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Abstract
This entry provides a formalisation of a refinement of an adaptive state counting algorithm, used to

test for reduction between finite state machines. The algorithm has been originally presented by Hierons
in [2] and was slightly refined by Sachtleben et al. in [3]. Definitions for finite state machines and adaptive
test cases are given and many useful theorems are derived from these. The algorithm is formalised using
mutually recursive functions, for which it is proven that the generated test suite is sufficient to test for
reduction against finite state machines of a certain fault domain. Additionally, the algorithm is specified in
a simple WHILE-language and its correctness is shown using Hoare-logic.
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theory FSM
imports

Transition-Systems-and-Automata.Sequence-Zip
Transition-Systems-and-Automata.Transition-System
Transition-Systems-and-Automata.Transition-System-Extra
Transition-Systems-and-Automata.Transition-System-Construction

begin

1 Finite state machines
We formalise finite state machines as a 4-tuples, omitting the explicit formulation of the state set,as it can
easily be calculated from the successor function. This definition does not require the successor function to be
restricted to the input or output alphabet, which is later expressed by the property well_formed, together with
the finiteness of the state set.
record ( ′in, ′out, ′state) FSM =

succ :: ( ′in × ′out) ⇒ ′state ⇒ ′state set
inputs :: ′in set
outputs :: ′out set
initial :: ′state

1.1 FSMs as transition systems
We interpret FSMs as transition systems with a singleton initial state set, based on [1].
global-interpretation FSM : transition-system-initial
λ a p. snd a — execute
λ a p. snd a ∈ succ A (fst a) p — enabled
λ p. p = initial A — initial
for A
defines path = FSM .path

and run = FSM .run
and reachable = FSM .reachable
and nodes = FSM .nodes

by this

abbreviation size-FSM M ≡ card (nodes M )
notation

size-FSM (‹(|-|)›)

1.2 Language
The following definitions establish basic notions for FSMs similarly to those of nondeterministic finite automata
as defined in [1].
In particular, the language of an FSM state are the IO-parts of the paths in the FSM enabled from that state.
abbreviation target ≡ FSM .target
abbreviation states ≡ FSM .states
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abbreviation trace ≡ FSM .trace

abbreviation successors :: ( ′in, ′out, ′state, ′more) FSM-scheme ⇒ ′state ⇒ ′state set where
successors ≡ FSM .successors TYPE( ′in) TYPE( ′out) TYPE( ′more)

lemma states-alt-def : states r p = map snd r
by (induct r arbitrary: p) (auto)

lemma trace-alt-def : trace r p = smap snd r
by (coinduction arbitrary: r p) (auto)

definition language-state :: ( ′in, ′out, ′state) FSM ⇒ ′state
⇒ ( ′in × ′out) list set (‹LS›)

where
language-state M q ≡ {map fst r |r . path M r q}

The language of an FSM is the language of its initial state.
abbreviation L M ≡ LS M (initial M )

lemma language-state-alt-def : LS M q = {io | io tr . path M (io || tr) q ∧ length io = length tr}
proof −

have LS M q ⊆ { io | io tr . path M (io || tr) q ∧ length io = length tr }
proof

fix xr assume xr-assm : xr ∈ LS M q
then obtain r where r-def : map fst r = xr path M r q

unfolding language-state-def by auto
then obtain xs ys where xr-split : xr = xs || ys

length xs = length ys
length xs = length xr

by (metis length-map zip-map-fst-snd)
then have (xs || ys) ∈ { io | io tr . path M (io || tr) q ∧ length io = length tr }
proof −

have f1 : xs || ys = map fst r
by (simp add: r-def (1 ) xr-split(1 ))

then have f2 : path M ((xs || ys) || take (min (length (xs || ys)) (length (map snd r)))
(map snd r)) q

by (simp add: r-def (2 ))
have length (xs || ys) = length

(take (min (length (xs || ys)) (length (map snd r))) (map snd r))
using f1 by force

then show ?thesis
using f2 by blast

qed
then show xr ∈ { io | io tr . path M (io || tr) q ∧ length io = length tr }

using xr-split by metis
qed
moreover have { io | io tr . path M (io || tr) q ∧ length io = length tr } ⊆ LS M q
proof

fix xs assume xs-assm : xs ∈ { io | io tr . path M (io || tr) q ∧ length io = length tr }
then obtain ys where ys-def : path M (xs || ys) q length xs = length ys

by auto
then have xs = map fst (xs || ys)

by auto
then show xs ∈ LS M q

using ys-def unfolding language-state-def by blast
qed
ultimately show ?thesis

by auto
qed

lemma language-state[intro]:
assumes path M (w || r) q length w = length r
shows w ∈ LS M q
using assms unfolding language-state-def by force
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lemma language-state-elim[elim]:
assumes w ∈ LS M q
obtains r
where path M (w || r) q length w = length r
using assms unfolding language-state-def by (force iff : split-zip-ex)

lemma language-state-split:
assumes w1 @ w2 ∈ LS M q
obtains tr1 tr2
where path M (w1 || tr1 ) q length w1 = length tr1

path M (w2 || tr2 ) (target (w1 || tr1 ) q) length w2 = length tr2
proof −

obtain tr where tr-def : path M ((w1 @ w2 ) || tr) q length (w1 @ w2 ) = length tr
using assms by blast

let ?tr1 = take (length w1 ) tr
let ?tr2 = drop (length w1 ) tr
have tr-split : ?tr1 @ ?tr2 = tr

by auto
then show ?thesis
proof −

have f1 : length w1 + length w2 = length tr
using tr-def (2 ) by auto

then have f2 : length w2 = length tr − length w1
by presburger

then have length w1 = length (take (length w1 ) tr)
using f1 by (metis (no-types) tr-split diff-add-inverse2 length-append length-drop)

then show ?thesis
using f2 by (metis (no-types) FSM .path-append-elim length-drop that tr-def (1 ) zip-append1 )

qed
qed

lemma language-state-prefix :
assumes w1 @ w2 ∈ LS M q

shows w1 ∈ LS M q
using assms by (meson language-state language-state-split)

lemma succ-nodes :
fixes A :: ( ′a, ′b, ′c) FSM
and w :: ( ′a × ′b)
assumes q2 ∈ succ A w q1
and q1 ∈ nodes A

shows q2 ∈ nodes A
proof −

obtain x y where w = (x,y)
by (meson surj-pair)

then have q2 ∈ successors A q1
using assms by auto

then have q2 ∈ reachable A q1
by blast

then have q2 ∈ reachable A (initial A)
using assms by blast

then show q2 ∈ nodes A
by blast

qed

lemma states-target-index :
assumes i < length p
shows (states p q1 ) ! i = target (take (Suc i) p) q1
using assms by auto

1.3 Product machine for language intersection
The following describes the construction of a product machine from two FSMs M1 and M2 such that the language
of the product machine is the intersection of the language of M1 and the language of M2.
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definition product :: ( ′in, ′out, ′state1 ) FSM ⇒ ( ′in, ′out, ′state2 ) FSM ⇒
( ′in, ′out, ′state1 × ′state2 ) FSM where
product A B ≡
(|

succ = λ a (p1, p2). succ A a p1 × succ B a p2,
inputs = inputs A ∪ inputs B,
outputs = outputs A ∪ outputs B,
initial = (initial A, initial B)
|)

lemma product-simps[simp]:
succ (product A B) a (p1, p2) = succ A a p1 × succ B a p2

inputs (product A B) = inputs A ∪ inputs B
outputs (product A B) = outputs A ∪ outputs B
initial (product A B) = (initial A, initial B)
unfolding product-def by simp+

lemma product-target[simp]:
assumes length w = length r1 length r1 = length r2

shows target (w || r1 || r2) (p1, p2) = (target (w || r1) p1, target (w || r2) p2)
using assms by (induct arbitrary: p1 p2 rule: list-induct3 ) (auto)

lemma product-path[iff ]:
assumes length w = length r1 length r1 = length r2

shows path (product A B) (w || r1 || r2) (p1, p2) ←→ path A (w || r1) p1 ∧ path B (w || r2) p2

using assms by (induct arbitrary: p1 p2 rule: list-induct3 ) (auto)

lemma product-language-state[simp]: LS (product A B) (q1 ,q2 ) = LS A q1 ∩ LS B q2
by (fastforce iff : split-zip)

lemma product-nodes :
nodes (product A B) ⊆ nodes A × nodes B

proof
fix q assume q ∈ nodes (product A B)
then show q ∈ nodes A × nodes B
proof (induction rule: FSM .nodes.induct)

case (initial p)
then show ?case by auto

next
case (execute p a)
then have fst p ∈ nodes A snd p ∈ nodes B

by auto

have snd a ∈ (succ A (fst a) (fst p)) × (succ B (fst a) (snd p))
using execute by auto

then have fst (snd a) ∈ succ A (fst a) (fst p)
snd (snd a) ∈ succ B (fst a) (snd p)

by auto

have fst (snd a) ∈ nodes A
using ‹fst p ∈ nodes A› ‹fst (snd a) ∈ succ A (fst a) (fst p)›
by (metis FSM .nodes.simps fst-conv snd-conv)

moreover have snd (snd a) ∈ nodes B
using ‹snd p ∈ nodes B› ‹snd (snd a) ∈ succ B (fst a) (snd p)›
by (metis FSM .nodes.simps fst-conv snd-conv)

ultimately show ?case
by (simp add: mem-Times-iff )

qed
qed

1.4 Required properties
FSMs used by the adaptive state counting algorithm are required to satisfy certain properties which are intro-
duced in here. Most notably, the observability property (see function observable) implies the uniqueness of
certain paths and hence allows for several stronger variations of previous results.
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fun finite-FSM :: ( ′in, ′out, ′state) FSM ⇒ bool where
finite-FSM M = (finite (nodes M )

∧ finite (inputs M )
∧ finite (outputs M ))

fun observable :: ( ′in, ′out, ′state) FSM ⇒ bool where
observable M = (∀ t . ∀ s1 . ((succ M ) t s1 = {})

∨ (∃ s2 . (succ M ) t s1 = {s2}))

fun completely-specified :: ( ′in, ′out, ′state) FSM ⇒ bool where
completely-specified M = (∀ s1 ∈ nodes M . ∀ x ∈ inputs M .

∃ y ∈ outputs M .
∃ s2 . s2 ∈ (succ M ) (x,y) s1 )

fun well-formed :: ( ′in, ′out, ′state) FSM ⇒ bool where
well-formed M = (finite-FSM M

∧ (∀ s1 x y . (x /∈ inputs M ∨ y /∈ outputs M )
−→ succ M (x,y) s1 = {})

∧ inputs M 6= {}
∧ outputs M 6= {})

abbreviation OFSM M ≡ well-formed M
∧ observable M
∧ completely-specified M

lemma OFSM-props[elim!] :
assumes OFSM M

shows well-formed M
observable M
completely-specified M using assms by auto

lemma set-of-succs-finite :
assumes well-formed M
and q ∈ nodes M

shows finite (succ M io q)
proof (rule ccontr)

assume infinite (succ M io q)
moreover have succ M io q ⊆ nodes M

using assms by (simp add: subsetI succ-nodes)
ultimately have infinite (nodes M )

using infinite-super by blast
then show False

using assms by auto
qed

lemma well-formed-path-io-containment :
assumes well-formed M
and path M p q

shows set (map fst p) ⊆ (inputs M × outputs M )
using assms proof (induction p arbitrary: q)
case Nil

then show ?case by auto
next

case (Cons a p)
have fst a ∈ (inputs M × outputs M )
proof (rule ccontr)

assume fst a /∈ inputs M × outputs M
then have fst (fst a) /∈ inputs M ∨ snd (fst a) /∈ outputs M

by (metis SigmaI prod.collapse)
then have succ M (fst a) q = {}

using Cons by (metis prod.collapse well-formed.elims(2 ))
moreover have (snd a) ∈ succ M (fst a) q

using Cons by auto
ultimately show False

by auto
qed
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moreover have set (map fst p) ⊆ (inputs M × outputs M )
using Cons by blast

ultimately show ?case
by auto

qed

lemma path-input-containment :
assumes well-formed M
and path M p q

shows set (map fst (map fst p)) ⊆ inputs M
using assms proof (induction p arbitrary: q rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc a p)
have set (map fst (p @ [a])) ⊆ (inputs M × outputs M )

using well-formed-path-io-containment[OF snoc.prems] by assumption
then have (fst a) ∈ (inputs M × outputs M )

by auto
then have fst (fst a) ∈ inputs M

by auto
moreover have set (map fst (map fst p)) ⊆ inputs M

using snoc.IH [OF snoc.prems(1 )]
using snoc.prems(2 ) by blast

ultimately show ?case
by simp

qed

lemma path-state-containment :
assumes path M p q
and q ∈ nodes M

shows set (map snd p) ⊆ nodes M
using assms by (metis FSM .nodes-states states-alt-def )

lemma language-state-inputs :
assumes well-formed M
and io ∈ language-state M q

shows set (map fst io) ⊆ inputs M
proof −

obtain tr where path M (io || tr) q length tr = length io
using assms(2 ) by auto

show ?thesis
by (metis (no-types)

‹
∧

thesis. (
∧

tr . [[path M (io || tr) q; length tr = length io]] =⇒ thesis) =⇒ thesis›
assms(1 ) map-fst-zip path-input-containment)

qed

lemma set-of-paths-finite :
assumes well-formed M
and q1 ∈ nodes M

shows finite { p . path M p q1 ∧ target p q1 = q2 ∧ length p ≤ k }
proof −

let ?trs = { tr . set tr ⊆ nodes M ∧ length tr ≤ k }
let ?ios = { io . set io ⊆ inputs M × outputs M ∧ length io ≤ k }
let ?iotrs = image (λ (io,tr) . io || tr) (?ios × ?trs)

let ?paths = { p . path M p q1 ∧ target p q1 = q2 ∧ length p ≤ k }

have finite (inputs M × outputs M )
using assms by auto

then have finite ?ios
using assms by (simp add: finite-lists-length-le)
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moreover have finite ?trs
using assms by (simp add: finite-lists-length-le)

ultimately have finite ?iotrs
by auto

moreover have ?paths ⊆ ?iotrs
proof

fix p assume p-assm : p ∈ { p . path M p q1 ∧ target p q1 = q2 ∧ length p ≤ k }
then obtain io tr where p-split : p = io || tr ∧ length io = length tr

using that by (metis (no-types) length-map zip-map-fst-snd)
then have io ∈ ?ios

using well-formed-path-io-containment
proof −

have f1 : path M p q1 ∧ target p q1 = q2 ∧ length p ≤ k
using p-assm by force

then have set io ⊆ inputs M × outputs M
by (metis (no-types) assms(1 ) map-fst-zip p-split well-formed-path-io-containment)

then show ?thesis
using f1 by (simp add: p-split)

qed

moreover have tr ∈ ?trs using p-split
proof −

have f1 : path M (io || tr) q1 ∧ target (io || tr) q1 = q2
∧ length (io || tr) ≤ k using ‹p ∈ {p. path M p q1
∧ target p q1 = q2 ∧ length p ≤ k}› p-split by force

then have f2 : length tr ≤ k by (simp add: p-split)
have set tr ⊆ nodes M

using f1 by (metis (no-types) assms(2 ) length-map p-split path-state-containment
zip-eq zip-map-fst-snd)

then show ?thesis
using f2 by blast

qed
ultimately show p ∈ ?iotrs

using p-split by auto
qed

ultimately show ?thesis
using Finite-Set.finite-subset by blast

qed

lemma non-distinct-duplicate-indices :
assumes ¬ distinct xs

shows ∃ i1 i2 . i1 6= i2 ∧ xs ! i1 = xs ! i2 ∧ i1 ≤ length xs ∧ i2 ≤ length xs
using assms by (meson distinct-conv-nth less-imp-le)

lemma reaching-path-without-repetition :
assumes well-formed M
and q2 ∈ reachable M q1
and q1 ∈ nodes M

shows ∃ p . path M p q1 ∧ target p q1 = q2 ∧ distinct (q1 # states p q1 )
proof −

have shorten-nondistinct : ∀ p. (path M p q1 ∧ target p q1 = q2 ∧ ¬ distinct (q1 # states p q1 ))
−→ (∃ p ′ . path M p ′ q1 ∧ target p ′ q1 = q2 ∧ length p ′ < length p)

proof
fix p
show (path M p q1 ∧ target p q1 = q2 ∧ ¬ distinct (q1 # states p q1 ))

−→ (∃ p ′ . path M p ′ q1 ∧ target p ′ q1 = q2 ∧ length p ′ < length p)
proof

assume assm : path M p q1 ∧ target p q1 = q2 ∧ ¬ distinct (q1 # states p q1 )
then show (∃ p ′. path M p ′ q1 ∧ target p ′ q1 = q2 ∧ length p ′ < length p)
proof (cases q1 ∈ set (states p q1 ))

case True
have ∃ i1 . target (take i1 p) q1 = q1 ∧ i1 ≤ length p ∧ i1 > 0
proof (rule ccontr)
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assume ¬ (∃ i1 . target (take i1 p) q1 = q1 ∧ i1 ≤ length p ∧ i1 > 0 )
then have ¬ (∃ i1 . (states p q1 ) ! i1 = q1 ∧ i1 ≤ length (states p q1 ))

by (metis True in-set-conv-nth less-eq-Suc-le scan-length scan-nth zero-less-Suc)
then have q1 /∈ set (states p q1 )

by (meson in-set-conv-nth less-imp-le)
then show False

using True by auto
qed
then obtain i1 where i1-def : target (take i1 p) q1 = q1 ∧ i1 ≤ length p ∧ i1 > 0

by auto

then have path M (take i1 p) q1
using assm by (metis FSM .path-append-elim append-take-drop-id)

moreover have path M (drop i1 p) q1
using i1-def by (metis FSM .path-append-elim append-take-drop-id assm)

ultimately have path M (drop i1 p) q1 ∧ (target (drop i1 p) q1 = q2 )
using i1-def by (metis (no-types) append-take-drop-id assm fold-append o-apply)

moreover have length (drop i1 p) < length p
using i1-def by auto

ultimately show ?thesis
using assms by blast

next
case False
then have assm ′ : path M p q1 ∧ target p q1 = q2 ∧ ¬ distinct (states p q1 )

using assm by auto

have ∃ i1 i2 . i1 6= i2 ∧ target (take i1 p) q1 = target (take i2 p) q1
∧ i1 ≤ length p ∧ i2 ≤ length p

proof (rule ccontr)
assume ¬ (∃ i1 i2 . i1 6= i2 ∧ target (take i1 p) q1 = target (take i2 p) q1

∧ i1 ≤ length p ∧ i2 ≤ length p)
then have ¬ (∃ i1 i2 . i1 6= i2 ∧ (states p q1 ) ! i1 = (states p q1 ) ! i2

∧ i1 ≤ length (states p q1 ) ∧ i2 ≤ length (states p q1 ))
by (metis (no-types, lifting) Suc-leI assm ′ distinct-conv-nth nat.inject

scan-length scan-nth)

then have distinct (states p q1 )
using non-distinct-duplicate-indices by blast

then show False
using assm ′ by auto

qed
then obtain i1 i2 where i-def : i1 < i2 ∧ target (take i1 p) q1 = target (take i2 p) q1

∧ i1 ≤ length p ∧ i2 ≤ length p
by (metis nat-neq-iff )

then have path M (take i1 p) q1
using assm by (metis FSM .path-append-elim append-take-drop-id)

moreover have path M (drop i2 p) (target (take i2 p) q1 )
by (metis FSM .path-append-elim append-take-drop-id assm)

ultimately have path M ((take i1 p) @ (drop i2 p)) q1
∧ (target ((take i1 p) @ (drop i2 p)) q1 = q2 )

using i-def assm
by (metis FSM .path-append append-take-drop-id fold-append o-apply)

moreover have length ((take i1 p) @ (drop i2 p)) < length p
using i-def by auto

ultimately have path M ((take i1 p) @ (drop i2 p)) q1
∧ target ((take i1 p) @ (drop i2 p)) q1 = q2
∧ length ((take i1 p) @ (drop i2 p)) < length p

by simp

then show ?thesis
using assms by blast
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qed
qed

qed

obtain p where p-def : path M p q1 ∧ target p q1 = q2
using assms by auto

let ?paths = {p ′ . (path M p ′ q1 ∧ target p ′ q1 = q2 ∧ length p ′ ≤ length p)}
let ?minPath = arg-min length (λ io . io ∈ ?paths)

have ?paths 6= empty
using p-def by auto

moreover have finite ?paths
using assms by (simp add: set-of-paths-finite)

ultimately have minPath-def : ?minPath ∈ ?paths ∧ (∀ p ′ ∈ ?paths . length ?minPath ≤ length p ′)
by (meson arg-min-nat-lemma equals0I )

moreover have distinct (q1 # states ?minPath q1 )
proof (rule ccontr)

assume ¬ distinct (q1 # states ?minPath q1 )
then have ∃ p ′ . path M p ′ q1 ∧ target p ′ q1 = q2 ∧ length p ′ < length ?minPath

using shorten-nondistinct minPath-def by blast
then show False

using minPath-def using arg-min-nat-le dual-order .strict-trans1 by auto
qed

ultimately show ?thesis by auto
qed

lemma observable-path-unique[simp] :
assumes io ∈ LS M q
and observable M
and path M (io || tr1 ) q length io = length tr1
and path M (io || tr2 ) q length io = length tr2

shows tr1 = tr2
proof (rule ccontr)

assume tr-assm : tr1 6= tr2
then have state-diff : (states (io || tr1 ) q ) 6= (states (io || tr2 ) q)

by (metis assms(4 ) assms(6 ) map-snd-zip states-alt-def )
show False
using assms tr-assm proof (induction io arbitrary: q tr1 tr2 )

case Nil
then show ?case using Nil

by simp
next

case (Cons io-hd io-tl)
then obtain tr1-hd tr1-tl tr2-hd tr2-tl where tr-split : tr1 = tr1-hd # tr1-tl

∧ tr2 = tr2-hd # tr2-tl
by (metis length-0-conv neq-Nil-conv)

have p1 : path M ([io-hd] || [tr1-hd]) q
using Cons.prems tr-split by auto

have p2 : path M ([io-hd] || [tr2-hd]) q
using Cons.prems tr-split by auto

have tr-hd-eq : tr1-hd = tr2-hd
using Cons.prems unfolding observable.simps

proof −
assume ∀ t s1 . succ M t s1 = {} ∨ (∃ s2 . succ M t s1 = {s2})
then show ?thesis

by (metis (no-types) p1 p2 FSM .path-cons-elim empty-iff prod.sel(1 ) prod.sel(2 ) singletonD
zip-Cons-Cons)

qed
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then show ?thesis
using Cons.IH Cons.prems(3 ) Cons.prems(4 ) Cons.prems(5 ) Cons.prems(6 ) Cons.prems(7 ) assms(2 )

tr-split by auto
qed

qed

lemma observable-path-unique-ex[elim] :
assumes observable M
and io ∈ LS M q

obtains tr
where { t . path M (io || t) q ∧ length io = length t } = { tr }
proof −

obtain tr where tr-def : path M (io || tr) q length io = length tr
using assms by auto

then have { t . path M (io || t) q ∧ length io = length t } 6= {}
by blast

moreover have ∀ t ∈ { t . path M (io || t) q ∧ length io = length t } . t = tr
using assms tr-def by auto

ultimately show ?thesis
using that by auto

qed

lemma well-formed-product[simp] :
assumes well-formed M1
and well-formed M2

shows well-formed (product M2 M1 ) (is well-formed ?PM )
unfolding well-formed.simps proof

have finite (nodes M1 ) finite (nodes M2 )
using assms by auto

then have finite (nodes M2 × nodes M1 )
by simp

moreover have nodes ?PM ⊆ nodes M2 × nodes M1
using product-nodes assms by blast

ultimately show finite-FSM ?PM
using infinite-subset assms by auto

next
have inputs ?PM = inputs M2 ∪ inputs M1

outputs ?PM = outputs M2 ∪ outputs M1
by auto

then show (∀ s1 x y. x /∈ inputs ?PM ∨ y /∈ outputs ?PM −→ succ ?PM (x, y) s1 = {})
∧ inputs ?PM 6= {} ∧ outputs ?PM 6= {}

using assms by auto
qed

1.5 States reached by a given IO-sequence
Function io_targets collects all states of an FSM reached from a given state by a given IO-sequence. Notably,
for any observable FSM, this set contains at most one state.
fun io-targets :: ( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ( ′in × ′out) list ⇒ ′state set where

io-targets M q io = { target (io || tr) q | tr . path M (io || tr) q ∧ length io = length tr }

lemma io-target-implies-L :
assumes q ∈ io-targets M (initial M ) io
shows io ∈ L M

proof −
obtain tr where path M (io || tr) (initial M )

length tr = length io
target (io || tr) (initial M ) = q

using assms by auto
then show ?thesis by auto

qed
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lemma io-target-from-path :
assumes path M (w || tr) q
and length w = length tr

shows target (w || tr) q ∈ io-targets M q w
using assms by auto

lemma io-targets-observable-singleton-ex :
assumes observable M
and io ∈ LS M q1

shows ∃ q2 . io-targets M q1 io = { q2 }
proof −

obtain tr where tr-def : { t . path M (io || t) q1 ∧ length io = length t } = { tr }
using assms observable-path-unique-ex by (metis (mono-tags, lifting))

then have io-targets M q1 io = { target (io || tr) q1 }
by fastforce

then show ?thesis
by blast

qed

lemma io-targets-observable-singleton-ob :
assumes observable M
and io ∈ LS M q1

obtains q2
where io-targets M q1 io = { q2 }

proof −
obtain tr where tr-def : { t . path M (io || t) q1 ∧ length io = length t } = { tr }

using assms observable-path-unique-ex by (metis (mono-tags, lifting))
then have io-targets M q1 io = { target (io || tr) q1 }

by fastforce
then show ?thesis using that by blast

qed

lemma io-targets-elim[elim] :
assumes p ∈ io-targets M q io

obtains tr
where target (io || tr) q = p ∧ path M (io || tr) q ∧ length io = length tr

using assms unfolding io-targets.simps by force

lemma io-targets-reachable :
assumes q2 ∈ io-targets M q1 io
shows q2 ∈ reachable M q1
using assms unfolding io-targets.simps by blast

lemma io-targets-nodes :
assumes q2 ∈ io-targets M q1 io
and q1 ∈ nodes M

shows q2 ∈ nodes M
using assms by auto

lemma observable-io-targets-split :
assumes observable M
and io-targets M q1 (vs @ xs) = {q3}
and io-targets M q1 vs = {q2}

shows io-targets M q2 xs = {q3}
proof −

have vs @ xs ∈ LS M q1
using assms(2 ) by force

then obtain trV trX where tr-def :
path M (vs || trV ) q1 length vs = length trV
path M (xs || trX) (target (vs || trV ) q1 ) length xs = length trX

using language-state-split[of vs xs M q1 ] by auto
then have tgt-V : target (vs || trV ) q1 = q2

using assms(3 ) by auto
then have path-X : path M (xs || trX) q2 ∧ length xs = length trX
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using tr-def by auto

have tgt-all : target (vs @ xs || trV @ trX) q1 = q3
proof −

have f1 : ∃ cs. q3 = target (vs @ xs || cs) q1
∧ path M (vs @ xs || cs) q1 ∧ length (vs @ xs) = length cs

using assms(2 ) by auto
have length (vs @ xs) = length trV + length trX

by (simp add: tr-def (2 ) tr-def (4 ))
then have length (vs @ xs) = length (trV @ trX)

by simp
then show ?thesis

using f1 by (metis FSM .path-append ‹vs @ xs ∈ LS M q1 › assms(1 ) observable-path-unique
tr-def (1 ) tr-def (2 ) tr-def (3 ) zip-append)

qed
then have target ((vs || trV ) @ (xs || trX)) q1 = q3

using tr-def by simp
then have target (xs || trX) q2 = q3

using tgt-V by auto
then have q3 ∈ io-targets M q2 xs

using path-X by auto
then show ?thesis

by (metis (no-types) ‹observable M › path-X insert-absorb io-targets-observable-singleton-ex
language-state singleton-insert-inj-eq ′)

qed

lemma observable-io-target-unique-target :
assumes observable M
and io-targets M q1 io = {q2}
and path M (io || tr) q1
and length io = length tr

shows target (io || tr) q1 = q2
using assms by auto

lemma target-in-states :
assumes length io = length tr
and length io > 0
shows last (states (io || tr) q) = target (io || tr) q

proof −
have 0 < length tr

using assms(1 ) assms(2 ) by presburger
then show ?thesis

by (simp add: FSM .target-alt-def assms(1 ) states-alt-def )
qed

lemma target-alt-def :
assumes length io = length tr
shows length io = 0 =⇒ target (io || tr) q = q

length io > 0 =⇒ target (io || tr) q = last tr
proof −

show length io = 0 =⇒ target (io || tr) q = q by simp
show length io > 0 =⇒ target (io || tr) q = last tr

by (metis assms last-ConsR length-greater-0-conv map-snd-zip scan-last states-alt-def )
qed

lemma obs-target-is-io-targets :
assumes observable M
and path M (io || tr) q
and length io = length tr

shows io-targets M q io = {target (io || tr) q}
by (metis assms(1 ) assms(2 ) assms(3 ) io-targets-observable-singleton-ex language-state

observable-io-target-unique-target)
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lemma io-target-target :
assumes io-targets M q1 io = {q2}
and path M (io || tr) q1
and length io = length tr

shows target (io || tr) q1 = q2
proof −

have target (io || tr) q1 ∈ io-targets M q1 io using assms(2 ) assms(3 ) by auto
then show ?thesis using assms(1 ) by blast

qed

lemma index-last-take :
assumes i < length xs
shows xs ! i = last (take (Suc i) xs)
by (simp add: assms take-Suc-conv-app-nth)

lemma path-last-io-target :
assumes path M (xs || tr) q
and length xs = length tr
and length xs > 0

shows last tr ∈ io-targets M q xs
proof −

have last tr = target (xs || tr) q
by (metis assms(2 ) assms(3 ) map-snd-zip states-alt-def target-in-states)

then show ?thesis using assms(1 ) assms(2 ) by auto
qed

lemma path-prefix-io-targets :
assumes path M (xs || tr) q
and length xs = length tr
and length xs > 0

shows last (take (Suc i) tr) ∈ io-targets M q (take (Suc i) xs)
proof −

have path M (take (Suc i) xs || take (Suc i) tr) q
by (metis (no-types) FSM .path-append-elim append-take-drop-id assms(1 ) take-zip)

then show ?thesis
using assms(2 ) assms(3 ) path-last-io-target by fastforce

qed

lemma states-index-io-target :
assumes i < length xs
and path M (xs || tr) q
and length xs = length tr
and length xs > 0

shows (states (xs || tr) q) ! i ∈ io-targets M q (take (Suc i) xs)
proof −

have (states (xs || tr) q) ! i = last (take (Suc i) (states (xs || tr) q))
by (metis assms(1 ) assms(3 ) map-snd-zip states-alt-def index-last-take)

then have (states (xs || tr) q) ! i = last (states (take (Suc i) xs || take (Suc i) tr) q)
by (simp add: take-zip)

then have (states (xs || tr) q) ! i = last (take (Suc i) tr)
by (simp add: assms(3 ) states-alt-def )

moreover have last (take (Suc i) tr) ∈ io-targets M q (take (Suc i) xs)
by (meson assms(2 ) assms(3 ) assms(4 ) path-prefix-io-targets)

ultimately show ?thesis
by simp

qed

lemma observable-io-targets-append :
assumes observable M
and io-targets M q1 vs = {q2}
and io-targets M q2 xs = {q3}
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shows io-targets M q1 (vs@xs) = {q3}
proof −

obtain trV where path M (vs || trV ) q1 ∧ length trV = length vs ∧ target (vs || trV ) q1 = q2
by (metis assms(2 ) io-targets-elim singletonI )

moreover obtain trX where path M (xs || trX) q2 ∧ length trX = length xs
∧ target (xs || trX) q2 = q3

by (metis assms(3 ) io-targets-elim singletonI )
ultimately have path M (vs @ xs || trV @ trX) q1 ∧ length (trV @ trX) = length (vs @ xs)

∧ target (vs @ xs || trV @ trX) q1 = q3
by auto

then show ?thesis
by (metis assms(1 ) obs-target-is-io-targets)

qed

lemma io-path-states-prefix :
assumes observable M
and path M (io1 || tr1 ) q
and length tr1 = length io1
and path M (io2 || tr2 ) q
and length tr2 = length io2
and prefix io1 io2

shows tr1 = take (length tr1 ) tr2
proof −

let ?tr1 ′ = take (length tr1 ) tr2
let ?io1 ′ = take (length tr1 ) io2
have path M (?io1 ′ || ?tr1 ′) q

by (metis FSM .path-append-elim append-take-drop-id assms(4 ) take-zip)
have length ?tr1 ′ = length ?io1 ′

using assms (5 ) by auto

have ?io1 ′ = io1
proof −

have ∀ ps psa. ¬ prefix (ps::( ′a × ′b) list) psa ∨ length ps ≤ length psa
using prefix-length-le by blast

then have length (take (length tr1 ) io2 ) = length io1
using assms(3 ) assms(6 ) min.absorb2 by auto

then show ?thesis
by (metis assms(6 ) min.cobounded2 min-def-raw prefix-length-prefix

prefix-order .dual-order .antisym take-is-prefix)
qed

show tr1 = ?tr1 ′

by (metis ‹length (take (length tr1 ) tr2 ) = length (take (length tr1 ) io2 )›
‹path M (take (length tr1 ) io2 || take (length tr1 ) tr2 ) q› ‹take (length tr1 ) io2 = io1 ›
assms(1 ) assms(2 ) assms(3 ) language-state observable-path-unique)

qed

lemma observable-io-targets-suffix :
assumes observable M
and io-targets M q1 vs = {q2}
and io-targets M q1 (vs@xs) = {q3}

shows io-targets M q2 xs = {q3}
proof −

have prefix vs (vs@xs)
by auto

obtain trV where path M (vs || trV ) q1 ∧ length trV = length vs ∧ target (vs || trV ) q1 = q2
by (metis assms(2 ) io-targets-elim singletonI )

moreover obtain trVX where path M (vs@xs || trVX) q1
∧ length trVX = length (vs@xs) ∧ target (vs@xs || trVX) q1 = q3

by (metis assms(3 ) io-targets-elim singletonI )
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ultimately have trV = take (length trV ) trVX
using io-path-states-prefix[OF assms(1 ) - - - - ‹prefix vs (vs@xs)›, of trV q1 trVX ] by auto

show ?thesis
by (meson assms(1 ) assms(2 ) assms(3 ) observable-io-targets-split)

qed

lemma observable-io-target-is-singleton[simp] :
assumes observable M
and p ∈ io-targets M q io

shows io-targets M q io = {p}
proof −

have io ∈ LS M q
using assms(2 ) by auto

then obtain p ′ where io-targets M q io = {p ′}
using assms(1 ) by (meson io-targets-observable-singleton-ex)

then show ?thesis
using assms(2 ) by simp

qed

lemma observable-path-prefix :
assumes observable M
and path M (io || tr) q
and length io = length tr
and path M (ioP || trP) q
and length ioP = length trP
and prefix ioP io

shows trP = take (length ioP) tr
proof −

have ioP-def : ioP = take (length ioP) io
using assms(6 ) by (metis append-eq-conv-conj prefixE)

then have take (length ioP) (io || tr) = take (length ioP) io || take (length ioP) tr
using take-zip by blast

moreover have path M (take (length ioP) (io || tr)) q
using assms by (metis FSM .path-append-elim append-take-drop-id)

ultimately have path M (take (length ioP) io || take (length ioP) tr) q
∧ length (take (length ioP) io) = length (take (length ioP) tr)

using assms(3 ) by auto
then have path M (ioP || take (length ioP) tr) q ∧ length ioP = length (take (length ioP) tr)

using assms(3 ) using ioP-def by auto
then show ?thesis

by (meson assms(1 ) assms(4 ) assms(5 ) language-state observable-path-unique)
qed

lemma io-targets-succ :
assumes q2 ∈ io-targets M q1 [xy]
shows q2 ∈ succ M xy q1

proof −
obtain tr where tr-def : target ([xy] || tr) q1 = q2

path M ([xy] || tr) q1
length [xy] = length tr

using assms by auto

have length tr = Suc 0
using ‹length [xy] = length tr› by auto

then obtain q2 ′ where tr = [q2 ′]
by (metis Suc-length-conv length-0-conv)

then have target ([xy] || tr) q1 = q2 ′

by auto
then have q2 ′ = q2

using ‹target ([xy] || tr) q1 = q2 › by simp
then have path M ([xy] || [q2 ]) q1

using tr-def (2 ) ‹tr = [q2 ′]› by auto
then have path M [(xy,q2 )] q1
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by auto

show ?thesis
proof (cases rule: FSM .path.cases[of M [(xy,q2 )] q1 ])

case nil
show ?case

using ‹path M [(xy,q2 )] q1 › by simp
next

case cons
show snd (xy, q2 ) ∈ succ M (fst (xy, q2 )) q1 =⇒ path M [] (snd (xy, q2 ))

=⇒ q2 ∈ succ M xy q1
by auto

qed
qed

1.6 D-reachability
A state of some FSM is d-reached (deterministically reached) by some input sequence if any sequence in the
language of the FSM with this input sequence reaches that state. That state is then called d-reachable.
abbreviation d-reached-by M p xs q tr ys ≡

((length xs = length ys ∧ length xs = length tr
∧ (path M ((xs || ys) || tr) p) ∧ target ((xs || ys) || tr) p = q)
∧ (∀ ys2 tr2 . (length xs = length ys2 ∧ length xs = length tr2
∧ path M ((xs || ys2 ) || tr2 ) p) −→ target ((xs || ys2 ) || tr2 ) p = q))

fun d-reaches :: ( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ′in list ⇒ ′state ⇒ bool where
d-reaches M p xs q = (∃ tr ys . d-reached-by M p xs q tr ys)

fun d-reachable :: ( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ′state set where
d-reachable M p = { q . (∃ xs . d-reaches M p xs q) }

lemma d-reaches-unique[elim] :
assumes d-reaches M p xs q1
and d-reaches M p xs q2

shows q1 = q2
using assms unfolding d-reaches.simps by blast

lemma d-reaches-unique-cases[simp] : { q . d-reaches M (initial M ) xs q } = {}
∨ (∃ q2 . { q . d-reaches M (initial M ) xs q } = { q2 })

unfolding d-reaches.simps by blast

lemma d-reaches-unique-obtain[simp] :
assumes d-reaches M (initial M ) xs q

shows { p . d-reaches M (initial M ) xs p } = { q }
using assms unfolding d-reaches.simps by blast

lemma d-reaches-io-target :
assumes d-reaches M p xs q
and length ys = length xs

shows io-targets M p (xs || ys) ⊆ {q}
proof

fix q ′ assume q ′ ∈ io-targets M p (xs || ys)
then obtain trQ where path M ((xs || ys) || trQ) p ∧ length (xs || ys) = length trQ

by auto
moreover obtain trD ysD where d-reached-by M p xs q trD ysD using assms(1 )

by auto
ultimately have target ((xs || ys) || trQ) p = q

by (simp add: assms(2 ))
then show q ′ ∈ {q}

using ‹d-reached-by M p xs q trD ysD› ‹q ′ ∈ io-targets M p (xs || ys)› assms(2 ) by auto
qed

lemma d-reachable-reachable : d-reachable M p ⊆ reachable M p
unfolding d-reaches.simps d-reachable.simps by blast
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1.7 Deterministic state cover
The deterministic state cover of some FSM is a minimal set of input sequences such that every d-reachable state
of the FSM is d-reached by a sequence in the set and the set contains the empty sequence (which d-reaches the
initial state).
fun is-det-state-cover-ass :: ( ′in, ′out, ′state) FSM ⇒ ( ′state ⇒ ′in list) ⇒ bool where

is-det-state-cover-ass M f = (f (initial M ) = [] ∧ (∀ s ∈ d-reachable M (initial M ) .
d-reaches M (initial M ) (f s) s))

lemma det-state-cover-ass-dist :
assumes is-det-state-cover-ass M f
and s1 ∈ d-reachable M (initial M )
and s2 ∈ d-reachable M (initial M )
and s1 6= s2

shows ¬(d-reaches M (initial M ) (f s2 ) s1 )
by (meson assms(1 ) assms(3 ) assms(4 ) d-reaches-unique is-det-state-cover-ass.simps)

lemma det-state-cover-ass-diff :
assumes is-det-state-cover-ass M f
and s1 ∈ d-reachable M (initial M )
and s2 ∈ d-reachable M (initial M )
and s1 6= s2

shows f s1 6= f s2
by (metis assms det-state-cover-ass-dist is-det-state-cover-ass.simps)

fun is-det-state-cover :: ( ′in, ′out, ′state) FSM ⇒ ′in list set ⇒ bool where
is-det-state-cover M V = (∃ f . is-det-state-cover-ass M f

∧ V = image f (d-reachable M (initial M )))

lemma det-state-cover-d-reachable[elim] :
assumes is-det-state-cover M V
and v ∈ V

obtains q
where d-reaches M (initial M ) v q

by (metis (no-types, opaque-lifting) assms(1 ) assms(2 ) image-iff is-det-state-cover .simps
is-det-state-cover-ass.elims(2 ))

lemma det-state-cover-card[simp] :
assumes is-det-state-cover M V
and finite (nodes M )

shows card (d-reachable M (initial M )) = card V
proof −

obtain f where f-def : is-det-state-cover-ass M f ∧ V = image f (d-reachable M (initial M ))
using assms unfolding is-det-state-cover .simps by blast

then have card-f : card V = card (image f (d-reachable M (initial M )))
by simp

have d-reachable M (initial M ) ⊆ nodes M
unfolding d-reachable.simps d-reaches.simps using d-reachable-reachable by blast

then have dr-finite : finite (d-reachable M (initial M ))
using assms infinite-super by blast

then have card-le : card (image f (d-reachable M (initial M ))) ≤ card (d-reachable M (initial M ))
using card-image-le by blast

have card (image f (d-reachable M (initial M ))) = card (d-reachable M (initial M ))
by (meson card-image det-state-cover-ass-diff f-def inj-onI )

then show ?thesis using card-f by auto
qed

lemma det-state-cover-finite :
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assumes is-det-state-cover M V
and finite (nodes M )

shows finite V
proof −

have d-reachable M (initial M ) ⊆ nodes M
by auto

show finite V using det-state-cover-card[OF assms]
by (metis ‹d-reachable M (initial M ) ⊆ nodes M › assms(1 ) assms(2 ) finite-imageI infinite-super

is-det-state-cover .simps)
qed

lemma det-state-cover-initial :
assumes is-det-state-cover M V
shows [] ∈ V

proof −
have d-reached-by M (initial M ) [] (initial M ) [] []

by (simp add: FSM .nil)
then have d-reaches M (initial M ) [] (initial M )

by auto

have initial M ∈ d-reachable M (initial M )
by (metis (no-types) ‹d-reaches M (initial M ) [] (initial M )› d-reachable.simps mem-Collect-eq)

then show ?thesis
by (metis (no-types, lifting) assms image-iff is-det-state-cover .elims(2 )

is-det-state-cover-ass.simps)
qed

lemma det-state-cover-empty :
assumes is-det-state-cover M V
shows [] ∈ V

proof −
obtain f where f-def : is-det-state-cover-ass M f ∧ V = f ‘ d-reachable M (initial M )

using assms by auto
then have f (initial M ) = []

by auto
moreover have initial M ∈ d-reachable M (initial M )
proof −

have d-reaches M (initial M ) [] (initial M )
by auto

then show ?thesis
by (metis d-reachable.simps mem-Collect-eq)

qed
moreover have f (initial M ) ∈ V

using f-def calculation by blast
ultimately show ?thesis

by auto
qed

1.8 IO reduction
An FSM is a reduction of another, if its language is a subset of the language of the latter FSM.
fun io-reduction :: ( ′in, ′out, ′state) FSM ⇒ ( ′in, ′out, ′state) FSM

⇒ bool (infix ‹�› 200 )
where
M1 � M2 = (LS M1 (initial M1 ) ⊆ LS M2 (initial M2 ))

lemma language-state-inclusion-of-state-reached-by-same-sequence :
assumes LS M1 q1 ⊆ LS M2 q2
and observable M1
and observable M2
and io-targets M1 q1 io = { q1t }
and io-targets M2 q2 io = { q2t }

shows LS M1 q1t ⊆ LS M2 q2t
proof
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fix x assume x ∈ LS M1 q1t
obtain q1x where io-targets M1 q1t x = {q1x}

by (meson ‹x ∈ LS M1 q1t› assms(2 ) io-targets-observable-singleton-ex)
have io ∈ LS M1 q1

using assms(4 ) by auto
have io@x ∈ LS M1 q1

using observable-io-targets-append[OF assms(2 ) ‹io-targets M1 q1 io = { q1t }›
‹io-targets M1 q1t x = {q1x}›]

by (metis io-targets-elim language-state singletonI )
then have io@x ∈ LS M2 q2

using assms(1 ) by blast
then obtain q2x where io-targets M2 q2 (io@x) = {q2x}

by (meson assms(3 ) io-targets-observable-singleton-ex)
show x ∈ LS M2 q2t

using observable-io-targets-split[OF assms(3 ) ‹io-targets M2 q2 (io @ x) = {q2x}› assms(5 )]
by auto

qed

1.9 Language subsets for input sequences
The following definitions describe restrictions of languages to only those IO-sequences that exhibit a certain
input sequence or whose input sequence is contained in a given set of input sequences. This allows to define the
notion that some FSM is a reduction of another over a given set of input sequences, but not necessarily over
the entire language of the latter FSM.
fun language-state-for-input ::
( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ′in list ⇒ ( ′in × ′out) list set where
language-state-for-input M q xs = {(xs || ys) | ys . (length xs = length ys ∧ (xs || ys) ∈ LS M q)}

fun language-state-for-inputs ::
( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ′in list set ⇒ ( ′in × ′out) list set
(‹(LS in - - -)› [1000 ,1000 ,1000 ]) where

language-state-for-inputs M q ISeqs = {(xs || ys) | xs ys . (xs ∈ ISeqs
∧ length xs = length ys
∧ (xs || ys) ∈ LS M q)}

abbreviation Lin M TS ≡ LS in M (initial M ) TS

abbreviation io-reduction-on M1 TS M2 ≡ (Lin M1 TS ⊆ Lin M2 TS)
notation

io-reduction-on (‹(- �[[-]] -)› [1000 ,0 ,0 ] 61 )
notation (latex output)

io-reduction-on (‹(- �- -)› [1000 ,0 ,0 ] 61 )

lemma language-state-for-input-alt-def :
language-state-for-input M q xs = LS in M q {xs}
unfolding language-state-for-input.simps language-state-for-inputs.simps by blast

lemma language-state-for-inputs-alt-def :
LS in M q ISeqs =

⋃
(image (language-state-for-input M q) ISeqs)

by auto

lemma language-state-for-inputs-in-language-state :
LS in M q T ⊆ language-state M q
unfolding language-state-for-inputs.simps language-state-def
by blast

lemma language-state-for-inputs-map-fst :
assumes io ∈ language-state M q
and map fst io ∈ T

shows io ∈ LS in M q T
proof −

let ?xs = map fst io
let ?ys = map snd io
have ?xs ∈ T ∧ length ?xs = length ?ys ∧ ?xs || ?ys ∈ language-state M q
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using assms(2 ,1 ) by auto
then have ?xs || ?ys ∈ LS in M q T

unfolding language-state-for-inputs.simps by blast
then show ?thesis

by simp
qed

lemma language-state-for-inputs-nonempty :
assumes set xs ⊆ inputs M
and completely-specified M
and q ∈ nodes M

shows LS in M q {xs} 6= {}
using assms proof (induction xs arbitrary: q)

case Nil
then show ?case by auto

next
case (Cons x xs)
then have x ∈ inputs M

by simp
then obtain y q ′ where x-step : q ′ ∈ succ M (x,y) q

using Cons(3 ,4 ) unfolding completely-specified.simps by blast
then have path M ([(x,y)] || [q ′]) q ∧ length [q] = length [(x,y)]

target ([(x,y)] || [q ′]) q = q ′

by auto
then have q ′ ∈ nodes M

using Cons(4 ) by (metis FSM .nodes-target)
then have LS in M q ′ {xs} 6= {}

using Cons.prems Cons.IH by auto
then obtain ys where length xs = length ys ∧ (xs || ys) ∈ LS M q ′

by auto
then obtain tr where path M ((xs || ys) || tr) q ′ ∧ length tr = length (xs || ys)

by auto
then have path M ([(x,y)] @ (xs || ys) || [q ′] @ tr) q

∧ length ([q ′] @ tr) = length ([(x,y)] @ (xs || ys))
by (simp add: FSM .path.intros(2 ) x-step)

then have path M ((x#xs || y#ys) || [q ′] @ tr) q ∧ length ([q ′] @ tr) = length (x#xs || y#ys)
by auto

then have (x#xs || y#ys) ∈ LS M q
by (metis language-state)

moreover have length (x#xs) = length (y#ys)
by (simp add: ‹length xs = length ys ∧ xs || ys ∈ LS M q ′›)

ultimately have (x#xs || y#ys) ∈ LS in M q {x # xs}
unfolding language-state-for-inputs.simps by blast

then show ?case by blast
qed

lemma language-state-for-inputs-map-fst-contained :
assumes vs ∈ LS in M q V

shows map fst vs ∈ V
proof −

have (map fst vs) || (map snd vs) = vs
by auto

then have (map fst vs) || (map snd vs) ∈ LS in M q V
using assms by auto

then show ?thesis by auto
qed

lemma language-state-for-inputs-empty :
assumes [] ∈ V
shows [] ∈ LS in M q V

proof −
have [] ∈ language-state-for-input M q [] by auto
then show ?thesis using language-state-for-inputs-alt-def by (metis UN-I assms)

qed

lemma language-state-for-input-empty[simp] :
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language-state-for-input M q [] = {[]}
by auto

lemma language-state-for-input-take :
assumes io ∈ language-state-for-input M q xs

shows take n io ∈ language-state-for-input M q (take n xs)
proof −

obtain ys where io = xs || ys length xs = length ys xs || ys ∈ language-state M q
using assms by auto

then obtain p where length p = length xs path M ((xs || ys) || p) q
by auto

then have path M (take n ((xs || ys) || p)) q
by (metis FSM .path-append-elim append-take-drop-id)

then have take n (xs || ys) ∈ language-state M q
by (simp add: ‹length p = length xs› ‹length xs = length ys› language-state take-zip)

then have (take n xs) || (take n ys) ∈ language-state M q
by (simp add: take-zip)

have take n io = (take n xs) || (take n ys)
using ‹io = xs || ys› take-zip by blast

moreover have length (take n xs) = length (take n ys)
by (simp add: ‹length xs = length ys›)

ultimately show ?thesis
using ‹(take n xs) || (take n ys) ∈ language-state M q›
unfolding language-state-for-input.simps by blast

qed

lemma language-state-for-inputs-prefix :
assumes vs@xs ∈ Lin M1 {vs ′@xs ′}
and length vs = length vs ′

shows vs ∈ Lin M1 {vs ′}
proof −

have vs@xs ∈ L M1
using assms(1 ) by auto

then have vs ∈ L M1
by (meson language-state-prefix)

then have vs ∈ Lin M1 {map fst vs}
by (meson insertI1 language-state-for-inputs-map-fst)

moreover have vs ′ = map fst vs
by (metis append-eq-append-conv assms(1 ) assms(2 ) language-state-for-inputs-map-fst-contained

length-map map-append singletonD)
ultimately show ?thesis

by blast
qed

lemma language-state-for-inputs-union :
shows LS in M q T1 ∪ LS in M q T2 = LS in M q (T1 ∪ T2 )
unfolding language-state-for-inputs.simps by blast

lemma io-reduction-on-subset :
assumes io-reduction-on M1 T M2
and T ′ ⊆ T

shows io-reduction-on M1 T ′ M2
proof (rule ccontr)

assume ¬ io-reduction-on M1 T ′ M2
then obtain xs ′ where xs ′ ∈ T ′ ¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′}
proof −

have f1 : ∀ ps P Pa. (ps::( ′a × ′b) list) /∈ P ∨ ¬ P ⊆ Pa ∨ ps ∈ Pa
by blast

obtain pps :: ( ′a × ′b) list set ⇒ ( ′a × ′b) list set ⇒ ( ′a × ′b) list where
∀ x0 x1 . (∃ v2 . v2 ∈ x1 ∧ v2 /∈ x0 ) = (pps x0 x1 ∈ x1 ∧ pps x0 x1 /∈ x0 )
by moura

then have f2 : ∀P Pa. pps Pa P ∈ P ∧ pps Pa P /∈ Pa ∨ P ⊆ Pa
by (meson subsetI )

have f3 : ∀ ps f c A. (ps::( ′a × ′b) list) /∈ LS in f (c:: ′c) A ∨ map fst ps ∈ A
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by (meson language-state-for-inputs-map-fst-contained)
then have Lin M1 T ′ ⊆ Lin M1 T

using f2 by (meson assms(2 ) language-state-for-inputs-in-language-state
language-state-for-inputs-map-fst set-rev-mp)

then show ?thesis
using f3 f2 f1 by (meson ‹¬ io-reduction-on M1 T ′ M2 › assms(1 )

language-state-for-inputs-in-language-state
language-state-for-inputs-map-fst)

qed
then have xs ′ ∈ T

using assms(2 ) by blast

have ¬ io-reduction-on M1 T M2
proof −

have f1 : ∀ as. as /∈ T ′ ∨ as ∈ T
using assms(2 ) by auto

obtain pps :: ( ′a × ′b) list set ⇒ ( ′a × ′b) list set ⇒ ( ′a × ′b) list where
∀ x0 x1 . (∃ v2 . v2 ∈ x1 ∧ v2 /∈ x0 ) = (pps x0 x1 ∈ x1 ∧ pps x0 x1 /∈ x0 )
by moura

then have ∀P Pa. (¬ P ⊆ Pa ∨ (∀ ps. ps /∈ P ∨ ps ∈ Pa))
∧ (P ⊆ Pa ∨ pps Pa P ∈ P ∧ pps Pa P /∈ Pa)

by blast
then show ?thesis

using f1 by (meson ‹¬ io-reduction-on M1 T ′ M2 › language-state-for-inputs-in-language-state
language-state-for-inputs-map-fst language-state-for-inputs-map-fst-contained)

qed

then show False
using assms(1 ) by auto

qed

1.10 Sequences to failures
A sequence to a failure for FSMs M1 and M2 is a sequence such that any proper prefix of it is contained in the
languages of both M1 and M2, while the sequence itself is contained only in the language of A.
That is, if a sequence to a failure for M1 and M2 exists, then M1 is not a reduction of M2.
fun sequence-to-failure ::
( ′in, ′out, ′state) FSM ⇒ ( ′in, ′out, ′state) FSM ⇒ ( ′in × ′out) list ⇒ bool where
sequence-to-failure M1 M2 xs = (
(butlast xs) ∈ (language-state M2 (initial M2 ) ∩ language-state M1 (initial M1 ))
∧ xs ∈ (language-state M1 (initial M1 ) − language-state M2 (initial M2 )))

lemma sequence-to-failure-ob :
assumes ¬ M1 � M2
and well-formed M1
and well-formed M2

obtains io
where sequence-to-failure M1 M2 io
proof −

let ?diff = { io . io ∈ language-state M1 (initial M1 ) ∧ io /∈ language-state M2 (initial M2 )}
have ?diff 6= empty

using assms by auto
moreover obtain io where io-def [simp] : io = arg-min length (λ io . io ∈ ?diff )

using assms by auto
ultimately have io-diff : io ∈ ?diff

using assms by (meson all-not-in-conv arg-min-natI )

then have io 6= []
using assms io-def language-state by auto

then obtain io-init io-last where io-split[simp] : io = io-init @ [io-last]
by (metis append-butlast-last-id)

have io-init-inclusion : io-init ∈ language-state M1 (initial M1 )
∧ io-init ∈ language-state M2 (initial M2 )
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proof (rule ccontr)
assume assm : ¬ (io-init ∈ language-state M1 (initial M1 )

∧ io-init ∈ language-state M2 (initial M2 ))

have io-init @ [io-last] ∈ language-state M1 (initial M1 )
using io-diff io-split by auto

then have io-init ∈ language-state M1 (initial M1 )
by (meson language-state language-state-split)

moreover have io-init /∈ language-state M2 (initial M2 )
using assm calculation by auto

ultimately have io-init ∈ ?diff
by auto

moreover have length io-init < length io
using io-split by auto

ultimately have io 6= arg-min length (λ io . io ∈ ?diff )
proof −

have ∃ ps. ps ∈ {ps ∈ language-state M1 (initial M1 ).
ps /∈ language-state M2 (initial M2 )} ∧ ¬ length io ≤ length ps

using ‹io-init ∈ {io∈ language-state M1 (initial M1 ). io /∈ language-state M2 (initial M2 )}›
‹length io-init < length io› linorder-not-less

by blast
then show ?thesis

by (meson arg-min-nat-le)
qed
then show False using io-def by simp

qed

then have sequence-to-failure M1 M2 io
using io-split io-diff by auto

then show ?thesis
using that by auto

qed

lemma sequence-to-failure-succ :
assumes sequence-to-failure M1 M2 io
shows ∀ q ∈ io-targets M2 (initial M2 ) (butlast io) . succ M2 (last io) q = {}

proof
have io 6= []

using assms by auto
fix q assume q ∈ io-targets M2 (initial M2 ) (butlast io)
then obtain tr where q = target (butlast io || tr) (initial M2 )

and path M2 (butlast io || tr) (initial M2 )
and length (butlast io) = length tr

unfolding io-targets.simps by auto

show succ M2 (last io) q = {}
proof (rule ccontr)

assume succ M2 (last io) q 6= {}
then obtain q ′ where q ′ ∈ succ M2 (last io) q

by blast
then have path M2 [(last io, q ′)] (target (butlast io || tr) (initial M2 ))

using ‹q = target (butlast io || tr) (initial M2 )› by auto

have path M2 ((butlast io || tr) @ [(last io, q ′)]) (initial M2 )
using ‹path M2 (butlast io || tr) (initial M2 )›

‹path M2 [(last io, q ′)] (target (butlast io || tr) (initial M2 ))› by auto

have butlast io @ [last io] = io
by (meson ‹io 6= []› append-butlast-last-id)

have path M2 (io || (tr@[q ′])) (initial M2 )
proof −

have path M2 ((butlast io || tr) @ ([last io] || [q ′])) (initial M2 )
by (simp add: FSM .path-append ‹path M2 (butlast io || tr) (initial M2 )›

‹path M2 [(last io, q ′)] (target (butlast io || tr) (initial M2 ))›)
then show ?thesis
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by (metis (no-types) ‹butlast io @ [last io] = io›
‹length (butlast io) = length tr› zip-append)

qed

have io ∈ L M2
proof −

have length tr + (0 + Suc 0 ) = length io
by (metis ‹butlast io @ [last io] = io› ‹length (butlast io) = length tr›

length-append list.size(3 ) list.size(4 ))
then show ?thesis

using ‹path M2 (io || tr @ [q ′]) (initial M2 )› by fastforce
qed
then show False

using assms by auto
qed

qed

lemma sequence-to-failure-non-nil :
assumes sequence-to-failure M1 M2 xs
shows xs 6= []

proof
assume xs = []
then have xs ∈ L M1 ∩ L M2

by auto
then show False using assms by auto

qed

lemma sequence-to-failure-from-arbitrary-failure :
assumes vs@xs ∈ L M1 − L M2

and vs ∈ L M2 ∩ L M1
shows ∃ xs ′ . prefix xs ′ xs ∧ sequence-to-failure M1 M2 (vs@xs ′)
using assms proof (induction xs rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x xs)

have vs @ xs ∈ L M1
using snoc.prems(1 ) by (metis Diff-iff append.assoc language-state-prefix)

show ?case
proof (cases vs@xs ∈ L M2 )

case True
have butlast (vs@xs@[x]) ∈ L M2 ∩ L M1

using True ‹vs @ xs ∈ L M1 › by (simp add: butlast-append)
then show ?thesis

using sequence-to-failure.simps snoc.prems by blast
next

case False
then have vs@xs ∈ L M1 − L M2

using ‹vs @ xs ∈ L M1 › by blast
then obtain xs ′ where prefix xs ′ xs sequence-to-failure M1 M2 (vs@xs ′)

using snoc.prems(2 ) snoc.IH by blast
then show ?thesis

using prefix-snoc by auto
qed

qed

The following lemma shows that if M1 is not a reduction of M2, then a minimal sequence to a failure exists that
is of length at most the number of states in M1 times the number of states in M2.
lemma sequence-to-failure-length :

assumes well-formed M1
and well-formed M2
and observable M1
and observable M2
and ¬ M1 � M2
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shows ∃ xs . sequence-to-failure M1 M2 xs ∧ length xs ≤ |M2 | ∗ |M1 |
proof −

obtain seq where sequence-to-failure M1 M2 seq
using assms sequence-to-failure-ob by blast

then have seq 6= []
by auto

let ?bls = butlast seq
have ?bls ∈ L M1 ?bls ∈ L M2

using ‹sequence-to-failure M1 M2 seq› by auto

then obtain tr1b tr2b where
path M1 (?bls || tr1b) (initial M1 )
length tr1b = length ?bls
path M2 (?bls || tr2b) (initial M2 )
length ?bls = length tr2b
by fastforce

then have length tr2b = length tr1b
by auto

let ?PM = product M2 M1
have well-formed ?PM

using well-formed-product[OF assms(1 ,2 )] by assumption

have path ?PM (?bls || tr2b || tr1b) (initial M2 , initial M1 )
using product-path[OF ‹length ?bls = length tr2b› ‹length tr2b = length tr1b›,

of M2 M1 initial M2 initial M1 ]
using ‹path M1 (butlast seq || tr1b) (initial M1 )›

