# Ceva's Theorem 

Mathias Schack Rabing

April 18, 2024


#### Abstract

This entry contains a definition of the area the triangle constructed by three points. Building on this, some basic geometric properties about the area of a triangle are derived. These properties are used to prove Ceva's theorem.


## Contents

```
theory Ceva
imports
    Triangle.Triangle
begin
definition Triangle-area :: 'a::real-inner = ' }a>>'' a=> real
    where Triangle-area x y z=abs(sin (angle x y z)) * dist x y*dist y z
lemma Triangle-area-per1:Triangle-area a b c=Triangle-area b c a
proof -
    have H:abs(sin (angle a b c))*dist b c=abs(sin (angle b a c)) * dist a c
        using sine-law-triangle
        by (metis (mono-tags, opaque-lifting) abs-mult real-abs-dist)
    show ?thesis
        apply(simp add: Triangle-area-def)
        using H
        by (metis abs-of-nonneg angle-commute dist-commute sin-angle-nonneg sine-law-triangle)
qed
lemma Triangle-area-per2 : Triangle-area a b c=Triangle-area b a c
proof -
    have H:abs(sin (angle a b c)) * dist b c=abs(sin (angle b a c)) * dist a c
        using sine-law-triangle
        by (metis (mono-tags, opaque-lifting) abs-mult real-abs-dist)
    show ?thesis
    using H
    by (simp add: Triangle-area-def dist-commute[of a b])
```

```
qed
lemma collinear-angle:
    fixes a b c :: 'a::euclidean-space
```



```
proof (cases a = c)
    case True
    assume Col:collinear {a,b,c}
    assume H1 : a\not=b
    assume H2 : b\not=c
    assume H3 : }a=
    show ?thesis
        using H1 H3 angle-refl-mid
        by auto
next
    case False
    assume Col:collinear {a,b,c}
    assume H1 : a\not=b
    assume H2 : b\not=c
    assume H3 : a\not=c
    consider (bet1) between (b, c) a| (bet2) between (c,a) b| (bet3) between (a,b)
c
    using Col collinear-between-cases
    by auto
    then show ?thesis
    proof cases
    case bet1
    assume B1: between (b,c) a
    have H: angle c a b=pi
            apply(rule strictly-between-implies-angle-eq-pi)
            using B1 H3 H1
            by (auto simp: between-commute)
    show ?thesis
            by (smt (verit) H angle-nonneg angle-sum-triangle insert-iff)
next
    case bet2
    assume B1: between (c,a)b
    show ?thesis
    by (metis H1 H2 bet2 between-commute sin-angle-zero-iff sin-pi strictly-between-implies-angle-eq-pi)
next
    case bet3
    assume B1: between (a,b) c
    have H: angle b c a = pi
            apply(rule strictly-between-implies-angle-eq-pi)
            using B1 H3 H2 H1
            by (auto simp: between-commute)
    show ?thesis
            by (smt (verit) H angle-nonneg angle-sum-triangle insert-iff)
    qed
```

```
qed
lemma Triangle-area-0 :
    fixes c :: 'a::euclidean-space
    shows Triangle-area a b c=0 0 collinear {a,b,c}
proof -
    show ?thesis
        apply(simp add: Triangle-area-def)
        using collinear-angle
            by (metis (no-types, lifting) Angles.angle-collinear collinear-2 insertCI in-
sert-absorb sin-angle-zero-iff)
qed
lemma Angle-longer-side:
    fixes a :: 'a :: euclidean-space
    assumes Col: between ( }b,d)
    assumes NeqBC:b\not=c
    shows angle a b c= angle a bd
proof (cases }a=b\veeb=d\veec=d
    case True
    then show ?thesis
        using Col
        by auto
next
    case False
    assume H:\neg (a=b\veeb=d\veec=d)
    have NeqAB:a\not=b
        using H
        by auto
    have NeqBD:b}\not=
        using H
        by auto
    have NeqCD : c\not=d
        using H
        by auto
