Formalisation of an Adaptive State Counting Algorithm

Robert Sachtleben

September 1, 2025

Abstract

This entry provides a formalisation of a refinement of an adaptive state counting algorithm, used to test for reduction between finite state machines. The algorithm has been originally presented by Hierons in [2] and was slightly refined by Sachtleben et al. in [3]. Definitions for finite state machines and adaptive test cases are given and many useful theorems are derived from these. The algorithm is formalised using mutually recursive functions, for which it is proven that the generated test suite is sufficient to test for reduction against finite state machines of a certain fault domain. Additionally, the algorithm is specified in a simple WHILE-language and its correctness is shown using Hoare-logic.

Contents

1	Fini	ite state machines	2			
	1.1	FSMs as transition systems	2			
	1.2	Language	2			
	1.3	Product machine for language intersection	4			
	1.4	Required properties				
	1.5	States reached by a given IO-sequence				
	1.6	D-reachability				
	1.7	Deterministic state cover	18			
	1.8	IO reduction				
	1.9	Language subsets for input sequences				
		Sequences to failures				
		Minimal sequence to failure extending				
	1.12	Complete test suite derived from the product machine	30			
2	Pro	duct machines with an additional fail state	31			
	2.1	Sequences to failure in the product machine	46			
3	Adaptive test cases 56					
Ü	3.1	Properties of ATC-reactions				
	3.2	Applicability				
	3.3	Application function IO				
	3.4	R-distinguishability				
	3.5	Response sets				
	3.6	Characterizing sets				
	3.7	Reduction over ATCs				
	3.8	Reduction over ATCs applied after input sequences				
4	The lower bound function 6					
	4.1	Permutation function Perm				
	4.2	Helper predicates				
	4.3	Function R				
	4.4	Function RP				
	4.5	Conditions for the result of LB to be a valid lower bound				
	4.6	Function LB				
	4.7	Validity of the result of LB constituting a lower bound	της			

5	Test suite generated by the Adaptive State Counting Algorithm			
	5.1 Maximu	ım length contained prefix	. 111	
		n N		
		ns TS, C, RM		
		roperties of the test suite calculation functions		
		eration		
6	Sufficiency of the test suite to test for reduction			
	6.1 Propert	ies of minimal sequences to failures extending the deterministic state cover	. 139	
	6.2 Sufficier	ncy of the test suite to test for reduction	. 145	
		sult		
7	Correctness of the Adaptive State Counting Algorithm in Hoare-Logic			
8	Example pr	roduct machines and properties	167	
	8.1 Constru	cting FSMs from transition relations	. 167	
		e FSMs and properties		
\mathbf{th}	eory FSM			
im	$_{ m nports}$			
,	$Transition ext{-}Syste$	ms-and- $Automata. Sequence$ - Zip		
′	$Transition ext{-}Syste$	ms-and- $Automata$. $Transition$ - $System$		
-	$Transition ext{-}Syste$	ms-and- $Automata$. $Transition$ - $System$ - $Extra$		
′	$Transition ext{-}Syste$	ms-and- $Automata$. $Transition$ - $System$ - $Construction$		
be	egin			

1 Finite state machines

We formalise finite state machines as a 4-tuples, omitting the explicit formulation of the state set, as it can easily be calculated from the successor function. This definition does not require the successor function to be restricted to the input or output alphabet, which is later expressed by the property well_formed, together with the finiteness of the state set.

```
record ('in, 'out, 'state) FSM = succ :: ('in × 'out) \Rightarrow 'state \Rightarrow 'state set inputs :: 'in set outputs :: 'out set initial :: 'state
```

1.1 FSMs as transition systems

We interpret FSMs as transition systems with a singleton initial state set, based on [1].

```
global-interpretation FSM: transition-system-initial \lambda a p. snd a — execute \lambda a p. snd a \in succ A (fst a) p — enabled \lambda p. p = initial A — initial for A defines path = FSM.path and run = FSM.run and reachable = FSM.reachable and nodes = FSM.nodes by this abbreviation size-FSM M \equiv card (nodes\ M) notation size-FSM (\langle (|-|) \rangle)
```

1.2 Language

The following definitions establish basic notions for FSMs similarly to those of nondeterministic finite automata as defined in [1].

In particular, the language of an FSM state are the IO-parts of the paths in the FSM enabled from that state.

```
abbreviation target \equiv FSM.target abbreviation states \equiv FSM.states
```

```
abbreviation trace \equiv FSM.trace
abbreviation successors :: ('in, 'out, 'state, 'more) FSM-scheme \Rightarrow 'state \Rightarrow 'state set where
    successors \equiv FSM.successors \ TYPE('in) \ TYPE('out) \ TYPE('more)
lemma states-alt-def: states r p = map \ snd \ r
  by (induct r arbitrary: p) (auto)
lemma trace-alt-def: trace r p = smap \ snd \ r
  by (coinduction arbitrary: r p) (auto)
definition language-state :: ('in, 'out, 'state) FSM \Rightarrow 'state
                              \Rightarrow ('in \times 'out) list set (\langle LS \rangle)
  where
  language-state M q \equiv \{map \ fst \ r \mid r \ . \ path \ M \ r \ q\}
The language of an FSM is the language of its initial state.
abbreviation L M \equiv LS M (initial M)
\textbf{lemma} \ \textit{language-state-alt-def} : \textit{LS} \ \textit{M} \ \textit{q} = \{\textit{io} \mid \textit{io} \ \textit{tr} \ . \ \textit{path} \ \textit{M} \ (\textit{io} \mid \mid \textit{tr}) \ \textit{q} \land \textit{length} \ \textit{io} = \textit{length} \ \textit{tr}\}
proof -
  have LS M q \subseteq \{ io \mid io \ tr \ . \ path \ M \ (io \mid \mid tr) \ q \land length \ io = length \ tr \ \}
  proof
    fix xr assume xr-assm: xr \in LS M q
    then obtain r where r-def : map fst r = xr path M r q
      unfolding language-state-def by auto
    then obtain xs \ ys where xr-split : xr = xs \mid\mid ys
                                       length xs = length ys
                                       length xs = length xr
     by (metis length-map zip-map-fst-snd)
    then have (xs \mid\mid ys) \in \{ io \mid io \ tr \ . \ path \ M \ (io \mid\mid tr) \ q \land length \ io = length \ tr \ \}
    proof -
     have f1: xs \mid\mid ys = map \ fst \ r
        by (simp\ add:\ r\text{-}def(1)\ xr\text{-}split(1))
      then have f2: path M ((xs || ys) || take (min (length (xs || ys)) (length (map snd r)))
                                                  (map \ snd \ r)) \ q
        by (simp \ add: \ r\text{-}def(2))
     have length (xs || ys) = length
                                  (take\ (min\ (length\ (xs\ ||\ ys))\ (length\ (map\ snd\ r)))\ (map\ snd\ r))
        using f1 by force
     then show ?thesis
        using f2 by blast
    then show xr \in \{ io \mid io \ tr \ . \ path \ M \ (io \mid \mid tr) \ q \land length \ io = length \ tr \ \}
      using xr-split by metis
  moreover have \{ io \mid io \ tr \ . \ path \ M \ (io \mid \mid tr) \ q \land length \ io = length \ tr \ \} \subseteq LS \ M \ q
  proof
    fix xs assume xs-assm: xs \in \{ io \mid io \ tr \ . \ path \ M \ (io \mid \mid tr) \ q \land length \ io = length \ tr \ \}
    then obtain ys where ys-def: path M (xs || ys) q length xs = length ys
     by auto
    then have xs = map fst (xs || ys)
     by auto
    then show xs \in LS M q
     using ys-def unfolding language-state-def by blast
  ultimately show ?thesis
    \mathbf{by} auto
qed
lemma language-state[intro]:
  assumes path M(w \mid\mid r) q length w = length r
  shows w \in LS M q
  using assms unfolding language-state-def by force
```

```
lemma language-state-elim[elim]:
 assumes w \in LS M q
 obtains r
 where path M (w || r) q length w = length r
 using assms unfolding language-state-def by (force iff: split-zip-ex)
lemma language-state-split:
 assumes w1 @ w2 \in LS M q
 obtains tr1 tr2
 where path M (w1 || tr1) q length w1 = length tr1
      path M (w2 \parallel tr2) (target (w1 \parallel tr1) q) length w2 = length tr2
proof -
  obtain tr where tr-def: path M ((w1 @ w2) || tr) q length (w1 @ w2) = length tr
   using assms by blast
 let ?tr1 = take (length w1) tr
 let ?tr2 = drop (length w1) tr
 have tr-split: ?tr1 @ ?tr2 = tr
  by auto
 then show ?thesis
 proof -
   have f1: length w1 + length w2 = length tr
    using tr-def(2) by auto
   then have f2: length w2 = length tr - length w1
    by presburger
   then have length w1 = length (take (length w1) tr)
    using f1 by (metis (no-types) tr-split diff-add-inverse2 length-append length-drop)
   then show ?thesis
    using f2 by (metis (no-types) FSM.path-append-elim length-drop that tr-def(1) zip-append1)
 qed
qed
\mathbf{lemma}\ \mathit{language-state-prefix}:
 assumes w1 @ w2 \in LS M q
shows w1 \in LS M q
 using assms by (meson language-state language-state-split)
lemma succ-nodes:
 fixes A :: ('a, 'b, 'c) FSM
 and w :: ('a \times 'b)
 assumes q2 \in succ \ A \ w \ q1
 and
         q1 \in nodes A
shows q2 \in nodes A
proof -
 obtain x y where w = (x,y)
   by (meson surj-pair)
 then have q2 \in successors \ A \ q1
   using assms by auto
 then have q2 \in reachable A q1
   by blast
 then have q2 \in reachable A (initial A)
   using assms by blast
 then show q2 \in nodes A
   by blast
qed
lemma states-target-index :
 assumes i < length p
 shows (states p q1)! i = target (take (Suc i) p) q1
 using assms by auto
```

1.3 Product machine for language intersection

The following describes the construction of a product machine from two FSMs M1 and M2 such that the language of the product machine is the intersection of the language of M1 and the language of M2.

```
definition product :: ('in, 'out, 'state1) FSM \Rightarrow ('in, 'out, 'state2) FSM \Rightarrow
  ('in, 'out, 'state1 \times 'state2) FSM where
  product \ A \ B \equiv
  (
   succ = \lambda \ a \ (p_1, \ p_2). \ succ \ A \ a \ p_1 \times succ \ B \ a \ p_2,
   inputs = inputs A \cup inputs B,
   outputs = outputs A \cup outputs B,
   initial = (initial A, initial B)
lemma product-simps[simp]:
  succ\ (product\ A\ B)\ a\ (p_1,\ p_2) = succ\ A\ a\ p_1\ \times\ succ\ B\ a\ p_2
  inputs (product A B) = inputs A \cup inputs B
  outputs (product A B) = outputs A \cup outputs B
  initial (product A B) = (initial A, initial B)
  unfolding product-def by simp+
lemma product-target[simp]:
  assumes length w = length r_1 length r_1 = length r_2
 shows target (w \parallel r_1 \parallel r_2) (p_1, p_2) = (target (w \parallel r_1) p_1, target (w \parallel r_2) p_2)
  using assms by (induct arbitrary: p_1 p_2 rule: list-induct3) (auto)
lemma product-path[iff]:
  assumes length w = length r_1 length r_1 = length r_2
 \mathbf{shows}\ \mathit{path}\ (\mathit{product}\ A\ B)\ (w\ ||\ r_1\ ||\ r_2)\ (p_1,\ p_2) \longleftrightarrow \mathit{path}\ A\ (w\ ||\ r_1)\ p_1\ \land\ \mathit{path}\ B\ (w\ ||\ r_2)\ p_2
 using assms by (induct arbitrary: p_1 p_2 rule: list-induct3) (auto)
lemma product-language-state[simp]: LS (product A B) (q1,q2) = LS A q1 \cap LS B q2
 by (fastforce iff: split-zip)
lemma product-nodes:
  nodes\ (product\ A\ B)\subseteq nodes\ A\times nodes\ B
proof
  fix q assume q \in nodes (product A B)
 then show q \in nodes \ A \times nodes \ B
  proof (induction rule: FSM.nodes.induct)
   case (initial p)
   then show ?case by auto
  next
   case (execute p a)
   then have fst p \in nodes A \ snd \ p \in nodes B
   have snd \ a \in (succ \ A \ (fst \ a) \ (fst \ p)) \times (succ \ B \ (fst \ a) \ (snd \ p))
     using execute by auto
   then have fst (snd a) \in succ A (fst a) (fst p)
             snd\ (snd\ a) \in succ\ B\ (fst\ a)\ (snd\ p)
     by auto
   have fst (snd a) \in nodes A
     using \langle fst \ p \in nodes \ A \rangle \langle fst \ (snd \ a) \in succ \ A \ (fst \ a) \ (fst \ p) \rangle
     by (metis FSM.nodes.simps fst-conv snd-conv)
   moreover have snd (snd a) \in nodes B
     using \langle snd \ p \in nodes \ B \rangle \langle snd \ (snd \ a) \in succ \ B \ (fst \ a) \ (snd \ p) \rangle
     by (metis FSM.nodes.simps fst-conv snd-conv)
   ultimately show ?case
     by (simp add: mem-Times-iff)
  qed
qed
```

1.4 Required properties

FSMs used by the adaptive state counting algorithm are required to satisfy certain properties which are introduced in here. Most notably, the observability property (see function observable) implies the uniqueness of certain paths and hence allows for several stronger variations of previous results.

```
fun finite-FSM :: ('in, 'out, 'state) FSM \Rightarrow bool where
 finite-FSM M = (finite (nodes M))
                \wedge finite (inputs M)
                \land finite (outputs M))
fun observable :: ('in, 'out, 'state) FSM ⇒ bool where
  observable M = (\forall t . \forall s1 . ((succ M) t s1 = \{\})
                             \vee (\exists \ s2 \ . \ (succ \ M) \ t \ s1 = \{s2\}))
fun completely-specified :: ('in, 'out, 'state) FSM \Rightarrow bool where
  completely-specified M = (\forall s1 \in nodes M : \forall x \in inputs M .
                           \exists \ y \in \mathit{outputs}\ M\ .
                             \exists s2 . s2 \in (succ M) (x,y) s1)
fun well-formed :: ('in, 'out, 'state) FSM \Rightarrow bool where
  well-formed M = (finite-FSM M)
                  \land (\forall s1 \ x \ y \ . \ (x \notin inputs \ M \lor y \notin outputs \ M)
                                 \longrightarrow succ \ M \ (x,y) \ s1 = \{\}
                  \land inputs M \neq \{\}
                  \land outputs M \neq \{\}\}
abbreviation OFSM M \equiv well-formed M
                     \land\ observable\ M
                      \land completely-specified M
lemma OFSM-props[elim!]:
 assumes OFSM M
shows well-formed M
     observable\ M
     completely-specified M using assms by auto
lemma set-of-succs-finite:
 assumes well-formed M
          q \in nodes M
 and
shows finite (succ M io q)
\mathbf{proof}\ (\mathit{rule}\ \mathit{ccontr})
  assume infinite (succ M io q)
  moreover have succ\ M\ io\ q\subseteq nodes\ M
   using assms by (simp add: subsetI succ-nodes)
  ultimately have infinite (nodes M)
   using infinite-super by blast
 then show False
   using assms by auto
qed
\mathbf{lemma}\ \mathit{well-formed-path-io-containment}:
 assumes well-formed M
          path M p q
  and
shows set (map\ fst\ p) \subseteq (inputs\ M \times outputs\ M)
using assms proof (induction p arbitrary: q)
case Nil
  then show ?case by auto
next
  case (Cons a p)
 have fst \ a \in (inputs \ M \times outputs \ M)
  proof (rule ccontr)
   assume fst \ a \notin inputs \ M \times outputs \ M
   then have fst\ (fst\ a) \notin inputs\ M \lor snd\ (fst\ a) \notin outputs\ M
     by (metis SigmaI prod.collapse)
   then have succ\ M\ (fst\ a)\ q = \{\}
     using Cons by (metis prod.collapse well-formed.elims(2))
   moreover have (snd \ a) \in succ \ M \ (fst \ a) \ q
     using Cons by auto
   ultimately show False
     by auto
  qed
```

```
moreover have set (map\ fst\ p) \subseteq (inputs\ M \times outputs\ M)
    using Cons by blast
  ultimately show ?case
    \mathbf{by} \ \mathit{auto}
qed
lemma path-input-containment:
  assumes well-formed M
  and
           path M p q
shows set (map\ fst\ (map\ fst\ p))\subseteq inputs\ M
using assms proof (induction p arbitrary: q rule: rev-induct)
  case Nil
  then show ?case by auto
\mathbf{next}
  case (snoc \ a \ p)
  have set (map\ fst\ (p\ @\ [a]))\subseteq (inputs\ M\times outputs\ M)
    using well-formed-path-io-containment[OF snoc.prems] by assumption
  then have (fst \ a) \in (inputs \ M \times outputs \ M)
    by auto
  then have fst (fst a) \in inputs M
    by auto
  moreover have set (map\ fst\ (map\ fst\ p))\subseteq inputs\ M
    using snoc.IH[OF\ snoc.prems(1)]
    \mathbf{using}\ snoc.prems(2)\ \mathbf{by}\ blast
  ultimately show ?case
    by simp
qed
lemma path-state-containment:
  assumes path M p q
           q \in nodes M
shows set (map \ snd \ p) \subseteq nodes \ M
  \mathbf{using} \ assms \ \mathbf{by} \ (\mathit{metis} \ \mathit{FSM}.\mathit{nodes-states} \ \mathit{states-alt-def})
\mathbf{lemma}\ language\text{-}state\text{-}inputs:
  assumes well-formed M
           io \in language\text{-state } M g
shows set (map\ fst\ io) \subseteq inputs\ M
proof -
  obtain tr where path M (io || tr) q length tr = length io
    using assms(2) by auto
  show ?thesis
    by (metis (no-types)
        \langle \bigwedge thesis. \ (\bigwedge tr. \ \llbracket path \ M \ (io \mid \mid tr) \ q; \ length \ tr = \ length \ io \rrbracket \Longrightarrow thesis) \Longrightarrow thesis \rangle
        assms(1) map-fst-zip path-input-containment)
qed
lemma set-of-paths-finite:
  assumes well-formed M
           q1 \in nodes M
shows finite \{p : path \ M \ p \ q1 \land target \ p \ q1 = q2 \land length \ p \leq k \}
proof -
  \mathbf{let} \ ?trs = \{ \ tr \ . \ set \ tr \subseteq nodes \ M \ \land \ length \ tr \le k \ \}
  let ?ios = \{ io : set \ io \subseteq inputs \ M \times outputs \ M \land length \ io \le k \}
  let ?iotrs = image (\lambda (io,tr) . io || tr) (?ios × ?trs)
 let ?paths = \{p : path \ M \ p \ q1 \land target \ p \ q1 = q2 \land length \ p \leq k \}
  have finite (inputs M \times outputs M)
    using assms by auto
  then have finite ?ios
    using assms by (simp add: finite-lists-length-le)
```

```
moreover have finite ?trs
   using assms by (simp add: finite-lists-length-le)
  ultimately have finite ?iotrs
   by auto
  moreover have ?paths \subseteq ?iotrs
  proof
   \mathbf{fix}\ p\ \mathbf{assume}\ p\text{-}assm:\ p\in\{\ p\ .\ path\ M\ p\ q1\ \land\ target\ p\ q1\ =\ q2\ \land\ length\ p\le k\ \}
   then obtain io tr where p-split: p = io \mid \mid tr \land length io = length tr
      using that by (metis (no-types) length-map zip-map-fst-snd)
   then have io \in ?ios
     using well-formed-path-io-containment
   proof -
     have f1: path M p q1 \wedge target p q1 = q2 \wedge length p \leq k
       using p-assm by force
     then have set io \subseteq inputs M \times outputs M
       by (metis (no-types) assms(1) map-fst-zip p-split well-formed-path-io-containment)
     then show ?thesis
       using f1 by (simp add: p-split)
   qed
   moreover have tr \in ?trs using p-split
   proof -
     have f1: path M (io || tr) q1 \wedge target (io || tr) q1 = q2
                 \land length (io \mid \mid tr) \leq k \text{ using } \forall p \in \{p. path M p q1\}
                 \land target \ p \ q1 = q2 \land length \ p \leq k \rangle \ p-split by force
     then have f2: length tr \leq k by (simp add: p-split)
     have set tr \subseteq nodes M
       using f1 by (metis (no-types) assms(2) length-map p-split path-state-containment
                     zip-eq zip-map-fst-snd)
     then show ?thesis
       using f2 by blast
   ged
   ultimately show p \in ?iotrs
     using p-split by auto
  qed
  ultimately show ?thesis
   using Finite-Set.finite-subset by blast
qed
{f lemma} non-distinct-duplicate-indices:
 assumes \neg distinct xs
shows \exists i1 \ i2 \ . \ i1 \neq i2 \land xs \ ! \ i1 = xs \ ! \ i2 \land i1 \leq length \ xs \land i2 \leq length \ xs
 \mathbf{using}\ assms\ \mathbf{by}\ (meson\ distinct\text{-}conv\text{-}nth\ less\text{-}imp\text{-}le)
\mathbf{lemma}\ reaching\text{-}path\text{-}without\text{-}repetition:
  assumes well-formed M
 and
           q2 \in reachable M q1
 and
            q1 \in nodes M
shows \exists p. path M p q1 \land target p q1 = q2 \land distinct (q1 # states p q1)
  have shorten-nondistinct: \forall p. (path M p q1 \land target p q1 = q2 \land \neg distinct (q1 \# states p q1))
              \longrightarrow (\exists p' . path M p' q1 \land target p' q1 = q2 \land length p' < length p)
  proof
   \mathbf{fix} p
   show (path M p q1 \wedge target p q1 = q2 \wedge \neg distinct (q1 # states p q1))
               \longrightarrow (\exists p'. path M p' q1 \land target p' q1 = q2 \land length p' < length p)
     assume assm: path \ M \ p \ q1 \ \land \ target \ p \ q1 = q2 \ \land \ \neg \ distinct \ (q1 \ \# \ states \ p \ q1)
     then show (\exists p'. path \ M \ p' \ q1 \land target \ p' \ q1 = q2 \land length \ p' < length \ p)
     proof (cases \ q1 \in set \ (states \ p \ q1))
       case True
       have \exists i1 . target (take i1 p) q1 = q1 \land i1 \leq length p \land i1 > 0
       proof (rule ccontr)
```

```
assume \neg (\exists i1. target (take i1 p) q1 = q1 \land i1 \leq length p \land i1 > 0)
    then have \neg (\exists i1 . (states p q1) ! i1 = q1 \land i1 \leq length (states p q1))
      by (metis True in-set-conv-nth less-eq-Suc-le scan-length scan-nth zero-less-Suc)
    then have q1 \notin set (states p \ q1)
      by (meson in-set-conv-nth less-imp-le)
    then show False
      using True by auto
   qed
   then obtain i1 where i1-def: target (take i1 p) q1 = q1 \wedge i1 \leq length p \wedge i1 > 0
  then have path M (take i1 p) q1
    using assm by (metis FSM.path-append-elim append-take-drop-id)
  moreover have path M (drop i1 p) q1
    using i1-def by (metis FSM.path-append-elim append-take-drop-id assm)
   ultimately have path M (drop i1 p) q1 \wedge (target (drop i1 p) q1 = q2)
    using i1-def by (metis (no-types) append-take-drop-id assm fold-append o-apply)
  moreover have length (drop i1 p) < length p
    using i1-def by auto
  ultimately show ?thesis
    using assms by blast
next
  {f case}\ {\it False}
  then have assm': path \ M \ p \ q1 \ \land \ target \ p \ q1 = q2 \ \land \ \neg \ distinct \ (states \ p \ q1)
    using assm by auto
  have \exists i1 \ i2 \ . \ i1 \neq i2 \land target (take i1 p) \ q1 = target (take i2 p) \ q1
                 \land i1 \leq length \ p \land i2 \leq length \ p
   proof (rule ccontr)
    assume \neg (\exists i1 \ i2 \ . \ i1 \neq i2 \land target (take i1 p) \ q1 = target (take i2 p) \ q1
                         \land i1 \leq length \ p \land i2 \leq length \ p)
    then have \neg (\exists i1 \ i2 \ . \ i1 \neq i2 \land (states \ p \ q1) \ ! \ i1 = (states \ p \ q1) \ ! \ i2
                          \land i1 \leq length (states p q1) \land i2 \leq length (states p q1))
      \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{Suc-leI}\ \mathit{assm'}\ \mathit{distinct-conv-nth}\ \mathit{nat.inject}
          scan-length scan-nth)
    then have distinct (states p q1)
      using non-distinct-duplicate-indices by blast
    then show False
      using assm' by auto
   qed
   then obtain i1 i2 where i-def: i1 < i2 \land target (take i1 p) q1 = target (take i2 p) q1
                                  \land i1 \leq length \ p \land i2 \leq length \ p
    by (metis nat-neq-iff)
   then have path M (take i1 p) q1
    using assm by (metis FSM.path-append-elim append-take-drop-id)
   moreover have path M (drop i2 p) (target (take i2 p) q1)
    by (metis FSM.path-append-elim append-take-drop-id assm)
   ultimately have path M ((take i1 p) @ (drop i2 p)) q1
                   \land (target ((take i1 p) @ (drop i2 p)) q1 = q2)
    using i-def assm
    \mathbf{by}\ (\mathit{metis}\ \mathit{FSM}.\mathit{path-append}\ \mathit{append-take-drop-id}\ \mathit{fold-append}\ \mathit{o-apply})
   moreover have length ((take\ i1\ p)\ @\ (drop\ i2\ p)) < length\ p
    using i-def by auto
   ultimately have path M ((take i1 p) @ (drop i2 p)) q1
                   \wedge target ((take i1 p) @ (drop i2 p)) q1 = q2
                   \land length ((take i1 p) @ (drop i2 p)) < length p
    by simp
   then show ?thesis
    using assms by blast
```

```
qed
   qed
  qed
  obtain p where p-def : path M p q1 \wedge target p q1 = q2
   using assms by auto
 let ?paths = \{p' : (path M p' q1 \land target p' q1 = q2 \land length p' \leq length p)\}
 let ?minPath = arg\text{-}min\ length\ (\lambda\ io\ .\ io\ \in\ ?paths)
 have ?paths \neq empty
   using p-def by auto
  moreover have finite ?paths
   using assms by (simp add: set-of-paths-finite)
  ultimately have minPath-def: ?minPath \in ?paths \land (\forall p' \in ?paths . length ?minPath \leq length p')
   by (meson arg-min-nat-lemma equals0I)
  moreover have distinct (q1 \# states ?minPath q1)
  proof (rule ccontr)
   assume \neg distinct (q1 \# states ?minPath q1)
   then have \exists p'. path Mp'q1 \land target p'q1 = q2 \land length p' < length ?minPath
     using shorten-nondistinct minPath-def by blast
   then show False
     using minPath-def using arg-min-nat-le dual-order.strict-trans1 by auto
  \mathbf{qed}
  ultimately show ?thesis by auto
qed
{\bf lemma}\ observable\text{-}path\text{-}unique[simp]:
 assumes io \in LS M q
          observable\ M
 and
           path \ M \ (io \mid\mid tr1) \ q \ length \ io = length \ tr1
 and
          path M (io || tr2) q length io = length tr2
 and
shows tr1 = tr2
proof (rule ccontr)
 assume tr-assm: tr1 \neq tr2
  then have state-diff: (states (io || tr1) q) \neq (states (io || tr2) q)
   by (metis assms(4) assms(6) map-snd-zip states-alt-def)
  show False
  using assms tr-assm proof (induction io arbitrary: q tr1 tr2)
   case Nil
   then show ?case using Nil
     \mathbf{by} \ simp
  next
   case (Cons io-hd io-tl)
   then obtain tr1-hd tr1-tl tr2-hd tr2-tl where tr-split : tr1 = tr1-hd # tr1-tl
                                                        \wedge tr2 = tr2-hd # tr2-tl
     by (metis length-0-conv neq-Nil-conv)
   have p1: path M ([io-hd] || [tr1-hd]) q
     using Cons.prems tr-split by auto
   have p2: path M ([io-hd] || [tr2-hd]) q
     using Cons.prems tr-split by auto
   \mathbf{have}\ \mathit{tr}\text{-}\mathit{hd}\text{-}\mathit{eq}:\mathit{tr}\textit{1}\text{-}\mathit{hd}=\mathit{tr}\textit{2}\text{-}\mathit{hd}
     using Cons.prems unfolding observable.simps
   proof -
     assume \forall t \ s1. \ succ \ M \ t \ s1 = \{\} \lor (\exists \ s2. \ succ \ M \ t \ s1 = \{s2\})
     then show ?thesis
       by (metis (no-types) p1 p2 FSM.path-cons-elim empty-iff prod.sel(1) prod.sel(2) singletonD
           zip-Cons-Cons)
   qed
```

```
then show ?thesis
     using Cons.IH Cons.prems(3) Cons.prems(4) Cons.prems(5) Cons.prems(6) Cons.prems(7) assms(2)
          tr-split by auto
 qed
qed
lemma \ observable-path-unique-ex[elim] :
 assumes observable M
         io \in LS M q
 and
obtains tr
where \{t : path M (io || t) \ q \land length \ io = length \ t\} = \{tr\}
proof -
 obtain tr where tr-def: path M (io || tr) q length io = length tr
   using assms by auto
 then have \{ t : path M (io || t) \ q \land length io = length t \} \neq \{ \}
   by blast
 moreover have \forall t \in \{t : path M (io || t) | q \land length io = length t\}. t = tr
   using assms tr-def by auto
 ultimately show ?thesis
   using that by auto
qed
lemma well-formed-product[simp] :
 assumes well-formed M1
 and
         well-formed M2
shows well-formed (product M2 M1) (is well-formed ?PM)
unfolding well-formed.simps proof
 have finite (nodes M1) finite (nodes M2)
   using assms by auto
 then have finite (nodes M2 \times nodes M1)
   by simp
 moreover have nodes ?PM \subseteq nodes M2 \times nodes M1
   using product-nodes assms by blast
 ultimately show finite-FSM ?PM
   using infinite-subset assms by auto
next
 have inputs ?PM = inputs M2 \cup inputs M1
      outputs ?PM = outputs M2 \cup outputs M1
 then show (\forall s1 \ x \ y. \ x \notin inputs ?PM \lor y \notin outputs ?PM \longrightarrow succ ?PM (x, y) \ s1 = \{\})
                                                   \land inputs ?PM \neq \{\} \land outputs ?PM \neq \{\}
   using assms by auto
qed
```

1.5 States reached by a given IO-sequence

Function io_targets collects all states of an FSM reached from a given state by a given IO-sequence. Notably, for any observable FSM, this set contains at most one state.

```
fun io-targets :: ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow ('in \times 'out) list \Rightarrow 'state set where io-targets M q io = { target (io || tr) q | tr . path M (io || tr) q \wedge length io = length tr } lemma io-target-implies-L :
   assumes q \in io-targets M (initial M) io shows io \in L M
proof —
   obtain tr where path M (io || tr) (initial M)
        length tr = length io
        target (io || tr) (initial M) = q
   using assms by auto
   then show ?thesis by auto
ged
```

```
lemma io-target-from-path:
 assumes path M(w || tr) q
           length w = length tr
 and
shows target (w \mid\mid tr) \ q \in io\text{-targets } M \ q \ w
 using assms by auto
{f lemma}\ io\mbox{-} targets\mbox{-} observable\mbox{-} singleton\mbox{-} ex:
 assumes observable M
          io \in LS M q1
 and
shows \exists q2 . io-targets M q1 io = { q2 }
proof -
  obtain tr where tr-def: \{t : path M (io || t) \ q1 \land length \ io = length \ t\} = \{tr\}
   using assms observable-path-unique-ex by (metis (mono-tags, lifting))
  then have io-targets M q1 io = \{ target (io || tr) q1 \}
   \mathbf{by}\ \mathit{fastforce}
 then show ?thesis
   by blast
\mathbf{qed}
{f lemma}\ io\mbox{-} targets\mbox{-} observable\mbox{-} singleton\mbox{-} ob:
 assumes observable M
 and
           io \in LS M q1
obtains q2
  where io-targets M q1 io = \{q2\}
proof -
  obtain tr where tr-def: \{t : path M (io || t) q1 \land length io = length t\} = \{tr\}
   \mathbf{using}\ assms\ observable\text{-}path\text{-}unique\text{-}ex\ \mathbf{by}\ (metis\ (mono\text{-}tags,\ lifting))
 then have io-targets M q1 io = { target (io || tr) q1 }
   by fastforce
 then show ?thesis using that by blast
\mathbf{lemma}\ \textit{io-targets-elim}[\textit{elim}]:
 assumes p \in io-targets M \neq io
obtains tr
where target (io || tr) q = p \land path M (io || tr) q \land length io = length tr
  using assms unfolding io-targets.simps by force
lemma io-targets-reachable:
 assumes q2 \in io-targets M q1 io
 shows q2 \in reachable M q1
 using assms unfolding io-targets.simps by blast
{f lemma}\ io\text{-}targets\text{-}nodes:
  assumes q2 \in io\text{-targets } M \text{ } q1 \text{ } io
  and
          q1 \in nodes M
shows q2 \in nodes M
 using assms by auto
{f lemma}\ observable-io\text{-}targets\text{-}split:
  assumes observable M
 and io-targets M q1 (vs @ xs) = \{q3\}
 and io-targets M q1 vs = \{q2\}
shows io-targets M q2 xs = \{q3\}
proof -
 have vs @ xs \in LS M q1
   using assms(2) by force
  then obtain trV trX where tr-def:
       path \ M \ (vs \mid\mid trV) \ q1 \ length \ vs = length \ trV
       path M (xs | trX) (target (vs | trV) q1) length xs = length trX
   using language-state-split[of vs xs M q1] by auto
  then have tgt-V: target (vs || trV) q1 = q2
   using assms(3) by auto
  then have path-X : path M (xs | | trX) q2 \wedge length xs = length trX
```

```
using tr-def by auto
 have tgt-all: target (vs @ xs || trV @ trX) q1 = q3
 proof -
   have f1: \exists cs. \ q3 = target \ (vs @ xs || cs) \ q1
                 \land path M (vs @ xs || cs) q1 \land length (vs @ xs) = length cs
     using assms(2) by auto
   have length (vs @ xs) = length trV + length trX
     by (simp\ add:\ tr\text{-}def(2)\ tr\text{-}def(4))
   then have length (vs @ xs) = length (trV @ trX)
     by simp
   then show ?thesis
     using f1 by (metis FSM.path-append \langle vs @ xs \in LS \ M \ q1 \rangle \ assms(1) observable-path-unique
                 tr\text{-}def(1) tr\text{-}def(2) tr\text{-}def(3) zip\text{-}append)
 qed
 then have target ((vs \mid\mid trV) \otimes (xs \mid\mid trX)) q1 = q3
   using tr-def by simp
 then have target (xs || trX) q2 = q3
   using tqt-V by auto
 then have q3 \in io-targets M q2 xs
   using path-X by auto
 then show ?thesis
   by (metis (no-types) <observable M> path-X insert-absorb io-targets-observable-singleton-ex
       language-state singleton-insert-inj-eq')
qed
{f lemma}\ observable-io\text{-}target\text{-}unique\text{-}target:
 assumes observable M
 and
          io-targets M q1 io = \{q2\}
 and
          path M (io || tr) q1
 and
          length io = length tr
shows target (io || tr) q1 = q2
 using assms by auto
lemma target-in-states:
 assumes length io = length tr
          length io > 0
 shows last (states (io || tr) q) = target (io || tr) q
proof -
 have 0 < length tr
   using assms(1) assms(2) by presburger
 then show ?thesis
   by (simp add: FSM.target-alt-def assms(1) states-alt-def)
qed
lemma target-alt-def:
 assumes length io = length tr
 shows length io = 0 \implies target (io \mid \mid tr) q = q
       length io > 0 \Longrightarrow target (io || tr) q = last tr
 show length io = 0 \implies target (io || tr) q = q by simp
 show length io > 0 \implies target (io || tr) q = last tr
   \mathbf{by}\ (\textit{metis assms last-ConsR length-greater-0-conv map-snd-zip scan-last states-alt-def})
qed
{f lemma} obs-target-is-io-targets:
 assumes observable M
 and
          path M (io || tr) q
 and
          length io = length tr
shows io-targets M q io = {target (io || tr) q}
 by (metis\ assms(1)\ assms(2)\ assms(3)\ io-targets-observable-singleton-ex\ language-state
     observable-io-target-unique-target)
```

```
lemma io-target-target:
 assumes io-targets M q1 io = \{q2\}
 and
          path M (io || tr) q1
 and
          length io = length tr
shows target (io || tr) q1 = q2
proof -
 have target (io || tr) q1 \in io-targets M q1 io using assms(2) assms(3) by auto
 then show ?thesis using assms(1) by blast
qed
\mathbf{lemma}\ index-last-take:
 assumes i < length xs
 shows xs ! i = last (take (Suc i) xs)
 by (simp add: assms take-Suc-conv-app-nth)
lemma path-last-io-target :
 assumes path M (xs \mid\mid tr) q
          length xs = length tr
 and
 and
          length xs > 0
shows last tr \in io-targets M \neq xs
proof -
 have last tr = target (xs || tr) q
   by (metis assms(2) assms(3) map-snd-zip states-alt-def target-in-states)
 then show ?thesis using assms(1) assms(2) by auto
qed
lemma path-prefix-io-targets:
 assumes path M (xs \mid\mid tr) q
 and
          length xs = length tr
 and
          length xs > 0
shows last (take\ (Suc\ i)\ tr) \in io\text{-targets}\ M\ q\ (take\ (Suc\ i)\ xs)
proof -
 have path M (take (Suc i) xs || take (Suc i) tr) q
   by (metis (no-types) FSM.path-append-elim append-take-drop-id assms(1) take-zip)
 then show ?thesis
   using assms(2) assms(3) path-last-io-target by fastforce
qed
\mathbf{lemma}\ states	ext{-}index	ext{-}io	ext{-}target:
 assumes i < length xs
 and
          path M (xs || tr) q
          length xs = length tr
 and
          length xs > 0
 and
shows (states (xs || tr) q) ! i \in io-targets M q (take (Suc i) xs)
proof
 have (states (xs || tr) q) ! i = last (take (Suc i) (states (xs || tr) q))
   by (metis assms(1) assms(3) map-snd-zip states-alt-def index-last-take)
 then have (states (xs || tr) q) ! i = last (states (take (Suc i) xs || take (Suc i) tr) q)
   by (simp add: take-zip)
  then have (states\ (xs\ ||\ tr)\ q)\ !\ i = last\ (take\ (Suc\ i)\ tr)
   by (simp\ add:\ assms(3)\ states-alt-def)
 moreover have last (take\ (Suc\ i)\ tr) \in io\text{-targets}\ M\ q\ (take\ (Suc\ i)\ xs)
   by (meson assms(2) assms(3) assms(4) path-prefix-io-targets)
  ultimately show ?thesis
   by simp
\mathbf{qed}
{\bf lemma}\ observable - io-targets-append:
 assumes observable M
 and io-targets M q1 vs = \{q2\}
 and io-targets M q2 xs = \{q3\}
```

```
shows io-targets M q1 (vs@xs) = \{q3\}
proof -
 obtain trV where path \ M \ (vs \mid\mid trV) \ q1 \land length \ trV = length \ vs \land target \ (vs \mid\mid trV) \ q1 = q2
   by (metis assms(2) io-targets-elim singletonI)
 moreover obtain trX where path M (xs || trX) q2 \land length trX = length xs
                          \wedge target (xs \mid\mid trX) q2 = q3
   by (metis assms(3) io-targets-elim singletonI)
  ultimately have path M (vs @ xs || trV @ trX) q1 \land length (trV @ trX) = length (vs @ xs)
                 \wedge target (vs @ xs || trV @ trX) q1 = q3
   by auto
 then show ?thesis
   by (metis assms(1) obs-target-is-io-targets)
qed
lemma io-path-states-prefix:
 assumes observable M
 and path M (io1 || tr1) q
 and length tr1 = length io1
 and path M (io2 || tr2) q
 and length tr2 = length io2
 and prefix io1 io2
shows tr1 = take (length tr1) tr2
proof -
 let ?tr1' = take (length tr1) tr2
 let ?io1' = take (length tr1) io2
 have path M (?io1' || ?tr1') q
   by (metis FSM.path-append-elim append-take-drop-id assms(4) take-zip)
 have length ?tr1' = length ?io1'
   using assms (5) by auto
 have ?io1' = io1
 proof -
   have \forall ps \ psa. \ \neg \ prefix \ (ps::('a \times 'b) \ list) \ psa \lor length \ psa
     using prefix-length-le by blast
   then have length (take (length tr1) io2) = length io1
     using assms(3) assms(6) min.absorb2 by auto
   then show ?thesis
     by (metis assms(6) min.cobounded2 min-def-raw prefix-length-prefix
        prefix-order.dual-order.antisym take-is-prefix)
 show tr1 = ?tr1'
   by (metis \langle length (take (length tr1) tr2) = length (take (length tr1) io2) \rangle
       \langle path \ M \ (take \ (length \ tr1) \ io2 \ || \ take \ (length \ tr1) \ tr2) \ q \rangle \langle take \ (length \ tr1) \ io2 = io1 \rangle
       assms(1) \ assms(2) \ assms(3) \ language-state \ observable-path-unique)
qed
\mathbf{lemma}\ observable - io\text{-}targets\text{-}suffix:
 assumes observable M
 and io-targets M q1 vs = \{q2\}
 and io-targets M q1 (vs@xs) = \{q3\}
shows io-targets M q2 xs = \{q3\}
proof -
 have prefix vs (vs@xs)
   by auto
 obtain trV where path M (vs || trV) q1 \wedge length trV = length vs \wedge target (vs || trV) q1 = q2
   by (metis \ assms(2) \ io-targets-elim \ singletonI)
  moreover obtain trVX where path M (vs@xs || trVX) q1
                            \land length trVX = length (vs@xs) \land target (vs@xs || trVX) q1 = q3
   by (metis \ assms(3) \ io-targets-elim \ singletonI)
```

```
ultimately have trV = take (length trV) trVX
   using io-path-states-prefix [OF\ assms(1)\ -\ -\ -\ \cdot\ \langle prefix\ vs\ (vs@xs)\rangle, of trV\ q1\ trVX] by auto
 show ?thesis
   by (meson \ assms(1) \ assms(2) \ assms(3) \ observable-io-targets-split)
qed
lemma observable-io-target-is-singleton[simp] :
 assumes observable M
          p \in io-targets M \neq io
shows io-targets M q io = \{p\}
proof -
 have io \in LS M q
   using assms(2) by auto
 then obtain p' where io-targets M q io = \{p'\}
   using assms(1) by (meson io-targets-observable-singleton-ex)
 then show ?thesis
   using assms(2) by simp
qed
lemma observable-path-prefix:
 assumes observable M
 and
          path M (io || tr) q
          length\ io = length\ tr
 and
          path \ M \ (ioP \mid\mid trP) \ q
 and
          \mathit{length}\ \mathit{ioP} = \mathit{length}\ \mathit{trP}
 and
 and
          prefix ioP io
shows trP = take (length ioP) tr
proof -
 have ioP-def: ioP = take (length ioP) io
   using assms(6) by (metis\ append-eq\text{-}conv\text{-}conj\ prefix})
 then have take (length ioP) (io || tr) = take (length ioP) io || take (length ioP) tr
   using take-zip by blast
 moreover have path M (take (length ioP) (io || tr)) q
   using assms by (metis FSM.path-append-elim append-take-drop-id)
  ultimately have path M (take (length ioP) io || take (length ioP) tr) q
                 \land length (take (length ioP) io) = length (take (length ioP) tr)
   using assms(3) by auto
 then have path M (ioP || take (length ioP) tr) q \wedge length ioP = length (take (length ioP) tr)
   using assms(3) using ioP-def by auto
 then show ?thesis
   by (meson\ assms(1)\ assms(4)\ assms(5)\ language-state\ observable-path-unique)
qed
lemma io-targets-succ:
 assumes q2 \in io\text{-targets } M \ q1 \ [xy]
 shows q2 \in succ \ M \ xy \ q1
proof -
 obtain tr where tr-def: target ([xy] || tr) q1 = q2
                       path \ M \ ([xy] \mid | tr) \ q1
                       length [xy] = length tr
   using assms by auto
 have length tr = Suc 0
   using \langle length | [xy] = length | tr \rangle by auto
  then obtain q2' where tr = \lceil q2' \rceil
   by (metis Suc-length-conv length-0-conv)
  then have target ([xy] || tr) q1 = q2'
   by auto
  then have q2' = q2
   using \langle target ([xy] || tr) q1 = q2 \rangle by simp
  then have path M ([xy] || [q2]) q1
   using tr-def(2) \langle tr = [q2'] \rangle by auto
  then have path M[(xy,q2)] q1
```

```
show ?thesis
proof (cases rule: FSM.path.cases[of M [(xy,q2)] q1])
case nil
show ?case
using <path M [(xy,q2)] q1> by simp

next
case cons
show snd (xy, q2) \in succ M (fst (xy, q2)) q1 \Longrightarrow path M [] (snd (xy, q2))
\Longrightarrow q2 \in succ M xy q1
by auto
qed
qed
```

1.6 D-reachability

A state of some FSM is d-reached (deterministically reached) by some input sequence if any sequence in the language of the FSM with this input sequence reaches that state. That state is then called d-reachable.

```
abbreviation d-reached-by M p xs q tr ys \equiv
                   ((length \ xs = length \ ys \land length \ xs = length \ tr)
                   \land (path M ((xs || ys) || tr) p) \land target ((xs || ys) || tr) p = q)
                   \land (\forall ys2 tr2 . (length xs = length ys2 \land length xs = length tr2
                   \land path M ((xs || ys2) || tr2) p) \longrightarrow target ((xs || ys2) || tr2) p = q))
fun d-reaches :: ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow 'in list \Rightarrow 'state \Rightarrow bool where
  d-reaches M p xs q = (\exists tr ys . d-reached-by M p xs q tr ys)
fun d-reachable :: ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow 'state set where
  d-reachable M p = \{ q : (\exists xs : d-reaches M p xs q) \}
lemma d-reaches-unique [elim]:
 assumes d-reaches M p xs q1
         d-reaches M p xs q2
shows q1 = q2
using assms unfolding d-reaches.simps by blast
lemma d-reaches-unique-cases[simp] : \{q : d-reaches M (initial M) xs q \} = \{\}
                                     \vee (\exists q2 . \{ q . d\text{-reaches } M \text{ (initial } M) \text{ } xs \text{ } q \} = \{ q2 \})
 unfolding d-reaches.simps by blast
lemma d-reaches-unique-obtain[simp]:
  assumes d-reaches M (initial M) xs q
shows \{ p : d\text{-reaches } M \text{ (initial } M) \text{ } xs \text{ } p \} = \{ q \}
  using assms unfolding d-reaches.simps by blast
\mathbf{lemma} d-reaches-io-target:
  assumes d-reaches M p xs q
           length ys = length xs
 and
shows io-targets M p (xs || ys) \subseteq \{q\}
  fix q' assume q' \in io\text{-targets } M p \ (xs \mid\mid ys)
 then obtain trQ where path\ M\ ((xs\ ||\ ys)\ ||\ trQ)\ p\ \land\ length\ (xs\ ||\ ys) = length\ trQ
  moreover obtain trD ysD where d-reached-by M p xs q trD ysD using assms(1)
   by auto
  ultimately have target ((xs \mid\mid ys) \mid\mid trQ) p = q
   by (simp\ add:\ assms(2))
  then show q' \in \{q\}
   using \langle d\text{-reached-by } M \ p \ xs \ q \ trD \ ysD \rangle \langle q' \in io\text{-targets } M \ p \ (xs \mid\mid ys) \rangle \ assms(2) by auto
ged
lemma d-reachable-reachable : d-reachable M p \subseteq reachable M p
  unfolding d-reaches.simps d-reachable.simps by blast
```

1.7 Deterministic state cover

The deterministic state cover of some FSM is a minimal set of input sequences such that every d-reachable state of the FSM is d-reached by a sequence in the set and the set contains the empty sequence (which d-reaches the initial state).

```
fun is-det-state-cover-ass :: ('in, 'out, 'state) FSM \Rightarrow ('state \Rightarrow 'in \ list) \Rightarrow bool \ \mathbf{where}
  \textit{is-det-state-cover-ass}\ \textit{M}\ \textit{f} = (\textit{f}\ (\textit{initial}\ \textit{M}) = []\ \land\ (\forall\ \textit{s} \in \textit{d-reachable}\ \textit{M}\ (\textit{initial}\ \textit{M})\ .
                                                                  d-reaches M (initial M) (f s) s))
\mathbf{lemma}\ det-state-cover-ass-dist:
  assumes is-det-state-cover-ass M f
            s1 \in d-reachable M (initial M)
  and
            s2 \in d-reachable M (initial M)
  and
            s1 \neq s2
shows \neg(d\text{-}reaches\ M\ (initial\ M)\ (f\ s2)\ s1)
  \mathbf{by} \ (meson \ assms(1) \ assms(3) \ assms(4) \ d\text{-}reaches\text{-}unique \ is\text{-}det\text{-}state\text{-}cover\text{-}ass.simps)
lemma det-state-cover-ass-diff:
  assumes is-det-state-cover-ass M f
            s1 \in d-reachable M (initial M)
  and
            s2 \in d-reachable M (initial M)
  and
  and
            s1 \neq s2
shows f s1 \neq f s2
  by (metis assms det-state-cover-ass-dist is-det-state-cover-ass.simps)
fun is-det-state-cover :: ('in, 'out, 'state) FSM \Rightarrow 'in list set \Rightarrow bool where
  is\text{-}det\text{-}state\text{-}cover\ M\ V} = (\exists\ f\ .\ is\text{-}det\text{-}state\text{-}cover\text{-}ass\ M\ f}
                                     \land V = image \ f \ (d\text{-}reachable \ M \ (initial \ M)))
lemma det-state-cover-d-reachable [elim]:
  assumes is-det-state-cover M V
  and
           v \in V
obtains q
where d-reaches M (initial M) v q
  \mathbf{by}\ (\textit{metis}\ (\textit{no-types},\ \textit{opaque-lifting})\ \textit{assms}(1)\ \textit{assms}(2)\ \textit{image-iff}\ \textit{is-det-state-cover.simps}
      is-det-state-cover-ass. elims(2))
lemma det-state-cover-card[simp]:
  assumes is-det-state-cover M V
  and
            finite (nodes M)
shows card (d-reachable M (initial M)) = card V
proof -
  obtain f where f-def: is-det-state-cover-ass M f \wedge V = image f (d-reachable M (initial M))
    \mathbf{using} \ assms \ \mathbf{unfolding} \ is\text{-}det\text{-}state\text{-}cover.simps} \ \mathbf{by} \ blast
  then have card - f : card \ V = card \ (image \ f \ (d-reachable \ M \ (initial \ M)))
   by simp
  have d-reachable M (initial M) \subseteq nodes M
    unfolding d-reachable.simps d-reaches.simps using d-reachable-reachable by blast
  then have dr-finite: finite (d-reachable M (initial M))
    using assms infinite-super by blast
  then have card \cdot le : card \ (image \ f \ (d \cdot reachable \ M \ (initial \ M))) \le card \ (d \cdot reachable \ M \ (initial \ M))
    using card-image-le by blast
  have card\ (image\ f\ (d\text{-}reachable\ M\ (initial\ M))) = card\ (d\text{-}reachable\ M\ (initial\ M))
    by (meson card-image det-state-cover-ass-diff f-def inj-onI)
  then show ?thesis using card-f by auto
qed
{f lemma}\ det-state-cover-finite:
```

```
assumes is-det-state-cover M V
 and
           finite (nodes M)
shows finite V
proof -
 have d-reachable M (initial M) \subseteq nodes M
   by auto
 show finite V using det-state-cover-card[OF assms]
   by (metis \land d\text{-}reachable\ M\ (initial\ M) \subseteq nodes\ M \land assms(1)\ assms(2)\ finite-imageI\ infinite-super
       is-det-state-cover.simps)
qed
{f lemma}\ det-state-cover-initial:
 assumes is-det-state-cover M V
 shows [] \in V
proof -
  have d-reached-by M (initial M) [] (initial M) []
   by (simp add: FSM.nil)
  then have d-reaches M (initial M) [] (initial M)
   by auto
 have initial M \in d-reachable M (initial M)
   by (metis\ (no\text{-}types)\ \land d\text{-}reaches\ M\ (initial\ M)\ |\ (initial\ M)\ \land\ d\text{-}reachable.simps\ mem\text{-}Collect-eq)
  then show ?thesis
   by (metis\ (no\text{-}types,\ lifting)\ assms\ image\text{-}iff\ is\text{-}det\text{-}state\text{-}cover.elims}(2)
       is-det-state-cover-ass.simps)
qed
lemma det-state-cover-empty:
 assumes is-det-state-cover M V
 shows [] \in V
proof -
  obtain f where f-def: is-det-state-cover-ass M f \wedge V = f 'd-reachable M (initial M)
   using assms by auto
  then have f (initial M) = []
   by auto
  moreover have initial M \in d-reachable M (initial M)
  proof -
   have d-reaches M (initial M) [] (initial M)
     by auto
   then show ?thesis
     by (metis d-reachable.simps mem-Collect-eq)
  moreover have f (initial M) \in V
   using f-def calculation by blast
  {\bf ultimately \ show} \ {\it ?thesis}
   \mathbf{by}\ \mathit{auto}
qed
        IO reduction
1.8
An FSM is a reduction of another, if its language is a subset of the language of the latter FSM.
fun io-reduction :: ('in, 'out, 'state) FSM \Rightarrow ('in, 'out, 'state) FSM
                    \Rightarrow bool (infix \langle \preceq \rangle 200)
  where
 M1 \leq M2 = (LS \ M1 \ (initial \ M1) \subseteq LS \ M2 \ (initial \ M2))
\mathbf{lemma}\ language\text{-}state\text{-}inclusion\text{-}of\text{-}state\text{-}reached\text{-}by\text{-}same\text{-}sequence:}
  assumes LS M1 q1 \subseteq LS M2 q2
           observable M1
 and
 and
           observable M2
           io-targets M1 q1 io = { q1t }
 and
```

and

proof

io-targets M2 q2 $io = \{ q2t \}$

shows $LS M1 q1t \subseteq LS M2 q2t$

```
fix x assume x \in LS M1 q1t
  obtain q1x where io-targets M1 q1t x = \{q1x\}
   by (meson \ \langle x \in LS \ M1 \ q1t \rangle \ assms(2) \ io-targets-observable-singleton-ex)
 have io \in LS \ M1 \ q1
   using assms(4) by auto
  have io@x \in LS\ M1\ q1
   using observable-io-targets-append [OF\ assms(2)\ \langle io\text{-targets}\ M1\ q1\ io=\{\ q1t\ \}\rangle
         \langle io\text{-targets } M1 \ q1t \ x = \{q1x\}\rangle
   by (metis io-targets-elim language-state singletonI)
  then have io@x \in LS \ M2 \ q2
   using assms(1) by blast
  then obtain q2x where io-targets M2 q2 (io@x) = {q2x}
   by (meson\ assms(3)\ io-targets-observable-singleton-ex)
  show x \in LS M2 q2t
   using observable-io-targets-split[OF assms(3) \langle io-targets M2 q2 (io @ x) = {q2x} \rangle assms(5)]
   by auto
\mathbf{qed}
```

1.9 Language subsets for input sequences

The following definitions describe restrictions of languages to only those IO-sequences that exhibit a certain input sequence or whose input sequence is contained in a given set of input sequences. This allows to define the notion that some FSM is a reduction of another over a given set of input sequences, but not necessarily over the entire language of the latter FSM.

```
\mathbf{fun}\ language\text{-}state\text{-}for\text{-}input::
      ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow 'in list \Rightarrow ('in \times 'out) list set where
     language-state-for-input M q xs = \{(xs \mid\mid ys) \mid ys \cdot (length \ xs = length \ ys \land (xs \mid\mid ys) \in LS \ M \ q)\}
\mathbf{fun}\ language\text{-}state\text{-}for\text{-}inputs\ ::\ \\
     ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow 'in list set \Rightarrow ('in \times 'out) list set
          (\langle (LS_{in} - - -) \rangle [1000, 1000, 1000]) where
      language-state-for-inputs M \ q \ ISeqs = \{(xs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ ys \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ xs \ . \ (xs \in ISeqs \mid\mid ys) \mid xs \ xs \ . \ (xs \in ISeqs 
                                                                                                                                                                             \land length xs = length ys
                                                                                                                                                                            \land (xs \mid\mid ys) \in LS M q)
abbreviation L_{in} M TS \equiv LS_{in} M (initial M) TS
abbreviation io-reduction-on M1 TS M2 \equiv (L_{in} M1 TS \subseteq L_{in} M2 TS)
notation
     io\text{-}reduction\text{-}on\ ( \land (- \preceq \llbracket - \rrbracket \ -) \land\ [1000, 0, 0]\ 61)
notation (latex output)
     io-reduction-on (\langle (- \leq -) \rangle [1000, 0, 0] 61)
\mathbf{lemma}\ language\text{-}state\text{-}for\text{-}input\text{-}alt\text{-}def:
      language-state-for-input M \ q \ xs = LS_{in} \ M \ q \ \{xs\}
     unfolding language-state-for-input.simps language-state-for-inputs.simps by blast
\mathbf{lemma}\ language\text{-}state\text{-}for\text{-}inputs\text{-}alt\text{-}def:
      LS_{in} M \ q \ ISeqs = \bigcup (image (language-state-for-input M \ q) \ ISeqs)
     by auto
{\bf lemma}\ language\mbox{-}state\mbox{-}for\mbox{-}inputs\mbox{-}in\mbox{-}language\mbox{-}state :
      LS_{in} M q T \subseteq language\text{-state } M q
     unfolding language-state-for-inputs.simps language-state-def
     by blast
\mathbf{lemma}\ language\text{-}state\text{-}for\text{-}inputs\text{-}map\text{-}fst:
     assumes io \in language-state M g
                              map fst io \in T
     and
shows io \in LS_{in} M q T
proof
     let ?xs = map fst io
     let ?ys = map \ snd \ io
     have ?xs \in T \land length ?xs = length ?ys \land ?xs || ?ys \in language-state M q
```

```
using assms(2,1) by auto
  then have ?xs \mid | ?ys \in LS_{in} M q T
   unfolding language-state-for-inputs.simps by blast
  then show ?thesis
   by simp
\mathbf{qed}
lemma language-state-for-inputs-nonempty:
  assumes set xs \subseteq inputs M
  and
          completely-specified M
 and
          q \in nodes M
shows LS_{in} M q \{xs\} \neq \{\}
using assms proof (induction xs arbitrary: q)
  case Nil
 then show ?case by auto
next
  case (Cons \ x \ xs)
  then have x \in inputs M
   by simp
  then obtain y \ q' where x-step : q' \in succ \ M \ (x,y) \ q
   using Cons(3,4) unfolding completely-specified simps by blast
  then have path M ([(x,y)] || [q']) q \land length [q] = length [(x,y)]
          target ([(x,y)] || [q']) q = q'
   by auto
  then have q' \in nodes M
   using Cons(4) by (metis FSM.nodes-target)
  then have LS_{in}\ M\ q'\ \{xs\} \neq \{\}
   using Cons.prems Cons.IH by auto
  then obtain ys where length xs = length ys \land (xs \mid\mid ys) \in LS M q'
   by auto
  then obtain tr where path M ((xs || ys) || tr) q' \wedge length tr = length (xs || ys)
   by auto
  then have path M ([(x,y)] @ (xs || ys) || [q'] @ tr) q
            \wedge length ([q'] @ tr) = length ([(x,y)] @ (xs || ys))
   by (simp\ add:\ FSM.path.intros(2)\ x\text{-step})
  then have path M ((x#xs || y#ys) || [q'] @ tr) q \land length ([q'] @ tr) = length (x#xs || y#ys)
   by auto
  then have (x\#xs \mid\mid y\#ys) \in LS M q
   by (metis language-state)
  moreover have length (x\#xs) = length (y\#ys)
   by (simp add: \langle length \ xs = length \ ys \land xs \mid | \ ys \in LS \ M \ q' \rangle)
  ultimately have (x\#xs \mid\mid y\#ys) \in LS_{in} M q \{x \# xs\}
   unfolding language-state-for-inputs.simps by blast
  then show ?case by blast
qed
\mathbf{lemma}\ language\text{-}state\text{-}for\text{-}inputs\text{-}map\text{-}fst\text{-}contained:
  assumes vs \in LS_{in} \ M \ q \ V
shows map fst vs \in V
proof -
 have (map \ fst \ vs) \mid\mid (map \ snd \ vs) = vs
  then have (map \ fst \ vs) \mid\mid (map \ snd \ vs) \in LS_{in} \ M \ q \ V
   using assms by auto
 then show ?thesis by auto
qed
lemma language-state-for-inputs-empty:
 assumes [] \in V
 shows [] \in LS_{in} \ M \ q \ V
proof
 have [] \in language-state-for-input M \neq [] by auto
 then show ?thesis using language-state-for-inputs-alt-def by (metis UN-I assms)
lemma language-state-for-input-empty[simp]:
```

```
\mathbf{lemma}\ language\text{-}state\text{-}for\text{-}input\text{-}take:
  assumes io \in language-state-for-input M \ q \ xs
shows take n io \in language-state-for-input M q (take n xs)
proof
  obtain ys where io = xs \mid\mid ys \ length \ xs = length \ ys \ xs \mid\mid ys \in language\text{-state} \ M \ q
    using assms by auto
  then obtain p where length p = length xs path M ((xs || ys) || p) q
    by auto
  then have path M (take n ((xs || ys) || p)) q
    by (metis FSM.path-append-elim append-take-drop-id)
  then have take n (xs \mid\mid ys) \in language\text{-state } M q
    by (simp add: \langle length \ p = length \ xs \rangle \langle length \ xs = length \ ys \rangle language-state take-zip)
  then have (take \ n \ xs) \mid\mid (take \ n \ ys) \in language\text{-}state \ M \ q
    by (simp add: take-zip)
  have take \ n \ io = (take \ n \ xs) \mid\mid (take \ n \ ys)
    using \langle io = xs \mid \mid ys \rangle take-zip by blast
  moreover have length (take n xs) = length (take n ys)
    by (simp add: \langle length \ xs = length \ ys \rangle)
  ultimately show ?thesis
    using \langle (take \ n \ xs) \mid | \ (take \ n \ ys) \in language\text{-state} \ M \ q \rangle
    unfolding language-state-for-input.simps by blast
qed
lemma language-state-for-inputs-prefix:
  assumes vs@xs \in L_{in} M1 \{vs'@xs'\}
  and length \ vs = length \ vs'
shows vs \in L_{in} M1 \{vs'\}
proof -
  have vs@xs \in L\ M1
    using assms(1) by auto
  then have vs \in L M1
   by (meson language-state-prefix)
  then have vs \in L_{in} M1 \{ map \ fst \ vs \}
   by (meson insertI1 language-state-for-inputs-map-fst)
  moreover have vs' = map fst vs
    by (metis append-eq-append-conv assms(1) assms(2) language-state-for-inputs-map-fst-contained
        length-map map-append singletonD)
  ultimately show ?thesis
    by blast
\mathbf{qed}
\mathbf{lemma}\ language\text{-}state\text{-}for\text{-}inputs\text{-}union:
  shows LS_{in} M q T1 \cup LS_{in} M q T2 = LS_{in} M q (T1 \cup T2)
  unfolding language-state-for-inputs.simps by blast
\mathbf{lemma}\ io\text{-}reduction\text{-}on\text{-}subset:
  assumes io-reduction-on M1 T M2
            T' \subseteq T
  and
shows io-reduction-on M1 T' M2
proof (rule ccontr)
  \mathbf{assume} \, \neg \, \textit{io-reduction-on} \, \, \textit{M1} \, \, \textit{T'} \, \, \textit{M2}
  then obtain xs' where xs' \in T' \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\}
    have f1: \forall ps \ P \ Pa. \ (ps::('a \times 'b) \ list) \notin P \lor \neg P \subset Pa \lor ps \in Pa
    obtain pps :: ('a \times 'b) list set \Rightarrow ('a \times 'b) list set \Rightarrow ('a \times 'b) list where
      \forall x0 \ x1. \ (\exists v2. \ v2 \in x1 \ \land v2 \notin x0) = (pps \ x0 \ x1 \in x1 \ \land pps \ x0 \ x1 \notin x0)
    then have f2: \forall P \ Pa. \ pps \ Pa \ P \in P \land pps \ Pa \ P \notin Pa \lor P \subseteq Pa
      by (meson\ subset I)
    have f3: \forall ps \ f \ c \ A. \ (ps::('a \times 'b) \ list) \notin LS_{in} \ f \ (c::'c) \ A \vee map \ fst \ ps \in A
```

language-state-for-input $M \ q \ [] = \{[]\}$

by auto

```
by (meson language-state-for-inputs-map-fst-contained)
   then have L_{in} M1 T' \subseteq L_{in} M1 T
      using f2 by (meson assms(2) language-state-for-inputs-in-language-state
                    language-state-for-inputs-map-fst set-rev-mp)
   then show ?thesis
      using f3 f2 f1 by (meson \leftarrow io\text{-reduction-on } M1 T' M2) assms(1)
                          language-state-for-inputs-in-language-state
                          language-state-for-inputs-map-fst)
  qed
  then have xs' \in T
   using assms(2) by blast
  have ¬ io-reduction-on M1 T M2
  proof -
   have f1: \forall as. as \notin T' \lor as \in T
      using assms(2) by auto
   obtain pps :: ('a \times 'b) list set \Rightarrow ('a \times 'b) list set \Rightarrow ('a \times 'b) list where
      \forall x0 \ x1. \ (\exists v2. \ v2 \in x1 \ \land \ v2 \notin x0) = (pps \ x0 \ x1 \in x1 \ \land \ pps \ x0 \ x1 \notin x0)
   then have \forall P \ Pa. \ (\neg P \subseteq Pa \lor (\forall ps. \ ps \notin P \lor ps \in Pa))
                      \land (P \subseteq Pa \lor pps Pa P \in P \land pps Pa P \notin Pa)
     by blast
   then show ?thesis
     using f1 by (meson \langle \neg io\text{-reduction-on } M1\ T'\ M2 \rangle language-state-for-inputs-in-language-state
                    language\text{-}state\text{-}for\text{-}inputs\text{-}map\text{-}fst\text{-}language\text{-}state\text{-}for\text{-}inputs\text{-}map\text{-}fst\text{-}contained)
  qed
  then show False
   using assms(1) by auto
qed
```

1.10 Sequences to failures

A sequence to a failure for FSMs M1 and M2 is a sequence such that any proper prefix of it is contained in the languages of both M1 and M2, while the sequence itself is contained only in the language of A.

