A formal proof of the Chandy—Lamport distributed

snapshot algorithm

Ben Fiedler! and Dmitriy Traytel®

'ETH Ziirich

September 1, 2025

Abstract

We provide a suitable distributed system model and implemen-
tation the Chandy-Lamport distributed snapshot algorithm [1]. Our
main result is a formal termination and correctness proof of the Chandy—
Lamport algorithm and its use in stable property detection.

Contents

1

Modelling distributed systems

1.1 The distributed system locale
1.1.1 State transitions

Traces

2.1 Propertiesof traces
2.2 Describing intermediate configurations
2.3 Tracerelated lemmas Lo

Utilties
Swap lemmas

The Chandy—Lamport algorithm

5.1 The computation locale
5.2 Termination e
5.3 Correctness e e

5.3.1 Pre- and postrecording events
5.3.2 Event swapping oL
5.3.3 Relating configurations and the computed snapshot .
5.3.4 Relating process states
5.3.5 Relating channel states

41
41
44
46

53

62

5.4 Obtaining the desired traces 199

5.5 Stable property detection 217
6 Extension to infinite traces 218
7 Example 226

1 Modelling distributed systems

We assume familiarity with Chandy and Lamport’s paper Distributed Snap-
shots: Determining Global States of Distributed Systems [1].

theory Distributed-System
imports Main
begin

type-synonym ’a fifo = 'a list
type-synonym channel-id = nat

datatype 'm message =
Marker
| Msg 'm

datatype recording-state =
NotStarted
| Recording
| Done

We characterize distributed systems by three underlying type variables:
Type variable 'p captures the processes of the underlying system. Type
variable ’s describes the possible states of the processes. Finally, type vari-
able 'm describes all possible messages in said system.

Each process is in exactly one state at any point in time of the system. Pro-
cesses are interconnected by directed channels, which hold messages in-flight
between connected processes. There can be an arbitrary number of chan-
nels between different processes. The entire state of the system including
the (potentially unfinished) snapshot state is called configuration.

record ('p, s, 'm) configuration =

states :: 'p = s
msgs :: channel-id = 'm message fifo

process-snapshot :: 'p = 's option
channel-snapshot :: channel-id = 'm fifo * recording-state

An event in Chandy and Lamport’s formalization describes a process’ state
transition, optionally producing or consuming (but not both) a message on

a channel. Additionally, a process may either initiate a snapshot sponta-
neously, or is forced to do so by receiving a snapshot marker on one of it’s
incoming channels.

datatype ('p, ‘s, ‘'m) event =
isTrans: Trans (occurs-on: 'p) 's 's
| isSend: Send (getld: channel-id)
(occurs-on: 'p)
(partner: 'p)
's 's (getMsg: 'm)
| isRecv: Recv (getld: channel-id)
(occurs-on: 'p)
(partner: 'p)
‘s 's (getMsg: 'm)

| isSnapshot: Snapshot (occurs-on: 'p)

| isRecvMarker: RecuMarker (getld: channel-id)
(occurs-on: 'p)
(partner: 'p)

We introduce abbreviations and type synoyms for commonly used terms.

type-synonym ('p, 's, 'm) trace = ('p, 's, 'm) event list

abbreviation ps where ps = process-snapshot
abbreviation cs where cs = channel-snapshot

abbreviation no-snapshot-change where
no-snapshot-change ¢ ¢! = (Vp'. pscp’ =ps ' p) AN Vi'. es ci’ = cs ¢’ i)

abbreviation has-snapshotted where
has-snapshotted ¢ p = process-snapshot ¢ p # None

A regular event is an event as described in Chandy and Lamport’s original
paper: A state transition accompanied by the emission or receiving of a mes-
sage. Nonregular events are related to snapshotting and receiving markers
along communication channels.

definition regular-event[simpl:
reqular-event ev = (isTrans ev V isSend ev V isRecv ev)

lemma nonregular-event:
~ reqular-event ev = (isSnapshot ev V isRecuMarker ev)
by (meson event.distinct-disc event.exhaust-disc reqular-event)

lemma event-occurs-on-unique:
assumes
p#Fa
occurs-on ev = p
shows
occurs-on ev # q

using assms by (cases ev, auto)

1.1 The distributed system locale

In order to capture Chandy and Lamport’s computation system we intro-
duce two locales. The distributed system locale describes global truths,
such as the mapping from channel IDs to sender and receiver processes,
the transition relations for the underlying computation system and the core
assumption that no process has a channel to itself. While not explicitly men-
tioned in Chandy’s and Lamport’s work, it makes sense to assume that a
channel need not communicate to itself via messages, since it shares memory
with itself.

locale distributed-system =
fixes
channel :: channel-id = ('p * 'p) option and
trans :: 'p = 's = ’'s = bool and
send :: channel-id = 'p = 'p = 's = 's = 'm = bool and
recv :: channel-id = 'p = 'p = 's = 's = 'm = bool
assumes
no-self-channel:
Vi. B p. channel i = Some (p, p)
begin

1.1.1 State transitions

definition can-occur :: ('p, 's, 'm) event = ('p, s, 'm) configuration = bool where
can-occur ev ¢ = (case ev of
Trans p s s’ = states cp = s
A trans p s s’
| Send i p q s s’ msg = states ¢ p = s
A channel i = Some (p, q)
A sendip qs s msg
| Recvip qs s’ msg= states c p = s
A channel i = Some (g, p)
A length (msgs c i) > 0
A hd (msgs ¢ i) = Msg msg
Arecvip qs s msg
| Snapshot p = — has-snapshotted c p
| RecoMarker i p ¢ = channel i = Some (q, p)
A length (msgs c i) > 0
A hd (msgs ¢ i) = Marker)

definition src where
src i p = (3 q. channel i = Some (p, q))

definition dest where
dest i ¢ = (I p. channel i = Some (p, q))

lemma can-occur-Recv:
assumes
can-occur (Recv ip g ss'm) ¢
shows
states ¢ p = s A channel i = Some (q, p) A (3xs. msgs ¢ i = Msg m # xs) A
recvipqss' m
proof —
have Jdzs. msgs ¢ i = Msg m # xs
using assms can-occur-def
by (metis (mono-tags, lifting) event.case(8) hd-Cons-tl length-greater-0-conv)
then show ?thesis using assms can-occur-def by auto
qed

abbreviation check-snapshot-occur where
check-snapshot-occur ¢ ¢’ p =
(can-occur (Snapshot p) ¢ A
(ps ¢’ p = Some (states ¢ p))
A (Vp'. states ¢ p' = states ¢’ p’)
AN (Yp' (p'# p) — psc' p'=pscp’)
A (Vi. (3 q. channel i = Some (p, q)) — msgs ¢’ i = msgs ¢ i Q [Marker))
A (Vi. (3 q. channel i = Some (q, p)) — channel-snapshot ¢’ i = (fst (channel-snapshot
¢ i), Recording))
A (Vi. (Bq. channel i = Some (p, q)) — msgs ¢’ i = msgs c 1)
A (Vi. (Fq. channel i = Some (q, p)) — channel-snapshot ¢’ i = channel-snapshot

ci))

abbreviation check-recv-marker-occur where
check-recv-marker-occur ¢ ¢’ i p q =
(can-occur (RecvMarker i p q) ¢
A (Vr. states ¢ r = states ¢’ 1)
A (Vr. (r # p) — process-snapshot ¢ r = process-snapshot ¢’ r)
(Marker # msgs ¢’ i = msgs ¢ 1)
(channel-snapshot ¢’ i = (fst (channel-snapshot ¢ i), Done))
(if has-snapshotted ¢ p
then (process-snapshot ¢ p = process-snapshot ¢’ p)
A (Vi (i7 # i) — msgs ¢’ i’ = msgs ¢ i)
A (Vi (i' # i) — channel-snapshot ¢ i’ = channel-snapshot ¢’ i’)
else (process-snapshot ¢’ p = Some (states ¢ p))
A (Vi @' # i A (3. channel i = Some (p, r))
— msgs ¢’ i’ = msgs ¢ i’ Q [Marker])
A Vi’ i"# ¢ A (3r. channel i’ = Some (r, p))
— channel-snapshot ¢’ i’ = (fst (channel-snapshot ¢ i’), Recording))
A (Vi i' # i A (Pr. channel i’ = Some (p, r))
— msgs ¢’ i = msgs c i)
A (Vi'i" # i N (Br. channel i’ = Some (r, p))
— channel-snapshot ¢’ i’ = channel-snapshot c i')))

A\
A\
A\

abbreviation check-trans-occur where
check-trans-occur ¢ ¢’ p s s'=

(can-occur (Trans p s s') ¢
A (states ¢’ p = s')
ANNVr (r# p) — states ¢’ r = states ¢ 1)
A (Vi. msgs ¢’ i = msgs c 1)
A (no-snapshot-change c c'))

abbreviation check-send-occur where
check-send-occur ¢ ¢’ i p q s s’ msg =
(can-occur (Send i p q s s’ msg) ¢
A (states ¢’ p = s')
(Vr. (r # p) —> states ¢’ r = states ¢)
(msgs ¢’ i = msgs ¢ i @ [Msg msgl)
(Vi i # i — msgs ¢’ i’ = msgs ¢ i)
(no-snapshot-change ¢ ¢'))

abbreviation check-recv-occur where
check-recv-occur ¢ ¢’ ip q s s’ msg =
(can-occur (Recv ip q s s’ msg) ¢
A (states ¢ p = s A states ¢/ p = s’)
A (Vr. (r # p) — states ¢’ r = states ¢ 1)
A (msgs c i = Msg msg # msgs ¢’ Q)
A Vi’ i #£ 1" — msgs ¢’ i’ = msgs ¢ i)
A (V7. process-snapshot ¢ r = process- snapshot c'r)
A (Vi' i’ # i — channel-snapshot ¢ i’ = channel-snapshot ¢’ i’)
A (if snd (channel-snapshot ¢ i) = Recording
then channel-snapshot ¢’ i = (fst (channel-snapshot ¢ i) Q [msg], Recording)
else channel-snapshot ¢ i = channel-snapshot ¢’ 7))

The next predicate lets us express configuration transitions using events.
The predicate next(sy,e, sy) denotes the transition of the configuration s;
to s9 via the event e. It ensures that e can occur in state s; and the state
so is correctly constructed from si.

primrec next :
/

('p, 's, 'm) configuration

('p, 's, 'm) event
('p, s, 'm) configuration
= bool
(<-F -— - [70, 70, 70]) where

next-snapshot: ¢ = Snapshot p — ¢’ =

check-snapshot-occur ¢ ¢’ p

| next-reco-marker: ¢ = RecoMarker i p ¢ — ¢’ =
check-recv-marker-occur ¢ ¢’ i p q

| next-trans: ¢ = Trans p s ' — ¢/ =
check-trans-occur ¢ ¢’ p s s’

| next-send: ¢t Send i p g s s’ msg— ¢’ =
check-send-occur ¢ ¢’ i p q¢ s s’ msg

| next-recv: ¢+ Recv ip q s s msg+— ¢’ =
check-recv-occur ¢ ¢’ i p q s s’ msg

Useful lemmas about state transitions

lemma state-and-event-determine-next:
assumes
¢k ev— ¢ and
ckev ¢’
shows
C/ — C//
proof (cases ev)
case (Snapshot p)
then have states ¢’ = states ¢’ using assms by auto
moreover have msgs ¢/ = msgs ¢’
proof (rule ext)
fix ¢
show msgs ¢’ i = msgs ¢’ i
proof (cases channel i = None)
case True
then show ?thesis using Snapshot assms by auto
next
case Fulse
then obtain r s where channel i = Some (r, s) by auto
with assms Snapshot show ?thesis by (cases r = p, simp-all)
qed
qed
moreover have process-snapshot ¢’ = process-snapshot ¢’ by (metis Snapshot
assms next-snapshot ext)
moreover have channel-snapshot ¢’ = channel-snapshot ¢’
proof (rule ext)
fix ¢
show channel-snapshot ¢’ i = channel-snapshot ¢’ i
proof (cases channel i = None)
case True
then show ?thesis using assms Snapshot by simp
next
case Fulse
then obtain r s where channel i = Some (r, s) by auto
with assms Snapshot show ?thesis by (cases s = p, simp-all)
qed
qed
ultimately show ¢’ = ¢’’ by simp
next
case (RecvMarker i p)
then have states ¢’ = states ¢’ using assms by auto
moreover have msgs ¢/ = msgs ¢’
proof (rule ext)
fix i’
show msgs ¢’ i’ = msgs ¢ i’
proof (cases i’ = i)
case True
then have Marker # msgs ¢’ i’ = msgs ¢ i’ using assms RecvMarker by

stmp

also have ... = Marker # msgs ¢'' i’ using assms RecvMarker <i’ = i) by
stmp
finally show ?thesis by simp
next
case Fulse

then show ?thesis
proof (cases has-snapshotted c p)
case True
then show ?thesis using assms RecvMarker i’ # iy by simp
next
case no-snap: False
then show ?thesis
proof (cases channel i’ = None)
case True
then show ?thesis using assms RecvMarker i’ # i> no-snap by simp
next
case Fulse
then obtain r s where channel i’ = Some (r, s) by auto
with assms RecuMarker no-snap <i’ # i» show ?thesis by (cases r = p;
simp-all)
qged
qed
qed
qed
moreover have process-snapshot ¢’ = process-snapshot c’’
proof (rule ext)
fix r
show ps ¢’ r=psc’r
proof (cases r # p)
case True
then show ?thesis using assms RecvMarker by simp
next
case Fulse
with assms RecvMarker <~ r # p)> show ?thesis by (cases has-snapshotted ¢
r, auto)
qged
qed
moreover have channel-snapshot ¢’ = channel-snapshot ¢’
proof (rule ext)
fix i’
show cs ¢’ i'=cs ¢ i’
proof (cases i’ = i)
case True
then show ?thesis using assms RecvMarker by simp
next
case Fulse
then show ?thesis
proof (cases has-snapshotted c p)

case True
then show ?thesis using assms RecvMarker <i’ # i» by simp
next
case no-snap: False
then show ?thesis
proof (cases channel i’ = None)
case True
then show ?thesis using assms RecvMarker <i’ # i» no-snap by simp
next
case Fulse
then obtain r s where channel i’ = Some (r, s) by auto
with assms RecvMarker no-snap i’ # 9> show ?thesis by (cases s = p;
stmp-all)
qed
qed
qed
qed
ultimately show ¢’ = ¢’’ by simp
next
case (Trans p s s')
then have states ¢’ = states ¢’ by (metis (no-types, lifting) assms next-trans
ext)
moreover have msgs ¢/ = msgs ¢’ using assms Trans by auto
moreover have process-snapshot ¢’ = process-snapshot ¢’ using assms Trans
by auto
moreover have channel-snapshot ¢’ = channel-snapshot ¢’ using assms Trans
by auto
ultimately show ¢’ = ¢’ by simp
next
case (Send ip s s’ m)
then have states ¢’ = states ¢'’ by (metis (no-types, lifting) assms next-send
ext)
moreover have msgs ¢’ = msgs ¢’
proof (rule ext)
fix i’
from assms Send show msgs ¢’ i’ = msgs ¢’ i’ by (cases i’ = i, simp-all)
qged
moreover have process-snapshot ¢’ = process-snapshot ¢’ using assms Send by
auto
moreover have channel-snapshot ¢’ = channel-snapshot ¢’ using assms Send
by auto
ultimately show ¢’ = ¢’ by simp
next
case (Recvip s s’ m)
then have states ¢’ = states ¢'’ by (metis (no-types, lifting) assms next-recv ext)
moreover have msgs ¢’ = msgs ¢’
proof (rule ext)
fix 7/

from assms Recv show msgs ¢’ i’ = msgs ¢'' i’ by (cases i’ = i, simp-all)

qed
moreover have process-snapshot ¢’ = process-snapshot ¢’ using assms Recv by
auto
moreover have channel-snapshot ¢’ = channel-snapshot ¢'’
proof (rule ext)
fix 7/
show cs ¢’ i' = ¢cs ¢ i’
proof (cases i’ # i)
case True
then show ?thesis using assms Recv by simp
next
case Fulse
with assms Recv show ?2thesis by (cases snd (cs ¢ i") = Recording, auto)
qed
qed
ultimately show ¢’ = ¢’ by simp
qed

lemma exists-next-if-can-occur:
assumes
can-occur ev ¢
shows
de.ckev ¢
proof (cases ev)
case (Snapshot p)
let ?c = (| states = states c,
msgs = %i. if (3 q. channel i = Some (p, q)) then msgs ¢ i @ [Marker]
else msgs c i,
process-snapshot = %r. if r = p then Some (states c p) else ps c r,
channel-snapshot = %i. if (3 q. channel i = Some (q, p)) then (fst (cs
¢ i), Recording) else cs ¢ i |
have c F ev — ?¢ using Snapshot assms by auto
then show ?thesis by blast
next
case (RecvMarker i p q)
show ?thesis
proof (cases has-snapshotted ¢ p)
case True
let ?c = (states = states c,
msgs = %i'. if i = i’ then tl (msgs c i’) else msgs c i/,
process-snapshot = ps ¢,
channel-snapshot = %i’. if i = i’ then (fst (¢s ¢ i), Done) else cs ¢
i)
have msgs ¢ i = Marker # msgs ?c i
using assms can-occur-def RecuMarker hd-Cons-tl by fastforce
then have ¢ F ev — ?c using True RecvMarker assms by auto
then show ?thesis by blast
next
case Fulse

10

let ?c = (states = states c,
msgs = %i’. if i’ =i
then tl (msgs c i’)
else if (3r. channel i’ = Some (p, 1))
then msgs ¢ i’ Q [Marker]
else msgs ¢ i/,
process-snapshot = %r. if r = p then Some (states ¢ r) else ps c r,
channel-snapshot = %i’. if i = i’ then (fst (cs ¢ i’), Done)
else if (3r. channel i’ = Some (r, p))
then (fst (¢s ¢ i’), Recording)
else cs ¢ i’
have msgs ¢ i = Marker # msgs ?c i
using assms can-occur-def RecuMarker hd-Cons-tl by fastforce
moreover have ps ?c p = Some (states ¢ p) by simp
ultimately have ¢ - ev — ?c using RecvMarker assms Fulse by auto
then show ?thesis by blast
qed
next
case (Trans p s s')
let ?c = (| states = %r. if r = p then s’ else states ¢ r,
msgs = msgs c,
process-snapshot = ps c,
channel-snapshot = c¢s ¢ |
have c F ev — %c
using Trans assms by auto
then show ?thesis by blast
next
case (Send i p q s s’ msg)
let ?c = (states = %r. if r = p then s’ else states c r,
msgs = %i’. if i = i’ then msgs ¢ i’ @ [Msg msg| else msgs c i/,
process-snapshot = ps c,
channel-snapshot = cs ¢ |
have c F ev — %c
using Send assms by auto
then show ?thesis by blast
next
case (Recv i p q s s’ msg)
then show ?thesis
proof (cases snd (cs ¢ 7))
case Recording
let ?c = (| states = %r. if r = p then s’ else states ¢ r,
msgs = %i’. if i = i’ then tl (msgs c i) else msgs c i/,
process-snapshot = ps c,
channel-snapshot = %i’. if i = i’
then (fst (cs ¢ i’) @ [msg], Recording)
else cs ¢ i)
have c F ev — %c
using Recv Recording assms can-occur-Recv by fastforce
then show ?thesis by blast

11

next
case Done

let ?c = (| states = %r. if r = p then s’ else states ¢ r,

msgs = %i’. if i = i’ then tl (msgs c i) else msgs c i/,
process-snapshot = ps c,

channel-snapshot = c¢s ¢ |)
have cF ev — %c

using Done Recv assms can-occur-Recv by fastforce
then show %thesis by blast
next

case NotStarted

let ?c = (| states = %r. if r = p then s’ else states c r,

msgs = %i'. if i = i’ then tl (msgs c i) else msgs c i/,
process-snapshot = ps c,

channel-snapshot = c¢s ¢ |)
have c F ev — %c

using NotStarted Recv assms can-occur-Recv by fastforce
then show ?thesis by blast
qed

qed

lemma exists-exactly-one-following-state:
can-occur ev ¢ = Alc’. ¢+ ev — ¢’

using exists-next-if-can-occur state-and-event-determine-next by blast
lemma no-state-change-if-no-event:
assumes

¢k ev— ¢’ and

occurs-on ev # p
shows

states ¢ p = states ¢’ p A process-snapshot ¢ p = process-snapshot ¢’ p
using assms by (cases ev, auto)

lemma no-msgs-change-if-no-channel:
assumes

¢k ev— ¢ and
channel i = None
shows

msgs ¢ i = msgs ¢’ i
using assms proof (cases ev)
case (RecvMarker cid p)
then have cid # i using assms RecvMarker can-occur-def by fastforce
with assms RecvMarker show ?thesis by (cases has-snapshotted ¢ p, auto)
next

case (Send cid p s s’ m)

then have cid # i using assms Send can-occur-def by fastforce
then show ?thesis using assms Send by auto
next

case (Recv cid p s s’ m)

12

then have cid # i using assms Recv can-occur-def by fastforce
then show ?thesis using assms Recv by simp
qed simp-all

lemma no-cs-change-if-no-channel:
assumes
¢k ev— ¢ and
channel © = None
shows
csci=csci
using assms proof (cases ev)
case (RecvMarker cid p)
then have cid # i using assms RecvMarker can-occur-def by fastforce
with assms RecvMarker show ?thesis by (cases has-snapshotted ¢ p, auto)
next
case (Send cid p s s’ m)
then have cid # i using assms Send can-occur-def by fastforce
then show ?thesis using assms Send by auto
next
case (Recv cid p s s’ m)
then have cid # i using assms Recv can-occur-def by fastforce
then show ?thesis using assms Recv by simp
qed simp-all

lemma no-msg-change-if-no-event:
assumes
¢k ev— ¢ and
isSend ev — getld ev # ¢ and
isRecv ev — getld ev # 7 and
regular-event ev
shows
msgs ¢ 1 = msgs ¢’ i
proof (cases channel i = None)
case True
then show ?thesis using assms no-msgs-change-if-no-channel by simp
next
have isTrans ev V isSend ev V isRecv ev using assms by simp
then show ?thesis
proof (elim disjE)
assume isTrans ev
then show ?thesis
by (metis assms(1) event.collapse(1) next-trans)
next
assume isSend ev
then obtain i’ 7 s u u’ m where Send: ev = Send i’ r s u v’ m by (meson
isSend-def)
then show ?thesis using Send assms by auto
next
assume isRecv ev

13

then obtain i’ r s u u’ m where ev = Recv i’ r s u u’ m by (meson isRecv-def)
then show ?thesis using assms by auto
qed
qed

lemma no-cs-change-if-no-event:
assumes
¢k ev— ¢ and
isRecv ev — getld ev # 1 and
regular-event ev
shows
csci=csci
proof —
have isTrans ev V isSend ev V isRecv ev using assms by simp
then show ?thesis
proof (elim disjE)
assume isTrans ev
then show ?thesis
by (metis assms(1) event.collapse(1) next-trans)
next
assume isSend ev
then obtain i’ r s u v’ m where ev = Send i’ r s u u’ m by (meson isSend-def)
then show ?thesis using assms by auto
next
assume isRecv ev
then obtain i r s u ' m where ev = Recv i r s u v’ m by (meson isRecv-def)
then show ?thesis using assms by auto
qed
qed

lemma happen-implies-can-occur:
assumes
ckev ¢
shows
cam-occur ev ¢
proof —
show ?thesis using assms by (cases ev, auto)
qed

lemma snapshot-increases-message-length:

assumes

ev = Snapshot p and

ct ev— ¢ and

channel i = Some (q, 1)
shows

length (msgs ¢ i) < length (msgs ¢’ i)
using assms by (cases p = ¢, auto)

lemma recv-marker-changes-head-only-at-i:

14

assumes
ev = RecvMarker i p ¢ and
¢k ev— ¢ and
il
shows
msgs ¢ i’ =[] V hd (msgs ¢ i) = hd (msgs ¢’ i)
proof (cases channel i’ = None)
case True
then show “thesis using assms no-msgs-change-if-no-channel by presburger
next
case Fulse
then show ?thesis
proof (cases msgs ¢ i)
case Nil
then show ?thesis by simp
next
case (Cons m xs)
then obtain r s where channel i’ = Some (r, s) using Fualse by auto
then show ?thesis
proof (cases has-snapshotted ¢ p)
case True
then show ?thesis using assms by auto
next
case Fualse
with assms show ?thesis by (cases r = p, auto)
qged
qed
qed

lemma recv-marker-other-channels-not-shrinking:
assumes
ev = RecvMarker i p ¢ and
ckev ¢
shows
length (msgs ¢ i’) < length (msgs ¢’ i') +— i # i’
proof (rule iffI)
show length (msgs ¢ i') < length (msgs ¢’ i) = i # i’
proof (rule ccontr)
assume asm: ~ i # i’ length (msgs ¢ i) < length (msgs ¢’ i’)
then have msgs ¢ i = Marker # msgs ¢’ i using assms by auto
then have length (msgs ¢ i) > length (msgs ¢’ i) by simp
then have length (msgs ¢ i’) > length (msgs ¢’ i') using asm by simp
then show Fulse using asm by simp
qed
next
show i # i’ = length (msgs ¢ i') < length (msgs ¢’ i’)
proof —
assume i # i’
then show ?thesis

15

proof (cases channel i’ = None)
case True
then show ?thesis using assms no-msgs-change-if-no-channel by presburger
next
case Fulse
then obtain r s where chan: channel i’ = Some (r, s) by auto
then show ?thesis
proof (cases has-snapshotted c p)
case True
with assms i # i"» show ?thesis by auto
next
case no-snap: False
then show ?thesis
proof (cases p =)
case True
then have msgs ¢’ i’ = msgs ¢ i’ Q [Marker] using <« # i’s assms no-snap
chan by auto
then show ?thesis by auto
next
case Fulse
then show ?thesis using assms (i # i’> chan no-snap by auto
qged
qed
qed
qed
qed

lemma regular-event-cannot-induce-snapshot:
assumes
~ has-snapshotted ¢ p and
ckev— ¢
shows
reqular-event ev — ~ has-snapshotted ¢’ p
proof (cases ev)
case (Trans q s s')
then show ?thesis using assms(1) assms(2) by auto
next
case (Send g r s s’ m)
then show ?thesis using assms by auto
next
case (Recv g r s s’ m)
then show ?thesis using assms by auto
qed simp-all

lemma regular-event-preserves-process-snapshots:
assumes
ckevi—c
shows
reqular-event ev = pscr =psc’'r

/

16

proof (cases ev)
case (Trans p s s’)
then show ?thesis
using assms by auto
next
case (Send p g s s' m)
then show ?thesis
using assms by auto
next
case (Recv p g s s' m)
then show ?thesis
using assms by auto
qed simp-all

lemma no-state-change-if-nonregular-event:
assumes
~ regular-event ev and
ckev ¢
shows
states ¢ p = states ¢’ p
proof —
have isSnapshot ev V isRecuMarker ev using nonregular-event assms by auto
then show ?thesis
proof (elim disjE, goal-cases)
case I
then obtain ¢ where ev = Snapshot ¢
by (meson isSnapshot-def)
then show ?thesis
using assms(2) by auto
next
case 2
then obtain i ¢ r where ev = RecvMarker i q r
by (meson isRecvMarker-def)
then show ?thesis using assms(2) by auto
qed
qed

lemma nonregular-event-induces-snapshot:
assumes
~ has-snapshotted ¢ p and
¢k ev— ¢ and
occurs-on ev = p and
~ regular-event ev
shows
~ reqular-event ev — has-snapshotted ¢’ p
proof (cases ev)
case (Snapshot q)
then have ¢ = p using assms by auto
then show ?thesis using Snapshot assms(2) by auto

17

next

case (RecvMarker i q r)

then have ¢ = p using assms by auto

then show ?thesis using RecvMarker assms by auto
qed (simp-all add: assms)

lemma snapshot-state-unchanged:
assumes
step: ¢ F ev — ¢’ and
has-snapshotted ¢ p
shows
pscp=psc'p
proof (cases occurs-on ev = p)
case Fulse
then show ?thesis
using local.step no-state-change-if-no-event by auto
next
case True
then show ?thesis
proof (cases reqular-event ev)
case True
then show ?thesis
using local.step regular-event-preserves-process-snapshots by auto
next
case Fulse
have isRecvMarker ev
proof (rule ccontr)
have isSnapshot ev V isRecvMarker ev
using False nonregular-event by blast
moreover assume ~ isRecvMarker ev
ultimately have isSnapshot ev by simp
then have ev = Snapshot p by (metis True event.collapse(4))
then have can-occur ev c
using happen-implies-can-occur local.step by blast
then have ~ has-snapshotted ¢ p unfolding can-occur-def
by (simp add: <ev = Snapshot p»)
then show Fulse using assms by auto
qed
then show ?thesis
proof —
have 3 n pa. ¢ = RecvMarker n p pa — ¢’
by (metis True <isRecoMarker ev) event.collapse(5) local.step)
then show ?thesis
using assms(2) by force
qed
qed
qed

lemma message-must-be-delivered:

18

assumes
valid: ¢ = ev — ¢’ and
delivered: (msgs ¢ i # [| A hd (msgs ¢ i) = m) A (msgs ¢’ i =[] V hd (msgs ¢’
i) # m)
shows
3p q ev = RecoMarker i p ¢ N m = Marker)
V(3pgss' m'. ev=Recwvipqss m'ANm= Msgm')
proof (cases ev)
case (Snapshot p)
then show ?thesis
proof (cases msgs ¢ i)
case Nil
then show ?thesis using delivered by simp
next
case (Cons m xs)
with assms Snapshot show ?thesis
proof (cases channel i = None)
case True
then show ?thesis using assms Snapshot by auto
next
case Fulse
then obtain r s where chan: channel i = Some (r, s) by auto
then show ?thesis
proof (cases r = p)
case True
then have msgs ¢’ i = msgs ¢ i Q@ [Marker] using assms(1) Snapshot chan
by auto
then show ?thesis using delivered by auto
next
case Fulse
then have msgs ¢’ i = msgs c i using assms Snapshot chan by simp
then show ?thesis using delivered Cons by simp
qed
qed
qed
next
case (RecvMarker i’ p q)
then have i’ = i
by (metis assms(1) delivered le-0-eq length-greater-0-conv list.size(3) recv-marker-changes-head-only-at-i
recv-marker-other-channels-not-shrinking)
moreover have Marker = m
using i’ = 9> RecvMarker assms(1) can-occur-def delivered by auto
moreover have channel i = Some (q, p)
using RecvMarker assms(1) calculation(1) can-occur-def by auto
ultimately show ?thesis using RecuMarker by simp
next
case (Trans p’ s s')
then show ?thesis
using wvalid delivered by auto

19

next
case (Send p’ ¢’ s s’ m’)
then show ?thesis
by (metis (no-types, lifting) delivered distributed-system.next.simps(4) dis-
tributed-system-azioms hd-append2 snoc-eq-iff-butlast valid)
next
case (Recv i’ p g s s’ m')
then have i = ¢’
using assms(1) delivered by auto
also have m = Msg m’
by (metis (no-types, lifting) Recv delivered list.sel(1) next-recv valid)
ultimately show %thesis using Recv by auto
qed

lemma message-must-be-delivered-2:
assumes
chkevr— ¢
m : set (msgs c 1)
m & set (msgs ¢’ i)
shows
(3p q. ev = RecvMarker i p ¢ A m = Marker) V (3p ¢ s s’ m’. ev = Recv i p
gss' m’'ANm= Msgm’)
proof —
have uneq-sets: set (msgs ¢ i) # set (msgs ¢’ 7)
using assms(2) assms(8) by blast
then obtain p ¢ where chan: channel i = Some (p, q)
using assms no-msgs-change-if-no-channel by fastforce
then show ?thesis
proof (cases ev)
case (Snapshot p’)
with Snapshot assms chan have set (msgs ¢’ i) = set (msgs ¢ i) by (cases p’
= p, auto)
then show ?thesis using uneq-sets by simp
next
case (Trans p’ s s')
then show ?%thesis using uneq-sets assms by simp
next
case (Send i’ p' q' s s’ m)
then show ?thesis
by (metis (no-types, lifting) UnCI assms(1) assms(2) assms(3) local.next.simps(4)
set-append)
next
case (RecoMarker i’ p’ ¢')
have i’ =
proof (rule ccontr)
assume ~ i’ = j
show Fulse using assms chan RecvMarker
proof (cases has-snapshotted ¢ p’)
case True

20

next

then show Fulse using assms chan RecuMarker <~ i’ = i» by simp
case Fulse
p, simp-all)
qed
qed

then show False using assms chan RecvMarker <~ i’ = i» by (cases p’

moreover have m = Marker
proof —

have msgs ¢ i’ = Marker # msgs ¢’ i’ using assms chan RecvMarker by
auto

then show ?thesis using assms <i’ = i> by simp
qed

ultimately show ?thesis using RecvMarker by simp
next

case (Recv i’ p’' ¢’ s 8" m’)
have i’ = i
proof (rule ccontr)
assume ~ i’ = {
then show Fulse

using Recv assms(1) uneg-sets by auto
qed

then have i’ =i A m = Msg m’
using Recv assms by auto

then show %thesis using Recv by simp
qged

qed

lemma recv-marker-means-snapshotted-1:
assumes
ev = RecvMarker i p ¢ and
ckev— c
shows

has-snapshotted ¢’ p
using assms snapshot-state-unchanged by (cases has-snapshotted ¢ p, auto)

lemma recv-marker-means-snapshotted-2:
fixes

¢’ ('p, s, 'm) configuration and
ev :: ('p, 's, 'm) event and
1 2 channel-id
assumes
ct ev— ¢ and

Marker : set (msgs ¢ i) and

Marker ¢ set (msgs ¢’ i) and
channel i = Some (q, p)
shows

has-snapshotted ¢’ p
proof —

21

have 3p q. ev = RecvMarker i p q
using assms message-must-be-delivered-2 by blast
then obtain r s where RecvMarker: ev = RecvMarker i r s
by blast
then have r = p
using assms(1) assms(4) can-occur-def by auto
then show ?thesis
using recv-marker-means-snapshotted-1 assms RecvMarker by blast
qed

lemma event-stays-valid-if-no-occurrence:
assumes
¢k ev— ¢ and
occurs-on ev # occurs-on ev’ and
can-occur ev’ ¢
shows
can-occur ev’ ¢’
proof (cases ev’)
case (Trans p s s')
have states ¢ p = states ¢’ p
using Trans assms(1) assms(2) no-state-change-if-no-event by auto
moreover have states ¢ p = s using can-occur-def assms Trans by simp
ultimately have states ¢’ p = s by simp
moreover have trans p s s’
using Trans assms(3) can-occur-def by auto
ultimately show “thesis
by (simp add: Trans can-occur-def)
next
case (Recvip qss' m)
then have hd (msgs ¢ i) = Msg m
proof —
from Recv have length (msgs ¢ i) > 0 using assms(8) can-occur-def by auto
then obtain m’ xs where mcqp: msgs ¢ i = m' # s
by (metis list.size(3) nat-less-le neq-Nil-conv)
then have Msg m = m’
proof (cases m’, auto)
case Marker
then have msgs ¢ i = Marker # zs by (simp add:mcqgp)
then have ™~ can-occur ev’ ¢ using Recv can-occur-def by simp
then show Fulse using assms(3) by simp
next
case (Msg msg)
then have msgs ¢ i = Msg msg # xs by (simp add: mcqp)
then show m = msg using Recv can-occur-def assms(8) by simp
qed
then show %thesis by (simp add: mcgp)
qed
show ?thesis
proof (rule ccontr)

22

~

assume asm: ~ can-occur ev’ ¢’
then have msgs ¢’ i =[] V hd (msgs ¢’ i) # Msg m
using Recv assms can-occur-def no-state-change-if-no-event distributed-system-azioms
list.case-eq-if by fastforce
then obtain i’ p’ ¢’ s”' s"" m’ where RMoR: ev = RecvMarker i’ p’ ¢’ V ev
= Recvip' q's" " m'
by (metis Recv <hd (msgs c i) = Msg m> assms(1) assms(3) can-occur-Recv
list.discI message-must-be-delivered)
then have occurs-on ev = p
proof —
have fI: states ¢ p = s A channel i = Some (q, p) ANrecvipgss' m A0 <
length (msgs ¢ i) A hd (msgs ¢ 1) = Msg m
using Recv assms(3) can-occur-def by force
have f2: RecuMarker i’ p' q' = ev V states ¢ p’ = s"" N\ channel i = Some
(¢, p") Nrecvip’ g’ s” s m' A O < length (msgs ¢ i) A hd (msgs ¢ i) = Msgm’
using RMoR assms(1) can-occur-def by force
have Ven c. 3ppa s sam. Yea ch. (- ck e caV msgscan # [V hd
(msgs ¢ n) = Marker V msgs cn =[]V Reconppassam=e)A(-chke—
cb V hd (msgs ¢ n) = Marker V hd (msgs cb n) = hd (msgs ¢ n) V msgs ¢ n = ||
V Recvn p pa s sam = e)
by (metis (no-types) message-must-be-delivered)
then show ?thesis
using f2 f1 by (metis RMoR «<msgs ¢’ i =[] V hd (msgs ¢’ i) # Msg m»
assms(1) event.disc(13,15) event.sel(3,5) length-greater-0-conv message.distinct(1)
option.inject prod.inject)
qged
then show Fulse using assms Recv by simp
qed
next
case (Send ip qs s’ m)
then have states ¢ p = states ¢’ p using assms no-state-change-if-no-event by
auto
then show can-occur ev’ ¢’ using assms assms(3) can-occur-def Send by auto
next
case (RecvMarker i p q)
then have msgs-ci: hd (msgs ¢ i) = Marker A length (msgs ¢ i) > 0
proof —
from RecvMarker have length (msgs ¢ i) > 0 using assms(3) can-occur-def
by auto
then obtain m’ zs where mci: msgs ¢ i = m' # xs
by (metis list.size(3) nat-less-le neq-Nil-conv)
then have m-mark: Marker = m’
proof (cases m’, auto)
case (Msg msg)
then have msgs ¢ i = Msg msg # xs by (simp add:mci)
then have ™~ can-occur ev’ ¢ using RecvMarker can-occur-def by simp
then show False using assms(3) by simp
qed
then show ?Zthesis by (simp add: mci)

23

qed
show ?thesis
proof (rule ccontr)
assume asm: ~ can-occur ev’ ¢’
then have msgs ¢’ i =[] V hd (msgs ¢’ i) # Marker
using RecvMarker assms(8) can-occur-def list.case-eq-if by fastforce
then have Jp q. ev = RecvMarker ¢ p ¢ N Marker = Marker using mes-
sage-must-be-delivered msgs-ci assms by blast
then obtain r s where RecvMarker-ev: ev = RecuMarker i r s by blast
then have p =r A ¢ =s
using RecvMarker assms(1) assms(3) can-occur-def by auto
then have occurs-on ev = p using assms RecvMarker-ev by auto
then show Fulse using assms using RecvMarker by auto
qed
next
case (Snapshot p)
then have ™~ has-snapshotted ¢ p using assms assms(3) can-occur-def by simp
show ?thesis
proof (rule ccontr)
assume asm: ~ can-occur ev’ ¢’
then have has-snapshotted ¢’ p using can-occur-def Snapshot by simp
then have occurs-on ev = p
using <— has-snapshotted ¢ p» assms(1) no-state-change-if-no-event by fast-
force
then show False using assms(2) Snapshot by auto
qged
qed

lemma msgs-unchanged-for-other-is:

assumes
ck ev— ¢ and
regular-event ev and
getld ev = i and
i

shows
msgs ¢ i’ = msgs ¢’ i’

proof —

have isTrans ev V isSend ev V isRecv ev using assms by simp

then show ?thesis

proof (elim disjE, goal-cases)
case I
then obtain p s s’ where ev = Trans p s s’ by (meson isTrans-def)
then show ?thesis using assms by simp

next
case 2
then obtain i’ p ¢ s s’ m where ev = Send i’ p ¢ s s’ m by (meson isSend-def)
then show %thesis using assms by simp

next
case 3

24

then obtain i’ p ¢ s s’ m where ev = Recv i’ p ¢ s s’ m by (meson isRecv-def)
with assms show ?thesis by auto
qed
qed

lemma msgs-unchanged-if-snapshotted- RecvMarker-for-other-is:
assumes
¢k ev— ¢ and
ev = RecvMarker i p ¢ and
has-snapshotted ¢ p and
i’ £
shows
msgs ¢ i’ = msgs ¢’ i’
using assms by auto

lemma event-can-go-back-if-no-sender:
assumes
¢k ev— ¢ and
occurs-on ev # occurs-on ev’ and
can-occur ev’ ¢’ and
~ isRecvMarker ev’ and
~ isSend ev
shows
can-occur ev’ ¢
proof (cases ev’)
case (Snapshot p)
then have ™~ has-snapshotted ¢’ p using assms(8) can-occur-def by simp
then have ™~ has-snapshotted ¢ p using assms(1) snapshot-state-unchanged by
force
then show “thesis using can-occur-def Snapshot by simp
next
case (RecvMarker i p q)
then show ?thesis using assms(4) by auto
next
case (Trans p s s')
then show ?thesis
using assms(1) assms(2) can-occur-def no-state-change-if-no-event assms(3)
by auto
next
case (Send p g s s’ m)
then show ?thesis
using assms(1) assms(2) can-occur-def no-state-change-if-no-event assms(3)
by auto
next
case (Recvip qss' m)
have msgs ¢’ i # Nil using Recv can-occur-def assms by auto
moreover have hd (msgs ¢’ i) = Msg m A length (msgs ¢’ i) > 0
proof —
from Recv have length (msgs ¢’ i) > 0 using assms(3) can-occur-def by auto

25

then obtain m' zs where mcqp: msgs ¢’ i = m' # s
by (metis list.size(3) nat-less-le neq-Nil-conv)
then have Msg m = m’
proof (cases m’, auto)
case Marker
then have msgs ¢’ i = Marker # xs by (simp add:mcqp)
then have ™~ can-occur ev’ ¢’ using Recv can-occur-def by simp
then show Fulse using assms(3) by simp
next
case (Msg msg)
then have msgs ¢’ i = Msg msg # xs by (simp add: mcgp)
then show m = msg using Recv can-occur-def assms(8) by simp
qed
then show %thesis by (simp add: mcgp)
qed
moreover have msgs ¢ i # Nil A hd (msgs ¢’ i) = hd (msgs c i)
proof (cases ev)
case (Snapshot p”)
then have p’ # p using assms Recv by simp
have chan: channel i = Some (q, p)
by (metis Recv assms(3) distributed-system.can-occur-Recv distributed-system-axioms)
with Snapshot assms have length (msgs ¢ i) > 0 A hd (msgs ¢ i) = hd (msgs
c'7)
proof (cases ¢ = p’)
case True
then have msgs ¢’ i = msgs ¢ i Q@ [Marker] using Snapshot chan assms by
stmp
then show ?thesis
by (metis append-self-conv2 calculation(2) hd-append?2 length-greater-0-conv
list.sel(1) message.simps(3))
next
case Fulse
then have msgs ¢’ i = msgs ¢ i using Snapshot chan assms by simp
then show ?thesis using calculation by simp
qed
then show ?thesis by simp
next
case (RecoMarker i’ p’ ¢')
then have i’ # i
using Recv assms(1) assms(2) assms(83) can-occur-def by force
then show ?thesis
proof (cases has-snapshotted ¢ p’)
case True
then have msgs ¢ i = msgs ¢’ i using i’ # > RecvMarker assms by simp
then show ?thesis using calculation by simp
next
case no-snap: False
then have chan: channel i = Some (g, p)
by (metis Recv assms(3) distributed-system.can-occur-Recv distributed-system-azioms)

26

then show ?thesis
proof (cases ¢ = p’)
case True
then have msgs ¢’ i = msgs ¢ i Q [Marker)]
using no-snap RecuMarker i’ # i assms(1) chan by auto
then show ?thesis
by (metis append-self-conv2 calculation(2) hd-append2 list.sel(1) mes-
sage.simps(3))
next
case Fulse
then have msgs ¢’ i = msgs c¢ i using RecvMarker no-snap False chan
assms i’ # iy by simp
then show ?thesis using calculation by simp
qed
qed
next
case (Trans p' s" s'")
then show ?thesis using assms(1) «<msgs ¢’ i # Nil> by auto
next
case (Send i’ p’ q' " s"" m")
have p’ # p
using Recv Send assms(2) by auto
then show ?thesis
using Recv Send assms(1) assms(5) calculation(1) by auto
next
case (Recv i’ p’ q' s"" s"" m”)
then have i’ # i using assms <ev’ = Recv i p q s ' m»
by (metis distributed-system.can-occur-Recv distributed-system-axioms event.sel(3)
next-recv option.inject prod.inject)
have msgs ¢ i = msgs ¢’ i using msgs-unchanged-for-other-is Recv <i’ # 1i»
assms(1) by auto
then show ?thesis using <msgs ¢’ i # Nil> by simp
qed
moreover have states ¢ p = states ¢’ p using no-state-change-if-no-event assms
Recv by simp
ultimately show ?thesis
using Recv assms(3) can-occur-def list.case-eq-if by fastforce
qged

lemma nonregular-event-can-go-back-if-in-distinct-processes:
assumes
¢k ev— ¢ and
reqular-event ev and
~ regular-event ev’ and
can-occur ev’ ¢’ and
occurs-on ev # occurs-on ev’
shows
can-occur ev’ ¢
proof —

27

let ?p = occurs-on ev
let ?q = occurs-on ev’
have isTrans ev V isSend ev V isRecv ev using assms by simp
moreover have isSnapshot ev’ V isRecvMarker ev’ using assms nonreqular-event
by auto
ultimately show %thesis
proof (elim disjE, goal-cases)
case I
then show ?case
using assms(1) assms(4) assms(5) event-can-go-back-if-no-sender by blast
next
case 2
then obtain s s’ where Trans: ev = Trans ?p s s’
by (metis event.collapse(1))
obtain ¢ r where RecvMarker: ev’ = RecvMarker i 2q r
using 2 by (metis event.collapse(5))
have msgs ¢ i = msgs ¢’ i
using 2(1) assms(1) assms(2) no-msg-change-if-no-event by blast
moreover have can-occur ev’ ¢’ using assms by simp
ultimately show ?thesis using can-occur-def RecvMarker
by (metis (mono-tags, lifting) 2(2) event.case-eq-if event.distinct-disc(13)
event.distinct-disc(17) event.distinct-disc(19) event.distinct-disc(7) event.sel(10))
next
case 3
then have ev’ = Snapshot ?q
by (metis event.collapse(4))
have ~ has-snapshotted ¢’ ?q
by (metis (mono-tags, lifting) 3(1) assms(4) can-occur-def event.case-eq-if
event.distinct-disc(11) event.distinct-disc(16) event.distinct-disc(6))
then have ™~ has-snapshotted ¢ ?q
using assms(1) assms(2) regular-event-preserves-process-snapshots by auto
then show ?case unfolding can-occur-def using <ev’ = Snapshot ¢
by (metis (mono-tags, lifting) event.simps(29))
next
case 4
then have ev’ = Snapshot ?q
by (metis event.collapse(4))
have ~ has-snapshotted ¢’ ?q
by (metis (mono-tags, lifting) <ev’ = Snapshot (occurs-on ev’)) assms(4)
can-occur-def event.simps(29))
then have ™~ has-snapshotted ¢ ?q
using assms(1) assms(2) regular-event-preserves-process-snapshots by auto
then show ?case unfolding can-occur-def
by (metis (mono-tags, lifting) <ev’ = Snapshot (occurs-on ev’)y event.simps(29))
next
case $
then obtain ¢ s u v’ m where ev = Send i ?p s u u’ m
by (metis event.collapse(2))
from 5 obtain i’ r where ev’ = RecvMarker i’ ?q r

28

by (metis event.collapse(5))
then have pre: hd (msgs ¢’ i') = Marker A length (msgs ¢’ i") > 0
by (metis (mono-tags, lifting) assms(4) can-occur-def event.simps(30))
have hd (msgs ¢ i') = Marker A length (msgs ¢ i’) > 0
proof (cases i’ = i)
case Fulse
then have msgs ¢ i’ = msgs ¢’ i’
by (metis <ev = Send i (occurs-on ev) s u uw' m> assms(1) assms(2)
event.sel(8) msgs-unchanged-for-other-is)
then show ?thesis using pre by auto
next
case True
then have msgs ¢’ i’ = msgs ¢ i’ Q [Msg m)|
by (metis <ev = Send i (occurs-on ev) s u u’ my assms(1) next-send)
then have length (msgs ¢’ i) > 1
using pre by fastforce
then have length (msgs c i) > 0
by (simp add: <msgs ¢’ i’ = msgs ¢ i’ Q [Msg m]»)
then show ?thesis
using <msgs ¢’ i’ = msgs ¢ i’ Q [Msg m]s> pre by auto
qed
then show ?case unfolding can-occur-def using <ev’ = RecvMarker i’ 2q r»
by (metis (mono-tags, lifting) assms(4) can-occur-def event.simps(30))
next
case 0
then obtain ¢ s u v’ m where ev = Recv i %p s uu’' m
by (metis event.collapse(3))
from 6 obtain i’ r where ev’ = RecvMarker i’ ?q r
by (metis event.collapse(5))
then have i’ # i
proof —
have ?p # ?q using assms by simp
moreover have channel i = Some (s, ?p)
by (metis <ev = Recv i (occurs-on ev) s u u’ my assms(1) distributed-system.can-occur-Recv
distributed-system-azioms happen-implies-can-occur)
moreover have channel i’ = Some (r, ?q)
by (metis (mono-tags, lifting) <ev’ = RecvMarker i’ (occurs-on ev’) r»
assms(4) can-occur-def event.case-eq-if event.disc(5,10,15,20) event.sel(5,10,13))
ultimately show ?thesis by auto
qed
then show ?case
by (metis (mono-tags, lifting) 6(1) <ev = Recv i (occurs-on ev) s uu' my <ev’ =
RecvMarker i’ (occurs-on ev’) vy assms(1) assms(4) can-occur-def event.case-eq-if
event.distinct-disc(13) event.distinct-disc(17) event.distinct-disc(7) event.sel(10)
next-recv)
qed
qed

lemma same-state-implies-same-result-state:

29

assumes
states ¢ p = states d p
¢k ev— ¢ and
dF ev— d
shows
states d’ p = states ¢’ p
proof (cases occurs-on ev = p)
case Fulse
then show ?thesis
by (metis assms(1—38) distributed-system.no-state-change-if-no-event distributed-system-azioms)
next
case True
then show ?thesis
using assms by (cases ev, auto)
qed

lemma same-snapshot-state-implies-same-result-snapshot-state:
assumes
ps ¢cp = psdpand
states ¢ p = states d p and
¢k ev— ¢ and
dF ev— d
shows
psd'p=psc'p
proof (cases occurs-on ev = p)
case Fulse
then show ?thesis
using assms no-state-change-if-no-event by auto
next
case True
then show ?thesis
proof (cases ev)
case (Snapshot q)
then have p = ¢ using True by auto
then show ?thesis
using Snapshot assms(2) assms(3) assms(4) by auto
next
case (RecvMarker i q r)
then have p = ¢ using True by auto
then show ?thesis
proof —
have f1: Acca. - cF ev— ca V pscp= NoneV pscp=pscap
using RecvMarker <p = ¢» by force
have Ac ca. ps ¢ p # None V = ¢t ev— ca V ps ca p = Some (states ¢ p)
using RecvMarker <p = ¢> by force
then show ?thesis
using f1 by (metis (no-types) assms(1) assms(2) assms(3) assms(4))
qed
next

30

case (Trans q s s')
then have p = ¢
using True by auto
then show ?thesis
using Trans assms(1) assms(3) assms(4) by auto
next
case (Send i ¢ ru u’ m)
then have p = ¢ using True by auto
then show ?thesis
using Send assms(1) assms(3) assms(4) by auto
next
case (Recv i qruu' m)
then have p = ¢q using True by auto
then show ?thesis
using Recv assms(1) assms(3) assms(4) by auto
qged
qed

lemma same-messages-imply-same-resulting-messages:
assumes
msgs ¢ i = msgs d i
¢k ev— ¢ and
dF ev— d and
regqular-event ev
shows
msgs ¢’ 1 = msgs d' i
proof —
have isTrans ev V isSend ev V isRecv ev using assms
by simp
then show ?thesis
proof (elim disjE)
assume isTrans ev
then show ?thesis
by (metis assms(1) assms(2) assms(3) isTrans-def next-trans)
next
assume isSend ev
then obtain i’ r s u u’ m where ev = Send i’ r s u u’ m
by (metis event.collapse(2))
with assms show Zthesis by (cases i = i/, auto)
next
assume isRecv ev
then obtain i’ r s u u’ m where Recv: ev = Recv i’ rsuu'm
by (metis event.collapse(3))
with assms show ?thesis by (cases i = i/, auto)
qed
qed

lemma Trans-msg:
assumes

31

¢k ev— ¢ and
isTrans ev

shows
msgs ¢ 1 = msgs ¢’ i

using assms(1) assms(2) no-msg-change-if-no-event regular-event by blast

lemma new-msg-in-set-implies-occurrence:
assumes
¢k ev— ¢ and
m ¢ set (msgs ¢ i) and
m € set (msgs ¢’ ©) and
channel i = Some (p, q)
shows
occurs-on ev = p (is 7P)
proof (rule ccontr)
assume ~ ?P
have set (msgs ¢’ i) C set (msgs c i)
proof (cases ev)
case (Snapshot 1)
then have msgs ¢’ i = msgs ¢ ¢ using <~ 2P assms by simp
then show %thesis by auto
next
case (RecvMarker i’ r s)
then show ?thesis
proof (cases has-snapshotted ¢ r)
case True
then show ?thesis
proof (cases i’ = i)
case True
then have Marker # msgs ¢’ i = msgs c i using RecvMarker True assms
by simp
then show ?thesis
by (metis set-subset-Cons)
next
case Fulse
then show ?thesis using RecvMarker True assms by simp
qed
next
case no-snap: False
have chan: channel i’ = Some (s, 1)
using RecvMarker assms(1) can-occur-def by auto
then show ?thesis
proof (cases i’ = i)
case True
then have Marker # msgs ¢’ i = msgs ¢ i using RecvMarker assms by
stmp
then show ?thesis by (metis set-subset-Cons)
next
case Fulse

