Continued Fractions

Manuel Eberl

April 18, 2024

Abstract

This article provides a formalisation of continued fractions of real numbers and their basic properties. It also contains a proof of the classic result that the irrational numbers with periodic continued fraction expansions are precisely the quadratic irrationals, i.e. real numbers that fulfil a non-trivial quadratic equation $a x^{2}+b x+c=0$ with integer coefficients.

Particular attention is given to the continued fraction expansion of \sqrt{D} for a non-square natural number D. Basic results about the length and structure of its period are provided, along with an executable algorithm to compute the period (and from it, the entire expansion).

This is then also used to provide a fairly efficient, executable, and fully formalised algorithm to compute solutions to Pell's equation $x^{2}-D y^{2}=1$. The performance is sufficiently good to find the solution to Archimedes's cattle problem in less than a second on a typical computer. This involves the value $D=410286423278424$, for which the solution has over 200000 decimals.

Lastly, a derivation of the continued fraction expansions of Euler's number e and an executable function to compute continued fraction expansions using interval arithmetic is also provided.

Contents

1 Continued Fractions 3
1.1 Auxiliary results 3
1.2 Bounds on alternating decreasing sums 7
1.3 Non-canonical continued fractions 47
1.4 Approximation properties 62
1.5 Efficient code for convergents 79
1.6 Computing the continued fraction expansion of a rational number 80
2 Quadratic Irrationals 83
2.1 Basic results on rationality of square roots 84
2.2 Definition of quadratic irrationals 86
2.3 Real solutions of quadratic equations 89
2.4 Periodic continued fractions and quadratic irrationals 91
3 The continued fraction expansion of e 104
4 Continued fraction expansions for square roots of naturals 112
5 Lifting solutions of Pell's Equation 135
5.1 Auxiliary material 135
5.2 The lifting mechanism 139
5.3 Accelerated computation of the fundamental solution for non- squarefree inputs 140
6 The Connection between the continued fraction expansion of square roots and Pell's equation 143
7 Tests for Continued Fractions of Square Roots and Pell's Equation 152
7.1 Fundamental solutions of Pell's equation 153
7.2 Tests for other operations 153
8 Computing continued fraction expansions through interval arithmetic 153

1 Continued Fractions

theory Continued-Fractions
imports
Complex-Main
Coinductive.Lazy-LList
Coinductive.Coinductive-Nat
HOL-Number-Theory.Fib
HOL-Library.BNF-Corec
Coinductive.Coinductive-Stream
begin

1.1 Auxiliary results

coinductive linfinite :: 'a llist \Rightarrow bool where
linfinite $x s \Longrightarrow$ linfinite (LCons x xs)
lemma llength-llist-of-stream [simp]: llength (llist-of-stream xs) $=\infty$
by (simp add: not-lfinite-llength)

```
lemma linfinite-conv-llength: linfinite \(x s \longleftrightarrow\) llength \(x s=\infty\)
proof
    assume linfinite xs
    thus llength \(x s=\infty\)
    proof (coinduction arbitrary: xs rule: enat-coinduct2)
        fix \(x s\) :: 'a llist
        assume llength \(x s \neq 0\) linfinite xs
        thus \(\left(\exists x^{\prime}::\right.\) 'a llist. epred (llength \(\left.x s\right)=\) llength \(x s^{\prime} \wedge\) epred \(\infty=\infty \wedge\) linfinite
\(\left.x s^{\prime}\right) \vee\)
            epred (llength xs) \(=\) epred \(\infty\)
            by (intro disjI1 exI[of - ltl xs]) (auto simp: linfinite.simps[of xs])
    next
            fix \(x s::\) ' \(a\) llist assume linfinite xsthus (llength \(x s=0) \longleftrightarrow(\infty=(0::\) enat \())\)
            by (subst (asm) linfinite.simps) auto
    qed
next
    assume llength xs \(=\infty\)
    thus linfinite xs
    proof (coinduction arbitrary: xs)
        case linfinite
        thus \(\exists x s a x\).
                    xs \(=\) LCons \(x\) xsa \(\wedge\)
                    \(((\exists x s . x s a=x s \wedge\) llength \(x s=\infty) \vee\)
                    linfinite xsa)
            by (cases xs) (auto simp: eSuc-eq-infinity-iff)
    qed
qed
```

definition lnth-default :: ' $a \Rightarrow$ ' a llist $\Rightarrow n a t \Rightarrow{ }^{\prime} a$ where
lnth-default dftt xs $n=($ if $n<$ llength $x s$ then lnth xs n else dftt $)$

```
lemma lnth-default-code [code]:
    lnth-default dflt xs n=
        (if lnull xs then dftt else if n =0 then lhd xs else lnth-default dflt (ltl xs) ( }n
1))
proof (induction n arbitrary: xs)
    case 0
    thus ?case
        by (cases xs) (auto simp: lnth-default-def simp flip:zero-enat-def)
next
    case (Suc n)
    show ?case
    proof (cases xs)
        case LNil
        thus ?thesis
            by (auto simp: lnth-default-def)
    next
        case (LCons x xs')
        thus ?thesis
            by (auto simp: lnth-default-def Suc-ile-eq)
    qed
qed
lemma enat-le-iff:
    enat }n\leqm\longleftrightarrowm=\infty\vee(\exists\mp@subsup{m}{}{\prime}.m=\mathrm{ enat m}\mp@subsup{m}{}{\prime}\wedgen\leqm'
    by (cases m) auto
lemma enat-less-iff:
    enat }n<m\longleftrightarrowm=\infty\vee(\exists\mp@subsup{m}{}{\prime}.m=enat m'^n< m'
    by (cases m) auto
lemma real-of-int-divide-in-Ints-iff:
    real-of-int a / real-of-int b\in\mathbb{Z}\longleftrightarrowb dvd a\veeb=0
proof safe
    assume real-of-int a / real-of-int b\in\mathbb{Z b}=0
    then obtain n where real-of-int a / real-of-int b = real-of-int n
        by (auto simp: Ints-def)
    hence real-of-int b* real-of-int n = real-of-int a
        using < b}\not=0`\mathrm{ by (auto simp: field-simps)
    also have real-of-int b* real-of-int n=real-of-int ( }b*n
        by simp
    finally have b*n=a
        by linarith
    thus b dvd a
        by auto
qed auto
lemma frac-add-of-nat: frac (of-nat y + x) = frac x
    unfolding frac-def by simp
```

```
lemma frac-add-of-int: frac (of-int y + x) = frac x
    unfolding frac-def by simp
lemma frac-fraction: frac (real-of-int a / real-of-int b) = (a mod b)/b
proof -
    have frac (a/b)=frac ((a\operatorname{mod}b+b*(a\operatorname{div}b))/b)
    by (subst mod-mult-div-eq) auto
    also have (a\operatorname{mod}b+b* (a\operatorname{div}b))/b=of-int (a div b) + a mod b / b
    unfolding of-int-add by (subst add-divide-distrib) auto
    also have frac ... = frac (a mod b/b)
    by (rule frac-add-of-int)
    also have ... =a mod b / b
    by (simp add: floor-divide-of-int-eq frac-def)
    finally show ?thesis .
qed
lemma Suc-fib-ge:Suc (fib n)\geqn
proof (induction n rule: fib.induct)
    case (3 n)
    show ?case
    proof (cases n< 2)
        case True
        thus ?thesis by (cases n) auto
    next
        case False
        hence Suc (Suc (Suc n)) \leqSuc n + n by simp
        also have ... \leqSuc (fib (Suc n)) + Suc (fib n)
            by (intro add-mono 3)
        also have \ldots. = Suc (Suc (fib (Suc (Suc n))))
            by simp
        finally show ?thesis by (simp only: Suc-le-eq)
    qed
qed auto
lemma fib-ge: fib n\geqn-1
    using Suc-fib-ge[of n] by simp
lemma frac-diff-of-nat-right [simp]: frac (x - of-nat y) = frac x
    using floor-diff-of-int[of x int y] by (simp add: frac-def)
lemma of-nat-ge-1-iff:of-nat }n\geq(1 :: 'a :: linordered-semidom) \longleftrightarrow < > 0
    using of-nat-le-iff[of 1 n] unfolding of-nat-1 by auto
lemma not-frac-less-0: }\neg\mathrm{ frac x < 0
    by (simp add: frac-def not-less)
lemma frac-le-1: frac x \leq 1
    unfolding frac-def by linarith
```

```
lemma divide-in-Rats-iff1:
    (x::real ) }\in\mathbb{Q}\Longrightarrowx\not=0\Longrightarrowx/y\in\mathbb{Q}\longleftrightarrowy\in\mathbb{Q
proof safe
    assume *: x\in\mathbb{Q}x\not=0x/y\in\mathbb{Q}
    from }*(1,3)\mathrm{ have }x/(x/y)\in\mathbb{Q
        by (rule Rats-divide)
    also from * have }x/(x/y)=y\mathrm{ by simp
    finally show }y\in\mathbb{Q}\mathrm{ .
qed (auto intro: Rats-divide)
lemma divide-in-Rats-iff2:
    (y::real) }\in\mathbb{Q}\Longrightarrowy\not=0\Longrightarrowx/y\in\mathbb{Q}\longleftrightarrowx\in\mathbb{Q
proof safe
    assume *: y }\in\mathbb{Q}y\not=0x/y\in\mathbb{Q
    from *(3,1) have x/y*y\in\mathbb{Q}
        by (rule Rats-mult)
    also from * have x/y*y=x by simp
    finally show }x\in\mathbb{Q}\mathrm{ .
qed (auto intro: Rats-divide)
lemma add-in-Rats-iff1: }x\in\mathbb{Q}\Longrightarrowx+y\in\mathbb{Q}\longleftrightarrowy\in\mathbb{Q
    using Rats-diff[of x + y x] by auto
lemma add-in-Rats-iff2: }y\in\mathbb{Q}\Longrightarrowx+y\in\mathbb{Q}\longleftrightarrowx\in\mathbb{Q
    using Rats-diff[of }x+yy]\mathrm{ by auto
lemma diff-in-Rats-iff1: }x\in\mathbb{Q}\Longrightarrowx-y\in\mathbb{Q}\longleftrightarrowy\in\mathbb{Q
    using Rats-diff[of x x - y] by auto
lemma diff-in-Rats-iff2: }y\in\mathbb{Q}\Longrightarrowx-y\in\mathbb{Q}\longleftrightarrowx\in\mathbb{Q
    using Rats-add[of }x-yy]\mathrm{ by auto
lemma frac-in-Rats-iff [simp]: frac x }\in\mathbb{Q}\longleftrightarrowx\in\mathbb{Q
    by (simp add: frac-def diff-in-Rats-iff2)
lemma filterlim-sequentially-shift:
    filterlim (\lambdan.f (n+m)) F sequentially \longleftrightarrow filterlim f F sequentially
proof (induction m)
    case (Suc m)
    have filterlim (\lambdan.f(n+Suc m))F at-top\longleftrightarrow
            filterlim (\lambdan.f (Suc n +m)) F at-top by simp
    also have ... \longleftrightarrow filterlim (\lambdan.f (n+m)) F at-top
        by (rule filterlim-sequentially-Suc)
    also have ... \longleftrightarrow filterlim f F at-top
    by (rule Suc.IH)
    finally show ?case .
qed simp-all
```


1.2 Bounds on alternating decreasing sums

```
lemma alternating-decreasing-sum-bounds:
    fixes f :: nat =>' 'a :: {linordered-ring, ring-1}
    assumes m\leqn\bigwedgek.k\in{m..n}\Longrightarrowfk\geq0
        \k.k\in{m..<n}\Longrightarrowf(Suc k)\leqfk
    defines S \equiv(\lambdam. (\sumk=m..n. (-1)^ k*fk))
    shows if even m then S m}\in{0..fm} else S m \in{-fm..0
    using assms(1)
proof (induction rule: inc-induct)
    case (step m')
    have [simp]: -a\leqb\longleftrightarrowa+b\geq(0 ::'a) for a b
        by (metis le-add-same-cancel1 minus-add-cancel)
    have [simp]:S m'= (-1)^ m
        using step.hyps unfolding S-def
        by (subst sum.atLeast-Suc-atMost) simp-all
    from step.hyps have nonneg: f m'\geq0
        by (intro assms) auto
    from step.hyps have mono: f(Suc m')\leqfm'
        by (intro assms) auto
    show ?case
    proof (cases even m')
        case True
        hence 0\leqf(Suc m})+S(Suc m'
            using step.IH by simp
    also note mono
    finally show ?thesis using True step.IH by auto
    next
        case False
        with step.IH have S (Suc m') \leqf(Suc m')
            by simp
        also note mono
        finally show ?thesis using step.IH False by auto
    qed
qed (insert assms,auto)
lemma alternating-decreasing-sum-bounds':
    fixes f :: nat => ' }a:::{linordered-ring, ring-1
    assumes m<n \k.k\in{m..n-1}\Longrightarrowfk\geq0
            \k.k\in{m..<n-1}\Longrightarrowf(Suc k)\leqfk
    defines S \equiv(\lambdam.(\sumk=m..<n. (-1)^ k*fk))
    shows if even m then S m}\in{0..fm} else S m \in{-fm..0
proof (cases n)
    case 0
    thus ?thesis using assms by auto
next
    case (Suc n')
    hence if even m then ( }\sumk=m..n-1.(-1)^ k*fk)\in{0..fm
                else (\sumk=m..n-1. (-1) ^ k*fk) \in{-f m..0}
    using assms by (intro alternating-decreasing-sum-bounds) auto
```

```
    also have \(\left(\sum k=m . . n-1 .(-1)^{\wedge} k * f k\right)=S m\)
    unfolding \(S\)-def by (intro sum.cong) (auto simp: Suc)
    finally show ?thesis .
qed
lemma alternating-decreasing-sum-upper-bound:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) linordered-ring, ring-1 \(\}\)
    assumes \(m \leq n \bigwedge k . k \in\{m . . n\} \Longrightarrow f k \geq 0\)
        \(\wedge k . k \in\{m . .<n\} \Longrightarrow f(\) Suc \(k) \leq f k\)
    shows \(\quad\left(\sum k=m . . n .(-1)^{\wedge} k * f k\right) \leq f m\)
    using alternating-decreasing-sum-bounds[of \(m n f\), OF assms] assms(1)
    by (auto split: if-splits intro: order.trans[OF - assms(2)])
lemma alternating-decreasing-sum-upper-bound \({ }^{\prime}\) :
    fixes \(f::\) nat \(\Rightarrow\) ' \(a::\{\) linordered-ring, ring-1 \(\}\)
    assumes \(m<n \bigwedge k . k \in\{m . . n-1\} \Longrightarrow f k \geq 0\)
        \(\wedge k . k \in\{m . .<n-1\} \Longrightarrow f(\) Suc \(k) \leq f k\)
    shows \(\left(\sum k=m . .<n .(-1)^{\wedge} k * f k\right) \leq f m\)
    using alternating-decreasing-sum-bounds' 'of \(m n f\), OF assms] assms(1)
    by (auto split: if-splits intro: order.trans[OF - assms(2)])
lemma abs-alternating-decreasing-sum-upper-bound:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) linordered-ring, ring-1 \(\}\)
    assumes \(m \leq n \bigwedge k . k \in\{m . . n\} \Longrightarrow f k \geq 0\)
        \(\wedge k . k \in\{m . .<n\} \Longrightarrow f(\) Suc \(k) \leq f k\)
    shows \(\left|\left(\sum k=m . . n .(-1) \uparrow k * f k\right)\right| \leq f m\) (is \(\left.a b s ? S \leq-\right)\)
    using alternating-decreasing-sum-bounds[of \(m n f\), OF assms]
    by (auto split: if-splits simp: minus-le-iff)
lemma abs-alternating-decreasing-sum-upper-bound':
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) linordered-ring, ring-1 \(\}\)
    assumes \(m<n \bigwedge k . k \in\{m . . n-1\} \Longrightarrow f k \geq 0\)
    \(\wedge k . k \in\{m . .<n-1\} \Longrightarrow f(\) Suc \(k) \leq f k\)
    shows \(\left|\left(\sum k=m . .<n .(-1)^{\wedge} k * f k\right)\right| \leq f m\)
    using alternating-decreasing-sum-bounds' [of \(m n f\), OF assms \(]\)
    by (auto split: if-splits simp: minus-le-iff)
lemma abs-alternating-decreasing-sum-lower-bound:
    fixes \(f::\) nat \(\Rightarrow{ }^{\prime} a::\{\) linordered-ring, ring-1 \(\}\)
    assumes \(m<n \bigwedge k . k \in\{m . . n\} \Longrightarrow f k \geq 0\)
        \(\wedge k . k \in\{m . .<n\} \Longrightarrow f(\) Suc \(k) \leq f k\)
    shows \(\left|\left(\sum k=m . . n .(-1)^{\wedge} k * f k\right)\right| \geq f m-f(S u c m)\)
proof -
    have \(\left(\sum k=m . . n .(-1)^{\wedge} k * f k\right)=\left(\sum k \in\right.\) insert \(\left.m\{m<. . n\} .(-1)^{\wedge} k * f k\right)\)
        using assms by (intro sum.cong) auto
    also have \(\ldots=(-1)^{\wedge} m * f m+\left(\sum k \in\{m<. . n\} .(-1)^{\wedge} k * f k\right)\)
    by auto
    also have \(\left(\sum k \in\{m<. . n\} .(-1)^{\wedge} k * f k\right)=\left(\sum k \in\{m . .<n\} .(-1)^{\wedge} S u c k * f\right.\)
(Suc k))
```

```
    by (intro sum.reindex-bij-witness[of-Suc \lambdai. i - 1]) auto
    also have (-1)`m *fm+\ldots= (-1)`m*fm-(\sumk\in{m..<n}. (-1)^k*
f(Suc k))
    by (simp add: sum-negf)
    also have }|...|\geq|(-1)^m*fm| - |(\sumk\in{m..<n}.(-1)^k*f(Suc k))
        by (rule abs-triangle-ineq2)
    also have |(-1)^m*fm|}=f
        using assms by (cases even m) auto
    finally have fm- |\sumk=m..<n.(-1)^k*f(Suc k)|
                s |\sumk=m..n. (-1) ^ k*fk|.
    moreover have fm- |(\sumk\in{m..<n}.(-1)^k*f(Suc k))|\geqfm-f(Suc
m)
    using assms by (intro diff-mono abs-alternating-decreasing-sum-upper-bound')
auto
    ultimately show ?thesis by (rule order.trans[rotated])
qed
lemma abs-alternating-decreasing-sum-lower-bound':
    fixes f :: nat 歽'a :: {linordered-ring, ring-1}
    assumes m+1<n ^k.k\in{m..n}\Longrightarrowfk\geq0
        \k.k\in{m..<n}\Longrightarrowf(Suc k)\leqfk
    shows }|(\sumk=m..<n.(-1)^k*fk)|\geqfm-f(Suc m
proof (cases n)
    case 0
    thus ?thesis using assms by auto
next
    case (Suc n')
    hence }|(\sumk=m..n-1.(-1)^k*fk)|\geqfm-f(Suc m
        using assms by (intro abs-alternating-decreasing-sum-lower-bound) auto
    also have (\sumk=m..n-1. (-1)^k*fk)=(\sumk=m..<n. (-1)^k*fk)
        by (intro sum.cong) (auto simp: Suc)
    finally show ?thesis.
qed
lemma alternating-decreasing-suminf-bounds:
    assumes }\k.fk\geq(0:: real) \k.f(Suc k)\leqf
        f\longrightarrow0
    shows (\sumk.(-1)^k*fk)\in{f0-f 1..f 0}
proof -
    have summable ( }\lambdak.(-1)^^k*fk
    by (intro summable-Leibniz' assms)
    hence lim: ( }\lambdan.\sumk\leqn.(-1)^ k*fk)\longrightarrow(\sumk.(-1) ^ k*fk
    by (auto dest: summable-LIMSEQ')
    have bounds: (\sumk=0..n. (-1)^k*fk)\in{f0-f1..f 0}
    if n>0 for }
    using alternating-decreasing-sum-bounds[of 1 nf] assms that
    by (subst sum.atLeast-Suc-atMost) auto
    note [simp] = atLeast0AtMost
    note [intro!] = eventually-mono[OF eventually-gt-at-top[of 0]]
```

```
    from lim have (\sumk. (-1) ^ k*fk)\geqf0-f1
    by (rule tendsto-lowerbound) (insert bounds, auto)
    moreover from lim have (\sumk. (-1) ^ k*fk)\leqf0
    by (rule tendsto-upperbound) (use bounds in auto)
    ultimately show ?thesis by simp
qed
lemma
    assumes \k. k\geqm\Longrightarrowfk\geq(0:: real)
        \k.k\geqm\Longrightarrowf(Suc k)\leqfkf\longrightarrow0
    defines S\equiv\overline{(\sumk. (-1) ^}(k+\overline{m})*f(k+m))
    shows summable-alternating-decreasing: summable (\lambdak. (-1)^ (k+m)*f(k
+m))
    and alternating-decreasing-suminf-bounds':
        if even m then S \in{fm-f(Suc m) .. fm}
                else S \in{-fm..f (Suc m) - fm} (is ?th1)
    and abs-alternating-decreasing-suminf:
        abs S\in{fm-f(Suc m)..f m} (is ?th2)
proof -
    have summable: summable ( }\lambdak.(-1)^ k*f(k+m)
    using assms by (intro summable-Leibniz') (auto simp: filterlim-sequentially-shift)
    thus summable (\lambdak. (-1)^ (k+m)*f(k+m))
    by (subst add.commute) (auto simp: power-add mult.assoc intro: summable-mult)
    have}S=(\sumk.(-1)^ m*((-1)^k*f(k+m))
    by (simp add:S-def power-add mult-ac)
    also have ... = (-1)^m*(\sumk.(-1)^ k*f(k+m))
    using summable by (rule suminf-mult)
    finally have S=(-1)^ m*(\sumk. (- 1)^ k*f(k+m)).
    moreover have (\sumk. (-1) ^ k*f(k+m)) \in
        {f(0+m)-f(1+m)..f(0+m)}
        using assms
        by (intro alternating-decreasing-suminf-bounds)
            (auto simp: filterlim-sequentially-shift)
    ultimately show ?th1 by (auto split: if-splits)
    thus ?th2 using assms(2)[of m] by (auto split: if-splits)
qed
lemma
    assumes }\k.k\geqm\Longrightarrowfk\geq(0:: real
    \k. k\geqm\Longrightarrowf(Suc k)<fkf\longrightarrow0
    defines S\equiv(\sumk.(-1)^(k+m)*f(k+m))
    shows alternating-decreasing-suminf-bounds-strict':
            if even m then S \in{fm-f(Suc m)<..<f m}
                else S\in{-fm<..<f(Suc m) - fm} (is ?th1)
    and abs-alternating-decreasing-suminf-strict:
        abs S\in{fm-f(Suc m)<..<fm} (is ?th2)
proof -
    define S' where S'=(\sumk.(-1)^^(k+Suc (Suc m)) *f(k+Suc (Suc m)))
```

```
    have (\lambdak. (-1)^ (k+m)*f(k+m)) sums S using assms unfolding S-def
    by (intro summable-sums summable-Leibniz' summable-alternating-decreasing)
        (auto simp: less-eq-real-def)
    from sums-split-initial-segment[OF this, of 2]
    have S': S'=S-(-1)^ m*(fm-f(Suc m))
    by (simp-all add: sums-iff S'-def algebra-simps lessThan-nat-numeral)
    have if even (Suc (Suc m)) then S'\in{f(Suc (Suc m)) - f (Suc (Suc (Suc
m)))..f (Suc (Suc m))}
            else S'\in{-f (Suc (Suc m))..f(Suc (Suc (Suc m))) - f(Suc (Suc m))}
unfolding }\mp@subsup{S}{}{\prime}\mathrm{ -def
            using assms by (intro alternating-decreasing-suminf-bounds') (auto simp:
less-eq-real-def)
    thus ?th1 using assms(2)[of Suc m] assms(2)[of Suc (Suc m)]
        unfolding S' by (auto simp: algebra-simps)
    thus ?th2 using assms(2)[of m] by (auto split: if-splits)
qed
datatype cfrac=CFrac int nat llist
quickcheck-generator cfrac constructors: CFrac
lemma type-definition-cfrac':
    type-definition ( }\lambdax\mathrm{ . case x of CFrac a b }=>(a,b))(\lambda(x,y). CFrac x y) UNIV
    by (auto simp: type-definition-def split: cfrac.splits)
setup-lifting type-definition-cfrac'
lift-definition cfrac-of-int :: int }=>\mathrm{ cfrac is
    \lambdan. (n,LNil) .
lemma cfrac-of-int-code [code]: cfrac-of-int n = CFrac n LNil
    by (auto simp: cfrac-of-int-def)
lift-definition cfrac-of-stream :: int stream }=>\mathrm{ cfrac is
    \lambdaxs. (shd xs,llist-of-stream (smap ( }\lambdax.nat (x-1)) (stl xs)))
instantiation cfrac :: zero
begin
definition zero-cfrac where 0 = cfrac-of-int 0
instance ..
end
instantiation cfrac :: one
begin
definition one-cfrac where 1=cfrac-of-int 1
instance ..
end
```

```
lift-definition cfrac-tl :: cfrac }=>\mathrm{ cfrac is
    \lambda(-,bs)=> case bs of LNil => (1,LNil) |LCons b bs'}=>(\mathrm{ int b + 1,bs') .
lemma cfrac-tl-code [code]:
    cfrac-tl (CFrac a bs)=
        (case bs of LNil => CFrac 1 LNil | LCons b bs' }=>\mathrm{ CFrac (int b + 1) bs')
    by (auto simp: cfrac-tl-def split:llist.splits)
definition cfrac-drop :: nat }=>\mathrm{ cfrac }=>\mathrm{ cfrac where
    cfrac-drop n c = (cfrac-tl ^n) c
lemma cfrac-drop-Suc-right: cfrac-drop (Suc n) c = cfrac-drop n (cfrac-tl c)
    by (simp add: cfrac-drop-def funpow-Suc-right del: funpow.simps)
lemma cfrac-drop-Suc-left:cfrac-drop (Suc n) c = cfrac-tl (cfrac-drop n c)
    by (simp add: cfrac-drop-def)
lemma cfrac-drop-add:cfrac-drop (m+n) c =cfrac-drop m (cfrac-drop n c)
    by (simp add: cfrac-drop-def funpow-add)
lemma cfrac-drop-0 [simp]: cfrac-drop 0 = (\lambdax. x)
    by (simp add: fun-eq-iff cfrac-drop-def)
lemma cfrac-drop-1 [simp]: cfrac-drop 1 = cfrac-tl
    by (simp add: fun-eq-iff cfrac-drop-def)
lift-definition cfrac-length :: cfrac }=>\mathrm{ enat is
    \lambda(-,bs) => llength bs .
lemma cfrac-length-code [code]: cfrac-length (CFrac a bs) = llength bs
    by (simp add: cfrac-length-def)
lemma cfrac-length-tl [simp]:cfrac-length (cfrac-tl c) = cfrac-length c - 1
    by transfer (auto split: llist.splits)
lemma enat-diff-Suc-right [simp]: m- enat (Suc n)=m-n-1
    by (auto simp: diff-enat-def enat-1-iff split: enat.splits)
lemma cfrac-length-drop [simp]:cfrac-length (cfrac-drop n c)=cfrac-length c - n
    by (induction n) (auto simp: cfrac-drop-def)
lemma cfrac-length-of-stream [simp]:cfrac-length (cfrac-of-stream xs) = \infty
    by transfer auto
lift-definition cfrac-nth :: cfrac => nat }=>\mathrm{ int is
    \lambda(a :: int, bs :: nat llist). }\lambda(n:: nat)
        if n=0 then a
        else if n\leqllength bs then int (lnth bs (n-1)) + 1 else 1.
```

```
lemma cfrac-nth-code [code]:
    cfrac-nth (CFrac abs) \(n=(\) if \(n=0\) then a else lnth-default 0 bs \((n-1)+1)\)
proof -
    have \(n>0 \longrightarrow\) enat \((n-\) Suc 0\()<\) llength \(b s \longleftrightarrow\) enat \(n \leq\) llength \(b s\)
        by (metis Suc-ile-eq Suc-pred)
    thus ?thesis by (auto simp: cfrac-nth-def lnth-default-def)
qed
lemma cfrac-nth-nonneg [simp, intro]: \(n>0 \Longrightarrow\) cfrac-nth \(c n \geq 0\)
    by transfer auto
lemma cfrac-nth-nonzero [simp]: \(n>0 \Longrightarrow\) cfrac-nth c \(n \neq 0\)
    by transfer (auto split: if-splits)
lemma cfrac-nth-pos[simp, intro]: \(n>0 \Longrightarrow\) cfrac-nth c \(n>0\)
    by transfer auto
lemma cfrac-nth-ge-1[simp, intro]: \(n>0 \Longrightarrow\) cfrac-nth \(c n \geq 1\)
    by transfer auto
lemma cfrac-nth-not-less-1[simp, intro]: \(n>0 \Longrightarrow \neg\) cfrac-nth cn<1
    by transfer (auto split: if-splits)
lemma cfrac-nth-tl [simp]: cfrac-nth (cfrac-tl c) \(n=c f r a c-n t h c(S u c n)\)
    apply transfer
    apply (auto split: llist.splits nat.splits simp: Suc-ile-eq lnth-LCons enat-0-iff
                simp flip: zero-enat-def)
    done
lemma cfrac-nth-drop [simp]: cfrac-nth (cfrac-drop \(n c) m=c f r a c-n t h c(m+n)\)
    by (induction \(n\) arbitrary: \(m\) ) (auto simp: cfrac-drop-def)
lemma cfrac-nth-0-of-int [simp]: cfrac-nth (cfrac-of-int n) \(0=n\)
    by transfer auto
lemma cfrac-nth-gt0-of-int \([\) simp \(]: m>0 \Longrightarrow c f r a c-n t h(c f r a c-o f-i n t n) m=1\)
    by transfer (auto simp: enat-0-iff)
lemma cfrac-nth-of-stream:
    assumes sset \((\) stl \(x s) \subseteq\{0<.\).
    shows cfrac-nth (cfrac-of-stream xs) \(n=\) snth \(x s n\)
    using assms
proof (transfer', goal-cases)
    case (1 xs \(n\) )
    thus ?case
        by (cases xs; cases \(n\) ) (auto simp: subset-iff)
qed
```

```
lift-definition cfrac :: (nat => int) => cfrac is
    \lambdaf.(f 0, inf-llist (\lambdan.nat (f(Suc n) - 1))).
definition is-cfrac :: (nat => int) => bool where is-cfrac f \longleftrightarrow(\foralln>0.fn>0)
lemma cfrac-nth-cfrac [simp]:
    assumes is-cfrac f
    shows cfrac-nth (cfrac f) n=fn
    using assms unfolding is-cfrac-def by transfer auto
lemma llength-eq-infty-lnth: llength b=\infty\Longrightarrow inf-llist (lnth b) = b
    by (simp add: llength-eq-infty-conv-lfinite)
lemma cfrac-cfrac-nth [simp]:cfrac-length c=\infty\Longrightarrowcfrac (cfrac-nth c)=c
    by transfer (auto simp: llength-eq-infty-lnth)
lemma cfrac-length-cfrac [simp]:cfrac-length (cfrac f) = \infty
    by transfer auto
lift-definition cfrac-of-list :: int list }=>\mathrm{ cfrac is
    \lambdaxs. if xs = [] then (0,LNil) else (hd xs, llist-of (map (\lambdan. nat n - 1) (tl xs))).
lemma cfrac-length-of-list [simp]:cfrac-length (cfrac-of-list xs) = length xs - 1
    by transfer (auto simp: zero-enat-def)
lemma cfrac-of-list-Nil [simp]: cfrac-of-list [] = 0
    unfolding zero-cfrac-def by transfer auto
lemma cfrac-nth-of-list [simp]:
    assumes n< length xs and }\foralli\in{0<..<length xs}. xs ! i>
    shows cfrac-nth (cfrac-of-list xs) n = xs ! n
    using assms
proof (transfer, goal-cases)
    case (1 n xs)
    show ?case
    proof (cases n)
        case (Suc n')
        with 1 have xs ! n>0
            using 1 by auto
    hence int (nat (tl xs! n') - Suc 0) + 1 = xs!Suc n'
                using 1(1) Suc by (auto simp: nth-tl of-nat-diff)
    thus ?thesis
        using Suc 1(1) by (auto simp: hd-conv-nth zero-enat-def)
    qed (use 1 in <auto simp: hd-conv-nth>)
qed
```

primcorec cfrac-of-real-aux :: real \Rightarrow nat llist where
cfrac-of-real-aux $x=$
(if $x \in\{0<. .<1\}$ then LCons (nat $\lfloor 1 / x\rfloor-1$) (cfrac-of-real-aux $($ frac $(1 / x))$) else LNil)
lemma cfrac-of-real-aux-code [code]:
cfrac-of-real-aux $x=$
(if $x>0 \wedge x<1$ then LCons (nat $\lfloor 1 / x\rfloor-1$) (cfrac-of-real-aux $($ frac $(1 / x))$) else LNil)
by (subst cfrac-of-real-aux.code) auto
lemma cfrac-of-real-aux-LNil [simp]: $x \notin\{0<. .<1\} \Longrightarrow$ cfrac-of-real-aux $x=$ LNil by (subst cfrac-of-real-aux.code) auto
lemma cfrac-of-real-aux-0 [simp]: cfrac-of-real-aux $0=$ LNil
by (subst cfrac-of-real-aux.code) auto
lemma cfrac-of-real-aux-eq-LNil-iff [simp]: cfrac-of-real-aux $x=$ LNil $\longleftrightarrow x \notin$ $\{0<. .<1\}$
by (subst cfrac-of-real-aux.code) auto
lemma lnth-cfrac-of-real-aux:
assumes $n<$ llength (cfrac-of-real-aux x)
shows $\operatorname{lnth}($ cfrac-of-real-aux $x)($ Suc $n)=\operatorname{lnth}($ cfrac-of-real-aux $(f r a c(1 / x)))$
n
using assms
apply (induction n arbitrary: x)
apply (subst cfrac-of-real-aux.code)
apply auto []
apply (subst cfrac-of-real-aux.code)
apply (auto)
done
lift-definition cfrac-of-real :: real $\Rightarrow c f r a c$ is
λx. $(\lfloor x\rfloor$, cfrac-of-real-aux $($ frac $x))$.
lemma cfrac-of-real-code [code]: cfrac-of-real $x=$ CFrac $\lfloor x\rfloor$ (cfrac-of-real-aux (frac x))
by (simp add: cfrac-of-real-def)
lemma eq-epred-iff: $m=$ epred $n \longleftrightarrow m=0 \wedge n=0 \vee n=e S u c m$
by (cases m; cases n) (auto simp: enat-0-iff enat-eSuc-iff infinity-eq-eSuc-iff)
lemma epred-eq-iff: epred $n=m \longleftrightarrow m=0 \wedge n=0 \vee n=e S u c m$
by (cases m; cases n) (auto simp: enat-0-iff enat-eSuc-iff infinity-eq-eSuc-iff)
lemma epred-less: $n>0 \Longrightarrow n \neq \infty \Longrightarrow$ epred $n<n$
by (cases n) (auto simp: enat-0-iff)

```
lemma cfrac-nth-of-real-0 [simp]:
    cfrac-nth(cfrac-of-real x) 0=\lfloorx\rfloor
    by transfer auto
lemma frac-eq-0 [simp]: x\in\mathbb{Z}\Longrightarrow frac }x=
    by simp
lemma cfrac-tl-of-real:
    assumes }x\not\in\mathbb{Z
    shows cfrac-tl (cfrac-of-real x) =cfrac-of-real (1 / frac x)
    using assms
proof (transfer, goal-cases)
    case (1 x)
    hence int (nat \lfloor1 / frac x\rfloor-Suc 0) + 1=\lfloor1/ frac x }
    by (subst of-nat-diff) (auto simp: le-nat-iff frac-le-1)
    with }\langlex\not\in\mathbb{Z}\rangle\mathrm{ show ?case
    by (subst cfrac-of-real-aux.code) (auto split: llist.splits simp: frac-lt-1)
qed
lemma cfrac-nth-of-real-Suc:
    assumes }x\not\in\mathbb{Z
    shows cfrac-nth (cfrac-of-real x) (Suc n) = cfrac-nth (cfrac-of-real (1 / frac
x)) n
proof -
    have cfrac-nth (cfrac-of-real x) (Suc n)=
                cfrac-nth (cfrac-tl (cfrac-of-real x)) n
    by simp
    also have cfrac-tl (cfrac-of-real x) =cfrac-of-real (1/ frac x)
        by (simp add: cfrac-tl-of-real assms)
    finally show ?thesis.
qed
```

fun conv :: cfrac \Rightarrow nat \Rightarrow real where
conv c $0=$ real-of-int (cfrac-nth c 0)
$\mid \operatorname{conv} c($ Suc $n)=$ real-of-int $($ cfrac-nth c 0$)+1 / \operatorname{conv}(c f r a c-t l c) n$

The numerator and denominator of a convergent:

```
fun conv-num :: cfrac \(\Rightarrow\) nat \(\Rightarrow\) int where
    conv-num c \(0=\) cfrac-nth c 0
| conv-num c (Suc 0) \(=\) cfrac-nth c \(1 *\) cfrac-nth c \(0+1\)
\(\mid\) conv-num \(c(\) Suc \((\) Suc \(n))=\) cfrac-nth c \((\) Suc \((\) Suc \(n)) *\) conv-num \(c(S u c n)+\)
conv-num c \(n\)
fun conv-denom :: cfrac \(\Rightarrow\) nat \(\Rightarrow\) int where
    conv-denom с \(0=1\)
|conv-denom c (Suc 0) \(=\) cfrac-nth c 1
\(\mid\) conv-denom c \((\) Suc \((\) Suc \(n))=\) cfrac-nth \(c(S u c(S u c ~ n)) * \operatorname{conv-denom~c~(Suc~} n)\)
+ conv-denom c \(n\)
```


lemma conv-num-rec:

$n \geq 2 \Longrightarrow$ conv-num $c n=$ cfrac-nth $c n *$ conv-num $c(n-1)+$ conv-num c ($n-2$)
by (cases n; cases $n-1$) auto
lemma conv-denom-rec:
$n \geq 2 \Longrightarrow$ conv-denom $c n=c f r a c-n t h c n *$ conv-denom $c(n-1)+$ conv-denom $c(n-2)$
by (cases n; cases $n-1$) auto
fun conv $^{\prime}::$ cfrac \Rightarrow nat \Rightarrow real \Rightarrow real where
conv' $^{\prime}$ с $0 z=z$
| conv' c (Suc n) $z=$ conv $^{\prime}$ c n (real-of-int (cfrac-nth $\left.\left.c n\right)+1 / z\right)$
Occasionally, it can be useful to extend the domain of conv-num and conv-denom to -1 and -2 .
definition conv-num-int :: cfrac \Rightarrow int \Rightarrow int where
conv-num-int c $n=($ if $n=-1$ then 1 else if $n<0$ then 0 else conv-num c (nat n))
definition conv-denom-int $::$ cfrac \Rightarrow int \Rightarrow int where conv-denom-int $c \quad n=$ (if $n=-2$ then 1 else if $n<0$ then 0 else conv-denom c (nat n))
lemma conv-num-int-rec:
assumes $n \geq 0$
shows conv-num-int $c n=$ cfrac-nth $c($ nat $n) *$ conv-num-int $c(n-1)+$
conv-num-int c (n - 2)
proof (cases $n \geq$ 2)
case True
define n^{\prime} where $n^{\prime}=$ nat $(n-2)$
have $n: n=\operatorname{int}\left(\right.$ Suc (Suc $\left.n^{\prime}\right)$)
using True by (simp add: n^{\prime}-def)
show ?thesis
by (simp add: n conv-num-int-def nat-add-distrib)
qed (use assms in <auto simp: conv-num-int-def〉)
lemma conv-denom-int-rec:
assumes $n \geq 0$
shows conv-denom-int c $n=$ cfrac-nth $c($ nat $n) *$ conv-denom-int $c(n-1)$

+ conv-denom-int c (n - 2)
proof -
consider $n=0|n=1| n \geq 2$
using assms by force
thus ?thesis
proof cases
assume $n \geq 2$

```
    define n' where }\mp@subsup{n}{}{\prime}=nat(n-2
    have n: n = int (Suc (Suc n'))
    using < n \geq2` by (simp add: n'-def)
    show ?thesis
    by (simp add: n conv-denom-int-def nat-add-distrib)
    qed (use assms in <auto simp: conv-denom-int-def`)
qed
```

The number $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$ that the infinite continued fraction converges to:
definition cfrac-lim :: cfrac \Rightarrow real where
cfrac-lim $c=$
(case cfrac-length c of $\infty \Rightarrow \lim ($ conv $c) \mid$ enat $l \Rightarrow$ conv $c l)$
lemma cfrac-lim-code [code]:
cfrac-lim $c=$
(case cfrac-length c of enat $l \Rightarrow$ conv c l
$\mid-\Rightarrow$ Code.abort (STR "Cannot compute infinite continued fraction") (λ-.
cfrac-lim c))
by (simp add: cfrac-lim-def split: enat.splits)
definition cfrac-remainder where cfrac-remainder c $n=$ cfrac-lim (cfrac-drop n
c)
lemmas $\operatorname{conv}^{\prime}$-Suc-right $=\operatorname{conv}^{\prime} \cdot \operatorname{simps}(2)$
lemma conv'-Suc-left:
assumes $z>0$
shows conv ${ }^{\prime}$ c (Suc n) $z=$
real-of-int (cfrac-nth c 0$)+1 /$ conv $^{\prime}($ cfrac-tl c) $n z$
using assms
proof (induction n arbitrary: z)
case (Suc n z)
have conv' c (Suc (Suc n)) z=
conv $^{\prime} c($ Suc $n)($ real-of-int (cfrac-nth $\left.c(S u c n))+1 / z\right)$
by simp
also have $\ldots=$ cfrac-nth c $0+1 /$ conv $^{\prime}($ cfrac-tl c) (Suc n) z
using Suc.prems by (subst Suc.IH) (auto intro!: add-nonneg-pos cfrac-nth-nonneg)
finally show ?case .
qed simp-all
lemmas $[\operatorname{simp} d e l]=\operatorname{conv}^{\prime} \cdot \operatorname{simps}(2)$
lemma conv'-left-induct:
assumes $\bigwedge c . P c 0 z \bigwedge c n . P(c f r a c-t l c) n z \Longrightarrow P c(S u c n) z$
shows $P c n z$
using assms by (rule conv.induct)
lemma enat-less-diff-conv [simp]:

```
    assumes }a=\infty\veeb<\infty\veec<
    shows }a<c-(b:: enat)\longleftrightarrowa+b<
    using assms by (cases a; cases b; cases c) auto
lemma conv-eq-conv': conv c n = conv' с n (cfrac-nth c n)
proof (cases n=0)
    case False
    hence cfrac-nth c n > 0 by (auto intro!: cfrac-nth-pos)
    thus ?thesis
    by (induction c n rule: conv.induct) (simp-all add: conv'-Suc-left)
qed simp-all
lemma conv-num-pos':
    assumes cfrac-nth c 0>0
    shows conv-num c n > 0
    using assms by (induction n rule: fib.induct) (auto simp: intro!: add-pos-nonneg)
lemma conv-num-nonneg:cfrac-nth c 0 \geq0\Longrightarrow conv-num c n \geq0
    by (induction c n rule: conv-num.induct)
        (auto simp: intro!: mult-nonneg-nonneg add-nonneg-nonneg
                intro: cfrac-nth-nonneg)
lemma conv-num-pos:
    cfrac-nth c 0 \geq 0 # n>0\Longrightarrow conv-num c n > 0
    by (induction c n rule: conv-num.induct)
    (auto intro!: mult-pos-pos mult-nonneg-nonneg add-pos-nonneg conv-num-nonneg
cfrac-nth-pos
        intro: cfrac-nth-nonneg simp: enat-le-iff)
lemma conv-denom-pos [simp, intro]: conv-denom c n>0
    by (induction c n rule: conv-num.induct)
        (auto intro!: add-nonneg-pos mult-nonneg-nonneg cfrac-nth-nonneg
                simp: enat-le-iff)
lemma conv-denom-not-nonpos [simp]: \negconv-denom с n \leq 0
    using conv-denom-pos[of c n] by linarith
lemma conv-denom-not-neg [simp]: \negconv-denom с n < 0
    using conv-denom-pos[of c n] by linarith
lemma conv-denom-nonzero [simp]: conv-denom c n 
    using conv-denom-pos[of c n] by linarith
lemma conv-denom-nonneg [simp, intro]: conv-denom c n \geq0
    using conv-denom-pos[of c n] by linarith
lemma conv-num-int-neg1 [simp]: conv-num-int c (-1)=1
    by (simp add: conv-num-int-def)
```

lemma conv-num-int-neg $[$ simp $]: n<0 \Longrightarrow n \neq-1 \Longrightarrow$ conv-num-int c $n=0$ by (simp add: conv-num-int-def)
lemma conv-num-int-of-nat [simp]: conv-num-int c(int n) $=$ conv-num c n by (simp add: conv-num-int-def)
lemma conv-num-int-nonneg $[$ simp $]: n \geq 0 \Longrightarrow$ conv-num-int $c n=$ conv-num c (nat n)
by (simp add: conv-num-int-def)
lemma conv-denom-int-neg2 [simp]: conv-denom-int c (-2) $=1$
by (simp add: conv-denom-int-def)
lemma conv-denom-int-neg $[$ simp $]: n<0 \Longrightarrow n \neq-2 \Longrightarrow$ conv-denom-int c $n=$ 0
by (simp add: conv-denom-int-def)
lemma conv-denom-int-of-nat $[$ simp $]$: conv-denom-int $c($ int $n)=$ conv-denom c n by (simp add: conv-denom-int-def)
lemma conv-denom-int-nonneg [simp]: $n \geq 0 \Longrightarrow$ conv-denom-int c $n=$ conv-denom c (nat n)
by (simp add: conv-denom-int-def)
lemmas conv-Suc $[\operatorname{simp}$ del $]=\operatorname{conv} \cdot \operatorname{simps}(2)$
lemma conv'-gt-1:
assumes cfrac-nth c $0>0 x>1$
shows conv' c $n x>1$
using assms
proof (induction n arbitrary: c x)
case (Suc n c x)
from Suc.prems have pos: cfrac-nth c $n>0$ using cfrac-nth-pos[of n c] by (cases $n=0$) (auto simp: enat-le-iff)
have $1<1+1 / x$ using Suc.prems by simp
also have $\ldots \leq$ cfrac-nth $c n+1 / x$ using pos by (intro add-right-mono) (auto simp: of-nat-ge-1-iff)
finally show ?case
by (subst conv'-Suc-right, intro Suc.IH)
(use Suc.prems in 〈auto simp: enat-le-iff〉)
qed auto
lemma enat-eq-iff: $a=$ enat $b \longleftrightarrow\left(\exists a^{\prime} . a=\right.$ enat $\left.a^{\prime} \wedge a^{\prime}=b\right)$
by (cases a) auto
lemma eq-enat-iff: enat $a=b \longleftrightarrow\left(\exists b^{\prime} . b=\right.$ enat $\left.b^{\prime} \wedge a=b^{\prime}\right)$
by (cases b) auto

```
lemma enat-diff-one [simp]: enat a-1 = enat (a-1)
    by (cases enat (a-1)) (auto simp flip: idiff-enat-enat)
lemma conv'-eqD:
    assumes conv' c n x = conv' c' n x x > 1 m<n
    shows cfrac-nth c m = cfrac-nth c'm
    using assms
proof (induction n arbitrary: m c c')
    case (Suc n m c c')
    have gt:conv'(cfrac-tl c) n x > 1 conv' (cfrac-tl c') n x > 1
        by (rule conv'-gt-1;
            use Suc.prems in <force intro: cfrac-nth-pos simp: enat-le-iff〉)+
    have eq:cfrac-nth c 0 + 1/ conv'(cfrac-tl c) n x =
                        cfrac-nth c' 0 + 1 / conv' (cfrac-tl c') n x
        using Suc.prems by (subst (asm) (1 2) conv'-Suc-left) auto
    hence \lfloorcfrac-nth c 0 + 1/ conv'(cfrac-tl c) n x \=
                cfrac-nth c' 0 + 1/ conv' (cfrac-tl c') n x \
        by (simp only:)
    also from gt have floor (cfrac-nth c 0 + 1/ conv'(cfrac-tl c) n x) = cfrac-nth
c 0
    by (intro floor-unique) auto
    also from gt have floor (cfrac-nth c' 0 + 1/ conv' (cfrac-tl c') n x ) = cfrac-nth
c'0
    by (intro floor-unique) auto
    finally have [simp]: cfrac-nth c 0 = cfrac-nth c' 0 by simp
    show ?case
    proof (cases m)
    case (Suc m')
    from eq and gt have conv' (cfrac-tl c) n x = conv'(cfrac-tl c') n x
        by simp
    hence cfrac-nth (cfrac-tl c) m'= cfrac-nth (cfrac-tl c') m'
            using Suc.prems
            by (intro Suc.IH[of cfrac-tl c cfrac-tl c\) (auto simp: o-def Suc enat-le-iff)
    with Suc show?thesis by simp
    qed simp-all
qed simp-all
context
    fixes c:: cfrac and hk
    defines h\equivconv-num c and k\equivconv-denom c
begin
lemma conv'-num-denom-aux:
    assumes z: z>0
    shows conv' c (Suc (Suc n)) z*(z*k(Suc n) +kn)=
                        (z*h(Suc n) +hn)
    using z
```

```
proof (induction n arbitrary:z)
    case 0
    hence 1+z*cfrac-nth c 1>0
        by (intro add-pos-nonneg) (auto simp: cfrac-nth-nonneg)
    with 0 show ?case
        by (auto simp add: h-def k-def field-simps conv'-Suc-right max-def not-le)
next
    case (Suc n)
    have [simp]:h(Suc (Suc n)) = cfrac-nth c (n+2)*h(n+1) +hn
        by (simp add: h-def)
    have [simp]: k (Suc (Suc n)) = cfrac-nth c (n+2)*k(n+1) +kn
        by (simp add: k-def)
    define }\mp@subsup{z}{}{\prime}\mathrm{ where }\mp@subsup{z}{}{\prime}=c\mathrm{ cfrac-nth c (n+2) +1/z
    from }\langlez>0\rangle\mathrm{ have }\mp@subsup{z}{}{\prime}>
        by (auto simp: z'-def intro!: add-nonneg-pos cfrac-nth-nonneg)
    have z* real-of-int (h (Suc (Suc n))) + real-of-int (h (Suc n)) =
                        z*(z'*h(Suc n) +hn)
        using }\langlez>0\rangle\mathrm{ by (simp add: algebra-simps }\mp@subsup{z}{}{\prime}-def
    also have \ldots. = z*(conv'c(Suc (Suc n)) z'*( (z'*k (Suc n) +kn))
        using 〈z'> 0〉 by (subst Suc.IH [symmetric]) auto
    also have ... = conv' c (Suc (Suc (Suc n))) z*
            (z*k (Suc (Suc n)) +k(Suc n))
        unfolding z'-def using <z>0\rangle
        by (subst (2) conv'-Suc-right) (simp add: algebra-simps)
    finally show ?case ..
qed
lemma conv'-num-denom:
    assumes z>0
    shows conv' c (Suc (Suc n)) z=
        (z*h(Suc n) +hn)/(z*k(Suc n) +kn)
proof -
    have z * real-of-int (k (Suc n)) + real-of-int (k n) > 0
        using assms by (intro add-pos-nonneg mult-pos-pos) (auto simp: k-def)
    with conv'-num-denom-aux[of z n] assms show ?thesis
        by (simp add: divide-simps)
qed
lemma conv-num-denom: conv c n=hn/kn
proof -
    consider n=0 | = Suc 0 | m where n=Suc (Suc m)
    using not0-implies-Suc by blast
    thus ?thesis
    proof cases
        assume n=Suc 0
        thus ?thesis
            by (auto simp: h-def k-def field-simps max-def conv-Suc)
    next
```

```
    fix m assume [simp]: n=Suc (Suc m)
    have conv c n= conv' c (Suc (Suc m)) (cfrac-nth c (Suc (Suc m)))
    by (subst conv-eq-conv') simp-all
    also have ... = hn / kn
        by (subst conv'-num-denom) (simp-all add: h-def k-def)
    finally show ?thesis .
    qed (auto simp: h-def k-def)
qed
lemma conv'-num-denom':
    assumes }z>0\mathrm{ and n 22
    shows conv' c n z=(z*h(n-1)+h(n-2))/(z*k(n-1) +k(n-
2))
    using assms conv'-num-denom[of z n - 2]
    by (auto simp: eval-nat-numeral Suc-diff-Suc)
lemma conv'-num-denom-int:
    assumes z>0
    shows conv' c nz=
        (z* conv-num-int c (int n-1) + conv-num-int c (int n-2)) /
        (z* conv-denom-int c (int n - 1) + conv-denom-int c (int n - 2))
proof -
    consider n=0| n=1| n\geq2 by force
    thus ?thesis
    proof cases
        case 1
        thus ?thesis using conv-num-int-neg1 by auto
    next
        case 2
        thus ?thesis using assms by (auto simp: conv'-Suc-right field-simps)
    next
        case 3
        thus ?thesis using conv'-num-denom'[OF assms(1), of nat n]
            by (auto simp: nat-diff-distrib h-def k-def)
    qed
qed
lemma conv-nonneg: cfrac-nth c 0 \geq0\Longrightarrow conv c n \geq0
    by (subst conv-num-denom)
        (auto intro!: divide-nonneg-nonneg conv-num-nonneg simp: h-def k-def)
lemma conv-pos:
    assumes cfrac-nth c 0>0
    shows conv c n>0
proof -
    have conv c n =hn/kn
    using assms by (intro conv-num-denom)
    also from assms have .. > > unfolding h-def k-def
        by (intro divide-pos-pos) (auto intro!: conv-num-pos')
```

