
Concentrated Liquidity Market Making Operations

Mnacho Echenim

February 10, 2026

Abstract
Automated Market Makers (AMMs) are one of the cornerstones of

decentralized finance. They enable users to exchange tokens without
the need for order books as would be the case in traditional finance.
They involve liquidity providers, whose tokens, usually called the quote
and base tokens, can be used in the swap process in exchange for a fee,
and liquidity takers who swap their tokens. The rules specifying the
quantities of tokens that can swapped and those that act as fees are
predefined and lead to several categories of AMMs.

Uniswap v3 introduced a new market-making design that improves
capital efficiency by allowing liquidity providers to allocate their as-
sets within selected price intervals. By concentrating liquidity over
narrower ranges, providers may earn higher fee income than in ear-
lier AMMs, where liquidity is generally distributed uniformly across
all prices. Owing to its success, this design was adopted by several
decentralized exchanges on various blockchains, including Trader Joe,
PancakeSwap v3, Sunswap v3, and Sushiswap v3. These protocols
are collectively referred to as Concentrated Liquidity Market Makers
(CLMMs). Despite differences in implementation details, such as fee
structures, tick spacing, or incentive mechanisms, they all rely on the
same underlying principles.

In practice, liquidity takers can thus interact with multiple CLMM
pools involving the same pair of tokens but different liquidity profiles
or fee structures. A crucial task for them is to understand how these
pools can be combined, both conceptually and computationally.

Based on the work in [1], we formalize several notions related to
CLMMs, and introduce several operations on such pools that permit to
derive an optimality result: if two pools admit the same fees, then the
defined transformations permit to determine the optimal quantities of
quote tokens to trade in each pool in order to recover as many base
tokens as possible.

Contents
1 Preliminary definitions and results 3

1.1 Misc . 3
1.2 Support of a discrete function 8

1

2 Grid information 11
2.1 Definitions . 11
2.2 Gross and net token quantities 13

2.2.1 General definitions . 13
2.2.2 Finite support restriction 14

2.3 Gross and net quantities of quote tokens 15
2.3.1 Generic functions for quote tokens 15
2.3.2 Finite support restriction 16

2.4 Gross quote token quantity into a pool 17
2.4.1 Function specialization 17
2.4.2 Restriction to pools with a finite liquidity 18

2.5 Net quote token quantity in a pool 21
2.5.1 Function specialization 21
2.5.2 Restriction to pools with a finite liquidity 21

2.6 Gross and net quantities of base tokens 22
2.6.1 Generic functions for base tokens 22
2.6.2 Finite support restriction 24

2.7 Gross base token quantity in a pool 25
2.7.1 Function specialization 25
2.7.2 Restriction to pools with a finite liquidity 26

2.8 Net base token quantity in a pool 27
2.8.1 Function specialization 27
2.8.2 Restriction to pools with a finite liquidity 28

2.9 Swapping tokens, market depth and slippage 28
2.10 Identical profiles . 29

3 Grid refinement 31
3.1 Encompassement properties 31
3.2 Finer price grids . 32
3.3 Pools with finer grids and coinciding profiles 38
3.4 Spanning grids . 41
3.5 Spanning grids and finite liquidity 43

4 CLMM description 44
4.1 Preliminary results . 44
4.2 Quote token addition and withdrawal in a CLMM 49
4.3 Base token addition and withdrawal in a CLMM 58
4.4 Market depth and slippage for finer CLMMs 65

4.4.1 Finer pools . 65
4.4.2 Finer CLMMs with nonzero liquidity 66

5 Inequalities related to fees 67

2

6 CLMM transformations 73
6.1 CLMM pool refinement . 73
6.2 CLMM pool restriction and slice 81
6.3 CLMM pool join . 87
6.4 CLMM pool combination . 92
6.5 Optimality result on quote tokens 101

theory CLMM-Misc imports HOL−Analysis.Analysis

begin

1 Preliminary definitions and results
1.1 Misc
lemma diff-min-le:

assumes (a::real) ≤ b
and x ≤ y
shows min x b − min x a ≤ min y b − min y a
〈proof 〉

lemma sum-ex-strict-pos:
fixes f g :: ′i ⇒ ′a::ordered-cancel-comm-monoid-add

assumes finite A
and ∀ x∈A. 0 ≤ f x
and ∃ a∈A. 0 < f a

shows 0 < sum f A
〈proof 〉

lemma diff-inv-max-le:
assumes 0 < a
and (a::real) ≤ b
and x ≤ y

shows inverse (max y a) − inverse (max y b) ≤
inverse (max x a) − inverse (max x b)
〈proof 〉

lemma int-interval-insert:
fixes a::int
assumes a ≤ b
shows {a..< (b+1)} = insert b {a..< b}
〈proof 〉

lemma int-telescoping-sum:
fixes f ::int ⇒ ′a::ab-group-add

3

assumes a ≤ b
shows (

∑
i ∈{a..<b}. (f i − f (i+1))) = f a − (f b) 〈proof 〉

lemma int-telescoping-sum ′:
fixes f ::int ⇒ ′a::ab-group-add
assumes a ≤ b
shows (

∑
i ∈{a..<b}. (f (i+1) − f i)) = f b − (f a)

〈proof 〉

lemma int-telescoping-sum-le ′:
fixes f ::int ⇒ ′a::ab-group-add
assumes a ≤ b
shows (

∑
i ∈{a..b}. (f (i+1) − f i)) = f (b+1) − (f a)

〈proof 〉

lemma diff-sum-dcomp:
fixes f :: ′a ⇒ real
assumes finite A
and A = B ∪ C
and B ∩ C = {}

shows x + sum f A − (y + sum f B) = x + sum f C − y
〈proof 〉

lemma sum-remove-el:
assumes finite A
and x∈ A
and B = A − {x}
shows sum f A = f x + sum f B
〈proof 〉

lemma int-set-bdd-above:
fixes X ::int set
assumes X 6= {}

and bdd-above X
shows Sup X ∈ X ∀ x ∈ X . x ≤ Sup X
〈proof 〉

definition wedge where
wedge f (i::int) sqp = (λn. if n ≤ i then f n else f (n−1))(i+1 :=sqp)

lemma wedge-arg-lt[simp]:
assumes n ≤ i
shows wedge f i sqp n = f n 〈proof 〉

lemma wedge-arg-gt[simp]:
assumes i+1 < n
shows wedge f i sqp n = f (n−1) 〈proof 〉

lemma wedge-arg-eq[simp]:

4

shows wedge f i sqp (i+1) = sqp 〈proof 〉

lemma wedge-strict-mono:
assumes strict-mono f
and f i < sqp
and sqp < f (i+1)
and g = wedge f i sqp

shows strict-mono g 〈proof 〉

lemma wedge-gt:
assumes ∀ i. x < f i
and x < sqp
shows ∀ i. x < wedge f j sqp i
〈proof 〉

lemma wedge-ge:
assumes ∀ i. x ≤ f i
and x ≤ sqp
shows ∀ i. x ≤ wedge f j sqp i
〈proof 〉

lemma wedge-lt:
assumes ∀ i. f i < x
and sqp < x
shows ∀ i. wedge f j sqp i < x
〈proof 〉

lemma wedge-le:
assumes ∀ i. f i ≤ x
and sqp ≤ x
shows ∀ i. wedge f j sqp i ≤ x
〈proof 〉

lemma wedge-images:
shows ∀ j. ∃ k. f j = wedge f i sqp k
〈proof 〉

lemma wedge-images ′:
assumes A = {j. j ≤ i}
and B = {j. i+1 < j}

shows wedge f i sqp k ∈ f‘A ∪ (f‘((λi. i−1)‘B)) ∪ {sqp}
〈proof 〉

lemma wedge-as-ubound:
assumes ∀ (r ::real). ∃ (i::int). r < f i
shows ∀ r . ∃ k. r < wedge f i sqp k 〈proof 〉

lemma wedge-as-lbound:
assumes ∀ (r ::real) > 0 . ∃ (i::int). f i < r

5

shows ∀ r > 0 . ∃ k. wedge f i sqp k < r 〈proof 〉

lemma wedge-arg-prop:
shows {j. P (wedge f i sqp j)} ⊆ {j. j ≤ i ∧ P (f j)} ∪
{j. i+1 < j ∧ P (f (j−1))} ∪ {i+1}

〈proof 〉

definition one-cpl where
one-cpl phi = (λ(i::int). (1 ::real) − (phi i))

definition gross-fct where
gross-fct f phi = (λi. f i / (one-cpl phi i))

lemma gross-fct-sgn:
assumes phi i < (1 ::real)
shows ((0 ::real) ≤ f i) ←→ (0 ≤ gross-fct f phi i) 〈proof 〉

lemma gross-fct-nz-eq:
assumes phi i 6= (1 ::real)
shows f i = 0 ←→ gross-fct f phi i = 0 〈proof 〉

lemma gross-fct-cong:
assumes f a = f ′ b
and phi a = phi ′ b

shows gross-fct f phi a = gross-fct f ′ phi ′ b 〈proof 〉

lemma gross-fct-zero-if :
assumes f a = 0
shows gross-fct f phi a = 0 〈proof 〉

definition fee-union where
fee-union (l1 ::real) l2 f1 f2 = (l1∗f1∗(1−f2) + l2∗f2∗(1−f1))/
(l1∗(1−f2) + l2∗(1−f1))

lemma fee-union-pos:
assumes 0 ≤ l1
and 0 ≤ l2
and 0 ≤ f1
and 0 ≤ f2
and f1 < 1
and f2 < 1

shows 0 ≤ fee-union l1 l2 f1 f2 〈proof 〉

lemma fee-union-lt-1 :
assumes 0 ≤ l1
and 0 ≤ l2
and 0 ≤ f1
and 0 ≤ f2
and f1 < 1

6

and f2 < 1
shows fee-union l1 l2 f1 f2 < 1
〈proof 〉

lemma diff-inv-le:
assumes 0 < (x::real)
and x ≤ y
and y ≤ z

shows (y − x)/(z∗z) ≤ inverse x − inverse y
〈proof 〉

lemma diff-inv-le ′:
assumes 0 < (x::real)
and x ≤ y
and y ≤ z
and 0 ≤ a

shows a ∗ (y − x)/(z∗z) ≤ a ∗ (inverse x − inverse y)
〈proof 〉

lemma diff-inv-sum-le ′:
assumes ∀ i ∈ I . (0 ::real) < f i
and ∀ i ∈ I . f i ≤ f (i+1)
and ∀ i∈ I . f (i+1) ≤ z
and ∀ i ∈ I . 0 ≤ g i
shows sum (λi. g i ∗ (f (i+1) − f i)) I / (z ∗ z) ≤

sum (λi. g i ∗ (inverse (f i) − inverse (f (i+1)))) I
〈proof 〉

lemma diff-inv-ge:
assumes 0 < (x::real)
and x ≤ y
and y ≤ z

shows inverse y − inverse z ≤ (z − y)/(x∗x)
〈proof 〉

lemma diff-inv-ge ′:
assumes 0 < (x::real)
and x ≤ y
and y ≤ z
and 0 ≤ a

shows a ∗ (inverse y − inverse z) ≤ a ∗ (z − y)/(x∗x)
〈proof 〉

lemma diff-inv-sum-ge ′:
assumes (0 ::real) < z
and ∀ i ∈ I . f i ≤ f (i+1)
and ∀ i∈ I . z ≤ f i
and ∀ i ∈ I . 0 ≤ g i

shows sum (λi. g i ∗ (inverse (f i) − inverse (f (i+1)))) I ≤

7

sum (λi. g i ∗ (f (i+1) − f i)) I / (z ∗ z)
〈proof 〉

1.2 Support of a discrete function
definition nz-support where
nz-support f = {i. f i 6= 0}

lemma nz-supportD:
assumes i∈ nz-support f
shows f i 6= 0 〈proof 〉

lemma wedge-finite-nz-support:
assumes finite (nz-support f)
shows finite (nz-support (wedge f i sqp))
〈proof 〉

lemma gross-nz-support-eq:
assumes ∀ i ∈ nz-support f . phi i 6= 1
shows nz-support f = nz-support (gross-fct f phi)
〈proof 〉

definition idx-min where
idx-min f = Inf (nz-support f)

definition idx-max where
idx-max f = Sup (nz-support f)

lemma idx-max-bdd-above-ge:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes f i 6= 0
and bdd-above (nz-support f)

shows i ≤ idx-max f
〈proof 〉

lemma idx-min-bdd-below-le:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes f i 6= 0
and bdd-below (nz-support f)

shows idx-min f ≤ i
〈proof 〉

lemma idx-max-finite-ge:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes f i 6= 0
and finite (nz-support f)

shows i ≤ idx-max f 〈proof 〉

lemma idx-min-finite-le:

8

fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes f i 6= 0
and finite (nz-support f)

shows idx-min f ≤ i 〈proof 〉

lemma idx-max-finite:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f)

shows idx-max f = Max (nz-support f) 〈proof 〉

lemma idx-min-finite:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f)

shows idx-min f = Min (nz-support f) 〈proof 〉

lemma idx-max-finite-in:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f)

shows f (idx-max f) 6= 0 〈proof 〉

lemma idx-min-finite-in:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f)

shows f (idx-min f) 6= 0 〈proof 〉

lemma idx-max-finite-gt:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f)

and idx-max f < i
shows f i = 0
〈proof 〉

lemma idx-min-finite-lt:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f)

and i < idx-min f
shows f i = 0
〈proof 〉

lemma idx-min-finite-max:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f)
and

∧
j. j < i =⇒ f j = 0

shows i ≤ idx-min f

9

〈proof 〉

lemma idx-min-max-finite:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes nz-support f 6= {}
and finite (nz-support f)

shows idx-min f≤ idx-max f
〈proof 〉

lemma idx-min-finiteI :
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f)
and f i 6= 0
and

∧
j. j < i=⇒ f j = 0

shows i = idx-min f
〈proof 〉

lemma idx-min-finite-ge:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f)
and nz-support f 6= {}
and

∧
j. j ≤ i=⇒ f j = 0

shows i ≤ idx-min f
〈proof 〉

lemma idx-max-finiteI :
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f)
and f i 6= 0
and

∧
j. j > i =⇒ f j = 0

shows i = idx-max f
〈proof 〉

lemma idx-max-finite-le:
fixes f :: ′a::conditionally-complete-linorder ⇒ ′b::zero
assumes finite (nz-support f)
and nz-support f 6= {}
and

∧
j. i≤ j =⇒ f j = 0

shows idx-max f ≤ i
〈proof 〉

definition idx-min-img where
idx-min-img g f = g (idx-min f)

lemma idx-min-img-eq:
assumes ∀ x. f x = 0 ←→ f ′ x = 0
shows idx-min-img g f = idx-min-img g f ′ 〈proof 〉

definition idx-max-img where

10

idx-max-img g f = g (idx-max f + 1)

lemma idx-max-img-eq:
assumes ∀ x. f x = 0 ←→ f ′ x = 0
shows idx-max-img g f = idx-max-img g f ′ 〈proof 〉

lemma non-zero-liq-interv:
fixes i:: ′a::conditionally-complete-linorder
assumes finite (nz-support L)
and L i 6= 0
shows i ∈ {idx-min L .. idx-max L}
〈proof 〉

end
theory Grid-Information imports CLMM-Misc

begin

2 Grid information
2.1 Definitions

A grid information consists of three functions defining the way a grid is
associated to (square root) prices, the liquidity on each price range and the
fees on each price range.
type-synonym grid-info = (int⇒ real) × (int⇒ real) × (int⇒real)

definition grd::grid-info ⇒ (int⇒ real) where
grd P = fst P

definition lq::grid-info ⇒ (int⇒ real) where
lq P = fst (snd P)

definition fee::grid-info ⇒ (int⇒ real) where
fee P = snd (snd P)

Although several results are formalized in a generalized setting, the pools of
interest are those admitting a finite range with nonzero liquidity.
definition finite-liq where
finite-liq P ←→ finite (nz-support (lq P))

lemma finite-liqI [intro]:
assumes finite {i. lq P i 6= 0}

11

shows finite-liq P 〈proof 〉

lemma finite-liqD:
assumes finite-liq P
shows finite {i. lq P i 6= 0} 〈proof 〉

definition grd-min where
grd-min P = idx-min-img (grd P) (lq P)

definition grd-max where
grd-max P = idx-max-img (grd P) (lq P)

lemma grd-min-pos:
assumes nz-support (lq P) 6= {}
and

∧
i. 0 < grd P i

shows 0 < grd-min P
〈proof 〉

lemma grd-max-gt:
assumes nz-support (lq P) 6= {}
and

∧
i. 0 < grd P i

shows 0 < grd-max P
〈proof 〉

locale finite-nz-support =
fixes L::int ⇒ real
assumes fin-nz-sup: finite (nz-support L)

locale finite-liq-pool =
fixes P
assumes fin-liq: finite-liq P

sublocale finite-liq-pool ⊆ finite-nz-support lq P
〈proof 〉

context finite-liq-pool
begin

lemma idx-max-mem:
assumes nz-support (lq P) 6= {}

shows idx-max (lq P) ∈ nz-support (lq P)
〈proof 〉

lemma idx-min-mem:
assumes nz-support (lq P) 6= {}

shows idx-min (lq P) ∈ nz-support (lq P)
〈proof 〉

lemma grd-min-max:

12

assumes nz-support (lq P) 6= {}
and mono (grd P)

shows grd-min P ≤ grd-max P
〈proof 〉

lemma finite-liq-gross-fct:
shows finite {i. gross-fct (lq P) (fee P) i 6= 0}
〈proof 〉

end

2.2 Gross and net token quantities
2.2.1 General definitions

We define generic functions that are afterwards instantiated to represent the
gross (resp. net) quantities of base (resp. quote) tokens in a pool.
definition rng-token where
rng-token = (λdff L (pi::real) i. ((L i)::real) ∗ (dff pi (i::int)))

lemma rng-token-pos:
assumes 0 ≤ L i
and 0 ≤ dff x i
shows 0 ≤ rng-token dff L x i 〈proof 〉

lemma rng-token-continuous-on:
assumes continuous-on A (λpi. dff pi i)
shows continuous-on A (λpi. rng-token dff L pi i) 〈proof 〉