That is, if a sequence to a failure for M1 and M2 exists, then M1 is not a reduction of M2.

```
\mathbf{fun} sequence-to-failure ::
  ('in,'out,'state) FSM \Rightarrow ('in,'out,'state) FSM \Rightarrow ('in \times 'out) list \Rightarrow bool where
  sequence-to-failure\ M1\ M2\ xs=(
   (butlast \ xs) \in (language\text{-state } M2 \ (initial \ M2) \cap language\text{-state } M1 \ (initial \ M1))
   \land xs \in (language\text{-state } M1 \ (initial \ M1) - language\text{-state } M2 \ (initial \ M2)))
\mathbf{lemma} sequence-to-failure-ob:
 assumes \neg M1 \prec M2
           well-formed M1
 and
 and
            well-formed M2
obtains io
where sequence-to-failure M1 M2 io
proof
 let ?diff = \{ io : io \in language\text{-state } M1 \ (initial \ M1) \land io \notin language\text{-state } M2 \ (initial \ M2) \}
 have ?diff \neq empty
   using assms by auto
  moreover obtain io where io-def[simp]: io = arg-min length (\lambda io . io \in ?diff)
   using assms by auto
  ultimately have io-diff: io \in ?diff
   using assms by (meson all-not-in-conv arg-min-natI)
  then have io \neq []
    using assms io-def language-state by auto
  then obtain io-init io-last where io-split[simp] : io = io-init @ [io-last]
   by (metis append-butlast-last-id)
 have io\text{-}init\text{-}inclusion: io\text{-}init \in language\text{-}state M1 (initial M1)
                           \land io\text{-}init \in language\text{-}state M2 (initial M2)
```

```
proof (rule ccontr)
    assume assm : \neg (io\text{-}init \in language\text{-}state M1 (initial M1))
                        \land io\text{-}init \in language\text{-}state M2 (initial M2))
    have io-init @ [io-last] \in language-state M1 (initial M1)
      using io-diff io-split by auto
    then have io\text{-}init \in language\text{-}state\ M1\ (initial\ M1)
     by (meson language-state language-state-split)
    moreover have io-init \notin language-state M2 (initial M2)
      using assm calculation by auto
    ultimately have io\text{-}init \in ?diff
     by auto
    moreover have length io-init < length io
      using io-split by auto
    ultimately have io \neq arg\text{-}min\ length\ (\lambda\ io\ .\ io \in ?diff)
    proof -
     have \exists ps. ps \in \{ps \in language\text{-state } M1 \text{ (initial } M1).
                              ps \notin language\text{-state } M2 \text{ (initial } M2)\} \land \neg length \text{ io} \leq length \text{ } ps
        using \langle io\text{-}init \in \{io \in language\text{-}state \ M1 \ (initial \ M1)\}, io \notin language\text{-}state \ M2 \ (initial \ M2)\} \rangle
              \langle length\ io\text{-}init < length\ io \rangle\ linorder\text{-}not\text{-}less
        by blast
      then show ?thesis
        by (meson arg-min-nat-le)
    qed
    then show False using io-def by simp
  ged
  then have sequence-to-failure M1 M2 io
    \mathbf{using}\ io\text{-}split\ io\text{-}diff\ \mathbf{by}\ auto
  then show ?thesis
    using that by auto
qed
{f lemma}\ sequence\mbox{-}to\mbox{-}failure\mbox{-}succ:
  assumes sequence-to-failure M1 M2 io
  shows \forall q \in io\text{-targets } M2 \text{ (initial } M2) \text{ (butlast } io) \text{ . succ } M2 \text{ (last } io) \text{ } q = \{\}
proof
  have io \neq []
   using assms by auto
  fix q assume q \in io-targets M2 (initial M2) (butlast io)
  then obtain tr where q = target (butlast io || tr) (initial M2)
                 and path M2 (butlast io || tr) (initial M2)
                 and length (butlast io) = length tr
    unfolding io-targets.simps by auto
  show succ M2 (last io) q = \{\}
  proof (rule ccontr)
    assume succ\ M2\ (last\ io)\ q \neq \{\}
    then obtain q' where q' \in succ \ M2 (last io) q
    then have path M2 [(last io, q')] (target (butlast io || tr) (initial M2))
      using \langle q = target \ (butlast \ io \mid \mid tr) \ (initial \ M2) \rangle by auto
    have path M2 ((butlast io || tr) @ [(last io, q')]) (initial M2)
      using \(\chi path M2\) (butlast io \(\colon\) (initial M2)\(\chi\)
            \langle path \ M2 \ [(last \ io, \ q')] \ (target \ (butlast \ io \ || \ tr) \ (initial \ M2)) \rangle \ \mathbf{by} \ auto
    have butlast io @ [last io] = io
     by (meson \langle io \neq [] \rangle append-butlast-last-id)
    have path M2 (io || (tr@[q'])) (initial M2)
     have path M2 ((butlast io || tr) @ ([last io] || [q'])) (initial M2)
        by (simp add: FSM.path-append \langle path M2 \rangle (butlast io || tr) (initial M2)
              \langle path \ M2 \ [(last \ io, \ q')] \ (target \ (butlast \ io \ || \ tr) \ (initial \ M2)) \rangle)
      then show ?thesis
```

```
by (metis (no-types) \langle butlast \ io @ [last \ io] = io \rangle
            \langle length \ (butlast \ io) = length \ tr \rangle \ zip-append)
   qed
   have io \in L M2
   proof -
     have length tr + (0 + Suc \ 0) = length \ io
       by (metis \langle butlast \ io \ @ \ [last \ io] = io \rangle \langle length \ (butlast \ io) = length \ tr \rangle
          length-append list.size(3) list.size(4))
     then show ?thesis
       using \langle path \ M2 \ (io \mid \mid tr @ [q']) \ (initial \ M2) \rangle by fastforce
   qed
   then show False
     using assms by auto
  qed
qed
lemma sequence-to-failure-non-nil:
 assumes sequence-to-failure M1 M2 xs
 shows xs \neq []
proof
  assume xs = []
  then have xs \in L M1 \cap L M2
   by auto
  then show False using assms by auto
qed
{f lemma} sequence-to-failure-from-arbitrary-failure:
 assumes vs@xs \in L\ M1 - L\ M2
   and vs \in L M2 \cap L M1
shows \exists xs'. prefix xs' xs \land sequence-to-failure M1 M2 (vs@xs')
using assms proof (induction xs rule: rev-induct)
  case Nil
 then show ?case by auto
next
  case (snoc \ x \ xs)
 have vs @ xs \in L M1
   using snoc.prems(1) by (metis Diff-iff append.assoc language-state-prefix)
  show ?case
  proof (cases vs@xs \in L M2)
   {f case}\ True
   have butlast (vs@xs@[x]) \in L M2 \cap L M1
     using True \langle vs @ xs \in L M1 \rangle by (simp \ add: \ butlast-append)
   then show ?thesis
     using sequence-to-failure.simps snoc.prems by blast
  next
   case False
   then have vs@xs \in L\ M1 - L\ M2
     using \langle vs @ xs \in L M1 \rangle by blast
   then obtain xs' where prefix xs' xs sequence-to-failure M1 M2 (vs@xs')
     using snoc.prems(2) snoc.IH by blast
   then show ?thesis
     using prefix-snoc by auto
  qed
qed
The following lemma shows that if M1 is not a reduction of M2, then a minimal sequence to a failure exists that
is of length at most the number of states in M1 times the number of states in M2.
\mathbf{lemma}\ sequence \text{-} to \text{-} failure \text{-} length:
  assumes well-formed M1
          well-formed M2
 and
          observable\ M1
 and
          observable\ M2
 and
          \neg \ M1 \ \preceq \ M2
  and
```

```
shows \exists xs . sequence-to-failure M1 M2 xs \land length xs \leq |M2| * |M1|
proof -
 obtain seq where sequence-to-failure M1 M2 seq
   using assms sequence-to-failure-ob by blast
 then have seq \neq []
   by auto
 let ?bls = butlast seq
 have ?bls \in L \ M1 \ ?bls \in L \ M2
   using (sequence-to-failure M1 M2 seq) by auto
 then obtain tr1b tr2b where
   path\ M1\ (?bls\ ||\ tr1b)\ (initial\ M1)
   \mathit{length}\ \mathit{tr1b} = \mathit{length}\ \mathit{?bls}
   path M2 (?bls || tr2b) (initial M2)
   length ?bls = length tr2b
   by fastforce
  then have length tr2b = length tr1b
   by auto
 let ?PM = product M2 M1
 have well-formed ?PM
   using well-formed-product [OF assms(1,2)] by assumption
 have path ?PM (?bls || tr2b || tr1b) (initial M2, initial M1)
   using product-path [OF \land length ?bls = length tr2b \land \langle length tr2b = length tr1b \rangle,
                     of M2 M1 initial M2 initial M1]
   using \(\partial path M1\) (butlast seq \(\preceq \text{tr1b}\) (initial \(M1\))
         ⟨path M2 (butlast seq || tr2b) (initial M2)⟩
   by blast
 let ?q1b = target (?bls || tr1b) (initial M1)
 let ?q2b = target (?bls || tr2b) (initial M2)
 have io-targets M2 (initial M2) ?bls = \{?q2b\}
   by (metis \langle length (butlast seq) = length tr2b \langle path M2 (butlast seq || tr2b) (initial M2) \rangle
       assms(4) obs-target-is-io-targets)
  have io-targets M1 (initial M1) ?bls = \{?q1b\}
   by (metis \langle length \ tr1b = length \ (butlast \ seq) \rangle \langle path \ M1 \ (butlast \ seq || \ tr1b) \ (initial \ M1) \rangle
       assms(3) obs-target-is-io-targets)
 have (?q2b, ?q1b) \in reachable (product M2 M1) (initial M2, initial M1)
 proof -
   have target (butlast seq || tr2b || tr1b) (initial M2, initial M1)
           ∈ reachable (product M2 M1) (initial M2, initial M1)
     using \langle path \ (product \ M2 \ M1) \ (butlast \ seq \mid \mid tr2b \mid \mid tr1b) \ (initial \ M2, \ initial \ M1) \rangle by blast
   then show ?thesis
     using \langle length \ (butlast \ seq) = length \ tr2b \rangle \langle length \ tr2b = length \ tr1b \rangle by auto
  qed
 have (initial M2, initial M1) \in nodes (product M2 M1)
   by (simp add: FSM.nodes.initial)
 obtain p where repFreePath: path (product M2 M1) p (initial M2, initial M1) \wedge
       target \ p \ (initial \ M2, \ initial \ M1) =
       (?q2b,?q1b)
       distinct ((initial M2, initial M1) # states p (initial M2, initial M1))
   using reaching-path-without-repetition[OF \( \text{well-formed } ?PM \)
         \langle (?q2b, ?q1b) \in reachable (product M2 M1) (initial M2, initial M1) \rangle
```

```
\langle (initial\ M2,\ initial\ M1) \in nodes\ (product\ M2\ M1) \rangle ]
 by blast
then have set (states p (initial M2, initial M1)) \subseteq nodes ?PM
 by (simp add: FSM.nodes-states \langle (initial\ M2,\ initial\ M1) \in nodes\ (product\ M2\ M1) \rangle)
moreover have (initial M2, initial M1) \notin set (states p (initial M2, initial M1))
 using \langle distinct \ ((initial \ M2, initial \ M1) \ \# \ states \ p \ (initial \ M2, initial \ M1)) \rangle by auto
ultimately have set (states p (initial M2, initial M1)) \subseteq nodes ?PM - {(initial M2, initial M1)}
moreover have finite (nodes ?PM)
 using \langle well\text{-}formed ?PM \rangle by auto
ultimately have card (set (states p (initial M2, initial M1))) < card (nodes ?PM)
 by (metis \ (initial \ M2, \ initial \ M1) \in nodes \ (product \ M2 \ M1))
      \langle (initial\ M2,\ initial\ M1) \notin set\ (states\ p\ (initial\ M2,\ initial\ M1)) \rangle
     (\textit{set (states p (initial M2, initial M1)}) \subseteq \textit{nodes (product M2 M1)})
     psubsetI psubset-card-mono)
moreover have card (set (states p (initial M2, initial M1)))
               = length (states p (initial M2, initial M1))
 using distinct-card repFreePath(2) by fastforce
ultimately have length (states p (initial M2, initial M1)) < |?PM|
 by linarith
then have length p < |?PM|
 by auto
let ?p1 = map (snd \circ snd) p
let ?p2 = map (fst \circ snd) p
let ?pIO = map fst p
have p = ?pIO || ?p2 || ?p1
 by (metis map-map zip-map-fst-snd)
have path M2 (?pIO || ?p2) (initial M2)
    path \ M1 \ (?pIO \mid ?p1) \ (initial \ M1)
 using product-path[of ?pIO ?p2 ?p1 M2 M1]
 using \langle p = ?pIO \mid | ?p2 \mid | ?p1 \rangle repFreePath(1) by auto
have (?q2b, ?q1b) = (target (?pIO || ?p2 || ?p1) (initial M2, initial M1))
 using \langle p = ?pIO \mid | ?p2 \mid | ?p1 \rangle repFreePath(1) by auto
then have ?q2b = target (?pIO || ?p2) (initial M2)
          ?q1b = target (?pIO || ?p1) (initial M1)
 by auto
have io-targets M2 (initial M2) ?pIO = \{?q2b\}
 by (metis \langle path \ M2 \ (map \ fst \ p \ || \ map \ (fst \circ snd) \ p) \ (initial \ M2) \rangle
      \langle target\ (?bls\ ||\ tr2b)\ (initial\ M2) = target\ (map\ fst\ p\ ||\ map\ (fst\ \circ\ snd)\ p)\ (initial\ M2) \rangle
      assms(4) length-map obs-target-is-io-targets)
have io-targets M1 (initial M1) ?pIO = \{?q1b\}
 by (metis \langle path \ M1 \ (map \ fst \ p \ || \ map \ (snd \circ snd) \ p) (initial M1)\rangle
      \langle target \ (?bls \mid | tr1b) \ (initial \ M1) = target \ (map \ fst \ p \mid | map \ (snd \circ snd) \ p) \ (initial \ M1) \rangle
      assms(3) length-map obs-target-is-io-targets)
have seq \in L M1 seq \notin L M2
 using (sequence-to-failure M1 M2 seq) by auto
have io-targets M1 (initial M1) ?bls = \{?q1b\}
 by (metis \land length \ tr1b = length \ (butlast \ seq)) \land path \ M1 \ (butlast \ seq \mid \mid tr1b) \ (initial \ M1))
     assms(3) obs-target-is-io-targets)
```

```
obtain q1s where io-targets M1 (initial M1) seq = \{q1s\}
 by (meson \langle seq \in L \ M1 \rangle \ assms(3) \ io-targets-observable-singleton-ob)
moreover have seq = (butlast seq)@[last seq]
 using \langle seq \neq [] \rangle by auto
ultimately have io-targets M1 (initial M1) ((butlast seq)@[last seq]) = \{q1s\}
 by auto
have io-targets M1 ?q1b [last seq] = \{q1s\}
 using observable-io-targets-suffix[OF assms(3) \land io-targets M1 (initial\ M1)\ ?bls = \{?q1b\}
       (io-targets M1 (initial M1) ((butlast seq)@[last seq]) = \{q1s\})] by assumption
then obtain tr1s where q1s = target ([last seq] || tr1s) ?q1b
                    path M1 ([last seq] || tr1s) ?q1b
                    length [last seq] = length tr1s
 by auto
have path M1 ([last seq] || [q1s]) ?q1b
 by (metis\ (no\text{-}types)\ \langle length\ [last\ seq] = length\ tr1s \rangle
     <path M1 ([last seq] || tr1s) (target (butlast seq || tr1b) (initial M1))>
     \langle q1s = target ([last seq] || tr1s) (target (butlast seq || tr1b) (initial M1)) \rangle
     append-Nil\ append-butlast-last-id\ butlast.simps(2)\ length-butlast\ length-greater-0-conv
     not-Cons-self2 target-alt-def(2))
then have q1s \in succ\ M1\ (last\ seq)\ ?q1b
 by auto
have succ\ M2\ (last\ seq)\ ?q2b = \{\}
proof (rule ccontr)
 assume succ M2 (last seq) (target (butlast seq || tr2b) (initial M2)) \neq {}
 then obtain q2f where q2f \in succ\ M2\ (last\ seq)\ ?q2b
   by blast
 then have target ([last seq] || [q2f]) ?q2b = q2f
           path\ M2\ ([last\ seq]\ ||\ [q2f])\ ?q2b
           length [q2f] = length [last seq]
   by auto
 then have q2f \in io\text{-targets } M2 ? q2b [last seq]
   by (metis io-target-from-path)
 then have io-targets M2 ?q2b [last seq] = \{q2f\}
   using assms(4) by (meson observable-io-target-is-singleton)
 have io-targets M2 (initial M2) (butlast seq @ [last seq]) = \{q2f\}
   using observable-io-targets-append [OF assms(4) \langle io-targets M2 (initial M2) ?bls = {?q2b}
         \langle io\text{-targets } M2 ? q2b [last seq] = \{q2f\} \rangle ] by assumption
 then have seq \in L M2
   using \langle seq = butlast \ seq @ [last \ seq] \rangle by auto
 then show False
   using \langle seq \notin L M2 \rangle by blast
qed
have ?pIO \in L\ M1\ ?pIO \in L\ M2
 using \langle path \ M1 \ (?pIO \mid | ?p1) \ (initial \ M1) \rangle \langle path \ M2 \ (?pIO \mid | ?p2) \ (initial \ M2) \rangle by auto
then have butlast (?pIO@[last seq]) \in L M1 \cap L M2
 by auto
have ?pIO@[last\ seq] \in L\ M1
 using observable-io-targets-append [OF\ assms(3)\ \langle io\text{-targets}\ M1\ (initial\ M1)\ ?pIO=\{?q1b\}\rangle
       \langle io\text{-targets } M1 ? q1b [last seq] = \{q1s\}\rangle
 by (metis all-not-in-conv insert-not-empty io-targets-elim language-state)
moreover have ?pIO@[last\ seq] \notin L\ M2
proof
 assume ?pIO@[last\ seq] \in L\ M2
 then obtain q2f where io-targets M2 (initial M2) (?pIO@[last seq]) = \{q2f\}
   by (meson\ assms(4)\ io-targets-observable-singleton-ob)
```

```
have io-targets M2 ?q2b [last seq] = \{q2f\}
     using observable-io-targets-split[OF assms(4)]
           \langle io\text{-targets } M2 \text{ (initial } M2) \text{ (?pIO}@[last \ seq]) = \{q2f\} \rangle
           (io-targets M2 (initial M2) (map fst p) = \{?q2b\}) by assumption
   then have q2f \in succ \ M2 \ (last \ seq) \ ?q2b
     by (simp add: io-targets-succ)
   then show False
     using \langle succ\ M2\ (last\ seq)\ ?q2b = \{\}\rangle by auto
  ultimately have ?pIO@[last\ seq] \in L\ M1-L\ M2
   bv auto
  have sequence-to-failure M1 M2 (?pIO@[last seq])
   using \langle butlast \ (?pIO@[last \ seq]) \in L \ M1 \cap L \ M2 \rangle \ \langle ?pIO@[last \ seq] \in L \ M1 - L \ M2 \rangle by auto
  have length (?pIO@[last\ seq]) = Suc (length ?pIO)
  then have length (?pIO@[last\ seq]) \leq |?PM|
   using \langle length \ p < | ?PM | \rangle by auto
 have card (nodes M2 \times nodes M1) \leq |M2| * |M1|
   by (simp add: card-cartesian-product)
  have finite (nodes M2 \times nodes M1)
  proof
   show finite (nodes M2)
     using assms by auto
   show finite (nodes M1)
     using assms by auto
  qed
 have |?PM| \le |M2| * |M1|
   by (meson \ \langle card \ (nodes \ M2 \times nodes \ M1) \leq |M2| * |M1| \rangle \ \langle finite \ (nodes \ M2 \times nodes \ M1) \rangle
       card-mono dual-order.trans product-nodes)
  then have length (?pIO@[last\ seq]) \leq |M2| * |M1|
   using \langle length \ (?pIO@[last \ seq]) \leq |?PM| \rangle by auto
  then have sequence-to-failure M1 M2 (?pIO@[last\ seq]) \land length (?pIO@[last\ seq]) \le |M2| * |M1|
   using \langle sequence\text{-}to\text{-}failure\ M1\ M2\ (?pIO@[last\ seq]) \rangle by auto
  then show ?thesis
   by blast
\mathbf{qed}
```

1.11 Minimal sequence to failure extending

A minimal sequence to a failure extending some set of IO-sequences is a sequence to a failure of minimal length such that a prefix of that sequence is contained in the set.

```
fun minimal-sequence-to-failure-extending::

'in list set \Rightarrow ('in,'out,'state) FSM \Rightarrow ('in,'out,'state) FSM \Rightarrow ('in \times 'out) list

\Rightarrow ('in \times 'out) list \Rightarrow bool where

minimal-sequence-to-failure-extending V M1 M2 v' io = (

v' \in L_{in} M1 V \wedge sequence-to-failure M1 M2 (v' @ io)

\wedge \neg (\exists \ io' \ . \ \exists \ w' \in L_{in} M1 V \cdot sequence-to-failure M1 M2 (w' @ io')

\wedge length io' < length io))

lemma minimal-sequence-to-failure-extending-det-state-cover-ob:

assumes well-formed M1

and well-formed M2
and observable M2
```

```
and
           is-det-state-cover M2 V
 and
          \neg M1 \leq M2
obtains vs xs
where minimal-sequence-to-failure-extending V M1 M2 vs xs
proof -
    set of all IO-sequences that extend some reaction of M1 to V to a failure
 let ?exts = \{xs. \exists vs' \in L_{in} \ M1 \ V. \ sequence-to-failure \ M1 \ M2 \ (vs'@xs)\}
  — arbitrary sequence to failure
  — must be contained in ?exts as V contains the empty sequence
  obtain stf where sequence-to-failure M1 M2 stf
   using assms sequence-to-failure-ob by blast
  then have sequence-to-failure M1 M2 ([] @ stf)
   by simp
  moreover have [] \in L_{in} M1 V
   \mathbf{by}\ (\mathit{meson}\ \mathit{assms}(4)\ \mathit{det-state-cover-initial}\ \mathit{language-state-for-inputs-empty})
  ultimately have stf \in ?exts
   by blast
  — the minimal length sequence of ?exts
  — is a minimal sequence to a failure extending V by construction
 let ?xsMin = arg\text{-}min\ length\ (\lambda xs.\ xs \in ?exts)
 have xsMin-def : ?xsMin \in ?exts
                  \land (\forall xs \in ?exts. length ?xsMin \leq length xs)
   by (metis\ (no\text{-}types,\ lifting)\ (stf \in ?exts)\ arg\text{-}min\text{-}nat\text{-}lemma)
  then obtain vs where vs \in L_{in} M1 V
                     \land \ sequence\text{-}to\text{-}failure \ M1 \ M2 \ (vs \ @ \ ?xsMin)
   by blast
  moreover have \neg(\exists xs . \exists ws \in L_{in} M1 V. sequence-to-failure M1 M2 (ws@xs)
                                    \land length xs < length ?xsMin)
   using leD xsMin-def by blast
  ultimately have minimal-sequence-to-failure-extending V M1 M2 vs ?xsMin
   by auto
  then show ?thesis
   using that by auto
qed
lemma mstfe-prefix-input-in-V:
 assumes minimal-sequence-to-failure-extending V M1 M2 vs xs
 shows (map\ fst\ vs) \in V
proof -
  have vs \in L_{in} M1 V
   using assms by auto
 then show ?thesis
   using language-state-for-inputs-map-fst-contained by auto
qed
```

1.12 Complete test suite derived from the product machine

The classical result of testing FSMs for language inclusion: Any failure can be observed by a sequence of length at most n*m where n is the number of states of the reference model (here FSM M2) and m is an upper bound on the number of states of the SUT (here FSM M1).

```
\mathbf{lemma}\ product\text{-}suite\text{-}soundness:
  assumes well-formed M1
  and
            well-formed M2
            observable M1
  and
            observable M2
  and
            inputs M2 = inputs M1
  and
  and
            |M1| < m
             \neg M1 \leq M2 \longrightarrow \neg M1 \leq \llbracket \{xs : set \ xs \subseteq inputs \ M2 \land length \ xs \leq |M2| * m\} \rrbracket \ M2
  (\mathbf{is} \neg M1 \preceq M2 \longrightarrow \neg M1 \preceq [?TS] M2)
proof
  assume \neg M1 \leq M2
  obtain stf where sequence-to-failure M1 M2 stf \land length stf \leq |M2| * |M1|
    using sequence-to-failure-length [OF assms(1-4) \langle \neg M1 \leq M2 \rangle] by blast
```

```
then have sequence-to-failure M1 M2 stf length stf \leq |M2| * |M1|
    by auto
  then have stf \in L M1
    by auto
  let ?xs = map fst stf
  have set ?xs \subseteq inputs M1
    by (meson \langle stf \in L M1 \rangle \ assms(1) \ language-state-inputs)
  then have set ?xs \subseteq inputs M2
    using assms(5) by auto
  have length ?xs \le |M2| * |M1|
    using \langle length \ stf \le |M2| * |M1| \rangle by auto
  have length ?xs \le |M2| * m
  proof -
    show ?thesis
     by (metis (no-types) \langle length \ (map \ fst \ stf) \le |M2| * |M1| \rangle \langle |M1| \le m \rangle
          dual-order.trans mult.commute mult-le-mono1)
  qed
  have stf \in L_{in} M1 \{ ?xs \}
    by (meson \langle stf \in L M1 \rangle insertI1 \ language-state-for-inputs-map-fst)
  have ?xs \in ?TS
   using \langle set ?xs \subseteq inputs M2 \rangle \langle length ?xs \leq |M2| * m \rangle by blast
  have stf \in L_{in} M1 ?TS
    by (metis (no-types, lifting) \langle map \ fst \ stf \in \{xs. \ set \ xs \subseteq inputs \ M2 \land length \ xs \le |M2| * m \} \rangle
        \langle stf \in L \ M1 \rangle \ language\text{-state-for-inputs-map-fst})
  have stf \notin L M2
    using \(\sequence\)-to-failure M1 M2 stf\(\rightarrow\) by auto
  then have stf \notin L_{in} M2 ?TS
    by auto
  show \neg M1 \preceq [?TS] M2
    using \langle stf \in L_{in} \ M1 \ ?TS \rangle \ \langle stf \notin L_{in} \ M2 \ ?TS \rangle by blast
{f lemma}\ product-suite-completeness:
  assumes well-formed M1
            well-formed M2
  and
  and
            observable M1
  and
            observable\ M2
  and
            inputs M2 = inputs M1
  and
           |M1| \leq m
            M1 \leq M2 \longleftrightarrow M1 \leq [\{xs : set \ xs \subseteq inputs \ M2 \land length \ xs \leq |M2| * m\}] M2
shows
  (is M1 \leq M2 \longleftrightarrow M1 \leq [?TS] M2)
proof
  show M1 \leq M2 \Longrightarrow M1 \leq [?TS] M2 — soundness holds trivially
    unfolding language-state-for-inputs.simps io-reduction.simps by blast
  show M1 \leq [?TS] M2 \Longrightarrow M1 \leq M2
    using product-suite-soundness[OF assms] by auto
qed
theory FSM-Product
imports FSM
begin
```

2 Product machines with an additional fail state

We extend the product machine for language intersection presented in theory FSM by an additional state that is reached only by sequences such that any proper prefix of the sequence is in the language intersection, whereas

the full sequence is only contained in the language of the machine B for which we want to check whether it is a reduction of some machine A.

To allow for free choice of the FAIL state, we define the following property that holds iff AB is the product machine of A and B extended with fail state FAIL.

```
fun productF :: ('in, 'out, 'state1) FSM <math>\Rightarrow ('in, 'out, 'state2) FSM <math>\Rightarrow ('state1 \times 'state2)
  \Rightarrow ('in, 'out, 'state1 \times'state2) FSM \Rightarrow bool where
  productF \ A \ B \ FAIL \ AB = (
   (inputs A = inputs B)
  \land (fst \ FAIL \notin nodes \ A)
  \land (snd \ FAIL \notin nodes \ B)
  \wedge AB = (
           succ = (\lambda \ a \ (p1, p2) \ . \ (if \ (p1 \in nodes \ A \land p2 \in nodes \ B \land (fst \ a \in inputs \ A)
                                      \land (snd \ a \in outputs \ A \cup outputs \ B))
                                  then (if (succ A a p1 = \{\} \land succ B a p2 \neq \{\}))
                                    then {FAIL}
                                    else (succ A a p1 \times succ B a p2))
                                  else\ \{\})),
           inputs = inputs A,
           outputs = outputs A \cup outputs B,
           initial = (initial A, initial B)
         ) )
lemma productF-simps[simp]:
  productF \ A \ B \ FAIL \ AB \Longrightarrow succ \ AB \ a \ (p1,p2) = (if \ (p1 \in nodes \ A \land p2 \in nodes \ B
                                      \land (fst \ a \in inputs \ A) \land (snd \ a \in outputs \ A \cup outputs \ B))
                                  then (if (succ A a p1 = \{\} \land succ B a p2 \neq \{\}))
                                    then \{FAIL\}
                                    else (succ A a p1 \times succ B a p2))
                                  else {})
  productF\ A\ B\ FAIL\ AB \Longrightarrow inputs\ AB = inputs\ A
  productF \ A \ B \ FAIL \ AB \Longrightarrow outputs \ AB = outputs \ A \cup outputs \ B
  productF \ A \ B \ FAIL \ AB \Longrightarrow initial \ AB = (initial \ A, initial \ B)
 unfolding productF.simps by simp+
\mathbf{lemma}\ \mathit{fail-next-product}F:
  assumes well-formed M1
 and
           well-formed M2
           productF M2 M1 FAIL PM
shows succ\ PM\ a\ FAIL = \{\}
proof (cases\ ((fst\ FAIL) \in nodes\ M2 \land (snd\ FAIL) \in nodes\ M1))
  case True
 then show ?thesis
   using assms by auto
next
  case False
 then show ?thesis
   using assms by (cases (succ M2 a (fst FAIL) = \{\}\ \land \ (fst\ a \in inputs\ M2)
                                                   \land (snd a \in outputs M2); auto)
qed
lemma nodes-productF:
  assumes well-formed M1
           well\text{-}formed\ M2
 and
           productF M2 M1 FAIL PM
 and
shows nodes PM \subseteq insert FAIL (nodes M2 \times nodes M1)
  fix q assume q-assm: q \in nodes PM
 then show q \in insert\ FAIL\ (nodes\ M2\ \times\ nodes\ M1)
  using assms proof (cases)
   case initial
   then show ?thesis using assms by auto
  next
```

```
case (execute p a)
   then obtain p1\ p2\ x\ y\ q1\ q2 where p\text{-}a\text{-}split[simp]: p=(p1,p2)
                                               a = ((x,y),q)
                                               q = (q1, q2)
    by (metis eq-snd-iff)
   have subnodes: p1 \in nodes\ M2 \land p2 \in nodes\ M1 \land x \in inputs\ M2 \land y \in outputs\ M2 \cup outputs\ M1
   proof (rule ccontr)
    assume \neg (p1 \in nodes \ M2 \land p2 \in nodes \ M1 \land x \in inputs \ M2 \land y \in outputs \ M2 \cup outputs \ M1)
     then have succ\ PM\ (x,y)\ (p1,p2)=\{\}
      using assms(3) by auto
     then show False
      using execute by auto
   qed
   show ?thesis proof (cases (succ M2 (x,y) p1 = \{\} \land succ M1 (x,y) p2 \neq \{\}))
    case True
    then have q = FAIL
      using subnodes\ assms(3)\ execute\ by\ auto
     then show ?thesis
      by auto
   next
    case False
    then have succ\ PM\ (fst\ a)\ p=succ\ M2\ (x,y)\ p1\ \times\ succ\ M1\ (x,y)\ p2
      using subnodes \ assms(3) \ execute \ by \ auto
    then have q \in (succ \ M2 \ (x,y) \ p1 \times succ \ M1 \ (x,y) \ p2)
      using execute by blast
     then have q-succ: (q1,q2) \in (succ\ M2\ (x,y)\ p1\ \times\ succ\ M1\ (x,y)\ p2)
      by simp
    have q1 \in succ \ M2 \ (x,y) \ p1
      using q-succ by simp
     then have q1 \in successors M2 p1
      by auto
     then have q1 \in reachable M2 p1
      by blast
     then have q1 \in reachable M2 (initial M2)
      using subnodes by blast
     then have nodes1: q1 \in nodes M2
      by blast
    have q2 \in succ \ M1 \ (x,y) \ p2
      using q-succ by simp
     then have q2 \in successors M1 p2
      by auto
    then have q2 \in reachable M1 p2
      by blast
    then have q2 \in reachable M1 \ (initial \ M1)
      using subnodes by blast
     then have nodes2: q2 \in nodes M1
      by blast
    show ?thesis
      using nodes1 nodes2 by auto
   qed
 qed
qed
lemma well-formed-product F[simp]:
 assumes well-formed M1
 and
          well-formed M2
          productF M2 M1 FAIL PM
 and
shows well-formed PM
unfolding well-formed.simps proof
```

```
have finite (nodes M1) finite (nodes M2)
   using assms by auto
  then have finite (insert FAIL (nodes M2 \times nodes M1))
   by simp
  moreover have nodes PM \subseteq insert FAIL (nodes M2 \times nodes M1)
   using nodes-productF assms by blast
  moreover have inputs PM = inputs M2 outputs PM = outputs M2 \cup outputs M1
   using assms by auto
  ultimately show finite-FSM PM
   using infinite-subset assms by auto
  have inputs PM = inputs M2 outputs PM = outputs M2 \cup outputs M1
   using assms by auto
  then show (\forall s1 \ x \ y. \ x \notin inputs \ PM \lor y \notin outputs \ PM \longrightarrow succ \ PM \ (x, y) \ s1 = \{\})
            \land inputs PM \neq \{\} \land outputs PM \neq \{\}
   using assms by auto
\mathbf{qed}
lemma \ observable-productF[simp] :
 assumes observable M1
          observable\ M2
 and
          productF M2 M1 FAIL PM
shows observable PM
  unfolding observable.simps
proof -
 have \forall t \ s. succ \ M1 \ t \ (fst \ s) = \{\} \lor (\exists \ s2. \ succ \ M1 \ t \ (fst \ s) = \{s2\})
   using assms by auto
  moreover have \forall t \ s \ . \ succ \ M2 \ t \ (snd \ s) = \{\} \lor (\exists \ s2. \ succ \ M2 \ t \ (snd \ s) = \{s2\}\}
   using assms by auto
  ultimately have sub-succs: \forall t \text{ s. succ } M2 \text{ t (fst s)} \times \text{succ } M1 \text{ t (snd s)} = \{ \}
                                   \vee (\exists s2 . succ M2 t (fst s) \times succ M1 t (snd s) = \{s2\})
  moreover have succ-split : \forall t \ s \ . \ succ \ PM \ t \ s = \{\}
                                 \vee succ PM t s = {FAIL}
                                 \vee succ PM t s = succ M2 t (fst s) \times succ M1 t (snd s)
   using assms by auto
  ultimately show \forall t \ s. \ succ \ PM \ t \ s = \{\} \lor (\exists \ s2. \ succ \ PM \ t \ s = \{s2\})
   by metis
qed
{f lemma} no-transition-after-FAIL:
 assumes productF A B FAIL AB
 shows succ\ AB\ io\ FAIL = \{\}
 using assms by auto
\mathbf{lemma}\ \textit{no-prefix-targets-FAIL}:
  assumes productF M2 M1 FAIL PM
          path PM p q
 and
          k < length p
 and
shows target (take k p) q \neq FAIL
  assume assm: target (take \ k \ p) \ q = FAIL
 have path PM (take k p @ drop k p) q
   using assms by auto
  then have path PM (drop k p) (target (take k p) q)
   by blast
  then have path-from-FAIL: path PM (drop k p) FAIL
   using assm by auto
  have length (drop \ k \ p) \neq 0
   using assms by auto
  then obtain io q where drop k p = (io,q) \# (drop (Suc k) p)
   by (metis Cons-nth-drop-Suc assms(3) prod-cases3)
  then have succ\ PM\ io\ FAIL \neq \{\}
```

```
then show False
   using no-transition-after-FAIL assms by auto
qed
\mathbf{lemma}\ product F-path-inclusion:
 assumes length w = length r1 length r1 = length r2
          productF A B FAIL AB
 and
 and
          well-formed A
 and
          well-formed B
          path A(w \parallel r1) p1 \wedge path B(w \parallel r2) p2
 and
          p1 \in nodes A
 and
          p2 \in nodes B
 and
shows path (AB) (w \mid\mid r1 \mid\mid r2) (p1, p2)
using assms proof (induction w r1 r2 arbitrary: p1 p2 rule: list-induct3)
 case Nil
 then show ?case by auto
 case (Cons w ws r1 r1s r2 r2s)
 then have path A([w] || [r1]) p1 \wedge path B([w] || [r2]) p2
 then have succs: r1 \in succ \ A \ w \ p1 \ \land \ r2 \in succ \ B \ w \ p2
   by auto
 then have succ\ A\ w\ p1 \neq \{\}
   by force
 then have w-elem: fst \ w \in inputs \ A \land snd \ w \in outputs \ A
   using Cons by (metis assms(4) prod.collapse well-formed.elims(2))
  then have (r1,r2) \in succ \ AB \ w \ (p1,p2)
   using Cons succs by auto
 then have path-head: path AB ([w] || [(r1,r2)]) (p1,p2)
   by auto
 have path A (ws || r1s) r1 \wedge path B (ws || r2s) r2
   using Cons by auto
 moreover have r1 \in nodes A \land r2 \in nodes B
   using succs Cons.prems succ-nodes[of r1 A w p1] succ-nodes[of r2 B w p2] by auto
 ultimately have path AB (ws || r1s || r2s) (r1,r2)
   using Cons by blast
 then show ?case
   using path-head by auto
qed
\mathbf{lemma}\ \mathit{productF-path-forward}\ :
 assumes length w = length r1 length r1 = length r2
          productF A B FAIL AB
 and
 and
          well-formed A
 and
          well-formed B
          (path\ A\ (w\ ||\ r1)\ p1\ \land\ path\ B\ (w\ ||\ r2)\ p2)
 and
          \vee (target (w || r1 || r2) (p1, p2) = FAIL
           \land length w > 0
           \land path A (butlast (w || r1)) p1
           \wedge path B (butlast (w || r2)) p2
           \land succ A (last w) (target (butlast (w || r1)) p1) = {}
           \land succ B (last w) (target (butlast (w || r2)) p2) \neq {})
 and
          p1 \in nodes A
          p2 \in nodes B
 and
shows path (AB) (w \parallel r1 \parallel r2) (p1, p2)
using assms proof (induction w r1 r2 arbitrary: p1 p2 rule: list-induct3)
 then show ?case by auto
  case (Cons \ w \ ws \ r1 \ r1s \ r2 \ r2s)
 then show ?case
```

using path-from-FAIL by auto

```
proof (cases (path A (w \# ws || r1 \# r1s) p1 \land path B (w \# ws || r2 \# r2s) p2))
 case True
 then show ?thesis
   using Cons productF-path-inclusion[of w # ws r1 # r1s r2 # r2s A B FAIL AB p1 p2]
   by auto
next
 case False
 then have fail-prop : target (w \# ws || r1 \# r1s || r2 \# r2s) (p1, p2) = FAIL \land
           0 < length (w \# ws) \land
           path A (butlast (w \# ws || r1 \# r1s)) p1 \land
           path B (butlast (w \# ws || r2 \# r2s)) p2 \land
           succ\ A\ (last\ (w\ \#\ ws))\ (target\ (butlast\ (w\ \#\ ws\ ||\ r1\ \#\ r1s))\ p1) = \{\}\ \land
           succ\ B\ (last\ (w\ \#\ ws))\ (target\ (butlast\ (w\ \#\ ws\ ||\ r2\ \#\ r2s))\ p2) \neq \{\}
   using Cons.prems by fastforce
 then show ?thesis
 proof (cases length ws)
   then have empty[simp] : ws = [] r1s = [] r2s = []
     using Cons.hyps by auto
   then have fail-prop-0: target ([w] || [r1] || [r2]) (p1, p2) = FAIL \land
           0 < length([w]) \land
           path~A~[]~p1~\wedge
           path B [] p2 \land
           succ\ A\ w\ p1\ =\ \{\}\ \land
           succ\ B\ w\ p2 \neq \{\}
     using fail-prop by auto
   then have fst \ w \in inputs \ B \land snd \ w \in outputs \ B
     using Cons.prems by (metis prod.collapse well-formed.elims(2))
   then have inputs-0: fst w \in inputs \ A \land snd \ w \in outputs \ B
     using Cons.prems by auto
   moreover have fail-elems-0: (r1, r2) = FAIL
     using fail-prop by auto
   ultimately have succ\ AB\ w\ (p1,p2) = \{FAIL\}
     using fail-prop-0 Cons.prems by auto
   then have path AB ([w] || [r1] || [r2]) (p1, p2)
     using Cons.prems fail-elems-0 by auto
   then show ?thesis
    by auto
 next
   case (Suc nat)
   then have path-r1: path \ A\ ([w]\ ||\ [r1])\ p1
     using fail-prop
     by (metis Cons.hyps(1) FSM.nil FSM.path.intros(2) FSM.path-cons-elim Suc-neq-Zero
        butlast.simps(2) length-0-conv zip-Cons-Cons zip-Nil zip-eq)
   then have path-r1s: path A (butlast (ws || r1s)) r1
     using Suc
     by (metis (no-types, lifting) Cons.hyps(1) FSM.path-cons-elim Suc-neg-Zero butlast.simps(2)
        fail-prop length-0-conv snd-conv zip.simps(1) zip-Cons-Cons zip-eq)
   \mathbf{have}\ \mathit{path}\text{-}\mathit{r2}\,:\,\mathit{path}\ B\ ([w]\ ||\ [\mathit{r2}])\ \mathit{p2}
     using Suc fail-prop
     by (metis Cons.hyps(1) Cons.hyps(2) FSM.nil FSM.path.intros(2) FSM.path-cons-elim
        Suc-neq-Zero butlast.simps(2) length-0-conv zip-Cons-Cons zip-Nil zip-eq)
   then have path-r2s: path B (butlast (ws || r2s)) r2
     using Suc
     by (metis (no-types, lifting) Cons.hyps(1) Cons.hyps(2) FSM.path-cons-elim Suc-neq-Zero
        butlast.simps(2) fail-prop length-0-conv snd-conv zip.simps(1) zip-Cons-Cons zip-eq)
   have target (ws || r1s || r2s) (r1, r2) = FAIL
     using fail-prop by auto
   moreover have r1 \in nodes A
```

```
using Cons.prems path-r1 by (metis FSM.path-cons-elim snd-conv succ-nodes zip-Cons-Cons)
     moreover have r2 \in nodes B
       using Cons.prems path-r2 by (metis FSM.path-cons-elim snd-conv succ-nodes zip-Cons-Cons)
     moreover have succ\ A\ (last\ ws)\ (target\ (butlast\ (ws\ ||\ r1s))\ r1) = \{\}
       by (metis (no-types, lifting) Cons.hyps(1) Suc Suc-neq-Zero butlast.simps(2) fail-prop
          fold-simps(2) last-ConsR list.size(3) snd-conv zip-Cons-Cons zip-Nil zip-eq)
     moreover have succ B (last ws) (target (butlast (ws || r2s)) r2) \neq {}
       by (metis (no-types, lifting) Cons.hyps(1) Cons.hyps(2) Suc Suc-neq-Zero butlast.simps(2)
          fail-prop fold-simps(2) last-ConsR list.size(3) snd-conv zip-Cons-Cons zip-Nil zip-eq)
     have path AB (ws || r1s || r2s) (r1, r2)
       using Cons.IH Suc \langle succ \ B \ (last \ ws) \ (target \ (butlast \ (ws \mid | \ r2s)) \ r2) \neq \{\} \rangle
            assms(3) \ assms(4) \ assms(5) \ calculation(1-4) \ path-r1s \ path-r2s \ zero-less-Suc
      bv presburger
     moreover have path AB ([w] \parallel [r1] \parallel [r2]) (p1,p2)
       using path-r1 path-r2 productF-path-inclusion[of [w] [r1] [r2] A B FAIL AB p1 p2]
            Cons.nrems
      by auto
     ultimately show ?thesis
       by auto
   qed
 qed
qed
lemma butlast-zip-cons : length ws = length \ r1s \Longrightarrow ws \neq []
                       \implies butlast (w \# ws || r1 \# r1s) = ((w,r1) \# (butlast (ws || r1s)))
proof -
assume a1: length ws = length r1s
assume a2: ws \neq []
 have length (w \# ws) = length \ r1s + Suc \ \theta
   using a1 by (metis\ list.size(4))
 then have f3: length (w \# ws) = length (r1 \# r1s)
   by (metis\ list.size(4))
 have f_4: ws @ w \# ws \neq w \# ws
   using a2 by (meson append-self-conv2)
 have length (ws @ w \# ws) = length (r1s @ r1 \# r1s)
   using a1 by auto
 then have ws @ w \# ws || r1s @ r1 \# r1s \neq w \# ws || r1 \# r1s
   using f4 f3 by (meson zip-eq)
 then show ?thesis
   using a1 by simp
qed
\mathbf{lemma}\ product F-succ-fail-imp:
 assumes productF A B FAIL AB
          FAIL \in succ \ AB \ w \ (p1,p2)
 and
          well-formed A
 and
          well-formed B
 and
shows p1 \in nodes\ A \land p2 \in nodes\ B \land (fst\ w \in inputs\ A) \land (snd\ w \in outputs\ A \cup outputs\ B)
      \land succ AB w (p1,p2) = \{FAIL\} \land succ A w p1 = \{\} \land succ B w p2 \neq \{\}
proof -
 have path-head: path AB([w] || [FAIL])(p1,p2)
   using assms by auto
 then have succ-nonempty : succ AB w (p1,p2) \neq \{\}
 then have succ-if-1: p1 \in nodes \ A \land p2 \in nodes \ B \land (fst \ w \in inputs \ A)
                       \land (snd \ w \in outputs \ A \cup outputs \ B)
   using assms by auto
  then have (p1,p2) \neq FAIL
   using assms by auto
```

```
have succ \ A \ w \ p1 \subseteq nodes \ A
   using assms succ-if-1 by (simp add: subsetI succ-nodes)
  moreover have succ B w p2 \subseteq nodes B
   using assms succ-if-1 by (simp add: subsetI succ-nodes)
  ultimately have FAIL \notin (succ \ A \ w \ p1 \times succ \ B \ w \ p2)
   using assms by auto
  then have succ-no-inclusion : succ \ AB \ w \ (p1,p2) \neq (succ \ A \ w \ p1 \times succ \ B \ w \ p2)
   using assms succ-if-1 by blast
  moreover have succ\ AB\ w\ (p1,p2) = \{\} \lor succ\ AB\ w\ (p1,p2) = \{FAIL\}
                \vee succ AB w (p1,p2) = (succ\ A\ w\ p1\ \times\ succ\ B\ w\ p2)
   using assms by simp
  ultimately have succ-fail: succ AB w (p1,p2) = \{FAIL\}
   using succ-nonempty by simp
 have succ\ A\ w\ p1 = \{\} \land succ\ B\ w\ p2 \neq \{\}
  proof (rule ccontr)
   assume \neg (succ A w p1 = {} \land succ B w p2 \neq {})
   then have succ\ AB\ w\ (p1,p2) = (succ\ A\ w\ p1\ \times\ succ\ B\ w\ p2)
     using assms by auto
   then show False
     using succ-no-inclusion by simp
  qed
 then show ?thesis
   using succ-if-1 succ-fail by simp
qed
\mathbf{lemma}\ product F-path-reverse:
  assumes length w = length r1 length r1 = length r2
          productF A B FAIL AB
  and
          well-formed A
 and
          well-formed B
 and
          path\ AB\ (w\ ||\ r1\ ||\ r2)\ (p1,\ p2)
 and
          p1 \in nodes A
 and
          p2 \in nodes B
 and
shows (path A (w \mid\mid r1) p1 \land path B (w \mid\mid r2) p2)
          \vee (target (w || r1 || r2) (p1, p2) = FAIL
            \land length w > 0
            \wedge path A (butlast (w || r1)) p1
            \wedge path B (butlast (w || r2)) p2
            \land succ A (last w) (target (butlast (w || r1)) p1) = {}
            \land succ B (last w) (target (butlast (w || r2)) p2) \neq {})
using assms proof (induction w r1 r2 arbitrary: p1 p2 rule: list-induct3)
 {\bf case}\ Nil
  then show ?case by auto
next
  case (Cons w ws r1 r1s r2 r2s)
 have path-head: path AB ([w] || [(r1,r2)])) (p1,p2) using Cons by auto
  then have succ\text{-}nonempty: succ\ AB\ w\ (p1,p2) \neq \{\} by force
  then have succ-if-1: p1 \in nodes\ A \land p2 \in nodes\ B \land (fst\ w \in inputs\ A)
                      \land (snd \ w \in outputs \ A \cup outputs \ B)
   \mathbf{using}\ \mathit{Cons}\ \mathbf{by}\ \mathit{fastforce}
  then have (p1, p2) \neq FAIL
   using Cons by auto
 have path-tail: path AB (ws || r1s || r2s) (r1,r2)
   using path-head Cons by auto
  show ?case
  proof (cases\ (r1,r2) = FAIL)
   case True
   have r1s = []
   proof (rule ccontr)
```

```
assume \neg (r1s = [])
  then have (\neg (ws = [])) \land (\neg (r1s = [])) \land (\neg (r2s = []))
    using Cons.hyps by auto
  moreover have path AB (ws || r1s || r2s) FAIL
    using True path-tail by simp
   ultimately have path AB ([hd ws] @ tl ws || [hd r1s] @ tl r1s || [hd r2s] @ tl r2s) FAIL
    by simp
   then have path AB ([hd ws] || [hd r1s] || [hd r2s]) FAIL
    by auto
   then have succ\ AB\ (hd\ ws)\ FAIL \neq \{\}
    by auto
   then show False using no-transition-after-FAIL
     using Cons.prems by auto
 qed
 then have tail-nil: ws = [] \land r1s = [] \land r2s = []
  using Cons.hyps by simp
 have succ-fail: FAIL \in succ \ AB \ w \ (p1,p2)
   using path-head True by auto
 then have succs : succ \ A \ w \ p1 = \{\} \land succ \ B \ w \ p2 \neq \{\}
   using Cons.prems by (meson productF-succ-fail-imp)
 have target (w \# ws || r1 \# r1s || r2 \# r2s) (p1, p2) = FAIL
  using True tail-nil by simp
 moreover have \theta < length (w \# ws)
  by simp
 moreover have path A (butlast (w \# ws || r1 \# r1s)) p1
  using tail-nil by auto
 moreover have path B (butlast (w \# ws || r2 \# r2s)) p2
  using tail-nil by auto
 moreover have succ\ A\ (last\ (w\ \#\ ws))\ (target\ (butlast\ (w\ \#\ ws\ ||\ r1\ \#\ r1s))\ p1) = \{\}
  using succs tail-nil by simp
 moreover have succ\ B\ (last\ (w\ \#\ ws))\ (target\ (butlast\ (w\ \#\ ws\ ||\ r2\ \#\ r2s))\ p2) \neq \{\}
  using succs tail-nil by simp
 ultimately show ?thesis
  by simp
next
 case False
 have (r1,r2) \in succ \ AB \ w \ (p1,p2)
  using path-head by auto
 then have succ-not-fail: succ\ AB\ w\ (p1,p2) \neq \{FAIL\}
  using succ-nonempty False by auto
 have \neg (succ\ A\ w\ p1 = \{\} \land succ\ B\ w\ p2 \neq \{\})
 proof (rule ccontr)
  assume \neg \neg (succ \ A \ w \ p1 = \{\} \land succ \ B \ w \ p2 \neq \{\})
  then have succ\ AB\ w\ (p1,p2) = \{FAIL\}
    using succ-if-1 Cons by auto
   then show False
    using succ-not-fail by simp
 then have succ\ AB\ w\ (p1,p2) = (succ\ A\ w\ p1\ \times\ succ\ B\ w\ p2)
   using succ-if-1 Cons by auto
 then have (r1,r2) \in (succ\ A\ w\ p1\ \times\ succ\ B\ w\ p2)
   using Cons by auto
 then have succs-next: r1 \in succ\ A\ w\ p1 \land r2 \in succ\ B\ w\ p2
 then have nodes-next: r1 \in nodes\ A \land r2 \in nodes\ B
  using Cons succ-nodes by metis
 moreover have path-tail: path AB (ws || r1s || r2s) (r1,r2)
  using Cons by auto
 ultimately have prop-tail:
```

```
path A (ws || r1s) r1 \wedge path B (ws || r2s) r2 \vee
          target (ws || r1s || r2s) (r1, r2) = FAIL \land
          0 < length ws \land
          path A (butlast (ws || r1s)) r1 \land
          path B (butlast (ws || r2s)) r2 \land
          succ\ A\ (last\ ws)\ (target\ (butlast\ (ws\ ||\ r1s))\ r1) = \{\}\ \land
          succ\ B\ (last\ ws)\ (target\ (butlast\ (ws\ ||\ r2s))\ r2) \neq \{\}
     using Cons.IH[of r1 r2] Cons.prems by auto
   moreover have path A ([w] || [r1]) p1 \land path B ([w] || [r2]) p2
     using succs-next by auto
   then show ?thesis
   proof (cases path A (ws || r1s) r1 \land path B (ws || r2s) r2)
     case True
     moreover have paths-head: path A([w] || [r1]) p1 \wedge path B([w] || [r2]) p2
       using succs-next by auto
     ultimately show ?thesis
       by (metis (no-types) FSM.path.simps FSM.path-cons-elim True eq-snd-iff
          paths-head zip-Cons-Cons)
   next
     {f case} False
     then have fail-prop : target (ws || r1s || r2s) (r1, r2) = FAIL \land
          0 < length ws \land
          path \ A \ (butlast \ (ws \ || \ r1s)) \ r1 \ \land
          path B (butlast (ws || r2s)) r2 \land
          succ\ A\ (last\ ws)\ (target\ (butlast\ (ws\ ||\ r1s))\ r1) = \{\}\ \land
          succ\ B\ (last\ ws)\ (target\ (butlast\ (ws\ ||\ r2s))\ r2) \neq \{\}
       using prop-tail by auto
     then have paths-head: path A([w] || [r1]) p1 \wedge path B([w] || [r2]) p2
       using succs-next by auto
     have (last (w \# ws)) = last ws
      using fail-prop by simp
     moreover have (target \ (butlast \ (w \# ws || r1 \# r1s)) \ p1) = (target \ (butlast \ (ws || r1s)) \ r1)
       using fail-prop Cons.hyps(1) butlast-zip-cons by auto
     moreover have (target (butlast (w \# ws || r2 \# r2s)) p2) = (target (butlast (ws || r2s)) r2)
       using fail-prop Cons.hyps(1) Cons.hyps(2) butlast-zip-cons by auto
     ultimately have succ\ A\ (last\ (w\ \#\ ws))\ (target\ (butlast\ (w\ \#\ ws\ ||\ r1\ \#\ r1s))\ p1) = \{\}
                    \land succ B (last (w # ws)) (target (butlast (w # ws || r2 # r2s)) p2) \neq {}
      using fail-prop by auto
     moreover have path A (butlast (w \# ws || r1 \# r1s)) p1
       using fail-prop paths-head by auto
     moreover have path B (butlast (w \# ws || r2 \# r2s)) p2
       using fail-prop paths-head by auto
     moreover have target (w \# ws || r1 \# r1s || r2 \# r2s) (p1, p2) = FAIL
       using fail-prop paths-head by auto
     ultimately show ?thesis
       by simp
   qed
 qed
qed
lemma butlast-zip[simp]:
 assumes length xs = length ys
 shows butlast (xs || ys) = (butlast xs || butlast ys)
 using assms by (metis (no-types, lifting) map-butlast map-fst-zip map-snd-zip zip-map-fst-snd)
\mathbf{lemma}\ product F\text{-}path\text{-}reverse\text{-}ob:
 assumes length w = length r1 length r1 = length r2
          productF A B FAIL AB
 and
 and
          well-formed A
```

```
and
           well-formed B
           path \ AB \ (w \mid \mid r1 \mid \mid r2) \ (p1, \ p2)
 and
 and
           p1 \in nodes A
 and
           p2 \in nodes B
obtains r2'
where path B (w || r2') p2 \wedge length w = length <math>r2'
proof
 have path-prop: (path\ A\ (w\ ||\ r1)\ p1\ \land\ path\ B\ (w\ ||\ r2)\ p2)
                  \lor (target (w || r1 || r2) (p1, p2) = FAIL
                    \land length w > 0
                    \wedge path A (butlast (w || r1)) p1
                    \wedge path B (butlast (w || r2)) p2
                    \land \ \mathit{succ} \ A \ (\mathit{last} \ w) \ (\mathit{target} \ (\mathit{butlast} \ (w \mid\mid r1)) \ \mathit{p1}) = \{\}
                    \land succ B (last w) (target (butlast (w || r2)) p2) \neq {})
   using assms productF-path-reverse[of w r1 r2 A B FAIL AB p1 p2] by simp
  have \exists r1'. path B(w || r1') p2 \land length w = length r1'
  proof (cases path A (w \mid\mid r1) p1 \land path B (w \mid\mid r2) p2)
   \mathbf{case} \ \mathit{True}
   then show ?thesis
     using assms by auto
   case False
   then have B-prop : length w > 0
              \wedge path B (butlast (w || r2)) p2
              \land succ B (last w) (target (butlast (w || r2)) p2) \neq {}
     using path-prop by auto
   then obtain rx where rx \in succ \ B \ (last \ w) \ (target \ (butlast \ (w \mid\mid r2)) \ p2)
     by auto
   then have path B ([last w] || [rx]) (target (butlast (w || r2)) p2)
     using B-prop by auto
   then have path B ((butlast (w \mid\mid r2)) @ ([last w] \mid\mid [rx])) p2
     using B-prop by auto
   moreover have butlast (w || r2) = (butlast w || butlast r2)
     using assms by simp
   ultimately have path B ((butlast w) @ [last w] || (butlast r2) @ [rx]) p2
     using assms B-prop by auto
   moreover have (butlast \ w) \ @ [last \ w] = w
     using B-prop by simp
   moreover have length ((butlast \ r2) \ @ \ [rx]) = length \ w
     using assms B-prop by auto
   ultimately show ?thesis
     by auto
  qed
  then obtain r1' where path B(w || r1') p2 \land length w = length r1'
   by blast
  then show ?thesis
   using that by blast
The following lemma formalizes the property of paths of the product machine as described in the section
introduction.
lemma productF-path[iff]:
 assumes length w = length r1 length r1 = length r2
           productF\ A\ B\ FAIL\ AB
  and
 and
           well-formed A
 and
           well-formed B
 and
           p1 \in nodes A
           p2 \in nodes B
shows path AB (w \mid\mid r1 \mid\mid r2) (p1, p2) \longleftrightarrow ((path\ A\ (w \mid\mid r1)\ p1 \land path\ B\ (w \mid\mid r2)\ p2)
           \vee (target (w || r1 || r2) (p1, p2) = FAIL
            \land length w > 0
            \land path A (butlast (w || r1)) p1
            \land path B (butlast (w || r2)) p2
            \land \ succ \ A \ (last \ w) \ (target \ (butlast \ (w \mid\mid r1)) \ p1) = \{\}
```

```
\land succ B (last w) (target (butlast (w || r2)) p2) \neq {})) (is ?path \longleftrightarrow ?paths)
proof
 assume ?path
 then show ?paths using assms productF-path-reverse[of w r1 r2 A B FAIL AB p1 p2] by simp
next
  assume ?paths
 then show ?path using assms productF-path-forward[of w r1 r2 A B FAIL AB p1 p2] by simp
qed
lemma path-last-succ:
 assumes path \ A \ (ws \mid\mid r1s) \ p1
          length \ r1s = length \ ws
 and
 and
          length ws > 0
shows
           last \ r1s \in succ \ A \ (last \ ws) \ (target \ (butlast \ (ws || \ r1s)) \ p1)
proof -
  have path A (butlast (ws || r1s)) p1
       \land path A [last (ws || r1s)] (target (butlast (ws || r1s)) p1)
   by (metis FSM.path-append-elim append-butlast-last-id assms length-greater-0-conv
       list.size(3) zip-Nil zip-eq)
  then have snd (last (ws || r1s)) \in
            succ\ A\ (fst\ (last\ (ws\ ||\ r1s)))\ (target\ (butlast\ (ws\ ||\ r1s))\ p1)
   by auto
  moreover have ws \mid\mid r1s \neq []
   using assms(3) assms(2) by (metis\ length-zip\ list.size(3)\ min.idem\ neq0-conv)
  ultimately have last r1s \in succ \ A \ (last \ ws) \ (target \ (butlast \ (ws \mid\mid r1s)) \ p1)
   by (simp\ add:\ assms(2))
  then show ?thesis
   by auto
qed
lemma zip-last:
 assumes length r1 > 0
        length r1 = length r2
 and
shows last (r1 || r2) = (last r1, last r2)
 by (metis (no-types) assms(1) assms(2) less-nat-zero-code list.size(3)
     map-fst-zip zip-Nil zip-last)
\mathbf{lemma}\ product F-path-reverse-ob-2:
  assumes length w = length r1 length r1 = length r2
 and
          productF A B FAIL AB
           well-formed A
 and
          well-formed B
 and
          path\ AB\ (w\ ||\ r1\ ||\ r2)\ (p1,\ p2)
  and
          p1 \in nodes A
  and
  and
          p2 \in nodes B
 and
          w \in language\text{-state } A p1
 and
          observable A
shows path A(w || r1) p1 \wedge length w = length r1 path B(w || r2) p2 \wedge length w = length r2
     target (w \mid\mid r1) p1 = fst (target (w \mid\mid r1 \mid\mid r2) (p1, p2))
     target (w \parallel r2) p2 = snd (target (w \parallel r1 \parallel r2) (p1,p2))
proof -
 have (path\ A\ (w\ ||\ r1)\ p1\ \land\ path\ B\ (w\ ||\ r2)\ p2)
          \lor (target (w \parallel r1 \parallel r2) (p1, p2) = FAIL
            \land length w > 0
            \wedge path A (butlast (w || r1)) p1
            \wedge path B (butlast (w || r2)) p2
            \land succ A (last w) (target (butlast (w || r1)) p1) = {}
            \land succ B (last w) (target (butlast (w || r2)) p2) \neq {})
   using productF-path[of w r1 r2 A B FAIL AB p1 p2] assms by blast
  moreover have path A (butlast (w || r1)) p1
```

```
\land succ A (last w) (target (butlast (w || r1)) p1) = {}
              \land length \ w > 0 \Longrightarrow False
proof -
 assume assm: path \ A \ (butlast \ (w \mid\mid r1)) \ p1
               \land succ \ A \ (last \ w) \ (target \ (butlast \ (w \mid\mid r1)) \ p1) = \{\}
                \land length w > 0
 obtain r1' where r1'-def: path A(w || r1') p1 \land length r1' = length w
   using assms(9) by auto
 then have path A (butlast (w || r1')) p1 \wedge length (butlast r1') = length (butlast w)
   by (metis FSM.path-append-elim append-butlast-last-id butlast.simps(1) length-butlast)
 moreover have path A (butlast (w \mid\mid r1)) p1 \land length (butlast r1) = length (butlast w)
   using assm\ assms(1) by auto
 ultimately have but last r1 = but last r1'
   by (metis assms(1) assms(10) butlast-zip language-state observable-path-unique r1'-def)
 then have but last (w \mid\mid r1) = but last (w \mid\mid r1')
   using assms(1) r1'-def by simp
 moreover have succ A (last w) (target (butlast (w || r1')) p1) \neq {}
   by (metis (no-types) assm empty-iff path-last-succ r1'-def)
 ultimately show False
   using assm by auto
qed
ultimately have paths: (path \ A \ (w \parallel r1) \ p1 \land path \ B \ (w \parallel r2) \ p2)
 by auto
show path A (w \mid\mid r1) p1 \land length w = length r1
 using assms(1) paths by simp
show path B(w || r2) p2 \land length w = length r2
 using assms(1) assms(2) paths by simp
have length w = 0 \Longrightarrow target (w || r1 || r2) (p1,p2) = (p1,p2)
 by simp
moreover have length w > 0 \Longrightarrow target (w \parallel r1 \parallel r2) (p1, p2) = last (r1 \parallel r2)
proof -
 assume length w > 0
 moreover have length w = length (r1 || r2)
   using assms(1) assms(2) by simp
 ultimately show ?thesis
   using target-alt-def(2)[of w r1 || r2 (p1,p2)] by simp
qed
ultimately have target (w \parallel r1) p1 = fst (target (w \parallel r1 \parallel r2) (p1, p2))
               \wedge target (w \parallel r2) p2 = snd (target (w \parallel r1 \parallel r2) (p1, p2))
proof (cases length w)
 case \theta
 then show ?thesis by simp
next
 case (Suc nat)
 then have length w > 0 by simp
 have target(w || r1 || r2)(p1,p2) = last(r1 || r2)
 proof -
   have length w = length (r1 || r2)
     using assms(1) assms(2) by simp
   then show ?thesis
     using \langle length \ w > 0 \rangle target-alt-def(2)[of w r1 || r2 (p1,p2)] by simp
 moreover have target(w || r1) p1 = last r1
   using \langle length \ w > 0 \rangle target-alt-def(2)[of w r1 p1] assms(1) by simp
 moreover have target (w \mid\mid r2) p2 = last r2
   using \langle length \ w > 0 \rangle \ target-alt-def(2)[of \ w \ r2 \ p2] \ assms(1) \ assms(2) by simp
 moreover have last (r1 || r2) = (last r1, last r2)
   using \langle length \ w > 0 \rangle \ assms(1) \ assms(2) \ zip-last[of \ r1 \ r2] \ by \ simp
 ultimately show ?thesis
   by simp
```

```
qed
 then show target (w \parallel r1) p1 = fst (target (w \parallel r1 \parallel r2) (p1,p2))
          target (w \parallel r2) p2 = snd (target (w \parallel r1 \parallel r2) (p1,p2))
   by simp+
\mathbf{qed}
\mathbf{lemma}\ product F-path-unzip:
 assumes productF A B FAIL AB
          path\ AB\ (w\ ||\ tr)\ q
 and
 and
          length tr = length w
shows path AB (w \mid\mid (map \ fst \ tr \mid\mid map \ snd \ tr)) <math>q
proof -
  have map fst \ tr \mid \mid map \ snd \ tr = tr
   by auto
 then show ?thesis
   using assms by auto
qed
\mathbf{lemma}\ product F-path-io-targets:
  assumes productF A B FAIL AB
          io-targets AB (qA,qB) w = \{(pA,pB)\}
 and
 and
           w \in language\text{-state } A \ qA
  and
          w \in language\text{-}state\ B\ qB
  and
          observable A
          observable\ B
  and
          well-formed A
  and
          well-formed B
 and
          qA \in nodes A
 and
          qB \in nodes B
 and
shows pA \in io-targets A \neq A w \neq B \in io-targets B \neq B w
proof -
  obtain tr where tr-def: target (w || tr) (qA,qB) = (pA,pB)
                         \wedge path AB (w || tr) (qA,qB)
                         \wedge length w = length tr using <math>assms(2)
   by blast
  have path-A: path A (w || map fst tr) qA \wedge length w = length (map fst tr)
   using productF-path-reverse-ob-2[of w map fst tr map snd tr A B FAIL AB qA qB]
         assms\ tr\text{-}def\ \mathbf{by}\ auto
  have path-B: path B (w || map snd tr) qB \wedge length w = length (map snd tr)
   using productF-path-reverse-ob-2[of w map fst tr map snd tr A B FAIL AB qA qB]
         assms tr-def by auto
  have targets: target (w \mid\mid map \ fst \ tr) \ qA = pA \land target \ (w \mid\mid map \ snd \ tr) \ qB = pB
  proof (cases tr)
   case Nil
   then have qA = pA \wedge qB = pB
     using tr-def by auto
   then show ?thesis
     by (simp add: local.Nil)
  next
   case (Cons a list)
   then have last tr = (pA, pB)
     using tr-def by (simp add: tr-def FSM.target-alt-def states-alt-def)
   moreover have target (w \mid\mid map \ fst \ tr) \ qA = last \ (map \ fst \ tr)
     using Cons by (simp add: FSM.target-alt-def states-alt-def tr-def)
   moreover have last (map\ fst\ tr) = fst\ (last\ tr)
     using last-map Cons by blast
```

```
moreover have target (w || map \ snd \ tr) qB = last \ (map \ snd \ tr)
      using Cons by (simp add: FSM.target-alt-def states-alt-def tr-def)
    moreover have last (map \ snd \ tr) = snd \ (last \ tr)
      using last-map Cons by blast
    ultimately show ?thesis
      by simp
  qed
  show pA \in io\text{-}targets A qA w
    using path-A targets by auto
  show pB \in io\text{-}targets \ B \ qB \ w
    using path-B targets by auto
qed
lemma productF-path-io-targets-reverse:
  assumes productF A B FAIL AB
            pA \in io\text{-targets } A \ qA \ w
  and
  and
            pB \in io\text{-targets } B \neq w
  and
            w \in language\text{-state } A \ qA
  and
            w \in language\text{-}state\ B\ qB
            observable\ A
  and
            observable\ B
  and
             well-formed A
  and
  and
            well-formed B
  and
            qA \in nodes A
  and
             qB \in nodes B
shows io-targets AB (qA,qB) w = \{(pA,pB)\}
proof -
  obtain trA where path A (w || trA) qA
                    length w = length trA
                    target (w \mid\mid trA) qA = pA
    using assms(2) by auto
  obtain trB where path B (w || trB) qB
                   length trA = length trB
                    target (w \mid\mid trB) qB = pB
    using \langle length \ w = length \ trA \rangle \ assms(3) by auto
  have path AB (w \mid\mid trA \mid\mid trB) (qA,qB)
       length (trA \mid\mid trB) = length w
    using productF-path-inclusion
          [\mathit{OF} \ \langle \mathit{length} \ \mathit{w} = \mathit{length} \ \mathit{trA} \rangle \ \langle \mathit{length} \ \mathit{trA} = \mathit{length} \ \mathit{trB} \rangle \ \mathit{assms}(1) \ \mathit{assms}(8,9) \ - \ \mathit{assms}(10,11)]
    by (simp\ add: \langle length\ trA = length\ trB \rangle \langle length\ w = length\ trA \rangle \langle path\ A\ (w\ ||\ trA)\ qA \rangle
          \langle path \ B \ (w \mid\mid trB) \ qB \rangle) +
  have target (w \mid\mid trA \mid\mid trB) (qA,qB) = (pA,pB)
    by (simp add: \langle length \ trA = length \ trB \rangle \langle length \ w = length \ trA \rangle \langle target \ (w || trA) \ qA = pA \rangle
        \langle target (w \mid | trB) | qB = pB \rangle
  \mathbf{have}\ (pA, pB) \in \mathit{io\text{-}targets}\ AB\ (qA, qB)\ w
    by (metis \land length (trA \mid | trB) = length w \land path AB (w \mid | trA \mid | trB) (qA, qB) \land
        \langle target (w \mid | trA \mid | trB) (qA, qB) = (pA, pB) \rangle io\text{-}target\text{-}from\text{-}path)
  have observable AB
    by (metis (no-types) assms(1) assms(6) assms(7) observable-productF)
    by (meson \langle (pA, pB) \in io\text{-targets } AB (qA, qB) \ w \langle observable \ AB \rangle
        observable-io-target-is-singleton)
qed
```

