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Abstract
We consider a fixed-odds gambling market over arbitrary logical

propositions, where participants trade bets involving conjunctions, dis-
junctions, and negations. In this setting, we establish a three-way
correspondence between the financial feasibility of trading strategies,
the validity of universal probability inequalities, and the solutions to
bounded Maximum Satisfiability (MaxSAT) problems.

The central result demonstrates that proving a trading strategy
constitutes an arbitrage opportunity (i.e., guaranteeing a risk-free profit
regardless of the outcome) is equivalent to proving a specific inequal-
ity identity holds for all probability functions, and is computationally
equivalent to establishing a lower bound on a corresponding MaxSAT
instance. Dually, we show that checking the coherence of a strategy
(i.e., ensuring it does not guarantee a loss) also corresponds to ver-
ifying a probability identity and bounding a MaxSAT problem from
above.
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1 Introduction
theory Arbitrage-Probability-Correspondence

imports
Probability-Inequality-Completeness.Probability-Inequality-Completeness
HOL.Real

begin

1.1 Motivation

Consider a fixed-odds gambling market where participants trade bets on
arbitrary logical propositions.
In this setting, every bet pays out exactly $1 if the proposition is true
and $0 otherwise. Unlike traditional prediction markets like PredictIt or
Polymarket, which usually limit trading to mutually exclusive outcomes, we
assume a market that allows bets on any combination of logical operators:
AND (u), OR (t), and NOT (∼).
To understand the relationship between market liquidity and probability
logic, imagine two events:

• A :: The NASDAQ will go up 1% by Friday

• B :: The S&P500 will go up 1% by Friday

Suppose the market order book contains the following quotes:

• ASK for A at $0 .40 (Someone is selling/offering a bet on A).

• ASK for B at $0 .50 (Someone is selling/offering a bet on B).

• BID for A u B at $0 .30 (Someone wants to buy a bet on A AND B).

• BID for A t B at $0 .70 (Someone wants to buy a bet on A OR B).
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An arbitrageur can exploit these prices to guarantee a risk-free profit.
They act as a market taker for the ASK s (buying A and B) and as a market
maker for the BIDs (selling A AND B and A OR B).
The initial cash flow is positive:
Profit = (BID(A u B) + BID(A t B)) − (ASK (A) + ASK (B)) Profit =
($0 .30 + $0 .70 ) − ($0 .40 + $0 .50 ) = $1 .00 − $0 .90 = $0 .10
Crucially, this profit is safe regardless of the outcome. The arbitrageur holds
long positions in A and B, and short positions in A u B and A t B.

• If both rise (True, True): The arbitrageur wins $2 on longs, pays $2
on shorts. Net: $0 payout.

• If only one rises (True, False): The arbitrageur wins $1 on longs, pays
$1 on short (the OR bet). Net: $0 payout.

• If neither rises (False, False): The arbitrageur wins $0, pay $0. Net:
$0 payout.
The arbitrage exists because the market prices violate the probability
identity:
Pr(A) + Pr(B) = Pr(A u B) + Pr(A t B)

The central result of this work generalizes this intuition:
Every arbitrage opportunity corresponds to a probability inequality iden-
tity.

1.2 Overview of Results

The central result of this work is as follows:
Proving a strategy will always yield a profit (if completely matched) in a
fixed-odds gambling market over arbitrary logical propositions corresponds
to proving an inequality identity in probability logic, and also corresponds to
a bounded MaxSAT problem.
Such strategies are referred to as arbitrage strategies.
We also consider the dual problem of identifying if a trading strategy will
never make a profit. Strategies that will never logically yield a profit are
called incoherent.

1.3 Prior Work

Two results that appear to be related at first glance are The Fundamental
Theorem(s) of Asset Pricing (FTAP) [6] and the Dutch Book Theorem [1,
3, 4, 5]. While the connection to FTAP is purely superficial, the results are
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close in spirit to the Dutch Book tradition: we study when a collection of
fixed-odds commitments can be combined into a strategy that is guaranteed
to lose (or, dually, guaranteed to profit), and we treat such strategies as
computational objects.
The Fundamental Theorems of Asset Pricing (FTAP) connect a suitable no-
tion of no-arbitrage to the existence of a pricing functional (or, in stochastic
settings, an equivalent martingale measure) in an idealized, frictionless mar-
ket. In their classical formulations, the objects being priced are standard
financial assets (e.g., securities or commodities) represented by a spot price
or a price process, and the market model abstracts away from microstruc-
ture: order placement, order matching, bid/ask discreteness, and fixed-odds
quoting are not part of the primitive data. By contrast, we work directly
with fixed-odds markets for wagers on arbitrary logical propositions, where
the microstructure of how orders compose into strategies is central, and we
connect “no-arbitage” strategies to the existence of some scenario where the
strategy doesn’t always lose, which falls out of a certain bounded MaxSAT
calculation.
The Dutch Book literature shares more of our vocabulary. Philosophical
treatments emphasize coherence and the avoidance of a bad book: a collection
of bets that guarantees a loss. Following Hájek’s terminology [2], one may
also speak of good books. In this development, we adopt finance-oriented lan-
guage and refer to these objects as (loss-guaranteeing) arbitrage strategies,
because they are assembled from posted odds and executed mechanically
once the relevant orders are matched. We also work with possibility-style
representations in the spirit of Lehman, generalized to any instance of a
classical-logic.
Our main contribution is not a normative thesis that rational agents ought
to conform their degrees of belief to probability theory. Instead, we make
explicit a three-way correspondence between:

1. checking whether a bounded family of fixed-odds commitments is co-
herent (i.e., not loss-guaranteeing),

2. feasibility of a bounded MaxSAT instance derived from the same com-
mitments, and

3. certain inequalities that hold for all probability functions over the same
set of propositions.

Operationally, we only require the first criterion: there must exist a scenario
in which the strategy does not always lose. The MaxSAT formulation sup-
plies a concrete decision procedure, and the coNP-hardness of the resulting
feasibility questions explains why coherence checking is not a task one should
expect to perform reliably by hand.
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We also study the dual problem: identifying strategies that are pure arbi-
trages (guaranteed nonnegative payoff with strictly positive payoff in some
outcome). Such strategies are useful not merely as pathologies, but as mech-
anisms for creating market depth. Intuitively, they can match BID interest
in one venue with ASK interest in another, improving execution for multiple
participants. From a microeconomic perspective, this can increase surplus
by enabling trades that would otherwise fail to clear.

2 Fixed Odds Markets
notation Probability-Inequality-Completeness.relative-maximals (‹M›)

unbundle no funcset-syntax

2.1 Orders and Trading Strategies

In this section, we model a fixed odds market where each bet pays out $0
or $1, and people make and take bets. For simplicity, we consider BID and
ASK limit orders of a single unit (i.e., trades such that if they match, then
they are completely cleared). In an ordinary central limit order book, such
BID and ASK orders would have prices in the interval (0 ,1 ), but we do not
make use of this assumption in our proofs, as it is not necessary.
record ′p bet-offer =

bet :: ′p
price :: real

A trading strategy is a collection of BID and ASK orders that are to be
matched atomically.
Making a bet is when you ask a bet on the market, while taking a bet is
when you bid a bet on the market.
A market maker is one who puts up capital and asks bets, while a market
taker is one who bids bets.
In a trading strategy, the market participant acts as a market maker for the
ASK orders they are willing make and as a market taker for the BID orders
they are willing to make.
record ′p strategy =

asks :: ( ′p bet-offer) list
bids :: ( ′p bet-offer) list

2.2 Possibility Functions

Possibility functions are states of affairs that determine the outcomes of
bets. They were first used in Lehman’s formulation of the Dutch Book
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Theorem [4]. Our approach diverges from Lehman’s. Lehman uses linear
programming to prove his result. Our formulation is pure probability logic.

