Formalized Burrows-Wheeler Transform

Louis Cheung and Christine Rizkallah

October 13, 2025

Abstract

The Burrows-Wheeler transform (BWT) [2] is an invertible lossless transformation that permutes input sequences into alternate sequences of the same length that frequently contain long localized regions that involve clusters consisting of just a few distinct symbols, and sometimes also include long runs of same-symbol repetitions. Moreover, there is a one-to-one correspondence between the BWT and suffix arrays [7]. As a consequence, the BWT is widely used in data compression and as an indexing data structure for pattern search. In this formalization [4], we present the formal verification of both the BWT and its inverse, building on a formalization of suffix arrays [5]. This is the artefact of our CPP paper [3].

Contents

1	Nat Modulo Helper	3
2	Rotated Sublists	3
3	Counting	11
	3.1 Count List	11
	3.2 Cardinality	
	3.3 Sorting	14
4	Rank Definition	19
5	Rank Properties	19
	5.1 List Properties	19
	5.2 Counting Properties	19
	5.3 Bound Properties	21
	5.4 Sorted Properties	23
6	Select Definition	26

7	Select Properties	27
	7.1 Length Properties	27
	7.2 List Properties	27
	7.3 Bound Properties	28
	7.4 Nth Properties	28
	7.5 Sorted Properties	32
8	Rank and Select Properties	37
Ü	8.1 Correctness of Rank and Select	37
	8.1.1 Rank Correctness	37
	8.1.2 Select Correctness	37
	8.2 Rank and Select	38
	8.3 Sorted Properties	39
	Solitor Francisco IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	00
9	Suffix Array Properties	40
	9.1 Bijections	40
	9.2 Suffix Properties	41
	9.3 General Properties	43
	9.4 Nth Properties	43
	9.5 Valid List Properties	45
10	Counting Properties on Suffix Arays	46
	10.1 Counting Properties	46
	10.2 Ordering Properties	51
11	Burrows-Wheeler Transform	53
19	BWT Verification	54
14	12.1 List Rotations	54
	12.2 Ordering	55
	12.3 BWT Equivalence	56
	12.5 BW 1 Equivalence	50
13	BWT and Suffix Array Correspondence	56
	13.1 BWT Using Suffix Arrays	57
	13.2 BWT Rank Properties	65
	13.3 Suffix Array and BWT Rank	68
14	Inverse Burrows-Wheeler Transform	71
	14.1 Abstract Versions	71
	14.2 Concrete Versions	71
1 5	List Filter	72

```
16 Verification of the Inverse Burrows-Wheeler Transform
                                                                         73
   73
   75
   16.3 Backwards Inverse BWT Simple Properties . . . . . . . . . . . .
                                                                         76
   16.4 Backwards Inverse BWT Correctness . . . . . . . . . . . . . . . . . .
   theory Nat-Mod-Helper
 imports Main
begin
     Nat Modulo Helper
1
lemma nat-mod-add-neg-self:
 \llbracket a < (n :: nat); b < n; b \neq 0 \rrbracket \Longrightarrow (a + b) \mod n \neq a
 by (metis add-diff-cancel-left' mod-if mod-mult-div-eq mod-mult-self1-is-0)
lemma nat-mod-a-pl-b-eq1:
 [n+b \le a; a < (n::nat)] \Longrightarrow (a+b) \mod n = b - (n-a)
 using order-le-less-trans by blast
lemma not-mod-a-pl-b-eq2:
 \llbracket n-a \leq b; \ a < n; \ b < (n::nat) \rrbracket \Longrightarrow (a+b) \ mod \ n=b-(n-a)
 using Nat.diff-diff-right add.commute mod-if by auto
end
theory Rotated-Substring
 imports Nat-Mod-Helper
begin
2
     Rotated Sublists
definition is-sublist :: 'a list \Rightarrow 'a list \Rightarrow bool
is-sublist xs \ ys = (\exists \ as \ bs. \ xs = as @ \ ys @ \ bs)
definition is-rot-sublist :: 'a list \Rightarrow 'a list \Rightarrow bool
is-rot-sublist xs \ ys = (\exists \ n. \ is\text{-sublist} \ (rotate \ n \ xs) \ ys)
definition inc-one-bounded :: nat \Rightarrow nat \ list \Rightarrow bool
inc-one-bounded n \ xs \equiv
 (\forall i. \ Suc \ i < length \ xs \longrightarrow xs \ ! \ Suc \ i = Suc \ (xs \ ! \ i) \ mod \ n) \ \land
 (\forall i < length \ xs. \ xs \ ! \ i < n)
lemma inc-one-boundedD:
```

```
\llbracket inc\text{-}one\text{-}bounded\ n\ xs;\ Suc\ i < length\ xs \rrbracket \implies xs \mid Suc\ i = Suc\ (xs \mid i)\ mod\ n
  \llbracket inc\text{-}one\text{-}bounded \ n \ xs; \ i < length \ xs \rrbracket \implies xs \ ! \ i < n \rrbracket
  using inc-one-bounded-def by blast+
lemma inc-one-bounded-nth-plus:
  \llbracket inc\text{-}one\text{-}bounded\ n\ xs;\ i+k < length\ xs 
Vert \implies xs\ !\ (i+k) = (xs\ !\ i+k)\ mod\ n
proof (induct k)
  case \theta
  then show ?case
    by (simp\ add:\ inc\text{-}one\text{-}boundedD(2))
next
  case (Suc\ k)
  then show ?case
    by (metis Suc-lessD add-Suc-right inc-one-bounded-def mod-Suc-eq)
lemma inc-one-bounded-neg:
 [inc-one-bounded\ n\ xs;\ length\ xs \le n;\ i+k < length\ xs;\ k \ne 0] \Longrightarrow xs!\ (i+k)
  using inc-one-bounded-nth-plus nat-mod-add-neg-self
  \mathbf{by}\ (simp\ add:\ inc\text{-}one\text{-}boundedD(2)\ linorder\text{-}not\text{-}le)
corollary inc-one-bounded-neq-nth:
  assumes inc-one-bounded n xs
  \mathbf{and}
            length xs \leq n
            i < length xs
  and
 and
            j < length xs
 and
           i \neq j
shows xs ! i \neq xs ! j
proof (cases i < j)
  assume i < j
  then show ?thesis
  by (metis\ assms(1,2,4)\ canonically-ordered-monoid-add-class.lessE\ inc-one-bounded-neq)
\mathbf{next}
  assume \neg i < j
  then show ?thesis
  by (metis\ assms(1,2,3,5)\ canonically-ordered-monoid-add-class.lessE\ inc-one-bounded-neq
              le-neq-implies-less linorder-not-le)
qed
\mathbf{lemma}\ inc\text{-}one\text{-}bounded\text{-}distinct:
  \llbracket inc\text{-}one\text{-}bounded\ n\ xs;\ length\ xs \leq n \rrbracket \implies distinct\ xs
  using distinct-conv-nth inc-one-bounded-neg-nth by blast
{\bf lemma}\ inc\text{-}one\text{-}bounded\text{-}subset\text{-}upt\text{:}
  [inc\text{-}one\text{-}bounded\ n\ xs;\ length\ xs \le n] \implies set\ xs \subseteq \{0...< n\}
 by (metis\ at Least Less Than-iff\ in-set-conv-nth\ inc-one-bounded D(2)\ less-eq-nat. simps(1)
            subset-code(1)
```

```
lemma inc-one-bounded-consD:
  inc-one-bounded n (x \# xs) \Longrightarrow inc-one-bounded n xs
  unfolding inc-one-bounded-def
  using bot-nat-0.not-eq-extremum lessI less-zeroE mod-less-divisor by fastforce
\mathbf{lemma}\ inc\text{-}one\text{-}bounded\text{-}nth:
  [inc-one-bounded \ n \ xs; \ i < length \ xs] \implies xs \ ! \ i = ((\lambda x. \ Suc \ x \ mod \ n)^i) \ (xs \ !)
\theta)
\mathbf{proof}\ (induct\ i)
  case \theta
  then show ?case
   by simp
next
  case (Suc \ i)
 note IH = this
  from IH
 have xs ! i = ((\lambda x. Suc \ x \ mod \ n) \cap i) (xs ! \theta)
  hence Suc\ (xs \mid i)\ mod\ n = ((\lambda x.\ Suc\ x\ mod\ n)\ ^\ Suc\ i)\ (xs \mid \theta)
   by force
  moreover
  from inc-one-boundedD(1)[OF\ IH(2,3)]
  have xs ! Suc i = Suc (xs ! i) mod n.
  ultimately show ?case
   by presburger
qed
\mathbf{lemma}\ inc\text{-}one\text{-}bounded\text{-}nth\text{-}le\text{:}
  [inc\text{-}one\text{-}bounded\ n\ xs;\ i < length\ xs;\ (xs!\ 0) + i < n] \implies
   xs ! i = (xs ! 0) + i
  by (metis add-cancel-right-left inc-one-bounded-nth-plus mod-if)
lemma inc-one-bounded-upt1:
 assumes inc-one-bounded n xs
           length xs = Suc k
 and
 and
           Suc \ k < n
 and
           (xs ! 0) + k < n
shows xs = [xs ! \theta .. < (xs ! \theta) + Suc k]
proof (intro list-eq-iff-nth-eq[THEN iffD2] conjI impI allI)
 show length xs = length [xs ! 0 .. < xs ! 0 + Suc k]
   using assms(2) by force
\mathbf{next}
  \mathbf{fix} i
 \mathbf{assume}\ i < \mathit{length}\ \mathit{xs}
 hence [xs ! 0..< xs ! 0 + Suc k] ! i = xs ! 0 + i
   by (metis add-less-cancel-left assms(2) nth-upt)
  moreover
  have xs ! \theta + i < n
```

```
using \langle i < length \ xs \rangle \ assms(2,4) by linarith
  with inc-one-bounded-nth-le[OF assms(1) \ \langle i < length \ xs \rangle]
  have xs ! i = xs ! \theta + i
   by simp
  ultimately show xs ! i = [xs ! \theta .. < xs ! \theta + Suc k] ! i
   by presburger
\mathbf{qed}
lemma inc-one-bounded-upt2:
  assumes inc-one-bounded n xs
  and
           length xs = Suc k
 and
           Suc \ k \leq n
 and
           n \leq (xs \mid \theta) + k
shows xs = [xs ! \theta .. < n] @ [\theta .. < (xs ! \theta) + Suc k - n]
proof (intro list-eq-iff-nth-eq[THEN iffD2] conjI impI allI)
  show length xs = length ([xs ! 0..< n] @ [0..< xs ! 0 + Suc k - n])
    using assms(1) assms(2) assms(4) inc-one-boundedD(2) less-or-eq-imp-le by
auto
next
  \mathbf{fix} i
  assume i < length xs
  show xs ! i = ([xs ! 0..< n] @ [0..< xs ! 0 + Suc k - n]) ! i
  proof (cases i < length [xs ! \theta ... < n])
   assume i < length [xs ! \theta ... < n]
   hence ([xs ! \theta ... < n] @ [\theta ... < xs ! \theta + Suc k - n]) ! i = [xs ! \theta ... < n] ! i
     by (meson nth-append)
   moreover
   have [xs ! \theta ... < n] ! i = xs ! \theta + i
     using \langle i < length [xs ! 0..< n] \rangle by force
   moreover
   have xs \mid \theta + i < n
     using \langle i < length [xs ! \theta ... < n] \rangle by auto
   with inc-one-bounded-nth-le[OF assms(1) \ \langle i < length \ xs \rangle]
   have xs ! i = xs ! \theta + i
     by blast
   ultimately show xs ! i = ([xs ! \theta ... < n] @ [\theta ... < xs ! \theta + Suc k - n]) ! i
     by simp
   assume \neg i < length [xs ! \theta ... < n]
   hence ([xs ! \theta ... < n] @ [\theta ... < xs ! \theta + Suc k - n]) ! i =
          [0..< xs ! 0 + Suc k - n] ! (i - length [xs ! 0..< n])
     by (meson nth-append)
   moreover
   have [0..< xs ! 0 + Suc k - n] ! (i - length [xs ! 0..< n]) = i - (n - xs ! 0)
     using \langle i < length \ xs \rangle \ add-0 \ assms(2) \ assms(4) by fastforce
   moreover
     have i < n
       using \langle i < length \ xs \rangle \ assms(2) \ assms(3) by linarith
```

```
moreover
     from inc-one-boundedD(2)[OF\ assms(1),\ of\ 0]
     have xs \mid 0 < n
       by (simp \ add: \ assms(2))
     moreover
     have n - xs ! \theta \le i
       using \langle \neg i < length [xs ! 0..< n] \rangle by force
     ultimately have xs ! i = i - (n - xs ! \theta)
       using not-mod-a-pl-b-eq2[of <math>n \ xs \ ! \ 0 \ i]
                inc-one-bounded-nth-plus[OF\ assms(1),\ of\ 0\ i,\ simplified,\ OF\ \langle i<
length |xs\rangle]
       by presburger
   ultimately show xs ! i = ([xs ! \theta ... < n] @ [\theta ... < xs ! \theta + Suc k - n]) ! i
 qed
qed
lemmas inc-one-bounded-upt = inc-one-bounded-upt 1 inc-one-bounded-upt 2
lemma is-rot-sublist-nil:
  is-rot-sublist xs []
 by (metis append-Nil is-rot-sublist-def is-sublist-def)
lemma rotate-upt:
  m \le n \Longrightarrow rotate \ m \ [0..< n] = [m..< n] @ [0..< m]
 by (metis diff-zero le-Suc-ex length-upt rotate-append upt-add-eq-append zero-order(1))
\mathbf{lemma}\ inc\text{-}one\text{-}bounded\text{-}is\text{-}rot\text{-}sublist\text{:}
 assumes inc-one-bounded n xs length xs \leq n
 shows is-rot-sublist [0..< n] xs
  unfolding is-rot-sublist-def is-sublist-def
proof (cases length xs)
  case \theta
  then show \exists na \ as \ bs. \ rotate \ na \ [0..< n] = as @ xs @ bs
   using append-Nil by blast
next
  case (Suc \ k)
 hence Suc \ k \leq n
   using assms(2) by auto
  have (xs ! \theta) + k < n \Longrightarrow \exists na \ as \ bs. \ rotate \ na \ [\theta.. < n] = as @ xs @ bs
  proof -
   assume (xs ! \theta) + k < n
   with inc-one-bounded-upt(1)[OF assms(1) Suc \langle Suc \ k \leq n \rangle]
   have xs = [xs ! \theta .. < xs ! \theta + Suc k]
     by blast
   moreover
   have xs ! \theta + Suc k \le n
```

```
by (simp add: Suc-leI \langle xs \mid 0 + k < n \rangle)
        with upt-add-eq-append [of xs! 0 \times 10^{-1} xs! 0 \times 10^{-1} xs! 0 \times 10^{-1} yr 0 \times 1
        have [xs ! \theta ... < n] = [xs ! \theta ... < xs ! \theta + Suc k] @ [xs ! \theta + Suc k ... < n]
             by (metis le-add1 le-add-diff-inverse)
        with upt-add-eq-append[of 0 xs ! 0 n - xs ! 0]
        have [0..< n] = [0..< xs ! 0] @ [xs ! 0..< xs ! 0 + Suc k] @ [xs ! 0 + Suc k..< n]
             using \langle xs \mid \theta + Suc \mid k \leq n \rangle by fastforce
        ultimately show ?thesis
             by (metis append.right-neutral append-Nil rotate-append)
    qed
    moreover
    have \neg (xs \mid 0) + k < n \Longrightarrow \exists na \ as \ bs. \ rotate \ na \ [0..< n] = as @ xs @ bs
    proof -
        assume \neg (xs ! \theta) + k < n
        hence (xs ! \theta) + k \ge n
            by simp
        with inc-one-bounded-upt(2)[OF assms(1) Suc \langle Suc \ k \leq n \rangle]
        have xs = [xs ! \theta ... < n] @ [\theta ... < xs ! \theta + Suc k - n]
            by blast
        moreover
        from inc-one-boundedD(2)[OF\ assms(1),\ of\ 0]
        have xs ! \theta < n
            by (simp add: Suc)
        with rotate-upt[of xs ! \theta n]
        have rotate (xs ! \theta) [\theta...< n] = [xs ! \theta...< n] @ [\theta...< xs ! \theta]
             by linarith
        moreover
            have 0 \le xs \mid 0 + Suc \mid k - n
                by simp
             hence [0..< xs ! 0 + Suc k - n + (n - Suc k)] =
                                   [0..< xs ! 0 + Suc k - n] @ [xs ! 0 + Suc k - n..< xs ! 0 + Suc k - n] 
n + (n - Suc \ k)
                 using upt-add-eq-append[of 0 xs! 0 + Suc k - n n - Suc k] by blast
             moreover
             have xs \mid 0 = xs \mid 0 + Suc \mid k - n + (n - Suc \mid k)
                 using \langle Suc \ k \leq n \rangle \langle n \leq xs \ ! \ \theta + k \rangle by auto
            ultimately have [0..< xs ! \theta] = [0..< xs ! \theta + Suc k - n] @ [xs ! \theta + Suc k]
-n..< xs \mid \theta
                by argo
        ultimately show ?thesis
            by (metis append.assoc append-Nil)
    ultimately show \exists na \ as \ bs. \ rotate \ na \ [0..< n] = as @ xs @ bs
        by blast
qed
```

 $\mathbf{lemma}\ is\mbox{-}rot\mbox{-}sublist\mbox{-}idx$:

```
is-rot-sublist [0..< length \ xs] \ ys \implies is-rot-sublist \ xs \ (map \ ((!) \ xs) \ ys)
  unfolding is-rot-sublist-def is-sublist-def
proof (elim exE)
  \mathbf{fix} \ n \ as \ bs
  assume rotate n \ [0..< length \ xs] = as @ ys @ bs
  hence rotate n xs = map ((!) xs) (as @ ys @ bs)
    by (metis map-nth rotate-map)
  then show \exists n \text{ as bs. rotate } n \text{ } xs = as @ map ((!) \text{ } xs) \text{ } ys @ bs
    by auto
qed
lemma is-rot-sublist-upt-eq-upt-hd:
  \llbracket \textit{is-rot-sublist} \ [\textit{0..} < \textit{Suc} \ \textit{n} \end{bmatrix} \ \textit{ys}; \ \textit{length} \ \textit{ys} = \textit{Suc} \ \textit{n}; \ \textit{ys} \ ! \ \textit{0} = \textit{0} \rrbracket \Longrightarrow \textit{ys} = [\textit{0..} < \textit{Suc}
  {\bf unfolding}\ is\mbox{-} rot\mbox{-} sublist\mbox{-} def\ is\mbox{-} sublist\mbox{-} def
proof (elim \ exE)
  fix m as bs
  assume A: length ys = Suc \ n \ ys \ ! \ \theta = \theta \ rotate \ m \ [\theta ... < Suc \ n] = as @ ys @ bs
  with rotate-conv-mod[of m [0..<Suc n]]
  have rotate (m \mod length [0... < Suc n]) [0... < Suc n] = as @ ys @ bs
  with rotate-upt[of m mod length [0..<Suc n] Suc n]
  have [m \mod length \ [0..<Suc \ n]..<Suc \ n] @ [0..<m \mod length \ [0..<Suc \ n]] =
as @ ys @ bs
    by (metis diff-zero le-Suc-eq length-upt mod-Suc-le-divisor)
  hence [m \mod Suc \ n.. < Suc \ n] @ [0.. < m \mod Suc \ n] = as @ ys @ bs
    by simp
  moreover
  have as = []
   by (metis A(1) A(3) diff-zero length-append length-greater-0-conv length-rotate
length-upt
               less-add-same-cancel2 not-add-less1)
  moreover
  have bs = []
   by (metis A(1) A(3) append.right-neutral append-eq-append-conv calculation(2)
diff-zero
               length-rotate length-upt self-append-conv2)
  moreover
  have m \mod Suc \ n = 0
     by (metis A add.right-neutral append.right-neutral calculation (2,3) diff-zero
length-rotate
            mod\text{-}less\text{-}divisor\ nth\text{-}rotate\ nth\text{-}upt\ self\text{-}append\text{-}conv2\ zero\text{-}le\ zero\text{-}less\text{-}Suc
               ordered-cancel-comm-monoid-diff-class.add-diff-inverse)
  ultimately show ys = [\theta.. < Suc \ n]
    \mathbf{by} \ simp
qed
\mathbf{lemma}\ is\text{-}rot\text{-}sublist\text{-}upt\text{-}eq\text{-}upt\text{-}last:}
  \llbracket is\text{-rot-sublist } [0..< Suc \ n] \ ys; \ length \ ys = Suc \ n; \ ys \ ! \ n = n \rrbracket \Longrightarrow ys = [0..< Suc \ n]
```

```
unfolding is-rot-sublist-def is-sublist-def
proof (elim exE)
 \mathbf{fix} \ m \ as \ bs
 assume A: length ys = Suc \ n \ ys \ ! \ n = n \ rotate \ m \ [0.. < Suc \ n] = as @ ys @ bs
with rotate-conv-mod[of m [0..< Suc n]]
 have rotate (m mod length [0..<Suc\ n]) [0..<Suc\ n]=as\ @\ ys\ @\ bs
  with rotate-upt[of m \mod length [0..<Suc n] Suc n]
  have [m \mod length \ [0... < Suc \ n]... < Suc \ n] @ [0... < m \mod length \ [0... < Suc \ n]] =
as @ ys @ bs
   by (metis diff-zero le-Suc-eq length-upt mod-Suc-le-divisor)
 hence [m \mod Suc \ n... < Suc \ n] @ [0... < m \mod Suc \ n] = as @ ys @ bs
   by simp
 moreover
 have as = []
   by (metis A(1) A(3) diff-zero length-append length-greater-0-conv length-rotate
length-upt
            less-add-same-cancel2 not-add-less1)
 moreover
 have bs = []
  by (metis A(1) A(3) append.right-neutral append-eq-append-conv calculation(2)
diff-zero
            length-rotate length-upt self-append-conv2)
 moreover
 from list-eq-iff-nth-eq[THEN iffD1, OF calculation(1), simplified,
                      simplified\ calculation(2,3),\ simplified
 have Suc \ n = length \ ys \ \forall \ i < Suc \ n. ([m mod Suc \ n... < n] @ n \# [0... < m \ mod \ Suc
n]) ! i = ys ! i
   by blast+
 hence ([m \mod Suc \ n..< n] @ n \# [0..< m \mod Suc \ n])! n = n
   by (simp \ add: A(2))
 with nth-append[of [m \mod Suc \ n... < n] n \# [0... < m \mod Suc \ n] n]
 have n < length [m mod Suc n..< n] \lor
       (n \# [0.. < m \mod Suc \ n]) ! (n - length [m \mod Suc \ n.. < n]) = n
   by argo
 hence m \mod Suc \ n = \theta
  proof
   assume n < length [m \mod Suc \ n... < n]
   then show m \mod Suc \ n = 0
     by simp
  next
   assume B: (n \# [0.. < m \mod Suc \ n]) ! (n - length [m \mod Suc \ n.. < n]) = n
   show m \mod Suc \ n = 0
   proof (cases n - length [m \mod Suc \ n... < n])
     case \theta
     then show ?thesis
      by simp
   \mathbf{next}
```

```
case (Suc \ x)
      then show ?thesis
     \mathbf{by}\ (\textit{metis B One-nat-def add-Suc diff-diff-cancel length-upt lessI mod-Suc-le-divisor}
                          mod-less-divisor nless-le nth-Cons-Suc nth-upt plus-1-eq-Suc
zero-less-Suc)
    qed
  qed
  ultimately show ys = [0.. < Suc \ n]
    \mathbf{by} \ simp
qed
end
theory Count-Util
 \mathbf{imports}\ \mathit{HOL-Library}. \mathit{Multiset}
          HOL-Combinatorics. List-Permutation
          SuffixArray.List-Util
          Suffix Array. List-Slice
begin
      Counting
3
        Count List
3.1
lemma count-in:
  x \in set \ xs \Longrightarrow count\text{-list} \ xs \ x > 0
 by (meson\ count\text{-}list\text{-}0\text{-}iff\ gr0I)
lemma in-count:
  count-list xs \ x > 0 \implies x \in set \ xs
 by (metis count-notin less-irreft)
lemma notin-count:
  count-list xs \ x = 0 \implies x \notin set \ xs
 by (simp add: count-list-0-iff)
\mathbf{lemma}\ count\text{-}list\text{-}eq\text{-}count\text{:}
  count-list xs \ x = count \ (mset \ xs) \ x
  by (induct xs; simp)
\mathbf{lemma}\ count\text{-}list\text{-}perm:
 xs <^{\sim}> ys \Longrightarrow count\text{-list } xs \ x = count\text{-list } ys \ x
 by (simp add: count-list-eq-count)
lemma in-count-nth-ex:
  count-list xs \ x > 0 \Longrightarrow \exists i < length \ xs. \ xs \ ! \ i = x
 by (meson in-count in-set-conv-nth)
```

lemma in-count-list-slice-nth-ex:

```
count-list (list-slice xs\ i\ j)\ x>0 \Longrightarrow \exists\ k< length\ xs.\ i\le k\land k< j\land xs\ !\ k=x by (meson in-count nth-mem-list-slice)
```