(Anti)-monotonicity is preserved by the generic function rng-token.
lemma rng-token-mono:

assumes 0 ≤ L i
and mono (λpi. dff pi i)

shows mono (λpi. rng-token dff L pi i)
〈proof 〉

lemma rng-token-strict-mono:
assumes (0 ::real) < L i
and strict-mono (λpi. dff pi i)

shows strict-mono (λpi. rng-token dff L pi i)
〈proof 〉

lemma rng-token-antimono:
assumes 0 ≤ L i
and antimono (λpi. dff pi i)

shows antimono (λpi. rng-token dff L pi i)
〈proof 〉

lemma rng-token-add:

13

assumes ∀ i. L i = L1 i + L2 i
shows rng-token dff L x i = rng-token dff L1 x i +

rng-token dff L2 x i
〈proof 〉

The generic function for the gross or net token quantities on the entire pool
is obtained by summation of rng-token on all ranges.
definition gen-token where
gen-token = (λdff L pi. (infsum (rng-token dff L pi) UNIV))

lemma gen-token-pos:
assumes ∀ i. 0 ≤ L i
and ∀ i. 0 ≤ dff x i

shows 0 ≤ gen-token dff L x 〈proof 〉

lemma gen-token-mono:
assumes ∀ i. 0 ≤ L i
and ∀ x. rng-token dff L x summable-on UNIV
and ∀ i. mono (λpi. dff pi i)
shows mono (λpi. gen-token dff L pi)
〈proof 〉

lemma gen-token-antimono:
assumes ∀ i. 0 ≤ L i
and ∀ x. rng-token dff L x summable-on UNIV
and ∀ i. antimono (λpi. dff pi i)
shows antimono (λpi. gen-token dff L pi)
〈proof 〉

2.2.2 Finite support restriction
context finite-nz-support

begin

lemma finite-nonzero-summable:
shows rng-token dff L x summable-on UNIV
〈proof 〉

lemma gen-token-antimono-finite:
assumes ∀ i. 0 ≤ L i
and ∀ i. antimono (λpi. dff pi i)

shows antimono (λpi. gen-token dff L pi)
〈proof 〉

lemma gen-token-sum:
shows gen-token dff L x =

sum (rng-token dff L x) {i. L i 6= 0}
〈proof 〉

14

lemma gen-token-continuous:
assumes ∀ i. continuous-on A (λpi. dff pi i)

shows continuous-on A (gen-token dff L)
〈proof 〉

lemma gen-token-strict-mono:
assumes ∀ i. 0 ≤ L i
and nz-support L 6= {}
and ∀ i. strict-mono (λpi. dff pi i)
shows strict-mono (λpi. gen-token dff L pi)
〈proof 〉

lemma gen-token-add:
assumes ∀ i. L i = L1 i + L2 i
and ∀ i. 0 ≤ L1 i
and ∀ i. 0 ≤ L2 i
shows gen-token dff L x = gen-token dff L1 x + gen-token dff L2 x
〈proof 〉

end

2.3 Gross and net quantities of quote tokens
2.3.1 Generic functions for quote tokens
definition gamma-min-diff where
gamma-min-diff gamma =
(λ(pi::real) i. (min pi (gamma (i+(1 ::int)))) − (min pi (gamma i)))

lemma gamma-min-diff-pos:
assumes gamma i ≤ gamma (i+1)
shows 0 ≤ gamma-min-diff gamma x i
〈proof 〉

lemma gamma-min-diff-continuous:
shows continuous-on A (λ(pi::real). gamma-min-diff gamma pi i)
〈proof 〉

lemma gamma-min-diff-mono:
fixes gamma::int ⇒ real
assumes gamma i ≤ gamma (i+1)
shows mono (λpi. gamma-min-diff gamma pi i)
〈proof 〉

definition rng-gen-quote where
rng-gen-quote gamma = (λL pi i. rng-token (gamma-min-diff gamma) L pi i)

lemma rng-gen-quote-pos:
assumes 0 ≤ L i

15

and gamma i ≤ gamma (i+1)
shows 0 ≤ rng-gen-quote gamma L x i 〈proof 〉

lemma rng-gen-quote-continuous-on:
shows continuous-on A (λpi. rng-gen-quote gamma L pi i)
〈proof 〉

lemma rng-gen-quote-mono:
assumes 0 ≤ L i
and gamma i ≤ gamma (i+1)
shows mono (λpi. rng-gen-quote gamma L pi i)
〈proof 〉

definition gen-quote where
gen-quote = (λ gamma L pi. gen-token (gamma-min-diff gamma) L pi)

lemma gen-quote-zero:
assumes mono gamma
and

∧
i. gamma i < sqp =⇒ L i = 0

shows gen-quote gamma L sqp = 0 〈proof 〉

lemma gen-quote-pos:
assumes ∀ i. 0 ≤ L i
and ∀ i. gamma i ≤ gamma (i+1)
shows 0 ≤ gen-quote gamma L x 〈proof 〉

lemma gen-quote-mono:
assumes ∀ i. 0 ≤ L i
and ∀ x. rng-token (gamma-min-diff gamma) L x summable-on UNIV
and ∀ i. gamma i ≤ gamma (i+1)
shows mono (gen-quote gamma L) 〈proof 〉

2.3.2 Finite support restriction
context finite-nz-support
begin

lemma gen-quote-mono-finite:
assumes ∀ i. 0 ≤ L i
and ∀ i. gamma i ≤ gamma (i+1)

shows mono (gen-quote gamma L)
〈proof 〉

lemma gen-quote-continuous:
shows continuous-on A (gen-quote gamma L) 〈proof 〉

lemma gen-quote-IVT :
assumes (idx-min-img gamma L) ≤ (idx-max-img gamma L)
and gen-quote gamma L (idx-min-img gamma L) ≤ y

16

and y ≤ gen-quote gamma L (idx-max-img gamma L)
shows ∃ pi ≥ (idx-min-img gamma L). pi ≤ idx-max-img gamma L ∧

gen-quote gamma L pi = y
〈proof 〉

lemma gen-quote-ne:
assumes (idx-min-img gamma L) ≤ (idx-max-img gamma L)
and gen-quote gamma L (idx-min-img gamma L) ≤ y
and y ≤ gen-quote gamma L (idx-max-img gamma L)

shows (gen-quote gamma L)−‘ {y} 6= {} 〈proof 〉

lemma finite-support-sum:
assumes

∧
i. L i = 0 =⇒ f L i = 0

shows infsum (rng-token dff (f L) x) UNIV =
sum (rng-token dff (f L) x) {i. L i 6= 0}

〈proof 〉

lemma gen-quote-plus:
assumes ∀ i. L i = L1 i + L2 i
and ∀ i. 0 ≤ L1 i
and ∀ i. 0 ≤ L2 i

shows gen-quote gam L x = gen-quote gam L1 x + gen-quote gam L2 x
〈proof 〉

end

2.4 Gross quote token quantity into a pool
2.4.1 Function specialization

When the quote tokens are added to a pool, fees are to be taken into account:
if a user adds a quantity q of tokens into a pool, the computation of the
amount of base tokens received is based in q · (1− ϕ).
definition rng-quote-gross where
rng-quote-gross P = rng-gen-quote (grd P) (gross-fct (lq P) (fee P))

lemma rng-quote-gross-pos:
assumes 0 ≤ gross-fct (lq P) (fee P) i
and grd P i ≤ grd P (i+1)
shows 0 ≤ rng-quote-gross P pi i 〈proof 〉

lemma rng-quote-gross-continuous-on:
shows continuous-on A (λpi. rng-quote-gross P pi i)
〈proof 〉

lemma rng-quote-gross-mono:
assumes 0 ≤ gross-fct (lq P) (fee P) i
and grd P i ≤ grd P (i+1)
shows mono (λpi. rng-quote-gross P pi i) 〈proof 〉

17

definition quote-gross where
quote-gross P = gen-quote (grd P) (gross-fct (lq P) (fee P))

lemma quote-gross-pos:
assumes ∀ i. 0 ≤ gross-fct (lq P) (fee P) i
and ∀ i. grd P i ≤ grd P (i+1)
shows 0 ≤ quote-gross P x 〈proof 〉

lemma quote-gross-mono:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and ∀ i. (grd P) i ≤ (grd P) (i+1)
and ∀ x. rng-token (gamma-min-diff (grd P)) (gross-fct (lq P) (fee P)) x

summable-on UNIV
shows mono (quote-gross P) 〈proof 〉

lemma gen-quote-grd-min:
assumes mono (grd P)
and finite (nz-support L)
and nz-support L 6= {}
and nz-support L = nz-support (lq P)

shows gen-quote (grd P) L (grd-min P) = 0
〈proof 〉

Definition of the grid point that is reached in a pool for a given gross quantity
of quote tokens.
definition quote-reach where
quote-reach = (λP y.

if y = 0 then (grd-min P)
else Inf ((quote-gross P)−‘ {y}))

2.4.2 Restriction to pools with a finite liquidity
context finite-liq-pool

begin

lemma quote-gross-mono-finite:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and ∀ i. (grd P) i ≤ (grd P) (i+1)

shows mono (quote-gross P)
〈proof 〉

lemma quote-gross-mono-finite ′:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and mono (grd P)

18

shows mono (quote-gross P)
〈proof 〉

lemma quote-gross-continuous:
shows continuous-on A (quote-gross P) 〈proof 〉

lemma quote-gross-IVT :
assumes ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
and quote-gross P (grd-min P) ≤ y
and y ≤ quote-gross P (grd-max P)

shows ∃ pi ≥ (grd-min P). pi ≤ (grd-max P) ∧
quote-gross P pi = y
〈proof 〉

lemma quote-gross-ne:
assumes ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
and quote-gross P (grd-min P) ≤ y
and y ≤ quote-gross P (grd-max P)

shows quote-gross P−‘ {y} 6= {} 〈proof 〉

lemma quote-gross-grd-min:
assumes mono (grd P)

shows quote-gross P (grd-min P) = 0
〈proof 〉

lemma quote-reach-mem:
assumes ∀ i. 0 ≤ lq P i
and ∀ i. fee P i < 1
and mono (grd P)
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)

shows quote-reach P y ∈ quote-gross P−‘ {y}
〈proof 〉

lemma quote-gross-inv-strict-mono:
assumes mono (quote-gross P)
and quote-gross P sqp ′ < y
and sqp ∈ quote-gross P −‘ {y}

shows sqp ′ < sqp
〈proof 〉

lemma quote-gross-inv-bounded:
assumes mono (quote-gross P)
and quote-gross P (grd-min P) < y
and y < quote-gross P (grd-max P)

shows ∀ sqp ′ ∈ quote-gross P −‘ {y}.
dist (grd-min P) sqp ′ ≤ grd-max P − grd-min P

19

〈proof 〉

lemma quote-gross-bdd-below:
assumes mono (quote-gross P)
and quote-gross P (grd-min P) < y
shows bdd-below (quote-gross P −‘{y}) 〈proof 〉

lemma quote-reach-le:
assumes ∀ i. 0 ≤ lq P i
and ∀ i. fee P i < 1
and mono (grd P)
and 0 < y
and sqp ∈ quote-gross P −‘{y}

shows quote-reach P y ≤ sqp
〈proof 〉

lemma quote-reach-gross-le:
assumes ∀ i. 0 ≤ lq P i
and ∀ i. fee P i < 1
and mono (grd P)
and grd-min P ≤ sqp

shows quote-reach P (quote-gross P sqp) ≤ sqp
〈proof 〉

lemma quote-gross-reach-eq:
assumes ∀ i. 0 ≤ lq P i
and ∀ i. fee P i < 1
and mono (grd P)
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)

shows quote-gross P (quote-reach P y) = y
〈proof 〉

lemma quote-reach-ge:
assumes ∀ i. 0 ≤ lq P i
and ∀ i. fee P i < 1
and mono (grd P)
and grd-min P ≤ grd-max P
and 0 < y
and y ≤ quote-gross P (grd-max P)

shows grd-min P ≤ quote-reach P y
〈proof 〉

end

20

2.5 Net quote token quantity in a pool
2.5.1 Function specialization

There are no fees to take into account when tokens are withdrawn from a
pool.
definition rng-quote-net where
rng-quote-net P = rng-gen-quote (grd P) (lq P)

lemma rng-quote-net-pos:
assumes 0 ≤ (lq P) i
and grd P i ≤ grd P (i+1)
shows 0 ≤ rng-quote-net P x i 〈proof 〉

lemma rng-quote-net-continuous-on:
shows continuous-on A (λpi. rng-quote-net P pi i)
〈proof 〉

lemma rng-quote-net-mono:
assumes 0 ≤ (lq P) i
and grd P i ≤ grd P (i+1)
shows mono (λpi. rng-quote-net P pi i) 〈proof 〉

definition quote-net where
quote-net P = gen-quote (grd P) (lq P)

lemma quote-net-pos:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. grd P i ≤ grd P (i+1)
shows 0 ≤ quote-net P x 〈proof 〉

lemma quote-net-mono:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and ∀ i. (grd P) i ≤ (grd P) (i+1)
and ∀ x. rng-token (gamma-min-diff (grd P)) (lq P) x summable-on UNIV
shows mono (quote-net P) 〈proof 〉

2.5.2 Restriction to pools with a finite liquidity
context finite-liq-pool
begin

lemma quote-net-continuous:
shows continuous-on A (quote-net P) 〈proof 〉

lemma quote-net-IVT :
assumes ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P

21

and quote-net P (grd-min P) ≤ y
and y ≤ quote-net P (grd-max P)

shows ∃ pi ≥ (grd-min P). pi ≤ (grd-max P) ∧
quote-net P pi = y
〈proof 〉

lemma quote-net-ne:
assumes ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
and quote-net P (grd-min P) ≤ y
and y ≤ quote-net P (grd-max P)

shows quote-net P−‘ {y} 6= {} 〈proof 〉

lemma quote-net-mono-finite-liq:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and ∀ i. (grd P) i ≤ (grd P) (i+1)
shows mono (quote-net P) 〈proof 〉

end

2.6 Gross and net quantities of base tokens
2.6.1 Generic functions for base tokens
definition inv-gamma-max-diff where
inv-gamma-max-diff = (λgamma (pi::real) i. inverse (max pi (gamma i)) −

inverse (max pi (gamma (i+(1 ::int)))))

lemma inv-max-pos:
assumes 0 < a
and (a::real) ≤ b
shows 0 ≤ inverse (max x a) − inverse (max x b)
〈proof 〉

lemma inv-gamma-max-diff-pos:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i
shows 0 ≤ inv-gamma-max-diff gamma x i 〈proof 〉

lemma inv-gamma-max-diff-continuous:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i
shows continuous-on A (λpi. inv-gamma-max-diff gamma pi i)
〈proof 〉

lemma inv-gamma-max-diff-antimono:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i
shows antimono (λpi. inv-gamma-max-diff gamma pi i)

22

〈proof 〉

definition rng-gen-base where
rng-gen-base =
(λgamma L pi i. rng-token (inv-gamma-max-diff gamma) L pi i)

lemma rng-gen-base-pos:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i
and 0 ≤ L i
shows 0 ≤ rng-gen-base gamma L x i 〈proof 〉

lemma rng-gen-base-continuous-on:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i

shows continuous-on A (λpi. rng-gen-base gamma L pi i) 〈proof 〉

lemma rng-gen-base-antimono:
assumes gamma i ≤ gamma (i +(1 ::int))
and 0 < gamma i
and 0 ≤ L i
shows antimono (λpi. rng-gen-base gamma L pi i)
〈proof 〉

definition gen-base where
gen-base = (λgamma L pi. gen-token (inv-gamma-max-diff gamma) L pi)

lemma gen-base-pos:
assumes ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
and ∀ i. 0 ≤ L i
shows 0 ≤ gen-base gamma L x 〈proof 〉

lemma gen-base-antimono:
assumes ∀ x. rng-token (inv-gamma-max-diff gamma) L x summable-on UNIV
and ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
and ∀ i. 0 ≤ L i
shows antimono (gen-base gamma L) 〈proof 〉

lemma gen-base-zero:
assumes mono gamma
and

∧
i. sqp < gamma (i+1) =⇒ L i = 0

shows gen-base gamma L sqp = 0 〈proof 〉

lemma gen-base-grd-max:
assumes mono (grd P)
and finite (nz-support L)
and nz-support L 6= {}

23

and nz-support L = nz-support (lq P)
shows gen-base (grd P) L (grd-max P) = 0
〈proof 〉

2.6.2 Finite support restriction
context finite-nz-support
begin

lemma gen-base-continuous:
assumes ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
shows continuous-on A (gen-base gamma L) 〈proof 〉

lemma gen-base-IVT :
assumes ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
and (idx-min-img gamma L) ≤ (idx-max-img gamma L)
and gen-base gamma L (idx-max-img gamma L) ≤ y
and y ≤ gen-base gamma L (idx-min-img gamma L)

shows ∃ pi ≥ (idx-min-img gamma L). pi ≤ (idx-max-img gamma L) ∧
gen-base gamma L pi = y
〈proof 〉

lemma gen-base-ne:
assumes ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
and (idx-min-img gamma L) ≤ (idx-max-img gamma L)
and gen-base gamma L (idx-max-img gamma L) ≤ y
and y ≤ gen-base gamma L (idx-min-img gamma L)

shows (gen-base gamma L)−‘ {y} 6= {} 〈proof 〉

lemma gen-base-antimono-finite:
assumes ∀ i. gamma i ≤ gamma (i +(1 ::int))
and ∀ i. 0 < gamma i
and ∀ i. 0 ≤ L i

shows antimono (gen-base gamma L)
〈proof 〉

lemma gen-base-gross:
assumes ∀ i. L i = L1 i + L2 i
and ∀ i. 0 ≤ L1 i
and ∀ i. 0 ≤ L2 i

shows gen-base gam L x = gen-base gam L1 x + gen-base gam L2 x
〈proof 〉

end

24

2.7 Gross base token quantity in a pool
2.7.1 Function specialization
definition rng-base-gross where
rng-base-gross P = rng-gen-base (grd P) (gross-fct (lq P) (fee P))

lemma rng-base-gross-pos:
assumes 0 ≤ gross-fct (lq P) (fee P) i
and grd P i ≤ grd P (i+1)
and 0 < grd P i
shows 0 ≤ rng-base-gross P x i 〈proof 〉

lemma rng-base-gross-continuous-on:
assumes grd P i ≤ grd P (i+1)
and 0 < grd P i
shows continuous-on A (λpi. rng-base-gross P pi i)
〈proof 〉

lemma rng-base-gross-mono:
assumes 0 ≤ gross-fct (lq P) (fee P) i
and grd P i ≤ grd P (i+1)
and 0 < grd P i
shows antimono (λpi. rng-base-gross P pi i) 〈proof 〉

definition base-gross where
base-gross P = gen-base (grd P) (gross-fct (lq P) (fee P))

lemma base-gross-pos:
assumes ∀ i. 0 ≤ gross-fct (lq P) (fee P) i
and ∀ i. grd P i ≤ grd P (i+1)
and ∀ i. 0 < grd P i
shows 0 ≤ base-gross P x 〈proof 〉

lemma base-gross-antimono:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. (fee P) i < 1
and ∀ i. (grd P) i ≤ (grd P) (i+1)
and ∀ i. 0 < grd P i
and ∀ x. rng-token (inv-gamma-max-diff (grd P)) (gross-fct (lq P) (fee P)) x

summable-on UNIV
shows antimono (base-gross P) 〈proof 〉

lemma base-gross-grd-max:
assumes mono (grd P)
and finite (nz-support (lq P))

shows base-gross P (grd-max P) = 0
〈proof 〉

definition base-reach where

25

base-reach = (λP y.
if y = 0
then (grd-max P)
else Sup ((base-gross P)−‘ {y}))