We give our definition of a possibility function as follows:
definition (in classical-logic) possibility :: ( ′a ⇒ bool) ⇒ bool where
[simp]: possibility p ≡

¬ (p ⊥)
∧ (∀ ϕ. ` ϕ −→ p ϕ)
∧ (∀ ϕ ψ . p (ϕ → ψ) −→ p ϕ −→ p ψ)
∧ (∀ ϕ . p ϕ ∨ p (∼ ϕ))

Our formulation of possibility functions generalizes Lehman’s. Lehman re-
stricts his definition to the language of classical propositional logic formulae.
We define ours over any arbitrary classical logic satisfying the axioms of the
classical-logic class.
definition (in classical-logic) possibilities :: ( ′a ⇒ bool) set where
[simp]: possibilities = {p. possibility p}

lemma (in classical-logic) possibility-negation:
assumes possibility p
shows p (ϕ → ⊥) = (¬ p ϕ)

proof
assume p (ϕ → ⊥)
show ¬ p ϕ
proof

assume p ϕ
have ` ϕ → (ϕ → ⊥) → ⊥

by (simp add: double-negation-converse)
hence p ((ϕ → ⊥) → ⊥)

using ‹p ϕ› ‹possibility p› by auto
thus False using ‹p (ϕ → ⊥)› ‹possibility p› by auto

qed
next

show ¬ p ϕ =⇒ p (ϕ → ⊥)
using ‹possibility p› negation-def by fastforce

qed

lemma (in classical-logic) possibilities-logical-closure:
assumes possibility p

and {x. p x} `̀ ϕ
shows p ϕ

proof −
{

fix Γ
assume set Γ ⊆ Collect p
hence ∀ ϕ. Γ :` ϕ −→ p ϕ
proof (induct Γ)

case Nil
have ∀ϕ. ` ϕ −→ p ϕ
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using ‹possibility p› by auto
then show ?case

using list-deduction-base-theory by blast
next

case (Cons γ Γ)
hence p γ

by simp
have ∀ ϕ. Γ :` γ → ϕ −→ p (γ → ϕ)

using Cons.hyps Cons.prems by auto
then show ?case

by (meson
‹p γ›
‹possibility p›
list-deduction-theorem
possibility-def )

qed
}
thus ?thesis

using ‹Collect p `̀ ϕ› set-deduction-def by auto
qed

The next two lemmas establish that possibility functions are equivalent to
maximally consistent sets.
lemma (in classical-logic) possibilities-are-MCS :

assumes possibility p
shows MCS {x. p x}
using assms
by (metis

(mono-tags, lifting)
formula-consistent-def
formula-maximally-consistent-set-def-def
maximally-consistent-set-def
possibilities-logical-closure
possibility-def
mem-Collect-eq
negation-def )

lemma (in classical-logic) MCSs-are-possibilities:
assumes MCS s
shows possibility (λ x. x ∈ s)

proof −
have ⊥ /∈ s

using ‹MCS s›
formula-consistent-def
formula-maximally-consistent-set-def-def
maximally-consistent-set-def
set-deduction-reflection

by blast
moreover have ∀ ϕ. ` ϕ −→ ϕ ∈ s
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using ‹MCS s›
formula-maximally-consistent-set-def-reflection
maximally-consistent-set-def
set-deduction-weaken

by blast
moreover have ∀ ϕ ψ. (ϕ → ψ) ∈ s −→ ϕ ∈ s −→ ψ ∈ s

using ‹MCS s›
formula-maximal-consistency
formula-maximally-consistent-set-def-implication

by blast
moreover have ∀ ϕ. ϕ ∈ s ∨ (ϕ → ⊥) ∈ s

using assms
formula-maximally-consistent-set-def-implication
maximally-consistent-set-def

by blast
ultimately show ?thesis by (simp add: negation-def )

qed

2.3 Payoff Functions

Given a market strategy and a possibility function, we can define the payoff
of that strategy if all the bet positions in that strategy were matched and
settled at the particular state of affairs given by the possibility function.
Recall that in a trading strategy, we act as a market maker for ask positions,
meaning we payout if the proposition behind the bet we are asking evaluates
to true.
Payoff is revenue from won bets minus costs of the BIDs for those bets, plus
revenue from sold ASK bets minus payouts from bets lost.
definition payoff :: ( ′p ⇒ bool) ⇒ ′p strategy ⇒ real (π) where
[simp]: π s strategy ≡
(
∑

i ← bids strategy. (if s (bet i) then 1 else 0 ) − price i)
+ (

∑
i ← asks strategy. price i − (if s (bet i) then 1 else 0 ))

Alternate definitions of the payout function π are to use the notion of settling
bets given a state of affairs. Settling is just paying out those bets that came
true.
definition settle-bet :: ( ′p ⇒ bool) ⇒ ′p ⇒ real where

settle-bet s ϕ ≡ if (s ϕ) then 1 else 0

lemma payoff-alt-def1 :
π s strategy =

(
∑

i ← bids strategy. settle-bet s (bet i) − price i)
+ (

∑
i ← asks strategy. price i − settle-bet s (bet i))

unfolding settle-bet-def
by simp

definition settle :: ( ′p ⇒ bool) ⇒ ′p bet-offer list ⇒ real where
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settle s bets ≡
∑

b ← bets. settle-bet s (bet b)

lemma settle-alt-def :
settle q bets = length [ϕ ← [ bet b . b ← bets ] . q ϕ]
unfolding settle-def settle-bet-def
by (induct bets, simp+)

definition total-price :: ( ′p bet-offer) list ⇒ real where
total-price offers ≡

∑
i ← offers. price i

lemma payoff-alt-def2 :
π s strategy = settle s (bids strategy)

− settle s (asks strategy)
+ total-price (asks strategy)
− total-price (bids strategy)

unfolding payoff-alt-def1 total-price-def settle-def
by (simp add: sum-list-subtractf )

2.4 Revenue Equivalence

When evaluating a payout function, we can essentially convert BID orders
to ASK orders in a strategy, provided we properly account for locked capital
when calculating the effective prices for the new ASK positions.
definition (in classical-logic) negate-bets (-∼) where

bets∼ = [b (| bet := ∼ (bet b) |). b ← bets]

lemma (in classical-logic) ask-revenue-equivalence:
assumes possibility p
shows π p (| asks = asks ′, bids = bids ′ |)

= − settle p (bids ′∼ @ asks ′)
+ total-price asks ′

+ length bids ′

− total-price bids ′

proof (induct bids ′)
case Nil
then show ?case

unfolding
payoff-alt-def2
negate-bets-def
total-price-def
settle-def

by simp
next

case (Cons bid ′ bids ′)
have p (∼ (bet bid ′)) = (¬ (p (bet bid ′)))

using assms negation-def by auto
moreover have

total-price ((bid ′ # bids ′) @ asks ′)
= price bid ′ + total-price bids ′ + total-price asks ′
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unfolding total-price-def
by (induct asks ′, induct bids ′, auto)

ultimately show ?case
using Cons
unfolding payoff-alt-def2 negate-bets-def settle-def settle-bet-def
by simp

qed

The dual is also true: when evaluating a payout function, we can, in a sense,
treat ASK as BID positions with proper accounting.
lemma (in classical-logic) bid-revenue-equivalence:

assumes possibility p
shows π p (| asks = asks ′, bids = bids ′ |)

