Concentrated Liquidity Market Making Operations

Mnacho Echenim

February 10, 2026

Abstract

Automated Market Makers (AMMSs) are one of the cornerstones of
decentralized finance. They enable users to exchange tokens without
the need for order books as would be the case in traditional finance.
They involve liquidity providers, whose tokens, usually called the quote
and base tokens, can be used in the swap process in exchange for a fee,
and liquidity takers who swap their tokens. The rules specifying the
quantities of tokens that can swapped and those that act as fees are
predefined and lead to several categories of AMMs.

Uniswap v3 introduced a new market-making design that improves
capital efficiency by allowing liquidity providers to allocate their as-
sets within selected price intervals. By concentrating liquidity over
narrower ranges, providers may earn higher fee income than in ear-
lier AMMSs, where liquidity is generally distributed uniformly across
all prices. Owing to its success, this design was adopted by several
decentralized exchanges on various blockchains, including Trader Joe,
PancakeSwap v3, Sunswap v3, and Sushiswap v3. These protocols
are collectively referred to as Concentrated Liquidity Market Makers
(CLMMs). Despite differences in implementation details, such as fee
structures, tick spacing, or incentive mechanisms, they all rely on the
same underlying principles.

In practice, liquidity takers can thus interact with multiple CLMM
pools involving the same pair of tokens but different liquidity profiles
or fee structures. A crucial task for them is to understand how these
pools can be combined, both conceptually and computationally.

Based on the work in [1], we formalize several notions related to
CLMMs, and introduce several operations on such pools that permit to
derive an optimality result: if two pools admit the same fees, then the
defined transformations permit to determine the optimal quantities of
quote tokens to trade in each pool in order to recover as many base
tokens as possible.

Contents

1 Preliminary definitions and results 3
1.1 Misc o e 3
1.2 Support of a discrete function 8

2 Grid information
2.1 Definitions
2.2 Gross and net token quantities
2.2.1 General definitions
2.2.2 Finite support restriction
2.3 Gross and net quantities of quote tokens . .
2.3.1 Generic functions for quote tokens .
2.3.2 Finite support restriction
2.4 Gross quote token quantity into a pool . . .
2.4.1 Function specialization

2.4.2 Restriction to pools with a finite liquidity

2.5 Net quote token quantity in a pool
2.5.1 Function specialization

2.5.2 Restriction to pools with a finite liquidity

2.6 Gross and net quantities of base tokens . .
2.6.1 Generic functions for base tokens . .
2.6.2 Finite support restriction

2.7 Gross base token quantity in a pool.
2.7.1 Function specialization

2.7.2 Restriction to pools with a finite liquidity

2.8 Net base token quantity in a pool
2.8.1 Function specialization

2.8.2 Restriction to pools with a finite liquidity

2.9 Swapping tokens, market depth and slippage
2.10 Identical profiles

3 Grid refinement
3.1 Encompassement properties
3.2 Finer price grids
3.3 Pools with finer grids and coinciding profiles
3.4 Spanning grids
3.5 Spanning grids and finite liquidity

4 CLMM description
4.1 Preliminary results

4.2 Quote token addition and withdrawal in a CLMM
4.3 Base token addition and withdrawal in a CLMM

4.4 Market depth and slippage for finer CLMMs
441 Finerpools
4.4.2 Finer CLMMs with nonzero liquidity

5 Inequalities related to fees

11
11
13
13
14
15
15
16
17
17
18
21
21
21
22
22
24
25
25
26
27
27
28
28
29

31
31
32
38
41
43

44
44
49
58
65
65
66

67

6 CLMM transformations 73

6.1 CLMM pool refinement 73
6.2 CLMM pool restriction and slice 81
6.3 CLMM pooljoin 87
6.4 CLMM pool combination 92
6.5 Optimality result on quote tokens 101

theory CLMM-Misc imports HOL— Analysis. Analysis

begin

1 Preliminary definitions and results

1.1 Misc

lemma diff-min-le:
assumes (a::real) < b

and z < y

shows minz b — minxa < minyb — minya
(proof)

lemma sum-ez-strict-pos:
fixes f g :: i = 'a::ordered-cancel-comm-monoid-add
assumes finite A
and VzeA. 0 < fzx
and JacA. 0 < fa
shows 0 < sum f A

(proof)

lemma diff-inv-max-le:
assumes (< a
and (a::real) < b
and z < y
shows inverse (maz y a) — inverse (mazx y b) <
inverse (maz = a) — inverse (maz x b)

(proof)

lemma int-interval-insert:
fixes a::int
assumes a < b
shows {a..< (b+1)} = insert b {a..< b}

(proof)

lemma int-telescoping-sum:
fixes f::int = 'a::ab-group-add

assumes a < b

shows (3¢ €{a..<b}. (fi — f (i+1))) = fa — (fb) (proof)

lemma int-telescoping-sum':

fixes f::int = ’a::ab-group-add

assumes a < b

shows (3" i €{a..<b}. (f (i+1) — f9) =fb— (fa)
(proof)

lemma int-telescoping-sum-le’:

fixes f::int = 'a::ab-group-add

assumes a < b

shows (3" ¢ €{a..b}. (f (i+1) — fi)) =f (b+1) — (fa)
(proof)

lemma diff-sum-dcomp:

fixes f::'a = real

assumes finite A

and A=BUC

and BN C ={}
shows z + sum fA — (y+sum fB) =z 4+ sumfC —y
(proof)

lemma sum-remove-el:

assumes finite A

and z€ A

and B =4 — {z}

shows sum fA = fx + sum f B
(proof)

lemma int-set-bdd-above:
fixes X::int set
assumes X # {}
and bdd-above X
shows Sup X € X Vx € X. 2 < Sup X

(proof)

definition wedge where
wedge f (i::int) sqp = (An. if n < i then fn else f (n—1))(i+1:=sqp)

lemma wedge-arg-lt[simp):
assumes n < ¢
shows wedge f i sqp n = f n (proof)

lemma wedge-arg-gt]simp]:
assumes i+1 < n

shows wedge f i sqp n = f (n—1) {(proof)

lemma wedge-arg-eq[simp]:

shows wedge f i sqp (i+1) = sqp (proof)

lemma wedge-strict-mono:
assumes strict-mono f
and fi < sqp
and sgp < f (i+1)
and g = wedge f i sqp
shows strict-mono g {proof)

lemma wedge-gt:
assumes Vi. z < fi

and z < sqp
shows Vi. z < wedge fj sqp i
(proof)

lemma wedge-ge:
assumes Vi. z < fi

and z < sqp
shows Vi. z < wedge fj sqp i
(proof)

lemma wedge-lt:
assumes Vi. fi < z
and sqp < z
shows Vi. wedge fjsqpi < z

(proof)

lemma wedge-le:
assumes Vi. fi < z
and sqp < x
shows Vi. wedge fj sqp i < z
(proof)

lemma wedge-images:
shows Vj. k. fj = wedge f i sqp k
(proof)

lemma wedge-images”:

assumes A = {j. j < i}

and B = {j. i+1 < j}
shows wedge f i sqp k € f'AU (f((Ai. i—1)‘B)) U {sqp}
(proof)

lemma wedge-as-ubound:
assumes V (r:real). 3 (iint). r < fi
shows Vr. 3k. r < wedge f i sqp k (proof)

lemma wedge-as-lbound:
assumes V (rureal) > 0. 3 (izint). fi <7

shows Vr > 0. 3k. wedge fi sqp k < r (proof)

lemma wedge-arg-prop:
shows {j. P (wedge fisqp j)} C{j.j<iAP(fj)}U
[i+1 < j AP (f G-1)} U {i+1}
(proof)

definition one-cpl where
one-cpl phi = (A(i:int). (1::real) — (phi 7))

definition gross-fct where
gross-fct f phi = (Ai. fi / (one-cpl phi 7))

lemma gross-fct-sgn:
assumes phi i < (1::real)
shows ((0::real) < f i) «— (0 < gross-fet f phi ©) (proof)

lemma gross-fct-nz-eq:
assumes phi i # (1::real)
shows fi = 0 «— gross-fct f phi i = 0 (proof)

lemma gross-fct-cong:
assumes fa = f'b
and phi a = phi’ b
shows gross-fct f phi a = gross-fct f' phi’ b {proof)

lemma gross-fct-zero-if:
assumes fa = 0
shows gross-fct f phi a = 0 (proof)

definition fee-union where
fee-union (I1::real) 12 f1 f2 = (11 xf1x(1—f2) + 12xf2x(1—f1))/
(L1%(1—f2) + 12x(1—f1))

lemma fee-union-pos:
assumes 0 < [1
and 0 < [2
and 0 < f1
and 0 < f2
and fI < 1
and f2 < 1
shows 0 < fee-union 11 12 f1 f2 (proof)

lemma fee-union-it-1:
assumes (< [1
and 0 < [2
and 0 < f1
and 0 < f2
and f1 < 1

and f2 < 1
shows fee-union 1112 f1 f2 < 1

(proof)

lemma diff-inv-le:
assumes 0 < (z::real)
and z < y
and y < 2
shows (y — z)/(zx2) < inverse x — inverse y

{(proof)

lemma diff-inv-le”:
assumes 0 < (z:real)
and z < y
and y < z
and 0 < a
shows a * (y — z)/(2%2) < a x (inverse z — inverse y)

(proof)

lemma diff-inv-sum-le”:

assumes Vi € I. (0::real) < fi

andViel fi<f(i+1)

and Vie I. f (i+1) < z

andViel. 0<gi

shows sum (Mi. gi* (f (i+1) — fi)) I/ (z % 2) <

sum (Ai. g i * (inverse (f i) — inverse (f (i+1)))) I

(proof)

lemma diff-inv-ge:

assumes 0 < (z:7real)

and z < y

and y < z
shows inverse y — inverse z < (z — y)/(a*x)
(proof)

lemma diff-inv-ge’:
assumes 0 < (z:real)
and z < y
and y < z
and 0 < a

shows a * (inverse y — inverse z) < a * (z — y)/(zxx)

(proof)

lemma diff-inv-sum-ge’:
assumes (0::real) < z
andViel fi<f(i+1)
and Vie I. 2 < fi
andViel. 0<gi1
shows sum (\i. g i * (inverse (f i) — inverse (f (i+1)))) I <

sum (M. gix (f (i+1) — fi) I/ (z % 2)
(proof)

1.2 Support of a discrete function

definition nz-support where
nz-support f = {i. fi # 0}

lemma nz-supportD:
assumes € nz-support f
shows f i # 0 (proof)

lemma wedge-finite-nz-support:

assumes finite (nz-support f)

shows finite (nz-support (wedge f i sqp))
(proof)

lemma gross-nz-support-eq:
assumes Vi € nz-support f. phi i # 1
shows nz-support f = nz-support (gross-fct f phi)
(proof)

definition idz-min where
idz-min f = Inf (nz-support f)

definition idx-maxr where
ide-maz f = Sup (nz-support f)

lemma idz-max-bdd-above-ge:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes fi # 0
and bdd-above (nz-support f)

shows i < idz-maz f

{(proof)

lemma idz-min-bdd-below-le:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes f i # 0
and bdd-below (nz-support f)

shows idz-min f < ¢

(proof)

lemma idz-maz-finite-ge:
fixes f::'a::conditionally-complete-linorder = 'b::zero
assumes f1i # 0
and finite (nz-support f)

shows ¢ < idz-maz f (proof)

lemma idz-min-finite-le:

fixes f::’a::conditionally-complete-linorder = 'b
assumes fi # 0
and finite (nz-support f)

shows idz-min f < i (proof)

lemma idz-mazx-finite:
fixes f::’a::conditionally-complete-linorder = 'b
assumes nz-support f # {}
and finite (nz-support f)

shows idx-maz f = Maz (nz-support f) (proof)

lemma idx-min-finite:
fixes f::'a::conditionally-complete-linorder = 'b
assumes nz-support f # {}
and finite (nz-support f)

shows idz-min f = Min (nz-support f) (proof)

lemma idz-maz-finite-in:

fixes f::'a::conditionally-complete-linorder = 'b::

assumes nz-support f # {}
and finite (nz-support f)
shows [(idz-max f) # 0 (proof)

lemma idz-min-finite-in:

fixes f::’a::conditionally-complete-linorder = 'b::

assumes nz-support f # {}
and finite (nz-support f)
shows f (idx-min f) # 0 (proof)

lemma idz-max-finite-gt:

fixes f::’a::conditionally-complete-linorder = 'b::

assumes finite (nz-support f)
and idz-max f <
shows fi =0
(proof)

lemma idz-min-finite-lt:

fixes f::’a::conditionally-complete-linorder = 'b::

assumes finite (nz-support f)
and ¢ < idz-min f
shows fi =0
{proof)

lemma idx-min-finite-max:

LIZero

lzero

lzero

ZEero

ZEero

ZEero

ZET0

fixes f::'a::conditionally-complete-linorder = 'b::zero

assumes nz-support f # {}
and finite (nz-support f)
and \j. j<i= fj=0
shows i < idz-min f

(proof)

lemma idz-min-maz-finite:

fixes f::’a::conditionally-complete-linorder =

assumes nz-support f # {}

and finite (nz-support f)
shows idz-min f< idz-mazx f
(proof)

lemma idz-min-finitel:

fixes f::'a::conditionally-complete-linorder =

assumes finite (nz-support f)

and fi # 0

and \j. j<i= fj=10
shows i = idz-min f

(proof)

lemma idz-min-finite-ge:

fixes f::'a::conditionally-complete-linorder =

assumes finite (nz-support f)

and nz-support f # {}
and \j.j<i= fj=10

shows ¢ < idz-min f
(proof)

lemma idz-maz-finitel:

fixes f::'a::conditionally-complete-linorder =

assumes finite (nz-support f)

and fi # 0

and \j.j>i= fj=0
shows i = idz-maz f

(proof)

lemma idz-maz-finite-le:

fixes f::'a::conditionally-complete-linorder =

assumes finite (nz-support f)

and nz-support f # {}

and \j. i<j= fj=10
shows idx-mazx f < @

(proof)

definition idz-min-img where
idx-min-img g f = g (idz-min f)

lemma idx-min-img-eq:
assumes Vz. fx =0+ flz=10

"b::

"b::

"b::

"b::

"b::

ZEro

ZET0

ZEero

ZET0

ZEero

shows idz-min-img g f = idz-min-img g f’ (proof)

definition idz-maz-img where

10

ide-maz-img g f = g (idz-maz f + 1)

lemma idx-mazx-img-eq:
assumes Vz. fz =0 <+— f'z =20
shows idz-maz-img g f = idz-maz-img g f' (proof)

lemma non-zero-lig-interv:
fixes i::'a::conditionally-complete-linorder
assumes finite (nz-support L)
and L7 # 0
shows i € {idz-min L .. ide-max L}
(proof)

end
theory Grid-Information imports CLMM-Misc

begin

2 Grid information

2.1 Definitions

A grid information consists of three functions defining the way a grid is
associated to (square root) prices, the liquidity on each price range and the
fees on each price range.

type-synonym grid-info = (int= real) x (int= real) x (int=real)

definition grd::grid-info = (int= real) where
grd P = fst P

definition lg::grid-info = (int= real) where
lg P = fst (snd P)

definition fee::grid-info = (int= real) where
fee P = snd (snd P)

Although several results are formalized in a generalized setting, the pools of
interest are those admitting a finite range with nonzero liquidity.
definition finite-lig where

finite-lig P <— finite (nz-support (lg P))

lemma finite-ligl [intro]:
assumes finite {i. lg Pi # 0}

11

shows finite-liqg P {proof)

lemma finite-ligD:
assumes finite-liq P
shows finite {i. lg P i # 0} (proof)

definition grd-min where
grd-min P = idz-min-img (grd P) (lg P)

definition grd-max where
grd-mazx P = idz-max-img (grd P) (lg P)

lemma grd-min-pos:
assumes nz-support (lg P) # {}
and A\é. 0 < grd P i

shows 0 < grd-min P
(proof)

lemma g¢rd-maz-gt:
assumes nz-support (lg P) # {}
and A\i. 0 < grd P i

shows 0 < grd-max P
(proof)

locale finite-nz-support =
fixes L::int = real
assumes fin-nz-sup: finite (nz-support L)

locale finite-lig-pool =
fixes P
assumes fin-liq: finite-liq P

sublocale finite-lig-pool C finite-nz-support lqg P
(proof)

context finite-lig-pool
begin

lemma idz-maz-mem:

assumes nz-support (lg P) # {}
shows idz-max (lg P) € nz-support (lg P)
(proof)

lemma idz-min-mem:

assumes nz-support (lg P) # {}
shows idz-min (lg P) € nz-support (lg P)
(proof)

lemma grd-min-max:

12

assumes nz-support (lg P) # {}
and mono (grd P)

shows grd-min P < grd-max P
{proof)

lemma finite-lig-gross-fct:
shows finite {i. gross-fct (lg P) (fee P) i # 0}
(proof)

end

2.2 Gross and net token quantities

2.2.1 General definitions

We define generic functions that are afterwards instantiated to represent the
gross (resp. net) quantities of base (resp. quote) tokens in a pool.

definition rng-token where
rng-token = (Ndff L (pi:real) i. (L ©)::real) * (dff pi (i::int)))

lemma rng-token-pos:
assumes 0 < L ¢
and 0 < dffz i
shows 0 < rng-token dff L = i (proof)

lemma rng-token-continuous-on:
assumes continuous-on A (Api. dff pi 1)
shows continuous-on A (Api. rng-token dff L pi i) (proof)

(Anti)-monotonicity is preserved by the generic function rng-token.

lemma rng-token-mono:

assumes 0 < L 1

and mono (Api. dff pi i)
shows mono (Api. rng-token dff L pi i)
(proof)

lemma rng-token-strict-mono:

assumes (0::real) < L ¢

and strict-mono (Api. dff pi 7)
shows strict-mono (Api. rng-token dff L pi i)
(proof)

lemma rng-token-antimono:

assumes 0 < L ¢

and antimono (Api. dff pi i)
shows antimono (Api. rng-token dff L pi 1)
(proof)

lemma rng-token-add:

13

assumes Vi. L¢=L1i+ L21¢

shows rng-token dff L x i = rng-token dff L1 z i +
rng-token dff L2 x i

(proof)

The generic function for the gross or net token quantities on the entire pool
is obtained by summation of rng-token on all ranges.