finally show ?thesis.
qed
lemma conv-num-denom-prod-diff:
$k n * h($ Suc $n)-k($ Suc $n) * h n=(-1) へ n$
by (induction c n rule: conv-num.induct)
(auto simp: k-def h-def algebra-simps)
lemma conv-num-denom-prod-diff':
$k($ Suc $n) * h n-k n * h($ Suc $n)=(-1) へ$ Suc n
by (induction c n rule: conv-num.induct)
(auto simp: k-def h-def algebra-simps)

lemma

fixes $n::$ int
assumes $n \geq-2$
shows conv-num-denom-int-prod-diff:
conv-denom-int c $n *$ conv-num-int $c(n+1)-$
conv-denom-int $c(n+1) *$ conv-num-int $c n=(-1) \wedge($ nat $(n+2))$
(is?th1)
and conv-num-denom-int-prod-diff':
conv-denom-int $c(n+1) *$ conv-num-int $c n-$ conv-denom-int c $n *$ conv-num-int $c(n+1)=(-1) \wedge($ nat $(n+3))$
(is ?th2) proof -
from assms consider $n=-2|n=-1| n \geq 0$ by force
thus ?th1 using conv-num-denom-prod-diff[of nat n]
by cases (auto simp: h-def k-def nat-add-distrib)
moreover from assms have nat $(n+3)=\operatorname{Suc}($ nat $(n+2))$ by (simp add:
nat-add-distrib)
ultimately show ?th2 by simp
qed

```
lemma coprime-conv-num-denom: coprime (h n) (k n)
proof (cases n)
    case [simp]: (Suc m)
    {
        fix d :: int
        assume d dvd h n and d dvd k n
        hence abs d dvd abs (kn*h(Suc n) - k (Suc n)*hn)
            by simp
        also have ... = 1
            by (subst conv-num-denom-prod-diff) auto
            finally have is-unit d by simp
    }
    thus ?thesis by (rule coprimeI)
qed (auto simp: h-def k-def)
lemma coprime-conv-num-denom-int:
```

```
    assumes n\geq-2
    shows coprime (conv-num-int c n)(conv-denom-int c n)
proof -
    from assms consider n=-2 | n=-1| n\geq0 by force
    thus ?thesis by cases (insert coprime-conv-num-denom[of nat n], auto simp: h-def
k-def)
qed
lemma mono-conv-num:
    assumes cfrac-nth c 0 \geq0
    shows mono h
proof (rule incseq-SucI)
    show hn\leqh(Suc n) for n
    proof (cases n)
        case 0
        have 1 * cfrac-nth c 0 + 1\leq cfrac-nth c (Suc 0) * cfrac-nth c 0 + 1
            using assms by (intro add-mono mult-right-mono) auto
        thus ?thesis using assms by (simp add:le-Suc-eq Suc-le-eq h-def 0)
    next
        case (Suc m)
        have 1*h(Suc m)+0\leqcfrac-nth c(Suc (Suc m))*h(Suc m)+hm
            using assms
            by (intro add-mono mult-right-mono)
                (auto simp:Suc-le-eq h-def intro!: conv-num-nonneg)
        with Suc show ?thesis by (simp add: h-def)
    qed
qed
lemma mono-conv-denom: mono k
proof (rule incseq-SucI)
    show kn\leqk (Suc n) for n
    proof (cases n)
            case 0
            thus ?thesis by (simp add:le-Suc-eq Suc-le-eq k-def)
    next
            case (Suc m)
            have 1*k(Suc m)+0\leqcfrac-nth c (Suc (Suc m))*k(Suc m) +km
                by (intro add-mono mult-right-mono) (auto simp: Suc-le-eq k-def)
            with Suc show ?thesis by (simp add: k-def)
        qed
qed
lemma conv-num-leI: cfrac-nth c 0\geq0\Longrightarrowm\leqn\Longrightarrowhm\leqhn
    using mono-conv-num by (auto simp: mono-def)
lemma conv-denom-leI:m\leqn\Longrightarrowkm\leqkn
    using mono-conv-denom by (auto simp: mono-def)
lemma conv-denom-lessI:
```

```
    assumes m<n 1<n
    shows }km<k
proof (cases n)
    case [simp]:(Suc n')
    show ?thesis
    proof (cases n')
        case [simp]:(Suc n')
        from assms have km\leq1*k n'}+
            by (auto intro: conv-denom-leI simp: less-Suc-eq)
    also have ... \leqcfrac-nth c n*k n' + 0
            using assms by (intro add-mono mult-mono) (auto simp: Suc-le-eq k-def)
    also have ... <cfrac-nth cn*k n' +k n'l}\mathrm{ unfolding k-def
        by (intro add-strict-left-mono conv-denom-pos assms)
    also have ... =kn by (simp add: k-def)
    finally show ?thesis .
    qed (insert assms, auto simp: k-def)
qed (insert assms, auto)
lemma conv-num-lower-bound:
    assumes cfrac-nth c 0 \geq0
    shows }hn\geqfibn\mathrm{ unfolding h-def
    using assms
proof (induction c n rule:conv-denom.induct)
    case (3 c n)
    hence conv-num c (Suc (Suc n)) \geq1*int (fib (Suc n)) + int (fib n)
        using 3.prems unfolding conv-num.simps
        by (intro add-mono mult-mono 3.IH) auto
    thus ?case by simp
qed auto
lemma conv-denom-lower-bound: kn \geqfib(Suc n)
    unfolding k-def
proof (induction c n rule: conv-denom.induct)
    case (3 c n)
    hence conv-denom c (Suc (Suc n)) \geq1* int (fib (Suc (Suc n))) + int (fib (Suc
n))
    using 3.prems unfolding conv-denom.simps
    by (intro add-mono mult-mono 3.IH) auto
    thus ?case by simp
qed (auto simp:Suc-le-eq)
lemma conv-diff-eq: conv c (Suc n) - conv c n = (-1)^ n / (kn*k(Suc n))
proof -
    have pos: kn>0k(Suc n)>0 unfolding k-def
        by (intro conv-denom-pos)+
    have conv c (Suc n) - conv c n=
                (kn*h(Suc n) - k (Suc n)*hn) / (kn*k(Suc n))
        using pos by (subst (1 2) conv-num-denom) (simp add: conv-num-denom
field-simps)
```

```
    also have kn*h(Suc n) - k(Suc n)*hn=(-1) ^n
    by (rule conv-num-denom-prod-diff)
    finally show ?thesis by simp
qed
lemma conv-telescope:
    assumes m\leqn
    shows conv c m+(\sumi=m..<n.(-1)^i/(ki*k(Suci)))= conv c n
proof -
    have (\sumi=m..<n. (-1) ^i/(ki*k(Suc i))) =
                (\sumi=m..<n.conv c (Suc i) - conv c i)
    by (simp add: conv-diff-eq assms del: conv.simps)
    also have conv c m + .. = conv c n
    using assms by (induction rule: dec-induct) simp-all
    finally show ?thesis.
qed
lemma fib-at-top: filterlim fib at-top at-top
proof (rule filterlim-at-top-mono)
    show eventually ( }\lambdan\mathrm{ . fib n }\geqn-1) at-top
    by (intro always-eventually fib-ge allI)
    show filterlim (\lambdan::nat. n - 1) at-top at-top
    by (subst filterlim-sequentially-Suc [symmetric])
        (simp-all add: filterlim-ident)
qed
lemma conv-denom-at-top: filterlim k at-top at-top
proof (rule filterlim-at-top-mono)
    show filterlim (\lambdan. int (fib (Suc n))) at-top at-top
    by (rule filterlim-compose[OF filterlim-int-sequentially])
        (simp add: fib-at-top filterlim-sequentially-Suc)
    show eventually (\lambdan. fib (Suc n) \leqkn) at-top
    by (intro always-eventually conv-denom-lower-bound allI)
qed
lemma
    shows summable-conv-telescope:
                        summable (\lambdai.(-1) ^i / (ki*k(Suc i))) (is ?th1)
    and cfrac-remainder-bounds:
                |(\sumi.(-1)^ (i+m)/(k(i+m)*k(Suci+m)))|\in
                    {1/(km*(km+k(Sucm)))<..<1/(km*k(Sucm))} (is ?th2)
proof -
    have [simp]: kn>0kn\geq0\negkn=0 for n
    by (auto simp: k-def)
    have k-rec: k (Suc (Suc n)) = cfrac-nth c (Suc (Suc n))*k(Suc n) +k n for n
            by (simp add: k-def)
    have [simp]: a+b=0\longleftrightarrowa=0^b=0 if a\geq0b\geq0 for a b :: real
    using that by linarith
```

define g where $g=(\lambda i$. inverse (real-of-int $(k i * k($ Suc $i))))$

```
    {
    fix m :: nat
    have filterlim (\lambdan.kn) at-top at-top and filterlim (\lambdan.k (Suc n)) at-top at-top
        by (force simp: filterlim-sequentially-Suc intro: conv-denom-at-top)+
    hence lim: g\longrightarrow0
        unfolding g-def of-int-mult
        by (intro tendsto-inverse-0-at-top filterlim-at-top-mult-at-top
                filterlim-compose[OF filterlim-real-of-int-at-top])
    from lim have A: summable (\lambdan. (-1)^ (n+m)*g(n+m)) unfolding
g-def
    by (intro summable-alternating-decreasing)
            (auto intro!: conv-denom-leI mult-nonneg-nonneg)
    have 1/ (km*(real-of-int (k(Suc m))+km/1))\leq
        1/(km*(k(Suc m)+km/cfrac-nth c (m+2)))
    by (intro divide-left-mono mult-left-mono add-left-mono mult-pos-pos add-pos-pos
divide-pos-pos)
        (auto simp: of-nat-ge-1-iff)
    also have ... = gm-g(Suc m)
        by (simp add: g-def k-rec field-simps add-pos-pos)
    finally have le: 1/ (km*(real-of-int (k(Suc m)) +km/1))\leqgm-g
(Suc m) by simp
    have *: |(\sumi.(-1)^(i+m)*g(i+m))|\in{gm-g(Suc m)<..< gm}
        using lim unfolding g-def
    by (intro abs-alternating-decreasing-suminf-strict) (auto intro!: conv-denom-lessI)
    also from le have \ldots\subseteq{1/(km*(k(Suc m) +km))<..<gm}
        by (subst greaterThanLessThan-subseteq-greaterThanLessThan) auto
    finally have B: |\sumi.(-1)^(i+m)*g(i+m)|\in\ldots.
    note A B
    } note AB= this
    from }AB(1)[of 0] show ?th1 by (simp add: field-simps g-def
    from }AB(2)[of m] show ?th2 by (simp add: g-def divide-inverse add-ac
qed
lemma convergent-conv: convergent (conv c)
proof -
    have convergent (\lambdan. conv c 0 + (\sumi<n. (-1)` i/ (ki*k(Suc i))))
    using summable-conv-telescope
    by (intro convergent-add convergent-const)
            (simp-all add: summable-iff-convergent)
    also have ... = conv c
    by (rule ext, subst (2) conv-telescope [of 0, symmetric]) (simp-all add: atLeast0LessThan)
    finally show?thesis.
qed
```

lemma LIMSEQ-cfrac-lim: cfrac-length $c=\infty \Longrightarrow$ conv $c \longrightarrow$ cfrac-lim c
using convergent-conv by (auto simp: convergent-LIMSEQ-iff cfrac-lim-def)
lemma cfrac-lim-nonneg:
assumes cfrac-nth c $0 \geq 0$
shows cfrac-lim $c \geq 0$
proof (cases cfrac-length c)
case infinity
have conv $c \longrightarrow$ cfrac-lim c
by (rule LIMSEQ-cfrac-lim) fact
thus ?thesis
by (rule tendsto-lowerbound)
(auto intro!: conv-nonneg always-eventually assms)
next
case (enat l)
thus ?thesis using assms
by (auto simp: cfrac-lim-def conv-nonneg)
qed
lemma sums-cfrac-lim-minus-conv:
assumes cfrac-length $c=\infty$
shows $(\lambda i .(-1) \wedge(i+m) /(k(i+m) * k(S u c i+m)))$ sums $($ cfrac-lim $c-$ conv c m)
proof -
have $(\lambda n$. conv $c(n+m)-$ conv $c m) \longrightarrow c f r a c-l i m ~ c-c o n v c m$
by (auto intro!: tendsto-diff LIMSEQ-cfrac-lim simp: filterlim-sequentially-shift assms)
also have $(\lambda n$. conv $c(n+m)-$ conv $c m)=$
$\left(\lambda n .\left(\sum i=0+m . .<n+m .(-1) \wedge i /(k i * k(\right.\right.$ Suc $\left.\left.i))\right)\right)$
by (subst conv-telescope [of m, symmetric]) simp-all
also have $\ldots=\left(\lambda n .\left(\sum i<n .(-1) \uparrow(i+m) /(k(i+m) * k(S u c i+m))\right)\right)$
by (subst sum.shift-bounds-nat-ivl) (simp-all add: atLeast0LessThan)
finally show ?thesis unfolding sums-def .
qed
lemma cfrac-lim-minus-conv-upper-bound:
assumes $m \leq c f r a c-l e n g t h ~ c$
shows $\mid c f r a c-l i m e-\operatorname{conv}$ c $m \mid \leq 1 /(k m * k($ Suc $m))$
proof (cases cfrac-length c)
case infinity
have cfrac-lim $c-$ conv $c m=\left(\sum i .(-1) \wedge(i+m) /(k(i+m) * k(\right.$ Suc $i+$ $m)$)
using sums-cfrac-lim-minus-conv infinity by (simp add: sums-iff)
also note cfrac-remainder-bounds $[$ of m]
finally show? ?thesis by simp
next
case $[$ simp $]$: (enat l)
show ?thesis
proof (cases $l=m$)
case True

```
    thus ?thesis by (auto simp: cfrac-lim-def k-def)
next
    case False
    let ?S = (\sumi=m..<l. (-1) ^i*(1/ real-of-int (ki*k(Suc i))))
    have [simp]: kn\geq0kn>0 for n
        by (simp-all add: k-def)
    hence cfrac-lim c-conv c m= conv c l- conv c m
        by (simp add: cfrac-lim-def)
    also have ... = ?S
        using assms by (subst conv-telescope [symmetric, of m]) auto
    finally have cfrac-lim c - conv c m =?S.
    moreover have |?S \\leq1/ real-of-int (k m*k (Suc m))
        unfolding of-int-mult using assms False
        by (intro abs-alternating-decreasing-sum-upper-bound' divide-nonneg-nonneg
frac-le mult-mono)
                (simp-all add: conv-denom-leI del: conv-denom.simps)
    ultimately show ?thesis by simp
    qed
qed
lemma cfrac-lim-minus-conv-lower-bound:
    assumes m<cfrac-length c
    shows |cfrac-lim c-conv c m| \geq1/(km*(km+k(Suc m)))
proof (cases cfrac-length c)
    case infinity
    have cfrac-lim c - conv c m = (\sumi.(-1)^(i+m)/ (k(i+m)*k(Suc i+
m)))
            using sums-cfrac-lim-minus-conv infinity by (simp add: sums-iff)
    also note cfrac-remainder-bounds[of m]
    finally show ?thesis by simp
next
    case [simp]: (enat l)
    let ?S = (\sumi=m..<l. (-1)^i*(1/ real-of-int (ki*k(Suc i))))
    have [simp]: kn\geq0kn>0 for n
    by (simp-all add: k-def)
    hence cfrac-lim c- conv c m= conv c l- conv c m
    by (simp add: cfrac-lim-def)
    also have ... = ?S
        using assms by (subst conv-telescope [symmetric, of m]) (auto simp: split:
enat.splits)
    finally have cfrac-lim c- conv c m=?S.
    moreover have |?S \ \geq1/(km*(km+k(Suc m)))
    proof (cases m < cfrac-length c - 1)
    case False
    hence [simp]:m=l-1 and l>0 using assms
        by (auto simp: not-less)
    have 1/(km*(km+k(Suc m)))}\leq1/(km*k(Suc m)
        unfolding of-int-mult
```

```
            by (intro divide-left-mono mult-mono mult-pos-pos) (auto intro!: add-pos-pos)
    also from }\langlel>0\rangle\mathrm{ have {m..<l}={m} by auto
    hence 1/ (km*k(Suc m))=|?S|
    by simp
    finally show ?thesis.
next
    case True
    with assms have less: m<l-1
        by auto
    have km+k(Suc m)>0
    by (intro add-pos-pos) (auto simp: k-def)
    hence 1/(km*(km+k(Suc m))) \leq 1/ (km*k(Suc m)) - 1/ (k (Suc
m)*k(Suc (Suc m)))
    by (simp add: divide-simps) (auto simp: k-def algebra-simps)
    also have ... \leq|?S|
        unfolding of-int-mult using less
            by (intro abs-alternating-decreasing-sum-lower-bound' divide-nonneg-nonneg
frac-le mult-mono)
            (simp-all add: conv-denom-leI del: conv-denom.simps)
    finally show ?thesis.
    qed
    ultimately show ?thesis by simp
qed
lemma cfrac-lim-minus-conv-bounds:
    assumes m<cfrac-length c
    shows |cfrac-lim c - conv c m| \in{1/(km*(km+k(Suc m)))..1/(km*
k(Suc m))}
    using cfrac-lim-minus-conv-lower-bound[of m] cfrac-lim-minus-conv-upper-bound[of
m] assms
    by auto
end
lemma conv-pos':
    assumes n>0 cfrac-nth c 0 \geq0
    shows conv c n>0
    using assms by (cases n) (auto simp: conv-Suc intro!: add-nonneg-pos conv-pos)
lemma conv-in-Rats [intro]: conv c n \in\mathbb{Q}
    by (induction c n rule: conv.induct) (auto simp: conv-Suc o-def)
```


lemma

```
    assumes 0<z1 z1\leqz2
    shows conv'-even-mono: even n \Longrightarrowconv' c n z1 \leq conv' c n z2
    and conv'-odd-mono: odd n\Longrightarrowconv' c n z1 \geqconv' c n z2
proof -
    let ?P = (\lambdan (f::nat }=>\mathrm{ real }=>\mathrm{ real ).
```

$$
\text { if even } n \text { then } f n z 1 \leq f n z 2 \text { else } f n z 1 \geq f n z 2)
$$

have ？P $n\left(c_{0 n v}^{\prime} c\right)$ using assms
proof（induction n arbitrary：z1 z2）
case（Suc n）
note $z 12=$ Suc．prems
consider $n=0 \mid$ even $n n>0 \mid$ odd n by force
thus ？case
proof cases
assume $n=0$
thus ？thesis using Suc by（simp add：conv＇－Suc－right field－simps）
next
assume n ：even $n n>0$
with Suc．IH have $I H$ ：conv＇c $n z 1 \leq$ conv $^{\prime}$ c $n z 2$
if $0<z 1 z 1 \leq z 2$ for $z 1 z 2$ using that by auto
show ？thesis using Suc．prems n z12
by（auto simp：conv＇－Suc－right field－simps intro！：IH add－pos－nonneg
mult－nonneg－nonneg）

next

assume n ：odd n
hence $[$ simp $]: n>0$ by（auto intro！：Nat．gr0I）
from n and Suc．IH have $I H$ ：conv＇c $n z 1 \geq$ conv＇$^{\prime}$ c $n z 2$
if $0<z 1 z 1 \leq z 2$ for $z 1 z 2$ using that by auto
show ？thesis using Suc．prems n
by（auto simp：conv＇－Suc－right field－simps intro！：IH add－pos－nonneg mult－nonneg－nonneg）
qed
qed auto
thus even $n \Longrightarrow$ conv $^{\prime}$ с $n z 1 \leq$ conv $^{\prime}$ с $n z 2$ odd $n \Longrightarrow$ conv $^{\prime}$ с $n z 1 \geq$ conv $^{\prime}$ с $n z 2$ by auto
qed
lemma
shows conv－even－mono：even $n \Longrightarrow n \leq m \Longrightarrow$ conv c $n \leq$ conv c m
and conv－odd－mono：odd $n \Longrightarrow n \leq m \Longrightarrow$ conv $c n \geq$ conv c m
proof－
assume even n
have A：conv c $n \leq \operatorname{conv} c($ Suc（Suc $n))$ if even n for n
proof（cases $n=0$ ）
case False
with 〈even n 〉 show ？thesis
by（auto simp add：conv－eq－conv＇conv＇－Suc－right intro：conv＇－even－mono）
qed（auto simp：conv－Suc）
have B ：conv c $n \leq \operatorname{conv} c($ Suc $n)$ if even n for n
proof（cases $n=\overline{0}$ ）
case False
with 〈even n 〉 show ？thesis
by（auto simp add：conv－eq－conv＇conv＇－Suc－right intro：conv＇－even－mono）
qed（auto simp：conv－Suc）

```
show conv c n\leq conv c m if n\leqm for m
    using that
proof (induction m rule: less-induct)
    case (less m)
    from \langlen\leqm` consider m=n| even m m>n|
        by force
    thus ?case
    proof cases
        assume m: even m m>n
        with {even n` have m':m-2 \geqn by presburger
        with m}\mathrm{ have conv c n < conv c (m-2)
            by (intro less.IH) auto
        also have ... \leq conv c (Suc (Suc (m - 2)))
            using m m' by (intro A) auto
        also have Suc (Suc (m-2)) =m
            using m by presburger
        finally show ?thesis.
    next
        assume m: odd mm>n
        hence conv c n\leq conv c (m-1)
            by (intro less.IH) auto
        also have ... \leq conv c (Suc (m - 1))
            using m by (intro B) auto
        also have Suc (m-1)=m
            using m by simp
        finally show ?thesis.
    qed simp-all
    qed
next
    assume odd n
    have A: conv c n \geq conv c (Suc (Suc n)) if odd n for n
        using that
    by (auto simp add: conv-eq-conv' conv'-Suc-right odd-pos intro!: conv'-odd-mono)
have B: conv c n \geq conv c (Suc n) if odd n for n using that
    by (auto simp add: conv-eq-conv' conv'-Suc-right odd-pos intro!: conv'-odd-mono)
show conv c n\geq conv c m if n\leqm for m
    using that
proof (induction m rule:less-induct)
    case (less m)
    from <n\leqm> consider m=n| even m m>n| odd m m>n
            by force
    thus ?case
    proof cases
        assume m: odd m m>n
        with {odd n\rangle have m':m-2 }\geqnm\geq2 by presburger
        from m and <odd n> have m=Suc (Suc (m - 2)) by presburger
        also have conv c...\leq conv c (m-2)
```

```
            using m m' by (intro A) auto
            also have ... \leqconv c n
            using m m' by (intro less.IH) auto
        finally show ?thesis.
    next
        assume m: even m m>n
        from m have m=Suc (m-1) by presburger
        also have conv c... \leq conv c (m-1)
            using m}\mathrm{ by (intro B) auto
        also have ... \leqconv c n
            using m by (intro less.IH) auto
            finally show ?thesis.
    qed simp-all
    qed
qed
lemma
    assumes m\leqcfrac-length c
    shows conv-le-cfrac-lim: even m \Longrightarrow conv c m\leqcfrac-lim c
    and conv-ge-cfrac-lim:odd m\Longrightarrow conv c m}\geq\mathrm{ cfrac-lim c
proof -
    have if even m then conv c m\leqcfrac-lim c else conv c m\geqcfrac-lim c
    proof (cases cfrac-length c)
    case [simp]: infinity
    show ?thesis
    proof (cases even m)
            case True
            have eventually ( }\lambda\mathrm{ i. conv c m sconv c i) at-top
            using eventually-ge-at-top[of m] by eventually-elim (rule conv-even-mono[OF
                    True])
            hence conv c m\leqcfrac-lim c
            by (intro tendsto-lowerbound[OF LIMSEQ-cfrac-lim]) auto
            thus ?thesis using True by simp
    next
            case False
            have eventually (\lambdai. conv c m \geq conv c i) at-top
            using eventually-ge-at-top[of m] by eventually-elim (rule conv-odd-mono[OF
False])
            hence conv c m\geqcfrac-lim c
            by (intro tendsto-upperbound[OF LIMSEQ-cfrac-lim]) auto
            thus ?thesis using False by simp
    qed
next
    case [simp]:(enat l)
    show ?thesis
            using conv-even-mono[of m l c] conv-odd-mono[of m l c] assms
            by (auto simp: cfrac-lim-def)
qed
thus even m\Longrightarrow conv c m\leqcfrac-lim c and odd m\Longrightarrow conv c m \geqcfrac-lim c
```

```
    by auto
qed
lemma cfrac-lim-ge-first: cfrac-lim c\geqcfrac-nth c 0
    using conv-le-cfrac-lim[of 0 c] by (auto simp: less-eq-enat-def split: enat.splits)
lemma cfrac-lim-pos:cfrac-nth c 0>0 \Longrightarrowcfrac-lim c>0
    by (rule less-le-trans[OF - cfrac-lim-ge-first]) auto
lemma conv'-eq-iff:
    assumes 0\leqz1\vee 0\leqz2
    shows conv' c n z1= conv' с n z2 \longleftrightarrow z1= z2
proof
    assume conv' с n z1= conv' с n z2
    thus z1 = z2 using assms
    proof (induction n arbitrary: z1 z2)
        case (Suc n)
        show ?case
    proof (cases n=0)
        case True
            thus ?thesis using Suc by (auto simp: conv'-Suc-right)
    next
        case False
        have conv'c n (real-of-int (cfrac-nth c n) +1/z1)=
                                    conv' c n (real-of-int (cfrac-nth c n) + 1/z2) using Suc.prems
            by (simp add: conv'-Suc-right)
        hence real-of-int (cfrac-nth c n) + 1/z1= real-of-int (cfrac-nth c n) + 1/
z2
            by (rule Suc.IH)
                (insert Suc.prems False, auto intro!: add-nonneg-pos add-nonneg-nonneg)
        with Suc.prems show z1= z2 by simp
    qed
    qed auto
qed auto
lemma conv-even-mono-strict:
    assumes even n n<m
    shows conv c n< conv c m
proof (cases m=n+1)
    case [simp]: True
    show ?thesis
    proof (cases n=0)
        case True
        thus ?thesis using assms by (auto simp: conv-Suc)
    next
        case False
    hence conv' c n (real-of-int (cfrac-nth c n))}\not
                conv' c n (real-of-int (cfrac-nth c n) + 1 / real-of-int (cfrac-nth c (Suc
n)))
```

```
    by (subst conv'-eq-iff) auto
    with assms have conv c n f conv c m
    by (auto simp: conv-eq-conv' conv'-eq-iff conv'-Suc-right field-simps)
    moreover from assms have conv c n\leq conv c m
    by (intro conv-even-mono) auto
    ultimately show ?thesis by simp
    qed
next
    case False
    show ?thesis
    proof (cases n=0)
        case True
        thus ?thesis using assms
            by (cases m) (auto simp: conv-Suc conv-pos)
    next
        case False
        have 1 + real-of-int (cfrac-nth c(n+1))*cfrac-nth c (n+2)>0
        by (intro add-pos-nonneg) auto
    with assms have conv c n f= conv c (Suc (Suc n))
            unfolding conv-eq-conv' conv'-Suc-right using False
            by (subst conv'-eq-iff) (auto simp: field-simps)
    moreover from assms have conv c n \leq conv c (Suc (Suc n))
        by (intro conv-even-mono) auto
    ultimately have conv c n< conv c (Suc (Suc n)) by simp
    also have ... \leq conv c m using assms < m = n + 1`
        by (intro conv-even-mono) auto
    finally show ?thesis.
    qed
qed
lemma conv-odd-mono-strict:
    assumes odd n n<m
    shows conv c n>conv c m
proof (cases m=n+1)
    case [simp]: True
    from assms have n>0 by (intro Nat.gr0I) auto
    hence conv' c n (real-of-int (cfrac-nth c n))}\not
        conv' c n (real-of-int (cfrac-nth c n) + 1 / real-of-int (cfrac-nth c (Suc n)))
    by (subst conv'-eq-iff) auto
    hence conv c n\not= conv c m
    by (simp add: conv-eq-conv' conv'-Suc-right)
    moreover from assms have conv c n \geqconv c m
    by (intro conv-odd-mono) auto
    ultimately show ?thesis by simp
next
    case False
    from assms have n>0 by (intro Nat.grOI) auto
    have}1+\mathrm{ real-of-int (cfrac-nth c (n+1))* cfrac-nth c (n+2) > 0
```

```
    by (intro add-pos-nonneg) auto
    with assms <n>0\rangle have conv c n f= conv c (Suc (Suc n))
    unfolding conv-eq-conv' conv'-Suc-right
    by (subst conv'-eq-iff) (auto simp: field-simps)
    moreover from assms have conv c n \geqconv c (Suc (Suc n))
    by (intro conv-odd-mono) auto
    ultimately have conv c n> conv c (Suc (Suc n)) by simp
    moreover have conv c (Suc (Suc n)) \geq conv c m using assms False
    by (intro conv-odd-mono) auto
    ultimately show ?thesis by linarith
qed
lemma conv-less-cfrac-lim:
    assumes even n n< cfrac-length c
    shows conv c n<cfrac-lim c
proof (cases cfrac-length c)
    case (enat l)
    with assms show ?thesis by (auto simp: cfrac-lim-def conv-even-mono-strict)
next
    case [simp]: infinity
    from assms have conv c n< conv c (n+2)
        by (intro conv-even-mono-strict) auto
    also from assms have .. \leqcfrac-lim c
    by (intro conv-le-cfrac-lim) auto
    finally show ?thesis.
qed
lemma conv-gt-cfrac-lim:
    assumes odd n n <cfrac-length c
    shows conv c n>cfrac-lim c
proof (cases cfrac-length c)
    case (enat l)
    with assms show ?thesis by (auto simp: cfrac-lim-def conv-odd-mono-strict)
next
    case [simp]: infinity
    from assms have cfrac-lim c\leqconv c (n+2)
        by (intro conv-ge-cfrac-lim) auto
    also from assms have ... < conv c n
        by (intro conv-odd-mono-strict) auto
    finally show ?thesis.
qed
lemma conv-neq-cfrac-lim:
    assumes n<cfrac-length c
    shows conv c n\not=cfrac-lim c
    using conv-gt-cfrac-lim[OF - assms] conv-less-cfrac-lim[OF - assms]
    by (cases even n) auto
lemma conv-ge-first: conv c n \geq cfrac-nth c 0
```

using conv-even-mono[of $0 n c]$ by simp

```
definition cfrac-is-zero :: cfrac => bool where cfrac-is-zero c \longleftrightarrowc=0
lemma cfrac-is-zero-code [code]:cfrac-is-zero (CFrac n xs) \longleftrightarrow lnull xs ^ n=0
    unfolding cfrac-is-zero-def lnull-def zero-cfrac-def cfrac-of-int-def
    by (auto simp: cfrac-length-def)
definition cfrac-is-int where cfrac-is-int c \longleftrightarrow cfrac-length c=0
lemma cfrac-is-int-code [code]: cfrac-is-int (CFrac n xs) \longleftrightarrow lnull xs
    unfolding cfrac-is-int-def lnull-def by (auto simp: cfrac-length-def)
lemma cfrac-length-of-int [simp]:cfrac-length (cfrac-of-int n)=0
    by transfer auto
lemma cfrac-is-int-of-int [simp, intro]: cfrac-is-int (cfrac-of-int n)
    unfolding cfrac-is-int-def by simp
lemma cfrac-is-int-iff:cfrac-is-int c \longleftrightarrow(\existsn.c=cfrac-of-int n)
proof -
    have c=cfrac-of-int (cfrac-nth c 0) if cfrac-is-int c
        using that unfolding cfrac-is-int-def by transfer auto
    thus ?thesis
        by auto
qed
lemma cfrac-lim-reduce:
    assumes }\neg\mathrm{ cfrac-is-int c
    shows cfrac-lim c = cfrac-nth c 0 + 1 / cfrac-lim (cfrac-tl c)
proof (cases cfrac-length c)
    case [simp]: infinity
    have 0<cfrac-nth (cfrac-tl c) 0
        by simp
    also have ... \leqcfrac-lim (cfrac-tl c)
        by (rule cfrac-lim-ge-first)
    finally have ( }\lambdan.real-of-int (cfrac-nth c 0) + 1/ conv (cfrac-tl c) n)
                real-of-int (cfrac-nth c 0) + 1/ cfrac-lim (cfrac-tl c)
    by (intro tendsto-intros LIMSEQ-cfrac-lim) auto
    also have ( }\lambda\mathrm{ n. real-of-int (cfrac-nth c 0) + 1/ conv (cfrac-tl c) n)= conv c o
Suc
    by (simp add: o-def conv-Suc)
    finally have *: conv c\longrightarrow real-of-int (cfrac-nth c 0) + 1/ cfrac-lim (cfrac-tl
c)
    by (simp add: o-def filterlim-sequentially-Suc)
    show ?thesis
    by (rule tendsto-unique[OF - LIMSEQ-cfrac-lim *]) auto
```

```
next
    case [simp]:(enat l)
    from assms obtain l' where [simp]:l=Suc l'
    by (cases l) (auto simp: cfrac-is-int-def zero-enat-def)
    thus ?thesis
    by (auto simp: cfrac-lim-def conv-Suc)
qed
lemma cfrac-lim-tl:
    assumes }\negcfrac-is-int 
    shows cfrac-lim (cfrac-tl c)=1 / (cfrac-lim c-cfrac-nth c 0)
    using cfrac-lim-reduce[OF assms] by simp
lemma cfrac-remainder-Suc':
    assumes n<cfrac-length c
    shows cfrac-remainder c (Suc n)*(cfrac-remainder c n-cfrac-nth c n)=1
proof -
    have 0< real-of-int (cfrac-nth c (Suc n)) by simp
    also have cfrac-nth c (Suc n) \leq cfrac-remainder c (Suc n)
        using cfrac-lim-ge-first[of cfrac-drop (Suc n) c]
        by (simp add: cfrac-remainder-def)
    finally have ...>0 .
    have cfrac-remainder c (Suc n) =cfrac-lim (cfrac-tl (cfrac-drop n c))
        by (simp add: o-def cfrac-remainder-def cfrac-drop-Suc-left)
    also have \ldots.. = 1 / (cfrac-remainder c n - cfrac-nth c n) using assms
    by (subst cfrac-lim-tl) (auto simp: cfrac-remainder-def cfrac-is-int-def enat-less-iff
enat-0-iff)
    finally show ?thesis
        using <cfrac-remainder c (Suc n) > 0`
        by (auto simp add: cfrac-remainder-def field-simps)
qed
lemma cfrac-remainder-Suc:
    assumes n<cfrac-length c
    shows cfrac-remainder c (Suc n) =1/(cfrac-remainder c n - cfrac-nth c n)
proof -
    have cfrac-remainder c (Suc n) =cfrac-lim (cfrac-tl (cfrac-drop n c))
    by (simp add: o-def cfrac-remainder-def cfrac-drop-Suc-left)
    also have \ldots. = 1 / (cfrac-remainder c n - cfrac-nth c n) using assms
    by (subst cfrac-lim-tl) (auto simp: cfrac-remainder-def cfrac-is-int-def enat-less-iff
enat-0-iff)
    finally show ?thesis.
qed
lemma cfrac-remainder-0 [simp]:cfrac-remainder c 0 = cfrac-lim c
    by (simp add: cfrac-remainder-def)
```

```
context
    fixes chkx
    defines h\equivconv-num c and k\equivconv-denom c and x\equivcfrac-remainder c
begin
lemma cfrac-lim-eq-num-denom-remainder-aux:
    assumes Suc (Suc n)\leqcfrac-length c
    shows cfrac-lim c*(k(Suc n)*x (Suc (Suc n)) +kn) =h(Suc n)*x(Suc
(Suc n)) +hn
    using assms
proof (induction n)
    case 0
    have cfrac-lim c\not=cfrac-nth c 0
        using conv-neq-cfrac-lim[of 0 c] 0 by (auto simp: enat-le-iff)
    moreover have cfrac-nth c 1*(cfrac-lim c - cfrac-nth c 0)}\not=
        using conv-neq-cfrac-lim[of 1 c] 0
        by (auto simp: enat-le-iff conv-Suc field-simps)
    ultimately show ?case using assms
        by (auto simp: cfrac-remainder-Suc divide-simps x-def h-def k-def enat-le-iff)
            (auto simp: field-simps)
next
    case (Suc n)
    have less: enat (Suc (Suc n)) < cfrac-length c
        using Suc.prems by (cases cfrac-length c) auto
    have *: x (Suc (Suc n)) f= real-of-int (cfrac-nth c (Suc (Suc n)))
        using conv-neq-cfrac-lim[of 0 cfrac-drop (n+2) c] Suc.prems
        by (cases cfrac-length c) (auto simp: x-def cfrac-remainder-def)
    hence cfrac-lim c*(k(Suc (Suc n))*x(Suc (Suc (Suc n))) +k (Suc n)) =
                    (cfrac-lim c*(k(Suc n)*x(Suc (Suc n)) +kn)) / (x (Suc (Suc n)) -
cfrac-nth c (Suc (Suc n)))
        unfolding x-def k-def h-def using less
        by (subst cfrac-remainder-Suc) (auto simp: field-simps)
    also have cfrac-lim c*(k(Suc n)*x (Suc (Suc n)) +kn)=
                        h(Suc n)*x (Suc (Suc n)) +h n using less
        by (intro Suc.IH) auto
    also have (h(Suc n)*x (Suc (Suc n)) +hn) / (x (Suc (Suc n)) - cfrac-nth c
(Suc (Suc n))) =
                        h(Suc (Suc n)) * x (Suc (Suc (Suc n))) +h(Suc n) using *
        unfolding }x\mathrm{ -def k-def h-def using less
        by (subst (3) cfrac-remainder-Suc) (auto simp: field-simps)
    finally show ?case .
qed
lemma cfrac-remainder-nonneg: cfrac-nth \(c n \geq 0 \Longrightarrow\) cfrac-remainder c \(n \geq 0\) unfolding cfrac-remainder-def by (rule cfrac-lim-nonneg) auto
lemma cfrac-remainder-pos: cfrac-nth c \(n>0 \Longrightarrow\) cfrac-remainder c \(n>0\) unfolding cfrac-remainder-def by (rule cfrac-lim-pos) auto
```

```
lemma cfrac-lim-eq-num-denom-remainder:
    assumes Suc (Suc n) < cfrac-length c
    shows cfrac-lim c = (h(Suc n)*x (Suc (Suc n)) +hn) / (k (Suc n)*x (Suc
(Suc n)) + kn)
proof -
    have k(Suc n)*x(Suc (Suc n)) +kn>0
        by (intro add-nonneg-pos mult-nonneg-nonneg)
            (auto simp: k-def x-def intro!: conv-denom-pos cfrac-remainder-nonneg)
    with cfrac-lim-eq-num-denom-remainder-aux[of n] assms show ?thesis
        by (auto simp add: field-simps h-def k-def x-def)
qed
lemma abs-diff-successive-convs:
    shows |conv c (Suc n) - conv c n = 1/(kn*k(Suc n))
proof -
    have [simp]: k n\not=0 for n :: nat
        unfolding k-def using conv-denom-pos[of c n] by auto
    have conv c (Suc n) - conv c n=h(Suc n)/k (Suc n) - hn/kn
        by (simp add: conv-num-denom k-def h-def)
    also have ... =(kn*h(Suc n) - k (Suc n)*hn) / (kn*k (Suc n))
        by (simp add: field-simps)
    also have kn*h(Suc n) - k (Suc n)*hn=(-1)^ n
        unfolding h-def k-def by (intro conv-num-denom-prod-diff)
    finally show ?thesis by (simp add: k-def)
qed
lemma conv-denom-plus2-ratio-ge: k (Suc (Suc n)) \geq2*kn
proof -
    have 1*kn+kn\leqcfrac-nth c(Suc (Suc n))*k(Suc n) +kn
        by (intro add-mono mult-mono)
            (auto simp: k-def Suc-le-eq intro!: conv-denom-leI)
    thus ?thesis by (simp add: k-def)
qed
end
lemma conv'-cfrac-remainder:
    assumes n<cfrac-length c
    shows conv' c n (cfrac-remainder c n) =cfrac-lim c
    using assms
proof (induction n arbitrary: c)
    case (Suc n c)
    have conv' c (Suc n) (cfrac-remainder c (Suc n)) =
                cfrac-nth c 0 + 1/ conv'(cfrac-tl c) n (cfrac-remainder c (Suc n))
        using Suc.prems
        by (subst conv'-Suc-left) (auto intro!: cfrac-remainder-pos)
        also have cfrac-remainder c (Suc n)=cfrac-remainder (cfrac-tl c) n
            by (simp add: cfrac-remainder-def cfrac-drop-Suc-right)
```

```
    also have conv' (cfrac-tl c) n ... = cfrac-lim (cfrac-tl c)
    using Suc.prems by (subst Suc.IH) (auto simp: cfrac-remainder-def enat-less-iff)
    also have cfrac-nth c0+1/\ldots=cfrac-lim c
    using Suc.prems by (intro cfrac-lim-reduce [symmetric]) (auto simp: cfrac-is-int-def)
    finally show ?case by (simp add: cfrac-remainder-def cfrac-drop-Suc-right)
qed auto
lemma cfrac-lim-rational [intro]:
    assumes cfrac-length c<\infty
    shows cfrac-lim c\in\mathbb{Q}
    using assms by (cases cfrac-length c) (auto simp: cfrac-lim-def)
lemma linfinite-cfrac-of-real-aux:
    x\not\in\mathbb{Q}\Longrightarrowx\in{0<..<1}\Longrightarrow linfinite (cfrac-of-real-aux x)
proof (coinduction arbitrary: x)
    case (linfinite x)
```



```
    thus ?case using linfinite Ints-subset-Rats
        by (intro disjI1 exI[of-nat \lfloor1/x\rfloor-1] exI[of-cfrac-of-real-aux (frac (1/x))]
            exI[of - frac (1/x)] conjI)
        (auto simp: cfrac-of-real-aux.code[of x] frac-lt-1)
qed
lemma cfrac-length-of-real-irrational:
    assumes }x\not\in\mathbb{Q
    shows cfrac-length (cfrac-of-real x) = \infty
proof (insert assms, transfer, clarify)
    fix }x:: real assume x\not\in\mathbb{Q
    thus llength (cfrac-of-real-aux (frac x)) = \infty
        using linfinite-cfrac-of-real-aux[of frac x] Ints-subset-Rats
        by (auto simp: linfinite-conv-llength frac-lt-1)
qed
lemma cfrac-length-of-real-reduce:
    assumes }x\not\in\mathbb{Z
    shows cfrac-length (cfrac-of-real x) =eSuc (cfrac-length (cfrac-of-real (1 / frac
x)))
    using assms
    by (transfer, subst cfrac-of-real-aux.code) (auto simp: frac-lt-1)
lemma cfrac-length-of-real-int [simp]:x 
    by transfer auto
lemma conv-cfrac-of-real-le-ge:
    assumes n\leqcfrac-length (cfrac-of-real x)
    shows if even n then conv (cfrac-of-real x) n\leqx else conv (cfrac-of-real x) n
\geqx
    using assms
proof (induction n arbitrary: x)
```

```
case (Suc n x)
hence [simp]: x\not\in\mathbb{Z}
    using Suc by (auto simp: enat-0-iff)
let ? }\mp@subsup{x}{}{\prime}=1/frac
have enat n \leq cfrac-length (cfrac-of-real (1 / frac x))
    using Suc.prems by (auto simp: cfrac-length-of-real-reduce simp flip: eSuc-enat)
    hence IH: if even n then conv (cfrac-of-real ? }\mp@subsup{x}{}{\prime}\mathrm{ ) n }\leq\mathrm{ ? ' }\mp@subsup{x}{}{\prime}\mathrm{ else ? }\mp@subsup{x}{}{\prime}\leq\mathrm{ conv
(cfrac-of-real ?x') n
    using Suc.prems by (intro Suc.IH) auto
    have remainder-pos: conv (cfrac-of-real ? x') n>0
    by (rule conv-pos) (auto simp: frac-le-1)
show ?case
proof (cases even n)
    case True
    have }x\leq\mathrm{ real-of-int \x\+ frac x
        by (simp add: frac-def)
    also have frac x\leq1/ conv (cfrac-of-real ?x') n
        using IH True remainder-pos frac-gt-0-iff[of x] by (simp add: field-simps)
    finally show ?thesis using True
        by (auto simp: conv-Suc cfrac-tl-of-real)
    next
    case False
    have real-of-int \lfloorx\rfloor+1/ conv (cfrac-of-real ?'x) n \leq real-of-int \lfloorx\rfloor+frac x
        using IH False remainder-pos frac-gt-0-iff[of x] by (simp add: field-simps)
    also have ... = x
        by (simp add: frac-def)
    finally show ?thesis using False
        by (auto simp: conv-Suc cfrac-tl-of-real)
    qed
qed auto
lemma cfrac-lim-of-real [simp]:cfrac-lim (cfrac-of-real x) = x
proof (cases cfrac-length (cfrac-of-real x))
    case (enat l)
    hence conv (cfrac-of-real x) l=x
proof (induction l arbitrary: x)
    case 0
    hence }x\in\mathbb{Z
        using cfrac-length-of-real-reduce zero-enat-def by fastforce
    thus ?case by (auto elim: Ints-cases)
next
    case (Suc l x)
    hence [simp]: x\not\in\mathbb{Z}
        by (auto simp: enat-0-iff)
    have eSuc (cfrac-length (cfrac-of-real (1 / frac x))) = enat (Suc l)
            using Suc.prems by (auto simp:cfrac-length-of-real-reduce)
    hence conv (cfrac-of-real (1 / frac x)) l=1 / frac x
            by (intro Suc.IH) (auto simp flip: eSuc-enat)
    thus ?case
```

```
        by (simp add: conv-Suc cfrac-tl-of-real frac-def)
    qed
    thus ?thesis by (simp add: enat cfrac-lim-def)
next
    case [simp]: infinity
    have lim: conv (cfrac-of-real x) \longrightarrowcfrac-lim (cfrac-of-real x)
    by (simp add: LIMSEQ-cfrac-lim)
    have cfrac-lim (cfrac-of-real x) \leqx
    proof (rule tendsto-upperbound)
        show (\lambdan.conv (cfrac-of-real x) (n* 2)) \longrightarrowcfrac-lim (cfrac-of-real x)
        by (intro filterlim-compose[OF lim] mult-nat-right-at-top) auto
    show eventually (\lambdan. conv (cfrac-of-real x) ( }n*2)\leqx) at-to
                using conv-cfrac-of-real-le-ge[of n*2 x for n] by (intro always-eventually)
auto
    qed auto
    moreover have cfrac-lim (cfrac-of-real x) \geqx
    proof (rule tendsto-lowerbound)
        show (\lambdan.conv (cfrac-of-real x) (Suc (n*2)))\longrightarrowcfrac-lim (cfrac-of-real
x)
        by (intro filterlim-compose[OF lim] filterlim-compose[OF filterlim-Suc]
                mult-nat-right-at-top) auto
        show eventually (\lambdan. conv (cfrac-of-real x) (Suc (n*2)) \geq x) at-top
        using conv-cfrac-of-real-le-ge[of Suc (n*2) x for n] by (intro always-eventually)
auto
    qed auto
    ultimately show ?thesis by (rule antisym)
qed
lemma Ints-add-left-cancel: }x\in\mathbb{Z}\Longrightarrowx+y\in\mathbb{Z}\longleftrightarrowy\in\mathbb{Z
    using Ints-diff[of }x+yx]\mathrm{ by auto
lemma Ints-add-right-cancel: }y\in\mathbb{Z}\Longrightarrowx+y\in\mathbb{Z}\longleftrightarrowx\in\mathbb{Z
    using Ints-diff[of }x+yy]\mathrm{ by auto
lemma cfrac-of-real-conv':
    fixes m n :: nat
    assumes x>1m<n
    shows cfrac-nth (cfrac-of-real (conv' c n x)) m=cfrac-nth c m
    using assms
proof (induction n arbitrary: c m)
    case (Suc n c m)
    from Suc.prems have gt-1:1<conv' (cfrac-tl c) n x
        by (intro conv'-gt-1) (auto simp: enat-le-iff intro:cfrac-nth-pos)
    show ?case
    proof (cases m)
        case 0
        thus ?thesis using gt-1 Suc.prems
            by (simp add: conv'-Suc-left nat-add-distrib floor-eq-iff)
    next
```

```
    case (Suc m')
    from gt-1 have 1 / conv'(cfrac-tl c) n x f {0<..<1}
    by auto
    have 1 / conv'(cfrac-tl c) n x\not\in\mathbb{Z}
    proof
    assume 1/ conv'(cfrac-tl c) n x \in\mathbb{Z}
    then obtain k:: int where k:1/ conv'}(cfrac-tl c) n x = of-int k
        by (elim Ints-cases)
    have real-of-int k}\in{0<..<1
        using gt-1 by (subst k [symmetric]) auto
    thus False by auto
    qed
    hence not-int: real-of-int (cfrac-nth c 0) + 1/ conv'(cfrac-tl c) n x\not\in\mathbb{Z}
    by (subst Ints-add-left-cancel) (auto simp: field-simps elim!: Ints-cases)
    have cfrac-nth (cfrac-of-real (conv' c (Suc n) x)) m=
        cfrac-nth (cfrac-of-real (of-int (cfrac-nth c 0) + 1 / conv' (cfrac-tl c) n x))
(Suc m')
            using \langlex> 1\rangle by (subst conv'-Suc-left) (auto simp: Suc)
    also have ... = cfrac-nth (cfrac-of-real (1/frac (1/ conv' (cfrac-tl c) n x)))
m'
            using 〈x > 1` Suc not-int by (subst cfrac-nth-of-real-Suc) (auto simp:
frac-add-of-int)
    also have 1 / conv'(cfrac-tl c) nx \in{0<..<1} using gt-1
        by (auto simp: field-simps)
    hence frac (1 / conv'(cfrac-tl c) nx)=1/ conv'(cfrac-tl c) n x
            by (subst frac-eq) auto
    hence 1/ frac (1/ conv'(cfrac-tl c) n x) = conv' (cfrac-tl c) n x
        by simp
    also have cfrac-nth (cfrac-of-real ...) m' = cfrac-nth c m
        using Suc.prems by (subst Suc.IH) (auto simp: Suc enat-le-iff)
    finally show ?thesis .
    qed
qed simp-all
lemma cfrac-lim-irrational:
    assumes [simp]:cfrac-length c=\infty
    shows cfrac-lim c}\not\in\mathbb{Q
proof
    assume cfrac-lim c \in\mathbb{Q}
    then obtain }a::\mathrm{ int and b :: nat where ab: b>0 cfrac-lim c=a/b
        by (auto simp: Rats-eq-int-div-nat)
    define h and k where h=conv-num c and k=conv-denom c
    have filterlim (\lambdam. conv-denom c (Suc m)) at-top at-top
    using conv-denom-at-top filterlim-Suc by (rule filterlim-compose)
    then obtain m}\mathrm{ where m: conv-denom c (Suc m) }\geqb+
    by (auto simp: filterlim-at-top eventually-at-top-linorder)
    have *:(a*km-b*hm)/(km*b)=a/b-hm/km
```

```
    using \(\langle b>0\rangle\) by (simp add: field-simps \(k\)-def)
    have \(\mid\) cfrac-lim \(c-\) conv \(c m|=|(a * k m-b * h m) /(k m * b)|\)
    by (subst *) (auto simp: ab \(h\)-def \(k\)-def conv-num-denom)
    also have \(\ldots=|a * k m-b * h m| /(k m * b)\)
    by (simp add: \(k\)-def)
    finally have eq: \(\mid\) cfrac-lim \(c-\operatorname{conv}\) c \(m|=o f-i n t| a * k m-b * h m \mid / o f-i n t\)
\((k m * b)\).
    have \(\mid\) cfrac-lim \(c-\operatorname{conv}\) c \(m \mid *(k m * b) \neq 0\)
    using conv-neq-cfrac-lim[of \(m c]\langle b>0\rangle\) by (auto simp: \(k\)-def)
    also have \(|c f r a c-l i m ~ c o n v c m| *(k m * b)=o f-i n t|a * k m-b * h m|\)
    using \(\langle b>0\rangle\) by (subst eq) (auto simp: \(k\)-def)
    finally have \(|a * k m-b * h m| \geq 1\) by linarith
    hence real-of-int \(|a * k m-b * h m| \geq 1\) by linarith
    hence \(1 /\) of-int \((k m * b) \leq o f-i n t|a * k m-b * h m| / r e a l-o f-i n t(k m * b)\)
    using \(\langle b>0\rangle\) by (intro divide-right-mono) (auto simp: \(k\)-def)
    also have \(\ldots=\mid\) cfrac-lim \(c-\operatorname{conv}\) c \(m \mid\)
    by (rule eq [symmetric])
    also have \(\ldots \leq 1 /\) real-of-int (conv-denom c \(m *\) conv-denom \(c\) (Suc m))
    by (intro cfrac-lim-minus-conv-upper-bound) auto
    also have \(\ldots=1 /(\) real-of-int \((k m) *\) real-of-int \((k\) (Suc m) \()\) )
    by (simp add: \(k\)-def)
    also have \(\ldots<1 /(\) real-of-int \((k m) *\) real \(b)\)
        using \(m 〈 b>0\rangle\)
    by (intro divide-strict-left-mono mult-strict-left-mono) (auto simp: \(k\)-def)
    finally show False by simp
qed
lemma cfrac-infinite-iff: cfrac-length \(c=\infty \longleftrightarrow\) cfrac-lim \(c \notin \mathbb{Q}\)
    using cfrac-lim-irrational \([\) of \(c]\) cfrac-lim-rational \([\) of \(c]\) by auto
lemma cfrac-lim-rational-iff: cfrac-lim \(c \in \mathbb{Q} \longleftrightarrow\) cfrac-length \(c \neq \infty\)
    using cfrac-lim-irrational[ of c] cfrac-lim-rational [of c] by auto
lemma cfrac-of-real-infinite-iff [simp]: cfrac-length (cfrac-of-real \(x)=\infty \longleftrightarrow x \notin\)
Q
    by (simp add: cfrac-infinite-iff)
lemma cfrac-remainder-rational-iff [simp]:
    cfrac-remainder c \(n \in \mathbb{Q} \longleftrightarrow\) cfrac-length \(c<\infty\)
proof -
    have cfrac-remainder \(c n \in \mathbb{Q} \longleftrightarrow\) cfrac-lim \((\) cfrac-drop \(n c) \in \mathbb{Q}\)
        by (simp add: cfrac-remainder-def)
    also have \(\ldots \longleftrightarrow\) cfrac-length \(c \neq \infty\)
        by (cases cfrac-length c) (auto simp add: cfrac-lim-rational-iff)
    finally show? ?thesis by simp
qed
```