3.2 Cardinality

```
lemma count-list-card:
  count-list xs \ x = card \ \{j. \ j < length \ xs \land xs \ ! \ j = x\}
proof (induct xs rule: rev-induct)
  \mathbf{case}\ \mathit{Nil}
  then show ?case
    by simp
next
  case (snoc\ y\ xs)
 let ?A = \{j. \ j < length \ xs \land xs \ ! \ j = x\}
 let ?B = \{j. \ j < length \ (xs @ [y]) \land (xs @ [y]) \ ! \ j = x\}
  have length xs \notin ?A
    by simp
  have ?B - \{length \ xs\} = ?A
    by (intro equalityI subsetI; clarsimp simp: nth-append)
    have y = x \Longrightarrow count\text{-list } (xs @ [y]) \ x = Suc \ (card ?A)
     by (simp add: snoc)
    moreover
    have y = x \Longrightarrow ?B = insert (length xs) ?A
    by (metis\ (mono\text{-}tags,\ lifting)\ \cdot ?B - \{length\ xs\} = ?A \ insert\text{-}Diff\ length\text{-}append\text{-}singleton
                                     lessI mem-Collect-eq nth-append-length)
    with card-insert-disjoint [OF - \langle length \ xs \notin - \rangle]
    have y = x \Longrightarrow card ?B = Suc (card ?A)
     by simp
    ultimately have y = x \Longrightarrow ?case
      by simp
  have y \neq x \Longrightarrow count\text{-list } (xs @ [y]) \ x = card ?A
    by (simp add: snoc)
  hence y \neq x \Longrightarrow ?case
    using \langle ?B - \{length \ xs\} = ?A \rangle by force
  ultimately show ?case
    \mathbf{by} blast
qed
lemma card-le-eq-card-less-pl-count-list:
  \mathbf{fixes}\ s::\ 'a::\ linorder\ list
 shows card \{k. \ k < length \ s \land s \mid k \leq a\} = card \ \{k. \ k < length \ s \land s \mid k < a\}
+ count-list s a
```

```
proof -
  let ?A = \{k. \ k < length \ s \land s \mid k \leq a\}
 let ?B = \{k. \ k < length \ s \land s \ ! \ k < a\}
 let ?C = \{k. \ k < length \ s \land s \mid k = a\}
 have ?B \cap ?C = \{\}
   by blast
  hence card (?B \cup ?C) = card ?B + count-list s a
   by (simp add: card-Un-disjoint count-list-card)
  moreover
  have ?A = ?B \cup ?C
  proof safe
   \mathbf{fix} \ x
   assume s ! x \le a s ! x \ne a
   then show s ! x < a
     by simp
  next
   \mathbf{fix} \ x
   assume s ! x < a
   then show s ! x \leq a
     by simp
  qed
  hence card ?A = card (?B \cup ?C)
   by simp
  ultimately show ?thesis
   by simp
qed
\mathbf{lemma}\ \mathit{card-less-idx-upper-strict} \colon
 \mathbf{fixes}\ s::\ 'a::\ linorder\ list
 assumes a \in set s
 shows card \{k. \ k < length \ s \land s \mid k < a\} < length \ s
proof -
  have \exists i < length s. s! i = a
   by (meson assms in-set-conv-nth)
  then obtain i where P:
   i < length \ s \ s \ ! \ i = a
   by blast
  have \{k. \ k < length \ s \land s \mid k < a\} \subseteq \{0..< length \ s\}
   using atLeastLessThan-iff by blast
  moreover
  have i \in \{0..< length s\}
   \mathbf{by}\ (\mathit{simp}\ \mathit{add} \colon P(1))
  moreover
  have i \notin \{k. \ k < length \ s \land s \mid k < a\}
   by (simp add: P(2))
  ultimately have \{k. \ k < length \ s \land s \mid k < a\} \subset \{0..< length \ s\}
   \mathbf{by} blast
```

```
then show ?thesis
   by (metis card-upt finite-atLeastLessThan psubset-card-mono)
qed
lemma card-less-idx-upper:
 shows card \{k. \ k < length \ s \land s \mid k < a\} \leq length \ s
 by (metis (no-types, lifting) at Least Less Than-iff bot-nat-0.extremum mem-Collect-eq
subsetI
                             subset-eq-atLeast0-lessThan-card)
lemma card-pl-count-list-strict-upper:
 fixes s :: 'a :: linorder \ list
 shows card \{i.\ i < length\ s \land s \mid i < a\} + count-list\ s\ a \leq length\ s
proof -
 let ?X = \{i. \ i < length \ s \land s \mid i < a\}
 let ?Y = \{i. \ i < length \ s \land s \ ! \ i = a\}
 have ?X \cap ?Y = \{\}
   by blast
 hence card (?X \cup ?Y) = card ?X + card ?Y
   by (simp add: card-Un-disjoint)
 moreover
 have card ?Y = count\text{-list } s \ a
   by (simp add: count-list-card)
 moreover
 have ?X \cup ?Y \subseteq \{0..< length s\}
   by (simp add: subset-iff)
 hence card (?X \cup ?Y) \leq length s
   using subset-eq-atLeast0-lessThan-card by blast
 ultimately show ?thesis
   by presburger
qed
3.3
        Sorting
\mathbf{lemma}\ sorted\text{-}nth\text{-}le\text{:}
 assumes sorted xs
           card \{k. \ k < length \ xs \land xs \ | \ k < c\} < length \ xs
shows c \le xs ! card \{k. k < length <math>xs \land xs ! k < c\}
 using assms
proof (induct xs)
 case Nil
 then show ?case
   by simp
\mathbf{next}
 case (Cons a xs)
 \mathbf{note}\ \mathit{IH} = \mathit{this}
 let ?A = \{k. \ k < length \ (a \# xs) \land (a \# xs) ! \ k < c\}
```

```
let ?B = \{k. \ k < length \ xs \land xs \ ! \ k < c\}
have a < c \lor c \le a
 by fastforce
then show ?case
proof
 assume a < c
 have finite ?B
   by auto
 hence finite (Suc '?B)
   by blast
 have card (Suc '?B) = card ?B
   using card-image inj-Suc by blast
 have \{\theta\} \cap Suc '?B = \{\}
   by blast
 have ?A = \{0\} \cup Suc `?B
 proof (intro equalityI subsetI)
   \mathbf{fix} \ x
   assume x \in \{\theta\} \cup Suc '?B
   then show x \in ?A
   proof
     assume x \in \{\theta\}
     hence x = \theta
       by simp
     then show ?thesis
       \mathbf{by} \ (simp \ add : \langle a < c \rangle)
   next
     assume x \in Suc '?B
     hence \exists y. \ x = Suc \ y \land xs \ ! \ y < c
       by blast
     then show ?thesis
       using \langle x \in Suc '?B \rangle by force
   qed
 \mathbf{next}
   \mathbf{fix} \ x
   assume x \in ?A
   hence x = 0 \lor (\exists y. \ x = Suc \ y \land xs \ ! \ y < c)
     using not0-implies-Suc by fastforce
   then show x \in \{0\} \cup Suc '?B
   proof
     assume x = 0
     then show ?thesis
       by blast
   \mathbf{next}
     assume \exists y. \ x = Suc \ y \land xs \ ! \ y < c
```

```
then show ?thesis
         using \langle x \in ?A \rangle by fastforce
     qed
   qed
   with card-Un-disjoint[OF - \langle finite(Suc '?B) \rangle \langle - \cap - = - \rangle]
   have card ?A = Suc (card ?B)
     \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \langle \mathit{card}\ (\mathit{Suc}\ `?B) = \mathit{card}\ ?B \rangle)
   hence (a \# xs) ! card \{k. k < length (a \# xs) \land (a \# xs) ! k < c\} =
          xs ! card \{k. k < length xs \land xs ! k < c\}
     by simp
   then show ?case
     using Cons.hyps\ IH(2)\ IH(3)\ \langle card\ ?A=Suc\ (card\ ?B)\rangle by auto
  next
   assume c \leq a
   have \{k. \ k < length \ (a \# xs) \land (a \# xs) \ ! \ k < c\} = \{\}
   proof safe
     \mathbf{fix} \ x
     assume A: x < length (a \# xs) (a \# xs) ! x < c
     show x \in \{\}
     proof (cases x)
       case \theta
       then show ?thesis
         using A(2) \langle c \leq a \rangle by auto
     next
       case (Suc \ n)
       hence a \leq (a \# xs) ! x
         using A(1) IH(2) by auto
       then show ?thesis
         using A(2) \langle c \leq a \rangle by auto
     qed
   qed
   then show ?thesis
     by (metis \ \langle c \leq a \rangle \ card.empty \ nth-Cons-\theta)
  qed
qed
lemma sorted-nth-le-gen:
  assumes sorted xs
           card \{k. \ k < length \ xs \land xs \ | \ k < c\} + i < length \ xs
shows c \le xs ! (card \{k. \ k < length \ xs \land xs ! \ k < c\} + i)
proof (cases i)
  case \theta
  then show ?thesis
   using assms(1) assms(2) sorted-nth-le by auto
  let ?x = card \{k. \ k < length \ xs \land xs \ ! \ k < c \}
 case (Suc\ n)
  with sorted-wrt-nth-less[OF assms(1), of ?x ?x + i]
 have xs ! ?x \le xs ! (?x + i)
```

```
using assms(1) assms(2) le-add1 sorted-nth-mono by blast
 moreover
 have c \leq xs \, ! \, ?x
   using add-lessD1 assms(1) assms(2) sorted-nth-le by blast
 ultimately show ?thesis
   by order
\mathbf{qed}
lemma sorted-nth-less-gen:
 assumes sorted xs
 and
          i < card \{k. \ k < length \ xs \land xs \ ! \ k < c\}
shows
           xs ! i < c
proof (rule ccontr)
 assume \neg xs ! i < c
 hence i \notin \{k. \ k < length \ xs \land xs \ ! \ k < c\}
   by simp
 hence \forall k < length \ xs. \ i \leq k \longrightarrow k \notin \{k. \ k < length \ xs \land xs \ ! \ k < c\}
   using assms(1) sorted-iff-nth-mono by fastforce
 hence \{k. \ k < length \ xs \land xs \mid k < c\} \subseteq \{0... < i\}
   by fastforce
 moreover
 have card \{0..< i\} = i
   by auto
  ultimately show False
   by (metis assms(2) card-mono finite-atLeastLessThan verit-comp-simplify1(3))
qed
lemma sorted-nth-gr-gen:
 assumes sorted xs
          card \{k. \ k < length \ xs \land xs \ | \ k < c\} + i < length \ xs
 and
          count-list xs c \leq i
 and
shows
           xs! (card \{k. \ k < length \ xs \land xs! \ k < c\} + i) > c
proof -
 let ?A = \{k. \ k < length \ xs \land xs \ ! \ k < c\}
 have xs ! (card ?A + i) \ge c
   using assms(1) assms(2) sorted-nth-le-qen by blast
 hence xs ! (card ?A + i) = c \lor xs ! (card ?A + i) > c
   by force
  then show ?thesis
  proof
   assume xs!(card?A+i) > c
   then show ?thesis.
  next
   assume xs ! (card ?A + i) = c
   from sorted-nth-le-gen[OF assms(1)]
   have P1: \forall k < length \ xs. \ card \ ?A \leq k \longrightarrow c \leq xs \ ! \ k
    by (metis (mono-tags, lifting) assms(1) dual-order.strict-trans2 linorder-not-le
                                 sorted-iff-nth-mono sorted-nth-le)
```

```
have P2: \forall k < length \ xs. \ k < card \ ?A + Suc \ i \longrightarrow xs \ ! \ k \leq c
     by (metis (mono-tags, lifting) Suc-leI \langle xs \mid (card ?A + i) = c \rangle add-Suc-right
                                              add-le-cancel-left assms(1,2) plus-1-eq-Suc
sorted-nth-mono)
   have P3: \forall x \in \{card ?A.. < card ?A + Suc i\}. xs! x = c
   proof safe
     \mathbf{fix} \ x
     assume x \in \{card ?A.. < card ?A + Suc i\}
     hence A: card ?A \le x x < card ?A + Suc i
       by simp+
     have c \leq xs \mid x
       using P1 \ A \ assms(2) by auto
     moreover
     have xs ! x \le c
       using A(2) P2 assms(2) by force
     ultimately show xs ! x = c
       by simp
   \mathbf{qed}
   have \{card ?A.. < card ?A + Suc i\} \subseteq \{k. k < length xs \land xs ! k = c\}
   proof
     \mathbf{fix} \ x
     assume A: x \in \{card ?A.. < card ?A + Suc i\}
     have x < card ?A + Suc i
       using A by simp+
     hence x < length xs
       using assms(2) by linarith
     moreover
     have xs \mid x = c
       using P3 A by blast
     ultimately show x \in \{k. \ k < length \ xs \land xs \ ! \ k = c\}
       by blast
   hence count-list xs \ c \ge card \{card ?A.. < card ?A + Suc \ i\}
     using count-list-card[of xs c] card-mono
    \mathbf{by} \; (\textit{metis} \; (\textit{mono-tags}, \, \textit{lifting}) \; \langle \textit{xs} \; ! \; (\textit{card} \; ?A + i) = c \rangle \; \textit{assms}(2) \; \textit{card-ge-0-finite}
count	ext{-}in
                                    nth-mem)
   moreover
   have card \{card ?A.. < card ?A + Suc i\} = Suc i
     \mathbf{by} \ simp
   ultimately have False
     using assms(3) by linarith
   then show ?thesis
     by blast
```

```
\begin{array}{c} \mathbf{qed} \\ \mathbf{qed} \\ \\ \mathbf{end} \\ \mathbf{theory} \ Rank\text{-}Util \\ \mathbf{imports} \ HOL\text{-}Library.Multiset \\ Count\text{-}Util \\ SuffixArray.Prefix \\ \mathbf{begin} \end{array}
```

4 Rank Definition

Count how many occurrences of an element are in a certain index in the list

```
Definition 3.7 from [3]: Rank definition rank :: 'a \ list \Rightarrow 'a \Rightarrow nat \Rightarrow nat where rank \ s \ x \ i \equiv count\ list \ (take \ i \ s) \ x
```

5 Rank Properties

5.1 List Properties

```
lemma rank-cons-same:
  rank (x \# xs) \ x \ (Suc \ i) = Suc \ (rank \ xs \ x \ i)
  by (simp \ add: \ rank-def)

lemma rank-cons-diff:
  a \neq x \Longrightarrow rank \ (a \# xs) \ x \ (Suc \ i) = rank \ xs \ x \ i
  by (simp \ add: \ rank-def)
```

5.2 Counting Properties

```
lemma rank-length:
  rank \ xs \ x \ (length \ xs) = count-list xs \ x
by (simp \ add: \ rank-def)

lemma rank-gre-length:
  length \ xs \le n \implies rank \ xs \ x \ n = count-list xs \ x
by (simp \ add: \ rank-def)

lemma rank-not-in:
  x \notin set \ xs \implies rank \ xs \ x \ i = 0
by (metis \ gr-zeroI in-count rank-def set-take-subset subset-code(1))

lemma rank-0:
  rank \ xs \ x \ 0 = 0
by (simp \ add: \ rank-def)
```

```
Theorem 3.11 from [3]: Rank Equivalence
lemma rank-card-spec:
         rank \ xs \ x \ i = card \ \{j. \ j < length \ xs \land j < i \land xs \ ! \ j = x\}
proof -
         have rank xs x i = count-list (take i xs) x
                by (meson \ rank-def)
         moreover
        have count-list (take i xs) x = card \{j, j < length (take i xs) \land (take i xs) ! j = length (take i xs) \land (take i xs) ! j = length (take i xs) | 
                 by (metis count-list-card)
         moreover
        have \{j. \ j < length \ (take \ i \ xs) \land (take \ i \ xs) \ ! \ j = x\} =
                                    {j. j < length \ xs \land j < i \land xs \ ! \ j = x}
                 by fastforce
         ultimately show ?thesis
                 by simp
\mathbf{qed}
lemma le-rank-plus-card:
         i \leq j \Longrightarrow
            rank \ xs \ x \ j = rank \ xs \ x \ i + card \ \{k. \ k < length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k = length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land i \leq k \land k < j \land xs \ ! \ k \leq length \ xs \land k \leq 
proof -
        assume i \leq j
        let ?X = \{k. \ k < length \ xs \land k < j \land xs \ ! \ k = x\}
        have rank \ xs \ x \ j = card \ ?X
                 \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{rank\text{-}card\text{-}spec})
         moreover
         let ?Y = \{k. \ k < length \ xs \land k < i \land xs \ ! \ k = x\}
        have rank xs x i = card ?Y
                 by (simp add: rank-card-spec)
        moreover
         let ?Z = \{k. \ k < length \ xs \land i \leq k \land k < j \land xs \ ! \ k = x\}
         have ?Y \cup ?Z = ?X
         proof safe
                 \mathbf{fix} \ k
                 assume k < i
                 then show k < j
                         using \langle i \leq j \rangle order-less-le-trans by blast
         next
                 assume \neg i \leq k
                 then show k < i
                          using linorder-le-less-linear by blast
         qed
         moreover
        have ?Y \cap ?Z = \{\}
```

```
by force \begin{array}{l} \textbf{hence } card \ (?Y \cup ?Z) = card \ ?Y + card \ ?Z \\ \textbf{by } (simp \ add: \ card\text{-}Un\text{-}disjoint) \\ \textbf{ultimately show } ?thesis \\ \textbf{by } presburger \\ \textbf{qed} \end{array}
```