definition gen-token where
gen-token = (Adff L pi. (infsum (rng-token dff L pi) UNIV))

lemma gen-token-pos:
assumes Vi. 0 < L i
and Vi. 0 < dff z i
shows 0 < gen-token dff L z (proof)

lemma gen-token-mono:
assumes Vi. 0 < L {
and V. rng-token dff L x summable-on UNIV
and Y i. mono (Api. dff pi i)
shows mono (Api. gen-token dff L pi)
(proof)

lemma gen-token-antimono:
assumes Vi. 0 < L {
and VY z. rng-token dff L = summable-on UNIV
and Vi. antimono (Api. dff pi i)
shows antimono (Api. gen-token dff L pi)
(proof)

2.2.2 Finite support restriction

context finite-nz-support
begin

lemma finite-nonzero-summable:
shows rng-token dff L x summable-on UNIV

(proof)

lemma gen-token-antimono-finite:
assumes Vi. 0 < L ¢
and Vi. antimono (Api. dff pi i)
shows antimono (Api. gen-token dff L pi)
(proof)

lemma gen-token-sum:
shows gen-token dff L © =
sum (rng-token dff L x) {i. L i # 0}
(proof)

14

lemma gen-token-continuous:
assumes Vi. continuous-on A (Api. dff pi i)
shows continuous-on A (gen-token dff L)

(proof)

lemma gen-token-strict-mono:

assumes Vi. 0 < L i

and nz-support L # {}

and Vi. strict-mono (Api. dff pi i)

shows strict-mono (Api. gen-token dff L pi)
(proof)

lemma gen-token-add:
assumes Vi. L¢=L1i+ L2¢
and Vi. 0 < L1
and Vi. 0 < L2
shows gen-token dff L © = gen-token dff L1 x + gen-token dff L2 x

(proof)

end

2.3 Gross and net quantities of quote tokens

2.3.1 Generic functions for quote tokens

definition gamma-min-diff where
gamma-min-diff gamma =
(Mpiz:real) i. (min pi (gamma (i+(1::int)))) — (min pi (gamma 7)))

lemma gamma-min-diff-pos:
assumes gamma ¢ < gamma (i+1)
shows 0 < gamma-min-diff gamma x ©

(proof)

lemma gamma-min-diff-continuous:
shows continuous-on A (A(pi::real). gamma-min-diff gamma pi i)
(proof)

lemma gamma-min-diff-mono:
fixes gamma::int = real
assumes gamma i < gamma (i+1)
shows mono (Api. gamma-min-diff gamma pi i)
(proof)

definition rng-gen-quote where
rng-gen-quote gamma = (AL pi i. rng-token (gamma-min-diff gamma) L pi 7)

lemma rng-gen-quote-pos:
assumes 0 < L ¢

15

and gamma ¢ < gamma (i+1)
shows 0 < rng-gen-quote gamma L z i (proof)

lemma rng-gen-quote-continuous-on:
shows continuous-on A (Api. rng-gen-quote gamma L pi 7)
(proof)

lemma rng-gen-quote-mono:
assumes 0 < L ¢
and gamma i < gamma (i+1)
shows mono (Api. rng-gen-quote gamma L pi i)

(proof)

definition gen-quote where
gen-quote = (A gamma L pi. gen-token (gamma-min-diff gamma) L pi)

lemma gen-quote-zero:
assumes mono gamma
and Ai. gamma ¢ < sqp = L i =0
shows gen-quote gamma L sqp = 0 {proof)

lemma gen-quote-pos:
assumes Vi. 0 < L i
and V. gamma ¢ < gamma (i+1)
shows 0 < gen-quote gamma L z {proof)

lemma gen-quote-mono:
assumes Vi. 0 < L i
and VY z. rng-token (gamma-min-diff gamma) L x summable-on UNIV
and Vi. gamma ¢ < gamma (i+1)
shows mono (gen-quote gamma L) {proof)

2.3.2 Finite support restriction

context finite-nz-support
begin

lemma gen-quote-mono-finite:
assumes Vi. 0 < L i
and Vi. gamma ¢ < gamma (i+1)
shows mono (gen-quote gamma L)

(proof)

lemma gen-quote-continuous:
shows continuous-on A (gen-quote gamma L) (proof)

lemma gen-quote-IVT:

assumes (idz-min-img gamma L) < (idz-maz-img gamma L)
and gen-quote gamma L (idx-min-img gamma L) < y

16

and y < gen-quote gamma L (idz-maz-img gamma L)
shows Jpi > (idz-min-img gamma L). pi < idz-max-img gamma L A
gen-quote gamma L pi = y

(proof)

lemma gen-quote-ne:
assumes (idz-min-img gamma L) < (idz-maz-img gamma L)
and gen-quote gamma L (idz-min-img gamma L) < y
and y < gen-quote gamma L (idz-maz-img gamma L)
shows (gen-quote gamma L)—*{y} # {} (proof)

lemma finite-support-sum:
assumes \i. Li=0= fLi=10
shows infsum (rng-token dff (f L) z) UNIV =
sum (rng-token dff (f L) x) {i. L i # 0}
(proof)

lemma gen-quote-plus:
assumes Vi. L¢=L1i+ L21¢
and Vi. 0 < L173
and Vi. 0 < L2
shows gen-quote gam L x = gen-quote gam L1 x + gen-quote gam L2 x
(proof)

end

2.4 Gross quote token quantity into a pool

2.4.1 Function specialization

When the quote tokens are added to a pool, fees are to be taken into account:
if a user adds a quantity ¢ of tokens into a pool, the computation of the
amount of base tokens received is based in ¢ - (1 —).

definition rng-quote-gross where
rng-quote-gross P = rng-gen-quote (grd P) (gross-fct (Ig P) (fee P))

lemma rng-quote-gross-pos:
assumes 0 < gross-fct (lqg P) (fee P) i
and grd P i < grd P (i+1)
shows 0 < rng-quote-gross P pi i {proof)

lemma rng-quote-gross-continuous-on:
shows continuous-on A (Api. rng-quote-gross P pi 1)

(proof)

lemma rng-quote-gross-mono:
assumes 0 < gross-fct (lg P) (fee P) i
and grd P i < grd P (i+1)
shows mono (Api. rng-quote-gross P pi i) {proof)

17

definition quote-gross where
quote-gross P = gen-quote (grd P) (gross-fct (lg P) (fee P))

lemma quote-gross-pos:
assumes Vi. 0 < gross-fct (lg P) (fee P) i
and Vi. grd P i < grd P (i+1)
shows 0 < quote-gross P z (proof)

lemma quote-gross-mono:
assumes Vi. 0 < (lg P) i
and Vi. (fee P) i < 1
and Vi. (grd P) ¢ < (grd P) (i+1)
and Vz. rng-token (gamma-min-diff (grd P)) (gross-fet (lqg P) (fee P)) x
summable-on UNIV
shows mono (quote-gross P) (proof)

lemma gen-quote-grd-min:

assumes mono (grd P)

and finite (nz-support L)

and nz-support L # {}

and nz-support L = nz-support (lg P)
shows gen-quote (grd P) L (grd-min P) = 0
(proof)

Definition of the grid point that is reached in a pool for a given gross quantity
of quote tokens.

definition quote-reach where
quote-reach = (AP y.

if y = 0 then (grd-min P)

else Inf ((quote-gross P)—*{y}))

2.4.2 Restriction to pools with a finite liquidity

context finite-lig-pool
begin

lemma quote-gross-mono-finite:
assumes Vi. 0 < (lg P) ¢
and Vi. (fee P) i < 1
and Vi. (grd P) i < (grd P) (i+1)
shows mono (quote-gross P)

(proof)

lemma quote-gross-mono-finite”:
assumes Vi. 0 < (lg P) ¢
and Vi. (fee P) i < 1
and mono (grd P)

18

shows mono (quote-gross P)
(proof)

lemma quote-gross-continuous:
shows continuous-on A (quote-gross P) {proof)

lemma quote-gross-1VT:
assumes Vi. fee P i # 1
and grd-min P < grd-max P
and quote-gross P (grd-min P) < y
and y < quote-gross P (grd-mazx P)
shows 3 pi > (grd-min P). pi < (grd-maz P) A
quote-gross P pi = y
(proof)

lemma quote-gross-ne:
assumes Vi. fee P i # 1
and grd-min P < grd-max P
and quote-gross P (grd-min P) <y
and y < quote-gross P (grd-maz P)
shows quote-gross P—* {y} # {} (proof)

lemma quote-gross-grd-min:
assumes mono (grd P)

shows quote-gross P (grd-min P) = 0
(proof)

lemma quote-reach-mem:
assumes Vi. 0 < lq P i
and Vi. fee Pi < 1
and mono (grd P)
and 0 <y
and y < quote-gross P (grd-mazx P)
shows quote-reach P y € quote-gross P—* {y}

(proof)

lemma quote-gross-inv-strict-mono:
assumes mono (quote-gross P)
and quote-gross P sqp’ < y
and sqp € quote-gross P —* {y}
shows sqp’ < sqp

(proof)

lemma quote-gross-inv-bounded:
assumes mono (quote-gross P)
and quote-gross P (grd-min P) <y
and y < quote-gross P (grd-maz P)
shows V sqp’ € quote-gross P —* {y}.
dist (grd-min P) sqp’ < grd-max P — grd-min P

19

(proof)

lemma quote-gross-bdd-below:
assumes mono (quote-gross P)
and quote-gross P (grd-min P) < y
shows bdd-below (quote-gross P —{y}) (proof)

lemma quote-reach-le:

assumes Vi. 0 < lq P 1

and Vi. fee Pi < 1

and mono (grd P)

and 0 < y

and sqp € quote-gross P —{y}
shows quote-reach Py < sqp

(proof)

lemma quote-reach-gross-le:

assumes Vi. 0 < lqg P i

and Vi. fee Pi < 1

and mono (grd P)

and grd-min P < sqp
shows quote-reach P (quote-gross P sqp) < sqp
(proof)

lemma quote-gross-reach-eq:

assumes Vi. 0 < lq P i

and Vi. fee Pi < 1

and mono (grd P)

and 0 < y

and y < quote-gross P (grd-maz P)
shows quote-gross P (quote-reach P y) = y

{proof)

lemma quote-reach-ge:

assumes Vi. 0 < lg P i

and Vi. fee Pi < 1

and mono (grd P)

and grd-min P < grd-max P

and 0 < y

and y < quote-gross P (grd-maz P)
shows grd-min P < quote-reach Py

(proof)

end

20

2.5 Net quote token quantity in a pool

2.5.1 Function specialization

There are no fees to take into account when tokens are withdrawn from a
pool.

definition rng-quote-net where
rng-quote-net P = rng-gen-quote (grd P) (lg P)

lemma rng-quote-net-pos:
assumes 0 < (lg P) i
and grd P i < grd P (i+1)
shows 0 < rng-quote-net P x i (proof)

lemma rng-quote-net-continuous-on:
shows continuous-on A (Api. rng-quote-net P pi 7)

(proof)

lemma rng-quote-net-mono:
assumes 0 < (lg P) i
and grd P i < grd P (i+1)
shows mono (Api. rng-quote-net P pi i) (proof)

definition quote-net where
quote-net P = gen-quote (grd P) (lg P)

lemma quote-net-pos:
assumes Vi. 0 < (lg P) 4
and Vi. grd Pi < grd P (i+1)
shows 0 < quote-net P x (proof)

lemma quote-net-mono:
assumes Vi. 0 < (lg P) @
and Vi. (fee P) i < 1
and Vi. (grd P) i < (grd P) (i+1)
and VY z. rng-token (gamma-min-diff (grd P)) (lg P) z summable-on UNIV
shows mono (quote-net P) (proof)

2.5.2 Restriction to pools with a finite liquidity
context finite-lig-pool

begin

lemma quote-net-continuous:
shows continuous-on A (quote-net P) (proof)

lemma quote-net-IVT:

assumes Vi. fee P i # 1
and grd-min P < grd-max P

21

and quote-net P (grd-min P) < y
and y < quote-net P (grd-maz P)
shows 3 pi > (grd-min P). pi < (grd-maz P) A
quote-net P pi = y
(proof)

lemma quote-net-ne:
assumes Vi. fee P i # 1
and grd-min P < grd-max P
and quote-net P (grd-min P) < y
and y < quote-net P (grd-maz P)
shows quote-net P—* {y} # {} (proof)

lemma quote-net-mono-finite-liq:
assumes Vi. 0 < (lg P) ¢
and Vi. (fee P) i < 1
and Vi. (grd P) i < (grd P) (i+1)
shows mono (quote-net P) (proof)

end

2.6 Gross and net quantities of base tokens

2.6.1 Generic functions for base tokens

definition inv-gamma-max-diff where
inv-gamma-maz-diff = (Agamma (pi:real) i. inverse (mazx pi (gamma 7)) —
inverse (maz pi (gamma (i+(1::9nt)))))

lemma inv-maz-pos:
assumes 0 < a
and (a:real) < b
shows 0 < inverse (max z a) — inverse (maz z b)

(proof)

lemma inv-gamma-maz-diff-pos:
assumes gamma ¢ < gamma (i +(1::int))
and 0 < gamma i
shows 0 < inv-gamma-maz-diff gamma x i {proof)

lemma inv-gamma-maz-diff-continuous:
assumes gamma ¢ < gamma (i +(1::int))
and 0 < gamma 1
shows continuous-on A (Api. inv-gamma-maz-diff gamma pi ©)
(proof)

lemma inv-gamma-maz-diff-antimono:
assumes gamma @ < gamma (i +(1::int))
and 0 < gamma i
shows antimono (Api. inv-gamma-maz-diff gamma pi 7)

22

{proof)

definition rng-gen-base where
rng-gen-base =
(Agamma L pi i. rng-token (inv-gamma-maz-diff gamma) L pi i)

lemma rng-gen-base-pos:
assumes gamma i < gamma (i +(1::int))
and 0 < gamma
and 0 < L 1
shows 0 < rng-gen-base gamma L x i {proof)

lemma rng-gen-base-continuous-on:
assumes gamma ¢ < gamma (i +(1::int))
and 0 < gamma 1
shows continuous-on A (A\pi. rng-gen-base gamma L pi i) (proof)

lemma rng-gen-base-antimono:

assumes gamma i@ < gamma (i +(1::int))

and 0 < gamma

and 0 < L ¢

shows antimono (Api. rng-gen-base gamma L pi i)
(proof)

definition gen-base where
gen-base = (Agamma L pi. gen-token (inv-gamma-maz-diff gamma) L pi)

lemma gen-base-pos:
assumes Vi. gamma i < gamma (¢ +(1::int))
and Vi. 0 < gamma 1
and Vi. 0 < L3
shows 0 < gen-base gamma L x {proof)

lemma gen-base-antimono:
assumes Y z. rng-token (inv-gamma-maz-diff gamma) L x summable-on UNIV
and Vi. gamma i < gamma (i +(1::int))
and Vi. 0 < gamma 1
and Vi. 0 < L i
shows antimono (gen-base gamma L) {proof)

lemma gen-base-zero:
assumes mono gamma
and Ai. sgp < gamma (i+1) = Li= 0
shows gen-base gamma L sqp = 0 {proof)

lemma gen-base-grd-mazx:
assumes mono (grd P)
and finite (nz-support L)
and nz-support L # {}

23

and nz-support L = nz-support (lg P)
shows gen-base (grd P) L (grd-maz P) = 0
(proof)

2.6.2 Finite support restriction

context finite-nz-support
begin

lemma gen-base-continuous:
assumes Vi. gamma i < gamma (i +(1::int))
and Vi. 0 < gamma i
shows continuous-on A (gen-base gamma L) (proof)

lemma gen-base-1VT:
assumes Vi. gamma i < gamma (i +(1::int))
and Vi. 0 < gamma @
and (idz-min-img gamma L) < (idz-maz-img gamma L)
and gen-base gamma L (idz-maz-img gamma L) < y
and y < gen-base gamma L (idz-min-img gamma L)
shows dpi > (idz-min-img gamma L). pi < (idz-maz-img gamma L) A
gen-base gamma L pi = y
(proof)

lemma gen-base-ne:
assumes Vi. gamma i < gamma (i +(1::int))
and Vi. 0 < gamma ¢
and (idz-min-img gamma L) < (idx-maz-img gamma L)
and gen-base gamma L (idz-maz-img gamma L) < y
and y < gen-base gamma L (idz-min-img gamma L)
shows (gen-base gamma L)—"‘ {y} # {} (proof)

lemma gen-base-antimono-finite:
assumes Vi. gamma i < gamma (¢ +(1::int))
and Vi. 0 < gamma 1
and Vi. 0 < L

shows antimono (gen-base gamma L)

(proof)

lemma gen-base-gross:
assumes Vi. Li=L1¢+ L2
and Vi. 0 < L1
and Vi. 0 < L2
shows gen-base gam L x = gen-base gam L1 = + gen-base gam L2 x

{proof)

end

24

2.7 Gross base token quantity in a pool
2.7.1 Function specialization

definition rng-base-gross where
rng-base-gross P = rng-gen-base (grd P) (gross-fct (lg P) (fee P))

lemma rng-base-gross-pos:
assumes 0 < gross-fct (lqg P) (fee P) i
and grd P i < grd P (i+1)
and 0 < grd P i
shows 0 < rng-base-gross P x i {proof)

lemma rng-base-gross-continuous-on:
assumes grd P i < grd P (i+1)
and 0 < grd P i
shows continuous-on A (Api. rng-base-gross P pi 1)

{proof)

lemma rng-base-gross-mono:
assumes 0 < gross-fct (lg P) (fee P) i
and grd Pi < grd P (i+1)
and 0 < grd P i
shows antimono (Api. rng-base-gross P pi i) {proof)

definition base-gross where
base-gross P = gen-base (grd P) (gross-fct (lg P) (fee P))

lemma base-gross-pos:
assumes Vi. 0 < gross-fct (lg P) (fee P) i
and Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
shows 0 < base-gross P x {proof)

lemma base-gross-antimono:
assumes Vi. 0 < (lg P) i
and Vi. (fee P) i < 1
and Vi. (grd P) i < (grd P) (i+1)
and Vi. 0 < grd P i
and Vz. rng-token (inv-gamma-maz-diff (grd P)) (gross-fet (lg P) (fee P)) x
summable-on UNIV
shows antimono (base-gross P) (proof)

lemma base-gross-grd-max:
assumes mono (grd P)
and finite (nz-support (lg P))
shows base-gross P (grd-maz P) = 0
(proof)

definition base-reach where

25

base-reach = (AP y.
ify=20
then (grd-maz P)
else Sup ((base-gross P)—*{y}))

