Arbitrage Opportunities Correspond to Probability
Inequality Identities

Matthew Doty

February 10, 2026

Abstract

We consider a fixed-odds gambling market over arbitrary logical
propositions, where participants trade bets involving conjunctions, dis-
junctions, and negations. In this setting, we establish a three-way
correspondence between the financial feasibility of trading strategies,
the validity of universal probability inequalities, and the solutions to
bounded Maximum Satisfiability (MaxSAT) problems.

The central result demonstrates that proving a trading strategy
constitutes an arbitrage opportunity (i.e., guaranteeing a risk-free profit
regardless of the outcome) is equivalent to proving a specific inequal-
ity identity holds for all probability functions, and is computationally
equivalent to establishing a lower bound on a corresponding MaxSAT
instance. Dually, we show that checking the coherence of a strategy
(i.e., ensuring it does not guarantee a loss) also corresponds to ver-
ifying a probability identity and bounding a MaxSAT problem from

above.

Contents

1 Introduction 2
1.1 Motivation 2
1.2 Overview of Results 3
1.3 Prior Worko 3

2 Fixed Odds Markets 5
2.1 Orders and Trading Strategies 5
2.2 Possibility Functions o000 5
2.3 Payoff Functions oo 8
2.4 Revenue Equivalence o oL 9

3 Arbitrage Strategies 10
3.1 Introduction. 10
3.2 Minimum Payoff 0 oo 11
3.3 Bounding Minimum Payoffs Below Using MaxSAT 13

4 Coherence Checking 19

4.1 Introduction. 19
4.2 Maximum Payoff oo 19
4.3 Bounding Maximum Payoffs Above Using MaxSAT 21
5 Probability Inequality Identity Correspondence 27
5.1 Introduction Lo 27
5.2 Arbitrage Strategies and Minimum Payoff 27
5.3 Coherence Checking and Maximum Payoff 30

1 Introduction

theory Arbitrage- Probability-Correspondence
imports
Probability-Inequality-Completeness. Probability- Inequality- Completeness
HOL.Real

begin

1.1 Motivation

Consider a fized-odds gambling market where participants trade bets on
arbitrary logical propositions.

In this setting, every bet pays out exactly $1 if the proposition is true
and $0 otherwise. Unlike traditional prediction markets like Predictlt or
Polymarket, which usually limit trading to mutually exclusive outcomes, we
assume a market that allows bets on any combination of logical operators:
AND (M), OR (U), and NOT (~).

To understand the relationship between market liquidity and probability
logic, imagine two events:

o A:: The NASDAQ will go up 1% by Friday

o B :: The S&P500 will go up 1% by Friday
Suppose the market order book contains the following quotes:

o ASK for A at $0.40 (Someone is selling/offering a bet on A).
o ASK for B at $0.50 (Someone is selling/offering a bet on B).
o BID for AN B at $0.30 (Someone wants to buy a bet on A AND B).

e BID for A U B at $0.70 (Someone wants to buy a bet on A OR B).

An arbitrageur can exploit these prices to guarantee a risk-free profit.

They act as a market taker for the ASKs (buying A and B) and as a market
maker for the BIDs (selling A AND B and A OR B).

The initial cash flow is positive:
Profit = (BID(A M B) + BID(A U B)) — (ASK(A) + ASK(B)) Profit =
(30.30 + $0.70) — ($0.40 + $0.50) = $1.00 — $0.90 = $0.10

Crucially, this profit is safe regardless of the outcome. The arbitrageur holds
long positions in A and B, and short positions in A M B and A U B.

o If both rise (True, True): The arbitrageur wins $2 on longs, pays $2
on shorts. Net: $0 payout.

o If only one rises (True, False): The arbitrageur wins $7 on longs, pays
$1 on short (the OR bet). Net: $0 payout.

o If neither rises (False, False): The arbitrageur wins $0, pay $0. Net:
$0 payout.

The arbitrage exists because the market prices violate the probability
identity:

Pr(A) + Pr(B) = Pr(AN B) + Pr(A U B)

The central result of this work generalizes this intuition:

Every arbitrage opportunity corresponds to a probability inequality iden-
tity.

1.2 Overview of Results

The central result of this work is as follows:

Proving a strategy will always yield a profit (if completely matched) in a
fized-odds gambling market over arbitrary logical propositions corresponds
to proving an inequality identity in probability logic, and also corresponds to
a bounded MazSAT problem.

Such strategies are referred to as arbitrage strategies.

We also consider the dual problem of identifying if a trading strategy will
never make a profit. Strategies that will never logically yield a profit are
called incoherent.

1.3 Prior Work

Two results that appear to be related at first glance are The Fundamental
Theorem(s) of Asset Pricing (FTAP) [6] and the Dutch Book Theorem [1,
3, 4, 5]. While the connection to FTAP is purely superficial, the results are

close in spirit to the Dutch Book tradition: we study when a collection of
fixed-odds commitments can be combined into a strategy that is guaranteed
to lose (or, dually, guaranteed to profit), and we treat such strategies as
computational objects.

The Fundamental Theorems of Asset Pricing (FTAP) connect a suitable no-
tion of no-arbitrage to the existence of a pricing functional (or, in stochastic
settings, an equivalent martingale measure) in an idealized, frictionless mar-
ket. In their classical formulations, the objects being priced are standard
financial assets (e.g., securities or commodities) represented by a spot price
or a price process, and the market model abstracts away from microstruc-
ture: order placement, order matching, bid/ask discreteness, and fixed-odds
quoting are not part of the primitive data. By contrast, we work directly
with fixed-odds markets for wagers on arbitrary logical propositions, where
the microstructure of how orders compose into strategies is central, and we
connect “no-arbitage” strategies to the existence of some scenario where the
strategy doesn’t always lose, which falls out of a certain bounded MaxSAT
calculation.

The Dutch Book literature shares more of our vocabulary. Philosophical
treatments emphasize coherence and the avoidance of a bad book: a collection
of bets that guarantees a loss. Following Hajek’s terminology [2], one may
also speak of good books. In this development, we adopt finance-oriented lan-
guage and refer to these objects as (loss-guaranteeing) arbitrage strategies,
because they are assembled from posted odds and executed mechanically
once the relevant orders are matched. We also work with possibility-style
representations in the spirit of Lehman, generalized to any instance of a
classical-logic.

Our main contribution is not a normative thesis that rational agents ought
to conform their degrees of belief to probability theory. Instead, we make
explicit a three-way correspondence between:

1. checking whether a bounded family of fixed-odds commitments is co-
herent (i.e., not loss-guaranteeing),

2. feasibility of a bounded MaxSAT instance derived from the same com-
mitments, and

3. certain inequalities that hold for all probability functions over the same
set of propositions.

