
Verification of Correctness and Security Properties
for CRYSTALS-KYBER

Katharina Kreuzer

April 18, 2024

Abstract

This article builds upon the formalization of the deterministic part
of the original Kyber algorithms [6]. The correctness proof is expanded
to cover both the deterministic part (from [6]) and the probabilistic
part of randomly chosen inputs. Indeed, the probabilistic version of
the δ-correctness [5] was flawed and could only be formalized for a
modified δ′.

The authors [5] also remarked, that the security proof against indis-
tinguishability under chosen plaintext attack (IND-CPA) does not hold
for the original version of Kyber. Thus, the newer version [4, 2] was for-
malized as well, including the adapted deterministic and probabilistic
correctness theorems. Moreover, the IND-CPA security proof against
the new version of Kyber has been verified using the CryptHOL library
[10, 9]. Since the new version also included a change of parameters,
the Kyber algorithms have been instantiated with the new parameter
set as well.

Together with the entry "CRYSTALS-Kyber"[6], this entry for-
malises the paper [7].

1

Contents
1 Introduction 3

2 Deterministic Part of Correctness Proof for Kyber without
Compression of the Public Key 4

3 δ-Correctness of PKEs 5

4 Rq is Finite 6

5 Auxiliary Lemmas on spmf 8

6 Module Learning-with-Errors Problem (module-LWE) 9

7 δ-Correctness of Kyber without Compression of the Public
Key 14
7.1 Definition of Probabilistic Kyber without Key Compression

and δ . 14
7.2 δ-Correctness Proof . 18

8 IND-CPA Security of Kyber 20
8.1 Instantiation of ind_cpa Locale with Kyber 21
8.2 Reduction Functions . 22
8.3 IND-CPA Security Proof . 23

9 Specification for Kyber with q = 3329 24

10 δ-Correctness of Kyber’s Probabilistic Algorithms 26
10.1 Definition of Probabilistic Kyber and δ 26
10.2 δ-Correctness Proof . 30

2

1 Introduction

CRYSTALS-KYBER is a cryptographic key encapsulation mechanism (KEM)
and the winner of the NIST standardization project for post-quantum cryp-
tography [1]. That is, even with feasible quantum computers, Kyber is
thought to be hard to crack.
The original version of the Kyber algorithms was introduced in [5, 3] and
formalized in [6]. During the rounds of the NIST specification process, sev-
eral changes to the KEM and the underlying public key encryption scheme
(PKE) were made [4, 2]. The most noteworthy change is the omission of the
compression of the public key. The reason is that the compression of the
public key induced an error in the security proof against the indistinguisha-
bility against chosen plaintext attack (IND-CPA). When omitting the com-
pression, the advantage against IND-CPA can be reduced to the advantage
against the module Learning-with-Errors (module LWE). The module-LWE
has been shown to be a NP-hard problem using probabilistic reductions [8].
In this article, we extend the prior formalization of Kyber [6] by formalizing
and verifying the following points:

• Kyber algorithms without compression of the public key

• Exemplary parameter set for Round 2 and 3 (using modulus q = 3329)

• Deterministic correctness for Kyber without compression of the public
key

• Probabilistic correctness for both versions of Kyber but only for mod-
ified error bound (original bound could not be formalized due to the
compression error in the reduction to module-LWE)

• IND-CPA security proof for Kyber without compression of the public
key

The last point, the security proof against IND-CPA, is a major contribution
of this work. Using the game-based proof techniques for security analysis
under the standard random oracle model as defined in CryptHOL [9, 10], the
advantage against Kyber’s IND-CPA game was bounded by the advantage
against the module-LWE.
All in all, this entry formalizes claims for correctness and IND-CPA security
of Kyber and uncovers flaws in the relevant proofs. More details can be
found in the corresponding paper [7]. Since Kyber was chosen by NIST
for standardisation, a formal proof of correctness and security properties is
essential.

theory Crypto_Scheme_new

3

imports "CRYSTALS-Kyber.Crypto_Scheme"

begin

2 Deterministic Part of Correctness Proof for Ky-
ber without Compression of the Public Key

context kyber_spec
begin

In the following the key generation and encryption algorithms of Kyber
without compression of the public key are stated. Here, the variables have
the meaning:

• A: matrix, part of Alices public key

• s: vector, Alices secret key

• t: is the key generated by Alice qrom A and s in key_gen

• r: Bobs "secret" key, randomly picked vector

• m: message bits, m ∈ {0, 1}256

• (u, v): encrypted message

• du, dv: the compression parameters for u and v respectively. Notice
that 0 < d < dlog_2 qe. The d values are public knowledge.

• e, e1 and e2: error parameters to obscure the message. We need to
make certain that an eavesdropper cannot distinguish the encrypted
message qrom uniformly random input. Notice that e and e1 are
vectors while e2 is a mere element in �_q[X]/(X^n+1).

The decryption algorithm is the same as in the original Kyber algorithms,
thus we do not need to redefine it.
definition key_gen_new ::

"((’a qr, ’k) vec, ’k) vec ⇒ (’a qr, ’k) vec ⇒
(’a qr, ’k) vec ⇒ (’a qr, ’k) vec" where

"key_gen_new A s e = A *v s + e"

definition encrypt_new ::
"(’a qr, ’k) vec ⇒ ((’a qr, ’k) vec, ’k) vec ⇒
(’a qr, ’k) vec ⇒ (’a qr, ’k) vec ⇒ (’a qr) ⇒
nat ⇒ nat ⇒ ’a qr ⇒
((’a qr, ’k) vec) * (’a qr)" where

"encrypt_new t A r e1 e2 du dv m =

4

(compress_vec du ((transpose A) *v r + e1),
compress_poly dv (scalar_product t r +
e2 + to_module (round((real_of_int q)/2)) * m)) "

We now want to show the deterministic correctness of the algorithm. That
means, for fixed input variables, after generating the public key, encrypting
and decrypting, we get back the original message.
lemma kyber_new_correct:

fixes A s r e e1 e2 du dv cu cv t u v
assumes

t_def: "t = key_gen_new A s e"
and u_v_def: "(u,v) = encrypt_new t A r e1 e2 du dv m"
and cu_def: "cu = compress_error_vec du

((transpose A) *v r + e1)"
and cv_def: "cv = compress_error_poly dv

(scalar_product t r + e2 +
to_module (round((real_of_int q)/2)) * m)"

and delta: "abs_infty_poly (scalar_product e r + e2 + cv -
scalar_product s e1 -
scalar_product s cu) < round (real_of_int q / 4)"

and m01: "set ((coeffs ◦ of_qr) m) ⊆ {0,1}"
shows "decrypt u v s du dv = m"

〈proof 〉

end

end
theory Delta_Correct

imports "HOL-Probability.Probability"

begin

3 δ-Correctness of PKEs

The following locale defines the δ-correctness of a public key encryption
(PKE) scheme given by the algorithms key_gen encrypt and decrypt. Msgs
is the set of all possible messages that can be encoded with the PKE. Since
some PKE have a small failure probability, the definition of correctness has
to be adapted to cover the case of failures as well. The standard definition
of such δ-correctness is given in the function expect_correct.
locale pke_delta_correct =
fixes key_gen :: "(’pk × ’sk) pmf"

and encrypt :: "’pk ⇒ ’plain ⇒ ’cipher pmf"
and decrypt :: "’sk ⇒ ’cipher ⇒ ’plain"
and Msgs :: "’plain set"

begin

5

type_synonym (’pk’, ’sk’) cor_adversary = "(’pk’ ⇒ ’sk’ ⇒ bool pmf)"

definition expect_correct where
"expect_correct = measure_pmf.expectation key_gen