lift-definition cfrac-cons $::$ int \Rightarrow cfrac \Rightarrow cfrac is

```
    \(\lambda a b s\). case bs of \((b, b s) \Rightarrow\) if \(b \leq 0\) then ( 1, LNil) else ( \(a\), LCons (nat \((b-1)\) )
\(b s)\).
lemma cfrac-nth-cons:
    assumes cfrac-nth x \(0 \geq 1\)
    shows cfrac-nth (cfrac-cons a \(x\) ) \(n=(\) if \(n=0\) then a else cfrac-nth \(x(n-1))\)
    using assms
proof (transfer, goal-cases)
    case ( \(1 \times\) a \(n\) )
    obtain \(b\) bs where \([s i m p]: x=(b, b s)\)
        by (cases \(x\) )
    show ?case using 1
    by (cases llength bs) (auto simp: lnth-LCons eSuc-enat le-imp-diff-is-add split:
nat.splits)
qed
lemma cfrac-length-cons [simp]:
    assumes cfrac-nth x \(0 \geq 1\)
    shows cfrac-length (cfrac-cons a \(x\) ) \(=\) eSuc (cfrac-length \(x)\)
    using assms by transfer auto
lemma cfrac-tl-cons [simp]:
    assumes cfrac-nth x \(0 \geq 1\)
    shows cfrac-tl (cfrac-cons a \(x\) ) \(=x\)
    using assms by transfer auto
lemma cfrac-cons-tl:
    assumes \(\neg\) cfrac-is-int \(x\)
    shows cfrac-cons (cfrac-nth x 0) \((\) cfrac-tl \(x)=x\)
    using assms unfolding cfrac-is-int-def
    by transfer (auto split: llist.splits)
```


1.3 Non-canonical continued fractions

As we will show later, every irrational number has a unique continued fraction expansion. Every rational number x, however, has two different expansions: The canonical one ends with some number n (which is not equal to 1 unless $x=1$) and a non-canonical one which ends with $n-1,1$.
We now define this non-canonical expansion analogously to the canonical one before and show its characteristic properties:

- The length of the non-canonical expansion is one greater than that of the canonical one.
- If the expansion is infinite, the non-canonical and the canonical one coincide.
- The coefficients of the expansions are all equal except for the last two.

The last coefficient of the non-canonical expansion is always 1 , and the second to last one is the last of the canonical one minus 1.
lift-definition cfrac-canonical :: cfrac \Rightarrow bool is
$\lambda(x, x s)$. \neg lfinite $x s \vee$ lnull $x s \vee$ llast $x s \neq 0$.
lemma cfrac-canonical [code]:
cfrac-canonical (CFrac x xs) \longleftrightarrow lnull xs \vee llast $x s \neq 0 \vee \neg$ lfinite xs by (auto simp add: cfrac-canonical-def)
lemma cfrac-canonical-iff:
cfrac-canonical $c \longleftrightarrow$
cfrac-length $c \in\{0, \infty\} \vee$ cfrac-nth $c($ the-enat $($ cfrac-length $c)) \neq 1$
proof (transfer, clarify, goal-cases)
case (1 $x x s$)
show ?case
by (cases llength xs)
(auto simp: llast-def enat-0 linite-conv-llength-enat split: nat.splits)
qed
lemma llast-cfrac-of-real-aux-nonzero:
assumes lfinite (cfrac-of-real-aux x) \neg lnull (cfrac-of-real-aux x)
shows llast (cfrac-of-real-aux $x) \neq 0$
using assms
proof (induction cfrac-of-real-aux x arbitrary: x rule: lfinite-induct)
case (LCons x)
from LCons.prems have $x \in\{0<. .<1\}$
by (subst (asm) cfrac-of-real-aux.code) (auto split: if-splits)
show ?case
proof (cases $1 / x \in \mathbb{Z}$)
case False
thus ?thesis using LCons
by (auto simp: llast-LCons frac-lt-1 cfrac-of-real-aux.code[of x])
next
case True
then obtain n where $n: 1 / x=o f-i n t n$
by (elim Ints-cases)
have $1 / x>1$ using $\langle x \in \rightarrow\rangle$ by auto
with n have $n>1$ by simp
from n have $x=1 /$ of-int n
using $\langle n>1\rangle\langle x \in-\rangle$ by (simp add: field-simps)
with $\langle n\rangle$ 1〉 show ?thesis
using LCons cfrac-of-real-aux.code[of $x]$ by (auto simp: llast-LCons frac-lt-1)
qed
qed auto
lemma cfrac-canonical-of-real [intro]: cfrac-canonical (cfrac-of-real x)
by (transfer fixing: x) (use llast-cfrac-of-real-aux-nonzero $[$ of frac $x]$ in force)

```
primcorec cfrac-of-real-alt-aux :: real \(\Rightarrow\) nat llist where
    cfrac-of-real-alt-aux \(x=\)
        (if \(x \in\{0<. .<1\}\) then
            if \(1 / x \in \mathbb{Z}\) then
                LCons (nat \(\lfloor 1 / x\rfloor-2)\) (LCons 0 LNil)
            else LCons (nat \(\lfloor 1 / x\rfloor-1\) ) (cfrac-of-real-alt-aux (frac \((1 / x))\) )
        else LNil)
lemma cfrac-of-real-aux-alt-LNil [simp]: \(x \notin\{0<. .<1\} \Longrightarrow\) cfrac-of-real-alt-aux \(x\)
\(=\) LNil
    by (subst cfrac-of-real-alt-aux.code) auto
lemma cfrac-of-real-aux-alt-0 [simp]: cfrac-of-real-alt-aux \(0=\) LNil
    by (subst cfrac-of-real-alt-aux.code) auto
lemma cfrac-of-real-aux-alt-eq-LNil-iff [simp]:cfrac-of-real-alt-aux \(x=\) LNil \(\longleftrightarrow\)
\(x \notin\{0<. .<1\}\)
    by (subst cfrac-of-real-alt-aux.code) auto
lift-definition cfrac-of-real-alt :: real \(\Rightarrow\) cfrac is
    \(\lambda x\). if \(x \in \mathbb{Z}\) then \((\lfloor x\rfloor-1\), LCons 0 LNil) else \((\lfloor x\rfloor\), cfrac-of-real-alt-aux (frac
x)) .
lemma cfrac-tl-of-real-alt:
    assumes \(x \notin \mathbb{Z}\)
    shows cfrac-tl (cfrac-of-real-alt \(x)=\) cfrac-of-real-alt (1/frac \(x)\)
    using assms
proof (transfer, goal-cases)
    case (1 \(x\) )
    show ?case
    proof (cases \(1 /\) frac \(x \in \mathbb{Z})\)
    case False
    from 1 have \(\operatorname{int}(\) nat \(\lfloor 1 /\) frac \(x\rfloor-\operatorname{Suc} 0)+1=\lfloor 1 /\) frac \(x\rfloor\)
            by (subst of-nat-diff) (auto simp: le-nat-iff frac-le-1)
    with False show ?thesis
            using \(\langle x \notin \mathbb{Z}\rangle\)
            by (subst cfrac-of-real-alt-aux.code) (auto split: llist.splits simp: frac-lt-1)
    next
    case True
    then obtain \(n\) where \(1 /\) frac \(x=\) of-int \(n\)
        by (auto simp: Ints-def)
    moreover have 1 / frac \(x>1\)
        using 1 by (auto simp: divide-simps frac-lt-1)
    ultimately have \(1 /\) frac \(x \geq 2\)
        by \(\operatorname{simp}\)
    hence int (nat \(\lfloor 1 /\) frac \(x\rfloor-2)+2=\lfloor 1 / f r a c x\rfloor\)
        by (subst of-nat-diff) (auto simp: le-nat-iff frac-le-1)
    thus ?thesis
        using \(\langle x \notin \mathbb{Z}\rangle\)
```

```
        by (subst cfrac-of-real-alt-aux.code) (auto split:llist.splits simp: frac-lt-1)
    qed
qed
lemma cfrac-nth-of-real-alt-Suc:
    assumes }x\not\in\mathbb{Z
    shows cfrac-nth (cfrac-of-real-alt x) (Suc n) = cfrac-nth (cfrac-of-real-alt (1 /
frac x)) n
proof -
    have cfrac-nth (cfrac-of-real-alt x) (Suc n)=
                cfrac-nth (cfrac-tl (cfrac-of-real-alt x)) n
    by simp
    also have cfrac-tl (cfrac-of-real-alt x)=cfrac-of-real-alt (1/frac x)
    by (simp add:cfrac-tl-of-real-alt assms)
    finally show ?thesis .
qed
lemma cfrac-nth-gt0-of-real-int [simp]:
    m>0\Longrightarrowcfrac-nth (cfrac-of-real (of-int n)) m=1
    by transfer (auto simp: lnth-LCons eSuc-def enat-0-iff split: nat.splits)
lemma cfrac-nth-0-of-real-alt-int [simp]:
    cfrac-nth (cfrac-of-real-alt (of-int n)) 0 = n - 1
    by transfer auto
lemma cfrac-nth-gt0-of-real-alt-int [simp]:
    m>0\Longrightarrowcfrac-nth (cfrac-of-real-alt (of-int n)) m=1
    by transfer (auto simp: lnth-LCons eSuc-def split: nat.splits)
lemma llength-cfrac-of-real-alt-aux:
    assumes }x\in{0<..<1
    shows llength (cfrac-of-real-alt-aux x) =eSuc (llength (cfrac-of-real-aux x))
    using assms
proof (coinduction arbitrary: x rule: enat-coinduct)
    case (Eq-enat x)
    show ?case
    proof (cases 1/ x 价)}
    case False
    with Eq-enat have frac (1/x)\in{0<..<1}
        by (auto intro: frac-lt-1)
    hence \exists}\mp@subsup{x}{}{\prime}\mathrm{ . llength (cfrac-of-real-alt-aux (frac (1/x)))=
                        llength (cfrac-of-real-alt-aux x') ^
                llength (cfrac-of-real-aux (frac (1/ x) ) ) llength (cfrac-of-real-aux x')
^
                0< x'^ x'< < 
        by (intro exI[of-frac (1/x)]) auto
    thus ?thesis using False Eq-enat
        by (auto simp: cfrac-of-real-alt-aux.code[of x] cfrac-of-real-aux.code[of x])
    qed (use Eq-enat in <auto simp: cfrac-of-real-alt-aux.code[of x] cfrac-of-real-aux.code[of
```

lemma cfrac-length-of-real-alt:
cfrac-length (cfrac-of-real-alt $x)=$ eSuc (cfrac-length (cfrac-of-real $x))$
by transfer (auto simp: llength-cfrac-of-real-alt-aux frac-lt-1)
lemma cfrac-of-real-alt-aux-eq-regular:
assumes $x \in\{0<. .<1\}$ llength $($ cfrac-of-real-aux $x)=\infty$
shows cfrac-of-real-alt-aux $x=$ cfrac-of-real-aux x
using assms
proof (coinduction arbitrary: x)
case (Eq-llist x)
hence $\exists x^{\prime}$. cfrac-of-real-aux $($ frac $(1 / x))=$ cfrac-of-real-aux $x^{\prime} \wedge$ cfrac-of-real-alt-aux $($ frac $(1 / x))=$ cfrac-of-real-alt-aux $x^{\prime} \wedge 0<x^{\prime} \wedge x^{\prime}<1 \wedge$ llength $\left(\right.$ cfrac-of-real-aux $\left.x^{\prime}\right)=$
∞
by (intro exI[of - frac $(1 / x)])$
(auto simp: cfrac-of-real-aux.code[of x] cfrac-of-real-alt-aux.code[of x] eSuc-eq-infinity-iff frac-lt-1)
with Eq-llist show ?case
by (auto simp: eSuc-eq-infinity-iff)
qed
lemma cfrac-of-real-alt-irrational [simp]:
assumes $x \notin \mathbb{Q}$
shows cfrac-of-real-alt $x=$ cfrac-of-real x
proof -
from assms have cfrac-length (cfrac-of-real $x)=\infty$
using cfrac-length-of-real-irrational by blast
with assms show ?thesis
by transfer
(use Ints-subset-Rats in
〈auto intro!: cfrac-of-real-alt-aux-eq-regular simp: frac-lt-1 llength-cfrac-of-real-alt-aux〉)
qed
lemma cfrac-nth-of-real-alt-0:
cfrac-nth (cfrac-of-real-alt $x) 0=($ if $x \in \mathbb{Z}$ then $\lfloor x\rfloor-1$ else $\lfloor x\rfloor)$
by transfer auto
lemma cfrac-nth-of-real-alt:
fixes n :: nat and x :: real
defines $c \equiv c f r a c$-of-real x
defines $c^{\prime} \equiv c f r a c$-of-real-alt x
defines $l \equiv c f r a c-l e n g t h ~ c$
shows cfrac-nth $c^{\prime} n=$
(if enat $n=l$ then cfrac-nth c $n-1$

```
    else if enat n =l+1 then
    1
    else
    cfrac-nth c n)
    unfolding c-def c'-def l-def
proof (induction n arbitrary: x rule: less-induct)
    case (less n)
    consider }x\not\in\mathbb{Q}|x\in\mathbb{Z}|n=0x\in\mathbb{Q}-\mathbb{Z}|\mp@subsup{n}{}{\prime}\mathrm{ where }n=\mathrm{ Suc n'}x\in\mathbb{Q}-\mathbb{Z
    by (cases n) auto
    thus ?case
    proof cases
    assume x\not\in\mathbb{Q}
    thus ?thesis
        by (auto simp: cfrac-length-of-real-irrational)
    next
    assume }x\in\mathbb{Z
    thus ?thesis
        by (auto simp: Ints-def one-enat-def zero-enat-def)
    next
    assume *: n=0x\in\mathbb{Q}-\mathbb{Z}
    have enat 0}=\mathrm{ cfrac-length (cfrac-of-real }x)+
        using zero-enat-def by auto
    moreover have enat 0}=\mathrm{ cfrac-length (cfrac-of-real x)
        using * cfrac-length-of-real-reduce zero-enat-def by auto
    ultimately show ?thesis using *
        by (auto simp: cfrac-nth-of-real-alt-0)
    next
    fix }\mp@subsup{n}{}{\prime}\mathrm{ assume *: n=Suc n'}x\in\mathbb{Q}-\mathbb{Z
    from less.IH [of n' 1/frac x] and * show ?thesis
    by (auto simp: cfrac-nth-of-real-Suc cfrac-nth-of-real-alt-Suc cfrac-length-of-real-reduce
                eSuc-def one-enat-def enat-0-iff split: enat.splits)
    qed
qed
lemma cfrac-of-real-length-eq-0-iff:cfrac-length (cfrac-of-real x)=0\longleftrightarrowx
    by transfer (auto simp: frac-lt-1)
lemma conv'-cong:
    assumes (\bigwedgek.k<n\Longrightarrowcfrac-nth c k=cfrac-nth c' k)n= n' x = y
    shows conv' c n x = conv' c' n' y
    using assms(1) unfolding assms(2,3) [symmetric]
    by (induction n arbitrary: x) (auto simp: conv'-Suc-right)
lemma conv-cong:
    assumes ( }\k.k\leqn\Longrightarrowcfrac-nth c k= cfrac-nth c' k)n= n'
    shows conv c n = conv c' n'
    using assms(1) unfolding assms(2) [symmetric]
    by (induction n arbitrary: c c') (auto simp: conv-Suc)
```

```
lemma conv'-cfrac-of-real-alt:
    assumes enat n\leqcfrac-length (cfrac-of-real x)
    shows conv'(cfrac-of-real-alt x) n y = conv'(cfrac-of-real x) n y
proof (cases cfrac-length (cfrac-of-real x))
    case infinity
    thus ?thesis by auto
next
    case [simp]:(enat l')
    with assms show ?thesis
        by (intro conv'-cong refl; subst cfrac-nth-of-real-alt) (auto simp: one-enat-def)
qed
lemma cfrac-lim-of-real-alt [simp]:cfrac-lim (cfrac-of-real-alt x) =x
proof (cases cfrac-length (cfrac-of-real x))
    case infinity
    thus ?thesis by auto
next
    case (enat l)
    thus ?thesis
    proof (induction l arbitrary: x)
        case 0
        hence }x\in\mathbb{Z
            using cfrac-of-real-length-eq-0-iff zero-enat-def by auto
    thus ?case
        by (auto simp: Ints-def cfrac-lim-def cfrac-length-of-real-alt eSuc-def conv-Suc)
    next
        case (Suc l x)
    hence *: \negcfrac-is-int (cfrac-of-real-alt x) }x\not\in\mathbb{Z
            by (auto simp:cfrac-is-int-def cfrac-length-of-real-alt Ints-def zero-enat-def
eSuc-def)
    hence cfrac-lim (cfrac-of-real-alt x)=
                of-int \lfloorx\rfloor+1 / cfrac-lim (cfrac-tl (cfrac-of-real-alt x))
            by (subst cfrac-lim-reduce) (auto simp: cfrac-nth-of-real-alt-0)
    also have cfrac-length (cfrac-of-real (1 / frac x)) =l
        using Suc.prems * by (metis cfrac-length-of-real-reduce eSuc-enat eSuc-inject)
    hence 1/ cfrac-lim (cfrac-tl (cfrac-of-real-alt x)) = frac x
            by (subst cfrac-tl-of-real-alt[OF *(2)], subst Suc) (use Suc.prems * in auto)
    also have real-of-int \lfloorx\rfloor+ frac x = x
        by (simp add: frac-def)
    finally show ?case .
    qed
qed
lemma cfrac-eqI:
    assumes cfrac-length c=cfrac-length c' and \nn.cfrac-nth c n =cfrac-nth c' n
    shows c= c'
proof (use assms in transfer, safe, goal-cases)
    case (1 a xs b ys)
```

```
    from 1(2)[of 0] show ?case
    by auto
next
    case (2 a xs b ys)
    define f}\mathrm{ where f=( }\lambda\mathrm{ xs n n. if enat (Suc n) <llength xs then int (lnth xs n) +
1 else 1)
    have }\foralln.fxs n=fys 
    using 2(2)[of Suc n for n] by (auto simp: f-def cong: if-cong)
    with 2(1) show xs=ys
    proof (coinduction arbitrary: xs ys)
    case (Eq-llist xs ys)
    show ?case
    proof (cases lnull xs \vee lnull ys)
        case False
        from False have *: enat (Suc 0) \leq llength ys
            using Suc-ile-eq zero-enat-def by auto
        have llength (ltl xs) = llength (ltl ys)
            using Eq-llist by (cases xs; cases ys) auto
        moreover have lhd xs = lhd ys
            using False * Eq-llist(1) spec[OF Eq-llist(2), of 0]
            by (auto simp: f-def lnth-0-conv-lhd)
        moreover have f(ltl xs) n=f(ltl ys) n for n
            using Eq-llist(1) * spec[OF Eq-llist(2), of Suc n]
            by (cases xs; cases ys) (auto simp: f-def Suc-ile-eq split: if-splits)
        ultimately show ?thesis
            using False by auto
    next
            case True
            thus ?thesis
                using Eq-llist(1) by auto
    qed
    qed
qed
lemma cfrac-eq-OI:
    assumes cfrac-lim c=0 cfrac-nth c 0 \geq0
    shows }c=
proof -
    have *: cfrac-is-int c
    proof (rule ccontr)
        assume *: }\neg\mathrm{ cfrac-is-int c
        from * have conv c 0<cfrac-lim c
        by (intro conv-less-cfrac-lim) (auto simp: cfrac-is-int-def simp flip: zero-enat-def)
        hence cfrac-nth c 0<0
            using assms by simp
        thus False
            using assms by simp
    qed
    from * assms have cfrac-nth c 0 = 0
```

```
    by (auto simp: cfrac-lim-def cfrac-is-int-def)
    from * and this show c=0
    unfolding zero-cfrac-def cfrac-is-int-def by transfer auto
qed
lemma cfrac-eq-1I:
    assumes cfrac-lim c = 1 cfrac-nth c 0}=
    shows c=1
proof -
    have *: cfrac-is-int c
    proof (rule ccontr)
    assume *: \negcfrac-is-int c
    from * have conv c 0<cfrac-lim c
    by (intro conv-less-cfrac-lim) (auto simp: cfrac-is-int-def simp flip: zero-enat-def)
    hence cfrac-nth c 0<0
        using assms by simp
    have cfrac-lim c=real-of-int (cfrac-nth c 0) + 1/ cfrac-lim (cfrac-tl c)
        using * by (subst cfrac-lim-reduce) auto
    also have real-of-int (cfrac-nth c 0) < 0
        using <cfrac-nth c 0<0〉 by simp
    also have 1/cfrac-lim (cfrac-tl c)\leq1
    proof -
        have 1\leqcfrac-nth (cfrac-tl c) 0
            by auto
        also have ... \leqcfrac-lim (cfrac-tl c)
            by (rule cfrac-lim-ge-first)
        finally show ?thesis by simp
    qed
    finally show False
        using assms by simp
    qed
    from * assms have cfrac-nth c 0 = 1
    by (auto simp: cfrac-lim-def cfrac-is-int-def)
    from * and this show c=1
    unfolding one-cfrac-def cfrac-is-int-def by transfer auto
qed
lemma cfrac-coinduct [coinduct type: cfrac]:
    assumes Rc1 c2
    assumes IH: \bigwedgec1 c2. R c1 c2 \Longrightarrow
                cfrac-is-int c1 = cfrac-is-int c2 ^
                cfrac-nth c1 0 = cfrac-nth c2 0 ^
                            (\negcfrac-is-int c1 \longrightarrow \negcfrac-is-int c2 \longrightarrowR (cfrac-tl c1) (cfrac-tl c2))
    shows c1 = c2
proof (rule cfrac-eqI)
    show cfrac-nth c1 n = cfrac-nth c2 n for n
    using assms(1)
```

```
    proof (induction n arbitrary: c1 c2)
        case 0
        from IH[OF this] show ?case
            by auto
    next
    case (Suc n)
    thus ?case
        using IH by (metis cfrac-is-int-iff cfrac-nth-0-of-int cfrac-nth-tl)
    qed
next
    show cfrac-length c1 = cfrac-length c2
        using assms(1)
    proof (coinduction arbitrary: c1 c2 rule: enat-coinduct)
        case (Eq-enat c1 c2)
        show ?case
        proof (cases cfrac-is-int c1)
            case True
            thus ?thesis
                using IH[OF Eq-enat(1)] by (auto simp:cfrac-is-int-def)
    next
        case False
        with IH[OF Eq-enat(1)] have **: \negcfrac-is-int c1 R (cfrac-tl c1) (cfrac-tl c2)
            by auto
        have *: (cfrac-length c1=0)=(cfrac-length c2 = 0)
            using IH[OF Eq-enat(1)] by (auto simp:cfrac-is-int-def)
        show ?thesis
                by (intro conjI impI disjI1 *, rule exI[of - cfrac-tl c1], rule exI[of - cfrac-tl
c2])
                (use ** in <auto simp: epred-conv-minus`)
    qed
    qed
qed
lemma cfrac-nth-0-cases:
    cfrac-nth c 0 = \lfloorcfrac-lim c\rfloor\vee cfrac-nth c 0 = \lfloorcfrac-lim c\rfloor-1^cfrac-tl c
=1
proof (cases cfrac-is-int c)
    case True
    hence cfrac-nth c 0 = \cfrac-lim c\rfloor
        by (auto simp: cfrac-lim-def cfrac-is-int-def)
    thus?thesis by blast
next
    case False
    note not-int = this
    have bounds: 1 / cfrac-lim (cfrac-tl c)\geq0^1/cfrac-lim (cfrac-tl c) \leq 1
    proof -
        have 1\leqcfrac-nth (cfrac-tl c) 0
            by simp
            also have ... \leqcfrac-lim (cfrac-tl c)
```

```
        by (rule cfrac-lim-ge-first)
    finally show ?thesis
        using False by (auto simp: cfrac-lim-nonneg)
    qed
    thus ?thesis
    proof (cases cfrac-lim (cfrac-tl c)=1)
    case False
    have \lfloorcfrac-lim c\rfloor= cfrac-nth c 0 + \1 / cfrac-lim (cfrac-tl c) \rfloor
        using not-int by (subst cfrac-lim-reduce) auto
    also have 1/cfrac-lim (cfrac-tl c)\geq0^1/cfrac-lim (cfrac-tl c)<1
        using bounds False by (auto simp: divide-simps)
    hence \lfloor1 / cfrac-lim (cfrac-tl c)\rfloor=0
        by linarith
    finally show ?thesis by simp
next
    case True
    have cfrac-nth c 0 = \cfrac-lim c\rfloor-1
        using not-int True by (subst cfrac-lim-reduce) auto
    moreover have cfrac-tl c=1
        using True by (intro cfrac-eq-1I) auto
    ultimately show ?thesis by blast
    qed
qed
lemma cfrac-length-1 [simp]: cfrac-length 1 = 0
    unfolding one-cfrac-def by simp
lemma cfrac-nth-1 [simp]: cfrac-nth 1 m=1
    unfolding one-cfrac-def by transfer (auto simp: enat-0-iff)
lemma cfrac-lim-1 [simp]: cfrac-lim 1 = 1
    by (auto simp: cfrac-lim-def)
lemma cfrac-nth-0-not-int:
    assumes cfrac-lim c \not\in\mathbb{Z}
    shows cfrac-nth c 0 = \cfrac-lim c\rfloor
proof -
    have cfrac-tl c\not=1
    proof
    assume eq: cfrac-tl c=1
    have }\neg\mathrm{ cfrac-is-int c
        using assms by (auto simp: cfrac-lim-def cfrac-is-int-def)
    hence cfrac-lim c=of-int \lfloorcfrac-nth c 0 0 + 1
        using eq by (subst cfrac-lim-reduce) auto
    hence cfrac-lim c\in\mathbb{Z}
        by auto
    with assms show False by auto
```

```
    qed
    with cfrac-nth-0-cases[of c] show ?thesis by auto
qed
lemma cfrac-of-real-cfrac-lim-irrational:
    assumes cfrac-lim c\not\in\mathbb{Q}
    shows cfrac-of-real (cfrac-lim c) =c
proof (rule cfrac-eqI)
    from assms show cfrac-length (cfrac-of-real (cfrac-lim c)) =cfrac-length c
    using cfrac-lim-rational-iff by auto
next
    fix n
    show cfrac-nth (cfrac-of-real (cfrac-lim c)) n=cfrac-nth c n
        using assms
    proof (induction n arbitrary: c)
    case (0 c)
    thus ?case
            using Ints-subset-Rats by (subst cfrac-nth-0-not-int) auto
    next
        case (Suc n c)
        from Suc.prems have [simp]: cfrac-lim c\not\in\mathbb{Z}
            using Ints-subset-Rats by blast
    have cfrac-nth (cfrac-of-real (cfrac-lim c)) (Suc n) =
                    cfrac-nth (cfrac-tl (cfrac-of-real (cfrac-lim c))) n
            by (simp flip: cfrac-nth-tl)
    also have cfrac-tl (cfrac-of-real (cfrac-lim c)) = cfrac-of-real (1 / frac (cfrac-lim
c))
            using Suc.prems Ints-subset-Rats by (subst cfrac-tl-of-real) auto
    also have 1/ frac (cfrac-lim c)=cfrac-lim (cfrac-tl c)
            using Suc.prems by (subst cfrac-lim-tl) (auto simp: frac-def cfrac-is-int-def
cfrac-nth-0-not-int)
    also have cfrac-nth (cfrac-of-real (cfrac-lim (cfrac-tl c))) n=cfrac-nth c (Suc
n)
            using Suc.prems by (subst Suc.IH) (auto simp: cfrac-lim-rational-iff)
        finally show ?case.
    qed
qed
lemma cfrac-eqI-first:
```



```
    assumes cfrac-nth c 0 = cfrac-nth c' 0 and cfrac-tl c=cfrac-tl c'
    shows c= c'
    using assms unfolding cfrac-is-int-def
    by transfer (auto split: llist.splits)
lemma cfrac-is-int-of-real-iff:cfrac-is-int (cfrac-of-real }x)\longleftrightarrowx\in\mathbb{Z
    unfolding cfrac-is-int-def by transfer (use frac-lt-1 in auto)
lemma cfrac-not-is-int-of-real-alt: \negcfrac-is-int (cfrac-of-real-alt x)
```

unfolding cfrac-is-int-def by transfer (auto simp: frac-lt-1)
lemma cfrac-tl-of-real-alt-of-int $[$ simp $]$: cfrac-tl $(c f r a c-o f-r e a l-a l t ~(o f-i n t ~ n)) ~=1$ unfolding one-cfrac-def by transfer auto
lemma cfrac-is-intI:
assumes cfrac-nth c $0 \geq\lfloor$ cfrac-lim $c\rfloor$ and cfrac-lim $c \in \mathbb{Z}$
shows cfrac-is-int c
proof (rule ccontr)
assume $*$: $\neg c f r a c-i s-i n t c$
from * have conv c $0<$ cfrac-lim c
by (intro conv-less-cfrac-lim) (auto simp: cfrac-is-int-def simp flip: zero-enat-def)
with assms show False
by (auto simp: Ints-def)
qed
lemma cfrac-eq-of-intI:
assumes cfrac-nth c $0 \geq\lfloor c f r a c-l i m ~ c\rfloor$ and c frac-lim $c \in \mathbb{Z}$
shows $\quad c=c f r a c-o f-i n t\lfloor c f r a c-l i m c\rfloor$
proof -
from assms have int: cfrac-is-int c
by (intro cfrac-is-intI) auto
have [simp]: cfrac-lim $c=$ cfrac-nth c 0
using int by (simp add: cfrac-lim-def cfrac-is-int-def)
from int have $c=c f r a c-o f-i n t$ ($c f r a c-n t h c o)$
unfolding cfrac-is-int-def by transfer auto
also from assms have cfrac-nth c $0=\lfloor$ cfrac-lim c \rfloor
using int by auto
finally show ?thesis.
qed
lemma cfrac-lim-of-int [simp]: cfrac-lim (cfrac-of-int n) $=$ of-int n
by (simp add: cfrac-lim-def)
lemma cfrac-of-real-of-int [simp]: cfrac-of-real (of-int n) $=c f r a c$-of-int n
by transfer auto
lemma cfrac-of-real-of-nat [simp]: cfrac-of-real (of-nat n) $=c f r a c-o f-i n t($ int $n)$
by transfer auto
lemma cfrac-int-cases:
assumes cfrac-lim $c=o f$-int n
shows $\quad c=c f r a c-o f-i n t ~ n \vee c=c f r a c-o f-r e a l-a l t(o f-i n t ~ n)$
proof -
from cfrac-nth-0-cases[of c] show ?thesis
proof (rule disj-forward)
assume eq: cfrac-nth c $0=\lfloor$ cfrac-lim $c\rfloor$
have $c=c f r a c-o f-i n t\lfloor$ cfrac-lim $c\rfloor$ using assms eq by (intro cfrac-eq-of-intI) auto

```
    with assms eq show c = cfrac-of-int n
        by simp
    next
    assume *: cfrac-nth c 0 = \cfrac-lim c\rfloor-1 ^ cfrac-tl c = 1
    have }\neg\mathrm{ cfrac-is-int c
        using * by (auto simp: cfrac-is-int-def cfrac-lim-def)
    hence cfrac-length c=eSuc (cfrac-length (cfrac-tl c))
    by (subst cfrac-length-tl; cases cfrac-length c)
        (auto simp: cfrac-is-int-def eSuc-def enat-0-iff split: enat.splits)
    also have cfrac-tl c=1
        using * by auto
    finally have cfrac-length c=1
        by (simp add: eSuc-def one-enat-def)
    show c=cfrac-of-real-alt (of-int n)
        by (rule cfrac-eqI-first)
            (use 〈\negcfrac-is-int c\rangle* assms in <auto simp: cfrac-not-is-int-of-real-alt\rangle)
    qed
qed
lemma cfrac-cases:
    c}\in{cfrac-of-real (cfrac-lim c), cfrac-of-real-alt (cfrac-lim c)
proof (cases cfrac-length c)
    case infinity
    hence cfrac-lim c\not\in\mathbb{Q}
    by (simp add: cfrac-lim-irrational)
    thus ?thesis
    using cfrac-of-real-cfrac-lim-irrational by simp
next
    case (enat l)
    thus ?thesis
    proof (induction l arbitrary: c)
        case (0 c)
        hence c=cfrac-of-real (cfrac-nth c 0)
            by transfer (auto simp flip:zero-enat-def)
        with 0 show ?case by (auto simp:cfrac-lim-def)
    next
        case (Suc l c)
        show ?case
    proof (cases cfrac-lim c \in\mathbb{Z})
            case True
            thus ?thesis
                using cfrac-int-cases[of c] by (force simp:Ints-def)
    next
                case [simp]: False
                have }\negcfrac-is-int 
                    using Suc.prems by (auto simp:cfrac-is-int-def enat-0-iff)
        show ?thesis
            using cfrac-nth-0-cases[of c]
            proof (elim disjE conjE)
```

```
        assume *: cfrac-nth c \(0=\lfloor\) cfrac-lim \(c\rfloor-1\) cfrac-tl \(c=1\)
        hence cfrac-lim \(c \in \mathbb{Z}\)
            using \(\langle\neg\) cfrac-is-int \(c\rangle\) by (subst cfrac-lim-reduce) auto
        thus ?thesis
            by (auto simp: cfrac-int-cases)
        next
        assume eq: cfrac-nth c \(0=\lfloor\) cfrac-lim \(c\rfloor\)
        have \(c f r a c\)-tl \(c=c f r a c\)-of-real \((c f r a c-l i m(c f r a c-t l c)) \vee\)
            cfrac-tl \(c=c f r a c\)-of-real-alt \((\) cfrac-lim \((c f r a c-t l ~ c))\)
        using Suc.IH[of cfrac-tl c] Suc.prems by auto
    hence \(c=c f r a c\)-of-real (cfrac-lim c) \(\vee\)
        \(c=c f r a c-o f-r e a l-a l t(c f r a c-l i m ~ c)\)
    proof (rule disj-forward)
        assume eq': cfrac-tl \(c=c f r a c-o f-r e a l(c f r a c-l i m ~(c f r a c-t l ~ c)) ~\)
        show \(c=c\) frac-of-real (cfrac-lim \(c\) )
        by (rule cfrac-eqI-first)
            (use \(\neg c f r a c-i s-i n t c\rangle e q e q{ }^{\prime}\) in
            〈auto simp: cfrac-is-int-of-real-iff cfrac-tl-of-real cfrac-lim-tl frac-def〉)
    next
    assume \(e q^{\prime}: c f r a c-t l c=c f r a c-o f-r e a l-a l t(c f r a c-l i m ~(c f r a c-t l ~ c)) ~\)
    have eq": cfrac-nth (cfrac-of-real-alt (cfrac-lim c)) \(0=\lfloor\) cfrac-lim c \(\rfloor\)
        using Suc.prems by (subst cfrac-nth-of-real-alt-0) auto
    show \(c=\) cfrac-of-real-alt (cfrac-lim c)
        by (rule cfrac-eqI-first)
            (use \(\neg \neg\) cfrac-is-int \(c\rangle e q e q^{\prime} e q^{\prime \prime}\) in
                〈auto simp: cfrac-not-is-int-of-real-alt cfrac-tl-of-real-alt cfrac-lim-tl
frac-def〉)
            qed
            thus ?thesis by simp
        qed
    qed
    qed
qed
lemma cfrac-lim-eq-iff:
    assumes cfrac-length \(c=\infty \vee\) cfrac-length \(c^{\prime}=\infty\)
    shows \(\quad\) frac-lim \(c=c f r a c-l i m ~ c^{\prime} \longleftrightarrow c=c^{\prime}\)
proof
    assume \(*\) : cfrac-lim \(c=c f r a c-l i m ~ c ' ~\)
    hence cfrac-of-real (cfrac-lim \(c)=c f r a c\)-of-real (cfrac-lim \(\left.c^{\prime}\right)\)
    by (simp only:)
    thus \(c=c^{\prime}\)
    using assms *
    by (subst (asm) (1 2) cfrac-of-real-cfrac-lim-irrational)
        (auto simp: cfrac-infinite-iff)
qed auto
lemma floor-cfrac-remainder:
    assumes cfrac-length \(c=\infty\)
```

shows \lfloor cfrac-remainder c $n\rfloor=c$ frac- nth c n
by (metis add.left-neutral assms cfrac-length-drop cfrac-lim-eq-iff idiff-infinity cfrac-lim-of-real cfrac-nth-drop cfrac-nth-of-real-0 cfrac-remainder-def)

