Büchi Complementation

Julian Brunner

October 13, 2025

Abstract

This entry provides a verified implementation of rank-based Büchi Complementation [1]. The verification is done in three steps:

- 1. Definition of odd rankings and proof that an automaton rejects a word iff there exists an odd ranking for it.
- 2. Definition of the complement automaton and proof that it accepts exactly those words for which there is an odd ranking.
- 3. Verified implementation of the complement automaton using the Isabelle Collections Framework.

Contents

1	Alt	ernating Function Iteration	2
2	Rur	n Graphs	3
3	Rar	nkings	7
	3.1	Rankings	8
	3.2	Ranking Implies Word not in Language	8
	3.3	Word not in Language Implies Ranking	10
		3.3.1 Removal of Endangered Nodes	10
		3.3.2 Removal of Safe Nodes	10
		3.3.3 Run Graph Interation	11
	3.4	Node Ranks	16
	3.5	Correctness Theorem	18
4	Cor	nplementation	18
	4.1	Level Rankings and Complementation States	18
	4.2	Word in Complement Language Implies Ranking	21
	4.3	Ranking Implies Word in Complement Language	25
	4.4	Correctness Theorem	32

5	Complementation Implementation	32
	5.1 Phase 1	32
	5.2 Phase 2	37
	5.3 Phase 3	39
	5.4 Phase 4	41
	5.5 Phase 5	47
	5.6 Phase 6	49
	5.7 Phase 7	50
6	Boolean Formulae	54
7	Final Instantiation of Algorithms Related to Complementa-	
	tion	55
	7.1 Syntax	55
	7.2 Hashcodes on Complement States	55
	7.3 Complementation	56
	7.4 Language Subset	57
	7.5 Language Equality	58
8	Build and test exported program with MLton	59
1	Alternating Function Iteration	
im	eory Alternate aports Main egin	
p	primrec alternate :: $('a \Rightarrow 'a) \Rightarrow ('a \Rightarrow 'a) \Rightarrow nat \Rightarrow ('a \Rightarrow 'a)$ where alternate $f g \ 0 = id \mid alternate \ f g \ (Suc \ k) = alternate \ g \ f \ k \circ f$	
	lemma alternate-Suc[simp]: alternate f g (Suc k) = (if even k then f else	$g)$ \circ
	ternate f g k	
p	proof (induct k arbitrary: $f(g)$) case (0)	
	show ?case by simp	
n	next	
	case $(Suc\ k)$	
	have alternate f g $(Suc (Suc k)) = alternate g f (Suc k) \circ f by auto$	
	also have $\dots = (\textit{if even } k \textit{ then } g \textit{ else } f) \circ (\textit{alternate } g f k \circ f) \textit{ unfolding }$	Suc
by	v auto	
q	also have = $(if \ even \ (Suc \ k) \ then \ f \ else \ g) \circ alternate \ f \ g \ (Suc \ k)$ by finally show ?case by this qed	auto
d	$\mathbf{declare} \ alternate.simps(2)[simp \ del]$	
l	emma alternate-antimono:	

```
assumes \bigwedge x. f x \leq x \bigwedge x. g x \leq x
   shows antimono (alternate f g)
  proof
   \mathbf{fix}\ k\ l :: \ nat
   assume 1: k < l
   obtain n where 2: l = k + n using le-Suc-ex 1 by auto
   have 3: alternate f g (k + n) \leq alternate f g k
   proof (induct n)
     case (\theta)
     show ?case by simp
   next
     case (Suc \ n)
    have alternate f g (k + Suc n) \le alternate f g (k + n) using assms by (auto
intro: le-funI)
     also have \dots \leq alternate f g k using Suc by this
     finally show ?case by this
   qed
   show alternate f g l \leq alternate f g k using 3 unfolding 2 by this
 qed
end
\mathbf{2}
      Run Graphs
theory Graph
imports Transition-Systems-and-Automata.NBA
begin
 type-synonym 'state node = nat \times 'state
 abbreviation ginitial A \equiv \{0\} \times initial A
 abbreviation gaccepting A \equiv accepting A \circ snd
 global-interpretation graph: transition-system-initial
   const
   \lambda \ u \ (k, p). \ w !! \ k \in alphabet \ A \land u \in \{Suc \ k\} \times transition \ A \ (w !! \ k) \ p \cap V
   \lambda \ v. \ v \in ginitial \ A \cap V
   for A w V
   defines
     gpath = graph.path and grun = graph.run and
     greachable = graph.reachable and gnodes = graph.nodes
   by this
    We disable rules that are degenerate due to execute = (\lambda x - x).
  declare graph.reachable.execute[rule del]
  declare graph.nodes.execute[rule del]
 abbreviation gtarget \equiv graph.target
 \textbf{abbreviation} \ \textit{gstates} \equiv \textit{graph.states}
```

```
abbreviation gtrace \equiv graph.trace
 abbreviation gsuccessors :: ('label, 'state) \ nba \Rightarrow 'label stream \Rightarrow
   'state\ node\ set\ \Rightarrow\ 'state\ node\ \Rightarrow\ 'state\ node\ set\ \mathbf{where}
   gsuccessors A \ w \ V \equiv graph.successors \ TYPE('label) \ w \ A \ V
 abbreviation gusuccessors A w \equiv gsuccessors A w UNIV
 abbreviation gupath A w \equiv gpath A w UNIV
 abbreviation gurun A w \equiv grun A w UNIV
 abbreviation gureachable A \ w \equiv greachable \ A \ w \ UNIV
 abbreviation gunodes A \ w \equiv gnodes \ A \ w \ UNIV
 lemma gtarget-alt-def: gtarget r v = last (v \# r) using fold-const by this
 lemma gstates-alt-def: gstates r v = r by simp
 lemma qtrace-alt-def: qtrace r v = r by simp
 lemma qpath-elim[elim?]:
   assumes gpath \ A \ w \ V \ s \ v
   obtains r k p
   where s = [Suc \ k ... < Suc \ k + length \ r] \mid\mid r \ v = (k, p)
 proof -
   obtain t r where 1: s = t \mid\mid r length t = length r
     using zip-map-fst-snd[of s] by (metis\ length-map)
   obtain k p where 2: v = (k, p) by force
   have 3: t = [Suc \ k ... < Suc \ k + length \ r]
   using assms 1 2
   proof (induct arbitrary: t r k p)
     case (nil\ v)
       then show ?case by (metis add-0-right le-add1 length-0-conv length-zip
min.idem upt-conv-Nil)
   next
     case (cons\ u\ v\ s)
     have 1: t || r = (hd \ t, hd \ r) \# (tl \ t || tl \ r)
     by (metis cons.prems(1) hd-Cons-tl neq-Nil-conv zip.simps(1) zip-Cons-Cons
zip-Nil)
     have 2: s = tl \ t \mid\mid tl \ r  using cons \ 1 by simp
    have t = hd \ t \# tl \ t \text{ using } cons(4) \text{ by } (metis \ hd\text{-}Cons\text{-}tl \ list.simps(3) \ zip\text{-}Nil)
     also have hd\ t = Suc\ k\ using\ 1\ cons.hyps(1)\ cons.prems(1)\ cons.prems(3)
by auto
     also have tl\ t = [Suc\ (Suc\ k)\ ... < Suc\ (Suc\ k)\ +\ length\ (tl\ r)]
       using cons(3)[OF\ 2] using 1 \land hd\ t = Suc\ k \land cons.prems(1)\ cons.prems(2)
by auto
     finally show ?case using cons.prems(2) upt-rec by auto
   show ?thesis using that 1 2 3 by simp
  qed
 lemma gpath-path[symmetric]: path A (stake (length r) (sdrop k w) || r \rangle p \longleftrightarrow
   gpath \ A \ w \ UNIV \ ([Suc \ k .. < Suc \ k + length \ r] \ || \ r) \ (k, \ p)
```

```
proof (induct r arbitrary: k p)
   case (Nil)
   show ?case by auto
  next
   case (Cons\ q\ r)
   have 1: path A (stake (length r) (sdrop (Suc k) w) || r \rangle q \longleftrightarrow
     gpath \ A \ w \ UNIV \ ([Suc \ (Suc \ k) \ .. < Suc \ k + length \ (q \ \# \ r)] \ || \ r) \ (Suc \ k, \ q)
     using Cons[of Suc \ k \ q] by simp
   have stake (length (q \# r)) (sdrop k w) || q \# r =
     (w !! k, q) \# (stake (length r) (sdrop (Suc k) w) || r) by simp
   also have path A \dots p \longleftrightarrow
      gpath \ A \ w \ UNIV \ ((Suc \ k, \ q) \ \# \ ([Suc \ (Suc \ k) \ .. < Suc \ k + length \ (q \ \# \ r)] \ ||
r)) (k, p)
     using 1 by auto
   also have (Suc\ k,\ q)\ \#\ ([Suc\ (Suc\ k)\ ..< Suc\ k+length\ (q\ \#\ r)]\ ||\ r)=
       Suc k \# [Suc (Suc k) ... < Suc k + length (q \# r)] || q \# r  unfolding
zip-Cons-Cons by rule
   also have Suc \ k \# [Suc \ (Suc \ k) ... < Suc \ k + length \ (q \# r)] = [Suc \ k ... < Suc
k + length (q \# r)
     by (simp add: upt-rec)
   finally show ?case by this
  \mathbf{qed}
  lemma grun-elim[elim?]:
   assumes grun \ A \ w \ V \ s \ v
   obtains r k p
   where s = from N (Suc k) ||| r v = (k, p)
  proof -
   obtain t r where 1: s = t \mid \mid \mid r using szip-smap by metis
   obtain k p where 2: v = (k, p) by force
   have 3: t = from N (Suc k)
     using assms unfolding 1 2
     by (coinduction arbitrary: t \ r \ k \ p) (force iff: eq-scons elim: graph.run.cases)
   show ?thesis using that 1 2 3 by simp
  qed
  lemma run-grun:
   assumes run \ A \ (sdrop \ k \ w \mid \mid \mid r) \ p
   shows gurun A w (from N (Suc k) ||| r) (k, p)
   \mathbf{using}\ assms\ \mathbf{by}\ (\mathit{coinduction}\ \mathit{arbitrary:}\ k\ p\ r)\ (\mathit{auto}\ \mathit{elim:}\ \mathit{nba.run.cases})
  lemma grun-run:
   assumes grun A w V (from N (Suc k) ||| r) (k, p)
   shows run \ A \ (sdrop \ k \ w \ ||| \ r) \ p
  proof -
    have 2: \exists ka \ wa. \ sdrop \ k \ (stl \ w :: 'a \ stream) = sdrop \ ka \ wa \land P \ ka \ wa \ if \ P
(Suc \ k) \ w \ \mathbf{for} \ P \ k \ w
     using that by (metis\ sdrop.simps(2))
    show ?thesis using assms by (coinduction arbitrary: k p w r) (auto intro!: 2
```

```
elim: graph.run.cases)
 qed
 lemma greachable-reachable:
   fixes l q k p
   defines u \equiv (l, q)
   defines v \equiv (k, p)
   assumes u \in greachable \ A \ w \ V \ v
   shows q \in reachable A p
 using assms(3, 1, 2)
 proof (induct arbitrary: l \ q \ k \ p)
   case reflexive
   then show ?case by auto
 next
   case (execute \ u)
   have 1: q \in successors A (snd u) using execute by auto
   have snd \ u \in reachable \ A \ p \ using \ execute \ by \ auto
   also have q \in reachable \ A \ (snd \ u) using 1 by blast
   finally show ?case by this
 qed
 lemma gnodes-nodes: gnodes A w V \subseteq UNIV \times nodes A
 proof
   \mathbf{fix} \ v
   assume v \in gnodes \ A \ w \ V
   then show v \in \mathit{UNIV} \times \mathit{nodes} \ \mathit{A} \ \mathsf{by} \ \mathit{induct auto}
 qed
 lemma gpath-subset:
   assumes gpath \ A \ w \ V \ r \ v
   assumes set (gstates r v) \subseteq U
   shows gpath \ A \ w \ U \ r \ v
   using assms by induct auto
 lemma grun-subset:
   assumes grun \ A \ w \ V \ r \ v
   assumes sset (gtrace \ r \ v) \subseteq U
   shows grun \ A \ w \ U \ r \ v
 using assms
 proof (coinduction arbitrary: r v)
   case (run \ a \ s \ r \ v)
   have 1: grun A w V s a using run(1, 2) by fastforce
   have 2: a \in gusuccessors \ A \ w \ v \ using \ run(1, 2) by fastforce
   show ?case using 1 \ 2 \ run(1, \ 3) by force
 qed
 lemma greachable-subset: greachable A w V v \subseteq insert v V
 proof
   \mathbf{fix} \ u
   assume u \in greachable \ A \ w \ V \ v
```

```
then show u \in insert \ v \ V by induct \ auto
  qed
 lemma gtrace-infinite:
   assumes grun \ A \ w \ V \ r \ v
   shows infinite (sset (gtrace r v))
  using assms by (metis grun-elim gtrace-alt-def infinite-Ici sset-fromN sset-szip-finite)
  lemma infinite-greachable-gtrace:
   assumes grun \ A \ w \ V \ r \ v
   assumes u \in sset (gtrace \ r \ v)
   shows infinite (greachable A w V u)
  proof -
   obtain i where 1: u = gtrace \ r \ v \parallel i \ using \ sset-range \ imageE \ assms(2) by
metis
   have 2: gtarget (stake (Suc i) r) v = u unfolding 1 sscan-snth by rule
   have infinite (sset (sdrop (Suc i) (gtrace r v)))
     using gtrace-infinite[OF assms(1)]
     by (metis List.finite-set finite-Un sset-shift stake-sdrop)
   also have sdrop\ (Suc\ i)\ (gtrace\ r\ v) = gtrace\ (sdrop\ (Suc\ i)\ r)\ (gtarget\ (stake
(Suc\ i)\ r)\ v)
     by simp
   also have sset ... \subseteq greachable \ A \ w \ V \ u
      using assms(1) 2 by (metis graph.reachable.reflexive graph.reachable-trace
graph.run-sdrop)
   finally show ?thesis by this
  qed
 {f lemma}\ finite{\it -nodes-gsuccessors}:
   assumes finite (nodes A)
   assumes v \in gunodes \ A \ w
   shows finite (gusuccessors A w v)
 proof -
   have gusuccessors A w v \subseteq gureachable A w v by rule
   also have ... \subseteq gunodes\ A\ w\ using\ assms(2) by blast
   also have \ldots \subseteq UNIV \times nodes A using gnodes-nodes by this
   finally have 3: gusuccessors A w v \subseteq UNIV \times nodes A by this
   have gusuccessors A w v \subseteq \{Suc (fst v)\} \times nodes A using 3 by auto
   also have finite \dots using \ assms(1) by simp
   finally show ?thesis by this
  qed
```

3 Rankings

theory Ranking imports Alternate

end

```
\begin{aligned} & Graph \\ \mathbf{begin} \end{aligned}
```

3.1 Rankings

```
type-synonym 'state ranking = 'state node \Rightarrow nat

definition ranking :: ('label, 'state) nba \Rightarrow 'label stream \Rightarrow 'state ranking \Rightarrow bool where

ranking A w f \equiv
(\forall v \in gunodes A w. f v <math>\leq 2 * card (nodes A)) \land
(\forall v \in gunodes A w. <math>\forall u \in gusuccessors A w v. f u <math>\leq f v) \land
(\forall v \in gunodes A w. gaccepting A v <math>\longrightarrow even (f v)) \land
(\forall v \in gunodes A w. \forall r k. gurun A w r v <math>\longrightarrow smap f (gtrace r v) = sconst k <math>\longrightarrow odd k)
```

3.2 Ranking Implies Word not in Language

```
lemma ranking-stuck:
   assumes ranking A w f
   assumes v \in gunodes \ A \ w \ gurun \ A \ w \ r \ v
   obtains n k
   where smap f (gtrace (sdrop n r) (gtarget (stake n r) v)) = sconst k
  proof -
   have \theta: f u \leq f v if v \in gunodes A w u \in gusuccessors A w v for v u
     using assms(1) that unfolding ranking-def by auto
   have 1: shd (v \#\# gtrace \ r \ v) \in gunodes \ A \ w \ using \ assms(2) by auto
   have 2: sdescending\ (smap\ f\ (v\ \#\#\ gtrace\ r\ v))
   using 1 \ assms(3)
   proof (coinduction arbitrary: r v rule: sdescending.coinduct)
     case sdescending
     obtain u s where 1: r = u \# \# s using stream.exhaust by blast
     have 2: v \in gunodes \ A \ w \ using \ sdescending(1) by simp
     have 3: gurun A w (u \# \# s) v using sdescending(2) 1 by auto
     have 4: u \in gusuccessors \ A \ w \ v \ using \ 3 \ by \ auto
     have 5: u \in gureachable \ A \ w \ v \ using graph.reachable-successors \ 4 \ by \ blast
     show ?case
     unfolding 1
     proof (intro exI conjI disjI1)
      show f u \leq f v using \theta 2 4 by this
      show shd (u \#\# gtrace \ s \ u) \in gunodes \ A \ w \ using \ 2 \ 5 \ by \ auto
      show gurun A w s u using 3 by auto
     qed auto
   qed
   obtain s k where 3: smap f(v \#\# gtrace \ r \ v) = s @- sconst \ k
     using sdescending-stuck[OF 2] by metis
   have gtrace (sdrop\ (Suc\ (length\ s))\ r)\ (gtarget\ (stake\ (Suc\ (length\ s))\ r)\ v) =
sdrop (Suc (length s)) (gtrace r v)
     using sscan-sdrop by rule
   also have smap f \dots = sdrop \ (length \ s) \ (smap \ f \ (v \ \#\# \ gtrace \ r \ v))
```

```
by (metis 3 id-apply sdrop-simps(2) sdrop-smap sdrop-stl shift-eq siter-
ate.simps(2) stream.sel(2))
   also have \dots = sconst \ k unfolding 3 using shift-eq by metis
   finally show ?thesis using that by blast
 ged
 lemma ranking-stuck-odd:
   assumes ranking A w f
   assumes v \in gunodes \ A \ w \ gurun \ A \ w \ r \ v
   obtains n
   where Ball (sset (smap f (gtrace (sdrop n r) (gtarget (stake n r) v)))) odd
 proof -
   obtain n \ k where 1: smap f (gtrace (sdrop n \ r) (gtarget (stake n \ r) v)) =
sconst k
     using ranking-stuck assms by this
   have 2: qtarget (stake \ n \ r) v \in qunodes \ A \ w
     using assms(2, 3) by (simp \ add: graph.nodes-target \ graph.run-stake)
   have 3: gurun\ A\ w\ (sdrop\ n\ r)\ (gtarget\ (stake\ n\ r)\ v)
     using assms(2, 3) by (simp \ add: graph.run-sdrop)
   have 4: odd k using 1 2 3 assms(1) unfolding ranking-def by meson
   have 5: Ball (sset (smap f (gtrace (sdrop n r) (gtarget (stake n r) v)))) odd
     unfolding 1 using 4 by simp
   show ?thesis using that 5 by this
 qed
 lemma ranking-language:
   assumes ranking A w f
   shows w \notin language A
 proof
   assume 1: w \in language A
   obtain r p where 2: run A (w ||| r) p p \in initial A infs (accepting A) (p \# \# P)
r) using 1 by rule
   let ?r = fromN \ 1 \mid \mid \mid r
   let ?v = (\theta, p)
   have 3: ?v \in gunodes \ A \ w \ gurun \ A \ w \ ?r \ ?v \ using \ 2(1, 2) \ by (auto intro:
run-qrun)
   obtain n where 4: Ball (sset (smap f (gtrace (sdrop n ?r) (gtarget (stake n
(r) (v) odd
     using ranking-stuck-odd assms 3 by this
   let ?s = stake \ n \ ?r
   let ?t = sdrop \ n \ ?r
   let ?u = gtarget ?s ?v
   have sset (gtrace ?t ?u) \subseteq gureachable A w ?v
  proof (intro graph.reachable-trace graph.reachable-target graph.reachable.reflexive)
     show qupath A w ?s ?v using qraph.run-stake 3(2) by this
     show gurun A w ?t ?u using graph.run-sdrop 3(2) by this
   qed
```

```
also have ... \subseteq gunodes A w using 3(1) by blast
   finally have 7: sset (gtrace ?t ?u) \subseteq gunodes A w by this
   have 8: \bigwedge p. p \in gunodes\ A\ w \Longrightarrow gaccepting\ A\ p \Longrightarrow even\ (f\ p)
     using assms unfolding ranking-def by auto
   have 9: \land p. p \in sset (gtrace ?t ?u) \Longrightarrow gaccepting A p \Longrightarrow even (f p) using
7 8 by auto
   have 19: infs (accepting A) (smap snd ?r) using 2(3) by simp
   have 18: infs (gaccepting A) ?r using 19 by simp
   have 17: infs (gaccepting A) (gtrace ?r ?v) using 18 unfolding gtrace-alt-def
by this
    have 16: infs (gaccepting A) (gtrace (?s @- ?t) ?v) using 17 unfolding
stake-sdrop by this
   have 15: infs (gaccepting A) (gtrace ?t ?u) using 16 by simp
   have 13: infs (even \circ f) (gtrace ?t ?u) using infs-mono[OF - 15] 9 by simp
   have 12: infs even (smap f (qtrace ?t ?u)) using 13 by (simp add: comp-def)
   have 11: Bex (sset (smap f (gtrace ?t ?u))) even using 12 infs-any by metis
   show False using 4 11 by auto
 qed
```