(λ(pk,sk). MAX m∈Msgs. pmf (bind_pmf (encrypt pk m)
(λc. return_pmf (decrypt sk c 6= m))) True)"

definition delta_correct where
"delta_correct delta = (expect_correct ≤ delta)"

game_correct is the game played to guarantee correctness. If an adversary
Adv has a non-negligible advantage in the correctness game, he might have
enough information to break the PKE. However, the definition of this cor-
rectness game is somewhat questionable, since the adversary Adv is given
the secret key as well, thus enabling him to break the encryption and the
PKE.
definition game_correct where
"game_correct Adv = do{

(pk,sk) ← key_gen;
m ← Adv pk sk;
c ← encrypt pk m;
let m’ = decrypt sk c;
return_pmf (m’ 6= m)

}"

end

An auxiliary lemma to handle the maximum over a sum.
lemma max_sum:
fixes A B and f :: "’a ⇒ ’b ⇒ ’c :: {ordered_comm_monoid_add, linorder}"
assumes "finite A " "A 6= {}"
shows "(MAX x∈A. (

∑
y∈B. f x y)) ≤ (

∑
y∈B. (MAX x∈A. f x y))"

〈proof 〉

end
theory Finite_UNIV
imports

"HOL-Analysis.Finite_Cartesian_Product"
"CRYSTALS-Kyber.Kyber_spec"

begin

4 Rq is Finite

The module Rq is finite. This can be reasoned in two steps: One, the set
of possible coefficients of a polynomial in Rq is finite since coefficients are

6

in zq. Two, the polynomials in Rq have degree less than n. Together, this
implies that Rq itself is a finite set.
lemma card_UNIV_qr:
"card (UNIV :: ’a::qr_spec qr set) = (CARD(’a)) ^ (degree (qr_poly’ TYPE(’a)))"
〈proof 〉

lemma finite_qr [simp]:
"finite (UNIV::’a::qr_spec qr set)" 〈proof 〉

instantiation qr ::(qr_spec) finite
begin
instance
〈proof 〉
end

Moreover, there are only finitely many vectors (of fixed length) over a finite
types and only finitely many matrices (of fixed dimension) over a finite type.
This yields that Rk

q and Rk×k
q are both finite.

lemma finite_vec:
assumes "finite (UNIV :: ’a set)"
shows "finite (UNIV :: (’a, ’k::finite) vec set)"
〈proof 〉

lemma finite_mat:
assumes "finite (UNIV :: ’a set)"
shows "finite (UNIV :: ((’a, ’k::finite) vec,’k) vec set)"
〈proof 〉

lemma finite_UNIV_vec [simp]:
"finite (UNIV:: (’a::qr_spec qr, ’k::finite) vec set)"

〈proof 〉

lemma finite_UNIV_mat [simp]:
"finite (UNIV:: ((’a::qr_spec qr, ’k) vec, ’k::finite) vec set)"

〈proof 〉

lemma finite_UNIV_vec_option [simp]:
"finite (UNIV :: (’a::qr_spec qr,’k::finite option) vec set)"

〈proof 〉

lemma finite_UNIV_mat_option [simp]:
"finite (UNIV:: ((’a::qr_spec qr, ’k::finite) vec, ’k option) vec set)"

〈proof 〉

end
theory Lemmas_for_spmf

7

imports CryptHOL.CryptHOL
Finite_UNIV

begin

5 Auxiliary Lemmas on spmf

Replicate function for spmf.
definition replicate_spmf :: "nat ⇒ ’b pmf ⇒ ’b list spmf" where
"replicate_spmf m p = spmf_of_pmf (replicate_pmf m p)"

lemma replicate_spmf_Suc_cons:
"replicate_spmf (m + 1) p =

do {
xs ← replicate_spmf m p;
x ← spmf_of_pmf p;
return_spmf (x # xs)

}"
〈proof 〉

lemma replicate_spmf_Suc_app:
"replicate_spmf (m + 1) p =

do {
xs ← replicate_spmf m p;
x ← spmf_of_pmf p;
return_spmf (xs @ [x])

}"
〈proof 〉

Lemmas on coin_spmf

lemma spmf_coin_spmf: "spmf coin_spmf i = 1/2"
〈proof 〉

lemma bind_spmf_coin:
assumes "lossless_spmf p"
shows "bind_spmf p (λ_. coin_spmf) = coin_spmf"
〈proof 〉

lemma if_splits_coin:
"(if P then coin_spmf else coin_spmf) = coin_spmf"
〈proof 〉

Lemmas for rewriting of discrete probabilities.
lemma ex1_sum:
assumes "∃ ! (x ::’a). P x" "finite (UNIV :: ’a set)"
shows "sum (λx. of_bool (P x)) UNIV = 1"
〈proof 〉

8

lemma (in kyber_spec) surj_add_qr:
"surj (λx. x + (y:: ’a qr))"
〈proof 〉

lemma (in kyber_spec) bij_add_qr:
"bij (λx. x + (y::’a qr))"
〈proof 〉

Lemmas for addition and difference of uniform distributions
lemma (in kyber_spec) spmf_of_set_add:
"let A = (UNIV :: (’a qr, ’k) vec set) in
do {x ← spmf_of_set A; y ← spmf_of_set A; return_spmf (x+y)} = spmf_of_set
A"
〈proof 〉

lemma (in kyber_spec) spmf_of_set_diff:
"let A = (UNIV :: (’a qr, ’k) vec set) in
do {x ← spmf_of_set A; y ← spmf_of_set A; return_spmf (x-y)} = spmf_of_set
A"
〈proof 〉

end
theory MLWE

imports Lemmas_for_spmf
"Game_Based_Crypto.CryptHOL_Tutorial"

begin

6 Module Learning-with-Errors Problem (module-
LWE)

Berlekamp_Zassenhaus loads the vector type ’a vec from Jordan_Normal_Form.Matrix.
This doubles the symbols \$ and χ for vec_nth and vec_lambda. Thus we
delete the vec_index for type ’a vec. Still some type ambiguities remain.

Here the actual theory starts.

We introduce a locale module_lwe that represents the module-Learning-with-
Errors (module-LWE) problem in the setting of Kyber. The locale takes as
input:

• type_a the type of the quotient ring of Kyber. (This is a side effect of
the Harrison trick in the Kyber locale.)

9

• type_k the finite type for indexing vectors in Kyber. The cardinality
is exactely k. (This is a side effect of the Harrison trick in the Kyber
locale.)

