File ‹hoare_syntax.ML›
signature HOARE_SYNTAX =
sig
val hoare_vars_tr: Proof.context -> term list -> term
val hoare_tc_vars_tr: Proof.context -> term list -> term
val spec_tr': string -> Proof.context -> term list -> term
val setup:
{Basic: string, Skip: string, Seq: string, Cond: string, While: string,
Valid: string, ValidTC: string} -> theory -> theory
end;
structure Hoare_Syntax: HOARE_SYNTAX =
struct
structure Data = Theory_Data
(
type T =
{Basic: string, Skip: string, Seq: string, Cond: string, While: string,
Valid: string, ValidTC: string} option;
val empty: T = NONE;
fun merge (data1, data2) =
if is_some data1 andalso is_some data2 andalso data1 <> data2 then
error "Cannot merge syntax from different Hoare Logics"
else merge_options (data1, data2);
);
fun const_syntax ctxt which =
(case Data.get (Proof_Context.theory_of ctxt) of
SOME consts => which consts
| NONE => error "Undefined Hoare syntax consts");
val syntax_const = Syntax.const oo const_syntax;
local
fun idt_name (Free (x, _)) = SOME x
| idt_name (Const (\<^syntax_const>‹_constrain›, _) $ t $ _) = idt_name t
| idt_name _ = NONE;
fun eq_idt tu =
(case apply2 idt_name tu of
(SOME x, SOME y) => x = y
| _ => false);
fun mk_abstuple [x] body = Syntax_Trans.abs_tr [x, body]
| mk_abstuple (x :: xs) body =
Syntax.const \<^const_syntax>‹case_prod› $ Syntax_Trans.abs_tr [x, mk_abstuple xs body];
fun mk_fbody x e [y] = if eq_idt (x, y) then e else y
| mk_fbody x e (y :: xs) =
Syntax.const \<^const_syntax>‹Pair› $
(if eq_idt (x, y) then e else y) $ mk_fbody x e xs;
fun mk_fexp x e xs = mk_abstuple xs (mk_fbody x e xs);
fun bexp_tr (Const ("TRUE", _)) _ = Syntax.const "TRUE"
| bexp_tr b xs = Syntax.const \<^const_syntax>‹Collect› $ mk_abstuple xs b;
fun assn_tr r xs = Syntax.const \<^const_syntax>‹Collect› $ mk_abstuple xs r;
fun var_tr v xs = mk_abstuple xs v;
fun com_tr ctxt =
let
fun tr (Const (\<^syntax_const>‹_assign›, _) $ x $ e) xs =
(syntax_const ctxt #Basic $ mk_fexp x e xs, Syntax.const \<^const_syntax>‹Abasic›)
| tr (Const (\<^syntax_const>‹_Seq›,_) $ c1 $ c2) xs =
let val (c1',a1) = tr c1 xs;
val (c2',a2) = tr c2 xs
in (syntax_const ctxt #Seq $ c1' $ c2', Syntax.const \<^const_syntax>‹Aseq› $ a1 $ a2) end
| tr (Const (\<^syntax_const>‹_Cond›,_) $ b $ c1 $ c2) xs =
let val (c1',a1) = tr c1 xs;
val (c2',a2) = tr c2 xs
in (syntax_const ctxt #Cond $ bexp_tr b xs $ c1' $ c2',
Syntax.const \<^const_syntax>‹Acond› $ a1 $ a2)
end
| tr (Const (\<^syntax_const>‹_While›,_) $ b $ i $ v $ c) xs =
let val (c',a) = tr c xs
val (v',A) = case Term_Position.strip_positions v of
Const (\<^const_syntax>‹HOL.eq›, _) $ z $ t => (t, Syntax_Trans.abs_tr [z, a]) |
t => (t, Abs ("n", dummyT, a))
in (syntax_const ctxt #While $ bexp_tr b xs $ c',
Syntax.const \<^const_syntax>‹Awhile›
$ assn_tr i xs $ var_tr v' xs $ A)
end
| tr (Const (\<^syntax_const>‹_While0›,_) $ b $ I $ c) xs =
let val (c',a) = tr c xs
in (syntax_const ctxt #While $ bexp_tr b xs $ c',
Syntax.const \<^const_syntax>‹Awhile›
$ assn_tr I xs $ var_tr (Syntax.const \<^const_syntax>‹zero_class.zero›) xs
$ absdummy dummyT a)
end
| tr t _ = (t, Syntax.const \<^const_syntax>‹Abasic›)
in tr end;
fun vars_tr (Const (\<^syntax_const>‹_idts›, _) $ idt $ vars) = idt :: vars_tr vars
| vars_tr t = [t];
in
fun hoare_vars_tr ctxt [vars, pre, prg, post] =
let val xs = vars_tr vars
val (c',a) = com_tr ctxt prg xs
in syntax_const ctxt #Valid $ assn_tr pre xs $ c' $ a $ assn_tr post xs end
| hoare_vars_tr _ ts = raise TERM ("hoare_vars_tr", ts);
fun hoare_tc_vars_tr ctxt [vars, pre, prg, post] =