1.4 Approximation properties

In this section, we will show that convergents of the continued fraction expansion of a number x are good approximations of x, and in a certain sense, the reverse holds as well.

```
lemma sgn-of-int:
    \(\operatorname{sgn}(\) of-int \(x::\) ' \(a\) :: \{linordered-idom \(\})=\) of-int \((\operatorname{sgn} x)\)
    by (auto simp: sgn-if)
lemma conv-ge-one: cfrac-nth c \(0>0 \Longrightarrow\) conv c \(n \geq 1\)
    by (rule order.trans \([O F-\) conv-ge-first \(]\) ) auto
context
    fixes \(c h k\)
    defines \(h \equiv\) conv-num \(c\) and \(k \equiv\) conv-denom \(c\)
begin
lemma abs-diff-le-abs-add:
    fixes \(x\) y :: real
    assumes \(x \geq 0 \wedge y \geq 0 \vee x \leq 0 \wedge y \leq 0\)
    shows \(\quad|x-y| \leq|x+y|\)
    using assms by linarith
lemma abs-diff-less-abs-add:
    fixes \(x\) y :: real
    assumes \(x>0 \wedge y>0 \vee x<0 \wedge y<0\)
    shows \(\quad|x-y|<|x+y|\)
    using assms by linarith
lemma abs-diff-le-imp-same-sign:
    assumes \(|x-y| \leq d d<|y|\)
    shows \(\operatorname{sgn} x=\operatorname{sgn}(y::\) real \()\)
    using assms by (auto simp: sgn-if)
lemma conv-nonpos:
    assumes cfrac-nth c \(0<0\)
    shows conv c \(n \leq 0\)
proof (cases \(n\) )
    case 0
    thus ?thesis using assms by auto
next
    case \([\) simp \(]:\left(\right.\) Suc \(\left.n^{\prime}\right)\)
    have conv c \(n=\) real-of-int \((\) cfrac-nth c 0\()+1 / \operatorname{conv}(c f r a c-t l c) n^{\prime}\)
    by (simp add: conv-Suc)
    also have \(\ldots \leq-1+1 / 1\)
```

```
            using assms by (intro add-mono divide-left-mono) (auto intro!: conv-pos
conv-ge-one)
    finally show ?thesis by simp
qed
lemma cfrac-lim-nonpos:
    assumes cfrac-nth c 0<0
    shows cfrac-lim c\leq0
proof (cases cfrac-length c)
    case infinity
    show ?thesis using LIMSEQ-cfrac-lim[OF infinity]
    by (rule tendsto-upperbound) (use assms in «auto simp: conv-nonpos`)
next
    case (enat l)
    thus ?thesis by (auto simp: cfrac-lim-def conv-nonpos assms)
qed
lemma conv-num-nonpos:
    assumes cfrac-nth c 0<0
    shows }hn\leq
proof (induction n rule: fib.induct)
    case 2
    have cfrac-nth c(Suc 0)* cfrac-nth c 0 \leq 1* cfrac-nth c 0
            using assms by (intro mult-right-mono-neg) auto
    also have \ldots+1\leq0 using assms by auto
    finally show ?case by (auto simp: h-def)
next
    case (3 n)
    have cfrac-nth c (Suc (Suc n))*h(Suc n)\leq0
    using 3 by (simp add: mult-nonneg-nonpos)
    also have ... +hn \leq 0
        using 3 by simp
    finally show ?case
        by (auto simp: h-def)
qed (use assms in <auto simp: h-def〉)
lemma conv-best-approximation-aux:
    cfrac-lim c \geq 0^hn \geq0\vee cfrac-lim c\leq0^hn\leq0
proof (cases cfrac-nth c 0\geq0)
    case True
    from True have 0\leq conv c 0
        by simp
    also have ... \leqcfrac-lim c
        by (rule conv-le-cfrac-lim) (auto simp: enat-0)
    finally have cfrac-lim c\geq0.
    moreover from True have hn\geq0
        unfolding }h\mathrm{ -def by (intro conv-num-nonneg)
    ultimately show ?thesis by (simp add: sgn-if)
next
```

```
    case False
    thus ?thesis
    using cfrac-lim-nonpos conv-num-nonpos[of n] by (auto simp: h-def)
qed
lemma conv-best-approximation-ex:
    fixes a b :: int and x :: real
    assumes n\leqcfrac-length c
    assumes 0<b and b\leqkn and coprime a b and n>0
    assumes (a,b) \not=(hn,kn)
    assumes }\neg(\mathrm{ cfrac-length c=1 ^n=0)
    assumes Suc n\not=cfrac-length c\vee cfrac-canonical c
    defines x \equivcfrac-lim c
    shows |kn*x-hn|<||*x-a|
proof (cases |a| = |hn|^b=kn)
    case True
    with assms have [simp]: a=-hn
    by (auto simp: abs-if split: if-splits)
    have kn>0
    by (auto simp: k-def)
    show ?thesis
    proof (cases x = 0)
    case True
    hence c=cfrac-of-real 0\veec=cfrac-of-real-alt 0
        unfolding x-def by (metis cfrac-cases empty-iff insert-iff)
    hence False
    proof
        assume c=cfrac-of-real 0
        thus False
        using assms by (auto simp: enat-0-iff h-def k-def)
    next
        assume [simp]:c = cfrac-of-real-alt 0
        hence n=0\vee n=1
            using assms by (auto simp: cfrac-length-of-real-alt enat-0-iff k-def h-def
eSuc-def)
    thus False
                using assms True
                by (elim disjE) (auto simp: cfrac-length-of-real-alt enat-0-iff k-def h-def
eSuc-def
                                cfrac-nth-of-real-alt one-enat-def split: if-splits)
    qed
    thus ?thesis ..
next
    case False
    have h n\not=0
        using True assms(6) h-def by auto
    hence }x>0\wedgehn>0\veex<0\wedgehn<
    using }\langlex\not=0\rangle\mathrm{ conv-best-approximation-aux[of n] unfolding x-def by auto
    hence |real-of-int (k n) * x - real-of-int (h n)|<|real-of-int (k n)*x +
```

```
real-of-int (h n)|
            using <kn>0>
    by (intro abs-diff-less-abs-add) (auto simp: not-le zero-less-mult-iff mult-less-0-iff)
    thus ?thesis using True by auto
    qed
next
    case False
    note * = this
    show ?thesis
    proof (cases n = cfrac-length c)
    case True
    hence x = conv c n
        by (auto simp: cfrac-lim-def x-def split: enat.splits)
    also have ... = hn/kn
        by (auto simp: h-def k-def conv-num-denom)
    finally have x: x=hn/kn.
    hence }|kn*x-hn|=
        by (simp add: k-def)
    also have b*x\not=a
    proof
        assume b*x=a
        hence of-int (h n) * of-int b =of-int (k n)*(of-int a :: real)
            using assms True by (auto simp: field-simps k-def x)
        hence of-int (hn*b)=(of-int (kn*a):: real)
            by (simp only: of-int-mult)
        hence hn*b=kn*a
            by linarith
        hence hn=a^kn=b
            using assms by (subst (asm) coprime-crossproduct')
                                    (auto simp: h-def k-def coprime-conv-num-denom)
        thus False using True False by simp
    qed
    hence 0< |b*x-a|
        by simp
    finally show ?thesis .
next
    case False
    define s where s=(-1) ^}n*(a*kn-b*hn
    define r where r=(-1) ^}n*(b*h(Suc n) - a*k(Suc n))
    have kn\leqk (Suc n)
        unfolding }k\mathrm{ -def by (intro conv-denom-leI) auto
    have r*hn+s*h(Suc n)=
                (-1) ^Suc n*a*(k(Suc n)*hn-kn*h(Suc n))
        by (simp add: s-def r-def algebra-simps h-def k-def)
    also have ... = a using assms unfolding h-def k-def
        by (subst conv-num-denom-prod-diff') (auto simp: algebra-simps)
    finally have eq1: r*hn+s*h(Suc n)=a.
```

```
have r*kn+s*k(Suc n)=
    (-1) ^Suc n*b*(k(Suc n)*hn-kn*h(Suc n))
    by (simp add: s-def r-def algebra-simps h-def k-def)
also have ... = b using assms unfolding h-def k-def
    by (subst conv-num-denom-prod-diff') (auto simp: algebra-simps)
finally have eq2:r*kn+s*k(Suc n)=b.
```

have $k n<k$ (Suc n)
using $\langle n>0\rangle$ by (auto simp: k-def intro: conv-denom-lessI)
have $r \neq 0$
proof
assume $r=0$
hence $a * k$ (Suc n) $=b * h$ (Suc n) by (simp add: r-def)
hence $a b s(a * k(S u c n))=$ abs $(h(S u c n) * b)$ by (simp only: mult-ac)
hence $*$: abs $(h($ Suc $n))=a b s$ a $\wedge k($ Suc $n)=b$
unfolding abs-mult h-def k-def using coprime-conv-num-denom assms
by (subst (asm) coprime-crossproduct-int) auto
with $\langle k n<k(S u c n)\rangle$ and $\langle b \leq k n\rangle$ show False by auto
qed
have $s \neq 0$
proof
assume $s=0$
hence $a * k n=b * h n$ by (simp add: s-def)
hence $a b s(a * k n)=a b s(h n * b)$ by (simp only: mult-ac)
hence $b=k n \wedge|a|=|h n|$ unfolding abs-mult h-def k-def using co-
prime-conv-num-denom assms
by (subst (asm) coprime-crossproduct-int) auto
with * show False by simp
qed
have $r * k n+s * k($ Suc $n)=b$ by fact
also have $\ldots \in\{0<. .<k$ (Suc n) $\}$ using assms $\langle k n<k$ (Suc n) \rangle by auto
finally have $*: r * k n+s * k($ Suc $n) \in \ldots$.
have opposite-signs1: $r>0 \wedge s<0 \vee r<0 \wedge s>0$
proof (cases $r \geq 0$; cases $s \geq 0$)
assume $r \geq 0 s \geq 0$
hence $0 *(k n)+1 *(k($ Suc $n)) \leq r * k n+s * k$ (Suc $n)$
using $\langle s \neq 0\rangle$ by (intro add-mono mult-mono) (auto simp: k-def)
with $*$ show ?thesis by auto
next
assume $\neg(r \geq 0) \neg(s \geq 0)$
hence $r * k \bar{n}+s * k \overline{(\text { Suc } n) \leq 0}$
by (intro add-nonpos-nonpos mult-nonpos-nonneg) (auto simp: k-def)
with $*$ show ?thesis by auto
qed (insert $\langle r \neq 0\rangle\langle s \neq 0\rangle$, auto)

```
have \(r \neq 1\)
proof
    assume \([\) simp \(]: r=1\)
    have \(b=r * k n+s * k\) (Suc \(n\) )
        using \(\langle r * k n+s * k(\) Suc \(n)=b\rangle .\).
    also have \(s * k\) (Suc \(n) \leq(-1) * k\) (Suc \(n\) )
        using opposite-signs1 by (intro mult-right-mono) (auto simp: \(k\)-def)
    also have \(r * k n+(-1) * k(\) Suc \(n)=k n-k\) (Suc \(n\) )
        by \(\operatorname{simp}\)
    also have \(\ldots \leq 0\)
    unfolding \(k\)-def by (auto intro!: conv-denom-leI)
    finally show False using \(\langle b>0\rangle\) by simp
qed
have enat \(n \leq\) cfrac-length \(c\) enat (Suc \(n\) ) \(\leq\) cfrac-length \(c\)
    using assms False by (cases cfrac-length c; simp) +
hence conv c \(n \geq x \wedge \operatorname{conv} c(\) Suc \(n) \leq x \vee \operatorname{conv} c n \leq x \wedge \operatorname{conv} c(\) Suc \(n) \geq x\)
    using conv-ge-cfrac-lim[of \(n\) c] conv-ge-cfrac-lim[of Suc \(n c\) c
        conv-le-cfrac-lim[of \(n c]\) conv-le-cfrac-lim[of Suc \(n c]\) assms
        by (cases even \(n\) ) auto
    hence opposite-signs2: \(k n * x-h n \geq 0 \wedge k\) (Suc \(n) * x-h(\) Suc \(n) \leq 0 \vee\)
                \(k n * x-h n \leq 0 \wedge k(\) Suc \(n) * x-h(\) Suc \(n) \geq 0\)
    using assms conv-denom-pos[of c n] conv-denom-pos[of c Suc n]
    by (auto simp: \(k\)-def \(h\)-def conv-num-denom field-simps)
from opposite-signs1 opposite-signs2 have same-signs:
\[
\begin{aligned}
& r *(k n * x-h n) \geq 0 \wedge s *(k(\text { Suc } n) * x-h(\text { Suc } n)) \geq 0 \vee \\
& r *(k n * x-h n) \leq 0 \wedge s *(k(\text { Suc } n) * x-h(\text { Suc } n)) \leq 0
\end{aligned}
\]
by (auto intro: mult-nonpos-nonneg mult-nonneg-nonpos mult-nonneg-nonneg mult-nonpos-nonpos)
```


show ?thesis

```
proof (cases Suc \(n=\) cfrac-length \(c\) )
case True
have \(x\) : \(x=h(\) Suc \(n) / k\) (Suc n)
using True[symmetric] by (auto simp: cfrac-lim-def h-def \(k\)-def conv-num-denom \(x\)-def)
have \(r \neq-1\)
proof
assume \([\operatorname{simp}]: r=-1\)
have \(r * k n+s * k(\) Suc \(n)=b\)
by fact
also have \(b<k\) (Suc n)
using \(\langle b \leq k n\rangle\) and \(\langle k n<k\) (Suc \(n)\rangle\) by \(\operatorname{simp}\)
finally have \((s-1) * k(\) Suc \(n)<k n\)
by (simp add: algebra-simps)
also have \(k n \leq 1 * k\) (Suc \(n\) )
by (simp add: \(k\)-def conv-denom-leI)
```


finally have $s<2$

by (subst (asm) mult-less-cancel-right) (auto simp: k-def)
moreover from opposite-signs1 have $s>0$ by auto
ultimately have $[\operatorname{simp}]: s=1$ by simp
have $b=($ cfrac-nth $c($ Suc $n)-1) * k n+k(n-1)$
using eq2 $\langle n>0\rangle$ by (cases n) (auto simp: k-def algebra-simps)
also have cfrac-nth $c($ Suc $n)>1$
proof -
have cfrac-canonical c using assms True by auto
hence $c f r a c-n t h c(S u c n) \neq 1$ using True[symmetric] by (auto simp: cfrac-canonical-iff enat-0-iff)
moreover have cfrac-nth $c($ Suc $n)>0$ by auto
ultimately show cfrac-nth $c($ Suc $n)>1$
by linarith
qed
hence (cfrac-nth c (Suc $n)-1) * k n+k(n-1) \geq 1 * k n+k(n-1)$ by (intro add-mono mult-right-mono) (auto simp: k-def)
finally have $b>k n$
using conv-denom-pos[of c $n-1$] unfolding k-def by linarith
with assms show False by simp
qed
with $\langle r \neq 1\rangle\langle r \neq 0\rangle$ have $|r|>1$
by auto
from $\langle s \neq 0\rangle$ have $k n * x \neq h n$
using conv-num-denom-prod-diff [of c n]
by (auto simp: x field-simps k-def h-def simp flip: of-int-mult)
hence $1 *|k n * x-h n|<|r| *|k n * x-h n|$
using $\langle | r|>1\rangle$ by (intro mult-strict-right-mono) auto
also have $\ldots=|r| *|k n * x-h n|+0$ by simp
also have $\ldots \leq|r *(k n * x-h n)|+\mid s *(k($ Suc $n) * x-h($ Suc $n)) \mid$
unfolding abs-mult of-int-abs using conv-denom-pos[of c Suc n] $\langle s \neq 0\rangle$
by (intro add-left-mono mult-nonneg-nonneg) (auto simp: field-simps k-def)
also have $\ldots=\mid r *(k n * x-h n)+s *(k($ Suc $n) * x-h($ Suc $n)) \mid$
using same-signs by auto
also have $\ldots=\mid(r * k n+s * k($ Suc $n)) * x-(r * h n+s * h($ Suc $n)) \mid$
by (simp add: algebra-simps)
also have $\ldots=|b * x-a|$
unfolding eq1 eq2 by simp
finally show? ?thesis by simp
next
case False
from assms have Suc $n<$ cfrac-length c using False 〈Suc $n \leq$ cfrac-length c 〉 by force
have $1 *|k n * x-h n| \leq|r| *|k n * x-h n|$ using $\langle r \neq 0\rangle$ by (intro mult-right-mono) auto

```
    also have ... = |r|* |kn*x-hn| + 0 by simp
    also have x\not=h(Suc n) / k(Suc n)
        using conv-neq-cfrac-lim[of Suc n c] 〈Suc n < cfrac-length c〉
        by (auto simp: conv-num-denom h-def k-def x-def)
    hence }|s*(k(\mathrm{ Suc n)*x-h (Suc n))|>0
        using }\langles\not=0\rangle\mathrm{ by (auto simp: field-simps k-def)
    also have |r|*|kn*x-hn|+\ldots\leq
                                    |r*(kn*x-hn)|+|s*(k(Suc n)*x-h(Suc n))
        unfolding abs-mult of-int-abs by (intro add-left-mono mult-nonneg-nonneg)
auto
    also have ... = |r*(kn*x-hn) +s*(k(Suc n)*x-h(Suc n))|
    using same-signs by auto
    also have \ldots. = |(r*kn+s*k(Suc n))*x-(r*hn+s*h(Suc n))|
        by (simp add: algebra-simps)
        also have ... = |b*x-a|
            unfolding eq1 eq2 by simp
    finally show ?thesis by simp
    qed
    qed
qed
lemma conv-best-approximation-ex-weak:
    fixes a b :: int and x :: real
    assumes n\leqcfrac-length c
    assumes 0<b and b<k (Suc n) and coprime a b
    defines x \equivcfrac-lim c
    shows }|kn*x-hn|\leq|b*x-a
proof (cases |a| = |hn| ^b=kn)
    case True
    note * = this
    show ?thesis
    proof (cases sgn a = sgn (hn))
    case True
    with * have [simp]: a=h n
        by (auto simp: abs-if split: if-splits)
    thus ?thesis using * by auto
    next
    case False
    with True have [simp]: a = -hn
        by (auto simp: abs-if split: if-splits)
        have |real-of-int (k n)*x - real-of-int (hn)|\leq|real-of-int (k n)*x+
real-of-int (h n)|
        unfolding x-def using conv-best-approximation-aux[of n]
        by (intro abs-diff-le-abs-add) (auto simp: k-def not-le zero-less-mult-iff)
    thus ?thesis using True by auto
    qed
next
    case False
    note * = this
```

```
show ?thesis
proof (cases n = cfrac-length c)
    case True
    hence }x=\mathrm{ conv c n
        by (auto simp: cfrac-lim-def x-def split: enat.splits)
    also have ... = hn/kn
        by (auto simp: h-def k-def conv-num-denom)
    finally show ?thesis by (auto simp: k-def)
next
    case False
    define s where s=(-1)^ n*(a*kn-b*hn)
    define r where r=(-1) ^n*(b*h(Suc n) -a*k(Suc n))
    have r*hn+s*h(Suc n)=
        (-1) ^Suc n*a*(k(Suc n)*hn-kn*h(Suc n))
    by (simp add: s-def r-def algebra-simps h-def k-def)
    also have ... = a using assms unfolding h-def k-def
        by (subst conv-num-denom-prod-diff') (auto simp: algebra-simps)
    finally have eq1:r*hn+s*h(Suc n)=a.
    have}r*kn+s*k(Suc n)
            (-1) ^Suc n*b*(k(Suc n)*hn-kn*h(Suc n))
    by (simp add: s-def r-def algebra-simps h-def k-def)
    also have ... = b using assms unfolding h-def k-def
    by (subst conv-num-denom-prod-diff') (auto simp: algebra-simps)
    finally have eq2:r*kn+s*k(Suc n)=b.
    have r\not=0
    proof
        assume r=0
        hence a*k (Suc n) =b*h (Suc n) by (simp add: r-def)
        hence abs (a*k (Suc n)) = abs (h(Suc n)*b) by (simp only: mult-ac)
    hence b=k (Suc n) unfolding abs-mult h-def k-def using coprime-conv-num-denom
assms
            by (subst (asm) coprime-crossproduct-int) auto
        with assms show False by simp
    qed
    have s\not=0
    proof
    assume s=0
    hence }a*kn=b*hn\mp@code{by (simp add: s-def)
    hence abs (a*kn) = abs (hn*b) by (simp only: mult-ac)
        hence b=kn\wedge |a| = |h n| unfolding abs-mult h-def k-def using co-
prime-conv-num-denom assms
            by (subst (asm) coprime-crossproduct-int) auto
        with * show False by simp
    qed
```

have $r * k n+s * k($ Suc $n)=b$ by fact
also have $\ldots \in\{0<. .<k$ (Suc n) $\}$ using assms by auto
finally have $*: r * k n+s * k($ Suc $n) \in \ldots$.
have opposite-signs1: $r>0 \wedge s<0 \vee r<0 \wedge s>0$
proof (cases $r \geq 0$; cases $s \geq 0$)
assume $r \geq 0 s \geq 0$
hence $0 *(k n)+1 *(k($ Suc $n)) \leq r * k n+s * k$ (Suc $n)$
using $\langle s \neq 0\rangle$ by (intro add-mono mult-mono) (auto simp: k-def)
with $*$ show ?thesis by auto
next
assume $\neg(r \geq 0) \neg(s \geq 0)$
hence $r * k n+s * k$ (Suc n) ≤ 0
by (intro add-nonpos-nonpos mult-nonpos-nonneg) (auto simp: k-def)
with $*$ show ?thesis by auto
qed (insert $\langle r \neq 0\rangle\langle s \neq 0\rangle$, auto)
have enat $n \leq$ cfrac-length c enat (Suc n) \leq cfrac-length c
using assms False by (cases cfrac-length c; simp) +
hence conv c $n \geq x \wedge \operatorname{conv} c($ Suc $n) \leq x \vee \operatorname{conv}$ c $n \leq x \wedge \operatorname{conv} c($ Suc $n) \geq x$ using conv-ge-cfrac-lim[of $n c]$ conv-ge-cfrac-lim[of Suc $n c$ c] conv-le-cfrac-lim[of $n c]$ conv-le-cfrac-lim[of Suc $n c]$ assms
by (cases even n) auto
hence opposite-signs2: $k n * x-h n \geq 0 \wedge k$ (Suc $n) * x-h($ Suc $n) \leq 0 \vee$ $k n * x-h n \leq 0 \wedge k($ Suc $n) * x-h($ Suc $n) \geq 0$
using assms conv-denom-pos[of c n] conv-denom-pos[of c Suc n]
by (auto simp: k-def h-def conv-num-denom field-simps)
from opposite-signs1 opposite-signs2 have same-signs:
$r *(k n * x-h n) \geq 0 \wedge s *(k($ Suc $n) * x-h($ Suc $n)) \geq 0 \vee$
$r *(k n * x-h n) \leq 0 \wedge s *(k($ Suc $n) * x-h($ Suc $n)) \leq 0$
by (auto intro: mult-nonpos-nonneg mult-nonneg-nonpos mult-nonneg-nonneg mult-nonpos-nonpos)
have $1 *|k n * x-h n| \leq|r| *|k n * x-h n|$
using $\langle r \neq 0\rangle$ by (intro mult-right-mono) auto
also have $\ldots=|r| *|k n * x-h n|+0$ by simp
also have $\ldots \leq|r *(k n * x-h n)|+\mid s *(k($ Suc $n) * x-h($ Suc $n)) \mid$ unfolding abs-mult of-int-abs using conv-denom-pos[of c Suc $n]\langle s \neq 0\rangle$
by (intro add-left-mono mult-nonneg-nonneg) (auto simp: field-simps k-def)
also have $\ldots=\mid r *(k n * x-h n)+s *(k($ Suc $n) * x-h($ Suc $n)) \mid$
using same-signs by auto
also have $\ldots=\mid(r * k n+s * k($ Suc $n)) * x-(r * h n+s * h($ Suc $n)) \mid$
by (simp add: algebra-simps)
also have $\ldots=|b * x-a|$
unfolding eq1 eq2 by simp
finally show ?thesis by simp
qed

qed

lemma cfrac-canonical-reduce:
cfrac-canonical $c \longleftrightarrow$
cfrac-is-int $c \vee \neg c f r a c-i s-i n t c \wedge c f r a c-t l c \neq 1 \wedge c f r a c-c a n o n i c a l(c f r a c-t l c)$
unfolding cfrac-is-int-def one-cfrac-def
by transfer (auto simp: cfrac-canonical-def llast-LCons split: if-splits split: llist.splits)

```
lemma cfrac-nth-0-conv-floor:
    assumes cfrac-canonical c \vee cfrac-length c\not=1
    shows cfrac-nth c 0 = \cfrac-lim c\rfloor
proof (cases cfrac-is-int c)
    case True
    thus ?thesis
    by (auto simp: cfrac-lim-def cfrac-is-int-def)
next
    case False
    show ?thesis
    proof (cases cfrac-length c=1)
    case True
    hence cfrac-canonical c using assms by auto
    hence cfrac-tl c\not=1 using False
        by (subst (asm) cfrac-canonical-reduce) auto
    thus ?thesis
        using cfrac-nth-0-cases[of c] by auto
    next
    case False
    hence cfrac-length c>1
        using <\negcfrac-is-int c>
        by (cases cfrac-length c) (auto simp: cfrac-is-int-def one-enat-def zero-enat-def)
    have cfrac-tl c\not=1
    proof
        assume cfrac-tl c=1
        have 0<cfrac-length c-1
        proof (cases cfrac-length c)
            case [simp]: (enat l)
            have cfrac-length c - 1 = enat (l - 1)
                    by auto
                also have ... > enat 0
                    using <cfrac-length c> 1> by (simp add: one-enat-def)
                finally show ?thesis by (simp add: zero-enat-def)
        qed auto
        also have ... = cfrac-length (cfrac-tl c)
            by simp
            also have cfrac-tl c=1
                by fact
            finally show False by simp
    qed
    thus ?thesis using cfrac-nth-0-cases[of c] by auto
```

```
    qed
qed
lemma conv-best-approximation-ex-nat:
    fixes ab :: nat and x :: real
    assumes n\leqcfrac-length c 0<bb<k(Suc n) coprime a b
    shows }|kn*cfrac-lim c-hn|\leq|b*cfrac-lim c-a
    using conv-best-approximation-ex-weak[OF assms(1), of b a] assms by auto
lemma abs-mult-nonneg-left:
    assumes }x\geq(0:: 'a :: {ordered-ab-group-add-abs, idom-abs-sgn})
    shows }\quadx*|y|=|x*y
proof -
    from assms have x = |x| by simp
    also have \ldots.* |y| = |x*y| by (simp add: abs-mult)
    finally show ?thesis.
qed
```

Any convergent of the continued fraction expansion of x is a best approximation of x, i.e. there is no other number with a smaller denominator that approximates it better.
lemma conv-best-approximation:
fixes $a b::$ int and $x::$ real
assumes $n \leq c$ frac-length c
assumes $0<b$ and $b<k n$ and coprime a b
defines $x \equiv c f r a c-l i m ~ c$
shows $\mid x-\operatorname{conv}$ c $n|\leq|x-a / b|$
proof -
have $b<k n$ by fact
also have $k n \leq k$ (Suc n)
unfolding k-def by (intro conv-denom-leI) auto
finally have $*: b<k$ (Suc n) by simp
have $\mid x-$ conv c $n|=|k n * x-h n| / k n$
using conv-denom-pos[of c n] assms(1)
by (auto simp: conv-num-denom field-simps k-def h-def)
also have $\ldots \leq|b * x-a| / k n$ unfolding x-def using assms *
by (intro divide-right-mono conv-best-approximation-ex-weak) auto
also from assms have $\ldots \leq|b * x-a| / b$
by (intro divide-left-mono) auto
also have $\ldots=|x-a / b|$ using assms by (simp add: field-simps)
finally show ?thesis .
qed
lemma conv-denom-partition:
assumes $y>0$
shows $\exists!n . y \in\{k n . .<k($ Suc $n)\}$
proof (rule ex-ex1I)
from conv-denom-at-top[of c] assms have $*: \exists n . k n \geq y+1$
by (auto simp: k-def filterlim-at-top eventually-at-top-linorder)
define n where $n=($ LEAST $n . k n \geq y+1)$
from LeastI-ex[OF *] have $n: k n>y$ by (simp add: Suc-le-eq n-def)
from n and assms have $n>0$ by (intro Nat.grOI) (auto simp: k-def)
have $k(n-1) \leq y$
proof (rule ccontr)
assume $\neg k(n-1) \leq y$
hence $k(n-1) \geq y+1$ by auto
hence $n-1 \geq n$ unfolding n-def by (rule Least-le)
with $\langle n>0\rangle$ show False by simp
qed
with n and $\langle n>0\rangle$ have $y \in\{k(n-1) . .<k(S u c(n-1))\}$ by auto
thus $\exists n . y \in\{k n . .<k($ Suc $n)\}$ by blast
next
fix $m n$
assume $y \in\{k m . .<k($ Suc $m)\} y \in\{k n . .<k$ (Suc $n)\}$
thus $m=n$
proof (induction $m n$ rule: linorder-wlog)
case (le mn)
show $m=n$
proof (rule ccontr)
assume $m \neq n$
with le have k (Suc $m) \leq k n$
unfolding k-def by (intro conv-denom-leI assms) auto
with le show False by auto
qed
qed auto
qed
A fraction that approximates a real number x sufficiently well (in a certain sense) is a convergent of its continued fraction expansion.

```
lemma frac-is-convergentI:
    fixes a b :: int and x :: real
    defines x \equivcfrac-lim c
    assumes b>0 and coprime a b and |x-a/b|<1/(2* b
    shows \existsn. enat n\leqcfrac-length c^(a,b)=(hn,kn)
proof (cases a=0)
    case True
    with assms have [simp]: a=0 b=1
    by auto
    show ?thesis
    proof (cases x 0 :: real rule: linorder-cases)
    case greater
    hence 0< x x< 1/2
            using assms by auto
    hence }x\not\in\mathbb{Z
            by (auto simp: Ints-def)
    hence cfrac-nth c 0 = \lfloorx\rfloor
```

using assms by (subst cfrac-nth-0-not-int) (auto simp: x-def)
also from $\langle x\rangle 0\rangle\langle x<1 / 2\rangle$ have $\ldots=0$
by linarith
finally have $(a, b)=\left(\begin{array}{lll}h & 0, k & 0\end{array}\right)$
by (auto simp: h-def k-def)
thus ?thesis by (intro exI[of - 0]) (auto simp flip: zero-enat-def)

next

case less
hence $x<0 x>-1 / 2$
using assms by auto
hence $x \notin \mathbb{Z}$
by (auto simp: Ints-def)
hence not-int: $\neg c f r a c$-is-int c
by (auto simp: cfrac-is-int-def x-def cfrac-lim-def)
have cfrac-nth c $0=\lfloor x\rfloor$
using $\langle x \notin \mathbb{Z}\rangle$ assms by (subst cfrac-nth-0-not-int) (auto simp: x-def)
also from $\langle x<0\rangle\langle x\rangle-1 / 2\rangle$ have $\ldots=-1$
by linarith
finally have $[\operatorname{simp}]$: cfrac-nth c $0=-1$.
have cfrac-nth $c($ Suc 0$)=c f r a c-n t h(c f r a c-t l ~ c) 0$ by simp
have cfrac-lim $(c f r a c-t l c)=1 /(x+1)$
using not-int by (subst cfrac-lim-tl) (auto simp: x-def)
also from $\langle x\langle 0\rangle\langle x\rangle-1 / 2\rangle$ have $\ldots \in\{1<. .<2\}$
by (auto simp: divide-simps)
finally have $*$: cfrac-lim (cfrac-tl c) $\in\{1<. .<2\}$.
have cfrac-nth (cfrac-tl c) $0=\lfloor$ cfrac-lim (cfrac-tl c) \rfloor
using $*$ by (subst cfrac-nth-0-not-int) (auto simp: Ints-def)
also have ... = 1
using $*$ by (simp, linarith?)
finally have $(a, b)=\left(\begin{array}{ll}h & 1, k\end{array}\right)$ by (auto simp: h-def k-def)
moreover have cfrac-length $c \geq 1$
using not-int
by (cases cfrac-length c) (auto simp: cfrac-is-int-def one-enat-def zero-enat-def)
ultimately show ?thesis by (intro exI[of - 1]) (auto simp: one-enat-def)
next
case equal
show ?thesis
using cfrac-nth-0-cases $[o f c]$
proof
assume cfrac-nth c $0=\lfloor$ cfrac-lim $c\rfloor$
with equal have $(a, b)=\left(\begin{array}{lll}h & 0, k & 0\end{array}\right)$
by (simp add: x-def h-def k-def)
thus ?thesis by (intro exI[of - 0]) (auto simp fip: zero-enat-def)
next
assume $*$: cfrac-nth c $0=\lfloor$ cfrac-lim $c\rfloor-1 \wedge c f r a c-t l c=1$
have [simp]: cfrac-nth c $0=-1$
using * equal by (auto simp: x-def)

```
    from * have }\negcfrac-is-int 
        by (auto simp: cfrac-is-int-def cfrac-lim-def floor-minus)
        have cfrac-nth c 1 = cfrac-nth (cfrac-tl c) 0
        by auto
    also have cfrac-tl c=1
        using * by auto
    finally have cfrac-nth c 1=1
        by simp
    hence (a,b) =(h 1, k 1)
        by (auto simp: h-def k-def)
    moreover from «\negcfrac-is-int c> have cfrac-length c\geq1
    by (cases cfrac-length c) (auto simp: one-enat-def zero-enat-def cfrac-is-int-def)
    ultimately show ?thesis
        by (intro exI[of - 1]) (auto simp: one-enat-def)
    qed
qed
next
case False
hence }a-nz:a\not=0\mathrm{ by auto
have }x\not=
proof
    assume [simp]: x=0
    hence }|a|/b<1/(2*b^2
        using assms by simp
    hence }|a|<1/(2*b
        using assms by (simp add: field-simps power2-eq-square)
    also have ... \leq 1/2
        using assms by (intro divide-left-mono) auto
    finally have }a=0\mathrm{ by auto
    with }<a\not=0\rangle\mathrm{ show False by simp
qed
show ?thesis
proof (rule ccontr)
    assume no-convergent: # n. enat n\leqcfrac-length c ^(a,b)=(hn,kn)
    from assms have }\exists!r.b\in{kr..<k (Suc r)
    by (intro conv-denom-partition) auto
    then obtain r where r:b\in{kr..<k(Suc r)} by auto
    have kr>0
        using conv-denom-pos[of c r] assms by (auto simp: k-def)
    show False
    proof (cases enat r \leq cfrac-length c)
    case False
    then obtain l where l:cfrac-length c=enat l
        by (cases cfrac-length c) auto
    have kl\leqkr
        using False l unfolding k-def by (intro conv-denom-leI) auto
```

```
    also have ... \leqb
    using r by simp
    finally have b\geqkl.
    have x= conv c l
    by (auto simp: x-def cfrac-lim-def l)
    hence x-eq: x = hl/kl
    by (auto simp: conv-num-denom h-def k-def)
    have kl>0
    by (simp add: k-def)
    have b*kl* |hl/kl-a/b|<kl/(2*b)
    using assms x-eq 〈kl> 0` by (auto simp: field-simps power2-eq-square)
    also have b*kl*|hl/kl-a/b|=|b*kl*(hl/kl-a/b)|
    using }\langleb>0\rangle\langlekl>0\rangle\mathrm{ by (subst abs-mult) auto
    also have ... = of-int |b*hl-a*kl|
    using <b> 0\rangle\langlekl> 0\rangle by (simp add: algebra-simps)
    also have kl/(2*b)<1
    using <b\geqkl}\langleb> 0\rangle by auto
    finally have a*kl=b*hl
    by linarith
    moreover have coprime (hl) (k l)
    unfolding h-def k-def by (simp add: coprime-conv-num-denom)
    ultimately have (a,b)=(hl,kl)
    using <coprime a b\rangle
    by (subst (asm) coprime-crossproduct') (auto simp: coprime-commute)
    with no-convergent and l show False
    by auto
    next
    case True
    have kr*|x-hr/kr|=|kr*x-hr|
        using <k r> 0` by (simp add: field-simps)
    also have }|kr*x-hr|\leq|b*x-a
    using assms r True unfolding x-def by (intro conv-best-approximation-ex-weak)
auto
    also have ... = b* |x-a/b|
    using }\langleb>0\rangle\mathrm{ by (simp add: field-simps)
also have ...<b*(1/(2* 放))
    using \langleb> 0\rangle by (intro mult-strict-left-mono assms) auto
finally have less: }|x-\operatorname{conv c r | < 1/ (2*b*kr)
    using \langlekr>0\rangle and \langleb>0\rangle and assms
    by (simp add: field-simps power2-eq-square conv-num-denom h-def k-def)
have }|x-a/b|<1/(2*\mp@subsup{b}{}{2})\mathrm{ by fact
also have \ldots=1/(2*b)*(1/b)
    by (simp add: power2-eq-square)
also have \ldots}\leq1/(2*b)*(|a|/b
```

using a-nz assms by (intro mult-left-mono divide-right-mono) auto
also have $\ldots<1 / 1 *(|a| / b)$
using a-nz assms
by (intro mult-strict-right-mono divide-left-mono divide-strict-left-mono)

auto

also have $\ldots=|a / b|$ using assms by simp
finally have $\operatorname{sgn} x=\operatorname{sgn}(a / b)$
by (auto simp: sgn-if split: if-splits)
hence $\operatorname{sgn} x=\operatorname{sgn}$ a using assms by (auto simp: sgn-of-int)
hence $a \geq 0 \wedge x \geq 0 \vee a \leq 0 \wedge x \leq 0$
by (auto simp: sgn-if split: if-splits)
moreover have $h r \geq 0 \wedge x \geq 0 \vee h r \leq 0 \wedge x \leq 0$
using conv-best-approximation-aux $[$ of $r]$ by (auto simp: h-def x-def)
ultimately have signs: $h r \geq 0 \wedge a \geq 0 \vee h r \leq 0 \wedge a \leq 0$
using $\langle x \neq 0\rangle$ by auto
with no-convergent assms assms True have $|h r| \neq|a| \vee b \neq k r$
by (auto simp: h-def k-def)
hence $|h r| *|b| \neq|a| *|k r|$ unfolding h-def k-def
using assms coprime-conv-num-denom[of c r]
by (subst coprime-crossproduct-int) auto
hence $|h r| * b \neq|a| * k r$ using assms by (simp add: k-def)
hence $k r * a-h r * b \neq 0$
using signs by (auto simp: algebra-simps)
hence $|k r * a-h r * b| \geq 1$ by presburger
hence real-of-int $1 /(k r * b) \leq|k r * a-h r * b| /(k r * b)$
using assms
by (intro divide-right-mono, subst of-int-le-iff) (auto simp: k-def)
also have $\ldots=\mid($ real-of-int $(k r) * a-h r * b) /(k r * b) \mid$
using assms by (simp add: k-def)
also have (real-of-int $(k r) * a-h r * b) /(k r * b)=a / b-c o n v$ c r
using assms $\langle k r>0\rangle$ by (simp add: h-def k-def conv-num-denom field-simps)
also have $\mid a / b-$ conv c $r|=|(x-$ conv c $r)-(x-a / b) \mid$
by (simp add: algebra-simps)
also have $\ldots \leq \mid x-\operatorname{conv}$ c $r|+|x-a / b|$
by (rule abs-triangle-ineq4)
also have $\ldots<1 /(2 * b * k r)+1 /\left(2 * b^{2}\right)$
by (intro add-strict-mono assms less)
finally have $k r>b$
using $\langle b>0\rangle$ and $\langle k r>0\rangle$ by (simp add: power2-eq-square field-simps)
with r show False by auto
qed
qed
qed
end

1.5 Efficient code for convergents

```
function conv-gen \(::(\) nat \(\Rightarrow\) int \() \Rightarrow\) int \(\times\) int \(\times\) nat \(\Rightarrow\) nat \(\Rightarrow\) int where
    conv-gen \(c(a, b, n) N=\)
        (if \(n>N\) then \(b\) else conv-gen \(c(b, b * c n+a\), Suc \(n) N\) )
    by auto
termination by (relation measure \((\lambda(-,(-,-, n), N)\). Suc \(N-n)\) ) auto
lemmas \([\) simp del \(]=\) conv-gen.simps
lemma conv-gen-aux-simps [simp]:
    \(n>N \Longrightarrow\) conv-gen \(c(a, b, n) N=b\)
    \(n \leq N \Longrightarrow\) conv-gen \(c(a, b, n) N=\) conv-gen \(c(b, b * c n+a\), Suc \(n) N\)
    by (subst conv-gen.simps, simp)+
lemma conv-num-eq-conv-gen-aux:
    Suc \(n \leq N \Longrightarrow\) conv-num c \(n=b *\) cfrac-nth \(c n+a \Longrightarrow\)
        conv-num c \((\) Suc \(n)=\) conv-num c \(n *\) cfrac-nth \(c(\) Suc \(n)+b \Longrightarrow\)
        conv-num c \(N=\) conv-gen (cfrac-nth \(c)(a, b, n) N\)
proof (induction cfrac-nth \(c(a, b, n) N\) arbitrary: c a \(b\) n rule: conv-gen.induct)
    case ( 1 ablll )
    show? case
    proof (cases Suc \((\) Suc \(n) \leq N)\)
        case True
        thus ?thesis
            by (subst 1) (insert 1.prems, auto)
    next
    case False
    thus ?thesis using 1
        by (auto simp: not-le less-Suc-eq)
    qed
qed
lemma conv-denom-eq-conv-gen-aux:
    Suc \(n \leq N \Longrightarrow\) conv-denom c \(n=b *\) cfrac-nth \(c n+a \Longrightarrow\)
        conv-denom \(c(\) Suc \(n)=\) conv-denom \(c n *\) cfrac-nth \(c(S u c n)+b \Longrightarrow\)
        conv-denom \(с N=\) conv-gen (cfrac-nth \(c)(a, b, n) N\)
proof (induction cfrac-nth \(c(a, b, n) N\) arbitrary: \(c\) a \(b\) n rule: conv-gen.induct)
    case ( 1 a b n N c)
    show ?case
    proof (cases Suc (Suc \(n\) ) \(\leq N\) )
        case True
        thus ?thesis
            by (subst 1) (insert 1.prems, auto)
    next
        case False
        thus ?thesis using 1
            by (auto simp: not-le less-Suc-eq)
    qed
qed
```

```
lemma conv-num-code [code]:conv-num c n = conv-gen (cfrac-nth c) (0, 1, 0) n
    using conv-num-eq-conv-gen-aux[of 0 n c 1 0] by (cases n) simp-all
lemma conv-denom-code [code]: conv-denom c n = conv-gen (cfrac-nth c) (1, 0,
0) n
    using conv-denom-eq-conv-gen-aux[of 0 n c 0 1] by (cases n) simp-all
definition conv-num-fun where conv-num-fun c=conv-gen c ( 0, 1, 0)
definition conv-denom-fun where conv-denom-fun c = conv-gen c (1,0,0)
```

```
lemma
    assumes is-cfrac c
    shows conv-num-fun-eq: conv-num-fun c n = conv-num (cfrac c) n
        and conv-denom-fun-eq:conv-denom-fun c n =conv-denom (cfrac c) n
proof -
    from assms have cfrac-nth (cfrac c) =c
        by (intro ext) simp-all
    thus conv-num-fun c n= conv-num (cfrac c) n and conv-denom-fun c n=
conv-denom (cfrac c) n
    by (simp-all add: conv-num-fun-def conv-num-code conv-denom-fun-def conv-denom-code)
qed
```


1.6 Computing the continued fraction expansion of a rational number

function cfrac-list-of-rat $::$ int \times int \Rightarrow int list where
cfrac-list-of-rat $(a, b)=$ (if $b=0$ then [0]
else a div $b \#($ if $a \bmod b=0$ then [] else cfrac-list-of-rat $(b, a \bmod b)))$
by auto
termination
by (relation measure $(\lambda(a, b)$. nat (abs b))) (auto simp: abs-mod-less)
lemmas $[$ simp del $]=$ cfrac-list-of-rat.simps
lemma cfrac-list-of-rat-correct:
(let xs $=c f r a c-l i s t-o f-r a t(a, b) ; c=c f r a c-o f-r e a l(a / b)$
in length $x s=c f r a c-l e n g t h ~ c+1 \wedge(\forall i<l e n g t h ~ x s . x s!i=c f r a c-n t h c i))$
proof (induction (a, b) arbitrary: a b rule: cfrac-list-of-rat.induct)
case (1 ab)
show ?case
proof (cases $b=0$)
case True
thus ?thesis
by (subst cfrac-list-of-rat.simps) (auto simp: one-enat-def)
next
case False
define c where $c=c f r a c$-of-real (a / b)
define c^{\prime} where $c^{\prime}=c$ frac-of-real $(b /(a \bmod b))$
define $x s^{\prime}$ where $x s^{\prime}=($ if $a \bmod b=0$ then [] else cfrac-list-of-rat (b, a mod b))
define $x s$ where $x s=a$ div $b \# x s^{\prime}$
have [simp]: cfrac-nth c $0=a$ div b
by (auto simp: c-def floor-divide-of-int-eq)
obtain l where l : cfrac-length $c=$ enat l
by (cases cfrac-length c) (auto simp: c-def)
have length $x s=l+1 \wedge(\forall i<$ length xs. xs $!i=c f r a c-n t h c i)$
proof (cases b dvd a)
case True
thus ?thesis using l
by (auto simp: Let-def $x s$-def $x s^{\prime}$-def c-def of-int-divide-in-Ints one-enat-def
enat-0-iff)
next
case False
have $l \neq 0$
using l False cfrac-of-real-length-eq-0-iff $[o f a / b]\langle b \neq 0\rangle$
by (auto simp: c-def zero-enat-def real-of-int-divide-in-Ints-iff intro!: Nat.gr0I)
have $c^{\prime}: c^{\prime}=c f r a c-t l c$
using False $\langle b \neq 0\rangle$ unfolding c^{\prime}-def c-def
by (subst cfrac-tl-of-real) (auto simp: real-of-int-divide-in-Ints-iff frac-fraction)
from 1 have enat (length $\left.x s^{\prime}\right)=c$ frac-length $c^{\prime}+1$
and $x s^{\prime}: \forall i<l e n g t h ~ x s^{\prime} . x s^{\prime}!i=c f r a c-n t h c^{\prime} i$
using $\langle b \neq 0\rangle\langle\neg b$ dvd $a\rangle$ by (auto simp: Let-def $x s^{\prime}$-def c^{\prime}-def)
have enat (length $\left.x s^{\prime}\right)=c f r a c$-length $c^{\prime}+1$
by fact
also have $\ldots=$ enat $l-1+1$
using $c^{\prime} l$ by simp
also have $\ldots=\operatorname{enat}(l-1+1)$
by (metis enat-diff-one one-enat-def plus-enat-simps(1))
also have $l-1+1=l$
using $\langle l \neq 0\rangle$ by simp
finally have [simp]: length $x s^{\prime}=l$
by simp
from $x s^{\prime}$ show ?thesis
by (auto simp: xs-def nth-Cons c^{\prime} split: nat.splits)
qed
thus ?thesis using l False
by (subst cfrac-list-of-rat.simps) (simp-all add: xs-def $x s^{\prime}$-def c-def one-enat-def) qed
qed
lemma conv-num-cong:

```
    assumes (\bigwedgek. k\leqn\Longrightarrowcfrac-nth c k=cfrac-nth c' k)n= n'
    shows conv-num c n = conv-num c' n
proof -
    have conv-num c n=conv-num c' n
        using assms(1)
        by (induction n arbitrary: rule: conv-num.induct) simp-all
    thus ?thesis using assms(2)
        by simp
qed
lemma conv-denom-cong:
    assumes (\bigwedgek.k\leqn\Longrightarrowcfrac-nth ck=cfrac-nth c' k)n= n'
    shows conv-denom c n = conv-denom c' n'
proof -
    have conv-denom c n= conv-denom c' }
        using assms(1)
        by (induction n arbitrary: rule: conv-denom.induct) simp-all
    thus ?thesis using assms(2)
        by simp
qed
lemma cfrac-lim-diff-le:
    assumes }\forallk\leqSuc n.cfrac-nth c1 k=cfrac-nth c2 k
    assumes n\leqcfrac-length c1 n\leqcfrac-length c\mathcal{Z}
    shows |cfrac-lim c1-cfrac-lim c\mathcal{L}|\leq2 / (conv-denom c1 n* conv-denom c1
(Suc n))
proof -
    define d}\mathrm{ where d}=(\lambdak\mathrm{ . conv-denom c1 k)
    have |cfrac-lim c1 - cfrac-lim c2 | \leq |frac-lim c1 - conv c1 n| + |cfrac-lim c2
- conv c1 n|
    by linarith
    also have |cfrac-lim c1 - conv c1 n| \leq 1/(dn*d (Suc n))
    unfolding d-def using assms
    by (intro cfrac-lim-minus-conv-upper-bound) auto
    also have conv c1 n= conv c2 n
    using assms by (intro conv-cong) auto
    also have |cfrac-lim c2 - conv c2 n| \leq 1 / (conv-denom c2 n * conv-denom c2
(Suc n))
            using assms unfolding d-def by (intro cfrac-lim-minus-conv-upper-bound)
auto
    also have conv-denom c2 n = d n
        unfolding d-def using assms by (intro conv-denom-cong) auto
    also have conv-denom c2 (Suc n)=d (Suc n)
        unfolding d-def using assms by (intro conv-denom-cong) auto
    also have 1/(dn*d(Suc n))+1/(dn*d(Suc n))=2 / (dn*d(Suc n))
        by simp
    finally show ?thesis
        by (simp add: d-def)
qed
```

```
lemma of-int-leI: n\leqm\Longrightarrow(of-int n :: 'a :: linordered-idom) \leq of-int m
    by simp
lemma cfrac-lim-diff-le':
    assumes }\forallk\leqSuc n. cfrac-nth c1 k= cfrac-nth c2 k
    assumes n\leqcfrac-length c1 n\leqcfrac-length c2
    shows |cfrac-lim c1 - cfrac-lim c2 | \leq2 / (fib (n+1)*fib (n+2))
proof -
    have |cfrac-lim c1 - cfrac-lim c2| \leq2 / (conv-denom c1 n * conv-denom c1 (Suc
n))
    by (rule cfrac-lim-diff-le) (use assms in auto)
    also have .. \leq2 / (int (fib (Suc n))*int (fib (Suc (Suc n))))
        unfolding of-nat-mult of-int-mult
    by (intro divide-left-mono mult-mono mult-pos-pos of-int-leI conv-denom-lower-bound)
            (auto intro!: fib-neq-0-nat simp del: fib.simps)
    also have ... =2 / (fib (n+1)* fib (n+2))
    by simp
    finally show ?thesis .
qed
end
```


2 Quadratic Irrationals

```
theory Quadratic-Irrationals
imports
    Continued-Fractions
    HOL-Computational-Algebra.Computational-Algebra
    HOL-Library.Discrete
    Coinductive.Coinductive-Stream
begin
lemma snth-cycle:
    assumes xs \not= []
    shows snth (cycle xs) n = xs ! ( n mod length xs)
proof (induction n rule: less-induct)
    case (less n)
    have snth (shift xs (cycle xs)) n= xs !( n mod length xs)
    proof (cases n < length xs)
        case True
        thus ?thesis
            by (subst shift-snth-less) auto
    next
        case False
        have 0< length xs
            using assms by simp
        also have ... \leqn
            using False by simp
```

```
    finally have n>0.
    from False have snth (shift xs (cycle xs)) n = snth (cycle xs) ( }n-l=ngth xs
        by (subst shift-snth-ge) auto
    also have ... = xs ! ((n - length xs) mod length xs)
        using assms <n> 0〉 by (intro less) auto
    also have ( }n-l\mathrm{ length xs) mod length xs = n mod length xs
        using False by (simp add: mod-if)
    finally show ?thesis .
    qed
    also have shift xs (cycle xs) = cycle xs
    by (rule cycle-decomp [symmetric]) fact
    finally show ?case.
qed
```


2．1 Basic results on rationality of square roots

lemma inverse－in－Rats－iff［simp］：inverse $(x::$ real $) \in \mathbb{Q} \longleftrightarrow x \in \mathbb{Q}$
by（auto simp：inverse－eq－divide divide－in－Rats－iff1）
lemma nonneg－sqrt－nat－or－irrat：
assumes $x \wedge 2=$ real a and $x \geq 0$
shows $\quad x \in \mathbb{N} \vee x \notin \mathbb{Q}$
proof safe
assume $x \notin \mathbb{N}$ and $x \in \mathbb{Q}$
from Rats－abs－nat－div－natE［OF this（2）］
obtain $p q::$ nat where $q-n z[$ simp $]: q \neq 0$ and abs $x=p / q$ and coprime：
coprime $p q$ ．
with $\langle x \geq 0\rangle$ have $x: x=p / q$
by simp
with assms have real $\left(q^{\wedge}\right.$ 2）$*$ real $a=\operatorname{real}\left(p^{\wedge}\right.$ 2）
by（simp add：field－simps）
also have $\operatorname{real}\left(q^{\wedge} 2\right) * \operatorname{real} a=\operatorname{real}(q \wedge 2 * a)$
by simp
finally have $p^{\wedge} 2=q へ 2 * a$
by（subst（asm）of－nat－eq－iff）auto
hence q へ $2 d v d p$ へ 2
by simp
hence $q d v d p$
by simp
with coprime have $q=1$
by auto
with x and $\langle x \notin \mathbb{N}\rangle$ show False
by simp
qed
A square root of a natural number is either an integer or irrational．
corollary sqrt－nat－or－irrat：
assumes $x \wedge 2=$ real a

```
    shows }\quadx\in\mathbb{Z}\veex\not\in\mathbb{Q
proof (cases x \geq0)
    case True
    with nonneg-sqrt-nat-or-irrat[OF assms this]
        show ?thesis by (auto simp: Nats-altdef2)
next
    case False
    from assms have (-x)^2 = real a
        by simp
    moreover from False have -x\geq0
        by simp
    ultimately have - }x\in\mathbb{N}\vee-x\not\in\mathbb{Q
        by (rule nonneg-sqrt-nat-or-irrat)
    thus ?thesis
        by (auto simp: Nats-altdef2 minus-in-Ints-iff)
qed
corollary sqrt-nat-or-irrat':
    sqrt (real a)}\in\mathbb{N}\vee\mathrm{ sqrt (real a)}\not\in\mathbb{Q
    using nonneg-sqrt-nat-or-irrat[of sqrt a a] by auto
```

The square root of a natural number n is again a natural number iff n is a perfect square.
corollary sqrt-nat-iff-is-square:
sqrt $($ real $n) \in \mathbb{N} \longleftrightarrow$ is-square n
proof
assume sqrt (real $n) \in \mathbb{N}$
then obtain k where sqrt (real n) $=$ real k by (auto elim!: Nats-cases)
hence sqrt $($ real $n) \wedge 2=$ real $\left(k^{\wedge} 2\right)$ by (simp only: of-nat-power)
also have sqrt (real n) ${ }^{2}=$ real n by simp
finally have $n=k$ ^2 by (simp only: of-nat-eq-iff)
thus is-square n by blast
qed (auto elim!: is-nth-powerE)
corollary irrat-sqrt-nonsquare: \neg is-square $n \Longrightarrow \operatorname{sqrt}($ real $n) \notin \mathbb{Q}$
using sqrt-nat-or-irrat'[of n] by (auto simp: sqrt-nat-iff-is-square)
lemma sqrt-of-nat-in-Rats-iff: sqrt (real $n) \in \mathbb{Q} \longleftrightarrow$ is-square n
using irrat-sqrt-nonsquare[of n] sqrt-nat-iff-is-square[of n] Nats-subset-Rats by blast
lemma Discrete-sqrt-altdef: Discrete.sqrt $n=$ nat \lfloor sqrt $n\rfloor$
proof -
have real $\left(\right.$ Discrete.sqrt $\left.n{ }^{\wedge} 2\right) \leq \operatorname{sqrt} n^{\wedge} 2$
by simp
hence Discrete.sqrt $n \leq$ sqrt n
unfolding of-nat-power by (rule power2-le-imp-le) auto
moreover have real (Suc (Discrete.sqrt n) へ 2) > real n
unfolding of-nat-less-iff by (rule Suc-sqrt-power2-gt)
hence real (Discrete.sqrt $n+1)^{\wedge} 2>\operatorname{sqrt} n \wedge 2$
unfolding of-nat-power by simp
hence real (Discrete.sqrt $n+1$) > sqrt n
by (rule power2-less-imp-less) auto
hence Discrete.sqrt $n+1>$ sqrt n by simp
ultimately show ?thesis by linarith
qed