‹path M2 (butlast seq || tr2b) (initial M2 )›
by blast

let ?q1b = target (?bls || tr1b) (initial M1 )
let ?q2b = target (?bls || tr2b) (initial M2 )

have io-targets M2 (initial M2 ) ?bls = {?q2b}
by (metis ‹length (butlast seq) = length tr2b› ‹path M2 (butlast seq || tr2b) (initial M2 )›

assms(4 ) obs-target-is-io-targets)
have io-targets M1 (initial M1 ) ?bls = {?q1b}

by (metis ‹length tr1b = length (butlast seq)› ‹path M1 (butlast seq || tr1b) (initial M1 )›
assms(3 ) obs-target-is-io-targets)

have (?q2b, ?q1b) ∈ reachable (product M2 M1 ) (initial M2 , initial M1 )
proof −

have target (butlast seq || tr2b || tr1b) (initial M2 , initial M1 )
∈ reachable (product M2 M1 ) (initial M2 , initial M1 )

using ‹path (product M2 M1 ) (butlast seq || tr2b || tr1b) (initial M2 , initial M1 )› by blast
then show ?thesis

using ‹length (butlast seq) = length tr2b› ‹length tr2b = length tr1b› by auto
qed

have (initial M2 , initial M1 ) ∈ nodes (product M2 M1 )
by (simp add: FSM .nodes.initial)

obtain p where repFreePath : path (product M2 M1 ) p (initial M2 , initial M1 ) ∧
target p (initial M2 , initial M1 ) =
(?q2b,?q1b)
distinct ((initial M2 , initial M1 ) # states p (initial M2 , initial M1 ))

using reaching-path-without-repetition[OF ‹well-formed ?PM ›
‹(?q2b, ?q1b) ∈ reachable (product M2 M1 ) (initial M2 , initial M1 )›
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‹(initial M2 , initial M1 ) ∈ nodes (product M2 M1 )›]
by blast

then have set (states p (initial M2 , initial M1 )) ⊆ nodes ?PM
by (simp add: FSM .nodes-states ‹(initial M2 , initial M1 ) ∈ nodes (product M2 M1 )›)

moreover have (initial M2 , initial M1 ) /∈ set (states p (initial M2 , initial M1 ))
using ‹distinct ((initial M2 , initial M1 ) # states p (initial M2 , initial M1 ))› by auto

ultimately have set (states p (initial M2 , initial M1 )) ⊆ nodes ?PM − {(initial M2 ,initial M1 )}
by blast

moreover have finite (nodes ?PM )
using ‹well-formed ?PM › by auto

ultimately have card (set (states p (initial M2 , initial M1 ))) < card (nodes ?PM )
by (metis ‹(initial M2 , initial M1 ) ∈ nodes (product M2 M1 )›

‹(initial M2 , initial M1 ) /∈ set (states p (initial M2 , initial M1 ))›
‹set (states p (initial M2 , initial M1 )) ⊆ nodes (product M2 M1 )›
psubsetI psubset-card-mono)

moreover have card (set (states p (initial M2 , initial M1 )))
= length (states p (initial M2 , initial M1 ))

using distinct-card repFreePath(2 ) by fastforce
ultimately have length (states p (initial M2 , initial M1 )) < |?PM |

by linarith
then have length p < |?PM |

by auto

let ?p1 = map (snd ◦ snd) p
let ?p2 = map (fst ◦ snd) p
let ?pIO = map fst p

have p = ?pIO || ?p2 || ?p1
by (metis map-map zip-map-fst-snd)

have path M2 (?pIO || ?p2 ) (initial M2 )
path M1 (?pIO || ?p1 ) (initial M1 )

using product-path[of ?pIO ?p2 ?p1 M2 M1 ]
using ‹p = ?pIO || ?p2 || ?p1 › repFreePath(1 ) by auto

have (?q2b, ?q1b) = (target (?pIO || ?p2 || ?p1 ) (initial M2 , initial M1 ))
using ‹p = ?pIO || ?p2 || ?p1 › repFreePath(1 ) by auto

then have ?q2b = target (?pIO || ?p2 ) (initial M2 )
?q1b = target (?pIO || ?p1 ) (initial M1 )

by auto

have io-targets M2 (initial M2 ) ?pIO = {?q2b}
by (metis ‹path M2 (map fst p || map (fst ◦ snd) p) (initial M2 )›

‹target (?bls || tr2b) (initial M2 ) = target (map fst p || map (fst ◦ snd) p) (initial M2 )›
assms(4 ) length-map obs-target-is-io-targets)

have io-targets M1 (initial M1 ) ?pIO = {?q1b}
by (metis ‹path M1 (map fst p || map (snd ◦ snd) p) (initial M1 )›

‹target (?bls || tr1b) (initial M1 ) = target (map fst p || map (snd ◦ snd) p) (initial M1 )›
assms(3 ) length-map obs-target-is-io-targets)

have seq ∈ L M1 seq /∈ L M2
using ‹sequence-to-failure M1 M2 seq› by auto

have io-targets M1 (initial M1 ) ?bls = {?q1b}
by (metis ‹length tr1b = length (butlast seq)› ‹path M1 (butlast seq || tr1b) (initial M1 )›

assms(3 ) obs-target-is-io-targets)
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obtain q1s where io-targets M1 (initial M1 ) seq = {q1s}
by (meson ‹seq ∈ L M1 › assms(3 ) io-targets-observable-singleton-ob)

moreover have seq = (butlast seq)@[last seq]
using ‹seq 6= []› by auto

ultimately have io-targets M1 (initial M1 ) ((butlast seq)@[last seq]) = {q1s}
by auto

have io-targets M1 ?q1b [last seq] = {q1s}
using observable-io-targets-suffix[OF assms(3 ) ‹io-targets M1 (initial M1 ) ?bls = {?q1b}›

‹io-targets M1 (initial M1 ) ((butlast seq)@[last seq]) = {q1s}›] by assumption
then obtain tr1s where q1s = target ([last seq] || tr1s) ?q1b

path M1 ([last seq] || tr1s) ?q1b
length [last seq] = length tr1s

by auto

have path M1 ([last seq] || [q1s]) ?q1b
by (metis (no-types) ‹length [last seq] = length tr1s›

‹path M1 ([last seq] || tr1s) (target (butlast seq || tr1b) (initial M1 ))›
‹q1s = target ([last seq] || tr1s) (target (butlast seq || tr1b) (initial M1 ))›
append-Nil append-butlast-last-id butlast.simps(2 ) length-butlast length-greater-0-conv
not-Cons-self2 target-alt-def (2 ))

then have q1s ∈ succ M1 (last seq) ?q1b
by auto

have succ M2 (last seq) ?q2b = {}
proof (rule ccontr)

assume succ M2 (last seq) (target (butlast seq || tr2b) (initial M2 )) 6= {}
then obtain q2f where q2f ∈ succ M2 (last seq) ?q2b

by blast
then have target ([last seq] || [q2f ]) ?q2b = q2f

path M2 ([last seq] || [q2f ]) ?q2b
length [q2f ] = length [last seq]

by auto
then have q2f ∈ io-targets M2 ?q2b [last seq]

by (metis io-target-from-path)
then have io-targets M2 ?q2b [last seq] = {q2f }

using assms(4 ) by (meson observable-io-target-is-singleton)

have io-targets M2 (initial M2 ) (butlast seq @ [last seq]) = {q2f }
using observable-io-targets-append[OF assms(4 ) ‹io-targets M2 (initial M2 ) ?bls = {?q2b}›

‹io-targets M2 ?q2b [last seq] = {q2f }›] by assumption
then have seq ∈ L M2

using ‹seq = butlast seq @ [last seq]› by auto
then show False

using ‹seq /∈ L M2 › by blast
qed

have ?pIO ∈ L M1 ?pIO ∈ L M2
using ‹path M1 (?pIO || ?p1 ) (initial M1 )› ‹path M2 (?pIO || ?p2 ) (initial M2 )› by auto

then have butlast (?pIO@[last seq]) ∈ L M1 ∩ L M2
by auto

have ?pIO@[last seq] ∈ L M1
using observable-io-targets-append[OF assms(3 ) ‹io-targets M1 (initial M1 ) ?pIO = {?q1b}›

‹io-targets M1 ?q1b [last seq] = {q1s}›]
by (metis all-not-in-conv insert-not-empty io-targets-elim language-state)

moreover have ?pIO@[last seq] /∈ L M2
proof

assume ?pIO@[last seq] ∈ L M2
then obtain q2f where io-targets M2 (initial M2 ) (?pIO@[last seq]) = {q2f }

by (meson assms(4 ) io-targets-observable-singleton-ob)
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have io-targets M2 ?q2b [last seq] = {q2f }
using observable-io-targets-split[OF assms(4 )

‹io-targets M2 (initial M2 ) (?pIO@[last seq]) = {q2f }›
‹io-targets M2 (initial M2 ) (map fst p) = {?q2b}›] by assumption

then have q2f ∈ succ M2 (last seq) ?q2b
by (simp add: io-targets-succ)

then show False
using ‹succ M2 (last seq) ?q2b = {}› by auto

qed

ultimately have ?pIO@[last seq] ∈ L M1 − L M2
by auto

have sequence-to-failure M1 M2 (?pIO@[last seq])
using ‹butlast (?pIO@[last seq]) ∈ L M1 ∩ L M2 › ‹?pIO@[last seq] ∈ L M1 − L M2 › by auto

have length (?pIO@[last seq]) = Suc (length ?pIO)
by auto

then have length (?pIO@[last seq]) ≤ |?PM |
using ‹length p < |?PM |› by auto

have card (nodes M2 × nodes M1 ) ≤ |M2 | ∗ |M1 |
by (simp add: card-cartesian-product)

have finite (nodes M2 × nodes M1 )
proof

show finite (nodes M2 )
using assms by auto

show finite (nodes M1 )
using assms by auto

qed

have |?PM | ≤ |M2 | ∗ |M1 |
by (meson ‹card (nodes M2 × nodes M1 ) ≤ |M2 | ∗ |M1 |› ‹finite (nodes M2 × nodes M1 )›

card-mono dual-order .trans product-nodes)

then have length (?pIO@[last seq]) ≤ |M2 | ∗ |M1 |
using ‹length (?pIO@[last seq]) ≤ |?PM |› by auto

then have sequence-to-failure M1 M2 (?pIO@[last seq]) ∧ length (?pIO@[last seq]) ≤ |M2 | ∗ |M1 |
using ‹sequence-to-failure M1 M2 (?pIO@[last seq])› by auto

then show ?thesis
by blast

qed

1.11 Minimal sequence to failure extending
A minimal sequence to a failure extending some some set of IO-sequences is a sequence to a failure of minimal
length such that a prefix of that sequence is contained in the set.
fun minimal-sequence-to-failure-extending ::

′in list set ⇒ ( ′in, ′out, ′state) FSM ⇒ ( ′in, ′out, ′state) FSM ⇒ ( ′in × ′out) list
⇒ ( ′in × ′out) list ⇒ bool where

minimal-sequence-to-failure-extending V M1 M2 v ′ io = (
v ′ ∈ Lin M1 V ∧ sequence-to-failure M1 M2 (v ′ @ io)

∧ ¬ (∃ io ′ . ∃ w ′ ∈ Lin M1 V . sequence-to-failure M1 M2 (w ′ @ io ′)
∧ length io ′ < length io))

lemma minimal-sequence-to-failure-extending-det-state-cover-ob :
assumes well-formed M1
and well-formed M2
and observable M2
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and is-det-state-cover M2 V
and ¬ M1 � M2

obtains vs xs
where minimal-sequence-to-failure-extending V M1 M2 vs xs
proof −

— set of all IO-sequences that extend some reaction of M1 to V to a failure
let ?exts = {xs. ∃ vs ′ ∈ Lin M1 V . sequence-to-failure M1 M2 (vs ′@xs)}

— arbitrary sequence to failure
— must be contained in ?exts as V contains the empty sequence
obtain stf where sequence-to-failure M1 M2 stf

using assms sequence-to-failure-ob by blast
then have sequence-to-failure M1 M2 ([] @ stf )

by simp
moreover have [] ∈ Lin M1 V

by (meson assms(4 ) det-state-cover-initial language-state-for-inputs-empty)
ultimately have stf ∈ ?exts

by blast

— the minimal length sequence of ?exts
— is a minimal sequence to a failure extending V by construction
let ?xsMin = arg-min length (λxs. xs ∈ ?exts)
have xsMin-def : ?xsMin ∈ ?exts

∧ (∀ xs ∈ ?exts. length ?xsMin ≤ length xs)
by (metis (no-types, lifting) ‹stf ∈ ?exts› arg-min-nat-lemma)

then obtain vs where vs ∈ Lin M1 V
∧ sequence-to-failure M1 M2 (vs @ ?xsMin)

by blast
moreover have ¬(∃ xs . ∃ws ∈ Lin M1 V . sequence-to-failure M1 M2 (ws@xs)

∧ length xs < length ?xsMin)
using leD xsMin-def by blast

ultimately have minimal-sequence-to-failure-extending V M1 M2 vs ?xsMin
by auto

then show ?thesis
using that by auto

qed

lemma mstfe-prefix-input-in-V :
assumes minimal-sequence-to-failure-extending V M1 M2 vs xs
shows (map fst vs) ∈ V

proof −
have vs ∈ Lin M1 V

using assms by auto
then show ?thesis

using language-state-for-inputs-map-fst-contained by auto
qed

1.12 Complete test suite derived from the product machine
The classical result of testing FSMs for language inclusion : Any failure can be observed by a sequence of length
at most n*m where n is the number of states of the reference model (here FSM M2) and m is an upper bound
on the number of states of the SUT (here FSM M1).
lemma product-suite-soundness :

assumes well-formed M1
and well-formed M2
and observable M1
and observable M2
and inputs M2 = inputs M1
and |M1 | ≤ m

shows ¬ M1 � M2 −→ ¬ M1 �[[{xs . set xs ⊆ inputs M2 ∧ length xs ≤ |M2 | ∗ m}]] M2
(is ¬ M1 � M2 −→ ¬ M1 �[[?TS ]] M2 )

proof
assume ¬ M1 � M2
obtain stf where sequence-to-failure M1 M2 stf ∧ length stf ≤ |M2 | ∗ |M1 |

using sequence-to-failure-length[OF assms(1−4 ) ‹¬ M1 � M2 ›] by blast
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then have sequence-to-failure M1 M2 stf length stf ≤ |M2 | ∗ |M1 |
by auto

then have stf ∈ L M1
by auto

let ?xs = map fst stf
have set ?xs ⊆ inputs M1

by (meson ‹stf ∈ L M1 › assms(1 ) language-state-inputs)
then have set ?xs ⊆ inputs M2

using assms(5 ) by auto

have length ?xs ≤ |M2 | ∗ |M1 |
using ‹length stf ≤ |M2 | ∗ |M1 |› by auto

have length ?xs ≤ |M2 | ∗ m
proof −

show ?thesis
by (metis (no-types) ‹length (map fst stf ) ≤ |M2 | ∗ |M1 |› ‹|M1 | ≤ m›

dual-order .trans mult.commute mult-le-mono1 )
qed

have stf ∈ Lin M1 {?xs}
by (meson ‹stf ∈ L M1 › insertI1 language-state-for-inputs-map-fst)

have ?xs ∈ ?TS
using ‹set ?xs ⊆ inputs M2 › ‹length ?xs ≤ |M2 | ∗ m› by blast

have stf ∈ Lin M1 ?TS
by (metis (no-types, lifting) ‹map fst stf ∈ {xs. set xs ⊆ inputs M2 ∧ length xs ≤ |M2 | ∗ m}›

‹stf ∈ L M1 › language-state-for-inputs-map-fst)

have stf /∈ L M2
using ‹sequence-to-failure M1 M2 stf › by auto

then have stf /∈ Lin M2 ?TS
by auto

show ¬ M1 �[[?TS ]] M2
using ‹stf ∈ Lin M1 ?TS› ‹stf /∈ Lin M2 ?TS› by blast

qed

lemma product-suite-completeness :
assumes well-formed M1
and well-formed M2
and observable M1
and observable M2
and inputs M2 = inputs M1
and |M1 | ≤ m

shows M1 � M2 ←→ M1 �[[{xs . set xs ⊆ inputs M2 ∧ length xs ≤ |M2 | ∗ m}]] M2
(is M1 � M2 ←→ M1 �[[?TS ]] M2 )

proof
show M1 � M2 =⇒ M1 �[[?TS ]] M2 — soundness holds trivially

unfolding language-state-for-inputs.simps io-reduction.simps by blast
show M1 �[[?TS ]] M2 =⇒ M1 � M2

using product-suite-soundness[OF assms] by auto
qed

end
theory FSM-Product
imports FSM
begin

2 Product machines with an additional fail state
We extend the product machine for language intersection presented in theory FSM by an additional state that
is reached only by sequences such that any proper prefix of the sequence is in the language intersection, whereas
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the full sequence is only contained in the language of the machine B for which we want to check whether it is a
reduction of some machine A.
To allow for free choice of the FAIL state, we define the following property that holds iff AB is the product
machine of A and B extended with fail state FAIL.
fun productF :: ( ′in, ′out, ′state1 ) FSM ⇒ ( ′in, ′out, ′state2 ) FSM ⇒ ( ′state1 × ′state2 )
⇒ ( ′in, ′out, ′state1 × ′state2 ) FSM ⇒ bool where
productF A B FAIL AB = (
(inputs A = inputs B)
∧ (fst FAIL /∈ nodes A)
∧ (snd FAIL /∈ nodes B)
∧ AB = (|

succ = (λ a (p1 ,p2 ) . (if (p1 ∈ nodes A ∧ p2 ∈ nodes B ∧ (fst a ∈ inputs A)
∧ (snd a ∈ outputs A ∪ outputs B))

then (if (succ A a p1 = {} ∧ succ B a p2 6= {})
then {FAIL}
else (succ A a p1 × succ B a p2 ))

else {})),
inputs = inputs A,
outputs = outputs A ∪ outputs B,
initial = (initial A, initial B)
|) )

lemma productF-simps[simp]:
productF A B FAIL AB =⇒ succ AB a (p1 ,p2 ) = (if (p1 ∈ nodes A ∧ p2 ∈ nodes B

∧ (fst a ∈ inputs A) ∧ (snd a ∈ outputs A ∪ outputs B))
then (if (succ A a p1 = {} ∧ succ B a p2 6= {})

then {FAIL}
else (succ A a p1 × succ B a p2 ))

else {})
productF A B FAIL AB =⇒ inputs AB = inputs A
productF A B FAIL AB =⇒ outputs AB = outputs A ∪ outputs B
productF A B FAIL AB =⇒ initial AB = (initial A, initial B)
unfolding productF .simps by simp+

lemma fail-next-productF :
assumes well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM

shows succ PM a FAIL = {}
proof (cases ((fst FAIL) ∈ nodes M2 ∧ (snd FAIL) ∈ nodes M1 ))

case True
then show ?thesis

using assms by auto
next

case False
then show ?thesis

using assms by (cases (succ M2 a (fst FAIL) = {} ∧ (fst a ∈ inputs M2 )
∧ (snd a ∈ outputs M2 )); auto)

qed

lemma nodes-productF :
assumes well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM

shows nodes PM ⊆ insert FAIL (nodes M2 × nodes M1 )
proof

fix q assume q-assm : q ∈ nodes PM
then show q ∈ insert FAIL (nodes M2 × nodes M1 )
using assms proof (cases)

case initial
then show ?thesis using assms by auto

next
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case (execute p a)
then obtain p1 p2 x y q1 q2 where p-a-split[simp] : p = (p1 ,p2 )

a = ((x,y),q)
q = (q1 ,q2 )

by (metis eq-snd-iff )
have subnodes : p1 ∈ nodes M2 ∧ p2 ∈ nodes M1 ∧ x ∈ inputs M2 ∧ y ∈ outputs M2 ∪ outputs M1
proof (rule ccontr)

assume ¬ (p1 ∈ nodes M2 ∧ p2 ∈ nodes M1 ∧ x ∈ inputs M2 ∧ y ∈ outputs M2 ∪ outputs M1 )
then have succ PM (x,y) (p1 ,p2 ) = {}

using assms(3 ) by auto
then show False

using execute by auto
qed

show ?thesis proof (cases (succ M2 (x,y) p1 = {} ∧ succ M1 (x,y) p2 6= {}))
case True
then have q = FAIL

using subnodes assms(3 ) execute by auto
then show ?thesis

by auto
next

case False
then have succ PM (fst a) p = succ M2 (x,y) p1 × succ M1 (x,y) p2

using subnodes assms(3 ) execute by auto
then have q ∈ (succ M2 (x,y) p1 × succ M1 (x,y) p2 )

using execute by blast
then have q-succ : (q1 ,q2 ) ∈ (succ M2 (x,y) p1 × succ M1 (x,y) p2 )

by simp

have q1 ∈ succ M2 (x,y) p1
using q-succ by simp

then have q1 ∈ successors M2 p1
by auto

then have q1 ∈ reachable M2 p1
by blast

then have q1 ∈ reachable M2 (initial M2 )
using subnodes by blast

then have nodes1 : q1 ∈ nodes M2
by blast

have q2 ∈ succ M1 (x,y) p2
using q-succ by simp

then have q2 ∈ successors M1 p2
by auto

then have q2 ∈ reachable M1 p2
by blast

then have q2 ∈ reachable M1 (initial M1 )
using subnodes by blast

then have nodes2 : q2 ∈ nodes M1
by blast

show ?thesis
using nodes1 nodes2 by auto

qed
qed

qed

lemma well-formed-productF [simp] :
assumes well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM

shows well-formed PM
unfolding well-formed.simps proof
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have finite (nodes M1 ) finite (nodes M2 )
using assms by auto

then have finite (insert FAIL (nodes M2 × nodes M1 ))
by simp

moreover have nodes PM ⊆ insert FAIL (nodes M2 × nodes M1 )
using nodes-productF assms by blast

moreover have inputs PM = inputs M2 outputs PM = outputs M2 ∪ outputs M1
using assms by auto

ultimately show finite-FSM PM
using infinite-subset assms by auto

next
have inputs PM = inputs M2 outputs PM = outputs M2 ∪ outputs M1

using assms by auto
then show (∀ s1 x y. x /∈ inputs PM ∨ y /∈ outputs PM −→ succ PM (x, y) s1 = {})

∧ inputs PM 6= {} ∧ outputs PM 6= {}
using assms by auto

qed

lemma observable-productF [simp] :
assumes observable M1
and observable M2
and productF M2 M1 FAIL PM

shows observable PM
unfolding observable.simps

proof −
have ∀ t s . succ M1 t (fst s) = {} ∨ (∃ s2 . succ M1 t (fst s) = {s2})

using assms by auto
moreover have ∀ t s . succ M2 t (snd s) = {} ∨ (∃ s2 . succ M2 t (snd s) = {s2})

using assms by auto
ultimately have sub-succs : ∀ t s . succ M2 t (fst s) × succ M1 t (snd s) = {}

∨ (∃ s2 . succ M2 t (fst s) × succ M1 t (snd s) = {s2})
by fastforce

moreover have succ-split : ∀ t s . succ PM t s = {}
∨ succ PM t s = {FAIL}
∨ succ PM t s = succ M2 t (fst s) × succ M1 t (snd s)

using assms by auto
ultimately show ∀ t s. succ PM t s = {} ∨ (∃ s2 . succ PM t s = {s2})

by metis
qed

lemma no-transition-after-FAIL :
assumes productF A B FAIL AB
shows succ AB io FAIL = {}
using assms by auto

lemma no-prefix-targets-FAIL :
assumes productF M2 M1 FAIL PM
and path PM p q
and k < length p

shows target (take k p) q 6= FAIL
proof

assume assm : target (take k p) q = FAIL
have path PM (take k p @ drop k p) q

using assms by auto
then have path PM (drop k p) (target (take k p) q)

by blast
then have path-from-FAIL : path PM (drop k p) FAIL

using assm by auto

have length (drop k p) 6= 0
using assms by auto

then obtain io q where drop k p = (io,q) # (drop (Suc k) p)
by (metis Cons-nth-drop-Suc assms(3 ) prod-cases3 )

then have succ PM io FAIL 6= {}
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using path-from-FAIL by auto

then show False
using no-transition-after-FAIL assms by auto

qed

lemma productF-path-inclusion :
assumes length w = length r1 length r1 = length r2
and productF A B FAIL AB
and well-formed A
and well-formed B
and path A (w || r1 ) p1 ∧ path B (w || r2 ) p2
and p1 ∈ nodes A
and p2 ∈ nodes B

shows path (AB) (w || r1 || r2 ) (p1 , p2 )
using assms proof (induction w r1 r2 arbitrary: p1 p2 rule: list-induct3 )

case Nil
then show ?case by auto

next
case (Cons w ws r1 r1s r2 r2s)
then have path A ([w] || [r1 ]) p1 ∧ path B ([w] || [r2 ]) p2

by auto
then have succs : r1 ∈ succ A w p1 ∧ r2 ∈ succ B w p2

by auto
then have succ A w p1 6= {}

by force
then have w-elem : fst w ∈ inputs A ∧ snd w ∈ outputs A

using Cons by (metis assms(4 ) prod.collapse well-formed.elims(2 ))
then have (r1 ,r2 ) ∈ succ AB w (p1 ,p2 )

using Cons succs by auto
then have path-head : path AB ([w] || [(r1 ,r2 )]) (p1 ,p2 )

by auto

have path A (ws || r1s) r1 ∧ path B (ws || r2s) r2
using Cons by auto

moreover have r1 ∈ nodes A ∧ r2 ∈ nodes B
using succs Cons.prems succ-nodes[of r1 A w p1 ] succ-nodes[of r2 B w p2 ] by auto

ultimately have path AB (ws || r1s || r2s) (r1 ,r2 )
using Cons by blast

then show ?case
using path-head by auto

qed

lemma productF-path-forward :
assumes length w = length r1 length r1 = length r2
and productF A B FAIL AB
and well-formed A
and well-formed B
and (path A (w || r1 ) p1 ∧ path B (w || r2 ) p2 )

∨ (target (w || r1 || r2 ) (p1 , p2 ) = FAIL
∧ length w > 0
∧ path A (butlast (w || r1 )) p1
∧ path B (butlast (w || r2 )) p2
∧ succ A (last w) (target (butlast (w || r1 )) p1 ) = {}
∧ succ B (last w) (target (butlast (w || r2 )) p2 ) 6= {})

and p1 ∈ nodes A
and p2 ∈ nodes B

shows path (AB) (w || r1 || r2 ) (p1 , p2 )
using assms proof (induction w r1 r2 arbitrary: p1 p2 rule: list-induct3 )

case Nil
then show ?case by auto

next
case (Cons w ws r1 r1s r2 r2s)
then show ?case
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proof (cases (path A (w # ws || r1 # r1s) p1 ∧ path B (w # ws || r2 # r2s) p2 ))
case True
then show ?thesis

using Cons productF-path-inclusion[of w # ws r1 # r1s r2 # r2s A B FAIL AB p1 p2 ]
by auto

next
case False
then have fail-prop : target (w # ws || r1 # r1s || r2 # r2s) (p1 , p2 ) = FAIL ∧

0 < length (w # ws) ∧
path A (butlast (w # ws || r1 # r1s)) p1 ∧
path B (butlast (w # ws || r2 # r2s)) p2 ∧
succ A (last (w # ws)) (target (butlast (w # ws || r1 # r1s)) p1 ) = {} ∧
succ B (last (w # ws)) (target (butlast (w # ws || r2 # r2s)) p2 ) 6= {}

using Cons.prems by fastforce

then show ?thesis
proof (cases length ws)

case 0
then have empty[simp] : ws = [] r1s = [] r2s = []

using Cons.hyps by auto
then have fail-prop-0 : target ( [w] || [r1 ] || [r2 ]) (p1 , p2 ) = FAIL ∧

0 < length ([w]) ∧
path A [] p1 ∧
path B [] p2 ∧
succ A w p1 = {} ∧
succ B w p2 6= {}

using fail-prop by auto
then have fst w ∈ inputs B ∧ snd w ∈ outputs B

using Cons.prems by (metis prod.collapse well-formed.elims(2 ))
then have inputs-0 : fst w ∈ inputs A ∧ snd w ∈ outputs B

using Cons.prems by auto

moreover have fail-elems-0 : (r1 ,r2 ) = FAIL
using fail-prop by auto

ultimately have succ AB w (p1 ,p2 ) = {FAIL}
using fail-prop-0 Cons.prems by auto

then have path AB ( [w] || [r1 ] || [r2 ]) (p1 , p2 )
using Cons.prems fail-elems-0 by auto

then show ?thesis
by auto

next
case (Suc nat)

then have path-r1 : path A ([w] || [r1 ]) p1
using fail-prop
by (metis Cons.hyps(1 ) FSM .nil FSM .path.intros(2 ) FSM .path-cons-elim Suc-neq-Zero

butlast.simps(2 ) length-0-conv zip-Cons-Cons zip-Nil zip-eq)
then have path-r1s : path A (butlast (ws || r1s)) r1

using Suc
by (metis (no-types, lifting) Cons.hyps(1 ) FSM .path-cons-elim Suc-neq-Zero butlast.simps(2 )

fail-prop length-0-conv snd-conv zip.simps(1 ) zip-Cons-Cons zip-eq)

have path-r2 : path B ([w] || [r2 ]) p2
using Suc fail-prop
by (metis Cons.hyps(1 ) Cons.hyps(2 ) FSM .nil FSM .path.intros(2 ) FSM .path-cons-elim

Suc-neq-Zero butlast.simps(2 ) length-0-conv zip-Cons-Cons zip-Nil zip-eq)
then have path-r2s : path B (butlast (ws || r2s)) r2

using Suc
by (metis (no-types, lifting) Cons.hyps(1 ) Cons.hyps(2 ) FSM .path-cons-elim Suc-neq-Zero

butlast.simps(2 ) fail-prop length-0-conv snd-conv zip.simps(1 ) zip-Cons-Cons zip-eq)

have target (ws || r1s || r2s) (r1 , r2 ) = FAIL
using fail-prop by auto

moreover have r1 ∈ nodes A
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using Cons.prems path-r1 by (metis FSM .path-cons-elim snd-conv succ-nodes zip-Cons-Cons)
moreover have r2 ∈ nodes B

using Cons.prems path-r2 by (metis FSM .path-cons-elim snd-conv succ-nodes zip-Cons-Cons)
moreover have succ A (last ws) (target (butlast (ws || r1s)) r1 ) = {}

by (metis (no-types, lifting) Cons.hyps(1 ) Suc Suc-neq-Zero butlast.simps(2 ) fail-prop
fold-simps(2 ) last-ConsR list.size(3 ) snd-conv zip-Cons-Cons zip-Nil zip-eq)

moreover have succ B (last ws) (target (butlast (ws || r2s)) r2 ) 6= {}
by (metis (no-types, lifting) Cons.hyps(1 ) Cons.hyps(2 ) Suc Suc-neq-Zero butlast.simps(2 )

fail-prop fold-simps(2 ) last-ConsR list.size(3 ) snd-conv zip-Cons-Cons zip-Nil zip-eq)

have path AB (ws || r1s || r2s) (r1 , r2 )
using Cons.IH Suc ‹succ B (last ws) (target (butlast (ws || r2s)) r2 ) 6= {}›

assms(3 ) assms(4 ) assms(5 ) calculation(1−4 ) path-r1s path-r2s zero-less-Suc
by presburger

moreover have path AB ([w] || [r1 ] || [r2 ]) (p1 ,p2 )
using path-r1 path-r2 productF-path-inclusion[of [w] [r1 ] [r2 ] A B FAIL AB p1 p2 ]

Cons.prems
by auto

ultimately show ?thesis
by auto

qed
qed

qed

lemma butlast-zip-cons : length ws = length r1s =⇒ ws 6= []
=⇒ butlast (w # ws || r1 # r1s) = ((w,r1 ) # (butlast (ws || r1s)))

proof −
assume a1 : length ws = length r1s
assume a2 : ws 6= []

have length (w # ws) = length r1s + Suc 0
using a1 by (metis list.size(4 ))

then have f3 : length (w # ws) = length (r1 # r1s)
by (metis list.size(4 ))

have f4 : ws @ w # ws 6= w # ws
using a2 by (meson append-self-conv2 )

have length (ws @ w # ws) = length (r1s @ r1 # r1s)
using a1 by auto

then have ws @ w # ws || r1s @ r1 # r1s 6= w # ws || r1 # r1s
using f4 f3 by (meson zip-eq)

then show ?thesis
using a1 by simp

qed

lemma productF-succ-fail-imp :
assumes productF A B FAIL AB
and FAIL ∈ succ AB w (p1 ,p2 )
and well-formed A
and well-formed B

shows p1 ∈ nodes A ∧ p2 ∈ nodes B ∧ (fst w ∈ inputs A) ∧ (snd w ∈ outputs A ∪ outputs B)
∧ succ AB w (p1 ,p2 ) = {FAIL} ∧ succ A w p1 = {} ∧ succ B w p2 6= {}

proof −
have path-head : path AB ([w] || [FAIL]) (p1 ,p2 )

using assms by auto
then have succ-nonempty : succ AB w (p1 ,p2 ) 6= {}

by force
then have succ-if-1 : p1 ∈ nodes A ∧ p2 ∈ nodes B ∧ (fst w ∈ inputs A)

∧ (snd w ∈ outputs A ∪ outputs B)
using assms by auto

then have (p1 ,p2 ) 6= FAIL
using assms by auto
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have succ A w p1 ⊆ nodes A
using assms succ-if-1 by (simp add: subsetI succ-nodes)

moreover have succ B w p2 ⊆ nodes B
using assms succ-if-1 by (simp add: subsetI succ-nodes)

ultimately have FAIL /∈ (succ A w p1 × succ B w p2 )
using assms by auto

then have succ-no-inclusion : succ AB w (p1 ,p2 ) 6= (succ A w p1 × succ B w p2 )
using assms succ-if-1 by blast

moreover have succ AB w (p1 ,p2 ) = {} ∨ succ AB w (p1 ,p2 ) = {FAIL}
∨ succ AB w (p1 ,p2 ) = (succ A w p1 × succ B w p2 )

using assms by simp
ultimately have succ-fail : succ AB w (p1 ,p2 ) = {FAIL}

using succ-nonempty by simp

have succ A w p1 = {} ∧ succ B w p2 6= {}
proof (rule ccontr)

assume ¬ (succ A w p1 = {} ∧ succ B w p2 6= {})
then have succ AB w (p1 ,p2 ) = (succ A w p1 × succ B w p2 )

using assms by auto
then show False

using succ-no-inclusion by simp
qed

then show ?thesis
using succ-if-1 succ-fail by simp

qed

lemma productF-path-reverse :
assumes length w = length r1 length r1 = length r2
and productF A B FAIL AB
and well-formed A
and well-formed B
and path AB (w || r1 || r2 ) (p1 , p2 )
and p1 ∈ nodes A
and p2 ∈ nodes B

shows (path A (w || r1 ) p1 ∧ path B (w || r2 ) p2 )
∨ (target (w || r1 || r2 ) (p1 , p2 ) = FAIL
∧ length w > 0
∧ path A (butlast (w || r1 )) p1
∧ path B (butlast (w || r2 )) p2
∧ succ A (last w) (target (butlast (w || r1 )) p1 ) = {}
∧ succ B (last w) (target (butlast (w || r2 )) p2 ) 6= {})

using assms proof (induction w r1 r2 arbitrary: p1 p2 rule: list-induct3 )
case Nil
then show ?case by auto

next
case (Cons w ws r1 r1s r2 r2s)

have path-head : path AB ([w] || [(r1 ,r2 )]) (p1 ,p2 ) using Cons by auto
then have succ-nonempty : succ AB w (p1 ,p2 ) 6= {} by force
then have succ-if-1 : p1 ∈ nodes A ∧ p2 ∈ nodes B ∧ (fst w ∈ inputs A)

∧ (snd w ∈ outputs A ∪ outputs B)
using Cons by fastforce

then have (p1 ,p2 ) 6= FAIL
using Cons by auto

have path-tail : path AB (ws || r1s || r2s) (r1 ,r2 )
using path-head Cons by auto

show ?case
proof (cases (r1 ,r2 ) = FAIL)

case True
have r1s = []
proof (rule ccontr)
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assume ¬ (r1s = [])
then have (¬ (ws = [])) ∧ (¬ (r1s = [])) ∧ (¬ (r2s = []))

using Cons.hyps by auto
moreover have path AB (ws || r1s || r2s) FAIL

using True path-tail by simp
ultimately have path AB ([hd ws] @ tl ws || [hd r1s] @ tl r1s || [hd r2s] @ tl r2s) FAIL

by simp
then have path AB ([hd ws] || [hd r1s] || [hd r2s]) FAIL

by auto
then have succ AB (hd ws) FAIL 6= {}

by auto
then show False using no-transition-after-FAIL

using Cons.prems by auto
qed
then have tail-nil : ws = [] ∧ r1s = [] ∧ r2s = []

using Cons.hyps by simp

have succ-fail : FAIL ∈ succ AB w (p1 ,p2 )
using path-head True by auto

then have succs : succ A w p1 = {} ∧ succ B w p2 6= {}
using Cons.prems by (meson productF-succ-fail-imp)

have target (w # ws || r1 # r1s || r2 # r2s) (p1 , p2 ) = FAIL
using True tail-nil by simp

moreover have 0 < length (w # ws)
by simp

moreover have path A (butlast (w # ws || r1 # r1s)) p1
using tail-nil by auto

moreover have path B (butlast (w # ws || r2 # r2s)) p2
using tail-nil by auto

moreover have succ A (last (w # ws)) (target (butlast (w # ws || r1 # r1s)) p1 ) = {}
using succs tail-nil by simp

moreover have succ B (last (w # ws)) (target (butlast (w # ws || r2 # r2s)) p2 ) 6= {}
using succs tail-nil by simp

ultimately show ?thesis
by simp

next
case False

have (r1 ,r2 ) ∈ succ AB w (p1 ,p2 )
using path-head by auto

then have succ-not-fail : succ AB w (p1 ,p2 ) 6= {FAIL}
using succ-nonempty False by auto

have ¬ (succ A w p1 = {} ∧ succ B w p2 6= {})
proof (rule ccontr)

assume ¬ ¬ (succ A w p1 = {} ∧ succ B w p2 6= {})
then have succ AB w (p1 ,p2 ) = {FAIL}

using succ-if-1 Cons by auto
then show False

using succ-not-fail by simp
qed

then have succ AB w (p1 ,p2 ) = (succ A w p1 × succ B w p2 )
using succ-if-1 Cons by auto

then have (r1 ,r2 ) ∈ (succ A w p1 × succ B w p2 )
using Cons by auto

then have succs-next : r1 ∈ succ A w p1 ∧ r2 ∈ succ B w p2
by auto

then have nodes-next : r1 ∈ nodes A ∧ r2 ∈ nodes B
using Cons succ-nodes by metis

moreover have path-tail : path AB (ws || r1s || r2s) (r1 ,r2 )
using Cons by auto

ultimately have prop-tail :
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path A (ws || r1s) r1 ∧ path B (ws || r2s) r2 ∨
target (ws || r1s || r2s) (r1 , r2 ) = FAIL ∧
0 < length ws ∧
path A (butlast (ws || r1s)) r1 ∧
path B (butlast (ws || r2s)) r2 ∧
succ A (last ws) (target (butlast (ws || r1s)) r1 ) = {} ∧
succ B (last ws) (target (butlast (ws || r2s)) r2 ) 6= {}

using Cons.IH [of r1 r2 ] Cons.prems by auto

moreover have path A ([w] || [r1 ]) p1 ∧ path B ([w] || [r2 ]) p2
using succs-next by auto

then show ?thesis
proof (cases path A (ws || r1s) r1 ∧ path B (ws || r2s) r2 )

case True
moreover have paths-head : path A ([w] || [r1 ]) p1 ∧ path B ([w] || [r2 ]) p2

using succs-next by auto
ultimately show ?thesis

by (metis (no-types) FSM .path.simps FSM .path-cons-elim True eq-snd-iff
paths-head zip-Cons-Cons)

next
case False

then have fail-prop : target (ws || r1s || r2s) (r1 , r2 ) = FAIL ∧
0 < length ws ∧
path A (butlast (ws || r1s)) r1 ∧
path B (butlast (ws || r2s)) r2 ∧
succ A (last ws) (target (butlast (ws || r1s)) r1 ) = {} ∧
succ B (last ws) (target (butlast (ws || r2s)) r2 ) 6= {}

using prop-tail by auto

then have paths-head : path A ([w] || [r1 ]) p1 ∧ path B ([w] || [r2 ]) p2
using succs-next by auto

have (last (w # ws)) = last ws
using fail-prop by simp

moreover have (target (butlast (w # ws || r1 # r1s)) p1 ) = (target (butlast (ws || r1s)) r1 )
using fail-prop Cons.hyps(1 ) butlast-zip-cons by auto

moreover have (target (butlast (w # ws || r2 # r2s)) p2 ) = (target (butlast (ws || r2s)) r2 )
using fail-prop Cons.hyps(1 ) Cons.hyps(2 ) butlast-zip-cons by auto

ultimately have succ A (last (w # ws)) (target (butlast (w # ws || r1 # r1s)) p1 ) = {}
∧ succ B (last (w # ws)) (target (butlast (w # ws || r2 # r2s)) p2 ) 6= {}

using fail-prop by auto
moreover have path A (butlast (w # ws || r1 # r1s)) p1

using fail-prop paths-head by auto
moreover have path B (butlast (w # ws || r2 # r2s)) p2

using fail-prop paths-head by auto
moreover have target (w # ws || r1 # r1s || r2 # r2s) (p1 , p2 ) = FAIL

using fail-prop paths-head by auto
ultimately show ?thesis

by simp
qed

qed
qed

lemma butlast-zip[simp] :
assumes length xs = length ys
shows butlast (xs || ys) = (butlast xs || butlast ys)
using assms by (metis (no-types, lifting) map-butlast map-fst-zip map-snd-zip zip-map-fst-snd)

lemma productF-path-reverse-ob :
assumes length w = length r1 length r1 = length r2
and productF A B FAIL AB
and well-formed A
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and well-formed B
and path AB (w || r1 || r2 ) (p1 , p2 )
and p1 ∈ nodes A
and p2 ∈ nodes B

obtains r2 ′

where path B (w || r2 ′) p2 ∧ length w = length r2 ′

proof −
have path-prop : (path A (w || r1 ) p1 ∧ path B (w || r2 ) p2 )

∨ (target (w || r1 || r2 ) (p1 , p2 ) = FAIL
∧ length w > 0
∧ path A (butlast (w || r1 )) p1
∧ path B (butlast (w || r2 )) p2
∧ succ A (last w) (target (butlast (w || r1 )) p1 ) = {}
∧ succ B (last w) (target (butlast (w || r2 )) p2 ) 6= {})

using assms productF-path-reverse[of w r1 r2 A B FAIL AB p1 p2 ] by simp
have ∃ r1 ′ . path B (w || r1 ′) p2 ∧ length w = length r1 ′

proof (cases path A (w || r1 ) p1 ∧ path B (w || r2 ) p2 )
case True
then show ?thesis

using assms by auto
next

case False
then have B-prop : length w > 0

∧ path B (butlast (w || r2 )) p2
∧ succ B (last w) (target (butlast (w || r2 )) p2 ) 6= {}

using path-prop by auto
then obtain rx where rx ∈ succ B (last w) (target (butlast (w || r2 )) p2 )

by auto

then have path B ([last w] || [rx]) (target (butlast (w || r2 )) p2 )
using B-prop by auto

then have path B ((butlast (w || r2 )) @ ([last w] || [rx])) p2
using B-prop by auto

moreover have butlast (w || r2 ) = (butlast w || butlast r2 )
using assms by simp

ultimately have path B ((butlast w) @ [last w] || (butlast r2 ) @ [rx]) p2
using assms B-prop by auto

moreover have (butlast w) @ [last w] = w
using B-prop by simp

moreover have length ((butlast r2 ) @ [rx]) = length w
using assms B-prop by auto

ultimately show ?thesis
by auto

qed
then obtain r1 ′ where path B (w || r1 ′) p2 ∧ length w = length r1 ′

by blast
then show ?thesis

using that by blast
qed

The following lemma formalizes the property of paths of the product machine as described in the section
introduction.
lemma productF-path[iff ] :

assumes length w = length r1 length r1 = length r2
and productF A B FAIL AB
and well-formed A
and well-formed B
and p1 ∈ nodes A
and p2 ∈ nodes B

shows path AB (w || r1 || r2 ) (p1 , p2 ) ←→ ((path A (w || r1 ) p1 ∧ path B (w || r2 ) p2 )
∨ (target (w || r1 || r2 ) (p1 , p2 ) = FAIL
∧ length w > 0
∧ path A (butlast (w || r1 )) p1
∧ path B (butlast (w || r2 )) p2
∧ succ A (last w) (target (butlast (w || r1 )) p1 ) = {}
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∧ succ B (last w) (target (butlast (w || r2 )) p2 ) 6= {})) (is ?path ←→ ?paths)
proof

assume ?path
then show ?paths using assms productF-path-reverse[of w r1 r2 A B FAIL AB p1 p2 ] by simp

next
assume ?paths
then show ?path using assms productF-path-forward[of w r1 r2 A B FAIL AB p1 p2 ] by simp

qed

lemma path-last-succ :
assumes path A (ws || r1s) p1
and length r1s = length ws
and length ws > 0

shows last r1s ∈ succ A (last ws) (target (butlast (ws || r1s)) p1 )
proof −

have path A (butlast (ws || r1s)) p1
∧ path A [last (ws || r1s)] (target (butlast (ws || r1s)) p1 )

by (metis FSM .path-append-elim append-butlast-last-id assms length-greater-0-conv
list.size(3 ) zip-Nil zip-eq)

then have snd (last (ws || r1s)) ∈
succ A (fst (last (ws || r1s))) (target (butlast (ws || r1s)) p1 )

by auto
moreover have ws || r1s 6= []

using assms(3 ) assms(2 ) by (metis length-zip list.size(3 ) min.idem neq0-conv)
ultimately have last r1s ∈ succ A (last ws) (target (butlast (ws || r1s)) p1 )

by (simp add: assms(2 ))
then show ?thesis

by auto
qed

lemma zip-last :
assumes length r1 > 0
and length r1 = length r2

shows last (r1 || r2 ) = (last r1 , last r2 )
by (metis (no-types) assms(1 ) assms(2 ) less-nat-zero-code list.size(3 )

map-fst-zip zip-Nil zip-last)

lemma productF-path-reverse-ob-2 :
assumes length w = length r1 length r1 = length r2
and productF A B FAIL AB
and well-formed A
and well-formed B
and path AB (w || r1 || r2 ) (p1 , p2 )
and p1 ∈ nodes A
and p2 ∈ nodes B
and w ∈ language-state A p1
and observable A

shows path A (w || r1 ) p1 ∧ length w = length r1 path B (w || r2 ) p2 ∧ length w = length r2
target (w || r1 ) p1 = fst (target (w || r1 || r2 ) (p1 ,p2 ))
target (w || r2 ) p2 = snd (target (w || r1 || r2 ) (p1 ,p2 ))

proof −

have (path A (w || r1 ) p1 ∧ path B (w || r2 ) p2 )
∨ (target (w || r1 || r2 ) (p1 , p2 ) = FAIL
∧ length w > 0
∧ path A (butlast (w || r1 )) p1
∧ path B (butlast (w || r2 )) p2
∧ succ A (last w) (target (butlast (w || r1 )) p1 ) = {}
∧ succ B (last w) (target (butlast (w || r2 )) p2 ) 6= {})

using productF-path[of w r1 r2 A B FAIL AB p1 p2 ] assms by blast

moreover have path A (butlast (w || r1 )) p1
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∧ succ A (last w) (target (butlast (w || r1 )) p1 ) = {}
∧ length w > 0 =⇒ False

proof −
assume assm : path A (butlast (w || r1 )) p1

∧ succ A (last w) (target (butlast (w || r1 )) p1 ) = {}
∧ length w > 0

obtain r1 ′ where r1 ′-def : path A (w || r1 ′) p1 ∧ length r1 ′ = length w
using assms(9 ) by auto

then have path A (butlast (w || r1 ′)) p1 ∧ length (butlast r1 ′) = length (butlast w)
by (metis FSM .path-append-elim append-butlast-last-id butlast.simps(1 ) length-butlast)

moreover have path A (butlast (w || r1 )) p1 ∧ length (butlast r1 ) = length (butlast w)
using assm assms(1 ) by auto

ultimately have butlast r1 = butlast r1 ′

by (metis assms(1 ) assms(10 ) butlast-zip language-state observable-path-unique r1 ′-def )

then have butlast (w || r1 ) = butlast (w || r1 ′)
using assms(1 ) r1 ′-def by simp

moreover have succ A (last w) (target (butlast (w || r1 ′)) p1 ) 6= {}
by (metis (no-types) assm empty-iff path-last-succ r1 ′-def )

ultimately show False
using assm by auto

qed

ultimately have paths : (path A (w || r1 ) p1 ∧ path B (w || r2 ) p2 )
by auto

show path A (w || r1 ) p1 ∧ length w = length r1
using assms(1 ) paths by simp

show path B (w || r2 ) p2 ∧ length w = length r2
using assms(1 ) assms(2 ) paths by simp

have length w = 0 =⇒ target (w || r1 || r2 ) (p1 ,p2 ) = (p1 ,p2 )
by simp

moreover have length w > 0 =⇒ target (w || r1 || r2 ) (p1 ,p2 ) = last (r1 || r2 )
proof −

assume length w > 0
moreover have length w = length (r1 || r2 )

using assms(1 ) assms(2 ) by simp
ultimately show ?thesis

using target-alt-def (2 )[of w r1 || r2 (p1 ,p2 )] by simp
qed

ultimately have target (w || r1 ) p1 = fst (target (w || r1 || r2 ) (p1 , p2 ))
∧ target (w || r2 ) p2 = snd (target (w || r1 || r2 ) (p1 , p2 ))

proof (cases length w)
case 0
then show ?thesis by simp

next
case (Suc nat)
then have length w > 0 by simp

have target (w || r1 || r2 ) (p1 ,p2 ) = last (r1 || r2 )
proof −

have length w = length (r1 || r2 )
using assms(1 ) assms(2 ) by simp

then show ?thesis
using ‹length w > 0 › target-alt-def (2 )[of w r1 || r2 (p1 ,p2 )] by simp

qed
moreover have target (w || r1 ) p1 = last r1

using ‹length w > 0 › target-alt-def (2 )[of w r1 p1 ] assms(1 ) by simp
moreover have target (w || r2 ) p2 = last r2

using ‹length w > 0 › target-alt-def (2 )[of w r2 p2 ] assms(1 ) assms(2 ) by simp
moreover have last (r1 || r2 ) = (last r1 , last r2 )

using ‹length w > 0 › assms(1 ) assms(2 ) zip-last[of r1 r2 ] by simp
ultimately show ?thesis

by simp
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qed

then show target (w || r1 ) p1 = fst (target (w || r1 || r2 ) (p1 ,p2 ))
target (w || r2 ) p2 = snd (target (w || r1 || r2 ) (p1 ,p2 ))

by simp+
qed

lemma productF-path-unzip :
assumes productF A B FAIL AB
and path AB (w || tr) q
and length tr = length w

shows path AB (w || (map fst tr || map snd tr)) q
proof −

have map fst tr || map snd tr = tr
by auto

then show ?thesis
using assms by auto

qed

lemma productF-path-io-targets :
assumes productF A B FAIL AB
and io-targets AB (qA,qB) w = {(pA,pB)}
and w ∈ language-state A qA
and w ∈ language-state B qB
and observable A
and observable B
and well-formed A
and well-formed B
and qA ∈ nodes A
and qB ∈ nodes B

shows pA ∈ io-targets A qA w pB ∈ io-targets B qB w
proof −

obtain tr where tr-def : target (w || tr) (qA,qB) = (pA,pB)
∧ path AB (w || tr) (qA,qB)
∧ length w = length tr using assms(2 )

by blast
have path-A : path A (w || map fst tr) qA ∧ length w = length (map fst tr)

using productF-path-reverse-ob-2 [of w map fst tr map snd tr A B FAIL AB qA qB]
assms tr-def by auto

have path-B : path B (w || map snd tr) qB ∧ length w = length (map snd tr)
using productF-path-reverse-ob-2 [of w map fst tr map snd tr A B FAIL AB qA qB]

assms tr-def by auto

have targets : target (w || map fst tr) qA = pA ∧ target (w || map snd tr) qB = pB
proof (cases tr)

case Nil
then have qA = pA ∧ qB = pB

using tr-def by auto
then show ?thesis

by (simp add: local.Nil)
next

case (Cons a list)
then have last tr = (pA,pB)

using tr-def by (simp add: tr-def FSM .target-alt-def states-alt-def )

moreover have target (w || map fst tr) qA = last (map fst tr)
using Cons by (simp add: FSM .target-alt-def states-alt-def tr-def )

moreover have last (map fst tr) = fst (last tr)
using last-map Cons by blast
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moreover have target (w || map snd tr) qB = last (map snd tr)
using Cons by (simp add: FSM .target-alt-def states-alt-def tr-def )

moreover have last (map snd tr) = snd (last tr)
using last-map Cons by blast

ultimately show ?thesis
by simp

qed

show pA ∈ io-targets A qA w
using path-A targets by auto

show pB ∈ io-targets B qB w
using path-B targets by auto

qed

lemma productF-path-io-targets-reverse :
assumes productF A B FAIL AB
and pA ∈ io-targets A qA w
and pB ∈ io-targets B qB w
and w ∈ language-state A qA
and w ∈ language-state B qB
and observable A
and observable B
and well-formed A
and well-formed B
and qA ∈ nodes A
and qB ∈ nodes B

shows io-targets AB (qA,qB) w = {(pA,pB)}
proof −

obtain trA where path A (w || trA) qA
length w = length trA
target (w || trA) qA = pA

using assms(2 ) by auto
obtain trB where path B (w || trB) qB

length trA = length trB
target (w || trB) qB = pB

using ‹length w = length trA› assms(3 ) by auto

have path AB (w || trA || trB) (qA,qB)
length (trA || trB) = length w

using productF-path-inclusion
[OF ‹length w = length trA› ‹length trA = length trB› assms(1 ) assms(8 ,9 ) - assms(10 ,11 )]

by (simp add: ‹length trA = length trB› ‹length w = length trA› ‹path A (w || trA) qA›
‹path B (w || trB) qB›)+

have target (w || trA || trB) (qA,qB) = (pA,pB)
by (simp add: ‹length trA = length trB› ‹length w = length trA› ‹target (w || trA) qA = pA›

‹target (w || trB) qB = pB›)

have (pA,pB) ∈ io-targets AB (qA,qB) w
by (metis ‹length (trA || trB) = length w› ‹path AB (w || trA || trB) (qA, qB)›

‹target (w || trA || trB) (qA, qB) = (pA, pB)› io-target-from-path)

have observable AB
by (metis (no-types) assms(1 ) assms(6 ) assms(7 ) observable-productF)

show ?thesis
by (meson ‹(pA, pB) ∈ io-targets AB (qA, qB) w› ‹observable AB›

observable-io-target-is-singleton)
qed
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2.1 Sequences to failure in the product machine
A sequence to a failure for A and B reaches the fail state of any product machine of A and B with added fail
state.
lemma fail-reachable-by-sequence-to-failure :

assumes sequence-to-failure M1 M2 io
and well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM

obtains p
where path PM (io||p) (initial PM ) ∧ length p = length io ∧ target (io||p) (initial PM ) = FAIL
proof −

have io 6= []
using assms by auto

then obtain io-init io-last where io-split[simp] : io = io-init @ [io-last]
by (metis append-butlast-last-id)

have io-init-inclusion : io-init ∈ language-state M1 (initial M1 )
∧ io-init ∈ language-state M2 (initial M2 )

using assms by auto

have io-init @ [io-last] ∈ language-state M1 (initial M1 )
using assms by auto

then obtain tr1-init tr1-last where tr1-def :
path M1 (io-init @ [io-last] || tr1-init @ [tr1-last]) (initial M1 )
∧ length (tr1-init @ [tr1-last]) = length (io-init @ [io-last])

by (metis append-butlast-last-id language-state-elim length-0-conv length-append-singleton
nat.simps(3 ))

then have path-init-1 : path M1 (io-init || tr1-init) (initial M1 )
∧ length tr1-init = length io-init

by auto
then have path M1 ([io-last] || [tr1-last]) (target (io-init || tr1-init) (initial M1 ))

using tr1-def by auto
then have succ-1 : succ M1 io-last (target (io-init || tr1-init) (initial M1 )) 6= {}

by auto

obtain tr2 where tr2-def : path M2 (io-init || tr2 ) (initial M2 ) ∧ length tr2 = length io-init
using io-init-inclusion by auto

have succ-2 : succ M2 io-last (target (io-init || tr2 ) (initial M2 )) = {}
proof (rule ccontr)

assume succ M2 io-last (target (io-init || tr2 ) (initial M2 )) 6= {}
then obtain tr2-last where tr2-last ∈ succ M2 io-last (target (io-init || tr2 ) (initial M2 ))

by auto
then have path M2 ([io-last] || [tr2-last]) (target (io-init || tr2 ) (initial M2 ))

by auto
then have io-init @ [io-last] ∈ language-state M2 (initial M2 )

by (metis FSM .path-append language-state length-Cons length-append list.size(3 ) tr2-def
zip-append)

then show False
using assms io-split by simp

qed

have fail-lengths : length (io-init @ [io-last]) = length (tr2 @ [fst FAIL])
∧ length (tr2 @ [fst FAIL]) = length (tr1-init @ [snd FAIL])

using assms tr2-def tr1-def by auto
then have fail-tgt : target (io-init @ [io-last] || tr2 @ [fst FAIL] || tr1-init @ [snd FAIL])

(initial M2 , initial M1 ) = FAIL
by auto

have fail-butlast-simp[simp] :
butlast (io-init @ [io-last] || tr2 @ [fst FAIL]) = io-init || tr2
butlast (io-init @ [io-last] || tr1-init @ [snd FAIL]) = io-init || tr1-init
using fail-lengths by simp+

have path M2 (butlast (io-init @ [io-last] || tr2 @ [fst FAIL])) (initial M2 )
∧ path M1 (butlast (io-init @ [io-last] || tr1-init @ [snd FAIL])) (initial M1 )
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using tr1-def tr2-def by auto
moreover have succ M2 (last (io-init @ [io-last]))

(target (butlast (io-init @ [io-last] || tr2 @ [fst FAIL])) (initial M2 )) = {}
using succ-2 by simp

moreover have succ M1 (last (io-init @ [io-last]))
(target (butlast (io-init @ [io-last] || tr1-init @ [snd FAIL])) (initial M1 ))
6= {}

using succ-1 by simp
moreover have initial M2 ∈ nodes M2 ∧ initial M1 ∈ nodes M1

by auto
ultimately have path PM (io-init @ [io-last] || tr2 @ [fst FAIL] || tr1-init @ [snd FAIL])

(initial M2 , initial M1 )
using fail-lengths fail-tgt assms path-init-1 tr2-def productF-path-forward