2.7.2 Restriction to pools with a finite liquidity
context finite-liq-pool
begin

lemma base-gross-continuous:
assumes ∀ i. grd P i ≤ grd P (i+1)
and ∀ i. 0 < grd P i

shows continuous-on A (base-gross P) 〈proof 〉

lemma base-gross-IVT :
assumes ∀ i. grd P i ≤ grd P (i+1)
and ∀ i. 0 < grd P i
and ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
and base-gross P (grd-max P) ≤ y
and y ≤ base-gross P (grd-min P)

shows ∃ pi ≥ (grd-min P). pi ≤ (grd-max P) ∧
base-gross P pi = y
〈proof 〉

lemma base-gross-ne:
assumes ∀ i. grd P i ≤ grd P (i+1)
and ∀ i. 0 < grd P i
and ∀ i. fee P i 6= 1
and grd-min P ≤ grd-max P
and base-gross P (grd-max P) ≤ y
and y ≤ base-gross P (grd-min P)

shows base-gross P−‘ {y} 6= {} 〈proof 〉

lemma base-gross-antimono-finite:
assumes ∀ i. 0 ≤ (lq P) i
and ∀ i. grd P i ≤ grd P (i+1)
and ∀ i. 0 < grd P i
and ∀ i. (fee P) i < 1

shows antimono (base-gross P) 〈proof 〉

lemma base-reach-mem:
assumes ∀ i. grd P i ≤ grd P (i+1)
and ∀ i. 0 < grd P i
and ∀ i. fee P i < 1
and ∀ i. 0 ≤ lq P i
and mono (grd P)
and grd-min P ≤ grd-max P

26

and 0 ≤ y
and y ≤ base-gross P (grd-min P)

shows base-reach P y ∈ base-gross P−‘ {y}
〈proof 〉

lemma base-gross-dwn:
assumes ∀ i. grd P i ≤ grd P (i+1)
and ∀ i. 0 < grd P i
and ∀ i. fee P i < 1
and ∀ i. 0 ≤ lq P i
and mono (grd P)
and grd-min P ≤ grd-max P
and 0 ≤ y
and y ≤ base-gross P (grd-min P)

shows base-gross P (base-reach P y) = y
〈proof 〉

end

2.8 Net base token quantity in a pool
2.8.1 Function specialization
definition rng-base-net where
rng-base-net P = rng-gen-base (grd P) (lq P)

lemma rng-base-net-pos:
assumes grd P i ≤ grd P (i +(1 ::int))
and 0 < grd P i
and 0 ≤ lq P i
shows 0 ≤ rng-base-net P x i 〈proof 〉

lemma rng-base-net-continuous-on:
assumes grd P i ≤ grd P (i +(1 ::int))
and 0 < grd P i
shows continuous-on A (λpi. rng-base-net P pi i)
〈proof 〉

lemma rng-base-net-mono:
assumes grd P i ≤ grd P (i +(1 ::int))
and 0 < grd P i
and 0 ≤ lq P i
shows antimono (λpi. rng-base-net P pi i) 〈proof 〉

definition base-net where
base-net P = gen-base (grd P) (lq P)

lemma base-net-pos:
assumes ∀ i. grd P i ≤ grd P (i +(1 ::int))
and ∀ i. 0 < grd P i

27

and ∀ i. 0 ≤ lq P i
shows 0 ≤ base-net P x 〈proof 〉

2.8.2 Restriction to pools with a finite liquidity
context finite-liq-pool
begin

lemma base-net-continuous:
assumes ∀ i. grd P i ≤ grd P (i +(1 ::int))
and ∀ i. 0 < grd P i
shows continuous-on A (base-net P) 〈proof 〉

lemma base-net-IVT :
assumes ∀ i. grd P i ≤ grd P (i +(1 ::int))
and ∀ i. 0 < grd P i
and grd-min P ≤ grd-max P
and base-net P (grd-max P) ≤ y
and y ≤ base-net P (grd-min P)

shows ∃ pi ≥ (grd-min P). pi ≤ (grd-max P) ∧
base-net P pi = y
〈proof 〉

lemma base-net-ne:
assumes ∀ i. grd P i ≤ grd P (i +(1 ::int))
and ∀ i. 0 < grd P i
and grd-min P ≤ grd-max P
and base-net P (grd-max P) ≤ y
and y ≤ base-net P (grd-min P)

shows base-net P−‘ {y} 6= {} 〈proof 〉

lemma base-net-antimono-finite:
assumes ∀ i. grd P i ≤ grd P (i +(1 ::int))
and ∀ i. 0 < grd P i
and ∀ i. 0 ≤ lq P i
shows antimono (base-net P) 〈proof 〉

end

2.9 Swapping tokens, market depth and slippage

Given a grid point π and a quantity y of quote tokens to add to the pool,
this function computes the amount of base tokens that are retrieved from
the pool.
definition quote-swap where
quote-swap P = (λpi y.

base-net P pi − base-net P (quote-reach P (y + quote-gross P pi)))

Given a grid point π and a quantity x of base tokens to add to the pool,

28

this function computes the amount of quote tokens that are retrieved from
the pool.
definition base-swap where
base-swap P = (λpi x.

quote-net P pi − quote-net P (base-reach P (x + base-gross P pi)))

The market depth in a pool takes as arguments two grid points π and π′,
and returns the amounts of base or quote tokens that have to be added to
the pool for its state to get from π to π′.
definition mkt-depth where
mkt-depth P = (λ pi pi ′. if pi < pi ′ then (base-net P pi − base-net P pi ′)

else (quote-net P pi − quote-net P pi ′))

Base and quote slippages relate the amount of tokens withdrawn from the
pool from those given by an infinitesimally small amount of tokens and that
can be deduced from the grid point.
definition quote-slippage where
quote-slippage P = (λpi y. y/(quote-swap P pi y ∗ pi ∗ pi) − 1)

definition base-slippage where
base-slippage P = (λpi x. base-swap P pi x/(x ∗ pi ∗ pi) − 1)

2.10 Identical profiles
definition id-grid-on where
id-grid-on P P ′ I ←→ (∀ i∈ I . grd P i = grd P ′ i)

lemma id-grid-onI [intro]:
assumes

∧
i. i∈ I =⇒ grd P i = grd P ′ i

shows id-grid-on P P ′ I 〈proof 〉

lemma id-grid-onD[dest]:
assumes id-grid-on P P ′ I
and i∈ I

shows grd P i = grd P ′ i 〈proof 〉

lemma id-grid-on-comm:
assumes id-grid-on P P ′ I
shows id-grid-on P ′ P I
〈proof 〉

lemma id-grid-on-mono:
assumes id-grid-on P P ′ I
and I ′ ⊆ I

shows id-grid-on P P ′ I ′ 〈proof 〉

definition same-nz-liq-on where
same-nz-liq-on P P ′ I ←→ id-grid-on P P ′ I ∧

29

(∀ i ∈ I . (lq P i = 0) ←→ (lq P ′ i = 0))

lemma same-nz-liq-onI [intro]:
assumes id-grid-on P P ′ I
and

∧
i. i∈ I =⇒ ((lq P i = 0) ←→ (lq P ′ i = 0))

shows same-nz-liq-on P P ′ I 〈proof 〉

lemma same-nz-liq-onD[dest]:
assumes same-nz-liq-on P P ′ I
and i∈ I

shows grd P i = grd P ′ i (lq P i = 0) ←→ (lq P ′ i = 0)
〈proof 〉

lemma same-nz-liq-on-comm:
assumes same-nz-liq-on P P ′ I
shows same-nz-liq-on P ′ P I
〈proof 〉

lemma same-nz-liq-on-mono:
assumes same-nz-liq-on P P ′ I
and I ′⊆ I
shows same-nz-liq-on P P ′ I ′

〈proof 〉

definition fee-diff-on where
fee-diff-on P P ′ I ←→ id-grid-on P P ′ I ∧ (∀ i ∈ I . lq P i = lq P ′ i)

lemma fee-diff-onI [intro]:
assumes id-grid-on P P ′ I
and

∧
i. i∈ I =⇒ lq P i = lq P ′ i

shows fee-diff-on P P ′ I
〈proof 〉

lemma fee-diff-onD[dest]:
assumes fee-diff-on P P ′ I
shows id-grid-on P P ′ I ∀ i ∈ I . lq P i = lq P ′ i
〈proof 〉

lemma fee-diff-on-nz-liq:
assumes fee-diff-on P P ′ I
shows same-nz-liq-on P P ′ I 〈proof 〉

lemma fee-diff-on-comm:
assumes fee-diff-on P P ′ I
shows fee-diff-on P ′ P I
〈proof 〉

lemma fee-diff-on-mono:
assumes fee-diff-on P P ′ I

30

and I ′⊆ I
shows fee-diff-on P P ′ I ′

〈proof 〉

3 Grid refinement

We define the notion of pool refinement, that characterizes when a pool
admits a finer price grid than another one but exhibits the same behavior.

3.1 Encompassement properties
definition encomp-at where
encomp-at gamma1 gamma2 i k ≡ gamma2 k ≤ gamma1 i ∧

gamma1 (i+1) ≤ gamma2 (k+1)

lemma encomp-atD1 :
assumes encomp-at gamma1 gamma2 i k
shows gamma2 k ≤ gamma1 i
〈proof 〉

lemma encomp-atD2 :
assumes encomp-at gamma1 gamma2 i k
shows gamma1 (i+1) ≤ gamma2 (k+1)
〈proof 〉

lemma encomp-atI [intro]:
assumes gamma2 k ≤ gamma1 i
and gamma1 (i+1) ≤ gamma2 (k+1)

shows encomp-at gamma1 gamma2 i k 〈proof 〉

definition encompassed where
encompassed gamma1 gamma2 k = {i::int. encomp-at gamma1 gamma2 i k}

lemma encompassed-convex:
assumes (i::int) ∈ encompassed gamma1 gamma2 k
and j ∈ encompassed gamma1 gamma2 k
and i ≤ l
and l ≤ j
and mono gamma1

shows l ∈ encompassed gamma1 gamma2 k 〈proof 〉

lemma encompassed-interval:
assumes mono gamma1
and finite (encompassed gamma1 gamma2 k)
and encompassed gamma1 gamma2 k 6= {}

shows encompassed gamma1 gamma2 k =
{Min (encompassed gamma1 gamma2 k).. Max (encompassed gamma1 gamma2

k)}

31

〈proof 〉

lemma encomp-at-idx-leq:
fixes gamma1 ::int ⇒ real and gamma2 ::int ⇒ real
assumes strict-mono (gamma1 ::int ⇒ real)
and mono (gamma2 ::int ⇒ real)
and encomp-at gamma1 gamma2 i k
and gamma2 k ′ ≤ gamma1 i

shows k ′ ≤ k
〈proof 〉

lemma encomp-at-unique:
assumes strict-mono (gamma1 ::int ⇒ real)
and mono (gamma2 ::int ⇒ real)
and encomp-at gamma1 gamma2 i k
and encomp-at gamma1 gamma2 i k ′

shows k = k ′

〈proof 〉

lemma encomp-at-unique ′:
assumes strict-mono (gamma1 ::int ⇒ real)
and mono (gamma2 ::int ⇒ real)
and encomp-at gamma1 gamma2 i k
and gamma2 k ′ ≤ gamma1 i
and gamma1 i < gamma2 (k ′+1)

shows k = k ′

〈proof 〉

lemma encomp-at-refl:
fixes gamma:: ′a::{one, plus}⇒ real
shows encomp-at gamma gamma i i
〈proof 〉

3.2 Finer price grids
definition finer-range:: (int ⇒ real) ⇒ (int ⇒ real) ⇒ bool where
finer-range gamma1 gamma2 ≡ (∀ i. ∃ k. encomp-at gamma1 gamma2 i k)

definition finer-grid where
finer-grid P1 P2 ≡ finer-range (grd P1) (grd P2)

lemma finer-grid-range[simp]:
assumes finer-grid P1 P2
shows finer-range (grd P1) (grd P2)
〈proof 〉

definition coarse-idx where
coarse-idx gamma1 gamma2 i =
(THE k. encomp-at gamma1 gamma2 i k)

32

definition finer-idx-bound where
finer-idx-bound gamma1 gamma2 i =
(THE k. gamma1 k = gamma2 (coarse-idx gamma1 gamma2 i))

lemma finer-range-refl:
shows finer-range gamma gamma 〈proof 〉

locale finer-ranges =
fixes gamma1 ::int ⇒ real and gamma2 ::int ⇒ real
assumes stm: strict-mono gamma1
and mon: mono gamma2
and fin: finer-range gamma1 gamma2

begin

lemma encomp-idx-unique:
shows ∃ !k. encomp-at gamma1 gamma2 i k
〈proof 〉

lemma coarse-idx-bounds:
shows encomp-at gamma1 gamma2 i (coarse-idx gamma1 gamma2 i)
〈proof 〉

lemma encompassed-bounds:
shows i ∈ encompassed gamma1 gamma2 (coarse-idx gamma1 gamma2 i)
〈proof 〉

lemma encompassed-unique:
assumes i ∈ encompassed gamma1 gamma2 k
shows k = coarse-idx gamma1 gamma2 i
〈proof 〉

lemma encompassed-inj:
assumes k 6= k ′

shows encompassed gamma1 gamma2 k ∩ encompassed gamma1 gamma2 k ′ =
{}
〈proof 〉

lemma coarse-idx-eq:
assumes gamma2 k ′ ≤ gamma1 i
and gamma1 i < gamma2 (k ′+1)

shows k ′ = coarse-idx gamma1 gamma2 i
〈proof 〉

lemma coarse-idx-reached:
assumes gamma1 m ≤ gamma2 k
and gamma2 k < gamma1 M
and k = coarse-idx gamma1 gamma2 i

33

shows ∃ j. gamma1 j = gamma2 k
〈proof 〉

lemma coarse-idx-reached-unique:
assumes gamma1 m ≤ gamma2 k
and gamma2 k < gamma1 M
and k = coarse-idx gamma1 gamma2 i

shows ∃ !j. gamma1 j = gamma2 k
〈proof 〉

lemma encomp-idx-mono:
assumes i < j
and encomp-at gamma1 gamma2 i k
and encomp-at gamma1 gamma2 j l
and k 6= l
shows k < l
〈proof 〉

lemma encomp-idx-mono ′:
assumes i ≤ j
and encomp-at gamma1 gamma2 i k
and encomp-at gamma1 gamma2 j l

shows k ≤ l
〈proof 〉

lemma encomp-idx-mono-conv:
assumes k < l
and encomp-at gamma1 gamma2 i k
and encomp-at gamma1 gamma2 j l
shows i < j
〈proof 〉

lemma finer-idx-bound-eq:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M

shows gamma1 (finer-idx-bound gamma1 gamma2 i) =
gamma2 (coarse-idx gamma1 gamma2 i)
〈proof 〉

lemma finer-idx-bound-exists-eq:
assumes ∃m. gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and ∃M . gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M

shows gamma1 (finer-idx-bound gamma1 gamma2 i) =
gamma2 (coarse-idx gamma1 gamma2 i) 〈proof 〉

lemma finer-idx-bound-eq ′:
assumes i ∈ encompassed gamma1 gamma2 k
and gamma1 m ≤ gamma2 k
and gamma2 k < gamma1 M

34

shows gamma1 (finer-idx-bound gamma1 gamma2 i) = gamma2 k
〈proof 〉

lemma finer-idx-bound-exists-eq ′:
assumes i ∈ encompassed gamma1 gamma2 k
and ∃m. gamma1 m ≤ gamma2 k
and ∃M . gamma2 k < gamma1 M

shows gamma1 (finer-idx-bound gamma1 gamma2 i) = gamma2 k
〈proof 〉

lemma finer-idx-bound-mem:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i + 1) ≤ gamma1 M
and gamma2 (coarse-idx gamma1 gamma2 i) 6=

gamma2 (coarse-idx gamma1 gamma2 i + 1)
shows finer-idx-bound gamma1 gamma2 i ∈

encompassed gamma1 gamma2 (coarse-idx gamma1 gamma2 i)
〈proof 〉

lemma finer-idx-bound-reached:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M
and gamma1 i = gamma2 (coarse-idx gamma1 gamma2 i)

shows i = finer-idx-bound gamma1 gamma2 i
〈proof 〉

lemma finer-idx-bound-leq:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M

shows finer-idx-bound gamma1 gamma2 i ≤ i
〈proof 〉

lemma finer-idx-bound-proj:
assumes i ∈ encompassed gamma1 gamma2 k
and j ∈ encompassed gamma1 gamma2 k
and gamma1 m ≤ gamma2 k
and gamma2 k < gamma1 M

shows finer-idx-bound gamma1 gamma2 i = finer-idx-bound gamma1 gamma2 j
〈proof 〉

lemma finer-idx-bound-min:
assumes i ∈ encompassed gamma1 gamma2 k
and j ∈ encompassed gamma1 gamma2 k
and gamma1 m ≤ gamma2 k
and gamma2 k < gamma1 M

shows finer-idx-bound gamma1 gamma2 i ≤ j
〈proof 〉

lemma coarse-idx-finer-bound:

35

assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M

shows coarse-idx gamma1 gamma2 (finer-idx-bound gamma1 gamma2 i) =
coarse-idx gamma1 gamma2 i
〈proof 〉

lemma finer-idx-bound-invol:
assumes gamma1 m ≤ gamma2 (coarse-idx gamma1 gamma2 i)
and gamma2 (coarse-idx gamma1 gamma2 i) < gamma1 M

shows finer-idx-bound gamma1 gamma2 (finer-idx-bound gamma1 gamma2 i) =
finer-idx-bound gamma1 gamma2 i
〈proof 〉

lemma reached-imp-coarse:
assumes gamma1 i = gamma2 k
and gamma2 k 6= gamma2 (k+1)

shows gamma1 (i+1) ≤ gamma2 (k+1)
〈proof 〉

lemma less-imp-coarse:
assumes gamma1 m < gamma2 k
and gamma2 k ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

shows ∃ i. encomp-at gamma1 gamma2 i k
〈proof 〉

lemma ex-coarse-rep:
assumes gamma1 m ≤ gamma2 k
and gamma2 k ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

shows ∃ i. encomp-at gamma1 gamma2 i k
〈proof 〉

lemma encompassed-ne:
assumes gamma1 m ≤ gamma2 k
and gamma2 k ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

shows encompassed gamma1 gamma2 k 6= {}
〈proof 〉

lemma encompassed-ne ′:
assumes ∃m. gamma1 m ≤ gamma2 k
and ∃M . gamma2 k ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

shows encompassed gamma1 gamma2 k 6= {}
〈proof 〉

lemma encompassed-finite:
assumes gamma1 m ≤ gamma2 k

36

and gamma2 (k+1) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

shows finite (encompassed gamma1 gamma2 k)
〈proof 〉

lemma encompassed-finite ′:
assumes ∃m. gamma1 m ≤ gamma2 k
and ∃M . gamma2 (k+1) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

shows finite (encompassed gamma1 gamma2 k) 〈proof 〉

lemma encompassed-Min-in:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+1) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

shows Min (encompassed gamma1 gamma2 k) ∈ encompassed gamma1 gamma2 k
〈proof 〉

lemma encompassed-Max-in:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+1) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

shows Max (encompassed gamma1 gamma2 k) ∈ encompassed gamma1 gamma2 k
〈proof 〉

lemma encompassed-min-gamma-eq:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+1) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

shows gamma1 (Min (encompassed gamma1 gamma2 k)) = gamma2 k
〈proof 〉

lemma encompassed-min-gamma-eq ′:
assumes ∃m. gamma1 m ≤ gamma2 k
and ∃M . gamma2 (k+1) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

shows gamma1 (Min (encompassed gamma1 gamma2 k)) = gamma2 k
〈proof 〉

lemma coarse-idx-upper :
assumes gamma2 k < gamma1 j
and j /∈ encompassed gamma1 gamma2 k

shows k < coarse-idx gamma1 gamma2 j
〈proof 〉

lemma encompassed-max-Suc-eq:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+1) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)

37

and gamma2 (k+1) 6= gamma2 (k+2)
shows Max (encompassed gamma1 gamma2 k) + 1 ∈

encompassed gamma1 gamma2 (k+1)
〈proof 〉

lemma encompassed-max-Suc-gamma-eq:
assumes gamma1 m ≤ gamma2 k
and gamma2 (k+2) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)
and gamma2 (k+1) 6= gamma2 (k+2)

shows gamma1 (Max (encompassed gamma1 gamma2 k) + 1) = gamma2 (k+1)
〈proof 〉

lemma encompassed-max-Suc-gamma-eq ′:
assumes ∃m. gamma1 m ≤ gamma2 k
and ∃M . gamma2 (k+2) ≤ gamma1 M
and gamma2 k 6= gamma2 (k+1)
and gamma2 (k+1) 6= gamma2 (k+2)

shows gamma1 (Max (encompassed gamma1 gamma2 k) + 1) = gamma2 (k+1)
〈proof 〉

end

lemma coarse-idx-refl:
fixes gamma::int ⇒ real
assumes strict-mono gamma
shows i = coarse-idx gamma gamma i
〈proof 〉

3.3 Pools with finer grids and coinciding profiles
definition pool-coarse-idx where
pool-coarse-idx = (λP1 P2 i. coarse-idx (grd P1) (grd P2) i)

lemma pool-coarse-idxD:
assumes k = pool-coarse-idx P1 P2 i
shows k = coarse-idx (grd P1) (grd P2) i
〈proof 〉

definition pool-finer-idx-bound where
pool-finer-idx-bound = (λP1 P2 i. finer-idx-bound (grd P1) (grd P2) i)

lemma pool-finer-idx-boundD:
assumes l = pool-finer-idx-bound P1 P2 i
shows l = finer-idx-bound (grd P1) (grd P2) i
〈proof 〉

definition finer-pool where
finer-pool P1 P2 ≡ finer-grid P1 P2 ∧

38

(∀ i. lq P1 i = lq P2 (pool-coarse-idx P1 P2 i)) ∧
(∀ i. fee P1 i = fee P2 (pool-coarse-idx P1 P2 i))

lemma finer-poolI [intro]:
assumes finer-range (grd P1) (grd P2)
and (∀ i. lq P1 i = lq P2 (pool-coarse-idx P1 P2 i))
and (∀ i. fee P1 i = fee P2 (pool-coarse-idx P1 P2 i))

shows finer-pool P1 P2
〈proof 〉

lemma finer-poolD:
assumes finer-pool P1 P2 shows
finer-range (grd P1) (grd P2)
∀ i. lq P1 i = lq P2 (pool-coarse-idx P1 P2 i)
∀ i. fee P1 i = fee P2 (pool-coarse-idx P1 P2 i)
〈proof 〉

lemma finer-pool-refl:
assumes strict-mono (grd P)
shows finer-pool P P
〈proof 〉

locale finer-pools =
fixes P1 P2
assumes fin-pool: finer-pool P1 P2

begin

lemma finer-pool-grid:
shows finer-range (grd P1) (grd P2) 〈proof 〉

lemma finer-pool-liq:
shows ∀ i. lq P1 i = lq P2 (pool-coarse-idx P1 P2 i)
〈proof 〉

lemma finer-pool-fee:
shows ∀ i. fee P1 i = fee P2 (pool-coarse-idx P1 P2 i)
〈proof 〉

lemma encompassed-liq-eq:
assumes strict-mono (grd P1)
and mono (grd P2)

and i ∈ encompassed (grd P1) (grd P2) k
shows lq P1 i = lq P2 k
〈proof 〉

lemma encompassed-fee-eq:
assumes strict-mono (grd P1)
and mono (grd P2)

39

and i ∈ encompassed (grd P1) (grd P2) k
shows fee P1 i = fee P2 k
〈proof 〉

lemma sum-rng-token:
assumes strict-mono (grd P1)
and mono (grd P2)
and grd P1 m1 ≤ grd P2 k
and grd P2 (k+1) ≤ grd P1 M1
and grd P2 k 6= grd P2 (k + 1)
and

∧
a b. a ∈ encompassed (grd P1) (grd P2) b =⇒

g (lq P1) a = g ′ (lq P2) b
and ∀ i ∈ encompassed (grd P1) (grd P2) k. dff x i = f (i+1) − f i

shows sum (rng-token dff (g (lq P1)) x)
(encompassed (grd P1) (grd P2) k) =
(g ′ (lq P2)) k ∗ (f (Max (encompassed (grd P1) (grd P2) k) + 1) −
f (Min (encompassed (grd P1) (grd P2) k)))

〈proof 〉

lemma sum-rng-gen-quote:
assumes strict-mono (grd P1)
and mono (grd P2)
and grd P1 m1 ≤ grd P2 k
and grd P2 (k+2) ≤ grd P1 M1
and grd P2 k 6= grd P2 (k + 1)
and grd P2 (k+1) 6= grd P2 (k + 2)
and

∧
a b. a ∈ encompassed (grd P1) (grd P2) b =⇒

f (lq P1) a = f ′ (lq P2) b
shows sum (rng-gen-quote (grd P1) (f (lq P1)) x)
(encompassed (grd P1) (grd P2) k) =
rng-gen-quote (grd P2) (f ′ (lq P2)) x k
〈proof 〉

lemma sum-rng-gen-base:
assumes strict-mono (grd P1)
and mono (grd P2)
and grd P1 m1 ≤ grd P2 k
and grd P2 (k+2) ≤ grd P1 M1
and grd P2 k 6= grd P2 (k + 1)
and grd P2 (k+1) 6= grd P2 (k + 2)
and

∧
a b. a ∈ encompassed (grd P1) (grd P2) b =⇒

f (lq P1) a = f ′ (lq P2) b
shows sum (rng-gen-base (grd P1) (f (lq P1)) x)
(encompassed (grd P1) (grd P2) k) =
rng-gen-base (grd P2) (f ′ (lq P2)) x k
〈proof 〉

lemma finer-imp-finite-liq:
assumes strict-mono (grd P1)

40

and mono (grd P2)
and finite-liq P2
and

∧
k. lq P2 k 6= 0 =⇒ finite (encompassed (grd P1) (grd P2) k)

shows finite-liq P1
〈proof 〉

lemma finer-imp-finite-liq ′:
assumes finer-pool P1 P2
and strict-mono (grd P1)
and mono (grd P2)
and finite-liq P1
and finite {k. encompassed (grd P1) (grd P2) k = {}}
shows finite-liq P2
〈proof 〉

end

3.4 Spanning grids
definition span-grid where
span-grid P ←→ strict-mono (grd P) ∧ (∀ i. 0 < grd P i) ∧

(∀ r>0 . ∃ i. grd P i < r) ∧ (∀ r . ∃ i. r < grd P i)

lemma span-gridD:
assumes span-grid P
shows strict-mono (grd P) ∀ i. 0 < grd P i
∀ r>0 . ∃ i. grd P i < r ∀ r . ∃ i. r < grd P i
〈proof 〉

lemma span-gridI [intro]:
assumes strict-mono (grd P)
and ∀ i. 0 < grd P i
and ∀ r>0 . ∃ i. grd P i < r
and ∀ r . ∃ i. r < grd P i

shows span-grid P 〈proof 〉

lemma span-grid-eq:
assumes span-grid P
and grd P = grd P ′

shows span-grid P ′ 〈proof 〉

locale finer-spanning-pool = finer-pools +
assumes span: span-grid P1

begin

lemma finer-spanning-gt:
shows ∃ i. r < grd P2 i
〈proof 〉

41

lemma finer-spanning-lt:
assumes 0 < r

shows ∃ i. grd P2 i < r
〈proof 〉

lemma finer-span-grid:
assumes ∀ i. 0 < grd P2 i
and strict-mono (grd P2)

shows span-grid P2
〈proof 〉

end

locale finer-two-spanning-pools = finer-spanning-pool +
assumes span2 : span-grid P2

sublocale finer-two-spanning-pools ⊆ finer-ranges grd P1 grd P2
〈proof 〉

context finer-two-spanning-pools
begin

lemma spanning-sum-rng-gen-quote:
assumes

∧
a b. a ∈ encompassed (grd P1) (grd P2) b =⇒

f (lq P1) a = f ′ (lq P2) b
shows sum (rng-gen-quote (grd P1) (f (lq P1)) x)
(encompassed (grd P1) (grd P2) k) =
rng-gen-quote (grd P2) (f ′ (lq P2)) x k
〈proof 〉

lemma spanning-sum-rng-gen-base:
assumes

∧
a b. a ∈ encompassed (grd P1) (grd P2) b =⇒

f (lq P1) a = f ′ (lq P2) b
shows sum (rng-gen-base (grd P1) (f (lq P1)) x)
(encompassed (grd P1) (grd P2) k) =
rng-gen-base (grd P2) (f ′ (lq P2)) x k
〈proof 〉

lemma span-grid-encompassed:
shows finite (encompassed (grd P1) (grd P2) k)
〈proof 〉

lemma span-grids-finite-liq:
assumes finite-liq P2

shows finite-liq P1
〈proof 〉

lemma span-grids-ex-le:

42

shows ∃m. grd P1 m ≤ grd P2 k
〈proof 〉

lemma span-grids-ex-ge:
shows ∃M . grd P2 k ≤ grd P1 M
〈proof 〉

lemma span-grids-encompassed-ne:
shows encompassed (grd P1) (grd P2) k 6= {}
〈proof 〉

end

3.5 Spanning grids and finite liquidity
locale finer-two-span-finite-liq = finer-two-spanning-pools +

assumes fin-liq: finite-liq P1

sublocale finer-two-span-finite-liq ⊆ finite-liq-pool P1
〈proof 〉

lemma (in finer-two-span-finite-liq) span-grids-finite-liq ′:
shows finite-liq P2
〈proof 〉

sublocale finer-two-span-finite-liq ⊆ finite-liq-pool P2
〈proof 〉

context finer-two-span-finite-liq
begin

lemma finer-pool-encompassed-Union:
shows (

⋃
(encompassed (grd P1) (grd P2) ‘{i. lq P2 i 6= 0})) =

{i. lq P1 i 6= 0}
〈proof 〉

lemma spanning-finer-gen-quote-eq:
assumes

∧
a b. a ∈ encompassed (grd P1) (grd P2) b =⇒

f (lq P1) a = f ′ (lq P2) b
and

∧
i. lq P2 i = 0 =⇒ f ′ (lq P2) i = 0

and
∧

i. lq P1 i = 0 =⇒ f (lq P1) i = 0
shows gen-quote (grd P1) (f (lq P1)) x = gen-quote (grd P2) (f ′ (lq P2)) x
〈proof 〉

lemma spanning-finer-gen-base-eq:
assumes

∧
a b. a ∈ encompassed (grd P1) (grd P2) b =⇒

f (lq P1) a = f ′ (lq P2) b
and

∧
i. lq P2 i = 0 =⇒ f ′ (lq P2) i = 0

and
∧

i. lq P1 i = 0 =⇒ f (lq P1) i = 0

43

shows gen-base (grd P1) (f (lq P1)) x = gen-base (grd P2) (f ′ (lq P2)) x
〈proof 〉

end

end
theory CLMM-Description imports Grid-Information

begin

4 CLMM description

Definition of CLMMs (Concentrated Liquidity Market Makers)

4.1 Preliminary results
definition clmm-dsc where
clmm-dsc P ←→ (span-grid P) ∧ (finite-liq P) ∧ (∀ i. 0 ≤ lq P i) ∧
(∀ i. 0 ≤ fee P i) ∧ (∀ i. fee P i < 1)

lemma clmm-dscI [intro]:
assumes span-grid P
and finite-liq P
and ∀ i. 0 ≤ lq P i
and ∀ i. 0 ≤ fee P i
and ∀ i. fee P i < 1

shows clmm-dsc P 〈proof 〉

lemma clmm-dsc-span-grid:
assumes clmm-dsc P
shows span-grid P 〈proof 〉

lemma clmm-dsc-grid[simp]:
assumes clmm-dsc P
shows strict-mono (grd P) (∀ i. 0 < grd P i)
(∀ r>0 . ∃ i. grd P i < r) (∀ r . ∃ i. r < grd P i)
〈proof 〉

lemma clmm-dsc-grd-Suc:
assumes clmm-dsc P
shows grd P i < grd P (i+1) 〈proof 〉

lemma clmm-dsc-grd-smono:
assumes clmm-dsc P

44

and i < j
shows grd P i < grd P j 〈proof 〉

lemma clmm-dsc-grd-mono:
assumes clmm-dsc P
and i ≤ j
shows grd P i ≤ grd P j 〈proof 〉

lemma clmm-dsc-liq:
assumes clmm-dsc P
shows finite-liq P 0 ≤ lq P i 〈proof 〉

lemma clmm-dsc-fees:
assumes clmm-dsc P
shows (∀ i. 0 ≤ fee P i) ∧ (∀ i. fee P i < 1) 〈proof 〉

lemma clmm-dsc-fees-neq-1 :
assumes clmm-dsc P
shows ∀ i. fee P i 6= 1
〈proof 〉

lemma clmm-dsc-gross-liq:
assumes clmm-dsc P
shows nz-support (gross-fct (lq P) (fee P)) = nz-support (lq P)
〈proof 〉

lemma clmm-dsc-gross-liq-zero-iff :
assumes clmm-dsc P
shows (lq P i = 0) ←→ (gross-fct (lq P) (fee P) i = 0)
〈proof 〉

lemma gross-liq-gt:
assumes clmm-dsc P
and lq P i 6= 0
and L = gross-fct (lq P) (fee P)

shows 0 < L i 〈proof 〉

lemma gross-liq-ge:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)

shows 0 ≤ L i 〈proof 〉

lemma rng-quote-net-ge:
assumes clmm-dsc P
shows 0 ≤ lq P i ∗ (grd P (i+1) − grd P i)
〈proof 〉

lemma rng-quote-gross-ge:
assumes clmm-dsc P

45

and L = gross-fct (lq P) (fee P)
shows 0 ≤ L i ∗ (grd P (i+1) − grd P i)
〈proof 〉

lemma clmm-quote-gross-pos:
assumes clmm-dsc P

shows 0 ≤ quote-gross P sqp 〈proof 〉

lemma clmm-quote-gross-mono:
assumes clmm-dsc P
shows mono (quote-gross P)
〈proof 〉

lemma quote-gross-imp-sqp-lt:
assumes clmm-dsc P
and quote-gross P sqp < quote-gross P sqp ′

shows sqp < sqp ′

〈proof 〉

lemma clmm-quote-net-mono:
assumes clmm-dsc P
shows mono (quote-net P)
〈proof 〉

lemma clmm-base-gross-antimono:
assumes clmm-dsc P
shows antimono (base-gross P)
〈proof 〉

lemma clmm-base-net-antimono:
assumes clmm-dsc P
shows antimono (base-net P)
〈proof 〉

lemma liq-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows 0 < grd-min P 〈proof 〉

lemma liq-grd-min-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows grd-min P < grd-max P
〈proof 〉

definition rng-blw where
rng-blw P prc = {i. grd P i ≤ prc}

lemma rng-blw-mem[simp]:

46

assumes i ∈ rng-blw P prc
shows grd P i ≤ prc 〈proof 〉

lemma rng-blw-bdd-above:
assumes clmm-dsc P
shows bdd-above (rng-blw P prc) 〈proof 〉

lemma rng-blw-ne:
assumes clmm-dsc P
and 0 < prc
shows rng-blw P prc 6= {}
〈proof 〉

definition lower-tick where
lower-tick P prc = Sup (rng-blw P prc)

lemma grd-lower-tick-cong:
assumes grd P1 = grd P2
shows lower-tick P1 sqp = lower-tick P2 sqp
〈proof 〉

lemma lower-tick-mem:
assumes clmm-dsc P
and 0 < prc
shows lower-tick P prc ∈ rng-blw P prc 〈proof 〉

lemma lower-tick-geq:
assumes clmm-dsc P
and 0 < prc

shows grd P (lower-tick P prc) ≤ prc
〈proof 〉

lemma lower-tick-geq ′:
assumes clmm-dsc P
and i ∈ rng-blw P prc

shows i ≤ lower-tick P prc 〈proof 〉

lemma lower-tick-ubound:
assumes clmm-dsc P
and i = lower-tick P prc
shows prc < grd P (i+1)
〈proof 〉

lemma lower-tick-lbound:
assumes clmm-dsc P
and 0 < prc
and i = lower-tick P prc

shows grd P i ≤ prc 〈proof 〉

47

lemma lower-tick-lt:
assumes clmm-dsc P
and 0 < sqp ′

and i = lower-tick P sqp
and j = lower-tick P sqp ′

and i < j
shows sqp < sqp ′

〈proof 〉

lemma lower-tick-lt ′:
assumes clmm-dsc P
and 0 < sqp ′

and i = lower-tick P sqp
and j = lower-tick P sqp ′

and sqp ′ < sqp
and grd P i = sqp

shows j < i
〈proof 〉

lemma lower-tick-mono:
assumes clmm-dsc P
and 0 < sqp
and i = lower-tick P sqp
and j = lower-tick P sqp ′

and sqp ≤ sqp ′

shows i ≤ j
〈proof 〉

lemma lower-tick-eq:
assumes clmm-dsc P
and grd P i = sqp

shows lower-tick P sqp = i
〈proof 〉

lemma lower-tick-charact:
assumes clmm-dsc P
and grd P i ≤ sqp
and sqp < grd P (i+1)

shows lower-tick P sqp = i
〈proof 〉

lemma lower-tick-grd-min:
assumes strict-mono (grd P)

shows idx-min (lq P) = lower-tick P (grd-min P)
〈proof 〉

lemma lower-tick-grd-max:
assumes strict-mono (grd P)
shows idx-max (lq P) + 1 = lower-tick P (grd-max P)

48

〈proof 〉

lemma grd-max-gt-if :
assumes clmm-dsc P
and i = lower-tick P sqp
and lq P i 6= 0

shows sqp < grd-max P
〈proof 〉

4.2 Quote token addition and withdrawal in a CLMM
lemma (in finite-nz-support) clmm-gen-quote-sum:

assumes clmm-dsc P
and 0 < sqp
and j = lower-tick P sqp

shows gen-quote (grd P) L sqp =
L j ∗ (sqp − grd P j) +
sum (λ i. L i ∗ (grd P (i+1) − grd P i)) {i. L i 6= 0 ∧ i < j}

〈proof 〉

lemma clmm-gen-quote-grd-min:
assumes clmm-dsc P
and nz-support L 6= {}
and finite (nz-support L)
and nz-support L = nz-support (lq P)

shows gen-quote (grd P) L (grd-min P) = 0 〈proof 〉

lemma (in finite-nz-support) clmm-gen-quote-grd-min-le:
assumes clmm-dsc P
and nz-support L = nz-support (lq P)
and sqp ≤ grd-min P
and 0 < sqp

shows gen-quote (grd P) L sqp = 0
〈proof 〉

lemma clmm-quote-gross-sum:
assumes clmm-dsc P
and 0 < sqp
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp

shows quote-gross P sqp =
L j ∗ (sqp − grd P j) +
sum (λ i. L i ∗ (grd P (i+1) − grd P i)) {i. L i 6= 0 ∧ i < j}

〈proof 〉

lemma clmm-quote-gross-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows quote-gross P (grd-min P) = 0 〈proof 〉

49

lemma clmm-quote-gross-grd-min-le:
assumes clmm-dsc P
and sqp ≤ grd-min P
and 0 < sqp

shows quote-gross P sqp = 0 〈proof 〉

lemma clmm-quote-reach-zero:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows quote-reach P 0 = grd-min P
〈proof 〉

lemma clmm-quote-reach-ge:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)

shows grd-min P ≤ (quote-reach P y)
〈proof 〉

lemma clmm-quote-reach-pos:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)
and sqp = quote-reach P y

shows 0 < sqp
〈proof 〉

lemma clmm-quote-reach-mem:
assumes clmm-dsc P
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)
and nz-support (lq P) 6= {}

shows quote-reach P y ∈ quote-gross P−‘ {y}
〈proof 〉

lemma clmm-quote-reach-le:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and sqp ∈ quote-gross P −‘{y}
and sqp ′ = quote-reach P y

shows sqp ′ ≤ sqp
〈proof 〉

lemma clmm-quote-net-sum:
assumes clmm-dsc P

50

and 0 < sqp
and L = lq P
and j = lower-tick P sqp

shows quote-net P sqp =
L j ∗ (sqp − grd P j) +
sum (λ i. L i ∗ (grd P (i+1) − grd P i)) {i. L i 6= 0 ∧ i < j}

〈proof 〉

lemma clmm-quote-net-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows quote-net P (grd-min P) = 0 〈proof 〉

lemma clmm-quote-gross-reach-eq:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)

shows quote-gross P (quote-reach P y) = y
〈proof 〉

definition gen-quote-diff where
gen-quote-diff P L sqp sqp ′ = gen-quote (grd P) L sqp ′ − gen-quote (grd P) L sqp

lemma (in finite-nz-support) clmm-gen-quote-diff-eq:
assumes clmm-dsc P
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows gen-quote-diff P L sqp sqp ′ = L k ∗ (sqp ′ − grd P k) +

sum (λ i. L i ∗ (grd P (i+1) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1) − sqp)
〈proof 〉

lemma (in finite-nz-support) clmm-gen-quote-diff-eq ′:
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and L ′ j = L j
shows gen-quote-diff P L sqp sqp ′ = L ′ j ∗ (sqp ′ − sqp)
〈proof 〉

lemma clmm-quote-gross-diff-eq:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)

51

and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows quote-gross P sqp ′ − quote-gross P sqp = L k ∗ (sqp ′ − grd P k) +

sum (λ i. L i ∗ (grd P (i+1) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1) − sqp)
〈proof 〉

lemma clmm-rng-quote-strict-pos:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and L i 6= 0

shows 0 < L i ∗ (grd P (i+1) − grd P i) 〈proof 〉

lemma clmm-sum-rng-quote-pos:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)

shows 0 ≤ sum (λ i. L i ∗ (grd P (i+1) − grd P i)) M
〈proof 〉

lemma clmm-sum-rng-quote-strict-pos:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and L i 6= 0
and i ∈ M
and finite M

shows 0 < sum (λ i. L i ∗ (grd P (i+1) − grd P i)) M
〈proof 〉

lemma clmm-quote-gross-eq-sum-only-if :
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and quote-gross P sqp ′ = quote-gross P sqp
and j < i
and i < k

shows L i = 0
〈proof 〉

lemma clmm-quote-gross-eq-sum-emp:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp

52

and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and quote-gross P sqp ′ = quote-gross P sqp

shows {i. L i 6= 0 ∧ j <i ∧ i < k} = {}
〈proof 〉

lemma clmm-quote-gross-eq-lower-only-if :
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and quote-gross P sqp ′ = quote-gross P sqp

shows L j = 0
〈proof 〉

lemma clmm-quote-gross-eq-upper-only-if :
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and quote-gross P sqp ′ = quote-gross P sqp

shows L k = 0 ∨ grd P k = sqp ′

〈proof 〉

lemma clmm-quote-gross-diff-eq ′:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows quote-gross P sqp ′ − quote-gross P sqp = L j ∗ (sqp ′ − sqp)
〈proof 〉

lemma clmm-quote-gross-eq-lower-only-if ′:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp < sqp ′

53

and quote-gross P sqp ′ = quote-gross P sqp
shows L j = 0
〈proof 〉

lemma clmm-quote-reach-grd-liq:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and y ≤ quote-gross P (grd-max P)
and j = lower-tick P sqp
and grd P j = sqp
and sqp = quote-reach P y

shows lq P (j − 1) 6= 0
〈proof 〉

lemma quote-gross-gt-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd-min P < sqp

shows 0 < quote-gross P sqp
〈proof 〉

lemma quote-gross-pos-gt-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < quote-gross P sqp

shows grd-min P < sqp
〈proof 〉

lemma quote-gross-disj-gt:
assumes clmm-dsc P
and i = lower-tick P sqp
and j = lower-tick P sqp ′

and i ≤ k
and k < j
and lq P k 6= 0
and 0 < sqp
and 0 < sqp ′

shows quote-gross P sqp < quote-gross P sqp ′

〈proof 〉

lemma quote-gross-disj-gt ′:
assumes clmm-dsc P
and i = lower-tick P sqp
and j = lower-tick P sqp ′

and i < j
and lq P j 6= 0
and grd P j < sqp ′

and 0 < sqp

54

and 0 < sqp ′

shows quote-gross P sqp < quote-gross P sqp ′

〈proof 〉

lemma quote-gross-lower-eq-gt:
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and lq P j 6= 0
and 0 < sqp
and sqp < sqp ′

shows quote-gross P sqp < quote-gross P sqp ′

〈proof 〉

lemma quote-reach-gt-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and y ≤ quote-gross P (grd-max P)
and sqp = quote-reach P y

shows grd-min P < sqp
〈proof 〉

lemma sqp-lt-grd-max-imp-idx:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp < grd-max P
and i = lower-tick P sqp

shows i ≤ idx-max (lq P)
〈proof 〉

lemma quote-gross-lt-grd-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp < grd-max P

shows quote-gross P sqp < quote-gross P (grd-max P)
〈proof 〉

lemma idx-max-gt-liq:
assumes clmm-dsc P
and j = idx-max (lq P)

shows ∀ k > j. lq P k = 0
〈proof 〉

lemma idx-min-lt-liq:
assumes clmm-dsc P
and j = idx-min (lq P)

55

shows ∀ k < j. lq P k = 0
〈proof 〉

lemma quote-reach-le ′:
assumes clmm-dsc P
and grd-min P < sqp
and i = lower-tick P sqp
and lq P i 6= 0
and y = quote-gross P sqp

shows quote-reach P y ≤ sqp
〈proof 〉

lemma quote-reach-gross-le:
assumes clmm-dsc P
and grd-min P ≤ sqp

shows quote-reach P (quote-gross P sqp) ≤ sqp
〈proof 〉

lemma quote-reach-strict-mono:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y1
and y1 < y2
and y2 ≤ quote-gross P (grd-max P)
and sqp = quote-reach P y1
and sqp ′ = quote-reach P y2

shows sqp < sqp ′

〈proof 〉

lemma quote-reach-mono:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y1
and y1 ≤ y2
and y2 ≤ quote-gross P (grd-max P)
and sqp = quote-reach P y1
and sqp ′ = quote-reach P y2

shows sqp ≤ sqp ′

〈proof 〉

lemma grd-max-quote-reach:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows quote-reach P (quote-gross P (grd-max P)) = grd-max P
〈proof 〉

lemma quote-reach-gt:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

56

and 0 < y
and y + quote-gross P sqp ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp)

shows sqp < sqp ′

〈proof 〉

lemma lt-quote-gross-imp-up-price:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and y ≤ quote-gross P (grd-max P)
and quote-gross P sqp < y
and sqp ′ = quote-reach P y

shows sqp < sqp ′

〈proof 〉

lemma quote-reach-add-gt:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < y
and y + quote-gross P sqp ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp)

shows quote-gross P sqp < quote-gross P sqp ′

〈proof 〉

lemma quote-reach-leq-grd-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)
and sqp = quote-reach P y

shows sqp ≤ grd-max P
〈proof 〉

lemma quote-gross-grd-max-ge:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd-max P < sqp

shows quote-gross P sqp = quote-gross P (grd-max P)
〈proof 〉

lemma quote-gross-grd-max-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows quote-gross P sqp ≤ quote-gross P (grd-max P)
〈proof 〉

lemma gross-grd-max-max ′:
assumes clmm-dsc P

57

and nz-support (lq P) 6= {}
and sqp < grd-max P

shows quote-gross P sqp < quote-gross P (grd-max P)
〈proof 〉

lemma quote-reach-le-gross:
assumes clmm-dsc P
and 0 < y
and 0 < sqp
and y ≤ quote-gross P sqp
and sqp ≤ grd-max P
and sqp ′ = quote-reach P y
and nz-support (lq P) 6= {}

shows sqp ′ ≤ sqp
〈proof 〉

lemma quote-net-diff-eq:
assumes clmm-dsc P
and L = lq P
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows quote-net P sqp ′ − quote-net P sqp = L k ∗ (sqp ′ − grd P k) +

sum (λ i. L i ∗ (grd P (i+1) − grd P i)) {i. L i 6= 0 ∧ j <i ∧ i < k} +
L j ∗ (grd P (j+1) − sqp)
〈proof 〉

lemma quote-net-diff-eq ′:
assumes clmm-dsc P
and L = lq P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows quote-net P sqp ′ − quote-net P sqp = L j ∗ (sqp ′ − sqp)
〈proof 〉

4.3 Base token addition and withdrawal in a CLMM
lemma (in finite-nz-support) gen-base-sum:

assumes clmm-dsc P
and 0 < sqp
and j = lower-tick P sqp

shows gen-base (grd P) L sqp =
L j ∗ (inverse sqp − inverse (grd P (j+1))) +
sum (λi. L i ∗ (inverse (grd P i) − inverse (grd P (i+1))))
{i. L i 6= 0 ∧ j < i}

58

〈proof 〉

lemma (in finite-nz-support) gen-base-grd-max:
assumes clmm-dsc P
and nz-support L 6= {}
and nz-support L = nz-support (lq P)

shows gen-base (grd P) L (grd-max P) = 0
〈proof 〉

lemma base-gross-sum:
assumes clmm-dsc P
and 0 < sqp
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp

shows base-gross P sqp =
L j ∗ (inverse sqp − inverse (grd P (j+1))) +
sum (λi. L i ∗ (inverse (grd P i) − inverse (grd P (i+1))))
{i. L i 6= 0 ∧ j < i}

〈proof 〉

lemma clmm-base-gross-grd-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows base-gross P (grd-max P) = 0 〈proof 〉

lemma liq-base-reach-max:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

shows base-reach P 0 = grd-max P
〈proof 〉

lemma base-net-sum:
assumes clmm-dsc P
and 0 < sqp
and L = lq P
and j = lower-tick P sqp

shows base-net P sqp =
L j ∗ (inverse sqp − inverse (grd P (j+1))) +
sum (λi. L i ∗ (inverse (grd P i) − inverse (grd P (i+1))))
{i. L i 6= 0 ∧ j < i}

〈proof 〉

definition gen-base-diff where
gen-base-diff P L sqp sqp ′ = gen-base (grd P) L sqp − gen-base (grd P) L sqp ′

lemma (in finite-nz-support) gen-base-diff-eq:
assumes clmm-dsc P
and j = lower-tick P sqp
and k = lower-tick P sqp ′

59

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows gen-base-diff P L sqp sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j+1))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1))))
{i. L i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′)
〈proof 〉

lemma (in finite-nz-support) gen-base-diff-eq ′:
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows gen-base-diff P L sqp sqp ′ = L j ∗ (inverse sqp − inverse sqp ′)
〈proof 〉

lemma lower-tick-lt-grd-min:
assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp
and j = lower-tick P sqp
shows j < idx-min (lq P)
〈proof 〉

lemma (in finite-nz-support) gen-base-grd-min-le:
assumes clmm-dsc P
and nz-support L = nz-support (lq P)
and sqp < grd-min P
and 0 < sqp

shows gen-base (grd P) L sqp = gen-base (grd P) L (grd-min P)
〈proof 〉

lemma base-net-grd-min-lt:
assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp

shows base-net P sqp = base-net P (grd-min P)
〈proof 〉

lemma base-net-grd-min-le:
assumes clmm-dsc P
and sqp ≤ grd-min P
and 0 < sqp

shows base-net P sqp = base-net P (grd-min P)
〈proof 〉

60

lemma base-gross-diff-eq:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows base-gross P sqp − base-gross P sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j+1))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1))))
{i. L i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′)
〈proof 〉

lemma base-gross-diff-eq ′:
assumes clmm-dsc P
and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows base-gross P sqp − base-gross P sqp ′ = L j ∗ (inverse sqp − inverse sqp ′)
〈proof 〉

lemma base-net-diff-eq:
assumes clmm-dsc P
and L = lq P
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows base-net P sqp − base-net P sqp ′ =

L j ∗ (inverse sqp − inverse (grd P (j+1))) +
sum (λ i. L i ∗ (inverse (grd P i) − inverse (grd P (i+1))))
{i. L i 6= 0 ∧ j <i ∧ i < k} +
L k ∗ (inverse (grd P k) − inverse sqp ′)
〈proof 〉

lemma base-net-diff-eq ′:
assumes clmm-dsc P
and L = lq P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows base-net P sqp − base-net P sqp ′ = L j ∗ (inverse sqp − inverse sqp ′)
〈proof 〉

61

lemma cst-fee-base-gross-net-tick-eq:
assumes clmm-dsc P
and

∧
i. fee P i = phi

and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

shows base-net P sqp − base-net P sqp ′ =
(1 − phi) ∗ (base-gross P sqp − base-gross P sqp ′)

〈proof 〉

lemma cst-fee-base-gross-net-tick-lt:
assumes clmm-dsc P
and

∧
i. fee P i = phi

and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
shows base-net P sqp − base-net P sqp ′ =

(1 − phi) ∗ (base-gross P sqp − base-gross P sqp ′)
〈proof 〉

lemma cst-fee-base-gross-net:
assumes clmm-dsc P
and

∧
i. fee P i = phi

and 0 < sqp
and sqp ≤ sqp ′

shows base-net P sqp − base-net P sqp ′ =
(1 − phi) ∗ (base-gross P sqp − base-gross P sqp ′)

〈proof 〉

lemma base-net-eq-only-if :
assumes clmm-dsc P
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and quote-gross P sqp ′ = quote-gross P sqp

shows base-net P sqp ′ = base-net P sqp
〈proof 〉

lemma base-net-eq-only-if ′:
assumes clmm-dsc P
and L = lq P
and j = lower-tick P sqp
and j = lower-tick P sqp ′

