Abel’s Limit Theorem in Isabelle/HOL

Kangfeng Ye
University of York, UK

kangfeng.ye@york.ac.uk

February 10, 2026

Abstract

This theory proves the Abel’s limit theorem on power series of real
numbers, and then an example is shown to use the theorem to cover
the boundary cases of binomial series.

Contents
1 Abel’s limit theorem on real power series 1

2 Example application: boundary cases of binomial theorem 11

2.1 Binomial series o oo o 12
2.2 Alternating series L 15
2.3 Binomial sqrt series with the boundary cases 18

1 Abel’s limit theorem on real power series

theory Abel-Limit-Theorem
imports HOL— Analysis. Generalised-Binomial- Theorem
begin

Abel’s theorem or Abel’s limit theorem [3] provides a crucial link between
the behavior of a power series inside its interval of convergence (such as
(—=1,1)) and its value at the boundary such as —1 or 1.

This section presents the proof of Abel’s limit theorem, which relates a limit
of a power series to the sum of its real coefficients, as shown below:

lir{l flx)=f(Q1) = Zak where f(x) = Zakxk
e k=0 k=0

if the power series has its radius of convergence equal to 1 and Y 7, ag
converges, where ay, is the coefficient of the k-th term.

That is, f(x) is continuous from the left at 1.

The proof of continuity or the limit of f(x) is based on the -0 definition.
This proof uses summation by parts or Abel transformation to express the
power series f(z) as a power series whose coefficients are the partial sums
(> h_o ax) of the coefficients of f(x), instead of az. Then the new power
series is split into two parts. The goal is to show that each part contributes
to /2 for any x satisfying (1 — z) < 4.

Several references [3, 1, 2| are used to construct this proof.

theorem Abel-limit-theorem:
fixes a :: nat = real
defines fI = (A(z::real) n. an x z ~ n)
defines f = (A(z::real). Y n. f1 z n)
assumes summable-a: summable a and
conv-radius-1: conv-radius a = 1
shows (f —— (D_n. an)) (at-left 1)
proof —
— This is the partial sum of coefficients up to n.
let 2s = An. (O_k<n. a k)

— S is the infinite sum of the coefficients.
obtain S where P-S: (> n.an) =S8

using summable-a by simp

let 7fs-S =Xz n. (9sn— 8S)*xz " n)
let ?fs-S-sum = Az. (D n. 9fs-S z n)

have s-limit-S: 2s —— §
using P-S summable-a summable-LIMSEQ’ by blast

have summable-f1: Vz. norm © < 1 — summable (An. fI z n)
by (simp only: f1-def, auto, rule summable-in-conv-radius, simp add: conv-radius-1)

— A geometric series sums to 1 / (I — z). Therefore, (I —z)x(1 / (1 — z)) = 1.
have geometric: Va:real. normx < 1 — O n.x "n) =1/ (1 — z)
by (auto simp add: suminf-geometric)

— The Cauchy product of a geometric series and a convergent power series is a
power series whose coefficient for the nth term is the partial sum up to n, that is,
?s n.

have cauchy-product-to-partial-sum: (3 - n.z " n) x fz = (D n. %sn*xx " n)

if a1: norm z < 1 for z :: real

proof —

from al have z-lt-1: |z| < 1

by (simp)

show D> n.z "n)xfz=0>_n %snxz n)
proof —

have f0: Vn.Vi<n.z "ix(a(n—4) xz (n—4)=a(n—19) *xz " n
apply auto[!]
by (metis le-add-diff-inverse power-add)

) hzlve)flz Vo, (Oi<n.z "ix(a(n—10xz (n—1)) =0 i<n.a(n—
by (auto simp: f0)

have f2: Vn. (3 i<n.a (n — i)) = %sn
proof (rule alll)
fix n:nat
show (> i<n. a(n — 1)) = %n
by (rule sum.reindex-bij-witness[of - Ni. n — @ Ai. n — i]) auto
qed

show ?thesis
unfolding f-def f1-def
proof (subst Cauchy-product)
show summable (Ak. norm (z ~k))
by (simp add: power-abs z-lt-1)
next
show summable (\k. norm (a k x x ~ k))
by (metis abs-summable-in-conv-radius conv-radius-1 ereal-less(3) real-norm-def
x-lt-1)
next
show 3k > i<k.z Tix(a(k—14)xz " (k—1)) =
>-n. suma {.n} xz " n)
by (subst f1) (use f2 in <simp-all flip: sum-distrib-right»)
qed
qed
qed