2.7.2 Restriction to pools with a finite liquidity

context finite-lig-pool
begin

lemma base-gross-continuous:
assumes Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
shows continuous-on A (base-gross P) (proof)

lemma base-gross-IVT:
assumes Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
and Vi. fee P i # 1
and grd-min P < grd-maxz P
and base-gross P (grd-max P) < y
and y < base-gross P (grd-min P)
shows 3 pi > (grd-min P). pi < (grd-maz P) A
base-gross P pi = y
(proof)

lemma base-gross-ne:
assumes Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
and Vi. fee P i # 1
and grd-min P < grd-max P
and base-gross P (grd-max P) < y
and y < base-gross P (grd-min P)
shows base-gross P—* {y} # {} (proof)

lemma base-gross-antimono-finite:
assumes Vi. 0 < (lg P) i
and Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
and Vi. (fee P) i < 1
shows antimono (base-gross P) {proof)

lemma base-reach-mem:
assumes Vi. grd P i < grd P (i+1)
and Vi. 0 < grd P i
and Vi. fee Pi < 1
and Vi. 0 < lgPi
and mono (grd P)
and grd-min P < grd-max P

26

and 0 <y
and y < base-gross P (grd-min P)
shows base-reach P y € base-gross P—* {y}

(proof)

lemma base-gross-dwn:

assumes Vi. grd P i < grd P (i+1)

and Vi. 0 < grd P i

and Vi. fee P i < 1

and Vi. 0 <lgPi

and mono (grd P)

and grd-min P < grd-max P

and 0 <y

and y < base-gross P (grd-min P)
shows base-gross P (base-reach P y) =y

(proof)

end

2.8 Net base token quantity in a pool

2.8.1 Function specialization

definition rng-base-net where
rng-base-net P = rng-gen-base (grd P) (lg P)

lemma rng-base-net-pos:
assumes grd P i < grd P (i +(1::int))
and 0 < grd P ¢
and 0 <lqgPi
shows 0 < rng-base-net P x i (proof)

lemma rng-base-net-continuous-on:
assumes grd P i < grd P (i +(1::int))
and 0 < grd P i
shows continuous-on A (Api. rng-base-net P pi i)

(proof)

lemma rng-base-net-mono:
assumes grd P i < grd P (i +(1::int))
and 0 < grd P i
and 0 <IlqgP1
shows antimono (Api. rng-base-net P pi i) (proof)

definition base-net where
base-net P = gen-base (grd P) (lq P)

lemma base-net-pos:

assumes Vi. grd P i < grd P (i +(1::int))
and Vi. 0 < grd P i

27

and Vi. 0 <lgPi
shows 0 < base-net P x (proof)

2.8.2 Restriction to pools with a finite liquidity

context finite-lig-pool
begin

lemma base-net-continuous:
assumes Vi. grd P i < grd P (i +(1::int))
and Vi. 0 < grd P i
shows continuous-on A (base-net P) (proof)

lemma base-net-IVT:
assumes Vi. grd P ¢ < grd P (i +(1::int))
and Vi. 0 < grd P i
and grd-min P < grd-max P
and base-net P (grd-maz P) < y
and y < base-net P (grd-min P)
shows 3 pi > (grd-min P). pi < (grd-maz P) A
base-net P pi =y
(proof)

lemma base-net-ne:
assumes Vi. grd P i < grd P (i +(1::int))
and Vi. 0 < grd P i
and grd-min P < grd-max P
and base-net P (grd-maz P) < y
and y < base-net P (grd-min P)
shows base-net P—* {y} # {} (proof)

lemma base-net-antimono-finite:
assumes Vi. grd P i < grd P (i +(1::int))
and Vi. 0 < grd P i
and Vi. 0 <lgPi
shows antimono (base-net P) (proof)

end

2.9 Swapping tokens, market depth and slippage

Given a grid point m and a quantity y of quote tokens to add to the pool,
this function computes the amount of base tokens that are retrieved from
the pool.

definition quote-swap where
quote-swap P = (Api y.
base-net P pi — base-net P (quote-reach P (y + quote-gross P pi)))

Given a grid point m and a quantity x of base tokens to add to the pool,

28

this function computes the amount of quote tokens that are retrieved from
the pool.

definition base-swap where
base-swap P = (Api .
quote-net P pi — quote-net P (base-reach P (x + base-gross P pi)))

The market depth in a pool takes as arguments two grid points 7 and 7/,
and returns the amounts of base or quote tokens that have to be added to
the pool for its state to get from 7 to 7’.

definition mkt-depth where
mkt-depth P = (X pi pi’. if pi < pi’ then (base-net P pi — base-net P pi’)
else (quote-net P pi — quote-net P pi’))

Base and quote slippages relate the amount of tokens withdrawn from the
pool from those given by an infinitesimally small amount of tokens and that
can be deduced from the grid point.

definition quote-slippage where
quote-slippage P = (Api y. y/(quote-swap P piy * pi * pi) — 1)

definition base-slippage where
base-slippage P = (Api z. base-swap P pi x/(z * pi * pi) — 1)

2.10 Identical profiles

definition id-grid-on where
id-grid-on P P' I +— (Vi€ I. grd P i = grd P’)

lemma id-grid-onl[intro]:
assumes Ai. i€] = grd Pi = grd P’ i
shows id-grid-on P P' I (proof)

lemma id-grid-onD|dest]:
assumes id-grid-on P P’ I
and i€ I

shows grd P i = grd P’ i (proof)

lemma id-grid-on-comm:
assumes id-grid-on P P’ I
shows id-grid-on P’ P I
(proof)

lemma id-grid-on-mono:
assumes id-grid-on P P' I
and I'C |

shows id-grid-on P P' I' (proof)

definition same-nz-lig-on where
same-nz-lig-on P P' I <— id-grid-on P P' I A

29

Viel (IgPi=0)+« (IgP'i=0))

lemma same-nz-lig-onl[intro):

assumes id-grid-on P P’ I

and Ni. ie I = ((lg Pi= 0) +— (lg P'i = 0))
shows same-nz-lig-on P P’ I {proof)

lemma same-nz-lig-onD[dest):
assumes same-nz-lig-on P P’ I
and i€ [

shows grd Pi = grd P'i (lg Pi=0) «— (lg P i = 0)
(proof)

lemma same-nz-lig-on-comm:
assumes same-nz-lig-on P P' I
shows same-nz-lig-on P’ P I

(proof)

lemma same-nz-lig-on-mono:
assumes same-nz-lig-on P P’ I
and ['C |
shows same-nz-lig-on P P’ I’
(proof)

definition fee-diff-on where
fee-diff-on P P' I «— id-grid-on P P' I N (Vi € I.lg Pi=lqP'%)

lemma fee-diff-onl[introl:

assumes id-grid-on P P' I

and A\i.ic I = lgPi=1qgP'i
shows fee-diff-on P P’ I

(proof)

lemma fee-diff-onD|dest]:

assumes fee-diff-on P P’ I

shows id-grid-on P P'INVie€ 1. lgqPi=1IqPi
(proof)

lemma fee-diff-on-nz-liq:
assumes fee-diff-on P P’ I
shows same-nz-lig-on P P' I {proof)

lemma fee-diff-on-comm:
assumes fee-diff-on P P’ I
shows fee-diff-on P’ P I
(proof)

lemma fee-diff-on-mono:
assumes fee-diff-on P P’ I

30

and I'C |
shows fee-diff-on P P' I’
(proof)

3 Grid refinement

We define the notion of pool refinement, that characterizes when a pool
admits a finer price grid than another one but exhibits the same behavior.

3.1 Encompassement properties

definition encomp-at where
encomp-at gammal gamma2 i k = gammaZ2 k < gammal i N\
gammal (i+1) < gamma2 (k+1)

lemma encomp-atD1:
assumes encomp-at gammal gammaZ2 i k
shows gamma2 k < gammal i

{proof)

lemma encomp-atD2:
assumes encomp-at gammal gammaZ2 i k
shows gammal (i+1) < gamma2 (k+1)
(proof)

lemma encomp-atl[intro]:

assumes gamma2 k < gammal i

and gammal (i+1) < gamma2 (k+1)
shows encomp-at gammal gamma?2 i k {proof)

definition encompassed where
encompassed gammal gamma2 k = {i::int. encomp-at gammal gamma?2 i k}

lemma encompassed-conver:
assumes (i:int) € encompassed gammal gamma2 k
and j € encompassed gammal gamma?2 k
and 7 < |
and [< j
and mono gammal
shows [€ encompassed gammal gamma2 k (proof)

lemma encompassed-interval:
assumes mono gammal
and finite (encompassed gammal gamma2 k)
and encompassed gammal gamma2 k # {}
shows encompassed gammal gamma2 k =
{Min (encompassed gammal gamma2 k).. Maz (encompassed gammal gamma?2

k)}

31

(proof)

lemma encomp-at-idz-leq:
fixes gammal::int = real and gamma2::int = real
assumes strict-mono (gammal::int = real)
and mono (gamma2::int = real)
and encomp-at gammal gamma?2 i k
and gamma2 k' < gammal i
shows k/ < k

{(proof)

lemma encomp-at-unique:
assumes strict-mono (gammal::int = real)
and mono (gamma2::int = real)
and encomp-at gammal gamma?2 i k
and encomp-at gammal gamma2 i k'
shows k = k'

(proof)

lemma encomp-at-unique':
assumes strict-mono (gammal::int = real)
and mono (gamma2::int = real)
and encomp-at gammal gamma?2 i k
and gamma2 k' < gammal i
and gammal i < gamma2 (k'+1)
shows k = k'

(proof)

lemma encomp-at-refi:
fixes gamma::'a::{one, plus}= real
shows encomp-at gamma gamma i ¢

(proof)

3.2 Finer price grids

definition finer-range:: (int = real) = (int = real) = bool where
finer-range gammal gamma?2 = (Vi. 3k. encomp-at gammal gamma?2 i k)

definition finer-grid where
finer-grid P1 P2 = finer-range (grd P1) (grd P2)

lemma finer-grid-range[simpl:
assumes finer-grid P1 P2
shows finer-range (grd P1) (grd P2)

(proof)
definition coarse-idz where

coarse-idr gammal gammaZ2 ¢ =
(THE k. encomp-at gammal gamma2 i k)

32

definition finer-idz-bound where
finer-idz-bound gammal gamma2 i =
(THE k. gammal k = gamma2 (coarse-idz gammal gamma?2 7))

lemma finer-range-refl:
shows finer-range gamma gamma (proof)

locale finer-ranges =
fixes gammal::int = real and gammaZ2::int = real
assumes stm: strict-mono gammal
and mon: mono gammaZ2
and fin: finer-range gammal gammaZ2

begin

lemma encomp-idz-unique:
shows 3!k. encomp-at gammal gamma?2 i k

(proof)

lemma coarse-idz-bounds:
shows encomp-at gammal gamma2 i (coarse-ide gammal gamma2 i)

(proof)

lemma encompassed-bounds:
shows i € encompassed gammal gamma2 (coarse-ide gammal gammaZ2 i)

{proof)

lemma encompassed-unique:
assumes i € encompassed gammal gamma?2 k
shows k = coarse-ide gammal gamma?2 i

(proof)

lemma encompassed-ing:

assumes k# k'

shows encompassed gammal gamma2 k N encompassed gammal gamma2 k' =
{}
(proof)

lemma coarse-idz-eq:

assumes gamma2 k' < gammal i

and gammal i < gamma2 (k'+1)
shows k' = coarse-idz gammal gamma?2 i

(proof)

lemma coarse-idz-reached:
assumes gammal m < gamma2 k
and gamma2 k < gammal M
and k = coarse-idr gammal gamma?2 i

33

shows 3j. gammal j = gamma2 k
(proof)

lemma coarse-idz-reached-unique:
assumes gammal m < gamma2 k
and gamma2 k < gammal M
and k = coarse-idr gammal gamma?2 i
shows 3!j. gammal j = gamma2 k

(proof)

lemma encomp-idz-mono:
assumes ¢ < j
and encomp-at gammal gamma?2 i k
and encomp-at gammal gamma?2 j [
and k# |
shows k < [

(proof)

lemma encomp-idz-mono’:
assumes ¢ < j
and encomp-at gammal gamma2 i k
and encomp-at gammal gamma?2 j
shows k£ < [

(proof)

lemma encomp-idz-mono-conv:
assumes k < |
and encomp-at gammal gamma?2 i k
and encomp-at gammal gamma?2 j 1
shows i < j

{(proof)

lemma finer-idz-bound-eq:
assumes gammal m < gamma?2 (coarse-ide gammal gamma2 i)
and gamma2 (coarse-ide gammal gamma2 i) < gammal M
shows gammal (finer-idz-bound gammal gamma2 i) =
gamma?2 (coarse-ide gammal gammaZ2 i)

(proof)

lemma finer-idz-bound-ezists-eq:
assumes Im. gammal m < gamma2 (coarse-idz gammal gamma?2 7)
and 3 M. gamma2 (coarse-ide gammal gamma2 i) < gammal M
shows gammal (finer-idz-bound gammal gamma?2 i) =
gamma?2 (coarse-idx gammal gammaZ2 i) (proof)

lemma finer-idz-bound-eq:
assumes i € encompassed gammal gamma?2 k
and gammal m < gamma2 k
and gamma2 k < gammal M

34

shows gammal (finer-idz-bound gammal gamma?2 i) = gamma2 k
(proof)

lemma finer-idz-bound-exists-eq’:
assumes i € encompassed gammal gamma2 k
and Im. gammal m < gamma2 k
and I M. gamma?2 k < gammal M
shows gammal (finer-idz-bound gammal gamma?2 i) = gamma2 k

{proof)

lemma finer-idz-bound-mem:
assumes gammal m < gammaZ2 (coarse-idx gammal gamma2 i)
and gamma2 (coarse-ide gammal gamma2 ¢ + 1) < gammal M
and gamma?2 (coarse-ide gammal gammaZ2 i) #
gamma?2 (coarse-ide gammal gammaZ2 i + 1)
shows finer-idz-bound gammal gamma2 i €
encompassed gammal gamma2 (coarse-idx gammal gamma2 i)

(proof)

lemma finer-idz-bound-reached:
assumes gammal m < gammaZ2 (coarse-idz gammal gamma2 i)
and gamma2 (coarse-ide gammal gamma2 i) < gammal M
and gammal i = gamma2 (coarse-ide gammal gamma?2 7)
shows i = finer-idz-bound gammal gamma2 i

{proof)

lemma finer-idz-bound-leq:
assumes gammal m < gammaZ2 (coarse-ide gammal gamma2 i)
and gamma2 (coarse-ide gammal gamma2 i) < gammal M
shows finer-idz-bound gammal gamma2 i < i

{(proof)

lemma finer-idz-bound-proj:
assumes i € encompassed gammal gamma?2 k
and j € encompassed gammal gamma?2 k
and gammal m < gamma?2 k
and gamma2 k < gammal M
shows finer-idz-bound gammal gamma?2 i = finer-idz-bound gammal gamma?2 j

(proof)

lemma finer-idz-bound-min:
assumes i € encompassed gammal gamma2 k
and j € encompassed gammal gamma?2 k
and gammal m < gamma2 k
and gamma?2 k < gammal M

shows finer-idz-bound gammal gamma2 i < j

(proof)

lemma coarse-idz-finer-bound:

35

assumes gammal m < gammaZ2 (coarse-idx gammal gamma2 i)
and gamma2 (coarse-ide gammal gamma2 i) < gammal M

shows coarse-idz gammal gamma?2 (finer-idz-bound gammal gamma?2 i) =
coarse-idx gammal gamma2 @

(proof)

lemma finer-idz-bound-invol:
assumes gammal m < gamma2 (coarse-ide gammal gamma2 i)
and gamma?2 (coarse-idx gammal gammaZ2 i) < gammal M
shows finer-idz-bound gammal gamma?2 (finer-idz-bound gammal gamma2 i) =
finer-idz-bound gammal gamma?2 i
(proof)

lemma reached-imp-coarse:

assumes gammal ¢ = gamma2 k

and gammaZ2 k # gamma2 (k+1)
shows gammal (i+1) < gamma2 (k+1)
(proof)

lemma less-imp-coarse:

assumes gammal m < gamma2 k

and gamma?2 k < gammal M

and gamma2 k # gamma2 (k+1)
shows 3. encomp-at gammal gamma2 i k

(proof)

lemma ex-coarse-rep:

assumes gammal m < gamma2 k

and gamma?2 k < gammal M

and gamma2 k # gamma2 (k+1)
shows 3. encomp-at gammal gamma2 i k

(proof)

lemma encompassed-ne:
assumes gammal m < gamma?2 k
and gamma?2 k < gammal M
and gamma2 k # gamma2 (k+1)
shows encompassed gammal gamma2 k # {}

{proof)

lemma encompassed-ne’:
assumes Im. gammal m < gamma2 k
and IM. gamma2 k < gammal M
and gammaZ2 k # gamma2 (k+1)

shows encompassed gammal gamma2 k # {}

{proof)

lemma encompassed-finite:
assumes gammal m < gammal2 k

36

and gamma?2 (k+1) < gammal M
and gamma?2 k # gamma2 (k+1)
shows finite (encompassed gammal gamma?2 k)

(proof)

lemma encompassed-finite':
assumes Im. gammal m < gamma2 k
and 3 M. gamma?2 (k+1) < gammal M
and gamma2 k # gamma2 (k+1)
shows finite (encompassed gammal gamma?2 k) {proof)

lemma encompassed-Min-in:
assumes gammal m < gamma?2 k
and gamma2 (k+1) < gammal M
and gamma2 k # gamma2 (k+1)
shows Min (encompassed gammal gamma2 k) € encompassed gammal gamma2 k

(proof)

lemma encompassed-Max-in:
assumes gammal m < gamma2 k
and gamma?2 (k+1) < gammal M
and gammaZ2 k # gamma2 (k+1)
shows Maz (encompassed gammal gamma2 k) € encompassed gammal gamma2 k

(proof)

lemma encompassed-min-gamma-eq:
assumes gammal m < gamma2 k
and gamma?2 (k+1) < gammal M
and gamma?2 k # gamma2 (k+1)
shows gammal (Min (encompassed gammal gamma?2 k)) = gamma2 k