3.3 Word not in Language Implies Ranking

3.3.1 Removal of Endangered Nodes

```
definition clean :: ('label, 'state) nba \Rightarrow 'label stream \Rightarrow 'state node set \Rightarrow 'state node set where
```

```
clean A \ w \ V \equiv \{v \in V. \ infinite \ (greachable \ A \ w \ V \ v)\}
```

lemma clean-decreasing: clean A w $V \subseteq V$ unfolding clean-def by auto lemma clean-successors:

```
assumes v \in V u \in gusuccessors A w v
shows u \in clean A w V \Longrightarrow v \in clean A w V
proof -
```

assume 1: $u \in clean \ A \ w \ V$

have 2: $u \in V$ infinite (greachable A w V u) using 1 unfolding clean-def by auto

have $3: u \in greachable\ A\ w\ V\ v\ using\ graph.reachable.execute\ assms(2)\ 2(1)$ by blast

have 4: greachable $A \le V \le g$ greachable $A \le V \le g$ using 3 by blast have 5: infinite (greachable $A \le V \le g$) using 2(2) 4 by (simp add: infinite-super) show $y \in clean A \le V$ unfolding clean-def using assms(1) 5 by simp qed

3.3.2 Removal of Safe Nodes

definition prune :: ('label, 'state) $nba \Rightarrow$ 'label stream \Rightarrow 'state node set \Rightarrow 'state node set where

```
prune A \ w \ V \equiv \{v \in V. \ \exists \ u \in greachable \ A \ w \ V \ v. \ gaccepting \ A \ u\}
```

```
lemma prune-decreasing: prune A w V \subseteq V unfolding prune-def by auto
 lemma prune-successors:
   assumes v \in V u \in gusuccessors A w v
   shows u \in prune \ A \ w \ V \Longrightarrow v \in prune \ A \ w \ V
  proof -
   assume 1: u \in prune \ A \ w \ V
   have 2: u \in V \exists x \in greachable A w V u. gaccepting A x using 1 unfolding
prune-def by auto
   have 3: u \in greachable\ A\ w\ V\ using\ graph.reachable.execute\ assms(2)\ 2(1)
by blast
   have 4: greachable A w V u \subseteq greachable A w V v using 3 by blast
   show v \in prune \ A \ w \ V \ unfolding \ prune-def \ using \ assms(1) \ 2(2) \ 4 \ by \ auto
 qed
3.3.3
         Run Graph Interation
  definition graph :: ('label, 'state) nba \Rightarrow 'label stream \Rightarrow nat \Rightarrow 'state node set
   graph \ A \ w \ k \equiv alternate \ (clean \ A \ w) \ (prune \ A \ w) \ k \ (qunodes \ A \ w)
 abbreviation level A w k l \equiv \{v \in graph \ A w k. \ fst \ v = l\}
  lemma graph-0[simp]: graph A w \theta = gunodes A w unfolding graph-def by
simp
  lemma graph-Suc[simp]: graph A w (Suc k) = (if even k then clean A w else
prune A w) (graph A w k)
   unfolding graph-def by simp
 lemma graph-antimono: antimono (graph A w)
   using alternate-antimono clean-decreasing prune-decreasing
   unfolding monotone-def le-fun-def graph-def
   by metis
 lemma graph-nodes: graph A \ w \ k \subseteq gunodes \ A \ w \ using \ graph-0 \ graph-antimono
le0 antimonoD by metis
 lemma graph-successors:
   assumes v \in gunodes \ A \ w \ u \in gusuccessors \ A \ w \ v
   shows u \in graph \ A \ w \ k \Longrightarrow v \in graph \ A \ w \ k
  using assms
 proof (induct k arbitrary: u v)
   case \theta
   show ?case using \theta(2) by simp
  \mathbf{next}
   \mathbf{case}\ (\mathit{Suc}\ k)
   have 1: v \in graph \ A \ w \ k \ using \ Suc \ using \ antimono-iff-le-Suc \ graph-antimono
rev-subsetD by blast
   show ?case using Suc(2) clean-successors [OF 1 Suc(4)] prune-successors [OF
1 Suc(4)] by auto
 qed
```

```
lemma graph-level-finite:
   assumes finite (nodes A)
   shows finite (level A w k l)
  proof -
   have level A \ w \ k \ l \subseteq \{v \in gunodes \ A \ w. \ fst \ v = l\} by (simp add: graph-nodes
subset-CollectI)
   also have \{v \in gunodes \ A \ w. \ fst \ v = l\} \subseteq \{l\} \times nodes \ A \ using \ gnodes-nodes
by force
   also have finite (\{l\} \times nodes\ A) using assms(1) by simp
   finally show ?thesis by this
  qed
 lemma find-safe:
   assumes w \notin language A
   assumes V \neq \{\}\ V \subseteq gunodes\ A\ w
   assumes \bigwedge v. \ v \in V \Longrightarrow gsuccessors \ A \ w \ V \ v \neq \{\}
   obtains v
   where v \in V \ \forall \ u \in greachable \ A \ w \ V \ v. \ \neg \ gaccepting \ A \ u
  proof (rule ccontr)
   assume 1: \neg thesis
   have 2: \bigwedge v. \ v \in V \Longrightarrow \exists \ u \in greachable \ A \ w \ V \ v. \ gaccepting \ A \ u \ using \ that
1 by auto
    have 3: \bigwedge r \ v. \ v \in initial \ A \Longrightarrow run \ A \ (w \mid \mid \mid r) \ v \Longrightarrow fins \ (accepting \ A) \ r
using assms(1) by auto
   obtain v where 4: v \in V using assms(2) by force
   obtain x where 5: x \in greachable A w V v gaccepting A x using 2 4 by blast
   obtain y where 50: qpath A w V y v x = qtarget y v using 5(1) by rule
   obtain r where 6: grun A w V r x infs (\lambda x. x \in V \land gaccepting A x) r
   proof (rule graph.recurring-condition)
     show x \in V \land gaccepting A x using greachable-subset 4 5 by blast
   next
     \mathbf{fix} \ v
     assume 1: v \in V \land gaccepting A v
     obtain v' where 20: v' \in gsuccessors A w V v using assms(4) 1 by (meson
IntE\ equals OI)
     have 21: v' \in V using 20 by auto
     have 22: \exists u \in greachable \ A \ w \ V \ v'. \ u \in V \land gaccepting \ A \ u
       using greachable-subset 2 21 by blast
    obtain r where 30: gpath A w V r v' gtarget r v' \in V \land gaccepting A (gtarget
r v'
       using 22 by blast
     show \exists r. r \neq [] \land gpath \land w \lor r \lor \land gtarget \land r \lor \in V \land gaccepting \land (gtarget)
     proof (intro exI conjI)
       show v' \# r \neq [] by simp
       show gpath A w V (v' \# r) v using 20 30 by auto
       show gtarget (v' \# r) v \in V using 30 by simp
       show gaccepting A (gtarget (v' \# r) v) using 30 by simp
     qed
```

```
qed auto
   obtain u where 100: u \in ginitial \ A \ v \in gureachable \ A \ w \ u \ using \ 4 \ assms(3)
by blast
   have 101: gupath A w y v using gpath-subset 50(1) subset-UNIV by this
   have 102: gurun A w r x using grun-subset 6(1) subset-UNIV by this
   obtain t where 103: gupath A w t u v = gtarget t u using 100(2) by rule
   have 104: gurun A w (t @- y @- r) u using 101\ 102\ 103\ 50(2) by auto
   obtain s \ q where 7: t @- y @- r = from N \ (Suc \ \theta) \ ||| \ s \ u = (\theta, q)
     using grun\text{-}elim[OF\ 104]\ 100(1) by blast
   have 8: run\ A\ (w\ |||\ s)\ q using grun\text{-}run[OF\ 104[unfolded\ 7]] by simp
   have 9: q \in initial \ A \ using \ 100(1) \ 7(2) \ by \ auto
   have 91: sset (trace (w \mid \mid \mid s) q) \subseteq reachable A q
     using nba.reachable-trace nba.reachable.reflexive 8 by this
   have 10: fins (accepting A) s using 3 9 8 by this
   have 12: infs (gaccepting A) r using infs-mono[OF - 6(2)] by simp
   have s = smap \ snd \ (t @- y @- r) unfolding 7(1) by simp
   also have infs (accepting A) ... using 12 by (simp add: comp-def)
   finally have 13: infs (accepting A) s by this
   show False using 10 13 by simp
  qed
  lemma remove-run:
   assumes finite (nodes A) w \notin language A
   assumes V \subseteq gunodes \ A \ w \ clean \ A \ w \ V \neq \{\}
   obtains v r
   where
     grun \ A \ w \ V \ r \ v
     sset (gtrace \ r \ v) \subseteq clean \ A \ w \ V
     sset (gtrace \ r \ v) \subseteq - \ prune \ A \ w \ (clean \ A \ w \ V)
 proof -
   obtain u where 1: u \in clean \ A \ w \ V \ \forall \ x \in greachable \ A \ w \ (clean \ A \ w \ V) \ u.
\neg gaccepting A x
   proof (rule find-safe)
     show w \notin language A  using assms(2) by this
     show clean A w V \neq \{\} using assms(4) by this
    show clean A \ w \ V \subseteq qunodes \ A \ w \ using \ assms(3) by (meson clean-decreasing
subset-iff)
   next
     \mathbf{fix} \ v
     assume 1: v \in clean \ A \ w \ V
     have 2: v \in V using 1 clean-decreasing by blast
     have 3: infinite (greachable A w V v) using 1 clean-def by auto
     have gsuccessors A \ w \ V \ v \subseteq gusuccessors \ A \ w \ v \ by \ auto
     also have finite ... using 2 \ assms(1, 3) finite-nodes-gsuccessors by blast
     finally have 4: finite (gsuccessors A w V v) by this
     have 5: infinite (insert v \in ((greachable\ A\ w\ V)\ (gsuccessors\ A\ w\ V\ v))))
       using graph.reachable-step 3 by metis
     obtain u where b : u \in gsuccessors A w V v infinite (greachable A w V u)
using 4 5 by auto
```

```
have 7: u \in clean \ A \ w \ V \ using 6 \ unfolding \ clean-def \ by \ auto
   show gsuccessors A w (clean A w V) v \neq \{\} using 6(1) 7 by auto
 qed auto
 have 2: u \in V using 1(1) unfolding clean-def by auto
 have 3: infinite (greachable A w V u) using 1(1) unfolding clean-def by simp
 have 4: finite (gsuccessors A w V v) if v \in greachable A w V u for v
 proof -
   have 1: v \in V using that greachable-subset 2 by blast
   \mathbf{have}\ \mathit{gsuccessors}\ \mathit{A}\ \mathit{w}\ \mathit{V}\ \mathit{v} \subseteq \mathit{gusuccessors}\ \mathit{A}\ \mathit{w}\ \mathit{v}\ \mathbf{by}\ \mathit{auto}
   also have finite ... using 1 assms(1, 3) finite-nodes-gsuccessors by blast
   finally show ?thesis by this
 obtain r where 5: grun A w V r u using graph.koenig[OF 3 4] by this
 have 6: greachable A w V u \subseteq V using 2 greachable-subset by blast
 have 7: sset (qtrace\ r\ u) \subseteq V
   using graph.reachable-trace[OF graph.reachable.reflexive 5(1)] 6 by blast
 have 8: sset (gtrace\ r\ u) \subseteq clean\ A\ w\ V
   unfolding clean-def using 7 infinite-greachable-gtrace[OF 5(1)] by auto
 have 9: sset (gtrace\ r\ u) \subseteq greachable\ A\ w\ (clean\ A\ w\ V)\ u
  using 5 8 by (metis graph.reachable.reflexive graph.reachable-trace grun-subset)
 show ?thesis
 proof
   show grun A w V r u using 5(1) by this
   show sset (gtrace\ r\ u) \subseteq clean\ A\ w\ V\ using\ 8\ by\ this
   show sset (gtrace\ r\ u) \subseteq -\ prune\ A\ w\ (clean\ A\ w\ V)
   proof (intro subsetI ComplI)
     \mathbf{fix} p
     assume 10: p \in sset (gtrace r u) p \in prune A w (clean A w V)
     have 20: \exists x \in greachable \ A \ w \ (clean \ A \ w \ V) \ p. \ gaccepting \ A \ x
       using 10(2) unfolding prune-def by auto
     have 30: greachable A w (clean A w V) p \subseteq greachable A w (clean A w V)
       using 10(1) 9 by blast
     show False using 1(2) 20 30 by force
   qed
 qed
qed
lemma level-bounded:
 assumes finite (nodes A) w \notin language A
 obtains n
 where \bigwedge l. l \geq n \Longrightarrow card (level A \ w \ (2 * k) \ l) \leq card (nodes A) - k
proof (induct k arbitrary: thesis)
 case (\theta)
 \mathbf{show}~? case
 proof (rule \ \theta)
   \mathbf{fix} \ l :: nat
   have finite (\{l\} \times nodes\ A) using assms(1) by simp
   also have level A w 0 l \subseteq \{l\} \times nodes A using gnodes-nodes by force
```

u

```
also (card-mono) have card \dots = card (nodes A) using assms(1) by simp
     finally show card (level A w (2 * 0) l) \leq card (nodes A) - 0 by simp
   qed
  next
   case (Suc\ k)
   show ?case
   proof (cases graph A w (Suc (2 * k)) = \{\})
     have 3: graph A \ w \ (2 * Suc \ k) = \{\} using True prune-decreasing by simp
blast
     show ?thesis using Suc(2) 3 by simp
   next
     case False
     obtain v r where 1:
       grun \ A \ w \ (graph \ A \ w \ (2 * k)) \ r \ v
       sset (gtrace \ r \ v) \subseteq graph \ A \ w (Suc \ (2 * k))
       sset\ (gtrace\ r\ v)\subseteq -\ graph\ A\ w\ (Suc\ (Suc\ (2\ *\ k)))
     proof (rule remove-run)
      show finite (nodes A) w \notin language A using assms by this
      show clean A w (graph A w (2 * k)) \neq {} using False by simp
      show graph A \ w \ (2 * k) \subseteq gunodes A \ w  using graph-nodes by this
     qed auto
     obtain l q where 2: v = (l, q) by force
    obtain n where 90: \bigwedge l. n \leq l \Longrightarrow card (level A w (2 * k) l) \leq card (nodes
A) - k
      using Suc(1) by blast
     show ?thesis
     proof (rule\ Suc(2))
      \mathbf{fix} \ j
      assume 100: n + Suc l \le j
      have 6: graph A w (Suc (Suc (2 * k))) \subseteq graph A w (Suc (2 * k))
        using graph-antimono antimono-iff-le-Suc by blast
       have 101: gtrace r v !! (j - Suc \ l) \in graph \ A \ w (Suc \ (2 * k)) using I(2)
snth-sset by auto
      have 102: gtrace r v !! (j - Suc \ l) \notin graph \ A \ w (Suc \ (Suc \ (2 * k))) using
1(3) snth-sset by blast
      have 103: gtrace r v !! (j - Suc \ l) \in level \ A \ w (Suc \ (2 * k)) \ j
        using 1(1) 100 101 2 by (auto elim: grun-elim)
      have 104: gtrace r v !! (j - Suc \ l) \notin level \ A \ w (Suc (Suc (2 * k))) \ j  using
100 102 by simp
      have level A w (2 * Suc k) j = level A w (Suc (Suc (2 * k))) j by simp
      also have ... \subset level\ A\ w\ (Suc\ (2*k))\ j\ using\ 103\ 104\ 6\ by\ blast
      also have ... \subseteq level A w (2 * k) j by (simp add: Collect-mono clean-def)
      finally have 105: level A w (2 * Suc k) j \subset level A w (2 * k) j by this
      have card (level A w (2 * Suc k) j) < card (level A w (2 * k) j)
        using assms(1) 105 by (simp add: graph-level-finite psubset-card-mono)
      also have ... \leq card \ (nodes \ A) - k \ using \ 90 \ 100 \ by \ simp
       finally show card (level A w (2 * Suc k) j) \leq card (nodes A) - Suc k by
simp
```

```
qed
   qed
  qed
  lemma graph-empty:
   assumes finite (nodes A) w \notin language A
   shows graph A w (Suc (2 * card (nodes A))) = \{\}
  proof -
   obtain n where 1: \bigwedge l. l \geq n \Longrightarrow card (level A \ w \ (2 * card (nodes A)) \ l) = 0
     using level-bounded [OF\ assms(1,\ 2),\ of\ card\ (nodes\ A)] by auto
   have graph A w (2 * card (nodes A)) =
     (\bigcup l \in \{..< n\}. level A w (2 * card (nodes A)) l) \cup
     (() l \in \{n ...\}. level A w (2 * card (nodes A)) l)
     by auto
   also have (\bigcup l \in \{n ..\}). level A w (2 * card (nodes A)) | l = \{\}
     using graph-level-finite assms(1) 1 by fastforce
   also have finite (([] l \in \{... < n\}. level A \le (2 * card (nodes A)) \ l) \cup \{\})
     using graph-level-finite assms(1) by auto
   finally have 100: finite (graph A w (2 * card (nodes A))) by this
   have 101: finite (greachable A w (graph A w (2 * card (nodes A))) v) for v
     using 100 greachable-subset of A w graph A w (2 * card (nodes A)) v
     using finite-insert infinite-super by auto
   show ?thesis using 101 by (simp add: clean-def)
  qed
  lemma graph-le:
   assumes finite (nodes A) w \notin language A
   assumes v \in graph \ A \ w \ k
   shows k \leq 2 * card (nodes A)
   using graph-empty graph-antimono assms
   by (metis Suc-leI empty-iff monotone-def not-le-imp-less rev-subsetD)
3.4
       Node Ranks
 definition rank :: ('label, 'state) \ nba \Rightarrow 'label \ stream \Rightarrow 'state \ node \Rightarrow nat \ \mathbf{where}
   rank \ A \ w \ v \equiv GREATEST \ k. \ v \in graph \ A \ w \ k
 lemma rank-member:
   assumes finite (nodes A) w \notin language A \ v \in gunodes A \ w
   shows v \in graph \ A \ w \ (rank \ A \ w \ v)
  unfolding rank-def
  proof (rule GreatestI-nat)
   show v \in graph \ A \ w \ \theta \ using \ assms(3) by simp
   show k \leq 2 * card (nodes A) if v \in graph A w k for k
     using graph-le \ assms(1, 2) \ that \ by \ blast
  qed
 lemma rank-removed:
   assumes finite (nodes A) w \notin language A
   shows v \notin graph \ A \ w \ (Suc \ (rank \ A \ w \ v))
  proof
   assume v \in graph \ A \ w \ (Suc \ (rank \ A \ w \ v))
```

```
then have 2: Suc (rank \ A \ w \ v) < rank \ A \ w \ v
     unfolding rank-def using Greatest-le-nat graph-le assms by metis
   then show False by auto
  qed
  lemma rank-le:
   assumes finite (nodes A) w \notin language A
   assumes v \in gunodes \ A \ w \ u \in gusuccessors \ A \ w \ v
   shows rank A w u \leq rank A w v
  unfolding rank-def
 proof (rule Greatest-le-nat)
   have 1: u \in gureachable \ A \ w \ v \ using \ graph.reachable-successors \ assms(4) by
   have 2: u \in gunodes \ A \ w \ using \ assms(3) \ 1 \ by \ auto
   show v \in graph \ A \ w \ (GREATEST \ k. \ u \in graph \ A \ w \ k)
   unfolding rank-def[symmetric]
   proof (rule graph-successors)
     show v \in gunodes \ A \ w \ using \ assms(3) by this
     show u \in gusuccessors \ A \ w \ v \ using \ assms(4) by this
    show u \in graph \ A \ w \ (rank \ A \ w \ u) using rank-member assms(1, 2) \ 2 by this
   qed
   show k \leq 2 * card (nodes A) if v \in graph A w k for k
     using graph-le assms(1, 2) that by blast
  qed
 lemma language-ranking:
   assumes finite (nodes A) w \notin language A
   shows ranking A w (rank A w)
  unfolding ranking-def
 proof (intro conjI ballI allI impI)
   \mathbf{fix} \ v
   assume 1: v \in gunodes \ A \ w
   have 2: v \in graph \ A \ w \ (rank \ A \ w \ v) using rank-member assms 1 by this
   show rank A w v \le 2 * card (nodes A) using graph-le assms 2 by this
  next
   \mathbf{fix} \ v \ u
   assume 1: v \in gunodes \ A \ w \ u \in gusuccessors \ A \ w \ v
   show rank A w u \leq rank A w v using rank-le assms 1 by this
  \mathbf{next}
   \mathbf{fix} \ v
   assume 1: v \in gunodes \ A \ w \ gaccepting \ A \ v
   have 2: v \in graph \ A \ w \ (rank \ A \ w \ v) using rank-member assms 1(1) by this
   have 3: v \notin graph \ A \ w \ (Suc \ (rank \ A \ w \ v)) \ using \ rank-removed \ assms \ by \ this
   have 4: v \in prune \ A \ w \ (graph \ A \ w \ (rank \ A \ w \ v)) using 2 \ 1(2) unfolding
prune-def by auto
   have 5: graph A w (Suc (rank A w v)) \neq prune A w (graph A w (rank A w v))
using 3 4 by blast
   show even (rank \ A \ w \ v) using 5 by auto
 next
   \mathbf{fix} \ v \ r \ k
```

```
assume 1: v \in gunodes \ A \ w \ gurun \ A \ w \ r \ v \ smap \ (rank \ A \ w) \ (gtrace \ r \ v) =
sconst k
   have sset (gtrace \ r \ v) \subseteq gureachable \ A \ w \ v
     using 1(2) by (metis graph.reachable.reflexive graph.reachable-trace)
   then have 6: sset (gtrace r v) \subseteq gunodes A w using I(1) by blast
   have 60: rank A w 'sset (gtrace r v) \subseteq \{k\}
     using 1(3) by (metis equalityD1 sset-sconst stream.set-map)
   have 50: sset (gtrace\ r\ v) \subseteq graph\ A\ w\ k
     using rank-member[OF assms] subsetD[OF 6] 60 unfolding image-subset-iff
by auto
   have 70: grun A w (graph A w k) r v using grun-subset 1(2) 50 by this
   have 7: sset (gtrace\ r\ v) \subseteq clean\ A\ w\ (graph\ A\ w\ k)
     unfolding clean-def using 50 infinite-greachable-gtrace[OF 70] by auto
   have 8: sset (gtrace r v) \cap graph A w (Suc k) = {} using rank-removed[OF]
assms 60 by blast
   have 9: sset (gtrace r v) \neq {} using stream.set-sel(1) by auto
   have 10: graph A w (Suc k) \neq clean A w (graph A w k) using 7 8 9 by blast
   show odd k using 10 unfolding graph-Suc by auto
 qed
```