5.3 Bound Properties

```
lemma rank-lower-bound:
  assumes k < rank xs x i
 shows k < i
proof -
  from rank-card-spec[of xs x i]
  have rank xs \ x \ i = card \ \{j. \ j < length \ xs \land j < i \land xs \ ! \ j = x \}.
 hence k < card \{j. \ j < length \ xs \land j < i \land xs \ ! \ j = x \}
    using assms by presburger
 moreover
    have i \leq length \ xs \lor length \ xs < i
      \mathbf{using}\ \mathit{linorder}\text{-}\mathit{not}\text{-}\mathit{less}\ \mathbf{by}\ \mathit{blast}
    moreover
    have i \leq length \ xs \Longrightarrow \{j. \ j < length \ xs \land j < i \land xs \ ! \ j = x\} \subseteq \{0... < i\}
      using atLeast0LessThan by blast
    hence i \leq length \ xs \Longrightarrow card \ \{j. \ j < length \ xs \land j < i \land xs \ ! \ j = x\} \leq i
      using subset-eq-atLeast0-lessThan-card by presburger
   moreover
    have length xs < i \Longrightarrow \{j. \ j < length \ xs \land j < i \land xs \ ! \ j = x\} \subseteq \{0..< length \ xs \land j < i \land xs \ ! \ j = x\}
xs
      using atLeast0LessThan by blast
    hence length xs < i \Longrightarrow card \{j. j < length <math>xs \land j < i \land xs \mid j = x\} \leq length
xs
      using subset-eq-atLeast0-lessThan-card by presburger
    hence length xs < i \Longrightarrow card \{j, j < length <math>xs \land j < i \land xs \mid j = x\} \le i
      by linarith
    ultimately have card \{j. \ j < length \ xs \land j < i \land xs \ ! \ j = x\} \leq i
      by blast
  ultimately show ?thesis
    using dual-order.strict-trans1 by blast
qed
corollary rank-Suc-ex:
  assumes k < rank xs x i
  shows \exists l. \ i = Suc \ l
 by (metis Nat.lessE assms rank-lower-bound)
lemma rank-upper-bound:
  [i < length \ xs; \ xs \ ! \ i = x] \implies rank \ xs \ x \ i < count-list \ xs \ x
```

```
proof (induct xs arbitrary: i)
 case Nil
 then show ?case
   by (simp add: rank-def)
next
  case (Cons\ a\ xs\ i)
 then show ?case
 proof (cases i)
   case \theta
   then show ?thesis
     by (metis Cons.prems(2) count-in list.set-intros(1) nth-Cons-0 rank-0)
 next
   case (Suc \ n)
   then show ?thesis
    by (metis Cons.hyps Cons.prems Suc-less-eq length-Cons nth-Cons-Suc rank-cons-diff
               rank-cons-same rank-length)
 qed
qed
lemma rank-idx-mono:
 i \leq j \Longrightarrow rank \ xs \ x \ i \leq rank \ xs \ x \ j
proof (cases i = j)
 assume i = j
 then show ?thesis
   by simp
\mathbf{next}
 assume i \leq j \ i \neq j
 hence i < j
   using antisym-conv2 by blast
 hence prefix xs j = prefix xs i @ list-slice xs i j
   by (metis \langle i \leq j \rangle append-take-drop-id list-slice.elims min.absorb1 take-take)
 hence rank \ xs \ x \ j = rank \ xs \ x \ i + count\text{-}list \ (list\text{-}slice \ xs \ i \ j) \ x
   by (metis count-list-append rank-def)
 then show ?thesis
   by fastforce
\mathbf{qed}
lemma rank-less:
  [i < length \ xs; \ i < j; \ xs! \ i = x] \implies rank \ xs \ x \ i < rank \ xs \ x \ j
proof -
 let ?X = \{k. \ k < length \ xs \land i \le k \land k < j \land xs \ ! \ k = x\}
 assume i < length xs i < j xs ! i = x
 with le-rank-plus-card [of i j xs x]
 have rank xs x j = rank xs x i + card ?X
   using nless-le by blast
 moreover
 have i \in ?X
   using \langle i < j \rangle \langle i < length \ xs \rangle \langle xs \ ! \ i = x \rangle by blast
```

```
hence card ?X > 0
    using card-gt-\theta-iff by fastforce
  ultimately show ?thesis
   by linarith
qed
\mathbf{lemma}\ \mathit{rank}\text{-}\mathit{upper}\text{-}\mathit{bound}\text{-}\mathit{gen}\text{:}
  rank \ xs \ x \ i \leq count-list xs \ x
 by (metis nat-le-linear rank-gre-length rank-idx-mono)
5.4
        Sorted Properties
\mathbf{lemma}\ sorted\text{-}card\text{-}rank\text{-}idx :
 \mathbf{assumes}\ sorted\ xs
           i < length xs
shows i = card \{j. j < length xs \land xs \mid j < xs \mid i\} + rank xs (xs \mid i) i
proof -
 let ?A = \{j. \ j < length \ xs \land xs \ ! \ j < xs \ ! \ i\}
 let ?B = \{j. \ j < length \ xs \land xs \ ! \ j = xs \ ! \ i\}
  have ?B \neq \{\}
    using assms(2) by blast
  have Min ?B \in ?B
  by (metis (no-types, lifting) Min-in \langle ?B \neq \{ \} \rangle finite-nat-set-iff-bounded mem-Collect-eq)
  hence Min ?B < length xs xs ! (Min ?B) = xs ! i
    by simp-all
  have Min ?B < i
    by (simp \ add: \ assms(2))
  have P: \forall k < Min ?B. xs! k < xs! i
  proof (intro allI impI)
    \mathbf{fix} \ k
    assume k < Min ?B
    with sorted-nth-mono[OF\ assms(1)\ -\langle Min\ ?B < length\ xs\rangle]
    have xs ! k \leq xs ! (Min ?B)
      using le-eq-less-or-eq by presburger
    show xs \mid k < xs \mid i
    proof (rule ccontr)
     assume \neg xs!k < xs!i
      with \langle xs \mid k \leq xs \mid (Min ?B) \rangle \langle xs \mid (Min ?B) = xs \mid i \rangle
     have xs ! k = xs ! i
       by order
      with \langle k < Min ?B \rangle \langle Min ?B < length xs \rangle
     have k \in ?B
```

```
by auto
                           then show False
                                               by (metis (mono-tags, lifting) Min-gr-iff \langle k \rangle \langle min \rangle \langle 
nite-nat-set-iff-bounded
                                                                                                                                                                                 less-irrefl-nat mem-Collect-eq)
                 qed
        qed
        have ?A = \{0..< Min ?B\}
        proof (intro equalityI subsetI)
                 \mathbf{fix} \ x
                \mathbf{assume}\ x\in \textit{?A}
                 hence x < length xs xs ! x < xs ! i
                          by blast+
                 hence xs ! x < xs ! Min ?B
                           using \langle xs \mid Min ?B = xs \mid i \rangle by simp
                 hence x < Min ?B
                          using assms(1) \langle x < length \ xs \rangle \langle Min \ ?B < length \ xs \rangle
                           by (meson dual-order.strict-iff-not not-le-imp-less sorted-nth-mono)
                 then show x \in \{0..< Min ?B\}
                           using atLeastLessThan-iff by blast
        next
                 \mathbf{fix} \ x
                 assume x \in \{0..< Min ?B\}
                 with P \langle Min ?B < length xs \rangle
                 show x \in ?A
                          by auto
        qed
        moreover
                 let ?C = \{j. \ j < length \ xs \land j < i \land xs \ ! \ j = xs \ ! \ i\}
                 from rank-card-spec[of xs xs! i i]
                 have rank xs (xs ! i) i = card ?C.
                 moreover
                 have ?C = \{Min ?B.. < i\}
                 proof (intro equalityI subsetI)
                          \mathbf{fix} \ x
                          assume x \in ?C
                          hence x < length xs x < i xs ! x = xs ! i
                                   by blast+
                          hence Min ?B \le x
                                  by simp
                           with \langle x < i \rangle
                          show x \in \{Min ?B..< i\}
                                   \mathbf{using} \ \mathit{atLeastLessThan-iff} \ \mathbf{by} \ \mathit{blast}
                 \mathbf{next}
                           \mathbf{fix} \ x
                          assume x \in \{Min ?B..< i\}
                          hence Min ?B \le x x < i
```

```
using atLeastLessThan-iff by blast+
     moreover
     have xs ! x = xs ! i
     proof -
       have xs ! x \leq xs ! i
         using assms(1,2) \langle x < i \rangle
         by (simp add: sorted-wrt-nth-less)
       moreover
       have xs ! Min ?B \le xs ! x
         using assms(1,2) \land Min ?B \leq x \land \langle x < i \rangle
         by (meson order.strict-trans sorted-iff-nth-mono)
       ultimately show ?thesis
         using \langle xs \mid Min ?B = xs \mid i \rangle by order
     qed
     ultimately show x \in ?C
       using assms(2) by fastforce
   ultimately have rank xs (xs ! i) i = card \{Min ?B.. < i\}
     by presburger
 ultimately show ?thesis
   by (simp \ add: \langle Min \ ?B \le i \rangle)
\mathbf{qed}
lemma sorted-rank:
 assumes sorted xs
 and
          i < length xs
 and
           xs ! i = a
shows rank xs \ a \ i = i - card \{k. \ k < length \ xs \land xs \ ! \ k < a\}
 using assms(1) assms(2) assms(3) sorted-card-rank-idx by fastforce
lemma sorted-rank-less:
 assumes sorted xs
        i < length xs
 and
 and
          xs ! i < a
shows rank xs a i = 0
proof -
 have rank xs \ a \ i = card \ \{k. \ k < length \ xs \land k < i \land xs \ ! \ k = a\}
   \mathbf{by}\ (\mathit{simp}\ \mathit{add}\colon \mathit{rank\text{-}card\text{-}spec})
 moreover
 have \{k. \ k < length \ xs \land k < i \land xs \ ! \ k = a\} = \{\}
   using assms sorted-wrt-nth-less by fastforce
  ultimately show ?thesis
   by fastforce
qed
lemma sorted-rank-greater:
 assumes sorted xs
 \mathbf{and}
          i < length xs
```

```
and
          xs!i>a
shows rank \ xs \ a \ i = count\text{-}list \ xs \ a
proof -
 let ?A = \{k. \ k < length \ xs \land k < i \land xs \mid k = a\}
 have rank \ xs \ a \ i = card \ ?A
   by (simp add: rank-card-spec)
 moreover
 let ?B = \{k. \ k < length \ xs \land k \ge i \land xs \ ! \ k = a\}
 let ?C = \{k. \ k < length \ xs \land xs \mid k = a\}
   have ?A \cup ?B = ?C
   proof safe
     \mathbf{fix} \ x
     assume \neg i \leq x
     then show x < i
       using linorder-le-less-linear by blast
   qed
   moreover
   have ?B = \{\}
   proof -
     have \forall k < length \ xs. \ k \geq i \longrightarrow xs \ ! \ k > a
       by (meson assms(1) assms(3) dual-order.strict-trans1 sorted-nth-mono)
     then show ?thesis
       by blast
   \mathbf{qed}
   ultimately have ?A = ?C
     by blast
 ultimately show ?thesis
   by (simp add: count-list-card)
qed
end
theory Select-Util
 imports Count-Util
         Suffix Array. Sorting-Util
begin
```

6 Select Definition

Find nth occurrence of an element in a list

```
Definition 3.8 from [3]: Select fun select :: 'a list \Rightarrow 'a \Rightarrow nat \Rightarrow nat where select [] -- = 0 | select (a#xs) x 0 = (if x = a then 0 else Suc (select xs x 0)) | select (a#xs) x (Suc i)= (if x = a then Suc (select xs x i) else Suc (select xs x (Suc i)))
```

7 Select Properties

7.1 Length Properties

```
lemma notin-imp-select-length:
 x \notin set \ xs \implies select \ xs \ x \ i = length \ xs
proof (induct xs arbitrary: i)
  \mathbf{case}\ \mathit{Nil}
  then show ?case
    \mathbf{by} \ simp
\mathbf{next}
  case (Cons a xs i)
  then show ?case
  proof (cases i)
   case \theta
    then show ?thesis
      using Cons.hyps Cons.prems by fastforce
  \mathbf{next}
    case (Suc \ n)
    then show ?thesis
      using Cons.hyps Cons.prems by force
 qed
qed
{f lemma} select-length-imp-count-list-less:
  select \ xs \ x \ i = length \ xs \Longrightarrow count\text{-}list \ xs \ x \le i
 by (induct rule: select.induct[of - xs x i]; simp split: if-splits)
lemma select-Suc-length:
  select \ xs \ x \ i = length \ xs \Longrightarrow select \ xs \ x \ (Suc \ i) = length \ xs
 by (induct rule: select.induct[of - xs x i]; clarsimp split: if-splits)
7.2
        List Properties
lemma select-cons-neq:
  \llbracket select \ xs \ x \ i = j; \ x \neq a \rrbracket \implies select \ (a \# xs) \ x \ i = Suc \ j
  by (cases \ i; \ simp)
\mathbf{lemma}\ cons\text{-}neq\text{-}select \colon
  [select\ (a\ \#\ xs)\ x\ i=Suc\ j;\ x\neq a] \Longrightarrow select\ xs\ x\ i=j
  by (cases\ i;\ simp)
lemma cons-eq-select:
  select\ (x \# xs)\ x\ (Suc\ i) = Suc\ j \Longrightarrow select\ xs\ x\ i = j
 by simp
lemma select-cons-eq:
  select \ xs \ x \ i = j \Longrightarrow select \ (x \ \# \ xs) \ x \ (Suc \ i) = Suc \ j
  by simp
```

7.3 Bound Properties

```
lemma select-max:

select xs \ x \ i \le length \ xs

by (induct rule: select.induct[of - xs \ x \ i]; simp)
```

7.4 Nth Properties

```
{f lemma} nth\text{-}select:
  [j < length \ xs; \ count-list \ (take \ (Suc \ j) \ xs) \ x = Suc \ i; \ xs \ ! \ j = x]
    \implies select \ xs \ x \ i = j
\mathbf{proof}\ (induct\ arbitrary:\ j\ rule:\ select.induct[of\ -\ xs\ x\ i])
 case (1 uu uv)
 then show ?case
   by simp
\mathbf{next}
 case (2 \ a \ xs \ x)
 then show ?case
 proof (cases j)
   \mathbf{case}\ \theta
   then show ?thesis
     using 2.prems(3) by auto
 next
   case (Suc \ n)
   have xs! n = x
     using 2.prems(3) Suc by auto
   moreover
   have n < length xs
     using 2.prems(1) Suc by auto
   moreover
   have x \neq a
   proof (rule ccontr)
     assume \neg x \neq a
     hence x = a
       by blast
     moreover
     have count-list (take (Suc n) xs) x > 0
       by (simp\ add: \langle n < length\ xs \rangle\ \langle xs \mid n = x \rangle\ take-Suc-conv-app-nth)
     ultimately show False
       using 2.prems(2) Suc by auto
   qed
   moreover
   have count-list (take (Suc n) xs) x = Suc \ \theta
     using 2.prems(2) Suc calculation(3) by auto
   ultimately have select xs \ x \ \theta = n
     using 2.hyps by blast
   then show ?thesis
     by (simp \ add: Suc \langle x \neq a \rangle)
 qed
```

```
next
 case (3 \ a \ xs \ x \ i)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     using 3.prems(2) 3.prems(3) by force
   case (Suc \ n)
   then show ?thesis
   by (metis 3.hyps 3.prems Suc-inject Suc-less-eq add.right-neutral add-Suc-right
                   count-list.simps(2) length-Cons nth-Cons-Suc plus-1-eq-Suc se-
lect.simps(3)
              take-Suc-Cons)
 qed
qed
{f lemma} nth\text{-}select\text{-}alt:
  [j < length \ xs; \ count\text{-}list \ (take j \ xs) \ x = i; \ xs \ ! \ j = x]
   \implies select xs \ x \ i = j
proof (induct arbitrary: j rule: select.induct[of - xs x i])
 case (1 uu uv)
 then show ?case
   by simp
next
  case (2 \ a \ xs \ x \ j)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     using 2.prems(3) by auto
 next
   case (Suc \ n)
   then show ?thesis
    by (metis 2.hyps 2.prems Suc-less-eq count-in count-list.simps(2) length-Cons
          list.set-intros(1) not-gr-zero nth-Cons-Suc select.simps(2) take-Suc-Cons)
 qed
next
 case (3 \ a \ xs \ x \ i)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     using 3.prems(2) by auto
 next
   case (Suc \ n)
   then show ?thesis
    by (metis 3.hyps 3.prems One-nat-def Suc-inject Suc-less-eq add.right-neutral
                  add-Suc-right count-list.simps(2) length-Cons nth-Cons-Suc se-
```

```
lect.simps(3)
               take-Suc-Cons)
 qed
qed
lemma select-nth:
  [select \ xs \ x \ i = j; j < length \ xs]
    \implies count-list (take (Suc j) xs) x = Suc i \land xs ! j = x
proof (induct arbitrary: j rule: select.induct[of - xs x i])
 \mathbf{case} \,\, (\mathit{1} \,\, \mathit{uu} \,\, \mathit{uv})
 then show ?case
   by simp
next
 case (2 \ a \ xs \ x \ j)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
    by (metis 2.prems(1) One-nat-def add.right-neutral add-Suc-right count-list.simps
              nat.simps(3) nth-Cons-0 select-cons-neg take0 take-Suc-Cons)
  next
   case (Suc \ n)
   then show ?thesis
     using 2.hyps \ 2.prems(1) \ 2.prems(2) by auto
 qed
\mathbf{next}
 case (3 \ a \ xs \ x \ i \ j)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     by (metis \ 3.prems(1) \ nat.simps(3) \ select-cons-eq \ select-cons-neq)
 \mathbf{next}
   case (Suc\ n)
   then show ?thesis
    by (metis 3.hyps 3.prems One-nat-def Suc-le-eq add.right-neutral add-Suc-right
          count-list.simps(2) length-Cons less-Suc-eq-le nth-Cons-Suc select-cons-eq
               select-cons-neq take-Suc-Cons)
 qed
qed
lemma select-nth-alt:
  [select \ xs \ x \ i = j; j < length \ xs]
   \implies count\text{-list } (take \ j \ xs) \ x = i \land xs \ ! \ j = x
proof (induct arbitrary: j rule: select.induct[of - xs x i])
 case (1 uu uv)
 then show ?case
   by simp
\mathbf{next}
```

```
case (2 \ a \ xs \ x \ j)
  then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     using 2.prems(1) order.strict-iff-not by fastforce
 next
   case (Suc \ n)
   then show ?thesis
     by (metis 2.prems(1) 2.prems(2) nat.inject nth-select-alt select-nth)
 qed
next
 case (3 \ a \ xs \ x \ i \ j)
 then show ?case
 proof (cases j)
   case \theta
   then show ?thesis
     by (metis \ 3.prems(1) \ nat.simps(3) \ select-cons-eq \ select-cons-neq)
   case (Suc \ n)
   then show ?thesis
     by (metis 3.prems nat.inject nth-select-alt select-nth)
  qed
qed
lemma select-less-0-nth:
 assumes i < length xs
          i < select xs x \theta
shows xs ! i \neq x
proof (cases select xs \ x \ \theta < length \ xs)
 assume select xs \ x \ 0 < length \ xs
  with select-nth-alt[of xs x 0 select xs x 0]
 have count-list (take (select xs \ x \ \theta) xs) x = \theta \ xs! select xs \ x \ \theta = x
   by blast+
 with count-list-0-iff
 have x \notin set (take (select xs \times 0) xs)
   by metis
 then show ?thesis
   by (simp add: \langle select \ xs \ x \ 0 \ < \ length \ xs \rangle \ assms(2) \ in-set-conv-nth)
next
 assume \neg select xs \ x \ \theta < length \ xs
 hence length xs \leq select xs x \theta
   using linorder-le-less-linear by blast
  with select-max[of xs x \theta]
 have select xs \ x \ \theta = length \ xs
   by simp
  with select-length-imp-count-list-less
 have count-list xs \ x = 0
   by (metis le-zero-eq)
```

```
with count-list-0-iff
have x \notin set \ xs
by fastforce
then show ?thesis
using assms(1) nth-mem by blast
qed
```

7.5 Sorted Properties

Theorem 3.10 from [3]: Select Sorted Equivalence

```
lemma sorted-select:
 assumes sorted xs
            i < count-list xs \ x
 and
shows select xs \ x \ i = card \ \{j. \ j < length \ xs \land xs \ ! \ j < x\} + i
proof (induct rule: select.induct[of - xs x i])
  case (1 uu uv)
  then show ?case
    by simp
next
  case (2 \ a \ xs \ x)
 {f note}\ \mathit{IH} = \mathit{this}
  from IH(2)
  have sorted xs
   by simp
  have x = a \lor x \neq a
    \mathbf{by} blast
  moreover
  have x \neq a \Longrightarrow ?case
  proof -
   assume x \neq a
    hence \theta < count-list xs \ x
     using IH(3) by fastforce
    with IH(1)[OF \langle x \neq a \rangle \langle sorted \ xs \rangle]
    have select xs \ x \ 0 = card \ \{j. \ j < length \ xs \land xs \ ! \ j < x\}
     by simp
    moreover
     from in\text{-}count[OF \land 0 < count\text{-}list xs x \rangle]
     have x \in set xs.
      with IH(2) \langle x \neq a \rangle
     have a < x
       by (simp add: order-less-le)
      have \{j. \ j < length \ (a \# xs) \land (a \# xs) ! \ j < x\} =
              \{0\} \cup Suc ' \{j. j < length xs \land xs ! j < x\}
      proof (safe)
       show (a \# xs) ! \theta < x
```

```
by (simp add: \langle a < x \rangle)
     \mathbf{next}
       \mathbf{fix} \ y
       assume y < length xs
       then show Suc \ y < length \ (a \# xs)
         by simp
     next
       \mathbf{fix} \ y
       assume y < length xs xs ! y < x
       then show (a \# xs) ! Suc y < x
         by simp
     next
       \mathbf{fix} \ j
       assume A: j \notin Suc '\{v.\ v < length\ xs \land xs \mid v < x\}\ j < length\ (a \# xs)
                (a \# xs) ! j < x
       have \exists k. j = Suc k \Longrightarrow False
       proof -
         assume \exists k. j = Suc k
         then obtain k where
         j = Suc k
          by blast
         hence B: k < length xs xs ! k < x k \notin \{v. v < length xs \land xs ! v < x\}
           using A by simp-all
         then show False
          by auto
       qed
       then show j = \theta
         using not0-implies-Suc by blast
     qed
     moreover
       have finite \{0\}
         by blast
       moreover
       have finite (Suc '\{j. j < length \ xs \land xs \mid j < x\})
         by simp
       moreover
       have \{0\} \cap Suc : \{j. \ j < length \ xs \land xs \ ! \ j < x\} = \{\}
         by blast
       ultimately have
         card (\{0\} \cup Suc `\{j. j < length xs \land xs ! j < x\}) =
           Suc (card (Suc '\{j. j < length \ xs \land xs \mid j < x\}))
          using card-Un-disjoint[of \{0\} Suc '\{j, j < length xs \land xs \mid j < x\}] by
simp
     ultimately have
       card \{j. \ j < length (a \# xs) \land (a \# xs) ! j < x\} =
         Suc (card (Suc '\{j. j < length \ xs \land xs \ ! \ j < x\}))
```

```
by presburger
      hence card \{j. \ j < length \ (a \# xs) \land (a \# xs) ! \ j < x\} =
              Suc (card \{j. j < length xs \land xs ! j < x\})
        by (simp add: card-image)
    }
    moreover
    have select (a \# xs) x \theta = Suc (select xs x \theta)
      using \langle x \neq a \rangle select.simps(2)[of a xs x] by auto
    ultimately show ?thesis
      \mathbf{by} \ simp
  \mathbf{qed}
 moreover
 have x = a \Longrightarrow ?case
  proof -
    assume x = a
    with IH(2)
    have \{j. \ j < length \ (a \# xs) \land (a \# xs) ! \ j < x\} = \{\}
    \mathbf{by}\ (\textit{metis}\ (\textit{no-types},\ \textit{lifting})\ \textit{Collect-empty-eq}\ \textit{less-nat-zero-code}\ \textit{linorder-not-less}
neq0-conv
                                     nth-Cons-0 order-refl sorted-nth-less-mono)
    with \langle x = a \rangle
    show ?thesis
      by force
  qed
  ultimately show ?case
    \mathbf{by} blast
\mathbf{next}
  case (3 \ a \ xs \ x \ i)
 \mathbf{note}\ \mathit{IH} = \mathit{this}
 have sorted xs
    using IH(3) by auto
  have a \leq x
  by (metis\ IH(3-)\ Suc\text{-less-eq2}\ count\text{-list.simps}(2)\ in\text{-count}\ order\text{-refl}\ sorted\text{-simps}(2)
              zero-less-Suc)
  have x = a \lor x \neq a
    by blast
  moreover
  have x = a \Longrightarrow ?case
  proof -
    assume x = a
    with IH(4)
    have i < count-list xs x
      by auto
    with IH(1)[OF \langle x = a \rangle \langle sorted xs \rangle]
    have select xs \ x \ i = card \ \{j. \ j < length \ xs \land xs \ ! \ j < x\} + i.
    moreover
```

```
from select.simps(3)[of \ a \ xs \ x \ i] \langle x = a \rangle
   have select (a \# xs) x (Suc i) = Suc (select xs x i)
     \mathbf{by} \ simp
   moreover
   from \langle a \leq x \rangle \langle x = a \rangle IH(3)
   have \{j. \ j < length \ (a \# xs) \land (a \# xs) ! \ j < x\} = \{\}
     by (metis (no-types, lifting) Collect-empty-eq length-Cons less-nat-zero-code
                                       linorder-not-less nth-Cons-0 sorted-nth-less-mono
zero-less-Suc)
   hence card \{j. \ j < length \ (a \# xs) \land (a \# xs) ! \ j < x\} = 0
      by simp
   moreover
   from \langle a \leq x \rangle \langle x = a \rangle IH(3)
   have \{j. \ j < length \ xs \land xs \mid j < x\} = \{\}
     using nth-mem by fastforce
   hence card \{j. \ j < length \ xs \land xs \ ! \ j < x\} = 0
     by simp
   ultimately show ?thesis
      by simp
  qed
  moreover
  have x \neq a \Longrightarrow ?case
  proof -
   assume x \neq a
   hence Suc \ i < count-list xs \ x
      using IH(4) by force
   with IH(2)[OF \langle x \neq a \rangle \langle sorted xs \rangle]
   have select xs \ x \ (Suc \ i) = card \ \{j. \ j < length \ xs \land xs \ ! \ j < x\} + Suc \ i.
   moreover
   from \langle x \neq a \rangle select.simps(3)[of a xs x i]
   have select (a \# xs) x (Suc i) = Suc (select xs x (Suc i))
     by simp
   moreover
     have \{j. \ j < length \ (a \# xs) \land (a \# xs) ! \ j < x\} =
              \{0\} \cup Suc ` \{j. j < length xs \land xs ! j < x\}
      proof safe
       show (a \# xs) ! \theta < x
          using \langle a \leq x \rangle \langle x \neq a \rangle by auto
      next
       \mathbf{fix} \ y
       assume y < length xs xs ! y < x
       then show Suc \ y < length \ (a \# xs)
          by simp
      \mathbf{next}
       \mathbf{fix} \ y
       assume y < length xs xs ! y < x
       then show (a \# xs) ! Suc y < x
          by simp
```

```
next
       \mathbf{fix} \ k
       assume A: k \notin Suc '\{j, j < length \ xs \land xs \mid j < x\} \ k \notin \{\} \ k < length \ (a
\# xs
                (a \# xs) ! k < x
       have \exists l. \ k = Suc \ l \Longrightarrow False
       proof -
         assume \exists l. \ k = Suc \ l
         then obtain l where
          k = Suc l
          by blast
         hence l \notin \{j. \ j < length \ xs \land xs \ ! \ j < x\} \ l < length \ xs \ xs \ ! \ l < x
           using A by simp-all
         then show False
           by blast
       qed
       then show k = 0
         using not0-implies-Suc by blast
     qed
     moreover
     have finite \{0\}
       by blast
     moreover
     have finite (Suc '\{j. j < length \ xs \land xs \mid j < x\})
       by simp
     moreover
     have \{0\} \cap Suc : \{j. \ j < length \ xs \land xs \ ! \ j < x\} = \{\}
       by blast
     ultimately have
       card (\{j. \ j < length (a \# xs) \land (a \# xs) ! \ j < x\}) =
         Suc (card (Suc '\{j. j < length \ xs \land xs \mid j < x\}))
       by simp
     hence card (\{j. \ j < length \ (a \# xs) \land (a \# xs) ! \ j < x\}) =
             Suc (card \{j. j < length xs \land xs \mid j < x\})
       by (simp add: card-image)
   }
   ultimately show ?thesis
     by simp
 qed
 ultimately show ?case
   by blast
qed
corollary sorted-select-0-plus:
 assumes sorted xs
          i < count-list xs x
shows select xs \ x \ i = select \ xs \ x \ \theta + i
 using assms(1) assms(2) sorted-select by fastforce
```

```
corollary select-sorted-0: assumes sorted xs and 0 < count-list xs x shows select xs \ x \ 0 = card \ \{j. \ j < length \ xs \land xs \ ! \ j < x\} by (simp \ add: \ assms(1) \ assms(2) \ sorted-select) end theory Rank-Select imports Main
Rank-Util
Select-Util
begin
```