32

then have msgs ¢’ i = msgs c¢ i using ™~ ?P) RecvMarker assms no-snap
by simp
then show ?thesis by simp
qed

qed
next

case (Trans v u u’)

then show ?thesis using assms <~ ?P) by simp
next

case (Send i’ r s u u’ m’)

then have i’ # i using ™ ?P) can-occur-def assms by auto

then have msgs ¢ i = msgs ¢’ i using <~ ?P»> assms Send by simp

then show ?thesis by simp
next

case (Recv i’ r s uu' m’)

then show ?thesis

by (metis (no-types, lifting) assms(1) eq-iff local.next.simps(5) set-subset-Cons)
qed
moreover have ~ set (msgs ¢’ i) C set (msgs ¢ i) using assms by blast
ultimately show Fulse by simp

qed

lemma new-Marker-in-set-implies-nonreqular-occurence:
assumes
¢k ev— ¢ and
Marker ¢ set (msgs ¢ i) and
Marker € set (msgs ¢’ i) and
channel i = Some (p, q)
shows
~ regular-event ev (is 7P)
proof (rule ccontr)
have occurs-on ev = p
using assms new-msg-in-set-implies-occurrence by blast
assume ~ ?P
then have isTrans ev V isSend ev V isRecv ev by simp
then have Marker ¢ set (msgs ¢’ i)
proof (elim disjE, goal-cases)
case I
then obtain r v v’ where ev = Trans r u u’
by (metis event.collapse(1))
then show ?thesis
using assms(1) assms(2) by auto
next
case 2
then obtain i’ 7 ¢ u v’ m where ev = Send i’ r qu u’' m
by (metis event.collapse(2))
then show ?thesis
by (metis (no-types, lifting) Un-iff assms(1) assms(2) empty-iff empty-set
insert-iff list.set(2) message.distinct(1) next-send set-append)

33

next
case 3
then obtain i’ 7 ¢ u v’ m where ev = Recv i’ r q u u’' m
by (metis event.collapse(3))
then show ?thesis
by (metis assms(1) assms(2) list.set-intros(2) next-recv)
qed
then show Fulse using assms by simp
qed

lemma RecvMarker-implies-Marker-in-set:
assumes
¢t ev— ¢ and
ev = RecvMarker cid p q
shows
Marker € set (msgs ¢ cid)
by (metis (mono-tags, lifting) assms(1) assms(2) can-occur-def distributed-system.happen-implies-can-occur
distributed-system-azioms event.simps(30) list.set-sel(1) list.size(3) nat-less-le)

lemma RecvMarker-given-channel:
assumes
isRecvMarker ev and
getld ev = cid and
channel cid = Some (p, q) and
can-occur ev ¢
shows
ev = RecvMarker cid q p
by (metis (mono-tags, lifting) assms(1) assms(2) assms(3) assms(4) can-occur-def
event.case-eq-if event.collapse(5) event.distinct-disc(8,14,18,20) option.inject prod.inject)

lemma Recv-given-channel:
assumes
isRecv ev and
getld ev = cid and
channel cid = Some (p, q) and
can-occur ev ¢
shows
ds s’ m. ev = Recv cid ¢p s s’ m
by (metis assms(1) assms(2) assms(83) assms(4) distributed-system.can-occur-Recv
distributed-system-azioms event.collapse(3) option.inject prod.inject)

lemma same-cs-if-not-recv:
assumes
¢t ev— ¢ and
~ isRecv ev
shows
fst (es ¢ cid) = fst (es ¢’ cid)
proof (cases channel cid = None)
case True

34

then show ?thesis
using assms(1) no-cs-change-if-no-channel by auto
next
case Fulse
then obtain p ¢ where chan: channel cid = Some (p, q) by auto
then show ?thesis
proof (cases ev)
case (Snapshot)
with Snapshot assms chan show ?thesis by (cases r = ¢, auto)
next
case (RecvMarker cid’ r s)
then show ?thesis
proof (cases has-snapshotted c r)
case True
with assms RecvMarker chan show ?thesis by (cases cid’ = cid, auto)
next
case no-snap: False
then show ?thesis
proof (cases cid’ = cid)
case True
then show ?thesis using RecvMarker assms chan by auto
next
case Fulse
with assms RecvMarker chan no-snap show ?thesis by (cases r = ¢, auto)
qed
qged
next
case (Trans r u u’)
then show ?thesis using assms by auto
next
case (Send r s u u’)
then show ?thesis using assms by auto
qed (metis assms(2) isRecv-def)
qed

lemma done-only-from-recv-marker:
assumes
¢k ev— ¢ and
channel cid = Some (p, q) and
snd (cs ¢ cid) # Done and
snd (cs ¢’ cid) = Done
shows
ev = RecvMarker cid q p
proof (rule ccontr)
assume ~ ev = RecvMarker cid q p
then show Fulse
proof (cases isRecvMarker ev)
case True
then obtain cid’ s r where RecuMarker: ev = RecvMarker cid’ s r by (meson

35

isRecvMarker-def)
have cid # cid’
proof (rule ccontr)
assume ~ cid # cid’
then show Fulse
using <ev = RecvMarker cid’ s r» <ev # RecvMarker cid q p> assms(1)
assms(2) can-occur-def by auto
qed
then have snd (cs ¢’ cid) # Done
proof (cases has-snapshotted c s)
case True
then show ?thesis using RecvMarker assms <cid # cid’y by simp
next
case Fulse
with RecoMarker assms <cid # cid’» show ?thesis by (cases s = q, auto)
qed
then show Fulse using assms by auto
next
case Fulse
then have isSnapshot ev V isTrans ev V isSend ev V isRecv ev
using event.exhaust-disc by blast
then have snd (c¢s ¢’ cid) # Done
proof (elim disjE, goal-cases)
case I
then obtain r where Snapshot: ev = Snapshot r
by (meson isSnapshot-def)
with assms show ?thesis by (cases ¢ = r, auto)
next
case 2
then obtain r v v’ where ev = Trans r u u’
by (meson isTrans-def)
then show ?case using assms by auto
next
case 3
then obtain cid’ r s u u’ m where ev = Send cid’ r s u u' m
by (meson isSend-def)
then show ?thesis using assms by auto
next
case 4
then obtain cid’ r s u u’ m where Recv: ev = Recv cid' r s u v’ m
by (meson isRecv-def)
show ?thesis
using Recv assms proof (cases cid = cid’)
case True
then have snd (cs ¢ cid) = NotStarted V snd (cs ¢ cid) = Recording
using assms(3) recording-state.exhaust by blast
then show ?thesis
proof (elim disjE, goal-cases)
case I

36

then have snd (cs ¢’ cid’) = NotStarted
using True Recv assms(1) by auto
then show ?case using True by auto
next
case 2
then have snd (cs ¢’ cid’) = Recording
using True Recv assms(1) by auto
then show ?case using True by auto
qed
qed auto
qed
then show Fulse using assms by auto
qed
qed

lemma cs-not-not-started-stable:
assumes
¢t ev— ¢ and
snd (cs ¢ cid) # NotStarted and
channel cid = Some (p, q)
shows
snd (es ¢’ cid) # NotStarted
using assms proof (cases ev)
case (Snapshot r)
then show ?thesis
by (metis assms(1) assms(2) next-snapshot recording-state.simps(2) sndl)
next
case (RecvMarker cid’ r s)
then show ?thesis
proof (cases has-snapshotted c r)
case True
with RecvMarker assms show ?thesis by (cases cid = cid’, auto)
next
case no-snap: False
then show ?thesis
proof (cases cid = cid)
case True
then show ?thesis using RecvMarker assms by auto
next
case Fulse
with RecvMarker assms no-snap show ?thesis by (cases s = p, auto)
qed
qed
next
case (Recv cid’ r s u u’ m)
then have snd (cs ¢ cid) = Recording V snd (cs ¢ cid) = Done
using assms(2) recording-state.exhaust by blast
then show ?%thesis
proof (elim disjE, goal-cases)

37

case I
then show ?thesis
by (metis (no-types, lifting) Recv assms(1) eq-snd-iff next-recv recording-state.distinct(1))
next
case 2
with Recv assms show ?thesis by (cases cid = cid’, auto)
qed
qed auto

lemma fst-cs-changed-by-recv-recording:
assumes
step: ¢ ev — ¢’ and
fst (es ¢ cid) # fst (cs ¢’ cid) and
channel cid = Some (p, q)
shows
snd (¢s ¢ cid) = Recording A (3p qu u’ m. ev = Recv cid g p u u’ m)
proof —
have oc-on: occurs-on ev = ¢
proof —
obtain nn :: ('p, s, ‘'m) event = nat and aa :: ('p, 's, 'm) event = 'p and
aaa :: ('p, s, 'm) event = 'p and bb :: ('p, 's, 'm) event = 's and bba :: ('p, ’s,
'm) event = 's and cc :: ('p, 's, 'm) event = 'm where
f1:Ve. (— isRecv e V e = Recv (nn e) (aa e) (aaa e) (bb e) (bba e) (cc €)) A
(isRecv eV (Yn a aa b ba c. e # Recv n a aa b ba c))
by (metis isRecv-def)
then have f2: ¢ - Recv (nn ev) (aa ev) (aaa ev) (bb ev) (bba ev) (cc ev) — ¢’
by (metis (no-types) assms(2) local.step same-cs-if-not-recv)
have f3: V20 z1 27 8. (20 # z7 — c¢s (z8::("p, 's, 'm) configuration) z0 =
cs (z1:('p, 's, -) configuration) z0) = (z0 = 7 V cs 28 20 = c¢s z1 z0)
by auto
have f/: Va0 x1 z7 28. (7 # z0 — msgs (z1::('p, 's, 'm) configuration) x0
= msgs (28::("p, 's, -) configuration) z0) = (z7 = 20 V msgs z1 0 = msgs z8 z0)
by auto
have Vz0 x1 26 28. (20 # 16 — states (z1:('p, 's, 'm) configuration) z0 =
states (x8::(-, -, 'm) configuration) z0) = (x0 = x6 V states x1 ©0 = states 8 z0)
by fastforce
then have can-occur (Recv (nn ev) (aa ev) (aaa ev) (bb ev) (bba ev) (cc ev)) ¢
A states ¢ (aa ev) = bb ev A states ¢’ (aa ev) = bba ev A (Va. a = aa ev V states
¢ a = states ¢ a) A msgs ¢ (nn ev) = Msg (cc ev) # msgs ¢’ (nn ev) A (Vn. nn
ev=mnV msgsc' n=msgscn) AN Va.psca=psc’ a) AN(Vn.n=nnevV cs
cn=-csc' n)A (if snd (cs ¢ (nn ev)) = Recording then cs ¢’ (nn ev) = (fst (¢cs ¢
(nn ev)) @ [cc ev], Recording) else cs ¢ (nn ev) = cs ¢’ (nn ev))
using f4 f3 f2 by force
then show ?thesis
using fI by (metis (no-types) Pair-inject assms(2) assms(3) can-occur-Recv
event.sel(3) local.step option.sel same-cs-if-not-recv)
qed
have isRecv ev (is ?P)
proof (rule ccontr)

38

assume ~ ?P

then have fst (¢s ¢ cid) = fst (cs ¢’ cid) by (metis local.step same-cs-if-not-recv)
then show Fulse using assms by simp

qed

then obtain cid’ r s u u’ m where Recv: ev = Recv cid’ r s u v’ m by (meson

isRecv-def)

have cid = cid’

proof (rule ccontr)
assume ~ cid = cid’
then have fst (cs ¢ cid) = fst (¢s ¢’ cid) using Recv step by auto
then show Fulse using assms by simp

qed

moreover have snd (cs ¢ cid) = Recording

proof (rule ccontr)
assume ~ snd (cs ¢ cid) = Recording

then have fst (cs ¢ cid) = fst (¢s ¢’ cid) using Recv step <cid = cid”y by auto
then show Fulse using assms by simp

qed

ultimately show ?thesis using Recv by simp

qed

lemma no-marker-and-snapshotted-implies-no-more-markers:
assumes
¢k ev— ¢ and
has-snapshotted ¢ p and
Marker ¢ set (msgs ¢ cid) and
channel cid = Some (p, q)
shows
Marker ¢ set (msgs ¢’ cid)
proof (cases ev)
case (Snapshot r)
then have r # p
using assms(1) assms(2) can-occur-def by auto
then have msgs ¢ cid = msgs ¢’ cid using assms Snapshot by simp
then show “thesis using assms by simp
next
case (RecvMarker cid’ r s)
have cid # cid’
proof (rule ccontr)
assume ~ cid # cid’
moreover have can-occur ev ¢ using happen-implies-can-occur assms by blast
ultimately have Marker : set (msgs ¢ cid) using can-occur-def RecvMarker
by (metis (mono-tags, lifting) assms(1) event.simps(30) hd-in-set list.size(3)
recv-marker-other-channels-not-shrinking zero-order(1))
then show Fulse using assms by simp
qed
then have msgs ¢ cid = msgs ¢’ cid
proof (cases r = p)
case True

39

then show ?thesis
using RecvMarker <cid # cid’s assms(1) assms(2) msgs-unchanged-if-snapshotted-RecvMarker-for-other-is
by blast
next
case Fulse
with RecvMarker <cid # cid’s step assms show ?thesis by (cases has-snapshotted
¢ r, auto)
qed
then show “thesis using assms by simp
next
case (Trans r u u’)
then show ?thesis using assms by auto
next
case (Send cid' r s u u’ m)
with assms Send show ?thesis by (cases cid = cid’, auto)
next
case (Recv cid' r s u u’ m)
with assms Recv show ?Zthesis by (cases cid = cid’, auto)
qed

lemma same-messages-if-no-occurrence:
assumes
ck ev— ¢ and
~ occurs-on ev = p and
~ occurs-on ev = ¢ and
channel cid = Some (p, q)
shows
msgs ¢ cid = msgs ¢’ cid A c¢s ¢ cid = ¢s ¢’ cid
proof (cases ev)
case (Snapshot r)
then show ?thesis using assms by auto
next
case (RecvMarker cid’ r s)
have cid # cid’
by (metis RecoMarker-given-channel assms(1) assms(3) assms(4) RecoMarker
event.sel(5,10) happen-implies-can-occur isRecoMarker-def)
have # a. channel cid = Some (r, q)
using assms(2) assms(4) RecvMarker by auto
with RecvMarker assms <cid # cid’y show ?thesis by (cases has-snapshotted ¢
r, auto)
next
case (Trans r v u’)
then show ?thesis using assms by auto
next
case (Send cid’' r s u u’ m)
then have cid # cid’
by (metis (mono-tags, lifting) Pair-inject assms(1) assms(2) assms(4) can-occur-def
event.sel(2) event.simps(27) happen-implies-can-occur option.inject)
then show ?thesis using assms Send by simp

40

next

case (Recv cid’ r s u u’ m)

then have cid # cid’

by (metis assms(1) assms(3) assms(4) distributed-system.can-occur-Recv dis-

tributed-system.happen-implies-can-occur distributed-system-axioms event.sel(3) op-
tion.inject prod.inject)

then show ?thesis using assms Recv by simp
qed

end

end

2 Traces

Traces extend transitions to finitely many intermediate events.

theory Trace
imports
HOL— Library.Sublist
Distributed-System

begin
context distributed-system
begin

We can think of a trace as the transitive closure of the next relation. A
trace consists of initial and final configurations ¢ and ¢/, with an ordered list
of events t occurring sequentially on ¢, yielding ¢’.

inductive (in distributed-system) trace where
tr-init: trace c [] ¢
| tr-step: [¢ F ev — ¢/; trace ¢’ t ¢]
= trace ¢ (ev # t) ¢”

2.1 Properties of traces

lemma trace-trans:
shows
[trace ¢ t ¢/
trace ¢’ t’ ¢
| = trace ¢ (t @ ¢) ¢”
proof (induct ¢ t ¢’ rule:trace.induct)
case tr-init
then show ?Zcase by simp
next
case tr-step
then show ?case using trace.tr-step by auto

1

41

qed

lemma trace-decomp-head:
assumes
trace ¢ (ev # t) ¢’
shows
Je”. ¢k ev ¢ A trace ¢ t ¢’
using assms trace.simps by blast

lemma trace-decomp-tail:
shows
trace ¢ (t Q [ev]) ¢/ = " trace ct ¢ AN ¢+ ev > ¢’
proof (induct t arbitrary: c)
case Nil
then show ?case
by (metis (mono-tags, lifting) append-Nil distributed-system.trace.simps dis-
tributed-system-azioms list.discl list.sel(1) list.sel(3))
next
case (Cons ev' t)
then obtain d where step: ¢ - ev’ — d and trace d (t @ [ev]) ¢’ using
trace-decomp-head by force
then obtain d’ where tr: trace d t d’ and d’t ev — ¢’ using Cons.hyps by
blast
moreover have trace ¢ (ev’ # t) d’ using step tr trace.tr-step by simp
ultimately show ?case by auto
qged

lemma trace-snoc:
assumes
trace ¢ t ¢’ and
'k evi e
shows
trace ¢ (t Q [ev]) ¢
using assms(1) assms(2) tr-init tr-step trace-trans by auto

lemma trace-rev-induct [consumes 1, case-names tr-rev-init tr-rev-step):
[trace c t ¢,
(Ae. Pefl e
(Actc'eve tracectc = Pctc = c'Fev "= Pc(tQ [ev])
c/l)
]= Pctc
proof (induct t arbitrary: ¢’ rule:rev-induct)
case Nil
then show ?case
using distributed-system.trace.cases distributed-system-axioms by blast
next
case (snoc ev t)
then obtain ¢’ where trace ¢ t ¢'' ¢+ ev — ¢’ using trace-decomp-tail by
blast

42

then show ?case using snoc by simp
qed

lemma trace-and-start-determines-end:

shows

trace ¢ t ¢! = trace c t d' = ¢’ = d’

proof (induct ¢ t ¢’ arbitrary: d’ rule:trace-rev-induct)

case tr-rev-init

then show “case using trace.cases by fastforce
next

case (tr-rev-step ¢ t ¢’ ev ¢”)

then obtain d’’ where trace ¢ t d"’ d”’ + ev — d’ using trace-decomp-tail by
blast

then show “case using tr-rev-step state-and-event-determine-next by simp
qed

lemma suffiz-split-trace:
shows
[trace ¢ t ¢
suffiz t' t
] = 3" trace ¢ t' ¢’
proof (induct t arbitrary: c)
case Nil
then have ¢’ = [] by simp
then have trace ¢’ t' ¢’ using tr-init by simp
then show ?case by blast
next
case (Cons ev t'')
from Cons.prems have ¢: suffiz t' t'" V t' = ev # t”’ by (meson suffiz-Cons)
thus ?case
proof (cases suffiz t’ t"')
case True
then show %thesis using Cons.hyps Cons.prems(1) trace.simps by blast
next
case Fulse
hence t’' = ev # t'' using ¢ by simp
thus ?thesis using Cons.hyps Cons.prems by blast

qed
qed
lemma prefiz-split-trace:
fixes
¢ ('p, s, 'm) configuration and
t:('p, s, 'm) trace
shows
[3¢’ trace c t ¢
prefiz t' t

] = 3" trace c t’' "
proof (induct t rule:rev-induct)

43

case Nil
then show ?case by simp
next
case (snoc ev t'"')
from snoc.prems have g¢: prefix t' t"' Vv t' = t" Q [ev] by auto
thus ?Zcase
proof (cases prefix t’ t'')
case True
thus ?thesis using trace-decomp-tail using snoc.hyps snoc.prems(1) trace.simps
by blast
next
case Fulse
thus ?thesis using ¢ snoc.prems by fast
qed
qed

lemma split-trace:

shows
[trace ¢ t ¢
t=t'a@tt”

] = 3" trace ¢ t’' ¢"" A trace ¢ t" ¢’
proof (induct t'" arbitrary: t’)
case Nil
then show ?case using tr-init by auto
next
case (Cons ev t'')
obtain ¢'’ where p: trace ¢ (t' Q [ev]) ¢
using Cons.prems prefiz-split-trace rotatel .simps(2) by force
then have trace ¢’ t" ¢’
using Cons.hyps Cons.prems trace-and-start-determines-end by force
then show ?Zcase
by (meson distributed-system.tr-step distributed-system.trace-decomp-tail dis-
tributed-system-azioms p)
qed

1

2.2 Describing intermediate configurations

definition construct-fun-from-rel :: (a * 'b) set = 'a = 'b where
construct-fun-from-rel R x = (THE y. (z,y) € R)

definition trace-rel where
trace-rel = {((z, t), y). trace z t' y}

lemma fun-must-admit-trace:
shows
single-valued R => = € Domain R
= (z, construct-fun-from-rel R z) € R
unfolding construct-fun-from-rel-def
by (rule thel”) (auto simp add: single-valued-def)

44

lemma single-valued-trace-rel:
shows
single-valued trace-rel
proof (rule single-valuedI)
fix zyy’
assume asm: (z, y) € trace-rel (z, y') € trace-rel
then obtain z’ ¢t where z = (z/, 1)
by (meson surj-pair)
then have trace z’ t y trace 2’ t y’
using asm trace-rel-def by auto
then show y = y’
using trace-and-start-determines-end by blast
qed

definition run-trace where
run-trace = construct-fun-from-rel trace-rel

In order to describe intermediate configurations of a trace we introduce the
s function definition, which, given an initial configuration ¢, a trace ¢ and
an index ¢ € N, determines the unique state after the first ¢ events of t.

definition s where
scti= (THE ¢ trace c (take i t) ¢)

lemma s-is-partial-execution:
shows
s ¢ t i = run-trace (c, take i t)
unfolding s-def run-trace-def
construct-fun-from-rel-def trace-rel-def
by auto

lemma exists-trace-for-any-i:

assumes
J¢’. trace ¢ t ¢’
shows
trace ¢ (take i t) (s ¢ t 1)
proof —

have prefix (take i t) ¢t using take-is-prefix by auto
then obtain ¢ where tr: trace ¢ (take i t) ¢ using assms prefiz-split-trace by
blast
then show ?thesis
proof —
have ((c, take i t), s ¢ t i) € trace-rel
unfolding s-def trace-rel-def construct-fun-from-rel-def
by (metis case-prod-conv distributed-system.trace-and-start-determines-end
distributed-system-azioms mem-Collect-eq the-equality tr)
then show %thesis by (simp add: trace-rel-def)
qed
qed

45

lemma exists-trace-for-any-i-j:
assumes
J¢’. trace ¢ t ¢’ and
i<j
shows
trace (s ¢ t i) (take (j —) (drop i t)) (s ¢ tj)
proof —
have trace ¢ (take j t) (s ¢ t j) using exists-trace-for-any-i assms by simp
from <j > ©> have take j t = take i t Q (take (j — @) (drop i t))
by (metis le-add-diff-inverse take-add)
then have trace ¢ (take i t) (s ¢t i) A trace (s ¢ t i) (take (j — ©) (drop i t)) (s
cti)
by (metis (no-types, lifting) assms(1) exists-trace-for-any-i split-trace trace-and-start-determines-end)
then show ?thesis by simp
qed

lemma step-Suc:
assumes
i < length t and
valid: trace ¢ t ¢’
shows (s cti)bF (t! i) — (s ct (Suci))
proof —
have ez-trace: trace (s ¢ t i) (take (Suc @ — i) (drop i t)) (s ¢ ¢t (Suc 7))
using exists-trace-for-any-i-j le-less valid by blast
moreover have Suc i — i = 1 by auto
moreover have take 1 (drop i t) = [t !]
by (metis «Suc i — i = 1> assms(1) hd-drop-conv-nth le-add-diff-inverse lessl
nat-less-le same-append-eq take-add take-hd-drop)
ultimately show ?thesis
by (metis list.discI trace.simps trace-decomp-head)
qed

2.3 Trace-related lemmas

lemma snapshot-state-unchanged-trace:
assumes
trace ¢ t ¢’ and
ps ¢ p = Some u
shows
ps ¢’ p = Some u
using assms snapshot-state-unchanged by (induct ¢ t ¢'; auto)

lemma no-state-change-if-only-nonregular-events:
shows
[trace c t ¢’
ﬂev. ev € set t A regular-event ev A occurs-on ev = p;
states ¢ p = st
| = states ¢’ p = st

46

proof (induct ¢ t ¢’ rule:trace-rev-induct)
case (tr-rev-init c)
then show ?case by simp
next
case (tr-rev-step ¢ t ¢’ ev ¢”)
then have states ¢’ p = st
proof —
have ﬂev. ev : set t A regular-event ev A occurs-on ev = p
using tr-rev-step by auto
then show %thesis using tr-rev-step by blast
qed
then show ?case
using tr-rev-step no-state-change-if-no-event no-state-change-if-nonregular-event
by auto
qed

lemma message-must-be-delivered-2-trace:
assumes
trace ¢ t ¢’ and
m : set (msgs ¢ i) and
m ¢ set (msgs ¢’ i) and
channel i = Some (q, p)
shows
Jev € sett. (Ap q. ev = RecoMarker i p ¢ A m = Marker) V (3p q¢s s’ m'. ev
= Recvigpss' m'"ANm= Msgm’
proof (rule ccontr)
assume ~ (Jev € set t. (Ip q. ev = RecvMarker i p ¢ A m = Marker) vV (Ip q
ss"m’. ev=Revigpss m'ANm= Msgm')) (is ?P)
have [trace ¢ t ¢'; m : set (msgs ¢ ©); P | = m : set (msgs ¢’ 7)
proof (induct ¢ t ¢’ rule:trace-rev-induct)
case (tr-rev-init c)
then show ?case by simp
next
case (tr-rev-step ¢ t d ev ¢’)
then have m-in-set: m : set (msgs d)
using tr-rev-step by auto
then show ?case
proof (cases ev)
case (Snapshot)
then show ?thesis
using distributed-system.message-must-be-delivered-2 distributed-system-axioms
m-in-set tr-rev-step.hyps(3) by blast
next
case (RecvMarker i’ r s)
then show ?thesis
proof (cases m = Marker)
case True
then have i’ # i using t¢r-rev-step RecoMarker by simp
then show ?thesis

47

using RecvMarker m-in-set message-must-be-delivered-2 tr-rev-step.hyps(3)
by blast
next
case Fulse
then show ?thesis
using RecvMarker tr-rev-step.hyps(8) m-in-set message-must-be-delivered-2
by blast
qed
next
case (Trans r u u’)
then show ?thesis
using tr-rev-step.hyps(3) m-in-set by auto
next
case (Send i’ r s u u’ m’)
then show ?Zthesis
using distributed-system.message-must-be-delivered-2 distributed-system-axioms
m-in-set tr-rev-step.hyps(3) by blast
next
case (Recv i’ rsuu’ m’)
then show ?Zthesis
proof (cases Msg m' = m)
case True
then have i’ # i using Recv tr-rev-step by auto
then show ?thesis
using Recv m-in-set tr-rev-step(3) by auto
next
case Fulse
then show ?thesis
by (metis Recv event.distinct(17) event.inject(3) m-in-set message-must-be-delivered-2
tr-rev-step.hyps(3))
qed
qed
qed
then have m : set (msgs ¢’ i) using assms <?P»> by auto
then show Fulse using assms by simp
qed

lemma marker-must-be-delivered-2-trace:
assumes
trace c t ¢’ and
Marker : set (msgs ¢ i) and
Marker ¢ set (msgs ¢’ i) and
channel i = Some (p, q)
shows
Jev € set t. (p q. ev = RecvMarker i p q)
proof —
show Jdev € set t. (Ap q. ev = RecuMarker i p q)
using assms message-must-be-delivered-2-trace by fast
qed

48

lemma snapshot-stable:
shows
[trace ¢ t ¢
has-snapshotted ¢ p
] = has-snapshotted ¢’ p
proof (induct ¢ t ¢’ rule:trace-rev-induct)
case (lr-rev-init c)
then show “case by blast
next
case (tr-rev-step ¢ t ¢’ ev ¢”)
then show ?case
proof (cases ev)
case (Snapshot q)
then have p # ¢ using tr-rev-step next-snapshot can-occur-def by auto
then show ?thesis using Snapshot tr-rev-step by auto
next
case (RecvMarker i q r)
with tr-rev-step show ?thesis
by (cases p = ¢; auto)
qed simp-all
qged

lemma snapshot-stable-2:
shows
trace ¢ t ¢/ => ~ has-snapshotted ¢’ p = ~ has-snapshotted c p
using snapshot-stable by blast

lemma no-markers-if-all-snapshotted:
shows
[trace c t ¢
V p. has-snapshotted ¢ p;
Marker ¢ set (msgs c i)
| = Marker ¢ set (msgs ¢’ i)
proof (induct ¢ t ¢’ rule:trace-rev-induct)
case (tr-rev-init c)
then show ?case by simp
next
case (tr-rev-step ¢ t ¢’ ev ¢”)
have all-snapshotted: ¥ p. has-snapshotted ¢’ p using snapshot-stable tr-rev-step
by auto
have no-marker: Marker ¢ set (msgs ¢’ i) using tr-rev-step by blast
then show ?case
proof (cases ev)
case (Snapshot)
then show ?thesis using can-occur-def tr-rev-step all-snapshotted by auto
next
case (RecvMarker i’ r s)
have i’ # i

49

proof (rule ccontr)
assume ~ i’ # |
then have Marker : set (msgs c ©)
using can-occur-def RecoMarker tr-rev-step RecvMarker-implies-Marker-in-set
by blast
then show Fulse using tr-rev-step by simp
qed
then show ?thesis using tr-rev-step all-snapshotted no-marker RecoMarker by
auto
next
case (Trans p s s')
then show ?thesis using tr-rev-step no-marker by auto
next
case (Send i’ r s u u’ m)
then show ?thesis
proof (cases i’ = i)
case True
then have msgs ¢’ i = msgs ¢’ i @ [Msg m] using tr-rev-step Send by auto
then show ?thesis using no-marker by auto
next
case Fulse
then show ?thesis using Send tr-rev-step no-marker by auto
qed
next
case (Recv i’ r s uu' m)
then show ?thesis
proof (cases i = i)
case True
then have msgs ¢’/ i = tl (msgs ¢’ i) using tr-rev-step Recv by auto
then show %thesis using no-marker by (metis list.sel(2) list.set-sel(2))
next
case Fulse
then show ?thesis using Recv tr-rev-step no-marker by auto
qed
qed
qed

lemma event-stays-valid-if-no-occurrence-trace:
shows
[trace ¢ t ¢
list-all (Aev. occurs-on ev # occurs-on ev’) t;
can-occur ev’ ¢
] = can-occur ev’ ¢’
proof (induct ¢ t ¢’ rule:trace-rev-induct)
case tr-rev-init
then show ?case by blast
next
case tr-rev-step
then show ?case using event-stays-valid-if-no-occurrence by auto

50

qed

lemma event-can-go-back-if-no-sender-trace:
shows
[trace c t ¢
list-all (Aev. occurs-on ev # occurs-on ev’) t;
can-occur ev’ c’;
~ isRecvMarker ev’
list-all (Aev. ™ isSend ev) t
] = can-occur ev’ ¢
proof (induct ¢ t ¢’ rule:trace-rev-induct)
case tr-rev-init
then show ?case by blast
next
case tr-rev-step
then show ?case using event-can-go-back-if-no-sender by auto
qed

lemma done-only-from-recv-marker-trace:
assumes
trace ¢ t ¢’ and
t # [| and
snd (es ¢ cid) # Done and
snd (cs ¢’ cid) = Done and
channel cid = Some (p, q)
shows
RecvMarker cid g p € set t
proof (rule ccontr)
assume ~ RecvMarker cid q p € set t
moreover have [trace ¢ t ¢'; ~ RecvMarker cid q p € set t; snd (cs ¢ cid) #
Done; channel cid = Some (p, q) |
= snd (cs ¢’ cid) # Done
proof (induct t arbitrary: ¢’ rule:rev-induct)
case Nil
then show ?case
by (metis list.discI trace.simps)
next
case (snoc ev t)
then obtain d where ind: trace c t d and step: d + ev — ¢’
using trace-decomp-tail by blast
then have snd (cs d cid) # Done
proof —
have ~ RecvMarker cid q p € set t
using snoc.prems(2) by auto
then show ?thesis using snoc ind by blast
qed
then show ?case
using done-only-from-recv-marker local.step snoc.prems(2) snoc.prems(4) by
auto

o1

qed
ultimately have snd (cs ¢’ cid) # Done using assms by blast
then show Fulse using assms by simp

qed

lemma cs-not-not-started-stable-trace:
shows
[trace ¢ t ¢’; snd (cs ¢ cid) # NotStarted; channel cid = Some (p, q) | =
snd (cs ¢’ cid) # NotStarted
proof (induct t arbitrary:c’ rule:rev-induct)
case Nil
then show ?case
by (metis list.discl trace.simps)
next
case (snoc ev t)
then obtain d where tr: trace ¢ t d and step: d - ev — ¢’
using trace-decomp-tail by blast
then have snd (c¢s d cid) # NotStarted using snoc by blast
then show ?case using cs-not-not-started-stable snoc step by blast
qed

lemma no-messages-introduced-if-no-channel:
assumes
trace: trace init t final and
no-msgs-if-no-channel: ¥V i. channel i = None — msgs init i = []
shows
channel cid = None = msgs (s init t i) cid = []
proof (induct i)
case ()
then show ?case
by (metis assms exists-trace-for-any-i no-msgs-if-no-channel take0 tr-init trace-and-start-determines-end)
next
case (Suc n)
have f: trace (s init t n) (take ((Suc n) — n) (drop n t)) (s init t (Suc n))
using exists-trace-for-any-i-j order-le-less trace assms by blast
then show ?case
proof (cases drop n t = Nil)
case True
then show ?thesis using Suc.hyps Suc.prems
by (metis f tr-init trace-and-start-determines-end take-Nil)
next
case Fulse
have suc-n-minus-n: Suc n — n = 1 by auto
then have length (take ((Suc n) — n) (drop n t)) = 1 using Fulse by auto
then obtain ev where ev # Nil = take ((Suc n) — n) (drop n t)
by (metis False One-nat-def suc-n-minus-n length-greater-0-conv self-append-conv2
take-eq-Nil take-hd-drop)
then have g: (s init t n) b ev — (s init t (Suc n))
by (metis f tr-init trace-and-start-determines-end trace-decomp-head)

52

then show ?thesis

proof (cases ev)
case (Snapshot 1)
then show ?thesis

using Suc.hyps Suc.prems g by auto

next
case (RecvMarker cid’ srr)
have cid’ # cid using RecvMarker can-occur-def g Suc by auto
with RecvMarker Suc g show ?thesis by (cases has-snapshotted (s init t n)

sr, auto)

next
case (Trans v u u’)
then show ?thesis

by (metis Suc.hyps Suc.prems g next-trans)

next
case (Send cid’ r s v u' m)
have cid’ # cid using Send can-occur-def g Suc by auto
then show ?thesis using Suc g Send by simp

next
case (Recv cid’ s ru u’ m)
have cid’ # cid using Recv can-occur-def g Suc by auto
then show ?thesis using Suc g Recv by simp

qed

qed
qed

end

end

3 Utilties

theory Util
imports
Main
HOL— Library.Sublist
HOL- Library. Multiset

begin

abbreviation swap-events where
swap-events i j t = take i t Q [t 1 4, t | {] Q take (j — (i+1)) (drop (i+1) t) Q
drop (j+1) t

lemma swap-neighbors-2:
shows
i+1 < length t = swap-events i (i+1) t = (t[i ==t | (i+1)])[i+1 =t ! {]
proof (induct i arbitrary: t)
case (

93

then show ?case
by (metis One-nat-def Suc-eq-plusi add-lessD1 append.left-neutral append-Cons
cancel-comm-monoid-add-class. diff-cancel drop-update-cancel length-list-update nu-
meral-One take-0 take-Cons-numeral upd-conv-take-nth-drop zero-less-Suc)
next
case (Suc n)
let 2t = tlt¢
have t = hd t # %t
by (metis Suc.prems hd-Cons-tl list.size(3) not-less-zero)
moreover have swap-events n (n+1) 2t = (%t[n := 2t ! (n+1)])[n+1 = 2t !
n]
by (metis Suc.hyps Suc.prems Suc-eq-plusl length-tl less-diff-conv)
ultimately show ?case
by (metis Suc-eq-plus1 append-Cons diff-self-eq-0 drop-Suc-Cons list-update-code(3)
nth-Cons-Suc take-Suc-Cons)
qed

lemma swap-identical-length:
assumes
1 < j and
j < length t
shows
length t = length (swap-events i j t)
proof —
have length (take it @Q [¢t!j, t ! 4] @ take (j — (i+1)) (drop (i+1) t))
= length (take i t) + length [t ! j, t ! i] + length (take (j — (i+1)) (drop
(i+1) 1))
by simp
then have ... = j+1
using assms(1) assms(2) by auto
then show ?thesis using assms(2) by auto
qed

lemma swap-identical-heads:
assumes
1 < j and
j < length t
shows
take i t = take i (swap-events i j t)
using assms by auto

lemma swap-identical-tails:
assumes
i < j and
j < length t
shows
drop (j+1) t = drop (j+1) (swap-events i j t)
proof —
have length (take it @Q [t !4, ¢t !4 Q take (j — (i+1)) (drop (i+1) t))

54

= length (take i t) + length [t ! j, t ! i] + length (take (j — (i+1)) (drop
(i+1) 1)
by simp
then have ... = j+1
using assms(1) assms(2) by auto
then show ?thesis
by (metis <length (take it @ [t ! 4, t ! 4] Q take (j — (i + 1)) (drop (i + 1)
t)) = length (take i t) + length [t ! 4, t ! i] + length (take (j — (i + 1)) (drop (i
+ 1) t)) append.assoc append-eq-conv-cony)
qged

lemma swap-neighbors:
shows
i+1 <lengthl = (I[i := 1! (i+1))D[i+1 =114 = take il Q [I ! (i+1), 1!
i] @ drop (i4+2) 1
proof (induct i arbitrary: 1)
case (
then show ?case
by (metis One-nat-def add.left-neutral add-lessD1 append-Cons append-Nil
drop-update-cancel length-list-update one-add-one plus-1-eq-Suc take0 take-Suc-Cons
upd-conv-take-nth-drop zero-less-two)

next
case (Suc n)
let 21 =t 1

have ({[Suc n:=1!(Sucn + 1)]))[Sucn + 1 :=1! Sucn] = hdl# (n:= 2
P(nt+1)D[n+1 = 21! n]
by (metis Suc.prems add.commute add-less-same-cancel? list.collapse list.size(3)
list-update-code(8) not-add-less2 nth-Cons-Suc plus-1-eg-Suc)
have n + 1 < length ?] using Suc.prems by auto
then have (?l[n := 21! (n+1)])[n+1 := 21! n] = taken 21 Q [2] ! (n+1), 71!
n] @ drop (n+2) 71
using Suc.hyps by simp
then show ?case
by (cases 1) auto
qed

lemma swap-events-perm:
assumes
i < j and
j < length t
shows
mset (swap-events i j t) = mset t
proof —
have swap: swap-events i j t
=take it Q [t !4, ¢! Q (take (j — (¢+1)) (drop (i+1) t)) @ (drop (j+1)
t)
by auto

have reg: t = take i t Q (take ((j+1) — ©) (drop i t)) Q drop (j+1) t
by (metis add-diff-inverse-nat add-lessD1 append.assoc append-take-drop-id

95

assms(1) less-imp-add-positive less-not-refl take-add)
have mset (take i t) = mset (take i t) by simp
moreover have mset (drop (j+1) t) = mset (drop (j+1) t) by simp
moreover have mset ([t !4, t!i] @Q (take (j — (i+1)) (drop (i+1) t))) = mset
(take ((j4+1) — %) (drop i t))
proof —
let 21 = take (j — (i+1)) (drop (i+1) t)
have take ((j+1) — i) (drop i t) =t !i# 21 Q@ [t!]]
proof —
have f1: Suc (j — Suci) =j — i
by (meson Suc-diff-Suc assms(1))
have f2: i < length t
using assms(1) assms(2) by linarith
have f3:j — (i + 1)+ (i + 1) =
using < < j» by simp
then have drop (j — (i + 1)) (drop (i + 1) t) = drop j ¢
by (metis drop-drop)
then show ?thesis
using f3 f2 f1 by (metis (no-types) Cons-nth-drop-Suc Suc-diff-le Suc-eq-plus1
assms(1) assms(2) hd-drop-conv-nth length-drop less-diff-conv nat-less-le take-Suc-Cons
take-hd-drop)
qed
then show ?thesis by fastforce
qed
ultimately show ?thesis using swap reg
by simp (metis mset-append union-mset-add-mset-left union-mset-add-mset-right)
qged

lemma sum-eq-if-same-subterms:
fixes
1 nat
shows
Ve i<kANk<j— fk=fk= sumf {i.<j} = sum [’ {i.<j}
by auto

lemma filter-neq-take While:
assumes
filter ((#£) a) | # takeWhile ((#) a) 1
shows
Jijoi<jAnj<lengthlANlli=aANl!j#a(is ?P)
proof (rule ccontr)
assume ~ ?P
then have asm: Vij. i < jAj<lengthl — 1'i#£aVIi!j=a(is Q) by
stmp
then have filter ((#) a) | = takeWhile ((#) a) 1
proof (cases a : set l)
case Fulse
then have Vi. i < length | — 1! i # a by auto
then show ?thesis

o6

by (metis (mono-tags, lifting) False filter-True take While-eg-all-conv)
next
case True
then have ez-j: 3j. j < length IAN ! j=a
by (simp add: in-set-conv-nth)
let 25 = Min {j. j < length LN 1! j = a}
have fin-j: finite {j. j < length L A 1! j = a}
using finite-nat-set-iff-bounded by blast
moreover have {j. j < length I A | j = a} # empty using ex-j by blast
ultimately have ?j < length [
using Min-less-iff by blast
have tail-all-a: Vj. j < lengthINj> % — 1! j=a
proof (rule alll, rule impl)
fix j
assume j < length I N j > ?j
moreover have [7Q; j < lengthINj> %] = Vk k> 2% NkE<j—1
lj=ua
proof (induct j — %))
case ()
then have j = ?j using 0 by simp
then show ?case
using Min-in «{j. j < length I N1 j = a} # {}> fin-j by blast
next
case (Suc n)
then have Vk. k> % ANk<j—1l!j=ua
by (metis (mono-tags, lifting) Min-in <{j. j < length IAN 1! j = a} #{}
fin-j le-eq-less-or-eq mem-Collect-eq)
then show ?case
using Suc.hyps(2) by auto
qed
ultimately show [! j = a using asm by blast
qed
moreover have head-all-not-a: Vi. i < 2j — 1! i # a using asm calculation

by (metis (mono-tags, lifting) Min-le <Min {j. j < length I A 1! j = a} <
length 1> fin-j leD less-trans mem-Collect-eq)
ultimately have take While ((#) a) | = take %j 1
proof —
have length (take While ((#£) a) 1) = %j
proof —
have length (take While ((#£) a) 1) < 2j (is 25)
proof (rule ccontr)
assume — 25
then have [! 2j £ «a
by (metis (mono-tags, lifting) not-le-imp-less nth-mem set-take WhileD
take While-nth)
then show Fulse
using «Min {j. j < length I A 1! j = a} < length l» tail-all-a by blast
qged

o7

moreover have length (takeWhile ((#) a) 1) > %j (is ?T)
proof (rule ccontr)
assume - ?T
then have dj. j < %A l!j=a
by (metis (mono-tags, lifting) «Min {j. j < length I A 1! j = a} < length
Iy calculation le-less-trans not-le-imp-less nth-length-take While)
then show Fulse
using head-all-not-a by blast
qed
ultimately show ?thesis by simp
qed
moreover have length (take %j 1) = 2§
by (metis calculation take While-eq-take)
ultimately show ?thesis
by (metis take While-eq-take)

qed
moreover have filter ((#) a) | = take %j 1
proof —
have filter ((#) a) | = filter ((#£) a) (take %j 1) @ filter ((£) a) (drop %5 1)
by (metis append-take-drop-id filter-append)
moreover have filter ((#) a) (take %j 1) = take ?j | using head-all-not-a
by (metis <takeWhile ((#) a) | = take (Min {j. j < length L AN 1! j = a})
b filter-id-conv set-take WhileD)
moreover have filter ((#£) a) (drop 2j 1) = ||
proof —
have Vj. j > % AN j < lengthl — 1! j=drop 251 (j — %)
by simp
then have Vj. j < length |l — 2 — drop ?j 1! j = a using tail-all-a
by (metis (no-types, lifting) Groups.add-ac(2) «Min {j. j < length I N 1
j = a} < length Iy less-diff-conv less-imp-le-nat not-add-less2 not-le nth-drop)
then show %thesis
proof —
obtain aa :: (‘a = bool) = 'a list = 'a where
Va0 x1. (3v2. v2 € set x1 A 20 v2) = (aa 0 z1 € set 1 A z0 (aa 20
o1))
by moura
then have f1: Vas p. aa p as € set as A p (aa p as) V filter p as = |]
by (metis (full-types) filter-False)
obtain nn :: ‘a list = 'a = nat where
f2: V0 x1. (Fv2<length z0. 20 ! v2 = x1) = (nn 20 x1 < length x0 A
z0 ! nn z0 x1 = z1)
by moura
{ assume drop (Min {n. n < length I AN 1! n = a}) ! nn (drop (Min {n.
n <length I A1l n=a})l) (aa ((#) a) (drop (Min {n. n <length I AN1!n =
ah) D) = a
then have filter ((#) a) (drop (Min {n. n < length I A1l n=a})l) =
| V= nn (drop (Min {n. n <length IAN 1! n=a})l) (aa ((#) a) (drop (Min {n.
n <length IAN 1! n=a})l)) < length (drop (Min {n. n < length I N1 n = a})

o8

D)V drop (Min {n. n < length I Al! n = a}) ! nn (drop (Min {n. n < length I
ANlln=a})l) (aa ((#) a) (drop (Min {n. n < length I N1l n = a})l)) # aa
((#) a) (drop (Min {n. n < length Il A1l n=a})l)
using f1 by (metis (full-types)) }
moreover
{ assume — nn (drop (Min {n. n <length I AN l! n = a})) (aa ((#£) a)
drop (Min {n. n < length I A 1! n = a}) 1)) < length | — Min {n. n < length |
ANlln=a}
then have — nn (drop (Min {n. n < length I AN 1! n=a}) 1) (aa ((#£) a)
(drop (Min {n. n < length I A 1! n = a}) 1)) < length (drop (Min {n. n < length
INIYn=a})l)V drop (Min {n.n <lengthl ANl n=a})l! nn (drop (Min
{n.n <lengthIAN 1! n=a})l) (aa (#) a) (drop (Min {n. n < length I AN1l!n
=a}) 1)) # aa ((#) a) (drop (Min {n. n < length I N1 n = a})l)
by simp }
ultimately have filter ((#) a) (drop (Min {n. n < length I AN 1! n =
a})) =[] V = nn (drop (Min {n. n <length LA 1! n=a})l) (aa ((#£) a) (drop
(Min {n. n < length I AN 1! n = a}) 1)) < length (drop (Min {n. n < length I A 1
I'n=a})l)V drop (Min {n. n <length IN1!n=a})l! nn (dop (Min {n. n
<length IAN 1! n=a})l) (aa ((#) a) (drop (Min {n. n < lengthl A1l!n = a})
D) # aa ((#) a) (drop (Min {n. n < length I AN1l!n=a})l)
using «Vj<length | — Min {j. j < length I Al j = a}. drop (Min {j. j
<lengthIAN1!j=a})l!j= a by blast
then show ?thesis
using f2 f1 by (meson in-set-conv-nth)
qed
qed
ultimately show ?thesis by simp
qed
ultimately show ¢thesis by simp
qed
then show Fulse using assms by simp
qed

lemma util-exactly-one-element:
assumes
m ¢ set | and
I"'=1a@ [m)
shows
3.5 <length I’ AN1U'! j=m (is ?P)
proof —
have Vj. j < lengthl' — 1 — "1 j# m
by (metis assms(1) assms(2) butlast-snoc length-butlast nth-append nth-mem)
then have one-j: Vj. j < length ' AN1U'"1j=m — j= (length I’ — 1)
by (metis (no-types, opaque-lifting) diff-Suc-1 lessE)
show ?thesis
proof (rule ccontr)
assume ~ 7P
then obtain i j where i # j i < length I’ j < length I’
Uli=ml''!'j=m

99

using assms by auto
then show Fulse using one-j by blast
qed
qed

lemma exists-one-iff-filter-one:
shows
(3.4 <length IN1!j= a) <— length (filter (=) a) |) = 1
proof (rule iffI)
assume 3lj. j < length IAN 1! j=a
then obtain j where j < length Il !j = a
by blast
moreover have Vk. k # j Ak <lengthl — 1k # a
using <3!j. j < length I AN 1! j = a» <j < length > <! j = a» by blast
moreover have | = take j 1 @Q [I! j] Q drop (j+1) I
by (metis Cons-eg-appendl Cons-nth-drop-Suc Suc-eq-plusl append-self-conv2
append-take-drop-id calculation(1) calculation(2))
moreover have filter ((=) a) (take j 1) = ||
proof —
have Vk. k < length (take j1) — (take j1) ' k # a
using calculation(3) by auto
then show ?thesis
by (metis (full-types) filter-False in-set-conv-nth)
qed
moreover have filter ((=) a) (drop (j+1) 1) = |]
proof —
have Vk. k < length (drop (j+1) 1) — (drop (j+1)) ' k # a
using calculation(3) by auto
then show ?thesis
by (metis (full-types) filter-False in-set-conv-nth)
qed
ultimately show length (filter ((=) a) 1) = 1
by (metis (mono-tags, lifting) One-nat-def Suc-eq-plusl append-Cons append-self-conv2
filter.simps(2) filter-append list.size(8) list.size(4))
next
assume asm: length (filter (=) a) l) = 1
then have filter (=) a) | = [a]
proof —
let %xs = filter ((=) a) 1
have length %xs = 1
using asm by blast
then show ?thesis
by (metis (full-types) Cons-eg-filterD One-nat-def length-0-conv length-Suc-conv)
qed
then have 3j. j < length IN 1! j=a
by (metis (full-types) filter-False in-set-conv-nth list.discI)
then obtain j where j: j < length [1! j = a by blast
moreover have Vk. k < length INk #£j— 1!k +#a
proof (rule alll, rule impl)

60

fix k
assume assm: k < length I N k # j
then have <k < length > ..
show [| k # a
proof (rule ccontr)
assume lka: ~ [k # a
then have (! k = a
by simp
show Fulse
proof (cases k < j)
let %zs = take (k+1) 1
let ?ys = drop (k+1) 1
case True
then have length (filter ((=) a) %zs) > 0
using <k < length I» <I! k = a» by (auto simp add: filter-empty-conv
in-set-conv-nth)
moreover have length (filter ((=) a) ?ys) > 0
proof —
have ?ys ! (j — (k+1)) =113
using True assm by auto
moreover have j — (k+1) < length ?ys
using True «j < length > by auto
ultimately show ¢thesis
by (metis (full-types) <! j = @ filter-empty-conv length-greater-0-conv
nth-mem)
qged
moreover have ?zs Q ?ys = |
using append-take-drop-id by blast
ultimately have length (filter ((=) a) 1) > 1
by (metis (no-types, lifting) One-nat-def Suc-eg-plusl asm filter-append
length-append less-add-eq-less less-one nat-neg-iff)
then show False using asm by simp
next
let %zs = take (j+1)
let %ys = drop (j+1)
case Fulse
then have length (filter ((=) a) ?zs) > 0
using <k < length 1) <! j = @ by (auto simp add: filter-empty-conv
in-set-conv-nth)
moreover have length (filter ((=) a) ?ys) > 0
proof —
have ?ys | (k — (j+1)) =1k
using Fulse assm by auto
moreover have k — (j+1) < length ?ys
using False assm by auto
ultimately show #thesis
by (metis (full-types) filter-empty-conv length-greater-0-conv lka nth-mem)
qged
moreover have ?zs Q %ys = |

l
l

61

using append-take-drop-id by blast
ultimately have length (filter ((=) a) 1) > 1
by (metis (no-types, lifting) One-nat-def Suc-eg-plusl asm filter-append
length-append less-add-eq-less less-one nat-neg-iff)
then show False using asm by simp
qed
qed
qed
ultimately show 3!j. j < length I A l! j = a by blast
qed

end

4 Swap lemmas

theory Swap
imports
Distributed-System

begin
context distributed-system
begin

lemma swap-msgs-Trans-Trans:
assumes
¢t ev— dand
dF ev'— e and
isTrans ev and
isTrans ev’ and
ck ev' — d’and
d'F ev— e and
occurs-on ev # occurs-on ev’
shows
msgs e 1 = msgs e’ i
proof —
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain u u’ where ev = Trans ?p u u’
by (metis assms(8) event.collapse(1))
obtain u'’ v’ where ev’ = Trans ?q u'’ v’
by (metis assms(4) event.collapse(1))
then have msgs d' i = msgs d i
by (metis Trans-msg assms(1) assms(3) assms(4) assms(5))
then have msgs ¢ ¢ = msgs e’ i
using Trans-msg assms(2) assms(3) assms(4) assms(6) by auto
then show ?thesis by blast

62

qed

lemma swap-msgs-Send-Send:
assumes
¢k ev— dand
dF ev' — e and
isSend ev and
isSend ev’ and
¢k ev' — d’and
d'+ ev— e and
occurs-on ev # occurs-on ev
shows
msgs e i = msgs e’ i
proof —
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain i’ r v u’ m where Send-ev: ev = Send i’ ?p r u u' m
by (metis assms(3) event.collapse(2))
obtain " s u" u"" m’ where Send-ev”: ev’' = Send i" ?q s v u'"" m
by (metis assms(4) event.collapse(2))
have ¢’ # 7"
by (metis (mono-tags, lifting) <ev = Send i’ (occurs-on ev) r u u' my <ev’ =
Send i"" (occurs-on ev’) s u’” u'"” m"s assms(1) assms(2) assms(7) can-occur-def
event.simps(27) happen-implies-can-occur option.simps(1) prod.simps(1))
then show ?thesis
proof (cases i =i’V i =1i")
case True
then show ?thesis
proof (elim disjE)
assume ¢ = ¢’
then have msgs d i = msgs ¢ i @ [Msg m)
by (metis <ev = Send i’ (occurs-on ev) T u u’ m> assms(1) next-send)
moreover have msgs e i = msgs d ©
by (metis <ev’ = Send i"' (occurs-on ev’) s u' v m’y i = i @' # i
assms(2) assms(4) event.sel(8) msgs-unchanged-for-other-is reqular-event)
moreover have msgs d' i = msgs c i
by (metis <ev’ = Send i"’ (occurs-on ev’) s u” w'"" m"y «i =i ' # ')
assms(4) assms(5) event.sel(8) msgs-unchanged-for-other-is reqular-event)
moreover have msgs ¢/ i = msgs d' ¢ @ [Msg m]
by (metis <ev = Send i’ (occurs-on ev) ru v’ my <i = i’y assms(6) next-send)
ultimately show Zthesis by simp
next
assume i = ¢’
then have msgs d i = msgs c i
by (metis Send-ev i’ # i'"y assms(1) assms(8) event.sel(8) msgs-unchanged-for-other-is
regular-event)
moreover have msgs e i = msgs d i @ [Msg m/]
by (metis Send-ev’ «i = i’y assms(2) next-send)
moreover have msgs d’ i = msgs ¢ i @ [Msg m’]