{(proof)

lemma encompassed-min-gamma-eq’:
assumes Im. gammal m < gamma2 k
and 3 M. gamma?2 (k+1) < gammal M
and gamma2 k # gamma2 (k+1)
shows gammal (Min (encompassed gammal gamma?2 k)) = gamma2 k

{proof)

lemma coarse-idz-upper:

assumes gamma2 k < gammal j

and j¢ encompassed gammal gamma2 k
shows k < coarse-idx gammal gammaZ2 j

(proof)

lemma encompassed-max-Suc-eq:
assumes gammal m < gamma2 k
and gamma2 (k+1) < gammal M
and gamma2 k # gamma2 (k+1)

37

and gamma?2 (k+1) # gamma?2 (k+2)
shows Mazx (encompassed gammal gamma2 k) + 1 €
encompassed gammal gamma2 (k+1)

(proof)

lemma encompassed-maz-Suc-gamma-eq:
assumes gammal m < gamma2 k
and gamma?2 (k+2) < gammal M
and gamma2 k # gamma2 (k+1)
and gamma?2 (k+1) # gamma?2 (k+2)
shows gammal (Maz (encompassed gammal gamma2 k) + 1) = gamma2 (k+1)

(proof)

lemma encompassed-maz-Suc-gamma-eq”:
assumes Im. gammal m < gamma2 k
and I M. gamma2 (k+2) < gammal M
and gamma2 k # gamma2 (k+1)
and gamma2 (k+1) # gamma?2 (k+2)
shows gammal (Maz (encompassed gammal gamma2 k) + 1) = gamma?2 (k+1)

{proof)

end

lemma coarse-idz-refi:
fixes gamma::int = real
assumes strict-mono gamma
shows i = coarse-ide gamma gamma i

(proof)

3.3 Pools with finer grids and coinciding profiles

definition pool-coarse-idx where
pool-coarse-ide = (AP1 P2 i. coarse-idx (grd P1) (grd P2) 1)

lemma pool-coarse-idzD:
assumes k = pool-coarse-ide P1 P2 i
shows k = coarse-idx (grd P1) (grd P2) i

{proof)

definition pool-finer-idz-bound where
pool-finer-idz-bound = (AP1 P2 i. finer-idz-bound (grd P1) (grd P2) i)

lemma pool-finer-idz-boundD:
assumes | = pool-finer-idz-bound P1 P2 i
shows [= finer-idz-bound (grd P1) (grd P2) i

{proof)

definition finer-pool where
finer-pool P1 P2 = finer-grid P1 P2 A

38

(Vi. lg P1 i = lqg P2 (pool-coarse-ide P1 P2 i)) A
(Vi. fee P17 = fee P2 (pool-coarse-ids P1 P2 1))

lemma finer-pooll [intro):
assumes finer-range (grd P1) (grd P2)
and (Vi. lg P1 i = lqg P2 (pool-coarse-idz P1 P2 1))
and (Vi. fee P1 i = fee P2 (pool-coarse-idx P1 P2 7))
shows finer-pool P1 P2

{proof)

lemma finer-poolD:
assumes finer-pool P1 P2 shows
finer-range (grd P1) (grd P2)
Vi. lg P1 i = lqg P2 (pool-coarse-idz P1 P2 i)
Vi. fee P1 i = fee P2 (pool-coarse-idz P1 P2 i)
(proof)

lemma finer-pool-refi:
assumes strict-mono (grd P)
shows finer-pool P P

(proof)

locale finer-pools =
fixes P1 P2
assumes fin-pool: finer-pool P1 P2

begin

lemma finer-pool-grid:
shows finer-range (grd P1) (grd P2) (proof)

lemma finer-pool-liq:
shows Vi. lg P1 i = lqg P2 (pool-coarse-idz P1 P2 i)
(proof)

lemma finer-pool-fee:
shows Vi. fee P1 i = fee P2 (pool-coarse-ide P1 P2 i)

{proof)

lemma encompassed-lig-eq:

assumes strict-mono (grd P1)

and mono (grd P2)
and i € encompassed (grd P1) (grd P2) k
shows lq P1 i =1Ilqg P2 k

(proof)
lemma encompassed-fee-eq:

assumes strict-mono (grd P1)
and mono (grd P2)

39

and i € encompassed (grd P1) (grd P2) k
shows fee P1 i = fee P2 k

(proof)

lemma sum-rng-token:
assumes strict-mono (grd P1)
and mono (grd P2)
and grd P1 m1 < grd P2 k
and grd P2 (k+1) < grd P1 M1
and grd P2k # grd P2 (k + 1)
and A a b. a € encompassed (grd P1) (grd P2) b =
g (lgP1)a=g (lgP2)Db
and Vi € encompassed (grd P1) (grd P2) k. dff v i = f (i+1) — fi
shows sum (rng-token dff (g (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
(¢’ (lg P2)) k = (f (Mazx (encompassed (grd P1) (grd P2) k) + 1) —
f (Min (encompassed (grd P1) (grd P2) k)))
(proo)

lemma sum-rng-gen-quote:
assumes strict-mono (grd P1)
and mono (grd P2)
and grd P1 m1 < grd P2 k
and grd P2 (k+2) < grd P1 M1
and grd P2k # grd P2 (k+ 1)
and grd P2 (k+1) # grd P2 (k + 2)
and A a b. a € encompassed (grd P1) (grd P2) b =
fgPl)ya=f"(lgP2)Db
shows sum (rng-gen-quote (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
rng-gen-quote (grd P2) (f' (lg P2)) z k
(proof)

lemma sum-rng-gen-base:
assumes strict-mono (grd P1)
and mono (grd P2)
and grd P1 m1 < grd P2 k
and grd P2 (k+2) < grd P1 M1
and grd P2k # grd P2 (k + 1)
and grd P2 (k+1) # grd P2 (k + 2)
and A a b. a € encompassed (grd P1) (grd P2) b =
fUgPl)ya=f" (lgP2)Db
shows sum (rng-gen-base (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
rng-gen-base (grd P2) (f' (lg P2)) z k
(proof)

lemma finer-imp-finite-liq:
assumes strict-mono (grd P1)

40

and mono (grd P2)
and finite-liq P2
and Ak. lg P2 k # 0 = finite (encompassed (grd P1) (grd P2) k)
shows finite-liq P1
(proof)

lemma finer-imp-finite-liq”:
assumes finer-pool P1 P2
and strict-mono (grd P1)
and mono (grd P2)
and finite-lig P1
and finite {k. encompassed (grd P1) (grd P2) k = {}}
shows finite-liq P2
(proof)

end

3.4 Spanning grids

definition span-grid where
span-grid P <— strict-mono (grd P) A (Vi. 0 < grd P i) A
(Vr>0.3i. grd Pi<r) ANV r.3i.r < grd P1)

lemma span-gridD:
assumes span-grid P
shows strict-mono (grd P) Vi. 0 < grd P i
Vr>0.3i. grd Pi<rV r.3i.r<grd Pi

{proof)

lemma span-gridI[intro]:
assumes strict-mono (grd P)
and Vi. 0 < grd P i
and Vr>0.3i. grd Pi <r
andV r.di. r < grd P 1
shows span-grid P (proof)

lemma span-grid-eq:
assumes span-grid P
and grd P = grd P’

shows span-grid P’ (proof)

locale finer-spanning-pool = finer-pools +
assumes span: span-grid P1

begin
lemma finer-spanning-gt:

shows 3i. r < grd P2 i
(proof)

41

lemma finer-spanning-it:
assumes 0 < r
shows 4. grd P2 i < r

(proof)

lemma finer-span-grid:
assumes Vi. 0 < grd P2 i
and strict-mono (grd P2)
shows span-grid P2

(proof)

end

locale finer-two-spanning-pools = finer-spanning-pool +
assumes spanZ2: span-grid P2

sublocale finer-two-spanning-pools C finer-ranges grd P1 grd P2
(proof)

context finer-two-spanning-pools
begin

lemma spanning-sum-rng-gen-quote:
assumes A a b. a € encompassed (grd P1) (grd P2) b =
fUgPl)ya=f" (lgP2)Db
shows sum (rng-gen-quote (grd P1) (f (g P1)) z)
(encompassed (grd P1) (grd P2) k) =
rng-gen-quote (grd P2) (f' (Ig P2)) z k
(proof)

lemma spanning-sum-rng-gen-base:
assumes A a b. a € encompassed (grd P1) (grd P2) b =
f(qgP1)a=f"(lgP2)b
shows sum (rng-gen-base (grd P1) (f (lg P1)) z)
(encompassed (grd P1) (grd P2) k) =
rng-gen-base (grd P2) (f' (lg P2)) x k
(proof)

lemma span-grid-encompassed:
shows finite (encompassed (grd P1) (grd P2) k)

(proof)
lemma span-grids-finite-liq:
assumes finite-liq P2

shows finite-liq P1
{proof)

lemma span-grids-ez-le:

42

shows Im. grd P1 m < grd P2 k
(proof)

lemma span-grids-ex-ge:
shows I M. grd P2 k < grd P1 M
(proof)

lemma span-grids-encompassed-ne:
shows encompassed (grd P1) (grd P2) k # {}

{(proof)

end

3.5 Spanning grids and finite liquidity

locale finer-two-span-finite-lig = finer-two-spanning-pools +
assumes fin-liq: finite-liq P1

sublocale finer-two-span-finite-liq C finite-lig-pool P1
(proof)

lemma (in finer-two-span-finite-liq) span-grids-finite-liq":
shows finite-liq P2
(proof)

sublocale finer-two-span-finite-liq C finite-lig-pool P2
(proof)

context finer-two-span-finite-lig
begin

lemma finer-pool-encompassed-Union:

shows (|J (encompassed (grd P1) (grd P2) {i. lg P21 # 0})) =
{i. lg P1i{# 0}

(proof)

lemma spanning-finer-gen-quote-eq:
assumes A a b. a € encompassed (grd P1) (grd P2) b =
fUgPl)a=f"(lgP2)Db
and Ai. lg P2i=0 = f'(lg P2) i
and Ai. lg P1i=0 = f (lgP1) i
shows gen-quote (grd P1) (f (lg P1)) z
(proof)

=0
=0
= gen-quote (grd P2) (f' (lg P2)) =

lemma spanning-finer-gen-base-eq:
assumes A a b. a € encompassed (grd P1) (grd P2) b =
fgPl)ya=f"(lgP2)b
and A\i. lg P2i=0 = f'(lgP2)i= 0
and A\i. lgP1i=0= f(lgP1)i=10

shows gen-base (grd P1) (f (lqg P1)) x = gen-base (grd P2) (f’ (lg P2)) x
(proof)

end

end
theory CLMM-Description imports Grid-Information

begin

4 CLMM description

Definition of CLMMs (Concentrated Liquidity Market Makers)

4.1 Preliminary results

definition clmm-dsc where
clmm-dsc P «— (span-grid P) A (finite-lig P) A (Vi. 0 < lg P i) A
(Vi. 0 < fee Pi) N (Vi. fee Pi < 1)

lemma clmm-dscl[intro]:
assumes span-grid P
and finite-liq P
andVi. 0 <lgPi
and Vi. 0 < fee P i
and Vi. fee P i < 1
shows clmm-dsc P {proof)

lemma clmm-dsc-span-grid:
assumes clmm-dsc P
shows span-grid P {proof)

lemma clmm-dsc-grid|simp]:
assumes clmm-dsc P
shows strict-mono (grd P) (Vi. 0 < grd P 1)
(Vr>0.3i.grd Pi<r) (Vr.3i. r < grd P i)

(proof)
lemma clmm-dsc-grd-Suc:

assumes clmm-dsc P

shows grd P i < grd P (i+1) (proof)
lemma clmm-dsc-grd-smono:

assumes clmm-dsc P

44

and i < j
shows grd P i < grd P j (proof)

lemma clmm-dsc-grd-mono:
assumes clmm-dsc P
and i <j
shows grd P i < grd P j (proof)

lemma clmm-dsc-liq:
assumes clmm-dsc P
shows finite-lig P 0 < lg P i {proof)

lemma clmm-dsc-fees:
assumes clmm-dsc P
shows (Vi. 0 < fee P i) A (Vi. fee P i < 1) (proof)

lemma clmm-dsc-fees-neq-1:
assumes clmm-dsc P
shows Vi. fee P i # 1

(proof)

lemma clmm-dsc-gross-lig:
assumes clmm-dsc P
shows nz-support (gross-fet (lg P) (fee P)) = nz-support (lqg P)
(proof)

lemma clmm-dsc-gross-lig-zero-iff:
assumes clmm-dsc P
shows (lg P i = 0) <— (gross-fct (lg P) (fee P) i = 0)
(proof)

lemma gross-lig-gt:

assumes clmm-dsc P

and lg Pi # 0

and L = gross-fet (lg P) (fee P)
shows 0 < L i (proof)

lemma gross-lig-ge:

assumes clmm-dsc P

and L = gross-fet (lg P) (fee P)
shows 0 < L i (proof)

lemma rng-quote-net-ge:
assumes clmm-dsc P
shows 0 < lg P i« (grd P (i+1) — grd P i)
(proof)

lemma rng-quote-gross-ge:
assumes clmm-dsc P

45

and L = gross-fet (lg P) (fee P)
shows 0 < L i % (grd P (i+1) — grd P 1)
{proof)

lemma clmm-quote-gross-pos:
assumes clmm-dsc P
shows 0 < quote-gross P sqp (proof)

lemma clmm-quote-gross-mono:
assumes clmm-dsc P
shows mono (quote-gross P)

(proof)

lemma quote-gross-imp-sqp-lt:

assumes clmm-dsc P

and quote-gross P sqp < quote-gross P sqp’
shows sqp < sqp’

{proof)

lemma clmm-quote-net-mono:
assumes clmm-dsc P
shows mono (quote-net P)

(proof)

lemma clmm-base-gross-antimono:
assumes clmm-dsc P
shows antimono (base-gross P)

(proof)

lemma clmm-base-net-antimono:
assumes clmm-dsc P
shows antimono (base-net P)

(proof)

lemma lig-grd-min:

assumes clmm-dsc P

and nz-support (lg P) # {}
shows 0 < grd-min P (proof)

lemma lig-grd-min-mazx:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows grd-min P < grd-max P

(proof)

definition rng-blw where
rng-blw P prc = {i. grd P i < prc}

lemma rng-blw-mem|simp]:

46

assumes i € rng-blw P prc
shows grd P i < prc (proof)

lemma rng-blw-bdd-above:
assumes clmm-dsc P
shows bdd-above (rng-blw P prc) (proof)

lemma rng-blw-ne:
assumes clmm-dsc P
and 0 < prc
shows rng-blw P prc # {}

(proof)

definition lower-tick where
lower-tick P prc = Sup (rng-blw P prc)

lemma grd-lower-tick-cong:
assumes grd P1 = grd P2
shows lower-tick P1 sqp = lower-tick P2 sqp

{proof)

lemma lower-tick-mem:
assumes clmm-dsc P
and 0 < prc
shows lower-tick P prc € rng-blw P pre {proof)

lemma lower-tick-geq:
assumes clmm-dsc P
and 0 < prc

shows grd P (lower-tick P prc) < pre
(proof)

lemma lower-tick-geq:
assumes clmm-dsc P
and i € rng-blw P prc
shows i < lower-tick P pre {proof)

lemma lower-tick-ubound:
assumes clmm-dsc P
and i = lower-tick P prc
shows prc < grd P (i+1)
(proof)

lemma lower-tick-lbound:
assumes clmm-dsc P
and 0 < prc
and ¢ = lower-tick P prc
shows grd P i < prc (proof)

47

lemma lower-tick-lt:
assumes clmm-dsc P
and 0 < sqp’
and ¢ = lower-tick P sqp
and j = lower-tick P sqp’
and i < j

shows sqp < sqp’

(proof)

lemma lower-tick-It’:
assumes clmm-dsc P
and 0 < sqp’
and i = lower-tick P sqp
and j = lower-tick P sqp’
and sqp’ < sqp
and grd P i = sqp

shows j < i

(proof)

lemma lower-tick-mono:
assumes clmm-dsc P
and 0 < sqp
and ¢ = lower-tick P sqp
and j = lower-tick P sqp’
and sqp < sqp’

shows 7 < j
(proof)

lemma lower-tick-eq:
assumes clmm-dsc P
and grd P i = sqp

shows lower-tick P sqp = i

(proof)

lemma lower-tick-charact:
assumes clmm-dsc P
and grd P i < sqp
and sgp < grd P (i+1)
shows lower-tick P sqp = 1
(proof)

lemma lower-tick-grd-min:

assumes strict-mono (grd P)
shows idz-min (lg P) = lower-tick P (grd-min P)
(proof)

lemma lower-tick-grd-mazx:

assumes strict-mono (grd P)
shows idz-maz (lg P) + 1 = lower-tick P (grd-maz P)

48

(proof)

lemma grd-max-gt-if:
assumes clmm-dsc P
and ¢ = lower-tick P sqp
and lg Pi # 0

shows sgp < grd-mazx P

(proof)

4.2 Quote token addition and withdrawal in a CLMM

lemma (in finite-nz-support) clmm-gen-quote-sum:
assumes clmm-dsc P
and 0 < sqp
and j = lower-tick P sqp
shows gen-quote (grd P) L sqp =
Ljx(sqp — grd Pj) +
sum (A i. Li* (grd P (i+1) — grd P Q) {i. Li# 0 A i <j}
(proof)

lemma clmm-gen-quote-grd-min:
assumes clmm-dsc P
and nz-support L # {}
and finite (nz-support L)
and nz-support L = nz-support (lg P)
shows gen-quote (grd P) L (grd-min P) = 0 (proof)

lemma (in finite-nz-support) clmm-gen-quote-grd-min-le:
assumes clmm-dsc P
and nz-support L = nz-support (lg P)
and sqp < grd-min P
and 0 < sqp
shows gen-quote (grd P) L sqp = 0
(proof)

lemma clmm-quote-gross-sum:
assumes clmm-dsc P
and 0 < sqp
and L = gross-fct (lg P) (fee P)
and j = lower-tick P sqp
shows quote-gross P sqp =
Ljx(sqp — grd P j) +
sum (A i. L i (grd P (i+1) — grd P i) {i. L i # 0 N i < j}
(proof)

lemma clmm-quote-gross-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows quote-gross P (grd-min P) = 0 (proof)