8 Rank and Select Properties

8.1 Correctness of Rank and Select

Correctness theorem statements based on [1].

8.1.1 Rank Correctness

```
lemma rank-spec:

rank \ s \ x \ i = count \ (mset \ (take \ i \ s)) \ x

by (simp \ add: \ count-list-eq-count rank-def)
```

8.1.2 Select Correctness

```
lemma select-spec:
  select \ s \ x \ i = j
    \implies (j < length \ s \land rank \ s \ x \ j = i) \lor (j = length \ s \land count\text{-list} \ s \ x \le i)
  by (metis le-eq-less-or-eq rank-def select-length-imp-count-list-less select-max se-
lect-nth-alt)
     Theorem 3.9 from [3]: Correctness of Select
lemma select-correct:
  select \ s \ x \ i \leq length \ s \land
   (select\ s\ x\ i < length\ s \longrightarrow rank\ s\ x\ (select\ s\ x\ i) = i) \land
   (select\ s\ x\ i = length\ s \longrightarrow count\mbox{-}list\ s\ x \le i)
proof -
  have select \ s \ x \ i \leq length \ s
    by (simp add: select-max)
  moreover
 have select s \ x \ i < length \ s \longrightarrow rank \ s \ x \ (select \ s \ x \ i) = i
    by (metis rank-def select-nth-alt)
  moreover
  have select s \ x \ i = length \ s \longrightarrow count-list \ s \ x \le i
    by (simp add: select-length-imp-count-list-less)
```

```
ultimately show ?thesis
by blast
qed
```

8.2 Rank and Select

```
lemma rank-select:
  select \ xs \ x \ i < length \ xs \Longrightarrow rank \ xs \ x \ (select \ xs \ x \ i) = i
proof -
 let ?j = select xs x i
 assume select xs x i < length xs
 with select-spec[of xs x i ?j]
 show rank xs x (select xs x i) = i
   by auto
qed
lemma select-upper-bound:
 i < rank \ xs \ x \ j \Longrightarrow select \ xs \ x \ i < length \ xs
proof (induct xs arbitrary: i j)
  case Nil
  then show ?case
   by (simp add: rank-def)
\mathbf{next}
  case (Cons\ a\ xs\ i\ j)
 {f note}\ \mathit{IH} = \mathit{this}
  from rank-Suc-ex[OF Cons.prems]
  obtain n where
   j = Suc n
   by blast
  show ?case
  proof (cases \ a = x)
   assume a = x
   \mathbf{show} \ ?thesis
   proof (cases i)
     case \theta
     then show ?thesis
       by (simp\ add: \langle a = x \rangle)
   \mathbf{next}
     case (Suc\ m)
     with rank-cons-same[of a xs n] \langle j = Suc \ n \rangle \ IH(2) \langle a = x \rangle
     have m < rank xs x n
       by force
     with IH(1)
     have select xs x m < length xs
       by simp
     then show ?thesis
```

```
by (simp add: Suc \langle a = x \rangle)
   qed
  next
   assume a \neq x
   with Cons.prems rank-cons-diff[of a x xs n] \langle j = Suc n \rangle
   have i < rank xs x n
     by force
   with Cons.hyps
   have select xs \ x \ i < length \ xs
     by simp
   then show ?thesis
     by (metis \langle a \neq x \rangle length-Cons not-less-eq select-cons-neq)
 qed
qed
lemma select-out-of-range:
 assumes count-list xs a < i
 and
           mset \ xs = mset \ ys
shows select ys a i = length ys
  by (metis assms count-list-perm leD rank-select rank-upper-bound select-nth se-
lect-spec)
8.3
        Sorted Properties
lemma sorted-nth-gen:
  assumes sorted xs
           \mathit{card}\ \{\mathit{k.}\ \mathit{k} < \mathit{length}\ \mathit{xs} \land \mathit{xs} \mathrel{!} \mathit{k} < \mathit{c}\} < \mathit{length}\ \mathit{xs}
 and
 and
           count-list xs \ c > i
shows xs! (card \{k. k < length <math>xs \land xs! k < c\} + i) = c
proof -
  from sorted-select[OF \ assms(1,3)]
 have select xs \ c \ i = card \ \{j. \ j < length \ xs \land xs \ ! \ j < c\} + i.
  with select-nth[of xs c i]
 show ?thesis
   by (metis assms(3) rank-length select-upper-bound)
qed
lemma sorted-nth-gen-alt:
 assumes sorted xs
           card \ \{k. \ k < length \ xs \land xs \ ! \ k < a\} \leq i
 and
 and
           i < card \{k. \ k < length \ xs \land xs \ ! \ k < a\} + card \{k. \ k < length \ xs \land xs \}
! k = a
shows xs ! i = a
proof (cases \ a \in set \ xs)
  assume a \notin set xs
 hence card \{k.\ k < length\ xs \land xs \mid k = a\} = 0
   by auto
  with assms(2-)
```

show ?thesis

```
by linarith
next
 assume a \in set xs
 have card \{k.\ k < length\ xs \land xs \mid k < a\} < length\ xs
   using \langle a \in set \ xs \rangle card-less-idx-upper-strict by blast
  moreover
 have \exists k. \ i = card \ \{k. \ k < length \ xs \land xs \ ! \ k < a\} + k
   using assms(2) le-iff-add by blast
 then obtain k where
   i = card \{k. \ k < length \ xs \land xs \ ! \ k < a\} + k
   by blast
 moreover
 have k < count-list xs a
   by (metis (mono-tags, lifting) count-list-card nat-add-left-cancel-less assms(3)
calculation(2)
 {\bf ultimately \ show} \ {\it ?thesis}
   using sorted-nth-gen[OF assms(1), of a k]
   by blast
qed
end
theory SA-Util
 imports Suffix-Array-Properties
        SuffixArray.Simple-SACA-Verification
        ../counting/Rank-Select
begin
```

9 Suffix Array Properties

9.1 Bijections

```
lemma bij-betw f {} {} using bij-betw f {} {} using bij-betw f {} by fastforce

lemma bij-betw-sort-idx-ex:
  assumes xs = sort \ ys
  shows \exists f. \ bij-betw f {j. \ j < length \ ys \land \ ys \ ! \ j < x} {j. \ j < length \ xs \land \ xs \ ! \ j < x}

proof —

let ?A = \{j. \ j < length \ ys \land \ ys \ ! \ j < x}
let ?B = \{j. \ j < length \ xs \land \ xs \ ! \ j < x}

have mset \ ys = mset \ xs
  by (simp \ add: \ assms)
  with permutation-Ex-bij[of \ ys \ xs]
  obtain f where
```

```
bij-betw f {... < length ys} {... < length xs}
   (\forall i < length \ ys. \ ys \ ! \ i = xs \ ! \ f \ i)
   by blast
  moreover
  have ?A \subseteq \{... < length \ ys\}
   by blast
  moreover
  have f : ?A = ?B
  proof safe
   \mathbf{fix} \ a
   assume a < length ys ys ! a < x
   then show f a < length xs
     by (meson bij-betw-apply calculation(1) lessThan-iff)
  next
   \mathbf{fix} \ a
   assume a < length ys ys ! a < x
   then show xs ! f a < x
     by (simp \ add: \ calculation(2))
  next
   \mathbf{fix} \ a
   assume A: a < length xs xs ! a < x
   from bij-betw-iff-bijections[THEN iffD1, OF calculation(1)]
   obtain g where
     \forall x \in \{... < length \ ys\}. \ f \ x \in \{... < length \ xs\} \land g \ (f \ x) = x
     \forall y \in \{... < length \ xs\}. \ g \ y \in \{... < length \ ys\} \land f \ (g \ y) = y
     by blast
   then show a \in f '? A
    by (metis (no-types, lifting) A calculation(2) imageI lessThan-iff mem-Collect-eq)
  \mathbf{qed}
  ultimately show ?thesis
   using bij-betw-subset
   by blast
qed
9.2
        Suffix Properties
lemma suffix-hd-set-eq:
  \{k.\ k < length\ s \land s \mid k = c \} = \{k.\ k < length\ s \land (\exists xs.\ suffix\ s\ k = c \# xs)\}
 using suffix-cons-ex by fastforce
lemma suffix-hd-set-less:
  \{k.\ k < length\ s \land s \mid k < c\} = \{k.\ k < length\ s \land suffix\ s\ k < [c]\}
  using suffix-cons-ex by fastforce
lemma select-nth-suffix-start1:
  assumes i < card \{k. \ k < length \ s \land (\exists \ as. \ suffix \ s \ k = a \# as)\}
           xs = sort s
shows select xs a i = card \{k. \ k < length \ s \land suffix \ s \ k < [a]\} + i
proof -
```

```
let ?A = \{k. \ k < length \ s \land (\exists \ as. \ suffix \ s \ k = a \# \ as)\}
 let ?A' = \{k. \ k < length \ s \land s \mid k = a\}
 have ?A = ?A'
   using suffix-cons-Suc by fastforce
  with assms(1)
 have i < count-list s a
   by (simp add: count-list-card)
 hence i < count-list xs a
   by (metis \ assms(2) \ count-list-perm \ mset-sort)
 moreover
 let ?B = \{k. \ k < length \ s \land suffix \ s \ k < [a]\}
 let ?B' = \{k. \ k < length \ s \land s \ ! \ k < a\}
 let ?B'' = \{k. \ k < length \ xs \land xs \ ! \ k < a\}
   have ?B = ?B'
     using suffix-cons-ex by fastforce
   moreover
   have card ?B' = card ?B''
     using bij-betw-sort-idx-ex[OF assms(2), of a] bij-betw-same-card
   ultimately have card ?B = card ?B''
     by presburger
 ultimately show ?thesis
   by (simp\ add: \langle xs = sort\ s \rangle\ sorted\ select)
qed
\mathbf{lemma}\ \mathit{select-nth-suffix-start2}\colon
 assumes card \{k. \ k < length \ s \land (\exists \ as. \ suffix \ s \ k = a \ \# \ as)\} \leq i
 \mathbf{and}
           xs = sort s
shows select xs a i = length xs
proof (rule select-out-of-range[of s])
 show mset s = mset xs
   by (simp \ add: \ assms(2))
 let ?A = \{k. \ k < length \ s \land (\exists \ as. \ suffix \ s \ k = a \# \ as)\}
 let ?A' = \{k. \ k < length \ s \land s \ ! \ k = a\}
 have ?A = ?A'
   using suffix-cons-Suc by fastforce
 with assms(1)
 show count-list s \ a \leq i
   by (simp add: count-list-card)
qed
context Suffix-Array-General begin
```

9.3 General Properties

```
lemma sa\text{-}subset\text{-}upt:

set\ (sa\ s)\subseteq\{0..< length\ s\}

by (simp\ add:\ sa\text{-}set\text{-}upt)

lemma sa\text{-}suffix\text{-}sorted:

sorted\ (map\ (suffix\ s)\ (sa\ s))

using sa\text{-}g\text{-}sorted\ strict\text{-}sorted\text{-}imp\text{-}sorted\ } by blast
```

9.4 Nth Properties

```
\mathbf{lemma}\ sa\text{-}nth\text{-}suc\text{-}le:
 assumes j < length s
 and
           i < j
 and
           s! (sa s! i) = s! (sa s! j)
           Suc\ (sa\ s\ !\ i) < length\ s
 and
 and
           Suc\ (sa\ s\ !\ j) < length\ s
shows s ! Suc (sa s ! i) \leq s ! (Suc (sa s ! j))
proof -
  from sorted-wrt-nth-less[OF sa-g-sorted[of s] <math>assms(2)] assms(1,2)
 have suffix s (sa s ! i) < suffix s (sa s ! j)
   using sa-length by auto
 with assms(3-)
 have suffix s (Suc (sa s ! i)) < suffix s (Suc (sa s ! j))
   by (metis Cons-less-Cons Cons-nth-drop-Suc Suc-lessD order-less-imp-not-less)
 then show ?thesis
  by (metis\ Cons-less-Cons\ assms(4,5)\ dual-order.asym\ suffix-cons-Suc\ verit-comp-simplify1(3))
qed
\mathbf{lemma}\ sa\text{-}nth\text{-}suc\text{-}le\text{-}ex:
 assumes j < length s
 and
          i < j
 and
           s!(sa s! i) = s!(sa s! j)
 and
           Suc\ (sa\ s\ !\ i) < length\ s
 and
           Suc\ (sa\ s\ !\ j) < length\ s
shows \exists k \ l. \ k < l \land sa \ s \ ! \ k = Suc \ (sa \ s \ ! \ i) \land sa \ s \ ! \ l = Suc \ (sa \ s \ ! \ j)
proof -
 from sorted-wrt-nth-less[OF sa-g-sorted[of s] <math>assms(2)] assms(1,2)
 have suffix s (sa s ! i) < suffix s (sa s ! j)
   using sa-length by auto
  with assms(3-)
 have suffix s (Suc (sa s ! i)) < suffix s (Suc (sa s ! j))
   by (metis Cons-less-Cons Cons-nth-drop-Suc Suc-lessD order-less-imp-not-less)
 moreover
 from ex-sa-nth[OF assms(4)]
  obtain k where
   k < length s
   sa\ s\ !\ k = Suc\ (sa\ s\ !\ i)
   by blast
```

```
moreover
  from ex-sa-nth[OF \ assms(5)]
  obtain l where
    l < length s
    sa\ s\ !\ l = Suc\ (sa\ s\ !\ j)
    by blast
  ultimately have k < l
    using sorted-nth-less-mono[OF strict-sorted-imp-sorted[OF sa-q-sorted[of s]]]
    by (metis length-map not-less-iff-gr-or-eq nth-map sa-length)
  with \langle sa \ s \ | \ k = \rightarrow \langle sa \ s \ | \ l = \rightarrow \rangle
  show ?thesis
    by blast
\mathbf{qed}
\mathbf{lemma}\ sorted-map-nths-sa:
  sorted (map (nth s) (sa s))
proof (intro sorted-wrt-mapI)
 fix i j
  assume i < j j < length (sa s)
 hence suffix s (sa s ! i) < suffix s (sa s ! j)
    using sa-g-sorted sorted-wrt-mapD by blast
  moreover
  have suffix s (sa s! i) = s! (sa s! i) # suffix s (Suc (sa s! i))
     \mathbf{by} \ (\textit{metis} \ \langle i < j \rangle \ \langle j < \textit{length} \ (\textit{sa} \ \textit{s}) \rangle \ \textit{order.strict-trans} \ \textit{sa-length} \ \textit{sa-nth-ex}
suffix-cons-Suc)
  moreover
  have suffix s (sa s! j) = s! (sa s! j) # suffix s (Suc (sa s! j))
    by (metis \langle j < length (sa s) \rangle sa-length sa-nth-ex suffix-cons-Suc)
  ultimately show s ! (sa \ s ! \ i) \leq s ! (sa \ s ! \ j)
    by fastforce
qed
{f lemma}\ perm-map-nths-sa:
 s <^{\sim} > map (nth s) (sa s)
 by (metis map-nth mset-map sa-g-permutation)
\mathbf{lemma}\ sort\text{-}eq\text{-}map\text{-}nths\text{-}sa:
  sort \ s = map \ (nth \ s) \ (sa \ s)
 by (metis perm-map-nths-sa properties-for-sort sorted-map-nths-sa)
lemma sort-sa-nth:
  i < length \ s \Longrightarrow sort \ s \ ! \ i = s \ ! \ (sa \ s \ ! \ i)
 by (simp add: sa-length sort-eq-map-nths-sa)
{f lemma}\ inj	ext{-}on	ext{-}nth	ext{-}sa	ext{-}upt:
 assumes j \leq length \ s \ l \leq length \ s
shows inj-on (nth (sa s)) (\{i...< j\} \cup \{k...< l\})
proof
 \mathbf{fix} \ x \ y
```

```
assume x \in \{i...< j\} \cup \{k...< l\} \ y \in \{i...< j\} \cup \{k...< l\} \ sa\ s!\ x = sa\ s!\ y
 have x < length s
    using \langle x \in \{i... < j\} \cup \{k... < l\} \rangle \ assms(1) \ assms(2) \ by \ auto
  moreover
 have y < length s
    using \langle y \in \{i...< j\} \cup \{k...< l\} \rangle assms(1) assms(2) by auto
  ultimately show x = y
    by (metis \langle sa \ s \ | \ x = sa \ s \ | \ y \rangle nth-eq-iff-index-eq sa-distinct sa-length)
qed
lemma nth-sa-upt-set:
 nth(sas) ` \{0.. < lengths\} = \{0.. < lengths\}
proof safe
 \mathbf{fix} \ x
 assume x \in \{0..< length s\}
  then show sa s ! x \in \{0..< length s\}
    using sa-nth-ex by force
next
  \mathbf{fix} \ x
 assume x \in \{0..< length s\}
 then show x \in (!) (sa s) '\{0..< length s\}
    by (metis ex-sa-nth image-iff in-set-conv-nth sa-length sa-set-upt)
qed
        Valid List Properties
9.5
\mathbf{lemma}\ \mathit{valid\text{-}list\text{-}sa\text{-}hd} \colon
 assumes valid-list s
 shows \exists n. length s = Suc \ n \land sa \ s \ ! \ \theta = n
proof -
  from valid-list-ex-def[THEN iffD1, OF assms]
 obtain xs where
    s = xs @ [bot]
    by blast
 hence valid-list (xs @ [bot])
    using assms by simp
  with valid-list-bot-min[of\ xs\ sa,\ OF\ -\ sa-g-permutation\ sa-g-sorted]
  obtain ys where
    sa\ (xs\ @\ [bot]) = length\ xs\ \#\ ys
    by blast
  with \langle s = xs @ [bot] \rangle
 show ?thesis
    \mathbf{by} \ simp
qed
\mathbf{lemma}\ valid	ext{-}list	ext{-}not	ext{-}last:
 \mathbf{assumes}\ \mathit{valid\text{-}list}\ \mathit{s}
 and i < length s
```

```
and
         j < length s
 and
          i \neq j
          s ! i = s ! j
 and
shows i < length s - 1 \land j < length s - 1
 by (metis One-nat-def Suc-pred assms hd-drop-conv-nth last-suffix-index less-Suc-eq
          valid-list-length)
end
\mathbf{lemma} \ \textit{Suffix-Array-General-ex}:
 \exists sa. Suffix-Array-General sa
 using simple-saca. Suffix-Array-General-axioms by auto
end
theory SA-Count
 imports Rank-Select
        ../util/SA-Util
begin
```