• idx an indexing function from ’k to {0..<k}

• eta the specification value for the centered binomial distribution βη

locale module_lwe =
fixes type_a :: "(’a :: qr_spec) itself"

and type_k :: "(’k ::finite) itself"
and k :: nat
and idx :: "’k::finite ⇒ nat"
and eta :: nat

assumes "k = CARD(’k)"
and bij_idx: "bij_betw idx (UNIV::’k set) {0..<k}"

begin

The adversary in the module-LWE takes a matrix A::((’b, ’n) vec, ’m)
vec and a vector t::(’b, ’m) vec and returns a probability distribution on
bool guessing whether the given input was randomly generated or a valid
module-LWE instance.
type_synonym (’b, ’n, ’m) adversary =

"((’b, ’n) vec, ’m) vec ⇒ (’b, ’m) vec ⇒ bool spmf"

Next, we want to define the centered binomial distributions βη. bit_set
returns the set of all bit lists of length eta. beta is the centered binomial
distribution βη as a pmf on the quotient ring Rq. beta_vec is then centered
binomial distribution βk

η on vectors in Rk
q .

definition bit_set :: "int list set" where
"bit_set = {xs:: int list. set xs ⊆ {0,1} ∧ length xs = eta}"

lemma finite_bit_set:
"finite bit_set"
〈proof 〉

lemma bit_set_nonempty:
"bit_set 6= {}"
〈proof 〉
definition beta :: "’a qr pmf" where
"beta = do {

as ← pmf_of_set (bit_set);
bs ← pmf_of_set (bit_set);
return_pmf (to_module (

∑
i<eta. as ! i - bs! i))

} "

definition beta_vec :: "(’a qr , ’k) vec pmf" where

10

"beta_vec = do {
(xs :: ’a qr list) ← replicate_pmf (k) (beta);
return_pmf (χ i. xs ! (idx i))

}"

Since we work over spmf, we need to show that beta_vec is lossless.
lemma lossless_beta_vec[simp]:

"lossless_spmf (spmf_of_pmf beta_vec)"
〈proof 〉

We define the game versions of module-LWE. Given an adversary A, we have
two games: in game, the instance given to the adversary is a module-LWE
instance, whereas in game_random, the instance is chosen randomly.
definition game :: "(’a qr,’k,’k) adversary ⇒ bool spmf" where

"game A = do {
A ← spmf_of_set (UNIV:: ((’a qr, ’k) vec, ’k) vec set);
s ← beta_vec;
e ← beta_vec;
b’ ← A A (A *v s + e);
return_spmf (b’)

}"

definition game_random :: "(’a qr,’k,’k) adversary ⇒ bool spmf" where
"game_random A = do {

A ← spmf_of_set (UNIV:: ((’a qr, ’k) vec, ’k) vec set);
b ← spmf_of_set (UNIV:: (’a qr, ’k) vec set);
b’ ← A A b;
return_spmf (b’)

}"

The advantage of an adversary A returns a value how good the adversary
is at guessing whether the instance is generated by the module-LWE or
uniformly at random.
definition advantage :: "(’a qr,’k,’k) adversary ⇒ real" where
"advantage A = |spmf (game A) True - spmf (game_random A) True |"

Since the reduction proof of Kyber uses the module-LWE problem for two
different dimensions (ie. A ∈ R

(k+1)×k
q and A ∈ Rk×k

q), we need a second
definition of the index function, the centered binomial distribution, the game
and random game, and the advantage. Here the problem is that the dimen-
sion k of the vectors is hard-coded in the type ’k. That makes it hard to
“simply add” another dimension. A trick how this can be formalised never-
theless is to use the option type on ’k to encode a type with k+1 elements.
With the option type, we can embed a vector of dimension k indexed by the
type ’k into a vector of dimension k + 1 by adding a value for the index
None (an element a :: ’k is mapped to Some a). Note also that the addi-
tional index appears only in one dimension of A, resulting in a non-quadratic

11

matrix.

Index function of the option type ’k option.
fun idx’ :: "’k option ⇒ nat" where

"idx’ None = 0" |
"idx’ (Some x) = idx x + 1"

lemma idx’: "((x # xs) ! idx’ i) =
(if i = None then x else xs ! idx (the i))"
if "length xs = k" for xs and i::"’k option"

〈proof 〉

lemma idx’_lambda:
"(χ i. (x # xs) ! idx’ i) =
(χ i. if i = None then x else xs ! idx (the i))"
if "length xs = k" for xs 〈proof 〉

Definition of the centered binomial distribution βk+1
η and lossless property.

definition beta_vec’ :: "(’a qr , ’k option) vec spmf" where
"beta_vec’ = do {

(xs :: ’a qr list) ← replicate_spmf (k+1) (beta);
return_spmf (χ i. xs ! (idx’ i))

}"

lemma lossless_beta_vec’[simp]:
"lossless_spmf beta_vec’"

〈proof 〉

Some lemmas on replicate.
lemma replicate_pmf_same_length:
assumes "

∧
xs. length xs = m =⇒ f xs = g xs"

shows "bind_pmf (replicate_pmf m p) f = bind_pmf (replicate_pmf m p) g"
〈proof 〉

lemma replicate_spmf_same_length:
assumes "

∧
xs. length xs = m =⇒ f xs = g xs"

shows "(replicate_spmf m p >>= f) = (replicate_spmf m p >>= g)"
〈proof 〉

Lemma to split the replicate (k+1) function in beta_vec’ into two parts:
replicate k and a separate value. Note, that the xs in the do notation
below are always of length k.
no_adhoc_overloading Monad_Syntax.bind bind_pmf

lemma beta_vec’:
"beta_vec’ = do {

(xs :: ’a qr list) ← replicate_spmf (k) (beta);

12

(x :: ’a qr) ← spmf_of_pmf beta;
return_spmf (χ i. if i = None then x else xs ! (idx (the i)))

}"
〈proof 〉

adhoc_overloading Monad_Syntax.bind bind_pmf

Definition of the two games for the option type.
definition game’ :: "(’a qr,’k,’k option) adversary ⇒ bool spmf" where

"game’ A = do {
A ← spmf_of_set (UNIV:: ((’a qr, ’k) vec, ’k option) vec set);
s ← beta_vec;
e ← beta_vec’;
b’ ← A A (A *v s + e);
return_spmf (b’)

}"

definition game_random’ :: "(’a qr,’k,’k option) adversary ⇒ bool spmf"
where

"game_random’ A = do {
A ← spmf_of_set (UNIV:: ((’a qr, ’k) vec, ’k option) vec set);
b ← spmf_of_set (UNIV:: (’a qr, ’k option) vec set);
b’ ← A A b;
return_spmf (b’)

}"

Definition of the advantage for the option type.
definition advantage’ :: "(’a qr,’k,’k option) adversary ⇒ real" where

"advantage’ A = |spmf (game’ A) True - spmf (game_random’ A) True |"

Game and random game for finite type with one element only
definition beta1 :: "(’a qr , 1) vec pmf" where
"beta1 = bind_pmf beta (λx. return_pmf (χ i. x))"

definition game1 :: "(’a qr, 1, 1) adversary ⇒ bool spmf" where
"game1 A = do {

A ← spmf_of_set (UNIV:: ((’a qr, 1) vec, 1) vec set);
s ← spmf_of_pmf beta1;
e ← spmf_of_pmf beta1;
b’ ← A A (A *v s + e);
return_spmf (b’)

}"

definition game_random1 :: "(’a qr,1,1) adversary ⇒ bool spmf" where
"game_random1 A = do {

A ← spmf_of_set (UNIV:: ((’a qr, 1) vec, 1) vec set);
b ← spmf_of_set (UNIV:: (’a qr, 1) vec set);
b’ ← A A b;

13

return_spmf (b’)
}"

The advantage of an adversary A returns a value how good the adversary
is at guessing whether the instance is generated by the module-LWE or
uniformly at random.
definition advantage1 :: "(’a qr,1,1) adversary ⇒ real" where
"advantage1 A = |spmf (game1 A) True - spmf (game_random1 A) True |"

end
end
theory Correct_new

imports Crypto_Scheme_new
Delta_Correct
MLWE

begin

7 δ-Correctness of Kyber without Compression of
the Public Key

The functions key_gen_new, encrypt_new and decrypt are deterministic func-
tions that calculate the output of the Kyber algorithms for a given input.
To completely model the Kyber algorithms, we need to model the random
choice of the input as well. This results in probabilistic programs that first
choose the input according the the input distributions and then calculate
the output. Probabilistic programs are modeled by the Giry monad of pmf ’s.
The correspond to the probability mass functions of the output.