3.5 Correctness Theorem

```
theorem language-ranking-iff:

assumes finite (nodes A)

shows w \notin language \ A \longleftrightarrow (\exists \ f. \ ranking \ A \ w \ f)

using ranking-language language-ranking assms by blast
```

 \mathbf{end}

4 Complementation

```
theory Complementation
imports
Transition-Systems-and-Automata.Maps
Ranking
begin
```

4.1 Level Rankings and Complementation States

```
type-synonym 'state lr = 'state \rightarrow nat

definition lr-succ :: ('label, 'state) nba \Rightarrow 'label \Rightarrow 'state lr \Rightarrow 'state lr set where lr-succ A a f \equiv \{g. dom g = \bigcup (transition A a 'dom f) \land (\forall p \in dom f. \forall q \in transition A a p. the <math>(g \ q) \leq the \ (f \ p)) \land (\forall q \in dom g. accepting A q \longrightarrow even \ (the \ (g \ q)))}

type-synonym 'state st = 'state set
```

```
definition st-succ :: ('label, 'state) nba \Rightarrow 'label \Rightarrow 'state \ lr \Rightarrow 'state \ st \Rightarrow 'state
st where
   st-succ A a g P \equiv \{q \in if P = \{\} \text{ then dom } g \text{ else } \bigcup \text{ (transition A a `P). even}
(the (q q))
  type-synonym 'state cs = 'state lr \times 'state st
  definition complement-succ :: ('label, 'state) nba \Rightarrow 'label \Rightarrow 'state \ cs \Rightarrow 'state
cs set where
    complement-succ A \ a \equiv \lambda \ (f, P). \{(g, st\text{-succ } A \ a \ g \ P) \mid g. \ g \in lr\text{-succ } A \ a \ f\}
  definition complement :: ('label, 'state) nba \Rightarrow ('label, 'state cs) nba where
    complement A \equiv nba
      (alphabet A)
      (\{const\ (Some\ (2*card\ (nodes\ A)))\mid 'initial\ A\}\times \{\{\}\})
      (complement\text{-}succ\ A)
      (\lambda (f, P). P = \{\})
  lemma dom-nodes:
   assumes fP \in nodes \ (complement \ A)
   shows dom (fst fP) \subseteq nodes A
    using assms unfolding complement-def complement-succ-def lr-succ-def by
(induct) (auto, blast)
  lemma ran-nodes:
   assumes fP \in nodes (complement A)
   \mathbf{shows} \ \mathit{ran} \ (\mathit{fst} \ \mathit{fP}) \subseteq \{\mathit{0} \ .. \ \mathit{2} * \mathit{card} \ (\mathit{nodes} \ \mathit{A})\}
  using assms
  proof induct
   case (initial fP)
   show ?case
     using initial unfolding complement-def by (auto) (metis eq-refl option.inject
ran-restrictD)
 next
   case (execute fP agQ)
   obtain f P where 1: fP = (f, P) by force
   have 2: ran f \subseteq \{0 ... 2 * card (nodes A)\} using execute(2) unfolding 1 by
auto
   obtain a \ g \ Q where 3: agQ = (a, (g, Q)) using prod-cases 3 by this
   have 4: p \in dom f \Longrightarrow q \in transition A \ a \ p \Longrightarrow the (q \ q) \leq the (f \ p) \ for \ p \ q
      using execute(3)
      unfolding 1 3 complement-def nba.simps complement-succ-def lr-succ-def
      by simp
   have 8: dom g = \bigcup ((transition \ A \ a) \ `(dom f))
      using execute(3)
      unfolding 1 3 complement-def nba.simps complement-succ-def lr-succ-def
     by simp
   show ?case
   unfolding 1 3 ran-def
   proof safe
```

```
\mathbf{fix} \ q \ k
     assume 5: fst (snd (a, (g, Q))) q = Some k
     have \theta: q \in dom \ g \text{ using } 5 \text{ by } auto
    obtain p where 7: p \in dom f g \in transition A \ a \ p \ using 6 \ unfolding 8 \ by
auto
     have k = the (g q) using 5 by auto
     also have \dots \leq the (f p) using 4 7 by this
     also have ... \leq 2 * card (nodes A) using 2 7(1) by (simp \ add: \ domD \ ranI)
subset-eq)
     finally show k \in \{0 ... 2 * card (nodes A)\} by auto
   qed
 qed
 lemma states-nodes:
   assumes fP \in nodes (complement A)
   shows snd fP \subseteq nodes A
  using assms
 proof induct
   case (initial fP)
   show ?case using initial unfolding complement-def by auto
   case (execute fP \ agQ)
   obtain f P where 1: fP = (f, P) by force
   have 2: P \subseteq nodes \ A \ using \ execute(2) \ unfolding \ 1 \ by \ auto
   obtain a \ g \ Q where \beta: agQ = (a, (g, Q)) using prod-cases \beta by this
   have 11: a \in alphabet \ A \ using \ execute(3) \ unfolding 3 \ complement-def \ by
auto
   have 10: (q, Q) \in nodes (complement A) using execute(1, 3) unfolding 1 3
by auto
   have 4: dom g \subseteq nodes A using <math>dom\text{-}nodes[OF 10] by simp
   have 5: \bigcup (transition A a 'P) \subseteq nodes A using 2 11 by auto
   have 6: Q \subseteq nodes A
     using execute(3)
     unfolding 1 3 complement-def nba.simps complement-succ-def st-succ-def
     using 45
     by (auto split: if-splits)
   show ?case using 6 unfolding 3 by auto
 \mathbf{qed}
  theorem complement-finite:
   assumes finite (nodes A)
   shows finite (nodes (complement A))
  proof -
   let ?lrs = \{f. \ dom \ f \subseteq nodes \ A \land ran \ f \subseteq \{0 \ .. \ 2 * card \ (nodes \ A)\}\}
   have 1: finite ?lrs using finite-set-of-finite-maps' assms by auto
   let ?states = Pow (nodes A)
   have 2: finite ?states using assms by simp
     have nodes (complement A) \subseteq ?lrs \times ?states by (force dest: dom-nodes
ran-nodes states-nodes)
   also have finite ... using 1 2 by simp
```

```
finally show ?thesis by this
  qed
  lemma complement-trace-snth:
   assumes run\ (complement\ A)\ (w\ |||\ r)\ p
   defines m \equiv p \#\# trace (w ||| r) p
   obtains
     fst (m !! Suc k) \in lr\text{-}succ A (w !! k) (fst (m !! k))
     snd\ (m !! Suc\ k) = st\text{-}succ\ A\ (w !!\ k)\ (fst\ (m !! Suc\ k))\ (snd\ (m !!\ k))
 proof
  have 1: r !! k \in transition (complement A) (w !! k) (m !! k) using nba.run-snth
assms by force
   show fst (m !! Suc k) \in lr\text{-}succ A <math>(w !! k) (fst (m !! k))
   using assms(2) 1 unfolding complement-def complement-succ-def nba.trace-alt-def
by auto
   show snd (m !! Suc k) = st\text{-}succ A (w !! k) (fst (m !! Suc k)) (snd (m !! k))
   using assms(2) 1 unfolding complement-def complement-succ-def nba.trace-alt-def
by auto
 qed
```

4.2 Word in Complement Language Implies Ranking

```
lemma complement-ranking:
 assumes w \in language (complement A)
 obtains f
 where ranking A w f
proof -
 obtain r p where 1:
   run\ (complement\ A)\ (w\ |||\ r)\ p
   p \in initial (complement A)
   infs (accepting (complement A)) (p \# \# r)
   using assms by rule
 let ?m = p \# \# r
 obtain 100:
   fst \ (?m !! Suc \ k) \in lr\text{-}succ \ A \ (w !! \ k) \ (fst \ (?m !! \ k))
   snd \ (?m !! Suc \ k) = st\text{-}succ \ A \ (w !! \ k) \ (fst \ (?m !! Suc \ k)) \ (snd \ (?m !! \ k))
  for k using complement-trace-snth 1(1) unfolding nba-trace-alt-def szip-smap-snd
 define f where f \equiv \lambda (k, q). the (fst (?m!! k) q)
 define P where P k \equiv snd (?m !! k) for k
 have 2: snd \ v \in dom \ (fst \ (?m !! \ fst \ v)) \ \mathbf{if} \ v \in gunodes \ A \ w \ \mathbf{for} \ v
 using that
 proof induct
   case (initial v)
   then show ?case using 1(2) unfolding complement-def by auto
 next
   case (execute \ v \ u)
   have snd \ u \in \bigcup (transition \ A \ (w !! \ fst \ v) \ `dom \ (fst \ (?m !! \ fst \ v)))
     using execute(2, 3) by auto
```

```
also have \dots = dom (fst (?m !! Suc (fst v)))
       using 100 unfolding lr-succ-def by simp
     also have Suc\ (fst\ v) = fst\ u\ using\ execute(3) by auto
     finally show ?case by this
   have 3: f u \le f v if 10: v \in gunodes \ A \ w and 11: u \in gusuccessors \ A \ w \ v for
u v
     have 15: snd \ u \in transition \ A \ (w !! \ fst \ v) \ (snd \ v) \ using 11 \ by \ auto
     have 16: snd \ v \in dom \ (fst \ (?m !! \ fst \ v)) using 2 10 by this
      have f u = the (fst (?m !! fst u) (snd u)) unfolding f-def by (simp add:
case-prod-beta)
     also have fst \ u = Suc \ (fst \ v) using 11 by auto
     also have the (fst (?m !! ...) (snd u)) \leq the (fst (?m !! fst v) (snd v))
       using 100 15 16 unfolding lr-succ-def by auto
     also have \dots = f \ v \ unfolding \ f-def \ by \ (simp \ add: case-prod-beta)
     finally show f u \leq f v by this
   qed
   have 4: \exists l \geq k. P l = \{\} for k
   proof -
     have 15: infs (\lambda(k, P), P = \{\})?m using I(3) unfolding complement-def
     obtain l where 17: l \ge k snd (?m !! l) = \{\} using 15 unfolding infs-snth
by force
     have 19: P = \{\} unfolding P-def using 17 by auto
     show ?thesis using 19 17(1) by auto
   qed
   show ?thesis
   \mathbf{proof}\ (\mathit{rule}\ \mathit{that},\ \mathit{unfold}\ \mathit{ranking-def},\ \mathit{intro}\ \mathit{conjI}\ \mathit{ballI}\ \mathit{impI}\ \mathit{allI})
     \mathbf{fix} \ v
     assume v \in gunodes \ A \ w
     then show f v \leq 2 * card (nodes A)
     proof induct
       case (initial v)
       then show ?case using 1(2) unfolding complement-def f-def by auto
       case (execute \ v \ u)
       have f u \leq f v using \Im[OF\ execute(1)]\ execute(3) by simp
       also have \dots \leq 2 * card (nodes A) using execute(2) by this
       finally show ?case by this
     qed
   \mathbf{next}
     \mathbf{fix} \ v \ u
     assume 10: v \in gunodes \ A \ w
     assume 11: u \in gusuccessors \ A \ w \ v
     show f u \leq f v using 3 10 11 by this
   next
     \mathbf{fix} \ v
     assume 10: v \in gunodes \ A \ w
```

```
assume 11: gaccepting A v
     show even (f v)
     using 10
     proof cases
      case (initial)
      then show ?thesis using 1(2) unfolding complement-def f-def by auto
     next
       case (execute \ u)
      have 12: snd \ v \in dom \ (fst \ (?m !! \ fst \ v)) using execute graph.nodes.execute
2 by blast
      have 12: snd \ v \in dom \ (fst \ (?m !! Suc \ (fst \ u))) using 12 execute(2) by auto
      have 13: accepting A (snd v) using 11 by auto
       have f v = the (fst (?m !! fst v) (snd v)) unfolding f-def by (simp add:
case-prod-beta)
      also have fst \ v = Suc \ (fst \ u) using execute(2) by auto
      also have even (the (fst (?m !! Suc (fst u)) (snd v)))
        using 100 12 13 unfolding lr-succ-def by simp
      finally show ?thesis by this
     qed
   \mathbf{next}
     \mathbf{fix} \ v \ s \ k
     assume 10: v \in gunodes \ A \ w
     assume 11: gurun A w s v
     assume 12: smap \ f \ (gtrace \ s \ v) = sconst \ k
     \mathbf{show} \ odd \ k
     proof
      assume 13: even k
      obtain t u where 14: u \in ginitial \ A \ gupath \ A \ w \ t \ u \ v = gtarget \ t \ u \ using
10 by auto
      obtain l where 15: l \ge length \ t \ P \ l = \{\} using 4 by auto
      have 30: gurun A w (t @- s) u using 11 14 by auto
      have 21: fst (gtarget (stake (Suc l) (t @- s)) u) = Suc l for l
      unfolding sscan-snth[symmetric] using 30 14(1) by (auto elim!: grun-elim)
      have 17: snd (gtarget (stake (Suc l + i) (t @- s)) u) \in P (Suc l + i) for i
      proof (induct i)
        case (\theta)
        have 20: gtarget (stake (Suc 1) (t @-s)) u \in gunodes A w
        using 14 11 by (force simp add: 15(1) le-SucI graph.run-stake stake-shift)
        have snd (gtarget (stake (Suc l) (t @- s)) u) \in
          dom \ (fst \ (?m !! fst \ (gtarget \ (stake \ (Suc \ l) \ (t @-s)) \ u)))
          using 2[OF 20] by this
         also have fst (gtarget (stake (Suc l) (t @- s)) u) = Suc l using 21 by
this
        finally have 22: snd (gtarget (stake (Suc l) (t @-s)) u) \in dom (fst (?m
!! Suc \ l) by this
       have gtarget (stake (Suc l) (t @- s)) u = gtrace (t @- s) u !! l unfolding
sscan-snth by rule
        also have ... = gtrace\ s\ v\ !!\ (l - length\ t) using 15(1) by simp
        also have f \dots = smap \ f \ (gtrace \ s \ v) \ !! \ (l - length \ t) by simp
```

```
also have smap f (qtrace s v) = sconst k unfolding 12 by rule
        also have sconst \ k \ !! \ (l - length \ t) = k \ by \ simp
         finally have 23: even (f (gtarget (stake (Suc l) (t @- s)) u)) using 13
by simp
        have snd (gtarget (stake (Suc l) (t @-s)) u) \in
          \{p \in dom \ (fst \ (?m !! Suc \ l)). \ even \ (f \ (Suc \ l, \ p))\}
       using 21 22 23 by (metis (mono-tags, lifting) mem-Collect-eq prod.collapse)
        also have \dots = st\text{-}succ\ A\ (w\ !!\ l)\ (fst\ (?m\ !!\ Suc\ l))\ (P\ l)
          unfolding 15(2) st-succ-def f-def by simp
        also have ... = P(Suc\ l) using 100(2) unfolding P-def by rule
        finally show ?case by auto
       \mathbf{next}
        case (Suc\ i)
        have 20: P(Suc \ l + i) \neq \{\} using Suc \ by \ auto
        have 21: fst (gtarget (stake (Suc l + Suc i) (t @- s)) u) = Suc l + Suc i
          using 21 by (simp add: stake-shift)
        have gtarget (stake (Suc l + Suc i) (t @ - s)) u = gtrace (t @ - s) u !! (l
+ Suc i
          unfolding sscan-snth by simp
        also have ... \in gusuccessors A w (gtarget (stake (Suc (l + i)) (t @ - s))
u)
          using graph.run-snth[OF\ 30,\ of\ l+Suc\ i] by simp
        finally have 220: snd (gtarget (stake (Suc (Suc l + i)) (t @ - s)) u) \in
           transition A (w !! (Suc l + i)) (snd (gtarget (stake (Suc (l + i)) (t @ -
s)) u))
          using 21 by auto
        have 22: snd (gtarget (stake (Suc l + Suc i) (t @- s)) u) \in
           \bigcup (transition A (w!! (Suc l+i)) 'P (Suc l+i)) using 220 Suc by
auto
        have gtarget (stake (Suc l + Suc i) (t @ - s)) u = gtrace (t @ - s) u !! (l
+ Suc i)
          unfolding sscan-snth by simp
        also have ... = gtrace \ s \ v \parallel (l + Suc \ i - length \ t) using 15(1)
          by (metis add.commute shift-snth-ge sscan-const trans-le-add2)
        also have f \dots = smap \ f \ (gtrace \ s \ v) \ !! \ (l + Suc \ i - length \ t) by simp
        also have smap f (qtrace s v) = sconst k unfolding 12 by rule
        also have sconst \ k !! \ (l + Suc \ i - length \ t) = k \ by \ simp
         finally have 23: even (f (gtarget (stake (Suc l + Suc i) (t @- s)) u))
using 13 by auto
        have snd (gtarget\ (stake\ (Suc\ l + Suc\ i)\ (t\ @-\ s))\ u) \in
           \{p \in \bigcup (transition \ A \ (w !! \ (Suc \ l + i)) \ `P \ (Suc \ l + i)). \ even \ (f \ (Suc \ l + i)) \ )
(Suc l + i), p)
            using 21 22 23 by (metis (mono-tags) add-Suc-right mem-Collect-eq
prod.collapse)
        also have ... = st-succ\ A\ (w\ !!\ (Suc\ l+i))\ (fst\ (?m\ !!\ Suc\ (Suc\ l+i)))
(P (Suc l + i))
          unfolding st-succ-def f-def using 20 by simp
        also have ... = P(Suc(Suc(l+i))) unfolding 100(2)[folded(P-def)] by
rule
```

```
also have ... = P (Suc l + Suc i) by simp finally show ?case by this qed obtain l' where 16: l' \geq Suc \ l \ P \ l' = \{\} using 4 by auto show False using 16 17 using nat-le-iff-add by auto qed qed qed
```