= settle p (asks ′∼ @ bids ′)
+ total-price asks ′

− total-price bids ′

− length asks ′

proof (induct asks ′)
case Nil
then show ?case

unfolding
payoff-alt-def2
negate-bets-def
total-price-def
settle-def
settle-bet-def

by simp
next

case (Cons s asks ′)
have p (∼ (bet s)) = (¬ (p (bet s))) using assms negation-def by auto
moreover have total-price ((s # asks ′) @ bids ′)

= price s + total-price asks ′ + total-price bids ′

unfolding total-price-def
by (induct bids ′, induct asks ′, auto)

ultimately show ?case
using Cons
unfolding payoff-alt-def2 negate-bets-def settle-def settle-bet-def
by simp

qed

3 Arbitrage Strategies
3.1 Introduction

In this section, we consider the problem of computing whether a strategy will
always yield a profit. Such strategies are referred to as arbitrage strategies.

10



3.2 Minimum Payoff

When computing whether a strategy is suited to arbitrage trading, we need
to know the minimum payoff of that strategy given every possible scenario.
definition (in consistent-classical-logic)

minimum-payoff :: ′a strategy ⇒ real (πmin) where
πmin b ≡ THE x . (∃ p ∈ possibilities. π p b = x)

∧ (∀ q ∈ possibilities. x ≤ π q b)

Since our definition of πmin relies on a definite descriptor, we need the
following theorem to prove it is well-defined.
lemma (in consistent-classical-logic) minimum-payoff-existence:
∃ ! x. (∃ p ∈ possibilities. π p bets = x) ∧ (∀ q ∈ possibilities. x ≤ π q bets)

proof (rule ex-ex1I )
show ∃ x. (∃ p∈possibilities. π p bets = x) ∧ (∀ q∈possibilities. x ≤ π q bets)
proof (rule ccontr)

obtain bids ′ asks ′ where bets = (| asks = asks ′, bids = bids ′ |)
by (metis strategy.cases)

assume @ x. (∃ p ∈ possibilities. π p bets = x) ∧ (∀ q ∈ possibilities. x ≤ π q
bets)

hence ∀ x. (∃ p ∈ possibilities. π p bets = x) −→ (∃ q ∈ possibilities. π q bets
< x)

by (meson le-less-linear)
hence ?: ∀ p ∈ possibilities. ∃ q ∈ possibilities. π q bets < π p bets

by blast
have ♦: ∀ p ∈ possibilities. ∃ q ∈ possibilities.

settle q (asks ′∼ @ bids ′) < settle p (asks ′∼ @ bids ′)
proof

fix p
assume p ∈ possibilities
from this obtain q where q ∈ possibilities and π q bets < π p bets

using ? by blast
hence

settle q (asks ′∼ @ bids ′)
+ total-price asks ′

− total-price bids ′

− length asks ′

< settle p (asks ′∼ @ bids ′)
+ total-price asks ′

− total-price bids ′

− length asks ′

by (metis ‹π q bets < π p bets›
‹bets = (|asks = asks ′, bids = bids ′|)›
‹p ∈ possibilities›
possibilities-def
bid-revenue-equivalence
mem-Collect-eq)

hence settle q (asks ′∼ @ bids ′) < settle p (asks ′∼ @ bids ′)
by simp
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thus ∃ q∈possibilities. settle q (asks ′∼ @ bids ′) < settle p (asks ′∼ @ bids ′)
using ‹q ∈ possibilities› by blast

qed
{

fix bets :: ( ′a bet-offer) list
fix s :: ′a ⇒ bool
have ∃ n ∈ �. settle s bets = real n

unfolding settle-def settle-bet-def
by (induct bets, auto, metis Nats-1 Nats-add Suc-eq-plus1-left of-nat-Suc)

} note † = this
{

fix n :: nat
have (∃ p ∈ possibilities. settle p (asks ′∼ @ bids ′) ≤ n)

−→ (∃ q ∈ possibilities. settle q (asks ′∼ @ bids ′) < 0 )
(is - −→ ?consequent)

proof (induct n)
case 0
{

fix p :: ′a ⇒ bool
assume p ∈ possibilities and settle p (asks ′∼ @ bids ′) ≤ 0
from this obtain q where

q ∈ possibilities
settle q (asks ′∼ @ bids ′) < settle p (asks ′∼ @ bids ′)
using ♦ by blast

hence ?consequent
by (metis

†
‹settle p (asks ′∼ @ bids ′) ≤ 0 ›
of-nat-0-eq-iff
of-nat-le-0-iff )

}
then show ?case by auto

next
case (Suc n)
{

fix p :: ′a ⇒ bool
assumep ∈ possibilities and settle p (asks ′∼ @ bids ′) ≤ Suc n
from this obtain q1 where

q1 ∈ possibilities
settle q1 (asks ′∼ @ bids ′) < Suc n
by (metis ♦ antisym-conv not-less)

from this obtain q2 where
q2 ∈ possibilities
settle q2 (asks ′∼ @ bids ′) < n
using ♦
by (metis

†
add.commute
nat-le-real-less
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nat-less-le
of-nat-Suc
of-nat-less-iff )

hence ?consequent
by (metis † Suc.hyps nat-less-le of-nat-le-iff of-nat-less-iff )

}
then show ?case by auto

qed
}
hence @ p. p ∈ possibilities

by (metis † not-less0 of-nat-0 of-nat-less-iff order-refl)
moreover
have ¬ {} `̀ ⊥

using consistency set-deduction-base-theory by auto
from this obtain Γ where MCS Γ

by (meson formula-consistent-def
formula-maximal-consistency
formula-maximally-consistent-extension)

hence (λ γ. γ ∈ Γ) ∈ possibilities
using MCSs-are-possibilities possibilities-def by blast

ultimately show False
by blast

qed
next

fix x y
assume A: (∃ p ∈ possibilities. π p bets = x) ∧ (∀ q ∈ possibilities. x ≤ π q bets)
and B: (∃ p ∈ possibilities. π p bets = y) ∧ (∀ q ∈ possibilities. y ≤ π q bets)
from this obtain px py where

px ∈ possibilities
py ∈ possibilities
π px bets = x
π py bets = y
by blast

with A B have x ≤ y y ≤ x
by blast+

thus x = y by linarith
qed

3.3 Bounding Minimum Payoffs Below Using MaxSAT

Below, we present our second major theorem: computing a lower bound to
a strategy’s minimum payoff is equivalent to checking a bounded MaxSAT
problem.
A concrete implementation of this algorithm would enable software search
for trading strategies that can convert orders from one central limit order
book to another.
As in the previous section, we prove our theorem in the general case of an
arbitrary k, but in practice users will want to set k = 0 to check if their
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strategy is an arbitrage strategy.
theorem (in consistent-classical-logic) arbitrageur-maxsat:

((k :: real) ≤ πmin (| asks = asks ′, bids = bids ′ |))
= ( MaxSAT [bet b . b ← bids ′∼ @ asks ′]
≤ total-price asks ′ + length bids ′ − total-price bids ′ − k )