    have Goal1 : norm (d-b) *R (c-b) = norm (c-b)*R}(d-b
    apply(rule vangle-eq-0D)
    using Col
    by (metis Groups.add-ac(2) NeqBC NeqCD add-le-same-cancel1 angle-def an-
gle-nonneg angle-sum-triangle eq-add-iff order.eq-iff strictly-between-implies-angle-eq-pi)
    have Goal2 : (a-b) • (c-b)* norm (d-b) #
            (a-b)\cdot(d-b)* norm (c-b)\Longrightarrowa=b
            apply(simp only: mult.commute[where b=norm (d - b)])
    apply(simp only: mult.commute[where b=norm (c-b)])
    apply(simp only:real-inner-class.inner-scaleR-right[THEN sym])
    using Goal1
    by auto
    have Goal:(a-b)\cdot(c-b)*(norm (a-b)*\operatorname{norm}(d-b))=
```

```
        (a-b)\cdot(d-b)*(norm (a-b)*norm (c-b))
    using Goal2
    by auto
    show ?thesis
    apply(simp add: angle-def)
    using NeqAB NeqBD NeqCD NeqBC
    apply(simp only: vangle-def)
    using Goal
    by (smt (verit, best) eq-iff-diff-eq-0 frac-eq-eq no-zero-divisors norm-eq-zero)
qed
lemma Triangle-area-comb :
    fixes c:: 'a::euclidean-space
    assumes Col: between (b,c)m
    shows Triangle-area a bm+Triangle-area a c m = Triangle-area a b c
proof (cases b=m\veec=m)
    case True
    then
    have Eq:b=m\veec=m
    by auto
    have Tri0:Triangle-area a m m=0
    by (auto simp: Triangle-area-0)
    show ?thesis
    using Eq Tri0
    using Triangle-area-per1 Triangle-area-per2
    by (metis add.right-neutral add-0)
next
    case False
    then
    have Neq:}\neg(b=m\veec=m
    by auto
    have NeqBM:b\not=m
    using Neq
    by auto
    have NeqCM :c\not=m
    using Neq
    by auto
    have Angle1: angle a b m= angle a b c
    using Col Angle-longer-side NeqBM NeqCM
    by auto
    have Angle2 : angle a c m= angle a c b
    using Col Angle-longer-side NeqBM NeqCM between-commute
    by metis
    have }|\operatorname{sin}(\mathrm{ angle a b m)|* dist a b * dist b m +
        |sin}(\mathrm{ angle a c m)|* dist a c* dist c m=
        |sin (angle a b c)|* dist a b* dist bm+
        |sin (angle a c b)|* dist a c* dist c m
    using Angle1 Angle2
    by simp
```

also have $\mid \sin ($ angle $a b c) \mid *$ dist $a b *$ dist $b m+$ $\mid \sin ($ angle $a c b) \mid *$ dist $a c *$ dist $c m=$ $\mid \sin ($ angle $a b c) \mid *$ dist $a b *$ dist $b m+$ $\mid \sin ($ angle $a b c) \mid *$ dist $a b *$ dist $c m$
using sine-law-triangle
by (smt (verit) congruent-triangle-sss(17) dist-commute sin-angle-nonneg)
also have
$\mid \sin ($ angle $a b c) \mid *$ dist $a b *$ dist $b m+$ $\mid \sin ($ angle $a b c) \mid *$ dist $a b *$ dist $c m=$ $\mid \sin ($ angle $a b c) \mid *$ dist $a b *($ dist $b m+$ dist $c m)$
by (metis inner-add(2) inner-real-def)
also have $\mid \sin ($ angle $a b c) \mid *$ dist $a b *($ dist $b m+$ dist $c m)=$ $\mid \sin ($ angle $a b c) \mid *$ dist $a b *$ dist $b c$
by (metis assms between dist-commute)
finally have Goal : $\mid \sin ($ angle $a b m) \mid *$ dist $a b *$ dist $b m+$ $\mid \sin ($ angle a c m) |* dist a $c *$ dist $c m=$ $\mid \sin ($ angle $a b c) \mid *$ dist $a b *$ dist $b c$
by $\operatorname{simp}$
show ?thesis
apply (simp add: Triangle-area-def)
using Goal
by blast
qed
lemma Triangle-area-cal :
fixes $a$ :: 'a::euclidean-space
assumes Col: collinear $\{a, m, b\}$
shows $\exists k$. dist a $m * k=$ Triangle-area a $с m \wedge$ dist $b m * k=$ Triangle-area
b cm
proof (cases $b=m \vee a=m$ )
case True
then
have $E q:(a \neq m \wedge b=m) \vee(a=m \wedge b \neq m) \vee(a=m \wedge b=m)$
by auto
show ?thesis
using $E q$