have summable-s-n-z-n: ¥ z::real. norm x < 1 — (summable (An. ?sn x z ~

n))
proof (rule alll, rule impl)
fix z::real

assume al: normz < 1
from a! have z-lt-1: |z| < 1

by (simp)

have (> n. %snxz " n)= . n.z " n)x fz
using cauchy-product-to-partial-sum real-norm-def z-lt-1 by presburger

have f0: (An. %sn*x 2 " n) = (An. > i<n.aixz n)
using sum-distrib-right by blast

have f1: ... = (An. Y i<n. (ai*xx " %) *x (x " (n — 7))
apply (simp only: mult.assoc)

apply (subst power-add[symmetric])
by simp

show summable (An. %sn x x "~ n)
apply (simp only: f0 f1)
apply (rule summable-Cauchy-productjwhere a = An. (a n) x x ~n and b
=An.z " n))
apply (metis abs-summable-in-conv-radius conv-radius-1 ereal-less(3) real-norm-def
x-lt-1)
by (simp add: power-abs z-lt-1)
qed

— The power series [z is expressed as a convex combination of the partial sums.
have f-z-to-partial-sum: ¥V z::real. normz < 1 — fo = (1 — z) * (O n. s n *
z " n)
proof (rule alll, rule impl)
fix x::real

assume al: normz < 1
from a! have z-lt-1: |z| < 1

by (simp)

— Rewrite f z because (I — z) x O_n.z ~n) = L
have frewrite: fo = (1 —z)* O n.z " n) * fz
using geometric z-lt-1 by fastforce

— According to the Cauchy product result.
then show fz = (1 —z) x O n. %sn*xz " n)
using cauchy-product-to-partial-sum mult.assoc by (metis real-norm-def
x-lt-1)
qed

— The difference between f z and S, therefore, can be expressed as a convex
combination of the partial sum minus S. So the goal is to show RHS tends to 0
when z approaches 1 from left.

have f-z-minus-S: Vx::real. normx < 1 — fz — S = (1 — z) * ?fs-S-sum x

proof (rule olll, rule impl)

fix z::real

assume al: normz < 1
from a! have z-lt-1: |z| < 1

by (simp)

have f0: (1 —z)« (O n. %sn*xxz " n)—S=({1 —z)* (O n sn*xz " n)
— (I —2)« S+ (D n.z " n)
apply (simp add: geometric)
using geometric z-lt-1 by auto

have f1: ..=(1 —2)* (O_n. %sn*xx " n) — (O n. Sxz " n))

apply (subst suminf-mult)

apply (rule summable-geometric)
apply (simp add: z-lt-1)

by (simp add: right-diff-distrib)

show fz — S = (1 — x) x ?fs-S-sum x
apply (simp only: f-z-to-partial-sum al)
apply (simp only: f0 f1)
apply (subst suminf-diff)
using real-norm-def summable-s-n-x-n z-lt-1 apply presburger
apply (rule summable-mult)
apply (simp add: x-lt-1)
by (simp add: left-diff-distrib’)
qed

have summable-norm-s-S: ¥V z::real. norm © < 1 — summable (An::nat. norm
(sn — S) x (norm z) ~(n))
proof (rule alll, rule impl)
fix z::real
assume z-lt-1: norm z < 1
obtain M where P-m: ¥V n. norm (%sn) < M
using convergent-imp-bounded|of ?s] by (metis UNIV-I bounded-iff imagel
s-limit-S)
have Vn. norm (%sn — S) * (norm z) ~(n) < (M + norm S) * (norm z) "n
proof (rule alll)
fix n :: nat
have norm (?sn — S) * (norm x) ~ (n) < (norm (%s n) + norm S) * (norm
7) " (n)
by (simp add: mult-mono)
also have ... < (M + norm S) * (norm z) ™n
by (metis P-m add.commute add-le-cancel-left mult.commute mult-left-mono
noTM-ge-zero norm-power)
finally show norm (%s n — S) * (norm z) ~ (n) < (M + norm S) * (norm
z) " n
by blast
qed
moreover have summable (An. (M + norm S) % (norm z) n)
using z-lt-1 by (simp add: summable-mult summable-geometric)
ultimately show summable (An::nat. norm (¢sn — S) * norm z ~ n)
using summable-comparison-test[of An. norm (9s n — S) * (norm x) ~ (n)
An. (M + norm S) * (norm x) "n]
by fastforce
qed

have summable-norm-fs-S: ¥V x::real. norm x < 1 — summable (An. norm (?fs-S

zn))