(is (k ≤ πmin ?bets) = (MaxSAT ?props ≤ total-price - + - − - − -))
proof

assume k ≤ πmin ?bets
let ?P = λ x . (∃ p ∈ possibilities. π p ?bets = x)

∧ (∀ q ∈ possibilities. x ≤ π q ?bets)
obtain p where

possibility p and
∀ q ∈ possibilities. π p ?bets ≤ π q ?bets

using ‹k ≤ πmin ?bets›
minimum-payoff-existence [of ?bets]

by (metis possibilities-def mem-Collect-eq)
hence ?P (π p ?bets)

using possibilities-def by blast
hence πmin ?bets = π p ?bets

unfolding minimum-payoff-def
using minimum-payoff-existence [of ?bets]

the1-equality [where P = ?P and a = π p ?bets]
by blast

let ?Φ = [ϕ ← ?props. p ϕ]

have mset ?Φ ⊆# mset ?props
by(induct ?props,

auto,
simp add: subset-mset.add-mono)

moreover
have ¬ (?Φ :` ⊥)
proof −

have set ?Φ ⊆ {x. p x}
by auto

hence ¬ (set ?Φ `̀ ⊥)
by (meson ‹possibility p›

possibilities-are-MCS [of p]
formula-consistent-def
formula-maximally-consistent-set-def-def
maximally-consistent-set-def
list-deduction-monotonic
set-deduction-def )

thus ?thesis
using set-deduction-def by blast

qed
moreover
{

fix Ψ
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assume mset Ψ ⊆# mset ?props and ¬ Ψ :` ⊥
from this obtain ΩΨ where MCS ΩΨ and set Ψ ⊆ ΩΨ

by (meson formula-consistent-def
formula-maximal-consistency
formula-maximally-consistent-extension
list-deduction-monotonic
set-deduction-def )

let ?q = λϕ . ϕ ∈ ΩΨ

have possibility ?q
using ‹MCS ΩΨ› MCSs-are-possibilities by blast

hence π p ?bets ≤ π ?q ?bets
using ‹∀ q∈possibilities. π p ?bets ≤ π q ?bets›

possibilities-def
by blast

let ?c = total-price asks ′ + length bids ′ − total-price bids ′

have − settle p (bids ′∼ @ asks ′) + ?c ≤ − settle ?q (bids ′∼ @ asks ′) + ?c
using ‹π p ?bets ≤ π ?q ?bets›

‹possibility p›
ask-revenue-equivalence [of p asks ′ bids ′]
‹possibility ?q›
ask-revenue-equivalence [of ?q asks ′ bids ′]

by linarith
hence settle ?q (bids ′∼ @ asks ′) ≤ settle p (bids ′∼ @ asks ′)

by linarith
let ?Ψ ′ = [ϕ ← ?props. ?q ϕ]
have length ?Ψ ′ ≤ length ?Φ

using ‹settle ?q (bids ′∼ @ asks ′) ≤ settle p (bids ′∼ @ asks ′)›
unfolding settle-alt-def
by simp

moreover
have length Ψ ≤ length ?Ψ ′

proof −
have mset [ψ ← Ψ. ?q ψ] ⊆# mset ?Ψ ′

proof −
{

fix props :: ′a list
have ∀ Ψ. ∀ Ω. mset Ψ ⊆# mset props −→

mset [ψ ← Ψ. ψ ∈ Ω] ⊆# mset [ϕ ← props. ϕ ∈ Ω]
by (simp add: multiset-filter-mono)

}
thus ?thesis

using ‹mset Ψ ⊆# mset ?props› by blast
qed
hence length [ψ ← Ψ. ?q ψ] ≤ length ?Ψ ′

by (metis (no-types, lifting) length-sub-mset mset-eq-length nat-less-le not-le)
moreover have length Ψ = length [ψ ← Ψ. ?q ψ]

using ‹set Ψ ⊆ ΩΨ›
by (induct Ψ, simp+)

ultimately show ?thesis by linarith
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qed
ultimately have length Ψ ≤ length ?Φ by linarith

}
ultimately have ?Φ ∈ M ?props ⊥

unfolding relative-maximals-def
by blast

hence MaxSAT ?props = length ?Φ
using relative-MaxSAT-intro by presburger

hence MaxSAT ?props = settle p (bids ′∼ @ asks ′)
unfolding settle-alt-def
by simp

thus MaxSAT ?props ≤ total-price asks ′ + length bids ′ − total-price bids ′ − k
using ask-revenue-equivalence [of p asks ′ bids ′]

‹k ≤ πmin ?bets›
‹πmin ?bets = π p ?bets›
‹possibility p›

by linarith
next

let ?c = total-price asks ′ + length bids ′ − total-price bids ′

assume MaxSAT ?props ≤ total-price asks ′ + length bids ′ − total-price bids ′ −
k

from this obtain Φ where Φ ∈ M ?props ⊥ and length Φ + k ≤ ?c
using

consistency
relative-MaxSAT-intro
relative-maximals-existence

by fastforce
hence ¬ Φ :` ⊥

using relative-maximals-def by blast
from this obtain ΩΦ where MCS ΩΦ and set Φ ⊆ ΩΦ

by (meson formula-consistent-def
formula-maximal-consistency
formula-maximally-consistent-extension
list-deduction-monotonic
set-deduction-def )

let ?p = λϕ . ϕ ∈ ΩΦ

have possibility ?p
using ‹MCS ΩΦ› MCSs-are-possibilities by blast

have mset Φ ⊆# mset ?props
using ‹Φ ∈ M ?props ⊥› relative-maximals-def by blast

have mset Φ ⊆# mset [ b ← ?props. ?p b]
by (metis ‹mset Φ ⊆# mset ?props›

‹set Φ ⊆ ΩΦ›
filter-True
mset-filter
multiset-filter-mono
subset-code(1 ))

have mset Φ = mset [ b ← ?props. ?p b]
proof (rule ccontr)
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assume mset Φ 6= mset [ b ← ?props. ?p b]
hence length Φ < length [ b ← ?props. ?p b]

using
‹mset Φ ⊆# mset [ b ← ?props. ?p b]›
length-sub-mset not-less

by blast
moreover
have ¬ [ b ← ?props. ?p b] :` ⊥

by (metis
IntE
‹MCS ΩΦ›
inter-set-filter
formula-consistent-def
formula-maximally-consistent-set-def-def
maximally-consistent-set-def
set-deduction-def
subsetI )

hence length [ b ← ?props. ?p b] ≤ length Φ
by (metis

(mono-tags, lifting)
‹Φ ∈ M ?props ⊥›
relative-maximals-def [of ?props ⊥]
mem-Collect-eq
mset-filter
multiset-filter-subset)

ultimately show False
using not-le by blast

qed
hence length Φ = settle ?p (bids ′∼ @ asks ′)

unfolding settle-alt-def
using mset-eq-length
by metis

hence k ≤ settle ?p (bids ′∼ @ asks ′)
+ total-price asks ′ + length bids ′ − total-price bids ′

using ‹length Φ + k ≤ ?c› by linarith
hence k ≤ π ?p ?bets

using ‹possibility ?p›
ask-revenue-equivalence [of ?p asks ′ bids ′]
‹length Φ + k ≤ ?c›
‹length Φ = settle ?p (bids ′∼ @ asks ′)›

by linarith
have ∀ q ∈ possibilities. π ?p ?bets ≤ π q ?bets
proof

{
fix x :: ′a
fix P A
have x ∈ Set.filter P A ←→ x ∈ A ∧ P x

by (simp add: filter-def )
}
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note member-filter = this
fix q
assume q ∈ possibilities
hence ¬ [ b ← ?props. q b] :` ⊥

unfolding possibilities-def
by (metis filter-set

possibilities-logical-closure
possibility-def
set-deduction-def
mem-Collect-eq
member-filter
subsetI )

hence length [ b ← ?props. q b] ≤ length Φ
by (metis (mono-tags, lifting)