by (auto simp: Triangle-area-0 collinear-3-eq-affine-dependent exI $[$ where $x=$ Triangle-area
a c $m$ / dist a $m$ ]
exI $[$ where $x=$ Triangle-area $b c m /$ dist $b m])$
next
case False
then
have $H: \neg(b=m \vee a=m)$
by $\operatorname{simp}$
have $N e q B M: b \neq m$ and $N e q M A: m \neq a$
using $H$
by auto
have H1: dist a $m * \mid \sin ($ angle a $m c) \mid *$ dist $c m=$ $\mid \sin ($ angle a c $m$ ) $\mid *$ dist $a c *$ dist $c m$
using sine-law-triangle
by (smt (verit) angle-commute dist-commute mult.commute sin-angle-nonneg)
have dist $b m * \mid \sin ($ angle a $m c) \mid *$ dist $c m=$
dist $b m * \mid \sin (p i-$ angle a $m c) \mid *$ dist $c m$
by auto
also have dist $b m * \mid \sin (p i-$ angle a $m c) \mid *$ dist $c m=$
dist $b m * \mid \sin ($ angle $b m c) \mid *$ dist $c m$
using angle-inverse[THEN sym] Col NeqBM NeqMA
by (smt (verit, ccfv-SIG) Angle-longer-side angle-commute between-commute
collinear-between-cases sin-pi-minus)
also have dist $b m * \mid \sin ($ angle $b m c) \mid *$ dist $c m=$
$\mid \sin ($ angle $b c m) \mid *$ dist $b c *$ dist $c m$
using sine-law-triangle
by (metis abs-of-nonneg angle-commute dist-commute mult.commute sin-angle-nonneg)
finally have H2: dist $b m * \mid \sin ($ angle $a m c$ ) $\mid *$ dist $c m=$ $\mid \sin ($ angle $b c m) \mid *$ dist $b c *$ dist $c m$
by $\operatorname{simp}$
show ?thesis
apply (simp add: Triangle-area-def)
$\operatorname{apply}($ rule exI $[$ where $x=\mid \sin ($ angle a $m c) \mid *$ dist $c m])$
using H1 H2
by auto
qed
lemma Triangle-area-comb-alt :
fixes $a$ :: ' $a$ ::euclidean-space
assumes Col1 : collinear $\{a, m, b\}$
assumes Col2 : collinear $\{c, k, m\}$
shows Goal : $\exists \mathrm{h}$. dist a $m * h=$ Triangle-area a $c k \wedge$ dist $b m * h=$ Triangle-area $b c k$
proof -
obtain $H$ where $\operatorname{TriB}$ : dist $a m * H=$ Triangle-area a c $m \wedge$ dist $b m * H=$ Triangle-area bcm
using Col1 Triangle-area-cal by blast
obtain $h$ where TriS : dist a $m * h=$ Triangle-area a $k m \wedge$ dist $b m * h=$ Triangle-area $b k m$
using Col1 Triangle-area-cal by blast
consider (bet1) between $(k, m) c \mid$ (bet2) between $(m, c) k \mid$ (bet3) between ( $c$,
k) $m$
using Col2 collinear-between-cases
by auto
then show ?thesis
proof cases
case bet1
have AreaAC : dist a $m * H=$ Triangle-area a c $m$ and AreaBC : dist b $m *$ $H=$ Triangle-area bcm
using TriB
by auto
have AreaAM : dist a $m * h=$ Triangle-area a $k m$ and AreaBM : dist b $m *$

```
\(h=\) Triangle-area \(b k m\)
        using TriS
        by auto
    assume Bet: between \((k, m) c\)
    have dist a \(m *(h-H)=\) dist a \(m * h-\) dist a \(m * H\)
        by (simp add: right-diff-distrib)
    also have dist a \(m * h-\) dist \(a m * H=\) Triangle-area a \(k m-\) Triangle-area
a c \(m\)
        using AreaAC AreaAM
        by auto
    also have Triangle-area a \(k m\) - Triangle-area a c \(m=\) Triangle-area a \(c k\)
        using Bet Triangle-area-comb
        by (metis Triangle-area-per1 Triangle-area-per2 diff-eq-eq)
    finally have Goal1 : dist a \(m *(h-H)=\) Triangle-area a \(c k\)
        by simp
    have dist \(b m *(h-H)=\) dist \(b m * h-d i s t b m * H\)
        by (simp add: right-diff-distrib)
    also have dist \(b m * h-\) dist \(b m * H=\) Triangle-area \(b k m-\) Triangle-area
bcm
        using AreaBC AreaBM
        by auto
    also have Triangle-area \(b k m\) - Triangle-area \(b c m=\) Triangle-area \(b c k\)
        using Bet Triangle-area-comb