2.1 Sequences to failure in the product machine

A sequence to a failure for A and B reaches the fail state of any product machine of A and B with added fail state.

```
{f lemma}\ fail\ reachable\ by\ sequence\ to\ failure:
 assumes sequence-to-failure M1 M2 io
           well-formed M1
 and
           well-formed M2
 and productF M2 M1 FAIL PM
obtains p
where path PM (io||p) (initial PM) \land length p = length io \land target (io||p) (initial PM) = FAIL
proof -
 have io \neq [
   using assms by auto
  then obtain io-init io-last where io-split[simp] : io = io-init @ [io-last]
   by (metis append-butlast-last-id)
  have io\text{-}init\text{-}inclusion: io\text{-}init \in language\text{-}state M1 (initial M1)
                          \land io\text{-}init \in language\text{-}state M2 (initial M2)
   using assms by auto
  have io\text{-}init @ [io\text{-}last] \in language\text{-}state M1 (initial M1)
   using assms by auto
  then obtain tr1-init tr1-last where tr1-def:
   path\ \mathit{M1}\ (io\text{-}init\ @\ [io\text{-}last]\ ||\ tr1\text{-}init\ @\ [tr1\text{-}last])\ (initial\ \mathit{M1})
     \land length (tr1-init @ [tr1-last]) = length (io-init @ [io-last])
   by (metis append-butlast-last-id language-state-elim length-0-conv length-append-singleton
       nat.simps(3))
  then have path-init-1: path M1 (io-init || tr1-init) (initial M1)
                          \land length tr1-init = length io-init
  then have path M1 ([io-last] || [tr1-last]) (target (io-init || tr1-init) (initial M1))
   using tr1-def by auto
  then have succ-1 : succ \ M1 \ io-last \ (target \ (io-init \ || \ tr1-init) \ (initial \ M1)) \neq \{\}
   by auto
  obtain tr2 where tr2-def: path M2 (io-init || tr2) (initial M2) \land length tr2 = length io-init
   using io-init-inclusion by auto
  have succ-2 : succ M2 \ io-last \ (target \ (io-init \mid \mid tr2) \ (initial \ M2)) = \{\}
  proof (rule ccontr)
   assume succ M2 io-last (target (io-init || tr2) (initial M2)) \neq {}
   then obtain tr2-last where tr2-last \in succ\ M2 io-last (target (io-init || tr2) (initial M2))
     by auto
   then have path M2 ([io-last] || [tr2-last]) (target (io-init || tr2) (initial M2))
     by auto
   then have io-init @ [io-last] \in language-state M2 (initial M2)
     by (metis FSM.path-append language-state length-Cons length-append list.size(3) tr2-def
         zip-append)
   then show False
     using assms io-split by simp
 have fail-lengths: length (io-init @ [io-last]) = length (tr2 @ [fst FAIL])
                      \land length (tr2 @ [fst FAIL]) = length (tr1-init @ [snd FAIL])
   \mathbf{using}\ assms\ tr2\text{-}def\ tr1\text{-}def\ \mathbf{by}\ auto
  then have fail\text{-}tgt: target\ (io\text{-}init\ @\ [io\text{-}last]\ ||\ tr2\ @\ [fst\ FAIL]\ ||\ tr1\text{-}init\ @\ [snd\ FAIL])
                             (initial\ M2,\ initial\ M1) = FAIL
   by auto
  have fail-butlast-simp[simp]:
   butlast (io\text{-}init @ [io\text{-}last] || tr2 @ [fst FAIL]) = io\text{-}init || tr2
   butlast (io-init @ [io-last] || tr1-init @ [snd FAIL]) = io-init || tr1-init
   using fail-lengths by simp+
 \mathbf{have}\ path\ M2\ (butlast\ (io\text{-}init\ @\ [io\text{-}last]\ ||\ tr2\ @\ [fst\ FAIL]))\ (initial\ M2)
       ∧ path M1 (butlast (io-init @ [io-last] || tr1-init @ [snd FAIL])) (initial M1)
```

```
using tr1-def tr2-def by auto
 moreover have succ M2 (last (io-init @ [io-last]))
                 (target\ (butlast\ (io\text{-}init\ @\ [io\text{-}last]\ ||\ tr2\ @\ [fst\ FAIL]))\ (initial\ M2)) = \{\}
   using succ-2 by simp
  moreover have succ M1 (last (io-init @ [io-last]))
               (target (butlast (io-init @ [io-last] || tr1-init @ [snd FAIL])) (initial M1))
               ≠ {}
   using succ-1 by simp
  moreover have initial M2 \in nodes M2 \land initial M1 \in nodes M1
  ultimately have path PM (io-init @ [io-last] || tr2 @ [fst FAIL] || tr1-init @ [snd FAIL])
                 (initial M2, initial M1)
   using fail-lengths fail-tgt assms path-init-1 tr2-def productF-path-forward
        [of io-init @ [io-last] tr2 @ [fst FAIL] tr1-init @ [snd FAIL] M2 M1 FAIL PM
            initial M2 initial M1
   by simp
  moreover have initial PM = (initial \ M2, initial \ M1)
   using assms(4) productF-simps(4) by blast
  ultimately have
   path PM (io-init @ [io-last] || tr2 @ [fst FAIL] || tr1-init @ [snd FAIL]) (initial PM)
    \land length (tr2 @ [fst FAIL] || tr1-init @ [snd FAIL]) = length (io-init @ [io-last])
    \land target (io-init @ [io-last] || tr2 @ [fst FAIL] || tr1-init @ [snd FAIL]) (initial PM)= FAIL
   using fail-lengths fail-tgt by auto
 then show ?thesis using that
   using io-split by blast
qed
lemma fail-reachable:
 assumes \neg M1 \leq M2
 and
        well-formed M1
          well-formed M2
 and productF M2 M1 FAIL PM
shows FAIL \in reachable PM (initial PM)
proof -
 obtain io where sequence-to-failure M1 M2 io
   using sequence-to-failure-ob assms by blast
 then show ?thesis
   using assms fail-reachable-by-sequence-to-failure of M1 M2 io FAIL PM
   by (metis FSM.reachable.reflexive FSM.reachable-target)
\mathbf{lemma}\ \mathit{fail-reachable-ob}:
 assumes \neg M1 \preceq M2
          well-formed M1
 and
 and
          well-formed M2
 and
          observable M2
 and productF M2 M1 FAIL PM
where path PM p (initial PM) target p (initial PM) = FAIL
using assms fail-reachable by (metis FSM.reachable-target-elim)
{\bf lemma}\ fail\ reachable\ reverse:
 assumes well-formed M1
          well-formed M2
 and
          productF M2 M1 FAIL PM
 and
          FAIL \in reachable PM (initial PM)
 and
 and
          observable M2
shows \neg M1 \leq M2
proof -
 \textbf{obtain} \ \textit{pathF} \ \textbf{where} \ \textit{pathF-def} : \textit{path} \ \textit{PM} \ \textit{pathF} \ (\textit{initial} \ \textit{PM}) \ \land \ \textit{target} \ \textit{pathF} \ (\textit{initial} \ \textit{PM}) = \textit{FAIL}
   using assms by auto
```

```
let ?io = map fst pathF
let ?tr2 = map fst (map snd pathF)
let ?tr1 = map \ snd \ (map \ snd \ pathF)
have initial PM \neq FAIL
  using assms by auto
then have pathF \neq []
  using pathF-def by auto
moreover have initial PM = (initial \ M2, initial \ M1)
  using assms by simp
ultimately have path M2 (?io || ?tr2) (initial M2) \land path M1 (?io || ?tr1) (initial M1) \lor
                  target \ (?io \mid\mid ?tr2 \mid\mid ?tr1) \ (initial \ M2, \ initial \ M1) = FAIL \land
                  0 < length (?io) \land
                  path M2 (butlast (?io || ?tr2)) (initial M2) \wedge
                  path M1 (butlast (?io || ?tr1)) (initial M1) ∧
                  succ\ M2\ (last\ (?io))\ (target\ (butlast\ (?io\ ||\ ?tr2))\ (initial\ M2)) = \{\} \land \}
                  succ\ M1\ (last\ (?io))\ (target\ (butlast\ (?io\ ||\ ?tr1))\ (initial\ M1)) \neq \{\}
  using productF-path-reverse[of ?io ?tr2 ?tr1 M2 M1 FAIL PM initial M2 initial M1]
  using assms pathF-def
proof -
  have f1: path PM (?io || ?tr2 || ?tr1) (initial M2, initial M1)
   by (metis\ (no-types)\ (initial\ PM=(initial\ M2,\ initial\ M1))\ pathF-def\ zip-map-fst-snd)
  have f2: length (?io) = length pathF \longrightarrow length (?io) = length (?tr2)
   by auto
  have length (?io) = length pathF \land length (?tr2) = length (?tr1)
   by auto
  then show ?thesis
    using f2 f1 \(\rho productF M2 M1 \) FAIL PM\(\rightarrow\) \(\rightarrow\) \(well-formed M1\) \(\rightarrow\) \(well-formed M2\) \(\rightarrow\) \(busine base \)
qed
moreover have \neg (path M2 (?io || ?tr2) (initial M2) \wedge path M1 (?io || ?tr1) (initial M1))
proof (rule ccontr)
  assume \neg \neg (path \ M2 \ (?io \mid | ?tr2) \ (initial \ M2) \land
        path M1 (?io || ?tr1) (initial M1))
  then have path M2 (?io || ?tr2) (initial M2)
   by simp
  then have target (?io || ?tr2) (initial M2) \in nodes M2
   by auto
  then have target (?io || ?tr2) (initial M2) \neq fst FAIL
   using assms by auto
  then show False
   using pathF-def
  proof -
   have FAIL = target (map \ fst \ pathF \mid \mid map \ fst \ (map \ snd \ pathF) \mid \mid map \ snd \ (map \ snd \ pathF))
                        (initial M2, initial M1)
     \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types})\ {\scriptstyle \langle \mathit{initial}\ PM = (\mathit{initial}\ \mathit{M2},\ \mathit{initial}\ \mathit{M1}) \rangle}
          \langle path\ PM\ pathF\ (initial\ PM) \land target\ pathF\ (initial\ PM) = FAIL \rangle\ zip\text{-map-fst-snd})
   then show ?thesis
      using \langle target\ (map\ fst\ pathF\ ||\ map\ fst\ (map\ snd\ pathF))\ (initial\ M2) \neq fst\ FAIL> by auto
qed
ultimately have fail-prop:
        target \ (?io \mid \mid ?tr2 \mid \mid ?tr1) \ (initial \ M2, \ initial \ M1) = FAIL \land
          0 < length (?io) \land
          path M2 (butlast (?io || ?tr2)) (initial M2) \land
          path M1 (butlast (?io || ?tr1)) (initial M1) ∧
          succ\ M2\ (last\ (?io))\ (target\ (butlast\ (?io\ ||\ ?tr2))\ (initial\ M2)) = \{\} \land \}
          succ\ M1\ (last\ (?io))\ (target\ (butlast\ (?io\ ||\ ?tr1))\ (initial\ M1)) \neq \{\}
  by auto
then have ?io \in language\text{-state } M1 \text{ (initial } M1)
  \mathbf{have}\ \mathit{f1:}\ \mathit{path}\ \mathit{PM}\ (\mathit{map}\ \mathit{fst}\ \mathit{pathF}\ ||\ \mathit{map}\ \mathit{fst}\ (\mathit{map}\ \mathit{snd}\ \mathit{pathF})\ ||\ \mathit{map}\ \mathit{snd}\ (\mathit{map}\ \mathit{snd}\ \mathit{pathF}))
                      (initial M2, initial M1)
```

```
by (metis\ (no-types)\ (initial\ PM=(initial\ M2,\ initial\ M1))\ pathF-def\ zip-map-fst-snd)
   have \forall c \ f. \ c \neq initial \ (f::('a, 'b, 'c) \ FSM) \lor c \in nodes \ f
     by blast
   then show ?thesis
     using f1 by (metis\ (no\text{-}types)\ assms(1)\ assms(2)\ assms(3)\ language\text{-}state\ length-map
                  productF-path-reverse-ob)
  qed
  moreover have ?io ∉ language-state M2 (initial M2)
  proof (rule ccontr)
   assume \neg ?io \notin language\text{-state } M2 \text{ (initial } M2)
   then have assm: ?io \in language\text{-}state\ M2\ (initial\ M2)
   then obtain tr2' where tr2'-def: path M2 (?io || tr2') (initial M2)
                                     \land length ?io = length tr2'
     by auto
   then obtain tr2'-init tr2'-last where tr2'-split : tr2' = tr2'-init @ [tr2'-last]
     using fail-prop by (metis \langle pathF \neq | \rangle) append-butlast-last-id length-0-conv map-is-Nil-conv)
   have but last ?io \in language\text{-state } M2 \text{ (initial } M2)
     using fail-prop by auto
   then have \{t. path M2 (butlast ?io || t) (initial M2) \land length (butlast ?io) = length t\}
              = \{butlast ?tr2\}
     using assms(5) observable-path-unique[of butlast ?io M2 initial M2 butlast ?tr2]
           fail-prop by fastforce
   then have \forall t is a path M2 ((butlast ?io) @ [last ?io] || is @ [t]) (initial M2)
                       \land length ((butlast ?io) @ [last ?io]) = length (ts @ [t])
                       \longrightarrow ts = butlast ?tr2
     \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{FSM.path-append-elim}
         \langle butlast\ (map\ fst\ pathF) \in language\text{-}state\ M2\ (initial\ M2) \rangle\ assms(5)\ butlast\text{-}snoc
         butlast-zip fail-prop length-butlast length-map observable-path-unique zip-append)
   then have tr2'-init = butlast ?tr2
     using tr2'-def tr2'-split \langle pathF \neq [] \rangle by auto
   then have path M2 ((butlast ?io) @ [last ?io] || (butlast ?tr2) @ [tr2'-last]) (initial M2)
              \land length ((butlast ?io) @ [last ?io]) = length ((butlast ?tr2) @ [tr2'-last])
     using tr2'-def fail-prop tr2'-split by auto
   then have path M2 ([last ?io] || [tr2'-last])
                      (target (butlast ?io || butlast ?tr2) (initial M2))
              \land length [last ?io] = length [tr2'-last]
     by auto
   then have tr2'-last \in succ\ M2\ (last\ (?io))\ (target\ (butlast\ (?io\ ||\ ?tr2))\ (initial\ M2))
     by auto
   then show False
     using fail-prop by auto
  ged
  ultimately show ?thesis by auto
qed
lemma fail-reachable-iff[iff]:
  assumes well-formed M1
           well-formed M2
 and
           productF M2 M1 FAIL PM
 and
           observable\ M2
 and
shows FAIL \in reachable PM \ (initial PM) \longleftrightarrow \neg M1 \preceq M2
proof
  show FAIL \in reachable PM (initial PM) \Longrightarrow \neg M1 \prec M2
   using assms fail-reachable-reverse by blast
 show \neg M1 \leq M2 \Longrightarrow FAIL \in reachable PM (initial PM)
   using assms fail-reachable by blast
\mathbf{qed}
```

```
lemma reaching-path-length:
 assumes productF A B FAIL AB
          well-formed A
 and
 and
          well-formed B
          q2 \in reachable AB q1
 and
          q2 \neq FAIL
 and
          q1 \in nodes AB
 and
shows \exists p. path AB p q1 \land target p q1 = q2 \land length p < card (nodes A) * card (nodes B)
proof -
  obtain p where p-def: path AB p q1 \wedge target p q1 = q2 \wedge distinct (q1 # states p q1)
   using assms reaching-path-without-repetition by (metis well-formed-productF)
 have FAIL \notin set (q1 \# states p q1)
 proof(cases p)
   case Nil
   then have q1 = q2
    using p-def by auto
   then have q1 \neq FAIL
     using assms by auto
   then show ?thesis
    using Nil by auto
  next
   case (Cons a list)
   have FAIL \notin set (butlast (q1 \# states p q1))
   proof (rule ccontr)
    assume assm : \neg FAIL \notin set (butlast (q1 \# states p q1))
     then obtain i where i-def : i < length (butlast (q1 \# states p q1))
                            \land butlast (q1 \# states p q1) ! i = FAIL
      by (metis distinct-Ex1 distinct-butlast p-def)
    then have i < Suc (length (butlast p))
      using local.Cons by fastforce
     then have i < length p
      by (metis append-butlast-last-id length-append-singleton list.simps(3) local.Cons)
    then have but last (q1 \# states p \ q1) ! i = target (take i p) \ q1
    using i-def assm proof (induction i)
      case \theta
      then show ?case by auto
     next
      case (Suc \ i)
      then show ?case by (metis Suc-lessD nth-Cons-Suc nth-butlast states-target-index)
     qed
    then have target (take i p) q1 = FAIL using i-def by auto
    moreover have \forall k . k < length p \longrightarrow target (take k p) q1 \neq FAIL
      using no-prefix-targets-FAIL[of A B FAIL AB p q1] assms p-def by auto
     ultimately show False
      by (metis assms(5) linorder-negE-nat nat-less-le order-refl p-def take-all)
   moreover have last (q1 \# states p \ q1) \neq FAIL
     using assms(5) local. Cons p-def transition-system-universal.target-alt-def by force
   ultimately show ?thesis
    by (metis (no-types, lifting) UnE append-butlast-last-id list.set(1) list.set(2)
        list.simps(3) set-append singletonD)
 qed
 moreover have set (q1 \# states p \ q1) \subseteq nodes AB
   using assms by (metis FSM.nodes-states insert-subset list.simps(15) p-def)
  ultimately have states-subset : set (q1 \# states p \ q1) \subseteq nodes \ A \times nodes \ B
   using nodes-productF assms by blast
 have finite-nodes: finite (nodes A \times nodes B)
```

```
using assms(2) assms(3) by auto
 have length p \leq length (states p \neq 1)
   by simp
 then have length p < card (nodes A) * card (nodes B)
   by (metis (no-types) finite-nodes states-subset card-cartesian-product card-mono distinct-card
       impossible-Cons less-le-trans not-less p-def)
 then show ?thesis
   using p-def by blast
qed
\mathbf{lemma}\ \mathit{reaching-path-fail-length}:
 assumes productF A B FAIL AB
          well-formed A
 and
 and
          well-formed B
 and
          q2 \in reachable AB q1
 and
          q1 \in nodes AB
shows \exists p. path AB p q1 \land target p q1 = q2 \land length <math>p \le card (nodes A) * card (nodes B)
proof (cases q2 = FAIL)
 case True
 then have q2-def: q2 = FAIL
   by simp
 then show ?thesis
 proof (cases q1 = q2)
   case True
   then show ?thesis by auto
  next
   case False
   then obtain px where px-def: path AB px q1 \land target px q1 = q2
    using assms by auto
   then have px-nonempty : px \neq []
    using q2-def False by auto
   let ?qx = target (butlast px) q1
   have ?qx \in reachable AB q1
    using px-def px-nonempty
    by (metis FSM.path-append-elim FSM.reachable.reflexive FSM.reachable-target
        append-butlast-last-id)
   moreover have ?qx \neq FAIL
    using False q2-def assms
     by (metis One-nat-def Suc-pred butlast-conv-take length-greater-0-conv lessI
        no-prefix-targets-FAIL px-def px-nonempty)
   ultimately obtain px' where px'-def: path AB px' q1
                                    \land \ target \ px' \ q1 \ = \ ?qx
                                    \land length px' < card (nodes A) * card (nodes B)
    using assms reaching-path-length[of A B FAIL AB ?qx q1] by blast
   have px-split : path AB ((butlast <math>px) @ [last px]) q1
                  \land target ((butlast px) @ [last px]) q1 = q2
     using px-def px-nonempty by auto
   then have path AB [last px] ?qx \wedge target [last px] ?qx = q2
     using px-nonempty
   proof -
     have target [last px] (target (butlast px) q1) = q2
      using px-split by force
     then show ?thesis
       using px-split by blast
   \mathbf{qed}
   then have path AB (px' \otimes [last \ px]) q1 \wedge target (px' \otimes [last \ px]) q1 = q2
    using px'-def by auto
   moreover have length (px' \otimes [last \ px]) \leq card \ (nodes \ A) * card \ (nodes \ B)
    using px'-def by auto
   ultimately show ?thesis
    by blast
```

```
qed
next
 case False
 then show ?thesis
   using assms reaching-path-length by (metis less-imp-le)
\mathbf{qed}
\mathbf{lemma}\ productF-language:
 assumes productF A B FAIL AB
 and
          well-formed A
 and
          well-formed B
          io \in L A \cap L B
 and
shows io \in LAB
proof -
 obtain trA trB where tr-def: path A (io || trA) (initial A) <math>\land length io = length trA
                           path \ B \ (io \mid\mid trB) \ (initial \ B) \land length \ io = length \ trB
   using assms by blast
 then have path AB (io || trA || trB) (initial A, initial B)
   using assms by (metis FSM.nodes.initial productF-path-inclusion)
   using tr-def by (metis assms(1) language-state length-zip min.idem productF-simps(4))
qed
{\bf lemma}\ product F-language\text{-}state\text{-}intermediate:
 assumes vs @ xs \in L M2 \cap L M1
          productF M2 M1 FAIL PM
 and
 and
          observable M2
 and
          well-formed M2
 and
          observable M1
 and
          well-formed M1
obtains q2 q1 tr
where io-targets PM (initial PM) vs = \{(q2,q1)\}
     path PM (xs \mid\mid tr) (q2,q1)
     length xs = length tr
proof -
 have vs @ xs \in L PM
   using productF-language[OF assms(2,4,6,1)] by simp
 then obtain trVX where path PM (vs@xs || trVX) (initial PM) \land length trVX = length (vs@xs)
   by auto
 then have tqt-VX: io-targets PM (initial\ PM) (vs@xs) = {target\ (vs@xs\ ||\ trVX) (initial\ PM)}
   by (metis\ assms(2)\ assms(3)\ assms(5)\ obs-target-is-io-targets\ observable-product F)
 have vs \in L \ PM \ using \langle vs@xs \in L \ PM \rangle
   by (meson language-state-prefix)
 then obtain trV where path PM (vs \mid\mid trV) (initial PM) \land length trV = length vs
   by auto
 then have tgt-V: io-targets PM (initial PM) vs = \{target (vs || trV) (initial <math>PM)\}
   by (metis\ assms(2)\ assms(3)\ assms(5)\ obs-target-is-io-targets\ observable-product F)
 let ?q2 = fst (target (vs || trV) (initial PM))
 let ?q1 = snd (target (vs || trV) (initial PM))
 have observable PM
   by (meson\ assms(2,3,5)\ observable-productF)
 have io-targets PM (?q2,?q1) xs = \{target (vs @ xs || trVX) (initial PM)\}
   using observable-io-targets-split[OF \langle observable\ PM \rangle\ tgt-VX\ tgt-V] by simp
  then have xs \in language\text{-}state\ PM\ (?q2,?q1)
  then obtain tr where path PM (xs || tr) (?q2,?q1)
                   length xs = length tr
   by auto
```

```
then show ?thesis
   by (metis prod.collapse tgt-V that)
qed
{f lemma} sequence-to-failure-reaches-FAIL:
  assumes sequence-to-failure M1 M2 io
  and
           OFSM M1
           OFSM M2
 and
           productF M2 M1 FAIL PM
 and
shows FAIL \in io\text{-targets } PM \text{ (initial } PM) \text{ io}
proof -
  obtain p where path PM (io || p) (initial PM)
                  \land length p = length io
                  \land target (io \mid\mid p) (initial PM) = FAIL
   using fail-reachable-by-sequence-to-failure[OF assms(1)]
   using assms(2) assms(3) assms(4) by blast
  then show ?thesis
   by auto
qed
{f lemma} sequence-to-failure-reaches-FAIL-ob:
 {\bf assumes}\ sequence\text{-}to\text{-}failure\ M1\ M2\ io
           OFSM M1
  and
  and
           OFSM M2
 and
           productF M2 M1 FAIL PM
shows io-targets PM (initial PM) io = {FAIL}
proof -
  have FAIL \in io\text{-targets } PM \text{ (initial } PM) \text{ io}
   using sequence-to-failure-reaches-FAIL[OF assms(1-4)] by assumption
 have observable PM
   by (meson \ assms(2) \ assms(3) \ assms(4) \ observable-productF)
 show ?thesis
   \mathbf{by} \ (\mathit{meson} \ {\it \checkmark} \mathit{FAIL} \in \mathit{io\text{-}targets} \ \mathit{PM} \ (\mathit{initial} \ \mathit{PM}) \ \mathit{io}{\it \lor} \ {\it \checkmark} \mathit{observable} \ \mathit{PM}{\it \lor}
       observable \hbox{-} io \hbox{-} target \hbox{-} is \hbox{-} singleton)
qed
\mathbf{lemma} sequence-to-failure-alt-def:
 assumes io-targets PM (initial PM) io = {FAIL}
 and
           OFSM M1
 and
           OFSM M2
           productF M2 M1 FAIL PM
 and
shows sequence-to-failure M1 M2 io
proof -
  obtain p where path PM (io || p) (initial PM)
               length p = length io
               target\ (io\ ||\ p)\ (initial\ PM) = FAIL
   using assms(1) by (metis\ io\text{-targets-elim}\ singleton I)
  have io \neq []
  proof
   assume io = []
   then have io-targets PM (initial PM) io = {initial PM}
     by auto
   moreover have initial PM \neq FAIL
   proof -
     have initial PM = (initial \ M2, initial \ M1)
       using assms(4) by auto
     then have initial PM \in (nodes\ M2 \times nodes\ M1)
       by (simp add: FSM.nodes.initial)
     moreover have FAIL \notin (nodes \ M2 \times nodes \ M1)
       using assms(4) by auto
     ultimately show ?thesis
       by auto
```

```
qed
   ultimately show False
      using assms(1) by blast
aed
then have 0 < length io
   by blast
have target (butlast (io||p)) (initial PM) \neq FAIL
   using no-prefix-targets-FAIL[OF assms(4) \langle path \ PM \ (io \ || \ p) \ (initial \ PM) \rangle, of (length io) -1]
   by (metis (no-types, lifting) \langle 0 \rangle = length | io \rangle = length
          diff-less length-map less-numeral-extra(1) map-fst-zip)
have target (butlast (io||p)) (initial PM) \in nodes PM
   by (metis FSM.nodes.initial FSM.nodes-target FSM.path-append-elim
          \langle path\ PM\ (io\ ||\ p)\ (initial\ PM) \rangle\ append-butlast-last-id\ butlast.simps(1))
moreover have nodes PM \subseteq insert FAIL (nodes M2 \times nodes M1)
   using nodes-productF[OF - - assms(4)] assms(2) assms(3) by linarith
ultimately have target (butlast (io||p)) (initial PM) \in insert FAIL (nodes M2 \times nodes M1)
   by blast
have target (butlast (io||p)) (initial PM) \in (nodes M2 \times nodes M1)
   using \langle target \ (butlast \ (io \mid \mid p)) \ (initial \ PM) \in insert \ FAIL \ (nodes \ M2 \times nodes \ M1) \rangle
              \langle target\ (butlast\ (io\ ||\ p))\ (initial\ PM) \neq FAIL \rangle
   bv blast
then obtain s2\ s1 where target\ (butlast\ (io||p))\ (initial\ PM) = (s2,s1)
                                         s2 \in nodes \ M2 \ s1 \in nodes \ M1
   by blast
have length (butlast io) = length (map fst (butlast p))
        length (map fst (butlast p)) = length (map snd (butlast p))
   by (simp\ add: \langle length\ p = length\ io \rangle) +
have path PM (butlast (io||p)) (initial PM)
   by (metis\ FSM.path-append-elim\ \langle path\ PM\ (io\ ||\ p)\ (initial\ PM) 
angle\ append-butlast-last-id
          butlast.simps(1)
then have path PM ((butlast io) || (map fst (butlast p)) || (map snd (butlast p)))
                                  (initial M2, initial M1)
   \mathbf{using} \ \langle \mathit{length} \ \mathit{p} = \mathit{length} \ \mathit{io} \rangle \ \mathit{assms}(4) \ \mathbf{by} \ \mathit{auto}
have target (butlast io || map fst (butlast p) || map snd (butlast p)) (initial M2, initial M1)
          \neq FAIL
   using \langle length \ p = length \ io \rangle \langle target \ (but last \ (io \mid \mid p)) \ (initial \ PM) \neq FAIL \rangle \ assms(4)
   by auto
have path M2 (butlast io || map fst (butlast p)) (initial M2) \land
             path M1 (butlast io || map snd (butlast p)) (initial M1) \vee
          target (butlast io || map fst (butlast p) || map snd (butlast p)) (initial M2, initial M1)
             = FAIL
   {\bf using} \ product F-path-reverse
             [OF \land length \ (butlast \ io) = length \ (map \ fst \ (butlast \ p)) \rangle
                    \langle length \ (map \ fst \ (butlast \ p)) = length \ (map \ snd \ (butlast \ p)) \rangle
                    cpath PM ((butlast io) || (map fst (butlast p)) || (map snd (butlast p)))
                        (initial M2, initial M1) \rightarrow --
   using assms(2) assms(3) by auto
then have path M2 (butlast io || map fst (butlast p)) (initial M2)
                 path M1 (butlast io || map snd (butlast p)) (initial M1)
   using \(\lambda target \) (butlast io \( || map \) fst (butlast \( p \) \( || map \) snd (butlast \( p \) )
                    (initial\ M2,\ initial\ M1) \neq FAIL
   by auto
then have but last io \in L M2 \cap L M1
   using \langle length (butlast io) = length (map fst (butlast p)) \rangle by auto
have path PM (io || map fst p || map snd p) (initial M2, initial M1)
   using \langle path \ PM \ (io \mid\mid p) \ (initial \ PM) \rangle \ assms(4) by auto
have length io = length (map\ fst\ p)
        length (map fst p) = length (map snd p)
```

```
by (simp add: \langle length \ p = length \ io \rangle)+
  obtain p1' where path \ M1 \ (io \mid \mid p1') \ (initial \ M1) \land length \ io = length \ p1'
    \mathbf{using}\ \mathit{productF-path-reverse-ob}
          [OF \land length \ io = length \ (map \ fst \ p) \rangle
              \langle length \ (map \ fst \ p) = length \ (map \ snd \ p) \rangle \ assms(4) - -
              \langle path\ PM\ (io\ ||\ map\ fst\ p\ ||\ map\ snd\ p)\ (initial\ M2,\ initial\ M1)\rangle
    using assms(2) assms(3) by blast
  then have io \in L M1
    by auto
  moreover have io \notin L M2
    assume io \in L M2—only possible if io does not target FAIL
    then obtain p2' where path M2 (io || p2') (initial M2) length io = length p2'
      by auto
    then have length p2' = length p1'
      using \langle path \ M1 \ (io \mid\mid p1') \ (initial \ M1) \land length \ io = length \ p1' \rangle
    have path PM (io ||p2'||p1') (initial M2, initial M1)
      using product F-path-inclusion [OF \langle length | io = length | p2' \rangle \langle length | p2' = length | p1' \rangle assms(4),
                                    of initial M2 initial M1
            \langle path \ M1 \ (io \mid\mid p1') \ (initial \ M1) \land length \ io = length \ p1' \rangle
            \langle path \ M2 \ (io \mid\mid p2') \ (initial \ M2) \rangle \ assms(2) \ assms(3)
      by blast
    have target (io || p2' || p1') (initial M2, initial M1) \in (nodes M2 \times nodes M1)
      using \langle length \ io = length \ p2' \rangle \langle path \ M1 \ (io \mid \mid p1') \ (initial \ M1) \wedge length \ io = length \ p1' \rangle
            \langle path \ M2 \ (io \mid \mid p2') \ (initial \ M2) \rangle
      by auto
    moreover have FAIL \notin (nodes \ M2 \times nodes \ M1)
      using assms(4) by auto
    ultimately have target (io || p2' || p1') (initial M2, initial M1) \neq FAIL
      by blast
    have length io = length (p2' || p1')
      by (simp add: \langle length \ io = length \ p2' \rangle \langle length \ p2' = length \ p1' \rangle)
    have target (io ||p2'||p1') (initial M2, initial M1)
            \in io-targets PM (initial M2, initial M1) io
      using \langle path \ PM \ (io \mid \mid p2' \mid \mid p1') \ (initial \ M2, \ initial \ M1) \rangle \ \langle length \ io = length \ (p2' \mid \mid p1') \rangle
      unfolding io-targets.simps by blast
    have io-targets PM (initial PM) io \neq {FAIL}
      using \langle target \ (io \mid \mid p2' \mid \mid p1') \ (initial \ M2, \ initial \ M1)
              ∈ io-targets PM (initial M2, initial M1) io>
            \langle target\ (io\ ||\ p2'\ ||\ p1')\ (initial\ M2,\ initial\ M1) \neq FAIL \rangle\ assms(4)
      by auto
    then show False
      using assms(1) by blast
  ultimately have io \in L M1 - L M2
   by blast
  show sequence-to-failure M1 M2 io
    using \langle butlast\ io \in L\ M2 \cap L\ M1 \rangle \langle io \in L\ M1 - L\ M2 \rangle by auto
aed
end
theory ATC
imports ../FSM/FSM
begin
```

3 Adaptive test cases

Adaptive test cases (ATCs) are tree-like structures that label nodes with inputs and edges with outputs such that applying an ATC to some FSM is performed by applying the label of its root node and then applying the ATC connected to the root node by an edge labeled with the observed output of the FSM. The result of such an application is here called an ATC-reaction.

ATCs are here modelled to have edges for every possible output from each non-leaf node. This is not a restriction on the definition of ATCs by Hierons [2] as a missing edge can be expressed by an edge to a leaf.

```
datatype ('in, 'out) ATC = Leaf \mid Node 'in 'out \Rightarrow ('in, 'out) ATC inductive atc-reaction :: ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow ('in, 'out) ATC \Rightarrow ('in \times 'out) list \Rightarrow bool where leaf[intro!]: atc-reaction M q1 Leaf [] \mid node[intro!]: q2 \in succ M (x,y) q1 \Rightarrow atc-reaction M q2 (fy) io \Rightarrow atc-reaction M q1 (Node xf) ((x,y)\#io) inductive-cases leaf-elim[elim!]: atc-reaction M q1 (Node xf) ((x,y)\#io)
```

3.1 Properties of ATC-reactions

```
\mathbf{lemma} \ atc\text{-}reaction\text{-}empty[simp]:
 assumes atc-reaction M q t []
 shows t = Leaf
using assms atc-reaction.simps by force
lemma atc-reaction-nonempty-no-leaf:
  assumes atc-reaction M q t (Cons a io)
 shows t \neq Leaf
using assms
proof -
 have \bigwedge f c \ a \ ps. \neg \ atc-reaction \ f \ (c::'c) \ (a::('a, 'b) \ ATC) \ ps \lor a \ne Leaf \lor a \ne Leaf \lor ps = []
   using atc-reaction.simps by fastforce
 then show ?thesis
   using assms by blast
qed
lemma atc-reaction-nonempty[elim]:
 assumes atc-reaction M q1 t (Cons (x,y) io)
 obtains q2 f
 where t = Node \ x \ f \ q2 \in succ \ M \ (x,y) \ q1 \ atc\text{-reaction} \ M \ q2 \ (f \ y) \ io
proof -
  obtain x2 f where t = Node x2 f
   using assms by (metis ATC.exhaust atc-reaction-nonempty-no-leaf)
  moreover have x = x^2
   using assms calculation atc-reaction.cases by fastforce
  ultimately show ?thesis
   using assms using that by blast
qed
lemma atc-reaction-path-ex:
 {\bf assumes}\ atc\text{-}reaction\ M\ q1\ t\ io
 shows \exists tr. path M (io || tr) q1 \land length io = length tr
\mathbf{using} \ assms \ \mathbf{proof} \ (induction \ io \ arbitrary: \ q1 \ t \ rule: \ list.induct)
 case Nil
  then show ?case by (simp add: FSM.nil)
next
  case (Cons io-hd io-tl)
  then obtain x y where io\text{-}hd\text{-}def : io\text{-}hd = (x,y)
   by (meson surj-pair)
  then obtain f where f-def: t = (Node \ x \ f)
   using Cons atc-reaction-nonempty by metis
  then obtain q2 where q2-def: q2 \in succ M(x,y) q1 atc-reaction M q2 (fy) io-tl
```

```
using Cons io-hd-def atc-reaction-nonempty by auto
  then obtain tr-tl where tr-tl-def: path M (io-tl || tr-tl) q2 length io-tl = length tr-tl
   using Cons.IH[of \ q2 \ f \ y] by blast
  then have path M (io-hd \# io-tl || q2 \# tr-tl) q1
   using Cons q2-def by (simp add: FSM.path.intros(2) io-hd-def)
  then show ?case using tr-tl-def by fastforce
qed
lemma atc-reaction-path[elim]:
  assumes atc-reaction M q1 t io
obtains tr
 where path M (io || tr) q1 length io = length tr
by (meson assms atc-reaction-path-ex)
3.2
        Applicability
An ATC can be applied to an FSM if each node-label is contained in the input alphabet of the FSM.
inductive subtest :: ('in, 'out) ATC \Rightarrow ('in, 'out) ATC \Rightarrow bool where
  t \in range f \Longrightarrow subtest \ t \ (Node \ x \ f)
{f lemma}\ accp	ext{-}subtest: Wellfounded.accp\ subtest\ t
proof (induction \ t)
  case Leaf
 then show ?case by (meson ATC.distinct(1) accp.simps subtest.cases)
next
  case (Node x f)
  have IH: Wellfounded.accp subtest t if t \in range f for t
   using Node[of t] and that by (auto simp: eq-commute)
 show ?case by (rule accpI) (auto intro: IH elim!: subtest.cases)
qed
definition subtest-rel where subtest-rel = \{(t, Node \ x \ f) \mid f \ x \ t. \ t \in range \ f\}
lemma subtest-rel-altdef: subtest-rel = \{(s, t) | s \ t. \ subtest \ s \ t\}
 by (auto simp: subtest-rel-def subtest.simps)
lemma subtest-rell [intro]: t \in range f \Longrightarrow (t, Node \ x \ f) \in subtest-rel
 by (simp add: subtest-rel-def)
lemma subtest-relI' [intro]: t = f y \Longrightarrow (t, Node \ x \ f) \in subtest-rel
 by (auto simp: subtest-rel-def ran-def)
lemma wf-subtest-rel [simp, intro]: wf subtest-rel
  using accp-subtest unfolding subtest-rel-altdef accp-eq-acc wf-iff-acc
 by auto
function inputs-atc :: ('a, 'b) ATC \Rightarrow 'a set where
  inputs-atc\ Leaf = \{\}\ |
  inputs-atc\ (Node\ x\ f) = insert\ x\ (\bigcup\ (image\ inputs-atc\ (range\ f)))
by pat-completeness auto
termination by (relation subtest-rel) auto
fun applicable :: ('in, 'out, 'state) FSM \Rightarrow ('in, 'out) ATC \Rightarrow bool where
  applicable\ M\ t = (inputs-atc\ t \subseteq inputs\ M)
fun applicable-set :: ('in, 'out, 'state) FSM \Rightarrow ('in, 'out) ATC set \Rightarrow bool where
  applicable\text{-set }M\ \Omega=(\forall\ t\in\Omega\ .\ applicable\ M\ t)
lemma applicable-subtest:
 assumes applicable M (Node x f)
shows applicable M(f y)
using assms inputs-atc.simps
 by (simp add: Sup-le-iff)
```

3.3 Application function IO

```
Function IO collects all ATC-reactions of some FSM to some ATC.
fun IO::('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow ('in, 'out) ATC \Rightarrow ('in \times 'out) list set where
  IO\ M\ q\ t = \{\ tr\ .\ atc\text{-reaction}\ M\ q\ t\ tr\ \}
fun IO-set :: ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow ('in, 'out) ATC set \Rightarrow ('in \times 'out) list set
 where
  IO\text{-}set\ M\ q\ \Omega = \{\{IO\ M\ q\ t\mid t\ .\ t\in\Omega\}\}
lemma IO-language : IO M q t \subseteq language-state M q
 by (metis atc-reaction-path IO.elims language-state mem-Collect-eq subsetI)
lemma IO-leaf[simp] : IO M q Leaf = \{[]\}
proof
  show IO M q Leaf \subseteq \{[]\}
  proof (rule ccontr)
   assume assm : \neg IO \ M \ q \ Leaf \subseteq \{[]\}
   then obtain io-hd io-tl where elem-ex: Cons io-hd io-tl \in IO M q Leaf
     by (metis (no-types, opaque-lifting) insertI1 neq-Nil-conv subset-eq)
   then show False
     using atc-reaction-nonempty-no-leaf assm by (metis IO.simps mem-Collect-eq)
  qed
next
  show \{[]\} \subseteq IO\ M\ q\ Leaf\ by\ auto
lemma IO-applicable-nonempty:
  assumes applicable M t
           completely\text{-}specified\ M
 and
 and
           q1 \in nodes M
 shows IO M q1 t \neq \{\}
using assms proof (induction t arbitrary: q1)
  case Leaf
 then show ?case by auto
next
  case (Node \ x \ f)
  then have x \in inputs M by auto
  then obtain y \neq 2 where x-appl : q2 \in succ M(x, y) \neq 1
   using Node unfolding completely-specified.simps by blast
  then have applicable M (f y)
   using applicable-subtest Node by metis
  moreover have q2 \in nodes M
   using Node(4) \langle q2 \in succ\ M\ (x,y)\ q1 \rangle\ FSM.nodes.intros(2)[of\ q1\ M\ ((x,y),q2)] by auto
  ultimately have IO\ M\ q2\ (f\ y) \neq \{\}
   using Node by auto
  then show ?case unfolding IO.simps
   using x-appl by blast
qed
\mathbf{lemma}\ \mathit{IO-in-language}:
  IO M q t \subseteq LS M q
 unfolding IO.simps by blast
lemma IO-set-in-language:
  IO\text{-}set\ M\ q\ \Omega\subseteq LS\ M\ q
  using IO-in-language[of M q] unfolding IO-set.simps by blast
```

3.4 R-distinguishability

A non-empty ATC r-distinguishes two states of some FSM if there exists no shared ATC-reaction.

```
fun r-dist :: ('in, 'out, 'state) FSM \Rightarrow ('in, 'out) ATC \Rightarrow 'state \Rightarrow 'state \Rightarrow bool where r-dist M t s1 s2 = (t \neq Leaf \wedge IO M s1 t \cap IO M s2 t = {})
```

```
fun r-dist-set :: ('in, 'out, 'state) FSM \Rightarrow ('in, 'out) ATC set \Rightarrow 'state \Rightarrow 'state \Rightarrow bool where
r-dist-set M T s1 s2 = (\exists t \in T . r-dist M t s1 s2)
\mathbf{lemma} r-dist-dist:
  assumes applicable M t
 and
          completely-specified M
          r-dist M t q1 q2
 and
 and
          q1 \in nodes M
shows q1 \neq q2
proof (rule ccontr)
  assume \neg (q1 \neq q2)
  then have q1 = q2
   by simp
  then have IO\ M\ q1\ t = \{\}
   using assms by simp
  moreover have IO M q1 t \neq \{\}
   using assms IO-applicable-nonempty by auto
  ultimately show False
   by simp
qed
lemma r-dist-set-dist :
 assumes applicable\text{-}set\ M\ \Omega
          completely-specified M
 and
  and
          r-dist-set M \Omega q1 q2
 and
          q1 \in nodes M
\mathbf{shows}
          q1 \neq q2
using assms r-dist-dist by (metis applicable-set.elims(2) r-dist-set.elims(2))
\mathbf{lemma} r-dist-set-dist-disjoint:
 assumes applicable-set M \Omega
 and
          completely-specified M
          \forall t1 \in T1 . \forall t2 \in T2 . r\text{-dist-set } M \Omega t1 t2
 and
          T1 \subseteq nodes M
 and
shows T1 \cap T2 = \{\}
 by (metis assms disjoint-iff-not-equal r-dist-set-dist subsetCE)
3.5
        Response sets
The following functions calculate the sets of all ATC-reactions observed by applying some set of ATCs on every
state reached in some FSM using a given set of IO-sequences.
fun B :: ('in, 'out, 'state) FSM \Rightarrow ('in * 'out) list \Rightarrow ('in, 'out) ATC set
```

```
\Rightarrow ('in * 'out) list set where
  B\ M\ io\ \Omega = \bigcup\ (image\ (\lambda\ s\ .\ IO\text{-}set\ M\ s\ \Omega)\ (io\text{-}targets\ M\ (initial\ M)\ io))
fun D :: ('in, 'out, 'state) FSM \Rightarrow 'in list set \Rightarrow ('in, 'out) ATC set
          \Rightarrow ('in * 'out) list set set where
  D \ M \ ISeqs \ \Omega = image \ (\lambda \ io \ . \ B \ M \ io \ \Omega) \ (LS_{in} \ M \ (initial \ M) \ ISeqs)
fun append-io-B :: ('in, 'out, 'state) FSM \Rightarrow ('in * 'out) list \Rightarrow ('in, 'out) ATC set
                     \Rightarrow ('in * 'out) list set where
  append-io-B M io \Omega = \{ io@res \mid res . res \in B M io \Omega \}
lemma B-dist':
  assumes df: B M io1 \Omega \neq B M io2 \Omega
  shows (io-targets M (initial M) io1) \neq (io-targets M (initial M) io2)
  using assms by force
lemma B-dist :
```

```
assumes io-targets M (initial M) io 1 = \{q1\}
           io-targets M (initial M) io 2 = \{q2\}
 and
 and
           B \ M \ io1 \ \Omega \neq B \ M \ io2 \ \Omega
shows
          q1 \neq q2
  using assms by force
lemma D-bound:
  assumes wf: well-formed M
  and
           ob:\ observable\ M
 and
           fi: finite ISeqs
 shows finite (D M ISeqs \Omega) card (D M ISeqs \Omega) \leq card (nodes M)
proof -
  have D M ISeqs \Omega \subseteq image (\lambda \ s \ . \ IO\text{-}set \ M \ s \ \Omega) (nodes \ M)
  proof
   \mathbf{fix}\ RS\ \mathbf{assume}\ RS\text{-}def:RS\in D\ M\ ISeqs\ \Omega
   then obtain xs ys where RS-tr : RS = B M (xs \parallel ys) \Omega
                                  (xs \in ISeqs \land length \ xs = length \ ys
                                      \land (xs \mid\mid ys) \in language\text{-state } M \ (initial \ M))
     by auto
   then obtain qx where qx-def: io-targets M (initial M) (xs || ys) = \{qx\}
     by (meson io-targets-observable-singleton-ex ob)
   then have RS = \mathit{IO}\text{-}\mathit{set}\ M\ \mathit{qx}\ \Omega
     using RS-tr by auto
   moreover have qx \in nodes M
     by (metis FSM.nodes.initial io-targets-nodes qx-def singletonI)
   ultimately show RS \in image \ (\lambda \ s \ . \ IO\text{-}set \ M \ s \ \Omega) \ (nodes \ M)
     by auto
  qed
  moreover have finite (nodes M)
   using assms by auto
  ultimately show finite (D M ISeqs \Omega) card (D M ISeqs \Omega) \leq card (nodes M)
   by (meson finite-imageI infinite-super surj-card-le)+
qed
lemma append-io-B-in-language:
  append-io-B M io \Omega \subseteq L M
proof
 fix x assume x \in append-io-B \ M \ io \ \Omega
  then obtain res where x = io@res res \in B M io \Omega
   unfolding append-io-B.simps by blast
  then obtain q where q \in io-targets M (initial M) io res \in IO-set M q \Omega
   unfolding B.simps by blast
  then have res \in LS M q
   using IO-set-in-language[of M q \Omega] by blast
  obtain pIO where path M (io || pIO) (initial M)
                  length \ pIO = length \ io \ target \ (io \mid \mid pIO) \ (initial \ M) = q
   using \langle q \in io\text{-}targets \ M \ (initial \ M) \ io \rangle by auto
  moreover obtain pRes where path M (res || pRes) q length pRes = length res
   using \langle res \in LS \ M \ q \rangle by auto
  ultimately have io@res \in L M
   using FSM.path-append[of\ M\ io||pIO\ initial\ M\ res||pRes]
   by (metis language-state length-append zip-append)
  then show x \in L M
   \mathbf{using} \ \langle x = io@res \rangle \ \mathbf{by} \ \mathit{blast}
qed
lemma append-io-B-nonempty:
  assumes applicable-set M \Omega
  and
           completely-specified M
  and
           io \in language\text{-state } M \text{ (initial } M)
  and
           \Omega \neq \{\}
shows append-io-B M io \Omega \neq \{\}
```

```
proof -
  obtain t where t \in \Omega
   using assms(4) by blast
  then have applicable M t
   using assms(1) by simp
  moreover obtain tr where path M (io || tr) (initial M) \wedge length tr = length io
   using assms(3) by auto
  moreover have target (io || tr) (initial M) \in nodes M
   using calculation(2) by blast
  ultimately have IO M (target (io || tr) (initial M)) t \neq \{\}
   using assms(2) IO-applicable-nonempty by simp
  then obtain io' where io' \in IO\ M\ (target\ (io\ ||\ tr)\ (initial\ M))\ t
   by blast
  then have io' \in IO\text{-}set\ M\ (target\ (io\ ||\ tr)\ (initial\ M))\ \Omega
   using \langle t \in \Omega \rangle unfolding IO-set.simps by blast
  moreover have (target\ (io\ ||\ tr)\ (initial\ M)) \in io\text{-}targets\ M\ (initial\ M)\ io
   using \langle path \ M \ (io \mid \mid tr) \ (initial \ M) \land length \ tr = length \ io \rangle by auto
  ultimately have io' \in B M io \Omega
   unfolding B.simps by blast
  then have io@io' \in append-io-B \ M \ io \ \Omega
   unfolding append-io-B.simps by blast
  then show ?thesis by blast
qed
\mathbf{lemma}\ append-io\text{-}B\text{-}pre\!\mathit{fix}\text{-}in\text{-}language:
  assumes append-io-B M io \Omega \neq \{\}
 shows io \in LM
proof -
  obtain res where io @ res \in append-io-B M io \Omega \wedge res \in B M io \Omega
   using assms by auto
  then have io-targets M (initial M) io \neq {}
   by auto
  then obtain q where q \in io-targets M (initial M) io
   by blast
  then obtain tr where target (io || tr) (initial M) = q \land path M (io || tr) (initial M)
                       \land length tr = length io by auto
 then show ?thesis by auto
ged
```

3.6 Characterizing sets

A set of ATCs is a characterizing set for some FSM if for every pair of r-distinguishable states it contains an ATC that r-distinguishes them.

```
fun characterizing-atc-set :: ('in, 'out, 'state) FSM \Rightarrow ('in, 'out) ATC set \Rightarrow bool where characterizing-atc-set M \Omega = (applicable-set M \Omega \wedge (\forall s1 \in (nodes M) . \forall s2 \in (nodes M) . (\exists td . r-dist M td s1 s2) \longrightarrow (\exists tt \in \Omega . r-dist M tt s1 s2)))
```

3.7 Reduction over ATCs

Some state is a an ATC-reduction of another over some set of ATCs if for every contained ATC every ATC-reaction to it of the former state is also an ATC-reaction of the latter state.

```
fun atc-reduction :: ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow ('in, 'out) ATC set \Rightarrow bool where atc-reduction M2 s2 M1 s1 \Omega = (\forall \ t \in \Omega \ .\ IO\ M2\ s2\ t \subseteq IO\ M1\ s1\ t)
```

```
- r-distinguishability holds for atc-reductions lemma atc-rdist-dist[intro]:
   assumes wf2: well-formed M2
   and cs2: completely-specified M2
   and ap2: applicable-set M2 \Omega
   and el-t1: t1 \in nodes M2
   and red1: atc-reduction M2 t1 M1 s1 \Omega
```

```
and
          red2: atc\text{-}reduction M2 t2 M1 s2 \Omega
 and
          rdist: r\text{-}dist\text{-}set \ M1 \ \Omega \ s1 \ s2
 and
                 t1 \in nodes M2
shows r-dist-set M2 \Omega t1 t2
proof -
  obtain td where td-def : td \in \Omega \land r-dist M1 td s1 s2
   using rdist by auto
 then have IO M1 s1 td \cap IO M1 s2 td = \{\}
   using td-def by simp
  moreover have IO M2 t1 td \subseteq IO M1 s1 td
   using red1 td-def by auto
  moreover have IO M2 t2 td \subseteq IO M1 s2 td
   using red2 td-def by auto
  ultimately have no-inter : IO M2 t1 td \cap IO M2 t2 td = {}
   by blast
 then have td \neq Leaf
   by auto
  then have IO M2 t1 td \neq {}
   by (meson ap2 IO-applicable-nonempty applicable-set.elims(2) cs2 td-def assms(8))
  then have IO M2 t1 td \neq IO M2 t2 td
   using no-inter by auto
  then show ?thesis
   using no-inter td-def by auto
qed
```

3.8 Reduction over ATCs applied after input sequences

The following functions check whether some FSM is a reduction of another over a given set of input sequences while furthermore the response sets obtained by applying a set of ATCs after every input sequence to the first FSM are subsets of the analogously constructed response sets of the second FSM.

```
fun atc-io-reduction-on :: ('in, 'out, 'state1) FSM \Rightarrow ('in, 'out, 'state2) FSM \Rightarrow 'in list
                           \Rightarrow ('in, 'out) ATC set \Rightarrow bool where
  atc-io-reduction-on M1 M2 iseq \Omega = (L_{in} \ M1 \ \{iseq\} \subseteq L_{in} \ M2 \ \{iseq\}
    \land (\forall io \in L_{in} \ M1 \ \{iseq\} \ . \ B \ M1 \ io \ \Omega \subseteq B \ M2 \ io \ \Omega))
fun atc-io-reduction-on-sets :: ('in, 'out, 'state1) FSM \Rightarrow 'in list set \Rightarrow ('in, 'out) ATC set
                                  \Rightarrow ('in, 'out, 'state2) FSM \Rightarrow bool where
  atc-io-reduction-on-sets M1 TS \Omega M2 = (\forall iseq \in TS . atc-io-reduction-on M1 M2 iseq <math>\Omega)
notation
  atc\text{-}io\text{-}reduction\text{-}on\text{-}sets\ (<(- \leq [-.-]] -)> [1000,1000,1000,1000])
{f lemma}\ io\mbox{-}reduction\mbox{-}from\mbox{-}atc\mbox{-}io\mbox{-}reduction:
  assumes atc-io-reduction-on-sets M1 T \Omega M2
  and
            finite T
  shows io-reduction-on M1 T M2
using assms(2,1) proof (induction T)
  case empty
  then show ?case by auto
next
  case (insert\ t\ T)
  then have atc-io-reduction-on M1 M2 t \Omega
    by auto
  then have L_{in} M1 \{t\} \subseteq L_{in} M2 \{t\}
    using atc-io-reduction-on.simps by blast
  have L_{in} M1 T \subseteq L_{in} M2 T
    using insert.IH
  proof
    have atc-io-reduction-on-sets M1 T \Omega M2
     by (meson contra-subsetD insert.prems atc-io-reduction-on-sets.simps subset-insertI)
    then show ?thesis
```

```
using insert.IH by blast
  qed
  then have L_{in} M1 T \subseteq L_{in} M2 (insert t T)
    by (meson insert-iff language-state-for-inputs-in-language-state
        language\text{-}state\text{-}for\text{-}inputs\text{-}map\text{-}fst\ language\text{-}state\text{-}for\text{-}inputs\text{-}map\text{-}fst\text{-}contained
        subsetCE \ subsetI)
  moreover have L_{in} M1 \{t\} \subseteq L_{in} M2 (insert t T)
  proof -
    obtain pps :: ('a \times 'b) list set \Rightarrow ('a \times 'b) list set \Rightarrow ('a \times 'b) list where
      \forall x0 \ x1. \ (\exists v2. \ v2 \in x1 \ \land \ v2 \notin x0) = (pps \ x0 \ x1 \in x1 \ \land \ pps \ x0 \ x1 \notin x0)
    then have \forall P \ Pa. \ pps \ Pa \ P \in P \land pps \ Pa \ P \notin Pa \lor P \subseteq Pa
      by blast
    moreover
    { assume map fst (pps (L_{in} M2 (insert \ t \ T)) (L_{in} M1 \ \{t\})) \notin insert \ t \ T}
      then have pps (L_{in} M2 (insert \ t \ T)) (L_{in} M1 \ \{t\}) \notin L_{in} M1 \ \{t\}
                       \vee pps (L_{in} M2 (insert \ t \ T)) (L_{in} M1 \ \{t\}) \in L_{in} M2 (insert \ t \ T)
        by (metis (no-types) insertI1 language-state-for-inputs-map-fst-contained singletonD) }
    ultimately show ?thesis
      by (meson \ \langle L_{in} \ M1 \ \{t\} \subseteq L_{in} \ M2 \ \{t\} \rangle \ language\text{-state-for-inputs-in-language-state}
          language-state-for-inputs-map-fst set-rev-mp)
  qed
  ultimately show ?case
  proof -
    have f1: \forall ps \ P \ Pa. \ (ps::('a \times 'b) \ list) \notin P \lor \neg P \subset Pa \lor ps \in Pa
    obtain pps :: ('a \times 'b) list set \Rightarrow ('a \times 'b) list set \Rightarrow ('a \times 'b) list where
      \forall x0 \ x1. \ (\exists v2. \ v2 \in x1 \land v2 \notin x0) = (pps \ x0 \ x1 \in x1 \land pps \ x0 \ x1 \notin x0)
      by moura
    moreover
    { assume pps (L_{in} M2 (insert \ t \ T)) (L_{in} M1 (insert \ t \ T))}
              \notin L_{in} M1 \{t\}
      moreover
      { assume map fst (pps (L_{in} M2 (insert \ t \ T)) (L_{in} M1 (insert \ t \ T)))}
        then have map fst (pps (L_{in} M2 (insert t T))
                       (L_{in} \ M1 \ (insert \ t \ T))) \neq t
          by blast
        then have pps (L_{in} M2 (insert \ t \ T)) (L_{in} M1 (insert \ t \ T))
                         \notin L_{in} \ M1 \ (insert \ t \ T)
                     \vee pps (L_{in} M2 (insert t T)) (L_{in} M1 (insert t T))
                           \in L_{in} M2 \ (insert \ t \ T)
          using f1 by (meson \langle L_{in} \ M1 \ T \subseteq L_{in} \ M2 \ (insert \ t \ T) \rangle
                        insertE\ language\text{-}state\text{-}for\text{-}inputs\text{-}in\text{-}language\text{-}state
                        language-state-for-inputs-map-fst
                        language-state-for-inputs-map-fst-contained) }
      ultimately have io-reduction-on M1 (insert t T) M2
                         \vee pps (L_{in} M2 (insert t T)) (L_{in} M1 (insert t T))
                             \notin L_{in} \ M1 \ (insert \ t \ T)
                         \vee pps (L_{in} M2 (insert t T)) (L_{in} M1 (insert t T))
                             \in L_{in} M2 \ (insert \ t \ T)
        using f1 by (meson language-state-for-inputs-in-language-state
                      language-state-for-inputs-map-fst)
      ultimately show ?thesis
        using f1 by (meson \langle L_{in} \ M1 \ \{t\} \subseteq L_{in} \ M2 \ (insert \ t \ T) \rangle \ subsetI)
  qed
\mathbf{qed}
\mathbf{lemma}\ atc-io-reduction-on-subset:
  assumes atc-io-reduction-on-sets M1 T \Omega M2
  and
             T' \subseteq T
shows atc-io-reduction-on-sets M1 T' \Omega M2
  using assms unfolding atc-io-reduction-on-sets.simps by blast
```

```
lemma atc-reaction-reduction[intro]:
 assumes ls: language\text{-state } M1 \ q1 \subseteq language\text{-state } M2 \ q2
          \mathit{el1} \, : \, \mathit{q1} \, \in \, \mathit{nodes} \, \mathit{M1}
 and
 and
          el2: q2 \in nodes M2
 and
          rct: atc-reaction M1 q1 t io
 and
          ob2: observable M2
 and
          ob1: observable M1
shows atc-reaction M2 q2 t io
using assms proof (induction t arbitrary: io q1 q2)
 case Leaf
 then have io = []
   by (metis atc-reaction-nonempty-no-leaf list.exhaust)
 then show ?case
   by (simp add: leaf)
next
 case (Node \ x \ f)
 then obtain io-hd io-tl where io-split : io = io-hd \# io-tl
   by (metis ATC.distinct(1) atc-reaction-empty list.exhaust)
  moreover obtain y where y-def : io-hd = (x,y)
   using Node calculation by (metis ATC.inject atc-reaction-nonempty surj-pair)
  ultimately obtain q1x where q1x-def: q1x \in succ\ M1\ (x,y)\ q1\ atc-reaction\ M1\ q1x\ (f\ y)\ io-tl
   using Node.prems(4) by blast
 then have pt1: path \ M1 \ ([(x,y)] \mid\mid [q1x]) \ q1
   by auto
  then have ls1: [(x,y)] \in language\text{-state } M1 \ q1
   unfolding language-state-def path-def using list.simps(9) by force
  moreover have q1x \in io\text{-}targets \ M1 \ q1 \ [(x,y)]
   unfolding io-targets.simps
  proof -
   have f1: length [(x, y)] = length [q1x]
     by simp
   have q1x = target([(x, y)] || [q1x]) q1
     by simp
   then show q1x \in \{target ([(x, y)] \mid | cs) \ q1 \mid cs. \ path M1 ([(x, y)] \mid | cs) \ q1\}
                                               \land length [(x, y)] = length cs
     using f1 pt1 by blast
  ged
  ultimately have tqt1: io\text{-}targets\ M1\ q1\ [(x,y)] = \{q1x\}
   using Node.prems io-targets-observable-singleton-ex q1x-def
   by (metis (no-types, lifting) singletonD)
 then have ls2: [(x,y)] \in language\text{-state } M2 \ q2
   using Node.prems(1) ls1 by auto
  then obtain q2x where q2x-def: q2x \in succ M2 (x,y) q2
   unfolding language-state-def path-def
   using transition-system.path.cases by fastforce
  then have pt2: path M2 ([(x,y)] || [q2x]) q2
   by auto
  then have q2x \in io\text{-targets } M2 \ q2 \ [(x,y)]
   using ls2 unfolding io-targets.simps
  proof -
   have f1: length [(x, y)] = length [q2x]
     by simp
   have q2x = target([(x, y)] || [q2x]) q2
   then show q2x \in \{target ([(x, y)] \mid | cs) q2 \mid cs. path M2 ([(x, y)] \mid | cs) q2\}
                                                 \land length [(x, y)] = length cs \}
     using f1 pt2 by blast
  qed
  then have tgt2: io-targets M2 q2 [(x,y)] = \{q2x\}
   using Node.prems io-targets-observable-singleton-ex ls2 q2x-def
   by (metis (no-types, lifting) singletonD)
```

```
then have language-state M1 q1x \subseteq language-state M2 q2x
   {\bf using} \ language\text{-}state\text{-}inclusion\text{-}of\text{-}state\text{-}reached\text{-}by\text{-}same\text{-}sequence
         [of \ M1 \ q1 \ M2 \ q2 \ [(x,y)] \ q1x \ q2x]
         tgt1 tgt2 Node.prems by auto
  moreover have q1x \in nodes M1
   using q1x-def(1) Node.prems(2) by (metis insertI1 io-targets-nodes tqt1)
  moreover have q2x \in nodes M2
   using q2x-def(1) Node.prems(3) by (metis insertI1 io-targets-nodes tgt2)
  ultimately have q2x \in succ \ M2 \ (x,y) \ q2 \land atc\text{-reaction} \ M2 \ q2x \ (f \ y) \ io\text{-}tl
   using Node.IH[of f y \ q1x \ q2x \ io-tl] \ ob1 \ ob2 \ q1x-def(2) \ q2x-def by blast
 then show atc-reaction M2 q2 (Node x f) io using io-split y-def by blast
qed
{f lemma} IO-reduction:
  assumes ls: language\text{-state } M1 \ q1 \subseteq language\text{-state } M2 \ q2
           el1: q1 \in nodes M1
  and
           el2: q2 \in nodes M2
 and
           ob1: observable M1
 and
           ob2: observable M2
shows IO M1 q1 t \subseteq IO M2 q2 t
  using assms atc-reaction-reduction unfolding IO.simps by auto
lemma IO-set-reduction:
 assumes ls: language\text{-}state\ M1\ q1 \subseteq language\text{-}state\ M2\ q2
 and
           el1: q1 \in nodes M1
  and
           el2: q2 \in nodes M2
  and
           ob1: observable M1
           ob2:observable\ M2
 and
shows IO-set M1 q1 \Omega \subseteq IO-set M2 q2 \Omega
proof -
 have \forall \ t \in \Omega . IO M1 q1 t \subseteq IO M2 q2 t
   \mathbf{using}\ assms\ IO\text{-}reduction\ \mathbf{by}\ met is
 then show ?thesis
   unfolding IO-set.simps by blast
qed
{f lemma} B-reduction:
 assumes red: M1 \prec M2
 and
           ob1: observable M1
 and
           ob2: observable M2
shows B M1 io \Omega \subseteq B M2 io \Omega
proof
  fix xy assume xy-assm: xy \in B M1 io \Omega
  then obtain q1x where q1x-def: q1x \in (io-targets M1 (initial M1) io) \land xy \in IO-set M1 q1x \Omega
   unfolding B.simps by auto
  then obtain tr1 where tr1-def: path M1 (io || tr1) (initial M1) \land length io = length tr1
   by auto
  then have q1x-ob : io\text{-targets } M1 \text{ (initial } M1\text{) } io = \{q1x\}
   using assms
   by (metis io-targets-observable-singleton-ex language-state q1x-def singleton-iff)
  then have ls1: io \in language\text{-}state\ M1\ (initial\ M1)
   by auto
  then have ls2: io \in language\text{-}state\ M2\ (initial\ M2)
   using red by auto
  then obtain tr2 where tr2-def: path M2 (io || tr2) (initial M2) \land length io = length tr2
  then obtain q2x where q2x-def: q2x \in (io-targets M2 (initial M2) io)
   by auto
```

```
then have q2x-ob: io\text{-targets } M2 \ (initial \ M2) \ io = \{q2x\}
   \mathbf{using}\ tr2\text{-}def\ assms
   by (metis io-targets-observable-singleton-ex language-state singleton-iff)
  then have language-state M1\ q1x \subseteq language-state M2\ q2x
   using q1x-ob assms unfolding io-reduction.simps
   by (simp add: language-state-inclusion-of-state-reached-by-same-sequence)
  then have IO-set M1 q1x \Omega \subseteq IO-set M2 q2x \Omega
   using assms IO-set-reduction by (metis FSM.nodes.initial io-targets-nodes q1x-def q2x-def)
  moreover have B M1 io \Omega = IO\text{-}set M1 q1x \Omega
   using q1x-ob by auto
  moreover have B M2 io \Omega = IO\text{-set} M2 q2x \Omega
   using q2x-ob by auto
  ultimately have B M1 io \Omega \subseteq B M2 io \Omega
   \mathbf{by} \ simp
  then show xy \in B M2 io \Omega using xy-assm
   by blast
qed
{f lemma} append-io-B-reduction:
 assumes red: M1 \leq M2
           ob1: observable M1
 and
           ob2:observable\ M2
 and
shows append-io-B M1 io \Omega \subseteq append-io-B M2 io \Omega
proof
  fix ioR assume ioR-assm : ioR \in append-io-B M1 io \Omega
  then obtain res where res-def : ioR = io @ res res \in B M1 io \Omega
   by auto
  then have res \in B M2 io \Omega
   using assms B-reduction by (metis (no-types, opaque-lifting) subset-iff)
  then show ioR \in append-io-B M2 io \Omega
   using ioR-assm res-def by auto
qed
lemma atc-io-reduction-on-reduction[intro]:
 assumes red: M1 \prec M2
           ob1: observable M1
 and
           ob2:observable\ M2
shows atc-io-reduction-on M1 M2 iseq \Omega
unfolding atc-io-reduction-on.simps proof
  show L_{in} M1 {iseq} \subseteq L_{in} M2 {iseq}
   using red by auto
next
  show \forall io \in L_{in} M1 \{iseq\}. B M1 io <math>\Omega \subseteq B M2 io \Omega
   using B-reduction assms by blast
qed
lemma atc-io-reduction-on-sets-reduction[intro]:
  assumes red: M1 \leq M2
 and
           ob1: observable M1
            ob2:observable\ M2
 and
shows atc-io-reduction-on-sets M1 TS \Omega M2
  using assms atc-io-reduction-on-reduction by (metis atc-io-reduction-on-sets.elims(3))
lemma atc-io-reduction-on-sets-via-LS_{in}:
 assumes atc-io-reduction-on-sets M1 TS \Omega M2
 shows (L_{in} \ M1 \ TS \cup ([] \ ] io \in L_{in} \ M1 \ TS. \ B \ M1 \ io \ \Omega))
         \subseteq (L_{in} \ M2 \ TS \cup (\bigcup io \in L_{in} \ M2 \ TS. \ B \ M2 \ io \ \Omega))
 have \forall iseq \in TS. (L_{in} \ M1 \ \{iseq\} \subseteq L_{in} \ M2 \ \{iseq\}\}
                       \wedge \ (\forall \ \textit{io} \in \textit{L}_{\textit{in}} \ \textit{M1} \ \{\textit{iseq}\} \ . \ \textit{B} \ \textit{M1} \ \textit{io} \ \Omega \subseteq \textit{B} \ \textit{M2} \ \textit{io} \ \Omega))
```

```
using assms by auto
  then have \forall iseq \in TS. (\bigcup io \in L_{in} M1 \{iseq\}. B M1 io \Omega)
                              \subseteq (\bigcup io \in L_{in} \ M2 \ \{iseq\}. \ B \ M2 \ io \ \Omega)
    by blast
  moreover have \forall iseq \in TS . (\bigcup io \in L_{in} M2 \{iseq\}. B M2 io \Omega)
                                   \subseteq (\bigcup io \in L_{in} \ M2 \ TS. \ B \ M2 \ io \ \Omega)
    unfolding language-state-for-inputs.simps by blast
  ultimately have elem\text{-}subset: \forall iseq \in TS.
                                     (\bigcup io \in L_{in} \ M1 \ \{iseq\}. \ B \ M1 \ io \ \Omega)
                                       \subseteq (| ] io \in L_{in} M2 TS. B M2 io \Omega)
    by blast
  show ?thesis
  proof
    fix x assume x \in L_{in} M1 TS \cup (\bigcup io \in L_{in} M1 TS. B M1 io \Omega)
    then show x \in L_{in} M2 TS \cup (\bigcup io \in L_{in} M2 TS. B M2 io \Omega)
    proof (cases x \in L_{in} M1 TS)
      case True
      then obtain iseq where iseq \in TS \ x \in L_{in} \ M1 \ \{iseq\}
        unfolding language-state-for-inputs.simps by blast
      then have atc-io-reduction-on M1 M2 iseq \Omega
        using assms by auto
      then have L_{in} M1 \{iseq\} \subseteq L_{in} M2 \{iseq\}
        by auto
      then have x \in L_{in} M2 TS
        by (metis (no-types, lifting) UN-I
             \langle \bigwedge thesis. \ (\bigwedge iseq. \ [[iseq \in TS; \ x \in L_{in} \ M1 \ \{iseq\}]] \Longrightarrow thesis) \Longrightarrow thesis \rangle
             \forall iseq \in TS. \ L_{in} \ M1 \ \{iseq\} \subseteq L_{in} \ M2 \ \{iseq\} \ \land \ (\forall \ io \in L_{in} \ M1 \ \{iseq\}. \ B \ M1 \ io \ \Omega \subseteq B \ M2 \ io \ \Omega) \rangle
             language-state-for-input-alt-def language-state-for-inputs-alt-def set-rev-mp)
      then show ?thesis
        by blast
    next
      {f case}\ {\it False}
      then have x \in (\bigcup io \in L_{in} \ M1 \ TS. \ B \ M1 \ io \ \Omega)
        using \langle x \in L_{in} \ M1 \ TS \cup (\bigcup io \in L_{in} \ M1 \ TS. \ B \ M1 \ io \ \Omega) \rangle by blast
      then obtain io where io \in L_{in} M1 TS x \in B M1 io \Omega
        by blast
      then obtain iseq where iseq \in TS \ io \in L_{in} \ M1 \ \{iseq\}
        unfolding language-state-for-inputs.simps by blast
      have x \in (\bigcup io \in L_{in} \ M1 \ \{iseq\}. \ B \ M1 \ io \ \Omega)
        using \langle io \in L_{in} \ M1 \ \{iseq\} \rangle \ \langle x \in B \ M1 \ io \ \Omega \rangle by blast
      then have x \in (\bigcup io \in L_{in} M2 TS. B M2 io \Omega)
        using \langle iseq \in TS \rangle elem-subset by blast
      then show ?thesis
        by blast
    \mathbf{qed}
  qed
qed
end
theory ASC-LB
imports ../ATC/ATC ../FSM/FSM-Product
begin
```

4 The lower bound function

This theory defines the lower bound function LB and its properties.

Function LB calculates a lower bound on the number of states of some FSM in order for some sequence to not contain certain repetitions.

4.1 Permutation function Perm

Function Perm calculates all possible reactions of an FSM to a set of inputs sequences such that every set in the calculated set of reactions contains exactly one reaction for each input sequence.

```
fun Perm :: 'in list set \Rightarrow ('in, 'out, 'state) FSM \Rightarrow ('in \times 'out) list set set where
  Perm\ V\ M = \{image\ f\ V\ |\ f\ .\ \forall\ v\in V\ .\ f\ v\in language\mbox{-state-for-input}\ M\ (initial\ M)\ v\ \}
lemma perm-empty:
 assumes is-det-state-cover M2 V
 and V^{\prime\prime}\in \mathit{Perm}\ V\ \mathit{M1}
shows [] \in V''
proof -
 have init-seq: [] \in V using det-state-cover-empty assms by simp
 \mathbf{obtain}\ f\ \mathbf{where}\ f\text{-}def:\ V^{\prime\prime}=\mathit{image}\ f\ V
                              \land \ (\forall \ v \in V \ . \ f \ v \in \mathit{language-state-for-input} \ \mathit{M1} \ (\mathit{initial} \ \mathit{M1}) \ \mathit{v})
   using assms by auto
  then have f = [
   using init-seq by (metis language-state-for-input-empty singleton-iff)
 then show ?thesis
   using init-seq f-def by (metis image-eqI)
qed
lemma perm-elem-finite:
  assumes is-det-state-cover M2\ V
 and
           well-formed M2
           V'' \in Perm \ V \ M1
 and
 shows finite V^{\prime\prime}
proof -
  obtain f where is-det-state-cover-ass M2 f \wedge V = f 'd-reachable M2 (initial M2)
   using assms by auto
  moreover have finite (d-reachable M2 (initial M2))
 proof -
   have finite (nodes M2)
     using assms by auto
   moreover have nodes M2 = reachable M2 (initial M2)
     by auto
   ultimately have finite (reachable M2 (initial M2))
   moreover have d-reachable M2 (initial M2) \subseteq reachable M2 (initial M2)
     by auto
   ultimately show ?thesis
     using infinite-super by blast
  qed
  ultimately have finite V
   by auto
  moreover obtain f'' where V'' = image f'' V
                            \land (\forall v \in V . f'' v \in language\text{-state-for-input } M1 \ (initial \ M1) \ v)
   using assms(3) by auto
  ultimately show ?thesis
   by simp
\mathbf{qed}
\mathbf{lemma}\ perm\text{-}inputs:
 assumes V'' \in Perm \ V \ M
        vs \in V''
 \mathbf{and}
shows map fst vs \in V
proof -
  obtain f where f-def : V'' = image f V
                        \land \ (\forall \ v \in V \ . \ f \ v \in \mathit{language-state-for-input} \ \mathit{M} \ (\mathit{initial} \ \mathit{M}) \ \mathit{v})
   using assms by auto
  then obtain v where v-def: v \in V \land f v = vs
   using assms by auto
  then have vs \in language-state-for-input M (initial M) v
   using f-def by auto
  then show ?thesis
   using v-def unfolding language-state-for-input.simps by auto
```

```
qed
lemma perm-inputs-diff:
 assumes V'' \in Perm\ V\ M
          vs1 \in V''
 and
          vs2 \in V''
 and
          vs1 \neq vs2
 and
shows map fst \ vs1 \neq map \ fst \ vs2
proof -
  obtain f where f-def : V'' = image f V
                      \land (\forall v \in V . f v \in language\text{-state-for-input } M (initial M) v)
   using assms by auto
  then obtain v1 v2 where v-def: v1 \in V \land f v1 = vs1 \land v2 \in V \land f v2 = vs2
   using assms by auto
  then have vs1 \in language\text{-}state\text{-}for\text{-}input M (initial M) v1
          vs2 \in language\text{-}state\text{-}for\text{-}input\ M\ (initial\ M)\ v2
   using f-def by auto
  moreover have v1 \neq v2
   using v-def assms(4) by blast
  ultimately show ?thesis
   by auto
qed
lemma perm-language:
 assumes V'' \in Perm \ V \ M
 and
        vs \in V''
shows vs \in L M
proof -
 obtain f where f-def: image f V = V''
                       \land (\forall v \in V . f v \in language\text{-state-for-input } M (initial M) v)
   using assms(1) by auto
  then have \exists v \cdot f v = vs \land f v \in language\text{-state-for-input } M \text{ (initial } M) v
   using assms(2) by blast
  then show ?thesis
   by auto
\mathbf{qed}
4.2
        Helper predicates
The following predicates are used to combine often repeated assumption.
abbreviation asc-fault-domain M2 M1 m \equiv (inputs \ M2 = inputs \ M1 \land card \ (nodes \ M1) \leq m)
\mathbf{lemma}\ asc\text{-}fault\text{-}domain\text{-}props[elim!]:
 assumes asc-fault-domain M2 M1 m
 shows inputs M2 = inputs M1
       card (nodes M1) \leq musing assms by auto
abbreviation
  test-tools M2 M1 FAIL PM V \Omega \equiv (
     productF M2 M1 FAIL PM
   \land is-det-state-cover M2 V
   \wedge \ applicable\text{-}set \ M2 \ \Omega
lemma test-tools-props[elim]:
 assumes test-tools M2 M1 FAIL PM V \Omega
 and asc-fault-domain M2 M1 m
 shows productF M2 M1 FAIL PM
       is\text{-}det\text{-}state\text{-}cover\ M2\ V
       applicable-set M2 \Omega
       applicable-set M1 \Omega
proof -
  show productF M2 M1 FAIL PM using assms(1) by blast
```

show is-det-state-cover M2 V using assms(1) by blast show applicable-set M2 Ω using assms(1) by blast

then show applicable-set M1 Ω

```
unfolding applicable-set.simps applicable.simps
    \mathbf{using} \ \mathit{asc-fault-domain-props}(1)[\mathit{OF} \ \mathit{assms}(2)] \ \mathbf{by} \ \mathit{simp}
\mathbf{qed}
lemma perm-nonempty:
  assumes is-det-state-cover M2 V
  and OFSM M1
  and OFSM M2
  and inputs M1 = inputs M2
shows Perm\ V\ M1 \neq \{\}
proof -
  have finite (nodes M2)
    using assms(3) by auto
  moreover have d-reachable M2 (initial M2) \subseteq nodes M2
    by auto
  ultimately have finite V
    using det-state-cover-card [OF assms(1)]
    by (metis assms(1) finite-imageI infinite-super is-det-state-cover.elims(2))
  have [] \in V
    using assms(1) det-state-cover-empty by blast
  \mathbf{have} \ \bigwedge \ \mathit{VS} \ . \ \mathit{VS} \subseteq \mathit{V} \ \land \ \mathit{VS} \neq \{\} \Longrightarrow \mathit{Perm} \ \mathit{VS} \ \mathit{M1} \neq \{\}
  proof -
    fix VS assume VS \subseteq V \land VS \neq \{\}
    then have finite VS using \langle finite V \rangle
      using infinite-subset by auto
    then show Perm\ VS\ M1 \neq \{\}
      \mathbf{using} \ \langle \mathit{VS} \subseteq \mathit{V} \land \mathit{VS} \neq \{\} \rangle \ \langle \mathit{finite} \ \mathit{VS} \rangle
    proof (induction VS)
      case empty
      then show ?case by auto
    next
      case (insert vs F)
      then have vs \in V by blast
      obtain q2 where d-reaches M2 (initial M2) vs q2
        using det-state-cover-d-reachable [OF assms(1) \ \langle vs \in V \rangle] by blast
      then obtain vs' vsP where io-path : length vs = length vs'
                                                \wedge length vs = length \ vsP
                                                \land (path \ M2 \ ((vs \mid\mid vs') \mid\mid vsP) \ (initial \ M2))
                                                \wedge target ((vs \mid\mid vs') \mid\mid vsP) (initial M2) = q2
        by auto
      have well-formed M2
        using assms by auto
      \mathbf{have}\ \mathit{map}\ \mathit{fst}\ (\mathit{map}\ \mathit{fst}\ ((\mathit{vs}\ ||\ \mathit{vs'})\ ||\ \mathit{vsP})) = \mathit{vs}
      proof -
        have length (vs || vs') = length vsP
           using io-path by simp
        then show ?thesis
           using io-path by auto
      moreover have set (map fst (map fst ((vs || vs') || vsP))) \subseteq inputs M2
        \mathbf{using} \ \mathit{path-input-containment}[\mathit{OF} \ \mathit{\langle well-formed} \ \mathit{M2} \mathit{\rangle}, \ \mathit{of} \ (\mathit{vs} \ || \ \mathit{vs'}) \ || \ \mathit{vsP} \ \mathit{initial} \ \mathit{M2}]
               io-path
        by linarith
      ultimately have set vs \subseteq inputs M2
        by presburger
```

then have $set vs \subseteq inputs M1$

```
using assms by auto
     then have L_{in} M1 \{vs\} \neq \{\}
       using assms(2) language-state-for-inputs-nonempty
       by (metis FSM.nodes.initial)
     then have language-state-for-input M1 (initial M1) vs \neq \{\}
     then obtain vs' where vs' \in language-state-for-input M1 (initial M1) vs
       by blast
     show ?case
     proof (cases\ F = \{\})
       {f case}\ True
       moreover obtain f where f vs = vs'
         by force
       ultimately have image f (insert vs F) \in Perm (insert vs F) M1
         using Perm.simps \langle vs' \in language\text{-state-for-input } M1 \text{ (initial } M1) \text{ } vs \rangle \text{ by } blast
       then show ?thesis by blast
       {f case}\ {\it False}
       then obtain F'' where F'' \in Perm F M1
         using insert.IH\ insert.hyps(1)\ insert.prems(1) by blast
       then obtain f where F'' = image f F
                          (\forall v \in F : f v \in language\text{-state-for-input } M1 \text{ (initial } M1) \text{ } v)
         by auto
       \mathbf{let} ?f = f(vs := vs')
       have \forall v \in (insert \ vs \ F). ?f \ v \in language\text{-}state\text{-}for\text{-}input \ M1 \ (initial \ M1)} \ v
       proof
         fix v assume v \in insert \ vs \ F
         then show ?f v \in language\text{-}state\text{-}for\text{-}input M1 (initial M1) } v
         proof (cases v = vs)
           {f case}\ {\it True}
           then show ?thesis
             using \langle vs' \in language\text{-state-for-input } M1 \text{ (initial } M1) \text{ } vs \rangle by auto
         next
           {f case} False
           then have v \in F
             using \langle v \in insert \ vs \ F \rangle by blast
           then show ?thesis
             using False \forall v \in F. f v \in language-state-for-input M1 (initial M1) v \mapsto by auto
         qed
       qed
       then have image ?f (insert vs F) \in Perm (insert vs F) M1
         using Perm.simps by blast
       then show ?thesis
         \mathbf{by} blast
     \mathbf{qed}
   qed
  qed
 then show ?thesis
   using \langle [] \in V \rangle by blast
lemma perm-elem :
  assumes is-det-state-cover M2 V
 and OFSM M1
 and OFSM M2
 and inputs M1 = inputs M2
 and vs \in V
 and vs' \in language\text{-state-for-input } M1 \text{ (initial } M1) \text{ } vs
obtains V^{\prime\prime}
where V'' \in Perm \ V \ M1 \ vs' \in V''
proof -
```

```
obtain V'' where V'' \in Perm\ V\ M1 using perm-nonempty[OF\ assms(1-4)] by blast then obtain f where V'' = image\ f\ V (\forall\ v \in V\ .\ f\ v \in language\text{-state-for-input}\ M1\ (initial\ M1)\ v) by auto
\text{let } ?f = f(vs := vs')
\text{have } \forall\ v \in V\ .\ (?f\ v) \in (language\text{-state-for-input}\ M1\ (initial\ M1)\ v)}
\text{using } \forall v \in V\ .\ (f\ v) \in (language\text{-state-for-input}\ M1\ (initial\ M1)\ v)} \land assms(6)\ \text{by}\ fastforce
\text{then have } (image\ ?f\ V) \in Perm\ V\ M1
\text{unfolding } Perm.simps\ \text{by}\ blast
\text{moreover have } vs' \in image\ ?f\ V
\text{by } (metis\ assms(5)\ fun-upd\text{-same}\ imageI)
\text{ultimately show } ?thesis
\text{using } that\ \text{by}\ blast
\text{qed}
```