‹Φ ∈ M ?props ⊥›
relative-maximals-def
mem-Collect-eq
mset-filter
multiset-filter-subset)

hence
− settle ?p (bids ′∼ @ asks ′)

+ total-price asks ′

+ length bids ′

− total-price bids ′

≤ − settle q (bids ′∼ @ asks ′)
+ total-price asks ′

+ length bids ′

− total-price bids ′

using ‹length Φ = settle ?p (bids ′∼ @ asks ′)›
settle-alt-def [of q bids ′∼ @ asks ′]

by linarith
thus π ?p ?bets ≤ π q ?bets

using ask-revenue-equivalence [of ?p asks ′ bids ′]
ask-revenue-equivalence [of q asks ′ bids ′]
‹possibility ?p›
‹q ∈ possibilities›

unfolding possibilities-def
by (metis mem-Collect-eq)

qed
have πmin ?bets = π ?p ?bets

unfolding minimum-payoff-def
proof

show (∃ p∈possibilities. π p ?bets = π ?p ?bets)
∧ (∀ q∈possibilities. π ?p ?bets ≤ π q ?bets)

using ‹∀ q ∈ possibilities. π ?p ?bets ≤ π q ?bets›
‹possibility ?p›

unfolding possibilities-def
by blast

next
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fix n
assume ?: (∃ p∈possibilities. π p ?bets = n) ∧ (∀ q∈possibilities. n ≤ π q ?bets)
from this obtain p where π p ?bets = n and possibility p

using possibilities-def by blast
hence π p ?bets ≤ π ?p ?bets

using ? ‹possibility ?p›
unfolding possibilities-def
by blast

moreover have π ?p ?bets ≤ π p ?bets
using ‹∀ q ∈ possibilities. π ?p ?bets ≤ π q ?bets›

‹possibility p›
unfolding possibilities-def
by blast

ultimately show n = π ?p ?bets using ‹π p ?bets = n› by linarith
qed
thus k ≤ πmin ?bets

using ‹k ≤ π ?p ?bets›
by auto

qed

4 Coherence Checking
4.1 Introduction

In this section, we give an abstract algorithm for traders to use to detect if
a strategy they want to employ will always lose, i.e., is incoherent.

4.2 Maximum Payoff

The key to figuring out if a trading strategy will not always lose is computing
the strategy’s maximum payoff.
Below, we define the maximum payoff using a definite description.
definition (in consistent-classical-logic)

maximum-payoff :: ′a strategy ⇒ real (πmax) where
πmax b ≡ THE x. (∃ p ∈ possibilities. π p b = x)

∧ (∀ q ∈ possibilities. π q b ≤ x)

The following lemma establishes that our definition of πmax is well-defined.
lemma (in consistent-classical-logic) maximum-payoff-existence:
∃ ! x. (∃ p ∈ possibilities. π p bets = x)

∧ (∀ q ∈ possibilities. π q bets ≤ x)
proof (rule ex-ex1I )

show ∃ x. (∃ p ∈possibilities. π p bets = x)
∧ (∀ q ∈ possibilities. π q bets ≤ x)

proof (rule ccontr)
obtain bids ′ asks ′ where bets = (| asks = asks ′, bids = bids ′ |)

by (metis strategy.cases)
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assume @ x. (∃ p∈possibilities. π p bets = x)
∧ (∀ q∈possibilities. π q bets ≤ x)

hence ∀ x. (∃ p ∈ possibilities. π p bets = x)
−→ (∃ q ∈ possibilities. x < π q bets)

by (meson le-less-linear)
hence ?: ∀ p ∈ possibilities. ∃ q ∈ possibilities. π p bets < π q bets

by blast
have ♦: ∀ p ∈ possibilities. ∃ q ∈ possibilities.

settle p (asks ′∼ @ bids ′) < settle q (asks ′∼ @ bids ′)
proof

fix p
assume p ∈ possibilities
from this obtain q where q ∈ possibilities and π p bets < π q bets

using ? by blast
hence

settle p (asks ′∼ @ bids ′)
+ total-price asks ′

− total-price bids ′

− length asks ′

< settle q (asks ′∼ @ bids ′)
+ total-price asks ′

− total-price bids ′

− length asks ′

by (metis ‹π p bets < π q bets›
‹bets = (|asks = asks ′, bids = bids ′|)›
‹p ∈ possibilities›
possibilities-def
bid-revenue-equivalence
mem-Collect-eq)

hence settle p (asks ′∼ @ bids ′) < settle q (asks ′∼ @ bids ′)
by simp

thus ∃ q∈possibilities. settle p (asks ′∼ @ bids ′)
< settle q (asks ′∼ @ bids ′)

using ‹q ∈ possibilities› by blast
qed
{

fix bets :: ( ′a bet-offer) list
fix s :: ′a ⇒ bool
have ∃ n ∈ �. settle s bets = real n

unfolding settle-def settle-bet-def
by (induct bets,

auto,
metis

Nats-1
Nats-add
Suc-eq-plus1-left of-nat-Suc)

} note † = this
{

fix n :: nat
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have ∃ q ∈ possibilities. n ≤ settle q (asks ′∼ @ bids ′)
by (induct n,

metis
†
MCSs-are-possibilities
consistency
formula-consistent-def
formula-maximal-consistency
formula-maximally-consistent-extension
possibilities-def
set-deduction-base-theory
mem-Collect-eq
of-nat-0
of-nat-0-le-iff ,

metis ♦ † le-antisym not-less not-less-eq-eq of-nat-less-iff )
}
moreover
{

fix bets :: ( ′a bet-offer) list
fix s :: ′a ⇒ bool
have settle s bets ≤ length bets

unfolding settle-def settle-bet-def
by (induct bets, auto)

}
ultimately show False

by (metis † not-less-eq-eq of-nat-le-iff )
qed

next
fix x y
assume A: (∃ p∈possibilities. π p bets = x) ∧ (∀ q∈possibilities. π q bets ≤ x)
and B: (∃ p∈possibilities. π p bets = y) ∧ (∀ q∈possibilities. π q bets ≤ y)
from this obtain px py where

px ∈ possibilities
py ∈ possibilities
π px bets = x
π py bets = y
by blast

with A B have x ≤ y y ≤ x
by blast+

thus x = y by linarith
qed

4.3 Bounding Maximum Payoffs Above Using MaxSAT

Below, we present our first major theorem: computing an upper bound to a
strategy’s maximum payoff is equivalent to a bounded MaxSAT problem.
Given a software MaxSAT implementation, a trader can use this equivalence
to run a program to check whether the way they arrive at their strategies
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has a bug.
Note that while the theorem below is formulated using an arbitrary k con-
stant, in practice users will want to check their strategies are safe by using
k = 0.
theorem (in consistent-classical-logic) coherence-maxsat:

(πmax (| asks = asks ′, bids = bids ′ |) ≤ (k :: real))
= (MaxSAT [bet b . b ← asks ′∼ @ bids ′]
≤ k − total-price asks ′ + total-price bids ′ + length asks ′)

(is (πmax ?bets ≤ k) = (MaxSAT ?props ≤ - − total-price - + - + -))
proof

assume πmax ?bets ≤ k
let ?P = λ x . (∃ p ∈ possibilities. π p ?bets = x)

∧ (∀ q ∈ possibilities. π q ?bets ≤ x)
obtain p where

possibility p and
∀ q ∈ possibilities. π q ?bets ≤ π p ?bets

using ‹πmax ?bets ≤ k›
maximum-payoff-existence [of ?bets]

by (metis possibilities-def mem-Collect-eq)
hence ?P (π p ?bets)

using possibilities-def by blast
hence πmax ?bets = π p ?bets

unfolding maximum-payoff-def
using maximum-payoff-existence [of ?bets]

the1-equality [where P = ?P and a = π p ?bets]
by blast

let ?Φ = [ϕ ← ?props. p ϕ]

have mset ?Φ ⊆# mset ?props
by(induct ?props,

auto,
simp add: subset-mset.add-mono)

moreover
have ¬ (?Φ :` ⊥)
proof −

have set ?Φ ⊆ {x. p x}
by auto

hence ¬ (set ?Φ `̀ ⊥)
by (meson

‹possibility p›
possibilities-are-MCS [of p]
formula-consistent-def
formula-maximally-consistent-set-def-def
maximally-consistent-set-def
list-deduction-monotonic
set-deduction-def )

thus ?thesis
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using set-deduction-def by blast
qed
moreover
{

fix Ψ
assume mset Ψ ⊆# mset ?props and ¬ Ψ :` ⊥
from this obtain ΩΨ where MCS ΩΨ and set Ψ ⊆ ΩΨ

by (meson
formula-consistent-def
formula-maximal-consistency
formula-maximally-consistent-extension
list-deduction-monotonic
set-deduction-def )

let ?q = λϕ . ϕ ∈ ΩΨ

have possibility ?q
using ‹MCS ΩΨ› MCSs-are-possibilities by blast

hence π ?q ?bets ≤ π p ?bets
using ‹∀ q∈possibilities. π q ?bets ≤ π p ?bets›

possibilities-def
by blast

let ?c = total-price asks ′ − total-price bids ′ − length asks ′

have settle ?q (asks ′∼ @ bids ′) + ?c ≤ settle p (asks ′∼ @ bids ′) + ?c
using ‹π ?q ?bets ≤ π p ?bets›

‹possibility p›
bid-revenue-equivalence [of p asks ′ bids ′]
‹possibility ?q›
bid-revenue-equivalence [of ?q asks ′ bids ′]

by linarith
hence settle ?q (asks ′∼ @ bids ′) ≤ settle p (asks ′∼ @ bids ′)

by linarith
let ?Ψ ′ = [ϕ ← ?props. ?q ϕ]
have length ?Ψ ′ ≤ length ?Φ

using ‹settle ?q (asks ′∼ @ bids ′) ≤ settle p (asks ′∼ @ bids ′)›
unfolding settle-alt-def
by simp

moreover
have length Ψ ≤ length ?Ψ ′

proof −
have mset [ψ ← Ψ. ?q ψ] ⊆# mset ?Ψ ′

proof −
{

fix props :: ′a list
have ∀ Ψ. ∀ Ω.

mset Ψ ⊆# mset props
−→ mset [ψ ← Ψ. ψ ∈ Ω] ⊆# mset [ϕ ← props. ϕ ∈ Ω]

by (simp add: multiset-filter-mono)
}
thus ?thesis

using ‹mset Ψ ⊆# mset ?props› by blast
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qed
hence length [ψ ← Ψ. ?q ψ] ≤ length ?Ψ ′

by (metis
(no-types, lifting)
length-sub-mset
mset-eq-length
nat-less-le
not-le)

moreover have length Ψ = length [ψ ← Ψ. ?q ψ]
using ‹set Ψ ⊆ ΩΨ›
by (induct Ψ, simp+)

ultimately show ?thesis by linarith
qed
ultimately have length Ψ ≤ length ?Φ by linarith

}
ultimately have ?Φ ∈ M ?props ⊥

unfolding relative-maximals-def
by blast

hence MaxSAT ?props = length ?Φ
using relative-MaxSAT-intro by presburger

hence MaxSAT ?props = settle p (asks ′∼ @ bids ′)
unfolding settle-alt-def
by simp

thus MaxSAT ?props
≤ k − total-price asks ′ + total-price bids ′ + length asks ′

using bid-revenue-equivalence [of p asks ′ bids ′]
‹πmax ?bets ≤ k›
‹πmax ?bets = π p ?bets›
‹possibility p›

by linarith
next

let ?c = − total-price asks ′ + total-price bids ′ + length asks ′

assume MaxSAT ?props
≤ k − total-price asks ′ + total-price bids ′ + length asks ′

from this obtain Φ where Φ ∈ M ?props ⊥ and length Φ ≤ k + ?c
using

consistency
relative-MaxSAT-intro
relative-maximals-existence

by fastforce
hence ¬ Φ :` ⊥

using relative-maximals-def by blast
from this obtain ΩΦ where MCS ΩΦ and set Φ ⊆ ΩΦ

by (meson
formula-consistent-def
formula-maximal-consistency
formula-maximally-consistent-extension
list-deduction-monotonic
set-deduction-def )
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let ?p = λϕ . ϕ ∈ ΩΦ

have possibility ?p
using ‹MCS ΩΦ› MCSs-are-possibilities by blast

have mset Φ ⊆# mset ?props
using ‹Φ ∈ M ?props ⊥› relative-maximals-def by blast

have mset Φ ⊆# mset [ b ← ?props. ?p b]
by (metis

‹mset Φ ⊆# mset ?props›
‹set Φ ⊆ ΩΦ›
filter-True
mset-filter
multiset-filter-mono
subset-code(1 ))

have mset Φ = mset [ b ← ?props. ?p b]
proof (rule ccontr)

assume mset Φ 6= mset [ b ← ?props. ?p b]
hence length Φ < length [ b ← ?props. ?p b]

using
‹mset Φ ⊆# mset [ b ← ?props. ?p b]›
length-sub-mset not-less

by blast
moreover
have ¬ [ b ← ?props. ?p b] :` ⊥

by (metis
IntE
‹MCS ΩΦ›
inter-set-filter
formula-consistent-def
formula-maximally-consistent-set-def-def
maximally-consistent-set-def
set-deduction-def
subsetI )

hence length [ b ← ?props. ?p b] ≤ length Φ
by (metis

(mono-tags, lifting)
‹Φ ∈ M ?props ⊥›
relative-maximals-def [of ?props ⊥]
mem-Collect-eq
mset-filter
multiset-filter-subset)

ultimately show False
using not-le by blast

qed
hence length Φ = settle ?p (asks ′∼ @ bids ′)

unfolding settle-alt-def
using mset-eq-length
by metis

hence settle ?p (asks ′∼ @ bids ′) ≤ k + ?c
using ‹length Φ ≤ k + ?c› by linarith
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hence π ?p ?bets ≤ k
using ‹possibility ?p›

bid-revenue-equivalence [of ?p asks ′ bids ′]
‹length Φ ≤ k + ?c›
‹length Φ = settle ?p (asks ′∼ @ bids ′)›

by linarith
have ∀ q ∈ possibilities. π q ?bets ≤ π ?p ?bets
proof

{
fix x :: ′a
fix P A
have x ∈ Set.filter P A ←→ x ∈ A ∧ P x

by (simp add: filter-def )
}
note member-filter = this
fix q
assume q ∈ possibilities
hence possibility q unfolding possibilities-def by auto
hence ¬ [ b ← ?props. q b] :` ⊥

by (metis filter-set
possibilities-logical-closure
possibility-def
set-deduction-def
mem-Collect-eq
member-filter
subsetI )

hence length [ b ← ?props. q b] ≤ length Φ
by (metis (mono-tags, lifting)