7.1 Definition of Probabilistic Kyber without Key Compres-
sion and δ

The correctness of Kyber is formulated in a locale that defines the necessary
assumptions on the parameter set. For the correctness analysis we need to
import the definitions of the probability distribution βη from the module-
LWE and the Kyber locale itself. Moreover, we fix the compression depths
for the outputs u and v. Note that in this case the output t of the key
generation is uncompressed.
locale kyber_cor_new = mlwe: module_lwe "(TYPE(’a ::qr_spec))" "TYPE(’k::finite)"
k +
kyber_spec _ _ _ _ "(TYPE(’a ::qr_spec))" "TYPE(’k::finite)" +
fixes type_a :: "(’a :: qr_spec) itself"

and type_k :: "(’k ::finite) itself"

14

and du dv ::nat
begin

We define types for the private and public keys, as well as plain and cipher
texts. The public key consists of a matrix A ∈ Rk×k

q and a vector t ∈ Rk
q .

The private key is the secret vector s ∈ Rq such that there is an error
vector e ∈ Rk

q such that A · s + e = t (uncompressed). The plaintext
consists of a bitstring (ie. a list of booleans). The ciphertext is an element of
Rk+1

q represented by a vector u in Rk
q and a value v ∈ Rq (both compressed).

type_synonym (’b,’l) pk = "(((’b,’l) vec,’l) vec) × ((’b,’l) vec)"
type_synonym (’b,’l) sk = "(’b,’l) vec"
type_synonym plain = bitstring
type_synonym (’b,’l) cipher = "(’b,’l) vec × ’b"

First, we need to show properties on the probability distributions needed.
beta is the centered binomial distribution defined in mlwe.
lemma finite_bit_set:
"finite mlwe.bit_set"
〈proof 〉

lemma finite_beta:
"finite (set_pmf mlwe.beta)"
〈proof 〉

lemma finite_beta_vec:
"finite (set_pmf mlwe.beta_vec)"
〈proof 〉

Next, we define the key generation, encryption and decryption as proba-
bilistic programs which first generate random variables according to their
distributions and then call the key generation, encryption or decryption
functions accordingly. Since we look at Kyber without compression of the
public key, the output of the key generation is uncompressed.
Note that in comparison to Kyber with public key compression, we do not
need to output the error term e. Since t is uncompressed, we can easily
recompute e using the secret key s.
definition pmf_key_gen where
"pmf_key_gen = do {

A ← pmf_of_set (UNIV:: ((’a qr,’k) vec,’k) vec set);
s ← mlwe.beta_vec;
e ← mlwe.beta_vec;
let t = key_gen_new A s e;
return_pmf ((A, t), s)

}"

15

definition pmf_encrypt where
"pmf_encrypt pk m = do{

r ← mlwe.beta_vec;
e1 ← mlwe.beta_vec;
e2 ← mlwe.beta;
let c = encrypt_new (snd pk) (fst pk) r e1 e2 du dv m;
return_pmf c

}"

Msgs is the space of all possible messages to be encrypted. It is non-empty
and finite.
definition
"Msgs = {m::’a qr. set ((coeffs ◦ of_qr) m) ⊆ {0,1}}"

lemma finite_Msgs:
"finite Msgs"
〈proof 〉

lemma Msgs_nonempty:
"Msgs 6= {}"
〈proof 〉

Since Kyber is a PKE, we can instantiate the PKE correctness locale with
the Kyber algorithms without compression of the public key.
no_adhoc_overloading Monad_Syntax.bind bind_pmf

sublocale pke_delta_correct pmf_key_gen pmf_encrypt
"(λ sk c. decrypt (fst c) (snd c) sk du dv)" Msgs 〈proof 〉

adhoc_overloading Monad_Syntax.bind bind_pmf

In order to measure and estimate the errors introduced by the compression
and decompression of the output of the encryption, we introduce error_dist_vec
on vectors and error_dist_poly on polynomials.
definition
"error_dist_vec d = do{

y ← pmf_of_set (UNIV :: (’a qr,’k) vec set);
return_pmf (decompress_vec d (compress_vec d y)-y)

}"

definition
"error_dist_poly d = do{

y ← pmf_of_set (UNIV :: ’a qr set);
return_pmf (decompress_poly d (compress_poly d y)-y)

}"

The functions w_distrib’, w_distrib and delta define the originally claimed
δ for the correctness of Kyber. However, the delta -correctness of Kyber
could not be formalized.

16

The reason is that the values of cu and cv in w_distrib’ rely on the com-
pression error of uniformly random generated values. In truth, these values
are not uniformly generated but instances of the module-LWE. delta also
adds the additional error due to the module-learning with error instances.
However, we cannot use the module-LWE assumption to reduce these values
to uniformly generated ones since we would lose all information about the
secret key otherwise. This is needed to perform the decryption in order to
check whether the original message and the decryption of the ciphertext are
indeed the same.
Therefore, we modified the given δ and defined a new value delta’ in order
to prove at least delta’-correctness.
definition w_distrib’ where
"w_distrib’ s e = do{

r ← mlwe.beta_vec;
e1 ← mlwe.beta_vec;
e2 ← mlwe.beta;
cu ← error_dist_vec du;
cv ← error_dist_poly dv;
let w = (scalar_product e r + e2 + cv - scalar_product s e1 - scalar_product

s cu);
return_pmf (abs_infty_poly w ≥ round (q/4))}"

definition w_distrib where
"w_distrib = do{

s ← mlwe.beta_vec;
e ← mlwe.beta_vec;
w_distrib’ s e}"

definition delta where
"delta Adv0 Adv1 = pmf w_distrib True + mlwe.advantage Adv0 + mlwe.advantage1
Adv1"

This is the modified δ′ which makes the correctness arguments to go through.

The functions w_kyber, delta’ and delta_kyber define the modified δ for the
correctness proof. Note the in w_kyber, the values yu and yv are generated
according to their corresponding module-LWE instances and are not uni-
formly random. delta’ is still dependent on the public and secret keys and
the message. This dependency is eliminated in delta_kyber by taking the
expectation over the key pair and the maximum over all messages, similar
to the definition of δ-correctness.
definition w_kyber where
"w_kyber A s e m = do{

r ← mlwe.beta_vec;
e1 ← mlwe.beta_vec;
e2 ← mlwe.beta;
let t = A *v s + e;

17

let yu = transpose A *v r + e1;
let yv = (scalar_product t r + e2 +

to_module (round (real_of_int q / 2)) * m);
let cu = compress_error_vec du yu;
let cv = compress_error_poly dv yv;
let w = (scalar_product e r + e2 + cv - scalar_product s e1 - scalar_product

s cu);
return_pmf (abs_infty_poly w ≥ round (q/4))}"

definition delta’ where
"delta’ sk pk m = pmf (w_kyber (fst pk) sk (snd pk - (fst pk) *v sk) m)
True"

definition delta_kyber where
"delta_kyber = measure_pmf.expectation pmf_key_gen

(λ(pk, sk). MAX m∈Msgs. delta’ sk pk m)"

7.2 δ-Correctness Proof

The idea to bound the probabilistic Kyber algorithms by delta_kyber is the
following: First use the deterministic part given by Crypto_Scheme_new.kyber_new_correct
to bound the correctness by delta’ depending on a fixed key pair and mes-
sage. Then bound the message by the maximum over all messages. Finally
bound the key pair by using the expectation over the key pair. The result
is that the correctness error of the Kyber PKE is bounded by delta_kyber.