proof (rule alll, rule impl)
fix z::real

assume z-lt-1: norm x < 1
obtain M where P-m: ¥V n. norm (%sn) < M
using convergent-imp-bounded|of ?s] by (metis UNIV-I bounded-iff imagel
s-limit-S)
have Vn. norm (9fs-S z n) < (M + norm S) * (norm) ™n
proof (rule alll)
fix n :: nat
have norm ((sn — S) x z " n) < norm ((sn — S)) * norm (z ~ n)
using norm-mult-ineq by blast
also have ... < (norm (?s n) + norm S) x norm (z ~ n)
by (simp add: mult-mono)
also have ... < (M + norm S) % (norm z) "n
by (metis P-m add.commute add-le-cancel-left mult.commute mult-left-mono
noTrm-ge-zero norm-power)
finally show norm ((9sn — S) * x " n) < (M + norm S) * norm z ~n
by blast
qed
moreover have summable (An. (M + norm S) * (norm z) n)
using z-lt-1 by (simp add: summable-mult summable-geometric)
ultimately show summable (An. norm (2fs-S = n))
using summable-comparison-test[of An. norm (2fs-S z n) An. (M + norm S)
x (norm z) "n]
by fastforce
qed

— Use the e-§ definition of a continuous function or a limit.
have S-is-f-limit-from-left: (f —— S) (at-left (1))
proof (simp only: tendsto-iff eventually-at-left-field, simp only: dist-norm, rule
alll, rule impl)
— r is the difference of function f z from f 1
fix r::real
assume r-gt-0: (0::real) < r

— Try to make both tail and head parts contribute r/2, so finally r.
define e where ¢ = r/2

have e-gt-0: 0 < e
by (simp add: m-gt-0 e-def)

— M is not necessary to be positive and can be 0.
obtain M where P-M: (Vn > M. norm (?sn — S§) < e)
using s-limit-S LIMSEQ-iff e-gt-0 real-norm-def by metis

— Make N be positive, which will be used later to ensure norm z = N < 1
define N where N = M + 1

— (' is the sum of differences up to N.
define C where C = (> k<N. norm (?s k — 5))

have P-N: (Yn > N. norm (?sn — S) < e)
unfolding N-def using P-M by simp

— Split the sum into two parts based on its index: {0..N—1} and {N..c0}, also
called the head part and the tail part.
have fs-S-split: ¥V x::real. norm z < 1 — (1 — x) * ?fs-S-sum x
=1 —-2)* (O n<N.?s-Sxzn)+ (1 —z)* O n. ?fs-Sx(n+ N))
proof (rule alll, rule impl)
fix x::real

assume al: normz < 1
from ol have z-lt-1: |z| < 1

by (simp)

have (> n. ?fs-Szn) = (O n<N. fs-Sazn) + O n. s-Sz (n+ N)) (is
. = ?fs-S-sum-hd + ?fs-S-sum-tl)
apply (subst suminf-split-initial-segment[where k = NJ)
using summable-norm-fs-S real-norm-def summable-norm-cancel x-lt-1

apply fastforce
by linarith

then show (I — z) * O.n. s-Szn)=(1 —z) x (O n<N. s-Szn) +
(I —z)*x (O n. ?s-Sz(n+ N))
by (simp add: distrib-left)
qed

— For the tail part, it is less than e.
have fs-S-tail: Vz::real. 0 < z A normx < 1 — norm ((1 — z) * (O n. 7fs-S
z(n+ N))) <e
proof (rule alll, rule impl)
fix z::real
assume z-lt-1: (0::real) < x A norm z < 1
have z-N-le-1: norm z ~ N < 1
using power-Suc-less-one P-N N-def x-lt-1 by fastforce
have norm ((I — z) * O n. 9fs-Sz (n + N))) < norm ((I — z)) * norm
>on. 2fs-Sx (n+ N))
using norm-mult-ineq by blast
also have ... < (I — z) x (3 n. norm (9fs-S z (n + N)))
apply (subgoal-tac norm (1—z) = 1—x)
apply (subgoal-tac norm (> n. ?fs-S z (n + N)) < (3 n. norm (9fs-S x
(n + N))))
subgoal by (simp add: mult-mono)
apply (subst summable-norm)
apply (subst summable-iff-shift)
using summable-norm-fs-S z-lt-1 apply blast
apply simp
using z-lt-1 by fastforce
also have ... < (I — z) * (O_n. norm (s (n + N) — S) % (norm z) ~ (n +
N))