49

lemma clmm-quote-gross-grd-min-le:
assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp

shows quote-gross P sqp = 0 {proof)

lemma clmm-quote-reach-zero:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows quote-reach P 0 = grd-min P
(proof)

lemma clmm-quote-reach-ge:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 <y
and y < quote-gross P (grd-maz P)
shows grd-min P < (quote-reach P y)

(proof)

lemma clmm-quote-reach-pos:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 <y
and y < quote-gross P (grd-mazx P)
and sqp = quote-reach P y

shows 0 < sqp

(proof)

lemma clmm-quote-reach-mem:
assumes clmm-dsc P
and 0 <y
and y < quote-gross P (grd-mazx P)
and nz-support (lg P) # {}
shows quote-reach P y € quote-gross P—* {y}

(proof)

lemma clmm-quote-reach-le:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and sgp € quote-gross P —{y}
and sqp’ = quote-reach P y
shows sqp’ < sqp

(proof)

lemma clmm-quote-net-sum:
assumes clmm-dsc P

50

and 0 < sqp
and L = lg P
and j = lower-tick P sqp
shows quote-net P sqp =
Ljx* (sgp — grd P j) +
sum (N i. Lix (grd P (i+1) — grd P %)) {i. Li# 0 N i < j}
(proof)

lemma clmm-quote-net-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows quote-net P (grd-min P) = 0 (proof)

lemma clmm-quote-gross-reach-eq:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 <y
and y < quote-gross P (grd-maz P)
shows quote-gross P (quote-reach P y) =y

(proof)

definition gen-quote-diff where
gen-quote-diff P L sqp sqp’ = gen-quote (grd P) L sqp’ — gen-quote (grd P) L sqp

lemma (in finite-nz-support) clmm-gen-quote-diff-eq:
assumes clmm-dsc P
and j = lower-tick P sqp
and %k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k

shows gen-quote-diff P L sqp sqp’ = L k = (sqp’ — grd P k) +
sum (A i. Lix (grd P (i+1) —grd P9)) {i. Li# 0 Nj<i Ni<k}+
Ljx* (grd P (j+1) — sqp)

(proof)

lemma (in finite-nz-support) clmm-gen-quote-diff-eq”:
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and L' j=1Lj
shows gen-quote-diff P L sqp sqp’ = L’ j * (sqp’ — sqp)
(proof)

lemma clmm-quote-gross-diff-eq:

assumes clmm-dsc P
and L = gross-fct (lqg P) (fee P)

o1

and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
shows quote-gross P sqp’ — quote-gross P sqp = L k x (sqp’ — grd P k) +
sum (A i. Lix (grd P (i+1) —grd P9)) {i. Li# 0 Nj<i Ni<k}+
Ljx*(grd P (j+1) — sqp)
(proof)

lemma clmm-rng-quote-strict-pos:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and L7 # 0
shows 0 < L i (grd P (i+1) — grd P i) (proof)

lemma clmm-sum-rng-quote-pos:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)

shows 0 < sum (A 4. Lix* (grd P (i+1) — grd Pi)) M
(proof)

lemma clmm-sum-rng-quote-strict-pos:

assumes clmm-dsc P

and L = gross-fct (lg P) (fee P)

and L7 # 0

and i € M

and finite M
shows 0 < sum (A 4. Li* (grd P (i+1) — grd Pi)) M
(proof)

lemma clmm-quote-gross-eq-sum-only-if:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’

and 0 < sqp
and sqp < sqp’
and j < k
and quote-gross P sqp’ = quote-gross P sqp
and j < ¢
and i < k
shows L ¢ =0
(proof)

lemma clmm-quote-gross-eq-sum-emp:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp

52

and k = lower-tick P sqp’

and 0 < sqp

and sqp < sqp’

and j < k

and quote-gross P sqp’ = quote-gross P sqp
shows {i. Li# 0 Nj<iNi<k}={}
(proof)

lemma clmm-quote-gross-eq-lower-only-if:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
and quote-gross P sqp’ = quote-gross P sqp
shows L j =0
(proof)

lemma clmm-quote-gross-eq-upper-only-if :

assumes clmm-dsc P

and L = gross-fet (lg P) (fee P)

and j = lower-tick P sqp

and k = lower-tick P sqp’

and 0 < sqp

and sqp < sqp’

and j < k

and quote-gross P sqp’ = quote-gross P sqp
shows Lk =0V grd Pk = sqp’

{(proof)

lemma clmm-quote-gross-diff-eq:

assumes clmm-dsc P

and L = gross-fet (lg P) (fee P)

and j = lower-tick P sqp

and j = lower-tick P sqp’

and 0 < sqp

and sqp < sqp’
shows quote-gross P sqp’ — quote-gross P sqp = L j * (sqp’ — sqp)
(proof)

lemma clmm-quote-gross-eq-lower-only-if
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’

93

and quote-gross P sqp’ = quote-gross P sqp
shows L j = 0
(proof)

lemma clmm-quote-reach-grd-liq:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-mazx P)
and j = lower-tick P sqp
and grd P j = sqp
and sqp = quote-reach P y
shows lgP (j—1)# 0
(proof)

lemma quote-gross-gt-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
and grd-min P < sqp
shows 0 < quote-gross P sqp

(proof)

lemma quote-gross-pos-gt-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < quote-gross P sqp
shows grd-min P < sqp

(proof)

lemma quote-gross-disj-gt:
assumes clmm-dsc P
and ¢ = lower-tick P sqp
and j = lower-tick P sqp’
and i < k
and k£ < j
and lg Pk # 0
and 0 < sqp
and 0 < sqp’
shows quote-gross P sqp < quote-gross P sqp’

(proof)

lemma quote-gross-disj-gt':
assumes clmm-dsc P
and ¢ = lower-tick P sqp
and j = lower-tick P sqp’
and i < j
and lg Pj# 0
and grd P j < sqp’
and 0 < sqp

54

and 0 < sqp’
shows quote-gross P sqp < quote-gross P sqp’

(proof)

lemma quote-gross-lower-eq-gt:
assumes clmm-dsc P
and j = lower-tick P sqp
and j = lower-tick P sqp’
and lg Pj# 0
and 0 < sqp
and sqp < sqp’
shows quote-gross P sqp < quote-gross P sqp’

(proof)

lemma quote-reach-gt-grd-min:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-mazx P)
and sqp = quote-reach Py

shows grd-min P < sqp

(proof)

lemma sqgp-lt-grd-maz-imp-idz:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < sqp
and sqp < grd-maz P
and ¢ = lower-tick P sqp
shows ¢ < idz-maz (lg P)

{(proof)

lemma quote-gross-lt-grd-mazx:

assumes clmm-dsc P

and nz-support (lg P) # {}

and 0 < sqp

and sqp < grd-max P
shows quote-gross P sqp < quote-gross P (grd-maxz P)
(proof)

lemma idx-max-gt-liq:
assumes clmm-dsc P
and j = idz-mazx (lg P)
shows Vk > j. lg Pk=10
(proof)

lemma idz-min-lt-liq:

assumes clmm-dsc P
and j = idz-min (lqg P)

95

shows Vk < j. lgPk=0
(proof)

lemma quote-reach-le”:
assumes clmm-dsc P
and grd-min P < sqp
and ¢ = lower-tick P sqp
and lg Pi# 0
and y = quote-gross P sqp
shows quote-reach Py < sqp

(proof)

lemma quote-reach-gross-le:

assumes clmm-dsc P

and grd-min P < sqp
shows quote-reach P (quote-gross P sqp) < sqp
(proof)

lemma quote-reach-strict-mono:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < yf
and y1 < y2
and y2 < quote-gross P (grd-maz P)
and sqp = quote-reach P yl
and sqp’ = quote-reach P y2
shows sqp < sqp’
(proof)

lemma quote-reach-mono:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < yf
and y1 < y2
and y2 < quote-gross P (grd-maz P)
and sqp = quote-reach P yl
and sqp’ = quote-reach P y2
shows sqp < sqp’

(proof)

lemma grd-maz-quote-reach:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows quote-reach P (quote-gross P (grd-max P)) = grd-max P

(proof)
lemma quote-reach-gt:

assumes clmm-dsc P
and nz-support (lg P) # {}

o6

and 0 < y

and y + quote-gross P sqp < quote-gross P (grd-maz P)

and sqp’ = quote-reach P (y + quote-gross P sqp)
shows sqp < sqp’

(proof)

lemma lt-quote-gross-imp-up-price:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-mazx P)
and quote-gross P sqp < y
and sqp’ = quote-reach Py

shows sqgp < sqp’

(proof)

lemma quote-reach-add-gt:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y + quote-gross P sqp < quote-gross P (grd-maz P)
and sqp’ = quote-reach P (y + quote-gross P sqp)
shows quote-gross P sqp < quote-gross P sqp’

(proof)

lemma quote-reach-leq-grd-max:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-mazx P)
and sqp = quote-reach Py

shows sgp < grd-mazx P

{proof)

lemma quote-gross-grd-mazx-ge:
assumes clmm-dsc P
and nz-support (lg P) # {}
and grd-max P < sqp
shows quote-gross P sqp = quote-gross P (grd-mazx P)

(proof)

lemma quote-gross-grd-maz-max:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows quote-gross P sqp < quote-gross P (grd-maz P)

(proof)

lemma gross-grd-maz-maz’:
assumes clmm-dsc P

o7

and nz-support (lg P) # {}
and sqp < grd-max P
shows quote-gross P sqp < quote-gross P (grd-mazx P)

(proof)

lemma quote-reach-le-gross:
assumes clmm-dsc P
and 0 < y
and 0 < sqp
and y < quote-gross P sqp
and sqp < grd-max P
and sqp’ = quote-reach Py
and nz-support (lg P) # {}
shows sqp’ < sqp

(proof)

lemma quote-net-diff-eq:
assumes clmm-dsc P
and L = lqg P
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
shows quote-net P sqp’ — quote-net P sqp = L k * (sqp’ — grd P k) +
sum (A i. Lix (grd P (i+1) — grd P)) {i. Li# 0 Nj<i Ni<k}+
Ljx (grd P (j+1) — sqp)
(proof)

lemma quote-net-diff-eq”:

assumes clmm-dsc P

and L=1Iq P

and j = lower-tick P sqp

and j = lower-tick P sqp’

and 0 < sqp

and sqp < sqp’
shows quote-net P sqp’ — quote-net P sqp = L j x (sqp’ — sqp)
(proof)

4.3 Base token addition and withdrawal in a CLMM

lemma (in finite-nz-support) gen-base-sums:
assumes clmm-dsc P
and 0 < sqp
and j = lower-tick P sqp
shows gen-base (grd P) L sqp =
L j * (inverse sqp — inverse (grd P (j+1))) +
sum (Ai. L i (inverse (grd P i) — inverse (grd P (i+1))))
(i.Li#0Nj<il

o8

(proof)

lemma (in finite-nz-support) gen-base-grd-maz:
assumes clmm-dsc P
and nz-support L # {}
and nz-support L = nz-support (lg P)
shows gen-base (grd P) L (grd-mazx P) = 0
(proof)

lemma base-gross-sum:
assumes clmm-dsc P
and 0 < sqp
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
shows base-gross P sqp =
L j = (inverse sqp — inverse (grd P (j+1))) +
sum (Ai. L i (inverse (grd P i) — inverse (grd P (i+1))))
{i.Li#0Nj<i}
(proof)

lemma clmm-base-gross-grd-maz:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows base-gross P (grd-maz P) = 0 (proof)

lemma lig-base-reach-mazx:
assumes clmm-dsc P
and nz-support (lg P) # {}
shows base-reach P 0 = grd-max P

{proof)

lemma base-net-sum:
assumes clmm-dsc P
and 0 < sqp
and L = lqg P
and j = lower-tick P sqp
shows base-net P sqp =
L j = (inverse sqp — inverse (grd P (j+1))) +
sum (Ai. L i (inverse (grd P i) — inverse (grd P (i+1))))
{i.Li#0Aj<i}
(proof)

definition gen-base-diff where
gen-base-diff P L sqp sqp’ = gen-base (grd P) L sqp — gen-base (grd P) L sqp’

lemma (in finite-nz-support) gen-base-diff-eq:
assumes clmm-dsc P
and j = lower-tick P sqp
and k = lower-tick P sqp’

99

and 0 < sqp
and sqp < sqp’
and j < k
shows gen-base-diff P L sqp sqp’ =
L j x (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i % (inverse (grd P i) — inverse (grd P (i+1))))
{i. Li#0Nj<iNi<Kk}+
L k * (inverse (grd P k) — inverse sqp’)
(proof)

lemma (in finite-nz-support) gen-base-diff-eq’:

assumes clmm-dsc P

and j = lower-tick P sqp

and j = lower-tick P sqp’

and 0 < sqp

and sgp < sqp’
shows gen-base-diff P L sqp sqp’ = L j * (inverse sqp — inverse sqp’)
(proof)

lemma lower-tick-lt-grd-min:
assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp
and j = lower-tick P sqp
shows j < idz-min (g P)

(proof)

lemma (in finite-nz-support) gen-base-grd-min-le:

assumes clmm-dsc P

and nz-support L = nz-support (lg P)

and sqp < grd-min P

and 0 < sqp
shows gen-base (grd P) L sqp = gen-base (grd P) L (grd-min P)
(proof)

lemma base-net-grd-min-lt:
assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp
shows base-net P sqp = base-net P (grd-min P)

(proof)

lemma base-net-grd-min-le:
assumes clmm-dsc P
and sqp < grd-min P
and 0 < sqp
shows base-net P sqp = base-net P (grd-min P)

(proof)

60

lemma base-gross-diff-eq:
assumes clmm-dsc P
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
shows base-gross P sqp — base-gross P sqp’ =
L j x (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i % (inverse (grd P i) — inverse (grd P (i+1))))
{i. Li#0Nj<iNi<k}+
L k * (inverse (grd P k) — inverse sqp”’)
(proof)

lemma base-gross-diff-eq”:

assumes clmm-dsc P

and L = gross-fet (lg P) (fee P)

and j = lower-tick P sqp

and j = lower-tick P sqp’

and 0 < sqp

and sqp < sqp’
shows base-gross P sqp — base-gross P sqp’ = L j (inverse sqp — inverse sqp’)
(proof)

lemma base-net-diff-eq:
assumes clmm-dsc P
and L = lg P
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sgp < sqp’
and j < k
shows base-net P sqp — base-net P sqp’ =
L j * (inverse sqp — inverse (grd P (j+1))) +
sum (X i. L i % (inverse (grd P i) — inverse (grd P (i+1))))
{i.Li£0Nj<iNi<k}+
L k x (inverse (grd P k) — inverse sqp’)
(proof)

lemma base-net-diff-eq’:
assumes clmm-dsc P
and L=1Iq P
and j = lower-tick P sqp
and j = lower-tick P sqp’
and 0 < sqp
and sgp < sqp’
shows base-net P sqp — base-net P sqp’ = L j * (inverse sqp — inverse sqp’)

(proof)

61

lemma cst-fee-base-gross-net-tick-eq:

assumes clmm-dsc P

and Ai. fee P i = phi

and j = lower-tick P sqp

and j = lower-tick P sqp’

and 0 < sqp

and sqp < sqp’
shows base-net P sqp — base-net P sqp’ =

(1 — phi) % (base-gross P sqp — base -gross P sqp”)

(proof)

lemma cst-fee-base-gross-net-tick-It:
assumes clmm-dsc P
and Ai. fee P i = phi
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
shows base-net P sqp — base-net P sqp’ =
(1 — phi) * (base-gross P sqp — base gross P sqp)
(proof)

lemma cst-fee-base-gross-net:

assumes clmm-dsc P

and Ai. fee P i = phi

and 0 < sqp

and sqp < sqp’
shows base-net P sqp — base-net P sqp’ =

(1 — phi) % (base-gross P sqp — base-gross P sqp’)

(proof)

lemma base-net-eq-only-if:

assumes clmm-dsc P

and j = lower-tick P sqp

and k = lower-tick P sqp’

and 0 < sqp

and sqp < sqp’

and j < k

and quote-gross P sqp’ = quote-gross P sqp
shows base-net P sqp’ = base-net P sqp

(proof)

lemma base-net-eq-only-if :
assumes clmm-dsc P
and L = lqg P
and j = lower-tick P sqp
and j = lower-tick P sqp’

62

and 0 < sqp

and sqp < sqp’

and quote-gross P sqp = quote-gross P sqp’
shows base-net P sqp = base-net P sqp’

(proof)

lemma quote-gross-equiv-base-net:

assumes clmm-dsc P

and 0 < sqp

and sqp < sqp’

and quote-gross P sqp = quote-gross P sqp’
shows base-net P sqp = base-net P sqp’

(proof)

lemma quote-gross-equiv-base-net':

assumes clmm-dsc P

and 0 < sqp

and 0 < sqp’

and quote-gross P sqp = quote-gross P sqp’
shows base-net P sqp = base-net P sqp’

(proof)

lemma (in finite-nz-support) gen-quote-le-badd:

assumes clmm-dsc P

and A\i. 0 < Li

and 0 < sqp

and sqp < sqp’
shows gen-quote-diff P L sqp sqp’/(sqp’ * sqp’) < gen-base-diff P L sqp sqp’
(proof)

lemma (in finite-nz-support) gen-base-le-qadd:

assumes clmm-dsc P

and Ai. 0 < Li

and 0 < sqp

and sqp < sqp’
shows gen-base-diff P L sqp sqp’ < gen-quote-diff P L sqp sqp’/(sqp * sqp)
{proof)

lemma quote-swap-grd-min-zero:
assumes clmm-dsc P
and nz-support (lg P) # {}
and grd-min P < sqp
and sqp < grd-max P
shows quote-swap P sqp 0 = 0
(proof)

lemma quote-swap-zero:

assumes clmm-dsc P
and nz-support (lg P) # {}

63

and 0< sqp

and sqp < grd-mazx P
shows quote-swap P sqp 0 = 0
(proof)

lemma quote-swap-grd-min-zero’:
assumes clmm-dsc P
and nz-support (lg P) # {}
and grd-min P < sqp
and quote-gross P sqp < quote-gross P (grd-maz P)
shows quote-swap P sqp 0 = 0
(proof)

lemma quote-swap-zero:

assumes clmm-dsc P

and nz-support (lg P) # {}

and 0< sqp

and quote-gross P sqp < quote-gross P (grd-mazx P)
shows quote-swap P sqp 0 = 0
(proof)

lemma quote-swap-grd-min:

assumes clmm-dsc P

and nz-support (lg P) # {}

and sqp < grd-min P

and 0 < sqp
shows quote-swap P sqp y = quote-swap P (grd-min P) y
(proof)

lemma quote-reach-gross-base-net:

assumes clmm-dsc P

and nz-support (lg P) # {}

and 0 < quote-gross P sqp

and sqp’ = quote-reach P (quote-gross P sqp)
shows base-net P sqp’ = base-net P sqp