10 Counting Properties on Suffix Arays

context Suffix-Array-General begin

10.1 Counting Properties

```
{f lemma} sa-card-index:
  assumes i < length s
  shows i = card \{j. j < length s \land suffix s (sa s ! j) < suffix s (sa s ! i)\}
        (is i = card ?A)
proof -
  \mathbf{let} \ ?P = \lambda j. \ j < \mathit{length} \ s \ \land \ \mathit{suffix} \ s \ (\mathit{sa} \ s \ ! \ j) < \mathit{suffix} \ s \ (\mathit{sa} \ s \ ! \ i)
  have P: \forall j < i. ?P j
  proof (safe)
    \mathbf{fix} \ j
    assume j < i
    with assms
    show j < length s
      by simp
  next
    \mathbf{fix} \ j
    assume j < i
    with sorted-wrt-nth-less[OF sa-g-sorted[of s] <math>\langle j < i \rangle] assms
    show suffix s (sa s! j) < suffix s (sa s! i)
      using assms sa-length by auto
  qed
  have ?A = \{j. \ j < i\}
  proof (safe)
    \mathbf{fix} \ x
```

```
assume x < i
   then show x < length s
     using assms by simp
  next
   \mathbf{fix} \ x
   assume x < i
   then show suffix s (sa s! x) < suffix s (sa s! i)
     using P by auto
 next
   \mathbf{fix} \ x
   assume Q: x < length \ s \ suffix \ s \ (sa \ s \ ! \ x) < suffix \ s \ (sa \ s \ ! \ i)
   hence x \neq i
     by blast
   with sorted-nth-less-mono[OF strict-sorted-imp-sorted]OF sa-g-sorted],
                              simplified length-map sa-length,
                           OF\ Q(1)\ assms
        Q\ assms
   show x < i
     by (simp add: sa-length)
 qed
 then show ?thesis
   using card-Collect-less-nat by presburger
qed
corollary sa-card-s-index:
 assumes i < length s
 shows i = card \{j. \ j < length \ s \land suffix \ s \ j < suffix \ s \ (sa \ s \ ! \ i)\}
       (is i = card ?A)
proof -
 let ?i = sa \ s \ ! \ i
 let ?v = s ! ?i
 let ?B = \{j. \ j < length \ s \land suffix \ s \ (sa \ s \ ! \ j) < suffix \ s \ ?i\}
 from sa\text{-}card\text{-}index[OF\ assms]
 have i = card ?B.
 moreover
 have bij-betw (\lambda x. sa s ! x) ?B ?A
 proof (intro bij-betwI'; safe)
   \mathbf{fix} \ x \ y
   assume x < length s y < length s sa s ! x = sa s ! y
   then show x = y
     by (simp add: nth-eq-iff-index-eq sa-distinct sa-length)
 next
   \mathbf{fix} \ x
   assume x < length s
   then show sa s ! x < length s
     using sa-nth-ex by fastforce
 next
   \mathbf{fix} \ x
```

```
assume x < length s suffix s x < suffix s ?i
   then show \exists y \in ?B. \ x = sa \ s \ ! \ y
     using ex-sa-nth by blast
  qed
  hence card ?B = card ?A
   using bij-betw-same-card by blast
  ultimately show ?thesis
   by simp
\mathbf{qed}
\mathbf{lemma}\ sa\text{-}card\text{-}s\text{-}idx:
 assumes i < length s
 shows i = card \{j. j < length s \land s \mid j < s \mid (sa s \mid i)\} +
            card\ \{j.\ j < length\ s \land s \mid j = s \mid (sa\ s \mid i) \land suffix\ s\ j < suffix\ s\ (sa\ s \mid i) \}
i)
proof -
 let ?i = sa \ s \ ! \ i
 let ?v = s ! ?i
 let ?A = \{j. \ j < length \ s \land s \mid j < ?v\}
 let ?B = \{j. \ j < length \ s \land s \ ! \ j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}
 let ?C = \{j. \ j < length \ s \land suffix \ s \ j < suffix \ s \ ?i\}
  from sa-card-s-index[OF assms]
  have i = card ?C
   by simp
  moreover
  have ?A \cap ?B = \{\}
   by fastforce
  moreover
 have ?C = ?A \cup ?B
  proof (safe)
   \mathbf{fix} \ x
   assume x < length s suffix s x < suffix s ?i \neg s ! x < s ! ?i
   then show s ! x = s ! ?i
     by (metis Cons-less-Cons sa-nth-ex assms suffix-cons-Suc)
  next
   \mathbf{fix} \ x
   assume x < length \ s \ s \ ! \ x < s \ ! \ ?i
   then show suffix s x < suffix s ?i
     by (metis Cons-less-Cons sa-nth-ex assms suffix-cons-Suc)
  \mathbf{qed}
  ultimately show ?thesis
   by (simp add: card-Un-disjoint)
qed
\mathbf{lemma}\ \mathit{sa-card-index-lower-bound}:
  assumes i < length s
  shows card \{j. j < length \ s \land s \mid (sa \ s \mid j) < s \mid (sa \ s \mid i)\} \leq i
  (is card ?A \leq i)
```

```
proof -
  \textbf{let ?B} = \{j. \ j < \textit{length } s \land \textit{suffix } s \ (\textit{sa } s \ ! \ j) < \textit{suffix } s \ (\textit{sa } s \ ! \ i)\}
  have ?A \subseteq ?B
  proof safe
    \mathbf{fix} \ x
    assume x < length \ s \ s \ (sa \ s \ s \ x) < s \ (sa \ s \ s \ i)
   then show suffix s (sa s ! x) < suffix s (sa s ! i)
      by (metis Cons-less-Cons Cons-nth-drop-Suc assms sa-nth-ex)
  qed
  hence card ?A \le card ?B
    by (simp add: card-mono)
  then show ?thesis
    using sa\text{-}card\text{-}index[OF\ assms] by simp
qed
lemma sa-card-rank-idx:
  assumes i < length s
 shows i = card \{j. j < length s \land s \mid (sa s \mid j) < s \mid (sa s \mid i)\}
              + rank (sort s) (s ! (sa s ! i)) i
proof -
  from sorted-card-rank-idx[of sort s i]
  have i = card \{j. \ j < length (sort s) \land sort s ! j < sort s ! i\} + rank (sort s)
(sort \ s \ ! \ i) \ i
    using assms by fastforce
  moreover
 have sort s ! i = s ! (sa s ! i)
    using assms sort-sa-nth by auto
  moreover
  have length (sort s) = length s
    by simp
  ultimately show ?thesis
    using sort-sa-nth[of -s]
    by (metis (no-types, lifting) Collect-cong)
qed
corollary sa-card-rank-s-idx:
 assumes i < length s
 shows i = card \{j. j < length s \land s \mid j < s \mid (sa s \mid i)\}
              + rank (sort s) (s ! (sa s ! i)) i
proof -
  let ?A = \{j. \ j < length \ s \land s \ ! \ j < s \ ! \ (sa \ s \ ! \ i)\}
  and ?B = \{j. \ j < length \ s \land s \ ! \ (sa \ s \ ! \ j) < s \ ! \ (sa \ s \ ! \ i)\}
  from sa\text{-}card\text{-}rank\text{-}idx[OF\ assms]
  \mathbf{have} \ i = \mathit{card} \ \{j. \ j < \mathit{length} \ s \land s \ ! \ (\mathit{sa} \ s \ ! \ j) < s \ ! \ (\mathit{sa} \ s \ ! \ i)\} \ +
            rank (sort s) (s! (sa s! i)) i.
  moreover
  have bij-betw (\lambda x. sa s! x)
          \{j. \ j < length \ s \land s \ ! \ (sa \ s \ ! \ j) < s \ ! \ (sa \ s \ ! \ i)\}
          \{j. \ j < length \ s \land s \ ! \ j < s \ ! \ (sa \ s \ ! \ i)\}
```

```
proof (rule bij-betwI'; safe)
   \mathbf{fix} \ x \ y
   assume x < length s y < length s sa s ! x = sa s ! y
   then show x = y
     by (simp add: nth-eq-iff-index-eq sa-distinct sa-length)
 \mathbf{next}
   \mathbf{fix} \ x
   assume x < length s
   then show sa s ! x < length s
     using sa-nth-ex by auto
 next
   \mathbf{fix} \ x
   assume x < length \ s \ ! \ x < s \ ! \ (sa \ s \ ! \ i)
   xa
     using ex-sa-nth by blast
 qed
 hence card ?B = card ?A
   using bij-betw-same-card by blast
 ultimately show ?thesis
   by simp
qed
lemma sa-rank-nth:
 assumes i < length s
 shows rank (sort s) (s! (sa s! i)) i =
        card \{j. j < length s \land s \mid j = s \mid (sa s \mid i) \land \}
                suffix \ s \ j < suffix \ s \ (sa \ s \ ! \ i)
proof -
 let ?i = sa \ s \ ! \ i
 let ?v = s ! ?i
 let ?A = \{j. \ j < length \ s \land s \mid j < ?v\}
 let ?B = \{j. \ j < length \ s \land s \ ! \ j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}
 from sa-card-rank-s-idx[OF assms]
 have i = card ?A + rank (sort s) ?v i.
 moreover
 from sa\text{-}card\text{-}s\text{-}idx[OF\ assms]
 have i = card ?A + card ?B.
 ultimately show ?thesis
   by linarith
qed
lemma sa-suffix-nth:
 assumes card \{k. \ k < length \ s \land s \mid k < c \ \} + i < length \ s
          i < count-list s c
shows \exists as. suffix s (sa s! (card \{k. k < length s \land s! k < c\} + i)) = c \# as
proof -
 let ?A = \{k. \ k < length \ s \land s \ ! \ k < c\}
```

```
let ?i = card ?A
 let ?A' = \{k. \ k < length (sort s) \land (sort s) ! k < c\}
 have \exists as. suffix s (sa s! (?i + i)) = (s! (sa s! (?i + i))) \# as
   using assms sa-nth-ex suffix-cons-ex by blast
 moreover
 have s ! (sa \ s ! (?i + i)) = sort \ s ! (?i + i)
   using assms(1) sort-sa-nth by presburger
  moreover
  {
   have i < count-list (sort s) c
     by (metis assms(2) count-list-perm sort-perm)
   moreover
   have card ?A = card ?A'
   proof -
     have \exists f. \ bij\ betw \ f \ \{n. \ n < length \ s \land s \ ! \ n < c\} \ \{n. \ n < length \ (sort \ s) \land s \ | \ n < c\} \}
sort s ! n < c
       using bij-betw-sort-idx-ex by blast
     then show ?thesis
       using bij-betw-same-card by blast
   ultimately have sort s ! (?i + i) = c
     using sorted-nth-gen[of sort s c i] assms(1) by auto
 ultimately show ?thesis
   by force
qed
10.2
         Ordering Properties
\mathbf{lemma} sa-suffix-order-le:
 assumes card \{k. \ k < length \ s \land s \mid k < c \} < length \ s
 shows [c] \leq suffix \ s \ (sa \ s \ ! \ (card \ \{k. \ k < length \ s \land s \ ! \ k < c\}))
proof -
 let ?A = \{k. \ k < length \ s \land s \mid k < c\}
 let ?A' = \{k. \ k < length (sort s) \land (sort s) ! \ k < c\}
 let ?i = card ?A
 let ?i' = card ?A'
 have \exists as. suffix s (sa s ! ?i) = (s ! (sa s ! ?i)) # as
   using assms sa-nth-ex suffix-cons-ex by blast
  then obtain as where
   suffix \ s \ (sa \ s \ ! \ ?i) = (s \ ! \ (sa \ s \ ! \ ?i)) \# as
   by blast
 moreover
 from sort-sa-nth[of ?i s]
 have sort s \, ! \, ?i = s \, ! \, (sa \, s \, ! \, ?i)
   using assms by blast
 moreover
```

```
have ?i = ?i'
 proof -
   sort \ s \ ! \ n < c \}
     using bij-betw-sort-idx-ex by blast
   then show ?thesis
     using bij-betw-same-card by blast
 hence c \leq sort s \, ! \, ?i
   using sorted-nth-le[of sort s c] assms by auto
 ultimately show ?thesis
   by fastforce
qed
lemma sa-suffix-order-le-gen:
 assumes card \{k, k < length \ s \land s \mid k < c \} + i < length \ s
 shows [c] \le suffix \ s \ (sa \ s \ ! \ (card \ \{k. \ k < length \ s \land s \ ! \ k < c\} \ + \ i))
proof (cases i)
 case \theta
 then show ?thesis
   using assms sa-suffix-order-le by auto
next
 let ?x = card \{k. \ k < length \ s \land s \mid k < c \}
 case (Suc\ m)
 with sorted-wrt-mapD[OF sa-g-sorted, of ?x ?x + i s]
 have suffix s (sa s! ?x) < suffix s (sa s! (?x + i))
   using assms sa-length by auto
 moreover
 have [c] \leq suffix \ s \ (sa \ s \ ! \ ?x)
   using add-lessD1 assms sa-suffix-order-le by blast
 ultimately show ?thesis
   by order
\mathbf{qed}
lemma sa-suffix-nth-less:
 assumes i < card \{k. \ k < length \ s \land s \ | \ k < c\}
 shows \forall as. suffix s (sa s ! i) < c \# as
proof -
 have i < length s
   using assms card-less-idx-upper dual-order.strict-trans1 by blast
 hence \exists as. suffix s (sa s ! i) = s ! (sa s ! i) \# as
   using sa-nth-ex suffix-cons-Suc by blast
 moreover
 have i < card \{k. \ k < length (sort s) \land (sort s) ! k < c\}
   using bij-betw-sort-idx-ex[of sort s s c] assms bij-betw-same-card by force
 with sorted-nth-less-gen[of sort s i c]
 have s! (sa s! i) < c
   using sorted-nth-less-gen[of sort \ s \ i \ c] \ \langle i < length \ s \rangle \ sort-sa-nth by force
 ultimately show ?thesis
```

```
by fastforce
qed
lemma sa-suffix-nth-gr:
 assumes card \{k. \ k < length \ s \land s \ | \ k < c\} + i < length \ s
          count-list s c \leq i
shows \forall as. c \# as < suffix s (sa s! (card \{k. k < length <math>s \land s! k < c\} + i))
proof -
 let ?x = card \{k. \ k < length \ s \land s \mid k < c\}
 let ?i = ?x + i
 \mathbf{let} \ ?y = \mathit{card} \ \{k. \ k < \mathit{length} \ (\mathit{sort} \ s) \ \land \ \mathit{sort} \ s \ ! \ k < c \}
 have \exists as. suffix s (sa s ! ?i) = s ! (sa s ! ?i) \# as
   using assms(1) sa-nth-ex suffix-cons-Suc by blast
 moreover
  {
   have ?y = ?x
     using bij-betw-sort-idx-ex[of sort s s c] bij-betw-same-card by force
   moreover
   have ?y + i < length (sort s)
     using assms(1) calculation(1) by auto
   moreover
   have count-list (sort s) c \leq i
     by (metis assms(2) count-list-perm mset-sort)
   ultimately have s ! (sa \ s ! ?i) > c
     using sorted-nth-gr-gen[of sort s c i] sort-sa-nth by fastforce
 ultimately show ?thesis
   by fastforce
qed
end
end
theory BWT
 imports ../../util/SA-Util
begin
11
        Burrows-Wheeler Transform
Based on [2]
    Definition 3.3 from [3]: Canonical BWT
definition bwt-canon :: ('a :: {linorder, order-bot}) list \Rightarrow 'a list
bwt-canon s = map\ last\ (sort\ (map\ (\lambda x.\ rotate\ x\ s)\ [0..< length\ s]))
context Suffix-Array-General begin
```

```
Definition 3.4 from [3]: Suffix Array Version of the BWT definition bwt-sa :: ('a :: {linorder, order-bot}) list \Rightarrow 'a list where bwt-sa s = map\ (\lambda i.\ s \ !\ ((i + length\ s - Suc\ \theta)\ mod\ (length\ s)))\ (sa\ s) end
```

12 BWT Verification

12.1 List Rotations

```
lemma rotate-suffix-prefix:
 assumes i < length xs
 shows rotate\ i\ xs = suffix\ xs\ i\ @\ prefix\ xs\ i
 by (simp add: assms rotate-drop-take)
lemma rotate-last:
 assumes i < length xs
 shows last (rotate i xs) = xs ! ((i + length xs - Suc \theta) mod (length xs))
 by (metis Nat.add-diff-assoc One-nat-def Suc-leI assms diff-less last-conv-nth
             length-greater-0-conv\ length-rotate\ list.size(3)\ not-less-zero\ nth-rotate
zero-less-one)
lemma (in Suffix-Array-General) map-last-rotations:
  map\ last\ (map\ (\lambda i.\ rotate\ i\ s)\ (sa\ s)) =\ bwt\text{-}sa\ s
 have \forall x \in set (sa \ s). last (rotate x \ s) = s \ ! ((x + length \ s - Suc \ \theta) \ mod \ length \ s)
   by (meson\ at Least Less Than-iff\ rotate-last\ sa-subset-upt\ subset-code(1))
 then show ?thesis
   unfolding bwt-sa-def by simp
qed
lemma distinct-rotations:
 assumes valid-list s
 and
         i < length s
 and
          j < length s
 and
          i \neq j
shows rotate i s \neq rotate j s
proof -
 from rotate-suffix-prefix[OF\ assms(2)]
      rotate-suffix-prefix[OF assms(3)]
      suffix-has-no-prefix-suffix[OF assms, simplified]
      suffix-has-no-prefix-suffix[OF\ assms(1,3,2)\ assms(4)[symmetric],\ simplified]
 show ?thesis
   by (metis append-eq-append-conv2)
qed
```

12.2 Ordering

```
\mathbf{lemma}\ \mathit{list-less-suffix-app-prefix-1}:
 assumes valid-list xs
          i < length xs
 and
 and
          j < length xs
 and
           suffix xs i < suffix xs j
shows suffix xs i @ prefix xs i < suffix <math>xs j @ prefix xs j
proof -
 from suffix-less-ex[OF assms]
 obtain b c as bs cs where
   suffix xs i = as @ b \# bs
   suffix \ xs \ j = as \ @ \ c \ \# \ cs
   b < c
   by blast
 hence suffix xs \ i \ @ \ prefix \ xs \ i = as \ @ \ b \ \# \ bs \ @ \ prefix \ xs \ i
       suffix xs j @ prefix xs j = as @ c \# cs @ prefix xs j
   by simp-all
  with \langle b < c \rangle
 show ?thesis
   by (metis list-less-ex)
qed
lemma list-less-suffix-app-prefix-2:
 assumes valid-list xs
          i < length xs
 and
          j < length xs
 and
           suffix xs i @ prefix xs i < suffix xs j @ prefix xs j
shows suffix xs i < suffix xs j
 by (metis assms list-less-suffix-app-prefix-1 not-less-iff-gr-or-eq suffixes-neq)
corollary list-less-suffix-app-prefix:
 assumes valid-list xs
          i < length xs
 and
 and
          j < length xs
shows suffix xs \ i < suffix \ xs \ j \longleftrightarrow
      suffix xs i @ prefix xs i < suffix xs j @ prefix xs j
  using assms list-less-suffix-app-prefix-1 list-less-suffix-app-prefix-2 by blast
    Theorem 3.5 from [3]: Same Suffix and Rotation Order
lemma list-less-suffix-rotate:
 assumes valid-list xs
 and
          i < length xs
          j < length xs
 and
shows suffix xs \ i < suffix xs \ j \longleftrightarrow rotate \ i \ xs < rotate \ j \ xs
 by (simp add: assms list-less-suffix-app-prefix rotate-suffix-prefix)
lemma (in Suffix-Array-General) sorted-rotations:
 assumes valid-list s
 shows strict-sorted (map (\lambda i. rotate \ i \ s) \ (sa \ s))
```

```
proof (intro sorted-wrt-mapI) fix i j assume i < j j < length (sa s) with sorted-wrt-nth-less[OF sa-g-sorted \langle i < j \rangle, simplified, OF \langle j < - \rangle] have suffix s (sa s ! i) < suffix s (sa s ! j) by force with list-less-suffix-rotate[THEN iffD1, OF assms, of sa s ! i sa s ! j] show rotate (sa s ! i) s < rotate (sa s ! j) s by (metis \langle i < j \rangle \langle j < length (sa s)\rangle dual-order.strict-trans sa-length sa-nth-ex) qed
```

12.3 BWT Equivalence

Theorem 3.6 from [3]: BWT and Suffix Array Correspondence Canoncial BWT and BWT via Suffix Array Correspondence

```
theorem (in Suffix-Array-General) bwt-canon-eq-bwt-sa:
 assumes valid-list s
 shows bwt-canon s = bwt-sa s
proof -
 let ?xs = map(\lambda x. rotate x s) [0..< length s]
 have distinct ?xs
  by (intro distinct-conv-nth[THEN iffD2] allI impI; simp add: distinct-rotations[OF
assms)
 hence strict-sorted (sort ?xs)
   using distinct-sort sorted-sort strict-sorted-iff by blast
 hence sort ?xs = map (\lambda i. rotate i s) (sa s)
   using sorted-rotations[OF assms]
   by (simp add: strict-sorted-equal sa-set-upt)
 with map-last-rotations[of s]
 have map\ last\ (sort\ ?xs) = bwt-sa\ s
   by presburger
 then show ?thesis
   by (metis bwt-canon-def)
qed
end
theory BWT-SA-Corres
 imports BWT
        ../../counting/SA-Count
        ../../util/Rotated-Substring
begin
```