[of io-init @ [io-last] tr2 @ [fst FAIL] tr1-init @ [snd FAIL] M2 M1 FAIL PM
initial M2 initial M1 ]

by simp

moreover have initial PM = (initial M2 , initial M1 )
using assms(4 ) productF-simps(4 ) by blast

ultimately have
path PM (io-init @ [io-last] || tr2 @ [fst FAIL] || tr1-init @ [snd FAIL]) (initial PM )
∧ length (tr2 @ [fst FAIL] || tr1-init @ [snd FAIL]) = length (io-init @ [io-last])
∧ target (io-init @ [io-last] || tr2 @ [fst FAIL] || tr1-init @ [snd FAIL]) (initial PM )= FAIL

using fail-lengths fail-tgt by auto
then show ?thesis using that

using io-split by blast
qed

lemma fail-reachable :
assumes ¬ M1 � M2
and well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM

shows FAIL ∈ reachable PM (initial PM )
proof −

obtain io where sequence-to-failure M1 M2 io
using sequence-to-failure-ob assms by blast

then show ?thesis
using assms fail-reachable-by-sequence-to-failure[of M1 M2 io FAIL PM ]
by (metis FSM .reachable.reflexive FSM .reachable-target)

qed

lemma fail-reachable-ob :
assumes ¬ M1 � M2
and well-formed M1
and well-formed M2
and observable M2
and productF M2 M1 FAIL PM

obtains p
where path PM p (initial PM ) target p (initial PM ) = FAIL
using assms fail-reachable by (metis FSM .reachable-target-elim)

lemma fail-reachable-reverse :
assumes well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM
and FAIL ∈ reachable PM (initial PM )
and observable M2

shows ¬ M1 � M2
proof −

obtain pathF where pathF-def : path PM pathF (initial PM ) ∧ target pathF (initial PM ) = FAIL
using assms by auto
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let ?io = map fst pathF
let ?tr2 = map fst (map snd pathF)
let ?tr1 = map snd (map snd pathF)

have initial PM 6= FAIL
using assms by auto

then have pathF 6= []
using pathF-def by auto

moreover have initial PM = (initial M2 , initial M1 )
using assms by simp

ultimately have path M2 (?io || ?tr2 ) (initial M2 ) ∧ path M1 (?io || ?tr1 ) (initial M1 ) ∨
target (?io || ?tr2 || ?tr1 ) (initial M2 , initial M1 ) = FAIL ∧
0 < length (?io) ∧
path M2 (butlast (?io || ?tr2 )) (initial M2 ) ∧
path M1 (butlast (?io || ?tr1 )) (initial M1 ) ∧
succ M2 (last (?io)) (target (butlast (?io || ?tr2 )) (initial M2 )) = {} ∧
succ M1 (last (?io)) (target (butlast (?io || ?tr1 )) (initial M1 )) 6= {}

using productF-path-reverse[of ?io ?tr2 ?tr1 M2 M1 FAIL PM initial M2 initial M1 ]
using assms pathF-def

proof −
have f1 : path PM (?io || ?tr2 || ?tr1 ) (initial M2 , initial M1 )

by (metis (no-types) ‹initial PM = (initial M2 , initial M1 )› pathF-def zip-map-fst-snd)
have f2 : length (?io) = length pathF −→ length (?io) = length (?tr2 )

by auto
have length (?io) = length pathF ∧ length (?tr2 ) = length (?tr1 )

by auto
then show ?thesis

using f2 f1 ‹productF M2 M1 FAIL PM › ‹well-formed M1 › ‹well-formed M2 › by blast
qed

moreover have ¬ (path M2 (?io || ?tr2 ) (initial M2 ) ∧ path M1 (?io || ?tr1 ) (initial M1 ))
proof (rule ccontr)

assume ¬ ¬ (path M2 (?io || ?tr2 ) (initial M2 ) ∧
path M1 (?io || ?tr1 ) (initial M1 ))

then have path M2 (?io || ?tr2 ) (initial M2 )
by simp

then have target (?io || ?tr2 ) (initial M2 ) ∈ nodes M2
by auto

then have target (?io || ?tr2 ) (initial M2 ) 6= fst FAIL
using assms by auto

then show False
using pathF-def

proof −
have FAIL = target (map fst pathF || map fst (map snd pathF) || map snd (map snd pathF))

(initial M2 , initial M1 )
by (metis (no-types) ‹initial PM = (initial M2 , initial M1 )›

‹path PM pathF (initial PM ) ∧ target pathF (initial PM ) = FAIL› zip-map-fst-snd)
then show ?thesis

using ‹target (map fst pathF || map fst (map snd pathF)) (initial M2 ) 6= fst FAIL› by auto
qed

qed

ultimately have fail-prop :
target (?io || ?tr2 || ?tr1 ) (initial M2 , initial M1 ) = FAIL ∧

0 < length (?io) ∧
path M2 (butlast (?io || ?tr2 )) (initial M2 ) ∧
path M1 (butlast (?io || ?tr1 )) (initial M1 ) ∧
succ M2 (last (?io)) (target (butlast (?io || ?tr2 )) (initial M2 )) = {} ∧
succ M1 (last (?io)) (target (butlast (?io || ?tr1 )) (initial M1 )) 6= {}

by auto

then have ?io ∈ language-state M1 (initial M1 )
proof −

have f1 : path PM (map fst pathF || map fst (map snd pathF) || map snd (map snd pathF))
(initial M2 , initial M1 )
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by (metis (no-types) ‹initial PM = (initial M2 , initial M1 )› pathF-def zip-map-fst-snd)
have ∀ c f . c 6= initial (f ::( ′a, ′b, ′c) FSM ) ∨ c ∈ nodes f

by blast
then show ?thesis

using f1 by (metis (no-types) assms(1 ) assms(2 ) assms(3 ) language-state length-map
productF-path-reverse-ob)

qed

moreover have ?io /∈ language-state M2 (initial M2 )
proof (rule ccontr)

assume ¬ ?io /∈ language-state M2 (initial M2 )
then have assm : ?io ∈ language-state M2 (initial M2 )

by simp
then obtain tr2 ′ where tr2 ′-def : path M2 (?io || tr2 ′) (initial M2 )

∧ length ?io = length tr2 ′

by auto
then obtain tr2 ′-init tr2 ′-last where tr2 ′-split : tr2 ′ = tr2 ′-init @ [tr2 ′-last]

using fail-prop by (metis ‹pathF 6= []› append-butlast-last-id length-0-conv map-is-Nil-conv)

have butlast ?io ∈ language-state M2 (initial M2 )
using fail-prop by auto

then have {t. path M2 (butlast ?io || t) (initial M2 ) ∧ length (butlast ?io) = length t}
= {butlast ?tr2}

using assms(5 ) observable-path-unique[of butlast ?io M2 initial M2 butlast ?tr2 ]
fail-prop by fastforce

then have ∀ t ts . path M2 ((butlast ?io) @ [last ?io] || ts @ [t]) (initial M2 )
∧ length ((butlast ?io) @ [last ?io]) = length (ts @ [t])
−→ ts = butlast ?tr2

by (metis (no-types, lifting) FSM .path-append-elim
‹butlast (map fst pathF) ∈ language-state M2 (initial M2 )› assms(5 ) butlast-snoc
butlast-zip fail-prop length-butlast length-map observable-path-unique zip-append)

then have tr2 ′-init = butlast ?tr2
using tr2 ′-def tr2 ′-split ‹pathF 6= []› by auto

then have path M2 ((butlast ?io) @ [last ?io] || (butlast ?tr2 ) @ [tr2 ′-last]) (initial M2 )
∧ length ((butlast ?io) @ [last ?io]) = length ((butlast ?tr2 ) @ [tr2 ′-last])

using tr2 ′-def fail-prop tr2 ′-split by auto
then have path M2 ([last ?io] || [tr2 ′-last])

(target (butlast ?io || butlast ?tr2 ) (initial M2 ))
∧ length [last ?io] = length [tr2 ′-last]

by auto
then have tr2 ′-last ∈ succ M2 (last (?io)) (target (butlast (?io || ?tr2 )) (initial M2 ))

by auto
then show False

using fail-prop by auto
qed

ultimately show ?thesis by auto
qed

lemma fail-reachable-iff [iff ] :
assumes well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM
and observable M2

shows FAIL ∈ reachable PM (initial PM ) ←→ ¬ M1 � M2
proof

show FAIL ∈ reachable PM (initial PM ) =⇒ ¬ M1 � M2
using assms fail-reachable-reverse by blast

show ¬ M1 � M2 =⇒ FAIL ∈ reachable PM (initial PM )
using assms fail-reachable by blast

qed
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lemma reaching-path-length :
assumes productF A B FAIL AB
and well-formed A
and well-formed B
and q2 ∈ reachable AB q1
and q2 6= FAIL
and q1 ∈ nodes AB

shows ∃ p . path AB p q1 ∧ target p q1 = q2 ∧ length p < card (nodes A) ∗ card (nodes B)
proof −

obtain p where p-def : path AB p q1 ∧ target p q1 = q2 ∧ distinct (q1 # states p q1 )
using assms reaching-path-without-repetition by (metis well-formed-productF)

have FAIL /∈ set (q1 # states p q1 )
proof(cases p)

case Nil
then have q1 = q2

using p-def by auto
then have q1 6= FAIL

using assms by auto
then show ?thesis

using Nil by auto
next

case (Cons a list)
have FAIL /∈ set (butlast (q1 # states p q1 ))
proof (rule ccontr)

assume assm : ¬ FAIL /∈ set (butlast (q1 # states p q1 ))
then obtain i where i-def : i < length (butlast (q1 # states p q1 ))

∧ butlast (q1 # states p q1 ) ! i = FAIL
by (metis distinct-Ex1 distinct-butlast p-def )

then have i < Suc (length (butlast p))
using local.Cons by fastforce

then have i < length p
by (metis append-butlast-last-id length-append-singleton list.simps(3 ) local.Cons)

then have butlast (q1 # states p q1 ) ! i = target (take i p) q1
using i-def assm proof (induction i)

case 0
then show ?case by auto

next
case (Suc i)
then show ?case by (metis Suc-lessD nth-Cons-Suc nth-butlast states-target-index)

qed

then have target (take i p) q1 = FAIL using i-def by auto
moreover have ∀ k . k < length p −→ target (take k p) q1 6= FAIL

using no-prefix-targets-FAIL[of A B FAIL AB p q1 ] assms p-def by auto
ultimately show False

by (metis assms(5 ) linorder-neqE-nat nat-less-le order-refl p-def take-all)
qed

moreover have last (q1 # states p q1 ) 6= FAIL
using assms(5 ) local.Cons p-def transition-system-universal.target-alt-def by force

ultimately show ?thesis
by (metis (no-types, lifting) UnE append-butlast-last-id list.set(1 ) list.set(2 )

list.simps(3 ) set-append singletonD)
qed

moreover have set (q1 # states p q1 ) ⊆ nodes AB
using assms by (metis FSM .nodes-states insert-subset list.simps(15 ) p-def )

ultimately have states-subset : set (q1 # states p q1 ) ⊆ nodes A × nodes B
using nodes-productF assms by blast

have finite-nodes : finite (nodes A × nodes B)
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using assms(2 ) assms(3 ) by auto
have length p ≤ length (states p q1 )

by simp
then have length p < card (nodes A) ∗ card (nodes B)

by (metis (no-types) finite-nodes states-subset card-cartesian-product card-mono distinct-card
impossible-Cons less-le-trans not-less p-def )

then show ?thesis
using p-def by blast

qed

lemma reaching-path-fail-length :
assumes productF A B FAIL AB
and well-formed A
and well-formed B
and q2 ∈ reachable AB q1
and q1 ∈ nodes AB

shows ∃ p . path AB p q1 ∧ target p q1 = q2 ∧ length p ≤ card (nodes A) ∗ card (nodes B)
proof (cases q2 = FAIL)

case True

then have q2-def : q2 = FAIL
by simp

then show ?thesis
proof (cases q1 = q2 )

case True
then show ?thesis by auto

next
case False
then obtain px where px-def : path AB px q1 ∧ target px q1 = q2

using assms by auto
then have px-nonempty : px 6= []

using q2-def False by auto
let ?qx = target (butlast px) q1
have ?qx ∈ reachable AB q1

using px-def px-nonempty
by (metis FSM .path-append-elim FSM .reachable.reflexive FSM .reachable-target

append-butlast-last-id)
moreover have ?qx 6= FAIL

using False q2-def assms
by (metis One-nat-def Suc-pred butlast-conv-take length-greater-0-conv lessI

no-prefix-targets-FAIL px-def px-nonempty)
ultimately obtain px ′ where px ′-def : path AB px ′ q1

∧ target px ′ q1 = ?qx
∧ length px ′ < card (nodes A) ∗ card (nodes B)

using assms reaching-path-length[of A B FAIL AB ?qx q1 ] by blast

have px-split : path AB ((butlast px) @ [last px]) q1
∧ target ((butlast px) @ [last px]) q1 = q2

using px-def px-nonempty by auto
then have path AB [last px] ?qx ∧ target [last px] ?qx = q2

using px-nonempty
proof −

have target [last px] (target (butlast px) q1 ) = q2
using px-split by force

then show ?thesis
using px-split by blast

qed

then have path AB (px ′ @ [last px]) q1 ∧ target (px ′ @ [last px]) q1 = q2
using px ′-def by auto

moreover have length (px ′ @ [last px]) ≤ card (nodes A) ∗ card (nodes B)
using px ′-def by auto

ultimately show ?thesis
by blast
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qed
next

case False
then show ?thesis

using assms reaching-path-length by (metis less-imp-le)
qed

lemma productF-language :
assumes productF A B FAIL AB
and well-formed A
and well-formed B
and io ∈ L A ∩ L B

shows io ∈ L AB
proof −

obtain trA trB where tr-def : path A (io || trA) (initial A) ∧ length io = length trA
path B (io || trB) (initial B) ∧ length io = length trB

using assms by blast
then have path AB (io || trA || trB) (initial A, initial B)

using assms by (metis FSM .nodes.initial productF-path-inclusion)
then show ?thesis

using tr-def by (metis assms(1 ) language-state length-zip min.idem productF-simps(4 ))
qed

lemma productF-language-state-intermediate :
assumes vs @ xs ∈ L M2 ∩ L M1
and productF M2 M1 FAIL PM
and observable M2
and well-formed M2
and observable M1
and well-formed M1

obtains q2 q1 tr
where io-targets PM (initial PM ) vs = {(q2 ,q1 )}

path PM (xs || tr) (q2 ,q1 )
length xs = length tr

proof −
have vs @ xs ∈ L PM

using productF-language[OF assms(2 ,4 ,6 ,1 )] by simp
then obtain trVX where path PM (vs@xs || trVX) (initial PM ) ∧ length trVX = length (vs@xs)

by auto
then have tgt-VX : io-targets PM (initial PM ) (vs@xs) = {target (vs@xs || trVX) (initial PM )}

by (metis assms(2 ) assms(3 ) assms(5 ) obs-target-is-io-targets observable-productF)

have vs ∈ L PM using ‹vs@xs ∈ L PM ›
by (meson language-state-prefix)

then obtain trV where path PM (vs || trV ) (initial PM ) ∧ length trV = length vs
by auto

then have tgt-V : io-targets PM (initial PM ) vs = {target (vs || trV ) (initial PM )}
by (metis assms(2 ) assms(3 ) assms(5 ) obs-target-is-io-targets observable-productF)

let ?q2 = fst (target (vs || trV ) (initial PM ))
let ?q1 = snd (target (vs || trV ) (initial PM ))

have observable PM
by (meson assms(2 ,3 ,5 ) observable-productF)

have io-targets PM (?q2 ,?q1 ) xs = {target (vs @ xs || trVX) (initial PM )}
using observable-io-targets-split[OF ‹observable PM › tgt-VX tgt-V ] by simp

then have xs ∈ language-state PM (?q2 ,?q1 )
by auto

then obtain tr where path PM (xs || tr) (?q2 ,?q1 )
length xs = length tr

by auto
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then show ?thesis
by (metis prod.collapse tgt-V that)

qed

lemma sequence-to-failure-reaches-FAIL :
assumes sequence-to-failure M1 M2 io
and OFSM M1
and OFSM M2
and productF M2 M1 FAIL PM

shows FAIL ∈ io-targets PM (initial PM ) io
proof −

obtain p where path PM (io || p) (initial PM )
∧ length p = length io
∧ target (io || p) (initial PM ) = FAIL

using fail-reachable-by-sequence-to-failure[OF assms(1 )]
using assms(2 ) assms(3 ) assms(4 ) by blast

then show ?thesis
by auto

qed

lemma sequence-to-failure-reaches-FAIL-ob :
assumes sequence-to-failure M1 M2 io
and OFSM M1
and OFSM M2
and productF M2 M1 FAIL PM

shows io-targets PM (initial PM ) io = {FAIL}
proof −

have FAIL ∈ io-targets PM (initial PM ) io
using sequence-to-failure-reaches-FAIL[OF assms(1−4 )] by assumption

have observable PM
by (meson assms(2 ) assms(3 ) assms(4 ) observable-productF)

show ?thesis
by (meson ‹FAIL ∈ io-targets PM (initial PM ) io› ‹observable PM ›

observable-io-target-is-singleton)
qed

lemma sequence-to-failure-alt-def :
assumes io-targets PM (initial PM ) io = {FAIL}
and OFSM M1
and OFSM M2
and productF M2 M1 FAIL PM

shows sequence-to-failure M1 M2 io
proof −

obtain p where path PM (io || p) (initial PM )
length p = length io
target (io || p) (initial PM ) = FAIL

using assms(1 ) by (metis io-targets-elim singletonI )
have io 6= []
proof

assume io = []
then have io-targets PM (initial PM ) io = {initial PM}

by auto
moreover have initial PM 6= FAIL
proof −

have initial PM = (initial M2 , initial M1 )
using assms(4 ) by auto

then have initial PM ∈ (nodes M2 × nodes M1 )
by (simp add: FSM .nodes.initial)

moreover have FAIL /∈ (nodes M2 × nodes M1 )
using assms(4 ) by auto

ultimately show ?thesis
by auto
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qed
ultimately show False

using assms(1 ) by blast
qed
then have 0 < length io

by blast

have target (butlast (io||p)) (initial PM ) 6= FAIL
using no-prefix-targets-FAIL[OF assms(4 ) ‹path PM (io || p) (initial PM )›, of (length io) − 1 ]
by (metis (no-types, lifting) ‹0 < length io› ‹length p = length io› butlast-conv-take

diff-less length-map less-numeral-extra(1 ) map-fst-zip)
have target (butlast (io||p)) (initial PM ) ∈ nodes PM

by (metis FSM .nodes.initial FSM .nodes-target FSM .path-append-elim
‹path PM (io || p) (initial PM )› append-butlast-last-id butlast.simps(1 ))

moreover have nodes PM ⊆ insert FAIL (nodes M2 × nodes M1 )
using nodes-productF [OF - - assms(4 )] assms(2 ) assms(3 ) by linarith

ultimately have target (butlast (io||p)) (initial PM ) ∈ insert FAIL (nodes M2 × nodes M1 )
by blast

have target (butlast (io||p)) (initial PM ) ∈ (nodes M2 × nodes M1 )
using ‹target (butlast (io || p)) (initial PM ) ∈ insert FAIL (nodes M2 × nodes M1 )›

‹target (butlast (io || p)) (initial PM ) 6= FAIL›
by blast

then obtain s2 s1 where target (butlast (io||p)) (initial PM ) = (s2 ,s1 )
s2 ∈ nodes M2 s1 ∈ nodes M1

by blast

have length (butlast io) = length (map fst (butlast p))
length (map fst (butlast p)) = length (map snd (butlast p))

by (simp add: ‹length p = length io›)+

have path PM (butlast (io||p)) (initial PM )
by (metis FSM .path-append-elim ‹path PM (io || p) (initial PM )› append-butlast-last-id

butlast.simps(1 ))
then have path PM ((butlast io) || (map fst (butlast p)) || (map snd (butlast p)))

(initial M2 , initial M1 )
using ‹length p = length io› assms(4 ) by auto

have target (butlast io || map fst (butlast p) || map snd (butlast p)) (initial M2 , initial M1 )
6= FAIL

using ‹length p = length io› ‹target (butlast (io || p)) (initial PM ) 6= FAIL› assms(4 )
by auto

have path M2 (butlast io || map fst (butlast p)) (initial M2 ) ∧
path M1 (butlast io || map snd (butlast p)) (initial M1 ) ∨

target (butlast io || map fst (butlast p) || map snd (butlast p)) (initial M2 , initial M1 )
= FAIL

using productF-path-reverse
[OF ‹length (butlast io) = length (map fst (butlast p))›

‹length (map fst (butlast p)) = length (map snd (butlast p))›
assms(4 ) - -
‹path PM ((butlast io) || (map fst (butlast p)) || (map snd (butlast p)))
(initial M2 , initial M1 )› - -]

using assms(2 ) assms(3 ) by auto
then have path M2 (butlast io || map fst (butlast p)) (initial M2 )

path M1 (butlast io || map snd (butlast p)) (initial M1 )
using ‹target (butlast io || map fst (butlast p) || map snd (butlast p))

(initial M2 , initial M1 ) 6= FAIL›
by auto

then have butlast io ∈ L M2 ∩ L M1
using ‹length (butlast io) = length (map fst (butlast p))› by auto

have path PM (io || map fst p || map snd p) (initial M2 , initial M1 )
using ‹path PM (io || p) (initial PM )› assms(4 ) by auto

have length io = length (map fst p)
length (map fst p) = length (map snd p)
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by (simp add: ‹length p = length io›)+

obtain p1 ′ where path M1 (io || p1 ′) (initial M1 ) ∧ length io = length p1 ′

using productF-path-reverse-ob
[OF ‹length io = length (map fst p)›

‹length (map fst p) = length (map snd p)› assms(4 ) - -
‹path PM (io || map fst p || map snd p) (initial M2 , initial M1 )›]

using assms(2 ) assms(3 ) by blast
then have io ∈ L M1

by auto

moreover have io /∈ L M2
proof

assume io ∈ L M2 — only possible if io does not target FAIL
then obtain p2 ′ where path M2 (io || p2 ′) (initial M2 ) length io = length p2 ′

by auto
then have length p2 ′ = length p1 ′

using ‹path M1 (io || p1 ′) (initial M1 ) ∧ length io = length p1 ′›
by auto

have path PM (io || p2 ′ || p1 ′) (initial M2 , initial M1 )
using productF-path-inclusion[OF ‹length io = length p2 ′› ‹length p2 ′ = length p1 ′› assms(4 ),

of initial M2 initial M1 ]
‹path M1 (io || p1 ′) (initial M1 ) ∧ length io = length p1 ′›
‹path M2 (io || p2 ′) (initial M2 )› assms(2 ) assms(3 )

by blast

have target (io || p2 ′ || p1 ′) (initial M2 , initial M1 ) ∈ (nodes M2 × nodes M1 )
using ‹length io = length p2 ′› ‹path M1 (io || p1 ′) (initial M1 ) ∧ length io = length p1 ′›

‹path M2 (io || p2 ′) (initial M2 )›
by auto

moreover have FAIL /∈ (nodes M2 × nodes M1 )
using assms(4 ) by auto

ultimately have target (io || p2 ′ || p1 ′) (initial M2 , initial M1 ) 6= FAIL
by blast

have length io = length (p2 ′ || p1 ′)
by (simp add: ‹length io = length p2 ′› ‹length p2 ′ = length p1 ′›)

have target (io || p2 ′ || p1 ′) (initial M2 , initial M1 )
∈ io-targets PM (initial M2 , initial M1 ) io

using ‹path PM (io || p2 ′ || p1 ′) (initial M2 , initial M1 )› ‹length io = length (p2 ′ || p1 ′)›
unfolding io-targets.simps by blast

have io-targets PM (initial PM ) io 6= {FAIL}
using ‹target (io || p2 ′ || p1 ′) (initial M2 , initial M1 )

∈ io-targets PM (initial M2 , initial M1 ) io›
‹target (io || p2 ′ || p1 ′) (initial M2 , initial M1 ) 6= FAIL› assms(4 )

by auto
then show False

using assms(1 ) by blast
qed

ultimately have io ∈ L M1 − L M2
by blast

show sequence-to-failure M1 M2 io
using ‹butlast io ∈ L M2 ∩ L M1 › ‹io ∈ L M1 − L M2 › by auto

qed

end
theory ATC
imports ../FSM/FSM
begin
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3 Adaptive test cases
Adaptive test cases (ATCs) are tree-like structures that label nodes with inputs and edges with outputs such
that applying an ATC to some FSM is performed by applying the label of its root node and then applying the
ATC connected to the root node by an edge labeled with the observed output of the FSM. The result of such
an application is here called an ATC-reaction.
ATCs are here modelled to have edges for every possible output from each non-leaf node. This is not a restriction
on the definition of ATCs by Hierons [2] as a missing edge can be expressed by an edge to a leaf.
datatype ( ′in, ′out) ATC = Leaf | Node ′in ′out ⇒ ( ′in, ′out) ATC

inductive atc-reaction :: ( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ( ′in, ′out) ATC
⇒ ( ′in × ′out) list ⇒ bool

where
leaf [intro!]: atc-reaction M q1 Leaf [] |
node[intro!]: q2 ∈ succ M (x,y) q1

=⇒ atc-reaction M q2 (f y) io
=⇒ atc-reaction M q1 (Node x f ) ((x,y)#io)

inductive-cases leaf-elim[elim!] : atc-reaction M q1 Leaf []
inductive-cases node-elim[elim!] : atc-reaction M q1 (Node x f ) ((x,y)#io)

3.1 Properties of ATC-reactions
lemma atc-reaction-empty[simp] :

assumes atc-reaction M q t []
shows t = Leaf

using assms atc-reaction.simps by force

lemma atc-reaction-nonempty-no-leaf :
assumes atc-reaction M q t (Cons a io)
shows t 6= Leaf

using assms
proof −

have
∧

f c a ps. ¬ atc-reaction f (c:: ′c) (a::( ′a, ′b) ATC ) ps ∨ a 6= Leaf ∨ a 6= Leaf ∨ ps = []
using atc-reaction.simps by fastforce

then show ?thesis
using assms by blast

qed

lemma atc-reaction-nonempty[elim] :
assumes atc-reaction M q1 t (Cons (x,y) io)
obtains q2 f
where t = Node x f q2 ∈ succ M (x,y) q1 atc-reaction M q2 (f y) io

proof −
obtain x2 f where t = Node x2 f

using assms by (metis ATC .exhaust atc-reaction-nonempty-no-leaf )
moreover have x = x2

using assms calculation atc-reaction.cases by fastforce
ultimately show ?thesis

using assms using that by blast
qed

lemma atc-reaction-path-ex :
assumes atc-reaction M q1 t io
shows ∃ tr . path M (io || tr) q1 ∧ length io = length tr

using assms proof (induction io arbitrary: q1 t rule: list.induct)
case Nil
then show ?case by (simp add: FSM .nil)

next
case (Cons io-hd io-tl)
then obtain x y where io-hd-def : io-hd = (x,y)

by (meson surj-pair)
then obtain f where f-def : t = (Node x f )

using Cons atc-reaction-nonempty by metis
then obtain q2 where q2-def : q2 ∈ succ M (x,y) q1 atc-reaction M q2 (f y) io-tl
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using Cons io-hd-def atc-reaction-nonempty by auto
then obtain tr-tl where tr-tl-def : path M (io-tl || tr-tl) q2 length io-tl = length tr-tl

using Cons.IH [of q2 f y] by blast
then have path M (io-hd # io-tl || q2 # tr-tl) q1

using Cons q2-def by (simp add: FSM .path.intros(2 ) io-hd-def )
then show ?case using tr-tl-def by fastforce

qed

lemma atc-reaction-path[elim] :
assumes atc-reaction M q1 t io

obtains tr
where path M (io || tr) q1 length io = length tr

by (meson assms atc-reaction-path-ex)

3.2 Applicability
An ATC can be applied to an FSM if each node-label is contained in the input alphabet of the FSM.
inductive subtest :: ( ′in, ′out) ATC ⇒ ( ′in, ′out) ATC ⇒ bool where

t ∈ range f =⇒ subtest t (Node x f )

lemma accp-subtest : Wellfounded.accp subtest t
proof (induction t)

case Leaf
then show ?case by (meson ATC .distinct(1 ) accp.simps subtest.cases)

next
case (Node x f )
have IH : Wellfounded.accp subtest t if t ∈ range f for t

using Node[of t] and that by (auto simp: eq-commute)
show ?case by (rule accpI ) (auto intro: IH elim!: subtest.cases)

qed

definition subtest-rel where subtest-rel = {(t, Node x f ) |f x t. t ∈ range f }

lemma subtest-rel-altdef : subtest-rel = {(s, t) |s t. subtest s t}
by (auto simp: subtest-rel-def subtest.simps)

lemma subtest-relI [intro]: t ∈ range f =⇒ (t, Node x f ) ∈ subtest-rel
by (simp add: subtest-rel-def )

lemma subtest-relI ′ [intro]: t = f y =⇒ (t, Node x f ) ∈ subtest-rel
by (auto simp: subtest-rel-def ran-def )

lemma wf-subtest-rel [simp, intro]: wf subtest-rel
using accp-subtest unfolding subtest-rel-altdef accp-eq-acc wf-iff-acc
by auto

function inputs-atc :: ( ′a, ′b) ATC ⇒ ′a set where
inputs-atc Leaf = {} |
inputs-atc (Node x f ) = insert x (

⋃
(image inputs-atc (range f )))

by pat-completeness auto
termination by (relation subtest-rel) auto

fun applicable :: ( ′in, ′out, ′state) FSM ⇒ ( ′in, ′out) ATC ⇒ bool where
applicable M t = (inputs-atc t ⊆ inputs M )

fun applicable-set :: ( ′in, ′out, ′state) FSM ⇒ ( ′in, ′out) ATC set ⇒ bool where
applicable-set M Ω = (∀ t ∈ Ω . applicable M t)

lemma applicable-subtest :
assumes applicable M (Node x f )

shows applicable M (f y)
using assms inputs-atc.simps

by (simp add: Sup-le-iff )
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3.3 Application function IO
Function IO collects all ATC-reactions of some FSM to some ATC.
fun IO :: ( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ( ′in, ′out) ATC ⇒ ( ′in × ′out) list set where

IO M q t = { tr . atc-reaction M q t tr }

fun IO-set :: ( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ( ′in, ′out) ATC set ⇒ ( ′in × ′out) list set
where
IO-set M q Ω =

⋃
{IO M q t | t . t ∈ Ω}

lemma IO-language : IO M q t ⊆ language-state M q
by (metis atc-reaction-path IO.elims language-state mem-Collect-eq subsetI )

lemma IO-leaf [simp] : IO M q Leaf = {[]}
proof

show IO M q Leaf ⊆ {[]}
proof (rule ccontr)

assume assm : ¬ IO M q Leaf ⊆ {[]}
then obtain io-hd io-tl where elem-ex : Cons io-hd io-tl ∈ IO M q Leaf

by (metis (no-types, opaque-lifting) insertI1 neq-Nil-conv subset-eq)
then show False

using atc-reaction-nonempty-no-leaf assm by (metis IO.simps mem-Collect-eq)
qed

next
show {[]} ⊆ IO M q Leaf by auto

qed

lemma IO-applicable-nonempty :
assumes applicable M t
and completely-specified M
and q1 ∈ nodes M
shows IO M q1 t 6= {}

using assms proof (induction t arbitrary: q1 )
case Leaf
then show ?case by auto

next
case (Node x f )
then have x ∈ inputs M by auto
then obtain y q2 where x-appl : q2 ∈ succ M (x, y) q1

using Node unfolding completely-specified.simps by blast
then have applicable M (f y)

using applicable-subtest Node by metis
moreover have q2 ∈ nodes M

using Node(4 ) ‹q2 ∈ succ M (x, y) q1 › FSM .nodes.intros(2 )[of q1 M ((x,y),q2 )] by auto
ultimately have IO M q2 (f y) 6= {}

using Node by auto
then show ?case unfolding IO.simps

using x-appl by blast
qed

lemma IO-in-language :
IO M q t ⊆ LS M q
unfolding IO.simps by blast

lemma IO-set-in-language :
IO-set M q Ω ⊆ LS M q
using IO-in-language[of M q] unfolding IO-set.simps by blast

3.4 R-distinguishability
A non-empty ATC r-distinguishes two states of some FSM if there exists no shared ATC-reaction.
fun r-dist :: ( ′in, ′out, ′state) FSM ⇒ ( ′in, ′out) ATC ⇒ ′state ⇒ ′state ⇒ bool where
r-dist M t s1 s2 = (t 6= Leaf ∧ IO M s1 t ∩ IO M s2 t = {})

58



fun r-dist-set :: ( ′in, ′out, ′state) FSM ⇒ ( ′in, ′out) ATC set ⇒ ′state ⇒ ′state ⇒ bool where
r-dist-set M T s1 s2 = (∃ t ∈ T . r-dist M t s1 s2 )

lemma r-dist-dist :
assumes applicable M t
and completely-specified M
and r-dist M t q1 q2
and q1 ∈ nodes M

shows q1 6= q2
proof (rule ccontr)

assume ¬(q1 6= q2 )
then have q1 = q2

by simp
then have IO M q1 t = {}

using assms by simp
moreover have IO M q1 t 6= {}

using assms IO-applicable-nonempty by auto
ultimately show False

by simp
qed

lemma r-dist-set-dist :
assumes applicable-set M Ω
and completely-specified M
and r-dist-set M Ω q1 q2
and q1 ∈ nodes M

shows q1 6= q2
using assms r-dist-dist by (metis applicable-set.elims(2 ) r-dist-set.elims(2 ))

lemma r-dist-set-dist-disjoint :
assumes applicable-set M Ω
and completely-specified M
and ∀ t1 ∈ T1 . ∀ t2 ∈ T2 . r-dist-set M Ω t1 t2
and T1 ⊆ nodes M

shows T1 ∩ T2 = {}
by (metis assms disjoint-iff-not-equal r-dist-set-dist subsetCE)

3.5 Response sets
The following functions calculate the sets of all ATC-reactions observed by applying some set of ATCs on every
state reached in some FSM using a given set of IO-sequences.
fun B :: ( ′in, ′out, ′state) FSM ⇒ ( ′in ∗ ′out) list ⇒ ( ′in, ′out) ATC set

⇒ ( ′in ∗ ′out) list set where
B M io Ω =

⋃
(image (λ s . IO-set M s Ω) (io-targets M (initial M ) io))

fun D :: ( ′in, ′out, ′state) FSM ⇒ ′in list set ⇒ ( ′in, ′out) ATC set
⇒ ( ′in ∗ ′out) list set set where

D M ISeqs Ω = image (λ io . B M io Ω) (LS in M (initial M ) ISeqs)

fun append-io-B :: ( ′in, ′out, ′state) FSM ⇒ ( ′in ∗ ′out) list ⇒ ( ′in, ′out) ATC set
⇒ ( ′in ∗ ′out) list set where

append-io-B M io Ω = { io@res | res . res ∈ B M io Ω }

lemma B-dist ′ :
assumes df : B M io1 Ω 6= B M io2 Ω
shows (io-targets M (initial M ) io1 ) 6= (io-targets M (initial M ) io2 )
using assms by force

lemma B-dist :
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assumes io-targets M (initial M ) io1 = {q1}
and io-targets M (initial M ) io2 = {q2}
and B M io1 Ω 6= B M io2 Ω

shows q1 6= q2
using assms by force

lemma D-bound :
assumes wf : well-formed M
and ob: observable M
and fi: finite ISeqs
shows finite (D M ISeqs Ω) card (D M ISeqs Ω) ≤ card (nodes M )

proof −
have D M ISeqs Ω ⊆ image (λ s . IO-set M s Ω) (nodes M )
proof

fix RS assume RS-def : RS ∈ D M ISeqs Ω
then obtain xs ys where RS-tr : RS = B M (xs || ys) Ω

(xs ∈ ISeqs ∧ length xs = length ys
∧ (xs || ys) ∈ language-state M (initial M ))

by auto
then obtain qx where qx-def : io-targets M (initial M ) (xs || ys) = { qx }

by (meson io-targets-observable-singleton-ex ob)
then have RS = IO-set M qx Ω

using RS-tr by auto
moreover have qx ∈ nodes M

by (metis FSM .nodes.initial io-targets-nodes qx-def singletonI )
ultimately show RS ∈ image (λ s . IO-set M s Ω) (nodes M )

by auto
qed
moreover have finite (nodes M )

using assms by auto
ultimately show finite (D M ISeqs Ω) card (D M ISeqs Ω) ≤ card (nodes M )

by (meson finite-imageI infinite-super surj-card-le)+
qed

lemma append-io-B-in-language :
append-io-B M io Ω ⊆ L M

proof
fix x assume x ∈ append-io-B M io Ω
then obtain res where x = io@res res ∈ B M io Ω

unfolding append-io-B.simps by blast
then obtain q where q ∈ io-targets M (initial M ) io res ∈ IO-set M q Ω

unfolding B.simps by blast
then have res ∈ LS M q

using IO-set-in-language[of M q Ω] by blast

obtain pIO where path M (io || pIO) (initial M )
length pIO = length io target (io || pIO) (initial M ) = q

using ‹q ∈ io-targets M (initial M ) io› by auto
moreover obtain pRes where path M (res || pRes) q length pRes = length res

using ‹res ∈ LS M q› by auto
ultimately have io@res ∈ L M

using FSM .path-append[of M io||pIO initial M res||pRes]
by (metis language-state length-append zip-append)

then show x ∈ L M
using ‹x = io@res› by blast

qed

lemma append-io-B-nonempty :
assumes applicable-set M Ω
and completely-specified M
and io ∈ language-state M (initial M )
and Ω 6= {}

shows append-io-B M io Ω 6= {}
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proof −
obtain t where t ∈ Ω

using assms(4 ) by blast
then have applicable M t

using assms(1 ) by simp
moreover obtain tr where path M (io || tr) (initial M ) ∧ length tr = length io

using assms(3 ) by auto
moreover have target (io || tr) (initial M ) ∈ nodes M

using calculation(2 ) by blast
ultimately have IO M (target (io || tr) (initial M )) t 6= {}

using assms(2 ) IO-applicable-nonempty by simp
then obtain io ′ where io ′ ∈ IO M (target (io || tr) (initial M )) t

by blast
then have io ′ ∈ IO-set M (target (io || tr) (initial M )) Ω

using ‹t ∈ Ω› unfolding IO-set.simps by blast
moreover have (target (io || tr) (initial M )) ∈ io-targets M (initial M ) io

using ‹path M (io || tr) (initial M ) ∧ length tr = length io› by auto
ultimately have io ′ ∈ B M io Ω

unfolding B.simps by blast
then have io@io ′ ∈ append-io-B M io Ω

unfolding append-io-B.simps by blast
then show ?thesis by blast

qed

lemma append-io-B-prefix-in-language :
assumes append-io-B M io Ω 6= {}
shows io ∈ L M

proof −
obtain res where io @ res ∈ append-io-B M io Ω ∧ res ∈ B M io Ω

using assms by auto
then have io-targets M (initial M ) io 6= {}

by auto
then obtain q where q ∈ io-targets M (initial M ) io

by blast
then obtain tr where target (io || tr) (initial M ) = q ∧ path M (io || tr) (initial M )

∧ length tr = length io by auto
then show ?thesis by auto

qed

3.6 Characterizing sets
A set of ATCs is a characterizing set for some FSM if for every pair of r-distinguishable states it contains an
ATC that r-distinguishes them.
fun characterizing-atc-set :: ( ′in, ′out, ′state) FSM ⇒ ( ′in, ′out) ATC set ⇒ bool where
characterizing-atc-set M Ω = (applicable-set M Ω ∧ (∀ s1 ∈ (nodes M ) . ∀ s2 ∈ (nodes M ) .

(∃ td . r-dist M td s1 s2 ) −→ (∃ tt ∈ Ω . r-dist M tt s1 s2 )))

3.7 Reduction over ATCs
Some state is a an ATC-reduction of another over some set of ATCs if for every contained ATC every ATC-
reaction to it of the former state is also an ATC-reaction of the latter state.
fun atc-reduction :: ( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ( ′in, ′out, ′state) FSM ⇒ ′state

⇒ ( ′in, ′out) ATC set ⇒ bool where
atc-reduction M2 s2 M1 s1 Ω = (∀ t ∈ Ω . IO M2 s2 t ⊆ IO M1 s1 t)

— r-distinguishability holds for atc-reductions
lemma atc-rdist-dist[intro] :

assumes wf2 : well-formed M2
and cs2 : completely-specified M2
and ap2 : applicable-set M2 Ω
and el-t1 : t1 ∈ nodes M2
and red1 : atc-reduction M2 t1 M1 s1 Ω
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and red2 : atc-reduction M2 t2 M1 s2 Ω
and rdist : r-dist-set M1 Ω s1 s2
and t1 ∈ nodes M2

shows r-dist-set M2 Ω t1 t2
proof −

obtain td where td-def : td ∈ Ω ∧ r-dist M1 td s1 s2
using rdist by auto

then have IO M1 s1 td ∩ IO M1 s2 td = {}
using td-def by simp

moreover have IO M2 t1 td ⊆ IO M1 s1 td
using red1 td-def by auto

moreover have IO M2 t2 td ⊆ IO M1 s2 td
using red2 td-def by auto

ultimately have no-inter : IO M2 t1 td ∩ IO M2 t2 td = {}
by blast

then have td 6= Leaf
by auto

then have IO M2 t1 td 6= {}
by (meson ap2 IO-applicable-nonempty applicable-set.elims(2 ) cs2 td-def assms(8 ))

then have IO M2 t1 td 6= IO M2 t2 td
using no-inter by auto

then show ?thesis
using no-inter td-def by auto

qed

3.8 Reduction over ATCs applied after input sequences
The following functions check whether some FSM is a reduction of another over a given set of input sequences
while furthermore the response sets obtained by applying a set of ATCs after every input sequence to the first
FSM are subsets of the analogously constructed response sets of the second FSM.
fun atc-io-reduction-on :: ( ′in, ′out, ′state1 ) FSM ⇒ ( ′in, ′out, ′state2 ) FSM ⇒ ′in list

⇒ ( ′in, ′out) ATC set ⇒ bool where
atc-io-reduction-on M1 M2 iseq Ω = (Lin M1 {iseq} ⊆ Lin M2 {iseq}
∧ (∀ io ∈ Lin M1 {iseq} . B M1 io Ω ⊆ B M2 io Ω))

fun atc-io-reduction-on-sets :: ( ′in, ′out, ′state1 ) FSM ⇒ ′in list set ⇒ ( ′in, ′out) ATC set
⇒ ( ′in, ′out, ′state2 ) FSM ⇒ bool where

atc-io-reduction-on-sets M1 TS Ω M2 = (∀ iseq ∈ TS . atc-io-reduction-on M1 M2 iseq Ω)

notation
atc-io-reduction-on-sets (‹(- �[[-.-]] -)› [1000 ,1000 ,1000 ,1000 ])

lemma io-reduction-from-atc-io-reduction :
assumes atc-io-reduction-on-sets M1 T Ω M2
and finite T
shows io-reduction-on M1 T M2

using assms(2 ,1 ) proof (induction T)
case empty
then show ?case by auto

next
case (insert t T)
then have atc-io-reduction-on M1 M2 t Ω

by auto
then have Lin M1 {t} ⊆ Lin M2 {t}

using atc-io-reduction-on.simps by blast

have Lin M1 T ⊆ Lin M2 T
using insert.IH

proof −
have atc-io-reduction-on-sets M1 T Ω M2

by (meson contra-subsetD insert.prems atc-io-reduction-on-sets.simps subset-insertI )
then show ?thesis
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using insert.IH by blast
qed
then have Lin M1 T ⊆ Lin M2 (insert t T)

by (meson insert-iff language-state-for-inputs-in-language-state
language-state-for-inputs-map-fst language-state-for-inputs-map-fst-contained
subsetCE subsetI )

moreover have Lin M1 {t} ⊆ Lin M2 (insert t T)
proof −

obtain pps :: ( ′a × ′b) list set ⇒ ( ′a × ′b) list set ⇒ ( ′a × ′b) list where
∀ x0 x1 . (∃ v2 . v2 ∈ x1 ∧ v2 /∈ x0 ) = (pps x0 x1 ∈ x1 ∧ pps x0 x1 /∈ x0 )
by moura

then have ∀P Pa. pps Pa P ∈ P ∧ pps Pa P /∈ Pa ∨ P ⊆ Pa
by blast

moreover
{ assume map fst (pps (Lin M2 (insert t T)) (Lin M1 {t})) /∈ insert t T

then have pps (Lin M2 (insert t T)) (Lin M1 {t}) /∈ Lin M1 {t}
∨ pps (Lin M2 (insert t T)) (Lin M1 {t}) ∈ Lin M2 (insert t T)

by (metis (no-types) insertI1 language-state-for-inputs-map-fst-contained singletonD) }
ultimately show ?thesis

by (meson ‹Lin M1 {t} ⊆ Lin M2 {t}› language-state-for-inputs-in-language-state
language-state-for-inputs-map-fst set-rev-mp)

qed

ultimately show ?case
proof −

have f1 : ∀ ps P Pa. (ps::( ′a × ′b) list) /∈ P ∨ ¬ P ⊆ Pa ∨ ps ∈ Pa
by blast

obtain pps :: ( ′a × ′b) list set ⇒ ( ′a × ′b) list set ⇒ ( ′a × ′b) list where
∀ x0 x1 . (∃ v2 . v2 ∈ x1 ∧ v2 /∈ x0 ) = (pps x0 x1 ∈ x1 ∧ pps x0 x1 /∈ x0 )
by moura

moreover
{ assume pps (Lin M2 (insert t T)) (Lin M1 (insert t T))

/∈ Lin M1 {t}
moreover
{ assume map fst (pps (Lin M2 (insert t T)) (Lin M1 (insert t T)))

/∈ {t}
then have map fst (pps (Lin M2 (insert t T))

(Lin M1 (insert t T))) 6= t
by blast

then have pps (Lin M2 (insert t T)) (Lin M1 (insert t T))
/∈ Lin M1 (insert t T)

∨ pps (Lin M2 (insert t T)) (Lin M1 (insert t T))
∈ Lin M2 (insert t T)

using f1 by (meson ‹Lin M1 T ⊆ Lin M2 (insert t T)›
insertE language-state-for-inputs-in-language-state
language-state-for-inputs-map-fst
language-state-for-inputs-map-fst-contained) }

ultimately have io-reduction-on M1 (insert t T) M2
∨ pps (Lin M2 (insert t T)) (Lin M1 (insert t T))

/∈ Lin M1 (insert t T)
∨ pps (Lin M2 (insert t T)) (Lin M1 (insert t T))
∈ Lin M2 (insert t T)

using f1 by (meson language-state-for-inputs-in-language-state
language-state-for-inputs-map-fst) }

ultimately show ?thesis
using f1 by (meson ‹Lin M1 {t} ⊆ Lin M2 (insert t T)› subsetI )

qed
qed

lemma atc-io-reduction-on-subset :
assumes atc-io-reduction-on-sets M1 T Ω M2
and T ′ ⊆ T

shows atc-io-reduction-on-sets M1 T ′ Ω M2
using assms unfolding atc-io-reduction-on-sets.simps by blast
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lemma atc-reaction-reduction[intro] :
assumes ls : language-state M1 q1 ⊆ language-state M2 q2
and el1 : q1 ∈ nodes M1
and el2 : q2 ∈ nodes M2
and rct : atc-reaction M1 q1 t io
and ob2 : observable M2
and ob1 : observable M1

shows atc-reaction M2 q2 t io
using assms proof (induction t arbitrary: io q1 q2 )

case Leaf
then have io = []

by (metis atc-reaction-nonempty-no-leaf list.exhaust)
then show ?case

by (simp add: leaf )
next

case (Node x f )
then obtain io-hd io-tl where io-split : io = io-hd # io-tl

by (metis ATC .distinct(1 ) atc-reaction-empty list.exhaust)
moreover obtain y where y-def : io-hd = (x,y)

using Node calculation by (metis ATC .inject atc-reaction-nonempty surj-pair)
ultimately obtain q1x where q1x-def : q1x ∈ succ M1 (x,y) q1 atc-reaction M1 q1x (f y) io-tl

using Node.prems(4 ) by blast

then have pt1 : path M1 ([(x,y)] || [q1x]) q1
by auto

then have ls1 : [(x,y)] ∈ language-state M1 q1
unfolding language-state-def path-def using list.simps(9 ) by force

moreover have q1x ∈ io-targets M1 q1 [(x,y)]
unfolding io-targets.simps

proof −
have f1 : length [(x, y)] = length [q1x]

by simp
have q1x = target ([(x, y)] || [q1x]) q1

by simp
then show q1x ∈ {target ([(x, y)] || cs) q1 |cs. path M1 ([(x, y)] || cs) q1

∧ length [(x, y)] = length cs}
using f1 pt1 by blast

qed
ultimately have tgt1 : io-targets M1 q1 [(x,y)] = {q1x}

using Node.prems io-targets-observable-singleton-ex q1x-def
by (metis (no-types, lifting) singletonD)

then have ls2 : [(x,y)] ∈ language-state M2 q2
using Node.prems(1 ) ls1 by auto

then obtain q2x where q2x-def : q2x ∈ succ M2 (x,y) q2
unfolding language-state-def path-def
using transition-system.path.cases by fastforce

then have pt2 : path M2 ([(x,y)] || [q2x]) q2
by auto

then have q2x ∈ io-targets M2 q2 [(x,y)]
using ls2 unfolding io-targets.simps

proof −
have f1 : length [(x, y)] = length [q2x]

by simp
have q2x = target ([(x, y)] || [q2x]) q2

by simp
then show q2x ∈ {target ([(x, y)] || cs) q2 |cs. path M2 ([(x, y)] || cs) q2

∧ length [(x, y)] = length cs}
using f1 pt2 by blast

qed

then have tgt2 : io-targets M2 q2 [(x,y)] = {q2x}
using Node.prems io-targets-observable-singleton-ex ls2 q2x-def
by (metis (no-types, lifting) singletonD)
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then have language-state M1 q1x ⊆ language-state M2 q2x
using language-state-inclusion-of-state-reached-by-same-sequence

[of M1 q1 M2 q2 [(x,y)] q1x q2x]
tgt1 tgt2 Node.prems by auto

moreover have q1x ∈ nodes M1
using q1x-def (1 ) Node.prems(2 ) by (metis insertI1 io-targets-nodes tgt1 )

moreover have q2x ∈ nodes M2
using q2x-def (1 ) Node.prems(3 ) by (metis insertI1 io-targets-nodes tgt2 )

ultimately have q2x ∈ succ M2 (x,y) q2 ∧ atc-reaction M2 q2x (f y) io-tl
using Node.IH [of f y q1x q2x io-tl] ob1 ob2 q1x-def (2 ) q2x-def by blast

then show atc-reaction M2 q2 (Node x f ) io using io-split y-def by blast
qed

lemma IO-reduction :
assumes ls : language-state M1 q1 ⊆ language-state M2 q2
and el1 : q1 ∈ nodes M1
and el2 : q2 ∈ nodes M2
and ob1 : observable M1
and ob2 : observable M2

shows IO M1 q1 t ⊆ IO M2 q2 t
using assms atc-reaction-reduction unfolding IO.simps by auto

lemma IO-set-reduction :
assumes ls : language-state M1 q1 ⊆ language-state M2 q2
and el1 : q1 ∈ nodes M1
and el2 : q2 ∈ nodes M2
and ob1 : observable M1
and ob2 : observable M2

shows IO-set M1 q1 Ω ⊆ IO-set M2 q2 Ω
proof −

have ∀ t ∈ Ω . IO M1 q1 t ⊆ IO M2 q2 t
using assms IO-reduction by metis

then show ?thesis
unfolding IO-set.simps by blast

qed

lemma B-reduction :
assumes red : M1 � M2
and ob1 : observable M1
and ob2 : observable M2

shows B M1 io Ω ⊆ B M2 io Ω
proof

fix xy assume xy-assm : xy ∈ B M1 io Ω
then obtain q1x where q1x-def : q1x ∈ (io-targets M1 (initial M1 ) io) ∧ xy ∈ IO-set M1 q1x Ω

unfolding B.simps by auto
then obtain tr1 where tr1-def : path M1 (io || tr1 ) (initial M1 ) ∧ length io = length tr1

by auto

then have q1x-ob : io-targets M1 (initial M1 ) io = {q1x}
using assms
by (metis io-targets-observable-singleton-ex language-state q1x-def singleton-iff )

then have ls1 : io ∈ language-state M1 (initial M1 )
by auto

then have ls2 : io ∈ language-state M2 (initial M2 )
using red by auto

then obtain tr2 where tr2-def : path M2 (io || tr2 ) (initial M2 ) ∧ length io = length tr2
by auto

then obtain q2x where q2x-def : q2x ∈ (io-targets M2 (initial M2 ) io)
by auto
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then have q2x-ob : io-targets M2 (initial M2 ) io = {q2x}
using tr2-def assms
by (metis io-targets-observable-singleton-ex language-state singleton-iff )

then have language-state M1 q1x ⊆ language-state M2 q2x
using q1x-ob assms unfolding io-reduction.simps
by (simp add: language-state-inclusion-of-state-reached-by-same-sequence)

then have IO-set M1 q1x Ω ⊆ IO-set M2 q2x Ω
using assms IO-set-reduction by (metis FSM .nodes.initial io-targets-nodes q1x-def q2x-def )

moreover have B M1 io Ω = IO-set M1 q1x Ω
using q1x-ob by auto

moreover have B M2 io Ω = IO-set M2 q2x Ω
using q2x-ob by auto

ultimately have B M1 io Ω ⊆ B M2 io Ω
by simp

then show xy ∈ B M2 io Ω using xy-assm
by blast

qed

lemma append-io-B-reduction :
assumes red : M1 � M2
and ob1 : observable M1
and ob2 : observable M2

shows append-io-B M1 io Ω ⊆ append-io-B M2 io Ω
proof

fix ioR assume ioR-assm : ioR ∈ append-io-B M1 io Ω
then obtain res where res-def : ioR = io @ res res ∈ B M1 io Ω

by auto
then have res ∈ B M2 io Ω

using assms B-reduction by (metis (no-types, opaque-lifting) subset-iff )
then show ioR ∈ append-io-B M2 io Ω

using ioR-assm res-def by auto
qed

lemma atc-io-reduction-on-reduction[intro] :
assumes red : M1 � M2
and ob1 : observable M1
and ob2 : observable M2

shows atc-io-reduction-on M1 M2 iseq Ω
unfolding atc-io-reduction-on.simps proof

show Lin M1 {iseq} ⊆ Lin M2 {iseq}
using red by auto

next
show ∀ io∈Lin M1 {iseq}. B M1 io Ω ⊆ B M2 io Ω

using B-reduction assms by blast
qed

lemma atc-io-reduction-on-sets-reduction[intro] :
assumes red : M1 � M2
and ob1 : observable M1
and ob2 : observable M2

shows atc-io-reduction-on-sets M1 TS Ω M2
using assms atc-io-reduction-on-reduction by (metis atc-io-reduction-on-sets.elims(3 ))

lemma atc-io-reduction-on-sets-via-LS in :
assumes atc-io-reduction-on-sets M1 TS Ω M2
shows (Lin M1 TS ∪ (

⋃
io∈Lin M1 TS . B M1 io Ω))

⊆ (Lin M2 TS ∪ (
⋃

io∈Lin M2 TS . B M2 io Ω))
proof −

have ∀ iseq ∈ TS . (Lin M1 {iseq} ⊆ Lin M2 {iseq}
∧ (∀ io ∈ Lin M1 {iseq} . B M1 io Ω ⊆ B M2 io Ω))
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using assms by auto
then have ∀ iseq ∈ TS . (

⋃
io∈Lin M1 {iseq}. B M1 io Ω)

⊆ (
⋃

io∈Lin M2 {iseq}. B M2 io Ω)
by blast

moreover have ∀ iseq ∈ TS . (
⋃

io∈Lin M2 {iseq}. B M2 io Ω)
⊆ (

⋃
io∈Lin M2 TS . B M2 io Ω)

unfolding language-state-for-inputs.simps by blast
ultimately have elem-subset : ∀ iseq ∈ TS .