(proof)

lemma quote-reach-base-net:

assumes clmm-dsc P

and nz-support (lg P) # {}

and 0 < sqp

and sqp’ = quote-reach P (quote-gross P sqp)
shows base-net P sqp’ = base-net P sqp

(proof)

lemma base-le-quote-gross:
assumes clmm-dsc P’
and 0 < sqp
and sqp < sqp’

64

shows base-gross P’ sqp — base-gross P’ sqp’ <
(quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp * sqp)
(proof)

lemma quote-le-base-gross:
assumes clmm-dsc P’
and 0 < sqp
and sqp < sqp’
shows (quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp’ * sqp’) <
base-gross P’ sqp — base-gross P’ sqp’
(proof)

lemma base-net-quote-ubound:

assumes clmm-dsc P’

and Ai. fee P’ i = phi

and phi < 1

and 0 < sqp

and sqp < sqp’

shows base-net P’ sqp — base-net P’ sqp’ <

(1 — phi) * (quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp * sqp)

{proof)

lemma base-net-quote-lbound:
assumes clmm-dsc P’
and Ai. fee P’ i = phi
and 0 < sqp
and sqp < sqp’
shows (1 — phi) * (quote-gross P’ sqp’ — quote-gross P’ sqp)/(sqp’ * sqp’) <
base-net P’ sqp — base-net P’ sqp’
(proof)

4.4 Market depth and slippage for finer CLMMs
4.4.1 Finer pools

locale finer-clmm =
fixes P1 P2
assumes absi: clmm-dsc P1 and abs2: clmm-dsc P2
and finer: finer-pool P1 P2

sublocale finer-clmm C finer-two-span-finite-liq
(proof)

context finer-clmm
begin

lemma finer-base-net-eq:

shows base-net P1 = base-net P2

(proof)

65

lemma finer-quote-net-eq:
shows quote-net P1 = quote-net P2
(proof)

lemma finer-base-gross-eq:
shows base-gross P1 = base-gross P2
(proof)

lemma finer-quote-gross-eq:
shows quote-gross P1 = quote-gross P2

(proof)

lemma finer-mkt-depth:
shows mkt-depth P1 = mkt-depth P2

(proof)

end

4.4.2 Finer CLMMs with nonzero liquidity

locale finer-clmm-ne = finer-clmm +
assumes nonempty-lig: nz-support (lg P1) # {}

context finer-clmm-ne
begin

lemma id-max-Maz-eq:
assumes il = idz-maz (lg P1)
and k2 = pool-coarse-idx P1 P2 il
shows il = Max (encompassed (grd P1) (grd P2) k2)

(proof)

lemma id-min-Min-eq:
assumes il = idz-min (lg P1)
and k2 = pool-coarse-idx P1 P2 il
shows il = Min (encompassed (grd P1) (grd P2) k2)

(proof)

lemma idz-maz-Suc-grd-eq:

assumes (! = idz-maz (lg P1)

and k2 = pool-coarse-idr P1 P2 il
shows grd P1 (il + 1) = grd P2 (k2 + 1)
(proof)

lemma idx-min-grd-eq:
assumes il = idx-min (lg P1)
and k2 = pool-coarse-ide P1 P2 il
shows grd P1 il = grd P2 k2

{proof)

66

lemma abs-finer-idz-maz-coarse:
assumes clmm-dsc P1
and clmm-dsc P2
and finer-pool P1 P2
and nz-support (lg P1) # {}
and il = idz-maz (lg P1)
and k2 = pool-coarse-ide P1 P2 il
shows k2 = idz-maz (lg P2)
(proof)

lemma abs-finer-idz-min-coarse:
assumes il = idz-min (lg P1)
and k2 = pool-coarse-idx P1 P2 il

shows k2 = idz-min (lg P2)

(proof)

lemma abs-finer-idz-maz-img-eq:
shows grd-max P1 = grd-max P2
(proof)

lemma abs-finer-idz-min-img-eq:
shows grd-min P1 = grd-min P2
(proof)

lemma finer-base-reach-eq:
shows base-reach P1 = base-reach P2 {proof)

lemma finer-quote-reach-eq:
shows quote-reach P1 = quote-reach P2 (proof)

lemma finer-base-slippage:
shows base-slippage P1 = base-slippage P2

{proof)

lemma finer-quote-slippage:
shows quote-slippage P1 = quote-slippage P2
(proof)

end

5 Inequalities related to fees

context finite-lig-pool
begin

lemma gross-fct-le:

assumes 0 < f1
and phi i < phi’ i

67

and phi’ i < 1
shows gross-fct f phi i < gross-fct f phi’ i
(proof)

lemma gross-fct-lt:
assumes 0 < f1
and phi i < phi’ i
and phi’ i < 1
shows gross-fct f phi i < gross-fct f phi’ i
(proof)

lemma fee-diff-same-base-net:
assumes clmm-dsc P
and clmm-dsc P’
and I ={k. Lk#0Nj<k}
and fee-diff-on P P' I
and same-nz-lig-on P P’ {k. j < k}
and 0 < sqp
and j = lower-tick P sqp
and L=1Ig P
and lower-tick P sqp = lower-tick P’ sqp
shows base-net P sqp = base-net P’ sqp

(proof)

lemma fee-diff-le-imp-quote-gross:
assumes clmm-dsc P
and clmm-dsc P’
and {k. Lk# 0NE<jtCI
and fee-diff-on P P’ I
and same-nz-lig-on P P' {k. k < j}
and 0 < sqp
and j = lower-tick P sqp
and L = gross-fet (lg P) (fee P)
and A\i. i € [= fee Pi < fee P'i
and lower-tick P sqp = lower-tick P’ sqp
shows quote-gross P sqp < quote-gross P’ sqp

(proof)

lemma fee-diff-le-imp-quote-gross-mono:
assumes clmm-dsc P
and clmm-dsc P’
and {k. Lk£0ANEkE<j}CI
and fee-diff-on P P' I
and same-nz-lig-on P P' {k. k < j}
and 0 < sqp
and j = lower-tick P sqp
and L = gross-fct (lg P) (fee P)
and A\i. i € I = fee Pi < fee P’ i
and lower-tick P sqp = lower-tick P’ sqp

68

and sqp < sqp’
shows quote-gross P sqp < quote-gross P’ sqp’
(proof)

lemma fee-diff-quote-diff-expand:
assumes clmm-dsc P
and clmm-dsc P’
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sqp < sqp’
and j < k
and {m. Lm#0ANj<mAm<k}CI
and fee-diff-on P P’ I
and same-nz-ligzon P P' {m.j < m A m < k+1}
and A\i. i € I = fee Pi < fee P’ {
and lower-tick P sqp = lower-tick P’ sqp
and lower-tick P sqp’ = lower-tick P’ sqp’
shows quote-gross P sqp’ — quote-gross P sqp < quote-gross P’ sqp’ — quote-gross
P’ sqp
(proof)

lemma fee-diff-quote-diff-expand’:

assumes clmm-dsc P

and clmm-dsc P’

and L = gross-fet (lg P) (fee P)

and j = lower-tick P sqp

and j = lower-tick P sqp’

and 0 < sqp

and sgp < sqp’

and Lj# 0 — je I

and fee-diff-on P P’ I

and A\i. i € [= fee Pi < fee P'i

and lower-tick P sqp = lower-tick P’ sqp

and lower-tick P sqp’ = lower-tick P’ sqp’
shows quote-gross P sqp’ — quote-gross P sqp < quote-gross P’ sqp’ — quote-gross
P’ sqp
(proof)

lemma fee-diff-quote-diff-le:
assumes clmm-dsc P
and clmm-dsc P’
and L = gross-fet (lg P) (fee P)
and j = lower-tick P sqp
and k = lower-tick P sqp’
and 0 < sqp
and sgp < sqp’
and{m. Lm#0ANj<mAm<Ek}CI

69

and fee-diff-on P P’ I

and same-nz-lig-on P P'{m. j < m A m < k+1}

and A\i. i € I = fee Pi < fee P’ i

and lower-tick P sqp = lower-tick P’ sqp

and lower-tick P sqp’ = lower-tick P’ sqp’
shows quote-gross P sqp’ — quote-gross P sqp < quote-gross P’ sqp’ — quote-gross
P’ sqp
(proof)

lemma same-nz-lig-on-nz-support:

assumes i € [

and lg Pi # 0

and same-nz-lig-on P P’ I
shows nz-support (lg P") # {}
(proof)

lemma same-nz-lig-on-idz-max:
assumes finite-lig P’
and nz-support (lg P) # {}
and I = {idz-min (lg P) .. ide-maz (lg P) + 1}
and same-nz-lig-on P P’ I
shows idz-maz (lg P) < idx-maz (lg P’)
(proof)

lemma same-nz-lig-on-grd-mazx:
assumes finite-liqg P’
and mono (grd P’)
and nz-support (lg P) # {}
and I = {idz-min (lg P) .. idz-mazx (lg P) + 1}
and same-nz-lig-on P P' I
shows grd-maz P < grd-maz P’

(proof)

lemma same-nz-lig-on-lower-tick:
assumes clmm-dsc P
and clmm-dsc P’
and same-nz-lig-on P P’ {i. i < j+1}
and 0 < sqp
and lower-tick P sqp < j

shows lower-tick P’ sqp = lower-tick P sqp

(proof)

lemma same-nz-lig-on-lower-tick’:
assumes clmm-dsc P’
and same-nz-lig-on P P’ {i. i < j}
and grd P j = sqp

shows lower-tick P’ sqp = j
(proof)

70

lemma fee-diff-le-grd-maz:

assumes clmm-dsc P

and clmm-dsc P’

and nz-support (lg P) # {}

and {idz-min (lq P) .. idz-maz (lg P) + 1} C I

and fee-diff-on P P' I

and same-nz-lig-on P P' {k. k < idx-maz (lg P) + 1}

and A\i. i € I = fee Pi < fee P’ i
shows quote-gross P (grd-maz P) < quote-gross P’ (grd-maz P)
(proof)

lemma fee-diff-le-grd-mazx’:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
and {idx-min (lg P) .. ide-maz (lg P) + 1} C I
and fee-diff-on P P’ I
and same-nz-lig-on P P’ {k. k < idz-maz (lg P) + 1}
and A\i. i € I = fee Pi < fee P’ i
shows quote-gross P (grd-maz P) < quote-gross P’ (grd-maz P’)

(proof)

lemma fee-diff-le-imp-quote-reach:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
and {idx-min (lg P) .. ide-maz (lg P) + 1} C I
and fee-diff-on P P’ I
and same-nz-lig-on P P’ {i. i < idz-maz (lg P) + 1}
and A\i. i € I = fee Pi < fee P’ i
and 0 < y
and y < quote-gross P (grd-mazx P)
shows quote-reach P’y < quote-reach Py

(proof)

lemma same-nz-lig-on-if-simil:

assumes grd P = grd P’

and nz-support (lg P) = nz-support (lg P’
shows same-nz-lig-on P P’ I
(proof)

lemma fee-diff-simil-base-net:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
and {idx-min (lg P) .. ide-maz (lg P) + 1} C I
and fee-diff-on P P’ I
and nz-support (lg P) = nz-support (lg P’
and grd P = grd P’

71

and grd-min P < sqp
and sqp < grd-mazx P
shows base-net P sqp = base-net P’ sqp

(proof)

lemma fee-diff-le-price-cmp:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
and {idz-min (lq P) .. idz-maz (lg P) + 1} C I
and fee-diff-on P P' I
and nz-support (lg P) = nz-support (lg P’
and grd P = grd P’
and A\i. i € I = fee Pi < fee P’ i
and 0 < y
and y + quote-gross P sqp < quote-gross P (grd-maz P)
and grd-min P < sqp
and sqpl = quote-reach P (y + quote-gross P sqp)
and sqp2 = quote-reach P’ (y + quote-gross P’ sqp)
shows sqp2 < sqpl

(proof)

lemma fee-diff-le-imp-quote-swap:
assumes clmm-dsc P
and clmm-dsc P’
and nz-support (lg P) # {}
and {idx-min (lg P) .. ide-maz (lg P) + 1} C I
and fee-diff-on P P’ I
and nz-support (lg P) = nz-support (lg P’)
and grd P = grd P’
and A\i. i € I = fee Pi < fee P’ i
and 0 < y
and y + quote-gross P sqp < quote-gross P (grd-maz P)
and grd-min P < sqp
shows quote-swap P’ sqp y < quote-swap P sqp y
(proof)

lemma fee-ge-quote-swap-le:

assumes clmm-dsc P

and clmm-dsc P’

and nz-support (lg P) # {}

and grd P = grd P’

and lg P = lq P’

and Ai. fee P i < fee P’ i

and 0 < y

and 0 < sqp

and y + quote-gross P sqp < quote-gross P (grd-maz P)
shows quote-swap P’ sqp y < quote-swap P sqp y

(proof)

72

end

end
theory CLMM-Transformation imports CLMM-Description

begin

6 CLMM transformations

6.1 CLMM pool refinement

Given a pool P and a (square root) price 7, the refinement operation consists
in defining a new grid (if necessary) in such a way that 7 is one of the bounds
on the grid.

definition refine where
refine P sqp = (let i = lower-tick P sqp in
(if (grd P i = sqp) then P else
(wedge (grd P) i sqp, wedge (lg P) i (lg P i), wedge (fee P) i (fee P 1))))

lemma refine-eq:
assumes i = lower-tick P sqp
and grd P i = sqp

shows refine P sqp = P (proof)

lemma refine-lq:
assumes i = lower-tick P sqp
and grd P i # sqp
and P’ = refine P sqp
shows lq P’ = wedge (lg P) i (lg P i)
(proof)

lemma refine-fee:
assumes i = lower-tick P sqp
and grd P i # sqp
and P’ = refine P sqp
shows fee P’ = wedge (fee P) i (fee P 1)
(proof)

lemma refine-grd:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P i # sqp

shows grd P’ = wedge (grd P) i sqp
(proof)

73

lemma refine-grd-cong:
assumes P1 = refine P sqp
and P2 = refine P’ sqp
and grd P = grd P’

shows grd P1 = grd P2

(proof)

lemma refine-grd-arg-le:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and j < ¢

shows grd P'j = grd P j

(proof)

lemma refine-grd-arg-gt:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
and ¢ < j
shows grd P’ (j+1) = grd P j
(proof)

lemma refine-grd-arg-Suc:

assumes i = lower-tick P sqp

and P’ = refine P sqp

and grd P (lower-tick P sqp) # sqp
shows grd P’ (i+1) = sqp
(proof)

lemma refine-fee-arg-le:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and j < ¢

shows fee P’ j = fee P j

(proof)

lemma refine-fee-arg-gt:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
and { < j
shows fee P’ (j+1) = fee P j
(proof)

lemma refine-fee-arg-Suc:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp

74

shows fee P’ (i+1) = fee P i
(proof)

lemma refine-lg-arg-le:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P i # sqp
and j < ¢

shows lg P'j=1IlqPj

(proof)

lemma refine-lg-arg-gt:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P i # sqp
and i < j
shows lg P/ (j+1) =1lg P j
(proof)

lemma refine-lg-arg-Suc:
assumes i = lower-tick P sqp
and P’ = refine P sqp
and grd P i # sqp

shows lq P/ (i+1) =1lg P i

(proof)

lemma refine-on-grd:
assumes clmm-dsc P
and grd P i = sqp
shows refine P sqp = P
{proof)

lemma refine-encomp-at-grd:
assumes clmm-dsc P
and P’ = refine P sqp
and grd P (lower-tick P sqp) = sqp
shows encomp-at (grd P') (grd P) j j

(proof)

lemma refine-encomp-at-arg-le:
assumes clmm-dsc P
and P’ = refine P sqp
and ¢ = lower-tick P sqp
and grd P i # sqp
and j < ¢
shows encomp-at (grd P') (grd P) j j
(proof)

lemma refine-encomp-at-arg-ge-Suc:

assumes clmm-dsc P

and P’ = refine P sqp

and ¢ = lower-tick P sqp

and grd P i # sqp

and i+1 <j

and 0 < sqp
shows encomp-at (grd P') (grd P) j (j—1)
(proof)

lemma refine-finer-range:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp

shows finer-range (grd P') (grd P)

(proof)

lemma refine-finite-liq:
assumes finite-liq P
and P’ = refine P sqp
shows finite-lig P’
(proof)

lemma refine-clmm:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
shows clmm-dsc P’

(proof)

lemma refine-lower-tick-idz:
assumes clmm-dsc P
and 0 < sqp
and ¢ = lower-tick P sqp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
shows lower-tick P’ sqp = i+1

(proof)

lemma refine-ge-lower-tick-eq:

assumes clmm-dsc P

and 0 < sqp

and ¢ = lower-tick P sqp’

and P’ = refine P sqp

and grd P (lower-tick P sqp) # sqp

and sgp < sqp’

and lower-tick P sqp = lower-tick P sqp’
shows lower-tick P’ sqp’ = i+1
{proof)

76

lemma refine-ge-lower-tick-gt:

assumes clmm-dsc P

and 0 < sqp

and sqp < sqp’

and ¢ = lower-tick P sqp’

and P’ = refine P sqp

and grd P (lower-tick P sqp) # sqp

and lower-tick P sqp < lower-tick P sqp’
shows lower-tick P’ sqp’ = i+1
(proof)

lemma refine-ge-lower-tick:

assumes clmm-dsc P

and 0 < sqp

and sqp < sqp’

and ¢ = lower-tick P sqp’

and P’ = refine P sqp

and grd P (lower-tick P sqp) # sqp
shows lower-tick P’ sqp’ = i+1
(proof)

lemma refine-lower-tick:

assumes clmm-dsc P

and P’ = refine P sqp

and 0 < sqp

shows grd P’ (lower-tick P’ sqp) = sqp
{proof)

lemma refine-finer-ranges:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
shows finer-ranges (grd P’) (grd P)