‹Φ ∈ M ?props ⊥›
relative-maximals-def
mem-Collect-eq
mset-filter
multiset-filter-subset)

hence settle q (asks ′∼ @ bids ′) ≤ length Φ
by (metis of-nat-le-iff settle-alt-def )

thus π q ?bets ≤ π ?p ?bets
using bid-revenue-equivalence [OF ‹possibility ?p›]

bid-revenue-equivalence [OF ‹possibility q›]
‹length Φ = settle ?p (asks ′∼ @ bids ′)›

by force
qed
have πmax ?bets = π ?p ?bets

unfolding maximum-payoff-def
proof

show (∃ p∈possibilities. π p ?bets = π ?p ?bets)
∧ (∀ q∈possibilities. π q ?bets ≤ π ?p ?bets)

using ‹∀ q ∈ possibilities. π q ?bets ≤ π ?p ?bets›
‹possibility ?p›

unfolding possibilities-def
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by blast
next

fix n
assume ?: (∃ p∈possibilities. π p ?bets = n)

∧ (∀ q∈possibilities. π q ?bets ≤ n)
from this obtain p where π p ?bets = n and possibility p

using possibilities-def by blast
hence π ?p ?bets ≤ π p ?bets

using ? ‹possibility ?p›
unfolding possibilities-def
by blast

moreover have π p ?bets ≤ π ?p ?bets
using ‹∀ q ∈ possibilities. π q ?bets ≤ π ?p ?bets›

‹possibility p›
unfolding possibilities-def
by blast

ultimately show n = π ?p ?bets using ‹π p ?bets = n› by linarith
qed
thus πmax ?bets ≤ k

using ‹π ?p ?bets ≤ k›
by auto

qed

5 Probability Inequality Identity Correspondence
5.1 Introduction

In this section, we prove two forms of the probability inequality identity
correspondence theorem.
The two forms relate to πmin (i.e., arbitrage strategy determination) and
πmax (i.e., coherence testing).
In each case, the form follows from the reduction to bounded MaxSAT previ-
ously presented, and the reduction of bounded MaxSAT to probability logic,
we established in Probability-Inequality-Completeness.Probability-Inequality-Completeness.

5.2 Arbitrage Strategies and Minimum Payoff

First, we connect checking if a strategy is an arbitrage strategy and proba-
bility identities.
lemma (in consistent-classical-logic) arbitrageur-nonstrict-correspondence:

(k ≤ πmin (| asks = asks ′, bids = bids ′ |))
= (∀ P ∈ probabilities.

(
∑

b←asks ′. P (bet b)) + total-price bids ′ + k
≤ (

∑
s←bids ′. P (bet s)) + total-price asks ′)

(is ?lhs = -)
proof −
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let ?tot-bs = total-price bids ′ and ?tot-ss = total-price asks ′

let ?c = ?tot-bs − ?tot-ss + k
have [bet b . b ← bids ′∼ @ asks ′] = ∼ [bet s. s ← bids ′] @ [bet b. b ← asks ′]
(is - = ∼ ?bid-ϕs @ ?ask-ϕs)
unfolding negate-bets-def
by (induct bids ′, simp+)

hence
?lhs = (∀ P ∈ dirac-measures. (

∑
ϕ←?ask-ϕs. P ϕ) + ?c ≤ (

∑
γ←?bid-ϕs.

P γ))
using

dirac-inequality-equiv [of ?ask-ϕs ?c ?bid-ϕs]
arbitrageur-maxsat [of k asks ′ bids ′]

by force
moreover
{

fix P :: ′a ⇒ real
have (

∑
ϕ←?ask-ϕs. P ϕ) = (

∑
b←asks ′. P (bet b))

(
∑
γ←?bid-ϕs. P γ) = (

∑
s←bids ′. P (bet s))

by (simp add: comp-def )+
hence ((

∑
ϕ←?ask-ϕs. P ϕ) + ?c ≤ (

∑
γ←?bid-ϕs. P γ))

= ( (
∑

b←asks ′. P (bet b)) + ?tot-bs + k
≤ (

∑
s←bids ′. P (bet s)) + ?tot-ss)

by linarith
}
ultimately show ?thesis

by (meson dirac-measures-subset dirac-ceiling dirac-collapse subset-eq)
qed

lemma (in consistent-classical-logic) arbitrageur-strict-correspondence:
(k < πmin (| asks = asks ′, bids = bids ′ |))
= (∀ P ∈ probabilities.

(
∑

b←asks ′. P (bet b)) + total-price bids ′ + k
< (

∑
s←bids ′. P (bet s)) + total-price asks ′)

(is ?lhs = ?rhs)
proof

assume ?lhs
from this obtain ε where 0 < ε k + ε ≤ πmin (|asks = asks ′, bids = bids ′|)

using less-diff-eq by fastforce
hence ∀P ∈ probabilities.

(
∑

b←asks ′. P (bet b)) + total-price bids ′ + (k + ε)
≤ (

∑
s←bids ′. P (bet s)) + total-price asks ′

using arbitrageur-nonstrict-correspondence [of k + ε asks ′ bids ′] by auto
thus ?rhs

using ‹0 < ε› by auto
next

have [bet b . b ← bids ′∼ @ asks ′] = ∼ [bet s. s ← bids ′] @ [bet b. b ← asks ′]
(is - = ∼ ?bid-ϕs @ ?ask-ϕs)
unfolding negate-bets-def
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by (induct bids ′, simp+)
{

fix P :: ′a ⇒ real
have (

∑
b←asks ′. P (bet b)) = (

∑
ϕ←?ask-ϕs. P ϕ)

(
∑

b←bids ′. P (bet b)) = (
∑
ϕ←?bid-ϕs. P ϕ)

by (induct asks ′, auto, induct bids ′, auto)
}
note ? = this
let ?tot-bs = total-price bids ′ and ?tot-ss = total-price asks ′

let ?c = ?tot-bs + k − ?tot-ss
assume ?rhs
have ∀ P ∈ probabilities. (

∑
b←asks ′. P (bet b)) + ?c < (

∑
s←bids ′. P (bet s))

using ‹?rhs› by fastforce
hence ∀ P ∈ probabilities. (

∑
ϕ←?ask-ϕs. P ϕ) + ?c < (

∑
ϕ←?bid-ϕs. P ϕ)

using ? by auto
hence ∀ P ∈ dirac-measures. (

∑
ϕ←?ask-ϕs. P ϕ) + (b?cc + 1 ) ≤ (

∑
ϕ←?bid-ϕs.