by (smt (23) norm-mult norm-power suminf-cong)
also have ... < (1 — z) * (D_n. e x (normz) ~(n + N))
apply (rule mult-mono)
apply simp
apply (rule suminf-le)
apply (smt (verit) P-N le-add2 mult-right-mono norm-ge-zero zero-le-power)
apply (subst summable-iff-shift)
using summable-norm-s-S x-lt-1 apply blast
apply (subst summable-iff-shift)
using z-lt-1 apply force
using z-li-1 apply auto[1]
by (smt (23) calculation real-norm-def x-lt-1 zero-le-mult-iff)
also have ... = (I — z) * e x (norm z) ~ N * (D_n. (norm z) ~ (n))
apply (subst suminf-mult)
using z-lt-1 apply force
apply (simp only: power-add)
apply (subgoal-tac (3" n::nat. norm x ~n * normz ~ N) = norm z ~ N x
(3> ninat. norm x " n))
apply simp
apply (subst suminf-mult[symmetric])
using z-lt-1 apply auto[1]
by (meson mult.commute)
also have ... = (I —z) x ex (normz) "N x 1 / (I — norm x)
apply (subst suminf-geometric)
using z-lt-1 apply fastforce
using times-divide-eq-right by blast
also have ... = ¢ x (norm z) ~ N
using z-lt-1 by fastforce
also have ... < e
using z-N-le-1 using e-gt-0 by force
finally show norm ((1 — z) * (D_n. ?fs-Sz (n + N))) < e
by blast
qed

— For the head part, it is bounded by C.
have fs-S-head: Vx::real. 0 < x A norm z < 1 — norm ((1 — z) * (D n <
N. ?%fs-Szn)) < (1—z)xC
proof (rule alll, rule impl)
fix z::real
assume z-lt-1: (0::real) < z A norm ¢ < 1
have norm ((1 — z) * 3_n < N. ?fs-S z n)) < norm ((I — x)) * norm
>-n < N. ?s-Szn)
using norm-mult-ineq by blast
also have ... < (1 — z) * (D_n < N. norm (2fs-S z (n)))
apply (subgoal-tac norm (1—z) = 1—x1)
apply (subgoal-tac norm (3" n<N. ?fs-S xz (n)) < (3 n<N. norm (?fs-S
(n))))
apply (simp add: mult-mono)
using norm-sum apply blast

using z-lt-1 by fastforce
also have ... < (I — z) * (O_n<N. norm (%s (n) — S) * (norm z) ~ (n))
by (smt (verit) norm-mult norm-power sum.cong)
also have ... < (I — z) x (3. n<N. norm (?s (n) — 9))
apply (rule mult-mono)
subgoal by simp
apply (rule sum-le-included[where i = Az. z])
subgoal by simp
subgoal by simp
subgoal by simp
apply (smt (verit) mult-left-le power-le-one-iff real-norm-def z-lt-1)
using z-lt-1 apply force
by (simp add: sum-nonneg)
finally show norm ((1 — z) * (3_n < N. ?fs-Sa n)) < (1—xz)xC
by (simp add: C-def)
qed

have C-nonneg: C > 0
by (simp add: C-def N-def)

show Jb<1:real. Vy>b. y < (1:real) — norm (fy — S) < r
proof (cases C = 0)
case True
then show ?thesis
— Any x between 0 and 1 because the head part is 0 and only consider the
tail part
proof (intro exI[of - 0.9])
show (9::real) / (10::real) < 1 AN (Vy>(9:real) / (10::real). y < 1 —
norm (fy — S) < r)
proof (rule conjI)
show (9::real) / (10:real) < 1
by simp
show Vy>(9:real) / (10::real). y < 1 — norm (fy — S) < r
proof (rule alll, rule impl, rule impl)
fix y::real
assume y-gt-0: (9::real) / (10::real) < y
assume y-lt-1: y < (1:real)

have norm ((1 — y) * O_nunat<N. (%sn — S)*xy " n) +
(I —y)*x (O nunat. (%s(n+ N)—=S)*xy (n+ N)))<r
proof (rule norm-triangle-It)
have norm ((1 — y) * O_n < N. ?fs-Syn)) < (1—y)xC
apply (subst fs-S-head)
using y-gt-0 y-lt-1 apply force
by simp
also have ... = 0
by (simp add: True)
also have head-0: norm ((1 — y) * O.n < N. 2fs-Syn)) =0
using calculation by force