13 BWT and Suffix Array Correspondence

 ${\bf context}\ \textit{Suffix-Array-General}\ {\bf begin}$

Definition 3.12 from [3]: BWT Permutation

```
where
bwt-perm\ s = map\ (\lambda i.\ (i + length\ s - Suc\ 0)\ mod\ (length\ s))\ (sa\ s)
          BWT Using Suffix Arrays
13.1
lemma map-bwt-indexes:
  fixes s :: ('a :: \{linorder, order-bot\}) \ list
 shows bwt-sa s = map (\lambda i. s ! i) (bwt-perm s)
 by (simp add: bwt-perm-def bwt-sa-def)
lemma map-bwt-indexes-perm:
  fixes s :: ('a :: \{linorder, order-bot\}) \ list
  shows bwt-perm s <^{\sim} > [0..< length s]
proof (intro distinct-set-imp-perm)
  show distinct [0..< length s]
   by simp
\mathbf{next}
  show set (bwt\text{-}perm\ s) = set\ [0..< length\ s]
   unfolding bwt-perm-def
  proof safe
   \mathbf{fix} \ x
   assume x \in set \ (map \ (\lambda i. \ (i + length \ s - Suc \ \theta) \ mod \ length \ s) \ (sa \ s))
   hence x < length s
        by (metis (no-types, lifting) ex-map-conv length-map length-pos-if-in-set
mod\text{-}less\text{-}divisor
                                  sa-length)
   then show x \in set [0..< length s]
     \mathbf{by} \ simp
  next
   \mathbf{fix} \ x
   assume x \in set [0..< length s]
   hence x \in \{0..< length s\}
     using atLeastLessThan-upt by blast
   have x \in (\lambda i. (i + length \ s - Suc \ \theta) \ mod \ length \ s) '\{\theta... < length \ s\}
   proof (cases Suc x < length s)
     assume Suc \ x < length \ s
     hence (\lambda i. (i + length \ s - Suc \ \theta) \ mod \ length \ s) (Suc \ x) = x
       by simp
     then show ?thesis
       using \langle Suc \ x < length \ s \rangle by force
   next
     assume \neg Suc x < length s
     with \langle x \in \{0..< length \ s\} \rangle
     have Suc \ x = length \ s
       by simp
     hence (\lambda i. (i + length \ s - Suc \ \theta) \ mod \ length \ s) \ \theta = x
       using diff-Suc-1' lessI mod-less by presburger
```

definition bwt-perm :: ('a :: {linorder, order-bot}) list \Rightarrow nat list

```
then show ?thesis
      by (metis (mono-tags, lifting) \langle Suc | x = length | s \rangle at Least Less Than-iff image I
zero-le
                                    zero-less-Suc)
   ged
   then show x \in set \ (map \ (\lambda i. \ (i + length \ s - Suc \ \theta) \ mod \ length \ s) \ (sa \ s))
     by (simp add: sa-set-upt)
  qed
next
 show distinct (bwt-perm s)
 proof (intro distinct-conv-nth[THEN iffD2] allI impI)
   assume A: i < length (bwt-perm s) j < length (bwt-perm s) <math>i \neq j
   have bwt-perm s ! i = (sa \ s ! i + length \ s - Suc \ \theta) \ mod \ (length \ s)
     using A(1) bwt-perm-def by force
   moreover
   have bwt-perm s \mid j = (sa \ s \mid j + length \ s - Suc \ \theta) \ mod \ (length \ s)
     using A(2) bwt-perm-def by force
   moreover
   have sa s ! i \neq sa s ! j
     by (metis A bwt-perm-def length-map nth-eq-iff-index-eq sa-distinct)
   have (sa\ s\ !\ i + length\ s - Suc\ \theta)\ mod\ (length\ s) \neq
         (sa\ s\ !\ j + length\ s - Suc\ \theta)\ mod\ (length\ s)
   proof (cases sa s! i)
     case \theta
     moreover have \langle length \ s > \theta \rangle
       using A(2) bwt-perm-def sa-length by fastforce
     ultimately have (sa\ s\ !\ i + length\ s - Suc\ \theta)\ mod\ (length\ s) = length\ s -
Suc \ \theta
       by simp
     moreover
     have \exists m. \ sa \ s \ ! \ j = Suc \ m
       using 0 \langle sa \ s \ | \ i \neq sa \ s \ | \ j \rangle not0-implies-Suc by force
     then obtain m where
       sa\ s\ !\ j = Suc\ m
       by blast
     hence (sa\ s\ !\ j + length\ s - Suc\ \theta)\ mod\ (length\ s) = m
       using A(2) bwt-perm-def sa-length sa-nth-ex by force
     moreover
     have Suc \ m \leq length \ s - Suc \ \theta
      by (metis 0 A(1) A(2) Suc-pred \langle sas! j = Sucm \rangle bwt-perm-def length-map
less-Suc-eq-le
                sa-length sa-nth-ex)
     hence m < length s - Suc \theta
       using Suc-le-eq by blast
     ultimately show ?thesis
       by (metis not-less-iff-gr-or-eq)
```

```
next
     case (Suc \ n)
     assume sa\ s\ !\ i = Suc\ n
     hence B: (sa\ s\ !\ i + length\ s - Suc\ \theta)\ mod\ (length\ s) = n
       using A(1) bwt-perm-def sa-length sa-nth-ex by force
     show ?thesis
     proof (cases sa s ! j)
      case \theta
      hence (sa\ s\ !\ j + length\ s - Suc\ 0)\ mod\ (length\ s) = length\ s - Suc\ 0
        by (metis add-eq-if diff-Suc-less length-greater-0-conv list.size(3) mod-by-0
mod-less)
      moreover
      have Suc \ n \leq length \ s - Suc \ \theta
         by (metis 0 A(1,2) Suc Suc-pred bwt-perm-def length-map less-Suc-eq-le
sa-length
                 sa-nth-ex
      hence n < length s - Suc \theta
        using Suc-le-eq by blast
      ultimately show ?thesis
        by (simp \ add: B)
     next
      case (Suc\ m)
      hence (sa\ s\ !\ j + length\ s - Suc\ \theta)\ mod\ (length\ s) = m
        using A(2) add-Suc bwt-perm-def sa-length sa-nth-ex by force
      moreover
      have m \neq n
        using Suc \langle sa \ s \ | \ i = Suc \ n \rangle \langle sa \ s \ | \ i \neq sa \ s \ | \ j \rangle by auto
      ultimately show ?thesis
        using B by presburger
     qed
   qed
   ultimately show bwt-perm s ! i \neq bwt-perm s ! j
     by presburger
 qed
qed
lemma bwt-sa-perm:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 shows bwt-sa s <^{\sim} > s
 by (metis map-bwt-indexes-perm map-bwt-indexes map-nth mset-map)
lemma bwt-sa-nth:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i :: nat
 assumes i < length s
 shows bwt-sa s ! i = s ! (((sa s ! i) + length s - 1) mod (length s))
 using assms sa-length bwt-sa-def by force
lemma bwt-perm-nth:
```

```
fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i :: nat
 assumes i < length s
 shows bwt-perm s ! i = ((sa \ s \ ! \ i) + length \ s - 1) \ mod \ (length \ s)
 using assms sa-length bwt-perm-def by force
lemma bwt-perm-s-nth:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i :: nat
 assumes i < length s
 shows bwt-sa s ! i = s ! (bwt-perm s ! i)
 using assms bwt-perm-nth bwt-sa-nth by presburger
\mathbf{lemma}\ bwt\text{-}sa\text{-}length:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 shows length (bwt-sa\ s) = length\ s
 using sa-length bwt-sa-def by force
lemma bwt-perm-length:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 shows length (bwt\text{-}perm\ s) = length\ s
 using sa-length bwt-perm-def by force
lemma ex-bwt-perm-nth:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes k :: nat
 assumes k < length s
 shows \exists i < length s. bwt-perm s ! i = k
 using assms ex-perm-nth map-bwt-indexes-perm by blast
lemma valid-list-sa-index-helper:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i j :: nat
 assumes valid-list s
 and
         i < length s
 and
          j < length s
 and
          i \neq j
 and
          s!(bwt\text{-}perm\ s!\ i) = s!(bwt\text{-}perm\ s!\ j)
shows sa s! i \neq 0
proof (rule ccontr)
 assume \neg sas! i \neq 0
 hence sa\ s\ !\ i=0
   by clarsimp
 from valid-list-length-ex[OF assms(1)]
 obtain n where
   length \ s = Suc \ n
   \mathbf{by} blast
```

```
let ?i = (sa \ s \ ! \ i + length \ s - 1) \ mod \ length \ s
 and ?j = (sa\ s\ !\ j + length\ s - 1)\ mod\ length\ s
 from bwt-perm-nth[OF assms(2)]
 have bwt-perm s ! i = ?i.
 moreover
 from bwt-perm-nth[OF assms(3)]
 have bwt-perm s ! j = ?j.
 moreover
 have ?i = n
   by (simp add: \langle length \ s = Suc \ n \rangle \langle sa \ s \ ! \ i = 0 \rangle)
 hence s \, ! \, ?i = bot
     by (metis One-nat-def \langle length \ s = Suc \ n \rangle assms(1) diff-Suc-Suc diff-zero
last-conv-nth
             list.size(3) nat.distinct(1) valid-list-def)
 moreover
 have \exists k. \ sa \ s \ ! \ j = Suc \ k
    by (metis \langle length \ s = Suc \ n \rangle \langle sa \ s \ ! \ i = 0 \rangle \ assms(2-4) \ less-Suc-eq-0-disj
nth-eq-iff-index-eq
             sa-distinct sa-length sa-nth-ex)
  then obtain k where
   sa\ s\ !\ j = Suc\ k
   by blast
 hence ?j = k \land k < n
    by (metis \langle length \ s = Suc \ n \rangle add-Suc-right add-Suc-shift add-diff-cancel-left'
assms(3)
         dual-order.strict-trans lessI mod-add-self2 mod-less not-less-eq plus-1-eq-Suc
             sa-nth-ex
 hence s \, ! \, ?j \neq bot
   by (metis \langle length \ s = Suc \ n \rangle \ assms(1) \ diff-Suc-1 \ valid-list-def)
  ultimately show False
   by (metis\ assms(5))
qed
    Theorem 3.13 from [3]: Suffix Relative Order Preservation Relative order
of the suffixes is maintained by the BWT permutation
{f lemma}\ bwt	ext{-}relative	ext{-}order:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i j :: nat
 assumes valid-list s
 and
          i < j
 and
           j < length s
           s!(bwt\text{-}perm\ s!\ i) = s!(bwt\text{-}perm\ s!\ j)
shows suffix s (bwt-perm s ! i) < suffix s (bwt-perm s ! j)
proof -
 from valid-list-length-ex[OF assms(1)]
 obtain n where
   length \ s = Suc \ n
```

```
by blast
 let ?i = (sa \ s \ ! \ i + length \ s - 1) \ mod \ length \ s
 and ?j = (sa \ s \ ! \ j + length \ s - 1) \ mod \ length \ s
  from bwt-perm-nth[of i s] assms(2-3)
 have bwt-perm s ! i = ?i
   using dual-order.strict-trans by blast
 moreover
 from bwt-perm-nth[OF\ assms(3)]
 have bwt-perm s ! j = ?j.
 moreover
 from sorted-wrt-nth-less[OF sa-g-sorted assms(2)] assms(2,3)
 have suffix s (sa s! i) < suffix s (sa s! j)
   using sa-length by force
 moreover
 have \exists k. \ sa \ s \ ! \ i = Suc \ k
  using valid-list-sa-index-helper [OF assms(1) - assms(3) - assms(4)] assms(2,3)
         dual-order.strict-trans not0-implies-Suc by blast
  then obtain k where
   sa\ s\ !\ i = Suc\ k
   by blast
  moreover
 from calculation(4)
 have ?i = k
    by (metis Suc-lessD add.assoc assms(2,3) diff-Suc-1 dual-order.strict-trans
mod-add-self2
            mod-less plus-1-eq-Suc sa-nth-ex)
 moreover
 have \exists l. \ sa \ s \ ! \ j = Suc \ l
 using valid-list-sa-index-helper[OF assms(1) assms(3) - - assms(4)[symmetric]]
assms(2,3)
        dual-order.strict-trans not0-implies-Suc by blast
 then obtain l where
   sa\ s\ !\ j = Suc\ l
   \mathbf{by} blast
 moreover
 from calculation(6)
 have ?j = l
   using assms(3) sa-nth-ex by force
 ultimately show ?thesis
  by (metis Cons-less-Cons Cons-nth-drop-Suc assms(1,4) mod-less-divisor valid-list-length)
\mathbf{lemma}\ \mathit{bwt\text{-}sa\text{-}card\text{-}s\text{-}idx} \colon
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i :: nat
 assumes valid-list s
 and
          i < length s
```

```
shows i = card \{j. \ j < length \ s \land j < i \land bwt\text{-sa} \ s \ ! \ j \neq bwt\text{-sa} \ s \ ! \ i\} +
            card\ \{j.\ j < length\ s \land s \mid j = bwt\text{-sa}\ s \mid i \land j = bwt
                     suffix \ s \ j < suffix \ s \ (bwt\text{-}perm \ s \ ! \ i)
proof -
  let ?bwt = bwt\text{-}sa\ s
 let ?idx = bwt\text{-}perm s
 let ?i = ?idx ! i
 let ?v = ?bwt ! i
  \mathbf{let} \ ?A = \{j. \ j < \mathit{length} \ s \land j < i \land \ ?\mathit{bwt} \ ! \ j \neq \ ?v\}
  let ?B = \{j. \ j < length \ s \land s \mid j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}
 let ?C = \{j. \ j < length \ s \land j < i \land ?bwt \ ! \ j = ?v\}
 have P: \Lambda x. [x < i; \neg x < length s] \Longrightarrow False
   using assms(2) dual-order.strict-trans by blast
  have ?A \cap ?C = \{\}
   \mathbf{by} blast
  moreover
  have ?A \cup ?C = \{0..< i\}
   by (safe; clarsimp dest!: P)
  ultimately have i = card ?A + card ?C
    by (metis (no-types, lifting) List.finite-set atLeastLessThan-upt card-Un-disjnt
card-upt
                                 disjnt-def finite-Un)
  moreover
  have bij-betw (\lambda x. ?idx ! x) ?C ?B
  proof (intro bij-betwI'; safe)
   \mathbf{fix} \ x \ y
   assume x < length \ s \ y < length \ s \ ?idx \ ! \ x = ?idx \ ! \ y
   with perm-distinct-iff[OF map-bwt-indexes-perm, of s]
     by (simp add: bwt-perm-length nth-eq-iff-index-eq)
  next
   \mathbf{fix} \ x
   assume x < length s
   with map-bwt-indexes-perm[of s]
   show ?idx ! x < length s
     using perm-nth-ex by blast
  next
   \mathbf{fix} \ x
   assume x < length s bwt-sa s ! x = ?v
   then show s ! (?idx ! x) = ?v
     using bwt-perm-s-nth by auto
  next
   \mathbf{fix} \ x
   assume x < length s x < i bwt-sa s ! x = ?v
   then show suffix s (?idx!x) < suffix s?i
    using bwt-relative-order [OF assms(1) - assms(2), of x] assms(2) bwt-perm-s-nth
by fastforce
```

```
next
 \mathbf{fix} \ x
 assume Q: x < length \ s \ s \ ! \ x = ?v \ suffix \ s \ x < suffix \ s \ ?i
 from perm-nth[OF map-bwt-indexes-perm[of s, symmetric],
              simplified length-map sa-length length-upt]
 have \exists y < length s. x = ?idx ! y
   using Q(1) bwt-perm-length by auto
 then obtain y where
   y < length s
   x = ?idx ! y
   by blast
 moreover
 from Q(2) calculation
 have ?bwt ! y = ?v
   by (simp add: bwt-perm-s-nth)
 moreover
 have y < i
 proof (rule ccontr)
   assume \neg y < i
   hence i \leq y
     by simp
   moreover
   from Q(3) \langle x = ?idx ! y \rangle
   have i = y \Longrightarrow False
     by blast
   moreover
   have i < y \Longrightarrow False
   proof -
     assume i < y
     from bwt-relative-order [OF assms(1) \langle i < y \rangle \langle y < - \rangle]
          Q(2) \langle x = ?idx ! y \rangle
     have suffix \ s \ ?i < suffix \ s \ (?idx \ ! \ y)
       by (simp\ add:\ bwt\text{-}perm\text{-}s\text{-}nth\ assms(2))
     with Q(3) \langle x = ?idx ! y \rangle
     show False
       using order.asym by blast
   ultimately show False
     using nat-less-le by blast
 qed
 ultimately show \exists y \in ?C. \ x = bwt\text{-}perm \ s \mid y
   by blast
qed
hence card ?C = card ?B
 using bij-betw-same-card by blast
ultimately
show ?thesis
 by presburger
```

```
qed
```

```
{f lemma}\ bwt	ext{-}perm	ext{-}to	ext{-}sa	ext{-}idx	ext{:}
         assumes valid-list s
         and
                                                           i < length s
shows \exists k < length s. sa s ! k = bwt-perm s ! i \land
                                                      k = card \{j. j < length s \land s \mid j < bwt\text{-sa } s \mid i\} +
                                                                            card \{j. j < length s \land s \mid j = bwt\text{-sa } s \mid i \land j = bwt\text{-sa } s \mid 
                                                                                                                       suffix \ s \ j < suffix \ s \ (bwt\text{-}perm \ s \ ! \ i)
proof -
          \mathbf{let} ? bwt = bwt \text{-} sa \ s
         let ?v = ?bwt ! i
         let ?i = bwt\text{-}perm \ s \ ! \ i
         let ?A = \{j. \ j < length \ s \land s \mid j < ?v\}
         let ?B = \{j. \ j < length \ s \land s \mid j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}
          have \exists k < length s. sa s! k = ?i
                   by (metis assms bwt-perm-nth ex-sa-nth mod-less-divisor valid-list-length)
           then obtain k where
                   k < length s
                   sa\ s\ !\ k=\ ?i
                   by blast
           moreover
          have s ! (sa s ! k) = ?v
                   using assms(2) bwt-perm-s-nth calculation(2) by presburger
           with sa\text{-}card\text{-}s\text{-}idx[OF\ calculation(1)]
          have k = card ?A + card ?B
                   by (metis\ calculation(2))
           ultimately show ?thesis
                   \mathbf{by} blast
qed
corollary bwt-perm-eq:
         fixes s :: ('a :: \{linorder, order-bot\}) \ list
         fixes i :: nat
         assumes valid-list s
         and
                                                            i < length s
shows bwt-perm s ! i =
                                        sa\ s\ !\ (card\ \{j.\ j < length\ s \land s\ !\ j < bwt-sa\ s\ !\ i\}\ +
                                                                                card\ \{j.\ j < length\ s \land s \mid j = bwt\text{-sa}\ s \mid i \land j = bwt\text{-sa}\ s \mid j = bwt\text
                                                                                                                            suffix \ s \ j < suffix \ s \ (bwt\text{-perm } s \ ! \ i)\})
          using assms bwt-perm-to-sa-idx by presburger
13.2
                                                  BWT Rank Properties
```

```
lemma bwt-perm-rank-nth:
  \mathbf{fixes}\ s :: ('a :: \{\mathit{linorder},\ \mathit{order}\text{-}\mathit{bot}\})\ \mathit{list}
  fixes i :: nat
  assumes valid-list s
```

```
i < length s
     and
shows rank (bwt-sa s) (bwt-sa s! i) i =
                      card \{j. j < length s \land s \mid j = bwt\text{-sa } s \mid i \land j = bwt\text{-sa } s \mid j = 
                                              suffix \ s \ j < suffix \ s \ (bwt\text{-perm} \ s \ ! \ i)
proof -
     let ?bwt = bwt\text{-}sa\ s
     let ?idx = bwt\text{-}perm s
     let ?i = ?idx ! i
     let ?v = ?bwt ! i
     let ?A = \{j. \ j < length \ s \land s \mid j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}
     let ?B = \{j. \ j < length ?bwt \land j < i \land ?bwt ! j = ?v\}
     let ?C = \{j. \ j < length \ s \land j < i \land ?bwt \ ! \ j = ?v\}
     from valid-list-length-ex[OF assms(1)]
     obtain n where
          length \ s = Suc \ n
          \mathbf{by} blast
      from rank-card-spec[of ?bwt ?v i]
     have rank ?bwt ?v i = card ?B.
     moreover
     have ?B = ?C
          by (simp add: bwt-sa-length sa-length)
      moreover
     have bij-betw (\lambda x. ?idx ! x) ?C ?A
      proof (rule bij-betwI'; safe)
          \mathbf{fix} \ x \ y
          assume x < length \ s \ y < length \ s \ ?idx \ ! \ x = ?idx \ ! \ y
          then show x = y
               by (metis map-bwt-indexes-perm bwt-perm-length nth-eq-iff-index-eq
                                           perm-distinct-set-of-upt-iff)
     next
          \mathbf{fix} \ x
          assume x < length s
          then show ?idx ! x < length s
                using map-bwt-indexes-perm perm-nth-ex by blast
     next
          \mathbf{fix} \ x
          assume x < length \ s \ x < i \ ?bwt \ ! \ x = ?v
          then show s!(?idx!x) = ?v
                using bwt-perm-s-nth by auto
     next
          \mathbf{fix} \ x
          assume x < length s x < i ?bwt ! x = ?v
          then show suffix s (?idx ! x) < suffix s ?i
               by (simp add: assms(1,2) bwt-relative-order bwt-perm-s-nth)
      next
          \mathbf{fix} \ x
          assume x < length \ s \ s \ ! \ x = ?v \ suffix \ s \ x < suffix \ s \ ?i
```

```
from perm-nth[OF map-bwt-indexes-perm[of s, symmetric],
                 simplified\ length-map\ sa-length\ length-upt,\ of\ x]
   have \exists y < length s. x = ?idx ! y
      using \langle x < length \ s \rangle \ bwt\text{-}perm\text{-}length \ \mathbf{by} \ auto
   then obtain y where
      y < length s
     x = ?idx ! y
     by blast
   moreover
   from calculation \langle s \mid x = ?v \rangle
   have ?bwt ! y = ?v
     using bwt-perm-s-nth by presburger
   moreover
   have y < i
   proof (rule ccontr)
     assume \neg y < i
     hence i \leq y
       by simp
      moreover
      from \langle suffix \ s \ x < suffix \ s \ ?i \rangle \ \langle x = ?idx \ ! \ y \rangle
     have y = i \Longrightarrow False
       by blast
      moreover
      have i < y \Longrightarrow False
     proof -
        with bwt-relative-order [OF assms(1) \langle i < y \rangle \langle y < - \rangle] \langle x = ?idx ! y \rangle \langle s ! x
= bwt-sa s \mid i \rangle
       have suffix s ?i < suffix s x
         using assms(2) bwt-perm-s-nth by presburger
       with \langle suffix \ s \ x < suffix \ s \ ?i \rangle
       show False
         using less-not-sym by blast
      ultimately show False
       by linarith
   ultimately show \exists y \in ?C. \ x = bwt\text{-perm } s ! y
      \mathbf{by} blast
  \mathbf{qed}
  hence card ?C = card ?A
   using bij-betw-same-card by blast
  ultimately show ?thesis
   by presburger
qed
{f lemma}\ bwt-sa-card-rank-s-idx:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
```

```
fixes i:: nat assumes valid-list s and i < length s shows i = card \{j. \ j < length \ s \land j < i \land bwt-sa s \ ! \ j \neq bwt-sa s \ ! \ i \} + rank \ (bwt-sa s \ ) \ (bwt-sa s \ ! \ i) \ i using assms \ bwt-sa-card-s-idx bwt-perm-rank-nth by presburger
```