First of all, we rewrite the deterministic part of the correctness proof kyber_new_correct
from Crypto_Scheme_new.
lemma kyber_new_correct_alt:

fixes A s r e e1 e2 cu cv t u v
assumes t_def: "t = key_gen_new A s e"
and u_v_def: "(u,v) = encrypt_new t A r e1 e2 du dv m"
and cu_def: "cu = compress_error_vec du ((transpose A) *v r + e1)"
and cv_def: "cv = compress_error_poly dv (scalar_product t r + e2

+
to_module (round((real_of_int q)/2)) * m)"

and error: "decrypt u v s du dv 6= m"
and m01: "set ((coeffs ◦ of_qr) m) ⊆ {0,1}"
shows "abs_infty_poly (scalar_product e r + e2 + cv - scalar_product

s e1 -
scalar_product s cu) ≥ round (real_of_int q / 4)"

〈proof 〉

Then we show the correctness in the probabilistic program for a fixed key
pair and message. The bound we use is delta’.
lemma correct_key_gen:
fixes A s e m
assumes pk_sk: "(pk, sk) = ((A, key_gen_new A s e), s)"

18

and m_Msgs: "m∈Msgs"
shows "pmf (do{c ← pmf_encrypt pk m;

return_pmf (decrypt (fst c) (snd c) sk du dv 6= m)}) True ≤ delta’ sk
pk m"
〈proof 〉

Now take the maximum over all messages. We rewrite this in order to be
able to instantiate it nicely.
lemma correct_key_gen_max:
fixes A s e m
assumes "(pk, sk) = ((A, key_gen_new A s e), s)"

and "m∈Msgs"
shows "pmf (do{c ← pmf_encrypt pk m;

return_pmf (decrypt (fst c) (snd c) sk du dv 6= m)}) True ≤ (MAX m’∈Msgs.
delta’ sk pk m’)"
〈proof 〉

lemma correct_max:
fixes A s e
assumes "(pk, sk) = ((A, key_gen_new A s e), s)"
shows "(MAX m∈Msgs. pmf (do{c ← pmf_encrypt pk m;

return_pmf (decrypt (fst c) (snd c) sk du dv 6= m)}) True) ≤ (MAX m’∈Msgs.
delta’ sk pk m’)"
〈proof 〉

lemma correct_max’:
fixes pk sk
shows "(MAX m∈Msgs. pmf (do{c ← pmf_encrypt pk m;

return_pmf (decrypt (fst c) (snd c) sk du dv 6= m)}) True) ≤
(MAX m’∈Msgs. delta’ sk pk m’)"

〈proof 〉

Finally show the overall bound delta_kyber for the correctness error of the
Kyber PKE without compression of the public key.
lemma expect_correct:
"expect_correct ≤ delta_kyber"
〈proof 〉

This yields the overall delta_kyber -correctness of Kyber without compres-
sion of the public key.
lemma delta_correct_kyber:
"delta_correct delta_kyber"
〈proof 〉

end
end
theory Kyber_gpv_IND_CPA

19

imports "Game_Based_Crypto.CryptHOL_Tutorial"
Correct_new

begin

8 IND-CPA Security of Kyber

The IND-CPA security of the Kyber PKE is based on the module-LWE.
It takes the length len_plain of the plaintexts in the security games as an
input. Note that the security proof is for the uncompressed scheme only!
That means that the output of the key generation is not compressed and
the input of the encryption is not decompressed. The compression/decom-
pression would entail that the decompression of the value t from the key
generation is not distributed uniformly at random any more (because of the
compression error). This prohibits the second reduction to module-LWE.
In order to avoid this, the compression and decompression in key genera-
tion and encryption have been omitted from the second round of the NIST
standardisation process onwards.
locale kyber_new_security = kyber_cor_new _ _ _ _ _ _ "TYPE(’a::qr_spec)"
"TYPE(’k::finite)" +

ro: random_oracle len_plain
for len_plain :: nat +
fixes type_a :: "(’a :: qr_spec) itself"

and type_k :: "(’k ::finite) itself"
begin

The given plaintext as a bitstring needs to be converted to an element in
Rq. The bitstring is respresented as an integer value by interpreting the
bitstring as a binary number. The integer is then converted to an element
in Rq by the function to_module. Conversely, the bitstring representation
can by extracted from the coefficient of the element in Rq.
definition bitstring_to_int:
"bitstring_to_int msg = (

∑
i<length msg. if msg!i then 2^i else 0)"

definition plain_to_msg :: "bitstring ⇒ ’a qr" where
"plain_to_msg msg = to_module (bitstring_to_int msg)"

definition msg_to_plain :: "’a qr ⇒ bitstring" where
"msg_to_plain msg = map (λi. i=0) (coeffs (of_qr msg))"

20

8.1 Instantiation of ind_cpa Locale with Kyber

We only look at the uncompressed version of Kyber. As the IND-CPA locale
works over the generative probabilistic values type gpv, we need to lift our
definitions to gpv ’s.

The lifting of the key generation:
definition gpv_key_gen where
"gpv_key_gen = lift_spmf (spmf_of_pmf pmf_key_gen)"

lemma spmf_pmf_of_set_UNIV:
"spmf_of_set (UNIV:: ((’a qr,’k) vec,’k) vec set) =

spmf_of_pmf (pmf_of_set (UNIV:: ((’a qr,’k) vec,’k) vec set))"
〈proof 〉

lemma key_gen:
"gpv_key_gen = lift_spmf (do {

A ← spmf_of_set (UNIV:: ((’a qr, ’k) vec, ’k) vec set);
s ← spmf_of_pmf mlwe.beta_vec;
e ← spmf_of_pmf mlwe.beta_vec;
let t = key_gen_new A s e;
return_spmf ((A, t),s)

})"
〈proof 〉

The lifting of the encryption:
definition gpv_encrypt ::

"(’a qr, ’k) pk ⇒ plain ⇒ ((’a qr, ’k) vec × ’a qr, ’b, ’c) gpv"
where
"gpv_encrypt pk m = lift_spmf (spmf_of_pmf (pmf_encrypt pk (plain_to_msg
m)))"

The lifting of the decryption:
definition gpv_decrypt ::

"(’a qr, ’k) sk ⇒ (’a qr, ’k) cipher ⇒ (plain, (’a qr,’k) vec, bitstring)
gpv" where
"gpv_decrypt sk cipher = lift_spmf (do {

let msg’ = decrypt (fst cipher) (snd cipher) sk du dv ;
return_spmf (msg_to_plain (msg’))

})"

In order to verify that the plaintexts given by the adversary in the IND-CPA
security game have indeed the same length, we define the test valid_plains.
definition valid_plains :: "plain ⇒ plain ⇒ bool" where
"valid_plains msg1 msg2 ←→ (length msg1 = len_plain ∧ length msg2 =
len_plain)"

Now we can instantiate the IND-CPA locale with the lifted Kyber algo-
rithms.