also have tail-lt-e: norm ((1 — y) * O_n. 9fs-Sy (n + N))) < e
apply (subst fs-S-tail)
using y-gt-0 y-lt-1 apply force
by simp
finally show norm ((1 — y) x (O_n < N. 2fs-Sy n)) +
norm (1 —y) * O_n. 9s-Sy (n + N))) <r
using e-def e-gt-0 head-0 tail-lt-e by linarith
qed
then show norm (fy — §) < r
apply (subst f-z-minus-S)
using y-gt-0 y-lt-1 apply simp
apply (subst fs-S-split)
using y-gt-0 y-lt-1 apply simp
by blast
qed
qed
qed
next
case Fulse
then show ?thesis
— This witness is to ensure (1 —z)*C < e.
proof (intro exI[of - 1 — min (e/C) 1])
show I —min(e/ C)1 <1 ANNMy>1 —min(e/ C) 1.y <1 — norm
(fy—25) <r)
proof (rule conjI)
show 1 —min (e / C) 1 < 1
using C-nonneg r-gt-0 False e-gt-0 by fastforce
show Vy>1 —min (e / C) 1.y < 1 — norm (fy — S) <r
proof (rule alll, rule impl, rule impl)
fix y::real
assume y-gt-0: (1::real) — min (e / C) (1:real) < y
assume y-lt-1: y < (1:real)

have norm ((1 — y) * O_n < N. ?fs-Syn)) < (1—y)*xC
apply (subst fs-S-head)
using y-gt-0 y-lt-1 apply force
by simp
also have ... < e
by (smt (verit) C-nonneg False e-def pos-divide-less-eq y-gt-0)
also have tail-lt-e: norm ((1 — y) * O_n. ?fs-Sy (n + N))) < e
apply (subst fs-S-tail)
using y-gt-0 y-lt-1 apply force
by simp
show norm (fy — S) <r
apply (subst f-z-minus-S)
using y-lt-1 y-gt-0 apply force
apply (subst fs-S-split)
using y-lt-1 y-gt-0 apply force
apply (rule norm-triangle-it)

10

using calculation e-def tail-lt-e by linarith
qed
qed
qed
qed
qed

show ?thesis
using P-S S-is-f-limit-from-left by blast
qed

lemma filterlim-at-right-at-left-eq:

shows ((Az. f (—z)) —— 1) (at-right (—=1)) +— ((Az. [(z)) —— 1) (at-left
(1::real))

apply (rule iffT)

apply (simp add: at-left-minus)

apply (simp add: filterlim-filtermap)

apply (subst at-right-minus)

by (simp add: filterlim-filtermap)

Abel’s limit theorem is also suitable for continuous from the right at -1.

corollary Abel-limit-theorem:
fixes a :: nat = real
defines f1 = (A(z::real) n. an x z ~ n)
defines f = (A(z:ireal). Y n. f1 z n)
assumes summable-a: summable a and
conv-radius-1: conv-radius a = 1
shows ((A\z. f (—2)) —— (O n. a n)) (at-right (—1))
apply (simp add: filterlim-at-right-at-left-eq)
using assms Abel-limit-theorem by blast

end

2 Example application: boundary cases of bino-
mial theorem

theory Binomial-Sqrt-Series-Boundary
imports
Abel-Limit- Theorem
Catalan-Numbers. Catalan- Numbers
HOL— Real-Asymp. Real-Asymp
begin

Newton’s generalized binomial theorem is applicable to |z|] < 1 as seen
from this |?z] < 1 = (An. (1 / 2 gchoose n) = 22™) sums sqrt (1 + ?z).
However, it doesn’t apply to the boundary cases where |z| = 1 or |z| = —1.

Here, Abel’s limit theorem is applied to establish the binomial theorem for
the boundary cases.

11

2.1 Binomial series

lemma binomial-sqrt-series:

fixes z :: real

assumes |z| < I

shows suminf (An. ((1/2) gchoose n) x x ~n) = sqrt (1 + x)

apply (subst sums-unique[where s = sqrt (1 + z) and f = (An. ((1/2) gchoose
n) + @ " n))

apply (rule sqrt-series[where z = z))

using assms apply blast

by simp
The generalized binomial coefficient a gchoose n where a = % can also be
rewritten as an expression including a Catalan numbers. This is used to

prove its summability using the property of Catalan numbers.

lemma gbinomial-1-2-catalan: ((1/2) gchoose (Sucn)) = ((—1) (n)/(27(2xn+1)))
* real (catalan n)
by (subst catalan-closed-form-gbinomial) (simp add: power-mult power-minus’)

lemma gbinomial-1-2-catalan’ ((1/2) gchoose (Suc n)) = ((—=1) n/2) x (1/4™n)
x real (catalan n)
by (subst gbinomial-1-2-catalan) (simp-all add: power-mult)

Rewrite the generalized binomial coefficient a gchoose n where a = % as a
binomial coefficient.