4.3 Ranking Implies Word in Complement Language

```
definition reach where
   reach A w i \equiv \{target \ r \ p \ | r \ p. \ path \ A \ r \ p \land p \in initial \ A \land map \ fst \ r = stake \}
i \ w
 lemma reach-0[simp]: reach A w 0 = initial A unfolding reach-def by auto
 lemma reach-Suc-empty:
   assumes w !! n \notin alphabet A
   shows reach A \ w \ (Suc \ n) = \{\}
  proof safe
   \mathbf{fix} \ q
   assume 1: q \in reach \ A \ w \ (Suc \ n)
   obtain r p where 2: q = target r p path A r p p \in initial A map fst r = stake
(Suc \ n) \ w
     using 1 unfolding reach-def by blast
   have 3: path A (take n r @ drop n r) p using 2(2) by simp
   have 4: map fst r = stake \ n \ w @ [w !! \ n]  using 2(4) \ stake\text{-Suc} by auto
   have 5: map snd r = take \ n \ (map \ snd \ r) @ [q] \ using 2(1, 4) 4
     by (metis One-nat-def Suc-inject Suc-neq-Zero Suc-pred append.right-neutral
         append-eq-conv-conj drop-map id-take-nth-drop last-ConsR last-conv-nth
length-0-conv
     length-map length-stake lessI nba.target-alt-def nba.states-alt-def zero-less-Suc)
   have 6: drop \ n \ r = [(w !! \ n, \ q)]  using 4 \ 5
   by (metis append-eq-conv-conj append-is-Nil-conv append-take-drop-id drop-map
       length-greater-0-conv\ length-stake\ stake-cycle-le\ stake-invert-Nil
       take-map zip-Cons-Cons zip-map-fst-snd)
   show q \in \{\} using assms 3 unfolding 6 by auto
  ged
  lemma reach-Suc-succ:
   assumes w !! n \in alphabet A
   shows reach A \ w \ (Suc \ n) = \bigcup \ (transition \ A \ (w !! \ n) \ `reach \ A \ w \ n)
  proof safe
   \mathbf{fix} \ q
   assume 1: q \in reach \ A \ w \ (Suc \ n)
   obtain r p where 2: q = target r p path A r p p \in initial A map fst r = stake
(Suc \ n) \ w
     using 1 unfolding reach-def by blast
   have 3: path A (take n r @ drop n r) p using 2(2) by simp
   have 4: map fst r = stake \ n \ w @ [w !! \ n]  using 2(4) \ stake\text{-Suc} by auto
```

```
have 5: map snd r = take \ n \ (map \ snd \ r) @ [q] \ using 2(1, 4) 4
     by (metis One-nat-def Suc-inject Suc-neq-Zero Suc-pred append.right-neutral
         append-eq\text{-}conv\text{-}conj drop\text{-}map id\text{-}take\text{-}nth\text{-}drop last\text{-}ConsR last\text{-}conv\text{-}nth
length-0-conv
     length-map length-stake lessI nba.target-alt-def nba.states-alt-def zero-less-Suc)
   have \theta: drop \ n \ r = [(w !! \ n, \ q)] using 4 5
   by (metis append-eq-conv-conj append-is-Nil-conv append-take-drop-id drop-map
       length-greater-0-conv length-stake stake-cycle-le stake-invert-Nil
       take-map zip-Cons-Cons zip-map-fst-snd)
   show q \in \bigcup ((transition \ A \ (w !! \ n) \ `(reach \ A \ w \ n)))
   unfolding reach-def
   proof (intro UN-I CollectI exI conjI)
     show target (take n r) p = target (take n r) p by rule
     show path A (take n r) p using \beta by blast
     show p \in initial A using 2(3) by this
     show map fst (take n r) = stake n w using 2 by (metis length-stake lessI
nat.distinct(1)
       stake-cycle-le stake-invert-Nil take-map take-stake)
     show q \in transition \ A \ (w !! \ n) \ (target \ (take \ n \ r) \ p) \ using \ 3 \ unfolding \ 6
by auto
   qed
 \mathbf{next}
   \mathbf{fix} \ p \ q
   assume 1: p \in reach \ A \ w \ n \ q \in transition \ A \ (w !! \ n) \ p
   obtain r x where 2: p = target r x path A r x x <math>\in initial A map fst r = stake
n w
     using 1(1) unfolding reach-def by blast
   show q \in reach \ A \ w \ (Suc \ n)
   unfolding reach-def
   proof (intro CollectI exI conjI)
     show q = target (r @ [(w !! n, q)]) x using 1 2 by auto
     show path A (r @ [(w !! n, q)]) x using assms <math>1(2) 2(1, 2) by auto
     show x \in initial A  using 2(3) by this
     show map fst (r @ [(w !! n, q)]) = stake (Suc n) w using 1 2
       by (metis eq-fst-iff list.simps(8) list.simps(9) map-append stake-Suc)
   qed
  qed
 lemma reach-Suc[simp]: reach A w (Suc n) = (if w !! n \in alphabet A
   then [\ ] (transition A (w !! n) 'reach A w n) else \{\})
   using reach-Suc-empty reach-Suc-succ by metis
  lemma reach-nodes: reach A w i \subseteq nodes A by (induct i) (auto)
  lemma reach-gunodes: \{i\} \times reach \ A \ w \ i \subseteq gunodes \ A \ w
   by (induct i) (auto intro: graph.nodes.execute)
  lemma ranking-complement:
   assumes finite (nodes A) w \in streams (alphabet A) ranking A w f
   shows w \in language (complement A)
  proof -
   define f' where f' \equiv \lambda (k, p). if k = 0 then 2 * card (nodes A) else f(k, p)
```

```
have \theta: ranking A w f'
   unfolding ranking-def
   proof (intro conjI ballI impI allI)
     show \land v. v \in gunodes A w \Longrightarrow f' v \leq 2 * card (nodes A)
       using assms(3) unfolding ranking-def f'-def by auto
     show \bigwedge v \ u. \ v \in gunodes \ A \ w \Longrightarrow u \in gusuccessors \ A \ w \ v \Longrightarrow f' \ u \le f' \ v
       using assms(3) unfolding ranking-def f'-def by fastforce
     show \bigwedge v. \ v \in gunodes \ A \ w \Longrightarrow gaccepting \ A \ v \Longrightarrow even \ (f' \ v)
       using assms(3) unfolding ranking-def f'-def by auto
   next
    have 1: v \in gunodes\ A\ w \Longrightarrow gurun\ A\ w\ r\ v \Longrightarrow smap\ f\ (gtrace\ r\ v) = sconst
k \Longrightarrow odd k
       for v r k using assms(3) unfolding ranking-def by meson
     \mathbf{fix} \ v \ r \ k
     assume 2: v \in gunodes \ A \ w \ gurun \ A \ w \ r \ v \ smap \ f' \ (gtrace \ r \ v) = sconst \ k
     have 20: shd r \in qureachable A w v using 2
      by (auto) (metis graph.reachable.reflexive graph.reachable-trace gtrace-alt-def
subsetD \ shd\text{-}sset)
     obtain \beta:
       shd \ r \in gunodes \ A \ w
       gurun \ A \ w \ (stl \ r) \ (shd \ r)
       smap\ f'\ (gtrace\ (stl\ r)\ (shd\ r)) = sconst\ k
     using 2 20 by (metis (no-types, lifting) eq-id-iff graph.nodes-trans graph.run-scons-elim
         siterate.simps(2) sscan.simps(2) stream.collapse stream.map-sel(2))
     have 4: k \neq 0 if (k, p) \in sset \ r for k p
     proof -
       obtain ra ka pa where 1: r = fromN (Suc ka) ||| ra v = (ka, pa)
         using grun\text{-}elim[OF 2(2)] by this
       have 2: k \in sset (from N (Suc ka)) using 1(1) that
         by (metis image-eqI prod.sel(1) szip-smap-fst stream.set-map)
       show ?thesis using 2 by simp
     have 5: smap f'(gtrace(stl\ r)(shd\ r)) = smap f(gtrace(stl\ r)(shd\ r))
     proof (rule stream.map-cong)
       show gtrace (stl r) (shd r) = gtrace (stl r) (shd r) by rule
     next
       \mathbf{fix} \ z
       assume 1: z \in sset (qtrace (stl r) (shd r))
       have 2: fst z \neq 0 using 4 1 by (metis gtrace-alt-def prod.collapse stl-sset)
       show f' z = f z using 2 unfolding f'-def by (auto simp: case-prod-beta)
     qed
     show odd k using 1 3 5 by simp
   define g where g i p \equiv if p \in reach A w i then Some (f'(i, p)) else None for
i p
   have g-dom[simp]: dom(g i) = reach A w i for i
     unfolding g-def by (auto) (metis\ option.simps(3))
   have g-\theta[simp]: g \theta = const (Some (2 * card (nodes A))) | 'initial A
```

```
unfolding g-def f'-def by auto
   have g\text{-}Suc[simp]: g(Suc\ n) \in lr\text{-}succ\ A(w!!\ n)(g\ n) for n
   unfolding lr-succ-def
   proof (intro CollectI conjI ballI impI)
    show dom(g(Suc n)) = \bigcup (transition A(w!! n) 'dom(g n)) using snth-in
assms(2) by auto
   \mathbf{next}
     \mathbf{fix} \ p \ q
     assume 100: p \in dom(g n) q \in transition A(w!! n) p
     have 101: q \in reach \ A \ w \ (Suc \ n) using snth-in \ assms(2) 100 by auto
    have 102: (n, p) \in gunodes \ A \ w \ using \ 100(1) \ reach-gunodes \ g-dom \ by \ blast
     have 103: (Suc n, q) \in gusuccessors A w (n, p) using snth-in assms(2) 102
100(2) by auto
     have 104: p \in reach \ A \ w \ n \ using \ 100(1) by simp
     have g(Suc n) q = Some(f'(Suc n, q)) using 101 unfolding g-def by
simp
     also have the \dots = f'(Suc\ n,\ q) by simp
     also have ... \leq f'(n, p) using \theta unfolding ranking-def using 102 103 by
simp
     also have ... = the (Some (f'(n, p))) by simp
     also have Some (f'(n, p)) = g \ n \ p \ using 104 \ unfolding g-def by simp
     finally show the (g (Suc n) q) \le the (g n p) by this
   \mathbf{next}
     \mathbf{fix} p
     assume 100: p \in dom (g (Suc n)) accepting A p
     have 101: p \in reach \ A \ w \ (Suc \ n) using 100(1) by simp
     have 102: (Suc\ n,\ p) \in gunodes\ A\ w\ using\ 101\ reach-gunodes\ by\ blast
     have 103: gaccepting A (Suc n, p) using 100(2) by simp
     have the (g (Suc \ n) \ p) = f' (Suc \ n, \ p) using 101 unfolding g-def by simp
     also have even ... using 0 unfolding ranking-def using 102 103 by auto
     finally show even (the (g (Suc n) p)) by this
   qed
   define P where P \equiv rec\text{-nat} \{\} (\lambda \ n. \ st\text{-succ} \ A \ (w !! \ n) \ (g \ (Suc \ n)))
   have P-\theta[simp]: P \theta = \{\} unfolding P-def by simp
   have P-Suc[simp]: P(Suc n) = st-succ A(w!! n)(q(Suc n))(P n) for n
     unfolding P-def by simp
   have P-reach: P \ n \subseteq reach \ A \ w \ n \ for \ n
     using snth-in assms(2) by (induct \ n) (auto \ simp \ add: \ st-succ-def)
   have P \ n \subseteq reach \ A \ w \ n for n using P-reach by auto
   also have ... n \subseteq nodes A for n using reach-nodes by this
   also have finite (nodes A) using assms(1) by this
   finally have P-finite: finite (P \ n) for n by this
   define s where s \equiv smap \ g \ nats ||| \ smap \ P \ nats
   show ?thesis
   proof
     show run (complement A) (w \parallel \parallel stl s) (shd s)
```

```
proof (intro nba.snth-run conjI, simp-all del: stake.simps stake-szip)
       \mathbf{fix} \ k
       show w \parallel k \in alphabet (complement A) using snth-in <math>assms(2) unfolding
complement-def by auto
       have stl \ s \ !! \ k = s \ !! \ Suc \ k \ by \ simp
       also have \ldots \in complement\text{-}succ\ A\ (w\ !!\ k)\ (s\ !!\ k)
         unfolding complement-succ-def s-def using P-Suc by simp
        also have \dots = complement\text{-}succ\ A\ (w !! \ k)\ (target\ (stake\ k\ (w \mid\mid\mid stl\ s))
(shd\ s))
         unfolding sscan-scons-snth[symmetric] nba.trace-alt-def by simp
       also have ... = transition (complement A) (w \parallel k) (target (stake k \mid w \mid k)
stl(s)) (shd(s))
         unfolding complement-def nba.sel by rule
       finally show stl \ s \ !! \ k \in
          transition (complement A) (w \parallel k) (target (stake k \mid w \mid \parallel stl \mid s)) (shd s))
by this
     qed
     show shd\ s \in initial\ (complement\ A) unfolding complement\ def\ s\ def\ using
P-\theta by simp
     show infs (accepting (complement A)) (shd s \#\# stl s)
     proof -
       have 10: \forall n. \exists k \geq n. P k = \{\}
       proof (rule ccontr)
         assume 2\theta: \neg (\forall n. \exists k \geq n. P k = \{\})
         obtain k where 22: P(k+n) \neq \{\} for n using 20 using le-add1 by
blast
         define m where m n S \equiv \{p \in \bigcup (transition \ A \ (w !! \ n) \ `S). \ even (the
(g (Suc \ n) \ p)) for n \ S
         define R where R i n S \equiv rec-nat S (\lambda i. m (n + i)) i for i n S
         have R-\theta[simp]: R \theta n = id for n unfolding R-def by auto
         have R-Suc[simp]: R (Suc i) n = m (n + i) \circ R i n for i n unfolding
R-def by auto
         have R-Suc': R (Suc i) n = R i (Suc n) \circ m n for i n unfolding R-Suc
by (induct i) (auto)
        have R-reach: R \ i \ n \ S \subseteq reach \ A \ w \ (n+i) \ \text{if} \ S \subseteq reach \ A \ w \ n \ \text{for} \ i \ n \ S
           using snth-in assms(2) that m-def by (induct i) (auto)
         have P-R: P(k + i) = R i k (P k) for i
         using 22 by (induct i) (auto simp add: case-prod-beta' m-def st-succ-def)
         have 50: R i n S = (\bigcup p \in S. R i n \{p\}) for i n S
           by (induct i) (auto simp add: m-def prod.case-eq-if)
         have 51: R(i + j) n S = \{\} if R i n S = \{\} for i j n S
           using that by (induct j) (auto simp add: m-def prod.case-eq-if)
         have 52: R j n S = \{\}  if i \le j R i n S = \{\}  for i j n S
           using 51 by (metis le-add-diff-inverse that (1) that (2))
         have 1: \exists p \in S. \forall i. R in \{p\} \neq \{\}
           if assms: finite S \land i. R i n S \neq \{\} for n S
         proof (rule ccontr)
```

```
assume 1: \neg (\exists p \in S. \forall i. R in \{p\} \neq \{\})
          obtain f where \beta: \bigwedge p. p \in S \Longrightarrow R (f p) n \{p\} = \{\}  using 1 by metis
           have 4: R (Sup (f `S)) n \{p\} = \{\} if p \in S for p \}
           proof (rule 52)
          show f p \leq Sup (f \cdot S) using assms(1) that by (auto intro: le-cSup-finite)
             show R(f p) n \{p\} = \{\}  using 3 that by this
           have R(Sup(f'S)) n S = (\bigcup p \in S. R(Sup(f'S))) n \{p\}) using 50
bv this
           also have \dots = \{\} using 4 by simp
           finally have 5: R (Sup (f \cdot S)) n S = \{\} by this
           show False using that(2) 5 by auto
         qed
         have 2: \land i. R \ i \ (k + \theta) \ (P \ k) \neq \{\}  using 22 \ P-R by simp
         obtain p where 3: p \in P \ k \land i. R i k \{p\} \neq \{\} using 1[OF P-finite 2]
by auto
         define Q where Q n p \equiv (\forall i. R i (k + n) \{p\} \neq \{\}) \land p \in P (k + n)
for n p
        have 5: \exists q \in transition \ A \ (w !! \ (k+n)) \ p. \ Q \ (Suc \ n) \ q \ \textbf{if} \ Q \ n \ p \ \textbf{for} \ n \ p
         have 11: p \in P(k+n) \land i. R i(k+n) \{p\} \neq \{\} using that unfolding
Q-def by auto
           have 12: R (Suc i) (k + n) {p} \neq {} for i using 11(2) by this
         have 13: R i (k + Suc n) (m (k + n) \{p\}) \neq \{\} for i using 12 unfolding
R-Suc' by simp
           have \{p\} \subseteq P (k + n) using 11(1) by auto
           also have ... \subseteq reach A w (k + n) using P-reach by this
           finally have R \ 1 \ (k+n) \ \{p\} \subseteq reach \ A \ w \ (k+n+1) using R-reach
by blast
           also have \ldots \subseteq nodes \ A  using reach-nodes by this
           also have finite (nodes A) using assms(1) by this
           finally have 14: finite (m (k + n) \{p\}) by simp
           obtain q where 14: q \in m (k + n) \{p\} \land i. R i (k + Suc n) \{q\} \neq \{\}
             using 1[OF 14 13] by auto
           show ?thesis
           unfolding Q-def prod.case
           proof (intro bexI conjI allI)
             show \bigwedge i. R i (k + Suc\ n) \{q\} \neq \{\} using 14(2) by this
             show q \in P (k + Suc n)
           using 14(1) 11(1) 22 unfolding m-def by (auto simp add: st-succ-def)
            show q \in transition \ A \ (w !! \ (k + n)) \ p \ using \ 14(1) \ unfolding \ m-def
by simp
           \mathbf{qed}
         qed
         obtain r where 23:
          run \ A \ r \ p \ \land \ i. \ Q \ i \ ((p \#\# \ trace \ r \ p) \ !! \ i) \ \land \ i. \ fst \ (r \ !! \ i) = w \ !! \ (k + i)
         proof (rule nba.invariant-run-index[of Q \ 0 \ p \ A \ \lambda \ n \ p \ a. fst a = w \ !! \ (k + p)
n)])
```

```
show Q \ \theta \ p unfolding Q-def using \beta by auto
          show \exists a. (fst a \in alphabet A \land snd a \in transition A (fst a) p) <math>\land
            Q (Suc n) (snd a) \wedge fst a = w !! (k + n) if Q n p for n p
            using snth-in assms(2) 5 that by fastforce
        ged auto
         have 20: smap fst r = sdrop \ k \ w \ using \ 23(3) by (intro eqI-snth) (simp
add: case-prod-beta)
        have 21: (p \#\# smap \ snd \ r) !! \ i \in P \ (k+i) for i
          using 23(2) unfolding Q-def unfolding nba.trace-alt-def by simp
        obtain r where 23: run A (sdrop k w ||| stl r) (shd r) \bigwedge i. r !! i \in P (k
+i
          using 20 21 23(1) by (metis stream.sel(1) stream.sel(2) szip-smap)
        let ?v = (k, shd r)
        let ?r = fromN (Suc k) ||| stl r
        have shd r = r !! \theta by simp
        also have \ldots \in P \ k \text{ using } 23(2)[of \ 0] \text{ by } simp
        also have \ldots \subseteq reach \ A \ w \ k \ using \ P\text{-}reach \ by \ this
        finally have 24: ?v \in gunodes \ A \ w \ using \ reach-gunodes \ by \ blast
        have 25: gurun A w ?r ?v using run-grun 23(1) by this
        obtain l where 26: Ball (sset (smap f' (qtrace (sdrop l ?r) (qtarget (stake
l ?r) ?v)))) odd
          using ranking-stuck-odd 0 24 25 by this
        have 27: f'(Suc(k + l), r !! Suc(l) =
         shd (smap f' (gtrace (sdrop l ? r) (gtarget (stake l ? r) ? v))) by (simp add:
algebra-simps)
          also have ... \in sset (smap f' (gtrace (sdrop l ? r) (gtarget (stake l ? r)
?v)))
          using shd-sset by this
        finally have 28: odd (f'(Suc(k+l), r !! Suc l)) using 26 by auto
        have r 	ext{!! } Suc \ l \in P \ (Suc \ (k+l)) \ \textbf{using} \ 23(2) \ \textbf{by} \ (metis \ add-Suc-right)
        also have ... = \{p \in \bigcup (transition \ A \ (w !! (k + l)) \ `P \ (k + l)).
          even (the (g (Suc (k + l)) p)) using 23(2) by (auto simp: st-succ-def)
        also have ... \subseteq \{p. \ even \ (the \ (g \ (Suc \ (k + l)) \ p))\}  by auto
        finally have 29: even (the (g (Suc (k + l)) (r !! Suc l))) by auto
        have 30: r !! Suc l \in reach A w (Suc (k + l))
          using 23(2) P-reach by (metis add-Suc-right subsetCE)
        have 31: even (f'(Suc(k+l), r !! Suc l)) using 29 30 unfolding q-def
by simp
        show False using 28 31 by simp
       \mathbf{qed}
       have 11: infs (\lambda k. P k = {}) nats using 10 unfolding infs-snth by simp
       have infs (\lambda S. S = \{\}) (smap \ snd \ (smap \ g \ nats ||| \ smap \ P \ nats))
        using 11 by (simp add: comp-def)
       then have infs (\lambda x. snd x = {}) (smap g nats ||| smap P nats)
        by (simp add: comp-def del: szip-smap-snd)
       then have infs (\lambda (f, P), P = \{\}) (smap g nats ||| smap P nats)
        by (simp add: case-prod-beta')
       then have infs (\lambda (f, P). P = \{\}) (stl (smap g nats ||| smap P nats)) by
blast
```

```
then have infs (\lambda (f, P). P = \{\}) (smap snd (w ||| stl (smap g nats ||| smap P nats))) by simp
then have infs (\lambda (f, P). P = \{\}) (stl s) unfolding s-def by simp
then show ?thesis unfolding complement-def by auto
qed
qed
```

