1 p2 E) \geq p-estimator p2
using assms
proof (induction p1 arbitrary: p2 rule:subseq-induct')
case 1
have a:set p2 - environment (set p2) $=\{ \}$ using environment-self by auto
have p-estimator $p 2=$ card $\{v$. is-first v p2 $\}$
using permutations-of-set $D[O F 1]$ by (subst p-estimator) (auto simp:a)
also have $\ldots \leq \operatorname{card}($ set (indep-set p2 E))
using permutations-of-setD[OF 1] set-indep-set by (intro of-nat-mono card-mono) auto
also have $\ldots \leq$ length (indep-set p2 E) using card-length by auto
also have $\ldots=$ length (derandomized-indep-set [] p2 E) using 1 by simp
finally show? case by simp
next
case (2 p1h p1t)
define $p 1$ where $p 1=p 1 h \# p 1 t$
define node-deg where node-deg $=(\lambda v$. real $(\operatorname{card}\{e \in E . v \in e\}))$
define is-indep where is-indep $=(\lambda v$. list-all $(\lambda w .\{v, w\} \notin E)$ p2)
define env where env $=(\lambda v$. filter is-indep $(v \#$ filter $(\lambda w .\{v, w\} \in E)(p 1 h \# p 1 t)))$
define cost where cost $=\left(\lambda v .\left(\sum w \leftarrow e n v v .1 /(\right.\right.$ node-deg $\left.w+1)\right)-$ of-bool(is-indep $\left.\left.v\right)\right)$
define w where $w=$ arg-min-list cost $p 1$
let $? e=$ environment
have perm: p1@p2 \in permutations-of-set V using 2(2) p1-def by auto
have dist: distinct p1 distinct p2 set p1 \cap set $p 2=\{ \}$ set $p 1 \cup$ set $p 2=V$
set $p 1=V-$ set $p 2$ set $p 2=V-$ set $p 1$
using permutations-of-setD[OF perm] by auto
have w-set: $w \in$ set $p 1$ unfolding w-def $p 1$-def using arg-min-list-in by blast
have v-notin-p2: $v \notin$ set $p 2$ if $v \in$ set $p 1$ for v using dist(5) that by auto
have is-indep: is-indep $v=($ environment $\{v\} \cap$ set $p 2=\{ \})$ if $v \in$ set $p 1$ for v unfolding is-indep-def list-all-iff environment-def vert-adj-def using v-notin-p2[OF that] by (auto simp add:insert-commute)
have cost-correct: cost $v=p$-estimator $p 2-p$-estimator $(p 2 @[v])$
(is ? $L=? R$) if $v \in$ set $p 1$ for v
proof -
have set $(\operatorname{env} v)=\{x \in\{v\} \cup\{x \in \operatorname{set} p 1 .\{v, x\} \in E\}$. is-indep $x\}$ unfolding env-def p1-def[symmetric] by auto
also have $\ldots=\{x \in$ environment $\{v\} \cap$ set $p 1$.is-indep $x\}$
using that unfolding environment-def vert-adj-def by (auto simp:insert-commute)
also have $\ldots=\{x \in$ environment $\{v\} \cap$ set p1. set p2 \cap environment $\{x\}=\{ \}\}$ using is-indep by auto
also have $\ldots=$ environment $\{v\} \cap$ set $p 1-$ environment (set p2) by (subst environment-sym-2) auto
also have $\ldots=$ environment $\{v\} \cap(V-$ set $p 2)-$ environment (set p2)
using environment-range dist $(1-4)$ that
by (intro arg-cong2 [where $f=(-)]$ arg-cong2 [where $f=(\cap)]$ refl) auto

```
    also have \(\ldots=\) environment \(\{v\} \cap V-\) set \(p 2-\) environment (set \(p \mathcal{Z}\) ) by auto
    also have \(\ldots=\) environment \(\{v\} \cap V\) - environment (set p2) using environment-self by auto
    also have \(\ldots=\) environment \(\{v\}-\) environment (set p2)
        using that dist(4) by (intro arg-cong2[where \(f=(-)]\) refl Int-absorb2 environment-range)
auto
    finally have env-v: set (env v) = environment \(\{v\}-\) environment (set p2) by simp
    have \(\{v, v\} \notin E\) by (simp add: singleton-not-edge)
    hence \(v \notin\) set \((\) filter \((\lambda w .\{v, w\} \in E)\) p1) by simp
    hence distinct ( \(v \#\) filter \((\lambda w .\{v, w\} \in E) p 1\) ) using \(\operatorname{dist}(1)\) by simp
    hence dist-env-v: distinct (env v)
        unfolding env-def p1-def[symmetric] using distinct-filter by blast
    have \(? L=\left(\sum w \leftarrow\right.\) env v. \(1 /(\) node-deg \(\left.w+1)\right)-\) of-bool \((\) is-indep \(v)\)
        unfolding cost-def by simp
    also have \(\ldots=\left(\sum w \leftarrow\right.\) env v. \(1 /(\) node-deg \(\left.w+1)\right)\) - of-bool(environment \(\{v\} \cap\) set \(p \mathbf{2}=\)
\{\})
    by (simp add: is-indep[OF that])
    also have \(\ldots=\left(\sum w \leftarrow\right.\) env v. \(1 /(\) degree \(\left.w+1)\right)-\) of-bool(environment \(\{v\} \cap\) set \(\left.p 2=\{ \}\right)\)
    unfolding node-deg-def alt-degree-def incident-edges-def vincident-def by (simp add:ac-simps)
    also have \(\ldots=\left(\sum v \in ? e\{v\}-? e(\right.\) set p2). \(1 /(\) degree \(v+1))-o f-b o o l(? e\{v\} \cap\) set \(p 2=\{ \})\)
        by (subst sum-list-distinct-conv-sum-set \([O F\) dist-env-v] ) (simp add:env-v)
    also have \(\ldots=-\left(\right.\) of-bool \((? e\{v\} \cap\) set \(p \mathcal{Z}=\{ \})-\left(\sum v \in ? e\{v\}-? e(\right.\) set p2 \() .1 /(\) degree \(\left.\left.v+1)\right)\right)\)
        by (simp add:algebra-simps)
    also have \(\ldots=-(p\)-estimator \((p 2 @[v])-p\)-estimator \((p 2))\)
    using that \(\operatorname{dist}(2-4)\) by (intro arg-cong[where \(f=\lambda x .-x]\) p-estimator-step[symmetric]) auto
    also have \(\ldots=? R\) by (simp add:algebra-simps)
    finally show?thesis by simp
qed
```