21

sublocale ind_cpa: ind_cpa_pk "gpv_key_gen" "gpv_encrypt" "gpv_decrypt"
valid_plains 〈proof 〉

8.2 Reduction Functions

Since we lifted the key generation and encryption functions to gpv ’s, we need
to show that they are lossless, i.e., that they have no failure.
lemma lossless_key_gen[simp]: "lossless_gpv I_full gpv_key_gen"
〈proof 〉

lemma lossless_encrypt[simp]: "lossless_gpv I_full (gpv_encrypt pk m)"
〈proof 〉

lemma lossless_decrypt[simp]: "lossless_gpv I_full (gpv_decrypt sk cipher)"
〈proof 〉

lemma finite_UNIV_lossless_spmf_of_set:
assumes "finite (UNIV :: ’b set)"
shows "lossless_gpv I_full (lift_spmf (spmf_of_set (UNIV :: ’b set)))"
〈proof 〉

The reduction functions give the concrete reduction of a IND-CPA adversary
to a module-LWE adversary. The first function is for the reduction in the
key generation using m = k, whereas the second reduction is used in the
encryption with m = k + 1 (using the option type).
fun kyber_reduction1 ::
"((’a qr, ’k) pk, plain, (’a qr, ’k) cipher, (’a qr,’k) vec, bitstring,
’state) ind_cpa.adversary
⇒ (’a qr, ’k,’k) mlwe.adversary"

where
"kyber_reduction1 (A1, A2) A t = do {

(((msg1, msg2), σ), s) ← exec_gpv ro.oracle (A1 (A, t)) ro.initial;
try_spmf (do {

_ :: unit ← assert_spmf (valid_plains msg1 msg2);
b ← coin_spmf;
(c, s1) ← exec_gpv ro.oracle (gpv_encrypt (A,t) (if b then msg1

else msg2)) s;
(b’, s2) ← exec_gpv ro.oracle (A2 c σ) s1;
return_spmf (b’ = b)

}) (coin_spmf)
}"

fun kyber_reduction2 ::
"((’a qr, ’k) pk, plain, (’a qr, ’k) cipher, (’a qr,’k) vec, bitstring,
’state) ind_cpa.adversary
⇒ (’a qr, ’k,’k option) mlwe.adversary"

where
"kyber_reduction2 (A1, A2) A’ t’ = do {

22

let A = transpose (χ i. A’ $ (Some i));
let t = A’ $ None;
(((msg1, msg2), σ),s) ← exec_gpv ro.oracle (A1 (A, t)) ro.initial;
try_spmf (do {

_ :: unit ← assert_spmf (valid_plains msg1 msg2);
b ← coin_spmf;
let msg = (if b then msg1 else msg2);
let u = (χ i. t’ $ (Some i));
let v = (t’ $ None) + to_module (round((real_of_int q)/2)) * (plain_to_msg

msg);
(b’, s1) ← exec_gpv ro.oracle (A2 (compress_vec du u, compress_poly

dv v) σ) s;
return_spmf (b’=b)

}) (coin_spmf)
}"

8.3 IND-CPA Security Proof

The following theorem states that if the adversary against the IND-CPA
game is lossless (that is it does not act maliciously), then the advantage in
the IND-CPA game can be bounded by two advantages against the module-
LWE game. Under the module-LWE hardness assumption, the advantage
against the module-LWE is negligible.
The proof proceeds in several steps, also called game-hops. Initially, the
IND-CPA game is considered. Then we gradually alter the games and show
that either the alteration has no effect on the resulting probabilities or we
can bound the change by an advantage against the module-LWE. In the
end, the game is a simple coin toss, which we know has probability 0.5 to
guess the correct outcome. Finally, we can estimate the advantage against
IND-CPA using the game-hops found before, and bounding it against the
advantage against module-LWE.
theorem concrete_security_kyber:
assumes lossless: "ind_cpa.lossless A"
shows "ind_cpa.advantage (ro.oracle, ro.initial) A ≤

mlwe.advantage (kyber_reduction1 A) + mlwe.advantage’ (kyber_reduction2
A)"
〈proof 〉

end

end
theory Kyber_new_Values
imports

Crypto_Scheme_new

begin

23

9 Specification for Kyber with q = 3329

Since NIST round 2, Kyber changed the modulus q from 7981 to 3329. In
the following, a finite type with 3329 elements is defined and shown to fulfil
the prime_card property.
typedef fin3329 = "{0..<3329::int}"
morphisms fin3329_rep fin3329_abs
〈proof 〉

setup_lifting type_definition_fin3329

lemma CARD_fin3329 [simp]:
"CARD (fin3329) = 3329"
〈proof 〉

lemma fin3329_nontriv [simp]:
"1 < CARD(fin3329)"
〈proof 〉

The type fin3329 fulfils the prime_card property required by the kyber_spec
locale.
lemma prime_3329: "prime (3329::nat)" 〈proof 〉

instantiation fin3329 :: comm_ring_1
begin

lift_definition zero_fin3329 :: "fin3329" is "0" 〈proof 〉

lift_definition one_fin3329 :: "fin3329" is "1" 〈proof 〉

lift_definition plus_fin3329 :: "fin3329 ⇒ fin3329 ⇒ fin3329"
is "(λx y. (x+y) mod 3329)"

〈proof 〉

lift_definition uminus_fin3329 :: "fin3329 ⇒ fin3329"
is "(λx. (uminus x) mod 3329)"

〈proof 〉

lift_definition minus_fin3329 :: "fin3329 ⇒ fin3329 ⇒ fin3329"
is "(λx y. (x-y) mod 3329)"

〈proof 〉

lift_definition times_fin3329 :: "fin3329 ⇒ fin3329 ⇒ fin3329"
is "(λx y. (x*y) mod 3329)"

〈proof 〉

24

instance
〈proof 〉

end

instantiation fin3329 :: finite
begin
instance
〈proof 〉
end

instantiation fin3329 :: equal
begin
lift_definition equal_fin3329 :: "fin3329 ⇒ fin3329 ⇒ bool" is "(=)" 〈proof 〉
instance 〈proof 〉
end

instantiation fin3329 :: nontriv
begin
instance
〈proof 〉
end

instantiation fin3329 :: prime_card
begin
instance
〈proof 〉
end

Now, we can define the quotient type of R3329 over fin3329.
instantiation fin3329 :: qr_spec
begin

definition qr_poly’_fin3329:: "fin3329 itself ⇒ int poly" where
"qr_poly’_fin3329 ≡ (λ_. Polynomial.monom (1::int) 256 + 1)"

instance 〈proof 〉
end

lift_definition to_int_fin3329 :: "fin3329 ⇒ int" is "λx. x" 〈proof 〉

lift_definition of_int_fin3329 :: "int ⇒ fin3329" is "λx. (x mod 3329)"
〈proof 〉

interpretation to_int_fin3329_hom: inj_zero_hom to_int_fin3329
〈proof 〉

25

interpretation of_int_fin3329_hom: zero_hom of_int_fin3329
〈proof 〉

lemma to_int_fin3329_of_int_fin3329 [simp]:
"to_int_fin3329 (of_int_fin3329 x) = x mod 3329"
〈proof 〉

lemma of_int_fin3329_to_int_fin3329 [simp]:
"of_int_fin3329 (to_int_fin3329 x) = x"
〈proof 〉

lemma of_int_mod_ring_eq_iff [simp]:
"(of_int_fin3329 a = of_int_fin3329 b) ←→
((a mod 3329) = (b mod 3329))"

〈proof 〉

Finally, we show that the Kyber algorithms can be instantiated with q =
3329.
interpretation kyber3329: kyber_spec 256 3329 3 8 "TYPE(fin3329)" "TYPE(3)"
〈proof 〉

end
theory Correct

imports "CRYSTALS-Kyber.Crypto_Scheme"
Delta_Correct
MLWE

begin

10 δ-Correctness of Kyber’s Probabilistic Algorithms

The functions key_gen, encrypt and decrypt are deterministic functions that
calculate the output of the Kyber algorithms for a given input. To com-
pletely model the Kyber algorithms, we need to model the random choice
of the input as well. This results in probabilistic programs that first choose
the input according the the input distributions and then calculate the out-
put. Probabilistic programs are modeled by the Giry monad of pmf ’s. The
correspond to the probability mass functions of the output.