(
⋃

io∈Lin M1 {iseq}. B M1 io Ω)
⊆ (

⋃
io∈Lin M2 TS . B M2 io Ω)

by blast

show ?thesis
proof

fix x assume x ∈ Lin M1 TS ∪ (
⋃

io∈Lin M1 TS . B M1 io Ω)
then show x ∈ Lin M2 TS ∪ (

⋃
io∈Lin M2 TS . B M2 io Ω)

proof (cases x ∈ Lin M1 TS)
case True
then obtain iseq where iseq ∈ TS x∈ Lin M1 {iseq}

unfolding language-state-for-inputs.simps by blast
then have atc-io-reduction-on M1 M2 iseq Ω

using assms by auto
then have Lin M1 {iseq} ⊆ Lin M2 {iseq}

by auto
then have x ∈ Lin M2 TS

by (metis (no-types, lifting) UN-I
‹
∧

thesis. (
∧

iseq. [[iseq ∈ TS ; x ∈ Lin M1 {iseq}]] =⇒ thesis) =⇒ thesis›
‹∀ iseq∈TS . Lin M1 {iseq} ⊆ Lin M2 {iseq} ∧ (∀ io∈Lin M1 {iseq}. B M1 io Ω ⊆ B M2 io Ω)›
language-state-for-input-alt-def language-state-for-inputs-alt-def set-rev-mp)

then show ?thesis
by blast

next
case False
then have x ∈ (

⋃
io∈Lin M1 TS . B M1 io Ω)

using ‹x ∈ Lin M1 TS ∪ (
⋃

io∈Lin M1 TS . B M1 io Ω)› by blast
then obtain io where io ∈ Lin M1 TS x ∈ B M1 io Ω

by blast
then obtain iseq where iseq ∈ TS io∈Lin M1 {iseq}

unfolding language-state-for-inputs.simps by blast
have x ∈ (

⋃
io∈Lin M1 {iseq}. B M1 io Ω)

using ‹io ∈ Lin M1 {iseq}› ‹x ∈ B M1 io Ω› by blast
then have x ∈ (

⋃
io∈Lin M2 TS . B M2 io Ω)

using ‹iseq ∈ TS› elem-subset by blast
then show ?thesis

by blast
qed

qed
qed

end
theory ASC-LB
imports ../ATC/ATC ../FSM/FSM-Product
begin

4 The lower bound function
This theory defines the lower bound function LB and its properties.
Function LB calculates a lower bound on the number of states of some FSM in order for some sequence to not
contain certain repetitions.
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4.1 Permutation function Perm
Function Perm calculates all possible reactions of an FSM to a set of inputs sequences such that every set in the
calculated set of reactions contains exactly one reaction for each input sequence.
fun Perm :: ′in list set ⇒ ( ′in, ′out, ′state) FSM ⇒ ( ′in × ′out) list set set where

Perm V M = {image f V | f . ∀ v ∈ V . f v ∈ language-state-for-input M (initial M ) v }

lemma perm-empty :
assumes is-det-state-cover M2 V
and V ′′ ∈ Perm V M1

shows [] ∈ V ′′

proof −
have init-seq : [] ∈ V using det-state-cover-empty assms by simp
obtain f where f-def : V ′′ = image f V

∧ (∀ v ∈ V . f v ∈ language-state-for-input M1 (initial M1 ) v)
using assms by auto

then have f [] = []
using init-seq by (metis language-state-for-input-empty singleton-iff )

then show ?thesis
using init-seq f-def by (metis image-eqI )

qed

lemma perm-elem-finite :
assumes is-det-state-cover M2 V
and well-formed M2
and V ′′ ∈ Perm V M1
shows finite V ′′

proof −
obtain f where is-det-state-cover-ass M2 f ∧ V = f ‘ d-reachable M2 (initial M2 )

using assms by auto
moreover have finite (d-reachable M2 (initial M2 ))
proof −

have finite (nodes M2 )
using assms by auto

moreover have nodes M2 = reachable M2 (initial M2 )
by auto

ultimately have finite (reachable M2 (initial M2 ))
by simp

moreover have d-reachable M2 (initial M2 ) ⊆ reachable M2 (initial M2 )
by auto

ultimately show ?thesis
using infinite-super by blast

qed
ultimately have finite V

by auto
moreover obtain f ′′ where V ′′ = image f ′′ V

∧ (∀ v ∈ V . f ′′ v ∈ language-state-for-input M1 (initial M1 ) v)
using assms(3 ) by auto

ultimately show ?thesis
by simp

qed

lemma perm-inputs :
assumes V ′′ ∈ Perm V M
and vs ∈ V ′′

shows map fst vs ∈ V
proof −

obtain f where f-def : V ′′ = image f V
∧ (∀ v ∈ V . f v ∈ language-state-for-input M (initial M ) v)

using assms by auto
then obtain v where v-def : v ∈ V ∧ f v = vs

using assms by auto
then have vs ∈ language-state-for-input M (initial M ) v

using f-def by auto
then show ?thesis

using v-def unfolding language-state-for-input.simps by auto
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qed

lemma perm-inputs-diff :
assumes V ′′ ∈ Perm V M
and vs1 ∈ V ′′

and vs2 ∈ V ′′

and vs1 6= vs2
shows map fst vs1 6= map fst vs2
proof −

obtain f where f-def : V ′′ = image f V
∧ (∀ v ∈ V . f v ∈ language-state-for-input M (initial M ) v)

using assms by auto
then obtain v1 v2 where v-def : v1 ∈ V ∧ f v1 = vs1 ∧ v2 ∈ V ∧ f v2 = vs2

using assms by auto
then have vs1 ∈ language-state-for-input M (initial M ) v1

vs2 ∈ language-state-for-input M (initial M ) v2
using f-def by auto

moreover have v1 6= v2
using v-def assms(4 ) by blast

ultimately show ?thesis
by auto

qed

lemma perm-language :
assumes V ′′ ∈ Perm V M
and vs ∈ V ′′

shows vs ∈ L M
proof −

obtain f where f-def : image f V = V ′′

∧ (∀ v ∈ V . f v ∈ language-state-for-input M (initial M ) v)
using assms(1 ) by auto

then have ∃ v . f v = vs ∧ f v ∈ language-state-for-input M (initial M ) v
using assms(2 ) by blast

then show ?thesis
by auto

qed

4.2 Helper predicates
The following predicates are used to combine often repeated assumption.
abbreviation asc-fault-domain M2 M1 m ≡ (inputs M2 = inputs M1 ∧ card (nodes M1 ) ≤ m )

lemma asc-fault-domain-props[elim!] :
assumes asc-fault-domain M2 M1 m
shows inputs M2 = inputs M1

card (nodes M1 ) ≤ musing assms by auto

abbreviation
test-tools M2 M1 FAIL PM V Ω ≡ (

productF M2 M1 FAIL PM
∧ is-det-state-cover M2 V
∧ applicable-set M2 Ω
)

lemma test-tools-props[elim] :
assumes test-tools M2 M1 FAIL PM V Ω
and asc-fault-domain M2 M1 m
shows productF M2 M1 FAIL PM

is-det-state-cover M2 V
applicable-set M2 Ω
applicable-set M1 Ω

proof −
show productF M2 M1 FAIL PM using assms(1 ) by blast
show is-det-state-cover M2 V using assms(1 ) by blast
show applicable-set M2 Ω using assms(1 ) by blast
then show applicable-set M1 Ω
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unfolding applicable-set.simps applicable.simps
using asc-fault-domain-props(1 )[OF assms(2 )] by simp

qed

lemma perm-nonempty :
assumes is-det-state-cover M2 V
and OFSM M1
and OFSM M2
and inputs M1 = inputs M2

shows Perm V M1 6= {}
proof −

have finite (nodes M2 )
using assms(3 ) by auto

moreover have d-reachable M2 (initial M2 ) ⊆ nodes M2
by auto

ultimately have finite V
using det-state-cover-card[OF assms(1 )]
by (metis assms(1 ) finite-imageI infinite-super is-det-state-cover .elims(2 ))

have [] ∈ V
using assms(1 ) det-state-cover-empty by blast

have
∧

VS . VS ⊆ V ∧ VS 6= {} =⇒ Perm VS M1 6= {}
proof −

fix VS assume VS ⊆ V ∧ VS 6= {}
then have finite VS using ‹finite V ›

using infinite-subset by auto
then show Perm VS M1 6= {}

using ‹VS ⊆ V ∧ VS 6= {}› ‹finite VS›
proof (induction VS)

case empty
then show ?case by auto

next
case (insert vs F)
then have vs ∈ V by blast

obtain q2 where d-reaches M2 (initial M2 ) vs q2
using det-state-cover-d-reachable[OF assms(1 ) ‹vs ∈ V ›] by blast

then obtain vs ′ vsP where io-path : length vs = length vs ′

∧ length vs = length vsP
∧ (path M2 ((vs || vs ′) || vsP) (initial M2 ))
∧ target ((vs || vs ′) || vsP) (initial M2 ) = q2

by auto

have well-formed M2
using assms by auto

have map fst (map fst ((vs || vs ′) || vsP)) = vs
proof −

have length (vs || vs ′) = length vsP
using io-path by simp

then show ?thesis
using io-path by auto

qed
moreover have set (map fst (map fst ((vs || vs ′) || vsP))) ⊆ inputs M2

using path-input-containment[OF ‹well-formed M2 ›, of (vs || vs ′) || vsP initial M2 ]
io-path

by linarith
ultimately have set vs ⊆ inputs M2

by presburger

then have set vs ⊆ inputs M1
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using assms by auto

then have Lin M1 {vs} 6= {}
using assms(2 ) language-state-for-inputs-nonempty
by (metis FSM .nodes.initial)

then have language-state-for-input M1 (initial M1 ) vs 6= {}
by auto

then obtain vs ′ where vs ′ ∈ language-state-for-input M1 (initial M1 ) vs
by blast

show ?case
proof (cases F = {})

case True
moreover obtain f where f vs = vs ′

by force
ultimately have image f (insert vs F) ∈ Perm (insert vs F) M1

using Perm.simps ‹vs ′ ∈ language-state-for-input M1 (initial M1 ) vs› by blast
then show ?thesis by blast

next
case False
then obtain F ′′ where F ′′ ∈ Perm F M1

using insert.IH insert.hyps(1 ) insert.prems(1 ) by blast
then obtain f where F ′′ = image f F

(∀ v ∈ F . f v ∈ language-state-for-input M1 (initial M1 ) v)
by auto

let ?f = f (vs := vs ′)
have ∀ v ∈ (insert vs F) . ?f v ∈ language-state-for-input M1 (initial M1 ) v
proof

fix v assume v ∈ insert vs F
then show ?f v ∈ language-state-for-input M1 (initial M1 ) v
proof (cases v = vs)

case True
then show ?thesis

using ‹vs ′ ∈ language-state-for-input M1 (initial M1 ) vs› by auto
next

case False
then have v ∈ F

using ‹v ∈ insert vs F› by blast
then show ?thesis

using False ‹∀ v∈F . f v ∈ language-state-for-input M1 (initial M1 ) v› by auto
qed

qed
then have image ?f (insert vs F) ∈ Perm (insert vs F) M1

using Perm.simps by blast
then show ?thesis

by blast
qed

qed
qed

then show ?thesis
using ‹[] ∈ V › by blast

qed

lemma perm-elem :
assumes is-det-state-cover M2 V
and OFSM M1
and OFSM M2
and inputs M1 = inputs M2
and vs ∈ V
and vs ′ ∈ language-state-for-input M1 (initial M1 ) vs

obtains V ′′

where V ′′ ∈ Perm V M1 vs ′ ∈ V ′′

proof −
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obtain V ′′ where V ′′ ∈ Perm V M1
using perm-nonempty[OF assms(1−4 )] by blast

then obtain f where V ′′ = image f V
(∀ v ∈ V . f v ∈ language-state-for-input M1 (initial M1 ) v)

by auto

let ?f = f (vs := vs ′)

have ∀ v ∈ V . (?f v) ∈ (language-state-for-input M1 (initial M1 ) v)
using ‹∀ v∈V . (f v) ∈ (language-state-for-input M1 (initial M1 ) v)› assms(6 ) by fastforce

then have (image ?f V ) ∈ Perm V M1
unfolding Perm.simps by blast

moreover have vs ′ ∈ image ?f V
by (metis assms(5 ) fun-upd-same imageI )

ultimately show ?thesis
using that by blast

qed

4.3 Function R
Function R calculates the set of suffixes of a sequence that reach a given state if applied after a given other
sequence.
fun R :: ( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ( ′in × ′out) list

⇒ ( ′in × ′out) list ⇒ ( ′in × ′out) list set
where
R M s vs xs = { vs@xs ′ | xs ′ . xs ′ 6= []

∧ prefix xs ′ xs
∧ s ∈ io-targets M (initial M ) (vs@xs ′) }

lemma finite-R : finite (R M s vs xs)
proof −

have R M s vs xs ⊆ { vs @ xs ′ | xs ′ .prefix xs ′ xs }
by auto

then have R M s vs xs ⊆ image (λ xs ′ . vs @ xs ′) {xs ′ . prefix xs ′ xs}
by auto

moreover have {xs ′ . prefix xs ′ xs} = {take n xs | n . n ≤ length xs}
proof

show {xs ′. prefix xs ′ xs} ⊆ {take n xs |n. n ≤ length xs}
proof

fix xs ′ assume xs ′ ∈ {xs ′. prefix xs ′ xs}
then obtain zs ′ where xs ′ @ zs ′ = xs

by (metis (full-types) mem-Collect-eq prefixE)
then obtain i where xs ′ = take i xs ∧ i ≤ length xs

by (metis (full-types) append-eq-conv-conj le-cases take-all)
then show xs ′ ∈ {take n xs |n. n ≤ length xs}

by auto
qed
show {take n xs |n. n ≤ length xs} ⊆ {xs ′. prefix xs ′ xs}

using take-is-prefix by force
qed
moreover have finite {take n xs | n . n ≤ length xs}

by auto
ultimately show ?thesis

by auto
qed

lemma card-union-of-singletons :
assumes ∀ S ∈ SS . (∃ t . S = {t})

shows card (
⋃

SS) = card SS
proof −

let ?f = λ x . {x}
have bij-betw ?f (

⋃
SS) SS
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unfolding bij-betw-def inj-on-def using assms by fastforce
then show ?thesis

using bij-betw-same-card by blast
qed

lemma card-union-of-distinct :
assumes ∀ S1 ∈ SS . ∀ S2 ∈ SS . S1 = S2 ∨ f S1 ∩ f S2 = {}
and finite SS
and ∀ S ∈ SS . f S 6= {}

shows card (image f SS) = card SS
proof −

from assms(2 ) have ∀ S1 ∈ SS . ∀ S2 ∈ SS . S1 = S2 ∨ f S1 ∩ f S2 = {}
=⇒ ∀ S ∈ SS . f S 6= {} =⇒ ?thesis

proof (induction SS)
case empty
then show ?case by auto

next
case (insert x F)
then have ¬ (∃ y ∈ F . f y = f x)

by auto
then have f x /∈ image f F

by auto
then have card (image f (insert x F)) = Suc (card (image f F))

using insert by auto
moreover have card (f ‘ F) = card F

using insert by auto
moreover have card (insert x F) = Suc (card F)

using insert by auto
ultimately show ?case

by simp
qed
then show ?thesis

using assms by simp
qed

lemma R-count :
assumes (vs @ xs) ∈ L M1 ∩ L M2
and observable M1
and observable M2
and well-formed M1
and well-formed M2
and s ∈ nodes M2
and productF M2 M1 FAIL PM
and io-targets PM (initial PM ) vs = {(q2 ,q1 )}
and path PM (xs || tr) (q2 ,q1 )
and length xs = length tr
and distinct (states (xs || tr) (q2 ,q1 ))

shows card (
⋃

(image (io-targets M1 (initial M1 )) (R M2 s vs xs))) = card (R M2 s vs xs)
— each sequence in the set calculated by R reaches a different state in M1

proof −

— Proof sketch: - states of PM reached by the sequences calculated by R can differ only in their second value - the
sequences in the set calculated by R reach different states in PM due to distinctness

have obs-PM : observable PM using observable-productF assms(2 ) assms(3 ) assms(7 ) by blast

have state-component-2 : ∀ io ∈ (R M2 s vs xs) . io-targets M2 (initial M2 ) io = {s}
proof

fix io assume io ∈ R M2 s vs xs
then have s ∈ io-targets M2 (initial M2 ) io

by auto
moreover have io ∈ language-state M2 (initial M2 )

using calculation by auto
ultimately show io-targets M2 (initial M2 ) io = {s}

using assms(3 ) io-targets-observable-singleton-ex by (metis singletonD)
qed
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moreover have ∀ io ∈ R M2 s vs xs . io-targets PM (initial PM ) io
= io-targets M2 (initial M2 ) io × io-targets M1 (initial M1 ) io

proof
fix io assume io-assm : io ∈ R M2 s vs xs
then have io-prefix : prefix io (vs @ xs)

by auto
then have io-lang-subs : io ∈ L M1 ∧ io ∈ L M2

using assms(1 ) unfolding prefix-def by (metis IntE language-state language-state-split)
then have io-lang-inter : io ∈ L M1 ∩ L M2

by simp
then have io-lang-pm : io ∈ L PM

using productF-language assms by blast
moreover obtain p2 p1 where (p2 ,p1 ) ∈ io-targets PM (initial PM ) io

by (metis assms(2 ) assms(3 ) assms(7 ) calculation insert-absorb insert-ident insert-not-empty
io-targets-observable-singleton-ob observable-productF singleton-insert-inj-eq subrelI )

ultimately have targets-pm : io-targets PM (initial PM ) io = {(p2 ,p1 )}
using assms io-targets-observable-singleton-ex singletonD by (metis observable-productF)

then obtain trP where trP-def : target (io || trP) (initial PM ) = (p2 ,p1 )
∧ path PM (io || trP) (initial PM )
∧ length io = length trP

proof −
assume a1 :

∧
trP. target (io || trP) (initial PM ) = (p2 , p1 )
∧ path PM (io || trP) (initial PM )
∧ length io = length trP =⇒ thesis

have ∃ ps. target (io || ps) (initial PM ) = (p2 , p1 )
∧ path PM (io || ps) (initial PM ) ∧ length io = length ps

using ‹(p2 , p1 ) ∈ io-targets PM (initial PM ) io› by auto
then show ?thesis

using a1 by blast
qed
then have trP-unique : { tr . path PM (io || tr) (initial PM ) ∧ length io = length tr }

= { trP }
using observable-productF observable-path-unique-ex[of PM io initial PM ]

io-lang-pm assms(2 ) assms(3 ) assms(7 )
proof −

obtain pps :: ( ′d × ′c) list where
f1 : {ps. path PM (io || ps) (initial PM ) ∧ length io = length ps} = {pps}

∨ ¬ observable PM
by (metis (no-types) ‹

∧
thesis. [[observable PM ; io ∈ L PM ;

∧
tr .

{t. path PM (io || t) (initial PM )
∧ length io = length t} = {tr} =⇒ thesis]] =⇒ thesis›

io-lang-pm)
have f2 : observable PM

by (meson ‹observable M1 › ‹observable M2 › ‹productF M2 M1 FAIL PM › observable-productF)
then have trP ∈ {pps}

using f1 trP-def by blast
then show ?thesis

using f2 f1 by force
qed

obtain trIO2 where trIO2-def : {tr . path M2 (io||tr) (initial M2 ) ∧ length io = length tr}
= { trIO2 }

using observable-path-unique-ex[of M2 io initial M2 ] io-lang-subs assms(3 ) by blast
obtain trIO1 where trIO1-def : {tr . path M1 (io||tr) (initial M1 ) ∧ length io = length tr}

= { trIO1 }
using observable-path-unique-ex[of M1 io initial M1 ] io-lang-subs assms(2 ) by blast

have path PM (io || trIO2 || trIO1 ) (initial M2 , initial M1 )
∧ length io = length trIO2
∧ length trIO2 = length trIO1

proof −
have f1 : path M2 (io || trIO2 ) (initial M2 ) ∧ length io = length trIO2

using trIO2-def by auto
have f2 : path M1 (io || trIO1 ) (initial M1 ) ∧ length io = length trIO1
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using trIO1-def by auto
then have length trIO2 = length trIO1

using f1 by presburger
then show ?thesis

using f2 f1 assms(4 ) assms(5 ) assms(7 ) by blast
qed
then have trP-split : path PM (io || trIO2 || trIO1 ) (initial PM )

∧ length io = length trIO2
∧ length trIO2 = length trIO1

using assms(7 ) by auto
then have trP-zip : trIO2 || trIO1 = trP

using trP-def trP-unique using length-zip by fastforce

have target (io || trIO2 ) (initial M2 ) = p2
∧ path M2 (io || trIO2 ) (initial M2 )
∧ length io = length trIO2

using trP-zip trP-split assms(7 ) trP-def trIO2-def by auto
then have p2 ∈ io-targets M2 (initial M2 ) io

by auto
then have targets-2 : io-targets M2 (initial M2 ) io = {p2}

by (metis state-component-2 io-assm singletonD)

have target (io || trIO1 ) (initial M1 ) = p1
∧ path M1 (io || trIO1 ) (initial M1 )
∧ length io = length trIO1

using trP-zip trP-split assms(7 ) trP-def trIO1-def by auto
then have p1 ∈ io-targets M1 (initial M1 ) io

by auto
then have targets-1 : io-targets M1 (initial M1 ) io = {p1}

by (metis io-lang-subs assms(2 ) io-targets-observable-singleton-ex singletonD)

have io-targets M2 (initial M2 ) io × io-targets M1 (initial M1 ) io = {(p2 ,p1 )}
using targets-2 targets-1 by simp

then show io-targets PM (initial PM ) io
= io-targets M2 (initial M2 ) io × io-targets M1 (initial M1 ) io

using targets-pm by simp
qed

ultimately have state-components : ∀ io ∈ R M2 s vs xs . io-targets PM (initial PM ) io
= {s} × io-targets M1 (initial M1 ) io

by auto

then have
⋃

(image (io-targets PM (initial PM )) (R M2 s vs xs))
=

⋃
(image (λ io . {s} × io-targets M1 (initial M1 ) io) (R M2 s vs xs))

by auto
then have

⋃
(image (io-targets PM (initial PM )) (R M2 s vs xs))

= {s} ×
⋃

(image (io-targets M1 (initial M1 )) (R M2 s vs xs))
by auto

then have card (
⋃

(image (io-targets PM (initial PM )) (R M2 s vs xs)))
= card (

⋃
(image (io-targets M1 (initial M1 )) (R M2 s vs xs)))

by (metis (no-types) card-cartesian-product-singleton)

moreover have card (
⋃

(image (io-targets PM (initial PM )) (R M2 s vs xs)))
= card (R M2 s vs xs)

proof (rule ccontr)
assume assm : card (

⋃
(io-targets PM (initial PM ) ‘ R M2 s vs xs) ) 6= card (R M2 s vs xs)

have ∀ io ∈ R M2 s vs xs . io ∈ L PM
proof

fix io assume io-assm : io ∈ R M2 s vs xs
then have prefix io (vs @ xs)

by auto
then have io ∈ L M1 ∧ io ∈ L M2

using assms(1 ) unfolding prefix-def by (metis IntE language-state language-state-split)
then show io ∈ L PM

using productF-language assms by blast
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qed
then have singletons : ∀ io ∈ R M2 s vs xs . (∃ t . io-targets PM (initial PM ) io = {t})

using io-targets-observable-singleton-ex observable-productF assms by metis
then have card-targets : card (

⋃
(io-targets PM (initial PM ) ‘ R M2 s vs xs))

= card (image (io-targets PM (initial PM )) (R M2 s vs xs))
using finite-R card-union-of-singletons

[of image (io-targets PM (initial PM )) (R M2 s vs xs)]
by simp

moreover have card (image (io-targets PM (initial PM )) (R M2 s vs xs)) ≤ card (R M2 s vs xs)
using finite-R by (metis card-image-le)

ultimately have card-le : card (
⋃

(io-targets PM (initial PM ) ‘ R M2 s vs xs))
< card (R M2 s vs xs)

using assm by linarith

have ∃ io1 ∈ (R M2 s vs xs) . ∃ io2 ∈ (R M2 s vs xs) . io1 6= io2
∧ io-targets PM (initial PM ) io1 ∩ io-targets PM (initial PM ) io2 6= {}

proof (rule ccontr)
assume ¬ (∃ io1∈R M2 s vs xs. ∃ io2∈R M2 s vs xs. io1 6= io2

∧ io-targets PM (initial PM ) io1 ∩ io-targets PM (initial PM ) io2 6= {})
then have ∀ io1∈R M2 s vs xs. ∀ io2∈R M2 s vs xs. io1 = io2

∨ io-targets PM (initial PM ) io1 ∩ io-targets PM (initial PM ) io2 = {}
by blast

moreover have ∀ io∈R M2 s vs xs. io-targets PM (initial PM ) io 6= {}
by (metis insert-not-empty singletons)

ultimately have card (image (io-targets PM (initial PM )) (R M2 s vs xs))
= card (R M2 s vs xs)

using finite-R[of M2 s vs xs] card-union-of-distinct
[of R M2 s vs xs (io-targets PM (initial PM ))]

by blast
then show False

using card-le card-targets by linarith
qed

then have ∃ io1 io2 . io1 ∈ (R M2 s vs xs)
∧ io2 ∈ (R M2 s vs xs)
∧ io1 6= io2
∧ io-targets PM (initial PM ) io1 ∩ io-targets PM (initial PM ) io2 6= {}

by blast
moreover have ∀ io1 io2 . (io1 ∈ (R M2 s vs xs) ∧ io2 ∈ (R M2 s vs xs) ∧ io1 6= io2 )

−→ length io1 6= length io2
proof (rule ccontr)

assume ¬ (∀ io1 io2 . io1 ∈ R M2 s vs xs ∧ io2 ∈ R M2 s vs xs ∧ io1 6= io2
−→ length io1 6= length io2 )

then obtain io1 io2 where io-def : io1 ∈ R M2 s vs xs
∧ io2 ∈ R M2 s vs xs
∧ io1 6= io2
∧ length io1 = length io2

by auto
then have prefix io1 (vs @ xs) ∧ prefix io2 (vs @ xs)

by auto
then have io1 = take (length io1 ) (vs @ xs) ∧ io2 = take (length io2 ) (vs @ xs)

by (metis append-eq-conv-conj prefixE)
then show False

using io-def by auto
qed

ultimately obtain io1 io2 where rep-ios-def :
io1 ∈ (R M2 s vs xs)
∧ io2 ∈ (R M2 s vs xs)
∧ length io1 < length io2
∧ io-targets PM (initial PM ) io1 ∩ io-targets PM (initial PM ) io2 6= {}

by (metis inf-sup-aci(1 ) linorder-neqE-nat)

obtain rep where (s,rep) ∈ io-targets PM (initial PM ) io1 ∩ io-targets PM (initial PM ) io2
proof −
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assume a1 :
∧

rep. (s, rep) ∈ io-targets PM (initial PM ) io1 ∩ io-targets PM (initial PM ) io2
=⇒ thesis

have ∃ f . Sigma {s} f ∩ (io-targets PM (initial PM ) io1 ∩ io-targets PM (initial PM ) io2 )
6= {}

by (metis (no-types) inf .left-idem rep-ios-def state-components)
then show ?thesis

using a1 by blast
qed
then have rep-state : io-targets PM (initial PM ) io1 = {(s,rep)}

∧ io-targets PM (initial PM ) io2 = {(s,rep)}
by (metis Int-iff rep-ios-def singletonD singletons)

obtain io1X io2X where rep-ios-split : io1 = vs @ io1X
∧ prefix io1X xs
∧ io2 = vs @ io2X
∧ prefix io2X xs

using rep-ios-def by auto
then have length io1 > length vs

using rep-ios-def by auto

— get a path from (initial PM) to (q2,q1)

have vs@xs ∈ L PM
by (metis (no-types) assms(1 ) assms(4 ) assms(5 ) assms(7 ) inf-commute productF-language)

then have vs ∈ L PM
by (meson language-state-prefix)

then obtain trV where trV-def : {tr . path PM (vs || tr) (initial PM ) ∧ length vs = length tr}
= { trV }

using observable-path-unique-ex[of PM vs initial PM ]
assms(2 ) assms(3 ) assms(7 ) observable-productF

by blast
let ?qv = target (vs || trV ) (initial PM )

have ?qv ∈ io-targets PM (initial PM ) vs
using trV-def by auto

then have qv-simp[simp] : ?qv = (q2 ,q1 )
using singletons assms by blast

then have ?qv ∈ nodes PM
using trV-def assms by blast

— get a path using io1X from the state reached by vs in PM

obtain tr1X-all where tr1X-all-def : path PM (vs @ io1X || tr1X-all) (initial PM )
∧ length (vs @ io1X) = length tr1X-all

using rep-ios-def rep-ios-split by auto
let ?tr1X = drop (length vs) tr1X-all
have take (length vs) tr1X-all = trV
proof −

have path PM (vs || take (length vs) tr1X-all) (initial PM )
∧ length vs = length (take (length vs) tr1X-all)

using tr1X-all-def trV-def
by (metis (no-types, lifting) FSM .path-append-elim append-eq-conv-conj

length-take zip-append1 )
then show take (length vs) tr1X-all = trV

using trV-def by blast
qed
then have tr1X-def : path PM (io1X || ?tr1X) ?qv ∧ length io1X = length ?tr1X
proof −

have length tr1X-all = length vs + length io1X
using tr1X-all-def by auto

then have length io1X = length tr1X-all − length vs
by presburger

then show ?thesis
by (metis (no-types) FSM .path-append-elim ‹take (length vs) tr1X-all = trV ›
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length-drop tr1X-all-def zip-append1 )
qed
then have io1X-lang : io1X ∈ language-state PM ?qv

by auto
then obtain tr1X ′ where tr1X ′-def : {tr . path PM (io1X || tr) ?qv ∧ length io1X = length tr}

= { tr1X ′ }
using observable-path-unique-ex[of PM io1X ?qv]

assms(2 ) assms(3 ) assms(7 ) observable-productF
by blast

moreover have ?tr1X ∈ { tr . path PM (io1X || tr) ?qv ∧ length io1X = length tr }
using tr1X-def by auto

ultimately have tr1x-unique : tr1X ′ = ?tr1X
by simp

— get a path using io2X from the state reached by vs in PM

obtain tr2X-all where tr2X-all-def : path PM (vs @ io2X || tr2X-all) (initial PM )
∧ length (vs @ io2X) = length tr2X-all

using rep-ios-def rep-ios-split by auto
let ?tr2X = drop (length vs) tr2X-all
have take (length vs) tr2X-all = trV
proof −

have path PM (vs || take (length vs) tr2X-all) (initial PM )
∧ length vs = length (take (length vs) tr2X-all)

using tr2X-all-def trV-def
by (metis (no-types, lifting) FSM .path-append-elim append-eq-conv-conj

length-take zip-append1 )
then show take (length vs) tr2X-all = trV

using trV-def by blast
qed
then have tr2X-def : path PM (io2X || ?tr2X) ?qv ∧ length io2X = length ?tr2X
proof −

have length tr2X-all = length vs + length io2X
using tr2X-all-def by auto

then have length io2X = length tr2X-all − length vs
by presburger

then show ?thesis
by (metis (no-types) FSM .path-append-elim ‹take (length vs) tr2X-all = trV ›

length-drop tr2X-all-def zip-append1 )
qed
then have io2X-lang : io2X ∈ language-state PM ?qv by auto
then obtain tr2X ′ where tr2X ′-def : {tr . path PM (io2X || tr) ?qv ∧ length io2X = length tr}

= { tr2X ′ }
using observable-path-unique-ex[of PM io2X ?qv] assms(2 ) assms(3 ) assms(7 ) observable-productF
by blast

moreover have ?tr2X ∈ { tr . path PM (io2X || tr) ?qv ∧ length io2X = length tr }
using tr2X-def by auto

ultimately have tr2x-unique : tr2X ′ = ?tr2X
by simp

— both paths reach the same state

have io-targets PM (initial PM ) (vs @ io1X) = {(s,rep)}
using rep-state rep-ios-split by auto

moreover have io-targets PM (initial PM ) vs = {?qv}
using assms(8 ) by auto

ultimately have rep-via-1 : io-targets PM ?qv io1X = {(s,rep)}
by (meson obs-PM observable-io-targets-split)

then have rep-tgt-1 : target (io1X || tr1X ′) ?qv = (s,rep)
using obs-PM observable-io-target-unique-target[of PM ?qv io1X (s,rep)] tr1X ′-def by blast

have length-1 : length (io1X || tr1X ′) > 0
using ‹length vs < length io1 › rep-ios-split tr1X-def tr1x-unique by auto

have tr1X-alt-def : tr1X ′ = take (length io1X) tr
by (metis (no-types) assms(10 ) assms(9 ) obs-PM observable-path-prefix qv-simp

rep-ios-split tr1X-def tr1x-unique)
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moreover have io1X = take (length io1X) xs
using rep-ios-split by (metis append-eq-conv-conj prefixE)

ultimately have (io1X || tr1X ′) = take (length io1X) (xs || tr)
by (metis take-zip)

moreover have length (xs || tr) ≥ length (io1X || tr1X ′)
by (metis (no-types) ‹io1X = take (length io1X) xs› assms(10 ) length-take length-zip

nat-le-linear take-all tr1X-def tr1x-unique)
ultimately have rep-idx-1 : (states (xs || tr) ?qv) ! ((length io1X) − 1 ) = (s,rep)

by (metis (no-types, lifting) One-nat-def Suc-less-eq Suc-pred rep-tgt-1 length-1
less-Suc-eq-le map-snd-zip scan-length scan-nth states-alt-def tr1X-def tr1x-unique)

have io-targets PM (initial PM ) (vs @ io2X) = {(s,rep)}
using rep-state rep-ios-split by auto

moreover have io-targets PM (initial PM ) vs = {?qv}
using assms(8 ) by auto

ultimately have rep-via-2 : io-targets PM ?qv io2X = {(s,rep)}
by (meson obs-PM observable-io-targets-split)

then have rep-tgt-2 : target (io2X || tr2X ′) ?qv = (s,rep)
using obs-PM observable-io-target-unique-target[of PM ?qv io2X (s,rep)] tr2X ′-def by blast

moreover have length-2 : length (io2X || tr2X ′) > 0
by (metis ‹length vs < length io1 › append.right-neutral length-0-conv length-zip less-asym min.idem neq0-conv

rep-ios-def rep-ios-split tr2X-def tr2x-unique)

have tr2X-alt-def : tr2X ′ = take (length io2X) tr
by (metis (no-types) assms(10 ) assms(9 ) obs-PM observable-path-prefix qv-simp rep-ios-split tr2X-def tr2x-unique)

moreover have io2X = take (length io2X) xs
using rep-ios-split by (metis append-eq-conv-conj prefixE)

ultimately have (io2X || tr2X ′) = take (length io2X) (xs || tr)
by (metis take-zip)

moreover have length (xs || tr) ≥ length (io2X || tr2X ′)
using calculation by auto

ultimately have rep-idx-2 : (states (xs || tr) ?qv) ! ((length io2X) − 1 ) = (s,rep)
by (metis (no-types, lifting) One-nat-def Suc-less-eq Suc-pred rep-tgt-2 length-2

less-Suc-eq-le map-snd-zip scan-length scan-nth states-alt-def tr2X-def tr2x-unique)

— thus the distinctness assumption is violated

have length io1X 6= length io2X
by (metis ‹io1X = take (length io1X) xs› ‹io2X = take (length io2X) xs› less-irrefl

rep-ios-def rep-ios-split)
moreover have (states (xs || tr) ?qv) ! ((length io1X) − 1 )

= (states (xs || tr) ?qv) ! ((length io2X) − 1 )
using rep-idx-1 rep-idx-2 by simp

ultimately have ¬ (distinct (states (xs || tr) ?qv))
by (metis Suc-less-eq ‹io1X = take (length io1X) xs›

‹io1X || tr1X ′ = take (length io1X) (xs || tr)› ‹io2X = take (length io2X) xs›
‹io2X || tr2X ′ = take (length io2X) (xs || tr)›
‹length (io1X || tr1X ′) ≤ length (xs || tr)› ‹length (io2X || tr2X ′) ≤ length (xs || tr)›
assms(10 ) diff-Suc-1 distinct-conv-nth gr0-conv-Suc le-imp-less-Suc length-1 length-2
length-take map-snd-zip scan-length states-alt-def )

then show False
by (metis assms(11 ) states-alt-def )

qed

ultimately show ?thesis
by linarith

qed

lemma R-state-component-2 :
assumes io ∈ (R M2 s vs xs)
and observable M2

shows io-targets M2 (initial M2 ) io = {s}
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proof −
have s ∈ io-targets M2 (initial M2 ) io

using assms(1 ) by auto
moreover have io ∈ language-state M2 (initial M2 )

using calculation by auto
ultimately show io-targets M2 (initial M2 ) io = {s}

using assms(2 ) io-targets-observable-singleton-ex by (metis singletonD)
qed

lemma R-union-card-is-suffix-length :
assumes OFSM M2
and io@xs ∈ L M2

shows sum (λ q . card (R M2 q io xs)) (nodes M2 ) = length xs
using assms proof (induction xs rule: rev-induct)

case Nil
show ?case

by (simp add: sum.neutral)
next

case (snoc x xs)

have finite (nodes M2 )
using assms by auto

have R-update :
∧

q . R M2 q io (xs@[x]) = (if (q ∈ io-targets M2 (initial M2 ) (io @ xs @ [x]))
then insert (io@xs@[x]) (R M2 q io xs)
else R M2 q io xs)

by auto

obtain q where io-targets M2 (initial M2 ) (io @ xs @ [x]) = {q}
by (meson assms(1 ) io-targets-observable-singleton-ex snoc.prems(2 ))

then have R M2 q io (xs@[x]) = insert (io@xs@[x]) (R M2 q io xs)
using R-update by auto

moreover have (io@xs@[x]) /∈ (R M2 q io xs)
by auto

ultimately have card (R M2 q io (xs@[x])) = Suc (card (R M2 q io xs))
by (metis card-insert-disjoint finite-R)

have q ∈ nodes M2
by (metis (full-types) FSM .nodes.initial ‹io-targets M2 (initial M2 ) (io@xs @ [x]) = {q}›

insertI1 io-targets-nodes)

have ∀ q ′ . q ′ 6= q −→ R M2 q ′ io (xs@[x]) = R M2 q ′ io xs
using ‹io-targets M2 (initial M2 ) (io@xs @ [x]) = {q}› R-update
by auto

then have ∀ q ′ . q ′ 6= q −→ card (R M2 q ′ io (xs@[x])) = card (R M2 q ′ io xs)
by auto

then have (
∑

q∈(nodes M2 − {q}). card (R M2 q io (xs@[x])))
= (

∑
q∈(nodes M2 − {q}). card (R M2 q io xs))

by auto
moreover have (

∑
q∈nodes M2 . card (R M2 q io (xs@[x])))

= (
∑

q∈(nodes M2 − {q}). card (R M2 q io (xs@[x]))) + (card (R M2 q io (xs@[x])))
(
∑

q∈nodes M2 . card (R M2 q io xs))
= (

∑
q∈(nodes M2 − {q}). card (R M2 q io xs)) + (card (R M2 q io xs))

proof −
have ∀C c f . (infinite C ∨ (c:: ′c) /∈ C ) ∨ sum f C = (f c::nat) + sum f (C − {c})

by (meson sum.remove)
then show (

∑
q∈nodes M2 . card (R M2 q io (xs@[x])))

= (
∑

q∈(nodes M2 − {q}). card (R M2 q io (xs@[x]))) + (card (R M2 q io (xs@[x])))
(
∑

q∈nodes M2 . card (R M2 q io xs))
= (

∑
q∈(nodes M2 − {q}). card (R M2 q io xs)) + (card (R M2 q io xs))

using ‹finite (nodes M2 )› ‹q ∈ nodes M2 › by presburger+
qed
ultimately have (

∑
q∈nodes M2 . card (R M2 q io (xs@[x])))
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= Suc (
∑

q∈nodes M2 . card (R M2 q io xs))
using ‹card (R M2 q io (xs@[x])) = Suc (card (R M2 q io xs))›
by presburger

have (
∑

q∈nodes M2 . card (R M2 q io xs)) = length xs
using snoc.IH snoc.prems language-state-prefix[of io@xs [x] M2 initial M2 ]

proof −
show ?thesis

by (metis (no-types) ‹(io @ xs) @ [x] ∈ L M2 =⇒ io @ xs ∈ L M2 ›
‹OFSM M2 › ‹io @ xs @ [x] ∈ L M2 › append.assoc snoc.IH )

qed

show ?case
proof −

show ?thesis
by (metis (no-types)

‹(
∑

q∈nodes M2 . card (R M2 q io (xs @ [x]))) = Suc (
∑

q∈nodes M2 . card (R M2 q io xs))›
‹(
∑

q∈nodes M2 . card (R M2 q io xs)) = length xs› length-append-singleton)
qed

qed

lemma R-state-repetition-via-long-sequence :
assumes OFSM M
and card (nodes M ) ≤ m
and Suc (m ∗ m) ≤ length xs
and vs@xs ∈ L M

shows ∃ q ∈ nodes M . card (R M q vs xs) > m
proof (rule ccontr)

assume ¬ (∃ q∈nodes M . m < card (R M q vs xs))
then have ∀ q ∈ nodes M . card (R M q vs xs) ≤ m

by auto
then have sum (λ q . card (R M q vs xs)) (nodes M ) ≤ sum (λ q . m) (nodes M )

by (meson sum-mono)
moreover have sum (λ q . m) (nodes M ) ≤ m ∗ m

using assms(2 ) by auto
ultimately have sum (λ q . card (R M q vs xs)) (nodes M ) ≤ m ∗ m

by presburger

moreover have Suc (m∗m) ≤ sum (λ q . card (R M q vs xs)) (nodes M )
using R-union-card-is-suffix-length[OF assms(1 ), of vs xs] assms(4 ,3 ) by auto

ultimately show False by simp
qed

lemma R-state-repetition-distribution :
assumes OFSM M
and Suc (card (nodes M ) ∗ m) ≤ length xs
and vs@xs ∈ L M

shows ∃ q ∈ nodes M . card (R M q vs xs) > m
proof (rule ccontr)

assume ¬ (∃ q∈nodes M . m < card (R M q vs xs))
then have ∀ q ∈ nodes M . card (R M q vs xs) ≤ m

by auto
then have sum (λ q . card (R M q vs xs)) (nodes M ) ≤ sum (λ q . m) (nodes M )

by (meson sum-mono)
moreover have sum (λ q . m) (nodes M ) ≤ card (nodes M ) ∗ m

using assms(2 ) by auto
ultimately have sum (λ q . card (R M q vs xs)) (nodes M ) ≤ card (nodes M ) ∗ m

by presburger

moreover have Suc (card (nodes M )∗m) ≤ sum (λ q . card (R M q vs xs)) (nodes M )
using R-union-card-is-suffix-length[OF assms(1 ), of vs xs] assms(3 ,2 ) by auto

ultimately show False
by simp

qed
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4.4 Function RP
Function RP extends function MR by adding all elements from a set of IO-sequences that also reach the given
state.
fun RP :: ( ′in, ′out, ′state) FSM ⇒ ′state ⇒ ( ′in × ′out) list

⇒ ( ′in × ′out) list ⇒ ( ′in × ′out) list set
⇒ ( ′in × ′out) list set

where
RP M s vs xs V ′′ = R M s vs xs

∪ {vs ′ ∈ V ′′ . io-targets M (initial M ) vs ′ = {s}}

lemma RP-from-R:
assumes is-det-state-cover M2 V
and V ′′ ∈ Perm V M1

shows RP M2 s vs xs V ′′ = R M2 s vs xs
∨ (∃ vs ′ ∈ V ′′ . vs ′ /∈ R M2 s vs xs ∧ RP M2 s vs xs V ′′ = insert vs ′ (R M2 s vs xs))

proof (rule ccontr)
assume assm : ¬ (RP M2 s vs xs V ′′ = R M2 s vs xs ∨

(∃ vs ′∈V ′′. vs ′ /∈ R M2 s vs xs ∧ RP M2 s vs xs V ′′ = insert vs ′ (R M2 s vs xs)))

moreover have R M2 s vs xs ⊆ RP M2 s vs xs V ′′

by simp
moreover have RP M2 s vs xs V ′′ ⊆ R M2 s vs xs ∪ V ′′

by auto
ultimately obtain vs1 vs2 where vs-def :

vs1 6= vs2 ∧ vs1 ∈ V ′′ ∧ vs2 ∈ V ′′

∧ vs1 /∈ R M2 s vs xs ∧ vs2 /∈ R M2 s vs xs
∧ vs1 ∈ RP M2 s vs xs V ′′ ∧ vs2 ∈ RP M2 s vs xs V ′′

by blast

then have io-targets M2 (initial M2 ) vs1 = {s} ∧ io-targets M2 (initial M2 ) vs2 = {s}
by (metis (mono-tags, lifting) RP.simps Un-iff mem-Collect-eq)

then have io-targets M2 (initial M2 ) vs1 = io-targets M2 (initial M2 ) vs2
by simp

obtain f where f-def : is-det-state-cover-ass M2 f ∧ V = f ‘ d-reachable M2 (initial M2 )
using assms by auto

moreover have V = image f (d-reachable M2 (initial M2 ))
using f-def by blast

moreover have map fst vs1 ∈ V ∧ map fst vs2 ∈ V
using assms(2 ) perm-inputs vs-def by blast

ultimately obtain r1 r2 where r-def :
f r1 = map fst vs1 ∧ r1 ∈ d-reachable M2 (initial M2 )
f r2 = map fst vs2 ∧ r2 ∈ d-reachable M2 (initial M2 )
by force

then have d-reaches M2 (initial M2 ) (map fst vs1 ) r1
d-reaches M2 (initial M2 ) (map fst vs2 ) r2

by (metis f-def is-det-state-cover-ass.elims(2 ))+

then have io-targets M2 (initial M2 ) vs1 ⊆ {r1}
using d-reaches-io-target[of M2 initial M2 map fst vs1 r1 map snd vs1 ] by simp

moreover have io-targets M2 (initial M2 ) vs2 ⊆ {r2}
using d-reaches-io-target[of M2 initial M2 map fst vs2 r2 map snd vs2 ]

‹d-reaches M2 (initial M2 ) (map fst vs2 ) r2 › by auto
ultimately have r1 = r2

using ‹io-targets M2 (initial M2 ) vs1 = {s} ∧ io-targets M2 (initial M2 ) vs2 = {s}› by auto

have map fst vs1 6= map fst vs2
using assms(2 ) perm-inputs-diff vs-def by blast

then have r1 6= r2
using r-def (1 ) r-def (2 ) by force

then show False
using ‹r1 = r2 › by auto

qed
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lemma finite-RP :
assumes is-det-state-cover M2 V
and V ′′ ∈ Perm V M1

shows finite (RP M2 s vs xs V ′′)
using assms RP-from-R finite-R by (metis finite-insert)

lemma RP-count :
assumes (vs @ xs) ∈ L M1 ∩ L M2
and observable M1
and observable M2
and well-formed M1
and well-formed M2
and s ∈ nodes M2
and productF M2 M1 FAIL PM
and io-targets PM (initial PM ) vs = {(q2 ,q1 )}
and path PM (xs || tr) (q2 ,q1 )
and length xs = length tr
and distinct (states (xs || tr) (q2 ,q1 ))
and is-det-state-cover M2 V
and V ′′ ∈ Perm V M1
and ∀ s ′ ∈ set (states (xs || map fst tr) q2 ) . ¬ (∃ v ∈ V . d-reaches M2 (initial M2 ) v s ′)

shows card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) = card (RP M2 s vs xs V ′′)
— each sequence in the set calculated by RP reaches a different state in M1

proof −

— Proof sketch: - RP calculates either the same set as R or the set of R and an additional element - in the first case,
the result for R applies - in the second case, the additional element is not contained in the set calcualted by R due to
the assumption that no state reached by a non-empty prefix of xs after vs is also reached by some sequence in V (see
the last two assumptions)

have RP-cases : RP M2 s vs xs V ′′ = R M2 s vs xs
∨ (∃ vs ′ ∈ V ′′ . vs ′ /∈ R M2 s vs xs

∧ RP M2 s vs xs V ′′ = insert vs ′ (R M2 s vs xs))
using RP-from-R assms by metis

show ?thesis
proof (cases RP M2 s vs xs V ′′ = R M2 s vs xs)

case True
then show ?thesis using R-count assms by metis

next
case False
then obtain vs ′ where vs ′-def : vs ′ ∈ V ′′

∧ vs ′ /∈ R M2 s vs xs
∧ RP M2 s vs xs V ′′ = insert vs ′ (R M2 s vs xs)

using RP-cases by auto

have obs-PM : observable PM
using observable-productF assms(2 ) assms(3 ) assms(7 ) by blast

have state-component-2 : ∀ io ∈ (R M2 s vs xs) . io-targets M2 (initial M2 ) io = {s}
proof

fix io assume io ∈ R M2 s vs xs
then have s ∈ io-targets M2 (initial M2 ) io

by auto
moreover have io ∈ language-state M2 (initial M2 )

using calculation by auto
ultimately show io-targets M2 (initial M2 ) io = {s}

using assms(3 ) io-targets-observable-singleton-ex by (metis singletonD)
qed

have vs ′ ∈ L M1
using assms(13 ) perm-language vs ′-def by blast

then obtain s ′ where s ′-def : io-targets M1 (initial M1 ) vs ′ = {s ′}
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by (meson assms(2 ) io-targets-observable-singleton-ob)

moreover have s ′ /∈
⋃

(image (io-targets M1 (initial M1 )) (R M2 s vs xs))
proof (rule ccontr)

assume ¬ s ′ /∈
⋃

(io-targets M1 (initial M1 ) ‘ R M2 s vs xs)
then obtain xs ′ where xs ′-def : vs @ xs ′ ∈ R M2 s vs xs ∧ s ′ ∈ io-targets M1 (initial M1 ) (vs @ xs ′)
proof −

assume a1 :
∧

xs ′. vs @ xs ′ ∈ R M2 s vs xs ∧ s ′ ∈ io-targets M1 (initial M1 ) (vs @ xs ′)
=⇒ thesis

obtain pps :: ( ′a × ′b) list set ⇒ (( ′a × ′b) list ⇒ ′c set) ⇒ ′c ⇒ ( ′a × ′b) list
where
∀ x0 x1 x2 . (∃ v3 . v3 ∈ x0 ∧ x2 ∈ x1 v3 ) = (pps x0 x1 x2 ∈ x0 ∧ x2 ∈ x1 (pps x0 x1 x2 ))
by moura

then have f2 : pps (R M2 s vs xs) (io-targets M1 (initial M1 )) s ′ ∈ R M2 s vs xs
∧ s ′ ∈ io-targets M1 (initial M1 ) (pps (R M2 s vs xs)

(io-targets M1 (initial M1 )) s ′)
using ‹¬ s ′ /∈

⋃
(io-targets M1 (initial M1 ) ‘ R M2 s vs xs)› by blast

then have ∃ ps. pps (R M2 s vs xs) (io-targets M1 (initial M1 )) s ′ = vs @ ps
∧ ps 6= [] ∧ prefix ps xs ∧ s ∈ io-targets M2 (initial M2 ) (vs @ ps)

by simp
then show ?thesis

using f2 a1 by (metis (no-types))
qed
then obtain tr ′ where tr ′-def : path M2 (vs @ xs ′ || tr ′) (initial M2 )

∧ length tr ′ = length (vs @ xs ′)
by auto

then obtain trV ′ trX ′ where tr ′-split : trV ′ = take (length vs) tr ′

trX ′ = drop (length vs) tr ′

tr ′ = trV ′ @ trX ′

by fastforce
then have path M2 (vs || trV ′) (initial M2 ) ∧ length trV ′ = length vs

by (metis (no-types) FSM .path-append-elim ‹trV ′ = take (length vs) tr ′›
append-eq-conv-conj length-take tr ′-def zip-append1 )

have initial PM = (initial M2 , initial M1 )
using assms(7 ) by simp

moreover have vs ∈ L M2 vs ∈ L M1
using assms(1 ) language-state-prefix by auto

ultimately have io-targets M1 (initial M1 ) vs = {q1}
io-targets M2 (initial M2 ) vs = {q2}

using productF-path-io-targets[of M2 M1 FAIL PM initial M2 initial M1 vs q2 q1 ]
by (metis FSM .nodes.initial assms(7 ) assms(8 ) assms(2 ) assms(3 ) assms(4 ) assms(5 )

io-targets-observable-singleton-ex singletonD)+

then have target (vs || trV ′) (initial M2 ) = q2
using ‹path M2 (vs || trV ′) (initial M2 ) ∧ length trV ′ = length vs› io-target-target
by metis

then have path-xs ′ : path M2 (xs ′ || trX ′) q2 ∧ length trX ′ = length xs ′

by (metis (no-types) FSM .path-append-elim
‹path M2 (vs || trV ′) (initial M2 ) ∧ length trV ′ = length vs›
‹target (vs || trV ′) (initial M2 ) = q2 › append-eq-conv-conj length-drop tr ′-def
tr ′-split(1 ) tr ′-split(2 ) zip-append2 )

have io-targets M2 (initial M2 ) (vs @ xs ′) = {s}
using state-component-2 xs ′-def by blast

then have io-targets M2 q2 xs ′ = {s}
by (meson assms(3 ) observable-io-targets-split ‹io-targets M2 (initial M2 ) vs = {q2}›)

then have target-xs ′ : target (xs ′ || trX ′) q2 = s
using io-target-target path-xs ′ by metis

moreover have length xs ′ > 0
using xs ′-def by auto
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ultimately have last (states (xs ′ || trX ′) q2 ) = s
using path-xs ′ target-in-states by metis

moreover have length (states (xs ′ || trX ′) q2 ) > 0
using ‹0 < length xs ′› path-xs ′ by auto

ultimately have states-xs ′ : s ∈ set (states (xs ′ || trX ′) q2 )
using last-in-set by blast

have vs @ xs ∈ L M2
using assms by simp

then obtain q ′ where io-targets M2 (initial M2 ) (vs@xs) = {q ′}
using io-targets-observable-singleton-ob[of M2 vs@xs initial M2 ] assms(3 ) by auto

then have xs ∈ language-state M2 q2
using assms(3 ) ‹io-targets M2 (initial M2 ) vs = {q2}›

observable-io-targets-split[of M2 initial M2 vs xs q ′ q2 ]
by auto

moreover have path PM (xs || map fst tr || map snd tr) (q2 ,q1 )
∧ length xs = length (map fst tr)

using assms(7 ) assms(9 ) assms(10 ) productF-path-unzip by simp
moreover have xs ∈ language-state PM (q2 ,q1 )

using assms(9 ) assms(10 ) by auto
moreover have q2 ∈ nodes M2

using ‹io-targets M2 (initial M2 ) vs = {q2}› io-targets-nodes
by (metis FSM .nodes.initial insertI1 )

moreover have q1 ∈ nodes M1
using ‹io-targets M1 (initial M1 ) vs = {q1}› io-targets-nodes
by (metis FSM .nodes.initial insertI1 )

ultimately have path-xs : path M2 (xs || map fst tr) q2
using productF-path-reverse-ob-2 (1 )[of xs map fst tr map snd tr M2 M1 FAIL PM q2 q1 ]

assms(2 ,3 ,4 ,5 ,7 )
by simp

moreover have prefix xs ′ xs
using xs ′-def by auto

ultimately have trX ′ = take (length xs ′) (map fst tr)
using ‹path PM (xs || map fst tr || map snd tr) (q2 , q1 ) ∧ length xs = length (map fst tr)›

assms(3 ) path-xs ′

by (metis observable-path-prefix)

then have states-xs : s ∈ set (states (xs || map fst tr) q2 )
by (metis assms(10 ) in-set-takeD length-map map-snd-zip path-xs ′ states-alt-def states-xs ′)

have d-reaches M2 (initial M2 ) (map fst vs ′) s
proof −

obtain fV where fV-def : is-det-state-cover-ass M2 fV
∧ V = fV ‘ d-reachable M2 (initial M2 )

using assms(12 ) by auto
moreover have V = image fV (d-reachable M2 (initial M2 ))

using fV-def by blast
moreover have map fst vs ′ ∈ V

using perm-inputs vs ′-def assms(13 ) by metis
ultimately obtain qv where qv-def : fV qv = map fst vs ′ ∧ qv∈ d-reachable M2 (initial M2 )

by force
then have d-reaches M2 (initial M2 ) (map fst vs ′) qv

by (metis fV-def is-det-state-cover-ass.elims(2 ))
then have io-targets M2 (initial M2 ) vs ′ ⊆ {qv}

using d-reaches-io-target[of M2 initial M2 map fst vs ′ qv map snd vs ′] by simp
moreover have io-targets M2 (initial M2 ) vs ′ = {s}

using vs ′-def by (metis (mono-tags, lifting) RP.simps Un-iff insertI1 mem-Collect-eq)
ultimately have qv = s

by simp
then show ?thesis
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using ‹d-reaches M2 (initial M2 ) (map fst vs ′) qv› by blast
qed

then show False by (meson assms(14 ) assms(13 ) perm-inputs states-xs vs ′-def )
qed

moreover have
⋃

(image (io-targets M1 (initial M1 )) (insert vs ′ (R M2 s vs xs)))
= insert s ′ (

⋃
(image (io-targets M1 (initial M1 )) (R M2 s vs xs)))

using s ′-def by simp

moreover have finite (
⋃

(image (io-targets M1 (initial M1 )) (R M2 s vs xs)))
proof

show finite (R M2 s vs xs)
using finite-R by simp

show
∧

a. a ∈ R M2 s vs xs =⇒ finite (io-targets M1 (initial M1 ) a)
proof −

fix a assume a ∈ R M2 s vs xs
then have prefix a (vs@xs)

by auto
then have a ∈ L M1

using language-state-prefix by (metis IntD1 assms(1 ) prefix-def )
then obtain p where io-targets M1 (initial M1 ) a = {p}

using assms(2 ) io-targets-observable-singleton-ob by metis
then show finite (io-targets M1 (initial M1 ) a)

by simp
qed

qed

ultimately have card (
⋃

(image (io-targets M1 (initial M1 )) (insert vs ′ (R M2 s vs xs))))
= Suc (card (

⋃
(image (io-targets M1 (initial M1 )) (R M2 s vs xs))))

by (metis (no-types) card-insert-disjoint)

moreover have card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))
= card (

⋃
(image (io-targets M1 (initial M1 )) (insert vs ′ (R M2 s vs xs))))

using vs ′-def by simp

ultimately have card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))
= Suc (card (

⋃
(image (io-targets M1 (initial M1 )) (R M2 s vs xs))))

by linarith

then have card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))
= Suc (card (R M2 s vs xs))

using R-count[of vs xs M1 M2 s FAIL PM q2 q1 tr ] assms(1 ,10 ,11 ,2−9 ) by linarith

moreover have card (RP M2 s vs xs V ′′) = Suc (card (R M2 s vs xs))
using vs ′-def by (metis card-insert-if finite-R)

ultimately show ?thesis
by linarith

qed
qed

lemma RP-state-component-2 :
assumes io ∈ (RP M2 s vs xs V ′′)
and observable M2

shows io-targets M2 (initial M2 ) io = {s}
by (metis (mono-tags, lifting) RP.simps R-state-component-2 Un-iff assms mem-Collect-eq)

lemma RP-io-targets-split :
assumes (vs @ xs) ∈ L M1 ∩ L M2
and observable M1
and observable M2
and well-formed M1
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and well-formed M2
and productF M2 M1 FAIL PM
and is-det-state-cover M2 V
and V ′′ ∈ Perm V M1
and io ∈ RP M2 s vs xs V ′′

shows io-targets PM (initial PM ) io
= io-targets M2 (initial M2 ) io × io-targets M1 (initial M1 ) io

proof −
have RP-cases : RP M2 s vs xs V ′′ = R M2 s vs xs

∨ (∃ vs ′ ∈ V ′′ . vs ′ /∈ R M2 s vs xs
∧ RP M2 s vs xs V ′′ = insert vs ′ (R M2 s vs xs))

using RP-from-R assms by metis
show ?thesis
proof (cases io ∈ R M2 s vs xs)

case True
then have io-prefix : prefix io (vs @ xs)

by auto
then have io-lang-subs : io ∈ L M1 ∧ io ∈ L M2

using assms(1 ) unfolding prefix-def by (metis IntE language-state language-state-split)
then have io-lang-inter : io ∈ L M1 ∩ L M2

by simp
then have io-lang-pm : io ∈ L PM

using productF-language assms by blast
moreover obtain p2 p1 where (p2 ,p1 ) ∈ io-targets PM (initial PM ) io

by (metis assms(2 ) assms(3 ) assms(6 ) calculation insert-absorb insert-ident insert-not-empty
io-targets-observable-singleton-ob observable-productF singleton-insert-inj-eq subrelI )

ultimately have targets-pm : io-targets PM (initial PM ) io = {(p2 ,p1 )}
using assms io-targets-observable-singleton-ex singletonD
by (metis observable-productF)

then obtain trP where trP-def : target (io || trP) (initial PM ) = (p2 ,p1 )
∧ path PM (io || trP) (initial PM ) ∧ length io = length trP

proof −
assume a1 :

∧
trP. target (io || trP) (initial PM ) = (p2 , p1 )
∧ path PM (io || trP) (initial PM ) ∧ length io = length trP =⇒ thesis

have ∃ ps. target (io || ps) (initial PM ) = (p2 , p1 ) ∧ path PM (io || ps) (initial PM )
∧ length io = length ps

using ‹(p2 , p1 ) ∈ io-targets PM (initial PM ) io› by auto
then show ?thesis

using a1 by blast
qed
then have trP-unique : {tr . path PM (io || tr) (initial PM ) ∧ length io = length tr} = {trP}

using observable-productF observable-path-unique-ex[of PM io initial PM ]
io-lang-pm assms(2 ) assms(3 ) assms(7 )

proof −
obtain pps :: ( ′d × ′c) list where

f1 : {ps. path PM (io || ps) (initial PM ) ∧ length io = length ps} = {pps}
∨ ¬ observable PM

by (metis (no-types) ‹
∧

thesis. [[observable PM ; io ∈ L PM ;
∧

tr .
{t. path PM (io || t) (initial PM ) ∧ length io = length t} = {tr}
=⇒ thesis]] =⇒ thesis›

io-lang-pm)
have f2 : observable PM

by (meson ‹observable M1 › ‹observable M2 › ‹productF M2 M1 FAIL PM › observable-productF)
then have trP ∈ {pps}

using f1 trP-def by blast
then show ?thesis

using f2 f1 by force
qed

obtain trIO2 where trIO2-def : {tr . path M2 (io || tr) (initial M2 ) ∧ length io = length tr}
= { trIO2 }

using observable-path-unique-ex[of M2 io initial M2 ] io-lang-subs assms(3 ) by blast
obtain trIO1 where trIO1-def : {tr . path M1 (io || tr) (initial M1 ) ∧ length io = length tr}

= { trIO1 }
using observable-path-unique-ex[of M1 io initial M1 ] io-lang-subs assms(2 ) by blast
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have path PM (io || trIO2 || trIO1 ) (initial M2 , initial M1 )
∧ length io = length trIO2 ∧ length trIO2 = length trIO1

proof −
have f1 : path M2 (io || trIO2 ) (initial M2 ) ∧ length io = length trIO2

using trIO2-def by auto
have f2 : path M1 (io || trIO1 ) (initial M1 ) ∧ length io = length trIO1

using trIO1-def by auto
then have length trIO2 = length trIO1

using f1 by presburger
then show ?thesis

using f2 f1 assms(4 ) assms(5 ) assms(6 ) by blast
qed
then have trP-split : path PM (io || trIO2 || trIO1 ) (initial PM )