62

and 0 < sqp
and sqp ≤ sqp ′

and quote-gross P sqp = quote-gross P sqp ′

shows base-net P sqp = base-net P sqp ′

〈proof 〉

lemma quote-gross-equiv-base-net:
assumes clmm-dsc P
and 0 < sqp
and sqp ≤ sqp ′

and quote-gross P sqp = quote-gross P sqp ′

shows base-net P sqp = base-net P sqp ′

〈proof 〉

lemma quote-gross-equiv-base-net ′:
assumes clmm-dsc P
and 0 < sqp
and 0 < sqp ′

and quote-gross P sqp = quote-gross P sqp ′

shows base-net P sqp = base-net P sqp ′

〈proof 〉

lemma (in finite-nz-support) gen-quote-le-badd:
assumes clmm-dsc P
and

∧
i. 0 ≤ L i

and 0 < sqp
and sqp ≤ sqp ′

shows gen-quote-diff P L sqp sqp ′/(sqp ′ ∗ sqp ′) ≤ gen-base-diff P L sqp sqp ′

〈proof 〉

lemma (in finite-nz-support) gen-base-le-qadd:
assumes clmm-dsc P
and

∧
i. 0 ≤ L i

and 0 < sqp
and sqp ≤ sqp ′

shows gen-base-diff P L sqp sqp ′ ≤ gen-quote-diff P L sqp sqp ′/(sqp ∗ sqp)
〈proof 〉

lemma quote-swap-grd-min-zero:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd-min P ≤ sqp
and sqp ≤ grd-max P
shows quote-swap P sqp 0 = 0
〈proof 〉

lemma quote-swap-zero:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

63

and 0< sqp
and sqp ≤ grd-max P

shows quote-swap P sqp 0 = 0
〈proof 〉

lemma quote-swap-grd-min-zero ′:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd-min P ≤ sqp
and quote-gross P sqp ≤ quote-gross P (grd-max P)
shows quote-swap P sqp 0 = 0
〈proof 〉

lemma quote-swap-zero ′:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0< sqp
and quote-gross P sqp ≤ quote-gross P (grd-max P)

shows quote-swap P sqp 0 = 0
〈proof 〉

lemma quote-swap-grd-min:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and sqp < grd-min P
and 0 < sqp

shows quote-swap P sqp y = quote-swap P (grd-min P) y
〈proof 〉

lemma quote-reach-gross-base-net:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < quote-gross P sqp
and sqp ′ = quote-reach P (quote-gross P sqp)

shows base-net P sqp ′ = base-net P sqp
〈proof 〉

lemma quote-reach-base-net:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp ′ = quote-reach P (quote-gross P sqp)

shows base-net P sqp ′ = base-net P sqp
〈proof 〉

lemma base-le-quote-gross:
assumes clmm-dsc P ′

and 0 < sqp
and sqp ≤ sqp ′

64

shows base-gross P ′ sqp − base-gross P ′ sqp ′ ≤
(quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ∗ sqp)

〈proof 〉

lemma quote-le-base-gross:
assumes clmm-dsc P ′

and 0 < sqp
and sqp ≤ sqp ′

shows (quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ′ ∗ sqp ′) ≤
base-gross P ′ sqp − base-gross P ′ sqp ′

〈proof 〉

lemma base-net-quote-ubound:
assumes clmm-dsc P ′

and
∧

i. fee P ′ i = phi
and phi < 1
and 0 < sqp
and sqp ≤ sqp ′

shows base-net P ′ sqp − base-net P ′ sqp ′ ≤
(1 − phi) ∗ (quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ∗ sqp)

〈proof 〉

lemma base-net-quote-lbound:
assumes clmm-dsc P ′

and
∧

i. fee P ′ i = phi
and 0 < sqp
and sqp ≤ sqp ′

shows (1 − phi) ∗ (quote-gross P ′ sqp ′ − quote-gross P ′ sqp)/(sqp ′ ∗ sqp ′) ≤
base-net P ′ sqp − base-net P ′ sqp ′

〈proof 〉

4.4 Market depth and slippage for finer CLMMs
4.4.1 Finer pools
locale finer-clmm =

fixes P1 P2
assumes abs1 : clmm-dsc P1 and abs2 : clmm-dsc P2
and finer : finer-pool P1 P2

sublocale finer-clmm ⊆ finer-two-span-finite-liq
〈proof 〉

context finer-clmm
begin

lemma finer-base-net-eq:
shows base-net P1 = base-net P2
〈proof 〉

65

lemma finer-quote-net-eq:
shows quote-net P1 = quote-net P2
〈proof 〉

lemma finer-base-gross-eq:
shows base-gross P1 = base-gross P2
〈proof 〉

lemma finer-quote-gross-eq:
shows quote-gross P1 = quote-gross P2
〈proof 〉

lemma finer-mkt-depth:
shows mkt-depth P1 = mkt-depth P2
〈proof 〉

end

4.4.2 Finer CLMMs with nonzero liquidity
locale finer-clmm-ne = finer-clmm +

assumes nonempty-liq: nz-support (lq P1) 6= {}

context finer-clmm-ne
begin

lemma id-max-Max-eq:
assumes i1 = idx-max (lq P1)
and k2 = pool-coarse-idx P1 P2 i1

shows i1 = Max (encompassed (grd P1) (grd P2) k2)
〈proof 〉

lemma id-min-Min-eq:
assumes i1 = idx-min (lq P1)
and k2 = pool-coarse-idx P1 P2 i1

shows i1 = Min (encompassed (grd P1) (grd P2) k2)
〈proof 〉

lemma idx-max-Suc-grd-eq:
assumes i1 = idx-max (lq P1)
and k2 = pool-coarse-idx P1 P2 i1

shows grd P1 (i1 + 1) = grd P2 (k2 + 1)
〈proof 〉

lemma idx-min-grd-eq:
assumes i1 = idx-min (lq P1)
and k2 = pool-coarse-idx P1 P2 i1

shows grd P1 i1 = grd P2 k2
〈proof 〉

66

lemma abs-finer-idx-max-coarse:
assumes clmm-dsc P1
and clmm-dsc P2
and finer-pool P1 P2
and nz-support (lq P1) 6= {}
and i1 = idx-max (lq P1)
and k2 = pool-coarse-idx P1 P2 i1

shows k2 = idx-max (lq P2)
〈proof 〉

lemma abs-finer-idx-min-coarse:
assumes i1 = idx-min (lq P1)
and k2 = pool-coarse-idx P1 P2 i1

shows k2 = idx-min (lq P2)
〈proof 〉

lemma abs-finer-idx-max-img-eq:
shows grd-max P1 = grd-max P2
〈proof 〉

lemma abs-finer-idx-min-img-eq:
shows grd-min P1 = grd-min P2
〈proof 〉

lemma finer-base-reach-eq:
shows base-reach P1 = base-reach P2 〈proof 〉

lemma finer-quote-reach-eq:
shows quote-reach P1 = quote-reach P2 〈proof 〉

lemma finer-base-slippage:
shows base-slippage P1 = base-slippage P2
〈proof 〉

lemma finer-quote-slippage:
shows quote-slippage P1 = quote-slippage P2
〈proof 〉

end

5 Inequalities related to fees
context finite-liq-pool
begin

lemma gross-fct-le:
assumes 0 ≤ f i
and phi i ≤ phi ′ i

67

and phi ′ i < 1
shows gross-fct f phi i ≤ gross-fct f phi ′ i
〈proof 〉

lemma gross-fct-lt:
assumes 0 < f i
and phi i < phi ′ i
and phi ′ i < 1

shows gross-fct f phi i < gross-fct f phi ′ i
〈proof 〉

lemma fee-diff-same-base-net:
assumes clmm-dsc P
and clmm-dsc P ′

and I = {k. L k 6= 0 ∧ j ≤ k}
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {k. j ≤ k}
and 0 < sqp
and j = lower-tick P sqp
and L = lq P
and lower-tick P sqp = lower-tick P ′ sqp

shows base-net P sqp = base-net P ′ sqp
〈proof 〉

lemma fee-diff-le-imp-quote-gross:
assumes clmm-dsc P
and clmm-dsc P ′

and {k. L k 6= 0 ∧ k ≤ j} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {k. k ≤ j}
and 0 < sqp
and j = lower-tick P sqp
and L = gross-fct (lq P) (fee P)
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and lower-tick P sqp = lower-tick P ′ sqp
shows quote-gross P sqp ≤ quote-gross P ′ sqp
〈proof 〉

lemma fee-diff-le-imp-quote-gross-mono:
assumes clmm-dsc P
and clmm-dsc P ′

and {k. L k 6= 0 ∧ k ≤ j} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {k. k ≤ j}
and 0 < sqp
and j = lower-tick P sqp
and L = gross-fct (lq P) (fee P)
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and lower-tick P sqp = lower-tick P ′ sqp

68

and sqp ≤ sqp ′

shows quote-gross P sqp ≤ quote-gross P ′ sqp ′

〈proof 〉

lemma fee-diff-quote-diff-expand:
assumes clmm-dsc P
and clmm-dsc P ′

and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and j < k
and {m. L m 6= 0 ∧ j ≤ m ∧ m ≤ k} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {m. j ≤ m ∧ m ≤ k+1}
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and lower-tick P sqp = lower-tick P ′ sqp
and lower-tick P sqp ′ = lower-tick P ′ sqp ′

shows quote-gross P sqp ′ − quote-gross P sqp ≤ quote-gross P ′ sqp ′ − quote-gross
P ′ sqp
〈proof 〉

lemma fee-diff-quote-diff-expand ′:
assumes clmm-dsc P
and clmm-dsc P ′

and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and L j 6= 0 −→ j∈ I
and fee-diff-on P P ′ I
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and lower-tick P sqp = lower-tick P ′ sqp
and lower-tick P sqp ′ = lower-tick P ′ sqp ′

shows quote-gross P sqp ′ − quote-gross P sqp ≤ quote-gross P ′ sqp ′ − quote-gross
P ′ sqp
〈proof 〉

lemma fee-diff-quote-diff-le:
assumes clmm-dsc P
and clmm-dsc P ′

and L = gross-fct (lq P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp ′

and 0 < sqp
and sqp ≤ sqp ′

and {m. L m 6= 0 ∧ j ≤ m ∧ m ≤ k} ⊆ I

69

and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {m. j ≤ m ∧ m ≤ k+1}
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and lower-tick P sqp = lower-tick P ′ sqp
and lower-tick P sqp ′ = lower-tick P ′ sqp ′

shows quote-gross P sqp ′ − quote-gross P sqp ≤ quote-gross P ′ sqp ′ − quote-gross
P ′ sqp
〈proof 〉

lemma same-nz-liq-on-nz-support:
assumes i ∈ I
and lq P i 6= 0
and same-nz-liq-on P P ′ I

shows nz-support (lq P ′) 6= {}
〈proof 〉

lemma same-nz-liq-on-idx-max:
assumes finite-liq P ′

and nz-support (lq P) 6= {}
and I = {idx-min (lq P) .. idx-max (lq P) + 1}
and same-nz-liq-on P P ′ I

shows idx-max (lq P) ≤ idx-max (lq P ′)
〈proof 〉

lemma same-nz-liq-on-grd-max:
assumes finite-liq P ′

and mono (grd P ′)
and nz-support (lq P) 6= {}
and I = {idx-min (lq P) .. idx-max (lq P) + 1}
and same-nz-liq-on P P ′ I

shows grd-max P ≤ grd-max P ′

〈proof 〉

lemma same-nz-liq-on-lower-tick:
assumes clmm-dsc P
and clmm-dsc P ′

and same-nz-liq-on P P ′ {i. i ≤ j+1}
and 0 < sqp
and lower-tick P sqp ≤ j

shows lower-tick P ′ sqp = lower-tick P sqp
〈proof 〉

lemma same-nz-liq-on-lower-tick ′:
assumes clmm-dsc P ′

and same-nz-liq-on P P ′ {i. i ≤ j}
and grd P j = sqp

shows lower-tick P ′ sqp = j
〈proof 〉

70

lemma fee-diff-le-grd-max:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {k. k ≤ idx-max (lq P) + 1}
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

shows quote-gross P (grd-max P) ≤ quote-gross P ′ (grd-max P)
〈proof 〉

lemma fee-diff-le-grd-max ′:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {k. k ≤ idx-max (lq P) + 1}
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

shows quote-gross P (grd-max P) ≤ quote-gross P ′ (grd-max P ′)
〈proof 〉

lemma fee-diff-le-imp-quote-reach:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and same-nz-liq-on P P ′ {i. i ≤ idx-max (lq P) + 1}
and

∧
i. i ∈ I =⇒ fee P i ≤ fee P ′ i

and 0 < y
and y ≤ quote-gross P (grd-max P)

shows quote-reach P ′ y ≤ quote-reach P y
〈proof 〉

lemma same-nz-liq-on-if-simil:
assumes grd P = grd P ′

and nz-support (lq P) = nz-support (lq P ′)
shows same-nz-liq-on P P ′ I
〈proof 〉

lemma fee-diff-simil-base-net:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and nz-support (lq P) = nz-support (lq P ′)
and grd P = grd P ′

71

and grd-min P ≤ sqp
and sqp ≤ grd-max P

shows base-net P sqp = base-net P ′ sqp
〈proof 〉

lemma fee-diff-le-price-cmp:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and nz-support (lq P) = nz-support (lq P ′)
and grd P = grd P ′

and
∧

i. i ∈ I =⇒ fee P i ≤ fee P ′ i
and 0 < y
and y + quote-gross P sqp ≤ quote-gross P (grd-max P)
and grd-min P ≤ sqp
and sqp1 = quote-reach P (y + quote-gross P sqp)
and sqp2 = quote-reach P ′ (y + quote-gross P ′ sqp)

shows sqp2 ≤ sqp1
〈proof 〉

lemma fee-diff-le-imp-quote-swap:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and {idx-min (lq P) .. idx-max (lq P) + 1} ⊆ I
and fee-diff-on P P ′ I
and nz-support (lq P) = nz-support (lq P ′)
and grd P = grd P ′

and
∧

i. i ∈ I =⇒ fee P i ≤ fee P ′ i
and 0 < y
and y + quote-gross P sqp ≤ quote-gross P (grd-max P)
and grd-min P ≤ sqp

shows quote-swap P ′ sqp y ≤ quote-swap P sqp y
〈proof 〉

lemma fee-ge-quote-swap-le:
assumes clmm-dsc P
and clmm-dsc P ′

and nz-support (lq P) 6= {}
and grd P = grd P ′

and lq P = lq P ′

and
∧

i. fee P i ≤ fee P ′ i
and 0 ≤ y
and 0 < sqp
and y + quote-gross P sqp ≤ quote-gross P (grd-max P)

shows quote-swap P ′ sqp y ≤ quote-swap P sqp y
〈proof 〉

72

end

end
theory CLMM-Transformation imports CLMM-Description

begin

6 CLMM transformations
6.1 CLMM pool refinement

Given a pool P and a (square root) price π, the refinement operation consists
in defining a new grid (if necessary) in such a way that π is one of the bounds
on the grid.
definition refine where
refine P sqp = (let i = lower-tick P sqp in
(if (grd P i = sqp) then P else
(wedge (grd P) i sqp, wedge (lq P) i (lq P i), wedge (fee P) i (fee P i))))

lemma refine-eq:
assumes i = lower-tick P sqp
and grd P i = sqp

shows refine P sqp = P 〈proof 〉

lemma refine-lq:
assumes i = lower-tick P sqp
and grd P i 6= sqp
and P ′ = refine P sqp

shows lq P ′ = wedge (lq P) i (lq P i)
〈proof 〉

lemma refine-fee:
assumes i = lower-tick P sqp
and grd P i 6= sqp
and P ′ = refine P sqp

shows fee P ′ = wedge (fee P) i (fee P i)
〈proof 〉

lemma refine-grd:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P i 6= sqp

shows grd P ′ = wedge (grd P) i sqp
〈proof 〉

73

lemma refine-grd-cong:
assumes P1 = refine P sqp
and P2 = refine P ′ sqp
and grd P = grd P ′

shows grd P1 = grd P2
〈proof 〉

lemma refine-grd-arg-le:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and j ≤ i

shows grd P ′ j = grd P j
〈proof 〉

lemma refine-grd-arg-gt:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
and i < j

shows grd P ′ (j+1) = grd P j
〈proof 〉

lemma refine-grd-arg-Suc:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp

shows grd P ′ (i+1) = sqp
〈proof 〉

lemma refine-fee-arg-le:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and j ≤ i

shows fee P ′ j = fee P j
〈proof 〉

lemma refine-fee-arg-gt:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
and i < j

shows fee P ′ (j+1) = fee P j
〈proof 〉

lemma refine-fee-arg-Suc:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp

74

shows fee P ′ (i+1) = fee P i
〈proof 〉

lemma refine-lq-arg-le:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P i 6= sqp
and j ≤ i

shows lq P ′ j = lq P j
〈proof 〉

lemma refine-lq-arg-gt:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P i 6= sqp
and i < j

shows lq P ′ (j+1) = lq P j
〈proof 〉

lemma refine-lq-arg-Suc:
assumes i = lower-tick P sqp
and P ′ = refine P sqp
and grd P i 6= sqp

shows lq P ′ (i+1) = lq P i
〈proof 〉

lemma refine-on-grd:
assumes clmm-dsc P
and grd P i = sqp
shows refine P sqp = P
〈proof 〉

lemma refine-encomp-at-grd:
assumes clmm-dsc P
and P ′ = refine P sqp
and grd P (lower-tick P sqp) = sqp

shows encomp-at (grd P ′) (grd P) j j
〈proof 〉

lemma refine-encomp-at-arg-le:
assumes clmm-dsc P
and P ′ = refine P sqp
and i = lower-tick P sqp
and grd P i 6= sqp
and j ≤ i

shows encomp-at (grd P ′) (grd P) j j
〈proof 〉

lemma refine-encomp-at-arg-ge-Suc:

75

assumes clmm-dsc P
and P ′ = refine P sqp
and i = lower-tick P sqp
and grd P i 6= sqp
and i+1 ≤ j
and 0 < sqp

shows encomp-at (grd P ′) (grd P) j (j−1)
〈proof 〉

lemma refine-finer-range:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp

shows finer-range (grd P ′) (grd P)
〈proof 〉

lemma refine-finite-liq:
assumes finite-liq P
and P ′ = refine P sqp

shows finite-liq P ′

〈proof 〉

lemma refine-clmm:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp

shows clmm-dsc P ′

〈proof 〉

lemma refine-lower-tick-idx:
assumes clmm-dsc P
and 0 < sqp
and i = lower-tick P sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp

shows lower-tick P ′ sqp = i+1
〈proof 〉

lemma refine-ge-lower-tick-eq:
assumes clmm-dsc P
and 0 < sqp
and i = lower-tick P sqp ′

and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
and sqp ≤ sqp ′

and lower-tick P sqp = lower-tick P sqp ′

shows lower-tick P ′ sqp ′ = i+1
〈proof 〉

76

lemma refine-ge-lower-tick-gt:
assumes clmm-dsc P
and 0 < sqp
and sqp ≤ sqp ′

and i = lower-tick P sqp ′

and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
and lower-tick P sqp < lower-tick P sqp ′

shows lower-tick P ′ sqp ′ = i+1
〈proof 〉

lemma refine-ge-lower-tick:
assumes clmm-dsc P
and 0 < sqp
and sqp ≤ sqp ′

and i = lower-tick P sqp ′

and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp

shows lower-tick P ′ sqp ′ = i+1
〈proof 〉

lemma refine-lower-tick:
assumes clmm-dsc P
and P ′ = refine P sqp
and 0 < sqp
shows grd P ′ (lower-tick P ′ sqp) = sqp
〈proof 〉

lemma refine-finer-ranges:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
shows finer-ranges (grd P ′) (grd P)
〈proof 〉

lemma refine-coarse-idx-grd:
assumes clmm-dsc P
and P ′ = refine P sqp
and grd P (lower-tick P sqp) = sqp

shows coarse-idx (grd P ′) (grd P) j = j
〈proof 〉

lemma refine-coarse-idx-arg-le:
assumes clmm-dsc P
and P ′ = refine P sqp
and i = lower-tick P sqp
and grd P i 6= sqp
and j ≤ i
and 0 < sqp

77

shows coarse-idx (grd P ′) (grd P) j = j
〈proof 〉

lemma refine-coarse-idx-arg-gt:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
and i = lower-tick P sqp
and grd P i 6= sqp
and i+1 ≤ j

shows coarse-idx (grd P ′) (grd P) j = j−1
〈proof 〉

lemma refine-lq-idx-neq:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
shows lq P ′ j = lq P (pool-coarse-idx P ′ P j)
〈proof 〉

lemma refine-fee-idx-neq:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
shows fee P ′ j = fee P (pool-coarse-idx P ′ P j)
〈proof 〉

lemma refine-cst-fees:
assumes

∧
i. fee P i = phi

and P ′ = refine P sqp
shows

∧
i. fee P ′ i = phi

〈proof 〉

lemma refine-finer-neq:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
and grd P (lower-tick P sqp) 6= sqp
shows finer-pool P ′ P
〈proof 〉

lemma refine-finer :
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp

shows finer-pool P ′ P
〈proof 〉

78

lemma refine-nz-lq-sub:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp

shows (λj. pool-coarse-idx P ′ P j) ‘ nz-support (lq P ′) ⊆
nz-support (lq P)
〈proof 〉

lemma refine-nz-lq-ne:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) 6= {}

shows nz-support (lq P ′) 6= {}
〈proof 〉

lemma refine-nz-lq-emp:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) = {}

shows nz-support (lq P ′) = {}
〈proof 〉

lemma refine-idx-min-eq:
assumes clmm-dsc P
and P ′ = refine P sqp
and idx-min (lq P) ≤ lower-tick P sqp

shows idx-min (lq P ′) = idx-min (lq P)
〈proof 〉

lemma refine-idx-min-Suc-eq:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) 6= {}
and grd P (lower-tick P sqp) 6= sqp
and lower-tick P sqp < idx-min (lq P)

shows idx-min (lq P ′) = idx-min (lq P) + 1
〈proof 〉

lemma refine-grd-min:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) 6= {}

shows grd-min P = grd-min P ′

〈proof 〉

lemma refine-idx-max-eq:
assumes clmm-dsc P
and P ′ = refine P sqp

79

and idx-max (lq P) < lower-tick P sqp
shows idx-max (lq P ′) = idx-max (lq P)
〈proof 〉

lemma refine-idx-max-Suc-eq:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) 6= {}
and grd P (lower-tick P sqp) 6= sqp
and lower-tick P sqp ≤ idx-max (lq P)

shows idx-max (lq P ′) = idx-max (lq P) + 1
〈proof 〉

lemma refine-lower-tick-idx-max:
assumes clmm-dsc P
and 0 < sqp
and P ′ = refine P sqp
and nz-support (lq P) 6= {}
and lower-tick P sqp ≤ idx-max (lq P)

shows lower-tick P ′ sqp ≤ idx-max (lq P ′)
〈proof 〉

lemma refine-grd-max:
assumes clmm-dsc P
and P ′ = refine P sqp
and nz-support (lq P) 6= {}

shows grd-max P = grd-max P ′

〈proof 〉

lemma refine-quote-gross:
assumes clmm-dsc P
and P ′ = refine P sqp
and 0 < sqp

shows quote-gross P ′ = quote-gross P
〈proof 〉

lemma refine-nonzero-liq:
assumes clmm-dsc P
and lower-tick P sqp ≤ i
and grd P (lower-tick P sqp) 6= sqp
and P ′ = refine P sqp
and L = lq P
and L ′ = lq P ′

shows {l. L ′ l 6= 0 ∧ i+1 < l} = (λi. i + 1) ‘ {k. L k 6= 0 ∧ i < k}
〈proof 〉

lemma refine-pool-base-net-grd-eq:
assumes clmm-dsc P
and nz-support (lq P) 6= {}

80

and P ′ = refine P sqp
and 0 < sqp
and sqp < grd-max P
and grd P (lower-tick P sqp) 6= sqp
and sqp ≤ sqp ′

shows base-net P ′ sqp ′ = base-net P sqp ′

〈proof 〉

lemma refine-base-net-eq:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = refine P sqp
and 0 < sqp
and sqp < grd-max P
and sqp ≤ sqp ′

shows base-net P ′ sqp ′ = base-net P sqp ′

〈proof 〉

6.2 CLMM pool restriction and slice

The restriction operation intuitively consists in deleting all the liquidity
potentially available below the index provided as an argument.
definition restrict-pool where
restrict-pool i P =
(grd P,
(λj. if j < i then 0 else lq P j),
(λj. fee P j))

lemma restrict-pool-grd[simp]:
shows grd (restrict-pool i P) = grd P
〈proof 〉

lemma restrict-pool-lower-tick:
assumes P ′ = restrict-pool i P
shows lower-tick P sqp = lower-tick P ′ sqp
〈proof 〉

lemma restrict-pool-lt:
assumes j < i
shows lq (restrict-pool i P) j = 0 fee (restrict-pool i P) j = fee P j
〈proof 〉

lemma restrict-pool-ge:
assumes i ≤ j
shows lq (restrict-pool i P) j = lq P j

fee (restrict-pool i P) j = fee P j
〈proof 〉

lemma restrict-pool-lq-sub:

81

assumes P ′ = restrict-pool i P
shows nz-support (lq P ′) ⊆ nz-support (lq P)
〈proof 〉

lemma restrict-pool-finite-liq:
assumes finite-liq P
and P ′ = restrict-pool i P

shows finite-liq P ′ 〈proof 〉

lemma restrict-pool-nz-liq:
assumes finite-liq P
and P ′ = restrict-pool i P
and i ≤ idx-max (lq P)
and nz-support (lq P) 6= {}

shows nz-support (lq P ′) 6= {}
〈proof 〉

lemma restrict-pool-idx-max:
assumes finite-liq P
and P ′ = restrict-pool i P
and i ≤ idx-max (lq P)
and nz-support (lq P) 6= {}

shows idx-max (lq P) = idx-max (lq P ′)
〈proof 〉

lemma restrict-pool-clmm:
assumes clmm-dsc P

and P ′ = restrict-pool i P
shows clmm-dsc P ′

〈proof 〉

lemma restrict-pool-quote-gross-leq:
assumes mono (grd P)
and sqp ≤ grd P i
and P ′ = restrict-pool i P
shows quote-gross P ′ sqp = 0 〈proof 〉

lemma restrict-pool-quote-gross:
assumes clmm-dsc P
and P ′ = restrict-pool j P
and 0 < sqp
and j ≤ lower-tick P sqp

shows quote-gross P sqp − quote-gross P (grd P j) = quote-gross P ′ sqp
〈proof 〉

lemma restrict-pool-base-net-eq:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = restrict-pool i P

82

and i ≤ idx-max (lq P)
and grd P i ≤ sqp ′

shows base-net P ′ sqp ′ = base-net P sqp ′

〈proof 〉

lemma restrict-pool-grd-min-le:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = restrict-pool i P
and i ≤ idx-max (lq P)

shows i ≤ idx-min (lq P ′)
〈proof 〉

definition slice-pool where
slice-pool P sqp = (let P ′ = refine P sqp in restrict-pool (lower-tick P ′ sqp) P ′)

lemma slice-poolD:
assumes P ′′ = refine P sqp

shows slice-pool P sqp = restrict-pool (lower-tick P ′′ sqp) P ′′

〈proof 〉

lemma slice-pool-clmm-dsc:
assumes clmm-dsc P
and 0 < sqp
and P ′ = slice-pool P sqp

shows clmm-dsc P ′

〈proof 〉

lemma slice-pool-nz-liq:
assumes clmm-dsc P
and 0 < sqp
and P ′ = slice-pool P sqp
and lower-tick P sqp ≤ idx-max (lq P)
and nz-support (lq P) 6= {}

shows nz-support (lq P ′) 6= {}
〈proof 〉

lemma slice-pool-tick-idx-max:
assumes clmm-dsc P
and 0 < sqp
and P ′ = slice-pool P sqp
and lower-tick P sqp ≤ idx-max (lq P)
and nz-support (lq P) 6= {}

shows lower-tick P ′ sqp ≤ idx-max (lq P ′)
〈proof 〉

lemma slice-pool-nz-liq ′:
assumes clmm-dsc P
and P ′ = slice-pool P sqp

83

and nz-support (lq P) 6= {}
and 0 < sqp
and sqp < grd-max P

shows nz-support (lq P ′) 6= {}
〈proof 〉

lemma slice-pool-idx-min:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lq P) 6= {}
and P ′ = slice-pool P sqp
and i = lower-tick P sqp
and i ≤ idx-max (lq P)

shows i ≤ idx-min (lq P ′)
〈proof 〉

lemma slice-pool-grd-min:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lq P) 6= {}
and P ′ = slice-pool P sqp
and sqp < grd-max P

shows sqp ≤ grd-min P ′

〈proof 〉

lemma slice-pool-grd-max:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lq P) 6= {}
and P ′ = slice-pool P sqp
and lower-tick P sqp ≤ idx-max (lq P)

shows grd-max P = grd-max P ′ 〈proof 〉

lemma slice-pool-grd-max ′:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = slice-pool P sqp
and 0 < sqp
and sqp < grd-max P

shows grd-max P = grd-max P ′

〈proof 〉

lemma slice-pool-cst-fees:
assumes clmm-dsc P
and P ′ = slice-pool P sqp
and

∧
i. fee P i = phi

shows
∧

i. fee P ′ i = phi
〈proof 〉

84

lemma slice-pool-quote-gross-leq:
assumes clmm-dsc P
and 0 < sqp
and sqp ′ ≤ sqp
and P ′ = slice-pool P sqp

shows quote-gross P ′ sqp ′ = 0
〈proof 〉

lemma slice-pool-quote-gross:
assumes clmm-dsc P
and 0 < sqp
and sqp ≤ sqp ′

and P ′ = slice-pool P sqp
shows quote-gross P ′ sqp ′ = quote-gross P sqp ′ − quote-gross P sqp
〈proof 〉

lemma slice-pool-quote-gross-max-eq:
assumes clmm-dsc P
and P ′ = slice-pool P sqp
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp < grd-max P
and i = lower-tick P sqp
and grd P i = sqp

shows quote-gross P ′ (grd-max P ′) = quote-gross P (grd-max P) − quote-gross P
sqp
〈proof 〉

lemma slice-pool-quote-gross-inv:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lq P) 6= {}
and sqp < grd-max P
and 0 < y
and P ′ = slice-pool P sqp

shows quote-gross P ′ −‘{y} = quote-gross P −‘{y + quote-gross P sqp}
〈proof 〉

lemma slice-pool-quote-reach:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and 0 < sqp
and sqp < grd-max P
and 0 < y
and P ′ = slice-pool P sqp

shows quote-reach P ′ y = quote-reach P (y + quote-gross P sqp)
〈proof 〉

lemma slice-pool-base-net-eq:

85

assumes clmm-dsc P
and nz-support (lq P) 6= {}
and P ′ = slice-pool P sqp
and 0 < sqp
and sqp < grd-max P
and sqp ≤ sqp ′

shows base-net P ′ sqp ′ = base-net P sqp ′

〈proof 〉

lemma slice-pool-base-net-slice:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and i = lower-tick P sqp
and P ′ = slice-pool P sqp
and sqp < grd-max P
and grd P i = sqp
and sqp ′ ≤ sqp
and 0 < sqp ′

shows base-net P ′ sqp ′ = base-net P ′ sqp
〈proof 〉

lemma slice-pool-quote-swap-gt-zero:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd P (lower-tick P sqp2) = sqp2
and P ′ = slice-pool P sqp2
and sqp1 ≤ sqp2
and 0 < y
and 0 <sqp1
and y + quote-gross P sqp2 ≤ quote-gross P (grd-max P)

shows quote-swap P ′ sqp1 y = quote-swap P sqp2 y
〈proof 〉

lemma slice-pool-quote-swap:
assumes clmm-dsc P
and nz-support (lq P) 6= {}
and grd P (lower-tick P sqp2) = sqp2
and P ′ = slice-pool P sqp2
and sqp1 ≤ sqp2
and sqp2 < grd-max P
and 0 ≤ y
and 0 < sqp1
and y + quote-gross P sqp2 ≤ quote-gross P (grd-max P)

shows quote-swap P ′ sqp1 y = quote-swap P sqp2 y
〈proof 〉

86

6.3 CLMM pool join

The join operation is meant to define a pool P on which swap operations
can be viewed as a combination of swap operations on its two arguments.
We use the convention that the pool fee is 0 on ranges where there is no
liquidity.
definition pool-fee-join where
pool-fee-join P1 P2 i = fee-union (lq P1 i) (lq P2 i) (fee P1 i) (fee P2 i)

lemma pool-fee-join-com:
shows pool-fee-join P1 P2 i = pool-fee-join P2 P1 i
〈proof 〉

definition joint-pools where
joint-pools P P1 P2 ←→ (grd P) = (grd P1) ∧ (grd P) = (grd P2) ∧
(∀ i. lq P i = lq P1 i + lq P2 i) ∧
(∀ i. fee P i = pool-fee-join P1 P2 i)

definition pool-join where
pool-join P1 P2 =
(grd P1 , (λi. lq P1 i + lq P2 i), (λi. pool-fee-join P1 P2 i))

lemma joint-poolsI [intro]:
assumes grd P = grd P1
and grd P = grd P2
and

∧
i. lq P i = lq P1 i + lq P2 i

and
∧

i. fee P i = pool-fee-join P1 P2 i
shows joint-pools P P1 P2 〈proof 〉

lemma pool-join-joint:
assumes grd P1 = grd P2
and P = pool-join P1 P2
shows joint-pools P P1 P2 〈proof 〉

lemma joint-pools-grids:
assumes joint-pools P P1 P2
shows (grd P) = (grd P1) (grd P) = (grd P2)
〈proof 〉

lemma joint-pools-lq:
assumes joint-pools P P1 P2
shows lq P i = lq P1 i + lq P2 i
〈proof 〉

lemma joint-pools-fee:
assumes joint-pools P P1 P2
shows fee P i = pool-fee-join P1 P2 i
〈proof 〉