2.2 Definition of quadratic irrationals

Irrational real numbers x that satisfy a quadratic equation $a x^{2}+b x+c=0$ with a, b, c not all equal to 0 are called quadratic irrationals. These are of the form $p+q \sqrt{d}$ for rational numbers p, q and a positive integer d.
inductive quadratic-irrational $:$: real \Rightarrow bool where
$x \notin \mathbb{Q} \Longrightarrow$ real-of-int $a * x$ へ $2+$ real-of-int $b * x+$ real-of-int $c=0 \Longrightarrow$ $a \neq 0 \vee b \neq 0 \vee c \neq 0 \Longrightarrow$ quadratic-irrational x
lemma quadratic-irrational-sqrt [intro]:
assumes \neg is-square n
shows quadratic-irrational (sqrt (real n))
using irrat-sqrt-nonsquare[OF assms]
by (intro quadratic-irrational.intros[of sqrt $n 10$-int n]) auto
lemma quadratic-irrational-uminus [intro]:
assumes quadratic-irrational x
shows quadratic-irrational $(-x)$
using assms
proof induction
case ($\left.1 \begin{array}{llll}x & a & b & c\end{array}\right)$
thus ? case by (intro quadratic-irrational.intros $[o f-x a-b c])$ auto
qed
lemma quadratic-irrational-uminus-iff [simp]:
quadratic-irrational $(-x) \longleftrightarrow$ quadratic-irrational x
using quadratic-irrational-uminus[of $x]$ quadratic-irrational-uminus $[o f-x]$ by auto
lemma quadratic-irrational-plus-int [intro]:
assumes quadratic-irrational x
shows quadratic-irrational $(x+$ of-int $n)$
using assms
proof induction
case ($1 \times x a b c$)
define x^{\prime} where $x^{\prime}=x+$ of-int n
define $a^{\prime} b^{\prime} c^{\prime}$ where
$a^{\prime}=a$ and $b^{\prime}=b-2 *$ of-int $n * a$ and
$c^{\prime}=a *$ of-int n へ $2-b *$ of-int $n+c$
from 1 have $0=a *\left(x^{\prime}-\right.$ of-int $\left.n\right)$ ~2 $+b *\left(x^{\prime}-\right.$ of-int $\left.n\right)+c$
by (simp add: $x^{\prime}-d e f$)

```
    also have \ldots. = a'* * 秋^2 + b}\mp@subsup{b}{}{\prime}*\mp@subsup{x}{}{\prime}+\mp@subsup{c}{}{\prime
    by (simp add: algebra-simps a'-def b}\mp@subsup{b}{}{\prime}-def c'-def power2-eq-square)
    finally have ... = 0 ..
    moreover have }\mp@subsup{x}{}{\prime}\not\in\mathbb{Q
    using 1 by (auto simp: x'-def add-in-Rats-iff2)
    moreover have a'\not=0\vee b
    using 1 by (auto simp: a'-def b}\mp@subsup{b}{}{\prime}-\operatorname{def}\mp@subsup{c}{}{\prime}\mathrm{ -def)
    ultimately show ?case
    by (intro quadratic-irrational.intros[of x +of-int n a' b
qed
lemma quadratic-irrational-plus-int-iff [simp]:
    quadratic-irrational (x+of-int n)\longleftrightarrow quadratic-irrational }
    using quadratic-irrational-plus-int[of x n]
        quadratic-irrational-plus-int[of }x+\mathrm{ of-int n -n] by auto
lemma quadratic-irrational-minus-int-iff [simp]:
    quadratic-irrational (x - of-int n) \longleftrightarrow quadratic-irrational }
    using quadratic-irrational-plus-int-iff [of x -n]
    by (simp del: quadratic-irrational-plus-int-iff)
lemma quadratic-irrational-plus-nat-iff [simp]:
    quadratic-irrational (x+of-nat n) \longleftrightarrow quadratic-irrational x
    using quadratic-irrational-plus-int-iff[of x int n]
    by (simp del: quadratic-irrational-plus-int-iff)
lemma quadratic-irrational-minus-nat-iff [simp]:
    quadratic-irrational (x - of-nat n) \longleftrightarrow quadratic-irrational }
    using quadratic-irrational-plus-int-iff [of x -int n]
    by (simp del: quadratic-irrational-plus-int-iff)
lemma quadratic-irrational-plus-1-iff [simp]:
    quadratic-irrational (x+1)\longleftrightarrow quadratic-irrational x
    using quadratic-irrational-plus-int-iff[of x 1]
    by (simp del: quadratic-irrational-plus-int-iff)
lemma quadratic-irrational-minus-1-iff [simp]:
    quadratic-irrational (x-1) \longleftrightarrow quadratic-irrational x
    using quadratic-irrational-plus-int-iff[of x - 1]
    by (simp del: quadratic-irrational-plus-int-iff)
lemma quadratic-irrational-plus-numeral-iff [simp]:
    quadratic-irrational (x+ numeral n) \longleftrightarrow quadratic-irrational }
    using quadratic-irrational-plus-int-iff[of x numeral n]
    by (simp del: quadratic-irrational-plus-int-iff)
lemma quadratic-irrational-minus-numeral-iff [simp]:
    quadratic-irrational ( }x\mathrm{ - numeral }n\mathrm{ ) « quadratic-irrational x
    using quadratic-irrational-plus-int-iff[of x - numeral n]
```

```
    by (simp del: quadratic-irrational-plus-int-iff)
lemma quadratic-irrational-inverse:
    assumes quadratic-irrational x
    shows quadratic-irrational (inverse x)
    using assms
proof induction
    case(1 1 xabc)
    from 1 have }x\not=0\mathrm{ by auto
    have 0 = (real-of-int a* x 2 + real-of-int b*x + real-of-int c)/ x ^2
        by (subst 1) simp
    also have ... = real-of-int c*(inverse x) ^2 + real-of-int b * inverse x +
real-of-int a
    using }\langlex\not=0\rangle\mathrm{ by (simp add: field-simps power2-eq-square)
    finally have ... = 0 ..
    thus ?case using 1
        by (intro quadratic-irrational.intros[of inverse x c b a]) auto
qed
lemma quadratic-irrational-inverse-iff [simp]:
    quadratic-irrational (inverse x) \longleftrightarrow quadratic-irrational x
    using quadratic-irrational-inverse[of x] quadratic-irrational-inverse[of inverse x]
    by (cases x = 0) auto
lemma quadratic-irrational-cfrac-remainder-iff:
    quadratic-irrational (cfrac-remainder c n) \longleftrightarrow quadratic-irrational (cfrac-lim c)
proof (cases cfrac-length c=\infty)
    case False
    thus ?thesis
        by (auto simp: quadratic-irrational.simps)
next
    case [simp]:True
    show ?thesis
    proof (induction n)
        case (Suc n)
        from Suc.prems have cfrac-remainder c (Suc n)=
                            inverse (cfrac-remainder c n - of-int (cfrac-nth c n))
            by (subst cfrac-remainder-Suc) (auto simp: field-simps)
    also have quadratic-irrational ...\longleftrightarrow quadratic-irrational (cfrac-remainder c
n)
            by simp
        also have ... \longleftrightarrow quadratic-irrational (cfrac-lim c)
            by (rule Suc.IH)
    finally show ?case.
    qed auto
qed
```


2.3 Real solutions of quadratic equations

For the next result, we need some basic properties of real solutions to quadratic equations.

```
lemma quadratic-equation-reals:
    fixes \(a b c::\) real
    defines \(f \equiv\left(\lambda x . a * x{ }^{\wedge} 2+b * x+c\right)\)
    defines discr \(\equiv\left(b^{\wedge} 2-4 * a * c\right)\)
    shows \(\quad\{x . f x=0\}=\)
                (if \(a=0\) then
                            (if \(b=0\) then if \(c=0\) then UNIV else \(\}\) else \(\{-c / b\}\) )
        else if discr \(\geq 0\) then \(\{(-b+\) sqrt discr \() /(2 * a),(-b-\) sqrt discr \() /\)
\((2 * a)\}\)
                            else \{\}) (is ?th1)
proof (cases a \(a\) )
    case [simp]: True
    show ?th1
    proof (cases \(b=0\) )
        case [simp]: True
        hence \(\{x . f x=0\}=(\) if \(c=0\) then UNIV else \(\{ \})\)
            by (auto simp: \(f\)-def)
        thus ?th1 by simp
    next
        case False
        hence \(\{x . f x=0\}=\{-c / b\}\) by (auto simp: \(f\)-def field-simps)
        thus ?th1 using False by simp
    qed
next
    case [simp]: False
    show?th1
    proof (cases discr \(\geq 0\) )
        case True
        \{
            fix \(x\) :: real
            have \(f x=a *(x-(-b+\) sqrt discr \() /(2 * a)) *(x-(-b-\) sqrt discr \() /\)
\((2 * a))\)
            using True by (simp add: \(f\)-def field-simps discr-def power2-eq-square)
            also have \(\ldots=0 \longleftrightarrow x \in\{(-b+\) sqrt discr \() /(2 * a),(-b-\) sqrt discr \()\)
\(/(2 * a)\}\)
            by \(\operatorname{simp}\)
            finally have \(f x=0 \longleftrightarrow \ldots\).
        \}
        hence \(\{x . f x=0\}=\{(-b+\) sqrt discr \() /(2 * a),(-b-\operatorname{sqrt} \operatorname{discr}) /(2 *\)
a) \(\}\)
        by blast
        thus ?th1 using True by simp
    next
        case False
        \{
```

```
    fix }x\mathrm{ :: real
    assume x: fx=0
    have 0\leq(x+b/(2*a)) ^2 by simp
    also have fx=a*((x+b/(2*a))^2-b^2 / (4*a^2) +c/a)
        by (simp add: field-simps power2-eq-square f-def)
    with }x\mathrm{ have (x+b/(2*a))^2-b^2 / (4*a^2)+c/a=0
        by simp
    hence (x+b/(2*a))^2= b^2/(4*a^2) - c/a
        by (simp add: algebra-simps)
    finally have 0\leq( b
        by (intro mult-nonneg-nonneg) auto
    also have \ldots= 放-4*a*c by (simp add: field-simps power2-eq-square)
    also have ... < 0 using False by (simp add: discr-def)
    finally have False by simp
    }
    hence {x.fx=0}={} by auto
    thus ?th1 using False by simp
    qed
qed
lemma finite-quadratic-equation-solutions-reals:
    fixes ab c :: real
    defines discr \equiv(b^2 - 4*a*c)
    shows finite {x.a*x^2 + b*x+c=0}\longleftrightarrowa* 0
    by (subst quadratic-equation-reals)
    (auto simp: discr-def card-eq-0-iff infinite-UNIV-char-0 split:if-split)
lemma card-quadratic-equation-solutions-reals:
    fixes ab c :: real
    defines discr \equiv(b^2-4*a*c)
    shows card {x.a*x^2 + b*x+c=0}=
                        (if }a=0\mathrm{ then
                            (if b=0 then 0 else 1)
            else if discr }\geq0\mathrm{ then if discr =0 then 1 else 2 else 0) (is ?th1)
    by (subst quadratic-equation-reals)
    (auto simp: discr-def card-eq-0-iff infinite-UNIV-char-0 split: if-split)
lemma card-quadratic-equation-solutions-reals-le-2:
    card {x :: real.a*x^2 + b*x+c=0}\leq2
    by (subst card-quadratic-equation-solutions-reals) auto
lemma quadratic-equation-solution-rat-iff:
    fixes ab c :: int and x y :: real
    defines }f\equiv(\lambdax::real.a*x^2+b*x+c
    defines discr \equivnat (b^2-4*a*c)
    assumes }a\not=0fx=
    shows }x\in\mathbb{Q}\longleftrightarrow\mathrm{ is-square discr
proof -
    define discr' where discr' \equiv real-of-int (b ^2 - 4*a*c)
```

```
    from assms have \(x \in\{x . f x=0\}\) by simp
    with \(\langle a \neq 0\rangle\) have discr \({ }^{\prime} \geq 0\) unfolding discr'-def \(f\)-def of-nat-diff
    by (subst (asm) quadratic-equation-reals) (auto simp: discr-def split: if-splits)
    hence \(*\) : sqrt (discr') \(=\) sqrt (real discr) unfolding of-int-0-le-iff discr-def
discr'- def
    by (simp add: algebra-simps nat-diff-distrib)
    from \(\langle x \in\{x . f x=0\}\rangle\) have \(x=(-b+\) sqrt discr \() /(2 * a) \vee x=(-b-\) sqrt
discr) / \((2 * a)\)
    using \(\langle a \neq 0\rangle *\) unfolding discr'-def \(f\)-def
    by (subst (asm) quadratic-equation-reals) (auto split: if-splits)
    thus ?thesis using \(\langle a \neq 0\rangle\)
    by (auto simp: sqrt-of-nat-in-Rats-iff divide-in-Rats-iff2 diff-in-Rats-iff2 diff-in-Rats-iff1)
qed
```


2.4 Periodic continued fractions and quadratic irrationals

We now show the main result: A positive irrational number has a periodic continued fraction expansion iff it is a quadratic irrational.
In principle, this statement naturally also holds for negative numbers, but the current formalisation of continued fractions only supports non-negative numbers. It also holds for rational numbers in some sense, since their continued fraction expansion is finite to begin with.
theorem periodic-cfrac-imp-quadratic-irrational:
assumes [simp]: cfrac-length $c=\infty$
and period: $l>0 \bigwedge k . k \geq N \Longrightarrow$ cfrac-nth $c(k+l)=c f r a c-n t h c k$
shows quadratic-irrational (cfrac-lim c)
proof -
define h^{\prime} and k^{\prime} where $h^{\prime}=$ conv-num-int $($ cfrac-drop $N c)$
and $k^{\prime}=$ conv-denom-int (cfrac-drop $N c$)
define x^{\prime} where $x^{\prime}=c$ frac-remainder $c N$
have c-pos: cfrac-nth c $n>0$ if $n \geq N$ for n
proof -
from $\operatorname{assms}(1,2)$ have $c f r a c-n t h ~ c(n+l)>0$ by auto
with assms(3)[OF that] show ?thesis by simp
qed
have k^{\prime}-pos: $k^{\prime} n>0$ if $n \neq-1 n \geq-2$ for n
using that by (auto simp: k^{\prime}-def conv-denom-int-def intro!: conv-denom-pos)
have k^{\prime}-nonneg: $k^{\prime} n \geq 0$ if $n \geq-2$ for n
using that by (auto simp: k^{\prime}-def conv-denom-int-def intro!: conv-denom-pos)
have cfrac-nth $c(n+(N+l))=c$ frac-nth $c(n+N)$ for n
using $\operatorname{period}(2)[$ of $n+N]$ by (simp add: add-ac)
have cfrac-drop $(N+l) c=c f r a c-d r o p ~ N c$
by (rule cfrac-eqI) (use period(2)[of $n+N$ for $n]$ in 〈auto simp: algebra-simps \rangle)
hence x^{\prime}-altdef: $x^{\prime}=c$ frac-remainder $c(N+l)$
by (simp add: x^{\prime}-def cfrac-remainder-def)
have x^{\prime}-pos: $x^{\prime}>0$ unfolding x^{\prime}-def
using c-pos by (intro cfrac-remainder-pos) auto

```
    define \(A\) where \(A=\left(k^{\prime}(\right.\) int \(\left.l-1)\right)\)
    define \(B\) where \(B=k^{\prime}(\) int \(l-2)-h^{\prime}(\) int \(l-1)\)
    define \(C\) where \(C=-\left(h^{\prime}(\right.\) int \(\left.l-2)\right)\)
    have pos: \(\left(k^{\prime}(\right.\) int \(l-1) * x^{\prime}+k^{\prime}(\) int \(\left.l-2)\right)>0\)
    using \(x^{\prime}\)-pos \(\langle l>0\rangle\)
    by (intro add-pos-nonneg mult-pos-pos) (auto intro!: \(k^{\prime}\)-pos \(k^{\prime}\)-nonneg)
    have cfrac-remainder \(c N=\operatorname{conv}^{\prime}(c f r a c-d r o p N c) l\) (cfrac-remainder \(c(l+\)
\(N)\) )
    unfolding cfrac-remainder-def cfrac-drop-add
    by (subst (2) cfrac-remainder-def [symmetric]) (auto simp: conv'-cfrac-remainder)
    hence \(x^{\prime}=\) conv \(^{\prime}(\) cfrac-drop \(N c) l x^{\prime}\)
    by (subst (asm) add.commute) (simp only: \(x^{\prime}\)-def [symmetric] \(x^{\prime}\)-altdef [symmetric])
    also have \(\ldots=\left(h^{\prime}(\right.\) int \(l-1) * x^{\prime}+h^{\prime}(\) int \(\left.l-2)\right) /\left(k^{\prime}(\right.\) int \(l-1) * x^{\prime}+k^{\prime}\)
(int l-2))
    using conv'-num-denom-int \(\left[\right.\) OF \(x^{\prime}\)-pos, of - \(\left.l\right]\) unfolding \(h^{\prime}\)-def \(k^{\prime}\)-def
    by (simp add: mult-ac)
    finally have \(x^{\prime} *\left(k^{\prime}(\right.\) int \(l-1) * x^{\prime}+k^{\prime}(\) int \(\left.l-2)\right)=\left(h^{\prime}(\right.\) int \(l-1) * x^{\prime}+\)
\(h^{\prime}(\) int \(\left.l-2)\right)\)
    using pos by (simp add: divide-simps)
    hence quadratic: \(A * x^{\prime} へ_{2}+B * x^{\prime}+C=0\)
    by (simp add: algebra-simps power2-eq-square \(A\)-def \(B\)-def \(C\)-def)
    moreover have \(x^{\prime} \notin \mathbb{Q}\) unfolding \(x^{\prime}\)-def
    by auto
    moreover have \(A>0\) using \(\langle l>0\rangle\) by (auto simp: \(A\)-def intro!: \(k^{\prime}\)-pos)
    ultimately have quadratic-irrational \(x^{\prime}\) using \(\left\langle x^{\prime} \notin \mathbb{Q}\right\rangle\)
    by (intro quadratic-irrational.intros \(\left[\right.\) of \(\left.\left.x^{\prime} A B C\right]\right)\) simp-all
    thus ?thesis
    using assms by (simp add: \(x^{\prime}\)-def quadratic-irrational-cfrac-remainder-iff)
qed
```

lift-definition pperiodic-cfrac :: nat list \Rightarrow cfrac is
$\lambda x s$. if $x s=[]$ then $(0, L N i l)$ else
(int (hd xs), llist-of-stream (cycle (map ($\lambda n . n-1$) (tl xs @ $[h d x s])))$).
definition periodic-cfrac :: int list \Rightarrow int list \Rightarrow cfrac where
periodic-cfrac xs ys $=$ cfrac-of-stream (Stream.shift xs (Stream.cycle ys))
lemma periodic-cfrac-Nil [simp]: pperiodic-cfrac [] $=0$
unfolding zero-cfrac-def by transfer auto
lemma cfrac-length-pperiodic-cfrac [simp]:
$x s \neq[] \Longrightarrow$ cfrac-length (pperiodic-cfrac $x s$) $=\infty$
by transfer auto
lemma cfrac-nth-pperiodic-cfrac:
assumes $x s \neq[]$ and $0 \notin$ set $x s$

```
    shows cfrac-nth (pperiodic-cfrac xs) n =xs!(n mod length xs)
    using assms
proof (transfer, goal-cases)
    case (1 xs n)
    show ?case
    proof (cases n)
    case (Suc n')
    have int (cycle (tl (map (\lambdan.n - 1) xs)@ [hd (map (\lambdan.n - 1)xs)])!! n') +
1 =
            int (stl (cycle (map (\lambdan.n - 1) xs)) !! n') + 1
        by (subst cycle.sel(2) [symmetric]) (rule refl)
    also have ... = int (cycle (map (\lambdan. n-1)xs)!! n) + 1
        by (simp add: Suc del: cycle.sel)
    also have ... = int (xs! (n mod length xs) - 1) + 1
        by (simp add: snth-cycle 〈xs \not= []`)
    also have xs ! (n mod length xs) \in set xs
        using <xs \not= []> by (auto simp: set-conv-nth)
    with 1 have xs!( n mod length xs) > 0
        by (intro Nat.gr0I) auto
    hence int (xs ! ( n mod length xs) - 1) + 1 = int (xs ! ( n mod length xs))
        by simp
    finally show ?thesis
        using Suc 1 by (simp add: hd-conv-nth map-tl)
    qed (use 1 in <auto simp: hd-conv-nth>)
qed
definition pperiodic-cfrac-info :: nat list }=>\mathrm{ int }\times\mathrm{ int }\times\mathrm{ intwhere
    pperiodic-cfrac-info xs =
        (let l = length xs;
            h=conv-num-fun (\lambdan. xs ! n);
            k=conv-denom-fun (\lambdan.xs!n);
            A = k(l-1);
            B=h(l-1)-(if l=1 then 0 else k (l - 2));
            C=(if l=1 then -1 else -h (l - 2))
        in (B`2-4*A*C,B,2* *)
lemma conv-gen-cong:
    assumes }\forallk\in{n..N}.fk=\mp@subsup{f}{}{\prime}
    shows conv-gen f (a,b,n)N=conv-gen f' (a,b,n) N
    using assms
proof (induction N-n arbitrary: a b n N)
    case (Suc d n Nab)
    have conv-gen f(b,b*fn +a,Suc n) N=conv-gen f'(b,b*fn +a,Suc n)
N
    using Suc(2,3) by (intro Suc) auto
moreover have fn= f}
    using bspec[OF Suc.prems, of n] Suc(2) by auto
ultimately show ?case
    by (subst (1 2) conv-gen.simps) auto
```

qed (auto simp: conv-gen.simps)

lemma

assumes $\forall k \leq n$. c $k=c f r a c-n t h c^{\prime} k$
shows conv-num-fun-eq': conv-num-fun c $n=$ conv-num $c^{\prime} n$
and conv-denom-fun-eq': conv-denom-fun $c n=$ conv-denom $c^{\prime} n$
proof -
have conv-num $c^{\prime} n=$ conv-gen (cfrac-nth $\left.c^{\prime}\right)(0,1,0) n$
unfolding conv-num-code ..
also have $\ldots=$ conv-gen $c(0,1,0) n$ unfolding conv-num-fun-def using assms by (intro conv-gen-cong) auto
finally show conv-num-fun c $n=$ conv-num $c^{\prime} n$ by (simp add: conv-num-fun-def)
next
have conv-denom $c^{\prime} n=$ conv-gen (c frac-nth $\left.c^{\prime}\right)(1,0,0) n$ unfolding conv-denom-code ..
also have $\ldots=$ conv-gen $c(1,0,0) n$ unfolding conv-denom-fun-def using assms by (intro conv-gen-cong) auto
finally show conv-denom-fun c $n=$ conv-denom $c^{\prime} n$ by (simp add: conv-denom-fun-def)
qed
lemma gcd-minus-commute-left: gcd ($a-b::{ }^{\prime} a$:: ring-gcd) $c=g c d(b-a) c$ by (metis gcd.commute gcd-neg2 minus-diff-eq)
lemma gcd-minus-commute-right: gcd $c\left(a-b::{ }^{\prime} a \operatorname{::~ring-gcd}\right)=\operatorname{gcd} c(b-a)$ by (metis gcd-neg2 minus-diff-eq)
lemma periodic-cfrac-info-aux:
fixes $D E F::$ int
assumes pperiodic-cfrac-info xs $=(D, E, F)$
assumes $x s \neq[] 0 \notin$ set $x s$
shows cfrac-lim (pperiodic-cfrac xs) $=($ sqrt $D+E) / F$
and $D>0$ and $F>0$
proof -
define c where $c=$ pperiodic-cfrac xs
have [simp]: cfrac-length $c=\infty$ using assms by (simp add: c-def)
define h and k where $h=$ conv-num-int c and $k=$ conv-denom-int c
define x where $x=$ cfrac-lim c
define l where $l=$ length $x s$
define A where $A=(k($ int $l-1))$
define B where $B=k($ int $l-2)-h($ int $l-1)$
define C where $C=-(h($ int $l-2))$
define discr where discr $=B^{\text {-2 }}-4 * A * C$
have $l>0$
using assms by (simp add: l-def)
have c－pos：cfrac－nth $c n>0$ for n
using assms by（auto simp：c－def cfrac－nth－pperiodic－cfrac set－conv－nth）
have x－pos：$x>0$
unfolding x－def by（intro cfrac－lim－pos c－pos）
have h－pos：$h n>0$ if $n>-2$ for n
using that unfolding h－def by（auto simp：conv－num－int－def intro：conv－num－pos＇ c－pos）
have k－pos：$k n>0$ if $n>-1$ for n
using that unfolding k－def by（auto simp：conv－denom－int－def）
have k－nonneg：$k n \geq 0$ for n
unfolding k－def by（auto simp：conv－denom－int－def）
have pos：$(k($ int $l-1) * x+k($ int $l-2))>0$
using x－pos $\langle l>0$ 〉
by（intro add－pos－nonneg mult－pos－pos）（auto intro！：k－pos k－nonneg）
have cfrac－drop lc＝c
using assms by（intro cfrac－eqI）（auto simp：c－def cfrac－nth－pperiodic－cfrac l－def）
have $x=$ conv $^{\prime}$ c $l($ cfrac－remainder c $l)$
unfolding x－def by（rule conv＇－cfrac－remainder［symmetric］）auto
also have $\ldots=\operatorname{conv}^{\prime}$ c $l x$
unfolding cfrac－remainder－def $\langle c f r a c-d r o p l c=c\rangle x$－def ．．
finally have $x=\operatorname{conv}^{\prime} \operatorname{clx}$ ．
also have $\ldots=(h($ int $l-1) * x+h($ int $l-2)) /(k($ int $l-1) * x+k($ int l－2））
using conv＇－num－denom－int［OF x－pos，of－$l]$ unfolding h－def k－def
by（simp add：mult－ac）
finally have $x *(k($ int $l-1) * x+k($ int $l-2))=(h($ int $l-1) * x+h$ （int $l-2)$ ）
using pos by（simp add：divide－simps）
hence quadratic：$A * x$ へ2 $+B * x+C=0$ by（simp add：algebra－simps power2－eq－square A－def B－def C－def）
have $A>0$ using $\langle l>0\rangle$ by（auto simp：A－def intro！：k－pos）
have discr－altdef：discr $=(k($ int $l-2)-h($ int $l-1)) ~ へ 2+4 * k($ int $l-1) * h$ （int l－2）
by（simp add：discr－def A－def B－def C－def）
have $0<0+4 * A * 1$
using $\langle A>0\rangle$ by simp
also have $0+4 * A * 1 \leq$ discr
unfolding discr－altdef A－def using h－pos $[o f$ int $l-2]\langle l>0\rangle$
by（intro add－mono mult－mono order．refl k－nonneg mult－nonneg－nonneg）auto
finally have discr >0 ．
have $x \in\left\{x . A * x{ }^{\wedge} 2+B * x+C=0\right\}$
using quadratic by simp
hence x－cases：$x=(-B-$ sqrt discr $) /(2 * A) \vee x=(-B+$ sqrt discr $) /(2$

* A)
unfolding quadratic-equation-reals of-int-diff using $\langle A>0\rangle$
by (auto split: if-splits simp: discr-def)
have $B へ^{\wedge} 2<$ discr
unfolding discr-def by (auto intro!: mult-pos-pos k-pos h-pos $\langle l>0\rangle$ simp: $A-\operatorname{def} C$-def)
hence $|B|<$ sqrt discr
using $\langle d i s c r>0\rangle$ by (simp add: real-less-rsqrt)
have $x=($ if $x \geq 0$ then $($ sqrt discr $-B) /(2 * A)$ else $-($ sqrt discr $+B) /(2$ * A))
using x-cases
proof
assume $x: x=(-B-$ sqrt discr $) /(2 * A)$
have $(-B-$ sqrt discr $) /(2 * A)<0$
using $\langle | B \mid<$ sqrt discr $\rangle\langle A>0\rangle$ by (intro divide-neg-pos) auto
also note $x[$ symmetric $]$
finally show ?thesis using x by simp
next
assume $x: x=(-B+$ sqrt discr $) /(2 * A)$
have $(-B+$ sqrt discr $) /(2 * A)>0$
using $\langle | B \mid<$ sqrt discr $\rangle\langle A>0\rangle$ by (intro divide-pos-pos) auto
also note x [symmetric]
finally show ?thesis using x by simp
qed
also have $x \geq 0 \longleftrightarrow$ floor $x \geq 0$
by auto
also have floor $x=$ floor (cfrac-lim c)
by (simp add: x-def)
also have $\ldots=c f r a c-n t h c 0$
by (subst cfrac-nth-0-conv-floor) auto
also have $\ldots=\operatorname{int}(h d x s)$
using assms unfolding c-def by (subst cfrac-nth-pperiodic-cfrac) (auto simp: hd-conv-nth)
finally have x-eq: $x=($ sqrt discr $-B) /(2 * A)$
by simp
define h^{\prime} where $h^{\prime}=$ conv-num-fun $(\lambda n$. int $(x s!n))$
define k^{\prime} where $k^{\prime}=$ conv-denom-fun (λn. int (xs ! n))
have num-eq: $h^{\prime} i=h i$
if $i<l$ for i using that assms unfolding h^{\prime}-def h-def
by (subst conv-num-fun-eq'[where $\left.c^{\prime}=c\right]$) (auto simp: c-def l-def cfrac-nth-pperiodic-cfrac)
have denom-eq: $k^{\prime} i=k i$
if $i<l$ for i using that assms unfolding k^{\prime}-def k-def
by (subst conv-denom-fun-eq ${ }^{\prime}\left[\right.$ where $\left.c^{\prime}=c\right]$) (auto simp: c-defl-def cfrac-nth-pperiodic-cfrac)
have 1: $h($ int $l-1)=h^{\prime}(l-1)$

```
    by (subst num-eq) (use \(\langle l>0\rangle\) in \(\langle\) auto simp: of-nat-diff〉)
have 2: \(k(\) int \(l-1)=k^{\prime}(l-1)\)
    by (subst denom-eq) (use \(\langle l>0\rangle\) in 〈auto simp: of-nat-diff〉)
have 3: \(h(\) int \(l-2)=\left(\right.\) if \(l=1\) then 1 else \(\left.h^{\prime}(l-2)\right)\)
    using \(\langle l>0\rangle\) num-eq[of \(l-2]\) by (auto simp: h-def nat-diff-distrib)
have 4: \(k(\) int \(l-2)=\left(\right.\) if \(l=1\) then 0 else \(\left.k^{\prime}(l-2)\right)\)
    using \(\langle l>0\rangle\) denom-eq[of \(l-2]\) by (auto simp: \(k\)-def nat-diff-distrib)
    have pperiodic-cfrac-info \(x s=\)
\[
\begin{aligned}
&(\text { let } A=k(\text { int } l-1) ; \\
& B=h(\text { int } l-1)-(\text { if } l=1 \text { then } 0 \text { else } k(\text { int } l-2)) ; \\
& C=(\text { if } l=1 \text { then }-1 \text { else }-h(\text { int } l-2)) \\
&\text { in } \left.\left(B^{2}-4 * A * C, B, 2 * A\right)\right)
\end{aligned}
\]
unfolding pperiodic－cfrac－info－def Let－def using \(1234\langle l>0\) 〉
by（auto simp：num－eq denom－eq \(h^{\prime}\)－def \(k^{\prime}\)－def l－def of－nat－diff）
also have \(\ldots=\left(B^{2}-4 * A * C,-B, 2 * A\right)\)
by（simp add：Let－def \(A\)－def \(B\)－def \(C\)－def \(h\)－def \(k\)－def algebra－simps power2－commute）
finally have per－eq：pperiodic－cfrac－info xs \(=(\) discr \(,-B, 2 * A)\)
by（simp add：discr－def）
show \(x=(\) sqrt \((\) real－of－int \(D)+\) real－of－int \(E) /\) real－of－int \(F\)
using per－eq assms by（simp add：\(x\)－eq）
show \(D>0 F>0\)
using assms per－eq 〈discr \(>0\rangle\langle A>0\rangle\) by auto
qed
```

We can now compute surd representations for（purely）periodic continued fractions，e．g．$[1,1,1, \ldots]=\frac{\sqrt{5}+1}{2}$ ：
value pperiodic－cfrac－info［1］
We can now compute surd representations for periodic continued fractions， e．g．$[\overline{1,1,1,1,6}]=\frac{\sqrt{13}+3}{4}$ ：
value pperiodic－cfrac－info $[1,1,1,1,6]$
With a little bit of work，one could also easily derive from this a version for non－purely periodic continued fraction．

Next，we show that any quadratic irrational has a periodic continued fraction expansion．
theorem quadratic－irrational－imp－periodic－cfrac：
assumes quadratic－irrational（cfrac－lim e）
obtains $N l$ where $l>0$ and $\bigwedge n m . n \geq N \Longrightarrow$ cfrac－nth $e(n+m * l)=$ cfrac－nth e n
and cfrac－remainder e $(N+l)=$ cfrac－remainder e N
and cfrac－length $e=\infty$
proof－
have［simp］：cfrac－length $e=\infty$
using assms by（auto simp：quadratic－irrational．simps）
note $[$ intro $]=\operatorname{assms}(1)$
define x where $x=$ cfrac-lim e
from assms obtain $a b c$:: int where
nontrivial: $a \neq 0 \vee b \neq 0 \vee c \neq 0$ and
root: $a * x$ ~2 $+b * x+c=0$ (is ?f $x=0$)
by (auto simp: quadratic-irrational.simps x-def)
define f where $f=$?f
define h and k where $h=$ conv-num e and $k=$ conv-denom e
define X where $X=$ cfrac-remainder e
have [simp]: $k i>0 k i \neq 0$ for i
using conv-denom-pos[of e i] by (auto simp: k-def)
have k-leI: $k i \leq k j$ if $i \leq j$ for $i j$
by (auto simp: k-def intro!: conv-denom-leI that)
have k-nonneg: $k n \geq 0$ for n
by (auto simp: k-def)
have k-ge-1: $k n \geq 1$ for n
using k-leI $[$ of $0 n]$ by (simp add: k-def)
define R where $R=$ conv e
define A where $A=(\lambda n . a * h(n-1) へ 2+b * h(n-1) * k(n-1)+c$

* $k(n-1)$ へ 2)
define B where $B=(\lambda n$. 2 $* a * h(n-1) * h(n-2)+b *(h(n-1) * k$
$(n-2)+h(n-2) * k(n-1))+2 * c * k(n-1) * k(n-2))$
define C where $C=(\lambda n . a * h(n-2) \wedge 2+b * h(n-2) * k(n-2)+c$
* $k(n-2)$ ~2)
define A^{\prime} where $A^{\prime}=$ nat $\lfloor 2 *|a| *|x|+|a|+|b|\rfloor$
define B^{\prime} where $B^{\prime}=\operatorname{nat}[(3 / 2) *(2 *|a| *|x|+|b|)+9 / 4 *|a|\rfloor$
have [simp]: $X n \notin \mathbb{Q}$ for n unfolding X-def
by simp
from this $[$ of 0$]$ have $[$ simp $]: x \notin \mathbb{Q}$
unfolding X-def by (simp add: x-def)

```
have \(a \neq 0\)
proof
    assume \(a=0\)
    with root and nontrivial have \(x=0 \vee x=-c / b\)
        by (auto simp: divide-simps add-eq-0-iff)
    hence \(x \in \mathbb{Q}\) by (auto simp del: \(\langle x \notin \mathbb{Q}\rangle\) )
    thus False by simp
qed
have bounds: \((A n, B n, C n) \in\left\{-A^{\prime} . . A^{\prime}\right\} \times\left\{-B^{\prime} . . B^{\prime}\right\} \times\left\{-A^{\prime} . . A^{\prime}\right\}\)
    and \(X\)-root: \(A n * X n \mathcal{\sim}_{2}+B n * X n+C n=0\) if \(n: n \geq 2\) for \(n\)
proof -
    define \(n^{\prime}\) where \(n^{\prime}=n-2\)
    have \(n^{\prime}: n=\) Suc (Suc \(n^{\prime}\) ) using \(\langle n \geq 2\rangle\) unfolding \(n^{\prime}\)-def by simp
```

```
    have *: of-int (k (n-Suc 0)) *X n + of-int (k(n-2)) f=0
    proof
    assume of-int (k(n-Suc 0))*Xn +of-int (k (n-2)) =0
    hence X n=-k(n-2)/k(n-1) by (auto simp: divide-simps mult-ac)
    also have \ldots.\in\mathbb{Q}\mathrm{ by auto}
    finally show False by simp
    qed
    let ?denom}=(k(n-1)*Xn+k(n-2)
    have 0=0* ?denom ^ 2 by simp
    also have 0* ?denom^2 = (a*x^2 + b*x+c)* ?denom^` ( using root
by }\operatorname{simp
    also have \ldots. = a*(x*?denom)^2 +b*?denom * (x*?denom) +c*
?denom * ?denom
    by (simp add: algebra-simps power2-eq-square)
    also have }x*\mathrm{ ?denom =h(n-1)*Xn+h(n-2)
    using cfrac-lim-eq-num-denom-remainder-aux[of n-2 e] \n\geq2\rangle
    by (simp add: numeral-2-eq-2 Suc-diff-Suc x-def k-def h-def X-def)
    also have }a*\ldots^2+b*\mathrm{ ?denom * ... +c* ?denom * ?denom = An*
Xn^2 + Bn*Xn+Cn
            by (simp add: A-def B-def C-def power2-eq-square algebra-simps)
    finally show An*Xn^2 + Bn*Xn+Cn=0..
    have f-abs-bound: |f(R n)| \leq(2* |a|* |x| + |b|)*(1/(kn*k (Suc n))) +
                    |a|*(1/(kn*k(Suc n))) ^2 for n
    proof -
    have }|f(Rn)|=|?f(R n) - ?f x by (simp add: root f-def
```



```
* a
            by (simp add: power2-eq-square algebra-simps)
    also have }|\ldots|\leq|(Rn-x)*(2*a*x+b)|+|(Rn-x)^2*a
        by (rule abs-triangle-ineq)
    also have \ldots. = |2*a*x+b|* |Rn-x| + |a|*| R n-x|^2
        by (simp add: abs-mult)
    also have \ldots\leq |2*a*x+b|*(1/(kn*k(Suc n)))+|a|*(1/(kn*
k(Suc n))) ^2
            unfolding x-def R-def using cfrac-lim-minus-conv-bounds[of n e]
            by (intro add-mono mult-left-mono power-mono) (auto simp: k-def)
    also have |2*a*x+b|\leq2* |a|*|x| + |b|
        by (rule order.trans[OF abs-triangle-ineq]) (auto simp: abs-mult)
        hence |2*a*x+b|*(1/(kn*k(Suc n))) + |a|*(1/ (kn*k(Suc
n))) ^2\leq
                \ldots.*(1/(kn*k(Suc n))) + |a|*(1/(kn*k(Suc n))) ^2
            by (intro add-mono mult-right-mono) (auto intro!: mult-nonneg-nonneg
k-nonneg)
    finally show }|f(Rn)|\leq
        by (simp add: mult-right-mono add-mono divide-left-mono)
    qed
```

have h-eq-conv-k: $h i=R i * k i$ for i
using conv-denom-pos[of e i] unfolding R-def
by (subst conv-num-denom) (auto simp: h-def k-def)

```
    have }An=k(n-1)^2*f(R(n-1)) for n
    by (simp add: algebra-simps A-def n' k-def power2-eq-square h-eq-conv-k f-def)
    have A-bound: }|Ai|\leq\mp@subsup{A}{}{\prime}\mathrm{ if }i>0\mathrm{ for i
    proof -
    have ki>0
        by simp
    hence ki\geq1
        by linarith
    have Ai=k(i-1)^2*f(R(i-1))
    by (simp add: algebra-simps A-def k-def power2-eq-square h-eq-conv-k f-def)
    also have |...| =k(i-1)^2* |f(R(i-1))|
        by (simp add: abs-mult f-def)
    also have ... \leqk(i-1)^2*((2* |a|*|x| + |b|)*(1/(k (i-1)*k
(Suc (i-1)))) +
                        |a|*(1/(k(i-1)*k(Suc (i-1)))) ^2)
        by (intro mult-left-mono f-abs-bound) auto
    also have ... =k(i-1)/ki*(2* |a|*|x|+|b|)+|a|/ki^2 using
<i> 0\rangle
            by (simp add: power2-eq-square field-simps)
    also have \ldots.\leq1*(2* |a|*|x| + |b|)+ |a|/1 using <i> 0〉\langleki\geq1\rangle
            by (intro add-mono divide-left-mono mult-right-mono)
            (auto intro!: k-leI one-le-power simp: of-nat-ge-1-iff)
    also have \ldots=2* |a|* |x| + |a| + |b| by simp
    finally show ?thesis unfolding A'-def by linarith
    qed
```

 have \(C n=A(n-1)\) by (simp add: \(A\)-def \(C\)-def \(\left.n^{\prime}\right)\)
 hence \(C\)-bound: \(|C n| \leq A^{\prime}\) using \(A\)-bound \([\) of \(n-1] n\) by simp
 have \(B n=k(n-1) * k(n-2) *\)
 \((f(R(n-1))+f(R(n-2))-a *(R(n-1)-R(n-2))-2)\)
 by (simp add: B-def h-eq-conv-k algebra-simps power2-eq-square \(f\)-def)
 also have \(|\ldots|=k(n-1) * k(n-2) *\)
 \(\mid f(R(n-1))+f(R(n-2))-a *(R(n-1)-R(n-2))\)
 - $2 \mid$
by (simp add: abs-mult k-nonneg)
also have $\ldots \leq k(n-1) * k(n-2) *$
$(((2 *|a| *|x|+|b|) *(1 /(k(n-1) * k(\operatorname{Suc}(n-1))))+$
$|a| *(1 /(k(n-1) * k(\operatorname{Suc}(n-1)))) \sim 2)+$
$((2 *|a| *|x|+|b|) *(1 /(k(n-2) * k(\operatorname{Suc}(n-2))))+$
$|a| *(1 /(k(n-2) * k(\operatorname{Suc}(n-2)))) \wedge 2)+$
$|a| *|R(\operatorname{Suc}(n-2))-R(n-2)|$ 2) $($ is $-\leq-*(? S 1+$
?S2 + ?S3) $)$
by (intro mult-left-mono order.trans[OF abs-triangle-ineq4] order.trans[OF abs-triangle-ineq]
add-mono f-abs-bound order.refl)
(insert n, auto simp: abs-mult Suc-diff-Suc numeral-2-eq-2 k-nonneg)
also have $|R(\operatorname{Suc}(n-2))-R(n-2)|=1 /(k(n-2) * k(S u c(n-2)))$
unfolding R-def k-def by (rule abs-diff-successive-convs)
also have of-int $(k(n-1) * k(n-2)) *(? S 1+? S 2+|a| * \ldots$ ^2 $)=$

$$
(k(n-2) / k n+1) *(2 *|a| *|x|+|b|)+
$$

$$
|a| *(k(n-2) /(k(n-1) * k n \wedge 2)+2 /(k(n-1) * k(n-
$$

2)))
(is - = ?S) using n by (simp add: field-simps power2-eq-square numeral-2-eq-2 Suc-diff-Suc)
also \{
have $A: 2 *$ real-of-int $(k(n-2)) \leq o f-i n t(k n)$
using conv-denom-plus2-ratio-ge[of en-2] n
by (simp add: numeral-2-eq-2 Suc-diff-Suc k-def)
have fib (Suc 2) $\leq k 2$ unfolding k-def by (intro conv-denom-lower-bound)
also have $\ldots \leq k n$ by (intro k-leI n)
finally have $k n \geq 2$ by (simp add: numeral- $3-e q-3$)
hence $B:$ of-int $(k(n-2)) * 2 \wedge 2 \leq\left(o f-i n t(k(n-1)) *(o f-i n t(k n))^{2}::\right.$ real)
by (intro mult-mono power-mono) (auto intro: k-leI k-nonneg)
have C: $1 * 1 \leq$ real-of-int $(k(n-1)) *$ of-int $(k(n-2))$ using k-ge-1
by (intro mult-mono) (auto simp: Suc-le-eq of-nat-ge-1-iff k-nonneg)
note $A B C$
\}
hence ? $S \leq(1 / 2+1) *(2 *|a| *|x|+|b|)+|a| *(1 / 4+2)$
by (intro add-mono mult-right-mono mult-left-mono) (auto simp: field-simps)
also have $\ldots=(3 / 2) *(2 *|a| *|x|+|b|)+9 / 4 *|a|$ by simp
finally have B-bound: $|B n| \leq B^{\prime}$ unfolding B^{\prime}-def by linarith
from A-bound $[$ of $n] B$-bound C-bound n
show $(A n, B n, C n) \in\left\{-A^{\prime} . . A^{\prime}\right\} \times\left\{-B^{\prime} . . B^{\prime}\right\} \times\left\{-A^{\prime} . . A^{\prime}\right\}$ by auto qed
have $A-n z: A \quad n \neq 0$ if $n \geq 1$ for n
using that
proof (induction n rule: dec-induct)
case base
show ? case
proof
assume $A 1=0$
hence real-of-int $\left(\begin{array}{ll}A & 1\end{array}\right)=0$ by simp
also have real-of-int $\left(\begin{array}{ll}A & 1\end{array}\right)=$
real-of-int $a *$ of-int (cfrac-nth e 0) へ $2+$ real-of-int $b *$ cfrac-nth e $0+$ real-of-int c
by (simp add: A-def h-def k-def)
finally have root': $\ldots=0$.
have cfrac-nth e $0 \in \mathbb{Q}$ by auto
also from root' and $\langle a \neq 0\rangle$ have ?this \longleftrightarrow is-square (nat $\left(b^{2}-4 * a * c\right)$)
by (intro quadratic-equation-solution-rat-iff) auto

```
        also from root and }\langlea\not=0\rangle\mathrm{ have }\ldots\longleftrightarrowx\in\mathbb{Q
            by (intro quadratic-equation-solution-rat-iff [symmetric]) auto
            finally show False using <x }\not\in\mathbb{Q}\rangle\mathrm{ by contradiction
    qed
    next
        case (step m)
    hence nz:C (Suc m)\not=0 by (simp add: C-def A-def)
    show A (Suc m)\not=0
    proof
        assume [simp]: A (Suc m)=0
        have X (Suc m)>0 unfolding X-def
            by (intro cfrac-remainder-pos) auto
    with X-root[of Suc m] step.hyps nz have X (Suc m)=-C(Suc m)/B(Suc
m)
            by (auto simp: divide-simps mult-ac)
        also have ...\in\mathbb{Q}\mathrm{ by auto}
        finally show False by simp
        qed
    qed
    have finite ({-\mp@subsup{A}{}{\prime}..\mp@subsup{A}{}{\prime}}\times{-\mp@subsup{B}{}{\prime}..\mp@subsup{B}{}{\prime}}\times{-\mp@subsup{A}{}{\prime}..\mp@subsup{A}{}{\prime}})\mathrm{ by auto}
    from this and bounds have finite ((\lambdan. (A n, B n, C n))'{2..})
        by (blast intro: finite-subset)
    moreover have infinite ({2..} :: nat set) by (simp add: infinite-Ici)
    ultimately have }\exists\textrm{k}1\in{2..}. infinite {n\in{2..}. (A n, B n, C n) = (A k1, B
k1, C k1)}
        by (intro pigeonhole-infinite)
    then obtain k0 where k0:k0\geq2 infinite {n\in{2..}. (A n, B n, C n) = (A
k0, B k0, C k0)}
    by auto
    from infinite-countable-subset[OF this(2)] obtain g :: nat }=>\mathrm{ -
    where g: inj g range g\subseteq{n\in{2..}.(A n, B n, C n) = (A k0, B k0, C k0)} by
blast
    hence g-ge-2: g k\geq2 for k by auto
    from g have [simp]:A (gk)=A k0 B (gk)=B k0 C (gk)=C k0 for k
        by auto
    from g(1) have [simp]: g k1 = g k2 \longleftrightarrow <1 = k2 for k1 k2 by (auto simp:
inj-def)
    define z where z=( A k0, B k0, C k0)
    let ?h = \lambdak. (A (gk),B(gk),C (gk))
    from g have g': distinct [g 1, g 2, g 3] ?h 0 = z ?h 1 = z ?h 2 = z
        by (auto simp: z-def)
    have fin: finite {x :: real. A k0* x^2 + Bk0*x+Ck0 = 0} using A-nz[of
k0] k0(1)
    by (subst finite-quadratic-equation-solutions-reals) auto
from X-root[of g 0] X-root[of g 1] X-root[of g 2] g-ge-2 g
    have (X\circg)'{0,1, 2}\subseteq{x.Ak0*x^2 + Bk0*x+Ck0=0}
    by auto
```

```
    hence \(\operatorname{card}((X \circ g)\) ' \(\{0,1,2\}) \leq \operatorname{card} \ldots\)
    by (intro card-mono fin) auto
    also have \(\ldots \leq 2\)
    by (rule card-quadratic-equation-solutions-reals-le-2)
    also have \(\ldots<\operatorname{card}\{0,1,2\) :: nat \(\}\) by \(\operatorname{simp}\)
    finally have \(\neg i n j\)-on \((X \circ g)\{0,1,2\}\)
    by (rule pigeonhole)
then obtain \(m 1 \mathrm{m2}\) where
    \(m 12: m 1 \in\{0,1,2\} m 2 \in\{0,1,2\} X(g m 1)=X(g m 2) m 1 \neq m 2\)
    unfolding inj-on-def o-def by blast
define \(n\) and \(l\) where \(n=\min (g m 1)(g m 2)\) and \(l=n a t|i n t(g m 1)-g m 2|\)
with \(m 12 g^{\prime}\) have \(l: l>0 X(n+l)=X n\)
    by (auto simp: min-def nat-diff-distrib split: if-splits)
    from \(l\) have cfrac-lim (cfrac-drop \((n+l) e)=c f r a c-l i m(c f r a c-d r o p n e)\)
    by (simp add: X-def cfrac-remainder-def)
    hence cfrac-drop \((n+l) e=c f r a c-d r o p n e\)
    by (simp add: cfrac-lim-eq-iff)
```



```
    by ( simp only:)
    hence period: cfrac-nth \(e(n+l+k)=c\) frac-nth \(e(n+k)\) for \(k\)
    by (simp add: fun-eq-iff add-ac)
    have period: cfrac-nth \(e(k+l)=c\) frac-nth \(e k\) if \(k \geq n\) for \(k\)
    using period \([\) of \(k-n]\) that by (simp add: add-ac)
    have period: cfrac-nth \(e(k+m * l)=c f r a c-n t h e k\) if \(k \geq n\) for \(k m\)
    using that
    proof (induction \(m\) )
    case (Suc m)
    have cfrac-nth \(e(k+S u c m * l)=c f r a c-n t h e(k+m * l+l)\)
        by (simp add: algebra-simps)
    also have \(\ldots=\) cfrac-nth \(e(k+m * l)\)
        using Suc.prems by (intro period) auto
    also have \(\ldots=\) cfrac-nth e \(k\)
        using Suc.prems by (intro Suc.IH) auto
    finally show ?case .
qed simp-all
    from this and \(l\) and that \([\) of \(l n]\) show ?thesis by (simp add: \(X\)-def)
qed
theorem periodic-cfrac-iff-quadratic-irrational:
    assumes \(x \notin \mathbb{Q} x \geq 0\)
    shows quadratic-irrational \(x \longleftrightarrow\)
        \((\exists N l . l>0 \wedge(\forall n \geq N . c f r a c-n t h(c f r a c-o f-r e a l) x)(n+l)=\)
                            cfrac-nth (cfrac-of-real \(x\) ) n))
proof safe
    assume \(*\) : quadratic-irrational \(x\)
    with assms have **: quadratic-irrational (cfrac-lim (cfrac-of-real x)) by auto
    obtain \(N l\) where \(N l: l>0\)
```