Operationally, we only require the first criterion: there must exist a scenario
in which the strategy does not always lose. The MaxSAT formulation sup-
plies a concrete decision procedure, and the coNP-hardness of the resulting
feasibility questions explains why coherence checking is not a task one should
expect to perform reliably by hand.

We also study the dual problem: identifying strategies that are pure arbi-
trages (guaranteed nonnegative payoff with strictly positive payoff in some
outcome). Such strategies are useful not merely as pathologies, but as mech-
anisms for creating market depth. Intuitively, they can match BID interest
in one venue with ASK interest in another, improving execution for multiple
participants. From a microeconomic perspective, this can increase surplus
by enabling trades that would otherwise fail to clear.

2 Fixed Odds Markets

notation Probability-Inequality-Completeness.relative-mazimals (<M»)

unbundle no funcset-syntax

2.1 Orders and Trading Strategies

In this section, we model a fized odds market where each bet pays out $0
or $1, and people make and take bets. For simplicity, we consider BID and
ASK limit orders of a single unit (i.e., trades such that if they match, then
they are completely cleared). In an ordinary central limit order book, such
BID and ASK orders would have prices in the interval (0,1), but we do not
make use of this assumption in our proofs, as it is not necessary.
record 'p bet-offer =

bet :: 'p

price :: real

A trading strategy is a collection of BID and ASK orders that are to be
matched atomically.
Making a bet is when you ask a bet on the market, while taking a bet is
when you bid a bet on the market.
A market maker is one who puts up capital and asks bets, while a market
taker is one who bids bets.
In a trading strategy, the market participant acts as a market maker for the
ASK orders they are willing make and as a market taker for the BID orders
they are willing to make.
record 'p strategy =

asks :: ('p bet-offer) list

bids :: ('p bet-offer) list

2.2 Possibility Functions

Possibility functions are states of affairs that determine the outcomes of
bets. They were first used in Lehman’s formulation of the Dutch Book

Theorem [4]. Our approach diverges from Lehman’s. Lehman uses linear
programming to prove his result. Our formulation is pure probability logic.

We give our definition of a possibility function as follows:

definition (in classical-logic) possibility :: ("a = bool) = bool where
[simp]: possibility p =
- (p)
AV @ Fo—po)
ANV o .plg=1) —pe—pv)
ANV o.peVp(~e)

Our formulation of possibility functions generalizes Lehman’s. Lehman re-
stricts his definition to the language of classical propositional logic formulae.
We define ours over any arbitrary classical logic satisfying the axioms of the
classical-logic class.

definition (in classical-logic) possibilities :: (‘a = bool) set where
[simp]: possibilities = {p. possibility p}

lemma (in classical-logic) possibility-negation:
assumes possibility p
shows p (v — 1) = (= p 9)
proof
assume p (p — 1)
show — p ¢
proof
assume p ¢
havetF ¢ —» (¢ - L) —» L
by (simp add: double-negation-converse)
hence p ((¢p — 1) — 1)
using <p ¢ <possibility p» by auto
thus False using <p (¢ — L) <possibility p> by auto
qed
next
show = p o = p (p = 1)
using <possibility p» negation-def by fastforce
qed

lemma (in classical-logic) possibilities-logical-closure:
assumes possibility p
and {z. pz} b+ ¢
shows p ¢
proof —
{
fix T’
assume set I' C Collect p
henceV . I':-p — p o
proof (induct T')
case Nil
have Vp. - o — p @

using <possibility p> by auto
then show ?case
using list-deduction-base-theory by blast
next
case (Cons v T)
hence p v
by simp
haveV o. T':Fv = ¢ — p (v = ¢)
using Cons.hyps Cons.prems by auto
then show Zcase
by (meson
p P
<possibility p»
list-deduction-theorem
possibility-def)
qed
}
thus ?thesis

using «Collect p ¥ ¢» set-deduction-def by auto
qed

The next two lemmas establish that possibility functions are equivalent to
maximally consistent sets.

lemma (in classical-logic) possibilities-are-MCS:

assumes possibility p

shows MCS {z. p z}

using assms

by (metis
(mono-tags, lifting)
formula-consistent-def
formula-mazimally-consistent-set-def-def
mazimally-consistent-set-def
possibilities-logical-closure
possibility-def
mem-Collect-eq
negation-def)

lemma (in classical-logic) MCSs-are-possibilities:
assumes MCS s
shows possibility (A z. z € s)
proof —
have 1| ¢ s
using «(MCS s»
formula-consistent-def
formula-maximally-consistent-set-def-def
mazximally-consistent-set-def
set-deduction-reflection
by blast
moreover haveV ¢. - ¢ — ¢ € s

using «MCS s
formula-mazximally-consistent-set-def-reflection
mazximally-consistent-set-def
set-deduction-weaken

by blast

moreover haveV o ¢. (p > p) €Es — p €s— 1 Es

using «MCS s
formula-mazimal-consistency
formula-mazximally-consistent-set-def-implication

by blast

moreover haveV ¢. ¢ € sV (p = L) € s

using assms
formula-mazximally-consistent-set-def-implication
mazximally-consistent-set-def

by blast

ultimately show ?thesis by (simp add: negation-def)
qed

2.3 Payoff Functions

Given a market strategy and a possibility function, we can define the payoff
of that strategy if all the bet positions in that strategy were matched and
settled at the particular state of affairs given by the possibility function.

Recall that in a trading strategy, we act as a market maker for ask positions,
meaning we payout if the proposition behind the bet we are asking evaluates
to true.

Payoff is revenue from won bets minus costs of the BIDs for those bets, plus
revenue from sold ASK bets minus payouts from bets lost.
definition payoff :: (‘p = bool) = 'p strategy = real () where
[simp]: 7 s strategy =
(3~ @+ bids strategy. (if s (bet ©) then 1 else 0) — price i)
+ (3 i < asks strategy. price i — (if s (bet i) then 1 else 0))

Alternate definitions of the payout function 7 are to use the notion of settling
bets given a state of affairs. Settling is just paying out those bets that came
true.

definition settle-bet :: ('p = bool) = 'p = real where
settle-bet s p = if (s @) then 1 else 0

lemma payoff-alt-def1:
T s strateqy =
(>° @ « bids strategy. settle-bet s (bet ©) — price ©)
+ (O @ < asks strategy. price i — settle-bet s (bet 7))
unfolding settle-bet-def
by simp

definition settle :: ('p = bool) = 'p bet-offer list = real where

settle s bets = > b < bets. settle-bet s (bet b)

lemma settle-alt-def:
settle q bets = length [< [bet b . b < bets] . q ¢]
unfolding settle-def settle-bet-def
by (induct bets, simp+)

definition total-price :: ('p bet-offer) list = real where
total-price offers = Y i + offers. price i

lemma payoff-alt-def2:
7 s strateqy = settle s (bids strategy)
— settle s (asks strategy)
+ total-price (asks strategy)
— total-price (bids strategy)
unfolding payoff-alt-def1 total-price-def settle-def
by (simp add: sum-list-subtractf)