(proof)

lemma refine-coarse-idx-grd:

assumes clmm-dsc P

and P’ = refine P sqp

and grd P (lower-tick P sqp) = sqp
shows coarse-idz (grd P’) (grd P) j = j

(proof)

lemma refine-coarse-idz-arg-le:
assumes clmm-dsc P
and P’ = refine P sqp
and i = lower-tick P sqp
and grd P i # sqp
and j < 1
and 0 < sqp

77

shows coarse-idz (grd P') (grd P) j = j
(proof)

lemma refine-coarse-idz-arg-gt:

assumes clmm-dsc P

and 0 < sqp

and P’ = refine P sqp

and i = lower-tick P sqp

and grd P i # sqp

and i+1 <j
shows coarse-idz (grd P') (grd P) j = j—1
(proof)

lemma refine-lg-idz-neq:

assumes clmm-dsc P

and 0 < sqp

and P’ = refine P sqp

and grd P (lower-tick P sqp) # sqp

shows lqg P’ j = lg P (pool-coarse-idz P’ P j)
(proof)

lemma refine-fee-idz-neq:

assumes clmm-dsc P

and 0 < sqp

and P’ = refine P sqp

and grd P (lower-tick P sqp) # sqp

shows fee P’ j = fee P (pool-coarse-idx P’ P j)
(proof)

lemma refine-cst-fees:
assumes Ai. fee P i = phi

and P’ = refine P sqp

shows Ai. fee P’ i = phi
(proof)

lemma refine-finer-neq:
assumes clmm-dsc P
and 0 < sgp
and P’ = refine P sqp
and grd P (lower-tick P sqp) # sqp
shows finer-pool P’ P

(proof)

lemma refine-finer:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
shows finer-pool P’ P

(proof)

78

lemma refine-nz-lg-sub:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
shows (\j. pool-coarse-ide P’ P j) ‘ nz-support (lg P’) C
nz-support (lg P)
(proof)

lemma refine-nz-lg-ne:
assumes clmm-dsc P
and P’ = refine P sqp
and nz-support (lg P) # {}
shows nz-support (lg P") # {}

(proof)

lemma refine-nz-lg-emp:

assumes clmm-dsc P

and P’ = refine P sqp

and nz-support (lg P) = {}
shows nz-support (lg P") = {}
(proof)

lemma refine-idz-min-eq:

assumes clmm-dsc P

and P’ = refine P sqp

and idz-min (lg P) < lower-tick P sqp
shows idz-min (lg P") = idz-min (lq P)
(proof)

lemma refine-idz-min-Suc-eq:

assumes clmm-dsc P

and P’ = refine P sqp

and nz-support (lg P) # {}

and grd P (lower-tick P sqp) # sqp

and lower-tick P sqp < idz-min (lg P)
shows idz-min (lqg P') = idz-min (lg P) + 1
(proof)

lemma refine-grd-min:

assumes clmm-dsc P

and P’ = refine P sqp

and nz-support (lg P) # {}
shows grd-min P = grd-min P’
(proof)

lemma refine-idz-maz-eq:

assumes clmm-dsc P
and P’ = refine P sqp

79

and idz-maz (lg P) < lower-tick P sqp
shows idx-maz (lg P') = idz-maz (lg P)
(proof)

lemma refine-idz-maz-Suc-eq:

assumes clmm-dsc P

and P’ = refine P sqp

and nz-support (lg P) # {}

and grd P (lower-tick P sqp) # sqp

and lower-tick P sqp < idx-maz (lq P)
shows idz-maz (lg P’) = idz-maz (lg P) + 1
(proof)

lemma refine-lower-tick-idz-max:
assumes clmm-dsc P
and 0 < sqp
and P’ = refine P sqp
and nz-support (lg P) # {}
and lower-tick P sqp < idz-maz (lqg P)
shows lower-tick P’ sqp < idz-mazx (lg P’)

(proof)

lemma refine-grd-mazx:
assumes clmm-dsc P
and P’ = refine P sqp
and nz-support (lg P) # {}
shows grd-max P = grd-maz P’

(proof)

lemma refine-quote-gross:
assumes clmm-dsc P
and P’ = refine P sqp
and 0 < sqp
shows quote-gross P’ = quote-gross P

(proof)

lemma refine-nonzero-lig:

assumes clmm-dsc P

and lower-tick P sqp < i

and grd P (lower-tick P sqp) # sqp

and P’ = refine P sqp

and L=1Iq P

and L' = lqg P’
shows {lL. L'l A0 Ni+1 <l}=Ni.i+ 1) ‘{k.Lk#0Ni<k}
(proof)

lemma refine-pool-base-net-grd-eq:

assumes clmm-dsc P
and nz-support (lg P) # {}

80

and P’ = refine P sqp
and 0 < sgp
and sqp < grd-mazx P
and grd P (lower-tick P sqp) # sqp
and sgp < sqp’
shows base-net P’ sqp’ = base-net P sqp’
(proof)

lemma refine-base-net-eq:
assumes clmm-dsc P
and nz-support (lg P) # {}
and P’ = refine P sqp
and 0 < sqp
and sqp < grd-mazx P
and sqp < sqp’
shows base-net P’ sqp’ = base-net P sqp’

(proof)

6.2 CLMM pool restriction and slice

The restriction operation intuitively consists in deleting all the liquidity
potentially available below the index provided as an argument.

definition restrict-pool where
restrict-pool i P =
(grd P,
(M\j. if j < i then 0 else lg P j),
(Aj. fee P j))

lemma restrict-pool-grd[simp]:
shows grd (restrict-pool i P) = grd P
{proof)

lemma restrict-pool-lower-tick:
assumes P’ = restrict-pool i P
shows lower-tick P sqp = lower-tick P’ sqp

{proof)

lemma restrict-pool-lt:
assumes j < @
shows lq (restrict-pool i P) j = 0 fee (restrict-pool i P) j = fee P j
(proof)

lemma restrict-pool-ge:
assumes ¢ < j
shows lq (restrict-pool i P) j = 1q P j
fee (restrict-pool i P) j = fee P j
(proof)

lemma restrict-pool-lg-sub:

81

assumes P’ = restrict-pool i P
shows nz-support (lg P") C nz-support (lg P)
(proof)

lemma restrict-pool-finite-lig:
assumes finite-lig P
and P’ = restrict-pool i P
shows finite-lig P’ (proof)

lemma restrict-pool-nz-liq:
assumes finite-lig P
and P’ = restrict-pool i P
and ¢ < idz-mazx (lg P)
and nz-support (lg P) # {}
shows nz-support (lg P") # {}

(proof)

lemma restrict-pool-idz-mazx:

assumes finite-liq P

and P’ = restrict-pool i P

and i < idz-maz (lg P)

and nz-support (lg P) # {}
shows idz-maz (lg P) = idx-maz (lg P’)
(proof)

lemma restrict-pool-clmm:
assumes clmm-dsc P

and P’ = restrict-pool i P

shows clmm-dsc P’

(proof)

lemma restrict-pool-quote-gross-leq:
assumes mono (grd P)
and sqp < grd P i
and P’ = restrict-pool i P
shows quote-gross P’ sqp = 0 {(proof)

lemma restrict-pool-quote-gross:

assumes clmm-dsc P

and P’ = restrict-pool j P

and 0 < sqp

and j < lower-tick P sqp
shows quote-gross P sqp — quote-gross P (grd P j) = quote-gross P’ sqp
(proof)

lemma restrict-pool-base-net-eq:
assumes clmm-dsc P
and nz-support (lg P) # {}
and P’ = restrict-pool i P

82

and i < idz-mazx (lg P)
and grd P i < sqp’
shows base-net P’ sqp’ = base-net P sqp’

(proof)

lemma restrict-pool-grd-min-le:
assumes clmm-dsc P
and nz-support (lg P) # {}
and P’ = restrict-pool i P
and i < idz-maz (lg P)
shows ¢ < idz-min (lg P’
(proof)

definition slice-pool where
slice-pool P sqp = (let P’ = refine P sqp in restrict-pool (lower-tick P’ sqp) P’)

lemma slice-poolD:
assumes P’ = refine P sqp
shows slice-pool P sqp = restrict-pool (lower-tick P sqp) P"

{proof)

lemma slice-pool-clmm-dsc:
assumes clmm-dsc P
and 0 < sqp
and P’ = slice-pool P sqp
shows clmm-dsc P’

(proof)

lemma slice-pool-nz-liq:
assumes clmm-dsc P
and 0 < sqp
and P’ = slice-pool P sqp
and lower-tick P sqp < idz-maz (lg P)
and nz-support (lg P) # {}
shows nz-support (lg P") # {}

(proof)

lemma slice-pool-tick-idz-max:
assumes clmm-dsc P
and 0 < sqp
and P’ = slice-pool P sqp
and lower-tick P sqp < idx-maz (lqg P)
and nz-support (lg P) # {}
shows lower-tick P’ sqp < idz-max (lg P’)
(proof)

lemma slice-pool-nz-lig":

assumes clmm-dsc P
and P’ = slice-pool P sqp

83

and nz-support (lg P) # {}

and 0 < sqp

and sqp < grd-mazx P
shows nz-support (lg P") # {}

(proof)

lemma slice-pool-idx-min:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lg P) # {}
and P’ = slice-pool P sqp
and ¢ = lower-tick P sqp
and ¢ < idz-mazx (lg P)
shows i < idz-min (lg P’)

(proof)

lemma slice-pool-grd-min:
assumes clmm-dsc P
and 0 < sqp
and nz-support (lg P) # {}
and P’ = slice-pool P sqp
and sqp < grd-mazx P
shows sqp < grd-min P’
(proof)

lemma slice-pool-grd-maz:

assumes clmm-dsc P

and 0 < sqp

and nz-support (lg P) # {}

and P’ = slice-pool P sqp

and lower-tick P sqp < idx-maz (lq P)
shows grd-max P = grd-maz P’ (proof)

lemma slice-pool-grd-mazx’:
assumes clmm-dsc P
and nz-support (lg P) # {}
and P’ = slice-pool P sqp
and 0 < sqp
and sqp < grd-max P

shows grd-maz P = grd-maz P’

(proof)

lemma slice-pool-cst-fees:
assumes clmm-dsc P
and P’ = slice-pool P sqp
and Ai. fee P i = phi

shows Ai. fee P’ i = phi
(proof)

84

lemma slice-pool-quote-gross-leq:

assumes clmm-dsc P

and 0 < sqp

and sqp’ < sqp

and P’ = slice-pool P sqp
shows quote-gross P’ sqp’ = 0
(proof)

lemma slice-pool-quote-gross:
assumes clmm-dsc P
and 0 < sqp
and sqp < sqp’
and P’ = slice-pool P sqp
shows quote-gross P’ sqp’ = quote-gross P sqp’ — quote-gross P sqp

(proof)

lemma slice-pool-quote-gross-maz-eq:
assumes clmm-dsc P
and P’ = slice-pool P sqp
and nz-support (lg P) # {}
and 0 < sqp
and sqp < grd-mazx P
and ¢ = lower-tick P sqp
and grd P i = sqp
shows quote-gross P’ (grd-max P') = quote-gross P (grd-max P) — quote-gross P
sqp
{proof)

lemma slice-pool-quote-gross-inv:

assumes clmm-dsc P

and 0 < sqp

and nz-support (lg P) # {}

and sqp < grd-maz P

and 0 < y

and P’ = slice-pool P sqp
shows quote-gross P —{y} = quote-gross P —{y + quote-gross P sqp}
{proof)

lemma slice-pool-quote-reach:
assumes clmm-dsc P
and nz-support (lg P) # {}
and 0 < sqp
and sqp < grd-max P
and 0 < y
and P’ = slice-pool P sqp
shows quote-reach P’ y = quote-reach P (y + quote-gross P sqp)

{(proof)

lemma slice-pool-base-net-eq:

85

assumes clmm-dsc P

and nz-support (lg P) # {}

and P’ = slice-pool P sqp

and 0 < sqp

and sqp < grd-max P

and sgp < sqp’
shows base-net P’ sqp’ = base-net P sqp’
(proof)

lemma slice-pool-base-net-slice:
assumes clmm-dsc P
and nz-support (lg P) # {}
and ¢ = lower-tick P sqp
and P’ = slice-pool P sqp
and sqp < grd-max P
and grd P i = sqp
and sgp’ < sqp
and 0 < sqp’
shows base-net P’ sqp’ = base-net P’ sqp

(proof)

lemma slice-pool-quote-swap-gt-zero:

assumes clmm-dsc P

and nz-support (lg P) # {}

and grd P (lower-tick P sqp2) = sqp2

and P’ = slice-pool P sqp2

and sqp! < sqp2

and 0 < y

and 0 <sqpl

and y + quote-gross P sqp2 < quote-gross P (grd-mazx P)
shows quote-swap P’ sqpl y = quote-swap P sqp2 y
(proof)

lemma slice-pool-quote-swap:

assumes clmm-dsc P

and nz-support (lg P) # {}

and grd P (lower-tick P sqp2) = sqp2

and P’ = slice-pool P sqp2

and sqp! < sqp2

and sqp2 < grd-max P

and 0 < y

and 0 < sqpl

and y + quote-gross P sqp2 < quote-gross P (grd-mazx P)
shows quote-swap P’ sqpl y = quote-swap P sqp2 y
(proof)

86

6.3 CLMM pool join

The join operation is meant to define a pool P on which swap operations
can be viewed as a combination of swap operations on its two arguments.
We use the convention that the pool fee is 0 on ranges where there is no
liquidity.

definition pool-fee-join where
pool-fee-join P1 P2 i = fee-union (lg P1 ¢) (lg P2 %) (fee P1 i) (fee P2 i)

lemma pool-fee-join-com:
shows pool-fee-join P1 P2 i = pool-fee-join P2 P1 i
(proof)

definition joint-pools where

joint-pools P P1 P2 <— (grd P) = (grd P1) A (grd P) = (grd P2) A
(Vi.lgPi=1gPli+lqgP2i)A
(Vi. fee P i = pool-fee-join P1 P2 i)

definition pool-join where
pool-join P1 P2 =
(grd P1, (Ni. lg P10+ lqg P2 1), (Ni. pool-fee-join P1 P2 7))

lemma joint-poolsl[intro):
assumes grd P = grd P1
and grd P = grd P2
and \i. lg Pi=1gP1i+IlgP2i
and Ai. fee P i = pool-fee-join P1 P2 i
shows joint-pools P P1 P2 (proof)

lemma pool-join-joint:
assumes grd P1 = grd P2
and P = pool-join P1 P2
shows joint-pools P P1 P2 {proof)

lemma joint-pools-grids:
assumes joint-pools P P1 P2
shows (grd P) = (grd P1) (grd P) = (grd P2)
(proof)

lemma joint-pools-lq:
assumes joint-pools P P1 P2
shows lg Pi=1qg Pl1i+ lgP2i
(proof)

lemma joint-pools-fee:
assumes joint-pools P P1 P2
shows fee P i = pool-fee-join P1 P2 i
(proof)

87

lemma joint-pools-com:
assumes joint-pools P P1 P2
shows joint-pools P P2 P1

(proof)

lemma joint-pools-nz-lig-sub:
assumes joint-pools P P1 P2
shows nz-support (lg P) C nz-support (lg P1) U (nz-support (lg P2))
(proof)

lemma joint-pools-nz-lig-sup:
assumes joint-pools P P1 P2
and A\i. 0 < lg P1i
and Ai. 0 < lg P2i
shows nz-support (lg P1) U (nz-support (lg P2)) C nz-support (lg P)
(proof)

lemma joint-pools-nz-liq:
assumes joint-pools P P1 P2
and Ai. 0 < lqg P1i
and Ai. 0 < lg P2i
shows nz-support (lg P1) U (nz-support (lg P2)) = nz-support (lg P)
(proof)

lemma clmm-joint-pools-nz-liq:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows nz-support (lg P1) U (nz-support (lg P2)) = nz-support (lg P)
(proof)

lemma joint-pools-finite-lig:
assumes finite-lig P1
and finite-liq P2
and joint-pools P P1 P2
shows finite-lig P (proof)

lemma joint-pools-idz-min-min:

assumes clmm-dsc P1

and clmm-dsc P2

and joint-pools P P1 P2

and nz-support (lg P1) # {}

and idz-min (lg P1) < idz-min (lg P2)
shows idz-min (lg P) = idz-min (lg P1)
(proof)

lemma joint-pools-idz-min:

assumes clmm-dsc P1
and clmm-dsc P2

88

and joint-pools P P1 P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
shows idz-min (lg P) = min (idz-min (lg P1)) (ide-min (lg P2))
(proof)

lemma joint-pools-idz-maz-max:

assumes clmm-dsc P1

and clmm-dsc P2

and joint-pools P P1 P2

and nz-support (lg P2) # {}

and idz-maz (lqg P1) < idz-mazx (lg P2)
shows idz-maz (lg P) = idz-mazx (lg P2)
(proof)

lemma joint-pools-idz-maz:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
shows idz-maz (lg P) = max (idz-maz (lqg P1)) (idz-maz (lg P2))
(proof)

lemma joint-pools-clmm-dsc:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows clmm-dsc P

(proof)

lemma join-gross-fct:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows gross-fct (lg P) (fee P) i = gross-fct (lg P1) (fee P1) i +
gross-fct (lg P2) (fee P2) i
(proof)

lemma quote-gross-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows quote-gross P x = quote-gross P1 x + quote-gross P2 x

(proof)
lemma quote-net-join:

assumes clmm-dsc P1
and clmm-dsc P2

89

and joint-pools P P1 P2
shows quote-net P © = quote-net P1 = + quote-net P2 x

(proof)

lemma base-gross-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows base-gross P x = base-gross P1 x + base-gross P2 x

{(proof)

lemma base-net-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows base-net P x = base-net P1 © + base-net P2 x

(proof)

lemma mkt-depth-join:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
shows mkt-depth P z x' = mkt-depth P1 z x' + mkt-depth P2 = z’

{proof)

lemma joint-quote-gross-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P) # {}
and grd-min P < x
and 0 <y
and y + quote-gross P x < quote-gross P (grd-maz P)
and z’ = quote-reach P (y + quote-gross P x)
and y! = quote-gross P1 x’ — quote-gross P1 x
and y2 = quote-gross P2 x’ — quote-gross P2 x
shows y = y1 + y2
(proof)

lemma joint-quote-gross-decomp’:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P) # {}
and 0 < y
and y < quote-gross P (grd-mazx P)
and z’ = quote-reach Py
and y! = quote-gross P1 z’
and y2 = quote-gross P2 z'