^n m. $N \leq n \Longrightarrow c f r a c-n t h(c f r a c-o f-r e a l x)(n+m * l)=c f r a c-n t h(c f r a c-o f-r e a l$ x) n
cfrac-remainder (cfrac-of-real $x)(N+l)=c f r a c-r e m a i n d e r(c f r a c-o f-r e a l ~ x) N$ cfrac-length (cfrac-of-real $x)=\infty$
using quadratic-irrational-imp-periodic-cfrac [OF **] by metis
show $\exists N l . l>0 \wedge(\forall n \geq N$. cfrac-nth $(c f r a c-o f-r e a l ~ x)(n+l)=c f r a c-n t h$ (cfrac-of-real x) n)
by (rule exI[of - N], rule exI[of - l]) (insert $N l(1) N l(2)[o f-1]$, auto) next
fix $N l$ assume $l>0 \forall n \geq N$.cfrac-nth (cfrac-of-real $x)(n+l)=c f r a c-n t h$ (cfrac-of-real x) n
hence quadratic-irrational (cfrac-lim (cfrac-of-real x)) using assms
by (intro periodic-cfrac-imp-quadratic-irrational $[o f-l N]$) auto
with assms show quadratic-irrational x
by simp
qed
The following result can e.g. be used to show that a number is not a quadratic irrational.

```
lemma quadratic-irrational-cfrac-nth-range-finite:
    assumes quadratic-irrational (cfrac-lim e)
    shows finite (range (cfrac-nth e))
proof -
    from quadratic-irrational-imp-periodic-cfrac[OF assms] obtain \(l N\)
        where period: \(l>0 \bigwedge m n . n \geq N \Longrightarrow\) cfrac-nth \(e(n+m * l)=c f r a c-n t h e n\)
        by metis
    have cfrac-nth ekecfrac-nth \(e\) ' \(\{. .<N+l\}\) for \(k\)
    proof (cases \(k<N+l\) )
        case False
        define \(n m\) where \(n=N+(k-N) \bmod l\) and \(m=(k-N)\) div \(l\)
        have cfrac-nth e \(n \in\) cfrac-nth \(e\) ' \(\{. .<N+l\}\)
            using \(\langle l>0\rangle\) by (intro imageI) (auto simp: n-def)
        also have cfrac-nth e \(n=c f r a c-n t h e(n+m * l)\)
            by (subst period) (auto simp: n-def)
        also have \(n+m * l=k\)
            using False by (simp add: n-def m-def)
        finally show ?thesis .
    qed auto
    hence range (cfrac-nth e) \(\subseteq\) cfrac-nth \(e\) ' \(\{. .<N+l\}\)
        by blast
    thus ?thesis by (rule finite-subset) auto
qed
end
```


3 The continued fraction expansion of e

theory E-CFrac
imports

HOL-Analysis.Analysis
Continued-Fractions
Quadratic-Irrationals
begin
lemma fact-real-at-top: filterlim (fact :: nat \Rightarrow real) at-top at-top
proof (rule filterlim-at-top-mono)
have real $n \leq$ real (fact n) for n
unfolding of-nat-le-iff by (rule fact-ge-self)
thus eventually (λn. real $n \leq$ fact n) at-top by simp
qed (fact filterlim-real-sequentially)
lemma filterlim-div-nat-at-top:
assumes filterlim f at-top $F m>0$
shows filterlim ($\lambda x . f x$ div $m::$ nat) at-top F
unfolding filterlim-at-top
proof
fix C :: nat
from $\operatorname{assms}(1)$ have eventually $(\lambda x . f x \geq C * m) F$
by (auto simp: filterlim-at-top)
thus eventually $(\lambda x . f x$ div $m \geq C) F$
proof eventually-elim
case (elim x)
hence $(C * m)$ div $m \leq f x$ div m by (intro div-le-mono)
thus ?case using $\langle m>0\rangle$ by simp
qed
qed
The continued fraction expansion of e has the form $[2 ; 1,2,1,1,4,1,1,6,1,1,8,1, \ldots]$:
definition e-cfrac where
$e-c f r a c=c f r a c(\lambda n$. if $n=0$ then 2 else if $n \bmod 3=2$ then $2 *(S u c n$ div 3$)$
else 1)
lemma cfrac-nth-e:
cfrac-nth e-cfrac $n=($ if $n=0$ then 2 else if $n \bmod 3=2$ then $2 *($ Suc n div 3$)$
else 1)
unfolding e-cfrac-def by (subst cfrac-nth-cfrac) (auto simp: is-cfrac-def)
lemma cfrac-length-e [simp]: cfrac-length e-cfrac $=\infty$
by (simp add: e-cfrac-def)
The formalised proof follows the one from Proof Wiki [2].

```
context
    fixes A B C :: nat => real and p q :: nat }=>\mathrm{ int and }a:: nat => in
    defines A\equiv(\lambdan. integral {0..1} (\lambdax. exp x* x^n * (x-1)^n / fact n))
        and B}\equiv(\lambdan. integral {0..1} (\lambdax. exp x* x^Suc n* (x-1)^n / fact n))
        and C\equiv(\lambdan. integral {0..1} (\lambdax. exp x* x^n n*(x-1)^ Suc n / fact n))
        and}p\equiv(\lambdan. if n\leq1 then 1 else conv-num e-cfrac (n-2)
```

and $q \equiv(\lambda n$. if $n=0$ then 1 else if $n=1$ then 0 else conv-denom e-cfrac (n - 2))
and $a \equiv(\lambda n$. if $n \bmod 3=2$ then $2 *($ Suc n div 3) else 1$)$
begin

lemma

assumes $n \geq 2$
shows $\quad p$-rec: $p n=a(n-2) * p(n-1)+p(n-2)($ is ?th1 $)$
and $\quad q-r e c: ~ q n=a(n-2) * q(n-1)+q(n-2)$ (is ?th2)
proof -
have n-minus-3: $n-3=n-S u c(S u c(S u c ~ 0))$
by (simp add: numeral-3-eq-3)
consider $n=2|n=3| n \geq 4$
using assms by force
hence? ?th1 \wedge ?th2
by cases (auto simp: p-def q-def cfrac-nth-e a-def conv-num-rec conv-denom-rec
n-minus-3)
thus ?th1 ?th2 by blast+
qed
lemma
assumes $n \geq 1$
shows $\quad p-\operatorname{rec} 0: p(3 * n)=p(3 * n-1)+p(3 * n-2)$
and $q-\operatorname{rec} 0: q(3 * n)=q(3 * n-1)+q(3 * n-2)$
proof -
define n^{\prime} where $n^{\prime}=n-1$
from assms have $\left(3 * n^{\prime}+1\right) \bmod 3 \neq 2$
by presburger
also have $\left(3 * n^{\prime}+1\right)=3 * n-2$
using assms by (simp add: $n^{\prime}-$ def)
finally show $p(3 * n)=p(3 * n-1)+p(3 * n-2)$

$$
q(3 * n)=q(3 * n-1)+q(3 * n-2)
$$

using assms by (subst p-rec q-rec; simp add: a-def)+
qed

lemma

assumes $n \geq 1$
shows \quad-rect: $p(3 * n+1)=2 * \operatorname{int} n * p(3 * n)+p(3 * n-1)$
and q-rec1: $q(3 * n+1)=2 * \operatorname{int} n * q(3 * n)+q(3 * n-1)$
proof -
define n^{\prime} where $n^{\prime}=n-1$
from assms have $\left(3 * n^{\prime}+2\right) \bmod 3=2$
by presburger
also have $\left(3 * n^{\prime}+2\right)=3 * n-1$
using assms by (simp add: n^{\prime}-def)
finally show $p(3 * n+1)=2 * \operatorname{int} n * p(3 * n)+p(3 * n-1)$
$q(3 * n+1)=2 * \operatorname{int} n * q(3 * n)+q(3 * n-1)$
using assms by (subst p-rec q-rec; simp add: a-def)+
qed

```
lemma p-rec2: p (3*n+2) = p(3*n+1) +p(3*n)
    and q-rec2: }q(3*n+2)=q(3*n+1)+q(3*n
    by (subst p-rec q-rec; simp add: a-def nat-mult-distrib nat-add-distrib)+
lemma A-0:A 0= exp 1-1 and B-0: B 0=1 and C-0:C 0=2 - exp 1
proof -
    have (exp has-integral (exp 1- exp 0)) {0..1::real}
    by (intro fundamental-theorem-of-calculus)
            (auto intro!: derivative-eq-intros
                simp flip: has-real-derivative-iff-has-vector-derivative)
    thus A 0 = exp 1-1 by (simp add: A-def has-integral-iff)
    have ((\lambdax. exp x*x) has-integral (exp 1* (1-1) - exp 0* (0-1))) {0..1::real}
    by (intro fundamental-theorem-of-calculus)
        (auto intro!: derivative-eq-intros
                simp flip: has-real-derivative-iff-has-vector-derivative simp: algebra-simps)
    thus B0=1 by (simp add: B-def has-integral-iff)
```



```
{0..1::real}
    by (intro fundamental-theorem-of-calculus)
        (auto intro!: derivative-eq-intros
                simp flip: has-real-derivative-iff-has-vector-derivative simp: algebra-simps)
    thus C0=2 - exp 1 by (simp add: C-def has-integral-iff)
qed
lemma A-bound: norm (A n) \leq exp 1/ fact n
proof -
    have norm (exp t*t^n* (t-1)^n / fact n)\leqexp 1* 1^n n*1^n / fact
n
            if t\in{0..1} for t :: real using that unfolding norm-mult norm-divide
norm-power norm-fact
    by (intro mult-mono divide-right-mono power-mono) auto
    hence norm (A n) \leqexp 1/fact n*(1-0)
    unfolding A-def by (intro integral-bound) (auto intro!: continuous-intros)
    thus ?thesis by simp
qed
lemma B-bound: norm (B n) \leqexp 1/fact n
proof -
    have norm (exp t* t`Suc n* (t-1)^n / fact n) \leqexp 1* 1^Suc n* 1^
n / fact n
                            if t\in{0..1} for t :: real using that unfolding norm-mult norm-divide
norm-power norm-fact
    by (intro mult-mono divide-right-mono power-mono) auto
    hence norm (B n) \leq exp 1 / fact n* (1-0)
    unfolding B-def by (intro integral-bound) (auto intro!: continuous-intros)
    thus ?thesis by simp
```


qed

lemma C－bound：norm $(C n) \leq \exp 1 /$ fact n
proof－
have norm $\left(\exp t * t^{\wedge} n *(t-1) \wedge\right.$ Suc $n /$ fact $\left.n\right) \leq \exp 1 * 1 \wedge n * 1$－Suc $n /$ fact n
if $t \in\{0 . .1\}$ for $t::$ real using that unfolding norm－mult norm－divide norm－power norm－fact
by（intro mult－mono divide－right－mono power－mono）auto
hence norm $(C n) \leq \exp 1 /$ fact $n *(1-0)$
unfolding C－def by（intro integral－bound）（auto intro！：continuous－intros）
thus ？thesis by simp
qed
lemma A－Suc：$A($ Suc $n)=-B n-C n$
proof－
let ？$g=\lambda x . x^{\wedge}$ Suc $n *(x-1) \wedge$ Suc $n * \exp x /$ fact（Suc n）
have pos：fact $n+$ real $n *$ fact $n>0$ by（intro add－pos－nonneg）auto
have $A($ Suc $n)+B n+C n=$
integral $\{0 . .1\}\left(\lambda x\right.$ ．exp $x * x^{\wedge}$ Suc $n *(x-1) へ$ Suc $n /$ fact（Suc n）+
$\exp x * x^{\wedge}$ Suc $n *(x-1) \wedge n /$ fact $n+\exp x * x^{\wedge} n *(x-1)$ へ
Suc $n /$ fact n ）
unfolding A－def B－def C－def
apply（subst integral－add［symmetric］）
subgoal
by（auto intro！：integrable－continuous－real continuous－intros）
subgoal
by（auto intro！：integrable－continuous－real continuous－intros）
apply（subst integral－add［symmetric］）
apply（auto intro！：integrable－continuous－real continuous－intros）
done
also have $\ldots=$ integral $\{0 . .1\}(\lambda x . \exp x /$ fact $(S u c n) *$
$\left(x^{\wedge}\right.$ Suc $n *(x-1) \wedge$ Suc $n+$ Suc $n * x \wedge$ Suc $n *(x-1) へ n+$ Suc $n * x^{\wedge} n *(x-1) \wedge$ Suc $\left.\left.n\right)\right)$
（is－＝integral－？f）
apply（simp add：divide－simps）
apply（simp add：field－simps）？
done
also have（？f has－integral（？g $1-$ ？g 0））\｛0．．1\}
apply（intro fundamental－theorem－of－calculus）
subgoal
by simp
unfolding has－real－derivative－iff－has－vector－derivative［symmetric］
apply（rule derivative－eq－intros refl \mid simp $)+$
apply（simp add：algebra－simps）？
done
hence integral $\{0 . .1\}$ ？f $=0$
by（simp add：has－integral－iff）
finally show？？thesis by simp

qed

lemma B-Suc: $B($ Suc $n)=-2 * S u c n * A($ Suc $n)+C n$
proof -
let ? $g=\lambda x . x^{\wedge}$ Suc $n *(x-1) \wedge(n+2) * \exp x /$ fact $($ Suc $n)$
have pos: fact $n+$ real $n *$ fact $n>0$ by (intro add-pos-nonneg) auto
have $B($ Suc $n)+2 * S u c n * A($ Suc $n)-C n=$
integral $\{0 . .1\}(\lambda x . \exp x * x \wedge(n+2) *(x-1) \wedge(n+1) /$ fact $($ Suc $n)+2$

* Suc n *
$\exp x * x^{\wedge}$ Suc $n *(x-1) \wedge$ Suc $n /$ fact (Suc n) $-\exp x * x^{\wedge} n *(x$
- 1) へSuc n / fact n)
unfolding A-def B-def C-def integral-mult-right [symmetric]
apply (subst integral-add [symmetric])
subgoal
by (auto intro!: integrable-continuous-real continuous-intros)
subgoal
by (auto intro!: integrable-continuous-real continuous-intros)
apply (subst integral-diff [symmetric])
apply (auto intro!: integrable-continuous-real continuous-intros simp: mult-ac)
done
also have $\ldots=$ integral $\{0 . .1\}(\lambda x . \exp x /$ fact $(S u c n) *$
$\left(x^{\wedge}(n+2) *(x-1) \uparrow(n+1)+2 *\right.$ Suc $n * x^{\wedge}$ Suc $n *(x-1)^{\wedge}$
Suc n -

$$
\text { Suc } n * x \wedge n *(x-1) \wedge \text { Suc } n))
$$

(is - = integral - ?f)
apply (simp add: divide-simps)
apply (simp add: field-simps)?
done
also have (?f has-integral (?g $1-$?g 0$)$) $\{0 . .1\}$
apply (intro fundamental-theorem-of-calculus) apply (simp; fail)
unfolding has-real-derivative-iff-has-vector-derivative [symmetric]
apply (rule derivative-eq-intros refl | simp)+
apply (simp add: algebra-simps)?
done
hence integral $\{0 . .1\}$? $f=0$
by (simp add: has-integral-iff)
finally show ?thesis by (simp add: algebra-simps)
qed
lemma C-Suc: $C n=B n-A n$
unfolding A-def B-def C-def
by (subst integral-diff [symmetric])
(auto intro!: integrable-continuous-real continuous-intros simp: field-simps)
lemma unfold-add-numeral: $c * n+$ numeral $b=S u c(c * n+$ pred-numeral $b)$
by simp
lemma $A B C$:

```
    A n =q(3*n)*exp 1-p (3*n)^
    B n=p(Suc (3*n)) - q(Suc (3*n))*\operatorname{exp}1\wedge
    Cn=p(Suc (Suc (3*n))) -q (Suc (Suc (3*n))) * exp 1
proof (induction n)
    case 0
    thus ?case by (simp add: A-0 B-0 C-0 a-def p-def q-def cfrac-nth-e)
next
    case (Suc n)
    note [simp]=
        conjunct1[OF Suc.IH] conjunct1[OF conjunct2[OF Suc.IH]] conjunct2[OF con-
junct2[OF Suc.IH]]
    have [simp]: 3 + m=Suc (Suc (Suc m)) for m by simp
```



```
        unfolding A-Suc
        by (subst p-rec0 q-rec0, simp)+ (auto simp: algebra-simps)
    have B':B (Suc n) =of-int (p(3*Suc n + 1)) - of-int (q(3*Suc n + 1))*
exp 1
    unfolding B-Suc
    by (subst p-rec1 q-rec1 p-rec0 q-rec0, simp)+ (auto simp: algebra-simps A-Suc)
    have C':C (Suc n) =of-int (p(3*Suc n+2)) - of-int (q(3*Suc n+2)) * exp 1
        unfolding A-Suc B-Suc C-Suc using p-rec2[of n] q-rec2[of n]
        by ((subst p-rec2 q-rec2)+, (subst p-rec0 q-rec0 p-rec1 q-rec1, simp)+)
            (auto simp: algebra-simps A-Suc B-Suc)
    from }\mp@subsup{A}{}{\prime}\mp@subsup{B}{}{\prime}\mp@subsup{C}{}{\prime}\mathrm{ show ?case by simp
qed
lemma q-pos: q n>0 if n\not=1
    using that by (auto simp: q-def)
lemma conv-diff-exp-bound: norm(exp 1-p n/qn) \leqexp 1/ fact (n div 3)
proof (cases n=1)
    case False
    define }\mp@subsup{n}{}{\prime}\mathrm{ where }\mp@subsup{n}{}{\prime}=n\mathrm{ div 3
    consider n mod 3 = 0 | mod 3 = 1 | n mod 3=2
    by force
    hence diff [unfolded n'-def]: q n * exp 1-p n=
        (if n mod 3 = 0 then A n' else if n mod 3 = 1 then -B n' else -C n')
    proof cases
        assume n mod 3 = 0
        hence 3* n' = n unfolding n'-def by presburger
        with ABC[of n'] show ?thesis by auto
    next
    assume *: n mod 3 = 1
    hence Suc (3* n') = n unfolding n'-def by presburger
    with * ABC[of n] show ?thesis by auto
    next
    assume *: n mod 3 = 2
    hence Suc (Suc (3* n')) = n unfolding n'-def by presburger
```

```
        with * ABC[of n'] show ?thesis by auto
        qed
    note [[linarith-split-limit = 0]]
    have norm ((qn* exp 1-p n) / qn) \leq exp 1/fact (n div 3) / 1 unfolding
diff norm-divide
    using A-bound[of n div 3] B-bound[of n div 3] C-bound[of n div 3] q-pos[OF<n
# 1>]
    by (subst frac-le) (auto simp: of-nat-ge-1-iff)
    also have (qn* exp 1-pn)/qn=\operatorname{exp 1-p n / qn}
    using q-pos[OF <n\not= 1\rangle] by (simp add: divide-simps)
    finally show ?thesis by simp
qed (auto simp: p-def q-def)
theorem e-cfrac:cfrac-lim e-cfrac = exp 1
proof -
    have num: conv-num e-cfrac n=p(n+2)
    and denom: conv-denom e-cfrac n =q(n+2) for n
        by (simp-all add: p-def q-def)
    have (\lambdan. exp 1-pn/qn)\longrightarrow0
    proof (rule Lim-null-comparison)
        show eventually (\lambdan. norm (exp 1-p n / q n) \leq exp 1/ fact (n div 3)) at-top
            using conv-diff-exp-bound by (intro always-eventually) auto
    show (\lambdan. exp 1 / fact (n div 3) :: real) \longrightarrow0
            by (rule real-tendsto-divide-at-top tendsto-const filterlim-div-nat-at-top
                filterlim-ident filterlim-compose[OF fact-real-at-top])+ auto
    qed
    moreover have eventually (\lambdan. exp 1-pn/qn=exp 1-conv e-cfrac (n-
2)) at-top
    using eventually-ge-at-top[of 2]
    proof eventually-elim
    case (elim n)
    with num[of n-2] denom[of n - 2] wf show ?case
        by (simp add: eval-nat-numeral Suc-diff-Suc conv-num-denom)
    qed
    ultimately have (\lambdan. exp 1-conv e-cfrac (n - 2)) \longrightarrow0
    using Lim-transform-eventually by fast
    hence (\lambdan. exp 1- (exp 1-conv e-cfrac (Suc (Suc n) - 2))) \longrightarrow exp 1-0
    by (subst filterlim-sequentially-Suc)+ (intro tendsto-diff tendsto-const)
    hence conv e-cfrac\longrightarrow exp 1 by simp
    moreover have conv e-cfrac \longrightarrowcfrac-lim e-cfrac
    by (intro LIMSEQ-cfrac-lim wf) auto
    ultimately have exp 1 = cfrac-lim e-cfrac
    by (rule LIMSEQ-unique)
    thus ?thesis ..
qed
corollary e-cfrac-altdef:e-cfrac = cfrac-of-real (exp 1)
```

by (metis e-cfrac cfrac-infinite-iff cfrac-length-e cfrac-of-real-cfrac-lim-irrational)
This also provides us with a nice proof that e is not rational and not a quadratic irrational either.

```
corollary exp1-irrational: (exp 1 :: real) }\not\in\mathbb{Q
    by (metis cfrac-length-e e-cfrac cfrac-infinite-iff)
corollary exp1-not-quadratic-irrational: \negquadratic-irrational (exp 1 :: real)
proof -
    have range (\lambdan.2* (int n+1))\subseteq range (cfrac-nth e-cfrac)
    proof safe
        fix n :: nat
    have cfrac-nth e-cfrac (3*n+2) \in range (cfrac-nth e-cfrac)
        by blast
    also have }(3*n+2)\operatorname{mod}3=
        by presburger
    hence cfrac-nth e-cfrac (3*n+2)=2*(int n+1)
        by (simp add: cfrac-nth-e)
    finally show 2* (int n+1)\in range (cfrac-nth e-cfrac).
    qed
    moreover have infinite (range (\lambdan. 2* (int n + 1)))
    by (subst finite-image-iff) (auto intro!: injI)
    ultimately have infinite (range (cfrac-nth e-cfrac))
    using finite-subset by blast
    thus ?thesis using quadratic-irrational-cfrac-nth-range-finite[of e-cfrac]
    by (auto simp: e-cfrac)
qed
end
end
```


4 Continued fraction expansions for square roots of naturals

```
theory Sqrt-Nat-Cfrac
imports
    Quadratic-Irrationals
    HOL-Library.While-Combinator
    HOL-Library.IArray
begin
```

In this section, we shall explore the continued fraction expansion of \sqrt{D}, where D is a natural number.
lemma butlast-nth $[$ simp]: $n<$ length $x s-1 \Longrightarrow$ butlast $x s!n=x s!n$ by (induction xs arbitrary: n) (auto simp: nth-Cons split: nat.splits)

The following is the length of the period in the continued fraction expansion of \sqrt{D} for a natural number D.

```
definition sqrt-nat-period-length \(::\) nat \(\Rightarrow\) nat where
    sqrt-nat-period-length \(D=\)
        (if is-square \(D\) then 0
        else (LEAST \(l . l>0 \wedge(\forall n\). cfrac-nth \((\) cfrac-of-real \((\) sqrt \(D))(S u c n+l)=\)
                    cfrac-nth (cfrac-of-real (sqrt D)) (Suc n))))
```

Next, we define a more workable representation for the continued fraction expansion of \sqrt{D} consisting of the period length, the natural number $\lfloor\sqrt{D}\rfloor$, and the content of the period.

```
definition sqrt-cfrac-info :: nat \(\Rightarrow\) nat \(\times\) nat \(\times\) nat list where
    sqrt-cfrac-info \(D=\)
    (sqrt-nat-period-length D, Discrete.sqrt D,
    \(\operatorname{map}(\lambda n\). nat (cfrac-nth (cfrac-of-real (sqrt D)) (Suc n) ) \([0 . .<\) sqrt-nat-period-length
D])
```

lemma sqrt-nat-period-length-square $[$ simp $]$: is-square $D \Longrightarrow$ sqrt-nat-period-length
$D=0$
by (auto simp: sqrt-nat-period-length-def)
definition sqrt-cfrac :: nat \Rightarrow cfrac
where sqrt-cfrac $D=c f r a c$-of-real $($ sqrt (real $D))$
context
fixes $D D^{\prime}::$ nat
defines $D^{\prime} \equiv$ nat \lfloor sqrt $D\rfloor$
begin

A number $\alpha=\frac{\sqrt{D}+p}{q}$ for $p, q \in \mathbb{N}$ is called a reduced quadratic surd if $\alpha>1$ and bar $\alpha \in(-1 ; 0)$, where $\bar{\alpha}$ denotes the conjugate $\frac{-\sqrt{D}+p}{q}$.
It is furthermore called associated to D if q divides $D-p^{2}$.
definition red-assoc :: nat \times nat \Rightarrow bool where

```
red-assoc \(=(\lambda(p, q)\).
    \(q>0 \wedge q \operatorname{dvd}\left(D-p^{2}\right) \wedge(\operatorname{sqrt} D+p) / q>1 \wedge(-\operatorname{sqrt} D+p) / q \in\)
\(\{-1<. .<0\})\)
```

The following two functions convert between a surd represented as a pair of natural numbers and the actual real number and its conjugate:

```
definition surd-to-real \(::\) nat \(\times\) nat \(\Rightarrow\) real
    where surd-to-real \(=(\lambda(p, q) .(\) sqrt \(D+p) / q)\)
definition surd-to-real-cnj :: nat \(\times\) nat \(\Rightarrow\) real
    where surd-to-real-cnj \(=(\lambda(p, q) .(-\) sqrt \(D+p) / q)\)
```

The next function performs a single step in the continued fraction expansion of \sqrt{D}.
definition sqrt-remainder-step :: nat \times nat \Rightarrow nat \times nat where
sqrt-remainder-step $=\left(\lambda(p, q)\right.$. let $X=\left(p+D^{\prime}\right)$ div $q ; p^{\prime}=X * q-p$ in $\left(p^{\prime}\right.$, $\left.\left.\left(D-p^{\prime 2}\right) \operatorname{div} q\right)\right)$

If we iterate this step function starting from the surd $\frac{1}{\sqrt{D}-\lfloor\sqrt{D}\rfloor}$, we get the entire expansion.
definition sqrt-remainder-surd $::$ nat \Rightarrow nat \times nat
where sqrt-remainder-surd $=\left(\lambda n .\left(\right.\right.$ sqrt-remainder-step $\left.\left.{ }^{\sim} n\right)\left(D^{\prime}, D-D^{\prime 2}\right)\right)$
context
fixes sqrt-cfrac-nth $::$ nat \Rightarrow nat and l
assumes nonsquare: $\neg i s$-square D
defines sqrt-cfrac-nth $\equiv\left(\lambda n\right.$. case sqrt-remainder-surd n of $(p, q) \Rightarrow\left(D^{\prime}+p\right)$ $\operatorname{div} q$)
defines $l \equiv$ sqrt-nat-period-length D
begin
lemma D^{\prime}-pos: $D^{\prime}>0$
using nonsquare by (auto simp: D^{\prime}-def of-nat-ge-1-iff intro: Nat.gr0I)
lemma D^{\prime}-sqr-less- $D: D^{\prime 2}<D$
proof -
have $D^{\prime} \leq$ sqrt D by (auto simp: D^{\prime}-def)
hence real $D^{\prime}{ }^{\wedge} 2 \leq$ sqrt $D^{\wedge} 2$ by (intro power-mono) auto
also have $\ldots=D$ by simp
finally have $D^{\prime 2} \leq D$ by simp
moreover from nonsquare have $D \neq D^{\prime 2}$ by auto
ultimately show ?thesis by simp
qed
lemma red-assoc-imp-irrat:
assumes red-assoc pq
shows surd-to-real $p q \notin \mathbb{Q}$
proof
assume rat: surd-to-real $p q \in \mathbb{Q}$
with assms rat show False using irrat-sqrt-nonsquare[OF nonsquare]
by (auto simp: field-simps red-assoc-def surd-to-real-def divide-in-Rats-iff2
add-in-Rats-iff1)
qed
lemma surd-to-real-cnj-irrat:
assumes red-assoc pq
shows surd-to-real-cnj $p q \notin \mathbb{Q}$
proof
assume rat: surd-to-real-cnj $p q \in \mathbb{Q}$
with assms rat show False using irrat-sqrt-nonsquare[OF nonsquare]
by (auto simp: field-simps red-assoc-def surd-to-real-cnj-def divide-in-Rats-iff2 diff-in-Rats-iff1)
qed
lemma surd-to-real-nonneg [intro]: surd-to-real $p q \geq 0$
by (auto simp: surd-to-real-def case-prod-unfold divide-simps intro!: divide-nonneg-nonneg)
lemma surd-to-real-pos [intro]: red-assoc $p q \Longrightarrow$ surd-to-real $p q>0$
by (auto simp: surd-to-real-def case-prod-unfold divide-simps red-assoc-def intro!: divide-nonneg-nonneg)
lemma surd-to-real-nz [simp]: red-assoc $p q \Longrightarrow$ surd-to-real $p q \neq 0$
by (auto simp: surd-to-real-def case-prod-unfold divide-simps red-assoc-def intro!: divide-nonneg-nonneg)
lemma surd-to-real-cnj-nz [simp]: red-assoc $p q \Longrightarrow$ surd-to-real-cnj $p q \neq 0$
using surd-to-real-cnj-irrat[of pq] by auto
lemma red-assoc-step:
assumes red-assoc pq
defines $X \equiv\left(D^{\prime}+f s t p q\right)$ div snd $p q$
defines $p q^{\prime} \equiv$ sqrt-remainder-step $p q$
shows red-assoc $p q^{\prime}$
surd-to-real $p q^{\prime}=1 /$ frac (surd-to-real $\left.p q\right)$ surd-to-real-cnj $p q^{\prime}=1 /($ surd-to-real-cnj $p q-X)$ $X>0 X *$ snd $p q \leq 2 * D^{\prime} X=$ nat \lfloor surd-to-real $p q\rfloor$ $X=$ nat $\left\lfloor-1 /\right.$ surd-to-real-cnj $\left.p q^{\prime}\right\rfloor$
proof -
obtain $p q$ where $[$ simp $]: p q=(p, q)$ by (cases $p q)$
obtain $p^{\prime} q^{\prime}$ where $\left[\right.$ simp]: $p q^{\prime}=\left(p^{\prime}, q^{\prime}\right)$ by (cases $\left.p q^{\prime}\right)$
define α where $\alpha=($ sqrt $D+p) / q$
define α^{\prime} where $\alpha^{\prime}=1 / \operatorname{frac} \alpha$
define $c n j-\alpha^{\prime}$ where $c n j-\alpha^{\prime}=(-s q r t D+(X * q-i n t p)) /((D-(X * q-$ int $p)^{2}$) div q)
from $\operatorname{assms}(1)$ have $\alpha>0 q>0$
by (auto simp: α-def red-assoc-def)
from $\operatorname{assms}(1)$ nonsquare have $\alpha \notin \mathbb{Q}$
by (auto simp: α-defred-assoc-def divide-in-Rats-iff2 add-in-Rats-iff2 irrat-sqrt-nonsquare)
hence α^{\prime}-pos: frac $\alpha>0$ using Ints-subset-Rats by auto
from $\left\langle p q^{\prime}=\left(p^{\prime}, q^{\prime}\right)\right\rangle$ have $p^{\prime}-\operatorname{def}: p^{\prime}=X * q-p$ and $q^{\prime}-\operatorname{def}: q^{\prime}=\left(D-p^{\prime 2}\right)$
div q
unfolding $p q^{\prime}$-def sqrt-remainder-step-def X-def by (auto simp: Let-def add-ac)
have $D^{\prime}+p=\lfloor$ sqrt $D+p\rfloor$
by (auto simp: D^{\prime}-def)
also have \ldots div int $q=\lfloor($ sqrt $D+p) / q\rfloor$
by (subst floor-divide-real-eq-div [symmetric]) auto
finally have X-altdef: $X=$ nat $\lfloor($ sqrt $D+p) / q\rfloor$
unfolding X-def zdiv-int [symmetric] by auto
have $n z$: sqrt $(\operatorname{real} D)+(X * q-\operatorname{real} p) \neq 0$
proof
assume sqrt $($ real $D)+(X * q-\operatorname{real} p)=0$

```
    hence sqrt (real D) = real p-X*q by (simp add: algebra-simps)
    also have ... \in\mathbb{Q}\mathrm{ by auto}
    finally show False using irrat-sqrt-nonsquare nonsquare by blast
qed
    from assms(1) have real ( p 2) \leq sqrt D ^2
    unfolding of-nat-power by (intro power-mono) (auto simp: red-assoc-def
field-simps)
    also have sqrt D ^ 2 = D by simp
    finally have p}\mp@subsup{p}{}{2}\leqD\mathrm{ by (subst (asm) of-nat-le-iff)
    have frac \alpha=\alpha-X
    by (simp add: X-altdef frac-def \alpha-def)
    also have ... = (sqrt D - (X*q-int p))/q
    using <q> 0〉 by (simp add: field-simps \alpha-def)
    finally have 1/ frac \alpha = q / (sqrt D - (X*q-int p))
    by simp
    also have \ldots= q* (sqrt D +(X*q-int p))/
                    ((sqrt D - (X*q-int p))*(sqrt D + (X*q- int p))) (is - =
?A / ?B)
    using nz by (subst mult-divide-mult-cancel-right) auto
    also have ?B = real-of-int ( D - int p^2 + 2* X*p*q-int X^2*q^2)
    by (auto simp: algebra-simps power2-eq-square)
    also have qdvd (D- p` 2) using assms(1) by (auto simp: red-assoc-def)
    with }\langle\mp@subsup{p}{}{2}\leqD>\mathrm{ have int q dvd (int D - int p ^ 2)
    unfolding of-nat-power [symmetric] by (subst of-nat-diff [symmetric]) auto
    hence D - int p^2 + 2* X*p*q-int X^2* q^2 = q* ((D - (X*q
- int p)}\mp@subsup{)}{}{2}\mathrm{ ) div q)
    by (auto simp: power2-eq-square algebra-simps)
    also have ?A / .. = (sqrt D + (X*q-int p))/((D-(X*q-int p)}\mp@subsup{)}{}{2})di
q)
    unfolding of-int-mult of-int-of-nat-eq
    by (rule mult-divide-mult-cancel-left) (insert <q > 0\rangle, auto)
finally have }\mp@subsup{\alpha}{}{\prime}:\mp@subsup{\alpha}{}{\prime}=\ldots\mathrm{ by (simp add: 尔-def)
have dvd: q dvd (D - (X*q-int p)}\mp@subsup{)}{}{2
    using assms(1) <int q dvd (int D - int p ^ 2)〉
    by (auto simp: power2-eq-square algebra-simps)
    have }X\leq(sqrt D+p)/q unfolding X-altdef by simp
    moreover have X}\not=(\mathrm{ sqrt }D+p)/
    proof
    assume X = (sqrt D + p)/q
    hence sqrt D = q* X - real p using }\langleq>0\rangle\mathrm{ by (auto simp: field-simps)
    also have ...\in\mathbb{Q}\mathrm{ by auto}
    finally show False using irrat-sqrt-nonsquare[OF nonsquare] by simp
qed
ultimately have }X<(\mathrm{ sqrt D + p)/q by simp
hence *:}(X*q-int p)< sqrt D
```

```
    using <q> 0\rangle by (simp add: field-simps)
moreover
have pos: real-of-int (int D-(int X*int q-int p)}\mp@subsup{)}{}{2})>
proof (cases X*q\geqp)
    case True
    hence real p}\leq\mathrm{ real X * real q unfolding of-nat-mult [symmetric] of-nat-le-iff
    hence real-of-int ((X*q-int p) ~ 2) < sqrt D ^2 using *
        unfolding of-int-power by (intro power-strict-mono) auto
    also have ... = D by simp
    finally show ?thesis by simp
next
    case False
    hence less: real X* real q< real p
        unfolding of-nat-mult [symmetric] of-nat-less-iff by auto
    have}(\mathrm{ real }X*\mathrm{ real }q-\operatorname{real p)}\mp@subsup{)}{}{2}=(\mathrm{ real }p-\operatorname{real}X*\operatorname{real q}\mp@subsup{)}{}{2
        by (simp add: power2-eq-square algebra-simps)
    also have ... \leqreal p^2 using less by (intro power-mono) auto
    also have ... < sqrt D ^2
        using <q> 0\rangle assms(1) unfolding of-int-power
        by (intro power-strict-mono) (auto simp: red-assoc-def field-simps)
    also have ... = D by simp
    finally show ?thesis by simp
qed
hence pos': int D - (int X* int q-int p)}\mp@subsup{)}{}{2}>
    by (subst (asm) of-int-0-less-iff)
from pos have real-of-int ((int D - (int X * int q-int p)}\mp@subsup{)}{}{2})\mathrm{ div q)>0
    using \langleq> 0\rangle dvd by (subst real-of-int-div) (auto intro!: divide-pos-pos)
ultimately have cnj-neg: cnj-\alpha'< < unfolding cnj-\alpha'-def using dvd
    unfolding of-int-0-less-iff by (intro divide-neg-pos) auto
have (p-sqrt D) / q<0
    using assms(1) by (auto simp: red-assoc-def X-altdef le-nat-iff)
also have }X\geq
    using assms(1) by (auto simp: red-assoc-def X-altdef le-nat-iff)
hence 0\leq real X - 1 by simp
finally have q< sqrt D+int q*X - p
    using <q> 0\rangle by (simp add: field-simps)
hence q*(sqrt D - (int q*X - p))< (sqrt D + (int q*X - p))*(sqrt D
- (int q* X - p))
    using * by (intro mult-strict-right-mono) (auto simp: red-assoc-def X-altdef
field-simps)
    also have \ldots= D-(int q* * - p)^2
    by (simp add: power2-eq-square algebra-simps)
finally have cnj-\alpha'> -1
    using dvd pos }\langleq>0\rangle\mathrm{ by (simp add: real-of-int-div field-simps cnj- - '-def)
    from cnj-neg and this have cnj-\alpha'}\in{-1<..<0} by aut
    have }\mp@subsup{\alpha}{}{\prime}>1\mathrm{ using <frac }\alpha>0
```

```
    by (auto simp: \alpha'-def field-simps frac-lt-1)
    have 0=1+(-1 :: real)
    by simp
also have 1+-1< \mp@subsup{\alpha}{}{\prime}+cnj-\mp@subsup{\alpha}{}{\prime}
    using \langlecnj- - ' > -1\rangle and \langle\mp@subsup{\alpha}{}{\prime}> 1\rangle by (intro add-strict-mono)
also have }\mp@subsup{\alpha}{}{\prime}+cnj-\mp@subsup{\alpha}{}{\prime}=2*(\mathrm{ real }X*q- real p)/((int D-(int X*q-in
p)}\mp@subsup{)}{}{2}\mathrm{ ) div int q)
    by (simp add: \alpha' cnj-\alpha'-def add-divide-distrib [symmetric])
finally have real }X*q-\mathrm{ real }p>0\mathrm{ using pos dvd <q> 0>
    by (subst (asm) zero-less-divide-iff, subst (asm) (1 2 3) real-of-int-div)
        (auto simp: field-simps)
hence real ( }X*q)>\mathrm{ real p unfolding of-nat-mult by simp
hence p-less-Xq: p<X*q by (simp only: of-nat-less-iff)
from pos' and p-less-Xq have int D> int ((X*q-p)2)
    by (subst of-nat-power) (auto simp: of-nat-diff)
hence pos'': D> (X*q-p)2 unfolding of-nat-less-iff .
from dvd have int q dvd int (D-(X*q-p)
    using p-less-Xq pos" by (subst of-nat-diff) (auto simp: of-nat-diff)
with dvd have dvd': q dvd (D - (X*q-p)
    by simp
have }\mp@subsup{\alpha}{}{\prime}\mathrm{ -altdef: }\mp@subsup{\alpha}{}{\prime}=(\mathrm{ sqrt D + p')/ q'
    using dvd dvd' pos" p-less-Xq \alpha'
    by (simp add: real-of-int-div p'-def q'-def real-of-nat-div mult-ac of-nat-diff)
have cnj-\alpha'-altdef:cnj-\alpha'}=(-sqrt D + p')/ q'
    using dvd dvd' pos" p-less-Xq unfolding cnj-\alpha'-def
    by (simp add: real-of-int-div p'-def q'-def real-of-nat-div mult-ac of-nat-diff)
from }dv\mp@subsup{d}{}{\prime}\mathrm{ have }dv\mp@subsup{d}{}{\prime\prime}:\mp@subsup{q}{}{\prime}dvd(D - \mp@subsup{p}{}{\prime2}
    by (auto simp: mult-ac p'-def q'-def)
have real ((D - por) div q)>0 unfolding p'-def
    by (subst real-of-nat-div[OF dvd'], rule divide-pos-pos) (insert }\langleq>0\rangle pos'"
auto)
hence }\mp@subsup{q}{}{\prime}>0\mathrm{ unfolding }\mp@subsup{q}{}{\prime}\mathrm{ -def of-nat-0-less-iff .
show red-assoc pq' using <\alpha'> 1\rangle and \langlecnj-\alpha'\in -> and dvd" and \langleq'> 0\rangle
    by (auto simp: red-assoc-def 的-altdef cnj-\alpha'-altdef)
from assms(1) have real p<sqrt D
    by (auto simp add: field-simps red-assoc-def)
hence p\leq D' unfolding D'-def by linarith
with * have real (X*q)<sqrt (real D) + D'
    by simp
thus }X*\mathrm{ snd pq<2* D' unfolding D'-def <pq=(p,q)〉 snd-conv by linarith
have (sqrt D + p') / q' = \alpha'
    by (rule \alpha'-altdef [symmetric])
```

also have $\alpha^{\prime}=1 / \operatorname{frac}(($ sqrt $D+p) / q)$
by (simp add: α^{\prime}-def α-def)
finally show surd-to-real $p q^{\prime}=1 /$ frac (surd-to-real pq) by (simp add: surd-to-real-def)
from $\langle X \geq 1\rangle$ show $X>0$ by simp
from X-altdef show $X=$ nat \lfloor surd-to-real $p q\rfloor$ by (simp add: surd-to-real-def)
have sqrt $(\operatorname{real} D)<\operatorname{real} p+1 *$ real q
using assms(1) by (auto simp: red-assoc-def field-simps)
also have $\ldots \leq$ real $p+$ real $X *$ real q
using $\langle X>0\rangle$ by (intro add-left-mono mult-right-mono) (auto simp: of-nat-ge-1-iff)
finally have sqrt (real D) $<\ldots$.
have real $p<\operatorname{sqrt} D$
using assms(1) by (auto simp add: field-simps red-assoc-def)
also have $\ldots \leq \operatorname{sqrt} D+q * X$
by linarith
finally have less: real $p<$ sqrt $D+X * q$ by (simp add: algebra-simps)
moreover have $D+p * p^{\prime}+X * q *$ sqrt $D=q * q^{\prime}+p *$ sqrt $D+p^{\prime} *$ sqrt
$D+X * p^{\prime} * q$
using dvd' pos" ${ }^{\prime \prime}$-less-Xq $\langle q>0\rangle$ unfolding p^{\prime}-def q^{\prime}-def of-nat-mult of-nat-add by (simp add: power2-eq-square field-simps of-nat-diff real-of-nat-div)
ultimately show $*$: surd-to-real-cnj $p q^{\prime}=1 /($ surd-to-real-cnj $p q-X)$
using $\langle q\rangle 0\rangle\left\langle q^{\prime}>0\right\rangle$ by (auto simp: surd-to-real-cnj-def field-simps)
have $* *: a=n a t\lfloor y\rfloor$ if $x \geq 0 x<1$ real $a+x=y$ for $a::$ nat and $x y$:: real using that by linarith
from $\operatorname{assms}(1)$ have surd-to-real-cnj: surd-to-real-cnj $(p, q) \in\{-1<. .<0\}$ by (auto simp: surd-to-real-cnj-def red-assoc-def)
have surd-to-real-cnj $(p, q)<X$
using assms (1) less by (auto simp: surd-to-real-cnj-def field-simps red-assoc-def)
hence real $X=$ surd-to-real-cnj $(p, q)-1 / \operatorname{surd}$-to-real-cnj (p^{\prime}, q^{\prime}) using $*$ using surd-to-real-cnj-irrat assms(1) 〈red-assoc pq〉 by (auto simp: field-simps)
thus $X=$ nat $\left\lfloor-1 /\right.$ surd-to-real-cnj $\left.p q^{\prime}\right\rfloor$ using surd-to-real-cnj
by (intro $* *[o f-$ surd-to-real-cnj $(p, q)])$ auto
qed
lemma red-assoc-denom-2D:
assumes red-assoc (p, q)
defines $X \equiv\left(D^{\prime}+p\right)$ div q
assumes $X>D^{\prime}$
shows $q=1$
proof -
have $X * q \leq 2 * D^{\prime} X>0$
using red-assoc-step $(4,5)[$ OF assms(1)] by (simp-all add: X-def)
note this(1)
also have $2 * D^{\prime}<2 * X$
by (intro mult-strict-left-mono assms) auto
finally have $q<2$ using $\langle X>0\rangle$ by simp
moreover from assms(1) have $q>0$ by (auto simp: red-assoc-def)
ultimately show ?thesis by simp
qed
lemma red-assoc-denom-1:
assumes red-assoc $(p, 1)$
shows $\quad p=D^{\prime}$
proof -
from assms have sqrt $D>p$ sqrt $D<$ real $p+1$
by (auto simp: red-assoc-def)
thus $p=D^{\prime}$ unfolding D^{\prime}-def
by linarith
qed
lemma red-assoc-begin:
red-assoc ($D^{\prime}, D-D^{\prime 2}$)
surd-to-real $\left(D^{\prime}, D-D^{\prime 2}\right)=1 / \operatorname{frac}($ sqrt $D)$
surd-to-real-cnj $\left(D^{\prime}, D-D^{\prime 2}\right)=-1 /\left(\right.$ sqrt $\left.D+D^{\prime}\right)$
proof -
have pos: $D>0 D^{\prime}>0$
using nonsquare by (auto simp: D^{\prime}-def of-nat-ge-1-iff intro!: Nat.grOI)
have sqrt $D \neq D^{\prime}$
using irrat-sqrt-nonsquare[OF nonsquare] by auto
moreover have sqrt $D \geq 0$ by simp
hence $D^{\prime} \leq$ sqrt D unfolding D^{\prime}-def by linarith
ultimately have less: $D^{\prime}<$ sqrt D by simp
have sqrt $D \neq D^{\prime}+1$
using irrat-sqrt-nonsquare[OF nonsquare] by auto
moreover have sqrt $D \geq 0$ by simp
hence $D^{\prime} \geq$ sqrt $D-1$ unfolding D^{\prime}-def by linarith
ultimately have $g t: D^{\prime}>\operatorname{sqrt} D-1$ by simp
from less have real $D^{\prime} \sim 2<$ sqrt $D へ^{2}$ by (intro power-strict-mono) auto also have $\ldots=D$ by simp
finally have less': $D^{\prime 2}<D$ unfolding of-nat-power [symmetric] of-nat-less-iff.
moreover have real $D^{\prime} *\left(\right.$ real $\left.D^{\prime}-1\right)<\operatorname{sqrt} D *($ sqrt $D-1)$
using less pos
by (intro mult-strict-mono diff-strict-right-mono) (auto simp: of-nat-ge-1-iff)
hence $D^{\prime 2}+\operatorname{sqrt} D<D^{\prime}+D$
by (simp add: field-simps power2-eq-square)
moreover have $($ sqrt $D-1) * \operatorname{sqrt} D<\operatorname{real} D^{\prime} *\left(\right.$ real $\left.D^{\prime}+1\right)$
using pos gt by (intro mult-strict-mono) auto
hence $D<$ sqrt $D+D^{\prime 2}+D^{\prime}$ by (simp add: power2-eq-square field-simps)
ultimately show red-assoc ($D^{\prime}, D-D^{\prime 2}$)
by (auto simp: red-assoc-def field-simps of-nat-diff less)
have frac: frac (sqrt $D)=$ sqrt $D-D^{\prime}$ unfolding frac-def D^{\prime}-def
by auto
show surd-to-real $\left(D^{\prime}, D-D^{\prime 2}\right)=1 /$ frac (sqrt D) unfolding surd-to-real-def
using less less' pos by (subst frac) (auto simp: of-nat-diff power2-eq-square field-simps)

```
    have surd-to-real-cnj ( }\mp@subsup{D}{}{\prime},D-\mp@subsup{D}{}{\prime2})=-((sqrt D - D')/( D - D'2 ))
    using less less' pos by (auto simp: surd-to-real-cnj-def field-simps)
    also have real (D - D'口})=(\mathrm{ sqrt D - D')}*(\mathrm{ sqrt D + D')
    using less' by (simp add: power2-eq-square algebra-simps of-nat-diff)
    also have (sqrt D - D')/\ldots=1/(sqrt D + D')
    using less by (subst nonzero-divide-mult-cancel-left) auto
    finally show surd-to-real-cnj ( D', D - D'2)}=-1/(\mathrm{ sqrt D + D') by simp
qed
lemma cfrac-remainder-surd-to-real:
    assumes red-assoc pq
    shows cfrac-remainder (cfrac-of-real (surd-to-real pq)) n=
        surd-to-real ((sqrt-remainder-step ^^ n) pq)
    using assms(1)
proof (induction n arbitrary: pq)
    case 0
    hence cfrac-lim (cfrac-of-real (surd-to-real pq)) = surd-to-real pq
    by (intro cfrac-lim-of-real red-assoc-imp-irrat 0)
    thus ?case using 0
        by auto
next
    case (Suc n)
    obtain pq where [simp]: pq=(p,q) by (cases pq)
    have surd-to-real ((sqrt-remainder-step ~Suc n) pq)=
            surd-to-real ((sqrt-remainder-step ^^ n) (sqrt-remainder-step ( }p,q))
    by (subst funpow-Suc-right) auto
    also have ... = cfrac-remainder (cfrac-of-real (surd-to-real (sqrt-remainder-step
(p,q)))) n
    using red-assoc-step(1)[of (p,q)] Suc.prems
        by (intro Suc.IH [symmetric]) (auto simp: sqrt-remainder-step-def Let-def
add-ac)
    also have surd-to-real (sqrt-remainder-step (p,q)) = 1 / frac (surd-to-real (p,
q))
    using red-assoc-step(2)[of (p,q)] Suc.prems
    by (auto simp: sqrt-remainder-step-def Let-def add-ac surd-to-real-def)
    also have cfrac-of-real \ldots. = cfrac-tl (cfrac-of-real (surd-to-real (p,q)))
    using Suc.prems Ints-subset-Rats red-assoc-imp-irrat by (subst cfrac-tl-of-real)
auto
    also have cfrac-remainder ...n = cfrac-remainder (cfrac-of-real (surd-to-real
(p,q))) (Suc n)
    by (simp add: cfrac-drop-Suc-right cfrac-remainder-def)
    finally show ?case by simp
qed
```

```
lemma red-assoc-step \({ }^{\prime}\) [intro]: red-assoc \(p q \Longrightarrow\) red-assoc (sqrt-remainder-step pq)
    using red-assoc-step (1)[of pq]
    by (simp add: sqrt-remainder-step-def case-prod-unfold add-ac Let-def)
lemma red-assoc-steps [intro]: red-assoc \(p q \Longrightarrow\) red-assoc ((sqrt-remainder-step \({ }^{\wedge}\)
n) \(p q\) )
    by (induction n) auto
lemma floor-sqrt-less-sqrt: \(D^{\prime}<\operatorname{sqrt} D\)
proof -
    have \(D^{\prime} \leq\) sqrt \(D\) unfolding \(D^{\prime}\)-def by auto
    moreover have sqrt \(D \neq D^{\prime}\)
        using irrat-sqrt-nonsquare[OF nonsquare] by auto
    ultimately show ?thesis by auto
qed
lemma red-assoc-bounds:
    assumes red-assoc pq
    shows \(\quad p q \in\left(S I G M A p:\left\{0<. . D^{\prime}\right\} .\left\{\right.\right.\) Suc \(\left.\left.D^{\prime}-p . . D^{\prime}+p\right\}\right)\)
proof -
    obtain \(p q\) where \([\) simp \(]: p q=(p, q)\) by (cases \(p q)\)
    from assms have \(*: p<\) sqrt \(D\)
        by (auto simp: red-assoc-def field-simps)
    hence \(p: p \leq D^{\prime}\) unfolding \(D^{\prime}\)-def by linarith
    from assms have \(p>0\) by (auto intro!: Nat.gr0I simp: red-assoc-def)
    have \(q>\operatorname{sqrt} D-p q<\operatorname{sqrt} D+p\)
    using assms by (auto simp: red-assoc-def field-simps)
    hence \(q \geq D^{\prime}+1-p q \leq D^{\prime}+p\)
        unfolding \(D^{\prime}\)-def by linarith +
    with \(p\langle p>0\rangle\) show ?thesis by simp
qed
lemma surd-to-real-cnj-eq-iff:
    assumes red-assoc pq red-assoc \(p q^{\prime}\)
    shows surd-to-real-cnj \(p q=\) surd-to-real-cnj \(p q^{\prime} \longleftrightarrow p q=p q^{\prime}\)
proof
    assume eq: surd-to-real-cnj \(p q=\) surd-to-real-cnj \(p q^{\prime}\)
    from assms have pos: snd \(p q>0\) snd \(p q^{\prime}>0\) by (auto simp: red-assoc-def)
    have snd \(p q=\) snd \(p q^{\prime}\)
    proof (rule ccontr)
        assume snd \(p q \neq\) snd \(p q^{\prime}\)
        with \(e q\) have sqrt \(D=\left(\right.\) real \(\left.\left(f s t ~ p q^{\prime} * s n d p q\right)-f s t ~ p q * s n d p q\right) /(\) real (snd
\(p q)\) - snd \(p q^{\prime}\) )
            using pos by (auto simp: field-simps surd-to-real-cnj-def case-prod-unfold)
            also have \(\ldots \in \mathbb{Q}\) by auto
            finally show False using irrat-sqrt-nonsquare[OF nonsquare] by auto
    qed
    moreover from this eq pos have \(f s t p q=f s t \quad p q^{\prime}\)
```

```
    by (auto simp: surd-to-real-cnj-def case-prod-unfold)
    ultimately show pq=pq' by (simp add: prod-eq-iff)
qed auto
lemma red-assoc-sqrt-remainder-surd [intro]: red-assoc (sqrt-remainder-surd n)
    by (auto simp: sqrt-remainder-surd-def intro!: red-assoc-begin)
lemma surd-to-real-sqrt-remainder-surd:
    surd-to-real (sqrt-remainder-surd n) = cfrac-remainder (cfrac-of-real (sqrt D))
(Suc n)
proof (induction n)
    case 0
    from nonsquare have D>0 by (auto intro!: Nat.grOI)
    with red-assoc-begin show ?case using nonsquare irrat-sqrt-nonsquare[OF non-
square]
    using Ints-subset-Rats cfrac-drop-Suc-right cfrac-remainder-def cfrac-tl-of-real
                sqrt-remainder-surd-def by fastforce
next
    case (Suc n)
    have surd-to-real (sqrt-remainder-surd (Suc n)) =
                surd-to-real (sqrt-remainder-step (sqrt-remainder-surd n))
    by (simp add: sqrt-remainder-surd-def)
    also have ... = 1 / frac (surd-to-real (sqrt-remainder-surd n))
    using red-assoc-step[OF red-assoc-sqrt-remainder-surd[of n]] by simp
    also have surd-to-real (sqrt-remainder-surd n)=
                    cfrac-remainder (cfrac-of-real (sqrt D)) (Suc n) (is - = ?X)
    by (rule Suc.IH)
    also have \cfrac-remainder (cfrac-of-real (sqrt (real D))) (Suc n)\rfloor=
                        cfrac-nth (cfrac-of-real (sqrt (real D))) (Suc n)
    using irrat-sqrt-nonsquare[OF nonsquare] by (intro floor-cfrac-remainder) auto
    hence 1/frac ?X = cfrac-remainder (cfrac-of-real (sqrt D)) (Suc (Suc n))
    using irrat-sqrt-nonsquare[OF nonsquare]
    by (subst cfrac-remainder-Suc[of Suc n])
        (simp-all add: frac-def cfrac-length-of-real-irrational)
    finally show ?case.
qed
lemma sqrt-cfrac: sqrt-cfrac-nth n = cfrac-nth (cfrac-of-real (sqrt D)) (Suc n)
proof -
    have cfrac-nth (cfrac-of-real (sqrt D)) (Suc n) =
                    cfrac-remainder (cfrac-of-real (sqrt D)) (Suc n)\rfloor
    using irrat-sqrt-nonsquare[OF nonsquare] by (subst floor-cfrac-remainder) auto
    also have cfrac-remainder (cfrac-of-real (sqrt D)) (Suc n) = surd-to-real (sqrt-remainder-surd
n)
    by (rule surd-to-real-sqrt-remainder-surd [symmetric])
    also have nat \lfloorsurd-to-real (sqrt-remainder-surd n) \rfloor= sqrt-cfrac-nth n
    unfolding sqrt-cfrac-nth-def using red-assoc-step(6)[OF red-assoc-sqrt-remainder-surd[of
n]]
    by (simp add: case-prod-unfold)
```

```
    finally show ?thesis
    by (simp add: nat-eq-iff)
qed
```