lemma gbinomial-1-2-simp:
((1/2) gchoose (Suc n)) = ((—=1)"n / real (27(2xn+1) % (Suc n))) * ((2xn)
choose n)
by (subst gbinomial-1-2-catalan, subst of-nat-catalan-closed-form,)
(auto simp: algebra-simps)

lemma summable-real-powr-iff . summable (An. 1 / of-nat n powr s :: real) +—
s> 1

apply (subgoal-tac ¥V n. 1 / of-nat n powr s = of-nat n powr (—s))

apply (simp)

using summable-real-powr-iff apply auto[1]

by (simp add: powr-minus-divide)

lemma summable-1-2-gchoose: summable (An. ((1::real)/2) gchoose n)
proof —
have f0: (An. ((1/2) gchoose (Suc n))) ~[at-top] (An. (((=1)"n/2) x (1/4™n))
« (470 | ((sqrt pi * m pour (3/2))))
apply (simp only: gbinomial-1-2-catalan’)
apply (subst asymp-equiv-mult)
using asymp-equiv-refl apply blast
using catalan-asymptotics apply blast
by simp
have f1: ... = (An. (—=1)"n / (2 * (sqrt pi * n powr (3/2))))

12

by auto

have f2: ... = (An. 1 / (2 % (sqrt pi)) = ((=1) "n / (n powr (3/2)))) (is - = %g)
by auto

have summable-g: summable ?g
proof (rule summable-mult)

have f1: Vn. (— (1:real)) ~n / real n powr ((3::real) / (2::real)) =
(= (1:real)) ~n * real n powr (— ((3::real) / (2::real)))

using divide-powr-uminus by presburger

have f2: summable (An:nat. — ((— (1::real)) ~n * real (n + 1) powr (—
((3::real) / (2::real)))))

apply (rule summable-minus)

apply (rule summable-Leibniz’)
apply (subst tendsto-neg-powr)

subgoal by simp
using filterlim-real-sequentially

apply (metis filterlim-add-const-nat-at-top filterlim-sequentially-iff-filterlim-real)
subgoal by simp

subgoal by simp

by (simp add: powr-mono2’)

have f3: summable (An::nat. ((— (1::real)) ~(n + 1) * real (n + 1) powr (—
((3::real) / (2::real)))))

using f2 by simp

show summable (An::nat. (— (1::real)) " n / real n powr ((3::real) / (2::real)))
apply (simp only: f1)

apply (subst summable-Suc-iff[symmetric])

using f3 Suc-eq-plusl by presburger
qed

have summable-norm-g: summable (An. norm(%g n))
proof —

have f0: ¥V n. norm(%g n) =
((3::real) / (2::real))))
by auto
show ?thesis
apply (simp only: f0)
apply (rule summable-mult)

apply (subst summable-real-powr-iff ")
by simp
qed

((1::real) / ((2::real) * sqrt pi) * (1 / real n powr

show “thesis

apply (subst summable-Suc-iff [symmetric))

apply (subst summable-comparison-test-bigo[where g = 2g])
apply (simp only: summable-norm-g)
apply (rule asymp-equiv-imp-bigo)

13

using f0 f1 f2 apply metis
by simp
qed

lemma gbinomial-1-2-gchoose-sum-sqrit-2:

shows (3" n. (((1::real) / (2::real) gchoose n))) = sqrt 2 (is (D n. ?f-1 n) = -)
proof —

let 2f = Az. (O n. (((Z:=real) / (2::real) gchoose n)) * x ~ n))

— Inside the disk: expansion gives sqrt(1+x)
have eg-inside: N\z. abs z < 1 = ?f (z) = sqrt (1+x)
using sqrt-series sums-unique by force

have (?f —— sqrt (2)) (at-left (1))
proof —
have ((Az. sqrt (14+x)) —— sqrt 2) (at-left (1))
proof (intro tendsto-intros)
have ((+) (1:real) —— 1 + 1) (at-left 1)
using tendsto-add-const-iff by fastforce
then show ((+) (I::real) —— 2) (at-left 1)
by simp
qed
moreover have eventually (A\z. ?f () = sqrt(1+x)) (at-left (1))
apply (subst eventually-at)
apply (rule exI[of - 0.1])
apply (auto simp: dist-real-def)[1]
using eg-inside by force
ultimately show #thesis
by (simp add: filterlim-cong)
qed
hence lim: (9f —— sqrt 2) (at-left (1)) by simp

have lim-by-abel-from-left: (2f —— (O_n. 2f-1 n)) (at-left (1))
apply (subst Abel-limit-theorem)
using summable-1-2-gchoose apply simp
apply (subst conv-radius-gchoose)
apply (smt (verit, best) Nats-cases field-sum-of-halves nat-less-real-le of-nat-0
of-nat-0-less-iff)
by auto