        by (metis Triangle-area-per1 Triangle-area-per2 diff-eq-eq)
    finally have Goal2 : dist bm* \((h-H)=\) Triangle-area b c \(k\)
        by simp
    show ?thesis
        using Goal1 Goal2 by blast
    next
    case bet2
    have AreaAC : dist a \(m * H=\) Triangle-area a c \(m\) and AreaBC : dist b \(m *\)
\(H=\) Triangle-area \(b\) c \(m\)
        using TriB
        by auto
    have AreaAM : dist a \(m * h=\) Triangle-area a \(k m\) and AreaBM : dist \(b m *\)
\(h=\) Triangle-area \(b k m\)
        using TriS
        by auto
    assume Bet: between \((m, c) k\)
    have dist \(a m *(H-h)=\) dist \(a m * H-d i s t a m * h\)
        by (simp add: right-diff-distrib)
    also have dist a \(m * H-\) dist a \(m * h=\) Triangle-area a c \(m\) - Triangle-area
a \(k m\)
        using AreaAC AreaAM
        by auto
    also have Triangle-area a cm-Triangle-area a \(k m=\) Triangle-area ack
        using Bet Triangle-area-comb
        by (smt (verit) between-triv1)
    finally have Goal1 : dist a \(m *(H-h)=\) Triangle-area a c \(k\)
```

by $\operatorname{simp}$
have dist $b m *(H-h)=$ dist $b m * H-\operatorname{dist} b m * h$
by (simp add: right-diff-distrib)
also have dist $b m * H-$ dist $b m * h=$ Triangle-area $b$ c $m-$ Triangle-area b $k m$
using AreaBC AreaBM
by auto
also have Triangle-area bcm-Triangle-area bkm=Triangle-area bck
using Bet Triangle-area-comb
by (smt (verit) between-triv1)
finally have Goal2 : dist bm* $H-h)=$ Triangle-area $b c k$ by $\operatorname{simp}$
show ?thesis
using Goal1 Goal2 by blast
next
case bet3
have AreaAC: dist a $m * H=$ Triangle-area a cmand AreaBC: dist b $m *$ $H=$ Triangle-area $b$ c $m$
using TriB
by auto
have AreaAM : dist a $m * h=$ Triangle-area $a k m$ and AreaBM : dist b $m *$ $h=$ Triangle-area $b k m$
using TriS
by auto
assume Bet: between $(c, k) m$
have dist a $m *(H+h)=$ Triangle-area a $c k$
by (simp add: AreaAC TriS Triangle-area-comb bet3 distrib-left)
moreover have dist $b m *(H+h)=$ Triangle-area $b c k$
by (simp add: AreaBC TriS Triangle-area-comb bet3 distrib-left)
ultimately show ?thesis
by blast
qed
qed
lemma Cevas:
fixes $a$ :: ' $a:$ :euclidean-space
assumes MidCol: collinear $\{a, k, d\} \wedge$ collinear $\{b, k, e\} \wedge$ collinear $\{c, k, f\}$
assumes TriCol : collinear $\{a, f, b\} \wedge$ collinear $\{a, e, c\} \wedge$ collinear $\{b, d, c\}$
assumes Triangle : $\neg$ collinear $\{a, b, c\}$
shows dist $a f *$ dist $b d * \operatorname{dist} c e=\operatorname{dist} f b *$ dist $d c *$ dist e $a$
proof -
obtain $n 1$ where Tri1: dist $a f * n 1=$ Triangle-area ack dist bf*n1= Triangle-area bck
by (meson MidCol TriCol Triangle-area-comb-alt)
obtain $n 2$ where Tri2 : dist a $e * n 2=$ Triangle-area $a b k \wedge$ dist ce*n2 $=$ Triangle-area cbk
by (meson MidCol TriCol Triangle-area-comb-alt)
obtain $n 3$ where Tri3 : dist bd*n3 $=$ Triangle-area bak dist c d*n3 = Triangle-area cak
by (meson MidCol TriCol Triangle-area-comb-alt)
have Tri1'1 : dist $a f * n 1=$ Triangle-area $a c k$ and Tri1'2 : dist $b f * n 1=$ Triangle-area $b c k$
using assms
by (auto simp: Tri1)
have Tri2'1 : dist ce*n2 $=$ Triangle-area $c b k$ and Tri2'2 $:$ dist $a e * n 2=$ Triangle-area abk
using assms
by (auto simp: Tri2)
have Tri3'1 : dist c d 2 n3 $=$ Triangle-area cak and Tri3'2 : dist $b d * n 3=$ Triangle-area bak
using assms
by (auto simp: Tri3)
have dist $a f * n 1 *$ dist $b d * n 3 *$ dist $c e * n 2=$
Triangle-area ack*Triangle-area bak*Triangle-area cbl
using Tri1'1 Tri2'1 Tri3'2