2.4 Revenue Equivalence

When evaluating a payout function, we can essentially convert BID orders
to ASK orders in a strategy, provided we properly account for locked capital
when calculating the effective prices for the new ASK positions.

definition (in classical-logic) negate-bets (-~) where
bets™ = [b (| bet := ~ (bet b) |). b + bets]

lemma (in classical-logic) ask-revenue-equivalence:
assumes possibility p
shows 7 p (asks = asks’, bids = bids’ |
= — settle p (bids"™ Q asks’)
+ total-price asks’
+ length bids'
— total-price bids’
proof (induct bids’)
case Nil
then show ?case
unfolding
payoff-alt-def2
negate-bets-def
total-price-def
settle-def
by simp
next
case (Cons bid’ bids’)
have p (~ (bet bid")) = (— (p (bet bid")))
using assms negation-def by auto
moreover have
total-price ((bid’ # bids") Q asks’)
= price bid’ + total-price bids' + total-price asks’

unfolding total-price-def
by (induct asks’, induct bids’, auto)
ultimately show ?case
using Cons
unfolding payoff-alt-def2 negate-bets-def settle-def settle-bet-def
by simp
qed

The dual is also true: when evaluating a payout function, we can, in a sense,
treat ASK as BID positions with proper accounting.

lemma (in classical-logic) bid-revenue-equivalence:
assumes possibility p
shows 7w p (asks = asks’, bids = bids’ |
= settle p (asks™ Q bids’)
+ total-price asks'
— total-price bids’
— length asks’
proof (induct asks’)
case Nil
then show ?case
unfolding
payoff-alt-def2
negate-bets-def
total-price-def
settle-def
settle-bet-def
by simp
next
case (Cons s asks')
have p (~ (bet s)) = (= (p (bet s))) using assms negation-def by auto
moreover have total-price ((s # asks’) @ bids’)
= price s + total-price asks’ + total-price bids’
unfolding total-price-def
by (induct bids’, induct asks’, auto)
ultimately show ?case
using Cons
unfolding payoff-alt-def2 negate-bets-def settle-def settle-bet-def
by simp
qged

3 Arbitrage Strategies
3.1 Introduction

In this section, we consider the problem of computing whether a strategy will
always yield a profit. Such strategies are referred to as arbitrage strategies.

10

3.2 Minimum Payoff

When computing whether a strategy is suited to arbitrage trading, we need
to know the minimum payoff of that strategy given every possible scenario.

definition (in consistent-classical-logic)
minimum-payoff :: 'a strateqy = real (Tmin) Where
Tmin 0 = THE x. (3 p € possibilities. 7 p b =)
A (Y g € possibilities. < 7 q b)

Since our definition of 7,,;, relies on a definite descriptor, we need the
following theorem to prove it is well-defined.

lemma (in consistent-classical-logic) minimum-payoff-existence:
I . (3 p € possibilities. m p bets = x) A (V q € possibilities. x < 7 q bets)
proof (rule ex-exll)
show Jz. (3 pepossibilities. m p bets =) N (V qEpossibilities. x < 7 q bets)
proof (rule ccontr)
obtain bids’ asks’ where bets = (| asks = asks’, bids = bids’)
by (metis strategy.cases)
assume fiz. (3 p € possibilities. ™ p bets = z) A (¥ q € possibilities. < T q
bets)
hence Vz. (3 p € possibilities. m p bets =) — (3 q € possibilities. ™ q bets
<)
by (meson le-less-linear)
hence x: Vp € possibilities. 3 q € possibilities. m q bets < m p bets
by blast
have ¢: V p € possibilities. 3 q € possibilities.
settle q (asks’™ @ bids") < settle p (asks™ Q@ bids’)
proof
fix p
assume p € possibilities
from this obtain ¢ where ¢ € possibilities and 7w q bets < w p bets
using x by blast
hence
settle g (asks™ Q bids’)
+ total-price asks’
— total-price bids’
— length asks’
< settle p (asks™ Q@ bids")
+ total-price asks’
— total-price bids’
— length asks’
by (metis <m q bets < 7 p bets»
<bets = (asks = asks’, bids = bids’))»
<p € possibilities)
possibilities-def
bid-revenue-equivalence
mem-Collect-eq)
hence settle g (asks™ Q@ bids’) < settle p (asks™ Q bids’)
by simp

11

thus 3 gepossibilities. settle q (asks™ Q bids’) < settle p (asks™ Q@ bids")
using <q € possibilities> by blast
qed
{
fix bets :: ('a bet-offer) list
fix s :: 'a = bool
have 3 n € N. settle s bets = real n
unfolding settle-def settle-bet-def
by (induct bets, auto, metis Nats-1 Nats-add Suc-eg-plus1-left of-nat-Suc)
} note t = this
{
fix n :: nat
have (3 p € possibilities. settle p (asks™ @ bids") < n)
— (3 ¢ € possibilities. settle q (asks™ Q bids’) < 0)
(is - — Zconsequent)
proof (induct n)
case (
{
fix p :: 'a = bool
assume p € possibilities and settle p (asks™ Q bids") < 0
from this obtain ¢ where
q € possibilities
settle g (asks™ Q bids") < settle p (asks™ Q bids’)
using ¢ by blast
hence Zconsequent
by (metis
f
<settle p (asks™ Q bids’) < 0>
of-nat-0-eq-iff
of-nat-le-0-iff)
}
then show ?Zcase by auto
next
case (Suc n)
{
fix p :: 'a = bool
assumep € possibilities and settle p (asks™ Q bids’) < Suc n
from this obtain ¢; where
q1 € possibilities
settle q1 (asks™ @ bids’) < Suc n
by (metis { antisym-conv not-less)
from this obtain ¢ where
qo € possibilities
settle o (asks™ Q@ bids’) < n
using ¢
by (metis
f
add.commute
nat-le-real-less

12

nat-less-le
of-nat-Suc
of-nat-less-iff)
hence ?consequent
by (metis T Suc.hyps nat-less-le of-nat-le-iff of-nat-less-iff)
}

then show ?case by auto
qed
}
hence 3 p. p € possibilities
by (metis T not-lessO of-nat-0 of-nat-less-iff order-refl)
moreover
have - {} + L
using consistency set-deduction-base-theory by auto
from this obtain I' where MCS T’
by (meson formula-consistent-def
formula-mazimal-consistency
formula-mazimally-consistent-extension)
hence (\ . v € T') € possibilities
using MCSs-are-possibilities possibilities-def by blast
ultimately show Fulse
by blast
qed
next
fix zy
assume A: (Ip € possibilities. ™ p bets = z) N\ (¥ q € possibilities. © < 7 q bets)
and B: (Ap € possibilities. © p bets = y) N (Y q € possibilities. y < 7 q bets)
from this obtain p, p, where
Pz € possibilities
Dy € possibilities
T pg bets =z

T py bets =y
by blast
with A Bhave z < yy <z
by blast+
thus z = y by linarith
qed

3.3 Bounding Minimum Payoffs Below Using MaxSAT

Below, we present our second major theorem: computing a lower bound to
a strategy’s minimum payoff is equivalent to checking a bounded MaxSAT
problem.