13.3 Suffix Array and BWT Rank

```
lemma \ sa-bwt-perm-same-rank:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i j :: nat
 assumes valid-list s
 and
          i < length s
 and
          j < length s
 and
          sa\ s\ !\ i=\mathit{bwt\text{-}perm}\ s\ !\ j
shows rank (sort s) (s! (sa s! i)) i = rank (bwt-sa s) (bwt-sa s! j) j
proof -
 let ?i = sa \ s \ ! \ i
 let ?v = s ! ?i
 let ?A = \{j. \ j < length \ s \land s \mid j = ?v \land suffix \ s \ j < suffix \ s \ ?i\}
 have bwt-sa s ! j = ?v
   using bwt-perm-s-nth[OF\ assms(3)]\ assms(4) by presburger
 from sa\text{-}rank\text{-}nth[OF\ assms(2)]
 have rank (sort s) ?v \ i = card \ ?A.
 moreover
 from bwt-perm-rank-nth[OF\ assms(1,3),\ simplified\ assms(4)[symmetric]] \land bwt-sa
s \mid j = ?v
 have rank (bwt-sa\ s) (bwt-sa\ s\ !\ j)\ j = card\ ?A
   by simp
 ultimately show ?thesis
   by simp
\mathbf{qed}
    Theorem 3.17 from [3]: Same Rank Rank for each symbol is the same in
the BWT and suffix array
lemma rank-same-sa-bwt-perm:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i j :: nat
 fixes v :: 'a
 assumes valid-list s
          i < length s
 and
          j < length s
 and
 and
          s ! (sa s ! i) = v
          bwt-sa s \mid j = v
 and
 and
          rank (sort s) v i = rank (bwt-sa s) v j
shows sa s ! i = bwt\text{-perm } s ! j
```

```
proof -
    let ?A = \{j. \ j < length \ s \land s \mid j < v\}
    from sa-card-rank-s-idx[OF assms(2), simplified assms(4)]
    have i = card ?A + rank (sort s) v i.
    moreover
    \mathbf{from}\ \mathit{bwt-perm-rank-nth}[\mathit{OF}\ \mathit{assms}(1,\!3),\ \mathit{simplified}\ \mathit{assms}(5)]
               bwt-perm-eq[OF assms(1,3), simplified assms(5)]
    have bwt-perm s ! j = sa s ! (card ?A + rank (bwt-sa s) v j)
        by presburger
     with assms(6)
    have bwt-perm s ! j = sa s ! (card ?A + rank (sort s) v i)
        by simp
    ultimately show ?thesis
        by simp
qed
lemma rank-bwt-card-suffix:
    fixes s :: ('a :: \{linorder, order-bot\}) \ list
    fixes i :: nat
    fixes a :: 'a
    assumes i < length s
    shows rank (bwt-sa s) a i =
                    card \{k. \ k < length \ s \land k < i \land bwt\text{-sa} \ s \ | \ k = a \land s \}
                                        a \# suffix s (sa s ! k) < a \# suffix s (sa s ! i)
proof -
    let ?X = \{j. \ j < length \ (bwt\text{-sa } s) \land j < i \land bwt\text{-sa } s \mid j = a\}
    let ?Y = \{k. \ k < length \ s \land k < i \land bwt-sa \ s \ | \ k = a \land k < i \land bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k < bwt-sa \ s \ | \ k = a \land k 
                                   a \# suffix s (sa s ! k) < a \# suffix s (sa s ! i)
    from rank-card-spec[of bwt-sa s a i]
    have rank (bwt-sa s) a i = card ?X.
    moreover
    have ?Y \subseteq ?X
        using bwt-sa-length by auto
    moreover
    have ?X \subseteq ?Y
    proof safe
        \mathbf{fix} \ x
        assume x < length (bwt-sa s)
        then show x < length s
             by (simp add: bwt-sa-length)
     next
        \mathbf{fix} \ x
        assume x < length (bwt-sa s) x < i a = bwt-sa s! x
        with sorted-wrt-mapD[OF\ sa-g-sorted, of x\ i\ s]
        show bwt-sa s ! x \# suffix s (sa <math>s ! x) < bwt-sa s ! x \# suffix s (sa <math>s ! i)
             by (simp add: assms sa-length)
    qed
    ultimately show ?thesis
```

```
by force
qed
\mathbf{lemma}\ sa\text{-}to\text{-}bwt\text{-}perm\text{-}idx:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i :: nat
 assumes valid-list s
 and
        i < length s
shows sa \ s \ ! \ i =
      bwt-perm s ! (select (bwt-sa s) (s ! (sa <math>s ! i)) (rank (sort s) (s ! (sa <math>s ! i)) i))
proof -
 let ?a = s ! (sa s ! i)
 let ?r1 = rank (sort s) ?a i
 let ?i = select (bwt-sa s) ?a ?r1
 let ?r2 = rank (bwt-sa s) ?a ?i
 have ?r1 < count\text{-list (sort s) } ?a
   by (simp add: assms(2) rank-upper-bound sort-sa-nth)
 hence ?r1 < count-list (bwt-sa s) ?a
   by (metis bwt-sa-perm count-list-perm mset-sort)
 hence ?i < length (bwt-sa s)
   by (metis rank-length select-upper-bound)
  hence ?r1 = ?r2 \land bwt\text{-sa } s ! ?i = ?a
   by (metis rank-select select-nth-alt)
  with rank-same-sa-bwt-perm[OF assms, of ?i ?a]
 show ?thesis
   using \langle ?i < length (bwt-sa s) \rangle bwt-sa-length by fastforce
qed
lemma suffix-bwt-perm-sa:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i :: nat
 assumes valid-list s
 and
          i < length s
 and
          bwt-sa s ! i \neq bot
shows suffix s (bwt-perm s \mid i) = bwt-sa s \mid i \# suffix s (sa s \mid i)
proof -
 from bwt-sa-nth[OF assms(2)]
 have bwt-sa s ! i = s ! ((sa s ! i + length s - 1) mod length s).
 moreover
 have sa s! i \neq 0
  by (metis add-diff-cancel-left' assms(1,3) calculation diff-less diff-zero last-conv-nth
            length-greater-0-conv less-one mod-less valid-list-def)
  ultimately have bwt-sa s ! i = s ! (sa s ! i - 1)
  by (metis Nat.add-diff-assoc2 One-nat-def Suc-lessD Suc-pred assms(2) bot-nat-0.not-eq-extremum
            less-Suc-eq-le linorder-not-less mod-add-self2 mod-if sa-nth-ex)
 hence bwt-sa s ! i \# suffix s (sa <math>s ! i) = suffix s (sa <math>s ! i - 1)
```

```
by (metis Suc-lessD \langle sa\ s\ !\ i \neq 0 \rangle add-diff-inverse-nat assms(2) less-one
plus-1-eq-Suc
                 sa-nth-ex\ suffix-cons-Suc)
  moreover
  have bwt-perm s ! i = sa s ! i - 1
     \mathbf{by}\ (\mathit{metis}\ \mathit{Nat}.\mathit{add}\text{-}\mathit{diff}\text{-}\mathit{assoc2}\ \mathit{One}\text{-}\mathit{nat}\text{-}\mathit{def}\ \mathit{Suc}\text{-}\mathit{leI}\ \mathit{Suc}\text{-}\mathit{lessD}\ \mathit{Suc}\text{-}\mathit{pred}\ \mathit{`sa}\ \mathit{s}\ !\ i
\neq 0 \rightarrow assms(2)
                 bwt-perm-nth mod-add-self2 mod-less not-gr-zero sa-nth-ex)
  ultimately show ?thesis
    by presburger
qed
end
end
theory IBWT
  imports BWT-SA-Corres
begin
```

14 Inverse Burrows-Wheeler Transform

Inverse BWT algorithm obtained from [6]

14.1 Abstract Versions

```
{\bf context}\ \textit{Suffix-Array-General}\ {\bf begin}
```

These are abstract because they use additional information about the original string and its suffix array.

```
Definition 3.15 from [3]: Abstract LF-Mapping fun lf-map-abs :: 'a list \Rightarrow nat \Rightarrow nat where lf-map-abs s i = select (sort s) (bwt-sa s! i) (rank (bwt-sa s) (bwt-sa s! i) i) Definition 3.16 from [3]: Inverse BWT Permutation fun ibwt-perm-abs :: nat \Rightarrow 'a \ list \Rightarrow nat \Rightarrow nat \ list where ibwt-perm-abs (sut sit = sit
```

14.2 Concrete Versions

end

These are concrete because they only rely on the BWT-transformed sequence without any additional information.

Definition 3.14 from [3]: Inverse BWT - LF-mapping

```
fun lf-map-conc :: ('a :: {linorder, order-bot}) list \Rightarrow 'a list \Rightarrow nat \Rightarrow nat
  where
   lf-map-conc ss bs i = (select ss (bs ! i) 0) + (rank bs (bs ! i) i)
fun ibwt-perm-conc :: nat <math>\Rightarrow ('a :: {linorder, order-bot}) list \Rightarrow 'a list \Rightarrow nat \Rightarrow
nat list
  where
    ibwt-perm-conc \theta - - - = []
    ibwt-perm-conc (Suc n) ss bs i = ibwt-perm-conc n ss bs (lf-map-conc ss bs i)
@[i]
    Definition 3.14 from [3]: Inverse BWT - Inverse BWT Rotated Subse-
quence
fun ibwtn :: nat \Rightarrow ('a :: \{linorder, order-bot\}) \ list \Rightarrow 'a \ list \Rightarrow nat \Rightarrow 'a \ list
  where
    ibwtn \ \theta - - - = []
   ibwtn (Suc \ n) \ ss \ bs \ i = ibwtn \ n \ ss \ bs \ (lf-map-conc \ ss \ bs \ i) \ @ \ [bs \ ! \ i]
    Definition 3.14 from [3]: Inverse BWT
fun ibwt :: ('a :: \{linorder, order-bot\}) \ list \Rightarrow 'a \ list
  where
    ibwt \ bs = ibwtn \ (length \ bs) \ (sort \ bs) \ bs \ (select \ bs \ bot \ 0)
15
         List Filter
\mathbf{lemma} filter-nth-app-upt:
  filter (\lambda i. \ P \ (xs \ ! \ i)) \ [0..< length \ xs] = filter \ (\lambda i. \ P \ ((xs \ @ \ ys) \ ! \ i)) \ [0..< length
xs
 by (induct xs arbitrary: ys rule: rev-induct; simp)
lemma filter-eq-nth-upt:
 filter P xs = map (\lambda i. xs ! i) (filter (\lambda i. P (xs ! i)) [0..< length xs])
proof (induct xs rule: rev-induct)
  case Nil
  then show ?case
   \mathbf{by} \ simp
next
  case (snoc \ x \ xs)
 have ?case \longleftrightarrow
        map\ ((!)\ xs)\ (filter\ (\lambda i.\ P\ (xs\ !\ i))\ [0..< length\ xs]) =
        map ((!) (xs @ [x])) (filter (\lambda i. P ((xs @ [x]) ! i)) [0.. < length xs])
   using snoc by simp
  moreover
  have map ((!) (xs @ [x])) (filter (\lambda i. P ((xs @ [x]) ! i)) [0..<length xs]) =
        map((!) (xs @ [x])) (filter(\lambda i. P(xs!i)) [0..< length xs])
   using filter-nth-app-upt[of\ P\ xs\ [x]] by simp
  moreover
 have map ((!) xs) (filter (\lambda i. P(xs! i)) [0..< length xs]) =
```

```
map((!) (xs @ [x])) (filter(\lambda i. P(xs ! i)) [0..< length xs])
    by (clarsimp simp: nth-append)
  ultimately show ?case
    by argo
qed
\mathbf{lemma}\ \textit{distinct-filter-nth-upt}\colon
  distinct (filter (\lambda i.\ P\ (xs\ !\ i)) [\theta..< length\ xs])
  by simp
lemma filter-nth-upt-set:
  set (filter (\lambda i.\ P\ (xs\ !\ i)) [0..<length xs]) = {i.\ i < length\ xs \land P\ (xs\ !\ i)}
 using set-filter by simp
\mathbf{lemma}\ \mathit{filter-length-upt}\colon
  length (filter (\lambda i. P (xs ! i)) [0... < length xs]) = card \{i. i < length xs \land P (xs ! i)\}
 by (metis distinct-card distinct-filter-nth-upt filter-nth-upt-set)
lemma perm-filter-length:
  xs <^{\sim} > ys \Longrightarrow
  length (filter (\lambda i. P (xs ! i)) [0..< length xs])
    = length (filter (\lambda i. P (ys ! i)) [\theta.. < length ys])
  by (metis filter-eq-nth-upt length-map mset-filter perm-length)
```

16 Verification of the Inverse Burrows-Wheeler Transform

context Suffix-Array-General begin

16.1 LF-Mapping Simple Properties

```
lemma lf-map-abs-less-length:
fixes s: 'a list
fixes ij: nat
assumes i < length s
shows lf-map-abs si < length s
proof —
let ?v = bwt-sa s!i
let ?r = rank (bwt-sa s) ?vi
let ?i = lf-map-abs si
have ?i = select (sort s) ?v?r
by (metis \ lf-map-abs.simps)
have ?r < count-list (bwt-sa s) ?v
by (simp \ add: \ assms \ bwt-sa-length rank-upper-bound)
moreover
```

```
have bwt-sa s <^{\sim} > sort s
   using bwt-sa-perm by auto
 ultimately have ?r < count\text{-list (sort s) } ?v
   by (metis (no-types, lifting) count-list-perm)
  with rank-length[of sort s ?v, symmetric]
 have ?r < rank (sort s) ?v (length s)
   by simp
  with select-upper-bound
 have select (sort s) ?v ?r < length (sort s)
   by metis
 with \langle ?i = select (sort s) ?v ?r \rangle
 show ?thesis
   by (metis length-sort)
qed
corollary lf-map-abs-less-length-funpow:
 fixes s :: 'a \ list
 fixes i j :: nat
 assumes i < length s
shows ((lf\text{-}map\text{-}abs\ s)^{\sim}k)\ i < length\ s
proof (induct k)
 case \theta
 then show ?case
   using assms by auto
\mathbf{next}
 case (Suc \ k)
 then show ?case
   by (metis\ comp-apply\ funpow.simps(2)\ lf-map-abs-less-length)
qed
lemma lf-map-abs-equiv:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i r :: nat
 fixes v :: 'a
 assumes i < length (bwt-sa s)
          v = bwt-sa s! i
 and
          r = rank (bwt-sa s) v i
shows lf-map-abs s i = card \{j. j < length (bwt-sa s) \land bwt-sa s ! j < v\} + r
proof -
 have \exists k. length s = Suc k
   by (metis assms(1) bwt-sa-length less-nat-zero-code not0-implies-Suc)
  then obtain n where
   length \ s = Suc \ n
   by blast
 let ?P = (\lambda x. \ x < v)
 have lf-map-abs s i = select (sort s) v r
```

```
by (metis\ assms(2)\ assms(3)\ lf-map-abs.simps)
 moreover
 from rank-upper-bound[OF\ assms(1)\ assms(2)[symmetric]]\ assms(3)
 have r < count-list (bwt-sa s) v
   by simp
 hence r < count-list (sort s) v
   using count-list-perm[OF trans[OF bwt-sa-perm sort-perm]] by simp
 with sorted-select [of sort \ s \ r \ v]
 have select (sort s) v r = card \{j. j < length (sort s) \land sort s ! j < v\} + r
   by simp
 moreover
 have length (filter (\lambda x. ?P (sort s ! x)) [0..< length (sort s)])
        = card \{j. \ j < length (sort s) \land sort s ! j < v\}
   using filter-length-upt[of ?P sort s] by simp
 moreover
 have length (filter (\lambda x. ?P (bwt-sa s! x)) [0..< length (bwt-sa s)])
        = card \{j, j < length (bwt-sa s) \land bwt-sa s ! j < v\}
   using filter-length-upt[of ?P bwt-sa s] by simp
 ultimately show ?thesis
   using perm-filter-length[OF trans[OF bwt-sa-perm sort-perm], of ?P s]
   by presburger
qed
        LF-Mapping Correctness
16.2
lemma sa-lf-map-abs:
 assumes valid-list s
 and
          i < length s
shows sa\ s\ !\ (lf\text{-}map\text{-}abs\ s\ i) = (sa\ s\ !\ i + length\ s - Suc\ 0)\ mod\ (length\ s)
proof -
 let ?v = bwt-sa s! i
 let ?r = rank (bwt-sa s) ?v i
 let ?i = lf-map-abs s i
 have ?i = select (sort s) ?v ?r
   by (metis lf-map-abs.simps)
 from lf-map-abs-less-length [OF \ assms(2)]
 have ?i < length s.
 hence select (sort s) ?v ?r < length (sort s)
   by (metis length-sort lf-map-abs.simps)
 with rank-select
 have rank (sort s) ?v (select (sort s) ?v ?r) = ?r
   by metis
 with \langle ?i = select (sort s) ?v ?r \rangle
 have rank (sort s) ?v ?i = ?r
   by simp
 moreover
```

have ?i < length s

```
using \langle select\ (sort\ s)\ ?v\ ?r < length\ (sort\ s) \rangle \langle ?i = select\ (sort\ s)\ ?v\ ?r \rangle by
auto
 moreover
   from select-nth[of sort s ?v ?r ?i]
   have sort \ s \ ! \ lf-map-abs s \ i = bwt-sa s \ ! \ i
     by (metis \land ?i = select (sort s) ?v ?r \land calculation(2) length-sort)
   moreover
   have s ! (sa s ! ?i) = sort s ! ?i
     using \langle ?i < length s \rangle sort-sa-nth by presburger
   ultimately have s ! (sa \ s ! ?i) = ?v
     by presburger
 }
 ultimately have sa\ s\ !\ ?i = bwt\text{-}perm\ s\ !\ i
   using rank-same-sa-bwt-perm[OF assms(1)- assms(2), of ?i ?v]
   by blast
 then show ?thesis
   using bwt-perm-nth[OF assms(2)]
   by simp
qed
    Theorem 3.18 from [3]: Abstract LF-Mapping Correctness
corollary bwt-perm-lf-map-abs:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i :: nat
 assumes valid-list s
 and
          i < length s
shows bwt-perm s! (lf-map-abs si) = (bwt-perm s! i + length s - Suc 0) mod
 by (metis One-nat-def bwt-perm-nth assms(1,2) lf-map-abs-less-length sa-lf-map-abs)
        Backwards Inverse BWT Simple Properties
lemma ibwt-perm-abs-length:
 fixes s :: 'a \ list
 fixes n i :: nat
 shows length (ibwt\text{-}perm\text{-}abs\ n\ s\ i) = n
 by (induct\ n\ arbitrary:\ i;\ simp)
lemma ibwt-perm-abs-nth:
 fixes s :: 'a \ list
 fixes k \ n \ i :: nat
 assumes k \leq n
 shows (ibwt-perm-abs (Suc n) s i) ! k = ((lf-map-abs s) ^ (n-k)) i
using assms
proof (induct n arbitrary: i k)
 case \theta
 then show ?case
   by simp
next
```

```
case (Suc n \ i \ k)
    note IH = this
    have A: ibwt-perm-abs (Suc (Suc n)) s i = ibwt-perm-abs (Suc n) s (lf-map-abs
s i) @ [i]
        by simp
    have k \leq n \Longrightarrow ?case
    proof -
        assume k \leq n
        with IH(1)[of \ k \ lf-map-abs s \ i]
        have ibwt-perm-abs (Suc n) s (lf-map-abs s i) ! k = (lf-map-abs s \cap (Suc n - abs s )))))))))))))
k)) i
             by (metis Suc-diff-le comp-apply funpow.simps(2) funpow-swap1)
        then show ?thesis
             by (metis \langle k \leq n \rangle A ibwt-perm-abs-length le-imp-less-Suc nth-append)
    qed
    moreover
    have k = Suc \ n \Longrightarrow ?case
    proof -
        assume k = Suc \ n
        with ibwt-perm-abs-length[of Suc (Suc n) s i] A
        have ibwt-perm-abs (Suc (Suc n)) s i! k = i
             by (metis ibwt-perm-abs-length nth-append-length)
        moreover
        have (lf\text{-}map\text{-}abs\ s \ \widehat{} \ (Suc\ n-k))\ i=i
             by (simp\ add: \langle k = Suc\ n \rangle)
        ultimately show ?thesis
            by presburger
    qed
    ultimately show ?case
        using Suc. prems le-Suc-eq by blast
qed
corollary ibwt-perm-abs-alt-nth:
    fixes s :: 'a \ list
    fixes n i k :: nat
    assumes k < n
    shows (ibwt-perm-abs n \ s \ i)! k = ((lf-map-abs \ s) \cap (n - Suc \ k)) \ i
   by (metis assms add-diff-cancel-left' diff-diff-left le-add1 less-imp-Suc-add plus-1-eq-Suc
                          ibwt-perm-abs-nth)
lemma ibwt-perm-abs-nth-le-length:
    fixes s :: 'a \ list
    fixes n i k :: nat
    assumes i < length s
    assumes k < n
    shows (ibwt-perm-abs n s i)! k < length s
    using assms ibwt-perm-abs-alt-nth lf-map-abs-less-length-funpow by force
```

```
lemma ibwt-perm-abs-map-ver:
  ibwt-perm-abs n \ s \ i = map \ (\lambda x. \ ((lf-map-abs \ s)^x) \ i) \ (rev \ [0..< n])
proof (intro list-eq-iff-nth-eq[THEN iffD2] conjI allI impI)
  show length (ibwt-perm-abs n s i) = length (map (\lambda x. (lf-map-abs s \, \widehat{\phantom{a}} \, x) i) (rev
[0..< n])
    by (simp add: ibwt-perm-abs-length)
\mathbf{next}
  \mathbf{fix} \ j
  assume j < length (ibwt-perm-abs n s i)
  hence j < n
    by (simp add: ibwt-perm-abs-length)
  have map (\lambda x. (lf\text{-map-abs } s \ \widehat{\ } x) \ i) \ (rev \ [0..< n]) \ ! \ j =
        (\lambda x. (lf\text{-}map\text{-}abs\ s \ \widehat{} \ x)\ i)\ (rev\ [\theta..< n]\ !\ j)
    by (simp add: \langle i < n \rangle)
  moreover
  have (\lambda x. (lf\text{-}map\text{-}abs\ s \curvearrowright x)\ i) (rev\ [0..< n]\ !\ j) = (lf\text{-}map\text{-}abs\ s \curvearrowright (n-Suc
  by (metis \langle j < n \rangle add-cancel-right-left diff-Suc-less diff-zero length-greater-0-conv
length-upt
              less-nat-zero-code nth-upt rev-nth)
  ultimately show ibwt-perm-abs n s i ! j = map(\lambda x. (lf-map-abs s ^ x) i) (rev
[0..< n])! j
    using ibwt-perm-abs-alt-nth[OF \langle j < n \rangle, of s i] by presburger
qed
```