/

/

63

by (metis Send-ev’ <i = i""» assms(5) next-send)
moreover have msgs e’ i = msgs d’ i
by (metis Send-ev i = i’ i’ £ i'y assms(3) assms(6) event.sel(8)
msgs-unchanged-for-other-is regular-event)
ultimately show ?thesis by simp
qed
next
case Fulse
then have msgs ¢ i = msgs d i using Send-ev’ assms
by (metis event.sel(8) msgs-unchanged-for-other-is reqular-event)
also have ... = msgs c i
by (metis False Send-ev assms(1) assms(3) event.sel(8) msgs-unchanged-for-other-is
regular-event)
also have ... = msgs d’ i
by (metis (no-types, opaque-lifting) <msgs d i = msgs ¢ ©> assms(2) assms(4)
assms(5) calculation regular-event same-messages-imply-same-resulting-messages)
also have ... = msgs e’ i
by (metis (no-types, opaque-lifting) <msgs ¢ i = msgs d’ i <msgs d i = msgs ¢ ©
assms(1) assms(3) assms(6) reqular-event same-messages-imply-same-resulting-messages)
finally show ?thesis by simp
qged
qged

lemma swap-msgs-Recv-Recv:
assumes
¢tk ev— dand
dF ev' — e and
isRecv ev and
isRecv ev’ and
¢k ev'— d'and
d'+ ev— e’ and
occurs-on ev # occurs-on ev’
shows
msgs e i = msgs e’ i
proof —
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain ¢’ r u v’ m where Recv-ev: ev = Recv i’ ?pruu' m
by (metis assms(3) event.collapse(3))
obtain i’ s u' v""" m’ where Recv-ev”: ev’ = Recv i’ ?q s u” u'"' m
by (metis assms(4) event.collapse(3))
have ¢’ # 7"
by (metis Recv-ev Recv-ev’ assms(1) assms(2) assms(7) can-occur-Recv hap-
pen-implies-can-occur option.simps(1) prod.simps(1))
show ?thesis
proof (cases i =i’V i =1i")
case True
then show ?thesis
proof (elim disjE)

/

64

assume i = 7’
then have Msg m # msgs d i = msgs ¢ i using Recv-ev assms by (metis
next-recv)
moreover have msgs e i = msgs d ©
by (metis Recv-ev’ <i = i’y i’ # 'y assms(2) assms(4) event.sel(9)
msgs-unchanged-for-other-is reqular-event)
moreover have msgs d’ i = msgs c ¢
by (metis Recv-ev’ <i = i'» «i’ £ i' assms(4) assms(5) event.sel(9)
msgs-unchanged-for-other-is regular-event)
moreover have Msg m # msgs e’ i = msgs d' i
by (metis Recv-ev i = i’y assms(6) next-recv)
ultimately show ?thesis by (metis list.inject)
next
assume i = i’
then have msgs d i« = msgs c ¢
by (metis Recv-ev i’ # i’y assms(1) assms(3) event.sel(9) msgs-unchanged-for-other-is
regular-event)
moreover have Msg m’ # msgs ¢ i = msgs d i
by (metis Recv-ev’ <i = i’y assms(2) next-recv)
moreover have Msg m’ # msgs d’ i = msgs c i
by (metis Recv-ev’ i = i'y assms(5) next-recv)
moreover have msgs e’ i = msgs d’ i
by (metis Recv-ev <i = "y i’ # 'y assms(83) assms(6) event.sel(9)
msgs-unchanged-for-other-is regular-event)
ultimately show ?thesis by (metis list.inject)
qged
next
case Fulse
then have msgs e i = msgs d i
by (metis Recv-ev’ assms(2) assms(4) event.sel(9) msgs-unchanged-for-other-is
regular-event)
also have ... = msgs c i
by (metis False Recv-ev assms(1) assms(3) event.sel(9) msgs-unchanged-for-other-is
regular-event)
also have ... = msgs d’ i
by (metis (no-types, opaque-lifting) <msgs d i = msgs ¢ ©» assms(2) assms(4)
assms(5) calculation regular-event same-messages-imply-same-resulting-messages)
also have ... = msgs e’ i
by (metis (no-types, lifting) <msgs ¢ i = msgs d’' ©» <msgs d ¢ = msgs ¢ D
assms(1) assms(3) assms(6) reqular-event same-messages-imply-same-resulting-messages)
finally show ?thesis by simp
qed
qged

lemma swap-msgs-Send-Trans:
assumes
ck ev— dand
dF ev' — e and
isSend ev and

65

isTrans ev’ and
ck ev'— d'and
d'F ev— e and
occurs-on ev # occurs-on ev’
shows
msgs e i = msgs e’ i
proof —
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain ¢’ r u v’ m where Send: ev = Send i’ p ru u’' m
by (metis assms(3) event.collapse(2))
obtain u’’ v’’’ where Trans: ev’ = Trans ?q v’ v’
by (metis assms(4) event.collapse(1))
show ?thesis
proof (cases i = i)
case True
then have msgs d i = msgs ¢ i @ [Msg m)
by (metis Send assms(1) next-send)
moreover have msgs e i = msgs d @
using Trans-msg assms(2) assms(4) by auto
moreover have msgs d’ i = msgs ¢ i
using Trans-msg assms(4) assms(5) by auto
moreover have msgs e’ i = msgs d' i @ [Msg m]
by (metis Send True assms(6) next-send)
ultimately show ?thesis by simp
next
case Fulse
then have msgs e i = msgs d i
using Trans-msg assms(2) assms(4) by auto
also have ... = msgs ¢ ©
by (metis False Send assms(1) assms(3) event.sel(8) msgs-unchanged-for-other-is
reqular-event)

also have ... = msgs d’ i
using Trans-msg assms(4) assms(5) by blast
also have ... = msgs e’ i

by (metis (no-types, lifting) <msgs ¢ i = msgs d’ ©> «<msgs d i = msgs ¢ 0>
assms(1) assms(3) assms(6) regular-event same-messages-imply-same-resulting-messages)
finally show ?thesis by simp
qed
qed

lemma swap-msgs-Trans-Send:
assumes

ck ev— dand

dt ev' — e and

isTrans ev and

1sSend ev’ and

ct ev'— d’and

d'F ev— e’ and

66

occurs-on ev # occurs-on ev’
shows
msgs e i = msgs e’ i
using assms swap-msgs-Send-Trans by auto

lemma swap-msgs-Recv-Trans:
assumes
¢tk ev— dand
dF ev'— e and
isRecv ev and
isTrans ev’ and
ck ev' — d' and
d'F ev— e’ and
occurs-on ev # occurs-on ev’
shows
msgs e 1 = msgs e’ i
proof —
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain i’ r u u’ m where Recv: ev = Recvi’ ?pruu' m
by (metis assms(3) event.collapse(3))
obtain u’’ v’’’ where Trans: ev’ = Trans ?q v’ v’
by (metis assms(4) event.collapse(1))
show ?thesis
proof (cases i = i)
case True
then have Msg m # msgs d i = msgs c i
by (metis Recv assms(1) next-recv)
moreover have msgs e i = msgs d @
using Trans-msg assms(2) assms(4) by auto
moreover have msgs d’ i = msgs c i
using Trans-msg assms(4) assms(5) by auto
moreover have Msg m # msgs ¢/ i = msgs d’ i
by (metis Recv True assms(6) next-recv)
ultimately show ?thesis by (metis list.inject)
next
case False
then have msgs e i = msgs d i
using Trans-msg assms(2) assms(4) by auto
also have ... = msgs ¢ ©
by (metis False Recv assms(1) assms(3) event.sel(9) msgs-unchanged-for-other-is
reqular-event)

also have ... = msgs d’ i
using Trans-msg assms(4) assms(5) by blast
also have ... = msgs e i

by (metis False Recv assms(6) next-recv)
finally show ?thesis by simp
qged
qed

67

lemma swap-msgs-Trans-Recv:

assumes

ck ev— dand

dF ev' — e and

isTrans ev and

isRecv ev’ and

ck ev' — d’and

d'F ev— e and

occurs-on ev # occurs-on ev’
shows

msgs e i = msgs e’ i
using assms swap-msgs-Recv-Trans by auto

lemma swap-msgs-Send-Recv:
assumes
¢k ev— dand
dF ev' — eand
isSend ev and
isRecv ev’ and
¢k ev'— d’'and
d'F ev— e and
occurs-on ev # occurs-on ev’
shows
msgs e i = msgs e’ i
proof —
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain i’ r v v’ m where Send: ev = Send i’ ?p ruu’' m
by (metis assms(8) event.collapse(2))
obtain " s u' u’"’
by (metis assms(4) event.collapse(3))
show ?thesis
proof (cases i = i'; cases i = i, goal-cases)
case I
then have msgs e’ i = msgs d' i @ [Msg m]
by (metis Send assms(6) next-send)
moreover have Msg m’ # msgs d’ i = msgs ¢ @
by (metis 1(2) Recv assms(5) next-recv)
moreover have msgs d i = msgs ¢ i Q [Msg m]
by (metis 1(1) Send assms(1) next-send)
moreover have Msg m’ # msgs e i = msgs d i
by (metis 1(2) Recv assms(2) next-recv)
ultimately show ¢thesis
by (metis list.sel(2) list.sel(3) not-Cons-self2 ti-append?2)
next
case 2
then have msgs d i = msgs ¢ i Q@ [Msg m)
by (metis Send assms(1) next-send)

68

m’ where Recv: ev’ = Recv i” ?gsu’ u'"’ m

/

moreover have msgs e i = msgs d ¢
by (metis 2(2) Recv assms(2) assms(4) event.sel(9) msgs-unchanged-for-other-is
regular-event)
moreover have msgs d’ i = msgs c i
by (metis 2(2) Recv assms(4) assms(5) event.sel(9) msgs-unchanged-for-other-is
regular-event)
moreover have msgs e’ i = msgs d' i @ [Msg m]
by (metis Send 2(1) assms(6) next-send)
ultimately show ?thesis by simp
next
assume 3: i £ i i =1
then have msgs d i = msgs c i
by (metis Send assms(1) assms(3) event.sel(8) msgs-unchanged-for-other-is
regular-event)
moreover have Msg m’ # msgs e i = msgs d i using 3 Recv assms by (metis
next-recv)
moreover have Msg m’ # msgs d’ i = msgs ¢ @
by (metis 3(2) Recv assms(5) next-recv)
moreover have msgs e/ i = msgs d' i
by (metis 3(1) Send assms(6) next-send)
ultimately show ?thesis by (metis list.inject)
next
assume J: i £ i i £ i
then have msgs e i = msgs d i
by (metis Recv assms(2) assms(4) event.sel(9) msgs-unchanged-for-other-is
reqular-event)
also have ... = msgs c i
by (metis 4 (1) Send assms(1) assms(3) event.sel(8) msgs-unchanged-for-other-is
regular-event)

also have ... = msgs d’ i
by (metis 4(2) Recv assms(5) next-recv)
also have ... = msgs e’ i

by (metis 4(1) Send assms(6) next-send)
finally show ?thesis by simp
qed
qed

lemma swap-msgs-Recv-Send:

assumes

¢k ev— dand

dF ev' — e and

isRecv ev and

isSend ev’ and

¢t ev'— d’and

d'F ev— e and

occurs-on ev # occurs-on ev’
shows

msgs e 1 = msgs e’ i
using assms swap-msgs-Send-Recv by auto

69

lemma same-cs-implies-same-resulting-cs:
assumes
csci=csdi
¢k ev— ¢ and
dF ev— d and
regqular-event ev
shows
csc'i=csd i
proof —
have isTrans ev V isSend ev V isRecv ev using assms by simp
then show ?thesis
proof (elim disjE)
assume isTrans ev
then show ?thesis
by (metis (no-types, lifting) assms(1) assms(2) assms(3) assms(4) event.distinct-disc(4)
no-cs-change-if-no-event)
next
assume isSend ev
then show ?thesis
by (metis (no-types, lifting) assms(1) assms(2) assms(8) assms(4) event.distinct-disc(10)
no-cs-change-if-no-event)
next
assume isRecv ev
then obtain i’ 7 s u u’ m where Recv: ev = Recv i’ rsuu'm
by (meson isRecv-def)
then show ?thesis
proof (cases i’ = i)
case True
with assms Recv show ?thesis by (cases snd (cs ¢ i) = Recording, auto)
next
case Fulse
then show ?thesis using assms Recv by simp
qed
qed
qed

lemma regular-event-implies-same-channel-snapshot- Recv-Recv:
assumes
ck ev— dand
dt ev' — e and
isRecv ev and
isRecv ev’ and
¢k ev'— d' and
d't ev s e’ and
occurs-on ev # occurs-on ev’
shows
csei=cse i
proof —

70

let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain i’ r v v’ m where Recv-ev: ev = Recv i’ ?p ru u’ m
by (metis assms(8) event.collapse(3))
obtain " s u' v’ m’ where Recv-ev”: ev’ = Recv i ?q s v’ v'"' m
by (metis assms(4) event.collapse(3))
have i’ # 7"
by (metis Recv-ev Recv-ev’ assms(1) assms(5) assms(7) can-occur-Recv hap-
pen-implies-can-occur option.simps(1) prod.simps(1))
show ?thesis
proof (cases i =i’V i =1i")
case True
then show ?thesis
proof (elim disjE)
assume ¢ = ¢’
then have cs d'i=cs ci
using assms(4) assms(5) assms(7) no-cs-change-if-no-event
by (metis Recv-ev’ i’ # i""y event.sel(9) regular-event)
then have cs e’ i = ¢csd i
using assms(1) assms(3) assms(6) distributed-system.same-cs-implies-same-resulting-cs
distributed-system-azioms reqular-event by blast
then have cs di=cs e
by (metis Recv-ev’ <i = iy i’ # ' assms(2) assms(4) event.sel(9)
no-cs-change-if-no-event regular-event)
then show ?thesis
by (simp add: <cs e’ i = cs d D)
next

/

assume i = ¢’
then have cs di=csci
by (metis Recv-ev i’ # i'"y assms(1) assms(8) event.sel(9) no-cs-change-if-no-event
regular-event)
then have cs e i = cs
using assms(2) assms(4
by blast
then have cs d’' i = cs e’ i
by (metis Recv-ev <i = iy i’ £ 'y assms(8) assms(6) event.sel(9)
no-cs-change-if-no-event reqular-event)
then show %thesis
by (simp add: <cs e i = cs d’ D)
qed
next
case False
then show “thesis
by (metis Recv-ev Recv-ev’ assms(1) assms(2) assms(5) assms(6) next-recv)
qed
qed

d’
)

assms() reqular-event same-cs-implies-same-resulting-cs

lemma regular-event-implies-same-channel-snapshot-Recv:
assumes

71

¢t ev— dand
dF ev'— eand
~ isRecv ev and
regular-event ev and
isRecv ev’ and
¢k ev'— d'and
d'F ev— ¢ and
occurs-on ev # occurs-on ev’
shows
csei=cse'i
proof —
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain i’ s u” u""" m’ where Recv: ev' = Recv i’ ?q s u’ v’ m
by (metis assms(5) event.collapse(8))
show ?thesis
proof (cases i = i)
case True
then have cs di=csci
using assms(1) assms(3) assms(7) no-cs-change-if-no-event <regular-event
evy «~ isRecv evy by auto
then have cs ei = cs d’ i
using assms(2) assms(5) assms(6) regular-event same-cs-implies-same-resulting-cs
by blast
then have cs d’ i = cse’ i
using True assms(3) assms(6) assms(7) no-cs-change-if-no-event <regqu-
lar-event evy ™~ isRecv evy by auto
then show ?thesis
by (simp add: <cs e i = cs d' i)
next
case False
then have cs di=csci
using assms(1) assms(83) assms(4) no-cs-change-if-no-event by auto
then have cs d’ i =csei
by (metis (no-types, lifting) assms(2) assms(5) assms(6) regular-event
same-cs-implies-same-resulting-cs)
then show cs ei = cs e’ i
using assms(3) assms(4) assms(7) no-cs-change-if-no-event by auto
qed
qed

/

lemma same-messages-2:

assumes
V p. has-snapshotted ¢ p = has-snapshotted d p and
msgs ¢ i = msgs d ¢ and
¢k ev— ¢ and
dF ev+— d'and
~ regular-event ev

shows

72

msgs ¢’ i = msgs d' i
proof (cases channel i = None)
case True
then show ?thesis
using assms(2) assms(3) assms(4) no-msgs-change-if-no-channel by auto
next
case Fulse
then obtain p ¢ where chan: channel i = Some (p, ¢) by auto
have isSnapshot ev V isRecvMarker ev

using assms(5) event.exhaust-disc by auto
then show ?thesis
proof (elim disjE)
assume isSnapshot ev
then obtain r where Snapshot: ev = Snapshot r by (meson isSnapshot-def)
then show ?thesis
proof (cases r = p)
case True
then have msgs ¢’ i = msgs ¢ i Q@ [Marker] using chan Snapshot assms by
stmp
moreover have msgs d' i = msgs d { Q [Marker] using chan Snapshot assms
True by simp
ultimately show ?thesis using assms by simp
next
case Fualse
then have msgs ¢’ i = msgs c i using chan Snapshot assms by simp
moreover have msgs d’ i = msgs d i using chan Snapshot assms False by
stmp
ultimately show ?thesis using assms by simp
qed
next
assume isRecvMarker ev
then obtain i’ r s where RecvMarker: ev = RecvMarker i’ r s
by (meson isRecvMarker-def)
then show ?thesis
proof (cases has-snapshotted c r)
case snap: True
then show ?thesis
proof (cases i = i)
case True
then have Marker # msgs ¢’ i = msgs ¢ i using chan RecvMarker assms
snap by simp
moreover have Marker # msgs d' i = msgs d i using chan RecvMarker
assms snap True by simp
ultimately show ?thesis using assms by (metis list.inject)
next
case Fulse
then have msgs d' i = msgs d i
using RecvMarker assms(1) assms(4) snap by auto
also have ... = msgs c i using assms by simp

73

also have ... = msgs ¢’ i
using False RecvMarker snap assms by auto
finally show ?thesis using snap by simp
qed
next
case no-snap: False
then show ?thesis
proof (cases i = i)
case True
then have Marker # msgs ¢’ i = msgs c i using chan RecvMarker assms
by simp
moreover have Marker # msgs d' i = msgs d i using chan RecvMarker
assms True by simp
ultimately show ?thesis using assms by (metis list.inject)
next
case not-i: False
then show ?thesis
proof (cases r = p)
case True
then have msgs ¢’ i = msgs ¢ i @ [Marker)
using no-snap RecvMarker assms True chan not-i by auto
moreover have msgs d’' i = msgs d i Q@ [Marker]
proof —
have ~ has-snapshotted d r using assms no-snap True by simp
then show ?thesis
using no-snap RecvMarker assms True chan not-i by auto
qed
ultimately show ¢thesis using assms by simp
next
case Fulse
then have msgs ¢ i = msgs ¢’ i using False RecuMarker no-snap chan
assms not-i by simp
moreover have msgs d' i = msgs d i
proof —
have ™~ has-snapshotted d r using assms no-snap False by simp
then show ?thesis
using False RecvMarker no-snap chan assms not-i by simp
qed
ultimately show ¢thesis using assms by simp
qed
qed
qed
qed
qed

lemma same-cs-2:
assumes
Y p. has-snapshotted ¢ p = has-snapshotted d p and
csci=csdiand

74

¢t ev— ¢ and
dF ev— d
shows
csc'i=csd i
proof (cases channel i = None)
case True
then show ?thesis
using assms(2) assms(3) assms(4) no-cs-change-if-no-channel by auto
next
case Fulse
then obtain p ¢ where chan: channel i = Some (p, q) by auto
then show ?thesis
proof (cases ev)
case (Snapshot r)
with assms chan show ?thesis by (cases r = ¢, auto)
next
case (RecvMarker i’ r s)
then show ?thesis
proof (cases has-snapshotted c r)
case snap: True
then have sdr: has-snapshotted d r using assms by auto
then show ?thesis
proof (cases i = i)
case True
then have cs ¢’ i = (fst (cs ¢ i), Done)
using RecvMarker assms(3) next-recv-marker by blast
also have ... = ¢cs d' ¢
using RecvMarker True assms(2) assms(4) by auto
finally show ?thesis using True by simp
next
case Fulse
then have cs ¢’ i = cs ¢ i using RecvMarker assms snap by auto
also have ... = cs d’ i using RecvMarker assms snap sdr False by auto
finally show ?thesis by simp
qed
next
case no-snap: False
then have nsdr: ~ has-snapshotted d r using assms by blast
show ?thesis
proof (cases i = i)
case True
then have cs ¢’ i = (fst (cs ¢ i), Done)
using RecvMarker assms(8) next-recv-marker by blast
also have ... = ¢s d' i
using RecvMarker True assms(2) assms(4) by auto
finally show ?thesis using True by simp
next
case not-i: False
with assms RecvMarker chan no-snap show ?thesis by (cases r = q, auto)

75

qed

qed
next

case (Trans r u u’)

then show ?%thesis

by (metis assms(2) assms(8) assms(4) event.disc(1) regular-event same-cs-implies-same-resulting-cs)
next

case (Send i’ v s u u' m)

then show ?thesis

by (metis assms(2) assms(3) assms(4) event.disc(7) reqular-event same-cs-implies-same-resulting-cs)
next

case (Recv i’ rsuu' m)

then show ?thesis

by (metis assms(2) assms(3) assms(4) event.disc(13) reqular-event same-cs-implies-same-resulting-cs)
qed

qed

lemma swap-Snapshot-Trans:

assumes
ck ev— dand
dF ev' — e and
isSnapshot ev and
isTrans ev’ and
ck ev'— d’'and
d'+ ev— e’ and
occurs-on ev # occurs-on ev’

shows
msgs e i = msgs e’ i

proof —

let ?p = occurs-on ev

let ?q = occurs-on ev’

have ev = Snapshot ?p
by (metis assms(3) event.collapse(4))

obtain u’’ v’ where ev’ = Trans 2q u'’ v’
by (metis assms(4) event.collapse(1))

have msgs c i = msgs d’ i
using Trans-msg assms(4) assms(5) by blast

then have msgs ¢’ i = msgs d i

proof —
have V p. has-snapshotted ¢ p = has-snapshotted d’ p

using assms(4) assms(5) regular-event-preserves-process-snapshots by auto

moreover have msgs c i = msgs d’ i using (msgs ¢ i = msgs d’ ©» by auto
moreover have c - ev — d using assms by auto
moreover have d' F ev — e’ using assms by auto
moreover have ~ reqular-event ev using assms by auto
ultimately show ?Zthesis by (blast intro: same-messages-2[symmetric])

qed

then have msgs d i = msgs e i
using Trans-msg assms(2) assms(4) by blast

76

then show ?thesis
by (simp add: <msgs e’ i = msgs d ©))
qed

lemma swap-msgs-Trans-RecvMarker:
assumes
ck ev— dand
dt ev' — e and
isRecvMarker ev and
isTrans ev’ and
ct ev'— d’and
d'F ev— e’ and
occurs-on ev # occurs-on ev’

shows
msgs e/ 1 = msgs e i
proof —
have nr: ™~ regular-event ev

using assms(3) nonregular-event by blast
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain ¢’ r where RecvMarker: ev = RecvMarker i’ ?p r
by (metis assms(3) event.collapse(5))
obtain u’’ v’’’ where Trans: ev’ = Trans ?q v’ v’
by (metis assms(4) event.collapse(1))
have msgs c i = msgs d’ i
using Trans-msg assms(4) assms(5) by blast
then have msgs e’ i = msgs d i
proof —
have V p. has-snapshotted d' p = has-snapshotted ¢ p
using assms(4) assms(5) regular-event-preserves-process-snapshots by auto
moreover have ™~ reqular-event ev using assms by auto
moreover have Vn. msgs d’' n = msgs ¢ n
by (metis Trans assms(5) local.next.simps(3))
ultimately show #thesis
using assms(1) assms(6) same-messages-2 by blast
qed
thm same-messages-2
then have msgs d i = msgs e i
using Trans-msg assms(2) assms(4) by blast
then show ?thesis
by (simp add: <msgs e’ i = msgs d ©))
qged

lemma swap-Trans-Snapshot:
assumes
ck ev— dand
dF ev' — e and
isTrans ev and
isSnapshot ev’ and

77

ct ev'— d’and
d'F ev e and
occurs-on ev # occurs-on ev’
shows
msgs e 1 = msgs e’ i
using assms swap-Snapshot-Trans by auto

lemma swap-Send-Snapshot:
assumes
¢tk ev— dand
dF ev' — e and
isSend ev and
isSnapshot ev’ and
¢k ev'— d'and
d'+ ev— e’ and
occurs-on ev # occurs-on ev’
shows
msgs e i = msgs e’ i
proof (cases channel i = None)
case True
then show ?thesis
by (metis assms(1) assms(2) assms(5) assms(6) no-msgs-change-if-no-channel)
next
case Fulse
then obtain p ¢ where chan: channel i = Some (p, q) by auto
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain i’ r v u’ m where Send: ev = Send i’ ?p ruu’' m
by (metis assms(3) event.collapse(2))
have Snapshot: ev’ = Snapshot ?q
by (metis assms(4) event.collapse(4))
show ?thesis
proof (cases i = i’; cases p = %q)
assume asm: i = i’ p = ?q
then have ?p = p
proof —
have channel i’ = Some (p, q) using chan asm by simp
then show ?thesis using assms can-occur-def Send chan
by (metis (mono-tags, lifting) event.simps(27) happen-implies-can-occur
option.inject prod.inject)
qed
then show %thesis using assms asm by simp
next
assume i = i’ p # ?q
then have msgs d i = msgs ¢ { @ [Msg m)|
by (metis Send assms(1) newt-send)
moreover have msgs e i = msgs d @
by (metis Pair-inject Snapshot <p # occurs-on ev’s assms(2) chan next-snapshot
option.inject)

78

moreover have msgs d’ i = msgs ¢ i
by (metis Pair-inject Snapshot <p # occurs-on ev’y assms(5) chan next-snapshot
option.inject)
moreover have msgs e’ i = msgs d’ i Q [Msg m]
by (metis Send <i = i’y assms(6) next-send)
ultimately show ?Zthesis by simp
next
assume asm: i # i’ p = 9q
then have msgs d @ = msgs c ¢
by (metis Send assms(1) assms(3) event.sel(8) msgs-unchanged-for-other-is
regular-event)
moreover have msgs e i = msgs ¢ i @ [Marker)
by (metis (full-types) Snapshot asm(2) assms(2) calculation chan next-snapshot)
moreover have msgs d’ i = msgs ¢ i Q [Marker]
by (metis (full-types) Snapshot asm(2) assms(5) chan next-snapshot)
moreover have msgs e’ i = msgs d’ i
by (metis Send asm(1) assms(6) next-send)
ultimately show ¢thesis by simp
next
assume i # i’ p # ?q
then have msgs ¢ i = msgs d i
by (metis Send assms(1) assms(3) event.sel(8) msgs-unchanged-for-other-is
regular-event)
then have msgs ¢ i = msgs d' i
by (metis Pair-inject Snapshot <p # occurs-on ev’s assms(2,5) chan next-snapshot
option.inject)
then show ?thesis
by (metis Send <i # i’ assms(6) next-send)
qed
qed

lemma swap-Snapshot-Send:

assumes

¢k ev— dand

dF ev' — e and

1sSnapshot ev and

isSend ev’ and

ct ev'— d’and

d't ev— ¢’ and

occurs-on ev # occurs-on ev’
shows

msgs e 1 = msgs e’ i
using assms swap-Send-Snapshot by auto

lemma swap-Recv-Snapshot:
assumes
ck ev— dand
dF ev' — e and
isRecv ev and

79

isSnapshot ev’ and
ck ev'— d'and
d'F ev— e and
occurs-on ev # occurs-on ev’
shows
msgs e i = msgs e’ i
proof (cases channel i = None)
case True
then show ?thesis
by (metis assms(1) assms(2) assms(5) assms(6) no-msgs-change-if-no-channel)
next
case Fulse
then obtain p ¢ where chan: channel i = Some (p, ¢) by auto
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain ¢’ r u v’ m where Recv: ev = Recv i’ ?pruu’ m
by (metis assms(3) event.collapse(3))
have Snapshot: ev’ = Snapshot ?q
by (metis assms(4) event.collapse(4))
show ?thesis
proof (cases i = i'; cases p = 7q)
assume i = i’ p = ?q
then have Msg m # msgs d i = msgs ¢ i
by (metis Recv assms(1) newt-recv)
moreover have msgs e i = msgs d i @ [Marker)
by (metis (full-types) Snapshot <p = occurs-on ev’s assms(2) chan next-snapshot)
moreover have msgs d’ i = msgs ¢ i Q [Marker]
by (metis (full-types) Snapshot <p = occurs-on ev’s assms(5) chan next-snapshot)
moreover have Msg m # msgs ¢/ i = msgs d' i
by (metis Recv <i = i’y assms(6) next-recv)
ultimately show ?thesis
by (metis list.sel(3) neq-Nil-conv tl-append2)
next
assume i = i’ p # ?q
then have Msg m # msgs d i = msgs ¢ @
by (metis Recv assms(1) next-recv)
moreover have msgs e i = msgs d ©
by (metis Pair-inject Snapshot <p # occurs-on ev’y assms(2) chan next-snapshot
option.inject)
moreover have msgs d’ i = msgs c i
by (metis Pair-inject Snapshot <p # occurs-on ev’y assms(5) chan next-snapshot
option.inject)
moreover have Msg m # msgs ¢/ i = msgs d’ i
by (metis Recv <i = i’y assms(6) next-recv)
ultimately show ?thesis by (metis list.inject)
next
assume i # i’ p = ?q
then have msgs d i = msgs c i
by (metis Recv assms(1) next-recv)

80

moreover have msgs e i = msgs d i @ [Marker]
by (metis (full-types) Snapshot <p = occurs-on ev’s assms(2) chan next-snapshot)
moreover have msgs d’ i = msgs ¢ i Q [Marker]
by (metis (full-types) Snapshot <p = occurs-on ev’s assms(5) chan next-snapshot)
moreover have msgs e’ i = msgs d' i
by (metis Recv <i ~= i’y assms(6) next-recv)
ultimately show ¢thesis by simp
next
assume i # i’ p # ?q
then have msgs d i = msgs c i
by (metis Recv assms(1) next-recv)
moreover have msgs e i = msgs d i
by (metis Pair-inject Snapshot <p # occurs-on ev’y assms(2) chan next-snapshot
option.inject)
moreover have msgs d’ i = msgs ¢ i
by (metis Pair-inject Snapshot <p # occurs-on ev’s assms(5) chan next-snapshot
option.inject)
moreover have msgs e/ i = msgs d' i
by (metis Recv <i ~= i’y assms(6) next-recv)
ultimately show ?thesis by auto
qged
qged

lemma swap-Snapshot-Recv:

assumes

¢k ev— dand

dF ev' — e and

isSnapshot ev and

isRecv ev’ and

¢k ev' — d’ and

d'F ev— e and

occurs-on ev # occurs-on ev’
shows

msgs e i = msgs e’ i
using assms swap-Recv-Snapshot by auto

lemma swap-msgs-Recv-RecvMarker:
assumes
¢k ev— dand
dF ev' — e and
isRecv ev and
isRecvMarker ev’ and
ct ev'— d’and
d't ev— e’ and
occurs-on ev # occurs-on ev’
shows
msgs e 1 = msgs e’ i
proof (cases channel i = None)
case True

81

then show ?thesis
by (metis assms(1) assms(2) assms(5) assms(6) no-msgs-change-if-no-channel)
next
case Fulse
then obtain p ¢ where chan: channel i = Some (p, q) by auto
obtain i’ p’ r u u’ m where Recv: ev = Recv i’ p’ ruu' m
by (metis assms(3) event.collapse(3))
obtain i"’ ¢’ s where RecvMarker: ev’ = RecvMarker i' ¢ s
by (metis assms(4) event.collapse(5))
have ¢’ # 7"
proof (rule ccontr)
assume ~ i’ # ¢’
then have channel i’ = channel i"’ by auto
then have Some (r, p') = Some (s, ¢’) using assms can-occur-def Recv Recv-
Marker by simp
then show Fulse using assms
by (metis Recv RecoMarker event.sel(3,5) option.inject prod.inject)
qed
then show ?thesis
proof (cases i =i’V i =1i")
case True
then show ?thesis
proof (elim disjE)
assume i = i’
then have pgrp: (p, ¢) = (r, p’)
by (metis Recv assms(1) chan distributed-system.can-occur-Recv distributed-system-azioms
next-recv option.inject)
then show ?thesis
proof (cases has-snapshotted c q’)
case snap: True
then have Msg m # msgs d © = msgs c ¢
by (metis Recv «<i = i’y assms(1) next-recv)
moreover have msgs ¢ i = msgs d' i
using RecvMarker <i =i <i’ # i’y assms(5) msgs-unchanged-if-snapshotted-RecvMarker-for-other-is
snap by blast
moreover have msgs d © = msgs e 4
using RecvMarker <i = iy «i’ # i’y assms(1) assms(2) snap snap-
shot-state-unchanged by auto
moreover have Msg m # msgs ¢/ i = msgs d’ i
by (metis Recv <i = iy assms(6) next-recv)
ultimately show ?thesis by (metis list.inject)
next
case no-snap: False
then have msgs-d: Msg m # msgs d i = msgs c ©
by (metis Recv <i = iy assms(1) next-recv)
then show ?thesis
proof (cases ¢’ = r)
case True
then have msgs d’ i = msgs ¢ i Q [Marker]

82

proof —
have channel i = Some (q’, q)
using True chan pqrp by blast
then show ?thesis using RecvMarker assms no-snap
by (simp add: no-snap i = iy i’ #i'")
qed
moreover have Msg m # msgs ¢/ i = msgs d’ i
by (metis Recv <i = iy assms(6) next-recv)
moreover have msgs e i = msgs d i @ [Marker]
proof —
have ps d ¢’ = ps ¢ q’
using assms(1) assms(7) no-state-change-if-no-event RecvMarker by
auto
then show ?thesis
using RecuMarker «i = i"» <i’ # i)y assms True chan no-snap pqrp by
stmp
qed
ultimately show ¢thesis using msgs-d
by (metis append-self-conv2 list.inject list.sel(3) message.distinct(1)
ti-append?)
next
case Fulse
then have msgs e i = msgs d ©
proof —
have ~ has-snapshotted d q'
using assms(1) assms(7) no-snap no-state-change-if-no-event RecvMarker
by auto
moreover have A 7. channel i = Some (q’,) using chan False pgrp by
auto
moreover have i # " using <i = i’y i’ # ' by simp
ultimately show ?thesis using RecvMarker assms by simp
qed
moreover have msgs d’ i = msgs ¢ i
proof —
have Br. channel i = Some (q’,)
using False chan pqrp by auto
moreover have i # (" using <i = i’y <i’ # i’y by simp
ultimately show ?thesis using RecvMarker assms(5) no-snap by auto
qed
moreover have Msg m # msgs e’ i = msgs d’ i
by (metis Recv <i = i’y assms(6) next-recv)
ultimately show ?thesis using msgs-d
by (metis list.inject)
qed
qed
next
assume i = ¢’
then have msgs d i = msgs c i using assms
by (metis Recv i’ # i'y next-recv)

83

moreover have msgs e i = msgs d’ i
proof —
have V p. has-snapshotted ¢ p = has-snapshotted d p
by (metis Recv assms(1) next-recv)
then show ?%thesis
by (meson assms(2) assms(5) calculation same-messages-2 same-messages-imply-same-resulting-messag
qed
moreover have msgs e’ i = msgs d’ i
using assms by (metis Recv <i’ # i <i = i'") next-recv)
ultimately show ?thesis by simp
qed
next
assume asm: ~ (i =i’V i = i)
then have msgs ¢ i = msgs d @
by (metis Recv assms(1) assms(3) event.distinct-disc(16,18) event.sel(9)
msgs-unchanged-for-other-is nonregular-event)
then have msgs d’ i = msgs e i
proof —
have V p. has-snapshotted ¢ p = has-snapshotted d p
using assms(1) assms(3) reqular-event-preserves-process-snapshots by auto
then show ?thesis
by (meson <msgs ¢ i = msgs d ©» assms(2) assms(5) same-messages-2
same-messages-imply-same-resulting-messages)
qed
then show ?thesis
by (metis Recv asm assms(3) assms(6) event.distinct-disc(16,18) event.sel(9)
msgs-unchanged-for-other-is nonregular-event)
qed
qed

lemma swap-RecvMarker-Recv:
assumes
¢k ev— dand
dt ev' — e and
isRecuMarker ev and
isRecv ev’ and
ck ev'— d' and
d'F ev— e and
occurs-on ev # occurs-on ev’
shows
msgs e 1 = msgs e’ i
using assms swap-msgs-Recv-RecvMarker by auto

lemma swap-msgs-Send-RecvMarker:
assumes
ck ev— dand
dt ev' — e and
isSend ev and
isRecoMarker ev’ and

84

ct ev' — d' and
d'F ev— e’ and
occurs-on ev # occurs-on ev’
shows
msgs e 1 = msgs e’ i
proof (cases channel i = None)
case True
then show ?thesis
by (metis assms(1) assms(2) assms(5) assms(6) no-msgs-change-if-no-channel)
next
case Fulse
then obtain p ¢ where chan: channel i = Some (p, ¢q) by auto
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain ¢’ p’ r u u’ m where Send: ev = Send i’ p’ ruu’' m
by (metis assms(3) event.collapse(2))
obtain i’ ¢’ s where RecuMarker: ev’ = RecuMarker i"' q' s
by (metis assms(4) event.collapse(5))
have p’ # ¢’ using Send RecvMarker assms by simp
show ?thesis
proof (cases i = i'; cases i = i"’; goal-cases)
case I
then have msgs e’ i = msgs d' i @ [Msg m]
by (metis Send assms(6) next-send)
moreover have Marker # msgs d' i = msgs c i using <i = i'» RecvMarker
assms by simp
moreover have msgs d i = msgs ¢ i @ [Msg m]
by (metis 1(1) Send assms(1) next-send)
moreover have Marker # msgs e i = msgs d i using «i = i’» RecvMarker
assms by simp
ultimately show ?thesis
by (metis append-self-conv2 list.inject list.sel(3) message.distinct(1) tl-append?2)
next
case 2
then have pgpr: (p, ¢) = (p/, r) using chan Send can-occur-def assms by simp
then have msgs d i = msgs ¢ i Q@ [Msg m)
by (metis 2(1) Send assms(1) next-send)
moreover have msgs ¢’ i = msgs d’ i Q [Msg m]
by (metis 2(1) Send assms(6) next-send)
moreover have msgs d’ i = msgs c i
proof —
have fir. channel i = Some (q’, r) using «p’ # ¢'» chan pgpr by simp
with RecoMarker <i # iy <i = i’y assms show ?thesis by (cases has-snapshotted
¢ q', auto)
qed
moreover have msgs e i = msgs d @
proof —
have 3. channel i = Some (q’, r) using <p’ # q'» chan pgpr by simp
with RecoMarker <i # iy <i = i’y assms show ?thesis by (cases has-snapshotted

85

d q’, auto)
qed
ultimately show ?thesis by simp
next
assume 3: ¢ £ i i =1
then have mcd: msgs ¢ i = msgs d i
by (metis Send assms(1) next-send)
moreover have msgs e i = msgs d’ i
proof —
have V p. has-snapshotted ¢ p = has-snapshotted d p
using assms(1) assms(3) regular-event-preserves-process-snapshots by auto
moreover have ~ regular-event ev’ using assms by auto
ultimately show ?thesis using mcd assms(2,5) by (blast intro: same-messages-2[symmetric|)
qed
moreover have msgs e/ i = msgs d' i
by (metis 3(1) Send assms(6) next-send)
ultimately show ¢thesis by simp
next
assume J: i # i’ i # 7"
have mcd: msgs ¢ i = msgs d @
by (metis 4 (1) Send assms(1) assms(3) event.distinct-disc(12,14) event.sel(8)
msgs-unchanged-for-other-is nonregular-event)
have msgs d’ i = msgs e ¢
proof —
have V p. has-snapshotted ¢ p = has-snapshotted d p
using assms(1) assms(3) reqular-event-preserves-process-snapshots by auto
moreover have ™~ regular-event ev’ using assms by auto
ultimately show ?thesis using mcd assms(2,5) same-messages-2 by blast
qed
moreover have msgs e’ i = msgs d' i
by (metis 4(1) Send assms(6) next-send)
ultimately show ?thesis by simp
qed
qed

lemma swap-RecvMarker-Send:
assumes
¢k ev— dand
dt ev' — e and
isRecuMarker ev and
isSend ev’ and
ck ev'— d' and
d'F ev— e and
occurs-on ev # occurs-on ev’
shows
msgs e i = msgs e’ i
using assms swap-msgs-Send-RecvMarker by auto

lemma swap-cs-Trans-Snapshot:

86

assumes
¢t ev— dand
dF ev' — e and
isTrans ev and
1sSnapshot ev’ and
¢k ev'— d'and
d'Fev e
shows
csei=cse' i
proof (cases channel i = None)
case True
then show ?thesis
by (metis assms(1) assms(2) assms(5) assms(6) no-cs-change-if-no-channel)
next
case Fulse
then obtain p ¢ where channel i = Some (p, q) by auto
have nr: ™~ regular-event ev’
using assms(4) nonregular-event by blast
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain u’’ v’ where ev = Trans ?p v’ v’
by (metis assms(3) event.collapse(1))
have ev’ = Snapshot ?q
by (metis assms(4) event.collapse(4))
have csdi=csci
by (metis assms(1) assms(3) event.distinct-disc(4) no-cs-change-if-no-event
regular-event)
then have csei = csd’ i
proof —
have V p. has-snapshotted d p = has-snapshotted ¢ p
using assms(1) assms(8) regular-event-preserves-process-snapshots by auto
then show ?thesis
using <«cs d i = cs ¢ ©» assms(2) assms(5) same-cs-2 by blast
qed
also have ... = cs e’ i
using assms(3) assms(6) no-cs-change-if-no-event reqular-event by blast
finally show ?thesis by simp
qged

lemma swap-cs-Snapshot-Trans:
assumes
ck ev— dand
dt ev' — e and
isSnapshot ev and
isTrans ev’ and
ct ev'— d’and
d' - evi e
shows
csei=cse i

87

using swap-cs- Trans-Snapshot assms by auto

lemma swap-cs-Send-Snapshot:
assumes
¢t ev— dand
dF ev' — e and
isSend ev and
isSnapshot ev’ and
¢k ev'— d'and
d'+evr— e
shows
csei=cse i
proof (cases channel i = None)
case True
then show ?thesis
by (metis assms(1) assms(2) assms(5) assms(6) no-cs-change-if-no-channel)
next
case Fulse
then obtain p ¢ where channel i = Some (p, ¢) by auto
have nr: ~ regular-event ev’
using assms(4) nonregular-event by blast
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain i’ r v v’ m where Send: ev = Send i’ ?p ruu’ m
by (metis assms(8) event.collapse(2))
have Snapshot: ev’ = Snapshot ?q
by (metis assms(4) event.collapse(4))
have csdi=csci
by (metis Send assms(1) next-send)
then have cs ei = cs d’ i
proof —
have V p. has-snapshotted d p = has-snapshotted ¢ p
using assms(1) assms(8) reqular-event-preserves-process-snapshots by auto
then show ?thesis
using «cs d i = cs ¢ ©» assms(2) assms(5) same-cs-2 by blast
qed
also have ... = cs e’ i
using assms(3) assms(6) no-cs-change-if-no-event reqular-event by blast
finally show ?thesis by simp
qed

lemma swap-cs-Snapshot-Send:
assumes
ck ev— dand
dt ev' — e and
isSnapshot ev and
1sSend ev’ and
ct ev'— d’and
d'F evs e

88

shows
csei=cse'iq
using swap-cs-Send-Snapshot assms by auto

lemma swap-cs-Recv-Snapshot:
assumes
¢t ev— dand
dF ev' — e and
isRecv ev and
1sSnapshot ev’ and
¢k ev'— d'and
d'F ev— e and
occurs-on ev # occurs-on ev’
shows
csei=cse' i
proof (cases channel i = None)
case True
then show ?thesis
by (metis assms(1) assms(2) assms(5) assms(6) no-cs-change-if-no-channel)
next
case Fulse
then obtain p ¢ where chan: channel i = Some (p, ¢q) by auto
have nr: ™~ regular-event ev’
using assms(4) nonregular-event by blast
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain ¢’ r u v’ m where Recv: ev = Recv i’ pruu’ m
by (metis assms(3) event.collapse(3))
have Snapshot: ev’ = Snapshot ?q
by (metis assms(4) event.collapse(4))
show ?thesis
proof (cases i = i)
case True
then show ?thesis
proof (cases snd (cs ¢ i) = Recording)
case True
then have cs d i = (fst (cs ¢ i) @Q [m], Recording) using Recv assms True <i
=i’y chan
by (metis next-recv)
moreover have csei =cs d i
by (metis Snapshot assms(2) calculation fst-conv next-snapshot)
moreover have cs ci = cs d’ i
by (metis Snapshot True assms(5) next-snapshot prod.collapse)
moreover have cs e’ i = (fst (¢s d’ i) Q [m], Recording)
by (metis (mono-tags, lifting) Recv assms(1) assms(6) calculation(1) cal-
culation(3) newt-recv)
ultimately show ?thesis by simp
next
case Fulse

89

have csdi=csci
by (metis False Recv assms(1) next-recv)
have csei = cs d’ i
proof —
have V p. has-snapshotted d p = has-snapshotted ¢ p
using assms(1) assms(8) regular-event-preserves-process-snapshots by
auto
then show ?thesis
using «¢s d i = cs ¢ i» assms(2) assms(5) same-cs-2 by blast
qed
moreover have cs d' i = cs e’ i
proof —
have cs d' i =cs ci
by (metis Pair-inject Recv Snapshot True assms(1) assms(5) assms(7)
can-occur-Recv distributed-system.happen-implies-can-occur distributed-system.next-snapshot
distributed-system-azxioms option.inject)
then show ?thesis using chan <i = i"» False Recv assms
by (metis next-recv)
qed
ultimately show ?thesis by simp
qed
next
case Fulse
have csdi=csci
by (metis False Recv assms(1) next-recv)
then have cs ei = cs d’ i
proof —
have V p. has-snapshotted d p = has-snapshotted ¢ p
using assms(1) assms(3) regular-event-preserves-process-snapshots by auto
then show ?thesis
using <cs d i = cs ¢ ©» assms(2) assms(5) same-cs-2 by blast
qed
also have ... = cs e’ i
by (metis False Recv assms(6) next-recv)
finally show ?thesis by simp
qed
qed

lemma swap-cs-Snapshot-Recv:

assumes

ck ev— dand

dt ev' — e and

isSnapshot ev and

isRecv ev’ and

ct ev'— d’and

d'+ ev s e’ and

occurs-on ev # occurs-on ev’
shows

csei=cse i

90

using swap-cs-Recv-Snapshot assms by auto

lemma swap-cs-Trans-RecvMarker:
assumes
¢t ev— dand
dF ev' — e and
isTrans ev and
isRecvMarker ev’ and
¢k ev'— d'and
d'+evr— e
shows
csei=cse i
proof (cases channel i = None)
case True
then show ?thesis
by (metis assms(1) assms(2) assms(5) assms(6) no-cs-change-if-no-channel)
next
case Fulse
then obtain p ¢ where chan: channel i = Some (p, q) by auto
have nr: ~ regular-event ev’
using assms(4) nonregular-event by blast
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain u’’ v" where ev = Trans ?p v’ u'"
by (metis assms(8) event.collapse(1))
obtain ¢’ s where ev’ = RecvMarker i’ ?q s
by (metis assms(4) event.collapse(5))
have csdi=csci
by (metis assms(1) assms(3) event.distinct-disc(4) no-cs-change-if-no-event
regular-event)
then have cs e i = cs d’ i
proof —
have V p. has-snapshotted d p = has-snapshotted ¢ p
using assms(1) assms(8) regular-event-preserves-process-snapshots by auto
then show ?thesis
using <cs d i = ¢s ¢ i» assms(2) assms(5) same-cs-2 by blast
qged
also have ... = cs e’ i
using assms(3) assms(6) no-cs-change-if-no-event reqular-event by blast
finally show ?thesis by simp
qed

lemma swap-cs-RecvMarker-Trans:
assumes
ck ev— dand
dt ev' — e and
isRecvMarker ev and
1sTrans ev’ and
¢k ev'— d' and

91

d't ev e
shows
csei=cse' i
using swap-cs-Trans-RecvMarker assms by auto

lemma swap-cs-Send-RecvMarker:
assumes
¢tk ev— dand
dF ev'— e and
isSend ev and
isRecvMarker ev’ and
ck ev' — d' and
d'+ evr— e
shows
csei=cse' i
proof (cases channel i = None)
case True
then show ?thesis
by (metis assms(1) assms(2) assms(5) assms(6) no-cs-change-if-no-channel)
next
case Fulse
then obtain p ¢ where chan: channel i = Some (p, ¢q) by auto
have nr: ™~ regular-event ev’
using assms(4) nonregular-event by blast
let ?p = occurs-on ev
let ?q = occurs-on ev’
obtain ¢’ r u v’ m where Send: ev = Send i’ ?pruu’' m
by (metis assms(3) event.collapse(2))
obtain i’ s where RecvMarker: ev’ = RecvMarker i' 2q s
by (metis assms(4) event.collapse(5))
have csdi=csci
by (metis assms(1) assms(3) event.distinct-disc(10,12,14) no-cs-change-if-no-event
nonregular-event)
then have csei=csd’ i
proof —
have V p. has-snapshotted d p = has-snapshotted ¢ p
using assms(1) assms(8) regular-event-preserves-process-snapshots by auto
then show ?thesis
using <«cs d i = cs ¢ ©» assms(2) assms(5) same-cs-2 by blast
qed
also have ... = cs e’ i
using assms(3) assms(6) no-cs-change-if-no-event reqular-event by blast
finally show ?thesis by simp
qed

lemma swap-cs-RecvMarker-Send:
assumes
¢k ev— dand
dF ev' — eand

92

isRecvMarker ev and
isSend ev’ and
ct ev'— d’and
d' - evis e’
shows
csei=cse i
using swap-cs-Send-RecvMarker assms by auto

lemma swap-cs-Recv-RecvMarker:
assumes
¢k ev— dand
dF ev' — e and
isRecv ev and
isRecvMarker ev’ and
ck ev'— d' and
d'F ev— e and
occurs-on ev # occurs-on ev’
shows
csei=cse'i
proof (cases channel i = None)
case True
then show ?thesis
by (metis assms(1) assms(2) assms(5) assms(6) no-cs-change-if-no-channel)
next
case Fulse
then obtain p ¢ where chan: channel i = Some (p, q) by auto
have nr: ~ regular-event ev’
using assms(4) nonregular-event by blast
obtain i’ p’ r v v’ m where Recv: ev = Recv i’ p’ ruu’' m
by (metis assms(8) event.collapse(3))
obtain ¢ ¢’ s where RecvMarker: ev’ = RecvMarker i" q' s
by (metis assms(4) event.collapse(5))
have i’ # 7"
proof (rule ccontr)
assume ~ i’ #£ ¢’
then have channel i’ = channel i" by simp
then have (r, p’) = (s, ¢) using Recv RecvMarker assms can-occur-def by
stmp
then show Fulse using Recv RecvMarker assms can-occur-def by simp
qed
show ?thesis
proof (cases i = i)
case True
then have pgrp: (p, q¢) = (r, p’) using Recv assms can-occur-def chan by simp
then show ?thesis
proof (cases snd (cs ¢ 1))
case NotStarted
then have cs d i = cs ¢ i using assms Recv <i = i’y by simp
moreover have cs d' i = cs e i

93

proof —
have V p. has-snapshotted ¢ p = has-snapshotted d p
using assms(1) assms(8) regular-event-preserves-process-snapshots by
auto
with assms(2,5) calculation show ?thesis by (blast intro: same-cs-2[symmetric])
qed
thm same-cs-2
moreover have cs d' i = cs e’ i
proof —
have cs d' i =cs ci
proof —
have 3 r. channel i = Some (r, q')
using Recv RecvMarker assms(7) chan pgrp by auto
with RecvMarker assms chan <i = i’y <i’ # 1"y show ?thesis
by (cases has-snapshotted ¢ q’, auto)
qged
then show ?thesis using assms Recv <i = 1"y NotStarted by simp
qed
ultimately show ?thesis by simp
next
case Done
then have cs d i = cs ¢ ¢ using assms Recv <i = iy by simp
moreover have cs d' i = cs e i
proof —
have V p. has-snapshotted ¢ p = has-snapshotted d p
using assms(1) assms(3) reqular-event-preserves-process-snapshots by
auto
then show ?thesis using assms(2,5) calculation by (blast intro: same-cs-2[symmetric|)
qed
moreover have cs d' i = cse’ i
proof —
have cs d' i = cs c i
proof —
have Br. channel i = Some (r, q')
using Recv RecvMarker assms(7) chan pgrp by auto
with RecvMarker assms chan <i = iy <i’ # 1"y show ?thesis
by (cases has-snapshotted ¢ q’, auto)
qed
then show ?thesis using assms Recv <i = i"» Done by simp
qed
ultimately show Zthesis by simp
next
case Recording
have cs d i = (fst (cs ¢ i) Q [m], Recording)
using Recording Recv True assms(1) by auto
moreover have csei =cs d i
proof —
have fr. channel i = Some (r, q’)
using Recv RecvMarker assms(7) chan pgrp by auto

94

with RecvMarker assms chan <i = i’y <i’ # i'"y show ?thesis
by (cases has-snapshotted d q', auto)
qed
moreover have cs ci = cs d’ i
proof —
have #r. channel i = Some (r, q')
using Recv RecvMarker assms(7) chan pgrp by auto
with RecvMarker assms chan <i = i’y <i’ # i'"y show ?thesis
by (cases has-snapshotted ¢ q’, auto)
qed
moreover have cs ¢’ i = (fst (¢s d’ i) Q [m], Recording)
using Recording Recv True assms(6) calculation(3) by auto
ultimately show ?thesis by simp
qed
next
case Fulse
have csdi=csci
using Fualse Recv assms(1) by auto
then have cs ei = cs d’ i
proof —
have V p. has-snapshotted d p = has-snapshotted ¢ p
using assms(1) assms(3) regular-event-preserves-process-snapshots by auto
then show ?thesis
using <«cs d i = cs ¢ ©» assms(2) assms(5) same-cs-2 by blast
qed
also have ... = ¢s e’ i
using False Recv assms(6) by auto
finally show ?thesis by simp
qed
qed

end

end

5 The Chandy—-Lamport algorithm

theory Snapshot
imports
HOL—- Library.Sublist
Distributed-System
Trace
Util
Swap

begin

95

5.1 The computation locale

We extend the distributed system locale presented earlier: Now we are given
a trace t of the distributed system between two configurations, the initial
and final configuartions of t. Our objective is to show that the Chandy—
Lamport algorithm terminated successfully and exhibits the same properties
as claimed in [1]. In the initial state no snapshotting must have taken
place yet, however the computation itself may have progressed arbitrarily
far already.