4.4 Correctness Theorem

```
theorem complement-language:
    assumes finite (nodes A)
    shows language (complement A) = streams (alphabet A) - language A
    proof (safe del: notI)
    have 1: alphabet (complement A) = alphabet A unfolding complement-def
    nba.sel by rule
    show w \in streams (alphabet A) if w \in language (complement A) for w
    using nba.language-alphabet that 1 by force
    show w \notin language A if w \in language (complement A) for w
    using complement-ranking ranking-language that by metis
    show w \in language (complement A) if w \in streams (alphabet A) w \notin language
A for w
    using language-ranking ranking-complement assms that by blast
    qed
```

5 Complementation Implementation

```
theory Complementation-Implement imports
   Transition-Systems-and-Automata.NBA-Implement Complementation
begin
   unbundle lattice-syntax
   type-synonym item = nat \times bool
   type-synonym 'state\ items = 'state \rightharpoonup item
   type-synonym state = (nat \times item)\ list
   abbreviation item\text{-}rel \equiv nat\text{-}rel \times_r \ bool\text{-}rel
   abbreviation state\text{-}rel \equiv \langle nat\text{-}rel, item\text{-}rel \rangle \ list\text{-}map\text{-}rel}
   abbreviation pred\ A\ a\ q \equiv \{p,\ q \in transition\ A\ a\ p\}
```

5.1 Phase 1

end

```
definition cs-lr :: 'state items <math>\Rightarrow 'state lr where
```

```
cs-lr f \equiv map-option fst \circ f
  definition cs-st :: 'state\ items \Rightarrow 'state\ st where
    cs-st f \equiv f - 'Some 'snd - '{True}
  abbreviation cs-abs :: 'state items \Rightarrow 'state cs where
    cs-abs f \equiv (cs-lr f, cs-st f)
  definition cs\text{-}rep :: 'state \ cs \Rightarrow 'state \ items \ \mathbf{where}
    cs\text{-rep} \equiv \lambda \ (g, P) \ p. \ map\text{-option} \ (\lambda \ k. \ (k, p \in P)) \ (g \ p)
  lemma cs-abs-rep[simp]: cs-rep(cs-abs f) = f
 proof
   show cs-rep (cs-abs f) x = f x for x
     unfolding cs-lr-def cs-st-def cs-rep-def by (cases f x) (force+)
 lemma cs\text{-}rep\text{-}lr[simp]: cs\text{-}lr\ (cs\text{-}rep\ (g,\ P))=g
 proof
   show cs-lr (cs-rep (g, P)) x = g x for x
     unfolding cs-rep-def cs-lr-def by (cases \ g \ x) (auto)
  qed
  lemma cs\text{-rep-st}[simp]: cs\text{-st}(cs\text{-rep}(g, P)) = P \cap dom g
   unfolding cs-rep-def cs-st-def by force
  lemma cs-lr-dom[simp]: dom(cs-lr f) = dom f unfolding cs-lr-def by simp
  lemma cs-lr-apply[simp]:
   assumes p \in dom f
   shows the (cs-lr f(p)) = fst(the(f(p)))
   using assms unfolding cs-lr-def by auto
 lemma cs-rep-dom[simp]: dom(cs-rep(q, P)) = dom q unfolding cs-rep-def by
auto
 lemma cs-rep-apply[simp]:
   assumes p \in dom f
   shows fst (the (cs-rep (f, P) p)) = the (f p)
   using assms unfolding cs-rep-def by auto
 abbreviation cs-rel :: ('state items \times 'state cs) set where
    cs\text{-rel} \equiv br \ cs\text{-}abs \ top
 lemma cs-rel-inv-single-valued: single-valued (cs-rel<sup>-1</sup>)
   by (auto intro!: inj-onI) (metis cs-abs-rep)
  definition refresh-1 :: 'state items \Rightarrow 'state items where
    refresh-1 f \equiv if \ True \in snd ' ran f \ then \ f \ else \ map-option \ (apsnd \ top) \circ f
  definition ranks-1 ::
   ('label, 'state) \ nba \Rightarrow 'label \Rightarrow 'state \ items \Rightarrow 'state \ items \ set \ \mathbf{where}
   ranks-1 A a f \equiv \{g.
     dom \ g = \bigcup ((transition \ A \ a) \ `(dom \ f)) \land
     (\forall p \in dom f. \forall q \in transition A \ a \ p. \ fst \ (the \ (g \ q)) \leq fst \ (the \ (f \ p))) \land
     (\forall q \in dom \ g. \ accepting \ A \ q \longrightarrow even \ (fst \ (the \ (g \ q)))) \land
     cs\text{-st }g = \{q \in \bigcup ((transition \ A \ a) \ (cs\text{-st }f)). \ even \ (fst \ (the \ (g \ q)))\}\}
```

```
definition complement-succ-1 ::
   ('label, 'state) \ nba \Rightarrow 'label \Rightarrow 'state \ items \Rightarrow 'state \ items \ set \ \mathbf{where}
    complement-succ-1 A a = ranks-1 A a \circ refresh-1
 definition complement-1 :: ('label, 'state) nba \Rightarrow ('label, 'state items) nba where
    complement-1 \ A \equiv nba
     (alphabet A)
     (\{const\ (Some\ (2*card\ (nodes\ A),\ False))\ |\ 'initial\ A\})
     (complement-succ-1 A)
     (\lambda f. cs\text{-}st f = \{\})
 lemma refresh-1-dom[simp]: dom (refresh-1 f) = dom f unfolding refresh-1-def
by simp
 lemma refresh-1-apply[simp]: fst (the (refresh-1 f p)) = fst (the (f p))
   unfolding refresh-1-def by (cases f p) (auto)
 lemma refresh-1-cs-st[simp]: cs-st (refresh-1 f) = (if cs-st f = {} then dom f else
   unfolding refresh-1-def cs-st-def ran-def image-def vimage-def by auto
 \mathbf{lemma}\ complement\text{-}succ\text{-}1\text{-}abs\text{:}
   assumes g \in complement\text{-}succ\text{-}1 \ A \ a \ f
   shows cs-abs g \in complement-succ A a (cs-abs f)
  unfolding complement-succ-def
  proof (simp, rule)
   have 1:
     dom \ g = \bigcup ((transition \ A \ a) \ `(dom \ f))
     \forall p \in dom \ f. \ \forall q \in transition \ A \ a \ p. \ fst \ (the \ (g \ q)) \leq fst \ (the \ (f \ p))
     \forall p \in dom \ g. \ accepting \ A \ p \longrightarrow even \ (fst \ (the \ (g \ p)))
     using assms unfolding complement-succ-1-def ranks-1-def by simp-all
   show cs-lr g \in lr-succ A a (cs-lr f)
   unfolding lr-succ-def
   proof (intro CollectI conjI ballI impI)
     show dom(cs-lr\ g) = \bigcup (transition\ A\ a\ 'dom(cs-lr\ f)) using 1 by simp
   next
     \mathbf{fix} \ p \ q
     assume 2: p \in dom (cs-lr f) q \in transition A a p
     have 3: q \in dom (cs-lr q) using 1 2 by auto
     show the (cs-lr g q) \leq the (cs-lr f p) using 1 2 3 by simp
   next
     \mathbf{fix} p
     assume 2: p \in dom (cs-lr g) accepting A p
     show even (the (cs-lr g p)) using 1 2 by auto
   qed
   have 2: cs\text{-st } g = \{q \in \bigcup (transition \ A \ a \ `cs\text{-st } (refresh\text{-}1 \ f)). even (fst \ (the
(g \ q)))\}
     using assms unfolding complement-succ-1-def ranks-1-def by simp
   show cs-st g = st-succ A a (cs-lr g) (cs-st f)
   proof (cases cs-st f = \{\})
     case True
     have 3: the (cs-lr g(q) = fst(the(g(q))) if q \in \bigcup (transition(A(a))) '(dom f)
```

```
for q
       using that 1(1) by simp
     show ?thesis using 2 3 unfolding st-succ-def refresh-1-cs-st True cs-lr-dom
1(1) by force
   next
     case False
     have 3: the (cs-lr g q) = fst (the (g q)) if q \in \bigcup ((transition A a) `(cs-st f))
for q
       using that 1(1) by
         (auto intro!: cs-lr-apply)
         (metis IntE UN-iff cs-abs-rep cs-lr-dom cs-rep-st domD prod.collapse)
     have cs-st g = \{q \in I \mid (transition \ A \ a \ cs-st \ (refresh-1 \ f)). \ even \ (fst \ (the \ (g
q))))
       using 2 by this
     also have cs-st (refresh-1 f) = cs-st f using False by simp
     also have \{q \in \bigcup ((transition \ A \ a) \ (cs-st \ f)). \ even (fst \ (the \ (q \ q)))\} =
         \{q \in \bigcup ((transition \ A \ a) \ (cs-st \ f)). \ even \ (the \ (cs-lr \ g \ q))\} \ using \ 3 \ by
metis
      also have \dots = st\text{-}succ\ A\ a\ (cs\text{-}lr\ g)\ (cs\text{-}st\ f)\ \mathbf{unfolding}\ st\text{-}succ\text{-}def\ \mathbf{using}
False by simp
     finally show ?thesis by this
   qed
  qed
  lemma complement-succ-1-rep:
   assumes P \subseteq dom f (g, Q) \in complement\text{-}succ A a (f, P)
   shows cs-rep (g, Q) \in complement-succ-1 A a (cs-rep (f, P))
  unfolding complement-succ-1-def ranks-1-def comp-apply
  proof (intro CollectI conjI ballI impI)
   have 1:
     dom \ g = \bigcup ((transition \ A \ a) \ (dom \ f))
     \forall p \in dom f. \ \forall q \in transition \ A \ a \ p. \ the (g \ q) \leq the (f \ p)
     \forall p \in dom \ g. \ accepting \ A \ p \longrightarrow even \ (the \ (g \ p))
     using assms(2) unfolding complement-succ-def lr-succ-def by simp-all
    have 2: Q = \{q \in if \ P = \{\} \ then \ dom \ g \ else \ \bigcup ((transition \ A \ a) \ `P). \ even
(the (g q))
     using assms(2) unfolding complement-succ-def st-succ-def by simp
   have 3: Q \subseteq dom \ g \ unfolding \ 2 \ 1(1) \ using \ assms(1) by auto
    show dom (cs-rep (g, Q)) = \bigcup (transition A a 'dom (refresh-1 (cs-rep (f, G))
P)))) using 1 by simp
   show \bigwedge p \ q. \ p \in dom \ (refresh-1 \ (cs-rep \ (f, P))) \Longrightarrow q \in transition \ A \ a \ p \Longrightarrow
     fst\ (the\ (cs\text{-}rep\ (g,\ Q)\ q)) \leq fst\ (the\ (refresh-1\ (cs\text{-}rep\ (f,\ P))\ p))
     using 1(1, 2) by (auto) (metis UN-I cs-rep-apply domI option.sel)
   show \bigwedge p. p \in dom (cs\text{-rep }(g, Q)) \Longrightarrow accepting A p \Longrightarrow even (fst (the (cs\text{-rep})))
(g, Q) p)))
     using 1(1, 3) by auto
    show cs-st (cs-rep (g, Q)) = \{q \in \bigcup (transition A a 'cs-st (refresh-1 (cs-rep
     even (fst (the (cs-rep (g, Q) q)))}
   proof (cases P = \{\})
```

```
case True
     have cs-st (cs-rep (g, Q)) = Q using 3 by auto
     also have ... = \{q \in dom \ g. \ even \ (the \ (g \ q))\} unfolding 2 using True by
auto
       also have ... = \{q \in dom \ g. \ even \ (fst \ (the \ (cs\text{-rep} \ (g, \ Q) \ q)))\} using
cs-rep-apply by metis
     also have dom g = \bigcup ((transition A a) ' (dom f)) using I(1) by this
     also have dom f = cs\text{-}st \ (refresh\text{-}1 \ (cs\text{-}rep \ (f, P))) \ using True by <math>simp
     finally show ?thesis by this
   \mathbf{next}
     case False
     have 4: fst (the (cs-rep (g, Q) q)) = the (g, q) if q \in \bigcup (transition A a) P
       using 1(1) that assms(1) by (fast intro: cs-rep-apply)
     have cs-st (cs-rep (g, Q)) = Q using 3 by auto
     also have \ldots = \{q \in \bigcup ((transition \ A \ a) \ `P). \ even \ (the \ (g \ q))\} unfolding
2 using False by auto
      also have ... = \{q \in \bigcup ((transition \ A \ a) \ `P). \ even \ (fst \ (the \ (cs-rep \ (g, \ Q)))\}
q))) using 4 by force
      also have P = (cs\text{-}st \ (refresh\text{-}1 \ (cs\text{-}rep \ (f, P)))) using assms(1) False by
auto
     finally show ?thesis by simp
    qed
  qed
  lemma complement-succ-1-refine: (complement-succ-1, complement-succ) \in
    Id \rightarrow Id \rightarrow cs\text{-}rel \rightarrow \langle cs\text{-}rel \rangle set\text{-}rel
  proof (clarsimp simp: br-set-rel-alt in-br-conv)
   \mathbf{fix}\ A :: ('a,\ 'b)\ nba
   \mathbf{fix} \ a \ f
   show complement-succ A a (cs-abs\ f) = cs-abs 'complement-succ-1 A a f
   proof safe
     \mathbf{fix} \ g \ Q
     assume 1: (g, Q) \in complement\text{-}succ \ A \ a \ (cs\text{-}abs \ f)
     have 2: Q \subseteq dom \ g
       using 1 unfolding complement-succ-def lr-succ-def st-succ-def
       by (auto) (metis IntE cs-abs-rep cs-lr-dom cs-rep-st)
     have 3: cs-st f \subseteq dom (cs-lr f) unfolding cs-st-def by auto
     show (g, Q) \in cs\text{-}abs 'complement-succ-1 A a f
     proof
       show (g, Q) = cs\text{-}abs\ (cs\text{-}rep\ (g, Q)) using 2 by auto
       have cs\text{-rep }(g, Q) \in complement\text{-succ-1 } A \ a \ (cs\text{-rep }(cs\text{-}abs\ f))
         using complement-succ-1-rep 3 1 by this
       also have cs\text{-rep}(cs\text{-}abs f) = f by simp
       finally show cs-rep (g, Q) \in complement-succ-1 A a f by this
     qed
   next
     \mathbf{fix} \ q
     assume 1: g \in complement-succ-1 A a f
```

```
show cs-abs g \in complement-succ A a (cs-abs f) using complement-succ-1-abs
1 by this
    qed
  qed
  lemma complement-1-refine: (complement-1, complement) \in \langle Id, Id \rangle nba-rel \rightarrow
\langle Id, cs\text{-}rel \rangle \ nba\text{-}rel
  unfolding complement-1-def complement-def
  proof parametricity
    fix A B :: ('a, 'b) nba
    assume 1: (A, B) \in \langle Id, Id \rangle nba-rel
    have 2: (const (Some (2 * card (nodes B), False)) | 'initial B,
      const\ (Some\ (2*card\ (nodes\ B))) \mid `initial\ B,\ \{\}) \in cs\text{-rel}
      unfolding cs-lr-def cs-st-def in-br-conv by (force simp: restrict-map-def)
     show (complement-succ-1 A, complement-succ B) \in Id \rightarrow cs-rel \rightarrow (cs-rel)
set-rel
      using complement-succ-1-refine 1 by parametricity auto
    show (\{const\ (Some\ (2*card\ (nodes\ A),\ False)\}\ | \ 'initial\ A\},
      \{\mathit{const}\ (\mathit{Some}\ (2\ast\mathit{card}\ (\mathit{nodes}\ B)))\mid '\mathit{initial}\ B\}\times \{\{\}\})\in \langle\mathit{cs-rel}\rangle\ \mathit{set-rel}
      using 1 2 by simp parametricity
    show (\lambda f. cs\text{-st } f = \{\}, \lambda (f, P). P = \{\}) \in cs\text{-rel} \rightarrow bool\text{-rel by } (auto simp:
in-br-conv)
  \mathbf{qed}
5.2
         Phase 2
  definition ranks-2 :: ('label, 'state) nba \Rightarrow 'label \Rightarrow 'state items \Rightarrow 'state items
set where
    ranks-2 A a f \equiv \{g.
      dom \ g = \bigcup ((transition \ A \ a) \ `(dom \ f)) \land
      (\forall q \ l \ d. \ g \ q = Some \ (l, \ d) \longrightarrow
        l \leq \prod (fst 'Some - 'f 'pred A a q) \land
        (d \longleftrightarrow \bigsqcup (snd \cdot Some - f \cdot pred A \ a \ q) \land even \ l) \land l
        (accepting\ A\ q \longrightarrow even\ l))
  definition complement-succ-2 ::
    ('label, 'state) \ nba \Rightarrow 'label \Rightarrow 'state \ items \Rightarrow 'state \ items \ set \ \mathbf{where}
    complement-succ-2 A a \equiv ranks-2 A a \circ refresh-1
 definition complement-2 :: ('label, 'state) nba \Rightarrow ('label, 'state items) nba where
    complement-2 A \equiv nba
      (alphabet A)
      (\{const\ (Some\ (2*card\ (nodes\ A),\ False))\ |\ 'initial\ A\})
      (complement\text{-}succ\text{-}2\ A)
      (\lambda f. True \notin snd `ran f)
  lemma ranks-2-refine: ranks-2 = ranks-1
  proof (intro ext)
    fix A :: ('a, 'b) \ nba and a f
    show ranks-2 A a f = ranks-1 A a f
    proof safe
      \mathbf{fix} \ q
```

```
assume 1: q \in ranks-2 A a f
    have 2: dom \ g = \bigcup ((transition \ A \ a) \ `(dom \ f))  using 1 unfolding ranks-2-def
by auto
     have 3: q = Some(l, d) \Longrightarrow l \le \prod (fst \cdot Some - \cdot f \cdot pred A \ a \ q) for q \ l \ d
       using 1 unfolding ranks-2-def by auto
      have 4: g \ q = Some \ (l, \ d) \Longrightarrow d \longleftrightarrow \bigsqcup \ (snd \ `Some - `f \ `pred \ A \ a \ q) \ \land
even l for q l d
       using 1 unfolding ranks-2-def by auto
     have 5: q = Some(l, d) \Longrightarrow accepting A q \Longrightarrow even l for q l d
       using 1 unfolding ranks-2-def by auto
     show g \in ranks-1 \ A \ a \ f
     unfolding ranks-1-def
     proof (intro CollectI conjI ballI impI)
       show dom g = \bigcup ((transition \ A \ a) \cdot (dom \ f)) using 2 by this
     next
       \mathbf{fix} \ p \ q
       assume 10: p \in dom \ f \ q \in transition \ A \ a \ p
       obtain k c where 11: f p = Some(k, c) using 10(1) by auto
       have 12: q \in dom \ g \text{ using } 10 \ 2 \text{ by } auto
       obtain l d where 13: g q = Some (l, d) using 12 by auto
       have fst\ (the\ (g\ q))=l\ {\bf unfolding}\ 13\ {\bf by}\ simp
       also have ... \leq \prod (fst 'Some - 'f 'pred A a q) using 3 13 by this
       also have \dots \leq k
       proof (rule cInf-lower)
         show k \in fst 'Some - 'f' pred A a q using 11 10(2) by force
         show bdd-below (fst 'Some - 'f 'pred A a q) by simp
       also have \dots = fst \ (the \ (f \ p)) \ unfolding \ 11 \ by \ simp
       finally show fst (the (g \ q)) \leq fst (the (f \ p)) by this
     next
       \mathbf{fix} \ q
       assume 10: q \in dom \ g \ accepting \ A \ q
       show even (fst (the (g \ q))) using 10 5 by auto
       show cs-st g = \{q \in \bigcup ((transition \ A \ a) \ (cs-st \ f)). even (fst \ (the \ (g \ q)))\}
       proof
        show cs-st g \subseteq \{q \in \bigcup ((transition \ A \ a) \ `(cs-st \ f)). even (fst (the <math>(g \ q)))\}
           using 4 unfolding cs-st-def image-def vimage-def by auto metis+
        show \{q \in \bigcup ((transition \ A \ a) \ (cs-st \ f)). \ even (fst \ (the \ (g \ q)))\} \subseteq cs-st \ g
         proof safe
           \mathbf{fix} p q
           assume 10: even (fst (the (g \ q))) p \in cs-st f \ q \in transition \ A \ a \ p
           have 12: q \in dom \ g using 10 2 unfolding cs-st-def by auto
           show q \in cs-st g using 10 4 12 unfolding cs-st-def image-def by force
         qed
       qed
     ged
   next
     \mathbf{fix} \ g
```

```
assume 1: g \in ranks-1 \ A \ a \ f
    have 2: dom g = \bigcup ((transition A \ a) \cdot (dom f)) using 1 unfolding ranks-1-def
      have 3: \bigwedge p \ q. p \in dom \ f \Longrightarrow q \in transition \ A \ a \ p \Longrightarrow fst \ (the \ (q \ q)) \leq fst
(the (f p))
        using 1 unfolding ranks-1-def by auto
      have 4: \land q. \ q \in dom \ g \Longrightarrow accepting \ A \ q \Longrightarrow even \ (fst \ (the \ (g \ q)))
        using 1 unfolding ranks-1-def by auto
     have 5: cs-st g = \{q \in \bigcup ((transition \ A \ a) \ `(cs-st f)). even (fst \ (the \ (g \ q)))\}
        using 1 unfolding ranks-1-def by auto
      show g \in ranks-2 A \ a f
        unfolding ranks-2-def
      proof (intro CollectI conjI allI impI)
        show dom g = \bigcup ((transition \ A \ a) \cdot (dom \ f)) using 2 by this
      next
        \mathbf{fix} \ q \ l \ d
        assume 10: g q = Some (l, d)
        have 11: q \in dom \ g \text{ using } 10 \text{ by } auto
        show l \leq \prod (fst 'Some - 'f' pred A a q)
        proof (rule cInf-greatest)
          show fst 'Some - 'f 'pred A a q \neq \{\} using 11 unfolding 2 image-def
vimage-def by force
          show \bigwedge x. \ x \in fst 'Some -'f' pred A \ a \ q \Longrightarrow l \le x
            using 3 10 by (auto) (metis domI fst-conv option.sel)
        have d \longleftrightarrow q \in cs\text{-}st \ g \text{ unfolding } cs\text{-}st\text{-}def \text{ by } (force \ simp: 10)
        also have cs-st g = \{q \in \bigcup ((transition \ A \ a) \ (cs-st \ f)). \ even (fst \ (the \ (g \ f))) \}
q))) using 5 by this
        also have q \in ... \longleftrightarrow (\exists x \in cs\text{-st } f. \ q \in transition \ A \ a \ x) \land even \ l
          unfolding mem-Collect-eq 10 by simp
        also have ... \longleftrightarrow \bigsqcup (snd \cdot Some - f \cdot pred \ A \ a \ q) \land even \ l
          unfolding cs-st-def image-def vimage-def by auto metis+
        finally show d \longleftrightarrow \bigsqcup (snd \cdot Some - f \cdot pred A \ a \ q) \land even \ l \ by \ this
        show accepting A \neq proper = q + q \implies even \ l \ using \neq 10 \ 11 \ by force
      qed
    qed
  \mathbf{qed}
  lemma complement-2-refine: (complement-2, complement-1) \in \langle Id, Id \rangle nba-rel
\rightarrow \langle Id, Id \rangle \ nba-rel
    unfolding complement-2-def complement-1-def complement-succ-2-def comple-
ment-succ-1-def
    unfolding ranks-2-refine cs-st-def image-def vimage-def ran-def by auto
5.3
        Phase 3
```