A concrete implementation of this algorithm would enable software search
for trading strategies that can convert orders from one central limit order
book to another.

As in the previous section, we prove our theorem in the general case of an
arbitrary k, but in practice users will want to set £k = 0 to check if their

13

strategy is an arbitrage strategy.

theorem (in consistent-classical-logic) arbitrageur-mazsat:
((k :: real) < mmin (asks = asks’, bids = bids')
= (MaxSAT [bet b . b + bids"™ Q asks’]
< total-price asks’ + length bids’ — total-price bids’ — k)
(is (k < Tmin ?bets) = (MazSAT ?props < total-price - + - — - — -))
proof
assume k < T,in “bets
let 2P = X z . (3 p € possibilities. ™ p Zbets = x)
A (V q € possibilities. © < m q ?bets)
obtain p where
possibility p and
Y q € possibilities. m p ?bets < m q ?bets
using <k < m,in Zbets
minimum-payoff-existence [of ?bets]
by (metis possibilities-def mem-Collect-eq)
hence 7P (w p ?bets)
using possibilities-def by blast
hence 7,,;, ?bets = m p %bets
unfolding minimum-payoff-def
using minimum-payoff-existence [of ?bets]
thel-equality [where P = 2P and a = 7 p %bets]
by blast

let & = [p <« ?props. p @]

have mset 20 C# mset ?props
by (induct ?props,
auto,
simp add: subset-mset.add-mono)
moreover
have - (20 : 1)
proof —
have set 70 C {z. p z}
by auto
hence — (set 7@ 1)
by (meson <possibility p»
possibilities-are-MCS [of p]
formula-consistent-def
formula-mazimally-consistent-set-def-def
mazimally-consistent-set-def
list-deduction-monotonic
set-deduction-def)
thus ?thesis
using set-deduction-def by blast
qed
moreover

{
fix ¥

14

assume mset ¥ C# mset ?props and - ¥ :+ L
from this obtain Qg where MCS Qg and set ¥ C Qg
by (meson formula-consistent-def
formula-mazimal-consistency
formula-mazimally-consistent-extension
list-deduction-monotonic
set-deduction-def)
let 7¢ = Ap . ¢ € Qyp
have possibility ?q
using <MCS Qg MCSs-are-possibilities by blast
hence 7 p ?bets < w ?q ?bets
using <V g€possibilities. m p ?bets < m q ?bets»
possibilities-def
by blast
let ?c = total-price asks’ + length bids’' — total-price bids’
have — settle p (bids"™ Q asks’) + ?¢ < — settle 2q (bids™ Q asks’) + %c
using «m p %bets < w ?q ?bets»
<possibility p»
ask-revenue-equivalence [of p asks’ bids’]
<possibility ?q»
ask-revenue-equivalence [of ?q asks’ bids’]
by linarith
hence settle ?2q (bids"™ Q asks’) < settle p (bids"™ Q asks’)
by linarith
let 20U’ = [p + Zprops. ?q ¢
have length 20’ < length ?®
using <settle ?q (bids"™ Q@ asks’) < settle p (bids"™ Q asks’)
unfolding settle-alt-def
by simp
moreover
have length ¥ < length ?¥’
proof —
have mset [+ U. 2q)] CH# mset 20’
proof —
{
fix props :: 'a list
have V V.V Q. mset W C# mset props —
mset [t < V. ¢ € Q] CH mset [< props. p € Q]
by (simp add: multiset-filter-mono)
}
thus ?thesis
using <mset U C# mset ?props> by blast
qed
hence length [t < . 2q ¢] < length 20’
by (metis (no-types, lifting) length-sub-mset mset-eq-length nat-less-le not-le)
moreover have length U = length [< V. 2q]
using <set ¥ C Qg
by (induct ¥, simp+)
ultimately show %thesis by linarith

15

qed
ultimately have length ¥ < length ?® by linarith

ultimately have & € M ?props L
unfolding relative-mazimals-def
by blast
hence MaxSAT ?props = length ?®
using relative-MaxSAT-intro by presburger
hence MaxSAT ?props = settle p (bids™ Q@ asks’)
unfolding settle-alt-def
by simp
thus MaxSAT ?props < total-price asks’ + length bids' — total-price bids' — k
using ask-revenue-equivalence [of p asks’ bids’]
<k < Tmin fbetsy
(Tmin ?bets = w p ?bets)
<possibility p»
by linarith
next
let ?c = total-price asks’ + length bids’ — total-price bids’
assume MazSAT ?props < total-price asks’ + length bids’ — total-price bids’ —
k
from this obtain ® where ® € M ?props | and length ® + k < ?c
using
consistency
relative-MaxSAT-intro
relative-maximals-existence
by fastforce
hence = & :- L
using relative-maximals-def by blast
from this obtain Q¢ where MCS Qg and set & C Qg
by (meson formula-consistent-def
formula-mazimal-consistency
formula-mazimally-consistent-extension
list-deduction-monotonic
set-deduction-def)
let 7p = Ap . p € Qg
have possibility ?p
using «<MCS Qg> MCSs-are-possibilities by blast
have mset ® C# mset ?props
using <& € M ?props L) relative-mazimals-def by blast
have mset ® C# mset [b + ?props. 7p b]
by (metis <mset & CH# mset ?props»
<set @ C Qp»
filter-True
mset-filter
multiset-filter-mono
subset-code(1))
have mset ® = mset [b « Zprops. ?p b]
proof (rule ccontr)

16

assume mset ® # mset [b < props. ?p b]
hence length ® < length [b < ?props. ?p b]
using
«mset ® CH# mset [b « Pprops. 7p b
length-sub-mset not-less
by blast
moreover
have — [b « ?props. ?p b] :F L
by (metis
IntE
<MCS Qo>
inter-set-filter
formula-consistent-def
formula-mazximally-consistent-set-def-def
mazximally-consistent-set-def
set-deduction-def
subsetl)
hence length [b «+ ?props. ?p b] < length ®
by (metis
(mono-tags, lifting)
«d e M Zprops L»
relative-mazximals-def [of ?props L]
mem-Collect-eq
mset-filter
multiset-filter-subset)
ultimately show Fulse
using not-le by blast
qed
hence length ® = settle ?p (bids™ Q asks’)
unfolding settle-alt-def
using mset-eq-length
by metis
hence k < settle ?p (bids"™ Q asks’)
+ total-price asks’ + length bids’ — total-price bids’
using <length ® + k < ?¢» by linarith
hence k < 7 ?p ?bets
using (possibility ?p>
ask-revenue-equivalence [of ?p asks’ bids']
<length ® + k < %¢»
length ® = settle ?p (bids™ Q@ asks’)»
by linarith
have V ¢ € possibilities. m ?p ?bets < 7 q ?bets
proof
{
fix z :: 'a
fix PA
have z € Set.filler PA+— € ANPzx
by (simp add: filter-def)
}