We assume that there exists at least one process, that the total number
of processes in the system is finite, and that there are only finitely many
channels between the processes. The process graph is strongly connected.
Finally there are Chandy and Lamport’s core assumptions: every process
snapshots at some time and no marker may remain in a channel forever.

locale computation = distributed-system +
fixes
init final = ("a, 'b, 'c) configuration
assumes
finite-channels:
finite {i. Ip q. channel i = Some (p, q)} and
strongly-connected-raw:
Vpg (p#q —
(tranclp (Ap q. (Fi. channel i = Some (p, q)))) p ¢ and

at-least-two-processes:

card (UNIV :: 'a set) > 1 and
finite-processes:

finite (UNIV :: 'a set) and

no-initial-Marker:

Vi. (3p q. channel i = Some (p, q))

— Marker ¢ set (msgs init i) and
no-msgs-if-no-channel:

Vi. channel i = None — msgs init i = [] and
no-initial-process-snapshot:

Vp. ~ has-snapshotted init p and
no-initial-channel-snapshot:

Vi. channel-snapshot init i = ([], NotStarted) and

valid: 3 t. trace init t final and
l1:Vticid. trace init t final
A Marker € set (msgs (s init t i) cid)
— (34. 7 > i A Marker ¢ set (msgs (s init t j) cid)) and
12: Yt p. trace init t final
— (34. has-snapshotted (s init t i) p A i < length t)
begin

96

definition has-channel where
has-channel p ¢ «— (31i. channel i = Some (p, q))

lemmas strongly-connected = strongly-connected-raw(folded has-channel-def)

lemma exists-some-channel:

shows 3¢ p q. channel i = Some (p, q)
proof —

obtain p ¢ where p : (UNIV :: ‘a set) A g : (UNIV :: 'a set) A p # q

by (metis (mono-tags) One-nat-def UNIV-eg-I all-not-in-conv at-least-two-processes
card-Suc-Diff1 card.empty finite-processes insert-iff iso-tuple- UNIV-I less-numeral-extra(4)
n-not-Suc-n)

then have (tranclp has-channel) p q using strongly-connected by simp

then obtain r s where has-channel r s

by (meson tranclpD)

then show ?thesis using has-channel-def by auto

qed

abbreviation S where
S = s init

lemma no-messages-if-no-channel:

assumes trace init t final

shows channel cid = None = msgs (s init t i) cid = ||

using no-messages-introduced-if-no-channel| OF assms no-msgs-if-no-channel] by
blast

lemma S-induct [consumes 3, case-names S-init S-step):
[trace init t final; i < j; j < length t;
Ni. Pii;
Niji<j=j<lengtht = (Sti)k (t!i)— (St (Suci)) = P (Suc

]=Pij
proof (induct j — i arbitrary: i)
case ()
then show ?case by simp
next

case (Suc n)
then have (St i) F (¢! 4) — (St (Suc i) using Suc step-Suc by simp
then show ?case using Suc by simp

qed

lemma exists-index:
assumes
trace init t final and
ev € set (take (j — 7) (drop i t))
shows
Jk.i<kANk<jNhNev=t!Ek
proof —

97

have trace (S t i) (take (j — %) (drop i t)) (S tj)
by (metis assms(1) assms(2) diff-is-0-eq’ exists-trace-for-any-i-j list.distinct(1)
list.set-cases nat-le-linear take-eq-Nil)
obtain [where ev = (take (j — @) (drop i t)) ! Il < length (take (j — i) (drop
it))
by (metis assms(2) in-set-conv-nth)
let 2k =1+ 1
have (take (j — @) (drop i t)) !l =dropit!l
using <« < length (take (j — i) (drop i t))» by auto
also have ... = ¢! %
by (metis add.commute assms(2) drop-all empty-iff list.set(1) nat-le-linear
nth-drop take-Nil)
finally have ev = t ! %
using <ev = take (j — ¢) (drop i t) ! Iy by blast
moreover have i < 7k N\ %k < j
using < < length (take (j — i) (drop i t))» by auto
ultimately show ?thesis by blast
qed

lemma no-change-if-ge-length-t:
assumes
trace init t final and
i > length t and
jzi
shows
Sti=S8tj
proof —
have trace (S t i) (take (j — %) (drop i t)) (S tj)
using assms(1) assms(3) exists-trace-for-any-i-j by blast
moreover have (take (j —) (drop i t)) = Nil
by (simp add: assms(2))
ultimately show ?thesis
by (metis tr-init trace-and-start-determines-end)
qed

lemma no-marker-if-no-snapshot:
shows
[trace init t final; channel cid = Some (p, q);
~ has-snapshotted (S t i) p]
= Marker ¢ set (msgs (St
proof (induct i)
case ()
then show ?case
by (metis exists-trace-for-any-i no-initial-Marker take-eq-Nil tr-init trace-and-start-determines-end)
next
case (Suc n)
then have IH: Marker ¢ set (msgs (St n) cid)
by (meson distributed-system.exists-trace-for-any-i-j distributed-system.snapshot-stable-2
distributed-system-azioms eq-iff le-Suc-eq)

i) cid)

98

then obtain tr where decomp: trace (St n) tr (St (Suc n)) tr = take (Suc n
— n) (drop n t)
using Suc exists-trace-for-any-i-j le-Suc-eq by blast
have Marker ¢ set (msgs (St (Suc n)) cid)
proof (cases tr = [])
case True
then show ?thesis
by (metis IH decomp(1) tr-init trace-and-start-determines-end)
next
case False
then obtain ev where step: tr = [ev] (St n) F ev— (St (Suc n))
by (metis One-nat-def Suc-eq-plusl Suc-lel <tr = take (Suc n — n) (drop n
t)y <trace (S ¢t n) tr (St (Sucn))r add-diff-cancel-left” append.simps(1) butlast-take
cancel-comm-monoid-add-class. diff-cancel length-greater-0-conv list. distinct(1) list.sel(3)
snoc-eq-iff-butlast take0 take-Nil trace.cases)
then show ?thesis
proof (cases ev)
case (Snapshot p’)
then show ?thesis
by (metis IH Suc.prems(2) Suc.prems(8) local.step(2) new-Marker-in-set-implies-nonregular-occurence
new-msg-in-set-implies-occurrence nonregular-event-induces-snapshot snapshot-state-unchanged)
next
case (RecvMarker cid’ p' q)
have p’ # p
proof (rule ccontr)
assume asm: ~ p’ # p
then have has-snapshotted (S ¢t (Suc n)) p
proof —
have ™~ regular-event ev using RecvMarker by auto
moreover have occurs-on ev = p using asm RecvMarker by auto
ultimately show ?thesis using step(2) Suc.hyps Suc.prems
by (metis nonregular-event-induces-snapshot snapshot-state-unchanged)
qed
then show Fulse using Suc.prems by blast
qed
moreover have cid # cid’
proof (rule ccontr)
assume "~ cid # cid’
then have hd (msgs (S t n) cid) = Marker A length (msgs (S t n) cid) >

using step RecvMarker can-occur-def by auto
then have Marker : set (msgs (St n) cid)
using list.set-sel(1) by fastforce
then show Fulse using IH by simp
qed
ultimately have msgs (St (Suc n)) cid = msgs (St n) cid
proof —
have B r. channel cid = Some (p’,)
using Suc.prems(2) «p’ # p» by auto

99

with <cid # cid"» RecoMarker step show ?thesis by (cases has-snapshotted
(S tn)p', auto)
qed
then show ?thesis by (simp add: IH)
next
case (Trans p’ s s')
then show ?thesis
using IH local.step(2) by force
next
case (Send cid’ p’ q' s s’ m)
with step IH show ?thesis by (cases cid’ = cid, auto)
next
case (Recv cid’ p' q¢' s s’ m)
with step IH show ?thesis by (cases cid’ = cid, auto)
qed
qged
then show ?case by blast
qed

5.2 Termination

We prove that the snapshot algorithm terminates, as exhibited by lemma
snapshot_algorithm_must_terminate. In the final configuration all pro-
cesses have snapshotted, and no markers remain in the channels.

lemma must-ezist-snapshot:
assumes
trace init t final
shows
dp i. Snapshot p =t ! i
proof (rule ccontr)
assume A p i. Snapshot p =t ! i
have Vi p. ~ has-snapshotted (St i) p
proof (rule alll)
fix ¢
show V p. ~ has-snapshotted (S t i) p
proof (induct 7)
case (
then show ?case
by (metis assms distributed-system.trace-and-start-determines-end distributed-system-azioms
exists-trace-for-any-i computation.no-initial-process-snapshot computation-axioms
takeO tr-init)
next
case (Suc n)
then have IH: Vp. ™~ has-snapshotted (S t n) p by auto
then obtain ¢r where trace (St n) tr (S ¢ (Suc n)) tr = take (Suc n — n)
(drop n t)
using assms exists-trace-for-any-i-j le-Suc-eq by blast
show V p. ~ has-snapshotted (S t (Suc n)) p
proof (cases tr = [])

100

case True
then show ?thesis
by (metis IH <trace (Stn) tr (St (Sucn))» tr-init trace-and-start-determines-end)
next
case Fulse
then obtain ev where step: tr = [ev] (St n) b ev — (S ¢ (Suc n))
by (metis One-nat-def Suc-eq-plusl Suc-lel <tr = take (Suc n — n) (drop n
t)» «trace (St n) tr (St (Sucn)) add-diff-cancel-left’ append.simps(1) butlast-take
cancel-comm-monoid-add-class. diff-cancel length-greater-0-conv list.distinct(1) list.sel(3)
snoc-eq-iff-butlast take0 take-Nil trace.cases)
then show ?thesis
using step Suc.hyps proof (cases ev)
case (Snapshot q)
then show ?thesis
by (metis <Bp i. Snapshot p = t ! 0> «tr = [ev]) «tr = take (Suc n — n)
(drop n t)> append-Cons append-take-drop-id nth-append-length)
next
case (RecuMarker cid’ q r)
then have m: Marker € set (msgs (S ¢t n) cid’)
using RecvMarker-implies-Marker-in-set step by blast
have ™~ has-snapshotted (S t n) ¢q using Suc by auto
then have Marker ¢ set (msgs (St n) cid’)
proof —
have channel cid’ = Some (r, q) using step can-occur-def RecvMarker
by auto
then show ?thesis
using IH assms no-marker-if-no-snapshot by blast
qed
then show ?thesis using m by auto
qed auto
qed
qed
qed
obtain j p where has-snapshotted (S t j) p using (2 assms by blast
then show Fulse
using (Vi p. - has-snapshotted (S t i) p» by blast
qed

lemma recv-marker-means-snapshotted:
assumes
trace init t final and
ev = RecvMarker cid p ¢ and
(Sti)k ev (St (Suci))
shows
has-snapshotted (St i) q
proof —
have Marker = hd (msgs (S t i) cid) A length (msgs (S t i) cid) > 0
proof —
have Marker # msgs (St (Suc i) cid = msgs (St i) cid

101

using assms(2) assms(8) next-recv-marker by blast
then show ?thesis
by (metis length-greater-0-conv list.discl list.sel(1))
qed
then have Marker € set (msgs (St 1) cid)
using hd-in-set by fastforce
then show has-snapshotted (St 7) g
proof —
have channel cid = Some (q, p) using assms can-occur-def by auto
then show ?thesis
using <Marker € set (msgs (S t i) cid)y assms(1) no-marker-if-no-snapshot
by blast
qed
qed

lemma recv-marker-means-cs-Done:
assumes
trace init t final and
t ! i = RecuMarker cid p ¢ and
i < length t
shows
snd (es (St (i+1)) cid) = Done
proof —
have (Sti) - (t!1d) — (St (i+1))
using assms(1) assms(8) step-Suc by auto
then show ?thesis
by (simp add: assms(2))
qed

lemma snapshot-produces-marker:
assumes
trace init t final and
~ has-snapshotted (S t i) p and
has-snapshotted (St (Suc 7)) p and
channel cid = Some (p, q)
shows
Marker : set (msgs (St (Suc ©)) cid) V has-snapshotted (St i) q
proof —
obtain ev where ez-ev: (St i) F ev — (St (Suci))
by (metis append-Nil2 append-take-drop-id assms(1) assms(2) assms(3) dis-
tributed-system.step-Suc distributed-system-azioms drop-eq-Nil less-Suc-eg-le nat-le-linear
not-less-eq s-def)
then have occurs-on ev = p
using assms(2) assms(83) no-state-change-if-no-event by force
then show ?thesis
using assms ex-ev proof (cases ev)
case (Snapshot r)
then have Marker € set (msgs (St (Suc 7)) cid)
using ez-ev assms(2) assms(3) assms(4) by fastforce

102

then show ?thesis by simp
next
case (RecoMarker cid’ r s)
have r = p using <occurs-on ev = p»
by (simp add: RecvMarker)
then show “thesis
proof (cases cid = cid’)
case True
then have has-snapshotted (St i) g
using RecvMarker RecvMarker-implies-Marker-in-set assms(1) assms(2)
assms(4) ex-ev no-marker-if-no-snapshot by blast
then show ?thesis by simp
next
case Fulse
then have 3 s. channel cid = Some (r, s) using RecvMarker assms can-occur-def
r = p> by simp
then have msgs (S ¢ (Suc ©)) cid = msgs (S t i) cid Q [Marker]
using RecvMarker assms ex-ev <r = p» False by simp
then show ?thesis by simp
qed
ged auto
qged

lemma exists-snapshot-for-all-p:
assumes
trace init t final
shows
4. ~ has-snapshotted (St i) p A has-snapshotted (St (Suc 7)) p (is ?Q)
proof —
obtain 7 where has-snapshotted (S t) p using [2 assms by blast
let ?j = LEAST j. has-snapshotted (St j) p
have %j # 0
proof —
have ~ has-snapshotted (St 0) p
by (metis exists-trace-for-any-i list.discI no-initial-process-snapshot s-def
take-eq-Nil trace.simps)
then show ?thesis
by (metis (mono-tags, lifting) <has-snapshotted (S t i) p> wellorder-Least-lemma(1))
qed
have 7j < ¢
by (meson Least-le <has-snapshotted (S t i) p»)
have — has-snapshotted (St (?j — 1)) p (is ?P)
proof (rule ccontr)
assume — ?P
then have has-snapshotted (St (2§ — 1)) p by simp
then have 3j. j < %j A has-snapshotted (St j) p
by (metis One-nat-def <(LEAST j. ps (S tj) p # None) # 0) diff-less lessI
not-gr-zero)
then show Fulse

103

using not-less-Least by blast
qed
show ?thesis
proof (rule ccontr)
assume — 7Q)
have Vi. = has-snapshotted (St i) p
proof (rule alll)
fix i’
show — has-snapshotted (St i) p
proof (induct i’)
case (
then show ?case
using «((LEAST j. ps (St j) p # None) # 0» by force
next
case (Suc i)
then show ?case
using Bi. — ps (St i) p # None A ps (St (Suc i) p # None> by blast
qed
qed
then show False
using <ps (S t i) p # None> by blast
qed
qed

lemma all-processes-snapshotted-in-final-state:
assumes
trace init t final
shows
has-snapshotted final p
proof —
obtain ¢ where has-snapshotted (St i) p A i < length t
using assms [2 by blast
moreover have final = (St (length t))
by (metis (no-types, lifting) assms exists-trace-for-any-i le-Suc-eq length-Cons
take-Nil take-all trace.simps trace-and-start-determines-end)
ultimately show ?thesis
using assms exists-trace-for-any-i-j snapshot-stable by blast
qged

definition next-marker-free-state where
next-marker-free-state t i cid = (LEAST j. j > i A Marker ¢ set (msgs (St j)
cid))

lemma exists-next-marker-free-state:
assumes
channel cid = Some (p, q)
trace init t final
shows
4. next-marker-free-state ¢t i cid = j N j > i N Marker ¢ set (msgs (S t j)

104

cid)
proof (cases Marker € set (msgs (St i) cid))
case Fulse
then have next-marker-free-state t i cid = ¢ unfolding nezt-marker-free-state-def
by (metis (no-types, lifting) Least-equality order-refl)
then show ?thesis using False assms by blast
next
case True
then obtain j where j > i Marker ¢ set (msgs (S tj) cid) using I assms by
blast
then show ?thesis
by (metis (no-types, lifting) Leastl-ex next-marker-free-state-def)
qed

theorem snapshot-algorithm-must-terminate:
assumes
trace init t final
shows
dphi. ((Vp. has-snapshotted (S t phi) p)
A (Vcid. Marker ¢ set (msgs (S t phi) cid)))
proof —
let % = {i. i < length t N (VY p. has-snapshotted (St i) p)}
have fin-i: finite ?i by auto
moreover have ?i # empty
proof —
have V p. has-snapshotted (S t (length t)) p
by (meson assms exists-trace-for-any-i-j 12 snapshot-stable-2)
then show ¢thesis by blast
qed
then obtain ¢ where asm: V p. has-snapshotted (S t i) p by blast
have f: Vj. j > i — (Vp. has-snapshotted (S t j) p)
using snapshot-stable asm exists-trace-for-any-i-j valid assms by blast
let ?s = (Acid. (next-marker-free-state t i cid)) “{ cid. channel cid # None }
have ?s # empty using ezists-some-channel by auto
have fin-s: finite ?s using finite-channels by simp
let ?phi = Mazx ?s
have ?phi > i
proof (rule ccontr)
assume asm: — ?phi > 1
obtain cid p ¢ where g: channel cid = Some (p, q) using exists-some-channel
by auto
then have next-marker-free-state t i cid > i using exists-next-marker-free-state
assms by blast
then have Max ?s > i using Max-ge-iff g fin-s by fast
then show Fulse using asm by simp
qed
then have Acid. Marker ¢ set (msgs (St ?phi) cid)
proof —
fix cid

105

show Marker ¢ set (msgs (St ?phi) cid)
proof (cases Marker : set (msgs (St i) cid))
case Fulse
then show ?thesis
using i < Maz ?s» asm assms exists-trace-for-any-i-j no-markers-if-all-snapshotted
by blast
next
case True
then have cpq: channel cid # None using no-messages-if-no-channel assms
by fastforce
then obtain p ¢ where chan: channel cid = Some (p, q) by auto
then obtain j where i: j = next-marker-free-state t i cid Marker ¢ set (msgs
(S tj) cid)
using exists-next-marker-free-state assms by fast
have j < ?phi using cpq fin-s i(1) pair-imagel by simp
then show Marker ¢ set (msgs (St ?phi) cid)
proof —
have trace (St j) (take (?phi — j) (drop j t)) (St ?phi)
using <j < ?phi> assms exists-trace-for-any-i-j by blast
moreover have V p. has-snapshotted (St j) p
by (metis assms chan [computation.exists-next-marker-free-state compu-
tation-azioms i(1))
ultimately show ?thesis
using i(2) no-markers-if-all-snapshotted by blast
qed
qged
qed
thus ?thesis using f «?phi > 9> by blast
qed

5.3 Correctness

The greatest part of this work is spent on the correctness of the Chandy-
Lamport algorithm. We prove that the snapshot is consistent, i.e. there
exists a permutation ¢’ of the trace ¢t and an intermediate configuration ¢’ of
t’ such that the configuration recorded in the snapshot corresponds to the
snapshot taken during execution of ¢, which is given as Theorem 1 in [1].

lemma snapshot-stable-ver-2:

shows trace init t final => has-snapshotted (St i) p = j > i = has-snapshotted
(Sti)p

using exists-trace-for-any-i-j snapshot-stable by blast

lemma snapshot-stable-ver-3:

shows trace init t final = ~ has-snapshotted (S t i) p = i > j = ~
has-snapshotted (St j) p

using snapshot-stable-ver-2 by blast

lemma marker-must-stay-if-no-snapshot:

106

assumes
trace init t final and
has-snapshotted (St i) p and
~ has-snapshotted (S t i) ¢ and
channel cid = Some (p, q)
shows
Marker : set (msgs (S t i) cid)
proof —
obtain j where ~ has-snapshotted (S t j) p A has-snapshotted (St (Suc j)) p
using exists-snapshot-for-all-p assms by blast
have j < i
proof (rule ccontr)
assume asm: ~ j < 4
then have ™~ has-snapshotted (St i) p
using «— has-snapshotted (St j) p A has-snapshotted (St (Suc j)) p» assms(1)
less-imp-le-nat snapshot-stable-ver-3
by (meson nat-le-linear)
then show Fulse using assms(2) by simp
qed
have ¢ < length t
proof (rule ccontr)
assume ~ i < length t
then have 7 > length ¢
using not-less by blast

obtain ¢’ where a: V p. has-snapshotted (St i) p using assms snapshot-algorithm-must-terminate
by blast

have i’ > i
using (¥ p. has-snapshotted (S t i) p» assms(1) assms(8) nat-le-linear snap-
shot-stable-ver-3 by blast
have (S ¢ i’) # (S t i) using assms a by force
then have ¢ < length t
using < < i’y assms(1) computation.no-change-if-ge-length-t computation-axioms
nat-le-linear by fastforce
then show Fulse using <~ i < length t» by simp
qed
have marker-in-set: Marker : set (msgs (S t (Suc j)) cid)
using «— has-snapshotted (S t j) p A has-snapshotted (S t (Suc j)) p» G < O
assms(1) assms(3) assms(4) snapshot-produces-marker snapshot-stable-ver-8 by
blast
show ?thesis
proof (rule ccontr)
assume asm: Marker ¢ set (msgs (St i) cid)
then have range: (Suc j) < @
by (metis Suc-lessI <— ps (S tj) p # None A ps (St (Suc j)) p # Noner ¢j
< 9 assms(2) marker-in-set order.order-iff-strict)
let 2k = LEAST k. k > (Suc j) A Marker ¢ set (msgs (S t k) cid)
have range-k: (Suc j) < %k N %k < i
proof —
have j < (LEAST n. Suc j < n A Marker ¢ set (msgs (St n) cid))

107

by (metis (full-types) Suc-le-eq assms(1) assms(4) exists-next-marker-free-state
next-marker-free-state-def)
then show ?thesis
proof —
assume al: j < (LEAST n. Suc j < n A Marker ¢ set (msgs (St n) cid))
have j < i
using local.range by linarith
then have (Suc j < i A Marker ¢ set (msgs (St i) cid)) A (LEAST n. Suc
j < n A Marker ¢ set (msgs (S tn) cid)) # Suc j
by (metis (lifting) Suc-leI asm marker-in-set wellorder-Least-lemma(1))
then show ?thesis
using al by (simp add: wellorder-Least-lemma(2))
qed
qed
have a: Marker : set (msgs (St (?k—1)) cid)
proof —
obtain nn :: nat = nat = nat where
Va0 1. (3v2. 20 = Suc (z1 + v2)) = (20 = Suc (z1 + nn 20 z1))
by moura
then have f1: (LEAST n. Suc j < n A Marker ¢ set (msgs (St n) cid)) =
Suc (Suc j + nn (LEAST n. Suc j < n A Marker ¢ set (msgs (St n) cid)) (Suc

7))
using «Suc j < (LEAST k. Suc j < k A Marker ¢ set (msgs (St k) cid))
A (LEAST k. Suc j < k A Marker ¢ set (msgs (St k) cid)) < @ less-iff-Suc-add
by fastforce
have f2: Suc j < Suc j + nn (LEAST n. Suc j < n A Marker ¢ set (msgs
(Stn) cid)) (Sucj)
by simp
have f3: Vp n. = p (n:nat) V Least p < n
by (meson wellorder-Least-lemma(2))
have — (LEAST n. Suc j < n A Marker ¢ set (msgs (St n) cid)) < Sucj +
nn (LEAST n. Suc j < n A Marker ¢ set (msgs (St n) cid)) (Suc j)
using fI1 by linarith
then have f/: = (Suc j < Suc j + nn (LEAST n. Suc j < n A Marker ¢
set (msgs (St n) cid)) (Suc j) A Marker ¢ set (msgs (St (Suc j + nn (LEAST
n. Suc j < n A Marker ¢ set (msgs (St n) cid)) (Suc j))) cid))
using f3 by force
have Suc j + nn (LEAST n. Suc j < n A Marker ¢ set (msgs (St n) cid))
(Suc j) = (LEAST n. Suc j < n A Marker ¢ set (msgs (St n) cid)) — 1
using f1 by linarith
then show ?thesis
using f4 f2 by presburger
qed
have b: Marker ¢ set (msgs (St k) cid)
using assms(1) assms(4) exists-next-marker-free-state next-marker-free-state-def
by fastforce
have %k — 1 < i using range-k by auto
then obtain ev where step: (St (?%k—1)) F ev — (St (Suc (?k—1)))
by (meson Suc-le-eq <i < length t» assms(1) le-trans step-Suc)

108

then show Fulse
using a assms(1) assms(3) assms(4) b computation.snapshot-stable-ver-3
computation-azioms less-iff-Suc-add range-k recv-marker-means-snapshotted-2 by
fastforce
qged
qed

5.3.1 Pre- and postrecording events

definition prerecording-event:
prerecording-event t i =
i < length t A regular-event (¢! 7)
A ™ has-snapshotted (St ©) (occurs-on (t! 1))

definition postrecording-event:
postrecording-event t i =
i < length t A regular-event (t! 7)
A has-snapshotted (S t i) (occurs-on (¢! 7))

abbreviation neighboring where
neighboring t i j = i < j A j < length t A regular-event (t! i) A regular-event (t
|
%))
ANNVEk i <kANEk<j— "~ regular-event (t ! k))

lemma pre-if-reqular-and-not-post:
assumes
regular-event (¢!) and
~ postrecording-event t i and
i < length t
shows
prerecording-event t i
using assms computation.postrecording-event computation-axioms prerecording-event
by metis

lemma post-if-regular-and-not-pre:
assumes
reqular-event (t ! i) and
~ prerecording-event t i and
i < length t
shows
postrecording-event t 4
using assms computation.postrecording-event computation-axioms prerecording-event
by metis

lemma post-before-pre-different-processes:
assumes
i < j and
j < length t and
neighboring: Vk. (i < k ANk < j) — ~ reqular-event (¢! k) and

109

post-ei: postrecording-event t ¢ and
pre-ej: prerecording-event t j and
valid: trace init t final
shows
occurs-on (t ! ©) # occurs-on (t! j)
proof —
let %p = occurs-on (t! 1)
let ?q = occurs-on (t! j)
have sp: has-snapshotted (S t i) ?p
using assms postrecording-event prerecording-event by blast
have nsq: ~ has-snapshotted (St j) %q
using assms postrecording-event prerecording-event by blast
show ?p # 7q
proof —
have ™~ has-snapshotted (St i) ?q
proof (rule ccontr)
assume sq: ~ ~ has-snapshotted (St i) %q
from i < j» have i < j using less-imp-le by blast
then obtain ¢r where ez-trace: trace (St i) tr (St j)
using exists-trace-for-any-i-j valid by blast
then have has-snapshotted (S t j) ?q using ex-trace snapshot-stable sq by
blast
then show Fulse using nsq by simp
qed
then show ?thesis using sp by auto
qged
qged

lemma post-before-pre-neighbors:
assumes
1 < j and
j < length t and
neighboring: Vk. (i < k ANk < j) — ~ reqular-event (¢! k) and
post-ei: postrecording-event t i and
pre-ej: prerecording-event t j and
valid: trace init t final
shows
Ball (set (take (j — (i+1)) (drop (i+1) t))) (%ev. ~ reqular-event ev A ™~
occurs-on ev = occurs-on (¢! 5))
proof —
let ?p = occurs-on (t! 1)
let 2q = occurs-on (t ! j)
let ?between = take (j — (i+1)) (drop (i+1) t)
show ?thesis
proof (unfold Ball-def, rule alll, rule impl)
fix ev
assume ev : set ?between
have len-nr: length ?between = (j — (i+1)) using assms(2) by auto
then obtain [where ?between | | = ev and range-l: 0 < I A1 < (§j — (i+1))

110

by (metis <ev € set (take (j — (i + 1)) (drop (i + 1) t))» gr-zerol in-set-conv-nth
le-numeral-extra(3) less-le)
let 2%k =1+ (i+1)
have ?between ! | = (¢! 2k)
proof —
have j < length t
by (metis assms(2))
then show ?thesis
by (metis (no-types) Suc-eq-plusl Suc-lel add.commute assms(1) drop-take
length-take less-diff-conv less-imp-le-nat min.absorb2 nth-drop nth-take range-1)
qed
have ~ regular-event ev
by (metis (no-types, lifting) assms(8) range-l One-nat-def Suc-eq-plusl <take
(j— G+ 1)) (drop (i + 1) t) ! 1 = ew <take (j — (i + 1)) (drop (i + 1) t)
Pi=t!(l+ (i + 1)) add.left-commute add-lessD1 lessI less-add-same-cancel?
less-diff-conv order-le-less)
have step-ev: (St %k) - ev— (St (%k+1))
proof —
have j < length t
by (metis assms(2) less-or-eq-imp-le)
then have [+ (i + 1) < length t
by (meson less-diff-conv less-le-trans range-I)
then show ?thesis
by (metis (no-types) Suc-eg-plusl <take (j — (i + 1)) (drop (¢ + 1) t)
Pl =ew <take (j — (¢ + 1)) (drop (i + 1)) V1 =¢t! ({1 + (i + 1)) dis-
tributed-system.step-Suc distributed-system-azioms valid)
qed
obtain cid s r where f: ev = RecvMarker cid s r V ev = Snapshot r using
™ reqular-event ev)
by (meson isRecvMarker-def isSnapshot-def nonregular-event)
from f have occurs-on ev # ?q
proof (elim disjE)
assume snapshot: ev = Snapshot r
show ?thesis
proof (rule ccontr)
assume occurs-on-q: ~ occurs-on ev # ?q
then have ?¢q = r using snapshot by auto
then have g-snapshotted: has-snapshotted (St (2k+1)) ?q
using snapshot step-ev by auto
then show Fulse
proof —
have I + (i + 1) < j
by (meson less-diff-conv range-l)
then show ?thesis
by (metis (no-types) Suc-eq-plusl Suc-le-eq computation.snapshot-stable-ver-2
computation-azioms pre-ej prerecording-event g-snapshotted valid)
qed
qed
next

111

assume RecvMarker: ev = RecvMarker cid s r
show ?thesis
proof (rule ccontr)
assume occurs-on-q: ~ occurs-on ev # ?q
then have s = ?q using RecvMarker by auto
then have g-snapshotted: has-snapshotted (St (2k+1)) ?q
proof (cases has-snapshotted (St %) ?q)
case True
then show ?thesis using snapshot-stable-ver-2 step-Suc step-ev valid by
auto
next
case Fulse
then show has-snapshotted (St (?k+1)) %q
using <s = ?¢q> next-recv-marker RecvMarker step-ev by auto
qed
then show Fulse
proof —
have [+ (i + 1) <j
using less-diff-conv range-l by blast
then show ?thesis
by (metis (no-types) Suc-eq-plusl Suc-le-eq computation.snapshot-stable-ver-2
computation-azioms pre-ej prerecording-event q-snapshotted valid)
qged
qed
qed
then show — regular-event ev A\ occurs-on ev # ?q
using <~ regular-event evy by simp
qed
qed

lemma can-swap-neighboring-pre-and-postrecording-events:
assumes
i < jand
j < length t and
occurs-on (t ! i) = p and
occurs-on (t!j) = ¢ and
neighboring: Vk. (i < k A k < j)
— ™ regular-event (¢! k) and
post-ei: postrecording-event t i and
pre-ej: prerecording-event t j and
valid: trace init t final
shows
can-occur (t!j) (S ti)
proof —
have p # ¢ using post-before-pre-different-processes assms by auto
have sp: has-snapshotted (St i) p
using assms(3) post-ei postrecording-event prerecording-event by blast
have nsq: ~ has-snapshotted (St j) q
using assms(4) pre-ej prerecording-event by auto

112

let ?nr = take (j — (Suc 7)) (drop (Suc i) t)
have valid-subtrace: trace (S t (Suc ©)) ?nr (St)
using assms(1) exists-trace-for-any-i-j valid by fastforce
have Ball (set ?nr) (Y%oev. ™ occurs-on ev = ¢ A ™~ reqular-event ev)
proof —
have ?nr = take (j — (i+1)) (drop (i+1) t) by auto
then show ?thesis
by (metis assms(1) assms(2) assms(4) neighboring post-ei pre-ej valid
post-before-pre-neighbors)
qged
then have la: list-all (%oev. ~ occurs-on ev = q) nr
by (meson list-all-length nth-mem)
have tj-to-tSi: can-occur (t!j) (St (Suc 1))
proof —
have list-all (%ev. ™ isSend ev) ?nr
proof —
have list-all (%oev. ~ regular-event ev) ?nr
using «V eveset (take (j — (Suc 7)) (drop (Suc i) t)). occurs-on ev # q A
- regular-event evy <list-all (Aev. occurs-on ev # q) (take (j — (Suc 7)) (drop (Suc
i) t))» list.pred-mono-strong by fastforce
then show ?thesis
by (simp add: list.pred-mono-strong)
qed
moreover have ™~ isRecuMarker (¢! j) using prerecording-event assms by
auto
moreover have can-occur (t!j) (S tj)
proof —
have (Stj)F (¢!j) — (St (Sucji))
using assms(2) step-Suc valid by auto
then show ?thesis
using happen-implies-can-occur by blast
qed
ultimately show can-occur (t!7) (St (Suc 7))
using assms(4) event-can-go-back-if-no-sender-trace valid-subtrace la by blast
qed
show can-occur (t!j) (Sti)
proof (cases isSend (t! 7))
case Fulse
have ™~ isRecvMarker (t! j) using assms prerecording-event by auto
moreover have ™~ isSend (¢! i) using False by simp
ultimately show #thesis
by (metis <p # ¢ assms(3) assms(4) event-can-go-back-if-no-sender post-ei
postrecording-event step-Suc tj-to-tSi valid)
next
case True
obtain cid s v v’ m where Send: t ! i = Send cid p s u v’ m
by (metis True isSend-def assms(3) event.sel(2))
have chan: channel cid = Some (p, s)
proof —

113

have can-occur (t 1) (St i)
by (meson computation.postrecording-event computation-axioms happen-implies-can-occur
post-ei step-Suc valid)
then show ?%thesis using can-occur-def Send by simp
qed
have n: (Sti)F (¢t!4) — (St (Suci))
using assms(1) assms(2) step-Suc valid True by auto
have st: states (S t i) ¢ = states (St (Suc 7)) ¢
using Send <p # ¢ n by auto
have isTrans (t ! j) V isSend (t ! j) V isRecv (¢! j)
using assms(7) computation.prerecording-event computation-axioms requ-
lar-event by blast
then show ?thesis
proof (elim disjE)
assume isTrans (¢! j)
then show ?thesis
by (metis (no-types, lifting) tj-to-tSi st can-occur-def assms(4) event.case(1)
event.collapse(1))
next
assume isSend (t ! j)
then obtain cid’ s’ u’’ u'"" m’ where Send: t! j = Send cid’ q s’ v u'"" m
by (metis (no-types, lifting) assms(4) event.sel(2) isSend-def)
have co-tSi: can-occur (Send cid’ g s v”" uw""" m’) (St (Suc 7))
using Send tj-to-tSi by auto
then have channel cid’ = Some (q, s') A send cid’ g s’ v uv""" m
using Send can-occur-def by simp
then show ?thesis using can-occur-def st Send assms co-tSi by auto
next
assume isRecv (1! j)
then obtain cid’ s’ v’/ u""" m’ where Recv: t | j = Recv cid’ ¢ s’ uv"" u'"" m
by (metis assms(4) event.sel(8) isRecv-def)
have co-tSi: can-occur (Recv cid’ q " v”" v’ m’) (St (Suc 1))
using Recv tj-to-tSi by auto
then have a: channel cid’ = Some (s, q) A length (msgs (S ¢ (Suc 7)) cid’)

!

!

/

>0
A hd (msgs (St (Suc i)) cid’) = Msg m’
using can-occur-def co-tSi by fastforce
show can-occur (t!j) (St 1)
proof (cases cid = cid’)
case Fulse
with Send n have msgs (S t (Suc i)) cid’ = msgs (S t i) cid’ by auto
then have b: length (msgs (St ¢) cid’) > 0 A hd (msgs (S t 1) cid’) = Msg
m/

using a by simp
with can-occur-Recv co-tSi st a Recv show ?thesis
unfolding can-occur-def by auto
next
case True
have stu: states (St i) ¢ = u"

114

using can-occur-Recv co-tSi st by blast
show ?thesis
proof (rule ccontr)
have marker-in-set: Marker € set (msgs (St i) cid)
proof —
have (s', ¢) = (p,)
using True a chan by auto
then show ?thesis
by (metis (no-types, lifting) True <p # ¢> a assms(3) marker-must-stay-if-no-snapshot
n no-state-change-if-no-event nsq snapshot-stable-2 sp valid valid-subtrace)
qed
assume asm: ~ can-occur (¢! 7) (St 19)
then show Fulse
proof (unfold can-occur-def, (auto simp add: marker-in-set True Recv

stu))
assume msgs (St i) cid’ = [
then show Fulse using marker-in-set
by (simp add: True)
next
assume hd (msgs (St i) cid’) # Msg m’
have msgs (S t i) cid # || using marker-in-set by auto
then have msgs (S t (Suc 7)) cid = msgs (S t i) cid @ [Msg m)
using Send True n chan by auto
then have hd (msgs (St (Suc 7)) cid) # Msg m’
using True <hd (msgs (St i) cid’) # Msg m’s <msgs (St i) cid # []»
by auto
then have ™~ can-occur (¢t ! j) (St (Suc 1))
using True a by blast
then show Fulse
using tj-to-tSi by blast
next
assume ~ recv cid’ q s’ v u'"" m’
then show Fulse
using can-occur-Recv co-tSi by blast
next
assume channel cid’ # Some (s', q)
then show Fulse using can-occur-def tj-to-tSi Recv by simp
qed
qed
qed
qed
qed
qed

5.3.2 Event swapping

lemma swap-events:
shows [@ < j; j < length t;
Vk. (i < kANEk<j)— "~ regular-event (t ! k);

115

postrecording-event t i; prerecording-event t j;
trace init t final |
= trace init (swap-events i j t) final
ANNVEk kE>j+1— S (swap-events i jt) k= Stk)
ANNVEk kE<i— S (swap-events i jt) k= Stk)
A prerecording-event (swap-events i j t) i
A postrecording-event (swap-events i j t) (i+1)
ANNVEk k>i+1 Nk < j+1
— ™ reqular-event ((swap-events i j t) ! k))
proof (induct j — (i+1) arbitrary: j t)
case (
let %p = occurs-on (t! 1)
let g = occurs-on (t! j)
have j = (i+1)
using 0.prems 0.hyps by linarith
let Zsubt = take (j — (i+1)) (drop (i+1) t)
have ¢t = take it Q [t ! i] Q@ Zsubt Q [t ! j] Q drop (j+1) ¢
proof —
have take (Suc ©) t = take i t @ [t ! {]
using 0.prems(2) <j = i + 1> add-lessD1 take-Suc-conv-app-nth by blast
then show ?thesis
by (metis (no-types) 0.hyps 0.prems(2) Suc-eq-plusl <j = i + 1> append-assoc
append-take-drop-id self-append-conv2 take-Suc-conv-app-nth take-eq-Nil)
qed
have sp: has-snapshotted (S t i) ?p
using 0.prems postrecording-event prerecording-event by blast
have nsq: ~ has-snapshotted (St j) %q
using 0.prems postrecording-event prerecording-event by blast
have ?p # ?q
using 0.prems computation.post-before-pre-different-processes computation-axioms
by blast
have ?subt = Nil
by (simp add: <j =i + 1))
have reg-step-1: (St i) F (¢! 4) — (St])
by (metis 0.prems(2) 0.prems(6) Suc-eg-plusl <j =i + 1> add-lessD1 step-Suc)
have reg-step-2: (Stj) F (t!14) — (St (+1))
using 0.prems(2) 0.prems(6) step-Suc by auto
have can-occur (t!j) (St 1)
using 0.prems can-swap-neighboring-pre-and-postrecording-events by blast
then obtain d’ where new-stepl: (St i) F (¢t!j) — d’
using exists-next-if-can-occur by blast

have st: states d’ ?p = states (St i) ?p
using «(Sti)F t!j— d" coccurs-on (t! i) # occurs-on (t! j)» no-state-change-if-no-event
by auto
then have can-occur (¢! i) d’
using <occurs-on (¢! i) # occurs-on (t ! j)» event-stays-valid-if-no-occurrence
happen-implies-can-occur new-stepl reg-step-1 by auto
then obtain e where new-step2: d’'F (t!14) — e

116

using exists-next-if-can-occur by blast

have states e = states (St (j+1))
proof (rule ext)
fix p
show states e p = states (St (j+1)) p
proof (cases p = %p V p = %q)
case True
then show ?thesis
proof (elim disjE)
assume p = ?p
then have states d' p = states (St i) p
by (simp add: st)
thm same-state-implies-same-result-state
then have states e p = states (St j) p
using 0.prems(2) 0.prems(6) new-step2 reg-step-1 by (blast intro:same-state-implies-same-result-state[s
moreover have states (St j) p = states (St (j+1)) p
using <occurs-on (t ! ©) # occurs-on (t ! j) <p = occurs-on (t ! i)»
no-state-change-if-no-event reg-step-2 by auto
ultimately show ?thesis by simp
next
assume p = g
then have states (St j) p = states (St i) p
using reg-step-1 <occurs-on (t ! i) # occurs-on (t! j)» no-state-change-if-no-event
by auto
then have states d' p = states (St (j+1)) p
using 0.prems(5) prerecording-event computation-axioms new-stepl
reg-step-2 same-state-implies-same-result-state by blast
moreover have states e p = states (St (j+1)) p
using <occurs-on (t ! ©) # occurs-on (t ! j) <p = occurs-on (t ! j)
calculation new-step2 no-state-change-if-no-event by auto
ultimately show ?thesis by simp
qed
next
case Fulse
then have states (St i) p = states (Stj) p
using no-state-change-if-no-event reg-step-1 by auto
moreover have ... = states (St (j+1)) p
using Fualse no-state-change-if-no-event reg-step-2 by auto
moreover have ... = states d’ p
using Fulse calculation new-stepl no-state-change-if-no-event by auto
moreover have ... = states e p
using Fulse new-step2 no-state-change-if-no-event by auto
ultimately show ¢thesis by simp
qed
qed

moreover have msgs e = msgs (St (j+1))
proof (rule ext)

117

fix cid
have isTrans (t ! ©) V isSend (¢t ! 7) V isRecv (t ! i)
using 0.prems(4) computation.postrecording-event computation-axioms regu-
lar-event by blast
moreover have isTrans (t ! j) V isSend (t ! j) V isRecv (¢! j)
using 0.prems(5) computation.prerecording-event computation-axioms requ-
lar-event by blast
ultimately show msgs e cid = msgs (St (j+1)) cid
proof (elim disjE, goal-cases)
case I
then have msgs d’ cid = msgs (St j) cid
by (metis Trans-msg new-stepl reg-step-1)
then show ?thesis
using Trans-msg <isTrans (t !)y <isTrans (t ! j)» new-step2 reg-step-2 by
auto
next
case 2
then show ?thesis
using <occurs-on (t ! i) # occurs-on (t! j)» new-stepl new-step2 reg-step-1
reg-step-2 swap-msgs-Trans-Send by auto
next
case 3
then show ?thesis
using <occurs-on (t ! i) # occurs-on (t! j)» new-stepl new-step2 reg-step-1
reg-step-2 swap-msgs-Trans-Recv by auto
next
case 4
then show ?thesis
using <occurs-on (t ! i) # occurs-on (t! j)» new-stepl new-step2 reg-step-1
reg-step-2 swap-msgs-Send-Trans by auto
next
case 5
then show ?thesis
using <occurs-on (t ! i) # occurs-on (t! j)» new-stepl new-step2 reg-step-1
reg-step-2 swap-msgs-Recv-Trans by auto
next
case 6
then show ?thesis
using <occurs-on (t ! i) # occurs-on (t! j)» new-stepl new-step2 reg-step-1
reg-step-2 by (blast intro:swap-msgs-Send-Send[symmetric])
next
case 7
then show ?thesis
using <occurs-on (t ! i) # occurs-on (t! j)» new-stepl new-step2 reg-step-1
reg-step-2 swap-msgs-Send-Recv by auto
next
case 8
then show ?thesis
using <occurs-on (t ! i) # occurs-on (t ! j)» new-stepl new-step2 reg-step-1

118

reg-step-2 swap-msgs-Send-Recv by simp
next
case 9
then show ?thesis
using <occurs-on (t ! i) # occurs-on (t ! j)» new-stepl new-step2 reg-step-1
reg-step-2 by (blast intro:swap-msgs-Recv-Recv[symmetric])
qed
qed

moreover have process-snapshot e = process-snapshot (St (j+1))
proof (rule ext)
fix p
have process-snapshot d’ p = process-snapshot (St j) p
by (metis 0.prems(4) 0.prems(5) computation.postrecording-event computa-
tion.prerecording-event computation-axioms new-stepl reg-step-1 reqular-event-preserves-process-snapshots)
then show process-snapshot e p = process-snapshot (St (j+1)) p
by (metis 0.prems(4) 0.prems(5) computation.postrecording-event computa-

tion.prerecording-event computation-axioms new-step2 reg-step-2 reqular-event-preserves-process-snapshots)
qed

moreover have channel-snapshot e = channel-snapshot (S t (j+1))
proof (rule ext)
fix cid
show cs e cid = ¢s (St (j+1)) cid
proof (cases isRecv (t ! ©); cases isRecv (¢! j), goal-cases)
case I
then show ?thesis
using < ?p # ?q)> new-stepl new-step2 reg-step-1 reg-step-2
by (blast intro:reqular-event-implies-same-channel-snapshot-Recv- Recv[symmetric])
next
case 2
moreover have reqular-event (t ! j) using prerecording-event 0 by simp
ultimately show ?thesis
using ¢ ?p # ?¢» new-stepl new-step2 reg-step-1 reg-step-2 regqular-event-implies-same-channel-snapshot- R
by auto
next
assume 3: ~ isRecv (t ! i) isRecv (t ! j)
moreover have reqular-event (t ! i) using postrecording-event 0 by simp
ultimately show ?thesis
using < ?p # ?q» new-stepl new-step2 reg-step-1 reg-step-2 regqular-event-implies-same-channel-snapshot- R
by auto

next
assume 4: ~ isRecv (t ! i) ~ isRecv (t !)
moreover have regular-event (t ! j) using prerecording-event 0 by simp
moreover have regular-event (t ! i) using postrecording-event 0 by simp
ultimately show Zthesis
using < ?p # ?¢ new-stepl new-step2 reg-step-1 reg-step-2
by (metis no-cs-change-if-no-event)

119

qed
qed
ultimately have e = S ¢ (j+1) by simp
then have (Sti)F (t!j)—d' Ad'F(t!4)— (St (j+1))
using new-stepl new-step2 by blast
then have swap: trace (St %) [t!j, ¢4 (St (j+1))
by (meson trace.simps)
have take (j—1) t Q [t ! j, t ! i] = ((take (j+1))[i :=t ! j])[j:=t !]
proof —
have i = j — 1
by (simp add: <j =i + 1))
show ?thesis
proof (subst (1 2 3) <i =7 — 1))
have j < length t using 0.prems by auto
then have take (j — 1)t Q [t !, t! (j— 1)]Qdrop (j+ 1) t=t[j — 1 :=
t1g, =11 — 1)
by (metis Suc-eg-plusl i = j — 1> <j = i + 1) add-Suc-right arith-special(3)
swap-neighbors)
then show take (j — 1)t @ [¢!j, t! (j — 1)] = (take (j+1) t)[j — 1 =t !
Gi=tl (- 1)
proof —
assume al: take (j — 1)t Q¢! 4, t!1(j—1)]Qdrop (j+ 1)t =1t][j —
1:=t!lj,j:=t!'(G— 1)
have f2: t[j — 1 :=t!j,ji=t!(j— 1) =takej (t[j — 1 :=1t!j) Q¢!
(G — 1) # drop (Sucj) (1j — 1= 11)
by (metis (no-types) 0.prems(2) length-list-update upd-conv-take-nth-drop)

have f3: Vn na. - n < na V Suc n < na
using Suc-lel by blast
then have min (lengtht) (j + 1) =j + 1
by (metis (no-types) 0.prems(2) Suc-eq-plusl min.absorb2)
then have f/: length ((take (j + 1))[j — 1 :=t!1j]) =47+ 1
by simp
have f5: j + 1 < length (t[j — 1 :=t!j])
using f3 by (metis (no-types) 0.prems(2) Suc-eq-plus! length-list-update)
have Suc j <j+ 1
by linarith
then have (take (j + 1) (t[j — 1 ==t ! j))j:=t! (G — 1)] = take j (t[j
—r=tlhati G- #]a]
using f5 f4 by (metis (no-types) Suc-eq-plusl add-diff-cancel-right’
butlast-conv-take butlast-take drop-eq-Nil lessl self-append-conv2 take-update-swap
upd-conv-take-nth-drop)
then show ?thesis
using f2 al by (simp add: take-update-swap)
qed
qed
qed
have s: trace init (take i t) (St i)
using 0.prems(6) exists-trace-for-any-i by blast

120

have e: trace (St (j+1)) (take (length t — (j+1)) (drop (j+1) t)) final
proof —
have trace init (take (length t) t) final
by (simp add: 0.prems(6))
then show ?thesis
by (metis 0.prems(2) Suc-eq-plusl Suc-lel exists-trace-for-any-i exists-trace-for-any-i-j
nat-le-linear take-all trace-and-start-determines-end)
qed
have trace init (take it @Q [t ! j] @Q [¢! 4] Q drop (j+1) t) final
proof —
from s swap have trace init (take it Q [t ! j,t 1 4]) (St (j4+1)) using trace-trans
by blast
then have trace init (take it Q [t !4, t ! 4] @ (take (length t — (j+1)) (drop
(j+1) 1))) final
using e trace-trans by fastforce
moreover have take (length t — (j+1)) (drop (j+1) t) = drop (j+1) t by
stmp
ultimately show ¢thesis by simp
qed
moreover have take it Q [¢t ! j] Q [¢t! (] Q drop (j+1) t = (t[i:== ¢t J)j = ¢
1]
proof —
have length (take i t @Q [t ! j] @ [¢ ! 4] @Q drop (j+1) t) = length ((t[i := t !
M=t 4)
by (metis (mono-tags, lifting) <t = take i t Q [t ! {] Q take (j — (i + 1))
(drop (i + 1) t) Q [t ! j] @ drop (j + 1) > <take (j — (i + 1)) (drop (i + 1) ©)
= [length-append length-list-update list.size(4) self-append-conv2)
moreover have Ak. k < length ((t[i :=t ! j])[j:=t!i]) = (take it Q [t !
jl@it!i @drop (j+1)) k= ((tli ==t j)j:=t Vi) 1 k
proof —
fix k
assume k < length ((¢t[==t ! j])[j =t 1])
show (take it Q [t 1] Q [t 4] Q drop (j+1) t) ' k= ((t[i ==t j])[j:=¢!
i)k
proof (cases k =iV k = j)
case True
then show ?%thesis
proof (elim disjE)
assume k = i
then show ?thesis
by (metis (no-types, lifting) <k < length (t[i :==t!j, j:=t!i])> append-Cons
le-eq-less-or-eq length-list-update length-take min.absorb2 nth-append-length nth-list-update-eq
nth-list-update-neq)
next
assume k = j
then show ?thesis
by (metis (no-types, lifting) 0.prems(4) Suc-eq-plusl j = i + 1»
<k < length (t[i := t !4, j:=t!'4d]) append.assoc append-Cons le-eq-less-or-eq
length-append-singleton length-list-update length-take min.absorb2 nth-append-length

121

nth-list-update postrecording-event)
qged
next
case knij: False
then show ?thesis
proof (cases k < 1)
case True
then show ?thesis
by (metis (no-types, lifting) 0.prems(2) <j = i + 1> add-lessD1 length-take
less-imp-le-nat min.absorb2 not-less nth-append nth-list-update-neq nth-take)
next
case Fulse
then have k£ > j
using <j = ¢ + 1> knij by linarith
then have (take i t Q@ [t ! j] Q@ [t ! 4] @ drop (j+1) t) ! k = drop (j+1) ¢
! (h—(+1))
proof —
assume al: j < k
have f2: Vn na. ((n::nat) < na) = (n < na A n # na)
using nat-less-le by blast
have f3: i + 0 = min (length t) i + (0 + 0)
using 0.prems(2) <j = i + 1> by linarith
have f{: min (length t) i + Suc (0 + 0) = length (take i t) + length [t

by force
have f5: take it Q [t | j] Q [| = take it Q [t ! j]
by auto
have j = length (take i t Q [t ! j] @ [])
using f3 by (simp add: <j = i + 1»)
then have j + 1 = length (take it Q [t ! j] Q [t ! 4])
by fastforce
then show ?thesis
using 5 f4 f8 f2 al by (metis (no-types) One-nat-def <j = i
+ 1y add-Suc-right append.assoc length-append less-antisym list.size(8) not-less
nth-append)
qed
moreover have (t[i :=t ! j))[j:=¢t! i k= drop (j+1) ((t[i :=t ! j])[J
=¢14]) ! (k—(+1))
using 0.prems(2) <j < k> by auto
moreover have drop (j+1) ((t[i := ¢! j)[j :=t ! {]) = drop (j+1) ¢
using 0.prems(1) by auto
ultimately show ?thesis by simp
qged
qed
qed
ultimately show ?thesis by (simp add: list-eg-iff-nth-eq)
qed
moreover have Vk. k> j+ 1 — Stk=S ((tli:=t!jDj:=¢'14]) k
proof (rule alll, rule impl)

122

fix k
assume k > j + 1
let ?newt = ((t[i ;= ¢! j])[j:=t !
have trace init (take k ?newt) (S ?newt k)
using calculation(1) calculation(2) exists-trace-for-any-i by auto
have take k ?newt = take (j+1) ?newt Q take (k — (j+1)) (drop (j+1) ?newt)
by (metis <j + 1 < k> le-add-diff-inverse take-add)
have same-traces: drop (j+1) t = drop (j+1) ?newt
by (metis 0.prems(1) Suc-eq-plusl <j = i + 1> drop-update-cancel less-Sucl
less-add-same-cancell)
have trace init (take (j+1) ((¢([i :=tVJD[j =t 1 4d])) (St (j+1))
by (metis (no-types, lifting) <j = i + 1> <take (j — 1) t Q [t !4, ¢! i] = (take
G+ 1) i:=t!j,j:=1t!i] add-diff-cancel-right’ local.swap s take-update-swap
trace-trans)
moreover have trace init (take (j+1) ?newt) (S ?newt (j+1))
usmg(takezt@[t']@[i|Qdrop (j+ 1) t=tli:=t!jj:=¢t1i
trace init (take it @ [t ! 4] @Q [t ! 4] @ drop (j + 1) t) finaly exists-trace-for-any-i
by auto
ultimately have S ?newt (j+1) = St (j+1)
using trace-and-start-determines-end by blast
have trace (St (j+1)) (take (k — (j+1)) (drop (j+1) t)) (St k)
using 0.prems(6) <j + 1 < k> exists-trace-for-any-i-j by blast
moreover have trace (S ?newt (j+1)) (take (k — (j+1)) (drop (j+1) ?newt))