have p1-ne: $p 1 \neq[]$ using $p 1-\operatorname{def}$ by simp
have $\operatorname{card}(\operatorname{set} p 1) * \operatorname{Min}(\operatorname{cost} ' \operatorname{set} p 1)=\left(\sum v \in \operatorname{set} p 1 . \operatorname{Min}(\right.$ cost'set $\left.p 1)\right)$ by simp
also have $\ldots \leq\left(\sum v \in\right.$ set $p 1$. cost $\left.v\right)$ by (intro sum-mono) simp
also have $\ldots=\left(\sum v \in\right.$ set p1. p-estimator p2 - p-estimator $\left.(p 2 @[v])\right)$
by (intro sum.cong cost-correct refl)
also have $\ldots=\left(\sum v \in V-\right.$ set p2. p-estimator $p 2-p$-estimator $\left.(p 2 @[v])\right)$
using $\operatorname{dist}(1-4)$ by (intro sum.cong) auto
also have $\ldots=\operatorname{card}(V-$ set p2 $) *$-estimator p2 $-\left(\sum v \in V-\right.$ set p2. p-estimator $\left.(p 2 @[v])\right)$
unfolding sum-subtractf by simp
also have $\ldots=0$ using $\operatorname{dist}(5)[$ symmetric $]$ p1-ne by (subst p-estimator-split) auto
finally have Min (cost' set p1) ≤ 0 using p1-ne by (simp add: mult-le-0-iff)
hence cost-w-nonpos: cost $w \leq 0$ unfolding w-def f-arg-min-list-f[OF p1-ne] by argo
have a: set (remove1 wp1 @ p2 @ $[w])=V$
using w-set $\operatorname{dist}(4)$ by (auto simp:set-remove1-eq[OF $\operatorname{dist}(1)]$)
have b: distinct (remove1 wp1 @ p2 @ $[w]$)
using $\operatorname{dist}(1,2,3) v$-notin-p2 $[O F$ w-set $]$ by auto
have c : strict-subseq (remove1 w p1) p1 by (intro strict-subseq-remove1 w-set)
have p-estimator $p 2 \leq p$-estimator $p 2$ - cost w using cost- w-nonpos by simp
also have $\ldots=p$-estimator $(p 2 @[w])$ unfolding cost-correct $[$ OF w-set $]$ by simp
also have $\ldots \leq$ length (derandomized-indep-set (remove1 wp1) (p2@ $w]$) E)
using c by (intro $2 a b$ permutations-of-setI) (auto simp:p1-def)
also have $\ldots=$ real (length (derandomized-indep-set p1 p2 E))

```
    unfolding \(p 1\)-def derandomized-indep-set.simps node-deg-def[symmetric] is-indep-def[symmetric]
    by (simp del:remove1.simps add:Let-def cost-def p1-def env-def w-def)
    finally show ?case by (simp add:p1-def)
qed
```

The main result of this section the algorithm derandomized-indep-set obtains an independent set meeting the Caro-Wei bound in polynomial time.

```
theorem derandomized-indep-set:
    assumes p\in permutations-of-set V
    shows
        is-independent-set (set (derandomized-indep-set p [] E))
        distinct (derandomized-indep-set p [] E)
        length (derandomized-indep-set p [] E) \geq(\sumv\inV.1/(degree v+1))
    length (derandomized-indep-set p[] E)\geq card V / (2*card E / card V + 1)
proof -
    let ?res = derandomized-indep-set p [] E
    show is-independent-set (set ?res) using assms derandomized-indep-set-correct-aux by auto
    show distinct ?res using assms derandomized-indep-set-correct-aux by auto
    have (\sumv\inV.1/ (degree v+1)) \leq p-estimator []
        by (subst p-estimator) (simp-all add:environment-def is-first-def ac-simps)
    also have .. \leq length ?res using assms derandomized-indep-set-length-aux by auto
    finally show }a:(\sumv\inV.1/(\mathrm{ degree v+1))}\leq\mathrm{ length ?res by auto
    thus card V / (2*card E / card V + 1) \leq length ?res using caro-wei-aux by simp
qed
end
end
```


References

[1] N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley \& Sons, Ltd, 2000.
[2] S. Jukna. Extremal Combinatorics: With Applications in Computer Science, chapter Derandomization, pages 307-318. Springer, Berlin, Heidelberg, 2001.
[3] O. Murphy. Lower bounds on the stability number of graphs computed in terms of degrees. Discrete Mathematics, 90(2):207-211, 1991.
[4] S. P. Vadhan. Pseudorandomness. Foundations and Trends®in Theoretical Computer Science, 7(1-3):1-336, 2012.