90

shows y = yI + y2
(proof)

lemma joint-base-net-decomp’:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P) # {}
and 0 <y
and y < quote-gross P (grd-mazx P)
and z’ = quote-reach Py
and yI = base-net P1 z’
and y2 = base-net P2 z’
shows base-net Pz’ = yl + y2

(proof)

lemma joint-base-gross-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and joint-pools P P1 P2
and nz-support (lg P) # {}
and z < grd-max P
and 0 < y
and y + base-gross P x < base-gross P (grd-min P)
and 2’ = base-reach P (y + base-gross P z)
and y! = base-gross P1 x' — base-gross P1 z
and y2 = base-gross P2 x' — base-gross P2 x
shows y = yI + y2
(proof)

definition join-pools where
join-pools P1 P2 =
(grd P1,
(M\i. lg P14+ lg P21),
(Ai. pool-fee-join P1 P2 1))

lemma join-pools-grd|simp):
assumes P = join-pools P1 P2
shows grd P = grd P1 (proof)

lemma join-pools-lg[simp]:
assumes P = join-pools P1 P2
shows lg Pi = lqg P17+ lg P21
(proof)

lemma join-pools-fee[simpl:
assumes P = join-pools P1 P2
shows fee P i = pool-fee-join P1 P2 i
(proof)

91

lemma join-joint-pools:
assumes grd P1 = grd P2
shows joint-pools (join-pools P1 P2) P1 P2

(proof)

6.4 CLMM pool combination

definition pool-comb where
pool-comb P1 P2 sqp = (let P! = refine P1 sqp in
pool-join P’ (slice-pool P2 sqp))

lemma pool-comb-joint:
assumes grd P1 = grd P2
shows joint-pools (pool-comb P1 P2 sqp) (refine P1 sqp)
(slice-pool P2 sqp) {proof)

lemma pool-comb-refined-joint-nz-lig:
assumes grd P1 = grd P2
and clmm-dsc P1
and clmm-dsc P2
and P = pool-comb P1 P2 sqp
and grd P1 (lower-tick P1 sqp) = sqp
shows nz-support (lg P) = nz-support (lg P1) U
(nz-support (lq (slice-pool P2 sqp)))
(proof)

lemma pool-comb-joint-refined:
assumes grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
shows joint-pools (pool-comb P1 P2 sqp) P1
(slice-pool P2 sqp)

(proof)

lemma pool-comb-clmm-dsc:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and 0 < sqp
and P3 = pool-comb P1 P2 sqp
shows clmm-dsc P3 (proof)

lemma pool-comb-grd-min:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
and 0 < sqp

92

and sqp < grd-maz P2

and P = pool-comb P1 P2 sqp
shows grd-min P = min (grd-min P1) (grd-min (slice-pool P2 sqp))
(proof)

lemma pool-comb-le-grd-min:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
and 0 < sqp
and sqp < grd-maz P2
and grd-min P1 < sqp
and P = pool-comb P1 P2 sqp
shows grd-min P = grd-min P1

(proof)

lemma pool-comb-grd-mazx:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
and 0 < sqp
and sqp < grd-mazx P2
and P = pool-comb P1 P2 sqp
shows grd-mazx P = mazx (grd-max P1) (grd-maz P2)

(proof)

lemma pool-comb-grd-maz-slice:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
and 0 < sqp
and sqp < grd-maz P2
and P = pool-comb P1 P2 sqp
shows sgp < grd-max P

(proof)

lemma pool-comb-quote-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and sqp’ < grd-maz P

93

and P = pool-comb P1 P2 sqp

and nz-support (lg P) # {}
shows quote-gross P sqp’ = quote-gross P1 sqp’ + quote-gross (slice-pool P2 sqp)
sqp’
(proof)

lemma pool-comb-quote-le-slice:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and sqp’ < sqp
and sqp < grd-max P
and P = pool-comb P1 P2 sqp
and nz-support (lg P) # {}
shows quote-gross P sqp’ = quote-gross P1 sqp’

(proof)

lemma pool-comb-quote-diff-decomp:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp) = sqp
and 0 < sqp
and 0 < sqp’
and 0 < sqpl
and sqp’ < grd-maz P
and sqp! < grd-max P
and P = pool-comb P1 P2 sqp
and nz-support (lg P) # {}
shows quote-gross P sqp’ — quote-gross P sqpl =
quote-gross P1 sqp’— quote-gross P1 sqpl +
quote-gross (slice-pool P2 sqp) sqp’ — quote-gross (slice-pool P2 sqp) sqpl
(proof)

lemma pool-comb-base-net-plus:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp2) = sqp2
and 0 < sqp2
and 0 < y
and y < quote-gross P (grd-mazx P)
and P = pool-comb P1 P2 sqp2
and sqp’ = quote-reach Py
and sqp’ < sqp2
and nz-support (lg P) # {}
shows base-net P sqp’ = base-net P1 sqp’ + base-net (slice-pool P2 sqp2) sqp’

94

(proof)

lemma combo-quote-init1:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and grd P1 (lower-tick P1 sqp2) = sqp2
and 0 < sqp2
and P = pool-comb P1 P2 sqp2
and 0 < y
and nz-support (lg P1) # {}
and nz-support (lg P2) # {}
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and sqp2 < grd-max P2
and sgp! < sqp2
shows quote-gross P sqpl = quote-gross P1 sqpl
(proof)

lemma combo-remain-quote-eq:

assumes clmm-dsc P1

and clmm-dsc P2

and grd P1 = grd P2

and grd P1 (lower-tick P1 sqp2) = sqp2

and 0 < sqp2

and P = pool-comb P1 P2 sqp2

and nz-support (lg P) # {}

and nz-support (lg P2) # {}

and 0 < y

and 0< sqpl

and y + quote-gross P sqpl < quote-gross P (grd-mazx P)

and sqp’ = quote-reach P (y + quote-gross P sqpl)

and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl

and sqp2 < sqp’

and sqpl < sqp2

and rs!’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
shows quote-gross P2 sqp’ = quote-gross P2 rs1’

(proof)

lemma comb-quote-gross-le:
assumes clmm-dsc P1
and clmm-dsc P2
and grd P1 = grd P2
and 0 < sqp
and sqp < grd-max P
and 0 < y
and y < quote-gross P sqp
and y < quote-gross P (grd-mazx P)
and P = pool-comb P1 P2 sqp

95

and sqp’ = quote-reach P y
and nz-support (lg P) # {}
shows quote-gross P1 sqp’ = y

(proof)

locale combined-pools =
fixes P1 P2 P sqp2
assumes cmb-P1: clmm-dsc P1
and cmb-P2: clmm-dsc P2
and cmb-grd-eq: grd P1 = grd P2
and cmb-on-grid: grd P1 (lower-tick P1 sqp2) = sqp2
and c¢mb-nzl1: nz-support (lg P1) # {}
and cmb-nz2: nz-support (lqg P2) # {}
and cmb-comb: P = pool-comb P1 P2 sqp2
and cmb-pos: 0 < sqp2
and cmb-maz: sqp2 < grd-max P2

begin

lemma combined-P-prop:
shows clmm-dsc P nz-support (lg P) # {}
(proof)

lemmas cmb-props = ¢cmb-P1 cmb-P2 cmb-grd-eq cmb-on-grid cmb-nzl cmb-nz2
cmb-comb cmb-pos cmb-max combined-P-prop

lemma combo-joint-quote-gross-decomp:
assumes (0 < y
and 0 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-maz P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and P’ = slice-pool P2 sqp2
and y2' = quote-gross P"' sqp’ — quote-gross P'' sqp1
shows y = yI + y2' yl <y 0 < yl
yl + quote-gross P1 sqpl < quote-gross P1 (grd-maz P1)
y2' < quote-gross P"' (grd-mazx P2)
(proof)

lemma combo-joint-quote-gross-leqg-max:
assumes 0 < y
and 0 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
shows y— yI + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)

{(proof)

lemma combo-joint-quote-gross-price-le:

96

assumes 0 < y

and grd-min P1 < sqpl

and sgpl < sqp2

and y + quote-gross P sqpl < quote-gross P (grd-mazx P)

and sqp’ = quote-reach P (y + quote-gross P sqpl)

and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl

and rs! = quote-reach P1 (yl + quote-gross P1 sqp1)
shows rsl < sqp’

(proof)

lemma combo-joint-quote-gross-decomp-leq:
assumes (0 < y
and 0 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and P’ = slice-pool P2 sqp2
and sqp! < sqp2
and y2' = quote-gross P"" sqp’
shows y =yl + y2' yl <y 0 < yl
yl + quote-gross P1 sqpl < quote-gross P1 (grd-maz P1)
y2' < quote-gross P"' (grd-maz P2)
(proof)

lemma combo-quote-swap-slice-eq:
assumes (< sqpl
and 0 < y
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
shows quote-swap P sqpl y = quote-swap P1 sqpl y1 +
quote-swap (slice-pool P2 sqp2) sqpl (y — yl)
(proof)

lemma combo-quote-swap-eq:
assumes 0 < sqpl
and 0 < y
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqp1)
and yl! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2

shows quote-swap P sqpl y = quote-swap P1 sqpl y1 +

quote-swap P2 sqp2 (y — yl)
(proof)

lemma comb-add-above-gt:
assumes (0 < y
and 0< sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)

97

and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and yI <y
and sqpl < sqp2

shows sqp2 < sqp’

(proof)

lemma comb-add-above-add-eq:
assumes yl = quote-gross P1 sqp’ — quote-gross P1 sqpl
and rs! = quote-reach P1 (yl + quote-gross P1 sqpl)
shows quote-gross P1 sqp’ = quote-gross P1 rsl

{proof)

lemma comb-add-above-add-eq2:

assumes (0 < y

and grd-min P1 < sqpl

and y + quote-gross P sqpl < quote-gross P (grd-mazx P)

and sqp’ = quote-reach P (y + quote-gross P sqpl)

and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl

and sqpl < sqp2

and yI <y

and rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
shows quote-gross P2 sqp’ = quote-gross P2 rs1’

{proof)

lemma combo-joint-rest-qty-slice:
assumes 0 < y
and 0 < sqpl
and sqp! < sqp2
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and P’ = slice-pool P2 sqp2
shows y — y1 = quote-gross P'" sqp’
(proof)

lemma combo-joint-rest-qty:
assumes 0 < y
and 0 < sqpl
and sqp! < sqp2
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqp2 < sqp’
shows y — yI = quote-gross P2 sqp’ — quote-gross P2 sqp2
(proof)

lemma combo-joint-rest-qty-le:
assumes 0 < y

98

and 0 < sqpl
and sgp! < sqp2
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
shows y — yI + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)

(proof)

lemma combo-joint-rest-price-pos:
assumes (0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and rs!’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
and yI <y
shows 0 < rsi’
(proof)

lemma combo-joint-quote-gross-price-le’:

assumes (0 < y

and grd-min P1 < sqpl

and sgp! < sqp2

and y + quote-gross P sqpl < quote-gross P (grd-mazx P)

and sqp’ = quote-reach P (y + quote-gross P sqpl)

and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl

and yI <y

and rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
shows rs1’ < sqp’

(proof)

lemma comb-add-above-pricel-leq:
assumes 0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqp! < sqp2
and 0 < y2
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
and y2 < yI
and yI <y
and rs! = quote-reach P1 (yl + quote-gross P1 sqpl)
and rs2 = quote-reach P1 (y2 + quote-gross P1 sqp1)
shows rs2 < rsl

(proof)

lemma comb-add-above-price2-geq:
assumes 0 < y

99

and grd-min P1 < sqpl

and y + quote-gross P sqpl < quote-gross P (grd-mazx P)

and sqp’ = quote-reach P (y + quote-gross P sqpl)

and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl

and sqpl < sqp2

and 0 < y2

and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)

and y2 < yI

and yI <y

and rs!’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)

and rs2’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
shows rs1’/ < rs2’

(proof)

lemma comb-add-above-price2-geq’:
assumes (0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
and 0 < y2
and y — yI + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
and y1 < y2
and y2 <y
and rs!’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
and rs2’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
shows rs2’ < rs1’

(proof)

lemma comb-add-above-price2-It:

assumes 0 < y

and grd-min P1 < sqpl

and y + quote-gross P sqpl < quote-gross P (grd-mazx P)

and sqp’ = quote-reach P (y + quote-gross P sqpl)

and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl

and sqpl < sqp2

and 0 < y2

and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)

and y2 < yI

and yI <y

and rs2’ = quote-reach P2 (y — y2 + quote-gross P2 sqp2)
shows sqp’ < rs2’

(proof)

lemma combo-joint-reached-price-pos:
assumes (0 < y
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)

100

shows 0 < sqp’ (proof)

lemma combo-joint-base-reached-eq:
assumes (0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqp1)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
and rs! = quote-reach P1 (yl + quote-gross P1 sqpl)
shows base-net P1 sqp’ = base-net P1 rsl

(proof)

lemma combo-joint-base-reached-eq2:

assumes (0 < y

and grd-min P1 < sqpl

and y + quote-gross P sqpl < quote-gross P (grd-mazx P)

and sqp’ = quote-reach P (y + quote-gross P sqpl)

and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl

and sqpl < sqp2

and yI <y

and rs1’ = quote-reach P2 (y — yl + quote-gross P2 sqp2)
shows base-net P2 sqp’ = base-net P2 rs1’

(proof)

lemma quote-gross-price-eq1 :
assumes yl! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and rs! = quote-reach P1 (yl + quote-gross P1 sqp1)
shows quote-gross P1 rs1 = y1 + quote-gross P1 sqpl

(proof)

lemma quote-gross-price-eq2:
assumes (0 < y2
and y2 + quote-gross P1 sqpl < quote-gross P1 (grd-mazx P1)
and 7s2 = quote-reach P1 (y2 + quote-gross P1 sqp1)

shows quote-gross P1 rs2 = y2 + quote-gross P1 sqpl

(proof)

end

6.5 Optimality result on quote tokens

When the fees in two pools are constant and equal, swapping a given amount
of quote tokens in their combination permits to determine the optimal quan-
tities of quote tokens to swap in each individual pool.
locale combined-pools-cst-fee = combined-pools +

fixes phi

assumes feel: Vi. fee P1 i = phi
and fee2: Vi. fee P2 i = phi

101

begin

lemma fee-props:
shows 0 < phi phi < 1 {(proof)

lemma quote-swap-opt-above:
assumes 0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and yI = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sgp! < sqp2
and 0 < y2
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-max P2)
and y2 < yl
and yI <y
shows quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) < quote-swap P
sqgply
(proof)

lemma quote-swap-opt-above’:
assumes 0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqp! < sqp2
and y2 + quote-gross P1 sqpl < quote-gross P1 (grd-mazx P1)
and 0 <y — y2
and yI < y2
and y2 <y
shows quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) < quote-swap P
sqply
(proof)

lemma combo-slice-no-addition2:
assumes 0 < y
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqpl)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
and yI =y
and 0 < y2
and y2 <y
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
and y1 # y2
and P’ = slice-pool P2 sqp2
shows quote-gross P sqp’ = 0

102

(proof)

lemma quote-swap-opt-below:
assumes (0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqp1)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
and yl =y
and 0 < y2
and y2 <y
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
and y1 # y2
shows quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) < quote-swap P
sqply
(proof)

lemma quote-swap-optimum’:
assumes (0 < y
and grd-min P1 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqp1)
and y! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
and 0 < y2
and y2 <y
and y2 + quote-gross P1 sqpl < quote-gross P1 (grd-mazx P1)
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
and y1 # y2
shows quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) < quote-swap P
sqply
(proof)

lemma quote-swap-optimum:
assumes (0 < y
and 0 < sqpl
and y + quote-gross P sqpl < quote-gross P (grd-mazx P)
and sqp’ = quote-reach P (y + quote-gross P sqp1)
and yl! = quote-gross P1 sqp’ — quote-gross P1 sqpl
and sqpl < sqp2
and grd-min P1 < sqp2
and 0 < y2
and y2 <y
and y2 + quote-gross P1 sqpl < quote-gross P1 (grd-mazx P1)
and y — y2 + quote-gross P2 sqp2 < quote-gross P2 (grd-maz P2)
and y1 # y2
shows quote-swap P1 sqpl y2 + quote-swap P2 sqp2 (y — y2) < quote-swap P
sqply

103

(proof)

end

end

References

[1] M. Echenim, E. Gobet, and A.-C. Maurice. Uniswap v3: im-
permanent loss modeling and swap fees asymptotic analysis, Sept.
2025. Available at https://hal.science/hal-04214315v3/file/Article IL
Uniswapv3__revision_ HAL.pdf.

104

https://hal.science/hal-04214315v3/file/Article_IL_Uniswapv3_revision_HAL.pdf
https://hal.science/hal-04214315v3/file/Article_IL_Uniswapv3_revision_HAL.pdf

	Preliminary definitions and results
	Misc
	Support of a discrete function

	Grid information
	Definitions
	Gross and net token quantities
	General definitions
	Finite support restriction

	Gross and net quantities of quote tokens
	Generic functions for quote tokens
	Finite support restriction

	Gross quote token quantity into a pool
	Function specialization
	Restriction to pools with a finite liquidity

	Net quote token quantity in a pool
	Function specialization
	Restriction to pools with a finite liquidity

	Gross and net quantities of base tokens
	Generic functions for base tokens
	Finite support restriction

	Gross base token quantity in a pool
	Function specialization
	Restriction to pools with a finite liquidity

	Net base token quantity in a pool
	Function specialization
	Restriction to pools with a finite liquidity

	Swapping tokens, market depth and slippage
	Identical profiles

	Grid refinement
	Encompassement properties
	Finer price grids
	Pools with finer grids and coinciding profiles
	Spanning grids
	Spanning grids and finite liquidity

	CLMM description
	Preliminary results
	Quote token addition and withdrawal in a CLMM
	Base token addition and withdrawal in a CLMM
	Market depth and slippage for finer CLMMs
	Finer pools
	Finer CLMMs with nonzero liquidity

	Inequalities related to fees
	CLMM transformations
	CLMM pool refinement
	CLMM pool restriction and slice
	CLMM pool join
	CLMM pool combination
	Optimality result on quote tokens