(S Pnewt k)
u51ng<]+1<k><takezt@[t'] [t!d @drop (j+ 1)t =1t[i:
t g, 5=t <trace init (take it Q [t ! j] Q [t !4 Q drop (j + 1))ﬁnal>

ezists-trace-for-any-i-j by fastforce
ultimately show St k = S %newt k
using «S (tfi ==t !4, j=tV14]) G+ 1)=St({+ 1) same-traces
trace-and-start-determines-end by auto
qed
moreover have Vk. k< i— Stk=S (t[i:=t'jDj:=¢t!14]) k
proof (rule alll, rule impl)
fix k
assume k < ¢
let ?newt = ((t[i := ¢! j])[j:=t!1i])
have trace init (take k t) (St k)
using 0.prems(6) exists-trace-for-any-i by blast
moreover have trace init (take k ?newt) (S ?newt k)
using «take it Q [t ! j]@Q[t!] Qdrop j+ 1) t=tli:=¢t'4j:=t!i
trace init (take it Q [t ! §] @ [t 4] Q drop (j + 1) t) final> exists-trace-for-any-i
by auto
moreover have take k t = take k ?newt
using 0.prems(1) <k < i by auto
ultimately show Stk = S %newt k
by (simp add: trace-and-start-determines-end)
qed
moreover have prerecording-event (swap-events i j t) i
proof —

123

have ~ has-snapshotted (S ((¢t[i :=t ' j))[j =t 1)) 7)) %q
by (metis 0.prems(6) <j = i + 1> add.right-neutral calculation(4) le-addl nsq
snapshot-stable-ver-3)
moreover have regular-event ((t[i :=t ! j))[j:= ¢! ! 1)
by (metis 0.prems(4) 0.prems(5) <occurs-on (t ! i) # occurs-on (¢! j)»
nth-list-update-eq nth-list-update-neq postrecording-event prerecording-event)
moreover have i < length ((t[i ==t ! j))[j:=¢!1])
using 0.prems(1) 0.prems(2) by auto
ultimately show ?thesis unfolding prerecording-event
by (metis (no-types, opaque-lifting) 0.prems(1) <take (j — (¢ + 1)) (drop (i
+ 1) t)y=1[p <takeit Qt!jQt!d Qdrop (j+ 1)t=tli:=t!jj:=1t!
i]» append-Cons length-list-update nat-less-le nth-list-update-eq nth-list-update-neq
self-append-conv?2)
qed
moreover have postrecording-event (swap-events i j t) (i+1)
proof —
have has-snapshotted (S ((t[i :== ¢ j))[j =t 1 i]) (i+1)) ?p
by (metis 0.prems(4) add.right-neutral calculation(1) calculation(2) calcula-
tion(4) le-addl postrecording-event snapshot-stable-ver-3)
moreover have regular-event ((t[i :=t ! j))[j:= ¢! !7)
using 0.prems(2) 0.prems(4) length-list-update postrecording-event by auto
moreover have j < length t using 0.prems by auto
ultimately show ¢thesis unfolding postrecording-event
by (metis <j = i + 1 length-list-update nth-list-update-eq swap-neighbors-2)
qed
moreover have Vk. k > i+1 A k < j+1 — ~ regular-event ((swap-events i j
t) ! k) using 0 by force
ultimately show ?case using «<j = ¢ + 1) by force
next
case (Suc n)
let ?p = occurs-on (t! i)
let ¢ = occurs-on (¢! j)
let ?t = take ((j4+1) — i) (drop i t)
let ?subt = take (j — (i+1)) (drop (i+1) t)
let Zsubt’ = take ((j—1) — (i+1)) (drop (i+1) t)
have sp: has-snapshotted (S t i) ?p
using Suc.prems postrecording-event prerecording-event by blast
have nsq: ~ has-snapshotted (St j) %q
using Suc.prems postrecording-event prerecording-event by blast
have ?p # ?q
using Suc.prems computation.post-before-pre-different-processes computation-axioms
by blast
have ?subt # Nil
using Suc.hyps(2) Suc.prems(1) Suc.prems(2) by auto
have ?subt’ = butlast ?subt
by (metis Suc.prems(2) Suc-eq-plus! butlast-drop butlast-take drop-take less-imp-le-nat)
have <i < length t»
using <postrecording-event t iy postrecording-event [of t i] by simp
then have step: «<Stik t!i— St (Suci)

124

using <trace init t finaly by (rule step-Suc)
have %t = ¢! i # %subt Q [t ! j]
proof —
have fI: Suc j — i = Suc (j —)
using Suc.prems(1) Suc-diff-le le-simps(1) by presburger
have f2: t ! i # drop (Suc i) t = drop i t
by (meson Cons-nth-drop-Suc Suc.prems(1) Suc.prems(2) less-trans)
have f3: t ! j # drop (Sucj) t = drop j t
using Cons-nth-drop-Suc Suc.prems(2) by blast
have f{:j— (i+ 1)+ (i+1)=3j
using Suc.prems(1) by force
have j — (i + 1) + Suc 0 =j — {
using Suc.prems(1) Suc-diff-Suc by presburger
then show ?thesis
using f/ 3 f2 f1 by (metis One-nat-def Suc.hyps(2) Suc-eq-plusi drop-drop
take-Suc-Cons take-add take-eq-Nil)
qed
then have trace (S t4) 7t (St (j+1))
by (metis Suc.prems(1) Suc.prems(6) Suc-eq-plusl exists-trace-for-any-i-j less-Sucl
nat-less-le)
then have reg-tr-1: trace (S t4) (t !4 # Zsubt) (St7)
using i < j» <7 < length t» <trace init t final> step
by simp (meson exists-trace-for-any-i-j less-eq-Suc-le trace.simps)
have reg-st-2: (St F (t!7) — (St (j+1))
using Suc.prems(2) Suc.prems(6) step-Suc by auto
have Zsubt = ?subt’ Q [t ! (j—1)]
proof —
have f1:Vn es. = n < length es V take n es Q [hd (drop n es)::('a, 'b, 'c) event]
= take (Suc n) es
by (meson take-hd-drop)
have f2: j— 1 —(i+ 1) =n
by (metis (no-types) Suc.hyps(2) Suc-eq-plusl diff-Suc-1 diff-diff-left plus-1-eq-Suc)

have f3: Vn na. = n < na V Suc n < na
using Suc-lel by blast
then have f}: Suci < j— 1
by (metis (no-types) Suc.hyps(2) Suc-eq-plusl diff-diff-left plus-1-eq-Suc
zero-less-Suc zero-less-diff)
have f5: i + 1 < j
by (metis Suc.hyps(2) zero-less-Suc zero-less-diff)
then have f6: ¢! (j — 1) = hd (drop n (drop (i + 1) t))
using f/ f3 by (metis (no-types) Suc.hyps(2) Suc.prems(2) Suc-eg-plusl
Suc-lessD add-Suc-right diff-Suc-1 drop-drop hd-drop-conv-nth le-add-diff-inverse2
plus-1-eq-Suc)
have n < length (drop (i + 1) t)
using f5 f8 by (metis (no-types) Suc.hyps(2) Suc.prems(2) Suc-eg-plusi
Suc-lessD drop-drop le-add-diff-inverse2 length-drop zero-less-diff)
then show ?thesis
using f6 f2 f1 Suc.hyps(2) by presburger

125

qed
then have reg-tr: trace (St i) (¢! i # Zsubt’) (St (j—1))
proof —
have f1: j — Suc i = Sucn
using Suc.hyps(2) by presburger
have f2: length (take jt) = j
by (metis (no-types) Suc.prems(2) length-take min.absorb2 nat-le-linear
not-less)
have f3: (t ! i # drop (Suc i) (take jt)) @ [t ! j] = drop i (take (Suc j) t)
by (metis (no-types) Suc-eq-plusl <take (j + 1 — i) (drop i t) =t i # take
(j— (G 4+ 1)) (drop (i + 1) t) @ [t! j]» append-Cons drop-take)
have f4: Suc (i + n) =j — 1
using f1 by (metis (no-types) Suc.prems(1) Suc-diff-Suc add-Suc-right
diff-Suc-1 le-add-diff-inverse nat-le-linear not-less)
have Suc (j — 1) =5
using fI by simp
then have f5: butlast (take (Suc j) t) = take j t
using f4 f3 f2 f1 by (metis (no-types) Groups.add-ac(2) One-nat-def ap-
pend-eq-conv-conj append-take-drop-id butlast-take diff-Suc-1 drop-drop length-append
length-drop list.size(3) list.size(4) order-refl plus-1-eq-Suc plus-nat.simps(2) take-add
take-all)
have f6: butlast (take jt) = take (j — 1) t
by (meson Suc.prems(2) butlast-take nat-le-linear not-less)
have drop (Suc i) (take j t) #]
by (metis (no-types) Nil-is-append-conv Suc-eq-plusl <take (j — (i + 1)) (drop
(i+1)t)y=take (j — 1 — (i + 1)) (drop (¢ + 1) t) Q [t ! (j — 1)) drop-take
list.distinct(1))
then show ?thesis
using f6 f5 fi f3 by (metis (no-types) Suc.prems(6) Suc-eg-plusl but-
last.simps(2) butlast-drop butlast-snoc drop-take exists-trace-for-any-i-j less-add-Sucl
nat-le-linear not-less)
qed

have reg-st-1: (St (j—1)) F (¢! (j—1)) — (St)
by (metis Suc.prems(1) Suc.prems(2) Suc.prems(6) Suc-lessD diff-Suc-1 less-imp-Suc-add
step-Suc)
have ™~ regular-event (t! (j—1))
using Suc.prems(3) «take (j — (i + 1)) (drop (i + 1) t) # []» less-diff-conv
by auto
moreover have regular-event (t! j)
using Suc.prems(5) computation.prerecording-event computation-azioms by
blast
moreover have can-occur (t!7) (S t7)
using happen-implies-can-occur reg-tr-1 reg-st-2 by blast
moreover have njmiq: occurs-on (t! (j—1)) # %q
proof (rule ccontr)
assume ~ occurs-on (t! (j—1)) # %q
then have occurs-on (t! (j—1)) = ?q by simp
then have has-snapshotted (St j) ?q

126

using Suc.prems(6) calculation(1) diff-le-self nonregular-event-induces-snapshot
reg-st-1 snapshot-stable-ver-2 by blast
then show Fulse using nsq by simp
qed
ultimately have can-occur (t!j) (St (j—1))
using reg-tr reg-st-1 event-can-go-back-if-no-sender by auto
then obtain d where new-st-1: (St (j—1))F (¢t !j) — d
using exists-next-if-can-occur by blast
then have trace (St i) (¢t ! i # ?subt’ Q [t ! j]) d using reg-tr trace-snoc by
fastforce
moreover have can-occur (t! (j—1)) d
using «((St (j—1)) F t ! jw— d» <occurs-on (t! (j — 1)) # occurs-on (t ! j)
event-stays-valid-if-no-occurrence happen-implies-can-occur reg-st-1 by auto
moreover obtain e where new-st-2: d - (¢! (j—1)) — e
using calculation(2) exists-next-if-can-occur by blast

have pre-swap: e = (St (j+1))
proof —
have states e = states (St (j+1))
proof (rule ext)
fix p
have states (St (j—1)) p = states (Stj) p
using no-state-change-if-nonregular-event«™ regular-event (t! (j—1))» reg-st-1
by auto
moreover have states d p = states e p
using no-state-change-if-nonreqular-event<~ regular-event (t ! (j—1))»
new-st-2 by auto
moreover have states d p = states (St (j+1)) p
proof —
have V a. states (St (j + 1)) a = states d a
by (meson «— regular-event (t! (j — 1))» new-st-1 no-state-change-if-nonregular-event
reg-st-1 reg-st-2 same-state-implies-same-result-state)
then show ?thesis
by presburger
qed
ultimately show states e p = states (St (j+1)) p by simp
qged

moreover have msgs e = msgs (St (j+1))
proof (rule ext)
fix cid
have isTrans (t ! j) V isSend (t ! j) V isRecv (¢! j)
using <reqular-event (t! j)» by auto
moreover have isSnapshot (t! (j—1)) V isRecoMarker (t ! (j—1))
using nonregular-event ™ regular-event (t ! (j—1))» by auto
ultimately show msgs e cid = msgs (St (j+1)) cid
proof (elim disjE, goal-cases)
case 1
then show Zcase

127

using new-st-1 new-st-2 njmiq reg-st-1 reg-st-2 swap-Trans-Snapshot by
auto
next
case 2
then show ?case
using new-st-1 new-st-2 njmiq reg-st-1 reg-st-2 swap-msgs- Trans- RecvMarker
by auto
next
case 3
then show ?Zcase
using new-st-1 new-st-2 njmiq reg-st-1 reg-st-2 swap-Send-Snapshot by
auto
next
case 4
then show Zcase
using new-st-1 new-st-2 njmiq reg-st-1 reg-st-2 swap-Recv-Snapshot by
auto
next
case $
then show ?Zcase
using new-st-1 new-st-2 njmiq reg-st-1 reg-st-2 swap-msgs-Send-RecvMarker
by auto
next
case 6
then show ?case
using new-st-1 new-st-2 njmiq reg-st-1 reg-st-2 swap-msgs-Recv-RecvMarker
by auto
qed
qed

moreover have process-snapshot e = process-snapshot (S t (j+1))
proof (rule ext)
fix p
have process-snapshot (S t j) p = process-snapshot (St (j+1)) p
using <regular-event (t ! j)> reg-st-2 regular-event-preserves-process-snapshots
by blast
moreover have process-snapshot (St (j—1)) p = process-snapshot d p
using <reqular-event (t ! j)» new-st-1 reqular-event-preserves-process-snapshots
by blast
moreover have process-snapshot e p = process-snapshot (St j) p
proof —
have occurs-on (t!j)=p — psep=ps (Stj)p
using calculation(2) new-st-2 njmiq no-state-change-if-no-event reg-st-1
by force
then show ?thesis
by (meson new-st-1 new-st-2 no-state-change-if-no-event reg-st-1 same-snapshot-state-implies-same-resul
qed
ultimately show process-snapshot e p = process-snapshot (St (j+1)) p by
stmp

128

qed

moreover have cs e = cs (St (j+1))
proof (rule ext)
fix cid
have isTrans (¢t ! j) V isSend (t ! j) V isRecv (¢! j)
using <reqular-event (t! j)» by auto
moreover have isSnapshot (t! (j—1)) V isRecoMarker (! (j—1))
using nonregular-event <~ regular-event (t! (j—1))» by auto
ultimately show cs e cid = ¢s (St (j+1)) cid
proof (elim disjE, goal-cases)
case 1
then show ?case
using new-st-1 new-st-2 reg-st-1 reg-st-2 swap-cs-Trans-Snapshot by auto
next
case 2
then show ?case
using new-st-1 new-st-2 reg-st-1 reg-st-2 swap-cs-Trans-RecvMarker by

auto
next
case 3
then show ?Zcase
using new-st-1 new-st-2 reg-st-1 reg-st-2 swap-cs-Send-Snapshot by auto
next
case 4
then show Zcase
using new-st-1 new-st-2 reg-st-1 reg-st-2 swap-cs-Recv-Snapshot njmiq by
auto
next
case)
then show ?Zcase
using new-st-1 new-st-2 reg-st-1 reg-st-2 swap-cs-Send-RecvMarker by auto
next

case 6
then show ?case
using new-st-1 new-st-2 reg-st-1 reg-st-2 swap-cs-Recv-RecvMarker njmiq
by auto
qed
qed
ultimately show ?thesis by auto
qed

let 2it = (¢t[j—1 =t j)[j:=¢! (j—1)]

have same-prefix: take (j—1) %it = take (j—1) t by simp

have same-suffiz: drop (j+1) %it = drop (j+1) t by simp

have trace-prefiz: trace init (take (j—1) %it) (St (j—1))
using Suc.prems(6) exists-trace-for-any-i by auto

have ?it = take (j—1) t @ [¢!j, t! (j—1)] @ drop (j+1) ¢

proof —

129

have 1 < j
by (metis (no-types) Suc.hyps(2) Suc-eq-plusl add-lessD1 plus-1-eq-Suc
zero-less-Suc zero-less-diff)
thenhavej — 1 + 1 =3
by (metis (no-types) le-add-diff-inverse2 nat-less-le)
then show ?thesis
by (metis (no-types) Suc.prems(2) Suc-eq-plusl add-Suc-right one-add-one
swap-neighbors)
qed
have trace (St (j—1)) [¢ 14, t! (j—1)] (St (j+1))
by (metis new-st-1 new-st-2 pre-swap trace.simps)
have trace init (take (j+1) t Q drop (j+1) t) final
by (simp add: Suc.prems(6))
then have trace init (take (j+1) t) (St (j+1)) A trace (St (j+1)) (drop (j+1)
t) final
using Suc.prems(6) exists-trace-for-any-i split-trace trace-and-start-determines-end
by blast
then have trace-suffiz: trace (St (j+1)) (drop (j+1) %it) final using same-suffiz
by simp
have trace init ?it final

by (metis (no-types, lifting) <t[j — 1 :=t!j,j:=t!(j — 1)] = take (j — 1)
t@t!j,t!(G— 1)]Qdrop (j+ 1)t <trace (St (j+ 1)) (drop (j + 1) (t[j —
1=t j:=1t!(G— 1)) final> <trace (St (G — 1)) [t'j, t!)

+ 1)) <trace init (take (j — 1) (tj— 1 =t j,j:=¢!G-D])) (St (G- 1)
same-prefix same-suffix trace-trans)
have suffiz-same-states: Vk. k> j— Stk= S5 %tk
proof (rule alll, rule impl)
fix k
assume k£ > j
have eg-trace: drop (j+1) t = drop (j+1) %it by simp
have trace init (take (j+1) %it) (S %it (j+1))
using <trace init (t[j — 1 :=tj,j:=t!(j — 1)]) final> exists-trace-for-any-i
by blast
moreover have trace init (take (j+1) %it) (St (j+1))
proof —
have f1: Ves esa esb esc. (esb::(‘a, 'b, 'c) event list) Q es # esa @ esc @ es
V esa @ esc = esb
by auto
have f2: take (j + 1) (t[j — 1 =t !4, j:=t! (G — 1)) Qdrop (j+ 1)t =
tlj—1:=t'4j=¢t!({— 1)
by (metis append-take-drop-id same-suffiz)
have trace init (take (j — 1)t @[t !4, t' (G — 1) (St (G + 1))
using <trace (St (j — 1)) [t !4, t1 (G — 1) (St (G + 1)) same-prefic
trace-prefix trace-trans by presburger
then show ?thesis
using f2 f1 by (metis (no-types) <t[j — 1 :==¢ !4, j:=t!(j — 1)] = take
(G—1)t@[tlj, ¢! (j— 1) Qdmop(j+1)t)
qed
ultimately have eg-start: S %it (j+1) = St (j+1)

130

using trace-and-start-determines-end by blast
then have take k ?it = take (j+1) %it Q take (k — (j+1)) (drop (j+1) ?%it)
by (metis Suc-eq-plusl Suc-lel <j < k> le-add-diff-inverse take-add)
have trace (S %it (j+1)) (take (k — (j+1)) (drop (j+1) %it)) (S %it k)
by (metis Suc-eq-plusl Suc-lel <j < ky <trace init (t[j — 1 =t !4, j:=¢t!(j
— 1)]) finaly exists-trace-for-any-i-j)
moreover have trace (St (j+1)) (take (k — (j+1)) (drop (j+1) t)) (St k)
using Suc.prems(6) <j < k> exists-trace-for-any-i-j by fastforce
ultimately show Stk =S %t k
using eg-start trace-and-start-determines-end by auto
qed
have prefiz-same-states: Vk. k < j— Stk= 2S5 %itk
proof (rule alll, rule impl)
fix k
assume k < j
have trace init (take k t) (St k)
using Suc.prems(6) exists-trace-for-any-i by blast
moreover have trace init (take k ?it) (S %it k)
by (meson <trace init (t[j — 1 ==tV j, j:=¢t! (j — 1)]) final> ex-
ists-trace-for-any-7)
ultimately show Stk =5 %tk
using <k < j» s-def by auto
qed
moreover have j — 1 < length it
using Suc.prems(2) by auto
moreover have prerecording-event ?it (j—1)
proof —
have fl: t[j — 1 =t!j,j:=t'G-D)'G-1)=tj—1:=t!4!{ -

1)
by (metis (no-types) njmiq nth-list-update-neq)
have j # 0
by (metis (no-types) Suc.prems(1) not-less-zero)
then have - j < I
by blast
thenhave St (j —1)=S (tj—1:=t!jj=t'(G—-1)) G-1)
by (simp add: prefiz-same-states)
then show ?thesis
using f1 by (metis <regular-event (¢! 5)» calculation(4) computation.prerecording-event
computation-azxioms length-list-update njmiq no-state-change-if-no-event nsq nth-list-update-eq
reg-st-1)
qed
moreover have postrecording-event ?it ¢
proof —
have i < length ?it
using Suc.prems(4) postrecording-event by auto
then show ?thesis
proof —
assume ¢ < length (t[j — 1 :=t'j,j:=t! (- 1)])
have i < j — 1

131

by (metis (no-types) Suc.hyps(2) cancel-ab-semigroup-add-class. diff-right-commute
diff-diff-left zero-less-Suc zero-less-diff)
then show ?thesis
using Suc.prems(1) Suc.prems(4) postrecording-event prefiz-same-states by
auto
qed
qed
moreover have i < j — I
using Suc.hyps(2) by auto
moreover have Vk. i < kA k < (j—1) — ™ regular-event (?it ! k)
proof (rule alll, rule impl)
fix k
assume i < kA k < (j—1)
show ~ regular-event (?%it | k)
using Suc.prems(8) «i < k ANk < j— 1) by force
qged
moreover have (j—1) — (i+1) = n using Suc.prems Suc.hyps by auto
ultimately have ind: trace init (swap-events i (j—1) ?it) final
NNk k> (—1)+1 — S (swap-events i (j—1) %it) k=S
2it k)
NNk kE<i— S (swap-events i (j—1) %it) k= S 2it k)
A prerecording-event (swap-events i (j—1) 2it) @
A postrecording-event (swap-events i (j—1) ?it) (i+1)
ANNVE k>i+1 Nk < (j—1)+1 — ~ regular-event ((swap-events
i(j—1) %it) ' k))
using Suc.hyps <trace init ?it finaly by blast
then have new-trace: trace init (swap-events i (j—1) ?it) final by blast
have equal-suffiz-states: Vk. k > j — S (swap-events i (j—1) %it) k=S %it k
using Suc.prems(1) ind by simp
have equal-prefiz-states: Vk. k < i — S (swap-events i (j—1) %it) k = S %it k
using ind by blast
have neighboring-events-shifted: Vk. k > i+1 N k < j — ~ regular-event
((swap-events i (j—1) %it) | k)
using ind by force

let %itn = swap-events i (j—1) 2it
have ?itn = swap-events i j t
proof —
have f1: 1 <j — 1
using i < j — 1» less-imp-le-nat by blast
have t | j# [t (j— 1)]Qdrop (j+ 1)t =drop (j — 1) (take (j — 1)t Q
[tlg, 61 (G— 1) Qdrop (j+ 1)t)
using «t[j — 1 :=t!j, =t (j—1)]=take j— 1)t Q[t!j ¢! (-
] @ drop (j + 1) t» same-prefix by force
then have f2: t[j — 1 =t !4, j:=t!(G-1D]'G—-1)=t'jAdrop (j —
T+ D) (Aj— 1=t =t (G—D)=t!(G—1)#[Qdrop(j+ 1)t
by (metis (no-types) Cons-nth-drop-Suc Suc-eq-plusl <j — 1 < length (t[j —
L=t g =t (G— Dy «tj—1:=t1jj=t1(G— 1) = take (j — 1) ¢
Qtlj, t!(j— 1) Q@drop (j+ 1)t append-Cons list.inject)

132

have t | i=tj — 1 :=t1j, j=¢t!(G— 1) !
by (metis (no-types) Suc.prems(1) <i < j — 1) nat-neg-iff nth-list-update-neq)
then show ?thesis
using f2 fI by (metis (no-types) Suc.prems(1) <take (j — (i + 1)) (drop (i
+1)t)y=take (j — 1 — (i+ 1)) (drop (i + 1) t) @ [t! (j — 1)]> append.assoc
append-Cons drop-take less-imp-le-nat same-prefix take-update-cancel)
qed

moreover have Vk k< i — Stk=25 %tnk
using Suc.prems(1) equal-prefiz-states prefiz-same-states by auto
moreover have Vk. k> j+ 1 — Stk= 25 %tnk
by (metis (no-types, lifting) Suc-eq-plusl add-lessD1 equal-suffiz-states lessl
nat-less-le suffiz-same-states)
moreover have Vk. k > i+1 Ak < j+1 — ~ regular-event (%itn ! k)
proof —
have ™~ regular-event (?itn ! j)
proof —
have f1: j — 1 < length t
using <j — 1 < length (¢t[j — 1 :=t!j,j:=t!(j — 1)]) by force
have f2: An na es. = n < na V = na < length es V drop (Suc na) (take n es
Q@ [hd (drop na es), es ! n::("a, 'b, 'c) event] @Q take (na — Suc n) (drop (Suc n)
es) @ drop (Suc na) es) = drop (Suc na) es
by (metis Suc-eq-plus1 hd-drop-conv-nth swap-identical-tails)
have f3: t! j = hd (drop j t)
by (simp add: Suc.prems(2) hd-drop-conv-nth)
have - j < 1
using Suc.prems(1) by blast
then have — regular-event (hd (drop j (take i (t[j — 1 := hd (drop jt), j :=
hd (drop (j — 1) t)]) @Q [hd (drop (j — 1) (t[j — 1 := hd (drop j t), j := hd (drop
G—1))), tlj — 1 := hd (drop j t), j:= hd (drop (j — 1) t)] ! 7] Q take (j —
1 — Suc i) (drop (Suc i) (¢[j — 1 := hd (drop j t), j := hd (drop (j — 1) t)])) @
drop (Suc (j — 1)) (tj — 1 := hd (drop j £), § = hd (drop (j — 1) E)]))))
using f2 f1 by (metis (no-types) Suc.prems(2) <= regular-event (¢! (j — 1))
i < j— 1> add-diff-inverse-nat hd-drop-conv-nth length-list-update nth-list-update-eq
plus-1-eq-Suc)
then show ?thesis
using f3 f1 by (metis Suc.prems(2) Suc-eq-plusl i < j — 1> hd-drop-conv-nth
length-list-update swap-identical-length)
qed
then show ?thesis
by (metis Suc-eq-plusl less-Suc-eq neighboring-events-shifted)
qed

ultimately show ?case using ind by presburger
qed

5.3.3 Relating configurations and the computed snapshot

definition ps-equal-to-snapshot where

133

ps-equal-to-snapshot ¢ ¢’ =
Y p. Some (states ¢ p) = process-snapshot ¢’ p

definition cs-equal-to-snapshot where
cs-equal-to-snapshot ¢ ¢’ =
Y cid. channel cid # None
— filter ((#) Marker) (msgs c cid)
= map Msg (fst (channel-snapshot ¢’ cid))

definition state-equal-to-snapshot where
state-equal-to-snapshot ¢ ¢’ =
ps-equal-to-snapshot ¢ ¢’ N\ cs-equal-to-snapshot ¢ ¢’

lemma init-is-s-t-0:
assumes
trace init t final
shows
init = (St 0)
by (metis assms ezists-trace-for-any-i take-eq-Nil tr-init trace-and-start-determines-end)

lemma final-is-s-t-len-t:
assumes
trace init t final
shows
final = S t (length t)
by (metis assms exists-trace-for-any-i order-refl take-all trace-and-start-determines-end)

lemma snapshot-event:
assumes
trace init t final and
~ has-snapshotted (S t i) p and
has-snapshotted (St (i+1)) p
shows
isSnapshot (t ! i) V isRecvMarker (¢! 7)
proof —
have (Std) F (¢!4) — (St (i+1))
by (metis Suc-eq-plusl assms(1) assms(2) assms(8) distributed-system.step-Suc
computation-azioms computation-def nat-less-le not-less not-less-eq s-def take-all)
then show ?thesis
using assms(2) assms(8) nonregular-event reqular-event-cannot-induce-snapshot
by blast
qged

lemma snapshot-state:
assumes
trace init t final and
states (St i) p = v and
~ has-snapshotted (S t i) p and
has-snapshotted (St (i+1)) p

134

shows
ps (St (i+1)) p = Some u
proof —
have step: (Sti) b (¢!4) — (St (i+1))
by (metis add.commute assms(1) assms(3) assms(4) le-Sucl le-eq-less-or-eq
le-refl nat-neq-iff no-change-if-ge-length-t plus-1-eq-Suc step-Suc)
let ¢ = occurs-on (t! i)
have qp: 2¢q = p
proof (rule ccontr)
assume ?q # p
then have has-snapshotted (St (i+1)) p = has-snapshotted (St i) p
using local.step no-state-change-if-no-event by auto
then show Fulse using assms by simp
qed
have isSnapshot (t ! i) V isRecoMarker (t ! i) using assms snapshot-event by
auto
then show ?thesis
proof (elim disjE, goal-cases)
case I
then have ¢ ! ¢ = Snapshot p
by (metis event.collapse(4) qp)
then show ?thesis
using assms(2) local.step by auto
next
case 2
then obtain cid’ ¢ where t ! i = RecvMarker cid’ p g
by (metis event.collapse(5) qp)
then show ?thesis using assms step by auto
qed
qed

lemma snapshot-state-unchanged-trace-2:
shows
[trace init t final; i < j; j < length &
ps (S ti) p= Some u
] = ps(Stj) p= Someu
proof (induct i j rule:S-induct)
case S-init
then show ?case by simp
next
case S-step
then show ?case using snapshot-state-unchanged by auto
qed

lemma no-recording-cs-if-not-snapshotted:
shows
[trace init t final; ~ has-snapshotted (St i) p;
channel cid = Some (q, p) | = ¢s (S t i) cid = cs init cid
proof (induct i)

135

case (
then show ?case
by (metis exists-trace-for-any-i list.discl take-eq-Nil trace.simps)
next
case (Suc 17)
have Suc i < length t
proof —
have has-snapshotted final p
using all-processes-snapshotted-in-final-state valid by blast
show ?thesis
proof (rule ccontr)
assume ~ Suc i < length t
then have Suc i > length t by simp
then have has-snapshotted (S t (Suc i)) p
using Suc.prems(1) <ps final p # Nones final-is-s-t-len-t snapshot-stable-ver-3
by blast
then show Fulse using Suc by simp
qed
qed

then have t¢-dec: trace init (take i t) (Sti) A (Sti) b (¢! %) — (St (Suci))
using Suc.prems(1) exists-trace-for-any-i step-Suc by auto
moreover have step: (St i) F (¢t!4) — (St (Suc 7)) using calculation by simp

ultimately have IH: cs (St i) cid = cs init cid
using Suc.hyps Suc.prems(1) Suc.prems(2) Suc.prems(3) snapshot-state-unchanged
by fastforce

then show ?case
proof (cases t ! 7)
case (Snapshot r)
have r # p
proof (rule ccontr)
assume ~ 1 # p
then have r = p by simp
then have has-snapshotted (S t (Suc 7)) p
using Snapshot step by auto
then show Fulse using Suc by simp
qed
then have cs (St i) cid = ¢s (St (Suc 7)) cid
using Snapshot Suc.prems(3) local.step by auto
then show %thesis using IH by simp
next
case (RecvMarker cid’ r s)
have r # p
proof (rule ccontr)
assume ~ 17 #£ p
then have r = p by simp
then have has-snapshotted (S t (Suc 7)) p

136

using RecvMarker t-dec recv-marker-means-snapshotted-1 by blast
then show Fulse using Suc by simp
qed
have cid’ # cid
proof (rule ccontr)
assume "~ cid’ # cid
then have channel cid’ = Some (s, r) using t-dec can-occur-def RecvMarker
by simp
then show Fulse
using Suc.prems(8) «— cid’ # cid> «<r # p» by auto
qed
then have cs (St i) cid = ¢s (St (Suc i) cid
proof —
have 5. channel cid = Some (s, r) using «r # p» Suc by simp
with RecvMarker t-dec <cid’ # cidy <r # p> Suc.prems(8) show ?thesis
by (cases has-snapshotted (S t i) r, auto)
qed
then show ?thesis using IH by simp
next
case (Trans r u u’)
then show ?thesis
using IH t-dec by auto
next
case (Send cid’ r s u u' m)
then show ?thesis
using IH local.step by auto
next
case (Recv cid' r s u u’ m)
then have snd (¢s (St i) cid) = NotStarted
by (simp add: IH no-initial-channel-snapshot)
with Recv step Suc show ?thesis by (cases cid’ = cid, auto)
qed
qed

lemma cs-done-implies-has-snapshotted:
assumes
trace init t final and
snd (es (St i) cid) = Done and
channel cid = Some (p, q)
shows
has-snapshotted (St i) q
proof —
show ?thesis
using assms no-initial-channel-snapshot no-recording-cs-if-not-snapshotted by
fastforce
qed

lemma exactly-one-snapshot:
assumes

137

trace init t final
shows
314. ™ has-snapshotted (S t i) p A has-snapshotted (St (i+1)) p (is ?P)
proof —
have ™~ has-snapshotted init p
using no-initial-process-snapshot by auto
moreover have has-snapshotted final p
using all-processes-snapshotted-in-final-state valid by blast
moreover have trace (St 0) t (S ¢ (length t))
using assms final-is-s-t-len-t init-is-s-t-0 by auto
ultimately have ez-snap: 3i. ~ has-snapshotted (S t i) p A has-snapshotted (S
t (i+1)) p
using assms exists-snapshot-for-all-p by auto
show ?thesis
proof (rule ccontr)
assume ~ P
then have 3¢ j. (i # j) A ™~ has-snapshotted (S t i) p A has-snapshotted (S t
(i+1)) p A
~ has-snapshotted (St j) p A has-snapshotted (St (j+1))
D
using ez-snap by blast
then have 37 j. (i < j) A~ has-snapshotted (S t i) p A has-snapshotted (S t
(i+1)) p A
~ has-snapshotted (St j) p A has-snapshotted (St (j+1))
p
by (meson linorder-neqE-nat)
then obtain ¢ j where i < j ™~ has-snapshotted (S t i) p has-snapshotted (S t
(i+1)) p
~ has-snapshotted (S t j) p has-snapshotted (St (j+1)) p
by blast
have trace (St (i+1)) (take (j — (i+1)) (drop (i+1) t)) (St)
using (i < j» assms exists-trace-for-any-i-j by fastforce
then have has-snapshotted (St j) p
using «ps (St (i + 1)) p # None> snapshot-stable by blast
then show Fulse using <™~ has-snapshotted (S t j) p» by simp
qed
qed

lemma initial-cs-changes-implies-nonreqular-event:
assumes
trace init t final and
snd (cs (St i) cid) = NotStarted and
snd (es (St (i+1)) cid) # NotStarted and
channel cid = Some (p, q)
shows
~ regular-event (t ! 7)
proof —
have i < length t
proof (rule ccontr)

138

assume ~ i < length t
then have Sti= St (i+1)
using assms(1) no-change-if-ge-length-t by auto
then show Fulse using assms by presburger
qed
then have step: (Sti) F (¢! 7)) — (St (i+1))
using assms(1) step-Suc by auto
show ?thesis
proof (rule ccontr)
assume ~ ~ reqular-event (t ! 7)
then have reqular-event (t ! i) by simp
then have cs (St i) cid = ¢s (St (i+1)) cid
proof (cases isRecv (1! 7))
case Fulse
then show ?thesis
using <reqular-event (t ! i) local.step no-cs-change-if-no-event by blast
next
case True
then obtain cid’ 7 s u ' m where Recv: t ! i = Recv cid’ v s u u' m by
(meson isRecv-def)
with assms step show ?thesis
proof (cases cid = cid’)
case True
then show ?thesis using assms step Recv by simp
next
case Fulse
then show ?thesis using assms step Recv by simp
qed
qed
then show Fulse using assms by simp
qed
qed

lemma cs-in-initial-state-implies-not-snapshotted:
assumes
trace init t final and
snd (cs (St i) cid) = NotStarted and
channel cid = Some (p, q)
shows
~ has-snapshotted (S t i) q
proof (rule ccontr)
assume ~ ~ has-snapshotted (S t i) q
then obtain j where j < i ™ has-snapshotted (S t j) q has-snapshotted (S t
(G+1) q
by (metis Suc-eq-plusl assms(1) exists-snapshot-for-all-p computation.snapshot-stable-ver-3
computation-azioms nat-le-linear order-le-less)
have step-j: (Stj)F (t!j)— (St (G+1))
by (metis <= = ps (S t i) ¢ # Noner <— ps (St j) g # None> j < i
add.commute assms(1) linorder-neqE-nat no-change-if-ge-length-t order-le-less or-

139

der-refl plus-1-eq-Suc step-Suc)
have tr-j-i: trace (St (j+1)) (take (i — (j+1)) (drop (j+1) t)) (St i)
using «j < > assms(1) exists-trace-for-any-i-j by fastforce
have ~ regular-event (t ! j)
using step-j <= ps (St j) ¢ # Noner <ps (St (j + 1)) ¢ # None> regu-
lar-event-cannot-induce-snapshot by blast
then have isSnapshot (t ! j) V isRecvMarker (¢! 7)
using nonreqular-event by auto
then have snd (cs (St (j+1)) cid) # NotStarted
proof (elim disjE, goal-cases)
case I
have occurs-on (t!j) = ¢
using <— ps (S tj) ¢ # None) <ps (St (j + 1)) ¢ # None> distributed-system.no-state-change-if-no-event
distributed-system-azxioms step-j by fastforce
with 7 have t ! j = Snapshot q using isSnapshot-def by auto
then show ?thesis using step-j assms by simp
next
case 2
have occurs-on (t!j) = q
using - ps (Stj) ¢ # Nones <ps (St (j+ 1)) g # None» distributed-system.no-state-change-if-no-event
distributed-system-azxioms step-j by fastforce
with 2 obtain cid’ s where RecvMarker: t ! j = RecuMarker cid’ q s
by (metis event.collapse(5))
then show ?thesis
proof (cases cid’ = cid)
case True
then show ?thesis using RecvMarker step-j assms by simp
next
case Fulse
have ™~ has-snapshotted (St j) q
using <— ps (S tj) ¢ # None» by auto
moreover have Jr. channel cid = Some (r, q)
by (simp add: assms(3))
ultimately show ?thesis using RecvMarker step-j assms False by simp
qed
qed
then have snd (cs (St i) cid) # NotStarted
using tr-j-i cs-not-not-started-stable-trace assms by blast
then show Fulse using assms by simp
qed

lemma nonregular-event-in-initial-state-implies-cs-changed:
assumes
trace init t final and
snd (¢s (St i) cid) = NotStarted and
~ regular-event (t! i) and
occurs-on (t! i) = ¢ and
channel cid = Some (p, ¢) and
i < length t

140

shows
snd (¢s (St (i+1)) cid) # NotStarted
proof —
have step: (Sti)F (¢! i) — (St (i+1)) using step-Suc assms by auto
have isSnapshot (t ! i) V isRecvMarker (t ! i)
using assms(3) nonregular-event by blast
then show ?thesis
proof (elim disjE, goal-cases)
case I
then show ?thesis
using assms cs-in-initial-state-implies-not-snapshotted local.step nonregu-
lar-event-induces-snapshot by blast
next
case 2
then show ?thesis
by (metis assms(1) assms(2) assms(3) assms(4) assms(5) cs-in-initial-state-implies-not-snapshotted
local.step nonregular-event-induces-snapshot)
qed
qed

lemma cs-recording-implies-snapshot:
assumes
trace init t final and
snd (¢s (St i) cid) = Recording and
channel cid = Some (p, q)
shows
has-snapshotted (St i) q
proof (rule ccontr)
assume ~ has-snapshotted (St i) q
have [trace init t final; ~ has-snapshotted (S t i) p; channel cid = Some (p, q)

]
= snd (¢s (St i) cid) = NotStarted
proof (induct i)
case (
then show ?case
using nit-is-s-t-0 no-initial-channel-snapshot by auto
next
case (Suc n)
have step: (Stn)F (t!n) — (St (nt+1))
by (metis Suc.prems(2) Suc-eq-plusl all-processes-snapshotted-in-final-state
assms(1) distributed-system.step-Suc distributed-system-azioms final-is-s-t-len-t le-add1
not-less snapshot-stable-ver-3)
have snd (¢s (S t n) cid) = NotStarted
using Suc.hyps Suc.prems(2) assms snapshot-state-unchanged computation-azioms
local.step by fastforce
then show ?case
by (metis Suc.prems(1) <— ps (Sti) ¢ # None> assms(2) assms(3) cs-not-not-started-stable-trace
exists-trace-for-any-i no-recording-cs-if-not-snapshotted recording-state.simps(2))
qed

141

then show Fulse
using <— ps (S ¢ i) ¢ # None> assms computation.no-initial-channel-snapshot
computation-axioms no-recording-cs-if-not-snapshotted by fastforce
qed

lemma cs-done-implies-both-snapshotted:
assumes
trace init t final and
snd (cs (S t i) cid) = Done and
i < length t and
channel cid = Some (p, q)
shows
has-snapshotted (St) p
has-snapshotted (St i) q
proof —
have trace init (take i t) (St)
using assms(1) exists-trace-for-any-i by blast
then have RecvMarker cid q p : set (take i t)
by (metis assms(1,2,4) cs-done-implies-has-snapshotted done-only-from-recv-marker-trace
computation.no-initial-process-snapshot computation-axioms init-is-s-t-0 list.discl
trace.simps)
then obtain k£ where ¢ ! k = RecvMarker cid ¢ p 0 < kk < i
by (metis add.right-neutral add-diff-cancel-right’ append-Nil append-take-drop-id
assms(1) exists-index take0)
then have has-snapshotted (St (k+1)) ¢
by (metis (no-types, lifting) Suc-eq-plusl Suc-lel assms(1,2,4) computation.cs-done-implies-has-snapshotted
computation.no-change-if-ge-length-t computation-azioms less-le not-less-eq recv-marker-means-cs-Done)
then show has-snapshotted (St 1) q
using assms cs-done-implies-has-snapshotted by blast
have step-k: (St k) (1 k) — (St (k+1))
by (metis Suc-eq-plusl <k < i» add-lessD1 assms(1) assms(3) distributed-system.step-Suc
distributed-system-azxioms less-imp-add-positive)
then have Marker : set (msgs (St k) cid)
proof —
have can-occur (¢t k) (S t k) using happen-implies-can-occur step-k by blast
then show ?thesis unfolding can-occur-def <t ! k = RecvMarker cid q p»
using hd-in-set by fastforce
qed
then have has-snapshotted (St k) p
using assms(1,4) no-marker-if-no-snapshot by blast
then show has-snapshotted (St i) p
using <k < O assms(1) less-imp-le-nat snapshot-stable-ver-3 by blast
qged

lemma cs-done-implies-same-snapshots:

assumes trace init t final i < jj < length t

shows snd (cs (S t i) cid) = Done = channel cid = Some (p, ¢) = ¢s (St
i) cid = cs (S tj) cid
using assms proof (induct i j rule: S-induct)

142

case (S-init i)
then show ?case by auto
next
case (S-step i j)
have snap-p: has-snapshotted (S t i) p
using S-step.hyps(1) S-step.hyps(2) S-step.prems(1,2) assms(1) cs-done-implies-both-snapshotted(1)
by auto
have snap-q: has-snapshotted (S t i) q
using S-step.prems(1,2) assms(1) cs-done-implies-has-snapshotted by blast
from S-step have cs (St i) cid = cs (St (Suc i)) cid
proof (cases t ! 9)
case (Snapshot)
from Snapshot S-step.hyps(3) snap-p have False if r = p using that by (auto
simp: can-occur-def)
moreover
from Snapshot S-step.hyps(3) snap-q have False if r = ¢ using that by (auto
sitmp: can-occur-def)
ultimately show ¢thesis using Snapshot S-step by force
next
case (RecvMarker cid’ r s)
then show ?thesis
proof (cases has-snapshotted (S t i) r)
case True
with RecvMarker S-step show Zthesis
proof (cases cid = cid’)
case True
then have cs (St (Suc i) cid = (fst (¢s (S ¢ ©) cid), Done)
using RecvMarker S-step by simp
then show ?thesis
by (metis S-step.prems(1) prod.collapse)
qed auto
next
case no-snap: False
then show ?thesis
proof (cases cid = cid’)
case True
then have cs (St (Suc ©)) cid = (fst (cs (S t i) cid), Done)
using RecvMarker S-step by simp
then show ?thesis
by (metis S-step.prems(1) prod.collapse)
next
case Fulse
then have r # p using no-snap snap-p by auto
moreover have 3 s. channel cid = Some (s, 7)
using S-step(5) assms(1) cs-done-implies-has-snapshotted no-snap by blast
ultimately show ?thesis using RecvMarker S-step Fualse no-snap by simp
qed
qed
next

143

case (Recv cid' r s u u’ m)
with S-step show ?thesis by (cases cid = cid’, auto)
qged auto
with S-step show ?case by auto
qed

lemma snapshotted-and-not-done-implies-marker-in-channel:
assumes
trace init t final and
has-snapshotted (St i) p and
snd (es (St i) cid) # Done and
1 < length t and
channel cid = Some (p, q)
shows
Marker : set (msgs (S t i) cid)
proof —
obtain j where jj: j < ¢ ~ has-snapshotted (St j) p has-snapshotted (St (j+1))
p
by (metis Suc-eq-plusl assms(1) assms(2) exists-snapshot-for-all-p computa-
tion.snapshot-stable-ver-2 computation-axioms le-eq-less-or-eq nat-neq-iff)
have step: (Stj)F (t!4) — (St (j+1))
by (metis <— ps (St j) p # Noner <j < i» add.commute assms(1) assms(2)
linorder-neqE-nat no-change-if-ge-length-t order-le-less order-refl plus-1-eq-Suc step-Suc)
then have Marker : set (msgs (St (j+1)) cid)
proof —
have ~ regular-event (¢! 7)
by (meson «— ps (St j) p # None» <ps (St (j + 1)) p # Noner dis-
tributed-system.reqular-event-cannot-induce-snapshot distributed-system-axioms lo-
cal.step)
then have isSnapshot (¢t ! j) V isRecoMarker (¢! j) using nonregular-event
by blast
then show ?thesis
proof (elim disjE, goal-cases)
case I
then obtain r where Snapshot: t ! j = Snapshot r by (meson isSnapshot-def)
then have r = p
using jj(2) 7(3) local.step by auto
then show ?thesis using Snapshot assms step by simp
next
case 2
then obtain cid’ s where RecvMarker: t | j = RecvMarker cid’ p s
by (metis jj(2,3) distributed-system.no-state-change-if-no-event distributed-system-azioms
event.sel(5) isRecoMarker-def local.step)
moreover have cid # cid’
proof (rule ccontr)
assume ~ cid # cid’
then have snd (c¢s (St (j+1)) cid) = Done using RecvMarker step by
stmp
then have snd (cs (St i) cid) = Done

144

proof —
assume al: snd (cs (St (j + 1)) cid) = Done
have f2: ps (St j) p = None
using jj(2) by blast
have j < length t
using assms(4) jji(1) by linarith
then have t ! j = RecvMarker cid q p
using f2 al assms(1) assms(5) cs-done-implies-both-snapshotted(1)
done-only-from-recv-marker local.step by blast
then show ?thesis
using f2 by (metis (no-types) Suc-eq-plus1 assms(1) local.step recv-marker-means-snapshotted)
qed
then show Fulse using assms by simp
qed
ultimately show ?thesis using jj assms step by auto
qed
qed
show ?thesis
proof (rule ccontr)
let 7t = take (i — (j+1)) (drop (j+1) t)
have tr-j: trace (St (j+1)) 7t (St 1)
using assms(1) exists-trace-for-any-i-j jj(1) by fastforce
assume ~ Marker : set (msgs (S t 1) cid)
then obtain ev where ev € set 7t Ap q. ev = RecvMarker cid p q
using «Marker € set (msgs (St (j + 1)) cid)» marker-must-be-delivered-2-trace
tr-j assms by blast
obtain k where t ! k=evj < kk < i
using <ev € set (take (i — (j + 1)) (drop (j + 1) t))» assms(1) exists-index
by fastforce
have step-k: (Stk)F (t'k) — (St (k+1))
proof —
have k < length t
using <k < i) assms(4) by auto
then show ?thesis using step-Suc assms by simp
qed
have ev = RecvMarker cid q p using assms step-k can-occur-def
using <3 p q. ev = RecvMarker cid p ¢» <t ! k = ev» by auto
then have snd (¢s (St (k+1)) cid) = Done
using <k < i <t ! k = ev> assms(1) assms(4) recv-marker-means-cs-Done by
auto
moreover have trace (St (k+1)) (take (i — (k+1)) (drop (k+1) t)) (St 4)
using <k < 7> <trace init t finaly exists-trace-for-any-i-j by fastforce
ultimately have <snd (¢s (S t i) cid) = Done>
using cs-done-implies-same-snapshots [of t <Suc k> i cid p q] <k < i> assms(1)
assms(4) assms(9)
by simp
then show False
using assms by simp
qed

145

qed

lemma no-marker-left-in-final-state:
assumes
trace init t final
shows
Marker ¢ set (msgs final cid) (is ?P)
proof (rule ccontr)
assume ~ ?P
then obtain i where i > length t Marker ¢ set (msgs (S t) cid) using assms
1
by (metis final-is-s-t-len-t le-neq-implies-less)
then have S ¢ (length t) # St i
proof —
have msgs (S t i) cid # msgs final cid
using «Marker ¢ set (msgs (St i) cid)) <~ ?P) by auto
then show ?thesis using final-is-s-t-len-t assms by auto
qed
moreover have S ¢ (length t) = St i
using assms <7 > length t» less-imp-le no-change-if-ge-length-t by simp
ultimately show Fulse by simp
qged

lemma all-channels-done-in-final-state:
assumes
trace init t final and
channel cid = Some (p, q)
shows
snd (cs final cid) = Done
proof (rule ccontr)
assume cs-not-done: ~ snd (cs final cid) = Done
obtain { where snap-p: ~ has-snapshotted (St i) p has-snapshotted (St (i+1))
p
by (metis Suc-eq-plusl assms(1) exists-snapshot-for-all-p)
have i < length t
proof —
have St i # St (i+1) using snap-p by auto
then show ?thesis
by (meson assms(1) computation.no-change-if-ge-length-t computation-azioms
le-add1 not-less)
qed
let 7t = take (length t — (i+1)) (drop (i+1) t)
have tr: trace (St (i+1)) ?t (St (length t))
using (i < length t) assms(1) exists-trace-for-any-i-j less-eq-Suc-le by fastforce

have Marker € set (msgs (St (i+1)) cid)
proof —
have n-done: snd (¢s (St (i+1)) cid) # Done

proof (rule ccontr)

146

assume ~ snd (¢s (St (i+1)) cid) # Done
then have snd (cs final cid) = Done
by (metis Suc-eg-plusl Suc-lel i < length t» assms final-is-s-t-len-t compu-
tation.cs-done-implies-same-snapshots computation-azioms order-refl)
then show Fulse using cs-not-done by simp
qed
then show ?thesis using snapshotted-and-not-done-implies-marker-in-channel
snap-p assms
proof —
have i+1 < length t using <i < length t» by auto
then show ?thesis
using snapshotted-and-not-done-implies-marker-in-channel snap-p assms
n-done by simp
qed
qed
moreover have Marker ¢ set (msgs (St (length t)) cid) using final-is-s-t-len-t
no-marker-left-in-final-state assms by blast
ultimately have rm-prov: Jev € set ?t. (3¢ p. ev = RecvMarker cid q p) using
tr message-must-be-delivered-2-trace assms
by (simp add: marker-must-be-delivered-2-trace)
then obtain & where 3¢ p. t | Kk = RecvMarker cid q p i+1 < k k < length t
by (metis assms(1) exists-index)
then have step: (St k) F (¢ k) — (St (k+1))
by (metis Suc-eq-plus1-left add.commute assms(1) step-Suc)
then have RecvMarker: t | k = RecvMarker cid q p
by (metis RecvMarker-given-channel <3¢ p. t | k = RecvMarker cid q p»
assms(2) event.disc(25) event.sel(10) happen-implies-can-occur)
then have snd (¢s (St (k+1)) cid) = Done
using step <k < length t» assms(1) recv-marker-means-cs-Done by blast
then have snd (cs final cid) = Done
using «Marker ¢ set (msgs (St (length t)) cid)» all-processes-snapshotted-in-final-state
assms(1) assms(2) final-is-s-t-len-t snapshotted-and-not-done-implies-marker-in-channel
by fastforce
then show Fulse using cs-not-done by simp

qed
lemma cs-NotStarted-implies-empty-cs:
shows
[trace init t final; channel cid = Some (p, q); i < length t; ~ has-snapshotted
(Sti)q]

= ¢s (St i) cid = ([], NotStarted)
by (simp add: no-initial-channel-snapshot no-recording-cs-if-not-snapshotted)

lemma fst-changed-by-recv-recording-trace:
assumes
1 < j and
j < length t and
trace init t final and
fst (cs (S ti) cid) # fst (es (S tj) cid) and

147

channel cid = Some (p, q)
shows
k. i<kANk<jA@pquu m.t! k= Recvcidqgpuu m)A (snd (cs (S
t k) cid) = Recording) (is ¢P)
proof (rule ccontr)
assume ~ ?P
have [i < j; j < length t; ~ ¢P; trace init t final; channel cid = Some (p, q) |
= fst (cs (S ti) cid) = fst (¢cs (S t7) cid)
proof (induct j — i arbitrary: i)
case (
then show ?case by linarith
next
case (Suc n)
then have step: (Sti) - t!i— (St (Suci))
using step-Suc by auto
then have fst (cs (St (Suc ©)) cid) = fst (¢s (St 1) cid)
by (metis Suc.prems(1) Suc.prems(3) assms(5) fst-cs-changed-by-recv-recording
le-eq-less-or-eq)
also have fst (¢s (St (Suc ©)) cid) = fst (¢s (St 7) cid)
proof —
have j — Suc i = n using Suc by simp
moreover have ~ (k. (Suc i) <kAk<jA(@pguu m t!k= Recw
cid g p uu' m) A (snd (cs (Stk) cid) = Recording))
using <~ ?P) Suc.prems(3) Suc-leD by blast
ultimately show ?thesis using Suc by (metis Suc-lessI)
qged
finally show ?case by simp
qed
then show Fulse using assms <~ ¢P) by blast
qed

lemma cs-not-nil-implies-postrecording-event:
assumes
trace init t final and
fst (¢s (S ti) cid) # || and
1 < length t and
channel cid = Some (p, q)

shows
3j. j < @ A postrecording-event t j
proof —
have fst (c¢s init cid) = [] using no-initial-channel-snapshot by auto

then have diff-cs: fst (cs (St 0) cid) # fst (es (St i) cid)

using assms(1) assms(2) init-is-s-t-0 by auto
moreover have 0 < i
proof (rule ccontr)

assume ~ 0 < ¢

then have 0 = i by auto

then have fst (cs (St 0) cid) = fst (¢s (St i) cid)

by blast

148

then show Fulse using diff-cs by simp
qed
ultimately obtain j where j < i and Recv: 3p qu v’ m. t ! j = Recv cid q p
uwu' msnd (cs (Stj) cid) = Recording
using assms(1) assms(3) assms(4) fst-changed-by-recv-recording-trace by blast
then have has-snapshotted (St j) q
using assms(1) assms(4) cs-recording-implies-snapshot by blast
moreover have regular-event (¢! j) using Recv by auto
moreover have occurs-on (t!j) = ¢
proof —
have can-occur (t!j) (S t7)
by (meson Suc-le-eq <j < i» assms(1) assms(3) happen-implies-can-occur
le-trans step-Suc)
then show ?thesis using Recv Recv-given-channel assms(4) by force
qed
ultimately have postrecording-event t j unfolding postrecording-event using <j
< 0 assms(3) by simp
then show ?thesis using «j < ©» by auto
qed