4.3 Function R

Function R calculates the set of suffixes of a sequence that reach a given state if applied after a given other sequence.

```
fun R :: ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow ('in \times 'out) list
          \Rightarrow ('in \times 'out) list \Rightarrow ('in \times 'out) list set
  R \ M \ s \ vs \ xs = \{ \ vs@xs' \mid xs' . \ xs' \neq []
                                \land prefix xs' xs
                                \land s \in io\text{-targets } M \ (initial \ M) \ (vs@xs') \ \}
lemma finite-R: finite (R M s vs xs)
proof -
  have R M s vs xs \subseteq \{ vs @ xs' | xs' .prefix <math>xs' xs \}
  then have R M s vs xs \subseteq image (\lambda xs' . vs @ xs') \{xs' . prefix xs' xs\}
  moreover have \{xs' . prefix xs' xs\} = \{take \ n \ xs \mid n . n \leq length \ xs\}
    show \{xs'. prefix xs' xs\} \subseteq \{take n xs | n. n \leq length xs\}
    proof
      fix xs' assume xs' \in \{xs'. prefix xs' xs\}
      then obtain zs' where xs' @ zs' = xs
        by (metis (full-types) mem-Collect-eq prefixE)
      then obtain i where xs' = take \ i \ xs \land i \le length \ xs
        by (metis (full-types) append-eq-conv-conj le-cases take-all)
      then show xs' \in \{take \ n \ xs \mid n. \ n \leq length \ xs\}
        by auto
    qed
    show \{take \ n \ xs \mid n. \ n \leq length \ xs\} \subseteq \{xs'. \ prefix \ xs' \ xs\}
      using take-is-prefix by force
  moreover have finite { take n \ xs \mid n \ . \ n \leq length \ xs }
    by auto
  ultimately show ?thesis
    by auto
qed
{f lemma}\ card	ext{-}union	ext{-}of	ext{-}singletons:
  assumes \forall \ S \in SS . (\exists \ t \ . \ S = \{t\})
shows card (\bigcup SS) = card SS
proof -
  let ?f = \lambda x \cdot \{x\}
  have bij-betw ?f ([ ] SS) SS
```

```
unfolding bij-betw-def inj-on-def using assms by fastforce
 then show ?thesis
   using bij-betw-same-card by blast
qed
{f lemma} {\it card}-union-of-distinct:
 assumes \forall S1 \in SS : \forall S2 \in SS : S1 = S2 \lor fS1 \cap fS2 = \{\}
 and
          finite SS
          \forall S \in SS . fS \neq \{\}
 and
shows card (image f SS) = card SS
 from assms(2) have \forall S1 \in SS : \forall S2 \in SS : S1 = S2 \lor fS1 \cap fS2 = \{\}
                   \implies \forall S \in SS . fS \neq \{\} \implies ?thesis
 proof (induction SS)
   case empty
   then show ?case by auto
   case (insert x F)
   then have \neg (\exists y \in F . f y = f x)
   then have f x \notin image f F
     by auto
   then have card\ (image\ f\ (insert\ x\ F)) = Suc\ (card\ (image\ f\ F))
     using insert by auto
   \mathbf{moreover}\ \mathbf{have}\ \mathit{card}\ (\mathit{f}\ `\mathit{F}) = \mathit{card}\ \mathit{F}
     using insert by auto
   moreover have card (insert x F) = Suc (card F)
     using insert by auto
   ultimately show ?case
     by simp
 qed
 then show ?thesis
   using assms by simp
qed
lemma R-count:
 assumes (vs @ xs) \in L M1 \cap L M2
 and observable M1
 and observable M2
 and well-formed M1
 and well-formed M2
 and s \in nodes M2
 and productF M2 M1 FAIL PM
 and io-targets PM (initial PM) vs = \{(q2,q1)\}
 and path PM (xs \mid\mid tr) (q2,q1)
 and length xs = length tr
 and distinct (states (xs || tr) (q2,q1))
shows card ([] (image (io-targets M1 (initial M1)) (R M2 s vs xs))) = card (R M2 s vs xs)
   - each sequence in the set calculated by R reaches a different state in M1
proof -
  — Proof sketch: - states of PM reached by the sequences calculated by R can differ only in their second value - the
sequences in the set calculated by R reach different states in PM due to distinctness
 have obs-PM: observable PM using observable-productF assms(2) assms(3) assms(7) by blast
 have state-component-2: \forall io \in (R \ M2 \ s \ vs \ xs). io-targets M2 (initial M2) io = \{s\}
 proof
   fix io assume io \in R M2 s vs xs
   then have s \in io-targets M2 (initial M2) io
   moreover have io \in language\text{-state } M2 \text{ (initial } M2)
     using calculation by auto
   ultimately show io-targets M2 (initial M2) io = \{s\}
     using assms(3) io-targets-observable-singleton-ex by (metis\ singletonD)
  qed
```

```
moreover have \forall io \in R \ M2 \ s \ vs \ xs. io-targets PM (initial PM) io
                                           = io-targets M2 (initial M2) io \times io-targets M1 (initial M1) io
proof
    \mathbf{fix}\ io\ \mathbf{assume}\ io\text{-}assm:\ io\in\ R\ \mathit{M2}\ s\ vs\ xs
    then have io-prefix: prefix io (vs @ xs)
    then have io-lang-subs : io \in L M1 \land io \in L M2
         using assms(1) unfolding prefix-def by (metis IntE language-state language-state-split)
    then have io-lang-inter : io \in L M1 \cap L M2
    then have io-lang-pm : io \in LPM
         using productF-language assms by blast
    moreover obtain p2 p1 where (p2,p1) \in io-targets PM (initial PM) io
        by (metis assms(2) assms(3) assms(7) calculation insert-absorb insert-ident insert-not-empty
                   io-targets-observable-singleton-ob\ observable-productF\ singleton-insert-inj-eq\ subrelI)
    ultimately have targets-pm: io-targets PM (initial PM) io = \{(p2,p1)\}
         using assms io-targets-observable-singleton-ex singletonD by (metis observable-productF)
    then obtain trP where trP-def: target (io || trP) (initial PM) = (p2,p1)
                                                                                      \wedge path PM (io || trP) (initial PM)
                                                                                      \land length io = length trP
        proof -
             assume a1: \bigwedge trP. target (io || trP) (initial PM) = (p2, p1)
                                                              \wedge path PM (io || trP) (initial PM)
                                                              \land \ \mathit{length} \ \mathit{io} = \mathit{length} \ \mathit{trP} \Longrightarrow \mathit{thesis}
             have \exists ps. target (io || ps) (initial PM) = (p2, p1)
                                           \land path PM (io || ps) (initial PM) \land length io = length ps
                   using \langle (p2, p1) \in io\text{-targets } PM \text{ (initial } PM) \text{ io} \rangle by auto
              then show ?thesis
                   using a1 by blast
         qed
         then have trP-unique: { tr . path PM (io || tr) (initial PM) \land length io = length tr }
                                                                   = \{ trP \}
              using observable-productF observable-path-unique-ex[of PM io initial PM]
                             io-lang-pm \ assms(2) \ assms(3) \ assms(7)
         proof -
              obtain pps :: ('d \times 'c)  list where
                   f1: \{ps. \ path \ PM \ (io \mid\mid ps) \ (initial \ PM) \land length \ io = length \ ps\} = \{pps\}
                                 \vee \neg observable PM
                   by (metis\ (no\text{-}types)\ \land \land thesis.\ [observable\ PM;\ io \in L\ PM;\ \land tr.
                                                                                                \{t. \ path \ PM \ (io \mid \mid t) \ (initial \ PM) \}
                                                                                                \land length \ io = length \ t \} = \{tr\} \Longrightarrow thesis \implies thesis \Rightarrow the \Rightarrow thesis \Rightarrow thesis \Rightarrow the \Rightarrow
                             io-lang-pm)
              have f2: observable PM
                   by (meson \langle observable M1 \rangle \langle observable M2 \rangle \rangle rroductF M2 M1 FAIL PM \rangle observable-productF)
              then have trP \in \{pps\}
                   using f1 trP-def by blast
              then show ?thesis
                   using f2 f1 by force
        qed
    obtain trIO2 where trIO2-def: \{tr : path \ M2 \ (io||tr) \ (initial \ M2) \land length \ io = length \ tr\}
                                                                                  = \{ trIO2 \}
         \mathbf{using}\ observable\text{-}path\text{-}unique\text{-}ex[of\ M2\ io\ initial\ M2]\ io\text{-}lang\text{-}subs\ assms(3)\ \mathbf{by}\ blast
    obtain trIO1 where trIO1-def: \{tr : path \ M1 \ (io||tr) \ (initial \ M1) \land length \ io = length \ tr\}
                                                                                 = \{ trIO1 \}
        \mathbf{using}\ observable\text{-}path\text{-}unique\text{-}ex[of\ M1\ io\ initial\ M1]\ io\text{-}lang\text{-}subs\ assms(2)\ \mathbf{by}\ blast
    have path PM (io || trIO2 || trIO1) (initial M2, initial M1)
                   \land length io = length trIO2
                   \land length trIO2 = length trIO1
    proof -
        have f1: path M2 (io || trIO2) (initial M2) \land length io = length trIO2
              using trIO2-def by auto
        have f2: path M1 (io || trIO1) (initial M1) \land length io = length trIO1
```

```
using trIO1-def by auto
   then have length trIO2 = length trIO1
     using f1 by presburger
   then show ?thesis
     using f2 f1 \ assms(4) \ assms(5) \ assms(7) by blast
 qed
 then have trP-split: path PM (io || trIO2 || trIO1) (initial PM)
                      \land length io = length trIO2
                      \land length trIO2 = length trIO1
   using assms(7) by auto
 then have trP-zip : trIO2 \mid\mid trIO1 = trP
   using trP-def trP-unique using length-zip by fastforce
 have target (io || trIO2) (initial M2) = p2
      \wedge path M2 (io || trIO2) (initial M2)
      \land length io = length trIO2
   using trP-zip trP-split assms(7) trP-def trIO2-def by auto
 then have p2 \in io-targets M2 (initial M2) io
 then have targets-2: io\text{-}targets\ M2\ (initial\ M2)\ io=\{p2\}
   by (metis\ state-component-2\ io-assm\ singletonD)
 have target (io || trIO1) (initial M1) = p1
        \wedge path M1 (io || trIO1) (initial M1)
        \land length io = length trIO1
   using trP-zip trP-split assms(7) trP-def trIO1-def by auto
 then have p1 \in io-targets M1 (initial M1) io
   by auto
 then have targets-1: io-targets\ M1\ (initial\ M1)\ io=\{p1\}
   by (metis\ io\ -lang\ -subs\ assms(2)\ io\ -targets\ -observable\ -singleton\ -ex\ singleton D)
 have io-targets M2 (initial M2) io \times io-targets M1 (initial M1) io = \{(p2,p1)\}
   using targets-2 targets-1 by simp
 then show io-targets PM (initial PM) io
           = io-targets M2 (initial M2) io \times io-targets M1 (initial M1) io
   using targets-pm by simp
qed
ultimately have state-components: \forall io \in R \ M2 \ s \ vs \ xs. io-targets PM (initial PM) io
                              = \{s\} \times io\text{-targets } M1 \text{ (initial } M1) \text{ io}
 by auto
then have \bigcup (image (io-targets PM (initial PM)) (R M2 s vs xs))
          = \bigcup (image (\lambda io . \{s\} \times io\text{-targets } M1 (initial M1) io) (R M2 s vs xs))
 bv auto
then have [ ] (image (io-targets PM (initial PM)) (R M2 s vs xs))
          = \{s\} \times \bigcup (image (io\text{-targets } M1 (initial M1)) (R M2 s vs xs))
then have card ([] (image (io-targets PM (initial PM)) (R M2 s vs xs)))
          = card ([] (image (io-targets M1 (initial M1)) (R M2 s vs xs)))
 by (metis (no-types) card-cartesian-product-singleton)
moreover have card ( ) (image (io\text{-}targets PM (initial PM)) (R M2 s vs xs)))
             = card (R M2 s vs xs)
proof (rule ccontr)
 assume assm: card ([] (io-targets PM (initial PM) 'R M2 s vs xs)) \neq card (R M2 s vs xs)
 have \forall io \in R \ M2 \ s \ vs \ xs. io \in L \ PM
 proof
   fix io assume io-assm: io \in R M2 s vs xs
   then have prefix io (vs @ xs)
   then have io \in L M1 \land io \in L M2
     using assms(1) unfolding prefix-def by (metis\ IntE\ language-state\ language-state-split)
   then show io \in LPM
     using productF-language assms by blast
```

```
qed
then have singletons: \forall io \in R \ M2 \ s \ vs \ xs. (\exists t. io-targets \ PM \ (initial \ PM) \ io = \{t\})
 using io-targets-observable-singleton-ex observable-productF assms by metis
then have card-targets: card ([](io-targets PM (initial PM) 'R M2 s vs xs))
                        = card (image (io-targets PM (initial PM)) (R M2 s vs xs))
 using finite-R card-union-of-singletons
       [of image (io-targets PM (initial PM)) (R M2 s vs xs)]
 by simp
moreover have card (image (io-targets PM (initial PM)) (R M2 \ s \ vs \ xs) \le card (R M2 \ s \ vs \ xs)
  using finite-R by (metis card-image-le)
ultimately have card-le : card (\bigcup (io-targets PM (initial PM) `R M2 s vs xs))
                          < card (R M2 s vs xs)
 using assm by linarith
have \exists io1 \in (R \ M2 \ s \ vs \ xs) \ . \ \exists io2 \in (R \ M2 \ s \ vs \ xs) \ . \ io1 \neq io2
       \land io-targets PM (initial PM) io1 \cap io-targets PM (initial PM) io2 \neq {}
proof (rule ccontr)
 assume \neg (\exists io1 \in R \ M2 \ s \ vs \ xs. \ \exists io2 \in R \ M2 \ s \ vs \ xs. \ io1 \neq io2
             \land io-targets PM (initial PM) io1 \cap io-targets PM (initial PM) io2 \neq {})
 then have \forall io1 \in R \ M2 \ s \ vs \ xs. \ \forall io2 \in R \ M2 \ s \ vs \ xs. \ io1 = io2
             \vee io-targets PM (initial PM) io1 \cap io-targets PM (initial PM) io2 = {}
   by blast
 moreover have \forall io \in R \ M2 \ s \ vs \ xs. \ io\text{-targets} \ PM \ (initial \ PM) \ io \neq \{\}
   by (metis insert-not-empty singletons)
 ultimately have card (image (io-targets PM (initial PM)) (R M2 s vs xs))
                  = card (R M2 s vs xs)
   using finite-R[of M2 s vs xs] card-union-of-distinct
         [of R M2 s vs xs (io-targets PM (initial PM))]
   by blast
 then show False
   using card-le card-targets by linarith
then have \exists io1 io2 . io1 \in (R M2 s vs xs)
                      \land io2 \in (R M2 \ s \ vs \ xs)
                      \land io1 \neq io2
                      \land \textit{ io-targets PM (initial PM) io1} \ \cap \textit{ io-targets PM (initial PM) io2} \neq \{\}
 by blast
moreover have \forall io1 io2 . (io1 \in (R M2 s vs xs) \land io2 \in (R M2 s vs xs) \land io1 \neq io2)
                          \longrightarrow length \ io1 \neq length \ io2
proof (rule ccontr)
 assume \neg (\forall io1 \ io2. \ io1 \in R \ M2 \ s \ vs \ xs \land io2 \in R \ M2 \ s \ vs \ xs \land io1 \neq io2
              \longrightarrow length \ io1 \neq length \ io2)
 then obtain io1 io2 where io-def : io1 \in R M2 s vs xs
                                   \land io2 \in R M2 s vs xs
                                   \land \ io1 \neq io2
                                   \land length io1 = length io2
   by auto
 then have prefix io1 (vs @ xs) \land prefix io2 (vs @ xs)
 then have io1 = take (length io1) (vs @ xs) \land io2 = take (length io2) (vs @ xs)
   by (metis append-eq-conv-conj prefixE)
 then show False
    using io-def by auto
aed
ultimately obtain io1 io2 where rep-ios-def:
 io1 \in (R M2 s vs xs)
   \land io2 \in (R M2 \ s \ vs \ xs)
   \land length io1 < length io2
   \land io-targets PM (initial PM) io1 \cap io-targets PM (initial PM) io2 \neq {}
 by (metis inf-sup-aci(1) linorder-neqE-nat)
obtain rep where (s,rep) \in io\text{-}targets \ PM \ (initial \ PM) \ io1 \cap io\text{-}targets \ PM \ (initial \ PM) \ io2
proof -
```

```
assume a1: \bigwedge rep. (s, rep) \in io\text{-targets } PM \ (initial \ PM) \ io1 \cap io\text{-targets } PM \ (initial \ PM) \ io2
                   \implies thesis
 \mathbf{have}\ \exists f.\ \mathit{Sigma}\ \{s\}\ f\ \cap\ (\mathit{io\text{-}targets}\ \mathit{PM}\ (\mathit{initial}\ \mathit{PM})\ \mathit{io1}\ \cap\ \mathit{io\text{-}targets}\ \mathit{PM}\ (\mathit{initial}\ \mathit{PM})\ \mathit{io2})
            \neq \{\}
   by (metis (no-types) inf.left-idem rep-ios-def state-components)
 then show ?thesis
   using a1 by blast
qed
then have rep-state: io-targets PM (initial PM) io1 = \{(s,rep)\}
                      \land io-targets PM (initial PM) io2 = {(s,rep)}
 by (metis Int-iff rep-ios-def singletonD singletons)
obtain io1X io2X where rep-ios-split : io1 = vs @ io1X
                                     \land prefix io1X xs
                                     \wedge io2 = vs @ io2X
                                     \land prefix io2X xs
 using rep-ios-def by auto
then have length io1 > length vs
 using rep-ios-def by auto
— get a path from (initial PM) to (q2,q1)
have vs@xs \in LPM
 by (metis (no-types) assms(1) assms(4) assms(5) assms(7) inf-commute productF-language)
then have vs \in LPM
 by (meson language-state-prefix)
then obtain trV where trV-def: \{tr : path \ PM \ (vs \mid\mid tr) \ (initial \ PM) \land length \ vs = length \ tr\}
                               = \{ trV \}
 \mathbf{using}\ observable\text{-}path\text{-}unique\text{-}ex[of\ PM\ vs\ initial\ PM]}
       assms(2) \ assms(3) \ assms(7) \ observable-productF
 by blast
let ?qv = target (vs || trV) (initial PM)
have ?qv \in io\text{-targets } PM \text{ (initial } PM) \text{ } vs
 using trV-def by auto
then have qv\text{-}simp[simp] : ?qv = (q2,q1)
 using singletons assms by blast
then have ?qv \in nodes PM
 using trV-def assms by blast
— get a path using io1X from the state reached by vs in PM
obtain tr1X-all where tr1X-all-def : path PM (vs @ io1X || tr1X-all) (initial PM)
                                   \land length (vs @ io1X) = length tr1X-all
 \mathbf{using}\ \mathit{rep-ios-def}\ \mathit{rep-ios-split}\ \mathbf{by}\ \mathit{auto}
let ?tr1X = drop (length vs) tr1X-all
have take (length vs) tr1X-all = trV
proof -
 have path PM (vs || take (length vs) tr1X-all) (initial PM)
       \land length vs = length (take (length vs) tr1X-all)
    using tr1X-all-def trV-def
   by (metis (no-types, lifting) FSM.path-append-elim append-eq-conv-conj
       length-take zip-append1)
 then show take (length vs) tr1X-all = trV
    using trV-def by blast
qed
then have tr1X-def: path PM (io1X || ?tr1X) ?qv \land length io1X = length ?tr1X
proof -
 have length tr1X-all = length vs + length io1X
   using tr1X-all-def by auto
 then have length \ io1X = length \ tr1X-all - length \ vs
   by presburger
 then show ?thesis
   by (metis (no-types) FSM.path-append-elim \langle take (length \ vs) \ tr1X-all = trV \rangle
```

```
length-drop tr1X-all-def zip-append1)
qed
then have io1X-lang: io1X \in language-state PM ?qv
 by auto
\textbf{then obtain } \textit{tr1X'} \textbf{ where } \textit{tr1X'-def}: \{\textit{tr . path PM (io1X || \textit{tr}) ?qv \land \textit{length io1X} = \textit{length tr}}\}
                               = \{ tr1X' \}
 using observable-path-unique-ex[of PM io1X ?qv]
      assms(2) \ assms(3) \ assms(7) \ observable-productF
moreover have ?tr1X \in \{ tr : path PM (io1X || tr) ?qv \land length io1X = length tr \}
 using tr1X-def by auto
ultimately have tr1x-unique: tr1X' = ?tr1X
 by simp
— get a path using io2X from the state reached by vs in PM
obtain tr2X-all where tr2X-all-def: path PM (vs @ io2X || tr2X-all) (initial PM)
                               \land length (vs @ io2X) = length tr2X-all
 using rep-ios-def rep-ios-split by auto
let ?tr2X = drop (length vs) tr2X-all
have take (length vs) tr2X-all = trV
proof -
 have path PM (vs || take (length vs) tr2X-all) (initial PM)
      \land length vs = length (take (length vs) tr2X-all)
   using tr2X-all-def trV-def
   by (metis (no-types, lifting) FSM.path-append-elim append-eq-conv-conj
      length-take zip-append1)
 then show take (length vs) tr2X-all = trV
   using trV-def by blast
qed
then have tr2X-def: path PM (io2X || ?tr2X) ?qv \land length io2X = length ?tr2X
proof
 have length \ tr2X-all = length \ vs + length \ io2X
   using tr2X-all-def by auto
 then have length\ io2X = length\ tr2X-all\ -\ length\ vs
   by presburger
 then show ?thesis
   by (metis (no-types) FSM.path-append-elim \langle take (length \ vs) \ tr2X-all = trV \rangle
      length-drop tr2X-all-def zip-append1)
aed
then have io2X-lang: io2X \in language-state PM ?qv by auto
then obtain tr2X' where tr2X'-def: \{tr : path \ PM \ (io2X \mid | \ tr) \ ?qv \land length \ io2X = length \ tr\}
                                = \{ tr2X' \}
 using observable-path-unique-ex[of PM io2X ?qv] assms(2) assms(3) assms(7) observable-productF
 bv blast
moreover have ?tr2X \in \{ tr : path PM (io2X || tr) ?qv \land length io2X = length tr \}
 using tr2X-def by auto
ultimately have tr2x-unique: tr2X' = ?tr2X
 by simp
— both paths reach the same state
have io-targets PM (initial PM) (vs @ io1X) = \{(s,rep)\}
 using rep-state rep-ios-split by auto
moreover have io-targets PM (initial PM) vs = \{?qv\}
 using assms(8) by auto
ultimately have rep-via-1: io-targets PM ?qv io 1X = \{(s,rep)\}
 by (meson obs-PM observable-io-targets-split)
then have rep-tgt-1: target (io1X || tr1X') ?qv = (s,rep)
 using obs-PM observable-io-target-unique-target[of PM ?qv io1X (s,rep)] tr1X'-def by blast
have length-1 : length (io1X || tr1X') > 0
 using \langle length \ vs < length \ io1 \rangle rep-ios-split tr1X-def tr1x-unique by auto
have tr1X-alt-def: tr1X' = take (length io1X) tr
 by (metis (no-types) assms(10) assms(9) obs-PM observable-path-prefix qv-simp
     rep-ios-split tr1X-def tr1x-unique)
```

```
moreover have io1X = take (length io1X) xs
     using rep-ios-split by (metis append-eq-conv-conj prefixE)
   ultimately have (io1X || tr1X') = take (length io1X) (xs || tr)
     by (metis take-zip)
   moreover have length (xs || tr) \geq length (io1X || tr1X')
     by (metis\ (no\text{-}types)\ \langle io1X = take\ (length\ io1X)\ xs\rangle\ assms(10)\ length-take\ length-zip
         nat-le-linear take-all tr1X-def tr1x-unique)
   ultimately have rep-idx-1: (states (xs || tr) ?qv)! ((length io1X) - 1) = (s,rep)
     by (metis (no-types, lifting) One-nat-def Suc-less-eq Suc-pred rep-tqt-1 length-1
         less-Suc-eq-le map-snd-zip scan-length scan-nth states-alt-def tr1X-def tr1x-unique)
   have io-targets PM (initial PM) (vs @ io2X) = \{(s,rep)\}
     using rep-state rep-ios-split by auto
   moreover have io-targets PM (initial PM) vs = \{?qv\}
     using assms(8) by auto
   ultimately have rep-via-2: io-targets PM ?qv io2X = \{(s,rep)\}
     by (meson obs-PM observable-io-targets-split)
   then have rep-tqt-2: target (io2X || tr2X') ?qv = (s,rep)
     using obs-PM observable-io-target-unique-target[of PM ?qv io2X (s,rep)] tr2X'-def by blast
   moreover have length-2: length (io2X || tr2X') > 0
      by (metis \ (length \ vs < length \ io1) \ append.right-neutral \ length-0-conv \ length-zip \ less-asym \ min.idem \ neq0-conv
rep-ios-def rep-ios-split tr2X-def tr2x-unique)
   have tr2X-alt-def: tr2X' = take (length io2X) tr
    by (metis (no-types) assms(10) assms(9) obs-PM observable-path-prefix qv-simp rep-ios-split tr2X-def tr2x-unique)
   moreover have io2X = take (length io2X) xs
     using rep-ios-split by (metis append-eq-conv-conj prefixE)
   ultimately have (io2X || tr2X') = take (length io2X) (xs || tr)
     by (metis take-zip)
   moreover have length (xs || tr) \geq length (io2X || tr2X')
     using calculation by auto
   ultimately have rep-idx-2: (states (xs || tr) ?qv)! ((length io2X) - 1) = (s,rep)
     by (metis (no-types, lifting) One-nat-def Suc-less-eq Suc-pred rep-tqt-2 length-2
         less-Suc-eq-le map-snd-zip scan-length scan-nth states-alt-def tr2X-def tr2x-unique)
   — thus the distinctness assumption is violated
   have length \ io1X \neq length \ io2X
     by (metis \langle io1X = take \ (length \ io1X) \ xs \rangle \langle io2X = take \ (length \ io2X) \ xs \rangle \ less-irrefl
         rep-ios-def rep-ios-split)
   moreover have (states (xs || tr) ?qv)! ((length io1X) - 1)
                  = (states (xs || tr) ?qv) ! ((length io2X) - 1)
     using rep-idx-1 rep-idx-2 by simp
   ultimately have \neg (distinct (states (xs || tr) ?qv))
     \mathbf{by} \ (\textit{metis Suc-less-eq} \ \langle \textit{io1X} = \textit{take} \ (\textit{length io1X}) \ \textit{xs} \rangle
         \langle io1X \mid | tr1X' = take (length io1X) (xs \mid | tr) \rangle \langle io2X = take (length io2X) xs \rangle
         \langle io2X \mid | tr2X' = take (length io2X) (xs \mid | tr) \rangle
         \langle length\ (io1X\ ||\ tr1X') \leq length\ (xs\ ||\ tr) \rangle \langle length\ (io2X\ ||\ tr2X') \leq length\ (xs\ ||\ tr) \rangle
         assms(10) diff-Suc-1 distinct-conv-nth qr0-conv-Suc le-imp-less-Suc length-1 length-2
         length-take map-snd-zip scan-length states-alt-def)
   then show False
     by (metis assms(11) states-alt-def)
  qed
  ultimately show ?thesis
   \mathbf{by} linarith
qed
lemma R-state-component-2:
  assumes io \in (R M2 \ s \ vs \ xs)
  and
           observable M2
shows io-targets M2 (initial M2) io = \{s\}
```

```
proof -
  have s \in io-targets M2 (initial M2) io
    using assms(1) by auto
  moreover have io \in language\text{-}state\ M2\ (initial\ M2)
    using calculation by auto
  ultimately show io-targets M2 (initial M2) io = \{s\}
    using assms(2) io-targets-observable-singleton-ex by (metis singletonD)
qed
\mathbf{lemma}\ R-union-card-is-suffix-length:
  assumes OFSM M2
  and
             io@xs \in L M2
shows sum (\lambda \ q \ . \ card \ (R \ M2 \ q \ io \ xs)) \ (nodes \ M2) = length \ xs
using assms proof (induction xs rule: rev-induct)
  case Nil
  show ?case
    by (simp add: sum.neutral)
  case (snoc \ x \ xs)
  have finite (nodes M2)
    using assms by auto
  have R-update : \bigwedge q . R M2 q io (xs@[x]) = (if (q \in io\text{-targets } M2 (initial M2) (io @ xs @ [x]))
                                         then insert (io@xs@[x]) (R M2 q io xs)
                                         else R M2 q io xs)
    by auto
  obtain q where io-targets M2 (initial M2) (io @ xs @ [x]) = \{q\}
    by (meson assms(1) io-targets-observable-singleton-ex snoc.prems(2))
  then have R M2 q io (xs@[x]) = insert (io@xs@[x]) (R M2 q io xs)
    using R-update by auto
  moreover have (io@xs@[x]) \notin (R M2 \ q \ io \ xs)
    by auto
  ultimately have card (R M2 q io (xs@[x])) = Suc (card (R M2 q io xs))
    by (metis card-insert-disjoint finite-R)
  have q \in nodes M2
    by (metis (full-types) FSM.nodes.initial \langle io\text{-targets } M2 \text{ (initial } M2) \text{ (io@xs } @ [x]) = \{q\} \rangle
         insertI1 io-targets-nodes)
  have \forall q' : q' \neq q \longrightarrow R \ M2 \ q' \ io \ (xs@[x]) = R \ M2 \ q' \ io \ xs
    using (io\text{-}targets\ M2\ (initial\ M2)\ (io@xs\ @\ [x]) = \{q\} \land\ R\text{-}update
  then have \forall q' : q' \neq q \longrightarrow card (R M2 q' io (xs@[x])) = card (R M2 q' io xs)
    by auto
  then have (\sum q \in (nodes \ M2 - \{q\}). \ card \ (R \ M2 \ q \ io \ (xs@[x]))) = (\sum q \in (nodes \ M2 - \{q\}). \ card \ (R \ M2 \ q \ io \ xs))
  moreover have (\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ io \ (xs@[x])))

= (\sum q \in (nodes \ M2 - \{q\}). \ card \ (R \ M2 \ q \ io \ (xs@[x]))) + (card \ (R \ M2 \ q \ io \ (xs@[x])))

(\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ io \ xs))

= (\sum q \in (nodes \ M2 - \{q\}). \ card \ (R \ M2 \ q \ io \ xs)) + (card \ (R \ M2 \ q \ io \ xs))
  proof -
    \mathbf{have} \ \forall \ C \ c \ f. \ (infinite \ C \ \lor \ (c::'c) \notin C) \ \lor \ sum \ f \ C = (f \ c::nat) \ + \ sum \ f \ (C \ - \ \{c\})
      by (meson sum.remove)
    then show (\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ io \ (xs@[x])))

= (\sum q \in (nodes \ M2 - \{q\}). \ card \ (R \ M2 \ q \ io \ (xs@[x]))) + (card \ (R \ M2 \ q \ io \ (xs@[x])))

(\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ io \ xs))

= (\sum q \in (nodes \ M2 - \{q\}). \ card \ (R \ M2 \ q \ io \ xs)) + (card \ (R \ M2 \ q \ io \ xs))
       using \langle finite \ (nodes \ M2) \rangle \langle q \in nodes \ M2 \rangle by presburger +
  ultimately have (\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ io \ (xs@[x])))
```

```
= Suc \ (\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ io \ xs))
    using \langle card \ (R \ M2 \ q \ io \ (xs@[x])) = Suc \ (card \ (R \ M2 \ q \ io \ xs)) \rangle
    \mathbf{by}\ presburger
  have (\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ io \ xs)) = length \ xs
    using snoc.IH snoc.prems language-state-prefix[of io@xs[x] M2 initial M2]
  proof -
    show ?thesis
     by (metis (no-types) \langle (io @ xs) @ [x] \in L M2 \implies io @ xs \in L M2 \rangle
          \langle OFSM \ M2 \rangle \langle io @ xs @ [x] \in L \ M2 \rangle \ append.assoc \ snoc.IH)
  qed
  show ?case
  proof -
    show ?thesis
     by (metis (no-types)
         \langle (\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ io \ (xs \ @ \ [x]))) = Suc \ (\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ io \ xs)) \rangle \\ \langle (\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ io \ xs)) = length \ xs \rangle \ length-append-singleton)
  qed
qed
{f lemma} R-state-repetition-via-long-sequence:
  assumes OFSM M
            card (nodes M) \leq m
  and
  and
            Suc\ (m*m) \le length\ xs
  and
            vs@xs \in L\ M
shows \exists q \in nodes M \cdot card (R M q vs xs) > m
proof (rule ccontr)
  assume \neg (\exists q \in nodes M. m < card (R M q vs xs))
  then have \forall q \in nodes M \cdot card (R M q vs xs) \leq m
   by auto
  then have sum (\lambda \ q \ . \ card \ (R \ M \ q \ vs \ xs)) \ (nodes \ M) \le sum \ (\lambda \ q \ . \ m) \ (nodes \ M)
   by (meson sum-mono)
  moreover have sum (\lambda \ q \ . \ m) \ (nodes \ M) \le m * m
   using assms(2) by auto
  ultimately have sum (\lambda \ q \ . \ card \ (R \ M \ q \ vs \ xs)) \ (nodes \ M) \le m * m
    by presburger
  moreover have Suc\ (m*m) \leq sum\ (\lambda\ q\ .\ card\ (R\ M\ q\ vs\ xs))\ (nodes\ M)
    using R-union-card-is-suffix-length [OF assms(1), of vs xs] assms(4,3) by auto
  ultimately show False by simp
qed
\mathbf{lemma}\ R-state-repetition-distribution:
  assumes OFSM M
            Suc\ (card\ (nodes\ M)*m) \le length\ xs
  and
            vs@xs \in LM
  and
shows \exists q \in nodes M \cdot card (R M q vs xs) > m
proof (rule ccontr)
  assume \neg (\exists q \in nodes M. m < card (R M q vs xs))
  then have \forall q \in nodes M \cdot card (R M q vs xs) \leq m
  then have sum (\lambda \ q \ . \ card \ (R \ M \ q \ vs \ xs)) \ (nodes \ M) \le sum \ (\lambda \ q \ . \ m) \ (nodes \ M)
    by (meson sum-mono)
  moreover have sum (\lambda q . m) (nodes M) \leq card (nodes M) * m
    using assms(2) by auto
  ultimately have sum (\lambda \ q \ . \ card \ (R \ M \ q \ vs \ xs)) \ (nodes \ M) \le card \ (nodes \ M) * m
    by presburger
  moreover have Suc (card (nodes M)*m) \leq sum (\lambda q . card (R M q vs xs)) (nodes M)
    using R-union-card-is-suffix-length [OF assms(1), of vs xs] assms(3,2) by auto
  ultimately show False
    by simp
qed
```

4.4 Function RP

Function RP extends function MR by adding all elements from a set of IO-sequences that also reach the given state.

```
fun RP :: ('in, 'out, 'state) FSM \Rightarrow 'state \Rightarrow ('in \times 'out) list
            \Rightarrow ('in \times 'out) list \Rightarrow ('in \times 'out) list set
             \Rightarrow ('in \times 'out) list set
  where
  RP\ M\ s\ vs\ xs\ V^{\prime\prime}=R\ M\ s\ vs\ xs
                      \cup \{vs' \in V'' \text{ io-targets } M \text{ (initial } M) \ vs' = \{s\}\}
lemma RP-from-R:
  assumes is-det-state-cover M2 V
  and V'' \in Perm \ V M1
shows RP M2 s vs xs V'' = R M2 s vs xs
        \lor (\exists vs' \in V'' . vs' \notin R \ M2 \ s \ vs \ xs \land RP \ M2 \ s \ vs \ xs \ V'' = insert \ vs' \ (R \ M2 \ s \ vs \ xs))
proof (rule ccontr)
  assume assm : \neg (RP \ M2 \ s \ vs \ xs \ V'' = R \ M2 \ s \ vs \ xs \ \lor
        (\exists \mathit{vs'} \in \mathit{V''}.\ \mathit{vs'} \notin \mathit{R}\ \mathit{M2}\ \mathit{s}\ \mathit{vs}\ \mathit{xs} \land \mathit{RP}\ \mathit{M2}\ \mathit{s}\ \mathit{vs}\ \mathit{xs}\ \mathit{V''} = \mathit{insert}\ \mathit{vs'}\ (\mathit{R}\ \mathit{M2}\ \mathit{s}\ \mathit{vs}\ \mathit{xs})))
  \mathbf{moreover} \ \mathbf{have} \ R \ \mathit{M2} \ s \ \mathit{vs} \ \mathit{xs} \subseteq \mathit{RP} \ \mathit{M2} \ s \ \mathit{vs} \ \mathit{xs} \ \mathit{V}^{\prime\prime}
    by simp
  moreover have RP M2 s vs xs V'' \subseteq R M2 s vs xs \cup V''
    by auto
  ultimately obtain vs1 vs2 where vs-def:
       vs1 \neq vs2 \land vs1 \in V'' \land vs2 \in V''
        \land vs1 \notin R M2 s vs xs \land vs2 \notin R M2 s vs xs
        \land vs1 \in RP \ M2 \ s \ vs \ xs \ V'' \ \land vs2 \in RP \ M2 \ s \ vs \ xs \ V''
    \mathbf{by} blast
  then have io-targets M2 (initial M2) vs1 = \{s\} \land io-targets M2 (initial M2) vs2 = \{s\}
    by (metis (mono-tags, lifting) RP.simps Un-iff mem-Collect-eq)
  then have io-targets M2 (initial M2) vs1 = io-targets M2 (initial M2) vs2
    by simp
  obtain f where f-def: is-det-state-cover-ass M2 f \wedge V = f 'd-reachable M2 (initial M2)
    using assms by auto
  moreover have V = image f (d\text{-}reachable M2 (initial M2))
    using f-def by blast
  moreover have map fst vs1 \in V \land map fst vs2 \in V
    using assms(2) perm-inputs vs-def by blast
  ultimately obtain r1 r2 where r-def:
    f r1 = map fst vs1 \land r1 \in d\text{-reachable } M2 \text{ (initial } M2)
    f r2 = map fst vs2 \land r2 \in d\text{-reachable } M2 \text{ (initial } M2)
    by force
  then have d-reaches M2 (initial M2) (map fst vs1) r1
             d-reaches M2 (initial M2) (map fst vs2) r2
    by (metis f-def is-det-state-cover-ass.elims(2))+
  then have io-targets M2 (initial M2) vs1 \subseteq \{r1\}
    using d-reaches-io-target[of M2 initial M2 map fst vs1 r1 map snd vs1] by simp
  moreover have io-targets M2 (initial M2) vs2 \subseteq \{r2\}
    using d-reaches-io-target[of M2 initial M2 map fst vs2 r2 map snd vs2]
          \langle d\text{-reaches } M2 \text{ (initial } M2) \text{ (map fst } vs2) \text{ } r2 \rangle \text{ by } auto
  ultimately have r1 = r2
    using (io-targets M2 (initial M2) vs1 = \{s\} \(\times \)io-targets M2 (initial M2) vs2 = \{s\}\(\times \) by auto
  have map fst \ vs1 \neq map \ fst \ vs2
    using assms(2) perm-inputs-diff vs-def by blast
  then have r1 \neq r2
    using r-def(1) r-def(2) by force
  then show False
    using \langle r1 = r2 \rangle by auto
qed
```

```
lemma finite-RP:
 assumes is-det-state-cover M2 V
          V^{\prime\prime}\in \mathit{Perm}\ V\ \mathit{M1}
 and
shows finite (RP M2 s vs xs V^{\prime\prime})
 using assms RP-from-R finite-R by (metis finite-insert)
lemma RP-count:
  assumes (vs @ xs) \in L M1 \cap L M2
 and observable M1
 and observable M2
 and well-formed M1
 and well-formed M2
 and s \in nodes M2
 and productF M2 M1 FAIL PM
 and io-targets PM (initial PM) vs = \{(q2,q1)\}
 and path PM (xs \mid\mid tr) (q2,q1)
 and length xs = length tr
 and distinct (states (xs || tr) (q2,q1))
 and is-det-state-cover M2 V
 and V'' \in Perm \ V M1
 and \forall s' \in set \ (states \ (xs \mid \mid map \ fst \ tr) \ q2) \ . \ \neg \ (\exists \ v \in V \ . \ d\text{-reaches} \ M2 \ (initial \ M2) \ v \ s')
shows card ([] (image (io-targets M1 (initial M1)) (RP M2 s vs xs V''))) = card (RP M2 s vs xs V'')
  — each sequence in the set calculated by RP reaches a different state in M1
proof -
  — Proof sketch: - RP calculates either the same set as R or the set of R and an additional element - in the first case,
the result for R applies - in the second case, the additional element is not contained in the set calculated by R due to
the assumption that no state reached by a non-empty prefix of xs after vs is also reached by some sequence in V (see
the last two assumptions)
 have RP-cases: RP M2 s vs xs V'' = R M2 s vs xs
                \lor (\exists vs' \in V'' . vs' \notin R M2 s vs xs)
                                \wedge RP M2 s vs xs V'' = insert vs' (R M2 s vs xs))
   using RP-from-R assms by metis
 show ?thesis
 proof (cases RP M2 s vs xs V'' = R M2 s vs xs)
   case True
   then show ?thesis using R-count assms by metis
  next
   then obtain vs' where vs'-def: vs' \in V''
                                \land vs' \notin R M2 s vs xs
                                \land RP \ M2 \ s \ vs \ xs \ V'' = insert \ vs' \ (R \ M2 \ s \ vs \ xs)
     using RP-cases by auto
   have obs-PM: observable PM
     using observable-productF assms(2) assms(3) assms(7) by blast
   have state-component-2: \forall io \in (R M2 \ s \ vs \ xs). io-targets M2 \ (initial M2) \ io = \{s\}
   proof
     fix io assume io \in R M2 s vs xs
     then have s \in io-targets M2 (initial M2) io
       by auto
     moreover have io \in language\text{-}state\ M2\ (initial\ M2)
       using calculation by auto
     ultimately show io-targets M2 (initial M2) io = \{s\}
       using assms(3) io-targets-observable-singleton-ex by (metis\ singletonD)
   qed
   have vs' \in L M1
     using assms(13) perm-language vs'-def by blast
   then obtain s' where s'-def: io-targets M1 (initial M1) vs' = \{s'\}
```

```
by (meson\ assms(2)\ io-targets-observable-singleton-ob)
moreover have s' \notin \bigcup (image (io-targets M1 (initial M1)) (R M2 s vs xs))
proof (rule ccontr)
 assume \neg s' \notin \bigcup (io\text{-targets } M1 \ (initial \ M1) \ `R \ M2 \ s \ vs \ xs)
  then obtain xs' where xs'-def: vs @ xs' \in R \ M2 \ s \ vs \ xs \land s' \in io-targets M1 (initial M1) (vs @ xs')
 proof -
   \mathbf{assume}\ a1: \bigwedge xs'.\ vs\ @\ xs' \in R\ M2\ s\ vs\ xs\ \wedge\ s' \in \mathit{io-targets}\ M1\ (\mathit{initial}\ M1)\ (\mathit{vs}\ @\ \mathit{xs'})
    obtain pps :: ('a \times 'b) \ list \ set \Rightarrow (('a \times 'b) \ list \Rightarrow 'c \ set) \Rightarrow 'c \Rightarrow ('a \times 'b) \ list
      where
     \forall x0 \ x1 \ x2. \ (\exists \ v3. \ v3 \in x0 \ \land \ x2 \in x1 \ v3) = (pps \ x0 \ x1 \ x2 \in x0 \ \land \ x2 \in x1 \ (pps \ x0 \ x1 \ x2))
     by moura
    then have f2: pps (R M2 s vs xs) (io\text{-targets } M1 (initial M1)) s' \in R M2 s vs xs
                   \land s' \in io\text{-targets } M1 \text{ (initial } M1) \text{ (pps } (R M2 s vs xs)
                                         (io-targets M1 (initial M1)) s')
      using \langle \neg s' \notin \bigcup (io\text{-targets } M1 \ (initial \ M1) \ `R \ M2 \ s \ vs \ xs) \rangle by blast
    then have \exists ps. pps (R M2 s vs xs) (io\text{-targets } M1 (initial M1)) s' = vs @ ps
                   \land ps \neq [] \land prefix ps xs \land s \in io\text{-targets } M2 \text{ (initial } M2) \text{ (}vs @ ps\text{)}
      by simp
    then show ?thesis
      using f2 a1 by (metis (no-types))
  then obtain tr' where tr'-def: path M2 (vs @ xs' || tr') (initial M2)
                                   \land length tr' = length (vs @ xs')
   by auto
  then obtain trV' trX' where tr'-split : trV' = take (length vs) tr'
                                         trX' = drop (length vs) tr'
                                         tr' = trV' \otimes trX'
   by fastforce
  then have path M2 (vs || trV') (initial M2) \land length trV' = length vs
   by (metis (no-types) FSM.path-append-elim \langle trV' = take \ (length \ vs) \ tr' \rangle
        append-eq-conv-conj length-take tr'-def zip-append1)
 have initial PM = (initial \ M2, initial \ M1)
    using assms(7) by simp
  moreover have vs \in L M2 vs \in L M1
   using assms(1) language-state-prefix by auto
  ultimately have io-targets M1 (initial M1) vs = \{q1\}
                 io-targets M2 (initial M2) vs = \{q2\}
    using productF-path-io-targets[of M2 M1 FAIL PM initial M2 initial M1 vs q2 q1]
   by (metis\ FSM.nodes.initial\ assms(7)\ assms(8)\ assms(2)\ assms(3)\ assms(4)\ assms(5)
        io\text{-}targets\text{-}observable\text{-}singleton\text{-}ex\ singletonD)+
  then have target (vs || trV') (initial M2) = q2
    using \langle path \ M2 \ (vs \mid \mid trV') \ (initial \ M2) \land length \ trV' = length \ vs \rangle \ io\text{-target-target}
    by metis
  then have path-xs': path M2 (xs' || trX') q2 \land length \ trX' = length \ xs'
    by (metis (no-types) FSM.path-append-elim
        \langle path \ M2 \ (vs \mid\mid trV') \ (initial \ M2) \land length \ trV' = length \ vs \rangle
        \langle target\ (vs\ ||\ trV')\ (initial\ M2)=q2 \rangle\ append-eq-conv-conj\ length-drop\ tr'-def
        tr'-split(1) tr'-split(2) zip-append2)
 have io-targets M2 (initial M2) (vs @ xs') = \{s\}
    using state-component-2 xs'-def by blast
  then have io-targets M2 q2 xs' = \{s\}
    by (meson\ assms(3)\ observable-io-targets-split\ (io-targets\ M2\ (initial\ M2)\ vs=\{q2\})
  then have target-xs': target (xs' || trX') q2 = s
    using io-target-target path-xs' by metis
  moreover have length xs' > 0
    using xs'-def by auto
```

```
ultimately have last (states (xs' || trX') q2) = s
 using path-xs' target-in-states by metis
moreover have length (states (xs' || trX') q2) > 0
 using \langle \theta \rangle = length \ xs' \rangle \ path-xs' \ by \ auto
ultimately have states-xs': s \in set (states (xs' || trX') q2)
 using last-in-set by blast
have vs @ xs \in L M2
  using assms by simp
then obtain q' where io-targets M2 (initial M2) (vs@xs) = \{q'\}
  using io-targets-observable-singleton-ob[of M2 vs@xs initial M2] assms(3) by auto
then have xs \in language-state M2 q2
 using assms(3) (io-targets M2 (initial M2) vs = \{q2\})
       observable-io-targets-split[of M2 initial M2 vs xs q' q2]
 by auto
moreover have path PM (xs || map fst tr || map snd tr) (q2,q1)
              \wedge length xs = length (map fst tr)
 using assms(7) assms(9) assms(10) productF-path-unzip by simp
moreover have xs \in language\text{-}state\ PM\ (q2,q1)
 using assms(9) assms(10) by auto
moreover have q2 \in nodes M2
 using \langle io\text{-}targets \ M2 \ (initial \ M2) \ vs = \{q2\} \rangle \ io\text{-}targets\text{-}nodes
 by (metis FSM.nodes.initial insertI1)
moreover have q1 \in nodes M1
 using \langle io\text{-}targets \ M1 \ (initial \ M1) \ vs = \{q1\} \rangle \ io\text{-}targets\text{-}nodes
 by (metis FSM.nodes.initial insertI1)
ultimately have path-xs: path M2 (xs || map fst tr) q2
 using productF-path-reverse-ob-2(1)[of xs map fst tr map snd tr M2 M1 FAIL PM q2 q1]
       assms(2,3,4,5,7)
 by simp
moreover have prefix xs' xs
 using xs'-def by auto
ultimately have trX' = take (length xs') (map fst tr)
  using \langle path \ PM \ (xs \mid \mid map \ fst \ tr \mid \mid map \ snd \ tr) \ (q2, \ q1) \land length \ xs = length \ (map \ fst \ tr) \rangle
       assms(3) path-xs
 by (metis observable-path-prefix)
then have states-xs: s \in set (states (xs || map fst tr) q2)
 by (metis assms(10) in-set-takeD length-map map-snd-zip path-xs' states-alt-def states-xs')
have d-reaches M2 (initial M2) (map fst vs') s
proof -
 obtain fV where fV-def: is-det-state-cover-ass M2 fV
                        \wedge V = fV \cdot d-reachable M2 (initial M2)
   using assms(12) by auto
 moreover have V = image \ fV \ (d\text{-reachable} \ M2 \ (initial \ M2))
   using fV-def by blast
  moreover have map fst vs' \in V
   using perm-inputs vs'-def assms(13) by metis
  ultimately obtain qv where qv-def: fV qv = map fst vs' \land qv \in d-reachable M2 (initial M2)
   by force
 then have d-reaches M2 (initial M2) (map fst vs') qv
   by (metis\ fV-def\ is-det-state-cover-ass.elims(2))
 then have io-targets M2 (initial M2) vs' \subseteq \{qv\}
   using d-reaches-io-target[of M2 initial M2 map fst vs' qv map snd vs'] by simp
  moreover have io-targets M2 (initial M2) vs' = \{s\}
   using vs'-def by (metis (mono-tags, lifting) RP.simps Un-iff insertI1 mem-Collect-eq)
  ultimately have qv = s
   by simp
  then show ?thesis
```

```
using \langle d-reaches M2 (initial M2) (map fst vs') qv \rangle by blast
     qed
     then show False by (meson assms(14) assms(13) perm-inputs states-xs vs'-def)
   moreover have [ ] (image (io-targets M1 (initial M1)) (insert vs' (R M2 s vs xs)))
                  = insert s' (\bigcup (image (io-targets M1 (initial M1)) (R M2 s vs xs)))
     using s'-def by simp
   moreover have finite ( ) (image (io-targets M1 (initial M1)) (R M2 s vs xs)))
   proof
     show finite (R M2 s vs xs)
       using finite-R by simp
     show \bigwedge a.\ a \in R\ M2\ s\ vs\ xs \Longrightarrow finite\ (io\text{-targets}\ M1\ (initial\ M1)\ a)
     proof -
       fix a assume a \in R M2 s vs xs
       then have prefix \ a \ (vs@xs)
        by auto
       then have a \in L M1
         using language-state-prefix by (metis IntD1 assms(1) prefix-def)
       then obtain p where io-targets M1 (initial M1) a = \{p\}
        using assms(2) io-targets-observable-singleton-ob by metis
       then show finite (io-targets M1 (initial M1) a)
        by simp
     \mathbf{qed}
   qed
   ultimately have card ([] (image (io-targets M1 (initial M1)) (insert vs' (R M2 s vs xs))))
                   = Suc (card ([] (image (io-targets M1 (initial M1)) (R M2 s vs xs))))
     by (metis (no-types) card-insert-disjoint)
   \mathbf{moreover\ have}\ \mathit{card}\ (\bigcup\ (\mathit{image}\ (\mathit{io\text{-}targets}\ \mathit{M1}\ (\mathit{initial}\ \mathit{M1}))\ (\mathit{RP}\ \mathit{M2}\ \mathit{s}\ \mathit{vs}\ \mathit{xs}\ \mathit{V''})))
                  = card ([] (image (io-targets M1 (initial M1)) (insert vs' (R M2 s vs xs))))
     using vs'-def by simp
   ultimately have card ([] (image (io-targets M1 (initial M1)) (RP M2 s vs xs V'')))
                    = Suc (card ([] (image (io-targets M1 (initial M1)) (R M2 s vs xs))))
     by linarith
   then have card (\bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V'')))
              = Suc (card (R M2 s vs xs))
     using R-count [of vs xs M1 M2 s FAIL PM q2 q1 tr] assms(1,10,11,2-9) by linarith
   moreover have card (RP M2 s vs xs V'') = Suc (card (R M2 s vs xs))
     using vs'-def by (metis card-insert-if finite-R)
   ultimately show ?thesis
     by linarith
  qed
qed
lemma RP-state-component-2:
 assumes io \in (\mathit{RP}\ \mathit{M2}\ \mathit{s}\ \mathit{vs}\ \mathit{xs}\ \mathit{V}^{\prime\prime})
 and
           observable M2
shows io-targets M2 (initial M2) io = \{s\}
 by (metis (mono-tags, lifting) RP.simps R-state-component-2 Un-iff assms mem-Collect-eq)
\mathbf{lemma}\ RP-io-targets-split:
  assumes (vs @ xs) \in L M1 \cap L M2
  and observable M1
 and observable M2
 and well-formed M1
```

```
and well-formed M2
 and productF M2 M1 FAIL PM
 and is-det-state-cover M2\ V
 and V'' \in Perm \ V \ M1
  and io \in RP \ M2 \ s \ vs \ xs \ V^{\prime\prime}
shows io-targets PM (initial PM) io
       = io-targets M2 (initial M2) io \times io-targets M1 (initial M1) io
proof -
 have RP-cases: RP M2 s vs xs V'' = R M2 s vs xs
                  \lor (\exists vs' \in V'' . vs' \notin R M2 s vs xs)
                                  \wedge RP M2 s vs xs V'' = insert vs' (R M2 s vs xs))
   using RP-from-R assms by metis
  show ?thesis
  proof (cases io \in R M2 s vs xs)
   \mathbf{case} \ \mathit{True}
   then have io-prefix: prefix io (vs @ xs)
     by auto
   then have io-lang-subs : io \in L M1 \land io \in L M2
     using assms(1) unfolding prefix-def by (metis IntE language-state language-state-split)
   then have io-lang-inter : io \in L\ M1 \cap L\ M2
     by simp
   then have io-lang-pm: io \in L PM
     using productF-language assms by blast
   moreover obtain p2 p1 where (p2,p1) \in io-targets PM (initial PM) io
     by (metis\ assms(2)\ assms(3)\ assms(6)\ calculation\ insert-absorb\ insert-ident\ insert-not-empty
         io-targets-observable-singleton-ob observable-productF singleton-insert-inj-eq subrelI)
   ultimately have targets-pm: io-targets PM (initial PM) io = \{(p2,p1)\}
     using assms io-targets-observable-singleton-ex singletonD
     by (metis observable-productF)
   then obtain trP where trP-def: target (io || trP) (initial PM) = (p2,p1)
                                  \land path PM (io || trP) (initial PM) \land length io = length trP
   proof -
     assume a1: \bigwedge trP. target (io || trP) (initial PM) = (p2, p1)
                       \land path PM (io || trP) (initial PM) \land length io = length trP \Longrightarrow thesis
     have \exists ps. target (io || ps) (initial PM) = (p2, p1) \land path PM (io || ps) (initial PM)
                                                     \land length io = length ps
       using \langle (p2, p1) \in io\text{-targets } PM \text{ (initial } PM) \text{ } io \rangle \text{ by } auto
     then show ?thesis
       using a1 by blast
   then have trP-unique: \{tr : path \ PM \ (io \mid \mid tr) \ (initial \ PM) \land length \ io = length \ tr\} = \{trP\}
     using observable-productF observable-path-unique-ex[of PM io initial PM]
           io-lang-pm assms(2) assms(3) assms(7)
   proof -
     obtain pps :: ('d \times 'c) \ list \ where
       f1: \{ps. \ path \ PM \ (io \mid\mid ps) \ (initial \ PM) \land length \ io = length \ ps\} = \{pps\}
             \vee \neg observable PM
       by (metis\ (no\text{-}types)\ \land \bigwedge thesis.\ [[observable\ PM;\ io \in L\ PM;\ \bigwedge tr.
                           \{t. \ path \ PM \ (io \mid\mid t) \ (initial \ PM) \land length \ io = length \ t\} = \{tr\}
                            \implies thesis \implies thesis
           io-lang-pm)
     have f2: observable PM
       by (meson \langle observable M1 \rangle \langle observable M2 \rangle \rangle rroductF M2 M1 FAIL PM \rangle observable-productF)
     then have trP \in \{pps\}
       using f1 trP-def by blast
     then show ?thesis
       using f2 f1 by force
   aed
   obtain trIO2 where trIO2-def: \{tr : path M2 \ (io \mid \mid tr) \ (initial M2) \land length \ io = length \ tr\}
                                 = \{ trIO2 \}
     using observable-path-unique-ex[of M2 io initial M2] io-lang-subs assms(3) by blast
   obtain trIO1 where trIO1-def: \{tr : path \ M1 \ (io \mid \mid tr) \ (initial \ M1) \land length \ io = length \ tr\}
                                 = \{ trIO1 \}
     using observable-path-unique-ex[of M1 io initial M1] io-lang-subs assms(2) by blast
```

```
have path PM (io || trIO2 || trIO1) (initial M2, initial M1)
      \land length io = length trIO2 \land length trIO2 = length trIO1
 proof
  have f1: path M2 (io | trIO2) (initial M2) \land length io = length trIO2
    using trIO2-def by auto
  have f2: path M1 (io || trIO1) (initial M1) \land length io = length trIO1
    using trIO1-def by auto
   then have length trIO2 = length trIO1
    using f1 by presburger
   then show ?thesis
    using f2\ f1\ assms(4)\ assms(5)\ assms(6) by blast
 then have trP-split: path PM (io || trIO2 || trIO1) (initial PM)
                    \land length io = length trIO2 \land length trIO2 = length trIO1
   using assms(6) by auto
 then have trP-zip : trIO2 \mid\mid trIO1 = trP
  using trP-def trP-unique length-zip by fastforce
 have target (io || trIO2) (initial M2) = p2
        \land path M2 (io || trIO2) (initial M2)
        \land length io = length trIO2
  using trP-zip trP-split assms(6) trP-def trIO2-def by auto
 then have p2 \in io-targets M2 (initial M2) io
  by auto
 then have targets-2: io-targets\ M2\ (initial\ M2)\ io=\{p2\}
  by (meson assms(3) observable-io-target-is-singleton)
 have target (io || trIO1) (initial M1) = p1
      \wedge path M1 (io || trIO1) (initial M1)
      \land length io = length trIO1
  using trP-zip trP-split assms(6) trP-def trIO1-def by auto
 then have p1 \in io-targets M1 (initial M1) io
  by auto
 then have targets-1: io-targets\ M1\ (initial\ M1)\ io=\{p1\}
  by (metis\ io\text{-}lang\text{-}subs\ assms(2)\ io\text{-}targets\text{-}observable\text{-}singleton\text{-}ex\ singletonD})
 have io-targets M2 (initial M2) io \times io-targets M1 (initial M1) io = \{(p2,p1)\}
  using targets-2 targets-1 by simp
 then show io-targets PM (initial PM) io
           = io-targets M2 (initial M2) io \times io-targets M1 (initial M1) io
  using targets-pm by simp
next
 {\bf case}\ \mathit{False}
 then have io \notin R M2 s vs xs \land RP M2 s vs xs V'' = insert io (R M2 s vs xs)
  using RP-cases assms(9) by (metis\ insertE)
 have io \in L\ M1 using assms(8)\ perm-language\ assms(9)
   using False by auto
 then obtain s' where s'-def: io-targets M1 (initial M1) io = \{s'\}
   by (meson assms(2) io-targets-observable-singleton-ob)
 then obtain tr1 where tr1-def: target (io || tr1) (initial M1) = s'
                              \land path M1 (io || tr1) (initial M1) \land length tr1 = length io
  by (metis io-targets-elim singletonI)
 have io-targets M2 (initial M2) io = \{s\}
   using assms(9) assms(3) RP-state-component-2 by simp
 then obtain tr2 where tr2-def: target (io || tr2) (initial M2) = s
                             \land path M2 (io | tr2) (initial M2) \land length tr2 = length io
  by (metis io-targets-elim singletonI)
 then have paths: path M2 (io || tr2) (initial M2) \land path M1 (io || tr1) (initial M1)
  using tr1-def by simp
 have length io = length tr2
```

```
using tr2-def by simp
   moreover have length tr2 = length tr1
     using tr1-def tr2-def by simp
   ultimately have path PM (io || tr2 || tr1) (initial M2, initial M1)
     using assms(6) assms(5) assms(4) paths
           productF-path-forward[of io tr2 tr1 M2 M1 FAIL PM initial M2 initial M1]
     by blast
   moreover have target (io || tr2 || tr1) (initial M2, initial M1) = (s,s')
     by (simp add: tr1-def tr2-def)
   moreover have length (tr2 || tr2) = length io
     using tr1-def tr2-def by simp
   moreover have (initial M2, initial M1) = initial PM
     using assms(6) by simp
   ultimately have (s,s') \in io\text{-targets } PM \ (initial \ PM) \ io
     by (metis io-target-from-path length-zip tr1-def tr2-def)
   moreover have observable PM
     using assms(2) assms(3) assms(6) observable-productF by blast
   then have io-targets PM (initial PM) io = \{(s,s')\}
     by (meson calculation observable-io-target-is-singleton)
   then show ?thesis
     using \langle io\text{-targets } M2 \text{ (initial } M2) \text{ } io = \{s\} \rangle \langle io\text{-targets } M1 \text{ (initial } M1) \text{ } io = \{s'\} \rangle
     by simp
  \mathbf{qed}
qed
\mathbf{lemma}\ RP-io-targets-finite-M1:
 assumes (vs @ xs) \in L M1 \cap L M2
 and observable M1
 and is-det-state-cover M2\ V
 and V'' \in Perm \ V \ M1
shows finite (\bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V'')))
  show finite (RP M2 s vs xs V'') using finite-RP assms(3) assms(4) by simp
  show \bigwedge a.\ a \in RP\ M2\ s\ vs\ xs\ V'' \Longrightarrow finite\ (io\text{-targets}\ M1\ (initial\ M1)\ a)
  proof -
   \mathbf{fix}\ a\ \mathbf{assume}\ a\in \mathit{RP}\ \mathit{M2}\ \mathit{s}\ \mathit{vs}\ \mathit{xs}\ \mathit{V}^{\prime\prime}
   have RP-cases: RP M2 s vs xs V'' = R M2 s vs xs
                    \lor (\exists vs' \in V'' . vs' \notin R M2 s vs xs
                                    \wedge RP M2 s vs xs V'' = insert vs' (R M2 s vs xs))
     using RP-from-R assms by metis
   have a \in L M1
   proof (cases a \in R M2 s vs xs)
     case True
     then have prefix \ a \ (vs@xs)
       by auto
     then show a \in L M1
       using language-state-prefix by (metis IntD1 assms(1) prefix-def)
   next
     then have a \in V'' \land RP M2 \ s \ vs \ xs \ V'' = insert \ a \ (R M2 \ s \ vs \ xs)
       using RP-cases \langle a \in RP \ M2 \ s \ vs \ xs \ V'' \rangle by (metis \ insertE)
     then show a \in L M1
       by (meson assms(4) perm-language)
   qed
   then obtain p where io-targets M1 (initial M1) a = \{p\}
     using assms(2) io-targets-observable-singleton-ob by metis
   then show finite (io-targets M1 (initial M1) a)
     by simp
  qed
```

```
qed
```

```
lemma RP-io-targets-finite-PM:
  assumes (vs @ xs) \in L M1 \cap L M2
  and observable M1
  and observable M2
  and well-formed M1
  and well-formed M2
  and productF M2 M1 FAIL PM
  and is-det-state-cover M2 V
  and V'' \in Perm \ V \ M1
shows finite ([ ] (image (io-targets PM (initial PM)) (RP M2 s vs xs V'')))
  have \forall io \in RP \ M2 \ s \ vs \ xs \ V''. io-targets PM (initial PM) io
                                    = \{s\} \times io\text{-targets } M1 \ (initial \ M1) \ io
  proof
    fix io assume io \in RP \ M2 \ s \ vs \ xs \ V^{\prime\prime}
    then have io-targets PM (initial PM) io
                = io-targets M2 (initial M2) io \times io-targets M1 (initial M1) io
      using assms RP-io-targets-split[of vs xs M1 M2 FAIL PM V V'' io s] by simp
    moreover have io-targets M2 (initial M2) io = \{s\}
      using \langle io \in RP \ M2 \ s \ vs \ xs \ V'' \rangle \ assms(3) \ RP\text{-state-component-2}[of \ io \ M2 \ s \ vs \ xs \ V'']
     by blast
    ultimately show io-targets PM (initial PM) io = \{s\} \times \text{io-targets } M1 \text{ (initial } M1) \text{ io }
     by auto
  qed
  then have \bigcup (image (io-targets PM (initial PM)) (RP M2 s vs xs V''))
              = \bigcup \ (image \ (\lambda \ io \ . \ \{s\} \times \ io\text{-targets} \ M1 \ (initial \ M1) \ io) \ (RP \ M2 \ s \ vs \ xs \ V''))
  moreover have \bigcup (image (\lambda io . {s} \times io-targets M1 (initial M1) io) (RP M2 s vs xs V''))
                  = \{s\} \times \bigcup (image \ (\lambda \ io \ . \ io-targets \ M1 \ (initial \ M1) \ io) \ (RP \ M2 \ s \ vs \ xs \ V''))
  ultimately have \bigcup (image (io-targets PM (initial PM)) (RP M2 s vs xs V''))
                    = \{s\} \times \bigcup (image (io\text{-targets } M1 (initial M1)) (RP M2 s vs xs V''))
    by auto
  moreover have finite (\{s\} \times \bigcup (image (io\text{-}targets M1 (initial M1)) (RP M2 s vs xs V'')))
    using assms(1,2,7,8) RP-io-targets-finite-M1[of vs xs M1 M2 V V'' s] by simp
  ultimately show ?thesis
    by simp
qed
\mathbf{lemma}\ RP-union-card-is-suffix-length:
  assumes OFSM M2
  and
            io@xs \in L M2
            is-det-state-cover M2 V
  and
            V'' \in Perm \ V M1
  and
\mathbf{shows} \ \bigwedge \ q \ . \ \mathit{card} \ (R \ \mathit{M2} \ q \ \mathit{io} \ \mathit{xs}) \leq \mathit{card} \ (RP \ \mathit{M2} \ q \ \mathit{io} \ \mathit{xs} \ \mathit{V''})
      sum (\lambda q . card (RP M2 q io xs V'')) (nodes M2) \ge length xs
proof -
  have sum (\lambda \ q \ . \ card \ (R \ M2 \ q \ io \ xs)) \ (nodes \ M2) = length \ xs
    using R-union-card-is-suffix-length [OF \ assms(1,2)] by assumption
  show \bigwedge q . card (R M2 \ q \ io \ xs) \le card \ (RP M2 \ q \ io \ xs \ V'')
  by (metis RP-from-R assms(3) assms(4) card-insert-le eq-iff finite-R) show sum (\lambda q . card (RP M2 q io xs V'')) (nodes M2) \geq length xs
    by (metis\ (no\text{-types},\ lifting)\ ((\sum q \in nodes\ M2.\ card\ (R\ M2\ q\ io\ xs)) = length\ xs)
        \langle \bigwedge q. \ card \ (R \ M2 \ q \ io \ xs) \leq card \ (RP \ M2 \ q \ io \ xs \ V'') \rangle \ sum-mono)
\mathbf{qed}
\mathbf{lemma}\ RP-state-repetition-distribution-productF:
  assumes OFSM M2
  and
            OFSM M1
            (card\ (nodes\ M2)*m) \leq length\ xs
  and
  and
            card (nodes M1) \leq m
            vs@xs \in L M2 \cap L M1
  and
```

```
and
              is-det-state-cover M2 V
              V^{\prime\prime}\in \mathit{Perm}\ V\mathit{M1}
  and
\mathbf{shows} \, \exists \ q \in \mathit{nodes} \ \mathit{M2} \ . \ \mathit{card} \ (\mathit{RP} \ \mathit{M2} \ \mathit{q} \ \mathit{vs} \ \mathit{xs} \ \mathit{V}^{\prime\prime}) > \mathit{m}
proof
  have finite (nodes M1)
        finite (nodes M2)
    using assms(1,2) by auto
  then have card(nodes\ M2\times nodes\ M1)=card\ (nodes\ M2)*card\ (nodes\ M1)
    using card-cartesian-product by blast
  have nodes (product M2 M1) \subseteq nodes M2 \times nodes M1
    using product-nodes by auto
  have card (nodes (product M2 M1)) \leq card (nodes M2) * card (nodes M1)
    \mathbf{by} \ (\textit{metis} \ (\textit{no-types}) \ \langle \textit{card} \ (\textit{nodes} \ \textit{M2} \ \times \ \textit{nodes} \ \textit{M1}) = |\textit{M2}| \ * \ |\textit{M1}| \rangle \ \langle \textit{finite} \ (\textit{nodes} \ \textit{M1}) \rangle
         \langle finite\ (nodes\ M2) \rangle \langle nodes\ (product\ M2\ M1) \subseteq nodes\ M2\ \times\ nodes\ M1 \rangle
         card-mono finite-cartesian-product)
  have (\forall q \in nodes \ M2 \ . \ card \ (R \ M2 \ q \ vs \ xs) = m) \ \lor \ (\exists \ q \in nodes \ M2 \ . \ card \ (R \ M2 \ q \ vs \ xs) > m)
  proof (rule ccontr)
    assume \neg ((\forall q \in nodes \ M2. \ card \ (R \ M2 \ q \ vs \ xs) = m) \lor (\exists \ q \in nodes \ M2. \ m < card \ (R \ M2 \ q \ vs \ xs)))
    then have \forall q \in nodes \ M2. card (R \ M2 \ q \ vs \ xs) \leq m
      by auto
    moreover obtain q' where q' \in nodes \ M2 \ card \ (R \ M2 \ q' \ vs \ xs) < m
       using \langle \neg ((\forall q \in nodes \ M2. \ card \ (R \ M2 \ q \ vs \ xs) = m) \ \lor (\exists \ q \in nodes \ M2. \ m < card \ (R \ M2 \ q \ vs \ xs))) \rangle
              nat-neq-iff
      by blast
    have sum (\lambda \ q \ . \ card \ (R \ M2 \ q \ vs \ xs)) \ (nodes \ M2)
            = sum (\lambda q \cdot card (R M2 q vs xs)) (nodes M2 - \{q'\})
             + sum (\lambda q \cdot card (R M2 q vs xs)) \{q'\}
       using \langle q' \in nodes \ M2 \rangle
      by (meson \(\sigma\) finite (nodes M2)\(\rightarrow\) empty-subsetI insert-subset sum.subset-diff)
    moreover have sum (\lambda \ q \ . \ card \ (R \ M2 \ q \ vs \ xs)) \ (nodes \ M2 - \{q'\})
                       \leq sum \ (\lambda \ q \ . \ m) \ (nodes \ M2 - \{q'\})
       using \forall q \in nodes M2 \cdot card (R M2 q vs xs) \leq m
      by (meson sum-mono DiffD1)
    moreover have sum (\lambda \ q \ . \ card \ (R \ M2 \ q \ vs \ xs)) \ \{q'\} < m
      using \langle card (R M2 q' vs xs) < m \rangle by auto
    ultimately have sum (\lambda q . card (R M2 q vs xs)) (nodes M2) < sum (\lambda q . m) (nodes M2)
    proof
       \mathbf{have} \ \forall \ C \ c \ f. \ infinite \ C \ \lor \ (c::'c) \notin C \ \lor \ sum \ f \ C = (f \ c::nat) \ + \ sum \ f \ (C \ - \ \{c\})
         by (meson sum.remove)
       then have (\sum c \in nodes \ M2. \ m) = m + (\sum c \in nodes \ M2 - \{q'\}. \ m)
         using \langle finite \ (nodes \ M2) \rangle \langle q' \in nodes \ \overline{M2} \rangle by blast
       then show ?thesis
         \mathbf{using} \ \underline{\langle (\sum q \in nodes \ M2 \ - \ \{q'\}. \ card \ (R \ M2 \ q \ vs \underline{xs})) \leq (\sum q \in nodes \ M2 \ - \ \{q'\}. \ m) \rangle}
                \langle (\sum q \in nodes \ M2. \ card \ (R \ M2 \ q \ vs \ xs)) = (\sum q \in nodes \ M2 - \{q'\}. \ card \ (R \ M2 \ q \ vs \ xs))
                  + (\sum q \in \{q'\}. \ card \ (R \ M2 \ q \ vs \ xs)))
                \langle (\sum q \in \{q'\}. \ card \ (R \ M2 \ q \ vs \ xs)) \ \langle m \rangle
         by linarith
    \mathbf{qed}
    moreover have sum (\lambda \ q \ . \ m) \ (nodes \ M2) \le card \ (nodes \ M2) * m
       using assms(2) by auto
    ultimately have sum (\lambda q . card (R M2 q vs xs)) (nodes M2) < card (nodes M2) * m
      by presburger
    moreover have Suc\ (card\ (nodes\ M2)*m) \leq sum\ (\lambda\ q\ .\ card\ (R\ M2\ q\ vs\ xs))\ (nodes\ M2)
       using R-union-card-is-suffix-length [OF \ assms(1), \ of \ vs \ xs] \ assms(5,3)
      by (metis Int-iff \langle vs @ xs \in L \ M2 \Longrightarrow (\sum q \in nodes \ M2. \ card (R \ M2 \ q \ vs \ xs)) = length \ xs \rangle
           \langle vs @ xs \in L \ M2 \cap L \ M1 \rangle \ \langle |M2| * m \leq length \ xs \rangle \ calculation \ less-eq-Suc-le \ not-less-eq-eq)
```

```
ultimately show False by simp
  qed
  then show ?thesis
  proof
   let ?q = initial M2
   assume \forall q \in nodes \ M2. \ card \ (R \ M2 \ q \ vs \ xs) = m
   then have card (R M2 ?q vs xs) = m
     by auto
   have [] \in V^{\prime\prime}
     by (meson \ assms(6) \ assms(7) \ perm-empty)
   then have [] \in RP \ M2 \ ?q \ vs \ xs \ V''
     by auto
   have [] \notin R \ M2 \ ?q \ vs \ xs
     by auto
   have card (RP M2 ?q vs xs V'') \geq card (R M2 ?q vs xs)
     using finite-R[of M2 ?q vs xs] finite-RP[OF assms(6,7),of ?q vs xs] unfolding RP.simps
     by (simp add: card-mono)
   have card (RP M2 ?q vs xs V'') > card (R M2 ?q vs xs)
   proof -
     have f1: \forall n \ na. \ (\neg (n::nat) \leq na \lor n = na) \lor n < na
       by (meson le-neq-trans)
     have RP M2 (initial M2) vs xs V'' \neq R M2 (initial M2) vs xs
       using \langle [] \in RP \ M2 \ (initial \ M2) \ vs \ xs \ V'' \rangle \ \langle [] \notin R \ M2 \ (initial \ M2) \ vs \ xs \rangle by blast
     then show ?thesis
       using f1 by (metis (no-types) RP-from-R
                   \langle card \ (R \ M2 \ (initial \ M2) \ vs \ xs) < card \ (RP \ M2 \ (initial \ M2) \ vs \ xs \ V'') \rangle
                   assms(6) assms(7) card-insert-disjoint finite-R le-simps(2))
   qed
   then show ?thesis
     using \langle card (R M2 ?q vs xs) = m \rangle
     by blast
  next
   assume \exists q \in nodes M2. m < card (R M2 q vs xs)
   then obtain q where q \in nodes \ M2 \ m < card \ (R \ M2 \ q \ vs \ xs)
   moreover have card (RP M2 q vs xs V'') > card (R M2 q vs xs)
     using finite-R[of\ M2\ q\ vs\ xs] finite-RP[OF\ assms(6,7),of\ q\ vs\ xs] unfolding RP.simps
     by (simp add: card-mono)
   ultimately have m < card (RP M2 q vs xs V'')
     by simp
   show ?thesis
     using \langle q \in nodes \ M2 \rangle \ \langle m < card \ (RP \ M2 \ q \ vs \ xs \ V'') \rangle by blast
  aed
qed
```