∧ length io = length trIO2 ∧ length trIO2 = length trIO1
using assms(6 ) by auto

then have trP-zip : trIO2 || trIO1 = trP
using trP-def trP-unique length-zip by fastforce

have target (io || trIO2 ) (initial M2 ) = p2
∧ path M2 (io || trIO2 ) (initial M2 )
∧ length io = length trIO2

using trP-zip trP-split assms(6 ) trP-def trIO2-def by auto
then have p2 ∈ io-targets M2 (initial M2 ) io

by auto
then have targets-2 : io-targets M2 (initial M2 ) io = {p2}

by (meson assms(3 ) observable-io-target-is-singleton)

have target (io || trIO1 ) (initial M1 ) = p1
∧ path M1 (io || trIO1 ) (initial M1 )
∧ length io = length trIO1

using trP-zip trP-split assms(6 ) trP-def trIO1-def by auto
then have p1 ∈ io-targets M1 (initial M1 ) io

by auto
then have targets-1 : io-targets M1 (initial M1 ) io = {p1}

by (metis io-lang-subs assms(2 ) io-targets-observable-singleton-ex singletonD)

have io-targets M2 (initial M2 ) io × io-targets M1 (initial M1 ) io = {(p2 ,p1 )}
using targets-2 targets-1 by simp

then show io-targets PM (initial PM ) io
= io-targets M2 (initial M2 ) io × io-targets M1 (initial M1 ) io

using targets-pm by simp

next
case False
then have io /∈ R M2 s vs xs ∧ RP M2 s vs xs V ′′ = insert io (R M2 s vs xs)

using RP-cases assms(9 ) by (metis insertE)

have io ∈ L M1 using assms(8 ) perm-language assms(9 )
using False by auto

then obtain s ′ where s ′-def : io-targets M1 (initial M1 ) io = {s ′}
by (meson assms(2 ) io-targets-observable-singleton-ob)

then obtain tr1 where tr1-def : target (io || tr1 ) (initial M1 ) = s ′

∧ path M1 (io || tr1 ) (initial M1 ) ∧ length tr1 = length io
by (metis io-targets-elim singletonI )

have io-targets M2 (initial M2 ) io = {s}
using assms(9 ) assms(3 ) RP-state-component-2 by simp

then obtain tr2 where tr2-def : target (io || tr2 ) (initial M2 ) = s
∧ path M2 (io || tr2 ) (initial M2 ) ∧ length tr2 = length io

by (metis io-targets-elim singletonI )
then have paths : path M2 (io || tr2 ) (initial M2 ) ∧ path M1 (io || tr1 ) (initial M1 )

using tr1-def by simp

have length io = length tr2
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using tr2-def by simp
moreover have length tr2 = length tr1

using tr1-def tr2-def by simp
ultimately have path PM (io || tr2 || tr1 ) (initial M2 , initial M1 )

using assms(6 ) assms(5 ) assms(4 ) paths
productF-path-forward[of io tr2 tr1 M2 M1 FAIL PM initial M2 initial M1 ]

by blast

moreover have target (io || tr2 || tr1 ) (initial M2 , initial M1 ) = (s,s ′)
by (simp add: tr1-def tr2-def )

moreover have length (tr2 || tr2 ) = length io
using tr1-def tr2-def by simp

moreover have (initial M2 , initial M1 ) = initial PM
using assms(6 ) by simp

ultimately have (s,s ′) ∈ io-targets PM (initial PM ) io
by (metis io-target-from-path length-zip tr1-def tr2-def )

moreover have observable PM
using assms(2 ) assms(3 ) assms(6 ) observable-productF by blast

then have io-targets PM (initial PM ) io = {(s,s ′)}
by (meson calculation observable-io-target-is-singleton)

then show ?thesis
using ‹io-targets M2 (initial M2 ) io = {s}› ‹io-targets M1 (initial M1 ) io = {s ′}›
by simp

qed
qed

lemma RP-io-targets-finite-M1 :
assumes (vs @ xs) ∈ L M1 ∩ L M2
and observable M1
and is-det-state-cover M2 V
and V ′′ ∈ Perm V M1

shows finite (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))
proof

show finite (RP M2 s vs xs V ′′) using finite-RP assms(3 ) assms(4 ) by simp
show

∧
a. a ∈ RP M2 s vs xs V ′′ =⇒ finite (io-targets M1 (initial M1 ) a)

proof −
fix a assume a ∈ RP M2 s vs xs V ′′

have RP-cases : RP M2 s vs xs V ′′ = R M2 s vs xs
∨ (∃ vs ′ ∈ V ′′ . vs ′ /∈ R M2 s vs xs

∧ RP M2 s vs xs V ′′ = insert vs ′ (R M2 s vs xs))
using RP-from-R assms by metis

have a ∈ L M1
proof (cases a ∈ R M2 s vs xs)

case True
then have prefix a (vs@xs)

by auto
then show a ∈ L M1

using language-state-prefix by (metis IntD1 assms(1 ) prefix-def )
next

case False
then have a ∈ V ′′ ∧ RP M2 s vs xs V ′′ = insert a (R M2 s vs xs)

using RP-cases ‹a ∈ RP M2 s vs xs V ′′› by (metis insertE)
then show a ∈ L M1

by (meson assms(4 ) perm-language)
qed
then obtain p where io-targets M1 (initial M1 ) a = {p}

using assms(2 ) io-targets-observable-singleton-ob by metis
then show finite (io-targets M1 (initial M1 ) a)

by simp
qed
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qed

lemma RP-io-targets-finite-PM :
assumes (vs @ xs) ∈ L M1 ∩ L M2
and observable M1
and observable M2
and well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM
and is-det-state-cover M2 V
and V ′′ ∈ Perm V M1

shows finite (
⋃

(image (io-targets PM (initial PM )) (RP M2 s vs xs V ′′)))
proof −

have ∀ io ∈ RP M2 s vs xs V ′′ . io-targets PM (initial PM ) io
= {s} × io-targets M1 (initial M1 ) io

proof
fix io assume io ∈ RP M2 s vs xs V ′′

then have io-targets PM (initial PM ) io
= io-targets M2 (initial M2 ) io × io-targets M1 (initial M1 ) io

using assms RP-io-targets-split[of vs xs M1 M2 FAIL PM V V ′′ io s] by simp
moreover have io-targets M2 (initial M2 ) io = {s}

using ‹io ∈ RP M2 s vs xs V ′′› assms(3 ) RP-state-component-2 [of io M2 s vs xs V ′′]
by blast

ultimately show io-targets PM (initial PM ) io = {s} × io-targets M1 (initial M1 ) io
by auto

qed
then have

⋃
(image (io-targets PM (initial PM )) (RP M2 s vs xs V ′′))

=
⋃

(image (λ io . {s} × io-targets M1 (initial M1 ) io) (RP M2 s vs xs V ′′))
by simp

moreover have
⋃

(image (λ io . {s} × io-targets M1 (initial M1 ) io) (RP M2 s vs xs V ′′))
= {s} ×

⋃
(image (λ io . io-targets M1 (initial M1 ) io) (RP M2 s vs xs V ′′))

by blast
ultimately have

⋃
(image (io-targets PM (initial PM )) (RP M2 s vs xs V ′′))

= {s} ×
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))
by auto

moreover have finite ({s} ×
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))
using assms(1 ,2 ,7 ,8 ) RP-io-targets-finite-M1 [of vs xs M1 M2 V V ′′ s] by simp

ultimately show ?thesis
by simp

qed

lemma RP-union-card-is-suffix-length :
assumes OFSM M2
and io@xs ∈ L M2
and is-det-state-cover M2 V
and V ′′ ∈ Perm V M1

shows
∧

q . card (R M2 q io xs) ≤ card (RP M2 q io xs V ′′)
sum (λ q . card (RP M2 q io xs V ′′)) (nodes M2 ) ≥ length xs

proof −
have sum (λ q . card (R M2 q io xs)) (nodes M2 ) = length xs

using R-union-card-is-suffix-length[OF assms(1 ,2 )] by assumption
show

∧
q . card (R M2 q io xs) ≤ card (RP M2 q io xs V ′′)

by (metis RP-from-R assms(3 ) assms(4 ) card-insert-le eq-iff finite-R)
show sum (λ q . card (RP M2 q io xs V ′′)) (nodes M2 ) ≥ length xs

by (metis (no-types, lifting) ‹(
∑

q∈nodes M2 . card (R M2 q io xs)) = length xs›
‹
∧

q. card (R M2 q io xs) ≤ card (RP M2 q io xs V ′′)› sum-mono)
qed

lemma RP-state-repetition-distribution-productF :
assumes OFSM M2
and OFSM M1
and (card (nodes M2 ) ∗ m) ≤ length xs
and card (nodes M1 ) ≤ m
and vs@xs ∈ L M2 ∩ L M1
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and is-det-state-cover M2 V
and V ′′ ∈ Perm V M1

shows ∃ q ∈ nodes M2 . card (RP M2 q vs xs V ′′) > m
proof −

have finite (nodes M1 )
finite (nodes M2 )

using assms(1 ,2 ) by auto
then have card(nodes M2 × nodes M1 ) = card (nodes M2 ) ∗ card (nodes M1 )

using card-cartesian-product by blast

have nodes (product M2 M1 ) ⊆ nodes M2 × nodes M1
using product-nodes by auto

have card (nodes (product M2 M1 )) ≤ card (nodes M2 ) ∗ card (nodes M1 )
by (metis (no-types) ‹card (nodes M2 × nodes M1 ) = |M2 | ∗ |M1 |› ‹finite (nodes M1 )›

‹finite (nodes M2 )› ‹nodes (product M2 M1 ) ⊆ nodes M2 × nodes M1 ›
card-mono finite-cartesian-product)

have (∀ q ∈ nodes M2 . card (R M2 q vs xs) = m) ∨ (∃ q ∈ nodes M2 . card (R M2 q vs xs) > m)
proof (rule ccontr)

assume ¬ ((∀ q∈nodes M2 . card (R M2 q vs xs) = m) ∨ (∃ q∈nodes M2 . m < card (R M2 q vs xs)))

then have ∀ q ∈ nodes M2 . card (R M2 q vs xs) ≤ m
by auto

moreover obtain q ′ where q ′∈nodes M2 card (R M2 q ′ vs xs) < m
using ‹¬ ((∀ q∈nodes M2 . card (R M2 q vs xs) = m) ∨ (∃ q∈nodes M2 . m < card (R M2 q vs xs)))›

nat-neq-iff
by blast

have sum (λ q . card (R M2 q vs xs)) (nodes M2 )
= sum (λ q . card (R M2 q vs xs)) (nodes M2 − {q ′})
+ sum (λ q . card (R M2 q vs xs)) {q ′}

using ‹q ′∈nodes M2 ›
by (meson ‹finite (nodes M2 )› empty-subsetI insert-subset sum.subset-diff )

moreover have sum (λ q . card (R M2 q vs xs)) (nodes M2 − {q ′})
≤ sum (λ q . m) (nodes M2 − {q ′})

using ‹∀ q ∈ nodes M2 . card (R M2 q vs xs) ≤ m›
by (meson sum-mono DiffD1 )

moreover have sum (λ q . card (R M2 q vs xs)) {q ′} < m
using ‹card (R M2 q ′ vs xs) < m› by auto

ultimately have sum (λ q . card (R M2 q vs xs)) (nodes M2 ) < sum (λ q . m) (nodes M2 )
proof −

have ∀C c f . infinite C ∨ (c:: ′c) /∈ C ∨ sum f C = (f c::nat) + sum f (C − {c})
by (meson sum.remove)

then have (
∑

c∈nodes M2 . m) = m + (
∑

c∈nodes M2 − {q ′}. m)
using ‹finite (nodes M2 )› ‹q ′ ∈ nodes M2 › by blast

then show ?thesis
using ‹(

∑
q∈nodes M2 − {q ′}. card (R M2 q vs xs)) ≤ (

∑
q∈nodes M2 − {q ′}. m)›

‹(
∑

q∈nodes M2 . card (R M2 q vs xs)) = (
∑

q∈nodes M2 − {q ′}. card (R M2 q vs xs))
+ (

∑
q∈{q ′}. card (R M2 q vs xs))›

‹(
∑

q∈{q ′}. card (R M2 q vs xs)) < m›
by linarith

qed

moreover have sum (λ q . m) (nodes M2 ) ≤ card (nodes M2 ) ∗ m
using assms(2 ) by auto

ultimately have sum (λ q . card (R M2 q vs xs)) (nodes M2 ) < card (nodes M2 ) ∗ m
by presburger

moreover have Suc (card (nodes M2 )∗m) ≤ sum (λ q . card (R M2 q vs xs)) (nodes M2 )
using R-union-card-is-suffix-length[OF assms(1 ), of vs xs] assms(5 ,3 )
by (metis Int-iff ‹vs @ xs ∈ L M2 =⇒ (

∑
q∈nodes M2 . card (R M2 q vs xs)) = length xs›

‹vs @ xs ∈ L M2 ∩ L M1 › ‹|M2 | ∗ m ≤ length xs› calculation less-eq-Suc-le not-less-eq-eq)
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ultimately show False by simp
qed
then show ?thesis
proof

let ?q = initial M2

assume ∀ q∈nodes M2 . card (R M2 q vs xs) = m
then have card (R M2 ?q vs xs) = m

by auto

have [] ∈ V ′′

by (meson assms(6 ) assms(7 ) perm-empty)
then have [] ∈ RP M2 ?q vs xs V ′′

by auto
have [] /∈ R M2 ?q vs xs

by auto
have card (RP M2 ?q vs xs V ′′) ≥ card (R M2 ?q vs xs)

using finite-R[of M2 ?q vs xs] finite-RP[OF assms(6 ,7 ),of ?q vs xs] unfolding RP.simps
by (simp add: card-mono)

have card (RP M2 ?q vs xs V ′′) > card (R M2 ?q vs xs)
proof −

have f1 : ∀n na. (¬ (n::nat) ≤ na ∨ n = na) ∨ n < na
by (meson le-neq-trans)

have RP M2 (initial M2 ) vs xs V ′′ 6= R M2 (initial M2 ) vs xs
using ‹[] ∈ RP M2 (initial M2 ) vs xs V ′′› ‹[] /∈ R M2 (initial M2 ) vs xs› by blast

then show ?thesis
using f1 by (metis (no-types) RP-from-R

‹card (R M2 (initial M2 ) vs xs) ≤ card (RP M2 (initial M2 ) vs xs V ′′)›
assms(6 ) assms(7 ) card-insert-disjoint finite-R le-simps(2 ))

qed

then show ?thesis
using ‹card (R M2 ?q vs xs) = m›
by blast

next
assume ∃ q∈nodes M2 . m < card (R M2 q vs xs)
then obtain q where q∈nodes M2 m < card (R M2 q vs xs)

by blast
moreover have card (RP M2 q vs xs V ′′) ≥ card (R M2 q vs xs)

using finite-R[of M2 q vs xs] finite-RP[OF assms(6 ,7 ),of q vs xs] unfolding RP.simps
by (simp add: card-mono)

ultimately have m < card (RP M2 q vs xs V ′′)
by simp

show ?thesis
using ‹q ∈ nodes M2 › ‹m < card (RP M2 q vs xs V ′′)› by blast

qed
qed

4.5 Conditions for the result of LB to be a valid lower bound
The following predicates describe the assumptions necessary to show that the value calculated by LB is a lower
bound on the number of states of a given FSM.
fun Prereq :: ( ′in, ′out, ′state1 ) FSM ⇒ ( ′in, ′out, ′state2 ) FSM ⇒ ( ′in × ′out) list

⇒ ( ′in × ′out) list ⇒ ′in list set ⇒ ′state1 set ⇒ ( ′in, ′out) ATC set
⇒ ( ′in × ′out) list set ⇒ bool

where
Prereq M2 M1 vs xs T S Ω V ′′ = (
(finite T)
∧ (vs @ xs) ∈ L M2 ∩ L M1
∧ S ⊆ nodes M2
∧ (∀ s1 ∈ S . ∀ s2 ∈ S . s1 6= s2
−→ (∀ io1 ∈ RP M2 s1 vs xs V ′′ .

∀ io2 ∈ RP M2 s2 vs xs V ′′ .
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B M1 io1 Ω 6= B M1 io2 Ω )))

fun Rep-Pre :: ( ′in, ′out, ′state1 ) FSM ⇒ ( ′in, ′out, ′state2 ) FSM ⇒ ( ′in × ′out) list
⇒ ( ′in × ′out) list ⇒ bool where

Rep-Pre M2 M1 vs xs = (∃ xs1 xs2 . prefix xs1 xs2 ∧ prefix xs2 xs ∧ xs1 6= xs2
∧ (∃ s2 . io-targets M2 (initial M2 ) (vs @ xs1 ) = {s2}

∧ io-targets M2 (initial M2 ) (vs @ xs2 ) = {s2})
∧ (∃ s1 . io-targets M1 (initial M1 ) (vs @ xs1 ) = {s1}

∧ io-targets M1 (initial M1 ) (vs @ xs2 ) = {s1}))

fun Rep-Cov :: ( ′in, ′out, ′state1 ) FSM ⇒ ( ′in, ′out, ′state2 ) FSM ⇒ ( ′in × ′out) list set
⇒ ( ′in × ′out) list ⇒ ( ′in × ′out) list ⇒ bool where

Rep-Cov M2 M1 V ′′ vs xs = (∃ xs ′ vs ′ . xs ′ 6= [] ∧ prefix xs ′ xs ∧ vs ′ ∈ V ′′

∧ (∃ s2 . io-targets M2 (initial M2 ) (vs @ xs ′) = {s2}
∧ io-targets M2 (initial M2 ) (vs ′) = {s2})

∧ (∃ s1 . io-targets M1 (initial M1 ) (vs @ xs ′) = {s1}
∧ io-targets M1 (initial M1 ) (vs ′) = {s1}))

lemma distinctness-via-Rep-Pre :
assumes ¬ Rep-Pre M2 M1 vs xs
and productF M2 M1 FAIL PM
and observable M1
and observable M2
and io-targets PM (initial PM ) vs = {(q2 ,q1 )}
and path PM (xs || tr) (q2 ,q1 )
and length xs = length tr
and (vs @ xs) ∈ L M1 ∩ L M2
and well-formed M1
and well-formed M2

shows distinct (states (xs || tr) (q2 , q1 ))
proof (rule ccontr)

assume assm : ¬ distinct (states (xs || tr) (q2 , q1 ))
then obtain i1 i2 where index-def :

i1 6= 0
∧ i1 6= i2
∧ i1 < length (states (xs || tr) (q2 , q1 ))
∧ i2 < length (states (xs || tr) (q2 , q1 ))
∧ (states (xs || tr) (q2 , q1 )) ! i1 = (states (xs || tr) (q2 , q1 )) ! i2

by (metis distinct-conv-nth)
then have length xs > 0 by auto

let ?xs1 = take (Suc i1 ) xs
let ?xs2 = take (Suc i2 ) xs
let ?tr1 = take (Suc i1 ) tr
let ?tr2 = take (Suc i2 ) tr
let ?st = (states (xs || tr) (q2 , q1 )) ! i1

have obs-PM : observable PM
using observable-productF assms(2 ) assms(3 ) assms(4 ) by blast

have initial PM = (initial M2 , initial M1 )
using assms(2 ) by simp

moreover have vs ∈ L M2 vs ∈ L M1
using assms(8 ) language-state-prefix by auto

ultimately have io-targets M1 (initial M1 ) vs = {q1} io-targets M2 (initial M2 ) vs = {q2}
using productF-path-io-targets[of M2 M1 FAIL PM initial M2 initial M1 vs q2 q1 ]
by (metis FSM .nodes.initial assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(9 ) assms(10 )

io-targets-observable-singleton-ex singletonD)+

— paths for ?xs1

have (states (xs || tr) (q2 , q1 )) ! i1 ∈ io-targets PM (q2 , q1 ) ?xs1
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by (metis ‹0 < length xs› assms(6 ) assms(7 ) index-def map-snd-zip states-alt-def
states-index-io-target)

then have io-targets PM (q2 , q1 ) ?xs1 = {?st}
using obs-PM by (meson observable-io-target-is-singleton)

have path PM (?xs1 || ?tr1 ) (q2 ,q1 )
by (metis FSM .path-append-elim append-take-drop-id assms(6 ) assms(7 ) length-take zip-append)

then have path PM (?xs1 || map fst ?tr1 || map snd ?tr1 ) (q2 ,q1 )
by auto

have vs @ ?xs1 ∈ L M2
by (metis (no-types) IntD2 append-assoc append-take-drop-id assms(8 ) language-state-prefix)

then obtain q2 ′ where io-targets M2 (initial M2 ) (vs@?xs1 ) = {q2 ′}
using io-targets-observable-singleton-ob[of M2 vs@?xs1 initial M2 ] assms(4 ) by auto

then have q2 ′ ∈ io-targets M2 q2 ?xs1
using assms(4 ) ‹io-targets M2 (initial M2 ) vs = {q2}›

observable-io-targets-split[of M2 initial M2 vs ?xs1 q2 ′ q2 ]
by simp

then have ?xs1 ∈ language-state M2 q2
by auto

moreover have length ?xs1 = length (map snd ?tr1 )
using assms(7 ) by auto

moreover have length (map fst ?tr1 ) = length (map snd ?tr1 )
by auto

moreover have q2 ∈ nodes M2
using ‹io-targets M2 (initial M2 ) vs = {q2}› io-targets-nodes
by (metis FSM .nodes.initial insertI1 )

moreover have q1 ∈ nodes M1
using ‹io-targets M1 (initial M1 ) vs = {q1}› io-targets-nodes
by (metis FSM .nodes.initial insertI1 )

ultimately have
path M1 (?xs1 || map snd ?tr1 ) q1
path M2 (?xs1 || map fst ?tr1 ) q2
target (?xs1 || map snd ?tr1 ) q1 = snd (target (?xs1 || map fst ?tr1 || map snd ?tr1 ) (q2 ,q1 ))
target (?xs1 || map fst ?tr1 ) q2 = fst (target (?xs1 || map fst ?tr1 || map snd ?tr1 ) (q2 ,q1 ))

using assms(2 ) assms(9 ) assms(10 ) ‹path PM (?xs1 || map fst ?tr1 || map snd ?tr1 ) (q2 ,q1 )›
assms(4 )
productF-path-reverse-ob-2 [of ?xs1 map fst ?tr1 map snd ?tr1 M2 M1 FAIL PM q2 q1 ]

by simp+
moreover have target (?xs1 || map fst ?tr1 || map snd ?tr1 ) (q2 ,q1 ) = ?st

by (metis (no-types) index-def scan-nth take-zip zip-map-fst-snd)
ultimately have

target (?xs1 || map snd ?tr1 ) q1 = snd ?st
target (?xs1 || map fst ?tr1 ) q2 = fst ?st

by simp+

— paths for ?xs2

have (states (xs || tr) (q2 , q1 )) ! i2 ∈ io-targets PM (q2 , q1 ) ?xs2
by (metis ‹0 < length xs› assms(6 ) assms(7 ) index-def map-snd-zip states-alt-def states-index-io-target)

then have io-targets PM (q2 , q1 ) ?xs2 = {?st}
using obs-PM by (metis index-def observable-io-target-is-singleton)

have path PM (?xs2 || ?tr2 ) (q2 ,q1 )
by (metis FSM .path-append-elim append-take-drop-id assms(6 ) assms(7 ) length-take zip-append)

then have path PM (?xs2 || map fst ?tr2 || map snd ?tr2 ) (q2 ,q1 )
by auto

have vs @ ?xs2 ∈ L M2
by (metis (no-types) IntD2 append-assoc append-take-drop-id assms(8 ) language-state-prefix)

then obtain q2 ′′ where io-targets M2 (initial M2 ) (vs@?xs2 ) = {q2 ′′}
using io-targets-observable-singleton-ob[of M2 vs@?xs2 initial M2 ] assms(4 )
by auto

then have q2 ′′ ∈ io-targets M2 q2 ?xs2
using assms(4 ) ‹io-targets M2 (initial M2 ) vs = {q2}›

observable-io-targets-split[of M2 initial M2 vs ?xs2 q2 ′′ q2 ]
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by simp
then have ?xs2 ∈ language-state M2 q2

by auto
moreover have length ?xs2 = length (map snd ?tr2 ) using assms(7 )

by auto
moreover have length (map fst ?tr2 ) = length (map snd ?tr2 )

by auto
moreover have q2 ∈ nodes M2

using ‹io-targets M2 (initial M2 ) vs = {q2}› io-targets-nodes
by (metis FSM .nodes.initial insertI1 )

moreover have q1 ∈ nodes M1
using ‹io-targets M1 (initial M1 ) vs = {q1}› io-targets-nodes
by (metis FSM .nodes.initial insertI1 )

ultimately have
path M1 (?xs2 || map snd ?tr2 ) q1
path M2 (?xs2 || map fst ?tr2 ) q2
target (?xs2 || map snd ?tr2 ) q1 = snd(target (?xs2 || map fst ?tr2 || map snd ?tr2 ) (q2 ,q1 ))
target (?xs2 || map fst ?tr2 ) q2 = fst(target (?xs2 || map fst ?tr2 || map snd ?tr2 ) (q2 ,q1 ))

using assms(2 ) assms(9 ) assms(10 ) ‹path PM (?xs2 || map fst ?tr2 || map snd ?tr2 ) (q2 ,q1 )›
assms(4 )
productF-path-reverse-ob-2 [of ?xs2 map fst ?tr2 map snd ?tr2 M2 M1 FAIL PM q2 q1 ]

by simp+
moreover have target (?xs2 || map fst ?tr2 || map snd ?tr2 ) (q2 ,q1 ) = ?st

by (metis (no-types) index-def scan-nth take-zip zip-map-fst-snd)
ultimately have

target (?xs2 || map snd ?tr2 ) q1 = snd ?st
target (?xs2 || map fst ?tr2 ) q2 = fst ?st

by simp+

have io-targets M1 q1 ?xs1 = {snd ?st}
using ‹path M1 (?xs1 || map snd ?tr1 ) q1 › ‹target (?xs1 || map snd ?tr1 ) q1 = snd ?st›

‹length ?xs1 = length (map snd ?tr1 )› assms(3 ) obs-target-is-io-targets[of M1 ?xs1
map snd ?tr1 q1 ]

by simp
then have tgt-1-1 : io-targets M1 (initial M1 ) (vs @ ?xs1 ) = {snd ?st}

by (meson ‹io-targets M1 (initial M1 ) vs = {q1}› assms(3 ) observable-io-targets-append)

have io-targets M2 q2 ?xs1 = {fst ?st}
using ‹path M2 (?xs1 || map fst ?tr1 ) q2 › ‹target (?xs1 || map fst ?tr1 ) q2 = fst ?st›

‹length ?xs1 = length (map snd ?tr1 )› assms(4 )
obs-target-is-io-targets[of M2 ?xs1 map fst ?tr1 q2 ]

by simp
then have tgt-1-2 : io-targets M2 (initial M2 ) (vs @ ?xs1 ) = {fst ?st}

by (meson ‹io-targets M2 (initial M2 ) vs = {q2}› assms(4 ) observable-io-targets-append)

have io-targets M1 q1 ?xs2 = {snd ?st}
using ‹path M1 (?xs2 || map snd ?tr2 ) q1 › ‹target (?xs2 || map snd ?tr2 ) q1 = snd ?st›

‹length ?xs2 = length (map snd ?tr2 )› assms(3 )
obs-target-is-io-targets[of M1 ?xs2 map snd ?tr2 q1 ]

by simp
then have tgt-2-1 : io-targets M1 (initial M1 ) (vs @ ?xs2 ) = {snd ?st}

by (meson ‹io-targets M1 (initial M1 ) vs = {q1}› assms(3 ) observable-io-targets-append)

have io-targets M2 q2 ?xs2 = {fst ?st}
using ‹path M2 (?xs2 || map fst ?tr2 ) q2 › ‹target (?xs2 || map fst ?tr2 ) q2 = fst ?st›

‹length ?xs2 = length (map snd ?tr2 )› assms(4 )
obs-target-is-io-targets[of M2 ?xs2 map fst ?tr2 q2 ]

by simp
then have tgt-2-2 : io-targets M2 (initial M2 ) (vs @ ?xs2 ) = {fst ?st}

by (meson ‹io-targets M2 (initial M2 ) vs = {q2}› assms(4 ) observable-io-targets-append)

have ?xs1 6= [] using ‹0 < length xs›
by auto

have prefix ?xs1 xs
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using take-is-prefix by blast
have prefix ?xs2 xs

using take-is-prefix by blast
have ?xs1 6= ?xs2
proof −

have f1 : ∀n na. ¬ n < na ∨ Suc n ≤ na
by presburger

have f2 : Suc i1 ≤ length xs
using index-def by force

have Suc i2 ≤ length xs
using f1 by (metis index-def length-take map-snd-zip-take min-less-iff-conj states-alt-def )

then show ?thesis
using f2 by (metis (no-types) index-def length-take min.absorb2 nat.simps(1 ))

qed
have Rep-Pre M2 M1 vs xs
proof (cases length ?xs1 < length ?xs2 )

case True
then have prefix ?xs1 ?xs2

by (meson ‹prefix (take (Suc i1 ) xs) xs› ‹prefix (take (Suc i2 ) xs) xs› leD prefix-length-le
prefix-same-cases)

show ?thesis
by (meson Rep-Pre.elims(3 ) ‹prefix (take (Suc i1 ) xs) (take (Suc i2 ) xs)›

‹prefix (take (Suc i2 ) xs) xs› ‹take (Suc i1 ) xs 6= take (Suc i2 ) xs›
tgt-1-1 tgt-1-2 tgt-2-1 tgt-2-2 )

next
case False
moreover have length ?xs1 6= length ?xs2

by (metis (no-types) ‹take (Suc i1 ) xs 6= take (Suc i2 ) xs› append-eq-conv-conj
append-take-drop-id)

ultimately have length ?xs2 < length ?xs1
by auto

then have prefix ?xs2 ?xs1
using ‹prefix (take (Suc i1 ) xs) xs› ‹prefix (take (Suc i2 ) xs) xs› less-imp-le-nat

prefix-length-prefix
by blast

show ?thesis
by (metis Rep-Pre.elims(3 ) ‹prefix (take (Suc i1 ) xs) xs›

‹prefix (take (Suc i2 ) xs) (take (Suc i1 ) xs)› ‹take (Suc i1 ) xs 6= take (Suc i2 ) xs›
tgt-1-1 tgt-1-2 tgt-2-1 tgt-2-2 )

qed

then show False
using assms(1 ) by simp

qed

lemma RP-count-via-Rep-Cov :
assumes (vs @ xs) ∈ L M1 ∩ L M2
and observable M1
and observable M2
and well-formed M1
and well-formed M2
and s ∈ nodes M2
and productF M2 M1 FAIL PM
and io-targets PM (initial PM ) vs = {(q2 ,q1 )}
and path PM (xs || tr) (q2 ,q1 )
and length xs = length tr
and distinct (states (xs || tr) (q2 ,q1 ))
and is-det-state-cover M2 V
and V ′′ ∈ Perm V M1
and ¬ Rep-Cov M2 M1 V ′′ vs xs

shows card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) = card (RP M2 s vs xs V ′′)
proof −
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have RP-cases : RP M2 s vs xs V ′′ = R M2 s vs xs
∨ (∃ vs ′ ∈ V ′′ . vs ′ /∈ R M2 s vs xs

∧ RP M2 s vs xs V ′′ = insert vs ′ (R M2 s vs xs))
using RP-from-R assms by metis

show ?thesis
proof (cases RP M2 s vs xs V ′′ = R M2 s vs xs)

case True
then show ?thesis

using R-count assms by metis
next

case False
then obtain vs ′ where vs ′-def : vs ′ ∈ V ′′

∧ vs ′ /∈ R M2 s vs xs
∧ RP M2 s vs xs V ′′ = insert vs ′ (R M2 s vs xs)

using RP-cases by auto

have state-component-2 : ∀ io ∈ (R M2 s vs xs) . io-targets M2 (initial M2 ) io = {s}
proof

fix io assume io ∈ R M2 s vs xs
then have s ∈ io-targets M2 (initial M2 ) io

by auto
moreover have io ∈ language-state M2 (initial M2 )

using calculation by auto
ultimately show io-targets M2 (initial M2 ) io = {s}

using assms(3 ) io-targets-observable-singleton-ex by (metis singletonD)
qed

have vs ′ ∈ L M1
using assms(13 ) perm-language vs ′-def by blast

then obtain s ′ where s ′-def : io-targets M1 (initial M1 ) vs ′ = {s ′}
by (meson assms(2 ) io-targets-observable-singleton-ob)

moreover have s ′ /∈
⋃

(image (io-targets M1 (initial M1 )) (R M2 s vs xs))
proof (rule ccontr)

assume ¬ s ′ /∈
⋃

(io-targets M1 (initial M1 ) ‘ R M2 s vs xs)
then obtain xs ′ where xs ′-def : vs @ xs ′ ∈ R M2 s vs xs

∧ s ′ ∈ io-targets M1 (initial M1 ) (vs @ xs ′)
proof −

assume a1 :
∧

xs ′. vs @ xs ′ ∈ R M2 s vs xs
∧ s ′ ∈ io-targets M1 (initial M1 ) (vs @ xs ′) =⇒ thesis

obtain pps :: ( ′a × ′b) list set ⇒ (( ′a × ′b) list ⇒ ′c set) ⇒ ′c ⇒ ( ′a × ′b) list
where
∀ x0 x1 x2 . (∃ v3 . v3 ∈ x0 ∧ x2 ∈ x1 v3 ) = (pps x0 x1 x2 ∈ x0 ∧ x2 ∈ x1 (pps x0 x1 x2 ))
by moura

then have f2 : pps (R M2 s vs xs) (io-targets M1 (initial M1 )) s ′ ∈ R M2 s vs xs
∧ s ′ ∈ io-targets M1 (initial M1 )

(pps (R M2 s vs xs) (io-targets M1 (initial M1 )) s ′)
using ‹¬ s ′ /∈

⋃
(io-targets M1 (initial M1 ) ‘ R M2 s vs xs)› by blast

then have ∃ ps. pps (R M2 s vs xs) (io-targets M1 (initial M1 )) s ′ = vs @ ps ∧ ps 6= []
∧ prefix ps xs ∧ s ∈ io-targets M2 (initial M2 ) (vs @ ps)

by simp
then show ?thesis

using f2 a1 by (metis (no-types))
qed

have vs @ xs ′ ∈ L M1
using xs ′-def by blast

then have io-targets M1 (initial M1 ) (vs@xs ′) = {s ′}
by (metis assms(2 ) io-targets-observable-singleton-ob singletonD xs ′-def )

moreover have io-targets M1 (initial M1 ) (vs ′) = {s ′}
using s ′-def by blast

moreover have io-targets M2 (initial M2 ) (vs @ xs ′) = {s}
using state-component-2 xs ′-def by blast

moreover have io-targets M2 (initial M2 ) (vs ′) = {s}
by (metis (mono-tags, lifting) RP.simps Un-iff insertI1 mem-Collect-eq vs ′-def )

moreover have xs ′ 6= []
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using xs ′-def by simp
moreover have prefix xs ′ xs

using xs ′-def by simp
moreover have vs ′ ∈ V ′′

using vs ′-def by simp
ultimately have Rep-Cov M2 M1 V ′′ vs xs

by auto

then show False
using assms(14 ) by simp

qed

moreover have
⋃

(image (io-targets M1 (initial M1 )) (insert vs ′ (R M2 s vs xs)))
= insert s ′ (

⋃
(image (io-targets M1 (initial M1 )) (R M2 s vs xs)))

using s ′-def by simp

moreover have finite (
⋃

(image (io-targets M1 (initial M1 )) (R M2 s vs xs)))
proof

show finite (R M2 s vs xs)
using finite-R by simp

show
∧

a. a ∈ R M2 s vs xs =⇒ finite (io-targets M1 (initial M1 ) a)
proof −

fix a assume a ∈ R M2 s vs xs
then have prefix a (vs@xs)

by auto
then have a ∈ L M1

using language-state-prefix by (metis IntD1 assms(1 ) prefix-def )
then obtain p where io-targets M1 (initial M1 ) a = {p}

using assms(2 ) io-targets-observable-singleton-ob by metis
then show finite (io-targets M1 (initial M1 ) a)

by simp
qed

qed

ultimately have card (
⋃

(image (io-targets M1 (initial M1 )) (insert vs ′ (R M2 s vs xs))))
= Suc (card (

⋃
(image (io-targets M1 (initial M1 )) (R M2 s vs xs))))

by (metis (no-types) card-insert-disjoint)

moreover have card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))
= card (

⋃
(image (io-targets M1 (initial M1 )) (insert vs ′ (R M2 s vs xs))))

using vs ′-def by simp

ultimately have card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))
= Suc (card (

⋃
(image (io-targets M1 (initial M1 )) (R M2 s vs xs))))

by linarith

then have card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))
= Suc (card (R M2 s vs xs))

using R-count[of vs xs M1 M2 s FAIL PM q2 q1 tr ] using assms(1 ,10 ,11 ,2−9 )
by linarith

moreover have card (RP M2 s vs xs V ′′) = Suc (card (R M2 s vs xs))
using vs ′-def by (metis card-insert-if finite-R)

ultimately show ?thesis
by linarith

qed
qed

lemma RP-count-alt-def :
assumes (vs @ xs) ∈ L M1 ∩ L M2
and observable M1
and observable M2
and well-formed M1
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and well-formed M2
and s ∈ nodes M2
and productF M2 M1 FAIL PM
and io-targets PM (initial PM ) vs = {(q2 ,q1 )}
and path PM (xs || tr) (q2 ,q1 )
and length xs = length tr
and ¬ Rep-Pre M2 M1 vs xs
and is-det-state-cover M2 V
and V ′′ ∈ Perm V M1
and ¬ Rep-Cov M2 M1 V ′′ vs xs

shows card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) = card (RP M2 s vs xs V ′′)
proof −

have distinct (states (xs || tr) (q2 ,q1 ))
using distinctness-via-Rep-Pre[of M2 M1 vs xs FAIL PM q2 q1 tr ] assms by simp

then show ?thesis
using RP-count-via-Rep-Cov[of vs xs M1 M2 s FAIL PM q2 q1 tr V V ′′]
using assms(1 ,10 ,12−14 ,2−9 ) by blast

qed

4.6 Function LB
LB adds together the number of elements in sets calculated via RP for a given set of states and the number of
ATC-reaction known to exist but not produced by a state reached by any of the above elements.
fun LB :: ( ′in, ′out, ′state1 ) FSM ⇒ ( ′in, ′out, ′state2 ) FSM

⇒ ( ′in × ′out) list ⇒ ( ′in × ′out) list ⇒ ′in list set
⇒ ′state1 set ⇒ ( ′in, ′out) ATC set
⇒ ( ′in × ′out) list set ⇒ nat

where
LB M2 M1 vs xs T S Ω V ′′ =
(sum (λ s . card (RP M2 s vs xs V ′′)) S)
+ card ((D M1 T Ω) −

{B M1 xs ′ Ω | xs ′ s ′ . s ′ ∈ S ∧ xs ′ ∈ RP M2 s ′ vs xs V ′′})

lemma LB-count-helper-RP-disjoint-and-cards :
assumes (vs @ xs) ∈ L M1 ∩ L M2
and observable M1
and observable M2
and well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM
and is-det-state-cover M2 V
and V ′′ ∈ Perm V M1
and s1 6= s2

shows
⋃

(image (io-targets PM (initial PM )) (RP M2 s1 vs xs V ′′))
∩
⋃

(image (io-targets PM (initial PM )) (RP M2 s2 vs xs V ′′)) = {}
card (

⋃
(image (io-targets PM (initial PM )) (RP M2 s1 vs xs V ′′)))

= card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′)))
card (

⋃
(image (io-targets PM (initial PM )) (RP M2 s2 vs xs V ′′)))

= card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′)))
proof −

have ∀ io ∈ RP M2 s1 vs xs V ′′ . io-targets PM (initial PM ) io
= {s1} × io-targets M1 (initial M1 ) io

proof
fix io assume io ∈ RP M2 s1 vs xs V ′′

then have io-targets PM (initial PM ) io
= io-targets M2 (initial M2 ) io × io-targets M1 (initial M1 ) io

using assms RP-io-targets-split[of vs xs M1 M2 FAIL PM V V ′′ io s1 ] by simp
moreover have io-targets M2 (initial M2 ) io = {s1}

using ‹io ∈ RP M2 s1 vs xs V ′′› assms(3 ) RP-state-component-2 [of io M2 s1 vs xs V ′′]
by blast

ultimately show io-targets PM (initial PM ) io = {s1} × io-targets M1 (initial M1 ) io
by auto

qed
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then have
⋃

(image (io-targets PM (initial PM )) (RP M2 s1 vs xs V ′′))
=

⋃
(image (λ io . {s1} × io-targets M1 (initial M1 ) io) (RP M2 s1 vs xs V ′′))

by simp
moreover have

⋃
(image (λ io . {s1} × io-targets M1 (initial M1 ) io) (RP M2 s1 vs xs V ′′))

= {s1} ×
⋃

(image (λ io . io-targets M1 (initial M1 ) io) (RP M2 s1 vs xs V ′′))
by blast

ultimately have image-split-1 :⋃
(image (io-targets PM (initial PM )) (RP M2 s1 vs xs V ′′) )

= {s1} ×
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′))
by simp

then show card (
⋃

(image (io-targets PM (initial PM )) (RP M2 s1 vs xs V ′′)))
= card (

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′)))

by (metis (no-types) card-cartesian-product-singleton)

have ∀ io ∈ RP M2 s2 vs xs V ′′ . io-targets PM (initial PM ) io
= {s2} × io-targets M1 (initial M1 ) io

proof
fix io assume io ∈ RP M2 s2 vs xs V ′′

then have io-targets PM (initial PM ) io
= io-targets M2 (initial M2 ) io × io-targets M1 (initial M1 ) io

using assms RP-io-targets-split[of vs xs M1 M2 FAIL PM V V ′′ io s2 ] by simp
moreover have io-targets M2 (initial M2 ) io = {s2}

using ‹io ∈ RP M2 s2 vs xs V ′′› assms(3 ) RP-state-component-2 [of io M2 s2 vs xs V ′′]
by blast

ultimately show io-targets PM (initial PM ) io = {s2} × io-targets M1 (initial M1 ) io
by auto

qed
then have

⋃
(image (io-targets PM (initial PM )) (RP M2 s2 vs xs V ′′))

=
⋃

(image (λ io . {s2} × io-targets M1 (initial M1 ) io) (RP M2 s2 vs xs V ′′))
by simp

moreover have
⋃

(image (λ io . {s2} × io-targets M1 (initial M1 ) io) (RP M2 s2 vs xs V ′′))
= {s2} ×

⋃
(image (λ io . io-targets M1 (initial M1 ) io) (RP M2 s2 vs xs V ′′))

by blast
ultimately have image-split-2 :⋃

(image (io-targets PM (initial PM )) (RP M2 s2 vs xs V ′′))
= {s2} ×

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′)) by simp

then show card (
⋃

(image (io-targets PM (initial PM )) (RP M2 s2 vs xs V ′′)))
= card (

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′)))

by (metis (no-types) card-cartesian-product-singleton)

have
⋃

(image (io-targets PM (initial PM )) (RP M2 s1 vs xs V ′′))
∩
⋃

(image (io-targets PM (initial PM )) (RP M2 s2 vs xs V ′′))
= {s1} ×

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′))

∩ {s2} ×
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′))
using image-split-1 image-split-2 by blast

moreover have {s1} ×
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′))
∩ {s2} ×

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′)) = {}

using assms(9 ) by auto
ultimately show

⋃
(image (io-targets PM (initial PM )) (RP M2 s1 vs xs V ′′))

∩
⋃

(image (io-targets PM (initial PM )) (RP M2 s2 vs xs V ′′)) = {}
by presburger

qed

lemma LB-count-helper-RP-disjoint-card-M1 :
assumes (vs @ xs) ∈ L M1 ∩ L M2
and observable M1
and observable M2
and well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM
and is-det-state-cover M2 V
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and V ′′ ∈ Perm V M1
and s1 6= s2

shows card (
⋃

(image (io-targets PM (initial PM )) (RP M2 s1 vs xs V ′′))
∪
⋃

(image (io-targets PM (initial PM )) (RP M2 s2 vs xs V ′′)))
= card (

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′)))

+ card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′)))
proof −

have finite (
⋃

(image (io-targets PM (initial PM )) (RP M2 s1 vs xs V ′′)))
using RP-io-targets-finite-PM [OF assms(1−8 )] by simp

moreover have finite (
⋃

(image (io-targets PM (initial PM )) (RP M2 s2 vs xs V ′′)))
using RP-io-targets-finite-PM [OF assms(1−8 )] by simp

ultimately show ?thesis
using LB-count-helper-RP-disjoint-and-cards[OF assms]
by (metis (no-types) card-Un-disjoint)

qed

lemma LB-count-helper-RP-disjoint-M1-pair :
assumes (vs @ xs) ∈ L M1 ∩ L M2
and observable M1
and observable M2
and well-formed M1
and well-formed M2
and productF M2 M1 FAIL PM
and io-targets PM (initial PM ) vs = {(q2 ,q1 )}
and path PM (xs || tr) (q2 ,q1 )
and length xs = length tr
and ¬ Rep-Pre M2 M1 vs xs
and is-det-state-cover M2 V
and V ′′ ∈ Perm V M1
and ¬ Rep-Cov M2 M1 V ′′ vs xs
and Prereq M2 M1 vs xs T S Ω V ′′

and s1 6= s2
and s1 ∈ S
and s2 ∈ S
and applicable-set M1 Ω
and completely-specified M1

shows card (RP M2 s1 vs xs V ′′) + card (RP M2 s2 vs xs V ′′)
= card (

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′)))

+ card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′)))⋃
(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′))
∩
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′))
= {}

proof −
have s1 ∈ nodes M2

using assms(14 ,16 ) unfolding Prereq.simps by blast
have s2 ∈ nodes M2

using assms(14 ,17 ) unfolding Prereq.simps by blast
have card (RP M2 s1 vs xs V ′′)

= card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′)))
using RP-count-alt-def [OF assms(1−5 ) ‹s1 ∈ nodes M2 › assms(6−13 )]
by linarith

moreover have card (RP M2 s2 vs xs V ′′)
= card (

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′)))

using RP-count-alt-def [OF assms(1−5 ) ‹s2 ∈ nodes M2 › assms(6−13 )]
by linarith

moreover show
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′))
∩
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′)) = {}
proof (rule ccontr)

assume
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′))
∩
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′)) 6= {}
then obtain io1 io2 t where shared-elem-def :

io1 ∈ (RP M2 s1 vs xs V ′′)
io2 ∈ (RP M2 s2 vs xs V ′′)
t ∈ io-targets M1 (initial M1 ) io1
t ∈ io-targets M1 (initial M1 ) io2
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by blast

have dist-prop: (∀ s1 ∈ S . ∀ s2 ∈ S . s1 6= s2
−→ (∀ io1 ∈ RP M2 s1 vs xs V ′′ .

∀ io2 ∈ RP M2 s2 vs xs V ′′ .
B M1 io1 Ω 6= B M1 io2 Ω ))

using assms(14 ) by simp

have io-targets M1 (initial M1 ) io1 ∩ io-targets M1 (initial M1 ) io2 = {}
proof (rule ccontr)

assume io-targets M1 (initial M1 ) io1 ∩ io-targets M1 (initial M1 ) io2 6= {}
then have io-targets M1 (initial M1 ) io1 6= {} io-targets M1 (initial M1 ) io2 6= {}

by blast+

then obtain s1 s2 where s1 ∈ io-targets M1 (initial M1 ) io1
s2 ∈ io-targets M1 (initial M1 ) io2

by blast

then have io-targets M1 (initial M1 ) io1 = {s1}
io-targets M1 (initial M1 ) io2 = {s2}

by (meson assms(2 ) observable-io-target-is-singleton)+

then have s1 = s2
using ‹io-targets M1 (initial M1 ) io1 ∩ io-targets M1 (initial M1 ) io2 6= {}›
by auto

then have B M1 io1 Ω = B M1 io2 Ω
using ‹io-targets M1 (initial M1 ) io1 = {s1}› ‹io-targets M1 (initial M1 ) io2 = {s2}›
by auto

then show False
using assms(15−17 ) dist-prop shared-elem-def (1 ,2 ) by blast

qed
then show False

using shared-elem-def (3 ,4 ) by blast
qed

ultimately show card (RP M2 s1 vs xs V ′′) + card (RP M2 s2 vs xs V ′′)
= card (

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s1 vs xs V ′′)))

+ card (
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s2 vs xs V ′′)))
by linarith

qed

lemma LB-count-helper-RP-card-union :
assumes observable M2
and s1 6= s2

shows RP M2 s1 vs xs V ′′ ∩ RP M2 s2 vs xs V ′′ = {}
proof (rule ccontr)

assume RP M2 s1 vs xs V ′′ ∩ RP M2 s2 vs xs V ′′ 6= {}
then obtain io where io ∈ RP M2 s1 vs xs V ′′ ∧ io ∈ RP M2 s2 vs xs V ′′

by blast
then have s1 ∈ io-targets M2 (initial M2 ) io

s2 ∈ io-targets M2 (initial M2 ) io
by auto

then have s1 = s2
using assms(1 ) by (metis observable-io-target-is-singleton singletonD)

then show False
using assms(2 ) by simp

qed
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lemma LB-count-helper-RP-inj :
obtains f
where ∀ q ∈ (

⋃
(image (λ s .

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) S)) .

f q ∈ nodes M1
inj-on f (

⋃
(image (λ s .

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) S))

proof −
let ?f =
λ q . if (q ∈ (

⋃
(image (λ s .

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) S)))

then q
else (initial M1 )

have (
⋃

(image (λ s .
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) S)) ⊆ nodes M1
by blast

then have ∀ q ∈ (
⋃

(image (λ s .
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) S)) .
?f q ∈ nodes M1

by (metis Un-iff sup.order-iff )

moreover have inj-on ?f (
⋃

(image (λ s .
⋃

(image (io-targets M1 (initial M1 ))
(RP M2 s vs xs V ′′))) S))

proof
fix x assume x ∈ (

⋃
(image (λ s .

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) S))

then have ?f x = x
by presburger

fix y assume y ∈ (
⋃

(image (λ s .
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) S))
then have ?f y = y

by presburger

assume ?f x = ?f y
then show x = y using ‹?f x = x› ‹?f y = y›

by presburger
qed

ultimately show ?thesis
using that by presburger

qed

abbreviation (input) UNION :: ′a set ⇒ ( ′a ⇒ ′b set) ⇒ ′b set
where UNION A f ≡

⋃
(f ‘ A)

lemma LB-count-helper-RP-card-union-sum :
assumes (vs @ xs) ∈ L M2 ∩ L M1
and OFSM M1
and OFSM M2
and asc-fault-domain M2 M1 m
and test-tools M2 M1 FAIL PM V Ω
and V ′′ ∈ Perm V M1
and Prereq M2 M1 vs xs T S Ω V ′′

and ¬ Rep-Pre M2 M1 vs xs
and ¬ Rep-Cov M2 M1 V ′′ vs xs

shows sum (λ s . card (RP M2 s vs xs V ′′)) S
= sum (λ s . card (

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))) S

using assms proof −
have finite (nodes M2 )

using assms(3 ) by auto
moreover have S ⊆ nodes M2

using assms(7 ) by simp
ultimately have finite S

using infinite-super by blast

then have sum (λ s . card (RP M2 s vs xs V ′′)) S
= sum (λ s . card (

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))) S

using assms proof (induction S)
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case empty
show ?case by simp

next
case (insert s S)

have (insert s S) ⊆ nodes M2
using insert.prems(7 ) by simp

then have s ∈ nodes M2
by simp

have Prereq M2 M1 vs xs T S Ω V ′′

using ‹Prereq M2 M1 vs xs T (insert s S) Ω V ′′› by simp
then have (

∑
s∈S . card (RP M2 s vs xs V ′′))

= (
∑

s∈S . card (
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a))
using insert.IH [OF insert.prems(1−6 ) - assms(8 ,9 )] by metis

moreover have (
∑

s ′∈(insert s S). card (RP M2 s ′ vs xs V ′′))
= (

∑
s ′∈S . card (RP M2 s ′ vs xs V ′′)) + card (RP M2 s vs xs V ′′)

by (simp add: add.commute insert.hyps(1 ) insert.hyps(2 ))
ultimately have S-prop : (

∑
s ′∈(insert s S). card (RP M2 s ′ vs xs V ′′))

= (
∑

s∈S . card (
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a))
+ card (RP M2 s vs xs V ′′)

by presburger

have vs@xs ∈ L M1 ∩ L M2
using insert.prems(1 ) by simp

obtain q2 q1 tr where suffix-path : io-targets PM (initial PM ) vs = {(q2 ,q1 )}
path PM (xs || tr) (q2 ,q1 )
length xs = length tr

using productF-language-state-intermediate[OF insert.prems(1 )
test-tools-props(1 )[OF insert.prems(5 ,4 )] OFSM-props(2 ,1 )[OF insert.prems(3 )]

OFSM-props(2 ,1 )[OF insert.prems(2 )]]
by blast

have card (RP M2 s vs xs V ′′)
= card (

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′)))

using OFSM-props(2 ,1 )[OF insert.prems(3 )] OFSM-props(2 ,1 )[OF insert.prems(2 )]
RP-count-alt-def [OF ‹vs@xs ∈ L M1 ∩ L M2 › - - - -

‹s∈nodes M2 › test-tools-props(1 )[OF insert.prems(5 ,4 )]
suffix-path insert.prems(8 )
test-tools-props(2 )[OF insert.prems(5 ,4 )] assms(6 ) insert.prems(9 )]

by linarith

show (
∑

s∈insert s S . card (RP M2 s vs xs V ′′)) =
(
∑

s∈insert s S . card (UNION (RP M2 s vs xs V ′′) (io-targets M1 (initial M1 ))))
proof −

have (
∑

c∈insert s S . card (UNION (RP M2 c vs xs V ′′) (io-targets M1 (initial M1 ))))
= card (UNION (RP M2 s vs xs V ′′) (io-targets M1 (initial M1 )))
+ (

∑
c∈S . card (UNION (RP M2 c vs xs V ′′) (io-targets M1 (initial M1 ))))

by (meson insert.hyps(1 ) insert.hyps(2 ) sum.insert)
then show ?thesis

using ‹(
∑

s ′∈insert s S . card (RP M2 s ′ vs xs V ′′))
= (

∑
s∈S . card (

⋃
a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a))

+ card (RP M2 s vs xs V ′′)›
‹card (RP M2 s vs xs V ′′)
= card (UNION (RP M2 s vs xs V ′′) (io-targets M1 (initial M1 )))›

by presburger
qed

qed

then show ?thesis
using assms by blast

qed
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lemma finite-insert-card :
assumes finite (

⋃
SS)

and finite S
and S ∩ (

⋃
SS) = {}

shows card (
⋃

(insert S SS)) = card (
⋃

SS) + card S
by (simp add: assms(1 ) assms(2 ) assms(3 ) card-Un-disjoint)

lemma LB-count-helper-RP-disjoint-M1-union :
assumes (vs @ xs) ∈ L M2 ∩ L M1
and OFSM M1
and OFSM M2
and asc-fault-domain M2 M1 m
and test-tools M2 M1 FAIL PM V Ω
and V ′′ ∈ Perm V M1
and Prereq M2 M1 vs xs T S Ω V ′′

and ¬ Rep-Pre M2 M1 vs xs
and ¬ Rep-Cov M2 M1 V ′′ vs xs

shows sum (λ s . card (RP M2 s vs xs V ′′)) S
= card (

⋃
(image (λ s .

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) S))

using assms proof −
have finite (nodes M2 )

using assms(3 ) by auto
moreover have S ⊆ nodes M2

using assms(7 ) by simp
ultimately have finite S

using infinite-super by blast

then show sum (λ s . card (RP M2 s vs xs V ′′)) S
= card (

⋃
(image (λ s .

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) S))

using assms proof (induction S)
case empty
show ?case by simp

next
case (insert s S)

have (insert s S) ⊆ nodes M2
using insert.prems(7 ) by simp

then have s ∈ nodes M2
by simp

have Prereq M2 M1 vs xs T S Ω V ′′

using ‹Prereq M2 M1 vs xs T (insert s S) Ω V ′′› by simp
then have applied-IH : (

∑
s∈S . card (RP M2 s vs xs V ′′))

= card (
⋃

s∈S .
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)
using insert.IH [OF insert.prems(1−6 ) - insert.prems(8 ,9 )] by metis

obtain q2 q1 tr where suffix-path : io-targets PM (initial PM ) vs = {(q2 ,q1 )}
path PM (xs || tr) (q2 ,q1 )
length xs = length tr

using productF-language-state-intermediate
[OF insert.prems(1 ) test-tools-props(1 )[OF insert.prems(5 ,4 )]

OFSM-props(2 ,1 )[OF insert.prems(3 )] OFSM-props(2 ,1 )[OF insert.prems(2 )]]
by blast

have s ∈ insert s S
by simp

have vs@xs ∈ L M1 ∩ L M2
using insert.prems(1 ) by simp

have ∀ s ′ ∈ S . (
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)
∩ (

⋃
a∈RP M2 s ′ vs xs V ′′. io-targets M1 (initial M1 ) a) = {}

proof
fix s ′ assume s ′ ∈ S
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have s 6= s ′

using insert.hyps(2 ) ‹s ′ ∈ S› by blast
have s ′ ∈ insert s S

using ‹s ′ ∈ S› by simp

show (
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)
∩ (

⋃
a∈RP M2 s ′ vs xs V ′′. io-targets M1 (initial M1 ) a) = {}

using OFSM-props(2 ,1 )[OF assms(3 )] OFSM-props(2 ,1 ,3 )[OF assms(2 )]
LB-count-helper-RP-disjoint-M1-pair(2 )
[OF ‹vs@xs ∈ L M1 ∩ L M2 › - - - - test-tools-props(1 )[OF insert.prems(5 ,4 )]

suffix-path insert.prems(8 ) test-tools-props(2 )[OF insert.prems(5 ,4 )]
insert.prems(6 ,9 ,7 ) ‹s 6= s ′› ‹s ∈ insert s S› ‹s ′ ∈ insert s S›
test-tools-props(4 )[OF insert.prems(5 ,4 )]]

by linarith
qed
then have disj-insert : (

⋃
s∈S .

⋃
a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)

∩ (
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a) = {}
by blast

have finite-S : finite (
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)
using RP-io-targets-finite-M1 [OF insert.prems(1 )]
by (meson RP-io-targets-finite-M1 ‹vs @ xs ∈ L M1 ∩ L M2 › assms(2 ) assms(5 ) insert.prems(6 ))

have finite-s : finite (
⋃

s∈S .
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)
by (meson RP-io-targets-finite-M1 ‹vs @ xs ∈ L M1 ∩ L M2 › assms(2 ) assms(5 )

finite-UN-I insert.hyps(1 ) insert.prems(6 ))

have card (
⋃

s∈insert s S .
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)
= card (

⋃
s∈S .

⋃
a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)

+ card (
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)
proof −

have f1 : insert (UNION (RP M2 s vs xs V ′′) (io-targets M1 (initial M1 )))
((λc. UNION (RP M2 c vs xs V ′′) (io-targets M1 (initial M1 ))) ‘ S)

= (λc. UNION (RP M2 c vs xs V ′′) (io-targets M1 (initial M1 ))) ‘ insert s S
by blast

have ∀ c. c ∈ S −→ UNION (RP M2 s vs xs V ′′) (io-targets M1 (initial M1 ))
∩ UNION (RP M2 c vs xs V ′′) (io-targets M1 (initial M1 )) = {}

by (meson ‹∀ s ′∈S . (
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)
∩ (

⋃
a∈RP M2 s ′ vs xs V ′′. io-targets M1 (initial M1 ) a) = {}›)

then have UNION (RP M2 s vs xs V ′′) (io-targets M1 (initial M1 ))
∩ (

⋃
c∈S . UNION (RP M2 c vs xs V ′′) (io-targets M1 (initial M1 ))) = {}

by blast
then show ?thesis

using f1 by (metis finite-S finite-insert-card finite-s)
qed

have card (RP M2 s vs xs V ′′)
= card (

⋃
a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)

using assms(2 ) assms(3 )
RP-count-alt-def [OF ‹vs@xs ∈ L M1 ∩ L M2 › - - - - ‹s ∈ nodes M2 ›

test-tools-props(1 )[OF insert.prems(5 ,4 )] suffix-path
insert.prems(8 ) test-tools-props(2 )[OF insert.prems(5 ,4 )]
insert.prems(6 ,9 )]

by metis

show ?case
proof −

have (
∑

c∈insert s S . card (RP M2 c vs xs V ′′))
= card (RP M2 s vs xs V ′′) + (

∑
c∈S . card (RP M2 c vs xs V ′′))

by (meson insert.hyps(1 ) insert.hyps(2 ) sum.insert)
then show ?thesis

using ‹card (RP M2 s vs xs V ′′)
= card (

⋃
a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)›

‹card (
⋃

s∈insert s S .
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)
= card (

⋃
s∈S .