17

note member-filter = this
fix ¢
assume ¢ € possibilities
hence — [b + Zprops. q b] ;- L
unfolding possibilities-def
by (metis filter-set
possibilities-logical-closure
possibility-def
set-deduction-def
mem-Collect-eq
member-filter
subsetl)
hence length [b « ?props. q b] < length ®
by (metis (mono-tags, lifting)
«® € M Zprops L»
relative-mazimals-def
mem-Collect-eq
mset-filter
multiset-filter-subset)
hence
— settle ?p (bids™ Q asks’)
+ total-price asks’
+ length bids’
— total-price bids’
< — settle q (bids™ Q asks’)
+ total-price asks’
+ length bids’
— total-price bids’
using <length ® = settle ?p (bids"™ Q asks’)»
settle-alt-def [of q bids™ @ asks’]
by linarith
thus © ?p ?bets < w ¢ ?bets
using ask-revenue-equivalence [of ?p asks’ bids’]
ask-revenue-equivalence [of q asks’ bids’)
<possibility ?p»
<q € possibilities)
unfolding possibilities-def
by (metis mem-Collect-eq)
qed
have 7,,;, %bets = m ?p ?bets
unfolding minimum-payoff-def
proof
show (3 pepossibilities. ™ p ?bets = w ?p ?bets)
A (Y g€possibilities. m ?p Pbets < 7 q ?bets)
using (Vv ¢ € possibilities. m ?p ?bets < w q bets»
<possibility ?p»
unfolding possibilities-def
by blast
next

18

fix n
assume x: (3 pEpossibilities. m p Zbets = n) A (V g€possibilities. n < 7 q ?bets)
from this obtain p where 7w p ?bets = n and possibility p
using possibilities-def by blast
hence 7 p %bets < w ?p ?bets
using x (possibility ?p>
unfolding possibilities-def
by blast
moreover have 7w ?p Zbets < 7w p Zbets
using <V ¢ € possibilities. m ?p ?bets < m q ?bets»
<possibility p»
unfolding possibilities-def
by blast
ultimately show n = 7 %p %bets using «w p ?bets = n» by linarith
qed
thus & < 7w, “bets
using <k < 7 ?p ?bets»
by auto
qed

4 Coherence Checking
4.1 Introduction

In this section, we give an abstract algorithm for traders to use to detect if
a strategy they want to employ will always lose, i.e., is incoherent.

4.2 Maximum Payoff

The key to figuring out if a trading strategy will not always lose is computing
the strategy’s mazimum payoff.

Below, we define the maximum payoff using a definite description.

definition (in consistent-classical-logic)
mazimum-payoff :: 'a strateqy = real (T;q.) Where
Tmaz 0 = THE z. (3 p € possibilities. m p b =)
A (V q € possibilities. m ¢ b < x)

The following lemma establishes that our definition of 7,4, is well-defined.

lemma (in consistent-classical-logic) mazimum-payoff-existence:

Il z. (3 p € possibilities. w p bets = x)

A (V q € possibilities. m q bets < 1)

proof (rule ex-exll)

show Jz. (3 p €possibilities. ™ p bets = x)

A (Y q € possibilities. © q bets < x)
proof (rule ccontr)
obtain bids’ asks’ where bets = (| asks = asks’, bids = bids’)
by (metis strategy.cases)

19

assume P z. (I pepossibilities. w p bets =)
A (Y g€possibilities. w q bets < x)
hence Vz. (3 p € possibilities. m p bets = x)
— (3 q € possibilities. © < 7 q bets)
by (meson le-less-linear)
hence x: Vp € possibilities. 3 q € possibilities. ™ p bets < 7 q bets
by blast
have ¢: V p € possibilities. 3 q € possibilities.
settle p (asks™ Q bids’) < settle q (asks™ Q@ bids’)
proof
fix p
assume p € possibilities
from this obtain ¢ where q € possibilities and 7w p bets < 7 q bets
using x by blast
hence
settle p (asks™ Q bids’)
+ total-price asks’
— total-price bids’
— length asks’
< settle q (asks™ Q bids’)
+ total-price asks’
— total-price bids’
— length asks’
by (metis «m p bets < w q bets»
<bets = (asks = asks’, bids = bids’))»
(p € possibilities>
possibilities-def
bid-revenue-equivalence
mem-Collect-eq)
hence settle p (asks™ Q bids’) < settle q (asks™ Q bids’)
by simp
thus 3 gepossibilities. settle p (asks™ Q bids’)
< settle q (asks™ Q bids')
using <q € possibilities> by blast
qed

fix bets :: ('a bet-offer) list
fix s :: 'a = bool
have 3 n € N. settle s bets = real n
unfolding settle-def settle-bet-def
by (induct bets,
auto,
metis
Nats-1
Nats-add
Suc-eq-plus1-left of-nat-Suc)
} note 1 = this
{

fix n :: nat

20

have 3 ¢ € possibilities. n < settle q (asks”™ Q@ bids’)
by (induct n,

metis
T
MCSs-are-possibilities
consistency
formula-consistent-def
formula-mazimal-consistency
formula-mazximally-consistent-extension
possibilities-def
set-deduction-base-theory
mem-Collect-eq
of-nat-0
of-nat-0-le-iff,

metis O T le-antisym not-less not-less-eq-eq of-nat-less-iff)

}

moreover

fix bets :: ('a bet-offer) list

fix s :: 'a = bool

have settle s bets < length bets
unfolding settle-def settle-bet-def
by (induct bets, auto)

ultimately show Fulse
by (metis T not-less-eq-eq of-nat-le-iff)
qed
next

fix x y
assume A: (3 pEpossibilities. m p bets = z) N (V¥ qEpossibilities. m q bets <)
and B: (3 pepossibilities. m p bets = y) A (V gEpossibilities. ™ q bets < y)
from this obtain p, p, where

Pz € possibilities

Dy € possibilities

T pg bets = x

T py bets =y
by blast
with A Bhavez < yy <z
by blast+
thus z = y by linarith
qed

4.3 Bounding Maximum Payoffs Above Using MaxSAT

Below, we present our first major theorem: computing an upper bound to a
strategy’s maximum payoff is equivalent to a bounded MaxSAT problem.

Given a software MaxSAT implementation, a trader can use this equivalence
to run a program to check whether the way they arrive at their strategies

21

has a bug.