4.5 Conditions for the result of LB to be a valid lower bound

The following predicates describe the assumptions necessary to show that the value calculated by LB is a lower bound on the number of states of a given FSM.

```
fun Prereq :: ('in, 'out, 'state1) FSM \Rightarrow ('in, 'out, 'state2) FSM \Rightarrow ('in \times 'out) list ⇒ ('in \times 'out) list set ⇒ 'state1 set ⇒ ('in, 'out) ATC set ⇒ ('in \times 'out) list set ⇒ bool where <math display="block"> Prereq \ M2 \ M1 \ vs \ xs \ T \ S \ \Omega \ V'' = ( \\ (finite \ T) \\ \land (vs @ xs) \in L \ M2 \cap L \ M1 \\ \land S \subseteq nodes \ M2 \\ \land (\forall \ s1 \in S \ . \ \forall \ s2 \in S \ . \ s1 \neq s2 \\ \longrightarrow (\forall \ io1 \in RP \ M2 \ s1 \ vs \ xs \ V'' \ . \\ \forall \ io2 \in RP \ M2 \ s2 \ vs \ xs \ V'' \ .
```

```
B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega\ )))
```

```
fun Rep-Pre :: ('in, 'out, 'state1) FSM \Rightarrow ('in, 'out, 'state2) FSM \Rightarrow ('in \times 'out) list
              \Rightarrow ('in \times 'out) list \Rightarrow bool where
  Rep-Pre M2 M1 vs xs = (\exists xs1 xs2 . prefix xs1 xs2 \land prefix xs2 xs \land xs1 \neq xs2
   \land (\exists s2 : io\text{-targets } M2 \ (initial \ M2) \ (vs @ xs1) = \{s2\}
            \land io-targets M2 (initial M2) (vs @ xs2) = {s2})
   \land (\exists s1 . io\text{-targets } M1 \ (initial \ M1) \ (vs @ xs1) = \{s1\}
            \land io-targets M1 (initial M1) (vs @ xs2) = {s1}))
fun Rep-Cov :: ('in, 'out, 'state1) FSM \Rightarrow ('in, 'out, 'state2) FSM \Rightarrow ('in \times 'out) list set
              \Rightarrow ('in \times 'out) list \Rightarrow ('in \times 'out) list \Rightarrow bool where
  Rep-Cov M2 M1 V'' vs xs = (\exists xs' vs' . xs' \neq [\land prefix xs' xs \land vs' \in V'']
   \land (\exists s2 : io\text{-targets } M2 \ (initial \ M2) \ (vs @ xs') = \{s2\}
            \wedge io-targets M2 (initial M2) (vs') = {s2})
   \land (\exists s1 . io\text{-targets } M1 \ (initial \ M1) \ (vs @ xs') = \{s1\}
            \land io-targets M1 (initial M1) (vs') = {s1}))
lemma distinctness-via-Rep-Pre :
 assumes \neg Rep-Pre M2 M1 vs xs
  and productF M2 M1 FAIL PM
  and observable M1
  and observable M2
  and io-targets PM (initial PM) vs = \{(q2,q1)\}
  and path PM (xs \mid\mid tr) (q2,q1)
  and length xs = length tr
  and (vs @ xs) \in L M1 \cap L M2
  and well-formed M1
 and well-formed M2
shows distinct (states (xs || tr) (q2, q1))
proof (rule ccontr)
  assume assm : \neg distinct (states (xs || tr) (q2, q1))
  then obtain i1 i2 where index-def:
    i1 \neq 0
     \wedge i1 \neq i2
     \wedge i1 < length (states (xs || tr) (q2, q1))
     \wedge i2 < length (states (xs || tr) (q2, q1))
     \land (states (xs | | tr) (q2, q1)) ! i1 = (states (xs | | tr) (q2, q1)) ! i2
   by (metis distinct-conv-nth)
  then have length xs > 0 by auto
 \mathbf{let} \ ?xs1 = take \ (Suc \ i1) \ xs
 let ?xs2 = take (Suc i2) xs
 let ?tr1 = take (Suc i1) tr
 let ?tr2 = take (Suc i2) tr
 let ?st = (states (xs || tr) (q2, q1)) ! i1
  have obs-PM: observable PM
   using observable-productF assms(2) assms(3) assms(4) by blast
  have initial PM = (initial \ M2, initial \ M1)
   using assms(2) by simp
  moreover have vs \in L M2 vs \in L M1
   using assms(8) language-state-prefix by auto
  ultimately have io-targets M1 (initial M1) vs = \{q1\} io-targets M2 (initial M2) vs = \{q2\}
   using productF-path-io-targets[of M2 M1 FAIL PM initial M2 initial M1 vs q2 q1]
   by (metis FSM.nodes.initial assms(2) assms(3) assms(4) assms(5) assms(9) assms(10)
       io-targets-observable-singleton-ex singletonD)+
  — paths for ?xs1
 have (states\ (xs\ ||\ tr)\ (q2,\ q1))\ !\ i1\in io\text{-targets}\ PM\ (q2,\ q1)\ ?xs1
```

```
by (metis \ \langle 0 < length \ xs \rangle \ assms(6) \ assms(7) \ index-def \ map-snd-zip \ states-alt-def
     states-index-io-target)
then have io-targets PM(q2, q1) ?xs1 = {?st}
 using obs-PM by (meson observable-io-target-is-singleton)
have path PM (?xs1 || ?tr1) (q2,q1)
 by (metis FSM.path-append-elim append-take-drop-id assms(6) assms(7) length-take zip-append)
then have path PM (?xs1 \parallel map \ fst \ ?tr1 \parallel map \ snd \ ?tr1) (q2,q1)
 by auto
have vs @ ?xs1 \in L M2
 by (metis (no-types) IntD2 append-assoc append-take-drop-id assms(8) language-state-prefix)
then obtain q2' where io-targets M2 (initial M2) (vs@?xs1) = \{q2'\}
 using io-targets-observable-singleton-ob[of M2 vs@?xs1 initial M2] assms(4) by auto
then have q2' \in io\text{-targets } M2 \ q2 \ ?xs1
 using assms(4) \langle io\text{-targets } M2 \text{ (initial } M2 \text{) } vs = \{q2\} \rangle
       observable-io-targets-split[of M2 initial M2 vs ?xs1 q2' q2]
 by simp
then have ?xs1 \in language\text{-state } M2 \ q2
 by auto
moreover have length ?xs1 = length (map snd ?tr1)
 using assms(7) by auto
moreover have length (map\ fst\ ?tr1) = length\ (map\ snd\ ?tr1)
 bv auto
moreover have q2 \in nodes M2
 using \langle io\text{-}targets \ M2 \ (initial \ M2) \ vs = \{q2\} \rangle \ io\text{-}targets\text{-}nodes
 by (metis FSM.nodes.initial insertI1)
moreover have q1 \in nodes M1
 using \langle io\text{-targets } M1 \text{ (initial } M1) \text{ } vs = \{q1\} \rangle \text{ } io\text{-targets-nodes}
 by (metis FSM.nodes.initial insertI1)
ultimately have
  path M1 (?xs1 || map snd ?tr1) q1
  path M2 (?xs1 || map fst ?tr1) q2
  target (?xs1 \mid\mid map \ snd \ ?tr1) \ q1 = snd \ (target (?xs1 \mid\mid map \ fst \ ?tr1 \mid\mid map \ snd \ ?tr1) \ (q2,q1))
  target (?xs1 || map fst ?tr1) q2 = fst (target (?xs1 || map fst ?tr1 || map snd ?tr1) (q2,q1))
 using assms(2) assms(9) assms(10) \langle path PM (?xs1 || map fst ?tr1 || map snd ?tr1) \langle q2,q1 \rangle
       assms(4)
       productF-path-reverse-ob-2[of ?xs1 map fst ?tr1 map snd ?tr1 M2 M1 FAIL PM q2 q1]
 \mathbf{bv} simp+
moreover have target (?xs1 || map fst ?tr1 || map snd ?tr1) (q2,q1) = ?st
 by (metis (no-types) index-def scan-nth take-zip zip-map-fst-snd)
ultimately have
  target (?xs1 || map snd ?tr1) q1 = snd ?st
  target (?xs1 || map fst ?tr1) q2 = fst ?st
 by simp+
— paths for ?xs2
have (states (xs | tr) (q2, q1)) ! i2 \in io-targets PM (q2, q1) ?xs2
 by (metis \ (0 < length \ xs) \ assms(6) \ assms(7) \ index-def \ map-snd-zip \ states-alt-def \ states-index-io-target)
then have io-targets PM (q2, q1) ?xs2 = \{?st\}
 using obs-PM by (metis index-def observable-io-target-is-singleton)
have path PM (?xs2 || ?tr2) (q2,q1)
 by (metis FSM.path-append-elim append-take-drop-id assms(6) assms(7) length-take zip-append)
then have path PM (?xs2 \parallel map \ fst \ ?tr2 \parallel map \ snd \ ?tr2) (q2,q1)
 by auto
have vs @ ?xs2 \in L M2
 by (metis (no-types) IntD2 append-assoc append-take-drop-id assms(8) language-state-prefix)
then obtain q2'' where io-targets M2 (initial M2) (vs@?xs2) = \{q2''\}
 using io-targets-observable-singleton-ob[of M2 vs@?xs2 initial M2] assms(4)
 by auto
then have q2'' \in io\text{-targets } M2 \ q2 \ ?xs2
 using assms(4) (io-targets M2 (initial M2) vs = \{q2\})
       observable-io-targets-split[of M2 initial M2 vs ?xs2 q2" q2]
```

```
by simp
then have ?xs2 \in language\text{-}state\ M2\ q2
 bv auto
moreover have length ?xs2 = length (map \ snd \ ?tr2) \ using \ assms(7)
 by auto
moreover have length (map\ fst\ ?tr2) = length (map\ snd\ ?tr2)
 by auto
moreover have q2 \in nodes M2
 using (io-targets M2 (initial M2) vs = \{q2\}) io-targets-nodes
 by (metis FSM.nodes.initial insertI1)
moreover have q1 \in nodes M1
 using \langle io\text{-}targets \ M1 \ (initial \ M1) \ vs = \{q1\} \rangle \ io\text{-}targets\text{-}nodes
 by (metis FSM.nodes.initial insertI1)
ultimately have
  path M1 (?xs2 || map snd ?tr2) q1
  path M2 (?xs2 || map fst ?tr2) q2
  target \ (?xs2 \mid\mid map \ snd \ ?tr2) \ q1 = snd(target \ (?xs2 \mid\mid map \ fst \ ?tr2 \mid\mid map \ snd \ ?tr2) \ (q2,q1))
  target \ (?xs2 \mid\mid map \ fst \ ?tr2) \ q2 = fst \ (target \ (?xs2 \mid\mid map \ fst \ ?tr2 \mid\mid map \ snd \ ?tr2) \ (q2,q1))
 using assms(2) assms(9) assms(10) \langle path PM (?xs2 \mid \mid map \ fst \ ?tr2 \mid \mid map \ snd \ ?tr2) (q2,q1)
       productF-path-reverse-ob-2[of ?xs2 map fst ?tr2 map snd ?tr2 M2 M1 FAIL PM q2 q1]
 by simp+
moreover have target (?xs2 || map fst ?tr2 || map snd ?tr2) (q2,q1) = ?st
 by (metis (no-types) index-def scan-nth take-zip zip-map-fst-snd)
ultimately have
  target \ (?xs2 \ || \ map \ snd \ ?tr2) \ q1 = snd \ ?st
  target \ (?xs2 \mid\mid map \ fst \ ?tr2) \ q2 = fst \ ?st
 \mathbf{bv} simp+
have io-targets M1 q1 ?xs1 = \{snd ?st\}
 using \langle path \ M1 \ (?xs1 \mid | map \ snd \ ?tr1) \ q1 \rangle \langle target \ (?xs1 \mid | map \ snd \ ?tr1) \ q1 = snd \ ?st \rangle
        \langle length ?xs1 = length (map snd ?tr1) \rangle assms(3) obs-target-is-io-targets[of M1 ?xs1]
       map snd ?tr1 q1]
 by simp
then have tqt-1-1: io-targets M1 (initial M1) (vs @ ?xs1) = \{snd ?st\}
 by (meson \ (io-targets \ M1 \ (initial \ M1) \ vs = \{q1\}) \ assms(3) \ observable-io-targets-append)
have io-targets M2 q2 ?xs1 = \{fst ?st\}
 using \langle path \ M2 \ (?xs1 \ || \ map \ fst \ ?tr1) \ q2 \rangle \langle target \ (?xs1 \ || \ map \ fst \ ?tr1) \ q2 = fst \ ?st\rangle
        \langle length ?xs1 = length (map snd ?tr1) \rangle assms(4)
        obs-target-is-io-targets[of M2 ?xs1 map fst ?tr1 q2]
 by simp
then have tgt-1-2: io\text{-}targets \ M2 \ (initial \ M2) \ (vs @ ?xs1) = \{fst ?st\}
 by (meson \ (io\ targets\ M2\ (initial\ M2\ )\ vs = \{q2\})\ assms(4)\ observable-io\ targets-append)
have io-targets M1 q1 ?xs2 = \{snd ?st\}
 using \langle path \ M1 \ (?xs2 \mid | \ map \ snd \ ?tr2) \ q1 \rangle \langle target \ (?xs2 \mid | \ map \ snd \ ?tr2) \ q1 = snd \ ?st \rangle
        \langle length ?xs2 = length (map snd ?tr2) \rangle assms(3)
        obs-target-is-io-targets[of M1 ?xs2 map snd ?tr2 q1]
then have tgt-2-1: io\text{-}targets \ M1 \ (initial \ M1) \ (vs @ ?xs2) = \{snd ?st\}
 by (meson \land io\text{-}targets \ M1 \ (initial \ M1) \ vs = \{q1\} \land assms(3) \ observable\text{-}io\text{-}targets\text{-}append)
have io-targets M2 q2 ?xs2 = \{fst ?st\}
 using \langle path \ M2 \ (?xs2 \mid \mid map \ fst \ ?tr2) \ q2 \rangle \langle target \ (?xs2 \mid \mid map \ fst \ ?tr2) \ q2 = fst \ ?st \rangle
       \langle length ?xs2 = length (map snd ?tr2) \rangle assms(4)
        obs-target-is-io-targets[of M2 ?xs2 map fst ?tr2 q2]
then have tqt-2-2: io-targets M2 (initial M2) (vs @ ?xs2) = {fst ?st}
 by (meson \langle io\text{-targets } M2 \text{ (initial } M2) \text{ } vs = \{q2\} \rangle assms(4) observable-io-targets-append)
have ?xs1 \neq [] using \langle 0 < length \ xs \rangle
 by auto
have prefix ?xs1 xs
```

```
using take-is-prefix by blast
    have prefix ?xs2 xs
       using take-is-prefix by blast
   have ?xs1 \neq ?xs2
    proof -
       have f1: \forall n \ na. \ \neg \ n < na \lor Suc \ n \leq na
          by presburger
       have f2: Suc i1 < length xs
          using index-def by force
       have Suc i2 \leq length xs
          using f1 by (metis index-def length-take map-snd-zip-take min-less-iff-conj states-alt-def)
       then show ?thesis
          \mathbf{using}\ \mathit{f2}\ \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types})\ \mathit{index-def}\ \mathit{length-take}\ \mathit{min.absorb2}\ \mathit{nat.simps}(1))
    \mathbf{qed}
    have Rep-Pre M2 M1 vs xs
    proof (cases length ?xs1 < length ?xs2)
       case True
       then have prefix ?xs1 ?xs2
          by (meson \(\sigma\)refix (take (Suc i1) xs) xs\(\sigma\)refix (take (Suc i2) xs) xs\(\sigma\) leD prefix-length-le
                 prefix-same-cases)
       show ?thesis
          by (meson Rep-Pre.elims(3) \( \text{prefix} \) (take (Suc i1) \( xs \) (take (Suc i2) \( xs \) \( \)
                  \langle prefix \ (take \ (Suc \ i2) \ xs) \ xs \rangle \ \langle take \ (Suc \ i1) \ xs \neq take \ (Suc \ i2) \ xs \rangle
                  tgt-1-1 tgt-1-2 tgt-2-1 tgt-2-2)
    next
       {\bf case}\ \mathit{False}
       moreover have length ?xs1 \neq length ?xs2
          by (metis (no-types) \langle take (Suc \ i1) \ xs \neq take (Suc \ i2) \ xs \rangle append-eq-conv-conj
                  append-take-drop-id)
       ultimately have length ?xs2 < length ?xs1
          by auto
       then have prefix ?xs2 ?xs1
          using \(\phi\)prefix \((take \)(Suc i1)\) xs\\ \(xs\)\ \(take \)(Suc i2)\) xs\\ \(take \)(Suc i2)\] xs\\ \(take \)(Suc i2
                     prefix-length-prefix
          \mathbf{by} blast
       show ?thesis
          by (metis Rep-Pre.elims(3) < prefix (take (Suc i1) xs) xs>
                  \langle prefix \ (take \ (Suc \ i2) \ xs) \ (take \ (Suc \ i1) \ xs) \rangle \langle take \ (Suc \ i1) \ xs \neq take \ (Suc \ i2) \ xs \rangle
                  tgt-1-1 tgt-1-2 tgt-2-1 tgt-2-2)
    qed
   then show False
       using assms(1) by simp
qed
\mathbf{lemma}\ RP\text{-}count\text{-}via\text{-}Rep\text{-}Cov:
    assumes (vs @ xs) \in L M1 \cap L M2
    and observable M1
   and observable M2
   and well-formed M1
   and well-formed M2
   and s \in nodes M2
   and productF M2 M1 FAIL PM
   and io-targets PM (initial PM) vs = \{(q2,q1)\}
    and path PM (xs || tr) (q2,q1)
   and length xs = length tr
   and distinct (states (xs || tr) (q2,q1))
   and is-det-state-cover M2 V
   and V'' \in Perm \ V M1
   and \neg Rep-Cov M2 M1 V'' vs xs
shows card (\bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V''))) = card (RP M2 s vs xs V'')
proof -
```

```
\mathbf{have}\ \mathit{RP-cases}: \mathit{RP}\ \mathit{M2}\ \mathit{s}\ \mathit{vs}\ \mathit{xs}\ \mathit{V^{\prime\prime}} = \mathit{R}\ \mathit{M2}\ \mathit{s}\ \mathit{vs}\ \mathit{xs}
                 \lor (\exists vs' \in V'' . vs' \notin R M2 s vs xs
                                   \wedge RPM2 \ s \ vs \ xs \ V'' = insert \ vs' (RM2 \ s \ vs \ xs))
  using RP-from-R assms by metis
show ?thesis
proof (cases RP M2 s vs xs V'' = R M2 s vs xs)
  \mathbf{case} \ \mathit{True}
  then show ?thesis
    using R-count assms by metis
next
  case False
  then obtain vs' where vs'-def: vs' \in V''
                                   \land vs' \notin R M2 s vs xs
                                   \land RP M2 \ s \ vs \ xs \ V'' = insert \ vs' \ (R M2 \ s \ vs \ xs)
   using RP-cases by auto
  have state-component-2: \forall io \in (R M2 \ s \ vs \ xs). io-targets M2 \ (initial M2) \ io = \{s\}
  proof
   fix io assume io \in R M2 s vs xs
   then have s \in io-targets M2 (initial M2) io
    moreover have io \in language\text{-state } M2 \text{ (initial } M2)
      using calculation by auto
    ultimately show io-targets M2 (initial M2) io = \{s\}
      using assms(3) io-targets-observable-singleton-ex by (metis\ singletonD)
  qed
  have vs' \in L\ M1
   using assms(13) perm-language vs'-def by blast
  then obtain s' where s'-def: io-targets M1 (initial M1) vs' = \{s'\}
    by (meson assms(2) io-targets-observable-singleton-ob)
  moreover have s' \notin \bigcup (image (io-targets M1 (initial M1)) (R M2 s vs xs))
  proof (rule ccontr)
   assume \neg s' \notin \bigcup (io\text{-targets } M1 \ (initial \ M1) \ `R \ M2 \ s \ vs \ xs)
    then obtain xs' where xs'-def: vs @ xs' \in R M2 s vs xs
                                     \land s' \in io\text{-targets } M1 \text{ (initial } M1) \text{ (} vs @ xs'\text{)}
   proof -
     assume a1: \bigwedge xs'. vs @ xs' \in R M2 s vs xs
                       \land s' \in io\text{-targets } M1 \text{ (initial } M1) \text{ (vs } @ xs') \Longrightarrow thesis
      obtain pps :: ('a \times 'b) \ list \ set \Rightarrow (('a \times 'b) \ list \Rightarrow 'c \ set) \Rightarrow 'c \Rightarrow ('a \times 'b) \ list
       \forall x0 \ x1 \ x2. \ (\exists \ v3. \ v3 \in x0 \ \land \ x2 \in x1 \ v3) = (pps \ x0 \ x1 \ x2 \in x0 \ \land \ x2 \in x1 \ (pps \ x0 \ x1 \ x2))
       by moura
      then have f2: pps (R M2 s vs xs) (io\text{-targets } M1 (initial M1)) s' \in R M2 s vs xs
                     \land s' \in io\text{-targets } M1 \ (initial \ M1)
                                           (pps (R M2 s vs xs) (io-targets M1 (initial M1)) s')
        using \langle \neg s' \notin \bigcup (io\text{-targets } M1 \ (initial \ M1) \ `R \ M2 \ s \ vs \ xs) \rangle by blast
      then have \exists ps. pps (R M2 s vs xs) (io-targets M1 (initial M1)) s' = vs @ ps <math>\land ps \neq []
                     \land prefix ps xs \land s \in io-targets M2 (initial M2) (vs @ ps)
        by simp
      then show ?thesis
        using f2 a1 by (metis (no-types))
    qed
   have vs @ xs' \in L M1
      using xs'-def by blast
    then have io-targets M1 (initial M1) (vs@xs') = {s'}
      by (metis\ assms(2)\ io\ targets\ observable\ singleton\ ob\ singleton\ xs'\ -def)
   moreover have io-targets M1 (initial M1) (vs') = \{s'\}
      using s'-def by blast
   moreover have io-targets M2 (initial M2) (vs @ xs') = \{s\}
      using state-component-2 xs'-def by blast
    moreover have io-targets M2 (initial M2) (vs') = \{s\}
      by (metis (mono-tags, lifting) RP.simps Un-iff insertI1 mem-Collect-eq vs'-def)
    moreover have xs' \neq [
```

```
using xs'-def by simp
    moreover have prefix xs' xs
      using xs'-def by simp
    moreover have vs' \in V''
      using vs'-def by simp
     ultimately have \textit{Rep-Cov M2 M1 V''} \textit{ vs xs}
      by auto
     then show False
      using assms(14) by simp
   moreover have [ ] (image (io-targets M1 (initial M1)) (insert vs' (R M2 s vs xs)))
                = insert \ s' \ (\ \ ) \ (image \ (io-targets \ M1 \ (initial \ M1)) \ (R \ M2 \ s \ vs \ xs)))
    using s'-def by simp
   moreover have finite ( ( (image (io-targets M1 (initial M1)) (R M2 s vs xs)))
   proof
    show finite (R M2 s vs xs)
      using finite-R by simp
    show \bigwedge a.\ a \in R\ M2\ s\ vs\ xs \Longrightarrow finite\ (io\text{-targets}\ M1\ (initial\ M1)\ a)
    proof -
      fix a assume a \in R M2 s vs xs
      then have prefix \ a \ (vs@xs)
        by auto
      then have a \in L M1
        using language-state-prefix by (metis IntD1 assms(1) prefix-def)
      then obtain p where io-targets M1 (initial M1) a = \{p\}
        using assms(2) io-targets-observable-singleton-ob by metis
      then show finite (io-targets M1 (initial M1) a)
        by simp
    qed
   qed
   ultimately have card ([] (image (io-targets M1 (initial M1)) (insert vs' (R M2 s vs xs))))
                  = Suc (card (\bigcup (image (io-targets M1 (initial M1)) (R M2 s vs xs))))
    by (metis (no-types) card-insert-disjoint)
   moreover have card ( ) (image (io-targets M1 (initial M1)) (RP M2 s vs xs V'')))
                = card ([] (image (io-targets M1 (initial M1)) (insert vs' (R M2 s vs xs))))
    using vs'-def by simp
   ultimately have card ( ) (image (io-targets M1 (initial M1)) (RP M2 s vs xs V'')))
                  = Suc (card ( ) (image (io-targets M1 (initial M1)) (R M2 s vs xs))))
    by linarith
   then have card (U (image (io-targets M1 (initial M1)) (RP M2 s vs xs V'')))
               = Suc (card (R M2 s vs xs))
     using R-count[of vs xs M1 M2 s FAIL PM q2 q1 tr] using assms(1,10,11,2-9)
    by linarith
   moreover have card (RP M2 s vs xs V'') = Suc (card (R M2 s vs xs))
     using vs'-def by (metis card-insert-if finite-R)
   ultimately show ?thesis
    by linarith
 qed
\mathbf{qed}
\mathbf{lemma}\ RP\text{-}count\text{-}alt\text{-}def:
 assumes (vs @ xs) \in L M1 \cap L M2
 and observable M1
 and observable M2
 and well-formed M1
```

```
and well-formed M2
 and s \in nodes M2
 and productF M2 M1 FAIL PM
 and io-targets PM (initial PM) vs = \{(q2,q1)\}
 and path PM (xs || tr) (q2,q1)
 and length xs = length tr
 and \neg Rep-Pre M2 M1 vs xs
 and is-det-state-cover M2 V
 and V'' \in Perm \ V M1
 and ¬ Rep-Cov M2 M1 V" vs xs
shows card (\bigcup (image\ (io\text{-}targets\ M1\ (initial\ M1))\ (RP\ M2\ s\ vs\ xs\ V''))) = <math>card\ (RP\ M2\ s\ vs\ xs\ V'')
proof -
 have distinct (states (xs || tr) (q2,q1))
   using distinctness-via-Rep-Pre[of M2 M1 vs xs FAIL PM q2 q1 tr] assms by simp
 then show ?thesis
   using RP-count-via-Rep-Cov[of vs xs M1 M2 s FAIL PM q2 q1 tr V V'']
   using assms(1,10,12-14,2-9) by blast
qed
```

4.6 Function LB

LB adds together the number of elements in sets calculated via RP for a given set of states and the number of ATC-reaction known to exist but not produced by a state reached by any of the above elements.

```
fun LB :: ('in, 'out, 'state1) FSM <math>\Rightarrow ('in, 'out, 'state2) FSM
          \Rightarrow ('in \times 'out) list \Rightarrow ('in \times 'out) list \Rightarrow 'in list set
          \Rightarrow 'state1 set \Rightarrow ('in, 'out) ATC set
          \Rightarrow ('in \times 'out) list set \Rightarrow nat
  where
  LB~M2~M1~vs~xs~T~S~\Omega~V^{\prime\prime}=
    (sum\ (\lambda\ s\ .\ card\ (RP\ M2\ s\ vs\ xs\ V\ ''))\ S)
    + card ((D M1 T \Omega) -
           \{B \ M1 \ xs' \ \Omega \mid xs' \ s' \ . \ s' \in S \land xs' \in RP \ M2 \ s' \ vs \ xs \ V''\}\}
\mathbf{lemma}\ \mathit{LB-count-helper-RP-disjoint-and-cards}:
  assumes (vs @ xs) \in L M1 \cap L M2
  and observable M1
  and observable M2
  and well-formed M1
  and well-formed M2
  and productF M2 M1 FAIL PM
  and is-det-state-cover M2 V
  and V'' \in Perm \ V \ M1
  and s1 \neq s2
shows [ ] (image (io-targets PM (initial PM)) (RP M2 s1 vs xs V''))
       \cap \{ \} \ (image \ (io\text{-targets} \ PM \ (initial \ PM)) \ (RP \ M2 \ s2 \ vs \ xs \ V'')) = \{ \} 
      card \ (\bigcup \ (image \ (io\text{-}targets \ PM \ (initial \ PM)) \ (RP \ M2 \ s1 \ vs \ xs \ V'')))
        = card (\bigcup (image (io\text{-}targets M1 (initial M1)) (RP M2 s1 vs xs V'')))
      card ([] (image (io-targets PM (initial PM)) (RP M2 s2 vs xs V'')))
        = card (\bigcup (image (io-targets M1 (initial M1)) (RP M2 s2 vs xs V'')))
  have \forall io \in RP \ M2 \ s1 \ vs \ xs \ V''. io-targets PM (initial PM) io
                                     = \{s1\} \times io\text{-targets } M1 \ (initial \ M1) \ io
    fix io assume io \in RP\ M2\ s1\ vs\ xs\ V^{\prime\prime}
    then have io-targets PM (initial PM) io
               = io-targets M2 (initial M2) io \times io-targets M1 (initial M1) io
     using assms RP-io-targets-split[of vs xs M1 M2 FAIL PM V V'' io s1] by simp
    moreover have io-targets M2 (initial M2) io = \{s1\}
     using \langle io \in RP \ M2 \ s1 \ vs \ xs \ V'' \rangle \ assms(3) \ RP-state-component-2[of io M2 \ s1 \ vs \ xs \ V'']
     bv blast
    ultimately show io-targets PM (initial PM) io = \{s1\} \times io-targets M1 (initial M1) io
     by auto
  qed
```

```
then have \bigcup (image (io-targets PM (initial PM)) (RP M2 s1 vs xs V''))
             = \bigcup (image (\lambda \ io \ . \{s1\} \times io\text{-targets} \ M1 \ (initial \ M1) \ io) \ (RP \ M2 \ s1 \ vs \ xs \ V''))
   by simp
  moreover have \bigcup (image (\lambda io . {s1} \times io-targets M1 (initial M1) io) (RP M2 s1 vs xs V'')
                = \{s1\} \times \bigcup (image (\lambda io . io-targets M1 (initial M1) io) (RP M2 s1 vs xs V''))
   bv blast
  ultimately have image-split-1:
   \bigcup (image (io-targets PM (initial PM)) (RP M2 s1 vs xs V'') )
     = \{s1\} \times \bigcup (image (io-targets M1 (initial M1)) (RP M2 s1 vs xs V''))
   by simp
  then show card (\bigcup (image (io\text{-}targets PM (initial PM)) (RP M2 s1 vs xs V'')))
             = card ([] (image (io-targets M1 (initial M1)) (RP M2 s1 vs xs V'')))
   by (metis (no-types) card-cartesian-product-singleton)
 have \forall io \in RP \ M2 \ s2 \ vs \ xs \ V''. io-targets PM (initial PM) io
                                   = \{s2\} \times io\text{-targets } M1 \text{ (initial } M1) \text{ io}
 proof
   \mathbf{fix}\ \mathit{io}\ \mathbf{assume}\ \mathit{io} \in \mathit{RP}\ \mathit{M2}\ \mathit{s2}\ \mathit{vs}\ \mathit{xs}\ \mathit{V}^{\,\prime\prime}
   then have io-targets PM (initial PM) io
                = io-targets M2 (initial M2) io \times io-targets M1 (initial M1) io
     using assms RP-io-targets-split[of vs xs M1 M2 FAIL PM V V ^{\prime\prime} io s2] by simp
   moreover have io-targets M2 (initial M2) io = \{s2\}
     using \langle io \in RP \ M2 \ s2 \ vs \ xs \ V'' \rangle \ assms(3) \ RP\text{-state-component-2}[of io \ M2 \ s2 \ vs \ xs \ V'']
     bv blast
   ultimately show io-targets PM (initial PM) io = \{s2\} \times io-targets M1 (initial M1) io
     by auto
  qed
  then have \bigcup (image (io-targets PM (initial PM)) (RP M2 s2 vs xs V''))
             = \bigcup (image (\lambda io . {s2}) \times io-targets M1 (initial M1) io) (RP M2 s2 vs xs V''))
  moreover have \bigcup (image (\lambda io . {s2} \times io-targets M1 (initial M1) io) (RP M2 s2 vs xs V''))
                = \{s2\} \times \bigcup (image (\lambda io . io-targets M1 (initial M1) io) (RP M2 s2 vs xs V''))
   by blast
  ultimately have image-split-2:
   \bigcup (image (io-targets PM (initial PM)) (RP M2 s2 vs xs V''))
     = \{s2\} \times \bigcup (image (io-targets M1 (initial M1)) (RP M2 s2 vs xs V'')) by simp
  then show card ([] (image (io-targets PM (initial PM)) (RP M2 s2 vs xs V'')))
             = card ([] (image (io-targets M1 (initial M1)) (RP M2 s2 vs xs V'')))
   by (metis (no-types) card-cartesian-product-singleton)
 have [\ ] (image (io-targets PM (initial PM)) (RP M2 s1 vs xs V''))
         \cap [] (image (io-targets PM (initial PM)) (RP M2 s2 vs xs V''))
       = \{s1\} \times \bigcup (image (io-targets M1 (initial M1)) (RP M2 s1 vs xs V''))
         \cap \{s2\} \times \bigcup (image (io\text{-targets } M1 (initial M1)) (RP M2 s2 vs xs V''))
   using image-split-1 image-split-2 by blast
  moreover have \{s1\} \times \bigcup (image (io\text{-}targets M1 (initial M1)) (RP M2 s1 vs xs V''))
                \cap \{s2\} \times \bigcup (image (io\text{-targets } M1 (initial M1)) (RP M2 s2 vs xs V'')) = \{\}
   using assms(9) by auto
  ultimately show \bigcup (image (io-targets PM (initial PM)) (RP M2 s1 vs xs V''))
                  \cap \{ \} \ (image \ (io\text{-targets} \ PM \ (initial \ PM)) \ (RP \ M2 \ s2 \ vs \ xs \ V'')) = \{ \} 
   by presburger
\mathbf{qed}
lemma\ LB-count-helper-RP-disjoint-card-M1:
  assumes (vs @ xs) \in L M1 \cap L M2
 and observable M1
 and observable M2
  and well-formed M1
  and well-formed M2
  and productF M2 M1 FAIL PM
  and is-det-state-cover M2\ V
```

```
and V'' \in Perm \ V \ M1
 and s1 \neq s2
\mathbf{shows} \ \mathit{card} \ (\bigcup \ (\mathit{image} \ (\mathit{io\text{-}targets} \ \mathit{PM} \ (\mathit{initial} \ \mathit{PM})) \ (\mathit{RP} \ \mathit{M2} \ \mathit{s1} \ \mathit{vs} \ \mathit{xs} \ \mathit{V''}))
            \cup \bigcup (image (io\text{-targets } PM (initial PM)) (RP M2 s2 vs xs V'')))
      = card ([]) (image (io-targets M1 (initial M1)) (RP M2 s1 vs xs V'')))
         + card ( | | (image (io-targets M1 (initial M1)) (RP M2 s2 vs xs V'')))
proof
  have finite ([ ] (image (io-targets PM (initial PM)) (RP M2 s1 vs xs V'')))
   using RP-io-targets-finite-PM[OF\ assms(1-8)] by simp
  moreover have finite ([] (image (io-targets PM (initial PM)) (RP M2 s2 vs xs V'')))
   using RP-io-targets-finite-PM[OF assms(1-8)] by simp
  ultimately show ?thesis
   using LB-count-helper-RP-disjoint-and-cards [OF\ assms]
   by (metis (no-types) card-Un-disjoint)
qed
\mathbf{lemma}\ LB-count-helper-RP-disjoint-M1-pair:
  assumes (vs @ xs) \in L M1 \cap L M2
 and observable M1
 and observable M2
 and well-formed M1
  and well-formed M2
 and productF M2 M1 FAIL PM
 and io-targets PM (initial PM) vs = \{(q2,q1)\}
  and path PM (xs || tr) (q2,q1)
  and length xs = length tr
  and \neg Rep-Pre M2 M1 vs xs
  and is-det-state-cover M2 V
  and V'' \in Perm \ V \ M1
  and \neg Rep-Cov M2 M1 V'' vs xs
  and Prereq M2 M1 vs xs T S \Omega V ^{\prime\prime}
  and s1 \neq s2
 and s1 \in S
 and s2 \in S
 and applicable-set M1 \Omega
 and completely-specified M1
shows card (RP M2 s1 vs xs V'') + card <math>(RP M2 s2 vs xs V'')
       = card ([] (image\ (io\text{-}targets\ M1\ (initial\ M1))\ (RP\ M2\ s1\ vs\ xs\ V'')))
         + card ([] (image (io-targets M1 (initial M1)) (RP M2 s2 vs xs V'')))
     (image (io-targets M1 (initial M1)) (RP M2 s1 vs xs V''))
         \cap \bigcup (image (io\text{-}targets M1 (initial M1)) (RP M2 s2 vs xs V''))
       = \{\}
proof -
 have s1 \in nodes M2
   using assms(14,16) unfolding Prereq.simps by blast
 have s2 \in nodes M2
   using assms(14,17) unfolding Prereq.simps by blast
  have card (RP M2 s1 vs xs V'')
         = card ([] (image (io-targets M1 (initial M1)) (RP M2 s1 vs xs V'')))
   using RP-count-alt-def[OF assms(1-5) \langle s1 \in nodes \ M2 \rangle \ assms(6-13)]
   by linarith
  moreover have card (RP M2 s2 vs xs V'')
                = card (\bigcup (image (io-targets M1 (initial M1)) (RP M2 s2 vs xs V'')))
   using RP-count-alt-def[OF assms(1-5) \langle s2 \in nodes M2 \rangle assms(6-13)]
   by linarith
  moreover show [ ] (image (io-targets M1 (initial M1)) (RP M2 s1 vs xs V''))
                \cap \bigcup (image (io\text{-targets } M1 (initial M1)) (RP M2 s2 vs xs V'')) = \{\}
  proof (rule ccontr)
   assume \bigcup (image (io-targets M1 (initial M1)) (RP M2 s1 vs xs V''))
            \cap \{ \} \ (image \ (io\text{-targets} \ M1 \ (initial \ M1)) \ (RP \ M2 \ s2 \ vs \ xs \ V'')) \neq \{ \} 
   then obtain io1 io2 t where shared-elem-def:
     io1 \in (RP \ M2 \ s1 \ vs \ xs \ V'')
     io2 \in (RP \ M2 \ s2 \ vs \ xs \ V'')
     t \in io\text{-targets } M1 \text{ (initial } M1) \text{ } io1
     t \in io\text{-targets } M1 \text{ (initial } M1) io2
```

```
by blast
```

```
have dist-prop: (\forall s1 \in S . \forall s2 \in S . s1 \neq s2)
           \longrightarrow (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V''.
                     \forall \ \mathit{io2} \in \mathit{RP} \ \mathit{M2} \ \mathit{s2} \ \mathit{vs} \ \mathit{xs} \ \mathit{V}^{\prime\prime}
                       B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega ))
     using assms(14) by simp
   have io-targets M1 (initial M1) io1 \cap io-targets M1 (initial M1) io2 = {}
   proof (rule ccontr)
     assume io-targets M1 (initial M1) io1 \cap io-targets M1 (initial M1) io2 \neq {}
     then have io-targets M1 (initial M1) io1 \neq {} io-targets M1 (initial M1) io2 \neq {}
       by blast+
     then obtain s1 s2 where s1 \in io-targets M1 (initial M1) io1
                            s2 \in io\text{-targets } M1 \text{ (initial } M1) io2
       by blast
     then have io-targets M1 (initial M1) io1 = \{s1\}
               io-targets M1 (initial M1) io2 = \{s2\}
       by (meson\ assms(2)\ observable-io-target-is-singleton)+
     then have s1 = s2
       using \langle io\text{-}targets\ M1\ (initial\ M1)\ io1\ \cap\ io\text{-}targets\ M1\ (initial\ M1)\ io2\ \neq \{\}\rangle
       by auto
     then have B M1 io1 \Omega = B M1 io2 \Omega
       using \langle io\text{-targets } M1 \text{ (initial } M1) \text{ } io1 = \{s1\} \rangle \langle io\text{-targets } M1 \text{ (initial } M1) \text{ } io2 = \{s2\} \rangle
       by auto
     then show False
       using assms(15-17) dist-prop shared-elem-def(1,2) by blast
   then show False
     using shared-elem-def(3,4) by blast
  qed
  ultimately show card (RP M2 s1 vs xs V'') + card (RP M2 s2 vs xs V'')
      = card ( ) (image (io-targets M1 (initial M1)) (RP M2 s1 vs xs V'')))
         + card ([] (image (io-targets M1 (initial M1)) (RP M2 s2 vs xs V'')))
   by linarith
qed
\mathbf{lemma}\ \mathit{LB-count-helper-RP-card-union}\ :
 assumes observable M2
           s1 \neq s2
 and
shows RP M2 s1 vs xs V'' \cap RP M2 s2 vs xs V'' = \{\}
proof (rule ccontr)
  assume RP M2 s1 vs xs V'' \cap RP M2 s2 vs xs V'' \neq \{\}
 then obtain io where io \in RP M2 s1 vs xs V'' \wedge io \in RP M2 s2 vs xs V''
  then have s1 \in io-targets M2 (initial M2) io
           s2 \in io\text{-targets } M2 \text{ (initial } M2) \text{ io}
   by auto
  then have s1 = s2
   using assms(1) by (metis observable-io-target-is-singleton singletonD)
  then show False
   using assms(2) by simp
qed
```

```
lemma LB-count-helper-RP-inj:
obtains f
where \forall q \in (\bigcup (image (\lambda s. \bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V''))) S)).
         f \ q \in nodes \ M1
      inj-on f (\bigcup (image (\lambda s. \bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V''))) S))
proof -
 let ?f =
   \lambda \ q. if (q \in (\bigcup (image (\lambda s. \bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V''))) S)))
     else (initial M1)
  have (\bigcup (image (\lambda s. \bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V''))) S)) \subseteq nodes M1
   by blast
  then have \forall q \in (\bigcup (image (\lambda s. \bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V''))) S)).
             ?f \ q \in nodes \ M1
   by (metis Un-iff sup.order-iff)
  moreover have inj-on ?f([] (image (\lambda s. [] (image (io-targets M1 (initial M1))
                                                   (RP M2 s vs xs V''))) S))
   fix x assume x \in (\bigcup (image (\lambda s. \bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V''))) S))
   then have ?f x = x
     by presburger
   \textbf{fix} \ y \ \textbf{assume} \ y \in (\bigcup \ (\textit{image} \ (\lambda \ s \ . \ \bigcup \ (\textit{image} \ (\textit{io-targets} \ M1 \ (\textit{initial} \ M1)) \ (\textit{RP} \ M2 \ s \ vs \ xs \ V''))) \ S))
   then have ?f y = y
     by presburger
   assume ?f x = ?f y
   then show x = y using \langle ?f x = x \rangle \langle ?f y = y \rangle
     by presburger
  qed
  ultimately show ?thesis
   using that by presburger
qed
abbreviation (input) UNION :: 'a set \Rightarrow ('a \Rightarrow 'b set) \Rightarrow 'b set
 where UNION \ A \ f \equiv \bigcup (f \ ' A)
{f lemma}\ LB-count-helper-RP-card-union-sum:
 assumes (vs @ xs) \in L M2 \cap L M1
           OFSM M1
 and
            OFSM M2
  and
           asc-fault-domain M2 M1 m
  and
           test-tools M2 M1 FAIL PM V \Omega
  and
            V'' \in Perm \ V \ M1
  and
           Prereq M2 M1 vs xs T S \Omega V"
 and
           \neg Rep-Pre M2 M1 vs xs
 and
           \neg \ \textit{Rep-Cov M2 M1 V'' vs xs}
shows sum (\lambda s . card (RP M2 s vs xs V'')) S
       = sum \ (\lambda \ s \ . \ card \ (\bigcup \ (image \ (io\text{-}targets \ M1 \ (initial \ M1)) \ (RP \ M2 \ s \ vs \ xs \ V'')))) \ S
using assms proof -
 have finite (nodes M2)
   using assms(3) by auto
  moreover have S \subseteq nodes M2
   using assms(7) by simp
  ultimately have finite S
   using infinite-super by blast
  then have sum\ (\lambda\ s\ .\ card\ (RP\ M2\ s\ vs\ xs\ V^{\prime\prime}))\ S
             = sum (\lambda \ s \ . \ card (\bigcup (image (io-targets \ M1 \ (initial \ M1)) (RP \ M2 \ s \ vs \ xs \ V'')))) \ S
  using assms proof (induction S)
```

```
case empty
    show ?case by simp
  next
    case (insert s S)
    have (insert \ s \ S) \subseteq nodes \ M2
      using insert.prems(7) by simp
    then have s \in nodes M2
      by simp
    have Prereq M2 M1 vs xs T S \Omega V''
      using \langle Prereq\ M2\ M1\ vs\ xs\ T\ (insert\ s\ S)\ \Omega\ V''\rangle by simp
   then have (\sum s \in S. \ card \ (RP \ M2 \ s \ vs \ xs \ V''))
= (\sum s \in S. \ card \ (\bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. \ io\text{-targets} \ M1 \ (initial \ M1) \ a))
using insert.IH[OF \ insert.prems(1-6) \ - \ assms(8,9)] by metis
    moreover have (\sum s' \in (insert\ s\ S).\ card\ (RP\ M2\ s'\ vs\ xs\ V''))
                      = (\sum s' \in S. \ card \ (RP \ M2 \ s' \ vs \ xs \ V'')) + card \ (RP \ M2 \ s \ vs \ xs \ V'')
      \mathbf{by}\ (simp\ add:\ add.commute\ insert.hyps(1)\ insert.hyps(2))
   ultimately have S-prop : (\sum s' \in (insert \ s \ S). \ card \ (RP \ M2 \ s' \ vs \ xs \ V''))
= (\sum s \in S. \ card \ (\bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. \ io-targets \ M1 \ (initial \ M1) \ a))
+ \ card \ (RP \ M2 \ s \ vs \ xs \ V'')
      by presburger
    have vs@xs \in L\ M1 \cap L\ M2
      using insert.prems(1) by simp
    obtain q2 q1 tr where suffix-path : io-targets PM (initial PM) vs = \{(q2,q1)\}
                            path PM (xs \mid\mid tr) (q2,q1)
                            length xs = length tr
      using productF-language-state-intermediate[OF insert.prems(1)]
             test-tools-props(1)[OF\ insert.prems(5,4)]\ OFSM-props(2,1)[OF\ insert.prems(3)]
                                       OFSM-props(2,1)[OF\ insert.prems(2)]]
      by blast
    have card (RP M2 s vs xs V'')
             = card ( (intial\ M1)) (RP\ M2\ s\ vs\ xs\ V'')))
      using OFSM-props(2,1)[OF insert.prems(3)] OFSM-props(2,1)[OF insert.prems(2)]
             RP-count-alt-def[OF \langle vs@xs \in L \ M1 \cap L \ M2 \rangle - - - -
                                   \langle s \in nodes \ M2 \rangle \ test-tools-props(1)[OF \ insert.prems(5,4)]
                                   suffix-path\ insert.prems(8)
                                   test-tools-props(2)[OF\ insert.prems(5,4)]\ assms(6)\ insert.prems(9)]
      by linarith
    show (\sum s \in insert \ s \ S. \ card \ (RP \ M2 \ s \ vs \ xs \ V'')) =
                   (\sum s \in insert \ s \ S. \ card \ (UNION \ (RP \ M2 \ s \ vs \ xs \ V'') \ (io\text{-targets} \ M1 \ (initial \ M1))))
    proof -
      have (\sum c \in insert \ s \ S. \ card \ (UNION \ (RP \ M2 \ c \ vs \ xs \ V'') \ (io\text{-targets} \ M1 \ (initial \ M1))))
             =\overline{card} (UNION (RP M2 s vs xs V'') (io-targets M1 (initial M1)))
               + (\sum c \in S. \ card \ (UNION \ (RP \ M2 \ c \ vs \ xs \ V'') \ (io\text{-targets} \ M1 \ (initial \ M1))))
        by (meson\ insert.hyps(1)\ insert.hyps(2)\ sum.insert)
      then show ?thesis
         \begin{array}{l} \textbf{using} \ \mathrel{<\!(\sum s' \in insert\ s\ S.\ card\ (RP\ M2\ s'\ vs\ xs\ V''))} \\ = (\sum s \in S.\ card\ (\bigcup a \in RP\ M2\ s\ vs\ xs\ V''.\ io\text{-targets}\ M1\ (initial\ M1)\ a)) \end{array} 
                     + \ card \ (RP \ M2 \ s \ vs \ xs \ V^{\prime\prime}) \rangle
               \langle card (RP M2 s vs xs V'')
                 = card (UNION (RP M2 s vs xs V'') (io-targets M1 (initial M1)))>
        \mathbf{by} presburger
    qed
  qed
  then show ?thesis
    using assms by blast
qed
```

```
{f lemma}\ finite\mbox{-}insert\mbox{-}card :
 assumes finite~(\bigcup SS)
 and
           finite S
           S \cap (\bigcup SS) = \{\}
  and
shows card (\bigcup (insert\ S\ SS)) = card (\bigcup JSS) + card\ S
 by (simp\ add:\ assms(1)\ assms(2)\ assms(3)\ card-Un-disjoint)
\mathbf{lemma}\ LB-count-helper-RP-disjoint-M1-union:
  assumes (vs @ xs) \in L M2 \cap L M1
           OFSM M1
  and
           OFSM M2
  and
           asc-fault-domain M2 M1 m
  and
           test-tools M2 M1 FAIL PM V \Omega
  and
           V^{\prime\prime}\in \mathit{Perm}\ V\ \mathit{M1}
  and
           Prereq M2 M1 vs xs T S \Omega V"
  and
  and
           ¬ Rep-Pre M2 M1 vs xs
           ¬ Rep-Cov M2 M1 V'' vs xs
 and
shows sum (\lambda s . card (RP M2 s vs xs V'')) S
       = card ( | ) (image ( \lambda s. | ) (image (io-targets M1 (initial M1)) (RP M2 s vs xs V'')) ) S) )
using assms proof -
  have finite (nodes M2)
   using assms(3) by auto
  moreover have S \subseteq nodes M2
   using assms(7) by simp
  ultimately have finite S
   using infinite-super by blast
  then show sum (\lambda \ s \ . \ card \ (RP \ M2 \ s \ vs \ xs \ V'')) \ S
             = card (\bigcup (image (\lambda s. \bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V''))) S))
  using assms proof (induction S)
   case empty
   show ?case by simp
  next
   case (insert s S)
   have (insert \ s \ S) \subseteq nodes \ M2
     using insert.prems(7) by simp
   then have s \in nodes M2
     by simp
   have Prereq M2 M1 vs xs T S \Omega V''
     using \langle Prereq\ M2\ M1\ vs\ xs\ T\ (insert\ s\ S)\ \Omega\ V''\rangle by simp
   then have applied-IH: (\sum s \in S. \ card \ (RP \ M2 \ s \ vs \ xs \ V''))
                           = \overline{card} \ (\bigcup s \in S. \ \bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. \ io\text{-targets} \ M1 \ (initial \ M1) \ a)
     using insert.IH[OF\ insert.prems(1-6)\ -\ insert.prems(8,9)] by metis
   obtain q2 q1 tr where suffix-path : io-targets PM (initial PM) vs = \{(q2,q1)\}
                           path PM (xs || tr) (q2,q1)
                           length xs = length tr
     using product F-language-state-intermediate
           [OF\ insert.prems(1)\ test-tools-props(1)]OF\ insert.prems(5,4)]
               OFSM-props(2,1)[OF\ insert.prems(3)]\ OFSM-props(2,1)[OF\ insert.prems(2)]]
     by blast
   have s \in insert \ s \ S
     by simp
   have vs@xs \in L\ M1 \cap L\ M2
     using insert.prems(1) by simp
   have \forall s' \in S. (\bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. io-targets M1 (initial M1) a)
                      \cap ([] a \in RP \ M2 \ s' \ vs \ xs \ V''. io-targets M1 (initial M1) a) = {}
   proof
     fix s' assume s' \in S
```

```
have s \neq s'
    using insert.hyps(2) \langle s' \in S \rangle by blast
 have s' \in insert \ s \ S
    using \langle s' \in S \rangle by simp
 show (\bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. io-targets M1 (initial M1) a)
          \cap (| | | a \in RP \ M2 \ s' \ vs \ xs \ V''. io-targets M1 (initial M1) a) = {}
    using OFSM-props(2,1)[OF assms(3)] OFSM-props(2,1,3)[OF assms(2)]
          LB-count-helper-RP-disjoint-M1-pair(2)
            [OF \ \langle vs@xs \in L \ M1 \cap L \ M2 \rangle \ --- \ test-tools-props(1)[OF \ insert.prems(5,4)]
                 suffix-path\ insert.prems(8)\ test-tools-props(2)[OF\ insert.prems(5,4)]
                 insert.prems(6,9,7) \ \langle s \neq s' \rangle \ \langle s \in insert \ s \ S \rangle \ \langle s' \in insert \ s \ S \rangle
                 test-tools-props(4)[OF\ insert.prems(5,4)]]
    by linarith
qed
then have disj-insert: (\bigcup s \in S. \bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. io-targets M1 (initial M1) a)
                             \cap (\bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. \ io\text{-targets} \ M1 \ (initial \ M1) \ a) = \{\}
 by blast
have finite-S: finite (| a \in RP \ M2 \ s \ vs \ xs \ V''. io-targets M1 (initial M1) a)
  using RP-io-targets-finite-M1[OF insert.prems(1)]
  by (meson RP-io-targets-finite-M1 \langle vs @ xs \in L \ M1 \cap L \ M2 \rangle \ assms(2) \ assms(5) \ insert.prems(6))
have finite-s: finite (\bigcup s \in S. \bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. io-targets M1 (initial M1) a)
 by (meson\ RP-io\text{-}targets\text{-}finite\text{-}M1\ \langle vs\ @\ xs\in L\ M1\cap L\ M2\rangle\ assms(2)\ assms(5)
      finite-UN-I\ insert.hyps(1)\ insert.prems(6))
have card (\bigcup s \in insert \ s \ S. \bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. io-targets M1 (initial M1) a)
      = card \ (\bigcup s \in S. \bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. \ io\text{-targets} \ M1 \ (initial \ M1) \ a)
        + card (\bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. \ io-targets \ M1 \ (initial \ M1) \ a)
proof -
 = (\lambda c. \ UNION \ (RP \ M2 \ c \ vs \ xs \ V'') \ (io\text{-targets} \ M1 \ (initial \ M1))) 'insert s \ S
    by blast
  have \forall c. c \in S \longrightarrow UNION \ (RP \ M2 \ s \ vs \ xs \ V'') \ (io\text{-targets} \ M1 \ (initial \ M1))
     \cap \ UNION \ (RP \ M2 \ c \ vs \ xs \ V'') \ (io\text{-targets} \ M1 \ (initial \ M1)) = \{\}  by (meson \ \forall \ s' \in S. \ (\bigcup \ a \in RP \ M2 \ s \ vs \ xs \ V''. \ io\text{-targets} \ M1 \ (initial \ M1) \ a)
                           \cap (\bigcup a \in RP \ M2 \ s' \ vs \ xs \ V''. \ io-targets \ M1 \ (initial \ M1) \ a) = \{\} \rangle)
  then have UNION (\overrightarrow{RP} M2 s vs xs V'') (io-targets M1 (initial M1))
              \cap (\bigcup c \in S. \ UNION \ (RP \ M2 \ c \ vs \ xs \ V'') \ (io\text{-targets} \ M1 \ (initial \ M1))) = \{\}
    by blast
  then show ?thesis
    using f1 by (metis finite-S finite-insert-card finite-s)
have card (RP M2 s vs xs V'')
      = card (\bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. io-targets M1 (initial \ M1) a)
  using assms(2) assms(3)
        RP-count-alt-def[OF \langle vs@xs \in L \ M1 \cap L \ M2 \rangle - - - - \langle s \in nodes \ M2 \rangle
                             test-tools-props(1)[OF\ insert.prems(5,4)]\ suffix-path
                             insert.prems(8) test-tools-props(2)[OF\ insert.prems(5,4)]
                             insert.prems(6,9)
  by metis
show ?case
proof -
 have (\sum c \in insert \ s \ S. \ card \ (RP \ M2 \ c \ vs \ xs \ V''))
          = card (RP M2 s vs xs V'') + (\sum c \in S. card (RP M2 c vs xs V''))
    by (meson\ insert.hyps(1)\ insert.hyps(2)\ sum.insert)
  then show ?thesis
    using \langle card (RP M2 \ s \ vs \ xs \ V'')
            = card ( a \in RP M2 s vs xs V''. io-targets M1 (initial M1) a
          \langle card (| ) s \in insert \ s \ S. \ | \ | \ a \in RP \ M2 \ s \ vs \ xs \ V''. \ io-targets \ M1 \ (initial \ M1) \ a)
            = card (\bigcup s \in S. \bigcup a \in RP \ M2 \ s \ vs \ xs \ V''. \ io-targets \ M1 \ (initial \ M1) \ a)
              + \ card \ ([\ ] a \in RP \ M2 \ s \ vs \ xs \ V''. \ io-targets \ M1 \ (initial \ M1) \ a)) \ applied-IH
    by presburger
```

```
qed
qed
qed
```

```
lemma LB-count-helper-LB1:
  assumes (vs @ xs) \in L M2 \cap L M1
            OFSM M1
  and
            OFSM M2
  and
            asc-fault-domain M2 M1 m
  and
            test-tools M2 M1 FAIL PM V \Omega
 and
            V^{\prime\prime}\in \mathit{Perm}\ V\ \mathit{M1}
  and
            Prereq M2 M1 vs xs T S \Omega V"
  and
  and
            ¬ Rep-Pre M2 M1 vs xs
            ¬ Rep-Cov M2 M1 V'' vs xs
 and
shows (sum (\lambda s. card (RP M2 s vs xs V'')) S) \leq card (nodes M1)
  have ([] s \in S. \ UNION \ (RP \ M2 \ s \ vs \ xs \ V'') \ (io\text{-targets} \ M1 \ (initial \ M1))) \subseteq nodes \ M1
   by blast
  moreover have finite (nodes M1)
   using assms(2) OFSM-props(1) unfolding well-formed.simps finite-FSM.simps by simp
  ultimately have card (\bigcup s \in S. UNION (RP M2 s vs xs V'') (io-targets M1 (initial M1)))
                   \leq card (nodes M1)
   by (meson card-mono)
  moreover have (\sum s \in S. \ card \ (RP \ M2 \ s \ vs \ xs \ V''))
                   = \overline{card} \ (\bigcup s \in S. \ UNION \ (RP \ M2 \ s \ vs \ xs \ V'') \ (io\text{-targets} \ M1 \ (initial \ M1)))
   using LB-count-helper-RP-disjoint-M1-union[OF assms]
   by linarith
  ultimately show ?thesis
   by linarith
qed
{f lemma}\ LB-count-helper-D-states:
 assumes observable M
 and
           RS \in (D M T \Omega)
obtains q
where q \in nodes \ M \land RS = IO\text{-}set \ M \ q \ \Omega
proof -
 have RS \in image \ (\lambda \ io \ . \ B \ M \ io \ \Omega) \ (LS_{in} \ M \ (initial \ M) \ T)
   using assms by simp
  then obtain io where RS = B M io \Omega io \in LS_{in} M (initial M) T
   by blast
  then have io \in language\text{-state } M \text{ (initial } M)
   using language-state-for-inputs-in-language-state of M initial M T by blast
  then obtain q where \{q\} = io\text{-targets } M \text{ (initial } M) \text{ io}
   by (metis assms(1) io-targets-observable-singleton-ob)
  then have B \ M \ io \ \Omega = \bigcup \ (image \ (\lambda \ s \ . \ IO\text{-}set \ M \ s \ \Omega) \ \{q\})
   by simp
  then have B M io \Omega = IO-set M q \Omega
   \mathbf{by} \ simp
  then have RS = IO\text{-}set \ M \ q \ \Omega \ \mathbf{using} \ \langle RS = B \ M \ io \ \Omega \rangle
  moreover have q \in nodes \ M \ using \langle \{q\} = io\text{-targets} \ M \ (initial \ M) \ io\rangle
   by (metis FSM.nodes.initial insertI1 io-targets-nodes)
  ultimately show ?thesis
   using that by simp
qed
```

```
lemma LB-count-helper-LB2:
 assumes observable M1
           \textit{IO-set M1 q } \Omega \in (\textit{D M1 T } \Omega) - \{\textit{B M1 xs' } \Omega \mid \textit{xs' s'} . \textit{s'} \in \textit{S} \land \textit{xs'} \in \textit{RP M2 s' vs xs V''}\}
shows q \notin (\bigcup (image (\lambda s. \bigcup (image (io-targets M1 (initial M1)) (RP M2 s vs xs V''))) S))
proof
  assume q \in (\bigcup s \in S. \ UNION \ (RP \ M2 \ s \ vs \ xs \ V'') \ (io\text{-targets} \ M1 \ (initial \ M1)))
  then obtain s' where s' \in S q \in ([] (image (io-targets M1 (initial M1)) (RP M2 <math>s' vs xs V'')))
  then obtain xs' where q \in io-targets M1 (initial M1) xs' xs' \in RP M2 s' vs xs V''
   by blast
  then have \{q\} = io\text{-targets } M1 \text{ (initial } M1) \text{ } xs'
   by (metis assms(1) observable-io-target-is-singleton)
  then have B\ M1\ xs'\ \Omega = \bigcup (image\ (\lambda\ s\ .\ IO\text{-}set\ M1\ s\ \Omega)\ \{q\})
  then have B M1 xs' \Omega = IO-set M1 q \Omega
   by simn
  using \langle s' \in S \rangle \langle xs' \in RP \ M2 \ s' \ vs \ xs \ V'' \rangle by blast
  ultimately have IO-set M1 q \Omega \in \{B \ M1 \ xs' \ \Omega \mid xs' \ s' \in S \land xs' \in RP \ M2 \ s' \ vs \ xs \ V''\}
  moreover have IO-set M1 q \Omega \notin \{B \ M1 \ xs' \ \Omega \mid xs' \ s' . \ s' \in S \land xs' \in RP \ M2 \ s' \ vs \ xs \ V''\}
   using assms(2) by blast
  ultimately show False
   by simp
\mathbf{qed}
4.7
        Validity of the result of LB constituting a lower bound
lemma LB-count:
assumes (vs @ xs) \in L M1
           OFSM M1
 and
           OFSM M2
 and
           asc-fault-domain M2\ M1\ m
 and
           test-tools M2 M1 FAIL PM V \Omega
  and
           V'' \in Perm \ V M1
  and
           Prereg M2 M1 vs xs T S \Omega V"
 and
           ¬ Rep-Pre M2 M1 vs xs
 and
           ¬ Rep-Cov M2 M1 V'' vs xs
 and
shows LB M2 M1 vs xs T S \Omega V'' \leq |M1|
proof -
 let ?D = D M1 T \Omega
```

```
let ?B = \{B \ M1 \ xs' \ \Omega \mid xs' \ s' . \ s' \in S \land xs' \in RP \ M2 \ s' \ vs \ xs \ V''\}
let ?DB = ?D - ?B
let ?RP = \{ \} \ s \in S. \ \} \ a \in RP \ M2 \ s \ vs \ xs \ V''. \ io-targets \ M1 \ (initial \ M1) \ a
```

have finite (nodes M1)

using OFSM-props $[OF\ assms(2)]$ unfolding well-formed.simps finite-FSM.simps by simp then have finite ?D

using OFSM-props $[OF\ assms(2)]\ assms(7)\ D$ -bound $[of\ M1\ T\ \Omega]$ unfolding Prereq.simps by linarith then have $finite\ ?DB$

by simp

— Proof sketch: Construct a function f (via induction) that maps each response set in ?DB to some state that produces that response set. This is then used to show that each response sets in ?DB indicates the existence of a distinct state in M1 not reached via the RP-sequences.

```
 \begin{array}{c} \mathbf{have} \ states\text{-}f: \bigwedge DB' \ . \ DB' \subseteq ?DB \Longrightarrow \exists \ f \ . \ inj\text{-}on \ f \ DB' \\ \qquad \qquad \land \ image \ f \ DB' \subseteq (nodes \ M1) - ?RP \\ \qquad \qquad \land \ (\forall \ RS \in DB' \ . \ IO\text{-}set \ M1 \ (f \ RS) \ \Omega = RS) \\ \mathbf{proof} \ - \\ \mathbf{fix} \ DB' \ \mathbf{assume} \ DB' \subseteq ?DB \\ \mathbf{have} \ finite \ DB' \\ \mathbf{proof} \ (rule \ ccontr) \\ \mathbf{assume} \ infinite \ DB' \\  \end{array}
```

```
have infinite ?DB
   using infinite-super[OF \land DB' \subseteq ?DB \land infinite \ DB' \land ] by simp
 then show False
   using ⟨finite ?DB⟩ by simp
qed
then show \exists f . inj-on fDB' \land image fDB' \subseteq (nodes M1) - ?RP
                            \wedge \ (\forall RS \in DB' \ . \ IO\text{-set } M1 \ (fRS) \ \Omega = RS)
using assms \langle DB' \subseteq ?DB \rangle proof (induction DB')
 case empty
 show ?case by simp
next
 case (insert RS DB')
 have DB' \subseteq ?DB
   using insert.prems(10) by blast
 obtain f' where inj-on f' DB'
                 image\ f'\ DB' \subseteq (nodes\ M1)\ -\ ?RP
                 \forall RS \in DB'. IO-set M1 (f'RS) \Omega = RS
   using insert.IH[OF\ insert.prems(1-9) \land DB' \subseteq ?DB \rangle]
   by blast
 have RS \in D M1 T \Omega
   using insert.prems(10) by blast
 obtain q where q \in nodes M1 RS = IO\text{-}set M1 q \Omega
   using insert.prems(2) LB-count-helper-D-states[OF - \langle RS \in D \ M1 \ T \ \Omega \rangle]
   by blast
 then have IO-set M1 q \Omega \in ?DB
   using insert.prems(10) by blast
 have q \notin ?RP
   using insert.prems(2) LB-count-helper-LB2[OF - \langle IO\text{-}set\ M1\ q\ \Omega\in\ ?DB\rangle]
   by blast
 let ?f = f'(RS := q)
 have inj-on ?f (insert RS DB')
 proof
   have ?fRS \notin ?f'(DB' - \{RS\})
   proof
     assume ?fRS \in ?f'(DB' - \{RS\})
     then have q \in ?f (DB' - \{RS\}) by auto
     have RS \in DB'
       have \forall P \ c \ f. \ \exists Pa. \ ((c::'c) \notin f \ `P \lor (Pa::('a \times 'b) \ list \ set) \in P)
                          \wedge (c \notin f 'P \vee fPa = c)
         by auto
       moreover
       { assume q \notin f' 'DB'
         moreover
         { assume q \notin f'(RS := q) ' DB'
           then have ?thesis
             using \langle q \in f'(RS := q) \cdot (DB' - \{RS\}) \rangle by blast }
         ultimately have ?thesis
           by (metis fun-upd-image) }
       ultimately show ?thesis
         by (metis (no-types) \langle RS = IO\text{-set } M1 \ q \ \Omega \rangle \ \langle \forall \ RS \in DB'. \ IO\text{-set } M1 \ (f' \ RS) \ \Omega = RS \rangle)
     qed
     then show False using insert.hyps(2) by simp
   aed
   then show inj-on ?fDB' \land ?fRS \notin ?f'(DB' - \{RS\})
     using \langle inj\text{-}on \ f' \ DB' \rangle \ inj\text{-}on\text{-}fun\text{-}updI by fastforce
 qed
 moreover have image ?f (insert RS DB') \subseteq (nodes M1) - ?RP
 proof -
   have image ?f \{RS\} = \{q\} by simp
   then have image ?f \{RS\} \subseteq (nodes\ M1) - ?RP
     using \langle q \in nodes M1 \rangle \langle q \notin ?RP \rangle by auto
```

```
moreover have image ?f (insert RS DB') = image ?f {RS} \cup image ?f DB'
         by auto
       ultimately show ?thesis
         by (metis (no-types, lifting) \langle image\ f'\ DB' \subseteq (nodes\ M1) - ?RP \rangle fun-upd-other image-cong
             image-insert\ insert.hyps(2)\ insert-subset)
     qed
     moreover have \forall RS \in (insert RS DB'). IO-set M1 (?f RS) \Omega = RS
       using \langle RS = IO\text{-set } M1 \ q \ \Omega \rangle \ \langle \forall RS \in DB'. \ IO\text{-set } M1 \ (f' \ RS) \ \Omega = RS \rangle by auto
     ultimately show ?case
       by blast
   qed
  qed
  have ?DB \subseteq ?DB
   by simp
  obtain f where inj-on f ?DB image f ?DB \subseteq (nodes M1) - ?RP
   using states-f[OF \langle ?DB \subseteq ?DB \rangle] by blast
  have finite (nodes M1 - ?RP)
   using \langle finite \ (nodes \ M1) \rangle by simp
  have card ?DB \le card (nodes M1 - ?RP)
   using card-inj-on-le[OF \langle inj-on f ?DB \rangle \langle image f ?DB \subseteq (nodes M1) - ?RP \rangle
                         \langle finite \ (nodes \ M1 - ?RP) \rangle ]
   by assumption
  have ?RP \subseteq nodes M1
   \mathbf{by} blast
  then have card (nodes M1 - ?RP) = card (nodes M1) - card ?RP
   by (meson \(\langle finite \) (nodes M1) \(\rangle \) card-Diff-subset infinite-subset)
  then have card ?DB < card (nodes M1) - card ?RP
   using \langle card ?DB \leq card (nodes M1 - ?RP) \rangle by linarith
  have vs @ xs \in L M2 \cap L M1
   using assms(7) by simp
  have (sum (\lambda s. card (RP M2 s vs xs V'')) S) = card ?RP
   using LB-count-helper-RP-disjoint-M1-union [OF \langle vs @ xs \in L \ M2 \cap L \ M1 \rangle \ assms(2-9)] by simp
  moreover have card ?RP \le card (nodes M1)
   using card-mono[OF \langle finite \ (nodes \ M1) \rangle \langle ?RP \subseteq nodes \ M1 \rangle] by assumption
  ultimately show ?thesis
   unfolding LB.simps using \langle card ?DB < card (nodes M1) - card ?RP \rangle
   by linarith
qed
\mathbf{lemma}\ contradiction	ext{-}via	ext{-}LB:
assumes (vs @ xs) \in L M1
           OFSM M1
  and
           OFSM M2
 and
           asc-fault-domain M2 M1 m
 and
           test-tools M2 M1 FAIL PM V \Omega
 and
           V^{\prime\prime}\in \mathit{Perm}\ V\mathit{M1}
  and
           Prereq M2 M1 vs xs T S \Omega V"
  and
           \neg Rep-Pre M2 M1 vs xs
  and
           ¬ Rep-Cov M2 M1 V'' vs xs
  and
           LB M2 M1 vs xs T S \Omega V'' > m
 and
shows False
proof -
 have LB M2 M1 vs xs T S \Omega V'' \leq card (nodes M1)
   using LB-count [OF \ assms(1-9)] by assumption
  moreover have card (nodes M1) < m
   using assms(4) by auto
  ultimately show False
   using assms(10) by linarith
qed
```

```
end theory ASC-Suite imports ASC-LB begin
```