16.4 Backwards Inverse BWT Correctness

```
lemma inc-one-bounded-sa-ibwt-perm-abs:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i n :: nat
 assumes valid-list s
 and
          i < length s
shows inc-one-bounded (length s) (map ((!) (sa s)) (ibwt-perm-abs n s i))
     (is inc-one-bounded ?n ?xs)
 unfolding inc-one-bounded-def
proof (safe)
 \mathbf{fix} \ j
 assume Suc \ j < length \ (map \ ((!) \ (sa \ s)) \ (ibwt-perm-abs \ n \ s \ i))
 hence Suc j < n
   by (simp add: ibwt-perm-abs-length)
 hence \exists k. \ n = Suc \ k
   using less-imp-Suc-add by blast
  then obtain k where
   n = Suc k
   by blast
 let ?i = ((lf\text{-}map\text{-}abs\ s) \cap (k - Suc\ j))\ i
```

```
have ibwt-perm-abs n \ s \ i \ ! \ Suc \ j = ?i
   by (metis \langle Suc \ j < n \rangle \langle n = Suc \ k \rangle \ less-Suc-eq-le \ ibwt-perm-abs-nth)
  moreover
   have ibwt-perm-abs n \ s \ i \ ! \ j = ((lf-map-abs s) \cap (k-j)) \ i
     by (metis Suc-less-SucD \langle Suc j < n \rangle \langle n = Suc k \rangle nless-le ibwt-perm-abs-nth)
   moreover
   have ((lf\text{-}map\text{-}abs\ s)^{(k-j)}) i = lf\text{-}map\text{-}abs\ s\ ?i
     using \langle Suc \ j < n \rangle \langle n = Suc \ k \rangle less-imp-Suc-add by fastforce
   ultimately have ibwt-perm-abs\ n\ s\ i\ !\ j=lf-map-abs\ s\ ?i
     by presburger
  }
 moreover
   have ?i < length s
     by (simp add: assms lf-map-abs-less-length-funpow)
   with sa-lf-map-abs[OF assms(1), of ?i]
   have sa s! If-map-abs s?i = (sa s ! ?i + length s - Suc 0) mod length <math>s
     by fastforce
   hence Suc (sa s! lf-map-abs s ?i) mod length s
           = Suc ((sa s ! ?i + length s - Suc 0) mod length s) mod length s
     by simp
   moreover
   have Suc\ ((sa\ s\ !\ ?i + length\ s - Suc\ 0)\ mod\ length\ s)\ mod\ length\ s = sa\ s\ !\ ?i
       using \langle ?i < length s \rangle assms(1) mod-Suc-eq sa-nth-ex valid-list-length by
fastforce
   ultimately have sa s \,! \, ?i = Suc \, (sa \, s \,! \, lf\text{-}map\text{-}abs \, s \, ?i) \, mod \, length \, s
     by presburger
  ultimately have
   sa\ s\ !\ (ibwt\text{-}perm\text{-}abs\ n\ s\ i\ !\ Suc\ j) = Suc\ (sa\ s\ !\ (ibwt\text{-}perm\text{-}abs\ n\ s\ i\ !\ j))\ mod
length s
   by presburger
  then show
    map((!) (sa s)) (ibwt-perm-abs n s i) ! Suc j =
     Suc (map ((!) (sa s)) (ibwt-perm-abs n s i) ! j) mod length s
   using \langle Suc \ j < length \ (map \ ((!) \ (sa \ s)) \ (ibwt\text{-}perm\text{-}abs \ n \ s \ i)) \rangle by auto
next
  \mathbf{fix} \ j
  assume j < length (map ((!) (sa s)) (ibwt-perm-abs n s i))
 hence j < n
   by (simp add: ibwt-perm-abs-length)
  henceibwt-perm-abs n \ s \ i \ ! \ j = ((lf-map-abs s) \cap (n - Suc \ j)) \ i
   using ibwt-perm-abs-alt-nth by blast
  moreover
  have ((lf\text{-}map\text{-}abs\ s)^{n}(n-Suc\ j))\ i < length\ s
   using assms lf-map-abs-less-length-funpow by blast
  hence sa s! (((lf\text{-}map\text{-}abs\ s) \cap (n - Suc\ j))\ i) < length\ s
   using sa-nth-ex by blast
```

```
ultimately have sa s \mid (ibwt\text{-}perm\text{-}abs \ n \ s \ i \mid j) < length \ s
    by presburger
  then show map ((!) (sa s)) (ibwt\text{-}perm\text{-}abs n s i) ! j < length s
    by (simp\ add: \langle j < n \rangle\ ibwt\text{-}perm\text{-}abs\text{-}length)
qed
corollary is-rot-sublist-sa-ibwt-perm-abs:
  fixes s :: ('a :: \{linorder, order-bot\}) \ list
  fixes i n :: nat
  assumes valid-list s
 and
            i < length s
  and
            n \leq length s
shows is-rot-sublist [0..< length s] (map ((!) (sa s)) (ibwt-perm-abs n s i))
  \mathbf{by} \ (simp \ add: \ assms \ inc\text{-}one\text{-}bounded\text{-}is\text{-}rot\text{-}sublist \ inc\text{-}one\text{-}bounded\text{-}sa\text{-}ibwt\text{-}perm\text{-}abs } 
                ibwt-perm-abs-length)
lemma inc-one-bounded-bwt-perm-ibwt-perm-abs:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 fixes i n :: nat
 assumes valid-list s
  and
            i < length s
shows inc-one-bounded (length s) (map ((!) (bwt\text{-}perm s)) (ibwt\text{-}perm\text{-}abs n s i))
  unfolding inc-one-bounded-def
proof safe
  \mathbf{fix} \ j
  assume Suc \ j < length \ (map \ ((!) \ (bwt-perm \ s)) \ (ibwt-perm-abs \ n \ s \ i))
 hence Suc j < n
    by (simp add: ibwt-perm-abs-length)
  hence \exists k. \ n = Suc \ k
    using less-imp-Suc-add by auto
  then obtain k where
    n = Suc k
    by blast
  let ?i = ((lf\text{-}map\text{-}abs\ s)^{(k - Suc\ j)})\ i
  from ibwt-perm-abs-nth[of Suc j k s i]
  have ibwt-perm-abs n \ s \ i \ ! \ Suc \ j = ?i
    using \langle Suc \ j < n \rangle \langle n = Suc \ k \rangle less-Suc-eq-le by blast
  moreover
  {
    have ibwt-perm-abs n \ s \ i \ ! \ j = ((lf-map-abs \ s) \widehat{\phantom{a}}(k-j)) \ i
     by (metis Suc-less-SucD \langle Suc\ j < n \rangle \langle n = Suc\ k \rangle nless-le ibwt-perm-abs-nth)
    moreover
    have ((lf\text{-}map\text{-}abs\ s)^{(k-j)})\ i = lf\text{-}map\text{-}abs\ s\ ?i
      using \langle Suc \ j < n \rangle \langle n = Suc \ k \rangle less-imp-Suc-add by fastforce
    ultimately have ibwt-perm-abs n \ s \ i \ ! \ j = lf-map-abs s \ ?i
      by presburger
  moreover
```

```
have ?i < length s
     by (simp add: assms lf-map-abs-less-length-funpow)
   with bwt-perm-lf-map-abs[OF\ assms(1),\ of\ ?i]
   have bwt-perm s! lf-map-abs s ?i = (bwt-perm s! ?i + length s - Suc 0) mod
length s
     by blast
   hence Suc (bwt-perm s! lf-map-abs s?i) mod length s =
           Suc\ ((bwt\text{-}perm\ s\ !\ ?i\ +\ length\ s\ -\ Suc\ 0)\ mod\ length\ s)\ mod\ length\ s
     by presburger
   moreover
   from valid-list-length-ex[OF assms(1)]
   obtain n where
     length \ s = Suc \ n
     by blast
   hence Suc ((bwt\text{-}perm\ s\ !\ ?i+length\ s-Suc\ 0)\ mod\ length\ s)\ mod\ length\ s=
           bwt-perm s ! ?i
     by (metis (no-types, lifting) Suc-pred bwt-perm-nth \langle ?i < length s \rangle add-gr-0
assms(1)
                           mod-Suc-eq mod-add-self2 mod-mod-trivial valid-list-length)
    ultimately have bwt-perm s \,! \, ?i = Suc \, (bwt\text{-perm } s \,! \, lf\text{-map-abs } s \,?i) \, mod
length s
     by presburger
 ultimately have bwt-perm s! (ibwt-perm-abs n s i! Suc j) =
                   Suc (bwt\text{-}perm\ s\ !\ (ibwt\text{-}perm\text{-}abs\ n\ s\ i\ !\ j))\ mod\ length\ s
   by presburger
  then show map ((!) (bwt\text{-}perm \ s)) (ibwt\text{-}perm\text{-}abs \ n \ s \ i) ! Suc \ j =
         Suc\ (map\ ((!)\ (bwt\text{-}perm\ s))\ (ibwt\text{-}perm\text{-}abs\ n\ s\ i)\ !\ j)\ mod\ length\ s
   using \langle Suc \ j < length \ (map \ ((!) \ (bwt\text{-}perm \ s)) \ (ibwt\text{-}perm\text{-}abs \ n \ s \ i)) \rangle by auto
\mathbf{next}
 fix j
 assume j < length (map ((!) (bwt-perm s)) (ibwt-perm-abs n s i))
 hence j < n
   by (simp add: ibwt-perm-abs-length)
 hence \exists k. \ n = Suc \ k
   using less-imp-Suc-add by blast
  then obtain k where
   n = Suc k
  hence ibwt-perm-abs n s i ! j = ((lf-map-abs s) \cap (k - j)) i
   by (metis \ \langle j < n \rangle \ less-Suc-eq-le \ ibwt-perm-abs-nth)
  moreover
 have ((lf\text{-}map\text{-}abs\ s)^{(k-j)})\ i < length\ s
   using assms lf-map-abs-less-length-funpow by blast
  hence bwt-perm s ! ((lf-map-abs\ s) \cap (k-j)) i < length\ s
   using map-bwt-indexes-perm perm-nth-ex by blast
  ultimately have bwt-perm s \mid (ibwt\text{-perm-abs } n \mid i \mid j) < length \mid s
   by presburger
```

```
then show map ((!) (bwt\text{-}perm \ s)) (ibwt\text{-}perm\text{-}abs \ n \ s \ i) \ ! \ j < length \ s
   by (simp\ add: \langle j < n \rangle\ ibwt-perm-abs-length)
qed
    Theorem 3.19 from [3]: Abstract Inverse BWT Permutation Rotated
Sub-list
corollary is-rot-sublist-bwt-perm-ibwt-perm-abs:
  fixes s :: ('a :: \{linorder, order-bot\}) \ list
  fixes i n :: nat
 assumes valid-list s
           i < length s
 and
 and
           n < length s
 \mathbf{shows}\ \textit{is-rot-sublist}\ [\textit{0...} < \textit{length}\ s]\ (\textit{map}\ ((!)\ (\textit{bwt-perm}\ s))\ (\textit{ibwt-perm-abs}\ n\ s\ i))
 by (simp add: assms inc-one-bounded-is-rot-sublist inc-one-bounded-bwt-perm-ibwt-perm-abs
               ibwt-perm-abs-length)
\mathbf{lemma}\ bwt	ext{-}ibwt	ext{-}perm	ext{-}sa	ext{-}lookup	ext{-}idx:
  assumes valid-list s
  shows map ((!) (bwt-perm s)) (ibwt-perm-abs (length s) s (select (bwt-sa s) bot
\theta))
         = [0..< length s]
proof -
  from valid-list-length-ex[OF\ assms]
  obtain n where
   length \ s = Suc \ n
   by blast
  let ?i = select (bwt-sa s) bot 0
 let ?xs = ibwt\text{-}perm\text{-}abs (length s) s ?i
  have bot \in set s
   by (metis assms in-set-conv-decomp valid-list-ex-def)
  hence bot \in set (bwt\text{-}sa \ s)
   by (metis bwt-sa-perm perm-set-eq)
  hence count-list (bwt-sa s) bot > 0
   by (meson count-in)
  hence \theta < rank \ (bwt\text{-}sa \ s) \ bot \ (length \ (bwt\text{-}sa \ s))
   by (metis rank-length)
  hence ?i < length (bwt-sa s)
   by (meson select-upper-bound)
  hence ?i < length s
   by (metis bwt-sa-length)
  with is-rot-sublist-bwt-perm-ibwt-perm-abs[OF assms, of ?i length s] \langle length | s =
Suc n
  have is-rot-sublist [0..<Suc\ n]\ (map\ ((!)\ (bwt-perm\ s))\ ?xs)
   by (metis nle-le)
  moreover
  have length (map\ ((!)\ (bwt\text{-}perm\ s))\ ?xs) = Suc\ n
   by (metis \langle length \ s = Suc \ n \rangle \ length-map \ ibwt-perm-abs-length)
```

```
moreover
   have (map ((!) (bwt\text{-}perm s)) ?xs) ! n = bwt\text{-}perm s ! ?i
     by (simp add: \langle length \ s = Suc \ n \rangle nth-append ibwt-perm-abs-length)
   moreover
   have bwt-sa s ! ?i = bot
     by (simp\ add: \langle ?i < length\ (bwt-sa\ s) \rangle\ select-nth-alt)
   hence bwt-perm s ! ?i = n
    by (metis \langle length \ s = Suc \ n \rangle \langle ?i \langle length \ s \rangle antisym-conv3 assms bwt-perm-nth
              bwt-perm-s-nth diff-Suc-1 mod-less-divisor not-less-eq valid-list-def)
   ultimately
   have (map ((!) (bwt-perm s)) ?xs) ! n = n
     \mathbf{by} blast
 ultimately show ?thesis
   using is-rot-sublist-upt-eq-upt-last[of n map ((!) (bwt-perm s)) ?xs]
   by (metis \langle length \ s = Suc \ n \rangle)
qed
lemma map-bwt-sa-bwt-perm:
 \forall x \in set \ xs. \ x < length \ s \Longrightarrow
  map((!) (bwt-sa s)) xs = map((!) s) (map((!) (bwt-perm s)) xs)
 by (simp add: bwt-perm-s-nth)
{\bf theorem}\ ibwt-perm-abs-bwt-sa-lookup-correct:
  fixes s :: ('a :: \{linorder, order-bot\}) \ list
 assumes valid-list s
 shows map((!) (bwt-sa\ s)) (ibwt-perm-abs (length\ s)\ s (select (bwt-sa\ s)\ bot\ 0))
proof -
 let ?i = select (bwt-sa s) bot 0
 let ?xs = map((!) (bwt\text{-}perm s)) (ibwt\text{-}perm\text{-}abs (length s) s ?i)
 have bot \in set s
   by (metis assms in-set-conv-decomp valid-list-ex-def)
 hence bot \in set (bwt\text{-}sa \ s)
   by (metis bwt-sa-perm perm-set-eq)
 hence count-list (bwt-sa s) bot > 0
   by (meson count-in)
  hence 0 < rank (bwt-sa s) bot (length (bwt-sa s))
   by (metis rank-length)
  hence ?i < length (bwt-sa s)
   by (meson select-upper-bound)
 hence ?i < length s
   by (metis bwt-sa-length)
  have map((!) (bwt-sa s)) (ibwt-perm-abs (length s) s ?i) = map((!) s) ?xs
  proof (intro map-bwt-sa-bwt-perm ballI)
   \mathbf{fix} \ x
```

```
assume x \in set (ibwt-perm-abs (length s) s ?i)
   from in\text{-}set\text{-}conv\text{-}nth[THEN iffD1, OF \langle x \in - \rangle]
   obtain i where
     i < length (ibwt-perm-abs (length s) s ?i)
     ibwt-perm-abs (length s) s ?i! i = x
     by blast
   with ibwt-perm-abs-alt-nth[of i length s s ?i]
   have x = (lf\text{-}map\text{-}abs\ s) (length\ s - Suc\ i) ?i
     by (metis ibwt-perm-abs-length)
   moreover
   have (lf\text{-}map\text{-}abs\ s \ \widehat{} \ (length\ s - Suc\ i))\ ?i < length\ s
     using \langle ?i < length s \rangle assms lf-map-abs-less-length-funpow by presburger
   ultimately show x < length s
     by blast
 qed
  then show ?thesis
   using bwt-ibwt-perm-sa-lookup-idx[OF assms] map-nth by auto
qed
16.5
         Concretization
lemma lf-map-abs-eq-conc:
 i < length \ s \Longrightarrow lf-map-abs s \ i = lf-map-conc (sort (bwt-sa s)) (bwt-sa s) i
proof -
 let ?v = bwt\text{-}sa\ s\ !\ i
 let ?r = rank (bwt-sa s) ?v i
 let ?ss = sort (bwt-sa s)
 \mathbf{assume}\ i < \mathit{length}\ s
 hence rank (bwt-sa s) ?v \ i < count-list (sort s) ?v
   using rank-upper-bound[of i bwt-sa s ?v]
   by (metis bwt-sa-length bwt-sa-perm count-list-perm mset-sort)
  with sorted-select[of ?ss ?r ?v]
 have select ?ss ?v ?r = card \{j, j < length ?ss \land ?ss ! j < ?v\} + ?r
   by (metis (full-types) bwt-sa-perm sorted-list-of-multiset-mset sorted-sort)
 moreover
 have sort s = sort ?ss
   by (simp add: bwt-sa-perm properties-for-sort)
 moreover
 have select (sort s) ?v ?r = card \{j. j < length (sort s) \land (sort s) ! j < ?v\} +
?r
   by (simp add: \langle rank \ (bwt\text{-sa } s) \ ?v \ i < count\text{-list} \ (sort \ s) \ ?v \rangle sorted-select)
 ultimately show ?thesis
   by (metis\ (full-types)\ \langle rank\ (bwt-sa\ s)\ ?v\ i < count-list\ (sort\ s)\ ?v\ bwt-sa-perm
                      \it lf-map-abs. simps\ \it lf-map-conc. simps\ sorted-list-of-multiset-mset
                        sorted-select-0-plus sorted-sort)
```

qed

```
lemma ibwt-perm-abs-conc-eq:
 i < length \ s \Longrightarrow ibwt\text{-perm-abs} \ n \ s \ i = ibwt\text{-perm-conc} \ n \ (sort \ (bwt\text{-sa} \ s)) \ (bwt\text{-sa}
proof (induct n arbitrary: i)
 case \theta
 then show ?case
   by auto
next
 case (Suc \ n)
 let ?ss = sort (bwt-sa s)
 let ?bs = bwt\text{-}sa\ s
 have ibwt-perm-abs (Suc\ n)\ s\ i = ibwt-perm-abs n\ s\ (lf-map-abs s\ i)\ @\ [i]
   by simp
 moreover
 have ibwt-perm-conc (Suc n) ?ss ?bs i = ibwt-perm-conc n ?ss ?bs (lf-map-conc
?ss ?bs i) @ [i]
   by simp
  moreover
 have lf-map-abs s i = lf-map-conc ?ss ?bs i
   using Suc. prems lf-map-abs-eq-conc by blast
 moreover
 have lf-map-abs s i < length s
   using Suc. prems lf-map-abs-less-length by blast
  ultimately show ?case
   using Suc.hyps by presburger
\mathbf{qed}
theorem ibwtn-bwt-sa-lookup-correct:
 fixes s \times s \times s :: ('a :: \{linorder, order-bot\}) \ list
 assumes valid-list s
 and
          xs = sort (bwt-sa s)
 and
           ys = bwt-sa s
shows map ((!) ys) (ibwt\text{-perm-conc}\ (length\ ys)\ xs\ ys\ (select\ ys\ bot\ 0)) = s
proof -
 from ibwt-perm-abs-bwt-sa-lookup-correct[OF assms(1)]
  have map((!) (bwt-sa \ s)) (ibwt-perm-abs (length \ s) \ s (select (bwt-sa \ s) \ bot \ \theta))
= s .
 moreover
 have select (bwt-sa \ s) bot 0 < length s
  by (metis (no-types, lifting) assms(1) bot-nat-0.extremum-uniqueI bwt-sa-length
bwt-sa-perm
                         count-list-perm diff-Suc-1 last-conv-nth length-greater-0-conv
                            less-nat\text{-}zero\text{-}code\ rank\text{-}upper\text{-}bound\ sa\text{-}nth\text{-}ex\ select\text{-}spec
                               valid-list-def valid-list-sa-hd)
 with ibwt-perm-abs-conc-eq
 have ibwt-perm-abs (length s) s (select (bwt-sa s) bot 0) =
```

```
ibwt-perm-conc (length ys) xs ys (select ys bot 0)
   using assms(2) assms(3) bwt-sa-length by presburger
 ultimately show ?thesis
   using assms(3) by auto
ged
lemma ibwtn-eq-map-ibwt-perm-conc:
 shows ibwtn \ n \ ss \ bs \ i = map \ ((!) \ bs) \ (ibwt-perm-conc \ n \ ss \ bs \ i)
 by (induct\ n\ arbitrary:\ i;\ simp)
theorem ibwtn-correct:
 fixes s \times s \times s :: ('a :: \{linorder, order-bot\}) \ list
 assumes valid-list s
 and
          xs = sort (bwt-sa s)
 and
          ys = bwt-sa s
shows ibwtn (length ys) xs ys (select ys bot \theta) = s
 by (metis ibwtn-eq-map-ibwt-perm-conc ibwtn-bwt-sa-lookup-correct assms)
16.6
        Inverse BWT Correctness
BWT (suffix array version) is invertible
theorem ibwt-correct:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 assumes valid-list s
 shows ibwt (bwt-sa\ s) = s
 by (simp add: assms ibwtn-correct)
end
    Theorem 3.20 from [3]: Correctness of the Inverse BWT
theorem ibwt-correct-canon:
 fixes s :: ('a :: \{linorder, order-bot\}) \ list
 assumes valid-list s
 shows ibwt (bwt\text{-}canon s) = s
 by (metis Suffix-Array-General.bwt-canon-eq-bwt-sa Suffix-Array-General.ibwt-correct
          Suffix-Array-General-ex assms)
```

end

References

- [1] R. Affeldt, J. Garrigue, X. Qi, and K. Tanaka. Proving tree algorithms for succinct data structures. In *Proc. Interactive Theorem Proving*, volume 141 of *LIPIcs*, pages 5:1–5:19. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2019.
- [2] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm. Technical report, Digital SRC Research Report, 1994.

- [3] L. Cheung, A. Moffat, and C. Rizkallah. Formalized Burrows-Wheeler Transform. In *Proc. Ceritifed Programs and Proofs*. ACM, 2025. To appear.
- [4] L. Cheung and C. Rizkallah. Formalized Burrows-Wheeler Transform (artefact), December 2024.
- [5] L. Cheung and C. Rizkallah. Formally verified suffix array construction. Archive of Formal Proofs, September 2024. https://isa-afp.org/entries/SuffixArray.html, Formal proof development.
- [6] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In *Foundations of Computer Science*, pages 390–398. IEEE Computer Society, 2000.
- [7] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches. SIAM Journal on Computing, 22(5):935–948, 1993.