5.3.4 Relating process states

lemma snapshot-state-must-have-been-reached:
assumes
trace init t final and
ps final p = Some u and
~ has-snapshotted (S t i) p and
has-snapshotted (St (i+1)) p and
i < length t
shows
states (St1i) p=u
proof (rule ccontr)
assume states (St i) p # u
then have ps (St (i+1)) p # Some u
using assms(1) assms(8) snapshot-state by force
then have ps final p # Some u
by (metis One-nat-def Suc-lel add.right-neutral add-Suc-right assms(1) assms(3)
assms(4) assms(5) final-is-s-t-len-t order-refl snapshot-state snapshot-state-unchanged-trace-2)
then show Fulse using assms by simp
qed

lemma ps-after-all-prerecording-events:
assumes
trace init t final and
Vi’ i’ > i — ~ prerecording-event t i’ and
Vi’ j' < i — ~ postrecording-event t j’
shows
ps-equal-to-snapshot (S t i) final
proof (unfold ps-equal-to-snapshot-def, rule alll)

149

fix p
show Some (states (St i) p) = ps final p
proof (rule ccontr)
obtain s where ps final p = Some s V ps final p = None by auto
moreover assume Some (states (St i) p) # ps final p
ultimately have ps final p = None V states (St i) p # s by auto
then show Fulse
proof (elim disjE)
assume ps final p = None
then show Fulse
using assms all-processes-snapshotted-in-final-state by blast
next
assume st: states (S t14) p # s
then obtain j where ™~ has-snapshotted (S t j) p A has-snapshotted (S t
(G+1)) p
using Suc-eg-plusl assms(1) exists-snapshot-for-all-p by presburger
then show Fulse
proof (cases has-snapshotted (S t i) p)
case Fulse
then have j > ¢
by (metis Suc-eq-plusl <— ps (S tj) p # None A ps (St (j+ 1)) p#
Noney assms(1) not-less-eq-eq snapshot-stable-ver-8)

let %t = take (j—1) (drop i t)
have Jev. ev € set 7t A reqular-event ev A\ occurs-on ev = p
proof (rule ccontr)
assume ~ (Jev. ev € set 2t A regular-event ev A occurs-on ev = p)
moreover have trace (St i) 7t (St 7)
using «i < j» assms(1) exists-trace-for-any-i-j by blast
ultimately have states (S t j) p = states (St i) p
using no-state-change-if-only-nonreqular-events st by blast
then show Fulse
by (metis <— ps (St) p # None A ps (St (j + 1)) p # None
<ps final p = Some s V ps final p = Nones assms(1) final-is-s-t-len-t computa-
tion.all-processes-snapshotted-in-final-state computation.snapshot-stable-ver-3 com-
putation-azioms linorder-not-le snapshot-state-must-have-been-reached st)
qged

then obtain ev where ev € set 7t A regular-event ev A occurs-on ev = p
by blast
then obtain k where t-ind: 0 < k AN k < length ¢t N ev = 2t k
by (metis in-set-conv-nth not-le not-less-zero)
moreover have length 2t < j — i by simp
ultimately have ¢t ! k = (drop i t) ! k
using less-le-trans nth-take by blast
also have ... = t | (k+9)
by (metis <ev € set (take (j — @) (drop i t)) A regular-event ev A oc-
curs-on ev = py add.commute drop-eq-Nil length-greater-0-conv length-pos-if-in-set
nat-le-linear nth-drop take-eq-Nil)

150

finally have %t ! k = t ! (k+14) by simp
have prerecording-event t (k+1)
proof —
have regular-event (7t ! k)
using <ev € set (take (j — i) (drop i t)) A regular-event ev A occurs-on
ev = p» t-ind by blast
moreover have occurs-on (¢t 1 k) =p
using <ev € set (take (j — ©) (drop i t)) A regular-event ev A occurs-on
ev = p» t-ind by blast
moreover have ~ has-snapshotted (S t (k+1)) p
proof —
have k+i < j
using <length (take (j — @) (drop i t)) < j — © t-ind by linarith
show ?thesis
using <— ps (Stj) p # None A ps (St (j+ 1)) p# Noner <k+i < j»
assms(1) snapshot-stable-ver-3 by blast
qed
ultimately show #thesis
using <take (j — @) (drop i t) ! k =t ! (k + 7)) prerecording-event t-ind
by auto
qged

then show Fulse using assms by auto
next
case True

have j < i
proof (rule ccontr)
assume ~ j < ¢
then have j > ¢ by simp
moreover have ~ has-snapshotted (St j) p
using - ps (S tj) p # None A ps (St (j+ 1)) p # None> by blast
moreover have trace (St i) (take (j — i) (drop i t)) (St)
using assms(1) calculation(1) exists-trace-for-any-i-j by blast
ultimately have ™~ has-snapshotted (St i) p
using snapshot-stable by blast
then show Fulse using True by simp
qed

let %t = take (i—j) (drop j t)
have Jev. ev € set 7t A reqular-event ev A\ occurs-on ev = p
proof (rule ccontr)
assume ~ (Jev. ev € set 7t A reqular-event ev A occurs-on ev = p)
moreover have trace (St j) 7t (St 1)
using «j < > assms(1) exists-trace-for-any-i-j less-imp-le by blast
ultimately have states (St j) p = states (St4) p
using no-state-change-if-only-nonregular-events by auto
moreover have states (St j) p=s
by (metis <— ps (S tj) p # None A ps (St (j + 1)) p # Noner

151

<ps final p = Some s V ps final p = Nones assms(1) final-is-s-t-len-t computa-
tion.all-processes-snapshotted-in-final-state computation.snapshot-stable-ver-8 com-
putation-azioms linorder-not-le snapshot-state-must-have-been-reached)
ultimately show Fualse using <states (S t i) p # $ by simp
qged

then obtain ev where ev: ev € set 2t N\ regular-event ev A occurs-on ev =
p by blast
then obtain k& where t-ind: 0 < k AN k < length ¢t N ev = 2t k
by (metis in-set-conv-nth le0)
have length 2t < ¢ — j by simp
have %t ! k= (dropjt) !k
using t-ind by auto
also have ... = t ! (k + j)
by (metis <ev € set (take (i — j) (drop j t)) A regular-event ev A oc-
curs-on ev = py add.commute drop-eq-Nil length-greater-0-conv length-pos-if-in-set
nat-le-linear nth-drop take-eq-Nil)
finally have %t ! k = t ! (k+j) by simp
have postrecording-event t (k+j7)
proof —
have trace (S t j) (take k (drop j t)) (St (k+j))

by (metis add-diff-cancel-right’ assms(1) exists-trace-for-any-i-j le-add-same-cancel2

t-ind)

then have has-snapshotted (St (k+7)) p

by (metis Suc-eq-plusl Suc-lel <— ps (Stj) p# None Aps(St(j+1))p
None» <take (i — j) (dropjt) ' k=t! (k + j)» assms(1) drop-eq-Nil ev computa-

tion.snapshot-stable-ver-3 computation-azioms le-add-same-cancel? length-greater-0-conv
length-pos-if-in-set linorder-not-le order-le-less reqular-event-preserves-process-snapshots

step-Suc t-ind take-eq-Nil)
then show ?thesis
using <take (i — j) (drop jt) ' k =t ! (k + j)» ev postrecording-event
t-ind by auto
qed
moreover have k + j < ¢
using <length (take (i — j) (drop j t)) < i — j» t-ind by linarith
ultimately show Fulse using assms(3) by simp
qed
qed
qed
qed

5.3.5 Relating channel states

lemma cs-when-recording:
shows
[i< j;j < length t; trace init t final;
has-snapshotted (S t i) p;
snd (¢cs (S t i) cid) = Recording;
snd (cs (S t7) cid) = Done;

152

channel cid = Some (p, q) |
= map Msg (fst (¢s (S tj) cid))
= map Msg (fst (cs (St i) cid)) Q takeWhile ((#) Marker) (msgs (St)
cid)
proof (induct j — (i+1) arbitrary: i)
case (
then have j = i+1 by simp
then have step: (Sti)F (t!¢) — (Stj) using 0.prems step-Suc by simp
then have rm: 3¢ p. t! i = RecvMarker cid q p using done-only-from-recv-marker
0.prems by force
then have RecvMarker: t ! i = RecvMarker cid q p
by (metis 0.prems(7) RecvMarker-given-channel event.collapse(5) event.disc(25)
event.inject(5) happen-implies-can-occur local.step)
then have takeWhile ((#) Marker) (msgs (S t i) cid) = []
proof —
have can-occur (¢! i) (St 7) using happen-implies-can-occur step by simp
then show ?thesis
proof —
have Ap ms. takeWhile p ms = [| V p (hd ms::'c message)
by (metis (no-types) hd-append2 hd-in-set set-take WhileD take While-drop While-id)
then show ?thesis
using <can-occur (t ! 4) (St i) can-occur-def rm by fastforce
qed
qed
then show ?case
using local.step rm by auto
next
case (Suc n)
then have step: (Sti) - (¢! ¢) — (St (i+1))
by (metis Suc-eq-plusi less-Sucl nat-induct-at-least step-Suc)
have ib: i+1 < j A j < length t A has-snapshotted (St (i+1)) p A snd (cs (St
j) cid) = Done
using Suc.hyps(2) Suc.prems(2) Suc.prems(4) Suc.prems(6) local.step snap-
shot-state-unchanged by auto
have snap-q: has-snapshotted (S t i) q
using Suc(7) Suc.prems(8) Suc cs-recording-implies-snapshot by blast
then show ?case
proof (cases t ! i)
case (Snapshot)
then have r # p
using Suc.prems(4) can-occur-def local.step by auto
then have msgs (St (i+1)) cid = msgs (S t i) cid
using Snapshot local.step Suc.prems(7) by auto
moreover have cs (St (i+1)) cid = ¢s (St 14) cid
proof —
have r # ¢ using Snapshot can-occur-def snap-q step by auto
then show ?thesis using Snapshot local.step Suc.prems(7) by auto
qed
ultimately show ?thesis using Suc ib by force

153

next
case (RecvMarker cid’ r s)
then show ?thesis
proof (cases cid = cid)
case True
then have take While ((#£) Marker) (msgs (S t i) cid) = ||
proof —
have can-occur (t!) (St i) using happen-implies-can-occur step by simp
then show ?thesis
proof —
have Ap ms. takeWhile p ms =[] V p (hd ms::'c message)
by (metis (no-types) hd-append2 hd-in-set set-take WhileD take While-drop While-id)
then show ?thesis
using RecvMarker True (can-occur (t ! %) (S t i)y can-occur-def by
fastforce
qged
qed
moreover have snd (c¢s (St (i+1)) cid) = Done
using RecvMarker Suc.prems(1) Suc.prems(2) Suc.prems(3) True recv-marker-means-cs-Done
by auto
moreover have fst (cs (S ¢ 1) cid) = fst (es (St (i+1)) cid)
using RecvMarker True local.step by auto
ultimately show ?thesis
by (metis Suc.prems(1) Suc.prems(2) Suc.prems(3) Suc.prems(7) Suc-eq-plus!
Suc-lel append-Nil2 cs-done-implies-same-snapshots)
next
case Fulse
then have msgs (S t i) cid = msgs (St (i+1)) cid
proof (cases has-snapshotted (St @) r)
case True
then show ?thesis using RecvMarker step Suc False by auto
next
case Fulse
with RecvMarker step Suc <cid # cid”» show ?thesis by (cases s = p, auto)
qed
moreover have cs (St i) cid = ¢s (St (i+1)) cid
proof (cases has-snapshotted (S t) r)
case True
then show ?thesis using RecvMarker step Suc False by auto
next
case no-snap: False
then show ?thesis
proof (cases r = q)
case True
then show ?thesis using snap-q no-snap <r = ¢> by simp
next
case Fualse
then show ?thesis using RecvMarker step Suc no-snap False <cid # cid’s
by simp

154

qged
qed
ultimately show ?thesis using Suc ib by simp
qed
next
case (Trans r u u')
then have msgs (S ¢) cid = msgs (St (i+1)) cid using step by auto
moreover have cs (St i) cid = cs (St (i+1)) cid using step Trans by auto
ultimately show ?thesis using Suc b by simp
next
case (Send cid' r s v u’ m)
then show ?thesis
proof (cases cid = cid)
case True
have marker-in-msgs: Marker € set (msgs (S t i) cid)
proof —
have has-snapshotted (S t i) p using Suc by simp
moreover have i < length t
using Suc.prems(1) Suc.prems(2) less-le-trans by blast
moreover have snd (cs (St i) cid) # Done using Suc by simp
ultimately show ?thesis using snapshotted-and-not-done-implies-marker-in-channel
less-imp-le using Suc by blast
qed
then have takeWhile ((#) Marker) (msgs (S t) cid) = takeWhile ((#)
Marker) (msgs (St (i+1)) cid)
proof —
have butlast (msgs (St (i+1)) cid) = msgs (S t ©) cid using step True
Send by auto
then show ?thesis
proof —
have takeWhile ((#£) Marker) (msgs (S t i) cid Q [last (msgs (St (i +
1)) cid)]) = takeWhile ((£) Marker) (msgs (S t i) cid)
using marker-in-msgs by force
then show ?thesis
by (metis (no-types) <butlast (msgs (St (i + 1)) cid) = msgs (S t 1)
cidy append-butlast-last-id in-set-butlastD length-greater-0-conv length-pos-if-in-set
marker-in-msgs)
qed
qed
moreover have c¢s (St i) cid = ¢s (St (i+1)) cid using step Send by auto
ultimately show ?thesis using b Suc by simp
next
case Fulse
then have msgs (St %) cid = msgs (St (i+1)) cid using step Send by auto
moreover have c¢s (St i) cid = ¢s (St (i+1)) cid using step Send by auto
ultimately show ?thesis using Suc ib by simp
qed
next
case (Recv cid' r s u u’ m)

155

then show ?thesis
proof (cases cid = cid’)
case True
then have msgs-ipl: Msg m # msgs (St (i+1)) cid = msgs (St i) cid
using Suc Recv step by auto
moreover have cs-ipl: ¢s (St (i+1)) cid = (fst (¢s (S t i) cid) Q [m],
Recording)
using True Suc Recv step by auto
ultimately show ?Zthesis
proof —
have map Msqg (fst (¢s (S tj) cid))
= map Msg (fst (c¢s (St (i+1)) cid)) Q takeWhile ((#) Marker) (msgs
(St (i+1)) cid)
using Suc ib cs-ipl1 by force
moreover have map Msg (fst (cs (S t i) cid)) Q take While ((#£) Marker)
(msgs (St 1) cid)
= map Msg (fst (cs (St (i+1)) cid)) Q takeWhile ((#) Marker)
(msgs (St (i+1)) cid)
proof —
have take While ((#£) Marker) (Msg m # msgs (St (i+1)) cid) = Msg m
takeWhile ((#£) Marker) (msgs (St (i + 1)) cid)
by auto
then have take While ((#) Marker) (msgs (St) cid) = Msg m # take While
((#£) Marker) (msgs (St (¢ + 1)) cid)
by (metis msgs-ip1)
then show ?thesis
using cs-ipl by auto
qed
ultimately show ?thesis by simp
qed
next
case Fulse
then have msgs (St) cid = msgs (St (i+1)) cid using step Recv by auto
moreover have cs (St 14) cid = cs (St (i+1)) cid using step Recv False by
auto
ultimately show ?thesis using Suc ib by simp
qged
qed
qed

lemma cs-when-recording-2:
shows
[i < j; trace init t final;
~ has-snapshotted (S t i) p;
Vi i <kANk<j— "~ occurs-on (t!k) = p;
snd (cs (S t 1) cid) = Recording;
channel cid = Some (p, q) |
= map Msg (fst (cs (St j) cid)) Q takeWhile ((#) Marker) (msgs (S t j)
cid)

156

= map Msg (fst (cs (St i) cid)) @ takeWhile ((#) Marker) (msgs (S t i)
cid)
A snd (cs (St j) cid) = Recording
proof (induct j — i arbitrary: i)
case (
then show ?case by auto
next
case (Suc n)
then have step: (St4) - (t!4) — (St (i+1))
by (metis Suc-eq-plusi all-processes-snapshotted-in-final-state distributed-system.step-Suc
distributed-system-azxioms computation.final-is-s-t-len-t computation-axioms linorder-not-le
snapshot-stable-ver-3)
have ib: i+1 < j A ™~ has-snapshotted (St (i+1)) p
ANNME (i+1) <kEANE<j— "~ occurs-on (¢t k) =p) Nj— (i+1) =n
by (metis Suc.hyps(2) Suc.prems(1) Suc.prems(83) Suc.prems(4) diff-Suc-1
diff-diff-left Suc-eq-plus1 Suc-leD Suc-le-eq Suc-neq-Zero cancel-comm-monoid-add-class. diff-cancel
le-negq-implies-less le-refl local.step no-state-change-if-no-event)
have snap-q: has-snapshotted (S t i) q
using Suc.prems(5,6) Suc.prems(2) cs-recording-implies-snapshot by blast
then show ?case
proof (cases t! i)
case (Snapshot r)
then have r # p using Suc by auto
then have msgs (St (i+1)) cid = msgs (S t i) cid
using Snapshot local.step Suc.prems(6) by auto
moreover have cs (St (i+1)) cid = ¢s (St i) cid
proof —
have r # ¢ using step can-occur-def Snapshot snap-q by auto
then show ?thesis using Snapshot step Suc by simp
qed
ultimately show “thesis using Suc b by auto
next
case (RecvMarker cid’ r s)
then show ?thesis
proof (cases cid = cid)
case True
then have Marker € set (msgs (St 1) cid)
using RecvMarker RecvMarker-implies-Marker-in-set local.step by blast
then have has-snapshotted (St) p
using Suc.prems(2) no-marker-if-no-snapshot Suc by blast
then show ?thesis using Suc.prems by simp
next
case Fulse
then have msgs (S t i) cid = msgs (St (i+1)) cid
proof (cases has-snapshotted (S t @) r)
case True
then show ?thesis using RecvMarker step Suc False by auto
next
case Fulse

157

with RecvMarker step Suc <cid # cid”» show ?thesis by (cases s = p, auto)
qed
moreover have cs (St i) cid = cs (St (i+1)) cid
proof (cases has-snapshotted (S t) r)
case True
then show ?thesis using RecvMarker step Suc False by auto
next
case no-snap: False
then show ?thesis
proof (cases r = q)
case True
then show ?thesis using snap-q no-snap <r = ¢> by simp
next
case Fulse
then show ?thesis using RecvMarker step Suc no-snap False <cid # cid’s
by simp
qged
qed
ultimately show ?%thesis using Suc ib by auto
qed
next
case (Trans v u u')
then have msgs (S t) cid = msgs (St (i+1)) cid using step by auto
moreover have cs (St i) cid = cs (St (i+1)) cid using step Trans by auto
ultimately show ?thesis using Suc b by auto
next
case (Send cid' r s u u’ m)
then have r # p
using Suc.hyps(2) Suc.prems(4) Suc by auto
have cid # cid’
proof (rule ccontr)
assume ~ cid # cid’
then have channel cid = channel cid’ by auto
then have (p, q) = (r, s) using can-occur-def step Send Suc by auto
then show Fulse using «r # p» by simp
qed
then have msgs (S ¢) cid = msgs (St (i+1)) cid using step Send by simp
moreover have cs (St i) cid = ¢s (St (i+1)) cid using step Send by auto
ultimately show #thesis using Suc ib by auto
next
case (Recv cid' r s u u’ m)
then show ?thesis
proof (cases cid = cid’)
case True
then have msgs-ipl: Msg m # msgs (St (i+1)) cid = msgs (St i) cid
using Suc Recv step by auto
moreover have cs-ipl: cs (St (i+1)) cid = (fst (¢s (S t i) cid) Q@ [m],
Recording)
using True Suc Recv step by auto

158

ultimately show fZthesis
proof —
have map Msg (fst (cs (St j) cid)) @ takeWhile ((£) Marker) (msgs (St

j) cid)
= map Msg (fst (cs (St (i+1)) cid)) Q takeWhile ((#) Marker) (msgs
(St (i+1)) cid)
A snd (cs (S t7) cid) = Recording
using Suc ib cs-ipl by auto
moreover have map Msg (fst (cs (S t i) cid)) Q take While ((#£) Marker)
(msgs (S t i) cid)
= map Msg (fst (cs (St (i+1)) cid)) Q takeWhile ((#) Marker)
(msgs (St (i+1)) cid)
proof —
have takeWhile ((#) Marker) (Msg m # msgs (St (i + 1)) cid) = Msg
m # takeWhile ((#) Marker) (msgs (St (i + 1)) cid)
by fastforce
then have take While ((#) Marker) (msgs (St) cid) = Msg m # take While
((£) Marker) (msgs (St (¢ + 1)) cid)
by (metis msgs-ip1)
then show ?thesis
using cs-ipl by force
qged
ultimately show ?thesis using cs-ipl by simp
qed
next
case Fulse
then have msgs (St) cid = msgs (St (i+1)) cid using step Recv by auto
moreover have cs (St 14) cid = cs (St (i+1)) cid using step Recv False by
auto
ultimately show ?thesis using Suc ib by auto
qed
qed
qed

lemma cs-when-recording-3:
shows
[i < j; trace init t final;
~ has-snapshotted (S t 1) g;
Vi i <kANk<j— "~ occurs-on (t!k) = g;
snd (cs (S t 1) cid) = NotStarted,
has-snapshotted (St i) p;
Marker : set (msgs (S t i) cid);
channel cid = Some (p, q) |
= map Msg (fst (cs (S tj) cid)) Q takeWhile ((#) Marker) (msgs (S t j)
cid)
= map Msg (fst (cs (St i) cid)) Q takeWhile ((#) Marker) (msgs (S t)
cid)
A snd (cs (St j) cid) = NotStarted
proof (induct j — i arbitrary: 7)

159

case (
then show ?case by auto
next
case (Suc n)
then have step: (Sti)F (¢! 4) — (St (i+1))
by (metis Suc-eq-plusl all-processes-snapshotted-in-final-state distributed-system.step-Suc
distributed-system-axioms computation.final-is-s-t-len-t computation-azxioms linorder-not-le
snapshot-stable-ver-3)
have ib: i+1 < j A ™~ has-snapshotted (S t (i+1)) q¢ A has-snapshotted (S t
(i+1)) p
ANNVE (i+1) <kANk<j— ~ occurs-on (t 1 k) =q) Nj— (i+1) =n
A Marker : set (msgs (St (i+1)) cid) A cs (St4) cid = cs (St (i+1)) cid
proof —
have i+1 < j A~ has-snapshotted (St (i+1)) ¢
ANNE (i+1) <k ANk <j— ~ occurs-on (t1 k) =q) Nj— (i+1)=n
by (metis Suc.hyps(2) Suc.prems(1) Suc.prems(3) Suc.prems(4) diff-Suc-1
diff-diff-left Suc-eq-plusl Suc-leD Suc-le-eq Suc-neq-Zero cancel-comm-monoid-add-class. diff-cancel
le-neg-implies-less le-refl local.step no-state-change-if-no-event)
moreover have has-snapshotted (St (i+1)) p
using Suc.prems(6) local.step snapshot-state-unchanged by auto
moreover have Marker : set (msgs (St (i+1)) cid)
using Suc calculation(1) local.step recv-marker-means-snapshotted-2 by blast
moreover have cs (St i) cid = cs (St (i+1)) cid
using Suc calculation(1) no-recording-cs-if-not-snapshotted by auto
ultimately show ?thesis by simp
qged
then show ?case
proof (cases t! i)
case (Snapshot)
then have r # ¢ using Suc by auto
then have takeWhile ((#£) Marker) (msgs (St (i+1)) cid) = takeWhile ((#£)
Marker) (msgs (S t 1) cid)
proof (cases occurs-on (t! i) = p)
case True
then show ?thesis
by (metis (mono-tags, lifting) Snapshot Suc.prems(6) distributed-system.can-occur-def
event.sel(4) event.simps(29) computation-azioms computation-def happen-implies-can-occur
local.step)
next
case Fulse
then have msgs (St (i+1)) cid = msgs (S t i) cid
using Snapshot local.step Suc by auto
then show ?thesis by simp
qed
then show ?thesis using Suc ib by metis
next
case (RecvMarker cid’ r s)
then show ?thesis
proof (cases cid = cid’)

160

case True
then have snd (¢s (St ¢) cid) = Done
by (metis RecvMarker Suc.prems(2) Suc-eg-plus1 Suc-le-eq exactly-one-snapshot
computation.no-change-if-ge-length-t computation.recv-marker-means-cs-Done com-
putation.snapshot-stable-ver-2 computation-axioms ib nat-le-linear)
then show ?thesis using Suc.prems by simp
next
case Fulse
then have takeWhile ((#) Marker) (msgs (S t i) cid) = takeWhile ((#)
Marker) (msgs (St (i+1)) cid)
proof (cases has-snapshotted (St i) r)
case True
with RecvMarker False step show ?thesis by auto
next
case no-snap: False
then have r # p
using Suc.prems(6) by auto
then show ?thesis using no-snap RecvMarker step Suc.prems False by auto
qed
then show ?thesis using Suc ib by metis
qed
next
case (Trans r u u’)
then have msgs (S t) cid = msgs (St (i+1)) cid using step by auto
then show ?thesis using Suc ib by auto
next
case (Send cid' r s u u’ m)
then have r # ¢
using Suc.hyps(2) Suc.prems(4) by auto
have marker: Marker € set (msgs (St ¢) cid) using Suc by simp
with step Send marker have takeWhile ((#) Marker) (msgs (S t i) cid) =
take While ((#£) Marker) (msgs (St (i+1)) cid)
by (cases cid = cid’, auto)
then show ?thesis using Suc ib by auto
next
case (Recv cid' r s u u’ m)
then have cid’ # cid
by (metis Suc.hyps(2) Suc.prems(4) Suc.prems(8) distributed-system.can-occur-Recv
distributed-system-azioms event.sel(3) happen-implies-can-occur local.step option.inject
order-refl prod.inject zero-less-Suc zero-less-diff)
then have msgs (S t i) cid = msgs (St (i+1)) cid using step Recv Suc by
simp
then show ?thesis using Suc ib by auto
qed
qed

lemma at-most-one-marker:

shows
[trace init t final; channel cid = Some (p, q)]

161

= Marker ¢ set (msgs (St i) cid)
V (3. 7 < length (msgs (S t i) cid) A msgs (St i) cid ! j = Marker)
proof (induct 7)
case ()
then show ?case using no-initial-Marker init-is-s-t-0 by auto
next
case (Suc 17)
then show ?case
proof (cases i < length t)
case Fulse
then show ?thesis
by (metis Suc.prems(1) final-is-s-t-len-t computation.no-change-if-ge-length-t
computation-azioms le-refl less-imp-le-nat no-marker-left-in-final-state not-less-eq)
next
case True
then have step: (St4) F (¢!4) — (St (Suc i) using step-Suc Suc.prems by
blast
moreover have Marker ¢ set (msgs (S t 1) cid)
V (3. j < length (msgs (St i) cid) A msgs (S ti) cid! j = Marker)
using Suc.hyps Suc.prems(1) Suc.prems(2) by linarith
moreover have Marker ¢ set (msgs (St (Suc 7)) cid)
V (3. j < length (msgs (S t (Suc 7)) cid) A msgs (St (Suc i) cid !
j = Marker)
proof (cases Marker ¢ set (msgs (St i) cid))
case no-marker: True
then show ?thesis
proof (cases t ! 7)
case (Snapshot)
then show ?thesis
proof (cases r = p)
case True
then have new-msgs: msgs (St (Suc i)) cid = msgs (S t i) cid Q@ [Marker]
using step Snapshot Suc by auto
then show ?thesis using util-exactly-one-element no-marker by fastforce
next
case Fulse
then show ?thesis
using Snapshot local.step no-marker Suc by auto
qed
next
case (RecvMarker cid’ r s)
then show ?thesis
proof (cases cid = cid’)
case True
then show ?thesis
using RecvMarker RecvMarker-implies-Marker-in-set local.step no-marker
by blast
next
case Fulse

162

then show ?thesis
proof (cases has-snapshotted (St i) r)
case True
then show ?thesis using RecvMarker step Suc False by simp
next
case no-snap: False
then show ?thesis
proof (cases r = p)
case True
then have msgs (St (i+1)) cid = msgs (S t i) cid Q [Marker] using
RecuMarker step Suc.prems no-snap <cid # cid’y by simp
then show ?thesis
proof —
assume al: msgs (St (i + 1)) cid = msgs (S t i) cid Q@ [Marker]
{ fix nn :: nat = nat
have V'ms m. In. Vna. ((m::'c message) € set ms V n < length
(ms @Q [m])) A (m € set ms V (ms @Q [m]) ! n=m) A (- na < length (ms @ [m])
V (ms @ [m]) ! na# mV m € set ms V na = n)
by (metis (no-types) util-exactly-one-element)
then have In. n < length (msgs (St (Suc i) cid) A nnn =n A
msgs (St (Suc ©)) cid ! n = Marker V n < length (msgs (S t (Suc ©)) cid) A msgs
(St (Suc i) cid ! n = Marker A = nn n < length (msgs (St (Suc 7)) cid) V n <
length (msgs (S ¢ (Suc 7)) cid) A msgs (St (Suc 7)) cid ! n = Marker N\ msgs (S
t (Suc 7)) cid ! nn n # Marker
using al by (metis Suc-eq-plusl no-marker) }
then show ?thesis
by (metis (no-types))
qed
next
case Fulse
then have msgs (S t) cid = msgs (St (i+1)) cid using RecvMarker
step Suc.prems <cid # cid"y no-snap by simp
then show ?thesis using Suc by simp
qed
qed
qed
next
case (Trans r u u’)
then show ?thesis using no-marker step by auto
next
case (Send cid' r s u u’ m)
then show %thesis
proof (cases cid = cid’)
case True
then have Marker ¢ set (msgs (S ¢ (Suc 7)) cid) using step no-marker
Send by auto
then show “thesis by simp
next
case Fulse

163

then have Marker ¢ set (msgs (S ¢ (Suc 7)) cid) using step no-marker
Send by auto
then show ?thesis by simp
qed
next
case (Recv cid' r s u u’ m)
with step no-marker Recv show %thesis by (cases cid = cid’, auto)
qed
next
case Fulse
then have asm: 3!j. j < length (msgs (S t i) cid) A msgs (St i) cid! j =
Marker
using Suc by simp
have len-filter: length (filter ((=) Marker) (msgs (S t i) cid)) = 1
by (metis False <Marker ¢ set (msgs (S t i) cid) V (314. j < length (msgs
(S ti) cid) N msgs (Sti)cid!j= Marker)s exists-one-iff-filter-one)
have snap-p: has-snapshotted (S t i) p
using False Suc.prems no-marker-if-no-snapshot by blast
show ?thesis
proof (cases t ! 1)
case (Snapshot)
have r # p
proof (rule ccontr)
assume ~ r # p
moreover have can-occur (t!4) (St i) using happen-implies-can-occur
step by blast
ultimately show Fulse using snap-p can-occur-def Snapshot by auto
qed
then have msgs (St (Suc ©)) cid = msgs (S t i) cid using step Snapshot
Suc by auto
then show ?thesis using asm by simp
next
case (RecvMarker cid’ r s)
then show ?thesis
proof (cases cid = cid’)
case True
then have Marker # msgs (S t (Suc 7)) cid = msgs (S t) cid
using RecvMarker step by auto
then have Marker ¢ set (msgs (St (Suc 7)) cid)
proof —
have Vj. j # 0 A j < length (msgs (S t 1) cid) — msgs (St i) cid ! j
Marker
by (metis False <Marker # msgs (S t (Suc) cid = msgs (S t i) cid>
asm length-pos-if-in-set nth-Cons-0)
then show ?thesis
proof —
assume al: Vj. j # 0 A j < length (msgs (S t i) cid) — msgs (S t
i) cid ! j # Marker
have Ams n. ms # msgs (S t) cid V length (msgs (S t (Suc 7)) cid)

164

n V length ms = Suc n
by (metis «<Marker # msgs (S t (Suc ©)) cid = msgs (S t ©) cid>
length-Suc-conv)
then show ?thesis
using al by (metis (no-types) Suc-mono Zero-not-Suc «Marker #
msgs (St (Suc ©)) cid = msgs (St ¢) cid) in-set-conv-nth nth-Cons-Suc)
qed
qed
then show ?thesis by simp
next
case cid-neqg-cid’: False
then show ?thesis
proof (cases has-snapshotted (St i) r)
case True
then have msgs (S ¢ (Suc ©)) cid = msgs (S t i) cid
using cid-neq-cid’ RecvMarker local.step snap-p by auto
then show ?thesis using asm by simp
next
case Fulse
then have r # p
using snap-p by blast
then have msgs (St (Suc 7)) cid = msgs (S t i) cid using cid-neq-cid’
RecvMarker step False Suc by auto
then show ?thesis using asm by simp
qed
qged
next
case (Trans r u u’)
then show ?thesis using step asm by auto
next
case (Send cid' r s u u’ m)
then show ?%thesis
proof (cases cid = cid’)
case True
then have new-messages: msgs (S t (Suc 7)) cid = msgs (S t i) cid Q
[Msg m]
using step Send by auto
then have 3!j. j < length (msgs (S t (Suc ©)) cid) A msgs (S t (Suc 7))
cid ! j = Marker
proof —
have length (filter ((=) Marker) (msgs (S t (Suc ©)) cid))
= length (filter ((=) Marker) (msgs (S t i) cid))
+ length (filter ((=) Marker) [Msg m])
by (simp add: new-messages)
then have length (filter ((=) Marker) (msgs (St (Suc 7)) cid)) = 1
using len-filter by simp
then show %thesis using exists-one-iff-filter-one by metis
qed
then show ?thesis by simp

165

next
case Fulse
then show ?thesis using step Send asm by auto
qed
next
case (Recv cid' r s u u’ m)
then show ?thesis
proof (cases cid = cid’)
case True
then have new-msgs: Msg m # msgs (S t (Suc ©)) cid = msgs (S t) cid
using step Recv by auto
then show ?thesis
proof —
have length (filter ((=) Marker) (msgs (S t i) cid))
= length (filter ((=) Marker) [Msg m])
+ length (filter ((=) Marker) (msgs (S t (Suc 7)) cid))
by (metis append-Cons append-Nil filter-append len-filter length-append
new-msgs)
then have length (filter ((=) Marker) (msgs (St (Suc 7)) cid)) = 1
using len-filter by simp
then show ?thesis using exists-one-iff-filter-one by metis
qed
next
case Fulse
then show ?thesis using step Recv asm by auto
qged
qed
qed
then show ?thesis by simp
qed
qed

lemma last-changes-implies-send-when-msgs-nonempty:
assumes
trace init t final and
msgs (S t i) cid # [] and
msgs (St (i+1)) cid # || and
last (msgs (S t i) cid) = Marker and
last (msgs (St (i+1)) cid) # Marker and
channel cid = Some (p, q)
shows
(Juu' m.t!i= Send cidp quu’' m)
proof —
have step: (Sti)F (t!d)— (St (i+1))
by (metis Suc-eq-plusi-left add.commute assms(1) assms(4) assms(5) le-Suc-eq
nat-le-linear nat-less-le no-change-if-ge-length-t step-Suc)
then show %thesis
proof (cases t ! i)
case (Snapshot)

166

then show ?thesis
by (metis assms(4) assms(5) last-snoc local.step next-snapshot)
next
case (RecvMarker cid’ r s)
then show ?thesis
proof (cases cid = cid’)
case True
then have last (msgs (S t) cid) = last (msgs (St (i+1)) cid)
proof —
have Marker # msgs (St (i + 1)) cid = msgs (S t i) cid
using RecvMarker local.step True by auto
then show ?thesis
by (metis assms(3) last-ConsR)
qed
then show ?thesis using assms by simp
next
case no-snap: False
then have last (msgs (S t) cid) = last (msgs (St (i+1)) cid)
proof (cases has-snapshotted (St @) r)
case True
then show ?thesis using RecvMarker step no-snap by simp
next
case Fulse
with RecvMarker step no-snap <cid # cid"» assms show ?thesis by (cases
p =T, auto)
qed
then show ?thesis using assms by simp
qed
next
case (Trans r u u’)
then show ?thesis
using assms(4) assms(5) local.step by auto
next
case (Send cid’ r s u u’ m)
then have cid = cid’
by (metis (no-types, opaque-lifting) assms(4) assms(5) local.step next-send)
moreover have (p, ¢) = (r, s)
proof —
have channel cid = channel cid’ using (cid = cid’y by simp
moreover have channel cid = Some (p, ¢) using assms by simp
moreover have channel cid’ = Some (r, s) using Send step can-occur-def
by auto
ultimately show ?thesis by simp
qed
ultimately show ¢thesis using Send by auto
next
case (Recv cid' r s u u’ m)
then show ?thesis
proof (cases cid = cid’)

167

case True
then have last (msgs (S t) cid) = last (msgs (St (i+1)) cid)
by (metis (no-types, lifting) Recv assms(3) assms(4) last-ConsR local.step
next-recv)
then show ?thesis using assms by simp
next
case Fulse
then have msgs (S t4) cid = msgs (St (i+1)) cid using Recv step by auto
then show ?thesis using assms by simp
qed
qed
qed

lemma no-marker-after-RecoMarker:
assumes
trace init t final and
(Sti)F RecoMarker cid p ¢ — (St (i+1)) and
channel cid = Some (q, p)
shows
Marker ¢ set (msgs (St (i+1)) cid)
proof —
have new-msgs: msgs (S t i) cid = Marker # msgs (St (i+1)) cid
using assms(2) by auto
have one-marker: 3. j < length (msgs (S t 4) cid) A msgs (S ti) cid! j =
Marker
by (metis assms(1,3) at-most-one-marker list.set-intros(1) new-msgs)
then obtain j where j < length (msgs (St %) cid) msgs (St i) cid ! j = Marker
by blast
then have j = 0 using one-marker new-msgs by auto
then have Vj. j # 0 A j < length (msgs (St i) cid) — msgs (St i) cid | j #
Marker
using one-marker
using j < length (msgs (St i) cid)» <msgs (St i) cid | j = Marker by blast
then have Vj. j < length (msgs (St (i+1)) cid) — msgs (St (i+1)) cid ! j
Marker
by (metis One-nat-def Suc-eq-plusl Suc-le-eq Suc-mono le-zero-eq list.size(4)
new-msgs not-less0 nth-Cons-Suc)
then show ?thesis
by (simp add: in-set-conv-nth)
qed

lemma no-marker-and-snapshotted-implies-no-more-markers-trace:
shows
[trace init t final; i < j; § < length t;
has-snapshotted (St i) p;
Marker ¢ set (msgs (St i) cid);
channel cid = Some (p, q) |
= Marker ¢ set (msgs (S tj) cid)
proof (induct j — i arbitrary: 7)

168

case (
then show ?case by auto
next
case (Suc n)
then have step: (Sti)F (¢! 4) — (St (i+1))
by (metis (no-types, opaque-lifting) Suc-eq-plusl cancel-comm-monoid-add-class. diff-cancel
distributed-system.step-Suc distributed-system-axioms less-le-trans linorder-not-less
old.nat.distinct(2) order-eq-iff)
then have Marker ¢ set (msgs (St (i+1)) cid)
using no-marker-and-snapshotted-implies-no-more-markers Suc step by blast
moreover have has-snapshotted (St (i+1)) p
using Suc.prems(4) local.step snapshot-state-unchanged by auto
ultimately show ?case
proof —
assume al: ps (St (i + 1)) p # None
assume a2: Marker ¢ set (msgs (St (i + 1)) cid)
have f3: j # ¢
using Suc.hyps(2) by force
have j — Suci=n
by (metis (no-types) Suc.hyps(2) Suc.prems(2) add.commute add-Suc-right
add-diff-cancel-left’ le-add-diff-inverse)
then show ?thesis
using f3 a2 al by (metis Suc.hyps(1) Suc.prems(1) Suc.prems(2) Suc.prems(3)
Suc.prems(6) Suc-eq-plusi-left add.commute less-Suc-eq linorder-not-less)
qed
qged

lemma marker-not-vanishing-means-always-present:
shows
[trace init t final; i < j; j < length t;
Marker : set (msgs (S t i) cid);
Marker : set (msgs (St j) cid);
channel cid = Some (p, q)
] = Vk i<kAk<j— Marker : set (msgs (S tk) cid)
proof (induct j — i arbitrary: 7)
case ()
then show ?case by auto
next
case (Suc n)
then have step: (Sti) - (¢! ¢) — (St (i+1))
by (metis (no-types, lifting) Suc-eq-plusl add-lessD1 distributed-system.step-Suc
distributed-system-azioms le-add-diff-inverse order-le-less zero-less-Suc zero-less-diff)
have Marker : set (msgs (St (i+1)) cid)
proof (rule ccontr)
assume asm: ~ Marker : set (msgs (St (i+1)) cid)
have snap-p: has-snapshotted (St i) p
using Suc.prems(1) Suc.prems(4,6) no-marker-if-no-snapshot by blast
then have has-snapshotted (St (i+1)) p
using local.step snapshot-state-unchanged by auto

169

then have Marker ¢ set (msgs (St j) cid)
using Suc.hyps(2) Suc.prems(1) Suc.prems(3) Suc.prems(6) asm
no-marker-and-snapshotted-implies-no-more-markers-trace [of t <Suc i» j p
cid q]
by simp
then show Fulse using Suc.prems by simp
qed
then show ?case
by (meson Suc.prems(1) Suc.prems(3) Suc.prems(4) Suc.prems(5) Suc.prems(6)
computation.snapshot-stable-ver-8 computation-axioms no-marker-and-snapshotted-implies-no-more-markers-t
no-marker-if-no-snapshot)
qed

lemma last-stays-if-no-recv-marker-and-no-send:
shows [trace init t final; i < j; j < length t;
last (msgs (S t i) cid) = Marker;
Marker : set (msgs (S t 1) cid);
Marker : set (msgs (St 7) cid);
Vi i<kANk<j— "~ Fuu m. t!k= Sendcidp quu' m)
channel cid = Some (p, q) |
= last (msgs (St j) cid) = Marker
proof (induct j — (i+1) arbitrary: i)
case (
then have j = i+1 by simp
then have step: (St4)F (t!4) — (St (i+1))
by (metis 0(2) 0.prems(2) 0.prems(3) Suc-eq-plusi distributed-system.step-Suc
distributed-system-azxioms less-le-trans)
have Marker = last (msgs (St (i+1)) cid)
proof (rule ccontr)
assume ~ Marker = last (msgs (St (i+1)) cid)
then have 3uu’ m. t! i = Send cid p g u u’' m
proof —
have msgs (St (i+1)) cid # [] using 0 <j = i+1> by auto
moreover have msgs (St i) cid # || using 0 by auto
ultimately show ?Zthesis
using 0.prems(1) 0.prems(4) 0.prems(8) «Marker # last (msgs (St (i +
1)) cid)y last-changes-implies-send-when-msgs-nonempty by auto

qed
then show Fulse using 0 by auto
qed
then show ?case using «j = i+1» by simp
next

case (Suc n)
then have step: (Sti) - (¢! i) — (St (i+1))
by (metis (no-types, opaque-lifting) Suc-eq-plusl distributed-system.step-Suc
distributed-system-azxioms less-le-trans)
have marker-present: Marker : set (msgs (St (i+1)) cid)
using Suc.prems
marker-not-vanishing-means-always-present [of t i j cid p q] by simp

170

moreover have Marker = last (msgs (St (i+1)) cid)
proof (rule ccontr)
assume asm: ~ Marker = last (msgs (St (i+1)) cid)
then have 3u v’ m. t ! i = Send cidp qu u' m
proof —
have msgs (St (i+1)) cid # [] using marker-present by auto
moreover have msgs (St i) cid # || using Suc by auto
ultimately show ?Zthesis
using Suc.prems(1) Suc.prems(4) Suc.prems(8) asm last-changes-implies-send-when-msgs-nonempty
by auto

qed
then show Fulse using Suc by auto
qed
moreover have Vk. i+1 < kANk<j— ~ (Fuu m. t! k= Send cidp qu
u’ m)

using Suc.prems by force
moreover have i+1 < j using Suc by auto
moreover have j < length t using Suc by auto
moreover have trace init t final using Suc by auto
moreover have Marker : set (msgs (St j) cid) using Suc by auto
ultimately show ?case using Suc
by (metis diff-Suc-1 diff-diff-left)
qed

lemma last-changes-implies-send-when-msgs-nonempty-trace:
assumes
trace init t final
i <j
j < length t
Marker : set (msgs (S t i) cid)
Marker : set (msgs (St j) cid)
last (msgs (S t i) cid) = Marker
last (msgs (St j) cid) # Marker
channel cid = Some (p, q)
shows
Jkuu mi<kANk<jANt!k=Sendcidpquu'm
proof (rule ccontr)
assume ~ (Jkuu' m. i <kANk<jAt!k= Sendcidpquu’ m)
then have Vk. i <k ANk<j— "~ Quu m. t!' k= Send cid p quu’ m) by
blast
then have last (msgs (S t§) cid) = Marker using assms last-stays-if-no-recv-marker-and-no-send
by blast
then show Fualse using assms by simp
qed

lemma msg-after-marker-and-nonempty-implies-postrecording-event:
assumes
trace init t final and
Marker : set (msgs (S t i) cid) and

171

Marker # last (msgs (S t i) cid) and
i < length t and
channel cid = Some (p, q)
shows
4. j < i A postrecording-event t j (is ?P)
proof —
let Zlen = length (msgs (S t i) cid)
have ?len # 0 using assms(2) by auto
have snap-p-i: has-snapshotted (St i) p
using assms no-marker-if-no-snapshot by blast
obtain j where snap-p: ~ has-snapshotted (St j) p has-snapshotted (St (j+1))
p
by (metis Suc-eq-plusl assms(1) exists-snapshot-for-all-p)
have j < i
by (meson assms(1) computation.snapshot-stable-ver-2 computation-azioms
not-less snap-p(1) snap-p-i)
have step-snap: (Stj)F (t!1j) — (St (j+1))
by (metis Suc-eq-plusl assms(1) 12 nat-le-linear nat-less-le snap-p(1) snap-
shot-stable-ver-2 step-Suc)
have re: ™ regular-event (t! j)
by (meson distributed-system.regular-event-cannot-induce-snapshot distributed-system-axioms
snap-p(1) snap-p(2) step-snap)
have op: occurs-on (t!j) =p
using no-state-change-if-no-event snap-p(1) snap-p(2) step-snap by force
have marker-last: Marker = last (msgs (St (j+1)) cid) A msgs (St (j+1)) cid
[
proof —
have isSnapshot (t ! j) V isRecuMarker (t! j) using re nonregular-event by
auto
then show ?thesis
proof (elim disjE, goal-cases)
case [
then have t ! j = Snapshot p
using op by auto
then show ?thesis using step-snap assms by auto
next
case 2
then obtain cid’ r where RecvMarker: t | j = RecvMarker cid’ p r
by (metis event.collapse(5) op)
then have cid # cid’
using RecvMarker-implies-Marker-in-set assms(1) assms(5) no-marker-if-no-snapshot
snap-p(1) step-snap by blast
then show ?thesis
using assms snap-p(1) step-snap RecvMarker by auto
qed
qed
then have kv u' m. j+1 <kANk<iAt!k=Sendcidpquu' m
proof —
have j+1 < i

172

proof —
have (St (j+1)) # (St 1)
using assms(3) marker-last by auto
then have j+1 # i by auto
moreover have j+1 < ¢ using «j < 0> by simp
ultimately show ¢thesis by simp
qed
moreover have trace init t final using assms by simp
moreover have Marker = last (msgs (St (j+1)) cid) using marker-last by
simp
moreover have Marker : set (msgs (S t (j+1)) cid) using marker-last by
(simp add: marker-last)
ultimately show ?thesis using assms last-changes-implies-send-when-msgs-nonempty-trace
by simp
qed
then obtain k£ where Send: Juu’ m. j+1 < kANk<iAt!k= Sendcidp q
u u’' m by blast
then have postrecording-event t k
proof —
have k < length t using Send assms by simp
moreover have isSend (t ! k) using Send by auto
moreover have has-snapshotted (S t k) p using Send snap-p
using assms(1) snapshot-stable-ver-3 by blast
moreover have occurs-on (t ! k) = p using Send by auto
ultimately show ?thesis unfolding postrecording-event by simp
qged
then show ?thesis using Send by auto
qed

lemma same-messages-if-no-occurrence-trace:
shows
[trace init t final; i < j; § < length t;
(Vk.i <k ANk<j— occurs-on (t! k) # p A occurs-on (¢t k) # q);
channel cid = Some (p, q) |
= msgs (S t i) cid = msgs (S t7) cid A cs (Sti) cid=cs (Stj) cid
proof (induct j — i arbitrary: i)
case (
then show ?case by auto
next
case (Suc n)
then have step: (St4)F (t!4) — (St (i+1))
by (metis (no-types, opaque-lifting) Suc-eq-plusl Suc-n-not-le-n diff-self-eq-0 dis-
tributed-system.step-Suc distributed-system-azioms le0 le-eq-less-or-eq less-le-trans)
then have msgs (S t i) cid = msgs (St (i+1)) cid A es (St Q) cid = ¢cs (St
(i+1)) cid
proof —
have ~ occurs-on (t! i) = p using Suc by simp
moreover have ~ occurs-on (t ! i) = ¢ using Suc by simp
ultimately show #%thesis using step Suc same-messages-if-no-occurrence by

173

blast
qed
moreover have msgs (St (i+1)) cid = msgs (St j) cid A ¢cs (St (i+1)) cid
=cs (Stj) cid
proof —
have i+1 < j using Suc by linarith
moreover have Vk. i+1 < k Ak < j — occurs-on (t ! k) # p A occurs-on
(t k) # q using Suc by force
ultimately show ?thesis using Suc by auto
qged
ultimately show ?case by simp
qed

lemma snapshot-step-cs-preservation-p:
assumes
¢k ev— ¢ and
~ regular-event ev and
occurs-on ev = p and
channel cid = Some (p, q)
shows
map Msg (fst (cs ¢ cid)) Q takeWhile ((#£) Marker) (msgs ¢ cid)
= map Msg (fst (cs ¢’ cid)) @ takeWhile ((#£) Marker) (msgs ¢’ cid)
A snd (cs ¢ cid) = snd (c¢s ¢’ cid)
proof —
have isSnapshot ev V isRecvMarker ev using assms nonregular-event by blast
then show ?thesis
proof (elim disjE, goal-cases)
case I
then have Snap: ev = Snapshot p by (metis event.collapse(4) assms(3))
then have fst (cs ¢ cid) = fst (es ¢’ cid)
using assms(1) assms(2) regular-event same-cs-if-not-recv by blast
moreover have take While ((#£) Marker) (msgs ¢ cid)
= takeWhile ((#£) Marker) (msgs ¢’ cid)
proof —
have msgs ¢’ cid = msgs ¢ cid Q@ [Marker] using assms Snap by auto
then show ?thesis
by (simp add: take While-tail)
qed
moreover have snd (cs ¢ cid) = snd (cs ¢’ cid)
using Snap assms no-self-channel by fastforce
ultimately show ?thesis by simp
next
case 2
then obtain cid’ r where RecvMarker: ev = RecvMarker cid’ p r by (metis
event.collapse(5) assms(3))
have cid # cid’
by (metis 2 RecoMarker assms(1) assms(4) distributed-system. RecoMarker-given-channel
distributed-system.happen-implies-can-occur distributed-system-axioms event.sel(5,10)
no-self-channel)

174

then have fst (cs ¢ cid) = fst (¢s ¢’ cid)
using RecvMarker assms(1) assms(2) regular-event same-cs-if-not-recv by
blast
moreover have take While ((#£) Marker) (msgs ¢ cid)
= takeWhile ((#£) Marker) (msgs ¢’ cid)
proof (cases has-snapshotted ¢ p)
case True
then have msgs ¢ cid = msgs ¢’ cid using RecvMarker <cid # cid’> assms
by auto
then show %thesis by simp
next
case Fulse
then have msgs ¢’ cid = msgs ¢ cid @ [Marker] using RecvMarker <cid #
cid’y assms by auto
then show ?thesis
by (simp add: take While-tail)
qed
moreover have snd (cs ¢ cid) = snd (cs ¢’ cid)
proof (cases has-snapshotted c p)

case True
then have cs ¢ cid = cs ¢’ cid using RecuMarker (cid # cid’s assms by
stmp
then show ?thesis by simp
next
case Fulse

then show ?thesis
using RecvMarker <cid # cid’y assms(1) assms(4) no-self-channel by auto
qed
ultimately show ¢thesis by simp
qed
qed

lemma snapshot-step-cs-preservation-q:
assumes
¢k ev— ¢ and
~ reqular-event ev and
occurs-on ev = ¢ and
channel cid = Some (p, q) and
Marker ¢ set (msgs ¢ cid) and
~ has-snapshotted ¢ q
shows
map Msg (fst (cs ¢ cid)) Q takeWhile ((£) Marker) (msgs ¢ cid)
= map Msg (fst (cs ¢’ cid)) @ takeWhile ((#£) Marker) (msgs ¢’ cid)
A snd (cs ¢’ cid) = Recording
proof —
have isSnapshot ev V isRecvuMarker ev using assms nonregular-event by blast
then show ?thesis
proof (elim disjE, goal-cases)
case I

175

then have Snapshot: ev = Snapshot g by (metis event.collapse(4) assms(3))
then have fst (cs ¢ cid) = fst (cs ¢’ cid)
using assms(1) assms(2) regular-event same-cs-if-not-recv by blast
moreover have take While ((#£) Marker) (msgs ¢ cid)
= takeWhile ((#£) Marker) (msgs ¢’ cid)
proof —
have msgs ¢’ cid = msgs ¢ cid using assms Snapshot
by (metis distributed-system.next-snapshot distributed-system-azioms eq-fst-iff
no-self-channel option.inject)
then show %thesis by simp
qed
moreover have snd (cs ¢’ cid) = Recording using assms Snapshot by auto
ultimately show ¢thesis by simp
next
case 2
then obtain cid’ r where RecvMarker: ev = RecvMarker cid’ q r by (metis
event.collapse(5) assms(3))
have cid # cid’
using RecvMarker RecoMarker-implies-Marker-in-set assms(1) assms(9) by
blast
have fst (cs ¢ cid) = fst (¢s ¢’ cid)
using assms(1) assms(2) reqular-event same-cs-if-not-recv by blast
moreover have take While ((#) Marker) (msgs ¢ cid)
= takeWhile ((#£) Marker) (msgs ¢’ cid)
proof —
have fr. channel cid = Some (q,)
using assms(4) no-self-channel by auto
with RecuMarker assms <cid # cid’y have msgs ¢ cid = msgs ¢’ cid by (cases
has-snapshotted ¢ r, auto)
then show ?thesis by simp
qed
moreover have snd (cs ¢’ cid) = Recording using assms RecuMarker <cid #
cid’y by simp
ultimately show ¢thesis by simp
qed
qed

lemma Marker-in-channel-implies-not-done:
assumes
trace init t final and
Marker : set (msgs (S t i) cid) and
channel cid = Some (p, q) and
1 < length t
shows
snd (cs (St i) cid) # Done
proof (rule ccontr)
assume is-done: ~ snd (cs (S t i) cid) # Done
let 7t = take it
have tr: trace init 7t (St 1)