5 Test suite generated by the Adaptive State Counting Algorithm

5.1 Maximum length contained prefix

```
fun mcp :: 'a \ list \Rightarrow 'a \ list \ set \Rightarrow 'a \ list \Rightarrow bool \ \mathbf{where}
  mcp \ z \ W \ p = (prefix \ p \ z \land p \in W \land p)
                 (\forall p'. (prefix p'z \land p' \in W) \longrightarrow length p' \leq length p))
lemma mcp-ex:
  assumes [] \in W
           finite W
obtains p
where mcp \ z \ W \ p
proof -
  let ?P = \{p : prefix \ p \ z \land p \in W\}
  let ?maxP = arg\text{-}max \ length \ (\lambda \ p \ . \ p \in ?P)
  have finite \{p : prefix \ p \ z\}
  proof -
    have \{p : prefix \ p \ z\} \subseteq image \ (\lambda \ i : take \ i \ z) \ (set \ [0 : < Suc \ (length \ z)])
    proof
      \mathbf{fix}\ p\ \mathbf{assume}\ p\in\{p\ .\ prefix\ p\ z\}
      then obtain i where i \leq length \ z \land p = take \ i \ z
        by (metis append-eq-conv-conj mem-Collect-eq prefix-def prefix-length-le)
      then have i < Suc (length z) \land p = take i z
      then show p \in image (\lambda \ i \ . \ take \ i \ z) \ (set \ [0 \ .. < Suc \ (length \ z)])
        using atLeast-upt by blast
    qed
    then show ?thesis
      using finite-surj by blast
  then have finite ?P
    \mathbf{by} \ simp
  have ?P \neq \{\}
    using Nil-prefix assms(1) by blast
  \mathbf{have} \ \exists \ \mathit{maxP} \in \ ?P \ . \ \forall \ \mathit{p} \in \ ?P \ . \ \mathit{length} \ \mathit{p} \leq \mathit{length} \ \mathit{maxP}
  proof (rule ccontr)
    assume \neg(\exists maxP \in ?P . \forall p \in ?P . length p \leq length maxP)
    then have \forall p \in P. \exists p' \in P. length p < length p'
      by (meson not-less)
    then have \forall l \in (image \ length \ ?P) \ . \ \exists l' \in (image \ length \ ?P) \ . \ l < l'
      by auto
    then have infinite (image length ?P)
      by (metis (no-types, lifting) \langle ?P \neq \{\} \rangle image-is-empty infinite-growing)
    then have infinite ?P
      by blast
    then show False
      using ⟨finite ?P⟩ by simp
  qed
  then obtain maxP where maxP \in ?P \ \forall \ p \in ?P. length \ p \leq length \ maxP
  then have mcp \ z \ W \ maxP
    \mathbf{unfolding}\ \mathit{mcp.simps}\ \mathbf{by}\ \mathit{blast}
```

```
then show ?thesis
   using that by auto
qed
lemma mcp-unique:
 assumes mcp \ z \ W \ p
 and
          mcp \ z \ W \ p'
shows p = p'
proof -
 have length p' \leq length p
   using assms(1) assms(2) by auto
 moreover have length p \leq length p'
   using assms(1) assms(2) by auto
 ultimately have length p' = length p
   by simp
 moreover have prefix p z
   using assms(1) by auto
 moreover have prefix p'z
   using assms(2) by auto
  ultimately show ?thesis
   by (metis append-eq-conv-conj prefixE)
qed
fun mcp' :: 'a \ list \Rightarrow 'a \ list \ set \Rightarrow 'a \ list \ \mathbf{where}
 mcp'zW = (THE \ p \ . \ mcp \ z \ W \ p)
lemma mcp'-intro :
 assumes mcp \ z \ W \ p
shows mcp'zW = p
using assms mcp-unique by (metis mcp'.elims the I-unique)
lemma mcp-prefix-of-suffix:
 assumes mcp (vs@xs) V vs
        prefix xs' xs
 and
shows mcp (vs@xs') V vs
proof (rule ccontr)
 assume \neg mcp (vs @ xs') V vs
 then have \neg (prefix vs (vs @ xs') \land vs \in V \land
              (\forall p'. (prefix p' (vs @ xs') \land p' \in V) \longrightarrow length p' \leq length vs))
 then have \neg (\forall p' . (prefix p' (vs @ xs') \land p' \in V) \longrightarrow length p' \leq length vs)
   using assms(1) by auto
 then obtain vs' where vs' \in V \land prefix vs' (vs@xs) \land length vs < length vs'
   by (meson assms(2) leI prefix-append prefix-order.dual-order.trans)
 then have \neg (mcp (vs@xs) \ V \ vs)
   by auto
 then show False
   using assms(1) by auto
qed
{\bf lemma}\ minimal\ -sequence\ -to\ -failure\ -extending\ -mcp:
 assumes OFSM M1
          OFSM M2
 and
 and
          is\text{-}det\text{-}state\text{-}cover\ M2\ V
          minimal-sequence-to-failure-extending V\ M1\ M2\ vs\ xs
shows mcp (map\ fst\ (vs@xs)) V\ (map\ fst\ vs)
proof (rule ccontr)
 assume \neg mcp (map fst (vs @ xs)) V (map fst vs)
 moreover have prefix (map fst vs) (map fst (vs @ xs))
 moreover have (map\ fst\ vs) \in V
   using mstfe-prefix-input-in-V assms(4) by auto
  ultimately obtain v' where prefix v' (map fst (vs @ xs))
                        v' \in V
```

```
length \ v' > length \ (map \ fst \ vs)
 using leI by auto
then obtain x' where (map\ fst\ (vs@xs)) = v'@x'
 using prefixE by blast
have vs@xs \in L\ M1 - L\ M2
 using assms(4) unfolding minimal-sequence-to-failure-extending.simps sequence-to-failure.simps
then have vs@xs \in L_{in} M1 \{map fst (vs@xs)\}
 by (meson DiffE insertI1 language-state-for-inputs-map-fst)
have vs@xs \in L_{in} M1 \{v'@x'\}
 using \langle map \ fst \ (vs @ xs) = v' @ x' \rangle \langle vs @ xs \in L_{in} \ M1 \ \{map \ fst \ (vs @ xs)\} \rangle
 by presburger
let ?vs' = take (length v') (vs@xs)
let ?xs' = drop (length v') (vs@xs)
have vs@xs = ?vs'@?xs'
 by (metis append-take-drop-id)
have ?vs' \in L_{in} \ M1 \ V
 by (metis (no-types) DiffE (map fst (vs @ xs) = v' @ x') \langle v' \in V \rangle (vs @ xs \in L M1 - L M2)
     append-eq-conv-conj append-take-drop-id language-state-for-inputs-map-fst
     language-state-prefix take-map)
have sequence-to-failure M1 M2 (?vs' @ ?xs')
 by (metis (full-types) \langle vs @ xs = take \ (length \ v') \ (vs @ xs) @ drop \ (length \ v') \ (vs @ xs) \rangle
     assms(4) minimal-sequence-to-failure-extending.simps)
have length ?xs' < length xs
  using \langle length \ (map \ fst \ vs) < length \ v' \rangle \langle prefix \ v' \ (map \ fst \ (vs \ @ \ xs)) \rangle
       (vs @ xs = take (length v') (vs @ xs) @ drop (length v') (vs @ xs)) prefix-length-le
 by fastforce
show False
 by (meson \land length (drop (length v') (vs @ xs)) < length xs)
     \langle sequence-to-failure\ M1\ M2\ (take\ (length\ v')\ (vs\ @\ xs)\ @\ drop\ (length\ v')\ (vs\ @\ xs))\rangle
     \langle take \ (length \ v') \ (vs @ xs) \in L_{in} \ M1 \ V \rangle \ assms(4)
     minimal-sequence-to-failure-extending.elims(2))
```

5.2 Function N

qed

Function N narrows the sets of reaction to the deterministic state cover considered by the adaptive state counting algorithm to contain only relevant sequences. It is the main refinement of the original formulation of the algorithm as given in [2]. An example for the necessity for this refinement is given in [3].

```
fun N :: ('in \times 'out) \ list \Rightarrow ('in, 'out, 'state) \ FSM \Rightarrow 'in \ list \ set \Rightarrow ('in \times 'out) \ list \ set \ set
  where
  N \text{ io } M \text{ } V = \{ \text{ } V'' \in Perm \text{ } V \text{ } M \text{ } . \text{ } (map \text{ } fst \text{ } (mcp' \text{ } io \text{ } V'')) = (mcp' \text{ } (map \text{ } fst \text{ } io) \text{ } V) \}
\mathbf{lemma}\ \textit{N-nonempty}:
  assumes is-det-state-cover M2\ V
              OFSM M1
  and
              OFSM M2
  and
              asc-fault-domain M2 M1 m
  and
  and
              io \in L M1
shows N io M1 V \neq \{\}
proof -
  have [] \in V
    using assms(1) det-state-cover-empty by blast
  have inputs M1 = inputs M2
```

```
using assms(4) by auto
 have is-det-state-cover M2\ V
   using assms by auto
  moreover have finite (nodes M2)
   using assms(3) by auto
  moreover have d-reachable M2 (initial M2) \subseteq nodes M2
   by auto
  ultimately have finite V
   using det-state-cover-card[of M2 V]
   by (metis\ finite-if-finite-subsets-card-bdd\ infinite-subset\ is-det-state-cover.\ elims(2)
       surj-card-le)
  obtain io V where mcp \ (map \ fst \ io) \ V \ io V
   using mcp-ex[OF < [] \in V > \langle finite V > ] by blast
  then have io V \in V
   by auto
  — Proof sketch: - ioV uses only inputs of M2 - ioV uses only inputs of M1 - as M1 completely spec.: ex. reaction of
M1 to ioV - this reaction is in some V"
  obtain q2 where d-reaches M2 (initial M2) io V q2
   using det-state-cover-d-reachable [OF assms(1) \langle ioV \in V \rangle] by blast
  then obtain ioV' ioP where io-path : length ioV = length ioV'
                                      \land length ioV = length ioP
                                       \land \ (\textit{path M2} \ ((\textit{ioV} \ || \ \textit{ioV'}) \ || \ \textit{ioP}) \ (\textit{initial M2}))
                                       \land target ((ioV || ioV') || ioP) (initial M2) = q2
   by auto
  have well-formed M2
   using assms by auto
  \mathbf{have}\ \mathit{map}\ \mathit{fst}\ (\mathit{map}\ \mathit{fst}\ ((\mathit{io}\ V\ ||\ \mathit{io}\ V')\ ||\ \mathit{io}\ P)) = \mathit{io}\ V
  proof -
   have length (ioV || ioV') = length ioP
     \mathbf{using}\ \textit{io-path}\ \mathbf{by}\ \textit{simp}
   then show ?thesis
     using io-path by auto
  qed
  moreover have set (map fst (map fst ((ioV || ioV') || ioP))) \subseteq inputs M2
   using path-input-containment [OF \land well-formed M2 \rightarrow, of (ioV \parallel ioV') \parallel ioP initial M2 \mid
         io-path
   by linarith
  ultimately have set io V \subseteq inputs M2
   by presburger
  then have set ioV \subseteq inputs M1
   using assms by auto
  then have L_{in} M1 \{ioV\} \neq \{\}
   using assms(2) language-state-for-inputs-nonempty by (metis FSM.nodes.initial)
  have prefix io V (map fst io)
   \mathbf{using} \ \langle mcp \ (\mathit{map} \ \mathit{fst} \ \mathit{io}) \ \mathit{V} \ \mathit{io} \mathit{V} \rangle \ \mathit{mcp.simps} \ \mathbf{by} \ \mathit{blast}
  then have length \ io V \leq length \ (map \ fst \ io)
   using prefix-length-le by blast
  then have length io V \leq length io
   by auto
  have (map\ fst\ io\ ||\ map\ snd\ io)\in L\ M1
   using assms(5) by auto
  moreover have length (map\ fst\ io) = length (map\ snd\ io)
   by auto
  ultimately have (map fst io || map snd io)
```

```
\in language-state-for-input M1 (initial M1) (map fst io)
   unfolding language-state-def
   by (metis (mono-tags, lifting) \langle map | fst | io | | map | snd | io \in L | M1 \rangle
        language-state-for-input.simps mem-Collect-eq)
  have io V = take (length io V) (map fst io)
   by (metis (no-types) \(\sigma\) prefix io V (map fst io) \(\sigma\) append-eq-conv-conj prefixE)
  then have take (length ioV) io \in language-state-for-input M1 (initial M1) ioV
   using language-state-for-input-take
   by (metis (map fst io || map snd io \in language-state-for-input M1 (initial M1) (map fst io))
       zip-map-fst-snd)
  then obtain V'' where V'' \in Perm\ V\ M1\ take\ (length\ io\ V)\ io\ \in\ V''
   using perm-elem [OF\ assms(1-3)\ \langle inputs\ M1 = inputs\ M2\rangle\ \langle ioV\in V\rangle] by blast
  have io V = mcp' (map fst io) V
   using \langle mcp \ (map \ fst \ io) \ V \ ioV \rangle \ mcp'-intro \ by \ blast
  have map fst (take (length ioV) io) = ioV
   \mathbf{by} \ (\textit{metis} \ \langle \textit{io} \, \textit{V} = \textit{take} \ (\textit{length} \ \textit{io} \, \textit{V}) \ (\textit{map fst io}) \rangle \ \textit{take-map})
  obtain mcpV'' where mcp io V'' mcpV''
   have map fst mcpV'' \in V using perm-inputs
   \mathbf{using} \mathrel{\lessdot} V^{\prime\prime} \in \mathit{Perm} \; \mathit{V} \; \mathit{M1} \mathrel{\gt} \mathrel{\lessdot} \mathit{mcp} \; \mathit{io} \; \mathit{V}^{\prime\prime} \; \mathit{mcp} \; \mathit{V}^{\prime\prime} \mathrel{\gt} \; \mathit{mcp.simps} \; \mathbf{by} \; \mathit{blast}
 have map fst mcpV'' = ioV
   by (metis (no-types) \langle map \ fst \ (take \ (length \ io \ V) \ io) = io \ V \rangle \langle map \ fst \ mcp \ V'' \in \ V \rangle
        \langle mcp \; (map \; fst \; io) \; V \; io \; V \rangle \; \langle mcp \; io \; V'' \; mcp \; V'' \rangle \; \langle take \; (length \; io \; V) \; io \; \in \; V'' \rangle
       map-mono-prefix mcp.elims(2) prefix-length-prefix prefix-order.dual-order.antisym
       take-is-prefix)
  have map fst (mcp' io V'') = mcp' (map fst io) V
   \mathbf{by} blast
  then show ?thesis
   using \langle V'' \in Perm \ V \ M1 \rangle by fastforce
qed
lemma N-mcp-prefix:
  assumes map fst vs = mcp' (map fst (vs@xs)) V
           V'' \in N \ (vs@xs) \ M1 \ V
  and
           is-det-state-cover M2 V
  and
  and
           well-formed M2
           finite V
 and
shows vs \in V'' vs = mcp'(vs@xs) V''
  have map fst \ (mcp' \ (vs@xs) \ V'') = mcp' \ (map \ fst \ (vs@xs)) \ V
   using assms(2) by auto
  then have map fst\ (mcp'\ (vs@xs)\ V'') = map\ fst\ vs
   using assms(1) by presburger
  then have length (mcp' (vs@xs) V'') = length vs
   by (metis length-map)
  have [] \in V''
   using perm-empty[OF\ assms(3)]\ N.simps\ assms(2) by blast
  moreover have finite V''
   using perm-elem-finite[OF assms(3,4)] N.simps assms(2) by blast
  ultimately obtain p where mcp (vs@xs) V'' p
   using mcp-ex by auto
  then have mcp'(vs@xs) \ V'' = p
```

```
then have prefix \ (mcp' \ (vs@xs) \ V'') \ (vs@xs) unfolding mcp'.simps \ mcp.simps using \langle mcp \ (vs @ xs) \ V'' \ p \rangle \ mcp.elims(2) by blast then show vs = mcp' \ (vs@xs) \ V'' by (metis \ \langle length \ (mcp' \ (vs @ xs) \ V'') = length \ vs \rangle \ append-eq-append-conv \ prefix-def) show vs \in V'' using \langle mcp \ (vs @ xs) \ V'' \ p \rangle \ \langle mcp' \ (vs @ xs) \ V'' = p \rangle \ \langle vs = mcp' \ (vs @ xs) \ V'' \rangle by auto qed
```

5.3 Functions TS, C, RM

Function TTS defines the calculation of the test suite used by the adaptive state counting algorithm in an iterative way. It is defined using the three functions TS, C and RM where TS represents the test suite calculated up to some iteration, C contains the sequences considered for extension in some iteration, and RM contains the sequences of the corresponding C result that are not to be extended, which we also call removed sequences.

```
abbreviation append-set :: 'a list set \Rightarrow 'a set \Rightarrow 'a list set where
   append-set T X \equiv \{xs @ [x] \mid xs \ x \ . \ xs \in T \land x \in X\}
abbreviation append-sets :: 'a list set \Rightarrow 'a list set \Rightarrow 'a list set where
  append-sets T X \equiv \{xs @ xs' \mid xs xs' . xs \in T \land xs' \in X\}
fun TS :: ('in, 'out, 'state1) FSM \Rightarrow ('in, 'out, 'state2) FSM
              \Rightarrow ('in, 'out) ATC set \Rightarrow 'in list set \Rightarrow nat \Rightarrow nat
              \Rightarrow 'in list set
and C :: ('in, 'out, 'state1) FSM \Rightarrow ('in, 'out, 'state2) FSM
              \Rightarrow ('in, 'out) ATC set \Rightarrow 'in list set \Rightarrow nat \Rightarrow nat
              \Rightarrow 'in list set
and RM :: ('in, 'out, 'state1) FSM \Rightarrow ('in, 'out, 'state2) FSM
              \Rightarrow ('in, 'out) ATC set \Rightarrow 'in list set \Rightarrow nat \Rightarrow nat
              \Rightarrow 'in list set
  where
  RM\ M2\ M1\ \Omega\ V\ m\ \theta = \{\}\ |
   TS M2 M1 \Omega V m \theta = \{\}
   TS \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ \theta) = V \ |
  C~M2~M1~\Omega~V~m~\theta = \{\}~|
   C M2 M1 \Omega V m (Suc \theta) = V
   RM\ M2\ M1\ \Omega\ V\ m\ (Suc\ n) =
    \{xs' \in C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ n) \ .
       (\neg (L_{in} \ M1 \ \{xs'\} \subseteq L_{in} \ M2 \ \{xs'\}))
       \vee (\forall io \in L_{in} M1 \{xs'\}).
            \exists V'' \in N \text{ io } M1 V.
              \exists S1.
                 \exists vs xs.
                   io = (vs@xs)
                   \land mcp (vs@xs) V'' vs
                   \land S1 \subseteq nodes M2
                   \land \ (\forall \ s1 \in S1 \ . \ \forall \ s2 \in S1 \ .
                     s1 \neq s2 \longrightarrow
                        (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V'')
                           \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime} .
                              B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega ))
                   \land m < LB \ M2 \ M1 \ vs \ xs \ (TS \ M2 \ M1 \ \Omega \ V \ m \ n \cup V) \ S1 \ \Omega \ V'')\}
   C M2 M1 \Omega V m (Suc n) =
    (append\text{-}set\ ((C\ M2\ M1\ \Omega\ V\ m\ n)-(RM\ M2\ M1\ \Omega\ V\ m\ n))\ (inputs\ M2))
     - (TS M2 M1 \Omega V m n)
   TS \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ n) =
    (\mathit{TS}\;\mathit{M2}\;\mathit{M1}\;\Omega\;\mathit{V}\;\mathit{m}\;\mathit{n}) \,\cup\, (\mathit{C}\;\mathit{M2}\;\mathit{M1}\;\Omega\;\mathit{V}\;\mathit{m}\;(\mathit{Suc}\;\mathit{n}))
```

```
abbreviation lists-of-length :: 'a set \Rightarrow nat \Rightarrow 'a list set where
  lists-of-length X n \equiv \{xs : length \ xs = n \land set \ xs \subseteq X\}
\mathbf{lemma}\ append-lists-of-length-alt-def:
  append-sets\ T\ (lists-of-length\ X\ (Suc\ n)) = append-set\ (append-sets\ T\ (lists-of-length\ X\ n))\ X
proof
  show append-sets T (lists-of-length X (Suc n))
          \subseteq append-set (append-sets T (lists-of-length X n)) X
  proof
    fix tx assume tx \in append\text{-}sets\ T\ (lists\text{-}of\text{-}length\ X\ (Suc\ n))
    then obtain t x where t@x = tx t \in T length x = Suc n set x \subseteq X
     bv blast
    then have x \neq [] length (butlast x) = n
     by auto
    moreover have set (butlast x) \subseteq X
      using \langle set \ x \subseteq X \rangle by (meson dual-order.trans prefixeq-butlast set-mono-prefix)
    ultimately have but last x \in lists-of-length X n
     by auto
    then have t@(butlast x) \in append\text{-}sets T (lists\text{-}of\text{-}length X n)
     using \langle t \in T \rangle by blast
    moreover have last x \in X
      using \langle set \ x \subseteq X \rangle \ \langle x \neq [] \rangle by auto
    \textbf{ultimately have} \ t@(\textit{butlast}\ x)@[\textit{last}\ x] \in \textit{append-set}\ (\textit{append-sets}\ T\ (\textit{lists-of-length}\ X\ n))\ X
     bv auto
    \textbf{then show} \ tx \in \textit{append-set} \ (\textit{append-sets} \ T \ (\textit{lists-of-length} \ X \ n)) \ X
     using \langle t@x = tx \rangle by (simp\ add: \langle x \neq [] \rangle)
  qed
  show append-set (append-sets T (lists-of-length X n)) X
          \subseteq append-sets T (lists-of-length X (Suc n))
  proof
    fix tx assume tx \in append\text{-}set (append-sets T (lists-of-length X n)) X
    then obtain tx' x where tx = tx' \otimes [x] tx' \in append\text{-sets } T \text{ (lists-of-length } X \text{ n) } x \in X
    then obtain tx'' x' where tx''@x' = tx' tx'' \in T length x' = n set x' \subseteq X
     by blast
    then have tx''@x'@[x] = tx
     by (simp\ add: \langle tx = tx' \otimes [x] \rangle)
    moreover have tx'' \in T
     by (meson \langle tx'' \in T \rangle)
    moreover have length (x'@[x]) = Suc \ n
     by (simp add: \langle length \ x' = n \rangle)
    moreover have set (x'@[x]) \subseteq X
     by (simp add: \langle set \ x' \subseteq X \rangle \ \langle x \in X \rangle)
    ultimately show tx \in append\text{-}sets\ T\ (lists\text{-}of\text{-}length\ X\ (Suc\ n))
      by blast
  \mathbf{qed}
qed
         Basic properties of the test suite calculation functions
5.4
lemma C-step:
  assumes n > 0
  shows C M2 M1 \Omega V m (Suc n) \subseteq (append-set (C M2 M1 \Omega V m n) (inputs M2)) - C M2 M1 \Omega V m n
proof -
  let ?TS = \lambda n . TS M2 M1 \Omega V m n
  let ?C = \lambda n \cdot C M2 M1 \Omega V m n
  let ?RM = \lambda n \cdot RM M2 M1 \Omega V m n
  obtain k where n-def[simp] : n = Suc k
    using assms not0-implies-Suc by blast
  have ?C (Suc n) = (append-set (?C n - ?RM n) (inputs M2)) - ?TS n
    using n-def C.simps(3) by blast
  moreover have ?C \ n \subseteq ?TS \ n
    using n-def by (metis C.simps(2) TS.elims UnCI assms neq0-conv subsetI)
  ultimately show ?C (Suc n) \subseteq append-set (?C n) (inputs M2) - ?C n
```

```
by blast
qed
lemma C-extension:
  C M2 M1 \Omega V m (Suc n) \subseteq append-sets V (lists-of-length (inputs M2) n)
proof (induction \ n)
 case \theta
 then show ?case by auto
next
 case (Suc \ k)
 let ?TS = \lambda n . TS M2 M1 \Omega V m n
 let ?C = \lambda n . C M2 M1 \Omega V m n
 let ?RM = \lambda n . RM M2 M1 \Omega V m n
 have 0 < Suc \ k by simp
 have ?C(Suc(Suc(k))) \subseteq (append-set(?C(Suc(k)))(inputs(M2))) - ?C(Suc(k))
   using C-step[OF \land 0 < Suc \ k \land] by blast
 then have ?C (Suc (Suc k)) \subseteq append-set (?C (Suc k)) (inputs M2)
   by blast
  moreover have append-set (?C (Suc k)) (inputs M2)
               \subseteq append-set (append-sets V (lists-of-length (inputs M2) k)) (inputs M2)
   using Suc.IH by auto
  ultimately have I-Step:
   ?C\ (Suc\ (Suc\ k)) \subseteq append-set\ (append-sets\ V\ (lists-of-length\ (inputs\ M2)\ k))\ (inputs\ M2)
   by (meson order-trans)
 show ?case
   using append-lists-of-length-alt-def[symmetric, of V k inputs M2] I-Step
   by presburger
qed
lemma TS-union:
shows TS M2 M1 \Omega V m i = (\bigcup j \in (set [0..<Suc i]) \cdot C M2 M1 \Omega V m j)
proof (induction i)
 case \theta
 then show ?case by auto
next
 case (Suc\ i)
 let ?TS = \lambda n . TS M2 M1 \Omega V m n
 let ?C = \lambda n \cdot C M2 M1 \Omega V m n
 let ?RM = \lambda n . RM M2 M1 \Omega V m n
 have ?TS (Suc i) = ?TS i \cup ?C (Suc i)
   by (metis (no-types) C.simps(2) TS.simps(1) TS.simps(2) TS.simps(3) not0-implies-Suc
      sup-bot.right-neutral sup-commute)
 then have ?TS (Suc i) = (\bigcup j \in (set [0..<Suc i]) . ?C j) \cup ?C (Suc i)
   using Suc.IH by simp
 then show ?case
   by auto
qed
lemma C-disj-le-gz:
 assumes i \leq j
 and
         0 < i
shows C M2 M1 \Omega V m i \cap C M2 M1 \Omega V m (Suc j) = \{\}
proof -
 let ?TS = \lambda n. TS M2 M1 \Omega V m n
 let ?C = \lambda n \cdot C M2 M1 \Omega V m n
 let ?RM = \lambda n . RM M2 M1 \Omega V m n
```

```
have Suc \ \theta < Suc \ j
   using assms(1-2) by auto
 then obtain k where Suc j = Suc (Suc k)
   using not0-implies-Suc by blast
 then have ?C (Suc j) = (append\text{-}set (?C j - ?RM j) (inputs M2)) - ?TS j
   using C.simps(3) by blast
 then have ?C(Suc j) \cap ?TS j = \{\}
   by blast
 moreover have ?C \ i \subseteq ?TS \ j
   using assms(1) TS-union[of M2 M1 \Omega V m j] by fastforce
 {\bf ultimately \ show} \ ? the sis
   by blast
\mathbf{qed}
lemma C-disj-lt:
 assumes i < j
shows C M2 M1 \Omega V m i \cap C M2 M1 \Omega V m j = \{\}
proof (cases i)
 \mathbf{case}\ \theta
 then show ?thesis by auto
next
 case (Suc \ k)
 then show ?thesis
   using C-disj-le-gz
   by (metis assms gr-implies-not0 less-Suc-eq-le old.nat.exhaust zero-less-Suc)
\mathbf{qed}
lemma C-disj:
 assumes i \neq j
shows C M2 M1 \Omega V m i \cap C M2 M1 \Omega V m j = \{\}
 by (metis C-disj-lt Int-commute antisym-conv3 assms)
lemma RM-subset : RM M2 M1 \Omega V m i\subseteq C M2 M1 \Omega V m i
proof (cases i)
 case \theta
 then show ?thesis by auto
next
 case (Suc \ n)
 then show ?thesis
   using RM.simps(2) by blast
lemma RM-disj:
 assumes i \leq j
 and
        0 < i
shows RM M2 M1 \Omega V m i \cap RM M2 M1 \Omega V m (Suc j) = {}
 let ?TS = \lambda \ n . TS \ M2 \ M1 \ \Omega \ V \ m \ n
 let ?C = \lambda n . C M2 M1 \Omega V m n
 let ?RM = \lambda n \cdot RM M2 M1 \Omega V m n
 have ?RM \ i \subseteq ?C \ i \ ?RM \ (Suc \ j) \subseteq ?C \ (Suc \ j)
   using RM-subset by blast+
 moreover have ?C \ i \cap ?C \ (Suc \ j) = \{\}
   using C-disj-le-gz[OF assms] by assumption
 ultimately show ?thesis
   by blast
qed
```

```
lemma T-extension:
 assumes n > 0
 shows TS M2 M1 \Omega V m (Suc n) - TS M2 M1 \Omega V m n
         \subseteq (append-set (TS M2 M1 \Omega V m n) (inputs M2)) - TS M2 M1 \Omega V m n
proof -
 let ?TS = \lambda n . TS M2 M1 \Omega V m n
 let ?C = \lambda n \cdot C M2 M1 \Omega V m n
 let ?RM = \lambda n . RM M2 M1 \Omega V m n
 obtain k where n-def[simp] : n = Suc k
   using assms not0-implies-Suc
   by blast
 have ?C (Suc n) = (append-set (?C n - ?RM n) (inputs M2)) - ?TS n
   using n-def using C.simps(3) by blast
  then have ?C (Suc \ n) \subseteq append\text{-}set (?C \ n) (inputs M2) - ?TS \ n
  moreover have ?C \ n \subseteq ?TS \ n \ using \ TS-union[of M2 M1 \ \Omega \ V m \ n]
   by fastforce
  ultimately have ?C (Suc n) \subseteq append-set (?TS n) (inputs M2) - ?TS n
  moreover have ?TS (Suc n) - ?TS n \subseteq ?C (Suc n)
   using TS.simps(3)[of M2 M1 \Omega V m k] using n-def by blast
  ultimately show ?thesis
   \mathbf{by}\ blast
\mathbf{qed}
lemma append-set-prefix :
 assumes xs \in append\text{-}set\ T\ X
 shows butlast xs \in T
 using assms by auto
lemma C-subset : C M2 M1 \Omega V m i \subseteq TS M2 M1 \Omega V m i
 by (simp add: TS-union)
lemma TS-subset:
 assumes i \leq j
 shows TS M2 M1 \Omega V m i \subseteq TS M2 M1 \Omega V m j
 have TS M2 M1 \Omega V m i = (\bigcup k \in (set [0... < Suc i]) . C M2 M1 \Omega V m k)
      TS M2 M1 \Omega V m j = (\bigcup k \in (set [0..< Suc j]) \cdot C M2 M1 \Omega V m k)
   using TS-union by assumption+
 moreover have set [0..<Suc\ i] \subseteq set\ [0..<Suc\ j]
   using assms by auto
 ultimately show ?thesis
   by blast
qed
{f lemma} C-immediate-prefix-containment:
 assumes vs@xs \in C M2 M1 \Omega V m (Suc (Suc i))
 and
          xs \neq []
shows vs@(butlast\ xs) \in C\ M2\ M1\ \Omega\ V\ m\ (Suc\ i) - RM\ M2\ M1\ \Omega\ V\ m\ (Suc\ i)
proof (rule ccontr)
 let ?TS = \lambda n. TS M2 M1 \Omega V m n
 let ?C = \lambda n . C M2 M1 \Omega V m n
 let ?RM = \lambda \ n . RM\ M2\ M1\ \Omega\ V\ m\ n
 assume vs @ butlast xs \notin C M2 M1 \Omega V m (Suc i) - RM M2 M1 \Omega V m (Suc i)
 have ?C(Suc(Suc(i)) \subseteq append-set(?C(Suc(i) - ?RM(Suc(i)))(inputs(M2))
   using C.simps(3) by blast
  then have ?C(Suc(Suc(i)) \subseteq append\text{-}set(?C(Suc(i) - ?RM(Suc(i)))) UNIV
```

```
by blast
  moreover have vs @ xs \notin append\text{-}set (?C (Suc i) - ?RM (Suc i)) UNIV
  proof -
    have \forall as \ a. \ vs @ xs \neq as @ [a]
                  \vee as \notin C M2 M1 \Omega V m (Suc i) - RM M2 M1 \Omega V m (Suc i)
                  \lor a \notin \mathit{UNIV}
     by (metis \langle vs @ butlast \ xs \notin C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ i) - RM \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ i) \rangle
          assms(2) butlast-append butlast-snoc)
    then show ?thesis
      \mathbf{by} blast
  qed
  ultimately have vs @ xs \notin ?C (Suc (Suc i))
    \mathbf{by} blast
  then show False
    using assms(1) by blast
qed
{f lemma} TS-immediate-prefix-containment:
  assumes vs@xs \in TS \ M2 \ M1 \ \Omega \ V \ m \ i
  and
            mcp (vs@xs) V vs
            0 < i
  and
shows vs@(butlast \ xs) \in \mathit{TS} \ \mathit{M2} \ \mathit{M1} \ \Omega \ \mathit{V} \ \mathit{m} \ \mathit{i}
proof -
  let ?TS = \lambda n . TS M2 M1 \Omega V m n
  let ?C = \lambda n \cdot C M2 M1 \Omega V m n
  let ?RM = \lambda n . RM M2 M1 \Omega V m n
  obtain j where j-def : j < i \land vs@xs \in ?Cj
    using assms(1) TS-union[where i=i]
  proof -
    assume a1: \bigwedge j. j \leq i \wedge vs @ xs \in C M2 M1 \Omega V m j \Longrightarrow thesis
    obtain nn :: nat \ set \Rightarrow (nat \Rightarrow 'a \ list \ set) \Rightarrow 'a \ list \Rightarrow nat \ \mathbf{where}
      f2: \forall x0 \ x1 \ x2. \ (\exists \ v3. \ v3 \in x0 \ \land \ x2 \in x1 \ v3) = (nn \ x0 \ x1 \ x2 \in x0 \ \land \ x2 \in x1 \ (nn \ x0 \ x1 \ x2))
     by moura
    have vs @ xs \in UNION (set [0..<Suc i]) (C M2 M1 \, \Omega \, V m)
      by (metis \land \bigcap \Omega \ V \ T \ S \ M2 \ M1 \ . \ TS \ M2 \ M1 \ \Omega \ V \ m \ i = (\bigcup j \in set \ [0.. < Suc \ i]. \ C \ M2 \ M1 \ \Omega \ V \ m \ j) > (iii)
          (vs @ xs \in TS M2 M1 \Omega V m i))
    then have nn (set [0..<Suc\ i]) (C M2 M1 \Omega V m) (vs @ xs) \in set [0..<Suc\ i]
                  \land vs @ xs \in C M2 M1 \Omega V m (nn (set [0..<Suc i]) (C M2 M1 \Omega V m) (vs @ xs))
     using f2 by blast
    then show ?thesis
      using a1 by (metis (no-types) atLeastLessThan-iff leD not-less-eq-eq set-upt)
  qed
  show ?thesis
  proof (cases j)
    case \theta
    then have ?C j = \{\}
     by auto
    moreover have vs@xs \in \{\}
      using j-def \theta by auto
    ultimately show ?thesis
     by auto
  next
    \mathbf{case}\ (\mathit{Suc}\ k)
    then show ?thesis
    proof (cases k)
     case \theta
      then have ?C j = V
        using Suc by auto
      then have vs@xs \in V
        using j-def by auto
      then have mcp\ (vs@xs)\ V\ (vs@xs)
        using assms(2) by auto
```

```
then have vs@xs = vs
       using assms(2) mcp-unique by auto
     then have butlast xs = []
       by auto
     then show ?thesis
       using \langle vs @ xs = vs \rangle \ assms(1) by auto
   next
     case (Suc\ n)
     assume j-assms : j = Suc k
                    k = Suc n
     then have ?C(Suc(Suc(n))) = append-set(?C(Suc(n)) - ?RM(Suc(n)))(inputs(M2)) - ?TS(Suc(n))
       using C.simps(3) by blast
     then have ?C(Suc(Suc(n)) \subseteq append\text{-}set(?C(Suc(n))) (inputs(M2))
       by blast
     have vs@xs \in ?C (Suc (Suc n))
       using j-assms j-def by blast
     have but last (vs@xs) \in ?C (Suc n)
     proof -
       show ?thesis
        by (meson \ \langle ?C \ (Suc \ (Suc \ n)) \subseteq append-set \ (?C \ (Suc \ n)) \ (inputs \ M2) \rangle
             \langle vs \ @ \ xs \in \ ?C \ (Suc \ (Suc \ n)) \rangle \ append\text{-}set\text{-}prefix \ subset CE) 
     qed
     moreover have xs \neq []
     proof -
       have 1 \le k
        using j-assms by auto
       then have ?C \ i \cap ?C \ 1 = \{\}
        using C-disj-le-gz[of\ 1\ k]\ j-assms(1) less-numeral-extra(1) by blast
       then have ?C j \cap V = \{\}
        by auto
       then have vs@xs \notin V
        using j-def by auto
       then show ?thesis
        using assms(2) by auto
     qed
     ultimately have vs@(butlast \ xs) \in ?C \ (Suc \ n)
       by (simp add: butlast-append)
     have Suc \ n < Suc \ j
       using j-assms by auto
     have ?C (Suc \ n) \subseteq ?TS \ j
       using TS-union[of M2\ M1\ \Omega\ V\ m\ j] \langle Suc\ n < Suc\ j \rangle
       by (metis UN-upper atLeast-upt lessThan-iff)
     have vs @ butlast xs \in TS M2 M1 \Omega V m j
       using \langle vs@(butlast\ xs) \in ?C\ (Suc\ n) \rangle \langle ?C\ (Suc\ n) \subseteq ?TS\ j \rangle \ j\text{-def}
       by auto
     then show ?thesis
       using j-def TS-subset[of j \ i]
       by blast
   qed
  qed
qed
lemma TS-prefix-containment:
  assumes vs@xs \in TS \ M2 \ M1 \ \Omega \ V \ m \ i
 and
          mcp (vs@xs) V vs
           prefix xs' xs
 and
shows vs@xs' \in TS M2 M1 \Omega V m i
```

```
— Proof sketch: Perform induction on length difference, as from each prefix it is possible to deduce the desired property
for the prefix one element smaller than it via above results
using assms proof (induction length xs - length xs' arbitrary: xs')
  case \theta
  then have xs = xs'
   by (metis append-Nil2 append-eq-conv-conj gr-implies-not0 length-drop length-greater-0-conv prefixE)
  then show ?case
   using \theta by auto
next
  case (Suc \ k)
 have 0 < i
   using assms(1) using Suc.hyps(2) append-eq-append-conv assms(2) by auto
  show ?case
  proof (cases xs')
   case Nil
   then show ?thesis
     by (metis (no-types, opaque-lifting) \langle 0 < i \rangle TS.simps(2) TS-subset append-Nil2 assms(2)
         contra-subsetD leD mcp.elims(2) not-less-eq-eq)
   case (Cons a list)
   then show ?thesis
   proof (cases xs = xs')
     {\bf case}\ {\it True}
     then show ?thesis
       using assms(1) by simp
   next
     {f case} False
     then obtain xs'' where xs = xs'@xs''
       using Suc.prems(3) prefixE by blast
     then have xs'' \neq []
       using False by auto
     then have k = length \ xs - length \ (xs' @ [hd \ xs''])
       using \langle xs = xs'@xs'' \rangle Suc.hyps(2) by auto
     moreover have prefix (xs' @ [hd xs'']) xs
       using \langle xs = xs'@xs'' \rangle \langle xs'' \neq [] \rangle
       by (metis Cons-prefix-Cons list.exhaust-sel prefix-code(1) same-prefix-prefix)
     ultimately have vs @ (xs' @ [hd xs']) \in TS M2 M1 \Omega V m i
       using Suc.hyps(1)[OF - Suc.prems(1,2)] by simp
     have mcp (vs @ xs' @ [hd xs'']) V vs
       using \langle xs = xs'@xs'' \rangle \langle xs'' \neq [] \rangle \ assms(2)
     proof -
       obtain aas :: 'a \ list \Rightarrow 'a \ list \ set \Rightarrow 'a \ list \Rightarrow 'a \ list where
         \forall x0 \ x1 \ x2. \ (\exists v3. \ (prefix \ v3 \ x2 \ \land \ v3 \in x1) \ \land \neg \ length \ v3 \leq length \ x0)
                      = ((prefix (aas x0 x1 x2) x2 \land aas x0 x1 x2 \in x1)
                          \land \neg length (aas x0 x1 x2) \leq length x0)
         by moura
        then have f1: \forall as \ A \ asa. (\neg mcp \ as \ A \ asa)
                                  \vee prefix as as \wedge as \in A \wedge (\forall asb. (\neg prefix as as <math>\forall as \notin A)
                                                                    \lor length \ asb \le length \ asa))
                                \land (mcp as A asa
                                  \vee \neg prefix asa as
                                  \vee asa \notin A
                                  \vee (prefix (aas asa A as) as \wedge aas asa A as \in A)
                                      \land \neg length (aas asa A as) \leq length asa)
       obtain aasa :: 'a \ list \Rightarrow 'a \ list \Rightarrow 'a \ list where
         f2: \forall x0 \ x1. \ (\exists \ v2. \ x0 = x1 \ @ \ v2) = (x0 = x1 \ @ \ aasa \ x0 \ x1)
         by moura
        then have f3: ([] @ [hd xs'']) @ aasa (xs' @ xs'') (xs' @ [hd xs''])
                       = ([] @ [hd xs'']) @ aasa (([] @ [hd xs''])
                          @ aasa (xs' @ xs'') (xs' @ [hd xs''])) ([] @ [hd xs''])
         by (meson prefixE prefixI)
       have xs' \otimes xs'' = (xs' \otimes [hd \ xs'']) \otimes aasa (xs' \otimes xs'') (xs' \otimes [hd \ xs''])
```

```
using f2 by (metis (no-types) \langle prefix (xs' @ [hd xs'']) xs \rangle \langle xs = xs' @ xs'' \rangle prefixE)
       then have (vs @ (a \# list) @ [hd xs'']) @ aasa (([] @ [hd xs''])
                    @ aasa (xs' @ xs'') (xs' @ [hd xs''])) ([] @ [hd xs''])
                   = vs @ xs
         using f3 by (simp add: \langle xs = xs' @ xs'' \rangle local.Cons)
       then have \neg prefix (aas vs V (vs @ xs' @ [hd xs'])) (vs @ xs' @ [hd xs'])
                   \vee \ aas \ vs \ V \ (vs @ xs' @ [hd \ xs'']) \notin V
                  \lor length (aas \ vs \ V \ (vs @ \ xs' @ \ [hd \ xs''])) \le length \ vs
         using f1 by (metis (no-types) \langle mcp \ (vs @ xs) \ V \ vs \rangle \ local.Cons \ prefix-append)
       then show ?thesis
         using f1 by (meson \ \langle mcp \ (vs @ xs) \ V \ vs \rangle \ prefixI)
     qed
     then have vs @ butlast (xs' @ [hd xs'']) \in TS M2 M1 \Omega V m i
       using TS-immediate-prefix-containment
            [OF \langle vs @ (xs' @ [hd xs'']) \in TS M2 M1 \Omega V m i \rangle - \langle 0 < i \rangle]
       by simp
     moreover have xs' = butlast (xs' @ [hd xs''])
       using \langle xs'' \neq [] \rangle by simp
     ultimately show ?thesis
       by simp
   \mathbf{qed}
  qed
qed
\mathbf{lemma}\ \mathit{C-index}:
 assumes vs @ xs \in C M2 M1 \Omega V m i
           mcp (vs@xs) V vs
shows Suc (length xs) = i
using assms proof (induction xs arbitrary: i rule: rev-induct)
  case Nil
  then have vs @ [] \in C M2 M1 \Omega V m 1
  then have vs @ [] \in C M2 M1 \Omega V m (Suc (length []))
   by simp
  show ?case
  proof (rule ccontr)
   assume Suc\ (length\ []) \neq i
   moreover have vs @ [] \in C M2 M1 \Omega V m i \cap C M2 M1 \Omega V m (Suc (length []))
     using Nil.prems(1) \ \langle vs @ [] \in C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ (length \ [])) \rangle by auto
   ultimately show False
     using C-disj by blast
  qed
next
 case (snoc \ x \ xs')
 let ?TS = \lambda n . TS M2 M1 \Omega V m n
 let ?C = \lambda n \cdot C M2 M1 \Omega V m n
 let ?RM = \lambda n . RM M2 M1 \Omega V m n
 have vs @ xs' @ [x] \notin V
   using snoc.prems(2) by auto
  then have vs @ xs' @ [x] \notin ?C 1
   by auto
  moreover have vs @ xs' @ [x] \notin ?C \theta
   by auto
```

```
ultimately have 1 < i
   \mathbf{using} \ \mathit{snoc.prems}(1) \ \mathbf{by} \ (\mathit{metis} \ \mathit{less-one} \ \mathit{linorder-neqE-nat})
  then have vs @ butlast (xs' @ [x]) \in C M2 M1 \Omega V m (i-1)
  proof -
   have Suc \ \theta < i
     using \langle 1 < i \rangle by auto
   then have f1: Suc (i - Suc (Suc \theta)) = i - Suc \theta
     using Suc-diff-Suc by presburger
   have 0 < i
     by (metis (no-types) One-nat-def Suc-lessD \langle 1 < i \rangle)
   then show ?thesis
     using f1 by (metis C-immediate-prefix-containment DiffD1 One-nat-def Suc-pred' snoc.prems(1)
                   snoc\text{-}eq\text{-}iff\text{-}butlast)
  qed
  moreover have mcp (vs @ butlast (xs' @ [x])) V vs
   by (meson mcp-prefix-of-suffix prefixeq-butlast snoc.prems(2))
  ultimately have Suc\ (length\ xs') = i-1
   using snoc.IH by simp
  then show ?case
   \mathbf{by}\ \mathit{auto}
\mathbf{qed}
lemma TS-index:
 assumes vs @ xs \in TS M2 M1 \Omega V m i
           mcp (vs@xs) V vs
shows Suc (length xs) \le i vs@xs \in C M2 M1 \Omega V m (Suc (length xs))
proof -
 let ?TS = \lambda \ n . TS \ M2 \ M1 \ \Omega \ V \ m \ n
 let ?C = \lambda n \cdot C M2 M1 \Omega V m n
 let ?RM = \lambda \ n . RM\ M2\ M1\ \Omega\ V\ m\ n
  obtain j where j < Suc \ i \ vs@xs \in ?Cj
   \mathbf{using}\ \mathit{TS-union}[\mathit{of}\ \mathit{M2}\ \mathit{M1}\ \Omega\ \mathit{V}\ \mathit{m}\ \mathit{i}]
   by (metis (full-types) UN-iff assms(1) atLeastLessThan-iff set-upt)
  then have Suc\ (length\ xs) = j
   using C-index assms(2) by blast
  then show Suc\ (length\ xs) \leq i
   using \langle j < Suc \ i \rangle by auto
 show vs@xs \in C M2 M1 \Omega V m (Suc (length xs))
   using \langle vs@xs \in ?C j \rangle \langle Suc (length xs) = j \rangle by auto
qed
lemma C-extension-options:
  assumes vs @ xs \in C M2 M1 \Omega V m i
           mcp (vs @ xs @ [x]) V vs
 and
 and
           x \in inputs M2
           0 < i
shows vs@xs@[x] \in C M2 M1 \Omega V m (Suc i) \lor vs@xs \in RM M2 M1 \Omega V m i
proof (cases vs@xs \in RM\ M2\ M1\ \Omega\ V\ m\ i)
  case True
 then show ?thesis by auto
next
  case False
 let ?TS = \lambda n . TS M2 M1 \Omega V m n
 let ?C = \lambda n \cdot C M2 M1 \Omega V m n
 let ?RM = \lambda \ n . RM\ M2\ M1\ \Omega\ V\ m\ n
  obtain k where i = Suc k
   using assms(4) gr0-implies-Suc by blast
  then have ?C (Suc i) = append-set (?C i - ?RM i) (inputs M2) - ?TS i
```

```
using C.simps(3) by blast
  moreover have vs@xs \in ?C i - ?RM i
    using assms(1) False by blast
  ultimately have vs@xs@[x] \in append\text{-}set (?C i - ?RM i) (inputs M2)
    by (simp\ add:\ assms(3))
  moreover have vs@xs@[x] \notin ?TS i
  proof (rule ccontr)
    \mathbf{assume} \, \neg \, \mathit{vs} \, @ \, \mathit{xs} \, @ \, [x] \notin \mathit{?TS} \, \mathit{i}
    then obtain j where j < Suc i vs@xs@[x] \in ?Cj
      using TS-union[of M2 M1 \Omega V m i] by fastforce
    then have Suc\ (length\ (xs@[x])) = j
     using C-index assms(2) by blast
    then have Suc\ (length\ (xs@[x])) < Suc\ i
     using \langle i < Suc \ i \rangle by auto
    moreover have Suc\ (length\ xs) = i
     using C-index
     by (metis assms(1) assms(2) mcp-prefix-of-suffix prefixI)
    ultimately have Suc\ (length\ (xs@[x])) < Suc\ (Suc\ (length\ xs))
     by auto
    then show False
     by auto
  \mathbf{qed}
  ultimately show ?thesis
    by (simp\ add: \langle ?C\ (Suc\ i) = append\text{-set}\ (?C\ i - ?RM\ i)\ (inputs\ M2) - ?TS\ i\rangle)
qed
lemma TS-non-containment-causes :
  assumes vs@xs \notin TS \ M2 \ M1 \ \Omega \ V \ m \ i
           mcp (vs@xs) V vs
  and
  and
            set \ xs \subseteq inputs \ M2
            0 < i
  and
shows (\exists xr j . xr \neq xs \land prefix xr xs \land j \leq i \land vs@xr \in RM M2 M1 \Omega V m j)
       \vee (\exists xc . xc \neq xs \land prefix xc xs \land vs@xc \in (C M2 M1 \Omega V m i) - (RM M2 M1 \Omega V m i))
  (is ?PrefPreviouslyRemoved ∨ ?PrefJustContained)
      \neg\ ((\exists\ \mathit{xr}\ \mathit{j}\ .\ \mathit{xr} \neq \mathit{xs}\ \land\ \mathit{prefix}\ \mathit{xr}\ \mathit{xs}\ \land\ \mathit{j} \leq \mathit{i}\ \land\ \mathit{vs}@\mathit{xr} \in \mathit{RM}\ \mathit{M2}\ \mathit{M1}\ \Omega\ \mathit{V}\ \mathit{m}\ \mathit{j})
        \wedge (\exists xc . xc \neq xs \wedge prefix xc xs \wedge vs@xc \in (C M2 M1 \Omega V m i) - (RM M2 M1 \Omega V m i)))
  — If a sequence is not contained in TS up to (incl.) iteration i, then either a prefix of it has been removed or a prefix
of it is contained in the C set for iteration i
proof -
  let ?TS = \lambda n. TS M2 M1 \Omega V m n
  let ?C = \lambda n \cdot C M2 M1 \Omega V m n
  let ?RM = \lambda n \cdot RM M2 M1 \Omega V m n
  show ?PrefPreviouslyRemoved <math>\lor ?PrefJustContained
  proof (rule ccontr)
    assume \neg (?PrefPreviouslyRemoved \lor ?PrefJustContained)
    then have ¬ ?PrefPreviouslyRemoved ¬ ?PrefJustContained by auto
    have \neg (\exists xr j. prefix xr xs \land j \leq i \land vs @ xr \in ?RM j)
    proof
     assume \exists xr j. prefix xr xs \land j \leq i \land vs @ xr \in RM M2 M1 \Omega V m j
     then obtain xr j where prefix xr xs j \le i vs @ xr \in ?RM j
       by blast
      then show False
      proof (cases xr = xs)
```

```
{f case} True
   then have vs @ xs \in ?RM j using \langle vs @ xr \in ?RM j \rangle by auto
   then have vs @ xs \in ?TS j
     using C-subset RM-subset \langle vs @ xr \in ?RM j \rangle by blast
   then have vs @ xs \in ?TS i
     using TS-subset \langle j \leq i \rangle by blast
   then show ?thesis using assms(1) by blast
 next
   case False
   then show ?thesis
     using \langle \neg ?PrefPreviouslyRemoved \rangle \langle prefix xr xs \rangle \langle j \leq i \rangle \langle vs @ xr \in ?RM j \rangle
     by blast
 qed
qed
have vs \in V using assms(2) by auto
then have vs \in ?C1 by auto
have \bigwedge k. (1 \leq Suc \ k \wedge Suc \ k \leq i) \longrightarrow vs @ (take \ k \ xs) \in ?C (Suc \ k) - ?RM (Suc \ k)
 fix k assume 1 \leq Suc \ k \wedge Suc \ k \leq i
 then show vs @ (take \ k \ xs) \in ?C (Suc \ k) - ?RM (Suc \ k)
 proof (induction k)
   \mathbf{case}\ \theta
   show ?case using \langle vs \in ?C 1 \rangle
     by (metis 0.prems DiffI One-nat-def
         \langle \neg (\exists xr j. prefix xr xs \land j \leq i \land vs @ xr \in RM M2 M1 \Omega V m j) \rangle
         append-Nil2 take-0 take-is-prefix)
 next
   case (Suc \ k)
   have 1 \leq Suc \ k \wedge Suc \ k \leq i
     using Suc. prems by auto
    then have vs @ take k xs \in ?C (Suc k)
     using Suc.IH by simp
   moreover have vs @ take k xs \notin ?RM (Suc k)
     using \langle 1 \leq Suc \ k \wedge Suc \ k \leq i \rangle \langle \neg ?PrefPreviouslyRemoved \rangle \ take-is-prefix Suc.IH
     by blast
   ultimately have vs @ take k xs \in (?C (Suc k)) - (?RM (Suc k))
   have k < length xs
   proof (rule ccontr)
     assume \neg k < length xs
     then have vs @ xs \in ?C (Suc \ k) using \langle vs @ take \ k \ xs \in ?C \ (Suc \ k) \rangle
       by simp
     have vs @ xs \in ?TS i
       by (metis C-subset TS-subset \langle 1 \leq Suc \ k \wedge Suc \ k \leq i \rangle \langle vs @ xs \in ?C \ (Suc \ k) \rangle
           contra-subsetD)
     then show False
       using assms(1) by simp
   moreover have set xs \subseteq inputs M2
     using assms(3) by auto
    ultimately have last (take (Suc k) xs) \in inputs M2
     by (simp add: subset-eq take-Suc-conv-app-nth)
   have vs @ take (Suc k) xs \in append\text{-set} ((?C (Suc k)) - (?RM (Suc k))) (inputs M2)
     have f1: xs \mid k \in inputs M2
       by (meson \ \langle k < length \ xs \rangle \ \langle set \ xs \subseteq inputs \ M2 \rangle \ nth-mem \ subset-iff)
     have vs @ take (Suc k) xs = (vs @ take k xs) @ [xs ! k]
       by (simp\ add: \langle k < length\ xs \rangle\ take-Suc-conv-app-nth)
```

```
then show ?thesis
        using f1 \leftrightarrow vs @ take \ k \ xs \in C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ k) - RM \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ k) by \ blast
     moreover have vs @ take (Suc k) xs \notin ?TS (Suc k)
     proof
      assume vs @ take (Suc k) xs \in ?TS (Suc k)
      then have Suc\ (length\ (take\ (Suc\ k)\ xs)) < Suc\ k
        using TS-index(1) assms(2) mcp-prefix-of-suffix take-is-prefix by blast
      moreover have Suc\ (length\ (take\ k\ xs)) = Suc\ k\ using\ C-index\ (vs\ @\ take\ k\ xs \in ?C\ (Suc\ k))
        by (metis assms(2) mcp-prefix-of-suffix take-is-prefix)
      ultimately show False using \langle k < length | xs \rangle
        by simp
     qed
    show vs @ take (Suc k) xs \in ?C (Suc (Suc k)) - ?RM (Suc (Suc k))
      using C.simps(3)[of\ M2\ M1\ \Omega\ V\ m\ k]
      by (metis (no-types, lifting) DiffI Suc.prems
          \langle \neg (\exists xr j. prefix xr xs \land j \leq i \land vs @ xr \in RM M2 M1 \Omega V m j) \rangle
          \langle vs @ take (Suc k) | xs \notin TS M2 M1 \Omega V m (Suc k) \rangle calculation take-is-prefix)
   qed
 qed
 then have vs @ take (i-1) xs \in C M2 M1 \Omega V m i - RM M2 M1 \Omega V m i
   using assms(4)
   by (metis One-nat-def Suc-diff-1 Suc-leI le-less)
 then have ?PrefJustContained
   by (metis C-subset DiffD1 assms(1) subsetCE take-is-prefix)
 then show False
   using \langle \neg ?PrefJustContained \rangle by simp
qed
show \neg (?PrefPreviouslyRemoved \land ?PrefJustContained)
proof
 \mathbf{assume} \ ?PrefPreviouslyRemoved \ \land \ ?PrefJustContained
 then have ?PrefPreviouslyRemoved
          ?PrefJustContained
   by auto
 obtain xr j where prefix xr xs j \leq i vs@xr \in ?RM j
   using ⟨?PrefPreviouslyRemoved⟩ by blast
 obtain xc where prefix xc xs vs@xc \in ?C i - ?RM i
   using <?PrefJustContained> by blast
 then have Suc\ (length\ xc) = i
   using C-index
   by (metis Diff-iff assms(2) mcp-prefix-of-suffix)
 moreover have length xc < length xs
   using (prefix xc xs) by (simp add: prefix-length-le)
 moreover have xc \neq xs
 proof
   assume xc = xs
   then have vs@xs \in ?C i
     using \langle vs@xc \in ?C i - ?RM i \rangle by auto
   then have vs@xs \in ?TS i
     using C-subset by blast
   then show False
     using assms(1) by blast
 ultimately have i \leq length xs
   using (prefix xc xs) not-less-eq-eq prefix-length-prefix prefix-order.antisym
   by blast
```

```
have \bigwedge n \cdot (n < i) \Longrightarrow vs@(take \ n \ xs) \in ?C \ (Suc \ n)
proof -
 \mathbf{fix}\ n\ \mathbf{assume}\ n < i
 show vs @ take n xs \in C M2 M1 \Omega V m (Suc n)
 proof -
    have n < length xc
      using \langle n < i \rangle \langle Suc \ (length \ xc) = i \rangle \ less-Suc-eq-le
    then have prefix (vs @ (take n xs)) (vs @ xc)
    proof -
      have n \leq length xs
       using \langle length \ xc \leq length \ xs \rangle \langle n \leq length \ xc \rangle order-trans
     then have prefix (take n xs) xc
       by (metis (no-types) \langle n \leq length \ xc \rangle \langle prefix \ xc \ xs \rangle \ length-take \ min.absorb2
           prefix-length-prefix take-is-prefix)
      then show ?thesis
       by simp
    qed
    then have vs @ take \ n \ xs \in ?TS \ i
     by (meson C-subset DiffD1 TS-prefix-containment \( \text{prefix} \ xc \ xs \)
          \langle vs @ xc \in C \ M2 \ M1 \ \Omega \ V \ m \ i - RM \ M2 \ M1 \ \Omega \ V \ m \ i 
angle \ assms(2) \ contra-subsetD
          mcp-prefix-of-suffix same-prefix-prefix)
    then obtain jn where jn < Suc \ i \ vs@(take \ n \ xs) \in ?C \ jn
      using TS-union[of M2\ M1\ \Omega\ V\ m\ i]
     by (metis UN-iff atLeast-upt lessThan-iff)
    moreover have mcp (vs @ take n xs) V vs
     by (meson assms(2) mcp-prefix-of-suffix take-is-prefix)
    ultimately have jn = Suc (length (take n xs))
      using C-index[of vs take n xs M2 M1 \Omega V m jn] by auto
    then have jn = Suc \ n
      using \langle length \ xc \leq length \ xs \rangle \langle n \leq length \ xc \rangle by auto
    then show vs@(take \ n \ xs) \in ?C \ (Suc \ n)
      using \langle vs@(take \ n \ xs) \in ?C \ jn \rangle by auto
 aed
qed
have \bigwedge n \cdot (n < i) \Longrightarrow vs@(take \ n \ xs) \notin ?RM (Suc \ n)
proof -
 fix n assume n < i
 show vs @ take n xs \notin RM M2 M1 \Omega V m (Suc n)
 proof (cases n = length xc)
    \mathbf{case} \ \mathit{True}
    then show ?thesis
      using \langle vs@xc \in ?C i - ?RM i \rangle
      by (metis DiffD2 \langle Suc \ (length \ xc) = i \rangle \langle prefix \ xc \ xs \rangle append-eq-conv-conj prefixE)
 next
    {f case} False
    then have n < length xc
      using \langle n < i \rangle \langle Suc \ (length \ xc) = i \rangle by linarith
    show ?thesis
    proof (cases Suc n < length xc)
      case True
     then have Suc \ n < i
        using \langle Suc\ (length\ xc) = i \rangle \langle n < length\ xc \rangle by blast
      then have vs @ (take (Suc n) xs) \in ?C (Suc (Suc n))
        using \langle \bigwedge n : (n < i) \Longrightarrow vs@(take \ n \ xs) \in ?C \ (Suc \ n) \rangle by blast
      then have vs @ butlast (take (Suc n) xs) \in ?C (Suc n) - ?RM (Suc n)
       using True C-immediate-prefix-containment[of vs take (Suc n) xs M2 M1 \Omega V m n]
       by (metis Suc-neq-Zero (prefix xc xs) (xc \neq xs) prefix-Nil take-eq-Nil)
      then show ?thesis
       by (metis DiffD2 Suc-lessD True (length xc \le length | xs > butlast-snoc | less-le-trans
```

```
take-Suc-conv-app-nth)
        next
          case False
          then have Suc \ n = length \ xc
            using Suc\text{-}lessI \land n < length \ xc > by blast
          then have vs @ (take (Suc n) xs) \in ?C (Suc (Suc n))
            using \langle Suc \ (length \ xc) = i \rangle \langle \bigwedge n. \ n < i \Longrightarrow vs @ take \ n \ xs \in C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ n) \rangle
            by auto
          then have vs @ butlast (take (Suc n) xs) \in ?C (Suc n) - ?RM (Suc n)
            using False C-immediate-prefix-containment[of vs take (Suc n) xs M2 M1 \Omega V m n]
            by (metis Suc-neq-Zero (prefix xc xs) (xc \neq xs) prefix-Nil take-eq-Nil)
          then show ?thesis
            by (metis Diff-iff \langle Suc \ n = length \ xc \rangle \langle length \ xc \leq length \ xs \rangle but last-take diff-Suc-1)
        qed
      qed
    \mathbf{qed}
    have xr = take j xs
    proof -
      have vs@xr \in ?Cj
        using \langle vs@xr \in ?RM j \rangle RM-subset by blast
      then show ?thesis
        using C-index
        by (metis Suc-le-lessD \langle \bigwedge n. \ n < i \Longrightarrow vs @ take \ n \ xs \notin RM \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ n) \rangle \langle j \leq i \rangle
            \langle prefix \ xr \ xs \rangle \langle vs \ @ \ xr \in RM \ M2 \ M1 \ \Omega \ V \ m \ j \rangle \ append-eq-conv-conj \ assms(2)
            mcp-prefix-of-suffix prefix-def)
    qed
    have vs@xr \notin ?RM j
      by (metis (no-types) C-index RM-subset \langle i \leq length \ xs \rangle \langle j \leq i \rangle \langle prefix \ xr \ xs \rangle
          \langle xr = take \ j \ xs \rangle \ assms(2) \ contra-subsetD \ dual-order.trans \ length-take \ lessI \ less-irrefl
          mcp-prefix-of-suffix <math>min.absorb2)
    then show False
      using \langle vs@xr \in ?RM j \rangle by simp
  aed
qed
{f lemma} TS-non-containment-causes-rev:
  assumes mcp (vs@xs) V vs
  and (\exists xr j . xr \neq xs \land prefix xr xs \land j \leq i \land vs@xr \in RM M2 M1 \Omega V m j)
       \vee (\exists xc . xc \neq xs \land prefix xc xs \land vs@xc \in (C M2 M1 \, \Omega \, V \, m \, i) - (RM M2 M1 \, \Omega \, V \, m \, i))
      (is ?PrefPreviouslyRemoved ∨ ?PrefJustContained)
shows vs@xs \notin TS M2 M1 \Omega V m i
proof
  let ?TS = \lambda n. TS M2 M1 \Omega V m n
  let ?C = \lambda n \cdot C M2 M1 \Omega V m n
  let ?RM = \lambda \ n . RM\ M2\ M1\ \Omega\ V\ m\ n
  assume vs @ xs \in TS M2 M1 \Omega V m i
  \mathbf{have}~?PrefPreviouslyRemoved \Longrightarrow False
  proof -
    assume ?PrefPreviouslyRemoved
    then obtain xr j where xr \neq xs prefix xr xs j \leq i vs@xr \in ?RM j
    then have vs@xr \notin ?Cj - ?RMj
      by blast
    have vs@(take\ (Suc\ (length\ xr))\ xs) \notin ?C\ (Suc\ j)
```

```
proof -
   have vs@(take\ (length\ xr)\ xs) \notin ?C\ j - ?RM\ j
     by (metis \langle prefix \ xr \ xs \rangle \langle vs \ @ \ xr \notin C \ M2 \ M1 \ \Omega \ V \ m \ j - RM \ M2 \ M1 \ \Omega \ V \ m \ j \rangle
         append-eq-conv-conj prefix-def)
   show ?thesis
   proof (cases j)
     case \theta
     then show ?thesis
       using RM.simps(1) \ \langle vs @ xr \in RM \ M2 \ M1 \ \Omega \ V \ m \ j \rangle by blast
   next
     then have ?C (Suc j) \subseteq append\text{-}set (?C j - ?RM j) (inputs M2)
       using C.simps(3) Suc by blast
     obtain x where vs@(take (Suc (length xr)) xs) = vs@(take (length xr) xs) @ [x]
       by (metis \langle prefix \ xr \ xs \rangle \ \langle xr \neq xs \rangle append-eq-conv-conj not-le prefix-def
           take-Suc-conv-app-nth take-all)
     have vs@(take\ (length\ xr)\ xs)\ @\ [x] \notin append-set\ (?C\ j-?RM\ j)\ (inputs\ M2)
       using \langle vs@(take\ (length\ xr)\ xs)\notin ?C\ j-?RM\ j\rangle by simp
     then have vs@(take\ (length\ xr)\ xs)\ @\ [x] \notin ?C\ (Suc\ j)
       using \langle ?C (Suc j) \subseteq append\text{-set} (?C j - ?RM j) (inputs M2) \rangle by blast
     then show ?thesis
       using \langle vs@(take\ (Suc\ (length\ xr))\ xs) = vs@(take\ (length\ xr)\ xs)\ @\ [x]\rangle by auto
   qed
 qed
 have prefix (take (Suc (length xr)) xs) xs
   by (simp add: take-is-prefix)
 then have vs@(take\ (Suc\ (length\ xr))\ xs) \in ?TS\ i
   using TS-prefix-containment[OF \langle vs @ xs \in TS \ M2 \ M1 \ \Omega \ V \ m \ i \rangle \ assms(1)] by simp
 then obtain j' where j' < Suc \ i \land vs@(take (Suc \ (length \ xr)) \ xs) \in ?C \ j'
   using TS-union[of M2 M1 \Omega V m i] by fastforce
 then have Suc\ (Suc\ (length\ xr)) = j
   using C-index[of vs take (Suc (length xr)) xs]
 proof -
   have \neg length xs \leq length xr
     by (metis (no-types) (prefix xr xs) (xr \neq xs) append-Nil2 append-eq-conv-conj leD
         nat\text{-}less\text{-}le\ prefix\text{-}def\ prefix\text{-}length\text{-}le)
   then show ?thesis
     by (metis (no-types) \langle \bigwedge i \Omega \ V \ T \ S \ M2 \ M1. [vs @ take (Suc (length xr)) xs \in C \ M2 \ M1 \ \Omega \ V \ m \ i;
                                               mcp (vs @ take (Suc (length xr)) xs) V vs
                                              \implies Suc (length (take (Suc (length xr)) xs)) = i
         \langle j' < Suc \ i \wedge vs \otimes take \ (Suc \ (length \ xr)) \ xs \in C \ M2 \ M1 \ \Omega \ V \ m \ j' \rangle
         append-eq-conv-conj assms(1) length-take mcp-prefix-of-suffix min.absorb2
         not-less-eq-eq prefix-def)
 qed
 moreover have Suc\ (length\ xr) = j
   using \langle vs@xr \in ?RM j \rangle RM-subset C-index
   by (metis oprefix xr xs> assms(1) mcp-prefix-of-suffix subsetCE)
 ultimately have j' = Suc j
   by auto
 then have vs@(take\ (Suc\ (length\ xr))\ xs) \in ?C\ (Suc\ j)
   using \langle j' < Suc \ i \land vs@(take (Suc (length xr)) \ xs) \in ?C \ j' \rangle by auto
 then show False
   using \langle vs@(take\ (Suc\ (length\ xr))\ xs) \notin ?C\ (Suc\ j) \rangle by blast
qed
moreover have ?PrefJustContained \implies False
 assume ?PrefJustContained
 then obtain xc where xc \neq xs
                     prefix xc xs
                     vs @ xc \in ?C i - ?RM i
   by blast
```

```
— only possible if xc = xs
   then show False
     by (metis C-index DiffD1 Suc-less-eq TS-index(1) \langle vs @ xs \in ?TS i \rangle assms(1) leD le-neq-trans
        mcp-prefix-of-suffix prefix-length-le prefix-length-prefix
        prefix-order.dual-order.antisym prefix-order.order-refl)
 qed
 ultimately show False
   using assms(2) by auto
qed
\mathbf{lemma} \ \mathit{TS-finite}:
 assumes finite V
 and
          finite (inputs M2)
shows finite (TS M2 M1 \Omega V m n)
using assms proof (induction n)
 case \theta
 then show ?case by auto
next
 case (Suc \ n)
 let ?TS = \lambda n . TS M2 M1 \Omega V m n
 let ?C = \lambda \ n . C \ M2 \ M1 \ \Omega \ V \ m \ n
 let ?RM = \lambda n . RM M2 M1 \Omega V m n
 show ?case
 proof (cases n=0)
   {\bf case}\  \, True
   then have ?TS (Suc n) = V
     by auto
   then show ?thesis
     using \langle finite \ V \rangle by auto
 \mathbf{next}
   case False
   then have ?TS (Suc n) = ?TS n \cup ?C (Suc n)
     by (metis TS.simps(3) gr0-implies-Suc neq0-conv)
   moreover have finite (?TS n)
     using Suc.IH[OF Suc.prems] by assumption
   moreover have finite (?C(Suc\ n))
   proof
     have ?C (Suc \ n) \subseteq append\text{-}set (?C \ n) (inputs \ M2)
       using C-step False by blast
     moreover have ?C \ n \subseteq ?TS \ n
      by (simp add: C-subset)
     ultimately have ?C (Suc n) \subseteq append-set (?TS n) (inputs M2)
      by blast
     moreover have finite (append-set (?TS n) (inputs M2))
       by (simp add: \langle finite \ (TS \ M2 \ M1 \ \Omega \ V \ m \ n) \rangle \ assms(2) \ finite-image-set2)
     ultimately show ?thesis
       using infinite-subset by auto
   ultimately show ?thesis
     by auto
 qed
\mathbf{qed}
lemma C-finite:
 assumes finite V
          finite (inputs M2)
shows finite (C M2 M1 \Omega V m n)
proof -
 have C M2 M1 \Omega V m n \subseteq TS M2 M1 \Omega V m n
   by (simp add: C-subset)
```

```
then show ?thesis using TS-finite[OF assms] using Finite-Set.finite-subset by blast qed
```

5.5 Final iteration

The result of calculating TS for some iteration is final if the result does not change for the next iteration.

Such a final iteration exists and is at most equal to the number of states of FSM M2 multiplied by an upper bound on the number of states of FSM M1.