lemma sqrt-cfrac-pos: sqrt-cfrac-nth $k>0$
using red-assoc-step (4)[OF red-assoc-sqrt-remainder-surd[of k]]
by (simp add: sqrt-cfrac-nth-def case-prod-unfold)
lemma snd-sqrt-remainder-surd-pos: snd (sqrt-remainder-surd n) >0
using red-assoc-sqrt-remainder-surd $[$ of $n]$ by (auto simp: red-assoc-def)

lemma

shows period-nonempty: $\quad l>0$
and period-length-le-aux: $l \leq D^{\prime} *\left(D^{\prime}+1\right)$
and sqrt-remainder-surd-periodic: $\bigwedge n$.sqrt-remainder-surd $n=$ sqrt-remainder-surd (n mod l)
and sqrt-cfrac-periodic: $\bigwedge n$. sqrt-cfrac-nth $n=s q r t-c f r a c-n t h(n \bmod l)$
and sqrt-remainder-surd-smallest-period:
$\bigwedge n . n \in\{0<. .<l\} \Longrightarrow$ sqrt-remainder-surd $n \neq$ sqrt-remainder-surd 0
and snd-sqrt-remainder-surd-gt-1: $\bigwedge n . n<l-1 \Longrightarrow$ snd (sqrt-remainder-surd
n) >1
and sqrt-cfrac-le: $\quad \bigwedge n . n<l-1 \Longrightarrow$ sqrt-cfrac- nth $n \leq D^{\prime}$
and sqrt-remainder-surd-last: \quad sqrt-remainder-surd $(l-1)=\left(D^{\prime}, 1\right)$
and sqrt-cfrac-last: \quad sqrt-cfrac-nth $(l-1)=2 * D^{\prime}$
and sqrt-cfrac-palindrome: $\bigwedge n . n<l-1 \Longrightarrow \operatorname{sqrt-cfrac-nth}(l-n-2)=$ sqrt-cfrac-nth n
and sqrt-cfrac-smallest-period:
$\bigwedge l^{\prime} . l^{\prime}>0 \Longrightarrow\left(\bigwedge k\right.$. sqrt-cfrac-nth $\left(k+l^{\prime}\right)=$ sqrt-cfrac-nth $\left.k\right) \Longrightarrow l^{\prime} \geq l$
proof -
note $[$ simp $]=$ sqrt-remainder-surd-def
define f where $f=$ sqrt-remainder-surd
have $*[$ intro $]$: red-assoc ($f n$) for n
unfolding f-def by (rule red-assoc-sqrt-remainder-surd)
define S where $S=\left(S I G M A p:\left\{0<. . D^{\prime}\right\} .\left\{\right.\right.$ Suc $\left.\left.D^{\prime}-p . . D^{\prime}+p\right\}\right)$
have [intro]: finite S by (simp add: S-def)
have card $S=\left(\sum p=1 . . D^{\prime} .2 * p\right)$ unfolding S-def
by (subst card-SigmaI) (auto intro!: sum.cong)
also have $\ldots=D^{\prime} *\left(D^{\prime}+1\right)$
by (induction D^{\prime}) (auto simp: power2-eq-square)
finally have $[$ simp $]$: card $S=D^{\prime} *\left(D^{\prime}+1\right)$.
have $D^{\prime} *\left(D^{\prime}+1\right)+1=\operatorname{card}\left\{. . D^{\prime} *\left(D^{\prime}+1\right)\right\}$ by simp
define $k 1$ where
$k 1=\left(\right.$ LEAST $k 1 . k 1 \leq D^{\prime} *\left(D^{\prime}+1\right) \wedge\left(\exists k 2 . k 2 \leq D^{\prime} *\left(D^{\prime}+1\right) \wedge k 1 \neq k 2\right.$ $\wedge f k 1=f k 2))$
define $k 2$ where

$$
k 2=\left(L E A S T k 2 . k 2 \leq D^{\prime} *\left(D^{\prime}+1\right) \wedge k 1 \neq k 2 \wedge f k 1=f k 2\right)
$$

have f ' $\left\{. . D^{\prime} *\left(D^{\prime}+1\right)\right\} \subseteq S$ unfolding S-def using red-assoc-bounds $[O F *]$ by blast
hence $\operatorname{card}\left(f\right.$ ' $\left.\left\{. . D^{\prime} *\left(D^{\prime}+1\right)\right\}\right) \leq \operatorname{card} S$
by (intro card-mono) auto
also have card $S=D^{\prime} *\left(D^{\prime}+1\right)$ by simp
also have $\ldots<\operatorname{card}\left\{. . D^{\prime} *\left(D^{\prime}+1\right)\right\}$ by simp
finally have $\neg \operatorname{inj}$-on $f\left\{. . D^{\prime} *\left(D^{\prime}+1\right)\right\}$ by (rule pigeonhole)
hence $\exists k 1$. $k 1 \leq D^{\prime} *\left(D^{\prime}+1\right) \wedge\left(\exists k 2 . k 2 \leq D^{\prime} *\left(D^{\prime}+1\right) \wedge k 1 \neq k 2 \wedge f k 1\right.$ $=f k 2$)
by (auto simp: inj-on-def)
from LeastI-ex[OF this, folded k1-def]
have $k 1 \leq D^{\prime} *\left(D^{\prime}+1\right) \exists k 2 \leq D^{\prime} *\left(D^{\prime}+1\right) . k 1 \neq k 2 \wedge f k 1=f k 2$ by auto
moreover from LeastI-ex[OF this(2), folded k2-def]
have $k 2 \leq D^{\prime} *\left(D^{\prime}+1\right) k 1 \neq k 2 f k 1=f k 2$ by auto
moreover have $k 1 \leq k 2$
proof (rule ccontr)
assume $\neg(k 1 \leq k 2)$
hence $k 2 \leq D^{\prime} *\left(D^{\prime}+1\right) \wedge\left(\exists k 2^{\prime} . k 2^{\prime} \leq D^{\prime} *\left(D^{\prime}+1\right) \wedge k 2 \neq k 2^{\prime} \wedge f k 2=\right.$ f k2')
using $\left\langle k 1 \leq D^{\prime} *\left(D^{\prime}+1\right)\right\rangle$ and $\langle k 1 \neq k 2\rangle$ and $\langle f k 1=f k 2\rangle$ by auto
hence $k 1 \leq k 2$ unfolding $k 1$-def by (rule Least-le)
with $\langle\neg(k 1 \leq k 2)\rangle$ show False by simp
qed
ultimately have $k 12: k 1<k 2 k 2 \leq D^{\prime} *\left(D^{\prime}+1\right) f k 1=f k 2$ by auto

```
have [simp]: \(k 1=0\)
proof (cases k1)
    case (Suc k1')
    define \(k Q^{\prime}\) where \(k 2^{\prime}=k 2-1\)
    have Suc': \(k 2=\) Suc \(k 2^{\prime}{ }^{\prime}\) using \(k 12\) by (simp add: \(k 2^{\prime}\)-def)
    have nz: surd-to-real-cnj (sqrt-remainder-step \(\left.\left(f k 1^{\prime}\right)\right) \neq 0\)
                surd-to-real-cnj (sqrt-remainder-step \((f\) kR' \()\) ) \(\neq 0\)
        using surd-to-real-cnj-nz[OF *[of k2]] surd-to-real-cnj-nz[OF *[of k1]]
        by (simp-all add: f-def Suc Suc')
    define \(a\) where \(a=\left(D^{\prime}+f s t(f k 1)\right)\) div snd ( \(f k 1\) )
    define \(a^{\prime}\) where \(a^{\prime}=\left(D^{\prime}+f s t\left(f k 1^{\prime}\right)\right)\) div snd \(\left(f k 1^{\prime}\right)\)
    define \(a^{\prime \prime}\) where \(a^{\prime \prime}=\left(D^{\prime}+f s t\left(f k \mathcal{R}^{\prime}\right)\right)\) div snd ( \(\left.f k \mathcal{L}^{\prime}\right)\)
    have \(a^{\prime}=\) nat \(\left\lfloor-1 /\right.\) surd-to-real-cnj (sqrt-remainder-step \(\left.\left.\left(f k 1^{\prime}\right)\right)\right\rfloor\)
        using red-assoc-step \(\left[O F *[o f ~ k 1\right.\) ' \(]\) ] by (simp add: \(a^{\prime}\)-def)
    also have sqrt-remainder-step \(\left(f k 1^{\prime}\right)=f k 1\)
        by (simp add: Suc f-def)
    also have \(f k 1=f k 2\) by fact
    also have \(f k 2=\) sqrt-remainder-step \(\left(f k 2^{\prime}\right)\) by (simp add: Suc' \(f\)-def)
    also have nat \(\left\lfloor-1 /\right.\) surd-to-real-cnj (sqrt-remainder-step \(\left.\left.\left(f k 2^{\prime}\right)\right)\right\rfloor=a^{\prime \prime}\)
        using red-assoc-step[OF *[of k2 J] by (simp add: \(a^{\prime \prime}\)-def)
    finally have \(a^{\prime}-a^{\prime \prime}: a^{\prime}=a^{\prime \prime}\).
```

```
    have surd-to-real-cnj (f k2')}\not=\mp@subsup{a}{}{\prime\prime
        using surd-to-real-cnj-irrat[OF *[of k2I] by auto
    hence surd-to-real-cnj (f k\mp@subsup{\mathcal{R}}{}{\prime})=1/ surd-to-real-cnj (sqrt-remainder-step (f
k2'))}+\mp@subsup{a}{}{\prime\prime
    using red-assoc-step(3)[OF *[of k2\], folded a''-def] nz
    by (simp add: field-simps)
    also have ... = 1 / surd-to-real-cnj (sqrt-remainder-step (f k1')) + a'
        using k12 by (simp add: a'-a'" k12 Suc Suc' f-def)
    also have nz': surd-to-real-cnj (f k1') \not= a'
        using surd-to-real-cnj-irrat[OF *[of k1]] by auto
    hence 1 / surd-to-real-cnj (sqrt-remainder-step (f k1')) + a'= surd-to-real-cnj
(f k1')
            using red-assoc-step(3)[OF *[of k1`], folded a'-def] nz nz'
            by (simp add: field-simps)
    finally have fk\mp@subsup{1}{}{\prime}=fk\mp@subsup{2}{}{\prime}
        by (subst (asm) surd-to-real-cnj-eq-iff) auto
    with k12 have k1'\leq D'* (D'+1)^(\existsk2\leq\mp@subsup{D}{}{\prime}*(\mp@subsup{D}{}{\prime}+1).k\mp@subsup{1}{}{\prime}\not=k2\wedgefk\mp@subsup{1}{}{\prime}
=fk2)
            by (auto simp: Suc Suc' intro!: exI[of - k2])
    hence k1\leqk1' unfolding k1-def by (rule Least-le)
    thus k1 = 0 by (simp add: Suc)
qed auto
have smallest-period: fk\not=f0 if k\in{0<..<k2} for k
proof
    assume fk=f0
    hence k\leq D'* (D' + 1)^k1\not=k\wedgefk1=fk
        using k12 that by auto
    hence k2 \leq k unfolding k2-def by (rule Least-le)
    with that show False by auto
qed
```

```
have snd-f-gt-1: snd \((f k)>1\) if \(k<k 2-1\) for \(k\)
proof -
    have snd \((f k) \neq 1\)
    proof
        assume snd \((f k)=1\)
        hence \(f k=\left(D^{\prime}, 1\right)\) using red-assoc-denom-1[of fst \(\left.(f k)\right] *[o f k]\)
            by (cases \(f k\) ) auto
    hence sqrt-remainder-step \((f k)=\left(D^{\prime}, D-D^{\prime 2}\right)\) by (auto simp: sqrt-remainder-step-def)
        hence \(f(S u c k)=f 0\) by (simp add: \(f\)-def)
        moreover have \(f(\) Suc \(k) \neq f 0\)
            using that by (intro smallest-period) auto
        ultimately show False by contradiction
    qed
    moreover have snd \((f k)>0\) using \(*[o f k]\) by (auto simp: red-assoc-def)
    ultimately show ?thesis by simp
qed
```

```
have sqrt-cfrac-le: sqrt-cfrac-nth k\leq D' if k<k2 - 1 for k
proof -
    define p and q}\mathrm{ where p=fst (fk) and q= snd (fk)
    have q\geq2 using snd-f-gt-1[of k] that by (auto simp: q-def)
    also have sqrt-cfrac-nth k*q\leq D'* 2
        using red-assoc-step(5)[OF *[of k]]
        by (simp add: sqrt-cfrac-nth-def p-def q-def case-prod-unfold f-def)
    finally show ?thesis by simp
qed
have last: f(k2 - 1)=( D',1)
proof -
    define p and q where p=fst (f(k2 - 1)) and q= snd (f (k2 - 1))
    have pq: f(k2 - 1) = (p,q) by (simp add: p-def q-def)
    have sqrt-remainder-step (f (k2 - 1)) =f(Suc (k2 - 1))
        by (simp add: f-def)
    also from k12 have Suc ( }k2-1)=k2\mathrm{ by simp
    also have fkL =f0
        using k12 by simp
    also have f 0=( D',D - D'r) by (simp add: f-def)
    finally have eq: sqrt-remainder-step (f (k2 - 1)) = (D',D - D'2).
    hence ( }D-\mp@subsup{D}{}{\prime2}\mathrm{ ) div q}=D-\mp@subsup{D}{}{\prime2}\mathrm{ unfolding sqrt-remainder-step-def Let-def
        by auto
    moreover have q>0 using *[of k2 - 1]
        by (auto simp: red-assoc-def q-def)
    ultimately have q=1 using D'sqr-less-D
        by (subst (asm) div-eq-dividend-iff) auto
    hence }p=\mp@subsup{D}{}{\prime
        using red-assoc-denom-1[of p]*[of k2 - 1] unfolding pq by auto
    with }\langleq=1\rangle\mathrm{ show f(k2 - 1)=(D', 1) unfolding pq by simp
qed
have period: sqrt-remainder-surd \(n=\) sqrt-remainder-surd ( \(n \bmod k 2\) ) for \(n\) unfolding sqrt-remainder-surd-def using \(k 12\)
by (metis \(\langle k 1=0\rangle f\)-def funpow-mod-eq funpow-0 sqrt-remainder-surd-def)
have period': sqrt-cfrac-nth \(k=\) sqrt-cfrac-nth ( \(k \bmod k 2\) ) for \(k\)
using period[of \(k]\) by (simp add: sqrt-cfrac-nth-def)
have \(k 2-l e: l \geq k 2\) if \(l>0 \wedge k\). sqrt-cfrac-nth \((k+l)=\) sqrt-cfrac-nth \(k\) for \(l\)
proof (rule ccontr)
assume \(*: \neg(l \geq k 2)\)
hence sqrt-cfrac-nth \((k 2-S u c l)=\operatorname{sqrt}-c f r a c-n t h(k 2-1)\)
using that(2) [of k2 - Suc l] by simp
also have \(\ldots=2 * D^{\prime}\)
using last by (simp add: sqrt-cfrac-nth-def f-def)
finally have \(2 * D^{\prime}=\) sqrt-cfrac-nth ( \(k 2-S u c l\) ) ..
```

```
    also have ... \leq D' using k12 that *
    by (intro sqrt-cfrac-le diff-less-mono2) auto
    finally show False using D'-pos by simp
qed
```

have $l=($ LEAST $l .0<l \wedge(\forall n$. int (sqrt-cfrac-nth $(n+l))=$ int (sqrt-cfrac-nth $n)$))
using nonsquare unfolding sqrt-cfrac-def
by (simp add: l-def sqrt-nat-period-length-def sqrt-cfrac)
hence l-altdef: $l=($ LEAST $l .0<l \wedge(\forall n$. sqrt-cfrac-nth $(n+l)=$ sqrt-cfrac-nth n))
by simp
have $[$ simp $]: D \neq 0$ using nonsquare by (auto intro!: Nat.gr0I)
have $\exists l . l>0 \wedge(\forall k$. sqrt-cfrac-nth $(k+l)=$ sqrt-cfrac-nth $k)$
proof (rule exI, safe)
fix k show sqrt-cfrac-nth $(k+k 2)=$ sqrt-cfrac-nth k
using period' [of k] period' $[$ of $k+k 2]$ k12 by simp
qed (insert $k 12$, auto)
from LeastI-ex[OF this, folded l-altdef]
have $l: l>0 \wedge k$. sqrt-cfrac-nth $(k+l)=$ sqrt-cfrac-nth k
by (simp-all add: sqrt-cfrac)
have $l \leq k 2$ unfolding l-altdef
by (rule Least-le) (subst (1 2) period', insert k12, auto)
moreover have $k 2 \leq l$ using $k 2$-le l by blast
ultimately have $[\operatorname{simp}]: l=k 2$ by auto
define x^{\prime} where $x^{\prime}=(\lambda k .-1 /$ surd-to-real-cnj $(f k))$
\{
fix $k::$ nat
have nz: surd-to-real-cnj $(f k) \neq 0$ surd-to-real-cnj $(f(S u c k)) \neq 0$
using surd-to-real-cnj-nz[OF *, of $k]$ surd-to-real-cnj-nz[OF *, of Suc $k]$
by (simp-all add: f-def)
have surd-to-real-cnj $(f k) \neq$ sqrt-cfrac-nth k using surd-to-real-cnj-irrat $[$ OF $*[o f k]]$ by auto
hence $x^{\prime}($ Suc $k)=$ sqrt-cfrac-nth $k+1 / x^{\prime} k$
using red-assoc-step (3)[OF *[of k]] nz
by (simp add: field-simps sqrt-cfrac-nth-def case-prod-unfold f-def x^{\prime}-def)
$\}$ note x^{\prime}-Suc $=$ this
have $x^{\prime}-n z: x^{\prime} k \neq 0$ for k
using surd-to-real-cnj-nz[OF *[of k]] by (auto simp: x^{\prime}-def)
have $x^{\prime}-0: x^{\prime} 0=$ real $D^{\prime}+\operatorname{sqrt} D$
using red-assoc-begin by (simp add: x^{\prime}-def f-def)
define c^{\prime} where $c^{\prime}=c f r a c(\lambda n$. sqrt-cfrac-nth $(l-S u c n))$
define $c^{\prime \prime}$ where $c^{\prime \prime}=\operatorname{cfrac}\left(\lambda n\right.$. if $n=0$ then $2 * D^{\prime}$ else sqrt-cfrac-nth $(n-$
have $n t h-c^{\prime}[$ simp $]$: cfrac-nth $c^{\prime} n=$ sqrt-cfrac-nth $(l-S u c n)$ for n
unfolding c^{\prime}-def by (subst cfrac-nth-cfrac) (auto simp: is-cfrac-def intro!:
sqrt-cfrac-pos)
have nth-c ${ }^{\prime \prime}[$ simp $]$: cfrac-nth $c^{\prime \prime} n=\left(\right.$ if $n=0$ then $2 * D^{\prime}$ else sqrt-cfrac- nth (n - 1)) for n
unfolding $c^{\prime \prime}$-def by (subst cfrac-nth-cfrac) (auto simp: is-cfrac-def intro!: sqrt-cfrac-pos)
have $\operatorname{conv}^{\prime} c^{\prime} n\left(x^{\prime}(l-n)\right)=x^{\prime} l$ if $n \leq l$ for n
using that
proof (induction n)
case (Suc n)
have $x^{\prime} l=$ conv $^{\prime} c^{\prime} n\left(x^{\prime}(l-n)\right)$
using Suc.prems by (intro Suc.IH [symmetric]) auto
also have $l-n=$ Suc ($l-$ Suc n)
using Suc.prems by simp
also have $x^{\prime} \ldots=$ cfrac-nth $c^{\prime} n+1 / x^{\prime}(l-$ Suc $n)$
by (subst x^{\prime}-Suc) simp
also have conv $c^{\prime} n \ldots=\operatorname{conv}^{\prime} c^{\prime}($ Suc $n)\left(x^{\prime}(l-S u c n)\right)$
by (simp add: conv'-Suc-right)
finally show ? case ..
qed simp-all
from this [of $l]$ have conv' $-x^{\prime}-0:$ conv $^{\prime} c^{\prime} l\left(\begin{array}{ll}x^{\prime} & 0\end{array}\right)=x^{\prime} 0$
using $k 12$ by (simp add: x^{\prime}-def)
have $c f r a c-n$th (cfrac-of-real $\left.\left(\begin{array}{ll}x^{\prime} & 0\end{array}\right)\right) n=c f r a c-n t h c^{\prime \prime} n$ for n
proof (cases n)
case 0
thus ?thesis by (simp add: $x^{\prime}-0 D^{\prime}$-def)
next
case (Suc n^{\prime})
have sqrt $D \notin \mathbb{Z}$
using red-assoc-begin(1) red-assoc-begin(2) by auto
hence cfrac-nth (cfrac-of-real (real $D^{\prime}+\operatorname{sqrt}($ real D) $\left.)\right)\left(\right.$ Suc $\left.n^{\prime}\right)=$ cfrac-nth (cfrac-of-real (sqrt (real D))) (Suc n')
by (simp add: cfrac-tl-of-real frac-add-of-nat Ints-add-left-cancel fip: cfrac-nth-tl)
thus ?thesis using $x^{\prime}-n z[o f 0]$
by (simp add: $x^{\prime}-0$ sqrt-cfrac Suc)
qed
show sqrt-cfrac-nth $(l-n-2)=$ sqrt-cfrac-nth n if $n<l-1$ for n
proof -
have $D>1$ using nonsquare by (cases D) (auto intro!: Nat.gr0I)
hence $D^{\prime}+$ sqrt $D>0+1$ using D^{\prime}-pos by (intro add-strict-mono) auto
hence $x^{\prime} 0>1$ by (auto simp: $x^{\prime}-0$)
hence cfrac-nth $c^{\prime}(S u c n)=c f r a c-n t h\left(c f r a c-o f-r e a l\left(\right.\right.$ conv $\left.\left.^{\prime} c^{\prime} l\left(x^{\prime} 0\right)\right)\right)(S u c$ n)
using $\langle n<l-1\rangle$ using cfrac-of-real-conv' by auto

```
    also have ... = cfrac-nth (cfrac-of-real (\begin{array}{ll}{\prime}&{0}\end{array})(Suc n)
    by (subst conv'-x'-0) auto
    also have ... = cfrac-nth c" (Suc n) by fact
    finally show sqrt-cfrac-nth (l-n-2) = sqrt-cfrac-nth n
        by simp
qed
    show l>0l\leq\mp@subsup{D}{}{\prime}*(\mp@subsup{D}{}{\prime}+1) using k12 by simp-all
    show sqrt-remainder-surd n = sqrt-remainder-surd ( }n\operatorname{mod}l
        sqrt-cfrac-nth n = sqrt-cfrac-nth ( }n\operatorname{mod}l)\mathrm{ for n
    using period[of n] period'[of n] by simp-all
show sqrt-remainder-surd n}=\mathrm{ sqrt-remainder-surd 0 if n }\in{0<..<l} for n
    using smallest-period[of n] that by (auto simp: f-def)
    show snd (sqrt-remainder-surd n)>1 if n<l-1 for n
    using that snd-f-gt-1[of n] by (simp add: f-def)
    show f(l-1) = (D',1) and sqrt-cfrac-nth (l-1) =2* D'
    using last by (simp-all add: sqrt-cfrac-nth-def f-def)
show sqrt-cfrac-nth k\leq焐 if k<l-1 for k
    using sqrt-cfrac-le[of k] that by simp
show l'\geql if l'>0 \bigwedgek. sqrt-cfrac-nth (k+ l')=sqrt-cfrac-nth k for l'
    using k2-le[of l` that by auto
qed
theorem cfrac-sqrt-periodic:
    cfrac-nth (cfrac-of-real (sqrt D)) (Suc n) =
    cfrac-nth (cfrac-of-real (sqrt D)) (Suc (n mod l))
    using sqrt-cfrac-periodic[of n] by (metis sqrt-cfrac)
theorem cfrac-sqrt-le: n }\in{0<..<l}\Longrightarrowcfrac-nth (cfrac-of-real (sqrt D)) n\leq D',
    using sqrt-cfrac-le[of n - 1]
    by (metis Suc-less-eq Suc-pred add.right-neutral greaterThanLessThan-iff of-nat-mono
        period-nonempty plus-1-eq-Suc sqrt-cfrac)
theorem cfrac-sqrt-last: cfrac-nth (cfrac-of-real (sqrt D)) l=2* D'
    using sqrt-cfrac-last by (metis One-nat-def Suc-pred period-nonempty sqrt-cfrac)
theorem cfrac-sqrt-palindrome:
    assumes n 
    shows cfrac-nth (cfrac-of-real (sqrt D)) (l-n) = cfrac-nth (cfrac-of-real (sqrt
D)) n
proof -
    have cfrac-nth (cfrac-of-real (sqrt D)) (l-n)=sqrt-cfrac-nth (l-n-1)
        using assms by (subst sqrt-cfrac) (auto simp: Suc-diff-Suc)
    also have ... = sqrt-cfrac-nth (n-1)
        using assms by (subst sqrt-cfrac-palindrome [symmetric]) auto
    also have ... = cfrac-nth (cfrac-of-real (sqrt D)) n
        using assms by (subst sqrt-cfrac) auto
    finally show ?thesis .
qed
```

```
lemma sqrt-cfrac-info-palindrome:
    assumes sqrt-cfrac-info D = (a,b,cs)
    shows rev (butlast cs) = butlast cs
proof (rule List.nth-equalityI; safe?)
    fix i assume i< length (rev (butlast cs))
    with period-nonempty have Suc i<length cs by simp
    thus rev (butlast cs)!i= butlast cs ! i
        using assms cfrac-sqrt-palindrome[of Suc i] period-nonempty unfolding l-def
        by (auto simp: sqrt-cfrac-info-def rev-nth algebra-simps Suc-diff-Suc simp del:
cfrac.simps)
qed simp-all
lemma sqrt-cfrac-info-last:
    assumes sqrt-cfrac-info D = (a,b,cs)
    shows last cs = 2 * Discrete.sqrt D
proof -
    from assms show ?thesis using period-nonempty cfrac-sqrt-last
        by (auto simp: sqrt-cfrac-info-def last-map l-def D'-def Discrete-sqrt-altdef)
qed
The following lemmas allow us to compute the period of the expansion of the square root:
```

```
lemma while-option-sqrt-cfrac:
```

lemma while-option-sqrt-cfrac:
defines step ${ }^{\prime} \equiv\left(\lambda(a s, p q) .\left(\left(D^{\prime}+f s t p q\right)\right.\right.$ div snd $p q \#$ as, sqrt-remainder-step
defines step ${ }^{\prime} \equiv\left(\lambda(a s, p q) .\left(\left(D^{\prime}+f s t p q\right)\right.\right.$ div snd $p q \#$ as, sqrt-remainder-step
$p q)$)
$p q)$)
defines $b \equiv(\lambda(-, p q)$. snd $p q \neq 1)$
defines $b \equiv(\lambda(-, p q)$. snd $p q \neq 1)$
defines initial $\equiv\left([]::\right.$ nat list, $\left.\left(D^{\prime}, D-D^{\prime 2}\right)\right)$
defines initial $\equiv\left([]::\right.$ nat list, $\left.\left(D^{\prime}, D-D^{\prime 2}\right)\right)$
shows while-option b step ${ }^{\prime}$ initial $=$
shows while-option b step ${ }^{\prime}$ initial $=$
Some (rev (map sqrt-cfrac-nth $\left.[0 . .<l-1]),\left(D^{\prime}, 1\right)\right)$
Some (rev (map sqrt-cfrac-nth $\left.[0 . .<l-1]),\left(D^{\prime}, 1\right)\right)$
proof -
proof -
define P where
define P where
$P=(\lambda($ as, $p q)$. let $n=$ length as
$P=(\lambda($ as, $p q)$. let $n=$ length as
in $n<l \wedge p q=$ sqrt-remainder-surd $n \wedge$ as $=\operatorname{rev}($ map
in $n<l \wedge p q=$ sqrt-remainder-surd $n \wedge$ as $=\operatorname{rev}($ map
sqrt-cfrac-nth $[0 . .<n]))$
sqrt-cfrac-nth $[0 . .<n]))$
define $\mu::$ nat list $\times($ nat \times nat $) \Rightarrow$ nat where $\mu=(\lambda($ as, -$) . l-$ length as $)$
define $\mu::$ nat list $\times($ nat \times nat $) \Rightarrow$ nat where $\mu=(\lambda($ as, -$) . l-$ length as $)$
have [simp]: P initial using period-nonempty
have [simp]: P initial using period-nonempty
by (auto simp: initial-def P-def sqrt-remainder-surd-def)
by (auto simp: initial-def P-def sqrt-remainder-surd-def)
have step $: P\left(\right.$ step $\left.^{\prime} s\right) \wedge S u c(l e n g t h(f s t s))<l$ if $P s b s$ for s
have step $: P\left(\right.$ step $\left.^{\prime} s\right) \wedge S u c(l e n g t h(f s t s))<l$ if $P s b s$ for s
proof (cases s)
proof (cases s)
case (fields as p q)
case (fields as p q)
define n where $n=$ length as
define n where $n=$ length as
from that fields sqrt-remainder-surd-last have Suc $n \leq l$
from that fields sqrt-remainder-surd-last have Suc $n \leq l$
by (auto simp: b-def P-def Let-def n-def [symmetric])
by (auto simp: b-def P-def Let-def n-def [symmetric])
moreover from that fields sqrt-remainder-surd-last have Suc $n \neq l$
moreover from that fields sqrt-remainder-surd-last have Suc $n \neq l$
by (auto simp: b-def P-def Let-def n-def [symmetric])
by (auto simp: b-def P-def Let-def n-def [symmetric])
ultimately have Suc $n<l$ by auto
ultimately have Suc $n<l$ by auto
with that fields sqrt-remainder-surd-last show P (step' s) \wedge Suc (length (fst
with that fields sqrt-remainder-surd-last show P (step' s) \wedge Suc (length (fst
s)) $<l$

```
s)) \(<l\)
```

by (simp add: b-def P-def Let-def n-def step'-def sqrt-cfrac-nth-def sqrt-remainder-surd-def case-prod-unfold)
qed
have $[$ simp $]$: length $\left(\right.$ fst $\left(\right.$ step $\left.\left.^{\prime} s\right)\right)=$ Suc $($ length $(f s t s))$ for s
by (simp add: step'-def case-prod-unfold)
have $\exists x$. while-option b step $^{\prime}$ initial $^{\text {w }}$ Some x proof (rule measure-while-option-Some)
fix s assume $*: P s b s$
from step ${ }^{\prime}[O F *]$ show $P\left(\right.$ step $\left.^{\prime} s\right) \wedge \mu\left(\right.$ step $\left.^{\prime} s\right)<\mu s$ by (auto simp: b-def μ-def case-prod-unfold intro!: diff-less-mono2)

qed auto

then obtain x where x : while-option b step ${ }^{\prime}$ initial $=$ Some x..
have $P x$ by (rule while-option-rule $[O F-x]$) (insert step ${ }^{\prime}$, auto)
have $\neg b x$ using while-option-stop $[O F x]$ by auto
obtain as $p q$ where [simp]: $x=(a s,(p, q))$ by (cases $x)$
define n where $n=$ length as
have $[$ simp $]: q=1$ using $\langle\neg b x\rangle$ by (auto simp: b-def)
have $[$ simp $]: p=D^{\prime}$ using $\langle P x\rangle$
using red-assoc-denom-1[of p] by (auto simp: P-def Let-def)
have $n<l$ sqrt-remainder-surd (length as) $=\left(D^{\prime}\right.$, Suc 0)
and as: as $=$ rev (map sqrt-cfrac-nth $[0 . .<n])$ using $\langle P$ x \rangle
by (auto simp: P-def Let-def n-def)
hence $\neg(n<l-1)$
using snd-sqrt-remainder-surd-gt-1[of $n]$ by (intro notI) auto
with $\langle n<l\rangle$ have $[$ simp $]: n=l-1$ by auto
show ?thesis by (simp add: as x)
qed
lemma while-option-sqrt-cfrac-info:
defines step ${ }^{\prime} \equiv\left(\lambda(a s, p q) .\left(\left(D^{\prime}+f s t p q\right)\right.\right.$ div snd $p q \#$ as, sqrt-remainder-step
$p q)$)
defines $b \equiv(\lambda(-, p q)$. snd $p q \neq 1)$
defines initial $\equiv\left([],\left(D^{\prime}, D-D^{\prime 2}\right)\right)$
shows sqrt-cfrac-info $D=$
(case while-option b step' initial of
Some (as, -) $\Rightarrow\left(\right.$ Suc (length as) $\left.\left., D^{\prime}, \operatorname{rev}\left(\left(2 * D^{\prime}\right) \# a s\right)\right)\right)$
proof -
have nat $($ cfrac-nth $($ cfrac-of-real $($ sqrt $($ real D) $))($ Suc $k))=$ sqrt-cfrac-nth k for k
by (metis nat-int sqrt-cfrac)
thus ?thesis unfolding assms while-option-sqrt-cfrac
using period-nonempty sqrt-cfrac-last
by (cases l) (auto simp: sqrt-cfrac-info-def D^{\prime}-def l-def Discrete-sqrt-altdef)
qed
end
end
lemma sqrt-nat-period-length-le: sqrt-nat-period-length $D \leq$ nat \lfloor sqrt $D\rfloor *$ (nat \lfloor sqrt $D\rfloor+1$)
by (cases is-square D) (use period-length-le-aux $[o f ~ D]$ in auto)
lemma sqrt-nat-period-length-O-iff [simp]:
sqrt-nat-period-length $D=0 \longleftrightarrow$ is-square D
using period-nonempty $[$ of $D]$ by (cases is-square D) auto
lemma sqrt-nat-period-length-pos-iff [simp]:
sqrt-nat-period-length $D>0 \longleftrightarrow \neg$ is-square D
using period-nonempty $[o f D]$ by (cases is-square D) auto
lemma sqrt-cfrac-info-code [code]:
sqrt-cfrac-info $D=$
(let $D^{\prime}=$ Discrete.sqrt D
in if $D^{\prime 2}=D$ then $\left(0, D^{\prime},[]\right)$
else
case while-option
$(\lambda(-, p q)$. snd $p q \neq 1)$
$\left(\lambda(\right.$ as, $(p, q))$. let $X=\left(p+D^{\prime}\right)$ div $q ; p^{\prime}=X * q-p$
in $\left(X \# a s, p^{\prime},\left(D-p^{2}\right)\right.$ div $\left.\left.q\right)\right)$
([], $\left.D^{\prime}, D-D^{\prime 2}\right)$
of Some $($ as,-$) \Rightarrow\left(\right.$ Suc $($ length as $\left.\left.), D^{\prime}, \operatorname{rev}\left(\left(2 * D^{\prime}\right) \# a s\right)\right)\right)$
proof -
define D^{\prime} where $D^{\prime}=$ Discrete.sqrt D
show ?thesis
proof (cases is-square D)
case True
hence $D^{\prime}{ }^{-2}=D$ by (auto simp: D^{\prime}-def elim!: is-nth-powerE)
thus ?thesis using True
by (simp add: D^{\prime}-def Let-def sqrt-cfrac-info-def sqrt-nat-period-length-def)
next
case False
hence D^{\prime} へ $2 \neq D$ by (subst eq-commute) auto
thus ?thesis using while-option-sqrt-cfrac-info[OF False]
by (simp add: sqrt-cfrac-info-def D^{\prime}-def Let-def
case-prod-unfold Discrete-sqrt-altdef add-ac sqrt-remainder-step-def)
qed
qed
lemma sqrt-nat-period-length-code [code]:
sqrt-nat-period-length $D=$ fst (sqrt-cfrac-info D)
by (simp add: sqrt-cfrac-info-def)
For efficiency reasons, it is often better to use an array instead of a list:
definition sqrt-cfrac-info-array where
sqrt-cfrac-info-array $D=($ case sqrt-cfrac-info D of $(a, b, c) \Rightarrow(a, b$, IArray $c))$
lemma fst-sqrt-cfrac-info-array $[$ simp $]$: fst $($ sqrt-cfrac-info-array $D)=$ sqrt-nat-period-length D
by (simp add: sqrt-cfrac-info-array-def sqrt-cfrac-info-def)
lemma snd-sqrt-cfrac-info-array $[$ simp $]$: fst $($ snd $($ sqrt-cfrac-info-array $D))=$ Discrete.sqrt D
by (simp add: sqrt-cfrac-info-array-def sqrt-cfrac-info-def)
definition cfrac-sqrt-nth :: nat \times nat \times nat iarray \Rightarrow nat \Rightarrow nat where cfrac-sqrt-nth info $n=$ (case info of $(l, a 0, a s) \Rightarrow$ if $n=0$ then a0 else as $!!((n-1) \bmod l))$
lemma cfrac-sqrt-nth:
assumes \neg is-square D
shows cfrac-nth (cfrac-of-real (sqrt D)) n=

$$
\text { int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) } n \text {) (is ?lhs =?rhs) }
$$

proof (cases n)
case (Suc n^{\prime})
define l where $l=$ sqrt-nat-period-length D
from period-nonempty[OF assms] have $l>0$ by (simp add: l-def)
have cfrac-nth (cfrac-of-real (sqrt D)) (Suc $\left.n^{\prime}\right)=$
cfrac-nth (cfrac-of-real (sqrt D)) (Suc (n^{\prime} mod l)) unfolding l-def using cfrac-sqrt-periodic[OF assms, of $n\rceil$ by simp
also have $\ldots=\operatorname{map}(\lambda n$. nat $($ cfrac-nth $($ cfrac-of-real $($ sqrt $D))($ Suc n) $))[0 . .<l]$ $!\left(n^{\prime} \bmod l\right)$
using $\langle l>0\rangle$ by (subst nth-map) auto
finally show ?thesis using Suc
by (simp add: sqrt-cfrac-info-array-def sqrt-cfrac-info-def l-def cfrac-sqrt-nth-def)
qed (simp-all add: sqrt-cfrac-info-def sqrt-cfrac-info-array-def
Discrete-sqrt-altdef cfrac-sqrt-nth-def)
lemma sqrt-cfrac-code [code]:
sqrt-cfrac $D=$
(let info $=$ sqrt-cfrac-info-array D;
$(l, a 0,-)=$ info
in if $l=0$ then cfrac-of-int (int a0) else cfrac (cfrac-sqrt-nth info))
proof (cases is-square D)
case True
hence sqrt (real D) $=$ of-int (Discrete.sqrt D)
by (auto elim!: is-nth-powerE)
thus ?thesis using True
by (auto simp: Let-def sqrt-cfrac-info-array-def sqrt-cfrac-info-def sqrt-cfrac-def)
next
case False
have cfrac-sqrt-nth (sqrt-cfrac-info-array D) $n>0$ if $n>0$ for n
proof -
have int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) n) >0
using False that by (subst cfrac-sqrt-nth [symmetric]) auto

```
        thus ?thesis by simp
    qed
    moreover have sqrt D\not\in\mathbb{Q}
    using False irrat-sqrt-nonsquare by blast
    ultimately have sqrt-cfrac D = cfrac (cfrac-sqrt-nth (sqrt-cfrac-info-array D))
    using cfrac-sqrt-nth[OF False]
    by (intro cfrac-eqI) (auto simp: sqrt-cfrac-def is-cfrac-def)
    thus ?thesis
    using False by (simp add: Let-def sqrt-cfrac-info-array-def sqrt-cfrac-info-def)
qed
```

As a test, we determine the continued fraction expansion of $\sqrt{129}$, which is $[11 ; \overline{2,1,3,1,6,1,3,1,2,22}]$ (a period length of 10):
value let info $=$ sqrt-cfrac-info-array 129 in info
value sqrt-nat-period-length 129
We can also compute convergents of $\sqrt{129}$ and observe that the difference between the square of the convergents and 129 vanishes quickly::
value map (conv (sqrt-cfrac 129)) [0..<10]
value map (λ n. \mid conv (sqrt-cfrac 129) $n^{\wedge} 2-129 \mid$) $[0 . .<20]$
end

5 Lifting solutions of Pell's Equation

theory Pell-Lifting
imports Pell.Pell Pell.Pell-Algorithm
begin

5.1 Auxiliary material

lemma (in pell) snth-pell-solutions: snth (pell-solutions D) $n=n$ th-solution n by (simp add: pell-solutions-def Let-def find-fund-sol-correct nonsquare-D nth-solution-def pell-power-def pell-mul-commutes[of - fund-sol])
definition square-squarefree-part-nat $::$ nat \Rightarrow nat \times nat where
square-squarefree-part-nat $n=($ square-part n, squarefree-part $n)$
lemma prime-factorization-squarefree-part:
assumes $x \neq 0$
shows prime-factorization (squarefree-part x) $=$
mset-set $\{p \in$ prime-factors x. odd (multiplicity $p x)\}$ (is ?lhs $=$? $r h s$)
proof (rule multiset-eqI)
fix p show count ? lhs $p=$ count ? rhs p
proof (cases prime p)
case False
thus ?thesis by (auto simp: count-prime-factorization)
next

```
    case True
    have finite (prime-factors x) by simp
    hence finite {p.p dvd x^ prime p} using assms
    by (subst (asm) prime-factors-dvd) (auto simp: conj-commute)
    hence finite {p.p dvd x}\wedge prime p\wedge odd (multiplicity p x)
    by (rule finite-subset [rotated]) auto
    moreover have odd ( }n::\mathrm{ nat) }\longleftrightarrown\mathrm{ mod 2 = Suc 0 for n by presburger
    ultimately show ?thesis using assms
    by (cases p dvd x; cases even (multiplicity p x)
        (auto simp: count-prime-factorization prime-multiplicity-squarefree-part
                in-prime-factors-iff not-dvd-imp-multiplicity-0)
    qed
qed
lemma squarefree-part-nat:
    squarefree-part ( }n::\mathrm{ nat ) = (П{p 隹ime-factors n. odd (multiplicity p n)})
proof (cases n=0)
    case False
    hence (\prod{p\in prime-factors n. odd (multiplicity p n)})=
            prod-mset (prime-factorization (squarefree-part n))
    by (subst prime-factorization-squarefree-part) (auto simp: prod-unfold-prod-mset)
    also have ... = squarefree-part n
        by (intro prod-mset-prime-factorization-nat Nat.grOI) auto
    finally show ?thesis ..
qed auto
lemma prime-factorization-square-part:
    assumes }x\not=
    shows prime-factorization (square-part x) =
        (\sump\in prime-factors x. replicate-mset (multiplicity p x div 2) p) (is?lhs
= ?rhs)
proof (rule multiset-eqI)
    fix p show count?lhs p = count ?rhs p
    proof (cases prime p}\wedgepdvdx
        case False
        thus ?thesis by (auto simp: count-prime-factorization count-sum
                                    prime-multiplicity-square-part not-dvd-imp-multiplicity-0)
    next
        case True
        thus ?thesis using assms
            by (cases p dvd x)
                (auto simp: count-prime-factorization prime-multiplicity-squarefree-part
                                    in-prime-factors-iff count-sum prime-multiplicity-square-part)
    qed
qed
lemma prod-mset-sum: prod-mset (sum f A) =(\prodx\inA.prod-mset (fx))
    by (induction A rule: infinite-finite-induct) auto
```

```
lemma square-part-nat:
    assumes n>0
    shows square-part (n :: nat) = (\prodp f prime-factors n. p^ (multiplicity p n
div 2))
proof -
    have (\prodp f prime-factors n. p`(multiplicity p n div 2)) =
                prod-mset (prime-factorization (square-part n)) using assms
            by (subst prime-factorization-square-part) (auto simp: prod-unfold-prod-mset
prod-mset-sum)
    also have ... = square-part n using assms
        by (intro prod-mset-prime-factorization-nat Nat.gr0I) auto
    finally show ?thesis ..
qed
lemma square-squarefree-part-nat-code [code]:
    square-squarefree-part-nat n = (if n=0 then (0, 1)
        else let ps = prime-factorization n
            in ((\prod p\inset-mset ps. p ^(count ps p div 2)),
                        \Pi(Set.filter (\lambdap. odd (count ps p)) (set-mset ps))))
    by (cases n = 0)
    (auto simp: Let-def square-squarefree-part-nat-def squarefree-part-nat Set.filter-def
                                    count-prime-factorization square-part-nat intro!: prod.cong)
lemma square-part-nat-code [code-unfold]:
    square-part ( }n::\mathrm{ nat) = (if n =0 then 0
        else let ps = prime-factorization n in (\p\inset-mset ps. p^ (count ps p div
2)))
    using square-squarefree-part-nat-code[of n]
    by (simp add: square-squarefree-part-nat-def Let-def split: if-splits)
lemma squarefree-part-nat-code [code-unfold]:
    squarefree-part ( }n::\mathrm{ nat) = (if n=0 then 1
        else let ps = prime-factorization n in (\prod(Set.filter ( }\lambda\mathrm{ p. odd (count ps p))
(set-mset ps))))
    using square-squarefree-part-nat-code[of n]
    by (simp add: square-squarefree-part-nat-def Let-def split: if-splits)
lemma is-nth-power-mult-nth-powerD:
    assumes is-nth-power n (a* b `n) b>0n>0
    shows is-nth-power n (a::nat)
proof -
    from assms obtain k where k: k` n=a*b` n
    by (auto elim: is-nth-powerE)
    with assms(2,3) have b dvd k
    by (metis dvd-triv-right pow-divides-pow-iff)
    then obtain l where k=b*l
    by auto
    with k have a=l` n using assms(2)
```

```
    by (simp add: power-mult-distrib)
    thus?thesis by auto
qed
lemma (in pell) fund-sol-eq-fstI:
    assumes nontriv-solution ( }x,y\mathrm{ )
    assumes }\bigwedge\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}.\mathrm{ nontriv-solution ( }\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})\Longrightarrowx\leq\mp@subsup{x}{}{\prime
    shows fund-sol = (x,y)
proof -
    have x = fst fund-sol
        using fund-sol-is-nontriv-solution assms(1) fund-sol-minimal'\}[of (x,y)
        by (auto intro!: antisym assms(2)[of fst fund-sol snd fund-sol])
    moreover from this have }y=\mathrm{ snd fund-sol
        using assms(1) solutions-linorder-strict[of x y fst fund-sol snd fund-sol]
                fund-sol-is-nontriv-solution
    by (auto simp: nontriv-solution-imp-solution prod-eq-iff)
    ultimately show ?thesis by simp
qed
lemma (in pell) fund-sol-eqI-fst':
    assumes nontriv-solution xy
    assumes }\bigwedge\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}.\mathrm{ nontriv-solution ( }\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})\Longrightarrowfst xy \leq x',
    shows fund-sol = xy
    using fund-sol-eq-fstI[of fst xy snd xy] assms by simp
lemma (in pell) fund-sol-eq-sndI:
    assumes nontriv-solution ( }x,y\mathrm{ )
    assumes }\bigwedge\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}.\mathrm{ nontriv-solution ( }\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})\Longrightarrowy\leq\mp@subsup{y}{}{\prime
    shows fund-sol = (x,y)
proof -
    have }y=\mathrm{ snd fund-sol
        using fund-sol-is-nontriv-solution assms(1) fund-sol-minimal'"[of (x,y)]
        by (auto intro!: antisym assms(2)[of fst fund-sol snd fund-sol])
    moreover from this have x = fst fund-sol
        using assms(1) solutions-linorder-strict[of x y fst fund-sol snd fund-sol]
                fund-sol-is-nontriv-solution
    by (auto simp: nontriv-solution-imp-solution prod-eq-iff)
    ultimately show ?thesis by simp
qed
lemma (in pell) fund-sol-eqI-snd':
    assumes nontriv-solution xy
    assumes }\\mp@subsup{x}{}{\prime}\mp@subsup{y}{}{\prime}.\mathrm{ nontriv-solution ( }\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})\Longrightarrow\mathrm{ snd xy }\leq\mp@subsup{y}{}{\prime
    shows fund-sol = xy
    using fund-sol-eq-sndI[of fst xy snd xy] assms by simp
```