10.1 Definition of Probabilistic Kyber and δ

The correctness of Kyber is formulated in a locale that defines the necessary
assumptions on the parameter set. For the correctness analysis we need to
import the definitions of the probability distribution βη from the module-

26

LWE and the Kyber locale itself. Moreover, we fix the compression depths
for the outputs t, u and v.
locale kyber_cor = mlwe: module_lwe "(TYPE(’a ::qr_spec))" "TYPE(’k::finite)"
k +
kyber_spec _ _ _ _"(TYPE(’a ::qr_spec))" "TYPE(’k::finite)" +
fixes type_a :: "(’a :: qr_spec) itself"

and type_k :: "(’k ::finite) itself"
and dt du dv ::nat

begin

We define types for the private and public keys, as well as plain and cipher
texts. The public key consists of a matrix A ∈ Rk×k

q and a (compressed)
vector t ∈ Rk

q . The private key is the secret vector s ∈ Rq such that
there is an error vector e ∈ Rk

q such that A · s + e = t. The plaintext
consists of a bitstring (ie. a list of booleans). The ciphertext is an element of
Rk+1

q represented by a vector u in Rk
q and a value v ∈ Rq (both compressed).

type_synonym (’b,’l) pk = "(((’b,’l) vec,’l) vec) × ((’b,’l) vec)"
type_synonym (’b,’l) sk = "(’b,’l) vec"
type_synonym plain = bitstring
type_synonym (’b,’l) cipher = "(’b,’l) vec × ’b"

Some finiteness properties.
lemma finite_bit_set:
"finite mlwe.bit_set"
〈proof 〉

lemma finite_beta:
"finite (set_pmf mlwe.beta)"
〈proof 〉

lemma finite_beta_vec:
"finite (set_pmf mlwe.beta_vec)"
〈proof 〉

The probabilistic program for key generation and encryption. The decryp-
tion does not need a probabilistic program, since there is no random choice
involved.

We need to give back the error term as part of the secret key since otherwise
we lose this information and cannot recalculate it. This is needed in the
proof of correctness. Since the δ was modified for the originally claimed
one, this could be improved.
definition pmf_key_gen where
"pmf_key_gen = do {

A ← pmf_of_set (UNIV:: ((’a qr,’k) vec,’k) vec set);

27

s ← mlwe.beta_vec;
e ← mlwe.beta_vec;
let t = key_gen dt A s e;
return_pmf ((A, t),(s,e))

}"

definition pmf_encrypt where
"pmf_encrypt pk m = do{

r ← mlwe.beta_vec;
e1 ← mlwe.beta_vec;
e2 ← mlwe.beta;
let c = encrypt (snd pk) (fst pk) r e1 e2 dt du dv m;
return_pmf c

}"

The message space is Msgs. It is finite and non-empty.
definition
"Msgs = {m::’a qr. set ((coeffs ◦ of_qr) m) ⊆ {0,1}}"

lemma finite_Msgs:
"finite Msgs"
〈proof 〉

lemma Msgs_nonempty:
"Msgs 6= {}"
〈proof 〉

Now we can instantiate the public key encryption scheme correctness locale
with the probabilistic algorithms of Kyber. This hands us the definition of
δ-correctness.
no_adhoc_overloading Monad_Syntax.bind bind_pmf

sublocale pke_delta_correct pmf_key_gen pmf_encrypt
"(λ sk c. decrypt (fst c) (snd c) (fst sk) du dv)" Msgs 〈proof 〉

adhoc_overloading Monad_Syntax.bind bind_pmf

The following functions return the distribution of the compression error (for
vectors and polynomials).
definition
"error_dist_vec d = do{

y ← pmf_of_set (UNIV :: (’a qr,’k) vec set);
return_pmf (decompress_vec d (compress_vec d y)-y)

}"

definition
"error_dist_poly d = do{

y ← pmf_of_set (UNIV :: ’a qr set);

28

return_pmf (decompress_poly d (compress_poly d y)-y)
}"

The functions w_distrib’, w_distrib and w_dist define the originally claimed
δ (here delta_kyber) for the correctness of Kyber. However, the delta -
correctness of Kyber could not be formalized.
The reason is that the values of ct, cu and cv in w_distrib’ rely on the
compression error of uniformly random generated values. In truth, these
values are not uniformly generated but instances of the module-LWE. How-
ever, we cannot use the module-LWE assumption to reduce these values to
uniformly generated ones since we would lose all information about the se-
cret key otherwise. This is needed to perform the decryption in order to
check whether the original message and the decryption of the ciphertext are
indeed the same. The delta_kyber with additional module-LWE errors are
calculated in delta.
Therefore, we modified the given δ and defined a new value delta’ in order
to prove at least delta’-correctness.
definition w_distrib’ where
"w_distrib’ s e r e1 e2 = do{

ct ← error_dist_vec dt;
cu ← error_dist_vec du;
cv ← error_dist_poly dv;
let w = (scalar_product e r + e2 + cv + scalar_product ct r

- scalar_product s e1 - scalar_product s cu);
return_pmf (abs_infty_poly w ≥ round (q/4))}"

definition w_distrib where
"w_distrib s e = do{

r ← mlwe.beta_vec;
e1 ← mlwe.beta_vec;
e2 ← mlwe.beta;
w_distrib’ s e r e1 e2}"

definition w_dist where
"w_dist = do{

s ← mlwe.beta_vec;
e ← mlwe.beta_vec;
w_distrib s e}"

definition delta_kyber where
"delta_kyber = pmf w_dist True"

definition delta where
"delta Adv0 Adv1 = delta_kyber + mlwe.advantage Adv0 + mlwe.advantage1
Adv1"

The functions w_kyber’, w_kyber, delta’ and delta_kyber’ define the modi-

29

fied δ for the correctness proof. Note the in w_kyber’, the values t, yu and yv
are generated according to their corresponding module-LWE instances and
are not uniformly random. delta’ is still dependent on the public and secret
keys and the message. This dependency is eliminated in delta_kyber’ by
taking the expectation over the key pair and the maximum over all messages,
similar to the definition of δ-correctness.
definition w_kyber’ where
"w_kyber’ A s e m r e1 e2 = do{

let t = A *v s + e;
let ct = compress_error_vec dt t;
let yu = transpose A *v r + e1;
let yv = (scalar_product t r + scalar_product ct r + e2 +

to_module (round (real_of_int q / 2)) * m);
let cu = compress_error_vec du yu;
let cv = compress_error_poly dv yv;
let w = (scalar_product e r + e2 + cv + scalar_product ct r - scalar_product

s e1 -
scalar_product s cu);

return_pmf (abs_infty_poly w ≥ round (q/4))}"

definition w_kyber where
"w_kyber A s e m = do{

r ← mlwe.beta_vec;
e1 ← mlwe.beta_vec;
e2 ← mlwe.beta;
w_kyber’ A s e m r e1 e2}"

definition delta’ where
"delta’ sk pk m = pmf (w_kyber (fst pk) (fst sk) (snd sk) m) True"

definition delta_kyber’ where
"delta_kyber’ = measure_pmf.expectation pmf_key_gen