Furthermore, for any sequence not contained in the final iteration of the test suite, a prefix of this sequence must be contained in the latter.

abbreviation final-iteration M2 M1 Ω V m i \equiv TS M2 M1 Ω V m i = TS M2 M1 Ω V m (Suc i)

```
\mathbf{lemma}\ \mathit{final-iteration-ex}:
  assumes OFSM M1
            OFSM M2
  and
  and
            asc-fault-domain M2 M1 m
  and
            \textit{test-tools M2 M1 FAIL PM V } \Omega
  shows final-iteration M2 M1 \Omega V m (Suc ( |M2|*m ))
  let ?i = Suc (|M2| * m)
  let ?TS = \lambda \ n . TS \ M2 \ M1 \ \Omega \ V \ m \ n
  let %C = \lambda n . C M2 M1 \Omega V m n
  let ?RM = \lambda n . RM M2 M1 \Omega V m n
  have is-det-state-cover M2 V
    using assms by auto
  moreover have finite (nodes M2)
    using assms(2) by auto
  moreover have d-reachable M2 (initial M2) \subseteq nodes M2
    by auto
  ultimately have finite V
    using det-state-cover-card[of M2 V]
    \mathbf{by}\ (\mathit{metis}\ \mathit{finite}\text{-}\mathit{if}\text{-}\mathit{finite}\text{-}\mathit{subsets}\text{-}\mathit{card}\text{-}\mathit{bdd}\ \mathit{infinite}\text{-}\mathit{subset}\ \mathit{is}\text{-}\mathit{det}\text{-}\mathit{state}\text{-}\mathit{cover}.\mathit{elims}(2)
        surj-card-le)
  have \forall seq \in ?C ?i . seq \in ?RM ?i
  proof
    fix seq assume seq \in ?C ?i
    show seq \in ?RM ?i
    proof -
      have [] \in V
        using (is-det-state-cover\ M2\ V)\ det-state-cover-empty
        bv blast
      then obtain vs where mcp seq V vs
        using mcp-ex[OF - \langle finite V \rangle]
        by blast
      then obtain xs where seq = vs@xs
        using prefixE by auto
      then have Suc\ (length\ xs) = ?i\ using\ C-index
        using \langle mcp \ seq \ V \ vs \rangle \ \langle seq \in C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ ( \ |M2| * m)) \rangle by blast
      then have length xs = (|M2| * m) by auto
      have RM-def: ?RM ?i = \{xs' \in C M2 M1 \Omega V m ?i .
                           (\neg (L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\}))
                           \vee (\forall io \in L_{in} M1 \{xs'\}).
                               (\exists V'' \in N \text{ io } M1 V.
                                 (\exists S1.
                                   (\exists vs xs.
```

```
io = (vs@xs)
                                      \land mcp (vs@xs) V^{\prime\prime} vs
                                      \land S1 \subseteq nodes M2
                                      \land \ (\forall \ s1 \in S1 \ . \ \forall \ s2 \in S1 \ .
                                        s1 \neq s2 \longrightarrow
                                           (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V'')
                                              \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}
                                                 B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega ))
         \land m < LB \ M2 \ M1 \ vs \ xs \ (?TS \ ((\ |M2| * m)) \ \cup \ V) \ S1 \ \Omega \ V'' \ ))))\}
  using RM.simps(2)[of M2 M1 \Omega V m ((card (nodes M2))*m)] by assumption
have (\neg (L_{in} \ M1 \ \{seq\} \subseteq L_{in} \ M2 \ \{seq\}))
       \vee (\forall io \in L_{in} M1 \{seq\}).
            (\exists V'' \in N \text{ io } M1 V.
              (\exists S1.
                (\exists \ vs \ xs \ .
                   io = (vs@xs)
                   \land mcp (vs@xs) V^{\prime\prime} vs
                   \land S1 \subseteq nodes M2
                   \land (\forall s1 \in S1 . \forall s2 \in S1 .
                     s1 \neq s2 \longrightarrow
                        (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}.
                           \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''
                              B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega ))
                    \land m < LB \ M2 \ M1 \ vs \ xs \ (?TS \ (( \ |M2| * m)) \cup V) \ S1 \ \Omega \ V'')))) 
  proof (cases (\neg (L_{in} M1 {seq} \subseteq L_{in} M2 {seq})))
    {f case} True
    then show ?thesis
       using RM-def by blast
  next
    {f case}\ {\it False}
    have (\forall io \in L_{in} M1 \{seq\}).
           (\exists V'' \in N \text{ io } M1 V).
              (\exists S1.
                (\exists vs xs.
                   io = (vs@xs)
                   \land mcp (vs@xs) V'' vs
                   \land S1 \subseteq nodes M2
                   \land \ (\forall \ s1 \in S1 \ . \ \forall \ s2 \in S1 \ .
                     s1 \neq s2 \longrightarrow
                        (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}.
                           \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''
                              B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega ))
                   \land \ m < \textit{LB M2 M1 vs xs} \ (\textit{?TS} \ ((\ |\textit{M2}| * m)) \ \cup \ \textit{V}) \ \textit{S1} \ \Omega \ \textit{V''} \ ))))
    proof
       fix io assume io \in L_{in} M1 \{seq\}
       then have io \in L M1
         by auto
       moreover have is-det-state-cover M2 V
         using assms(4) by auto
       ultimately obtain V'' where V'' \in N io M1 V
         using N-nonempty [OF - assms(1-3), of V io] by blast
       have io \in L M2
         using \langle io \in L_{in} \ M1 \ \{seq\} \rangle \ False by auto
       have V'' \in Perm \ V \ M1
         using \langle V'' \in N \text{ io } M1 \ V \rangle by auto
       have [] \in V''
         using \langle V'' \in Perm \ V \ M1 \rangle \ assms(4) \ perm-empty \ by \ blast
       have finite V''
         \mathbf{using} \mathrel{\checkmark} V^{\prime\prime} \in \mathit{Perm} \; V \; \mathit{M1} \mathrel{\gt} \; \mathit{assms(2)} \; \mathit{assms(4)} \; \mathit{perm-elem-finite} \; \mathbf{by} \; \mathit{blast}
       obtain vs where mcp io V^{\prime\prime} vs
```

```
using mcp-ex[OF < [] \in V'' > < finite <math>V'' > ] by blast
obtain xs where io = (vs@xs)
  using \langle mcp \ io \ V^{\prime\prime} \ vs \rangle \ prefixE \ \mathbf{by} \ auto
then have vs@xs \in L\ M1\ vs@xs \in L\ M2
  using \langle io \in L \ M1 \rangle \langle io \in L \ M2 \rangle by auto
have io \in L M1 map fst io \in \{seq\}
  using \langle io \in L_{in} \ M1 \ \{seq\} \rangle by auto
then have map fst io = seq
  by auto
then have map\ fst\ io \in\ ?C\ ?i
  using \langle seq \in ?C ?i \rangle by blast
then have (map\ fst\ vs)\ @\ (map\ fst\ xs) \in ?C\ ?i
  using \langle io = (vs@xs) \rangle by (metis map-append)
have mcp' io V'' = vs
  using \langle mcp \ io \ V'' \ vs \rangle \ mcp'-intro \ by \ blast
have mcp' (map fst io) V = (map fst vs)
  using \langle V'' \in N \text{ io } M1 \text{ } V \rangle \langle mcp' \text{ io } V'' = vs \rangle by auto
then have mcp \ (map \ fst \ io) \ V \ (map \ fst \ vs)
  \mathbf{by}\ (\mathit{metis}\ \langle \bigwedge \mathit{thesis}.\ (\bigwedge \mathit{vs}.\ \mathit{mcp}\ \mathit{seq}\ \mathit{V}\ \mathit{vs} \Longrightarrow \mathit{thesis}) \Longrightarrow \mathit{thesis}\rangle
       \langle map \ fst \ io = seq \rangle \ mcp'-intro)
then have mcp \ (map \ fst \ vs \ @ \ map \ fst \ xs) \ V \ (map \ fst \ vs)
  by (simp\ add: \langle io = vs @ xs \rangle)
then have Suc\ (length\ xs) = ?i\ using\ C-index[OF\ ((map\ fst\ vs)\ @\ (map\ fst\ xs) \in ?C\ ?i)]
  by simp
then have (|M2| * m) \le length xs
  by simp
have |M1| < m
  using assms(3) by auto
have vs @ xs \in L M2 \cap L M1
  using \langle vs @ xs \in L M1 \rangle \langle vs @ xs \in L M2 \rangle by blast
obtain q where q \in nodes M2 m < card (RP M2 q vs xs V'')
  using RP-state-repetition-distribution-productF
         [OF\ assms(2,1) \mathrel{\checkmark} (\ |\mathit{M2}|\ *\ m) \leq length\ xs \mathrel{\rangle} \mathrel{\langle} |\mathit{M1}| \leq m \mathrel{\rangle} \mathrel{\langle} vs\ @\ xs \in L\ \mathit{M2}\ \cap\ L\ \mathit{M1} \mathrel{\rangle}
              \langle is\text{-}det\text{-}state\text{-}cover \ M2 \ V \rangle \ \langle V^{\prime\prime} \in Perm \ V \ M1 \rangle ]
  by blast
have m < LB \ M2 \ M1 \ vs \ xs \ (?TS \ (( \ |M2| * m)) \cup V) \ \{q\} \ \Omega \ V''
  have m < (sum (\lambda \ s \ . \ card (RP \ M2 \ s \ vs \ xs \ V'')) \{q\})
    using \langle m < card (RP M2 q vs xs V'') \rangle
    by auto
  \mathbf{moreover\ have}\ (\mathit{sum}\ (\lambda\ s\ .\ \mathit{card}\ (\mathit{RP\ M2\ s\ vs\ xs\ V''}))\ \{\mathit{q}\})
                       \leq LB M2 M1 vs xs (?TS (( |M2| * m)) \cup V) {q} \Omega V"
    by auto
  ultimately show ?thesis
    by linarith
qed
show \exists V'' \in N \text{ io } M1 V.
        \exists S1 \ vs \ xs.
           io = vs @ xs \land
           mcp~(vs~@~xs)~V^{\prime\prime}~vs~\wedge
```

```
S1 \subseteq nodes M2 \land
                   (\forall s1 \in S1.
                        \forall s2 \in S1.
                            s1 \neq s2 \longrightarrow
                            (\forall io1 {\in} RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}. \ \forall io2 {\in} RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}.
                                                                                       B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega))\ \land
                   m < LB \ M2 \ M1 \ vs \ xs \ (?TS \ (( \ |M2| * \ m)) \ \cup \ V) \ S1 \ \Omega \ V^{\prime\prime}
     proof -
        have io = vs@xs
           using \langle io = vs@xs \rangle by assumption
        \mathbf{moreover}\ \mathbf{have}\ \mathit{mcp}\ (\mathit{vs@xs})\ \mathit{V}^{\prime\prime}\ \mathit{vs}
           using \langle io = vs @ xs \rangle \langle mcp | io V'' vs \rangle by presburger
        \mathbf{moreover}\ \mathbf{have}\ \{q\}\subseteq \hat{\mathit{nodes}\ M2}
           using \langle q \in nodes M2 \rangle by auto
        moreover have (\forall \ s1 \in \{q\} \ . \ \forall \ s2 \in \{q\} \ .
                        s1 \neq s2 \longrightarrow
                           (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V''
                               \forall \ \mathit{io2} \in \mathit{RP} \ \mathit{M2} \ \mathit{s2} \ \mathit{vs} \ \mathit{xs} \ \mathit{V}^{\prime\prime}
                                  B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega ))
        proof -
          have \forall s1 \in \{q\} : \forall s2 \in \{q\} : s1 = s2
             by blast
           then show ?thesis
             by blast
        \mathbf{qed}
        ultimately have RM-body : io = (vs@xs)
                      \land mcp (vs@xs) V'' vs
                      \land \{q\} \subseteq nodes M2
                      \land (\forall s1 \in \{q\} . \forall s2 \in \{q\} .
                        s1 \neq s2 \longrightarrow
                           (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V'')
                               \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}
                                  B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega ))
                      \land \ m < \textit{LB M2 M1 vs xs} \ (\textit{?TS} \ ((\ |\textit{M2}| * m)) \ \cup \ \textit{V}) \ \{\textit{q}\} \ \Omega \ \textit{V''}
           using \langle m < LB \ M2 \ M1 \ vs \ xs \ (?TS \ (( \ |M2| * m)) \cup \ V) \ \{q\} \ \Omega \ V'' \rangle
          by linarith
        show ?thesis
           using \langle V'' \in N \text{ io } M1 \text{ } V \rangle \text{ } RM\text{-body}
           by metis
     qed
   qed
   then show ?thesis
     \mathbf{by} metis
qed
then have seq \in \{xs' \in C \ M2 \ M1 \ \Omega \ V \ m \ ((Suc \ (|M2| * m))).
                          \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
                          (\forall io \in L_{in} \ M1 \ \{xs'\}.
                               \exists V'' \in N \text{ io } M1 V.
                                    \exists S1 \ vs \ xs.
                                        io = vs @ xs \land
                                        mcp \ (vs \ @ \ xs) \ V^{\prime\prime} \ vs \ \land
                                       S1 \subseteq nodes M2 \land
                                       (\forall s1 \in S1.
                                             \forall s2 \in S1.
                                                 s1 \neq s2 \longrightarrow
                                                 (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}. \ \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}.
                                                                                       B M1 io1 \Omega \neq B M1 io2 \Omega)
                                        m < LB \ M2 \ M1 \ vs \ xs \ (?TS \ (( \ |M2| * m)) \cup V) \ S1 \ \Omega \ V'') \}
   using \langle seq \in ?C ?i \rangle by blast
```

```
then show ?thesis
        using RM-def by blast
    qed
  qed
  then have ?C ?i - ?RM ?i = \{\}
    by blast
  have ?C (Suc ?i) = append-set (?C ?i - ?RM ?i) (inputs M2) - ?TS ?i
    using C.simps(3) by blast
  then have ?C (Suc ?i) = \{\}  using \langle ?C ?i - ?RM ?i = \{\} \rangle
    bv blast
  then have ?TS (Suc ?i) = ?TS ?i
    using TS.simps(3) by blast
  then show final-iteration M2 M1 \Omega V m ?i
qed
{f lemma} TS-non-containment-causes-final:
  assumes vs@xs \notin TS \ M2 \ M1 \ \Omega \ V \ m \ i
  and
            mcp (vs@xs) V vs
  and
            set \ xs \subseteq inputs \ M2
  and
            final-iteration M2 M1 \Omega V m i
  and
            OFSM M2
shows (\exists xr j . xr \neq xs)
                 \land prefix xr xs
                 \wedge j \leq i
                 \wedge vs@xr \in RM \ M2 \ M1 \ \Omega \ V \ m \ j)
proof -
  let ?TS = \lambda n. TS M2 M1 \Omega V m n
  let ?C = \lambda n \cdot C M2 M1 \Omega V m n
  let ?RM = \lambda n . RM M2 M1 \Omega V m n
  have \{\} \neq V
   using assms(2) by fastforce
  then have ?TS \ 0 \neq ?TS \ (Suc \ 0)
    by simp
  then have 0 < i
    using assms(4) by auto
  have ncc1: (\exists xr \ j. \ xr \neq xs \land prefix \ xr \ xs \land j \leq i \land vs @ xr \in RM \ M2 \ M1 \ \Omega \ V \ m \ j) \lor
          (\exists xc. \ xc \neq xs \land prefix \ xc \ xs \land vs \ @ \ xc \in C \ M2 \ M1 \ \Omega \ V \ m \ i - RM \ M2 \ M1 \ \Omega \ V \ m \ i)
    using TS-non-containment-causes(1)[OF assms(1-3) \land 0 < i \land] by assumption
  (\exists xc. \ xc \neq xs \land prefix \ xc \ xs \land vs @ xc \in C \ M2 \ M1 \ \Omega \ V \ m \ i - RM \ M2 \ M1 \ \Omega \ V \ m \ i))
    using TS-non-containment-causes(2)[OF assms(1-3) \land 0 < i \land] by assumption
  from ncc1 show ?thesis
  proof
    show \exists xr \ j. \ xr \neq xs \land prefix \ xr \ xs \land j \leq i \land vs @ xr \in RM \ M2 \ M1 \ \Omega \ V \ m \ j \Longrightarrow
          \exists \, xr \, j. \, \, xr \neq xs \, \land \, prefix \, xr \, xs \, \land \, j \leq i \, \land \, vs \, @ \, xr \in RM \, M2 \, M1 \, \, \Omega \, \, V \, m \, j
     by simp
    show \exists xc. \ xc \neq xs \land prefix \ xc \ xs \land vs @ xc \in C \ M2 \ M1 \ \Omega \ V \ m \ i \longrightarrow RM \ M2 \ M1 \ \Omega \ V \ m \ i \Longrightarrow
          \exists xr j. xr \neq xs \land prefix xr xs \land j \leq i \land vs @ xr \in RM M2 M1 \Omega V m j
    proof -
     assume \exists xc. \ xc \neq xs \land prefix \ xc \ xs \land vs \ @ \ xc \in C \ M2 \ M1 \ \Omega \ V \ m \ i - RM \ M2 \ M1 \ \Omega \ V \ m \ i
     then obtain xc where xc \neq xs prefix xc xs vs @ xc \in ?C i - ?RM i
       by blast
```

```
then have vs @ xc \in ?C i
       by blast
     have mcp (vs @ xc) V vs
       using \langle prefix \ xc \ xs \rangle \ assms(2) \ mcp-prefix-of-suffix by blast
     then have Suc\ (length\ xc) = i\ using\ C-index[OF \ \langle vs\ @\ xc \in ?C\ i\rangle]
       by simp
     have length xc < length xs
       by (metis \langle prefix \ xc \ xs \rangle \ \langle xc \neq xs \rangle append-eq-conv-conj nat-less-le prefix-def prefix-length-le take-all)
     then obtain x where prefix (vs@xc@[x]) (vs@xs)
       using (prefix xc xs) append-one-prefix same-prefix-prefix by blast
     - Proof sketch: vs-xs-x must not be in TS (i+1), else not final iteration vs-xs-x can not be in TS i due to its length
vs-xs-x must therefore not be contained in (append-set (C i - R i) (inputs M2)) vs-xs must therefore not be contained in
(C i - R i) contradiction
     have ?TS (Suc i) = ?TS i
       using assms(4) by auto
     have vs@xc@[x] \notin ?C (Suc i)
     proof
       assume vs @ xc @ [x] \in ?C (Suc i)
       then have vs @ xc @ [x] \notin ?TS i
         by (metis (no-types, lifting) C.simps(3) DiffE \land Suc (length xc) = i \land)
       then have ?TS \ i \neq ?TS \ (Suc \ i)
         using C-subset \langle vs @ xc @ [x] \in C M2 M1 \Omega V m (Suc i) \rangle by blast
       then show False using assms(4)
         by auto
     qed
     moreover have ?C (Suc i) = append-set (?C i - ?RM i) (inputs M2) - ?TS i
       using C.simps(3) \land Suc (length xc) = i \land by blast
     ultimately have vs @ xc @ [x] \notin append\text{-}set (?C i - ?RM i) (inputs M2) - ?TS i
       by blast
     have vs @ xc @ [x] \notin ?TS (Suc i)
       by (metis Suc-n-not-le-n TS-index(1) \langle Suc \ (length \ xc) = i \rangle
           \langle prefix \ (vs @ xc @ [x]) \ (vs @ xs) \rangle \ assms(2) \ assms(4) \ length-append-singleton
           mcp-prefix-of-suffix same-prefix-prefix)
     then have vs @ xc @ [x] \notin ?TS i
       by (simp \ add: \ assms(4))
     have vs @ xc @ [x] \notin append\text{-}set (?C i - ?RM i) (inputs M2)
       \mathbf{using} \ \langle vs \ @ \ xc \ @ \ [x] \not\in \ TS \ M2 \ M1 \ \Omega \ V \ m \ i \rangle
             \langle vs @ xc @ [x] \notin append\text{-set} \ (C M2 M1 \ \Omega \ V \ m \ i - RM M2 M1 \ \Omega \ V \ m \ i) \ (inputs M2)
                              - TS M2 M1 \Omega V m i
       by blast
     then have vs @ xc \notin (?C i - ?RM i)
     proof -
       have f1: \forall a \ A \ Aa. \ (a::'a) \notin A \land a \notin Aa \lor a \in Aa \cup A
         by (meson\ UnCI)
       obtain aas :: 'a \ list \Rightarrow 'a \ list \Rightarrow 'a \ list where
         \forall x0 \ x1. \ (\exists v2. \ x0 = x1 \ @ \ v2) = (x0 = x1 \ @ \ aas \ x0 \ x1)
       then have vs @ xs = (vs @ xc @ [x]) @ aas (vs @ xs) (vs @ xc @ [x])
         by (meson \ \langle prefix \ (vs @ xc @ [x]) \ (vs @ xs) \rangle \ prefixE)
       then have xs = (xc @ [x]) @ aas (vs @ xs) (vs @ xc @ [x])
         by simp
       then have x \in inputs M2
         using f1 by (metis (no-types) assms(3) contra-subsetD insert-iff list.set(2) set-append)
       then show ?thesis
         using \langle vs @ xc @ [x] \notin append\text{-set } (C M2 M1 \Omega V m i - RM M2 M1 \Omega V m i) (inputs M2) \rangle
         by force
     qed
```

```
then have False
        using \langle vs @ xc \in ?C i - ?RM i \rangle by blast
     then show ?thesis by simp
    qed
  qed
qed
{f lemma} TS-non-containment-causes-final-suc:
  assumes vs@xs \notin TS \ M2 \ M1 \ \Omega \ V \ m \ i
            mcp (vs@xs) V vs
  and
            set \ xs \subseteq inputs \ M2
  and
           final-iteration M2 M1 \Omega V m i
  and
  and
            OFSM M2
obtains xr i
where xr \neq xs prefix xr xs Suc j \leq i vs@xr \in RM M2 M1 \Omega V m (Suc j)
  obtain xr j where xr \neq xs \land prefix xr xs \land j \leq i \land vs@xr \in RM M2 M1 \Omega V m j
    using TS-non-containment-causes-final [OF assms] by blast
  moreover have RM M2 M1 \Omega V m \theta = \{\}
    by auto
  ultimately have j \neq 0
   by (metis empty-iff)
  then obtain jp where j = Suc jp
    using not0-implies-Suc by blast
  then have xr \neq xs \land prefix \ xr \ xs \land Suc \ jp \leq i \land vs@xr \in RM \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ jp)
    \mathbf{using} \ \langle xr \neq xs \ \land \ prefix \ xr \ xs \ \land \ j \leq i \ \land \ vs@xr \in \mathit{RM} \ \mathit{M2} \ \mathit{M1} \ \Omega \ \mathit{V} \ \mathit{m} \ \mathit{j} \rangle
    by blast
  then show ?thesis
    using that by blast
theory ASC-Sufficiency
 imports ASC-Suite
begin
```

6 Sufficiency of the test suite to test for reduction

This section provides a proof that the test suite generated by the adaptive state counting algorithm is sufficient to test for reduction.

6.1 Properties of minimal sequences to failures extending the deterministic state cover

The following two lemmata show that minimal sequences to failures extending the deterministic state cover do not with their extending suffix visit any state twice or visit a state also reached by a sequence in the chosen permutation of reactions to the deterministic state cover.

```
\mathbf{lemma}\ \mathit{minimal-sequence-to-failure-extending-implies-Rep-Pre}\ :
 assumes minimal-sequence-to-failure-extending V\ M1\ M2\ vs\ xs
          OFSM~M1
 and
          OFSM M2
 and
          test-tools M2 M1 FAIL PM V \Omega
 and
          V'' \in N \ (vs@xs') \ M1 \ V
 and
          prefix xs' xs
 and
 shows \neg Rep-Pre M2 M1 vs xs'
proof
 assume Rep-Pre M2 M1 vs xs'
 then obtain xs1 xs2 s1 s2 where prefix xs1 xs2
                             prefix xs2 xs'
                             xs1 \neq xs2
```

```
io-targets M2 (initial M2) (vs @ xs1) = \{s2\}
                                 io-targets M2 (initial M2) (vs @ xs2) = \{s2\}
                                 io-targets M1 (initial M1) (vs @ xs1) = \{s1\}
                                 io-targets M1 (initial M1) (vs @ xs2) = \{s1\}
 by auto
then have s2 \in io\text{-targets } M2 \text{ (initial } M2\text{) (} vs @ xs1\text{)}
          s2 \in io\text{-targets } M2 \text{ (initial } M2) \text{ (} vs @ xs2\text{)}
          s1 \in io\text{-targets } M1 \text{ (initial } M1\text{) (} vs @ xs1\text{)}
          s1 \in io\text{-targets } M1 \text{ (initial } M1\text{) (} vs @ xs2\text{)}
 by auto
have vs@xs1 \in L\ M1
 using io-target-implies-L[OF \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (vs } @ xs1) \rangle] by assumption
have vs@xs2 \in L\ M1
 using io-target-implies-L[OF \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (vs @ } xs2) \rangle] by assumption
have vs@xs1 \in L M2
 using io-target-implies-L[OF \langle s2 \in io\text{-targets } M2 \text{ (initial } M2) \text{ (vs @ } xs1) \rangle] by assumption
have vs@xs2 \in L M2
 using io-target-implies-L[OF \langle s2 \in io\text{-targets } M2 \ (initial \ M2) \ (vs @ xs2) \rangle] by assumption
obtain tr1-1 where path M1 (vs@xs1 || tr1-1) (initial M1)
                   length tr1-1 = length (vs@xs1)
                   target (vs@xs1 || tr1-1) (initial M1) = s1
 using \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (} vs @ xs1 \text{)} \rangle by auto
obtain tr1-2 where path M1 (vs@xs2 \mid\mid tr1-2) (initial M1)
                   length tr1-2 = length (vs@xs2)
                   target (vs@xs2 \mid\mid tr1-2) (initial M1) = s1
 using \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (} vs @ xs2 \text{)} \rangle by auto
obtain tr2-1 where path M2 (vs@xs1 || tr2-1) (initial M2)
                   length tr2-1 = length (vs@xs1)
                   target (vs@xs1 || tr2-1) (initial M2) = s2
 using \langle s2 \in io\text{-targets } M2 \text{ (initial } M2) \text{ (vs @ xs1)} \rangle by auto
obtain tr2-2 where path M2 (vs@xs2 \parallel tr2-2) (initial M2)
                   length tr2-2 = length (vs@xs2)
                   target (vs@xs2 || tr2-2) (initial M2) = s2
 using \langle s2 \in io\text{-targets } M2 \text{ (initial } M2) \text{ (} vs @ xs2 \text{)} \rangle by auto
have productF M2 M1 FAIL PM
 using assms(4) by auto
have well-formed M1
 using assms(2) by auto
have well-formed M2
 using assms(3) by auto
have observable PM
 \mathbf{by}\ (\mathit{meson}\ \mathit{assms}(2)\ \mathit{assms}(3)\ \mathit{assms}(4)\ \mathit{observable-product} F)
have length (vs@xs1) = length tr2-1
 using \langle length \ tr2-1 = length \ (vs @ xs1) \rangle by presburger
then have length tr2-1 = length tr1-1
 using \langle length \ tr1-1 = length \ (vs@xs1) \rangle by presburger
have vs@xs1 \in LPM
 using productF-path-inclusion[OF \langle length (vs@xs1) = length tr2-1 \rangle \langle length tr2-1 = length tr1-1 \rangle
                                   ⟨productF M2 M1 FAIL PM⟩ ⟨well-formed M2⟩ ⟨well-formed M1⟩]
 by (meson Int-iff \( \text{productF} \ M2 \) M1 \( FAIL \ PM \) \( \cdot vs \( \@ \ xs1 \) \( \ext{L} \ M1 \) \( \cdot vs \( \@ \ xs1 \) \( \ext{L} \ M2 \) \( \cdot vell-formed \ M1 \)
      \langle well\text{-}formed\ M2 \rangle\ productF\text{-}language)
have length (vs@xs2) = length tr2-2
 using \langle length \ tr2-2 = length \ (vs @ xs2) \rangle by presburger
then have length tr2-2 = length tr1-2
 using \langle length\ tr1-2 = length\ (vs@xs2) \rangle by presburger
have vs@xs2 \in LPM
 using productF-path-inclusion[OF \langle length (vs@xs2) = length tr2-2 \rangle \langle length tr2-2 = length tr1-2 \rangle
```

```
⟨productF M2 M1 FAIL PM⟩ ⟨well-formed M2⟩ ⟨well-formed M1⟩]
    by (meson Int-iff \( \text{productF} \ M2 \) M1 \( FAIL \) PM \( \text{vs} \@ \xs2 \in L \) M1 \( \text{vs} \@ \xs2 \in L \) M2 \( \text{well-formed} \) M1 \( \text{N1} \) \( \text{vs} \@ \xs2 \in L \) M2 \( \text{vell-formed} \) M1 \( \text{N1} \) \( \text{vs} \@ \xs2 \in L \) M2 \( \text{vell-formed} \) M1 \( \text{N2} \) \( \text{vell-formed} \) M1 \( \text{vell-f
             \langle well\text{-}formed\ M2 \rangle\ productF\text{-}language)
have io-targets PM (initial M2, initial M1) (vs @ xs1) = \{(s2, s1)\}
    using productF-path-io-targets-reverse
                  \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (} vs @ xs1) \rangle \langle vs @ xs1 \in L M2 \rangle \langle vs @ xs1 \in L M1 \rangle \text{ ]}
proof -
    have \forall c \ f. \ c \neq initial \ (f::('a, 'b, 'c) \ FSM) \lor c \in nodes \ f
        by blast
    then show ?thesis
        by (metis (no-types) ([observable M2; observable M1; well-formed M2; well-formed M1;
                                                            initial M2 \in nodes M2; initial M1 \in nodes M1
                                                          \implies io-targets PM (initial M2, initial M1) (vs @ xs1) = \{(s2, s1)\}
                 assms(2) \ assms(3))
qed
have io-targets PM (initial M2, initial M1) (vs @ xs2) = \{(s2, s1)\}
    using productF-path-io-targets-reverse
                 [OF \land productF \ M2 \ M1 \ FAIL \ PM \land \ s2 \in io\text{-targets} \ M2 \ (initial \ M2) \ (vs @ xs2) \land (sample \ M2) \ (sample \ M
                         \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (} vs @ xs2) \rangle \langle vs @ xs2 \in L M2 \rangle \langle vs @ xs2 \in L M1 \rangle \text{ ]}
proof -
    have \forall c \ f. \ c \neq initial \ (f::('a, 'b, 'c) \ FSM) \lor c \in nodes \ f
        by blast
    then show ?thesis
        by (metis (no-types) \( \[ \] observable M2; observable M1; well-formed M2; well-formed M1; \)
                                                            initial M2 \in nodes M2; initial M1 \in nodes M1
                                                          \implies io-targets PM (initial M2, initial M1) (vs @ xs2) = \{(s2, s1)\}
                 assms(2) \ assms(3))
qed
have prefix (vs @ xs1) (vs @ xs2)
    \mathbf{using} \ \langle \mathit{prefix} \ \mathit{xs1} \ \mathit{xs2} \rangle \ \mathbf{by} \ \mathit{auto}
have sequence-to-failure M1 M2 (vs@xs)
    using assms(1) by auto
have prefix (vs@xs1) (vs@xs')
    \mathbf{using} \ \langle \mathit{prefix} \ \mathit{xs1} \ \mathit{xs2} \rangle \ \langle \mathit{prefix} \ \mathit{xs2} \ \mathit{xs'} \rangle \ \mathit{prefix-order.dual-order.trans} \ \mathit{same-prefix-prefix}
    \mathbf{by} blast
have prefix (vs@xs2) (vs@xs')
    using \(\rho refix \ xs2 \ xs'\rangle \) prefix-order.dual-order.trans same-prefix-prefix by blast
have io-targets PM (initial PM) (vs @ xs1) = \{(s2,s1)\}
    using \langle io\text{-}targets\ PM\ (initial\ M2,\ initial\ M1)\ (vs\ @\ xs1) = \{(s2,\ s1)\}\rangle\ assms(4) by auto
have io-targets PM (initial PM) (vs @ xs2) = {(s2,s1)}
    using \langle io\text{-targets }PM \text{ (initial }M2, \text{ initial }M1) \text{ (vs }@xs2) = \{(s2, s1)\} \rangle \text{ assms(4) by auto}
have (vs @ xs2) @ (drop (length xs2) xs) = vs@xs
    by (metis \langle prefix xs2 xs' \rangle append-eq-appendI append-eq-conv-conj assms(6) prefixE)
moreover have io-targets PM (initial PM) (vs@xs) = \{FAIL\}
    using sequence-to-failure-reaches-FAIL-ob[OF \( \sequence\)-to-failure M1 M2 (vs@xs) \( \alpha\) assms(2,3)
                                                                                                        ⟨productF M2 M1 FAIL PM⟩]
ultimately have io-targets PM (initial PM) ((vs @ xs2) @ (drop (length xs2) xs)) = {FAIL}
```

by auto

```
have io-targets PM (s2,s1) (drop\ (length\ xs2)\ xs) = \{FAIL\}
    {f using}\ observable-io-targets-split
          [OF \ \langle observable \ PM \rangle
              \langle io\text{-targets }PM \text{ (initial }PM) \text{ ((}vs @ xs2) @ (drop (length xs2) xs)) = \{FAIL\}\rangle
              \langle io\text{-targets } PM \text{ (initial } PM) \text{ (vs @ xs2)} = \{(s2, s1)\}\rangle
    by assumption
  have io-targets PM (initial PM) (vs@xs1@(drop\ (length\ xs2)\ xs)) = {FAIL}
    using observable-io-targets-append
          [OF \land observable\ PM \land io\text{-targets}\ PM\ (initial\ PM)\ (vs\ @\ xs1) = \{(s2,s1)\} \land (s2,s1)\}
               \textit{``io-targets PM (s2,s1) (drop (length xs2) xs)} = \{\textit{FAIL}\} ) ] 
  have sequence-to-failure M1 M2 (vs@xs1@(drop (length xs2) xs))
    using sequence-to-failure-alt-def
          [OF \land io\text{-}targets\ PM\ (initial\ PM)\ (vs@xs1@(drop\ (length\ xs2)\ xs)) = \{FAIL\} \land assms(2,3)]
          assms(4)
    by blast
  have length xs1 < length xs2
    using \langle prefix xs1 xs2 \rangle \langle xs1 \neq xs2 \rangle prefix-length-prefix by fastforce
  have prefix-drop: ys = ys1 \otimes (drop (length ys1)) ys if prefix ys1 ys
    for ys \ ys1 :: ('a \times 'b) \ list
    using that by (induction ys1) (auto elim: prefixE)
  then have xs = (xs1 @ (drop (length xs1) xs))
    using \langle prefix \ xs1 \ xs2 \rangle \langle prefix \ xs2 \ xs' \rangle \langle prefix \ xs' \ xs \rangle by simp
  then have length xs1 < length xs
    \mathbf{using} \ \mathit{prefix-drop}[\mathit{OF} \ \langle \mathit{prefix} \ \mathit{xs2} \ \mathit{xs'} \rangle] \ \langle \mathit{prefix} \ \mathit{xs2} \ \mathit{xs'} \rangle \ \langle \mathit{prefix} \ \mathit{xs'} \ \mathit{xs} \rangle
    using \langle length \ xs1 \ \langle \ length \ xs2 \rangle
    by (auto dest!: prefix-length-le)
  have length (xs1@(drop\ (length\ xs2)\ xs)) < length\ xs
    using \langle length \ xs1 < length \ xs2 \rangle \langle length \ xs1 < length \ xs \rangle by auto
  have vs \in L_{in} M1 V
        \land sequence-to-failure M1 M2 (vs @ xs1@(drop (length xs2) xs))
        \land length (xs1@(drop (length xs2) xs)) < length xs
    using \langle length (xs1 @ drop (length xs2) xs) < length xs \rangle
          (sequence-to-failure M1 M2 (vs @ xs1 @ drop (length xs2) xs))
          assms(1) minimal-sequence-to-failure-extending.simps
    by blast
  then have \neg minimal-sequence-to-failure-extending V M1 M2 vs xs
    by (meson\ minimal\text{-}sequence\text{-}to\text{-}failure\text{-}extending.elims(2))
  then show False
    using assms(1) by linarith
qed
\mathbf{lemma}\ \mathit{minimal-sequence-to-failure-extending-implies-Rep-Cov}:
  assumes minimal-sequence-to-failure-extending V M1 M2 vs xs
  and
            OFSM M1
            OFSM M2
  and
            test-tools M2 M1 FAIL PM V \Omega
  and
            V'' \in N \ (vs@xsR) \ M1 \ V
  and
  and
            prefix xsR xs
shows \neg Rep-Cov M2 M1 V'' vs xsR
proof
  assume Rep-Cov M2 M1 V'' vs xsR
  then obtain xs' vs' s2 s1 where xs' \neq []
                                  prefix xs' xsR
```

```
vs' \in V''
                                                                     io-targets M2 (initial M2) (vs @ xs') = {s2}
                                                                     io-targets M2 (initial M2) (vs') = \{s2\}
                                                                     io-targets M1 (initial M1) (vs @ xs') = {s1}
                                                                     io-targets M1 (initial M1) (vs') = {s1}
   by auto
then have s2 \in io-targets M2 (initial M2) (vs @ xs')
                     s2 \in io\text{-targets } M2 \text{ (initial } M2\text{) (}vs'\text{)}
                     s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (} vs @ xs'\text{)}
                     s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (}vs'\text{)}
   by auto
have vs@xs' \in L\ M1
   \textbf{using } \textit{io-target-implies-L}[\textit{OF} \ \langle \textit{s1} \in \textit{io-targets M1} \ (\textit{initial M1}) \ (\textit{vs} \ @ \ \textit{xs'}) \\ \rangle] \ \textbf{by } \textit{assumption}
have vs' \in L\ M1
   using io-target-implies-L[OF \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ } (vs') \rangle] by assumption
have vs@xs' \in L M2
   using io-target-implies-L[OF \ (s2 \in io\text{-targets } M2 \ (initial \ M2) \ (vs @ xs') \ ] by assumption
have vs' \in L M2
   using io-target-implies-L[OF \langle s2 \in io\text{-targets } M2 \text{ (initial } M2) \text{ (vs')} \rangle] by assumption
obtain tr1-1 where path M1 (vs@xs' || tr1-1) (initial M1)
                                        length tr1-1 = length (vs@xs')
                                        target (vs@xs' || tr1-1) (initial M1) = s1
   using \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (vs @ xs')} \rangle by auto
obtain tr1-2 where path M1 (vs' || tr1-2) (initial M1)
                                        length tr1-2 = length (vs')
                                        target (vs' || tr1-2) (initial M1) = s1
   using \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (} vs' \text{)} \rangle by auto
obtain tr2-1 where path M2 (vs@xs' || tr2-1) (initial M2)
                                        length tr2-1 = length (vs@xs')
                                        target (vs@xs' || tr2-1) (initial M2) = s2
   using \langle s2 \in io\text{-targets } M2 \text{ (initial } M2 \text{) (} vs @ xs' \text{)} \rangle by auto
obtain tr2-2 where path M2 (vs' || tr2-2) (initial M2)
                                        length tr2-2 = length (vs')
                                        target (vs' || tr2-2) (initial M2) = s2
   using \langle s2 \in io\text{-targets } M2 \text{ (initial } M2 \text{) (} vs' \text{)} \rangle by auto
have productF M2 M1 FAIL PM
   using assms(4) by auto
have well-formed M1
   using assms(2) by auto
have well-formed M2
   using assms(3) by auto
have observable PM
   by (meson\ assms(2)\ assms(3)\ assms(4)\ observable-productF)
have length (vs@xs') = length \ tr2-1
   using \langle length \ tr2-1 = length \ (vs @ xs') \rangle by presburger
then have length tr2-1 = length tr1-1
   using \langle length\ tr1-1 = length\ (vs@xs') \rangle by presburger
have vs@xs' \in L PM
   using productF-path-inclusion[OF \langle length (vs@xs') = length tr2-1 \rangle \langle length tr2-1 = length tr1-1 \rangle
                                                                           ⟨productF M2 M1 FAIL PM⟩ ⟨well-formed M2⟩ ⟨well-formed M1⟩]
   \textbf{by} \ (\textit{meson Int-iff} \ \textit{\lor} \textit{productF} \ \textit{M2} \ \textit{M1} \ \textit{FAIL PM} \ \textit{\lor} \textit{vs} \ @ \ \textit{xs'} \in L \ \textit{M1} \ \textit{\lor} \textit{vs} \ @ \ \textit{xs'} \in L \ \textit{M2} \ \textit{\lor} \textit{well-formed} \ \textit{M1} \ \textit{\lor} \textit{N2} \ \textit{M2} \ \textit{M3} \ \textit{M3} \ \textit{M3} \ \textit{M4} \ \textit
             \langle well\text{-}formed\ M2 \rangle\ productF\text{-}language)
have length (vs') = length tr2-2
    using \langle length \ tr2-2 = length \ (vs') \rangle by presburger
then have length tr2-2 = length tr1-2
   using \langle length\ tr1-2 = length\ (vs') \rangle by presburger
```

```
have vs' \in L PM
    using productF-path-inclusion[OF \langle length (vs') = length tr2-2 \rangle \langle length tr2-2 = length tr1-2 \rangle
                                                                               ⟨productF M2 M1 FAIL PM⟩ ⟨well-formed M2⟩ ⟨well-formed M1⟩]
    by (meson Int-iff \( \text{productF} \) M2 M1 FAIL PM \( \cdot vs' \in L \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vs' \in L \) M2 \( \cdot vell-formed \) M1 \( \cdot vell-formed 
              \langle well\text{-}formed\ M2 \rangle\ productF\text{-}language)
have io-targets PM (initial M2, initial M1) (vs @ xs') = {(s2, s1)}
     using productF-path-io-targets-reverse
                   [OF \land productF \ M2 \ M1 \ FAIL \ PM \land \land s2 \in io\text{-targets} \ M2 \ (initial \ M2) \ (vs @ xs') \land io
                           \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ (} vs @ xs' \rangle \rangle \langle vs @ xs' \in L M2 \rangle \langle vs @ xs' \in L M1 \rangle \text{ ]}
proof -
    have \forall c f. c \neq initial (f::('a, 'b, 'c) FSM) \lor c \in nodes f
        \mathbf{by} blast
    then show ?thesis
        by (metis (no-types) \(\[ \]\] observable M2; observable M1; well-formed M2; well-formed M1;
                                                               initial M2 \in nodes M2; initial M1 \in nodes M1
                                                           \implies io-targets PM (initial M2, initial M1) (vs @ xs') = \{(s2, s1)\}
                  assms(2) \ assms(3))
 qed
have io-targets PM (initial M2, initial M1) (vs') = \{(s2, s1)\}
    using productF-path-io-targets-reverse
                  \langle s1 \in io\text{-targets } M1 \text{ (initial } M1) \text{ } (vs') \rangle \langle vs' \in L \text{ } M2 \rangle \langle vs' \in L \text{ } M1 \rangle \text{ } ]
 proof -
    have \forall c \ f. \ c \neq initial \ (f::('a, 'b, 'c) \ FSM) \lor c \in nodes \ f
        \mathbf{by} blast
    then show ?thesis
        by (metis (no-types) ([observable M2; observable M1; well-formed M2; well-formed M1;
                                                               initial M2 \in nodes M2; initial M1 \in nodes M1
                                                            \implies io-targets PM (initial M2, initial M1) (vs') = \{(s2, s1)\}
                   assms(2) \ assms(3))
qed
have io-targets PM (initial PM) (vs') = \{(s2, s1)\}
    by (metis (no-types) (io-targets PM (initial M2, initial M1) vs' = \{(s2, s1)\})
              ⟨productF M2 M1 FAIL PM⟩ productF-simps(4))
have sequence-to-failure M1 M2 (vs@xs)
    using assms(1) by auto
have xs = xs' \otimes (drop (length xs') xs)
    \mathbf{by}\ (\mathit{metis}\ \langle \mathit{prefix}\ \mathit{xs'}\ \mathit{xsR}\rangle\ \mathit{append-assoc}\ \mathit{append-eq-conv-conj}\ \mathit{assms}(6)\ \mathit{prefixE})
 then have io-targets PM (initial M2, initial M1) (vs @ xs' @ (drop (length xs') xs)) = {FAIL}
    by (metis \( \text{productF} \) M2 M1 FAIL PM \( \text{sequence-to-failure} \) M1 M2 (vs \( \@ \) xs) \( \alpha \) assms(2) assms(3)
             productF-simps(4) sequence-to-failure-reaches-FAIL-ob)
 then have io-targets PM (initial M2, initial M1) ((vs @ xs') @ (drop (length xs') xs)) = {FAIL}
    by auto
 have io-targets PM (s2, s1) (drop (length xs') xs) = \{FAIL\}
     using observable-io-targets-split
                   [OF \land observable \ PM \land
                           \langle io\text{-targets } PM \text{ (initial } M2, \text{initial } M1) \text{ ((} vs @ xs') @ \text{ (} drop \text{ (} length \ xs') \ xs)\text{)} = \{FAIL\} \rangle
                           \langle io\text{-targets } PM \text{ (initial } M2, \text{ initial } M1) \text{ (} vs @ xs'\text{)} = \{(s2, s1)\}\rangle
    by assumption
 have io-targets PM (initial PM) (vs' \otimes (drop (length xs') xs)) = {FAIL}
    using observable-io-targets-append
                  [OF \land observable \ PM \land \land io\text{-targets} \ PM \ (initial \ PM) \ (vs') = \{(s2, s1)\} \land (ss') 
                           \langle io\text{-targets } PM \ (s2, s1) \ (drop \ (length \ xs') \ xs) = \{FAIL\}\rangle
    by assumption
have sequence-to-failure M1 M2 (vs' \otimes (drop (length xs') xs))
    using sequence-to-failure-alt-def
```

```
[OF \ (io\ targets\ PM\ (initial\ PM)\ (vs'\ @\ (drop\ (length\ xs')\ xs)) = \{FAIL\} \land assms(2,3)]
         assms(4)
   by blast
  have length (drop (length xs') xs) < length xs
   by (metis (no-types) \langle xs = xs' \otimes drop \ (length \ xs') \ xs \rangle \ \langle xs' \neq [] \rangle \ length-append
       length-greater-0-conv less-add-same-cancel2)
  have vs' \in L_{in} \ M1 \ V
  proof -
   have V'' \in Perm \ V \ M1
     using assms(5) unfolding N.simps by blast
   then obtain f where f-def: V'' = image f V
                               \land (\forall v \in V . f v \in language\text{-}state\text{-}for\text{-}input M1 (initial M1) v)
     unfolding Perm.simps by blast
   then obtain v where v \in V vs' = f v
     using \langle vs' \in V'' \rangle by auto
   then have vs' \in language-state-for-input M1 (initial M1) v
     using f-def by auto
   have language-state-for-input M1 (initial M1) v = L_{in} M1 \{v\}
     by auto
   moreover have \{v\} \subseteq V
     using \langle v \in V \rangle by blast
   ultimately have language-state-for-input M1 (initial M1) v \subseteq L_{in} M1 V
     unfolding language-state-for-inputs.simps language-state-for-input.simps by blast
   then show ?thesis
     using \langle vs' \in language-state-for-input M1 (initial M1) v \rangle by blast
  qed
  have \neg minimal-sequence-to-failure-extending V M1 M2 vs xs
   using \langle vs' \in L_{in} \ M1 \ V \rangle
         \langle sequence\text{-to-failure } M1 \ M2 \ (vs' @ (drop (length \ xs') \ xs)) \rangle
         \langle length \ (drop \ (length \ xs') \ xs) < length \ xs \rangle
   using minimal-sequence-to-failure-extending.elims(2) by blast
  then show False
   using assms(1) by linarith
ged
lemma mst fe-no-repetition:
  assumes minimal-sequence-to-failure-extending V M1 M2 vs xs
           OFSM M1
  and
           OFSM M2
  and
           test-tools M2 M1 FAIL PM V \Omega
  and
           V'' \in N \ (vs@xs') \ M1 \ V
  and
  and
           prefix xs' xs
shows \neg Rep\text{-}Pre\ M2\ M1\ vs\ xs'
  and \neg Rep\text{-}Cov\ M2\ M1\ V''\ vs\ xs'
  using minimal-sequence-to-failure-extending-implies-Rep-Pre[OF assms]
       minimal-sequence-to-failure-extending-implies-Rep-Cov[OF\ assms]
 by linarith+
```

6.2 Sufficiency of the test suite to test for reduction

The following lemma proves that set of input sequences generated in the final iteration of the TS function constitutes a test suite sufficient to test for reduction the FSMs it has been generated for.

This proof is performed by contradiction: If the test suite is not sufficient, then some minimal sequence to a failure extending the deterministic state cover must exist. Due to the test suite being assumed insufficient, this sequence cannot be contained in it and hence a prefix of it must have been contained in one of the sets calculated by the R function. This is only possible if the prefix is not a minimal sequence to a failure extending the deterministic state cover or if the test suite observes a failure, both of which violates the assumptions.

```
lemma asc-sufficiency:
 assumes OFSM M1
           OFSM M2
 and
           asc-fault-domain M2\ M1\ m
 and
 and
           \textit{test-tools M2 M1 FAIL PM V } \Omega
           final-iteration M2 M1 \Omega V m i
  and
shows M1 \leq \llbracket (TS \ M2 \ M1 \ \Omega \ V \ m \ i) \ . \ \Omega \rrbracket \ M2 \longrightarrow M1 \leq M2
proof
  assume atc-io-reduction-on-sets M1 (TS M2 M1 \Omega V m i) \Omega M2
  show M1 \leq M2
  proof (rule ccontr)
   let ?TS = \lambda n. TS M2 M1 \Omega V m n
   let ?C = \lambda n . C M2 M1 \Omega V m n
   let ?RM = \lambda n . RM M2 M1 \Omega V m n
   assume \neg M1 \leq M2
   obtain vs xs where minimal-sequence-to-failure-extending V M1 M2 vs xs
     using assms(1) assms(2) assms(4)
            minimal-sequence-to-failure-extending-det-state-cover-ob[OF - - - \langle \neg M1 \preceq M2 \rangle, of V]
     by blast
   then have vs \in L_{in} M1 V
             sequence-to-failure M1 M2 (vs @ xs)
             \neg (\exists io'. \exists w' \in L_{in} M1 \ V . sequence-to-failure M1 M2 (w' @ io')
                                                       \land length io' < length xs)
     by auto
   then have vs@xs \in L\ M1 - L\ M2
     by auto
   have vs@xs \in L_{in} M1 \{map fst (vs@xs)\}
     by (metis (full-types) Diff-iff \langle vs @ xs \in L M1 - L M2 \rangle insertI1
         language-state-for-inputs-map-fst)
   have vs@xs \notin L_{in} M2 \{map fst (vs@xs)\}
     by (meson Diff-iff \langle vs @ xs \in L \ M1 - L \ M2 \rangle language-state-for-inputs-in-language-state
         subsetCE)
   have finite V
     using det-state-cover-finite assms(4,2) by auto
   then have finite (?TS i)
     using TS-finite[of VM2] assms(2) by auto
   then have io-reduction-on M1 (?TS i) M2
     using io-reduction-from-atc-io-reduction
           [OF \langle atc\text{-}io\text{-}reduction\text{-}on\text{-}sets \ M1 \ (TS \ M2 \ M1 \ \Omega \ V \ m \ i) \ \Omega \ M2 \rangle]
     by auto
   have map\ fst\ (vs@xs) \notin ?TS\ i
   proof
     have f1: \forall ps \ P \ Pa. \ (ps::('a \times 'b) \ list) \notin P - Pa \vee ps \in P \wedge ps \notin Pa
     have \forall P \ Pa \ ps. \ \neg \ P \subseteq Pa \lor (ps::('a \times 'b) \ list) \in Pa \lor ps \notin P
       by blast
     then show ?thesis
        using f1 by (metis (no-types) \langle vs @ xs \in L M1 - L M2 \rangle \langle io\text{-reduction-on } M1 \ (?TS \ i) M2 \rangle
                    language-state-for-inputs-in-language-state language-state-for-inputs-map-fst)
   \mathbf{qed}
   have map fst vs \in V
     using \langle vs \in L_{in} \ M1 \ V \rangle by auto
   let ?stf = map fst (vs@xs)
   let ?stfV = map fst vs
   let ?stfX = map fst xs
```

```
have ?stf = ?stfV @ ?stfX
 by simp
then have ?stfV @ ?stfX \notin ?TS i
 using \langle ?stf \notin ?TS i \rangle by auto
have mcp (?stfV @ ?stfX) V ?stfV
  by (metis \ \langle map \ fst \ (vs @ xs) = map \ fst \ vs @ map \ fst \ xs \rangle

⟨minimal-sequence-to-failure-extending V M1 M2 vs xs⟩ assms(1) assms(2) assms(4)
      minimal-sequence-to-failure-extending-mcp)
have set ?stf \subseteq inputs M1
 by (meson\ DiffD1\ \langle vs\ @\ xs \in L\ M1\ -\ L\ M2\rangle\ assms(1)\ language-state-inputs)
then have set ?stf \subseteq inputs M2
 using assms(3) by blast
moreover have set ?stf = set ?stfV \cup set ?stfX
 by simp
ultimately have set ?stfX \subseteq inputs M2
 by blast
obtain xr j where xr \neq ?stfX
                  prefix xr ?stfX
                  Suc j \leq i
                  ?stfV@xr \in RM\ M2\ M1\ \Omega\ V\ m\ (Suc\ j)
 \textbf{using} \ \textit{TS-non-containment-causes-final-suc} [\textit{OF} \ \ \ \ ?\textit{stfV} \ @ \ \ ?\textit{stfX} \not \in \ ?\textit{TS} \ i \rangle
        \langle mcp \ (?stfV @ ?stfX) \ V \ ?stfV \rangle \ \langle set \ ?stfX \subseteq inputs \ M2 \rangle \ assms(5,2)]
 by blast
let ?yr = take (length xr) (map snd xs)
have length ?yr = length xr
 using \langle prefix \ xr \ (map \ fst \ xs) \rangle prefix-length-le by fastforce
have (xr \mid | ?yr) = take (length xr) xs
 by (metis (no-types, opaque-lifting) \( \text{prefix } xr \) (map \( fst \) xs) \( append-eq-conv-conj \) \( prefixE \) take-zip
      zip-map-fst-snd)
have prefix (vs@(xr || ?yr)) (vs@xs)
 by (simp\ add: \langle xr \mid |\ take\ (length\ xr)\ (map\ snd\ xs) = take\ (length\ xr)\ xs > take-is-prefix)
have xr = take (length xr) (map fst xs)
  by (metis \langle length \ (take \ (length \ xr) \ (map \ snd \ xs)) = length \ xr)
      \langle xr \mid | take (length xr) (map snd xs) = take (length xr) xs map-fst-zip take-map)
have vs@(xr \mid | ?yr) \in L M1
  by (metis\ DiffD1 \ \langle prefix\ (vs\ @\ (xr\ ||\ take\ (length\ xr)\ (map\ snd\ xs)))\ (vs\ @\ xs)\rangle
       \langle vs \ @ \ xs \in L \ M1 \ - \ L \ M2 \rangle \ language\text{-}state\text{-}pre\text{fix} \ pre\text{fix} E) 
then have vs@(xr || ?yr) \in L_{in} M1 \{?stfV @ xr\}
  by (metis \langle length (take (length xr) (map snd xs)) = length xr insertI1
      language-state-for-inputs-map-fst map-append map-fst-zip)
have length xr < length xs
 by (metis \ \langle xr = take \ (length \ xr) \ (map \ fst \ xs)) \ \langle xr \neq map \ fst \ xs \rangle \ not-le-imp-less \ take-all
      take-map)
from \langle stfV@xr \in RM\ M2\ M1\ \Omega\ V\ m\ (Suc\ j) \rangle have stfV@xr \in \{xs' \in C\ M2\ M1\ \Omega\ V\ m\ (Suc\ j) \}.
    (\neg (L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\}))
    \lor (\forall io \in L_{in} M1 \{xs'\}).
        (\exists \ V'' \in N \ io \ M1 \ V \ .
          (\exists S1.
            (\exists vs xs.
              io = (vs@xs)
              \wedge \ mcp \ (vs@xs) \ V^{\prime\prime} \ vs
```

```
\land S1 \subseteq nodes M2
                 \land \ (\forall \ s1 \in S1 \ . \ \forall \ s2 \in S1 \ .
                   s1 \neq s2 \longrightarrow
                      (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V'')
                         \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}
                            B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega ))
                 \land m < LB \ M2 \ M1 \ vs \ xs \ (TS \ M2 \ M1 \ \Omega \ V \ m \ j \cup V) \ S1 \ \Omega \ V''))))
  unfolding RM.simps by blast
moreover have \forall xs' \in ?C (Suc j) . L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\}
  fix xs' assume xs' \in ?C (Suc j)
  from \langle Suc \ j \leq i \rangle have ?C \ (Suc \ j) \subseteq ?TS \ i
     using C-subset TS-subset by blast
  then have \{xs'\} \subseteq ?TS i
     using \langle xs' \in ?C (Suc j) \rangle by blast
  show L_{in} M1 \{xs'\}\subseteq L_{in} M2 \{xs'\}
     using io-reduction-on-subset [OF \land io\text{-reduction-on } M1 \ (?TS \ i) \ M2 \land \{xs'\} \subseteq ?TS \ i\rangle]
     by assumption
qed
ultimately have (\forall io \in L_{in} M1 \{?stfV@xr\}).
         (\exists V'' \in N \text{ io } M1 V.
            (\exists S1.
              (\exists vs xs.
                 io = (vs@xs)
                 \land mcp (vs@xs) V^{\prime\prime} vs
                 \land \ S1 \subseteq nodes \ M2
                 \land \ (\forall \ s1 \in S1 \ . \ \forall \ s2 \in S1 \ .
                   s1 \neq s2 \longrightarrow
                      (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V'')
                         \forall io2 \in \mathit{RP} \; \mathit{M2} \; \mathit{s2} \; \mathit{vs} \; \mathit{xs} \; \mathit{V}^{\prime\prime} \; .
                            B~M1~io1~\Omega \neq B~M1~io2~\Omega ))
                 \land m < LB \ M2 \ M1 \ vs \ xs \ (TS \ M2 \ M1 \ \Omega \ V \ m \ j \cup V) \ S1 \ \Omega \ V''))))
  \mathbf{by} blast
then have
         (\exists \ V^{\prime\prime} \in N \ (vs@(xr \mid \mid ?yr)) \ M1 \ V \ .
            (\exists S1.
              (\exists vs'xs'.
                 vs@(xr \mid | ?yr) = (vs'@xs')
                 \land mcp (vs'@xs') V'' vs'
                 \land S1 \subseteq nodes M2
                 \land \ (\forall \ s1 \in S1 \ . \ \forall \ s2 \in S1 \ .
                   s1 \neq s2 \longrightarrow
                      (\forall io1 \in RP \ M2 \ s1 \ vs' \ xs' \ V'').
                         \forall io2 \in RP \ M2 \ s2 \ vs' \ xs' \ V''
                            B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega ))
                 \land m < LB \ M2 \ M1 \ vs' \ xs' \ (TS \ M2 \ M1 \ \Omega \ V \ m \ j \cup V) \ S1 \ \Omega \ V'')))
  using \langle vs@(xr \mid | ?yr) \in L_{in} M1 \{?stfV @ xr} \rangle
  by blast
then obtain V^{\prime\prime} S1 vs^\prime xs^\prime where RM\text{-}impl:
                                         V^{\prime\prime} \in N \ (vs@(xr \mid\mid ?yr)) \ M1 \ V
                                         vs@(xr \mid\mid ?yr) = (vs'@xs')
                                         mcp (vs'@xs') V'' vs'
                                         S1 \subseteq nodes M2
                                        (\forall s1 \in S1 . \forall s2 \in S1 .
                                           s1 \neq s2 \longrightarrow
                                              (\forall io1 \in RP \ M2 \ s1 \ vs' \ xs' \ V'')
                                                  \forall io2 \in RP \ M2 \ s2 \ vs' \ xs' \ V''.
                                                     B M1 io1 \Omega \neq B M1 io2 \Omega ))
                                         m < LB \; M2 \; M1 \; vs' \; xs' \; (TS \; M2 \; M1 \; \Omega \; V \; m \; j \cup V) \; S1 \; \Omega \; V''
  by blast
```

```
have ?stfV = mcp' (map fst (vs @ (xr || take (length xr) (map snd xs)))) V
 \mathbf{by} \ (\textit{metis} \ (\textit{full-types}) \ \langle \textit{length} \ (\textit{take} \ (\textit{length} \ \textit{xr}) \ (\textit{map} \ \textit{snd} \ \textit{xs})) = \textit{length} \ \textit{xr} \rangle
      \langle mcp \; (map \; fst \; vs \; @ \; map \; fst \; xs) \; V \; (map \; fst \; vs) \rangle \; \langle prefix \; xr \; (map \; fst \; xs) \rangle \; map-append
      map-fst-zip mcp'-intro mcp-prefix-of-suffix)
have is-det-state-cover M2 V
  using assms(4) by blast
moreover have well-formed M2
  using assms(2) by auto
moreover have finite V
  using det-state-cover-finite assms(4,2) by auto
ultimately have \mathit{vs} \in \mathit{V}^{\prime\prime}
                 vs = mcp' (vs @ (xr || take (length xr) (map snd xs))) V''
  using N-mcp-prefix[OF \ (stfV = mcp' \ (map \ fst \ (vs @ (xr || take \ (length \ xr) \ (map \ snd \ xs))))] \ V)
        \langle V'' \in N \ (vs@(xr \mid | ?yr)) \ M1 \ V \rangle, \ of \ M2]
 by simp+
have vs' = vs
 by (metis\ (no\text{-}types)\ \langle mcp\ (vs'\ @\ xs')\ V''\ vs')
      \langle vs = mcp' (vs @ (xr || take (length xr) (map snd xs))) V'' \rangle
      \langle vs @ (xr || take (length xr) (map snd xs)) = vs' @ xs' mcp'-intro)
then have xs' = (xr \mid | ?yr)
 using \langle vs \otimes (xr \mid take (length xr) (map snd xs)) = vs' \otimes xs'  by blast
have V \subseteq ?TS i
proof -
 have 1 \le i
    using \langle Suc \ j \leq i \rangle by linarith
 then have ?TS 1 \subseteq ?TS i
    using TS-subset by blast
 then show ?thesis
    by auto
qed
have ?stfV@xr \in ?C (Suc j)
 using \langle ?stfV@xr \in RM \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ j) \rangle unfolding RM.simps by blast
— show that the prerequisites (Prereq) for LB are met by construction
\mathbf{have}\ (\forall\, vs'a {\in}\, V^{\,\prime\prime}.\ prefix\ vs'a\ (vs'\ @\ xs')\ \longrightarrow\ length\ vs'a\ \leq\ length\ vs')
  using \langle mcp \ (vs' @ xs') \ V'' \ vs' \rangle by auto
moreover have atc-io-reduction-on-sets M1 (?TS j \cup V) \Omega M2
proof -
 have j < i
    using \langle Suc \ j < i \rangle by auto
  then have ?TS j \subseteq ?TS i
    by (simp add: TS-subset)
  then show ?thesis
    using atc-io-reduction-on-subset
          [OF \langle atc\text{-}io\text{-}reduction\text{-}on\text{-}sets \ M1 \ (TS \ M2 \ M1 \ \Omega \ V \ m \ i) \ \Omega \ M2 \rangle, of ?TS j]
    by (meson Un-subset-iff \langle V \subseteq ?TS i \rangle \langle atc-io-reduction-on-sets M1 (TS M2 M1 \Omega V m i) \Omega M2\rangle
        atc-io-reduction-on-subset)
qed
moreover have finite (?TS j \cup V)
proof
 have finite (?TS j)
    using TS-finite [OF \land finite\ V \rightarrow, of M2 M1 \Omega m j] assms(2) by auto
  then show ?thesis
    using \langle finite \ V \rangle by blast
qed
```

```
moreover have V \subseteq ?TS j \cup V
  by blast
moreover have (\forall p : (prefix p xs' \land p \neq xs') \longrightarrow map fst (vs' @ p) \in ?TS j \cup V)
proof
  \mathbf{fix} p
  show prefix p \ xs' \land p \neq xs' \longrightarrow map \ fst \ (vs' @ p) \in TS \ M2 \ M1 \ \Omega \ V \ m \ j \cup V
  proof
    assume prefix p xs' \land p \neq xs'
    \mathbf{have}\ \mathit{prefix}\ (\mathit{map}\ \mathit{fst}\ (\mathit{vs'}\ @\ \mathit{p}))\ (\mathit{map}\ \mathit{fst}\ (\mathit{vs'}\ @\ \mathit{xs'}))
      by (simp add: \langle prefix \ p \ xs' \land p \neq xs' \rangle map-mono-prefix)
    have prefix (map fst (vs' @ p)) (?stfV @ xr)
       \mathbf{using} \ \langle \mathit{length} \ (\mathit{take} \ (\mathit{length} \ \mathit{xr}) \ (\mathit{map} \ \mathit{snd} \ \mathit{xs})) = \mathit{length} \ \mathit{xr} \rangle
             \langle prefix \ (map \ fst \ (vs' @ p)) \ (map \ fst \ (vs' @ xs')) \rangle
             \langle vs' = vs \rangle \langle xs' = xr \mid | take (length xr) (map snd xs) \rangle
      by auto
    then have prefix (map fst vs' @ map fst p) (?stfV @ xr)
      by simp
    then have prefix (map fst p) xr
      by (simp\ add: \langle vs' = vs \rangle)
    have ?stfV @ xr \in ?TS (Suc j)
    \mathbf{proof}\ (\mathit{cases}\ j)
       case \theta
       then show ?thesis
         using \langle map \ fst \ vs \ @ \ xr \in C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ j) \rangle by auto
       case (Suc nat)
       then show ?thesis
         using TS.simps(3) \land map\ fst\ vs\ @\ xr \in C\ M2\ M1\ \Omega\ V\ m\ (Suc\ j) \gt\ \mathbf{by}\ blast
    have mcp \ (map \ fst \ vs @ \ xr) \ V \ (map \ fst \ vs)
       using \langle mcp \ (map \ fst \ vs \ @ \ map \ fst \ xs) \ V \ (map \ fst \ vs) \rangle \langle prefix \ xr \ (map \ fst \ xs) \rangle
             mcp-prefix-of-suffix
      \mathbf{by}\ blast
    have map fst vs @ map fst p \in TS M2 M1 \Omega V m (Suc j)
       using TS-prefix-containment[OF < ?stfV @ xr \in ?TS (Suc j) > 
                                          \langle mcp \ (map \ fst \ vs @ \ xr) \ V \ (map \ fst \ vs) \rangle
                                          \langle prefix \ (map \ fst \ p) \ xr \rangle
       by assumption
    have Suc\ (length\ xr) = (Suc\ j)
       using C-index[OF \langle ?stfV@xr \in ?C\ (Suc\ j) \rangle \langle mcp\ (map\ fst\ vs\ @\ xr)\ V\ (map\ fst\ vs) \rangle]
       by assumption
    \mathbf{have} Suc\ (length\ p) < (Suc\ j)
    proof -
       have map fst xs' = xr
         by (metis \ \langle xr = take \ (length \ xr) \ (map \ fst \ xs) \rangle
             \langle xr \mid | take (length xr) (map snd xs) = take (length xr) xs \rangle
             \langle xs' = xr \mid \mid take (length xr) (map snd xs) \rangle take-map)
       then show ?thesis
         by (metis (no-types) Suc-less-eq \langle Suc \ (length \ xr) = Suc \ j \rangle \langle prefix \ p \ xs' \wedge p \neq xs' \rangle
             append-eq-conv-conj length-map nat-less-le prefixE prefix-length-le take-all)
    qed
    have mcp (map fst vs @ map fst p) V (map fst vs)
       using \langle mcp \ (map \ fst \ vs \ @ \ xr) \ V \ (map \ fst \ vs) \rangle \langle prefix \ (map \ fst \ p) \ xr \rangle \ mcp-prefix-of-suffix
      by blast
    then have map fst vs @ map fst p \in ?C (Suc (length (map fst p)))
```

```
using TS-index(2)[OF \langle map \ fst \ vs @ map \ fst \ p \in TS \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ j) \rangle] by auto
    have map fst vs @ map fst p \in ?TS j
       using TS-union[of M2\ M1\ \Omega\ V\ m\ j]
    proof -
       have Suc\ (length\ p) \in \{0..< Suc\ j\}
         using \langle Suc\ (length\ p) < Suc\ j \rangle by force
       then show ?thesis
         by (metis UN-I \langle TS \ M2 \ M1 \ \Omega \ V \ m \ j = (\bigcup j \in set \ [0... \langle Suc \ j]. \ C \ M2 \ M1 \ \Omega \ V \ m \ j) \rangle
              \langle map \; fst \; vs \; @ \; map \; fst \; p \in C \; M2 \; M1 \; \Omega \; V \; m \; (Suc \; (length \; (map \; fst \; p))) \rangle
             length-map set-upt)
    qed
    then show map fst (vs' @ p) \in TS M2 M1 \Omega V m j \cup V
       by (simp \ add: \langle vs' = vs \rangle)
  aed
qed
moreover have vs' @ xs' \in L M2 \cap L M1
  by (metis (no-types, lifting) IntI RM-impl(2)
       \langle \forall xs' \in C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ j). \ L_{in} \ M1 \ \{xs'\} \subseteq L_{in} \ M2 \ \{xs'\} \rangle
       \langle map \ fst \ vs @ \ xr \in C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ j) \rangle
       \langle vs @ (xr || take (length xr) (map snd xs)) \in L_{in} M1 \{map fst vs @ xr\} \rangle
       language-state-for-inputs-in-language-state subsetCE)
ultimately have Prereq M2 M1 vs' xs' (?TS j \cup V) S1 \Omega V''
  using RM-impl(4,5) unfolding Prereq.simps by blast
have V^{\prime\prime} \in Perm\ V\ M1
  \mathbf{using} \ \land V^{\,\prime\prime} \in \mathit{N} \ (\mathit{vs}@(\mathit{xr} \ || \ ?\mathit{yr})) \ \mathit{M1} \ \mathit{V} \land \mathbf{unfolding} \ \mathit{N.simps} \ \mathbf{by} \ \mathit{blast}
have \langle prefix (xr || ?yr) xs \rangle
  by (simp\ add: \langle xr \mid |\ take\ (length\ xr)\ (map\ snd\ xs) = take\ (length\ xr)\ xs \rangle\ take-is-prefix)
— show that furthermore neither Rep_Pre nor Rep_Cov holds
have \neg Rep-Pre M2 M1 vs (xr \mid | ?yr)
  \mathbf{using}\ minimal\text{-}sequence\text{-}to\text{-}failure\text{-}extending\text{-}implies\text{-}Rep\text{-}Pre
         [OF \land minimal\text{-}sequence\text{-}to\text{-}failure\text{-}extending \ V \ M1 \ M2 \ vs \ xs \rangle \ assms(1,2)
             \langle test\text{-}tools\ M2\ M1\ FAIL\ PM\ V\ \Omega \rangle\ RM\text{-}impl(1)
             \langle prefix (xr \mid take (length xr) (map snd xs)) xs \rangle
  by assumption
then have \neg Rep-Pre M2 M1 vs' xs'
  using \langle vs' = vs \rangle \langle xs' = xr \mid | ?yr \rangle by blast
have \neg Rep\text{-}Cov\ M2\ M1\ V''\ vs\ (xr\ ||\ ?yr)
  using minimal-sequence-to-failure-extending-implies-Rep-Cov
         [OF \(\circ\)minimal-sequence-to-failure-extending V M1 M2 vs xs\(\circ\) assms(1,2)
             \langle test\text{-}tools\ M2\ M1\ FAIL\ PM\ V\ \Omega \rangle\ RM\text{-}impl(1)
             \langle prefix (xr \mid | take (length xr) (map snd xs)) xs \rangle]
  by assumption
then have \neg Rep-Cov M2 M1 V'' vs' xs'
  using \langle vs' = vs \rangle \langle xs' = xr \mid | ?yr \rangle by blast
have vs'@xs' \in L\ M1
  using \langle vs \otimes (xr \mid | take (length xr) (map snd xs)) \in L M1 \rangle
         \langle vs' = vs \rangle \langle xs' = xr \mid | take (length xr) (map snd xs) \rangle
  by blast
```

[—] therefore it is impossible to remove the prefix of the minimal sequence to a failure, as this would require M1 to have more than m states

```
have LB\ M2\ M1\ vs'\ xs'\ (?TS\ j\cup V)\ S1\ \Omega\ V''\le card\ (nodes\ M1) using LB\text{-}count[OF\ \langle vs'@xs'\in L\ M1\rangle\ assms(1,2,3)\ \langle test\text{-}tools\ M2\ M1\ FAIL\ PM\ V\ \Omega\rangle\ \langle V''\in Perm\ V\ M1\rangle\ \langle Prereq\ M2\ M1\ vs'\ xs'\ (?TS\ j\cup V)\ S1\ \Omega\ V''\rangle\ \langle \neg\ Rep\text{-}Pre\ M2\ M1\ vs'\ xs'\rangle\ \langle \neg\ Rep\text{-}Cov\ M2\ M1\ V''\ vs'\ xs'\rangle] by assumption then have LB\ M2\ M1\ vs'\ xs'\ (?TS\ j\cup V)\ S1\ \Omega\ V''\le m using assms(3) by linarith then show False using \langle m< LB\ M2\ M1\ vs'\ xs'\ (?TS\ j\cup V)\ S1\ \Omega\ V''\rangle by linarith qed qed
```

6.3 Main result

begin

The following lemmata add to the previous result to show that some FSM M1 is a reduction of FSM M2 if and only if it is a reduction on the test suite generated by the adaptive state counting algorithm for these FSMs.

```
{f lemma}\ asc\text{-}soundness:
                 OFSM M1
  assumes
               OFSM M2
 and
shows M1 \prec M2 \longrightarrow atc\text{-}io\text{-}reduction\text{-}on\text{-}sets } M1 \ T \ \Omega \ M2
  using atc-io-reduction-on-sets-reduction assms by blast
lemma asc-main-theorem:
  assumes OFSM M1
           OFSM M2
 and
           asc-fault-domain M2 M1 m
 and
           test-tools M2 M1 FAIL PM V \Omega
 and
           final-iteration M2 M1 \Omega V m i
 and
            M1 \prec M2 \longleftrightarrow atc\text{-io-reduction-on-sets} \ M1 \ (TS \ M2 \ M1 \ \Omega \ V \ m \ i) \ \Omega \ M2
shows
by (metis asc-sufficiency assms(1-5) atc-io-reduction-on-sets-reduction)
end
theory ASC-Hoare
```