P ϕ)
using strict-dirac-collapse [of ?ask-ϕs ?c ?bid-ϕs]
by auto

hence MaxSAT (∼ ?bid-ϕs @ ?ask-ϕs) + (b?cc + 1 ) ≤ length ?bid-ϕs
by (metis floor-add-int floor-mono floor-of-nat dirac-inequality-equiv)

hence MaxSAT (∼ ?bid-ϕs @ ?ask-ϕs) + ?c < length ?bid-ϕs
by linarith

from this obtain ε :: real where
0 < ε
MaxSAT (∼ ?bid-ϕs @ ?ask-ϕs) + (k + ε) ≤ ?tot-ss + length bids ′ − ?tot-bs
using less-diff-eq by fastforce

hence k + ε ≤ πmin (|asks = asks ′, bids = bids ′|)
using ‹[bet b . b ← bids ′∼ @ asks ′] = ∼ ?bid-ϕs @ ?ask-ϕs›

arbitrageur-maxsat [of k + ε asks ′ bids ′]
by simp

thus ?lhs
using ‹0 < ε› by linarith

qed

Below is our central result regarding checking if a strategy is an arbitrage
strategy:
A strategy is an arbitrage strategy if and only if there is a corresponding
identity in probability theory that reflects it.
theorem (in consistent-classical-logic) arbitrageur-correspondence:

(0 < πmin (| asks = asks ′, bids = bids ′ |))
= (∀ P ∈ probabilities.

(
∑

b←asks ′. P (bet b)) + total-price bids ′

< (
∑

s←bids ′. P (bet s)) + total-price asks ′)
by (simp add: arbitrageur-strict-correspondence)
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5.3 Coherence Checking and Maximum Payoff

Finally, we show the connection between coherence checking and probability
identities.
lemma (in consistent-classical-logic) coherence-nonstrict-correspondence:

(πmax (| asks = asks ′, bids = bids ′ |) ≤ k)
= (∀ P ∈ probabilities.

(
∑

b←bids ′. P (bet b)) + total-price asks ′

≤ (
∑

s←asks ′. P (bet s)) + total-price bids ′ + k)
(is ?lhs = -)

proof −
let ?tot-bs = total-price bids ′ and ?tot-ss = total-price asks ′

let ?c = ?tot-ss − ?tot-bs − k
have [bet b . b ← asks ′∼ @ bids ′] = ∼ [bet s. s ← asks ′] @ [bet b. b ← bids ′]
(is - = ∼ ?ask-ϕs @ ?bid-ϕs)
unfolding negate-bets-def
by (induct bids ′, simp+)

hence
?lhs = (∀ P ∈ dirac-measures. (

∑
ϕ←?bid-ϕs. P ϕ) + ?c ≤ (

∑
γ←?ask-ϕs.

P γ))
using

dirac-inequality-equiv [of ?bid-ϕs ?c ?ask-ϕs]
coherence-maxsat [of asks ′ bids ′ k]

by force
moreover
{

fix P :: ′a ⇒ real
have (

∑
ϕ←?ask-ϕs. P ϕ) = (

∑
b←asks ′. P (bet b))

(
∑
γ←?bid-ϕs. P γ) = (

∑
s←bids ′. P (bet s))

by (simp add: comp-def )+
hence ((

∑
ϕ←?bid-ϕs. P ϕ) + ?c ≤ (

∑
γ←?ask-ϕs. P γ))

= ((
∑

b←bids ′. P (bet b)) + ?tot-ss
≤ (

∑
s←asks ′. P (bet s)) + ?tot-bs + k)

by linarith
}
ultimately show ?thesis

by (meson dirac-measures-subset dirac-ceiling dirac-collapse subset-eq)
qed

lemma (in consistent-classical-logic) coherence-strict-correspondence:
(πmax (| asks = asks ′, bids = bids ′ |) < k)
= (∀ P ∈ probabilities.

(
∑

b←bids ′. P (bet b)) + total-price asks ′

< (
∑

s←asks ′. P (bet s)) + total-price bids ′ + k)
(is ?lhs = ?rhs)

proof
assume ?lhs
from this obtain ε where 0 < ε πmax (|asks = asks ′, bids = bids ′|) + ε ≤ k

using less-diff-eq by fastforce
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hence ∀P ∈ probabilities.
(
∑

b←bids ′. P (bet b)) + total-price asks ′ + ε
≤ (

∑
s←asks ′. P (bet s)) + total-price bids ′ + k

using coherence-nonstrict-correspondence [of asks ′ bids ′ k − ε] by auto
thus ?rhs

using ‹0 < ε› by auto
next

have [bet b . b ← asks ′∼ @ bids ′] = ∼ [bet s. s ← asks ′] @ [bet b. b ← bids ′]
(is - = ∼ ?ask-ϕs @ ?bid-ϕs)
unfolding negate-bets-def
by (induct bids ′, simp+)

{
fix P :: ′a ⇒ real
have (

∑
b←asks ′. P (bet b)) = (

∑
ϕ←?ask-ϕs. P ϕ)

(
∑

b←bids ′. P (bet b)) = (
∑
ϕ←?bid-ϕs. P ϕ)

by (induct asks ′, auto, induct bids ′, auto)
}
note ? = this
let ?tot-bs = total-price bids ′ and ?tot-ss = total-price asks ′

let ?c = ?tot-ss − ?tot-bs − k
assume ?rhs
have ∀ P ∈ probabilities. (

∑
b←bids ′. P (bet b)) + ?c < (

∑
s←asks ′. P (bet s))

using ‹?rhs› by fastforce
hence ∀ P ∈ probabilities. (

∑
ϕ←?bid-ϕs. P ϕ) + ?c < (

∑
ϕ←?ask-ϕs. P ϕ)

using ? by auto
hence ∀ P ∈ dirac-measures. (

∑
ϕ←?bid-ϕs. P ϕ) + (b?cc + 1 ) ≤ (

∑
ϕ←?ask-ϕs.

P ϕ)
using strict-dirac-collapse [of ?bid-ϕs ?c ?ask-ϕs]
by auto

hence MaxSAT (∼ ?ask-ϕs @ ?bid-ϕs) + (b?cc + 1 ) ≤ length ?ask-ϕs
by (metis floor-add-int floor-mono floor-of-nat dirac-inequality-equiv)

hence MaxSAT (∼ ?ask-ϕs @ ?bid-ϕs) + ?c < length ?ask-ϕs
by linarith

from this obtain ε :: real where
0 < ε
MaxSAT (∼ ?ask-ϕs @ ?bid-ϕs) + ?c + ε ≤ length asks ′

using less-diff-eq by fastforce
hence πmax (|asks = asks ′, bids = bids ′|) ≤ k − ε

using ‹[bet b . b ← asks ′∼ @ bids ′] = ∼ ?ask-ϕs @ ?bid-ϕs›
coherence-maxsat [of asks ′ bids ′ k − ε]

by auto
thus ?lhs using ‹0 < ε› by linarith

qed

Below is our central result regarding coherence testing:
A strategy is incoherent if and only if there is a corresponding identity in
probability theory that reflects it.
theorem (in consistent-classical-logic) coherence-correspondence:

(πmax (| asks = asks ′, bids = bids ′ |) < 0 )
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= (∀ P ∈ probabilities.
(
∑

b←bids ′. P (bet b)) + total-price asks ′

< (
∑

s←asks ′. P (bet s)) + total-price bids ′)
using coherence-strict-correspondence by force

no-notation Probability-Inequality-Completeness.relative-maximals (‹M›)

end
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