bounds-3 A a $f \equiv \lambda$ q. let S = Some - f' pred A a q in

definition bounds-3 :: ('label, 'state) $nba \Rightarrow 'label \Rightarrow 'state items \Rightarrow 'state items$

where

```
if S = \{\} then None else Some ( \bigcap (fst 'S), \bigcup (snd 'S))
     definition items-3 :: ('label, 'state) nba \Rightarrow 'state \Rightarrow item \Rightarrow item set where
         items-3 A p \equiv \lambda (k, c). \{(l, c \land even l) | l. l \leq k \land (accepting A p \longrightarrow even l)\}
      definition qet-3 :: ('label, 'state) \ nba \Rightarrow 'state \ items \Rightarrow ('state \rightarrow item \ set)
          get-3 A f \equiv \lambda p. map-option (items-3 A p) (f p)
     definition complement-succ-3 ::
         ('label, 'state) nba \Rightarrow 'label \Rightarrow 'state items \Rightarrow 'state items set where
          complement-succ-3 A a \equiv expand-map \circ qet-3 A \circ bounds-3 A a \circ refresh-1
   definition complement-3 :: ('label, 'state) nba \Rightarrow ('label, 'state items) nba where
          complement-3 A \equiv nba
              (alphabet A)
              (\{(Some \circ (const \ (2 * card \ (nodes \ A), \ False))) \mid `initial \ A\})
              (complement\text{-}succ\text{-}3\ A)
              (\lambda f. \forall (p, k, c) \in map\text{-}to\text{-}set f. \neg c)
   lemma bounds-3-dom[simp]: dom (bounds-3 A a f) = \bigcup (transition A a) '(dom
f))
         unfolding bounds-3-def Let-def dom-def by (force split: if-splits)
  lemma items-3-nonempty[intro!, simp]: items-3 A p s \neq \{\} unfolding items-3-def
by auto
    lemma items-3-finite[intro!, simp]: finite (items-3 A p s)
         unfolding items-3-def by (auto split: prod.splits)
   lemma qet-3-dom[simp]: dom(qet-3 Af) = dom f unfolding qet-3-def by (auto
split: bind-splits)
     lemma get-3-finite[intro, simp]: S \in ran (get-3 \ A \ f) \Longrightarrow finite S
         unfolding get-3-def ran-def by auto
    lemma get-3-update[simp]: get-3 A (f (p \mapsto s)) = (get-3 A f) (p \mapsto items-3 A p
s)
         unfolding get-3-def by auto
      lemma expand-map-get-bounds-3: expand-map \circ get-3 A \circ bounds-3 A =
ranks-2 A a
    proof (intro ext set-eqI, unfold comp-apply)
         \mathbf{fix} f q
        have 1: (\forall x \ S \ y. \ get-3 \ A \ (bounds-3 \ A \ a \ f) \ x = Some \ S \longrightarrow g \ x = Some \ y \longrightarrow
y \in S) \longleftrightarrow
              (\forall q \ S \ l \ d. \ get-3 \ A \ (bounds-3 \ A \ a \ f) \ q = Some \ S \longrightarrow g \ q = Some \ (l, \ d) \longrightarrow
(l, d) \in S
             by auto
          have 2: (\forall S. get-3 \ A \ (bounds-3 \ A \ a \ f) \ q = Some \ S \longrightarrow g \ q = Some \ (l, \ d)
\longrightarrow (l, d) \in S) \longleftrightarrow
              (g \ q = Some \ (l, \ d) \longrightarrow l \leq \prod (fst \ (Some - f \ pred \ A \ a \ q)) \land 
               (d \longleftrightarrow \bigsqcup (snd \cdot (Some - f \cdot pred \ A \ a \ q)) \land even \ l) \land (accepting \ A \ q \longrightarrow l) \land (acceptin
even \ l))
              if 3: dom \ g = \bigcup ((transition \ A \ a) \ (dom \ f)) for g \ l \ d
         proof -
```

```
have 4: q \notin dom \ g \text{ if } Some - f \text{ '} pred \ A \ a \ q = \{\} \text{ unfolding } 3 \text{ using } that
by force
      show ?thesis unfolding get-3-def items-3-def bounds-3-def Let-def using 4
by auto
   ged
   show g \in expand\text{-}map (get\text{-}3 \ A \ (bounds\text{-}3 \ A \ a \ f)) \longleftrightarrow g \in ranks\text{-}2 \ A \ a \ f
     unfolding expand-map-alt-def ranks-2-def mem-Collect-eq
     unfolding get-3-dom bounds-3-dom 1 using 2 by blast
  qed
 lemma complement-succ-3-refine: complement-succ-3 = complement-succ-2
  unfolding complement-succ-3-def complement-succ-2-def expand-map-get-bounds-3
by rule
  lemma complement-initial-3-refine: {const (Some (2 * card (nodes A), False))
|' initial A| =
    \{(Some \circ (const \ (2 * card \ (nodes \ A), False))) \mid `initial \ A\}
   unfolding comp-apply by rule
  lemma complement-accepting-3-refine: True \notin snd 'ran f \longleftrightarrow (\forall (p, k, c) \in
map-to-set \ f. \ \neg \ c)
   unfolding map-to-set-def ran-def by auto
  lemma complement-3-refine: (complement-3, complement-2) \in \langle Id, Id \rangle nba-rel
\rightarrow \langle Id, Id \rangle \ nba-rel
    unfolding complement-3-def complement-2-def
  unfolding complement-succ-3-refine complement-initial-3-refine complement-accepting-3-refine
   by auto
5.4
        Phase 4
 definition items-4 :: ('label, 'state) nba \Rightarrow 'state \Rightarrow item \Rightarrow item set where
   items-4 A p \equiv \lambda (k, c). \{(l, c \land even \ l) \mid l. \ k \leq Suc \ l \land l \leq k \land (accepting \ A \ p)\}
   \rightarrow even \ l)
  definition get-4 :: ('label, 'state) nba \Rightarrow 'state items \Rightarrow ('state \rightarrow item set)
    get-4 A f \equiv \lambda p. map-option (items-4 A p) (f p)
  definition complement-succ-4 ::
   ('label, 'state) nba \Rightarrow 'label \Rightarrow 'state \ items \Rightarrow 'state \ items \ set \ where
    complement-succ-4 A a \equiv expand-map \circ get-4 A \circ bounds-3 A a \circ refresh-1
 definition complement-4 :: ('label, 'state) nba \Rightarrow ('label, 'state items) nba where
    complement-4 A \equiv nba
      (alphabet A)
     (\{(Some \circ (const \ (2 * card \ (nodes \ A), False))) \mid `initial \ A\})
     (complement\text{-}succ\text{-}4\ A)
     (\lambda f. \forall (p, k, c) \in map\text{-}to\text{-}set f. \neg c)
 lemma get-4-dom[simp]: dom(get-4 A f) = dom f unfolding get-4-def by (auto
split: bind-splits)
```

definition R :: 'state items rel where

```
R \equiv \{(f, g).
     dom f = dom g \land
     (\forall p \in dom f. fst (the (f p)) \leq fst (the (g p))) \land
     (\forall p \in dom \ f. \ snd \ (the \ (f \ p)) \longleftrightarrow snd \ (the \ (g \ p)))
  lemma bounds-R:
   assumes (f, g) \in R
   assumes bounds-3 A a (refresh-1 f) p = Some(n, e)
   assumes bounds-3 A a (refresh-1 g) p = Some(k, c)
   shows n \leq k \ e \longleftrightarrow c
 proof -
   have 1:
     dom f = dom g
     \forall p \in dom \ f. \ fst \ (the \ (f \ p)) \leq fst \ (the \ (g \ p))
     \forall p \in dom f. \ snd \ (the \ (f \ p)) \longleftrightarrow snd \ (the \ (g \ p))
     using assms(1) unfolding R-def by auto
   have n = \prod (fst ' (Some - 'refresh-1 f 'pred A a p))
    using assms(2) unfolding bounds-3-def by (auto simp: Let-def split: if-splits)
   also have fst 'Some - 'refresh-1 f' pred A a p = fst 'Some - 'f' pred A a p
   proof
     show fst 'Some - 'refresh-1 f 'pred A a p \subseteq fst 'Some - 'f 'pred A a p
       unfolding refresh-1-def image-def
       by (auto simp: map-option-case split: option.split) (force)
     \mathbf{show} \ \mathit{fst} \ \mathsf{`Some} \ -\mathsf{`f'} \ \mathit{pred} \ \mathit{A} \ \mathit{a} \ \mathit{p} \subseteq \mathit{fst'} \ \mathsf{`Some} \ -\mathsf{`refresh-1} \ \mathit{f'} \ \mathit{pred} \ \mathit{A} \ \mathit{a} \ \mathit{p}
       unfolding refresh-1-def image-def
      by (auto simp: map-option-case split: option.split) (metis fst-conv option.sel)
   also have ... = fst 'Some -' f '(pred A a p \cap dom f)
     unfolding dom-def image-def Int-def by auto metis
   also have ... = fst 'the 'f' (pred\ A\ a\ p\cap dom\ f)
     unfolding dom-def by force
   also have ... = (fst \circ the \circ f) ' (pred\ A\ a\ p \cap dom\ f) by force
   also have \prod ((fst \circ the \circ f) \cdot (pred \ A \ a \ p \cap dom \ f)) \leq
     \prod ((fst \circ the \circ g) \cdot (pred \ A \ a \ p \cap dom \ g))
   proof (rule cINF-mono)
     show pred A a p \cap dom \ q \neq \{\}
       using assms(2) 1(1) unfolding bounds-3-def refresh-1-def
       by (auto simp: Let-def split: if-splits) (force+)
     show bdd-below ((fst \circ the \circ f) ' (pred\ A\ a\ p \cap dom\ f)) by rule
     show \exists n \in pred \ A \ a \ p \cap dom \ f. \ (fst \circ the \circ f) \ n \leq (fst \circ the \circ g) \ m
       if m \in pred \ A \ a \ p \cap dom \ g for m using 1 that by auto
   also have (fst \circ the \circ g) '(pred\ A\ a\ p \cap dom\ g) = fst 'the 'g' (pred A\ a\ p \cap dom\ g)
dom g) by force
   also have ... = fst 'Some -' g '(pred\ A\ a\ p\cap dom\ g)
     unfolding dom-def by force
   also have ... = fst 'Some - 'g 'pred A a p
     unfolding dom-def image-def Int-def by auto metis
   also have ... = fst 'Some - 'refresh-1 g' pred A a p
```

```
proof
          show fst 'Some -' g 'pred A a p \subseteq fst 'Some -' refresh-1 g 'pred A a p
             unfolding refresh-1-def image-def
           by (auto simp: map-option-case split: option.split) (metis fst-conv option.sel)
          show fst 'Some - 'refresh-1 g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'Some - 'g 'pred A a p \subseteq fst 'pred A a p \subseteq fst
              unfolding refresh-1-def image-def
             by (auto simp: map-option-case split: option.split) (force)
      also have \prod (fst '(Some - 'refresh-1 g 'pred A a p)) = k
       using assms(3) unfolding bounds-3-def by (auto simp: Let-def split: if-splits)
      finally show n \leq k by this
      have e \longleftrightarrow ||(snd \cdot (Some - \cdot refresh-1 \ f \cdot pred \ A \ a \ p))||
        using assms(2) unfolding bounds-3-def by (auto simp: Let-def split: if-splits)
      also have snd 'Some - 'refresh-1 f' pred A a p = snd 'Some - 'refresh-1 f'
(pred\ A\ a\ p\cap dom\ (refresh-1\ f))
          unfolding dom-def image-def Int-def by auto metis
      also have ... = snd ' the ' refresh-1 f ' (pred A \ a \ p \cap dom \ (refresh-1 f))
          unfolding dom-def by force
       also have ... = (snd \circ the \circ refresh-1 f) ' (pred A \ a \ p \cap dom \ (refresh-1 f))
by force
      also have ... = (snd \circ the \circ refresh-1 \ g) \cdot (pred \ A \ a \ p \cap dom \ (refresh-1 \ g))
      proof (rule image-cong)
          show pred\ A\ a\ p\cap dom\ (refresh-1\ f)=pred\ A\ a\ p\cap dom\ (refresh-1\ g)
              unfolding refresh-1-dom\ 1(1) by rule
          show (snd \circ the \circ refresh-1 f) q \longleftrightarrow (snd \circ the \circ refresh-1 g) q
             if 2: q \in pred A \ a \ p \cap dom \ (refresh-1 \ g) for q
              have 3: \forall x \in ran \ f. \ \neg \ snd \ x \Longrightarrow (n, True) \in ran \ g \Longrightarrow g \ g = Some \ (k, ran \ f. \ \neg \ snd \ x \Longrightarrow f. \ \neg \ snd \ x \Longrightarrow f.
c) \Longrightarrow c \text{ for } n \ k \ c
                using 1(1, 3) unfolding dom-def ran-def
                 by (auto dest!: Collect-inj) (metis option.sel snd-conv)
             have 4: g \ q = Some \ (n, True) \Longrightarrow f \ q = Some \ (k, c) \Longrightarrow c \ \mathbf{for} \ n \ k \ c
                 using 1(3) unfolding dom-def by force
             have 5: \forall x \in ran \ g. \ \neg \ snd \ x \Longrightarrow (k, \ True) \in ran \ f \Longrightarrow False \ \textbf{for} \ k
                 using 1(1, 3) unfolding dom-def ran-def
                 by (auto dest!: Collect-inj) (metis option.sel snd-conv)
             show (snd \circ the \circ refresh-1 f) q \Longrightarrow (snd \circ the \circ refresh-1 g) q
                 using 1(1, 3) 2 3 unfolding refresh-1-def by (force split: if-splits)
             show (snd \circ the \circ refresh-1 \ g) \ q \Longrightarrow (snd \circ the \circ refresh-1 \ f) \ q
                 using 1(1, 3) 2 4 5 unfolding refresh-1-def
                 by (auto simp: map-option-case split: option.splits if-splits) (force+)
          qed
      qed
       also have ... = snd ' the 'refresh-1 g ' (pred\ A\ a\ p\cap dom\ (refresh-1\ g)) by
force
      also have ... = snd 'Some - 'refresh-1 g '(pred\ A\ a\ p\cap dom\ (refresh-1\ g))
          unfolding dom-def by force
      also have ... = snd 'Some - 'refresh-1 g 'pred A a p
          unfolding dom-def image-def Int-def by auto metis
```

```
also have | (snd \cdot (Some - 'refresh-1 g \cdot pred A a p)) \longleftrightarrow c
    using assms(3) unfolding bounds-3-def by (auto simp: Let-def split: if-splits)
   finally show e \longleftrightarrow c by this
  qed
 lemma complement-4-language-1: language (complement-3 A) \subseteq language (complement-4
A)
  proof (rule simulation-language)
   show alphabet (complement-3 A) \subseteq alphabet (complement-4 A)
     unfolding complement-3-def complement-4-def by simp
   show \exists q \in initial (complement-4 A). (p, q) \in R \text{ if } p \in initial (complement-3)
A) for p
     using that unfolding complement-3-def complement-4-def R-def by simp
   show \exists g' \in transition (complement-4 A) a g. <math>(f', g') \in R
     if f' \in transition (complement-3 A) \ a f \ (f, g) \in R
     for a f f' g
   proof -
     have 1: f' \in expand-map (get-3 \land (bounds-3 \land a (refresh-1 f)))
      using that(1) unfolding complement-3-def complement-succ-3-def by auto
     have 2:
       dom f = dom g
       \forall p \in dom f. fst (the (f p)) \leq fst (the (g p))
       \forall p \in dom \ f. \ snd \ (the \ (f \ p)) \longleftrightarrow snd \ (the \ (g \ p))
       using that(2) unfolding R-def by auto
       have dom f' = dom (get-3 \ A (bounds-3 \ A \ a (refresh-1 \ f))) using ex-
pand-map-dom 1 by this
     also have \dots = dom \ (bounds-3 \ A \ a \ (refresh-1 \ f)) by simp
     finally have 3: dom f' = dom (bounds-3 \ A \ a (refresh-1 \ f)) by this
     define g' where g' p \equiv do
       (k, c) \leftarrow bounds-3 A \ a \ (refresh-1 \ g) \ p;
       (l, d) \leftarrow f' p;
       Some (if even k = even l then k else k - 1, d)
     } for p
     have 4: g' p = do
      kc \leftarrow bounds-3 \ A \ a \ (refresh-1 \ g) \ p;
       ld \leftarrow f' p;
       Some (if even (fst kc) = even (fst ld) then fst kc else fst kc - 1, snd ld)
     \} for p unfolding g'-def case-prod-beta by rule
   have dom\ g' = dom\ (bounds-3\ A\ a\ (refresh-1\ g)) \cap dom\ f'\ using\ 4\ bind-eq-Some-conv
by fastforce
     also have ... = dom f' using 2 3 by simp
     finally have 5: dom g' = dom f' by this
     have 6: (l, d) \in items-3 \ A \ p \ (k, c)
      if bounds-3 A a (refresh-1 f) p = Some(k, c) f' p = Some(l, d) for p k c l
       using 1 that unfolding expand-map-alt-def get-3-def by blast
     show ?thesis
```

```
unfolding complement-4-def nba.sel complement-succ-4-def comp-apply
     proof
       show (f', g') \in R
       unfolding R-def mem-Collect-eq prod.case
       proof (intro conjI ballI)
         show dom f' = dom g' using 5 by rule
       \mathbf{next}
         \mathbf{fix} \ p
         assume 10: p \in dom f'
        have 11: p \in dom \ (bounds-3 \ A \ a \ (refresh-1 \ g)) using 2(1) \ 3 \ 10 by simp
        obtain k c where 12: bounds-3 A a (refresh-1 g) p = Some(k, c) using
         obtain l d where 13: f' p = Some(l, d) using 10 by auto
        obtain n \in \text{where } 14: bounds-3 \ A \ a \ (refresh-1 \ f) \ p = Some \ (n, e) \ using
10 3 by fast
         have 15: (l, d) \in items-3 \ A \ p \ (n, e) using 6 14 13 by this
         have 16: n \le k using bounds-R(1) that(2) 14 12 by this
         have 17: l \le k using 15 16 unfolding items-3-def by simp
         have 18: even k \longleftrightarrow odd \ l \Longrightarrow l \le k \Longrightarrow l \le k-1 by presburger
         have 19: e \longleftrightarrow c using bounds-R(2) that (2) 14 12 by this
         show fst (the (f'p)) \leq fst (the (g'p)) using 17 18 unfolding 4 12 13
by simp
         show snd\ (the\ (f'\ p)) \longleftrightarrow snd\ (the\ (g'\ p)) using 19 unfolding 4 12 13
\mathbf{by} simp
       qed
       show g' \in expand-map (get-4 \land (bounds-3 \land a (refresh-1 g)))
       unfolding expand-map-alt-def mem-Collect-eq
       proof (intro conjI allI impI)
        show dom g' = dom (get-4 \ A (bounds-3 \ A \ a (refresh-1 \ g))) using 2(1) \ 3
5 by simp
         \mathbf{fix} \ p \ S \ xy
         assume 10: get-4 A (bounds-3 A a (refresh-1 g)) p = Some S
         assume 11: g' p = Some xy
         obtain k c where 12: bounds-3 A a (refresh-1 g) p = Some (k, c) S =
items-4 A p (k, c)
          using 10 unfolding qet-4-def by auto
        obtain l d where 13: f' p = Some (l, d) xy = (if even <math>k \longleftrightarrow even \ l then
          using 11 12 unfolding g'-def by (auto split: bind-splits)
        obtain n \in \text{where } 14: bounds-3 \land a \text{ (refresh-1 f) } p = Some (n, e) \text{ using } n \in \mathbb{R}
13(1) 3 by fast
         have 15: (l, d) \in items-3 \ A \ p \ (n, e) using 6 14 13(1) by this
         have 16: n \leq k using bounds-R(1) that(2) 14 12(1) by this
         have 17: e \longleftrightarrow c using bounds-R(2) that (2) 14 12(1) by this
      show xy \in S using 15 16 17 unfolding 12(2) 13(2) items-3-def items-4-def
by auto
       qed
     qed
   qed
```

```
show \bigwedge p q. (p, q) \in R \implies accepting (complement-3 A) p \implies accepting
(complement-4 A) q
     unfolding complement-3-def complement-4-def R-def map-to-set-def
     by (auto) (metis domIff eq-snd-iff option.exhaust-sel option.sel)
 ged
 lemma complement-4-less: complement-4 A \leq complement-3 A
 unfolding less-eq-nba-def
 unfolding complement-4-def complement-3-def nba.sel
 unfolding complement-succ-4-def complement-succ-3-def
 proof (safe intro!: le-funI, unfold comp-apply)
   fix a f g
   assume g \in expand\text{-}map (get\text{-}4 \land (bounds\text{-}3 \land a (refresh\text{-}1 f)))
   then show g \in expand-map (get-3 \ A \ (bounds-3 \ A \ a \ (refresh-1 \ f)))
     unfolding get-4-def get-3-def items-4-def items-3-def expand-map-alt-def by
blast
 qed
 lemma complement-4-language-2: language (complement-4 A) \subseteq language (complement-3
A)
   using language-mono complement-4-less by (auto dest: monoD)
 lemma complement-4-language: language (complement-3 A) = language (complement-4
   using complement-4-language-1 complement-4-language-2 by blast
 lemma complement-4-finite[simp]:
   assumes finite (nodes A)
   shows finite (nodes (complement-4A))
 proof -
   have (nodes (complement-3 A), nodes (complement-2 A)) \in \langle Id \rangle set-rel
     using complement-3-refine by parametricity auto
   also have (nodes (complement-2 A), nodes (complement-1 A)) \in \langle Id \rangle set-rel
     using complement-2-refine by parametricity auto
   also have (nodes (complement-1 A), nodes (complement A)) \in \langle cs\text{-rel} \rangle set-rel
     using complement-1-refine by parametricity auto
   finally have 1: (nodes (complement-3 A), nodes (complement A)) \in \langle cs\text{-rel} \rangle
set-rel by simp
   have 2: finite (nodes (complement A)) using complement-finite assms(1) by
this
   have 3: finite (nodes (complement-3 A))
     using finite-set-rel-transfer-back 1 cs-rel-inv-single-valued 2 by this
   have 4: nodes (complement-4A) \subseteq nodes (complement-3A)
     using nodes-mono complement-4-less by (auto dest: monoD)
   show finite (nodes (complement-4 A)) using finite-subset 4 3 by this
 qed
 lemma complement-4-correct:
   assumes finite (nodes A)
   shows language (complement-4A) = streams (alphabet A) - language A
   have language (complement-4 A) = language (complement-3 A)
     using complement-4-language by rule
```

```
also have (language (complement-3 A), language (complement-2 A)) \in \langle\langle Id\rangle\rangle
stream-rel \rangle set-rel
     using complement-3-refine by parametricity auto
    also have (language (complement-2 A), language (complement-1 A)) \in \langle \langle Id \rangle \rangle
stream-rel set-rel
     using complement-2-refine by parametricity auto
     also have (language (complement-1 A), language (complement A)) \in \langle\langle Id\rangle\rangle
stream-rel\rangle set-rel
     using complement-1-refine by parametricity auto
   also have language (complement A) = streams (alphabet A) - language A
     using complement-language assms(1) by this
    finally show language (complement-4A) = streams (alphabet A) - language
A by simp
 qed
5.5
        Phase 5
  definition refresh-5 :: 'state items \Rightarrow 'state items nres where
   refresh-5 f \equiv if \exists (p, k, c) \in map\text{-to-set } f. c
     then RETURN f
     else\ do
       ASSUME (finite (dom f));
       FOREACH (map-to-set f) (\lambda (p, k, c) m. do
         ASSERT (p \notin dom m);
         RETURN \ (m \ (p \mapsto (k, True)))
         Map.empty
 definition merge-5 :: item \Rightarrow item option \Rightarrow item where
   merge-5 \equiv \lambda \ (k, c). \ \lambda \ None \Rightarrow (k, c) \mid Some \ (l, d) \Rightarrow (k \sqcap l, c \sqcup d)
 definition bounds-5 :: ('label, 'state) nba \Rightarrow 'label \Rightarrow 'state items \Rightarrow 'state items
nres where
   bounds-5 \ A \ a \ f \equiv do
     ASSUME (finite (dom f));
     ASSUME (\forall p. finite (transition A a p));
     FOREACH (map-to-set f) (\lambda (p, s) m.
       FOREACH (transition A a p) (\lambda q f).
         RETURN (f (q \mapsto merge-5 \ s \ (f \ q))))
       m)
     Map.empty
 definition items-5 :: ('label, 'state) nba \Rightarrow 'state \Rightarrow item \Rightarrow item set where
   items-5 A p \equiv \lambda (k, c). do
      let values = if accepting A p then Set.filter even \{k-1...k\} else \{k-1...k\}
```