from lim lim-by-abel-from-left show ?thesis
apply (subst tendsto-uniquelwhere f = ?f and a = (> n. ?f-1 n)
and F = (at-left (1)) and b = sqrt 2])

using trivial-limit-at-left-real apply blast
apply blast

apply blast

by simp

qed

14

2.2 Alternating series

lemma gbinomial-ratio-limit”:
fixes a :: ‘a :: real-normed-field
assumes a ¢ N
shows (An. ((a gchoose n) x (—1) ~n) / ((a gchoose Suc n) * (—1) ~ (Suc n)))
— 1
proof —
have (An. ((a gchoose n) x (—1) "~ n) / ((a gchoose Suc n) x (—1) ~ (Suc n)))
= (An. — ((a gchoose n) / (a gchoose Suc n)))
by auto
then show ?thesis
using gbinomial-ratio-limit assms tendsto-minus-cancel-left by fastforce

qed

lemma conv-radius-gchoose-alternating:
fixes a :: ‘a :: {real-normed-field,banach}
assumes a ¢ N
shows conv-radius (An:nat. (a gchoose n) x (—1) "~ n) = (1::ereal)
proof —
from tendsto-norm[OF gbinomial-ratio-limit’]
have conv-radius (An::nat. (a gchoose n) x (—1) ~n) = 1
apply (intro conv-radius-ratio-limit-nonzero[of - 1])
subgoal by (simp add: norm-divide)
subgoal by (simp add: norm-divide)
apply (simp add: norm-divide[symmetric])
using assms by blast
then show ?thesis by blast
qed

lemma summable-1-2-gchoose-alternating:
summable (An:nat. (1 / 2 gchoose n) * (—1) ~n :: real) (is summable ?f)
proof —
have f0: (An. ((1/2) gchoose (Suc n))) ~[at-top)
(. ((=1)0/2) * (17470)) * (470 / ((sart pi + n powr (3/2))))
apply (simp only: gbinomial-1-2-catalan’)
apply (subst asymp-equiv-mult)
using asymp-equiv-refl apply blast
using catalan-asymptotics apply blast

by simp

have f1: ... = (An. (=1)"n / (2 * (sqrt pi * n powr (3/2))))
by auto

have f2: ... = (An. 1 / (2 x (sqrt pi)) * ((—=1)"n / (n powr (3/2)))) (is - = ?g)
by auto

have f3: (An. %9 (n) * (— (I::real)) ~ (Suc n)) =
O (=11 (25 sart i) = (1] (npowr (3/2) Gs - = f01)
y auto
have f/: (An. ?f (Suc n)) ~[at-top] (An. ?g (n) * (— (1:real)) ~ (Suc n)) (is -
~[at-top] 2g1)
apply (subst asymp-equiv-mult)

15

using f0 f1 f2 subgoal by auto
using asymp-equiv-refl apply blast
by simp

have summable-g: summable ?g
proof (rule summable-mult)
have f1: Vn. (— (1:real)) ~n / real n powr ((3::real) / (2::real)) =
(= (1:real)) ~n * real n powr (— ((3::real) / (2::real)))
using divide-powr-uminus by presburger

have f2: summable (An:nat. — ((— (1::real)) ~n * real (n + 1) powr (—
((3::real) / (2::real)))))
apply (rule summable-minus)
apply (rule summable-Leibniz’)
apply (subst tendsto-neg-powr)
subgoal by simp
using filterlim-real-sequentially
apply (metis filterlim-add-const-nat-at-top filterlim-sequentially-iff-filterlim-real)
subgoal by simp
subgoal by simp
by (simp add: powr-mono2’)

have f3: summable (An::nat. ((— (1::real)) ~(n + 1) * real (n + 1) powr (—

((3::real) / (2::real)))))

using f2 by simp

show summable (An::nat. (— (1::real)) " n / real n powr ((3::real) / (2::real)))
apply (simp only: f1)
apply (subst summable-Suc-iff[symmetric])
using f3 Suc-eq-plusl by presburger
qed

have summable-g1: summable ?g1
apply (simp only: f3)
apply (rule summable-mult)
apply (subgoal-tac (An:nat. (1:real) / real n powr ((3:real) / (2:real))) =
(An:nat. real n powr (— (8:real) [(2::real))))
subgoal by (simp add: summable-real-powr-iff)
by (simp add: inverse-eq-divide powr-minus)