let val xs = vars_tr vars
val (c',a) = com_tr ctxt prg xs
in syntax_const ctxt #ValidTC $ assn_tr pre xs $ c' $ a $ assn_tr post xs end
| hoare_tc_vars_tr _ ts = raise TERM ("hoare_tc_vars_tr", ts);
end;
local
fun dest_abstuple
(Const (\<^const_syntax>‹case_prod›, _) $ Abs (v, _, body)) =
subst_bound (Syntax.free v, dest_abstuple body)
| dest_abstuple (Abs (v,_, body)) = subst_bound (Syntax.free v, body)
| dest_abstuple tm = tm;
fun abs2list (Const (\<^const_syntax>‹case_prod›, _) $ Abs (x, T, t)) = Free (x, T) :: abs2list t
| abs2list (Abs (x, T, _)) = [Free (x, T)]
| abs2list _ = [];
fun mk_ts (Const (\<^const_syntax>‹case_prod›, _) $ Abs (_, _, t)) = mk_ts t
| mk_ts (Abs (_, _, t)) = mk_ts t
| mk_ts (Const (\<^const_syntax>‹Pair›, _) $ a $ b) = a :: mk_ts b
| mk_ts t = [t];
fun mk_vts (Const (\<^const_syntax>‹case_prod›,_) $ Abs (x, _, t)) =
(Syntax.free x :: abs2list t, mk_ts t)
| mk_vts (Abs (x, _, t)) = ([Syntax.free x], [t])
| mk_vts _ = raise Match;
fun find_ch [] _ _ = (false, (Syntax.free "not_ch", Syntax.free "not_ch"))
| find_ch ((v, t) :: vts) i xs =
if t = Bound i then find_ch vts (i - 1) xs
else (true, (v, subst_bounds (xs, t)));
fun is_f (Const (\<^const_syntax>‹case_prod›, _) $ Abs _) = true
| is_f (Abs _) = true
| is_f _ = false;
fun assn_tr' (Const (\<^const_syntax>‹Collect›, _) $ T) = dest_abstuple T
| assn_tr' (Const (\<^const_syntax>‹inter›, _) $
(Const (\<^const_syntax>‹Collect›, _) $ T1) $ (Const (\<^const_syntax>‹Collect›, _) $ T2)) =
Syntax.const \<^const_syntax>‹inter› $ dest_abstuple T1 $ dest_abstuple T2
| assn_tr' t = t;
fun bexp_tr' (Const (\<^const_syntax>‹Collect›, _) $ T) = dest_abstuple T
| bexp_tr' t = t;
fun var_tr' xo T =
let val n = dest_abstuple T
in case xo of NONE => n | SOME x => Syntax.const \<^const_syntax>‹HOL.eq› $ Syntax.free x $ n end
fun mk_assign ctxt f =
let
val (vs, ts) = mk_vts f;
val (ch, (a, b)) = find_ch (vs ~~ ts) (length vs - 1) (rev vs);
in
if ch
then Syntax.const \<^syntax_const>‹_assign› $ a $ b
else syntax_const ctxt #Skip
end;
fun com_tr' ctxt (t,a) =
let
val (head, args) = apfst (try Term.dest_Const_name) (Term.strip_comb t);
fun arg k = nth args (k - 1);
val n = length args;
val (_, args_a) = apfst (try Term.dest_Const_name) (Term.strip_comb a);
fun arg_a k = nth args_a (k - 1)
in
case head of
NONE => t
| SOME c =>
if c = const_syntax ctxt #Basic andalso n = 1 andalso is_f (arg 1) then
mk_assign ctxt (arg 1)
else if c = const_syntax ctxt #Seq andalso n = 2 then
Syntax.const \<^syntax_const>‹_Seq›
$ com_tr' ctxt (arg 1, arg_a 1) $ com_tr' ctxt (arg 2, arg_a 2)
else if c = const_syntax ctxt #Cond andalso n = 3 then
Syntax.const \<^syntax_const>‹_Cond› $
bexp_tr' (arg 1) $ com_tr' ctxt (arg 2, arg_a 1) $ com_tr' ctxt (arg 3, arg_a 2)
else if c = const_syntax ctxt #While andalso n = 2 then
let val (xo,a') = case arg_a 3 of
Abs(x,_,a) => (if loose_bvar1(a,0) then SOME x else NONE,
subst_bound (Syntax.free x, a)) |
t => (NONE,t)
in Syntax.const \<^syntax_const>‹_While›
$ bexp_tr' (arg 1) $ assn_tr' (arg_a 1) $ var_tr' xo (arg_a 2) $ com_tr' ctxt (arg 2, a')
end
else t
end;
in
fun spec_tr' syn ctxt [p, c, a, q] =
Syntax.const syn $ assn_tr' p $ com_tr' ctxt (c,a) $ assn_tr' q;
end;
val _ =
Theory.setup
(Sign.parse_translation
[(\<^syntax_const>‹_hoare_vars›, hoare_vars_tr),
(\<^syntax_const>‹_hoare_vars_tc›, hoare_tc_vars_tr)]);
fun setup consts =
Data.put (SOME consts) #>
Sign.print_translation
[(#Valid consts, spec_tr' \<^syntax_const>‹_hoare›),
(#ValidTC consts, spec_tr' \<^syntax_const>‹_hoare_tc›)];
end;