k};

```
let item = \lambda l. (l, c \wedge even\ l);
               item \ `values"
      definition get-5 :: ('label, 'state) nba \Rightarrow 'state items \Rightarrow ('state \rightarrow item set)
           get-5 A f \equiv \lambda p. map-option (items-5 A p) (f p)
     definition expand-5 :: ('a \rightarrow 'b \ set) \Rightarrow ('a \rightarrow 'b) \ set \ nres \ where
           expand-5 f \equiv FOREACH \ (map-to-set \ f) \ (\lambda \ (x, \ S) \ X. \ do \ \{
                    ASSERT \ (\forall \ g \in X. \ x \notin dom \ g);
                   ASSERT (\forall a \in S. \ \forall b \in S. \ a \neq b \longrightarrow (\lambda y. \ (\lambda g. \ g \ (x \mapsto y)) \ `X) \ a \cap (\lambda y. \ (\lambda g. \ g \ (x \mapsto y)) \ `X) \ a \cap (\lambda y. \ (\lambda g. \ g \ (x \mapsto y)) \ `X]
y. (\lambda \ g. \ g \ (x \mapsto y)) \ `X) \ b = \{\});
                    RETURN (\bigcup y \in S. (\lambda g. g (x \mapsto y)) 'X)
               ) \{Map.empty\}
     \textbf{definition} \ \textit{complement-succ-5} \ :: \\
          ('label, 'state) nba \Rightarrow 'label \Rightarrow 'state \ items \Rightarrow 'state \ items \ set \ nres \ where
           complement-succ-5 A a f \equiv do
              f \leftarrow refresh-5 f;
              f \leftarrow bounds-5 \ A \ a \ f;
              ASSUME (finite (dom f));
               expand-5 (get-5 A f)
          }
     lemma bounds-3-empty: bounds-3 A a Map.empty = Map.empty
           unfolding bounds-3-def Let-def by auto
     lemma bounds-3-update: bounds-3 A a (f(p \mapsto s)) =
             override-on (bounds-3 A a f) (Some \circ merge-5 s \circ bounds-3 A a (f (p :=
None))) (transition A a p)
     proof
          note fun-upd-image[simp]
          show bounds-3 A a (f(p \mapsto s)) q =
                  override-on (bounds-3 A a f) (Some \circ merge-5 s \circ bounds-3 A a (f (p :=
None))) (transition A a p) q
          proof (cases \ q \in transition \ A \ a \ p)
               case True
               define S where S \equiv Some - f (pred A a q - \{p\})
                  have 1: Some - f(p := Some s) for f(p := Some s
unfolding S-def by auto
               have 2: Some - f(p := None) for f(p := None) f
                have bounds-3 A a (f (p \mapsto s)) q = Some ( (fst '(insert s S)), (snd 's))
(insert \ s \ S)))
                    unfolding bounds-3-def 1 by simp
               also have ... = Some (merge-5 s (bounds-3 A a (f(p := None)) q))
               unfolding 2 bounds-3-def merge-5-def by (cases s) (simp-all add: cInf-insert)
              also have ... = override-on (bounds-3 A a f) (Some \circ merge-5 s \circ bounds-3
A \ a \ (f \ (p := None)))
                     (transition \ A \ a \ p) \ q \ using \ True \ by \ simp
               finally show ?thesis by this
```

```
next
      case False
      then have pred\ A\ a\ q\cap \{x.\ x\neq p\}=pred\ A\ a\ q
      with False show ?thesis by (simp add: bounds-3-def)
    ged
  qed
  lemma refresh-5-refine: (refresh-5, \lambda f. RETURN (refresh-1 f)) \in Id \rightarrow \langle Id\rangle
nres-rel
  proof safe
    \mathbf{fix}\ f :: 'a \Rightarrow item\ option
    have 1: (\exists (p, k, c) \in map\text{-}to\text{-}set f. c) \longleftrightarrow True \in snd `ran f
      unfolding image-def map-to-set-def ran-def by force
    show (refresh-5 f, RETURN (refresh-1 f)) \in \langle Id \rangle nres-rel
      unfolding refresh-5-def refresh-1-def 1
      by (refine-vcg FOREACH-rule-map-eq[where X = \lambda m. map-option (apsnd
\top) \circ m]) (auto)
  qed
  lemma bounds-5-refine: (bounds-5 A a, \lambda f. RETURN (bounds-3 A a f)) \in Id
\rightarrow \langle Id \rangle \ nres-rel
    unfolding bounds-5-def by
    (refine-vcg\ FOREACH-rule-map-eq[\mathbf{where}\ X=bounds-3\ A\ a]\ FOREACH-rule-insert-eq)
      (auto simp: override-on-insert bounds-3-empty bounds-3-update)
  lemma items-5-refine: items-5 = items-4
    unfolding items-5-def items-4-def by (intro ext) (auto split: if-splits)
  lemma get-5-refine: get-5 = get-4
    unfolding get-5-def get-4-def items-5-refine by rule
  lemma expand-5-refine: (expand-5 f, ASSERT (finite (dom f)) \gg RETURN
(expand-map f)) \in \langle Id \rangle nres-rel
    unfolding expand-5-def
    by (refine-vcg\ FOREACH-rule-map-eq[\mathbf{where}\ X=expand-map])\ (auto\ dest!:
expand-map-dom map-upd-eqD1)
  lemma complement-succ-5-refine: (complement-succ-5, RETURN ooo comple-
ment-succ-4) <math>\in
    Id \rightarrow Id \rightarrow Id \rightarrow \langle Id \rangle \ nres-rel
  {\bf unfolding}\ complement\text{-}succ\text{-}5\text{-}def\ complement\text{-}succ\text{-}4\text{-}def\ get\text{-}5\text{-}refine\ comp\text{-}apply
    by (refine-vcg vcg1[OF refresh-5-refine] vcg1[OF bounds-5-refine] vcg0[OF ex-
pand-5-refine]) (auto)
5.6
        Phase 6
 \textbf{definition} \ \textit{expand-map-get-6} \ :: (\textit{'label}, \textit{'state}) \ \textit{nba} \Rightarrow \textit{'state} \ \textit{items} \Rightarrow \textit{'state} \ \textit{items}
set nres where
    expand-map-get-6 A f \equiv FOREACH \ (map-to-set \ f) \ (\lambda \ (k, \ v) \ X. \ do \ \{
      ASSERT \ (\forall \ g \in X. \ k \notin dom \ g);
      ASSERT (\forall a \in (items-5 \ A \ k \ v). \ \forall b \in (items-5 \ A \ k \ v). \ a \neq b \longrightarrow (\lambda \ y. \ (\lambda \ b))
g. g (k \mapsto y) 'X) a \cap (\lambda y. (\lambda g. g (k \mapsto y)) 'X) b = \{\}\};
```

```
RETURN (\bigcup y \in items-5 \ A \ k \ v. \ (\lambda \ g. \ g \ (k \mapsto y)) \ `X)
     ) \{Map.empty\}
 lemma expand-map-get-6-refine: (expand-map-get-6, expand-5 \circ \circ get-5) \in Id \rightarrow
Id \rightarrow \langle Id \rangle \ nres-rel
   unfolding expand-map-get-6-def expand-5-def get-5-def by (auto intro: FORE-
ACH-rule-map-map[param-fo])
  definition complement-succ-6 ::
    ('label, 'state) \ nba \Rightarrow 'label \Rightarrow 'state \ items \Rightarrow 'state \ items \ set \ nres \ where
    complement-succ-6 A a f \equiv do
     f \leftarrow refresh-5 f;
     f \leftarrow bounds-5 \ A \ a \ f;
     ASSUME (finite (dom f));
     expand-map-get-6 A f
  lemma complement-succ-6-refine:
   (complement\text{-}succ\text{-}6, complement\text{-}succ\text{-}5) \in Id \rightarrow Id \rightarrow Id \rightarrow Id \rightarrow Id) nres-rel
   unfolding complement-succ-6-def complement-succ-5-def
   by (refine-vcg vcg2[OF expand-map-get-6-refine]) (auto intro: refine-IdI)
5.7
        Phase 7
  interpretation autoref-syn by this
  context
   fixes fi f
   assumes f[autoref-rules]: (fi, f) \in state-rel
  begin
   private lemma [simp]: finite (dom f)
     using list-map-rel-finite fi unfolding finite-map-rel-def by force
   schematic-goal refresh-7: (?f :: ?'a, refresh-5 f) \in ?R
     unfolding refresh-5-def by (autoref-monadic (plain))
  end
  concrete-definition refresh-7 uses refresh-7
  lemma refresh-7-refine: (\lambda f. RETURN (refresh-7 f), refresh-5) \in state-rel \rightarrow
\langle state\text{-}rel \rangle nres\text{-}rel
   using refresh-7.refine by fast
  context
   \mathbf{fixes}\ A::('label,\ nat)\ nba
   fixes succi a fi f
```

```
assumes succi[autoref-rules]: (succi, transition A a) \in nat-rel \rightarrow \langle nat-rel \rangle
list\text{-}set\text{-}rel
    assumes f[autoref-rules]: (fi, f) \in state-rel
  begin
    private lemma [simp]: finite (transition A a p)
      \mathbf{using}\ \mathit{list-set-rel-finite}\ \mathit{succi}[\mathit{param-fo}]\ \mathbf{unfolding}\ \mathit{finite-set-rel-def}\ \mathbf{by}\ \mathit{blast}
    private lemma [simp]: finite (dom f) using fi by force
   private lemma [autoref-op-pat]: transition A \ a \equiv OP \ (transition \ A \ a) by simp
    private lemma [autoref-rules]: (min, min) \in nat\text{-rel} \rightarrow nat\text{-rel} \rightarrow nat\text{-rel} by
simp
    schematic-goal bounds-7:
      notes ty-REL[where R = \langle nat\text{-rel}, item\text{-rel} \rangle dflt-ahm-rel, autoref-tyrel]
      shows (?f :: ?'a, bounds-5 \ A \ a \ f) \in ?R
    unfolding bounds-5-def merge-5-def sup-bool-def inf-nat-def by (autoref-monadic
(plain)
  end
  concrete-definition bounds-7 uses bounds-7
 lemma bounds-7-refine: (si, transition A a) \in nat\text{-rel} \rightarrow \langle nat\text{-rel} \rangle \ list\text{-set-rel} \Longrightarrow
    (\lambda \ p. \ RETURN \ (bounds-7 \ si \ p), \ bounds-5 \ A \ a) \in
    state-rel \rightarrow \langle \langle nat-rel, item-rel \rangle dflt-ahm-rel \rangle nres-rel
    using bounds-7.refine by auto
  context
    fixes A :: ('label, nat) \ nba
    fixes acci
    assumes [autoref-rules]: (acci, accepting A) \in nat-rel \rightarrow bool-rel
  begin
    private lemma [autoref-op-pat]: accepting A \equiv OP (accepting A) by simp
    private lemma [autoref-rules]: ((dvd), (dvd)) \in nat\text{-rel} \rightarrow nat\text{-rel} \rightarrow bool\text{-rel}
by simp
    private lemma [autoref-rules]: (\lambda \ k \ l. \ upt \ k \ (Suc \ l), \ atLeastAtMost) \in
      nat\text{-}rel \rightarrow nat\text{-}rel \rightarrow \langle nat\text{-}rel \rangle \ list\text{-}set\text{-}rel
      by (auto simp: list-set-rel-def in-br-conv)
    schematic-goal items-7: (?f :: ?'a, items-5 A) \in ?R
      unfolding items-5-def Let-def Set.filter-eq by autoref
  end
  concrete-definition items-7 uses items-7
```

```
context
    fixes A :: ('label, nat) nba
    fixes ai
    fixes fi f
    assumes ai: (ai, accepting A) \in nat\text{-rel} \rightarrow bool\text{-rel}
    assumes fi[autoref-rules]: (fi, f) \in \langle nat\text{-}rel, item\text{-}rel \rangle dflt\text{-}ahm\text{-}rel
  begin
    private lemma [simp]: finite (dom f)
      using dflt-ahm-rel-finite-nat fi unfolding finite-map-rel-def by force
    private lemma [simp]:
      assumes \bigwedge m. \ m \in S \Longrightarrow x \notin dom \ m
      shows inj-on (\lambda m. m (x \mapsto y)) S
       using assms unfolding dom-def inj-on-def by (auto) (metis fun-upd-triv
fun-upd-upd)
    private lemmas [simp] = op\text{-}map\text{-}update\text{-}def[abs\text{-}def]
    private lemma [autoref-op-pat]: items-5 A \equiv OP (items-5 A) by simp
    private lemmas [autoref-rules] = items-7.refine[OF ai]
    schematic-goal expand-map-get-7: (?f, expand-map-get-6 \ A \ f) \in
      \langle\langle state\text{-}rel\rangle\ list\text{-}set\text{-}rel\rangle\ nres\text{-}rel
      unfolding expand-map-get-6-def by (autoref-monadic (plain))
  end
  concrete-definition expand-map-get-7 uses expand-map-get-7
  lemma expand-map-get-7-refine:
    assumes (ai, accepting A) \in nat\text{-rel} \rightarrow bool\text{-rel}
   shows (\lambda fi. RETURN (expand-map-get-7 ai fi),
      \lambda f. \ ASSUME \ (finite \ (dom \ f)) \gg expand-map-get-6 \ A \ f) \in
      \langle nat\text{-}rel, item\text{-}rel \rangle dflt\text{-}ahm\text{-}rel \rightarrow \langle \langle state\text{-}rel \rangle list\text{-}set\text{-}rel \rangle nres\text{-}rel
    using expand-map-get-7.refine[OF assms] by auto
  context
    fixes A :: ('label, nat) nba
    fixes a :: 'label
   \mathbf{fixes}\ p::\ nat\ items
    fixes Ai
    fixes ai
    fixes pi
    assumes Ai: (Ai, A) \in \langle Id, Id \rangle nbai-nba-rel
    assumes ai: (ai, a) \in Id
    assumes pi[autoref-rules]: (pi, p) \in state-rel
  begin
```

```
private lemmas succi = nbai-nba-param(4)[THEN fun-relD, OF Ai, THEN]
fun-relD, OF ai]
   private lemmas acceptingi = nbai-nba-param(5)[THEN fun-relD, OF Ai]
     private lemma [autoref-op-pat]: (\lambda \ g. \ ASSUME \ (finite \ (dom \ g)) \gg ex
pand-map-get-6 A g) <math>\equiv
     OP (\lambda g. ASSUME (finite (dom g)) \gg expand-map-get-6 A g) by simp
   private lemma [autoref-op-pat]: bounds-5 A a \equiv OP (bounds-5 A a) by simp
   private lemmas [autoref-rules] =
     refresh-7-refine
     bounds-7-refine[OF succi]
     expand-map-get-7-refine[OF acceptingi]
    schematic-goal complement-succ-7: (?f :: ?'a, complement-succ-6 \ A \ a \ p) \in
?R
     unfolding complement-succ-6-def by (autoref-monadic (plain))
 end
 concrete-definition complement-succ-7 uses complement-succ-7
  lemma complement-succ-7-refine:
   (RETURN \circ \circ \circ complement\text{-}succ\text{-}7, complement\text{-}succ\text{-}6) \in
     \langle Id, Id \rangle \ nbai-nba-rel \rightarrow Id \rightarrow state-rel \rightarrow
     \langle\langle state\text{-}rel\rangle\ list\text{-}set\text{-}rel\rangle\ nres\text{-}rel
   using complement-succ-7.refine unfolding comp-apply by parametricity
  context
   fixes A :: ('label, nat) \ nba
   fixes Ai
   fixes n \ ni :: nat
   assumes Ai: (Ai, A) \in \langle Id, Id \rangle nbai-nba-rel
   assumes ni[autoref-rules]: (ni, n) \in Id
  begin
   private lemma [autoref-op-pat]: initial A \equiv OP (initial A) by simp
   private lemmas [autoref-rules] = nbai-nba-param(3)[THEN fun-relD, OF Ai]
   schematic-goal complement-initial-7:
     (?f, \{(Some \circ (const \ (2 * n, False))) \mid `initial \ A\}) \in \langle state-rel \rangle \ list-set-rel \}
     by autoref
  end
```