 $\mathbf{imports}\ ASC\text{-}Sufficiency\ HOL-Hoare. Hoare-Logic$

7 Correctness of the Adaptive State Counting Algorithm in Hoare-Logic

In this section we give an example implementation of the adaptive state counting algorithm in a simple WHILE-language and prove that this implementation produces a certain output if and only if input FSM M1 is a reduction of input FSM M2.

```
lemma atc-io-reduction-on-sets-from-obs: assumes L_{in} M1 T \subseteq L_{in} M2 T and (\bigcup io \in L_{in} M1 T. \{io\} \times B M1 io \Omega) \subseteq (\bigcup io \in L_{in} M2 T. \{io\} \times B M2 io \Omega) shows atc-io-reduction-on-sets M1 T \Omega M2 unfolding atc-io-reduction-on-sets.simps atc-io-reduction-on.simps proof fix iseq assume iseq \in T have L_{in} M1 \{iseq\} \subseteq L_{in} M2 \{iseq\} by (metis \ (iseq \in T) \ assms(1) \ bot.extremum insert-mono io-reduction-on-subset <math>mk-disjoint-insert) moreover have \forall io \in L_{in} M1 \{iseq\}. B M1 io \Omega \subseteq B M2 io \Omega proof fix io assume io \in L_{in} M1 \{iseq\} then have io \in L_{in} M2 \{iseq\}
```

```
using calculation by blast
    show B M1 io \Omega \subseteq B M2 io \Omega
    proof
      fix x assume x \in B M1 io \Omega
      have io \in L_{in} M1 T
         using \langle io \in L_{in} \ M1 \ \{iseq\} \rangle \langle iseq \in T \rangle by auto
       moreover have (io,x) \in \{io\} \times B \ M1 \ io \ \Omega
         using \langle x \in B \ M1 \ io \ \Omega \rangle by blast
       ultimately have (io,x) \in (\bigcup io \in L_{in} \ M1 \ T. \{io\} \times B \ M1 \ io \ \Omega)
         by blast
      then have (io,x) \in (\bigcup io \in L_{in} \ M2 \ T. \{io\} \times B \ M2 \ io \ \Omega)
         using assms(2) by blast
       then have (io,x) \in \{io\} \times B \ M2 \ io \ \Omega
         by blast
      then show x \in B M2 io \Omega
         by blast
    qed
  qed
  ultimately show L_{in} M1 {iseq} \subseteq L_{in} M2 {iseq}
                       \land (\forall io \in L_{in} \ M1 \ \{iseq\}. \ B \ M1 \ io \ \Omega \subseteq B \ M2 \ io \ \Omega)
    by linarith
\mathbf{qed}
{f lemma}\ atc	enthing{-io-reduction-on-sets-to-obs}:
  assumes atc-io-reduction-on-sets M1 T \Omega M2
shows L_{in} M1 T \subseteq L_{in} M2 T
  and (\bigcup io \in L_{in} \ M1 \ T. \{io\} \times B \ M1 \ io \ \Omega) \subseteq (\bigcup io \in L_{in} \ M2 \ T. \{io\} \times B \ M2 \ io \ \Omega)
proof
  fix x assume x \in L_{in} M1 T
  show x \in L_{in} M2 T
    using assms unfolding atc-io-reduction-on-sets.simps atc-io-reduction-on.simps
  proof -
    assume a1: \forall iseq \in T. \ L_{in} \ M1 \ \{iseq\} \subseteq L_{in} \ M2 \ \{iseq\}
                    \land (\forall io \in L_{in} \ M1 \ \{iseq\}. \ B \ M1 \ io \ \Omega \subseteq B \ M2 \ io \ \Omega)
    have f2: x \in UNION\ T\ (language-state-for-input\ M1\ (initial\ M1))
      by (metis (no-types) \langle x \in L_{in} \ M1 \ T \rangle language-state-for-inputs-alt-def)
    obtain aas :: 'a list set \Rightarrow ('a list \Rightarrow ('a \times 'b) list set) \Rightarrow ('a \times 'b) list \Rightarrow 'a list
      \forall x0 \ x1 \ x2. \ (\exists \ v3. \ v3 \in x0 \ \land \ x2 \in x1 \ v3) = (aas \ x0 \ x1 \ x2 \in x0 \ \land \ x2 \in x1 \ (aas \ x0 \ x1 \ x2))
      bv moura
    then have \forall ps \ f \ A. \ (ps \notin UNION \ A \ f \lor aas \ A \ f \ ps \in A \land ps \in f \ (aas \ A \ f \ ps))
                              \land (ps \in UNION \ A \ f \lor (\forall \ as. \ as \notin A \lor ps \notin f \ as))
      by blast
    then show ?thesis
       \mathbf{using}\ \textit{f2}\ \textit{a1}\ \mathbf{by}\ (\textit{metis}\ (\textit{no-types})\ \textit{contra-subsetD}\ \textit{language-state-for-input-alt-def}
                         language-state-for-inputs-alt-def)
  qed
next
  show (\bigcup io \in L_{in} \ M1 \ T. \{io\} \times B \ M1 \ io \ \Omega) \subseteq (\bigcup io \in L_{in} \ M2 \ T. \{io\} \times B \ M2 \ io \ \Omega)
    fix iox assume iox \in (\bigcup io \in L_{in} \ M1 \ T. \{io\} \times B \ M1 \ io \ \Omega)
    then obtain io x where iox = (io,x)
      by blast
    have io \in L_{in} M1 T
       using \langle iox = (io, x) \rangle \langle iox \in (\bigcup io \in L_{in} \ M1 \ T. \{io\} \times B \ M1 \ io \ \Omega) \rangle by blast
    have (io,x) \in \{io\} \times B \ M1 \ io \ \Omega
      using \langle iox = (io, x) \rangle \langle iox \in (\bigcup io \in L_{in} \ M1 \ T. \{io\} \times B \ M1 \ io \ \Omega) \rangle by blast
    then have x \in B M1 io \Omega
      by blast
    then have x \in B M2 io \Omega
      using assms unfolding atc-io-reduction-on-sets.simps atc-io-reduction-on.simps
```

```
by (metis (no-types, lifting) UN-E \langle io \in L_{in} \ M1 \ T \rangle language-state-for-input-alt-def
            language\text{-}state\text{-}for\text{-}inputs\text{-}alt\text{-}def\ subset}CE)
    then have (io,x) \in \{io\} \times B \ M2 \ io \ \Omega
       by blast
    then have (io,x) \in (\bigcup io \in L_{in} \ M2 \ T. \{io\} \times B \ M2 \ io \ \Omega)
       using \langle io \in L_{in} \ M1 \ T \rangle by auto
    then show iox \in (\bigcup io \in L_{in} \ M2 \ T. \{io\} \times B \ M2 \ io \ \Omega)
       using \langle iox = (io, x) \rangle by auto
  qed
qed
{\bf lemma}\ atc\text{-}io\text{-}reduction\text{-}on\text{-}sets\text{-}alt\text{-}def:
  shows atc-io-reduction-on-sets M1 T \Omega M2 =
             (L_{in} \ M1 \ T \subseteq L_{in} \ M2 \ T
              \land (\bigcup io \in L_{in} \ M1 \ T. \{io\} \times B \ M1 \ io \ \Omega)
                   \subseteq (\bigcup io \in L_{in} \ M2 \ T. \{io\} \times B \ M2 \ io \ \Omega))
  using atc-io-reduction-on-sets-to-obs[of M1 T \Omega M2]
  and atc-io-reduction-on-sets-from-obs[of M1 T M2 \Omega]
  by blast
{f lemma} as c-algorithm-correctness:
VARS\ tsN\ cN\ rmN\ obs\ obsI\ obs\Omega\ obsI_{\Omega}\ iter\ isReduction
     OFSM M1 \wedge OFSM M2 \wedge asc-fault-domain M2 M1 m \wedge test-tools M2 M1 FAIL PM V \Omega
  }
  tsN := \{\};
  cN := V;
  rmN := \{\};
  obs := L_{in} M2 cN;
  obsI := L_{in} \ M1 \ cN;
  obs_{\Omega} := (\bigcup io \in L_{in} \ M2 \ cN. \{io\} \times B \ M2 \ io \ \Omega);
  obsI_{\Omega} := (\bigcup io \in L_{in} \ M1 \ cN. \{io\} \times B \ M1 \ io \ \Omega);
  iter := 1;
  WHILE (cN \neq \{\} \land obsI \subseteq obs \land obsI_{\Omega} \subseteq obs_{\Omega})
  INV {
    0 < iter
    \wedge tsN = TS M2 M1 \Omega V m (iter-1)
    \wedge \ cN = C \ M2 \ M1 \ \Omega \ V \ m \ iter
    \wedge rmN = RM M2 M1 \Omega V m (iter-1)
    \wedge \ obs = L_{in} \ M2 \ (tsN \cup cN)
    \wedge \ obsI = L_{in} \ M1 \ (tsN \cup cN)
    \wedge \ obs_{\Omega} = (\bigcup io \in L_{in} \ M2 \ (tsN \cup cN). \ \{io\} \times B \ M2 \ io \ \Omega)
    \wedge \ obsI_{\Omega} = \overline{(\bigcup io \in L_{in} \ M1 \ (tsN \cup cN). \ \{io\} \times B \ M1 \ io \ \Omega)}
    \land \ OFSM \ M1 \ \land \ OFSM \ M2 \ \land \ asc\mbox{-}fault\mbox{-}domain \ M2 \ M1 \ m \ \land \ test\mbox{-}tools \ M2 \ M1 \ FAIL \ PM \ V \ \Omega
  DO
    iter := iter + 1;
    rmN := \{xs' \in cN .
       (\neg (L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\}))
       \vee (\forall io \in L_{in} M1 \{xs'\}).
            (\exists V'' \in N \text{ io } M1 V.
              (\exists S1.
                 (\exists vs xs.
                   io = (vs@xs)
                   \land \ mcp \ (vs@xs) \ V^{\prime\prime} \ vs
                   \land S1 \subseteq nodes M2
                   \land (\forall s1 \in S1 . \forall s2 \in S1 .
                     s1 \neq s2 \longrightarrow
                        (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V'')
                           \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''
                              B~M1~io1~\Omega \neq B~M1~io2~\Omega ))
                   \land m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V''))));
```

```
tsN := tsN \cup cN;
    cN := append\text{-}set (cN - rmN) (inputs M2) - tsN;
    obs := obs \cup L_{in} M2 cN;
    obsI := obsI \cup L_{in} \ M1 \ cN;
    obs_{\Omega} := obs_{\Omega} \cup (\bigcup io \in L_{in} \ M2 \ cN. \{io\} \times B \ M2 \ io \ \Omega);
    obsI_{\Omega} := obsI_{\Omega} \cup (\bigcup io \in L_{in} \ M1 \ cN. \{io\} \times B \ M1 \ io \ \Omega)
  isReduction := ((obsI \subseteq obs) \land (obsI_{\Omega} \subseteq obs_{\Omega}))
     isReduction = M1 \leq M2 — variable isReduction is used only as a return value, it is true if and only if M1 is a
reduction of M2
  }
proof(vcg)
  assume precond: OFSM\ M1\ \land\ OFSM\ M2\ \land\ asc\mbox{-}fault\mbox{-}domain\ M2\ M1\ m\ \land\ test\mbox{-}tools\ M2\ M1\ FAIL\ PM\ V\ \Omega
  have \{\} = TS M2 M1 \Omega V m (1-1)
        V = C M2 M1 \Omega V m 1
        \{\} = RM \ M2 \ M1 \ \Omega \ V \ m \ (1-1)
        L_{in} \ M2 \ V = L_{in} \ M2 \ (\{\} \cup V)
        L_{in} \ M1 \ V = L_{in} \ M1 \ (\{\} \cup \ V)
        (\bigcup io \in L_{in} \ M2 \ V. \{io\} \times B \ M2 \ io \ \Omega)
           = (\bigcup io \in L_{in} \ M2 \ (\{\} \cup V). \ \{io\} \times B \ M2 \ io \ \Omega)
        (\bigcup io \in L_{in} \ M1 \ V. \{io\} \times B \ M1 \ io \ \Omega)
           = (\bigcup io \in L_{in} \ M1 \ (\{\} \cup V). \ \{io\} \times B \ M1 \ io \ \Omega)
    using precond by auto
  moreover have OFSM M1 \wedge OFSM M2 \wedge asc-fault-domain M2 M1 m \wedge test-tools M2 M1 FAIL PM V \Omega
    using precond by assumption
  ultimately show 0 < (1::nat) \land
                     \{\} = TS M2 M1 \Omega V m (1-1) \wedge
                      V = C M2 M1 \Omega V m 1 \wedge
                     \{\} = RM M2 M1 \Omega V m (1-1) \wedge
                     L_{in} M2 V = L_{in} M2 (\{\} \cup V) \land
                     L_{in} M1 V = L_{in} M1 (\{\} \cup V) \wedge
                     (\bigcup io \in L_{in} \ M2 \ V. \{io\} \times B \ M2 \ io \ \Omega)
                         = (\bigcup io \in L_{in} \ M2 \ (\{\} \cup V). \ \{io\} \times B \ M2 \ io \ \Omega) \land 
                     (\bigcup io \in L_{in} \ M1 \ V. \{io\} \times B \ M1 \ io \ \Omega)
                         = (\bigcup io \in L_{in} \ M1 \ (\{\} \cup V). \ \{io\} \times B \ M1 \ io \ \Omega) \land 
                     OFSM M1 \wedge OFSM M2 \wedge asc-fault-domain M2 M1 m \wedge test-tools M2 M1 FAIL PM V \Omega
    by linarith+
next
  \mathbf{fix}\ \mathit{tsN}\ \mathit{cN}\ \mathit{rmN}\ \mathit{obs}\ \mathit{obsI}\ \mathit{obsI}_{\Omega}\ \mathit{obsI}_{\Omega}\ \mathit{iter}\ \mathit{isReduction}
  assume precond : (0 < iter \land
                        tsN = TS M2 M1 \Omega V m (iter - 1) \wedge
                        cN = C M2 M1 \Omega V m iter \wedge
                        rmN = RM M2 M1 \Omega V m (iter - 1) \wedge
                        obs = L_{in} M2 (tsN \cup cN) \wedge
                        obsI = L_{in} \ M1 \ (tsN \cup cN) \ \land
                        obs_{\Omega} = (\bigcup io \in L_{in} \ M2 \ (tsN \cup cN). \{io\} \times B \ M2 \ io \ \Omega) \land 
                        obsI_{\Omega} = (\bigcup io \in L_{in} \ M1 \ (tsN \cup cN). \{io\} \times B \ M1 \ io \ \Omega) \land
                        OFSM M1 \wedge OFSM M2 \wedge asc-fault-domain M2 M1 m \wedge test-tools M2 M1 FAIL PM V \Omega)
                      \land cN \neq \{\} \land obsI \subseteq obs \land obsI_{\Omega} \subseteq obs_{\Omega}
  then have 0 < iter
              OFSM M1
              OFSM M2
             asc-fault-domain M2 M1 m
             test-tools M2 M1 FAIL PM V \Omega
             cN \neq \{\}
             obsI \subseteq obs
             tsN = TS \ M2 \ M1 \ \Omega \ V \ m \ (iter-1)
             cN = C M2 M1 \Omega V m iter
             rmN = RM M2 M1 \Omega V m (iter-1)
             obs = L_{in} M2 (tsN \cup cN)
             obsI = L_{in} \ M1 \ (tsN \cup cN)
             obs_{\Omega} = (\bigcup io \in L_{in} \ M2 \ (tsN \cup cN). \{io\} \times B \ M2 \ io \ \Omega)
             obsI_{\Omega} = (\bigcup io \in L_{in} \ M1 \ (tsN \cup cN). \{io\} \times B \ M1 \ io \ \Omega)
    by linarith+
```

```
obtain k where iter = Suc k
  using gr0-implies-Suc[OF \langle 0 < iter \rangle] by blast
then have cN = C M2 M1 \Omega V m (Suc k)
            tsN \,=\, TS \; M2 \; M1 \; \Omega \; V \; m \; k
  using \langle cN = C \ M2 \ M1 \ \Omega \ V \ m \ iter \rangle \langle tsN = TS \ M2 \ M1 \ \Omega \ V \ m \ (iter-1) \rangle by auto
\mathbf{have} \ \mathit{TS} \ \mathit{M2} \ \mathit{M1} \ \Omega \ \mathit{V} \ \mathit{m} \ \mathit{iter} = \ \mathit{TS} \ \mathit{M2} \ \mathit{M1} \ \Omega \ \mathit{V} \ \mathit{m} \ (\mathit{Suc} \ \mathit{k})
           C M2 M1 \Omega V m iter = C M2 M1 \Omega V m (Suc k)
           RM\ M2\ M1\ \Omega\ V\ m\ iter = RM\ M2\ M1\ \Omega\ V\ m\ (Suc\ k)
  using \langle iter = Suc \ k \rangle by presburger +
have rmN-calc[simp] : \{xs' \in cN.
       \neg io-reduction-on M1 \{xs'\} M2 \lor
       (\forall io \in L_{in} \ M1 \ \{xs'\}.
            \exists V'' \in N \text{ io } M1 V.
                \exists S1 \ vs \ xs.
                    io = vs @ xs \land
                    mcp \ (vs @ xs) \ V'' \ vs \land
                    S1 \subseteq nodes M2 \land
                    (\forall s1 \in S1.
                         \forall s2 \in S1.
                             s1 \neq s2 \longrightarrow
                             (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}. \ \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}.
                                 B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega))\ \land
                    m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'') \} =
      RM~M2~M1~\Omega~V~m~iter
proof -
  have \{xs' \in cN.
           \neg io-reduction-on M1 \{xs'\} M2 \lor
          (\forall io \in L_{in} \ M1 \ \{xs'\}.
               \exists V'' \in N \text{ io } M1 V.
                   \exists S1 \ vs \ xs.
                       io = vs @ xs \land
                       mcp \ (vs @ xs) \ V^{\prime\prime} \ vs \ \land
                       S1 \subseteq nodes M2 \land
                       (\forall s1 \in S1.
                            \forall s2 \in S1.
                                s1 \neq s2 \longrightarrow
                                (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}. \ \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}.
                                    B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega)) \land
                       m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'') \} =
          \{xs' \in C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ k).
          \neg io-reduction-on M1 \{xs'\} M2 \lor
          (\forall io \in L_{in} M1 \{xs'\}.
               \exists V'' \in N \text{ io } M1 V.
                   \exists S1 \ vs \ xs.
                       io = vs @ xs \land
                       mcp \ (vs @ xs) \ V'' \ vs \land
                       S1 \subseteq nodes M2 \land
                       (\forall s1 \in S1.
                           \forall s2 \in S1.
                                s1 \neq s2 \longrightarrow
                                (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}. \ \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}.
                                    B M1 io1 \Omega \neq B M1 io2 \Omega)) \wedge
                       m < LB M2 M1 vs xs ((TS M2 M1 \Omega V m k) \cup V) S1 \Omega V'')
    using \langle cN = C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ k) \rangle \langle tsN = TS \ M2 \ M1 \ \Omega \ V \ m \ k \rangle by blast
  moreover have \{xs' \in C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ k).
                       \neg io-reduction-on M1 \{xs'\} M2 \lor
                       (\forall io \in L_{in} \ M1 \ \{xs'\}.
                            \exists \ V^{\prime\prime} \in N \ io \ M1 \ V.
                                \exists S1 \ vs \ xs.
                                   io = vs @ xs \land
```

```
mcp \ (vs @ xs) \ V'' \ vs \land
                                    S1 \subseteq nodes M2 \wedge
                                    (\forall s1 \in S1.
                                         \forall s2 \in S1.
                                             s1 \neq s2 \longrightarrow
                                             (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}. \ \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}.
                                                 B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega)) \land
                                    m < LB M2 M1 vs xs ((TS M2 M1 \Omega V m k) \cup V) S1 \Omega V'') \} =
                       RM M2 M1 \Omega V m (Suc k)
     using RM.simps(2)[of M2 M1 \Omega V m k] by blast
  ultimately have \{xs' \in cN.
                          \neg io-reduction-on M1 \{xs'\} M2 \lor
                          (\forall io \in L_{in} \ M1 \ \{xs'\}.
                               \exists V'' \in N \text{ io } M1 V.
                                  \exists S1 \ vs \ xs.
                                      io = vs @ xs \land
                                      mcp \ (vs \ @ \ xs) \ V^{\prime\prime} \ vs \ \land
                                      S1 \subseteq nodes M2 \land
                                       (\forall s1 \in S1.
                                           \forall s2 \in S1.
                                               s1 \neq s2 \longrightarrow
                                               (\forall \mathit{io1} \in \mathit{RP} \ \mathit{M2} \ \mathit{s1} \ \mathit{vs} \ \mathit{xs} \ \mathit{V}^{\prime\prime}. \ \forall \mathit{io2} \in \mathit{RP} \ \mathit{M2} \ \mathit{s2} \ \mathit{vs} \ \mathit{xs} \ \mathit{V}^{\prime\prime}.
                                                   B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega)) \land
                                       m < LB M2 M1 vs xs (tsN \cup V) S1 \Omega V'') =
                          RM\ M2\ M1\ \Omega\ V\ m\ (Suc\ k)
    by presburger
  then show ?thesis
    using \langle iter = Suc \ k \rangle by presburger
moreover have RM M2 M1 \Omega V m iter = RM M2 M1 \Omega V m (iter + 1 - 1) by simp
ultimately have rmN-calc': \{xs' \in cN.
        \neg io-reduction-on M1 \{xs'\} M2 \lor
       (\forall io \in L_{in} \ M1 \ \{xs'\}.
            \exists V'' \in N \text{ io } M1 V.
                \exists S1 \ vs \ xs.
                    io = \mathit{vs} \ @ \ \mathit{xs} \ \land
                    mcp (vs @ xs) V^{\prime\prime} vs \land
                    S1 \subseteq nodes M2 \land
                    (\forall s1 \in S1.
                         \forall s2 \in S1.
                             s1 \neq s2 \longrightarrow
                             (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}. \ \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}.
                                 B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega))\ \land
                    m < LB M2 M1 vs xs (tsN \cup V) S1 \Omega V'')} =
      RM M2 M1 \Omega V m (iter + 1 - 1) by presburger
have tsN \cup cN = TS \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ k)
proof (cases k)
  case \theta
  then show ?thesis
     using \langle tsN = TS \ M2 \ M1 \ \Omega \ V \ m \ k \rangle \langle cN = C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ k) \rangle by auto
  case (Suc nat)
  then have \mathit{TS}\;\mathit{M2}\;\mathit{M1}\;\Omega\;\mathit{V}\;\mathit{m}\;(\mathit{Suc}\;\mathit{k}) = \mathit{TS}\;\mathit{M2}\;\mathit{M1}\;\Omega\;\mathit{V}\;\mathit{m}\;\mathit{k} \cup \mathit{C}\;\mathit{M2}\;\mathit{M1}\;\Omega\;\mathit{V}\;\mathit{m}\;(\mathit{Suc}\;\mathit{k})
     using TS.simps(3) by blast
  moreover have tsN \cup cN = TS \ M2 \ M1 \ \Omega \ V \ m \ k \cup C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ k)
     using \langle tsN = TS \ M2 \ M1 \ \Omega \ V \ m \ k \rangle \ \langle cN = C \ M2 \ M1 \ \Omega \ V \ m \ (Suc \ k) \rangle by auto
  ultimately show ?thesis
    by auto
ged
then have tsN-calc: tsN \cup cN = TS \ M2 \ M1 \ \Omega \ V \ m \ iter
  using \langle iter = Suc \ k \rangle by presburger
\mathbf{have}\ \mathit{cN-calc}: \mathit{append-set}
       (cN -
```

```
\{xs' \in cN.
         \neg io-reduction-on M1 \{xs'\} M2 \lor
        (\forall io \in L_{in} \ M1 \ \{xs'\}.
             \exists V'' \in N \text{ io } M1 V.
                \exists S1 \ vs \ xs.
                   io = vs @ xs \land
                   mcp \ (vs @ xs) \ V^{\prime\prime} \ vs \ \land
                   S1 \subseteq nodes M2 \land
                   (\forall s1 \in S1.
                        \forall s2 \in S1.
                           s1 \neq s2 \longrightarrow
                           (\forall \mathit{io1} {\in} \mathit{RP} \ \mathit{M2} \ \mathit{s1} \ \mathit{vs} \ \mathit{xs} \ \mathit{V}^{\prime\prime}.
                               \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
                   m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
      (inputs M2) -
     (tsN \cup cN) =
     C M2 M1 \Omega V m (iter + 1)
proof -
  have append-set
        (cN -
          \{xs' \in cN.
           \neg io-reduction-on M1 \{xs'\} M2 \lor
          (\forall io \in L_{in} \ M1 \ \{xs'\}.
               \exists V'' \in N \text{ io } M1 V.
                  \exists S1 \ vs \ xs.
                     io = \mathit{vs} \ @ \ \mathit{xs} \ \land
                      mcp \ (vs \ @ \ xs) \ V^{\prime\prime} \ vs \ \land
                      S1 \subseteq nodes M2 \land
                      (\forall s1 \in S1.
                          \forall s2 \in S1.
                             s1 \neq s2 \longrightarrow
                             (\forall \ io1 {\in} RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}.
                                 \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
                     m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
        (inputs M2) -
       (tsN \cup cN) =
       append\text{-}set
        ((C M2 M1 \Omega V m iter) -
         (RM\ M2\ M1\ \Omega\ V\ m\ iter))
        (inputs M2) -
       (TS M2 M1 \Omega V m iter)
    using \langle cN = C M2 M1 \Omega V m iter \rangle \langle tsN \cup cN = TS M2 M1 \Omega V m iter \rangle rmN-calc by presburger
  moreover have append-set
        ((C M2 M1 \Omega V m iter) -
          (RM\ M2\ M1\ \Omega\ V\ m\ iter))
        (inputs M2) -
       (TS M2 M1 \Omega V m iter) = C M2 M1 \Omega V m (iter + 1)
    have C M2 M1 \Omega V m (iter + 1) = C M2 M1 \Omega V m ((Suc k) + 1)
      using \langle iter = Suc \ k \rangle by presburger +
    moreover have (Suc\ k) + 1 = Suc\ (Suc\ k)
    ultimately have C M2 M1 \Omega V m (iter + 1) = C M2 M1 \Omega V m (Suc (Suc k))
      by presburger
    have C M2 M1 \Omega V m (Suc (Suc k))
             = append-set (C M2 M1 \Omega V m (Suc k) - RM M2 M1 \Omega V m (Suc k)) (inputs M2)
               - TS M2 M1 \Omega V m (Suc k)
      using C.simps(3)[of M2 M1 \Omega V m k] by linarith
    show ?thesis
      using Suc-eq-plus1
             \langle C M2 M1 \Omega V m (Suc (Suc k)) \rangle
               = append-set (C M2 M1 \Omega V m (Suc k) - RM M2 M1 \Omega V m (Suc k)) (inputs M2)
                 - TS M2 M1 \Omega V m (Suc k)>
             \langle iter = Suc \ k \rangle
      by presburger
```

```
ultimately show ?thesis
    by presburger
\mathbf{qed}
have obs\text{-}calc:obs\cup
      L_{in} M2
       (append-set
          (cN -
            \{xs' \in cN.
             \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
            (\forall io \in L_{in} \ M1 \ \{xs'\}.
                  \exists V'' \in N \text{ io } M1 V.
                     \exists S1 \ vs \ xs.
                         io = vs @ xs \land
                         mcp (vs @ xs) V^{\prime\prime} vs \land
                         S1 \subseteq nodes M2 \land
                         (\forall s1 \in S1.
                              \forall s2 \in S1.
                                  s1 \neq s2 \longrightarrow
                                   (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V''.
                                       \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
                         m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
          (inputs M2) -
         (tsN \cup cN)) =
      L_{in} M2
       (tsN \cup cN \cup
         (append-set
           (cN -
             \{xs' \in cN.
              \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
              (\forall io \in L_{in} \ M1 \ \{xs'\}.
                   \exists~V^{\,\prime\prime}\!\!\in\!\!N~io~M1~V.
                      \exists S1 \ vs \ xs.
                          io = vs @ xs \land
                           mcp \ (vs @ xs) \ V^{\prime\prime} \ vs \ \land
                           S1 \subseteq nodes M2 \land
                           (\forall s1 \in S1.
                               \forall s2 \in S1.
                                    (\forall \, io1\!\in\!RP \,\, M2 \,\, s1 \,\, vs \,\, xs \,\, V^{\,\prime\prime}.
                                        \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
                           m < LB \ M2 \ M1 \ vs \ xs \ (tsN \ \cup \ V) \ S1 \ \Omega \ V^{\prime\prime})\})
            (inputs M2) -
          (tsN \cup cN))
  have \bigwedge A. L_{in} M2 (tsN \cup cN \cup A) = obs \cup L_{in} M2 A
     by (metis (no-types) language-state-for-inputs-union precond)
  then show ?thesis
     \mathbf{by} blast
qed
\mathbf{have}\ \mathit{obsI-calc}: \mathit{obsI}\ \cup
      L_{in} M1
       (append\text{-}set
          (cN -
            \{xs' \in cN.
             \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
            (\forall io \in L_{in} \ M1 \ \{xs'\}.
                 \exists V'' \in N \text{ io } M1 V.
                     \exists S1 \ vs \ xs.
                         io = vs @ xs \land
                         mcp \ (vs \ @ \ xs) \ V^{\prime\prime} \ vs \ \land
```

qed

```
S1 \subseteq nodes M2 \land
                           (\forall s1 \in S1.
                                \forall s2 \in S1.
                                    s1 \neq s2 \longrightarrow
                                    (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V''.
                                          \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \land 
                          m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
          (inputs M2) -
         (tsN \cup cN)) =
       L_{in} M1
        (tsN \cup cN \cup
         (append-set
            (cN -
              \{xs' \in cN.
               \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
               (\forall io \in L_{in} M1 \{xs'\}.
                    \exists V'' \in N \text{ io } M1 V.
                        \exists S1 \ vs \ xs.
                            io = vs @ xs \land
                            mcp \ (vs @ xs) \ V'' \ vs \land
                            S1 \subseteq nodes M2 \land
                            (\forall s1 \in S1.
                                 \forall s2 \in S1.
                                     s1 \neq s2 \longrightarrow
                                     (\forall \, io1 {\in} RP \,\, M2 \,\, s1 \,\, vs \,\, xs \,\, V^{\,\prime\prime}.
                                          \forall\: io2 {\in} RP \: M2 \: s2 \: vs \: xs \: V^{\prime\prime}. \: B \: M1 \: io1 \: \Omega \neq B \: M1 \: io2 \: \Omega)) \ \land
                            m < \textit{LB M2 M1 vs xs (tsN } \cup \textit{V}) \textit{ S1 } \Omega \textit{ V''})\})
            (inputs M2) -
          (tsN \cup cN))
proof -
  have \bigwedge A. L_{in} M1 (tsN \cup cN \cup A) = obsI \cup L_{in} M1 A
     by (metis (no-types) language-state-for-inputs-union precond)
  then show ?thesis
     \mathbf{by}\ blast
qed
have obs_{\Omega}-calc: obs_{\Omega} \cup
       (\bigcup io \in L_{in} M2
                (append-set
                   (cN -
                    \{xs' \in cN.
                      \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
                     (\forall io \in L_{in} \ M1 \ \{xs'\}.
                          \exists V'' \in N \text{ io } M1 V.
                              \exists S1 \ vs \ xs.
                                   io = vs @ xs \land
                                   mcp~(vs~@~xs)~V^{\prime\prime}~vs~\wedge
                                   S1 \subseteq nodes\ M2\ \land
                                   (\forall s1 \in S1.
                                        \forall s2 \in S1.
                                            s1 \neq s2 \longrightarrow
                                            (\forall \mathit{io1} {\in} \mathit{RP} \ \mathit{M2} \ \mathit{s1} \ \mathit{vs} \ \mathit{xs} \ \mathit{V}^{\prime\prime}.
                                                 \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
                                   m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
                   (inputs M2) -
                 (tsN \cup cN)).
            \{io\} \times B \ M2 \ io \ \Omega) =
       (\bigcup io \in L_{in} M2
                (tsN \cup cN \cup
                 (append-set
                    (cN -
                     \{xs' \in cN.
                       \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
                       (\forall io \in L_{in} \ M1 \ \{xs'\}.
                           \exists~V^{\prime\prime}\!\!\in\!\!N~io~M1~V.
                                \exists \, S1 \ vs \ xs.
```

```
io = vs @ xs \land
                                      mcp~(vs~@~xs)~V^{\prime\prime}~vs~\wedge
                                      \mathit{S1} \,\subseteq\, nodes\,\,\mathit{M2}\,\,\wedge
                                      (\forall s1 \in S1.
                                           \forall s2 \in S1.
                                                s1 \neq s2 \longrightarrow
                                                (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V''.
                                                      \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
                                      m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
                     (inputs M2) -
                   (tsN \cup cN)).
             \{io\} \times B \ M2 \ io \ \Omega)
  \mathbf{using} \ \langle obs = \mathit{L}_{in} \ \mathit{M2} \ (\mathit{tsN} \ \cup \ \mathit{cN}) \rangle
           \langle obs_{\Omega} = (\bigcup io \in L_{in} \ M2 \ (tsN \cup cN). \ \{io\} \times B \ M2 \ io \ \Omega) \rangle
           obs-calc
  by blast
have obsI_{\Omega}-calc : obsI_{\Omega} \cup
       (\bigcup io \in L_{in} M1
                (append-set
                   (cN -
                     \{xs' \in cN.
                       \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
                      (\forall io \in L_{in} \ M1 \ \{xs'\}.
                            \exists V'' \in N \text{ io } M1 V.
                                \exists S1 \ vs \ xs.
                                     io = vs @ xs \land
                                     mcp~(vs~@~xs)~V^{\prime\prime}~vs~\wedge
                                     S1 \subseteq nodes M2 \land
                                     (\forall s1 \in S1.
                                          \forall s2 \in S1.
                                              s1 \neq s2 \longrightarrow
                                              (\forall \mathit{io1} {\in} \mathit{RP} \ \mathit{M2} \ \mathit{s1} \ \mathit{vs} \ \mathit{xs} \ \mathit{V}^{\prime\prime}.
                                                    \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
                                     m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
                   (inputs M2) -
                  (tsN \cup cN)).
             \{io\} \times B \ M1 \ io \ \Omega) =
       (\bigcup io \in L_{in} M1
                 (tsN \cup cN \cup
                  (append-set
                     (cN -
                       \{xs' \in cN.
                        \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
                        (\forall io \in L_{in} \ M1 \ \{xs'\}.
                             \exists V'' \in N io M1 V.
                                 \exists S1 \ vs \ xs.
                                      io = vs @ xs \land
                                      mcp \ (vs \ @ \ xs) \ V^{\prime\prime} \ vs \ \land
                                      S1 \subseteq nodes M2 \wedge
                                      (\forall s1 \in S1.
                                            \forall s2 \in S1.
                                                s1 \neq s2 \longrightarrow
                                                (\forall \, io1\!\in\!RP \ M2 \ s1 \ vs \ xs \ V^{\,\prime\prime}.
                                                      \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
                                      m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
                     (inputs\ M2)\ -
                   (tsN \cup cN)).
             \{io\} \times B \ M1 \ io \ \Omega
  using \langle obsI = L_{in} \ M1 \ (tsN \cup cN) \rangle
           \langle obsI_{\Omega} = (\bigcup io \in L_{in} \ M1 \ (tsN \cup cN). \ \{io\} \times B \ M1 \ io \ \Omega) \rangle
           obsI\text{-}calc
  by blast
```

```
have 0 < iter + 1
  using \langle \theta < iter \rangle by simp
have tsN \cup cN = TS \ M2 \ M1 \ \Omega \ V \ m \ (iter + 1 - 1)
  using tsN-calc by simp
from \langle \theta < iter + 1 \rangle
       \langle tsN \cup cN = TS \ M2 \ M1 \ \Omega \ V \ m \ (iter + 1 - 1) \rangle
       cN-calc
       rmN-calc'
       obs\text{-}calc
       obsI\text{-}calc
       obs_{\Omega}-calc
       obsI_{\Omega}-calc
       \langle OFSM | M1 \rangle
       ⟨OFSM M2⟩
       ⟨asc-fault-domain M2 M1 m⟩
       \langle test\text{-}tools\ M2\ M1\ FAIL\ PM\ V\ \Omega \rangle
show \theta < iter + 1 \wedge
       tsN \cup cN = TS \ M2 \ M1 \ \Omega \ V \ m \ (iter + 1 - 1) \land
       append\text{-}set
       (cN -
         \{xs' \in cN.
           \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
          (\forall io \in L_{in} \ M1 \ \{xs'\}.
                \exists V'' \in N \text{ io } M1 V.
                    \exists S1 \ vs \ xs.
                        io = vs @ xs \land
                        mcp (vs @ xs) V'' vs \land
                        S1 \subseteq nodes M2 \land
                        (\forall s1 \in S1.
                             \forall s2 \in S1.
                                 s1 \neq s2 \longrightarrow
                                 (\forall \, io1 {\in} RP \,\, M2 \,\, s1 \,\, vs \,\, xs \,\, V^{\,\prime\prime}.
                                       \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
                        m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
       (inputs M2) -
       (tsN \cup cN) =
       C M2 M1 \Omega V m (iter + 1) <math>\wedge
       \{xs' \in cN.
        \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
        (\forall io \in L_{in} \ M1 \ \{xs'\}.
             \exists \ V^{\prime\prime} \in N \ io \ M1 \ V.
                 \exists S1 \ vs \ xs.
                     io = vs @ xs \land
                     mcp~(vs~@~xs)~V^{\prime\prime}~vs~\wedge
                     \mathit{S1} \,\subseteq\, nodes\,\,\mathit{M2}\,\,\wedge
                     (\forall s1 \in S1.
                           \forall s2 \in S1.
                               s1 \neq s2 \longrightarrow
                               (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}. \ \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V^{\prime\prime}.
                                   B\ M1\ io1\ \Omega \neq B\ M1\ io2\ \Omega)) \land
                     \mathit{m} < \mathit{LB} \; \mathit{M2} \; \mathit{M1} \; \mathit{vs} \; \mathit{xs} \; (\mathit{tsN} \; \cup \; \mathit{V}) \; \mathit{S1} \; \Omega \; \mathit{V''}) \} \; = \;
       RM M2 M1 \Omega V m (iter + 1 - 1) \wedge
       obs \cup
       L_{in} M2
       (append-set
          (cN -
            \{xs' \in cN.
             \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
             (\forall io \in L_{in} \ M1 \ \{xs'\}.
                   \exists V'' \in N \text{ io } M1 V.
                       \exists S1 \ vs \ xs.
                           io = vs @ xs \land
                           mcp~(vs~@~xs)~V^{\prime\prime}~vs~\wedge
```

```
S1 \subseteq nodes M2 \land
                    (\forall s1 \in S1.
                         \forall s2 \in S1.
                             s1 \neq s2 \longrightarrow
                             (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V''.
                                   \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \land 
                    m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
   (inputs M2) -
  (tsN \cup cN)) =
L_{in} M2
 (tsN \cup cN \cup
  (append-set
     (cN -
       \{xs' \in cN.
        \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
        (\forall io \in L_{in} \ M1 \ \{xs'\}.
             \exists V'' \in N \text{ io } M1 V.
                 \exists S1 \ vs \ xs.
                     io = vs @ xs \land
                     mcp \ (vs @ xs) \ V'' \ vs \land
                     S1 \subseteq nodes M2 \land
                     (\forall s1 \in S1.
                          \forall s2 \in S1.
                              s1 \neq s2 \longrightarrow
                              (\forall \, io1 {\in} RP \,\, M2 \,\, s1 \,\, vs \,\, xs \,\, V^{\,\prime\prime}.
                                    \forall\: io2 {\in} RP \: M2 \: s2 \: vs \: xs \: V^{\prime\prime}. \: B \: M1 \: io1 \: \Omega \neq B \: M1 \: io2 \: \Omega)) \ \land
                     m < \textit{LB M2 M1 vs xs (tsN } \cup \textit{V}) \textit{ S1 } \Omega \textit{ V''})\})
     (inputs M2) -
    (tsN \cup cN)) \land
obsI \cup
L_{in} M1
 (append-set
   (cN -
     \{xs' \in cN.
       \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
      (\forall io \in L_{in} \ M1 \ \{xs'\}.
            \exists V'' \in N \text{ io } M1 V.
                \exists S1 \ vs \ xs.
                    io = vs @ xs \land
                    mcp \ (vs @ xs) \ V'' \ vs \land
                    S1 \subseteq nodes M2 \land
                    (\forall s1 \in S1.
                         \forall s2 \in S1.
                             s1 \neq s2 \longrightarrow
                             (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}.
                                  \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
                    m < LB \ M2 \ M1 \ vs \ xs \ (tsN \ \cup \ V) \ S1 \ \Omega \ V'')\})
   (inputs M2) -
  (tsN \cup cN)) =
L_{in} M1
 (tsN \cup cN \cup
  (append-set
     (cN -
       \{xs' \in cN.
        \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
        (\forall io \in L_{in} \ M1 \ \{xs'\}.
             \exists V'' \in N \text{ io } M1 V.
                 \exists S1 \ vs \ xs.
                     io = vs @ xs \land
                     mcp (vs @ xs) V^{\prime\prime} vs \land
                     S1 \subseteq nodes M2 \land
                     (\forall s1 \in S1.
                          \forall s2 \in S1.
                              s1 \neq s2 \longrightarrow
                              (\forall \, io1\!\in\!RP \ M2 \ s1 \ vs \ xs \ V^{\,\prime\prime}.
                                    \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \ \land
```

```
m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
     (inputs M2) -
   (tsN \cup cN)) \land
obs_{\Omega} \cup
(\bigcup io \in L_{in} M2
         (append-set
           (cN -
             \{xs' \in cN.
              \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
              (\forall io \in L_{in} \ M1 \ \{xs'\}.
                   \exists V'' \in N \text{ io } M1 V.
                       \exists\, S1\ vs\ xs.
                           io = vs @ xs \land
                           mcp \ (vs @ xs) \ V^{\prime\prime} \ vs \ \land
                           S1 \subseteq nodes M2 \wedge
                           (\forall s1 \in S1.
                                \forall s2 \in S1.
                                    s1 \neq s2 \longrightarrow
                                    (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}.
                                         \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \land
                           m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
           (inputs M2) -
          (tsN \cup cN)).
     \{io\} \times B \ M2 \ io \ \Omega) =
(\bigcup io \in L_{in} M2
        (tsN \cup cN \cup
          (append-set
            (cN -
              \{xs' \in cN.
                \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
               (\forall io \in L_{in} \ M1 \ \{xs'\}.
                    \exists V'' \in N \ io \ M1 \ V.
                        \exists S1 \ vs \ xs.
                             io = vs @ xs \land
                             mcp \ (vs \ @ \ xs) \ V^{\prime\prime} \ vs \ \land
                             S1 \subseteq nodes\ M2\ \land
                             (\forall s1 \in S1.
                                  \forall s2 \in S1.
                                      s1 \neq s2 \longrightarrow
                                      (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}.
                                           \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \land 
                             m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
            (inputs M2) -
           (tsN \cup cN)).
     \{io\} \times B \ M2 \ io \ \Omega) \land
obsI_{\Omega} \cup
(\bigcup io \in L_{in} M1
         (append-set
           (cN -
             \{xs' \in cN.
              \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
              (\forall io \in L_{in} \ M1 \ \{xs'\}.
                   \exists V'' \in N \text{ io } M1 V.
                       \exists S1 \ vs \ xs.
                           io = vs @ xs \land
                           mcp \ (vs @ xs) \ V^{\prime\prime} \ vs \ \land
                           S1 \subseteq nodes M2 \wedge
                           (\forall s1 \in S1.
                                \forall s2 \in S1.
                                    s1 \neq s2 \longrightarrow
                                    (\forall io1 \in RP \ M2 \ s1 \ vs \ xs \ V^{\prime\prime}.
                                         \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \land
                           m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
           (inputs M2) -
          (tsN \cup cN)).
     \{io\} \times B \ M1 \ io \ \Omega) =
```

```
(\bigcup io \in L_{in} M1
                 (tsN \cup cN \cup
                  (append-set
                    (cN -
                     \{xs' \in cN.
                       \neg L_{in} M1 \{xs'\} \subseteq L_{in} M2 \{xs'\} \lor
                      (\forall io \in L_{in} \ M1 \ \{xs'\}.\exists \ V'' \in N \ io \ M1 \ V.
                               \exists S1 \ vs \ xs.
                                  io = vs @ xs \land
                                  mcp \ (vs \ @ \ xs) \ V^{\prime\prime} \ vs \ \land
                                  S1 \subseteq nodes M2 \land
                                  (\forall s1 \in S1.
                                       \forall s2 \in S1.
                                          s1 \neq s2 \longrightarrow
                                          (\forall \, io1\!\in\!RP \,\, M2 \,\, s1 \,\, vs \,\, xs \,\, V^{\,\prime\prime}.
                                               \forall io2 \in RP \ M2 \ s2 \ vs \ xs \ V''. \ B \ M1 \ io1 \ \Omega \neq B \ M1 \ io2 \ \Omega)) \land
                                  m < LB \ M2 \ M1 \ vs \ xs \ (tsN \cup V) \ S1 \ \Omega \ V'')\})
                    (inputs M2) -
                   (tsN \cup cN)).
             \{io\} \times B \ M1 \ io \ \Omega) \land
        OFSM M1 \wedge OFSM M2 \wedge asc-fault-domain M2 M1 m \wedge test-tools M2 M1 FAIL PM V \Omega
next
  \mathbf{fix}\ \mathit{tsN}\ \mathit{cN}\ \mathit{rmN}\ \mathit{obs}\ \mathit{obsI}\ \mathit{obs}_{\Omega}\ \mathit{obsI}_{\Omega}\ \mathit{iter}\ \mathit{isReduction}
  assume precond : (0 < iter \land)
                       tsN = TS M2 M1 \Omega V m (iter - 1) \wedge
                        cN = C M2 M1 \Omega V m iter \wedge
                        rmN = RM \ M2 \ M1 \ \Omega \ V \ m \ (iter - 1) \ \land
                        obs = L_{in} M2 (tsN \cup cN) \land
                        obsI = L_{in} \ M1 \ (tsN \cup cN) \ \land
                        obs_{\Omega} = (\bigcup io \in L_{in} \ M2 \ (tsN \cup cN). \{io\} \times B \ M2 \ io \ \Omega) \land
                        obsI_{\Omega} = (\bigcup io \in L_{in} \ M1 \ (tsN \cup cN). \ \{io\} \times B \ M1 \ io \ \Omega) \ \land
                        OFSM M1 \wedge OFSM M2 \wedge asc-fault-domain M2 M1 m \wedge test-tools M2 M1 FAIL PM V \Omega) \wedge
                      \neg (cN \neq \{\} \land obsI \subseteq obs \land obsI_{\Omega} \subseteq obs_{\Omega})
  then have \theta < iter
              OFSM M1
              OFSM M2
              asc-fault-domain M2 M1 m
              test-tools M2 M1 FAIL PM V \Omega
              cN = \{\} \lor \neg \ obsI \subseteq obs \lor \neg \ obsI_{\Omega} \subseteq obs_{\Omega}
              tsN = TS M2 M1 \Omega V m (iter-1)
              cN = C M2 M1 \Omega V m iter
              rmN = RM M2 M1 \Omega V m (iter-1)
              obs = L_{in} M2 (tsN \cup cN)
              obsI = L_{in} \ M1 \ (tsN \cup cN)
              obs_{\Omega} = (\bigcup io \in L_{in} \ M2 \ (tsN \cup cN). \{io\} \times B \ M2 \ io \ \Omega)
              obsI_{\Omega} = (\bigcup io \in L_{in} \ M1 \ (tsN \cup cN). \{io\} \times B \ M1 \ io \ \Omega)
    by linarith+
  show (obsI \subseteq obs \land obsI_{\Omega} \subseteq obs_{\Omega}) = M1 \preceq M2
  proof (cases\ cN = \{\})
    {\bf case}\  \, True
    then have C M2 M1 \Omega V m iter = {}
       using \langle cN = C M2 M1 \Omega V m iter \rangle by auto
    have is-det-state-cover M2\ V
       using \langle test\text{-}tools \ M2 \ M1 \ FAIL \ PM \ V \ \Omega \rangle by auto
    then have [] \in V
       using det-state-cover-initial of M2 V by simp
    then have V \neq \{\}
       by blast
    have Suc \ \theta < iter
    proof (rule ccontr)
```

```
assume \neg Suc \ \theta < iter
  then have iter = Suc \ \theta
    using \langle \theta < iter \rangle by auto
  then have C M2 M1 \Omega V m (Suc \ \theta) = \{\}
    \mathbf{using} \mathrel{<\!C} \mathit{M2} \mathrel{\mathit{M1}} \Omega \mathrel{\mathit{V}} m \; iter = \{\} \mathrel{\gt} \mathbf{by} \; auto
  moreover have C M2 M1 \Omega V m (Suc \ \theta) = V
    by auto
  ultimately show False
    using \langle V \neq \{\}\rangle by blast
qed
obtain k where iter = Suc \ k
  using gr0-implies-Suc[OF \langle 0 < iter \rangle] by blast
then have Suc \ \theta < Suc \ k
  using \langle Suc \ \theta < iter \rangle by auto
then have \theta < k
  by simp
then obtain k' where k = Suc \ k'
  using qr0-implies-Suc by blast
have iter = Suc (Suc k')
  using \langle iter = Suc \ k \rangle \ \langle k = Suc \ k' \rangle by simp
have TS M2 M1 \Omega V m (Suc (Suc k')) = TS M2 M1 \Omega V m (Suc k') \cup C M2 M1 \Omega V m (Suc (Suc k'))
  using TS.simps(3)[of M2 M1 \Omega V m k'] by blast
then have TS M2 M1 \Omega V m iter = TS M2 M1 \Omega V m (Suc k')
  using True \langle cN = C M2 M1 \Omega V m iter \rangle \langle iter = Suc (Suc k') \rangle by blast
moreover have Suc \ k' = iter - 1
  using \langle iter = Suc (Suc k') \rangle by presburger
ultimately have TS M2 M1 \Omega V m iter = TS M2 M1 \Omega V m (iter - 1)
  by auto
then have tsN = TS M2 M1 \Omega V m iter
  using \langle tsN = TS \ M2 \ M1 \ \Omega \ V \ m \ (iter-1) \rangle by simp
then have TS M2 M1 \Omega V m iter = TS M2 M1 \Omega V m (iter - 1)
  using \langle tsN = TS \ M2 \ M1 \ \Omega \ V \ m \ (iter - 1) \rangle by auto
then have final-iteration M2 M1 \Omega V m (iter-1)
  using \langle \theta < iter \rangle by auto
have M1 \prec M2 = atc\text{-}io\text{-}reduction\text{-}on\text{-}sets } M1 \ tsN \ \Omega \ M2
  using asc-main-theorem[OF < OFSM M1> < OFSM M2>
                                ⟨asc-fault-domain M2 M1 m⟩
                                \langle test\text{-tools}\ M2\ M1\ FAIL\ PM\ V\ \Omega \rangle
                                \langle final\text{-}iteration \ M2 \ M1 \ \Omega \ V \ m \ (iter-1) \rangle ]
  using \langle tsN = TS \ M2 \ M1 \ \Omega \ V \ m \ (iter - 1) \rangle
  by blast
\mathbf{moreover}\ \mathbf{have}\ \mathit{tsN}\,\cup\,\mathit{cN}\,=\,\mathit{tsN}
  using \langle cN = \{\} \rangle by blast
ultimately have M1 \leq M2 = atc-io-reduction-on-sets M1 (tsN \cup cN) \Omega M2
  by presburger
have obsI \subseteq obs \equiv L_{in} \ M1 \ (tsN \cup cN) \subseteq L_{in} \ M2 \ (tsN \cup cN)
  by (simp\ add: \langle obs = L_{in}\ M2\ (tsN \cup cN) \rangle \langle obsI = L_{in}\ M1\ (tsN \cup cN) \rangle)
have obsI_{\Omega} \subseteq obs_{\Omega} \equiv (\bigcup io \in L_{in} \ M1 \ (tsN \cup cN). \{io\} \times B \ M1 \ io \ \Omega)
                           \subseteq (\bigcup io \in L_{in} \ M2 \ (tsN \cup cN). \{io\} \times B \ M2 \ io \ \Omega)
  by (simp\ add: \langle obsI_{\Omega} = (\bigcup io \in L_{in}\ M1\ (tsN \cup cN).\ \{io\} \times B\ M1\ io\ \Omega)\rangle
                  \langle obs_{\Omega} = (\bigcup io \in L_{in} \ M2 \ (tsN \cup cN). \ \{io\} \times B \ M2 \ io \ \Omega) \rangle)
have (obsI \subseteq obs \land obsI_{\Omega} \subseteq obs_{\Omega}) = atc\text{-}io\text{-}reduction\text{-}on\text{-}sets } M1 \ (tsN \cup cN) \ \Omega \ M2
proof
  assume obsI \subseteq obs \land obsI_{\Omega} \subseteq obs_{\Omega}
  show atc-io-reduction-on-sets M1 (tsN \cup cN) \Omega M2
    using atc-io-reduction-on-sets-from-obs[of M1 tsN \cup cN M2 \Omega]
    \mathbf{using} \ \langle obsI \subseteq obs \land \ obsI_{\Omega} \subseteq obs_{\Omega} \rangle \ \langle obsI \subseteq obs \equiv L_{in} \ M1 \ (tsN \cup cN) \subseteq L_{in} \ M2 \ (tsN \cup cN) \rangle
           \langle obsI_{\Omega} \subseteq obs_{\Omega} \equiv (\bigcup io \in L_{in} \ M1 \ (tsN \cup cN). \ \{io\} \times B \ M1 \ io \ \Omega)
```

```
\subseteq (\bigcup io \in L_{in} \ M2 \ (tsN \cup cN). \{io\} \times B \ M2 \ io \ \Omega) \rangle
          by linarith
     next
       assume atc-io-reduction-on-sets M1 (tsN \cup cN) \Omega M2
       show obsI \subseteq obs \land obsI_{\Omega} \subseteq obs_{\Omega}
          using atc-io-reduction-on-sets-to-obs[of M1 \langle tsN \cup cN \rangle \Omega M2]
                  \langle atc\text{-}io\text{-}reduction\text{-}on\text{-}sets\ M1\ (tsN\ \cup\ cN)\ \Omega\ M2 \rangle
                  \langle obsI \subseteq obs \equiv L_{in} \ M1 \ (tsN \cup cN) \subseteq L_{in} \ M2 \ (tsN \cup cN) \rangle
                  \langle obsI_{\Omega} \subseteq obs_{\Omega} \equiv (\bigcup io \in L_{in} \ M1 \ (tsN \cup cN). \ \{io\} \times B \ M1 \ io \ \Omega)
                                        \subseteq (\bigcup io \in L_{in} \ M2 \ (tsN \cup cN). \{io\} \times B \ M2 \ io \ \Omega) \rangle
     qed
     then show ?thesis
       using \langle M1 \leq M2 = atc\text{-}io\text{-}reduction\text{-}on\text{-}sets } M1 \ (tsN \cup cN) \ \Omega \ M2 \rangle by linarith
next
     case False
     then have \neg obsI \subseteq obs \lor \neg obsI_{\Omega} \subseteq obs_{\Omega}
       using \langle cN = \{\} \lor \neg obsI \subseteq obs \lor \neg obsI_{\Omega} \subseteq obs_{\Omega} \rangle by auto
     have \neg atc-io-reduction-on-sets M1 (tsN \cup cN) \Omega M2
       using atc-io-reduction-on-sets-to-obs[of M1 tsN \cup cN \Omega M2]
               \langle \neg \ obsI \subseteq obs \vee \neg \ obsI_{\Omega} \subseteq obs_{\Omega} \rangle \ precond
       by fastforce
     have \neg M1 \leq M2
     proof
       assume M1 \prec M2
       have atc-io-reduction-on-sets M1 (tsN \cup cN) \Omega M2
          using asc-soundness[OF \langle OFSM \ M1 \rangle \langle OFSM \ M2 \rangle] \langle M1 \leq M2 \rangle by blast
          using \langle \neg atc\text{-}io\text{-}reduction\text{-}on\text{-}sets M1 (<math>tsN \cup cN) \Omega M2 \rangle by blast
     then show ?thesis
       using \langle \neg \ obsI \subseteq obs \lor \neg \ obsI_{\Omega} \subseteq obs_{\Omega} \rangle by blast
  aed
qed
end
theory ASC-Example
  imports ASC-Hoare
begin
```

8 Example product machines and properties

This section provides example FSMs and shows that the assumptions on the inputs of the adaptive state counting algorithm are not vacuous.

8.1 Constructing FSMs from transition relations

This subsection provides a function to more easily create FSMs, only requiring a set of transition-tuples and an initial state.

```
fun from-rel :: ('state × ('in × 'out) × 'state) set \Rightarrow 'state \Rightarrow ('in, 'out, 'state) FSM where from-rel rel q0 = \{ succ = \lambda io p . { q . (p,io,q) \in rel }, inputs = image (fst \circ fst \circ snd) rel, outputs = image (snd \circ fst \circ snd) rel, initial = q0 }
```

```
lemma nodes-from-rel : nodes (from-rel rel q\theta) \subseteq insert q\theta (image (snd \circ snd) rel)
  (is nodes ?M \subseteq insert \ q0 \ (image \ (snd \circ snd) \ rel))
proof -
  \mathbf{have} \ \bigwedge \ q \ \textit{io} \ p \ . \ q \in \textit{succ} \ \textit{?M} \ \textit{io} \ p \Longrightarrow q \in \textit{image} \ (\textit{snd} \ \circ \ \textit{snd}) \ \textit{rel}
    by force
  \mathbf{have} \ \bigwedge \ q \ . \ q \in nodes \ ?M \Longrightarrow q = q0 \ \lor \ q \in image \ (snd \ \circ \ snd) \ rel
  proof -
    fix q assume q \in nodes ?M
    then show q = q0 \lor q \in image (snd \circ snd) rel
    proof (cases rule: FSM.nodes.cases)
      case initial
      then show ?thesis by auto
    next
      case (execute p a)
      then show ?thesis
         using \langle \bigwedge q \ io \ p \ . \ q \in succ \ ?M \ io \ p \Longrightarrow q \in image \ (snd \circ snd) \ rel \rangle by blast
    aed
  qed
  then show nodes ?M \subseteq insert \ q0 \ (image \ (snd \circ snd) \ rel)
    by blast
qed
fun well-formed-rel :: ('state \times ('in \times 'out) \times 'state) set \Rightarrow bool where
  well-formed-rel rel = (finite \ rel
                            \land \ (\forall \ s1 \ x \ y \ . \ (x \not\in image \ (\mathit{fst} \circ \mathit{fst} \circ \mathit{snd}) \ \mathit{rel}
                                           \forall y \notin image (snd \circ fst \circ snd) \ rel)
\longrightarrow \neg (\exists \ s2 \ . (s1,(x,y),s2) \in rel))
                            \land rel \neq \{\}
{\bf lemma}\ well-formed-from-rel:
  assumes well-formed-rel rel
  shows well-formed (from-rel rel q\theta) (is well-formed ?M)
proof -
  have nodes ?M \subseteq insert \ q0 \ (image \ (snd \circ snd) \ rel)
    using nodes-from-rel[of rel q0] by auto
  moreover have finite (insert q0 (image (snd \circ snd) rel))
    using assms by auto
  ultimately have finite (nodes ?M)
   by (simp add: Finite-Set.finite-subset)
  moreover have finite (inputs ?M) finite (outputs ?M)
    using assms by auto
  ultimately have finite-FSM ?M
    by auto
  moreover have inputs ?M \neq \{\}
    using assms by auto
  moreover have outputs ?M \neq \{\}
    using assms by auto
  moreover have \bigwedge s1 x y . (x \notin inputs ?M \lor y \notin outputs ?M) \longrightarrow succ ?M (x,y) s1 = {}
    using assms by auto
  ultimately show ?thesis
    by auto
\mathbf{qed}
fun completely-specified-rel-over :: ('state \times ('in \times 'out) \times 'state) set \Rightarrow 'state set \Rightarrow bool
  completely-specified-rel-over rel nods = (\forall s1 \in nods).
                                                   \forall x \in image (fst \circ fst \circ snd) rel.
                                                      \exists y \in image (snd \circ fst \circ snd) rel.
                                                        \exists s2 . (s1,(x,y),s2) \in rel)
```

```
{\bf lemma}\ completely\text{-}specified\text{-}from\text{-}rel:
  assumes completely-specified-rel-over rel (nodes ((from-rel rel q\theta)))
  shows completely-specified (from-rel rel q0) (is completely-specified ?M)
  {\bf unfolding} \ \ completely\text{-}specified.simps
proof
  fix s1 assume s1 \in nodes (from-rel rel q0)
  show \forall x \in inputs ?M. \exists y \in outputs ?M. \exists s2. s2 \in succ ?M (x, y) s1
    fix x assume x \in inputs (from-rel rel q\theta)
    then have x \in image (fst \circ fst \circ snd) rel
     using assms by auto
    obtain y \ s2 where y \in image \ (snd \circ fst \circ snd) \ rel \ (s1,(x,y),s2) \in rel
      using assms \langle s1 \in nodes (from-rel\ rel\ q0) \rangle \langle x \in image (fst \circ fst \circ snd)\ rel \rangle
     by (meson\ completely\text{-}specified\text{-}rel\text{-}over.elims(2))
    then have y \in outputs (from-rel rel q0) s2 \in succ (from-rel rel q0) (x, y) s1
    then show \exists y \in outputs (from-rel \ rel \ q0). \exists s2. \ s2 \in succ (from-rel \ rel \ q0) (x, y) \ s1
     by blast
  qed
qed
fun observable-rel :: ('state \times ('in \times 'out) \times 'state) set \Rightarrow bool where
  observable-rel rel = (\forall io \ s1 \ . \{ s2 \ . (s1,io,s2) \in rel \} = \{ \}
                                    \vee (\exists \ s2 \ . \{ \ s2' \ . \ (s1,io,s2') \in rel \ \} = \{s2\}))
lemma observable-from-rel:
  assumes observable-rel rel
  \mathbf{shows}\ observable\ (\textit{from-rel}\ rel\ q0)\ \ (\mathbf{is}\ observable\ ?M)
proof -
  have \bigwedge io s1 . { s2 . (s1,io,s2) \in rel } = succ ?M io s1
   by auto
  then show ?thesis using assms by auto
qed
abbreviation OFSM-rel rel q0 \equiv well-formed-rel rel
                                ∧ completely-specified-rel-over rel (nodes (from-rel rel q0))
                                \land observable-rel rel
{f lemma} OFMS-from-rel:
  assumes OFSM-rel rel q0
  shows OFSM (from-rel rel q0)
  by (metis assms completely-specified-from-rel observable-from-rel well-formed-from-rel)
         Example FSMs and properties
abbreviation M_S-rel :: (nat \times (nat \times nat) \times nat) set \equiv \{(\theta, (\theta, \theta), 1), (\theta, (\theta, 1), 1), (1, (\theta, 2), 1)\}
abbreviation M_S :: (nat, nat, nat) FSM \equiv from\text{-rel } M_S\text{-rel } 0
abbreviation M_I-rel :: (nat \times (nat \times nat) \times nat) set \equiv \{(\theta, (\theta, \theta), 1), (\theta, (\theta, 1), 1), (1, (\theta, 2), \theta)\}
abbreviation M_I :: (nat, nat, nat) FSM \equiv from\text{-rel } M_I\text{-rel } 0
{\bf lemma}\ example{-nodes}:
  nodes \ M_S = \{0,1\} \ nodes \ M_I = \{0,1\}
proof -
```

```
have 0 \in nodes M_S by auto
 have 1 \in succ M_S (0,0) \ 0 by auto
 have 1 \in nodes M_S
   by (meson \land 0 \in nodes M_S) \land 1 \in succ M_S (0, 0) 0 \land succ-nodes)
 have \{0,1\} \subseteq nodes\ M_S
   using \langle 0 \in nodes M_S \rangle \langle 1 \in nodes M_S \rangle by auto
  moreover have nodes M_S \subseteq \{0,1\}
   using nodes-from-rel[of M_S-rel \theta] by auto
  ultimately show nodes M_S = \{0,1\}
   by blast
next
  have 0 \in nodes M_I by auto
 have 1 \in succ M_I(0,0) \ \theta by auto
 have 1 \in nodes M_I
   by (meson \land 0 \in nodes M_I) \land 1 \in succ M_I (0, 0) 0 \land succ-nodes)
 have \{0,1\} \subseteq nodes\ M_I
   using \langle 0 \in nodes M_I \rangle \langle 1 \in nodes M_I \rangle by auto
  moreover have nodes M_I \subseteq \{0,1\}
   using nodes-from-rel[of M_I-rel 0] by auto
  ultimately show nodes M_I = \{0,1\}
   by blast
qed
lemma example-OFSM :
  OFSM M_S OFSM M_I
proof -
 have well-formed-rel M_S-rel
   unfolding well-formed-rel.simps by auto
  moreover have completely-specified-rel-over M_S-rel (nodes (from-rel M_S-rel 0))
   unfolding completely-specified-rel-over.simps
  proof
   fix s1 assume (s1::nat) \in nodes (from-rel <math>M_S-rel 0)
   then have s1 \in (insert \ 0 \ (image \ (snd \circ snd) \ M_S-rel))
     using nodes-from-rel[of M_S-rel 0] by blast
   moreover have completely-specified-rel-over M_S-rel (insert 0 (image (snd \circ snd) M_S-rel))
     unfolding completely-specified-rel-over.simps by auto
   ultimately show \forall x \in (fst \circ fst \circ snd) 'M_S-rel.
                   \exists y \in (snd \circ fst \circ snd) \ 'M_S\text{-rel.} \ \exists s2. \ (s1, (x, y), s2) \in M_S\text{-rel}
     by simp
  qed
  moreover have observable-rel M<sub>S</sub>-rel
   by auto
  ultimately have OFSM-rel M<sub>S</sub>-rel 0
   by auto
  then show OFSM M_S
   using OFMS-from-rel[of M_S-rel \theta] by linarith
next
  have well-formed-rel M_I-rel
   unfolding well-formed-rel.simps by auto
  moreover have completely-specified-rel-over M_I-rel (nodes (from-rel M_I-rel 0))
   unfolding completely-specified-rel-over.simps
  proof
   fix s1 assume (s1::nat) \in nodes (from-rel M_I-rel 0)
   then have s1 \in (insert \ 0 \ (image \ (snd \circ snd) \ M_I - rel))
     using nodes-from-rel[of M_I-rel \theta] by blast
   have completely-specified-rel-over M_I-rel (insert 0 (image (snd \circ snd) M_I-rel))
     unfolding completely-specified-rel-over.simps by auto
```

```
show \forall x \in (fst \circ fst \circ snd) 'M_I-rel.
           \exists y \in (snd \circ fst \circ snd) \ 'M_I - rel. \ \exists s2. \ (s1, (x, y), s2) \in M_I - rel
     by (meson \land completely\text{-specified-rel-over } M_I\text{-rel } (insert \ 0 \ ((snd \circ snd) \ `M_I\text{-rel})))
         \langle s1 \in insert \ 0 \ ((snd \circ snd) \ `M_I-rel) \rangle \ completely-specified-rel-over.elims(2))
  ged
  moreover have observable-rel M<sub>I</sub>-rel
   by auto
  ultimately have OFSM-rel M<sub>I</sub>-rel 0
   by auto
 then show OFSM M_I
   using OFMS-from-rel[of M_I-rel 0] by linarith
qed
lemma example-fault-domain : asc-fault-domain M_S M_I 2
proof -
 have inputs M_S = inputs M_I
   by auto
  moreover have card (nodes M_I) \leq 2
   using example-nodes(2) by auto
  ultimately show asc-fault-domain M_S M_I 2
   \mathbf{by}\ \mathit{auto}
\mathbf{qed}
abbreviation FAIL_I :: (nat \times nat) \equiv (3,3)
abbreviation PM_I :: (nat, nat, nat \times nat) FSM \equiv \emptyset
           succ = (\lambda \ a \ (p1, p2) \ . \ (if \ (p1 \in nodes \ M_S \land p2 \in nodes \ M_I \land (fst \ a \in inputs \ M_S))
                                     \land (snd \ a \in outputs \ M_S \cup outputs \ M_I))
                                  then (if (succ M_S a p1 = \{\} \land succ M_I a p2 \neq \{\})
                                   then \{FAIL_I\}
                                    else (succ M_S a p1 × succ M_I a p2))
                                  else \{\})),
           inputs = inputs M_S,
           outputs = outputs M_S \cup outputs M_I,
           initial = (initial M_S, initial M_I)
lemma example-productF: productF M_S M_I FAIL_I PM_I
 have inputs M_S = inputs M_I
   by auto
 moreover have fst \ FAIL_I \notin nodes \ M_S
   using example-nodes(1) by auto
  moreover have snd \ FAIL_I \notin nodes \ M_I
   using example-nodes(2) by auto
  ultimately show ?thesis
   \mathbf{unfolding}\ productF.simps\ \mathbf{by}\ blast
qed
abbreviation V_I :: nat\ list\ set \equiv \{[],[\theta]\}
lemma example-det-state-cover : is-det-state-cover M_S\ V_I
proof -
  have d-reaches M_S (initial M_S) [] (initial M_S)
   by auto
  then have initial M_S \in d-reachable M_S (initial M_S)
   unfolding d-reachable.simps by blast
 have d-reached-by M_S (initial M_S) [0] 1 [1] [0]
  proof
```

```
show length [0] = length [0] \land
 length [0] = length [1] \land path M_S (([0] || [0]) || [1]) (initial M_S)
                        \land target (([0] || [0]) || [1]) (initial M_S) = 1
   by auto
 have \bigwedge ys2 \ tr2.
    length [0] = length ys2
       \land length [0] = length tr2
       \wedge path M_S (([0] || ys2) || tr2) (initial M_S)
           \rightarrow target (([0] || ys2) || tr2) (initial M_S) = 1
 proof
   fix ys2\ tr2 assume length [0] = length\ ys2 \land length\ [0] = length\ tr2
                        \wedge path M_S (([0] || ys2) || tr2) (initial M_S)
   then have length ys2 = 1 length tr2 = 1 path M_S (([0] || ys2) || tr2) (initial M_S)
     by auto
   moreover obtain y2 where ys2 = [y2]
     using \langle length \ ys2 = 1 \rangle
     by (metis One-nat-def \langle length | 0 \rangle = length ys2 \wedge length | 0 \rangle = length tr2
         \land path M_S (([0] || ys2) || tr2) (initial M_S) append.simps(1) append-butlast-last-id
         butlast-snoc length-butlast length-greater-0-conv list.size(3) nat.simps(3))
   moreover obtain t2 where tr2 = [t2]
     using \langle length \ tr2 = 1 \rangle
     by (metis One-nat-def (length [0] = length ys2 \land length [0] = length tr2
         \land path M_S (([0] || ys2) || tr2) (initial M_S) append.simps(1) append-butlast-last-id
         butlast-snoc length-butlast length-greater-0-conv list.size(3) nat.simps(3))
   ultimately have path M_S [((0,y2),t2)] (initial M_S)
     by auto
   then have t2 \in succ\ M_S\ (0,y2)\ (initial\ M_S)
     by auto
   moreover have \bigwedge y . succ\ M_S\ (0,y)\ (initial\ M_S) \subseteq \{1\}
     by auto
   ultimately have t2 = 1
     by blast
   show target (([0] || ys2) || tr2) (initial M_S) = 1
     using \langle ys2 = [y2] \rangle \langle tr2 = [t2] \rangle \langle t2 = 1 \rangle by auto
 qed
 then show \forall ys2 tr2.
    length [0] = length ys2 \land length [0] = length tr2
       \wedge path M_S (([0] || ys2) || tr2) (initial M_S)
           \rightarrow target (([0] || ys2) || tr2) (initial M_S) = 1
   by auto
qed
then have d-reaches M_S (initial M_S) [0] 1
 unfolding d-reaches.simps by blast
then have 1 \in d-reachable M_S (initial M_S)
 \mathbf{unfolding}\ \mathit{d\text{-}reachable}.simps\ \mathbf{by}\ \mathit{blast}
then have \{0,1\} \subseteq d-reachable M_S (initial M_S)
 using (initial M_S \in d-reachable M_S (initial M_S)) by auto
moreover have d-reachable M_S (initial M_S) \subseteq nodes M_S
proof
 fix s assume s \in d-reachable M_S (initial M_S)
 then have s \in reachable M_S (initial M_S)
   using d-reachable-reachable by auto
 then show s \in nodes M_S
   by blast
qed
ultimately have d-reachable M_S (initial M_S) = \{0,1\}
 using example-nodes(1) by blast
\mathbf{fix}\ f' :: nat \Rightarrow nat\ list
let ?f = f'(0 := [], 1 := [0])
```

```
have is-det-state-cover-ass M_S ?f
   unfolding is-det-state-cover-ass.simps
  proof
   show ?f (initial M_S) = [] by auto
   show \forall s \in d-reachable M_S (initial M_S). d-reaches M_S (initial M_S) (?f s) s
     fix s assume s \in d-reachable M_S (initial M_S)
     then have s \in reachable M_S (initial M_S)
       using d-reachable-reachable by auto
     then have s \in nodes M_S
       by blast
     then have s = 0 \lor s = 1
       using example-nodes(1) by blast
     then show d-reaches M_S (initial M_S) (?f s) s
     proof
       assume s = 0
       then show d-reaches M_S (initial M_S) (?f s) s
         using \langle d\text{-reaches } M_S \text{ (initial } M_S) \mid \text{[ (initial } M_S) \rangle \text{ by } auto}
     next
       assume s = 1
       then show d-reaches M_S (initial M_S) (?f s) s
         using \langle d\text{-reaches } M_S \text{ (initial } M_S) \text{ [0] } 1 \rangle \text{ by } auto
     qed
   qed
  qed
  moreover have V_I = image ?f (d\text{-reachable } M_S (initial M_S))
   using \langle d-reachable M_S (initial M_S) = \{0,1\}\rangle by auto
  ultimately show ?thesis
   unfolding is-det-state-cover.simps by blast
abbreviation \Omega_I :: (nat, nat) \ ATC \ set \equiv \{ \ Node \ 0 \ (\lambda \ y \ . \ Leaf) \}
lemma applicable-set M_S \Omega_I
 by auto
lemma example-test-tools : test-tools M_S M_I FAIL_I PM_I V_I \Omega_I
  using example-productF example-det-state-cover by auto
{f lemma} OFSM-not-vacuous:
  \exists M :: (nat, nat, nat) FSM . OFSM M
 using example-OFSM(1) by blast
{f lemma}\ fault	ext{-}domain	ext{-}not	ext{-}vacuous:
  \exists (M2::(nat,nat,nat) \ FSM) \ (M1::(nat,nat,nat) \ FSM) \ m \ . \ asc-fault-domain \ M2 \ M1 \ m
  using example-fault-domain by blast
{f lemma}\ test	ext{-}tools	ext{-}not	ext{-}vacuous:
  \exists (M2::(nat,nat,nat) FSM)
    (M1::(nat,nat,nat) FSM)
    (FAIL::(nat \times nat))
    (PM::(nat,nat,nat \times nat) FSM)
    (V::(nat\ list\ set))
     (\Omega::(nat,nat) \ ATC \ set) . test-tools \ M2 \ M1 \ FAIL \ PM \ V \ \Omega
proof (rule exI, rule exI)
```

```
show \exists FAIL\ PM\ V\ \Omega. test-tools M_S\ M_I\ FAIL\ PM\ V\ \Omega
    \mathbf{using}\ example\text{-}test\text{-}tools\ \mathbf{by}\ blast
qed
\mathbf{lemma}\ \mathit{precondition}\text{-}\mathit{not}\text{-}\mathit{vacuous}:
  shows \exists (M2::(nat,nat,nat) FSM)
           (M1::(nat,nat,nat) FSM)
           (FAIL::(nat \times nat))
           (PM::(nat,nat,nat \times nat) FSM)
           (V::(nat\ list\ set))
           (\Omega::(nat,nat)\ ATC\ set)
           (m :: nat).
              OFSM M1 \wedge OFSM M2 \wedge asc-fault-domain M2 M1 m \wedge test-tools M2 M1 FAIL PM V \Omega
proof (intro exI)
  \mathbf{show}\ OFSM\ M_I\ \land\ OFSM\ M_S\ \land\ asc\ -fault\ -domain\ M_S\ M_I\ 2\ \land\ test\ -tools\ M_S\ M_I\ FAIL_I\ PM_I\ V_I\ \Omega_I
    using example-OFSM(2,1) example-fault-domain example-test-tools by linarith
\mathbf{qed}
end
```

References

- [1] J. Brunner. Transition systems and automata. Archive of Formal Proofs, Oct. 2017. http://isa-afp.org/entries/Transition_Systems_and_Automata.html, Formal proof development.
- [2] R. M. Hierons. Testing from a nondeterministic finite state machine using adaptive state counting. *IEEE Transactions on Computers*, 53(10):1330–1342, 2004.
- [3] R. Sachtleben, J. Peleska, R. Hierons, and W.-L. Huang. A mechanised proof of an adaptive state counting algorithm. In *IFIP International Conference on Testing Software and Systems*. Springer, 2019. to appear.