⋃
a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)

+ card (
⋃

a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a)› applied-IH
by presburger
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qed
qed

qed

lemma LB-count-helper-LB1 :
assumes (vs @ xs) ∈ L M2 ∩ L M1
and OFSM M1
and OFSM M2
and asc-fault-domain M2 M1 m
and test-tools M2 M1 FAIL PM V Ω
and V ′′ ∈ Perm V M1
and Prereq M2 M1 vs xs T S Ω V ′′

and ¬ Rep-Pre M2 M1 vs xs
and ¬ Rep-Cov M2 M1 V ′′ vs xs

shows (sum (λ s . card (RP M2 s vs xs V ′′)) S) ≤ card (nodes M1 )
proof −

have (
⋃

s∈S . UNION (RP M2 s vs xs V ′′) (io-targets M1 (initial M1 ))) ⊆ nodes M1
by blast

moreover have finite (nodes M1 )
using assms(2 ) OFSM-props(1 ) unfolding well-formed.simps finite-FSM .simps by simp

ultimately have card (
⋃

s∈S . UNION (RP M2 s vs xs V ′′) (io-targets M1 (initial M1 )))
≤ card (nodes M1 )

by (meson card-mono)

moreover have (
∑

s∈S . card (RP M2 s vs xs V ′′))
= card (

⋃
s∈S . UNION (RP M2 s vs xs V ′′) (io-targets M1 (initial M1 )))

using LB-count-helper-RP-disjoint-M1-union[OF assms]
by linarith

ultimately show ?thesis
by linarith

qed

lemma LB-count-helper-D-states :
assumes observable M
and RS ∈ (D M T Ω)

obtains q
where q ∈ nodes M ∧ RS = IO-set M q Ω
proof −

have RS ∈ image (λ io . B M io Ω) (LS in M (initial M ) T)
using assms by simp

then obtain io where RS = B M io Ω io ∈ LS in M (initial M ) T
by blast

then have io ∈ language-state M (initial M )
using language-state-for-inputs-in-language-state[of M initial M T ] by blast

then obtain q where {q} = io-targets M (initial M ) io
by (metis assms(1 ) io-targets-observable-singleton-ob)

then have B M io Ω =
⋃

(image (λ s . IO-set M s Ω) {q})
by simp

then have B M io Ω = IO-set M q Ω
by simp

then have RS = IO-set M q Ω using ‹RS = B M io Ω›
by simp

moreover have q ∈ nodes M using ‹{q} = io-targets M (initial M ) io›
by (metis FSM .nodes.initial insertI1 io-targets-nodes)

ultimately show ?thesis
using that by simp

qed
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lemma LB-count-helper-LB2 :
assumes observable M1
and IO-set M1 q Ω ∈ (D M1 T Ω) − {B M1 xs ′ Ω | xs ′ s ′ . s ′ ∈ S ∧ xs ′ ∈ RP M2 s ′ vs xs V ′′}

shows q /∈ (
⋃

(image (λ s .
⋃

(image (io-targets M1 (initial M1 )) (RP M2 s vs xs V ′′))) S))
proof

assume q ∈ (
⋃

s∈S . UNION (RP M2 s vs xs V ′′) (io-targets M1 (initial M1 )))
then obtain s ′ where s ′ ∈ S q ∈ (

⋃
(image (io-targets M1 (initial M1 )) (RP M2 s ′ vs xs V ′′)))

by blast
then obtain xs ′ where q ∈ io-targets M1 (initial M1 ) xs ′ xs ′ ∈ RP M2 s ′ vs xs V ′′

by blast
then have {q} = io-targets M1 (initial M1 ) xs ′

by (metis assms(1 ) observable-io-target-is-singleton)
then have B M1 xs ′ Ω =

⋃
(image (λ s . IO-set M1 s Ω) {q})

by simp
then have B M1 xs ′ Ω = IO-set M1 q Ω

by simp
moreover have B M1 xs ′ Ω ∈ {B M1 xs ′ Ω | xs ′ s ′ . s ′ ∈ S ∧ xs ′ ∈ RP M2 s ′ vs xs V ′′}

using ‹s ′ ∈ S› ‹xs ′ ∈ RP M2 s ′ vs xs V ′′› by blast
ultimately have IO-set M1 q Ω ∈ {B M1 xs ′ Ω | xs ′ s ′ . s ′ ∈ S ∧ xs ′ ∈ RP M2 s ′ vs xs V ′′}

by blast
moreover have IO-set M1 q Ω /∈ {B M1 xs ′ Ω | xs ′ s ′ . s ′ ∈ S ∧ xs ′ ∈ RP M2 s ′ vs xs V ′′}

using assms(2 ) by blast
ultimately show False

by simp
qed

4.7 Validity of the result of LB constituting a lower bound
lemma LB-count :
assumes (vs @ xs) ∈ L M1

and OFSM M1
and OFSM M2
and asc-fault-domain M2 M1 m
and test-tools M2 M1 FAIL PM V Ω
and V ′′ ∈ Perm V M1
and Prereq M2 M1 vs xs T S Ω V ′′

and ¬ Rep-Pre M2 M1 vs xs
and ¬ Rep-Cov M2 M1 V ′′ vs xs

shows LB M2 M1 vs xs T S Ω V ′′ ≤ |M1 |
proof −

let ?D = D M1 T Ω
let ?B = {B M1 xs ′ Ω | xs ′ s ′ . s ′ ∈ S ∧ xs ′ ∈ RP M2 s ′ vs xs V ′′}
let ?DB = ?D − ?B
let ?RP =

⋃
s∈S .

⋃
a∈RP M2 s vs xs V ′′. io-targets M1 (initial M1 ) a

have finite (nodes M1 )
using OFSM-props[OF assms(2 )] unfolding well-formed.simps finite-FSM .simps by simp

then have finite ?D
using OFSM-props[OF assms(2 )] assms(7 ) D-bound[of M1 T Ω] unfolding Prereq.simps by linarith

then have finite ?DB
by simp

— Proof sketch: Construct a function f (via induction) that maps each response set in ?DB to some state that produces
that response set. This is then used to show that each response sets in ?DB indicates the existence of a distinct state in
M1 not reached via the RP-sequences.

have states-f :
∧

DB ′ . DB ′ ⊆ ?DB =⇒ ∃ f . inj-on f DB ′

∧ image f DB ′ ⊆ (nodes M1 ) − ?RP
∧ (∀ RS ∈ DB ′ . IO-set M1 (f RS) Ω = RS)

proof −
fix DB ′ assume DB ′ ⊆ ?DB
have finite DB ′

proof (rule ccontr)
assume infinite DB ′
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have infinite ?DB
using infinite-super [OF ‹DB ′ ⊆ ?DB› ‹infinite DB ′› ] by simp

then show False
using ‹finite ?DB› by simp

qed
then show ∃ f . inj-on f DB ′ ∧ image f DB ′ ⊆ (nodes M1 ) − ?RP

∧ (∀ RS ∈ DB ′ . IO-set M1 (f RS) Ω = RS)
using assms ‹DB ′ ⊆ ?DB› proof (induction DB ′)

case empty
show ?case by simp

next
case (insert RS DB ′)

have DB ′ ⊆ ?DB
using insert.prems(10 ) by blast

obtain f ′ where inj-on f ′ DB ′

image f ′ DB ′ ⊆ (nodes M1 ) − ?RP
∀ RS ∈ DB ′ . IO-set M1 (f ′ RS) Ω = RS

using insert.IH [OF insert.prems(1−9 ) ‹DB ′ ⊆ ?DB›]
by blast

have RS ∈ D M1 T Ω
using insert.prems(10 ) by blast

obtain q where q ∈ nodes M1 RS = IO-set M1 q Ω
using insert.prems(2 ) LB-count-helper-D-states[OF - ‹RS ∈ D M1 T Ω›]
by blast

then have IO-set M1 q Ω ∈ ?DB
using insert.prems(10 ) by blast

have q /∈ ?RP
using insert.prems(2 ) LB-count-helper-LB2 [OF - ‹IO-set M1 q Ω ∈ ?DB›]
by blast

let ?f = f ′(RS := q)
have inj-on ?f (insert RS DB ′)
proof

have ?f RS /∈ ?f ‘ (DB ′ − {RS})
proof

assume ?f RS ∈ ?f ‘ (DB ′ − {RS})
then have q ∈ ?f ‘ (DB ′ − {RS}) by auto
have RS ∈ DB ′

proof −
have ∀P c f . ∃Pa. ((c:: ′c) /∈ f ‘ P ∨ (Pa::( ′a × ′b) list set) ∈ P)

∧ (c /∈ f ‘ P ∨ f Pa = c)
by auto

moreover
{ assume q /∈ f ′ ‘ DB ′

moreover
{ assume q /∈ f ′(RS := q) ‘ DB ′

then have ?thesis
using ‹q ∈ f ′(RS := q) ‘ (DB ′ − {RS})› by blast }

ultimately have ?thesis
by (metis fun-upd-image) }

ultimately show ?thesis
by (metis (no-types) ‹RS = IO-set M1 q Ω› ‹∀RS∈DB ′. IO-set M1 (f ′ RS) Ω = RS›)

qed
then show False using insert.hyps(2 ) by simp

qed
then show inj-on ?f DB ′ ∧ ?f RS /∈ ?f ‘ (DB ′ − {RS})

using ‹inj-on f ′ DB ′› inj-on-fun-updI by fastforce
qed
moreover have image ?f (insert RS DB ′) ⊆ (nodes M1 ) − ?RP
proof −

have image ?f {RS} = {q} by simp
then have image ?f {RS} ⊆ (nodes M1 ) − ?RP

using ‹q ∈ nodes M1 › ‹q /∈ ?RP› by auto

109



moreover have image ?f (insert RS DB ′) = image ?f {RS} ∪ image ?f DB ′

by auto
ultimately show ?thesis

by (metis (no-types, lifting) ‹image f ′ DB ′ ⊆ (nodes M1 ) − ?RP› fun-upd-other image-cong
image-insert insert.hyps(2 ) insert-subset)

qed
moreover have ∀ RS ∈ (insert RS DB ′) . IO-set M1 (?f RS) Ω = RS

using ‹RS = IO-set M1 q Ω› ‹∀RS∈DB ′. IO-set M1 (f ′ RS) Ω = RS› by auto

ultimately show ?case
by blast

qed
qed

have ?DB ⊆ ?DB
by simp

obtain f where inj-on f ?DB image f ?DB ⊆ (nodes M1 ) − ?RP
using states-f [OF ‹?DB ⊆ ?DB›] by blast

have finite (nodes M1 − ?RP)
using ‹finite (nodes M1 )› by simp

have card ?DB ≤ card (nodes M1 − ?RP)
using card-inj-on-le[OF ‹inj-on f ?DB› ‹image f ?DB ⊆ (nodes M1 ) − ?RP›

‹finite (nodes M1 − ?RP)›]
by assumption

have ?RP ⊆ nodes M1
by blast

then have card (nodes M1 − ?RP) = card (nodes M1 ) − card ?RP
by (meson ‹finite (nodes M1 )› card-Diff-subset infinite-subset)

then have card ?DB ≤ card (nodes M1 ) − card ?RP
using ‹card ?DB ≤ card (nodes M1 − ?RP)› by linarith

have vs @ xs ∈ L M2 ∩ L M1
using assms(7 ) by simp

have (sum (λ s . card (RP M2 s vs xs V ′′)) S) = card ?RP
using LB-count-helper-RP-disjoint-M1-union[OF ‹vs @ xs ∈ L M2 ∩ L M1 › assms(2−9 )] by simp

moreover have card ?RP ≤ card (nodes M1 )
using card-mono[OF ‹finite (nodes M1 )› ‹?RP ⊆ nodes M1 ›] by assumption

ultimately show ?thesis
unfolding LB.simps using ‹card ?DB ≤ card (nodes M1 ) − card ?RP›
by linarith

qed

lemma contradiction-via-LB :
assumes (vs @ xs) ∈ L M1

and OFSM M1
and OFSM M2
and asc-fault-domain M2 M1 m
and test-tools M2 M1 FAIL PM V Ω
and V ′′ ∈ Perm V M1
and Prereq M2 M1 vs xs T S Ω V ′′

and ¬ Rep-Pre M2 M1 vs xs
and ¬ Rep-Cov M2 M1 V ′′ vs xs
and LB M2 M1 vs xs T S Ω V ′′ > m

shows False
proof −

have LB M2 M1 vs xs T S Ω V ′′ ≤ card (nodes M1 )
using LB-count[OF assms(1−9 )] by assumption

moreover have card (nodes M1 ) ≤ m
using assms(4 ) by auto

ultimately show False
using assms(10 ) by linarith

qed
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end
theory ASC-Suite
imports ASC-LB
begin

5 Test suite generated by the Adaptive State Counting Algorithm
5.1 Maximum length contained prefix
fun mcp :: ′a list ⇒ ′a list set ⇒ ′a list ⇒ bool where

mcp z W p = (prefix p z ∧ p ∈ W ∧
(∀ p ′ . (prefix p ′ z ∧ p ′ ∈ W ) −→ length p ′ ≤ length p))

lemma mcp-ex :
assumes [] ∈ W
and finite W

obtains p
where mcp z W p
proof −

let ?P = {p . prefix p z ∧ p ∈ W}
let ?maxP = arg-max length (λ p . p ∈ ?P)

have finite {p . prefix p z}
proof −

have {p . prefix p z} ⊆ image (λ i . take i z) (set [0 ..< Suc (length z)])
proof

fix p assume p ∈ {p . prefix p z}
then obtain i where i ≤ length z ∧ p = take i z

by (metis append-eq-conv-conj mem-Collect-eq prefix-def prefix-length-le)
then have i < Suc (length z) ∧ p = take i z

by simp
then show p ∈ image (λ i . take i z) (set [0 ..< Suc (length z)])

using atLeast-upt by blast
qed
then show ?thesis

using finite-surj by blast
qed
then have finite ?P

by simp

have ?P 6= {}
using Nil-prefix assms(1 ) by blast

have ∃ maxP ∈ ?P . ∀ p ∈ ?P . length p ≤ length maxP
proof (rule ccontr)

assume ¬(∃ maxP ∈ ?P . ∀ p ∈ ?P . length p ≤ length maxP)
then have ∀ p ∈ ?P . ∃ p ′ ∈ ?P . length p < length p ′

by (meson not-less)
then have ∀ l ∈ (image length ?P) . ∃ l ′ ∈ (image length ?P) . l < l ′

by auto

then have infinite (image length ?P)
by (metis (no-types, lifting) ‹?P 6= {}› image-is-empty infinite-growing)

then have infinite ?P
by blast

then show False
using ‹finite ?P› by simp

qed

then obtain maxP where maxP ∈ ?P ∀ p ∈ ?P . length p ≤ length maxP
by blast

then have mcp z W maxP
unfolding mcp.simps by blast
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then show ?thesis
using that by auto

qed

lemma mcp-unique :
assumes mcp z W p
and mcp z W p ′

shows p = p ′

proof −
have length p ′ ≤ length p

using assms(1 ) assms(2 ) by auto
moreover have length p ≤ length p ′

using assms(1 ) assms(2 ) by auto
ultimately have length p ′ = length p

by simp

moreover have prefix p z
using assms(1 ) by auto

moreover have prefix p ′ z
using assms(2 ) by auto

ultimately show ?thesis
by (metis append-eq-conv-conj prefixE)

qed

fun mcp ′ :: ′a list ⇒ ′a list set ⇒ ′a list where
mcp ′ z W = (THE p . mcp z W p)

lemma mcp ′-intro :
assumes mcp z W p

shows mcp ′ z W = p
using assms mcp-unique by (metis mcp ′.elims theI-unique)

lemma mcp-prefix-of-suffix :
assumes mcp (vs@xs) V vs
and prefix xs ′ xs

shows mcp (vs@xs ′) V vs
proof (rule ccontr)

assume ¬ mcp (vs @ xs ′) V vs
then have ¬ (prefix vs (vs @ xs ′) ∧ vs ∈ V ∧

(∀ p ′ . (prefix p ′ (vs @ xs ′) ∧ p ′ ∈ V ) −→ length p ′ ≤ length vs))
by auto

then have ¬ (∀ p ′ . (prefix p ′ (vs @ xs ′) ∧ p ′ ∈ V ) −→ length p ′ ≤ length vs)
using assms(1 ) by auto

then obtain vs ′ where vs ′ ∈ V ∧ prefix vs ′ (vs@xs) ∧ length vs < length vs ′

by (meson assms(2 ) leI prefix-append prefix-order .dual-order .trans)
then have ¬ (mcp (vs@xs) V vs)

by auto
then show False

using assms(1 ) by auto
qed

lemma minimal-sequence-to-failure-extending-mcp :
assumes OFSM M1
and OFSM M2
and is-det-state-cover M2 V
and minimal-sequence-to-failure-extending V M1 M2 vs xs

shows mcp (map fst (vs@xs)) V (map fst vs)
proof (rule ccontr)

assume ¬ mcp (map fst (vs @ xs)) V (map fst vs)
moreover have prefix (map fst vs) (map fst (vs @ xs))

by auto
moreover have (map fst vs) ∈ V

using mstfe-prefix-input-in-V assms(4 ) by auto
ultimately obtain v ′ where prefix v ′ (map fst (vs @ xs))

v ′ ∈ V
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length v ′ > length (map fst vs)
using leI by auto

then obtain x ′ where (map fst (vs@xs)) = v ′@x ′

using prefixE by blast

have vs@xs ∈ L M1 − L M2
using assms(4 ) unfolding minimal-sequence-to-failure-extending.simps sequence-to-failure.simps
by blast

then have vs@xs ∈ Lin M1 {map fst (vs@xs)}
by (meson DiffE insertI1 language-state-for-inputs-map-fst)

have vs@xs ∈ Lin M1 {v ′@x ′}
using ‹map fst (vs @ xs) = v ′ @ x ′› ‹vs @ xs ∈ Lin M1 {map fst (vs @ xs)}›
by presburger

let ?vs ′ = take (length v ′) (vs@xs)
let ?xs ′ = drop (length v ′) (vs@xs)

have vs@xs = ?vs ′@?xs ′

by (metis append-take-drop-id)

have ?vs ′ ∈ Lin M1 V
by (metis (no-types) DiffE ‹map fst (vs @ xs) = v ′ @ x ′› ‹v ′ ∈ V › ‹vs @ xs ∈ L M1 − L M2 ›

append-eq-conv-conj append-take-drop-id language-state-for-inputs-map-fst
language-state-prefix take-map)

have sequence-to-failure M1 M2 (?vs ′ @ ?xs ′)
by (metis (full-types) ‹vs @ xs = take (length v ′) (vs @ xs) @ drop (length v ′) (vs @ xs)›

assms(4 ) minimal-sequence-to-failure-extending.simps)

have length ?xs ′ < length xs
using ‹length (map fst vs) < length v ′› ‹prefix v ′ (map fst (vs @ xs))›

‹vs @ xs = take (length v ′) (vs @ xs) @ drop (length v ′) (vs @ xs)› prefix-length-le
by fastforce

show False
by (meson ‹length (drop (length v ′) (vs @ xs)) < length xs›

‹sequence-to-failure M1 M2 (take (length v ′) (vs @ xs) @ drop (length v ′) (vs @ xs))›
‹take (length v ′) (vs @ xs) ∈ Lin M1 V › assms(4 )
minimal-sequence-to-failure-extending.elims(2 ))

qed

5.2 Function N
Function N narrows the sets of reaction to the determinisitc state cover considered by the adaptive state counting
algorithm to contain only relevant sequences. It is the main refinement of the original formulation of the
algorithm as given in [2]. An example for the necessity for this refinement is given in [3].
fun N :: ( ′in × ′out) list ⇒ ( ′in, ′out, ′state) FSM ⇒ ′in list set ⇒ ( ′in × ′out) list set set

where
N io M V = { V ′′ ∈ Perm V M . (map fst (mcp ′ io V ′′)) = (mcp ′ (map fst io) V ) }

lemma N-nonempty :
assumes is-det-state-cover M2 V
and OFSM M1
and OFSM M2
and asc-fault-domain M2 M1 m
and io ∈ L M1

shows N io M1 V 6= {}
proof −

have [] ∈ V
using assms(1 ) det-state-cover-empty by blast

have inputs M1 = inputs M2
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using assms(4 ) by auto

have is-det-state-cover M2 V
using assms by auto

moreover have finite (nodes M2 )
using assms(3 ) by auto

moreover have d-reachable M2 (initial M2 ) ⊆ nodes M2
by auto

ultimately have finite V
using det-state-cover-card[of M2 V ]
by (metis finite-if-finite-subsets-card-bdd infinite-subset is-det-state-cover .elims(2 )

surj-card-le)

obtain ioV where mcp (map fst io) V ioV
using mcp-ex[OF ‹[] ∈ V › ‹finite V ›] by blast

then have ioV ∈ V
by auto

— Proof sketch: - ioV uses only inputs of M2 - ioV uses only inputs of M1 - as M1 completely spec.: ex. reaction of
M1 to ioV - this reaction is in some V”

obtain q2 where d-reaches M2 (initial M2 ) ioV q2
using det-state-cover-d-reachable[OF assms(1 ) ‹ioV ∈ V ›] by blast

then obtain ioV ′ ioP where io-path : length ioV = length ioV ′

∧ length ioV = length ioP
∧ (path M2 ((ioV || ioV ′) || ioP) (initial M2 ))
∧ target ((ioV || ioV ′) || ioP) (initial M2 ) = q2

by auto

have well-formed M2
using assms by auto

have map fst (map fst ((ioV || ioV ′) || ioP)) = ioV
proof −

have length (ioV || ioV ′) = length ioP
using io-path by simp

then show ?thesis
using io-path by auto

qed
moreover have set (map fst (map fst ((ioV || ioV ′) || ioP))) ⊆ inputs M2

using path-input-containment[OF ‹well-formed M2 ›, of (ioV || ioV ′) || ioP initial M2 ]
io-path

by linarith
ultimately have set ioV ⊆ inputs M2

by presburger

then have set ioV ⊆ inputs M1
using assms by auto

then have Lin M1 {ioV} 6= {}
using assms(2 ) language-state-for-inputs-nonempty by (metis FSM .nodes.initial)

have prefix ioV (map fst io)
using ‹mcp (map fst io) V ioV › mcp.simps by blast

then have length ioV ≤ length (map fst io)
using prefix-length-le by blast

then have length ioV ≤ length io
by auto

have (map fst io || map snd io) ∈ L M1
using assms(5 ) by auto

moreover have length (map fst io) = length (map snd io)
by auto

ultimately have (map fst io || map snd io)
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∈ language-state-for-input M1 (initial M1 ) (map fst io)
unfolding language-state-def
by (metis (mono-tags, lifting) ‹map fst io || map snd io ∈ L M1 ›

language-state-for-input.simps mem-Collect-eq)

have ioV = take (length ioV ) (map fst io)
by (metis (no-types) ‹prefix ioV (map fst io)› append-eq-conv-conj prefixE)

then have take (length ioV ) io ∈ language-state-for-input M1 (initial M1 ) ioV
using language-state-for-input-take
by (metis ‹map fst io || map snd io ∈ language-state-for-input M1 (initial M1 ) (map fst io)›

zip-map-fst-snd)

then obtain V ′′ where V ′′ ∈ Perm V M1 take (length ioV ) io ∈ V ′′

using perm-elem[OF assms(1−3 ) ‹inputs M1 = inputs M2 › ‹ioV ∈ V ›] by blast

have ioV = mcp ′ (map fst io) V
using ‹mcp (map fst io) V ioV › mcp ′-intro by blast

have map fst (take (length ioV ) io) = ioV
by (metis ‹ioV = take (length ioV ) (map fst io)› take-map)

obtain mcpV ′′ where mcp io V ′′ mcpV ′′

by (meson ‹V ′′ ∈ Perm V M1 › ‹well-formed M2 › assms(1 ) mcp-ex perm-elem-finite perm-empty)

have map fst mcpV ′′ ∈ V using perm-inputs
using ‹V ′′ ∈ Perm V M1 › ‹mcp io V ′′ mcpV ′′› mcp.simps by blast

have map fst mcpV ′′ = ioV
by (metis (no-types) ‹map fst (take (length ioV ) io) = ioV › ‹map fst mcpV ′′ ∈ V ›

‹mcp (map fst io) V ioV › ‹mcp io V ′′ mcpV ′′› ‹take (length ioV ) io ∈ V ′′›
map-mono-prefix mcp.elims(2 ) prefix-length-prefix prefix-order .dual-order .antisym
take-is-prefix)

have map fst (mcp ′ io V ′′) = mcp ′ (map fst io) V
using ‹ioV = mcp ′ (map fst io) V › ‹map fst mcpV ′′ = ioV › ‹mcp io V ′′ mcpV ′′› mcp ′-intro
by blast

then show ?thesis
using ‹V ′′ ∈ Perm V M1 › by fastforce

qed

lemma N-mcp-prefix :
assumes map fst vs = mcp ′ (map fst (vs@xs)) V
and V ′′ ∈ N (vs@xs) M1 V
and is-det-state-cover M2 V
and well-formed M2
and finite V

shows vs ∈ V ′′ vs = mcp ′ (vs@xs) V ′′

proof −
have map fst (mcp ′ (vs@xs) V ′′) = mcp ′ (map fst (vs@xs)) V

using assms(2 ) by auto
then have map fst (mcp ′ (vs@xs) V ′′) = map fst vs

using assms(1 ) by presburger
then have length (mcp ′ (vs@xs) V ′′) = length vs

by (metis length-map)

have [] ∈ V ′′

using perm-empty[OF assms(3 )] N .simps assms(2 ) by blast
moreover have finite V ′′

using perm-elem-finite[OF assms(3 ,4 )] N .simps assms(2 ) by blast
ultimately obtain p where mcp (vs@xs) V ′′ p

using mcp-ex by auto
then have mcp ′ (vs@xs) V ′′ = p
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using mcp ′-intro by simp

then have prefix (mcp ′ (vs@xs) V ′′) (vs@xs)
unfolding mcp ′.simps mcp.simps
using ‹mcp (vs @ xs) V ′′ p› mcp.elims(2 ) by blast

then show vs = mcp ′ (vs@xs) V ′′

by (metis ‹length (mcp ′ (vs @ xs) V ′′) = length vs› append-eq-append-conv prefix-def )

show vs ∈ V ′′

using ‹mcp (vs @ xs) V ′′ p› ‹mcp ′ (vs @ xs) V ′′ = p› ‹vs = mcp ′ (vs @ xs) V ′′›
by auto

qed

5.3 Functions TS, C, RM
Function TTS defines the calculation of the test suite used by the adaptive state counting algorithm in an
iterative way. It is defined using the three functions TS, C and RM where TS represents the test suite calculated
up to some iteration, C contains the sequences considered for extension in some iteration, and RM contains the
sequences of the corresponding C result that are not to be extended, which we also call removed sequences.
abbreviation append-set :: ′a list set ⇒ ′a set ⇒ ′a list set where

append-set T X ≡ {xs @ [x] | xs x . xs ∈ T ∧ x ∈ X}

abbreviation append-sets :: ′a list set ⇒ ′a list set ⇒ ′a list set where
append-sets T X ≡ {xs @ xs ′ | xs xs ′ . xs ∈ T ∧ xs ′ ∈ X}

fun TS :: ( ′in, ′out, ′state1 ) FSM ⇒ ( ′in, ′out, ′state2 ) FSM
⇒ ( ′in, ′out) ATC set ⇒ ′in list set ⇒ nat ⇒ nat
⇒ ′in list set

and C :: ( ′in, ′out, ′state1 ) FSM ⇒ ( ′in, ′out, ′state2 ) FSM
⇒ ( ′in, ′out) ATC set ⇒ ′in list set ⇒ nat ⇒ nat
⇒ ′in list set

and RM :: ( ′in, ′out, ′state1 ) FSM ⇒ ( ′in, ′out, ′state2 ) FSM
⇒ ( ′in, ′out) ATC set ⇒ ′in list set ⇒ nat ⇒ nat
⇒ ′in list set

where
RM M2 M1 Ω V m 0 = {} |
TS M2 M1 Ω V m 0 = {} |
TS M2 M1 Ω V m (Suc 0 ) = V |
C M2 M1 Ω V m 0 = {} |
C M2 M1 Ω V m (Suc 0 ) = V |
RM M2 M1 Ω V m (Suc n) =
{xs ′ ∈ C M2 M1 Ω V m (Suc n) .
(¬ (Lin M1 {xs ′} ⊆ Lin M2 {xs ′}))
∨ (∀ io ∈ Lin M1 {xs ′} .
∃ V ′′ ∈ N io M1 V .
∃ S1 .
∃ vs xs .

io = (vs@xs)
∧ mcp (vs@xs) V ′′ vs
∧ S1 ⊆ nodes M2
∧ (∀ s1 ∈ S1 . ∀ s2 ∈ S1 .

s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs xs V ′′ .
∀ io2 ∈ RP M2 s2 vs xs V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
∧ m < LB M2 M1 vs xs (TS M2 M1 Ω V m n ∪ V ) S1 Ω V ′′)} |

C M2 M1 Ω V m (Suc n) =
(append-set ((C M2 M1 Ω V m n) − (RM M2 M1 Ω V m n)) (inputs M2 ))
− (TS M2 M1 Ω V m n) |

TS M2 M1 Ω V m (Suc n) =
(TS M2 M1 Ω V m n) ∪ (C M2 M1 Ω V m (Suc n))
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abbreviation lists-of-length :: ′a set ⇒ nat ⇒ ′a list set where
lists-of-length X n ≡ {xs . length xs = n ∧ set xs ⊆ X}

lemma append-lists-of-length-alt-def :
append-sets T (lists-of-length X (Suc n)) = append-set (append-sets T (lists-of-length X n)) X

proof
show append-sets T (lists-of-length X (Suc n))

⊆ append-set (append-sets T (lists-of-length X n)) X
proof

fix tx assume tx ∈ append-sets T (lists-of-length X (Suc n))
then obtain t x where t@x = tx t ∈ T length x = Suc n set x ⊆ X

by blast
then have x 6= [] length (butlast x) = n

by auto
moreover have set (butlast x) ⊆ X

using ‹set x ⊆ X› by (meson dual-order .trans prefixeq-butlast set-mono-prefix)
ultimately have butlast x ∈ lists-of-length X n

by auto
then have t@(butlast x) ∈ append-sets T (lists-of-length X n)

using ‹t ∈ T› by blast
moreover have last x ∈ X

using ‹set x ⊆ X› ‹x 6= []› by auto
ultimately have t@(butlast x)@[last x] ∈ append-set (append-sets T (lists-of-length X n)) X

by auto
then show tx ∈ append-set (append-sets T (lists-of-length X n)) X

using ‹t@x = tx› by (simp add: ‹x 6= []›)
qed
show append-set (append-sets T (lists-of-length X n)) X

⊆ append-sets T (lists-of-length X (Suc n))
proof

fix tx assume tx ∈ append-set (append-sets T (lists-of-length X n)) X
then obtain tx ′ x where tx = tx ′ @ [x] tx ′ ∈ append-sets T (lists-of-length X n) x ∈ X

by blast
then obtain tx ′′ x ′ where tx ′′@x ′ = tx ′ tx ′′ ∈ T length x ′ = n set x ′ ⊆ X

by blast
then have tx ′′@x ′@[x] = tx

by (simp add: ‹tx = tx ′ @ [x]›)
moreover have tx ′′ ∈ T

by (meson ‹tx ′′ ∈ T›)
moreover have length (x ′@[x]) = Suc n

by (simp add: ‹length x ′ = n›)
moreover have set (x ′@[x]) ⊆ X

by (simp add: ‹set x ′ ⊆ X› ‹x ∈ X›)
ultimately show tx ∈ append-sets T (lists-of-length X (Suc n))

by blast
qed

qed

5.4 Basic properties of the test suite calculation functions
lemma C-step :

assumes n > 0
shows C M2 M1 Ω V m (Suc n) ⊆ (append-set (C M2 M1 Ω V m n) (inputs M2 )) − C M2 M1 Ω V m n

proof −
let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

obtain k where n-def [simp] : n = Suc k
using assms not0-implies-Suc by blast

have ?C (Suc n) = (append-set (?C n − ?RM n) (inputs M2 )) − ?TS n
using n-def C .simps(3 ) by blast

moreover have ?C n ⊆ ?TS n
using n-def by (metis C .simps(2 ) TS .elims UnCI assms neq0-conv subsetI )

ultimately show ?C (Suc n) ⊆ append-set (?C n) (inputs M2 ) − ?C n
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by blast
qed

lemma C-extension :
C M2 M1 Ω V m (Suc n) ⊆ append-sets V (lists-of-length (inputs M2 ) n)

proof (induction n)
case 0
then show ?case by auto

next
case (Suc k)

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

have 0 < Suc k by simp
have ?C (Suc (Suc k)) ⊆ (append-set (?C (Suc k)) (inputs M2 )) − ?C (Suc k)

using C-step[OF ‹0 < Suc k›] by blast

then have ?C (Suc (Suc k)) ⊆ append-set (?C (Suc k)) (inputs M2 )
by blast

moreover have append-set (?C (Suc k)) (inputs M2 )
⊆ append-set (append-sets V (lists-of-length (inputs M2 ) k)) (inputs M2 )

using Suc.IH by auto
ultimately have I-Step :

?C (Suc (Suc k)) ⊆ append-set (append-sets V (lists-of-length (inputs M2 ) k)) (inputs M2 )
by (meson order-trans)

show ?case
using append-lists-of-length-alt-def [symmetric, of V k inputs M2 ] I-Step
by presburger

qed

lemma TS-union :
shows TS M2 M1 Ω V m i = (

⋃
j ∈ (set [0 ..<Suc i]) . C M2 M1 Ω V m j)

proof (induction i)
case 0
then show ?case by auto

next
case (Suc i)

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

have ?TS (Suc i) = ?TS i ∪ ?C (Suc i)
by (metis (no-types) C .simps(2 ) TS .simps(1 ) TS .simps(2 ) TS .simps(3 ) not0-implies-Suc

sup-bot.right-neutral sup-commute)
then have ?TS (Suc i) = (

⋃
j ∈ (set [0 ..<Suc i]) . ?C j) ∪ ?C (Suc i)

using Suc.IH by simp
then show ?case

by auto
qed

lemma C-disj-le-gz :
assumes i ≤ j
and 0 < i

shows C M2 M1 Ω V m i ∩ C M2 M1 Ω V m (Suc j) = {}
proof −

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n
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have Suc 0 < Suc j
using assms(1−2 ) by auto

then obtain k where Suc j = Suc (Suc k)
using not0-implies-Suc by blast

then have ?C (Suc j) = (append-set (?C j − ?RM j) (inputs M2 )) − ?TS j
using C .simps(3 ) by blast

then have ?C (Suc j) ∩ ?TS j = {}
by blast

moreover have ?C i ⊆ ?TS j
using assms(1 ) TS-union[of M2 M1 Ω V m j] by fastforce

ultimately show ?thesis
by blast

qed

lemma C-disj-lt :
assumes i < j

shows C M2 M1 Ω V m i ∩ C M2 M1 Ω V m j = {}
proof (cases i)

case 0
then show ?thesis by auto

next
case (Suc k)
then show ?thesis

using C-disj-le-gz
by (metis assms gr-implies-not0 less-Suc-eq-le old.nat.exhaust zero-less-Suc)

qed

lemma C-disj :
assumes i 6= j

shows C M2 M1 Ω V m i ∩ C M2 M1 Ω V m j = {}
by (metis C-disj-lt Int-commute antisym-conv3 assms)

lemma RM-subset : RM M2 M1 Ω V m i ⊆ C M2 M1 Ω V m i
proof (cases i)

case 0
then show ?thesis by auto

next
case (Suc n)
then show ?thesis

using RM .simps(2 ) by blast
qed

lemma RM-disj :
assumes i ≤ j
and 0 < i

shows RM M2 M1 Ω V m i ∩ RM M2 M1 Ω V m (Suc j) = {}
proof −

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

have ?RM i ⊆ ?C i ?RM (Suc j) ⊆ ?C (Suc j)
using RM-subset by blast+

moreover have ?C i ∩ ?C (Suc j) = {}
using C-disj-le-gz[OF assms] by assumption

ultimately show ?thesis
by blast

qed
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lemma T-extension :
assumes n > 0
shows TS M2 M1 Ω V m (Suc n) − TS M2 M1 Ω V m n

⊆ (append-set (TS M2 M1 Ω V m n) (inputs M2 )) − TS M2 M1 Ω V m n
proof −

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

obtain k where n-def [simp] : n = Suc k
using assms not0-implies-Suc
by blast

have ?C (Suc n) = (append-set (?C n − ?RM n) (inputs M2 )) − ?TS n
using n-def using C .simps(3 ) by blast

then have ?C (Suc n) ⊆ append-set (?C n) (inputs M2 ) − ?TS n
by blast

moreover have ?C n ⊆ ?TS n using TS-union[of M2 M1 Ω V m n]
by fastforce

ultimately have ?C (Suc n) ⊆ append-set (?TS n) (inputs M2 ) − ?TS n
by blast

moreover have ?TS (Suc n) − ?TS n ⊆ ?C (Suc n)
using TS .simps(3 )[of M2 M1 Ω V m k] using n-def by blast

ultimately show ?thesis
by blast

qed

lemma append-set-prefix :
assumes xs ∈ append-set T X
shows butlast xs ∈ T
using assms by auto

lemma C-subset : C M2 M1 Ω V m i ⊆ TS M2 M1 Ω V m i
by (simp add: TS-union)

lemma TS-subset :
assumes i ≤ j
shows TS M2 M1 Ω V m i ⊆ TS M2 M1 Ω V m j

proof −
have TS M2 M1 Ω V m i = (

⋃
k ∈ (set [0 ..<Suc i]) . C M2 M1 Ω V m k)

TS M2 M1 Ω V m j = (
⋃

k ∈ (set [0 ..<Suc j]) . C M2 M1 Ω V m k)
using TS-union by assumption+

moreover have set [0 ..<Suc i] ⊆ set [0 ..<Suc j]
using assms by auto

ultimately show ?thesis
by blast

qed

lemma C-immediate-prefix-containment :
assumes vs@xs ∈ C M2 M1 Ω V m (Suc (Suc i))
and xs 6= []

shows vs@(butlast xs) ∈ C M2 M1 Ω V m (Suc i) − RM M2 M1 Ω V m (Suc i)
proof (rule ccontr)

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

assume vs @ butlast xs /∈ C M2 M1 Ω V m (Suc i) − RM M2 M1 Ω V m (Suc i)

have ?C (Suc (Suc i)) ⊆ append-set (?C (Suc i) − ?RM (Suc i)) (inputs M2 )
using C .simps(3 ) by blast

then have ?C (Suc (Suc i)) ⊆ append-set (?C (Suc i) − ?RM (Suc i)) UNIV
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by blast
moreover have vs @ xs /∈ append-set (?C (Suc i) − ?RM (Suc i)) UNIV
proof −

have ∀ as a. vs @ xs 6= as @ [a]
∨ as /∈ C M2 M1 Ω V m (Suc i) − RM M2 M1 Ω V m (Suc i)
∨ a /∈ UNIV

by (metis ‹vs @ butlast xs /∈ C M2 M1 Ω V m (Suc i) − RM M2 M1 Ω V m (Suc i)›
assms(2 ) butlast-append butlast-snoc)

then show ?thesis
by blast

qed
ultimately have vs @ xs /∈ ?C (Suc (Suc i))

by blast
then show False

using assms(1 ) by blast
qed

lemma TS-immediate-prefix-containment :
assumes vs@xs ∈ TS M2 M1 Ω V m i
and mcp (vs@xs) V vs
and 0 < i

shows vs@(butlast xs) ∈ TS M2 M1 Ω V m i
proof −

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

obtain j where j-def : j ≤ i ∧ vs@xs ∈ ?C j
using assms(1 ) TS-union[where i=i]

proof −
assume a1 :

∧
j. j ≤ i ∧ vs @ xs ∈ C M2 M1 Ω V m j =⇒ thesis

obtain nn :: nat set ⇒ (nat ⇒ ′a list set) ⇒ ′a list ⇒ nat where
f2 : ∀ x0 x1 x2 . (∃ v3 . v3 ∈ x0 ∧ x2 ∈ x1 v3 ) = (nn x0 x1 x2 ∈ x0 ∧ x2 ∈ x1 (nn x0 x1 x2 ))
by moura

have vs @ xs ∈ UNION (set [0 ..<Suc i]) (C M2 M1 Ω V m)
by (metis ‹

∧
Ω V T S M2 M1 . TS M2 M1 Ω V m i = (

⋃
j∈set [0 ..<Suc i]. C M2 M1 Ω V m j)›

‹vs @ xs ∈ TS M2 M1 Ω V m i›)
then have nn (set [0 ..<Suc i]) (C M2 M1 Ω V m) (vs @ xs) ∈ set [0 ..<Suc i]

∧ vs @ xs ∈ C M2 M1 Ω V m (nn (set [0 ..<Suc i]) (C M2 M1 Ω V m) (vs @ xs))
using f2 by blast

then show ?thesis
using a1 by (metis (no-types) atLeastLessThan-iff leD not-less-eq-eq set-upt)

qed

show ?thesis
proof (cases j)

case 0
then have ?C j = {}

by auto
moreover have vs@xs ∈ {}

using j-def 0 by auto
ultimately show ?thesis

by auto
next

case (Suc k)
then show ?thesis
proof (cases k)

case 0
then have ?C j = V

using Suc by auto
then have vs@xs ∈ V

using j-def by auto
then have mcp (vs@xs) V (vs@xs)

using assms(2 ) by auto
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then have vs@xs = vs
using assms(2 ) mcp-unique by auto

then have butlast xs = []
by auto

then show ?thesis
using ‹vs @ xs = vs› assms(1 ) by auto

next
case (Suc n)
assume j-assms : j = Suc k

k = Suc n
then have ?C (Suc (Suc n)) = append-set (?C (Suc n) − ?RM (Suc n)) (inputs M2 ) − ?TS (Suc n)

using C .simps(3 ) by blast
then have ?C (Suc (Suc n)) ⊆ append-set (?C (Suc n)) (inputs M2 )

by blast

have vs@xs ∈ ?C (Suc (Suc n))
using j-assms j-def by blast

have butlast (vs@xs) ∈ ?C (Suc n)
proof −

show ?thesis
by (meson ‹?C (Suc (Suc n)) ⊆ append-set (?C (Suc n)) (inputs M2 )›

‹vs @ xs ∈ ?C (Suc (Suc n))› append-set-prefix subsetCE)
qed

moreover have xs 6= []
proof −

have 1 ≤ k
using j-assms by auto

then have ?C j ∩ ?C 1 = {}
using C-disj-le-gz[of 1 k] j-assms(1 ) less-numeral-extra(1 ) by blast

then have ?C j ∩ V = {}
by auto

then have vs@xs /∈ V
using j-def by auto

then show ?thesis
using assms(2 ) by auto

qed

ultimately have vs@(butlast xs) ∈ ?C (Suc n)
by (simp add: butlast-append)

have Suc n < Suc j
using j-assms by auto

have ?C (Suc n) ⊆ ?TS j
using TS-union[of M2 M1 Ω V m j] ‹Suc n < Suc j›
by (metis UN-upper atLeast-upt lessThan-iff )

have vs @ butlast xs ∈ TS M2 M1 Ω V m j
using ‹vs@(butlast xs) ∈ ?C (Suc n)› ‹?C (Suc n) ⊆ ?TS j› j-def
by auto

then show ?thesis
using j-def TS-subset[of j i]
by blast

qed
qed

qed

lemma TS-prefix-containment :
assumes vs@xs ∈ TS M2 M1 Ω V m i
and mcp (vs@xs) V vs
and prefix xs ′ xs

shows vs@xs ′ ∈ TS M2 M1 Ω V m i
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— Proof sketch: Perform induction on length difference, as from each prefix it is possible to deduce the desired property
for the prefix one element smaller than it via above results
using assms proof (induction length xs − length xs ′ arbitrary: xs ′)

case 0
then have xs = xs ′

by (metis append-Nil2 append-eq-conv-conj gr-implies-not0 length-drop length-greater-0-conv prefixE)
then show ?case

using 0 by auto
next

case (Suc k)
have 0 < i

using assms(1 ) using Suc.hyps(2 ) append-eq-append-conv assms(2 ) by auto

show ?case
proof (cases xs ′)

case Nil
then show ?thesis

by (metis (no-types, opaque-lifting) ‹0 < i› TS .simps(2 ) TS-subset append-Nil2 assms(2 )
contra-subsetD leD mcp.elims(2 ) not-less-eq-eq)

next
case (Cons a list)
then show ?thesis
proof (cases xs = xs ′)

case True
then show ?thesis

using assms(1 ) by simp
next

case False
then obtain xs ′′ where xs = xs ′@xs ′′

using Suc.prems(3 ) prefixE by blast
then have xs ′′ 6= []

using False by auto
then have k = length xs − length (xs ′ @ [hd xs ′′])

using ‹xs = xs ′@xs ′′› Suc.hyps(2 ) by auto
moreover have prefix (xs ′ @ [hd xs ′′]) xs

using ‹xs = xs ′@xs ′′› ‹xs ′′ 6= []›
by (metis Cons-prefix-Cons list.exhaust-sel prefix-code(1 ) same-prefix-prefix)

ultimately have vs @ (xs ′ @ [hd xs ′′]) ∈ TS M2 M1 Ω V m i
using Suc.hyps(1 )[OF - Suc.prems(1 ,2 )] by simp

have mcp (vs @ xs ′ @ [hd xs ′′]) V vs
using ‹xs = xs ′@xs ′′› ‹xs ′′ 6= []› assms(2 )

proof −
obtain aas :: ′a list ⇒ ′a list set ⇒ ′a list ⇒ ′a list where
∀ x0 x1 x2 . (∃ v3 . (prefix v3 x2 ∧ v3 ∈ x1 ) ∧ ¬ length v3 ≤ length x0 )

= ((prefix (aas x0 x1 x2 ) x2 ∧ aas x0 x1 x2 ∈ x1 )
∧ ¬ length (aas x0 x1 x2 ) ≤ length x0 )

by moura
then have f1 : ∀ as A asa. (¬ mcp as A asa

∨ prefix asa as ∧ asa ∈ A ∧ (∀ asb. (¬ prefix asb as ∨ asb /∈ A)
∨ length asb ≤ length asa))

∧ (mcp as A asa
∨ ¬ prefix asa as
∨ asa /∈ A
∨ (prefix (aas asa A as) as ∧ aas asa A as ∈ A)
∧ ¬ length (aas asa A as) ≤ length asa)

by auto
obtain aasa :: ′a list ⇒ ′a list ⇒ ′a list where

f2 : ∀ x0 x1 . (∃ v2 . x0 = x1 @ v2 ) = (x0 = x1 @ aasa x0 x1 )
by moura

then have f3 : ([] @ [hd xs ′′]) @ aasa (xs ′ @ xs ′′) (xs ′ @ [hd xs ′′])
= ([] @ [hd xs ′′]) @ aasa (([] @ [hd xs ′′])

@ aasa (xs ′ @ xs ′′) (xs ′ @ [hd xs ′′])) ([] @ [hd xs ′′])
by (meson prefixE prefixI )

have xs ′ @ xs ′′ = (xs ′ @ [hd xs ′′]) @ aasa (xs ′ @ xs ′′) (xs ′ @ [hd xs ′′])
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using f2 by (metis (no-types) ‹prefix (xs ′ @ [hd xs ′′]) xs› ‹xs = xs ′ @ xs ′′› prefixE)
then have (vs @ (a # list) @ [hd xs ′′]) @ aasa (([] @ [hd xs ′′])

@ aasa (xs ′ @ xs ′′) (xs ′ @ [hd xs ′′])) ([] @ [hd xs ′′])
= vs @ xs

using f3 by (simp add: ‹xs = xs ′ @ xs ′′› local.Cons)
then have ¬ prefix (aas vs V (vs @ xs ′ @ [hd xs ′′])) (vs @ xs ′ @ [hd xs ′′])

∨ aas vs V (vs @ xs ′ @ [hd xs ′′]) /∈ V
∨ length (aas vs V (vs @ xs ′ @ [hd xs ′′])) ≤ length vs

using f1 by (metis (no-types) ‹mcp (vs @ xs) V vs› local.Cons prefix-append)
then show ?thesis

using f1 by (meson ‹mcp (vs @ xs) V vs› prefixI )
qed

then have vs @ butlast (xs ′ @ [hd xs ′′]) ∈ TS M2 M1 Ω V m i
using TS-immediate-prefix-containment

[OF ‹vs @ (xs ′ @ [hd xs ′′]) ∈ TS M2 M1 Ω V m i› - ‹0 < i›]
by simp

moreover have xs ′ = butlast (xs ′ @ [hd xs ′′])
using ‹xs ′′ 6= []› by simp

ultimately show ?thesis
by simp

qed
qed

qed

lemma C-index :
assumes vs @ xs ∈ C M2 M1 Ω V m i
and mcp (vs@xs) V vs

shows Suc (length xs) = i
using assms proof (induction xs arbitrary: i rule: rev-induct)

case Nil
then have vs @ [] ∈ C M2 M1 Ω V m 1

by auto
then have vs @ [] ∈ C M2 M1 Ω V m (Suc (length []))

by simp

show ?case
proof (rule ccontr)

assume Suc (length []) 6= i
moreover have vs @ [] ∈ C M2 M1 Ω V m i ∩ C M2 M1 Ω V m (Suc (length []))

using Nil.prems(1 ) ‹vs @ [] ∈ C M2 M1 Ω V m (Suc (length []))› by auto
ultimately show False

using C-disj by blast
qed

next
case (snoc x xs ′)

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

have vs @ xs ′ @ [x] /∈ V
using snoc.prems(2 ) by auto

then have vs @ xs ′ @ [x] /∈ ?C 1
by auto

moreover have vs @ xs ′ @ [x] /∈ ?C 0
by auto
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ultimately have 1 < i
using snoc.prems(1 ) by (metis less-one linorder-neqE-nat)

then have vs @ butlast (xs ′ @ [x]) ∈ C M2 M1 Ω V m (i−1 )
proof −

have Suc 0 < i
using ‹1 < i› by auto

then have f1 : Suc (i − Suc (Suc 0 )) = i − Suc 0
using Suc-diff-Suc by presburger

have 0 < i
by (metis (no-types) One-nat-def Suc-lessD ‹1 < i›)

then show ?thesis
using f1 by (metis C-immediate-prefix-containment DiffD1 One-nat-def Suc-pred ′ snoc.prems(1 )

snoc-eq-iff-butlast)
qed

moreover have mcp (vs @ butlast (xs ′ @ [x])) V vs
by (meson mcp-prefix-of-suffix prefixeq-butlast snoc.prems(2 ))

ultimately have Suc (length xs ′) = i−1
using snoc.IH by simp

then show ?case
by auto

qed

lemma TS-index :
assumes vs @ xs ∈ TS M2 M1 Ω V m i
and mcp (vs@xs) V vs

shows Suc (length xs) ≤ i vs@xs ∈ C M2 M1 Ω V m (Suc (length xs))
proof −

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

obtain j where j < Suc i vs@xs ∈ ?C j
using TS-union[of M2 M1 Ω V m i]
by (metis (full-types) UN-iff assms(1 ) atLeastLessThan-iff set-upt)

then have Suc (length xs) = j
using C-index assms(2 ) by blast

then show Suc (length xs) ≤ i
using ‹j < Suc i› by auto

show vs@xs ∈ C M2 M1 Ω V m (Suc (length xs))
using ‹vs@xs ∈ ?C j› ‹Suc (length xs) = j› by auto

qed

lemma C-extension-options :
assumes vs @ xs ∈ C M2 M1 Ω V m i
and mcp (vs @ xs @ [x]) V vs
and x ∈ inputs M2
and 0 < i

shows vs@xs@[x] ∈ C M2 M1 Ω V m (Suc i) ∨ vs@xs ∈ RM M2 M1 Ω V m i
proof (cases vs@xs ∈ RM M2 M1 Ω V m i)

case True
then show ?thesis by auto

next
case False

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

obtain k where i = Suc k
using assms(4 ) gr0-implies-Suc by blast

then have ?C (Suc i) = append-set (?C i − ?RM i) (inputs M2 ) − ?TS i
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using C .simps(3 ) by blast

moreover have vs@xs ∈ ?C i − ?RM i
using assms(1 ) False by blast

ultimately have vs@xs@[x] ∈ append-set (?C i − ?RM i) (inputs M2 )
by (simp add: assms(3 ))

moreover have vs@xs@[x] /∈ ?TS i
proof (rule ccontr)

assume ¬ vs @ xs @ [x] /∈ ?TS i
then obtain j where j < Suc i vs@xs@[x] ∈ ?C j

using TS-union[of M2 M1 Ω V m i] by fastforce
then have Suc (length (xs@[x])) = j

using C-index assms(2 ) by blast

then have Suc (length (xs@[x])) < Suc i
using ‹j < Suc i› by auto

moreover have Suc (length xs) = i
using C-index
by (metis assms(1 ) assms(2 ) mcp-prefix-of-suffix prefixI )

ultimately have Suc (length (xs@[x])) < Suc (Suc (length xs))
by auto

then show False
by auto

qed

ultimately show ?thesis
by (simp add: ‹?C (Suc i) = append-set (?C i − ?RM i) (inputs M2 ) − ?TS i›)

qed

lemma TS-non-containment-causes :
assumes vs@xs /∈ TS M2 M1 Ω V m i
and mcp (vs@xs) V vs
and set xs ⊆ inputs M2
and 0 < i

shows (∃ xr j . xr 6= xs ∧ prefix xr xs ∧ j ≤ i ∧ vs@xr ∈ RM M2 M1 Ω V m j)
∨ (∃ xc . xc 6= xs ∧ prefix xc xs ∧ vs@xc ∈ (C M2 M1 Ω V m i) − (RM M2 M1 Ω V m i))

(is ?PrefPreviouslyRemoved ∨ ?PrefJustContained)
¬ ((∃ xr j . xr 6= xs ∧ prefix xr xs ∧ j ≤ i ∧ vs@xr ∈ RM M2 M1 Ω V m j)
∧ (∃ xc . xc 6= xs ∧ prefix xc xs ∧ vs@xc ∈ (C M2 M1 Ω V m i) − (RM M2 M1 Ω V m i)))

— If a sequence is not contained in TS up to (incl.) iteration i, then either a prefix of it has been removed or a prefix
of it is contained in the C set for iteration i
proof −

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

show ?PrefPreviouslyRemoved ∨ ?PrefJustContained
proof (rule ccontr)

assume ¬ (?PrefPreviouslyRemoved ∨ ?PrefJustContained)
then have ¬ ?PrefPreviouslyRemoved ¬ ?PrefJustContained by auto

have ¬ (∃ xr j. prefix xr xs ∧ j ≤ i ∧ vs @ xr ∈ ?RM j)
proof

assume ∃ xr j. prefix xr xs ∧ j ≤ i ∧ vs @ xr ∈ RM M2 M1 Ω V m j
then obtain xr j where prefix xr xs j ≤ i vs @ xr ∈ ?RM j

by blast
then show False
proof (cases xr = xs)
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case True
then have vs @ xs ∈ ?RM j using ‹vs @ xr ∈ ?RM j› by auto
then have vs @ xs ∈ ?TS j

using C-subset RM-subset ‹vs @ xr ∈ ?RM j› by blast
then have vs @ xs ∈ ?TS i

using TS-subset ‹j ≤ i› by blast
then show ?thesis using assms(1 ) by blast

next
case False
then show ?thesis

using ‹¬ ?PrefPreviouslyRemoved› ‹prefix xr xs› ‹j ≤ i› ‹vs @ xr ∈ ?RM j›
by blast

qed
qed

have vs ∈ V using assms(2 ) by auto
then have vs ∈ ?C 1 by auto

have
∧

k . (1 ≤ Suc k ∧ Suc k ≤ i) −→ vs @ (take k xs) ∈ ?C (Suc k) − ?RM (Suc k)
proof

fix k assume 1 ≤ Suc k ∧ Suc k ≤ i
then show vs @ (take k xs) ∈ ?C (Suc k) − ?RM (Suc k)
proof (induction k)

case 0
show ?case using ‹vs ∈ ?C 1 ›

by (metis 0 .prems DiffI One-nat-def
‹¬ (∃ xr j. prefix xr xs ∧ j ≤ i ∧ vs @ xr ∈ RM M2 M1 Ω V m j)›
append-Nil2 take-0 take-is-prefix)

next
case (Suc k)

have 1 ≤ Suc k ∧ Suc k ≤ i
using Suc.prems by auto

then have vs @ take k xs ∈ ?C (Suc k)
using Suc.IH by simp

moreover have vs @ take k xs /∈ ?RM (Suc k)
using ‹1 ≤ Suc k ∧ Suc k ≤ i› ‹¬ ?PrefPreviouslyRemoved› take-is-prefix Suc.IH
by blast

ultimately have vs @ take k xs ∈ (?C (Suc k)) − (?RM (Suc k))
by blast

have k < length xs
proof (rule ccontr)

assume ¬ k < length xs
then have vs @ xs ∈ ?C (Suc k) using ‹vs @ take k xs ∈ ?C (Suc k)›

by simp
have vs @ xs ∈ ?TS i

by (metis C-subset TS-subset ‹1 ≤ Suc k ∧ Suc k ≤ i› ‹vs @ xs ∈ ?C (Suc k)›
contra-subsetD)

then show False
using assms(1 ) by simp

qed
moreover have set xs ⊆ inputs M2

using assms(3 ) by auto
ultimately have last (take (Suc k) xs) ∈ inputs M2

by (simp add: subset-eq take-Suc-conv-app-nth)

have vs @ take (Suc k) xs ∈ append-set ((?C (Suc k)) − (?RM (Suc k))) (inputs M2 )
proof −

have f1 : xs ! k ∈ inputs M2
by (meson ‹k < length xs› ‹set xs ⊆ inputs M2 › nth-mem subset-iff )

have vs @ take (Suc k) xs = (vs @ take k xs) @ [xs ! k]
by (simp add: ‹k < length xs› take-Suc-conv-app-nth)
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then show ?thesis
using f1 ‹vs @ take k xs ∈ C M2 M1 Ω V m (Suc k) − RM M2 M1 Ω V m (Suc k)› by blast

qed

moreover have vs @ take (Suc k) xs /∈ ?TS (Suc k)
proof

assume vs @ take (Suc k) xs ∈ ?TS (Suc k)
then have Suc (length (take (Suc k) xs)) ≤ Suc k

using TS-index(1 ) assms(2 ) mcp-prefix-of-suffix take-is-prefix by blast
moreover have Suc (length (take k xs)) = Suc k using C-index ‹vs @ take k xs ∈ ?C (Suc k)›

by (metis assms(2 ) mcp-prefix-of-suffix take-is-prefix)
ultimately show False using ‹k < length xs›

by simp
qed

show vs @ take (Suc k) xs ∈ ?C (Suc (Suc k)) − ?RM (Suc (Suc k))
using C .simps(3 )[of M2 M1 Ω V m k]
by (metis (no-types, lifting) DiffI Suc.prems

‹¬ (∃ xr j. prefix xr xs ∧ j ≤ i ∧ vs @ xr ∈ RM M2 M1 Ω V m j)›
‹vs @ take (Suc k) xs /∈ TS M2 M1 Ω V m (Suc k)› calculation take-is-prefix)

qed
qed

then have vs @ take (i−1 ) xs ∈ C M2 M1 Ω V m i − RM M2 M1 Ω V m i
using assms(4 )
by (metis One-nat-def Suc-diff-1 Suc-leI le-less)

then have ?PrefJustContained
by (metis C-subset DiffD1 assms(1 ) subsetCE take-is-prefix)

then show False
using ‹¬ ?PrefJustContained› by simp

qed

show ¬ (?PrefPreviouslyRemoved ∧ ?PrefJustContained)
proof

assume ?PrefPreviouslyRemoved ∧ ?PrefJustContained
then have ?PrefPreviouslyRemoved

