DCR Execution Equivalence

Søren Debois \& Axel Christfort

April 18, 2024

Abstract

We present an Isabelle formalization of the basics of DCR-graphs [1] before defining Execution Equivalent markings. We then prove that execution equivalent markings are perfectly interchangeable during process execution, yielding significant state-space reduction for executionbased model-checking of DCR graphs.

Contents

1 DCR processes 1

1.1 Execution semantics . 2
1.2 Execution Equivalence . 3
theory DCRExecutionEquivalence
imports Main
begin

1 DCR processes

Although we use the term "process", the present theory formalises DCR graphs as defined in the original places and other papers.

```
type-synonym event = nat
```

The static structure. This encompasss the relations, the set of event dom of the process, and the labelling function lab. We do not explicitly enforce that relations and marking are confined to this set, except in definitions of enabledness and execution below.

```
record rels =
    cond :: event rel
    pend :: event rel
    incl :: event rel
    excl :: event rel
```

```
mist :: event rel
dom :: event set
```

The dynamic structure, called the marking
record marking $=$
Ex :: event set
In :: event set
Re :: event set
It will be convenient to have notation for the events required, excluded, etc. by a given event.
abbreviation conds $::$ rels \Rightarrow event \Rightarrow event set

where

conds $T e \equiv\{f .(f, e) \in$ cond $T\}$
abbreviation excls :: rels \Rightarrow event \Rightarrow event set

where

excls $T e \equiv\{x .(e, x) \in \operatorname{excl} T \wedge(e, x) \notin$ incl $T\}$
abbreviation incls $::$ rels \Rightarrow event \Rightarrow event set
where
incls $T e \equiv\{x .(e, x) \in$ incl $T\}$
abbreviation resps $::$ rels \Rightarrow event \Rightarrow event set where
resps $T e \equiv\{f .(e, f) \in$ pend $T\}$
abbreviation mists $::$ rels \Rightarrow event \Rightarrow event set where

```
mists Te\equiv{f.(f,e)\in mist T }
```

Similarly, it is convenient to be able to identify directly the currently excluded events.

1.1 Execution semantics

```
definition enabled \(::\) rels \(\Rightarrow\) marking \(\Rightarrow\) event \(\Rightarrow\) bool
    where
        enabled TMeミ
        \(e \in \operatorname{In} M \wedge\)
        (conds \(T e \cap\) In \(M)-E x M=\{ \} \wedge\)
        (mists \(T e \cap \operatorname{In} M)-(\operatorname{dom} T-\operatorname{Re} M)=\{ \}\)
```

definition execute :: rels \Rightarrow marking \Rightarrow nat \Rightarrow marking
where

```
execute TMe\equiv0
    Ex=ExM\cup{e},
    In =(In M - excls Te) \cup incls Te,
    Re}=(\operatorname{Re}M-{e})\cup resps T
D
```


1.2 Execution Equivalence

```
definition accepting :: marking \(\Rightarrow\) bool where
```

 accepting \(M=(\operatorname{Re} M \cap \operatorname{In} M=\{ \})\)
 fun acceptingrun $::$ rels \Rightarrow marking \Rightarrow event list \Rightarrow bool where
acceptingrun $T M[]=$ accepting M
\mid acceptingrun $T M(e \# t)=($ enabled $T M e \wedge$ acceptingrun $T($ execute $T M e) t)$
definition all-conds :: rels \Rightarrow nat set where
all-conds $T=\{$ fst rel \mid rel . rel \in cond $T\}$
definition execution-equivalent $::$ rels \Rightarrow marking \Rightarrow marking \Rightarrow bool where
execution-equivalent T M1 M2 $=($
$($ In M1 $=$ In M2 $) \wedge$
$($ Re M1 = Re M2) \wedge
$(($ Ex M1 \cap all-conds $T)=(E x$ M2 \cap all-conds $T))$
)
lemma conds-subset-eq-all-conds: conds $T e \subseteq$ all-conds T
using all-conds-def by auto
lemma ex-equiv-over-cond: $(E x$ M1 \cap all-conds $T)=(E x$ M2 \cap all-conds $T) \Longrightarrow$
$(E x M 1 \cap$ conds $T e)=(E x M 2 \cap$ conds $T e)$
using conds-subset-eq-all-conds by blast
lemma enabled-ex-equiv:
assumes execution-equivalent T M1 M2 enabled T M1 e
shows enabled T M2 e
proof -
from $\operatorname{assms}(1)$ have
$(E x M 1 \cap$ all-conds $T)=(E x$ M2 \cap all-conds $T)$
by (simp add: execution-equivalent-def)
hence ex-eq:
$(E x M 1 \cap$ conds $T e)=(E x$ M2 \cap conds $T e)$
using ex-equiv-over-cond by metis
from assms(1) have in-eq:
In M1 = In M2
by (simp add: execution-equivalent-def)
from $\operatorname{assms}(2)$ have
$($ conds $T e \cap$ In M1) $\subseteq E x M 1$
by (simp-all add: enabled-def)
hence

```
    (conds T e \cap In M1) \cap(conds T e)\subseteqEx M1 \cap (conds T e)
    by auto
    hence
        (conds T e \cap In M1)\subseteqEx M1 \cap (conds T e)
        by auto
    hence
        (conds Te\capIn M2) \subseteqEx M2 \cap (conds Te)
        using ex-eq in-eq by auto
    hence
        (conds T e \cap In M2) \subseteqEx M2
        by simp
    then show ?thesis
        using enabled-def assms in-eq execution-equivalent-def by auto
qed
lemma execute-ex-equiv:
    assumes execution-equivalent T M1 M2 execute T M1 e= M3 execute T M2 e
= M4
    shows execution-equivalent T M3 M4
proof-
    from assms have
        In M3 = In M4
        using execute-def execution-equivalent-def by fastforce
    moreover from assms have
        Re M3 = Re M4
        using execute-def execution-equivalent-def by force
    ultimately show ?thesis using assms execute-def execution-equivalent-def
        by fastforce
qed
lemma accepting-ex-equiv: execution-equivalent T M1 M2 \Longrightarrow accepting M1 \Longrightarrow
accepting M2
    by (simp add: accepting-def execution-equivalent-def)
theorem acceptingrun-ex-equiv:
    assumes acceptingrun T M1 seq execution-equivalent T M1 M2
    shows acceptingrun T M2 seq
    using assms
proof(induction seq arbitrary: M1 M2 rule: acceptingrun.induct)
    case (1 T M)
    then show ?case
        by (simp add: accepting-ex-equiv)
next
    case (2 TMet)
    then show ?case proof-
    from 2(2) obtain M1e where m1e:
            M1e = execute T M1 e
            by blast
    hence m1e-accept:
```

```
        acceptingrun T M1e t
        using 2(2) acceptingrun.simps(2) by blast
    obtain M2e where
        M2e = execute T M2 e
        by blast
    moreover from this m1e have
        execution-equivalent T M1e M2e
        using 2(3) execute-ex-equiv by blast
    moreover from this have
    acceptingrun T M2e t
    using 2(1) m1e-accept by blast
    ultimately show?thesis using 2(2) enabled-ex-equiv 2(3) acceptingrun.simps(2)
by blast
    qed
qed
end
```


References

[1] C. O. Back, T. Slaats, T. T. Hildebrandt, and M. Marquard. Discover: accurate and efficient discovery of declarative process models. International Journal on Software Tools for Technology Transfer, pages 1-25, 2021.