by $\operatorname{simp}$
also have Triangle-area $a c k *$ Triangle-area $b a k *$ Triangle-area cbe $k=$ Triangle-area cak*Triangle-area abk*Triangle-area bck
using Triangle-area-per2
by metis
also have Triangle-area cak*Triangle-area abk*Triangle-area bck= dist $b f * n 1 *$ dist $c d * n 3 *$ dist $a e * n 2$
using Tri1'2 Tri2'2 Tri3'1
by $\operatorname{simp}$
also have dist bf*n1*dist c d*n3*dist a e * n2 = dist $f b * n 1 *$ dist $d c * n 3 *$ dist e $a * n 2$
using dist-commute
by metis
finally have Goal: dist $a f * n 1 *$ dist $b d * n 3 *$ dist ce $e n 2=$ dist $f b * n 1 *$ dist $d c * n 3 *$ dist e $a * n 2$
by simp
then consider (n2) n2 $=0|(n 1) n 1=0|(n 3) n 3=0 \mid$
(dist) dist $a f *($ dist $b d * \operatorname{dist} c e)=\operatorname{dist} f b *($ dist d $c *$ dist e a)
by auto
then show?thesis
proof cases
case n2
then show?thesis
proof -
assume $n 0: n 2=0$
have H1: Triangle-area cblan
using Tri2'1 no
by auto
have $H 1^{\prime}$ : collinear $\{c, b, k\}$
using H1 Triangle-area-0
by auto
have H1 : Triangle-area a b $k=0$ using Tri2'2 no

```
        by auto
        have H2' : collinear {a,b,k}
            using H1 Triangle-area-0
            by auto
    have }H:b=
            using H1' H2' collinear-3-trans Triangle collinear-3-trans
            by (metis Triangle-area-0 Triangle-area-per1)
    have H1:b=f
            using H Triangle collinear-3-trans MidCol TriCol
            by (metis doubleton-eq-iff)
    have H2 : b=d
            using H H1 Triangle collinear-3-trans MidCol TriCol
            by blast
            show ?thesis
            using H H1 H2
            by simp
    qed
next
    case n1
    then show ?thesis
    proof -
    assume n0: n1 = 0
    have H1 : Triangle-area a c k=0
        using Tri1'1 no
        by auto
    have H1' : collinear {a,c,k}
        using H1 Triangle-area-0
        by auto
    have H1 : Triangle-area b c k=0
        using Tri1'2 no
        by auto
    have H2' : collinear {b,c,k}
        using H1 Triangle-area-0
        by auto
    have H:c=k
        using H1' H2' collinear-3-trans Triangle collinear-3-trans
        by (smt (verit) insert-commute)
    have H1 : c=d
        using H H1' H2' Triangle
            by (metis Tri3'1 Tri3'2 Triangle-area-0 Triangle-area-per2 dist-eq-0-iff
mult-eq-0-iff)
    have H2 : c=e
        using H H1 H1' H2' Triangle
            by (metis Tri2'1 Tri2'2 Triangle-area-0 Triangle-area-per2 dist-eq-0-iff
mult-eq-0-iff)
    show ?thesis
        using H H1 H2
        by simp
    qed
```

```
next
    case n3
    then show ?thesis
    proof -
        assume n0: n3 = 0
        have H1 : Triangle-area c a k=0
        using Tri3'1 n0
        by auto
        have H1': collinear {c,a,k}
        using H1 Triangle-area-0
        by auto
    have H1:Triangle-area b a k=0
        using Tri3'2 no
        by auto
    have H2' : collinear {b,a,k}
        using H1 Triangle-area-0
        by auto
    have }H:a=
        using H1' H2' collinear-3-trans Triangle
        by (metis (full-types) insert-commute)
    have H1 : a=f
        using H H1' H2' Triangle
            by (metis Tri1'1 Tri1'2 Triangle-area-0 Triangle-area-per1 dist-eq-0-iff
mult-eq-0-iff)
    have H2 : a =e
                using H H1 H1' H2' collinear-3-trans Triangle
                by (metis MidCol TriCol collinear-3-eq-affine-dependent)
    show ?thesis
        using H H1 H2
        by simp
        qed
    next
    case dist
    then show ?thesis
        by auto
    qed
qed
end
```