(λ(pk, sk). MAX m∈Msgs. delta’ sk pk m)"

10.2 δ-Correctness Proof

The idea to bound the probabilistic Kyber algorithms by delta_kyber’ is the
following: First use the deterministic part given by CRYSTALS-Kyber.Crypto_Scheme.kyber_correct
to bound the correctness by delta’ depending on a fixed key pair and mes-
sage. Then bound the message by the maximum over all messages. Finally
bound the key pair by using the expectation over the key pair. The result is
that the correctness error of the Kyber PKE is bounded by delta_kyber’.

First of all, we rewrite the deterministic part of the correctness proof kyber_correct
from CRYSTALS-Kyber.Crypto_Scheme.
lemma kyber_correct_alt:

fixes A s r e e1 e2 cu cv t u v

30

assumes t_def: "t = key_gen dt A s e"
and u_v_def: "(u,v) = encrypt t A r e1 e2 dt du dv m"
and ct_def: "ct = compress_error_vec dt (A *v s + e)"
and cu_def: "cu = compress_error_vec du

((transpose A) *v r + e1)"
and cv_def: "cv = compress_error_poly dv

(scalar_product (decompress_vec dt t) r + e2 +
to_module (round((real_of_int q)/2)) * m)"

and error: "decrypt u v s du dv 6= m"
and m01: "set ((coeffs ◦ of_qr) m) ⊆ {0,1}"
shows "abs_infty_poly (scalar_product e r + e2 + cv + scalar_product

ct r
- scalar_product s e1 - scalar_product s cu) ≥ round (real_of_int

q / 4)"
〈proof 〉

Then we show the correctness in the probabilistic program for a fixed key
pair and message. The bound we use is delta’.
lemma correct_key_gen:
fixes A s e m
assumes pk_sk: "(pk, sk) = ((A, key_gen dt A s e), (s,e))"

and m_Msgs: "m∈Msgs"
shows "pmf (do{c ← pmf_encrypt pk m;

return_pmf (decrypt (fst c) (snd c) (fst sk) du dv 6= m)}) True ≤ delta’
sk pk m"
〈proof 〉

Now take the maximum over all messages. We rewrite this in order to be
able to instantiate it nicely.
lemma correct_key_gen_max:
fixes A s e m
assumes "(pk, sk) = ((A, key_gen dt A s e), (s,e))"

and "m∈Msgs"
shows "pmf (do{c ← pmf_encrypt pk m;

return_pmf (decrypt (fst c) (snd c) (fst sk) du dv 6= m)}) True ≤ (MAX
m’∈Msgs. delta’ sk pk m’)"
〈proof 〉

lemma correct_max:
fixes A s e
assumes "(pk, sk) = ((A, key_gen dt A s e), (s,e))"
shows "(MAX m∈Msgs. pmf (do{c ← pmf_encrypt pk m;

return_pmf (decrypt (fst c) (snd c) (fst sk) du dv 6= m)}) True) ≤ (MAX
m’∈Msgs. delta’ sk pk m’)"
〈proof 〉

lemma correct_max’:
fixes pk sk
assumes "snd pk = compress_vec dt ((fst pk) *v (fst sk) + (snd sk))"

31

shows "(MAX m∈Msgs. pmf (do{c ← pmf_encrypt pk m;
return_pmf (decrypt (fst c) (snd c) (fst sk) du dv 6= m)}) True) ≤
(MAX m’∈Msgs. delta’ sk pk m’)"

〈proof 〉

Finally show the overall bound delta_kyber’ for the correctness error of the
Kyber PKE.
lemma expect_correct:
"expect_correct ≤ delta_kyber’"
〈proof 〉

This yields the overall delta_kyber’-correctness of Kyber.
lemma delta_correct_kyber:
"delta_correct delta_kyber’"
〈proof 〉

end
end

References

[1] G. Alagic, D. A. Cooper, Q. Dang, T. Dang, J. M. Kelsey, J. Lichtinger,
Y.-K. Liu, C. A. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson,
D. Smith-Tone, and D. Apon. Status Report on the Third Round of
the NIST Post-Quantum Cryptography Standardization Process, 2022-
07-05 04:07:00 2022.

[2] R. M. Avanzi, J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé.
CRYSTALS-Kyber Algorithm Specifications And Supporting Docu-
mentation (version 3.0). 01/10/2020.

[3] R. M. Avanzi, J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé.
CRYSTALS-Kyber Algorithm Specifications And Supporting Docu-
mentation. 2017.

[4] R. M. Avanzi, J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé.
CRYSTALS-Kyber Algorithm Specifications And Supporting Docu-
mentation (version 2.0). 30/03/2019.

[5] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS — Kyber: A CCA-
Secure Module-Lattice-Based KEM. In 2018 IEEE European Sympo-
sium on Security and Privacy, pages 353–367, 2018.

32

[6] K. Kreuzer. CRYSTALS-Kyber. Archive of Formal Proofs, Septem-
ber 2022. https://isa-afp.org/entries/CRYSTALS-Kyber.html, Formal
proof development.

[7] K. Kreuzer. Verification of Correctness and Security Properties for
CRYSTALS-KYBER. In 2024 IEEE 37th Computer Security Founda-
tions Symposium (CSF), page TBD, Los Alamitos, CA, USA, 2024.
IEEE Computer Society.

[8] A. Langlois and D. Stehlé. Worst-Case to Average-Case Reductions for
Module Lattices. Des. Codes Cryptogr., 75(3):565–599, June 2015.

[9] A. Lochbihler. CryptHOL. Archive of Formal Proofs, May 2017. https:
//isa-afp.org/entries/CryptHOL.html, Formal proof development.

[10] A. Lochbihler and S. R. Sefidgar. A tutorial introduction to CryptHOL.
Cryptology ePrint Archive, Paper 2018/941, 2018. https://eprint.iacr.
org/2018/941.

33

https://isa-afp.org/entries/CRYSTALS-Kyber.html
https://isa-afp.org/entries/CryptHOL.html
https://isa-afp.org/entries/CryptHOL.html
https://eprint.iacr.org/2018/941
https://eprint.iacr.org/2018/941

	Introduction
	Deterministic Part of Correctness Proof for Kyber without Compression of the Public Key
	-Correctness of PKEs
	Rq is Finite
	Auxiliary Lemmas on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 spmf
	Module Learning-with-Errors Problem (module-LWE)
	-Correctness of Kyber without Compression of the Public Key
	Definition of Probabilistic Kyber without Key Compression and
	-Correctness Proof

	IND-CPA Security of Kyber
	Instantiation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 indcpa Locale with Kyber
	Reduction Functions
	IND-CPA Security Proof

	Specification for Kyber with q=3329
	-Correctness of Kyber's Probabilistic Algorithms
	Definition of Probabilistic Kyber and
	-Correctness Proof