5.2 The lifting mechanism

The solutions of Pell's equations for parameters D and $a^{2} D$ stand in correspondence to one another: every solution (x, y) for parameter D can be lowered to a solution $(x, a y)$ for $a^{2} D$, and every solution of the form $(x, a y)$ for parameter $a^{2} D$ can be lifted to a solution (x, y) for parameter D.
locale pell-lift $=$ pell +
fixes $a D^{\prime}::$ nat
assumes $n z: a>0$
defines $D^{\prime} \equiv D * a^{2}$
begin
lemma nonsquare- D^{\prime} : $\neg i s$-square D^{\prime}
using nonsquare-D is-nth-power-mult-nth-powerD[of $2 \quad D \quad a] n z$ by (auto simp: $\left.D^{\prime}-d e f\right)$
definition lift-solution :: nat \times nat \Rightarrow nat \times nat where
lift-solution $=(\lambda(x, y) .(x, y$ div $a))$
definition lower-solution :: nat \times nat \Rightarrow nat \times nat where
lower-solution $=(\lambda(x, y) .(x, y * a))$
definition liftable-solution :: nat \times nat \Rightarrow bool where
liftable-solution $=(\lambda(x, y) . a$ dvd $y)$
sublocale lift: pell D^{\prime}
by unfold-locales (fact nonsquare-D')
lemma lift-solution-iff: lift.solution $x y \longleftrightarrow$ solution (lower-solution $x y$)
unfolding solution-def lift.solution-def
by (auto simp: lower-solution-def D^{\prime}-def case-prod-unfold power-mult-distrib)
lemma lift-solution:
assumes solution xy liftable-solution xy
shows lift.solution (lift-solution xy)
using assms unfolding solution-def lift.solution-def
by (auto simp: liftable-solution-def lift-solution-def D^{\prime}-def case-prod-unfold power-mult-distrib elim!: dvdE)

In particular, the fundamental solution for $a^{2} D$ is the smallest liftable solution for D :
lemma lift-fund-sol:
assumes $\backslash n .0<n \Longrightarrow n<m \Longrightarrow \neg$ liftable-solution (n th-solution n)
assumes liftable-solution (nth-solution m) $m>0$
shows lift.fund-sol $=$ lift-solution $(n t h-s o l u t i o n ~ m)$
proof (rule lift.fund-sol-eqI-fst')
from assms have nontriv-solution (nth-solution m)
by (intro nth-solution-sound')

```
    hence lift-solution (nth-solution \(m\) ) \(\neq(1,0)\) using \(n z \operatorname{assms}(2)\)
    by (auto simp: lift-solution-def case-prod-unfold nontriv-solution-def liftable-solution-def)
    with assms show lift.nontriv-solution (lift-solution (nth-solution m))
    by (auto simp: lift.nontriv-solution-altdef intro: lift-solution)
next
    fix \(x^{\prime} y^{\prime}::\) nat
    assume \(*\) : lift.nontriv-solution \(\left(x^{\prime}, y^{\prime}\right)\)
    hence \(n z^{\prime}: x^{\prime} \neq 1\) using nonsquare- \(D^{\prime}\)
        by (auto simp: lift.nontriv-solution-altdef lift.solution-def)
    from * have solution (lower-solution ( \(\left.x^{\prime}, y^{\prime}\right)\) )
        by (simp add: lift-solution-iff lift.nontriv-solution-altdef)
    hence lower-solution \(\left(x^{\prime}, y^{\prime}\right) \in\) range nth-solution by (rule nth-solution-complete)
    then obtain \(n\) where \(n\) : nth-solution \(n=\) lower-solution \(\left(x^{\prime}, y^{\prime}\right)\) by auto
    with \(n z^{\prime}\) have \(n>0\) by (auto intro!: Nat.gr0I simp: nth-solution-def lower-solution-def)
    with \(n\) have liftable-solution ( \(n\) th-solution \(n\) )
        by (auto simp: liftable-solution-def lower-solution-def)
    with \(\langle n>0\rangle\) and \(\operatorname{assms}(1)[o f n]\) have \(n \geq m\) by (cases \(n \geq m\) ) auto
    hence \(f\) st ( \(n\) th-solution \(m\) ) \(\leq f\) st ( \(n\) th-solution \(n\) )
        using strict-mono-less-eq[OF strict-mono-nth-solution(1)] by simp
    thus \(f\) st (lift-solution ( \(n\) th-solution \(m\) ) ) \(\leq x^{\prime}\)
        by (simp add: lift-solution-def lower-solution-def \(n\) case-prod-unfold)
qed
end
```


5.3 Accelerated computation of the fundamental solution for non-squarefree inputs

Solving Pell's equation for some D of the form $a^{2} D^{\prime}$ can be done by solving it for D^{\prime} and then lifting the solution. Thus, if D is not squarefree, we can compute its squarefree decomposition $a^{2} D^{\prime}$ with D^{\prime} squarefree and thus speed up the computation (since D^{\prime} is smaller than D).
The squarefree decomposition can only be computed (according to current knowledge in mathematics) through the prime decomposition. However, given how big the solutions are for even moderate values of D, it is usually worth doing it if D is not squarefree.

```
lemma squarefree-part-of-square [simp]:
    assumes is-square ( \(x\) :: ' \(a\) :: \{factorial-semiring, normalization-semidom-multiplicative \(\}\) )
    assumes \(x \neq 0\)
    shows squarefree-part \(x=\) unit-factor \(x\)
proof -
    from assms obtain \(y\) where \([\operatorname{simp}]: x=y\) ~ 2
        by (auto simp: is-nth-power-def)
    have unit-factor \(x *\) normalize \(x=\) squarefree-part \(x *\) square-part \(x{ }^{\wedge} 2\)
        by (subst squarefree-decompose [symmetric]) auto
    also have \(\ldots\) = squarefree-part \(x *\) normalize \(x\)
        by (simp add: square-part-even-power normalize-power)
```

```
    finally show ?thesis using assms
    by (subst (asm) mult-cancel-right) auto
qed
lemma squarefree-part-1-imp-square:
    assumes squarefree-part x = 1
    shows is-square x
proof -
    have is-square (square-part x` 2)
        by auto
    also have square-part x^2 = squarefree-part x * square-part x^2
        using assms by simp
    also have ... = x
        by (rule squarefree-decompose [symmetric])
    finally show ?thesis.
qed
definition find-fund-sol-fast where
    find-fund-sol-fast D =
        (let (a, D') = square-squarefree-part-nat D
        in
            if D'=0\vee D'=1 then (0,0)
            else if a=1 then pell.fund-sol D
            else map-prod id (\lambday. y div a)
                (shd (sdrop-while ( }\lambda(-,y).y=0\vee\nega\mathrm{ dvd y)(pell-solutions D'))))
lemma find-fund-sol-fast: find-fund-sol D = find-fund-sol-fast D
proof (cases is-square D\vee square-part D=1)
    case True
    thus ?thesis
        using squarefree-part-1-imp-square[of D]
        by (cases D=0)
            (auto simp: find-fund-sol-correct find-fund-sol-fast-def
                                    square-squarefree-part-nat-def square-test-correct unit-factor-nat-def)
next
    case False
    define D' }a\mathrm{ where D' = squarefree-part D and a=square-part D
    have D>0
        using False by (intro Nat.grOI) auto
    have a>0
            using \langleD>0\rangle by (intro Nat.gr0I) (auto simp: a-def)
    moreover have }\neg\mathrm{ is-square D'
            unfolding D'-def
            by (metis False is-nth-power-mult is-nth-power-nth-power squarefree-decompose)
    ultimately interpret lift: pell-lift D' a D
            using False <D> 0〉
            by unfold-locales (auto simp: D'-def a-def squarefree-decompose [symmetric])
```

define i where $i=(L E A S T i$. case lift.nth-solution i of $(-, y) \Rightarrow y>0 \wedge a d v d$ y)
have ex: $\exists i$. case lift.nth-solution i of $(-, y) \Rightarrow y>0 \wedge a d v d y$ proof -
define sol where sol $=$ lift.lift.fund-sol
have is-sol: lift.solution (lift.lower-solution sol)
unfolding sol-def using lift.lift.fund-sol-is-nontriv-solution lift.lift-solution-iff
by blast
then obtain j where j : lift.lower-solution sol $=$ lift.nth-solution j
using lift.solution-iff-nth-solution by blast
have snd (lift.lower-solution sol) >0
proof (rule Nat.gr0I)
assume $*$: snd (lift.lower-solution sol) $=0$
have lift.solution (fst (lift.lower-solution sol), snd (lift.lower-solution sol))
using is-sol by simp
hence f st (lift.lower-solution sol) $=1$
by (subst (asm) *) simp
with $*$ have lift.lower-solution sol $=(1,0)$
by (cases lift.lower-solution sol) auto
hence $f s t$ sol $=1$
unfolding lift.lower-solution-def by (auto simp: lift.lower-solution-def case-prod-unfold)
thus False
unfolding sol-def
using lift.lift.fund-sol-is-nontriv-solution $\langle D>0\rangle$
by (auto simp: lift.lift.nontriv-solution-def)
qed
moreover have a dvd snd (lift.lower-solution sol)
by (auto simp: lift.lower-solution-def case-prod-unfold)
ultimately show ?thesis
using j by (auto simp: case-prod-unfold)
qed
define sol where sol $=$ lift.nth-solution i
have sol: snd sol >0 a dvd snd sol
using LeastI-ex[OF ex] by (simp-all add: sol-def i-def case-prod-unfold)
have $i>0$
using sol by (intro Nat.gr0I) (auto simp: sol-def lift.nth-solution-def)
have find-fund-sol-fast $D=$ map-prod id $(\lambda y . y$ div a)
(shd (sdrop-while $(\lambda(-, y) . y=0 \vee \neg a$ dvd $y)$ (pell-solutions $\left.\left.D^{\prime}\right)\right)$)
unfolding D^{\prime}-def a-def find-fund-sol-fast-def using False squarefree-part-1-imp-square[of D]
by (auto simp: square-squarefree-part-nat-def)
also have sdrop-while $(\lambda(-, y) . y=0 \vee \neg a$ dvd $y)$ (pell-solutions $\left.D^{\prime}\right)=$ sdrop-while $(\operatorname{Not} \circ(\lambda(-, y) . y>0 \wedge a d v d y))\left(\right.$ pell-solutions $\left.D^{\prime}\right)$
by (simp add: o-def case-prod-unfold)
also have $\ldots=$ sdrop i (pell-solutions D^{\prime})
using ex by (subst sdrop-while-sdrop-LEAST) (simp-all add: lift.snth-pell-solutions

```
i-def)
    also have shd ... = sol
        by (simp add: lift.snth-pell-solutions sol-def)
    finally have eq: find-fund-sol-fast D = map-prod id ( }\lambday.y\mathrm{ y div a) sol.
    have lift.lift.fund-sol = lift.lift-solution sol
        unfolding sol-def
    proof (rule lift.lift-fund-sol)
        show i> 0 by fact
        show lift.liftable-solution (lift.nth-solution i)
            using sol by (simp add: sol-def lift.liftable-solution-def case-prod-unfold)
    next
        fix j :: nat assume j: j>0j<i
        show \neglift.liftable-solution (lift.nth-solution j)
        proof
            assume liftable: lift.liftable-solution (lift.nth-solution j)
            have snd (lift.nth-solution j) > 0
        using <j>0` by (metis gr0I lift.nontriv-solution-altdef lift.nth-solution-sound'
                                    lift.solution-0-snd-nat-iff prod.collapse)
            hence case lift.nth-solution j of (-, y) => y>0\wedge a dvd y
                using <j> 0` liftable by (auto simp: lift.liftable-solution-def)
            hence i\leqj
                unfolding i-def by (rule Least-le)
            thus False using <j < i` by simp
        qed
    qed
    also have ... = find-fund-sol-fast D
        by (simp add: eq lift.lift-solution-def case-prod-unfold map-prod-def)
    finally show ?thesis
    using }\langleD>0\rangle\mathrm{ False by (simp add: find-fund-sol-correct)
qed
end
```


6 The Connection between the continued fraction expansion of square roots and Pell's equation

theory Pell-Continued-Fraction
imports
Sqrt-Nat-Cfrac
Pell.Pell-Algorithm
Polynomial-Factorization.Prime-Factorization
Pell-Lifting
begin
lemma irrational-times-int-eq-intD:
assumes $p *$ real-of-int $a=$ real-of-int b

```
    assumes p\not\in\mathbb{Q}
    shows }\quada=0\wedgeb=
proof -
    have a=0
    proof (rule ccontr)
    assume a\not=0
    with assms(1) have p=b/a by (auto simp: field-simps)
    also have ... }\in\mathbb{Q}\mathrm{ by auto
    finally show False using assms(2) by contradiction
    qed
    with assms show ?thesis by simp
qed
```

The solutions to Pell's equation for some non-square D are linked to the continued fraction expansion of \sqrt{D}, which we shall show here.

```
context
    fixes D :: nat and chkPQl
    assumes nonsquare: \negis-square D
    defines c\equivcfrac-of-real (sqrt D)
    defines h\equivconv-num c and k\equivconv-denom c
    defines P}\equivfst\circ\mathrm{ sqrt-remainder-surd D and Q 三 snd ○ sqrt-remainder-surd D
    defines l \equivsqrt-nat-period-length D
begin
interpretation pell D
    by unfold-locales fact+
lemma cfrac-length-infinite [simp]:cfrac-length c=\infty
proof -
    have sqrt D\not\in\mathbb{Q}
        using nonsquare by (simp add: irrat-sqrt-nonsquare)
    thus ?thesis
        by (simp add: c-def)
qed
lemma conv-num-denom-pell:
    h0^2-D*k0^2<0
    m>0\Longrightarrowhm^2-D*km^2 = (-1)^Sucm*Qm
proof -
    define }\mp@subsup{D}{}{\prime}\mathrm{ where }\mp@subsup{D}{}{\prime}=\mathrm{ Discrete.sqrt D
    have h0^2 - D*k0^2 = int (D'^2) - int D
        by (simp-all add: h-def k-def c-def Discrete-sqrt-altdef D'-def)
    also {
        have int (D' ^ 2) - int D\leq0
            using Discrete.sqrt-power2-le[of D] by (simp add: D'-def)
        moreover have D}\not=\mp@subsup{D}{}{\prime}\mathrm{ ^2 using nonsquare by auto
        ultimately have int ( }\mp@subsup{D}{}{\prime^
    }
    finally show h0^2 - D*k0^2<0.
```


next

assume $m>0$
define n where $n=m-1$
define α where $\alpha=$ cfrac-remainder c
define α^{\prime} where $\alpha^{\prime}=$ sqrt-remainder-surd D
have m : $m=$ Suc n using $\langle m>0\rangle$ by (simp add: n-def)
from nonsquare have $D>1$
by (cases D) (auto intro!: Nat.gr0I)
from nonsquare have irrat: sqrt $D \notin \mathbb{Q}$
using irrat-sqrt-nonsquare by blast
have [simp]: cfrac-lim c = sqrt D
using irrat $\langle D>1\rangle$ by (simp add: c-def)
have α-pos: $\alpha n>0$ for n
unfolding α-def using wf $\langle D>1\rangle$ cfrac-remainder-pos[of $c \quad n]$
by (cases $n=0$) auto
have $\alpha^{\prime}: \alpha^{\prime} n=(P n, Q n)$ for n by (simp add: α^{\prime}-def P-def Q-def)
have Q-pos: $Q n>0$ for n
using snd-sqrt-remainder-surd-pos[OF nonsquare] by (simp add: Q-def)
have k-pos: $k n>0$ for n
by (auto simp: k-def intro!: conv-denom-pos)
have k-nonneg: $k n \geq 0$ for n
by (auto simp: k-def intro!: conv-denom-nonneg)
let $? A=(\operatorname{sqrt} D+P(n+1)) * h(n+1)+Q(n+1) * h n$
let $? B=(\operatorname{sqrt} D+P(n+1)) * k(n+1)+Q(n+1) * k n$
have ? $B>0$ using k-pos Q-pos k-nonneg
by (intro add-nonneg-pos mult-nonneg-nonneg add-nonneg-nonneg) auto
have sqrt $D=$ conv $^{\prime}$ c (Suc (Suc n)) $(\alpha$ (Suc (Suc n)))
unfolding α-def by (subst conv'-cfrac-remainder) auto
also have $\ldots=(\alpha(n+2) * h(n+1)+h n) /(\alpha(n+2) * k(n+1)+k n)$ using wf α-pos by (subst conv'-num-denom) (simp-all add: h-def k-def)
also have $\alpha(n+2)=$ surd-to-real $D\left(\alpha^{\prime}(S u c ~ n)\right)$
using surd-to-real-sqrt-remainder-surd[OF nonsquare, of Suc n]
by (simp add: α^{\prime}-def α-def c-def)
also have $\ldots=($ sqrt $D+P($ Suc $n)) / Q($ Suc $n)($ is $-=? \alpha)$
by (simp add: α^{\prime} surd-to-real-def)
also have ? $\alpha * h(n+1)+h n=$

$$
1 / Q(n+1) *((\operatorname{sqrt} D+P(n+1)) * h(n+1)+Q(n+1) * h n)
$$

using Q-pos by (simp add: field-simps)
also have ? $\alpha * k(n+1)+k n=$

$$
1 / Q(n+1) *((\operatorname{sqrt} D+P(n+1)) * k(n+1)+Q(n+1) * k n)
$$

(is $-=$?f k) using Q-pos by (simp add: field-simps)
also have ?f $h /$?f $k=((s q r t D+P(n+1)) * h(n+1)+Q(n+1) * h n) /$

$$
((\operatorname{sqrt} D+P(n+1)) * k(n+1)+Q(n+1) * k n)
$$

(is $-=? A / ? B)$ using Q-pos by (intro mult-divide-mult-cancel-left) auto
finally have sqrt $D * ? B=? A$
using $\langle ? B>0\rangle$ by (simp add: divide-simps)
moreover have sqrt $D *$ sqrt $D=D$ by simp

```
    ultimately have sqrt \(D *(P(n+1) * k(n+1)+Q(n+1) * k n-h(n+\)
1)) \(=\)
    \(P(n+1) * h(n+1)+Q(n+1) * h n-k(n+1) * D\)
    unfolding of-int-add of-int-mult of-int-diff of-int-of-nat-eq of-nat-mult of-nat-add
    by Groebner-Basis.algebra
    from irrational-times-int-eq-intD[OF this] irrat
    have 1: \(h(\) Suc \(n)=P(\) Suc \(n) * k(\) Suc \(n)+Q(\) Suc \(n) * k n\)
        and 2: \(D * k(\) Suc \(n)=P(\) Suc \(n) * h(\) Suc \(n)+Q(\) Suc \(n) * h n\)
        by (simp-all del: of-nat-add of-nat-mult)
    have \(h(\) Suc \(n) * h(\) Suc \(n)-D * k(\) Suc \(n) * k(\) Suc \(n)=\)
            \(Q(\) Suc \(n) *(k n * h(\) Suc \(n)-k(\) Suc \(n) * h n)\)
    by (subst 1, subst 2) (simp add: algebra-simps)
    also have \(k n * h(\) Suc \(n)-k(\) Suc \(n) * h n=(-1){ }^{\wedge} n\)
    unfolding \(h\)-def \(k\)-def by (rule conv-num-denom-prod-diff)
    finally have \(h(\) Suc \(n)\) へ2 \(-D * k(\) Suc n) へ2 \(=(-1)\) へ \(n * Q\) (Suc \(n\) )
    by (simp add: power2-eq-square algebra-simps)
    thus \(h m^{\wedge} 2-D * k m{ }^{\wedge} 2=(-1)^{\wedge}\) Suc \(m * Q m\)
    by (simp add: \(m\) )
qed
```

Every non－trivial solution to Pell＇s equation is a convergent in the expansion of \sqrt{D} ：
theorem pell－solution－is－conv：
assumes $x^{2}=\operatorname{Suc}\left(D * y^{2}\right)$ and $y>0$
shows $\quad($ int x ，int $y) \in$ range $(\lambda n$ ．（conv－num c n ，conv－denom $c n))$
proof－
have $\exists n$ ．enat $n \leq$ cfrac－length $c \wedge($ int x ，int $y)=($ conv－num $c n$ ，conv－denom c n）
proof（rule frac－is－convergentI）
have $g c d\left(x^{2}\right)\left(y^{2}\right)=1$ unfolding $\operatorname{assms}(1)$
using gcd－add－mult $\left[\begin{array}{lll}o f & y^{2} & D\end{array} 1\right]$ by（simp add：gcd．commute）
thus coprime（int x ）（int y ） by（simp add：coprime－iff－gcd－eq－1）
next
from assms have $D>1$
using nonsquare by（cases D）（auto intro！：Nat．gr0I）
hence pos：$x+y *$ sqrt $D>0$ using assms
by（intro add－nonneg－pos）auto
from assms have real $\left(x^{2}\right)=\operatorname{real}\left(S u c\left(D * y^{2}\right)\right)$
by（simp only：of－nat－eq－iff）
hence $1=$ real $x{ }^{\wedge} 2-D *$ real $y{ }^{\wedge} 2$
unfolding of－nat－power by simp
also have $\ldots=(x-y * \operatorname{sqrt} D) *(x+y * \operatorname{sqrt} D)$
by（simp add：field－simps power2－eq－square）
finally have $*: x-y *$ sqrt $D=1 /(x+y *$ sqrt $D)$
using pos by（simp add：field－simps）

```
    from pos have 0<1/(x+y* sqrt D)
    by (intro divide-pos-pos) auto
    also have \ldots. = x-y* sqrt D by (rule *[symmetric])
    finally have less: y* sqrt D<x by simp
    have sqrt D - x / y= -((x-y* sqrt D) / y)
        using <y>0\rangle by (simp add: field-simps)
    also have |...| =(x-y* sqrt D)/y
        using less by simp
    also have (x-y* sqrt D)/y=1/(y*(x+y* sqrt D))
        using < y> 0` by (subst *) auto
    also have \ldots\leq1/(y*(y* sqrt D + y* sqrt D))
        using}\langley>0\rangle\langleD> 1\rangle pos les
        by (intro divide-left-mono mult-left-mono add-right-mono mult-pos-pos) auto
    also have ... = 1 / (2* * * * sqrt D)
        by (simp add: power2-eq-square)
    also have \ldots< 1/(real (2* y 2)*1) using <y>0\rangle\langleD> 1\rangle
        by (intro divide-strict-left-mono mult-strict-left-mono mult-pos-pos) auto
    finally show |cfrac-lim c-int x / int y < < / ( 2* int y ~ 2)
    unfolding c-def using irrat-sqrt-nonsquare[of D] \\negis-square D> by simp
qed (insert assms irrat-sqrt-nonsquare[of D], auto simp: c-def)
thus ?thesis by auto
qed
```

Let l be the length of the period in the continued fraction expansion of \sqrt{D} and let h_{i} and k_{i} be the numerator and denominator of the i-th convergent. Then the non-trivial solutions of Pell's equation are exactly the pairs of the form $\left(h_{l m-1}, k_{l m-1}\right)$ for any m such that $l m$ is even.

```
lemma nontriv-solution-iff-conv-num-denom:
    nontriv-solution \((x, y) \longleftrightarrow\)
        \((\exists m>0\). int \(x=h(l * m-1) \wedge\) int \(y=k(l * m-1) \wedge\) even \((l * m))\)
proof safe
    fix \(m\) assume \(x y: x=h(l * m-1) y=k(l * m-1)\)
                and \(l m\) : even \((l * m)\) and \(m: m>0\)
    have \(l: l>0\) using period-nonempty[OF nonsquare \(]\) by (auto simp: l-def)
    from \(l m\) have \(l * m \neq 1\) by (intro notI) auto
    with \(l m\) have \(l m^{\prime}: l * m>1\) by (cases \(l * m\) ) auto
    have \((h(l * m-1))^{2}-D *(k(l * m-1))^{2}=\)
        \((-1){ }^{\text {^ }} \operatorname{Suc}(l * m-1) * \operatorname{int}(Q(l * m-1))\)
    using \(l m^{\prime}\) by (intro conv-num-denom-pell) auto
    also have \((-1){ }^{\wedge} \operatorname{Suc}(l * m-1)=(1::\) int \()\)
    using \(l m l m\) by (subst neg-one-even-power) auto
    also have \(Q(l * m-1)=Q((l * m-1) \bmod l)\)
        unfolding \(Q\)-def l-def o-def by (subst sqrt-remainder-surd-periodic[OF non-
square]) simp
    also \{
        have \(l * m-1=(m-1) * l+(l-1)\)
            using \(m l l^{\prime}\) by (cases \(m\) ) (auto simp: mult-ac)
```

```
    also have ... mod l = (l-1) mod l
    by simp
    also have ... = l-1
    using l by (intro mod-less) auto
    also have Q .. = = 1
    using sqrt-remainder-surd-last[OF nonsquare] by (simp add: Q-def l-def)
    finally have Q ((l*m-1) mod l)=1.
}
finally have h(l*m-1)^2 = D*k(l*m-1)^2 + 1
    unfolding of-nat-Suc by (simp add: algebra-simps)
hence h(l*m-1)^2 = D*k(l*m-1)^2+1
    by (simp only: of-nat-eq-iff)
moreover have k}(l*m-1)>
    unfolding k-def by (intro conv-denom-pos)
ultimately have nontriv-solution (int x, int y)
    using xy by (simp add: nontriv-solution-def)
thus nontriv-solution ( }x,y\mathrm{ )
    by simp
next
    assume nontriv-solution ( }x,y\mathrm{ )
    hence asm: x^2 = Suc (D*y^2) y>0
    by (auto simp: nontriv-solution-def abs-square-eq-1 intro!: Nat.gr0I)
from asm have asm': int x^ 2 = int D* int y^2 + 1
    by (metis add.commute of-nat-Suc of-nat-mult of-nat-power-eq-of-nat-cancel-iff)
    have l:l>0 using period-nonempty[OF nonsquare] by (auto simp:l-def)
    from pell-solution-is-conv[OF asm] obtain m}\mathrm{ where
    xy: hm=x k m=y by (auto simp: c-def h-def k-def)
    have m:m>0
    using asm' conv-num-denom-pell(1) xy by (intro Nat.gr0I) auto
have 1=hm^ 2-D*km^2
    using asm' xy by simp
also have ... = (- 1) ^ Suc m * int (Q m)
    using conv-num-denom-pell(2)[OF m].
finally have *: (- 1) ^ Suc m * int (Q m)=1 ..
from * have m': odd m}\wedgeQm=
    by (cases even m) auto
define n where n=Suc m div l
have l dvd Suc m
proof (rule ccontr)
    assume *: \neg(l dvd Suc m)
    have Qm=Q (m\operatorname{mod}l)
        unfolding Q-def l-def o-def by (subst sqrt-remainder-surd-periodic[OF non-
square]) simp
    also {
        have m mod l<l using <l>0\rangle by simp
        moreover have Suc (m mod l) \not=l using *l <m>0\rangle
            using mod-Suc[of m l by auto
```

```
        ultimately have m mod l<l-1 by simp
        hence }Q(m\operatorname{mod}l)>1\mathrm{ unfolding }Q\mathrm{ -def o-def l-def
            by (rule snd-sqrt-remainder-surd-gt-1[OF nonsquare])
        }
        finally show False using m' by simp
    qed
    hence m-eq: Suc m=n*lm=n*l-1
    by (simp-all add: n-def)
    hence n>0 by (auto intro!: Nat.grOI)
    thus \existsn>0. int x=h(l*n-1)^int y=k(l*n-1)^ even (l*n)
    using xy m-eq m' by (intro exI[of - n])(auto simp: mult-ac)
qed
```

Consequently, the fundamental solution is $\left(h_{n}, k_{n}\right)$ where $n=l-1$ if l is even and $n=2 l-1$ otherwise:
lemma fund-sol-conv-num-denom:
defines $n \equiv$ if even l then $l-1$ else $2 * l-1$
shows fund-sol $=($ nat $(h n)$, nat ($k n$) $)$
proof (rule fund-sol-eq-sndI)
have [simp]: $h n \geq 0 k n \geq 0$ for n
by (auto simp: h-def k-def c-def intro!: conv-num-nonneg)
show nontriv-solution (nat ($h n$), nat ($k n$))
by (subst nontriv-solution-iff-conv-num-denom, rule exI[of - if even l then 1 else
2])
(simp-all add: n-def mult-ac)
next
fix $x y$:: nat assume nontriv-solution (x, y)
then obtain m where m : $m>0 x=h(l * m-1) y=k(l * m-1)$ even (l

* m)
by (subst (asm) nontriv-solution-iff-conv-num-denom) auto
have $l: l>0$ using period-nonempty[OF nonsquare] by (auto simp: l-def)
from $m l$ have Suc $n \leq l * m$ by (auto simp: n-def)
hence $n \leq l * m-1$ by simp
hence $k n \leq k(l * m-1)$
unfolding k-def c-def using irrat-sqrt-nonsquare[OF nonsquare]
by (intro conv-denom-leI) auto
with m show nat $(k n) \leq y$ by simp
qed
end

The following algorithm computes the fundamental solution (or the dummy result $(0,0)$ if D is a square) fairly quickly by computing the continued fraction expansion of \sqrt{D} and then computing the fundamental solution as the appropriate convergent.

```
lemma find-fund-sol-code [code]:
    find-fund-sol D =
    (let info = sqrt-cfrac-info-array D;
        l= fst info
```

```
        in if l=0 then (0,0) else
        let
            c=cfrac-sqrt-nth info;
        n= if even l then l - 1 else 2 * l - 1
    in
        (nat (conv-num-fun c n), nat (conv-denom-fun c n)))
proof -
    have *: is-cfrac (cfrac-sqrt-nth (sqrt-cfrac-info-array D)) if }\negis-square D
        using that cfrac-sqrt-nth[of D] unfolding is-cfrac-def
        by (metis cfrac-nth-nonzero neq0-conv of-nat-0 of-nat-0-less-iff)
    have **: cfrac ( }\lambda\mathrm{ x. int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) x)) =cfrac-of-real
(sqrt D)
        if }\neg\mathrm{ is-square D
        using that cfrac-sqrt-nth[of D] * by (intro cfrac-eqI) auto
    show ?thesis using * **
    by (auto simp: square-test-correct find-fund-sol-correct conv-num-fun-eq conv-denom-fun-eq
        Let-def cfrac-sqrt-nth fund-sol-conv-num-denom conv-num-nonneg)
qed
lemma find-nth-solution-square [simp]: is-square D \Longrightarrow find-nth-solution D n =
(0,0)
    by (simp add: find-nth-solution-def)
lemma fst-find-fund-sol-eq-0-iff [simp]: fst (find-fund-sol D)=0 }\longleftrightarrow\mathrm{ is-square D
proof (cases is-square D)
    case False
    then interpret pell D by unfold-locales
    from False have find-fund-sol D = fund-sol by (simp add: find-fund-sol-correct)
    moreover from fund-sol-is-nontriv-solution have fst fund-sol > 0
        by (auto simp: nontriv-solution-def intro!: Nat.grOI)
    ultimately show ?thesis using False
    by (simp add: find-fund-sol-def square-test-correct split: if-splits)
qed (auto simp: find-fund-sol-def square-test-correct)
Arbitrary solutions can now be computed as powers of the fundamental solution.
lemma find-nth-solution-code [code]:
find-nth-solution \(D n=\)
(let \(x y=\) find-fund-sol \(D\)
in if fst \(x y=0\) then \((0,0)\) else efficient-pell-power \(D x y n)\)
proof (cases is-square D)
case False
then interpret pell \(D\) by unfold-locales
from fund-sol-is-nontriv-solution have fst fund-sol \(>0\)
by (auto simp: nontriv-solution-def intro!: Nat.grOI)
thus ?thesis using False
by (simp add: find-nth-solution-correct Let-def nth-solution-def pell-power-def pell-mul-commutes[of - fund-sol] find-fund-sol-correct)
qed auto
```

```
lemma nth-solution-code [code]:
    pell.nth-solution D n =
    (let info = sqrt-cfrac-info-array D;
            l= fst info
    in if l=0 then
        Code.abort (STR "nth-solution is undefined for perfect square parameter.")
            (\lambda-. pell.nth-solution D n)
        else
            let
                    c = cfrac-sqrt-nth info;
                    m}=\mathrm{ if even l then l - 1 else 2*l-1;
                    fund-sol = (nat (conv-num-fun c m), nat (conv-denom-fun c m))
                    in
                    efficient-pell-power D fund-sol n)
proof (cases is-square D)
    case False
    then interpret pell by unfold-locales
    have *: is-cfrac (cfrac-sqrt-nth (sqrt-cfrac-info-array D))
        using False cfrac-sqrt-nth[of D] unfolding is-cfrac-def
        by (metis cfrac-nth-nonzero neq0-conv of-nat-0 of-nat-0-less-iff)
    have **: cfrac ( }\lambda\mathrm{ x. int (cfrac-sqrt-nth (sqrt-cfrac-info-array D) x)) =cfrac-of-real
(sqrt D)
    using False cfrac-sqrt-nth[of D] * by (intro cfrac-eqI) auto
    from False * ** show ?thesis
    by (auto simp: Let-def cfrac-sqrt-nth fund-sol-conv-num-denom nth-solution-def
                pell-power-def pell-mul-commutes[of - (-, -)]
                conv-num-fun-eq conv-denom-fun-eq conv-num-nonneg)
qed auto
lemma fund-sol-code [code]:
    pell.fund-sol D = (let info = sqrt-cfrac-info-array D;
            l= fst info
        in if l=0 then
            Code.abort (STR ''fund-sol is undefined for perfect square parameter.')
                    (\lambda-. pell.fund-sol D)
            else
                let
                    c=cfrac-sqrt-nth info;
                    n= if even l then l-1 else 2* l-1
            in
                    (nat (conv-num-fun c n), nat (conv-denom-fun c n)))
proof (cases is-square D)
    case False
    then interpret pell by unfold-locales
    have *: is-cfrac (cfrac-sqrt-nth (sqrt-cfrac-info-array D))
        using False cfrac-sqrt-nth[of D] unfolding is-cfrac-def
        by (metis cfrac-nth-nonzero neq0-conv of-nat-0 of-nat-0-less-iff)
```

have $* *$: cfrac $(\lambda x$. int (cfrac-sqrt-nth (sqrt-cfrac-info-array $D) x))=c f r a c-o f-r e a l$ (sqrt D)
using False cfrac-sqrt-nth[of $D]$ * by (intro cfrac-eqI) auto
from False * ** show ?thesis
by (auto simp: Let-def cfrac-sqrt-nth fund-sol-conv-num-denom nth-solution-def pell-power-def pell-mul-commutes[of - (-, -)] conv-num-fun-eq conv-denom-fun-eq conv-num-nonneg)
qed auto
end

7 Tests for Continued Fractions of Square Roots and Pell's Equation

```
theory Pell-Continued-Fraction-Tests
imports
    Pell.Efficient-Discrete-Sqrt
    HOL-Library.Code-Lazy
    HOL-Library.Code-Target-Numeral
    Pell-Continued-Fraction
    Pell-Lifting
begin
code-lazy-type stream
```

lemma lnth-code [code]:
lnth xs $0=($ if lnull $x s$ then undefined $(0::$ nat $)$ else lhd $x s)$
lnth $x s($ Suc $n)=($ if lnull $x s$ then undefined $(S u c n)$ else lnth (ltl xs) n)
by (auto simp: lnth.simps split: llist.splits)
value let $c=$ sqrt-cfrac 1339 in map (cfrac-nth c) $[0 . .<30]$
fun arg-max-list where
arg-max-list - [] = undefined
\mid arg-max-list $f(x \# x s)=$
foldl $\left(\lambda(x, y) x^{\prime}\right.$. let $y^{\prime}=f x^{\prime}$ in if $y^{\prime}>y$ then $\left(x^{\prime}, y^{\prime}\right)$ else $\left.(x, y)\right)(x, f x) x s$
value [code] sqrt-cfrac-info 17
value [code] sqrt-cfrac-info 1339
value [code] sqrt-cfrac-info 121
value [code] sqrt-nat-period-length 410286423278424

For which number $D<100000$ does \sqrt{D} have the longest period?
value $[$ code $]$ arg-max-list sqrt-nat-period-length $[0 . .<100000]$

7.1 Fundamental solutions of Pell's equation

value [code] pell.fund-sol 12
value [code] pell.fund-sol 13
value [code] pell.fund-sol 61
value [code] pell.fund-sol 661
value [code] pell.fund-sol 6661
value [code] pell.fund-sol 4729494
Project Euler problem $\# 66$: For which $D<1000$ does Pell's equation have the largest fundamental solution?
value $[$ code $]$ arg-max-list (fst \circ find-fund-sol) $[0 . .<1001]$
The same for $D<100000$:
value [code] arg-max-list (fst \circ find-fund-sol) $[0 . .<100000]$
The solution to the next example, which is at the core of Archimedes' cattle problem, is so big that termifying the result takes extremely long. Therefore, we simply compute the number of decimal digits in the result instead.

```
fun \(\log 10-a u x ~:: ~ n a t ~ \Rightarrow n a t ~ \Rightarrow n a t ~ w h e r e ~\)
    log10-aux acc \(n=\)
        (if \(n \geq 10000000000\) then log10-aux \((a c c+10)(n\) div 10000000000)
        else if \(n=0\) then acc else \(\log 10-a u x(S u c\) acc \()(n\) div 10))
definition \(\log 10\) where \(\log 10=\log 10-a u x 0\)
value [code] map-prod \(\log 10 \log 10\) (pell.fund-sol 410286423278424)
```

Factoring out the square factor 9314^{2} does yield a significant speed-up in this case:

```
value [code] map-prod log10 log10 (find-fund-sol-fast 410286423278424)
```


7.2 Tests for other operations

```
value [code] pell.nth-solution 13 100
value [code] pell.nth-solution 4729494 3
value [code] stake 10 (pell-solutions 13)
value [code] stake 10 (pell-solutions 61)
value [code] pell.nth-solution 23 8
```

end

8 Computing continued fraction expansions through interval arithmetic

theory Continued-Fraction-Approximation

imports

Complex-Main
HOL-Decision-Procs.Approximation
Coinductive. Coinductive-List
HOL-Library.Code-Lazy
HOL-Library.Code-Target-Numeral
Continued-Fractions
keywords approximate-cfrac :: diag
begin
The approximation package allows us to compute an enclosing interval for a given real constant. From this, we are able to compute an initial fragment of the continued fraction expansion of the number.
The algorithm essentially works by computing the continued fraction expansion of the lower and upper bound simultaneously and stopping when the results start to diverge.
This algorithm terminates because the lower and upper bounds, being rational numbers, have a finite continued fraction expansion.

```
definition float-to-rat :: float \(\Rightarrow\) int \(\times\) int where
    float-to-rat \(f=(\) if exponent \(f \geq 0\) then
        (mantissa \(f * 2\) ^nat (exponent f), 1) else (mantissa f, 2^nat (-exponent
f)))
```

lemma float-to-rat: fst (float-to-rat f) / snd (float-to-rat f) $=$ real-of-float f
by (auto simp: float-to-rat-def mantissa-exponent powr-int)
lemma snd-float-to-rat-pos $[$ simp $]$: snd (float-to-rat f) >0
by (simp add: float-to-rat-def)
function cfrac-from-approx :: int \times int \Rightarrow int \times int \Rightarrow int list where
cfrac-from-approx $(n l, d l)(n u, d u)=$
(if $n l=0 \vee n u=0 \vee d l=0 \vee d u=0$ then []
else let $l=n l$ div $d l ; u=n u$ div $d u$
in if $l \neq u$ then []
else $l \#($ let $m=n l \bmod d l$ in if $m=0$ then [] else
cfrac-from-approx $(d u, n u \bmod d u)(d l, m)))$
by auto
termination proof (relation measure $(\lambda((n l, d l),(n u, d u))$. nat $(a b s d l+a b s$
$d u)$), goal-cases)
case (2 nl dl nu du)
hence $|n l \bmod d l|+|n u \bmod d u|<|d l|+|d u|$
by (intro add-strict-mono) (auto simp: abs-mod-less)
thus ? case using 2 by simp
qed auto
lemmas $[$ simp del $]=$ cfrac-from-approx.simps
lemma cfrac-from-approx-correct:
assumes $x \in\{$ fst $l /$ snd $l . . f$ st $u /$ snd $u\}$ and snd $l>0$ and snd $u>0$
assumes $i<$ length (cfrac-from-approx $l u$)
shows \quad frac-nth (cfrac-of-real $x) i=c f r a c-f r o m-a p p r o x ~ l u!i$
using assms
proof (induction l u arbitrary: $i x$ rule: cfrac-from-approx.induct)
case (1 nl dl nu du i x)
from 1.prems have $*: n l$ div $d l=n u$ div $d u n l \neq 0 n u \neq 0 d l>0 d u>0$
by (auto simp: cfrac-from-approx.simps Let-def split: if-splits)
have $\lfloor n l / d l\rfloor \leq\lfloor x\rfloor\lfloor x\rfloor \leq\lfloor n u / d u\rfloor$
using 1.prems(1) by (intro floor-mono; simp) +
hence $n l$ div $d l \leq\lfloor x\rfloor\lfloor x\rfloor \leq n u$ div du
by (simp-all add: floor-divide-of-int-eq)
with $*$ have $\lfloor x\rfloor=n u$ div du
by linarith

```
show ?case
proof (cases i)
    case 0
    with 0 and \(\langle\lfloor x\rfloor=-\rangle\) show ?thesis using 1.prems
        by (auto simp: Let-def cfrac-from-approx.simps)
next
    case \(\left[\right.\) simp]: \(\left(S u c i^{\prime}\right)\)
    from 1.prems * have \(n l \bmod d l \neq 0\)
        by (subst (asm) cfrac-from-approx.simps) (auto split: if-splits)
    have frac-eq: frac \(x=x-n u\) div \(d u\)
        using \(\langle\lfloor x\rfloor=->\) by (simp add: frac-def)
    have frac \(x \geq n l / d l-n l\) div \(d l\)
        using \(*\) 1.prems by (simp add: frac-eq)
    also have \(n l / d l-n l d i v d l=(n l-d l *(n l d i v d l)) / d l\)
        using \(*\) by (simp add: field-simps)
    also have \(n l-d l *(n l\) div \(d l)=n l \bmod d l\)
        by (subst minus-div-mult-eq-mod [symmetric]) auto
    finally have frac \(x \geq(n l \bmod d l) / d l\).
    have \(n l\) mod \(d l \geq 0\)
        using * by (intro pos-mod-sign) auto
    with \(\langle n l\) mod \(d l \neq 0\rangle\) have \(n l\) mod \(d l>0\)
        by linarith
    hence \(0<(n l\) mod \(d l) / d l\)
        using * by (intro divide-pos-pos) auto
    also have \(\ldots \leq \operatorname{frac} x\)
        by fact
    finally have frac \(x>0\).
    have frac \(x \leq n u / d u-n u\) div \(d u\)
        using * 1.prems by (simp add: frac-eq)
    also have \(\ldots=(n u-d u *(n u d i v d u)) / d u\)
```

$$
\text { using } * \text { by (simp add: field-simps) }
$$

also have $n u-d u *(n u$ div $d u)=n u \bmod d u$ by (subst minus-div-mult-eq-mod [symmetric]) auto
finally have frac $x \leq$ real-of-int (nu mod du) / real-of-int du.
have $0<$ frac x
by fact
also have $\ldots \leq(n u \bmod d u) / d u$ by fact
finally have $n u \bmod d u>0$ using * by (auto simp: field-simps)
have cfrac-nth (cfrac-of-real $x) i=c f r a c-n t h(c f r a c-t l(c f r a c-o f-r e a l ~ x)) i^{\prime}$ by simp
also have cfrac-tl (cfrac-of-real $x)=c f r a c$-of-real ($1 /$ frac $x)$
using \langle frac $x>0\rangle$ by (intro cfrac-tl-of-real) auto
also have cfrac-nth (cfrac-of-real $(1 /$ frac $x)) i^{\prime}=$
cfrac-from-approx (du, nu mod du) (dl, nl mod dl)! i^{\prime}
proof (rule 1.IH[OF - refl refl-refl])
show $\neg(n l=0 \vee n u=0 \vee d l=0 \vee d u=0) \neg n l$ div $d l \neq n u$ div $d u$
using 1.prems by (auto split: if-splits simp: Let-def cfrac-from-approx.simps)
next
show $i^{\prime}<$ length (cfrac-from-approx $\left.(d u, n u \bmod d u)(d l, n l \bmod d l)\right)$ using 1.prems
by (subst (asm) cfrac-from-approx.simps) (auto split: if-splits simp: Let-def)
next
have $1 /$ frac $x \leq d l /(n l \bmod d l)$
using \langle frac $x>0\rangle$ and $\langle n l \bmod d l>0\rangle$ and $\langle f r a c x \geq(n l \bmod d l) / d l\rangle$

and *

by (auto simp: field-simps)
moreover have $1 /$ frac $x \geq d u /(n u \bmod d u)$
using \langle frac $x>0\rangle$ and $\langle n u \bmod d u>0\rangle$ and \langle frac $x \leq(n u \bmod d u) / d u\rangle$ and *
by (auto simp: field-simps)
ultimately show
$1 /$ frac $x \in\{$ real-of-int (fst (du, nu mod du)) / real-of-int (snd (du, nu $\bmod d u))$. real-of-int $\left(f_{s t}(d l, n l \bmod d l)\right) /$ real-of-int (snd (dl, nl mod $d l)$)
by simp
show $\operatorname{snd}(d u, n u \bmod d u)>0$ snd $(d l, n l \bmod d l)>0$ and $n l \bmod d l \neq 0$ using $\langle n u$ mod $d u>0\rangle$ and $\langle n l \bmod d l>0\rangle$ by simp-all
qed
also have cfrac-from-approx $(d u, n u \bmod d u)(d l, n l \bmod d l)!i^{\prime}=$ cfrac-from-approx $(n l, d l)(n u, d u)!i$
using 1.prems * 〈nl mod $d l \neq 0\rangle$ by (subst (2) cfrac-from-approx.simps) auto finally show ?thesis.
qed
qed

```
definition cfrac-from-approx' :: float }=>\mathrm{ float }=>\mathrm{ int list where
    cfrac-from-approx'l l }u=cfrac-from-approx (float-to-rat l)(float-to-rat u)
lemma cfrac-from-approx'-correct:
    assumes }x\in{real-of-float l..real-of-float u
    assumes i< length (cfrac-from-approx'l l )
    shows cfrac-nth (cfrac-of-real x) i=cfrac-from-approx'lu!i
    using assms unfolding cfrac-from-approx'-def
    by (intro cfrac-from-approx-correct) (auto simp: float-to-rat cfrac-from-approx'-def)
definition approx-cfrac :: nat }=>\mathrm{ floatarith }=>\mathrm{ int list where
    approx-cfrac prec e=
        (case approx' prec e [] of
        None = []
        Some ivl = cfrac-from-approx'(lower ivl) (upper ivl))
```

ML-file 〈approximation-cfrac.ML〉

Now let us do some experiments:
value let prec $=34 ; c=c$ frac-from-approx ${ }^{\prime}($ lb-pi prec $)($ ub-pi prec $)$ in c
value let prec $=34 ; c=c f r a c$-from-approx ${ }^{\prime}($ lb-pi prec $)($ ub-pi prec $)$
in map (λ. (conv-num-fun ((!) c) n, conv-denom-fun ((!) c) n)) $[0 . .<$ length
$c]$
approximate-cfrac prec: 200 pi
approximate-cfrac $\ln 2$
approximate-cfrac exp 1
approximate-cfrac sqrt 129
approximate-cfrac $($ sqrt $13+3) / 4$
approximate-cfrac arctan 1
approximate-cfrac 123 / 97
value cfrac-list-of-rat (123, 97)
end

References

[1] A. Khinchin and H. Eagle. Continued Fractions. Dover books on mathematics. Dover Publications, 1997.
[2] Proof Wiki.