Note that while the theorem below is formulated using an arbitrary k con-

stant, in practice users will want to check their strategies are safe by using
k= 0.

theorem (in consistent-classical-logic) coherence-mazsat:
(Tmaz (asks = asks’, bids = bids’ |) < (k :: real))
= (MaxSAT [bet b . b « asks™ Q bids’|
< k — total-price asks’ + total-price bids' + length asks’)
(is (Tmae ?bets < k) = (MaxSAT ?props < - — total-price - + - + -))
proof
assume T, ., 2bets < k
let 2P = X z . (3 p € possibilities. ™ p Zbets = x)
A (VY q € possibilities. ™ q ?bets < x)
obtain p where
possibility p and
Y q € possibilities. m q ?bets < w p ?bets
using Ty a. bets < k»
mazimum-payoff-existence [of ?bets)

by (metis possibilities-def mem-Collect-eq)
hence ?P (7 p Zbets)

using possibilities-def by blast
hence 7,,q, fbets = 7w p ?bets

unfolding mazimum-payoff-def

using mazimum-payoff-existence [of ?bets]

thel-equality [where P = ?P and o = 7 p ?bets]

by blast

let 2® = [p « ?props. p @]

have mset 7® C# mset ?props
by (induct ?props,
auto,
stmp add: subset-mset.add-mono)
moreover
have - (% :+ 1)
proof —
have set 20 C {z. p z}
by auto
hence — (set 70 - 1)
by (meson
<possibility p»
possibilities-are-MCS [of p)
formula-consistent-def
formula-mazximally-consistent-set-def-def
mazximally-consistent-set-def
list-deduction-monotonic
set-deduction-def)
thus ?thesis

22

using set-deduction-def by blast
qed
moreover
{
fix ¥
assume mset W C# mset ?props and -~ U = |
from this obtain gy where MCS Qg and set ¥ C Qg
by (meson
formula-consistent-def
formula-mazimal-consistency
formula-mazximally-consistent-extension
list-deduction-monotonic
set-deduction-def)
let 2¢ = Ap . ¢ € Qg
have possibility ?q
using <MCS Qg MCSs-are-possibilities by blast
hence 7 ?q ?bets < w p ?bets
using <V g€possibilities. m q fbets < w p bets»
possibilities-def
by blast
let ?c = total-price asks’ — total-price bids’ — length asks’
have settle ?q (asks™ Q bids’) + ?c < settle p (asks™ @ bids’) + ?c
using «m ?q ?bets < w p Zbets»
<possibility p»
bid-revenue-equivalence [of p asks’ bids’]
<possibility ?q»
bid-revenue-equivalence [of ?q asks' bids’]
by linarith
hence settle ?q (asks™ Q bids’) < settle p (asks™ Q@ bids’)
by linarith
let 20U’ = [p + Zprops. ?q ¢
have length 20’ < length ?®
using «settle ?q (asks™ Q bids") < settle p (asks™ Q bids")»
unfolding settle-alt-def
by simp
moreover
have length ¥ < length 7V’
proof —
have mset [«+ V. 2q)] CH# mset 20’
proof —
{
fix props :: 'a list
have V V.V Q.
mset W C# mset props
— mset [1p «+ V. Y € Q] CH# mset [p + props. p €)]
by (simp add: multiset-filter-mono)
}
thus ?thesis
using (mset W C# mset ?props> by blast

23

qed
hence length [t < . 2q ¢] < length 20’
by (metis
(no-types, lifting)
length-sub-mset
mset-eq-length
nat-less-le
not-le)
moreover have length U = length [< V. 2q]
using <set ¥ C Qg
by (induct ¥, simp+)
ultimately show ?thesis by linarith
qed
ultimately have length ¥ < length ?® by linarith

ultimately have & € M ?props L
unfolding relative-mazimals-def
by blast
hence MaxSAT ?props = length ?®
using relative-MaxSAT-intro by presburger
hence MaxSAT ?props = settle p (asks™ @ bids’)
unfolding settle-alt-def
by simp
thus MaxSAT ?props
< k — total-price asks’ + total-price bids’ + length asks’
using bid-revenue-equivalence [of p asks’ bids’)
(Tmaz 2bets < k»
Tmaz bets = m p Zbets)
<possibility p»
by linarith
next
let ?c = — total-price asks’ + total-price bids' + length asks’
assume MaxSAT ?props
< k — total-price asks’ + total-price bids’' + length asks’
from this obtain ® where ® € M ?props L and length ® < k + %c
using
consistency
relative-MaxSAT-intro
relative-maximals-existence
by fastforce
hence = @ :+ L
using relative-maximals-def by blast
from this obtain 0 where MCS Q¢ and set & C Qg
by (meson
formula-consistent-def
formula-mazximal-consistency
formula-mazximally-consistent-extension
list-deduction-monotonic
set-deduction-def)

24

let ?2p = Ap . ¢ € Qo
have possibility ?p
using «(MCS Qg>» MCSs-are-possibilities by blast
have mset ® C# mset ?props
using «® € M ?props L» relative-mazimals-def by blast
have mset ® C# mset [b + Zprops. ?p b]
by (metis
<mset ® CH# mset ?props)
(set @ C Qg
filter-True
mset-filter
multiset-filter-mono
subset-code(1))
have mset ® = mset [b + Zprops. ?p b]
proof (rule ccontr)
assume mset ® # mset [b < Pprops. 7p b]
hence length ® < length [b <+ ?props. ?p b
using
«mset ® CH# mset [b « ?props. 7p b
length-sub-mset not-less
by blast
moreover
have - [b « ?props. %p b] :+ L
by (metis
IntE
«MCS Qg
inter-set-filter
formula-consistent-def
formula-mazximally-consistent-set-def-def
maximally-consistent-set-def
set-deduction-def
subsetl)
hence length [b + ?props. ?p b] < length ®
by (metis
(mono-tags, lifting)
«@ € M ?props L»
relative-mazximals-def [of ?props L]
mem-Collect-eq
mset-filter
multiset-filter-subset)
ultimately show Fulse
using not-le by blast
qed
hence length ® = settle ?p (asks™ Q bids’)
unfolding settle-alt-def
using mset-eq-length
by metis
hence settle ?p (asks™ @ bids’) < k + %c
using <length ® < k + ?¢» by linarith