176

using assms(1) exists-trace-for-any-i by blast
have 3¢ p. RecoMarker cid q p € set %t
by (metis (mono-tags, lifting) assms(3) distributed-system.trace.simps dis-
tributed-system-azxioms done-only-from-recv-marker-trace computation.no-initial-channel-snapshot
computation-azioms is-done list.discl recording-state.simps(4) snd-conv tr)
then obtain j where RecvMarker: 3q p. t ! j = RecvMarker cid q p j < @
by (metis (no-types, lifting) assms(4) in-set-conv-nth length-take min.absorb2
nth-take)
then have step-j: (Stj)F (¢!) — (St (j+1))
by (metis Suc-eq-plus1 assms(1) distributed-system.step-Suc distributed-system-axioms
assms(4) less-le-trans)
then have t ! j = RecvMarker cid q p
by (metis RecvMarker(1) RecvMarker-given-channel assms(8) event.disc(25)
event.sel(10) happen-implies-can-occur)
then have Marker ¢ set (msgs (St (j+1)) cid)
using assms(1) assms(3) no-marker-after-RecvMarker step-j by presburger
moreover have has-snapshotted (St (j+1)) p
using Suc-eg-plusl <t ! j = RecvMarker cid q p> assms(1) reco-marker-means-snapshotted
snapshot-state-unchanged step-j by presburger
ultimately have Marker ¢ set (msgs (S t %) cid)
by (metis RecoMarker(2) Suc-eg-plus1 Suc-lel assms(1,3) assms(4) no-marker-and-snapshotted-implies-no-
then show Fulse using assms by simp
qed

lemma keep-empty-if-no-events:
shows
[trace init t final; i < j; §j < length t;
msgs (S t14) cid = [|;
has-snapshotted (St i) p;
channel cid = Some (p, q);
Vk.i < kAk<jA regular-event (t ! k) — ™~ occurs-on (t 1 k) = p]
= msgs (S tj) cid =]
proof (induct j — i arbitrary: i)
case (
then show ?case by auto
next
case (Suc n)
then have step: (Sti) F (¢! 7)) — (St (i+1))
proof —
have i < length t
using Suc.hyps(2) Suc.prems(3) by linarith
then show ?thesis
by (metis (full-types) Suc.prems(1) Suc-eg-plusl step-Suc)
qed
have msgs (St (i+1)) cid = |]
proof (cases t! i)
case (Snapshot r)
have r # p
proof (rule ccontr)

177

assume ~ 1 #£ p
moreover have can-occur (t!14) (St 19)
using happen-implies-can-occur local.step by blast
ultimately show Fulse using can-occur-def Snapshot Suc by simp
qed
then have msgs (S t 1) cid = msgs (St (i+1)) cid
using Snapshot local.step Suc by auto
then show ?thesis using Suc by simp
next
case (RecvMarker cid’ r s)
have cid # cid’
proof (rule ccontr)
assume ~ cid # cid’
then have msgs (S t 1) cid # |]
by (metis RecuMarker length-greater-0-conv linorder-not-less list.size(3)
local.step nat-less-le recv-marker-other-channels-not-shrinking)
then show Fulse using Suc by simp
qed
then show ?thesis
proof (cases has-snapshotted (S t i) r)
case True
then have msgs (S ¢ (i+1)) cid = msgs (S t i) cid using RecvMarker Suc
step <cid # cid"» by auto
then show ?thesis using Suc by simp
next
case Fulse
have r # p
using False Suc.prems(5) by blast
then show ?thesis using RecvMarker Suc step <cid # cid’s False by simp
qed
next
case (Trans r u u’)
then show ?thesis using Suc step by simp
next
case (Send cid’ r s u u' m)
have r # p
proof (rule ccontr)
assume ~ r # p
then have occurs-on (t ! i) = p A reqular-event (¢! i) using Send by simp
moreover have i < i A i < j using Suc by simp
ultimately show Fulse using Suc.prems by blast
qed
have cid # cid’
proof (rule ccontr)
assume ~ cid # cid’
then have channel cid = channel cid’ by auto
then have channel cid’ = Some (r, s) using Send step can-occur-def by
stmp
then show Fulse using Suc «r # p» <~ cid # cid’> by auto

178

qed
then have msgs (S t) cid = msgs (St (i+1)) cid
using step Send Suc by simp
then show %thesis using Suc by simp
next
case (Recv cid' r s u u’ m)
have cid # cid’
proof (rule ccontr)
assume ~ cid # cid’
then have msgs (S t i) cid # |]
using Recv local.step by auto
then show Fulse using Suc by simp
qed
then have msgs (S ¢ 7) cid = msgs (St (i+1)) cid using Recv step by auto
then show %thesis using Suc by simp

qged
moreover have Vk. i+1 < k Ak < j A regqular-event (t ! k) — ~ occurs-on
(t1k)=p

using Suc by simp
moreover have has-snapshotted (St (i+1)) p
using Suc.prems(5) local.step snapshot-state-unchanged [of <S t i» <t @ St
(Suc)]
by simp
moreover have j — (i+1) = n using Suc by linarith
ultimately show ?case using Suc by auto
qged

lemma last-unchanged-or-empty-if-no-events:
shows
[trace init t final; i < j; j < length t;
msgs (S t i) cid # [|;
last (msgs (S t i) cid) = Marker;
has-snapshotted (S t i) p;
channel cid = Some (p, q);
VEk. i < kAk<jA regular-event (t ! k) — ™~ occurs-on (t ! k) = p |
= msgs (S tj) cid =[] V (msgs (Stj) cid # [] A last (msgs (S tj) cid) =
Marker)
proof (induct j — i arbitrary: i)
case ()
then show ?case
by auto
next
case (Suc n)
then have step: (Sti) - (¢! i) — (St (i+1))
proof —
have i < length t
using Suc.hyps(2) Suc.prems(3) by linarith
then show ?thesis
by (metis (full-types) Suc.prems(1) Suc-eg-plusl step-Suc)

179

qed
have msgs-s-ip1: msgs (St (i+1)) cid =[] V (msgs (St (i+1)) cid # [] A last
(msgs (St (i+1)) cid) = Marker)
proof (cases t ! i)
case (Snapshot r)
have r # p
proof (rule ccontr)
assume ~ r # p
moreover have can-occur (t!14) (St 1)
using happen-implies-can-occur local.step by blast
ultimately show Fualse using can-occur-def Snapshot Suc by simp
qed
then have msgs (S ¢ 1) cid = msgs (St (i+1)) cid
using Snapshot local.step Suc by auto
then show %thesis using Suc by simp
next
case (RecvMarker cid’ r s)
then show ?thesis
proof (cases cid = cid)
case True
then have msgs (St (i+1)) cid = |]
proof —
have Marker # msgs (St (i+1)) cid = msgs (St i) cid
using RecvMarker True local.step by auto
then show ?thesis
proof —
assume al: Marker # msgs (St (i + 1)) cid = msgs (S t i) cid
have i < j
by (metis (no-types) Suc.hyps(2) Suc.prems(2) Suc-neq-Zero diff-is-0-eq
le-neg-implies-less)
then have 7 < length ¢
using Suc.prems(3) less-le-trans by blast
then show ?thesis
using al by (metis (no-types) Marker-in-channel-implies-not-done
RecvMarker Suc.prems(1) Suc.prems(5) Suc.prems(7) Suc-eq-plusl Suc-le-eq True
last-ConsR last-in-set recv-marker-means-cs-Done)
qged
qed
then show ?thesis by simp
next
case Fulse
then show ?thesis
proof (cases has-snapshotted (St i) r)
case True
then show ?thesis
using False RecvMarker Suc.prems(5) local.step by auto
next
case Fulse
then have r # p

180

using Suc.prems(6) by blast
with RecvMarker False Suc.prems step <cid # cid’y show ?thesis by auto
qed
qed
next
case (Trans r u u')
then show ?thesis using Suc step by simp
next
case (Send cid’ r s u u’ m)
have r # p
proof (rule ccontr)
assume ~ 1 # p
then have occurs-on (t ! i) = p A reqular-event (t ! i) using Send by simp
moreover have i < i A ¢ < j using Suc by simp
ultimately show Fulse using Suc.prems by blast
qed
have cid # cid’
proof (rule ccontr)
assume ~ cid # cid’
then have channel cid = channel cid’ by auto
then have channel cid’ = Some (r, s) using Send step can-occur-def by
stmp
then show Fulse using Suc «r # p» <~ cid # cid’> by auto
qed
then have msgs (S ¢) cid = msgs (St (i+1)) cid
using step Send by simp
then show ?thesis using Suc by simp
next
case (Recv cid’ r s u u’ m)
then show ?thesis
proof (cases cid = cid’)
case True
then have msgs (S ¢) cid = Msg m # msgs (St (i+1)) cid
using Recv local.step by auto
then have last (msgs (St (i+1)) cid) = Marker
by (metis Suc.prems(5) last.simps message.simps(3))
then show ?thesis by blast
next
case Fulse
then have msgs (St 4) cid = msgs (St (i+1)) cid using Recv step by auto
then show ?thesis using Suc by simp
qed
qed
then show ?case
proof (elim disjE, goal-cases)
case I
moreover have trace init t final using Suc by simp
moreover have i+1 < j using Suc by simp
moreover have j < length t using Suc by simp

181

moreover have has-snapshotted (St (i+1)) p
using Suc.prems(6) local.step snapshot-state-unchanged by auto
moreover have j — (i+1) = n using Suc by linarith
moreover have Vk. i+1 < k A k < j A reqular-event (t ! k) — ~ occurs-on
(t1k)=rp
using Suc by auto
ultimately have msgs (St j) cid = || using keep-empty-if-no-events Suc.prems(7)
by blast
then show ?thesis by simp
next
case 2
moreover have trace init t final using Suc by simp
moreover have i+1 < j using Suc by simp
moreover have j < length t using Suc by simp
moreover have has-snapshotted (St (i+1)) p
using Suc.prems(6) local.step snapshot-state-unchanged by auto
moreover have j — (i+1) = n using Suc by linarith
moreover have Vk. i+1 < k A k < j A reqular-event (t ! k) — ™ occurs-on
(t1k)=p
using Suc by auto
ultimately show ?thesis using Suc.prems(7) Suc.hyps by blast
qed
qed

lemma cs-after-all-prerecording-events:
assumes
trace init t final and
Vi’ i’ > i — "~ prerecording-event t i’ and
Vi’ §' < i — ~ postrecording-event t j' and
1 < length t
shows
cs-equal-to-snapshot (S t i) final
proof (unfold cs-equal-to-snapshot-def, rule alll, rule impl)
fix cid
assume channel cid # None
then obtain p ¢ where chan: channel cid = Some (p, q) by auto
have cs-done: snd (cs (St (length t)) cid) = Done
using chan all-channels-done-in-final-state assms(1) final-is-s-t-len-t by blast
have filter ((#£) Marker) (msgs (St i) cid) = takeWhile ((#) Marker) (msgs (S
t i) cid) (is ?B)
proof (rule ccontr)
let ?m = msgs (S t i) cid
assume ~ B
then obtain j k£ where range: j < k k < length Ym and ?m ! j = Marker ?m
V' k # Marker
using filter-neq-take While by metis
then have Marker € set ?m
by (metis less-trans nth-mem)
moreover have last Ym # Marker

182

proof —
have V. | < length ?m ANl # j — ?m | | # Marker
using chan <j < k» &k < length (msgs (S t) cid)y ¢msgs (Sti) cid!j=
Markery assms(1) at-most-one-marker calculation less-trans by blast
moreover have last ?m = ?m ! (length ?m — 1)
by (metis «Marker € set (msgs (St i) cid)> empty-iff last-conv-nth list.set(1))
moreover have length ?m — 1 # j using range by auto
ultimately show ?thesis using range by auto
qed
moreover have i < length t
using chan assms(1) calculation(1) computation.exists-next-marker-free-state
computation.no-change-if-ge-length-t computation-axioms nat-le-linear by fastforce
ultimately have 3j. j < ¢ A postrecording-event t j
using chan assms(1) msg-after-marker-and-nonempty-implies-postrecording-event
by auto
then show Fulse using assms by auto
qed
moreover have take While ((£) Marker) (msgs (S t i) cid) = map Msg (fst (cs
final cid))
proof (cases snd (cs (S t i) cid))
case NotStarted

show that q and p have to snapshot, and then reduce it to the case below
depending on the order they snapshotted in

have nsq: ~ has-snapshotted (St i) g
using NotStarted chan assms(1) cs-in-initial-state-implies-not-snapshotted by
auto
obtain j where snap-q: ~ has-snapshotted (S t j) q has-snapshotted (St (j+1))

by (metis Suc-eq-plusl assms(1) exists-snapshot-for-all-p)
have step-¢: (St F (t!j) — (St (j+1))
by (metis <— ps (Stj) ¢ # Noner add.commute assms(1) le-Sucl le-eg-less-or-eq
le-refl linorder-neqE-nat no-change-if-ge-length-t plus-1-eq-Suc snap-q step-Suc)
obtain k£ where snap-p: ~ has-snapshotted (S t k) p has-snapshotted (S t
(k+1)) p
by (metis Suc-eq-plusl assms(1) exists-snapshot-for-all-p)
have bound: 7 < j
proof (rule ccontr)
assume ~ ¢ < j
then have i > j+1 by simp
then have has-snapshotted (St 1) q
by (meson assms(1) computation.snapshot-stable-ver-8 computation-azioms
snap-q(2))
then show Fulse using nsq by simp
qed
have step-p: (Stk)F (¢t k) — (St (k+1))
by (metis <— ps (St k) p# None> add.commute assms(1) le-Sucl le-eq-less-or-eq
le-refl linorder-neqE-nat no-change-if-ge-length-t plus-1-eq-Suc snap-p step-Suc)
have oq: occurs-on (t!j) = ¢

183

proof (rule ccontr)
assume ~ occurs-on (t!j) = ¢
then have has-snapshotted (S t j) ¢ = has-snapshotted (St (j+1)) ¢
using no-state-change-if-no-event step-q by auto
then show Fulse using snap-q by blast
qed
have op: occurs-on (t! k) =p
proof (rule ccontr)
assume ~ occurs-on (t ! k) = p
then have has-snapshotted (S t k) p = has-snapshotted (St (k+1)) p
using no-state-change-if-no-event step-p by auto
then show Fulse using snap-p by blast
qed
have p # ¢ using chan no-self-channel by blast
then have j # k using ogq op event-occurs-on-unique by blast
show ?thesis
proof (cases j < k)
case True
then have msgs (St 4) cid = msgs (S tj) cid A cs (Sti) cid = cs (Stj)
cid
proof —
have Vk. i < k Ak <j— occurs-on (t! k) # p A occurs-on (t 1 k) # ¢
(is 7Q)
proof (rule ccontr)
assume ~ 20)
then obtain | where range: i < [l < j and occurs-on (t ! 1) = p Vv
occurs-on (t !'1) = q by blast
then show Fulse
proof (elim disjE, goal-cases)
case I
then show ?thesis
proof (cases reqular-event (t ! 1))
case True
have | < k using range <j < k> by simp
have ™~ has-snapshotted (S t 1) p using snap-p(1) range <j < k»
snapshot-stable-ver-3 assms(1) by simp
then have prerecording-event t [using True 1 prerecording-event
using s-def snap-q(1) snap-q(2) by fastforce
then show Fulse using assms range by blast
next
case Fulse
then have step-I: (StI)Ft!1— (St (l+1))
by (metis (no-types, lifting) Suc-eq-plusl Suc-lessD True assms(1)
distributed-system.step-Suc distributed-system-axioms less-trans-Suc linorder-not-le
local.range(2) s-def snap-p(1) snap-p(2) take-all)
then have has-snapshotted (S t (I+1)) p using False nonregu-
lar-event-induces-snapshot
by (metis 1(3) snapshot-state-unchanged)
then show Fulse

184

by (metis Suc-eq-plusl Suc-leI True assms(1) less-imp-le-nat
local.range(2) snap-p(1) snapshot-stable-ver-3)
qed
next
case 2
then show ?thesis
proof (cases regular-event (t ! 1))
case True
have ~ has-snapshotted (S t 1) ¢ using snap-q(1) range <j < k»
snapshot-stable-ver-3 assms(1) by simp
then have prerecording-event t [using True 2 prerecording-event
using s-def snap-q(2) by fastforce
then show Fulse using assms range by blast
next
case Fulse
then have step-I: (Stl) - t! 11— (St (I+1))
by (metis (no-types, lifting) Suc-eq-plusl Suc-lessD True assms(1)
distributed-system.step-Suc distributed-system-axioms less-trans-Suc linorder-not-le
local.range(2) s-def snap-p(1) snap-p(2) take-all)
then have has-snapshotted (S t (I+1)) ¢ using False nonregu-
lar-event-induces-snapshot
by (metis 2(8) snapshot-state-unchanged)
then show Fulse
by (metis Suc-eq-plusl Suc-lel assms(1) range(2) snap-q(1) snap-
shot-stable-ver-8)
qed
qed
qed
moreover have j < length t
proof (rule ccontr)
assume ~ j < length t
then have St j = St (j+1) using no-change-if-ge-length-t assms by
stmp
then show Fulse using snap-q by auto
qed
ultimately show ?thesis using chan same-messages-if-no-occurrence-trace
assms less-imp-le bound by blast
qed
moreover have map Msg (fst (¢s (St j) cid)) Q takeWhile ((£) Marker)
(msgs (S t7) cid)
= map Msg (fst (cs (St (j+1)) cid)) Q takeWhile ((#£) Marker)
(msgs (St (j+1)) cid)
A snd (cs (St (j+1)) cid) = Recording
proof —
have ™~ regular-event (¢! j) using snap-q
using reqular-event-cannot-induce-snapshot step-q by blast
moreover have Marker ¢ set (msgs (St j) cid)
by (meson chan True assms(1) computation.no-marker-if-no-snapshot
computation.snapshot-stable-ver-2 computation-azioms less-imp-le-nat snap-p(1))

185

ultimately show ?thesis using oq snapshot-step-cs-preservation-q step-q
chan snap-q(1) by blast
qed
moreover have map Msg (fst (cs (S t k) cid)) Q take While ((#) Marker)
(msgs (St k) cid)
= map Msg (fst (cs (St (j+1)) cid)) Q takeWhile ((#) Marker)
(msgs (St (j+1)) cid)
proof —
have snd (cs (St (j+1)) cid) = Recording using calculation by simp
moreover have Va. j+1 < a A a <k — ~ occurs-on (t ! a) = p (is ?R)
proof (rule ccontr)
assume ~ ?R
then obtain a¢ where j+1 < a a < k and ocp: occurs-on (t! a) = p by
blast
have a < length t
proof —
have k£ < length t
proof (rule ccontr)
assume ~ k < length t
then have Stk =St (k+1)
using assms(1) no-change-if-ge-length-t by auto
then show Fulse using snap-p by auto
qed
then show ?thesis using <a < k» by simp
qed
then show Fulse
proof (cases regular-event (t! a))
case True
have ~ has-snapshotted (St a) p
by (meson <a < k» assms(1) computation.snapshot-stable-ver-2
computation-azioms less-imp-le-nat snap-p(1))
then have prerecording-event t a using <a < length t» ocp True
prerecording-event by simp
then show Fulse using <j+1 < a> <j > 0> assms by auto
next
case Fulse
then have (Sta) - (t!a)— (St (at+1))
using <a < length t» assms(1) step-Suc by auto
then have has-snapshotted (St (a+1)) p
by (metis False ocp nonregular-event-induces-snapshot snapshot-state-unchanged)
then show Fulse
by (metis Suc-eq-plusl Suc-lel <a < k» assms(1) snap-p(1) snap-
shot-stable-ver-8)
qed
qed
moreover have ~ has-snapshotted (St (j+1)) p
by (metis Suc-eq-plusi Suc-le-eq True assms(1) computation.snapshot-stable-ver-2
computation-azioms snap-p(1))
ultimately show ?thesis using chan cs-when-recording-2 True assms(1)

186

by auto
qed
moreover have map Msg (fst (cs (St k) cid)) Q take While ((#) Marker)
(msgs (S t k) cid)
= map Msg (fst (cs (St (k+1)) cid)) Q takeWhile ((£) Marker)
(msgs (St (k+1)) cid)
proof —
have — regular-event (¢! k)
using regular-event-preserves-process-snapshots snap-p(1) snap-p(2) step-p
by force
then show ?thesis
using chan computation.snapshot-step-cs-preservation-p computation-axioms
op step-p by fastforce
qed
moreover have map Msg (fst (cs (St (k+1)) cid)) Q takeWhile ((#£) Marker)
(msgs (St (k+1)) cid)
= map Msg (fst (cs final cid))
proof —
have f1:V fp pa pb ¢ ca es n a na. = computation f p pa pb (c::("a, 'b, 'c) config-
uration) ca V — distributed-system.trace f p pa pb ¢ es ca V ps (distributed-system.s
fppapbcesn)a= NoneV - n < naV ps (distributed-system.s f p pa pb ¢ es
na) a # None
by (meson computation.snapshot-stable-ver-2)
have f2: computation channel trans send recv init (S ¢ (length t))
using assms(1) final-is-s-t-len-t computation-azxioms by blast
have f3: trace init t (S t (length t))
using assms(1) final-is-s-t-len-t by blast
have f4: ps (St k) p = None
by (meson snap-p(1))
then have f5: k < length ¢
using f3 f2 f1 by (metis le-eq-less-or-eq not-le s-def snap-p(2) take-all)
have — regular-event (¢! k)
using f4 by (meson distributed-system.reqular-event-cannot-induce-snapshot
distributed-system-azxioms snap-p(2) step-p)
then have f6: map Msg (fst (c¢s (St k) cid)) Q takeWhile ((#£) Marker)
(msgs (S t k) cid) = map Msg (fst (cs (St (k + 1)) cid)) Q take While ((#£)
Marker) (msgs (St (k+ 1)) cid) A snd (cs (St k) cid) = snd (es (St (k+ 1))
cid)
using chan computation.snapshot-step-cs-preservation-p computation-axioms
op step-p by fastforce
then have f7: snd (¢s (St (k+ 1)) cid) # Done
using f5 f/ by (metis (no-types) assms(1) chan cs-done-implies-both-snapshotted(1))
have j + 1 <k + I
using True by linarith
then have snd (¢s (St (k + 1)) cid) = Recording
using f7 f3 f2 f1 by (meson chan computation.cs-in-initial-state-implies-not-snapshotted
recording-state.exhaust snap-q(2))
then show ?%thesis
using f6 f5 by (metis (no-types) Suc-eg-plusl Suc-lel assms(1) chan cs-done

187

cs-done-implies-both-snapshotted(1) cs-when-recording final-is-s-t-len-t le-eg-less-or-eq
snap-p(2))
qed
ultimately show ?thesis
by (metis (no-types, lifting) chan Nil-is-map-conv assms(1) computa-
tion.no-initial-channel-snapshot computation-axioms fst-conv no-recording-cs-if-not-snapshotted
self-append-conv2 snap-q(1))
next
case Fulse
then have £k < j using <j # k> Fulse by simp
then have map Msg (fst (¢s (S t i) cid)) Q takeWhile ((#£) Marker) (msgs
(S ti) cid)
= map Msg (fst (cs (S tj) cid)) Q takeWhile ((#) Marker) (msgs (S
tj) cid)
proof (cases i < k)
case True
then have msgs (St 4) cid = msgs (St k) cid A cs (Sti) cid = cs (Stk)
cid
proof —
have Vj. i < j A j <k — occurs-on (t!j) # p A occurs-on (t!j) # q
(is 7Q)
proof (rule ccontr)
assume ~ ?2(Q)
then obtain | where range: ¢ < 11 < k and occurs-on (¢! 1) =p Vv
occurs-on (t 1) = q by blast
then show Fulse
proof (elim disjE, goal-cases)
case 1
then show ?thesis
proof (cases reqular-event (t ! 1))
case True
have [< k using range <k < j> by simp
have ™~ has-snapshotted (S t 1) p using snap-p(1) range <k < j»
snapshot-stable-ver-3 assms(1) by simp
then have prerecording-event t | using True 1 prerecording-event
using s-def snap-p by fastforce
then show Fualse using assms range by blast
next
case Fulse
then have step-I: (Stl)Ft!l— (St (I4+1))
by (metis (no-types, lifting) Suc-eg-plusl Suc-lessD assms(1)
distributed-system.step-Suc distributed-system-axioms less-trans-Suc linorder-not-le
local.range(2) s-def snap-p(1) snap-p(2) take-all)
then have has-snapshotted (S t (I+1)) p using False nonregu-
lar-event-induces-snapshot
by (metis 1(3) snapshot-state-unchanged)
then show Fulse
by (metis Suc-eg-plusl Suc-lel assms(1) local.range(2) snap-p(1)
snapshot-stable-ver-3)

188

qed
next
case 2
then show ?Zthesis
proof (cases regular-event (t ! 1))
case True
have ™~ has-snapshotted (S t 1) p using snap-p(1) range <k < j»
snapshot-stable-ver-3 assms(1) by simp
moreover have | < length t
using <k < j local.range(2) s-def snap-q(1) snap-q(2) by force
ultimately have prerecording-event t | using True 2 prerecording-event

proof —
have [< j
by (meson False <I < k> less-trans not-less)
then show ?thesis
by (metis (no-types) True <l < length t> <occurs-on (t ! 1)
= ¢ assms(1) computation.prerecording-event computation.snapshot-stable-ver-2
computation-azioms snap-q(1))
qed
then show Fualse using assms range by blast
next
case Fulse
then have step-I: (Sti)Ft!1l— (St (I4+1))
by (metis (no-types, lifting) Suc-eq-plusl Suc-lessD assms(1)
distributed-system.step-Suc distributed-system-axioms less-trans-Suc linorder-not-le
local.range(2) s-def snap-p(1) snap-p(2) take-all)
then have has-snapshotted (S t (I+1)) q using False nonregu-
lar-event-induces-snapshot
by (metis 2(3) snapshot-state-unchanged)
then show Fulse
by (metis Suc-eq-plusl Suc-lel <k < j» assms(1) less-imp-le-nat
local.range(2) snap-q(1) snapshot-stable-ver-3)
qed
qed
qed
moreover have k < length t
proof (rule ccontr)
assume ~ k < length t
then have S ¢ k = St (k+1) using no-change-if-ge-length-t assms by
stmp
then show Fulse using snap-p by auto
qed
ultimately show ?thesis using chan same-messages-if-no-occurrence-trace
assms True less-imp-le by auto
qed
moreover have map Msg (fst (cs (St k) cid)) Q take While ((#) Marker)
(msgs (St k) cid)
= map Msg (fst (¢s (St (k+1)) cid)) Q takeWhile ((£) Marker)

189

(msgs (St (k+1)) cid)

A snd (es (St (k+1)) cid) = NotStarted
proof —

have ~ regular-event (¢! k) using snap-p
using regular-event-cannot-induce-snapshot step-p by blast
then show ?thesis
using calculation op snapshot-step-cs-preservation-p step-p chan NotStarted
by auto
qed

moreover have map Msg (fst (cs (St (k+1)) cid)) Q take While ((#)
Marker) (msgs (St (k+1)) cid)

= map Msg (fst (cs (S tj) cid)) Q takeWhile ((£) Marker) (msgs
(S t7) cid)
proof —

have Va. k+1 < a A a < j— "~ occurs-on (t! a) = ¢ (is ?R)
proof (rule ccontr)

assume ~ 7R

then obtain a where k+1 < a a < j and ocp: occurs-on (t! a) = ¢
by blast
have a < length t
proof —
have j < length t
proof (rule ccontr)
assume ~ j < length t
then have Stj= St (j+1)

using assms(1) no-change-if-ge-length-t by auto
then show Fulse using snap-q by auto
qed

qed
then show Fulse

then show ?thesis using <a < j» by simp

proof (cases regqular-event (t ! a))
case True

have ™~ has-snapshotted (St a) q
by (meson <a < j» assms(1) computation.snapshot-stable-ver-2
computation-azioms less-imp-le-nat snap-q(1))
then have prerecording-event t a using <a < length t» ocp True
prerecording-event by simp

next
case Fulse

then have (Sta)F (t!a) — (St (at+1))

using <a < length t» assms(1) step-Suc by auto
then have has-snapshotted (St (a+1)) ¢

then show Fulse using <k+1 < a» <k > 9> assms by auto

by (metis False ocp nonregular-event-induces-snapshot snap-
shot-state-unchanged)

then show Fulse

by (metis Suc-eq-plusl Suc-lel <a < 7> assms(1) snap-q(1) snap-
shot-stable-ver-3)

190

qed
qed
moreover have Marker : set (msgs (St (k+1)) cid)
using chan <map Msg (fst (cs (S tk) cid)) @ takeWhile ((#) Marker) (msgs
(S tk) cid) = map Msg (fst (cs (St (k+ 1)) cid)) @ takeWhile ((#) Marker)
(msgs (St (k+ 1)) cid) A snd (¢s (St (k+ 1)) cid) = NotStarted> assms(1)
cs-in-initial-state-implies-not-snapshotted marker-must-stay-if-no-snapshot snap-p(2)
by blast
moreover have has-snapshotted (S ¢ (k+1)) p
using snap-p(2) by blast
moreover have ~ has-snapshotted (St (k+1)) q
using chan <map Msg (fst (¢s (St k) cid)) Q takeWhile ((#) Marker)
(msgs (S t k) cid) = map Msg (fst (cs (St (kK + 1)) cid)) Q take While ((#)
Marker) (msgs (St (k + 1)) cid) A snd (es (St (k + 1)) cid) = NotStarted»
assms(1) cs-in-initial-state-implies-not-snapshotted by blast
moreover have k+71 < j
using <k < j» by auto
moreover have trace init t final using assms by simp
moreover have snd (cs (St (k+1)) cid) = NotStarted
using <map Msg (fst (¢s (St k) cid)) Q takeWhile ((#) Marker) (msgs
(S tk) cid) = map Msg (fst (cs (St (k+ 1)) cid)) @ takeWhile ((#) Marker)
(msgs (St (k+ 1)) cid) A snd (¢cs (St (k+ 1)) cid) = NotStarted> by blast
ultimately show ?thesis using cs-when-recording-3 chan by simp
qed
ultimately show ?thesis by simp
next
case Fulse
show ?thesis
proof —
have has-snapshotted (St i) p
by (metis False Suc-eq-plusl assms(1) not-less-eq-eq snap-p(2) snap-
shot-stable-ver-8)
moreover have ~ has-snapshotted (St 1) g
using nsq by auto
moreover have Marker : set (msgs (St i) cid)
using chan assms(1) calculation(1) marker-must-stay-if-no-snapshot nsq
by blast
moreover have Vk. i < k Ak < j— "~ occurs-on (¢! k) = ¢ (is ?R)
proof (rule ccontr)
assume ~ 7R
then obtain k£ where ¢ < k k < j and ocp: occurs-on (¢t ! k) = ¢ by
blast
have k < length t
proof —
have j < length t
proof (rule ccontr)
assume ~ j < length t
then have Stj= St (j+1)
using assms(1) no-change-if-ge-length-t by auto

191

then show Fulse using snap-q by auto
qged
then show ?thesis using <k < j» by simp
qed
then show Fulse
proof (cases regular-event (t ! k))
case True
have ™~ has-snapshotted (St k) q
by (meson <k < j» assms(1) computation.snapshot-stable-ver-2
computation-azioms less-imp-le-nat snap-q(1))
then have prerecording-event t k using <k < length t» ocp True
prerecording-event by simp
then show Fulse using <i < j» <k > 0> assms by auto
next
case Fulse
then have (Stk)F (¢t 1 k) — (St (k+1))
using <k < length t» assms(1) step-Suc by auto
then have has-snapshotted (St (k+1)) q
by (metis False ocp nonregular-event-induces-snapshot snap-
shot-state-unchanged)
then show Fulse
by (metis Suc-eq-plusl Suc-lel <k < j> assms(1) snap-q(1) snap-
shot-stable-ver-3)
qed
qed
ultimately show ?thesis using cs-when-recording-3
using NotStarted assms(1) bound chan by auto
qed
qed
moreover have map Msg (fst (cs (St j) cid)) Q takeWhile ((#) Marker)
(msgs (S t7) cid)
= map Msg (fst (cs final cid))
proof (cases 3q p. t ! j = RecvMarker cid q p)
case True
then have fst (cs (St j) cid) = fst (¢s (St (j+1)) cid)
using step-q by auto
moreover have RecvMarker: t | j = RecvMarker cid q p
proof —
have can-occur (¢! j) (S t j) using happen-implies-can-occur step-q by

stmp
then show ?thesis
using RecvMarker-given-channel True chan by force
qged
moreover have take While ((#£) Marker) (msgs (St j) cid) = |]
proof —
have can-occur (t ! j) (S t j) using happen-implies-can-occur step-q by
stmp

then have length (msgs (S tj) cid) > 0 A hd (msgs (St j) cid) = Marker
using RecvMarker can-occur-def by auto

192

then show ?thesis
by (metis (mono-tags, lifting) hd-conv-nth length-greater-0-conv nth-mem
set-take WhileD take While-nth)
qed
moreover have snd (cs (St (j+1)) cid) = Done using step-q True by
auto
moreover have cs (St (j+1)) cid = cs final cid using chan calculation
cs-done-implies-same-snapshots assms(1)
by (metis final-is-s-t-len-t nat-le-linear no-change-if-ge-length-t)
ultimately show ?thesis
by simp
next
case Fulse
have ™~ regular-event (¢! j)
using regular-event-preserves-process-snapshots snap-q(1) snap-q(2) step-q
by auto
then have isSnapshot (t ! j) V isRecvMarker (¢! j) using nonregular-event
by auto
then have map Msg (fst (cs (S tj) cid)) Q takeWhile ((#£) Marker) (msgs
(Stj) cid)
= map Msg (fst (cs (St (j+1)) cid)) Q takeWhile ((#) Marker)
(msgs (St (j+1)) cid)
A snd (cs (St (j+1)) cid) = Recording
proof (elim disjE, goal-cases)
case I
have Snapshot: t ! j = Snapshot q
using 1 ogq by auto
then have msgs (S t j) cid = msgs (St (j+1)) cid
using p # ¢ step-q chan by auto
moreover have cs (St (j+1)) cid = (fst (cs (S tj) cid), Recording)
using step-q Snapshot chan by simp
ultimately show ?thesis by simp
next
case 2
obtain cid’ r where RecvMarker: t | j = RecvMarker cid’ q r
by (metis 2 event.collapse(5) oq)
have cid # cid’
proof (rule ccontr)
assume ~ cid # cid’
then have channel cid = channel cid’ by simp
then have channel cid’ = Some (r, q)
using False RecuMarker <= cid # cid’s by blast
then show Fulse
using False RecuMarker <= cid # cid’s by blast
qed
then have msgs (St j) cid = msgs (St (j+1)) cid
using «cid # cid’y step-q snap-q RecvMarker chan <p # q» by simp
moreover have cs (St (j+1)) cid = (fst (¢s (S tj) cid), Recording)
using «p # ¢ <cid # cid’ystep-q snap-q RecvMarker chan by auto

193

ultimately show ?thesis by simp
qged
moreover have map Msg (fst (¢s (St (j+1)) cid)) Q takeWhile ((#)
Marker) (msgs (St (j+1)) cid)
= map Msg (fst (cs final cid))
proof —
have snd (cs (St (j+1)) cid) = Recording
using calculation by blast
moreover have has-snapshotted (St (j+1)) p
by (metis Suc-eq-plusi Suc-lel <k < j» assms(1) le-addl snap-p(2)
snapshot-stable-ver-3)
moreover have has-snapshotted (St (j4+1)) q using snap-q by auto
moreover have j < length t
by (metis (no-types, lifting) chan Suc-eq-plusl assms(1) cs-done
cs-done-implies-both-snapshotted(2) computation.no-change-if-ge-length-t computa-
tion.snapshot-stable-ver-3 computation-axioms lel le-Suc-eq snap-q(1) snap-q(2))
ultimately show ?thesis using cs-when-recording assms(1) cs-done
final-is-s-t-len-t
proof —
assume al: j < length t
assume a2: trace init t final
assume a3: snd (cs (S ¢ (length t)) cid) = Done
assume a4: snd (¢s (St (j + 1)) cid) = Recording
assume ad: ps (St (j+ 1)) p # None
assume a6: A\t. trace init t final = final = St (length t)
assume a7: \ijtp cid q. [i < j; j < length t; trace init t final; ps (S t 7)
p # None; snd (¢s (S t i) cid) = Recording; snd (cs (S t j) cid) = Done; channel
cid = Some (p, q)] = map Msg (fst (c¢s (St j) cid)) = map Msg (fst (cs (St 9)
cid)) Q takeWhile ((#) Marker) (msgs (S t i) cid)
have Suc j < length t
using a3 a2 al by (metis (no-types) False Suc-eq-plusl Suc-lessI chan
cs-done-implies-has-snapshotted done-only-from-recv-marker snap-q(1) step-q)
then show ?thesis
using a7 a6 ab a4 a3 a2 by (metis (no-types) Suc-eq-plusl chan
nat-le-linear)
qed
qged
ultimately show ?thesis by simp
qed
ultimately show ?thesis
by (metis (no-types, lifting) Nil-is-map-conv assms(1) assms(8) chan cs-done
cs-done-implies-has-snapshotted cs-not-nil-implies-postrecording-event nat-le-linear
nsq self-append-conv2 snapshot-stable-ver-3)
qed
next
case Recording
then obtain j where snap-p: ~ has-snapshotted (S t j) p has-snapshotted (S
EG+D) p
by (metis Suc-eq-plusl assms(1) exists-snapshot-for-all-p)

194

have snap-q: has-snapshotted (S t i) q
using Recording assms(1) chan cs-recording-implies-snapshot by blast
have fst-cs-empty: cs (St i) cid = ([], Recording) (is ?P)
proof (rule ccontr)
assume ~ ?P
have snd (cs (S t i) cid) = Recording using Recording by simp
moreover have fst (cs (St i) cid) # [] using <~ 2P» prod.collapse calculation
by metis
ultimately have 3j. j < ¢ A postrecording-event t j
using assms(1) assms(4) chan cs-not-nil-implies-postrecording-event by
blast
then show Fulse using assms by auto
qed
then show ?thesis
proof —
have i-less-len-t: i < length t
proof (rule ccontr)
assume ~ i < length t
then have snd (¢s (St ©) cid) = Done
by (metis assms(1) cs-done le-eq-less-or-eq nat-le-linear no-change-if-ge-length-t)
then show Fualse using Recording by simp
qed
then have map Msg (fst (cs final cid))
= map Msg (fst (cs (St i) cid)) Q takeWhile ((#%) Marker) (msgs (St)
cid)
proof (cases j < 1)
case True
then have has-snapshotted (St 4) p
by (metis Suc-eq-plus1 Suc-lel assms(1) snap-p(2) snapshot-stable-ver-3)
moreover have length t < length t by simp
ultimately show ?thesis
using Recording chan assms(1) cs-done cs-when-recording final-is-s-t-len-t
i-less-len-t by blast
next
case Fulse

need to show that next message that comes into the channel must be marker

have Vk. i <k Ak <j— "~ occurs-on (t! k) = p (is ?P)
proof (rule ccontr)
assume ~ ?P
then obtain k where i < k k < j occurs-on (t! k) = p by blast
then show Fulse
proof (cases regular-event (t ! k))
case True
then have prerecording-event t k
by (metis (no-types, opaque-lifting) <k < 7> <occurs-on (t ! k) = p»
all-processes-snapshotted-in-final-state assms(1) final-is-s-t-len-t computation.prerecording-event
computation-azioms less-trans nat-le-linear not-less snap-p(1) snapshot-stable-ver-2)
then show %thesis using assms <i < k> by auto

195

next
case Fulse
then have step-k: (St k)& (¢! k) — (St (Suck))
by (metis (no-types, lifting) Suc-lel <k < j» all-processes-snapshotted-in-final-state
assms(1) final-is-s-t-len-t le-Suc-eq less-imp-Suc-add linorder-not-less no-change-if-ge-length-t
snap-p(1) step-Suc)
then have has-snapshotted (St (Suc k)) p
by (metis False <occurs-on (t ! k) = p» nonregular-event-induces-snapshot
snapshot-state-unchanged)
then have k£ > j
by (metis Suc-lel <k < j» assms(1) snap-p(1) snapshot-stable-ver-3)
then show Fulse using &k < j» by simp
qed
qed
moreover have ~ has-snapshotted (S ¢) p
using Fualse assms(1) snap-p(1) snapshot-stable-ver-8 by auto
ultimately have to-snapshot: map Msg (fst (cs (St j) cid)) Q take While
((£) Marker) (msgs (St j) cid)
= map Msg (fst (c¢s (S t i) cid)) Q takeWhile ((#) Marker)
(msgs (S t 1) cid)
using Fualse chan Recording assms(1) cs-when-recording-2 by auto
have step-j: (Stj)F (t!j) — (St (j+1))
by (metis Suc-eq-plusl Suc-le-eq assms(1) distributed-system.step-Suc dis-
tributed-system-axioms computation.no-change-if-ge-length-t computation-axioms le-add1
not-less-eq-eq snap-p(1) snap-p(2))
then have map Msg (fst (cs (St 7) cid)) @ takeWhile ((#£) Marker) (msgs
(S tj) cid)
= map Msg (fst (cs (St (j+1)) cid)) Q takeWhile ((#) Marker)
(msgs (St (j+1)) cid)
proof —
have o: ™ regular-event (t! j) A occurs-on (t!j) =p
by (metis (no-types, opaque-lifting) distributed-system.no-state-change-if-no-event
distributed-system.regular-event-cannot-induce-snapshot distributed-system-azioms snap-p(1)
snap-p(2) step-j)
then show ?thesis
using chan snapshot-step-cs-preservation-p step-j by blast
qged
moreover have map Msg (fst (cs final cid))
= map Msg (fst (cs (St (j+1)) cid)) Q takeWhile ((£) Marker) (msgs
(St (j+1)) cid)
proof —
have snd (cs (St (j+1)) cid) = Recording
proof —
have f1: ps (S tj) p = None
by (meson snap-p(1))
then have f2: j < length t
by (metis (no-types) all-processes-snapshotted-in-final-state assms(1)
final-is-s-t-len-t linorder-not-le snapshot-stable-ver-3)
have t | j # RecvMarker cid q p

~

196

using f1 by (metis (no-types) Suc-eq-plusl assms(1) recv-marker-means-snapshotted
step-j)
then show ?thesis
using f2 f1 by (meson False assms(1) chan cs-done-implies-both-snapshotted(1)
cs-in-initial-state-implies-not-snapshotted cs-not-not-started-stable done-only-from-recv-marker
linorder-not-le recording-state.exhaust snap-q snapshot-stable-ver-3 step-j)
qed
moreover have j+1 < length t
proof (rule ccontr)
assume ~ j+1 < length t
then have snd (¢s (St (j+1)) cid) = Done
by (metis assms(1) cs-done le-Suc-eq less-imp-Suc-add linorder-not-le
no-change-if-ge-length-t)
then show Fulse using calculation by auto
qed
ultimately show ?thesis
using chan snap-p(2) assms final-is-s-t-len-t cs-when-recording cs-done
by blast
qed
ultimately show ?thesis using to-snapshot by simp
qed
then show ?thesis using fst-cs-empty by simp
qed
next
case Done

msgs must be empty, and cs must also be empty

have fst-cs-empty: fst (¢s (St 1) cid) = |]
proof (rule ccontr)
assume ~ fst (¢s (St i) cid) = ||
then have fst (cs (St 0) cid) # fst (es (St i) cid)
by (metis chan assms(1) cs-not-nil-implies-postrecording-event gr-implies-not0
le0)
then have 3j. j < i A postrecording-event t j
using chan «fst (cs (St 1) cid) # [> assms(1) assms(4) es-not-nil-implies-postrecording-event
by blast
then show Fulse using assms by auto
qed
moreover have msgs (St i) cid = ||
proof —
have no-marker: Marker ¢ set (msgs (St i) cid) (is ?P)
proof (rule ccontr)
assume ~ 7P
then have Marker : set (msgs (St i) cid) by simp
then have snd (cs (St i) cid) # Done
by (metis Marker-in-channel-implies-not-done chan assms(1) nat-le-linear
s-def take-all)
then show Fulse using Done by simp
qed

197

have snap-both: has-snapshotted (S t i) p A has-snapshotted (S t i) ¢
by (metis chan Done assms(1) cs-done-implies-both-snapshotted(1) cs-done-implies-has-snapshotted
final-is-s-t-len-t computation.all-processes-snapshotted-in-final-state computation-axioms
le-refl not-less s-def take-all)
obtain j where snap-p: ~ has-snapshotted (S t j) p has-snapshotted (S t
(+1)) p
by (metis Suc-eq-plusl assms(1) exists-snapshot-for-all-p)
have j < i
by (meson assms(1) not-le-imp-less snap-both snap-p(1) snapshot-stable-ver-2)
have step-j: (Stj) - (t!4) — (St (j+1))
by (metis Suc-eq-plusl assms(1) distributed-system.step-Suc distributed-system-azioms
computation.no-change-if-ge-length-t computation-axioms le-addl linorder-not-less
snap-p(1) snap-p(2))
have nonreg-j: ~ regular-event (t ! j)
by (meson distributed-system.regular-event-cannot-induce-snapshot dis-
tributed-system-azioms snap-p(1) snap-p(2) step-j)
have oc-j: occurs-on (t!j) =p
using no-state-change-if-no-event snap-p(1) snap-p(2) step-j by force
have msgs (S t i) cid =[] V (msgs (S t) cid # [| A last (msgs (S t i) cid)
= Marker)
proof —
have msgs (St (j+1)) cid # [] A last (msgs (St (j+1)) cid) = Marker
proof —
have msgs (St (j+1)) cid = msgs (S tj) cid @ [Marker]
proof —
have isSnapshot (t ! j) V isRecoMarker (t! j) using nonregular-event
nonreg-j by blast
then show ?thesis
proof (elim disjE, goal-cases)
case I
then have ¢ ! j = Snapshot p using oc-j by auto
then show ?thesis using step-j chan by auto
next
case 2
then obtain cid’ r where RecvMarker: t | j = RecvMarker cid’ p r
by (metis event.collapse(5) oc-7)
have cid # cid’
proof (rule ccontr)
assume "~ cid # cid’
then have channel cid = channel cid’ by auto
then have Some (p, q) = Some (r, p)
by (metis RecoMarker RecvMarker-implies-Marker-in-set assms(1)
chan computation.no-marker-if-no-snapshot computation-azioms snap-p(1) step-j)
then show Fulse using no-self-channel chan by simp
qed
then show ?thesis using oc-j snap-p step-j chan RecvMarker by auto
qed
qed
then show ?thesis by auto

198

qged
moreover have i < length t using assms by simp
moreover have j+1 < ¢ using <j < 9> by simp
moreover have Vk. j+1 < k A k < i A reqular-event (t ! k) — ~ occurs-on
(t!1 k) =p (is ?R)
proof (rule ccontr)
assume ~ ?R
then obtain k where range: j+1 < k k < i and regular-event (t! k)
occurs-on (t 1 k) = p
by blast
then have postrecording-event t k using snap-p
by (meson assms(1) calculation(2) le-trans linorder-not-less pre-if-reqular-and-not-post
prerecording-event snapshot-stable-ver-2)
then show Fulse using assms range by auto
qed
ultimately show ?thesis
using assms(1) chan last-unchanged-or-empty-if-no-events snap-p(2) by
auto
qed
then show ?thesis using no-marker last-in-set by fastforce
qed
ultimately show Zthesis
using chan Done assms(1) assms(4) final-is-s-t-len-t computation.cs-done-implies-same-snapshots
computation-axioms by fastforce
qed
ultimately show filter ((#) Marker) (msgs (S t) cid) = map Msg (fst (cs final
cid)) by simp
qed

lemma snapshot-after-all-prerecording-events:
assumes
trace init t final and
Vi’ i > i — ™ prerecording-event t i’ and
Vi’ j' < i — ~ postrecording-event t j' and
1 < length t
shows
state-equal-to-snapshot (S t i) final
proof (unfold state-equal-to-snapshot-def, rule conjI)
show ps-equal-to-snapshot (St i) final
using assms ps-after-all-prerecording-events by auto
show cs-equal-to-snapshot (S t) final
using assms cs-after-all-prerecording-events by auto
qed

5.4 Obtaining the desired traces

abbreviation all-prerecording-before-postrecording where
all-prerecording-before-postrecording t = 3i. (Vj. j < i — ~ postrecording-event
tj)

199

A (V). j > i — ™ prerecording-event t j)
A 1 < length t
A trace init t final

definition count-violations :: ('a, 'b, 'c) trace = nat where
count-violations t = sum (Ai. if postrecording-event t i
then card {j € {i+1..<length t}. prerecording-event t j}
else 0)
{0..<length t}

lemma violations-ge-0:
shows
(if postrecording-event t i
then card {j € {i+1..<length t}. prerecording-event t j}
else 0) > 0
by simp

lemma count-violations-ge-0:
shows
count-violations t > 0
by simp

lemma violations-0-implies-all-subterms-0:
assumes
count-violations t = 0
shows
Vi € {0..<length t}. (if postrecording-event t i
then card {j € {i+1..<length t}. prerecording-event t j}
else 0) = 0
proof —
have sum (Ai. if postrecording-event t i
then card {j € {i+1..<length t}. prerecording-event t j}
else 0)
{0..<length t} = 0 using count-violations-def assms by simp
then show Vi € {0..<length t}. (if postrecording-event t i
then card {j € {i+1..<length t}. prerecording-event t j}
else 0) = 0
by auto
qed

lemma exists-postrecording-violation-if-count-greater-0:
assumes
count-violations t > 0
shows
4. postrecording-event t i A card {j € {i+1..<length t}. prerecording-event t
it > 0 (is 7P)
proof (rule ccontr)
assume ~ ?P
then have Vi. ™ postrecording-event t i V card {j € {i+1..<length t}. prere-

200

cording-event t j} = 0 by simp
have count-violations t = 0
proof (unfold count-violations-def)
have Vi. (if postrecording-event t i
then card {j € {i+1..<length t}. prerecording-event t j}
else 0) = 0
using (V4. = postrecording-event t i V card {j € {i + 1..<length t}. prere-
cording-event t j} = 0» by auto
then show sum (\i. if postrecording-event t i
then card {j € {i+1..<length t}. prerecording-event t j}
else 0) {0..<length t} = 0 by simp
qed
then show Fulse using assms by simp
qed

lemma exists-prerecording-violation-when-card-greater-0:
assumes
card {j € {i+1..<length t}. prerecording-event t j} > 0
shows
3j € {i+1..<length t}. prerecording-event t j
by (metis (no-types, lifting) Collect-empty-eq assms card-0-eq empty-subsetl fi-
nite-atLeastLess Than not-gr-zero subset-card-intvl-is-intul)

lemma card-greater-0-if-post-after-pre:
assumes
i < j and
postrecording-event t i and
prerecording-event t j
shows
card {j € {i+1..<length t}. prerecording-event t j} > 0
proof —
have j < length t using prerecording-event assms by auto
have {j € {i+1..<length t}. prerecording-event t j} # empty
using Suc-eg-plusl <j < length t» assms(1) assms(3) less-imp-triv by auto
then show ?thesis by fastforce
qed

lemma exists-neighboring-violation-pair:
assumes
trace init t final and
count-violations t > 0
shows
34 j. i < j A postrecording-event t i A prerecording-event t j
ANNVE (i <kANk<j)— "~ regular-event (t ! k)) A j < length t
proof —
let ?I = {i. postrecording-event t i N card {j € {i+1..<length t}. prerecord-
ing-event t j} > 0}
have nonempty-I: ?I # empty using assms exists-postrecording-violation-if-count-greater-0
by blast

201

have fin-I: finite ?I
proof (rule ccontr)
assume "~ finite 71
then obtain ¢ where i > length t postrecording-event t i
by (simp add: postrecording-event)
then show Fulse using postrecording-event by simp
qed
let 90 = Max ?1
have no-greater-postrec-violation: ¥ i. i > 2 — ~ (postrecording-event t i A
card {j € {i+1..<length t}. prerecording-event t j} > 0)
using Mazx-gr-iff fin-1 by blast
have post-i: postrecording-event t 2i
using Mazx-in fin-1 nonempty-I by blast
have card {j € {%i+1..<length t}. prerecording-event t j} > 0
proof —
have % € 21
using Mazx-in fin-1 nonempty-1 by blast
then show ?thesis by simp
qed
let 2J = {j € {%i+1..<length t}. prerecording-event t j}
have nonempty-J: ¢J # empty
using <card {j € {%i+1..<length t}. prerecording-event t j} > 0> exists-prerecording-violation-when-card-grec
by blast
have fin-J: finite ?J by auto
let 2j = Min 2J
have pre-j: prerecording-event t ?j
using Min-in fin-J nonempty-J by blast
have no-smaller-prerec-violation: Vj € {%i+1..<length t}. j < 95 — "~ prere-
cording-event t j
using Min-less-iff fin-J by blast
have j-less-len-t: ?j < length t
using pre-j prerecording-event by blast
have Vk. (91 < k ANk < %)) — ~ regular-event (t ! k)
proof (rule alll, rule impl)
fix k
assume asm: % < kN k < %
then show ™~ regular-event (¢! k)
proof —
have 0-le-k: 0 < k by simp
have k-less-len-t: k < length t using j-less-len-t asm by auto
show ?thesis
proof (rule ccontr)
assume reg-cvent: ~ "~
then show Fulse
proof (cases has-snapshotted (S t k) (occurs-on (t ! k)))
case True
then have post-k: postrecording-event t k using reg-event k-less-len-t
postrecording-event by simp
moreover have card {j € {k+1..<length t}. prerecording-event t j} > 0

reqular-event (t ! k)

202

using post-k pre-j card-greater-0-if-post-after-pre asm pre-j by blast
ultimately show Fulse using no-greater-postrec-violation asm by blast
next
case Fulse
then have pre-k: prerecording-event t k using reg-event k-less-len-t
prerecording-event by simp
moreover have k € {%i+1..<length t} using asm k-less-len-t by simp
ultimately show Fulse using no-smaller-prerec-violation asm by blast
qed
qed
qed
qed
moreover have ?i < ?j using nonempty-J by auto
ultimately show ?thesis using pre-j post-i j-less-len-t by blast
qed

lemma same-cardinality-post-swap-1:
assumes
prerecording-event t j and
postrecording-event t ¢ and
i < jand
j < length t and
count-violations t = Suc n and
Vk (i <k ANk <j) — " regular-event (¢! k) and
trace init t final
shows
{k € {0..<i}. prerecording-event t k}
= {k € {0..<i}. prerecording-event (swap-events i jt) k}
proof —
let 2t = swap-events i jt
have same-begin: take i t = take i ?t using swap-identical-heads assms by blast
have same-length: length t = length (swap-events i j t) using swap-identical-length
assms by blast
have a: Vk. k<i — t! k= 2tk
by (metis nth-take same-begin)
then have VEk. k < i — prerecording-event t k = prerecording-event 2t k
proof —
have Vk k< i — Stk =25 ?t k using assms swap-events by simp
then show ?thesis unfolding prerecording-event using a same-length by
presburger
qed
then show ?thesis by auto
qed

lemma same-cardinality-post-swap-2:
assumes
prerecording-event t j and
postrecording-event t i and
i < jand