?PrefJustContained
by auto

obtain xr j where prefix xr xs j ≤ i vs@xr ∈ ?RM j
using ‹?PrefPreviouslyRemoved› by blast

obtain xc where prefix xc xs vs@xc ∈ ?C i − ?RM i
using ‹?PrefJustContained› by blast

then have Suc (length xc) = i
using C-index
by (metis Diff-iff assms(2 ) mcp-prefix-of-suffix)

moreover have length xc ≤ length xs
using ‹prefix xc xs› by (simp add: prefix-length-le)

moreover have xc 6= xs
proof

assume xc = xs
then have vs@xs ∈ ?C i

using ‹vs@xc ∈ ?C i − ?RM i› by auto
then have vs@xs ∈ ?TS i

using C-subset by blast
then show False

using assms(1 ) by blast
qed
ultimately have i ≤ length xs

using ‹prefix xc xs› not-less-eq-eq prefix-length-prefix prefix-order .antisym
by blast
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have
∧

n . (n < i) =⇒ vs@(take n xs) ∈ ?C (Suc n)
proof −

fix n assume n < i
show vs @ take n xs ∈ C M2 M1 Ω V m (Suc n)
proof −

have n ≤ length xc
using ‹n < i› ‹Suc (length xc) = i› less-Suc-eq-le
by blast

then have prefix (vs @ (take n xs)) (vs @ xc)
proof −

have n ≤ length xs
using ‹length xc ≤ length xs› ‹n ≤ length xc› order-trans
by blast

then have prefix (take n xs) xc
by (metis (no-types) ‹n ≤ length xc› ‹prefix xc xs› length-take min.absorb2

prefix-length-prefix take-is-prefix)
then show ?thesis

by simp
qed
then have vs @ take n xs ∈ ?TS i

by (meson C-subset DiffD1 TS-prefix-containment ‹prefix xc xs›
‹vs @ xc ∈ C M2 M1 Ω V m i − RM M2 M1 Ω V m i› assms(2 ) contra-subsetD
mcp-prefix-of-suffix same-prefix-prefix)

then obtain jn where jn < Suc i vs@(take n xs) ∈ ?C jn
using TS-union[of M2 M1 Ω V m i]
by (metis UN-iff atLeast-upt lessThan-iff )

moreover have mcp (vs @ take n xs) V vs
by (meson assms(2 ) mcp-prefix-of-suffix take-is-prefix)

ultimately have jn = Suc (length (take n xs))
using C-index[of vs take n xs M2 M1 Ω V m jn] by auto

then have jn = Suc n
using ‹length xc ≤ length xs› ‹n ≤ length xc› by auto

then show vs@(take n xs) ∈ ?C (Suc n)
using ‹vs@(take n xs) ∈ ?C jn› by auto

qed
qed

have
∧

n . (n < i) =⇒ vs@(take n xs) /∈ ?RM (Suc n)
proof −

fix n assume n < i
show vs @ take n xs /∈ RM M2 M1 Ω V m (Suc n)
proof (cases n = length xc)

case True
then show ?thesis

using ‹vs@xc ∈ ?C i − ?RM i›
by (metis DiffD2 ‹Suc (length xc) = i› ‹prefix xc xs› append-eq-conv-conj prefixE)

next
case False
then have n < length xc

using ‹n < i› ‹Suc (length xc) = i› by linarith

show ?thesis
proof (cases Suc n < length xc)

case True
then have Suc n < i

using ‹Suc (length xc) = i› ‹n < length xc› by blast
then have vs @ (take (Suc n) xs) ∈ ?C (Suc (Suc n))

using ‹
∧

n . (n < i) =⇒ vs@(take n xs) ∈ ?C (Suc n)› by blast
then have vs @ butlast (take (Suc n) xs) ∈ ?C (Suc n) − ?RM (Suc n)

using True C-immediate-prefix-containment[of vs take (Suc n) xs M2 M1 Ω V m n]
by (metis Suc-neq-Zero ‹prefix xc xs› ‹xc 6= xs› prefix-Nil take-eq-Nil)

then show ?thesis
by (metis DiffD2 Suc-lessD True ‹length xc ≤ length xs› butlast-snoc less-le-trans
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take-Suc-conv-app-nth)
next

case False
then have Suc n = length xc

using Suc-lessI ‹n < length xc› by blast
then have vs @ (take (Suc n) xs) ∈ ?C (Suc (Suc n))

using ‹Suc (length xc) = i› ‹
∧

n. n < i =⇒ vs @ take n xs ∈ C M2 M1 Ω V m (Suc n)›
by auto

then have vs @ butlast (take (Suc n) xs) ∈ ?C (Suc n) − ?RM (Suc n)
using False C-immediate-prefix-containment[of vs take (Suc n) xs M2 M1 Ω V m n]
by (metis Suc-neq-Zero ‹prefix xc xs› ‹xc 6= xs› prefix-Nil take-eq-Nil)

then show ?thesis
by (metis Diff-iff ‹Suc n = length xc› ‹length xc ≤ length xs› butlast-take diff-Suc-1 )

qed
qed

qed

have xr = take j xs
proof −

have vs@xr ∈ ?C j
using ‹vs@xr ∈ ?RM j› RM-subset by blast

then show ?thesis
using C-index
by (metis Suc-le-lessD ‹

∧
n. n < i =⇒ vs @ take n xs /∈ RM M2 M1 Ω V m (Suc n)› ‹j ≤ i›

‹prefix xr xs› ‹vs @ xr ∈ RM M2 M1 Ω V m j› append-eq-conv-conj assms(2 )
mcp-prefix-of-suffix prefix-def )

qed

have vs@xr /∈ ?RM j
by (metis (no-types) C-index RM-subset ‹i ≤ length xs› ‹j ≤ i› ‹prefix xr xs›

‹xr = take j xs› assms(2 ) contra-subsetD dual-order .trans length-take lessI less-irrefl
mcp-prefix-of-suffix min.absorb2 )

then show False
using ‹vs@xr ∈ ?RM j› by simp

qed
qed

lemma TS-non-containment-causes-rev :
assumes mcp (vs@xs) V vs
and (∃ xr j . xr 6= xs ∧ prefix xr xs ∧ j ≤ i ∧ vs@xr ∈ RM M2 M1 Ω V m j)
∨ (∃ xc . xc 6= xs ∧ prefix xc xs ∧ vs@xc ∈ (C M2 M1 Ω V m i) − (RM M2 M1 Ω V m i))
(is ?PrefPreviouslyRemoved ∨ ?PrefJustContained)

shows vs@xs /∈ TS M2 M1 Ω V m i
proof

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

assume vs @ xs ∈ TS M2 M1 Ω V m i

have ?PrefPreviouslyRemoved =⇒ False
proof −

assume ?PrefPreviouslyRemoved
then obtain xr j where xr 6= xs prefix xr xs j ≤ i vs@xr ∈ ?RM j

by blast
then have vs@xr /∈ ?C j − ?RM j

by blast

have vs@(take (Suc (length xr)) xs) /∈ ?C (Suc j)
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proof −
have vs@(take (length xr) xs) /∈ ?C j − ?RM j

by (metis ‹prefix xr xs› ‹vs @ xr /∈ C M2 M1 Ω V m j − RM M2 M1 Ω V m j›
append-eq-conv-conj prefix-def )

show ?thesis
proof (cases j)

case 0
then show ?thesis

using RM .simps(1 ) ‹vs @ xr ∈ RM M2 M1 Ω V m j› by blast
next

case (Suc j ′)
then have ?C (Suc j) ⊆ append-set (?C j − ?RM j) (inputs M2 )

using C .simps(3 ) Suc by blast
obtain x where vs@(take (Suc (length xr)) xs) = vs@(take (length xr) xs) @ [x]

by (metis ‹prefix xr xs› ‹xr 6= xs› append-eq-conv-conj not-le prefix-def
take-Suc-conv-app-nth take-all)

have vs@(take (length xr) xs) @ [x] /∈ append-set (?C j − ?RM j) (inputs M2 )
using ‹vs@(take (length xr) xs) /∈ ?C j − ?RM j› by simp

then have vs@(take (length xr) xs) @ [x] /∈ ?C (Suc j)
using ‹?C (Suc j) ⊆ append-set (?C j − ?RM j) (inputs M2 )› by blast

then show ?thesis
using ‹vs@(take (Suc (length xr)) xs) = vs@(take (length xr) xs) @ [x]› by auto

qed
qed

have prefix (take (Suc (length xr)) xs) xs
by (simp add: take-is-prefix)

then have vs@(take (Suc (length xr)) xs) ∈ ?TS i
using TS-prefix-containment[OF ‹vs @ xs ∈ TS M2 M1 Ω V m i› assms(1 )] by simp

then obtain j ′ where j ′ < Suc i ∧ vs@(take (Suc (length xr)) xs) ∈ ?C j ′

using TS-union[of M2 M1 Ω V m i] by fastforce
then have Suc (Suc (length xr)) = j ′

using C-index[of vs take (Suc (length xr)) xs]
proof −

have ¬ length xs ≤ length xr
by (metis (no-types) ‹prefix xr xs› ‹xr 6= xs› append-Nil2 append-eq-conv-conj leD

nat-less-le prefix-def prefix-length-le)
then show ?thesis

by (metis (no-types) ‹
∧

i Ω V T S M2 M1 . [[vs @ take (Suc (length xr)) xs ∈ C M2 M1 Ω V m i;
mcp (vs @ take (Suc (length xr)) xs) V vs]]

=⇒ Suc (length (take (Suc (length xr)) xs)) = i›
‹j ′ < Suc i ∧ vs @ take (Suc (length xr)) xs ∈ C M2 M1 Ω V m j ′›
append-eq-conv-conj assms(1 ) length-take mcp-prefix-of-suffix min.absorb2
not-less-eq-eq prefix-def )

qed
moreover have Suc (length xr) = j

using ‹vs@xr ∈ ?RM j› RM-subset C-index
by (metis ‹prefix xr xs› assms(1 ) mcp-prefix-of-suffix subsetCE)

ultimately have j ′ = Suc j
by auto

then have vs@(take (Suc (length xr)) xs) ∈ ?C (Suc j)
using ‹j ′ < Suc i ∧ vs@(take (Suc (length xr)) xs) ∈ ?C j ′› by auto

then show False
using ‹vs@(take (Suc (length xr)) xs) /∈ ?C (Suc j)› by blast

qed

moreover have ?PrefJustContained =⇒ False
proof −

assume ?PrefJustContained
then obtain xc where xc 6= xs

prefix xc xs
vs @ xc ∈ ?C i − ?RM i

by blast
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— only possible if xc = xs
then show False

by (metis C-index DiffD1 Suc-less-eq TS-index(1 ) ‹vs @ xs ∈ ?TS i› assms(1 ) leD le-neq-trans
mcp-prefix-of-suffix prefix-length-le prefix-length-prefix
prefix-order .dual-order .antisym prefix-order .order-refl)

qed

ultimately show False
using assms(2 ) by auto

qed

lemma TS-finite :
assumes finite V
and finite (inputs M2 )

shows finite (TS M2 M1 Ω V m n)
using assms proof (induction n)

case 0
then show ?case by auto

next
case (Suc n)

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

show ?case
proof (cases n=0 )

case True
then have ?TS (Suc n) = V

by auto
then show ?thesis

using ‹finite V › by auto
next

case False
then have ?TS (Suc n) = ?TS n ∪ ?C (Suc n)

by (metis TS .simps(3 ) gr0-implies-Suc neq0-conv)
moreover have finite (?TS n)

using Suc.IH [OF Suc.prems] by assumption
moreover have finite (?C (Suc n))
proof −

have ?C (Suc n) ⊆ append-set (?C n) (inputs M2 )
using C-step False by blast

moreover have ?C n ⊆ ?TS n
by (simp add: C-subset)

ultimately have ?C (Suc n) ⊆ append-set (?TS n) (inputs M2 )
by blast

moreover have finite (append-set (?TS n) (inputs M2 ))
by (simp add: ‹finite (TS M2 M1 Ω V m n)› assms(2 ) finite-image-set2 )

ultimately show ?thesis
using infinite-subset by auto

qed
ultimately show ?thesis

by auto
qed

qed

lemma C-finite :
assumes finite V
and finite (inputs M2 )

shows finite (C M2 M1 Ω V m n)
proof −

have C M2 M1 Ω V m n ⊆ TS M2 M1 Ω V m n
by (simp add: C-subset)
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then show ?thesis using TS-finite[OF assms]
using Finite-Set.finite-subset by blast

qed

5.5 Final iteration
The result of calculating TS for some iteration is final if the result does not change for the next iteration.
Such a final iteration exists and is at most equal to the number of states of FSM M2 multiplied by an upper
bound on the number of states of FSM M1.
Furthermore, for any sequence not contained in the final iteration of the test suite, a prefix of this sequence
must be contained in the latter.
abbreviation final-iteration M2 M1 Ω V m i ≡ TS M2 M1 Ω V m i = TS M2 M1 Ω V m (Suc i)

lemma final-iteration-ex :
assumes OFSM M1
and OFSM M2
and asc-fault-domain M2 M1 m
and test-tools M2 M1 FAIL PM V Ω
shows final-iteration M2 M1 Ω V m (Suc ( |M2 | ∗ m ))

proof −
let ?i = Suc ( |M2 | ∗ m )

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

have is-det-state-cover M2 V
using assms by auto

moreover have finite (nodes M2 )
using assms(2 ) by auto

moreover have d-reachable M2 (initial M2 ) ⊆ nodes M2
by auto

ultimately have finite V
using det-state-cover-card[of M2 V ]
by (metis finite-if-finite-subsets-card-bdd infinite-subset is-det-state-cover .elims(2 )

surj-card-le)

have ∀ seq ∈ ?C ?i . seq ∈ ?RM ?i
proof

fix seq assume seq ∈ ?C ?i
show seq ∈ ?RM ?i
proof −

have [] ∈ V
using ‹is-det-state-cover M2 V › det-state-cover-empty
by blast

then obtain vs where mcp seq V vs
using mcp-ex[OF - ‹finite V ›]
by blast

then obtain xs where seq = vs@xs
using prefixE by auto

then have Suc (length xs) = ?i using C-index
using ‹mcp seq V vs› ‹seq ∈ C M2 M1 Ω V m (Suc ( |M2 | ∗ m))› by blast

then have length xs = ( |M2 | ∗ m) by auto

have RM-def : ?RM ?i = {xs ′ ∈ C M2 M1 Ω V m ?i .
(¬ (Lin M1 {xs ′} ⊆ Lin M2 {xs ′}))
∨ (∀ io ∈ Lin M1 {xs ′} .

(∃ V ′′ ∈ N io M1 V .
(∃ S1 .
(∃ vs xs .
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io = (vs@xs)
∧ mcp (vs@xs) V ′′ vs
∧ S1 ⊆ nodes M2
∧ (∀ s1 ∈ S1 . ∀ s2 ∈ S1 .

s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs xs V ′′ .
∀ io2 ∈ RP M2 s2 vs xs V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
∧ m < LB M2 M1 vs xs (?TS (( |M2 | ∗ m)) ∪ V ) S1 Ω V ′′ ))))}

using RM .simps(2 )[of M2 M1 Ω V m ((card (nodes M2 ))∗m)] by assumption

have (¬ (Lin M1 {seq} ⊆ Lin M2 {seq}))
∨ (∀ io ∈ Lin M1 {seq} .

(∃ V ′′ ∈ N io M1 V .
(∃ S1 .
(∃ vs xs .

io = (vs@xs)
∧ mcp (vs@xs) V ′′ vs
∧ S1 ⊆ nodes M2
∧ (∀ s1 ∈ S1 . ∀ s2 ∈ S1 .

s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs xs V ′′ .
∀ io2 ∈ RP M2 s2 vs xs V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
∧ m < LB M2 M1 vs xs (?TS (( |M2 | ∗ m)) ∪ V ) S1 Ω V ′′ ))))

proof (cases (¬ (Lin M1 {seq} ⊆ Lin M2 {seq})))
case True
then show ?thesis

using RM-def by blast
next

case False
have (∀ io ∈ Lin M1 {seq} .

(∃ V ′′ ∈ N io M1 V .
(∃ S1 .
(∃ vs xs .

io = (vs@xs)
∧ mcp (vs@xs) V ′′ vs
∧ S1 ⊆ nodes M2
∧ (∀ s1 ∈ S1 . ∀ s2 ∈ S1 .

s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs xs V ′′ .
∀ io2 ∈ RP M2 s2 vs xs V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
∧ m < LB M2 M1 vs xs (?TS (( |M2 | ∗ m)) ∪ V ) S1 Ω V ′′ ))))

proof
fix io assume io∈Lin M1 {seq}
then have io ∈ L M1

by auto
moreover have is-det-state-cover M2 V

using assms(4 ) by auto
ultimately obtain V ′′ where V ′′ ∈ N io M1 V

using N-nonempty[OF - assms(1−3 ), of V io] by blast

have io ∈ L M2
using ‹io∈Lin M1 {seq}› False by auto

have V ′′ ∈ Perm V M1
using ‹V ′′ ∈ N io M1 V › by auto

have [] ∈ V ′′

using ‹V ′′ ∈ Perm V M1 › assms(4 ) perm-empty by blast
have finite V ′′

using ‹V ′′ ∈ Perm V M1 › assms(2 ) assms(4 ) perm-elem-finite by blast
obtain vs where mcp io V ′′ vs
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using mcp-ex[OF ‹[] ∈ V ′′› ‹finite V ′′›] by blast

obtain xs where io = (vs@xs)
using ‹mcp io V ′′ vs› prefixE by auto

then have vs@xs ∈ L M1 vs@xs ∈ L M2
using ‹io ∈ L M1 › ‹io ∈ L M2 › by auto

have io ∈ L M1 map fst io ∈ {seq}
using ‹io∈Lin M1 {seq}› by auto

then have map fst io = seq
by auto

then have map fst io ∈ ?C ?i
using ‹seq ∈ ?C ?i› by blast

then have (map fst vs) @ (map fst xs) ∈ ?C ?i
using ‹io = (vs@xs)› by (metis map-append)

have mcp ′ io V ′′ = vs
using ‹mcp io V ′′ vs› mcp ′-intro by blast

have mcp ′ (map fst io) V = (map fst vs)
using ‹V ′′ ∈ N io M1 V › ‹mcp ′ io V ′′ = vs› by auto

then have mcp (map fst io) V (map fst vs)
by (metis ‹

∧
thesis. (

∧
vs. mcp seq V vs =⇒ thesis) =⇒ thesis›

‹map fst io = seq› mcp ′-intro)

then have mcp (map fst vs @ map fst xs) V (map fst vs)
by (simp add: ‹io = vs @ xs›)

then have Suc (length xs) = ?i using C-index[OF ‹(map fst vs) @ (map fst xs) ∈ ?C ?i›]
by simp

then have ( |M2 | ∗ m) ≤ length xs
by simp

have |M1 | ≤ m
using assms(3 ) by auto

have vs @ xs ∈ L M2 ∩ L M1
using ‹vs @ xs ∈ L M1 › ‹vs @ xs ∈ L M2 › by blast

obtain q where q ∈ nodes M2 m < card (RP M2 q vs xs V ′′)
using RP-state-repetition-distribution-productF

[OF assms(2 ,1 ) ‹( |M2 | ∗ m) ≤ length xs› ‹|M1 | ≤ m› ‹vs @ xs ∈ L M2 ∩ L M1 ›
‹is-det-state-cover M2 V › ‹V ′′ ∈ Perm V M1 ›]

by blast

have m < LB M2 M1 vs xs (?TS (( |M2 | ∗ m)) ∪ V ) {q} Ω V ′′

proof −
have m < (sum (λ s . card (RP M2 s vs xs V ′′)) {q})

using ‹m < card (RP M2 q vs xs V ′′)›
by auto

moreover have (sum (λ s . card (RP M2 s vs xs V ′′)) {q})
≤ LB M2 M1 vs xs (?TS (( |M2 | ∗ m)) ∪ V ) {q} Ω V ′′

by auto
ultimately show ?thesis

by linarith
qed

show ∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
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S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′. ∀ io2∈RP M2 s2 vs xs V ′′.

B M1 io1 Ω 6= B M1 io2 Ω)) ∧
m < LB M2 M1 vs xs (?TS (( |M2 | ∗ m)) ∪ V ) S1 Ω V ′′

proof −

have io = vs@xs
using ‹io = vs@xs› by assumption

moreover have mcp (vs@xs) V ′′ vs
using ‹io = vs @ xs› ‹mcp io V ′′ vs› by presburger

moreover have {q} ⊆ nodes M2
using ‹q ∈ nodes M2 › by auto

moreover have (∀ s1 ∈ {q} . ∀ s2 ∈ {q} .
s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs xs V ′′ .
∀ io2 ∈ RP M2 s2 vs xs V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
proof −

have ∀ s1 ∈ {q} . ∀ s2 ∈ {q} . s1 = s2
by blast

then show ?thesis
by blast

qed

ultimately have RM-body : io = (vs@xs)
∧ mcp (vs@xs) V ′′ vs
∧ {q} ⊆ nodes M2
∧ (∀ s1 ∈ {q} . ∀ s2 ∈ {q} .

s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs xs V ′′ .
∀ io2 ∈ RP M2 s2 vs xs V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
∧ m < LB M2 M1 vs xs (?TS (( |M2 | ∗ m)) ∪ V ) {q} Ω V ′′

using ‹m < LB M2 M1 vs xs (?TS (( |M2 | ∗ m)) ∪ V ) {q} Ω V ′′›
by linarith

show ?thesis
using ‹V ′′∈N io M1 V › RM-body
by metis

qed
qed

then show ?thesis
by metis

qed

then have seq ∈ {xs ′ ∈ C M2 M1 Ω V m ((Suc ( |M2 | ∗ m))).
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′. ∀ io2∈RP M2 s2 vs xs V ′′.

B M1 io1 Ω 6= B M1 io2 Ω)) ∧
m < LB M2 M1 vs xs (?TS (( |M2 | ∗ m)) ∪ V ) S1 Ω V ′′)}

using ‹seq ∈ ?C ?i› by blast
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then show ?thesis
using RM-def by blast

qed
qed

then have ?C ?i − ?RM ?i = {}
by blast

have ?C (Suc ?i) = append-set (?C ?i − ?RM ?i) (inputs M2 ) − ?TS ?i
using C .simps(3 ) by blast

then have ?C (Suc ?i) = {} using ‹?C ?i − ?RM ?i = {}›
by blast

then have ?TS (Suc ?i) = ?TS ?i
using TS .simps(3 ) by blast

then show final-iteration M2 M1 Ω V m ?i
by blast

qed

lemma TS-non-containment-causes-final :
assumes vs@xs /∈ TS M2 M1 Ω V m i
and mcp (vs@xs) V vs
and set xs ⊆ inputs M2
and final-iteration M2 M1 Ω V m i
and OFSM M2

shows (∃ xr j . xr 6= xs
∧ prefix xr xs
∧ j ≤ i
∧ vs@xr ∈ RM M2 M1 Ω V m j)

proof −
let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

have {} 6= V
using assms(2 ) by fastforce

then have ?TS 0 6= ?TS (Suc 0 )
by simp

then have 0 < i
using assms(4 ) by auto

have ncc1 : (∃ xr j. xr 6= xs ∧ prefix xr xs ∧ j ≤ i ∧ vs @ xr ∈ RM M2 M1 Ω V m j) ∨
(∃ xc. xc 6= xs ∧ prefix xc xs ∧ vs @ xc ∈ C M2 M1 Ω V m i − RM M2 M1 Ω V m i)

using TS-non-containment-causes(1 )[OF assms(1−3 ) ‹0 < i›] by assumption
have ncc2 : ¬ ((∃ xr j. xr 6= xs ∧ prefix xr xs ∧ j ≤ i ∧ vs @ xr ∈ RM M2 M1 Ω V m j) ∧

(∃ xc. xc 6= xs ∧ prefix xc xs ∧ vs @ xc ∈ C M2 M1 Ω V m i − RM M2 M1 Ω V m i))
using TS-non-containment-causes(2 )[OF assms(1−3 ) ‹0 < i›] by assumption

from ncc1 show ?thesis
proof

show ∃ xr j. xr 6= xs ∧ prefix xr xs ∧ j ≤ i ∧ vs @ xr ∈ RM M2 M1 Ω V m j =⇒
∃ xr j. xr 6= xs ∧ prefix xr xs ∧ j ≤ i ∧ vs @ xr ∈ RM M2 M1 Ω V m j

by simp

show ∃ xc. xc 6= xs ∧ prefix xc xs ∧ vs @ xc ∈ C M2 M1 Ω V m i − RM M2 M1 Ω V m i =⇒
∃ xr j. xr 6= xs ∧ prefix xr xs ∧ j ≤ i ∧ vs @ xr ∈ RM M2 M1 Ω V m j

proof −
assume ∃ xc. xc 6= xs ∧ prefix xc xs ∧ vs @ xc ∈ C M2 M1 Ω V m i − RM M2 M1 Ω V m i
then obtain xc where xc 6= xs prefix xc xs vs @ xc ∈ ?C i − ?RM i

by blast
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then have vs @ xc ∈ ?C i
by blast

have mcp (vs @ xc) V vs
using ‹prefix xc xs› assms(2 ) mcp-prefix-of-suffix by blast

then have Suc (length xc) = i using C-index[OF ‹vs @ xc ∈ ?C i›]
by simp

have length xc < length xs
by (metis ‹prefix xc xs› ‹xc 6= xs› append-eq-conv-conj nat-less-le prefix-def prefix-length-le take-all)

then obtain x where prefix (vs@xc@[x]) (vs@xs)
using ‹prefix xc xs› append-one-prefix same-prefix-prefix by blast

— Proof sketch: vs-xs-x must not be in TS (i+1), else not final iteration vs-xs-x can not be in TS i due to its length
vs-xs-x must therefore not be contained in (append-set (C i - R i) (inputs M2)) vs-xs must therefore not be contained in
(C i - R i) contradiction

have ?TS (Suc i) = ?TS i
using assms(4 ) by auto

have vs@xc@[x] /∈ ?C (Suc i)
proof

assume vs @ xc @ [x] ∈ ?C (Suc i)
then have vs @ xc @ [x] /∈ ?TS i

by (metis (no-types, lifting) C .simps(3 ) DiffE ‹Suc (length xc) = i›)
then have ?TS i 6= ?TS (Suc i)

using C-subset ‹vs @ xc @ [x] ∈ C M2 M1 Ω V m (Suc i)› by blast
then show False using assms(4 )

by auto
qed
moreover have ?C (Suc i) = append-set (?C i − ?RM i) (inputs M2 ) − ?TS i

using C .simps(3 ) ‹Suc (length xc) = i› by blast
ultimately have vs @ xc @ [x] /∈ append-set (?C i − ?RM i) (inputs M2 ) − ?TS i

by blast

have vs @ xc @ [x] /∈ ?TS (Suc i)
by (metis Suc-n-not-le-n TS-index(1 ) ‹Suc (length xc) = i›

‹prefix (vs @ xc @ [x]) (vs @ xs)› assms(2 ) assms(4 ) length-append-singleton
mcp-prefix-of-suffix same-prefix-prefix)

then have vs @ xc @ [x] /∈ ?TS i
by (simp add: assms(4 ))

have vs @ xc @ [x] /∈ append-set (?C i − ?RM i) (inputs M2 )
using ‹vs @ xc @ [x] /∈ TS M2 M1 Ω V m i›

‹vs @ xc @ [x] /∈ append-set (C M2 M1 Ω V m i − RM M2 M1 Ω V m i) (inputs M2 )
− TS M2 M1 Ω V m i›

by blast

then have vs @ xc /∈ (?C i − ?RM i)
proof −

have f1 : ∀ a A Aa. (a:: ′a) /∈ A ∧ a /∈ Aa ∨ a ∈ Aa ∪ A
by (meson UnCI )

obtain aas :: ′a list ⇒ ′a list ⇒ ′a list where
∀ x0 x1 . (∃ v2 . x0 = x1 @ v2 ) = (x0 = x1 @ aas x0 x1 )
by moura

then have vs @ xs = (vs @ xc @ [x]) @ aas (vs @ xs) (vs @ xc @ [x])
by (meson ‹prefix (vs @ xc @ [x]) (vs @ xs)› prefixE)

then have xs = (xc @ [x]) @ aas (vs @ xs) (vs @ xc @ [x])
by simp

then have x ∈ inputs M2
using f1 by (metis (no-types) assms(3 ) contra-subsetD insert-iff list.set(2 ) set-append)

then show ?thesis
using ‹vs @ xc @ [x] /∈ append-set (C M2 M1 Ω V m i − RM M2 M1 Ω V m i) (inputs M2 )›
by force

qed
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then have False
using ‹vs @ xc ∈ ?C i − ?RM i› by blast

then show ?thesis by simp
qed

qed
qed

lemma TS-non-containment-causes-final-suc :
assumes vs@xs /∈ TS M2 M1 Ω V m i
and mcp (vs@xs) V vs
and set xs ⊆ inputs M2
and final-iteration M2 M1 Ω V m i
and OFSM M2

obtains xr j
where xr 6= xs prefix xr xs Suc j ≤ i vs@xr ∈ RM M2 M1 Ω V m (Suc j)
proof −

obtain xr j where xr 6= xs ∧ prefix xr xs ∧ j ≤ i ∧ vs@xr ∈ RM M2 M1 Ω V m j
using TS-non-containment-causes-final[OF assms] by blast

moreover have RM M2 M1 Ω V m 0 = {}
by auto

ultimately have j 6= 0
by (metis empty-iff )

then obtain jp where j = Suc jp
using not0-implies-Suc by blast

then have xr 6= xs ∧ prefix xr xs ∧ Suc jp ≤ i ∧ vs@xr ∈ RM M2 M1 Ω V m (Suc jp)
using ‹xr 6= xs ∧ prefix xr xs ∧ j ≤ i ∧ vs@xr ∈ RM M2 M1 Ω V m j›
by blast

then show ?thesis
using that by blast

qed

end
theory ASC-Sufficiency

imports ASC-Suite
begin

6 Sufficiency of the test suite to test for reduction
This section provides a proof that the test suite generated by the adaptive state counting algorithm is sufficient
to test for reduction.

6.1 Properties of minimal sequences to failures extending the deterministic state
cover

The following two lemmata show that minimal sequences to failures extending the deterministic state cover do
not with their extending suffix visit any state twice or visit a state also reached by a sequence in the chosen
permutation of reactions to the deterministic state cover.
lemma minimal-sequence-to-failure-extending-implies-Rep-Pre :

assumes minimal-sequence-to-failure-extending V M1 M2 vs xs
and OFSM M1
and OFSM M2
and test-tools M2 M1 FAIL PM V Ω
and V ′′ ∈ N (vs@xs ′) M1 V
and prefix xs ′ xs
shows ¬ Rep-Pre M2 M1 vs xs ′

proof
assume Rep-Pre M2 M1 vs xs ′

then obtain xs1 xs2 s1 s2 where prefix xs1 xs2
prefix xs2 xs ′

xs1 6= xs2
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io-targets M2 (initial M2 ) (vs @ xs1 ) = {s2}
io-targets M2 (initial M2 ) (vs @ xs2 ) = {s2}
io-targets M1 (initial M1 ) (vs @ xs1 ) = {s1}
io-targets M1 (initial M1 ) (vs @ xs2 ) = {s1}

by auto
then have s2 ∈ io-targets M2 (initial M2 ) (vs @ xs1 )

s2 ∈ io-targets M2 (initial M2 ) (vs @ xs2 )
s1 ∈ io-targets M1 (initial M1 ) (vs @ xs1 )
s1 ∈ io-targets M1 (initial M1 ) (vs @ xs2 )

by auto

have vs@xs1 ∈ L M1
using io-target-implies-L[OF ‹s1 ∈ io-targets M1 (initial M1 ) (vs @ xs1 )›] by assumption

have vs@xs2 ∈ L M1
using io-target-implies-L[OF ‹s1 ∈ io-targets M1 (initial M1 ) (vs @ xs2 )›] by assumption

have vs@xs1 ∈ L M2
using io-target-implies-L[OF ‹s2 ∈ io-targets M2 (initial M2 ) (vs @ xs1 )›] by assumption

have vs@xs2 ∈ L M2
using io-target-implies-L[OF ‹s2 ∈ io-targets M2 (initial M2 ) (vs @ xs2 )›] by assumption

obtain tr1-1 where path M1 (vs@xs1 || tr1-1 ) (initial M1 )
length tr1-1 = length (vs@xs1 )
target (vs@xs1 || tr1-1 ) (initial M1 ) = s1

using ‹s1 ∈ io-targets M1 (initial M1 ) (vs @ xs1 )› by auto
obtain tr1-2 where path M1 (vs@xs2 || tr1-2 ) (initial M1 )

length tr1-2 = length (vs@xs2 )
target (vs@xs2 || tr1-2 ) (initial M1 ) = s1

using ‹s1 ∈ io-targets M1 (initial M1 ) (vs @ xs2 )› by auto
obtain tr2-1 where path M2 (vs@xs1 || tr2-1 ) (initial M2 )

length tr2-1 = length (vs@xs1 )
target (vs@xs1 || tr2-1 ) (initial M2 ) = s2

using ‹s2 ∈ io-targets M2 (initial M2 ) (vs @ xs1 )› by auto
obtain tr2-2 where path M2 (vs@xs2 || tr2-2 ) (initial M2 )

length tr2-2 = length (vs@xs2 )
target (vs@xs2 || tr2-2 ) (initial M2 ) = s2

using ‹s2 ∈ io-targets M2 (initial M2 ) (vs @ xs2 )› by auto

have productF M2 M1 FAIL PM
using assms(4 ) by auto

have well-formed M1
using assms(2 ) by auto

have well-formed M2
using assms(3 ) by auto

have observable PM
by (meson assms(2 ) assms(3 ) assms(4 ) observable-productF)

have length (vs@xs1 ) = length tr2-1
using ‹length tr2-1 = length (vs @ xs1 )› by presburger

then have length tr2-1 = length tr1-1
using ‹length tr1-1 = length (vs@xs1 )› by presburger

have vs@xs1 ∈ L PM
using productF-path-inclusion[OF ‹length (vs@xs1 ) = length tr2-1 › ‹length tr2-1 = length tr1-1 ›

‹productF M2 M1 FAIL PM › ‹well-formed M2 › ‹well-formed M1 ›]
by (meson Int-iff ‹productF M2 M1 FAIL PM › ‹vs @ xs1 ∈ L M1 › ‹vs @ xs1 ∈ L M2 › ‹well-formed M1 ›

‹well-formed M2 › productF-language)

have length (vs@xs2 ) = length tr2-2
using ‹length tr2-2 = length (vs @ xs2 )› by presburger

then have length tr2-2 = length tr1-2
using ‹length tr1-2 = length (vs@xs2 )› by presburger

have vs@xs2 ∈ L PM
using productF-path-inclusion[OF ‹length (vs@xs2 ) = length tr2-2 › ‹length tr2-2 = length tr1-2 ›
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‹productF M2 M1 FAIL PM › ‹well-formed M2 › ‹well-formed M1 ›]
by (meson Int-iff ‹productF M2 M1 FAIL PM › ‹vs @ xs2 ∈ L M1 › ‹vs @ xs2 ∈ L M2 › ‹well-formed M1 ›

‹well-formed M2 › productF-language)

have io-targets PM (initial M2 , initial M1 ) (vs @ xs1 ) = {(s2 , s1 )}
using productF-path-io-targets-reverse

[OF ‹productF M2 M1 FAIL PM › ‹s2 ∈ io-targets M2 (initial M2 ) (vs @ xs1 )›
‹s1 ∈ io-targets M1 (initial M1 ) (vs @ xs1 )› ‹vs @ xs1 ∈ L M2 › ‹vs @ xs1 ∈ L M1 › ]

proof −
have ∀ c f . c 6= initial (f ::( ′a, ′b, ′c) FSM ) ∨ c ∈ nodes f

by blast
then show ?thesis

by (metis (no-types) ‹[[observable M2 ; observable M1 ; well-formed M2 ; well-formed M1 ;
initial M2 ∈ nodes M2 ; initial M1 ∈ nodes M1 ]]
=⇒ io-targets PM (initial M2 , initial M1 ) (vs @ xs1 ) = {(s2 , s1 )}›

assms(2 ) assms(3 ))
qed

have io-targets PM (initial M2 , initial M1 ) (vs @ xs2 ) = {(s2 , s1 )}
using productF-path-io-targets-reverse

[OF ‹productF M2 M1 FAIL PM › ‹s2 ∈ io-targets M2 (initial M2 ) (vs @ xs2 )›
‹s1 ∈ io-targets M1 (initial M1 ) (vs @ xs2 )› ‹vs @ xs2 ∈ L M2 › ‹vs @ xs2 ∈ L M1 › ]

proof −
have ∀ c f . c 6= initial (f ::( ′a, ′b, ′c) FSM ) ∨ c ∈ nodes f

by blast
then show ?thesis

by (metis (no-types) ‹[[observable M2 ; observable M1 ; well-formed M2 ; well-formed M1 ;
initial M2 ∈ nodes M2 ; initial M1 ∈ nodes M1 ]]
=⇒ io-targets PM (initial M2 , initial M1 ) (vs @ xs2 ) = {(s2 , s1 )}›

assms(2 ) assms(3 ))
qed

have prefix (vs @ xs1 ) (vs @ xs2 )
using ‹prefix xs1 xs2 › by auto

have sequence-to-failure M1 M2 (vs@xs)
using assms(1 ) by auto

have prefix (vs@xs1 ) (vs@xs ′)
using ‹prefix xs1 xs2 › ‹prefix xs2 xs ′› prefix-order .dual-order .trans same-prefix-prefix
by blast

have prefix (vs@xs2 ) (vs@xs ′)
using ‹prefix xs2 xs ′› prefix-order .dual-order .trans same-prefix-prefix by blast

have io-targets PM (initial PM ) (vs @ xs1 ) = {(s2 ,s1 )}
using ‹io-targets PM (initial M2 , initial M1 ) (vs @ xs1 ) = {(s2 , s1 )}› assms(4 ) by auto

have io-targets PM (initial PM ) (vs @ xs2 ) = {(s2 ,s1 )}
using ‹io-targets PM (initial M2 , initial M1 ) (vs @ xs2 ) = {(s2 , s1 )}› assms(4 ) by auto

have (vs @ xs2 ) @ (drop (length xs2 ) xs) = vs@xs
by (metis ‹prefix xs2 xs ′› append-eq-appendI append-eq-conv-conj assms(6 ) prefixE)

moreover have io-targets PM (initial PM ) (vs@xs) = {FAIL}
using sequence-to-failure-reaches-FAIL-ob[OF ‹sequence-to-failure M1 M2 (vs@xs)› assms(2 ,3 )

‹productF M2 M1 FAIL PM ›]
by assumption

ultimately have io-targets PM (initial PM ) ((vs @ xs2 ) @ (drop (length xs2 ) xs)) = {FAIL}
by auto
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have io-targets PM (s2 ,s1 ) (drop (length xs2 ) xs) = {FAIL}
using observable-io-targets-split

[OF ‹observable PM ›
‹io-targets PM (initial PM ) ((vs @ xs2 ) @ (drop (length xs2 ) xs)) = {FAIL}›
‹io-targets PM (initial PM ) (vs @ xs2 ) = {(s2 , s1 )}›]

by assumption

have io-targets PM (initial PM ) (vs@xs1@(drop (length xs2 ) xs)) = {FAIL}
using observable-io-targets-append

[OF ‹observable PM › ‹io-targets PM (initial PM ) (vs @ xs1 ) = {(s2 ,s1 )}›
‹io-targets PM (s2 ,s1 ) (drop (length xs2 ) xs) = {FAIL}›]

by simp
have sequence-to-failure M1 M2 (vs@xs1@(drop (length xs2 ) xs))

using sequence-to-failure-alt-def
[OF ‹io-targets PM (initial PM ) (vs@xs1@(drop (length xs2 ) xs)) = {FAIL}› assms(2 ,3 )]
assms(4 )

by blast

have length xs1 < length xs2
using ‹prefix xs1 xs2 › ‹xs1 6= xs2 › prefix-length-prefix by fastforce

have prefix-drop: ys = ys1 @ (drop (length ys1 )) ys if prefix ys1 ys
for ys ys1 :: ( ′a × ′b) list
using that by (induction ys1 ) (auto elim: prefixE)

then have xs = (xs1 @ (drop (length xs1 ) xs))
using ‹prefix xs1 xs2 › ‹prefix xs2 xs ′› ‹prefix xs ′ xs› by simp

then have length xs1 < length xs
using prefix-drop[OF ‹prefix xs2 xs ′›] ‹prefix xs2 xs ′› ‹prefix xs ′ xs›
using ‹length xs1 < length xs2 ›
by (auto dest!: prefix-length-le)

have length (xs1@(drop (length xs2 ) xs)) < length xs
using ‹length xs1 < length xs2 › ‹length xs1 < length xs› by auto

have vs ∈ Lin M1 V
∧ sequence-to-failure M1 M2 (vs @ xs1@(drop (length xs2 ) xs))
∧ length (xs1@(drop (length xs2 ) xs)) < length xs

using ‹length (xs1 @ drop (length xs2 ) xs) < length xs›
‹sequence-to-failure M1 M2 (vs @ xs1 @ drop (length xs2 ) xs)›
assms(1 ) minimal-sequence-to-failure-extending.simps

by blast

then have ¬ minimal-sequence-to-failure-extending V M1 M2 vs xs
by (meson minimal-sequence-to-failure-extending.elims(2 ))

then show False
using assms(1 ) by linarith

qed

lemma minimal-sequence-to-failure-extending-implies-Rep-Cov :
assumes minimal-sequence-to-failure-extending V M1 M2 vs xs
and OFSM M1
and OFSM M2
and test-tools M2 M1 FAIL PM V Ω
and V ′′ ∈ N (vs@xsR) M1 V
and prefix xsR xs

shows ¬ Rep-Cov M2 M1 V ′′ vs xsR
proof

assume Rep-Cov M2 M1 V ′′ vs xsR
then obtain xs ′ vs ′ s2 s1 where xs ′ 6= []

prefix xs ′ xsR
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vs ′ ∈ V ′′

io-targets M2 (initial M2 ) (vs @ xs ′) = {s2}
io-targets M2 (initial M2 ) (vs ′) = {s2}
io-targets M1 (initial M1 ) (vs @ xs ′) = {s1}
io-targets M1 (initial M1 ) (vs ′) = {s1}

by auto

then have s2 ∈ io-targets M2 (initial M2 ) (vs @ xs ′)
s2 ∈ io-targets M2 (initial M2 ) (vs ′)
s1 ∈ io-targets M1 (initial M1 ) (vs @ xs ′)
s1 ∈ io-targets M1 (initial M1 ) (vs ′)

by auto

have vs@xs ′ ∈ L M1
using io-target-implies-L[OF ‹s1 ∈ io-targets M1 (initial M1 ) (vs @ xs ′)›] by assumption

have vs ′ ∈ L M1
using io-target-implies-L[OF ‹s1 ∈ io-targets M1 (initial M1 ) (vs ′)›] by assumption

have vs@xs ′ ∈ L M2
using io-target-implies-L[OF ‹s2 ∈ io-targets M2 (initial M2 ) (vs @ xs ′)›] by assumption

have vs ′ ∈ L M2
using io-target-implies-L[OF ‹s2 ∈ io-targets M2 (initial M2 ) (vs ′)›] by assumption

obtain tr1-1 where path M1 (vs@xs ′ || tr1-1 ) (initial M1 )
length tr1-1 = length (vs@xs ′)
target (vs@xs ′ || tr1-1 ) (initial M1 ) = s1

using ‹s1 ∈ io-targets M1 (initial M1 ) (vs @ xs ′)› by auto
obtain tr1-2 where path M1 (vs ′ || tr1-2 ) (initial M1 )

length tr1-2 = length (vs ′)
target (vs ′ || tr1-2 ) (initial M1 ) = s1

using ‹s1 ∈ io-targets M1 (initial M1 ) (vs ′)› by auto
obtain tr2-1 where path M2 (vs@xs ′ || tr2-1 ) (initial M2 )

length tr2-1 = length (vs@xs ′)
target (vs@xs ′ || tr2-1 ) (initial M2 ) = s2

using ‹s2 ∈ io-targets M2 (initial M2 ) (vs @ xs ′)› by auto
obtain tr2-2 where path M2 (vs ′ || tr2-2 ) (initial M2 )

length tr2-2 = length (vs ′)
target (vs ′ || tr2-2 ) (initial M2 ) = s2

using ‹s2 ∈ io-targets M2 (initial M2 ) (vs ′)› by auto

have productF M2 M1 FAIL PM
using assms(4 ) by auto

have well-formed M1
using assms(2 ) by auto

have well-formed M2
using assms(3 ) by auto

have observable PM
by (meson assms(2 ) assms(3 ) assms(4 ) observable-productF)

have length (vs@xs ′) = length tr2-1
using ‹length tr2-1 = length (vs @ xs ′)› by presburger

then have length tr2-1 = length tr1-1
using ‹length tr1-1 = length (vs@xs ′)› by presburger

have vs@xs ′ ∈ L PM
using productF-path-inclusion[OF ‹length (vs@xs ′) = length tr2-1 › ‹length tr2-1 = length tr1-1 ›

‹productF M2 M1 FAIL PM › ‹well-formed M2 › ‹well-formed M1 ›]
by (meson Int-iff ‹productF M2 M1 FAIL PM › ‹vs @ xs ′ ∈ L M1 › ‹vs @ xs ′ ∈ L M2 › ‹well-formed M1 ›

‹well-formed M2 › productF-language)

have length (vs ′) = length tr2-2
using ‹length tr2-2 = length (vs ′)› by presburger

then have length tr2-2 = length tr1-2
using ‹length tr1-2 = length (vs ′)› by presburger
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have vs ′ ∈ L PM
using productF-path-inclusion[OF ‹length (vs ′) = length tr2-2 › ‹length tr2-2 = length tr1-2 ›

‹productF M2 M1 FAIL PM › ‹well-formed M2 › ‹well-formed M1 ›]
by (meson Int-iff ‹productF M2 M1 FAIL PM › ‹vs ′ ∈ L M1 › ‹vs ′ ∈ L M2 › ‹well-formed M1 ›

‹well-formed M2 › productF-language)

have io-targets PM (initial M2 , initial M1 ) (vs @ xs ′) = {(s2 , s1 )}
using productF-path-io-targets-reverse

[OF ‹productF M2 M1 FAIL PM › ‹s2 ∈ io-targets M2 (initial M2 ) (vs @ xs ′)›
‹s1 ∈ io-targets M1 (initial M1 ) (vs @ xs ′)› ‹vs @ xs ′ ∈ L M2 › ‹vs @ xs ′ ∈ L M1 › ]

proof −
have ∀ c f . c 6= initial (f ::( ′a, ′b, ′c) FSM ) ∨ c ∈ nodes f

by blast
then show ?thesis

by (metis (no-types) ‹[[observable M2 ; observable M1 ; well-formed M2 ; well-formed M1 ;
initial M2 ∈ nodes M2 ; initial M1 ∈ nodes M1 ]]

=⇒ io-targets PM (initial M2 , initial M1 ) (vs @ xs ′) = {(s2 , s1 )}›
assms(2 ) assms(3 ))

qed

have io-targets PM (initial M2 , initial M1 ) (vs ′) = {(s2 , s1 )}
using productF-path-io-targets-reverse

[OF ‹productF M2 M1 FAIL PM › ‹s2 ∈ io-targets M2 (initial M2 ) (vs ′)›
‹s1 ∈ io-targets M1 (initial M1 ) (vs ′)› ‹vs ′ ∈ L M2 › ‹vs ′ ∈ L M1 › ]

proof −
have ∀ c f . c 6= initial (f ::( ′a, ′b, ′c) FSM ) ∨ c ∈ nodes f

by blast
then show ?thesis

by (metis (no-types) ‹[[observable M2 ; observable M1 ; well-formed M2 ; well-formed M1 ;
initial M2 ∈ nodes M2 ; initial M1 ∈ nodes M1 ]]

=⇒ io-targets PM (initial M2 , initial M1 ) (vs ′) = {(s2 , s1 )}›
assms(2 ) assms(3 ))

qed
have io-targets PM (initial PM ) (vs ′) = {(s2 , s1 )}

by (metis (no-types) ‹io-targets PM (initial M2 , initial M1 ) vs ′ = {(s2 , s1 )}›
‹productF M2 M1 FAIL PM › productF-simps(4 ))

have sequence-to-failure M1 M2 (vs@xs)
using assms(1 ) by auto

have xs = xs ′ @ (drop (length xs ′) xs)
by (metis ‹prefix xs ′ xsR› append-assoc append-eq-conv-conj assms(6 ) prefixE)

then have io-targets PM (initial M2 , initial M1 ) (vs @ xs ′ @ (drop (length xs ′) xs)) = {FAIL}
by (metis ‹productF M2 M1 FAIL PM › ‹sequence-to-failure M1 M2 (vs @ xs)› assms(2 ) assms(3 )

productF-simps(4 ) sequence-to-failure-reaches-FAIL-ob)
then have io-targets PM (initial M2 , initial M1 ) ((vs @ xs ′) @ (drop (length xs ′) xs)) = {FAIL}

by auto
have io-targets PM (s2 , s1 ) (drop (length xs ′) xs) = {FAIL}

using observable-io-targets-split
[OF ‹observable PM ›

‹io-targets PM (initial M2 ,initial M1 ) ((vs @ xs ′) @ (drop (length xs ′) xs)) = {FAIL}›
‹io-targets PM (initial M2 , initial M1 ) (vs @ xs ′) = {(s2 , s1 )}›]

by assumption

have io-targets PM (initial PM ) (vs ′ @ (drop (length xs ′) xs)) = {FAIL}
using observable-io-targets-append

[OF ‹observable PM › ‹io-targets PM (initial PM ) (vs ′) = {(s2 , s1 )}›
‹io-targets PM (s2 , s1 ) (drop (length xs ′) xs) = {FAIL}›]

by assumption

have sequence-to-failure M1 M2 (vs ′ @ (drop (length xs ′) xs))
using sequence-to-failure-alt-def
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[OF ‹io-targets PM (initial PM ) (vs ′ @ (drop (length xs ′) xs)) = {FAIL}› assms(2 ,3 )]
assms(4 )

by blast

have length (drop (length xs ′) xs) < length xs
by (metis (no-types) ‹xs = xs ′ @ drop (length xs ′) xs› ‹xs ′ 6= []› length-append

length-greater-0-conv less-add-same-cancel2 )

have vs ′ ∈ Lin M1 V
proof −

have V ′′ ∈ Perm V M1
using assms(5 ) unfolding N .simps by blast

then obtain f where f-def : V ′′ = image f V
∧ (∀ v ∈ V . f v ∈ language-state-for-input M1 (initial M1 ) v)

unfolding Perm.simps by blast
then obtain v where v ∈ V vs ′ = f v

using ‹vs ′ ∈ V ′′› by auto
then have vs ′ ∈ language-state-for-input M1 (initial M1 ) v

using f-def by auto

have language-state-for-input M1 (initial M1 ) v = Lin M1 {v}
by auto

moreover have {v} ⊆ V
using ‹v ∈ V › by blast

ultimately have language-state-for-input M1 (initial M1 ) v ⊆ Lin M1 V
unfolding language-state-for-inputs.simps language-state-for-input.simps by blast

then show ?thesis
using‹vs ′ ∈ language-state-for-input M1 (initial M1 ) v› by blast

qed

have ¬ minimal-sequence-to-failure-extending V M1 M2 vs xs
using ‹vs ′ ∈ Lin M1 V ›

‹sequence-to-failure M1 M2 (vs ′ @ (drop (length xs ′) xs))›
‹length (drop (length xs ′) xs) < length xs›

using minimal-sequence-to-failure-extending.elims(2 ) by blast
then show False

using assms(1 ) by linarith
qed

lemma mstfe-no-repetition :
assumes minimal-sequence-to-failure-extending V M1 M2 vs xs
and OFSM M1
and OFSM M2
and test-tools M2 M1 FAIL PM V Ω
and V ′′ ∈ N (vs@xs ′) M1 V
and prefix xs ′ xs

shows ¬ Rep-Pre M2 M1 vs xs ′

and ¬ Rep-Cov M2 M1 V ′′ vs xs ′

using minimal-sequence-to-failure-extending-implies-Rep-Pre[OF assms]
minimal-sequence-to-failure-extending-implies-Rep-Cov[OF assms]

by linarith+

6.2 Sufficiency of the test suite to test for reduction
The following lemma proves that set of input sequences generated in the final iteration of the TS function
constitutes a test suite sufficient to test for reduction the FSMs it has been generated for.
This proof is performed by contradiction: If the test suite is not sufficient, then some minimal sequence to a
failure extending the deterministic state cover must exist. Due to the test suite being assumed insufficient,
this sequence cannot be contained in it and hence a prefix of it must have been contained in one of the sets
calculated by the R function. This is only possible if the prefix is not a minimal sequence to a failure extending
the deterministic state cover or if the test suite observes a failure, both of which violates the assumptions.
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lemma asc-sufficiency :
assumes OFSM M1
and OFSM M2
and asc-fault-domain M2 M1 m
and test-tools M2 M1 FAIL PM V Ω
and final-iteration M2 M1 Ω V m i

shows M1 �[[(TS M2 M1 Ω V m i) . Ω]] M2 −→ M1 � M2
proof

assume atc-io-reduction-on-sets M1 (TS M2 M1 Ω V m i) Ω M2
show M1 � M2
proof (rule ccontr)

let ?TS = λ n . TS M2 M1 Ω V m n
let ?C = λ n . C M2 M1 Ω V m n
let ?RM = λ n . RM M2 M1 Ω V m n

assume ¬ M1 � M2
obtain vs xs where minimal-sequence-to-failure-extending V M1 M2 vs xs

using assms(1 ) assms(2 ) assms(4 )
minimal-sequence-to-failure-extending-det-state-cover-ob[OF - - - - ‹¬ M1 � M2 ›, of V ]

by blast

then have vs ∈ Lin M1 V
sequence-to-failure M1 M2 (vs @ xs)
¬ (∃ io ′ . ∃ w ′ ∈ Lin M1 V . sequence-to-failure M1 M2 (w ′ @ io ′)

∧ length io ′ < length xs)
by auto

then have vs@xs ∈ L M1 − L M2
by auto

have vs@xs ∈ Lin M1 {map fst (vs@xs)}
by (metis (full-types) Diff-iff ‹vs @ xs ∈ L M1 − L M2 › insertI1

language-state-for-inputs-map-fst)

have vs@xs /∈ Lin M2 {map fst (vs@xs)}
by (meson Diff-iff ‹vs @ xs ∈ L M1 − L M2 › language-state-for-inputs-in-language-state

subsetCE)

have finite V
using det-state-cover-finite assms(4 ,2 ) by auto

then have finite (?TS i)
using TS-finite[of V M2 ] assms(2 ) by auto

then have io-reduction-on M1 (?TS i) M2
using io-reduction-from-atc-io-reduction

[OF ‹atc-io-reduction-on-sets M1 (TS M2 M1 Ω V m i) Ω M2 ›]
by auto

have map fst (vs@xs) /∈ ?TS i
proof −

have f1 : ∀ ps P Pa. (ps::( ′a × ′b) list) /∈ P − Pa ∨ ps ∈ P ∧ ps /∈ Pa
by blast

have ∀P Pa ps. ¬ P ⊆ Pa ∨ (ps::( ′a × ′b) list) ∈ Pa ∨ ps /∈ P
by blast

then show ?thesis
using f1 by (metis (no-types) ‹vs @ xs ∈ L M1 − L M2 › ‹io-reduction-on M1 (?TS i) M2 ›

language-state-for-inputs-in-language-state language-state-for-inputs-map-fst)
qed

have map fst vs ∈ V
using ‹vs ∈ Lin M1 V › by auto

let ?stf = map fst (vs@xs)
let ?stfV = map fst vs
let ?stfX = map fst xs

146



have ?stf = ?stfV @ ?stfX
by simp

then have ?stfV @ ?stfX /∈ ?TS i
using ‹?stf /∈ ?TS i› by auto

have mcp (?stfV @ ?stfX) V ?stfV
by (metis ‹map fst (vs @ xs) = map fst vs @ map fst xs›

‹minimal-sequence-to-failure-extending V M1 M2 vs xs› assms(1 ) assms(2 ) assms(4 )
minimal-sequence-to-failure-extending-mcp)

have set ?stf ⊆ inputs M1
by (meson DiffD1 ‹vs @ xs ∈ L M1 − L M2 › assms(1 ) language-state-inputs)

then have set ?stf ⊆ inputs M2
using assms(3 ) by blast

moreover have set ?stf = set ?stfV ∪ set ?stfX
by simp

ultimately have set ?stfX ⊆ inputs M2
by blast

obtain xr j where xr 6= ?stfX
prefix xr ?stfX
Suc j ≤ i
?stfV@xr ∈ RM M2 M1 Ω V m (Suc j)

using TS-non-containment-causes-final-suc[OF ‹?stfV @ ?stfX /∈ ?TS i›
‹mcp (?stfV @ ?stfX) V ?stfV › ‹set ?stfX ⊆ inputs M2 › assms(5 ,2 )]

by blast

let ?yr = take (length xr) (map snd xs)
have length ?yr = length xr

using ‹prefix xr (map fst xs)› prefix-length-le by fastforce
have (xr || ?yr) = take (length xr) xs

by (metis (no-types, opaque-lifting) ‹prefix xr (map fst xs)› append-eq-conv-conj prefixE take-zip
zip-map-fst-snd)

have prefix (vs@(xr || ?yr)) (vs@xs)
by (simp add: ‹xr || take (length xr) (map snd xs) = take (length xr) xs› take-is-prefix)

have xr = take (length xr) (map fst xs)
by (metis ‹length (take (length xr) (map snd xs)) = length xr›

‹xr || take (length xr) (map snd xs) = take (length xr) xs› map-fst-zip take-map)

have vs@(xr || ?yr) ∈ L M1
by (metis DiffD1 ‹prefix (vs @ (xr || take (length xr) (map snd xs))) (vs @ xs)›

‹vs @ xs ∈ L M1 − L M2 › language-state-prefix prefixE)

then have vs@(xr || ?yr) ∈ Lin M1 {?stfV @ xr}
by (metis ‹length (take (length xr) (map snd xs)) = length xr› insertI1

language-state-for-inputs-map-fst map-append map-fst-zip)

have length xr < length xs
by (metis ‹xr = take (length xr) (map fst xs)› ‹xr 6= map fst xs› not-le-imp-less take-all

take-map)

from ‹?stfV@xr ∈ RM M2 M1 Ω V m (Suc j)› have ?stfV@xr ∈ {xs ′ ∈ C M2 M1 Ω V m (Suc j) .
(¬ (Lin M1 {xs ′} ⊆ Lin M2 {xs ′}))
∨ (∀ io ∈ Lin M1 {xs ′} .