25

hence © ?p %bets < k
using <possibility ?p»
bid-revenue-equivalence [of ?p asks’ bids']
<length ® < k + ¢
<length ® = settle ?p (asks™ Q bids’)»
by linarith
have V ¢ € possibilities. m q ?bets < 7 ?p ?bets
proof
{
fixz:'a
fix P A
have z € Set.filter PA+— € ANPzx
by (simp add: filter-def)
}

note member-filter = this
fix ¢
assume q € possibilities
hence possibility ¢ unfolding possibilities-def by auto
hence — [b + ?props. q b] ;- L
by (metis filter-set
possibilities-logical-closure
possibility-def
set-deduction-def
mem-Collect-eq
member-filter
subsetl)
hence length [b < ?props. q b] < length ®
by (metis (mono-tags, lifting)
«d € M Zprops L»
relative-mazimals-def
mem-Collect-eq
mset-filter
multiset-filter-subset)
hence settle q (asks™ @ bids’) < length ®
by (metis of-nat-le-iff settle-alt-def)
thus 7 ¢ %bets < w ?p ?bets
using bid-revenue-equivalence [OF <possibility ?p»)
bid-revenue-equivalence [OF <possibility ¢
length ® = settle ?p (asks™ Q@ bids’))
by force
qed
have 7,,,. ?bets = w ?p Zbets
unfolding mazimum-payoff-def
proof
show (3 pEpossibilities. m p ?bets = w ?p ?bets)
A (V g€possibilities. m q %bets < 7 ?p %bels)
using <V ¢ € possibilities. m q ?bets < m ?p ?bets»
<possibility ?p»
unfolding possibilities-def

26

by blast
next
fix n
assume *: (3 pEpossibilities. m p ?bets = n)
A (Y q€possibilities. m q ?bets < n)
from this obtain p where w p ?bets = n and possibility p
using possibilities-def by blast
hence 7 ?p %bets < 7 p ?bets
using * <possibility ?p»
unfolding possibilities-def
by blast
moreover have 7 p ?bets < w ?p ?bets
using Vv ¢ € possibilities. ™ q ?bets < m ?p Pbets»
<possibility p»
unfolding possibilities-def
by blast

ultimately show n = m ?p ?bets using «w p bets = n» by linarith

qed

thus m,,,0 Zbets < k
using «w ?p %bets < k»
by auto

qed

5 Probability Inequality Identity Correspondence

5.1 Introduction

In this section, we prove two forms of the probability inequality identity

correspondence theorem.

The two forms relate to 7, (i.e., arbitrage strategy determination) and

Tmaz (1.€., coherence testing).

In each case, the form follows from the reduction to bounded MaxSAT previ-
ously presented, and the reduction of bounded MaxSAT to probability logic,
we established in Probability-Inequality-Completeness. Probability-Inequality- Completeness.

5.2 Arbitrage Strategies and Minimum Payoff

First, we connect checking if a strategy is an arbitrage strategy and proba-

bility identities.

lemma (in consistent-classical-logic) arbitrageur-nonstrict-correspondence:

(k < mmin (asks = asks’, bids = bids’ |))
= (V P € probabilities.
(> be—asks’. P (bet b)) + total-price bids’ + k
< (3" s«bids’. P (bet s)) + total-price asks’)
(is ?lhs = -)
proof —

27

let ?tot-bs = total-price bids’ and ?tot-ss = total-price asks’
let ?c = ?tot-bs — ?tot-ss + k
have [bet b . b + bids"™ Q asks’] = ~ [bet s. s « bids’] @Q [bet b. b + asks’]
(is - = ~ ?bid-ps Q ?Zask-ps)
unfolding negate-bets-def
by (induct bids’, simp+)
hence
?lhs = (V P € dirac-measures. (D> o+ ?ask-ps. P @) + ¢ < (O v+ ?bid-ps.
P 7))
using
dirac-inequality-equiv [of ?ask-ps ?c ?bid-ps]
arbitrageur-mazsat [of k asks’ bids’]
by force
moreover
{
fix P :: 'a = real
have (3 g %ask-ps. P @) = (3 b<—asks’. P (bet b))
(O v+ 2bid-ps. P v) = (3 s<bids". P (bet s))
by (simp add: comp-def)+
hence ((> @« %ask-ps. P @) + %c < (3 v 2bid-ps. P 7))
= ((O bsasks’. P (bet b)) + %tot-bs + k
< (D7 s<=bids’. P (bet s)) + ?tot-ss)
by linarith
}
ultimately show ?thesis
by (meson dirac-measures-subset dirac-ceiling dirac-collapse subset-eq)
qged

lemma (in consistent-classical-logic) arbitrageur-strict-correspondence:
(k < Tmin (asks = asks’, bids = bids’)))
= (V P € probabilities.
(> bé—asks’. P (bet b)) + total-price bids’ + k
< (3° s¢bids’. P (bet s)) + total-price asks’)
(is ?lhs = %rhs)
proof
assume ?lhs
from this obtain € where 0 < ¢ k + ¢ < mn (asks = asks’, bids = bids’)
using less-diff-eq by fastforce
hence VP € probabilities.
(3" be—asks’. P (bet b)) + total-price bids' + (k + €)
< (5 s«—bids". P (bet s)) + total-price asks’
using arbitrageur-nonstrict-correspondence [of k + € asks’ bids’] by auto
thus ?rhs
using <0 < ¢» by auto
next
have [bet b . b + bids"™ Q asks’] = ~ [bet s. s « bids’] Q [bet b. b + asks’]
(is - = ~ %bid-ps Q Zask-ps)
unfolding negate-bets-def

28

by (induct bids’, simp+)
{
fix P :: 'a = real
have (3 b«—asks’. P (bet b)) = (3 p+ Zask-ps. P @)
(3" bebids’. P (bet b)) = (D <+ 2bid-ps. P)
by (induct asks’, auto, induct bids’, auto)
}
note x = this
let ?tot-bs = total-price bids’ and ?tot-ss = total-price asks’
let ?c = ?tot-bs + k — ?tot-ss
assume ?rhs
have V P € probabilities. (D_ b<—asks’. P (bet b)) + ?c < (. s<bids". P (bet s))
using < ?rhs» by fastforce
hence V P € probabilities. (> p+ %ask-ps. P @) + ?c < (O o+ ?bid-ps. P @)
using x by auto
hence V P € dirac-measures. (> p2ask-ps. P @) + (| ?c] + 1) < (3 o+ ?bid-ps.
P)
using strict-dirac-collapse [of ?ask-ps ¢ ?bid-ps]
by auto
hence MaxSAT (~ ?bid-ps @ Zask-ps) + (| ?c] + 1) < length ?bid-ps
by (metis floor-add-int floor-mono floor-of-nat dirac-inequality-equiv)
hence MaxSAT (~ ?bid-ps Q Zask-ps) + ¢ < length ?bid-ps
by linarith
from this obtain ¢ :: real where
0<e¢
MazSAT (~ ?bid-ps Q Zask-@s) + (k + &) < %tot-ss + length bids’ — ?tot-bs
using less-diff-eq by fastforce
hence k + ¢ < 7y (asks = asks’, bids = bids’)
using «<[bet b . b « bids"™ Q asks']| = ~ ?bid-ps Q ?ask-ps)
arbitrageur-mazsat [of k + € asks’ bids']
by simp
thus ?lhs
using <0 < &> by linarith
qed

Below is our central result regarding checking if a strategy is an arbitrage
strategy:

A strategy is an arbitrage strateqy if and only if there is a corresponding
identity in probability theory that reflects it.