203

Jj < length t and
count-violations t = Suc n and
Vk (i< kANk<j) — " regular-event (¢! k) and
trace init t final
shows

card {k € {i..<j+1}. prerecording-event t k}

= card {k € {i..<j+1}. prerecording-event (swap-events i j t) k}
proof —

let 2t = swap-events i jt

have card {k € {i..<j+1}. prerecording-event t k} = 1
proof —

have VEk. i < k Ak < j—> ~ prerecording-event t k
proof (rule alll, rule impl)
fix k
assume asm: i < kN k <j
then show ~ prerecording-event t k
proof (cases k = 1)
case True

then have postrecording-event t k using assms by simp
then show ?thesis

by (meson computation.postrecording-event computation.prerecording-event
computation-azioms)

next
case Fulse

then have { < k A k < j using asm by force
then have ~ reqular-event (t ! k) using assms by simp

then show ?thesis unfolding prerecording-event by simp
qed

qed

then have {k € {i..<j}. prerecording-event t k} = empty by simp

moreover have {k € {j..<j+1}. prerecording-event t k} = {j}
proof —

have {j..<j+1} = {j} by auto

moreover have prerecording-event t j using assms by simp
ultimately show ?thesis by blast
qed

by auto

then show ?thesis by simp
qed

ultimately have {k € {i..<j+1}. prerecording-event t k} = {j} using assms(3—4)

moreover have card {k € {i..<j+1}. prerecording-event 7t k} = 1
proof —

have swap-ind: prerecording-event 2t i
A postrecording-event 2t (i+1)

ANNE kE>i+1 ANk < j+1 — ™ regular-event (2t ! k))
using assms swap-events by blast

have Vk. i+1 < k ANk < j+1 — ™ prerecording-event 7t k
proof (rule alll, rule impl)
fix k

204

assume asm: i+1 < kAN k < j+1
then show ~ prerecording-event 2t k
proof (cases k = i+1)

case True

then have postrecording-event ?t k using swap-ind by blast
then show ?thesis

by (meson computation.postrecording-event computation.prerecording-event
computation-azioms)
next
case Fulse

then have i+1 < k A k < j+1 using asm by linarith
then have ™ regular-event (2t ! k) using asm assms swap-ind by blast
then show ?thesis unfolding prerecording-event by simp
qed
qed
then have {k € {i+1..<j+1}. prerecording-event ?t k} = empty by simp
moreover have {k € {i..<i+1}. prerecording-event 7t k} = {i}
proof —
have {i.<i+1} = {i} by simp
moreover have prerecording-event ?t i using swap-ind by blast
ultimately show ?thesis by blast
qed
ultimately have {k € {i.<j+1}. prerecording-event ?t k} = {i} using
assms(3—4) by auto
then show #?thesis by simp
qged
ultimately show ?thesis by simp
qed

lemma same-cardinality-post-swap-3:
assumes
prerecording-event t j and
postrecording-event t i and
i < j and
j < length t and
count-violations t = Suc n and
VEk (i <k Ak <j) — " reqular-event (¢! k) and
trace init t final
shows
{k € {j+1..<length t}. prerecording-event t k}
= {k € {j+1..<length (swap-events i j t)}. prerecording-event (swap-events i j
t) k}
proof —
let 2t = swap-events i j t
have drop (j+1) t = drop (j+1) %t
using assms(3) assms(4) swap-identical-tails by blast

have same-length: length t = length %t using swap-identical-length assms by
blast

have a: Vk. j+1 <k ANk <lengtht — 2t k=1¢1k

205

proof (rule alll, rule impl)
fix k
assume j+1 < kA k < length t
then have ?¢t ! k = drop (j+1) (swap-events i jt) ! (k—(j+1))
by (metis (no-types, lifting) Suc-eq-plusl Suc-lel assms(4) le-add-diff-inverse
nth-drop same-length)
moreover have t | k = drop (j+1) t ! (k—(j+1))
using <j + I < k A k < length t» by auto
ultimately have drop (j+1) 2t ! (k—(j+1)) = drop (j+1) t ! (k—(j+1))
using assms swap-identical-tails by metis
then show 2t ! k=1t!k
using <%t 'k =drop (j+ 1) 2tV (k—(G+ 1)y <t k=drop (j+1)t! (k
— (j+ 1)) by auto
qed
then have V. j+1 < k A k < length t — prerecording-event t k = prerecord-
ing-event t k
proof —
have Vk. k > (j+1) — Stk =S % k using assms swap-events by simp
then show ?thesis unfolding prerecording-event using a by auto
qed
then have {k € {j+1..<length t}. prerecording-event t k}
= {k € {j+1..<length t}. prerecording-event ?t k}
by auto
then show ?thesis using same-length by metis
qed

lemma card-ip1-to-j-is-1-in-normal-events:
assumes
prerecording-event t j and
postrecording-event t ¢ and
1 < j and
j < length t and
count-violations t = Suc n and
Vk. (i <kANEk<j)— "~ regular-event (¢! k) and
count-violations t = Suc n and
trace init t final
shows
card {k € {i+1..<j+1}. prerecording-event t k} = 1
proof —
have VEk. i < k Ak < j— ~ prerecording-event t k
proof (rule olll, rule impl)
fix k
assume asm: i < kAN k < j
then show ™~ prerecording-event t k
proof —
have ~ regular-event (t! k) using asm assms by blast
then show ?thesis unfolding prerecording-event by simp
qed
qed

206

then have {k € {i+1..<j}. prerecording-event t k} = empty by auto
moreover have {k € {j..<j+1}. prerecording-event t k} = {j}
proof —
have {j..<j+1} = {j} by auto
moreover have prerecording-event t j using assms by simp
then show ?thesis by auto
qed
ultimately have {k € {i+1..<j+1}. prerecording-event t k} = {j} using assms
by auto

then show ?thesis by simp
qged

lemma card-ip1-to-j-is-0-in-swapped-events:
assumes
prerecording-event t j and
postrecording-event t i and
i < jand
j < length t and
count-violations t = Suc n and
Vk. (i <k ANk<j)— "~ regular-event (¢! k) and
count-violations t = Suc n and
trace init t final
shows
card {k € {i+1..<j+1}. prerecording-event (swap-events i jt) k} = 0
proof —
let 7t = swap-events i j t

have postrec-ip1: postrecording-event 2t (i+1) using assms swap-events by blast
have neigh-shift: Vk. i+1 < k AN k < j+1 — ~ regular-event (?¢t ! k) using
assms swap-events by blast

have Vk. i+1 < kN k < j+1 — ~ prerecording-event ?t k
proof (rule olll, rule impl)
fix k
assume asm: i+1 < kAN k < j+1
then show ~ prerecording-event 2t k
proof (cases k = i+1)
case True
then show ?thesis using postrec-ip1

by (meson computation.postrecording-event computation.prerecording-event
computation-azioms)
next

case Fulse

then have i+1 < k A k < j+1 using asm by simp
then have ™~ regular-event (2t ! k) using neigh-shift by blast

then show ?thesis unfolding prerecording-event by simp
qed

qed
then have {k € {i+1..<j+1}. prerecording-event ?t k} = empty by auto
then show ?thesis by simp

qed

207

lemma count-violations-swap:
assumes
prerecording-event t j and
postrecording-event t i and
i < jand
j < length t and
count-violations t = Suc n and
Vk (i< kANk<j)— " regular-event (¢! k) and
count-violations t = Suc n and
trace init t final
shows
count-violations (swap-events i jt) = n
proof —
let ?t = swap-events i jt
let ?f = (\i. if postrecording-event t i then card {j € {i+1..<length t}. prere-
cording-event t j} else 0)
let 2f' = (\i. if postrecording-event ?t i then card {j € {i+1..<length ?t}. pre-
recording-event 2t j} else 0)
have same-postrec-prefiz: Vk. k < i — postrecording-event t k = postrecord-
ing-event 7t k
proof —
have Vk. k< i — Stk =S5 %k using assms swap-events by auto
then show ?thesis unfolding postrecording-event
proof —
assume al: Vk<i. Stk =S (swap-events i jt) k
{ fix nn :: nat
have An na es nb. = n < na V = na < length es V = nb < n V swap-events
n na es! nb = (es! nb::(‘a, b, 'c) event)
by (metis (no-types) nth-take swap-identical-heads)
then have — nn < i V - nn < length t A = nn < length (swap-events i j t)
V = reqular-event (t ! nn) A = reqular-event (swap-events i j ¢! nn) V ps (S t nn)
(occurs-on (t ! nn)) = None A ps (S (swap-events i jt) nn) (occurs-on (swap-events
ijt! nn)) = None V regular-event (¢t ! nn) A regular-event (swap-events ¢ j ¢ !
nn) A nn < length t A nn < length (swap-events i j t) A ps (St nn) (occurs-on (t
' nn)) # None A ps (S (swap-events i j t) nn) (occurs-on (swap-events i j t ! nn))
None
using al by (metis (no-types) assms(3) assms(4) swap-identical-length)
}

then show V n<i. (n < length t A regular-event (t! n) A ps (St n) (occurs-on
(t ! n)) # None) = (n < length (swap-events i j t) A regular-event (swap-events i
jtln) A ps (S (swap-events i jt) n) (occurs-on (swap-events i jt ! n)) # None)
by (metis (no-types))
qed
qed
have same-postrec-suffiz: Vk. k > j+1 — postrecording-event t k = postrecord-
ing-event 2t k
proof —
have post-equal-states: Vk. k > j+1 — St k=S ?t k using assms swap-events

208

by presburger
show ?thesis
proof (rule alll, rule impl)
fix k
assume j+1 < k
then show postrecording-event t k = postrecording-event 2t k
proof (cases k < length t)
case Fulse
then have ~ postrecording-event t k using postrecording-event by simp
moreover have ™~ postrecording-event 2t k
using postrecording-event swap-identical-length False assms by metis
ultimately show ?thesis by simp
next
case True
then show postrecording-event t k = postrecording-event 2t k
using post-equal-states
proof —
assume al: Vk>j+ 1. Stk =S5 (swap-events i jt) k
assume a2: k < length t
have f3: length t = length (swap-events i j t)
using assms(3) assms(4) swap-identical-length by blast
have ff: k — (j+ 1)+ (G +1)=k%
using «j + 1 < k> le-add-diff-inverse2 by blast
have drop (j + 1) t = drop (j + 1) (swap-events i j t)
using assms(3) assms(4) swap-identical-tails by blast
then have swap-events i jt ! k=1¢!k
using f4 f3 a2 by (metis (no-types) drop-drop hd-drop-conv-nth)
then show ?thesis
using f3 al <j + 1 < k> postrecording-event by presburger
qed
qed
qed
qed

have sum-decomp-g: <sum g {0..<length t} = sum g {0..<i} + sum g {i..<j+1}
+ sum g {j+1..<length t}»
for g :: <nat = nat
using sum.atLeastLess Than-concat [of 0 <j + 1+ g] sum.atLeastLess Than-concat
[of 0 <j + 1) <length t» g] assms
by simp
from sum-decomp-g [of f]
have sum-decomp-f: <sum 2f {0..<length t} = sum ?f {0..<i} + sum ?f {i..<j+1}
+ sum ?f {j+1..<length t}» .
from sum-decomp-g [of 2f]
have sum-decomp-f’: <sum ?2f’ {0..<length t} = sum ?2f' {0..<i} + sum ?f'
{i..<j+1} + sum 2f' {j+1..<length t}» .

have prefiz-sum: sum ?f {0..<i} = sum 2f' {0..<i}
proof —

209

have VI. 0 < IAL<i—s ?fl= 2f1
proof (rule alll, rule impl)
fix |
assume 0 < [N < 1
then have | < i by simp
show 2f 1 = 2f'1
proof (cases postrecording-event t 1)
case True
let ?G = {k € {l+1..<length t}. prerecording-event t k}
let G’ = {k € {l+1..<length t}. prerecording-event 7t k}
let ?A = {k € {I+1..<i}. prerecording-event t k}
let B = {k € {i..<j+1}. prerecording-event t k}
let ?2C = {k € {j+1..<length t}. prerecording-event t k}
let ?A’ = {k € {I+1..<i}. prerecording-event ?t k}
let B’ = {k € {i..<j+1}. prerecording-event 2t k}
let 7C" = {k € {j+1..<length t}. prerecording-event %t k}
have card-G: card ?G = card ?A + card ?B + card ?C
proof —
have ?G = ?A U (B U ?C) using assms I < ©» by auto
then have card ?G = card (?A U (B U ?C)) by simp
also have card (?A U (?B U ?C)) = card ?A + card (?B U ?C)
proof —
have ?A N (?B U ¢C) = {} using <l < 9> assms by auto
then show ?thesis by (simp add: card-Un-disjoint disjoint-iff-not-equal)
qed
also have card ?A + card (?B U ?C) = card ?A + card ?B + card ?C
proof —
have ?B N ?C = {} by auto
then show ?thesis by (simp add: card-Un-disjoint disjoint-iff-not-equal)

qed

finally show ?thesis by simp
ged
have card-G': card ?G' = card ?A’ + card ?B’ + card ?C"’
proof —

have ?G’' = ?A’ U (¢B’ U 2C") using assms <l < i by auto
then have card ?G’ = card (?A’ U (2B’ U 2C")) by simp
also have card (?A’U (?B’U 2C")) = card ?A’ + card (?B'U 2C")
proof —
have ?A4' N (?B'U ?2C") = {} using <l < i» assms by auto
then show ?thesis by (simp add: card-Un-disjoint disjoint-iff-not-equal)
qed
also have card ?A’' + card (YB’'U ?2C') = card ?A’ + card B’ + card 7C’
proof —
have ?B' N ?2C’ = {} by auto
then show ?thesis by (simp add: card-Un-disjoint disjoint-iff-not-equal)
qed
finally show ?thesis by simp
qged
have card ?G = card ?G’

210

proof —
have card ?A = card ?A’
proof —
have {k € {0..<i}. prerecording-event t k} = {k € {0..<i}. prerecord-
ing-event 7t k}
using assms same-cardinality-post-swap-1 by blast
then have ?4 = 2?4’ by auto
then show ?thesis by simp

qed
moreover have card 7B = card ?B’ using assms same-cardinality-post-swap-2
by blast
moreover have card 7C = card ?7C"’
proof —

have ?C = ?C' using assms same-cardinality-post-swap-3 by auto
then show %thesis by simp
qed
ultimately show ?thesis using card-G card-G’ by linarith
qed
moreover have postrecording-event ?t | using True same-postrec-prefiz <l
< 0> by blast
moreover have length 7t = length t using assms(3) assms(4) by fastforce
ultimately show ?thesis using True by presburger
next
case Fulse
then have ™~ postrecording-event ?t | using same-postrec-prefix <I < i» by
blast
then show ?thesis using False by simp
qed
qed
then show f%thesis using sum-eq-if-same-subterms by auto
qed

have infiz-sum: sum ?f {i.<j+1} = sum ?f' {i.<j+1} + 1
proof —
have sum-decomp-f: sum 2f {i..<j+1} = sum ?f {i..<i+2} + sum ?f {i+2..<j+1}
by (rule sym, rule sum.atLeastLessThan-concat) (use <i < j» in simp-all)
have sum-decomp-f's sum ?f" {i.<j+1} = sum 2f' {i.<i+2} + sum ?f’
{i+2.<j+1}
by (rule sym, rule sum.atLeastLessThan-concat) (use <i < j» in simp-all)
have sum ?f {i+2..<j+1} = sum 2f' {i+2..<j+1}
proof —
have V1. i+2 < I AL < j+l —s 2fl= 2f'1
proof (rule alll, rule impl)

fix [
assume asm: i+2 < I A1 < j+1
have ?f 1 =0
proof (cases I = j)
case True

then have ~ postrecording-event t [

211

using assms(1) postrecording-event prerecording-event by auto
then show ?thesis by simp
next
case Fulse
then have i < | A | < j using assms asm by simp
then have ™~ regular-event (¢!) using assms by blast
then have ™ postrecording-event t | unfolding postrecording-event by

stmp
then show ?thesis by simp
qged
moreover have ?f' | = 0
proof —

have Vk. i+1 < kAN k < j+1 — ™ regular-event (2t ! k) using assms
swap-events by blast

then have ™~ regular-event (2t ! [) using asm by simp

then have ™~ postrecording-event 7t | unfolding postrecording-event by

stmp
then show ?thesis by simp
qed
ultimately show ?f1 = ?2f' [by simp
qed

then show ?thesis using sum-eg-if-same-subterms by simp
qed

moreover have sum ?f {i.<i+2} = 1 + sum ?f' {i.<i+2}
proof —
have int-def: {i..<i+2} = {i,i+1} by auto
then have sum ?f {i,i+1} = 2fi + ?f (i+1) by simp
moreover have sum ?f' {i,i+1} = ?f' i + ?f' (i+1) using int-def by simp

moreover have ?f (i+1) = 0
proof (cases j = i+1)
case True
then have prerecording-event ¢ (i+1) using assms by simp
then have ™~ postrecording-event t (i+1)
unfolding postrecording-event using prerecording-event by simp
then show ?thesis by simp
next
case Fulse
then have ™~ regular-event (¢! (i+1)) using assms by simp
then have ™~ postrecording-event t (i+1) unfolding postrecording-event by
simp
then show ?thesis by simp
qed
moreover have 7f' i = 0
proof —
have prerecording-event ?t 1 using assms swap-events by blast
then have ™~ postrecording-event 2t i
unfolding postrecording-event using prerecording-event by simp

212

then show ?thesis by simp
qed
moreover have ?f i = ?2f' (i+1) + 1
proof —
have pi: postrecording-event t i using assms by simp
moreover have pipl: postrecording-event ¢t (i+1) using assms swap-events
by blast
let ?G = {k € {i+1..<length t}. prerecording-event t k}
let G’ = {k € {i+2..<length ?t}. prerecording-event ?t k}
let A = {k € {i+1..<j+1}. prerecording-event t k}
let ?B = {k € {j+1..<length t}. prerecording-event t k}
let A" = {k € {i+2..<j+1}. prerecording-event 2t k}
let ?B’ = {k € {j+1..<length ?t}. prerecording-event ?t k}
have card-G: card ?G = card ?A + card 7B
proof —
have ?G = ?A U ?B using assms by auto
moreover have ?A N ?B = {} by auto
ultimately show ?thesis by (simp add: card-Un-disjoint disjoint-iff-not-equal)
qed
have card-G": card ?G' = card ?A’ + card ?B’
proof —
have ?G’ = ?A’ U ?B’ using assms by auto
moreover have ?A’' N ?B’ = {} by auto
ultimately show ?thesis by (simp add: card-Un-disjoint disjoint-iff-not-equal)
qed
have card ?G = card G’ + 1
proof —
have card ?A = card ?A' + 1
proof —
have card ?A = 1 using assms card-ip1-to-j-is-1-in-normal-events by
blast
moreover have card A’ = (0 using assms card-ip1-to-j-is-0-in-swapped-events
by force
ultimately show ¢thesis by algebra
qed
moreover have card 7B = card ?B’ using assms same-cardinality-post-swap-3
by force
ultimately show ?thesis using card-G card-G’ by presburger
qed
moreover have card ?G = ?f i using pi by simp
moreover have card G’ = ?f' (i+1) using pipl by simp
ultimately show ?thesis by argo
qed
ultimately show ?thesis by auto
qed

ultimately show ?thesis using sum-decomp-f sum-decomp-f' by linarith
qged

213

have suffiz-sum: sum ?f {j+1..<length t} = sum ?f' {j+1..<length t}
proof —
have VI.l > j — ?f1 = ("1
proof (rule alll, rule impl)
fix [
assume [> j
then show ?f 1 = 2f'|
proof (cases postrecording-event t 1)
case True
let ?G = {k € {l+1..<length t}. prerecording-event t k}
let G’ = {k € {l+1..<length t}. prerecording-event ?t k}
let 2C = {k € {j+1..<length t}. prerecording-event t k}
let 2C' = {k € {j+1..<length t}. prerecording-event %t k}
have card ?G = card ?G’
proof —
have ?C = ?C' using assms same-cardinality-post-swap-3 by auto
then have ?G = ?G’ using <l > j» by fastforce
then show ?thesis by simp
qed
moreover have postrecording-event ?t | using True same-postrec-suffix <l
> j» by simp
moreover have length ?t = length t using assms(3) assms(4) by fastforce
ultimately show ?thesis using True by presburger
next
case Fulse
then have ™~ postrecording-event ?t | using same-postrec-suffiz <l > j» by
stmp
then show ?thesis using Fulse by simp
qed
qed
then have Vk. j+1 <k Ak < lengtht — 2f k= 2f"k
by simp
moreover have length t = length %t
using assms(3) assms(4) swap-identical-length by blast
ultimately show ?thesis by (blast intro:sum-eq-if-same-subterms)
qed
have sum ?f {0..<length t} = sum ?2f" {0..<length t} + 1
proof —
have sum ?f {0..<i} = sum ?f' {0..<i} using prefiz-sum by simp
moreover have sum ?f {i.<j+1} = sum ?f' {i..<j+1} + 1 using infiz-sum
by simp
moreover have sum ?f {j+1..<length t} = sum ?f’ {j+1..<length t} using
suffiz-sum by simp
ultimately show ¢thesis using sum-decomp-f sum-decomp-f' by presburger
qed
moreover have length ?t = length t
using assms(3) assms(4) by auto
moreover have sum ?f {0..<length t} = n + 1 using assms count-violations-def
by simp

214

ultimately have sum 2f’ {0..<length ?t} = n by presburger
then show ?thesis unfolding count-violations-def by presburger
qed

lemma desired-trace-always-exists:
assumes
trace init t final
shows
3t". mset t' = mset t
A all-prerecording-before-postrecording t'
using assms proof (induct count-violations t arbitrary: t)
case ()
then show ?case
proof (cases J1i. prerecording-event t ©)
case False
then have Vj. ™~ prerecording-event t j by auto
then have Vj. j < 0 — ~ postrecording-event t j
using 0.prems init-is-s-t-0 no-initial-process-snapshot postrecording-event by
auto
moreover have Vj. j > 0 — ~ prerecording-event t j using Fulse by auto
moreover have length t > 0
by (metis 0.prems all-processes-snapshotted-in-final-state length-greater-0-conv
no-initial-process-snapshot tr-init trace-and-start-determines-end)
ultimately show %thesis using 0.prems False by auto
next
case True
let ?Is = {i. prerecording-event t i}
have ?Is # empty
by (simp add: True)
moreover have fin-Is: finite ?Is
proof (rule ccontr)
assume "~ finite ?Is
then obtain ¢ where i > length t prerecording-event t i
by (simp add: prerecording-event)
then show Fulse using prerecording-event by auto
qed
let 20 = Max ?Is
have pi: prerecording-event t 2i
using Max-in calculation fin-Is by blast
have ?i < length t
proof (rule ccontr)
assume ~ ?i < length t
then show Fulse
using calculation fin-Is computation.prerecording-event computation-axioms
by force
qed
moreover have Vj. j > 2i+1 — ~ prerecording-event t j
proof —
have Vj. j > %i — ™ prerecording-event t j

215

using Maz-less-iff fin-Is by auto
then show ?thesis by auto
qed
moreover have Vj. j < ?i+1 — ~ postrecording-event t j
proof —
have Vj. j < %6 — ™ postrecording-event t j
proof (rule alll, rule impl, rule ccontr)
fix j
assume j < 7~ ~ postrecording-event t j
then have j < 7
by (metis add-diff-inverse-nat dual-order.antisym le-addl pi postrecord-
ing-event prerecording-event)
then have count-violations t > 0
proof —
have (if postrecording-event t j
then card {I € {j+1..<length t}. prerecording-event t I}
else 0) = card {l € {j+1..<length t}. prerecording-event t I}
using <~ ~ postrecording-event t j> by simp
moreover have card {l € {j+1..<length t}. prerecording-event t I} > 0
proof —
have j + 1 < % A 2 < length t
using «Mazx {i. prerecording-event t i} < length t» < < Maz {i.
prerecording-event t i})
by simp
moreover have prerecording-event t ?i using pi by simp
ultimately have {I € {j+1..<length t}. prerecording-event t I} # empty
by fastforce
then show ?thesis by fastforce
qed
ultimately show #thesis
by (metis (no-types, lifting) violations-0-implies-all-subterms-0 «Max {i.
prerecording-event t i} < length t» <j < Max {i. prerecording-event t i}» atLeast-
LessThan-iff less-trans linorder-not-le neq0-conw)
qed
then show Fulse using 0 by simp
qed
then show ?thesis by auto
qed
moreover have ?i+1 < length t
using calculation(2) by simp
ultimately show ?thesis using 0.prems by blast
qed
next
case (Suc n)
then obtain ¢ j where ind: postrecording-event t i prerecording-event t j
Vk. (i < kANk<j) — "~ regular-event (t! k)
1 < jj < length t using exists-neighboring-violation-pair
Suc by force
then have trace init (swap-events i j t) final

216

NNk kE>j+ 1 — S (swap-events i jt) k= Stk)
NNk kE<i— S (swap-events i jt) k= Stk)
using Suc swap-events by presburger
moreover have mset (swap-events i j t) = mset t using swap-events-perm ind
by blast
moreover have count-violations (swap-events i jt) = n
using count-violations-swap Suc ind by simp
ultimately show ?case using Suc.hyps by metis
qed

theorem snapshot-algorithm-is-correct:
assumes
trace init t final
shows
3t’ 4. trace init t’ final A mset t' = mset t
A state-equal-to-snapshot (S t' 1) final A i < length t’
proof —
obtain ¢’ where mset t' = mset t and
all-prerecording-before-postrecording t'
using assms desired-trace-always-exists by blast
then show ?thesis using snapshot-after-all-prerecording-events
by blast
qed

5.5 Stable property detection

Finally, we show that the computed snapshot is indeed suitable for stable
property detection, as claimed in [1].

definition stable where
stable p = Ve.pec — Vit ¢ trace ct ¢/ — p ¢'))

lemma has-snapshot-stable:
assumes
trace init t final
shows
stable (Ac. has-snapshotted ¢ p)
using snapshot-stable stable-def by auto

definition some-snapshot-state where
some-snapshot-state t =
SOME (t',). trace init t final
A trace init t' final A mset t' = mset t
A state-equal-to-snapshot (S t' 1) final

lemma split-S:
assumes
trace init t final
shows
trace (S t %) (drop i t) final

217

proof —
have t = take i t Q drop i t by simp
then show ?thesis
by (metis split-trace assms exists-trace-for-any-i
trace-and-start-determines-end)
qed

theorem Stable-Property-Detection:
assumes
stable p and
trace init t final and
(t', i) = some-snapshot-state t and
p (5t i)
shows
p final
proof —
have 3t' i. trace init t final
A trace init t' final A mset t' = mset t
A state-equal-to-snapshot (S t' 7) final
using snapshot-algorithm-is-correct assms(2) by blast
then have trace init t' final
using assms
unfolding some-snapshot-state-def
by auto (metis (mono-tags, lifting) case-prod-conv tfl-some)
then show ?thesis
using assms stable-def split-S by metis
qed

end

end
theory Co-Snapshot
imports
Snapshot
Ordered-Resolution- Prover. Lazy-List- Chain
begin

6 Extension to infinite traces

The computation locale assumes that there already exists a known final
configuration ¢ to the given initial ¢ and trace t. However, we can show
that the snapshot algorithm must terminate correctly even if the underlying
computation itself does not terminate. We relax the trace relation to allow
for a potentially infinite number of “intermediate” events, and show that
the algorithm’s correctness still holds when imposing the same constraints

as in the computation locale.

We use a preexisting theory of lazy list chains by Schlichtkrull, Blanchette,

218

Traytel and Waldmann [2] to construct infinite traces.

primrec ltake where
ltake 0t = ||
| ltake (Suc i) t = (case t of LNil = [| | LCons x t' = x # ltake i t')

primrec [drop where
ldrop 0t =t
| ldrop (Suc i) t = (case t of LNil = LNil | LCons x t' = Ildrop i t')

lemma ltake-LNil[simp]: ltake ¢ LNil = []
by (induct 7) auto

lemma ltake-LCons: 0 < i = ltake i (LCons x t) = x # ltake (i — 1) ¢
by (induct 7) auto

lemma take-ltake: i < j = take i (ltake j xs) = ltake i xs
by (induct j arbitrary: i zs) (auto simp: le-Suc-eq take-Cons’ ltake-LCons split:
llist.splits if-splits)

lemma nth-ltake [simp]: i < min n (llength xs) = (ltake n zs) | i = Inth xs i
by (induct n arbitrary: i xs)
(auto simp: nth-Cons’ gr0-conv-Suc eSuc-enat[symmetric] split: llist.splits)

lemma length-ltake[simp]: length (ltake i xs) = (case llength xs of co = i | enat
m = min i m)
by (induct i arbitrary: xs)
(auto simp: zero-enat-def[symmetric] eSuc-enat split: llist.splits enat.splits)

lemma ltake-prepend:
ltake i (prepend s t) = (if i < length xs then take i xs else xs Q ltake (i — length
xs) t)
proof (induct i arbitrary: s t)
case ()
then show ?case
by (cases xs) auto
next
case (Suc 17)
then show ?case
by (cases xs) auto
qed

lemma prepend-ltake-ldrop-id: prepend (ltake i t) (ldrop i t) =t
by (induct i arbitrary: t) (auto split: llist.splits)

context distributed-system
begin

coinductive cotrace where
cotr-init: cotrace ¢ LNil

219

| cotr-step: [¢ = ev — ¢ cotrace ¢’ t | = cotrace ¢ (LCons ev t)

lemma cotrace-trace: cotrace ¢ t => Ic¢’. trace ¢ (ltake i t) ¢’
proof (induct i arbitrary: c t)
case (Suc 17)
then show “case
proof (cases t)
case (LCons ev t')
with Suc(2) obtain ¢’ where ¢ - ev — ¢’ cotrace ¢’ t’
by (auto elim: cotrace.cases)
with Suc(1)[OF <cotrace ¢’ t"s] show ?thesis
by (auto simp: LCons elim: trace.intros(2) elim: trace.cases trace-and-start-determines-end)
qed (auto intro: trace.intros elim: trace.cases)
qed (auto simp: zero-enat-def [symmetric| intro: trace.intros elim: trace.cases)

lemma cotrace-trace’: cotrace ¢ t = 3¢’ trace ¢ (ltake i t) ¢’
by (metis cotrace-trace)

definition cos where cos c t i = s ¢ (ltake i t) @

lemma cotrace-trace-cos: cotrace ¢ t = trace ¢ (ltake i t) (cos ¢ t 1)
unfolding cos-def s-def
by (subst take-ltake, auto dest!: cotrace-trace|of - - i] elim!: thel’)

lemma s-0[simp]: sct 0 = ¢
unfolding s-def
by (auto intro!: the-equality[where P = trace c [|| trace.intros elim: trace.cases)

lemma s-chop: i < lengtht = scti=sc (takeit) i
unfolding s-def
by auto

lemma cotrace-prepend: trace ¢ t ¢’ = cotrace ¢’ w = cotrace ¢ (prepend t u)
by (induct ¢ t ¢’ rule: trace.induct) (auto intro: cotrace.intros)

lemma s-Cons: ¢’ trace ¢’ zs ¢ = ¢+ ev — ¢/ = s ¢ (ev # xs) (Suc i) =
scxsi
by (smt exists-trace-for-any-i take-Suc-Cons tr-step trace-and-start-determines-end)

lemma cotrace-ldrop: cotrace ¢ t = i < llength t = cotrace (cos ¢ t %) (ldrop i
t)
proof (induct i arbitrary: c t)
case (Suc 17)
then show “case
proof (cases t)
case (LCons ev t')
with Suc(2) obtain ¢’ where ¢ - ev — ¢’ cotrace ¢’ t'
by (auto elim: cotrace.cases)
with Suc(1)[OF <cotrace ¢’ t"] Suc(8) show ?thesis

220

by (auto simp: LCons cos-def eSuc-enat[symmetric] s-chop[symmetric] s-Cons[OF
cotrace-trace])
qed (auto intro: cotrace.intros)
qed (auto simp: zero-enat-def [symmetric] cos-def intro: cotrace.intros)

end

locale cocomputation = distributed-system +

fixes
ingt =2 (‘a, 'b, 'c) configuration
assumes

finite-channels:
finite {i. Ip q. channel i = Some (p, ¢)} and
strongly-connected-raw:
Vpg (p#q) —
(tranclp (Ap q. (Fi. channel i = Some (p, q)))) p ¢ and

at-least-two-processes:

card (UNIV :: 'a set) > 1 and
finite-processes:

finite (UNIV :: 'a set) and

no-initial-Marker:

Vi. (3p q. channel i = Some (p, q))

— Marker ¢ set (msgs init i) and
no-msgs-if-no-channel:

Vi. channel i = None — msgs init i = [] and
no-initial-process-snapshot:

V p. = has-snapshotted init p and
no-initial-channel-snapshot:

Vi. channel-snapshot init i = ([], NotStarted) and

valid: 3t. cotrace init t and
l1: V1t icid. cotrace init t
A Marker € set (msgs (cos init t i) cid)
— (37 < llength t. j > i A Marker ¢ set (msgs (cos init t j) cid)) and
[2: V't p. cotrace init t
— (3¢ < llength t. has-snapshotted (cos init t i) p)
begin

abbreviation coS where coS = cos init

definition some-snapshot t p = (SOME i. has-snapshotted (coS t i) p A i < llength

f

lemma has-snapshotted:

cotrace init t = has-snapshotted (coS t (some-snapshot t p)) p A some-snapshot
t p < llength t

unfolding some-snapshot-def by (rule somel-ex) (auto dest!: [2[rule-format])

221

lemma cotrace-cos: cotrace init t = j < llength t —>
(coS tj) F Inth t j— (coS t (Suc j))
apply (drule cotrace-trace-cos|of - - Suc j))
apply (drule step-Suc[rotated, of - - - j])
apply (auto split: enat.splits llist.splits) |]
apply (auto simp: s-choplof j - # ltake j -] cos-def nth-Cons’ ltake-LCons Inth-LCons’
take-Cons’ take-ltake
split: llist.splits enat.splits if-splits elim: order.strict-trans2[rotated))
apply (subst (asm) s-choplof j - # ltake j -])
apply (auto simp: take-Cons’ take-ltake split: enat.splits)
done

lemma snapshot-stable:

cotrace init t = i < j = has-snapshotted (coS t i) p = has-snapshotted (coS
tj)p

apply (drule cotrace-trace-cos|of - - j])

unfolding cos-def

by (metis exists-trace-for-any-i-j order-refl s-def snapshot-stable take-ltake)

lemma no-markers-if-all-snapshotted:
cotrace init t => i < j = V p. has-snapshotted (coS t i) p =
Marker ¢ set (msgs (coS t i) ¢) = Marker ¢ set (msgs (coS t j) c)
apply (drule cotrace-trace-cos|of - - j])
unfolding cos-def
by (metis exists-trace-for-any-i-j no-markers-if-all-snapshotted order-refl s-def
take-ltake)

lemma cotrace-all-have-snapshotted:
assumes cotrace init t
shows 37 < llength t. ¥ p. has-snapshotted (coS t i) p
proof —
let i = Max (range (some-snapshot t))
show ?thesis
using has-snapshotted| OF assms| snapshot-stable[OF assms, of some-snapshot
t- % -]
apply (intro exI[of - ?i])
apply (auto simp: finite-processes)
apply (cases llength t; auto simp:)
apply (subst Maz-le-iff)
apply (auto simp: finite-processes)
apply blast
done
qed

lemma no-messages-if-no-channel:
assumes cotrace init ¢
shows channel cid = None = msgs (coS t i) cid = ||
using no-messages-introduced-if-no-channel|OF assms|THEN cotrace-trace-cos,

222

of i] no-msgs-if-no-channel, of cid i
by (auto simp: cos-def)

lemma cotrace-all-have-snapshotted-and-no-markers:
assumes cotrace init t
shows 3¢ < llength t. (¥ p. has-snapshotted (coS t i) p) A
(Vc. Marker ¢ set (msgs (coS t i) c))
proof —
from cotrace-all-have-snapshotted| OF assms] obtain j :: nat where
j: 4 < llength t ¥ p. has-snapshotted (coS t j) p by blast
from j(2) have x: has-snapshotted (coS t k) p if k > j for k p
using snapshot-stable[OF assms, of j k p| that by auto
define C where C = {c¢. Marker € set (msgs (coS tj) ¢)}
have finite C
using no-messages-if-no-channel|OF assms, of - j] unfolding C-def
by (intro finite-subset|OF - finite-channels]) fastforce
define pick where pick = (Ac. SOME k. k < llength t A k > j A Marker ¢ set
(msgs (coS t k) c))
{ fix ¢
assume c € C
then have 3k < llength t. k > j A Marker ¢ set (msgs (coS t k) c)
using 1 [rule-format, of t j ¢] assms unfolding C-def by blast
then have pick ¢ < llength t A\ pick ¢ > j N Marker ¢ set (msgs (coS t (pick
0) o
unfolding pick-def
by (rule somel-ex)
} note pick = conjunct1 [OF this] conjunctl[OF conjunct2][OF this]] conjunct2[OF
conjunct2|OF this]]
show ?thesis
proof (cases C' = {})
case True
with j show Zthesis
by (auto intro!: exl[of - j] simp: C-def)
next
define m where m = Max (pick ‘ C)
case False
with <finite C> have m: m € pick * CVzx € pick *C. m > x
unfolding m-def by auto
then have j < m using pick(2) by auto
from x[OF <j < m»] have Marker ¢ set (msgs (coS t m) c) for c
proof (cases ¢ € C)
case True
then show ?thesis
using no-markers-if-all-snapshotted|OF assms, of pick ¢ m c| pick[of ¢] m *
by auto
next
case Fulse
then show ?thesis
using no-markers-if-all-snapshotted[OF assms j < m» j(2), of (]

223

by (auto simp: C-def)
qed
with «[OF j < m»] m pick show ?thesis by auto
qed
qed

context

fixes t

assumes cotrace: cotrace init t
begin

definition final-i =
(SOME i. i < llength t A (¥ p. has-snapshotted (coS t i) p) A (Vc. Marker ¢ set
(msgs (coS t i) ¢)))

definition final where
final = coS' t final-i

lemma final-i: final-i < llength t (Vp. has-snapshotted (coS t final-i) p) (Vc.
Marker ¢ set (msgs (coS t final-i) c))

unfolding final-i-def

by (rule somel2-ex[OF cotrace-all-have-snapshotted-and-no-markers| OF cotrace]];
auto intro: cotrace-trace-cos|OF cotrace])+

lemma final: 3t. trace init t final (¥ p. has-snapshotted final p) (¥ c. Marker ¢ set
(msgs final c))
unfolding final-def

by (rule cotrace-trace-cos|OF cotrace] final-i exI)+

interpretation computation channel trans send recv init final
apply standard
apply (rule finite-channels)
apply (rule strongly-connected-raw)
apply (rule at-least-two-processes)
apply (rule finite-processes)
apply (rule no-initial-Marker)
apply (rule no-msgs-if-no-channel)
apply (rule no-initial-process-snapshot)
apply (rule no-initial-channel-snapshot)
apply (rule final(1))
apply (intro alll impI)
subgoal for t i cid
apply (rule exI[of - length t])
apply (metis exists-trace-for-any-i final(3) le-cases take-all trace-and-start-determines-end)
done
apply (intro alll impl)
subgoal for t p
apply (rule exI[of - length t])
apply (metis exists-trace-for-any-i final(2) order-refl take-all trace-and-start-determines-end)

224

done
done

definition coperm where
coperm I r = (xs ys z. mset xs = mset ys A |l = prepend xs z A r = prepend ys

z)

lemma copermIL: mset ys = mset xs = t = prepend xs z => coperm (prepend
ys z) t
unfolding coperm-def by auto

lemma snapshot-algorithm-is-cocorrect:
3t’ i. cotrace init t' N\ coperm t' t A state-equal-to-snapshot (coS t' i) final A i
< final-i
proof —
define prefix where prefiz = ltake final-i t
define suffix where suffix = Ildrop final-i t
have [simp|: prepend prefiz suffic = t
unfolding prefiz-def suffix-def prepend-ltake-ldrop-id ..
have [simp]: cotrace final suffix
unfolding suffiz-def final-def
by (auto simp: cotrace final-i(1) intro!: cotrace-ldrop)
from cotrace-trace-cos|OF cotrace] have trace init prefix final
unfolding final-def prefiz-def by blast
with snapshot-algorithm-is-correct obtain prefiz’ i where
trace init prefix’ final mset prefix’ = mset prefix state-equal-to-snapshot (S prefiz’
i) final
1 < length prefix’
by blast
moreover from «mset prefiz’ = mset prefix) «i < length prefiz”» have i < final-i
by (auto dest!: mset-eq-length simp: prefiz-def split: enat.splits)
ultimately show ?thesis
by (intro exl|of - prepend prefiz’ suffix] exI[of - i])
(auto simp: cos-def ltake-prepend s-chop|symmetric] introl: cotrace-prepend
elim!: copermlIL)
qed

end
print-statement snapshot-algorithm-is-cocorrect
end

end

225

7 Example

We provide an example in order to prove that our locale is non-vacuous. This
example corresponds to the computation and associated snapshot described
in Section 4 of [1].

theory FEzxample
imports
Snapshot

begin

datatype PType = P | @
datatype MType = M | M’
datatype SType = S-Wait | S-Send | T-Wait | T-Send

fun trans :: PType = SType = SType = bool where
trans p s s’ = False

fun send :: channel-id = PType = PType = SType
= SType = MType = bool where
sendcpgss'm=((c=0Ap=PANqg=Q
A s = S-Send N s' = S-Wait AN m = M)
Vie=1Ap=QANqg=P
A s= T-Send A s’ = T-Wait A m = M’))

fun recv :: channel-id = PType = PType = SType
= SType = MType = bool where
recvcpqgss m=((c=1Ap=PANqg=@Q
A s=S-Wait A s’ = 5-Send A m = M’)
Vie=0Ap=QAqg=P
A s = T-Wait A ' = T-Send A m = M))

fun chan :: nat = (PType * PType) option where
chan n = (if n = 0 then Some (P, Q)

else if n = 1 then Some (Q, P)

else None)

abbreviation init :: (PType, SType, MType) configuration where

init =
states = (%p. if p = P then S-Send else T-Send),
msgs = (%d. []),

process-snapshot = (%op. None),
channel-snapshot = (%d. ([], NotStarted))

)

abbreviation t0 where t0 = Snapshot P

abbreviation s! :: (PType, SType, MType) configuration where

226

s1 =
states = (%op. if p = P then S-Send else T-Send),
msgs = (%d. if d = 0 then [Marker] else [)),
process-snapshot = (%op. if p = P then Some S-Send else None),
channel-snapshot = (%d. if d = 1 then ([], Recording) else (]|, NotStarted))

)

abbreviation t/ where t1 = Send 0 P @ S-Send S-Wait M

abbreviation s2 :: (PType, SType, MType) configuration where
s2 =
states = (%p. if p = P then S-Wait else T-Send),
msgs = (%d. if d = 0 then [Marker, Msg M] else []),
process-snapshot = (%op. if p = P then Some S-Send else None),
channel-snapshot = (%d. if d = 1 then ([], Recording) else ([], NotStarted))

)

abbreviation t2 where t2 = Send 1 Q P T-Send T-Wait M’

abbreviation s3 :: (PType, SType, MType) configuration where
s3 =
states = (%p. if p = P then S-Wait else T-Wait),
msgs = (%d. if d = 0 then [Marker, Msqg M] else if d = 1 then [Msg M'] else
),
process-snapshot = (%op. if p = P then Some S-Send else None),
channel-snapshot = (%d. if d = 1 then ([], Recording) else (]|, NotStarted))

)

abbreviation t3 where t3 = Snapshot Q

abbreviation sj :: (PType, SType, MType) configuration where
s4 =
states = (%p. if p = P then S-Wait else T-Wait),
msgs = (%d. if d = 0 then [Marker, Msqg M| else if d = 1 then [Msg M,
Marker] else []),
process-snapshot = (%op. if p = P then Some S-Send else Some T-Wait),
channel-snapshot = (%d. if d = 1 then ([], Recording) else if d = 0 then ([],
Recording) else ([], NotStarted))

abbreviation t/ where t/ = RecvMarker 0 Q P

abbreviation s5 :: (PType, SType, MType) configuration where
s5 =
states = (%op. if p = P then S-Wait else T-Wait),
msgs = (%d. if d = 0 then [Msg M| else if d = 1 then [Msg M', Marker] else
2
process-snapshot = (%op. if p = P then Some S-Send else Some T-Wait),
channel-snapshot = (%d. if d = 0 then ([], Done) else if d = 1 then ([],

227

Recording) else ([], NotStarted))
)

abbreviation t5 where t5 = Recv 1 P Q S-Wait S-Send M’

abbreviation s6 :: (PType, SType, MType) configuration where
56 =
states = (%op. if p = P then S-Send else T-Wait),
msgs = (%d. if d = 0 then [Msg M| else if d = 1 then [Marker] else []),
process-snapshot = (%op. if p = P then Some S-Send else Some T-Wait),
channel-snapshot = (%d. if d = 0 then ([], Done) else if d = 1 then ([M],
Recording) else ([], NotStarted))

abbreviation t6 where t6 = RecvMarker 1 P Q)

abbreviation s7 :: (PType, SType, MType) configuration where
s7 =
states = (%p. if p = P then S-Send else T-Wait),
msgs = (%d. if d = 0 then [Msg M| else if d = 1 then |] else []),
process-snapshot = (%op. if p = P then Some S-Send else Some T-Wait),
channel-snapshot = (%d. if d = 0 then ([], Done) else if d = 1 then ([M],
Done) else ([], NotStarted))

lemma s7-no-marker:
shows
Y cid. Marker ¢ set (msgs s7 cid)
by simp

interpretation computation chan trans send recv init s7

proof
have distributed-system chan
proof
show Vi. #ip. chan i = Some (p, p) by simp
qed

show Vp q. p # ¢ — (A\p ¢q. 3i. chan i = Some (p, ¢))TF p ¢
proof ((rule alll)+, rule impl)
fix p q :: PType assume p # q
then have (p = PAq¢g=Q)V (p=Q AN g=P)
using PType.exhaust by auto
then have 3i. chan i = Some (p, q) by (elim disjE) auto
then show (\p q. 3i. chan i = Some (p, q))™F p q by blast
qed
show finite {i. 3p ¢. chan i = Some (p, q)}
proof —
have {i. 3p q. chan i = Some (p, q¢)} = {0,1} by auto
then show ?thesis by simp
qed

228

show 1 < card (UNIV :: PType set)
proof —
have (UNIV :: PType set) = {P, Q}
using PType.exhaust by blast
then have card (UNIV :: PType set) = 2
by (metis One-nat-def PType.distinct(1) Suc-1 card.insert card.empty fi-
nite.emptyl finite.insert] insert-absorb insert-not-empty singletonD)
then show ?thesis by auto
qed
show finite (UNIV :: PType set)
proof —
have (UNIV :: PType set) = {P, Q}
using PType.exhaust by blast
then show ?thesis
by (metis finite.emptyl finite.insertl)
qged
show Vi. #p. chan i = Some (p, p) by simp
show V4. (3p q. chan i = Some (p, q)) — Marker ¢ set (msgs init i) by auto
show Vi. chan i = None — msgs init i = [| by auto
show V p. = ps init p # None by auto
show V. cs init i = ([], NotStarted) by auto
show Ft. distributed-system.trace chan Example.trans send recv init t s7
proof —
let 2t = [t0, t1, t2, t3, t4, t5, t6]
have distributed-system.next chan trans send recv init t0 sl
proof —
have distributed-system.can-occur chan trans send recv t0 init
using «distributed-system chan) distributed-system.can-occur-def by fastforce
then show ?thesis
by (simp add: <distributed-system chany distributed-system.next-snapshot)
qed
moreover have distributed-system.next chan trans send recv sl t1 s2
proof —
have distributed-system.can-occur chan trans send recv t1 sl
using «distributed-system chany distributed-system.can-occur-def by fastforce
then show ?thesis
by (simp add: <distributed-system chany distributed-system.next-send)
qed
moreover have distributed-system.next chan trans send recv s2 t2 s3
proof —
have distributed-system.can-occur chan trans send recv t2 s2
using «distributed-system chany distributed-system.can-occur-def by fastforce
moreover have Vr. r # P — r = @ using PType.exhaust by auto
ultimately show ¢thesis by (simp add: «distributed-system chany dis-
tributed-system.next-send)
qed
moreover have distributed-system.next chan trans send recv s3 t3 s4
proof —
have distributed-system.can-occur chan trans send recv t3 s3

229

using «distributed-system chan> distributed-system.can-occur-def by fastforce
moreover have Vp'. p' # P — p’ = Q using PType.exhaust by auto
ultimately show %thesis by (simp add: <distributed-system chany dis-
tributed-system.next-snapshot)
qed
moreover have distributed-system.next chan trans send recv s4 t4 sb
proof —
have distributed-system.can-occur chan trans send recv t4 s4
using «distributed-system chan> distributed-system.can-occur-def by fastforce
then show ?thesis
by (simp add: <distributed-system chany distributed-system.next-def)
qed
moreover have distributed-system.next chan trans send recv s5 t5 s6
proof —
have distributed-system.can-occur chan trans send recv t5 s5
using «distributed-system chan> distributed-system.can-occur-def by fastforce
then show ?thesis
by (simp add: <distributed-system chany distributed-system.next-def)
qed
moreover have distributed-system.next chan trans send recv s6 t6 s7
proof —
have distributed-system.can-occur chan trans send recv t6 s6
using «<distributed-system chan) distributed-system.can-occur-def by fastforce
then show ?thesis
by (simp add: <distributed-system chany distributed-system.next-def)
qged
ultimately have distributed-system.trace chan trans send recv init 2t s7
by (meson «distributed-system chany distributed-system.trace.simps)
then show ?thesis by blast
qed
show VYVt i cid. distributed-system.trace chan Example.trans send recv init t s7 N
Marker € set (msgs (distributed-system.s chan Example.trans send recv init
ti) cid) —
(3j>i. Marker ¢ set (msgs (distributed-system.s chan Example.trans send
recv init t j) cid))
proof ((rule alll)+, (rule impI)+)
fix t i cid
assume asm: distributed-system.trace chan Example.trans send recv init t s7 N
Marker € set (msgs (distributed-system.s chan Example.trans send
recv init t i) cid)
have tr-exists: distributed-system.trace chan Example.trans send recv init t s7
using asm by blast
have marker-in-channel: Marker € set (msgs (distributed-system.s chan Exam-
ple.trans send recv init t i) cid) using asm by simp
have s7-is-fin: s7 = (distributed-system.s chan Ezample.trans send recv init t
(length t))
by (metis (no-types, lifting) <distributed-system chan) <distributed-system.trace
chan Example.trans send recv init t 7> distributed-system.exists-trace-for-any-i dis-
tributed-system.trace-and-start-determines-end order-refl take-all)

230

have i < length t
proof (rule ccontr)
assume ~ ¢ < length t
then have distributed-system.trace chan Example.trans send recv
(distributed-system.s chan Example.trans send recv init t (length t))
[
(distributed-system.s chan Example.trans send recv init t 1)
by (metis (no-types, lifting) <distributed-system chan) distributed-system.exists-trace-for-any-i
distributed-system.trace.simps distributed-system.trace-and-start-determines-end not-less
s7-is-fin take-all tr-exists)
then have Marker ¢ set (msgs (distributed-system.s chan Example.trans send
recv init t i) cid)
proof —
have distributed-system.s chan Fxample.trans send recv init t © = s7
using «distributed-system chan» <distributed-system.trace chan Example.trans
send recv (distributed-system.s chan Example.trans send recv init t (length t))]
(distributed-system.s chan Example.trans send recv init t 1)) distributed-system.trace.simps
s7-is-fin by fastforce
then show ?thesis using s7-no-marker by simp
qed
then show Fulse using marker-in-channel by simp
qed
then show (3j>i. Marker ¢ set (msgs (distributed-system.s chan Example.trans
send recv init t j) cid))
proof —
have distributed-system.trace chan Example.trans send recv
(distributed-system.s chan Example.trans send recv init ¢ 1)
(take ((length t) — i) (drop i t))
(distributed-system.s chan Example.trans send recv init t (length t))
using <distributed-system chany <i < length t» distributed-system.exists-trace-for-any-i-j
less-imp-le-nat tr-exists by blast
then have Marker ¢ set (msgs (distributed-system.s chan Example.trans send
recv init t (length t)) cid)
proof —
have distributed-system.s chan Example.trans send recv init t (length t) =
s7
by (simp add: s7-is-fin)
then show ?thesis using s7-no-marker by simp
qed
then show ?thesis
using i < length t» less-imp-le-nat by blast
qed
qed
show V¢ p. distributed-system.trace chan Example.trans send recv init t s7 —
(3. ps (distributed-system.s chan Example.trans send recv init t i) p #
None A i < length t)
proof ((rule alll)+, rule impl)
fix tp
assume distributed-system.trace chan Example.trans send recv init t s7

231

have s7-is-fin: s7 = (distributed-system.s chan Ezample.trans send recv init t
(length t))

by (metis (no-types, lifting) «distributed-system chany <distributed-system.trace
chan Example.trans send recv init t s7» distributed-system.exists-trace-for-any-i dis-
tributed-system.trace-and-start-determines-end order-refl take-all)

moreover have has-snapshotted s7 p by simp

ultimately show (3. ps (distributed-system.s chan Example.trans send recv
init t ©) p # None A i < length t)

by auto
qged

qged

end

References

[1] K. M. Chandy and L. Lamport. Distributed snapshots: Determin-
ing global states of distributed systems. ACM Trans. Comput. Syst.,
3(1):63-75, 1985.

[2] A. Schlichtkrull, J. C. Blanchette, D. Traytel, and U. Waldmann.
Formalization of bachmair and ganzinger’s ordered resolution prover.
Archive of Formal Proofs, Jan. 2018. http://isa-afp.org/entries/
Ordered_ Resolution_ Prover.html, Formal proof development.

232

http://isa-afp.org/entries/Ordered_Resolution_Prover.html
http://isa-afp.org/entries/Ordered_Resolution_Prover.html

	Modelling distributed systems
	The distributed system locale
	State transitions

	Traces
	Properties of traces
	Describing intermediate configurations
	Trace-related lemmas

	Utilties
	Swap lemmas
	The Chandy–Lamport algorithm
	The computation locale
	Termination
	Correctness
	Pre- and postrecording events
	Event swapping
	Relating configurations and the computed snapshot
	Relating process states
	Relating channel states

	Obtaining the desired traces
	Stable property detection

	Extension to infinite traces
	Example