(∃ V ′′ ∈ N io M1 V .
(∃ S1 .
(∃ vs xs .

io = (vs@xs)
∧ mcp (vs@xs) V ′′ vs
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∧ S1 ⊆ nodes M2
∧ (∀ s1 ∈ S1 . ∀ s2 ∈ S1 .

s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs xs V ′′ .
∀ io2 ∈ RP M2 s2 vs xs V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
∧ m < LB M2 M1 vs xs (TS M2 M1 Ω V m j ∪ V ) S1 Ω V ′′ ))))}

unfolding RM .simps by blast

moreover have ∀ xs ′ ∈ ?C (Suc j) . Lin M1 {xs ′} ⊆ Lin M2 {xs ′}
proof

fix xs ′ assume xs ′ ∈ ?C (Suc j)
from ‹Suc j ≤ i› have ?C (Suc j) ⊆ ?TS i

using C-subset TS-subset by blast
then have {xs ′} ⊆ ?TS i

using ‹xs ′ ∈ ?C (Suc j)› by blast
show Lin M1 {xs ′} ⊆ Lin M2 {xs ′}

using io-reduction-on-subset[OF ‹io-reduction-on M1 (?TS i) M2 › ‹{xs ′} ⊆ ?TS i›]
by assumption

qed

ultimately have (∀ io ∈ Lin M1 {?stfV@xr} .
(∃ V ′′ ∈ N io M1 V .
(∃ S1 .
(∃ vs xs .

io = (vs@xs)
∧ mcp (vs@xs) V ′′ vs
∧ S1 ⊆ nodes M2
∧ (∀ s1 ∈ S1 . ∀ s2 ∈ S1 .

s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs xs V ′′ .
∀ io2 ∈ RP M2 s2 vs xs V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
∧ m < LB M2 M1 vs xs (TS M2 M1 Ω V m j ∪ V ) S1 Ω V ′′ ))))

by blast

then have
(∃ V ′′ ∈ N (vs@(xr || ?yr)) M1 V .
(∃ S1 .
(∃ vs ′ xs ′ .

vs@(xr || ?yr) = (vs ′@xs ′)
∧ mcp (vs ′@xs ′) V ′′ vs ′

∧ S1 ⊆ nodes M2
∧ (∀ s1 ∈ S1 . ∀ s2 ∈ S1 .

s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs ′ xs ′ V ′′ .
∀ io2 ∈ RP M2 s2 vs ′ xs ′ V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
∧ m < LB M2 M1 vs ′ xs ′ (TS M2 M1 Ω V m j ∪ V ) S1 Ω V ′′ )))

using ‹vs@(xr || ?yr) ∈ Lin M1 {?stfV @ xr}›
by blast

then obtain V ′′ S1 vs ′ xs ′ where RM-impl :
V ′′ ∈ N (vs@(xr || ?yr)) M1 V
vs@(xr || ?yr) = (vs ′@xs ′)
mcp (vs ′@xs ′) V ′′ vs ′

S1 ⊆ nodes M2
(∀ s1 ∈ S1 . ∀ s2 ∈ S1 .

s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs ′ xs ′ V ′′ .
∀ io2 ∈ RP M2 s2 vs ′ xs ′ V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
m < LB M2 M1 vs ′ xs ′ (TS M2 M1 Ω V m j ∪ V ) S1 Ω V ′′

by blast
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have ?stfV = mcp ′ (map fst (vs @ (xr || take (length xr) (map snd xs)))) V
by (metis (full-types) ‹length (take (length xr) (map snd xs)) = length xr›

‹mcp (map fst vs @ map fst xs) V (map fst vs)› ‹prefix xr (map fst xs)› map-append
map-fst-zip mcp ′-intro mcp-prefix-of-suffix)

have is-det-state-cover M2 V
using assms(4 ) by blast

moreover have well-formed M2
using assms(2 ) by auto

moreover have finite V
using det-state-cover-finite assms(4 ,2 ) by auto

ultimately have vs ∈ V ′′

vs = mcp ′ (vs @ (xr || take (length xr) (map snd xs))) V ′′

using N-mcp-prefix[OF ‹?stfV = mcp ′ (map fst (vs @ (xr || take (length xr) (map snd xs)))) V ›
‹V ′′ ∈ N (vs@(xr || ?yr)) M1 V ›, of M2 ]

by simp+

have vs ′ = vs
by (metis (no-types) ‹mcp (vs ′ @ xs ′) V ′′ vs ′›

‹vs = mcp ′ (vs @ (xr || take (length xr) (map snd xs))) V ′′›
‹vs @ (xr || take (length xr) (map snd xs)) = vs ′ @ xs ′› mcp ′-intro)

then have xs ′ = (xr || ?yr)
using ‹vs @ (xr || take (length xr) (map snd xs)) = vs ′ @ xs ′› by blast

have V ⊆ ?TS i
proof −

have 1 ≤ i
using ‹Suc j ≤ i› by linarith

then have ?TS 1 ⊆ ?TS i
using TS-subset by blast

then show ?thesis
by auto

qed

have ?stfV@xr ∈ ?C (Suc j)
using ‹?stfV@xr ∈ RM M2 M1 Ω V m (Suc j)› unfolding RM .simps by blast

— show that the prerequisites (Prereq) for LB are met by construction

have (∀ vs ′a∈V ′′. prefix vs ′a (vs ′ @ xs ′) −→ length vs ′a ≤ length vs ′)
using ‹mcp (vs ′ @ xs ′) V ′′ vs ′› by auto

moreover have atc-io-reduction-on-sets M1 (?TS j ∪ V ) Ω M2
proof −

have j < i
using ‹Suc j ≤ i› by auto

then have ?TS j ⊆ ?TS i
by (simp add: TS-subset)

then show ?thesis
using atc-io-reduction-on-subset

[OF ‹atc-io-reduction-on-sets M1 (TS M2 M1 Ω V m i) Ω M2 ›, of ?TS j]
by (meson Un-subset-iff ‹V ⊆ ?TS i› ‹atc-io-reduction-on-sets M1 (TS M2 M1 Ω V m i) Ω M2 ›

atc-io-reduction-on-subset)
qed

moreover have finite (?TS j ∪ V )
proof −

have finite (?TS j)
using TS-finite[OF ‹finite V ›, of M2 M1 Ω m j] assms(2 ) by auto

then show ?thesis
using ‹finite V › by blast

qed
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moreover have V ⊆ ?TS j ∪ V
by blast

moreover have (∀ p . (prefix p xs ′ ∧ p 6= xs ′) −→ map fst (vs ′ @ p) ∈ ?TS j ∪ V )
proof

fix p
show prefix p xs ′ ∧ p 6= xs ′ −→ map fst (vs ′ @ p) ∈ TS M2 M1 Ω V m j ∪ V
proof

assume prefix p xs ′ ∧ p 6= xs ′

have prefix (map fst (vs ′ @ p)) (map fst (vs ′ @ xs ′))
by (simp add: ‹prefix p xs ′ ∧ p 6= xs ′› map-mono-prefix)

have prefix (map fst (vs ′ @ p)) (?stfV @ xr)
using ‹length (take (length xr) (map snd xs)) = length xr›

‹prefix (map fst (vs ′ @ p)) (map fst (vs ′ @ xs ′))›
‹vs ′ = vs› ‹xs ′ = xr || take (length xr) (map snd xs)›

by auto
then have prefix (map fst vs ′ @ map fst p) (?stfV @ xr)

by simp
then have prefix (map fst p) xr

by (simp add: ‹vs ′ = vs›)

have ?stfV @ xr ∈ ?TS (Suc j)
proof (cases j)

case 0
then show ?thesis

using ‹map fst vs @ xr ∈ C M2 M1 Ω V m (Suc j)› by auto
next

case (Suc nat)
then show ?thesis

using TS .simps(3 ) ‹map fst vs @ xr ∈ C M2 M1 Ω V m (Suc j)› by blast
qed

have mcp (map fst vs @ xr) V (map fst vs)
using ‹mcp (map fst vs @ map fst xs) V (map fst vs)› ‹prefix xr (map fst xs)›

mcp-prefix-of-suffix
by blast

have map fst vs @ map fst p ∈ TS M2 M1 Ω V m (Suc j)
using TS-prefix-containment[OF ‹?stfV @ xr ∈ ?TS (Suc j)›

‹mcp (map fst vs @ xr) V (map fst vs)›
‹prefix (map fst p) xr›]

by assumption

have Suc (length xr) = (Suc j)
using C-index[OF ‹?stfV@xr ∈ ?C (Suc j)› ‹mcp (map fst vs @ xr) V (map fst vs)›]
by assumption

haveSuc (length p) < (Suc j)
proof −

have map fst xs ′ = xr
by (metis ‹xr = take (length xr) (map fst xs)›

‹xr || take (length xr) (map snd xs) = take (length xr) xs›
‹xs ′ = xr || take (length xr) (map snd xs)› take-map)

then show ?thesis
by (metis (no-types) Suc-less-eq ‹Suc (length xr) = Suc j› ‹prefix p xs ′ ∧ p 6= xs ′›

append-eq-conv-conj length-map nat-less-le prefixE prefix-length-le take-all)
qed

have mcp (map fst vs @ map fst p) V (map fst vs)
using ‹mcp (map fst vs @ xr) V (map fst vs)› ‹prefix (map fst p) xr› mcp-prefix-of-suffix
by blast

then have map fst vs @ map fst p ∈ ?C (Suc (length (map fst p)))
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using TS-index(2 )[OF ‹map fst vs @ map fst p ∈ TS M2 M1 Ω V m (Suc j)›] by auto

have map fst vs @ map fst p ∈ ?TS j
using TS-union[of M2 M1 Ω V m j]

proof −
have Suc (length p) ∈ {0 ..<Suc j}

using ‹Suc (length p) < Suc j› by force
then show ?thesis

by (metis UN-I ‹TS M2 M1 Ω V m j = (
⋃

j∈set [0 ..<Suc j]. C M2 M1 Ω V m j)›
‹map fst vs @ map fst p ∈ C M2 M1 Ω V m (Suc (length (map fst p)))›
length-map set-upt)

qed

then show map fst (vs ′ @ p) ∈ TS M2 M1 Ω V m j ∪ V
by (simp add: ‹vs ′ = vs›)

qed
qed

moreover have vs ′ @ xs ′ ∈ L M2 ∩ L M1
by (metis (no-types, lifting) IntI RM-impl(2 )

‹∀ xs ′∈C M2 M1 Ω V m (Suc j). Lin M1 {xs ′} ⊆ Lin M2 {xs ′}›
‹map fst vs @ xr ∈ C M2 M1 Ω V m (Suc j)›
‹vs @ (xr || take (length xr) (map snd xs)) ∈ Lin M1 {map fst vs @ xr}›
language-state-for-inputs-in-language-state subsetCE)

ultimately have Prereq M2 M1 vs ′ xs ′ (?TS j ∪ V ) S1 Ω V ′′

using RM-impl(4 ,5 ) unfolding Prereq.simps by blast

have V ′′ ∈ Perm V M1
using ‹V ′′ ∈ N (vs@(xr || ?yr)) M1 V › unfolding N .simps by blast

have ‹prefix (xr || ?yr) xs›
by (simp add: ‹xr || take (length xr) (map snd xs) = take (length xr) xs› take-is-prefix)

— show that furthermore neither Rep_Pre nor Rep_Cov holds

have ¬ Rep-Pre M2 M1 vs (xr || ?yr)
using minimal-sequence-to-failure-extending-implies-Rep-Pre

[OF ‹minimal-sequence-to-failure-extending V M1 M2 vs xs› assms(1 ,2 )
‹test-tools M2 M1 FAIL PM V Ω› RM-impl(1 )
‹prefix (xr || take (length xr) (map snd xs)) xs›]

by assumption
then have ¬ Rep-Pre M2 M1 vs ′ xs ′

using ‹vs ′ = vs› ‹xs ′ = xr || ?yr› by blast

have ¬ Rep-Cov M2 M1 V ′′ vs (xr || ?yr)
using minimal-sequence-to-failure-extending-implies-Rep-Cov

[OF ‹minimal-sequence-to-failure-extending V M1 M2 vs xs› assms(1 ,2 )
‹test-tools M2 M1 FAIL PM V Ω› RM-impl(1 )
‹prefix (xr || take (length xr) (map snd xs)) xs›]

by assumption
then have ¬ Rep-Cov M2 M1 V ′′ vs ′ xs ′

using ‹vs ′ = vs› ‹xs ′ = xr || ?yr› by blast

have vs ′@xs ′ ∈ L M1
using ‹vs @ (xr || take (length xr) (map snd xs)) ∈ L M1 ›

‹vs ′ = vs› ‹xs ′ = xr || take (length xr) (map snd xs)›
by blast

— therefore it is impossible to remove the prefix of the minimal sequence to a failure, as this would require M1 to
have more than m states
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have LB M2 M1 vs ′ xs ′ (?TS j ∪ V ) S1 Ω V ′′ ≤ card (nodes M1 )
using LB-count[OF ‹vs ′@xs ′ ∈ L M1 › assms(1 ,2 ,3 ) ‹test-tools M2 M1 FAIL PM V Ω›

‹V ′′ ∈ Perm V M1 › ‹Prereq M2 M1 vs ′ xs ′ (?TS j ∪ V ) S1 Ω V ′′›
‹¬ Rep-Pre M2 M1 vs ′ xs ′› ‹ ¬ Rep-Cov M2 M1 V ′′ vs ′ xs ′›]

by assumption
then have LB M2 M1 vs ′ xs ′ (?TS j ∪ V ) S1 Ω V ′′ ≤ m

using assms(3 ) by linarith

then show False
using ‹m < LB M2 M1 vs ′ xs ′ (?TS j ∪ V ) S1 Ω V ′′› by linarith

qed
qed

6.3 Main result
The following lemmata add to the previous result to show that some FSM M1 is a reduction of FSM M2 if and
only if it is a reduction on the test suite generated by the adaptive state counting algorithm for these FSMs.
lemma asc-soundness :

assumes OFSM M1
and OFSM M2

shows M1 � M2 −→ atc-io-reduction-on-sets M1 T Ω M2
using atc-io-reduction-on-sets-reduction assms by blast

lemma asc-main-theorem :
assumes OFSM M1
and OFSM M2
and asc-fault-domain M2 M1 m
and test-tools M2 M1 FAIL PM V Ω
and final-iteration M2 M1 Ω V m i

shows M1 � M2 ←→ atc-io-reduction-on-sets M1 (TS M2 M1 Ω V m i) Ω M2
by (metis asc-sufficiency assms(1−5 ) atc-io-reduction-on-sets-reduction)

end
theory ASC-Hoare

imports ASC-Sufficiency HOL−Hoare.Hoare-Logic
begin

7 Correctness of the Adaptive State Counting Algorithm in Hoare-
Logic

In this section we give an example implementation of the adaptive state counting algorithm in a simple WHILE-
language and prove that this implementation produces a certain output if and only if input FSM M1 is a reduction
of input FSM M2.
lemma atc-io-reduction-on-sets-from-obs :

assumes Lin M1 T ⊆ Lin M2 T
and (

⋃
io∈Lin M1 T . {io} × B M1 io Ω) ⊆ (

⋃
io∈Lin M2 T . {io} × B M2 io Ω)

shows atc-io-reduction-on-sets M1 T Ω M2
unfolding atc-io-reduction-on-sets.simps atc-io-reduction-on.simps

proof
fix iseq assume iseq ∈ T
have Lin M1 {iseq} ⊆ Lin M2 {iseq}

by (metis ‹iseq ∈ T› assms(1 ) bot.extremum insert-mono io-reduction-on-subset
mk-disjoint-insert)

moreover have ∀ io∈Lin M1 {iseq}. B M1 io Ω ⊆ B M2 io Ω
proof

fix io assume io ∈ Lin M1 {iseq}
then have io ∈ Lin M2 {iseq}
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using calculation by blast
show B M1 io Ω ⊆ B M2 io Ω
proof

fix x assume x ∈ B M1 io Ω

have io ∈ Lin M1 T
using ‹io ∈ Lin M1 {iseq}› ‹iseq ∈ T› by auto

moreover have (io,x) ∈ {io} × B M1 io Ω
using ‹x ∈ B M1 io Ω› by blast

ultimately have (io,x) ∈ (
⋃

io∈Lin M1 T . {io} × B M1 io Ω)
by blast

then have (io,x) ∈ (
⋃

io∈Lin M2 T . {io} × B M2 io Ω)
using assms(2 ) by blast

then have (io,x) ∈ {io} × B M2 io Ω
by blast

then show x ∈ B M2 io Ω
by blast

qed
qed
ultimately show Lin M1 {iseq} ⊆ Lin M2 {iseq}

∧ (∀ io∈Lin M1 {iseq}. B M1 io Ω ⊆ B M2 io Ω)
by linarith

qed

lemma atc-io-reduction-on-sets-to-obs :
assumes atc-io-reduction-on-sets M1 T Ω M2

shows Lin M1 T ⊆ Lin M2 T
and (

⋃
io∈Lin M1 T . {io} × B M1 io Ω) ⊆ (

⋃
io∈Lin M2 T . {io} × B M2 io Ω)

proof
fix x assume x ∈ Lin M1 T
show x ∈ Lin M2 T

using assms unfolding atc-io-reduction-on-sets.simps atc-io-reduction-on.simps
proof −

assume a1 : ∀ iseq∈T . Lin M1 {iseq} ⊆ Lin M2 {iseq}
∧ (∀ io∈Lin M1 {iseq}. B M1 io Ω ⊆ B M2 io Ω)

have f2 : x ∈ UNION T (language-state-for-input M1 (initial M1 ))
by (metis (no-types) ‹x ∈ Lin M1 T› language-state-for-inputs-alt-def )

obtain aas :: ′a list set ⇒ ( ′a list ⇒ ( ′a × ′b) list set) ⇒ ( ′a × ′b) list ⇒ ′a list
where
∀ x0 x1 x2 . (∃ v3 . v3 ∈ x0 ∧ x2 ∈ x1 v3 ) = (aas x0 x1 x2 ∈ x0 ∧ x2 ∈ x1 (aas x0 x1 x2 ))
by moura

then have ∀ ps f A. (ps /∈ UNION A f ∨ aas A f ps ∈ A ∧ ps ∈ f (aas A f ps))
∧ (ps ∈ UNION A f ∨ (∀ as. as /∈ A ∨ ps /∈ f as))

by blast
then show ?thesis

using f2 a1 by (metis (no-types) contra-subsetD language-state-for-input-alt-def
language-state-for-inputs-alt-def )

qed
next

show (
⋃

io∈Lin M1 T . {io} × B M1 io Ω) ⊆ (
⋃

io∈Lin M2 T . {io} × B M2 io Ω)
proof

fix iox assume iox ∈ (
⋃

io∈Lin M1 T . {io} × B M1 io Ω)
then obtain io x where iox = (io,x)

by blast

have io ∈ Lin M1 T
using ‹iox = (io, x)› ‹iox ∈ (

⋃
io∈Lin M1 T . {io} × B M1 io Ω)› by blast

have (io,x) ∈ {io} × B M1 io Ω
using ‹iox = (io, x)› ‹iox ∈ (

⋃
io∈Lin M1 T . {io} × B M1 io Ω)› by blast

then have x ∈ B M1 io Ω
by blast

then have x ∈ B M2 io Ω
using assms unfolding atc-io-reduction-on-sets.simps atc-io-reduction-on.simps
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by (metis (no-types, lifting) UN-E ‹io ∈ Lin M1 T› language-state-for-input-alt-def
language-state-for-inputs-alt-def subsetCE)

then have (io,x) ∈ {io} ×B M2 io Ω
by blast

then have (io,x) ∈ (
⋃

io∈Lin M2 T . {io} × B M2 io Ω)
using ‹io ∈ Lin M1 T› by auto

then show iox ∈ (
⋃

io∈Lin M2 T . {io} × B M2 io Ω)
using ‹iox = (io, x)› by auto

qed
qed

lemma atc-io-reduction-on-sets-alt-def :
shows atc-io-reduction-on-sets M1 T Ω M2 =

(Lin M1 T ⊆ Lin M2 T
∧ (

⋃
io∈Lin M1 T . {io} × B M1 io Ω)

⊆ (
⋃

io∈Lin M2 T . {io} × B M2 io Ω))
using atc-io-reduction-on-sets-to-obs[of M1 T Ω M2 ]
and atc-io-reduction-on-sets-from-obs[of M1 T M2 Ω]
by blast

lemma asc-algorithm-correctness:
VARS tsN cN rmN obs obsI obsΩ obsIΩ iter isReduction
{

OFSM M1 ∧ OFSM M2 ∧ asc-fault-domain M2 M1 m ∧ test-tools M2 M1 FAIL PM V Ω
}
tsN := {};
cN := V ;
rmN := {};
obs := Lin M2 cN ;
obsI := Lin M1 cN ;
obsΩ := (

⋃
io∈Lin M2 cN . {io} × B M2 io Ω);

obsIΩ := (
⋃

io∈Lin M1 cN . {io} × B M1 io Ω);
iter := 1 ;
WHILE (cN 6= {} ∧ obsI ⊆ obs ∧ obsIΩ ⊆ obsΩ)
INV {

0 < iter
∧ tsN = TS M2 M1 Ω V m (iter−1 )
∧ cN = C M2 M1 Ω V m iter
∧ rmN = RM M2 M1 Ω V m (iter−1 )
∧ obs = Lin M2 (tsN ∪ cN )
∧ obsI = Lin M1 (tsN ∪ cN )
∧ obsΩ = (

⋃
io∈Lin M2 (tsN ∪ cN ). {io} × B M2 io Ω)

∧ obsIΩ = (
⋃

io∈Lin M1 (tsN ∪ cN ). {io} × B M1 io Ω)
∧ OFSM M1 ∧ OFSM M2 ∧ asc-fault-domain M2 M1 m ∧ test-tools M2 M1 FAIL PM V Ω
}
DO

iter := iter + 1 ;
rmN := {xs ′ ∈ cN .
(¬ (Lin M1 {xs ′} ⊆ Lin M2 {xs ′}))
∨ (∀ io ∈ Lin M1 {xs ′} .

(∃ V ′′ ∈ N io M1 V .
(∃ S1 .
(∃ vs xs .

io = (vs@xs)
∧ mcp (vs@xs) V ′′ vs
∧ S1 ⊆ nodes M2
∧ (∀ s1 ∈ S1 . ∀ s2 ∈ S1 .

s1 6= s2 −→
(∀ io1 ∈ RP M2 s1 vs xs V ′′ .
∀ io2 ∈ RP M2 s2 vs xs V ′′ .

B M1 io1 Ω 6= B M1 io2 Ω ))
∧ m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′ ))))};
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tsN := tsN ∪ cN ;
cN := append-set (cN − rmN ) (inputs M2 ) − tsN ;
obs := obs ∪ Lin M2 cN ;
obsI := obsI ∪ Lin M1 cN ;
obsΩ := obsΩ ∪ (

⋃
io∈Lin M2 cN . {io} × B M2 io Ω);

obsIΩ := obsIΩ ∪ (
⋃

io∈Lin M1 cN . {io} × B M1 io Ω)
OD;
isReduction := ((obsI ⊆ obs) ∧ (obsIΩ ⊆ obsΩ))
{

isReduction = M1 � M2 — variable isReduction is used only as a return value, it is true if and only if M1 is a
reduction of M2
}

proof (vcg)
assume precond : OFSM M1 ∧ OFSM M2 ∧ asc-fault-domain M2 M1 m ∧ test-tools M2 M1 FAIL PM V Ω
have {} = TS M2 M1 Ω V m (1−1 )

V = C M2 M1 Ω V m 1
{} = RM M2 M1 Ω V m (1−1 )
Lin M2 V = Lin M2 ({} ∪ V )
Lin M1 V = Lin M1 ({} ∪ V )
(
⋃

io∈Lin M2 V . {io} × B M2 io Ω)
= (

⋃
io∈Lin M2 ({} ∪ V ). {io} × B M2 io Ω)

(
⋃

io∈Lin M1 V . {io} × B M1 io Ω)
= (

⋃
io∈Lin M1 ({} ∪ V ). {io} × B M1 io Ω)

using precond by auto
moreover have OFSM M1 ∧ OFSM M2 ∧ asc-fault-domain M2 M1 m ∧ test-tools M2 M1 FAIL PM V Ω

using precond by assumption
ultimately show 0 < (1 ::nat) ∧

{} = TS M2 M1 Ω V m (1 − 1 ) ∧
V = C M2 M1 Ω V m 1 ∧
{} = RM M2 M1 Ω V m (1 − 1 ) ∧
Lin M2 V = Lin M2 ({} ∪ V ) ∧
Lin M1 V = Lin M1 ({} ∪ V ) ∧
(
⋃

io∈Lin M2 V . {io} × B M2 io Ω)
= (

⋃
io∈Lin M2 ({} ∪ V ). {io} × B M2 io Ω) ∧

(
⋃

io∈Lin M1 V . {io} × B M1 io Ω)
= (

⋃
io∈Lin M1 ({} ∪ V ). {io} × B M1 io Ω) ∧

OFSM M1 ∧ OFSM M2 ∧ asc-fault-domain M2 M1 m ∧ test-tools M2 M1 FAIL PM V Ω
by linarith+

next
fix tsN cN rmN obs obsI obsΩ obsIΩ iter isReduction
assume precond : (0 < iter ∧

tsN = TS M2 M1 Ω V m (iter − 1 ) ∧
cN = C M2 M1 Ω V m iter ∧
rmN = RM M2 M1 Ω V m (iter − 1 ) ∧
obs = Lin M2 (tsN ∪ cN ) ∧
obsI = Lin M1 (tsN ∪ cN ) ∧
obsΩ = (

⋃
io∈Lin M2 (tsN ∪ cN ). {io} × B M2 io Ω) ∧

obsIΩ = (
⋃

io∈Lin M1 (tsN ∪ cN ). {io} × B M1 io Ω) ∧
OFSM M1 ∧ OFSM M2 ∧ asc-fault-domain M2 M1 m ∧ test-tools M2 M1 FAIL PM V Ω)
∧ cN 6= {} ∧ obsI ⊆ obs ∧ obsIΩ ⊆ obsΩ

then have 0 < iter
OFSM M1
OFSM M2
asc-fault-domain M2 M1 m
test-tools M2 M1 FAIL PM V Ω
cN 6= {}
obsI ⊆ obs
tsN = TS M2 M1 Ω V m (iter−1 )
cN = C M2 M1 Ω V m iter
rmN = RM M2 M1 Ω V m (iter−1 )
obs = Lin M2 (tsN ∪ cN )
obsI = Lin M1 (tsN ∪ cN )
obsΩ = (

⋃
io∈Lin M2 (tsN ∪ cN ). {io} × B M2 io Ω)

obsIΩ = (
⋃

io∈Lin M1 (tsN ∪ cN ). {io} × B M1 io Ω)
by linarith+
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obtain k where iter = Suc k
using gr0-implies-Suc[OF ‹0 < iter›] by blast

then have cN = C M2 M1 Ω V m (Suc k)
tsN = TS M2 M1 Ω V m k

using ‹cN = C M2 M1 Ω V m iter› ‹tsN = TS M2 M1 Ω V m (iter−1 )› by auto
have TS M2 M1 Ω V m iter = TS M2 M1 Ω V m (Suc k)

C M2 M1 Ω V m iter = C M2 M1 Ω V m (Suc k)
RM M2 M1 Ω V m iter = RM M2 M1 Ω V m (Suc k)

using ‹iter = Suc k› by presburger+

have rmN-calc[simp] : {xs ′ ∈ cN .
¬ io-reduction-on M1 {xs ′} M2 ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′. ∀ io2∈RP M2 s2 vs xs V ′′.

B M1 io1 Ω 6= B M1 io2 Ω)) ∧
m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)} =

RM M2 M1 Ω V m iter
proof −

have {xs ′ ∈ cN .
¬ io-reduction-on M1 {xs ′} M2 ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′. ∀ io2∈RP M2 s2 vs xs V ′′.

B M1 io1 Ω 6= B M1 io2 Ω)) ∧
m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)} =

{xs ′ ∈ C M2 M1 Ω V m (Suc k).
¬ io-reduction-on M1 {xs ′} M2 ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′. ∀ io2∈RP M2 s2 vs xs V ′′.

B M1 io1 Ω 6= B M1 io2 Ω)) ∧
m < LB M2 M1 vs xs ((TS M2 M1 Ω V m k) ∪ V ) S1 Ω V ′′)}

using ‹cN = C M2 M1 Ω V m (Suc k)› ‹tsN = TS M2 M1 Ω V m k› by blast

moreover have {xs ′ ∈ C M2 M1 Ω V m (Suc k).
¬ io-reduction-on M1 {xs ′} M2 ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
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mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′. ∀ io2∈RP M2 s2 vs xs V ′′.

B M1 io1 Ω 6= B M1 io2 Ω)) ∧
m < LB M2 M1 vs xs ((TS M2 M1 Ω V m k) ∪ V ) S1 Ω V ′′)} =

RM M2 M1 Ω V m (Suc k)
using RM .simps(2 )[of M2 M1 Ω V m k] by blast

ultimately have {xs ′ ∈ cN .
¬ io-reduction-on M1 {xs ′} M2 ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′. ∀ io2∈RP M2 s2 vs xs V ′′.

B M1 io1 Ω 6= B M1 io2 Ω)) ∧
m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)} =

RM M2 M1 Ω V m (Suc k)
by presburger

then show ?thesis
using ‹iter = Suc k› by presburger

qed
moreover have RM M2 M1 Ω V m iter = RM M2 M1 Ω V m (iter + 1 − 1 ) by simp
ultimately have rmN-calc ′ : {xs ′ ∈ cN .

¬ io-reduction-on M1 {xs ′} M2 ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′. ∀ io2∈RP M2 s2 vs xs V ′′.

B M1 io1 Ω 6= B M1 io2 Ω)) ∧
m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)} =

RM M2 M1 Ω V m (iter + 1 − 1 ) by presburger

have tsN ∪ cN = TS M2 M1 Ω V m (Suc k)
proof (cases k)

case 0
then show ?thesis

using ‹tsN = TS M2 M1 Ω V m k› ‹cN = C M2 M1 Ω V m (Suc k)› by auto
next

case (Suc nat)
then have TS M2 M1 Ω V m (Suc k) = TS M2 M1 Ω V m k ∪ C M2 M1 Ω V m (Suc k)

using TS .simps(3 ) by blast
moreover have tsN ∪ cN = TS M2 M1 Ω V m k ∪ C M2 M1 Ω V m (Suc k)

using ‹tsN = TS M2 M1 Ω V m k› ‹cN = C M2 M1 Ω V m (Suc k)› by auto
ultimately show ?thesis

by auto
qed
then have tsN-calc : tsN ∪ cN = TS M2 M1 Ω V m iter

using ‹iter = Suc k› by presburger

have cN-calc : append-set
(cN −
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{xs ′ ∈ cN .
¬ io-reduction-on M1 {xs ′} M2 ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN ) =
C M2 M1 Ω V m (iter + 1 )

proof −
have append-set

(cN −
{xs ′ ∈ cN .
¬ io-reduction-on M1 {xs ′} M2 ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN ) =
append-set
((C M2 M1 Ω V m iter) −
(RM M2 M1 Ω V m iter))
(inputs M2 ) −
(TS M2 M1 Ω V m iter)

using ‹cN = C M2 M1 Ω V m iter› ‹tsN ∪ cN = TS M2 M1 Ω V m iter› rmN-calc by presburger
moreover have append-set

((C M2 M1 Ω V m iter) −
(RM M2 M1 Ω V m iter))
(inputs M2 ) −
(TS M2 M1 Ω V m iter) = C M2 M1 Ω V m (iter + 1 )

proof −
have C M2 M1 Ω V m (iter + 1 ) = C M2 M1 Ω V m ((Suc k) + 1 )

using ‹iter = Suc k› by presburger+
moreover have (Suc k) + 1 = Suc (Suc k)

by simp
ultimately have C M2 M1 Ω V m (iter + 1 ) = C M2 M1 Ω V m (Suc (Suc k))

by presburger

have C M2 M1 Ω V m (Suc (Suc k))
= append-set (C M2 M1 Ω V m (Suc k) − RM M2 M1 Ω V m (Suc k)) (inputs M2 )
− TS M2 M1 Ω V m (Suc k)

using C .simps(3 )[of M2 M1 Ω V m k] by linarith
show ?thesis

using Suc-eq-plus1
‹C M2 M1 Ω V m (Suc (Suc k))
= append-set (C M2 M1 Ω V m (Suc k) − RM M2 M1 Ω V m (Suc k)) (inputs M2 )
− TS M2 M1 Ω V m (Suc k)›

‹iter = Suc k›
by presburger

158



qed

ultimately show ?thesis
by presburger

qed

have obs-calc : obs ∪
Lin M2
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN )) =

Lin M2
(tsN ∪ cN ∪
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN )))

proof −
have

∧
A. Lin M2 (tsN ∪ cN ∪ A) = obs ∪ Lin M2 A

by (metis (no-types) language-state-for-inputs-union precond)
then show ?thesis

by blast
qed

have obsI-calc : obsI ∪
Lin M1
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
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S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN )) =

Lin M1
(tsN ∪ cN ∪
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN )))

proof −
have

∧
A. Lin M1 (tsN ∪ cN ∪ A) = obsI ∪ Lin M1 A

by (metis (no-types) language-state-for-inputs-union precond)
then show ?thesis

by blast
qed

have obsΩ-calc : obsΩ ∪
(
⋃

io∈Lin M2
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN )).

{io} × B M2 io Ω) =
(
⋃

io∈Lin M2
(tsN ∪ cN ∪
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.
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io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN ))).

{io} × B M2 io Ω)
using ‹obs = Lin M2 (tsN ∪ cN )›

‹obsΩ = (
⋃

io∈Lin M2 (tsN ∪ cN ). {io} × B M2 io Ω)›
obs-calc

by blast

have obsIΩ-calc : obsIΩ ∪
(
⋃

io∈Lin M1
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN )).

{io} × B M1 io Ω) =
(
⋃

io∈Lin M1
(tsN ∪ cN ∪
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN ))).

{io} × B M1 io Ω)
using ‹obsI = Lin M1 (tsN ∪ cN )›

‹obsIΩ = (
⋃

io∈Lin M1 (tsN ∪ cN ). {io} × B M1 io Ω)›
obsI-calc

by blast
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have 0 < iter + 1
using ‹0 < iter› by simp

have tsN ∪ cN = TS M2 M1 Ω V m (iter + 1 − 1 )
using tsN-calc by simp

from ‹0 < iter + 1 ›
‹tsN ∪ cN = TS M2 M1 Ω V m (iter + 1 − 1 )›
cN-calc
rmN-calc ′

obs-calc
obsI-calc
obsΩ-calc
obsIΩ-calc
‹OFSM M1 ›
‹OFSM M2 ›
‹asc-fault-domain M2 M1 m›
‹test-tools M2 M1 FAIL PM V Ω›

show 0 < iter + 1 ∧
tsN ∪ cN = TS M2 M1 Ω V m (iter + 1 − 1 ) ∧
append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN ) =
C M2 M1 Ω V m (iter + 1 ) ∧
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′. ∀ io2∈RP M2 s2 vs xs V ′′.

B M1 io1 Ω 6= B M1 io2 Ω)) ∧
m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)} =

RM M2 M1 Ω V m (iter + 1 − 1 ) ∧
obs ∪
Lin M2
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
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S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN )) =

Lin M2
(tsN ∪ cN ∪
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN ))) ∧

obsI ∪
Lin M1
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN )) =

Lin M1
(tsN ∪ cN ∪
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧
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m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN ))) ∧

obsΩ ∪
(
⋃

io∈Lin M2
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN )).

{io} × B M2 io Ω) =
(
⋃

io∈Lin M2
(tsN ∪ cN ∪
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN ))).

{io} × B M2 io Ω) ∧
obsIΩ ∪
(
⋃

io∈Lin M1
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN )).

{io} × B M1 io Ω) =
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(
⋃

io∈Lin M1
(tsN ∪ cN ∪
(append-set
(cN −
{xs ′ ∈ cN .
¬ Lin M1 {xs ′} ⊆ Lin M2 {xs ′} ∨
(∀ io∈Lin M1 {xs ′}.
∃V ′′∈N io M1 V .
∃S1 vs xs.

io = vs @ xs ∧
mcp (vs @ xs) V ′′ vs ∧
S1 ⊆ nodes M2 ∧
(∀ s1∈S1 .
∀ s2∈S1 .

s1 6= s2 −→
(∀ io1∈RP M2 s1 vs xs V ′′.
∀ io2∈RP M2 s2 vs xs V ′′. B M1 io1 Ω 6= B M1 io2 Ω)) ∧

m < LB M2 M1 vs xs (tsN ∪ V ) S1 Ω V ′′)})
(inputs M2 ) −
(tsN ∪ cN ))).

{io} × B M1 io Ω) ∧
OFSM M1 ∧ OFSM M2 ∧ asc-fault-domain M2 M1 m ∧ test-tools M2 M1 FAIL PM V Ω

by linarith
next

fix tsN cN rmN obs obsI obsΩ obsIΩ iter isReduction
assume precond : (0 < iter ∧

tsN = TS M2 M1 Ω V m (iter − 1 ) ∧
cN = C M2 M1 Ω V m iter ∧
rmN = RM M2 M1 Ω V m (iter − 1 ) ∧
obs = Lin M2 (tsN ∪ cN ) ∧
obsI = Lin M1 (tsN ∪ cN ) ∧
obsΩ = (

⋃
io∈Lin M2 (tsN ∪ cN ). {io} × B M2 io Ω) ∧

obsIΩ = (
⋃

io∈Lin M1 (tsN ∪ cN ). {io} × B M1 io Ω) ∧
OFSM M1 ∧ OFSM M2 ∧ asc-fault-domain M2 M1 m ∧ test-tools M2 M1 FAIL PM V Ω) ∧
¬ (cN 6= {} ∧ obsI ⊆ obs ∧ obsIΩ ⊆ obsΩ)

then have 0 < iter
OFSM M1
OFSM M2
asc-fault-domain M2 M1 m
test-tools M2 M1 FAIL PM V Ω
cN = {} ∨ ¬ obsI ⊆ obs ∨ ¬ obsIΩ ⊆ obsΩ
tsN = TS M2 M1 Ω V m (iter−1 )
cN = C M2 M1 Ω V m iter
rmN = RM M2 M1 Ω V m (iter−1 )
obs = Lin M2 (tsN ∪ cN )
obsI = Lin M1 (tsN ∪ cN )
obsΩ = (

⋃
io∈Lin M2 (tsN ∪ cN ). {io} × B M2 io Ω)

obsIΩ = (
⋃

io∈Lin M1 (tsN ∪ cN ). {io} × B M1 io Ω)
by linarith+

show (obsI ⊆ obs ∧ obsIΩ ⊆ obsΩ) = M1 � M2
proof (cases cN = {})

case True
then have C M2 M1 Ω V m iter = {}

using ‹cN = C M2 M1 Ω V m iter› by auto

have is-det-state-cover M2 V
using ‹test-tools M2 M1 FAIL PM V Ω› by auto

then have [] ∈ V
using det-state-cover-initial[of M2 V ] by simp

then have V 6= {}
by blast

have Suc 0 < iter
proof (rule ccontr)
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assume ¬ Suc 0 < iter
then have iter = Suc 0

using ‹0 < iter› by auto
then have C M2 M1 Ω V m (Suc 0 ) = {}

using ‹C M2 M1 Ω V m iter = {}› by auto
moreover have C M2 M1 Ω V m (Suc 0 ) = V

by auto
ultimately showFalse

using ‹V 6= {}› by blast
qed

obtain k where iter = Suc k
using gr0-implies-Suc[OF ‹0 < iter›] by blast

then have Suc 0 < Suc k
using ‹Suc 0 < iter› by auto

then have 0 < k
by simp

then obtain k ′ where k = Suc k ′

using gr0-implies-Suc by blast
have iter = Suc (Suc k ′)

using ‹iter = Suc k› ‹k = Suc k ′› by simp

have TS M2 M1 Ω V m (Suc (Suc k ′)) = TS M2 M1 Ω V m (Suc k ′) ∪ C M2 M1 Ω V m (Suc (Suc k ′))
using TS .simps(3 )[of M2 M1 Ω V m k ′] by blast

then have TS M2 M1 Ω V m iter = TS M2 M1 Ω V m (Suc k ′)
using True ‹cN = C M2 M1 Ω V m iter› ‹iter = Suc (Suc k ′)› by blast

moreover have Suc k ′ = iter − 1
using ‹iter = Suc (Suc k ′)› by presburger

ultimately have TS M2 M1 Ω V m iter = TS M2 M1 Ω V m (iter − 1 )
by auto

then have tsN = TS M2 M1 Ω V m iter
using ‹tsN = TS M2 M1 Ω V m (iter−1 )› by simp

then have TS M2 M1 Ω V m iter = TS M2 M1 Ω V m (iter − 1 )
using ‹tsN = TS M2 M1 Ω V m (iter − 1 )› by auto

then have final-iteration M2 M1 Ω V m (iter−1 )
using ‹0 < iter› by auto

have M1 � M2 = atc-io-reduction-on-sets M1 tsN Ω M2
using asc-main-theorem[OF ‹OFSM M1 › ‹OFSM M2 ›

‹asc-fault-domain M2 M1 m›
‹test-tools M2 M1 FAIL PM V Ω›
‹final-iteration M2 M1 Ω V m (iter−1 )›]

using ‹tsN = TS M2 M1 Ω V m (iter − 1 )›
by blast

moreover have tsN ∪ cN = tsN
using ‹cN = {}› by blast

ultimately have M1 � M2 = atc-io-reduction-on-sets M1 (tsN ∪ cN ) Ω M2
by presburger

have obsI ⊆ obs ≡ Lin M1 (tsN ∪ cN ) ⊆ Lin M2 (tsN ∪ cN )
by (simp add: ‹obs = Lin M2 (tsN ∪ cN )› ‹obsI = Lin M1 (tsN ∪ cN )›)

have obsIΩ ⊆ obsΩ ≡ (
⋃

io∈Lin M1 (tsN ∪ cN ). {io} × B M1 io Ω)
⊆ (

⋃
io∈Lin M2 (tsN ∪ cN ). {io} × B M2 io Ω)

by (simp add: ‹obsIΩ = (
⋃

io∈Lin M1 (tsN ∪ cN ). {io} × B M1 io Ω)›
‹obsΩ = (

⋃
io∈Lin M2 (tsN ∪ cN ). {io} × B M2 io Ω)›)

have (obsI ⊆ obs ∧ obsIΩ ⊆ obsΩ) = atc-io-reduction-on-sets M1 (tsN ∪ cN ) Ω M2
proof

assume obsI ⊆ obs ∧ obsIΩ ⊆ obsΩ
show atc-io-reduction-on-sets M1 (tsN ∪ cN ) Ω M2

using atc-io-reduction-on-sets-from-obs[of M1 tsN ∪ cN M2 Ω]
using ‹obsI ⊆ obs ∧ obsIΩ ⊆ obsΩ› ‹obsI ⊆ obs ≡ Lin M1 (tsN ∪ cN ) ⊆ Lin M2 (tsN ∪ cN )›

‹obsIΩ ⊆ obsΩ ≡ (
⋃

io∈Lin M1 (tsN ∪ cN ). {io} × B M1 io Ω)
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⊆ (
⋃

io∈Lin M2 (tsN ∪ cN ). {io} × B M2 io Ω)›
by linarith

next
assume atc-io-reduction-on-sets M1 (tsN ∪ cN ) Ω M2
show obsI ⊆ obs ∧ obsIΩ ⊆ obsΩ

using atc-io-reduction-on-sets-to-obs[of M1 ‹tsN ∪ cN › Ω M2 ]
‹atc-io-reduction-on-sets M1 (tsN ∪ cN ) Ω M2 ›
‹obsI ⊆ obs ≡ Lin M1 (tsN ∪ cN ) ⊆ Lin M2 (tsN ∪ cN )›
‹obsIΩ ⊆ obsΩ ≡ (

⋃
io∈Lin M1 (tsN ∪ cN ). {io} × B M1 io Ω)

⊆ (
⋃

io∈Lin M2 (tsN ∪ cN ). {io} × B M2 io Ω)›
by blast

qed
then show ?thesis

using ‹M1 � M2 = atc-io-reduction-on-sets M1 (tsN ∪ cN ) Ω M2 › by linarith
next

case False

then have ¬ obsI ⊆ obs ∨ ¬ obsIΩ ⊆ obsΩ
using ‹cN = {} ∨ ¬ obsI ⊆ obs ∨ ¬ obsIΩ ⊆ obsΩ› by auto

have ¬ atc-io-reduction-on-sets M1 (tsN ∪ cN ) Ω M2
using atc-io-reduction-on-sets-to-obs[of M1 tsN ∪ cN Ω M2 ]

‹¬ obsI ⊆ obs ∨ ¬ obsIΩ ⊆ obsΩ› precond
by fastforce

have ¬ M1 � M2
proof

assume M1 � M2
have atc-io-reduction-on-sets M1 (tsN ∪ cN ) Ω M2

using asc-soundness[OF ‹OFSM M1 › ‹OFSM M2 ›] ‹M1 � M2 › by blast
then show False

using ‹¬ atc-io-reduction-on-sets M1 (tsN ∪ cN ) Ω M2 › by blast
qed

then show ?thesis
using ‹¬ obsI ⊆ obs ∨ ¬ obsIΩ ⊆ obsΩ› by blast

qed
qed

end
theory ASC-Example

imports ASC-Hoare
begin

8 Example product machines and properties
This section provides example FSMs and shows that the assumptions on the inputs of the adaptive state counting
algorithm are not vacuous.

8.1 Constructing FSMs from transition relations
This subsection provides a function to more easily create FSMs, only requiring a set of transition-tuples and an
initial state.
fun from-rel :: ( ′state × ( ′in × ′out) × ′state) set ⇒ ′state ⇒ ( ′in, ′out, ′state) FSM where
from-rel rel q0 = (| succ = λ io p . { q . (p,io,q) ∈ rel },

inputs = image (fst ◦ fst ◦ snd) rel,
outputs = image (snd ◦ fst ◦ snd) rel,
initial = q0 |)
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lemma nodes-from-rel : nodes (from-rel rel q0 ) ⊆ insert q0 (image (snd ◦ snd) rel)
(is nodes ?M ⊆ insert q0 (image (snd ◦ snd) rel))

proof −
have

∧
q io p . q ∈ succ ?M io p =⇒ q ∈ image (snd ◦ snd) rel

by force
have

∧
q . q ∈ nodes ?M =⇒ q = q0 ∨ q ∈ image (snd ◦ snd) rel

proof −
fix q assume q ∈ nodes ?M
then show q = q0 ∨ q ∈ image (snd ◦ snd) rel
proof (cases rule: FSM .nodes.cases)

case initial
then show ?thesis by auto

next
case (execute p a)
then show ?thesis

using ‹
∧

q io p . q ∈ succ ?M io p =⇒ q ∈ image (snd ◦ snd) rel› by blast
qed

qed
then show nodes ?M ⊆ insert q0 (image (snd ◦ snd) rel)

by blast
qed

fun well-formed-rel :: ( ′state × ( ′in × ′out) × ′state) set ⇒ bool where
well-formed-rel rel = (finite rel

∧ (∀ s1 x y . (x /∈ image (fst ◦ fst ◦ snd) rel
∨ y /∈ image (snd ◦ fst ◦ snd) rel)

−→ ¬(∃ s2 . (s1 ,(x,y),s2 ) ∈ rel))
∧ rel 6= {})

lemma well-formed-from-rel :
assumes well-formed-rel rel
shows well-formed (from-rel rel q0 ) (is well-formed ?M )

proof −
have nodes ?M ⊆ insert q0 (image (snd ◦ snd) rel)

using nodes-from-rel[of rel q0 ] by auto
moreover have finite (insert q0 (image (snd ◦ snd) rel))

using assms by auto
ultimately have finite (nodes ?M )

by (simp add: Finite-Set.finite-subset)
moreover have finite (inputs ?M ) finite (outputs ?M )

using assms by auto
ultimately have finite-FSM ?M

by auto

moreover have inputs ?M 6= {}
using assms by auto

moreover have outputs ?M 6= {}
using assms by auto

moreover have
∧

s1 x y . (x /∈ inputs ?M ∨ y /∈ outputs ?M ) −→ succ ?M (x,y) s1 = {}
using assms by auto

ultimately show ?thesis
by auto

qed

fun completely-specified-rel-over :: ( ′state × ( ′in × ′out) × ′state) set ⇒ ′state set ⇒ bool
where
completely-specified-rel-over rel nods = (∀ s1 ∈ nods .

∀ x ∈ image (fst ◦ fst ◦ snd) rel .
∃ y ∈ image (snd ◦ fst ◦ snd) rel .
∃ s2 . (s1 ,(x,y),s2 ) ∈ rel)
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lemma completely-specified-from-rel :
assumes completely-specified-rel-over rel (nodes ((from-rel rel q0 )))
shows completely-specified (from-rel rel q0 ) (is completely-specified ?M )
unfolding completely-specified.simps

proof
fix s1 assume s1 ∈ nodes (from-rel rel q0 )
show ∀ x∈inputs ?M . ∃ y∈outputs ?M . ∃ s2 . s2 ∈ succ ?M (x, y) s1
proof

fix x assume x ∈ inputs (from-rel rel q0 )
then have x ∈ image (fst ◦ fst ◦ snd) rel

using assms by auto

obtain y s2 where y ∈ image (snd ◦ fst ◦ snd) rel (s1 ,(x,y),s2 ) ∈ rel
using assms ‹s1 ∈ nodes (from-rel rel q0 )› ‹x ∈ image (fst ◦ fst ◦ snd) rel›
by (meson completely-specified-rel-over .elims(2 ))

then have y ∈ outputs (from-rel rel q0 ) s2 ∈ succ (from-rel rel q0 ) (x, y) s1
by auto

then show ∃ y∈outputs (from-rel rel q0 ). ∃ s2 . s2 ∈ succ (from-rel rel q0 ) (x, y) s1
by blast

qed
qed

fun observable-rel :: ( ′state × ( ′in × ′out) × ′state) set ⇒ bool where
observable-rel rel = (∀ io s1 . { s2 . (s1 ,io,s2 ) ∈ rel } = {}

∨ (∃ s2 . { s2 ′ . (s1 ,io,s2 ′) ∈ rel } = {s2}))

lemma observable-from-rel :
assumes observable-rel rel
shows observable (from-rel rel q0 ) (is observable ?M )

proof −
have

∧
io s1 . { s2 . (s1 ,io,s2 ) ∈ rel } = succ ?M io s1

by auto
then show ?thesis using assms by auto

qed

abbreviation OFSM-rel rel q0 ≡ well-formed-rel rel
∧ completely-specified-rel-over rel (nodes (from-rel rel q0 ))
∧ observable-rel rel

lemma OFMS-from-rel :
assumes OFSM-rel rel q0
shows OFSM (from-rel rel q0 )
by (metis assms completely-specified-from-rel observable-from-rel well-formed-from-rel)

8.2 Example FSMs and properties
abbreviation MS-rel :: (nat×(nat×nat)×nat) set ≡ {(0 ,(0 ,0 ),1 ), (0 ,(0 ,1 ),1 ), (1 ,(0 ,2 ),1 )}
abbreviation MS :: (nat,nat,nat) FSM ≡ from-rel MS-rel 0

abbreviation M I-rel :: (nat×(nat×nat)×nat) set ≡ {(0 ,(0 ,0 ),1 ), (0 ,(0 ,1 ),1 ), (1 ,(0 ,2 ),0 )}
abbreviation M I :: (nat,nat,nat) FSM ≡ from-rel M I-rel 0

lemma example-nodes :
nodes MS = {0 ,1} nodes M I = {0 ,1}

proof −
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have 0 ∈ nodes MS by auto
have 1 ∈ succ MS (0 ,0 ) 0 by auto
have 1 ∈ nodes MS

by (meson ‹0 ∈ nodes MS› ‹1 ∈ succ MS (0 , 0 ) 0 › succ-nodes)

have {0 ,1} ⊆ nodes MS

using ‹0 ∈ nodes MS› ‹1 ∈ nodes MS› by auto
moreover have nodes MS ⊆ {0 ,1}

using nodes-from-rel[of MS-rel 0 ] by auto
ultimately show nodes MS = {0 ,1}

by blast
next

have 0 ∈ nodes M I by auto
have 1 ∈ succ M I (0 ,0 ) 0 by auto
have 1 ∈ nodes M I

by (meson ‹0 ∈ nodes M I› ‹1 ∈ succ M I (0 , 0 ) 0 › succ-nodes)

have {0 ,1} ⊆ nodes M I

using ‹0 ∈ nodes M I› ‹1 ∈ nodes M I› by auto
moreover have nodes M I ⊆ {0 ,1}

using nodes-from-rel[of M I-rel 0 ] by auto
ultimately show nodes M I = {0 ,1}

by blast
qed

lemma example-OFSM :
OFSM MS OFSM M I

proof −
have well-formed-rel MS-rel

unfolding well-formed-rel.simps by auto

moreover have completely-specified-rel-over MS-rel (nodes (from-rel MS-rel 0 ))
unfolding completely-specified-rel-over .simps

proof
fix s1 assume (s1 ::nat) ∈ nodes (from-rel MS-rel 0 )
then have s1 ∈ (insert 0 (image (snd ◦ snd) MS-rel))

using nodes-from-rel[of MS-rel 0 ] by blast
moreover have completely-specified-rel-over MS-rel (insert 0 (image (snd ◦ snd) MS-rel))

unfolding completely-specified-rel-over .simps by auto
ultimately show ∀ x∈(fst ◦ fst ◦ snd) ‘ MS-rel.

∃ y∈(snd ◦ fst ◦ snd) ‘ MS-rel. ∃ s2 . (s1 , (x, y), s2 ) ∈ MS-rel
by simp

qed

moreover have observable-rel MS-rel
by auto

ultimately have OFSM-rel MS-rel 0
by auto

then show OFSM MS

using OFMS-from-rel[of MS-rel 0 ] by linarith
next

have well-formed-rel M I-rel
unfolding well-formed-rel.simps by auto

moreover have completely-specified-rel-over M I-rel (nodes (from-rel M I-rel 0 ))
unfolding completely-specified-rel-over .simps

proof
fix s1 assume (s1 ::nat) ∈ nodes (from-rel M I-rel 0 )
then have s1 ∈ (insert 0 (image (snd ◦ snd) M I-rel))

using nodes-from-rel[of M I-rel 0 ] by blast
have completely-specified-rel-over M I-rel (insert 0 (image (snd ◦ snd) M I-rel))

unfolding completely-specified-rel-over .simps by auto
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show ∀ x∈(fst ◦ fst ◦ snd) ‘ M I-rel.
∃ y∈(snd ◦ fst ◦ snd) ‘ M I-rel. ∃ s2 . (s1 , (x, y), s2 ) ∈ M I-rel

by (meson ‹completely-specified-rel-over M I-rel (insert 0 ((snd ◦ snd) ‘ M I-rel))›
‹s1 ∈ insert 0 ((snd ◦ snd) ‘ M I-rel)› completely-specified-rel-over .elims(2 ))

qed

moreover have observable-rel M I-rel
by auto

ultimately have OFSM-rel M I-rel 0
by auto

then show OFSM M I

using OFMS-from-rel[of M I-rel 0 ] by linarith
qed

lemma example-fault-domain : asc-fault-domain MS M I 2
proof −

have inputs MS = inputs M I

by auto
moreover have card (nodes M I) ≤ 2

using example-nodes(2 ) by auto
ultimately show asc-fault-domain MS M I 2

by auto
qed

abbreviation FAILI :: (nat×nat) ≡ (3 ,3 )
abbreviation PM I :: (nat, nat, nat×nat) FSM ≡ (|

succ = (λ a (p1 ,p2 ) . (if (p1 ∈ nodes MS ∧ p2 ∈ nodes M I ∧ (fst a ∈ inputs MS)
∧ (snd a ∈ outputs MS ∪ outputs M I))

then (if (succ MS a p1 = {} ∧ succ M I a p2 6= {})
then {FAILI}
else (succ MS a p1 × succ M I a p2 ))

else {})),
inputs = inputs MS ,
outputs = outputs MS ∪ outputs M I ,
initial = (initial MS , initial M I)
|)

lemma example-productF : productF MS M I FAILI PM I

proof −
have inputs MS = inputs M I

by auto
moreover have fst FAILI /∈ nodes MS

using example-nodes(1 ) by auto
moreover have snd FAILI /∈ nodes M I

using example-nodes(2 ) by auto
ultimately show ?thesis

unfolding productF .simps by blast
qed

abbreviation V I :: nat list set ≡ {[],[0 ]}

lemma example-det-state-cover : is-det-state-cover MS V I

proof −
have d-reaches MS (initial MS) [] (initial MS)

by auto
then have initial MS ∈ d-reachable MS (initial MS)

unfolding d-reachable.simps by blast

have d-reached-by MS (initial MS) [0 ] 1 [1 ] [0 ]
proof
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show length [0 ] = length [0 ] ∧
length [0 ] = length [1 ] ∧ path MS (([0 ] || [0 ]) || [1 ]) (initial MS)

∧ target (([0 ] || [0 ]) || [1 ]) (initial MS) = 1
by auto

have
∧

ys2 tr2 .
length [0 ] = length ys2
∧ length [0 ] = length tr2
∧ path MS (([0 ] || ys2 ) || tr2 ) (initial MS)
−→ target (([0 ] || ys2 ) || tr2 ) (initial MS) = 1

proof
fix ys2 tr2 assume length [0 ] = length ys2 ∧ length [0 ] = length tr2

∧ path MS (([0 ] || ys2 ) || tr2 ) (initial MS)
then have length ys2 = 1 length tr2 = 1 path MS (([0 ] || ys2 ) || tr2 ) (initial MS)

by auto
moreover obtain y2 where ys2 = [y2 ]

using ‹length ys2 = 1 ›
by (metis One-nat-def ‹length [0 ] = length ys2 ∧ length [0 ] = length tr2
∧ path MS (([0 ] || ys2 ) || tr2 ) (initial MS)› append.simps(1 ) append-butlast-last-id
butlast-snoc length-butlast length-greater-0-conv list.size(3 ) nat.simps(3 ))

moreover obtain t2 where tr2 = [t2 ]
using ‹length tr2 = 1 ›
by (metis One-nat-def ‹length [0 ] = length ys2 ∧ length [0 ] = length tr2
∧ path MS (([0 ] || ys2 ) || tr2 ) (initial MS)› append.simps(1 ) append-butlast-last-id
butlast-snoc length-butlast length-greater-0-conv list.size(3 ) nat.simps(3 ))

ultimately have path MS [((0 ,y2 ),t2 )] (initial MS)
by auto

then have t2 ∈ succ MS (0 ,y2 ) (initial MS)
by auto

moreover have
∧

y . succ MS (0 ,y) (initial MS) ⊆ {1}
by auto

ultimately have t2 = 1
by blast

show target (([0 ] || ys2 ) || tr2 ) (initial MS) = 1
using ‹ys2 = [y2 ]› ‹tr2 = [t2 ]› ‹t2 = 1 › by auto

qed
then show ∀ ys2 tr2 .

length [0 ] = length ys2 ∧ length [0 ] = length tr2
∧ path MS (([0 ] || ys2 ) || tr2 ) (initial MS)
−→ target (([0 ] || ys2 ) || tr2 ) (initial MS) = 1

by auto
qed

then have d-reaches MS (initial MS) [0 ] 1
unfolding d-reaches.simps by blast

then have 1 ∈ d-reachable MS (initial MS)
unfolding d-reachable.simps by blast

then have {0 ,1} ⊆ d-reachable MS (initial MS)
using ‹initial MS ∈ d-reachable MS (initial MS)› by auto

moreover have d-reachable MS (initial MS) ⊆ nodes MS

proof
fix s assume s∈d-reachable MS (initial MS)
then have s ∈ reachable MS (initial MS)

using d-reachable-reachable by auto
then show s ∈ nodes MS

by blast
qed
ultimately have d-reachable MS (initial MS) = {0 ,1}

using example-nodes(1 ) by blast

fix f ′ :: nat ⇒ nat list
let ?f = f ′( 0 := [], 1 := [0 ])
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have is-det-state-cover-ass MS ?f
unfolding is-det-state-cover-ass.simps

proof
show ?f (initial MS) = [] by auto
show ∀ s∈d-reachable MS (initial MS). d-reaches MS (initial MS) (?f s) s
proof

fix s assume s∈d-reachable MS (initial MS)
then have s ∈ reachable MS (initial MS)

using d-reachable-reachable by auto
then have s ∈ nodes MS

by blast
then have s = 0 ∨ s = 1

using example-nodes(1 ) by blast
then show d-reaches MS (initial MS) (?f s) s
proof

assume s = 0
then show d-reaches MS (initial MS) (?f s) s

using ‹d-reaches MS (initial MS) [] (initial MS)› by auto
next

assume s = 1
then show d-reaches MS (initial MS) (?f s) s

using ‹d-reaches MS (initial MS) [0 ] 1 › by auto
qed

qed
qed

moreover have V I = image ?f (d-reachable MS (initial MS))
using ‹d-reachable MS (initial MS) = {0 ,1}› by auto

ultimately show ?thesis
unfolding is-det-state-cover .simps by blast

qed

abbreviation ΩI ::(nat,nat) ATC set ≡ { Node 0 (λ y . Leaf ) }

lemma applicable-set MS ΩI

by auto

lemma example-test-tools : test-tools MS M I FAILI PM I V I ΩI

using example-productF example-det-state-cover by auto

lemma OFSM-not-vacuous :
∃ M :: (nat,nat,nat) FSM . OFSM M
using example-OFSM (1 ) by blast

lemma fault-domain-not-vacuous :
∃ (M2 ::(nat,nat,nat) FSM ) (M1 ::(nat,nat,nat) FSM ) m . asc-fault-domain M2 M1 m
using example-fault-domain by blast

lemma test-tools-not-vacuous :
∃ (M2 ::(nat,nat,nat) FSM )

(M1 ::(nat,nat,nat) FSM )
(FAIL::(nat×nat))
(PM ::(nat,nat,nat×nat) FSM )
(V ::(nat list set))
(Ω::(nat,nat) ATC set) . test-tools M2 M1 FAIL PM V Ω

proof (rule exI , rule exI )

173



show ∃ FAIL PM V Ω. test-tools MS M I FAIL PM V Ω
using example-test-tools by blast

qed

lemma precondition-not-vacuous :
shows ∃ (M2 ::(nat,nat,nat) FSM )

(M1 ::(nat,nat,nat) FSM )
(FAIL::(nat×nat))
(PM ::(nat,nat,nat×nat) FSM )
(V ::(nat list set))
(Ω::(nat,nat) ATC set)
(m :: nat) .

OFSM M1 ∧ OFSM M2 ∧ asc-fault-domain M2 M1 m ∧ test-tools M2 M1 FAIL PM V Ω
proof (intro exI )

show OFSM M I ∧ OFSM MS ∧ asc-fault-domain MS M I 2 ∧ test-tools MS M I FAILI PM I V I ΩI

using example-OFSM (2 ,1 ) example-fault-domain example-test-tools by linarith
qed

end
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