87

lemma joint-pools-com:
assumes joint-pools P P1 P2
shows joint-pools P P2 P1
〈proof 〉

lemma joint-pools-nz-liq-sub:
assumes joint-pools P P1 P2
shows nz-support (lq P) ⊆ nz-support (lq P1) ∪ (nz-support (lq P2))
〈proof 〉

lemma joint-pools-nz-liq-sup:
assumes joint-pools P P1 P2
and

∧
i. 0 ≤ lq P1 i

and
∧

i. 0 ≤ lq P2 i
shows nz-support (lq P1) ∪ (nz-support (lq P2)) ⊆ nz-support (lq P)
〈proof 〉

lemma joint-pools-nz-liq:
assumes joint-pools P P1 P2
and

∧
i. 0 ≤ lq P1 i

and
∧

i. 0 ≤ lq P2 i
shows nz-support (lq P1) ∪ (nz-support (lq P2)) = nz-support (lq P)
〈proof 〉

lemma clmm-joint-pools-nz-liq:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows nz-support (lq P1) ∪ (nz-support (lq P2)) = nz-support (lq P)
〈proof 〉

lemma joint-pools-finite-liq:
assumes finite-liq P1
and finite-liq P2
and joint-pools P P1 P2

shows finite-liq P 〈proof 〉

lemma joint-pools-idx-min-min:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P1) 6= {}
and idx-min (lq P1) ≤ idx-min (lq P2)

shows idx-min (lq P) = idx-min (lq P1)
〈proof 〉

lemma joint-pools-idx-min:
assumes clmm-dsc P1
and clmm-dsc P2

88

and joint-pools P P1 P2
and nz-support (lq P1) 6= {}
and nz-support (lq P2) 6= {}

shows idx-min (lq P) = min (idx-min (lq P1)) (idx-min (lq P2))
〈proof 〉

lemma joint-pools-idx-max-max:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P2) 6= {}
and idx-max (lq P1) ≤ idx-max (lq P2)

shows idx-max (lq P) = idx-max (lq P2)
〈proof 〉

lemma joint-pools-idx-max:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P1) 6= {}
and nz-support (lq P2) 6= {}

shows idx-max (lq P) = max (idx-max (lq P1)) (idx-max (lq P2))
〈proof 〉

lemma joint-pools-clmm-dsc:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows clmm-dsc P
〈proof 〉

lemma join-gross-fct:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows gross-fct (lq P) (fee P) i = gross-fct (lq P1) (fee P1) i +

gross-fct (lq P2) (fee P2) i
〈proof 〉

lemma quote-gross-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows quote-gross P x = quote-gross P1 x + quote-gross P2 x
〈proof 〉

lemma quote-net-join:
assumes clmm-dsc P1
and clmm-dsc P2

89

and joint-pools P P1 P2
shows quote-net P x = quote-net P1 x + quote-net P2 x
〈proof 〉

lemma base-gross-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows base-gross P x = base-gross P1 x + base-gross P2 x
〈proof 〉

lemma base-net-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows base-net P x = base-net P1 x + base-net P2 x
〈proof 〉

lemma mkt-depth-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2

shows mkt-depth P x x ′ = mkt-depth P1 x x ′ + mkt-depth P2 x x ′

〈proof 〉

lemma joint-quote-gross-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P) 6= {}
and grd-min P ≤ x
and 0 ≤ y
and y + quote-gross P x ≤ quote-gross P (grd-max P)
and x ′ = quote-reach P (y + quote-gross P x)
and y1 = quote-gross P1 x ′ − quote-gross P1 x
and y2 = quote-gross P2 x ′ − quote-gross P2 x

shows y = y1 + y2
〈proof 〉

lemma joint-quote-gross-decomp ′:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)
and x ′ = quote-reach P y
and y1 = quote-gross P1 x ′

and y2 = quote-gross P2 x ′

90

shows y = y1 + y2
〈proof 〉

lemma joint-base-net-decomp ′:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P) 6= {}
and 0 ≤ y
and y ≤ quote-gross P (grd-max P)
and x ′ = quote-reach P y
and y1 = base-net P1 x ′

and y2 = base-net P2 x ′

shows base-net P x ′ = y1 + y2
〈proof 〉

lemma joint-base-gross-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lq P) 6= {}
and x ≤ grd-max P
and 0 ≤ y
and y + base-gross P x ≤ base-gross P (grd-min P)
and x ′ = base-reach P (y + base-gross P x)
and y1 = base-gross P1 x ′ − base-gross P1 x
and y2 = base-gross P2 x ′ − base-gross P2 x

shows y = y1 + y2
〈proof 〉

definition join-pools where
join-pools P1 P2 =
(grd P1 ,
(λi. lq P1 i + lq P2 i),
(λi. pool-fee-join P1 P2 i))

lemma join-pools-grd[simp]:
assumes P = join-pools P1 P2
shows grd P = grd P1 〈proof 〉

lemma join-pools-lq[simp]:
assumes P = join-pools P1 P2
shows lq P i = lq P1 i + lq P2 i
〈proof 〉

lemma join-pools-fee[simp]:
assumes P = join-pools P1 P2
shows fee P i = pool-fee-join P1 P2 i
〈proof 〉

91

lemma join-joint-pools:
assumes grd P1 = grd P2
shows joint-pools (join-pools P1 P2) P1 P2
〈proof 〉

6.4 CLMM pool combination
definition pool-comb where
pool-comb P1 P2 sqp = (let P ′ = refine P1 sqp in

pool-join P ′ (slice-pool P2 sqp))

lemma pool-comb-joint:
assumes grd P1 = grd P2
shows joint-pools (pool-comb P1 P2 sqp) (refine P1 sqp)
(slice-pool P2 sqp) 〈proof 〉

lemma pool-comb-refined-joint-nz-liq:
assumes grd P1 = grd P2
and clmm-dsc P1
and clmm-dsc P2
and P = pool-comb P1 P2 sqp
and grd P1 (lower-tick P1 sqp) = sqp

shows nz-support (lq P) = nz-support (lq P1) ∪
(nz-support (lq (slice-pool P2 sqp)))
〈proof 〉

lemma pool-comb-joint-refined:
assumes grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
shows joint-pools (pool-comb P1 P2 sqp) P1
(slice-pool P2 sqp)

〈proof 〉

lemma pool-comb-clmm-dsc:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and 0 < sqp
and P3 = pool-comb P1 P2 sqp

shows clmm-dsc P3 〈proof 〉

lemma pool-comb-grd-min:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lq P1) 6= {}
and nz-support (lq P2) 6= {}
and 0 < sqp

92

and sqp < grd-max P2
and P = pool-comb P1 P2 sqp

shows grd-min P = min (grd-min P1) (grd-min (slice-pool P2 sqp))
〈proof 〉

lemma pool-comb-le-grd-min:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lq P1) 6= {}
and nz-support (lq P2) 6= {}
and 0 < sqp
and sqp < grd-max P2
and grd-min P1 ≤ sqp
and P = pool-comb P1 P2 sqp

shows grd-min P = grd-min P1
〈proof 〉

lemma pool-comb-grd-max:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lq P1) 6= {}
and nz-support (lq P2) 6= {}
and 0 < sqp
and sqp < grd-max P2
and P = pool-comb P1 P2 sqp

shows grd-max P = max (grd-max P1) (grd-max P2)
〈proof 〉

lemma pool-comb-grd-max-slice:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lq P1) 6= {}
and nz-support (lq P2) 6= {}
and 0 < sqp
and sqp < grd-max P2
and P = pool-comb P1 P2 sqp

shows sqp < grd-max P
〈proof 〉

lemma pool-comb-quote-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and sqp ′ ≤ grd-max P

93

and P = pool-comb P1 P2 sqp
and nz-support (lq P) 6= {}

shows quote-gross P sqp ′ = quote-gross P1 sqp ′ + quote-gross (slice-pool P2 sqp)
sqp ′

〈proof 〉

lemma pool-comb-quote-le-slice:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and sqp ′ ≤ sqp
and sqp ≤ grd-max P
and P = pool-comb P1 P2 sqp
and nz-support (lq P) 6= {}

shows quote-gross P sqp ′ = quote-gross P1 sqp ′

〈proof 〉

lemma pool-comb-quote-diff-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and 0 < sqp ′

and 0 < sqp1
and sqp ′ ≤ grd-max P
and sqp1 ≤ grd-max P
and P = pool-comb P1 P2 sqp
and nz-support (lq P) 6= {}

shows quote-gross P sqp ′ − quote-gross P sqp1 =
quote-gross P1 sqp ′− quote-gross P1 sqp1 +
quote-gross (slice-pool P2 sqp) sqp ′ − quote-gross (slice-pool P2 sqp) sqp1
〈proof 〉

lemma pool-comb-base-net-plus:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp2) = sqp2
and 0 < sqp2
and 0 < y
and y ≤ quote-gross P (grd-max P)
and P = pool-comb P1 P2 sqp2
and sqp ′ = quote-reach P y
and sqp ′ ≤ sqp2
and nz-support (lq P) 6= {}

shows base-net P sqp ′ = base-net P1 sqp ′ + base-net (slice-pool P2 sqp2) sqp ′

94

〈proof 〉

lemma combo-quote-init1 :
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp2) = sqp2
and 0 < sqp2
and P = pool-comb P1 P2 sqp2
and 0 < y
and nz-support (lq P1) 6= {}
and nz-support (lq P2) 6= {}
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and sqp2 < grd-max P2
and sqp1 ≤ sqp2

shows quote-gross P sqp1 = quote-gross P1 sqp1
〈proof 〉

lemma combo-remain-quote-eq:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp2) = sqp2
and 0 < sqp2
and P = pool-comb P1 P2 sqp2
and nz-support (lq P) 6= {}
and nz-support (lq P2) 6= {}
and 0 < y
and 0< sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp2 ≤ sqp ′

and sqp1 ≤ sqp2
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2)

shows quote-gross P2 sqp ′ = quote-gross P2 rs1 ′

〈proof 〉

lemma comb-quote-gross-le:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and 0 < sqp
and sqp < grd-max P
and 0 < y
and y ≤ quote-gross P sqp
and y ≤ quote-gross P (grd-max P)
and P = pool-comb P1 P2 sqp

95

and sqp ′ = quote-reach P y
and nz-support (lq P) 6= {}

shows quote-gross P1 sqp ′ = y
〈proof 〉

locale combined-pools =
fixes P1 P2 P sqp2
assumes cmb-P1 : clmm-dsc P1
and cmb-P2 : clmm-dsc P2
and cmb-grd-eq: grd P1 = grd P2
and cmb-on-grid: grd P1 (lower-tick P1 sqp2) = sqp2
and cmb-nz1 : nz-support (lq P1) 6= {}
and cmb-nz2 : nz-support (lq P2) 6= {}
and cmb-comb: P = pool-comb P1 P2 sqp2
and cmb-pos: 0 < sqp2
and cmb-max: sqp2 < grd-max P2

begin

lemma combined-P-prop:
shows clmm-dsc P nz-support (lq P) 6= {}
〈proof 〉

lemmas cmb-props = cmb-P1 cmb-P2 cmb-grd-eq cmb-on-grid cmb-nz1 cmb-nz2
cmb-comb cmb-pos cmb-max combined-P-prop

lemma combo-joint-quote-gross-decomp:
assumes 0 < y
and 0 < sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and P ′′ = slice-pool P2 sqp2
and y2 ′ = quote-gross P ′′ sqp ′ − quote-gross P ′′ sqp1

shows y = y1 + y2 ′ y1 ≤ y 0 ≤ y1
y1 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1)
y2 ′ ≤ quote-gross P ′′ (grd-max P2)
〈proof 〉

lemma combo-joint-quote-gross-leq-max:
assumes 0 < y
and 0 < sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1

shows y− y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
〈proof 〉

lemma combo-joint-quote-gross-price-le:

96

assumes 0 < y
and grd-min P1 ≤ sqp1
and sqp1 ≤ sqp2
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1)

shows rs1 ≤ sqp ′

〈proof 〉

lemma combo-joint-quote-gross-decomp-leq:
assumes 0 < y
and 0 < sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and P ′′ = slice-pool P2 sqp2
and sqp1 ≤ sqp2
and y2 ′ = quote-gross P ′′ sqp ′

shows y = y1 + y2 ′ y1 ≤ y 0 ≤ y1
y1 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1)
y2 ′ ≤ quote-gross P ′′ (grd-max P2)
〈proof 〉

lemma combo-quote-swap-slice-eq:
assumes 0 < sqp1
and 0 < y
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1

shows quote-swap P sqp1 y = quote-swap P1 sqp1 y1 +
quote-swap (slice-pool P2 sqp2) sqp1 (y − y1)

〈proof 〉

lemma combo-quote-swap-eq:
assumes 0 < sqp1
and 0 < y
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2

shows quote-swap P sqp1 y = quote-swap P1 sqp1 y1 +
quote-swap P2 sqp2 (y − y1)

〈proof 〉

lemma comb-add-above-gt:
assumes 0 < y
and 0< sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)

97

and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and y1 < y
and sqp1 ≤ sqp2

shows sqp2 < sqp ′

〈proof 〉

lemma comb-add-above-add-eq:
assumes y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1)

shows quote-gross P1 sqp ′ = quote-gross P1 rs1
〈proof 〉

lemma comb-add-above-add-eq2 :
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and y1 < y
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2)

shows quote-gross P2 sqp ′ = quote-gross P2 rs1 ′

〈proof 〉

lemma combo-joint-rest-qty-slice:
assumes 0 < y
and 0 < sqp1
and sqp1 ≤ sqp2
and y + quote-gross P sqp1 < quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and P ′′ = slice-pool P2 sqp2

shows y − y1 = quote-gross P ′′ sqp ′

〈proof 〉

lemma combo-joint-rest-qty:
assumes 0 < y
and 0 < sqp1
and sqp1 ≤ sqp2
and y + quote-gross P sqp1 < quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp2 ≤ sqp ′

shows y − y1 = quote-gross P2 sqp ′ − quote-gross P2 sqp2
〈proof 〉

lemma combo-joint-rest-qty-le:
assumes 0 < y

98

and 0 < sqp1
and sqp1 ≤ sqp2
and y + quote-gross P sqp1 < quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1

shows y − y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
〈proof 〉

lemma combo-joint-rest-price-pos:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2)
and y1 < y

shows 0 < rs1 ′

〈proof 〉

lemma combo-joint-quote-gross-price-le ′:
assumes 0 < y
and grd-min P1 ≤ sqp1
and sqp1 ≤ sqp2
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and y1 < y
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2)

shows rs1 ′ ≤ sqp ′

〈proof 〉

lemma comb-add-above-price1-leq:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
and y2 < y1
and y1 < y
and rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1)
and rs2 = quote-reach P1 (y2 + quote-gross P1 sqp1)

shows rs2 ≤ rs1
〈proof 〉

lemma comb-add-above-price2-geq:
assumes 0 < y

99

and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
and y2 < y1
and y1 < y
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2)
and rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2)

shows rs1 ′ ≤ rs2 ′

〈proof 〉

lemma comb-add-above-price2-geq ′:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y − y1 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
and y1 < y2
and y2 ≤ y
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2)
and rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2)

shows rs2 ′ ≤ rs1 ′

〈proof 〉

lemma comb-add-above-price2-lt:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
and y2 < y1
and y1 < y
and rs2 ′ = quote-reach P2 (y − y2 + quote-gross P2 sqp2)

shows sqp ′ < rs2 ′

〈proof 〉

lemma combo-joint-reached-price-pos:
assumes 0 < y
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)

100

shows 0 < sqp ′ 〈proof 〉

lemma combo-joint-base-reached-eq:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1)

shows base-net P1 sqp ′ = base-net P1 rs1
〈proof 〉

lemma combo-joint-base-reached-eq2 :
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and y1 < y
and rs1 ′ = quote-reach P2 (y − y1 + quote-gross P2 sqp2)

shows base-net P2 sqp ′ = base-net P2 rs1 ′

〈proof 〉

lemma quote-gross-price-eq1 :
assumes y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and rs1 = quote-reach P1 (y1 + quote-gross P1 sqp1)

shows quote-gross P1 rs1 = y1 + quote-gross P1 sqp1
〈proof 〉

lemma quote-gross-price-eq2 :
assumes 0 ≤ y2
and y2 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1)
and rs2 = quote-reach P1 (y2 + quote-gross P1 sqp1)

shows quote-gross P1 rs2 = y2 + quote-gross P1 sqp1
〈proof 〉

end

6.5 Optimality result on quote tokens

When the fees in two pools are constant and equal, swapping a given amount
of quote tokens in their combination permits to determine the optimal quan-
tities of quote tokens to swap in each individual pool.
locale combined-pools-cst-fee = combined-pools +

fixes phi
assumes fee1 : ∀ i. fee P1 i = phi
and fee2 : ∀ i. fee P2 i = phi

101

begin

lemma fee-props:
shows 0 ≤ phi phi < 1 〈proof 〉

lemma quote-swap-opt-above:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
and y2 < y1
and y1 < y

shows quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2) ≤ quote-swap P
sqp1 y
〈proof 〉

lemma quote-swap-opt-above ′:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and y2 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1)
and 0 ≤ y − y2
and y1 < y2
and y2 ≤ y

shows quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2) ≤ quote-swap P
sqp1 y
〈proof 〉

lemma combo-slice-no-addition2 :
assumes 0 < y
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and y1 = y
and 0 ≤ y2
and y2 ≤ y
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
and y1 6= y2
and P ′′ = slice-pool P2 sqp2

shows quote-gross P ′′ sqp ′ = 0

102

〈proof 〉

lemma quote-swap-opt-below:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and y1 = y
and 0 ≤ y2
and y2 ≤ y
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
and y1 6= y2

shows quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2) ≤ quote-swap P
sqp1 y
〈proof 〉

lemma quote-swap-optimum ′:
assumes 0 < y
and grd-min P1 ≤ sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and 0 ≤ y2
and y2 ≤ y
and y2 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1)
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
and y1 6= y2

shows quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2) ≤ quote-swap P
sqp1 y
〈proof 〉

lemma quote-swap-optimum:
assumes 0 < y
and 0 < sqp1
and y + quote-gross P sqp1 ≤ quote-gross P (grd-max P)
and sqp ′ = quote-reach P (y + quote-gross P sqp1)
and y1 = quote-gross P1 sqp ′ − quote-gross P1 sqp1
and sqp1 ≤ sqp2
and grd-min P1 ≤ sqp2
and 0 ≤ y2
and y2 ≤ y
and y2 + quote-gross P1 sqp1 ≤ quote-gross P1 (grd-max P1)
and y − y2 + quote-gross P2 sqp2 ≤ quote-gross P2 (grd-max P2)
and y1 6= y2

shows quote-swap P1 sqp1 y2 + quote-swap P2 sqp2 (y − y2) ≤ quote-swap P
sqp1 y

103

〈proof 〉

end

end

References

[1] M. Echenim, E. Gobet, and A.-C. Maurice. Uniswap v3: im-
permanent loss modeling and swap fees asymptotic analysis, Sept.
2025. Available at https://hal.science/hal-04214315v3/file/Article_IL_
Uniswapv3_revision_HAL.pdf.

104

https://hal.science/hal-04214315v3/file/Article_IL_Uniswapv3_revision_HAL.pdf
https://hal.science/hal-04214315v3/file/Article_IL_Uniswapv3_revision_HAL.pdf

	Preliminary definitions and results
	Misc
	Support of a discrete function

	Grid information
	Definitions
	Gross and net token quantities
	General definitions
	Finite support restriction

	Gross and net quantities of quote tokens
	Generic functions for quote tokens
	Finite support restriction

	Gross quote token quantity into a pool
	Function specialization
	Restriction to pools with a finite liquidity

	Net quote token quantity in a pool
	Function specialization
	Restriction to pools with a finite liquidity

	Gross and net quantities of base tokens
	Generic functions for base tokens
	Finite support restriction

	Gross base token quantity in a pool
	Function specialization
	Restriction to pools with a finite liquidity

	Net base token quantity in a pool
	Function specialization
	Restriction to pools with a finite liquidity

	Swapping tokens, market depth and slippage
	Identical profiles

	Grid refinement
	Encompassement properties
	Finer price grids
	Pools with finer grids and coinciding profiles
	Spanning grids
	Spanning grids and finite liquidity

	CLMM description
	Preliminary results
	Quote token addition and withdrawal in a CLMM
	Base token addition and withdrawal in a CLMM
	Market depth and slippage for finer CLMMs
	Finer pools
	Finer CLMMs with nonzero liquidity

	Inequalities related to fees
	CLMM transformations
	CLMM pool refinement
	CLMM pool restriction and slice
	CLMM pool join
	CLMM pool combination
	Optimality result on quote tokens