theorem (in consistent-classical-logic) arbitrageur-correspondence:
(0 < Tmin (asks = asks’, bids = bids')))
= (V P € probabilities.
(> be—asks’. P (bet b)) + total-price bids’
< (D s¢<=bids’. P (bet s)) + total-price asks’)
by (simp add: arbitrageur-strict-correspondence)

29

5.3 Coherence Checking and Maximum Payoff

Finally, we show the connection between coherence checking and probability
identities.

lemma (in consistent-classical-logic) coherence-nonstrict-correspondence:
(Tmaz (asks = asks’, bids = bids’ |) < k)
= (V P € probabilities.
(>" be=bids’. P (bet b)) + total-price asks’
< (3 s¢<—asks’. P (bet s)) + total-price bids’ + k)
(is ?lhs = -)
proof —
let ?tot-bs = total-price bids’ and ?tot-ss = total-price asks’
let ?c = ?tot-ss — %tot-bs — k
have [bet b . b + asks™ Q bids] = ~ [bet s. s « asks’] Q [bet b. b + bids’]
(is - = ~ Zask-ps Q ?bid-ps)
unfolding negate-bets-def
by (induct bids’, simp+)
hence
?lhs = (V P € dirac-measures. (D o+ ?bid-ps. P @) + ¢ < (O v+ Pask-ps.
P 7))
using
dirac-inequality-equiv [of ?bid-ps ¢ Pask-ps]
coherence-mazsat [of asks’ bids’ k]
by force
moreover
{
fix P :: 'a = real
have (3 g %ask-ps. P @) = (3 b<—asks’. P (bet b))
(O v+ 2bid-ps. P v) = (3 s<bids". P (bet s))
by (simp add: comp-def)+
hence ((> p+2bid-ps. P @) + %¢ < (3 v+ Zask-ps. P 7))
= (O bebids". P (bet b)) + Ztot-ss
< (O° s<—asks’. P (bet s)) + Ztot-bs + k)
by linarith
}
ultimately show ?thesis
by (meson dirac-measures-subset dirac-ceiling dirac-collapse subset-eq)
qed

lemma (in consistent-classical-logic) coherence-strict-correspondence:
(Tmaz (| asks = asks', bids = bids’) < k)
= (V P € probabilities.
(5" b<—bids’. P (bet b)) + total-price asks’
< (3 s<—asks’. P (bet s)) + total-price bids' + k)
(is ?lhs = %rhs)
proof
assume ?lhs
from this obtain ¢ where 0 < ¢ T4, (asks = asks’, bids = bids’) + e < k
using less-diff-eq by fastforce

30

hence VP € probabilities.
(> be—bids’. P (bet b)) + total-price asks’ + ¢
< (3 s<—asks’. P (bet s)) + total-price bids' + k
using coherence-nonstrict-correspondence [of asks’ bids' k — €] by auto
thus ?rhs
using <0 < e by auto
next
have [bet b . b + asks™ Q bids] = ~ [bet s. s + asks’] Q [bet b. b + bids’]
(is - = ~ Zask-ps Q ?bid-ps)
unfolding negate-bets-def
by (induct bids’, simp+)
{
fix P :: 'a = real
have (3 b«asks’. P (bet b)) = (3 g+ Zask-ps. P @)
(3" bebids’. P (bet b)) = (D p<+2bid-ps. P)
by (induct asks’, auto, induct bids’, auto)
}
note x = this
let ?tot-bs = total-price bids’ and ?tot-ss = total-price asks’
let ?c = ?tot-ss — %tot-bs — k
assume ?rhs
have V P € probabilities. (> b<bids’. P (bet b)) + ?c < (>_ s<—asks’. P (bet s))
using < ?rhsy by fastforce
hence V P € probabilities. (> o+ ?bid-ps. P @) + %c < (3. o Zask-ps. P ¢)
using * by auto
hence V P € dirac-measures. (> o+ 2bid-ps. P @) + (| ?c| + 1) < (3 o+ Zask-ps.
P)
using strict-dirac-collapse [of ?bid-ps ¢ Pask-ps]
by auto
hence MaxSAT (~ ?ask-ps @ 2bid-ps) + (| 7c] + 1) < length ?ask-ps
by (metis floor-add-int floor-mono floor-of-nat dirac-inequality-equiv)
hence MaxSAT (~ ?ask-ps Q 2bid-ps) + ¢ < length Zask-@s
by linarith
from this obtain ¢ :: real where
0<e
MazSAT (~ ?ask-ps @ 2bid-ps) + ?c + ¢ < length asks’
using less-diff-eq by fastforce
hence 7,4, (asks = asks’, bids = bids') < k — ¢
using «[bet b . b « asks™ Q bids']| = ~ Zask-ps Q Zbid-ps»
coherence-mazsat [of asks’ bids' k — €]
by auto
thus ?lhs using <0 < &) by linarith
qged

Below is our central result regarding coherence testing:

A strategy is incoherent if and only if there is a corresponding identity in
probability theory that reflects it.

theorem (in consistent-classical-logic) coherence-correspondence:
(Tmaz (asks = asks’, bids = bids’) < 0)

31

= (V P € probabilities.
(>~ be—bids’. P (bet b)) + total-price asks’
< (3 s«—asks’. P (bet s)) + total-price bids’)
using coherence-strict-correspondence by force

no-notation Probability-Inequality-Completeness.relative-mazimals (<M>)

end

References

[1] B. De Finetti. Sui passaggi al limite nel calcolo delle probabilita. 63:1-12.
[2] A. Hajek. Scotching Dutch Books? 19:139-151.

[3] J. G. Kemeny. Fair bets and inductive probabilities. 20(3):263-273.

[4] R. S. Lehman. On Confirmation and Rational Betting. 20(3):251-262.

[5] F. P. Ramsey. Chapter 3. Truth and Probability. In J. B. Braithwaite,
editor, The Foundations of Mathematics and Other Logical Essays, num-
ber 5 in The International Library of Philosophy $ Philosophy of Logic
and Mathematics 32, Philosophy of Logic and Mathematics : In 8 Vol-
umes. Routledge.

[6] H. R. Varian. The Arbitrage Principle in Financial Economics.
1(2):55-72.

32

	Introduction
	Motivation
	Overview of Results
	Prior Work

	Fixed Odds Markets
	Orders and Trading Strategies
	Possibility Functions
	Payoff Functions
	Revenue Equivalence

	Arbitrage Strategies
	Introduction
	Minimum Payoff
	Bounding Minimum Payoffs Below Using MaxSAT

	Coherence Checking
	Introduction
	Maximum Payoff
	Bounding Maximum Payoffs Above Using MaxSAT

	Probability Inequality Identity Correspondence
	Introduction
	Arbitrage Strategies and Minimum Payoff
	Coherence Checking and Maximum Payoff