have summable-norm-g1: summable (An. norm (291 n))
apply (simp add: f3)
apply (subgoal-tac (An::nat. (1::real) / ((2::real) * sqrt pi * real n powr (3 /
2))) =
(An:nat. (1:real) / ((2::real) % sqrt pi) * real n powr (=3 / 2)))
subgoal by (simp add: summable-real-powr-iff)
by (simp add: inverse-eq-divide powr-minus)

show ?thesis

16

apply (subst summable-Suc-iff [symmetric))
apply (subst summable-comparison-test-bigo[where g = %g1])
using summable-norm-g1 apply blast
apply (rule asymp-equiv-imp-bigo)
using f4 apply blast
by simp
qed

lemma gbinomial-1-2-gchoose-alternating-sum-0:

shows (> n. ((1/2 gchoose n) * (— (1::real)) "n)) = 0 (is O n. 2f-1 n) = 0)
proof —

let 2f = Az. (O_n. ((((1::real) / (2::real) gchoose n) x (—1) ~n) x z ~ n))

have f0: Vz. ?%fz = (O n. (((L::real) / (2::real) gchoose n) * (—z) ~ n)))
by (metis (no-types, lifting) more-arith-simps(11) power-minus suminf-cong)

— Inside the disk: expansion gives sqrt(1+x)

have eg-inside: Az. abs v < 1 = ?f (—x) = sqrt (1—(—x))
apply (simp only: f0)
using sqrt-series sums-unique by force

have ((A\z. ?f (—z)) —— sqrt (1 + (—1))) (at-right (—1))
proof —
have ((Az. sqrt (14x)) —— sqrt 0) (at-right (—1))
apply (intro tendsto-intros)
using filterlim-at-right-to-0 by fastforce
moreover have eventually (Az. ?f (—x) = sqrt(1+z)) (at-right (—1))
apply (subst eventually-at)
apply (rule exI[of - 0.1])
apply (auto simp: dist-real-def)[1]
using eg-inside by force
ultimately show ?thesis
by (simp add: filterlim-cong)
qed
hence lim: ((\z. ?f (—z)) —— 0) (at-right (—1)) by simp

have lim-by-abel-from-right: (Az. ?f (—z)) —— (O n. 2f~1 n)) (at-right (—1))
apply (subst Abel-limit-theorem”)
subgoal using summable-1-2-gchoose-alternating by simp
apply (subst conv-radius-gchoose-alternatinglwhere a = 1/2::real])
apply (smt (verit, ccfu-threshold) Multiseries-Expansion.intyness-simps(1)
Nats-cases One-nat-def
Rings.ring-distribs(2) divide-inverse inverse-eg-divide nat-less-real-le
nonzero-mult-div-cancel-left of-nat-0-less-iff one-power2 plus-1-eq-Suc times-divide-eg-right)
by auto

from lim lim-by-abel-from-right show ?thesis

apply (subst tendsto-unique[where f = (Az. ?f (—z)) and a = (D n. ?f-1 n)
and F = (at-right (—1)) and b = 0])

17

using trivial-limit-at-right-real apply blast
apply blast
apply blast
by simp
qed

2.3 Binomial sqrt series with the boundary cases

This lemma incorporates the boundary values where z =1 and z = —1.

theorem binomial-sqrt-series’:
assumes |z| < (1 :: real)
shows suminf (An. ((1/2) gchoose n) x © ~n) = sqrt (1 + z)
proof (cases |z| < 1)
case True
then show ?thesis using binomial-sqrt-series by presburger
next
case abs-z-1: False
then show ?thesis
proof (cases z = 1)
case True
then show ?thesis
by (simp add: gbinomial-1-2-gchoose-sum-sqrt-2)
next
case Fulse
then have z = —1
using abs-z-1 assms by linarith
then show %thesis by (simp add: gbinomial-1-2-gchoose-alternating-sum-0)
qed
qed

end

References

[1] Proof of Abel’s limit theorem — planetmath.org. https://planetmath.
org/proofofabelslimittheorem. [Accessed 11-11-2025].

[2] F. Holland. Abel’s limit theorem, its converse, and multiplication for-
mulae for I'(x). Irish Math. Soc. Bull., 0089:57—-64, 2022.

[3] Wikipedia contributors. Abel’s theorem. [Accessed 11-11-2025]. URL:
https://en.wikipedia.org/wiki/Abel%27s_theorem.

18

https://planetmath.org/proofofabelslimittheorem
https://planetmath.org/proofofabelslimittheorem
https://en.wikipedia.org/wiki/Abel%27s_theorem

	Abel's limit theorem on real power series
	Example application: boundary cases of binomial theorem
	Binomial series
	Alternating series
	Binomial sqrt series with the boundary cases