concrete-definition complement-initial-7 uses complement-initial-7

```
schematic-goal complement-accepting-7: (?f, \lambda f. \forall (p, k, c) \in map\text{-}to\text{-}set f. \neg
c) \in
    state\text{-}rel \rightarrow bool\text{-}rel
    by autoref
  concrete-definition complement-accepting-7 uses complement-accepting-7
 definition complement-7 :: ('label, nat) nbai \Rightarrow nat \Rightarrow ('label, state) nbai where
    complement-7 Ai \ ni \equiv nbai
      (alphabeti Ai)
      (complement-initial-7 Ai ni)
      (complement-succ-7 Ai)
      (complement-accepting-7)
  lemma complement-7-refine[autoref-rules]:
    assumes (Ai, A) \in \langle Id, Id \rangle nbai-nba-rel
    assumes (ni.
      (OP card ::: \langle Id \rangle ahs-rel bhc \rightarrow nat-rel) $
      ((OP \ nodes ::: \langle Id, Id \rangle \ nbai-nba-rel \rightarrow \langle Id \rangle \ ahs-rel \ bhc) \ \$ \ A)) \in nat-rel
    shows (complement-7 Ai ni, (OP complement-4 :::
        \langle Id, Id \rangle nbai-nba-rel \rightarrow \langle Id, state-rel \rangle nbai-nba-rel \rangle A) \in \langle Id, state-rel \rangle
nbai-nba-rel
  proof -
    note complement-succ-7-refine
    also note complement-succ-6-refine
    also note complement-succ-5-refine
    finally have 1: (complement\text{-}succ\text{-}7, complement\text{-}succ\text{-}4) \in
      \langle Id, Id \rangle \ nbai-nba-rel \rightarrow Id \rightarrow state-rel \rightarrow \langle state-rel \rangle \ list-set-rel
       unfolding nres-rel-comp unfolding nres-rel-def unfolding fun-rel-def by
auto
    show ?thesis
      unfolding complement-7-def complement-4-def
      {\bf using} \ {\it 1} \ complement\mbox{-}initial\mbox{-} 7. refine \ complement\mbox{-}accepting\mbox{-} 7. refine \ assms
      unfolding autoref-tag-defs
      by parametricity
 qed
end
      Boolean Formulae
```

6

```
theory Formula
imports Main
begin
 datatype 'a formula =
   False |
   True |
   Variable\ 'a\ |
```

```
Negation 'a formula | Conjunction 'a formula 'a formula | Disjunction 'a formula 'a formula |

primrec satisfies :: 'a set \Rightarrow 'a formula \Rightarrow bool where satisfies A False \longleftrightarrow HOL. False | satisfies A True \longleftrightarrow HOL. True | satisfies A (Variable a) \longleftrightarrow a \in A | satisfies A (Negation x) \longleftrightarrow \neg satisfies A x \rightarrow satisfies A x \rightarrow satisfies A (Conjunction x y) \longleftrightarrow satisfies A x \rightarrow satisfies A y | satisfies A (Disjunction x y) \longleftrightarrow satisfies A x \rightarrow satisfies A y
```

end

7 Final Instantiation of Algorithms Related to Complementation

```
\begin{tabular}{l} \textbf{theory} & Complementation-Final \\ \textbf{imports} \\ & Complementation-Implement \\ & Formula \\ & Transition-Systems-and-Automata.NBA-Translate \\ & Transition-Systems-and-Automata.NGBA-Algorithms \\ & HOL-Library.Multiset \\ \textbf{begin} \\ \end{tabular}
```

7.1 Syntax

```
no-syntax -do-let :: [pttrn, 'a] \Rightarrow do-bind (\langle (\langle indent=2 \ notation=\langle infix \ do \ let \rangle \rangle let - =/-) \rangle [1000, 13] 13) 

syntax -do-let :: [pttrn, 'a] \Rightarrow do-bind (\langle (\langle indent=2 \ notation=\langle infix \ do \ let \rangle \rangle let - =/-) \rangle 13)
```

7.2 Hashcodes on Complement States

```
definition hci \ k \equiv uint32-of-nat k * 1103515245 + 12345
definition hc \equiv \lambda \ (p, \ q, \ b). hci \ p + hci \ q * 31 + (if \ b \ then \ 1 \ else \ 0)
definition list-hash xs \equiv fold \ (xor \circ hc) \ xs \ 0
lemma list-hash-eq:
assumes distinct \ xs \ distinct \ ys \ set \ xs = set \ ys
shows list-hash xs = list-hash ys
proof -
have mset \ (remdups \ xs) = mset \ (remdups \ ys) \ using \ assms(3)
using set-eq-iff-mset-remdups-eq by blast
then have mset \ xs = mset \ ys \ using \ assms(1, 2) by (simp \ add: \ distinct-remdups-id)
have fold \ (xor \circ hc) \ xs = fold \ (xor \circ hc) \ ys
apply (rule \ fold-multiset-equiv)
apply (simp \ add: \ fun-eq-iff ac-simps)
```

```
using \langle mset \ xs = mset \ ys \rangle.
   then show ?thesis unfolding list-hash-def by simp
  qed
 definition state-hash :: nat \Rightarrow Complementation-Implement.state <math>\Rightarrow nat where
   state-hash \ n \ p \equiv nat-of-hashcode \ (list-hash \ p) \ mod \ n
 \mathbf{lemma}\ state-hash-bounded-hashcode[autoref-ga-rules]: is-bounded-hashcode\ state-rel}
    (gen-equals\ (Gen-Map.gen-ball\ (foldli\circ list-map-to-list))\ (list-map-lookup\ (=))
   (prod-eq (=) (\longleftrightarrow))) state-hash
 proof
  \mathbf{show} [param]: (gen-equals (Gen-Map.gen-ball (foldli \circ list-map-to-list)) (list-map-lookup
(=))
     (prod-eq\ (=)\ (\longleftrightarrow)),\ (=)) \in state-rel \to state-rel \to bool-rel\ by\ autoref
   show state-hash n xs = state-hash n ys if xs \in Domain state-rel ys \in Domain
state-rel
     gen-equals (Gen-Map.gen-ball (foldli \circ list-map-to-list))
     (list-map-lookup (=)) (prod-eq (=) (=)) xs ys  for xs ys  n
     have 1: distinct (map fst xs) distinct (map fst ys)
         using that(1, 2) unfolding list-map-rel-def list-map-invar-def by (auto
simp: in-br-conv)
     have 2: distinct xs distinct ys using 1 by (auto intro: distinct-mapI)
     have 3: (xs, map-of xs) \in state-rel (ys, map-of ys) \in state-rel
          using 1 unfolding list-map-rel-def list-map-invar-def by (auto simp:
in-br-conv)
    have 4:(gen\text{-}equals\ (Gen\text{-}Map.gen\text{-}ball\ (foldli\circ list\text{-}map\text{-}to\text{-}list))\ (list\text{-}map\text{-}lookup\ )
        (prod-eq (=) (\longleftrightarrow)) xs ys, map-of xs = map-of ys) \in bool-rel using 3 by
parametricity
      have 5: map\text{-}to\text{-}set\ (map\text{-}of\ xs) = map\text{-}to\text{-}set\ (map\text{-}of\ ys) using that (3) 4
by simp
     have \theta: set xs = set \ ys  using map-to-set-map-of \ 1 \ 5 by blast
       show state-hash n xs = state-hash n ys unfolding state-hash-def using
list-hash-eq 2 6 by metis
   show state-hash n \times n if 1 < n for n \times n using that unfolding state-hash-def
by simp
 qed
7.3
        Complementation
 schematic-goal complement-impl:
   assumes [simp]: finite (NBA.nodes A)
   assumes [autoref-rules]: (Ai, A) \in \langle Id, nat\text{-rel} \rangle nbai-nba-rel
   shows (?f :: ?'c, op-translate (complement-4 A)) \in ?R
   by (autoref-monadic (plain))
  concrete-definition complement-impl uses complement-impl
```

```
theorem complement-impl-correct:
   assumes finite (NBA.nodes A)
   assumes (Ai, A) \in \langle Id, nat\text{-}rel \rangle \ nbai\text{-}nba\text{-}rel
   shows NBA.language (nbae-nba (nbaei-nbae (complement-impl <math>Ai))) =
     streams (nba.alphabet A) - NBA.language A
   using op-translate-language[OF complement-impl.refine[OF assms]]
   using complement-4-correct[OF\ assms(1)]
   by simp
7.4
       Language Subset
 definition [simp]: op-language-subset A B \equiv NBA.language A \subseteq NBA.language
B
 lemmas [autoref-op-pat] = op-language-subset-def[symmetric]
 schematic-goal language-subset-impl:
   assumes [simp]: finite (NBA.nodes B)
   assumes [autoref-rules]: (Ai, A) \in \langle Id, nat\text{-rel} \rangle nbai-nba-rel
   assumes [autoref-rules]: (Bi, B) \in \langle Id, nat\text{-}rel \rangle nbai-nba-rel
   shows (?f :: ?'c, do {
     let AB' = intersect' A (complement-4 B);
     ASSERT (finite (NGBA.nodes AB'));
     RETURN (NGBA.language AB' = \{\})
   \}) \in ?R
  by (autoref-monadic (plain))
  concrete-definition language-subset-impl uses language-subset-impl
  lemma language-subset-impl-refine[autoref-rules]:
   assumes SIDE-PRECOND (finite (NBA.nodes A))
   assumes SIDE-PRECOND (finite (NBA.nodes B))
   assumes SIDE-PRECOND (nba.alphabet A \subseteq nba.alphabet B)
   assumes (Ai, A) \in \langle Id, nat\text{-}rel \rangle \ nbai\text{-}nba\text{-}rel
   assumes (Bi, B) \in \langle Id, nat\text{-}rel \rangle \ nbai\text{-}nba\text{-}rel
   shows (language-subset-impl Ai Bi, (OP op-language-subset :::
     \langle Id, nat\text{-rel} \rangle nbai\text{-nba-rel} \rightarrow \langle Id, nat\text{-rel} \rangle nbai\text{-nba-rel} \rightarrow bool\text{-rel}) \$ A \$ B) \in
bool-rel
 proof -
   have (RETURN (language-subset-impl Ai Bi), do {
     let AB' = intersect' A (complement-4 B);
     ASSERT \ (finite \ (NGBA.nodes \ AB'));
     RETURN (NGBA.language AB' = \{\})
   \}) \in \langle bool\text{-}rel \rangle \ nres\text{-}rel
     using language-subset-impl.refine assms(2, 4, 5) unfolding autoref-tag-defs
by this
   also have (do {
     let AB' = intersect' A (complement-4 B);
     ASSERT (finite (NGBA.nodes AB'));
     RETURN (NGBA.language AB' = \{\})
    \{A, RETURN \ (NBA.language \ A \subseteq NBA.language \ B)\} \in \langle bool-rel \rangle \ nres-rel \}
```

```
proof refine-vcq
     \mathbf{show} \ \mathit{finite} \ (\mathit{NGBA}.\mathit{nodes} \ (\mathit{intersect'} \ \mathit{A} \ (\mathit{complement-4} \ \mathit{B}))) \ \mathbf{using} \ \mathit{assms}(1,
2) by auto
     have 1: NBA.language A \subseteq streams (nba.alphabet B)
     using nba.language-alphabet streams-mono2 assms(3) unfolding autoref-tag-defs
       have 2: NBA.language (complement-4 B) = streams (nba.alphabet B) -
NBA.language B
       using complement-4-correct assms(2) by auto
     show (NGBA.language (intersect' A (complement-4 B)) = {},
       NBA.language A \subseteq NBA.language B) \in bool-rel using 1 2 by auto
    finally show ?thesis using RETURN-nres-relD unfolding nres-rel-comp by
force
  qed
7.5
       Language Equality
  definition [simp]: op-language-equal A B \equiv NBA.language A = NBA.language
B
 lemmas [autoref-op-pat] = op-language-equal-def[symmetric]
 schematic-goal language-equal-impl:
   assumes [simp]: finite (NBA.nodes A)
   assumes [simp]: finite (NBA.nodes B)
   assumes [simp]: nba.alphabet A = nba.alphabet B
   assumes [autoref-rules]: (Ai, A) \in \langle Id, nat\text{-rel} \rangle nbai-nba-rel
   assumes [autoref-rules]: (Bi, B) \in \langle Id, nat\text{-rel} \rangle nbai-nba-rel
    shows (?f :: ?'c, NBA.language A \subseteq NBA.language B \land NBA.language B \subseteq
NBA.language A) \in ?R
   by autoref
  concrete-definition language-equal-impl uses language-equal-impl
  lemma language-equal-impl-refine[autoref-rules]:
   assumes SIDE-PRECOND (finite (NBA.nodes A))
   assumes SIDE-PRECOND (finite (NBA.nodes B))
   assumes SIDE-PRECOND (nba.alphabet A = nba.alphabet B)
   assumes (Ai, A) \in \langle Id, nat\text{-}rel \rangle \ nbai\text{-}nba\text{-}rel
   assumes (Bi, B) \in \langle Id, nat\text{-}rel \rangle \ nbai\text{-}nba\text{-}rel
   shows (language-equal-impl Ai Bi, (OP op-language-equal :::
     \langle Id, nat\text{-}rel \rangle \ nbai\text{-}nba\text{-}rel \rightarrow \langle Id, nat\text{-}rel \rangle \ nbai\text{-}nba\text{-}rel \rightarrow bool\text{-}rel) \$ A \$ B) \in
   using language-equal-impl.refine[OF assms[unfolded autoref-tag-defs]] by auto
  schematic-goal product-impl:
   assumes [simp]: finite (NBA.nodes B)
   assumes [autoref-rules]: (Ai, A) \in \langle Id, nat\text{-rel} \rangle nbai-nba-rel
   assumes [autoref-rules]: (Bi, B) \in \langle Id, nat\text{-rel} \rangle nbai-nba-rel
   shows (?f :: ?'c, do {
```

```
let AB' = intersect\ A\ (complement-4\ B);

ASSERT\ (finite\ (NBA.nodes\ AB'));

op\text{-}translate\ AB'

}) \in ?R

by (autoref\text{-}monadic\ (plain))

concrete-definition product\text{-}impl\ uses\ product\text{-}impl

export-code

Set.empty\ Set.insert\ Set.member

Inf: "a\ set\ set\ \Rightarrow "a\ set\ Sup:: "a\ set\ set\ \Rightarrow "a\ set\ image\ Pow\ set\ nat\text{-}of\text{-}integer\ integer\text{-}of\text{-}nat}

Variable\ Negation\ Conjunction\ Disjunction\ satisfies\ map\text{-}formula\ nbaei\ alphabetei\ initialei\ transitionei\ acceptingei\ nbae-nba-impl\ complement\text{-}impl\ language\text{-}equal\text{-}impl\ product\text{-}impl\ in\ SML\ module-name\ Complementation\ file-prefix\ Complementation
```

end

8 Build and test exported program with MLton

```
theory Complementation-Build
imports Complementation-Final
begin
external-file \langle code/Autool.mlb \rangle
external-file \langle code/Prelude.sml \rangle
external-file \langle code/Autool.sml \rangle
compile-generated-files
       \langle code/Complementation.ML \rangle (in Complementation-Final)
      external-files
              \langle code/Autool.mlb \rangle
             \langle code/Prelude.sml \rangle
             \langle code/Autool.sml \rangle
      \textbf{export-files} \ \langle code/Complementation.sml \rangle \ \textbf{and} \ \langle code/Autool \rangle \ (exe)
      where \langle fn \ dir = >
             let
                    val\ exec = Generated-Files. execute\ (dir + Path.basic\ code);
                    val - = exec \langle Prepare \rangle mv Complementation.ML Complementation.sml;
              val - = exec \ (Compilation) \ (verbatim \ (\$ISABELLE-MLTON \ \$ISABELLE-MLTON-OPTIONS) \ (Verbatim \ (\$ISABELLE-MLTON \ \$ISABELLE-MLTON-OPTIONS) \ (Verbatim \ (\$ISABELLE-MLTON \ \$ISABELLE-MLTON \ \$ISABELLE-ML
                                            -profile\ time\ -default-type\ intinf\ Autool.mlb);
                    val - = exec \land Test \land . / Autool \ help;
             in () end
```

end

References

[1] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. $ACM\ Trans.\ Comput.\ Logic,\ 2(3):408-429,\ July\ 2001.$